

THE VEHICLE
ROUTING PROBLEM

SIAM Monographs on
Discrete Mathematics and Applications

The series includes advanced monographs reporting on the most recent theoretical, computational, or
applied developments in the field; introductory volumes aimed at mathematicians and other mathematically
motivated readers interested in understanding certain areas of pure or applied combinatorics; and graduate
textbooks. The volumes are devoted to various areas of discrete mathematics and its applications.

Mathematicians, computer scientists, operations researchers, computationally oriented natural and social
scientists, engineers, medical researchers, and other practitioners will find the volumes of interest.

Editor-in-Chief
Peter L. Hammer, RUTCOR, Rutgers, The State University of New Jersey

Editorial Board
M. Aigner, Freie Universitat Berlin, Germany
N. Alon, Tel Aviv University, Israel
E. Balas, Carnegie Mellon University, USA
C. Berge, £ R. Combinatoire, France
J.- C. Bermond, Universite de Nice-Sophia Antipolis, France
J. Berstel, Universite Marne-la-Vallee, France
N. L. Biggs, The London School of Economics, United Kingdom
B. Bollobas, University of Memphis, USA
R. E. Burkard, Technische Universitat Graz, Austria
D. G. Cornell, University of Toronto, Canada
I. Gessel, Brandeis University, USA
F. Glover, University of Colorado, USA
M. C. Golumbic, Bar-llan University, Israel
R. L. Graham, AT&T Research, USA
A. J. Hoffman, IBM T. J. Watson Research Center, USA
T. Ibaraki, Kyoto University, Japan
H. Imai, University of Tokyo, Japan
M. Karoriski, Adam Mickiewicz University, Poland, and Emory

University, USA
R. M. Karp, University of Washington, USA
V. Klee, University of Washington, USA
K. M. Koh, National University of Singapore, Republic of

Singapore
B. Korte, Universitat Bonn, Germany

Series Volumes

A. V. Kostochka, Siberian Branch of the Russian Academy of
Sciences, Russia

F. T. Leighton, Massachusetts Institute of Technology, USA
T. Lengauer, Gesellschaft fur Mathematik und

Datenverarbeitung mbH, Germany
S. Martello, DEIS University of Bologna, Italy
M. Minoux, Universite Pierre et Marie Curie, France
R. Mohring, Technische Universitat Berlin, Germany
C. L. Mima, Bellcore, USA
J. Nesetril, Charles University, Czech Republic
W. R. Pulleyblank, IBM T. J. Watson Research Center, USA
A. Recski, Technical University of Budapest, Hungary
C. C. Ribeiro, Catholic University of Rio de Janeiro, Brazil
H. Sachs, Technische Universitat llmenau, Germany
A. Schrijver, CWI, The Netherlands
R. Shamir, Tel Aviv University, Israel
N. J. A. Sloane, AT&T Research, USA
W. T. Trotter, Arizona State University, USA
D. J. A. Welsh, University of Oxford, United Kingdom
D. de Werra, Ecole Polytechnique Federate de Lausanne,

Switzerland
P. M. Winkler, Bell Labs, Lucent Technologies, USA
Yue Minyi, Academia Sinica, People's Republic of China

Domosi, P., and Nehaniv, C. L., Algebraic Theory of Automata Networks: An Introduction
Murota, K., Discrete Convex Analysis
Toth, P. and Vigo, D., The Vehicle Routing Problem
Anthony, M., Discrete Mathematics of Neural Networks: Selected Topics
Creignou, N., Khanna, S., and Sudan, M., Complexity Classifications of Boolean Constraint Satisfaction Problems
Hubert, L., Arable, P., and Meulman, J., Combinatorial Data Analysis: Optimization by Dynamic Programming
Peleg, D., Distributed Computing: A Locality-Sensitive Approach
Wegener, I., Branching Programs and Binary Decision Diagrams: Theory and Applications
Brandstadt, A., Le, V. B., and Spinrad, J. P., Graph Classes: A Survey
McKee, T. A. and McMorris, F. R., Topics in Intersection Graph Theory
Grilli di Cortona, P., Manzi, C., Pennisi, A., Ricca, F., and Simeone, B., Evaluation and Optimization of Electoral Systems

THE VEHICLE
ROUTING PROBLEM

Edited by
Paolo Toth
Daniele Vigo
Universita degli Studi di Bologna
Bologna, Italy

Society for Industrial and Applied Mathematics
Philadelphia

siam

Copyright © 2002 by Society for Industrial and Applied Mathematics.

10 9 8 7 6 5 4 3 2

All rights reserved. Printed in the United States of America. No part of this book may
be reproduced, stored, or transmitted in any manner without the written permission of
the publisher. For information, write to the Society for Industrial and Applied
Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688.

Library of Congress Cataloging-in-Publication Data

The vehicle routing problem / edited by Paolo Toth, Daniele Vigo.
p. cm. — (SIAM monographs on discrete mathematics and applications)

Includes bibliographical references and index.
ISBN 0-89871-579-2

1. Transportation problems (Programming) I. Toth, Paolo. II. Vigo, Daniele.
III. Series.

QA402.6 . V44 2001
3.3T0285-dc21

2001042043

is a registered trademark.siam

List of Contributors

Arjang A. Assad
R.H. Smith School of Business
University of Maryland
3313 Van Munching Hall
College Park, MD 20742
USA
aassad@rhsmith.umd.edu

Edward K. Baker
Department of Management Science
University of Miami
Coral Gables, FL 33124
USA
ebaker@miami.edu

Michael O. Ball
R.H. Smith School of Business
University of Maryland
College Park, MD 20742
USA
mball@rhsmith.umd.edu

Lawrence Bodin
R.H. Smith School of Business
University of Maryland
College Park, MD 20742
USA
lbodin@rhsmith.umd.edu

Julien Bramel
Columbia University
406 Uris Hall
New York, NY 10027
USA
jdb8@columbia.edu

Ann M. Campbell
School of Industrial and
Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205
USA
ann@akula.isye.gatech.edu

Lloyd W. Clarke
School of Industrial and
Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205
USA
lloyd.clarke@isye.gatech.edu

Jean-Francois Cordeau
Ecole des Hautes Etudes Commerciales
and GERAD
3000, chemin de la Cote-Ste-Catherine
Montreal, H3T 2A7
Quebec, Canada
cordeau@crt.umontreal.ca

Guy Desaulniers
Ecole Polytechnique de Montreal
and GERAD
CP 6079, Succursale "Centre Ville'
Montreal, H3C 3A7
Quebec, Canada
guyd@crt.umontreal.ca

v

VI List of Contributors

Jacques Desrosiers
Ecole des Hautes Etudes Commerciales
and GERAD
3000, chemin de la Cote-Ste-Catherine
Montreal, H3T 2A7
Quebec, Canada
Jacques .Desrosiers @ hec .ca

Andreas Erdmann
ZAIK
University of Cologne
Weyertal 80, 50931 Cologne
Germany
erdmann@zpr.uni-koeln.de

Michel Gendreau
Departement d'Informatique et de
Recherche Operationnelle
and CRT
Universite de Montreal
C.P. 6128 Succursale "Centre Ville"
Montreal, H3T 2A7
Quebec, Canada
michelg @ crt.umontreal.ca

Bruce L. Golden
Robert H. Smith School of Business
University of Maryland
College Park, MD 20742
USA
bgolden@rhsmith.umd.edu

Eleni Hadjiconstantinou
The Management School
Imperial College
53 Prince's Gate
Exhibition Road
London SW7 2PG
UK
e.hconstantinou @ ic. ac .uk
Gilbert Laporte
Ecole des Hautes Etudes Commerciales
and CRT
Universite de Montreal
CP 6128, Succursale "Centre Ville"
Montreal, H3T 2A7
Quebec, Canada
gilbert@crt.umontreal.ca

Laurence Levy
RouteSmart Technologies
8850 Stanford Boulevard
Suite 2600
Columbia, MD 20742
USA
llevy@routesmart.com

Denis Naddef
Laboratoire ID
ENSIMAG-Zirst
51, Avenue Jean Kurtzmann
F-38330 Montbonnot Saint Martin
France
Denis.Naddef@imag.fr

Jean-Yves Potvin
Departement d'Informatique et de
Recherche Operationnelle
and CRT
Universite de Montreal
C.P. 6128, Succursale "Centre Ville"
Montreal, H3T 2A7
Quebec, Canada
potvin@iro.umontreal.ca

Giovanni Rinaldi
I.A.S.I.-C.N.R.
Viale Manzoni, 30
Roma, 00185
Italy
rinaldi@iasi.rm.cnr.it

Daron Roberts
British Airways
Waterside
PO Box 365
Harmondsworth, UB7 0GB
UK
d.r.roberts@british-akways.com

Martin W.P. Savelsbergh
School of Industrial and
Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205
USA
martin.savelsbergh@isye.gatech.edu

List of Contributors VII

Frederic Semet
LAMIH-ROI
Universite de Valenciennes
et du Hainaut-Cambresis
Le Mont Houy
Valenciennes, 59313
France
frederic. semet @ univ-Valenciennes .fr
David Simchi-Levi
Department of Civil and Environmental
Engineering
Massachusetts Institute of Technology
77 Massachusetts Avenue
Room 1-171
Cambridge, MA 02139
USA
dslevi@mit.edu
John Sniezek
RouteSmart Technologies
8850 Stanford Boulevard
Suite 2600
Columbia, MD 20742
USA
jsniezek@routesmart.com

Marius M. Solomon
Management Science Department
Northeastern University
and GERAD
360 Huntington Avenue
Boston, MA 02115
USA
solomon@cba.neu.edu

Francois Soumis
Ecole Polytechnique de Montreal
and GERAD
CP 6079, Succursale "Centre Ville'
Montreal, H3C 3A7
Quebec, Canada
soumis@crt.umontreal.ca

Paolo Toth
Dipartimento di Elettronica,
Informatica e Sistemistica
Universita di Bologna
Viale Risorgimento, 2
Bologna, 40136
Italy
ptoth@deis.unibo.it

Daniele Vigo
Dipartimento di Elettronica,
Informatica e Sistemistica
Universita di Bologna
Viale Risorgimento, 2
Bologna, 40136
Italy
dvigo@deis.unibo.it

Edward Wasil
Kogod School of Business
Administration
American University
Washington, DC 20016
USA
ewasil @ american.edu

This page intentionally left blank

Contents

List of Contributors v

Preface xvii

1 An Overview of Vehicle Routing Problems 1
R Toth, D. Vigo
1.1 Introduction 1
1.2 Problem Definition and Basic Notation 5

1.2.1 Capacitated and Distance-Constrained VRP 5
1.2.2 VRP with Time Windows 8
1.2.3 VRP with Backhauls 9
1.2.4 VRP with Pickup and Delivery 10

1.3 Basic Models for the VRP 11
1.3.1 Vehicle Flow Models 11
1.3.2 Extensions of Vehicle Flow Models 17
1.3.3 Commodity Flow Models 19
1.3.4 Set-Partitioning Models 21

1.4 Test Instances for the CVRP and Other VRPs 22
Bibliography 23

1 Capacitated Vehicle Routing Problem 27

2 Branch-and-Bound Algorithms for the Capacitated VRP 29
P. Toth, D. Vigo
2.1 Introduction 29
2.2 Basic Relaxations 30

2.2.1 Bounds Based on Assignment and Matching 30
2.2.2 Bounds Based on Arborescences and Trees 32
2.2.3 Comparison of the Basic Relaxations 33

2.3 Better Relaxations 35
2.3.1 Additive Bounds for ACVRP 35
2.3.2 Further Lower Bounds for ACVRP 39
2.3.3 Lagrangian Lower Bounds for SCVRP 40

ix

x Contents

2.3.4 Lower Bounds from a Set-Partitioning Formulation . . . 41
2.3.5 Comparison of the Improved Lower Bounds 42

2.4 Structure of the Branch-and-Bound Algorithms for CVRP 44
2.4.1 Branching Schemes and Search Strategies 44
2.4.2 Reduction, Dominance Rules, and Other Features 46
2.4.3 Performance of the Branch-and-Bound Algorithms 47

2.5 Distance-Constrained VRP 48
Bibliography 49

3 Branch-and-Cut Algorithms for the Capacitated VRP 53
D. Naddef, G. Rinaldi
3.1 Introduction and Two-Index Flow Model 53
3.2 Branch-and-Cut 55
3.3 Polyhedral Studies 58

3.3.1 Capacity Constraints 59
3.3.2 Generalized Capacity Constraints 61
3.3.3 Framed Capacity Constraints 62
3.3.4 Valid Inequalities from STSP 62
3.3.5 Valid Inequalities Combining Bin Packing and STSP . . . 67
3.3.6 Valid Inequalities from the Stable Set Problem 69

3.4 Separation Procedures 71
3.4.1 Exact Separation of Capacity Constraints 71
3.4.2 Heuristics for Capacity and Related Constraints 72
3.4.3 STSP Constraints 75

3.5 Branching Strategies 75
3.6 Computational Results . . 78
3.7 Conclusions 81
Bibliography 81

4 Set-Covering-Based Algorithms for the Capacitated VRP 85
J. Bramel, D. Simchi-Levi
4.1 Introduction 85
4.2 Solving the Linear Programming Relaxation of P 87
4.3 Set-Covering-Based Solution Methods 89

4.3.1 Branch-and-Bound Algorithm for Problem CG 89
4.3.2 Polyhedral Branch-and-Bound Algorithm . 91
4.3.3 Pseudo-Polynomial Lower Bound on cmin 92
4.3.4 Solving P/> via Dual-Ascent and Branch-and-Bound . . . 94

4.4 Solving the Set-Covering Integer Program 96
4.4.1 A Cutting Plane Method 97
4.4.2 Branch-and-Price 99
4.4.3 Additional Comments on Computational Approaches . . 100

4.5 Computational Results 100
4.6 Effectiveness of the Set-Covering Formulation 102

4.6.1 Worst-Case Analysis 103
4.6.2 Average-Case Analysis 103

Contents xi

Bibliography 106

5 Classical Heuristics for the Capacitated VRP 109
G. Laporte, F. Semet
5.1 Introduction 109
5.2 Constructive Methods 110

5.2.1 Clarke and Wright Savings Algorithm 110
5.2.2 Enhancements of the Clarke and Wright Algorithm 111
5.2.3 Matching-Based Savings Algorithms 113
5.2.4 Sequential Insertion Heuristics 114

5.3 Two-Phase Methods 116
5.3.1 Elementary Clustering Methods 116
5.3.2 Truncated Branch-and-Bound 118
5.3.3 Petal Algorithms 120
5.3.4 Route-First, Cluster-Second Methods 120

5.4 Improvement Heuristics 121
5.4.1 Single-Route Improvements 121
5.4.2 Multiroute Improvements 122

5.5 Conclusions 125
Bibliography 126

6 Metaheuristics for the Capacitated VRP 129
M. Gendreau, G. Laporte, J.-Y. Potvin
6.1 Introduction 129
6.2 Simulated Annealing 130

6.2.1 Two Early Simulated Annealing Algorithms 130
6.2.2 Osman's Simulated Annealing Algorithms 131
6.2.3 Van Breedam's Experiments 133

6.3 Deterministic Annealing 133
6.4 Tabu Search 134

6.4.1 Two Early Tabu Search Algorithms 134
6.4.2 Osman's Tabu Search Algorithm 134
6.4.3 Taburoute 135
6.4.4 Taillard's Algorithm 137
6.4.5 Xu and Kelly's Algorithm 137
6.4.6 Rego and Roucairol's Algorithms 137
6.4.7 Barbarosoglu and Ozgur's Algorithm 138
6.4.8 Adaptive Memory Procedure of Rochat and Taillard . . . 138
6.4.9 Granular Tabu Search of Toth and Vigo 138
6.4.10 Computational Comparison 140

6.5 Genetic Algorithms 140
6.5.1 Simple Genetic Algorithm 140
6.5.2 Application to Sequencing Problems 141
6.5.3 Application to the VRP 142

6.6 Ant Algorithms 144
6.7 Neural Networks 146

xii Contents

6.8 Conclusions 148
Bibliography 149

II Important Variants of the Vehicle Routing Problem 155

7 VRP with Time Windows 157
J.-E Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, F. Soumis
7.1 Introduction 157
7.2 Problem Formulation 158

7.2.1 Formulation 158
7.2.2 Network Lower Bound 159
7.2.3 Linear Programming Lower Bound 159
7.2.4 Algorithms 160

7.3 Upper Bounds: Heuristic Approaches 160
7.3.1 Route Construction 160
7.3.2 Route Improvement 161
7.3.3 Composite Heuristics 161
7.3.4 Metaheuristics 162
7.3.5 Parallel Implementations 165
7.3.6 Optimization-Based Heuristics 165
7.3.7 Asymptotically Optimal Heuristics 165

7.4 Lower Bounds from Decomposition Approaches 166
7.4.1 Lagrangian Relaxation 166
7.4.2 Capacity and Time-Constrained Shortest-Path Problem . . 167
7.4.3 Variable Splitting 168
7.4.4 Column Generation 169
7.4.5 Set-Partitioning Formulation 169
7.4.6 Lower Bound 170
7.4.7 Commodity Aggregation 171
7.4.8 Hybrid Approach 172

7.5 Integer Solutions 173
7.5.1 Binary Decisions on Arc Flow Variables 173
7.5.2 Integer Decisions on Arc Flow Variables 173
7.5.3 Binary Decisions on Path Flow Variables 174
7.5.4 Subtour Elimination and 2-Path Cuts 175
7.5.5 /c-Path Cuts and Parallelism 176
7.5.6 Integer Decisions on (Fractional and Integer) Time

Variables 176
7.6 Special Cases 177

7.6.1 Multiple TSP with Time Windows 177
7.6.2 VRP with Backhauls and Time Windows 177

7.7 Extensions 178
7.7.1 Heterogeneous Fleet, Multiple-Depot, and Initial

Conditions 178
7.7.2 Fleet Size 179

Contents xiii

7.7.3 Multiple Time Windows 179
7.7.4 Soft Time Windows 179
7.7.5 Time-and Load-Dependent Costs 180
7.7.6 Driver Considerations 180

7.8 Computational Results for VRPTW 181
7.9 Conclusions 184
Bibliography 186

8 VRP with Backhauls 195
P. Toth, D. Vigo
8.1 Introduction 195

8.1.1 Benchmark Instances 197
8.2 Integer Linear Programming Models 198

8.2.1 Formulation of Toth and Vigo 198
8.2.2 Formulation of Mingozzi, Giorgi, and Baldacci 200

8.3 Relaxations 201
8.3.1 Relaxation Obtained by Dropping the CCCs 202
8.3.2 Relaxation Based on Projection 202
8.3.3 Lagrangian Relaxation 203
8.3.4 Overall Additive Lower Bound 204
8.3.5 Relaxation Based on the Set-Partitioning Model 204

8.4 Exact Algorithms . 208
8.4.1 Algorithm of Toth and Vigo 208
8.4.2 Algorithm of Mingozzi, Giorgi, and Baldacci 209
8.4.3 Computational Results for the Exact Algorithms 210

8.5 Heuristic Algorithms 214
8.5.1 Algorithm of Deif and Bodin 214
8.5.2 Algorithms of Goetschalckx and Jacobs-Blecha 215
8.5.3 Algorithm of Toth and Vigo 216
8.5.4 Computational Results for the Heuristics 217

Bibliography 221

9 VRP with Pickup and Delivery 225
G. Desaulniers, J. Desrosiers, A. Erdmann, M. M. Solomon, F. Soumis
9.1 Introduction 225
9.2 Mathematical Formulation 226

9.2.1 Construction of the Networks 226
9.2.2 Formulation 227
9.2.3 Service Quality 228
9.2.4 Reduction of the Network Size 228

9.3 Heuristics 229
9.3.1 Construction and Improvement 229
9.3.2 Clustering Algorithms 230
9.3.3 Metaheuristics 230
9.3.4 Neural Network Heuristics 231
9.3.5 Theoretical Analysis of Algorithms 231

xiv Contents

9.4 Optimization-Based Approaches 232
9.4.1 Single Vehicle Cases 232
9.4.2 Multiple Vehicle Cases 234

9.5 Applications 236
9.6 Computational Results 236
9.7 Conclusions 237
Bibliography 238

III Applications and Case Studies 243

10 Routing Vehicles in the Real World: Applications in the Solid Waste,
Beverage, Food, Dairy, and Newspaper Industries 245
B. L. Golden, A. A. Assad, E. A. Wasil
10.1 Introduction 245
10.2 Computerized Vehicle Routing in the Solid Waste Industry 247

10.2.1 History 247
10.2.2 Background 247
10.2.3 Commercial Collection 249
10.2.4 Residential Collection 250
10.2.5 Case Studies 250
10.2.6 Roll-on-Roll-off 252
10.2.7 Further Remarks 254

10.3 Vehicle Routing in the Beverage, Food, and Dairy Industries 254
10.3.1 Introduction 254
10.3.2 Beverage Industry 255
10.3.3 Food Industry 259
10.3.4 Dairy Industry 260

10.4 Distribution and Routing in the Newspaper Industry 266
10.4.1 Industry Background 266
10.4.2 Newspaper Distribution Problem 268
10.4.3 Vehicle Routing Algorithms for NDP 271
10.4.4 Three Case Studies 276
10.4.5 Further Remarks 280

10.5 Conclusions 280
Bibliography 281

11 Capacitated Arc Routing Problem with Vehicle-Site Dependencies:
The Philadelphia Experience 287
J. Sniezek, L. Bodin, L. Levy, M. Ball
11.1 Introduction 287
11.2 Networks, Assumptions, and Goals of the CARP-VSD 288

11.2.1 Travel Network 288
11.2.2 Service Network 289
11.2.3 Vehicle Classes 290
11.2.4 Travel Network and Service Network for a Vehicle Class 291

Contents xv

11.2.5 Vehicle Preference List 291
11.2.6 Other Assumptions 292
11.2.7 Goals and Constraints of the CARP-VSD 292

11.3 Vehicle Decomposition Algorithm (VDA) 293
11.3.1 Step A. Create and Verify Vehicle Class Networks 293
11.3.2 Step B. Estimate Total Work and Determine Initial

Fleet Mix 294
11.3.3 Step C. Partition the Service Network 301
11.3.4 Step D. Determine Travel Path and Balance the Partitions 304
11.3.5 Step E. Revise Estimate of Total Work and Adjust

Fleet Mix 305
11.4 Implementation of the VDA in Philadelphia 305
11.5 Enhancements and Extensions 307
Bibliography 308

12 Inventory Routing in Practice 309
Ann M. Campbell, Lloyd W. Clarke, Martin W.R Savelsbergh
12.1 Introduction 309
12.2 Problem Definition 310
12.3 Literature Review 311
12.4 Solution Approach 313

12.4.1 Phase I: Integer Programming Model 313
12.4.2 Phase I: Solving the Integer Programming Model 315
12.4.3 Phase II: Scheduling 316

12.5 Computational Experience 319
12.5.1 Instances 319
12.5.2 Solution Quality 322
12.5.3 Alternate Heuristic 324
12.5.4 Computational Experiments 324

12.6 Conclusion 327
Bibliography 329

13 Routing Under Uncertainty: An Application in the Scheduling of Field
Service Engineers 331
E. Hadjiconstantinou, D. Roberts
13.1 Introduction 331
13.2 VRPSST with Variable Costs of Recourse 332
13.3 Literature Review 332

13.3.1 VRPST 333
13.3.2 VRPSD 333

13.4 Stochastic Integer VRPSST Formulation 334
13.4.1 First-Stage Problem 334
13.4.2 Second-Stage Problem 335

13.5 Paired Tree Search Algorithm (PTSA) 336
13.5.1 Linked Trees 337
13.5.2 Lower Bounds 337

xvi Contents

13.5.3 Computational Implementation 339
13.6 Applied Maintenance Scheduling Problem 339

13.6.1 Maintenance Scheduling System in Practice 340
13.6.2 Stochastic Problem Setting 340

13.7 Modeling the Applied Problem as a VRPSST 341
13.8 Model Input 342

13.8.1 Job Locations and the Road Network 342
13.8.2 Service Times 342

13.9 Model Output: Computational Considerations 343
13.9.1 Framework for the Analysis of Results 343
13.9.2 Reoptimization 344

13.10 Example Scenario 345
13.11 Overall Computational Results 348
13.12 Conclusion 350
Bibliography 350

14 Evolution of Microcomputer-Based Vehicle Routing Software:
Case Studies in the United States 353
E. K. Baker
14.1 Introduction 353
14.2 Definition of the VRP 356

14.2.1 Customer Specification 356
14.2.2 Product Specification 357
14.2.3 Vehicle Specification 357

14.3 Algorithms 358
14.4 Future Trends in Vehicle Routing Software 358
14.5 Summary and Conclusions 360
Bibliography 360

Index 363

Preface

The Vehicle Routing Problem (VRP) calls for the determination of the optimal set of
routes to be performed by a fleet of vehicles to serve a given set of customers, and it is one
of the most important, and studied, combinatorial optimization problems.

More than 40 years have elapsed since Dantzig and Ramser introduced the problem in
1959. They described a real-world application concerning the delivery of gasoline to service
stations and proposed the first mathematical programming formulation and algorithmic
approach. A few years later, in 1964, Clarke and Wright proposed an effective greedy
heuristic that improved on the Dantzig-Ramser approach. Following these two seminal
papers, hundreds of models and algorithms were proposed for the optimal and approximate
solution of the different versions of the VRP. Dozens of packages for the solution of various
real-world VRPs are now available on the market. This interest in VRP is motivated by both
its practical relevance and its considerable difficulty: the largest VRP instances that can be
consistently solved by the most effective exact algorithms proposed so far contain about 50
customers, whereas larger instances may be solved to optimality only in particular cases.

This book covers the state of the art of both exact and heuristic methods developed in
the last decades for the VRP and some of its main variants. Moreover, a considerable part
of the book is devoted to the discussion of practical issues.

The realization of this project would have been impossible for us alone to accomplish.
We thus involved an enthusiastic group of very well known experts, whose contributions
form a large part of the recent history of the VRP (as well as that of Mathematical Pro-
gramming and Combinatorial Optimization). As editors, we constantly devoted our efforts
to reducing as much as possible the overlap between chapters and to preserving coherence
and ensuring uniformity of the notation and terminology.

Although focused on a specific family of problems, this book offers a complete
overview of the effective use of the most important techniques proposed for the solution of
hard combinatorial problems. We, however, assume that readers have a basic knowledge
of the main methods for the solution of combinatorial optimization problems (complex-
ity theory, branch-and-bound, branch-and-cut, relaxations, heuristics, metaheuristics, local
search, etc.).

The book is divided into three parts, preceded by an introductory chapter in which we
present an overview of the VRP family, define the most important variants of the problem,
and introduce the main mathematical models. The first part covers the basic and exten-
sively studied version of the VRP, known as capacitated VRP. Three chapters examine the
main exact approaches (branch-and-bound, branch-and-cut, and set-covering-based meth-
ods), while two other chapters review traditional heuristic approaches and metaheuristics,

xvii

xviii Preface

respectively. For all methods extensive computational results are analyzed. The second
part covers three main variants of the VRP: the VRP with time windows, the VRP with
backhauls, and the VRP with pickup and delivery. In each chapter, both exact and heuristic
methods are examined. Finally, in the third part, the issues arising in real-world VRP appli-
cations, as the presence of dynamic and stochastic components, are discussed by analyzing
relevant case studies and presenting software packages.

We warmly thank all the people who contributed to this project, which occupied
a considerable amount of the past 3 years: our coauthors, whose competent, patient, and
collaborative activity made possible the completion of this volume; the referees whose com-
ments greatly improved the overall presentation; Peter Hammer, editor-in-chief of SIAM
Monographs on Discrete Mathematics and Applications, who since the very beginning en-
couraged us and followed all the steps of the project; and Vickie Kearn, Deborah Poulson,
Lou Primus, Sara Triller, Marianne Will, Donna Witzleben, Sam Young, and all the people
of SIAM who greatly helped us in the preparation of the overall manuscript.

Paolo Toth
Daniele Vigo

Bologna, December 2000

Chapter 1

An Overview of Vehicle
Routing Problems

Paolo Toth
Daniele Vigo

1.1 Introduction
The last decades have seen an increasing utilization of optimization packages, based on
Operations Research and Mathematical Programming techniques, for the effective man-
agement of the provision of goods and services in distribution systems. The large number
of real-world applications, both in North America and in Europe, have widely shown that the
use of computerized procedures for the distribution process planning produces substantial
savings (generally from 5% to 20%) in the global transportation costs. It is easy to see
that the impact of these savings on the global economic system is significant. Indeed, the
transportation process involves all stages of the production and distribution systems and
represents a relevant component (generally from 10% to 20%) of the final cost of the goods.

The success of the utilization of Operations Research techniques is due to the devel-
opment of computer systems, from both the hardware and the software points of view, and
to the increasing integration of information systems into the productive and commercial
processes.

A different factor of success, as important as the others, is the development of modeling
and algorithmic tools implemented in recent years. Indeed, the proposed models take into
account all the characteristics of the distribution problems arising in real-world applications,
and the corresponding algorithms and computer implementations find good solutions for
real-world instances within acceptable computing times.

In this book, we consider only the problems concerning the distribution of goods
between depots and final users (customers). These problems are generally known as Vehicle
Routing Problems (VRPs) or Vehicle Scheduling Problems. The models and algorithms
proposed for the solution of vehicle and scheduling problems, presented in detail in this

1

Chapter 1. An Overview of Vehicle Routing Problems

book, can be used effectively not only for the solution of problems concerning the delivery
or collection of goods but for the solution of different real-world applications arising in
transportation systems as well. Typical applications of this type are, for instance, solid
waste collection, street cleaning, school bus routing, dial-a-ride systems, transportation of
handicapped persons, routing of salespeople, and of maintenance units.

The distribution of goods concerns the service, in a given time period, of a set of
customers by a set of vehicles, which are located in one or more depots, are operated by a
set of crews (drivers), and perform their movements by using an appropriate road network. In
particular, the solution of a VRP calls for the determination of a set of routes, each performed
by a single vehicle that starts and ends at its own depot, such that all the requirements
of the customers are fulfilled, all the operational constraints are satisfied, and the global
transportation cost is minimized. In this section, we describe the typical characteristics of
the routing and scheduling problems by considering their main components (road network,
customers, depots, vehicles, and drivers), the different operational constraints that can be
imposed on the construction of the routes, and the possible objectives to be achieved in the
optimization process.

The road network, used for the transportation of goods, is generally described through
a graph, whose arcs represent the road sections and whose vertices correspond to the road
junctions and to the depot and customer locations. The arcs (and consequently the corre-
sponding graphs) can be directed or undirected, depending on whether they can be traversed
in only one direction (for instance, because of the presence of one-way streets, typical of
urban or motorway networks) or in both directions, respectively. Each arc is associated with
a cost, which generally represents its length, and a travel time, which is possibly dependent
on the vehicle type or on the period during which the arc is traversed.

Typical characteristics of customers are

• vertex of the road graph in which the customer is located;

• amount of goods (demand), possibly of different types, which must be delivered or
collected at the customer;

• periods of the day (time windows) during which the customer can be served (for
instance, because of specific periods during which the customer is open or the location
can be reached, due to traffic limitations);

• times required to deliver or collect the goods at the customer location (unloading or
loading times, respectively), possibly dependent on the vehicle type; and

• subset of the available vehicles that can be used to serve the customer (for instance,
because of possible access limitations or loading and unloading requirements).

Sometimes, it is not possible to fully satisfy the demand of each customer. In these
cases, the amounts to be delivered or collected can be reduced, or a subset of customers can
be left unserved. To deal with these situations, different priorities, or penalties associated
with the partial or total lack of service, can be assigned to the customers.

The routes performed to serve customers start and end at one or more depots, located
at the vertices of the road graph. Each depot is characterized by the number and types of
vehicles associated with it and by the global amount of goods it can deal with. In some

2

1.1. Introduction

real-world applications, the customers are a priori partitioned among the depots, and the
vehicles have to return to their home depot at the end of each route. In these cases, the
overall VRP can be decomposed into several independent problems, each associated with a
different depot.

Transportation of goods is performed by using a fleet of vehicles whose composition
and size can be fixed or can be defined according to the requirements of the customers.
Typical characteristics of the vehicles are

• home depot of the vehicle, and the possibility to end service at a depot other than the
home one;

• capacity of the vehicle, expressed as the maximum weight, or volume, or number of
pallets, the vehicle can load;

• possible subdivision of the vehicle into compartments, each characterized by its ca-
pacity and by the types of goods that can be carried;

• devices available for the loading and unloading operations;

• subset of arcs of the road graph which can be traversed by the vehicle; and

• costs associated with utilization of the vehicle (per distance unit, per time unit, per
route, etc.).

Drivers operating the vehicles must satisfy several constraints laid down by union
contracts and company regulations (for instance, working periods during the day, number
and duration of breaks during service, maximum duration of driving periods, overtime). In
the following, the constraints imposed on drivers are imbedded in those associated with the
corresponding vehicles.

The routes must satisfy several operational constraints, which depend on the nature
of the transported goods, on the quality of the service level, and on the characteristics of the
customers and the vehicles. Some typical operational constraints are the following: along
each route, the current load of the associated vehicle cannot exceed the vehicle capacity; the
customers served in a route can require only the delivery or the collection of goods, or both
possibilities can exist; and customers can be served only within their time windows and
the working periods of the drivers associated with the vehicles visiting them. Precedence
constraints can be imposed on the order in which the customers served in a route are visited.
One type of precedence constraint requires that a given customer be served in the same
route serving a given subset of other customers and that the customer must be visited before
(or after) the customers belonging to the associated subset. This is the case, for instance,
of the so-called pickup and delivery problems, wherein the routes can perform both the
collection and the delivery of goods, and the goods collected from the pickup customers
must be carried to the corresponding delivery customers by the same vehicle. Another
type of precedence constraint imposes that if customers of different types are served in the
same route, the order in which the customers are visited is fixed. This situation arises,
for instance, for the so-called VRP with Backhauls, wherein again, the routes can perform
both the collection and the delivery of goods, but constraints associated with the loading

3

Chapter 1. An Overview of Vehicle Routing Problems

and unloading operations, and the difficulty in rearranging the load of the vehicle along the
route, mean that all deliveries must be performed before the collections.

Evaluation of the global cost of the routes, and the check of the operational constraints
imposed on them, requires knowledge of the travel cost and the travel time between each
pair of customers and between the depots and the customers. To this end, the original road
graph (which often is very sparse) is generally transformed into a complete graph, whose
vertices are the vertices of the road graph corresponding to the customers and the depots.
For each pair of vertices i and j of the complete graph, an arc (i, j) is defined whose cost
Cij is given by the cost of the shortest path starting from vertex i and arriving at vertex j in
the road graph. The travel time fy, associated with each arc (i, j) of the complete graph,
is computed as the sum of the travel times of the arcs belonging to the shortest path from
i to j in the road graph. In the following, instead of the original road graph, we consider
the associated complete graph, which can be directed or undirected, depending on the
property of the corresponding cost and travel-time matrices to be asymmetric or symmetric,
respectively.

Several, and often contrasting, objectives can be considered for the vehicle routing
problems. Typical objectives are

• minimization of the global transportation cost, dependent on the global distance
traveled (or on the global travel time) and on the fixed costs associated with the used
vehicles (and with the corresponding drivers);

• minimization of the number of vehicles (or drivers) required to serve all the customers;

• balancing of the routes, for travel time and vehicle load;

• minimization of the penalties associated with partial service of the customers;

or any weighted combination of these objectives.
In some applications, each vehicle can operate more than one route in the considered

time period, or the routes can last for more than 1 day. In addition, sometimes it is necessary
to consider stochastic or time-dependent dynamic versions of the problem, i.e., problems
for which, a priori, there is only partial knowledge of the demands of the customers or of
the costs (and the travel times) associated with the arcs of the road network.

More than 40 years have elapsed since Dantzig and Ramser [11] introduced the VRP.
In their paper, the authors described a real-world application (concerning the delivery of
gasoline to gas stations) and proposed the first mathematical programming formulation and
algorithmic approach for the solution of the problem. A few years later, Clarke and Wright
[9] proposed an effective greedy heuristic that improved on the Dantzig-Ramser approach.
Following these two seminal papers, many models and exact and heuristic algorithms were
proposed for the optimal and approximate solution of the different versions of the VRP.
The most important and most effective models and algorithms are described in the various
chapters of this book.

There are several main survey papers on the subject of VRPs. A classification scheme
was given in Desrochers, Lenstra, and Savelsbergh [13]. Laporte and Nobert [32] presented
an extensive survey that was entirely devoted to exact methods for the VRP, and they gave
a complete and detailed analysis of the state of the art up to the late 1980s. Other surveys

4

1.2. Problem Definition and Basic Notation

covering exact algorithms, but often mainly devoted to heuristic methods, were presented
by Christofides, Mingozzi, and Toth [7], Magnanti [36], Bodin et al. [4], Christofides [5],
Laporte [30], Fisher [19], Toth and Vigo [41, 42], and Golden et al. [26].

An annotated bibliography was proposed by Laporte [31], and an extensive bibliogra-
phy was presented by Laporte and Osman [33]. A book on the subject was edited by Golden
and Assad [25].

Models and algorithms for the solution of the so-called Arc Routing Problem, i.e.,
the variant of the problem arising when the customers are located not at the vertices but
along the arcs of the road network, are described in the recent book edited by Dror [14].
The particular case of the VRP arising when only one vehicle is available at the depot and
no additional operational constraints are imposed, i.e., the well-known Traveling Salesman
Problem, is extensively described in the classic book edited by Lawler et al. [34].

1.2 Problem Definition and Basic Notation
In this section we give a formal definition, as graph theoretic models, of the basic problems
of the vehicle routing class. These problems, which have received the greatest attention in
the scientific literature, are examined in detail in the first two parts of the book. We first
describe the Capacitated VRP, which is the simplest and most studied member of the family,
then we introduce the Distance-Constrained VRP, the VRP with Time Windows, the VRP
with Backhauls, and the VRP with Pickup and Delivery.

For each of these problems, several minor variants have been proposed and examined
in the literature, and often different problems are given the same name. Although in many
cases the solution methods, particularly the heuristic ones, may be adapted to incorporate
additional features, this indeterminacy in problem definition generally causes much confu-
sion. Therefore, for each problem we first describe the basic version, i.e., the one that in
this book is denoted by the corresponding acronym, and then we discuss the variants. In
addition, we make an explicit distinction between the symmetric and asymmetric versions
of a problem only if models and solution approaches proposed in the literature make use of
this distinction.

Also in this section, we introduce all the relevant notation and terminology used
throughout the book. Additional notation and definitions required to describe particular
variants and practical VRP problems are given in the appropriate chapters. Figure 1.1
summarizes the main problems described in this section and illustrates their connections.
In the figure, an arrow moving from problem A to problem B means that B is an extension
of A.

1.2.1 Capacitated and Distance-Constrained VRP

The first part of this book (Chapters 2-6) concentrates on the basic version of the VRP,
the Capacitated VRP (CVRP). In the CVRP, all the customers correspond to deliveries
and the demands are deterministic, known in advance, and may not be split. The vehicles
are identical and based at a single central depot, and only the capacity restrictions for the
vehicles are imposed. The objective is to minimize the total cost (i.e., a weighted function
of the number of routes and their length or travel time) to serve all the customers.

5

Chapter 1. An Overview of Vehicle Routing Problems

Figure 1.1. The basic problems of the VRP class and their interconnections.

The CVRP may be described as the following graph theoretic problem. Let G =
(V, A) be a complete graph, where V = {0, . . . ,«} is the vertex set and A is the arc set.
Vertices i = !,...,« correspond to the customers, whereas vertex 0 corresponds to the
depot. Sometimes the depot is associated with vertex n + 1.

A nonnegative cost, ctj, is associated with each arc (/,;') e A and represents the travel
cost spent to go from vertex i to vertex j. Generally, the use of the loop arcs, (i, i),is not
allowed and this is imposed by defining en = +00 for all i e V. If G is a directed graph,
the cost matrix c is asymmetric, and the corresponding problem is called asymmetric CVRP
(ACVRP). Otherwise, we have Q/ = Cji for all (i, j) e A, the problem is called symmetric
CVRP (SCVRP), and the arc set A is generally replaced by a set of undirected edges, E.
Given an edge e e E, let a(e) and /3(e) denote its endpoint vertices. In the following we
denote the edge set of the undirected graph G by A when edges are indicated by means of
their endpoints (i, j) , i, j € V, and by E when edges are indicated through a single index e.

Graph G must be strongly connected and is generally assumed to be complete. Given
a vertex /, let A+(z) denote the so-called forward star of i, defined as the set of vertices j
such that arc (/, y) e A, i.e., the vertices that are directly reachable from i. Analogously,
let A~ (z) denote the backward star of vertex i, defined as the set of vertices j such that arc
(j, 0 € A, i.e., the vertices from which i is directly reachable. Given a vertex set S c. V,
let 8(S) and E(S) denote the set of edges e e E that have only one or both endpoints in S,
respectively. As usual, when a single vertex i e V is considered, we write <5(0 rather than

In several practical cases, the cost matrix satisfies the triangle inequality,

(1.1) for all i, j, keV.

In other words, it is not convenient to deviate from the direct link between two vertices
i and j. The presence of the triangle inequality is sometimes required by the algorithms
for CVRP, and this may be obtained in a simple way by adding a suitably large positive

6

1.2. Problem Definition and Basic Notation

quantity M to the cost of each arc. However, the drastic distortion of the metric induced
by this operation may produce very bad lower and upper bounds with respect to those
corresponding to the original costs. Note that when the cost of each arc of the graph is equal
to the cost of the shortest path between its endpoints, the corresponding cost matrix satisfies
the triangle inequality.

In some instances the vertices are associated with points of the plane having given
coordinates, and the cost c/y, for each arc (i, j) <E A, is defined as the Euclidean distance
between the two points corresponding to vertices i and j. In this case the cost matrix is
symmetric and satisfies the triangle inequality, and the resulting problem called Euclidean
SCVRP. Observe that the frequently performed rounding to the nearest integer of the real-
valued Euclidean arc costs may cause a violation of the triangle inequality, whereas this
does not happen if the costs are rounded up.

Each customer i (i = 1, . . . , n) is associated with a known nonnegative demand, di,
to be delivered, and the depot has a fictitious demand do = 0. Given a vertex set S c V, let
d(S) = Y^i^s di denote the total demand of the set.

A set of K identical vehicles, each with capacity C, is available at the depot. To ensure
feasibility we assume that J, < C for each i = ! , . . . ,« . Each vehicle may perform at most
one route, and we assume that K is not smaller than Km\n, where Km\n is the minimum
number of vehicles needed to serve all the customers. The value of Km[n may be determined
by solving the Bin Packing Problem (BPP) associated with the CVRP, which calls for th
determination of the minimum number of bins, each with capacity C, required to load all
the n items, each with nonnegative weight d{, i = ! , . . . ,« . Although BPP is NP-hard in
the strong sense, instances with hundreds of items can be optimally solved very effectively
(see, e.g., Martello and Toth [37]).

Given a set S c V \ {0}, we denote by r (S) the minimum number of vehicles needed
to serve all customers in 51, i.e., the optimal solution value of the BPP associated with item
set S. Note that r(V \ {0}) = Kmin. Often, r(5) is replaced by the trivial BPP lower bound

The CVRP consists of finding a collection of exactly K simple circuits (each corre-
sponding to a vehicle route) with minimum cost, defined as the sum of the costs of the arcs
belonging to the circuits, and such that

(i) each circuit visits the depot vertex;

(ii) each customer vertex is visited by exactly one circuit; and

(iii) the sum of the demands of the vertices visited by a circuit does not exceed the vehicle
capacity, C.

Several variants of the basic versions of CVRP have been considered in the literature.
First, when the number K of available vehicles is greater than A^mjn, it may be possible to
leave some vehicles unused, and thus at most K circuits must be determined. In this case,
fixed costs are often associated with the use of the vehicles, and the additional objective
requiring minimization of the number of circuits (i.e., of the vehicles used) is added to that
requiring minimization of the total cost. Another frequently considered variant arises when
the available vehicles are different, i.e., have different capacities CV, k = 1, . . . , K. Finally,

7

Chapter 1. An Overview of Vehicle Routing Problems

routes containing only one customer may not be allowed. In the next section we discuss how
models for the basic CVRP can be adapted to take these additional features into account.

The CVRP is known to be NP-hard (in the strong sense) and generalizes the well-
known Traveling Salesman Problem (TSP), calling for the determination of a minimum-cost
simple circuit visiting all the vertices of G (Hamiltonian circuit) and arising when C > d(V)
and K = 1. Therefore, all the relaxations proposed for the TSP are valid for the CVRP.

The first variant of CVRP we consider is the so-called Distance-Constrained VRP
(DVRP), where for each route the capacity constraint is replaced by a maximum length (or
time) constraint. In particular, a nonnegative length, tfj (or te) is associated with each arc
(i, 7) e A (or edge e e E), and the total length of the arcs of each route cannot exceed the
maximum route length, T. If the vehicles are different, then the maximum route lengths
are 7^, k = 1 , . . . , K. Moreover, when arc lengths represent travel times, a service time,
Si, may be associated with each customer i, denoting the time period for which the vehicle
must stop at its location. Alternatively, the service times can be added to the travel times of
the arcs, i.e., by defining, for each arc (i, 7), fy = t(- + 5,72 + Sj/2, where t(. is the original
travel time of arc (/, 7).

Generally, the cost and the length matrices coincide, i.e., c,-y = fy for all (/, 7) € A
(or ce = te for all e € E). Hence, the objective of the problem is to minimize the total length
of the routes or of their duration, when the service time is included in the travel time of the
arcs. The case in which both the vehicle capacity and the maximum distance constraints
are present is called Distance-Constrained CVRP (DCVRP).

Exact and heuristic algorithms for CVRP and DCVRP are described in Chapters 2-4
and 5 and 6, respectively.

1.2.2 VRP with Time Windows

The VRP with Time Windows (VRPTW) is the extension of the CVRP in which capacity
constraints are imposed and each customer i is associated with a time interval [a, ,&,•], called
a time window. The time instant in which the vehicles leave the depot, the travel time, fy, for
each arc (i, 7) e A (or te for each e e E) and an additional service time sf for each customer
i are also given. The service of each customer must start within the associated time window,
and the vehicle must stop at the customer location for st time instants. Moreover, in case of
early arrival at the location of customer i, the vehicle generally is allowed to wait until time
instant a{, i.e., until the service may start.

Normally, the cost and travel-time matrices coincide, and the time windows are defined
by assuming that all vehicles leave the depot at time instant 0. Moreover, observe that
the time window requirements induce an implicit orientation of each route even if the
original matrices are symmetric. Therefore, VRPTW normally is modeled as an asymmetric
problem.

VRPTW consists of finding a collection of exactly K simple circuits with minimum
cost, and such that

(i) each circuit visits the depot vertex;

(ii) each customer vertex is visited by exactly one circuit;

8

1.2. Problem Definition and Basic Notation

(iii) the sum of the demands of the vertices visited by a circuit does not exceed the vehicle
capacity, C; and

(iv) for each customer i, the service starts within the time window, [a, ,£,-], and the vehicle
stops for S{ time instants.

VRPTW is NP-hard in the strong sense, since it generalizes the CVRP, arising when
a, = 0, bi = +00, for each i e V \ {0}. Moreover, the so-called TSP with Time Windows
(TSPTW) is the special case of VRPTW in which C > d(V) and K = 1.

Exact and heuristic algorithms for VRPTW are described in Chapter 7.

1.2.3 VRP with Backhauls

The VRP with Backhauls (VRPB)is the extension of the CVRP in which the customer set
V \ {0} is partitioned into two subsets. The first subset, L, contains n Linehaul customers,
each requiring a given quantity of product to be delivered. The second subset, B, contains
m Backhaul customers, where a given quantity of inbound product must be picked up.
Customers are numbered so that L = {1, . . . , n] and fi = {n+ ! , . . . , «+ m}.

In the VRPB, a precedence constraint between linehaul and backhaul customers exists:
whenever a route serves both types of customer, all the linehaul customers must be served
before any backhaul customer may be served. A nonnegative demand, dt, to be delivered
or collected depending on its type, is associated with each customer i, and the depot is
associated with a fictitious demand JQ — 0- When the cost matrix is asymmetric, the
problem is called Asymmetric VRP with Backhauls (AVRPB). VRPB (and AVRPB as well)
consists of finding a collection of exactly K simple circuits with minimum cost, and such
that

(i) each circuit visits the depot vertex;

(ii) each customer vertex is visited by exactly one circuit;

(iii) the total demands of the linehaul and backhaul customers visited by a circuit do not
exceed, separately, the vehicle capacity C; and

(iv) in each circuit all the linehaul customers precede the backhaul customers, if any.

Circuits containing only backhaul customers generally are not allowed. Moreover,
observe that precedence constraint (iv) introduces an implicit orientation of the "mixed"
vehicle routes, i.e., the routes that visit both linehaul and backhaul vertices.

Let KL and KB denote the minimum number of vehicles needed to serve all the
linehaul and backhaul customers, respectively. These values can be obtained by solving the
BPP instances associated with the corresponding customer subsets. To ensure feasibility,
we assume that K is not smaller than the minimum number of vehicles needed to serve all
the customers, i.e., K > max{A^, KB}.

VRPB and AVRPB are NP-hard in the strong sense, since they generalize the basic
versions of SCVRP and AC VRP, respectively, arising when B = 0. Moreover, the so-called

9

10 Chapter 1. An Overview of Vehicle Routing Problems

TSP with Backhauls (TSPB) is the special case of VRPB in which C > max{d(L), d(B}}
and K = 1. The case of VRPB in which time windows are present has been studied in the
literature and is called the VRP with Backhauls and Time Windows (VRPBTW).

Exact and heuristic algorithms for VRPB and AVRPB are described in Chapter 8.

1.2.4 VRP with Pickup and Delivery

In the basic version of the VRP with Pickup and Delivery (VRPPD), each customer i is asso-
ciated with two quantities d, and pt•, representing the demand of homogeneous commodities
to be delivered and picked up at customer i, respectively. Sometimes, only one demand
quantity J, = dt — /?/ is used for each customer /, indicating the net difference between the
delivery and the pickup demands (thus being possibly negative). For each customer i, Oi
denotes the vertex that is the origin of the delivery demand, and DI denotes the vertex that
is the destination of the pickup demand.

It is assumed that, at each customer location, the delivery is performed before the
pickup; therefore, the current load of a vehicle before arriving at a given location is defined
by the initial load minus all the demands already delivered plus all the demands already
picked up.

The VRPPD consists of finding a collection of exactly K simple circuits with minimum
cost, and such that

(i) each circuit visits the depot vertex;

(ii) each customer vertex is visited by exactly one circuit;

(iii) the current load of the vehicle along the circuit must be nonnegative and may never
exceed the vehicle capacity C;

(iv) for each customer /, the customer Of, when different from the depot, must be served
in the same circuit and before customer /; and

(v) for each customer i, the customer Z)/, when different from the depot, must be served
in the same circuit and after customer i.

Often the origin or the destination of the demands are common (for example they are
associated with the depot, as in CVRP and VRPB), and hence there is no need to explicitly
indicate them. This problem is known as the VRP with Simultaneous Pickup and Delivery
(VRPSPD).

VRPPD and VRPSPD are NP-hard in the strong sense, since they generalize the CVRP
arising when Of = Dt• = 0 and pi = 0 for each i e V. Moreover, the so-called TSP with
Pickup and Delivery (TSPPD) is the special case of VRPSPD in which K = 1. The case of
VRPPD in which time windows are present has been studied in the literature and is called
the VRP with Pickup and Deliveries and Time Windows (VRPPDTW). Exact and heuristic
algorithms for an extended version of VRPPD are described in Chapter 9.

1.3. Basic Models for the VRP Y_

1.3 Basic Models for the VRP

In this section we present the main mathematical programming formulations that can be used
to model the basic VRPs presented in the previous section. In general, we give the models
for the CVRP and discuss how they may be extended to incorporate additional constraints or
different objective functions. Additional formulations can be found in Laporte and Nobert
[32].

Three different basic modeling approaches have been proposed for the VRP in the
literature. The models of the first type, known as vehicle flow formulations, use integer
variables, associated with each arc or edge of the graph, which count the number of times
the arc or edge is traversed by a vehicle. These are the more frequently used models for
the basic versions of VRP. They are particularly suited for cases in which the cost of the
solution can be expressed as the sum of the costs associated with the arcs, and when the
most relevant constraints concern the direct transition between the customers within the
route, so they can be effectively modeled through an appropriate definition of the arc set
and of the arc costs. On the other hand, vehicle flow models cannot be used to handle many
practical issues, e.g., when the cost of a solution depends on the overall vertex sequence
or on the type of vehicle assigned to a route. Moreover, the linear programming relax-
ation of vehicle flow models can be very weak when the additional operational constraints
are tight.

The second family of models is based on the so-called commodity flow formulation.
In this type of model, additional integer variables are associated with the arcs or edges and
represent the flow of the commodities along the paths traveled by the vehicles. Only recently
have models of this type been used as a basis for the exact solution of CVRP.

The models of the last type have an exponential number of binary variables, each
associated with a different feasible circuit. The VRP is then formulated as a Set-Partitioning
Problem (SPP) calling for the determination of a collection of circuits with minimum cost,
which serves each customer once and, possibly, satisfies additional constraints. A main
advantage of this type of model is that it allows for extremely general route costs, e.g.,
depending on the whole sequence of the arcs and on the vehicle type. Moreover, the
additional side constraints need not take into account restrictions concerning the feasibility
of a single route. As a result, they often can be replaced with a compact set of inequalities.
This produces a formulation whose linear programming relaxation is typically much tighter
than that in the previous models. Note, however, that these models generally require dealing
with a very large number of variables.

To simplify the notation, unless explicitly stated, in the following we assume that the
graph G(V, A) (or G(V, £)) is complete.

1.3.1 Vehicle Flow Models

We start by describing an integer linear programming formulation for ACVRP, which is
later adapted to SCVRP. The model is a two-index vehicle flow formulation that uses O(n2)
binary variables x to indicate if a vehicle traverses an arc in the optimal solution. In other
words, variable jc/7 takes value 1 if arc (/, j) G A belongs to the optimal solution and takes
value 0 otherwise.

12 Chapter 1. An Overview of Vehicle Routing Problems

subject to

The indegree and outdegree constraints (1.4) and (1.5) impose that exactly one arc
enters and leaves each vertex associated with a customer, respectively. Analogously, con-
straints (1.6) and (1.7) impose the degree requirements for the depot vertex. Note that
one arbitrary constraint among the 2\V\ constraints (1.4)-(1.7) is actually implied by the
remaining 2\V\ - 1 ones; hence it can be removed.

The so-called capacity-cut constraints (CCCs) of (1.8) impose both the connectivity
of the solution and the vehicle capacity requirements. In fact, they stipulate that each
cut (V \ S, S) defined by a customer set S is crossed by a number of arcs not smaller
than r(S) (minimum number of vehicles needed to serve set 5). The CCCs remain valid
also if r(S) is replaced by the trivial BPP lower bound (1.2); see, e.g., Cornuejols and
Harche [10].

Observe that when \S\ = 1 or S = V \ {0} the CCCs (1.8) are weakened forms
of the corresponding degree constraints (1.4)-(1.7). Note also that, because of the degree
constraints (1.4)-(1.7), we have

In other words, each cut (V \ S, S} is crossed in both directions the same number of times.
From (1.10) we may also restate (1.8) as

1 .3. Basic Models for the VRP

An alternative formulation may be obtained by transforming the CCCs (1.8), by means
of the degree constraints (1.4)— (1.7), into the well-known generalized subtour elimination
constraints (GSECs):

which impose that at least r(S) arcs leave each customer set S.
Both families of constraints (1.8) and (1.12) have a cardinality growing exponentially

with n. This means that it is practically impossible to solve directly the linear programming
relaxation of problem (1.3)— (1.9). A possible way to partially overcome this drawback is
to consider only a limited subset of these constraints and to add the remaining ones only
if needed, by using appropriate separation procedures. The considered constraints can be
relaxed in a Lagrangian fashion, as done by Fisher [18] and Miller [39] (see Chapter 2), or
they can be explicitly included in the linear programming relaxation, as done in branch-and-
cut approaches (see Chapter 3). Alternatively, a family of constraints equivalent to (1.8)
and (1.12) and having a polynomial cardinality may be obtained by considering the subtour
elimination constraints proposed for the TSP by Miller, Tucker, and Zemlin in [38] and
extending them to ACVRP (see, e.g., Christofides, Mingozzi, and Tom [7] and Desrochers
andLaporte [12]):

such that

where w / , i e V \ {0}, is an additional continuous variable representing the load of the
vehicle after visiting customer i. It is easy to see that constraints (1.13)-(1.14) impose both
the capacity and the connectivity requirements of ACVRP. Indeed, when jc// = 0, constraint
(1.13) is not binding since w, < C and «/ > d/, whereas when jc// = 1, they impose that
"/ > ui + dj. (Note that isolated subtours are eliminated as well.)

It is worth noting that the linear programming relaxation of formulation (1.3)-(1.7),
(1.13), (1.14), and (1.9) generally is much weaker than that of formulation (1.3)-(1.9).
Tightening constraints were proposed by Desrochers and Laporte [12].

Model VRP1 can be easily adapted to the symmetric problem. To this end it should
be noted that in SCVRP the routes are not oriented (i.e., the customers along a route may
be visited indifferently clockwise or counterclockwise). Therefore, it is not necessary to
know in which direction edges are traversed by the vehicles, and for each undirected edge
(/, 7) e A, i, j j^ 0, only one of the two variables *,/ and ;t/(must be used, for example, that
with i < j. Note that when single-customer routes are not allowed, the edges incident to
the depot can be traversed at most once. When, instead, a single-customer route is allowed
for customer 7, one may either include in the model both binary variables Jt0/ and */o or use
a single integer variable, which may take value (0, 1, 2}. In this latter case, if JC0/ = 2, then
a route including the single customer j is selected in the solution. In the following models

13

14 Chapter 1. An Overview of Vehicle Routing Problems

we assume that single-customer routes are allowed. The symmetric version of model VRP1
then reads

The degree constraints (1.16) and (1.17) impose that exactly two edges are incident
into each vertex associated with a customer and that 2K edges are incident into the depot
vertex, respectively. The CCCs (1.18) impose both the connectivity of the solution and the
vehicle capacity requirements by forcing that a sufficient number of edges enter each subset
of vertices. Constraints (1.10)-(1.12) may be adapted to SCVRP in a similar way.

The symmetric version of the two-index models is more frequently defined by using
variables with a single index e associated with the undirected edges e e E. If single-
customer routes are not allowed, all used variables are binary; otherwise, \ie ^5(0), then
xe € {0, 1}, whereas ifxe e 5(0), then xe e {0, 1, 2}.

subject to

subject to

1.3. Basic Models for the VRP Y5_

Also in this case, due to (1.22), the CCCs (1.24) may be rewritten as the generalized subtour
elimination constraints:

where r(S) may be replaced by the trivial BPP lower bound.
Two-index vehicle flow models have been extensively used to model the basic versions

of SCVRP and ACVRP and some other variants, such as the VRPB, but they generally are
inadequate for more complex versions of VRP. In fact, as mentioned, they can be used only
when the cost of the solution can be expressed as the sum of the costs associated with the
traversed arcs. In addition, it is not possible to directly know which vehicle traverses an arc
used in the solution. Hence, these models are not suited for the cases where the cost (or
the feasibility) of a circuit depends on the overall vertex sequence or on the type of vehicle
allocated to the route.

A possible way to partially overcome some of the drawbacks associated with the
two-index models is to explicitly indicate the vehicle that traverses an arc, so that more
involved constraints may be imposed on the routes. In this way one obtains the so-called
three-index vehicle flow formulation of SCVRP and ACVRP, which uses O(n2K) binary
variables x: variable Xijk counts the number of times arc (i, j) e A is traversed by vehicle
k (k — 1 , . . . , K) in the optimal solution. In addition, there are O(nK) binary variables v:
variable yik (i e V; k = 1 , . . . , K) takes value 1 if customer i is served by vehicle k in the
optimal solution and takes value 0 otherwise. The three-index model for ACVRP is given
in the following.

subject to

1 6 Chapter 1 . An Overview of Vehicle Routing Problems

Constraints (1 .29)-(l .3 1) impose that each customer is visited exactly once, that K vehicles
leave the depot, and that the same vehicle enters and leaves a given customer, respectively.
Constraints (1.32) are the capacity restriction for each vehicle k, whereas constraints (1.33)
impose the connectivity of the route performed by k. These latter constraints may be replaced
by subtour elimination constraints (SECs) (see Fisher and Jaikumar [20]):

which impose that for each vehicle k at least 1 arc leaves each vertex set S visited by
k and not containing the depot. Alternatively, the three-index version of the generalized
Miller-Tucker-Zemlin subtour elimination constraints (1.13) can be used.

such that

Note that these constraints replace also the capacity requirements (1.32).
The undirected version of the above model can be obtained easily by using binary

variables xek, e e E and k = 1, . . . , K.

subject to

1 .3. Basic Models for the VR

Three-index vehicle flow models have been extensively used to model more con-
strained versions of the VRP, such as the VRPTW, due to their greater flexibility in incor-
porating additional features (see the next section). The main drawback of these models
is represented by the increased number of variables. On the other hand, they generalize
the two-index models, which may be obtained by simply defining jc,-;- = Xlf=i xijk f°r aU
(/, y) € A or xe = X]f=i xek for all e e E, thus allowing both the direct use of all the
inequalities proposed for two-index models and the development of additional and stronger
formulations.

1 .3.2 Extensions of Vehicle Flow Models

Vehicle flow formulations, particularly the more flexible three-index ones, may be adapted
to model some variants of the basic versions of SCVRP and ACVRP. In the following we
discuss some of them by describing only the modifications required by the asymmetric
models VRP1 and VRP4. Models VRP2, VRP3, and VRP5 can be adapted in a similar way.
The adaptations required to model VRPB, VRPTW, and VRPPD are described in Chapters
7, 8, and 9, respectively.

First, we consider the case in which the graph is not complete, arising when some of
the arcs are missing. This may be immediately incorporated into the considered models by
defining the cost of the missing arcs as a suitably large positive value (practically equivalent
to +00). When the number of missing arcs is large, i.e., when |A| = m <^C n2, the models
may be modified to take advantage of the graph sparsity by explicitly using the forward and
backward stars of the vertices. As an example, model VRP1 becomes

subject to

A frequent modification of the models we consider is obtained by replacing the single
depot vertex with K vertices, one for each available vehicle. For the asymmetric case,
this is obtained by defining an extended complete digraph G' = (V, A'), where V' :=

17

18 Chapter 1. An Overview of Vehicle Routing Problems

V (J { n + l,...,n + K — 1} contains K — 1 additional copies of vertex 0, and the cost c\-
of each arc in A' is defined as follows:

where W : = {0} U (n +1, . . . , n + K — 1} is the set of the K vertices of G' associated with the
depot, and A. is a proper value. After this transformation, constraint (1.6) may be replaced
by K constraints of type (1.4), one for each copy of the depot. Analogously, constraint (1.7)
may be replaced by K constraints of type (1.5). This extension was originally proposed by
Lenstra and Rinnooy Kan [35] to transform into an ordinary TSP the m-TSP, which calls
for the determination of a collection of m circuits visiting m times a distinguished vertex
(i.e., the depot) and one time each for the remaining vertices. Observe that, by appropriately
defining A., we may obtain different effects. In particular, when A. = M, where M is a very
large positive number, the model requires use of all the K available vehicles, i.e., leads to
the min-cost solution performing exactly K routes. Defining A, = 0 leads to the min-cost
solution using at most K routes, whereas defining A. = — M leads to the min-cost solution
using ^fmjn routes. Different values of A, can take into account possible fixed costs associated
with the use of the vehicles.

An alternative way to model the case in which some vehicles may be left unused may
be obtained by replacing constraints (1.6) and (1.7) in model VRP1 with

whereas in model VRP4 constraint (1.30) may be replaced with

Generally, the possibility of leaving some vehicles unused is associated with the
presence of fixed costs for their use and, possibly, the additional objective requiring the
minimization of the number of vehicles used, and then of the total routing costs associated
with the use of vehicles. There are different ways to take this requirement into account.
When considering models that impose the use of all the K available vehicles, one may
first compute Km[n, by solving the BPP associated with ACVRP or SCVRP, and then define
K = Km[n. Otherwise, the instance may be extended, as described above, by adding multiple
copies of the depot and the parameter A, is set to — M.

When the model allows for the determination of solutions using a number of vehicles
smaller than K, this objective may be easily included by adding a large constant value to
the cost of the arcs leaving the depot. Thus, the optimal solution first minimizes the number
of arcs leaving the depot (hence the number of circuits) then minimizes the cost of the

1.3. Basic Models for the VRP 19

other used arcs. In three-index models, where the use of each vehicle may be individually
determined, the fixed costs may be different, and they can be directly included into an
extended objective function rather than being added to the cost of the arcs leaving the depot.

Three-index vehicle flow models may easily take into account the case of a nonho-
mogeneous fleet, where each vehicle may have a different capacity Q-, k = 1, . . . , K. This
is obtained by replacing C with Q in the capacity constraints (1.32).

Finally, in some cases, as in Fisher [18], routes serving a single customer are not
allowed. In the models for the ACVRP, this can be imposed by adding the following
additional constraints:

In the models for SCVRP, the infeasibility of the single customer routes can be easily
imposed, as discussed in the previous section, by imposing that each variable associated
with an edge incident into the depot-vertex does not take value 2. In this case, constraints
(1.19) and (1.20) may be replaced by

It should be noted that in many practical cases the above assumption is not constraining.
Indeed, customer j can be served alone in a route if and only if on the remaining K — 1
vehicles there is enough space to load the demand of the other customers, i.e., if r (V \ {j}) <
K — \. By replacing r (•) with the trivial BPP lower bound we may restate the above condition
as

If, given an SCVRP (or ACVRP) instance, condition (1.61) is satisfied by no customer
j, then in any feasible solution no customer may be served alone in a route (hence the
constraints preventing single-customer routes are superfluous).

1.3.3 Commodity Flow Models

Commodity flow models were first introduced by Garvin et al. [21] for an oil delivery
problem arid later extended by Gavish and Graves [23,24] to variants of TSP and VRP. These
formulations, in addition to the variables used by the two-index vehicle flow formulations
of section 1.3.1, require a new set of (continuous) variables, associated with the arcs, which
represent the amounts of demand that flow along them. The reader is referred to Laporte and
Nobert [32] for a presentation and a discussion of early commodity flow models. However,
no such model was used to develop exact approaches to VRP.

Baldacci, Mingozzi, and Hadjiconstantinou [2] presented an exact approach to SCVRP,
based on the extension to SCVRP of the two-commodity flow formulation for the TSP in-
troduced by Finke, Claus, and Gunn [16]. (See also Langevin et al. [29] for an extension of
the model for the TSP with Time Windows.) Since commodity flow formulations require
arc orientation, we define the model on a directed graph equivalent to the undirected one.

The formulation requires the extended graph G' = (V, A') obtained from G by
adding vertex n + 1, which is a copy of the depot node, as explained in section 1.3.2. Routes

20 Chapter 1. An Overview of Vehicle Routing Problems

are now paths from vertex 0 to vertex n + 1 . Two nonnegative flow variables, v,y and
y j i , are associated with each arc (/, y) G A'. If a vehicle travels from / to j, then ji; and
yji give the vehicle load and the vehicle residual capacity, respectively, along the arc, i.e.,
yji = C — y i j . The roles are reversed if the vehicle travels from j to i. Therefore, the
equation ytj + y/, = C holds for each arc (/, y) e A'.

For any route of a feasible solution, the flow variables define two directed paths, one
from vertex 0 to n + 1, whose variables represent the vehicle load, and another from vertex
n + 1 to vertex 0, whose variables represent the residual capacity on the vehicle. In other
words, think of this as one vehicle going from 0 to n + 1 , leaving vertex 0 with just enough
product, delivering at every customer an amount equal to its demand, and arriving empty
at vertex n + 1 ; and think of another vehicle leaving vertex n + 1 empty and picking up a
every customer an amount equal to its demand. An example with four clients and C = 25
is shown in Figure 1 .2, where the demands are shown next to each vertex.

As in two-index vehicle flow models, for each arc (/, 7) e A', let jciy be equal to 1
if the arc is in the solution and be equal to 0 otherwise. Then, an integer formulation of
SCVRP is as follows:

subject to

Flow conservation constraints (1.63) impose that the difference between the sum of
the commodity flow variables associated with arcs entering and leaving each vertex / is
equal to twice the demand of /. Constraints (1.64)-(1.66) impose the correct values for
the commodity flow variables incident into the depot vertices. Finally, constraints (1.67)
and (1.68) impose the relation between vehicle flow and commodity flow variables and the
vertex degree, respectively.

1.3. Basic Models for the VRP 21

Figure 1.2. Example of flow paths on a route (C = 25).

Baldacci, Mingozzi, and Hadjiconstantinou [2] showed that the linear relaxation of
this mixed integer program dominates that of model VRP1 when the CCCs (1.8) are dropped.
The elimination of these inequalities, of course, weakens formulation VRP1 to a great extent,
and thus the result is not so surprising.

1.3.4 Set-Partitioning Models

The set-partitioning (SP) formulation of the VRP was originally proposed by Balinski and
Quandt [3] and uses a possibly exponential number of binary variables, each associated
with a different feasible circuit of G. More specifically, let H = {H\ Hq] denote the
collection of all the circuits of G, each corresponding to a feasible route, with q — [H\.
Each circuit Hj has an associated cost c / . In addition, let afj be a binary coefficient that
takes value 1 if vertex / is visited (or covered, in the set partitioning jargon) by route Hj
and takes value 0 otherwise. The binary variable x / , j — 1, . . . , q, is equal to 1 if and only
if circuit Hj is selected in the optimal solution. The model is

subject to

Constraints (1.72) impose that each customer i is covered by exactly one of the selected
circuits, and (1.73) requires that K circuits are selected. This is a very general model

22 Chapter 1. An Overview of Vehicle Routing Problems

that may easily take into account several constraints as, for example, time windows, since
route feasibility is implicitly considered in the definition of set H. Moreover, the linear
programming relaxation of this formulation typically is very tight.

Observe that if the cost matrix satisfies the triangle inequality, then the set partitioning
model may be transformed into an equivalent set-covering (SC) model VRP8' by writing
(1.72) as

Any feasible solution to model VRP8 is also feasible for VRP8', and any feasible solution to
VRP8' may be transformed into a feasible solution of VRP8 of not greater cost. Indeed, if
the VRP8' solution is infeasible for VRP8, this means that one or more customers are visited
more than once. Then, these customers may be removed, by applying shortcuts, from all
but one of the routes where they are included. Since the triangle inequality holds, each such
shortcut would not increase the cost of the solution. The main advantage of using the VRP8'
formulation with respect to the VRP8 one is that in the former only inclusion-maximal
feasible circuits, among those with the same cost, need be considered in the definition of
H. This considerably reduces the number q of variables. In addition, when using the
VRP8' formulation the dual solution space is considerably reduced since dual variables are
restricted to nonnegative values only.

One of the main drawbacks of the VRP8 and VRP8' models is represented by the huge
number of variables, which, in non-tightly-constrained instances with tens of customers, may
easily run into the billions. The explicit generation of all the feasible circuits (columns) is
thus normally impractical, and one has to resort to a column generation approach to solve
the linear programming relaxation of models VRP8 and VRP8' (see Chapter 4).

1.4 Test Instances for the CVRP and Other VRPs
Despite the interest in VRPs by the scientific community and by practitioners, the computa-
tional testing of the solution methods for the VRP generally has been carried out by consid-
ering only a limited set of Euclidean test instances, which were proposed by Christofides and
Eilon [6] and by Christofides, Mingozzi, and Toth [7]. These instances are identified with a
variety of names by the various authors who used them in their papers and this may cause
some confusion. Therefore, in this book we adopted the unified naming scheme described
by Vigo [43] to identify the test instances used for CVRP and DCVRP.

The naming scheme for the instance data and solutions is an extension of that adopted
by Augerat et al. [1]. The name of each instance should allow one to determine quickly its
characteristics. In particular, the names have the form tnnnvkkp and are made up of five
positional fields. The first field, t, is one alphabetical character that identifies the problem
type and is equal to

• E for Euclidean SCVRP instances,

• S for non-Euclidean SCVRP instances,

Bibliography 23

• A for ACVRP instances, and

• D for symmetric DCVRP instances.

The second field of the name, nnn, is a three-digit integer that denotes the number of vertices
of the problem graph, i.e., including the depot vertex. The third field, v, is normally equal
to "-", but it may be an alphabetical character used to distinguish several instances that are
characterized by the same number of vertices and available vehicles. The fourth field, kk,
is a two-digit integer that denotes the number of available vehicles. Finally, the last field
of the name, p, is an alphabetical character that identifies the paper where the problem data
are first given or an alternative source for them, as follows:

• a Hays [28] and Eilon, Watson-Gandy, and Christofides [15],

• c Christofides, Mingozzi, and Toth [7],

• d Dantzig and Ramser [11] and Eilon, Watson-Gandy, and Christofides [15],

• e Christofides and Eilon [6],

• f Fisher [18],

• g Gaskell [22] and Eilon, Watson-Gandy, and Christofides [15],

• h Hadjiconstantinou, Christofides, and Mingozzi [27],

• m Christofides, Mingozzi, and Toth [8],

• n Noon, Mittenthal, and Pillai [40],

• v Fischetti, Toth, and Vigo [17], and

• w Clarke and Wright [9] and Eilon, Watson-Gandy, and Christofides [15].

For example, according to this naming scheme, E051-05e identifies the classical 50-
customers Euclidean instance with 5 available vehicles proposed by Christofides and Eilon
[6], and A073-03v identifies the 72-customers ACVRP instance with 3 vehicles described
by Fischetti, Toth, and Vigo [17].

Bibliography
[1] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddef, and G. Rinaldi.

Computational results with a branch and cut code for the capacitated vehicle routing
problem. Technical Report RR 949-M, Universite Joseph Fourier, Grenoble, 1995.

[2] R. Baldacci, E. Hadjiconstantinou and A. Mingozzi. An exact algorithm for the capac-
itated vehicle routing problem based on a two-commodity network flow formulation.
Operations Research to appear, 2004.

[3] M. Balinski and R. Quandt. On an integer program for a delivery problem. Operations
Research, 12:300-304, 1964.

24 Bibliography

[4] L.D. Bodin, B.L. Golden, A.A. Assad, and M. Ball. Routing and scheduling of vehicles
and crews, the state of the art. Computers and Operations Research, 10(2):63-212,
1983.

[5] N. Christofides. Vehicle routing. In E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
and D.B. Shmoys, editors, The Traveling Salesman Problem, Wiley, Chichester, UK,
1985, pp. 431-448.

[6] N. Christofides and S. Eilon. An algorithm for the vehicle dispatching problem.
Operational Research Quarterly, 20:309-318, 1969.

[7] N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In
N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial Opti-
mization, Wiley, Chichester, UK, 1979, pp. 315-338.

[8] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle rout-
ing problem based on the spanning tree and shortest path relaxations. Mathematical
Programming, 20:255-282, 1981.

[9] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[10] G. Cornuejols and F. Harche. Polyhedral study of the capacitated vehicle routing
problem. Mathematical Programming, 60:21-52, 1993.

[11] G.B. Dantzig and J.H. Ramser. The truck dispatching problem. Management Science,
6:80, 1959.

[12] M. Desrochers and G. Laporte. Improvements and extensions to the Miller-Tucker-
Zemlin subtour elimination constraints. Operations Research Letters, 10:27-36,1991.

[13] M. Desrochers, J.K. Lenstra, and M.W.P. Savelsbergh. A classification scheme for
vehicle routing and scheduling problems. Journal of Operational Research Society,
46:322-332, 1990.

[14] M. Dror, editor. Arc Routing: Theory, Solutions and Applications. Kluwer, Boston,
MA, 2000.

[15] S. Eilon, C. Watson-Gandy, and N. Christofides. Distribution Management, Mathe-
matical Modeling and Practical Analysis. Griffin, London, 1971.

[16] G. Finke, A. Claus, and E. Gunn. A two-commodity network flow approach to the
traveling salesman problem. Congressus Numernatium, 41:167-178, 1984.

[17] M. Fischetti, P. Toth, and D. Vigo. A branch-and-bound algorithm for the capacitated
vehicle routing problem on directed graphs. Operations Research, 42:846-859,1994.

[18] M.L. Fisher. Optimal solution of vehicle routing problems using minimum fc-trees.
Operations Research, 42:626-642, 1994.

Bibliography 25

[19] M.L. Fisher. Vehicle routing. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L.
Nemhauser, editors, Network Routing, Handbooks in Operations Research and Man-
agement Science 8, North-Holland, Amsterdam, 1995, pp. 1-33.

[20] M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for the vehicle
routing problem. Networks, 11:109-124, 1981.

[21] W.M. Garvin, H.W. Crandall, J.B. John, and R.A. Spellman. Applications of linear
programming in the oil industry. Management Science, 3:407^1-30, 1957.

[22] T.J. Gaskell. Bases for vehicle fleet scheduling. Operational Research Quarterly,
18:281-295, 1967.

[23] B. Gavish and S. Graves. The travelling salesman problem and related problems. Work-
ing Paper 7905, Graduate School of Management, University of Rochester, Rochester,
NY, 1979.

[24] B. Gavish and S. Graves. Scheduling and routing in transportation and distributions
systems: Formulations and new relaxations. Working paper, Graduate School of
Management, University of Rochester, Rochester, NY, 1982.

[25] B.L. Golden and A.A. Assad. Vehicle Routing: Methods and Studies. North-Holland,
Amsterdam, 1988.

[26] B.L. Golden, E.A. Wasil, J.P. Kelly, and I.M. Chao. Metaheuristics in vehicle routing.
In T.G Crainic and G. Laporte, editors, Fleet Management and Logistics, Kluwer,
Boston, MA, 1998, pp. 33-56.

[27] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new exact algorithm for
the vehicle routing problem based on q-paths and k-shortest paths relaxations. Annals
of Operations Research, 61:21^13, 1995.

[28] R. Hayes. The delivery problem. Management Science Research Report 106, Carnegie
Institute of Technology, Pittsburgh, PA, 1967.

[29] A. Langevin, M. Desrochers, J. Desrosiers, S. Gelinas, and F. Soumis. A two-
commodity formulation for the traveling salesman and the makespan problems with
time windows. Networks, 23:631-640, 1993.

[30] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59:345-358, 1992.

[31] G. Laporte. Vehicle routing. In M. DeH'Amico, F. Maffioli, and S. Martello, ed-
itors. Annotated Bibliographies in Combinatorial Optimization, Wiley, Chichester,
UK, 1997.

[32] G. Laporte and Y. Nobert. Exact algorithms for the vehicle routing problem. Annals
of Discrete Mathematics, 31:147-184, 1987.

[33] G. Laporte and I.H. Osman. Routing problems: A bibliography. Annals of Operations
Research, 61:227-262, 1995.

26 Bibliography

[34] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, The Traveling
Salesman Problem. Wiley, Chichester, UK, 1985.

[35] J.K. Lenstra and A.H.G. Rinnooy Kan. Some simple applications of the traveling
salesman problem. Operational Research Quarterly, 26:717-734, 1975.

[36] T.L. Magnanti. Combinatorial optimization and vehicle fleet planning: Perspectives
and prospects. Networks, 11:179-214, 1981.

[37] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions, Wiley, Chichester, UK, 1990.

[38] C.E. Miller, A.W. Tucker, and R.A. Zemlin. Integer programming formulations and
traveling salesman problems. Journal of the ACM, 7:326-329, 1960.

[39] D.L. Miller. A matching based exact algorithm for capacitated vehicle routing prob-
lems. ORSA Journal on Computing, 7(1): 1-9, 1995.

[40] C.E. Noon, J. Mittenthal, and R. Pillai. A TSSP+1 decomposition strategy for the
vehicle routing problem. European Journal of Operational Research, 79:524-536,
1994.

[41] P. Toth and D. Vigo. Exact algorithms for vehicle routing. In T. Crainic and G. Laporte,
editors, Fleet Management and Logistics, Kluwer, Boston, MA, 1998, pp. 1-31.

[42] P. Toth and D. Vigo. Models, relaxations and exact approaches for the capacitated
vehicle routing problem. Discrete Applied Mathematics, to appear.

[43] D. Vigo. VRPLIB: A vehicle routing problem instances library. Technical Report
OR/00/3, Universita di Bologna, Italy, 2000.

Parti

Capacitated Vehicle
Routing Problem

This page intentionally left blank

Chapter 2

Branch-and-Bound
Algorithms for the
Capacitated VRP

Paolo Toth
Daniele Vigo

2.1 Introduction
The branch-and-bound method has been used extensively in recent decades to solve the
CVRP and its main variants. In many cases, as for the Asymmetric CVRP (ACVRP) and
the Distance-Constrained CVRP (DCVRP), these algorithms still represent the state of the
art with respect to the exact solution methods. In their extensive survey devoted to exact
methods, Laporte and Nobert [23] gave a complete and detailed analysis of the branch-and-
bound algorithms proposed up until the late 1980s.

In this chapter, we concentrate on the most recent branch-and-bound algorithms,
proposed during the last few years for the exact solution of CVRP, for both symmetric and
asymmetric cost matrices. When the explicit distinction between SCVRP and ACVRP is not
needed, we simply use CVRP. Although no new result has been presented for the DCVRP,
we briefly review the known algorithms for this problem, too.

As mentioned in the introduction, the CVRP is an extension of the well-known Trav-
eling Salesman Problem (TSP), calling for the determination of a Hamiltonian circuit with
minimum cost visiting a given set of points exactly once. Therefore, many exact approaches
for the CVRP were inherited from the extensive and successful work done for the exact solu-
tion of the TSP. Until the late 1980s, the most effective exact approaches for the CVRP were
mainly branch-and-bound algorithms, which used basic combinatorial relaxations, such as
the Assignment Problem (AP), the degree-constrained Shortest Spanning Tree (SST), and
the state space relaxation. Recently, more sophisticated bounds were proposed, like those
based on Lagrangian relaxations or on the additive approach, which substantially increased
the size of the problems that can be solved to optimality by branch-and-bound.

29

30 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

When presenting the basic relaxations used to compute lower bounds, we treat sepa-
rately problems with asymmetric and symmetric cost matrices. In fact, although the sym-
metric problems are special cases of the asymmetric ones, the latter were much less studied
in the literature and the exact methods developed for them have in general a poor perfor-
mance when applied to symmetric instances. Analogously, not all the approaches proposed
for symmetric problems can be easily adapted to solve asymmetric problems.

In section 2.2 we consider the basic combinatorial relaxations proposed for ACVRP
and SCVRP. We next present, in section 2.3, the more effective relaxations based on La-
grangian and additive approaches. In section 2.4 the main features and the relative per-
formance of the branch-and-bound algorithms are discussed. Section 2.5 examines the
relaxations proposed for the DCVRP, and in the last section we draw some conclusions and
outline possible future directions of research.

We remind the reader that throughout this chapter, the graphs, directed or undirected,
are assumed to be complete. Information on the performance of the computers used for
testing the algorithms presented, expressed in Mflops, is taken (when available) from Don-
garra [10]. In this chapter we extensively refer to the basic notation and to the models
presented in Chapter 1.

2.2 Basic Relaxations

In this section we describe the basic combinatorial relaxations for ACVRP and SCVRP that
were used within the early branch-and-bound algorithms.

The first type of relaxation may be obtained from the integer linear programming
(ILP) formulations of ACVRP and SCVRP (see section 1.3) by dropping the constraints
used to impose the connectivity and the capacity requirements, such as the Capacity-Cut
Constraints (CCCs) or the Generalized Subtour Elimination Constraints (GSECs). The
resulting problem amounts to an AP or to a ^-matching problem for the asymmetric and
symmetric case, respectively.

The second type of relaxation leads instead to the solution of cardinality-constrained
shortest spanning arborescences and trees for the asymmetric and symmetric case, respec-
tively. These relaxations are obtained by weakening the CCCs or GSECs so as to impose
only the connectivity of the solution and by ignoring part of the degree requirements of the
vertices.

As we will see at the end of this section, the quality of the lower bounds obtained with
these relaxations is generally poor and substantial efforts are needed to improve them.

2.2.1 Bounds Based on Assignment and Matching

Laporte, Mercure, and Nobert [22] proposed the first branch-and-bound algorithm for
ACVRP. The algorithm is based on the relaxation obtained from model VRP1 of section
1.3.1 by dropping the CCCs (1.8). The resulting problem is a Transportation Problem (TP),
calling for a min-cost collection of circuits of G visiting once all the vertices in V \{0}, and
K times vertex 0. This solution can be infeasible for ACVRP since

(i) the total customer demand on a circuit may exceed the vehicle capacity, and

(ii) there may exist "isolated" circuits, i.e., circuits not visiting the depot (vertex 0).

2.2. Basic Relaxations 31

It is well known that determining the optimal TP solution requires O(n3) time. In
practice, it is more effective to transform the problem into an AP defined on the extended
complete directed graph G' = (V, A'), obtained by adding K — l copies of the depot vertex
as described in section 1.3.2, where the extended cost matrix, c', is defined by (1.55). The
resulting relaxation is thus

subject to

Several efficient public domain codes for the AP are available; see, e.g., Dell'Amico
andToth[8].

The counterpart, for the symmetric case, of the AP relaxation is the so-called b-
matching relaxation, which may be obtained by considering model VRP3 of section 1.3.1
and by removing the CCCs (1.24). The resulting relaxed problem requires the determination
of a min-cost collection of cycles covering all the vertices and such that the degree of each
vertex i is equal to bf, where bj = 2 for all the customer vertices, and bo — 2K for the depot
vertex.

subject to

This relaxation was used by Miller [25], after the development of efficient algorithms
for the ^-matching problem (see, e.g., Miller and Pekny [27]), which can solve it in time
0(|V|2|£'|). Similar to what may happen to the AP relaxation for the ACVRP, the b-
matching solution may be infeasible for SCVRP since

(i) the demand associated with a cycle may exceed the vehicle capacity, and

(ii) some cycle may be isolated, i.e., disconnected from the depot.

Also, in this case it is possible to obtain an equivalent 2-matching relaxation by adding
K — l copies of the depot.

32 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

2.2.2 Bounds Based on Arborescences and Trees

An alternative combinatorial relaxation for the ACVRP is based on the solution of degree-
constrained spanning arborescences. This relaxation may be obtained from model VRP1 by
(i) removing the outdegree constraints (1.5) for all the customer vertices and (ii) weakening
the CCCs (1.8) so as to impose only the connectivity of the solution, i.e., by replacing the
right-hand side with 1. The resulting relaxed problem, called the K -Shortest Spanning
Arborescence problem (KSSA), is

subject to

The KSSA can be effectively solved by considering two separate subproblems:

(i) the determination of a min-cost spanning arborescence with outdegree K at the depot
vertex, defined by (2.9), (2.10), (2.12), (2.13), and the continuous relaxation of (2.14),
with variables jc// for i € V, j e V \ {0}, and

(ii) the determination of a set of K min-cost arcs entering the depot, defined by (2.9),
(2. 11), and the continuous relaxation of (2. 14), with variables XM for i e V .

Therefore, LKSSA can be determined in O(n2) since the first subproblem can be solved
in O(n2) time (see Gabow and Tarjan [16] and Toth and Vigo [28]), while the second
subproblem clearly requires O(n) time.

A similar lower bound may be obtained by considering the antiarborescence rooted at
the depot (KSSAA), in which the branches are union of paths starting from the customers
and directed toward the depot, whereas in the KSSA the paths are oriented in the opposite
way. It is easy to see that the LKSSAA bound may be obtained by computing the KSSA
on the transpose of the original cost matrix. In the following, we use the best of these two
bounds, defined as

The above-described lower bound was never used within branch-and-bound algo-
rithms, and the preliminary computational results discussed in the next section show that its
quality is generally poor and inferior to that of the lower bound LAP- However, it should
be mentioned that for a problem closely related to the SCVRP and ACVRP, such as the

2.2. Basic Relaxations 33

symmetric and asymmetric VRP with backhauls (see Chapter 8), Toth and Vigo [29] suc-
cessfully used a Lagrangian relaxation based on the solution of KSSAs, solving to optimality
problems with up to 100 customers.

Several relaxations based on spanning trees were proposed for SCVRP by extending
the well-known 1-tree relaxation proposed by Held and Karp [19] for the TSP. The earliest
branch-and-bound algorithm based on such relaxations, which proved to be able to solve
small size instances, was proposed by Christofides, Mingozzi, and Toth [7]. More recently,
Fisher [14] presented another tree-based relaxation that requires the determination of a so-
called /f-tree, defined as a min-cost set of n + K edges spanning the graph. The approach
used by Fisher is based on formulation VRP3 of section 1.3.1 with the additional assumption
that single-customer routes are not allowed. This is imposed by denning as binary all the
variables associated with edges incident into the depot. However, as Fisher observed, in
many cases this assumption is not constraining (see section 1.3.2 for a discussion).

Fisher modeled the SCVRP as the problem of determining a K-tree with degree equal
to 2K at the depot vertex, and with additional constraints imposing the vehicle capacity
requirements and the degree of each customer vertex, which must be equal to 2.

The determination of a K-tr&e with degree 2K at the depot requires 0(n3) time
(see Fisher [15]). This degree-constrained K-tree relaxation may easily be obtained by
considering formulation VRP3 and by removing the degree constraints (1.22) for the cus-
tomer vertices and weakening the CCCs (1.24) into connectivity constraints by replacing
the right-hand side with 1. The resulting relaxed problem is

subject to

It can easily be seen that the A^-tree solution may be infeasible for SCVRP because
some vertices may have degree different from 2. Moreover, the demand associated with the
branches leaving the depot may exceed the vehicle capacity.

2.2.3 Comparison of the Basic Relaxations

The basic relaxations of AC VRP and SCVRP presented in the previous sections have in gen-
eral a poor quality, as shown by the results presented in this section, obtained by considering
widely used test instances from the literature.

Table 2.1 reports the percentage ratios of the different lower bound values for AC VRP
with respect to the optimal solution value, when applied to the ACVRP real-world instances
of pharmaceutical and herbalist's product delivery in downtown Bologna, described by
Fischetti, Toth, and Vigo [13]. In particular, the table contains the ratios corresponding
to LAP, L'KSSA, and the overall additive bound LADD, which is described in section 2.3.1.
The average gap, over the eight instances, of the lower bound with respect to the optimal

34 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VR

Table 2.1. Percentage ratios of different ACVRP lower bounds with respect to the optimal
solution value on real-world instances.

Problem
A034-02V
A036-03V
A039-03V
A045-03v
A048-03V
A056-03V
A065-03V
A071-03V

n
33
35
38
44
47
55
64
70

K
2
3
3
3
3
3
3
3

%LAP <
85.8
90.9
93.8
93.4
93.6
88.5
92.6
91.7
91.3

Y°L'KSSA '
78.7
75.2
77.6
75.6
79.0
75.4
75.6
79.3
77.1

%LADD
90.1
93.2
96.1
95.7
97.2
94.3
95.5
94.6
94.6

solution value is about 8.7% for LAP and 22.9% for L'KSSA. As a consequence, none of
these instances were solved by a branch-and-bound based on such basic relaxations, whereas
they were solved by adopting the LADD bound, whose average ratio is 5.4%. Moreover,
the computational experiments described by Fischetti, Toth, and Vigo [13] show that on
randomly generated instances the gap was normally much smaller, being equal to 2% to 5%
for LAP and to 1% to 2% for LADD-

Table 2.2 reports the average percentage ratios of the basic lower bounds LKT and
LbM with respect to the optimal or the best-known solution value, for a set of widely used
Euclidean CVRP instances from the literature. The table also reports the ratios of LAP,
L'KSSA and °f the overall additive lower bound LADD by Fischetti, Toth, and Vigo [13],
which are clearly valid lower bounds for SCVRP as well.

The LKT values are those reported by Fisher [14], who used real-valued cost matrices.
The best-known solution values used to compute the ratios are those reported by Toth and
Vigo [30], which were obtained by using real-valued cost matrices. The LbM values were
computed with the CPLEX 6.0 ILP solver. All the remaining lower bound values were

Table 2.2. Percentage ratios of different basic SCVRP lower bounds with respect to the best
known solution value of Euclidean instances.

Problem
E045

E051

E072

E076

E101

E101

E135

E151

E200

-04f

-05e

-04f

-lOe
-08e
-lOc
-07f
-12c
-16c

n
44
50
71
75

100
100
134
150
199

K
4
5
4

10
8

10
7

12
16

%LbM

71.4
87.9
80.9
76.7
86.4
70.3
63.4
80.5
72.4
76.7

%L1
KT

 l

62.6*
84.9
77.7
76.2
81.5
77.6*
59.2
78.4*
74.1
74.7

foL^5A

62.2
79.4
72.0
69.2
77.5
72.2
57.5
73.6
66.4
70.0

%LAp '
57.4
80.9
69.8
71.0
80.7
66.5
47.5
68.6
64.6
67.4

%LADD

70.3
87.5
77.9
76.1
86.1
69.6
60.3
77.6
72.2
75.5

1 Single-customer routes not allowed.

*May include single-customer routes.

2.3. Better Relaxations 35

computed by using integer cost matrices, where the arc cost is defined as the real cost
multiplied by 10,000 and rounded to the nearest integer. The final value is then scaled down
by dividing it by 10,000. It should be recalled that the problem considered by Fisher in [14]
was slightly different from what we defined as CVRP, since the single-customer routes were
not allowed. In particular, among the instances reported in Table 2.2, those marked with an
asterisk may include single-customer routes. As a consequence, the LKT values computed
by Fisher for these instances may by slightly larger than those that could be obtained in the
case where single-customer routes are allowed.

By observing Table 2.2, it can be noted that none of the basic relaxations reaches a
quality sufficient to solve moderate-size problems. As an example, we used the Fischetti,
Toth, and Vigo code FTV, proposed for the ACVRP and based on the additive bound LADD:
the largest SCVRP instance it could solve included 47 customers (i.e., problem E048-04y
not included in the table), and some problems with 25 to 30 customers were not solved to
optimality.

2.3 Better Relaxations

As discussed in the previous section, the basic combinatorial relaxations available for both
ACVRP and SCVRP have a poor quality, and, when used within branch-and-bound ap-
proaches, they allow for the optimal solution of small instances only. Therefore, different
improved bounding techniques were proposed, which considerably increased the size of the
instances solvable by branch-and-bound algorithms. In particular, for the ACVRP we exam-
ine the additive bounding procedures proposed by Fischetti, Toth, and Vigo [13], whereas for
the SCVRP we describe the bounding procedures based on Lagrangian relaxation proposed
by Fisher [14] and Miller [25]. We also describe the bound based on the set partitioning
formulation proposed by Hadjiconstantinou, Christofides, and Mingozzi [18].

2.3.1 Additive Bounds for ACVRP

The following two relaxations were introduced by Fischetti, Toth, and Vigo [13], who
embedded them into overall additive bounding procedures. The additive approach was
proposed by Fischetti and Toth [12] and allows for the combination of different lower
bounding procedures, each exploiting different substructures of the considered problem.
When applied to a minimization problem of the form min{cjc : x e F}, each procedure
returns a lower bound, p, and a residual cost matrix, c, such that

The entries of c represent lower bounds on the increment of the optimal solution value
if the corresponding arc is imposed in the solution. The different bounding procedures are
applied in sequence, and each of them uses as costs the residual cost matrix returned by
the previous procedure (obviously, the first procedure starts with the original cost matrix).
The overall additive lower bound is given by the sum of the lower bounds obtained by the
different procedures. It can easily be shown that if the lower bounding procedures are based
on linear programming relaxations, as those described for ACVRP (i.e., AP and KSSA), the

36 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

linear programming reduced costs are valid residual costs. For further details see Fischetti,
Toth, and Vigo [13] and Fischetti and Toth [12].

2.3.1.1 Disjunctive Lower Bound

The first relaxation described by Fischetti, Toth, and Vigo [13] is based on a disjunction o
infeasible arc subsets. A given arc subset B c A is called infeasible if no feasible solution
to ACVRP can use all its arcs, i.e., when

is a valid inequality for ACVRP. For any given (minimal) infeasible arc subset B c A, the
following logical disjunction holds for each x e F, where F is the set of all the feasible
ACVRP solutions:

Then, \B\ restricted problems can be defined, each denoted as RPab, by including the
additional condition xab = 0, imposed for a different arc (a, b) e B. For each RPab, a
valid lower bound, $ab, is computed through the AP relaxation described in the previous
section, with cab — M = +00 to impose xab = 0. The disjunctive bound

clearly dominates the lower bound LAP based on AP since $ab > LAP for all (a, b) e B,
A possible way to determine infeasible arc subsets B, used in [13], is the following

First solve the AP relaxation with no additional constraints, and store the corresponding
optimal solution (jc(* : i, j e V). If x* is feasible for ACVRP, then clearly LAP cannot
be improved; otherwise, a suitable infeasible arc subset B is chosen to possibly improve
it. Note that imposing xab = 0 for any (a, b) e A such that x*b = 0 would produce
ftab = LAp, hence a disjunctive bound LD = LAP- Therefore, B is chosen as a subset of
A* = I (/, 7) € A' : x*j , = 1 L if any, corresponding to one of the following cases:

(i) a circuit disconnected from the depot vertex,

(ii) a sequence of customer vertices whose total demand exceeds C,

(iii) a feasible circuit that leaves uncovered a set of customers, S, whose total demand
cannot be served by the remaining K — 1 vehicles, i.e. , such that r (S) > K — l, where
r(S) represents the minimum number of vehicles needed to serve all the customers
inS.

Different choices of the infeasible arc subset B lead to different lower bounds. There-
fore, Fischetti, Toth, and Vigo [13] used an overall additive bounding procedure, called
ADD_DISJ, which considers, in sequence, different infeasible arc subsets so as to produce
a possibly better overall lower bound.

2.3. Better Relaxations 37

Procedure ADD_DISJ starts by solving the AP relaxation with no additional con-
straints and defines the initial lower bound as LAP and the arc set A* as the arcs used in the
optimal AP solution. Then, iteratively, an infeasible subset B, if any, is chosen from A* and
used for the computation of the disjunctive lower bound returning a lower bound LD and the
corresponding residual cost matrix. The current additive lower bound is increased by LD

and the set A* is updated by removing from it all the arcs whose corresponding variables
are not equal to 1 in the current optimal solution of the disjunctive bound. The process is
iterated until A* does not contain further infeasible arc subsets. Procedure ADD_DISJ can
be implemented, through parametric techniques, to have an overall time complexity equal
to 0(n4).

2.3.1.2 Lower Bound Based on Min-Cost Flow

The second lower bound described by Fischetti, Toth, and Vigo [13] is a projective bound
based on a min-cost flow relaxation of ACVRP. Let (So , . . . , Sm} be a given partition of V
with 0 e So, and define

where E(Sh) is the set of arcs internal to set S/,. In other words, A is partitioned into
{Ai, A2}, where A\ contains the arcs internal to the subsets S/,, and A2 contains those
connecting vertices belonging to different S/,'s.

In the following, a lower bound L P based on projection is described. The bound is
given by LP — $\ + $2, where ftt, t = 1, 2, is a lower bound on XXC<V '• 0'> 7) e ^* ^ ^f)
for every (optimal) ACVRP solution A* c A.

The contribution to Lp of the arcs in A] (internal to the given subsets S/,) is initially
neglected, i.e., $\ is set equal to 0. The rationale for this choice is clarified later. As to
#2, this is computed by solving the following linear programming relaxation, called Rl,
obtained from model VRP1 by weakening degree equations (1.4)-(1.7) into inequalities, to
take into account the removal of the arcs in AI , and imposing the CCCs (1.8) and (1.11)
only for the subsets SQ, S\, ..., Sm. The model of Rl is

subject to

38 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

This model can be solved efficiently, since it can be viewed as an instance of a min-
cost flow problem on an auxiliary layered network, as illustrated in Figure 2.1. The network
contains 2(n + m + 2) vertices, namely,

• two vertices, say /+ and i~, for all / e V;

• two vertices, say a/, and &/,, for all h = 1, . . . , m;

• a source vertex, s, and a sink vertex, t .

The arcs in the network, and the associated capacities and costs, are

• for all (i, j) e A2'. arc (i+, y ~) with cost ctj and capacity +00;

• for all h = 0, . . . , m: arcs (ah , /+) and (i~, bh) for all i e S/,, with cost 0 and capacity
l (i f * ^0)ortf (if* =0);

• for all h = 0, . . . , m: arc (a/,, bh) with cost 0 and capacity \Sh \ — r(Sh) (if h ^ 1) or

• for all h = 0, . . . , m: arcs (s, a/j) and (bh, t), both with cost 0 and capacity \Sh\ (if
h ^ I) or \S0\ + K (if h =0).

It can easily be seen that finding the min-cost s-t flow of value n + K on this network
actually solves relaxation Rl. The worst-case time complexity for the computation of #2,
and of the corresponding residual costs, is O (n3) by using a specialized algorithm based on
successive shortest path computations.

Different choices of the vertex partition [So, . . . , Sm} lead to different lower bounds.
Note that choosing Sh = {h} for all h e V produces a relaxation Rl that coincides with
the AP relaxation of section 2.2.1. When, on the other hand, nonsingleton 5/,'s are present,
relaxation Rl can take into account the associated CCCs (that are, instead, neglected by
AP), while losing a possible contribution to the lower bound of the arcs inside Sh (which
belong to AI) and weakening the degree constraints of the vertices in S/,. Fischetti, Toth,
and Vigo [13] used, in sequence, different partitions obtaining an overall additive procedure,
called ADD_FLOW.

The procedure is initialized with the partition Sh — {h} for all h e V (i.e., with the
AP relaxation). At each iteration of the additive scheme, relaxation Rl is solved, the current
lower bound is increased, and the current costs are reduced accordingly. Then a convenient
collection of subsets Shl , . . . , Shr (with r > 2) belonging to the current partition is selected
and the subsets are replaced with their union, say, S*. The choice of this collection is made
to produce an infeasible set S*, i.e., a vertex set whose associated CCC is violated by the
solution of the current relaxation Rl. This, hopefully, produces an increase of the additive
lower bound in the next iteration. The additive scheme ends when either m = 1 or no
infeasible S* is detected.

Procedure ADD_FLOW takes 0(«4) time, and the resulting additive lower bound
clearly dominates bound L AP , which is used to initialize it. On the other hand, no dominance
relation exists between ADD_FLOW and procedure ADD_DISJ. Therefore, Fischetti, Toth,
and Vigo proposed to apply procedures ADD_DIS J and ADD_FLOW in sequence, again in
an additive fashion. To reduce the average overall computing time, procedure ADD_FLOW

2.3. Better Relaxations 39

Figure 2.1. The auxiliary layered network for relaxation Rl.

was stopped when no increase of the current additive lower bound LADD was observed for
five consecutive iterations.

Table 2.1 reports the percentage ratios of the overall additive bounding procedure
when applied to the ACVRP real-world instances of pharmaceutical and herbalist's product
delivery in downtown Bologna. It can be noted that the additive procedures considerably
improve the LAP lower bound.

2.3.2 Further Lower Bounds for ACVRP

Other bounds for the ACVRP may be derived by generalizing the methods proposed for
the symmetric case. For example, Fisher [14] proposed a way to extend to ACVRP the

40 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

Lagrangian bound based on a A"-tree derived for the SCVRP (described in section 2.3.3). In
this extension the Lagrangian problem calls for the determination of an undirected ^f-tree
on the undirected graph obtained by replacing each pair of directed arcs (i, 7) and (j, z)
with a single edge (i, 7) with cost c- = min{c,7, Cj{\. No computational testing for this
bound was presented by Fisher [14].

Possibly better bounds may be obtained by explicitly considering the asymmetry of
the problem, i.e., by using ^f-arborescences rather than ^f-trees and by strengthening the
bound in a Lagrangian fashion as proposed by Toth and Vigo [28, 29] for the capacitated
shortest spanning arborescence problem and the VRPB, respectively.

2.3.3 Lagrangian Lower Bounds for SCVRP

Fisher [14] and Miller [25] proposed to strengthen the basic SCVRP relaxations by dualizing,
in a Lagrangian fashion, some of the relaxed constraints. In particular, Fisher included in the
objective function the degree constraints (1.22) and some of the CCCs (1.24), whereas Miller
included some of the GSECs (1.27). Note that Fisher did not allow single-customer routes.
As in related problems, good values for the Lagrangian multipliers associated with the
relaxed constraints are determined by using a standard subgradient optimization procedure
(see, e.g., Held and Karp [19] and Held, Wolfe, and Crowder [20]).

The main difficulty associated with these relaxations is represented by the exponential
cardinality of the set of relaxed constraints (i.e., the CCCs and the GSECs) which does not
allow for the explicit inclusion of all of them into the objective function. To this end,
both Fisher and Miller proposed to include only a limited family f of CCCs or GSECs
and to iteratively add to the Lagrangian relaxation the constraints violated by the current
solution of the Lagrangian problem. In particular, at each iteration of the subgradient
optimization procedure, the arcs incident to the depot in the current Lagrangian solution
are removed. Violated constraints (i.e., CCCs or GSECs, depending on the approach), if
any, are separated (i.e., detected) by examining the connected components obtained in this
way. This separation routine is exact, i.e., if a constraint associated with, say, vertex set S
is violated by the current Lagrangian solution, then there is a connected component of that
solution spanning all the vertices in S and violating the constraint. The new constraints are
added to the Lagrangian problem, i.e., to F, with an associated multiplier, and the process
is iterated until no violated constraint is detected (hence the Lagrangian solution is feasible)
or a prefixed number of subgradient iterations has been executed. Slack constraints are
periodically purged (i.e., removed) from F.

Fisher [14] initialized F with an explicit set of constraints containing the customer
subsets nested around K + 3 seed customers. The seeds were chosen as the K customers
farthest from the depot in the routes corresponding to an initial feasible solution, whereas the
last three were the customers maximally distant from the depot and the other seeds. For each
seed, 60 sets were generated by including customers according to increasing distances from
the seed. After 50 subgradient iterations, new sets were added to F by identifying violated
CCCs in the current Lagrangian solution as previously explained. The step size used in
the subgradient optimization method was initially set to 2 and was reduced by a factor of
0.75 if the lower bound was not improved in the last 30 iterations. The number of iterations

2.3. Better Relaxations 41

of the subgradient optimization procedure performed at the root node of the branch-and-
bound algorithm ranged between 2000 and 3000. The overall Lagrangian bound, LAGxr,
considerably improved the basic /£-tree relaxation and was, on average, larger than 99%
of the optimal solution value for the three Euclidean instances with n < 100 solved to
optimality in Fisher [14] (see section 2.3.5).

Miller [25] initialized F as the empty set, and at each iteration of the subgradient pro-
cedure detected violated GSECs and additional constraints belonging to the following two
classes. The first type of constraint is given by additional GSECs which were added when
the current Lagrangian solution x contains k (with k > 2) overloaded routes. The customer
set of these new GSECs is the union of the sets S], . . . , S* associated with the GSECs vio-
lated by x. This increases the probability that arcs connecting customers belonging to the
overloaded routes to those in sets S\,..., Sk are selected by the ^-matching solution. The
second type of constraint was added when x contained routes that were underloaded, i.e.,
whose associated load was smaller than the minimum vehicle load Cm\n defined by (1.61).
In this case for each such set S, with 0 e S, a constraint of the form

which breaks the current underloaded route in x, was added to F. The procedure was
iterated until no improvement was obtained over 50 subgradient iterations. The step size is
modified in an adaptive way every five subgradient iterations to produce a slight oscillation
in lower bound values during the progress of the subgradient procedure. If the lower bound
is monotonically increasing, the step size is increased by 50%; if the oscillation of the lower
bound value is greater than 2%, the step size is reduced by 20%, and when the oscillation
is smaller than 0.5% it is increased by 10%. The final Lagrangian bound LAGt,M of Miller
is considerably tight, being on average 98% of the optimal solution value for the eight
problems with n < 50 solved in Miller [25] (see section 2.3.5).

2.3.4 Lower Bounds from a Set-Partitioning Formulation

Hadjiconstantinou, Christofides, and Mingozzi [18] proposed a branch-and-bound algo-
rithm where the lower bound is computed by heuristically solving the dual of the linear
programming relaxation of the Set-Partitioning (SP) formulation of the SCVRP.

As described in section 1.3.4, the SP formulation of the VRP was originally proposed
by Balinski and Quandt [2] and uses a possibly exponential number of binary variables,
each associated with a different feasible circuit of G.

Model VRP8 of section 1.3.4 is a very general one and may easily take into account
several constraints (as, for example, time windows), since route feasibility is implicitly
considered in the definition of set H. Agarwal, Mathur, and Salkin [1] proposed an exact
algorithm for SCVRP based on the SP approach, whereas several successful applications of
this technique to tightly constrained VRPs were reported by Desrosiers et al. [9]. (See also
Chapters 4 and 7 of the present volume.) Moreover, the linear programming relaxation of
this formulation typically is very tight.

42 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

Hadjiconstantinou, Christofides, and Mingozzi [18] proposed to obtain a valid lower
bound for SCVRP by considering the dual of the linear relaxation of model VRP8:

subject to

where n f , i = 1, . . . , n, are the dual variables associated with the partitioning constraints
(1 .72) and no is that associated with constraint (1 .73). It is clear that any feasible solution to
problem DVRP8 provides a valid lower bound for SCVRP. Hadjiconstantinou, Christofides,
and Mingozzi [18] determined the heuristic dual solutions by combining in an additive way
two relaxations of the original problem: the g-path relaxation proposed by Christofides,
Mingozzi, and Toth [7], and the £" -shortest path relaxation proposed by Christofides and
Mingozzi [6]. The proposed approach was able to solve randomly generated Euclidean
instances with up to 30 vertices and instances proposed in the literature with up to 50
vertices, within a time limit of 12 hours on a Silicon Graphics Indigo R4000 (12 Mflops).
The percentage ratios of the overall bound LSP computed in [18] on some test instances
from the literature are reported in Table 2.3.

2.3.5 Comparison of the Improved Lower Bounds

The lower bounds described in this section are considerably better than those corresponding
to the basic relaxations on which they are based, and they allow for the solution of quite
larger problems.

We presented in Table 2. 1 the percentage ratios of the lower bound obtained by the
additive bounding procedure for AC VRP described in section 2.3.1. As to the symmetric
case, a direct computational comparison of the effectiveness of the bounds presented in this
chapter is not possible. In fact, as illustrated in Table 2.3, each author either considered
a slightly different problem (e.g., in Fisher [14] single-customer routes were not allowed,
whereas Miller [25] allowed them) or solved a completely different set of instances. The
only instance that has been tackled by almost all the authors is the 50-customers Euclidean
problem described by Christofides and Eilon [5], indicated as E051-05e. However, also in
this case all the authors defined the cost matrix in a different way. In particular, Table 2.3
includes the Lagrangian bounds by Fisher and Miller described in section 2.3.3, compared
with the corresponding basic relaxations, the bound LSP based on the SP formulation by
Hadjiconstantinou, Christofides, and Mingozzi described in section 2.3.4, and the overall
additive bound LADD of section 2.3.1. In Table 2.3 an asterisk denotes the instances that
were solved to optimality by the corresponding branch- and-bound code.

We included in the table the LKT and the Lagrangian bound LAG^r values com-
puted by Fisher [14] by using real- valued cost matrices, and we compared the bounds with

2.3. Better Relaxations 43

Table 2.3. Comparison of the percentage ratios of the basic and improved lower bounds
for SCVRP with respect to different test instances.

Problem
S007-
S013-
E016-
E021-
E022-
E023-
E026-
E030-
S031-
E031-
E033-
E036-
E041-
E045-
E051-
E072-
E076-
E101-
E101-
E135-
E151-
E 2 0 0 -

02a
04d
05m
04m
04g
03g
08m
03g
07w
09h
03n
llh
14h
04f
05e
04f
lOe
08e
lOc
07f
12c

16c

n
6

12
15
20
21
22
25
29
30
30
32
35
40
44
50
71
75

100
100
134
150
199

K %L1
KT %LAG1

KT %L\M %LAG2
hM %L3

sp

2
4
5
4
4
3
8
3
7
9
3

11
14
4
5
4

10
8

10
7

12
16

62.
84.
77.
76.
81.
77.
59.
78,
74,

,6
,9
,7
.2
.5
.6
.2
.4
.1

99.
96.
98.
90.
95.
99.

90.1
96.5

71.7

86.5

6*
,7 92.9
,3*
,5
.1
.8*

100.0 *
96.8*

97.6*
100.0 *

99.7*
100.0 *

100.0*
95.3*
96.0*

97.9*
98.9*

99.5*
98.9*

96.9 * 98

97
95

.5*

.6

.9

97.4
90.
84.

.7

.7
97.2

Real-valued costs and single-customer routes not allowed.
2Rounded integer costs.
3 Real costs multiplied by 10,000 and rounded to the nearest integer.

* Solved to optimality.

respect to the optimal or the best-known-solution values determined by using real-valued
cost matrices and reported by Toth and Vigo [30]. Over the nine instances considered by
Fisher, the average ratio of LKT is 74.7% while that of LAGKT is 94.8%.

The results reported in Table 2.3 relative to the Lagrangian bound LAG^M are those
obtained by Miller [25] by using integer rounded cost matrices and whose overall ratio is
about 98%. The table also includes some values of the pure ^-matching relaxation computed
by Miller [26].

Finally, the L$p values are computed by using integer costs for the arcs, defined as
the Euclidean distance between the endpoints multiplied by 104 and then rounded to the
nearest integer. The ratios for these bounds are obtained by comparing the scaled-down
value of the lower bound with the optimal or the best-known-solution value determined by
using real-valued cost matrices.

44 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

2.4 Structure of the Branch-and-Bound Algorithms
for CVRP

We now briefly describe the main ingredients of the branch-and-bound algorithms used for
the exact solution of ACVRP and SCVRP, recently proposed in the literature.

2.4.1 Branching Schemes and Search Strategies

The two algorithms proposed for ACVRP by Laporte, Mercure, and Nobert [22] and by Fis-
chetti, Toth, and Vigo [13] have the same basic structure, derived from that of the algorithm
for the asymmetric TSP described by Carpaneto and Toth [4] and originally proposed by
Bellmore and Malone [3]: the first one uses as lower bound the AP relaxation (see section
2.2.1), whereas the second uses the additive bounding procedure described in section 2.3.1.

The branching rules used by both algorithms are related to the subtour elimination
scheme used for the asymmetric TSP, and they handle the relaxed constraints by imposing
the connectivity and the capacity requirements of the feasible ACVRP solutions.

At a node v of the branch-decision tree, let Iv and Fv contain the arcs imposed and
forbidden in the current solution, respectively (with Iv = 0 and Fv = 0 if v is the root node).
Given the set A* of arcs corresponding to the optimal solution of the current relaxation, a
nonimposed arc subset B := {(a\, b\), (0.2, ^2), • • • » (P - h , b^)} C A* on which to branch is
chosen.

Fischetti, Toth, and Vigo defined B by considering the subset of A* with the minimum
number of nonimposed arcs among those defining a path or a circuit that is infeasible
according to conditions (i), (ii), and (iii) in section 2.3.1. Note that since the additive
bounding procedure modifies the objective function of the problem, an optimal solution of
the relaxed problem that is feasible for ACVRP is not necessarily optimal for it. Therefore,
if A* defines a feasible ACVRP solution whose cost is greater than the current lower bound
value, set B is chosen as the feasible circuit through vertex 0 with the minimum number
of nonimposed arcs. Then h = \B\ descendant nodes are generated. The subproblem
associated with node v/, i = 1, . . . , h, is defined by excluding the /th arc of B and by
imposing the arcs up to / — 1:

where /„, := Iv.
Laporte, Mercure, and Nobert defined B as an infeasible subtour according to condi-

tions (i) and (ii) of section 2.2.1 and used a more complex branching rule in which, at each
descendant node, at most r arcs of B are simultaneously excluded, where r \— \d(S)/C~\,
S is the set of vertices spanned by B, and d(S) represents the sum of the demands of the
vertices in S. In this case, since at most ('^ ') descendant nodes may be generated, the set
B is chosen as the one minimizing ('^ ') .

These algorithms adopt a best-bound-first search strategy, i.e., branching is always
executed on the pending node of the branch-decision tree with the smallest lower bound
value. This rule allows for the minimization of the number of subproblems solved at the
expense of larger memory usage, and it is computationally proved to be more effective

2.4. Structure of the Branch-and-Bound Algorithms for CVRP 45

than the depth-first strategy, where the branching node is selected according to a last-in-
first-out rule.

Many branching schemes were used for SCVRP, and in this case almost all are ex-
tensions of those used for the TSP. The first scheme we consider, proposed by Christofides,
Mingozzi, and Toth [7], is known as branching on arcs, and it proceeds by extending partial
paths, starting from the depot and finishing at a given vertex. At each node of the branch-
decision tree, an arc (i, j) is selected to extend the current partial path, and two descendant
nodes are generated: the first node is associated with the inclusion of the selected arc in the
solution (i.e., jc(/ = 1), while in the second node the arc is excluded (i.e., jt(J = 0).

Miller [25] used the same branching scheme, where the arc selected for branching is
determined by examining the solution obtained by the Lagrangian relaxation based on b-
matching described in section 2.3.3. When a partial path is present in the current subproblem
ending, say, with vertex i>, the arc (v, h) belonging to the current Lagrangian solution is
selected. If the current subproblem does not contain a partially fixed path, e.g., at the root
node or when a route has been closed by the last imposed arc, the arc connecting the depot
with the unrouted customer j with the largest demand is selected for branching. In this
case a third descendant node is also created, by imposing XQJ = 2, i.e., by considering, if
feasible, the route containing only customer j.

Fisher [14] used a mixed scheme where branching on arcs is used whenever no partial
path is present in the current subproblem. In this case the currently unserved customer
i with the largest demand is chosen and the arc (i, j) is used for branching, where j is
the unserved customer closest to i. At the node where arc (i, j) is excluded from the
solution, branching on arcs is again used, whereas at the second node the scheme known as
branching on customers is used. One of the two ending customers, say, v, of the currently
imposed sequence of customers is chosen, and branching is performed by enumerating the
customers that may be appended to that end of the sequence. A subset T of currently
unserved customers is selected (for example, that including the unserved customers closest
to v) and | T \ +1 nodes are generated. Each of the first | T \ nodes corresponds to the inclusion
in the solution of a different arc (v, 7), j G T, while in the last node all the arcs (v, y), j € T
are excluded.

The mixed branching scheme was used by Fisher to attempt the solution of Euclidean
CVRP instances with real distances and about 100 customers, but this proved unsuccessful.
In fact, Fisher observed that in instances where many small clusters of close customers
exist (as is the case of several instances from the literature), any solutions in which these
customers are served contiguously in the same route have almost the same cost. Thus,
when the sequence of these customers has to be determined through branching, unless an
extremely tight bound is used, it would be very difficult to fathom many of the resulting
nodes. Therefore, in Fisher [14] an alternative branching scheme was proposed, aimed
at exploiting macro properties of the optimal solution whose violation would have a large
impact on the cost, thus allowing the fathoming of the corresponding nodes. To this end, a
subset T of currently unserved customers is selected and two descendant nodes are created:
at the first node the additional constraint X^€S(7)x* = 2ld(T)/C~\ is added to the current
problem, while at the second node the constraint X^esm xe > 2\d(T}/C~\ + 2 is imposed.
Some ways to identify suitable subsets, as well as additional dominance rules, were described
by Fisher [14].

46 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

2.4.2 Reduction, Dominance Rules, and Other Features

Several rules may be used to possibly remove some arcs that cannot belong to an optimal
solution, by forbidding their use in the computation of bounds and allowing for the early
detection of infeasibilities and dominance relations, thus speeding up the solution of C VRP.
Many of these rules are inspired by the work done on the TSP. In the following we refer,
for short, to the more general case of the AC VRP and we explicitly remove arcs from A.
An often-used alternative way to remove arcs from A, which preserves the completeness of
graph G and simplifies the notation, is obtained by setting the cost of the arcs to be removed
equal to a very large positive value, say, M, practically equivalent to +00.

The reduction rules may be applied either to the original problem or to a subproblem
associated with a node of the branch-decision tree, where arcs of a given subset / are imposed
in the solution, as happens in branch-and-bound and branch-and-cut algorithms. In this case
the arcs of 7 define complete routes and paths, some of which may enter or leave the depot.
For reduction purposes, all the customers belonging to the p complete routes (with p > 0)
induced by / are removed from V. Let G = (V, A) be the subgraph of G induced by vertex
set V obtained from V by removing all the customers belonging to complete routes in /,
and let K = K — p. Moreover, let P = [P\,..., Pr] be the set of paths induced by /, each
defined as an ordered set of vertices, and let hj and tj denote the first and the last vertex
of path PJ, j = 1 , . . . , r. To simplify the notation, each customer vertex i covered by no
arc in T is represented by a degenerate path PJ e P made up by a singleton vertex, where
hj = tj = i. Note that when 1 = 0, then r = \P\=n and each path is degenerate.

The first type of reduction rule tries to remove from A all the arcs that, if used, would
produce infeasible AC VRP solutions:

1. For each arc (i, _/') e 7, remove from A all the arcs (i, p), p e V if / ^ 0, and (p, j),

2. For each nondegenerate path P, such that hi, f,- 7^ 0, remove all the arcs which would
form a subtour disconnected from the depot. If hi = 0 (resp., tf = 0), we may remove
arc (t{, 0), (resp., (0, /z/)) when

i.e., when, on the remaining K — 1 vehicles, there is not enough space to load the
demand of the other customers.

3. For each pair of paths Pt, PJ e P such that d(Pi) + d(Pj} > C, remove arc (tf, hj)
from

The second type of reduction rule tries to remove for A the arcs that, if used, would
not improve the currently best known solution. For example, let L and U be a lower and an
upper bound on the optimal AC VRP solution value, respectively. For each (i, j) e A let c,7
be the reduced cost of arc (i, j) associated with the lower bound L. It is well known that
the reduced cost of an arc represents a lower bound on the increase of the optimal solution
value if this arc is used. Therefore, for each (i, j) e A if L + c// > U we may remove (i, j)
from A.

2.4. Structure of the Branch-and-Bound Algorithms for CVRP 47

Whenever a customer has only one entering or leaving arc belonging to A, we may
impose this arc (by adding it to /), redefine the set of complete routes and paths in 7, and
again execute steps 1-3 above.

The performance of the branching schemes may be enhanced by means of a dominance
test proposed by Fischetti and Toth [11]. A node of the branch-decision tree where a partial
sequence of customers u, . . . , w is fixed can be fathomed if there exists a lower cost ordering
of the customers in the sequence starting with v and ending with w. The improved ordering
may be heuristically determined, e.g., by means of insertion and exchange procedures.

In addition, several branch-and-bound algorithms include the use of heuristic algo-
rithms that exploit the information associated with the relaxed problems to obtain feasible
solutions that may improve the current incumbent solution (see, e.g., Fisher [14] and Fis-
chetti, Toth, and Vigo [13]).

2.4.3 Performance of the Branch-and-Bound Algorithms

Laporte, Mercure, and Nobert [22] used their algorithm LMN to solve, on a VAX 11/780
computer (0.14 Mflops), ACVRP test instances where demands dj and costs c,y were ran-
domly generated from a uniform distribution in [0, 100] and rounded to the nearest integer.
The vehicle capacity was defined as

where a is a real parameter chosen in [0, 1]. The number of available vehicles was defined
as K = Kmin and was computed by using the trivial BPP lower bound. Note that larger
values of a produce larger C and hence smaller values of K. (When a = 1, ACVRP reduces
to the asymmetric TSP, since K = 1.) No monotone correlation between a and the average
percentage load of a vehicle, defined as 100 d(V}/(K C), can instead be inferred. Laporte,
Mercure, and Nobert considered a = 0.25,0.50, 0.75, and 1.0, producing K = 4, 2, 2, and
1, respectively.

For each pair («,«), five instances were generated and algorithm LMN was run by
imposing a limit on the total available memory. The LMN algorithm was able to solve
instances with up to 90 vertices if a > 0.50 (i.e., with K < 2). For the larger values of
ft, only half or fewer of the instances were actually solved, while with a — 0.25 only the
instances with 10 vertices and one of those with 20 vertices were solved. The computing
times for the most difficult instances solved were above 5000 seconds, whereas no statistics
were reported for the nonsolved instances. The algorithm was also tested on instances of
the same type but with K = K^m + 2 or K — Km-m + 4. These problems proved much
easier than the previous ones.

Fischetti, Toth, and Vigo [13] tested their algorithm FTV on the same class of randomly
generated instances used for LMN, with K = Kmin. Algorithm FTV was able to solve all
the instances with up to 300 vertices and up to four vehicles within 1000 CPU seconds
on a DECstation 5000/240 (5.3 Mflops). On these instances the additive lower bound
considerably improved the AP value. Algorithm FTV was also tested on a class of more
realistic problems where the cost matrices were obtained from those of the previous class
by triangularizing the costs, i.e., by replacing each c,; with the cost of the shortest path
from i to j. The number of vehicles K and the average percentage vehicle load, say, r,
were fixed, and the vehicle capacity was defined as C := llQQd(V)/(rK)~\. Instances

48 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

of this type with up to 300 vertices and eight vehicles and with r equal to 80% and 90%
were solved, those with n > 150 being easier than the smaller ones. Algorithm FTV was
applied to eight real- world instances with up to 70 vertices and three vehicles, coming from
pharmaceutical and herbalist's product delivery in the center of an urban area with several
one-way restrictions imposed on the roads. These instances proved more difficult than the
randomly generated ones: the computing time and the number of nodes were higher than
those required for analogous random instances. Moreover, the average gap, over the eight
instances, of the additive bound with respect to the optimal solution value was about 5.5%
(that of AP being 8.9%), whereas on random instances the gap was normally much smaller
(1% to 2% for the additive bound and 2% to 5% for the AP bound).

The results of branch-and-bound algorithms for symmetric problems were discussed
in section 2.3.5. The branch-and-bound algorithm by Miller [25] was applied to Euclidean
SCVRP instances from the literature, where the edge costs are computed as the Euclidean
distances between the customers and rounded to the nearest integer. The algorithm was
able to solve problems with up to 50 customers within 15,000 seconds on a Sun Spare 2 (4
Mflops). The branch-and-bound algorithm by Fisher [14] was successfully applied to some
Euclidean CVRP instances with real- valued cost matrices and with no single customer route
allowed. The largest solved instance included 100 customers and was solved within less
than 60,000 seconds on an Apollo Domain 3000 computer (0.071 Mflops).

2.5 Distance-Constrained VRP
Exact methods for the Distance-Constrained VRP and CVRP (DVRP and DCVRP, respec-
tively) received relatively little attention in the literature. Moreover, since the seminal
articles by Laporte, Nobert, and Desrochers [21, 24], no new exact algorithm specifically
designed to handle these problems has been presented. In the following we briefly describe
the algorithm presented in [24] for the symmetric version of the more general DCVRP case.

Laporte, Nobert, and Desrochers [24] assumed, as usual, that the travel time and arc
cost matrices coincide and are symmetric, i.e., fy = c/7 for each i, j e A, i < j, and that no
service time is present, i.e., S(= 0 for each i e V . The algorithm is based on an adaptation
of formulation VRP2 for SCVRP described in section 1.3. The model is

subject to

Bibliography 49

The degree constraints (2.35) and (2.36) impose that exactly two edges are incident
into each vertex associated with a customer and that 2K edges are incident into the depot
vertex, respectively. The GSECs (2.37) impose the connectivity of the solution, the vehicle
capacity and the maximum route length requirements, by forcing that a sufficient number
of edges leaves each subset of vertices. Given a subset S of customer vertices, the quantity
r'(S) represents the minimum number of vehicles needed to serve all the customers in S.
This quantity is given by the maximum between r (S), which takes into account the capacity
constraints, and the smallest value v satisfying

where HV(S} is the optimal cost of a multiple TSP visiting all customers in 5 and using
exactly v tours passing through the depot. Since the multiple TSP is an NP-hard problem,
an approximation from below of the above value may be obtained by using any lower bound
on the value of HV(S).

The lower bound used in [21, 24] is based on the continuous relaxation of model
DCVRP in which the GSECs (2.37) are initially removed. The approach adopted by Laporte
and others may be seen as a forerunner of the branch-and-cut algorithms, since the initial
continuous relaxation is iteratively strengthened by adding violated GSECs and, at the root
node of the branch-decision tree, Gomory cuts [17].

The branch-and-bound algorithm described by Laporte, Nobert, and Desrochers [24]
was able to consistently solve randomly generated Euclidean DCVRP instances with up
to 20 customers and different numbers of vehicles within 500 CPU seconds on a Cyber
173 computer (about 1.5 Mflops). Some larger problems, involving up to 45 customers,
were also solved when both the capacity and the maximum distance constraints were loose
and few vehicles were available. Non-Euclidean randomly generated problems were also
considered in [24]. Laporte, Desrochers, and Nobert [21] specialized the algorithm to the
case in which the capacity constraint is not present (DVRP), and they obtained analogous
results.

Acknowledgments
This work was supported by Ministero dell'Universita e della Ricerca Scientifica e Tec-
nologica and by Consiglio Nazionale delle Ricerche, Italy. We thank the Laboratory of
Operations Research at Dipartimento di Elettronica, Informatica e Sistemistica (DEIS),
University of Bologna, for the assistance in the computational experiments.

Bibliography
[1] Y. Agarwal, K. Mathur, and H.M. Salkin. A set-partitioning-based exact algorithm for

the vehicle routing problem. Networks, 19:731-749, 1989.

[2] M. Balinski and R. Quandt. On an integer program for a delivery problem. Operations
Research, 12:300-304, 1964.

[3] M. Bellmore and J.C. Malone. Pathology of travelling salesman subtour-elimination
algorithms. Operations Research, 19:278-307, 1971.

50 Bibliography

[4] G. Carpaneto and P. Toth. Some new branching and bounding criteria for the asym-
metric traveling salesman problem. Management Science, 26:736-743, 1980.

[5] N. Christofides and S. Eilon. An algorithm for the vehicle dispatching problem.
Operational Research Quarterly, 20:309-318, 1969.

[6] N. Christofides and A. Mingozzi. Vehicle routing: Practical and algorithmic aspects. In
C.F.H. van Rijn, editor, Logistics: Where Ends Have to Meet, Oxford, UK, Pergamon
Press, 1989, pp. 30-^8.

[7] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle rout-
ing problem based on the spanning tree and shortest path relaxations. Mathematical
Programming, 20:255-282, 1981.

[8] M. Dell'Amico and P. Toth. Algorithms and codes for dense assignment problems:
The state of the art. Discrete Applied Mathematics, 100:17-48, 2000.

[9] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and
scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors,
Network Routing, Handbooks in Operations Research and Management Science 8,
North-Holland, Amsterdam, 1995, pp. 35-139.

[10] J.J. Dongarra. Performance of various computers using standard linear equations
software. Technical Report CS-89-85, University of Tennessee, Knoxville, 1998.

[11] M. Fischetti and P. Toth. A new dominance procedure for combinatorial optimization.
Operations Research Letters, 7:181-187, 1988.

[12] M. Fischetti and P. Toth. An additive bounding procedure for combinatorial optimiza-
tion problems. Operations Research, 37:319-328, 1989.

[13] M. Fischetti, P. Toth, and D. Vigo. A branch-and-bound algorithm for the capacitated
vehicle routing problem on directed graphs. Operations Research, 42:846-859, 1994.

[14] M.L. Fisher. Optimal solution of vehicle routing problems using minimum fc-trees.
Operations Research, 42:626-642, 1994.

[15] M.L. Fisher. A polynomial algorithm for the degree constrained fc-tree problem.
Operations Research, 42:776-780, 1994.

[16] H.N. Gabow and R.E. Tarjan. Efficient algorithms for a family of matroid intersection
problems. Journal of Algorithms, 5:80-131, 1984.

[17] R.E. Gomory. An algorithm for integer solution to linear programs. In Recent Advances
in Mathematical Programming, McGraw-Hill, New York, 1963, pp. 269-302.

[18] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new exact algorithm for
the vehicle routing problem based on #-paths and ̂ -shortest paths relaxations. Annals
of Operations Research, 61:21^3, 1995.

Bibliography 51

[19] M. Held and R.M. Karp. The traveling salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 1:6-25, 1971.

[20] M. Held, P. Wolfe, and M.P. Crowder. Validation of the subgradient optimization.
Mathematical Programming, 6:62-88, 1974.

[21] G. Laporte, M. Desrochers, and Y. Nobert. Two exact algorithms for the distance-
constrained vehicle routing problem. Networks, 14:161-172, 1984.

[22] G. Laporte, H. Mercure, and Y. Nobert. An exact algorithm for the asymmetrical
capacitated vehicle routing problem. Networks, 16:33-46, 1986.

[23] G. Laporte and Y. Nobert. Exact algorithms for the vehicle routing problem. Annals
of Discrete Mathematics, 31:147-184, 1987.

[24] G. Laporte, Y. Nobert, and M. Desrochers. Optimal routing under capacity and distance
restrictions. Operations Research, 33:1050-1073, 1985.

[25] D.L. Miller. A matching based exact algorithm for capacitated vehicle routing prob-
lems. ORSA Journal on Computing, 7:1-9, 1995.

[26] D.L. Miller. Personal communication, 1997.

[27] D.L. Miller and J.F. Pekny. A staged primal-dual algorithm for perfect b-matching
with edge capacities. ORSA Journal on Computing, 7:298-320, 1995.

[28] P. Toth and D. Vigo. An exact algorithm for the capacitated shortest spanning arbores-
cence. Annals of Operations Research, 61:121-142, 1995.

[29] P. Toth and D. Vigo. An exact algorithm for the vehicle routing problem with backhauls.
Transportation Science, 31:372-385, 1997.

[30] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle routing
problem. INFORMS Journal on Computing, 15:333-346, 2003.

This page intentionally left blank

Chapter 3

Branch-and-Cut Algorithms
for the Capacitated VRP

Denis Naddef
Giovanni Rinaldi

3.1 Introduction and Two-Index Flow Model
In this chapter we are concerned with solving the basic symmetric Capacitated VRP (CVRP)
to optimality by a method known as branch-and-cut. This method has been extremely
successful in finding optimal solutions of large instances of a closely related problem, the
Symmetric Traveling Salesman Problem (STSP). However, the amount of research effort
spent to solve the CVRP by this method is not comparable with what has been dedicated to
the STSP; the reader should not expect that we will report such spectacular results.

The amount of research carried out on branch-and-cut applied to the CVRP is still
quite limited and most of it is not yet published. The main goal of this chapter is to bring
the results obtained in the last decade to public attention. At the time of this writing, several
research groups were working on the subject, but not all their results were available. We
mention these projects later so the interested reader can be alert for forthcoming results.

We concentrate on what in Chapter 1 was called the two-index flow model. Whether
this model is the most suitable for the branch-and-cut approach is not obvious, but the success
of the corresponding model for the STSP certainly pleads for it. However, we also mention
another formulation that seems to give promising preliminary computational results: the
two-commodity network flow model studied by Baldacci, Mingozzi, and Hadjiconstantinou
[7]-

We start by recalling and integrating some of the definitions and the notation given in
Chapter 1 and by stating a formal definition of the problem.

We are given an undirected complete graph G(V, E) with node set V containing n +1
nodes numbered 0, 1, . . . , n. The distinguished node 0 corresponds to the depot, and the
other nodes correspond to the n clients. We denote by Vb the set of clients, i.e., VQ = V \ (0).
For each client / , we are given a positive demand dj. With each edge e e E, we associate
a positive cost value ce which corresponds to the cost of traveling along it. Let K be the

53

54 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

fixed number of vehicles available at the depot. All vehicles are assumed to have the same
capacity C.

For a subset F of E, G(F) denotes the subgraph (V(F), F) induced by F, where
V(F) is the set of nodes incident to at least one edge of F.

A route is defined as a nonempty subset R c E of edges for which the induced
subgraph G(R) is a simple cycle containing the depot 0 (i.e., 0 e V(R), G(R) is connected,
the degree of each node of V(/?) in G(R) is 2) and such that the total demand of the nodes
in V(/?)\{0} does not exceed the vehicle capacity C. Such a route represents the trip of one
vehicle leaving the depot, delivering the demand of the nodes in V(R) (traveling along the
edges in R), and going back to the depot. The cost of a route is the sum of the edge costs ce

over all edges e e R. Note that we allow the degenerate case | V(R)\ = 2, in which a route
R is the set consisting of two identical copies of an edge of E incident with node 0. In all
the other cases, an edge appears only once in a route.

A K-route is the union of K routes R\, R^, . . . , RK such that each node i e VQ
belongs to exactly one set V(Rj), 1 < j < K. The cost of a K -route is the sum of the costs
of the K different routes defining it. Each K -route defines a feasible solution to CVRP,
and the optimization problem consists of finding a minimum length K -route. A K -route
induces a partition P = [S \ , 82, . . . , SK] of VQ into K subsets such that d(Si) < C for
i = 1, 2, . . . , K. Such a partition is called a feasible AT -partition and represents a feasible
assignment of the clients to the vehicles. Each feasible K -partition may correspond to
several K -routes.

In the two-index flow model, we associate to each K -route R a vector jc^ e R£,
i.e., a real vector indexed by the elements of E, such that the value of a component x^
associated with edge e is the number of times e appears in the K -route R. Such a vector is
called the representative vector of R. (The terminology characteristic or incidence vectors
is usually used for vectors whose components are 0 or 1 , which is not the case here since
jc*e{0,l ,2}.)

For a subset F of the edge set E and for a vector y e E£, we denote by y(F) the sum
EeeF ye- For S C V, T c V, S n T - 0, we denote by (S : T), 8(S), and E(S) the sets
of edges with one endpoint in S and the other in T, with one endpoint in S and the other in
V\S, and with both the endpoints in S, respectively.

We can now formulate the problem of finding a minimum c-cost feasible K -route as
an integer linear program. It is easy to check that the set of representative vectors of all the
K -routes of G coincides with the feasible set of the following integer linear program:

subject to

3.2. Branch-and-Cut 55

The constraints (3.2)-(3.3) and (3.4) are commonly called the degree equations and the
capacity inequalities, respectively. In the following we see that there are several types of
capacity inequality, and (3.4) will be referred to as the rounded capacity inequalities. Due
to (3.4), the integer linear program IP(CVRP) has an exponential number of constraints.
However, as we will see in the next sections, the difficulty in solving IP(CVRP) to optimality
does not arise solely from this fact.

In section 3.2 we outline the branch-and-cut approach, and in sections 3.3 and 3.4 we
survey some of the theoretical and computational work that has been done on the CVRP
polytope to provide a branch-and-cut algorithm with suitable tools for solving some non-
trivial CVRP instances to optimality. Finally, in section 3.6 we give some computational
results based on a branch-and-cut implementation of Augerat et al. [6] and we mention
some very recent results of Ralphs et al. [39] and Blasum and Hochstattler [8]. We end with
conclusions and perspectives for further research.

3.2 Branch-and-Cut
In this section we give a short overview of the branch-and-cut method. For an extensive and
comprehensive description of this method and areas of successful application, see Padberg
andRinaldi [36], Jiinger, Reinelt, andRinaldi [19], Jiinger, Reinelt, andThienel [20], Thienel
[41], Jiinger and Thienel [21], and Caprara and Fischetti [9].

The linear relaxation of an integer linear program IP is the linear program obtained
from IP by dropping the condition that all variables have to be integers. For example, the
linear relaxation of IP(CVRP) is obtained by dropping the constraints (3.7). Therefore,
the optimal value ZLP of the relaxation (in the minimization case) is a lower bound to the
optimal value ZIP of the integer linear program, i.e., ZLP < ZIP-

If the number of constraints of an integer linear program is small enough so that its
linear relaxation can be fed into an LP solver, a classical method to solve it is branch-and-
bound with linear programming bounds. That is, we solve first the linear relaxation. If
the optimal solution x is integral, we are done; otherwise we choose a variable xe with a
fractional value and build two new linear programs. In the first we add an upper bound to xe

equal to _xe\, while in the second we set a lower bound on xe equal to \xe~\. (By _xe\ and
\xe~\ we denote the largest integer not greater than xe and the smallest integer not smaller
than xe, respectively.) From there, we proceed by classical branch-and-bound, in which the
bounds are given by the optimal solution values of the linear programs associated with the
nodes of the search tree.

When the number of linear constraints of IP is large or when the linear relaxation is
strengthen by adding some families of valid inequalities, which typically have exponential
size, then the constraint system cannot be fed into an LP solver and a cutting plane technique
has to be used to solve the linear program.

Let IP be an integer program and LP(oo) be its linear relaxation, possibly enriched by
additional valid inequalities, having a very large number of constraints, and let us assume
that we want to minimize the objective function. The cutting plane algorithm works as
follows.

For h > 0, let LP(/i) be a linear program consisting of a subset of reasonable size
of the constraints in LP(oo). Solve LP(/z), which yields an optimal solution xh. If this

56 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

solution is feasible for IP, it is an optimal solution; otherwise we assume we have a black
box algorithm that gives us at least one constraint of LP(oo) violated by xh, if one exists, or
else tells us that all such constraints are satisfied. If some violated constraints are returned,
LP(h + 1) is obtained from LP(/0 by adding them to LP(/z). Note that for every h > 0, if
ZLPW is the optimal value of LP(h), we have ZLPW < ZiP(h+i) < ZLP(OO) < ZIP-

The black box algorithm is called the separation algorithm. Therefore, we normally
end with an optimal solution either to the integer program IP or to its linear relaxation
LP(oo). In practice we may have a separation algorithm that is not exact, that is, it may
return no violated inequality although there are some. What follows remains true also in
this case, since the value of the last linear program is still, as we just noted, a lower bound
on zip.

If we have not terminated with an optimal solution to IP, we decompose the problem
into two new problems, for example, by adding upper and lower bounds to a variable whose
current value is fractional, as is done in branch-and-bound. This process is called branching.
Then we solve each new problem recursively, that is, by this very same method, and the
optimal solution to the original problem will be the best of these two solutions (an infeasible
LP(-) returns a value of +00). Such an integration of enumeration with cutting plane is the
kernel of the method called branch-and-cut.

Note that in branch-and-cut, enumeration and cutting plane benefit from each other:
on the one hand, the bound produced at each node of the enumeration tree is in general
better than in branch-and-bound, because new inequalities are added to the formulation of
the corresponding subproblem; on the other hand, the separation algorithm takes advantage
from the branching process as it produces a perturbation on the fractional solution that could
not be cut away by an inequality of LP(oo). Such a cross fertilization of different techniques
is typical also for other components of branch-and-cut (see the cited references) and is the
basic philosophy underlying the whole method.

In the case of IP(CVRP) we can let LP(0) be

subject to

and let LP(oo) be the linear program consisting of the objective function and constraints (3.1)
through (3.6). Therefore, the cutting plane procedure consists of finding rounded capacity
constraints violated by the optimal solution of LP(/z), h > 0. As we see in section 3.4, this
is not a major difficulty. We exit the cutting plane procedure either with an optimal solution
to IP(CVRP) or with an optimal solution x* to the linear relaxation which is not an optimal
solution to IP(CVRP). There are at least two ways to execute the branching process. The
first, and the one most often used, is to choose a variable that is fractional, say, jc** (for
simplicity let us assume that xe is restricted to only two values, 0 and 1). Then consider, on

3.2. Branch-and-Cut 57

one subproblem, the solutions in which xe* — 0 and, on the other, those in which xe* = 1.
An alternative, and, as we will see in section 3.5, a preferable, way to perform branching
is to use a set S* such that f^pl = t and the value jt*(5(S*)) is close to It + 1. We can
branch by considering on one subproblem those solutions for which x(8(S*)) = 2t and on
the other those for which x(8(S*}) > 2t + 2. As we will see, and will explain why, in
section 3.5, we favor the case where t = 1.

Branch-and-cut has been very successful in solving many combinatorial optimization
problems (see Caprara and Fischetti [9]); however, it may give poor performances if some
of its components are too weak. This unpleasant situation happens, for example, when

(i) we do not have a good algorithm with which to perform the cutting plane phase,

(ii) the number of iterations of the cutting plane phase is too high,

(iii) the linear program becomes unsolvable because of its size, or

(iv) the tree generated by the branching procedure becomes too large and termination
seems unlikely within a reasonable amount of time.

There is no remedy for (i) and (ii), except that, for (i), branch-and-cut, as already
mentioned, does not necessarily require that the relaxed LP be solved to optimality, and we
can go into the branching phase even if that LP has not been solved exactly. Therefore,
it is not strictly necessary to have an exact separation procedure; a good heuristic usually
suffices.

Problem (iii) can be avoided most of the time with some extra effort, such as a regular
clean up of the linear program by deleting inactive constraints. For more details, see the
above-mentioned references on branch-and-cut. If we make the effort, for CVRP and STSP
instances this is never a problem. However, this is not the case, for example, in dealing
with linear relaxations of problems related with large uncapacitated plant location problems,
where the variable upper-bounding constraints of the type */,; < y;-, although polynomial
in number, pose a serious problem.

We are left with problem (iv), which is the central problem of branch-and-cut. Most
failures are due to this situation. For IP(CVRP), as we will see, we have a good separation
algorithm for the rounded capacity constraints, and none of the first three problems leads
us to failure. Nevertheless, branch-and-cut applied as described here is doomed to failure
even on quite small instances. As we will see, one solution is to change LP(oo), either by
modifying some inequalities or by adding others. Why this helps is now explained.

There is a direct relationship between problem (iv) and the gap between the solution
value of the integer program and that of its linear relaxation. Note that this is also true
for branch-and-bound with linear bounding. So the only possible fix to problem (iv) is to
strengthen the linear relaxation, i.e., to add some linear inequalities that are satisfied by all
solutions. These inequalities, although unnecessary in the integer formulation, force the
optimal solution value of the linear relaxation to get closer to an optimal solution value of
the integer program. Finding such inequalities is in general not an easy task and is part of
the so called polyhedral study of the problem, which is the subject of the next section.

Therefore, in the cutting plane phase we will be looking for not only violated rounded
capacity constraints but also for many other types of violated inequality.

58 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

3.3 Polyhedral Studies
We assume that readers are familiar with the basic elements of polyhedral analysis. For a
reference, see, e.g., Nemhauser and Wolsey [35].

The CVRPpolytope CVRP(n, d, C, K) is the convex hull of the representative vectors
of all the K-routes.

Like any poly tope, it has a linear description given by a finite number of linear inequal-
ities. This linear description is the most we can strengthen the LP relaxation of IP(CVRP),
since solving that strengthened relaxation amounts to solving the CVRP. Unfortunately, we
are far from knowing this complete linear description. However, many successful appli-
cations of polyhedral analysis to the design of algorithms for solving hard combinatorial
problems to optimality rely on a very small subset of the inequalities that provide a complete
linear description of a given polyhedron.

Unlike the STSP polytope, the CVRP polytope has not received much attention.
Moreover, most of the known results have not been published yet. Therefore, in this section
we give a survey of the current results.

Like the STSP polytope, the CVRP polytope is not of full dimension; however, unlike
the STSP polytope, the dimension of the CVRP polytope is not a simple function of the
problem size (number of nodes) but depends, in a complex way, on all the terms of the
quadruple (n, d, C, K). In the case of the STSP polytope, we know that the only equations
satisfied by all the feasible solutions are the degree constraints and all their linear combi-
nations. In the case of the CVRP polytope these equalities also hold, but in general many
others do, too. For example, it may be the case that in all the K -routes, the clients of a given
set S are served by exactly t vehicles, and therefore the equality x(8(S}} = 2t holds for
the representative vectors of all the K -routes. In the extreme case, assuming that K is large
enough to guarantee the existence of at least one solution, this solution may be unique, and
thus the dimension of CVRP(n, d, C, K) is 0. (This is the case when only one ^T-partition
exists and all its sets have cardinality 1 or 2.)

The difficulty in determining the dimension of the polytope makes the task of proving
that an inequality induces a facet particularly hard. Therefore, we concentrate on describing
inequalities that are shown to be valid for the CVRP polytope; determining the conditions
under which they also define facets it is often still an open issue, or it requires taking into
account a great deal of tedious technical conditions. Whether these inequalities are powerful,
from a computational point of view, can be decided in various ways. For example, via
computational experiments, we can check if using them yields better performances for an
exact solution algorithm. Unfortunately, this method may produce erroneous conclusions;
it is not infrequent that some inequalities are totally useless for certain instances but very
useful for others.

An alternative approach is to prove the facet-inducing property with respect to a
relaxation of the CVRP polytope, that is, a polytope that contains the CVRP as a face and
is possibly full dimensional, thus making the task of proving the facet-inducing property
more manageable. We could then consider powerful an inequality that induces a facet of
the relaxation, although it might happen that the same does not hold true for the CVRP
polytope.

Two relaxations have been used in the literature. The first comes directly from the
most successful relaxation of the STSP polytope, the graphical relaxation (see Cornuejols,

3.3. Polyhedral Studies 59

Fonlupt, and Naddef [12] and Naddef and Rinaldi [31, 32]). In this relaxation, introduced
for the CVRP by Cornuejols and Harche [13], a vehicle may visit any client without making
a delivery, and it may do so an arbitrary number of times for that same client. It may also
make the delivery for a client and then visit it again later in the trip. To be more formal, let us
extend the definition of a route by introducing the notion of a partial closed walk, defined as
a multiset R of edges (the same edge may appear several times in R) such that the multigraph
built on R, replacing an edge by as many its copies as there are in /?, is Eulerian and contains
node 0. A K-walk is the union of K partial closed walks with the additional condition that
it induces a feasible ^-partition. With every A'-walk we associate a representative vector,
the components of which give the number of times each edge is present in it. The graphical
CVRP polyhedron (GCVRP) is the convex hull of the representative vectors of all the K-
walks of the graph. This polyhedron is unbounded and has the nice feature of being of
full dimension. Note that if we know the multiset of edges of a A'-walk, we do not have
enough information to produce a solution to the problem. Actually, we must find a feasible
assignment of the clients to the partial closed walks, and this task turns out to be NP-hard. If
the triangular inequality is satisfied by the cost vector c, then there always exists an optimal
A^-walk that is a K -route. Therefore, in this case, rather than CVRP, one can solve rather
easily its graphical relaxation.

The second relaxation is by Araque, Hall, and Magnanti [3] and aims at removing
the degree equations from the formulation. Each feasible solution of the relaxation is a set
of disjoint paths of the subgraph of G induced by V0> each with associated total demand
not exceeding C. It is easy to see that each feasible solution of this problem corresponds
to a feasible solution of the CVRP (and the cost of the two solutions always differs by the
constant amount 2 ̂ (CQ/) after we replace the cost of each edge c/;- with the Clarke and
Wright savings [10] — CQ, — %• + c/;-. To avoid situations where a set of clients is served by a
fixed number of vehicles in all feasible solutions, which would imply that the representative
vectors of all the feasible solutions satisfy the same equation, as mentioned earlier, the
number of vehicles is also relaxed to be arbitrarily large. The convex hull of the set of all
representative vectors of such sets of disjoint paths forms a full dimensional polyhedron,
assuming that there are no pairs of clients whose total demand exceeds the capacity C.
Indeed, if i and j are such that di + dj > C, then je,-/ = 0 is an equation satisfied by all the
solutions.

3.3.1 Capacity Constraints

The capacity inequalities for the CVRP polytope play, in some sense, the same role as the
subtour elimination inequalities for the STSP polytope: they are also exponentially many
(there is one for each subset S of VQ) and all are necessary to define IP(CVRP). However,
while all the subtour inequalities define facets of the STSP polytope, the same does not
always hold for the capacity inequalities.

There is actually a hierarchy of capacity inequalities, all sharing the same left-hand
side but having right-hand sides of nondecreasing value. The higher the right-hand side
value, the stronger the inequality but the harder the corresponding separation problem.
Observe that the left-hand side of the inequality, evaluated at the representative vector of a
K -route, gives the number of edges of the K-route that belong also to the cut 8 (S). Roughly

60 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

speaking, this is the number of times the vehicles in the K -route cross the boundary of the
set S.

We survey all the inequalities of the hierarchy from the weakest to strongest.
A fractional capacity inequality has as a right-hand side

The separation problem for these inequalities is quite easy and is solvable in polynomial
time (see section 3.4); however, they are almost never supporting for the CVRP poly tope
since their left-hand sides, evaluated at one of its vertices, have integral value. Nevertheless,
it is not difficult to see that IP(CVRP), where the right-hand side of (3.4) is replaced by
(3.8), still is a valid integer linear programming formulation of the problem. Thus its linear
programming relaxation, obtained by dropping the integrality requirements, yields a bound
that can be computed in polynomial time.

A rounded capacity inequality is obtained by rounding the right-hand side (3.8) to
the nearest larger integer. The resulting inequality is (3.4) and the associated separation
problem is much more difficult than the one of the fractional inequality, although it is still
computationally affordable (see section 3.4). This inequality may not be supporting yet
in some cases. A better lower bound on the left-hand side of the inequality is given by
taking twice the minimum number of bins of capacity C needed to pack the items of the
set S, whose sizes are given by the vector d. We call this number of bins r(S}. When
|-rf(S)-| .̂ r^-^ men me rouncied capacity inequality relative to S is not supporting.

A weak capacity inequality has 2r (S) as a right-hand side. Since it is N P -hard to com-
pute r(S), the separation problem for these inequalities is difficult (see [15]). Nonetheless,
although it might sound surprising, a weak capacity inequality is, in general, not supporting
because it does not take into account the demands outside the set S under consideration.

Let P denote the set of all feasible K -partitions of Vb- For any nonempty set S c V0

and for any £" -partition P = [S\ , . . . , SK], define

This quantity is obviously equal to the number of vehicles needed to satisfy the demands of
all clients in S in the ^f -partition P.

The function R : 2V° -> Z+ defined by

clearly gives the minimum number of vehicles needed to satisfy all client demands in S in
a feasible £" -partition. Any P e P for which the minimum in (3.9) is attained is called a
tight feasible AT -partition relative to 5".

The weak capacity inequality may not be supporting because there may be no tight
feasible K partition P for which /3(P, S) = r(S), although it is possible to pack the items
of set S into r(S) bins. This situation calls for the ultimate version of the inequality.

A capacity inequality is the one having 2R(S) as a right-hand side. This inequality
is supporting by definition. Whether the inequality defines a facet of the CVRP polytope
still depends (for complete graphs) on the structure of the vector d and on the values K

3.3. Polyhedral Studies

and C. This issue was investigated in Cornuejols and Harche [13], where conditions are
given under which the capacity inequality induces a facet of the CVRP polytope. Since the
computation of r(5) is a special case of the computation of R (5), the separation for the
capacity inequalities is hard.

An example, by Cornuejols and Harche [13], where the last three right-hand sides are
different, has eight clients, K = 4, C = 1, d = {5, 3, 3, 3, 4, 4, 4, 2}, and S is given by the
first four clients. The resulting right-hand sides are

An inequality is tight for a given vector x* e R£ if the left-hand side of the inequality
evaluated at x* equals the right-hand side. We say that a K -route is tight for a set S if it
contains exactly 2R(S) edges of the coboundary 5(5) of 5. That is, the capacity inequality
is tight for the representative vector of that £" -route. We also use the term "tight" when
R(S) is replaced by r(5).

3.3.2 Generalized Capacity Constraints

Let us consider now a set S — {S\ , . . . , 5,} of t > 1 disjoint subsets of VQ. If we add up
the t capacity inequalities defined by each subset, clearly we obtain a valid inequality that
is dominated by each of the capacity inequalities used in this operation. On the other hand,
it may happen that no feasible £ -partition tight relative to, say, 5i is also tight for all the
remaining t — 1 sets. In this case we can increase the right-hand side of the inequality by at
least two units, while preserving its validity, obtaining a new inequality that is not dominated
by any capacity constraint. How much can the right-hand side be increased without losing
the validity? The largest value of the right-hand side is given by

The resulting inequality

is called the generalized capacity inequality and was defined in De Vitis, Harche, and Rinaldi
[14], where sufficient conditions for it to be facet defining for the GCVRP polyhedron as
well as for the CVRP polytope are given.

Since the function /?(•) is difficult to compute, as a more tractable valid inequality for
a cutting plane algorithm we consider a weak version of the generalized capacity inequality.
Let H be a subset of V0 containing all the subsets in S and assume that d(5/) < C holds
for i — 1 , . . . , t . Then we define r(H \ S\ , 82, . . . , 5f) to be the bin packing solution of the
problem having bin capacity of C, one item with size d(u) for each node u in H \ U|=1 5,-,
and one item having size d (5) for each S e S. Alternatively, r(H \ S\, Si, . . ., St) can be
seen as the optimal solution of a bin packing problem with one item of size d(u) for each

61

62 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

node u of G, where all items in each subset S e S are constrained to stay together in the
same bin.

In the case H — VQ, we define the weak generalized capacity inequality to be

or, equivalently, as jc(5(Vb)) = 2K holds,

The validity of this inequality is implied by the definition of its right-hand side.
While it is very difficult to check if a generalized capacity inequality is violated,

because of the function /?(•), checking if its weak version is violated amounts to solving a
bin packing problem to compute r(Vb | Si, S2 , . . . , Sr). Although bin packing is NP-hard,
it is recognized to be computationally affordable for a wide number of instances (also see
section 3.3.5).

3.3.3 Framed Capacity Constraints

Let S be as in the previous section. If in the inequality (3.11) we replace VQ by any of its
subsets H containing all the sets S,- for z = 1, 2 , . . . , f, then we get the new inequality

that is a generalization of (3.11), which we call the framed capacity constraint. This in-
equality was proposed by Pochet [37] and Augerat [4]. The proof of its validity is a special
case of the proof of validity for the path-bin inequalities of section 3.3.5.

Observe that this inequality may be violated while the weak generalized capacity may
not be.

As an example of a framed capacity constraint, consider an instance where t = 4,
the sets Si, S2, Ss, and Si have 8, 7, 7, 7 clients, respectively, all with unit demands, and
C = 10. Moreover, the set H \ U/Li $1 has only two clients with demands 5 and 6.
For this case r(H | Si, S2, S3, S4) = 6; hence x(8(H)) + Y!i=\ *($($)) > 20 is valid.
Note that the sum of the five weak capacity constraints would yield a right-hand side of
16 instead of 20. Indeed, there are many other framed capacity constraints in this case;
for example, S = {Si, S2}, H = Si U S2 U {the client of demand 5}, or S = {S3, S4},
H = S3 U 84 U {the client of demand 6}, both have 10 as a right-hand side, while 8 is the
sum of right-hand sides of the corresponding three weak capacity constraints.

3.3.4 Valid Inequalities from STSP

A K-route and a Hamiltonian cycle have very close structures: they are both connected
subgraphs of G where all nodes in VQ have degree 2. The only difference occurs at node 0,

3.3. Polyhedral Studies 63

which has a different degree in the two subgraphs. Indeed, a K-route is a special case
of a tour that is a feasible solution of the already cited graphical relaxation of STSP. A
tour (see Cornuejols, Fonlupt, and Naddef [12]) is defined as a multiset 0 of edges such
that the multigraph obtained from 0 is Eulerian, connected, and spans G. Of course
any inequality valid for all tours of G is also valid for all its K -routes (and for all its
Hamiltonian cycles). What about the reverse? Is a valid inequality for STSP also valid for
its graphical relaxation? Remember that the incidence vectors of all the Hamiltonian cycles
satisfy all the degree equations. Therefore, if we add any linear combination of the degree
equations to a valid inequality, we obtain again a valid inequality that defines the same face
of the STSP polytope. The two inequalities are said to be equivalent. Thus, we usually
say that a valid inequality for the polytope can be written in different (equivalent) forms.
Naddef and Rinaldi [32] have studied the connections between STSP and its graphical
relaxation; in particular, they showed that any valid inequality for the STSP, written in a
certain form, is also valid for all tours and therefore for all ^-routes. We make this more
precise now.

An inequality ax > aQ (where a and x are vectors of M£) is in tight triangular form
(TTform) if for all triples of distinct nodes z , j, k e V, we have a^ < a;/ + a^, and for
every i e V there exists j (i) e V and k (i) e V such that aja^a) — ̂ o'(') + fl^(0-

The tight triangular form of the STSP valid inequalities was introduced by Naddef
and Rinaldi [32] and became, for many reasons, the standard form of STSP inequalities.
One reason is that the representation of a facet of the STSP polytope by an inequality in
TT form is unique (up to scaling by a nonnegative constant). Naddef and Rinaldi [32] also
show how to transform any STSP valid inequality into its equivalent TT form.

We give a direct proof of the following theorem.

THEOREM 3.1. All the valid inequalities for the STSP polytope, written in TT form, are
valid for the CVRP polytope.

Proof. Assume a valid inequality ax > a0 for the STSP polytope in TT form is not valid
for the CVRP polytope. Let R be a K -route, the representative vector x R of which satisfies
axR < aQ. Choose two edges (0, /) and (0, 7) incident with the depot and belonging to
different routes in R. Since the triangular inequality holds, removing these two edges and
adding edge (i, j) yields a (K — l)-route R' (perhaps violating some capacity constraints)
with axR' < OQ. Repeating this process, we end up with a Hamiltonian cycle F such
that ax1 < ao, which contradicts the fact that ax > «o is a valid inequality for the STSP
polytope. D

A survey of the most well-known STSP valid inequalities with an intuitive idea of
their validity can be found in Naddef and Pochet [30].

The feasible solutions of CVRP inherit in a complex way the structure of the Hamilto-
nian cycles and those of the bin packing solutions. The inequalities of the previous section
deal only with the "bin packing part" of the problem, while inequalities coming from STSP
only deal with the "routing part." Therefore, it is not surprising if often STSP inequali-
ties define faces of the CVRP polytope that are not of high dimension. However, these
inequalities can be strengthened if we take into account the bin packing part of the problem.

To understand better how this can be done, it is useful to understand the role that some
classes of STSP inequality play in the definition of the STSP polytope. As an example we

64 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

consider the well-known class of comb inequalities. For further classes see Naddef and
Pochet [30].

A comb is defined by a handle H and an odd number of teeth T\ , T2, . . . , Tt satisfying
the following conditions:

The comb inequality in TT form is

or equivalently

We now give an informal proof of the validity for the comb inequalities for the STSP
polytope. In the following, Hamiltonian cycle can be replaced by closed walk or by K-
route. Take any Hamiltonian cycle F such that |F n 5(7}) I = 2 for all i = 1, . . . , t. Then
\rr\S(H)\ > t since there must be at least one edge of Tin (7} \H : 7}DH) for each tooth 7}.
Now, since a cycle must intersect the coboundary of any node set in a even number of edges
and since t is odd, we must have |F D 8(H) | > t + 1. So all such Hamiltonian cycles satisfy
the inequality. As explained by Naddef and Pochet [30], in most inequalities described in
term of handles and teeth, the role of the teeth is in some sense to force a prescribed number
of edges out of the handles. Does the inequality remain valid for a Hamiltonian cycle F
such that | F fl 5 (7}) | = 2 + 2s(for z = 1 , . . . , 1 1 It can be shown that the minimum numb
of edges of F fl 8(H) is not reduced by more than 2 5Zl=i si over the former minimum off
3t + 1. Thus the inequality is valid for all the Hamiltonian cycles.

To see how comb inequalities can be rather weak for the CVRP polytope, consider
the following three simple observations.

1. If the handle does not contain the depot and R(H) > (t + l)/2, then obviously the
comb inequality will be implied by the capacity constraint on the handle H. If the
handle contains the depot and R(V \ H) > (t + l)/2, then the same holds.

2. If all teeth have a bin packing value of 1, but no two can be entirely picked up by
a same vehicle, then there are no ^-routes for which the comb inequality is tight.
Section 3.3.5 shows how to transform such an inequality to one that at least has some
K -routes on the induced face.

3. If a tooth TI has a bin packing value higher than 1, or if it contains the depot and the
bin packing value of its complement is more than 1, then all the £" -routes will have
at least four edges in 5(7}), and therefore the comb inequality will be dominated by
another inequality.

3.3. Polyhedral Studies 65

We now try to strengthen a comb inequality by taking the capacity constraint into
account. While the intersection of the coboundary of a node set 5 (a handle or a tooth)
with a Hamiltonian cycle has cardinality at least 2, the intersection with a K -route is at least
2R(S}. In general, to describe a strong inequality, 2R(S) is the value to be considered;
however, as done for the capacity constraints, for the sake of computational tractability we
replace it by its relaxation r(5), or even by f^pl •

In view of the previous explanation of how comb inequalities can be derived, we try
now to see how we can "force" edges out of the handle by using the capacity constraints.
To do so, we need that, when the nodes of a tooth 7} are visited by the minimum number of
necessary vehicles, at least one edge of (7) \ // : 7) fi //) is used. The following condition,
by Laporte and Nobert [25], is given precisely in this spirit: Let H, T\ , T^, . . . , Tt define a
comb such that no tooth contains the depot and

then the following inequality is valid (Laporte and Nobert [25]):

Note that if r(7}) = 1 for all i, then the condition (3.13) obviously always holds, and we just
get the comb inequality. Therefore, 3.14 is a proper generalization of a comb inequality.

What about the case in which a tooth, say, T\ , contains the depot? Since a comb
inequality is equivalent to the inequality defined by taking the complement of its handle,
we may assume, without loss of generality, that 0 e T\ \ H. Of course, the demands of
the nodes outside T\ now play a role, since they force a minimum number of edges in the
coboundary of T\ . Therefore, in this case, assuming that for all the other teeth r(7}) = 1
holds, the right-hand side of the comb inequality would be 3t — 1 + 2r(V \ T\).

So far we have considered some simple situations when the plain comb inequality is
not supporting for the C VRP polytope and the right-hand side can be modified to strengthen
it. Deciding in general whether a comb inequality is supporting, finding the correction in the
right-hand side to make it supporting, deciding if the strengthened version is facet defining,
and, finally, in case it is not, determining the correction in the coefficients to make it face
defining seem all to be difficult tasks and of increasing complexity. For example, for the
case considered earlier of a comb with the depot in a tooth, it is likely that not only the bin
packing value of V\T\ should be taken into account but also that of H U (U/=2 ^')> a noc^e

set that contains the clients of H Pi T\. Figure 3.1 shows an example with each node of
demand 1 (the depot is represented by a square node), C = 3, R(V \T\) = r(V \T\) = 2.
The right-hand side of the strengthened comb inequality would be 12, but no K -path is
tight for that inequality. The lowest value we can reach on the left-hand side is 14. Note
that replacing r(V \T\)by R(V \T\) does not help here, since we assumed that these two
values coincide. One could then increase the right-hand side to 14, but still what we get
does not define a facet: all £" -routes that satisfy the new inequality to equality have exactly
four edges in 8 (T\), and therefore the face that it induces is contained in the one induced by
the capacity inequality associated with V \T\. All this is to say that things are not easy.

A vehicle routing problem can be reduced to a pure TSP by the following operation:
Replace the depot by a set D of K nodes. Since we deal with complete graphs, we set

66 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

Figure 3.1. An example with the depot in a tooth.

xe = 0 for each edge e having both endpoints in D, or alternatively, as done by Ralphs et
al. [39], we just assume that there are no edges between any two nodes in D. Every node of
D is linked to every client node by an edge of the same cost as in the original problem. A
K -route yields a Hamiltonian cycle in the new graph. Conversely, a Hamiltonian cycle such
that the sum of the demands of the clients on every path between two consecutive visits to
the nodes in D is at most C yields a K -route. Take a comb inequality in the new graph. If
we contract all the nodes of D, we are back to the original graph, but the combs may now
have teeth that intersect in the depot. Therefore it is quite natural to address combs with
intersecting teeth in the depot as possible valid inequalities for CVRP.

A comb can be defined more generally by a handle H and an odd number of teeth
Ti,T2,...,Tr, Tr+i ,...,Tt satisfying

where r may be any value between 0 (all teeth intersect) and t (no teeth intersect nor contain
the depot). The teeth Tr+\ to Tt intersect in the depot; if r = t — 1, only one tooth does.
Moreover, assume that the full set of K vehicles is needed to satisfy the demand of all the
nodes outside a tooth containing the depot, that is, R(V \ 7)) = K for all j = r + 1, . . . , t.
Then the following comb inequality is valid:

We give not a formal proof of validity but only an intuitive explanation. If a K -route is
going to intersect the coboundary of a tooth Tj containing the depot only 2K times, then at
least one edge of (H ft Tj : Tj \ H) must be in that ^T -route. The argument then proceeds
as in the case of regular comb inequalities. Note that if some teeth not containing the depot
cannot be served by a single vehicle and satisfy the Laporte-Nobert condition, then we can
strengthen the inequality like we have already seen.

3.3. Polyhedral Studies 67

3.3.5 Valid Inequalities Combining Bin Packing and STSP

As we saw, the plain STSP inequalities ignore the demands, while the capacity inequalities
ignore the routing conditions. Here we try to combine the two aspects of the problem, as
we started to do with the framed capacity inequalities of section 3.3.3 and with the comb
inequalities.

The path-bin inequalities defined below are a generalization of the framed capacity
inequalities defined in section 3.3.3 and of the comb inequalities defined in section 3.3.4.
They were defined by Pochet [37] and Augerat [4]. Since this material was not readily
available at the time of writing, we include the necessary proofs.

A path-bin support is defined by a handle H, by teeth T\, TI, • • • , Tt, and by spots
S], 82,..., Ss. For notational simplicity, we let Tt+i stand for 5,-.

These sets satisfy the following conditions:

The difference with respect to a comb is that, for a path-bin support, we impose that the
total demand of a tooth or of a spot be less than or equal to the vehicle capacity C and there
is no parity requirement on the numbers s or /. Figure 3.2 represents a path-bin support
with three teeth and one spot.

Associated with the path-bin support, we define a path-bin subproblem that is the
following constrained bin packing problem. Let / be the set of items. Each tooth 7), 1 <
j <t, and spot Sj, 1 < j < s, defines one item of size d(Tj) and d(Sj), respectively. Each
node v e H \ (U/=\ TJ) defines one item of size dv. The bin size is the vehicle capacity C.
Let r'(H \ T\, ..., Tt+s) be the minimum number of bins needed to contain all items of /
with the additional constraint that a bin can contain the items corresponding to at most two
teeth.

Figure 3.2. A path-bin support with three teeth and one spot.

68 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

To link this constrained bin packing subproblem to the solutions of CVRP, we define
an H-path of a K -route of CVRP as a connected component of the intersection of one of
the routes with £(//). In this definition, a single route can define several //-paths, but in
all cases, the number of edges of the K -route in 8(H) equals two times the number of its
//-paths. This holds because the depot does not belong to H and thus each //-path contains
two edges of8(H) in the K -route.

The purpose of the constrained bin packing subproblem is to compute the minimum
number of //-paths, over all K -routes of CVRP, under the condition that the demand of a
tooth or spot must be satisfied by a single vehicle, i.e., those £"-routes use exactly two edges
of each tooth or spot coboundary. Such an //-path can contain at most two teeth and each
such //-path corresponds to a feasible bin. More precisely, as the bin packing subproblem
considers only the demand in H U (U;=i Tj), it uses only local information and will only
provide a lower bound on this minimum in the same sense as r (5) is a lower bound on R (S).
The first example in Figure 3.3 illustrates this correspondence between the //-paths and the
bin packing subproblem. This result is formalized in the following proposition.

PROPOSITION 3.2. If x is a solution of CVRP satisfying jt(5(7))) = 2 for 1 < j < t + s,
then the following inequality holds:

where r'(H \ T\, ..., Tt+s) is the value of the constrained bin packing problem.

Proof, Let 0 be a A'-route that contains the minimum number of edges in 8(H), among
all K -routes satisfying the conditions of the proposition. Consider the set F of edges of
0 with both the endpoints in //. The number of connected components of G' = (//, F)
is exactly half the number of edges of 0 in 8(H). Assume that the side condition of the
bin packing problem is violated, i.e., that a connected component intersects three teeth, say,
Ti, TJ, and Tp, in that order (going from one extremity to the other). Since 7) has nodes
outside the handle //, 0 must intersect <5(7)) in at least four edges, a contradiction with our
choice of

Figure 3.3. Tight solutions for a path-bin inequality (C = 10).

3.3. Polyhedral Studies 69

The path-bin inequality transforms the inequality (3.15) into a valid inequality for
CVRP. It is based on a well-known property of the bin packing problem, which says that
splitting an item into two parts cannot decrease the optimal number of bins by more than
1. This property is translated in terms of solutions of CVRP to build the valid inequality.
Putting the item 7) (tooth or spot) in one bin means satisfying the demand d(Tj) by only
one vehicle, therefore ;t(5(7))) — 2. Splitting the item 7) into two parts and allowing
these two parts to be in different bins means allowing the demand d(Tj) to be satisfied
by two vehicles and jt(5(7))) = 4. So, as Xlytfi *(<$(T./)) is integer, each time

ICjt*! [•*(^(^})) ~ 2] is increased by 2, the number of //-paths cannot be reduced by more
than 1 and the coboundary of H cannot be reduced by more than 2. Consequently, we have
the following theorem.

THEOREM 3.3. For any path-bin support (H, T\, ..., Tt, S\, ..., Ss), the associated path-
bin inequality

w valid for the CVRP polytope.

Figure 3.3 represents three tight solutions of the path-bin inequality using the same
support as in Figure 3.2, the first corresponding to a constrained bin packing solution, the
second with a tooth split into two parts, and the last with a spot split into two parts.

Computing r'(H \ T\, ..., Tt, S\, ..., Ss) is harder than computing r(H} which is
NP-hard. For small sets //, the exact bin packing algorithm of Martello and Toth [26, 27]
can be adapted to deal with the additional constraint on the teeth. For larger sets //, the
lower bounding procedure of Martello and Toth [26, 27] can be adapted. Two trivial lower
bounds on r'(H \ T},..., Tt, S\,..., 5,) are fr/21 and \d(H U ((J^i 7)))/C"|. As r'(H \
T\, ..., Tt, S\, . . . , 5$) appears only at the right-hand side of the path-bin inequality (3.16),
replacing it by any lower bound still yields a valid inequality.

As x(8(Tj)) > 2 in any feasible solution of CVRP, a set 7, or Sj will be introduced
in the path-bin inequality only if its removal would reduce the value of the bin packing
subproblern; otherwise the inequality without this set 7; dominates the inequality with the
set77.

Note that if some tooth 7) is such that r(7/) > 1 but satisfies condition (3.13) of
Laporte and Nobert, then it is easy to modify the path-bin inequality to take this case into
account.

3.3.6 Valid Inequalities from the Stable Set Problem

The following inequality generalizes Araque's [2] star inequalities (not to be confused
with the star inequalities for the STSP polytope defined in Fleischmann [17] nor with the
multistar inequalities mentioned in section 3.4) for the special case of CVRP occurring when
all demands are equal.

70 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

A clique cluster (see Pochet [37] and Augerat [4]) is defined by W\,..., Ww subsets
of Vb such that

Thus any two sets intersect in the same node v, and each set can be served by one vehicle,
but not the union of two of them. The node v is called the nucleus of the cluster.

The capacity conditions imply that at most one set W, can have a coboundary that
intersects a K-route in exactly two edges. Therefore, the following inequality is valid:

Note that the nucleus cannot consist of more than one node. Assume W/ D Wj• = N for
all 1 < i < j < w with \N\ > 1; then any tight K-tour for the clique cluster inequality is
tight for the capacity constraint on N, i.e., for x(8(N)) > 2. Therefore the face induced by
(3.17) would be contained in the face defined by the capacity constraint on the set N. In
the case of a nucleus TV with more than one node, one can modify an inequality proposed
by Araque, Hall, and Magnanti [3] for the unit capacity CVRP. The valid inequality in this
case is (see [37])

The star inequality is a particular case of a much larger class of inequalities. Consider a
rank inequality facet defining for the stable set polytope. A rank inequality is defined for
some special graph Gs; each variable is associated with a node of Gs and has a coefficient of
1, while the right-hand side is the stability number of Gs. Special graphs are, for example,
cliques or chordless cycles of odd length. A rank inequality for the stable set polytope can
be translated into a valid inequality for the CVRP polytope in the following way. The nodes
of Gs correspond to subsets of clients of CVRP with total demand not exceeding the vehicle
capacity but such that the union of any two of them requires two vehicles to be served. If
two nodes of Gs are adjacent, then the corresponding sets intersect, let us say, for simplicity
in a single node. Assume the stable set inequality has p as right-hand side, this means that
at most p sets of clients can have a coboundary that intersects a K -route in exactly two
edges, yielding the inequality

Well-known rank inequalities for the stable set polytope are the clique constraints, which
say that at most one node of a clique can belong to a stable set. These yield the clique
cluster inequalities. As long as the sets intersect pairwise we get a clique; therefore one
inequality for the stable set polytope may yield several valid inequalities for the CVRP.
Many, of course, will not even be supporting the CVRP polytope.

3.4. Separation Procedures 71

Another well-known inequality is the odd hole inequality, which says that at most t
nodes of a chordless cycle of length 2t + l can belong to a stable set. This would correspond
to taking 2t + 1 subsets Wo, . . . , W2t of V0 such that

That is, the sets form an odd hole, the intersection of two consecutive sets is just a node, and
two consecutive sets (modulo 2t + 1) cannot be served by the same vehicle. Then at most t
sets Wj can have jc(6(W,)) = 2 for any representative vector x of a A' -route. Therefore the
following inequality is valid:

It should now be obvious that the facial structure of the CVRP polytope is extremely
complex and that there is still a lot to investigate in this field. For more on this topic we
refer the reader to the papers cited above.

3.4 Separation Procedures
Throughout this section we assume that x e R£ is a fractional point satisfying all the con-
straints (3.2), (3.3), (3.5), and (3.6). We aim at describing efficient (possibly of polynomial
time complexity) procedures to find a valid inequality for the CVRP polytope, belonging to
one of the classes described in the previous section, that is violated by x.

3.4.1 Exact Separation of Capacity Constraints

We address only the problem of separating the fractional and the rounded capacity inequal-
ities.

The separation problem for the fractional capacity inequality is solvable in polyno-
mial time, as shown by McCormick, Rao, and Rinaldi [29], by reducing it to a network
flow problem. Using the same idea, Blasum and Hochstattler [8] provided a polynomial
separation for a generalization of the fractional capacity inequalities that they call multistar
inequalities.

Let Gx be the weighted graph induced by the edges whose associated components
of x are strictly positive and by all edges incident to node {0}. Each edge of GX has
the corresponding component of i as a weight. Produce a new graph G'^ by replacing
the weight xe by xe — dj/C for all edges e = (0, i) with / e V0. It easy to see that if
in G'- there is a minimum cut with negative weight, then the shore of this cut that does
not contain node 0 defines a fractional capacity inequality violated by x. Unfortunately, a
standard (polynomial time) algorithm for computing the minimum cut of G^ cannot be used,
because such a graph may have edges with a negative weight. To overcome this problem,
consider an auxiliary graph G ̂ obtained from Gx by adding a node n + 1 connected to

72 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

all nodes 1, 2 , . . . , n. All edges of G'j- with both endnodes in (1, 2 , . . . , n} have the same
weight as the corresponding edges of G^. For i = 1, 2 , . . . , n the edges (0, /) and (/, n + 1)
get weights max{0, %),,) — di/C] and max{0, di/C — JC(o,/)}, respectively. Because the
network G'- has nonnegative weights, the minimum weight cut separating 0 from n + 1 can
be computed in polynomial time. In McCormick, Rao, and Rinaldi [29] it is shown that the
minimum cut F" separating 0 from n +1 in G'^ yields a minimum cut F' for G'- by removing
the edges incident with n + 1. Moreover, the weight of F" exceeds the weight of F' by the
amount Z = £^=i max{0, di/C — Jc(o,,-)}- Thus, if the weight of F" is strictly less than Z,
then its shore not containing n + 1 defines a violated fractional capacity inequality. If this
weight is nonnegative but strictly less than Z + 2, then all fractional capacity inequalities
are satisfied, but it may be possible that the defined rounded inequality is violated. If w is
more than Z + 2, no rounded capacity inequalities are violated.

To explore the second situation, De Vitis and Rinaldi [15] use a procedure that produces
all the cuts of G^ separating 0 from n +1 in increasing order of their weights. The procedure
stops as soon as a cut is produced that has weight greater than or equal to Z + 2. For each cut
generated by the procedure a check for violation of the corresponding rounded inequality
is performed. There is no guarantee that the number of cuts produced is polynomial in n.
However, for the size of the instances contained in the usual testbeds, the running time of
this procedure is never too long.

3.4.2 Heuristics for Capacity and Related Constraints

The previous algorithm for the rounded capacity inequalities may be too slow. We de-
scribe here a heuristic separation procedure for them as well for the generalized capacity
constraints.

Given x and 5 C V and v <£ S, we call x ({ v } : S) the amount by which v sees S.
Given S C V, if one wants to add a node v to S and have x(8(S U {u})) as small as possible,
then, because of the degree equations, one has to choose the node v that sees 5" by the largest
amount. Following the terminology of some authors, we say that a set S is built by max-back
order starting at So, if initially S = SQ, and at each iteration a node that sees the current set
by the largest amount is added.

Greedy Rounded Capacity Heuristic. Let So be a set such that x(8 (So)) = 2. For
example, SQ could be just a node or the set of nodes of a path of edges with weight equal to 1
having maximal length. Grow S starting from So until it reaches VQ by max-back order. At
each step check if the corresponding rounded capacity constraint is violated. Note that, due
to the degree equations, it is easy to keep track of Jc(5(S)) just by knowing by how much
the entering node v sees S \ {v}. Repeat such a procedure for all possible choices of SQ.

In Augerat et al. [5], a tabu search procedure based on the previous idea is given and
is shown to give good results.

Ralphs et al. [39] suggested another approach when the previous greedy heuristic
fails. First, they work on the modified problem in which the depot is replaced by a set
D of K nodes as described earlier. They try to decompose the solution x into a convex
combination of Hamiltonian cycles. We will not go into the details of how this can be done.
If the decomposition succeeds, then they look at all the Hamiltonian cycles of that convex

3.4. Separation Procedures 73

Figure 3.4. An example of fractional solution.

Figure 3.5. The two solutions of the convex combination.

combination and check whether one of the paths between two consecutive visits to D yields
a set S such that the corresponding rounded capacity constraint is violated. Note that if we
use such a sophisticated separation algorithm, it may also be worth the effort to check the bin
packing value of these sets. The authors report success in this approach. Our experience is
that when we encountered such a convex combination, we rarely found a violated capacity
inequality. The example of Figure 3.4, to which we will come back later, is taken from
a fractional solution toE030-03g (also known as ei!30) (see section 3.6); the edges e
in solid lines have xe — 1, and those in dotted lines have xe — 0.5. The capacity of the
vehicles is C = 4500 and K = 3. The solution is a convex combination of the two 3-routes
displayed in Figure 3.5, each with coefficient 0.5. It is easy to check that none of the sets

74 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

of nodes of each route violates a capacity constraint in the fractional solution x since only
one route, in each solution, goes over capacity, but it has an jt-coboundary of 4.

Heuristic for the Weak Generalized Capacity Constraints. This heuristic starts
with a partition of VQ into (hopefully maximal) sets of *-coboundary equal to 2. If we have
shrunk (recursively) each path of edges with weight equal to 1 to a single node, we can start
with a partition where each set is a node of the shrunken graph (although there may still be
sets of more than one node having coboundary of weight 2). Note that finding a partition
into maximal sets of coboundary of weight 2 can be done in polynomial time, since finding
all sets of minimum coboundary in an undirected graph is polynomial (see Karzanov and
Timofeev [22]), but the previously described partition is in general good enough to start our
heuristic. At each step of the procedure we check whether the current partition violates the
generalized capacity constraint. This amounts to solving a bin packing problem, which, for
the size of instances we are dealing with, can be done in a moderate amount of time.

If the check fails, we merge the two sets 5,- and Sj of the partition that see each other
by the largest amount, i.e., such thati(5'(: Sj) = maxrvS x(Sr : Ss).

Going back to the example of Figure 3.4, as shown in Figure 3.6, the initial partition
yields a violated weak generalized capacity constraint. The partition is given by the circled
sets. The capacity of the vehicles is C = 4500 and K = 3. The demands of the sets of the
partition are 3175, 3700, 1500, 300, 150, and 3925, and all have a *-coboundary value of 2.

Figure 3.6. An example of violated generalized capacity constraint.

3.5. Branching Strategies 75

The bin packing value is 4 since the item of size 1500 cannot fit with the first two or with
the last one.

Note that the nodes in the set Sc, do not play a significant role in this inequality. In
fact there is also a framed capacity constraint violated by the same amount. It is defined by
the handle H = V \ (S6 U {0}) and the two sets Si and S2. We have x (8 (H)) = 4, but if
only two vehicles serve //, then S\ and £2 cannot be served each by a single vehicle, as is
currently the case since x(8(S\)) = ^(6(^2)) = 2, because then none of these vehicles can
serve the node with demand 1500.

3.4.3 STSP Constraints

Naddef and Thienel [33, 34] give separation routines for the STSP that can very easily be
adapted to the CVRP. Moreover, these routines can easily be adapted to take into account
the Laporte-Nobert conditions (3.13). The computational results given in this paper are
done with an earlier version of these routines developed by Clochard and Naddef [11].

3.5 Branching Strategies

We devote a special section to branching since it is a critical component of any branch-and-
cut implementation.

As described in section 3.2, there are several ways to perform a branching. The first
is to choose an edge e* for which the corresponding variable is fractional in the current LP
optimal solution and split the set of solutions into those that use the edge (xe* = 1) and
those that do not (xe* = 0) (assuming, of course, that xe* can take only these two values).
We call this method edge or variable branching.

A crucial problem is to choose the variable on which such a branching should be
performed. For the case of STSP, a general rule, proposed for the first time by Padberg and
Rinaldi [36], is to choose a variable xe* whose value falls into a small interval centered at
0.5 and, in case this happens for more variables, to choose the one among them with largest
cost. Note that the branching on variables is very asymmetric in the sense that setting a
variable to 1 amounts to choosing one of the n + K edges of a K -route, while setting a
variable to 0 corresponds to deciding that one out of O(n2) edges is not in a A^-route. This
has made some researchers think that it could be a better choice to select a variable with
a higher fractional value, say, 0.75. Although some authors report no success with such a
choice for the STSP, we have tried it in the case of the CVRP.

Some researchers have proposed to choose a variable such that, if set to 1, it would
extend an existing path of edges already set to 1. Among all possible choices, the one that
leads to a path of largest total demand should be preferred. The idea behind this strategy
is that it implies many other variables to be set to 0: those associated to the edges incident
with an internal node of the path and those incident with the extremities of the path and with
a node whose demand is not compatible with the total demand of the path. The asymmetry
problem is now even more evident and therefore this does not seem to be a good choice
to us.

Applegate et al. [1] suggested choosing a candidate set of variables for branching and
selecting the best among them by LP testing, i.e., by solving both linear programs induced

76 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

by the two possible values of the variable. The best variable is then chosen as the one for
which the minimum of the two objective function values is the largest.

To give an example of how the different strategies behave for the CVRP, we report
on some computational tests performed on 15 instances chosen from the literature, using
the branch-and-cut code developed by Augerat et al. [6] with a depth first search procedure
and limiting the depth of the search tree to 30. Because the behavior of the branch-and-cut
algorithm depends on so many implementation details, as has been observed, and because
of the small number of experiments, the results have to be taken with some caution.

As a first experiment, three possible strategies were tested for branching variable
selection:

(Al) choice of the variable with largest cost among those with value close to 0.5,

(A2) choice of the variable with largest cost among those with value close to 0.75,
and

(A3) the best in an LP test performed on 10 variables of values between 0.45 and
0.65.

We give the number of problems solved, total times (in hours :minutes), and the number
of times the strategy led to a smaller search tree. Unfortunately, the unsolved problems bias
the times since, contrary to what one may expect, because of the depth first search strategy
and our limit of the tree depth, these take less time than the others. See Table 3.1.

Clochard and Naddef [11] proposed, for the first time in branch-and-cut, to use an
alternative branching strategy, which we will call branching on an inequality. It was imple-
mented for the STSP using inequalities dealing with the coboundaries of sets. Any closed
walk must use a positive even number of edges of any coboundary. Let S be a node set such
that x(8(S)) <=& 2t + I . Then we can decompose the problem into two subproblems: one
where x(8(S)) < 2t holds and one where x(S(S)) >2t + 2 holds. They report significant
improvements in difficult STSP instances over the classical variable branching. For exam-
ple, Naddef and Thienel [34] get an improvement by a factor of 3 in solving the difficult
t s2 2 5 instance of the TSPLIB library collected by Reinelt [40].

Branching on inequalities was used for the first time in Augerat [4] and Augerat et
al. [6] for the CVRP. In this case the most interesting situation happens when there is a
node set S for which x(S(S)) & 3. As in the case of branching on variables, there is an
imbalance between the side for which we impose x (8 (S)) =2 and the side where we impose
x(8(S)) > 4. Imposing that all the clients of set S are served by the same vehicle amounts
to considering S as a unique client with demand equal to the sum of the demands in S. If
its total demand is high enough, then one of the ^-routes is almost fixed, and therefore this
side of the search tree will be solved faster than the other side.

Table 3.1.

Strategy Solved instances Time #best
Al 13 24:30 0
A2 12 18:40 0
A3 15 14:00 15

3.5. Branching Strategies 77

The computational results of this section are taken again from Augerat [4], where six
strategies were tested:

(Bl) Select S for which x (S (S)) is the closest to 3.0.

(B2) Select S for which x (8 (S)) is the closest to 2.85.

(B3) Select S for which x (S (S)) is the closest to 3.15.

(B4) Select S for which 2.75 < x (8 (S)) < 3 and d(S) maximum.

(B5) Select S for which 2.75 < x(8(S)) < 3 and the distance from S to depot is
maximum (ties are split by total demand); by distance we mean the sum of the
distances to the depot of the two nodes of S that are the closest to it.

(B6) Select S for which 2.75 < x (8 (S)) < 3 and contains the largest number of
supernodes; a supernode is a set that has been identified as having in the current
solution a coboundary of weight 2, for example, the nodes of a maximal path
of edges of weight 1, or the node sets the coboundary of which have been set
to 2 in previous branchings.

The seventh parameter in the choice of set S, namely, its cardinality, would have been
worth testing. This parameter was not considered to keep the selection procedure as simple
as possible. The cardinality of S might be important because the smaller the S, the easier
should be the subproblem where x (8 (S)) > 4.

The sets S are built by the same procedure that is used to heuristically find violated
capacity constraints, as described in the previous section. The results are reported in Ta-
ble 3.2.

Note that several strategies may have given trees of the same sizes for the same
instance; for this reason the entries of the last column of the table do not add up to 15.

It is clear from these results that because of the asymmetry issue mentioned earlier,
it is better to choose a set of coboundary strictly less than 3. It is also evident that the last
three strategies are the clear winners.

Another experiment considered if it is worthwhile spending time on looking for a
good branching set by LP testing. The selection was done by LP testing from sets with
coboundary weight falling into three intervals. The results are summarized in Table 3.3.

In a final experiment, selecting was done by LP testing and according to three criteria:
edge branching, branching on inequalities, and a mix of the two. Edges were selected from
a set made of the one with value closest to 0.75 and the 10 with value closest to 0.5. Sets

Table 3.2.

Strategy
Bl
B2
B3
B4
B5
B6

Solved instances
14
13
13
14
13
13

Time
14:555
26:10
26:25
5:40
5:30
5:25

#best
7
1
1
4
3
2

78 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

Table 3.3.

Condition
2.50 < S(S) < 2.85
2.75 < 8(S) < 3.00
2.85 < 8(S) < 3.10

Solved instances
14
14
14

Time
17:00
5:50

18:00

Table 3.4.

Strategy
Test on edges
Test on sets
Test on edges+sets

Time
14:00
4:57
5:51

best Average BC* nodes
4
10
6

76
50
35

*Branch-and-cut.

were selected considering one representative from those satisfying each of the following
three conditions: x(8(S)) closest to 3, 2.85, and 3.15, respectively. Finally, three more sets
S were selected among those with jc(5(5)) falling into the interval [2.75, 3]: the one with
the largest total demand, the one with the largest cardinality, and the one with maximum
distance from the depot. Table 3.4 summarizes the results.

It seems clear that the two last strategies in the table are the best. More extensive
computational experiments have shown that the extra time spent by LP testing in choosing
proper branchings almost always pays off: it may cut by a factor of more than 2 the total time
to solve harder instances, although it may double the time for the very easy ones. However,
the latter situation does not affect the evaluation because we believe that a reasonable measure
of performance for an exact algorithm should be "How many instances from a test set can
we solve with a limited time for each?"

To conclude, we list a set of rules for the selection of S, derived by analyzing the
above experimental results:

2.75 < Jt(5(S)) < 3.0 and d(S) > C/2.

S is "far" from the depot.

| S | is small (W C S with x(8(W)) set to 2 in previous branchings is counted as a
unique node).

S is contained or at least intersects a former branching set.

The idea behind these conditions is that if the set S contains a few nodes, then with
the last rule we will soon have partitioned its nodes between different vehicles. Moreover,
the assignment to the vehicles of clients that are far from the depot seems to be critical; the
second rule aims at making such an assignment as soon as possible.

3.6 Computational Results
The computational study reported here is the one of Augerat et al. [6]. It was made with
a branch-and-cut algorithm that makes use of many of the separation procedures and the
strategies described in the previous sections. Because the algorithm was developed by three

3.6. Computational Results 79

groups of researchers, its implementation was not done with the purpose of being efficient.
Rather than a state-of-the-art software, the code is a kind of experimental environment
that can easily accommodate various separation routines and algorithmic strategies with
the purpose of making comparison testing readily available. Another source of extensive
computational experimentation is Ralphs et al. [39].

The main drawback of such a code is the lack of several components that are common
to most branch-and-cut codes, like, among others, pool management and the possibility of
having only subsets of variables active in the solution of the linear programs. In addition,
the visit of the enumeration tree is done using the depth-first, which is the easiest to im-
plement but also the least effective. Last, but not least, the algorithm was implemented via
independent pieces of code communicating through files written in the mass storage. Such
an algorithmic design provided some flexibility to the developers but has, of course, a price
in terms of efficiency.

Due to these facts, the computational results and the performance indicators reported
in [6] are not to be taken as reliable evidence of the actual potential of the technique.
Nevertheless, the algorithm was able to find for the first time an optimal solution, and
it proved its optimality for two instances of 135 nodes proposed by Fisher [16]. To our
knowledge, these are still the largest instances for which a certified optimal solution has
been computed.

The computational results of Augerat et al. [6] are summarized in Tables 3.5 and 3.6.
The instances that form the test bed for the study were all taken from the literature. (Most

Table 3.5. Computational results (only for the root node) from Augerat et al. [6].

Problem
E022-04g
E023-03g
E030-03g
E033-04g
E045-04f
E045-04f (+)

E051-05e
E072-04f
E 0 7 2 - 0 4 f (+) (a)
E072-04f (+) (b)
E076-10e
E076-07S
E076-08S
E076-14S
ElOl -OSe
ElOl - lOc
E135-07f
E135-07f (+)

Upper
bound
375.
569.
534.
835.
724.
748.
521.
238.
269.241
241.974
832.
683.
735.

1032.
815.
820.

1165.
1162.96

Lower
bound
375.
569.
534.
835.
724.
723.541
517.581
235.
240.408
240.408
793.545
664.361
713.601
953.794
799.398
820.

1159.27
1159.28

Gap
0.
0.
0.
0.
0.
0.
0.66
0.84
0.65
0.65
4.85
2.81
3.00
8.20
1.95
0.
0.24
0.32

#Cuts
100
43

243
389
168
173
737
443
300
300

1949
1283
1686
2157
1749
1706
4481
3397

#LPs
21
9

50
27
24
28
62
69
50
50

111
77

101
72

111
48

136
138

CPU*
2
1

17
8
7

19
31
82

208
29

761
236
351
466
494
472

1428
1098

* Seconds in a Sun Spare 20.
(+)Real distances with three decimal digits.

80 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

Table 3.6. Computational results from Augerat et al. [6].

Problem
E051-05e
E072-04f
E 0 7 2 - 0 4 f (+) (a)
E 0 7 2 - 0 4 f (+) (b)
E135-07f
E135-07f(+)

Optimum
521.
237.
241.973
241.973

1162.
1162.95

#Cuts
908
603

1670
484

13482
10450

#LPs
129
390

1862
280

3086
4833

B&C nodes
7

51
239
31

423
633

CPU*
54

180
4622

98
20570
15774

* Seconds in a Sun Spare 20.
(+)Real distances with three decimal digits.

are available from the electronic library TSPLIB of Reinelt [40].) The naming convention
for the instances is that explained in section 1.4.

All these instances are of Euclidean type. As is now customary, for the computation
of the distances the convention of TSPLIB is adopted, i.e., the real Euclidean distance
between any pair of nodes is rounded to the nearest integer. To compare the results with
those of Fisher [16], an exception is made for the f instances marked with (+), which are
obtained from the corresponding ones by taking only the first three decimal digits of the
real Euclidean distances.

In Table 3.5 we summarize the results concerning the computation at the end of the
root node of the enumeration tree. The values of the column labeled Upper bound are taken
from the literature, while those of the column Lower bound are value obtained after adding
the cutting planes. Each value of the column Gap is the ratio of the difference between the
optimal value and the lower bound over the lower bound. For the cases were the optimal
value is not computed, the upper bound is used instead. The columns labeled # Cuts, # LPs,
and CPU give the total number of valid inequalities generated, the number of LP calls, and
the total CPU time, respectively. Seven instances were solved to optimality at the root node.

Table 3.6 summarizes the results for the five instances that were solved to optimality
by performing some enumeration steps. The columns of the table report the optimal value,
the total number of cuts generated, the total number of LP iterations, and the total CPU
time, respectively. The last four values do not include those concerning the root node that
are reported in Table 3.5.

For the instances with 76 and 101 nodes, the algorithm was not able to terminate the
computation in a reasonable amount of time.

In a further computational study, Ralphs et al. [39] (see also [38] and [23]) imple-
mented a parallel branch-and-cut algorithm that exploits the ideas mentioned in section 3.3.4.
Such an algorithm was able to find an optimal solution of value 815 (and prove its optimality)
for the instances E0101-08e, improving by two units the best known solution. Moreover,
for the first time it proved the optimality of the best known solution forE076-08s and im-
proved the best known solution for E 0 7 6 - 0 7 s by one unit, providing a proof of optimality.
Table 3.7 summarizes these results.

Another, more recent, study was reported by Blasum and Hochstattler [8], who de-
veloped an algorithm using the same branching strategy and separation procedures as in
[6] with some modifications. For example, they developed a heuristic procedure for sepa-
rating the rounded capacity inequalities based on their algorithm for the separation of the

3.7. Conclusions 81

Table 3.7. Computational results from Ralphs et al. [39].

Problem Optimal value
E076-07S
E076-08S
ElOl -OSe

682
735
815

B&C nodes
115991
484245
244968

processors CPU*
9
60
80

278613
1927422
1900671

"Seconds in a network of IBM RS/6000 (from 120 to 135 MHz).

multistar inequalities mentioned in section 3.4. However, they used the state-of-the-art
branch-and-cut framework ABACUS, developed by lunger and Thienel [21]. The results
are comparable with those of Tables 3.5 and 3.6, taking into account, of course, the dif-
ferences in computer speed and LP solver efficiency. It is remarkable, however, that the
algorithm was able to solve two difficult 76-node problems to optimality with computing
times considerably shorter than those reported in Table 3.7. The instances E076-07s and
E076-08s where solved with 6717 and 6259 nodes, respectively, in 27,550 and 35,466
seconds, respectively, on a 400 MHz Sun Ultrasparc II. No proof of optimality is reported
for the third difficult problem of Table 3.7.

3.7 Conclusions

Using branch-and-cut to solve the CVRP is at the beginning of its development. We believe
that a better understanding of the underlying poly tope and further effort in designing efficient
separation routines should yield much better computational results than those reported here.
Various groups around the world are working on the subject, and new results should appear
very soon. In particular, other formulations have been studied that yield polytopes that
are different from the one studied in this chapter. See, for example, the two-commodity
network flow formulation studied by Baldacci, Mingozzi, and Hadjiconstantinou [7]. This
formulation, described in Chapter 1, does not yet provide better results than those reported
here.

Some variants of the vehicle routing can appear in the literature as particular cases
of more general problems. For example, the unit demand (dj = 1 for all i) CVRP can be
seen as a particular case of the Black-and-White TSP of Ghiani, Laporte, and Semet [18];
therefore, so can the CVRP in which we split the client demands, since in that case every
client with demand dt can be replaced by df clients with unit demand, the distance between
the copies of the same client being 0. A polyhedral study of the split demand CVRP was
carried out by Martinez, Mota, and Rinaldi [28]. Finally, for further material on the linear
relaxation of CVRP, see the survey of Laporte [24].

Bibliography

[1] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. Solving traveling salesman prob-
lems. 15th International Symposium on Mathematical Programming, University of
Michigan, Ann Arbor, MI, 1994.

82 Bibliography

[2] J.R. Araque. Contributions to the polyhedral approach to vehicle routing. Discussion
Paper 90-74, CORE, University of Louvain La Neuve, Belgium, 1990.

[3] J.R. Araque, L. Hall, and T.L. Magnanti. Capacitated trees, capacitated routing and
associated polyhedra. Discussion Paper 90-61, CORE, University of Louvain La
Neuve, Belgium, 1990.

[4] P. Augerat. Approche Polyedrale du Probleme de Tournees de Vehicules. Ph.D. thesis,
Institut National Polytechnique de Grenoble, France, 1995.

[5] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, and D. Naddef. Separating
capacity inequalities in the CVRP using tabu search. European Journal of Operational
Research, 106:546-557, 1999.

[6] P. Augerat, J.M. Belenguer, E. Benavent, A. Corberan, D. Naddef, and G. Rinaldi.
Computational results with a branch and cut code for the capacitated vehicle routing
problem. Technical Report RR 949-M, Universite Joseph Fourier, Grenoble, France,
1995.

[7] R. Baldacci, E. Hadjiconstantinou and A. Mingozzi. An exact algorithm for the capac-
itated vehicle routing problem based on a two-commodity network flow formulation.
Operations Research to appear, 2004.

[8] U. Blasum and W. Hochstattler. Application of the branch and cut method to the
vehicle routing problem. Technical Report ZPR2000-386, ZPR, Universitat zu Koln,
2000. Available at http://www.zaik.uni-koeln.de/paper.

[9] A. Caprara and M. Fischetti. Branch-and-cut algorithms. In M. Dell'Amico, F. Maffi-
oli, and S. Martello, editors, Anno fated Bibliographies in Combinatorial Optimization,
Wiley, New York, 1997, pp. 45-64.

[10] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[11] J.-M. Clochard and D. Naddef. Use of path inequalities for TSP. In G. Rinaldi and
L. Wolsey, editors, Proceedings of the Third Workshop on Integer Programming and
Combinatorial Optimization, CORE, University of Louvain La Neuve, Belgium, 1993,
pp. 291-312.

[12] G. Cornuejols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a graph
and some related integer polyhedra. Mathematical Programming, 33:1-27, 1985.

[13] G. Cornuejols and F. Harche. Polyhedral study of the capacitated vehicle routing
problem. Mathematical Programming, 60:21-52, 1993.

[14] A. De Vitis, F. Harche and G. Rinaldi. Generalized capacity inequalities for vehicle
routing problems. Manuscript, 2000.

[15] A. De Vitis, M. Queyranne and G. Rinaldi. Separating the capacity inequalities of the
vehicle routing problem in polynomial time. Personal communication, 2000.

http://www.zaik.uni-koeln.de/paper

Bibliography 83

[16] M.L. Fisher. Optimal solution of vehicle routing problems using minimum £-trees.
Operations Research, 42:626-642, 1994.

[17] B. Fleischmann. A new class of cutting planes for the symmetric traveling salesman
problem. Mathematical Programming, 40:225-246, 1988.

[18] G. Ghiani, G. Laporte, and F. Semet. Black and white traveling salesman problem.
Technical Report 99-47, CRT, Montreal, Canada, 1999.

[19] M. Jtinger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M.O.
Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network Models,
Handbooks in Operations Research and Management Science 7, North-Holland, Am-
sterdam, 1995, pp. 225-330.

[20] M. Jtinger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane
algorithms in combinatorial optimization. In W. Cook, L. Lovasz, and P. Seymour,
editors, Combinatorial Optimization, D1MACS Series in Discrete Mathematics and
Theoretical Computer Science, AMS, Providence, RI, 1995, pp. 111-152.

[21] M. Jtinger and S. Thienel. Introduction to ABACUS—A Branch-And-CUt System.
Operations Research Letters, 22:83-95, 1998.

[22] A.V. Karzanov and E.A. Timofeev. Efficient algorithm for finding all minimal edge
cuts of a nonoriented graph. Kibernetika, 2:8-12, 1986 (in Russian). Translated in
Cybernetics, 22:156-162, 1986.

[23] L. Kopman. A new generic separation routine and its application in a branch and cut
algorithm for the capacitated vehicle routing problem. Ph.D. thesis, Cornell University
Ithaca, NY, 1999.

[24] G. Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59:345-358, 1992.

[25] G. Laporte and Y. Nobert. Comb inequalities for the vehicle routing problem. Methods
of Operations Research, 51:271 -276, 1984.

[26] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. Wiley, Chichester, UK, 1990.

[27] S. Martello and P. Toth. Lower bounds and reduction procedures for the bin packing
problem. Discrete Applied Mathematics, 28:59-70, 1990.

[28] M.C. Martinez, E. Mota, and G. Rinaldi. The split delivery vehicle routing polyhedron
New families of facet defining inequalities. Preprint, Departamento de Estadistica e
I.O., Universitat de Valencia, Spain, 1999.

[29] T. McCormick, M.R. Rao and G. Rinaldi. Easy and difficult objective functions for
max cut. Mathematical Programming, 94:459-466, 2003.

[30] D. Naddef and Y. Pochet. The traveling salesman polytope revisited. Mathematics of
Operations Research, 26:700-722, 2001.

84 Bibliography

[31] D. Naddef and G. Rinaldi. The symmetric traveling salesman poly tope and its graphical
relaxation: Composition of valid inequalities. Mathematical Programming, 51:359-
400, 1991.

[32] D. Naddef and G. Rinaldi. The graphical relaxation: A new framework for the sym-
metric traveling salesman polytope. Mathematical Programming, 58:53-88, 1993.

[33] D. Naddef and S. Thienel. Efficient separation routines for the symmetric traveling
salesman problem I: general tools and comb separation. Mathematical Programming,
92:237-255, 2002.

[34] D. Naddef and S. Thienel. Efficient separation routines for the symmetric traveling
salesman problem II: separating multi-handle inequalities. Mathematical Program-
ming, 92:257-285, 2002.

[35] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,
Chichester, UK, 1988.

[36] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review, 33:60-100, 1991.

[37] Y. Pochet. New valid inequalities for the vehicle routing problem. In preparation.

[38] T.K. Ralphs. Parallel branch and cut for vehicle routing. Ph.D. thesis, Cornell Uni-
versity, Ithaca, NY, 1995.

[39] T.K. Ralphs, L. Kopman, W.R. Pulleyblank, and L.E. Trotter. A branch and cut
algorithm for the vehicle routing problem (preliminary draft). Available at ftp://
branchandcut.org/pub/reference/vrp.ps.

[40] G. Reinelt. A traveling salesman problem library. ORSA Journal on Computing,
3:376-384, 1991.

[41] S. Thienel. ABACUS: A Branch and Cut System. Ph.D. thesis, Universitat zu Koln,
Germany, 1995.

Chapter 4

Set-Covering-Based
Algorithms for the
Capacitated VRP

Julien Bramel
David Simchi-Levi

4.1 Introduction
In this chapter we present several set-covering-based approaches for solving the Capacitated
VRP (CVRP) and provide an analysis of the effectiveness of the approach. Throughout the
chapter we consider the symmetric case, the CVRP, although the presented methods may
be applied to the ACVRP as well. For this purpose, let the index set of the n customers be
denoted V = (I, 2 , . . . , n}. We let 0 denote the depot and V° = V U {0} the node set of
the corresponding complete graph. Associated with customer i e V is the demand d/ > 0,
which represents the load that must be picked up at customer f s location. We let C denote
the vehicle capacity, and we assume there are K vehicles available to perform the delivery.
Clearly, feasibility requires that d{ < C for each i e V. Let ?/,- denote the length of edge
(/, j) with z, j e V°. It is assumed that the distances f,; satisfy the triangle inequality;
otherwise, one can add a large constant cost to all nodes (or to all edges).

A classical method, first suggested by Balinski and Quandt [3], for solving the CVRP
is based on formulating the problem as a set-covering problem. The idea is as follows.
Enumerate all feasible routes, where a feasible route is one that starts and ends at the depot
and picks up a total load not exceeding C. Let the index set of all feasible routes be
7£ = (1, 2, . . . , / ?} . Let cr be the cost (e.g., length) of route r, and let Sr c V denote those
customers appearing in route r for all r e 7£. Define

for each customer i e V and each route r e 7£. Also, for every r e 7£, let

85

if customer i is served in route r,
other

if customer i is served in route r,
other

1
0

1
0

86 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

In the set-covering formulation of the CVRP, the objective is to select a minimum-cost set
of feasible routes such that each customer is included in some route. It is

subject to

Constraints (4.1) require that each customer appear in at least one route, while constraints
(4.2) impose that at most K route be used. Observe that we have written constraints (4.1)
as inequality constraints instead of equality constraints. The formulation with equality
constraints is equivalent since we have assumed that the distance matrix [tij} satisfies the
triangle inequality and therefore each customer will be visited exactly once in the optimal
solution. The formulation with inequality constraints will be used here since it turns out to
be easier to work with for implementation.

This mathematical programming formulation was used successfully by Cullen, Jarvis,
and Ratliff [13] to design heuristic methods for the VRP. Exact algorithms based on this
method were developed by Agarwal, Mathur, and Salkin [1] and more recently by Bixby [5]
and Hadjiconstantinou, Christofides, and Mingozzi [18]. The method is quite general and
can be applied to a large number of problems. We list only a few examples here. For the VRP
with time windows and no capacity constraint, Desrosiers, Soumis, and Desrochers [16]
considered this same model and solved a number of problems to optimality. For the CVRP
with time windows (VRPTW) (i.e., with a capacity constraint), Desrochers, Desrosiers, and
Solomon [14] devise a branch-and-bound algorithm to solve a number of Solomon's [26]
original time-window constrained problems to optimality or near optimality. In the context
of the multidepot vehicle scheduling problem, Ribeiro and Soumis [24] successfully used
this approach. Similar methods have also been used to solve crew scheduling problems;
see, for instance, Hoffman and Padberg [21]. Finally, the survey of Desrosiers et al. [15] is
an excellent source for column generation-based approaches to crew scheduling problems,
particularly in urban transit systems and for airline companies.

The general algorithmic form common to the set-covering-based methods described
in this chapter is as follows. In the first step, the linear programming relaxation of the
set-covering problem (obtained by removing the integrality constraint on the y variables)
is solved using the method of column generation (without enumerating all possible routes).
The resulting fractional optimal solution value is then a lower bound on the value of the
optimal integer solution. Then, from the set of columns generated so far (which may only be
a small part of K), an integer solution is sought using, e.g., a cutting plane or branch-and-cut
approach. This solution is not guaranteed to be the optimal integer solution over all columns
of 71, but it is likely to be close. If a branch-and-price approach is used, additional columns

4.2. Solving the Linear Programming Relaxation of P 87

are generated at each node of the branch-and-bound tree, resulting in the optimal integer
solution over all columns in Tl.

In the next section, we describe the column generation problem. In section 4.3, we
review a number of methods that have been developed to solve the linear programming
relaxation of problem P, specifically, the column generation problem. In section 4.4, we
describe some of the methods that can be used to find an optimal or near-optimal integer
solution to P. In section 4.5, we present some of the computational results on the methods
we have described. Finally, in section 4.6, we provide analyses that shed some light on why
a method of this type can be effective.

4.2 Solving the Linear Programming Relaxation of P

To solve the linear programming relaxation of problem P without enumerating all the routes,
we can use the column generation technique. A detailed explanation of this method is given
below, but the general idea is as follows. A portion of all possible routes is enumerated,
and the linear relaxation with this partial route set is solved. The solution to this linear
program is then used to determine if there are any routes not included in the formulation
that can further reduce the objective function value. This is the column generation step.
Using the values of the optimal dual variables (with respect to the partial route set), we solve
a simpler optimization problem where we identify if there is a route that should be included
in the formulation. Then the linear relaxation of this expanded problem is resolved. This is
continued until no additional routes are found that can reduce the objective function value.
In that case, we can show that an optimal solution to the linear program is found, one that
is optimal for the complete route set.

Specifically, we first enumerate a partial set of routes 'R! c 7£ and formulate the
corresponding linear relaxation of the set-covering problem with respect to this set:

subject to

Let y be the optimal solution to problem P', and let TT = {n\, 7^2, ..., fcn] be the corre-
sponding optimal dual variables associated with constraints (4.3). Let 9 be the optimal dual
variable associate with constraint (4.4). We would like to know whether y (or, equivalently,
(jr, 0)) is optimal for the linear relaxation of problem P (respectively, the dual of the lin-

88 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

ear relaxation of problem P). To answer this question, observe that the dual of the linear
relaxation of problem P is

subject to

Clearly, if (ft, 0) satisfy every constraint in (4.5), then it is optimal for problem PD
and therefore y is optimal for the linear programming relaxation of problem P. How can
we check whether (ft, 0) satisfies every constraint in problem P/>? Observe that the vector
(ft, 0) is not feasible in problem PD if we can identify a single constraint, r, such that

Consequently, if we can find a column r minimizing the quantity cr — ̂ iev oeirfti and this
quantity is less than —0, then a violated constraint is found. In that case the current vector
(ft, 0) is not optimal for problem P/>. The corresponding column just found can be added
to the formulation of problem P, which is solved again. The process repeats itself until no
violated constraint (negative reduced cost column) is found; in this case we have found the
optimal solution to the linear relaxation of problem P (the vector y) and the optimal solution
to problem PD (the vector (ft, 0)).

The column-generation problem is then to identify a feasible route r e 7?. that satisfies
(4.6). Define cr to be the reduced cost of column r, i.e.,
r e 7£. Also define d(S)
generation problem, which is

It is not clear how this column-generation problem, CG, should be solved. Problem
CG is itself NP-hard since, even given Sr, evaluating cr (or cr} requires solving the Traveling
Salesman Problem (TSP) with respect to vertex set Sr U {0}. We consider several approaches
to this subproblem in the next section. This includes the work of Agarwal, Mathur, and Salkin
[1], Bixby, Coullard, and Simchi-Levi [6], Bixby [5], and Hadjiconstantinou, Christofides,
and Mingozzi [18] on the CVRP, and the related work of Desrochers, Desrosiers, and
Solomon [14] on the VRPTW.

In summary, the column-generation algorithm for solving the linear relaxation of
problem P can be described as follows:

Column-Generation Algorithm
Step 1. Generate an initial set of columns K'.
Step 2. Solve problem P' and get optimal primal variables, y, and optimal

dual variables, (ft, 0).

For each

for any The task is then to salve the column

4.3. Set-Covering-Based Solution Methods 89

Step 3. Solve problem CG, or identify routes r €*R satisfying cr < 0.
Step 4. For every r e 7£ with cr < 0 add the column r to 7\!/ and go to Step 2.
Step 5. If no routes r have cr < 0, i.e., cmjn > 0, then stop.

The procedure produces a vector y which is the optimal solution to the linear relaxation of
problem P. The objective function value Ylren1 c^r is then a lower bound on the optimal
solution value to the CVRP, i.e., the optimal integer solution value to P.

We note here a number of implementation tricks that can improve the convergence
of the column generation algorithm. The column generation step (Step 3) usually turns out
to be the most time consuming. To reduce the computation time of this step, the following
additional features can be implemented. First, it is important to generate a good set of
initial routes in Step 1. To do this, a large number of quick heuristics for the CVRP can be
used. In fact, if a good dual solution is available, then it can be used to help generate routes
with low reduced cost (with respect to this dual solution). Several methods for estimating
good dual variables were given by Agarwal, Mathur, and Salkin [1] and Hadjiconstantinou,
Christofides, and Mingozzi [18]. Second, it is important that in each iteration of Step 3
a number of routes with negative reduced cost be generated, not just one. In addition, it
is particularly helpful to generate sets of new columns that are disjoint (as in an integer
solution).

4.3 Set-Covering-Based Solution Methods

We describe four methods that have been developed to solve, or nearly solve, the linear
programming relaxation P' of the set-covering problem. The first three deal specifically
with solving CG or generating a lower bound on cm-m, the minimal reduced cost of a feasible
route. The last method diverges from these in that it attempts to solve directly the dual
PD using a branch-and-bound method. In section 4.4 we consider several approaches for
solving the integer program. We then give computational results on all the methods we have
described.

4.3.1 Branch-and-Bound Algorithm for Problem CG

Agarwal, Mathur, and Salkin [1] devised a branch-and-bound algorithm to solve problem
CG. This branch-and-bound algorithm is based on developing a lower bound on cr for any
route r e 7£.

The branch-and-bound approach constructs a route of minimum reduced cost that
satisfies the constraint on the vehicle capacity. Branching is based on selecting a customer
i € V and considering the two subproblems: find a minimum reduced cost route that
includes i and find a minimum reduced cost route that excludes i. For this purpose, the
method uses the following branching variables:

for each / e V. At each node of the branch-and-bound tree, there are three sets of interest.
Let S\ c V denote those customers that must be included in the route (i.e., those customers

1

0

if customer i si ain the tooute,
otherwise

90 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

i e V for whom jc(has been set to 1). The set SQ c V consists of those customers that
cannot be included in the route (i.e., those customers i for whom jc/ has been set to 0). The
set Sx = V \ (So U Si) consists of those customers that have not yet been branched on.

At each node of the branch-and-bound tree, a lower bound on cmjn is calculated. For
this purpose, let c(S) denote the length of an optimal traveling salesman tour through set
S U {0} with S c V. This is a lower bound on the minimal reduced cost of a feasible route.
Let S denote the route with minimal reduced cost in this part of the branch-and-bound tree.
Then Si c S and S c Si U Sx . To construct the bound, for any set T c V and a customer
i $ T define qt(T) = mincer {£/,- + ̂ — tjk}. Then it is easy to see that for all T c V and

In general, if M = S \ S\ and m = \M\ then it is clear that

Therefore, given Si, So, and Sx (i.e., at a particular node of the branch and bound tree), if
we know that at most m additional customers can be added to the route, then

In addition, it is simple to get an estimate of the value of m based on the demand sizes and
the remaining vehicle capacity C = C — X^e5 ^« • This can be done by ranking the demand
sizes in Sx in increasing order and finding the largest value of k such that the sum of the first
k values does not exceed C. Then m is set to this k. Define /?,, for each i e Sx, as follows:

Then a lower bound on cmjn is given by

subject to

This last problem is a knapsack problem for which effective, although nonpolynomial,
algorithms exist (see the excellent book by Martello and Toth [22]). In addition, since only
a lower bound on cmin is sought, it is not necessary to solve this knapsack problem as an
integer program. Since the linear program is solved trivially, this is often a better approach
in practice. In addition, rather than solving a TSP at each node (to evaluate c(Si)), a lower
bound can be computed based on (4.7).

4.3. Set-Covering-Based Solution Methods 91

To make the algorithm run more efficiently, Agarwal, Mathur, and Salkin implemented
a number of additional features. To avoid excessive fluctuations of the value of the dual
variables from iteration to iteration, Agarwal, Mathur, and Salkin imposed an additional set
of constraints on the dual variables. They add to problem P/> the constraints

for some constant t. The value of t can be increased gradually toward the end of the
algorithm to avoid any of these constraints being tight in the final linear programming
solution. According to the authors, this technique substantially increased the convergence
rate.

Similar approaches to (computationally) stabilize column generation procedures were
applied by Du Merle et al. [17]. There, stronger primal and dual components were used,
in particular, the perturbation of the right-hand side together with the introduction of the
available or expected dual information. See Du Merle et al. [17] for details.

4.3.2 Polyhedral Branch-and-Bound Algorithm

Bixby, Coullard, and Simchi-Levi [6] developed a cutting plane algorithm for solving prob-
lem CG. To present their approach we first define a few terms. Let E denote the set of edges,
and let (/, y) denote a particular edge. For any set of nodes S c V°, let S(S) denote those
edges of E that have exactly one end in S. Below set TTQ = 0- They consider the following
integer programming formulation of problem CG:

subject to

where jc,-/ is 1 if edge (/, j) is in the tour and 0 otherwise, y, is 1 if node i is in the tour and
0 otherwise. Note that, because of (4.11), routes with only one customer are not allowed.

Constraints (4.8) are the assignment constraints, requiring that for every node in the
tour there are exactly two adjacent edges. Constraints (4.9) are the subtour elimination
constraints, which ensure that for all sets S, such that both S and V° \ S contain nodes in
the tour, there have to be at least two edges in 8(S) included in the tour. So, (4.8), (4.9),
and (4.13) along with the integrality conditions in (4.11) define the set of subtours or cycles
through the depot node.

92 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

To solve this integer program, Bixby, Coullard, and Simchi-Levi [6] introduced a
number of cuts, including the subtour elimination constraints (4.9) and the two-matching
constraints:

where (H, V°\ H) is a partition of the nodes V° and T is a node disjoint subset of the edges
in 8(H) with \T\ > 3 and odd. These are exactly the same as the two-matching constraints
for the TSP.

Another useful set of cuts for the subtour poly tope are the cocycle or cone inequalities,
as in Seymour [25]. (See also Bauer [4] on facets of the cycle polytope.) They can be stated
as follows:

Finally, the authors used a type of cutting plane for the knapsack polytope based
on minimal covers. A minimal cover is a subset S C V for which X^es^ > ^ an(^
5^jes\{/} ai— Cf°r aU n°desin the setS. For each such set we have the following set of
valid minimal cover constraints:

Some of these inequalities have been incorporated in a branch-and-cut algorithm. The
algorithm was tested on several instances of problem CG, arising from CVRPs, with up to
51 customers. Some of these results are reported in Table 4.2. For further details, see Bixby,
Coullard, and Simchi-Levi [6] and Bixby [5].

4.3.3 Pseudo-Polynomial Lower Bound on cmin

Desrochers, Desrosiers, and Solomon [14] devised a branch-and-bound algorithm to solve
the column-generation problem and thus the linear programming relaxation of the set-
covering model. They considered the VRPTW, but we describe here how this method can
be applied to the CVRP. They generated a lower bound on cmin using dynamic programming.
Thus each calculation of this bound requires only pseudo-polynomial time. Further details
on VRPTW may be found in Chapter 7.

To be able to solve CG using dynamic programming (with a state space of manageable
size), we modify problem P to allow routes that visit the same customer more than once. The
benefits of including this modification will be clear in a moment. Unfortunately, this method
has the disadvantage of expanding the set of feasible routes. The model, call it problem
Pm (where m stands for the "modified" formulation), is defined as follows. Enumerate all
feasible routes, satisfying the capacity constraint, that may visit the same customer a number
of times; each such visit increases the total load by the demand of that customer. Let the
number of routes (columns) be 7£m, and let cr be the total distance traveled in route r. For
each customer i e V and route r = 1, 2, . . . , 7lm, let

£,> = number of times customer i is visited in route r.

4.3. Set-Covering-Based Solution Methods 93

Also, for each r = 1, 2, . . . , 7£m, define

The CVRP can be formulated as

subject to

This is the set-covering problem solved by Desrochers, Desrosiers, and Solomon [14] in the
context of the VRPTW. Clearly, the optimal integer solution to problem Pm is the optimal
solution to the CVRP. However, the optimal solution values of the linear relaxations of
problem Pm and problem P may be different. Of course, the linear relaxation of problem
Pm provides a lower bound on the linear relaxation of problem P.

To solve the linear programming relaxation of problem Pm we use the method de-
scribed above (for solving the linear programming relaxation of problem P). We enumerate
a partial set 7l'm of routes; solve problem P'm, which is the linear relaxation of problem Pm

defined only on this partial set of routes; and use the dual variables to see whether there
exists a column not in the partial set with Y^i=\ ^>^ > cr + 0. If there exists such a
column(s), we add it (them) to the formulation and solve the resulting linear program again.
Otherwise, we have the optimal solution to the linear programming relaxation of problem

The modification we have made makes the column-generation step (the solution of
CG) computationally easier, at the cost of only generating a lower bound. This can be done
in pseudo-polynomial time using dynamic programming, as described next.

We need the following definitions. Given a path FI = {0, u\, u^, • • • , u i] , where it is
possible that HJ = « / for / ^ j, the total load of this path is defined as XlLi ^«,- That is,
the total load of the path is the sum, over all customers in Fl, of the demand of a customer
multiplied by the number of times that the customer appears in Fl. Let {c;/ : r, j e V0}
denote a general distance measure between all pairs of nodes in V°. In what follows we
use cij = tij — n/ for all /, j, e V°, where no = 0. Let fi(q) be the cost (evaluated using
a distance measure {c//}) of the least-cost path that starts at the depot and terminates at
customer / with a total load of q (this is called a g-path). This can be calculated using the
following recursion:

if route r in the optimal solutjin,
otherwise

pm.

94 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

with the initial conditions

Finally, let ff(q) = fi (q) + CIQ. Thus, ff(q) is the minimum reduced cost of a tour
that starts at the depot, visits a subset of the customers, of which customer i is the last to be
visited, and terminates at the depot with total load q. Observe that finding ff(q) for every
q, 1 < q < C, every /, i e V, requires O(n2C) calculations.

The recursion chooses the predecessor of / to be a node j ^ i. This requires repeat
visits to the same customer to be separated by at least one visit to another customer. In
fact, expanding the state space of this recursion can eliminate 2-loops: loops of the type
... r , 7, / This forces repeat visits to the same customer to be separated by visits to at
least two other customers. According to the approach proposed by Christofides, Mingozzi,
and Toth [11], this is done as follows. Let pi(q) denote the predecessor of i in the path of
cost f i (q) for i e V and 1 < q < C. Then define gi(q) as the cost of the least-cost path
from the depot to customer / e V with a total load of q and not having pi(q) as the last
customer visited before i . Then, we have (for all / e V and 1 < q < C)

and

Finally, let ff(q) = ft(q) + ci0 and gf(q) = gi(q} + ci0. Note that ft(q) < gi(q} for
all i e V and 1 < q < C. This dynamic program can lead to a stronger relaxation of the
set-covering model with little extra computational effort. For a more detailed discussion
of this recursion and methods of efficient implementation, see Christofides, Mingozzi, and
Toth [11, 12] or Desrochers, Desrosiers, and Solomon [14].

The algorithm proceeds as follows. If there exists a q, 1 < q < C, and an / e V with
ff(q] < 0, then we add the corresponding column to the set of columns in problem P'm.
If, on the other hand, ff(q) > 0 for every q and /, then the current solution is the optimal
linear programming solution to Pm .

4.3.4 Solving P/> via Dual-Ascent and Branch-and-Bound

A different approach to this same set-covering model was developed by Hadjiconstantinou,
Christofides, and Mingozzi [18]. Instead of attacking the primal problem P, they devised
a branch-and-bound algorithm to solve the dual problem PD. The problem is solved us-
ing a dynamic programming heuristic in conjunction with a Lagrangian ascent procedure.
This produces strong lower bounds on the optimal solution value of the CVRP (the primal
problem) which are used in a branch-and-bound framework.

We first describe the lower bounding procedure. Let 7£z- C TZ denote all feasible
routes that visit customer / e V. For all r e 7£, let Cr = ^ieSr d, denote the total load on
route r.

4.3. Set-Covering-Based Solution Methodsds

THEOREM 4.3.1. Let c_r denote a lower bound on route r e 7£. Then a lower bound on the
optimal solution value to the CVRP is given by

Proof. We define the following feasible dual solution (m,U2,.. .,un,v) where {w,},6v are
the dual variable associated with constraints (4.3) and u is the dual variable associated with
constraint (4.4).

For each i e V, let

and let u = 0. We show that (MI , w 2 , . . . , un,v) is feasible for PD. This is clear since, for
any route r e 7£, we have

For each i e V and each di < q < C define the set Tli(q} as those routes of 7£/ that
have total load exactly q. Then the set 7£, can be decomposed as follows:

It is clear that

If we denote c;(/ = minre-^7.(^){cr}, then the lower bound can be rewritten

4.3.4.1 Computation of Bounds

Several lower bounds (c_-) can be computed to evaluate (4.18).
The bounds calculated in section 4.3.3, namely, //(#) (evaluated using c(/ = f ; / ,

z , j € V°) for each i e V and dj < q < C can be used in (4.18) since fi(q) < cr for all

Building on the definitions of /, (q), g, (q), and /?/ (^) in section 4.3.3 (evaluated with
dj = tij for all i, j e V°) we can determine another bound. For this purpose, define ^i(q)
as the cost of the least-cost route without 2-loops, starting at the depot, passing through
customer i, and ending at the depot with total load q. Such a route is called a through
q-route. The route defining tyi(q) can be calculated as follows:

95

otherwise

96 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

Now \(fi (q) can be used as a lower bound on c(in (4.18). Formally, the lower bound LBl
is

4.3.4.2 Ascent Procedure

The lower bound LBl can be improved by observing the following. Consider each of the
n routes, one for each i e V, achieving the minimums in (4.19). Define d* so that the route
corresponding to i e V has cost ^(d*). Let this route be r*. If we superimpose these
routes, the degree of each node will be even (and at least two). Let <$/ denote the degree of
customer i with respect to route r*. Then calculate the weighted degree of node / as

If DI = 2 for all i e V, then the solution represented by U (r* is a feasible solution
to the CVRP; otherwise, we can apply the following penalty procedure to improve the
bound LBl. Let X = (A,i, A.2, . . . , A.n) denote penalties on the nodes. Redefine the cost
matrix so that c\. = q/ + A.,- + A.7- for each i, j e V°. The functions f i (q) , gi(q), and
ijfi(q) can be recalculated using c- , resulting in a new bound Lfil(A). The optimal CVRP
solution is unaffected by this penalty vector, since it adds only a constant term 2^i€V A., to
the objective. Now LB1(X) can be maximized using a standard subgradient optimization
procedure. See Hadjiconstantinou, Christofides, and Mingozzi [18] for details. At the
conclusion of this subgradient procedure, a feasible dual solution with value close to the
optimal is generated; this is a lower bound on the optimal solution value of the CVRP.

Hadjiconstantinou, Christofides, and Mingozzi [18] developed another lower bound-
ing method based on determining the ^-shortest paths between the depot and node i € V.
These two bounds are used to bound the objective function in a branch-and-bound tree. For
details see Hadjiconstantinou, Christofides, and Mingozzi [18].

4.4 Solving the Set-Covering Integer Program

In the previous section we introduced several methods for solving a linear relaxation of the
set-covering formulation of the CVRP, problem P, or in the case of section 4.3.4, the dual
P£>. The linear relaxation of problem P is likely to be fractional and therefore there is still
the problem of finding an integer solution. In this section, we describe a number of ways to
use the current set of columns to generate an optimal or a near-optimal integer solution.

We consider two general approaches and then give some additional comments on
various computational aspects of this problem. The first, a cutting plane method, does not
generate any additional columns from this point on. It therefore solves the integer program
defined only on the current set of columns. This method is not guaranteed to generate
the optimal solution to P since there may be columns in the optimal integer solution that
have not yet been generated. In practice, this solution is probably close to the optimal one,
and in any case, any integer solution will come with a worst-case bound on its relative

4.4. Solving the Set-Covering Integer Program 97

error (because of the lower bound provided by the optimal solution value of the linear
programming relaxation). The second method, branch-and-price, generates new columns
during its search and therefore solves problem P exactly (this is the method of Desrochers,
Desrosiers, and Solomon [14]). That is, it solves the integer program over the entire set of
columns 7£ without necessarily generating all of the feasible routes in the set. Branch-and-
price is generally more complicated since it may require incorporating information about
the branch-and-bound search within the column generation problem.

If an upper bound on the optimal integer solution value is known, then the following
preprocessing step should be performed. Let ZUB denote the value of the upper bound, and
let ZLB denote the value of a lower bound (either ZLP or a lower bound on it). Then any
column (route) with reduced cost not smaller than ZUB — ZLB can be immediately eliminated
from the model.

4.4.1 A Cutting Plane Method

A computationally attractive approach for solving the CVRP using only the current set of
columns is a method called the cutting plane approach. Given a fractional solution to P, we
can generate a set of constraints that will cut off this fractional solution. After adding these
constraints to the formulation, we can resolve the linear program, and if it is integer, we have
found the optimal integer solution (among the columns 72.')- If it is still fractional, then we
continue generating constraints and resolving the linear program until an integer solution is
possibly found. Additionally, one can implement this strategy within a branch-and-bound
framework. Typically, this is called branch-and-cut. This method was successfully used
by Padberg and Rinaldi [23] to solve the TSP and by Hoffman and Padberg [21] to solve
crew-scheduling problems.

Again, the best integer solution found using this method should be close to optimal,
and in any case a bound on the relative error is readily obtainable.

Cutting Plane Algorithm
Step 1. Generate an initial set 72/ of columns.
Step 2. Solve, using column generation, problem P' (i.e., the linear

programming relaxation of P).
Step 3. If the optimal solution to problem P' is integer, stop.

Else, generate cutting planes separating this fractional solution.
Add these cutting planes to the linear program P'.

Step 4. Solve the linear program P'. Goto Step 3.

The key to success of this method is to be able to efficiently generate constraints
that will separate a fractional solution from all integer solutions (Step 3). We describe two
specific kinds of constraints and demonstrate how they can be efficiently identified. Let K'
be the set of routes at the end of the column generation procedure. To generate constraints,
construct the intersection graph G. The graph G has a node for each column in 11'. Two
nodes in G are connected by an undirected edge if the corresponding columns have at least
one customer in common. Observe that a solution to the CVRP where no customer is visited
more than once can be represented by an independent set in this graph. An independent set
is a collection of nodes of G such that no two nodes are connected by an edge.

98 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

This observation gives rise to two simple inequalities that can be added to the for-
mulation. In what follows, let y denote the (fractional) optimal solution to the current
formulation.

4.4.1.1 Clique Constraints

Select a subset of the nodes of G, say, H , such that every pair of nodes i, j e H is connected
by an edge of G. Each set //, called a clique, must satisfy the following condition:

Clearly, if there is a node j g H such that j is adjacent to every i e H, then we can replace
H with H U [j } in inequality (4.20) to strengthen it (this is called lifting). In that sense, we
would like to use inequality (4.20) when the set of nodes H is maximal.

Hoffman and Padberg [21] suggested several procedures for clique identification, one
of which is based on the fact that small-size cliques can be found quickly by enumeration.
For this purpose, select v to be the node with minimum degree among all nodes of G.
Clearly, every clique of G containing v is a subset of the neighbors of v, denoted by T(v).
Thus, starting with v as the current clique, that is, H = {v}, we add an arbitrary node w
from T(v) to H. We now delete from T(v) all nodes that are not connected to w. Continue
adding nodes in this manner from the current set T(v) to H until either there is no node in
T(v} connected to all nodes in H, or T(v) = 0. In the end, H will be a maximal clique.
We then can calculate the weight of this clique, that is, the sum of the values yr of the
columns in the clique. If the weight is more than 1, then the corresponding clique inequality
is violated. If not, then we continue the procedure with a new starting node. The method
can be improved computationally by, for example, always choosing the heaviest node (the
one where yr is the largest) among those nodes eligible to enter the clique.

4.4.1 .2 Odd Hole Constraints

Define a cycle H = {1/1,1/2, . . . , HI} in G, such that node w/ is adjacent to ui+\, for each
i = 1, 2, . . . , € — 1, and node ui is adjacent to node M I . A cycle H is called an odd cycle if
the number of nodes in H, \H\ = I, is odd. An odd cycle is called an odd hole if there is
no edge connecting two nodes of the cycle except the t edges defining the cycle. It is easy
to see that in any optimal solution to the CVRP each odd hole must satisfy the following
property:

Hoffman and Padberg used the following procedure to identify violated odd hole
constraints. Starting from an arbitrary node v e G, construct a layered graph GI(V) as
follows. The node set of Gt (u) is the same as the node set of G. Every neighbor of v in G is
connected to v by an edge in GI(V). We refer to v as the root, or level 0 node, and we refer
to the neighbors of v as level 1 nodes. Similarly, nodes at level k > 2 are those nodes in G
that are connected (in G) to a level k — 1 node but are not connected to any node at level <

4.4. Solving the Set-Covering Integer Program 99

k — 1. Finally, each edge (M, , « 7) in GI(V) is assigned a length of 1 — yUi — yu. > 0. Now
pick a node u in GI(V) at level k >2 and find the shortest path from K to v in Gf(v). Delete
all nodes at levels i (1 < i < k} that are either on the shortest path or adjacent to nodes
along this shortest path (other than nodes that are adjacent to v). Now pick another node w
that is adjacent (in G) to u in level k. Find the shortest path from u; to u in the current graph
GI(V). Combining these two paths with the edge (u, w) creates an odd hole. If the total
length of this cycle is less than 1, then we have found a violated odd hole inequality. If not,
we continue with another neighbor of u and repeat the process. We can then choose a node
different from u at level k. If no violated odd hole inequality is found at level k, we proceed
to level k + 1. This subroutine can be repeated for different starting nodes (v) as well.

4.4.1.3 Branching Strategies

Another method with which to find the best integer solution among the set of columns 7Z'
is the branch-and-cut method. This method consists of splitting the problem into easier
subproblems by fixing the value of a certain branching variable. In this case, a suitable
choice is yr for some route r. The branching variable is set to 1 in one branch of the tree and
0 in the other. To each of these subproblems, independently, are added a series of constraints
(cuts) strengthening the linear programming formulation. These constraints can be along
the same lines as those discussed in section 4.4.1.

Exact branching and cutting strategies together with a column generation scheme are
easily defined if the CVRP (or VRPTW) is first modeled as a multicommodity flow problem
and then decomposed using the Dantzig-Wolfe approach. Therefore, many decisions can
be taken on the flow variables or on a combination of these. See Chapters 3 and 7, where
many suggestions are provided.

4.4.2 Branch-and-Price

The methods described in the previous section enable us to solve the CVRP on the restricted
set of columns: those generated in the process of solving the linear programming relaxation
of P. If true optimality of the integer solution is sought (as opposed to a solution that might
be very close to optimal), then solving the integer program over all columns of 7£ is much
more difficult.

In this case, we describe a branch-and-bound procedure where additional columns
are generated at each node of the branch-and-bound tree. We describe here the approach
of Desrochers, Desrosiers, and Solomon [14] for the VRPTW. The main difficulty with the
approach described here is that it must be possible to incorporate information about the node
of the branch-and-bound tree in the column-generation procedure. For instance, assume we
branch on variables yr as described in the previous section. It is simple to incorporate the
information that yr = 1 for a particular route r (in one branch of the tree) in the column
generation procedure. This is done by simply omitting the nodes of Sr from the column
generation procedure. However, it is not clear how to incorporate the information that yr = 0
into the dynamic programming procedure. Typically, an approach based on expanding the
state space will not be computationally attractive. Therefore Desrochers, Desrosiers, and
Solomon do not branch on these variables.

100 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

Desrochers, Desrosiers, and Solomon branch on the edge variables, i.e., whether an
edge (/, j) is used or not used by some route in the integer optimal solution. If we signify this
branching variable by jc,7 = 0 or 1, let us consider how this affects the column generation
problem CG in each branch of the tree. The information in the branch with jc,-7- = 1 can be
incorporated into the column-generation step by setting c,7 = — oo in the dynamic program
described in section 4.3.3, forcing the minimum cost route to use edge (i, j). For the other
branch (jc/; = 0) we set c;;- = +00 so that the edge (z, 7) is never used in a generated route.

4.4.3 Additional Comments on Computational Approaches

We note that developing a successful algorithm to solve a set-covering problem using column
generation requires quite a bit of computational testing. In particular, there are a number of
tricks to reduce computational time and manage the computer's memory (e.g., generating
new columns, throwing away columns that have not been basic in a number of iterations).

In general, to get good integer solutions, it is more important to generate new columns,
even heuristically, at all or several nodes of the branch-and-bound tree, than to spend time
designing complex branching and cutting plane strategies. If optimal or near-optimal com-
patible columns are not present, it is useless to work hard on these strategies (even if the
lower bound, computed by using only the columns selected in the optimal basis, is very
good).

Finally, we suggest another computational trick to more effectively generate columns
that are disjoint, collectively exhaustive, and of minimal cost. Cutting planes are used only
temporarily to fix columns at value 1. Each time this happens, already-generated cutting
planes are removed and new columns are generated on the residual problem (the problem
consisting of the customers not served by routes fixed to 1). The lower bound on this residual
problem might improve, but much more important, the "missing" columns may now appear
to complete the big puzzle into an integer solution.

4.5 Computational Results
We report here some computational results on each of the approaches we have described. The
results for the CVRP of Agarwal, Mathur, and Salkin [1], Bixby [5], and Hadjiconstantinou,
Christofides, and Mingozzi [18] are on the standard test problems of Christofides, Mingozzi,
and Toth [11]. The results of Desrochers, Desrosiers, and Solomon [14] on the VRPTW are
on the standard test problems of Solomon [26]. (For further details and results on VRPTW,
see Chapter 7.)

In Tables 4.1, 4.2, and 4.3, we list the problem name and number of customers, the
value of the lower bound (ZLP), and the value of the upper bound ZUB provided by the
particular method used in the paper. The optimal integer solution to the routing problem is
denoted Z* where applicable. The effectiveness of the lower bound is therefore defined as
100(ZLB/ZUB) or 100(ZLB/Z*), depending on whether an optimal solution to the problem
is known.

As one can see, almost uniformly across all cases, the lower bound provided by the
linear programming relaxation of the set-covering formulation is "very strong." In addition,

4.5. Computational Results 101

Table 4.1. Results ofAgarwal, Mathur, and Salkin [1].

Problem
E016-
E016-
E021-
E021-
E022-
E022-
E026-

03m
05m
04m
06m
04g
06m
08m

n
15
15
20
20
21
21
25

ZLP

268
326
351
430
374
479
606

Effectiveness
ZUB of lower bound
276
332
358
430
375
494
607

97.1%
98.2%
98.0%
100.0%
99.7%
97.0%
99.8%

Table 4.2. Results ofBixby [5].

Problem
S007-
S013-
E021-
E022-
E023-
E030-
E051-

02a
04d
06m
04g
03g
04s
05e

n
6

12
20
21
22
29
50

ZLP

114
279
430
375
566
503
518

Effectiveness
ZUB of lower bound
114
290
430
375
569
503
521

100.0%
96.2%
100.0%
100.0%
99.5%
100.0%
99.4%

Table 4.3. Results of Hadjiconstantinou, Christofides, and Mingozzi [18].

Problem
E016-05m
E021-06m
E 0 2 6 - 0 8 m
E031-09h
E036-llh
E041-14h
E051-05e
E076-106
E101-08e
E151-12C

n
15
20
25
30
35
40
50
75

100
150

ZLB

326.92
430.88
621.73
597.18
694.89
852.24
516.51
815.31
792.42
1000.07

Best available
upper bound

334.96
430.88
621.73
610.10
698.60
861.79
524.61
835.26
826.14
1028.42

Effectiveness
of lower bound

97.6%
100.0%
100.0%
97.9%
99.5%
98.9%
98.5%
97.6%
95.9%
97.2%

Note: The lower bound here is not ZLP.

102 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

Table 4.4. A Sample of Results from Desrochers, Desrosiers, and Solomon [14].

Problem
R103
R107
R108
R110
C101
C103
C106
C107
RC103
RC104
RC105
RC108

n
25
50
25
50

100
50

100
100
25
25
25
25

ZLP

454.6
703.2
396.2
692.4
827.3
361.4
827.3
827.3
332.1
305.9
411.0
280.3

Effectiveness
Z* of lower bound

454.6
711.1
397.2
697.0
827.3
361.4
827.3
827.3
332.8
306.6
411.3
294.5

100.0%
98.9%
99.8%
99.3%
100.0%
100.0%
100.0%
100.0%
99.8%
99.8%
99.9%
95.2%

the upper bounds are also very close to the lower bound and therefore very close to the
optimal value.

The problems given in Table 4.4 are for a randomly selected sample of the problems
that were solved to optimality by Desrochers, Desrosiers, and Solomon [14]. This list
therefore represents those problems that are more likely to have an effective lower bound.
However, it is clear that the lower bound is most likely very strong for a large class of
problems. In the next section, we consider the theoretical question of why the bound is so
effective.

4.6 Effectiveness of the Set-Covering Formulation

We now analyze the strength of the linear programming relaxation of problem P. The ef-
fectiveness of the above approaches depends critically on the so-called integrality gap: the
difference between the values of the optimal integer solution and the optimal solution to
the linear relaxation of problem P. If the lower bound provided by the linear programming
relaxation is not very tight (i.e., the gap is large), then the methods described most likely will
not be computationally effective. On the other hand, when the gap is small, the procedures
are likely to be effective.

Fortunately, many researchers have reported that the linear relaxation of the set-
covering problem P provides an optimal solution value very close to the optimal integer
solution value. Evidence of this can be found in Desrochers, Desrosiers, and Solomon
[14] for the case of the VRPTW and Hoffman and Padberg [21] for crew-scheduling prob-
lems. That is, the solution to the linear relaxation of problem P provides a very tight lower
bound on the integer programming solution value. For instance, in their paper, Desrochers,
Desrosiers, and Solomon reported an average relative gap between the optimal solution
value to the linear relaxation and the optimal integer solution value of only 0.733%.

We cite results concerning the gap's size measured by using both worst-case and
average-case criteria. In particular, the average-case analysis shows that, asymptotically,

4.6. Effectiveness of the Set-Covering Formulation 103

the relative error between the optimal solution value to the linear relaxation of P and the
optimal integer solution value tends to zero as the number of customers increases.

4.6.1 Worst-Case Analysis

It is interesting to characterize the largest possible value of the ratio Z*/ZLP . A simple bound
can be constructed using the Iterated Tour Partitioning (ITP) heuristic (see Haimovich and
Rinnooy Kan [19] or Altinkemer and Gavish [2]). For the equal demand case (df = 1 for
all / € V), we get (see Altinkemer and Gavish [2])

where L*(V°) is the length of the optimal traveling salesman tour through V and the depot.
It is easy to show that ZLP > 2 X/ev fo/ /C. Using Held and Karp's lower bound [20], one
can show that

thus giving the 2.5 bound. For the general demand case, following this same line of reasoning
it is possible to show that Z*/ZLP < 3.5. It is not known if these bounds are tight.

Worst-case analyses of the set-covering model for a special case of the CVRP were
performed in Chan, Simchi-Levi, and Bramel [10]. They looked at the Bin Packing Problem
(BPP), which can be viewed as a CVRP where all the customers are at the same location at
a fixed (nonzero) distance from the depot. Chan, Simchi-Levi, and Bramel showed that for
the BPP, Z*/ [ZLP] < 4/3, and they provided an example achieving this bound. Therefore,
if this special case is any indication, the lower bound provided by the optimal solution to
the linear programming relaxation of the set-covering problem is strong indeed. That is, the
lower bound is at least 75% of the value of the optimal integer solution.

4.6.2 Average-Case Analysis

We now present a probabilistic analysis of this model. A similar analysis was performed
for the VRPTW, resulting in similar conclusions, by Bramel and Simchi-Levi [8]. Here we
perform this same analysis for the CVRP.

To present the analysis, we assume the customers are dispersed in the Euclidean
plane, specifically, customer / e V is located at jc/ e R2. We assume, without loss of
generality, that the depot is at the origin, and we denote by \\x\\ the Euclidean distance
between point x e 1R2 and the depot. We also scale the vehicle capacity to 1 and therefore
assumed, e (0, 1] for each i e V. We assume, for the purposes of simplifying the analysis,
that the fleet size is not limited.

Consider the n customer locations to be independently distributed according to a
distribution /x with compact support in E2. Let the customer demands \d[: i e V} be
drawn from a distribution 4> with density 0 which is assumed to be Lipschitz continuous of
order q > 1 on [0, 1]. (For x £ [0, 1], 000 — 0.) A function 0 is Lipschitz continuous of
order q on S if there exists an H such that

104 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

This implies in particular the existence of a constant HQ such that (j)(x) < H0 for all
x € [0,1]. Finally, we assume that a customer's location and its load are independent of
each other.

THEOREM 4.6.1. Let the customer locations x\,X2,..., xn be a sequence of independent
random variables having a distribution ̂ with compact support in R2. Let the customer
demands be independently and identically distributed like O. Let ZLP be the value of the
optimal fractional solution to P, and let Z* be the value of the optimal integer solution to P,
that is, the value of the optimal solution to the CVRP. Then

It is interesting to note that the value of these limits is also known. Bramel et al. [7]
showed that as the number of customers increases, the quantity Z*/n tends almost surely to
2y E[d], where E[d] is simply the customer's expected distance to the depot and y is the bin
packing constant associated with O. The bin packing constant is defined as follows. Let b*
denote the number of bins required to pack n items drawn from 4>. Then y = lim^^oo b*/n,
and note that y € [0, 1]. The value 1/y can be interpreted as the asymptotic average number
of items per bin in an optimal solution.

The result described in Theorem 4.6.1 says that almost surely ^(Z* — ZLP) —>• 0 as
n —> oo. It is also important in results of this type to characterize the rate of convergence
of this quantity to zero.

4.6.2.1 Motivation

We do not present a proof of Theorem 4.6.1. For that, we refer the reader to Bramel and
Simchi-Levi [9]. However, we do provide a simplified analysis that gives some insight
into why Theorem 4.6.1 holds. To do this we consider a simpler discrete vehicle routing
model, defined as follows. Define a customer type to be a location x e R2 and demand
w e. [0,1]. That is, two customers of the same type are located at the same location and
have identical customer demands. Consider a discretized vehicle routing model in which
there is a finite number, W, of possible customer types. In a particular instance, let n(be
the number of customers of type i for i = 1,2,... ,W, and let n = Yl7=i ni ^e me tota^
number of customers. Clearly, this discretized CVRP can be solved by formulating it as a
set covering problem.

Let a vehicle assignment be a vector (a\, ai,..., aw), where a,- > 0 are integers, such
that a single vehicle can feasibly serve at customers of type / for each / = 1, 2 , . . . , W, with-
out violating the capacity constraint. Index all the possible vehicle assignments 1 ,2 , . . . , / ? '
and let cr be the total length of the shortest feasible route serving the customers in vehicle
assignment r. (Note R' is independent of n.) The CVRP can be formulated as follows. Let

air = number of customers of type i in vehicle assignment r

for each i = 1, 2 , . . . , W and r = 1, 2 , . . . , R'. Let

yr = number of times vehicle assignment r is used in the optimal solution.

alomost surely.

4.6. Effectiveness of the Set-Covering Formulation 105

Then problem Pd is

subject to

Let Z*d be the optimal solution value of P</ and let Z^p be the optimal solution value to its
linear relaxation. Clearly, we can also formulate this discrete problem as an instance of
problem P. If we compare the solution to Pd and to P we see that problems P and P^ must
have the same optimal solution values, i.e., Z* = Z*d. Observe that a feasible solution to
the linear programming relaxation of P can be used to construct a feasible solution to the
linear programming relaxation of P^, and therefore

Define c — maxr=] 2 R:{cr], i.e., c is the length of the longest route among the R'
vehicle assignments. Then, we have the following lemma.

LEMMA 4.6.2.

Proof. The left-most inequality is trivial while the right-most inequality is due to (4.22). To
prove the central inequality, note that in Pd there are W constraints (one for each customer
type). Let yr for r = 1 , 2, . . . , / ? ' be an optimal solution to the linear programming relax-
ation of Pfi and observe that there exists such an optimal solution with at most W positive
variables, one for each constraint. We construct a feasible solution to Pd by rounding the
linear programming solution up; that is, for each r = 1,2, . . . , R' with yr > 0 we make
yr — 1 and for each r = 1, 2, . . . , R' with yr — 0 we make yr = 0. The increase in the
objective function is therefore at most W times the largest possible cost of a route, c. D

Observe that the upper bound on Z* obtained in Lemma 4.6.2 consists of two terms.
The first, ZLP, is a lower bound on Z*, which clearly grows with the number of customers,
n. The second term (We) is the product of two numbers that are fixed and independent of n.
Therefore, the upper bound on Z* of Lemma 4.6.2 is dominated by ZLP, and consequently
we see that for large n, Z* & ZLP, exactly what is implied by Theorem 4.6.1. Indeed,
much of the proof of Theorem 4.6.1 is concerned with approximating the distributions //
and O with discrete distributions and forcing the number of different customer types to be
independent of n.

We now outline the main steps in the proof of Theorem 4.6.1. It is clear that ZLP < Z*
and therefore, almost surely, lim^^ ^(Z* — ZLP) > 0. The interesting part is to find an
upper bound on Z* that involves ZLP and shows that lim^oo ^(Z* — ZLP) < 0, almost

106 Bibliography

surely. We do this in essentially the same way as before. To mimic that approach, we
introduce a series of discretizations of the customer parameter distributions. We discretize
the customer locations using a grid of squares. Each customer is then moved to the center
of the square in which it is located. We do the same with the customer demands: we
select a unit and round each customer demand to a multiple of this unit. The proof then
proceeds to show the following. For the purposes of this discussion, let ZLP and Z* denote
the optimal linear relaxation value and the optimal integer solution value, respectively, of
the set-covering formulation of the discretized vehicle routing problem. Under specific
rounding schemes, as the discretization becomes finer,

the relative difference between Z* and Z* decreases,

the relative difference between ZLP and ZLP decreases, and

the relative difference between Z* and ZLP decreases (as in the motivation above).

One can see then how the result follows from these points. Proving these results is rather
involved and we therefore do not go through the details here (the interested reader can see
Bramel and Simchi-Levi [9]). We note that a byproduct of the analysis is a bound on the
rate of convergence which is 0(n4/5). That is, E[Z*] = E[ZLP] + O(n4/5).

Acknowledgments
This research was supported in part by ONR contracts NOOO14-90-J-1649 and N00014-95-
1-0232 and NSF contracts DDM-9322828 and DMI-9732795.

Bibliography
[1] Y. Agarwal, K. Mathur, and H.M. Salkin. A set-partitioning-based exact algorithm for

the vehicle routing problem. Networks, 19:731-749, 1989.

[2] K. Altinkemer and B. Gavish. Heuristics for delivery problems with constant error
guarantees. Transportation Science, 24:294-297, 1991.

[3] M. Balinski and R. Quandt. On an integer program for a delivery problem. Operations
Research, 12:300-304, 1964.

[4] P. Bauer. The circuit polytope: Facets. Methods of Operations Research, 22:110-145,
1996.

[5] A. Bixby. Polyhedral analysis and effective algorithms for the capacitated vehicle
routing problem. Ph.D. dissertation, Northwestern University, Evanston, IL, 1998.

[6] A. Bixby, C. Coullard, and D. Simchi-Levi. The capacitated prize-collecting trav-
eling salesman problem. Working paper, Department of Industrial Engineering and
Engineering Management, Northwestern University, Evanston, IL, 1997.

[7] J. Bramel, E.G. Coffman, Jr., P. Shor, and D. Simchi-Levi. Probabilistic analysis of al-
gorithms for the capacitated vehicle routing problem with unsplit demands. Operations
Research, 40:1095-1106, 1991.

Bibliography 107

[8] J. Bramel and D. Simchi-Levi. Probabilistic analyses and practical algorithms for the
vehicle routing problem with time windows. Operations Research, 44:501-509, 1996.

[9] J. Bramel and D. Simchi-Levi. The Logic of Logistics. Springer-Verlag, New York,
1998.

[10] L.M.A. Chan, D. Simchi-Levi, and J. Bramel. Worst-case analyses, linear program-
ming and the bin-packing problem. Mathematical Programming, 83:213-227, 1995.

[11] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle rout-
ing problem based on the spanning tree and shortest path relaxations. Mathematical
Programming, 20:255-282, 1981.

[12] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the
computation of bounds to routing problems. Networks, 11:145-164, 1981.

[13] F. Cullen, J. Jarvis, and D. Ratliff. Set partitioning based heuristics for interactive
routing. Networks, 11:125-144, 1981.

[14] M. Desrochers, J. Desrosiers, and M.M. Solomon. A new optimization algorithm for
the vehicle routing problem with time windows. Operations Research, 40:342-354,
1992.

[15] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and
scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors,
Network Routing, Handbooks in Operations Research and Management Science 8,
North-Holland, Amsterdam, 1995, pp. 35-139.

[16] J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time windows by column
generation. Networks, 14:545-565, 1984.

[17] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.
Discrete Mathematics, 194:229-237, 1999.

[18] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new exact algorithm for
the vehicle routing problem based on q-paths and ̂ -shortest paths relaxations. Annals
of Operations Research, 61:21—43, 1995.

[19] M. Haimovich and A.H.G. Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10:527-542, 1985.

[20] M. Held and R.M. Karp. The traveling salesman problem and minimum spanning
trees. Operations Research, 18:1138-1162, 1970.

[21] K.L. Hoffman and M. Padberg. Solving airline crew scheduling problems by branch-
and-cut. Management Science, 39:657-682, 1993.

[22] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. Wiley, Chichester, UK, 1990.

108 Bibliography

[23] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM Review, 33:60-100, 1991.

[24] C. Ribeiro and F. Soumis. A column generation approach to the multi-depot vehicle
scheduling problem. Operations Research, 42:41-52, 1994.

[25] P. Seymour. Sums of circuits. In J. Bondy and U. Murty, editors, Graph Theory and
Related Topics, Academic Press, New York, 1979, pp. 341-355.

[26] M.M. Solomon. On the worst-case performance of some heuristics for the vehicle
routing and scheduling problem with time window constraints. Networks, 16:161-
174, 1986.

Chapter 5

Classical Heuristics for the
Capacitated VRP

Gilbert Laporte
Frederic Semet

5.1 Introduction
Several families of heuristics have been proposed for the VRP. These can be broadly classi-
fied into two main classes: classical heuristics, developed mostly between 1960 and 1990,
and metaheuristics, whose growth has occurred in the last decade. Most standard construc-
tion and improvement procedures in use today belong to the first class. These methods
perform a relatively limited exploration of the search space and typically produce good
quality solutions within modest computing times. Moreover, most of them can be easily
extended to account for the diversity of constraints encountered in real-life contexts. There-
fore, they are still widely used in commercial packages. In metaheuristics, the emphasis
is on performing a deep exploration of the most promising regions of the solution space.
These methods typically combine sophisticated neighborhood search rules, memory struc-
tures, and recombinations of solutions. The quality of solutions produced by these methods
is much higher than that obtained by classical heuristics, but the price to pay is increased
computing time. Moreover, the procedures usually are context dependent and require finely
tuned parameters, which may make their extension to other situations difficult. In a sense,
metaheuristics are no more than sophisticated improvement procedures, and they can simply
be viewed as natural enhancements of classical heuristics. However, because they make
use of several new concepts not present in classical methods, they are covered separately,
in Chapter 6.

Classical VRP heuristics can be broadly classified into three categories. Constructive
heuristics gradually build a feasible solution while keeping an eye on solution c'ost, but
they do not contain an improvement phase per se. In two-phase heuristics, the problem is
decomposed into its two natural components, clustering of vertices into feasible routes and

109

110 Chapter 5. Classical Heuristics for the Capacitated VRP

actual route construction, with possible feedback loops between the two stages. Two-phase
heuristics are divided into two classes: cluster-first, route-second methods and route-first,
cluster-second methods. In the first case, vertices are first organized into feasible clusters,
and a vehicle route is constructed for each of them. In the second case, a tour is first built on
all vertices and is then segmented into feasible vehicle routes. Finally, improvement meth-
ods attempt to upgrade any feasible solution by performing a sequence of edge or vertex
exchanges within or between vehicle routes. These three classes of methods are covered
in the next three sections, respectively. The distinction between constructive and improve-
ments methods, however, is often blurred since most constructive algorithms incorporate
improvements steps (typically 3-opt (Lin [26])) at various stages. Since the number of avail-
able methods and variants is very large, we concentrate on the truly classical heuristics and
enhancements, leaving some variants aside. For additional readings on classical heuristics
for the VRP, see Christofides, Mingozzi, and Toth [10], Bodin et al. [6], Christofides [9],
Golden and Assad [21], and Fisher [16].

Most of the heuristics developed for the VRP apply directly to capacity constrained
problems (CVRPs) and normally can be extended to the case where an upper bound is also
imposed on the length of any vehicle route (DCVRPs), even if this is not always explicitly
mentioned in the algorithm description. Most heuristics work with an unspecified number
K of vehicles, but there are some exceptions to this rule. This is clarified for each case. The
distance matrix used in the various heuristics described in this chapter can be symmetric or
not, but very little computational experience has been reported for the asymmetric case. One
important exception is Vigo [44]. A few methods have been designed for planar problems.

5.2 Constructive Methods
Two main techniques are used for constructing VRP solutions: merging existing routes using
a savings criterion, and gradually assigning vertices to vehicle routes using an insertion cost.

5.2.1 Clarke and Wright Savings Algorithm

The Clarke and Wright [11] algorithm is perhaps the most widely known heuristic for the
VRP. It is based on the notion of savings. When two routes (0, . . . , i, 0) and (0, j,..., 0)
can feasibly be merged into a single route (0, . . . , i, j,..., 0), a distance saving s(; =
Qo + CQJ — Cij is generated. This algorithm naturally applies to problems for which the
number of vehicles is a decision variable, and it works equally well for directed or undirected
problems, but Vigo [44] reports that the behavior of the method worsens considerably in the
directed case, although the number of potential route merges is then halved. A parallel and
a sequential version of the algorithm are available. The algorithm works as follows.

Step 1 (savings computation). Compute the savings sv/ = Qo + CQJ ~ Q? for /, y = 1, . . . , n
and i ^ j. Create n vehicle routes (0, i, 0) for i = 1 , . . . , n. Order the savings in a nonin-
creasing fashion.

Parallel version
Step 2 (best feasible merge). Starting from the top of the savings list, execute the following.
Given a saving sij, determine whether there exist two routes, one containing arc or edge

5.2. Constructive Methods 111

(0,7) and the other containing arc or edge (z, 0), that can feasibly be merged. If so, combine
these two routes by deleting (0, 7) and (z, 0) and introducing (z, 7).

Sequential version
Step 2 (route extension). Consider in turn each route (0, z , . . . , 7, 0). Determine the first
saving s^ or Sji that can feasibly be used to merge the current route with another route
containing arc or edge (k, 0) or containing arc or edge (0, i). Implement the merge and
repeat this operation to the current route. If no feasible merge exists, consider the next route
and reapply the same operations. Stop when no route merge is feasible.

There is great variability in the numerical results reported for the savings heuristics,
and authors often do not mention whether the parallel or the sequential version is considered.
In Table 5.1, we compare these two versions on the 14 symmetric instances of Christofides,
Mingozzi, and Toth [10], using real distances. These results indicate that the parallel version
of the savings method clearly dominates the sequential one. Computing times on a Sun
Ultrasparc 10 workstation (42 Mflops) are typically less than 0.2 second.

5.2.2 Enhancements of the Clarke and Wright Algorithm

One drawback of the original Clarke and Wright algorithm is that it tends to produce good
routes at the beginning but less interesting routes toward the end, including some circum-
ferential routes. To remedy this, Gaskell [19] and Yellow [48] proposed generalized savings
of the form sij = c/o + % — ̂ -Cij, where A. is a route shape parameter. The larger the X,

Table 5.1. Computational comparison of two implementations of the Clarke and Wright
algorithm.

Problem

E051-05e
E076-10e
ElOl-OSe
ElOl- lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-l lc
D121-11C
D151-14C
D200-18C

Sequential

625.56
1005.25
982.48
939.99

1291.33
1299.39
1708.00
670.01
989.42

1054.70
952.53

1646.60
1383.87
1671.29

Parallel

584.64
900.26
886.83
833.51

1071.07
1133.43
1395.74
618.40
975.46
973.94
875.75

1596.72
1287.64
1538.66

Best known
solution value

524.61 '
835.261

826. 141

819.56'
1042.11'
1028.42'
1291.45'
555.43'
909.68'
865.94'
866.37'

1541. 142

1162.552

1395.851

'Taillard[41].
2RochatandTaillard[37].

112 Chapter 5. Classical Heuristics for the Capacitated VRP

the more emphasis is put on the distance between the vertices to be connected. Golden,
Magnanti, and Nguyen [22] report that using A, = 0.4 or 1.0 yields good solutions, taking
into account the number of routes and the total length of the solution.

The Clarke and Wright algorithm can also be time consuming since all savings must
be computed, stored, and sorted. Various enhancements have been proposed by a number of
authors to speed up computations and to reduce memory requirements. Most of this work
took place in the 1970s and at the early 1980s, when researchers worked with computers
much less powerful than current workstations. Instances involving 200 to 600 vertices
could take from 25 to 300 seconds on an IBM 4341 computer, using a straightforward
implementation of the parallel savings method (Nelson et al. [30]). Now, a 200-vertex
instance can be solved in 0.3 second on a Sun Ultrasparc 10 workstation with the same kind
of implementation. Therefore, these enhancements are useful only for very large instances
(more than 1000 vertices). When implementing the savings heuristic, two main issues must
be addressed: determination of the maximum saving value and storage requirements.

Computing the maximum saving value is the most time consuming part of the al-
gorithm. Three approaches can be considered. The first uses a full sort (e.g., quicksort)
implemented in a straightforward manner. The second approach is an iterative limited sort
that can be performed by means of a heap structure (Golden, Magnanti, and Nguyen [22]).
A heap is a binary tree where the savings are stored in a such way that the value of the
father node is always greater than or equal to that of the son nodes. When two routes are
merged, the heap is rebuilt efficiently to eliminate the saving associated with the selected
link and all savings corresponding to an interior vertex of a route. The third approach is
an iterative computation of the maximum saving value (Paessens [33]). Assuming that
distances are positive and that the triangle inequality holds, Paessens shows that Sjj > J
whenever CQI > 0.5? and CQJ > 0.5?, where J is the current maximum saving value.
This necessary condition is then used to efficiently identify the larger saving values. The
three approaches have been implemented by Paessens. Numerical results are reported on
four instances with three different vehicle capacities. The iterative determination of the
maximum saving value tends to be the most efficient on the average. However, important
variations in the computing times can occur, depending on the vehicle capacity, which is
not the case when a complete sorting approach is used. To increase the savings method
performance in terms of computing time and memory requirements, some authors proposed
considering only a subset of all possible savings. Golden, Magnanti, and Nguyen [22]
suggested superimposing a grid over the network. The grid is divided into rectangles,
and all edges between vertices belonging to nonadjacent rectangles are eliminated with the
exception of the edges linking vertices to the depot. Savings are then computed on this sub-
network. Paessens [33] proposed disregarding edges with c/7 > a max£€(i n) cok for some
constants.

Nelson et al. [30] investigated more complex data structures based on heaps to limit
storage requirements and thus obtain more efficient updating operations. They presented
four different ways to use adjacency information to eliminate all edges associated with an
interior vertex. For noncomplete graphs, the most efficient implementation requires 1m+3n
storage locations, whereas the storage requirement is only 3m + 3n for complete graphs,
where m is the number of edges. This is achieved by using hashing functions to identify the
vertices associated with a given edge and to determine the location of all edges associated
with an interior vertex. The last implementation proposed uses several smaller heaps instead

5.2. Constructive Methods 113

of one large heap. At a given step, the heap contains only savings associated with noninterior
vertices which exceed a threshold value. The heap is then processed until it is empty. A
new threshold value is finally selected and a new heap is constructed. This is repeated until
all edges have been considered. Numerical results show that the last implementation is
the best. Instances containing 1000 vertices typically can be solved in 180 seconds on an
IBM 4341 computer.

5.2.3 Match ing-Based Savings Algorithms

Desrochers and Verhoog [12] and Altinkemer and Gavish [2] described an interesting
modification to the standard savings algorithm. The two algorithms are rather similar.
At each iteration the saving spq obtained by merging routes p and q is computed as
spq = t(Sp) + t(Sq) — t(Sp U Sq), where Sk is the vertex set of route k and t(Sk) is
the length of an optimal Traveling Salesman Problem (TSP) solution on Sk. A max-weight
matching problem over the sets Sk is solved using the spq values as matching weights, and
the routes corresponding to optimal matchings are merged, provided feasibility is main-
tained. Several variants of this basic algorithm are possible, one of which approximates the
t (Sk) values instead of computing them exactly.

Another matching based approach is described by Wark and Holt [45]. These authors
used a matching algorithm to successively merge clusters, defined as ordered sets of vertices,
at their endpoints. Matching weights may be defined as ordinary savings, or these may be
modified to favor mergers of clusters whose total weight is far below vehicle capacity or
whose length is far below the allowed distance limit on a vehicle route. Starting with n
back and forth vehicle routes, the algorithm successively merges clusters. After a merge
is performed, only a few lines or columns of the savings matrix need be updated. If all
clusters are matched with themselves, then some of them are split with a given probability.
The process thus grows a tree of sets of clusters from which a best solution can be selected.

We compare these three matching-based algorithms in Table 5.2 on the 14 instances of
Christofides, Mingozzi, and Toth [10], and we also provide a comparison with the parallel
version of the Clarke and Wright heuristic. These results must be interpreted with care.
First, the rounding rules used for the c;/ coefficients are not the same for all heuristics used
in the comparison. This rule is not reported for the Desrochers and Verhoog algorithm.
Altinkemer and Gavish round distances to the nearest integer. The Wark and Holt and best
known solutions are obtained with real distances. Also, the Altinkemer and Gavish results
are the best of approximately 40 runs, using several parameters and algorithmic rules. The
Wark and Holt results are the best of five runs. Computation times vary between 0.03 and
0.33 second on a Sun Ultrasparc 10 for the Clarke and Wright algorithm, and between
21.40 and 3087.73 seconds on an IBM 3083 for each round of the Altinkemer and Gavish
algorithm. Desrochers and Verhoog report average computing times between 38 and 3200
seconds on an unspecified machine. Each run of the Wark and Holt algorithm requires
on average between 4 and 107 minutes on a Sun 4/630MP. Despite the above remarks, it
can safely be said that the use of a matching-based algorithm yields better results than the
standard Clarke and Wright method, but at the expense of much higher computation time.
The Wark and Holt heuristic is clearly the best of the three matching-based methods in terms
of solution quality. Bold numbers in the table indicate that the algorithm has identified a
best known solution.

114 Chapter 5. Classical Heuristics for the Capacitated VRP

Table 5.2. Computational comparison of four savings-based heuristics.

Problem
E051-056
E076-10e
E101-08e
ElOl- lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-llc
D121-11C
D151-14C
D200-18C

Clarke Desrochers
and and

Wright1 Verhoog2

578.64
900.26
886.83
833.51

1071.07
1133.43
1395.74
618.40
975.46
973.94
875.75

1596.72
1287.64
1538.66

586
885
889
828

1058
1133
1424
593
963
914
882

1562
1292
1559

Altinkemer
and

Gavish3

556
855
860
834

1047
1085
1351
577
939
913
874

1551
1210
1464

Wark
and

Holt4

524.6
835.8
830.7
819.6

1043.4
1038.5
1321.3
555.4
911.8
878.0
866.4

1548.3
1176.5
1418.3

Best known
solution value

524.615

835.26s

826. 145

819.565

1042. II5

1028.425

1291. 455

555.435

909.685

865.94s

866.37s

1541. 146

1162.556

1395.85s

1 Parallel savings heuristic implemented by Laporte and Semet (Table 5.1).
2 Desrochers and Verhoog [12].
3Altinkemer and Gavish [2]. Best of approximately 40 versions.
4Wark and Holt [45]. Best of five runs.
5Taillard[41].
6Rochat and Taillard [37].

5.2.4 Sequential Insertion Heuristics

We now describe two representative algorithms based on sequential insertions. Both apply
to problems with an unspecified number of vehicles. The first, by Mole and Jameson [29],
expands one route at a time. The second, proposed by Christofides, Mingozzi, andToth [10],
applies in turn sequential and parallel route construction procedures. Both methods contain
a 3-opt improvement phase.

5.2.4.1 Mole and Jameson Sequential Insertion Heuristic

The Mole and Jameson algorithm uses two parameters X and [L to expand a route under
construction:

The algorithm can be described as follows.

Step 1 (emerging route initialization). If all vertices belong to a route, stop. Otherwise,
construct an emerging route (0, k, 0), where k is any unrouted vertex.
Step 2 (next vertex). Compute for each unrouted vertex k the feasible insertion cost
a*(ik, k, j k) = min [a(r, k, s) } for all adjacent vertices r and 5 of the emerging route,

5.2. Constructive Methods 115

where ^ and jk are the two vertices yielding a*. If no insertion is feasible, go to Step 1.
Otherwise, the best vertex k* to insert into the emerging route is the vertex yielding
ft* (ik*, k*, jk*) — max {(ft(ik, k, jk)} over all unrouted vertices k that can feasibly be in-
serted. Insert k* between ik* and jk*.
Step 3 (route optimization). Optimize the current route by means of a 3-opt procedure
(Lin [26]), and go to Step 2.

Several standard insertion rules are governed by the two parameters A. and JJL. For
example, if X — 1 and // = 0, the algorithm will insert the vertex yielding the minimum
extra distance. If A = \i = 0, the vertex to be inserted will correspond to the smallest sum
of distances between two neighbors. If JJL = oo and A > 0, the vertex furthest from the
depot will be inserted.

5.2.4.2 Christofides, Mingozzi, and Toth Sequential Insertion Heuristic

Christofides, Mingozzi, and Toth [10] developed a somewhat more sophisticated two-phase
insertion heuristic that also uses two user-controlled parameters A, and /^.

Phase 1. Sequential route construction.
Step 1 (first route). Set a first route index k equal to 1.
Step 2 (insertion costs). Select any unrouted vertex ik to initialize route k. For every
unrouted vertex i, compute <$,• = CQ/ + A.c/,-t.
Step 3 (vertex insertion). Let <$/* = min,e^ {<$/}, where Sk is the set of unrouted vertices
that can be feasibly inserted into route k. Insert vertex i* into route k. Optimize route k
using a 3-opt algorithm. Repeat Step 3 until no more vertices can be assigned to route k.
Step 4 (next route). If all vertices have been inserted into routes, stop. Otherwise, set
k \— k + 1 and go to Step 2.

Phase 2. Parallel route construction
Step 5 (route initializations). Initialize k routes R, = (0, /,, 0) (t = 1, . . . , k), where k is
the number of routes obtained at the end of Phase 1. Let / = {R\, . . . , R^}.
Step 6 (association costs). For each vertex i not yet associated with a route and for each
feasible route Rt e J, compute sti = CQI + iJLCiit and e?«, = minr {er,}. Associate vertex i
with route Rt* and repeat Step 6 until all vertices have been associated with a route.
Step 7 (insertion costs). Take any route Rt e J and set J :— J \ {Rr}. For every vertex i
associated with route R;, compute e,/z- = min^rej {eti} and r\ — £,>/ — e,,.
Step 8 (vertex insertion). Insert into route Rt vertex i* satisfying T/* = max,6S/ {T/}, where
St is the set of unrouted vertices associated with route Rt that can feasibly be inserted into
route R,. Optimize route R, using a 3-opt algorithm. Repeat Step 8 until no more vertices
can be inserted into route R,.
Step 9 (termination check). If \J \ ̂ 0, go to Step 6. Otherwise, if all vertices are routed,
stop. If unrouted vertices remain, create new routes starting with Step 1 of Phase 1.

Comparisons between these two constructive algorithms were performed by
Christofides, Mingozzi, and Toth [10] on their 14 standard benchmark instances. Results
are presented in Table 5.3. This comparison indicates that the sequential insertion heuris-
tic of Christofides, Mingozzi, and Toth [10] (CMT in the table) is superior to the Mole
and Jameson algorithm. It yields better solutions in less computing time. It is also better

116 Chapter 5. Classical Heuristics for the Capacitated VRP

Table 5.3. Computational comparison of two sequential insertion heuristics.

Mole and
Jameson1

Problem
E051-05e
E076-10e
E101-08e
ElOl-lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-llc
D121-11C
D151-14C
D200-18C

/*
575
910
882
879

1100
1259
1545
599
969
999
883

1590
1289
1770

Time3

5.0
11.0
36.0
37.2
68.9
71.7

119.6
5.1

10.1
28.6
35.3
54.3
63.6

110.0

CMT
Two-Phase2

r
547
883
851
827

1066
1093
1418
565
969
915
876

1612
1245
1508

Time3

2.5
4.2
9.7
6.4

11.3
11.8
16.7
2.6
4.4
7.0
6.3
8.7

10.1
15.8

Best known

solution value
524.614

S35.264

826. 144

819.564

1042. II4

1088.424

1291.454

5S5.434

909.634

86S.944

S66.374

1541. 145

1162.555

1395.854

1 Results were obtained by Christofides, Mingozzi, and Toth [10], except for the
first three instances which were solved by Mole and Jameson [29].

2Christofides, Mingozzi, and Toth [10].
3 Seconds on a CDC6600.
4Taillard[41].
5Rochat and Taillard [37].

than Christofides, Mingozzi, and Toth's implementation of the Clarke and Wright algorithm
while requiring about twice the computing time. Again, the rounding convention is not
specified, but solution values obtained with the CMT heuristic are in general far from the
best known.

5.3 Two-Phase Methods

In this section we first describe three families of cluster-first, route-second methods. The
last subsection is devoted to route-first, cluster-second methods. There are several types of
cluster-first, route-second methods. The simplest ones, referred to as elementary clustering
methods, perform a single clustering of the vertex set and then determine a vehicle route on
each cluster. The second category uses a truncated branch-and-bound approach to produce
a good set of vehicle routes. A third class of methods, called petal algorithms, produces a
large family of overlapping clusters (and associated vehicle routes) and selects from them
a feasible set of routes.

5.3.1 Elementary Clustering Methods

We now present three elementary clustering methods: the sweep algorithm (see Gillett
and Miller [20], Wren [46], and Wren and Holliday [47]), the Fisher and Jaikumar [17]

5.3. Two-Phase Methods 117

generalized-assignment-based algorithm, and the Bramel and Simchi-Levi [7] location-
based heuristic. Only these last two heuristics assume a fixed value of the number of
vehicles K.

5.3.1.1 Sweep Algorithm

The sweep algorithm applies to planar instances of the VRP. Feasible clusters are initially
formed by rotating a ray centered at the depot. A vehicle route is then obtained for each
cluster by solving a TSP. Some implementations include a postoptimization phase in which
vertices are exchanged between adjacent clusters, and routes are reoptimized. To our knowl-
edge, the first mentions of this type of method are found in a book by Wren [46] and in
a paper by Wren and Holliday [47], but the sweep algorithm is commonly attributed to
Gillett and Miller [20], who popularized it. A simple implementation of this method is
as follows. Assume each vertex i is represented by its polar coordinates (0,-, p/), where
9{ is the angle and p, is the ray length. Assign a value 0* = 0 to an arbitrary vertex i*
and compute the remaining angles from (0, z*). Rank the vertices in increasing order of
their 0,-.

Step 1 (route initialization). Choose an unused vehicle k.
Step 2 (route construction). Starting from the unrouted vertex having the smallest angle,
assign vertices to vehicle k as long as its capacity or the maximal route length is not exceeded.
In tightly constrained DVRPs, 3-opt may be applied after each insertion. If unrouted vertices
remain, go to Step 1.
Step 3 (route optimization). Optimize each vehicle route separately by solving the corre-
sponding TSP (exactly or approximately).

5.3.1.2 Fisher and Jaikumar Algorithm

The Fisher and Jaikumar algorithm is also well known. Instead of using a geometric method
to form the clusters, it solves a Generalized Assignment Problem (GAP). It can be described
as follows.

Step 1 (seed selection). Choose seed vertices j^ in V to initialize each cluster k.
Step 2 (allocation of customers to seeds). Compute the cost dik of allocating each customer
i to each cluster k as dik = min{c0/ + cijk + cjk0, c0jk + cjki + ci0] - (c0jk + cjk0).
Step 3 (generalized assignment). Solve a GAP with costs djj, customer weights q/, and
vehicle capacity Q.
Step 4 (TSP solution). Solve a TSP for each cluster corresponding to the GAP solution.

The number of vehicle routes K is fixed a priori in the Fisher and Jaikumar heuristic.
The authors proposed a geometric method based on the partition of the plane into K cones
according to the customer weights. The seed vertices are dummy customers located along
the rays bisecting the cones. Once the clusters have been determined, the TSPs are solved
optimally using a constraint relaxation-based approach (Miliotis [28]). However, the Fisher
and Jaikumar [17] article does not specify how to handle distance restrictions, although some
are present in the test problems of Table 5.4.

118 Chapter 5. Classical Heuristics for the Capacitated VRP

5.3.1.3 Bramel and Simchi-Levi Algorithm

Bramel and Simchi-Levi [7] described a two-phase heuristic in which the seeds are deter-
mined by solving a capacitated location problem and the remaining vertices are gradually
included into their allotted route in a second stage. The authors suggest first locating K
seeds, called concentrators, among the n customer locations to minimize the total distance
of customers to their closest seed while ensuring that the total demand assigned to any
concentrator does not exceed Q. Vehicle routes are then constructed by inserting at each
step the customer assigned to that route seed having the least insertion cost. Consider a
partial route k described by the vector (0 = /o> z'i, • • - , * £ , ii+\ = 0),let Tk = {0, i\,..., ii],
and denote by t(Tk) the length of an optimal TSP solution on Tk. Then the insertion cost
dfk of an unrouted customer i into route k is dik = t(Tk\J {i}} — t(Tk). Since comput-
ing dik exactly may be time consuming, two approximations dik are proposed: direct cost,
dik = minfc=i>...^{2c,-I-J, and nearest insertion cost, dik = min/^
The authors showed that the algorithm defined by the first rule is asymptotically optimal.

5.3.2 Truncated Branch-and-Bound

Christofides, Mingozzi, and Toth [10] proposed a truncated branch-and-bound algorithm for
problems with variable K, which is essentially a simplification of a previous exact algorithm
by Christofides [8]. The search tree in this procedure contains as many levels as there are
vehicle routes, and each level contains a set of feasible and nondominated vehicle routes. In
the following implementation proposed by the authors, the tree is so simple that it consists
of a single branch at each level, since all branches but one are discarded in the route selection
step. However, a limited tree could be constructed by keeping a few promising routes at
each level. In what follows, Fh is the set of free (unrouted) vertices at level h.

Step 1 (initialization). Set h := 1 and Fh := V \ {0}.
Step 2 (route generation). If Fh = 0, stop. Otherwise, select an unrouted customer i e Fh
and generate a set /?, of routes containing i and customers in Fh. These routes are gradually
generated using a linear combination of two criteria: savings and insertion costs.
Step 3 (route evaluation). Evaluate each route r e R{ using the function /(r) = t(Sr U
{0}) + u(Fh \ SV), where Sr is the vertex set of route r, t(Sr U {0}) is the length of a good
TSP solution on Sr U {0}, and u(Fh\Sr) is the length of a shortest spanning tree over the
yet unrouted customers.
Step 4 (route selection). Determine the route r* yielding minreR. {/(r)}. Set h := h + 1
and Fh := Fh-\ \ Sr*. Go to Step 2.

We provide in Table 5.4 comparative computational results for the four algorithms
described in sections 5.3.1 and 5.3.2. Again, the comparison is made on the 14 Christofides,
Mingozzi, and Toth [10] benchmark instances. Bramel and Simchi-Levi [7] used real
distances. For the remaining algorithms, the rounding convention is not specified.

In terms of solution quality, these methods seem to perform better than the constructive
algorithms presented in section 5.2. Also, for less computational effort, the truncated
branch-and-bound algorithm tends to produce better solutions than the sweep algorithm.
The Fisher and Jaikumar method seems to work well on most instances, but a number of
reported solution values have been questioned by some authors (see Wark and Holt [45,

Table 5.4. Computational comparison of four constructive heuristics.

Sweep1

Problem
E051-
E076-
E101-
E101-
E121-
E151-
E200-
D051-
D076-
D101-
D101-
D121-
D151-
D200-

05e
lOe
08e
lOc
07c
12c
17c
06c
lie
09c
lie
lie
14c
18c

f#4

532
874
851
937

1266
1079
1389
560
933
888
949

1776
1230
1518

Time4

12.2
24.3
65.1
50.8

104.3
142.0
252.2

11.4
23.8
5S.5
53.6
85.5

134.7
238.5

Generalized
assignment2

r2

524
857
833
824

—
1014
1420
560
916
885
876

—
1230
1518

Time2

9.3
12.0
17.7
6.4

—
33.6
40.1
15.2
20.6
52.2

6.3
—

121.3
136.6

Location-
based

heuristic3

r3

524.6
848.2
832.9
826.1

1051.5
1088.6
1461.2

—
—

—
—
—

—
—

Time3

68
406
890
400

1303
2552
4142
—

—
—
—

—
—

—

Truncated
branch-and-

bound4

r4

534
871
851
816

1092
1064
1386
560
924
885
878

1608
1217
1509

Time4

7.1
15.6
38.2
39.3
51.1
81.1

138.4
5.3

13.6
33.4
45.2
61.8
74.0

135.6

Best
known

solution
value
524.6 P
835.26s

826. 145

819.565

1042. II5

1028.425

1291.455

555.43s

909.63s

865.94s

866.37s

1541. 146

1 162.556

1395.85s

' Gillett and Miller [20], implemented by Christofides, Mingozzi and Toth [10].

"Fisher and Jaikumar [17]. Computing times are seconds on a DEC-10, considered by Fisher and Jaikumar
to be seven times slower than CDC6600.

3Bramel and Simchi-Levi [7]. Computing times are seconds on an RS6000, Model 550.
Nearest insertion costs were used in this implementation.

4Christofides, Mingozzi and Toth [10]. Computing times are seconds on a CDC6600.
5TaiIlard [41].
6Rochat and Taillard [37].

120 Chapter 5. Classical Heuristics for the Capacitated VRP

p. 1163]). The location-based heuristic of Bramel and Simchi-Levi seems often to improve
on the Fisher and Jaikumar method.

5.3.3 Petal Algorithms

A natural extension of the sweep algorithm is to generate several routes, called petals, and
make a final selection by solving a set partitioning problem of the form

subject to

where S is the set of routes, xk = 1 if and only if route k belongs to the solution, a^ is the
binary parameter equal to 1 only if vertex i belongs to route k, and dk is the cost of petal
k. If the routes correspond to contiguous sectors of vertices, then this problem possesses
the column circular property and can be solved in polynomial time (Ryan, Hjorring, and
Glover [38]).

This formulation was first proposed by Balinski and Quandt [3], but it becomes im-
practical when | S \ is large. Agarwal, Mathur, and Salkin [1] used column generation t
solve small instances of the VRP optimally (10 < n < 25). Heuristic rules for produc-
ing a promising subset 5" of simple vehicle routes, called 1-petals, have been put forward
by Foster and Ryan [18] and by Ryan, Hjorring, and Glover [38]. Renaud, Doctor, and
Laporte [36] go one step further by including in S' not only single vehicle routes but also
configurations, called 2-petals, consisting of two embedded or intersecting routes. The
generation of 2-petals is quite involved and is not be described here.

Renaud, Boctor, and Laporte [36] compared their results with their own implementa-
tion of the sweep algorithm (Gillett and Miller [20]) and of the petal algorithm of Foster and
Ryan [18]. The 14 standard benchmark problems were solved with real distances. Results
presented in Table 5.5 indicate that the 2-petal algorithm produces solutions whose value is
on the average 2.38% above that of the best known (compared with 7.09% for sweep and
5.85% for 1-petal). Average computing times are 1.76 seconds for sweep, 0.26 second for
1-petal, and 3.48 seconds for 2-petal. The larger times taken by sweep and 2-petal are due
to the postoptimization phase, which is absent from 1-petal. Sweep uses 3-opt, whereas
2-petal uses 4-opt* (Renaud, Boctor, and Laporte [35]).

5.3.4 Route-First, Cluster-Second Methods

Route-first, cluster-second methods construct in a first phase a giant TSP tour, disregarding
side constraints, and decompose this tour into feasible vehicle routes in a second phase.
This idea applies to problems with a free number of vehicles. It was first put forward
by Beasley [4], who observed that the second-phase problem is a standard shortest-path
problem on an acyclic graph and can thus be solved in O(n2) time using, for example,

5.4. Improvement Heuristics 121

Table 5.5. Computational comparison of three petal heuristics.

Sweep1

Problem
E051-056
E076-10e
E101-08e
ElOl- lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-llc
D121-11C
D151-14C
D200-18C

r3

531.90
884.20
846.34
919.51

1265.65
1075.38
1396.05
560.08
965.51
883.56
911.81

1785.30
1220.71
1526.64

Time3

0.72
0.77
1.18
0.64
3.52
2.53
3.60
0.16
0.19
1.47
0.85
2.24
3.00
4.91

1 -petal
algorithm2

r3

531.90
885.02
836.34
824.77

1252.84
1070.50
1406.84
560.08
968.89
877.80
894.77

1773.69
1220.20
1515.95

Time3

0.70
0.07
0.32
0.21
0.61
0.41
0.41
0.09
0.07
0.25
0.17
0.26
0.26
0.35

2-petal
algorithm3

r3

524.61
854.09
830.40
824.77

1109.14
1054.62
1354.23
560.08
922.75
877.29
885.87

1585.20
1194.51
1470.31

Time3

0.76
0.52
3.84
2.11

11.70
5.93
6.21
0.56
0.43
2.91
1.69
3.31
3.58
5.19

Best known
solution

value
524.614

S35.264

826. 144

819.564

1042. II4

1028.424

1291. 454

S55.434

909.634

86S.944

S66.374

1541. 145

1162.555

1395.854

'Gillett and Miller [20], implemented by Renaud, Boctor, and Laporte [36].
2Foster and Ryan [18], implemented by Renaud, Boctor, and Laporte [36].
3 Renaud, Boctor, and Laporte [36]. All computing times are seconds on a Sun Sparcstation 2 (210.5Mips,
4.2 Mflops), with 32 megabytes RAM.

4Taillard[41].
5Rochat andTaillard [37].

Dijkstra's [13] algorithm. In the shortest-path algorithm, the cost dtj of traveling between
nodes i and j is equal to CQ, +CQJ +lij, where £// is the cost of traveling from i to j on the TSP
tour. Haimovich and Rinnooy Kan [23] showed that if all customers have unit demand, this
algorithm is asymptotically optimal. However, this is not so for general demands, except in
some trivial cases (Bertsimas and Simchi-Levi [5]). We are not aware of any computational
experience showing that route-first, cluster-second heuristics are competitive with other
approaches.

5.4 Improvement Heuristics
Improvement heuristics for the VRP operate on each vehicle route taken separately or on
several routes at a time. In a first case, any improvement heuristic for the TSP can be
applied. In the second case, procedures that exploit the multiroute structure of the VRP can
be developed.

5.4.1 Single-Route Improvements

Most improvement procedures for the TSP can be described in terms of Lin's [26] X-opt
mechanism. Here, A edges are removed from the tour, and the A remaining segments are

122 Chapter 5. Classical Heuristics for the Capacitated VRP

reconnected in all possible ways. If any profitable reconnection (the first or the best) is
identified, it is implemented. The procedure stops at a local minimum when no further
improvements can be obtained. Checking the A.-optimality of a solution can be achieved
in O(nK) time. Several modifications to this basic scheme have been developed. Lin and
Kernighan [27] modified A dynamically throughout the search. Or [31] proposed the Or-opt
method, which consists of displacing strings of 3, 2, or 1 consecutive vertices to another
location. This amounts to performing a restricted form of 3-opt interchanges. Checking
Or-optimality requires O(n2} time. In the same spirit, Renaud, Boctor, and Laporte [35]
developed a restricted version of the 4-opt algorithm, called 4-opt*, which attempts a subset
of promising reconnections between a chain of at most w edges and another chain of two
edges. Checking whether a solution is 4-opt* requires O(wn2) operations. Johnson and
McGeoch [24] performed a thorough empirical analysis of these and other improvement
procedures for the TSP and concluded that a careful implementation of the Lin-Kernighan
scheme yields the best results on average. Since the description of this technique is rather
extensive, readers are referred to the Johnson and McGeoch article for further details.

As mentioned, several heuristics described in this chapter already incorporate some
form of reoptimization at intermediate steps. The Clarke and Wright algorithm is different
in this respect in that it is typically implemented as a pure constructive heuristic, without
reoptimization. To investigate the effect of postoptimization on the Clarke and Wright
algorithm, we implemented two versions of 3-opt. In the first one, FI, the first improving
move is performed, whereas in the second one, BI, the whole neighborhood is explored
to identify the best improvement. Comparative results on the 14 Christofides, Mingozzi,
and Toth [10] instances are presented in Table 5.6. Again, all running times are below 0.2
second on a Sun Ultrasparc 1 workstation (42 Mflops). The effect of applying 3-opt after
the Clarke and Wright constructive heuristic is sometimes negligible, but it can reach 2%
in some instances. The use of 3-opt, when applied after the sequential heuristic, is never
sufficient to correct the relative inefficiency of the constructive step. The best solutions are
consistently obtained by the parallel savings algorithm combined with 3-opt and BI. This
algorithm is very fast to run (it requires an average of 0.13 second on the 14 benchmark
instances) and produces solutions whose value is on average 6.71% above that of the best
known. This compares with 7.08% for parallel savings without 3-opt, 18.75% for sequential
savings without 3-opt, and 7.09% for the Renaud, Boctor, and Laporte [36] implementation
of the sweep algorithm.

5.4.2 Multiroute Improvements

Thompson and Psaraftis [42], Van Breedam [43], and Kindervater and Savelsbergh [25] pro-
vide descriptions of multiroute edge exchanges for the VRP. These encompass a large num-
ber of edge exchange schemes used by several authors (see, e.g., Stewart and Golden [40],
Dror and Levy [14], Salhi and Rand [39], Fahrion and Wrede [15], Potvin et al. [34], Os-
man [32], and Taillard [41]). The Thompson and Psaraftis paper describes a general ̂ -cyclic,
^-transfer scheme in which a circular permutation of b routes is considered and k customers
from each route are shifted to the next route of the cyclic permutation. The authors show that
applying specific sequences of ̂ -cyclic, ^-transfer exchanges (with b = 2 or b variable, and
k = 1 or 2) yields interesting results. Van Breedam classified the improvement operations
as string cross, string exchange, string relocation, and string mix, which all can be viewed as

Table 5.6. The effect of 3-opt on the Clarke and Wright algorithm.

Sequential

Problem
E051-05e
E076-10e
E101-08e
ElOl- lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-llc
0121-llc
D151-14C
D200-18C

No
3-opt1

625.56
1005.25
982.48
939.99

1291.33
1299.39
1708.00
670.01
989.42

1054.70
952.53

1646.60
1383.87
1671.29

+ 3-opt
FI2

624.20
991.94
980.93
930.78

1232.90
1270.34
1667.65
663.59
988.74

1046.69
943.79

1638.39
1374.15
1652.58

+ 3-opt
BI3

624.20
991.94
980.93
928.64

1237.26
1270.34
1669.74
663.59
988.74

1046.69
943.79

1637.07
1374.15
1652.58

tf4

5
10
8

10
7

12
16
6

12
10
11
11
15
20

No
3-opt5

584.64
900.26
886.83
833.51

1071.07
1133.43
1395.74
618.40
975.46
973.94
875.75

1596.72
1287.64
1538.66

Parallel
+ 3-opt

FI6

578.56
888.04
878.70
824.42

1049.43
1128.24
1386.84
616.66
974.79
968.73
868.50

1587.93
1284.63
1523.24

+ 3-opt
BI7

578.56
888.04
878.70
824.42

1048.53
1128.24
1386.84
616.66
974.79
968.73
868.50

1587.93
1284.63
1521.94

K*
6

10
8

10
7

12
17
6

12
9

11
11
15
19

Best known
solution value

524.619

S35.269

826. 149

819.569

1042.1 19

1028.429

1291.459

55S.439

909.689

865.9 9

S66.379

1541. 1410

1 162.55 10

1395.859

' Sequential savings.
2 Sequential savings + 3-opt and first improvement.

'Sequential savings + 3-opt and best improvement.
4Sequential savings: number of vehicles in solution.

'Parallel savings.
^Parallel savings + 3-opt and first improvement.
'Parallel savings + 3-opt and best improvement.
'Parallel savings: number of vehicles in solution.

'Taillard [41].
'°Rochat and Taillard [37].

124 Chapter 5. Classical Heuristics for the Capacitated VRP

Figure 5.1. String cross.

Figure 5.2. String exchange.

Figure 5.3. String relocation.

special cases of 2-cyclic exchanges, and provides a computational analysis on test problems.
Kindervater and Savelsbergh define similar operations and perform experiments mostly in
the context of the VRP with time windows.

We now summarize Van Breedam's analysis. The four operations considered are

String cross (SC). Two strings (or chains) of vertices are exchanged by crossing two
edges of two different routes; see Figure 5.1.

String exchange (SE). Two strings of at most k vertices are exchanged between two
routes; see Figure 5.2.

String relocation (SR). A string of at most k vertices is moved from one route to
another, typically with k = 1 or 2; see Figure 5.3.

String mix (SM). The best move between SE and SR is selected.

(a) Before (a) Before

5.5. Conclusions 125

To evaluate these moves, Van Breedam considers the two local improvement strategies,
FI and BI. Van Breedam then defines a set of parameters that can influence the behavior of
the local improvement procedure. These parameters are the initial solution (poor, good),
the string length (£) for moves of type SE, SR, SM (k — 1 or 2), the selection strategy
(FI, BI), and the evaluation procedure for a string length k > 1 (evaluate all possible
string lengths between a pair of routes, increase k when a whole evaluation cycle has been
completed without identifying an improvement move). To compare the various improvement
heuristics, Van Breedam selects 15 tests problems among 420 instances. However, nine
of these include either pickup and deliveries constraints or time-windows constraints and
are therefore not relevant within the context of this chapter. The remaining six instances
contain capacity constraints where all customers have the same demand, so that the capacity
constraint is exactly satisfied and only SC or SE moves can be performed. Therefore, the
following conclusions should be interpreted with caution. The first observation made by
Van Breedam is that it is better to initiate the search from a good solution than from a poor
one, in terms of both final solution quality and computing time. Also, the best solutions
are obtained when SE moves are performed with a string length k = 2. However, using
k = 2 is about twice as slow as using k = 1. Overall, SE moves appear to be the best. This
is confirmed in a further comparison of local improvement, simulated annealing, and tabu
search heuristics using various types of moves. The local improvement heuristic with SE
moves yields solution values that are 2.2% above the best known, compared with 4.7% for
SC moves, but computing times are more than four times larger with SC moves.

5.5 Conclusions

More than 35 years have passed since the publication of the savings heuristic for the VRP,
and during this period a wide variety of solution techniques have been proposed. Com-
parisons between these heuristics are not always easy to make, especially since several
implementation features can affect the performance of an algorithm. Also, the number and
size of test problems used in the comparisons is rather limited, and researchers have not sys-
tematically applied the same rounding conventions, although this has been corrected in the
last few years. It is now clear that in terms of solution quality, classical heuristics based on
simple construction and local descent improvement techniques do not compete with the best
tabu search implementations described in Chapter 6. However, several methods presented
in this chapter can be easily adapted to other variants of the VRP and are easy to implement.
This explains to a large extent their widespread use in commercial software. Thus, the
Clarke and Wright algorithm remains probably the most popular method in practice. When
followed by the BI version of 3-opt, it produces in almost no time solution values that fall
within about 7% of the best known results. Much better performances are observed with
some other algorithms (for example with the 2-petal algorithm), but the price to pay is often
coding complexity.

Because metaheuristics for the CVRP outperform classical methods in terms of so-
lution quality (and sometimes now in terms of computing time), we believe there is little
room left for significant improvement in the area of classical heuristics. The time has come
to turn the page.

126 Bibliography

Bibliography

[1] Y. Agarwal, K. Mathur, and H.M. Salkin. A set-partitioning-based exact algorithm for
the vehicle routing problem. Networks, 19:731-749, 1989.

[2] K. Altinkemer and B. Gavish. Parallel savings based heuristic for the delivery problem.
Operations Research, 39:456-469, 1991.

[3] M. Balinski and R. Quandt. On an integer program for a delivery problem. Operations
Research, 12:300-304, 1964.

[4] J.E. Beasley. Route-first cluster-second methods for vehicle routing. Omega, 11:403-
408, 1983.

[5] DJ. Bertsimas and D. Simchi-Levi. A new generation of vehicle routing research:
Robust algorithms addressing uncertainty. Operations Research, 44:286-304, 1996.

[6] L.D. Bodin, B.L. Golden, A.A. Assad, and M. Ball. Routing and scheduling of vehicles
and crews, the state of the art. Computers and Operations Research, 10:63-212,1983.

[7] J. Bramel and D. Simchi-Levi. A location based heuristic for general routing problems.
Operations Research, 43:649-660, 1995.

[8] N. Christofides. The vehicle routing problem. RAIRO, 10:55-70, 1976.

[9] N. Christofides. Vehicle routing. In E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
and D.B. Shmoys, editors, The Traveling Salesman Problem, Wiley, Chichester, UK,
1985, pp. 431-448.

[10] N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In
N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial Opti-
mization, Wiley, Chichester, UK, 1979, pp 315-338.

[11] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[12] M. Desrochers and T.W Verhoog. A matching based savings algorithm for the vehicle
routing problem. Technical Report Cahiers du GERAD G-89-04, Ecole des Hautes
Etudes Commerciales de Montreal, Canada, 1989.

[13] E.W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269-271, 1959.

[14] M. Dror and L. Levy. Vehicle routing improvement algorithms: Comparison of a
greedy and a matching implementation for inventory routing. Computers and Opera-
tions Research, 13:33^5, 1986.

[15] R. Fahrion and W. Wrede. On a principle of chain-exchange for vehicle-routing
problems (1-vrp). Journal of Operational Research Society, 41:821-827, 1990.

Bibliography 127

[16] M.L. Fisher. Vehicle routing. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L.
Nemhauser, editors, Network Routing, Handbooks in Operations Research and Man-
agement Science 8, North-Holland, Amsterdam, 1995, pp. 1-33.

[17] M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for the vehicle
routing problem. Networks, 11:109-124, 1981.

[18] B.A. Foster and D.M. Ryan. An integer programming approach to the vehicle schedul-
ing problem. Operations Research, 21':361'-384, 1976.

[19] T.J. Gaskell. Bases for vehicle fleet scheduling. Operational Research Quarterly,
18:281-295, 1967.

[20] B.E. Gillett and L.R. Miller. A heuristic algorithm for the vehicle dispatch problem.
Operations Research, 22:340-349, 1974.

[21] B.L. Golden and A. A. Assad. Vehicle Routing: Methods and Studies. North-Holland,
Amsterdam, 1988.

[22] B.L. Golden, T.L. Magnanti, and H.Q. Nguyen. Implementing vehicle routing algo-
rithms. Networks, 7:113-148, 1977.

[23] M. Haimovich and A.H.G. Rinnooy Kan. Bounds and heuristics for capacitated routing
problems. Mathematics of Operations Research, 10:527-542, 1985.

[24] D.S. Johnson and L.A. McGeoch. The traveling salesman problem: A case study. In
E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial Optimization,
Wiley, Chichester, UK, 1997, pp. 215-310.

[25] G.A.P. Kindervater and M.W.P. Savelsbergh. Vehicle routing: Handling edge ex-
changes. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, Wiley, Chichester, UK, 1997, pp. 337-360.

[26] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44:2245-2269, 1965.

[27] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling salesman
problem. Operations Research, 21:498-516, 1973.

[28] P. Miliotis. Integer programming approaches to the travelling salesman problem.
Mathematical Programming, 10:367-378, 1976.

[29] R.H. Mole and S.R. Jameson. A sequential route-building algorithm employing a
generalized savings criterion. Operational Research Quarterly, 27:503-511, 1976.

[30] M.D. Nelson, K.E. Nygard, J.H. Griffin, and WE. Shreve. Implementation techniques
for the vehicle routing problem. Computers and Operations Research, 12:273-283,
1985.

[31] I. Or. Traveling salesman-type combinatorial optimization problems and their relation
to the logistics of regional blood banking. Ph.D. dissertation, Department of Industrial
Engineering and Management Sciences, Northwestern University, Evanston, IL, 1976.

128 Bibliography

[32] I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of Operations Research, 41:421-451, 1993.

[33] H. Paessens. The savings algorithm for the vehicle routing problem. European Journal
of Operational Research, 34:336-344, 1988.

[34] J.-Y. Potvin, T. Kervahut, B. Garcia, and J.-M. Rousseau. The vehicle routing problem
with time windows—Part I: Tabu search. INFORMS Journal on Computing, 8:158-
164, 1996.

[35] J. Renaud, F.F. Boctor, and G. Laporte. A fast composite heuristic for the symmetric
traveling salesman problem. INFORMS Journal on Computing, 8:134-143, 1996.

[36] J. Renaud, F.F. Boctor, and G. Laporte. An improved petal heuristic for the vehicle
routing problem. Journal of Operational Research Society, 47:329-336, 1996.

[37] Y. Rochat and E.D. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics, 1:147-167, 1995.

[38] D.M. Ryan, C. Hjorring, and F. Glover. Extensions of the petal method for vehicle
routing. Journal of Operational Research Society, 44:289-296, 1993.

[39] S. Salhi and G.K. Rand. Improvements to vehicle routing heuristics. Journal of
Operational Research Society, 38:293-295, 1987.

[40] W.R. Stewart Jr. and B.L. Golden. A Lagrangean relaxation heuristic for vehicle
routing. European Journal of Operational Research, 15:84-88, 1984.

[41] E.D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks,
23:661-673, 1993.

[42] P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithms for multi-vehicle routing
and scheduling problems. Operations Research, 41:935-946, 1993.

[43] A. Van Breedam. An analysis of the behavior of heuristics for the vehicle routing
problem for a selection of problems with vehicle-related, customer-related, and time-
related constraints. Ph.D. dissertation, University of Antwerp, 1994.

[44] D. Vigo. A heuristic algorithm for the asymmetric capacitated vehicle routing problem.
European Journal of Operational Research, 89:108-126, 1996.

[45] P. Wark and J. Holt. A repeated matching heuristic for the vehicle routing problem.
Journal of Operational Research Society, 45:1156-1167, 1994.

[46] A. Wren. Computers in Transport Planning and Operation. Ian Allan, London, 1971.

[47] A. Wren and A. Holliday. Computer scheduling of vehicles from one or more depots
to a number of delivery points. Operational Research Quarterly, 23:333-344, 1972.

[48] P. Yellow. A computational modification to the savings method of vehicle scheduling.
Operational Research Quarterly, 21:281-283, 1970.

Chapter 6

Metaheuristics for the
Capacitated VRP

Michel Gendreau
Gilbert Laporte
Jean-Yves Potvin

6.1 Introduction
In recent years several metaheuristics have been proposed for the VRP. These are general
solution procedures that explore the solution space to identify good solutions and often
embed some of the standard route construction and improvement heuristics described in
Chapter 5. In a major departure from classical approaches, metaheuristics allow deterio-
rating and even infeasible intermediary solutions in the course of the search process. The
best known metaheuristics developed for the VRP typically identify better local optima than
earlier heuristics, but they also tend to be more time consuming.

We are aware of six main types of metaheuristic that have been applied to the VRP:
Simulated Annealing (SA), Deterministic Annealing (DA), Tabu Search (TS), Genetic Al-
gorithms (GA), Ant Systems (AS), and Neural Networks (NN). The first three algorithms
start from an initial solution x\ and move at each iteration t from xt to a solution jt f+i in
the neighborhood N(xt) of xt, until a stopping condition is satisfied. If /(jc) denotes the
cost of ;c, then f(xt+\) is not necessarily less than f (x t) . As a result, care must be taken
to avoid cycling. GA examines at each step a population of solutions. Each population is
derived from the preceding one by combining its best elements and discarding the worst.
Ant systems is a constructive approach in which several new solutions are created at each
iteration using some of the information gathered at previous iterations. As was noted by
Taillard et al. [63], tabu search, genetic algorithms, and ant systems are methods that record,
as the search proceeds, information on solutions encountered and use it to obtain improved
solutions. Neural networks is a learning mechanism that gradually adjusts a set of weights
until an acceptable solution is reached. The rules governing the search differ in each case,

129

1 30 Chapter 6. Metaheuristics for the Capacitated VRP

and these must also be tailored to the shape of the problem at hand. Also, a fair amount
of creativity and experimentation is required. Our purpose is to survey some of the most
representative applications of local search algorithms to the VRP. For generic articles and
textbooks on these metaheuristics, see Rumelhart and McClelland [57], Wasserman [73
van Laarhoven and Aarts [71], Goldberg [30], Davis [15], Pirlot [46], Reeves [52], Dori
Maniezzo, and Colorni [17], Osman and Kelly [44], Osman and Laporte [45], Aarts an
Lenstra [1], and Glover and Laguna [29]. Gendreau, Laporte, and Potvin [24] and Golden
et al. [32] report how various metaheuristic methods have been applied to the VRP and t
the VRP with time windows. In the following six sections of this chapter we report on
implementations of all six algorithms to the solution of the VRP. Some of this material is
borrowed or adapted from Gendreau, Laporte, and Potvin [24].

6.2 Simulated Annealing
At iteration t of simulated annealing, a solution x is drawn randomly in N(xt). If /(*) <
f (x t) , then xt+i is set equal to jc; otherwise,

where pt is usually a decreasing function of t and of f (x) — f (x t). It is common to define
Pt as

where Ot denotes the temperature at iteration t. The rule employed to define Ot is called a
cooling schedule. Typically, Ot is a decreasing step function of t : initially, Ot is set equal to
a given value 9\ > 0 and is multiplied by a factor or(0 < a < 1) after every T iterations, so
that the probability of accepting a worse solution should decrease with time. Three common
stopping criteria are the value /* of the incumbent jc* has not decreased by at least n\ % for
at least k\ consecutive cycles of T iterations; the number of accepted moves has been less
than rt2% of T for ki consecutive cycles of T iterations; and £3 cycles of T iterations have
been executed.

6.2.1 Two Early Simulated Annealing Algorithms

Two early implementations of simulated annealing in the context of the VRP are those of
Robuste, Daganzo, and Souleyrette [55], and Alfa, Heragu, and Chen [2]. In the first case,
the authors defined a neighborhood structure by combining several mechanisms: reversing
part of a route, moving part of a route into another part of the same route, trading vertices
between two routes. The algorithm was tested on four instances (n = 80, 100, 120, 500),
but no comparisons with alternative methods are available. In the second implementation,
Alfa, Heragu, and Chen [2] used a route-first, cluster-second heuristic (Beasley [6]) to
construct a first solution, followed by 3-opt (Lin [39]) for the search process. The method
was applied to three instances (n = 30, 50, 75) and did not produce competitive results.

x
x

with problity pt,
with problity pt,

6.2. Simulated Annealing 131

6.2.2 Osman's Simulated Annealing Algorithms

Osman's [43] implementation of simulated annealing is much more involved, and also more
successful. It uses a better starting solution, some parameters of the algorithm are adjusted
in a trial phase, richer solution neighborhoods are explored, and the cooling schedule is
more sophisticated. The neighborhood structure of this algorithm uses a X-interchange
generation mechanism in which two routes p and q are first selected, together with two
subsets of customers Sp and Sq, one from each route, satisfying \SP\ < A. and |^| < A..
The operation swaps the customers of Sp with those of Sq as long as this is feasible. The
sets Sp or Sq can be empty, and therefore this family of operations includes simply shifting
customers from one route to another. Because the number of combinations of route pairs
and choices of Sp and Sq is usually large, this procedure is implemented with A = 1 or 2
and, in the most efficient versions of the algorithm, the search stops as soon as an improving
move is identified. (When this does not happen, the whole neighborhood must be explored.)
An inferior version of this algorithm consists of examining a whole neighborhood and of
implementing the best move.

The algorithm that was implemented was tested on symmetric VRPs with an unspec-
ified number of vehicles. It operates as follows.

Phase 1. Descent algorithm.
Step 1 (initial solution). Generate an initial solution by means of the Clarke and Wright
algorithm [12].
Step 2 (descent). Search the solution space using the A-interchange scheme. Implement an
improvement as soon as it is identified. Stop whenever an entire neighborhood exploration
yields no improvement.

Phase 2. Simulated Annealing Search.
Step 1 (initial solution). Use as a starting solution the incumbent obtained at the end of
Phase 1, or a solution produced by the Clarke and Wright algorithm. Perform a complete
neighborhood search using the A-interchange generation mechanism without, however, im-
plementing any move. Record Amax and Amjn, the largest and smallest absolute changes in
the objective function, and compute j3, the number of feasible (potential) exchanges. Set
0\ \= Amax, 8 := 0, k := 1, £3 := 3 t := 1, t* :— 1 (this is the iteration at which the best
known solution has been identified within the current cycle). Let x\ be the current solution
and Jt* := x\.
Step 2 (next solution). Explore the neighborhood of xt using A-interchanges. When a
solution x with /(jt) < f (x t) is encountered, set xt+\ := x; if f (x) < /(**), set x* := x
and 9* := 9^. If a whole exploration yields no better solution than jcr, let x be the best
solution encountered in the neighborhood of xt and set

where p, is defined by (6.1). lfxt+\ := j t , , se t<5 := 1.
Step 3 (temperature update). Occasional increment rule: if<5 = I,set0,+i := max{#?/2, 0*},
8 := 0 and k := k + 1. Normal decrement rule: If 8 = 0, set Ot+\ :— Ot/[(nfi + n^fi) Amax

Amin]. Set t := t + 1. If k — £3, stop. Otherwise, go to Step 2.

x
x

with rpobaliyty pn.
with probability1-pn

132 Chapter 6. Metaheuristics for the Capacitated VRP

The cooling schedule employed by Osman differs from what is commonly done in S A.
The temperature is not decreased continuously nor as a step function. Instead, it decreases
continuously as long as the current solution is modified. Whenever xt+\ = xt, the current
temperature is either halved or replaced by the temperature at which the incumbent was
identified. It is not clear to what extent this modified cooling schedule is instrumental to
the success of the algorithm.

The algorithm was implemented with A, = 1, using the best Phase 1 solution to initiate
Phase 2. In total, 26 instances were tested. We report in Table 6.1 results obtained on the
classical 14 instances proposed by Christofides, Mingozzi, and Toth [11], some of which
contain a distance restriction, i.e., an upper limit L is imposed on the length of any vehicl
route. Bold numbers mean that the algorithm has identified a best known solution.

Table 6.1 indicates that Osman's S A algorithm generally produces good results, but
it sometimes misses the mark significantly and rarely identifies a best known solution.

Table 6.1. Computational results for Osman's SA algorithm (with first improving moves).

Problem
T-I r \ ^ T A n1 ̂h U b l - Ube

E076-106

E101-08e
ElOl-lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-llc
D121-11C
D151-14C
D200-18C

r1
COO
JZO

838.62
829.18

826
1176
1058
1378

555.43
909.68
866.75

890
1545.98
1164.12
1417.85

Best known
solution value
^O4 £1 1,3,4,5,6,8,9,10,12D/4.O1

835.263'5

826. 143'4'5

819_563,4,5,6,9,11,12

1042.111'3'4'5'6

1028.423

1291. 457

555.431'3'4'5'6'12

909.681'3'4'6

S65.943'4

866.371'3'4'6'12

1541. 143

1162.553

1395.857

Time2

1 fSl A1O/.4

6434.3
9334.0
632.0
315.8

5012.3
2318.1
3410.2
626.5
957.2
305.2

7622.5
84,301.2

5708.0
1 Osman [43].
2 Seconds on a VAX 86000 computer.
3Taillard [62].
4Gendreau, Hertz, and Laporte [23].
5Xu and Kelly [76].
6Rego and Roucairol [54].
7Rochat and Taillard [56].
8Bullnheimer, Hartl, and Strauss [9].
9Bullnheimer, Hartl, and Strauss [10].

10Optimal solution (see Hadjiconstantinou, Christofides, and Mingozzi [33]).
11 Optimal solution (see Golden et al. [32]).
12Toth and Vigo [67].

6.3. Deterministic Annealing 133

Computing times tend to be relatively long. Overall, applying SA to the VRP does not yield
results that are competitive with those produced by the best tabu search implementations.

6.2.3 Van Breedam's Experiments

We note in closing this section that Van Breedam [69] compared and tested several version
of S A using different neighborhood structures. Tests were conducted on the 14 Christofides,
Mingozzi, and Toth [11] instances. These experiments are useful in helping to identify best
SA strategies, but overall they confirm the superiority of tabu search-based heuristics.

6.3 Deterministic Annealing
Deterministic annealing operates in a way that is similar to simulated annealing, except
that a deterministic rule is used for the acceptance of a move. Two standard implemen-
tations of this technique are threshold accepting (Dueck and Scheurer [19]) and record-
to-record travel (Dueck [18]). At iteration t of a threshold-accepting algorithm, solution
xt+\ is accepted if f(xt+\) < f (x t) + 9\, where 0\ is a user controlled parameter. In
record-to-record travel a record is the best solution x* encountered during the search. At
iteration t, solution xt+\ is accepted if f(xt+\) < $2 f (x t) , where 62 is a user-controlled
parameter in general slightly larger than 1. Golden et al. [32] applied a record-to-record
travel heuristic to 20 large scale instances of the VRP, eight of which include distance
restrictions. Data sets for these instances can be obtained on the web site http://www-
Bus.colorado.edu/Publications/workingpapers/kelly. Comparisons were made with results
obtained by applying the Xu and Kelly TS heuristic (described in section 6.5) on the same

Table 6.2. Computational results for the record-to-record algorithm of Golden et al. [32].

Record-to-record

Problem
E241-22k
E253-27k
E256-14k
E301-28k
E321-30k
E324-16k
E361-33k
E397-34k
E400-18k
E421-41k
E481-38k
E484-19k

/*
720.44
881.04
587.09

1029.21
1103.69
749.15

1403.05
1364.23
934.33

1875.17
1657.93
1137.18

Time1

5.69
6.01

23.01
8.15

21.83
31.49
12.42
32.62
69.19
31.05
47.55

101.09

Xu-Kelly's TS

/*
747.23
881.07
589.10

1066.59
1118.09
746.56

1435.90
1377.79
932.68

1934.96
1656.66
1 140.72

Time2

2314.00
1465.77
340.20

4101.02
1577.30
501.82

5718.38
4340.07

852.72
103,839.73

8943.45
1151.10

Best known
solution value

711.075

868.705

587.094

1016.835

1096. 185

746.563

1400.965

1363.345

932.6S3

1875. 174

1650.425

1136.055

1 Minutes on a 100MHz Pentium-based PC.
2 Minutes on a DEC ALPHA workstation.
3Xu and Kelly [76].
4Golden et al. [32].
5TothandVigo[67].

http://www-Bus.colorado.edu/Publications/workingpapers/kelly
http://www-Bus.colorado.edu/Publications/workingpapers/kelly

134 Chapter 6. Metaheuristics for the Capacitated VRP

instances. Not only is the record-to-record heuristic much faster than the Xu and Kelly im-
plementation, but it generates a better solution in 11 cases of 20. Results taken from Golden
et al. [32] are reported in Table 6.2. As explained by Toth and Vigo [67], all instances of
this series involving a distance restriction contain errors in the Xu and Kelly column and
therefore have been omitted.

6.4 Tabu Search

In tabu search, sequences of solutions are examined as in simulated annealing, but the next
move is made to the best neighbor of the current solution xt. To avoid cycling, solutions
that were recently examined are forbidden, or tabu, for a number of iterations. To alleviate
time and memory requirements, it is customary to record an attribute of tabu solutions rather
than the solutions themselves. The basic tabu search mechanism can be enhanced by several
computational features, such as diversification and intensification strategies, as described
by Glover and Laguna [28, 29] and Hertz, Taillard, and de Werra [34], for example.

Over the last 10 years or so, tabu search has been applied to the VRP by several
authors. Some of the first tabu search algorithms (Willard [75], Pureza and Fran9a [51]) did
not yield impressive results, but subsequent implementations were much more successful.
These include the work of Osman [43], Taillard [62], Gendreau, Hertz, and Laporte [23],
Xu and Kelly [76], Rego and Roucairol [54], Rego [53], and Barbarosoglu and Ozgur [3].
In addition, Rochat and Taillard [56] introduced a useful and powerful concept, the adaptive
memory, which can be used to enhance any tabu search-based algorithm. In the same vein,
Toth and Vigo [67] introduced granular tabu search, whose principles have far-reaching
applicability.

6.4.1 Two Early Tabu Search Algorithms

One of the first attempts to apply tabu search to the VRP is due to Willard [75]. Here, the
solution is first transformed into a giant tour by replication of the depot, and neighborhoods
are defined as all feasible solutions that can be reached from the current solution by means
of 2-opt or 3-opt exchanges (Lin [39]). The next solution is determined by the best nontabu
move. On three of the Christofides, Mingozzi, and Toth [11] benchmark problems, the
proposed algorithm does not appear to be competitive with most known approximation
algorithms. Pureza and Franga [51] defined the neighbors of a solution by moving a vertex
to a different route or by swapping vertices between two routes while preserving feasibility.
As in Willard, the best nontabu feasible move is selected at each iteration. While better than
Willard's algorithm, this implementation did not produce especially good results. Further
research has shown that more sophisticated search mechanisms are required to make tabu
search work.

6.4.2 Osman's Tabu Search Algorithm

In Osman [43], neighborhoods are again defined by means of the ^.-interchange generation
mechanism, with A. = 2. This includes a combination of 2-opt moves, vertex reassignments
to different routes, and vertex interchanges between two routes. In one version of the
algorithm called BA (best admissible), the whole neighborhood is explored and the best
nontabu feasible move is selected. In the other version, FBA (first best admissible), the

6.4. Tabu Search 135

first admissible improving move is selected if one exists; otherwise, the best admissible
move is implemented. Results reported in Table 6.3 indicate that these two tabu search
implementations produce excellent results, but these can still be improved in most cases.

6.4.3 Taburoute

With respect to the previous tabu search implementations, the Taburoute algorithm of Gen-
dreau, Hertz, and Laporte [23] is rather involved and contains several innovative features.
The neighborhood structure is defined by all solutions that can be reached from the cur-
rent solution by removing a vertex from its current route and inserting it into another route
containing one of its p nearest neighbors using GENI, a Generalized Insertion procedure
developed by Gendreau, Hertz, and Laporte [22] for the Traveling Salesman Problem (TSP).
This may result in eliminating an existing route or in creating a new one. A second important
feature of Taburoute is that the search process examines solutions that may be infeasible
with respect to the capacity or maximum route length constraints. More precisely, the
objective function contains two penalty terms, one measuring overcapacity, the other mea-
suring overduration, each weighted by a self-adjusting parameter: every 10 iterations, each
parameter is divided by 2 if all 10 previous solutions were feasible or multiplied by 2 if all
were infeasible. This way of proceeding produces a mix of feasible and infeasible solutions
and lessens the likelihood of being trapped in a local minimum. At various points during
the search process, Taburoute reoptimizes the route in which a vertex has just been inserted.
This is achieved by using the Unstringing and Stringing (US) TSP postoptimization routine
developed by Gendreau, Hertz, and Laporte [22].

Taburoute does not actually use a tabu list but instead uses random tabu tags. When-
ever a vertex is moved from route r to route s at iteration t, its reinsertion into route r is
forbidden until iteration t+8, where 9 is an integer randomly drawn from the interval [5, 10].
Yet another feature of Taburoute is the use of a diversification strategy, which consists of
penalizing vertices that have been moved frequently in order to increase the probability of
considering slow-moving vertices. The objective function is artificially increased by adding
to it a term proportional to the absolute frequency of movement of the vertex v currently
being considered. Finally, Taburoute uses false starts. Initially, several solutions are gener-
ated and a limited search is carried out on each of them. The best identified solution is then
selected as a starting point for the main search.

We now provide a short description of Taburoute (see the original article [23] for a
detailed discussion of the parameter choices). In what follows, W is the set of vertices
considered as candidates for reinsertion into another route at each iteration, q < \W\ is
the number of these vertices for which a tentative reinsertion is actually made, and k is the
number of consecutive iterations without improvement.

Step 1 (initialization). Generate f^/n/2"] initial solutions and perform tabu search with
W = V \ {DO}, q — 5m, and k — 50. This value of q ensures that the probability of selecting
one vertex from each route is at least 90%.

Step 2 (solution improvement). Starting with the best solution observed in Step 1, perform
tabu search with W — V \ {VQ}, q = 5m, and k = 5Qn.

Step 3 (intensification). Starting with the best solution observed in Step 2, perform tabu
search with k = 50. Here W is the set of the L l^ I /2J vertices that have been most often
moved in Steps 1 and 2, and q = \W\.

Table 6.3. Computational comparison of tabu search algorithms.

Osman7

(BA)
Problem
E051-05e
E076-10e
E101-08e
ElOl- lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-llc
D121-11C
D151-14C
D200-18C

/*
524.61

844
835

819.59
1042.11

1052
1354

555.44
913

866.75
866.37

1547
1188
1422

Time1

1.12
1.18

11.25
6.79

23.31
51.25
32.88
2.34
3.38

20.00
92.98
22.38
40.73
55.17

Taillard8

/*
524.61
835.26
826.14
819.56

1042.11
1028.42
1298.79
555.43
909.68
865.94
866.37

1541.14
1162.55
1397.94

Taburoute9 Rochat and Xu and Rego and
stands bes, Taillard10 Kelly4'5 Roucairol u

/*
524.61
835.77
829.45
819.56

1073.47
1036.16
1322.65
555.43
913.23
865.94
866.37

1573.81
1177.76
1418.51

Time2

6.0
53.8
18.4
16.0
22.2
58.8
90.9
13.5
54.6
25.6
65.7
59.2
71.0
99.8

/*
524.61
835.32
826.14
819.56

1042.11
1031.07
1311.35
555.43
909.68
865.94
866.37

1545.93
1162.89
1404.75

/* /*
524.6145

S35.2645

826.1445

819.5645

1042.1145

1029.564'5

1291.45 1298.584'5

555.435

965.625

881.385

915.245

1618.555

No solution

1395.85 1439.295

Time3

29.224<5

48.804'5

71.934'5

56.614'5

91.234'5

149.904'5

272.524'5

30.675

102.135

98.155

152.985

201. 755

168.085

368.37s

/*
524.61
835.32
827.53
819.56

1042.11
1044.35
1334.55
555.43
909.68
866.75
866.37

1550.17
1164.12
1420.84

Toth and
Vigo12

/*
524.61
838.60
828.56
819.56

1042.87
1033.21
1318.25
555.43
920.72
869.48
866.37

1545.51
1173.12
1435.74

Time6

0.81
2.21
2.39
1.10
3.18
4.51
7.50
0.86
2.75
2.90
1.41
9.34
5.67
9.11

'Minutes on a VAX 8600.
2Minutes on a Silicon Graphics workstation (36MHz, 5.7 Mflops).
3Minutes on a DEC ALPHA workstation DEC OSF/1 v 3.0).
4Xu and Kelly [76].
5Golden et al. [32].
6Minutes on a Pentium 200 MHz PC (about three times faster than the Silicon Graphics
workstation used for Taburoute, and twice as slow as the DEC ALPHA workstation
used by Xu and Kelly).

7Osman [43].
8Taillard [62].
9Gendreau, Hertz, and Laporte [23].

10Rochat and Taillard [56].
11 Rego and Roucairol [54], parallel implementation.
12Toth and Vigo [67].

6.4. Tabu Search 137

As can be seen in Table 6.3, Taburoute produces high-quality results and often yields
a best known solution.

6.4.4 Tail lard's Algorithm

The Taillard [62] tabu search implementation contains some of the features of Taburoute,
namely, random tabu durations and diversification. It defines the neighborhood using the
A-interchange generation mechanism (Osman [43]). Rather than executing the insertions
with GENI, the algorithm uses standard insertions, thus enabling each insertion to be carried
out in less time, and feasibility is always maintained. Every so often, individual routes are
reoptimized using the optimization algorithm of Volgenant and Jonker [72].

A novel feature of Taillard's algorithm is the decomposition of the main problems
into subproblems. In planar problems, these subproblems are obtained by initially parti-
tioning vertices into sectors centered at the depot and into concentric regions within each
sector. Each subproblem can be solved independently, but periodical moves of vertices to
adjacent sectors are necessary. This makes sense when the depot is centered and vertices
are uniformly distributed in the plane. For nonplanar problems, and for planar problems
not possessing these properties, the author suggests a different partitioning method based of
the computation of shortest spanning arborescences rooted at the depot. This decomposi-
tion method is particularly well suited for parallel implementation as subproblems can then
be distributed among the various processors. The combination of these strategies yields
excellent computational results.

6.4.5 Xu and Kelly's Algorithm

With respect to the previous two tabu search algorithms, Xu and Kelly [76] used a more so-
phisticated neighborhood structure. They considered swaps of vertices between two routes,
a global repositioning of some vertices into other routes, and local route improvements.
The global repositioning strategy solves a network flow model to optimally relocate given
numbers of vertices into different routes. Approximations are developed to compute the
ejection and insertion costs, taking vehicle capacity into account. Route reoptimizations are
performed by means of 3-opt exchanges (Lin [39]) and a tabu search improvement routine.
The algorithm is governed by several parameters, which are dynamically adjusted through
the search. A pool of best solutions is memorized and periodically used to reinitiate the
search with new parameter values. Overall, this algorithm has produced several best known
solutions on benchmark instances, but it is fair to say that it is not as effective as some
other tabu search implementations. It tends to require a substantial computational effort,
and properly tuning its many parameters can be problematic.

6.4.6 Rego and Roucairol's Algorithms

The main feature of the Rego and Roucairol [54] tabu search algorithm is the use of ejection
chains to move from one solution to the next. An ejection consists of moving a vertex to the
position occupied by another vertex, thus creating a chain reaction of I levels. For a given

138 Chapter 6. Metaheuristics for the Capacitated VRP

route orientation, denote by i>,_i the predecessor of u/ and by i>/+i its successor. An £-level
ejection chain consists of replacing the triplets (vf_], t>f, vf+1) (A; = 0 , . . . , t} by the triplets

(vf_j , ^f"1' ff+1) (& = 1, . . . , • £) and of relocating u;
£. A legitimacy condition is defined to

ensure that the resulting solution remains feasible, i.e., that no arc appears more than once.
At a general step of the algorithm, several vertices are considered as candidate for an ejection,
together with their closest neighbors that do not yield an illegitimate ejection chain. As in
Taburoute, infeasible intermediate solutions are considered. A parallel implementation of
this procedure was developed. Again, this TS implementation yields good-quality results
but does not measure up to the best known algorithms. A variant of this algorithm, called
the subpath ejection method, was introduced by Rego [53]. Unfortunately, it does not seem
to improve on previous TS algorithms.

6.4.7 Barbarosoglu and Ozgur's Algorithm

Barbarosoglu and Ozgur [3] describe a rather simple tabu search algorithm containing
no diversification strategy and in which only feasible solutions are examined. Neighbor
solutions are defined by means of a ̂ -interchange scheme that favors vertices relatively far
from the centroid of their current route and close to the centroid of the new route. Route
reoptimizations are performed by applying a 2-opt procedure. The method was applied to
the six capacitated instances of the Christofides, Mingozzi, and Toth [11] set and yielded
interesting results.

6.4.8 Adaptive Memory Procedure of Rochat and Tail lard

One of the most interesting developments to have occurred in the area of tabu search in
recent years is the concept of adaptive memory developed by Rochat and Taillard [56]. It
is mostly used in TS, but its applicability is not limited to this type of metaheuristic. An
adaptive memory is a pool of good solutions that is dynamically updated throughout the
search process. Periodically, some elements of these solutions are extracted from the pool
and combined differently to produce new good solutions. In the VRP, vehicle routes selected
from several solutions will be used as a starting point. The extraction process gives a larger
weight to those routes belonging to the best solutions. When selecting these routes, care must
be taken to avoid including the same customer twice in a solution. This restriction means
that the selection process often will terminate with a partial solution that will have to be
completed using a construction heuristic. In the example depicted in Figure 6.1, extracting
routes A, D, and H from a memory of two solutions results in a partial solution. Rochat
and Taillard showed that the application of an adaptive memory procedure can enhance a
search strategy. This has enabled them to obtain two new best solutions on the 14 standard
VRP benchmark instances.

6.4.9 Granular Tabu Search of Toth and Vigo

Granular Tabu Search (GTS) is yet another very promising concept. It was introduced by
Toth and Vigo [67] and has yielded excellent results on the VRP. The main idea behind GTS

6.4. Tabu Search 139

Figure 6.1. Creating a new partial solution in the adaptive memory procedure.

stems from the observation that the longer edges of a graph have only a small likelihood
of belonging to an optimal solution. Therefore, by eliminating all edges whose length ex-
ceeds a granularity threshold, several unpromising solutions will never be considered by
the search process. Toth and Vigo suggested using v = fie, where ft is a sparsification
parameter typically chosen in the interval [1.0, 2.0], and c is the average edge length of
a solution obtained by a fast heuristic. If ft e [1.0, 2.0], then the percentage of remain-
ing edges in the graph tends to be in the 10% to 20% range. In practice, the value of
ft is dynamically adjusted whenever the incumbent has not improved for a given number
of iterations and is periodically decreased to its initial value. Neighbor solutions are ob-
tained by performing a limited number of edge exchanges within the same route or between
two routes. The authors proposed a procedure able to examine all potential exchanges in
O(\E(v)\) time, where E(v} — {(i, j) e E : ci} < v} U /, and / is a set of important
edges such as those incident to the depot or belonging to high-quality solutions. Toth and
Vigo implemented a version of GTS containing several of the features of Taburoute. As
the results presented in Table 6.3 show, GTS produces excellent solutions within very short
computing times.

140 Chapter 6. Metaheuristics for the Capacitated VRP

6.4.1 0 Computational Comparison

As rightly pointed out by Barr et al. [4] and Golden et al. [32], properly testing metaheuristics
is fraught with difficulties:

• These algorithms are usually governed by several user-controlled parameters. Pa-
rameter setting should be done on a different set of instances from those used for the
final tests.

• "Standard results" should be reported for one setting of the parameters. "Best results"
corresponding to the best parameter values should be given alongside.

• It is difficult to interpret computing times in the case of parallel implementations.

• Comparable instance values should be used in all comparisons. For example, in the
case of the VRP, different distance truncation rules yield vastly different results (see
Gendreau, Hertz, and Laporte [23]).

There is now a consensus among researchers that stricter testing practices must be
enforced, but this has not always been the case. The comparative results presented in
Table 6.3 should be read with these remarks in mind. These show that TS generally yields
very good solution values on the 14 benchmark instances. Two of the best known solution
values are known to be optimal, and the remaining ones are probably very close to being
optimal. It is now time to move to a new set of larger instances, including those recently
developed by Golden et al. [32].

On the algorithmic side, the time has come to concentrate on the development of
faster, simpler (with fewer parameters), and more robust algorithms, even if this causes a
small loss in solution quality. These attributes are essential if we want to see more of our
algorithms implemented in commercial packages.

6.5 Genetic Algorithms
A genetic algorithm is a randomized global search technique that solves problems by im-
itating processes observed during natural evolution. This problem-solving paradigm was
initially proposed by Holland [35], although it was 10 years before it was fully recognized
in the research community. A pure GA is a generic problem-solving method that uses little
heuristic information about the problem domain. It thus can be applied to a wide range
of ill-defined problems that do not lend themselves to specialized methods. Basically, a
GA evolves a population of bitstrings, or chromosomes, where each chromosome encodes
a solution to a particular instance. This evolution takes place through the application of
operators that mimic natural phenomena observed in nature (e.g., reproduction, mutation).
A simple GA is described in the following. We then explain how this paradigm can be
applied to a sequencing problem like the VRP.

6.5.1 Simple Genetic Algorithm

Starting from some randomly generated initial population of chromosomes .X"1 = (jCj , . . . , N

a simple GA may be described as follows. At each iteration t = 1, . . . , T, apply k times
Steps 1 to 3 (k < TV/2), then apply Step 4.

6.5. Genetic Algorithms 141

Step 1 (reproduction). Select two parent chromosomes from X'.
Step 2 (recombination). Generate two offspring from the two parent chromosomes using
a crossover operator.
Step 3 (mutation). Apply a random mutation to each offspring (with a small probability).
Step 4 (generation replacement). Create Xt+' from X' by removing the 2k worst solutions
in Xr and replace them with the 2k new offspring.

In this algorithm, parameter T is the number of generations and k the number of
selections per generation. The best solution produced over the T generations is the final
result of this algorithm. In Step 1, the selection of the parents is probabilistically biased in
favor of the best chromosomes. In Step 2, new offspring are produced through crossover
by exchanging bit substrings found on the two parents. Each offspring may then be slightly
modified in Step 3 by flipping a bit value from zero to one, or from one to zero, with a small
probability at each position. Finally, generation replacement takes place in Step 4. Through
this process, it is expected that an initial population of randomly generated chromosomes
will improve as parents are replaced by better offspring. Some theoretical results support
this claim (Holland [35], Goldberg [30]).

6.5.2 Application to Sequencing Problems

The classical approach presented in the previous section is not appropriate for sequencing
problems, like the TSP or the VRP. For one thing, the bit string representation of a solution
is not natural and is typically replaced by a path representation, namely, a string of integers
where each integer stands for a particular vertex. The position of each integer on the
string denotes its ordering on the route (with the last vertex being implicitly connected to
the first one). Secondly, specialized order-based crossover and mutation operators must
be developed to produce new offspring sequences. For example, Figure 6.2 illustrates
the application of the classical one-point crossover on two parent routes 0, 1,2, 3, 4, 5 and
0, 4, 3, 2, 5, 1, where vertex 0 stands for the depot; substrings coming from parent 2 are bold.
Two offspring are created by exchanging the substring located after a randomly selected
cutpoint (after the third position, in this example). Clearly, neither of the offspring is a valid
sequence, due to duplication and omission of vertices. A straightforward application of the
classical mutation operator would also lead to the same kinds of difficulties.

Specialized crossover and mutation operators thus were proposed in the literature to
produce new offspring sequences from parents (Potvin [48]). Figure 6.3 represents one of
them, called the order crossover (OX) (Oliver, Smith, and Holland [42]). First, two cut
points are randomly selected, and the substring located between these cut points on parent 1
is assigned to the offspring. In the example, the cut points are selected after the third and
the fifth position, respectively. The remaining positions are then filled one at a time, starting

Parent 1
Parent 2 ;
Offspring 1
Offspring 2

: 0
: 0
: 0
: 0

1
4
1
4

2
3
2
3

3
2
2
3

4
5
5
4

5
1
1
5

Figure 6.2. One-point crossover.

142 Chapters. Metaheuristics for the Capacitated VRP

Parent 1
Parent 2
Offspring 1
Offspring 1

: 0
: 0

: 0

1
4

2

2
3

5

3
2
3
3

4
5
4
4

5
1

1

Figure 6.3. Order crossover.

after the second cut point, by considering the vertices in the order found on the second parent
(wrapping around, when the end of the string is reached), while avoiding duplications. A
second offspring may be created by inverting the role of the parents. Through OX, the
offspring tend to inherit the relative order of the vertices on the parent strings. Other
operators tend to preserve the position of the vertices (Goldberg and Lingle [31]) or the
edges of the parent solutions (Whitley, Starkweather, and Fuquay [74]).

With respect to mutation, simple remove-and-reinsert (RAR) or swap operators have
been devised that move one or two vertices to some other position on the string. In Figure 6.4,
an RAR mutation is shown: vertex 2 is randomly selected and moved from position 3 to
position 5. Note that a few vertices must be shifted accordingly. Other, more involved,
mutation operators have also been devised, like inversion (Holland [35]).

Experience with genetic algorithms for solving combinatorial problems showed that
the classical algorithmic framework, with mutation acting as a secondary operator to slightly
perturb solutions, does not yield competitive results. Because of its general applicability,
this framework does not exploit enough information about the problem to produce high-
quality solutions. To be effective, the genetic algorithm must be hybridized with a local
search method, either a local descent (Braun [8], Davis [15], Muhlenbein, Gorges-Schleuter
and Kramer [41], Suh and Gucht [61], and Ulder et al. [68]) or even a tabu search (Fleuren
and Ferland [21]), specifically designed for the problem at hand. In this case, the local
search method may be viewed as a powerful mutation operator integrated within the genetic
algorithm and applied with some probability to each offspring. Alternatively, this approach
may be viewed as a multistart local search method, with starting points obtained through a
sampling of the search space provided by the genetic algorithm.

6.5.3 Application to the VRP

The literature on the development of genetic algorithms for solving the VRP is rather scant.
This contrasts with the applications for the TSP (Potvin [48]) or more complex variants
of the VRP with time windows (VRPTW) and precedence constraints (Blanton and Wain-
wright [7], Potvin and Bengio [49], Potvin, Duhamel, and Guertin [50], Thangiah [65],
Thangiah [64], and Thangiah et al. [66]). In the first case, the abundance of research is
related to the fact that the TSP is a well-known canonical problem, which provides a useful

Offspring 1 : 0 1 2 3 4 5
Offspring 1 : 0 1 3 4 2 5

Figure 6.4. RAR mutation.

6.5. Genetic Algorithms 143

testbed for experimenting with new ideas. In the second case, the presence of complicating
constraints, in particular time windows, has until recently hampered the development of
effective problem-solving methods. Thus, there was clearly an opportunity for the GA to
provide competitive results, given its relative robustness in the presence of complex con-
straints. In fact, some very effective implementations have been reported in the literature
for the VRPTW (Potvin and Bengio [49], Thangiah [64]). The work done on the CVRP,
including its distance or time-constrained variant, was mostly aimed at evaluating the im-
pact of different components or parameters of a GA on the efficiency of the search. Van
Breedam [70] compares a GA with previously developed simulated annealing and tabu
search heuristics on different types of vehicle routing problems, including the CVRP. He
also performs a statistical analysis of the impact of various parameters on solution quality
for the genetic algorithm and simulated annealing. Given that a solution to a VRP is made
of multiple routes (as opposed to the TSP), the path representation is extended and contains
multiple copies of the depot, with each copy acting as a separator between two routes. For
example, the string shown in Figure 6.5 would correspond to a VRP solution made of three
routes: the first route contains vertices 1 and 2, the second route contains vertices 3 and 4,
and the last route only contains vertex 5.

A classical order-based crossover operator, known as PMX (Goldberg and Lingle [31]),
and a RAR mutation operator are then adapted for this extended representation. At each
iteration, these operators are applied until the required number of feasible offspring solu-
tions is produced (infeasible offspring are discarded). Van Breedam also use a local descent
operator based on four different types of exchange move and applies it only to the best
solution in the current population. Using his own set of 15 test problems with 100 vertices,
among which the first six are CVRPs, the author demonstrates that the local descent operator
has a significant positive impact on the performance of the GA. Overall, the best solutions
produced by the genetic algorithm, simulated annealing, and tabu search (all developed by
Van Breedam) are of comparable quality. The genetic algorithm requires more computation
time than the other two methods, but the author points out that "no attention has been paid
to the efficiency of the code." No comparison is provided with other metaheuristics for the
VRP reported in the literature, as the primary goal of this work was to evaluate the impact of
different parameters on solution quality. Another GA application for the time-constrained
CVRP may be found in Schmitt [58, 59]. An interesting feature of this work is that a
route-first, cluster-second approach is used, thus allowing the classical path representation
(without separators) to be used. That is, the strings manipulated by the GA correspond
to megaroutes over all vertices. A solution to the VRP is then identified through a sweep
procedure starting with the vertex in first position on the string. A route ends when either
the capacity or the maximum route time constraint would be exceeded by including the next
vertex. The latter vertex is then used to initiate a new route. Using this approach, each
string can be decoded into a feasible solution to the problem. The implementation proposed
by Schmitt [59] uses the OX crossover operator and a swap mutation operator, where two
randomly selected vertices exchange their position. To improve the performance of the GA,

String : 0 1 2 0 3 4 0 5

Figure 6.5. Representation of a VRP solution.

144 Chapters. Metaheuristics for the Capacitated VRP

this mutation operator is then replaced by a 2-opt local search method (Croes [14], Lin [39]),
applied with a probability of 0.15 to each offspring. This GA was tested on the Christofides,
Mingozzi, and Toth [11] test problems with mixed results: the GA proved better than the
Clarke and Wright [12] heuristic but worse than simple construction heuristics combined
with improvement procedures. In all cases, the GA was more computationally expensive
than the competing methods. In Bean [5], an encoding scheme based on random keys was
proposed to address sequencing problems. In this case, each element of the sequencing
problem is tagged with a randomly generated key. Decoding these keys into a solution
of the problem typically is accomplished through a sorting procedure. For the VRP, each
customer is tagged with a random integer, which stands for the vehicle that will service the
customer, plus a real number taken in the interval (0, 1). By sorting these keys, the sequence
of customers on each vehicle route is obtained. This application of random keys for the
VRP is provided only for illustrative purposes in Bean [5] and is not explored further. Based
on these scarce results, it is fair to say that genetic algorithms are not yet competitive on the
VRP, particularly in view of some recent tabu search developments. However, almost all
research efforts with genetic algorithms have focused on the TSP or time window variants
of the VRP. The successes obtained on the latter class of problems tend to indicate that more
work on the VRP could lead to competitive implementations.

6.6 Ant Algorithms
Ant systems methods are inspired from an analogy with real ant colonies foraging for food.
In their search for food, ants mark the paths they travel by laying an aromatic essence called
pheromone. The quantity of pheromone laid on a path depends on the length of the path
and the quality of the food source. This pheromone provides information to other ants that
are attracted to it. With time, paths leading to the more interesting food sources, i.e., those
close to the nest and with large quantities of food, become more frequented and are marked
with larger amounts of pheromone. Overall, this process leads to an efficient procedure for
procuring food by ant colonies.

This observation led Colorni, Dorigo, and Maniezzo [13] to propose a new class of
metaheuristics for solving combinatorial problems based on the following correspondences:
Artificial ants searching the solution space simulate real ants exploring their environment,
objective function values are associated with the quality of food sources, and values recorded
in an adaptive memory mimic the pheromone trails.

To illustrate the basic principles of the approach, we briefly describe a simple AS for
the TSP, the problem to which Colorni, Dorigo, and Maniezzo first applied their method.
With each (u,-, u7) are associated two values: the visibility n,-7- (the inverse of edge length),
which is a static value, and the pheromone trail F/;, which is updated dynamically as
the algorithm proceeds. At each iteration, artificial ants starting from each vertex of the
graph construct n new tours using a probabilistic nearest neighbor heuristic with a modified
distance measure. This measure is derived from ni; and F,-y to favor the selection of cities
that are close and connected by edges with a high pheromone value. At the end of each
iteration, trail values are updated by first allowing a fraction (1 — p), where 0 < p < 1,
of the old pheromone to evaporate and by then laying new pheromone on the edges of the
tours built during this iteration. If edge (u/, u/) was used by ant k and the length of the tour

6.6. Ant Algorithms 145

constructed by this ant was Lk, the pheromone trail is increased by Af- = 1/L*. The trail
value for edge (D,, v/) is thus updated as follows:

where N is the number of ants. This process of tour construction and trail update is repeated
for a fixed number of iterations. It is important to note the role of the evaporation parameter
(1 — p) that prevents poor solutions obtained in early iterations from conditioning the search
too strongly at later stages of the algorithm.

The method was refined by the addition of several features on applications such as
the symmetric and asymmetric TSP (Dorigo, Maniezzo, and Colorni [17], Dorigo and
Gambardella [16]). A general conclusion can be drawn from these papers that while the
method can sometimes produce excellent results, it cannot usually compete with other
metaheuristics or specialized local search heuristics, unless it is hybridized one way or
another with a local optimizer.

So far, only three papers have dealt with the application of ant systems to the VRP. In
the first one, Kawamura et al. [37] proposed a complex hybrid variant of AS that involves
2-opt improvement procedures and probabilistic acceptance rules reminiscent of simulated
annealing. The method was applied to two geometric 30- and 60-customer instances and
it identified the optimal solution in both cases. No other tests were performed, which
makes it difficult to assess the effectiveness of this procedure. The other two papers are
by Bullnheimer, Hartl, and Strauss [9, 10]. In their first paper, the authors developed a
hybrid ant systems in which each vehicle route produced in a given iteration is improved
by the 2-opt heuristic before trail update. This algorithm also uses terms related to vehicle
capacity and distance savings with respect to the depot when selecting the next vertex to be
visited. In the trail update step, they use a number of "elitist ants" to account for the best
solution found so far (these ants are assumed to always travel on this best solution). Their
computational experiments on the 14 problems of Christofides, Mingozzi, and Toth [11]
indicate that the addition of a 2-opt step and the use of elitist ants are clearly beneficial. The
best results obtained over 30 distinct runs range from 0 to 14.09% above the best known
solutions to the problems with an average error of 4.43% (see Table 6.4).

In their second paper, the authors refined their algorithm in several ways: (a) the
capacity term previously used in the vertex selection rule, which was quite expensive to
compute, is dropped, and the saving term is incorporated directly in the visibility term in a
parametric fashion, (b) Only the _n/^\ nearest neighbors of any vertex are considered when
choosing the next customer to visit, (c) Only the five best solutions found in each iteration
are used for trail update, and the pheromone quantity laid is further weighted according
to the solution's rank. These various changes have led to shorter run times and improved
solutions. The computational results obtained on the 14 benchmark problems are quite good
with an average error of only 1.51% above the best known solutions (see Table 6.4) and
CPU times that are very reasonable.

Overall, these results are quite encouraging considering the very limited experience
with the application of ant systems to the VRP. If one recalls the improvements obtained
by later implementations of other metaheuristics, it seems reasonable to expect future ant
systems implementations to be more competitive.

146 Chapter 6. Metaheuristics for the Capacitated VRP

Table 6.4. Computational results for the ant systems algorithms.

Hybrid ant systems
Problem
E051-05e
E076-10e
E101-08e
ElOl- lOc
E121-07C
E151-12C
E200-17C
D051-06C
D076-11C
D101-09C
DIOl-llc
D121-11C
D151-14C
D200-18C

r1

524.61
870.8

879.43
819.96

1072.45
1147.41
1473.40
562.93
948.16
886.17
869.86

1590.52
1202.01
1504.79

Time2

0.6
2.4

11.3
10.1
16.2
28.5
82.2
0.2
3.5
7.3
3.1
4.3

26.6
57.3

Improved

/*
524.61
844.31
832.32
819.56

1065.21
1061.55
1343.46
560.24
916.21
866.74
867.07

1559.92
1195.99
1451.65

Time2

0.1
1.3
3.8
5.0
9.2

18.4
87.6
0.1
1.7
4.8
5.8

11.0
27.5
81.8

Best known
solution value

524.61
835.26
826.14
819.56

1042.11
1028.42
1291.45
555.43
909.68
865.94
866.37

1541.14
1162.55
1395.85

'Best value over 30 runs.
2 Minutes on a Pentium 100.

6.7 Neural Networks
Neural networks are computational models composed of units that are richly interconnected
through weighted connections, like neurons in the human brain: a signal is sent from one
unit to another along a connection and is modulated through the associated weight. Al-
though superficially related to their biological counterpart, artificial neural networks exhibit
characteristics related to human cognition. In particular, they can learn from experience and
induce general concepts from specific examples through an incremental adjustment of their
weights. These models were originally designed for tasks associated with human intelli-
gence and where traditional computation has proven inadequate, like artificial vision and
speech understanding. More recently, they have been applied to combinatorial problems as
well, starting with the pioneering work of Hopfield and Tank [36]. The TSP,in particular,
has been the subject of many investigations with the Hopfield-Tank model, the elastic net
(EN) (Durbin and Willshaw [20]), and the self-organizing map (SOM) (Kohonen [38]). The
EN and SOM models are quite remote from classical neural networks, but they have proved
to be more effective on the TSP than the (more classical) Hopfield-Tank model. However,
neither of these methods is yet competitive with other metaheuristics (Potvin [47]).

The elastic net and self-organizing maps are deformable templates that adjust them-
selves to the contour of the vertices to solve a TSP, as illustrated in Figure 6.6. The white
circles are vertices and the small black circles are units of the model. These units are linked
to form a ring. Starting from some arbitrary configuration, the location of each unit on
the ring is incrementally adjusted (like the connection weights of classical neural network
models), until at least one unit becomes sufficiently close to each vertex. At the end, each
vertex is assigned to the closest unit. Through this assignment, the ordering of the units
along the ring determines an ordering of the vertices on the TSP tour. EN and SOM work

6.7. Neural Networks 147

Figure 6.6. Evolution of a deformable template in (a), (b), (c), and the final solution (d).

similarly, but they differ in the mechanisms used to control the migration of units toward
the vertices.

Deformable templates can be easily applied to pure geometric problems, like Eu-
clidean TSPs. However, they are not designed to handle additional constraints, like capacity
and maximum route time constraints, which often break the geometric nature of the prob-
lem. Only a few recent efforts have been devoted to the VRP, mostly based on variants of the
SOM (Ghaziri [25], Ghaziri [26], Ghaziri [27], Matsuyama [40], and Schumann and Ret-
zko [60]). A generalization of these models from the TSP to the VRP is obtained by using
many deformable templates, one for each route. Typically, the models are applied with an
increasing number of rings (routes) until a feasible solution is identified. Because multiple
rings are now present, a competition takes place among the rings to get an equal share of
vertices. The procedure suggested by Ghaziri [26] for the CVRP may be summarized as
follows:

Step 1 (ring competition and migration). Repeat until there is a unit sufficiently close to
each vertex:

1.1 Consider the next vertex (wrap around when the last vertex has been done) and
set it as the current vertex.

1.2 Associate a selection probability with each ring.
1.3 Select a ring according to the probability distribution defined in step 1.2.
1.4 Tentatively assign the current vertex to the closest unit on the selected ring and

move this unit (as well as some of its neighbors on the ring) toward the current
vertex.

Step 2 (vertex assignment). Permanently assign each vertex to the closest unit to produce
a solution.

148 Chapter6. Metaheuristics for the Capacitated VRP

The probability associated with each ring is dynamically adjusted as the algorithm
unfolds. At the start, the distance between the current vertex and the closest unit on the
ring plays the dominant role. Later on, the capacity constraint is taken into account, as
rings that cannot accommodate the current vertex without violating this constraint (due to
the tentatively assigned vertices) becomes less likely to be selected. At the end, only feasi-
ble rings have a nonnegligible probability of being selected. In a later study, Ghaziri [27]
extended this model to address the VRP with maximum route time constraints through
a modification of the probability distribution over the rings. Computational results on
the Christofides, Mingozzi, and Toth [11] test set have shown that these models pro-
duce solutions of relatively good quality but are not competitive with alternative meta-
heuristics, in particular tabu search (Gendreau, Hertz, and Laporte [23] and Rochat and
Taillard [56]).

6.8 Conclusions

This survey of metaheuristics for the VRP shows that the best of these methods can find
excellent and sometimes optimal solutions to instances with a few hundred customers,
albeit at a significant cost in computation time. Tabu search now emerges as the most
effective approach. Procedures based on pure genetic algorithms and on neural networks
are clearly outperformed, while those based on simulated or deterministic annealing and on
ant systems are not quite competitive. Considering the performance improvements obtained
with successive implementations of any given approach, it appears, however, that hybrid
ant systems and genetic algorithms may, in the future, be able to match the effectiveness of
existing tabu search heuristics, since these approaches have not been fully exploited. Another
observation is that the data sets currently used as benchmarks are made up of instances that
are too small to allow one to differentiate sharply between the various implementations of
some of the metaheuristics, tabu search in particular. Data sets corresponding to larger
instances are thus required. In the same vein, one may wonder how these metaheuristics
would perform on the much larger instances often encountered in practical applications.
Given their computing requirements, heuristics with such a level of sophistication may
be unable to solve satisfactorily these large instances in any reasonable amount of time,
especially if real-time applications are contemplated. With respect to the classical heuristics
presented in Chapter 5, metaheuristics are rather time consuming, but they also provide much
better solutions. Typically, classical methods yield solution values between 2% and 10%
above the optimum (or the best known solution value), while the corresponding figure for the
best metaheuristic implementation is often less than 0.5%. This is illustrated in Figure 6.7.
It is time to develop simpler methods capable of quickly providing good quality solutions.
This will probably be achieved by speeding up the best available metaheuristics, rather than
investing more effort on classical approaches. The GTS algorithm proposed by Toth and
Vigo is an important step in the right direction. It draws from the vast expertise accumulated
in the field of metaheuristics and exploits some of their best concepts. Yet, by carefully
exploiting the problem structure, it manages to avoid most of the unnecessary computations
carried out in previous tabu search algorithms.

Bibliography 149

Figure 6.7. Evolution of heuristics for the VRP.

Bibliography

[1] E.H.L. Aarts and J.K. Lenstra. Local Search in Combinatorial Optimization. Wiley,
Chichester, UK, 1997.

[2] A.S. Alfa, S.S. Heragu, and M. Chen. A 3-opt based simulated annealing algorithm for
vehicle routing problems. Computers & Industrial Engineering, 21:635-639, 1991.

[3] G. Barbarosoglu and D. Ozgur. A tabu search algorithm for the vehicle routing problem.
Computers and Operations Research, 26:255-270, 1999.

[4] R.S. Barr, B.L. Golden, J.P. Kelly, M.G.C. Resende, and W.R. Stewart, Jr. Design-
ing and reporting on computational experiments with heuristic methods. Journal of
Heuristics, 1:9-32, 1995.

[5] J.C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing, 6:154-160, 1994.

[6] J.E. Beasley. Route-first cluster-second methods for vehicle routing. Omega, 11:403-
408, 1983.

[7] J.L. Blanton and R.L. Wainwright. Multiple vehicle routing with time and capacity
constraints using genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth

150 Bibliography

International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA,
1993, pp. 452^59.

[8] H. Braun. On solving travelling salesman problems by genetic algorithms. In H.P.
Schwefel and R. Manner, editors, Parallel Problem-Solving from Nature, Springer-
Verlag, Berlin, 1991, pp. 129-133.

[9] B. Bullnheimer, R.F. Hartl, and C. Strauss. Applying the ant system to the vehicle
routing problem. In S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization,
Kluwer, Boston, MA, 1998, pp. 109-120.

[10] B. Bullnheimer, R.F. Hartl, and C. Strauss. An improved ant system for the vehicle
routing problem. Annals of Operations Research, 89:319-328, 1999.

[11] N. Christofides, A. Mingozzi, and P. Toth. The vehicle routing problem. In
N. Christofides, A. Mingozzi, P. Toth, and C. Sandi, editors, Combinatorial Opti-
mization, Wiley, Chichester, UK, 1979, pp. 315-338.

[12] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[13] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed optimization by ant colonies.
In F. Varela and P. Bourgine, editors, Proceedings of the European Conference on
Artificial Life, Elsevier, Amsterdam, 1991.

[14] G. Croes. A method for solving traveling salesman problems. Operations Research,
6:791-812, 1958.

[15] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

[16] M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learning ap-
proach for the traveling salesman problem. IEEE Transactions on Evolutionary Com-
putation, 1:53-66, 1997.

[17] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics Part B,
26:29-41, 1996.

[18] G. Dueck. New optimization heuristics: The great deluge algorithm and the record-
to-record travel. Journal of Computational Physics, 104:86-92, 1993.

[19] G. Dueck and T. Scheurer. Threshold accepting: A general purpose optimization
algorithm. Journal of'Computational Physics, 90:161-1'}'5, 1990.

[20] R. Durbin and D. Willshaw. An analogue approach to the travelling salesman problem
using an elastic net method. Nature, 326:689-691, 1987.

[21] C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph colouring.
Annals of Operations Research, 63:437^61, 1996.

Bibliography 151

[22] M. Gendreau, A. Hertz, and G. Laporte. New insertion and postoptimization pro-
cedures for the traveling salesman problem. Operations Research, 40:1086-1094,
1992.

[23] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle routing
problem. Management Science, 40:1276-1290, 1994.

[24] M. Gendreau, G. Laporte, and J.-Y. Potvin. Vehicle routing: Modern heuristics. I
E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial Optimization,
Wiley, Chichester, UK, 1997, pp. 311-336.

[25] H. Ghaziri. Solving routing problems by a self-organizing map. In T. Kohonen,
K. Makisara, O. Simula, and J. Kangas, editors, Artificial Neural Networks, North-
Holland, Amsterdam, 1991, pp. 829-834.

[26] H. Ghaziri. Algorithmes connexionnistes pour 1'optimisation combinatoire. These de
doctoral, Ecole Fob/technique Federate de Lausanne, Switzerland, 1993.

[27] H. Ghaziri. Supervision in the self-organizing feature map: Application to the vehicle
routing problem. In I.H. Osman and J.P. Kelly, editors, Meta-Heuristics: Theory and
Applications, Kluwer, Boston, MA, 1996, pp. 651-660.

[28] F. Glover and M. Laguna. Tabu search. In C.R. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, Blackwell, Oxford, UK, 1993, pp. 70-150.

[29] F. Glover and M. Laguna. Tabu Search. Kluwer, Boston, MA, 1997.

[30] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA, 1989.

[31] D.E. Goldberg and R. Lingle. Alleles, loci and the traveling salesman problem. In
J.J. Grefenstette, editor, Proceedings of the First International Conference on Genetic
Algorithms, Lawrence Erlbaum, Hillsdale, NJ, 1985, pp. 154-159.

[32] B.L. Golden, E.A. Wasil, J.P. Kelly, and I.M. Chao. Metaheuristics in vehicle routing.
In T.G Crainic and G. Laporte, editors, Fleet Management and Logistics, Kluwer,
Boston, MA, 1998, pp. 33-56.

[33] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new exact algorithm for
the vehicle routing problem based on q-paths and ^-shortest paths relaxations. Annals
of Operations Research, 61:21^3, 1995.

[34] A. Hertz, E.D. Taillard, and D. De Werra. Tabu search. In E.H.L. Aarts and J.K.
Lenstra, editors, Local Search in Combinatorial Optimization, Wiley, Chichester, UK,
1997, pp. 121-136.

[35] J.H. Holland. Adaptation in Natural and Artificial Systems. The University of Michiga
Press, Ann Arbor, MI, 1975.

[36] J.J. Hopfield and D.W. Tank. Neural computation of decisions in optimization prob
lems. Biological Cybernetics, 52:141-152, 1985.

152 Bibliography

[37] H. Kawamura, M. Yamamoto, T. Mitamura, K. Suzuki, and A. Ohuchi. Cooperative
search on pheromone communication for vehicle routing problems. IEEE Transactions
on Fundamentals, E81-A: 1089-1096, 1998.

[38] T. Kohonen. Self-Organization and Associative Memory. Springer, Berlin, 1988.

[39] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44:2245-2269, 1965.

[40] Y. Matsuyama. Self-organization via competition, cooperation and categorization
applied to extended vehicle routing problems. In Proceedings of the International
Joint Conference on Neural Networks, Seattle, WA, 1991, pp. 385-390,

[41] H. Mulhenbein, M. Gorges-Schleuter, and O. Kramer. Evolution algorithms in com-
binatorial optimization. Parallel Computing, 7:65-85, 1988.

[42] I.M. Oliver, D.J. Smith, and J.R.C. Holland. A study of permutation crossover op-
erators on the traveling salesman problem. In J.J. Grefenstette, editor, Proceedings
of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum,
Hillsdale, NJ, 1987, pp. 224-230.

[43] I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of Operations Research, 41:421-451, 1993.

[44] I.H. Osman and J.P. Kelly. Meta-heuristics: An overview. In I.H. Osman and J.P. Kelly,
editors, Meta-Heuristics: Theory and Applications, Kluwer, Boston, MA, 1996, pp. 1
21.

[45] I.H. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations
Research, 63:513-628, 1996.

[46] M. Pirlot. General local search heuristics in combinatorial optimization: A tutorial.
Belgian Journal of Operations Research, Statistics and Computer Science, 32:8-67,
1992.

[47] J.-Y. Potvin. The traveling salesman problem: A neural network perspective. ORSA
Journal on Computing, 5:328-348, 1993.

[48] J.-Y. Potvin. Genetic algorithms for the traveling salesman problem. Annals of Oper-
ations Research, 63:339-370, 1996.

[49] J.-Y. Potvin and S. Bengio. The vehicle routing problem with time windows Part II:
Genetic search. INFORMS Journal on Computing, 8:165-172, 1996.

[50] J.-Y. Potvin, C. Duhamel, and F. Guertin. A genetic algorithm for vehicle routing with
backhauling. Applied Intelligence, 6:345-355, 1996.

[51] V.M. Pureza and P.M. Fran£a. Vehicle routing problems via tabu search metaheuristic.
Technical Report CRT-347, Centre for Research on Transportation, Montreal, Canada,
1991.

Bibliography 153

[52] C.R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems, Black-
well, Oxford, UK, 1993.

[53] C. Rego. A subpath ejection method for the vehicle routing problem. Management
Science, 44:1447-1459, 1998.

[54] C. Rego and C. Roucairol. A parallel tabu search algorithm using ejection chains for
the vehicle routing problem. In I.H. Osman and J.P. Kelly, editors, Meta-Heuristics:
Theory and Applications, Kluwer, Boston, MA, 1996, pp. 661-675.

[55] F. Robuste, C.F. Daganzo, and R. Souleyrette. Implementing vehicle routing models.
Transportation Research B, 24:263-286, 1990.

[56] Y. Rochat and E.D. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics, 1:147-167, 1995.

[57] D.E. Rumelhart and J.L. McClelland, editors. Parallel Distributed Processing: Ex-
plorations in the Micro structure of Cognition, MIT Press, Cambridge, MA, 1986.

[58] LJ. Schmitt. An empirical computational study of genetic algorithms to solve order
based problems: An emphasis on TSP and VRPTC. Ph.D. dissertation, Fogelman
College of Business and Economics, University of Memphis, TN, 1994.

[59] L.J. Schmitt. An evaluation of a genetic algorithmic approach to the vehicle rout-
ing problem. Working paper, Department of Information Technology Management,
Christian Brothers University, Memphis, TN, 1995.

[60] M. Schumann and R. Retzko. Self-organizing maps for vehicle routing problems—
minimizing an explicit cost function. In F. Fogelman-Soulie, editor, Proceedings of
the International Conference on Artificial Neural Networks, Paris, 1995, pp. 401^406.

[61] J.Y. Suh and D.V. Gucht. Incorporating heuristic information into genetic search.
In J.J, Grefenstette, editor, Proceedings of the Second International Conference on
Genetic Algorithms, Lawrence Erlbaum, Hillsdale, NJ, 1987, pp. 100-107.

[62] E.D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks,
23:661-673, 1993.

[63] E.D. Taillard, L.M. Gambardella, M. Gendreau, and J.-Y. Potvin. Adaptive memory
programming: A unified view of metaheuristics. Research Report IDSIA/19-98,
IDSIA, Lugano, Switzerland, 1998.

[64] S.R. Thangiah. Vehicle routing with time windows using genetic algorithms. Technical
Report SRU-CpSc-TR-93-23, Slippery Rock University, Slippery Rock, PA, 1993.

[65] S.R. Thangiah. An adaptive clustering method using a geometric shape for vehicle
routing problems with time windows. In L.J. Eshelman, editor, Proceedings of the Sixth
International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA,
1995, pp. 536-543.

154 Bibliography

[66] S.R. Thangiah, I.H. Osman, R. Vinayagamoorthy, and T. Sun. Algorithms for the
vehicle routing problem with time deadlines. American Journal of Mathematical and
Management Sciences, 13:323-355, 1993.

[67] P. Tom and D. Vigo. The granular tabu search and its application to the vehicle routing
problem. INFORMS Journal on Computing, 15:333-346, 2003.

[68] N.L.J. Ulder, E.H.L. Aarts, H.J. Bandelt, P.J.M. van Laarhoven, and E. Pesch. Genetic
local search algorithms for the traveling salesman problem. In H.P. Schwefel and
R. Manner, editors, Parallel Problem-Solving from Nature, Springer-Verlag, Berlin,
1991, pp. 109-116.

[69] A. Van Breedam. Improvement heuristics for the vehicle routing problem based on
simulated annealing. European Journal of Operational Research, 86:480-490, 1995.

[70] A. Van Breedam. An analysis of the effect of local improvement operators in genetic
algorithms and simulated annealing for the vehicle routing problem. RUCA Working
Paper 96/14, University of Antwerp, Belgium, 1996.

[71] P.J.M. Van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applica-
tions, Reidel, Dordrecht, 1987.

[72] A. Volgenant and R. Jonker. The symmetric traveling salesman problem and edge
exchange in minimal 1-trees. European Journal of Operational Research, 12:394—
403, 1983.

[73] P.D. Wasserman. Neural Computing—Theory and Practice. Van Nostrand Reinhold,
New York, 1989.

[74] D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and traveling sales-
men: The genetic edge recombination operator. In J.D. Schaffer, editor, Proceedings
of the Third International Conference on Genetic Algorithms, Morgan Kaufmann, San
Mateo, CA, 1989, pp. 133-140.

[75] J.A.G. Willard. Vehicle routing using r-optimal tabu search. M.sc. dissertation, The
Management School, Imperial College, London, 1989.

[76] J. Xu and J.P. Kelly. A network flow-based tabu search heuristic for the vehicle routing
problem. Transportation Science, 30:379-393, 1996.

Part II

Important Variants of the
Vehicle Routing Problem

This page intentionally left blank

Chapter 7

VRP with Time Windows

Jean-Francois Cordeau
Guy Desaulniers
Jacques Desrosiers
Marius M. Solomon
Francois Soumis

7.1 Introduction
The VRP with Time Windows (VRPTW) is the extension of the CVRP where the service at
each customer must start within an associated time window and the vehicle must remain at
the customer location during service. Soft time windows can be violated at a cost, while hard
time windows do not allow for a vehicle to arrive at a customer after the latest time to begin
service. In the latter case, if it arrives before the customer is ready to begin service, it waits.
We will concentrate on hard time window scenarios, for which research has flourished over
the last two decades.

As mentioned in Chapter 1, the VRPTW is NP-hard. Indeed, even finding a feasible
solution to the VRPTW with a fixed fleet size is itself an NP-complete problem (Savels-
bergh [77]). Hence, the early work on the VRPTW was case study oriented (Pullen and
Webb [73], Knight and Hofer [56], Madsen [65]). Later research shifted focus to the design
of heuristics able to solve realistic-size problems and the development of effective optimal
approaches.

This chapter is organized as follows. The first section presents a multicommodity
network flow formulation with time and capacity constraints for the VRPTW. Approximation
methods proposed in the literature to derive upper bounds are then reviewed in section 7.3.
Section 7.4 explains how lower bounds can be obtained using optimal approaches, namely,
Lagrangian relaxation and column generation. Next, section 7.5 provides branching and

157

1 58 Chapter 7. VRP with Time Windows

cutting strategies that can be embedded within these optimal approaches to produce integer
solutions through a branch-and-bound scheme. Then, sections 7.6 and 7.7 present special
cases and extensions to the VRPTW, respectively. We review computational experience
with leading algorithms in section 7.8. Finally, conclusions are drawn in section 7.9.

7.2 Problem Formulation
Starting from the notation given in Chapter 1, the VRPTW is defined on the network G =
(V, A), where the depot is represented by the two nodes 0 and n + 1. All feasible vehicle
routes correspond to paths in G that start from node 0 and end at node n + 1 . A time windo
is also associated with nodes 0 and n + 1, i.e., [ao, bo] = [an+\, bn+i] = [E, L], where
E and L represent the earliest possible departure from the depot and the latest possible
arrival at the depot, respectively. Moreover, zero demands and service times are defined
for these two nodes, that is, do = dn+\ = SQ = sn+\ = 0. Feasible solutions exist only
if do = E < min(ey\{o) bt — % and bn+\ = L > min,ev\{0} at + st + f ;o- Note also that
an arc (i, j) e A can be eliminated due to temporal considerations, if a; + s,- + fy > bj,
or to capacity limitations, if d{ + dj > C, or to other factors. Finally, let us mention
that when vehicles are allowed to remain at the depot, especially in the case where the
primary objective consists of minimizing the number of vehicles used, the arc (0, n + 1)
with co,w+i = fo,w+i = 0 must be added to the arc set A.

We next present a mathematical programming formulation for the VRPTW involving
two types of variables: flow variables jc/^, (i, j) € A, k e K, equal to 1 if arc (i, y) is used
by vehicle k and 0 otherwise, and time variables wik, i e V, k e K, specifying the start of
service at node / when serviced by vehicle k.

7.2.1 Formulation

The VRPTW can then be formally described as the following multicommodity network flow
model with time window and capacity constraints:

subject to

7.2. Problem Formulation 159

The objective function (7.1) of this nonlinear formulation expresses the total cost.
Given that N — V \ {0, n + 1} represents the set of customers, constraints (7.2) restric
the assignment of each customer to exactly one vehicle route. Next, constraints (7.3)-(7.5)
characterize the flow on the path to be followed by vehicle k. Additionally, constraints (7.6)-
(7.8) and (7.9) guarantee schedule feasibility with respect to time considerations and capacity
aspects, respectively. Note that for a given k, constraints (7.7) force Wik = 0 whenever
customer i is not visited by vehicle k. Finally, conditions (7.1 1) impose binary conditions
on the flow variables.

The binary conditions (7.1 1) allow constraints (7.6) to be linearized as

where M// are large constants. Furthermore, M(/ can be replaced by max {fr,+5,+?^— a/ , 0},
(/, 7) € A, and constraints (7.6) or (7.6a) need only be enforced for arcs (i, 7) e A such
that MJJ > 0; otherwise, when maxjb, +Sj + ?// — a,•, 0} =0, these constraints are satisfied
for all values of Wik, Wjk, and xijk-

7.2.2 Network Lower Bound

The network lower bound can be derived by relaxing the time and capacity constraints (7.6)-
(7.9). Generally, the bound deteriorates as time window width increases or as capacity
constraints become tighter. This bound is often of poor quality, as there is usually an
integrality gap with respect to the number of vehicles. Note, however, that if the latter
constraints are not binding and if a, = bj for all i G N, we obtain the fixed schedule
problem for which the network lower bound is optimal.

7.2.3 Linear Programming Lower Bound

The linear programming lower bound is obtained as the solution to the linear program
using constraints (7.6a) in place of (7.6) and with the binary requirements (7.11) omitted.
This is the above network flow problem with the additional time and capacity constraints.
Nevertheless, in many cases, this bound is no better than the network relaxation bound.
This is because it is relatively easy to obtain a fractional near-optimal linear programming
solution to problem (7.1)-(7.10) for which the time constraints are inactive. To see this, set

160 Chapter 7. VRP with Time Windows

the time variables at the center of their respective time windows, i.e., wik = (at + £()/2,
i e N, k e K. Then, constraints (7.6a) are satisfied if for all (i, j) e A and k e K

Since any existing arc (/, j) € A satisfies af + st + fy — bj < 0, and constraints (7.6a)
are only defined for arcs (i, j) such that bt + s{ + ?,7 — cij > 0, the previous constraint set
can be rewritten as

In the above inequality, the right-hand side is greater than or equal to |. Therefore,
(7.6a) is always satisfied if Xjjk < \ for all (z, y) € A, k e /£, such that &/+£,•+/,• j••— a,j >
A similar argument can be used for the capacity constraints.

7.2.4 Algorithms

Much stronger lower bounds can be derived by decomposing the VRPTW model into intel-
ligently selected blocks and using these in the solution process. This requires an extensive
effort and is the subject of section 7.4. In the next section, we focus on the derivation of upper
bounds through approximate methods. Virtually all methods to be described in these two
sections conduct some form of preprocessing. This involves reducing time window width
and eliminating infeasible arcs. These processes are described at length by Desrosiers et
al. [35].

7.3 Upper Bounds: Heuristic Approaches
Given the inherent computational difficulty of the VRPTW, a variety of heuristics have been
reported in the literature, mostly for the hard time window version. In this section, we
review some of these approximation methods.

7.3.1 Route Construction

Route construction algorithms build a feasible solution by inserting at every iteration an
unrouted customer into a current partial route. This process is performed either sequentially,
one route at a time, or in parallel, where several routes are considered simultaneously. Two
key questions are posed in the design of such methods: Which customer to select next
for insertion? Where will it be inserted? To address these questions, researchers have
considered criteria involving the minimum additional distance and time, maximum savings,
and others.

Sequential insertion heuristics were proposed by Solomon [83]. His extensive compu-
tational results highlighted a two-phase insertion algorithm. In the first phase, each unrouted
customer is assigned its best feasible insertion position based on the minimum additional
distance and time required. In the second, the method selects the customer to insert using a

7.3. Upper Bounds: Heuristic Approaches 161

maximum savings concept. Solomon [82] also showed that the worst-case ratio of this and
many other approximation methods on n -customer problems is of at least order n. A parallel
variant of the above insertion procedure was suggested by Potvin and Rousseau [71].

7.3.2 Route Improvement

Route improvement methods iteratively modify the current solution by performing local
searches for better neighboring solutions. Generally, a neighborhood comprises the set of
solutions that can be reached from the present one by swapping a subset of r arcs between
solutions. An r-exchange is implemented only if it leads to an improved feasible solution.
It can be performed within or between routes. The process terminates when an r-optimal
solution is found, that is, one that cannot be improved by further r-interchanges.

Early route improvement procedures were proposed by Russell [75], Cook and Rus-
sell [21], and Baker and Schaffer [5]. Although these authors kept r small, r — 2 or 3, the
neighborhoods generated still proved very large. This led to effective but severely time-
consuming methods. To alleviate this problem, later procedures relied on OR-opt exchanges
(Or [67]), which consider only currently adjacent customers for 2- and 3-opt interchanges.
Solomon, Baker, and Schaffer [84] extended this method to the VRPTW by also accounting
for the time orientation of a route. That is, at each iteration, up to three adjacent customers
are shifted to a later position on the same route, between two currently consecutive cus-
tomers. Schedule shifts also are used to speed up the screening of infeasible solutions.
The efficient implementation of this process and of the objective function evaluation was
addressed by Savelsbergh [77, 78, 79]. Further suggestions were offered by Kindervater
and Savelsbergh [55] and Cordone and Wolfler Calvo [26].

Another OR-opt based algorithm was suggested by Thompson and Psaraftis [91].
They defined the neighborhood of the current solution in terms of feasible transfers of sets
of demands belonging to adjacent customers. The exchanges are attempted among a subset
of routes that form a cyclic permutation. The authors implemented a method based on 2-
and 3-cyclic 1-transfers.

7.3.3 Composite Heuristics

Composite heuristic methods blend route construction and improvement algorithms. Kon-
toravdis and Bard [61] devised a heuristic that combines a greedy heuristic and randomiza-
tion to produce initial routes in parallel. These are then improved through local search. As
part of this phase, certain routes may be eliminated. The authors also proposed three lower
bounds for the fleet size. Two are based on bin packing structures generated by the capacity
or time window constraints. The other is derived from the associated graph created by pairs
of customers who have incompatible demands or time windows.

Russell [76] developed a procedure that embeds route improvement within the tour
construction process. The rationale is that this may alleviate some of the difficulties of tour-
improvement algorithms to subsequently improve initial solutions. He proposes to switch
customers between routes as well as the elimination of routes during the construction process.

Cordone and Wolfler Calvo [27] used similar ideas in the design of a composite
heuristic, where local search is performed hierarchically. First, within a classical 2- and
3-opt exchange framework, they attempted to decrease the number of routes by moving a

162 Chapter 7. VRP with Time Windows

route into others, one customer at a time. Second, another heuristic was used to try to step
away from a local optimum. This procedure resolves the problem with a partly modified
objective function since the current solution may not be a local optimum for the related
objective.

7.3.4 Metaheuristics

Metaheuristics are the core of recent work on approximation methods for the VRPTW, and
they mainly include simulated annealing, tabu search, and evolutionary algorithms such as
genetic search. Unlike local search heuristics that terminate once a local optimum has been
reached, these methods explore a larger subset of the solution space in the hope of finding
a near-optimal solution. Whereas simulated annealing depends mostly on random steps to
escape local optima, tabu search uses short- and long-term memory to avoid cycling and to
orient the search toward unexplored regions of the solution space. Evolutionary algorithms
are derived from an analogy with the natural evolution process and consist of iteratively
selecting, recombining, and mutating encoded solutions to obtain superior individuals.

In recent years, several efficient tabu search approaches have been proposed. Taillard
et al. [88] described a metaheuristic based on tabu search for the VRP with soft time windows.
By strongly penalizing any lateness, the same approach can also be used to address the
problem with hard time windows. The metaheuristic relies on the concept of adaptive
memory introduced by Rochat and Taillard [74] and on the decomposition and reconstruction
procedure proposed by Taillard [87] for the VRP. The adaptive memory is in fact a pool of
routes taken from the best solutions visited during the search. This memory is first partially
filled with routes produced by a randomized insertion procedure based on Solomon's II
heuristic [83]. At each iteration of the metaheuristic, a solution is constructed, through a
randomized selection process, from the routes in the adaptive memory. This solution is then
improved through repeated calls to the tabu search heuristic. The routes of the resulting
solution are then stored in the adaptive memory (provided that the memory is not full or that
the solution is better than the worst solution stored in memory), and the process continues
until some stopping criterion is met.

The calls to the tabu search heuristic are driven by a decomposition and reconstruction
mechanism that partitions (through a sweep procedure) the current solution into a number
of disjoint subsets of routes. Each subset is then processed by a different tabu search, and
the best routes found for every subset are merged to form the new solution for the next
decomposition and reconstruction step. These steps are repeated for a certain number of
iterations, and the decomposition changes from one iteration to the next by choosing a
different starting angle for creating partitions through the sweep procedure. The tabu search
is quite standard and consists of choosing at each iteration the best nontabu solution in the
neighborhood of the current solution. This neighborhood is created through an exchange
procedure, called CROSS exchange, that swaps sequences of consecutive customers between
two routes. This operator generalizes both the 2-opt* (Potvin and Rousseau [72]) and Or-
opt (Or [67]) exchanges, but it is a special case of the X-interchanges (Osman [68]) since
it restricts the subsets of customers chosen in each route to be consecutive. To optimize
individual routes, the neighborhood is enlarged by including CROSS exchanges that apply
to a single route: two edges are removed from a route, and the segment between the two
edges is moved to another location within the same route.

7.3. Upper Bounds: Heuristic Approaches 163

Whereas most tabu search heuristics are based on a two-phase approach in which an
improvement procedure is invoked after an initial solution has been completely constructed,
a metaheuristic embedding reactive tabu search in the parallel construction approach of
Russell [76] was developed by Chiang and Russell [18]. Reactive tabu search was first
proposed by Battiti and Tecchiolli [6] and consists of dynamically varying the size of the
tabu list during the search process: the list size is increased if identical solutions occur
too frequently, and it is decreased if no feasible solution can be found because all feasible
moves are tabu. Using various customer ordering rules and criteria for measuring the best
insertion points, the procedure first constructs six different solutions by gradually inserting
customers and calling the tabu search heuristic on the partial solutions. The best of these
solutions is then used as a starting point for the final call to the heuristic. In all steps,
the ^-interchange mechanism [68] is used to generate the neighborhood, and two types
of exchanges are allowed: switch one customer from one route to another and exchange
two customers that belong to different routes. A very similar approach, embedding a tabu
list-enhanced simulated annealing algorithm within a parallel construction procedure, was
proposed by Chiang and Russell [17].

Other tabu search heuristics for the VRPTW were developed by Carlton [16], Potvin
et al. [70], and Brandao [15]. Cordeau, Laporte, and Mercier [25] introduced a tabu search
heuristic that generates a single initial solution and applies a very simple exchange procedure
for a predetermined number of iterations. An exchange removes a chosen customer from
its current route and inserts it into the route of a different vehicle by using a least-cost
insertion criterion. When the search terminates, exchanges within the routes of the best
identified solution are performed by a postoptimizer that uses a specialized TSPTW heuristic
(Gendreau et al. [43]). A diversification mechanism based on solution attributes is used to
ensure a broad exploration of the solution space. The heuristic was also enhanced to deal
with different extensions of the VRPTW. Specifically, using the algorithmic framework
proposed by Cordeau, Gendreau, and Laporte [23] for the Periodic VRP and the Multidepot
VRP, the authors derived a unified tabu search procedure able to handle these generalizations
of the VRPTW. The heuristic was adapted to these environments by introducing a new type
of exchange that modifies the combination of visit days or the depot assigned to a customer.
In addition, Cordeau and Laporte [24] showed that the Site-Dependent VRPTW can be
solved using the same methodology. In the latter problem, several types of vehicle are
available, and compatibility constraints restrict the choice of vehicle that can visit each
customer.

Another alternative to the two-phase construction and improvement approach used
in most metaheuristics is a guided local search method described by Kilby, Prosser, and
Shaw [54]. The guided local search paradigm is a memory-based approach that shares
similarities with tabu search but operates by augmenting the cost function with a penalty term
based on how near the search moves to previously visited local minima, thus encouraging
diversification. The method is used to drive a local search heuristic that modifies the current
solution by performing one of four moves: 2-opt exchanges within a route, switching a
customer from one route to another, exchanging customers that belong to two different
routes, and swapping the ends of two routes. Instead of building an initial solution with a
complex procedure, all customers are first assigned to a virtual vehicle, whereas the routes
for the actual vehicles are left empty. Because a penalty is associated with not performing a
visit, a feasible solution will be constructed in the process of minimizing cost. The guided

164 Chapter 7. VRP with Time Windows

local search algorithm starts from this solution and performs a series of moves until a local
minimum is reached. The objective function is then changed by adding a term that penalizes
the presence of the arcs used in the solution. The search simply iterates by finding new local
minima and accumulating more penalties until a stopping criterion is met.

Metaheuristics combining genetic algorithms, simulated annealing, and tabu search
were proposed by Thangiah, Osman, and Sun [89]. Initial solutions for the metaheuristics are
obtained by either the push-forward insertion method [83] or a sectoring heuristic based on
genetic algorithms. This heuristic first clusters the customers using the genetic algorithm
and then routes the customers within each sector using a cheapest insertion method. At
each iteration, the crossover operator exchanges a randomly selected portion of the sector
divisions between selected individuals to produce offspring for the next generation. The
simulated annealing algorithm starts from an initial solution produced by either of these
methods and tries to identify an improved solution at each iteration using the A-interchange
mechanism of Osman [68]. To diversify the search process and avoid moves that result in
cycles, the simulated annealing algorithm is in fact combined with tabu search, and moves
are thus selected at each iteration from a list of nontabu candidates. The search process
allows for intermediate infeasible solutions by using an objective function that imposes
penalties on capacity and time window constraint violations. The authors also compared
these metaheuristics with a less sophisticated local search descent method with moves
selected from the set of ^-interchanges.

Homberger and Gehring [48] proposed two evolution strategies for the VRPTW. Like
genetic algorithms, evolution strategies belong to the class of evolutionary algorithms, and
both methods manipulate populations of individuals that represent solutions to an opti-
mization problem. However, evolution strategies do not encode individuals. Instead, the
evolution process is simulated on problem solutions, and the search operators manipulate
these solutions directly. The two solution methods described by the authors are based on the
popular (/z, A.) evolution strategy. Starting from a population P(t) with JJL individuals, sub-
sets of individuals are randomly selected and recombined to yield a total of X > IJL offspring.
Each offspring is then subjected to a mutation operator, and the \JL most fitted offspring are
finally chosen to form the new population P(t + 1). The fitness of an individual normally is
proportional to the objective function value of the corresponding solution. Since the parents
are not involved in the selection process, deterioration may occur during the evolution, and
the search may thus escape from a local optimum.

In the first method, new individuals are generated directly through mutations and no
recombinations take place. Mutations are obtained by performing one or several moves
from the families of Or-opt [67], 2-opt* [72], and ^-interchanges [68]. In the second
method, offspring are generated through a two-step recombination procedure in which three
individuals are involved. To initialize both methods, the individuals of a starting population
are generated by means of a stochastic approach based on the savings algorithm of Clarke
and Wright [20]. Throughout the evolution, the fitness criterion discriminates individuals
first by the number of vehicles used and then by total distance traveled. One important
drawback of this approach is that the two methods tend to produce solutions of inconsistent
quality from one test instance to another. As a result, choosing between the two strategies
is very difficult, and both methods should be used to ensure that a good quality solution
is obtained for any given instance. Related work on genetic algorithms was conducted by
Potvin and Bengio [69], Blanton and Wainwright [9], and Thangiah and Petrovic [90].

7.3. Upper Bounds: Heuristic Approaches 165

To date, these metaheuristics have produced excellent quality solutions, but they
also have to contend with two main difficulties. First, they are very time consuming in
comparison with local search heuristics. Second, finding appropriate transformations that
change a current feasible solution into another is a challenge. This is relatively simple for
the classical VRP (see the survey paper by Golden et al. [45]) as well as for the VRPTW, but
it becomes extremely difficult for most extensions encountered in real-world applications,
such as multiple depots, heterogeneous fleet of vehicles, driver work rule restrictions, and
others. An interesting application of tabu search to a real-world problem was described by
SemetandTaillard[81].

7.3.5 Parallel Implementations

The parallel implementations line of research has been followed to explore whether tabu
search methods retain solution quality when computing time is truncated. Parallelization
consists of partitioning the neighborhood among several processors. The results of their
searches are fed to a master processor, which, in turn, supplies them with fresh informa-
tion. Schulze and Fahle [80] reported encouraging results. Badeau et al. [4] examined a
parallel implementation of the heuristic by Taillard et al. [88]. The authors concluded that
parallelization of the sequential algorithm maintains solution quality for equal computing
efforts. This implies a substantial speed increase in practice.

7.3.6 Optimization-Based Heuristics

Koskosidis, Powell, and Solomon [62] exploited a mixed-integer programming model to
generalize the Fisher and Jaikumar [40] heuristic for problems with soft time windows.
At each iteration, customers are assigned to vehicles by solving a Capacitated Clustering
Problem. The route and schedule of each vehicle is then derived by solving the corresponding
TSP with soft time windows. The TSP solutions also generate the improved approximate
clustering costs to be used at the next iteration.

Approximation methods also can be derived directly from optimization algorithms,
by heuristically solving different phases of the process. More specifically, this includes
partial exploration of a branch-and-bound tree. For example, one can obtain an integer
solution by using a depth-first strategy and then explore the tree for the remaining available
CPU time. Alternatively, elimination of branches on heuristic ground rules accelerates the
decision process and may provide quite good solutions.

7.3.7 Asymptotically Optimal Heuristics

An asymptotically optimal heuristic method, called the Location Based Heuristic (LBH), is
proposed by Bramel and Simchi-Levi [12] and represents another generalization of the Fisher
and Jaikumar [40] approach. That is, while Koskosidis, Powell, and Solomon [62] assign
customers to vehicles by solving a capacitated clustering problem, Bramel and Simchi-
Levi [12] transform the VRPTW into a Capacitated Location Problem with Time Windows
(CLPTW). This problem consists of determining where vehicles should be housed given a
set of possible depot locations and which customers they should serve.

166 Chapter 7. VRP with Time Windows

The constraints forcing each customer to be served by exactly one vehicle are relaxed,
and the resulting problem is separable by site and solved through Lagrangian relaxation.
For a given set of multipliers, the solution to the Lagrangian problem provides information
used to construct feasible solutions to the CLPTW and the VRPTW. By identifying each
possible depot location with a customer site, the reduced costs of the N problems are used
to determine seed customers and the set customers that feasibly can be associated with each
seed. The cost of this solution is then compared to the cost of the best known solution and
the multipliers are updated to start a new iteration. The heuristic terminates when the step
size reaches a preset value. Bramel and Simchi-Levi use probabilistic analysis to prove that
the heuristic is asymptotically optimal. Note that the LBH variant for the VRP was shown
earlier to be asymptotically optimal by Bramel and Simchi-Levi [11]. Furthermore, since
the LBH is an extension of the generalized assignment heuristic of Fisher and Jaikumar [40],
this also exhibits asymptotically optimal behavior (see [14]).

7.4 Lower Bounds from Decomposition Approaches

In this section, we present two decomposition approaches that derive lower bounds for the
VRPTW. Other work on optimization methods includes the early papers by Christofides,
Mingozzi, and Toth [19] and Kolen, Rinnooy Kan, and Trienekens [60]. Their methods
were based on dynamic programming and state space relaxation.

The exact methodology presented in sections 7.4 and 7.5 is general enough to effec-
tively contend with the VRPTW as well as a wide variety of supplementary issues. In fact,
as long as the extended model falls within the unified framework proposed by Desaulniers
et al. [29], the same methodology can be applied. This is a major advantage over the heuris-
tic methods presented in section 7.3 which most of the time require substantial effort to
accommodate new situations.

7.4.1 Lagrangian Relaxation

Lagrangian relaxation is a popular decomposition approach that can be used for differ-
ent VRPTW formulations and variants. The usual trade-off between ease of solving the
Lagrangian subproblem and the quality of the bound obtained is straightforward for the
VRPTW. If the difficult time- and capacity-related constraints are relaxed, the resulting
Lagrangian subproblem is a pure network flow problem, for which the integrality property
holds (see Geoffrion [44]). The Lagrangian bound then will be no better than the linear
programming lower bound. As discussed above, the integrality gap generally will be too
large to be explored by branch-and-bound. To improve the Lagrangian bound, one should
then retain the complicating constraints in the Lagrangian subproblem and relax part of the
network flow constraints. Choosing these appropriately preserves a constrained shortest
path structure for the Lagrangian problem. At present, this type of structure constitutes
the basis of the most successful decomposition approaches for the VRPTW (Lagrangian
relaxations, bundle methods, and column generation).

Specifically, given the set of multipliers a = (a,, i e N) associated with constraints
(7.2) requiring that each customer be visited once, the Lagrangian subproblem L (a) obtained

7.4. Lower Bounds from Decomposition Approaches 167

by relaxing these constraints in the objective function is defined as

subject to (7.3)-(7. 11).
This subproblem involves a modified objective function and constraint sets (7.3)-

(7.11) — that is, the path constraints (7.3)-(7.5); constraint set (7.6) and the time window
constraints (7.7)-(7.8), which together ensure the feasibility of the time schedule; con-
straints (7.9), which guarantee capacity availability; and the binary requirements (7.11) on
the flow variables. An appealing property of this structure is that it can be decomposed into
\K\ disjoint subproblems, one for each vehicle. Furthermore, each subproblem represents
an elementary shortest-path problem with capacity and time window constraints, whose
solution can be obtained on a bounded polyhedron.

For any multiplier vector a, the optimal objective function value of the Lagrangian
subproblem L (a) is a (dual) lower bound for the solution of the respective VRPTW problem.
In addition, when all vehicles are identical, only one subproblem needs to be solved to
compute this bound. The problem of finding the Lagrangian bound L defined as

is a concave nondifferentiable maximization problem. Subgradient and bundle methods
(Kohl and Madsen [59]) have been applied to determine optimal multiplier values. Due
to the time window and capacity constraints, the subproblems do not possess the integral-
ity property. Consequently, solving them as integer programs narrows the integrality gap
between the optimal solution of the linearized version of formulation (7.1)-(7.10) and the
optimal integer VRPTW solution to (7.1)-(7.1 1).

7.4.2 Capacity and Time-Constrained Shortest-Path Problem

The elementary version of this problem is NP-hard and no polynomial or pseudo-polynomial
algorithms are known for its solution. However, when nonelementary path solutions are
allowed, i.e., solutions where paths may involve cycles of finite duration or load due to
the time window and capacity restrictions present in the subproblem, pseudo-polynomial
algorithms have been developed for its solution (see Desrosiers et al. [35]).

The inclusion of nonelementary paths is a computational necessity that potentially
weakens the lower bound obtained. However, some strength in the bound can be regained
by using a 2-cycle elimination procedure (Houck et al. [49], Kolen, Rinnooy Kan, and
Trienekens [60]) within the solution process for the constrained shortest-path problem. Note
that a 2-cycle is a cycle where a customer is visited twice with only one customer between.
Yet, paths containing cycles cannot appear in any solution to the VRPTW since the covering
constraints (7.2) enforce that each customer must be visited exactly once. Hence, they have
to be eliminated during the search for integer solutions.

In addition to the above schemes, Fisher, Jornsten, and Madsen [41] used a Lagrangian
relaxation based on a K-tree structure, where K is the set of available vehicles. This is an

1 68 Chapter 7. VRP with Time Windows

extension of the classical 1-tree approach for the TSP to the case of capacity constrained
vehicles [39]. In their approach it is assumed that each route contains at least two customers.
The authors relax the flow conservation as well as the capacity and time constraints. Vehicle
capacity is handled by introducing constraints requiring that some nonempty subsets of
customers S, S C N, \S\ > 2, must be serviced by at least K(S) vehicles, that is,

where S = V\S. Time windows are treated similarly: if the path (not necessarily from
node 0 to n + 1) represented by the set of arcs A' C A violates the time window restrictions,
the constraint

is generated and Lagrangian relaxed. New capacity and time constraints are generated as
they are violated.

7.4.3 Variable Splitting

Generally, variable splitting leads to various Lagrangian relaxation schemes, each exploiting
different solvable structures. In this dual approach, the variables in some of the constraints
are renamed. New constraints, coupling the original and the new variables, are introduced
and Lagrangian relaxed. This decomposes the problem into two or more independent
problems. In the VRPTW, the sums

are replaced by the integer variables y^ in some constraints. One may think of each such
variable as the number of times customer i is serviced by vehicle k. The new constraints

are introduced and Lagrangian relaxed. The resulting Lagrangian subproblem now decom-
poses into two problems, one in the v,-/t variables and one in the flow, time, and capacity
variables.

For the VRPTW, it is natural to decompose the problem into a semiassignment-type
problem, defined using the new variables in constraint set (7.2) and solved by inspec-
tion, and a set of shortest-path problems with capacity and time constraints, one for each
available vehicle. In this case, variable splitting does not allow for any improvement of
the Lagrangian lower bound since the semiassignment problem possesses the integrality
property. The capacity constraints can alternatively be considered in the semiassignment
problem, yielding a generalized assignment problem. In conjunction with the time win-
dow constrained shortest-path problem, this may result in a theoretical improvement of the

7.4. Lower Bounds from Decomposition Approaches 169

Lagrangian bound, unfortunately unobserved in practice. Halse [46] implemented this latter
decomposition approach. Finally, the reader can find an analysis of the quality of the bounds
obtainable from variable splitting for the VRPTW in Kohl [57].

7.4.4 Column Generation

The column generation approach represents a generalization of the Dantzig-Wolfe decom-
position [28]. It has successfully been applied to the VRPTW by Desrochers, Desrosiers,
and Solomon [33] and Kohl et al. [58]. We emphasize the importance of presenting the
decomposition process in its entirety starting from the multicommodity network flow for-
mulation rather than directly formulating the problem as a set-partitioning problem on which
column generation is applied. Indeed, this clearly illustrates how to exploit the multicom-
modity network flow model to devise efficient branching and cutting strategies compatible
with the column generation approach in order to obtain integer solutions as discussed in
section 7.5.

The decomposition is based on two structures: a master problem and a subproblem.
The master problem retains constraint sets (7.1)—(7.2) and (7.11), i.e., the objective func-
tion, the covering of each customer exactly once, and the binary requirements on the flow
variables. The subproblem involves a modified objective function, to be detailed later, and
constraint sets (7.3)-(7.11). Again, it decomposes into \K\ independent subproblems, each
an elementary shortest path problem with capacity and time window constraints.

7.4.5 Set-Partitioning Formulation

The master problem can be reformulated to highlight a set-partitioning structure. To see
this, consider the process of solving the relaxed subproblem that generates elementary paths
and possibly paths containing finite cycles. Each such path p can be described using integer
flow values xiikp, (i, j) € A. Let £2 be the path set. Then, for a given k e K, any
solution Xij/f to the master problem can be expressed as a nonnegative convex combination
of paths:

Define now parameter ckp as the cost of path p for vehicle k. Let also the nonnegative
integer constant a^p indicate the number of times customer i is visited by vehicle k on path
p. Formally,

1 70 Chapter 7. VRP with Time Windows

Substituting these expressions into (7.1)-(7.2) and (7.11) and rearranging the summation
order expresses the master problem as a set-partitioning structure:

subject to

In (7.14), the coefficient of 9kp is equal to 1 for all k e K and p e £2. Indeed, this
constraint corresponds to (7.3) or to (7.5) in the original formulation, i.e.,

7.4.6 Lower Bound

A (primal) lower bound on the optimal integer solution of the VRPTW model can be derived
from the following bilevel solution process. At the top level, the relaxed master problem
is optimized over the current subset of columns as a linear program defined by (7.12)-
(7.15). At the bottom level, the subproblem looks for minimum marginal cost columns
given the available cost information. If the minimum is negative, the corresponding column
is sent above to be appended to (7.12)-(7.15) and this coordinating problem is solved again.
Otherwise, the lower bound has been found as the current linear programming optimal
solution. This bound has proved very effective in practice for the VRPTW and many
other vehicle-routing and crew-scheduling environments [35]. Recently, it was shown to
be asymptotically optimal by Bramel and Simchi-Levi [13], which explains in part its
performance.

This bound is equal to the previously defined Lagrangian bound L. To see this, let
a/, / € N, and %, k e K, be the dual variables associated with constraint sets (7.13) and
(7.14), respectively. These are obtained by solving (7.12)-(7.15) over the current subset of

7.4. Lower Bounds from Decomposition Approaches 1 71

columns with the simplex method. They can be used to define the marginal cost Ckp of path
p for subproblem k as

In turn, the marginal cost c,y, (i, j) e A, of an arc can then be expressed as

The marginal cost column minimization problem over the set £2 can now be formulated
as

subject to (7.3)-(7.11).
This optimization problem is equivalent to solving the Lagrangian subproblem L(a)

defined in section 7.4.1.
A set of negative marginal cost paths is generated every time the subproblem is solved

by dynamic programming. At every iteration but the last, this set generally has a fairly
high cardinality. This observation forms the basis for accelerating the solution of the linear
relaxation of the master problem, i.e., the linear program (7.12)-(7.15), by selecting several
columns simultaneously. Moreover, node-disjoint paths can be selected by using a greedy
algorithm. Such choices replicate the structure of integer solutions and often prove beneficial
downstream in the branching phase. The current best dual lower bound also can be used
at branching nodes to stop the iterative process before reaching the optimality criteria.
This diminishes the tailing-off effect experienced by column-generation methods for linear
programming settings.

7.4.7 Commodity Aggregation

When all vehicles are identical, as is the case for the generic VRPTW, the linear relaxation
of the master problem admits a commodity-independent formulation. This commodity
aggregation results in a single subproblem and allows the master problem to be formulated
with fewer variables and constraints. The commodity-independent formulation is equivalent
to the classical linear relaxation of the set-partitioning formulation with an additional limit
placed on the number of vehicles used. Indeed, index k can be removed from parameters
c^ and ciikp. We then aggregate the convex combination constraints (7.14) by letting

1 72 Chapter 7. VRP with Time Windows

This results in X!»€Q
resulting in the formulation

subject to

Relaxing the binary requirements also eliminates constraints (7.25), which become
irrelevant. For any fractional ^-solution to (7.18)-(7.21), there exists a solution in 9kp that
satisfies (7.22)-(7.24). Setting

provides such a solution. Consequently, since any solution consisting of the aggregated
variables 9p, p e £ip, can be converted into a solution in terms of the disaggregated
variables 0^, k e K, p e £2, problem (7.18)-(7.21) can be used as the linear relaxation of
the master problem.

In the case where the solution of the aggregated linear relaxation of the master problem
is integer, it is easy to convert it to a binary solution in terms of the variables Okp . One simply
has to assign the first solution path to the first vehicle, the second path to the next vehicle, and
so on. Finally, if the aggregated solution is mixed integer, both above conversion processes
need to be applied accordingly.

7.4.8 Hybrid Approach

Kallehauge [51] and Kallehauge, Larsen, and Madsen [52] implemented a hybrid approach
combining the Lagrangian relaxation approach used by Kohl and Madsen [59] with th
generalized Dantzig-Wolfe decomposition of Desrochers, Desrosiers, and Solomon [33]
and Kohl et al . [5 8] . In the first phase, Lagrangian relaxation is used to take advantage of the
faster multiplier convergence and the easier subproblems. Then, in phase two, Kallehauge,

making index k unnecessary for (712)-(7.13) and

7.5. Integer Solutions 173

Larsen, and Madsen switch to Dantzig-Wolfe decomposition and use the columns found in
phase one to initiate the procedure.

7.5 Integer Solutions

Usually, to solve the original multicommodity flow formulation (7.1)-(?.! 1) optimally, one
has to make branching and cutting decisions on the binary flow variables and on time vari-
ables when their integrality is required. The decomposition process involving Lagrangian
relaxation or column generation is then repeated at each branching node. Since the solutions
obtained from the Lagrangian subproblem L(«) of section 7.4.1 define paths that usually
are not feasible for the whole problem, it is difficult to design good branching and cutting
strategies. Alternatively, column generation offers much more flexibility since the values
of the original variables of the multicommodity flow model can be easily derived.

Specifically, these can be divided into path-exclusive and path-shared decisions. The
former concern only a single path, such as fixing a flow variable at 0 or at 1, or dividing the
time window of a time variable. These local decisions are made directly on the subproblem
network without altering the shortest-path solution approach. The columns that no longer
satisfy a branching decision are removed from the current master problem. The latter deci-
sions concern several paths, such as when an integer cut on the total cost is imposed. These
global decisions are kept at the master problem level. We now present several examples of
branching and cutting decisions on arc flow and time variables for the VRPTW. Additionally,
we discuss the possibility of making binary decisions on path flow variables.

7.5.1 Binary Decisions on Arc Flow Variables

Since any customer i must be covered exactly once, the linear combinations of flow variables

are good candidates for binary branching decisions. When X/JK> is fractional at the current
branching node, it can be set to 1 on one branch and to 0 on the other. In the former
case, XijK1 = 1 requires only that some customer (or the depot) in subset J be visited
immediately after customer / by some vehicle. However, xiik = 1 forces customer i and
j to be consecutively serviced by vehicle k. Similarly, if \J\ = 1, then this customer must
immediately succeed customer i. Finally, when / = A+(/) , the decision XUK: — 1 assigns
customer i to a vehicle in subset K'. In particular, if | K'\ = 1, then this vehicle must servic
customer i. All the branching decisions discussed above do not affect the mathematical
structure of the constrained shortest-path subproblem. As an example, setting the variable
XIJK, with j € N, to 1 eliminates the arcs {(z, /) e A : j' ^ j } and {(/', j) e A : i' ^ i}
from network G. Or, fixing variable xijK at 0 allows arc (i, j) e A to be deleted from
network G.

7.5.2 Integer Decisions on Arc Flow Variables

While a number of other viable flow variable mixes to be used for branching and cutting
can be easily accommodated at the subproblem level, others cannot. As an illustration of

174 Chapter 7. VRP with Time Windows

linear combinations that need to be addressed at the master problem level, consider the one
that calculates the number of vehicles routed in subset K'\

When the value of this variable XOJK> is fractional, branching forces it to values either less
than or equal to [XQJK.'] or greater than or equal to [XQJK>~\, respectively. As another example,
in a problem where the minimum number of vehicles is sought, a cut on the variable XQJK,
J = A+(i) \ [n + 1}, can be introduced when this is fractional. Yet another instance occurs
when the objective function has integer cost coefficients but its current value is fractional.
Then

is a valid cut. This is a specific case of the family of cuts that can be described as a weighted
sum of the flow variables:

where bjj, (i, j) e A, and b are unrestricted parameters. Applying the decomposition
process to the above constraint results in an equivalent constraint in the master problem,
written as

where bp =]T(j : -)eA fy/Jt^p, k e A", /? e fi, is the contribution of path p to con-
straint (7.27). Denoting by /? its associated dual variable, it is fairly easy to show that
the marginal cost c{j, (i, j) e A, of an arc becomes

7.5.3 Binary Decisions on Path Flow Variables

It is easy to show that replacing in the aggregated set-partitioning formulation (7.18)-(7.26)
the binary requirements (7.26) by

yields a formulation equivalent to the multicommodity network flow formulation (7.1)-
(7.1 1). Using the simplifications presented in the last paragraphs of section 7.4.4, this new
formulation can be restricted to (7.18)-(7.21) and (7.28). This transformation opens up the
possibility of defining branching decisions on the binary path flow variables Bp, p e to.

7.5. Integer Solutions 1 75

On the one hand, when such a variable takes a fractional value, it is very simple
to set it to 1 by adjusting the right-hand side of constraint (7.20), removing the covering
constraints (7.19) associated with the customers covered by the corresponding path, and
removing the nodes associated with these customers in the subproblem network. Such
a decision simplifies the problem without altering its structure. On the other hand, as
mentioned in several papers, it is much more difficult to impose the alternate decision, that
is, to set to 0 a fractional path flow variable. Indeed, in this case, one must ensure that
the corresponding path will not be generated again by the subproblem. Forbidding the
generation of specific paths modifies the nature of the subproblem and requires the use of a
different dynamic programming algorithm for solving it.

One possibility would be to use a A>shortest-path algorithm, where k is set to the
number of forbidden paths plus one. However, such an algorithm has not yet been proposed
in the literature when time window constraints are considered. Another possibility consists
of using a dynamic programming algorithm for time-constrained shortest-path problems
(for example, that of Soumis and Desrochers [34]) coupled with a prelabeling procedure,
such as the one proposed by Arunapuram, Mathur, and Solow [3]. A prelabel is defined for
each node of each forbidden path except for the last node. This prelabel represents the part
of the forbidden path from the source node to the node associated with the prelabel, and it
contains additional information that forbids the extension of this label to the next node on
the forbidden path.

To our knowledge, this branching strategy has yet to be tested on VRPTW instances.
We conjecture that it should be useful for fixing path variables with a fractional value close
to 1 to rapidly reduce the size of the problem without losing the exactness of the algorithm.

7.5.4 Subtour Elimination and 2 -Path Cuts
For each nonempty subset of customers 5" c N, define the following variable to represent
the flow into S:

where S = V \S. The usual subtour elimination constraints can be formulated as x (S) >
1, S c N, |5| > 2. These can be generalized by replacing their right-hand sides with ic(S),
the smallest number of vehicles needed to service all customers in S. Constraint

is called a A: -path inequality since it requires that at least K paths enter subset 5 in any feasible
integer solution. For the VRPTW, the lower bounds obtained by considering capacity alone
are unlikely to be very strong, especially when the time windows are relatively binding.
Since the time constraints must be taken into account as well, it is difficult to calculate K (S) .
For this reason, Kohl et al. [58] restricted their attention to subsets S satisfying

where x (S) denotes the value of x (S) in a given solution. In other words, the authors try
to identify subsets of customers S requiring at least two vehicles but presently serviced by

1 76 Chapter 7. VRP with Time Windows

less than two. To determine whether /c(5) = 1 for a particular S, one needs to check if the
available capacity on a single vehicle is sufficient — which can be done in linear time — and
the feasibility of the corresponding TSPTW. This latter problem is NP-hard in the strong
sense, but when \S\ is rather small, the problem is relatively easy to solve by dynamic
programming [37, 66]. Therefore, for such problem sizes, there is a fast, although not
polynomial, algorithm to determine whether K(S) > 2.

Larsen [63] devised a parallel branch-and-bound implementation of the approach used
by Kohl et al. [58]. Further improvements proposed by Larsen include a forced early stop
and column deletion. The forced early stop terminates the route-generation process as soon
as one route with negative reduced cost is returned. The idea behind this stopping criterion
is that the routes generated in the initial phase are often of low quality and therefore it is
profitable to cut down the execution time at this stage. The column deletion procedure deletes
from the master problem any column that has not been part of a basis at a given number of
branch-and-bound nodes. This reduces the time spent solving the linear relaxation of the
master problem, although some routes might have to be recomputed later on. Experimental
results indicated that to avoid having to regenerate deleted routes, column deletion should not
be performed too often. Larsen [63] suggests applying it after every 20 branch-and-bound
nodes. This approach was later used by Kallehauge, Larsen, and Madsen [52].

7.5.5 AT -Path Cuts and Parallelism

Cook and Rich [22] enhanced the above method by improving the search for K -path inequali-
ties and allowing values of K up to 6. Specifically, the authors used Karger's [53] randomized
minimum-cut algorithm to generate cutting planes. Moreover, they parallelized the cutting
plane generator and also the branch-and-bound, using the TreadMarks [8] distributed shared
memory system. The value of K(S), S C V, is derived by finding the minimum number of
vehicles required in a smaller VRPTW instance. If this number is greater than x(S), a valid
/c-path inequality is generated. We discuss their computational results in section 7.8.

7.5.6 Integer Decisions on (Fractional and Integer) Time Variables

Fractional and integer time variables constitute a meaningful branching tool for problems
with fairly narrow time windows. To describe their handling, we first compute the start of
service at customer i e N as

where Wikp represents the unique start of service at customer i on path p of vehicle k. If
a customer i is visited more than once on path p, i.e., on a cycle, the start of service wikp

is taken as the sum of all the times when service begins. Then, u>, above represents the
weighted average of these times. If variable it>, is required to be integer but presently takes
the fractional value, w (, then two branches are created:

7.6. Special Cases 177

These decisions are imposed on the subproblem network G by redefining the time
window at node i. Note that this type of decision is also applicable for an integer value
wi obtained as a convex combination of different service times on several paths. The two
branches are then given by

On each branch, the columns that do not satisfy the corresponding decision are removed
from the current subset of master problem columns.

7.6 Special Cases
The following two special cases of the VRPTW have attracted attention in the literature.
Both can be addressed using the exact methodology presented in the previous sections.

7.6.1 Multiple TSP with Time Windows

The multiple TSP with time windows problem, an uncapacitated VRPTW, results by elimi-
nating the capacity constraints (7.9) from formulation (7.1)-(7.11). It is also an immediate
generalization of the fixed-schedule problem where time windows are restricted to a single
value. It has attested itself as a very rewarding model for applications in school and urban
bus, ship, engine, and aircraft scheduling.

The early optimization-based heuristics of Appelgren [1, 2] on ship scheduling,
Levin [64] on aircraft fleet size, and Swersey and Ballard [86] on school-bus schedul-
ing all relied on discretizing the time windows. They contributed to the impetus for much
more powerful approaches developed recently. Such exact algorithms for m-TSPTW were
developed in the context of urban bus scheduling by Bianco, Mingozzi, and Ricciardelli [7]
and Desaulniers, Lavigne, and Soumis [32] and in the setting of daily aircraft scheduling
by Desaulniers et al. [31]. The last two algorithms are variations of the column-generation
approach for the VRPTW presented earlier.

7.6.2 VRP with Backhauls and Time Windows

We consider the variant of the VRP with Backhauls and Time Windows (VRPBTW) problem
where all deliveries must be made before any pickups take place. To show that this problem
is a special case of the VRPTW, one must first define load variables //£, i € V, k e K,
specifying the quantity already delivered by vehicle A: just after servicing node i, and rewrite
the capacity constraints (7.9) the same way as the time window constraints:

178 Chapter 7. VRP with Time Windows

Next, one partitions N in two subsets of customers, ND and Np, that is, those requiring
a delivery and those requiring a pickup, respectively. Then one removes from A all arcs
linking a node in ND to a node in Np and replaces constraint sets (7.30) and (7.32) by the
following three sets of constraints:

where d, denotes the quantity of load to be delivered or picked up at node i. Given these
load intervals (7.30a), (7.30b), and (7.32a), as well as constraint set (7.29), one can see that
when the delivery portion of a vehicle route is completed, C new units of loading capacity
are restored to undertake pickups. Finally, note that (7.29) are always satisfied for cross
arcs between ND to Np. Hence, these constraints are not defined for these arcs.

Given the above transformation, optimal VRPTW algorithms can then be employed
for the VRPBTW. Gelinas et al. [42] illustrated such an approach. More complex algorithms,
however, are necessary when the pickup and delivery requests can be performed in any order.
A real-world application for this problem structure was reported by Braca et al. [10]. Given
the very large problem size, the authors used a decision support system based on a variation
of the LBH heuristic (Bramel and Simchi-Levi [11]) to route school buses for the New York
City Board of Education.

7.7 Extensions
In this section, we present several VRPTW extensions for which formulation (7.1)-(7.11)
can be adapted or generalized. Most of the resulting models can be directly treated us-
ing Lagrangian relaxation or column generation embedded in a branch-and-bound search
tree. For the others, the same methodology applies but with more complex tools, namely,
specialized constrained shortest-path algorithms.

7.7.1 Heterogeneous Fleet, Multiple-Depot, and Initial Conditions

The VRPTW model (7.1)-(7.11) can be generalized to account for vehicles of different
size, for multiple depots, and even for situations requiring specific initial conditions for
each vehicle. Indeed, in these settings, a specific network Gk = (Vk, Ak), with its own
origin and destination depot-nodes, is defined for each vehicle k e K, and all c,-;- and f/;

parameters are indexed by k. To some extent, customer demands di and time windows
[a,, hi] can depend on the servicing vehicle k.

In the presence of multiple depots or a heterogeneous fleet, vehicle aggregation can be
performed if the conditions are identical for all vehicles in the same group. One constraint
similar to (7.20) is retained for each group to describe the number of available vehicles

7.7. Extensions 1 79

within that group. The assignment of a route to a specific vehicle within a group can be
done after the solution is obtained.

7.7.2 Fleet Size

Vehicle use can be taken into account by including a fixed charge c in the cost of all arcs
(0, y), j e N. In this case, the number of vehicles utilized can be minimized by assigning a
very large value toe. On the other hand, one may wish to set an upper limit K on the number of
vehicles that can be deployed. For the basic VRPTW, this can easily be imposed by defining
K such that \K\ = K. However, when considering several depots or a heterogeneous fleet,
the following constraint must be added to the multicommodity network flow formulation
with one network Gk per vehicle:

where Nk denotes the set of customers compatible with vehicle k and 0(fc) the origin depot-
node of network Gk. Like the covering constraints (7.2), this constraint is relaxed in the
objective function when using Lagrangian relaxation or remains at the master problem level
in a column generation approach.

7.7.3 Multiple Time Windows

The definition of a single time window per customer can be extended to include multiple ser-
vice options. This may necessitate changing the objective function to account for preferred
service times. Multiple time windows primarily have been examined in the multiperiod
VRP framework, where they constitute full days. Each customer must be visited a specified
number of times within the planning horizon. This problem is discussed further in the survey
by Solomon and Desrosiers [85]. Note, however, that this generalization can be treated by
Lagrangian relaxation and column-generation schemes that use time window-constrained
shortest paths as substructures.

7.7.4 Soft Time Windows

Recall that soft time window constraints allow the vehicle to start service at the customer
before or after its time window, respectively. As a result, the vehicle incurs additional costs.
Formulation (7.1)-(7.11) can be extended to include soft time windows as in the following
two scenarios. In the first, only deadlines can be violated at a cost and by a length of time
limited by b'{, i e N. In this case, enlarged hard time windows [a/, b\ 4- b'f], i e N, are
defined together with the following nondecreasing penalty functions that depend on the start
of service lime of vehicle k:

where gz- (•) is a positive nondecreasing function. This can be treated directly by Lagrangian
relaxation or column generation with the sole modification of computing these additional

180 Chapter 7. VRP with Time Windows

costs on the arrival at a customer node in the constrained shortest-path dynamic programming
algorithm (see Desaulniers et al. [29]).

Building on the previous instance, the second setting considers that the earliest start
times can be violated at a cost and by a length of time limited by a[, i € N. Similarly,
augmented time windows [a, - a'{, bf + b'{], i e N, are defined together with the following
penalty functions:

where A./ is a positive constant and #,-(•) is again a positive nondecreasing function. This
more general case can be addressed by the proposed methodologies but requires a specialized
dynamic programming algorithm developed by loachim et al. [50], which can handle linear
decreasing node costs.

7.7.5 Time- and Load-Dependent Costs

The VRPTW can be extended to include arc costs zij (•)» 0', j) e A, that depend on time and
load variables. Indeed, soft time windows can be viewed as yielding such arc costs when

Another example was provided by Desaulniers, Lavigne, and Soumis [32] for the
m-TSPTW with linear waiting costs. For that problem, the arc costs are given by

where u> is a positive constant corresponding to the cost charged for waiting one unit of
time, and w^ — w{k — Si — fy indicates the amount of time spent waiting on arc (i, j). As
mentioned by the authors, such waiting costs can be taken into account similarly in other
routing problems with time windows, such as the VRPTW.

Arc costs depending on load variables were considered in the extension of the VRP
with Pickup and Delivery involving time window constraints proposed by Dumas, Desrosiers
and Soumis [38]. In that version of the problem, the cost of using an arc (i, j) depends on
the load //* of the vehicle k traversing it:

where &•(•) is a positive nondecreasing function. Such load-dependent arc costs can be
easily transferred to the VRPTW.

7.7.6 Driver Considerations

To devise vehicle routes that do not incur excessive driver costs or infeasible driver schedules,
some aspects of the driver-scheduling problem can be considered while solving the VRPTW.

7.8. Computational Results for VRPTW 181

For instance, assuming that each driver is assigned to a single vehicle route, the following
three driver-scheduling aspects are of interest: a guaranteed minimum number of hours
credited per route, a maximum number of hours worked per route, and break periods of
minimal duration within long routes. As shown by Desaulniers et al. [30], the first two
aspects can be modeled using resource variables that are handled in a way similar to the
time and load variables. The last aspect can be treated by considering a multiple-stage
network where each stage contains a copy of the customer nodes, and a partial path through
the nodes of the same stage corresponds to a partial vehicle route without break periods.
The maximum duration of these partial routes is controlled through the use of resource
variables. Arcs imposing a break of minimum duration are defined from the nodes of each
stage to the nodes of the next stage. Other driver considerations also can be integrated into
an extended VRPTW model.

7.8 Computational Results for VRPTW

In this section, we review computational experience with leading algorithms proposed for
finding the optimal or heuristic solution of VRPTW. To date, the optimal algorithm of Kohl
et al. [58] solved 70 of the 87 Solomon benchmark short horizon problems [33] to optimality.
Recently, four additional problems were solved by Larsen [63] and six more by Cook and
Rich [22] and Kallehauge, Larsen, and Madsen [52]. In particular, the new sequential
implementation by Cook and Rich [22] of Kohl et al.'s [58] algorithm using the 2-path cuts
succeeded in solving three additional problems. Their computational experience indicates
that the marginal benefit of considering 3-path cuts in the sequential algorithm was an
improved value of the LP relaxation in several problems. Yet, these cuts did not lead to any
additional problems being solved or improvements in solution time. Three more problems
were solved by using the parallel version with up to 16 processors. Several unsolved
instances that exhibited attractive integrality gaps were resolved by using 32 processors
and increasing the maximum value of K to 6. Three other problems were solved this way.
Insight gained from this phase also led Cook and Rich to increase the time limit for the
16-processor version and solve one additional instance.

Larsen [63] was the first to provide exact solutions to any of the 81 Solomon long-
horizon problems. He solved 17 problems in this set. Cook and Rich [22] solved 13
additional ones, while 16 more problems were solved by Kallehauge, Larsen, and Mad-
sen [52]. Tables 7.1, 7.2, and 7.3 provide the cost of the best solutions, in terms of total
distance, identified by either Kohl et al. [58] (KDMSS), Larsen [63] (L), Kallehauge, Larsen,
and Madsen [52] (KLM), or Cook and Rich [22] (CR). The column K indicates the number
of vehicles used in the solution. These solutions were computed with approximate distances
obtained by multiplying the real distances by 10 and truncating the result. Hence, some
routes may not satisfy all time window constraints if real distances were used.

Homberger [47] extended the Solomon test problems to sizes of up to 1000 customers.
Cook and Rich [22] and Kallehauge, Larsen, and Madsen [52] solved seven problems with
200 customers (one r -problem and six c-problems). The latter authors solved to optimality
two additional c-problems, one with 400 customers and the other with 1000 customers.

Several researchers derived excellent near-optimal results on Solomon's test prob-
lems. In particular, high-quality solutions were obtained in reasonable computing times by

182 Chapter 7. VRP with Time Windows

Table 7.1

Problem
rl01.25
rlOl.50
rlOl.100
rl02.25
r!02.50
r!02.100
r!03.25
r!03.50
r!03.100
r!04.25
rl04.50
r!04.100
r!05.25
r!05.50
r!05.100
rl06.25
r!06.50
r!06.100
r!07.25
rl07.50
rl07.100
rl08.25
rl08.50
rlOS.100
r!09.25
rl09.50
r!09.100
rl 10.25
rl 10.50
rllO.100
rl 11.25
rlll.50
rill. 100
rl 12.25
rl 12.50
rl!2.100

. Optimal (total distance) solutions on therl- and il-problems.

K
8

12
20
7

11
18
5
9

14
4
6

6
9

15
3
5

13
4
7

11
4
6

5
8

13
4
7

12
5
7

12
4
6

Dist.
617.1

1044.0
1637.7
547.1

909
1466.6
454.6
772.9

1208.7
416.9
625.4

530.5
899.3

1355.3
465.4

793
1234.6
424.3
711.1

1064.6
397.3
617.7

441.3
786.8

1146.9
444.1
697.0

1068.0
428.8
707.2

1048.7
393

630.2

Authors
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
CR+L
KDMSS
KDMSS

KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
CR+KLM
KDMSS
KDMSS
CR+KLM
KDMSS
CR+KLM

KDMSS
KDMSS
CR+KLM
KDMSS
KDMSS
CR+KLM
KDMSS
CR+KLM
CR+KLM
KDMSS
CR+KLM

Problem
r201.25
r201.50
r20 1.100
r202.25
r202.50
r202.100
r203.25
r203.50
r203.100
r204.25
r204.50
r204.100
r205.25
r205.50
r205.100
r206.25
r206.50
r206.100
r207.25
r207.50
r207.100
r208.25
r208.50
r208.100
r209.25
r209.50
r209.100
r210.25
r210.50
r210.100
r211.25
r211.50
r21 1.100

K
4
6
8
4
5

3

3
5

3

3

1

2

3

2

Dist.
463.3
791.9

1143.2
410.5
698.5

391.4

393.0
690.9

374.4

361.6

330.9

370.7

404.6

350.9

Authors
CR+KLM
CR+KLM
KLM
CR+KLM
CR+KLM

CR+KLM

CR+KLM
L+KLM

CR+KLM

KLM

KLM

KLM

CR+KLM

KLM

the metaheuristics of Rochat and Taillard [74] and Taillard et al. [88]. The heuristics of
Homberger and Gehring [48] were also competitive and improved several previously best
known solutions. The approach of Kilby, Prosser, and Shaw [54] generated particularly
good results on problems with few vehicles and long routes. Similar results were reported
by Chiang and Russell [18]. Finally, Cordeau, Laporte, and Mercier [25] produced new

7.8. Computational Results for VRPTW 183

Table 7.2.

Problem
clOl.25
clOl.50
clOl.100
C102.25
cl02.50
C102.100
c!03.25
C103.50
C103.100
c!04.25
c 104.50
C104.100
cl05.25
C105.50
C105.100
c 106.25
c 106.50
c 106. 100
c!07.25
C107.50
c 107. 100
c 108.25
clOS.50
clOS.100
c 109.25
c 109.50
c 109. 100

Optimal (total distance) solutions on the cl- and c2-problems.

K
3
5

10
3
5

10
3
5

10
3
5

10
3
5

10
3
5

10
3
5

10
3
5

10
3
5

10

Dist.
191.3
362.4
827.3
190.3
361.4
827.3
190.3
361.4
826.3
186.9
358.0
822.9
191.3
362.4
827.3
191.3
362.4
827.3
191.3
362.4
827.3
191.3
362.4
827.3
191.3
362.4
827.3

Authors
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS

Problem
C201.25
C201.50
C201.100
C202.25
C202.50
C202.100
C203.25
C203.50
C203.100
C204.25
C204.50
C204.100
C205.25
C205.50
C205.100
C206.25
C206.50
c206.100
C207.25
C207.50
C207.100
C208.25
C208.50
c208.100

K
2
3
3
2
3
3
2
3
3
2
2

2
3
3
2
3
3
2
3
3
2
2
3

Dist.
214.7
360.2
589.1
214.7
360.2
589.1
214.7
359.8
588.7
213.1
350.1

214.7
359.8
586.4
214.7
359.8
586.0
214.5
359.6
585.8
214.5
350.5
585.8

Authors
CR+L
CR+L
CR+KLM
CR+L
CR+KLM
CR+KLM
CR+L
CR+KLM
KLM
CR+KLM
KLM

CR+L
CR+KLM
CR+KLM
CR+L
CR+KLM
CR+KLM
CR+L
CR+KLM
CR+KLM
CR+L
CR+KLM
KLM

best solutions for a number of instances and competitive results for the others, although
their metaheuristic was designed primarily to address various multilevel generalizations.
Table 7.4 provides the best known solutions obtained by these heuristics. Distances with at
least three decimal places were used. In addition, the heuristics considered a hierarchical
objective function where solutions with a smaller number of vehicles and larger total dis-
tance dominate those with more vehicles and shorter distances. The authors are denoted in
the table as follows: Rochat and Taillard [74] (RT), Chiang and Russell [17] (CR2), Taillard
et al. [88] (TBGGP), Homberger and Gehring [48] (HG), Kilby, Prosser, and Shaw [54]
(KPS), and Cordeau, Laporte, and Mercier [25] (CLM).

The tables highlight the best known solutions that we are aware of at the time of
writing. Because the interest in this area will continue to grow as industry emphasizes
responsiveness, we would like researchers to help us keep current the best solutions found for
the Solomon problems available on the Solomon web page, http://w.cba.neu.edu/~solomon/
problems.htm

http://w.cba.neu.edu/~solomon/problems.htm
http://w.cba.neu.edu/~solomon/problems.htm

184 Chapter 7. VRP with Time Windows

Table 7.3. Optimal (total distance) solutions on the rcl- and rc2-problems.

Problem
rcl01.25
rclOl.50
rclOl.100
rc!02.25
re 102.50
rc!02.100
rc!03.25
rc!03.50
rclOS.100
re 104.25
rc!04.50
rc!04.100
rc!05.25
rc!05.50
rc!05.100
rc!06.25
rc!06.50
rc!06.100
rcl07.25
rcl07.50
rc!07.100
rcl08.25
rcl08.50
rclOS.100

K
4
8

15
3
7

14
3
6

11
3
5

4
8

15
3
6

3
6

3
6

Dist.
461.1

944
1619.8
351.8
822.5

1457.4
332.8
710.9

1258.0
306.6
545.8

411.3
855.3

1513.7
345.5
723.2

298.3
642.7

294.5
598.1

Authors
KDMSS
KDMSS
KDMSS
KDMSS
KDMSS
CR+KLM
KDMSS
KDMSS
CR+KLM
KDMSS
KDMSS

KDMSS
KDMSS
KDMSS
KDMSS
KDMSS

KDMSS
KDMSS

KDMSS
KDMSS

Problem
rc201.25
rc201.50
rc201.100
rc202.25
rc202.50
rc202.100
rc203.25
rc203.50
rc203.100
rc204.25
rc204.50
rc204.100
rc205.25
rc205.50
rc205.100
rc206.25
rc206.50
rc206.100
rc207.25
rc207.50
rc207.100
rc208.25
rc208.50
rc208.100

K
3
5
9
3

2

3
5

3

3

Dist.
360.2
684.8

1261.8
338.0

356.4

338.0
631.0

324.0

298.3

Authors
CR+L
L+KLM
KLM
CR+KLM

KLM

L+KLM
KLM

KLM

KLM

7.9 Conclusions

In the previous sections, we highlighted the remarkable evolution of VRPTW methodologies
over the last two decades. The models and algorithms presented are the stepping stones
on which progress in this area spiraled upward. Several have been successfully applied in
practice.

Optimization methods have relied on the intelligent exploitation of special problem
structures and have benefited from the constant advances in computing technology. Ex-
act algorithms using branching and cutting on solutions obtained through Dantzig-Wolfe
decomposition are leading the field [58,52,22]. Their success exemplifies that valid inequal-
ities are a compelling way to strengthen the lower bounds for the VRPTW. These advances
should create further interest in solving optimally the problems with many customers per
route. Nevertheless, the results reported by Cook and Rich [22] illustrate that even powerful
valid inequalities coupled with parallelism are not sufficient to solve all Solomon problems.
Additional research on polyhedral structures should prove valuable for this. Another di-
rection worth pursuing involves acceleration strategies. In a different context, du Merle et
al. [36] showed that a stabilization method significantly decreases CPU time at the master

7.9. Conclusions 185

Table 7.4. Best known solutions identified by heuristics.

Problem
rlOl
r!02
r!03
r!04
r!05
r!06
r!07
r!08
r!09
r l lO
r i l l
rl!2
clOl
c!02
c!03
c!04
c!05
c!06
clOV
c!08
c!09
rclOl
re 102
re 103
re 104
re 105
re 106
re 107
re 108

K
19
17
13
10
14
12
10
9

11
10
10
9

10
10
10
10
10
10
10
10
10
14
12
11
10
13
11
11
10

Dist.
1650.80
1486.12
1292.85
982.01

1377.11
1252.03
1113.69
964.38

1194.73
1125.04
1099.46
1003.73
828.94
828.94
828.06
824.78
828.94
828.94
828.94
828.94
828.94

1696.94
1554.75
1262.02
1135.48
1637.15
1427.13
1230.54
1139.82

Authors
RT
RT
HG
RT
RT
RT
CLM
CLM
HG
CLM
HG
HG
RT
RT
RT
RT
RT
RT
RT
RT
RT
TBGGP
TBGGP
RT
CLM
HG
CLM
TBGGP
TBGGP

Problem
r201
r202
r203
r204
r205
r206
r207
r208
r209
r210
r211

c201
c202
c203
c204
c205
c206
c207
c208

rc201
rc202
rc203
rc204
rc205
rc206
rc207
rc208

K
4
3
3
2
3
3
2
2
3
3
2

3
3
3
3
3
3
3
3

4
3
3
3
4
3
3
3

Dist.
1252.37
1197.66
942.64
849.62
998.72
912.97
914.39
731.23
910.55
955.39
910.09

591.56
591.56
591.17
590.60
588.88
588.49
588.29
588.32

1406.94
1389.57
1060.45
799.12

1302.42
1156.26
1062.05
832.36

Authors
HG
CLM
HG
CLM
KPS
RT
CR2
HG
HG
HG
HG

RT
RT
RT
RT
RT
RT
RT
RT

CLM
HG
HG
HG
HG
KPS
CLM
CLM

problem level. It is based on the use of bounded perturbation variables (i.e., bounded slack
variables) that virtually eliminate degeneracy, and estimates of dual variables that make it
unnecessary to solve the problem to optimality. Its adaptation to the VRPTW would lead
to more and larger problems to be solved.

Decomposition algorithms are easily adaptable to other settings. This is because they
comprise modules, such as dynamic programming, that can handle a variety of objectives.
Lateness, for one, is becoming an increasingly important benchmark in today's supply
chains that emphasize on-time deliveries. Moreover, decomposition algorithms can be run
as optimization-based heuristics by means of early stopping criteria.

Research on approximation methods has substantially increased in scope and maturity.
Metaheuristics have led the way in generating near-optimal solutions, as illustrated by the
results of Rochat and Taillard [74], Homberger and Gehring [48], and Cordeau, Laporte, and

186 Bibliography

Mercier [25], among others. Parallelism could resolve some of the efficiency issues. Recent
composite heuristics, such as that of Cordone and Wolfler Calvo [27], are showing much
promise. They provide competitive solutions while being much faster. As heuristics need to
be especially effective for very-large-scale problems, we expect work on these to intensify.
There is also a continuing need for standardization of the computational experiments. This
should involve the data used, real or integer, the degree of approximation in the travel time
calculations, and the reporting of results, whether best or average values are presented. An
additional step in this direction could be for authors to report the itineraries obtained. This
would ensure that identical solutions do not seem unequal simply because of differences in
data type or management.

Given the success to date of both optimization and approximate methods, we envision
that hybrid methods, blending aspects of each, will constitute an important direction for
future research. In addition, the theoretical and practical importance of the above devel-
opments can be appreciated further by realizing that they constitute the backbone of much
more complex models for fleet-planning, crew-scheduling, and crew-rostering problems. It
is our hope that this chapter provides valuable insights for the pursuit of solutions to many
current and future challenging problems.

Acknowledgments
This research was supported by the Quebec Government (Fonds pour la Formation de
Chercheurs et 1'Aide a la Recherche) and by the Natural Sciences and Engineering Council
of Canada. We thank Oli E.G. Madsen of the Technical University of Denmark, Lyngby,
for all the fruitful discussions regarding the chapter.

Bibliography
[1] L.H. Appelgren. A column generation algorithm for a ship scheduling problem. Trans-

portation Science, 3:53-68, 1969.

[2] L.H. Appelgren. Integer programming methods for a vessel scheduling problem.
Transportation Science, 5:64—78, 1971.

[3] S. Arunapuram, K. Mathur, and D. Solow. Vehicle routing and scheduling with full
truck loads. Technical report, Operations Research and Operations Management, Case
Western Reserve University, Cleveland, OH, 1997.

[4] P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, and E.D. Taillard. A parallel tabu
search heuristic for the vehicle routing problem with time windows. Transportation
Research C, 5:109-122, 1997.

[5] E. Baker and J. Schaffer. Computational experience with branch exchange heuristics
for vehicle routing problems with time window constraints. American Journal of
Mathematical and Management Sciences, 6:261-300, 1986.

[6] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,
6:126-140, 1994.

Bibliography 187

[7] L. Bianco, A. Mingozzi, and S. Ricciardelli. An exact algorithm for combining vehicle
trips. In J.R. Daduna, I. Branco, and J. Paixao, editors, Computer-Aided Transit
Scheduling, Lecture Notes in Economics and Mathematical Systems 430, Springer-
Verlag, Berlin, 1995, pp. 145-172.

[8] R. Bixby, W. Cook, A. Cox, and E. Lee. Parallel mixed integer programming. Tech-
nical Report CRPC-TR95554, Center for Research on Parallel Computation, Rice
University, Houston, TX, 1995.

[9] J.L. Blanton and R.L. Wainwright. Multiple vehicle routing with time and capacity
constraints using genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA,
1993, pp. 452^59.

[10] J. Braca, J. Bramel, B. Posner, and D. Simchi-Levi. A computerized approach to the
New York City school bus routing system. HE Transactions, 29:693-702, 1997.

[11] J. Bramel and D. Simchi-Levi. A location based heuristic for general routing problems.
Operations Research, 43:649-660, 1995.

[12] J. Bramel and D. Simchi-Levi. Probabilistic analyses and practical algorithms for the
vehicle routing problem with time windows. Operations Research, 44:501-509, 1996.

[13] J. Bramel and D. Simchi-Levi. On the effectiveness of set covering formulations for
the vehicle routing problem with time windows. Operations Research, 45:295-301,
1997.

[14] J. Bramel and D. Simchi-Levi. The Logic of Logistics. Springer-Verlag, New York,
1998.

[15] J. Brandao. Metaheuristic for the vehicle routing problem with time windows. In
S. Voss, S.Martello, I.H. Osman, andC.Roucairol, editors,MetaHeuristics: Advances
and Trends in Local Search Paradigms for Optimisation, Kluwer, Boston, MA, 1998,
pp. 19-36.

[16] W.B. Carlton. A tabu search approach to the general vehicle routing problem. Ph.D.
thesis, University of Texas at Austin, TX, 1995.

[17] W.-C. Chiang and R.A. Russell. Simulated annealing metaheuristics for the vehicle
routing problem with time windows. Annals of Operations Research, 63:3-27, 1996.

[18] W.-C. Chiang and R.A. Russell. A reactive tabu search metaheuristic for the vehicl
routing problem with time windows. INFORMS Journal on Computing, 9:417-^430,
1997.

[19] N. Christofides, A. Mingozzi, and P. Toth. State-space relaxation procedures for the
computation of bounds to routing problems. Networks, 11:145-164, 1981.

[20] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

188 Bibliography

[21] T. Cook and R.A. Russell. A simulation and statistical analysis of stochastic vehicle
routing with timing constraints. Decision Science, 9:673-687, 1978.

[22] W. Cook and J.L. Rich. A parallel cutting plane algorithm for the vehicle routing prob-
lem with time windows. Technical report, Computational and Applied Mathematics,
Rice University, Houston, TX, 1999.

[23] J.-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for periodic and
multi-depot vehicle routing problem. Networks, 30:105-119, 1997.

[24] J.-F. Cordeau and G. Laporte. A tabu search algorithm for the site dependent vehicle
routing problem with time windows. Technical Report CRT-00-04, Centre for Research
on Transportation, Montreal, Canada, 2000.

[25] J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehi-
cle routing problems with time windows. Technical Report CRT-00-03, Centre for
Research on Transportation, Montreal, Canada, 2000.

[26] R. Cordone and R. Wolfer Calvo. Note on time window constraints in routing prob-
lems. Internal Report 96.005, Politecnico di Milano, Dipartimento di Elettronica e
Informazione, Milan, Italy, 1996.

[27] R. Cordone and R. Wolfer Calvo. A heuristic for vehicle routing problem with time
windows. Internal Report 97.012, Politecnico di Milano, Dipartimento di Elettronica
e Informazione, Milan, Italy, 1997.

[28] G. B. Dantzig and P. Wolfe. The decomposition algorithm for linear programming.
Operations Research, 8:101-111, 1960.

[29] G. Desaulniers, J. Desrosiers, I. loachim, M.M. Solomon, F. Soumis, and D. Vil-
leneuve. A unified framework for deterministic time constrained vehicle routing and
crew scheduling problems. In T.G. Crainic and G. Laporte, editors, Fleet Management
and Logistics, Kluwer, Boston, MA, 1998, pp. 57-93.

[30] G. Desaulniers, J. Desrosiers, A. Lasry, and M.M. Solomon. Crew pairing for a
regional carrier. In N. Wilson, editor, Computer-Aided Scheduling of Public Transport
7, Springer-Verlag, Berlin, 1999, pp. 19-41.

[31] G. Desaulniers, J. Desrosiers, M.M. Solomon, and F. Soumis. Daily aircraft routing
and scheduling. Management Science, 43:841-855, 1997.

[32] G. Desaulniers, J. Lavigne, and F. Soumis. Multi-depot vehicle scheduling with time
windows and waiting costs. European Journal of Operational Research, 111 :479-494,
1998.

[33] M. Desrochers, J. Desrosiers, and M.M. Solomon. A new optimization algorithm for
the vehicle routing problem with time windows. Operations Research, 40:342-354,
1992.

[34] M. Desrochers and F. Soumis. A generalized permanent labeling algorithm for the
shortest path problem with time windows. INFOR, 26:191-212, 1988.

Bibliography 189

[35] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and
scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editors,
Network Routing, Handbooks in Operations Research and Management Science 8,
North-Holland, Amsterdam, 1995, pp. 35-139.

[36] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.
Discrete Mathematics, 194:229-237, 1999.

[37] Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An optimal algorithm for the
traveling salesman problem with time windows. Operations Research, 43:367-371,
1995.

[38] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time
windows. European Journal of Operational Research, 54:7-22, 1991.

[39] M.L. Fisher. Optimal solution of vehicle routing problems using minimum &-trees.
Operations Research, 42:626-642, 1994.

[40] M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for the vehicle
routing problem. Networks, 11:109-124, 1981.

[41] M.L. Fisher, K.O. Jornsten, and O.B.G. Madsen. Vehicle routing with time windows
Two optimization algorithms. Operations Research, 45:488^4-92, 1997.

[42] S. Gelinas, M. Desrochers, J. Desrosiers, and M.M. Solomon. A new branching
strategy for time constrained routing problems with application to backhauling. Annals
of Operations Research, 61:91-109, 1995.

[43] M. Gendreau, G. Hertz, G. Laporte, and M. Stan. A generalized insertion heuristic for
the traveling salesman problem with time windows. Operations Research, 43:330-335,
1998.

[44] A.M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Pro
gramming Study, 2:82-114, 1974.

[45] B.L. Golden, E.A. Wasil, J.P. Kelly, and I.M. Chao. Metaheuristics in vehicle routing
In T.G Crainic and G. Laporte, editors, Fleet Management and Logistics, Kluwer,
Boston, MA, 1998, pp. 33-56.

[46] K. Halse. Modeling and solving complex vehicle routing problems. Ph.D. thesis, Insti
tute of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark,
1992.

[47] J. Homberger. Extended Solomon's VRPTW instances. Available at http://www.
fernuni-hagen.de/WINF/touren/inhalte/probinst.htm.

[48] J. Homberger and H. Gehring. Two evolutionary metaheuristics for the vehicle routing
problem with time windows. INFOR, 37:297-318, 1999.

http://www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm
http://www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm

190 Bibliography

[49] DJ. Houck Jr., J.-C. Picard, M. Queyranne, and R.R. Vemuganti. The travelling
salesman problem as a constrained shortest path problem: Theory and computational
experience. Opsearch, 17:93-109, 1980.

[50] I. loachim, S. Gelinas, J. Desrosiers, and F. Soumis. A dynamic programming algo-
rithm for the shortest path problem with time windows and linear node costs. Networks,
31:193-204, 1998.

[51] B. Kallehauge. Lagrangean duality and non-differentiable optimization applied on
routing with time windows. M.S. Thesis IMM-EKS-2000-13, Department of Math-
ematical Modelling, Technical University of Denmark, Lyngby, Denmark, 2000 (in
Danish).

[52] B. Kallehauge, J. Larsen, and O.B.G. Madsen. Lagrangean duality and non-
differentiable optimization applied on routing with time windows—experimental re-
sults. Internal report IMM-REP-2000-8, Department of Mathematical Modelling,
Technical University of Denmark, Lyngby, Denmark, 2000.

[53] D.R. Karger. Global min-cuts in KAfC, and other ramifications of a simple min-cut
algorithm. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM-SIAM, Philadelphia, 1993, pp. 21-30.

[54] P. J. Kilby, P. Prosser, and P. Shaw. Guided local search for the vehicle routing problem
with time windows. In S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors,
Meta Heuristics: Advances and Trends in Local Search Paradigms for Optimisation,
Kluwer, Boston, MA, 1998, pp. 473^86.

[55] G.A.P. Kindervater and M.W.P. Savelsbergh. Vehicle routing: Handling edge ex-
changes. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, Wiley, Chichester, UK, 1997, pp. 337-360.

[56] K. Knight and J. Hofer. Vehicle scheduling with timed and connected calls: A case
study. Operational Research Quarterly, 19:299-310, 1968.

[57] N. Kohl. Exact methods for time constrained routing and related scheduling problems.
Ph.D. thesis, Institute of Mathematical Modelling, Technical University of Denmark,
Lyngby, Denmark, 1995.

[58] N. Kohl, J. Desrosiers, O.B.G. Madsen, M.M. Solomon, and F. Soumis. 2-Path cuts for
the vehicle routing problem with time windows. Transportation Science, 33:101-116,
1999.

[59] N. Kohl and O.B.G. Madsen. An optimization algorithm for the vehicle routing
problem with time windows based on Lagrangean relaxation. Operations Research,
45:395^06, 1997.

[60] A.W.J. Kolen, A.H.G. Rinnooy Kan, and H.W.J.M. Trienekens. Vehicle routing with
time windows. Operations Research, 35:266-273, 1987.

Bibliography 191

[61] G. Kontoravdis and J.F. Bard. A GRASP for the vehicle routing problem with time
windows. ORSA Journal on Computing, 7:10-23, 1995.

[62] Y.A. Koskosidis, W.B. Powell, and M.M. Solomon. An optimization based heuristic
for vehicle routing and scheduling with soft time window constraints. Transportation
Science, 26:69-85, 1992.

[63] J. Larsen. Parallellization of the vehicle routing problem with time windows. Ph.D.
thesis IMM-PHD-1999-62, Department of Mathematical Modelling, Technical Uni-
versity of Denmark, Lyngby, Denmark, 1999.

[64] A. Levin. Scheduling and fleet routing models for transportation systems. Transporta-
tion Science, 5:232-255, 1971.

[65] O.B.G. Madsen. Optimal scheduling of trucks—A routing problem with tight due
times for delivery. In H. Strobel, R. Genser, and M. Etschmaier, editors, Optimization
applied to transportation systems, IIASA, International Institute for Applied System
Analysis, Laxenburgh, Austria, 1976, pp. 126-136.

[66] A. Mingozzi, L. Bianco, and S. Ricciardelli. Dynamic programming strategies for the
traveling salesman problem with time window and precedence constraints. Operations
Research, 45:365-377, 1997.

[67] I. Or. Traveling salesman-type combinatorial optimization problems and their relation
to the logistics of regional blood banking. Ph.D. dissertation, Department of Industrial
Engineering and Management Sciences, Northwestern University, Evanston, IL, 1976.

[68] I.H. Osman. Metastrategy simulated annealing and tabu search algorithms for the
vehicle routing problem. Annals of Operations Research, 41:421^51, 1993.

[69] J.-Y. Potvin and S. Bengio. The vehicle routing problem with time windows—Part II:
Genetic search. INFORMS Journal on Computing, 8:165-172, 1996.

[70] J.-Y. Potvin, T. Kervahut, B. Garcia, and J.-M. Rousseau. The vehicle routing problem
with time windows—Part I: Tabu search. INFORMS Journal on Computing, 8:158-
164, 1996.

[71] J.-Y. Potvin and J.-M. Rousseau. A parallel route building algorithm for the vehicle
routing and scheduling problem with time windows. European Journal of Operational
Research, 66:331-340, 1993.

[72] J.-Y. Potvin and J.-M. Rousseau. An exchange heuristic for routing problems with
time windows. Journal of Operational Research Society, 46:1433-1446, 1995.

[73] H. Pullen and M. Webb. A computer application to a transport scheduling problem.
Computer Journal, 10:10-13, 1967.

[74] Y. Rochat and E.D. Taillard. Probabilistic diversification and intensification in local
search for vehicle routing. Journal of Heuristics, 1:147-167, 1995.

192 Bibliography

[75] R.A. Russell. An effective heuristic for the m-tour traveling salesman problem with
some side conditions. Operations Research, 25:517-524, 1977.

[76] R.A. Russell. Hybrid heuristics for the vehicle routing problem with time windows.
Transportation Science, 29:156-166, 1995.

[77] M.W.P. Savelsbergh. Local search in routing problems with time windows. Annals of
Operations Research, 4:285-305, 1985.

[78] M.W.P. Savelsbergh. An efficient implementation of local search algorithms for con-
strained routing problems. European Journal of Operational Research, 47:75-85,
1990.

[79] M.W.P. Savelsbergh. The vehicle routing problem with time windows: Minimizing
route duration. ORSA Journal on Computing, 4:146-154, 1992.

[80] J. Schulze and T. Fahle. A parallel algorithm for the vehicle routing problem with time
window constraints. Annals of Operations Research, 86:585-607, 1999.

[81] F. Semet and E.D. Taillard. Solving real-life vehicle routing problems efficiently using
tabu search. Annals of Operations Research, 41:469-488, 1993.

[82] M.M. Solomon. On the worst-case performance of some heuristics for the vehicle
routing and scheduling problem with time window constraints. Networks, 16:161-
174, 1986.

[83] M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35:254-265, 1987.

[84] M.M. Solomon, E. Baker, and J. Schaffer. Vehicle routing and scheduling problems
with time window constraints: Efficient implementations of solution improvement
procedures. In B.L. Golden and A.A. Assad, editors, Vehicle routing: Methods and
studies, North-Holland, Amsterdam, 1988, pp. 85-106.

[85] M.M. Solomon and J. Desrosiers. Time window constrained routing and scheduling
problems. Transportation Science, 22:1-13, 1988.

[86] A. Swersey and W. Ballard. Scheduling school buses. Management Science, 30:844-
853, 1983.

[87] E.D. Taillard. Parallel iterative search methods for vehicle routing problems. Networks,
23:661-673, 1993.

[88] E.D. Taillard, P. Badeau, M. Gendreau, F. Guertin, and J.-Y. Potvin. A tabu search
heuristic for the vehicle routing problem with soft time windows. Transportation
Science, 31:170-186, 1997.

[89] S .R. Thangiah, I.H. Osman, and T. Sun. Hybrid genetic algorithm, simulated annealing
and tabu search methods for vehicle routing problems with time windows. Technical
Report UKC/OR94/4, Institute of Mathematics and Statistics, University of Kent,
Canterbury, UK, 1994.

Bibliography 193

[90] S.R. Thangiah and P. Petrovic. Introduction to genetic heuristics and vehicle routing
problems with complex constraints. In D.L. Woodruff, editor, Advances in computa-
tional and stochastic optimization, logic programming, and heuristic search, Opera-
tions Research/Computer Science Interfaces 9, Kluwer, Boston, MA, 1997, pp. 253-
286.

[91] P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithms for multi-vehicle routing
and scheduling problems. Operations Research, 41:935-946, 1993.

This page intentionally left blank

Chapter 8

VRP with Backhauls

Paolo Toth
Daniele Vigo

8.1 Introduction
In this chapter we consider the VRP with Backhauls (VRPB), also known as the linehaul-
backhaul problem, an extension of the Capacitated VRP (CVRP) where the customer set is
partitioned into two subsets. The first subset contains the linehaul customers, each requiring
a given quantity of product to be delivered. The second subset contains the backhaul
customers, where a given quantity of inbound product must be picked up.

This customer partition is extremely frequent in practical situations. A common
example is that of the grocery industry, where supermarkets and shops are the linehaul
customers and grocery suppliers are the backhaul customers. It has been widely recognized
that in this mixed distribution-collection context a significant saving in transportation costs
can be achieved by visiting backhaul customers in distribution routes (see, e.g., Golden et
al. [21]).

More precisely, the VRPB can be stated as the problem of determining a set of vehicle
routes visiting all customers, and (i) each vehicle performs one route; (ii) each route starts and
finishes at the depot; (iii) for each route the total load associated with linehaul and backhaul
customers does not exceed, separately, the vehicle capacity; (iv) on each route the backhaul
customers, if any, are visited after all linehaul customers; and (v) the total distance traveled
by the vehicles is minimized. The precedence constraint (iv) is practically motivated by
the fact that vehicles are often rearloaded. Hence the on-board load rearrangement required
by a mixed service is difficult, or impossible, to carry out at customer locations. Another
practical reason is that, in many applications, linehaul customers have a higher service
priority than backhaul customers.

195

196 Chapter 8. VRP with Backhauls

We examine both the symmetric and asymmetric versions of VRPB. In the symmetric
version of the problem (the VRPB) the distance between each pair of locations is the same
in the two directions, whereas we have the asymmetric version (the AVRPB) when this
assumption does not hold.

The problem can be formulated through the following graph theory model, where
each customer corresponds to a vertex. Let G = (V, A) be a complete undirected graph
(directed for AVRPB) with vertex set V := {0} U L U B. Subsets L = {1,..., n} and
B = (n + 1,.. . ,n+m} correspond to linehaul and backhaul customer subsets, respectively.
A nonnegative quantity, dj, of product to be delivered or collected (demand) is associated
with each vertex j e V \ {0}. Vertex 0 corresponds to the depot (with a fictitious demand
do = 0), where K identical vehicles with a given capacity, C, are stationed. Let Cjj be the
nonnegative cost associated with arc (z, 7) e A, with ca = -foo for each i e V (and with
dj = Cji for each i, j e V such that i ^ j for VRPB). VRPB (and AVRPB as well) then
consists of finding a min-cost collection of K simple circuits (vehicle routes) such that

(i) each circuit visits vertex 0;

(ii) each vertex j e V \ {0} is visited exactly once;

(iii) the sum of the demands of the linehaul and backhaul vertices visited by a circuit does
not exceed, separately, the vehicle capacity C;

(iv) in each circuit the linehaul vertices precede the backhaul vertices, if any.

The objective is to minimize the total routing cost, defined as the sum of the costs of
the arcs belonging to the circuits.

The mixed vehicle routes, which visit both linehaul and backhaul vertices, are im-
plicitly oriented due to precedence constraint (iv). Let KL (resp., KB} denote the minimum
number of vehicles needed to serve all the linehaul (resp., backhaul) vertices. To ensure
feasibility, we assume that K (number of available vehicles) is not smaller than the minimum
number of vehicles needed to serve all the vertices, i.e., K > max{^, KB}. The values
KL and KB can be obtained by solving the Bin Packing Problem (BPP) instances associated
with the linehaul and the backhaul vertices, respectively. In these instances the bin capacity
is equal to C and each item j has a weight equal to the demand dj of the corresponding
vertex. Although BPP is NP-hard in the strong sense, many instances with hundreds of
items can be optimally solved very effectively (see, e.g., Martello and Toth [26]).

As generally assumed in the literature, routes containing only backhaul vertices are
not allowed. However, some of the heuristic approaches described in this chapter may be
easily extended to consider the case where this limitation is not present.

VRPB and AVRPB are NP-hard in the strong sense, since they generalize the sym-
metric and asymmetric CVRP, respectively, arising when B = 0.

Several heuristic algorithms for the solution of VRPB have been presented in the
literature. Deif and Bodin [9] proposed an extension of the well-known Clarke and Wright
[8] VRP heuristic, where the saving of the arcs connecting linehaul to backhaul customers
is modified to delay the formation of mixed routes. Goetschalckx and Jacobs-Blecha [19]
proposed an algorithm that builds initial routes with customers of the same type by using a
space-filling curves heuristic; these routes are then merged to form the final set of vehicle

8.1. Introduction 197

routes. It should be noted that the solutions obtained with both the Deif-Bodin and the space-
filling heuristics could use more than K vehicles (hence leading to infeasible solutions).
More recently, Goetschalckx and Jacobs-Blecha [20] described an extension to VRPB of
the Fisher and Jaikumar [15] VRP heuristic. Toth and Vigo [34] proposed a different
cluster-first, route-second heuristic for both VRPB and AVRPB. The algorithm starts from a
(possibly infeasible) solution and tries to improve it through a local search procedure based
on interroute and intraroute arc exchanges.

Yano et al. [36] proposed an exact, set-covering-based algorithm for the special case of
VRPB in which the number of customers of each type in a circuit is not greater than four. Toth
and Vigo [33] presented a branch-and-bound method for the exact solution of both VRPB and
AVRPB. The algorithm is based on a reformulation of VRPB as an asymmetric problem,
the addition of valid inequalities, and the computation of Lagrangian and additive lower
bounds. Mingozzi, Giorgi, and Baldacci [28] proposed an exact approach for both VRPB
and AVRPB. The method is based on a new set-partitioning model and the computation of
an effective lower bound, obtained by considering different heuristic procedures for solving
the dual of the LP relaxation of the original model.

Heuristic algorithms for the case in which the precedence constraint between linehaul
and backhaul customers is not present are described by Golden et al. [21], Casco, Golden,
and Wasil [5], Anily [2], and Salhi and Nagy [29]. The variant of VRPB where time window
constraints are present was considered by Kontovradis and Bard [24], Duhamel, Potvin, and
Rousseau [11], Gelinas et al. [17], and Thangiah, Potvin, and Sun [30] (see also section
7.6.2).

The chapter is organized as follows. In section 8.1.1, three classes of benchmark
instances from the literature (two for VRPB and one for AVRPB) are illustrated. In section
8.2, two integer linear programming models for AVRPB (and hence for VRPB as well)
are described: the two-index vehicle flow formulation proposed by Toth and Vigo [33] and
the set-partitioning model proposed by Mingozzi, Giorgi, and Baldacci [28]. Section 8.3
presents the main relaxations used for deriving effective lower bounds on the optimal solution
value of AVRPB. The exact enumerative algorithms for AVRPB proposed by Toth and Vigo
[33] and by Mingozzi, Giorgi, and Baldacci [28], with the corresponding computational
results on the set of benchmark instances, are described in section 8.4. The most effective
heuristic algorithms for VRPB and AVRPB are summarized and computationally compared
in section 8.5.

8.1.1 Benchmark Instances

Three classes of benchmark instances are used in the literature for experimentally comparing
the performance of exact and heuristic algorithms proposed for VRPB and AVRPB. All
instances described below are available on request from the authors.

The first class of test problem is made up by the 62 randomly generated Euclidean
VRPB instances proposed by Goetschalckx and Jacobs-Blecha [19]. Customer coordinates
are uniformly distributed in the interval [0, 24,000] for the x values and in the interval
[0, 32,000] for the y values. The depot is located centrally in (12,000, 16,000). The cost
C{j of arc (i, j) e A is defined as the Euclidean distance between customers / and j.
Customer demands are generated from a normal distribution with mean value 500 and
standard deviation 200. Fourteen values for the total number of vertices, n + m (from 25 to

198 Chapters. VRP with Backhauls

150) are considered, with linehaul percentage equal to 50%, 66%, and 80%. For each value
of n + m, the vehicle capacity is defined so that approximately 3 to 12 vehicles are used to
serve all the demands.

The second class was proposed by Toth and Vigo [32] and contains 33 VRPB instances
obtained from 11 CVRP test problems from the literature, with a total number of vertices
between 21 and 100. For each CVRP test problem, three VRPB instances are generated,
each corresponding to a linehaul percentage of 50%, 66%, and 80%. The customer set is
partitioned by defining as backhaul the first customer in every two, three, or five, respectively,
depending on the linehaul percentage desired. Customer demands and vehicle capacity are
set equal to the original VRP values, and the number of available vehicles is defined by
K = max{KL, KB}. For the instances where KL < KB, linehaul and backhaul customer
sets are swapped.

The third class contains 24 AVRPB instances (proposed by Toth and Vigo [33]) ob-
tained from the real-world ACVRP instances described by Fischetti, Toth, and Vigo [13].
As in the second class, for each ACVRP instance three AVRPB instances are generated
(corresponding to a linehaul percentage of 50%, 66%, and 80%, respectively), and the cus-
tomer set is partitioned by defining as backhaul the first vertex in every two, three, and five,
respectively. Customer demands, vehicle capacity, and cost matrix are equal to those of the
original ACVRP. The values of KL, KB, and K are defined as for the second class.

8.2 Integer Linear Programming Models
The first formulation of the VRPB, proposed by Goetschalckx and Jacobs-Blecha [19], was
an extension to VRPB of the nonlinear model of Fisher and Jaikumar [15]. We next present
two integer linear programming models for AVRPB (hence, for VRPB as well), which are
used to derive the relaxations on which the exact approaches are based.

8.2.1 Formulation of Toth and Vigo

The model proposed by Toth and Vigo [33] is based on the reformulation of VRPB as an
asymmetric problem; thus it is valid for AVRPB as well. In the following we assume that
single-customer (linehaul) routes are allowed.

Let us define L0 := L U_{0} and B0 j= B U {0}. Let G = (V, A) be a directed graph
obtained from G by defining V = V and A = A\ U A2 U A3, where

In other words, the arc set A can be partitioned into three disjoint subsets. The first subset,
A i, contains all the arcs from the depot and linehaul vertices to linehaul vertices. The second
subset, A2, contains all the arcs from backhaul vertices to backhaul vertices and the depot.
The third subset, A3, contains the so-called interface arcs, connecting linehaul vertices to
backhaul vertices or the depot. Note that A does not contain arcs that cannot belong to a
feasible solution. In fact, no arc from a backhaul to a linehaul vertex, or from the depot to a

8.2. Integer Linear Programming Models 199

backhaul vertex can belong to a feasible solution to VRPB, either because of the precedence
constraint or because routes with only backhaul vertices are not allowed. Note that A is
a proper subset of A and that each arc (1,7) e A has a cost c(/ equal to the cost of the
corresponding arc (1,7) € A.

Let £ (resp., B) be the family of all subsets of vertices in L (resp., B), and let
F = £ U B. For each S e F, let r(S) be the minimum number of vehicles needed to
serve all the customers in S. This value may be computed as the optimal solution value
of the BPP with item set S and bin capacity equal to C. For each / e V let us define
A+ = {7 : (i, 7) e A} (i.e., the forward star of /) and A~ = {7 : (7, i) e A} (i.e., the
backward star of 0- An integer linear programming formulation of VRPB and AVRPB is
then

subject to

where jc(/ = 1 if and only if arc (i, 7) is in the optimal solution. Equations (8.2), (8.4) and
(8.3), (8.5) impose indegree and outdegree constraints for the customer and the depot ver-
tices, respectively. The so-called Capacity-Cut Constraints (CCCs) (8.6) and (8.7) impose
both the connectivity and the capacity constraints. Note that because of degree constraints
(8.2)-(8.5), for any given 5 the left-hand sides of (8.6) and (8.7) are equal (i.e., the number
of arcs entering S is equal to the number of arcs leaving it). Hence, if constraints (8.6) are
imposed, then constraints (8.7) are redundant and vice versa. Alternatively, an equivalent
model for VRPB is obtained by imposing (8.6) only for each S e £ and (8.7) only for each
S e B. Note also that in (8.6) and (8.7), the value r(S) can be replaced by any lower bound
on the optimal solution of the associated BPP (e.g., the continuous lower bound ld(S)/C~\).

200 Chapter 8. VRP with Backhauls

Finally, note that both families of constraints (8.6) and (8.7) have a cardinality growing
exponentially with max{«, m}, hence the LP relaxation of PI, defined by (8.1)-(8.7) and

cannot be directly solved, even for problems of moderate size.
For the symmetric version of the problem, the cost matrix associated with graph G is

asymmetric due to the removal from G of the arcs connecting backhaul to linehaul vertices
and the depot to backhaul vertices. However, the two submatrices corresponding to arcs
with both endpoints in LO and in 5, respectively, are symmetric.

8.2.2 Formulation of Mingozzi, Giorgi, and Baldacci

Mingozzi, Giorgi, and Baldacci [28] proposed the following set-partitioning model for
AVRPB.

Let GL = (LQ, AI) and GB = (Bo, A.I) denote the two subgraphs of G induced by
the linehaul and the backhaul customers, respectively (see section 8.2.1). An elementary
path P in GL starting from the depot (resp., in GB ending at the depot) is called feasible if
its total demand satisfies the inequalities

where C^in (resp., C^in) represents the minimum total demand of linehaul customers (resp.,
backhaul customers) of any feasible route. The values C^n and C^in can be computed as
follows:

and

Let t (P) denote both the terminal vertex of a feasible path P in GL and the starting
vertex of a feasible path P in GB- Note that any pair of feasible paths P in GL and P' in
GB (with P' possibly empty) and the arc (t(P), t(P')) e A3 (with t(P') = 0 when P1 is
empty) form a feasible route obtained by joining P and P' through the arc (t(P), t (P ')) .
Observe that the K routes of any feasible VRPB solution consist of K feasible paths in GL,
at least KB feasible paths in G#, and K arcs of A3.

Let £ be the index set of all feasible paths in GL and let £/ c C (resp., £f c £)
denote the index set of all paths passing through (resp., ending at) customer i e L. Similarly,
let B be the index set of all feasible paths in GB and let Bt c 8 (resp., Bf c B) denote the
index set of all paths passing through (resp., starting from) customer i e B. Finally, let c(i)
denote the total cost of path Pi (with t € £ U B), defined as the sum of the cost of its arcs.

8.3. Relaxations 201

The following binary variables are defined: JQ, I e £, y?, I e B, and £/,, (z, 7) e A3,
with *£ = 1, yr = 1, and £// = 1 if and only if the paths £ e £, €' e £ and the arc
(i, 7) e A 3 are in the optimal VRPB solution.

An integer programming formulation of the VRPB is

subject to

Equations (8.14) and (8.15) require that each vertex i e L and j e B be visited by
exactly one route. Equations (8.16) force the solution to contain an arc of A3 starting from
vertex i e L if a path in GL ends at vertex i. Similarly, (8.17) requires an arc (i, j) with
i e L and j e B if a path in GB starts from vertex 7. Equation (8.18) forces the solution to
contain K routes by requiring K arcs of AT,.

Note that problem P2 (and its LP relaxation as well) cannot be solved directly, even
for problems of moderate size, because the number of variables may be too large.

8.3 Relaxations
In this section, four relaxations for VRPB are presented. We first describe the three relax-
ations, based on model PI, proposed by Toth and Vigo [33]. The first relaxation is obtained
by dropping the CCCs and leads to the solution of a Transportation Problem (TP). Then we
describe a relaxation of the problem based on the projection of the feasible solution space,
which requires the determination of degree-constrained Shortest Spanning Trees (SST) or
Arborescences (SSA), as well as the optimal solution of min-cost flow problems. A La-
grangian lower bound is then derived by imbedding the relaxed degree constraints in the
objective function. The lower bound is strengthened in a cutting-plane fashion by adding
some of the previously relaxed CCCs. The Lagrangian lower bound is then combined, ac-
cording to the additive approach, with the TP lower bound, thus obtaining an effective overall

202 Chapter 8. VRP with Backhauls

bounding procedure. Finally, the bounding procedure proposed by Mingozzi, Giorgi, and
Baldacci [28] is described. The lower bound is computed by combining different heuristic
methods for solving the dual of the LP relaxation of model P2.

8.3.1 Relaxation Obtained by Dropping the CCCs

As described in Chapter 2, we may relax problem (8.1)-(8.8) by dropping CCCs (8.6) and
(8.7). We thus obtain a TP, requiring the determination of a min-cost collection of circuits of
G covering all the vertices in V\{0} once, and visiting the depot K times. This solution can
be infeasible for VRPB since the total linehaul or backhaul customer demands of a circuit
can exceed the vehicle capacity, or because of the possible existence of circuits not visiting
the depot. Note that the precedence constraint between linehaul and backhaul vertices is
satisfied because of the absence in G of arcs from backhaul to linehaul vertices or from the
depot to backhaul vertices.

The solution of TP requires O((n + m)3) time through a transportation algorithm.
However, in practice it is more effective to transform the problem into an Assignment
Problem (AP) defined on the extended digraph obtained by adding K — 1 copies of the
depot to G (see section 1.3.2 for further details).

The computational experience showed that the quality of the lower bound provided
by the TP relaxation is generally poor when symmetric instances are considered. However,
this bound may be combined in an additive fashion, as shown in section 8.3.4, with the other
bounds proposed in the following, leading to an effective overall bound.

8.3.2 Relaxation Based on Projection

The arcs of any feasible solution can be divided into three groups belonging to the previ-
ously defined subsets A\, AI, and A?,, respectively. As a consequence, problem PI can be
relaxed by dividing it into three independent subproblems, each relative to a different arc
subset Ah,h = 1,2,3. A valid lower bound on i>(Pl) can be obtained by adding the three
corresponding optimal solution values. This relaxation is used as the basis of the Lagrangian
relaxation of VRPB described in the next section.

We now briefly describe the three resulting subproblems and discuss their efficient
solution. The first subproblem, corresponding to the arc set A\, is that of determining a min-
cost collection of K capacitated disjoint simple paths, starting from the depot and spanning
all the linehaul vertices. This problem is NP-hard in the strong sense and remains such even
if we relax it by requiring the determination of a capacitated tree with fixed outdegree K
at the depot and by spanning all the linehaul vertices. To obtain a poly normally solvable
problem, the subproblem is further relaxed by dropping the capacity constraints. This leads
to the determination of an SST with fixed degree K at the depot vertex (A'-SST). Indeed,
this problem (called PI) can be efficiently solved, in O (n2) time, e.g., by using the algorithm
proposed by Glover and Klingman [18]. If we consider the asymmetric version of VRPB,
the only difference is that instead of determining trees, we must determine arborescences.
Also in this case the capacitated SSA is an NP-hard problem (see, e.g., Toth and Vigo [31]).
By dropping the capacity constraints we obtain the problem of determining an SSA with
fixed outdegree K at the depot vertex (K-SSA), which can be solved in O(n2} time, e.g.,
by using the algorithm by Gabow and Tarjan [16].

8.3. Relaxations 203

Analogously, the second subproblem requires the determination of a min-cost collec-
tion of K, with KB < K < KM = min{A^, ra}, disjoint capacitated paths entering the depot
and spanning all the backhaul vertices. For any given K, the subproblem can be relaxed in
the same way as the previous one, thus requiring the determination of an SST with fixed
degree K at the depot vertex. In the asymmetric case we must determine a Shortest Span-
ning Antiarborescence (SSAA) with fixed indegree K at the depot vertex (K-SSAA). This
problem (called PZ(^)) can be efficiently solved through the Gabow and Tarjan algorithm
by transposing the corresponding cost matrix.

The third subproblem requires the determination of the so-called interface arcs, i.e.,
a min-cost collection of K arcs, K of which connect distinct linehaul vertices to distinct
backhaul vertices (with KB < K < KM), while the remaining K — K ones connect
distinct linehaul vertices to the depot. For any given K, this problem (called P?,(K)) can be
efficiently solved by transforming it into an equivalent min-cost flow problem on an auxiliary
layered network, which can be computed in O(K(n + ra)2) time (see Ahuja, Magnanti, and
Orlin [1]).

A valid lower bound on v(PI) is then

By using parametric techniques, the computation of u(?2(^)) and v(P^(K)) for all
values of K can be performed in O(m2} and in O((2K — KB}(n + ra)2) time, respectively.
Hence, the overall time complexity of the computation of LB is 0((2K — K^}(n + m)2).

8.3.3 Lagrangian Relaxation

Lower bound LB of the previous section can be strengthened by considering some of the
removed constraints and by introducing them in a Lagrangian fashion into the objective
function. In particular, the indegree constraints (8.2) are considered only for the backhaul
vertices (j e B), and the outdegree constraints (8.3) only for the linehaul vertices (i e L).
Let A be the vector of the corresponding n + m Lagrangian multipliers.

In addition, let T\ c £> and TI C B be two given (small cardinality) families of the
exponentially many subsets contained in F. CCCs (8.6) and (8.7) are imposed only for the
subsets of T\ and JF2, respectively,

Families F\ and TI are determined, in a branch-and-cut fashion, by considering
vertex subsets for which the associated CCC is violated by the previous relaxations. The
violated inequalities are introduced into the objective function with nonnegative Lagrangian
multiplier vectors 7t and p, respectively. Good Lagrangian multipliers A, TT, and p are
computed through a two-level subgradient optimization procedure. A similar approach was
applied by Fisher [14] to the CVRP, by Malik and Yu [25] to the capacitated SST, and by
Toth and Vigo [31] to the capacitated SSA.

Note that given arbitrary multipliers, the corresponding Lagrangian cost matrix could
be completely asymmetric even if the original matrix contained symmetric submatrices, as
happens for VRPB. Hence, only the asymmetric version of the problem is considered in the
following.

204 Chapter 8. VRP with Backhauls

A polynomial time exact procedure is used to determine infeasible vertex subsets, if
any, such that the current Lagrangian problem solution, x, violates the associated CCCs
(8.6) or (8.7).

To separate violated CCCs of type (8.6) for S e £, the arborescence corresponding
to arc subset WL = {(z, y) e AI : *// = 1} is considered. For each linehaul vertex /, let Xi
be the subset containing all the linehaul vertices belonging to the subarborescence in WL
rooted at i (with i e X,), and let wt denote the total demand of subset Xf. If wi > C, then
constraint (8.6) for S = X(is violated, since r(Xi) is greater than 1 and only one arc in WL
enters subset X(. Hence, subset Xt is added to family T\. The computation of iu/ for all
/ e L can be performed in O(ri) time. Note that although only vertex sets associated with
subarborescences whose arcs are in WL are considered, it is easy to see that if a violated
constraint of type (8.6) exists, then it is detected by the above procedure.

Analogously, violated CCCs of type (8.7) can be separated by considering only the an-
tiarborescence corresponding to arcs subset WB = {(i, j) e A2 : *,-_/ = 1}, thus determining
vertex subsets to be added to family fa.

8.3.4 Overall Additive Lower Bound

The lower bounds obtained through the Lagrangian and TP relaxations can be combined
according to the additive approach proposed by Fischetti and Toth [12]. This approach
allows for the combination of different lower bounding procedures, each exploiting different
substructures of the problem. When applied to VRPB, each procedure returns a lower bound
8 and a residual cost matrix, c, such that

The entries of c represent lower bounds on the increment of the optimal solution value if
the corresponding arc is imposed in the solution. The bounding procedures are applied in
sequence and each of them uses the residual cost matrix returned by the previous procedure
(the first procedure starts with the original cost matrix). The additive lower bound is the
sum of the lower bounds obtained by each procedure. For further details, see also Fischetti,
Toth, andVigo[13].

It can be shown that the Lagrangian modified costs, as well as the reduced costs of
the TP relaxation of section 8.3.1, are valid residual costs. At the end of the computation
of the Lagrangian lower bound, the modified cost matrix c is extended by adding K — 1
rows and columns corresponding to the copies of the depot, and the resulting TP relaxation
is solved, returning the lower bound increment. The final TP reduced costs can be used for
reduction purposes.

8.3.5 Relaxation Based on the Set-Partitioning Model

Mingozzi, Giorgi, and Baldacci [28] described a heuristic procedure that finds a feasible
solution of the dual problem D2 of the linear relaxation of P2 (see section 8.2.2), thus pro-

8.3. Relaxations 205

viding a valid lower bound to VRPB. This procedure does not require the explicit generation
of the path sets £ and B. Moreover, this dual solution is used to reduce drastically the sets C
and B by removing, through effective reduction procedures, those paths that cannot belong
to any optimal VRPB solution.

Let «,, / e L, and Vj, j e B, be the dual variables associated with constraints (8.14)
and (8.15), respectively. Moreover, denote with a,, i e L, and Pj, j e B, the dual variables
associated with constraints (8. 16) and (8.17), respectively. Finally, let w be the dual variable
associated with constraint (8.18). The dual of the LP relaxation of P2 is

subject to

with Po — 0 in the dual constraints (8.26) for each (z, 0) e A^.
In Mingozzi, Giorgi, and Baldacci [28], a heuristic procedure, called HDS, is proposed

for computing a feasible solution to D2. The procedure is based on the additive bounding
method introduced by Fischetti and Toth [12] for combinatorial optimization problems.
Similar procedures were used by Bianco, Mingozzi, and Ricciardelli [4], Hadjiconstantinou,
Christofides, and Mingozzi [22], and Mingozzi et al. [27] for solving the multiple-depot
vehicle-scheduling problem, the CVRP, and the crew-scheduling problem, respectively.
This procedure computes a feasible solution to D2 as the sum of the dual solutions obtained
by a sequence of different relaxations of P2, where each relaxation is based on a different
substructure of the problem. Procedure HDS is based on the following general idea. A
feasible solution n = n ' + n2 + • • • + n' of the linear problem

subject to

can be obtained by solving a sequence of t linear programs LP1, LP2, . . . , LPr by using
t different heuristic procedures H1, H2, . . . , H'. Procedure Hr(r = 1, 2, . . . , t) , finds a

206 Chapter 8. VRP with Backhauls

feasible solution nr of the linear program LPr defined as

subject to

where cr = c - (JT° + nl + • • • + nr~l)A and n° = 0 (with LP1 = LP).
Procedure HDS involves two heuristic procedures, H1 and H2, used in sequence.

Procedure H1 finds a feasible solution (u}, vl, a.l, ftl, w1) of problem D1, which coincides
with D2, without requiring the generation of the sets £ and B. The second procedure, H2,
solves problem D2, which is obtained from D2 by replacing the path costs Q, t e £ U B,
and the arc costs c/7, (z, 7) e A3, with the reduced costs ~c't and c\- computed according

to the solution (u1, v1, a1, /J1, w1) obtained by procedure H1. Procedure H2 requires the
generation of limited subsets of the sets £ and B.

Procedure H1 is based on the observation that any route of a feasible solution of VRPB
contains an arc of set A3. A lower bound for VRPB can be obtained as follows. Associate
with each arc (z, 7) e A3 a modified cost representing a lower bound on the cost of the
least-cost route passing through it. As a consequence, the sum of the modified costs of
the K vertex-disjoint arcs of minimum cost of A3 is a valid lower bound for VRPB. This
problem is called PR(X, //,). Let A. = (Ai, A . 2 , . . . , An) and /z = (IJL\, 1^2, • • • , f^m) be two
vectors associated with the linehaul and backhaul customers, respectively. Let each arc
(z, 7) € A be associated with a cost c/7, defined as

The modified costs associated with the arcs in A3 are determined through the so-called
least-cost g-paths (see Christofides, Mingozzi, and Toth [7]), computed with respect to costs
(c"ij). Moreover, for given vectors A. and /z, the dual of the LP relaxation of PR (A., /z) can be
efficiently computed in O((n + w)3) time by transforming PR(A., /z) into a transportation
problem. Good vectors A. and /z are obtained by using a subgradient optimization procedure.

As for procedure H2, let (u1, v\ a1, ft1, w1) be the feasible solution of D1 of value
f(D!), produced by procedure H1. The reduced costs of the variables of problem P2 are
given by

Let D2 denote the problem obtained from D2 by replacing {Q} with {Q} and {c/7} with {c\ •}.
Problem D2 cannot be solved directly because the number of constraints may be too large.

8.3. Relaxations 207

Mingozzi, Giorgi, and Baldacci [28] described a heuristic procedure, called H2, for
reducing the number of constraints of D2 so that the resulting problem, called D , can be

__ 2 2
solved directly, and any solution of D is a feasible solution of D2. Problem D is obtained
from D2 as follows:

(i) Reduce the number of constraints (8.24) and (8.25) by replacing £ and B with subsets
£ c £ and B c B, respectively, of limited size.

_ 2
(ii) Add constraints to force any solution of D to satisfy constraints (8.24) for any I e

£ \ £ and constraints (8.25) for any I e B \ 13.

Let £ c £ and B c B, be the subsets of paths satisfying the conditions

and

where UB is the cost of a feasible solution of VRPB and Maxsize is a given positive integer.
In addition, set Zf = £ n £f , i e L, and B] = B C] B s

j , j e B. Subsets £ and B are
generated through a dynamic programming procedure called GE1STP.

The reduced problem D is obtained form D2 by replacing £f and BSj with £, and
_ 5
BJ, respectively, and by adding the following constraints:

As shown by Mingozzi, Giorgi, and Baldacci [28], constraints (8.42)-(8.45) ensure that any
— 2 .

solution of (D) is a feasible solution of (
upper bounds Uj and V, are computed as

— 2 .
solution of (D) is a feasible solution of (D), with the same objective function value, if the

and

208 Chapter 8. VRP with Backhauls

Procedure H2 determines the optimal solution (u2, v2,a2, ft2, w2) of (D) (and hence
of D2 as well) by optimally solving, through an LP solver, the corresponding dual problem.

Concluding, procedure HDS finds a solution (u', v', a', ft', w'} of D2 of cost i/(D2) =
by setting

8.4 Exact Algorithms

We next describe the exact algorithms, proposed by Toth and Vigo [33] and by Mingozzi,
Giorgi, and Baldacci [28], for finding the optimal solution to AVRPB (sections 8.4.1 and
8.4.2, respectively). The performance of these algorithms is analyzed through computational
experiments in section 8.4.3.

8.4.1 Algorithm of Toth and Vigo

The lowest-first branch-and-bound algorithm proposed by Toth and Vigo [33] is based on
the Lagrangian relaxation described in section (8.3.3). The branching rule is an extension
of the well-known subtour elimination scheme.

Let v be the current node of the branch decision tree and let Iv and Fv denote the set of
arcs imposed and excluded in the current solution, respectively. By construction, Iv induces
a collection of feasible routes and feasible paths, some of which may correspond to isolated
vertices. A restricted AVRPB instance associated with /„ and Fv is constructed by means of
the following preprocessing phase. First, all the vertices covered in Iv by complete routes
are removed from the graph, and the number K of available vehicles is updated accordingly.
Then, each path induced by the arcs of Iv not incident in vertex 0, if any, is shrunken into
a single vertex. The demand associated with the new vertex is the sum of the demands of
the vertices belonging to the shrunken path. A new restricted cost matrix and new demands
for the shrunken vertices are thus obtained. The arcs (0, j) e Iv (resp., (j, 0) e 7y) are
imposed by preventing all other arcs from entering (resp., leaving) vertex j. Finally all the
arcs in Fv are excluded by setting the cost of the corresponding arc in the restricted matrix
to +00.

After the preprocessing phase, the overall bounding procedure (see section 8.3.4) is
applied, and the best solution J of the Lagrangian problem (reconstructed for the original
graph) is stored. If x is feasible for AVRPB, the current incumbent solution is possibly
updated. Otherwise, a sequence Q := {(v\, 1^2), (t>2, ^3), • • • , (VH, f /z+i)} to branch with
is determined. The sequence is chosen as the subset of {(i, j) e A : Jfj = 1} having the
minimum number of nonimposed arcs, which defines either a path which is infeasible (i.e., it
is either a cycle disconnected from the depot or a path in which the total demand of linehaul
and backhaul vertices exceed, separately, the vehicle capacity) or, if x is feasible, a circuit
through vertex 0 (in this case, v\ = Vh+\ = 0). h descendant nodes v/, i = 1 , . . . , h, are
then generated:

8.4. Exact Algorithms 209

(with IV] := 7V). When Q is a feasible circuit, an additional son node, v/,+i, with 7v,i+l :=
Iv U Q and FVh+t :— Fv, is generated. Clearly, nodes v/ such that IVi n Fv. 7^ 0 are not
generated.

As for the computation of the lower bounds, at the root node of the branch-decision
tree a large number of iterations of the subgradient optimization procedure are performed to
obtain the best possible lower bound value. At the other nodes of the branch-decision tree
a much smaller number of iterations are performed. At each node of the branch-decision
tree, the families T\ and J^2, the associated multipliers /z and p, and the multipliers A. are
initialized with the sets and multiplier values corresponding to the best Lagrangian lower
bound obtained at the father node.

The performance of the algorithm is enhanced by means of reduction and dominance
procedures and through feasibility checks. Moreover, at each node of the branch-decision
tree, if the node is not fathomed by the lower bound or by the dominance rules, the heuris-
tic algorithm HTV (see section 8.5.3) is applied, for possible updating of the incumbent
solution.

8.4.2 Algorithm of Mingozzi, Giorgi, and Baldacci

The exact method proposed by Mingozzi, Giorgi, and Baldacci [28], called EHP, consists
of reducing the number of variables of the integer program P2 so that the resulting problem
can be solved by an integer programming solver. This technique is in some way similar to
the so-called core problem approach, used to solve large-size NP-hard problems.

Let (uf, v ' , a f , ft', u/) be the solution of D2 of cost i/(D2) obtained by procedure
HDS, and let c'f, I e £ U B, and c)., (/, 7) G A3, be the reduced costs corresponding to
this dual solution. It is well known that an optimal solution of VRPB can be obtained
by replacing in problem P2 the sets £, B, and A^, with the subsets C' c £, B' c B, and
A 3 c A3, defined as

However, the size of CJ and/or B' may be too large to allow for the direct solution of the
corresponding problem. Hence, Mingozzi, Giorgi, and Baldacci [28] proposed to generate
CJ and B' so that their size is limited and the resulting problem P2' is solvable. Subsets CJ
and B' are generated by means of the same algorithm GENP used by procedure H2 (see
section 8.3.5), where v(D') is replaced by t/(D2). Note that the size of each set CJ and B'
is limited by the value Maxsize used in algorithm GEN"P. Let (jt*, y*, £*) be an optimal
solution of P2' of cost u(P2') (we assume u(P2') = +00 if subsets C! and B' contain no
feasible solution of VRPB). If u(P2') < +00, then solution (jc *, y*, £*) is a feasible solution
of VRPB, and it also may be an optimal one. Let

210 Chapters. VRP with Backhauls

We have the following cases:

(i) v(P2') < i/(D2)+A. In this case the optimal solution of P2'is also an optimal solution
of VRPB. This derives from the property that any solution of VRPB involving at least
one path of £ \ C' or B \ B' has a cost greater than or equal to i/(D2) + A.

(ii) v(P2') > i/(D2) + A. The optimal solution of P2' might not be an optimal solution
of VRPB. However, it is easy to note that, in this case, the value i/(D2) + A is a valid
lower bound to any optimal solution of VRPB.

The optimal solution of P2' is obtained by means of the integer programming code
CPLEX 3.0. Note that the method may terminate, under certain circumstances (see case (ii)
above), without having found an optimal solution.

Nothing is explicitly said by Mingozzi, Giorgi, and Baldacci [28] about the steps to be
performed to overcome this drawback. Following what is proposed for other core problem
techniques, a possible approach could be to iteratively increase the value of parameter
Maxsize and to repeat the procedure until the optimality of the current solution of P2' can
be proved, or subsets C' and B' coincide with C and B, respectively.

8.4.3 Computational Results for the Exact Algorithms

The branch-and-bound algorithm of Toth and Vigo (see section 8.4.1), called TV herein,
was implemented in FORTRAN and run on a Pentium 60 MHz personal computer (5.3
Mflops according to Dongarra [10]) on the three classes of problem instances described in
section 8.1.1.

The exact algorithm EHP of Mingozzi, Giorgi, and Baldacci (see section 8.4.2) has
been coded in FORTRAN 77 and run on a Silicon Graphics Indy MIPS R4400/200 MHz
processor (30 Mflops; see Dongarra [10]) on the first two classes of test problems. According
to Mingozzi, Giorgi, and Baldacci, the Pentium 60 MHz used for TV is about four times
slower than the SGI used for EHP. Package CPLEX 3.0 has been used as the LP solver in
procedure H2 and as the integer programming solver in EHP. The parameter Maxsize, used
in GENP, has been set to 70,000 in both procedures H2 and EHP.

Tables 8.1, 8.2, and 8.3 report the results obtained by algorithms TV and EHP on the
instances of the corresponding classes. For the first class of VRPB instances, the cost c/; of
arc (1,7) e A is defined as the Euclidean distance between customers i and j, multiplied by
10 and rounded to the nearest integer. The values reported in Table 8.1 are those obtained
using the integer matrix c, divided by 10 and rounded to the nearest integer. Algorithm TV
has been run on the first 34 VRPB instances of the first class (with a time limit of 6000
seconds for each instance), on the first 30 VRPB instances of the second class (with a time
limit of 18,000 seconds), and on all the 24 AVRPB instances of the third class (with a time
limit of 6000 seconds). Algorithm EHP has been run on the first 47 VRPB instances of
the first class and on all the 33 VRPB instances of the second class (with a time limit of
25,000 seconds for each instance of both classes). No result is given by Mingozzi, Giorgi,
and Baldacci [28] on the AVRPB instances of the third class.

For each problem we give the problem name, the problem size (namely, the values of
n and m), the available number of vehicles K, and the minimum number of vehicles needed
to serve the linehaul and the backhaul vertices, KL and KB, respectively. The values of KL

8.4. Exact Algorithms 211

Table 8.1. Behavior of the exact algorithms on the VRPB instances of the first class.
Computing times in Pentium 60 MHz seconds (time limit of 6000 seconds) for TV and in
SGI R4400/200 MHz seconds (time limit of 25,000 seconds) for EHP.

Name
Al
A2
A3
A4
Bl
B2
B3
Cl
C2
C3
C4
Dl
D2
D3
D4
El
E2
E3
Fl
F2
F3
F4
Gl
G2
G3
G4
G5
G6
HI
H2
H3
H4
H5
H6
11
12
13
14
15
Jl
J2
J3
J4
Kl
K2
K3
K4

n
20
20
20
20
20
20
20
20
20
20
20
30
30
30
30
30
30
30
30
30
30
30
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
75
75
75
75
75
75
75
75

m
5
5
5
5
10
10
10
20
20
20
20
8
8
8
8
15
15
15
30
30
30
30
12
12
12
12
12
12
23
23
23
23
23
23
45
45
45
45
45
19
19
19
19
38
38
38
38

K
8
5
4
3
7
5
3
7
5
5
4
12
11
7
5
7
4
4
6
7
5
4
10
6
5
6
5
4
6
5
4
5
4
5
10
7
5
6
7
10
8
6
7
10
8
9
7

KL
1
4
3
3
7
4
3
6
4
3
3
10
10
6
5
6
4
3
5
5
4
3
9
6
5
5
4
3
6
5
4
4
3
3
8
6
4
4
4
10
8
5
7
10
8
8
7

KB
2

1
1
1
4
3
2

6
4
3
3
3
3
2
2
3
2
2

6
6
4
3
3
2
2

2
1
1
3
3
2
2
2
2
9
7
5
5
5
3
2
2
2

5
4
4
3

%LB
98.3
98.1
100.0
100.0
96.0
97.4
100.0
95.7
96.5
99.8
100.0
97.0
94.5
95.9 *
95.4 *
95.1
97.9
98.2
96.6
98.3
98.0
97.3
91.3 *
93.3 *
96.2
96.7 *
97.9
96.6
96.6
99.4
99.2
99.7
99.3
99.4

TV
7*

229886
180119
163405
155796
239080
198048
169372
249448
215020
199346
195366
322530
316709
239479
205832
238880
212263
206659
263173
265213
241120
233861
307274
245441
229507
233184
221730
213457
268933
253365
247449
250221
246121
249135

n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.

Time
902
209
3
3

148
151

1
227
322
84
5

289
491
—
—
476
788
482
756
891
468
3523
—
—

4225
—

3433
840
1344
5020
1465
1287
406
416

%LB
98.8
98.8
100.0
100.0
97.8
97.9
100.0
98.2
97.0
100.0
100.0
98.8
98.2
96.8
96.3
100.0
100.0
98.9
97.4
98.9
98.8
97.3
97.8
98.8
97.3
97.5
98.0
97.0
98.4
99.5
99.4
99.6
99.3
99.5
97.0
98.7
96.7
97.7
98.2
98.3
94.7
96.2
94.9
97.6
98.6
98.5
95.2

EHP
7*

229886
180119
163405
155796
239080
198048
169372
249448
215020
199346
195366
322530
316709
239479
205832
238880
212263
206659
263173
265213
241120
233861
306305
245441

* 229507
* 232521
* 221730
* 213457
* 268933

253365
247449
250221
246121
249135

* 353021
309943

* 294833
* 295988
* 301226
* 335006
* 315644
* 282447
* 300548
* 394637
* 362360
* 365693
* 358308

Time
5
4
10
12
14
40
4
17
18
25
25
9
13
51
161
12
41
64

2049
44
76
173
3556
229
967
89
157
103
454
221
177
179
111
173

20225
6395
18045
20055
8642
1640
218
363
260
—

2618
3812
265

*Optimality not proved.

212 Chapter 8. VRP with Backhauls

Table 8.2. Behavior of the exact algorithms on the VRPB instances of the second class.
Computing times in Pentium 60 MHz seconds (time limit of 18,000 seconds) for TV and in
SGI R4400/200 MHz seconds (time limit of 25,000 seconds) for EHP.

Name
ei!22_50
ei!22_66
ei!22_80
ei!23_50
ei!23_66
ei!23_80
ei!30_50
ei!30_66
ei!30_80
ei!33_50
ei!33_66
ei!33_80
ei!51_50
ei!51_66
ei!51_80
eilA76_50
eilA76_66
76_80
eilB76_50
eilB76_66
eilB76_80
eilC76_50
eilC76_66
eilC76_80
eilD76_50
eilD76_66
eilD76_80
eilA101_50
eilA101_66
eilA101_80
eilB101_50
eilB101_66
eilB101_80

n
11
14
17
11
15
18
15
20
24
16
22
26
25
34
40
37
50
60
37
50
60
37
50
60
37
50
60
50
67
80
50
67
80

m
10
7
4

11
7
4

14
9
5

16
10
6

25
16
10
38
25
15
38
25
15
38
25
15
38
25
15
50
33
20
50
33
20

K
3
3
3
2
2
2
2
3
3
3
3
3
3
4
4
6
7
8
8

10
12
5
6
7
4
5
6
4
6
6
7
9

11

KB
2
1
1
1
1
2
2
1
1
2
1
1
3
2
1
5
4
2
7
5
3
4
3
2
3
2
2
4
3
2
7
5
3

%LB
100.0
100.0
98.9

100.0
98.8
98.1

100.0
98.5

100.0
98.4
94.8
93.9
99.3
97.8
98.0
98.2
95.4
90.5
97.6
91.2
85.2
98.9
97.6
93.7
99.7
98.5
96.8
96.3
99.2
90.3

TV
z*

371
366
375
682
649
623
501
537
514
738
750
736
559
548
565
739
768

* 781
801
873
919
713

* 734
* 733

690
* 715
* 703
* 843

846
* 916

n.a.
n.a.
n.a.

EHP
Time

3
6

55
2

65
36
3

119
13

292
1338
1655
441

2754
4436

15931
13464

—
16345
12990
10414
10344

—
—

401
—
—
—

10913
—

%LB
100.0
100.0
99.2

100.0
99.4
98.7

100.0
97.6
97.9

100.0
100.0
99.3
99.6
99.3
98.1
99.2
99.0
97.7 *
99.3
99.0
99.5
98.9
99.2
97.8 *
99.7
98.6 *
99.0 *
96.3 *
99.6
91.7 *
95.6 *
89.1 *
97.2 *

z*
371
366
375
682
649
623
501
537
514
738
750
736
559
548
565
739
768
781
801
873
919
713
734
733
690
715
694
843
846
908
933

1056
1022

Time
6
3
6
1
7
9
8

17
31
46
27
44
66
68

691
884

1205
596
124

2918
821

16659
952
—

197
5023

20148
364
434
431
—

293
20199

"Optimality not proved.

8.4. Exact Algorithms 213

Table 8.3. Behavior of algorithm TV on the AVRPB instances of the third class. Computing
times in Pentium 60 MHz seconds (time limit of 6000 seconds).

Name
FTV33_50
FTV33_66
FTV33_80
FTV35_50
FTV35_66
FTV35_80
FTV38_50
FTV38_66
FTV38_80
FTV44_50
FTV44_66
FTV44_80
FTV47_50
FTV47_66
FTV47_80
FTV55_50
FTV55_66
FTV55_80
FTV64_50
FTV64_66
FTV64_80
FTV70_50
FTV70_66
FTV70_80

n
17
22
27
18
24
28
19
26
31
22
30
36
24
32
38
28
37
44
32
43
52
35
47
56

m
16
11
6

17
11
7

19
12
7

22
14
8

23
15
9

27
18
11
32
21
12
35
23
14

K
2
2
2
2
2
2
2
2
3
2
2
3
2
2
2
2
2
2
2
2
3
2
2
2

KB
1
1
1
2
1
1
2
2
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1

LB%
100.0
99.5
99.9
98.7
98.0
98.7

100.0
98.3
98.8
98.6
97.2
98.0
99.6
99.7
99.3
99.2
98.6
98.6
98.7
98.5
98.0
98.3
99.6
99.3

z*
1841
1899
1704
2077
2150
1996
2162
2132
1982
2348
2225
2184
2343
2427
2312
2425
2246
2264
2728
2673

* 2679
* 2940

2808
2688

Time
3

123
37

367
653
412

56
1382
1303
1557
4035
3439
230
288

1950
2450
5045
5091
4635
5797

4950
5049

*Optimality not proved.

and KB are determined by solving the associated BPP using the code MTP by Martello and
Toth [26]. The tables also report for each algorithm

• the percentage error of the lower bound, Lfi, computed at the root node;

• the value of the best solution found by the algorithm, z*; if the optimality of z* is not
proved (either because the time limit has been reached or because EHP was not able
to check the optimality of u(P2')), z* indicates the best incumbent solution value and
the instance is marked with an asterisk;

• the overall computing time expressed in CPU seconds.

Percentage errors are computed as the ratio of the lower bound divided by the best z*
(i.e., the optimal or the best overall incumbent solution value) and multiplied by 100.

The performance of algorithms TV and EHP can be compared only on the 64 VRPB
instances (34 of the first class and 30 of the second class) considered by both algorithms.
Tables 8.1 and 8.2 show that the lower bound at the root node obtained by EHP is generally

214 Chapter 8. VRP with Backhauls

better than that obtained by TV (of 64 instances, the lower bound of TV gives a superior
value in only 3 cases). As for the overall algorithms, it is difficult to compare directly the
corresponding computing times, since they refer to different machines. Also, with respect
to the number of instances for which the algorithms were not able to prove the optimality
of the solution found, a comparison is difficult, because of both the different speeds of the
machines and the different time limit imposed on the execution of each instance. Of the 64
common instances, TV and EHP were not able to prove the optimality of the solution in
12 and 11 cases, respectively. In addition, it has to be noted that for 4 of the 12 instances
unsolved by TV, algorithm EHP was able to find better feasible solutions (instances Gl, G4,
eilD73_80, and eilA101_80).

As pointed out by Mingozzi, Giorgi, and Baldacci [28], for algorithm EHP it is better
to have only a few linehaul and backhaul customers per route (say, an average of about 10
customers of each type, as occurs for the instances of the first two classes). In fact, in this
case the sizes of CJ and B' are relatively small, and problem P27 can be solved in reasonable
computing times.

As for the AVRPB instances of the third class, it can be noted that the additive lower
bound of algorithm TV is on average tighter on these instances than for those of the first
two classes.

8.5 Heuristic Algorithms
Several heuristic algorithms proposed for the solution of VRPB are extensions of algorithms
for CVRP (see Chapters 5 and 6). Most of these heuristics were developed for the symmetric,
and in many cases only the Euclidean, version of the problem. The extension of these
methods to AVRPB is often difficult, or even impossible, and may lead to unpredictable
results.

8.5.1 Algorithm of Deif and Bodin

The first heuristic algorithm for VRPB was proposed by Deif and Bodin [9]. The algorithm,
called DB herein, is an extension of the well-known Clarke and Wright [8] heuristic for
CVRP. The Clarke and Wright algorithm starts with an infeasible solution where each
customer is visited by a separate route. Routes are then iteratively combined by considering
the saving, in terms of routing cost, that can be achieved by serving two customers on the
same route instead of leaving them on separate routes. The saving obtained by visiting
customers i and j in sequence on the same route can be expressed as

The results obtained by using the standard Clarke and Wright algorithm for the solution
of VRPB are greatly affected by the fact that the precedence constraint substantially reduces
the number of feasible merging. Deif and Bodin experimentally showed that for VRPB the
best results are obtained by delaying the formation of mixed routes. Hence, they proposed
modifying the saving definition to penalize the arcs connecting customers of different types,

8.5. Heuristic Algorithms 215

thus delaying the union of linehaul and backhaul routes. The backhaul saving is defined as

where S is an estimate of the maximum saving stj and p is a real penalty between 0 and 1.
The Clarke and Wright method, and hence algorithm DB, does not allow for the

control of the number of routes of the final solution. Indeed, the solution found for a given
instance can require more than K routes to serve all the vertices, thus being infeasible. From
a practical point of view, both the routing cost of the solution obtained with algorithm DB
and the probability that this solution is feasible are strongly related to the number of route
mergings executed. It is then evident that, even if delayed, the route orientation arising
in the mixed routes, and the consequent decrease of possible route merging combinations,
reduces the effectiveness of this method in facing the VRPB in terms of both the overall
routing cost and the number of feasible solutions found. It can be noted that algorithm DB
may be easily adapted to consider AVRPB instances (see, e.g., Vigo [35] for a discussion
on the extension of the Clarke and Wright method to the asymmetric CVRP).

Deif and Bodin [9] tested their algorithm on randomly generated problem instances
with 100 to 300 customers and a backhaul percentage between 10% and 50%. Several p
values were tested, and the results obtained show that values of p between 0.05 and 0.20
produced the best solutions.

8.5.2 Algorithms of Goetschalckx and Jacobs-Blecha

Goetschalckx and Jacobs-Blecha [19] proposed an algorithm, called SF herein, for the VRPB
with Euclidean cost matrix. The approach is based on the concept of space-filling curves,
previously used by Bartholdi and Platzman [3] for the solution of the planar TSP. Using
the space-filling curve transformation, linehaul and backhaul customers are, separately,
transformed from points in the plane into points along a line. The two separate sequences
of points are then partitioned to form feasible routes each containing customers of only one
type. Each linehaul route is, in turn, merged with the nearest backhaul route (according to
the space-filling mapping), thus obtaining the final set of vehicle routes. Also in this case,
the method does not guarantee building solutions using exactly K routes. Goetschalckx and
Jacobs-Blecha tested both the DB and SF algorithms on 57 Euclidean instances with 25 to
150 vertices, 20% to 50% of which are backhauls. The results presented by Goetschalckx
and Jacobs-Blecha [19] show that DB solutions are generally better than those obtained by
SF, while SF is faster than DB, mainly for large problems.

More recently, Goetschalckx and Jacobs-Blecha [20] presented a heuristic algorithm,
called LHBH, for the Euclidean version of VRPB. The approach is based on the extension
of the generalized assignment heuristic proposed by Fisher and Jaikumar [15] for CVRP.
Initially, a partial solution made up of K route primitives is obtained as follows: first, K
seed radials are determined by iteratively solving a capacitated location-allocation problem;
then for each such radial a route primitive is obtained by considering the customers located
close to the radial (i.e., within a 10-degree angle) and sequencing the linehaul customers by
increasing distance to the depot and the backhaul customers by decreasing distance. The
customers are then grouped together into K clusters by heuristically solving generalized
assignment problems, whose cost matrices contain the insertion cost of every vertex into each

B or viece versa

otherwise,

216 Chapters. VRP with Backhauls

of the route primitives previously determined. Finally, the routes are determined through a
modified insertion heuristic algorithm for TSP and postoptimization exchange procedures.
Heuristic LHBH was tested on the Euclidean problems described in Goetschalckx and
Jacobs-Blecha [19] (i.e., the instances of the first class illustrated in section 8.1.1), and it
obtained better results than the previously proposed algorithms.

8.5.3 Algorithm of Toth and Vigo

In this section we describe the cluster-first, route-second heuristic algorithm, called HTV,
proposed by Toth and Vigo [34] for both VRPB and AVRPB. The heuristic uses a general
clustering method that exploits the information of the solutions associated with a lower
bound. This is motivated by the fact that the solutions obtained through good relaxations of
an optimization problem often are almost feasible and contain a high degree of information
on the optimal solution structure. Therefore, relaxation-based clustering may provide a
good starting point for heuristics based on local search, which can obtain feasible solutions
quickly. For other examples on the use of relaxations to initialize heuristic algorithms for
routing problems, see, e.g., Fisher [14] for the symmetric CVRP and Vigo [35] for the
asymmetric CVRP.

The relaxation used to initialize algorithm HTV is the Lagrangian approach described
in section 8.3.3. In the following we describe algorithm HTV by examining its main steps
separately.

Clustering Step. The first step of algorithm HTV requires the construction of groups
of customers, called clusters, containing only linehaul or backhaul customers. These clusters
are later combined to form a basic set of, possibly infeasible, routes. The Lagrangian
solution (i.e., the optimal solution to the current Lagrangian problem) is used to define K
linehaul clusters and K backhaul clusters, where K, with KB < K < KM = rmn{K, m],
is the number of arcs connecting the backhaul customer set to the depot in the Lagrangian
solution (see section 8.3.2). To exploit the information on the optimal solution structure
embedded in the Lagrangian solution, the connected components obtained by removing the
2 • K arcs incident in the depot and the K interface arcs, connecting linehaul to backhaul
customers, are chosen as clusters. Thus, given the solution of the relaxed problem, the initial
clusters can be determined very simply in O(n + m) time. Note that some of the clusters
obtained at the end of this phase can be infeasible with respect to the capacity constraint.

Matching-Routing Step. The clusters are then combined to define the subsets of
customers associated with the initial routes. In particular, K linehaul clusters must be
associated with the K backhaul clusters, hence forming mixed routes, while the remaining
K — K linehaul clusters, if any, are associated with the depot. To this end, the removed
interface arcs of the Lagrangian solution are first considered. If a feasible (with respect
to the capacity constraint) linehaul cluster is connected to one or more feasible backhaul
clusters, one of them is arbitrarily chosen and combined with the linehaul cluster. The
remaining clusters, say, K' < K and K < K, are then combined by solving an associated
assignment problem. Let us define a K' x K' matrix, y, whose rows are associated with
the linehaul clusters. The first K columns are associated with the backhaul clusters and
the remaining (K' — K) columns with the depot. The value of ypq is an estimation of the

8.5. Heuristic Algorithms 217

cost incurred by serving on the same route the linehaul customers of cluster p and either
the backhaul customers of cluster q (if q < K) or the depot (if q > K}. This value is
computed as the cost of a heuristic solution to the TSPB associated with clusters p, q (if
any) and the depot. For each customer subset, the corresponding initial, possibly infeasible,
route is built by using a farthest-insertion TSP heuristic, modified to take into account the
precedence constraint between linehaul and backhaul customers.

Intraroute Postoptimization. Each route is improved by applying a postoptimi-
zation procedure that considers all the feasible (with respect to the precedence constraint
between linehaul and backhaul customers) exchanges of two and three arcs belonging to
the route (the so-called intraroute two-exchanges and three-exchanges). The procedure is
similar to those described by Christofides and Eilon [6] and Kindervater and Savelsbergh
[23]. The final solution is obtained by iteratively evaluating the cost of the route produced by
each feasible exchange of two or three arcs, and by performing the best exchange among all
those producing a positive cost reduction. The procedure is iterated until no cost reduction
is found. As usual, only the two-exchanges are considered first, and then the three-exchange
procedure is applied. For both the undirected and the directed case, the evaluation of the
cost of the route produced by an exchange can be performed in constant time, through
parametric labeling techniques. Hence, the overall time complexity of one iteration of the
three-exchange procedure is O(n3 + m3), where n and m are, respectively, the number
of linehaul and backhaul customers of the route considered (see, e.g., Vigo [35] for the
application of parametric labeling techniques to the asymmetric CVRP).

Interroute Postoptimization. The final set of routes is obtained by using local-
search procedures based on the so-called interroute one-exchanges and two-exchanges. In
other words, all the feasible movements of a customer from one route to another and all the
feasible exchanges of two arcs belonging to different routes are evaluated. Exchanges that
increase the infeasibility of an infeasible route or that produce an infeasible route starting
from feasible ones are not considered. The score of an exchange is the weighted sum of
the routing saving and, if one of the two routes involved in the exchange is infeasible, of
the overload reduction produced by the exchange. For each procedure the final solution is
obtained by iteratively evaluating the score produced by each exchange and by performing
the best exchange until no improvement is found. At each iteration, O(n2 + m2) exchanges
are considered. The feasibility check and the computation of the score for each exchange
can be executed in constant time through parametric labeling techniques. Hence, the com-
putational complexity of a single iteration is O(n2 + m2). The intraroute postoptimization
procedure is then applied to each final route.

8.5.4 Computational Results for the Heuristics

The heuristic algorithm HTV described in section 8.5.3 was implemented in FORTRAN and
run on an IBM 486/33 personal computer for the three classes of VRPB and AVRPB test
problems illustrated in section 8.1.1. Tables 8.4, 8.5, and 8.6 give the results obtained by
HTV, compared with the value of the optimal solution or of the best available lower bound,
and, where possible, with the results obtained by algorithms DB, SF, and LHBH.

218 Chapter 8. VRP with Backhauls

Table 8.4. Behavior of the heuristic algorithms on
Computing times in IBM 386/20 seconds.

DB

Name
Al
A2
A3
A4
Bl
B2
B3
Cl
C2
C3
C4
Dl
D2
D3
D4
El
E2
E3
Fl
F2
F3
F4
Gl
G2
G3
G4
G5
G6
HI
H2
H3
H4
H5
H6
11
12
13
14
15
Jl
J2
J3
J4
Kl
K2
K3
K4
LI
L2
L3
L4
L5
Ml
M2
M3
M4
Nl
N2
N3
N4
N5
N6

n m K
20 5 8
20 5 5
20 5 4
20 5 3
20 10 7
20 10 5
20 10 3
20 20 7
20 20 5
20 20 5
20 20 4
30 8 12
30 8 11
30 8 7
30 8 5
30 15 7
30 15 4
30 15 4
30 30 6
30 30 7
30 30 5
30 30 4
45 12 10
45 12 6
45 12 5
45 12 6
45 12 5
45 12 4
45 23 6
45 23 5
45 23 4
45 23 5
45 23 4
45 23 5
45 45 10
45 45 7
45 45 5
45 45 6
45 45 7
75 19 10
75 19 8
75 19 6
75 19 7
75 38 10
75 38 8
75 38 9
75 38 7
75 75 10
75 75 8
75 75 9
75 75 7
75 75 8

100 25 11
100 25 10
100 25 9
100 25 7
100 50 11
100 50 10
100 50 9
100 50 10
100 50 7
100 50 8

K-L '

1
4
3
3
7
4
3
6
4
3
3

10
10
6
5
6
4
3
5
5
4
3
9
6
5
5
4
3
6
5
4
4
3
3
8
6
4
4
4

10
8
5
7

10
8
8
7
9
8
8
6
6

10
10
9
7

10
10
9
9
7
7

KB
2
1
1
1
4
3
2
6
4
3
3
3
3
2
2
3
2
2
6
6
4
3
3
2
2
2
1
1
3
3
2
2
2
2
9
7
5
5
5
3
2
2
2
5
4
4
3
9
8
8
6
6
3
3
3
2
5
5
4
4
3
3

Average results

%ratio
100.4
102.8
103.6
105.7
106.3
106.8
101.7
106.4
100.0
102.3
105.4
104.4
106.3
101.2
101.4
102.3
102.9
104.6
110.9
109.4
107.1
104.8
101.9
100.3
103.7
103.4
105.4
102.2
107.0
107.2
106.5
108.0
104.7
106.5
104.9
103.2
107.2
104.8
101.2
104.9
108.1
106.0
107.8
109.0
110.5
109.2
109.3
114.0
120.5
110.9
112.7
114.0
120.8
120.0
115.5
116.0
119.5
120.8
116.1
116.0
118.3
113.3
107.9

Time
0.7
0.6
0.5
0.6
0.9
0.7
0.7
1.6
1.4
1.4
1.8
2.0
2.5
2.0
1.9
2.4
2.5
2.3
4.9
7.3
7.1
6.2
7.5
5.2
6.4
6.4
6.0
6.0
7.6
6.4
6.2
5.9
6.4
6.0

13.2
13.8
25.2
27.6
12.7
21.4
25.0
23.1
23.6
52.8
67.3
59.6
77.0
86.8

158.6
116.6
122.2
128.0
105.7
75.7
65.7
70.8

148.2
146.3
146.1
111.5
145.8
128.1
37.5

SF

%ratio
117.0
119.6
111.7
126.8
115.8
124.3
121.6
126.5
116.9

116.7
110.8

110.7
109.5
123.9
132.1
130.4

127.9
125.0
126.3
122.1
120.7
120.4
129.3
128.6
121.5
126.6
128.1
124.4
118.1
112.7
118.6
127.8
127.4
117.3
123.8
123.0

121.2
124.0
120.2
116.6
121.4
126.4
123.0
146.0
137.6

132.3

137.7

131.4
129.1
156.8

134.6
131.6
126.1
123.5
124.5

Time
6.6
5.6
5.4
4.9
7.7
5.8
4.9
8.1
6.6

6.8
9.6

7.2
6.6
8.0
7.4
7.9

9.3
9.1
9.6
9.1
8.5
9.6
9.6
9.4

15.2
10.2
13.8
13.3
12.6
13.9
12.7
13.5
13.2
32.0
25.2
19.0

16.1
21.0
18.4
16.5
17.0
19.1
20.3
22.2
27.3

107.2

24.0

28.5
44.4
5.0

27.6
27.4
40.4
33.9
16.6

the VRPB instances of the first class.

LHBH

%ratio
100.3
100.6
104.0
101.7
100.3
100.2
100.0
102.7
103.2
102.2
102.3
100.6
101.4
100.1
101.1
102.3
105.4
103.8
105.3
101.5
101.7
103.3
103.2
100.9
100.8
102.9
102.7
102.0
105.6
103.9
103.6
104.8
104.9
104.8
104.1
103.5
106.9
102.8
101.3
107.0
105.2
107.0
106.1
106.4
104.1
107.2
105.1
110.5
108.3
107.8
107.6
106.1
114.5
117.3
114.8
112.3
113.5
116.7
109.5
110.0
110.4
108.1
105.1

Time
7.8
7.8
7.8
7.8
5.7
5.7
5.7

18.0
18.0
18.0
18.0
9.8
9.8
9.8
9.8

17.7
17.7
17.7
25.2
25.2
25.2
25.2
32.7
32.7
32.7
32.7
32.7
32.7
32.5
32.5
32.5
32.5
32.5
32.5
42.4
42.4
42.4
42.4
42.4
74.3
74.3
74.3
74.3
99.8
99.8
99.8
99.8

159.0
159.0
159.0
159.0
159.0
157.3
157.3
157.3
157.3
159.0
159.0
159.0
159.0
159.0
159.0
64.4

HTV

%ratio Time
100.0 24.1
100.0 16.7
100.0 7.3
100.0 8.0
100.0 47.7
100.0 25.3
100.0 0.8
100.4 80.3
100.0 43.2
100.0 16.2
100.0 19.4
100.1 73.1
100.0 80.2
100.0 55.6
100.0 41.2
100.0 88.2
100.3 53.2
100.0 42.6
100.0 120.3
100.5 120.3
100.2 90.1
100.2 73.7
100.3 120.7
100.0 120.3
100.8 109.9
100.1 120.1
100.7 109.0
100.0 61.5
102.5 140.4
100.0 119.2
100.0 111.6
100.9 134.7
100.0 68.1
100.0 68.0
103.5 181.9
101.3 180.5
104.0 180.4
100.9 180.3
101.1 180.4
104.3 201.4
106.7 200.4
104.5 200.2
106.0 200.3
105.9 351.9
104.4 352.4
105.6 351.0
106.1 351.6
112.6 450.8
111.9 450.8
108.3 451.7
107.0 450.9
106.7 451.6
114.0 381.2
118.4 383.0
112.9 382.8
110.5 381.6
111.7 453.8
114.4 450.8
112.3 452.1
110.7 454.2
109.5 452.3
108.0 453.4
103.7 193.9

%r. Best
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.4
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.1
100.7
100.0
100.3
100.0
100.4
100.1
100.6
100.0
102.4
100.0
100.0
100.0
100.0
100.0
103.5
101.7
103.0
100.4
100.5
103.8
105.8
103.4
104.6
106.0
103.8
103.8
105.7
111.9
108.6
106.2
108.0
103.6
113.3
117.6
112.1
108.7
111.9
115.1
111.8
109.2
109.5
107.2
103.3

8.5. Heuristic Algorithms 219

Table 8.5. Behavior of the heuristic algorithms on the VRPB instances of the second class.
Computing times in IBM 486/33 seconds.

Name n m
ei!22_50 11 10
ei!22_66 14 7
ei!22_80 17 4
ei!23_50 11 11
ei!23_66 15 7
ei!23_80 18 4
ei!30_50 15 14
ei!30_66 20 9
ei!30_80 24 5
ei!33_50 16 16
ei!33_66 22 10
ei!33_80 26 6
ei!51_50 25 25
ei!51_66 34 16
ei!51_80 40 10
eilA76_50 37 38
eilA76_66 50 25
eilA76_80 60 15
eilB76_50 37 38
eilB76_66 50 25
eilB76_80 60 15
eilC76_50 37 38
eilC76_66 50 25
eilC76_80 60 15
eilD76_50 37 38
eilD76_66 50 25
eilD76_80 60 15
eilA101_50 50 50
eilA101_66 67 33
eilA101__80 80 20
eilB101_50 50 50
eilB101_66 67 33
eilB101_80 80 20
Average results

K KB

3
3
3
2
2
2
2
3
3
3
3
3
3
4
4
6
7
8
8

10
12
5
6
7
4
5
6
4
6
6
7
9

11

2
1
1
1
1
2
2
1
1
2
1
1
3
2
1
5
4
2
7
5
3
4
3
2
3
2
2
4
3
2
7
5
3

(4)

(3)

(4)
(4)

(5)

(9)
(9)

(5)

(7)
(8)

(10)
(12)

DB
%ratio Time

115.6
115.8
100.0
103.8
109.6
111.6
115.2
110.6
114.0
120.9
116.8
121.8
119.7
117.0
115.9
113.7
118.1
119.7
119.5
112.7
112.3
120.8
116.2
116.9
116.8
118.4
116.2
112.4
113.3
114.8
118.5
122.1
118.2
115.4

0.1
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.3
0.7
0.7
1.9
2.6
2.7
2.7
2.8
2.7
3.0
2.7
3.0
2.8
2.8
2.7
2.7
6.8
6.4
6.6
7.0
6.6
7.6
2.4

(4)
(4)
(3)
(3)

(4)

(4)
(4)

(5)

(9)
(9)

(11)

(5)

(7)
(8)

(10)
(12)

SF
%ratio Time
132.6
134.7
140.3
114.1
123.6
109.3
145.3
149.3
151.4
128.2
154.3
142.2
124.5
119.7
124.4
124.8
137.6
127.4
145.1
140.7
125.7
131.0
131.6
133.3
124.6
127.4
128.7
125.7
133.5
132.5
136.1
140.1
134.1
132.5

1.1
1.2
1.1
1.3
1.2
1.3
1.8
1.7
1.8
1.9
1.8
1.9
2.1
2.3
2.1
2.8
2.7
2.9
3.1
2.8
3.5
2.6
3.2
3.2
3.9
3.0
3.7
5.1
5.6
5.0
5.6
6.1
5.8
2.9

%ratio
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.4
101.6
100.5
100.4
100.1
100.5
100.9
101.6
102.3
101.6
109.2
103.0
102.1
103.2
100.3
101.5
105.9
100.1
101.7
103.3
104.9
103.0
108.0
107.8
110.5
106.7
102.5

HTV
Time %r. Best

5.1
4.8
7.0
2.6
5.5
3.9
3.3
7.4
7.5

16.4
15.8
15.9
40.8
48.5
53.1

164.3
148.3
238.2
240.5
241.0
240.7
110.5
148.7
219.4

93.7
89.7

190.6
213.5
240.6
241.0
241.6
241.3
241.6
114.6

100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.6
100.1
100.0
100.1
100.5
100.0
101.6
100.5
101.6
109.2
103.0
102.1
103.0
100.3
101.1
105.0
100.0
101.7
103.3
104.3
102.8
108.0
106.7
110.5
106.6
102.2

For each instance the tables give the problem description and, for each heuristic
algorithm, the following information:

(i) the percentage ratio of the solution with respect to the optimal solution value or to
the best known lower bound value;

(ii) the computing time, expressed in IBM 386/20 seconds for Table 8.4 and in IBM
486/33 seconds for Tables 8.5 and 8.6.

220 Chapter 8. VRP with Backhauls

Table 8.6. Behavior of the heuristic algorithms on the AVRPB instances of the third class.
Computing times in IBM 486/33 seconds.

DB
Name
FTV33_50
FTV33_66
FTV33_80
FTV35_50
FTV35_66
FTV35_80
FTV38_50
FTV38_66
FTV38_80
FTV44_50
FTV44_66
FTV44_80
FTV47_50
FTV47_66
FTV47_80
FTV55_50
FTV55_66
FTV55_80
FTV64_50
FTV64_66
FTV64_80
FTV70_50
FTV70_66
FTV70_80

n
17
22
27
18
24
28
19
26
31
22
30
36
24
32
38
28
37
44
32
43
52
35
47
56

m
16
11
6

17
11
7

19
12
7

22
14
8

23
15
9

27
18
11
32
21
12
35
23
14

K
2
2
2
2
2
2
2
2
3
2
2
3
2
2
2
2
2
2
2
2
3
2
2
2

£B
1
1
1
2
1
1
2
2
1
2
1
1
2
1
1
2
1
1
2
1
1
2
1
1

Average results

%ratio
131.9
113.0
124.9
130.9
125.4
123.6
114.6
125.8
131.2
118.0
123.3
123.5
119.7
118.8
118.5
114.3
120.1
114.3
135.7
136.6
117.9
113.4
128.9
125.3
121.6

Time
0.1
0.2
0.2
0.1
0.2
0.2
0.2
0.3
0.3
0.5
0.5
0.6
0.9
1.1
1.1
1.6
1.7
1.7
2.2
2.2
2.4
2.3
2.4
2.6
1.1

%ratio
100.0
100.1
100.0
101.7
101.9
100.3
100.0
101.7
100.4
100.8
100.4
101.6
100.4
101.3
101.9
101.4
103.4
102.8
102.2
100.2
101.9
102.7
100.8
100.7
101.2

HTV
Time

1.4
12.4

11
16.2
16.7
15.4
20.2
22.3
40.7
54.7
26.8
62.5
37.2
36.5
32.2
71.5
49.9
49.6

116.9
63.2
93.4
124

76.9
58.1
46.2

%r. Best
100.0
100.1
100.0
101.7
101.9
100.3
100.0
101.5
100.0
100.6
100.4
100.0
100.4
101.3
101.9
101.4
102.5
102.8
102.2
100.2
101.9
102.7
100.8
100.7
101.0

Note that the percentage ratio computed by using the lower bound value is an upper bound
on the percentage ratio of the heuristic solution value with respect to the optimal solution
value.

Algorithm HTV is applied to the Lagrangian solution obtained at each subgradient
iteration of the Lagrangian lower bounding procedure, until 200 iterations are executed or
a prefixed time limit is reached. Each result reported in the tables is the best one obtained
over all the iterations, and the computing time includes the lower bound computation. The
"% r. Best" column in the tables gives the percentage ratio of the best solutions found by
using different parameter settings or by allowing a longer computing time.

Table 8.4 reports the results obtained by algorithms DB, SF, LHBH, and HTV for the
62 VRPB instances of the first class. The value of the solution obtained by all the algorithms
was computed by using a real-valued cost matrix and by rounding the final solution value to
the nearest integer. (The solution values and the computing times (expressed in IBM 386/20
seconds) for algorithms DB, SF, and LHBH were kindly provided by Marc Goetschalckx
and Charlotte Jacobs-Blecha.) The computing times of algorithm HTV reported in Table
8.4 were multiplied by four since, according to our experience with this kind of algorithm,

Bibliography 221

an IBM 486/33 is almost four times faster than the IBM 386/20 used by Goetschalckx
and Jacobs-Blecha. Columns labeled HTV are obtained by imposing a time limit equal
to 2(n + m) seconds for instances with (n + m) < 100 and equal to 3(n + m) seconds
otherwise. Table 8.4 shows that algorithm HTV performed better than the other algorithms
from the literature (obtaining the best solution in 52 of the 62 test problems) within acceptable
computing times. The greater effectiveness of algorithm HTV can also be seen by noting
that, over all the instances of the first class, the average percentage ratio of the solutions
obtained by this algorithm is 103.7%, whereas the solutions obtained by DB, SF, and LHBH
have an average percentage ratio equal to 107.9%, 124.5%, and 105.1%, respectively. All
the algorithms run in a reasonable computing time. Indeed, over all the instances of the first
class, the average computing time needed by algorithm HTV is 193.9 seconds, while DB,
SF, and LHBH require on average 37.5, 16.6, and 64.4 seconds, respectively.

The results for the 33 VRPB instances of the second class are illustrated in Table 8.5.
The implementations of heuristics DB and SF, as coded by Toth and Vigo, were used in
the comparison. A time limit of 240 seconds was imposed for algorithm HTV. The results
confirm the good performance of algorithm HTV. Indeed, over all the instances of the second
class, HTV always found the best solution, and the average percentage ratio of the solutions
obtained by this algorithm is 102.5%, whereas the solutions obtained by DB and SF have an
average percentage ratio equal to 115.4% and 132.5%, respectively. Moreover, algorithms
DB and SF were unable to determine a solution with the desired number of routes in 12
and 16 problems, respectively. (The number of determined routes, when different from
K = KL,is reported in brackets.)

Table 8.6 shows the results obtained by heuristics HTV and DB on the 24 AVRPB
instances of the third class. The results of heuristic DB (which may be easily modified to
consider asymmetric instances) correspond to the implementation coded by Toth and Vigo.
Also, in this case algorithm HTV obtains very good results: the average percentage ratio of
the solutions obtained by this algorithm is 101.2%, whereas the solutions obtained by DB
have an average percentage ratio equal to 121.6%.

Acknowledgments
This work was supported by Ministero deH'Universita e della Ricerca Scientifica e Tecno-
logica and by Consiglio Nazionale delle Ricerche, Italy.

Bibliography

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice-Hall, Englewood
Cliffs, NJ, 1993.

[2] S. Anily. The vehicle-routing problem with delivery and back-haul options. Naval
Research Logistic Quarterly, 43:415^434, 1996.

[3] J. Bartholdi and L. Platzman. An O(n log n} planar traveling salesman heuristic based
on spacefilling curves. Operations Research Letters, 1:121-125, 1982.

222 Bibliography

[4] L. Bianco, A. Mingozzi, and S. Ricciardelli. A set partitioning approach to the multiple
depot vehicle scheduling problem. Optimization Methods and Software, 3:163-194,
1994.

[5] D. Casco, B.L. Golden, and E.A. Wasil. Vehicle routing with backhauls: Models,
algorithms, and case studies. In B.L. Golden and A.A. Assad, editors, Vehicle Routing:
Methods and Studies, North-Holland, Amsterdam, 1988, pp. 127-147.

[6] N. Christofides and S. Eilon. An algorithm for the vehicle dispatching problem.
Operational Research Quarterly, 20:309-318, 1969.

[7] N. Christofides, A. Mingozzi, and P. Toth. Exact algorithms for the vehicle rout-
ing problem based on the spanning tree and shortest path relaxations. Mathematical
Programming, 20:255-282, 1981.

[8] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[9] I. Deif and L.D. Bodin. Extension of the clarke and wright algorithm for solving
the vehicle routing problem with backhauling. In A. Kidder, editor, Proceedings
of the Babson College Conference on Software Uses in Transportation and Logistic
Management, Babson Park, MA, 1984, pp. 75-96.

[10] JJ. Dongarra. Performance of various computers using standard linear equations
software. Technical Report CS-89-85, University of Tennessee, Knoxville, 1998.

[11] C. Duhamel, J.-Y. Potvin, and J.-M. Rousseau. A tabu search heuristic for the vehicl
routing problem with backhauls and time windows. Transportation Science, 31:49-59,
1997.

[12] M. Fischetti and P. Toth. An additive bounding procedure for combinatorial optimiza-
tion problems. Operations Research, 37:319-328, 1989.

[13] M. Fischetti, P. Toth, and D. Vigo. A branch-and-bound algorithm for the capacitated
vehicle routing problem on directed graphs. Operations Research, 42:846-859, 1994.

[14] M.L. Fisher. Optimal solution of vehicle routing problems using minimum fc-trees.
Operations Research, 42:626-642, 1994.

[15] M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for the vehicle
routing problem. Networks, 11:109-124, 1981.

[16] H.N. Gabow and R.E. Tarjan. Efficient algorithms for a family of matroid intersectio
problems. Journal of Algorithms, 5:80-131, 1984.

[17] S. Gelinas, M. Desrochers, J. Desrosiers, and M.M. Solomon. A new branching
strategy for time constrained routing problems with application to backhauling. Annals
of Operations Research, 61:91-109, 1995.

[18] F. Glover and D. Klingman. Degree constrained spanning trees. Colloquia Mathemat-
ica Societatis Janos Bolyai 12, 1975, pp. 425-439.

Bibliography 223

[19] M. Goetschalckx and C. Jacobs-Blecha. The vehicle routing problem with backhauls.
European Journal of Operational Research, 42:39-51, 1989.

[20] M. Goetschalckx and C. Jacobs-Blecha. The vehicle routing problem with backhauls:
Properties and solution algorithms. Technical Report MHRC-TR-88-13, Georgia In-
stitute of Technology, Atlanta, 1993.

[21] B.L. Golden, E. Baker, J. Alfaro, and Schaffer J. The vehicle routing problem with
backhauling: Two approaches. In R. Hammesfahr, editor, Proceedings of the XXI
Annual Meeting ofS.E. TIMS, Myrtle Beach, SC, 1985, pp. 90-92.

[22] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new exact algorithm for
the vehicle routing problem based on g-paths and ̂ -shortest paths relaxations. Annals
of Operations Research, 61:21^3, 1995.

[23] G.A.P. Kindervater and M.W.P. Savelsbergh. Vehicle routing: Handling edge ex-
changes. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, Wiley, Chichester, UK, 1997, pp. 337-360.

[24] G. Kontoravdis and J.F. Bard. A GRASP for the vehicle routing problem with time
windows. ORSA Journal on Computing, 7:10-23, 1995.

[25] K. Malik and G. Yu. A branch and bound algorithm for the capacitated minimum
spanning tree problem. Networks, 23:525-532, 1993.

[26] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. Wiley, Chichester, UK, 1990.

[27] A. Mingozzi, M.A. Boschetti, S. Ricciardelli, and L. Bianco. A set partitioning ap-
proach to the crew scheduling problem. Operations Research, 47:873-888, 1999.

[28] A. Mingozzi, S. Giorgi, and R. Baldacci. An exact method for the vehicle routing
problem with backhauls. Transportation Science, 33:315-329, 1999.

[29] S. Salhi and G. Nagy. A cluster insertion heuristic for single and multiple depot
vehicle routing problems with backhauling. Journal of Operational Research Society,
50:1034-1042, 1999.

[30] S.R. Thangiah, J.-Y. Potvin, and T. Sun. Heuristic approaches to vehicle routing wit
backhauls and time windows. Computers and Operations Research, 23:1043-1057,
1996.

[31] P. Toth and D. Vigo. An exact algorithm for the capacitated shortest spanning arbores-
cence. Annals of Operations Research, 61:121-142, 1995.

[32] P. Toth and D. Vigo. A heuristic algorithm for the vehicle routing problem with
backhauls. In L. Bianco and P. Toth, editors, Advanced Methods in Transportation
Analysis, Springer-Verlag, Berlin, 1996, pp. 585-608.

[33] P. Toth and D. Vigo. An exact algorithm for the vehicle routing problem with backhauls.
Transportation Science, 31:372-385, 1997.

224 Bibliography

[34] P. Toth and D. Vigo. A heuristic algorithm for the symmetric and asymmetric ve-
hicle routing problems with backhauls. European Journal of Operational Research,
113:528-543,1999.

[35] D. Vigo. A heuristic algorithm for the asymmetric capacitated vehicle routing problem.
European Journal of Operational Research, 89:108-126, 1996.

[36] C. Yano, T. Chan, L. Richter, L. Cutler, K. Murty, and D. McGettigan. Vehicle routing
at quality stores. Interfaces, 17:52-63, 1987.

Chapter 9

VRP with Pickup
and Delivery

Guy Desaulniers
Jacques Desrosiers
Andreas Erdmann
Marius M. Solomon
Francois Soumis

9.1 Introduction
In the VRP with Pickup and Delivery (VRPPD), a heterogeneous vehicle fleet based at
multiple terminals must satisfy a set of transportation requests. Each request is defined by a
pickup point, a corresponding delivery point, and a demand to be transported between these
locations. The requested transport could involve goods or persons. This latter environment
is called dial-a-ride. The objective function(s) generally minimizes system costs. The
VRPPD with Time Windows (VRPPDTW) is a generalization of the VRPTW examined in
Chapter 7. In the pickup (resp., delivery) version, the VRPTW is the particular case of the
VRPPDTW where the destinations (resp., origins) are all at a common depot.

Problems in this class involve time constraints that establish time intervals during
which service must take place at each stop, or that express user inconvenience and maximum
ride time restrictions for passengers. For example, time windows for dial-a-ride problems
model preferred pickup and delivery times specified by the customers. In addition to time
windows to be satisfied at each stop, the VRPPD involves several other sets of constraints.
These impose visiting each pickup and delivery stop exactly once, not exceeding the capacity
of vehicles, and coupling the pickup and corresponding delivery stops on the same vehicle
routes and impose visit precedence among each pickup stop and its associated drop-off stop.
There are also depot constraints that ensure vehicles return to the appropriate terminals and
resource restrictions on the number of drivers and vehicle types.

225

226 Chapter 9. VRP with Pickup and Delivery

The VRPPDTW has a variety of practical applications, including the transport of
the disabled and elderly, sealift and airlift of cargo and troops, and pickup and delivery
for overnight carriers or urban services. Perspectives on this growing field were offered
by Solomon and Desrosiers [52], Desrosiers et al. [12], and Savelsbergh and Sol [42].
Here, we extend their efforts by reviewing important recent developments and offering our
view for future directions. We focus on static problems where all information is known
with certainty when decisions are being made. We will also tangentially discuss certain
dynamic VRPPDTWs where information becomes known during the planning horizon.
A comprehensive examination of these latter problems is beyond the scope of this paper.
Furthermore, two special cases of the VRPPDTW were addressed in Chapter 7. These are
the transport of full loads, which can be appropriately modeled as a m-TSPTW, and backhaul
environments where all deliveries precede pickups, which admits a VRPTW representation.

In section 9.2, we present a mathematical formulation of the VRPPDTW. In sec-
tion 9.3, we overview the early work on the VRPPD and then examine route construction
and improvement heuristics. We also address metaheuristics and neural network approaches.
We conclude this section with a description of theoretical analyses derived for a few algo-
rithms. Then, in section 9.4, we highlight optimization methods based on set-partitioning
formulations or using dynamic programming. These are embedded in branch-and-bound
algorithms or used as heuristic methods. We discuss additional applications in section 9.5,
and put computational results with various approaches in perspective in section 9.6. Finally,
we offer our concluding remarks in section 9.7.

9.2 Mathematical Formulation
We present below a request-based mathematical formulation for the VRPPDTW. It involves
n requests with pickup and delivery stops as well as associated demands.

9.2.1 Construction of the Networks

Identify request / by two nodes, i and n + i, corresponding, respectively, to the pickup
and delivery stops of the request. It is possible that different nodes may represent the same
geographical location. Next, denote the set of pickup nodes by P = {1,...,«} and the set
of delivery nodes by D = {n +1, . . . , 2n}. Further, define N = PUD. If request i consists
of transporting df units from i to n + /, let £/ = d[and tn+i = —di.

Let K be the set of vehicles. Because not all vehicles can service all requests, each
vehicle k has a specific set Nk = Pk U Dk associated with it, where A^, Pk, and D^ are
appropriate subsets of N, P, and D, respectively. For each vehicle k, define now network
Gk = (Vk, Afr). Set Vk = Nk U (o(k), d(k)} as the set of nodes inclusive of the origin,
o(k), and destination, d(k), depots for vehicle k, respectively. The subset A^ of Vk x Vk
comprises all feasible arcs. The capacity of vehicle k is given by Q, and its travel time and
cost between distinct nodes i, j e V/t, by t^ and Q^, respectively.

Vehicle k is assumed to leave unloaded from its origin depot at time a0(k) = b0(k).
Each admissible pickup and delivery route for this vehicle corresponds to a feasible path
from o(k) to d (k) in network Gk, visiting each node at most once. If the vehicle visits node
i e N, it must do so within the time window [a(, bf] when the service time s{ must begin.
Should it arrive too early, the vehicle is allowed to wait.

9.2. Mathematical Formulation 227

9.2.2 Formulation

The formulation involves three types of variable: binary flow variables xiik, equal to 1 if
arc (i, 7) e Ak is used by vehicle k, and 0 otherwise; time variables Tik specifying when
vehicle k starts the service at node i e Vk; and variables Lik giving the load of vehicle A:
after the service at node i e Vk has been completed. The formulation is as follows:

subject to

The linear objective function (9.1) minimizes the total travel cost. Constraints (9.2)
and (9.3) impose that each request (i.e., the pickup and delivery nodes) is served exactly
once and by the same vehicle. Constraints (9.4)-(9.6) characterize a multicommodity flow
structure and ensure that each vehicle k starts from its origin depot o(k) and terminates
its route at its destination depot d(k}. Compatibility requirements between routes and
schedules are handled by constraints (9.7), and (9.8) are the time window constraints. For
each request, constraints (9.9) force the vehicle to visit the pickup node before the delivery
node. Next, constraints (9.10) express the compatibility requirements between routes and

228 Chapter 9. VRP with Pickup and Delivery

vehicle loads, while (9.1 1)-(9.12) form the vehicle dependent capacity intervals at pickup
and delivery nodes. Finally, the initial vehicle load is imposed by (9.13), and nonnegativity
and binary requirements are given by (9.14) and (9.15), respectively. Constraint sets (9.3)
through (9.15), as well as the objective function, are separable for each vehicle k e K. This
will be exploited later in the solution process based on mathematical decomposition.

This formulation limits route duration to at most bd(k) —a0(k) • Note also that constraints
(9.7), along with the time window constraints, allow a vehicle to wait before its visit to a
node. There is no penalty on waiting time, and the arrival time at node j can be calculated
as

The minimization of the fleet size also can be considered in this formulation by
incorporating a large cost in the values c0^)jk for j € Pk- In this case, one should include
arc (o(k), d(k)) in Ak at zero cost to allow for a vehicle not to be used. When the fleet is
heterogeneous, cost coefficients can be assigned unequal weights to encourage the use of
certain classes of vehicles over others.

As proposed by Dumas, Desrosiers, and Soumis [17] (see also Desaulniers et al. [1 1]
for a general discussion), the above linear objective function can easily be replaced by a more
general nonlinear function. For example, let ck(Lik) > 0, i e Vk, denote a nondecreasing
function of the total load transported on vehicle k, just after the service is completed at
node i . This function acts as a penalty factor on the travel cost and (9.1) can be replaced by

9.2.3 Service Quality

For goods transportation, it is sufficient that the objective function account for the number
and type of vehicles and routing costs as described above. However, for the transport of
persons, another essential component is the quality of the service provided by the system to
its users. Researchers have addressed these three objectives either sequentially — beginning
with fleet size minimization and ending with service quality maximization — or in parallel.
Service quality commonly has been measured by user inconvenience, which models discrep-
ancies between times requested by customers and actual pickups and deliveries. Constraints
(9.8) implicitly define the service quality level. Quality increases with reductions in time
window width. Yet, total service quality — zero user inconvenience — hardly can be expected
given that peak demand generally leads to unrealistic capacity requirements. Nevertheless,
high quality levels can be achieved by relaxing constraints (9.8) and penalizing them in the
objective function, or explicitly optimizing pickup and delivery times once vehicle schedules
have been obtained. Fixed-route optimization was discussed at length in Dumas, Soumis,
and Desrosiers [18] and Desrosiers et al. [12].

9.2.4 Reduction of the Network Size

Reduction of the network size is a preliminary phase to solving the VRPPDTW by either a
heuristic or an optimization-based approach. The two main steps are to narrow the widths

9.3. Heuristics 229

of time windows and to eliminate the inadmissible arcs. The latter comprises a variety of
techniques based on restrictions imposed by precedence, vehicle capacity, time windows,
and identical location (if the travel costs satisfy the triangle inequality). Details are provided
by Dumas, Desrosiers, and Soumis [17].

9.3 Heuristics
The early work on VRPPD was conducted for dial-a-ride scenarios. It was first examined
by Wilson et al. [59], Wilson and Weissberg [60], and Wilson and Colvin [58] and was moti-
vated by the demand-responsive transportation systems of Haddonfield, NJ, and Rochester,
NY. This stream of work introduced the fundamental concepts of building tours through
sequential insertion of customers and the general form of the objective function.

9.3.1 Construction and Improvement

A parallel insertion heuristic similar to that of Wilson et al. was proposed by Roy et al.
[38,39] for the multiple VRPPDTW in the context of the transportation of disabled persons.
Since a fair amount of requests are known in advance, these are used by means of time-
spatial proximity criteria to create initial routes for all vehicles starting at the beginning of
the day. New requests are inserted in the set of existing routes or new routes initialized as
needed.

Jaw et al. [25] explicitly considered time windows. Each customer specifies either a
desired pickup time or a delivery time. The system operates under three types of service
quality constraints: if a customer has specified a pickup (delivery) time, the actual pickup
(delivery) should not take place earlier (later) than the desired time, and the waiting time, as
well as the ride time, should not exceed a given maximum compared to the direct ride time. In
addition, a vehicle is not allowed to be idle when carrying passengers. The authors developed
an insertion heuristic where customers demanding service are selected in order of increasing
earliest pickup time and inserted in the vehicle schedule with the lowest additional costs,
taking into account inconvenience to the new customer and operational costs. Schedule
blocks, that is, continuous periods of active vehicle time between two successive periods of
vehicle slack time, play an important role in finding feasible insertions, since they allow the
examination of all possible schedule sequences. Psaraftis [30] reported on a comparison
with a previous approach developed by the same authors.

Madsen, Ravn, and Rygaard [29] implemented a generalized version of this approach
for a partly dynamic dial-a-ride problem. Their algorithm can minimize vehicle waiting
time as well as introduce breaks. Using more detailed job properties instead of schedule
blocks, the number of insertions to examine was reduced. Requests known in advance are
considered static, while real-time requests are handled sequentially.

Local search for the VRPPD was first considered by Psaraftis [34], who extended the
ideas of Lin [27] and Lin and Kernighan [28]. A decade later, Van der Bruggen, Lenstra, and
Schuur [57] presented another local search heuristic for the 1-VRPPDTW (single vehicle)
for minimizing route duration. Their approach is based on a variable-depth search similar to
the technique of Lin and Kernighan [28] for the TSP and simulated annealing. The algorithm
involves two phases, both using arc exchange procedures. In the construction phase, it tries to

230 Chapter 9. VRP with Pickup and Delivery

find an initial feasible route allowing infeasibility and penalizing the violation of restrictions
in the objective function. In the improvement phase, the method considers solely feasible
solutions and tries to minimize route length.

9.3.2 Clustering Algorithms

Clustering algorithms use customer proximity to guide and possibly simplify the routing
aspect. Geographical closeness among customers is used either a priori or in parallel with
the routing process to cluster them. An early approach was that of Cullen, Jarvis, and
Ratliff [8], who proposed an interactive optimization approach for the multiple vehicle dial-
a-ride problem where customers are serviced by a homogeneous fleet. For the same context,
Bodin and Sexton [4] developed a traditional cluster-first, route-second approach. Single
vehicle cases are solved using the method of Sexton and Bodin [44,45].

Since each customer represents a set of two locations (pickup and delivery), it is
difficult to generate high-quality clusters without incorporating some routing information.
Hence, Dumas, Desrosiers, and Soumis [16] suggested the use of miniclusters, that is, cus-
tomers that can form an appealing route segment. Their sequential approach is revisited in
Desrosiers et al. [14], where insertions are performed in parallel. Further work in this direc-
tion was performed by loachim et al. [24], who used mathematical optimization techniques
to globally define a set of miniclusters. These were generated by solving an m-VRPPDTW
with an enhanced version of the algorithm of Dumas, Desrosiers, and Soumis [17].

9.3.3 Metaheuristics

In contrast to the generic VRP and its variants with time windows or one-sided requests,
where high quality solutions were obtained by using metaheuristics (see Chapter 7), the
literature is scant for the VRPPD.

Gendreau et al. [22] suggested a dynamic pickup and delivery m-TSP with soft time
windows to model courier services for the same-day local pickup and delivery of small
items. The objective function to be minimized is a weighted sum of the total travel time,
lateness, and overtime. To solve this problem, the authors proposed an adaptive memory-
based tabu search. They used a neighborhood structure based on the concept of ejection
chains: a request (i.e., the pickup and delivery location) is chosen, taken from its route
(ejected), and moved to another route (inserted), where another request is forced to move to
another route. The problem of finding the best chain or cycle of ejection or insertion moves
over the current set of routes is modeled as a constrained shortest-path problem and solved
heuristically. To intensify the search, the starting solution is decomposed into disjoint
subsets of adjacent routes, each to be processed by a different tabu search. A two-level
parallelization is proposed where the master manages the adaptive memory and produces
solutions from it. These solutions are transmitted to slave processes that improve them by
performing tabu search and return the best solution to the master.

Toth and Vigo [56] described a procedure for transporting disabled persons in an ur-
ban area using a mixed fleet, an instance of the dial-a-ride problem. They used an objective
function that encompasses fixed vehicle costs, routing costs, and user inconvenience penal-
ties. That is, they discouraged the use of the more costly vehicle type—taxis—and also
relaxed the time window constraints in the objective function using piecewise linear user

9.3. Heuristics 231

inconvenience penalties. The algorithm first estimates the minimum number of routes nec-
essary to undertake a given percentage of the trips based solely on capacity considerations.
Each route is then initialized with a trip that maximizes a certain score. Next, unrouted trips
are inserted into routes or new routes are created, if needed, by solving a minimum-cost
rectangular assignment problem on the insertion cost matrix. This is composed of elements
representing the additional cost of inserting a certain trip in a given route in the best feasible
position.

The heuristic is then improved using Tabu Thresholding, which involves alternating
between a phase where a local optimum is reached and another where moves away from it
are considered. Both phases rely on an iterative candidate list method that selects a subset
of moves at each iteration from a family of subsets partitioning the search neighborhood of
the current solution. The subsets of trip movements and exchanges that form a partition are
generated according to Toth and Vigo [55].

9.3.4 Neural Network Heuristics

A different approach was proposed by Shen et al. [47]. It is an expert consulting system
for a dispatcher working in a courier service. It consists of two modules: dispatching
and learning. The former assists the dispatcher in allocating each new request to one of the
available drivers. It estimates distances and travel times and helps evaluate the consequences
of insertions. The latter suggests "good" drivers to service the new requests. This module
is based on a backpropagation neural network. The network is trained using decision data
from a dispatcher, while its performance is evaluated by comparison to the dispatcher's
decisions.

9.3.5 Theoretical Analysis of Algorithms

A stream of research conducted by Daganzo [9] and several coauthors attempted to obtain
analytical insight into distribution patterns at the system design level. That is, they tried to
characterize broad routing strategies independent of specific customer locations but rather
in terms of problem characteristics. This kind of analysis could provide guidelines for
districting and cost estimation.

The intrinsic complexity of this problem class made it very difficult to analyze specific
solution methodologies beyond empirical testing. Stein [53] was the first to present a
probabilistic analysis of a simple algorithm. This constructs a VRPPD tour by concatenating
two TSP tours, one through the origins and the other through the destinations. He proved
that this algorithm is asymptotically bounded by 1.06. Later, Psaraftis [32] showed that an
adaptation of the minimum spanning tree heuristic for the TSP has a worst-case performance
ratio of 3.0. He further showed that its practical performance is better than that of Stein's [53]
method.

Gendreau, Laporte, and Vigo [23] analyzed the capacitated 1-VRPPD (or TSPPD) on
trees and cycles. They show that these problems can be solved optimally in linear time. For
the TSPPD on a tree, the proposed O(n) exact algorithm traverses the tree depth-first and
visits all subtrees involving larger deliveries than pickups before visiting those that require
positive net pickups. Within a subtree, vertices are visited in the net-deliveries-first order as
well. When the underlying network is a cycle, the authors proved that the optimal solution

232 Chapter 9. VRP with Pickup and Delivery

is the better of the following two solutions. The first is obtained by eliminating the largest
cost arc and traversing the rest twice, and the second involves traversing all arcs either one
or three times. Note that in the former solution, once an arc has been eliminated, the cycle
becomes a line and therefore a special case of a tree.

The algorithms proposed for these special cases are then turned into approximate
methods for the general problem. Specifically, the tree-based heuristic applies the above
procedure on a spanning tree for the underlying network. The cycle-based heuristic first
generates a Hamiltonian tour by solving the TSP relaxation. Then, the above exact algorithm
is used to solve the 1-VRPPD on this cycle. The solution obtained is an Eulerian tour that
is transformed in a Hamiltonian solution by means of shortcuts. The authors then proved
that on undirected, complete, and triangular networks, the tree- (cycle-) based heuristic has
a tight worst-case performance ratio of 2 (3).

9.4 Optimization-Based Approaches
In this section we describe several scenarios, since different authors have analyzed slightly
different VRPPD variants.

9.4.1 Single Vehicle Cases

Scenarios involving a single vehicle have received attention due to their intrinsic importance
and to gain insight into situations where multiple vehicles are used.

9.4.1.1 Benders'Decomposition

Sexton and Bodin [44,45] proposed a robust heuristic based on Benders' decomposition for
the single vehicle VRPPD with one-sided time windows, i.e., each request has only a desired
delivery time. They used an objective function that minimizes total customer inconvenience
in a manner similar to Psaraftis [31, 33], whose work is described below. The problem de-
composes into a routing problem (the Benders' master) and a scheduling subproblem. While
the scheduling component is a network flow problem that can be solved very efficiently,
integer solutions for the routing problem are derived using a route improvement procedure.
An extension to the soft time window case was given in Sexton and Choi [46]. The objective
function was modified such that missed time windows incur penalties.

9.4.1.2 Dynamic Programming

An exact backward dynamic programming algorithm for solving the single vehicle dial-a-
ride problem was suggested by Psaraftis [31]. Customers request service by phone and are
served according to their calling order. The objective function is a weighted combination
of the total route length and the total customer inconvenience (given as the sum of waiting
and riding times). The algorithm was later modified by Psaraftis [33] to a forward dynamic
programming approach for the variant with time windows. The time complexity for both
algorithms is O(n23n). For the TSP with precedence constraints, Bianco et al. [3] were able
to develop an improved backward dynamic program by using a lower bound to prune the
search space.

9.4. Optimization-Based Approaches 233

An exact forward dynamic programming approach to minimize the total distance
traveled in the static single vehicle VRPPD with time windows was developed by Desrosiers,
Dumas, and Soumis [13]. The mathematical formulation can easily be derived from (9.1)-
(9.15) by letting \K\ equal to 1. The authors capitalize on the fact that all nodes must be
visited by only one vehicle. A state (S, /) is defined if there exists a feasible path that starts
at the depot node o, visits all the nodes in 5 c TV, and ends at node i e S. A path is
feasible if it satisfies vehicle capacity, precedence, and time window constraints. For each
state (51, 0, two-dimensional labels are defined for each path from o to /, with time and
distance components (the load can be retrieved from the visited nodes of S). As usual, only
Pareto-optimal labels are kept. Such a label of state (51, i) is then tested to check if there is a
feasible path starting at i and visiting all the remaining nodes. From these unvisited nodes,
if there is one that cannot be visited, the label is eliminated. Several efficient criteria were
proposed by the authors, such as testing only for the unvisited node with the earliest start of
service.

9.4.1 .3 Polyhedral Approach

The only polyhedral approach for the VRPPD is given by Ruland [40] and Ruland and
Rodin [41]. It is based on the solution of the TSP with precedence constraints. The
formulation for the single-vehicle VRPPD without capacity constraints is defined on an
undirected graph G = (V, E) and uses only the binary flow variables xe, e e E, which are
equal to 1 if the arc e is used and 0 otherwise.

subject to

where U — {U c V : o e U} is the set of all vertex sets containing the vehicle origin depot,
and U'p = [U c U : d i U, 3i E P, i i C7, n + i E U}.

The objective function (9.16) minimizes the total travel cost. Constraint (9.17) gives
a reference direction. Removing this arc from a feasible solution gives the vehicle route.
The degree equality constraints (9.18) require the degree of each vertex v e V in a feasible
solution to equal 2, and the subtour elimination constraints (9.19) forces biconnectedness.
Constraints (9.20) are the precedence constraints defined on cut sets: whenever the origin
depot and a delivery location n + i ' £ D are in a cut set, and the corresponding destination
depot and pickup location i e P are not, respectively, the flow crossing this cut set must b
greater than or equal to 4. Finally, binary flow requirements are given by (9.21) and (9.22).
Several enhancements to this formulation are proposed by Ruland and Rodin.

234 Chapter 9. VRP with Pickup and Delivery

9.4.2 Multiple Vehicle Cases

To model multiple vehicle cases, researchers have relied on the set-partitioning model. The
scale of the models generated has in turn naturally lead to decomposition approaches based
on column generation. Before presenting them, we begin with a different solution method
that reduces the complexity of the set-partitioning model through additional simplifying
assumptions.

9.4.2.1 Matching-Based Approach

Derigs and Metz [10] dealt with a special case of the VRPPD where only one-sided time
windows are present and all customers play the role of delivery and pickup points. Dur-
ing the first phase of the planning period, the customers receive deliveries from the depot,
while pickup and transportation of goods to the depot takes place in the second phase. The
problem is formulated as a (high-dimensional) set-partitioning problem with two additional
nontrivial sets of side constraints. Under the assumption that the number of customers that
can be supplied by a single vehicle in both the delivery and the pickup phases is at most
two, the problem is reduced to a matching problem with side constraints. The problem is
still NP-complete, but good approximate solutions can be constructed in acceptable compu-
tational time by relaxation and the application of optimization techniques from nonsmooth
optimization and matching algorithms.

9.4.2.2 Column Generation

Dumas, Desrosiers, and Soumis [17] presented an exact algorithm for the VRPPDTW.
They used a set-partitioning model and proposed a column-generation approach with a
constrained shortest-path subproblem to build admissible routes. This model can easily be
derived from (9.1)-(9.15) by applying the appropriate Dantzig- Wolfe decomposition, i.e.,
keeping (9.1) and (9.2) in the master problem and using the remaining constraint sets to
define the constrained shortest path subproblem.

To present their formulation, assume a heterogeneous fleet of vehicles. For vehicle
k € K, let £2k be the set of feasible pickup and delivery routes and crk the cost of route
r. The binary constants airk are equal to 1 if route r of vehicle k includes request i and 0
otherwise. The formulation uses just one type of variable: the binary variable yrk equals
to 1 if route r is used for vehicle k and 0 otherwise. The VRPPDTW can now be stated as
follows:

subject to

9.4. Optimization-Based Approaches 235

The reader can observe that the covering constraints (9.24) are imposed only on the
pickup nodes since the pairing of pickup and delivery nodes within the same route also en-
sures the service at the delivery nodes. Similar to the column-generation algorithm described
for the VRPTW in Chapter 7, new routes are generated by transferring the current dual vari-
ables of constraints (9.24) and (9.25) to the vehicle networks G^ and using a specialized
dynamic programming algorithm for the pickup and delivery shortest path subproblems.
This algorithm (see Dumas, Desrosiers, and Soumis [17]) uses three-dimensional labels
and allows for multiple visits at the same node. Indeed, the smallest request cycle must
satisfy a sequence of at least five nodes, i-*n + i^>-j(^i)-^>i-+n + i, as arc (n + /, i}
does not exist. This is unlikely in practice, when time windows are small compared to travel
times. The optimal solution to the linear relaxation of the master problem is reached when
routes with negative marginal cost can no longer be found.

To obtain integer solutions, a branch-and-bound tree is used. To avoid generating
a huge enumeration tree when setting to 0 or 1 variables jc//^ from the multicommodity
flow formulation stated in section 9.2, Dumas, Desrosiers, and Soumis propose another
branching strategy that can be applied directly to the requests. Order variables O(J, for
i, j € P, are introduced to allow to branch on pickup sequences. When branching on these,
the information can be inserted in the master problem by deleting variables associated
with forbidden paths and in the subproblem by using a fourth label dimension. This new
dimension represents the last pickup node visited, and order constraints can be easily checked
when extending a label. Very good solutions were obtained by exploring only a few nodes,
typically fewer than 10, of the branch-and-bound tree.

Savelsbergh and Sol [43] and Sol [48] used a similar approach that differs in the aspects
below. The pricing subproblem is solved by heuristic construction and insertion algorithms
using the cheapest insertion cost, in addition to a dynamic programming approach. Further,
branching is done on binary variables xik for i e Pk and k e K,

indicating which fraction of request i is served by vehicle k. Also, the current fractional
solution is used for a primal heuristic: if the value jt,-* is large, it is likely that transportation
request i will be served by vehicle k. Using the sequence of decreasing jc,^, routes are
created from scratch using the insertion algorithm and are, if a feasible solution is found,
subjected to improvement heuristics.

The above methodology was extended to a combined inventory management and
VRPPDTW in a sealift environment by Christiansen and Ny green [6] and [7]. The problem
involves transporting a bulk product by ship from production to consumption harbors. The
amounts to be transported depend on production rates, inventory levels, and ship-harbor
compatibility. Using variable splitting (see Chapter 7), the authors were able to separate
the problem by ship and production harbor. The former paper discusses the overall solution
approach, while the latter focuses on the ship and inventory subproblems.

An essential characteristic of the above optimization algorithms based on column
generation is their flexibility. That is, they are primal methods that provide feasible so-
lutions early in the process and hence can easily be used as approximation methods by
early termination. In conjunction with sophisticated column-generation management and

236 Chapter 9. VRP with Pickup and Delivery

the use of heuristics within the overall optimization scheme whenever appropriate, these al-
gorithms can solve realistic-size problems. Another key feature of such methods is that they
are readily amenable to reoptimization. This makes them viable approaches for dynamic
environments.

9.5 Applications
The majority of applications have occurred in sealift and airlift environments and the trans-
portation of elderly or disabled in urban areas. Additional applications have been considered
in school bus routing and scheduling. This special VRPPDTW case is discussed in Chapter
7. In early work in the sealift context, Psaraftis et al. [35] suggested a heuristic based on
sequentially solving a transportation problem for each time slice of the planning horizon
to decrease total tardiness. Its solutions can be improved using the method described by
Thompson and Psaraftis [54]. Fisher and Rosenwein [21] examined the pickup and delivery
of bulk cargoes. They presented an interactive optimization system based on the branch-and-
bound solution of a set packing problem (see Fisher and Kedia [20]). The method extends
prior work on a truck-scheduling problem described by Bell et al. [2] and Fisher et al. [19]
to this context. More recently, Christiansen [5] considered a ship-planning application for
the sealift environment described in the previous section. The author solved the problem
by Danzig-Wolfe decomposition embedded in an overall branch-and-bound scheme.

For airlift scenarios, Rappoport et al. [36] and [37] proposed an airlift planning algo-
rithm that assigns payload to aircraft during a long planning horizon. This solution can then
be used to initialize algorithms that provide more detailed assignments and schedules for
shorter horizons. Such an approach was suggested by Solanki and South worth [49], who
enhanced Solomon's [50] insertion heuristic to modify an existing military airlift schedule.
Solomon's method has also been extended to a large-scale larvicide control program by
Solomon et al. [51]. In this multiperiod 1-VRPPDTW, helicopters must discharge several
types of larvicide in rivers to fight larvae growth. To solve the problem, the authors created
miniclusters by larvicide type and then applied the insertion heuristic.

Another application area is the scheduling of vehicles for transportation of elderly
or disabled. In an early application, Alfa [1] used [25] for this purpose. Later approaches
include those of loachim et al. [24] and Toth and Vigo [56]. The former authors showed the
benefits of their method using data from the city of Toronto. The latter produced very good
results in service quality and overall cost compared to the manual schedules used in the city
of Bologna. Recently, Savelsbergh and Sol [43] reported encouraging results on data from
a road transportation environment in Europe.

9.6 Computational Results
The computational experience reported on the VRPPD indicates that algorithms capable
of solving larger or more difficult problems are constantly being proposed. The papers
by Solomon and Desrosiers [52], Desrosiers et al. [12], and Savelsbergh and Sol [42]
illustrate this trend by discussing the computational capabilities specific to the different
methods available up to publication time. Nevertheless, the relative evaluation of competing
approaches is much more difficult in this environment. This is because a benchmark problem

9.7. Conclusions 237

set has not been developed for the VRPPD as it has for the generic VRP or VRPTW,
for example. The primary reason is the multitude of problem variants that the literature
has addressed. Generally, much of the work has stemmed from applications that induced
modeling differences. For example, the manner in which service quality is represented in
the objective function or the constraints is often situation specific. Therefore, researchers
have preferred to test their methods on data simulated from the real-world setting they
were analyzing. In addition, they used the actual data to compare their methods to manual
solutions in use.

The intricacy of this problem class has hampered efforts to optimally solve problems
with more than tens of requests. The methodology proposed by Ruland and Rodin [41] for
the 1-VRPPD was able to solve problems involving 15 requests, while that of Desrosiers,
Dumas, and Soumis [13] solved 1-VRPPDTW instances with 40 requests. In the multiple-
vehicle case with time windows, the algorithms of Dumas, Desrosiers, and Soumis [17] and
Savelsbergh and Sol [43] have been successful on problems involving about 50 requests.

Heuristic approaches have been effective in solving larger size problems found in
practice. Generally, approximate methods are able to solve problems with hundreds of
requests. In particular, Torn and Vigo [56] have shown their approach to be computationally
viable for a problem consisting of more than 300 requests. Larger scale instances have
been tackled by decomposing the original problems geographically, using miniclusters, or
temporally, using time slices. The resulting problems consist of hundreds of requests. Jaw
et al. [25] reported solving a real dial-a-ride problem with more than 2600 requests and 20
vehicles, while loachim et al. [24] handled more than 2500 requests. The method proposed
by Dumas, Desrosiers, and Soumis [16] successfully solved problems with more than 3500
requests.

9.7 Conclusions

In this chapter we described the research conducted on the VRPPD over the last 20 years.
Not surprising, the development of the field and the level of methodological sophistication
has paralleled that of other routing variants. As practical instances of the VRPPD are
large scale, researchers have favored heuristic approaches. In particular, various insertion
and local search improvement procedures frequently have been proposed. While more
intricate methods, such as metaheuristics, have been developed over time, these have not
yielded the same benefits as other VRP variants. Parallel computing may be the answer to
making them computationally viable. In addition, the work of Toth and Vigo [56] shows
promise for composite heuristics that embed tabu search within an insertion or improvement
solution framework. We expect interest in such methods to intensify. Future research could
also benefit from the generation of a realistic benchmark problem set on which competing
approaches could be evaluated.

Research on exact algorithms has attempted to exploit special problem structure and
the progress in computing technology in a manner similar to that used in other VRP sec-
tors. Yet, because of the ancillary complexity of the VRPPD, much work remains to be
done. Recent ideas used successfully elsewhere, such as valid inequalities (Kohl et al. [26])
and master problem acceleration strategies using bounded perturbation variables (du Merle
et al. [15]), could provide the impetus for future advances, (see Chapter 7 for a discus-

238 Bibliography

sion and additional details). More extensive research on polyhedral approaches could also
provide valuable insight in this direction.

Recent advances in the telecommunications and information infrastructure have gener-
ated noteworthy interest in dynamic aspects of the VRPPD. For example, vehicle diversion
is becoming common practice since satellite systems can provide real-time information.
This, coupled with current business emphasis on responsiveness and cost reduction, sug-
gests that interest in this area will only magnify. These developments open exciting new
research arenas in this field. We hope this chapter provided its readers with a starting basis
for their research on the challenging problems ahead.

Bibliography

[1] A.S. Alfa. Scheduling of vehicles for transportation of elderly. Transportation Plan-
ning and Technology, 11:203-212, 1986.

[2] W. Bell, L. Dalberto, M.L. Fisher, A. Greenfield, R. Jaikumar, P. Kedia, R. Mack, and
P. Prutzman. Improving the distribution of industrial gases with an on-line computer-
ized routing and scheduling optimizer. Interfaces, 13:4-23, 1983.

[3] L. Bianco, A. Mingozzi, S. Ricciardelli, and M. Spadoni. Exact and heuristic pro-
cedures for the traveling salesman problem with precedence constraints, based on
dynamic programming. INFOR, 32:19-31, 1994.

[4] L.D. Bodin and T. Sexton. The multi-vehicle subscriber dial-a-ride problem. TIMS
Studies in the Management Sciences, 22:73-86, 1986.

[5] M. Christiansen. Decomposition of a combined inventory routing and time constrained
ship routing problem. Transportation Science, 33:3-16, 1999.

[6] M. Christiansen and B. Nygreen. A method for solving ship routing problems with
inventory constraints. Annals of Operations Research, 81:357-378, 1998.

[7] M. Christiansen and B. Ny green. Modelling path flows for a combined routing and
inventory management problem. Annals of Operations Research, 82:391^412, 1998.

[8] F. Cullen, J. Jarvis, and D. Ratliff. Set partitioning based heuristics for interactive
routing. Networks, 11:125-144, 1981.

[9] C. Daganzo. Logistics systems analysis. Springer-Verlag, Heidelberg, Germany, 1991.

[10] U. Derigs and A. Metz. A matching-based approach for solving a delivery/pick-up
VRP with time constraints. OR-Spektrum, 14:91-106, 1992.

[11] G. Desaulniers, J. Desrosiers, I. loachim, M.M. Solomon, F. Soumis, and D. Vil-
leneuve. A unified framework for deterministic time constrained vehicle routing and
crew scheduling problems. In T.G. Crainic and G. Laporte, editors, Fleet Management
and Logistics, Kluwer, Boston, MA, 1998, pp. 57-93.

Bibliography 239

[12] J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis. Time constrained routing and
scheduling. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, editor
Network Routing, Handbooks in Operations Research and Management Science 8,
North-Holland, Amsterdam, 1995, pp. 35-139.

[13] J. Desrosiers, Y. Dumas, and F. Soumis. A dynamic programming solution of the
large-scale single-vehicle dial-a-ride problem with time windows. American Journal
of Mathematical and Management Sciences, 6:301-325, 1986.

[14] J. Desrosiers, Y. Dumas, F. Soumis, S. Taillefer, and D. Villeneuve. An algorithm
for mini-clustering in handicapped transport. Technical Report Cahiers du GERAD
G-91-02, Ecole des Hautes Etudes Commerciales, Montreal, Canada, 1991.

[15] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.
Discrete Mathematics, 194:229-237, 1999.

[16] Y. Dumas, J. Desrosiers, and F. Soumis. Large scale multi-vehicle dial-a-ride problems.
Technical Report Cahiers du GERAD G-89-30, Ecole des Hautes Etudes Commer-
ciales, Montreal, Canada, 1989.

[17] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time
windows. European Journal of Operational Research, 54:7-22, 1991.

[18] Y. Dumas, F. Soumis, and J. Desrosiers. Optimizing the schedule for a fixed vehicle
path with convex inconvenience costs. Transportation Science, 24:145-152, 1990.

[19] M.L. Fisher, A. Greenfield, R. Jaikumar, and J. Lester. A computerized vehicle routing
application. Interfaces, 12:42-52, 1982.

[20] M.L. Fisher and P. Kedia. Optimal solution of set covering/partitioning problems using
dual heuristics. Management Science, 36:674-688, 1990.

[21] M.L. Fisher and M.B. Rosenwein. An interactive optimization system for bulk-cargo
ship scheduling. Naval Research Logistic Quarterly, 35:21^42, 1989.

[22] M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Seguin. Neighborhood search heuristic
for a dynamic vehicle dispatching problem with pick-ups and deliveries. Technical
Report CRT-98-10, Centre de recherche sur les transports, Universite de Montreal,
Canada, 1998.

[23] M. Gendreau, G. Laporte, and D. Vigo. Heuristics for the traveling salesman problem
with pickup and delivery. Computers and Operations Research, 26:699-714, 1999.

[24] I. loachim, J. Desrosiers, Y. Dumas, M.M. Solomon, and D. Villeneuve. A request
clustering algorithm for door-to-door handicapped transportation. Transportation Sci-
ence, 29:63-78, 1995.

[25] J. Jaw, A. Odoni, H. Psaraftis, and N. Wilson. A heuristic algorithm for the multi-
vehicle advance-request dial-a-ride problem with windows. Transportation Research
B, 20:243-257, 1986.

240 Bibliography

[26] N. Kohl, J. Desrosiers, O.B.G. Madsen, M.M. Solomon, and F. Sounds. &-Path cuts for
the vehicle routing problem with time windows. Transportation Science, 33:101-117,
1999.

[27] S. Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44:2245-2269, 1965.

[28] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling salesman
problem. Operations Research, 21:498-516, 1973.

[29] O.B.G. Madsen, H.F. Ravn, and J.M. Rygaard. A heuristic algorithm for a dial-a-ride
problem with time windows, multiple capacities, and multiple objectives. Annals of
Operations Research, 60:193-208, 1995.

[30] H. Psaraftis. Scheduling large-scale advance-request dial-a-ride systems. American
Journal of Mathematical and Management Sciences, 6:327-367, 1986.

[31] H.N. Psaraftis. A dynamic programming solution to the single-vehicle, many-to-many,
immediate request dial-a-ride problem. Transportation Science, 14:130-154, 1980.

[32] H.N. Psaraftis. Analysis of an o(n2} heuristic for the single vehicle many-to-many
euclidean dial-a-ride problem. Transportation Research B, 17:133-145, 1983.

[33] H.N. Psaraftis. An exact algorithm for the single-vehicle, many-to-many dial-a-ride
problem with time windows. Transportation Science, 17:351-357, 1983.

[34] H.N. Psaraftis. ^-Interchange procedures for local search in a precedence-constrained
routing problem. European Journal of Operational Research, 13:391^402, 1983.

[35] H.N. Psaraftis, J.B. Orlin, D. Bienstock, and P.M. Thompson. Analysis and solution
algorithms of sealift routing and scheduling problems: Final report. Technical Report
1700-85, MIT, Sloan School of Management, Cambridge, MA, 1985.

[36] H.K. Rappoport, L.S. Levy, B.L. Golden, and K. Toussaint. A planning heuristic for
military airlift. Interfaces, 22:73-87, 1992.

[37] H.K. Rappoport, L.S. Levy, K. Toussaint, and B.L. Golden. A transportation problem
formulation for the MAC airlift planning problem. Annals of Operations Research,
50:505-523, 1994.

[38] S. Roy, J.-M. Rousseau, G. Lapalme, and J.A. Ferland. Routing and scheduling for
the transportation of disabled persons—the algorithm. Technical Report TP 5596E,
Centre de Recherche sur les Transports, Montreal, Canada, 1984.

[39] S. Roy, J.-M. Rousseau, G. Lapalme, and J.A. Ferland. Routing and scheduling for
the transportation of disabled persons—the tests. Technical Report TP 5598E, Centre
de Recherche sur les Transports, Montreal, Canada, 1984.

[40] K.S. Ruland. Polyhedral solution to the pickup and delivery problem. Ph.D. thesis,
Washington University, St. Louis, MO, 1995.

Bibliography 241

[41] K.S. Ruland and E.Y. Rodin. The pickup and delivery problem: Faces and branch-
and-cut algorithm. Computers and Mathematics with Applications, 33:1-13, 1997.

[42] M.W.P. Savelsbergh and M. Sol. The general pickup and delivery problem. Trans-
portation Science, 29:17-29, 1995.

[43] M.W.P. Savelsbergh and M. Sol. Drive: Dynamic routing of independent vehicles.
Operations Research, 46:474^90, 1998.

[44] T.R. Sexton and L.D. Bodin. Optimizing single vehicle many-to-many operations with
desired delivery times. I: Scheduling. Transportation Science, 19:378-410, 1985.

[45] T.R. Sexton and L.D. Bodin. Optimizing single vehicle many-to-many operations with
desired delivery times. II: Routing. Transportation Science, 19:411-435, 1985.

[46] T.R. Sexton and Y.-M. Choi. Pickup and delivery of partial loads with "soft" tim
windows. American Journal of Mathematical and Management Sciences, 6:369-398,
1986.

[47] Y. Shen, J.-Y. Potvin, J.-M. Rousseau, and S. Roy. A computer assistant for vehicl
dispatching with learning capabilities. Annals of Operations Research, 61:189-211,
1995.

[48] M. Sol. Column generation techniques for pickup and delivery problems. Ph.D. thesi
Eindhoven University of Technology, Netherlands, 1994.

[49] R.S. Solanki and F. South worth. An execution planning algorithm for military airlift.
Interfaces, 21:121-131, 1991.

[50] M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with tim
window constraints. Operations Research, 35:254-265, 1987.

[51] M.M. Solomon, A. Chalifour, J. Desrosiers, and J. Boisvert. An application of vehicle
routing methodology to large-scale larvicide control programs. Interfaces, 22:88-99,
1992.

[52] M.M. Solomon and J. Desrosiers. Time window constrained routing and scheduling
problems. Transportation Science, 22:1-13, 1988.

[53] D.M. Stein. Scheduling dial-a-ride transportation systems. Transportation Science,
12:232-249, 1978.

[54] P.M. Thompson and H.N. Psaraftis. Cyclic transfer algorithms for multi-vehicle routing
and scheduling problems. Operations Research, 41:935-946, 1993.

[55] P. Toth and D. Vigo. Fast local search algorithms for the handicapped persons trans-
portation problem. In I.H. Osman and J.P. Kelly, editors, Metaheuristics: Theory and
Applications, Kluwer, Boston, MA, 1996.

[56] P. Toth and D. Vigo. Heuristic algorithms for the handicapped persons transportation
problem. Transportation Science, 31:60-71, 1997.

242 Bibliography

[57] L.J.J. Van der Bruggen, J.K. Lenstra, and P.C. Schuur. Variable-depth search for
the single-vehicle pickup and delivery problem with time windows. Transportation
Science, 27':298-311, 1993.

[58] H. Wilson and N. Colvin. Computer control of the Rochester dial-a-ride system.
Technical Report R-77-31, Department of Civil Engineering, MIT, Cambridge, MA,
1977.

[59] H. Wilson, J. Sussman, H. Wang, and B. Higonnet. Scheduling algorithms for dial-
a-ride systems. Technical Report USL TR-70-13, Urban Systems Laboratory, MIT,
Cambridge, MA, 1971.

[60] H. Wilson and H. Weissberg. Advanced dial-a-ride algorithms research project: Final
report. Technical Report R76-20, Department of Civil Engineering, MIT, Cambridge,
MA, 1976.

Part III

Applications and Case Studies

This page intentionally left blank

Chapter 10

Routing Vehicles in the
Real World: Applications in
the Solid Waste, Beverage,
Food, Dairy, and
Newspaper Industries

Bruce L. Golden
Arjang A. Assad
Edward A. Wasil

This paper is concerned with the optimum routing of a fleet of gasoline delivery trucks between a bulk terminal
and a large number of service stations supplied by the terminal.... A procedure based on a linear programming
formulation is given for obtaining a near optimal solution. The calculations may be readily performed by hand or
by an automatic digital computing machine.

G.B. Dantzig and J.H. Ramser
The Truck Dispatching Problem,
Management Science, October 1959

10.1 Introduction
It has been nearly 40 years since Dantzig and Ramser first described and formulated the
VRP and then solved a problem with 12 delivery points and one terminal. Theory, practice,
and computer hardware and software have come a long way since then, so that today vehicle
routing is considered one of the great success stories of operations research.

In the last 40 years, there have been hundreds of successful applications in dozen
of industries in numerous countries. The successful implementation of vehicle routing
software has been aided by the exponential growth in computing power since 1950, the
emergence of accurate and sophisticated geographic information systems (GIS) technology,
and easy-to-use interface software that enables the customer to integrate routing with other
key functions such as billing, inventory tracking, and forecasting (see Hall and Partyka [43]).
Vehicle routing software can integrate directly with enterprise resource planning (ERP)
systems; for example, the routing software of one company can interface with the sales
and distribution module of SAP's transportation planning system to access information on

245

246 Chapter 10. Routing Vehicles in the Real World

orders, carriers, geography, and transportation requirements (for details, see www.caps.com
and www.sap.com).

Many interesting applications of vehicle routing are described in the operations re-
search literature. An early collection of informative vehicle routing case studies carried
out in Great Britain is found in Mercer, Cantley, and Rand [60]. Fisher [34], Golden and
Assad [37], and Golden and Wong [40] include a nice mix of more recent applications.
In a unique book, Eibl [30] surveys users of computerized vehicle routing and scheduling,
predominantly in the brewing industry of Great Britain. In total, more than 16 detailed case
studies emerge.

Table 10.1 provides a sampling of vehicle routing applications. Most applications
involve trucks, but other modes of transportation, such as ships, barges, tugboats, and
helicopters, are sometimes used. In addition, a wide variety of applications and locations is
represented in Table 10.1.

Today, vehicle routing applications are ubiquitous. They span a wide variety of indus-
tries and involve the commercial distribution of many products that range from newspapers

Table 10.1. Selected vehicle routing applications.

Reference

Cline, King, and
Meyering [21]

Erkut and
MacLean [32]

Fiala Timlin and
Pulleyblank [33]

Holt and Watts [46]

Larson, Minkoff,
and Gregory [54]

Levy and
Bodin [55]

Pape [63]

Solomon et al. [77]

van Vliet, Boender,

Mode

Ships

Trucks

Helicopters

Trucks

Barges and
tugboats

Walking and trucks

Trucks

Helicopters

Trucks

Location

Long Island Sound
and Connecticut

Alberta, Canada

Nigeria

Australia

New York City

United States

Europe

Western Africa

The Netherlands

Application

Service Coast
Guard buoys

Food distribution

Service offshore oil
platforms

Newspaper
distribution

Sanitation transport

Scheduling of
postal carriers

Transport of
automobiles

Large-scale
larvicide control

Bulk sugar delivery
and Rinnooy Kan
[85]

Wang et al. [86] Barges and
tugboats

Chesapeake Bay,
Maryland

Planting of oyster
shells

Wunderlich et
al. [87]

Trucks Southern
California

Route and schedule
meter readers

www.caps.com
www.sap.com

10.2. Computerized Vehicle Routing in the Solid Waste Industry 247

to soft drinks to groceries to milk on a daily basis. Beyond the commercial distribution
setting, there are applications that involve waste collection, street sweeping, and delivery
of mail. All these applications contain many characteristics found in basic vehicle routing
models (such as constraints on vehicle load and route duration), but they also may contain
many complicating issues (such as time windows and periodic or multideliveries to cus-
tomers) that affect the configuration of routes. (For details, the paper by Assad [6] provides
an accessible overview of modeling and implementation issues in vehicle routing.)

In this chapter, we convey the maturity and diversity of applications by focusing on
three industries: solid waste; beverage, food, and dairy; and newspaper distribution. We
selected these three industries for their rich modeling characteristics, success of solution
and implementation, and potential for new research contributions. We intend to build on our
previous work in these areas (see the papers by Assad and Golden [7], Golden et al. [38],
and Golden and Wasil [39]) by exploring the state of the art within each industry, examining
case studies, and presenting exciting new directions in vehicle routing research and practice.

10.2 Computerized Vehicle Routing in the Solid
Waste Industry

10.2.1 History

One of the early classics in the vehicle routing literature is the paper by Beltrami and
Bodin [11]. This paper focuses on municipal waste collection. In particular, the authors
address the problem of efficiently routing garbage trucks for residential collection. This
work was sponsored by the New York City Department of Sanitation in the early 1970s.

At that time, the Department of Sanitation had an annual operating budget of $200
million and approximately 11,000 sanitation workers. Each day, 25,000 tons of solid waste
needed to be collected.

The problem involved more than just routing. To our knowledge, the first description
of the period VRP appeared in this paper. Most sites required three visits per week (Monday-
Wednesday-Friday or Tuesday-Thursday-Saturday). A small number of sites required six
visits per week. Therefore, each site had to be scheduled before vehicle routes could
be established. Russell and Igo [70] later allowed for more than just two frequencies of
collection per week. For further information regarding the period VRP see Christofides
and Beasley [19], Tan and Beasley [81], Russell and Gribbin [71], and Chao, Golden, and
Wasil [18].

Trips to dump sites had to be scheduled to unload vehicles. Demand for service on
a street was estimated statistically, based on the number and types of homes on the street.
In short, the residential waste collection problem studied was a very rich and challenging
vehicle routing problem. The authors proposed several heuristics for solving this problem.
These heuristics involved modifications to the Clarke and Wright savings procedure and
ideas from node coloring in graph theory

10.2.2 Background

Within the waste industry in the United States there are three primary types of VRP (ex-
cluding hazardous waste transportation). Commercial problems involve the collection of

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

248 Chapter 10. Routing Vehicles in the Real World

refuse from large containers at commercial locations. These are node routing problems.
Residential collection involves collecting household refuse along a street network. These
are arc routing problems. Roll-on-roll-off problems involve the pickup, transportation, un-
loading, and drop-off of large trailers (or containers) typically found at construction sites.
These combine elements of node routing and bin packing. Each of these three problems is
discussed in detail in this chapter.

In the last 10 years, technology advances and new developments in the waste industry
have had a major impact on the acceptance of computerized vehicle routing software. (Baker
discusses some of the technology-related issues in Chapter 14.) In particular, private haulers
have emerged as fierce competition for municipal haulers. Private haulers claim they can do
the job for less money. They argue that they can save payroll and overhead expenses for the
municipality. Outsourcing has been popular in recent years, so the logic is hard to resist. In
response, the internal (municipal) collection group adapts and competes. The result is that
both private and municipal haulers are giving serious consideration to new technologies,
such as computerized vehicle routing software, to reduce costs and attract business. The
private haulers seem to be winning.

Another dramatic development in the waste industry in recent years has been the im-
pact of mergers and acquisitions. In growing numbers, large private haulers are acquiring
smaller haulers to fill in territorial gaps. When it is time to renegotiate contracts, the large
haulers charge customers more to recover their investment costs. There are even examples
of large private haulers buying substantially larger private haulers. For example, Allied
Waste bought Laidlaw in 1997 and, in 1998, USA Waste bought Waste Management. To be
precise, the last two companies merged, retaining the Waste Management name but oper-
ating under the management team of USA Waste. As a result of mergers and acquisitions,
haulers tend to have more information technology expertise and greater financial resources
at their disposal (no pun intended). At the same time, increased corporate size has led to
a greater decentralization of decision making. Therefore, vehicle routing software compa-
nies often must sell to private haulers at the local level rather than the corporate level. In
addition, the mergers and acquisitions climate has resulted in periods of uncertainty and
instability for many private haulers. The overall impact of mergers and acquisitions on
the implementation of computerized vehicle routing software within the waste industry has
been mixed.

The solid waste management industry is sizeable. In the United States, 1996 revenues
were $39.5 billion. The municipal solid waste (MSW) management subsegment saw 1996
revenues of $36.5 billion. The hazardous waste management subsegment accounted for the
remaining $3 billion. The amount of MSW generated increased by 3.7% from 1996 to 1997,
from 328 million tons to 340 million tons. In fact, MSW increased by 3.8% annually from
1970 to 1997. The five largest private MSW haulers during 1997 are given in Table 10.2,
along with their North America revenues (see Friedman [35] for further details).

In the next 10 years, the U.S. Bureau of the Census expects the U.S. population to grow
slowly (0.8% annually), and the Environmental Protection Agency projects daily MSW per
person also to grow slowly (0.6% annually). The MSW industry will, therefore, continue
to grow. Given this and the fact that garbage trucks currently cost between $125,000 and
$200,000 each, we expect computerized vehicle routing to play an even larger role in the
industry in the next 10 years than it has during the 1990s.

Hakim Habibi
Highlight

10.2. Computerized Vehicle Routing in the Solid Waste Industry 249

Table 10.2. Largest MSW haulers in United States.

Company

Waste Management

Browning Ferris

USA Waste

Republic Industries

Allied Waste

1997 Revenues

$5. 6 billion

4.3 billion

2.6 billion

1.1 billion

0.9 billion

10.2.3 Commercial Collection

Businesses and organizations generally place their garbage in large containers (4, 6, or 8
cubic yards in size) for collection. These container sites are visited one or more times
per week by garbage trucks, which front-load the containers. Since the sites are scattered
throughout the geographic area, the VRP involves point-to-point collection (also known
as node routing). In node routing problems, service is required at selected points, as in
Figure 10.1. Drivers are limited each day by the amount of time in a workday. When a
garbage truck is full, it must travel to the nearest landfill, which usually differs from the
central depot. Each truck can make several trips per day to a landfill. The vehicle capacity
dictates the number of landfill trips each day. In addition to landfill trips, other complications
arise because of time windows at some of the container sites and because the vehicle fleet
may be heterogeneous with respect to capacity. For the most part, routes and schedules are
planned and real-time routing issues don't arise.

Figure 10.1. Node routing example.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

250 Chapter 10. Routing Vehicles in the Real World

10.2.4 Residential Collection

Residential collection involves visiting each of the streets in a residential network. We refer
to the resulting VRP as neighborhood (or arc) routing. In arc routing problems, service
is required at nearly all locations, as in Figure 10.2. Note that several arcs don't require
service. There may be different categories of service, e.g., garbage, recycling, and yard
waste. Typically, each category requires one-day-per-week service. Vehicles are either
rear-load or side-load and crew size is a function of vehicle type. Drivers are limited each
day by the amount of time in a workday. When a garbage truck is full, it must travel to
the nearest landfill, which usually differs from the central depot. Each truck can make
several trips per day to a landfill. The vehicle capacity dictates the number of landfill trips
each day. In addition to landfill trips, other complications arise because the vehicle fleet
may be heterogeneous with respect to capacity, and different categories of service may
imply different vehicle capacities. For the most part, routes and schedules are planned and
real-time routing issues don't arise.

10.2.5 Case Studies

In Table 10.3, we present 10 case studies that describe the use of commercially available
vehicle routing software in the solid waste industry. Nine of these involve strictly residential
collection. Installation dates range from 1986 to 1998. The three vendors cited are CAPS
(based in Atlanta, Georgia), RouteSmart (based in Columbia, Maryland), and GIRO (based
in Montreal, Canada). Each of these companies has been in business for approximately 20
years. Most of the case studies involve RouteSmart, since RouteSmart Technologies is the
one vehicle routing software firm that specializes in solid waste applications. Many of the
details presented in Table 10.3 come from recent articles in trade publications or private
conversations (e.g., see [5, 24, 42, 45, 58, 68, 83]). The interested reader is referred to
Chapter 11 of this book.

Figure 10.2. Arc routing example.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.2. Computerized Vehicle Routing in the Solid Waste Industry 251

Table 10.3. Solid waste collection case studies.

Installation specifics1 Comments

• Oyster Bay, New York
• RouteSmart
• Beginning in 1986
• Residential

• Goal was to balance routes better
• Service 72,000 stops, twice per week
• Fewer trucks required
• Savings of about $1,000,000 per year

• Metro-Dade County,
Florida

• RouteSmart
• 1992
• Residental

• Hempstead,
New York

• RouteSmart
• 1993
• Residential

• Recent growth in western part of Dade County
• County has become deeply involved in recycling
• Service 250,000 homes, twice per week
• Recyclable wastes are handled by separate routes
• County has used GIS since early 1980s
• Reevaluate routes once per year
• After installation, a typical crew handles 10% to 15% more

households per day
• Water department now also uses RouteSmart

• Service 84,000 homes each week
• Hempstead runs RouteSmart several times per year
• Seasonal variability in waste volumes
• Savings of $200,000 per route per year
• Software is also used to better communicate with customers

• Charlotte,
North Carolina

• RouteSmart
• 1994
• Residential

• Saved more than 2,800 labor hours in first year
• City administration very satisfied
• Purchased an additional system for water department

• Philadelphia,
Pennsylvania

• RouteSmart
• 1994
• Residential

• No U-turns really tested the RouteSmart software
• Reduced number of trucks from 23 to 18
• Collection routes are much better balanced than before
• Handles site dependencies: size of truck versus type

of street

• More than 200 sites
in USA serviced by
Waste Management,
Inc.

• CAPS
• Beginning in 1995
• Residential and

Commercial

• Used CAPS Logistics Toolkit
• Cost savings of 5% to 15%
• Productivity improvements of 10% to 15%

• Sacramento County,
California

• RouteSmart
. 1997
• Residential

• RouteSmart is used by the county's Waste Management and
Recycling Division to bid for services of Sacramento

• Used to improve routing efficiency throughout the county

252 Chapter 10. Routing Vehicles in the Real World

Table 10.3. (continued)

Installation specifics' Comments

• Grand Rapids,
Michigan

• RouteSmart
• 1997
• Residential

• Curbside garbage pickup
• Service 40,000 homes per week
• 15 routes per day
• Software has balanced the routes
• Eliminated two routes
• Freed up two people for the recycling program

(10,000 homes every two weeks)

• City of Sacramento,
California

• GIRO
.1997
• Residential

• Pilot project
• 40 vehicles for weekly collection of residential waste
• The reduction in overtime costs is expected to more than

offset the cost of the software in the first year alone
• City of Sacramento decided to purchase GIRO'S software,

GeoRoute

• Midwest Ohio,
American Disposal
Services, Inc.

• RouteSmart
• 1998
• Residential

• Saved four trucks
• Number of drivers reduced from 17 to 10
• Used software to identify a target market of noncustomers

t Location, vendor, date, and type of service.

10.2.6 Roll-on-Roll-off

The roll-on-roll-off variant of the VRP arises when there are large trailers (or containers)
at construction sites, downtown areas, and other high-volume locations. Tractors move
between these locations and a disposal facility (or landfill). Each tractor can carry a single
trailer at a time. Four basic types of service are provided by the tractor:

• Round trip: the tractor picks up a full trailer at a site, brings it to the landfill for
emptying, and returns the empty trailer to the site;

• Exchange trip: the tractor picks up an empty trailer at the landfill, brings it to the site,
picks up a full trailer at the site, and brings it to the landfill;

• New site: the tractor brings an empty trailer to a new site; and

• Removal: the tractor picks up a full trailer (for the last time) at an old site.

Drivers are limited by the number of hours in a workday. The goal is to minimize the
number of tractors required and, secondarily, to minimize the total travel time incurred by
the tractors.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.2. Computerized Vehicle Routing in the Solid Waste Industry 253

For the most part, trailers to be serviced on a given day are known in advance. However,
phone calls may trigger same day service for 20% to 30% of the daily demand. Therefore,
real-time issues emerge in practice, making this an especially difficult VRP.

When the tractor performs only exchange-trip service, routes such as the two displayed
in Figure 10.3 emerge. The numbers in Figures 10.3 and 10.4 indicate the sequence of moves
for each tractor and not arc length. For example, on route 1, the tractor starts at the depot,
brings an empty trailer to A, picks up a full trailer, and takes it to the landfill. It then carries
an empty to B, picks up a full, takes it to the landfill, and so on. After the initial customers
on each route (A and X), the problem becomes one of bin packing. Each trip of the form
LF—customer—LF has an estimated time duration, and each tractor has something like
8 hours per day of time availability. Therefore, we seek to pack customers into routes as
efficiently as possible. This will help us to minimize the number of tractors used.

When the tractor performs only round-trip service, routes such as the two displayed
in Figure 10.4 emerge. For example, on route 1, the tractor travels from the depot to A
without a trailer, picks up a full trailer, takes it to the landfill, empties it, returns the empty
to A, travels to B, and so on. Since the travel times between the customers (e.g., A, B, C,
and D) may be substantial, this problem has a significant routing component.

Figures 10.3 and 10.4 each represent atypical routes. Typically, each tractor performs
several types of service during the course of a day. Therefore, the roll-on-roll-off problem
involves both routing and bin packing considerations. The problem is further complicated
by the fact that some trailer demands may have time windows.

This VRP is just beginning to attract research attention. In particular, Bodin et al. [12]
compared three heuristics on 20 diverse test problems. The heuristics are based on set-
covering, dynamic programming, and greedy insertion ideas. See Laporte et al. [53] for an
alternate approach.

Figure 10.3. Exchange trip. An empty trailer is brought to each customer. The tractor
starts and ends with an empty trailer.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

254 Chapter 10. Routing Vehicles in the Real World

Figure 10.4. Round trip. Each trailer must be returned to the customer. The tractor starts
and ends without a trailer.

10.2.7 Further Remarks

It should be clear that there are deep and diverse vehicle routing problems facing the solid
waste industry today. These problems involve node routing, arc routing, time windows,
real-time, and bin packing considerations. Numerous successful applications have been
reported to date, but much exciting work remains to be done.

10.3 Vehicle Routing in the Beverage, Food, and
Dairy Industries

10.3.1 Introduction

In this section, we describe vehicle routing applications in the beverage, food, and dairy
industries. These three industries have large volumes of sales so that the expenses associated
with distribution activities typically are very large. To illustrate, retail beverage sales in the
United States were $178.91 billion in 1997 with soft drink sales of $53.4 billion and beer
sales of $53.2 billion (see [4]).

In the food distribution industry, about 3000 companies split $140 billion in annual
sales (see Knight [51]). For example, U.S. Foodservice, based in Columbia, Maryland, has
more than 6% of the market (about $6 billion in sales for 1998) and is the second-largest
distributor of food, supplies, and equipment. Sysco Corporation, based in Houston, Texas,
is the largest distributor with $16 billion in sales in 1997. U.S. Foodservice has a nationwide
network of 37 distribution centers and 2400 trucks [51].

Hakim Habibi
Highlight

10.3. Vehicle Routing in the Beverage, Food, and Dairy Industries 255

In the dairy foods industry (this includes processing, distribution, and marketing of
milk, cheese, and ice cream), the U.S. market is about $65 billion (see IDFA [48]). For
example, Dean Foods, based in Franklin Park, Illinois, controls about 10% of the U.S.
market share for fluid milk and is one of the largest dairy companies with $3.28 billion in
net sales in fiscal 1998 (Dwyer [28]). Suiza Foods, based in Dallas, Texas, is the largest
full-line dairy in the United States with sales of about $1.79 billion (Dwyer [29]).

The costs associated with operating vehicles and crews for delivery purposes form an
important part of total distribution costs. (For additional background on costs in the soft
drink industry, see the article by Golden and Wasil [39].) In May 1998, Beverage World
(see Deierlein [25]) reported on the results of its annual survey of trends in beverage trucks.
There were 164 respondents from randomly selected readers who managed beverage fleets
(33 managed soft drink fleets, 114 managed beer fleets, and 17 managed bottled water fleets).
Of the respondents, 36 had a fleet size of 1 to 9 vehicles, 86 had 10 to 49 vehicles, and 42
had more than 50 vehicles. Overall, the respondents were responsible for 7226 vehicles.
For all fleets, route trucks averaged 79 miles per day and route tractors averaged 92 miles.
In Table 10.4, we show the breakdown of respondents on distribution costs and computer
usage. For all fleets, distribution costs were 21% of revenue, and 60% used the computer
for route planning. We point out that in the 1999 Databank compiled by Beverage World,
22 companies were listed as suppliers of routing and scheduling software.

10.3.2 Beverage Industry

In this section, we examine the use of vehicle routing in the beverage industry (e.g., the
distribution of beer, soft drinks, and bottled water). We describe the use of computerized
vehicle routing by a large brewing group in Scotland. We also present a brief discussion of
two vehicle routing software applications that are found in trade publications.

10.3.2.1 Beer Distribution in Scotland

Eibl, Mackenzie, and Kidner [31] present a detailed case study that focuses on the use of
computerized vehicle routing in the brewing industry. We describe the routing problem and
the managerial aspects surrounding software implementation. We point out that Eibl [30]
reports on an extensive empirical study of the success of vehicle routing software in the

Table 10.4. Breakdown of respondents on distribution costs and computer usage,
(Deierlein [25]).

Fleet type Fleet size

All Soft Bottled Over
fleets drink Beer water 1-9 10^9 50

Distribution costs as
a percent of revenue 21 24 20 32 22 22 16

Computer usage (%)
for route planning 60 60 58 73 44 54 84

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

256 Chapter 10. Routing Vehicles in the Real World

British brewing industry. (Eibl collected and analyzed data from 151 managers, schedulers,
and drivers, conducted expert interviews, and developed 16 case studies.)

10.3.2.2 Routing Problem

Scottish and Newcastle (SN) is one of the largest brewing groups in the United Kingdom
with total sales of £1,500 million and profit of £230 million in fiscal year 1991-1992.
SN's brewing and drinks division had annual sales of £900 million with distribution costs
accounting for £54 million (about 6%). Within SN, there are five regional sales companies
and each company operates one or more of SN's 20 distribution depots. The characteristics
of SN's routing problem are given in Table 10.5.

10.3.2.3 History of SN's Routing Systems

SN's use of computerized vehicle routing started in the early 1970s with the development
of an in-house planning system. The system was not sophisticated enough to handle SN's
distribution problems and the company eventually returned to a manual system.

The manual system relied on fixed or semifixed routes that were not cost effective with
respect to vehicle utilization and distance traveled. The sequence of customers on a route
was determined by geographical location, and delivery constraints, such as time windows
and access restrictions, were ignored frequently. The manual system was time consuming
to operate and was prone to errors. Furthermore, SN lacked accurate input data, such as
precise driving times between customers.

In 1984, SN evaluated four commercially available, computerized vehicle routing
systems and selected the brewery version of one system, called System B. System B was
interactive, provided a color display of the routes and the road network, and allowed users
to develop specialized routing subroutines called strategy files (for example, a user could
run a strategy file that would plan deliveries of restricted-access customers).

The implementation of System B (at a depot in northeast England) was carried out
by an internal team with expertise in data processing, logistics, and business systems. The
team was led by an information transfer specialist selected from top management. The
implementation took 20 person-weeks and involved a wide range of SN personnel, includ-
ing vehicle schedulers and drivers who provided the system with key data (for example,
exact geographical locations of customers, preferred time windows for customers, and road
speeds). Eibl, Mackenzie, and Kidner point out that data handling (the collection, validation,
and fine-tuning of distribution data) accounted for most of the time spent in the implemen-
tation phase. In addition, for a period of several weeks, the performance of System B was
compared to the performance of the manual routing system.

10.3.2.4 Benefits of the Computerized Routing System

The use of System B resulted in both quantitative and qualitative benefits for SN.

• Quantitative benefits. The annual number of kilometers traveled by vehicles was
decreased by 8%, and average vehicle utilization in terms of weight was increased by
11%. (The variable routes generated by System B provided more flexible allocations
of orders.) The increase in transport productivity allowed SN to remove two large
vehicles from its fleet, thereby saving more than 8% in total vehicle fleet costs. The

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.3. Vehicle Routing in the Beverage, Food, and Dairy Industries 257

Table 10.5. Characteristics of Scottish and Newcastle's routing problem.

Nature of demand

Demand information

Vehicle fleet

Crew requirements

Delivery constraints

Delivery of more than 200 products and pickup of re-
turnable empties.

Pure deliveries and pure pickups or a mixture.

Orders collected by computerized system with an order
lead time of 48 hours.

Emergency orders accepted if feasible.

200 to 250 customers served per day by a depot.

Average delivery quantity is 1.1 tonnes (ranging from a
minimum of six bottles to a full vehicle load).

Most customers receive deliveries once per week.

20 to 25 vehicles stationed at a depot.

Large vehicles (most common) carry 9 to 10 tonnes.

Small vehicles carry 1.5 tonnes.

Typical route takes nine hours and covers 150 km on
average (ranging from 15 km for local
deliveries to 400 km for long-distance deliveries).

Driver pay is a combination of fixed weekly wage and a
bonus based on distance traveled and delivered units.

Maximum driving time of nine hours.

Distribute driver work loads equitably.

Tight time windows for customers.

Capacity restrictions on vehicles due to orders with high
volume or weight.

Limited access to customers.

Compact delivery areas.

One-way streets.

time required to generate routes was reduced from 8 hours with the manual system
to an hour and a half with System B. System B paid for itself within the first year of
usage. (It had a net present value of more than £119,000; over the system's 5-year
lifetime, the net present value was more than £297,000.)

Qualitative benefits. The use of System B led to an improvement in the quality
of the delivery service. There were fewer omitted orders, shorter lead times, and

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

258 Chapter 10. Routing Vehicles in the Real World

better adherence to schedules. Through the use of statistical reports generated by
System B, SN increased the control and monitoring of the performance of drivers and
schedulers. With System B, planners at SN found their jobs interesting, challenging,
and satisfying in contrast to the drudgery of the manual system.

We point out that, from the mid 1980s to the mid 1990s, SN successfully implemented
System B in 15 of its 20 distribution depots.

10.3.2.5 Other Applications in the Beverage Industry

In Table 10.6, we provide brief details of two vehicle routing applications in the beverage in-
dustry that were reported in trade publications. Each application uses a different commercial
software product (Roadshow and Roadnet).

Table 10.6. Selected vehicle routing applications in the beverage industry.

Source Comments

Gourley [41] Pepsi-Cola Canada services more than 11,000 retailers and had used
a manual system of route cards and delivery tickets to generate
routes. The company now uses the Roadshow routing and schedul-
ing system to develop routes that are based on actual travel times
and distances within its distribution area. Roadshow accounts for
vehicle capacity, time windows, dispatch times, on-site standards,
and schedules of drivers, and it allows Pepsi-Cola Canada to adjust
routes quickly when there are changing business conditions (e.g.,
new promotions of products). By using Roadshow, the company
has reduced its distribution costs significantly.

Sfiligoj [74] Grey Eagle Distributors, based in Maryland Heights, Missouri, is an
exclusive distributor of Anheuser-Busch products. For more than
18 years, Grey Eagle has used computerized vehicle routing and
scheduling systems (McDonnell Douglas in 1981, Roadnet 4000
in 1986, and Anheuser-Busch's routing system RAP in the 1990s).
In 1996, Grey Eagle implemented Roadnet 5000. With Roadnet
5000, the company takes into account a wide variety of criteria
when generating vehicle routes. Each day a driver delivers between
310 and 700 cases (the limits are set by union contract) and there
are 85 route drivers. Grey Eagle has a fleet of 100 vehicles (there
are 10 different types of vehicle), 1500 customers (some with tight
delivery time windows), and a delivery area of 500 square miles.
By using Roadnet 5000, the company has reduced the amount of
time it takes to generate routes (from 2.5 hours to 1 hour) and has
moved back the order cut-off time by 2 hours (this has decreased the
number of last-minute orders and the need for secondary routing).
Grey Eagle has reduced daily mileage by 5% to 7%, about 48,000
miles per year.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.3. Vehicle Routing in the Beverage, Food, and Dairy Industries 259

10.3.3 Food Industry

In this section, we examine the use of vehicle routing in the food industry. We describe
in detail a complex allocation-routing problem encountered by a grocery distributor in
Canada. We also present a brief discussion of four vehicle routing software applications
that are found in trade and academic publications and on the Internet.

10.3.3.1 Grocery Distribution in Canada

Carter et al. [17] formulated and solved a distribution problem for a grocery distributor in
Mississauga, Ontario. We describe the routing problem, solution algorithm, and computa-
tional results.

10.3.3.2 Routing Problem

Each day the distributor delivers products to grocery stores in southern Ontario. There are
179 products, 1263 stores, and a fleet of homogeneous vehicles based at a single warehouse.
The decision problem has two parts: a demand allocation component and a vehicle routing
component.

In the allocation problem, the distributor needs to allocate available inventory to meet
the demands of the grocery stores on each day. Of course, the distributor may not have
enough inventory of a certain product to satisfy the demands of all grocery stores and will
need to determine how much of each store's demand to satisfy to achieve an acceptable level
of service.

In the VRP with Time Windows (VRPTW), the distributor needs to generate routes
for the vehicles that meet the delivery time windows for each store. Most time windows
are wide and cover an entire day, but some are tight and cover a few hours. The distributor
needs to consider variable delivery costs as well constraints on vehicle capacity and length
of the workday.

10.3.3.3 Solution Algorithm

Carter et al. develop an iterated procedure for solving the allocation-routing problem. First,
the problem is formulated as a large-scale mathematical program that determines the quantity
of each product to deliver to each store on a day. There are hard constraints on product
availability (supply) and vehicle capacity, and the objective is to minimize cost. This
problem is solved approximately using a Lagrangian-based heuristic. (The hard constraints
are moved into the objective function and a dual-ascent procedure is applied.)

Second, vehicle routes are determined using the solution from the allocation problem.
The II insertion heuristic of Solomon [76] and the 2-opt* procedure of Potvin et al. [65] are
used to generate and improve routes. We point out that the solution to the VRPTW could be
infeasible or contain unbalanced routes. The infeasibilities and imbalances are eliminated
by changing the delivery capacity of certain days when solving the allocation problem. For
example, if a day requires too many vehicles, the delivery capacity on that day is reduced
and the allocation problem is resolved. If a day requires too few vehicles, then the delivery
capacity is increased and the allocation problem is resolved.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

260 Chapter 10. Routing Vehicles in the Real World

10.3.3.4 Computational Results

The heuristic for solving the allocation problem was tested on 10 problems. Each problem
had 100 stores, five products, and five delivery days. There were 10 parameters whose values
needed to be set. (Four parameters had values generated from a uniform distribution.)

The overall solution algorithm that combined allocation and routing was tested on a
subset of confidential data provided by the grocery distributor. There were 20 vehicles of
capacity 1000 that were available each day for delivery to 1263 stores over a 5-day week.
Six of 179 products were of stock on each day. A vehicle had to complete its route within
720 minutes. Furthermore, 95% of all deliveries took place in the first 600 minutes of the
workday and the remaining 5% of deliveries were in tight time windows.

The overall solution algorithm required seven iterations to reach feasibility and took
1316.4 seconds. The final solution had an allocation problem cost of $26,646 and the
VRPTW had a total distance traveled of 17,226. These values compared favorably to the
values of the grocery distributor's solution—estimated allocation problem cost of $35,381.8
and VRPTW total distance traveled of 27,820. We note that the grocery distributor typically
solves this problem once a week.

In addition, the authors conducted a series of computational experiments that were
designed to test the effects of the geographical distribution of customers (e.g., randomly
located customers versus clustered customers), costs of delivery patterns, demand distribu-
tions, and number of delivery days on the behavior of the overall solution algorithm. For
example, the authors found that the algorithm is insensitive to geographical distribution.

10.3.3.5 Other Applications in the Food Industry

In Table 10.7, we provide brief details of selected vehicle routing applications in the food
industry that have been reported in trade publications, on the website of a vehicle routing
software company, and in an academic journal. Three applications use commercial software
products (Roadnet, Roadshow, and CAPS Logistics).

10.3.4 Dairy Industry

In this section, we examine the use of vehicle routing in the dairy industry. We describe in
detail a system that generates milk tanker schedules for a dairy in New Zealand. We also
present a brief discussion of six vehicle routing software applications that are found in trade
and academic publications and on the Internet.

10.3.4.1 Milk Tanker Scheduling in New Zealand

Igbaria et al. [49] and Basnet, Foulds, and Igbaria [9] reported on the development and
implementation of a vehicle routing system known as FleetManager for the New Zealand
dairy industry. We describe the routing problem, the routing system, and the benefits and
impact of the system for the Westland Dairy Company of Hokatika, New Zealand.

Hakim Habibi
Highlight

10.3. Vehicle Routing in the Beverage, Food, and Dairy Industries 261

Table 10.7. Selected vehicle routing applications in the food industry.

Source Comments
Cullen [23] Joyce Foods, Inc., based in Winston-Salem, North Carolina, is a seafood

and poultry processor with a fleet of 15 tractors and 25 drivers. Each day
there are 25 delivery routes that cover customers in North Carolina, South
Carolina, Virginia, and Georgia. In the past, Joyce kept in contact with
drivers by telephone and pager. Recently, Joyce equipped each truck
with an on-board computer system that has mobile communications and
is linked to the Roadnet routing software. Joyce can track the movement
of each truck and record route data, such as time spent at a customer.
Joyce expects that the computer system will produce significant savings
in fuel costs. The route data could be used to improve customer service
(for example, providing a customer with an accurate vehicle arrival time).

Valero [84] Associated Wholesale Grocers, Inc., based in Kansas City, Kansas, ser-
vices customers in Iowa, Kansas, Missouri, and Nebraska. Associated
operates a fleet of 186 refrigerated trailers, 40 drive trailers, and 89 trac-
tors and ships 130 loads per night. In 1994, Associated began scheduling
vehicles based at its Kansas City facility using the Roadshow routing
and scheduling system. In the first year that Roadshow was imple-
mented, Associated decreased outbound transportation expenses by 6%,
decreased the number of drivers by 6%, increased payloads by 11 %, and
saved $780,000 in transportation costs. Roadshow allowed dispatchers
to take backhauls into account when generating routes and reduced the
time to develop routes from 2 hours (by manual methods) to 45 minutes.

Sperber [78], Tom's Foods, Inc., based in Columbus, Georgia, manufactures and dis-
CAPS [16] tributes snack food. It operates seven plants and delivers to customers

in 42 states. Tom's wanted a computerized system to help with the daily
dispatching at four locations including Columbus. It selected CAPS
Logistics routing software. With CAPS, Tom's found that it could ad-
just routes with respect to new, daily orders, add backhauls to routes,
generate reports for management (in the past, reports were manually
generated), and help with strategic planning (for example, developing
routes for a 6-month period). Dispatchers spend more time improving
the utilization of vehicles (Tom's switched from 43-foot to 48-foot trail-
ers that carry more pallets) and generating better routes. In one region,
Tom's saved $233,000 annually by eliminating two routes.

10.3.4.2 Routing Problem

In general, dairy companies in New Zealand collect milk from supplier farms using tanker
vehicles that deliver the milk to processing factories. The amount of milk that will be
collected at each farm must be estimated, and each farm is usually serviced daily. The
tankers operate two shifts a day and are located at bases that may be different from the
factories.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

262 Chapter 10. Routing Vehicles in the Real World

Table 10.7. (continued)

Source Comments
Chung and Kraft, Inc., is a large food distributor with more than 100,000 customers
Norback [20] in 24 North American regions. Kraft developed an interactive distri-

bution decision support system (DDSS) to carry out its daily routing.
As Kraft's food distribution network expanded and its food distribution
goals became more complicated (e.g., Kraft wanted reliable delivery,
that is, timely arrival of food products on specific days or during specific
time windows), it realized that DDSS was not providing satisfactory
solutions and it needed to revise DDSS. Using data from 3 days of de-
liveries in four regions, Chung and Norback developed new clustering
and insertion procedures to generate routes and allocate drivers and ve-
hicles to routes. The authors implemented their new procedures in an
interactive decision support program and tested the program using data
from six regions for problems with 4 to 5 days of deliveries. The prob-
lems had 5 to 24 routes per region and 69 to 308 stops per day. The new
procedures produced an average improvement of 5.4% of delivery costs
per day (over the previous DDSS). The lower costs were due mainly to
a reduction in the number of routes.

In 1992, Westland Dairy took in about 142 million liters of milk from 322 supplier
farms using 10 tanker vehicles that traveled about 1.3 million kilometers. Vehicle schedulers
in the transport office at Westland Dairy had to develop a specific sequence of suppliers for
each tanker to visit on each shift. The schedulers had to take into account more than a dozen
factors, including the level of customer satisfaction, access problems involving vehicle-
customer combinations, equity of routes, and labor and traffic codes. Typically, a tanker
would begin at its initial base, visit the suppliers in sequence, and then end at the factory
(this could be different from the initial base). The schedulers also had to take into account
that, at certain times of the year, some suppliers had a low output of milk and would not be
visited daily.

10.3.4.3 Routing System

Traditionally, a large map with colored pins was used to develop routes for the West-
land Dairy tankers. One supervisor performed nearly all the scheduling and frequently
experienced problems in developing satisfactory routes that met various company objec-
tives. Westland Dairy wanted to improve the productivity and efficiency of its operations
and turned to researchers in the Department of Management Systems at the University of
Waikato for help. The multiyear collaboration led to the FleetManager decision support sys-
tem that allowed schedulers to use their experiences and preferences in developing routes
for tankers. FleetManager was written in Turbo Pascal for an IBM-compatible personal
computer with a high-resolution color monitor. It is a mouse-driven user-friendly system
with pull-down menus.

FleetManager has three parts: the database, the user-system interface, and the model
base. The database contains information on suppliers, factories, bases, tankers, and roads.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.3. Vehicle Routing in the Beverage, Food, and Dairy Industries 263

Routes can be saved in the database. FleetManager also accesses Westland Dairy's main-
frame computer for data on supplier milk output.

The user interface is a window-based graphical interface that can generate all routes
automatically. The routes are displayed on a digitized map and can be modified by a
scheduler clicking on a location.

The model base contains procedures for generating routes (a sweep algorithm and
a farthest insertion algorithm) and forecasting milk output (a linear interpolation scheme).
The sweep algorithm forms clusters of suppliers that are allocated to a tanker. The farthest
insertion algorithm then determines the sequence of suppliers on a route that minimizes the
distance traveled. FleetManager uses the algorithms to automatically suggest routes to the
schedulers. In generating these routes, FleetManager can accommodate various constraints,
including multiple shifts, suppliers visited less frequently than daily, and tanker capacity.
However, all suggested routes may not satisfy all constraints; these suggested routes would
then be modified by the scheduler to take the missed constraints into account.

FleetManager can also be used as a planning tool to answer what-if questions. Sched-
ulers can examine the effects on the routes of changes in tanker capacity, factory demand,
and supplier milk output.

10.3.4.4 Benefits and Impact

The transport office at Westland Dairy considers the FleetManager system a major success.
FleetManager has

• Improved decision making. Schedulers can develop routes automatically and fine-
tune them manually with respect to a wide variety of criteria and constraints (e.g.,
vehicle-customer combinations). Schedulers can perform extensive what-if analysis
to determine the impact of changes to problem inputs (such as the milk output of
suppliers) on vehicle routes. It is now easy to schedule suppliers on a 3-day rotation
instead of the customary daily visit. From 1992 to 1994, Westland Dairy's milk
volume increased by 25% and the number of drivers was reduced. The transport
office was able to handle the increased workload effectively with FleetManager.

• Saved scheduler's time. Scheduling now takes 60 to 90 minutes, instead of the 6
hours required by the manual system, thereby saving upwards of 30 scheduling hours
per week. The transport manager and the schedulers are available for more important
tasks and are more productive.

• Increased satisfaction. The job satisfaction and morale of the transport manager
and the schedulers have increased. They are confident that, with FleetManager, they
can handle complex, unanticipated routing events. They believe that they are more
effective and efficient in their jobs.

Basnet [8] reported that Westland Dairy still uses FleetManager. Some formatting and
user interface changes have been made over the years to make the system more user friendly.
We note that Basnet, Foulds, and Wilson [10] describe the development of a decision aid
that schedules tankers when they return to unload milk at a processing factory.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

264 Chapter 10. Routing Vehicles in the Real World

Source

Table 10.8. Selected vehicle routing applications in the dairy industry.

Comments
Adenso-Diaz Central Lechera Asturiana (CLAS) is the largest dairy in the north of
et al. [1] Spain. It processes 1.3 million liters of milk per day and distributes

its products through 19 distributors. Each distributor has 5 to 10
teams of vendors, who deal directly with client shops. Each team is
headed by a sales promoter who is responsible for about 1500 client
shops. CLAS selected the distributor in Asturias as a pilot center
for a new system for managing the distribution of four types of dairy
products (each product, e.g., yogurt, requires trucks with different
characteristics). The authors structured the problem as a five-level
hierarchical system. At upper levels, they decide on the number of
visits to each client per week and various assignments (e.g., clients to
teams of vendors). At lower levels, they develop routes for vehicles (a
local search algorithm is used to solve a traveling salesman problem
with time windows). The authors discuss implementation issues with
their decision support system (e.g., sales promoters saw the system
as a competitor that took away their decision making). The system,
implemented in February 1996, found a fair distribution of clients to
vendors and was able to reduce the kilometers in each vendor's route
by 10%.

Mans [57], Mayfield Dairy Farms (a division of Dean Foods), located in Athens,
CAPS [15] Tennessee, services more than 14,000 customers from 19 distribution

centers. It delivers milk and ice cream on more than 400 direct store
delivery routes. Vehicles travel more than 11 million miles annually.
Mayfield Dairy performed an eight-part routing analysis using the
CAPS routing software. This analysis led to a resequencing and con-
solidation of existing routes (there was a reduction of up to six routes
at individual distribution centers). In addition, total miles driven and
hours worked were decreased and the use of assets increased (for
example, new morning and afternoon routes were created). Mayfield
Dairy was able to add a significant amount of new business on existing
routes.

10.3.4.5 Other Applications in the Dairy Industry

In Table 10.8, we provide brief details of six vehicle routing applications in the dairy industry
that have been reported in an academic journal, in trade publications, and on the websites
of vehicle routing software companies. Two applications involve commercial software
products.

10.3. Vehicle Routing in the Beverage, Food, and Dairy Industries 265

Table 10.8. (continued)

Source Comments
RiMMS [67] Tuscan/Lehigh Valley Dairy, based in Philadelphia, uses the RiMMS

software system to develop daily routes for 500 trucks that are located
in the Northeast and Mid-Atlantic regions. The trucks deliver milk
and dairy products. With RiMMS, the dairy can take into account
such variables as truck capacity and loading time at the depot when
developing routes. Last-minute changes can be scheduled quickly
with the software (in the past, the dairy required a full day to generate
routes).

Anonymous [3] Baskin-Robbins supplies two-thirds of its 2500 stores with ice cream
from four distribution centers. The company has a fixed customer
base and, since 1992, has used the Performance Truck Routing System
to develop a weekly master schedule at its distribution centers. The
software also provides daily route recommendations. Baskin-Robbins
estimates that, with the optimized delivery routes, it has saved 10%
on mileage alone (about $180,000 annually).

Sankaran and Etah Dairy is located in Uttar Pradesh, India, and has 70 milk collec-
Ubgade [72] tion centers (MCCs) within a radius of 150 km from Etah (the town is

located 300 km from New Delhi). Each day the dairy sends tankers to
collect milk at the MCCs and deliver the milk to the dairy for process-
ing. The availability of the milk depends on the season and ranges
from 45 tons in spring and summer to 170 tons in fall and winter. The
dairy hires 24 tankers (capacity ranges from 4 to 12.5 tons), which
leave the dairy by 6:00 am. The authors developed a heuristic (using
the nearest insertion approach) to route the tankers. In constructing
the routes, the authors considered constraints on route length (be-
tween 50 and 350 km), maximum elapsed time on a trip (from 5 hours
in summer to 10 hours in winter), and maximum number of tanker
trips (at most three). The heuristic is embedded in a decision support
system called CARS (computer-aided routing system) that runs on a
microcomputer. CARS was implemented in fall 1992 and manage-
ment estimated a savings of 800,000 rupees in transportation costs. In
addition, CARS reduced the amount of curdled milk by constraining
long trips in very hot weather.

Sperber [78] Johanna Dairies tests vehicle routing software on 29 store-door de-
livery routes. The company analyzes the number of stops per route,
vehicle utilization, service time, and drive time. Mileage is reduced
by 9% for an annual savings of $176,000.

266 Chapter 10. Routing Vehicles in the Real World

10.4 Distribution and Routing in the Newspaper Industry

10.4.1 Industry Background

The newspaper industry has always had one of the largest distribution problems, measured
by the number of units distributed. In 1998, the circulation for the top 20 daily newspapers
of the world ranged from 14.53 million to 1.73 million. As expected, Asian papers (Chinese,
Japanese, and Korean) dominate this list, which includes only one U.S. newspaper. The
corresponding range of circulation figures for the top 20 U.S. dailies was 1,740,000 to
378,000 [13]. In the United States, the average circulation of a daily paper is about 38,000.
More than half the daily newspapers in the United States have circulations under 25,000,
and more than two-thirds fall under 50,000. Only about a quarter have circulations between
50,000 and 500,000, and fewer than 5% of U.S. dailies have a circulation greater than
500,000. On the average, a daily newspaper serves a market of 163,000 persons within an
area of approximately 3000 square miles (the median area served is 1600 square miles) (see
Picard and Brody [64]). The combined circulation of all daily newspapers in the United
States has decreased from 62.2 million in 1980 to 56.7 million in 1997, despite a significant
decrease in the number and circulation of evening papers [80]. For an overview of the
structure of the newspaper industry, see the informative books by Picard and Brody [64] and
Thorn and Pfeil [82]. For an economic or international perspective, see Lacy and Simon [52]
and Dunnett [27].

In certain countries, the distribution of newspapers may be integrated with other
printed materials, notably magazines and some low-price paperbacks. Describing the Ger-
man wholesale distribution problem for newspapers and magazines, Dillmann, Becker, and
Beckefeld [26] stated that the problem involves more than 200 publishers that deliver prod-
ucts to 96 wholesalers who supply 110,000 retail outlets on a daily basis. In this problem,
each wholesaler operates as the sole supplier for 3000 different items (titles) in the whole-
saler's region. These authors also estimate a delivered value of DM 9 billion for a German
wholesaler of magazines and newspapers. The cost of printed goods is approximately DM
6 billion per year, while the overall delivery costs for this operation are estimated at DM
150 million, or 2.5% of the cost of goods sold. The overall wholesale distribution involves
about 3000 vehicles that cover 150 million kilometers to deliver a total volume of about
3000 metric tons of press.

Based on data collected for 1978-1990, Stanley [79] reported that the circulation
expense as a percent of the total expenses of a newspaper averaged 10.5% to 13.3% over
this period, depending on the size of the paper (smaller percentages are associated with the
smaller papers). In all size categories, this percentage has decreased (over time) for all size
categories.

Before turning to the distribution of newspapers from the printing sites to the ultimate
readers, a brief review of industrywide challenges may help set the stage. After a long period
of relative stability, the newspaper industry is facing unprecedented challenges. First, direct
marketing has been capturing an increasing portion of the advertising dollars. In 1990, the
estimated annual advertising expenditures in the United States in direct mail was slightly
more than 72% of the $32.28 billion spent on newspaper advertising; this had grown to
almost 90% by 1996, when newspaper advertising totaled $38.4 billion [2].

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.4. Distribution and Routing in the Newspaper Industry 267

Second, projecting into the future, newspapers must respond to challenges of cus-
tomization. Advertising forms the main source of this pressure as advertisers move from
blanket distribution to focused targeting of households informed by more refined market
segmentation and consumer profiles. One example of customization is greater emphasis on
zoned editions. A zoned edition of a newspaper is produced with special contents aimed at
a distinct region that do not appear in other editions of the paper. Customization also may
be driven by content alone. The Roanoke Times (Virginia) was reported to be considering
the removal of stock listings from the daily newspaper. Instead, this firm would deliver a
20-page tabloid only to those subscribers who require it and are willing to pay the additional
tabloid subscription fee (see Burks [14]). In the early 1990s, the ability to target newspaper
contents at a fine level (microzoning) was considered as imminent, but this promise has
not been realized (see Memmott [59]). Nonetheless, as Gauldin [36], Ostrofsky [62], and
Siebert [75] described, there is software that allows targeted marketing at zip-code level.
Although this software does not perform routing, it allows the distribution personnel to
calculate the load on each route and its composition (the multiproduct manifest) based on
consumption patterns.

A third challenge is the significant shift in the nature of the carrier force. In the past,
youngsters delivered papers to 50 homes by foot or bike; today's typical carrier is in his or
her mid-thirties and delivers a variety of products to 400 homes per day. To make the routes
more financially rewarding to the carrier, some firms have moved toward a broader mix of
delivered products. Burks [14] reported how The Roanoke Times significantly increased
the mix of the products delivered by its carriers. According to Burks, in March 1991, the
metropolitan carrier for The Roanoke Times delivered about 1.4 million papers. In March
1995, it "delivered the same number of newspapers, plus 110,000 Express Lines, 85,000
telephone directories, 80,000 Pinpoint Plus coupons, 54,000 magazines, 32,000 department
store flyers, 20,000 Wall Street Journals, and 113,000 market saturation pieces" [14].

A fourth challenge involves the rise of new media channels in the information mar-
ketplace. Media ranging from web-based information services to interactive TV threaten
to become formidable competitors as information providers. This multiplicity of chan-
nels has caused newspapers to examine how they can defend their position as the "primary
information provider, regardless of the pipeline" (Consoli [22]).

Presenting a strategic plan for the industry for the Newspaper Association of America,
Consoli [22] set forth a list of six technical challenges faced by the industry. At the top of
the list is the ability to target advertising to specific demographic and geographic audiences.
This is followed by technology that would support the delivery of news and advertising
through new media channels. The first priority involving targeting reflects the challenge
of mass customization in the newspaper industry. To cite one example, Ostrofsky [61]
described a futuristic scenario whereby each customer receives a customized version of the
newspaper providing the news and contents of special interest to the customer, containing
the advertisements and inserts tailored to the demographic segment to which the customer
belongs, and leaving out the contents or sections in which the customer has no interest.

Clearly, another trend that easily lends itself to customization is the use of digital
newspapers. Since this option eliminates the need for physical distribution altogether, we
do not discuss it in this chapter.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

268 Chapter 10. Routing Vehicles in the Real World

10.4.2 Newspaper Distribution Problem

Broadly defined, the Newspaper Distribution Problem (NDP) involves the downstream
movement of newspapers from the printing presses into the hands of the readers. A major
metropolitan morning paper in the United States has the daily task of handling several hun-
dred thousand newspapers in multiple editions to subscribers at both homes and businesses.
For some leading Asian newspapers, this number goes up to millions of copies.

The operations of a daily newspaper follow a deadline-driven cycle that is repeated
daily, 365 days a year. The following description of this cycle is from Picard and Brody [64].
For a morning paper, the cycle starts after dawn when the editorial employees report to
work. By 10:00 a.m., the newsroom comes to life as the assignments for the day take shape.
While the reporters leave the office to cover events and to gather materials, the business
operations, particularly circulation and advertising, continue throughout the 8-hour work
day. By midafternoon, reporters return from their assignments and start crafting their stories,
and by early evening the editors finalize the news budget. As the evening progresses, various
sections are completed and sent to production in ascending order of importance, saving the
front page for the end. A few pages are withheld for late-breaking news and sports events
(for instance, coverage and results of night games). The bulk of the contents must be ready
for placement on the presses at least 1 hour before printing time.

From the perspective of production and distribution, the cycle starts at midnight, when
press operators start rolling the presses. Printing may continue until 4:00 a.m., depending
on the circulation and capacity of the presses. As papers come off the press line, they are
bundled and placed in trucks for delivery. In a large metropolitan area, trucks begin their
trips shortly after midnight; in a smaller geographical area, they may not depart until an
hour or two later.

If we consider the process flow from the presses to the customer site, the newspaper
goes through several operations that are generically captured in Figure 10.5. The production
may be divided into three steps: printing (at the presses), inserting the advertising supple-
ments, and bundling for delivery. The inserting step used to be performed manually but
now calls for sophisticated automated mechanical equipment. This step can easily be the
bottleneck step limiting the production. Similarly, conveyors and feeds may be used to carry
the papers directly to the docks, where the trucks are loaded. The number of docks may
be limiting, thereby delaying the dispatch of trucks. The loading and dispatching decisions
interact in two ways. First, the desired start time for a truck's route determines when the
truck should be loaded. Second, the demand on the route governs the amount loaded onto
a truck, as well as the mix of products.

The delivery operation generally involves two legs: from the presses to transfer points
(which can be drop-off points, the location of the news agents, or newspaper racks), and from
the transfer points to the ultimate customer. We use the term transfer point in a generic sense
to mark the point at which the responsibility for the delivery changes hands. In some cases,
additional work (sorting or packaging) is performed at the transfer point before release of
the goods to the second stage. Most of the routing studies reported in the literature focus
on the first leg of the distribution problem. Nationwide, circulation ensures that the paper
arrives at the residential customer's doorstep before 6:00 or 6:30 a.m., in time to be read at
breakfast.

Hakim Habibi
Highlight

10.4. Distribution and Routing in the Newspaper Industry 269

Figure 10.5. Process view of newspaper production and distribution.

From a distribution perspective, newspaper delivery has a number of characteristics
that complicate the routing and require special handling beyond the simple delivery operation
captured by the standard VRP. Below, we list and discuss these distinctive features of the
distribution problem.

Multiple Commodities. Newspapers often are printed in multiple editions, which
may differ in news and editorial content (early and late morning editions), or in the run of
advertisements, or in the mix of inserts. Holt and Watts [46] mentioned an air edition for
remote places, a country edition for rural areas, a home edition for the metropolitan regions,
and a late city edition for an Australian paper. However, they noted that earlier editions are
printed and dispatched before the home edition starts. It is therefore important to assess the
extent of coupling between the various editions. When editions that differ in content and
advertising are distributed in the same time frame, then the multicommodity nature of the
product assumes greater importance, especially as the pressure of customizing the delivery
to different geographic or demographic profiles increases.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

270 Chapter 10. Routing Vehicles in the Real World

Hierarchical Distribution Problem. Newspaper delivery often involves two or
more distinct stages. The main first step is from the production facility to the transfer
points. As Hurter and Van Buer [47] noted, some larger papers may have an additional layer
of distribution centers so that the first movement of the papers is from the printing facility to
the distribution centers. We can regard transfer points as bases (or secondary depots) from
which the retail delivery routes fan out. The NDP can therefore be viewed as a hierarchical
routing problem. If we include the choice of locations for the transfer points in the overall
problem, then NDP becomes a location-routing problem.

Time Windows. Since newspapers are a perishable commodity, timely delivery is
important. The challenge of newspaper delivery is to work with tight time windows. In
home delivery, for instance, the paper must be delivered before the household members
leave for work. As commuting times increase (due to more remote suburbia or increased
congestion), this window shrinks for the delivery operation. On the other hand, the earliest
time a delivery can be made is governed by the start time of the presses, which editors wish
to delay as much as possible to capture the latest news. Thus, the time horizon for delivery is
defined from the start time of the presses to the last allowable delivery time to the customer.
As Holt and Watts [46] put it: "It has been said that if the Home Edition went to press
an hour earlier, all the distribution problems would be solved immediately." Although this
statement oversimplifies the issue, it does point out the crucial impact of press time on the
design of routes. As the total allowable time for delivery becomes more constricted, the
size of the required fleet can be expected to increase. As discussed below, the number of
vehicles required for delivery is often the key cost driver.

Nature of the Demand. We mentioned that, in the future, the demand for news-
papers can be considerably more customized. However, even for standard versions of the
newspaper, the demand exhibits variation by day of the week. The demand for Saturday and
Sunday papers typically is different from the weekday demand, and other seasonal effects
may be present as well. In delivery planning, the size of the demand plays an important
role. Weekend papers are significantly larger, and in some cases, midweek advertising (on
Wednesdays, for instance) can increase the size beyond that of other weekdays. At a min-
imum, one may expect these effects to result in different routes for Saturday and Sunday
delivery.

Interaction Between Production and Distribution. An interesting feature of the
NDP is the interaction between production planning and the distribution component. For
a large newspaper, presses generally run for several hours. As the printing progresses,
trucks are being loaded and dispatched. Generally, the newspapers for the remote centers
(which have the tightest due times) must be printed and dispatched first. This suggests
sequencing production by the geographic locations of the transfer points. On the other hand,
the desired production sequence is one that minimizes the set-up and changeover times for
production. The two sequences geared to the production and distribution economies may
be quite different; following either one in isolation is suboptimal. In theory, in the presence
of demands for multiple commodities (defined by different editions, contents, and inserts)
at each transfer point, one can think of the optimal production sequence as the one that
minimizes the sum of production and distribution costs, a problem that is likely intractable.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.4. Distribution and Routing in the Newspaper Industry 271

In practice, one has to devise a production schedule that offers a compromise between
production economies and the vehicle scheduling requirements.

Production Rates. Since trucks are dispatched as soon as they can be loaded with
the required bundles, the rate of production (number of papers per minute) is an important
parameter in determining the planning horizon. Often, the limiting factor determining the
production rate is not just the speed of the press but that of the automatic inserting equipment.

Vehicle Fleet and Capacities. The fleet needed to provide the first stage of trans-
portation may involve vehicles of different sizes and capacities. A number of applications
fill vehicles to capacity, making it an important parameter of the problem. Different studies
report capacities ranging from 3400 newspapers for a 1-ton van (see Hurter and Van Buer
[47]) to 10,000 newspapers for a large truck (see Sciarrone [73]).

10.4.3 Vehicle Routing Algorithms for NDP

To our knowledge, the first systematic application of vehicle routing to newspaper delivery
reported in OR publications was in the work of Golden et al. [38], concerning the Worcester
Telegram, an evening paper with a circulation of 92,000 within the city of Worcester, Mas-
sachusetts. The authors were able to decrease the number of routes from 20 to 13, reporting
an average utilization of 67% across the fleet. Since that study, a number of more detailed
reports on routing for newspaper delivery have appeared in the literature. Table 10.9 sum-
marizes the application environment of each study and compares some key input parameters.
In the following, we highlight the key features of these applications and the role played by
the routing algorithms.

Sciarrone [73] describes an application of vehicle routing that is similar to Golden's
study. It involves the distribution of the daily newspaper La Stampa in the metropolitan area
of Turin from the central office of the paper to 400 newsstands over a period of 90 minutes.
The demand at each newsstand is assumed to be known, and some newsstands have one-
sided time windows. However, the overall demand for the paper is subject to variation.
For instance, the daily number of papers distributed averaged 120,000 in 1986 but could
reach 160,000 depending on the day of the week and the events reported. A fleet of 15
vehicles is used, and each vehicle holds a maximum of 10,000 papers. Possible breakdowns
in the printing process could cause the available delivery time to shrink. Since the problem
is essentially a single-depot VRP with one-sided time windows, Sciarrone described an
algorithm that consists of an insertion heuristic, followed by a 2-opt improvement step,
implemented in Pascal to run on a personal computer. The solution technique reduced the
number of vehicles used from 15 to 13, produced savings of 7% in the travel time, and
created more balanced routes.

The studies by Holt and Watts [46] and Hurter and Van Buer [47] add an important
element to the analysis: both explicitly considered the interaction between the routing and
production decisions. Holt and Watts [46] described a routing system used to develop
routes for the morning newspapers of three different companies in three Australian cities.
The system constructs routes that deliver the papers from the printing facility to the news
agents (see Figure 10.5) by developing routing and dispatching schedules simultaneously.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Table 10.9. Key characteristics of selected ND studies.

Source

Paper

Distribution area

Circulation
Transfer points
(Number & type)
Production rate

Fleet size
Vehicle capacity
Time constraints

Special features

Hurter and Van
Buer [47]
Unidentified
morning paper
Metro area in
midwest
37,000
513 drop-off points

18,000 per hour

14
1,000 papers
Delivery to drop-off
points by 4:30 a.m.

Multiple editions.
Zoned delivery
regions.
Interaction between
production and
routing.

Ree and Yoon [66]

Hankook-Ilbo

Seoul metro area

1,150,000
250 local centers

4 truckloads per
hour

Delivery to centers
during 1:30-4:00
a.m.
Work takes place at
local centers before
second leg begins.
Multiple deliveries
to same site
allowed.

Sciarrone [73]

La Stampa

Turin metro area

120,000-160,000
400 newsstands

15
10,000 papers
Maximum route
duration of 1.5
hours
Open tours end at
the last delivery
point.

Holt and Watts [46]

Three different
firms in Australia
Three different
cities

1000 news agents

23 to 35

Route durations of
two hours

Interaction of
routing and
dispatching is key.

Jacobsen and
Madsen [50]
Two Danish
morning papers
Western region of
Denmark
150,000
42 transfer points

1000 per minute

26 trucks
12,000 papers
Delivery from 8:45
to 11:30 a.m.
(2 stages)
Two- stage
distribution
problem.
Location of transfer
points may be
chosen.
More than 4500
sales points served
by secondary
routes.

10.4. Distribution and Routing in the Newspaper Industry 273

The interaction between loading and routing decisions, as described below, is a feature that
is specific to the NDP.

To develop a set of routes, the algorithm starts by placing each customer on a separate
route initially. It then combines routes seeking to reduce the total number of routes and the
distance traveled. Within each route, a 2-opt procedure is applied to improve distance. At
each stage, partially developed routes are combined with a dispatch order and checked for
feasibility (with respect to time windows). In particular, the procedure computes a critical
time that equals the latest time the route can start and still meet its deadlines. These times
are used to determine the loading sequence at the dock: whenever a dock is released, the
truck with the earliest critical time is selected to start loading. The authors provided some
indicators of savings achieved. In one problem, the number of vehicles was reduced from
35 to 30 on weekends, and from 28 to 23 on weekdays. In another exercise, the algorithm
produced a savings of 8% in distance traveled compared to routes already refined by the
dispatchers. In another application, the procedure allowed the company to cope with an
increase of 20% in the paper size (100 pages increased to 120) without requiring additional
trucks. We should note that using an entirely different methodology, Han [44] also addressed
optimal sizing of districts and vehicle size for home delivery.

Hurter and Van Buer [47] described a comprehensive study of the NDP for a morning
paper that serves a midwest metropolitan population of 80,000 plus its semirural surround-
ings. The circulation figure of 37,000 for this paper includes 33,000 home subscribers. The
production rate is 18,000 newspapers per hour. The limiting operation governing this rate
is the speed of the inserting and folding equipment. By contrast, the press itself prints at the
rate of 55,000 papers per hour. The presses begin at 1:30 a.m. and complete the printing by
3:30 a.m.

The distribution area fits within a rectangle 25 by 12 miles, with most of the demand
concentrated within a metropolitan area 6 by 3 miles. The distribution problem has two
levels: from the printing facility to the transfer points (called drop-off points) and from each
drop-off point to the customer homes. There are 513 drop-off points, and each corresponds
to a home delivery route. To carry out the distribution, the firm uses a fleet of 14 1-ton vans,
each with a capacity of 3400 papers. On average, each van visits 37 drop-off points on its
route.

The newspaper in this application has multiple editions, so that the distribution in-
volves multiple products, and switching between two editions involves set-up at the printing
press (typically 5 to 10 minutes per switchover). However, in addition to set-ups, the produc-
tion plan must also consider the loading sequence since vans that are loaded and dispatched
to the distribution centers must deliver the product mix required by the areas served by the
vans. When loading a given van, the correct mix of editions should be available from the
printing press based on the needs of the areas served by the van. Because of time con-
straints, the firm prefers to load vans destined for the furthest distribution centers first. The
problem is therefore best viewed as a combined production-distribution problem because
the production and loading decisions interact.

The routing problem addressed in this study is a VRP with time windows. The set of
routes designed for the vans must visit all drop-off points by about 4:30 a.m. The objective
is to minimize the number of vehicles required. As mentioned, the problem has multiple
products and each product is distributed only within certain designated geographical zones
(there are seven zones). Initially, the authors assumed that each van is loaded with a single

274 Chapter 10. Routing Vehicles in the Real World

product. Under this assumption, the problem decomposes into separate routing problems
by product (over the relevant zones). In each zone, the authors first construct a grand
tour through all drop-off points and then partition it into a number of routes for single
vehicles. Finally, they check the time constraints to ensure that the delivery windows are
met. To check route feasibility with respect to time, the route start time is required. This,
in turn, depends on the completion time for the loading of the van, which is computed from
the production schedule. If infeasibilities arise, the production schedule is altered until a
consistent production-distribution schedule is found.

The next step of the distribution procedure is to relax the zoning constraints. In this
phase, one attempts to combine adjacent zones for a vehicle that has slack capacity. This
relaxation stops short of allowing a vehicle to possibly visit all zones. But, as the authors
point out, as one traverses zones, a greater number of dissimilar products are assigned to
the same vehicle, and since these products are generally produced at different times at the
press, the route start time is delayed. Combined with the additional travel time of crossing
zones, the route will rapidly bump against the time windows governing deliveries.

Hurter and Van Buer established a base case by replicating the company's routes before
any improvements. This base case uses a fleet of 14 vehicles with a pooled utilization rate
of just under 75%. However, while there is slack capacity, four routes violate the delivery
deadlines. The improved solution obtained by using VRP techniques saves two vans and
reduces the total combined duration of all routes by 24%. An interesting feature of this
study is the sensitivity analysis conducted for some key parameters. For instance, it was
found that if the limiting production rate can be increased by 33 percent (from 18,000 to
24,000 per hour), the number of tardy routes can be reduced to one (from four in the base
case). Similarly, a reduction of the time required to unload the paper at a drop-off point from
40 to 30 seconds reduces the number of tardy routes to one. Finally, a solution requiring
only 11 vans is available if two zones are combined.

While the preceding two studies sought to coordinate production and vehicle sched-
ules, Ree and Yoon [66] tried to overlap routing with work performed one step downstream
at the local centers. Their work studied newspaper delivery for Hankook-Ilbo, a Korean
newspaper that ranks among the top-40 largest dailies in the world with a circulation of over
1.15 million. In the Seoul metropolitan area, this paper has three main printing facilities that
also serve as distribution centers. We call these the main centers or depots interchangeably.
There are also 250 local distribution centers that serve as the transfer points for the second
stage of distribution. The delivery planning problem is focused on the first stage of the
distribution spanning the delivery of papers from the printing facilities to the local centers.
The objective is to minimize the number of trucks used within the available time horizon.

Since papers are printed between 1:30 and 3:30 a.m. and deliveries to the local centers
must be completed by 4:00 a.m., the relevant time horizon for routing is approximately 2.5
hours. An interesting feature of this problem is the use of split deliveries that allows the
distribution and sorting activities to proceed in parallel rather than in a strictly sequential
fashion. Here, the sorting activity takes place at the local centers and involves the preparation
of the newspapers for home delivery by the carriers, an activity called arrangement by Ree
and Yoon. Since this sorting time at the local centers is significant, the firm makes multiple
(partial) deliveries to each local center. In this way, the local center can start the arrangements
on the initial partial deliveries while papers are still being printed and delivered. The specific
decisions addressed by Ree and Yoon are as follows:

10.4. Distribution and Routing in the Newspaper Industry 275

1. Decide which main center (or depot) serves each local center.

2. Determine the number of trucks trips needed at each main center and their departure
times.

3. Construct the delivery route for each truck, and determine, for each trip, the delivery
quantity (number of papers) at each local center.

The authors used a two-stage procedure to make the preceding decisions. The first
decision is similar to the clustering performed in assigning stops to depots in a multi-depot
problem. The authors solved this as a Generalized Assignment Problem (GAP), where the
printing capacities for the main centers provide the right-hand sides of the demand con-
straints. Once the GAP is solved, the problem decomposes (by main center) into decoupled
single-depot problems. Moreover, by dividing the total demand assigned to the center by the
vehicle capacity, the authors obtained an estimate of the number of truck trips originating
at that center, thereby partially addressing the second decision. In the second stage of their
procedure, Ree and Yoon addressed decisions 2 and 3 as follows.

Consider the distribution center as a depot from which K trucks originate to visit n
delivery sites (these sites correspond to the local centers) as in the VRP. For each of the K
trucks, one must decide the time the truck leaves the depot and the amount it delivers to
each of n delivery points. Ree and Yoon restricted the delivery amounts to half or full loads,
so that each truck delivers either half or all the demand at a delivery site if it visits the site.
This allows the problem to benefit from split deliveries but controls the growth in problem
size by considering only half-loads (rather than more general fractions of the site demand).
The objective function for the VRP is the weighted total lateness at all sites, weighted by
the site demands.

To solve this problem, they build routes sequentially by using a seed that is the most
distant point from the depot and clustering the points near it until the truck capacity is
exhausted. Next, they sequence each route and compute the time the route visits its last site.
If demands of all sites are satisfied within the delivery deadline, this solution is accepted.
Otherwise, the procedure combines a route that violates the deadline with a neighboring
route and considers delivering half-loads. By shrinking the delivery times due to the smaller
load, this last step effectively reduces the longest completion time by constructing more
balanced routes. Finally, simulated annealing is used to improve the solution. Although
the authors illustrate the possible improvements with an example, they unfortunately do not
provide indicators of how the procedure produced savings in the actual newspaper delivery
problem.

The last two studies of this section, performed in Denmark and Germany, consider
problems of broader scope involving the full hierarchy of distribution stages in newsprint
delivery. Jacobsen and Madsen [50] studied a location-routing problem for a newspaper
delivery problem in western Denmark. In their study, two competing papers share produc-
tion and distribution facilities. The combined daily circulation is 150,000, and the daily
distribution cost was 35,000 Danish Kroner.

Small trucks are used to transport the papers from the printing facility to 42 transfer
points dispersed over an approximate area of 200 by 300 kilometers. At the transfer points,
the newspapers are loaded onto vans or cars that make the final deliveries to the 4510 points
of sale (or customer sites). Typically, a truck visits 1 to 3 transfer points. Each transfer

276 Chapter 10. Routing Vehicles in the Real World

point serves as the base for five tours that visit 24 sites. The newspapers all must arrive at
the customer sites by 11:30 a.m. The printing operation therefore runs from 6:15 a.m. to
8:45 a.m.

The objective of the hierarchical location-routing problem (see Madsen [56]) is to
minimize the total distribution cost by deciding on

• the number and location of the transfer points,

• the primary routes feeding the transfer points out of the printing facility, and

• the design of the secondary routes based at each transfer point to feed the customer
sites.

Jacobsen and Madsen [50] compared three heuristics that solve this problem. We do
not describe these here, but we summarize how the solutions compare for costs. Let TCP
and TCS denote the travel costs (based on mileage only) for the primary and secondary
tours, respectively, and let PCS be the fixed costs for the secondary tours (these costs are
proportional to the number of secondary tours). The other cost component is the cost of
visiting a site, which is simply proportional to the number of sales points and therefore fixed
in any solution. Together, these four cost components account for more than 90% of the total
distribution cost. As shown in Table 10.10, the two algorithms ALA-SAV and SAV-DROP
produce solutions comparable with the baseline in total costs (1.2% above and 1.7% below
the baseline costs, respectively), but they differ significantly in the relative magnitude of
TCP and TCS. This is because SAV-DROP opts for a substantially lower number of transfer
points.

The application described by Dillmann, Becker, and Beckefeld [26] has a somewhat
different focus from the preceding studies. In their applications, the distribution problem
involves 200 publishers that produce a variety of printed materials. In fact, the distributed
goods include magazines and inexpensive books, in addition to daily newspapers (which
form only a fraction of the total volume of goods). The customers' locations of interest
are retail outlets, deliveries to which are subject to one-sided time windows. The delivery
volume changes by day of the week; Tuesday deliveries form 12% of the weekly volume
while Thursday amounts to 23%. There is also a significant backhaul component: about
one third of the delivered goods are returned to the wholesaler on a daily or weekly basis.

The authors describe the scope and challenges of the routing study performed for this
application. The VRP algorithm employed is a parallel tour-building procedure in which
the customer sites are successively inserted into the partial routes in ascending order of
their opening times. A minimum insertion cost rule is used. The authors do not report the
magnitude of the savings achieved, but they note that a major contribution of the study was
to move from a route structure based on geographical clustering to one that gave primary
importance to time constraints.

10.4.4 Three Case Studies

We now present three case studies to illustrate certain practical details of newspaper dis-
tribution and the role of routing software as a tool for planning and operation. We refer
to these newspapers by fictitious names. As described below, these case studies refer to
two large dailies in the United States and one European operation. All three companies

10.4. Distribution and Routing in the Newspaper Industry 277

Table 10.10. Comparison of cost components for the hierarchical NDP. (Cost ratio is the
total cost of each solution divided by the baseline total costs.)

Solution TCP TCS PCS Cost ratio

Baseline

ALA-SAV

SAV-DROP

17.6%

15.5%

8.1%

17.40%

16.96%

22.65%

35.95%

40.59%

43.14%

1.000

1.012

0.983

are involved in residential and commercial newsprint distribution over wide geographic ar-
eas. We emphasize that the names used have no relation to actual publications with similar
names.

10.4.4.1 Two Newspaper Delivery Problems in the United States

The Morning Courier (MC) is a daily newspaper distributed in a major metropolitan area
and its surroundings. Its subscribers, which involve both residential and business addresses,
are served by more than 2000 delivery routes. The routing problem faced by MC has both
node and arc routing components. A distinctive feature of this application is the notion
of delivery types associated with routes. Because the deliveries of this paper can be quite
concentrated in certain regions, such as downtown, a route may correspond to the papers
destined for a single office building or an apartment complex. Accordingly, in addition to the
physical location of the delivery site, the type of the delivery made is of utmost importance
in planning the routes. The delivery types are divided into a number of categories:

• toss—a bundle is simply deposited at the site;

• doorman delivery—a bundle is delivered to the doorman alone, as in a hotel;

• doorman up—a doorman lets in the delivery person, who is responsible for the work;
and

• gates—involves a delivery to a gated community.

MC is completing the change from a compensation formula based on total miles driven
and the number of deliveries to a scheme that considers the types of deliveries made on each
route. Since the delivery type determines the service time at the site (the amount of time
spent at the site to make the delivery), it becomes economically important for the paper to
capture the mix of deliveries on each route. Moreover, since the route duration is key to the
design of balanced routes, the service times form important input to the routing system.

In its metropolitan distribution area, MC faces a two-stage distribution, as described
for the generic NDP. By 3:00 a.m., the newspaper bundles are delivered from the presses to
approximately 50 depots that serve as the transfer points from which the individual carrier
routes originate. Typically, more than 50 routes are based at a depot. The routes begin around
4:30 a.m. but all deliveries must be completed by 6:30 a.m., leaving an interval of 2 hours
for the routes. As mentioned, the desire to capture late-breaking news induces the paper to
delay final printing, thereby compressing the amount of time available for distribution. The
objective of the routing problem is to redesign the routes to save the number of routes used
in the tight time horizon available for delivery.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

278 Chapter 10. Routing Vehicles in the Real World

In the last 2 years, MC has directed its attention to route adjustment. This activity is
performed regularly when routes need to be realigned or adjusted for better balance. For
example, one may decide to merge three shorter routes into two full ones. It is crucial that
the routing system and the associated GIS support this activity even if the candidates for
adjustments are already selected. To appreciate why, one needs to understand the structure
of the data files for newspaper distribution.

First, a key component of the system is the street file, which contains the address for
every subscriber and the route to which this subscriber is assigned. In effect, route planning
involves the assignment of a given street address or range of addresses on the same street
to a specific route. Suppose the dispatcher has determined to move five subscribers from
Route A to Route B. Because the assignment to routes is stated in terms of street segments
(this is a case of arc routing), not only the customers but the entire street segments on which
these customers lie must be transferred from A to B. This change must be entered into a
delivery file that shows street names and specifies the route each address range is currently
assigned to. Moving customers from A to B will, therefore, result in a change of the route
number field for all address ranges corresponding to street segments on which the reassigned
customers reside. For instance, if a cul-de-sac abuts the street segments to be moved, the
GIS capabilities of the system must detect the cul-de-sac and move it onto Route B although
it contains no subscribers.

The carriers operate from a route manifest that lists all the subscribers who must be
visited on the route. For the carrier's convenience, the list starts with deletions and highlights
the new subscribers added to the route. Deletions and additions may result from shifts in
demand or route adjustments, but the list of active subscribers is dynamic by nature. For
example, subscribers often put a stop to their home deliveries for periods of 2 weeks or
longer. Thus, changes in the delivery list occur on a daily basis. The routing system is run
in batch mode daily. Between 2:00 and 3:00 a.m., a list of all subscribers to be routed for
that day is prepared. The new customers are geocoded and entered into the GIS for the
routing system. The system then processes the routes one at a time, solving a travel path
problem to arrive at the sequence in which these customers should be visited. This travel
path algorithm makes full use of the information on the street network available in the GIS.
For example, it includes turn penalties and can accommodate various modes of traversing
the street segments. The system then prints out travel directions that are handed out to the
carrier for that route. The information on the route is saved locally at the depot. If new
customers arise, they can be inserted onto an existing route locally. Typically, it takes less
than 10 minutes to process 60 to 70 routes based at a single depot.

Periodically, the planner may consider reconfiguring several routes together. In this
case, the pooled set of subscribers is fed into the routing system to solve a VRP. This problem
is solved as a node routing problem, but the system is careful to present the final output in
terms of traveling along street segments.

The Union Dispatch is another large newspaper based in the United States. However,
the deliveries of this paper are much sparser than those of The Morning Courier. In fact,
the number of delivery addresses on each street segment is actually quite small for The
Union Dispatch so that the delivery problem is best viewed as a node routing problem.
Another difference between the two papers is that while the cost function for MC is largely
driven by the delivery times, the objective of the Dispatch is to reduce the total number of
miles driven. The paper has used routing software in selected regions for the last 6 years

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

10.4. Distribution and Routing in the Newspaper Industry 279

and continues to refine its delivery operation by expanding the number and size of regions
where computer-assisted routing is used.

On a daily basis, the dispatchers download the customer set for a region to a central
location. This customer list already has an assigned route number. The software is then used
to geocode the customers and to determine the best sequence for visiting them on the route.
The dispatcher also heavily uses the interactive features of the system to make changes in the
routes. For the most part, therefore, the dispatcher uses the system's algorithmic capabilities
to modify routes, one route at a time. Decisions about moving customers between routes or
splitting routes are made by the user interactively. Naturally, the routing system provides a
highly convenient visual interface and good database support with which to carry out these
interactive changes.

10.4.4.2 Case Study from Europe

Euro Press (EP) publishes and distributes newspapers and other publications in a European
country. The distribution area is highly residential, making the problem an arc routing
problem, generally with two-sided service of the street segments. Accordingly, this firm
has devoted much effort to developing extremely detailed street maps, incorporating more
detail than in either of the last two applications. For example, the distribution department
explicitly models walkways to houses as separate entities in the street network, making it
one of the most detailed geographic databases we have encountered in routing applications.

EP uses both driving and walking routes. Both start around 4:00 a.m. and delivery
must be completed by 6:00 a.m. In the driving routes, the main delivery activity is to
place the paper in the customer's paper box. Interestingly, to service both sides of a street
segment in this mode, the vehicle must traverse the street twice, each time against the normal
direction of the arc, so that the driver can have direct access to the boxes along the curb.
In the walking problem, the routes are designed for newspaper delivery individuals who
deliver the paper by walking along the streets. Since, by law, there is a maximum weight
that this person can carry, a new supply of papers must be picked up at various points along
the route. These relay points are predefined locations where the paper is stored, and the
route must ensure that the carrier ends up near a relay point whenever the carrier's supply of
papers is exhausted. In this sense, this problem is similar to the relay box problem for postal
delivery (see Assad and Golden [7]) except that the focus is on the design of the routes, not
on the location of the relay boxes.

The objective of the walking problem is to minimize the distance traveled, because
pay is based on this distance. The routing system is used to plan the routes by partitioning
the service area into a collection of balanced routes. The system then specifies a travel path
for each route. Generally, each route covers a distance of about 5 miles and takes less than
2 hours.

EP also has a node routing problem that is linked to the preceding component. At the
beginning of the work day, the newspaper carriers may report to work at a central location
(the depot) or be available for pickup at a given location. Vans must pick up this delivery
personnel and transport them to the starting points of their routes (already determined by the
preceding route-planning procedure). This defines a node routing problem for the operation
of dropping off the carriers. It is advantageous to include the dropping off of newspaper
bundles (at stands, for instance) into the same delivery problem. The vehicle routing problem
is to route the vans through these drop-off points.

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

Hakim Habibi
Highlight

280 Chapter 10. Routing Vehicles in the Real World

10.4.5 Further Remarks

The preceding case studies give some indication of the role of routing software in newspaper
delivery. The availability of integrated routing-GIS software has made route adjustment a
frequent exercise that would have taken the unaided human operator a prohibitively long
time. As we reflect on the evolution of newspaper delivery routing, we can draw a dis-
tinction between planning and operational systems. Most delivery systems dating from the
1980s appear to have used routing capabilities primarily for planning purposes. Operational
adjustments and modifications to existing routes often were made manually, and the routing
systems did not provide the extensive interactive capabilities required for newspaper deliv-
ery operations as outlined in the preceding case studies. A key factor in making newspaper
delivery systems operationally viable is the integration of routing and GIS software.

Although general-purpose GIS software was emerging in the late 1980s, few GIS
vendors targeted routing applications (notable early exceptions were Caliper Corporation
and Roadnet Technologies). Accordingly, until the mid 1990s, the newspaper delivery
applications we reviewed all relied on road distances expressed as a function of Euclidean
distances, as discussed by Assad [6]. The current GIS capabilities make this unnecessary
and provide a wealth of additional features, such as convenient maps and travel directions.
In the case of newspaper delivery, the GIS capabilities can be used to model and track
the nature of deliveries as well. Overall, the marriage of GIS and routing has become a
must-have feature of an operational system. As confirmed by the case studies described,
convenient linkages between the GIS and routing capabilities make the difference between
a system that is run infrequently for planning purposes and a tool that the dispatchers rely
on day in and day out.

We expect commercial software to play a larger role in the loading and dispatching
operations of newspapers as well as in routing per se. We are beginning to see software
designed for targeted delivery of newsprint. For routing, one well-known family of rout-
ing software lists the newspaper industry as a specific focus area (RouteSmart [69]) and
advertises such capabilities as arc routing, the design of balanced routes, and reductions
in the number of vehicles, distance traveled, and carrier personnel. As the use of software
becomes more prevalent in the upstream operations preceding routing, we might expect to
see increased integration of circulation and delivery databases.

We have already seen how zoned editions and targeted marketing can affect newspaper
distribution. Two other trends are the use of third-party delivery systems and the change in
the nature of the carrier force. We know of one major U.S. newspaper that is completely
refashioning its routes in one of the metropolitan regions in the south to account for the
use of a third-party distributor that delivers other printed materials in addition to the daily
newspapers. The example of The Roanoke Times cited above shows how these trends can
combine with the pressures of customization to make the newsprint distribution problem a
significantly richer and more challenging routing problem in the future.

10.5 Conclusions

In this chapter, we reported on numerous and diverse applications of vehicle routing. These
applications involve routing over land, sea, and air, and they take place in countries around
the world. To narrow the scope, we focused on vehicle routing within three broad and
significant industries: solid waste; beverage, food, and dairy; and newspaper distribution.

Bibliography 281

Within the solid waste industry, we identified three separate types of vehicle routing
problem: commercial collection, residential collection, and roll-on-roll-off. Commercial
collection problems can be viewed as standard node routing problems with several special
locations (landfills). Residential collection problems can be viewed as arc routing problems
that also involve landfills. Commercial software is available for handling these two types
of problems. Roll-on-roll-off problems are quite different in that they involve bin packing
as well as routing (and, possibly, real-time) components. Commercial software is not yet
available for roll-on-roll-off problems, which are just beginning to attract research attention.
We anticipate that effective solution procedures will emerge in the next several years.

On a daily basis, fleets of vehicles deliver soft drinks, bottled water, beer, groceries,
and milk to many thousands of retail outlets in the United States alone. The real-world
operations of fleets, with complications such as time windows and periodic deliveries, are
modeled by sophisticated vehicle routing computer programs and commercial software
products that are used by such well-known companies as Pepsi-Cola, Anheuser-Busch, and
Kraft. Computerized vehicle routing has had a significant impact both quantitatively (e.g.,
decreased fleet mileage by roughly 10%) and qualitatively (e.g., improved quality of the
delivery system and increased job satisfaction of routing personnel) on distribution activities
in the beverage, food, and dairy industries.

Newspapers published in cities all around the world have challenging distribution
problems. Circulations range from thousands to millions, and the task of getting newspapers
from the printing presses to readers is always complicated by the linkage between production
and distribution, tight time windows, and multiple editions. We explored these and related
issues in several case studies, but further research into more advanced solution techniques
would be beneficial.

It is clear that the many algorithmic advances made by operations researchers over the
last 40 years have had an enormously positive effect on the field of logistics and distribution
management. Based on our numerous case studies, we believe that plentiful opportunities
still exist for operations researchers to contribute to this important area

Acknowledgments
We dedicate this chapter to G.B. Dantzig and J.H. Ramser on the 40th anniversary of the
publication of the first VRP paper.

We thank Marie Cavanagh (National Soft Drink Association), Angela McGregor (In-
stitute of Logistics), Chuda Basnet (University of Waikato), and Marc Dupont (GIRO) for
their help. In addition, we thank Larry Levy (RouteSmart Technologies) for his numerous
suggestions and positive feedback.

Bibliography
[1] B. Adenso-Diaz, M. Gonzalez, and E. Garcia. A hierarchical approach to managing

dairy routing. Interfaces, 28:21-31, 1998.

[2] R. Alsop. Wall Street Journal Almanac. Ballantine, New York, 1998.

[3] Anonymous. Routing software prevents scheduling meltdown. Logistics Management,
35:85, 1996.

282 Bibliography

[4] Anonymous. 1999 databank: The US beverage market. Beverage World, December
12, 1998.

[5] Anonymous. Software streamlines solid waste department. American City & County,
December 1998, p. 14.

[6] A.A. Assad. Modeling and implementation issues in vehicle routing. In B.L. Golden
and A. A. Assad, editors, Vehicle Routing: Methods and Studies, North-Holland, Am-
sterdam, 1988, pp. 7-45.

[7] A.A. Assad and B.L. Golden. Arc routing methods and applications. In M.O. Ball, T.L.
Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network Routing, Handbooks in
Operations Research and Management Science 8, North-Holland, Amsterdam, 1995,
pp. 375-^83.

[8] C. Basnet. Private communication, 1999.

[9] C. Basnet, L. Foulds, and M. Igbaria. Fleetmanager: A microcomputer-based decision
support system for vehicle routing. Decision Support Systems, 16:195-207, 1996.

[10] C. Basnet, L. Foulds, and J. Wilson. A decision aid for milk tanker run collection.
Journal of Operational Research Society, 48:786-792, 1997.

[11] E. Beltrami and L.D. Bodin. Networks and vehicle routing for municipal waste col-
lection. Networks, 4:65-94, 1974.

[12] L.D. Bodin, A. Mingozzi, R. Baldacci, and M. Ball. The rollon-rolloff vehicle routing
problem. Transportation Science, 34:271-288, 2000.

[13] B. Brunner. Almanac 2000. Time Life, 2000.

[14] B. Burks. An advanced delivery system. Technews, 3, 1997. Available at www.naa.
org/technews.

[15] CAPS. Mayfield Dairy Farms, Inc.: Case study. Technical report, 1999. Available at
www.caps.com.

[16] CAPS. Tom's Food: Case study. Technical report, 1999.Availableatwww.caps.com.

[17] M. Carter, J. Farvolden, G. Laporte, and J. Xu. Solving an integrated logistics problem
arising in grocery distribution. INFOR, 34:290-306, 1996.

[18] I.M. Chao, B.L. Golden, and E.A. Wasil. An improved heuristic for the period vehicle
routing problem. Networks, 26:25-44, 1995.

[19] N. Christofides and J. Beasley. The period routing problem. Networks, 14:237-256,
1984.

[20] H. Chung and J. Norback. A clustering and insertion heuristic applied to a large routing
problem in food distribution. Journal of Operational Research Society, 42:555-564,
1991.

www.naa.org/technews
www.naa.org/technews
www.caps.com
www.caps.com

Bibliography 283

[21] A.K. Cline, D.H. King, and J.M. Meyering. Routing and scheduling Coast Guard buoy
tenders. Interfaces, 22:56-72, 1992.

[22] J. Consoli. Strategic technology plan. Editor & Publisher, July 2, 1994, pp. 19, 31.

[23] D. Cullen. Fleets online. Fleet Owner, April 1998.

[24] G. Dallaire. How cities are using GIS for route optimization. MSW Management,
May/June 1996, pp. 74-79.

[25] B. Deierlein. Truck trends: Special focus on trucks and distribution. Beverage World,
May 1998, p. 62.

[26] R Dillmann, B. Becker, and V. Beckefeld. Practical aspects of route planning for
magazine and newspaper wholesalers. European Journal of Operational Research,
90:1-12, 1996.

[27] P.J.S. Dunnett. The World Newspaper Industry. Groom Helm, London, 1988.

[28] S. Dwyer. Dean's got milk money. Prepared Foods, 167:10, 1998.

[29] S. Dwyer. Watch out for falling currencies. Prepared Foods, 167:12, 1998.

[30] P. Eibl. Computerized Vehicle Routing and Scheduling in Road Transport. Avebury,
UK, 1996.

[31] P. Eibl, R. Mackenzie, and D. Kidner. Vehicle routing and scheduling in the brewing
industry: A case study. International Journal of Physical Distribution & Logistics
Management, 24:27-37, 1994.

[32] E. Erkut and D. MacLean. Alberta's energy efficiency branch conducts transportation
audits. Interfaces, 22:15-21, 1992.

[33] M.T. Fiala Timlin and W.R. Pulleyblank. Precedence constrained routing and heli-
copter scheduling: Heuristic design. Interfaces, 22:100-111, 1992.

[34] M.L. Fisher. Vehicle routing. In M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L.
Nemhauser, editors, Network Routing, Handbooks in Operations Research and Man-
agement Science 8, North-Holland, Amsterdam, 1995, pp. 1-33.

[35] R. Friedman. Environmental & waste management. Standard & Poor's Industry
Surveys, My 9, 1998.

[36] A. Gauldin. Manifest destiny. Technews, 2,1996. Available at www.naa.org/technews.

[37] B.L. Golden and A.A. Assad. Vehicle Routing: Methods and Studies. North-Holland,
Amsterdam, 1988.

[38] B.L. Golden, T.L. Magnanti, and H.Q. Nguyen. Implementing vehicle routing algo-
rithms. Networks, 7:113-148, 1977.

www.naa.org/technews

284 Bibliography

[39] B.L. Golden and E.A. Wasil. Computerized vehicle routing in the soft drink industry.
Operations Research, 35:6-17, 1987.

[40] B.L. Golden and R.T. Wong. Vehicle routing by land, sea, and air. Interfaces, 22:1-3,
1992.

[41] G. Gourley. Distribution systems ease products down the road. Food Engineering,
July/August 1998, p. 91.

[42] M. Greczyn. Computers tackle Pennsylvania routes. Waste News, October 27, 1997
p. 23.

[43] R.W. Hall and J.G. Partyka. On the road to efficiency. OR/MS Today, 24:38^6, 1997

[44] A.H. Han. An optimal operating strategy for a newspaper's home delivery system.
Graduate Report UCB-ITS-GR-82-1. Institute of Transportation Studies, University
of California, Berkeley, 1982.

[45] C. Hange. Software helps haulers merge routes. Waste News, October 26, 1998.

[46] J.N. Holt and A.M. Watts. Vehicle routing and scheduling in the newspaper industry.
In B.L. Golden and A. A. Assad, editors, Vehicle Routing: Methods and Studies, North-
Holland, Amsterdam, 1988, pp. 347-358.

[47] A.P. Hurter and M.G. Van Buer. The newspaper production/distribution problem
Journal of Business Logistics, 17:85-106, 1996.

[48] International Dairy Foods Association. About IDEA. Technical report, 1999. Available
at www.idfa.org.

[49] M. Igbaria, R Sprague, C. Basnet, and L. Foulds. The impact and benefits of a DSS:
The case of FleetManager. Information & Management, 31:215-225, 1996.

[50] S.K. Jacobsen and O.B.G. Madsen. A comparative study of heuristics for a two-level
routing-location problem. European Journal of Operational Research, 5:378-387,
1980.

[51] J. Knight. U.S. Foodservice cooks up big gains for shareholders. The Washingto
Post, October 26, 1998.

[52] S. Lacy and T. Simon. The Economics and Regulation of United States Newspapers.
Ablex, Norwood, NJ, 1993.

[53] G. Laporte, L. Meulemeester, F. Louveaux, and F. Semet. Optimal sequencing of skip
collections and deliveries. Journal of Operational Research Society, 48:57-64, 1997

[54] R.C. Larson, A. Minkoff, and P. Gregory. Fleet sizing and dispatching for the marine
division of the New York City Department of Sanitation. In B.L. Golden and A.A.
Assad, editors, Vehicle Routing: Methods and Studies, North-Holland, Amsterdam,
1988, pp. 395^23.

www.idfa.org

Bibliography 285

[55] L. Levy and L.D. Bodin. Scheduling the postal carriers for the United States Postal
Service: An application of arc partitioning and routing. In B.L. Golden and A.A.
Assad, editors, Vehicle Routing: Methods and Studies, North-Holland, Amsterdam,
1988, pp. 359-394.

[56] O. Madsen. Methods for solving combined two-level location-routing problems of
realistic dimensions. European Journal of Operational Research, 12:295-301, 1983.

[57] J. Mans. Downloading distribution. Dairy Foods, 8:60, 1997.

[58] C. McCoy. High tech helps haul the trash. The Philadelphia Inquirer, July 10, 1995.

[59] C. Memmott. Why zoning isn't micro. Technews, 3, 1997. Available at www.naa.
org/technews.

[60] A. Mercer, M. Cantley, and G. Rand. Operational Distribution Research. Taylor &
Francis, London, 1978.

[61] S. Ostrofsky. A tailored and targeted tomorrow. Technews, January/February 1997.
Available at www.naa.org/technews.

[62] S. Ostrofsky. Post-press award: Leading with trailers. Technews, January/February
1998. Available at www.naa.org/technews.

[63] U. Pape. Car transportation by truck. In B.L. Golden and A.A. Assad, editors, Vehicle
Routing: Methods and Studies, North-Holland, Amsterdam, 1988, pp. 425-437.

[64] R.G. Picard and J.H. Brody. The Newspaper Publishing Industry. Allyn and Baco
Boston, MA, 1997.

[65] J.-Y. Potvin, T. Kervahut, B. Garcia, and J.-M. Rousseau. The vehicle routing problem
with time windows—Part I: Tabu search. INFORMS Journal on Computing, 8:158-
164, 1996.

[66] S. Ree and B.S. Yoon. A two-stage heuristic approach for the newspaper delivery
problem. Computers & Industrial Engineering, 30:501-509, 1996.

[67] RiMMS. The Lightstone Group provides food distribution companies with a powerful
software tool for expedient routing and scheduling. Technical report, 1997. Available
at www.lightstone.com.

[68] RouteSmart Technologies. Private communication, 1999.

[69] RouteSmart Technologies. Newspaper industry software capabilities. Technical report,
1999. Available at www.routesmart.com.

[70] R. Russel and W. Igo. An assignment routing problem. Networks, 9:1-17, 1979.

[71] R.A. Russell and D. Gribbin. A multi-phase approach to the period routing problem.
Networks, 21:747-765, 1991.

www.naa.org/technews
www.naa.org/technews
www.naa.org/technews
www.naa.org/technews
www.lightstone.com
www.routesmart.com

286 Bibliography

[72] J. Sankaran and R. Ubgade. Routing tankers for dairy milk pickup. Interfaces, 24:59-
66, 1994.

[73] G. Sciarrone. Delivery problems in metropolitan areas-optimizing the distribution of
a daily newspaper: An application to the Turin Daily La Stampa. In Freight Transport
Planning and Logistics, Lecture Notes in Economics and Mathematical Systems, 317,
Springer-Verlag, Berlin, 1987, pp. 334-349.

[74] E. Sfiligoj. One for the road. Beverage World, November 1997. Available at
www.roadnet.com.

[75] M. Siebert. Super-successful sampling. Technews, 3, January/February 1997. Avail-
able at www.naa.org/technews.

[76] M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35:254-265, 1987.

[77] M.M. Solomon, A. Chalifour, J. Desrosiers, and J. Boisvert. An application of vehicle
routing methodology to large-scale larvicide control programs. Interfaces, 22:88-99,
1992.

[78] B. Sperber. Integrated logistics. Food Processing, 54:21, 1993.

[79] L.R. Stanley. Trends in daily newspaper costs and revenues: 1978-1998. Technical
report, Association for Education in Journalism and Mass Communication, Media
Management and Economics Division, Montreal Convention, August 1992.

[80] Statistical Abstract of the U.S. 1998. Claitor's Law Books and Publishing Division,
Baton Rouge, LA, 1998.

[81] C. Tan and J. Beasley. A heuristic algorithm for the period vehicle routing problem.
Omega, 12:497-504, 1984.

[82] WJ. Thorn and M.P. Pfeil. Newspaper Circulation: Marketing the News. Longman,
New York, 1987.

[83] K. Tunney. Automation making operations hum. MSWManagement, May/June 1997,
pp. 64-70.

[84] G. Valero. Driving ahead of the competition. U.S. Distribution Journal, 223:31,1996.

[85] A. van Vliet, C.G.E. Boender, and A.H.G. Rinnooy Kan. Interactive optimization of
bulk sugar deliveries. Interfaces, 22:4-14, 1992.

[86] Q. Wang, B.L. Golden, E.A. Wasil, and S. Bashyam. An operational analysis of shell
planting strategies for improving the survival of oyster larvae in the Chesapeake Bay.
INFOR, 34:181-196, 1996.

[87] J. Wunderlich, M. Collette, L. Levy, and L.D. Bodin. Scheduling meter readers for
Southern California Gas Company. Interfaces, 22:22-30, 1992.

www.roadnet.com
www.naa.org/technews

Chapter 11

Capacitated Arc Routing
Problem with Vehicle-Site
Dependencies:
The Philadelphia Experience

John Sniezek
Lawrence Bodin
Laurence Levy
Michael Ball

11.1 Introduction
In residential solid waste collection, the vehicle fleet may consist of collection vehicles with
varying capacity, size, and shape. Each set of identical vehicles is said to comprise a vehicle
class. A vehicle from a vehicle class with a small capacity fills up quicker and requires
more trips to a disposal facility (such as a landfill) than a vehicle from a vehicle class with
a larger capacity. Each vehicle class can have a restriction on the streets that it can service
and streets that it can traverse. Vehicles from the larger vehicle classes cannot traverse small
alleys or bridges that can support only a specific weight. Some streets allow vehicles from a
vehicle class to traverse but not service the street because the street is too narrow to conduct
the service (for example, side-loading sanitation vehicles).

A vehicle-site dependency on a street is a constraint that prohibits a vehicle of a
certain vehicle class from servicing or traversing the street because of some limitation.
Thus, a vehicle-site dependency on a street reflects the ability of a vehicle from a vehicle
class to service or travel a street. The Capacitated Arc Routing Problem with Vehicle-Site
Dependencies (CARP-VSD) attempts to solve a Capacitated Arc Routing Problem (CARP)
where there are vehicle-site dependencies. The CARP-VSD has received almost no attention
in the literature, and Nag [9] is the only paper that we are familiar with that solves the node
routing problem with vehicle-site dependencies.

The CARP-VSD is a generalization of the CARP. In the CARP, a connected directed
network G = (N, A) with node set N and arc set A, and a homogeneous vehicle fleet

287

288 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

is specified. In G, some arcs require service with known service time, and all arcs can
be traversed with known deadhead time. The CARP breaks the required arcs in G into
partitions so that each partition contains about the same amount of time (service time plus
deadhead time), and the arcs in each partition are sequenced so that the total additional
deadhead time needed to form a continuous travel path through the arcs is minimized. For
the CARP, any vehicle can be assigned to service any partition. For a review of the CARP
and its solution techniques, see Assad and Golden [1], Eiselt, Gendreau, and Laporte [3,4],
Bodin et al. [2], Golden and Wong [5], Pearn [10], and Laporte [6].

The focus of this chapter is to develop effective approaches for solving the CARP-
VSD. Since reasonable approaches exist for solving the CARP, and these approaches can
be used for solving the travel-path-generation aspects in the CARP-VSD, this chapter em-
phasizes practical approaches for solving the partitioning aspect of the CARP-VSD. These
partitioning approaches are integrated with the travel-path-generation procedures to derive
an overall algorithm for solving the CARP-VSD. This algorithm is called the Vehicle De-
composition Algorithm (VDA). A fundamental assumption of the VDA is that if a vehicle
from a vehicle class of specified capacity can service (or deadhead) a specific street segment,
then all vehicles in vehicle classes of smaller capacity can also service (or deadhead) that
street segment. The VDA has been successfully used by the Philadelphia Sanitation De-
partment for solving its residential sanitation-vehicle scheduling problem with vehicle-site
dependencies.

In section 11.2, we define the networks, assumptions, and goals of the CARP-VSD
and the VDA. In section 11.3, we give a step-by-step description of the VDA and illustrate
parts of the VDA with an example. In section 11.4, we present the results of using the VDA
in Philadelphia. In section 11.5, we discuss future research directions.

11.2 Networks, Assumptions, and Goals of the CARP-VSD
In this section, the travel network, service network, assumptions, and goals of the CARP-
VSD are defined. These elements of the CARP-VSD differ from the ordinary CARP due to
the vehicle-site dependencies existing on the arcs, and these vehicle-site dependencies lead
to a more complex network design. This more complex network design is accounted for in
the design of the VDA algorithm.

11.2.1 Travel Network

The travel network G = (N, A) is a directed network that represents the underlying street
network over which the CARP-VSD is to be solved. Each node in G represents an inter-
section in the street network. Each arc in G represents one side of a street segment in the
street network and is directed to indicate the travel direction on the street segment. The
two directed arcs for each street segment in the underlying street network are referred to as
counterpart arcs (see Levy [7]) and these counterpart arcs follow the direction of travel by
side of the street. The travel network G is composed entirely of directed counterpart arcs;
that is, every street segment in the underlying street network has two arcs defined in the
travel network. If the street segment allows two-way traffic, then the two counterpart arcs
in G are directed in opposite directions. If the street segment allows only one-way traffic,
then the two counterpart arcs in G are directed in the same direction and in the direction

11.2. Networks, Assumptions, and Goals of the CARP-VSD 289

of traffic. If the street segment allows only one-way traffic and is directed from / to g,
then the two counterpart arcs, a(f, g) and a'(f, g), for the street segment can have different
attributes.

The following attributes are defined for each arc a(f, g) in the travel network:

D(/, g): Deadhead travel time on arc a(/, g}.

W(f, g): = 1 iffl(/, g) is a counterpart arc of a one- way street segment from/ to g. In this
case, a(/, g) is replicated twice in the travel network, once for each side of the street
segment. For notational purposes, these two counterpart arcs in G are represented as
a(/, g)anda'(/, g).
= 2 if a(/, g) is a counterpart arc of a street segment that allows two-way traffic. In
this case, a(f, g) and a(g, /) exist in the travel network.

M(f, g}: = 0 if the street segment associated with arc «(/, g) has to be serviced one side
at a time.
= 1 if the street segment associated with arc a(f, g) can be meandered or zigzagged.
When a street segment can be meandered, both sides of the street segment are serviced
with a single traversal of the street. It is assumed that if one vehicle class services the
street segment associated with a(f, g) as a meander, then all vehicle classes service
the street segment as a meander. A rare exception to this assumption in residential
sanitation collection is the following. One vehicle class can represent an automated
side-loading vehicle that cannot meander and service a street segment while another
vehicle class represents a rear-loading or front-loading vehicle in which meandering
is possible. This case is not considered in this chapter.

L(/, g): Length of arc a (/, g). It is assumed that L(/, g) = L(g, /).

SC(f, g): Largest vehicle class that can service arc a(f, g}. If SC(f, g) = s, then vehicle
classes 1 , . . . , s can service arc a(/, g). It is assumed that SC(f, g} = SC(g, /).

TC(f, g): Largest vehicle class that can travel along arc a(f, g). If TC(f, g) = t, then
vehicle classes 1, . . . , r can travel arc a(f, g}. It is assumed that TC(f, g) = t >
SC(f, g) = s and that TC(f, g) = TC(g, /).

5(/, g): Service time on arc a(f, g). If a(f, g) is to be serviced as a meander (i.e.,
M(/, g) = 1), then S(f, g) is half the service time for the street segment associ-
ated with a(/, g).

<2(a(/, g)): Quantity (volume or weight) of refuse to be picked up on arc a(f, g).
Q(a(f, g)) = 0 if arc «(/, g) is not serviced. The notation Q(a(f, g)) rather than
Q(f, g) is used to define the volume on arc a(f, g) to facilitate the definitions of the
arc sets MA and SE in section 11.2.2.

11.2.2 Service Network

In the service network Gv , the arc set A from the travel network G is broken into four
mutually disjoint sets representing the street segments that require different types of service
and the street segments that can be traversed but do not require service. These four disjoint
sets are as follows.

290 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

DA: Set of deadhead arcs. DA = {a(f, g)\Q(a(f, g)) = 0}. No service is required on
a(f, g) and a(f, g) is used only for deadheading.

R A: Set of arcs that require service, cannot be meandered, and two-way traffic is allowed on
the corresponding street segment. Thus, RA = [a(f, g)\Q(a(f, g)) > 0, M(f, g) =
0}. If a(f, g) e RA, service ofa(f, g) must occur by traveling along a(f, g) and not
its counterpart arc.

M A: Set of arcs that require service, the service is a meander, and the street segment associ-
ated with each arc is a one-way street. MA = {a(f, g} \ Q(a(f, g)) + Q(a'(f, g)) >
0, M(f, g) — 1, W(f, g) = I}. Although a(f, g) is replicated twice in A, once for
each side of the street segment, arc a(f, g) appears once in MA as a directed arc.

SE: Set of edges representing the street segments that allow two-way travel, require ser-
vice, and the service must be carried out as a meander. SE = {e(f, g)\Q(a(f, g)) +
Q(a(g, /)) > 0, M(/, g) = 1, W(f, g) = 2}. Both a(f, g) and a(g, /) are in A,
but the edge, e(f, g), appears once in SE representing both arcs in the travel net-
work. The travel-path-generation algorithm in the VDA determines if edge e(f, g) is
serviced from node / to node g or from node g to node /.

The service network Gs is represented as the node set N, the arc sets DA, RA, and
MA, and the edge set SE. The service network Gs can be denoted as Gs = (N, DA U
RA U MA U SE).

11.2.3 Vehicle Classes

The existence of vehicle classes in the vehicle fleet separates the CARP-VSD from the
traditional CARP. Although the vehicle classes represent different types of vehicle, the
vehicles are assumed to be homogeneous within each vehicle class. Attributes such as
vehicle capacity and length of workday typically associated with a vehicle in the CARP can
have different values for each vehicle class in the CARP-VSD.

The following attributes are defined for vehicle class k:

Qk'. Number of vehicles available from vehicle class k. For example, if a fleet has five
1-ton vehicles, three 5-ton vehicles, and four 10-ton vehicles, then Q\ = 5, Q^ = 3,
and 03 = 4. The vehicle preference list (described below) further refines the notion
of the number of vehicles in a vehicle class.

Mk- Capacity of the vehicles from vehicle class k. Vehicle capacity is the maximum
volume or weight that a vehicle can hold. A vehicle route in residential sanitation
collection can involve multiple trips to the disposal facility. A trip to the disposal
facility is required whenever the vehicle capacity is reached, although going to the
disposal facility before capacity is reached may reduce total deadhead time or distance
on the route. Furthermore, it is assumed that a trip to the disposal facility is required
at the end of the day even if the vehicle capacity has not been reached.

D Tk: Disposal time, i.e., the time it takes to empty a vehicle at the disposal facility. Disposal
time is a function of vehicle class.

11.2. Networks, Assumptions, and Goals of the CARP-VSD 291

OTk: Office time associated with a vehicle from vehicle class k. Office time is the time a
crew is allocated at the depot at the beginning or the end of the day. At the office, the
crew carries out mandated functions, such as filling the vehicle with gas, washing the
vehicle, and showering.

11.2.4 Travel Network and Service Network for a Vehicle Class

In the VDA, each vehicle class has its own travel network and service network. These
networks are not actually created in the VDA but are implied by indicator variables in the
travel network G and service network Gv for the CARP-VSD.

For each arc in the travel network G, T C (f , g) specifies the largest vehicle class
that can travel on arc a(/, g). Each vehicle class can have a different set of arcs that can
be traversed by a vehicle from the vehicle class. The travel network for vehicle class z ,
G' = (Nl, A'), is the network of arcs that can be traversed by the vehicles in vehicle class
i. There is no guarantee that G' is a connected network.

For each arc in the travel network G, SC(f, g) specifies the largest vehicle class that
can service arc a(f, g). As mentioned, it is possible that a street segment can be traversed
by a vehicle class but cannot be serviced by that vehicle class. Because of this vehicle-site
dependency, the set of arcs that a vehicle can service is also a function of the vehicle class.
The service network for vehicle class i is G's = (N', A1 = DA' U RA* U SA1 U SE').

The service network for vehicle class z , G', is created from the travel network for
vehicle class i, G', in exactly the same way as the service network, G v , is created from the
travel network, G, as described in section 11.2.2. Arcs in A' that can be serviced by vehicle
class z are placed in R A', SA1, or SE1. Arcs in A' that cannot be serviced by vehicle class
i are placed in DA'.

11.2.5 Vehicle Preference List

The vehicle preference list specifies, in decreasing order of preference, a vehicle class and
the maximum number of vehicles that are available at that preference level. Certain vehicle
classes may be more desirable due to operational costs, contractual obligations, or other
reasons. A vehicle class may appear more than once in the vehicle preference list. An
example of a vehicle preference list is as follows:

Vehicle class Number available
3 3
1 11
2 4
1 4

In this vehicle preference list, the user most prefers the vehicles from vehicle class 3
because the user believes they are the most efficient, require only one trip to the disposal
facility, hold the most volume, and are already owned by the organization servicing the area.
The vehicle class 1 vehicles are split in the vehicle preference list because the organization
owns 11 of these vehicles (no capital cost for these vehicles), but the organization can buy up
to 4 additional vehicles (but these vehicles require a capital expenditure). The organization
is also authorized to buy up to four vehicle class 2 vehicles. The four vehicle class 2 vehicles

292 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

appear above the four vehicle class 1 vehicles because the user believes the vehicle class 2
vehicles are more efficient than the vehicle class 1 vehicles.

The VDA tries to use vehicles from the preferred vehicle classes, beginning at the top
of the vehicle preference list. Less-desirable vehicle classes are used only as required.

11.2.6 Other Assumptions

As defined above, Gs = (N, DA U RA U MA U SE) represents the service network. The
VDA assumes that every arc in RA U MA and every edge in SE can be serviced by the
smallest vehicle class in the vehicle preference list.

The travel network G and the service network G^ are assumed to be connected net-
works, and the service network G] is assumed to be a strongly connected network. In this
way, it is possible to service all arcs requiring service if there are enough vehicles from
vehicle class 1 in the vehicle preference list. If G] is not strongly connected, then any
service arcs not strongly connected to the depot and disposal facility will not be serviced by
routes in the final solution.

A single depot exists where all vehicles, regardless of vehicle class, start and end
their route. A single disposal facility exists where all vehicles are emptied. All vehicles,
regardless of vehicle class, must return to the disposal facility at the end of the day to empty
the vehicle before returning to the depot.

A target route time, TRTk, is specified for each vehicle class k. This target route time
can vary between vehicle classes and within a vehicle class. The target route time is the
target length of time for a partition being serviced by a vehicle from a specified vehicle class.
To model a difference in target route time within a vehicle class, the vehicle class is split into
two or more vehicle classes with different target route times in the vehicle preference list,
but the vehicle-site dependencies on the arcs are identical for each of these vehicle classes.

A soft constraint on the formation of the partitions is that the length for each partition
p in vehicle class k lies in the interval [Lowerp, Upperp], where Lowerp = TRTk — Ak,
Upperp = TRTk + Bk, and Ak and Bk are generally around 15 minutes. However, we had
one organization that set Ak and Bk equal to 3 minutes.

11.2.7 Goals and Constraints of the CARP-VSD

A desirable solution to the CARP-VSD, as well as most other CARP-type problems, has
the following characteristics:

• Each street requiring service in the service network G^ is assigned to a partition as
long as the service network G^ is connected.

• The route length for all routes in vehicle class A: lies in the interval [TRTk—Ak, TRTk+
Bk\. Such a solution is called a balanced solution. In the CARP-VSD, workload
estimation in the VDA is more complicated because the VDA must decide how many
vehicles of each vehicle class are needed to provide the service. Partitioning in the
CARP-VSD using the VDA becomes more complex because a decision has to be made
as to the vehicle class to assign to each partition that is grown (i.e. attach a vehicle
class to each seed point created). These decisions on the fleet mix composition are

11.3. Vehicle Decomposition Algorithm (VDA) 293

initially made before any partition is grown. However, the VDA is set up so that this
estimate can be updated in subsequent iterations of the VDA. The vehicle preference
list gives us an effective way for determining the fleet mix composition.

• The travel path associated with each partition minimizes nonproductive time (or dead-
head time). In most arc routing problems, the deadhead time is a small percentage
of the total time needed to service all the street segments that require service in the
partition. As noted, in our implementation of the VDA for Philadelphia, we used the
existing travel path generation procedures found in the RouteSmart software system1

to determine the minimum deadhead travel time path for each partition, and we did
not attempt to develop any new travel path generation procedure.

• The partitions interlace as little as possible. If the partitions do not interlace, the area
of responsibility for each crew is better identified. In this way, it is easier to attribute
any error in performing a service to the correct crew.

11.3 Vehicle Decomposition Algorithm (VDA)
The VDA solves the CARP-VSD by decomposing it into several smaller single vehicle class
CARPs. Each of these smaller CARPs is solved by the partitioning procedures contained
in RouteSmart. The solution to the smaller problems are then integrated together to form a
final CARP-VSD solution. Once the partitions are formed, traditional travel-path-generation
techniques contained in RouteSmart are used to find an approximately minimum deadhead
time travel path for the arcs and edges in each partition.

The VDA consists of the following five steps:

• Step A. Create and verify vehicle class networks.

• Step B. Estimate total work and determine initial fleet mix.

• Step C. Partition the service network.

• Step D. Determine travel path and balance the partitions.

• Step E. Revise estimate of total work and adjust fleet mix.

The VDA initially carries out Steps A and B and then iterates between Steps C-E
until it terminates. At that time, the routes and travel paths can be printed and plotted.
Input to the VDA are the various quantities described in section 11.2, such as the travel and
service networks, the vehicle preference list, and various parameters such as the number of
partitions requested and the target route time for each partition.

11.3.1 Step A. Create and Verify Vehicle Class Networks

The vehicle class travel networks, Gl = (Nl, A'), are created for all vehicle classes from
the travel network G = (N, A), and each G' is checked for connectivity. If G' is not a
strongly connected network, then the only arcs that can be serviced by a vehicle in vehicle

1 Information on the RouteSmart software system can be obtained from the website www.routesmart.com.

www.routesmart.com

294 Chapter 1 1 . Capacitated Arc Routing Problem with Vehicle-Site Dependencies

class i are the arcs that are strongly connected to the depot and disposal facility. All the arcs
in G' not strongly connected to the depot and disposal facility are removed from Gl . The
overall service network G^ and the vehicle class service networks G\ are then created.

1 1 .3.2 Step B. Estimate Total Work and Determine Initial Fleet Mix

In Step B, an initial fleet mix estimate is determined. This fleet mix estimate is used as the
fleet mix on the first iteration of the VDA.

Let V = [V(i, j)] be a lower triangular matrix. V(i, j) is the number of vehicles of
vehicle class j needed to service all the arcs and edges in the service network whose largest
feasible vehicle class is vehicle class i, i > j. Thus, V(2, 1) is the number of vehicles of
vehicle class 1 needed to service all the arcs and edges in the service network whose largest
feasible vehicle class is vehicle class 2. The procedure that we developed for computing
V(i, y) is given in section 11.3.2.7, and V(i, 7) need not be integer. In the next sections,
we describe the VDA procedure. A complete example is also given.

1 1 .3.2.1 Pass 1 Through Step B

On the first pass (k = 1) through this procedure, V(l, 1) is examined by searching the
vehicle preference list and finding the first instance of the smallest vehicle class. Let Wl be
the number of vehicles from the smallest vehicle class specified in that entry of the vehicle
preference list. Let U = min(V(l, 1), Wl) be the number of vehicles from the smallest
vehicle class to assign to service the workload associated with V (1 , 1) . If U is not an intege
then U is rounded up to its next largest integer.

Knowing U,V(1, 1) is set equal to V(l, 1) - U and Wl is set equal to Wl - U in the
appropriate entry of the vehicle preference list. Then, the following three cases can occur.

1. If V(l, 1) > 0, we continue to search down the vehicle preference list for the next
occurrence of the smallest vehicle class since we have not, as yet, accounted for enough
vehicles from vehicle class 1 to service the demand specified in V(l, 1). If another
occurrence is found, the procedure described here is repeated. If no other occurrence
of a vehicle from the smallest vehicle class is found in the vehicle preference list, the
VDA terminates since the problem is infeasible — there are not enough vehicles from
vehicle class 1 available to service the demand.

2. If V(l, 1) = 0, all of the demand in the first row of V can be serviced by vehicles
from vehicle class 1 . The first pass through Step B is complete and the second pas
through Step B can begin by setting k = 2 and executing the procedure in 1 1.3.2.2.

3. If V(l, 1) < 0, we have excess capacity for the first row of demand in V. V(l, 1) < 0
occurs if U is set to a noninteger V(l, 1) above. Then U is rounded up to the next
largest integer. This excess capacity is assumed to satisfy some of the demand in the
second row of the V matrix. To accomplish this, the second row of V is updated as
follows:

1 1.3. Vehicle Decomposition Algorithm (VDA) 295

As an example, if we initially have Wl — 3, V(l, 1) = 1.1, V(2, 1) = 3.2, and
V(2, 2) = 2.7, then the following occurs on this first pass through Step B.

1. U = 2, Wl = 3 - 2, V(l, 1) = 1.1 - 2 = -0.9.

2. Since V(l, 1) < 0, V(2, 1) = 3.2-0.9 = 2.3 and V(2, 2) = 2.7- (0.9*2.7/3.2) =
2.7-0.759- 1.941

If V (2, 1) < 0 as a result of the above accounting for excess capacity of a vehicle
from vehicle class 1 , then all the demand in row 2 of V is accounted for, row 3 of V would
be updated in the same manner as described for row 2, and so on.

We have now finished with this first pass through Step B and can continue with the
second pass through Step B by setting k = 2 and executing the following procedure.

1 1 .3.2.2 Pass k Through Step B (k > 1)

On the kth pass through Step B, the kth row of V is examined and the vehicle preference list
is scanned for the first occurrence of a vehicle class no greater than k. Let the following:

j: The number of the vehicle class of the first occurrence of a vehicle class no greater
than k in the vehicle preference list;

Wj : The number of vehicles from vehicle class j that can be assigned to that workload
Wj as specified in the vehicle preference list, and Wj is integer;

U: The number of vehicles from vehicle class j to assign to service the workload associ-
ated with V(k, 7), i.e., U = min(V (k, j) , Wj). If U is not integer, then U is rounded
up to its next largest integer.

Knowing U, Wj is set equal to Wj — U in the appropriate entry of the vehicle preference
list and the kth row of V is updated as follows:

Then, the following three cases can occur:

1. If V(k, j) > 0, we continue to search down the vehicle preference list for the next
occurrence of an available vehicle class no larger than k. If another occurrence is
found, the procedure described in this section is repeated. If no occurrence of an
available vehicle class no larger than k is found in the vehicle preference list, the
VDA terminates since the problem is infeasible — there are not enough vehicles from
vehicle class k or smaller available to service the demand.

2. If V(k, j) =0, we have completed the kth pass through Step B and can continue with
the next pass through Step B by setting k — k + 1 and repeating the procedure.

3. If V(k, j) < 0, we have excess capacity for the kth row of demand in V, and this
excess capacity can be used to satisfy the demands in the remaining rows of V. To
account for this excess capacity, the k + 1 row of V is updated by setting

296 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

After updating row k + 1 of V, we have completed the kth pass through Step B and
can continue with the next pass through Step B by setting k = k + 1.

11.3.2.3 Example

Assume there are three vehicle classes and the V matrix is

Further assume that the vehicle preference list is the following:

Vehicle Class Number Available
3 2
1 7
2 4
1 4

11.3.2.4 First Pass Through Step B

Since V(l, 1) = 4.7 and Wl = 7, U = min(4.7, 7) = 4.7, U is rounded to 5. Thus, five
vehicles from vehicle class 1 are assigned to the fleet mix. Then, Wl = 1 — 5 = 2 and
7(1,1) =4.7-5.0 = -0.3.

Since V(l, 1) < 0, there is excess capacity for the demand of row 1. Thus, we set

V(2, 1)=4.1-0.3 = 3.8,
V(2, 2) = 2.2 - 0.3(2.2/4.1) = 2.04.

11.3.2.5 Second Pass Through Step B

The vehicle preference list entering pass 2 is

Vehicle Class Number Available
3 2
1 2
2 4
1 4

and the updated V matrix is

Since V(2, 1) = 3.8 and V(2, 2) = 2.04, we scan the vehicle preference list and
find vehicle class 1 as the first available feasible vehicle class. We set W2 = 2 and U =

11.3. Vehicle Decomposition Algorithm (VDA) 297

min(3.8, 2) = 2, so we assign two more vehicles from vehicle class 1 to the fleet mix. Since
there is still some demand in row 2 left over, the residual demands are updated as follows:

The updated vehicle preference list is

Vehicle Class Number Available
3 2
1 0
2 4
1 4

and the updated V matrix is

Since V(2, 1) = 1.8 and V(2, 2) = 0.97, we scan the vehicle preference list and
find vehicle class 2 as the first available feasible vehicle class. We set W2 — 4, U =
min(0.97, 4) = 0.97 and round U to 1. Thus, we assign one vehicle from vehicle class 2
to the fleet mix. W2 - 4 - 1 = 3 and V(2, 2) = 0.97 - 1 = -0.03. Since there is excess
capacity for the demand of row 2, we set

V(3, 1) = 9.1 - 0.03 * (9.1/5.0) = 9.05,

V(3, 2) = 5.0 - 0.03 * (5.0/5.0) = 4.97,

V(3, 3) = 3.1 - 0.03 * (3.1/5.0) = 3.08.

All the demand for row 2 is satisfied.

11.3.2.6 Third Pass Through Step B

The vehicle preference list entering pass 3 is

Vehicle Class Number Available
3 2
1 0
2 3
1 4

and the updated V matrix is

Since V(3, 1) = 9.05, V(3, 2) = 4.97, and V(3, 3) = 3.08, we scan the vehicle
preference list and find vehicle class 3 as the first available feasible vehicle class. We set

298 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

W3 — 2 and U = min(3.08, 2) = 2, so we assign two vehicles from vehicle class 3 to the
fleet mix. W3 = 2-2 = 0 and the third row of the V matrix is updated as follows:

The updated vehicle preference list is

Vehicle Class Number Available
3 0
1 0
2 4
1 4

and the updated V matrix is

Since V(3, 1) = 3.17, V(3, 2) = 1.74, and V(3, 3) = 1.08, we scan the vehicle
preference list and find vehicle class 2 as the first available feasible vehicle class. We set
W2 - 3 and U = min(1.74, 3) = 1.74. U is then rounded to 2. Thus, two additional
vehicles from vehicle class 2 are assigned to the fleet mix. Since W2 = 3 — 2 = 1 and
V(3, 2) = 1.74 — 2 = —0.26, there is excess capacity for the demand of row 3. As all the
demand for row 3 is satisfied, the initial fleet mix estimation is complete. The 0.26 excess
vehicle capacity is part of the initial fleet mix.

Thus, the initial fleet mix estimate for the example is the following:

11.3.2.7 Determination of V(i, j) in the V Matrix

As stated previously, V(i, y) is the number of vehicles from vehicle class j needed to service
all the arcs and edges in the service network whose largest feasible vehicle class is vehicle
class i,i > j. We now describe our workload estimation procedure for computing V(i, j).

The components that go into computing the workload estimation for V(i, j) are the
following:

Kl: Total volume on all arcs whose largest vehicle class that can service the arc is /; i.e.,
K\ = £ QW, <?)] for all (a(f, g)\SC(f, g) = i}.

K2: Vehicle capacity for the vehicle class being analyzed; i.e., K2 = Qj.

K3: Service time on all arcs whose largest vehicle class that can service the arc is /; i.e.,
K3 = £ S(f, g) for all [a(f, g)\SC(f, g) = i}.

Vehicle Class 1: 5+2+0=7

Vehicle Class 2: 0+1+2=3

Vehicle Class 3: 0+0+2=2

1 1.3. Vehicle Decomposition Algorithm (VDA) 299

K4: Estimate of the deadhead time between all service arcs whose largest vehicle class
that can service the arc is i .

K5: Target route time for a partition from vehicle class j. K5 is specified by the user; i.e.,
£5 = TRT/.

K6a: Office time for a partition from vehicle class 7. K6a is specified by the user; i.e.,
K6a = OFj.

K6b: Disposal time for a vehicle from vehicle class j. K6b is specified by the user; i.e.,
K6b = DTr

K6c: Time for a vehicle from vehicle class j to go from the disposal facility to the depot.
K6c is computed over the travel network and is known exactly.

K6d: Time for a vehicle from vehicle class j to go from a partition to the disposal facility.
K6d is computed over the travel network and is estimated as the average time from
each arc a(/, g) to the disposal facility where SC(f, g) = i.

K6: Total fixed overhead time. K6 is computed as follows: K6 = K6a + K6b + K6c +
K6d. Since K6d is an estimate, K6 is an estimate as well.

Kl: Estimate of the time a vehicle from vehicle class j takes to make an additional trip
to the disposal facility. Kl is the average round trip travel time from a partition to
the disposal facility (2 * K6d) plus the time at the disposal facility (K6b). Thus,
Kl = 2 * K6d + K6b. Kl is an estimate since K6d is an estimate and a function of
vehicle class.

Let X be the (integer) number of trips to the disposal facility required for each partition.
Let V(i, ;•) = minx(max(PV(X), P T (X))) , where

PV(X)\ Minimum number of partitions needed to handle the total volume on the streets,
which can be computed as PV(X) = Kl/(K2 * X).

PT(X): Minimum number of partitions needed to handle all required time in the workload.
PT(X) is computed as

Since K6 is an estimate, PT(X) is as estimate.

The problem is to compute the best value of X to use in the computation of V(i, j) .
Initially, X is not known. However, it can be observed that as X increases, PV(X) decreases
and PT(X) increases. A representation of PV(X) and PT(X) as a continuous function of
X is shown in Figure 11.1.

To determine the value of X that will minimize V(i, j), we set PV(X) — P T (X)
and solve for X, which may not be integer. We then compute the adjacent integer values of
X that minimize V(i, j).

300 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

Figure 11.1. Graph ofPV(X) and PT(X).

11.3.2.8 Example

This example illustrates the workload estimation procedure. Assume that the following are
known:

Kl: Total volume = 100 tons,

K2: Vehicle capacity per trip = 10 tons,

K3: Service time on arcs = 1200 minutes,

K4: Deadhead time between service arcs =120 minutes,

K5: Route time = 480 minutes,

K6a: Office time = 30 minutes,

K6b: Disposal time = 60 minutes,

K6c: Time from the disposal facility to the depot = 10 minutes,

K6d: Time from a partition to disposal facility = 20 minutes,

K6: Fixed overhead = K6a + K6b + K6c + K6d = 120 minutes,

Kl: Variable overhead = 2 * K6d + K6b = 100 minutes,

Then PV(X) and PT(X) can be computed as follows:

PV(X) = Kl/(K2 * X) = 100/(10 * X) = 10/X,

PT(X) = (K3 + K4)/(K5 - K6 - K1(X - 1)) = 1320/(460 - 100X).

Equating PV(X) and PT(X) gives X*, the estimate of X:

X* = (Kl * (K5 - K6 + Kl))/((Kl * Kl) + (K2 * (K3 + K4))) = 1.98.

Since X is 1.98, we compute V(i, j) = min(PV(l), PT(2)), where PV(l) = 10
and PT(2) = 5.08. Therefore, V(i, j) = 5.08 and 5.08 is the estimate of the number of
partitions needed to satisfy the workload.

11.3. Vehicle Decomposition Algorithm (VDA) 301

11.3.3 Step C. Partition the Service Network

The partitioning algorithm in the VDA is significantly more complex than the partitioning
algorithm used for solving the CARP with a homogeneous fleet. In the algorithms for the
CARP, since all of the vehicles are identical, the partitioning step only has to assign all of
the arcs in the service network to a partition. On the other hand, in the VDA, a decision has
to be made about the vehicle class to service each partition, and all the required arcs and
edges must be assigned to a partition.

In 11.2.6, the target route time for an entry in the vehicle preference list was defined
to be the desired amount of work measured in time to a place in a partition and was allowed
to vary between vehicle classes. As noted earlier, one of the constraints in the CARP-VSD
is to form the partitions so that the total workload in each partition assigned to vehicle class
k lies between [TRTk — Ak, TRTk + Bk], although these bounds are assumed to be soft
and, hence, can be violated.

The following five substeps of Step C form the partitions in the VDA. These five
steps are iterated for each vehicle class in the vehicle fleet mix, beginning with the smallest
available vehicle class in the fleet mix and ending with the largest available vehicle class in
the fleet mix.

Step C1. A temporary service network (TSN) is created. The service arcs and edges in
the TSN are those arcs and edges in SA U SE that must be partitioned on this iteration and
have not, as yet, been assigned to a partition.

Step C2. The TSN is partitioned as a CARP without vehicle-site dependencies using
established CARP solution techniques. This partitioning is done using the available vehicles
in terms of capacity that remain in the vehicle fleet mix determined in Step B and that have not
as yet been assigned to a partition. This partitioning involves solving a nonhomogeneous
CARP with no site dependencies. Sniezek [11] is conducting research into how to best
accomplish this partitioning. For the Philadelphia study described in this chapter, this
partitioning was accomplished using the existing CARP procedure for a nonhomogeneous
fleet with no site dependencies that is available in the RouteSmart software system.

In this step, it is possible to have more vehicles from a vehicle class available in the
fleet mix determined in Step B than the number of partitions that we want to create at this
point in Step C. For example, the TSN for the smallest vehicle class may have only a small
amount of workload that must be serviced by a vehicle from the smallest vehicle class. If the
small vehicles were desirable, however, in the vehicle preference list, we may have several
small vehicles in the fleet mix. However, to grow partitions for all or most of these small
vehicles at this point in the algorithm would probably lead to inferior solutions containing
imbalances in the workload and severe interlacing. The rule that we used for determining
the number of partitions to grow at this time is equal to min(7? 1, /?2), where

R1: 1.5* (minimum number of partitions needed to service the workload in the TSN). R1
is rounded up to the nearest integer.

R2: The number of vehicles of this vehicle class presently available in the fleet mix.

302 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

On the final iteration, the bounds on target route time can be violated to ensure that
all arcs and edges in the service network Gs are assigned to a partition. The target route
time has soft lower and upper bounds to ensure that all arcs and edges in G^ are assigned to
partitions in the final solution.

Step C3. The service network Gs and all vehicle class service networks G], G2
S, ..., Gl

s

are implicitly updated based on the partitioning in Step C2. No service arcs or service edges
in TSN assigned to a partition in Step C2 are service arcs or service edges in Gk

s, k > i since
Step C2 assigned arcs a(/, g) only to partitions where SC(f, g) < i. Thus, the service
networks Gk

s, k > /, need not be updated at this point.

Step C4. A second temporary service network TSN2 is now created. The service arcs
and edges in TSN2 are the service arcs and edges in TSN that have already been assigned
to partitions in Step C2 plus all remaining arcs and edges in SA U SE that have, as yet,
not been partitioned. In Step C4, the partitions grown in Step C2 are further expanded by
assigning the arcs and edges in TSN2 until each partition grows to a specified percentage
of the target route time of the vehicle class associated with each partition.

Step C5. If all of the arcs and edges requiring service have been assigned to a partition,
the partitioning algorithm terminates. Otherwise, the service network G^ and all vehicle
class service networks G], G^,.. . , Gk

s are updated (as in Step C3) based on the partitioning
in Step C4 and the algorithm returns to Step Cl.

11.3.3.1 Example

The example in Figure 11.2 illustrates the importance of partitioning the TSN first and the
TSN2 later when dealing with a nonhomogeneous fleet of vehicles in the CARP-VSD. The
graph in the figure has six nodes (a, b, c, d, e, /) and nine edges (A, B, C, D, E, F, G,
H, I). The volume on each edge is one unit, edges B, C, and D can be serviced by either
a small or large vehicle, and the other edges can be serviced only by a small vehicle. Three
cases are considered.

Figure 11.2.

11.3. Vehicle Decomposition Algorithm (VDA) 303

11.3.3.2 Case 1: Homogeneous CARP

Assume that the fleet has three small vehicles and the site dependencies on the edges are
disregarded. The partitions for these three vehicles are seeded at a, c, and e. The following
partitions are found:

Partition 1 (seed a) = {A, B, F],

Partition 2 (seed c) = {D,E,G},

Partition 3 (seed e) = { C , H , I } .

11.3.3.3 Case 2: CARP-VSD (Using Only TSN2)

In this case, the fleet consists of three vehicles—two small vehicles from vehicle class 1 and
one large vehicle from vehicle class 2. As noted above, 5, C, and D are the only edges that
can be serviced by vehicles from vehicle class 2. In this case, Steps C2 and C3 described
in the partitioning algorithm are not used.

We first partition the two small vehicles over the entire service network (TSN2) instead
of the TSN. If the partitions are seeded at a and c, then the following two partitions are
created:

Partition 1 (seed a) - (A, B, F},

Partition 2 (seed c) = {D, E, G}.

These partitions are at capacity, and yet edges H and /, which must be serviced by
vehicle class 1, have not been assigned to a partition.

On the next iteration through Step C, the TSN2 consists of edge C. Edges H and /
are not in TSN2 since these edges cannot be serviced by the large vehicle. Thus, Partition
3 is the following:

Partition 3 (seed e) = {C}.

Thus, in the final solution for this case, H and / are not assigned to a partition and
Partition 1 and Partition 2 are at capacity.

11.3.3.4 Case 3: CARP-VSD (Using TSN then TSN2)

In this case, the fleet composition is the same as in Case 2. However, we are going to do
the partitioning by first forming the TSN and then forming the TSN2.

The initial TSN for the vehicles in the smallest vehicle class consists of edges A, E,
F, G, //, and /. Edges B, C, and D (the edges that can be serviced by vehicles from vehicle
class 2) are not in the TSN for the small vehicle class. Using a and c as the seed points for
the partitioning, the partitions are as follows:

Partition 1 (seed a) = {A, F, H},

Partition 2 (seed c) = {E, G, /}.

The two partitions are at capacity and all edges that had to be serviced by vehicle class
1 are assigned to a vehicle from vehicle class 1.

304 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

The TSN2 for the smallest vehicle class consists of the entire network. Since the two
partitions for the smallest vehicle class are at saturation, no new edges are assigned to these
partitions.

The algorithm begins again for the vehicle in the larger vehicle class. The TSN
consists of edges B, C, and D. The resulting partition is the following:

Partition 3 (seed e) = {B, C, D}.

11.3.3.5 Analysis

These three cases illustrate the following. The homogeneous solution (Case 1) gives the best
set of partitions in terms of interlacing and covering all of the edges. When site dependencies
are considered, Case 3 (TSN then TSN2) gives a better solution than Case 2 (TSN2 only) in
the sense that all edges are assigned to partitions in Case 3 and some edges are not assigned
to partitions in Case 2. The solution in Case 3 can be regarded as inferior to the solution in
Case 1 because the Case 3 solution has more interlacing. However, the solution in Case 1
is not feasible to the vehicle-site dependency problem considered in Cases 2 and 3, where
the fleet is made up of two small vehicles and one large vehicle, since there is at least one
arc in each partition that must be serviced by a small vehicle only.

11.3.4 Step D. Determine Travel Path and Balance the Partitions

In Step D, there is no guarantee that the network of streets to be serviced in any partition
found in Step C is connected. Thus, a Rural Postman Problem (RPP) is solved to find a
minimum deadhead time travel path for each of the partitions. A solution to the RPP finds
a continuous, minimum deadhead time travel path that covers all the arcs and edges in the
partition that require service, begins and ends at the depot, and has the trips to the disposal
facility integrated into the travel path. The appropriate vehicle class travel network is used
in the solution of the RPP to determine the streets to deadhead when finding the minimum
deadhead time travel path. Once the minimum deadhead time travel path is known, the
actual time to traverse the route in the partition can be determined.

Solving the RPP can be extremely complex. The algorithm must take into account
that the required street segments in a partition can form a disconnected network, some street
segments are one-way, other street segments are two-way, some street segments must be
serviced as a meander, and specified turn restrictions and street crossing difficulties must
be considered.

If the time to traverse the route for any partition does not fall within the lower and
upper bound of the target route time for the vehicle class assigned to that partition, then an
automatic swapping procedure is employed to swap arcs and edges between partitions. The
primary objective of this swapping is to improve the balance on the routes. In this swapping,
vehicle-site dependency feasibility is maintained. When all swapping is completed, the RPP
for each partition is solved again.

Let partition p be in vehicle class k. Then, in section 11.2.7 we defined a balanced
solution as one in which the route length for each partition p lies in the interval, \TRTk —
Ak, TRTk + Bk] = {Lowerp, Upper p}. After solving the RPP for each partition /?, if we
have a balanced solution, then the results are stored and printed and the algorithm terminates.

11.4. Implementation of the VDA in Philadelphia 305

If we do not have a balanced solution, a measure of Solution Goodness, SG, is computed
asSG = Tl + T2, where

Tl: ^(Timep — Upperp)
2, where the sum is over all partitions p where Timep >

Upper p.

T2: ^(Timep — Lowerp)
2, where the sum is over all partitions p where Timep <

Lower p.

Timep is the total time to traverse the travel path in partition p. If this measure of
solution goodness is better than that of any previous iteration, this solution is saved as the
best solution found so far. A balanced solution is when the corresponding SG = 0.

The algorithm terminates when either a balanced solution is found or a specified
number of iterations have been carried out. If a balanced solution is not found, then the best
solution found so far is assumed to be the best solution for this problem. If the algorithm has
not reached the specified number of iterations and we have not found a balanced solution,
the algorithm continues with Step E.

11.3.5 Step E. Revise Estimate of Total Work and Adjust Fleet Mix

Steps B and E are similar, but the deadhead travel times and the actual travel paths for each
partition are known in Step E. Thus, quantities that are estimated in Step B are known more
accurately after carrying out Step E. This information is used to determine a possible new
fleet mix. This revision in the workload estimation is based, in part, on the out-of-balance
partitions that exist in the solution found in Step D. For example, if all vehicle class 1
partitions are over-saturated while all vehicle class 2 partitions have excess capacity, then
a vehicle from vehicle class 1 may be assigned to a partition rather than the vehicle from
vehicle class 2 that is already assigned to that partition. This swap assumes that the vehicle
preference list has an available extra vehicle from vehicle class 1. After determining a
revised fleet mix, the algorithm returns to Step C for a new iteration.

11.4 Implementation of the VDA in Philadelphia
In many major cities, residential sanitation routes generally are formed manually by su-
pervisors and can be extremely out of balance. Some routes can require overtime while
other routes require only 4 to 5 hours of work. Because these routes are severely out of
balance and overtime has to be paid to some of the crews, management has viewed these
routes as ineffective. Moreover, the crews have viewed these routes as inequitable and these
inequities have lead to discontent and unhappiness. Balanced routes and schedules are gen-
erally viewed positively by both management and the crews. One of the objectives of the
VDA is to develop routes that are balanced. Having routes that are balanced was a primary
consideration in the acceptance of the routes generated by the VDA in Philadelphia.

The routing of the residential sanitation vehicles was part of a large-scale program that
introduced Geographic Information Systems (GISs) to Philadelphia. Philadelphia wanted to
increase the efficiency of its residential sanitation collection and needed a GIS-based com-
puter system to carry out its routing. The RouteSmart system had as one of its components a
set of algorithms for solving the CARP without site dependencies, and the RouteSmart sys-

306 Chapter 11. Capacitated Arc Routing Problem with Vehicle-Site Dependencies

tern was implemented within a GIS. The VDA was developed and implemented within the
RouteSmart system specifically to address the vehicle-site dependency issue. RouteSmart
runs on both personal computers and UNIX platforms on various GISs. The Philadelphia
Sanitation Department has RouteSmart running on a UNIX-based RS-6000 machine using
ARC/INFO as the native GIS.

The version of RouteSmart in which the VDA is embedded has the following capa-
bilities:

• The system can partition a street network of up to 20,000 street segments into as
many as 100 efficient, compact partitions with up to 100 different vehicle classes.
The partitions that RouteSmart generates generally have little overlap or interlacing.
However, the RouteSmart solution for the CARP-VSD has more interlacing than if
there were no vehicle-site dependencies.

• The system assigns a vehicle from the appropriate vehicle class to each partition.

• The system constructs a travel time path for each partition by solving an RPP over
the street segments assigned to the partition.

• The system produces the desired route maps as well as a printed copy of the streets
in each route and the line of travel path.

• The system creates a multicolor display of the partitions and the line of travel path
for each partition.

• The system allows the user to manually swap street segments between partitions.
Manual swapping allows local knowledge of the area to be incorporated into the final
solution and is a critical aspect of implementation of the final solution. In many
implementations in a variety of problem settings, we found that user-generated routes
are more easily accepted and implemented than the computer-generated routes that
do not allow user intervention.

The initial results of the VDA implemented inside RouteSmart were good. McCoy
[8] reported that the city of Philadelphia was able to use 18 trucks to carry out the residential
sanitation pickup in a trash district that previously required 23 trucks. These savings are
similar to the results that other cities have found using the version of RouteSmart that use
a homogeneous fleet. The city of Philadelphia is the first place where the VDA has been
used. In Philadelphia, the target route time, TRT^, for each vehicle class was assumed to
be the same.

McCoy [8] pointed out that it is important to the efficiency of an operation to have
accurate route maps and travel paths of a region and that RouteSmart generates route maps
and travel paths. The importance of route maps and travel paths on a sanitation operation
can be summarized as follows. With manually generated routes, the drivers may not receive
route maps and travel paths of their region. This can cause missed collections and increased
costs. In many sanitation operations, it is mandated that missed pickups be collected at
the end of the day. In these cases, the crews servicing these missed collections are paid
overtime and overtime can be a major expense. Furthermore, in some locations, it is a
common occurrence for as many as 1 in 10 sanitation workers to be out sick each day. Thus,

11.5. Enhancements and Extensions 307

it becomes difficult for substitute drivers to efficiently drive their routes without route maps
and travel paths.

11.5 Enhancements and Extensions

The use of the VDA in Philadelphia was regarded as a success. Despite this success, the
development of the VDA is an ongoing effort. The following issues are being explored in
the doctoral dissertation of Sniezek [11].

When determining the fleet mix to satisfy the workload, Step 2 of the VDA starts at the
top of the vehicle preference list and takes the most preferred feasible vehicles available. We
believe that this hierarchical approach can be improved on in determining a more desirable
fleet mix. We are constructing a mathematical model that uses a weighted objective function
to determine the most desirable fleet mix. In the model, we assign weights (dollar values)
to the daily fixed costs and variable costs of the vehicles in each vehicle class. We believe
that the fleet mix determined by this weighted objective cost function will yield a better
solution than the hierarchical approach currently used. Components of fixed daily costs
include salary (one-person crew versus two-person crew), depreciation of the vehicle, and
daily operating expense (fuel consumption, service cost, etc.). Each of these components
can vary by vehicle class. Components of variable daily costs include the tipping fee paid
by the vehicle to the disposal facility every time the vehicle unloads at the disposal facility.
The tipping fee is important because it can be expensive for a vehicle to be emptied at a
disposal facility, and different vehicle classes can have a different number of trips to the
disposal facility daily.

Algorithms for the traditional CARP grow all the partitions simultaneously since the
entire service network is being partitioned at the same time. This is not the case with the
VDA. The VDA creates the partitions that service streets whose site dependency says that
they can only be serviced by the smallest vehicle class first. Then, the VDA creates the
partitions that service streets whose site dependency says that they can only be serviced by
the two smallest vehicle classes, and so forth. Some partitions for a vehicle for a vehicle
class may not be created at the same time as other vehicles from that class. Creating too
few partitions at a time may introduce too much deadheading. Creating too many partitions
at a time may introduce too much overlap or interlacing. We are exploring other ideas for
determining how many partitions to grow and the fleet mix on each iteration of Step 3 of
the VDA.

Knowing the fleet mix on Step 3 of the VDA, the problem is where the seed points
should be located and which vehicle class to assign to each seed point. More specifically,
the following questions arise.

When concurrently forming partitions from more than one vehicle class, should the
partitions from each of the vehicle classes be seeded near each other or far away from each
other?

Should the location of the vehicle partitions from previous iterations and the vehicle
classes assigned to those partitions influence the seeding of the vehicle partitions on the
current iteration?

Should the larger vehicle partitions be seeded in high-volume areas since they can
hold more volume, or should they be seeded farther from the disposal facility since they
require fewer trips to the disposal facility?

308 Bibliography

Acknowledgments
We thank Dr. Arjang Assad and Dr. Bruce Golden for their ongoing guidance and insight
related to vehicle-site dependencies. We also thank Professors Toth and Vigo and the referees
of this chapter for their insightful comments.

Bibliography
[1] A.A. Assad and B.L. Golden. Arc routing methods and applications. In M.O. Ball, T.L

Magnanti, C.L. Monma, and G.L. Nemhauser, editors, Network Routing, Handbooks i
Operations Research and Management Science 8, North-Holland, Amsterdam, 1995,
pp. 375^83.

[2] L.D. Bodin, B.L. Golden, A.A. Assad, and M. Ball. Routing and scheduling of vehicle
and crews, the state of the art. Computers and Operations Research, 10:63-212,1983.

[3] H.A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part I: The Chinese
postman problem. Operations Research, 43:231-242, 1995.

[4] H.A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part II: The rural
postman problem. Operations Research, 43:399-414, 1995.

[5] B .L. Golden and R.T. Wong. Capacitated arc routing problems. Networks, 11:305-315,
1981.

[6] G. Laporte. Vehicle routing. In M. Dell'Amico, F. Maffioli, and S. Martello, ed-
itors, Annotated Bibliographies in Combinatorial Optimization. Wiley, Chichester,
UK, 1997.

[7] L. Levy. The Walking Line of Travel Problem: An Application of Arc Routing and
Partitioning. Ph.D. thesis, University of Maryland, 1987.

[8] C. McCoy. High tech helps haul the trash. The Philadelphia Inquirer, July 10, 1995.

[9] B. Nag. Vehicle Routing in the Presence of Site/Vehicle Dependency Constraints.
Ph.D. thesis, University of Maryland, 1987.

[10] W.L. Pearn. Augment-insert algorithms for the capacitated arc routing problem. Com
puters and Operations Research, 18:189-198, 1991.

[11] J. Sniezek. The Capacitated Arc Routing Problem with Vehicle/Site Dependencies:
An Application of Arc Routing and Partitioning. Ph.D. thesis, University of Maryland
1999.

Chapter 12

Inventory Routing in
Practice

Ann M. Campbell
Lloyd W. Clarke
Martin W.R Savelsbergh

12.1 Introduction
PRAXAIR (www.praxair.com) is a large industrial gases company with about 60 produc-
tion facilities and more than 10,000 customers across North America. PRAXAIR recently
negotiated a policy with its customers in which PRAXAIR is in charge of managing its
customers' inventories. Customers will no longer call PRAXAIR to request a delivery.
Instead, PRAXAIR will determine who receives a delivery each day and what the size that
delivery will be. PRAXAIR will use gauge readings received from remote telemetry units
as well as regular customer phone calls to monitor and forecast product inventories. The
distribution planning problems associated with such vendor-managed resupply policies are
known as Inventory Routing Problems (IRPs).

IRPs are very different from VRPs. VRPs occur when customers place orders and the
delivery company, on any given day, assigns the orders for that day to routes for trucks. In
inventory routing problems, the delivery company, not the customer, decides how much to
deliver to which customers each day. There are no customer orders. Instead, the delivery
company operates under the restriction that its customers are not allowed to run out of
product. Another difference is the planning horizon. VRPs typically deal with a single
day, and the only requirement is that all orders have to be delivered by the end of the day.
Inventory routing problems deal with a longer horizon. Each day the delivery company
makes decisions about which customers to visit and how much to deliver to each of them,
while keeping in mind that decisions made today impact what has to be done in the future.
The objective is to minimize the total cost over the planning horizon while making sure no
customers run out of product. The flexibility to decide when customers receive a delivery

309

www.praxair.com

310 Chapter 12. Inventory Routing in Practice

and how large these deliveries will be may significantly reduce distribution costs. However,
this flexibility also makes it very difficult to determine a good, much less an optimal, cost-
effective distribution plan. When the choice becomes which of the customers to serve each
day and how much to deliver to them, the choices become virtually endless.

Vendor-managed resupply policies can be used in many situations. In some instances,
the use of such a policy is natural, such as when the "customers" are really part of the same
company. In others, the use of a vendor-managed resupply policy is often the result of
lengthy negotiations with customers who have for years followed a policy in which they
call in their orders. Examples of industries where vendor-managed resupply policies are
being used or considered are the petrochemical industry (gas stations), the grocery industry
(supermarkets), the soft drink industry (vending machines), and the automotive industry
(parts distribution). The number of industries using vendor-managed resupply policies is
increasing rapidly. An important reason for this is technology. For a variety of industries and
products, the monitoring technology that existed several years ago was not sophisticated
enough to make a vendor-managed resupply system possible. The only way to check a
customer's inventory for many types of products was for the vendor to call the customer
and for the customer to go look at the meter on the tank, to count the number of items in the
vending machine, and so forth. Now the use of remote telemetry units, scanners, computers,
and modems allows monitoring of inventory levels directly by the vendor, opening up new
opportunities for vendor-managed resupply policies.

In section 12.2, we formally introduce the IRP, and in section 12.3, we give a brief
literature review. In section 12.4, we discuss the two-phase approach we have chosen to
solve instances of the IRP. In section 12.5, we present the results of some computational
experiments on real-world instances from PRAXAIR.

12.2 Problem Definition
The IRP is concerned with the repeated distribution of a single product from a single facility
to a set N of customers over a planning horizon of length T (expressed in days), possibly
infinity. Customer / consumes the product at a rate w, (volume per day) and has the capability
to maintain a local inventory of the product up to a maximum of C(. The inventory at
customer i is if at time 0. A fleet M of homogeneous vehicles, with capacity Q, is available
for the distribution of the product. The objective is to minimize the average daily distribution
cost during the planning period without causing stockouts at any of the customers. Vehicles
are allowed to make multiple trips per day. Three decisions have to be made:

• When to serve a customer?

• How much to deliver to a customer when served?

• Which delivery routes to use?

Real-life inventory routing problems are obviously stochastic. No customer will use
product the same way every single day. In many situations, however, usage is relatively
predictable and customers generally use about the same amount each day if we look at their

12.3. Literature Review 311

total usage for several days in a row. Therefore, solution approaches developed for the IRP
as defined above provide useful planning tools.

12.3 Literature Review
Although the IRP is a long-term problem, almost all proposed solution approaches solve
only a short-term version of the problem to make it easier. In early work, short-term was
often just a single day, but in later work this was expanded to several days. Besides the
number of days modeled, key features that distinguish different solution approaches include
how the long-term effects of short-term decisions are modeled, how it is determined which
customers are included in the short-term problem, and whether demand at the customers is
treated as deterministic or stochastic. Summaries of various approaches were made by Ball
[3], Dror, Ball, and Golden [14], Nori [27], and Campbell et al. [11]. In the remainder of
this section, we discuss a number of proposed approaches in more detail. This discussion is
not meant to provide a complete overview of work done in this area, but is an introduction
to the types of approaches that have been taken.

Those following a single-day approach include Federgruen and Zipkin [17], Golden,
Assad, and Dahl [22], and Chien, Balakrishnan, and Wong [13]. Federgruen and Zipkin
[17] in their single-day approach capitalized on many of the ideas from vehicle routing.
Their model, which is a nonlinear integer program, decomposes into a routing portion and
inventory portion. They construct an initial feasible solution to the routing part of the
problem and iteratively improve the solution by exchanging customers between routes and
then resolving the inventory part of the problem. Golden, Assad, and Dahl [22] developed
a heuristic based on a measure of the urgency of each customer, which is defined as the
ratio of tank inventory level to tank size. All customers with an urgency smaller than a
certain threshold are excluded. Customers are iteratively selected to receive a delivery
according to the highest ratio of urgency to extra time required to visit this customer. Chien,
Balakrishnan, and Wong [13] also developed a single-day approach, but it does not treat
each day as a completely separate entity. By passing some information from one day to the
next, the system simulates a multiple-day planning model.

The work of Fisher et al. [19, 8] was motivated, as is our work, by an application
in the industrial gases industry. They took profit maximization from product distribution
over several days as their objective. Demand is given by upper and lower bounds on the
amount to be delivered to each customer for every period in the planning horizon. An integer
program is formulated that captures delivery volumes, assignment of customers to routes,
assignments of vehicles to routes, and assignment of start times for routes. It is solved using
a Lagrangian dual-ascent approach.

The first serious effort to develop an approach that considers what happens beyond
the next few days was made by Dror, Ball, and Golden [14] and Dror and Ball [16]. They
considered demand to be stochastic and used the probability that a customer will run out on
a specific day in the planning period, the average cost to deliver to the customer, and the
anticipated cost of a stockout to find the optimal replenishment day t* for each customer.
If t* falls within the short-term planning period of the next few days, the customer will be
visited, and a value c; is computed for each of the days in the planning period that reflects
the expected increase in future cost if the delivery is made on day t instead of on t*. An

312 Chapter 12. Inventory Routing in Practice

integer program is then solved that assigns customers to a vehicle and a day, or just a day,
that minimizes the sum of these costs plus the transportation costs. Delivery amounts are
considered to be dictated by the day of the week on which the delivery is made and thus are
not a decision to be made by the integer program.

Some of the ideas of Dror and Ball were extended and improved by Trudeau and Dror
[29]. Dror and Levy [15] used a similar analysis to yield a weekly schedule but applied node
and arc exchanges to reduce costs in the planning period. Bard et al. [5, 4, 23] discussed
another extension of this idea. They took a rolling-horizon approach to the problem by
determining a schedule for 2 weeks but implementing only the first week. An analysis
similar to Dror and Ball's is done to determine an optimal replenishment day for each
customer, and incremental costs are computed that represent the cost for changing the next
visit to a customer to a different day but keeping the optimal schedule in the future. These
costs are used in an assignment problem formulation that assigns each customer to a day in
the 2-week planning horizon.

Anily and Federgruen [1, 2] looked at minimizing long-run average transportation
and inventory costs by determining long-term routing patterns for a set of customers with
deterministic demand. The routing patterns are determined using a modified circular parti-
tioning scheme. After the customers are partitioned, customers within a partition are divided
into regions to make the demand of each region roughly equal to a truck load. A customer
may appear in more than one region, but then a certain percent of the customer's demand
is allocated to each region. When one customer in a region gets a visit, all customers in
the region are visited. They also determine a lower bound for the long-run average cost
to be able to evaluate how good their routing patterns are. Using ideas similar to those of
Anily and Federgruen, Gallego and Simchi-Levi [21] evaluated the long-run effectiveness
of direct shipping (separate loads to each customer). They concluded that direct shipping is
at least 94% effective over all inventory routing strategies whenever minimal economic lot
size is at least 71 % of truck capacity. This shows that direct shipping becomes a bad policy
when many customers require significantly less than a truck load, making more complicated
routing policies the appropriate choice.

Another adaptation of these ideas was made by Bramel and Simchi-Levi [10]. They
considered the variant of the IRP in which customers can hold an unlimited amount of
inventory. To obtain a solution, they transform the problem to a capacitated concentrator
location problem (CCLP), solve the CCLP, and transform the solution back into a solution
to the IRP. The solution to the CCLP will partition the customers into disjoint sets, which
in the inventory routing problem will become the fixed partitions. These partitions are then
served in a way similar to the regions of Anily and Federgruen.

In the last few years, several researchers started to investigate a stochastic version of
the problem, in which it is assumed that a probability distribution is known for customer
usage. This adds more realism, since in practice customer usage is never deterministic,
but obtaining probability distributions of customer usage in practice is extremely complex.
Kleywegt, Nori, and Savelsbergh [25] formulated the inventory routing problem as a Markov
decision process and proposed approximation methods to find good solutions with reason-
able computational effort. Computational results are presented for the inventory routing
problem with direct deliveries. Other work in this direction includes Minkoff [26], Bassok
and Ernst [7], Barnes-Schuster and Bassok [6], Berman and Larson [9], Cetinkaya and Lee
[12], and Fumero and Vercellis [20].

12.4. Solution Approach 313

12.4 Solution Approach
A short-term approach has the tendency to defer as many deliveries as possible to the next
planning period, which may lead to an undesirable situation in the next planning period.
Therefore, the proper projection of a long-term objective into a short-term planning problem
is essential. It needs to capture the costs and benefits of delivering to a customer earlier
than necessary. Our focus has been on developing a flexible system capable of handling
large instances that properly balances short-term and long-term goals and that considers
all the key factors, i.e., geography, inventory, capacity, and usage rate. We wanted also to
create a system that would consider routing customers together on a day where none of
them are at the point of run-out but where they combine to make a good, full-truckload
delivery route. We found that most systems reduce the problem by starting with only the
"emergency" customers, never putting together certain combinations that make sense with
regard to location and delivery size. The basis for our system is a two-phase solution
approach. In the first phase, we determine which customers receive a delivery on each day
of the planning period and decide on the size of the deliveries. In the second phase, we
determine the actual delivery routes and schedules for each of the days.

As mentioned, real-life inventory routing problems are stochastic. Therefore, any
distribution plan covering more than a couple of days will never be executed completely
as planned. Actual volumes delivered differ from planned volumes because usage rates
deviate from their forecasts, planned driving time is off due to traffic congestion, and so
forth. Therefore, any planning system needs to be flexible. It needs to take advantage of
the latest changes in the data. Given this, our approach is to embed our two-phase solution
approach in a rolling-horizon framework. We always construct a distribution plan for a
month to reflect the long-term nature of the planning problem, but we expect to implement
only the first few days. We repeat this as often as necessary using the latest information
available.

12.4.1 Phase I: Integer Programming Model

At the heart of the first phase is an integer program. Central to the model are two quantities:
L\ = max(0, tu/ — 7,°), a lower bound on the total volume that has to be delivered to
customer i by the end of day t, and U\ =tut + C/ — 7(°, an upper bound on the total volume
that can be delivered to customer i by the end of day t. Let d\ represent the delivery volume
to customer i on day /; then to ensure that no stockout occurs at customer i and to ensure
that we do not exceed the inventory capacity at customer i, we need to have that

To model the resource constraints with some degree of accuracy and to have a mean-
ingful objective function, we found it necessary to explicitly use delivery routes. We added
another dimension to the d variable, changing it from d\ to d\r. However, when we refer to
a "route," we are really referring to a set of customers without enforcing a specific ordering
among the customers in the set. We estimate the distance required to visit the customers
in the set by the length of the optimal traveling salesman tour through all the customers.
Now, let R be the set of delivery routes, let Tr denote the duration of route r (as a fraction

314 Chapter 12. Inventory Routing in Practice

of a day), and let cr be the cost of executing route r. Furthermore, let x'r be a 0-1 variable
indicating if route r is used on day t (x(

r = 1) or not (x'r = 0). The total volume that can
be delivered on a single day is limited by a combination of capacity and time constraints.
Since vehicles are allowed to make multiple trips per day, we cannot simply limit the total
volume delivered on a given day to be the sum of the vehicle capacities. To be more precise,
the resource constraints can be modeled by

and

These constraints ensure that we do not exceed the vehicle capacity on any of the selected
routes and that the time required to execute the selected routes does not exceed the time
available.

The basic Phase I integer programming model is given by

subject to

The first variation of the basic model handles fixed and variable stop times at the
customers as well as a vehicle reloading time at the facility. The duration Tr of route r
can be modified to include not only the estimated time to drive the distance between the
customers on the route but also a fixed stop time for each customer and an initial fill time for
the vehicle required before the route can start. Dispense time at a customer clearly cannot
be included in Tr a priori because it depends on the size of the delivery. Therefore, we must
alter the resource constraint as follows, where F is the percentage of the day required to
dispense each unit of product:

The second variation handles operating modes of customers. Operating mode refers to
the start and end times of customer usage on each day of the week. Earlier, we assumed that

12.4. Solution Approach 315

each customer i uses product 24 hours per day every day. Operating modes are important.
When a customer does not use product on the weekend, for example, this has a big impact
on properly timing the deliveries. Operating modes can be handled easily by appropriately
modifying the lower- and upper-bound parameters. The value for the upper bound and lower
bound on day t now depend on where in the week days 1 through t fall.

The third variant handles time windows at customers. An operating mode restricts
when a customer uses product. A time window restricts when a customer can receive a
delivery. Time windows may be day dependent as well. To handle time windows, the
lower- and upper-bound parameters need to be modified again, but in a slightly different
way. Now the lower bound L\ needs to be defined as the total volume that has to be delivered
to customer i by the closing of the time window on day t to allow customer i to last until
the opening of the time window on day t 4- 1 (or the opening of the time window on the first
available day for the next delivery if no deliveries can be made on day t + 1). The upper
bound U\ is now defined as the largest volume that customer i can receive by the close of
the delivery window on day t.

12.4.2 Phase I: Solving the Integer Programming Model

The integer programming model presented above is not very practical for two reasons: the
huge number of possible delivery routes and, although to a lesser extent, the length of the
planning horizon. To make the integer program computationally tractable we consider a
small (but good) set of delivery routes and aggregate periods toward the end of the planning
horizon.

12.4.2.1 Clusters

Our approach to reduce the number of routes is based on allowing customers to be on a
route together only if they are in the same cluster. A cluster is a group of customers that can
be served cost effectively by a single vehicle for a long period. The cost of a cluster is an
approximation of the distribution cost for serving the customers in the cluster for a month.
The cost of serving a cluster depends on not only the geographic locations of the customers
in the cluster but also on whether the customers in the cluster have compatible inventory
capacities and usage rates. Therefore, to evaluate the cost of a cluster, we need a model that
considers all these factors.

The following approach is used to identify a good set of disjoint clusters covering all
customers:

1. Generate a large set of possible clusters.

2. Estimate the cost of serving each cluster.

3. Solve a set-partitioning problem to select clusters.

Observe that the selection of clusters has to be done only once as a preprocessing step
before the actual planning starts. It does not have to be rerun before every execution of the
Phase I integer program. In practice it makes sense to recluster when new customers have
been added or there have been significant changes to the data.

316 Chapter 12. Inventory Routing in Practice

Since we generate a large number of clusters to choose from, we need a costing
procedure that is fast but able to provide an accurate estimate of the cost of serving the
cluster. We decided to use a simple integer program with key features represented.

12.4.2.2 Aggregation and Relaxation

Because our two-phase solution approach will be embedded in a rolling-horizon framework,
the emphasis should be on the quality and detail of the decisions concerning the first few
days of the plan. This provides us with an excellent opportunity to reduce the size of the
integer program by aggregating days toward the end of the planning period.

For the first k days, we will still have route selection variables for each day, but for
the days after that, we will have route selection variables covering periods of several days.
Instead of making a decision on whether to execute each route on days 8 to 14 individually,
for example, we now decide how many times each of the routes will be executed during the
whole week. Several aggregation schemes were tested. We found that considering weeks
rather than days toward the end of the planning horizon still does a good job of preserving the
costs associated with the effect of short-term decisions on the future and yields a significant
reduction in CPU time. Therefore, the daily variables associated with these later days are
replaced by weekly variables. Upper and lower bounds are altered accordingly as well.

A further simplification is obtained by relaxing the integrality restrictions on the
variables representing the weekly decisions. Therefore, the only binary variables appearing
in the integer program will be those representing route selections for the first k days.

12.4.3 Phase II: Scheduling

A solution to the integer program of Phase I specifies the volumes to deliver to each customer
for the next k days. It does not specify departure times and customer sequences for the
different vehicles. Therefore, we still need to construct vehicle routes and schedules.

Since the delivery volumes specified by the solution to the integer program may not
fit before a specific time of the day and may need to be received before a certain later time
to prevent run-out, these deliveries have self-imposed time windows. Therefore, to convert
the information provided by the solution to the integer program to daily vehicle routes and
schedules, we can solve a sequence of VRPs with time windows.

However, such an approach does not capitalize on the flexibility inherent in the IRP.
The delivery volumes specified by the solution to the integer program are good from a
long-term perspective; they may not be good from a short-term perspective. Therefore,
we treat the delivery volumes and timing specified by the solution to the integer programs
as suggestions. We try to follow these suggestions as closely as possible, since this helps
to achieve our long-term goals, but we allow small deviations when it helps to construct
better short-term plans. To be more precise, we construct vehicle routes and schedules for
two consecutive days, where we force the total volume delivered to a customer over the 2
days to be greater than or equal to the total delivery volume specified by the solution to
the integer program for these 2 days, but we do not enforce specific delivery volumes on
individual days. In this way, we stay close to the delivery volumes suggested by the integer
program, which is good from a long-term perspective, but we introduce some flexibility in
the daily routing and scheduling, which is good from a short-term perspective. Deliveries

12.4. Solution Approach 317

can be split into smaller pieces, delivering one part on the first day and the second part on
the second day if this works out to be better, for example, when resources are very tight on
one of the days. This flexibility is even more important when we consider that, in practice,
a few customers may not follow a vendor-managed resupply policy and may call in orders
that need to be added to the daily routing and scheduling problem. With new orders and
new accurate up-to-date information on customer inventory levels, it may make sense to
shift around some of the deliveries over the next couple of days.

Because of customer usage and customer inventory capacities, there may be customers
that require a delivery on both days or even multiple times a day. Consequently, in our 2-day
routing and scheduling problem, we can distinguish two types of customer: customers that
require multiple deliveries over the 2 days and customers that require only one.

We have developed and implemented an insertion heuristic for this 2-day routing and
scheduling problem. The heuristic is a logical progression of commonly used techniques in
insertion heuristics for the vehicle routing problem with time windows; see, for example,
Solomon [28] and Kindervater and Savelsbergh [24].

In the description of the heuristic, we assume, for ease of presentation, that there are
no operating modes and no time windows restricting when deliveries can take place. Both
complications can easily be handled. We also do not discuss explicitly the use of fixed stop
times and unloading times, though both can be included in the travel-time value used here.

The flexibility to change delivery volumes makes checking the feasibility of insertions
much more complex than in the VRP. For example, the insertion of a customer on a route
can affect the delivery volume of another customer on an earlier or later route for the same
vehicle, which can affect the size and timing of other deliveries for the customers on that
route and so forth.

To be able to evaluate the feasibility of an insertion, we maintain several quantities
related to deliveries to customers already scheduled. Consider a delivery to customer / on
route r. The predecessor on the route is denoted by p(i) and the successor on the route is
denoted by s(i). The total volume to be delivered to customer / over the 2 days prescribed
by the solution to the Phase I integer program is di . We consider a day as ranging from
time 0 to 1 for convenience. There is a slight difference for customers that need multiple
deliveries over the 2 days, but the basic quantities we maintain are the following:

• The minimum delivery volume, g™n ,

• The earliest time a delivery can be made, t™r y ,

where t^' v = te
r
ai marr, the earliest time the route can start, and ttj^ is the travel

time from customer j to k. The first term of the maximum represents the time to
get to customer / from p(i). The second term represents the time that the minimum
delivery volume can fit at customer i .

318 Chapter 12. Inventory Routing in Practice

• The latest time a delivery can be made, t l
r f e ,

where ̂ +1) = tl
r
ateend, the latest time route r can end. The first term of the minimum

represents the latest departure time from i to be able to reach s(i) by the latest time
for its delivery. The second term represents the time when customer i runs out of
product.

• The maximum delivery volume, g™ax,

The first term of the minimum is the capacity remaining in the vehicle if we assume
all other customers on the route will receive their minimum delivery volumes, the
second and third terms are obvious, and the fourth term represents the volume that
will fit at the latest time a delivery can be made.

Because vehicles can drive multiple routes per day, we also maintain several quantities
for each route:

• the earliest time the route can start, te
r
ar ystart,

• the latest time the route can start, tl
r
atestart,

• the earliest time the route can end, t?ar yen , and

• the latest time a route can end, tl
r
ateend.

Given these quantities, the feasibility of an insertion is checked as follows. First, we
check whether the minimum delivery volume fits in the vehicle given the other planned
deliveries. Next, we compute the earliest time and the latest time a delivery can take place.
If the earliest delivery time is greater than the latest delivery time, the insertion is infeasible.
Using the latest delivery time, we compute the maximum delivery size. If it is smaller than
the minimum delivery size, the insertion is infeasible. If the insertion passes both of these
tests, it is feasible.

If an insertion is feasible, the cost of the insertion is evaluated. The cost of an insertion
is a weighted sum of several components. The first component is the increase in distance
and the second component is an approximation of the minimum increase in waiting time if
the insertion is carried out. The third component is a charge for making routes inflexible. In
the final 2-day plan, we like to have near-capacity routes. Therefore, we want to discourage
the construction of routes with a small difference tl

r
atestart — tfar ystart and a large difference

Q — X!_/6r #£/aX' smce it is unlikely that such routes can be extended to near-capacity routes.
A charge is incurred if the insertion forces a route to have a gap between earliest and latest
starting time that is less than x minutes and a total maximum delivery volume that is less
than y% of capacity. The charge is inversely related to the size of the gap.

12.5. Computational Experience 319

For each delivery to a customer, we maintain the cheapest feasible insertion and the
second cheapest feasible insertion, if it exists. Since we can always construct a feasible
route with just a delivery to a single customer, there exists at least one feasible insertion.

All that remains to complete the description of the insertion heuristic is to specify
how we select the deliveries to be inserted in each iteration. Note that we select deliveries
rather than customers, because customers may require multiple deliveries over the 2 days.
We use the following selection rule:

1. If there are deliveries that cannot be inserted into any existing route, then among those
deliveries select the one with the most expensive route for itself.

2. If all deliveries can be inserted into at least one existing route, then select the one with
the largest difference between the cost of its cheapest and second cheapest insertion.

The first part of the rule captures the idea that if there are deliveries that cannot be
inserted in the current set of routes, we know that we have to create at least one more route,
so we may as well do it now. The second part of the rule captures the idea of trying to insert
a delivery well and before all its good potential insertion points become infeasible.

These rules are first applied to the deliveries to customers that require multiple deliv-
eries over the 2 days. The idea is that these deliveries will be the most difficult to schedule
feasibly, so we need to handle these first. When all of these are scheduled, these same
insertion rules are then applied to the remaining deliveries.

After a feasible schedule is created, we run one more heuristic, the delivery-amount
optimization routine, which finalizes the schedule. It reviews the current schedule, decides
which of the customers should have their delivery amounts set above the minimum and, if
so, the new amount, and decides where in the final feasible time ranges the delivery times
should be set.

The insertion heuristic described above is embedded into a greedy randomized adap-
tive search procedure (GRASP; see Feo and Resende [18]). A GRASP combines a greedy
heuristic with randomization. Whenever the heuristic selects the next delivery to be in-
serted, it will pick randomly from the q best choices, where q is prespecified. This allows
the algorithm to make choices that do not seem to be the best at the time but may provide
better opportunities later. In a GRASP framework, the heuristic is executed many times and
the best plan obtained is picked.

12.5 Computational Experience
In this section, we present the results of various computational experiments that demonstrate
the viability and value of the approach presented in section 12.4 and illustrate many of the
complexities of inventory routing problems.

12.5.1 Instances

For our computational experiments we used actual data from two of PR AX AIR's production
facilities. We chose these two production facilities because the characteristics of the set of
customers they serve are quite different in terms of geography, tank capacities, and usage
rates.

320 Chapter 12. Inventory Routing in Practice

Figure 12.1. Map of plant A and its customers.

Figure 12.2. Deliveries per week for plant A customers.

Production facility A serves 50 customers that are fairly spread out, covering a mostly
rural area with some small clusters of customers near cities. The facility is located in the
northwestern corner of the state, not in the center, and is represented graphically by the
large square (see Figure 12.1). Customers are between 4 minutes and 4.5 hours driving
time from the facility, with an average of 3 hours. The average driving time between two
customers is 2 hours and 10 minutes. Of the 50 customers, 12% require less than one
delivery per week, 16% require between one and two, 8% require between two and three,
and 4% require between three and six (see Figure 12.2). With respect to tank capacities,
22% of the customers can receive a delivery of more than a truckload, but 58% cannot
receive even half a truckload (see Figure 12.3). In the graph, the heavy line indicates truck
capacity.

Production facility B serves 87 customers spread over a large geographic area in the
northern United States. The customers are concentrated heavily in the middle of the area,
where the facility is located, and become less concentrated as the distance from the center

12.5. Computational Experience 321

Figure 12.3. Plant A tank capacity.

Figure 12.4. Map of plant B and its customers.

increases (see Figure 12.4). Customers are between 6 minutes and 10 hours driving time
from the facility, with an average of 2 hours and 20 minutes. The average driving time
between two points is 3 hours and 40 minutes. In terms of usage, 90% need less than one
delivery per week, 8% need between one and two, and only 2% require more than one
delivery per week (see Figure 12.5). Furthermore, 21 % can receive a delivery of a truckload
and 41 % cannot receive half of a truckload (see Figure 12.6).

Roughly 75% of the customers at both plants use product 24 hours a day, 7 days a week.
Of the customers that are not constant users, many change how they use product depending
on the day of the week. Most use product roughly the same way Monday through Friday,
but often only 8 to 10 hours per day. The usage pattern usually changes on the weekend,
with many of these customers not using product at all on Sundays and less than half of a
weekday amount on Saturdays.

Other relevant information used in our computational experiments is that the time of a
delivery is calculated as 0.5 + (vehicle pump rate)-(quantity delivered), that it takes 1 hour

322 Chapter 12. Inventory Routing in Practice

Figure 12.5. Deliveries per week for plant B customers.

Figure 12.6. Plant B tank capacity.

to reload a vehicle at the facility before it can depart again on another route, that all vehicles
drive at a speed of 45 mph, and that deliveries can be made 24 hours a day.

Finally, the initial inventory for all customers was chosen randomly, with the restriction
that the inventory level should be sufficient to last the customer until the first time a vehicle
would be able to arrive at the customer to refill its tank.

12.5.2 Solution Quality

A solution to the IRP for a given planning period specifies which vehicles are visiting which
customers on each day of the planning period, in what order the deliveries are being made,
and how much is delivered to each customer. However, even with all this information it
is still nontrivial to evaluate the quality of the solution. Since the IRP is really an infinite-
horizon problem, we have only specified the first part of a solution. For example, if we
consider a planning period of 2 weeks, as we do in our computational experiments, it is
not obvious how to compare two solutions and claim that one is better than the other. If
the total distance traveled in one solution is less than in the other solution, this represents
a smaller driving cost. However, if in the solution with a higher total distance traveled,

12.5. Computational Experience 323

only full truckload deliveries are made, how can we say this solution is worse? It utilizes
the trucks extremely well and may end in a state that is a much better starting point for the
deliveries that have to be made in the following weeks.

Therefore, in addition to looking at the obvious statistics, such as the number of trucks
(indicated as T), number of routes (R), number of stops (S), percent utilization of the vehicles
(U), total volume delivered (V), the total distance traveled (Mile), we look at several other
statistics to evaluate the quality of a solution for a 2-week planning period. Some of these
statistics are used by PRAXAIR to evaluate their own performance, others are proposed in
the literature, and some we just found to be interesting.

A popular statistic used in industry is average volume per mile (aV/M). This statistic
averages the volume per mile of all the trips, where the volume per mile of a trip is what
we expect it to be, namely, the total volume delivered on a trip divided by the total distance
traveled on the trip. It is easy to see that this number is very sensitive to the distance of
customers from the facility and therefore does not seem to provide reliable information in
an averaged form. For example, if we consider a trip to a customer 4 miles from the facility
where a full truckload is delivered, the volume per mile is equal to truckload divided by 8.
If we consider another trip to a customer 40 miles from the facility where we also deliver
a full truckload, the volume per mile is equal to truckload divided by 80. The average of
these two volumes per mile (-^ truckload) does not provide much information.

A more sensible statistic, especially over a period of several days, is total volume per
mile (V/M), defined as the total volume delivered to all customers over the period considered
divided by the total distance traveled over this period. Since we are looking only at the first
piece of a long-term problem, it makes sense, in this first piece, to deliver more product than
required to ensure that customers will not run out, if it can be done at a relatively small cost,
i.e., a small increase in distance traveled. A large value of total volume per mile indicates
that we are successful at doing so.

A third statistic, inspired by Bell et al. [8], is weighted volume per mile (wV/M). In
[8], the authors discussed computing a "weighted delivery radius," which for a period equals
the amount delivered to each tank times the distance of that tank from the depot summed
over all tanks and divided by the amount delivered. With a representative from PRAXAIR,
we modified this statistic so that it can be computed for an individual route and such that
comparisons of this value among different routes can have meaning. The weighted volume
per mile for a trip with n customers is computed as

The intuition behind this statistic is revealed when we look at the values it gives for the
example given above. The value it gives for both trips is 0.5 truckload (which is the largest
value possible). It says that both trips are equally good, in fact, as good as possible, since
the best we can do when serving a customer for a long period is to deliver full truckloads.
When a trip contains several stops to deliver a full truckload or when a trip does not deliver a
full truckload, the value of this statistic goes down. The other benefit of this statistic is that
it still provides relevant information when it is averaged over a number of trips (assuming
all vehicle capacities are equal).

Other statistics that are also important to consider include the average inventory level
before delivery and average inventory level after delivery (indicated as Bef and Aft, respec-

324 Chapter 12. Inventory Routing in Practice

lively), both given as percent of capacity. Obviously, higher values are preferred, especially
with respect to the average inventory level before delivery, because a high value indicates
that we are less likely to experience stockouts due to fluctuations in usage rates. Further-
more, the average vehicle utilization is an interesting statistic. It tracks what percent of the
truck's capacity is used in making deliveries to the customers on a route. We would like
this value to be high, but not at all costs. We do not want to drive many extra miles just
to ensure a high vehicle utilization. (In practice, there is a strong belief that every vehicle
should leave the facility fully loaded and return empty. In part, however, this is motivated
by the inherent stochasticity that sometimes allows for larger-than-expected deliveries.)

Finally, we may also want to look at the number of vehicles used. However, we do
not want to put too much importance on this statistic in our experiments. In the long term,
eliminating a vehicle represents significant savings for a company, but in the short term, we
cannot really argue that one solution is really better than another just because it uses one
less vehicle.

In our tests, we used the number of vehicles used in practice as the maximum number
of vehicles available. We operated under the assumption that the number used in practice
was necessary (long-term) and that therefore minimizing this number (short-term) does not
make sense. If everything else is equal, however, this may be used as criterion for preferring
one solution over another.

12.5.3 Alternate Heuristic

To compare the quality of the solutions produced by our proposed approach to current
industrial practices, we implemented a solution approach based on the rules-of-thumb idea
and ideas most commonly used in practice. After many discussions with the planners at
PRAXAIR, we identified the following rules:

• Create trips around customers that must receive a delivery on the day being considered.
Fill up that customer to capacity and then add nearby customers to the trip if there is
remaining inventory in the vehicle.

• All customers on a trip are filled to capacity except for the last one.

• Discourage a vehicle from returning to the facility without delivering its remaining
capacity to some customer.

• Do not create trips involving only customers that do not require a delivery on the day
being considered unless there are excess resources that day and it appears that there
will be insufficient resources when the first of these customers requires delivery.

We refer to the heuristic that implements these ideas in our computational experiments
as IND APP since it represents an approximation of what is being done in industry.

12.5.4 Computational Experiments

The first experiment compares the solutions obtained by our proposed approach to the
solutions obtained by the industry approximation approach. The results can be found in

12.5. Computational Experience 325

Table 12.1. Base case versus industry approximation.

Setting T R S U V Mile V/M aV/M wV/M Bef Aft
BASE 3
INDAPP 4

65
67

118
90

95.72
89.58

2613027
2519989

18841
18988

138.69
132.71

410
309

18856
18357

24.54
11.41

81.64
81.27

BASE 3
INDAPP 3

61
61

106
93

90.26
85.41

30283480
28656473

14226
15042

2128.74
1905.10

8019
7016

215095
206276

19.91
9.83

92.49
88.97

Table 12.1. In all the tables, the results for plant A appear first, and the results for plant B
appear after the dividing line.

Our approach clearly outperforms the industry approximation approach. It does better
for both facilities on all the important statistics. The difference in the underlying ideas of
the two approaches is most clearly observed in the Bef column. The industry approximation
approach is driven by customers that are getting close to running out and that have to be
visited, which results in a low average inventory before delivery, whereas our approach
looks further ahead and attempts to identify good opportunities to visit customers before
they are near run-out.

As we indicated above, we believe that the strength of our approach is that it consid-
ers "enough" of the future to make the right decisions. In the next two experiments, we
investigate the impact of varying the amount of future considered. In our chosen approach,
we consider 5 days in full detail plus 4 weeks in aggregated form beyond this. We note
that considering 5 days in full detail is already more than many of the solution approaches
proposed in the literature. In Table 12.2, we show the results when we vary the amount of
future considered in aggregated form.

It is interesting to observe the increase in the number of deliveries when 6 weeks are
considered. When 6 weeks are considered, a larger portion of the objective function value
represents future costs, and optimizing with this objective apparently allows us to make
some unwise and expensive decisions in the part of the planning period that really counts,
i.e., the first 5 days. If we do not consider any future beyond the 5 days, we appear to be
missing some beneficial opportunities. There is not much difference, however, between
considering 1 week or 4 weeks beyond the 5 days.

Next, we decided to investigate the effect of considering fewer days in full detail. By
reducing this number from 5, we make the IPs smaller and therefore easier to solve, but it is
not clear what the impact will be on the solutions. In Table 12.3, we show the results when
we vary the number of days considered in full detail.

Table 12.2. Varying the number of weeks.

Setting
5 days,
5 days,
5 days,
5 days,
5 days,
5 days,
5 days,
5 days,

Owk
1 wk
4 wk
6 wk
Owk
1 wk
4 wk
6 wk

T R
4 69
4 67
3 65
4 74
3 64
3 60
3 61
3 57

S
119
117
118
125
105
102
106
111

U
92.43
95.04
95.72
88.10
84.58
89.02
90.26
89.40

V
2678599
2674527
2613027
2738189
29773123
29375272
30283480
28026955

Mile
20284
19640
18841
20836
14512
14050
14226
13789

V/M
132.05
136.18
138.69
131.42
2051.62
2090.77
2128.74
2032.56

aV/M
408
411
410
392
7087
7855
8019
7496

wV/M
18114
18687
18856
17514
204340
218711
215095
214607

Bef
29.87
25.26
24.54
24.26
20.30
18.03
19.91
19.28

Aft
87.76
82.18
81.64
80.74
92.33
92.16
92.49
85.22

326 Chapter 12. Inventory Routing in Practice

Table 12.3. Varying the number of days.

Setting
2 days,
3 days,
5 days,
2 days,
3 days,
5 days,

4 wk
4 wk
4 wk
4 wk
4 wk
4 wk

T R
*

4 69
3 65
3 66
3 65
3 61

S

103
118
102
103
106

U

90.32
95.72
86.19
84.53
90.26

V

2617434
2613027
31285911
30220444
30283480

Mile

19856
18841
14027
13172
14226

V/M

131.82
138.69
2230.41
2294.29
2128.74

aV/M

283
410
7298
8357
8019

wV/M

18188
18856
214827
219112
215095

Bef

27.99
24.54
18.40
17.83
19.91

Aft

91.30
81.64
94.75
92.99
92.49

As expected, the quality of the solutions decreases when we consider fewer days in
full detail. In fact, when we consider just 2 days, we are unable to construct a solution in
which none of the customers runs out of product during the planning period. In this case,
the IP selects delivery amounts for customers that turn out to be impossible to schedule with
the routing heuristic, because too many deliveries must occur on a specific day and roughly
at the same time. It is interesting to observe that when we consider fewer days, the number
of stops decreases significantly. Apparently, when we consider more days in full detail, the
IP starts looking for inexpensive opportunities to make deliveries to customers that require
a delivery only a few days out, whereas the IP is unable to do that when fewer days are
considered in full detail.

Besides the amount of future considered, the quality of the solution also is affected
by the parameter settings used in the routing and scheduling heuristic and whether delivery
amount optimization is active. When delivery amount optimization is not active, a delivery
amount cannot be set above the amount specified by the IP. In Table 12.4 we present the
results of our approach with and without delivery optimization. Without delivery optimiza-
tion (entries IP AMT), we expect the average vehicle utilization and the total volume to be
less. On the other hand, we do not want it to be much less because that would suggest that
our integer program is not making the right decisions.

Looking at the summary statistics, the delivery amount optimization clearly does
improve truck utilization and also leads to a significantly better total volume per mile and
weighted volume per mile. The increase in total volume delivered, however, was slightly
less than 3%.

Our default settings for the GRASP are to run the routing and scheduling heuristic
25 times and to select from among the three best choices. To investigate the impact of
these settings as well as the importance of randomization, we conducted an experiment in
which we executed the heuristic without any randomization (pure greedy) and with different
settings for the number of replications. The results are presented in Table 12.5.

Table 12.4. Delivery optimization.

Setting T R S U V Mile V/M aV/M wV/M Bef Aft
IP AMT
BASE

3
3

69
65

126
118

87.56
95.72

2537554
2613027

19929
18441

127.33
138.69

330
410

11071
18856

24.90
24.54

78.00
81.64

IP AMT 3 61 111 85.81 28789623 15274 1884.88 6612
BASE 3 61 106 90.26 30283480 14226 2128.74 8019

202495 19.12 85.10
215095 19.91 92.49

12.6. Conclusion 327

Table 12.5. Randomization.

Setting
NO RAND
5
25
50
NO RAND
5
25
50

T
4
3
3
4
3
3
3
3

R

71
67
65
65
59
62
61
63

S
121
116
118
121
99
111
106
111

U
87.82
93.70
95.72
93.22
86.22
87.99
90.26
87.57

V
2618675
2636760
2613027
2544803
27979401
30004693
30283480
30343074

Mile
21799
19315
18441
19176
14378
15094
14226
14605

V/M
120.13
136.51
138.69
132.71
1945.99
1987.86
2128.74
2077.58

aV/M
394
419
410
327
6990
6773
8019
7762

wV/M
17092
18592
18856
17793
200752
201000
215095
211049

Bef
23.54
24.76
24.54
23.74
15.28
19.88
19.91
19.88

Aft
79.87
82.77
81.64
77.21
88.34
89.13
92.49
89.61

Without randomization the solution has a noticeably low average vehicle utilization,
total volume per mile, and average weighted volume per mile. On the other hand, going to
50 replications does not seem to improve over 25 replications; in fact, it does slightly worse.
This is possible because the replications are for 2 days of the schedule at a time. Which
schedule is selected affects what deliveries are made, what the customer inventories are at
the end of the 2 days, and thus the input for the next integer program that is solved.

To obtain more insight in the behavior of the GRASP, we kept track of the total distance
traveled for all 50 replications at two different points in the 2-week planning period. The
results are plotted in Figure 12.7.

The criterion used to pick the best solution out of the 25 produced by the GRASP
is total travel distance. However, the results may be quite different if we decide to use
average weighted volume per mile as the criterion to pick the best solution. Our last
computational experiment relating to the GRASP compares the behavior based on different
selection criteria. The results are presented in Table 12.6. (D) indicates schedules selected
based on mileage and (WVM) stands for schedules selected based on average weighte
volume per mile.

Various other parameters can be set in the routing and scheduling heuristic. Some of
these help to construct solutions that reflect company policy. For example, in our default
approach, we did not penalize waiting time at customers. In practice, however, waiting
time is often strongly discouraged or even not allowed. To show the impact of discouraging
waiting time on the quality of the solutions, Table 12.7 presents the solution statistics when
we penalize waiting time significantly.

As we expected, when we allow waiting at customers, we get a higher truck utilization,
a better total volume per mile, and average weighted volume per mile.

12.6 Conclusion
We presented the IRP and an optimization-based approach for its solution. Extensive com
putational experiments indicate the value and potential of optimization-based approaches
for complex routing and scheduling problems. The IRP is of special interest because it inte-
grates two components of supply chain management: inventory control and vehicle routing.
This type of integration is essential to improve overall system performance.

328 Chapter 12. Inventory Routing in Practice

Figure 12.7. Effects of randomization.

Table 12.6. Selection criteria.

Setting T R S U V Mile V/M aV/M wV/M Bef Aft
ID) 3 65 118 95.72 2613027 18441 138.69 410 18856 24.54 81.64

(WVM) 4 65 120 96.83 2643371 19341 136.67 423 19018 24.99 82.64
~(DJ 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49

(WVM) 3 58 105 91.34 29138802 14235 2046.98 8291 220091 20.50 91.76

Table 12.7. Waiting time.

Setting T R S U V Mile V/M aV/M wV/M Bef Aft
NOCHG 3 65 118 95.72 2613027 18441 138.69 410 18856 24.54 81.64
WAITCHG 4 70 119 90.50 2660785 20019 132.91 390 17817 21.26 77.66
NOCHG 3 61 106 90.26 30283480 14226 2128.74 8019 215095 19.91 92.49
WAITCHG 3 58 103 88.46 28220108 14908 1892.95 6298 197806 18.06 88.17

Bibliography 329

Bibliography

[1] S. Anily and A. Federgruen. One warehouse multiple retailer systems with vehicle
routing costs. Management Science, 36:92-114, 1990.

[2] S. Anily and A. Federgruen. Rejoinder to "One warehouse multiple retailer systems
with vehicle routing costs." Management Science, 37:1497-1499, 1991.

[3] M. Ball. Allocation/routing: Models and algorithms. In B.L. Golden and A.A. As-
sad, editors, Vehicle Routing: Methods and Studies, Elsevier Science, Amsterdam,
Netherlands, 1988.

[4] J. Bard, L. Huang, M. Dror, and P. Jaillet. A branch and cut algorithm for the VRP with
satellite facilities. HE Transactions on Operations Engineering, 30:821-834, 1998.

[5] J. Bard, L. Huang, P. Jaillet, and M. Dror. A decomposition approach to the inventory
routing problem with satellite facilities. Transportation Science, 32:189-203, 1998.

[6] D. Barnes-Schuster and Y. Bassok. Direct shipping and the dynamic single-
depot/multi-retailer inventory system. European Journal of Operational Research,
101:509-518,1997.

[7] Y. Bassok and R. Ernst. Dynamic allocations for multi-product distribution. Trans-
portation Science, 29:256-266, 1995.

[8] W. Bell, L. Dalberto, M.L. Fisher, A. Greenfield, R. Jaikumar, P. Kedia, R. Mack, and
P. Prutzman. Improving the distribution of industrial gases with an on-line computer-
ized routing and scheduling optimizer. Interfaces, 13:4-23, 1983.

[9] O. Berman and R. Larson. Deliveries in an inventory/routing problem using stochas-
tic dynamic programming. Technical report, Massachusetts Institute of Technology,
Cambridge, MA, 1999.

[10] J. Bramel and D. Simchi-Levi. A location based heuristic for general routing problems.
Operations Research, 43:649-660, 1995.

[11] A. Campbell, L. Clarke, A. Kleywegt, and M. Savelsbergh. Inventory routing. In
T. Crainic and G. Laporte, editors, Fleet Management and Logistics, Kluwer, Boston,
MA, 1998.

[12] S. Cetinkaya and C. Lee. Stock replenishment and shipment scheduling for vendor
managed inventory systems. Technical report, Texas A & M University, College
Station, TX, 1999.

[13] T. Chien, A. Balakrishnan, and R. Wong. An integrated inventory allocation and
vehicle routing problem. Transportation Science, 23:67-76, 1989.

[14] M. Dror, M. Ball, and B.L. Golden. Computational comparison of algorithms for the
inventory routing problem. Annals of Operations Research, 4:3-23, 1985.

330 Bibliography

[15] M. Dror and L. Levy. Vehicle routing improvement algorithms: Comparison of a
"greedy" and a matching implementation for inventory routing. Computers and Op-
erations Research, 13:33-45, 1986.

[16] M. Dror and Ball. M. Inventory/routing: Reduction from an annual to a short period
problem. Naval Research Logistic Quarterly, 34:891-905, 1987.

[17] A. Federgruen and P. Zipkin. A combined vehicle routing and inventory allocation
problem. Operations Research, 32:1019-1036, 1984.

[18] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization, 6:109-133, 1995.

[19] M.L. Fisher, A. Greenfield, R. Jaikumar, and P. Kedia. Real-time scheduling of a bulk
delivery fleet: Practical application of Lagrangean relaxation. Technical report, The
Wharton School, University of Pennsylvania, 1982.

[20] F. Furnero and C. Vercellis. Synchronized development of production, inventory, and
distribution schedules. Transportation Science, 33:330-340, 1999.

[21] G. Gallego and D. Simchi-Levi. On the effectiveness of direct shipping strategy for
the one-warehouse multi-retailer r-systems. Management Science, 36:240-243,1990.

[22] B.L. Golden, A.A. Assad, and R. Dahl. Analysis of a large scale vehicle routing
problem with an inventory component. Large Scale Systems, 7:181-190, 1984.

[23] P. Jaillet, L. Huang, J. Bard, and M. Dror. A rolling horizon framework for the inventory
routing problem. Working paper, University of Texas, Austin, 1997.

[24] G.A.P. Kindervater and M.W.P. Savelsbergh. Vehicle routing: Handling edge ex-
changes. In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, Wiley, Chichester, UK, 1997, pp. 337-360.

[25] AJ. Kleywegt, V.S Nori, and M.W.P. Savelsbergh. The stochastic inventory rout-
ing problem with direct deliveries. Technical Report TLI99-01, Georgia Institute of
Technology, Atlanta, GA, 1999.

[26] A. Minkoff. A markov decision model and decomposition heuristic for dynamic
vehicle dispatching. Operations Research, 41:77-90, 1993.

[27] V. Nori. Algorithms for Dynamic and Stochastic Logistics Problems. Ph.D. thesis,
Georgia Institute of Technology, Atlanta, GA, 1999.

[28] M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35:254-265, 1987.

[29] P. Trudeau and M. Dror. Stochastic inventory routing: Route design with stockouts
and route failures. Transportation Science, 26:171-184, 1992.

Chapter 13

Routing Under
Uncertainty:
An Application in
the Scheduling of Field
Service Engineers

Eleni Hadjiconstantinou
Daron Roberts

13.1 Introduction
In the classical definition of VRP, it is assumed that the associated parameters, concerning
factors such as cost, customer demands, and vehicle travel times, are deterministic. This
conjecture often is too simplistic in today's dynamic environment, where there exist increas-
ing requirements on levels of productivity and service and a corresponding commitment to
enlarged and more elaborate transportation systems. In parallel with the need to manage
such a growing number of systems there exists an increased amount of data augmentation
and volatility. Hence, when an organization does not possess enough flexibility in its labor
assignments, does not possess any real-time parameter information, or cannot analyze data
in an online manner, deterministic models cannot always be implemented and stochastic
models need to be considered.

The Stochastic VRP (S VRP) differs from the VRP by the introduction of some element
of variability within the system in question. Unlike its deterministic equivalent, the S VRP
is ambiguously defined since it belongs to a class of a priori optimization problems (see
Bertsimas, Jaillet, and Odoni [3]) for which it is impractical to consider an a posteriori
approach that computes an optimal solution whenever the random variables are realized.
Instead, an a priori solution attempts to obtain the best solution, over all possible problem
scenarios, before the realization of any single scenario. Roberts and Hadjiconstantinou [24]
evaluated the computational performance of such a solution method. The authors showed
that an a priori solution for a VRP where demand is uncertain lies, on average, within 8%
of the solution obtained by a reoptimization-based, a posteriori strategy.

The specific type of S VRP to be considered in this case study is the VRP with Stochastic
Service Times (VRPSST). Roberts and Hadjiconstantinou [24] considered the factors affect-

331

332 Chapter 13. Routing Under Uncertainty

ing the stochastic optimum of an SVRP and concluded that given a set of fixed-recourse
arrangements, route break opportunities and information disclosure patterns, a meaningful
set of SVRP interpretations can be identified. Here, a new algorithm, referred to as the
Paired Tree Search Algorithm (PTSA), is used to solve the VRPSST with variable costs of
recourse. The algorithm is tested on a real-life operational problem at a utility company. The
company needs to schedule its field service engineers across a range of possible maintenance
jobs. Most jobs arise stochastically and have durations that are rarely pre-determined since
the engineers have limited knowledge of the nature of the work required at each site. We
model this stochastic scheduling and routing problem as a VRPSST and develop a solution
procedure, based on the PTSA, that minimizes operating costs. Computational results for a
pilot study, including an investigation into reoptimization, show significant improvements
over current practice.

In sections 13.2 and 13.3, respectively, the theoretical problem is formally defined
and the relevant SVRP literature is briefly reviewed. A stochastic integer formulation
for the VRPSST is given in section 13.4, and the PTSA is summarized in section 13.5. In
sections 13.6 and 13.7, an outline of the applied scheduling and routing problem and the key
objectives proposed by management are described, and a comprehensive list of assumptions
is presented. Detailed explanations of model input and output are given in sections 13.8 and
13.9, respectively, and an illustrated example is presented in section 13.10. Computational
results are shown in section 13.11.

13.2 VRPSST with Variable Costs of Recourse
Let G — (V, E) be a graph where V = {i>i, i > 2 , . . . , vn} is a set of vertices and E =
{(t>(, Vj) : Vi, Vj € V} is a set of edges. The vertices have known and fixed locations, and
every edge (vj, Vj} has an associated nonnegative cost ci; and nonnegative travel time tij. It
is assumed that the graph is undirected and the matrices C = (c/;) and T = (tij) satisfy the
triangular inequality, i.e., (t>/, Vj) is defined only for/ < j and(c/£+C£/ > Cij, tik+tkj > %
for all i, j, k). Vertex v\ represents a depot at which a homogeneous fleet of K vehicles, each
with an overall working (service and travel) time restriction of r, is based. The remaining
vertices correspond to a set of customers where each customer u/ has associated service time
requirements given by discrete, independent, nonnegative random variables £(with finite
means /z, and variances of. In a first stage, a set of K vehicle routes of minimal cost are
determined so that (i) each route starts and ends at the depot and (ii) each customer is visited
exactly once by one vehicle. In a second stage, the first-stage routes are followed as planned
but whenever i is exceeded along a route, as a consequence of the deterministic travel times
tij and the stochastic service times £/, the vehicle returns to the depot and then continues
along its predefined route with a replenished time allowance of r. Because second-stage
recourse costs are represented by the values of such return trips to the depot, the objective
is to design a minimum expected cost set of routes such that all service time requirements
are met, (i) and (ii) are satisfied, and exactly K vehicles are used.

13.3 Literature Review
The SVRP, in all its guises, has seen relatively little research in comparison with its well-
known deterministic counterpart. Given the number of potential applications, this lack of

13.3. Literature Review 333

research is due to the enormous complexity that the addition of a stochastic element brings
to an already difficult combinatorial optimization problem. To our knowledge, the VRPSST
as defined in section 13.2 has never been formulated or solved in the literature. However,
the problem has very close links to two other stochastic routing problems, the VRP with
Stochastic Travel Times (VRPST) and VRP with Stochastic Demands (VRPSD). Here, we
briefly review both problems.

13.3.1 VRPST

The objective of the VRPST—and its one vehicle counterpart, the Traveling Salesman
Problem with Stochastic Travel Times (TSPST)—usually involves finding an a priori
solution such that the probability of completing any tour within a given deadline is max-
imized. In cases such as these, the VRPST is interchangeable with the multiple vehicle
TSPST (m-TSPST).

Kao [15] proposed two heuristics for the TSPST, one based on dynamic programming
and one based on implicit enumeration. Sniedovich [25] showed that obtaining optimal
solutions using the former dynamic programming approach is reliant on the property of
monotonicity, and Carraway, Morin, and Moskowitz [4] presented a generalized dynamic
programming method that overcomes this problem. Lambert, Laporte, and Louveaux [16]
derived a heuristic solution algorithm for the m-TSPST, based on the well-known Clarke
and Wright [5] savings procedure, and found cost-effective cash-collection routes through
bank branches where the amount of cash collected is limited by an insurance company and
late arrival incurs a penalty relating to lost interest. Laporte, Louveaux, and Mercure [20]
were the first to consider an alternative objective for the VRPST. They presented a three-
index simple recourse model and a two-index recourse model for a VRPST based on finding
a minimum cost a priori solution where the penalty for late arrival is proportional to the
length of the delay. Using an integer L-shaped method (see Laporte and Louveaux [18]),
they presented exact results for VRPSTs of up to 20 customers.

13.3.2 VRPSD

The few studies that have been completed on the VRPSD focused on heuristic methods.
Tillman [29] developed an adapted Clarke and Wright [5] savings algorithm to account for
stochastic demands, Teodorovic and Pavkovic [28] presented a simulated annealing heuris-
tic, Gendreau, Laporte, and Seguin [11] described a tabu search algorithm, and Teodorovic,
Krcmar-Nozic, and Pavkovic [27] presented a route-first, cluster-second approach. Golden
and Stewart [14] were the first to apply stochastic programming to the VRPSD, and Stewart
and Golden [26] presented formulations for the chance constrained case, where customers
are served according to a given probability, and the penalty function case, where each
customer is served with the inclusion of a possible recourse cost. Further stochastic pro-
gramming formulations have been developed—see Dror and Trudeau [10], Dror, Laporte,
and Trudeau [9], Laporte and Louveaux [17], Bastian and Kan [1], Dror [7], Dror, Laporte,
and Louveaux [8], and Popovic [21]—but these yielded no exact solutions apart from a
special location-routing model presented by Laporte, Louveaux, and Mercure [19] and a
special case of the probabilistic VRP with stochastic demands and deterministic customer
presence by Gendreau, Laporte, and Seguin [12]. In the former paper, problems are solved

334 Chapter 13. Routing Under Uncertainty

to optimality for N = |30|, where N represents both the number of customers and possible
depot sites. In the latter paper, exact solutions are given for problems of up to 70 cus-
tomers; however, in such cases, the parameters are set such that the problem is in essence
deterministic. More recently, Roberts and Hadjiconstantinou [23] presented a new method
on which the algorithm used in this study is based, that can successfully solve computa-
tionally difficult VRPSDs of medium size. For more information, see a detailed review
by Roberts [22] and a survey of the generic SVRP, including the VRPSD, by Gendreau
Laporte, and Seguin [13].

13.4 Stochastic Integer VRPSST Formulation

Given a feasible set of routes represented by x = [jc/7] and a set of service times arising
from the random variables £, for all i = 2,..., n, the VRPSST can be represented by the
following two-stage stochastic program with recourse:

where min fo(x) is the objective function of the first-stage problem and min E£^ (Q(x, e))
is the objective function of the second-stage problem, i.e., Q(x, e) is the cost of recourse
given that jc = [xij] is the first stage solution. These two stages are further defined below.

13.4.1 First-Stage Problem

The first-stage problem, min f o (x) , corresponds directly to the solution of a multiple TSP
or m-TSP, where a complete feasible set of routes is required to minimize ex. With c;; and
xij interpreted as c7, and jc;(whenever i > j, we define integer decision variables jc(y as
follows:

A feasible set of routes is then obtained by solving the following:

subject to

13.4. Stochastic Integer VRPSST Formulation 335

These first- stage deterministic constraints specify that K vehicles enter and leave the depot
(13.4), that every customer receives a visit exactly once, i.e., the vertex degree constraints
(13.5), and that individual routes disconnected from the depot are prohibited, i.e., the clas-
sical connectivity constraints (13.6).

1 3.4.2 Second-Stage Problem

The second-stage problem, min Eee$(Q(x, e)) in (13.1), is less well defined; however, some
clarification can be sought by introducing a recursive stochastic formulation based on each
a priori first-stage solution.

Consider a first-stage feasible solution characterized by the vector xv — [xf:]. Let
W(xv) = EE€%(W(xv, £)) denote the expected second-stage costs and let Wk(xv, e) de-
note the recourse cost of route k in xv given the realization s of the random variable £.
The expected cost of K vehicle routes given a current feasible solution xv is then simply
W (x v) = Xlf= i Wk(xv), where the expected cost of any route k can be computed separately,

Let p\ represent the probability that the /th service time s[originates from the set
of realizations {e(- , . . . , e', . . . , £ ; '} of customer u/ such that e\ < sk for all / < k. It is
assumed that each customer requires a service and that the maximum time requirement of
any customer is always equal to or less than the overall vehicle working time restriction,
i.e., s- > 0 and ef < r for all i > 1. In addition, relabel the vertices of the A;th route of xv

so that the route becomes (v\, 1*2, • • • , vtk, vtk+] = i>i) . By denoting g to be the remaining
working time available for a vehicle on arrival at a customer u,- , the expected cost of a route
k is then as follows:

where

and

The proof of (13. 10)-(13.12) is similar to that shown by Bertsimas [2] for the VRPSD,
and it follows directly from the definition o f a k (g) , which represents the expected recourse

336 Chapter 13. Routing Under Uncertainty

cost from vertex t>/ of route k given that the remaining working time available for any vehicle
before entering vertex i>, is g. The three terms in (13.11) are explained as follows:

• The working time of a vehicle has been exhausted (to zero) at a given customer, but
no failure occurs at this customer because of the presence of late information. The
vehicle will then arrive at the next present customer along its route with zero available
working time.

• Whenever the remaining working time available for a vehicle on arrival at a customer
becomes exceeded, then a route failure has occurred and a trip back to the depot is
necessary.

• If the service time requirement of a given customer does not exceed the remaining
working time available for the vehicle on arrival at this customer, then no route failure
occurs and the vehicle continues along its route.

The resulting stochastic programming model is a highly complex composite program
of two parts. Initially, a first-stage integer program, (13.3)-(13.9), needs to be solved
to find a feasible solution structure (one of a number of feasible sets of routes) that can
be implemented into the next stage of the solution method. Then, a recursive stochastic
recourse formulation must be utilized to find the cost of the penalty function for the given
first-stage solution and so enabling the derivation of a solution value for the entire VRPSST
(13.1). Clearly, finding an optimal solution to such a complex problem in reasonable time is
a difficult task. In the following section, we outline an algorithm that can be used to obtain
optimal VRPSST solutions in reasonable time (while retaining a suitable limit on computer
memory requirements) by providing an adequate structure for the implementation of a series
of lower bounds for both the first-stage and second-stage problems.

13.5 Paired Tree Search Algorithm (PTSA)

The PTSA was developed by Roberts and Hadjiconstantinou [23] to obtain optimal solutions
to the VRPSST and has its foundations in a Stochastic Decision Tree (SDT) approach. (For
further details of this method, see Roberts [22].) An SDT is a tree that branches for each
possible decision and each possible realization of the stochastic variables involved. The
tree is then built up of a series of decision nodes and chance nodes where the outcome of
one possible instance of the problem is obtained at each leaf of the tree. For the VRPSST,
decision nodes represent the choice of an arc on a graph contributing to a vehicle route, and
chance nodes correspond to the independent events generated after the customer service
times have been realized. The PTSA further modifies the SDT method in the following two
ways:

• Due to the possibility of recourse, a VRPSST solution refers to a set of planned routes
that may not be completed in practice. To represent the first-stage problem, therefore,
a search tree is linked to a SDT, i.e., a group of SDT nodes index a single node on a
separate tree.

• Unless events are properly limited, the branching from SDT chance nodes can lead to
dimensionality problems. In the PTSA, therefore, SDT branching occurs according

13.5. Paired Tree Search Algorithm (PTSA) 337

to the residual working time a vehicle can have after satisfying the service time
requirements of the customer in question, i.e., events equate to alternative service
time-leaving levels. In addition, an aggregation process is established where the
service time-leaving level of each chance node contributes to new nodes formed in a
rebranching procedure. Each of the rebranched nodes then corresponds to a unique
service time-leaving level, thereby limiting the discrete number of nodes retained on
each level of the SDT to T.

13.5.1 Linked Trees

The PTSA is implemented based on the use of two linked trees. An example is shown
in Figure 13.1. One, a binary search decision tree (OUTER tree), relates to the first-
stage deterministic problem, and the other, an SDT-based tree (INNER tree), relates to the
second-stage stochastic recourse problem. The OUTER tree conforms exactly to a simple
branch-and-bound method. Every branch corresponding to a possible routing segment
in the VRPSST divides the feasible solution subset into two independent sets: one that
refers to a customer vf and another that refers to ~vj. For the example in Figure 13.1, no
route constructed below node 6 can include the arc (1)2,^3); however, it must include the
arcs (t > i , Uo.) and (i > 2 , v ^) . In the INNER tree, decision nodes branch from chance nodes
according to the service time-leaving level of the next customer following from the service
time requirements of the given customer and the service time-leaving level of the preceding
customer. Each decision node has an independent probability of occurrence in comparison
with other nodes having the same parent chance node. Each node in the OUTER tree indexes
at least one decision node on the INNER tree. Such pointers are shown as dotted lines in the
diagram. For example, INNER tree nodes 3, 4, 8, and 9 are assigned the same OUTER tree
index, i.e., O (j) = 3 for j = 3, 4, 8, 9. The algorithm adopts a nested branching scheme,
and lower bounds, corresponding to both stages of the formulation, are embedded on each
tree to limit the search before an optimal solution to the VRPSST can be found.

13.5.2 Lower Bounds

A lower bound can be computed at each OUTER tree node as follows. Solving the first-stage
problem (13.3)-(13.9) is equivalent to finding feasible solutions of the m-TSP. A 2-perfect
matching-based lower bound of the first stage problem, L', can be generated by relaxing the
subtour connectivity constraints (13.6) and the vehicle number constraints (13.4). Moreover,
with the simple addition of K artificial depots with infinite interconnecting travel costs, the
necessary K vehicle routes can be obtained.

A second-stage lower bound, L2, can be obtained by considering the recourse problem
at each binary search tree node p in which a set of customers S previously has been served.
Let w(p} denote the customer index associated with node p. Consider the minimum total
service time to be satisfied via return trips to the depot at p. Such a quantity of time
depends on the service-time distributions of the remaining customers, the combined total
time restriction of the remaining vehicles, and the minimum travel time required to cover
the remaining customer locations. If the set of customers still needing a service at node p is
S' = V\(Sn{i>i}), the number of vehicles available is K', the minimum travel time required
to visit the customers in 5" is P' (a lower bound of which can be obtained using a 2-perfect

338 Chapter 13. Routing Under Uncertainty

Figure 13.1. Linked trees in the PTSA.

matching approach), and each service time set, {e/ , . . . , ef], is ordered in ascending size,
then the minimum remaining working time g(p) to be satisfied through recourse is given by

The proof of (13.13) is straightforward and can be given as follows. Two cases are examined:

1. If the current vehicle is situated at the depot, i.e., w(p) = 1, then its overall working
time restriction is given by r. In addition, there are K' identical vehicles, so the
total working time of the vehicles remaining to serve the customers in S' is given by
T + TK' = T(K'+\}.

13.6. Applied Maintenance Scheduling Problem 339

2. If the current vehicle is situated at a customer, i.e., w (p) ^ 1 , then its overall workign
time restriction is less than T; the maximum working time now available is r — 1
Since, in addition, there are K' vehicles (each with a working time limit T) remaining
to serve the customers in 5", the total working time available is given by r + r K' — 1 =
r(K' + !) — !. Hence, the minimum remaining working time g(p) to be satisfied
through recourse is given by (13.13).

If g(p) is greater than zero, then a route failure will definitely occur irrespective of
how the remaining customers are routed. Indeed, the minimum number of route failures,
f (p) , that must occur while serving the remaining customers is given by f (p) = |~g(p)/r~| ,
where [*] represents the smallest integer not less than *. Now, given that CQ represents the
remaining least-cost single trip to the depot, i.e., CQ = minVk [c\k \ vk e 5"], the lower bound
L2 is given by

where z£ is the total recourse cost for all OUTER tree nodes on the leaf from the root node
of the tree up to and including node A, the parent node of p.

13.5.3 Computational Implementation

In this section, a brief description of the complete algorithm, including the lower bounds,
is presented. Let z* denote a simple upper bound obtained at the root node of the OUTER
tree in a heuristic fashion. At each OUTER tree decision node p representing customer
w(p) with a parent node X the current partial route k is extended using arc (vw^, v w (p }) . If
an infeasible first-stage solution to a corresponding 2-perfect matching problem is found,
then backtracking occurs; otherwise, the search continues and lower bounds, L1 and L2,
on the first- and second-stage problems, respectively, are computed on the OUTER tree. If
(L1 + L2) is greater than the best incumbent feasible VRPSST solution value, z*, then node
p is fathomed; otherwise, the search is transferred to the INNER tree. The set of INNER tree
nodes, AA, that previously was developed and used to index X are located and full branching
occurs on the INNER tree from all nodes in A'1 to generate a series of new nodes linked to
p, Ap, with unique load-leaving levels. The recourse cost z2 is updated accordingly.

Once branching is completed, the search is transferred to the OUTER tree. The current
solution value is computed by zp — zp

{ + Z2 , where zp
} = L1 . If a feasible first-stage set of

nodes is found at node p and zp < z*, then z* is updated accordingly by z* = zp .

1 3.6 Applied Maintenance Scheduling Problem
The PTS A was used to solve a real-life operational problem at a utility company, which has
been modeled as a VRPSST. The company has a large number of major assets, including
depots, work sites, buildings and machinery, and employs Field Service Engineers (FSEs) to
maintain all these assets. FSEs are home-based and work independently in a set geographical
region. An average day for an FSE involves 8 hours and 15 minutes of work, and overtime
is paid for work completed over this allotted time. Typically, a number of jobs (usually

340 Chapter 13. Routing Under Uncertainty

fewer than 10) are completed per day at a number of alternative sites (usually fewer than 5).
Accordingly, an FSE may complete up to 30 jobs per week at up to 20 locations.

13.6.1 Maintenance Scheduling System in Practice

Jobs are assigned to an FSE in a variety of ways; however, each job has a basic form
of prioritization and, for all but the most reactive jobs, requires some form of localized
scheduling and routing. Currently, before deciding which jobs to complete each day, an
FSE considers a variety of factors, including

• priority, which is a known upper limit of time before which a job must be completed,

• site location, which is known and fixed,

• travel time, which is estimated based on FSE knowledge of the geographical area and
local traffic systems and so forth, and

• service time, which is the length of time taken to complete a job and which is estimated
according to incomplete knowledge and FSE experience.

In this study, FSE jobs are defined according to their associated priority and belong to
one of the following three categories: (i) reactive (R)—emergency call-outs with a priority
given in terms of hours; (ii) preplanned (P)—regular jobs with a priority given in terms of
months; and (iii) unplanned (U)—irregular jobs that require some form of local prioritization
usually given in terms of days or weeks. The characteristics of these job types, obtained
from a database storing information for 8 months of FSE work, are shown in Table 13.1.
Specifically, column 2 shows the proportion of jobs that were classified under a particular
job type during this period (Total Number), column 3 displays the proportion of total time
spent completing jobs of a particular job type (Total Time), column 4 highlights the average
duration of time taken to complete individual jobs of a particular job type (Average Service
Time), and column 5 displays approximations of the upper limits of priority per job type
that accord with FSE efficiency targets.

13.6.2 Stochastic Problem Setting

In any stochastic environment, there exists a specific information state that refers to the
amount of information available to the decision makers at the time of decision making as
opposed to the time when full information becomes available. In this study, the decision
makers are the engineers, decision making refers to local scheduling and routing, and full
information occurs with hindsight after a job is completed. The presence of a stochastic

Table 13.1. Job characteristics for an engineer.

Job type
Preplanned
Unplanned
Reactive

Total number
59%
11%
30%

Total time
23%
19%
58%

Average service time
1 hour

5 hours
6 hours

Priority
3 months
2 weeks
1 hour

13.7. Modeling the Applied Problem as a VRPSST 341

information state is highlighted by the facts that (i) service times are deemed stochastic as
opposed to fixed, and (ii) there exist inconsistencies in the way jobs are reported, e.g., a
qualitative study with FSEs revealed an estimated ratio of 20:70:10 in the Total Number of
P, U, and R jobs in contrast to the actual ratio of 59:11:30 (see Table 13.1). In practice, there
also exist a variety of reoptimization methods, i.e., operational systems, that can be utilized
in such a problem environment.

Table 13.1 shows that more than 50% of an FSE's work time is spent doing reactive
jobs. Such jobs, however, total only 30% of all jobs completed. Indeed, as P and U jobs
are large in number and have shorter durations which are stochastic in nature they are seen
as schedulable. Conversely, reactive jobs are seen as uncontrollable and reducible only by
improved engineering techniques and preventative maintenance, i.e., an increased number
of planned maintenance jobs should decrease the overall number of emergency cases.

To summarize, two uncertainties are present in the FSE scheduling and routing system.
First, certain maintenance jobs completed by FSEs can arise in a probabilistic manner, and,
second, the time required to complete individual jobs is unknown, i.e., the occurrence of FSE
jobs can be stochastic and the completion times of FSE jobs is stochastic. Consequently,
the problem of determining optimal schedules is very complex. To simplify the approach,
consider a finite period of time within which a series of P, U, and R jobs have to be completed
by an FSE. (Note that the geographical boundary of such jobs will be specified by the site
locations themselves.) The basic routing and scheduling problem can then be described as
follows: If an FSE has a list of U and P jobs to complete within a finite planning horizon
(e.g., a 5-day working week), how should those jobs be scheduled to minimize overall
cost, taking into account both reactive call-outs (R jobs) and the uncertain nature of job
service times?

13.7 Modeling the Applied Problem as a VRPSST
The authors were asked to examine the possible restructuring and refinement of the existing
FSE scheduling and routing system with a view to reducing costs or improving productivity
and the level of service associated with maintenance operations at the utility company.
These issues were addressed by developing a VRPSST-based optimization model of the
basic FSE scheduling and routing problem given above and validating the model using
historical information. More specifically, the optimization model can be used to identify
optimal schedules of P and U jobs for a given FSE and, therefore, can be used to recommend
the most efficient daily routes, taking into account stochastic service times (and reactive call-
outs). The relative performance of the model then can be evaluated by analyzing existing
FSE schedules; i.e., model output can be used to predict schedules based on historical
information and a comparison can then be made between results obtained manually and
results that could have been obtained with the use of the model. Finally, it is possible to
investigate the impact of using the model at two different stages of implementation. Such
analysis provides a measure of the comparative efficiency of the current manual system
against that of the model at two stages of practical use primarily concerned with reactive
call-out recognition.

To model the FSE problem as a VRPSST, each "vehicle" corresponds to a "day" in a
given planning horizon. The time restriction, x, then equates to the normal hours of each

342 Chapter 13. Routing Under Uncertainty

working day. In addition, VRPSST customers correspond to jobs that require a service,
and, as before, each job has an assigned geographical location, each route starts and ends
at a fixed point (the depot), and each job is serviced on one day only, i.e., each customer is
visited exactly once by one vehicle. The time matrix represents the travel times between
customer sites, and the cost matrix may represent travel time, travel cost, or travel distance
between customer sites. The objective of the VRPSST described in this context is then
to design a minimum expected cost set of routes given that recourse costs (represented by
return trips back to the depot) are interpreted as the cost incurred to return to a location to
complete a particular job on a day outside the planning horizon.

13.8 Model Input
The implementation of the optimization model requires the availability of input data in
the format required by the model. The primary operations involved in scheduling an FSE
include the prioritization of jobs to be scheduled, the classification of individual job times
from a host of job characteristics, and the inclusion of geographical site locations. The two
main inputs required are discussed below.

13.8.1 Job Locations and the Road Network

The results presented in this case study are based on real distances calculated between
any two site locations using a real Road Network System (RNS). This system covers the
pilot study region of the utility company and, for this reason, 10 figure OS references were
obtained for all pilot study-based sites and FSE home locations. The road network contains
more than 4000 road segments (arcs) and about 1600 intersections of road segments (nodes
identified by grid references).

The RNS stores not only the length of the links between road junctions but also the
type of road that makes up a link. With such information, it becomes possible to adjust
for differing vehicle speeds on different types of road, e.g., motorway (60 mph), A road
(40 mph), and B road (20 mph), and hence to calculate accurate vehicle travel times between
any two locations. Note that the route that gives the minimum vehicle travel time between
any two sites may well be different from the minimum mileage route between the same two
sites. In this study, vehicle routes are planned on the basis of a minimum vehicle travel cost
between sites, which represents an equally weighted combination of both factors. Shortest
routes between any two site locations on the road network and associated path information
are determined using a shortest path algorithm; see Dijkstra [6].

13.8.2 Service Times

A standard mathematical distribution is required to describe the service time of a particular
job and act as input into the VRPSST maintenance model. For our purposes, an FSE job
is not defined by precise engineering detail but by what an FSE predicts a particular job to
entail since, for all but the most trivial of jobs, the precise specifics of a job are unknown
until the problem is diagnosed on site. By examining service time distributions for the same
job types using data for individual FSEs, log-normal distributions with differing means and
standard deviations were found to fit with adequate statistical confidence. Therefore, when

13.9. Model Output: Computational Considerations 343

Figure 13.2. Example FSE service time distribution input.

a service time distribution is required, the FSE's mean service time, and standard deviation,
for a given job type contribute to a discretized log-normal distribution that can be entered into
the model. An example of such an input distribution, where there exist 12 discrete service
time possibilities, is shown in Figure 13.2. Notice that for modeling purposes, a limit of 6
hours is maintained, i.e., the probability that a time above 6 hours is realized contributes to
a summed discrete probability of occurrence corresponding to exactly 6 hours.

13.9 Model Output: Computational Considerations
The model was coded in FORTRAN and run on a Silicon Graphics Workstation Indigo
R4000 (100MHz). The evaluation of the computational performance of the model is based
on 12 scenarios (each scenario corresponding to one week's data) from one month's historical
data for three FSEs based in the pilot study region.

13.9.1 Framework for the Analysis of Results

The actual input for each scenario, obtained from historical information, displays when and
where each job was completed, what its priority was, and how long each job took to be
completed (in hours) for a given FSE's working week. The following information can be
obtained from such a weekly input: (i) a list of all P and U jobs to be scheduled on Monday
morning, (ii) the actual service time per day (with and without reactive call-outs), (iii) the

344 Chapter 13. Routing Under Uncertainty

actual travel time per day (with and without reactive call-outs), (iv) the actual distance
traveled per day (with and without reactive call-outs), and (v) the actual overtime per day
(with and without reactive call-outs), i.e., the time beyond 8 hours and 15 minutes.

The manual sequence of jobs completed (scheduled) in practice by a given FSE for
each day of the week is referred to as the manual schedule. The corresponding optimal
sequence of P and U jobs, obtained by the optimization model at the beginning of the
planning week, is referred to as the optimal schedule. Days in the optimal schedule are
not ordered over the planning period, and, for that reason, a secondary ordering process is
established based on the number of jobs per day and the expected service time per day.

When the actual job completion times obtained from the manual data for a particular
scenario are entered into the optimal schedule, then the latter becomes the actual-optimal
schedule, which can be compared to the existing manual schedule. The following assump-
tions have been used in developing actual-optimal schedules based on the optimal model
output:

• All P and U jobs completed in the manual schedule are available for scheduling at the
beginning of that week.

• There exists a fixed limit of overtime allowed per day within the actual-optimal sched-
ule that corresponds to the average amount of overtime used in the historical data,
i.e., a job in an actual-optimal schedule will create overtime only when the total time
used in that day, plus the expected time of the new job, is less than the working day
plus the fixed amount of overtime allowed on average per day in the manual schedule.

• If an FSE does not have time to complete a P or U job, even allowing for overtime,
then the job will be completed at the end of any permitted subsequent daily schedule.
Conversely, if an FSE has some spare time at the end of a day, then the last scheduled
job in the week will be completed.

• If a reactive call-out occurs in the historical data, then the reactive job is completed in
the actual-optimal schedule and the current P or U job is abandoned to be completed
later in the week (see section 13.9.2).

By finding the optimal schedule at the beginning of each scenario and using the above
framework to compare the manual schedule with the actual-optimal schedule, it is possible
to find estimates for the reduction in total travel time, distance traveled, and overtime that
can be obtained by using the optimization model instead of the manual method. In addition,
by investigating the impact of implementing the model in two stages, described below, it is
possible to consider the issue of reoptimization and the cost of going online.

13.9.2 Reoptimization

The model initially schedules P and U jobs allowing for stochastic service times. Reactive
call-outs are not included as they do not exist at the time of scheduling. Indeed, one possible
manifestation of the model is to exclude the contribution of reactive call-outs entirely and
to consider only jobs that can be scheduled; this would correspond to an FSE system in
which reactive call-outs are never encountered and would therefore partially invalidate any

13.10. Example Scenario 345

associated results. Two different levels of inclusion of reactive call-outs, which correspond
to two different stages of model implementation, are therefore included:

• Simple inclusion. Jobs occur as scheduled; however, when reactive call-outs arise they
are implemented just as they occur in reality, and when they end the original schedule
is continued. No secondary optimization is completed once the original schedule has
been interrupted and so the method is similar to the manual system of dealing with
reactive call-outs. (This system corresponds to one run of the optimization model at
the beginning of the planning horizon.)

• Reoptimization. Jobs occur as scheduled; however, whenever reactive call-outs arise,
and have been completed, reoptimization occurs. (This system corresponds to the
running of the model within an online system by, for example, continually rerunning
the model following the completion of a day that has included a reactive call-out.)

13.10 Example Scenario
Table 13.2 displays data for a week of FSE work in the pilot study region. Five reactive jobs
occur during the week: one on Monday morning, one in the middle of the day on Monday,

Table 13.2. Actual data for the example scenario.

Day Job type Service time (hrs) Index
Monday

Tuesday

Wednesday

Thursday

Friday

R
U
R
U
R
U
U
U
R
U
p
p
U
p
p
U
p
p
p
p
U
U
R

1.50
2.25
2.50
2.00
3.25
1.50
5.00
3.25
4.00
1.50
0.25
0.25
2.25
0.50
0.25
2.25
0.25
0.25
0.25
0.50
2.00
1.00
1.00

-
3
-
4
-
5
2
6
-
8

7a
7b
12
lla
9a
10
lib
lie
9b
9c
13
14
-

346 Chapter 13. Routing Under Uncertainty

Table 13.3. Input data for the example scenario.

Job type Index

U
U
U
U
U
P
U
P
U
P
U
U
U

(*combined jobs)
2
3
4
5
6
T
8

9*
10
11*
12
13
14

Probability Distribution
//,,- (hrs)

3.04
3.04
3.04
3.04
3.04
0.61
3.04
0.92
3.04
0.92
3.04
3.04
3.04

Oi (hrs)
1.80
1.80
1.80
1.80
1.80
0.46
1.80
0.69
1.80
0.69
1.80
1.80
1.80

Si
34
34
34
34
34
17
34
24
34
24
34
34
34

one on Tuesday, one on Thursday morning, and one on Friday afternoon. Table 13.3 displays
the inputs to the VRPSST model. The index column is simply used to identify inputted jobs
and allows for a combination of P jobs when total expected service time is small. For
example, indices 7a and 7b are used to identify two small jobs that are combined to generate
a single service time distribution that should be input to the model and represented as job
7. The expected service times (X), the standard deviations (a,), and the number of discrete
service time points (Si) describing each log-normal distribution of a given job are also shown.

When no reactive call-outs are considered, the output of the optimization model is
the optimal schedule shown in Table 13.4. This list would have been used to schedule
the FSE in an implemented system. Notice that there is a 5.1% difference between the
expected service time and the actual service time (ST) over the whole week. Using the list
of assumptions given in section 13.9.1, this optimal schedule can now be used to obtain
the actual-optimal schedule shown in Table 13.5. The corresponding manual schedule is
also shown in Table 13.5. Notice that the actual-optimal schedule differs from the optimal
schedule because, since extra time was available on Thursday, jobs 5 and 11 could be added
to Thursday's schedule. Contrasting the actual-optimal schedule with the manual schedule,
the following can be noted: (i) the 5-day original schedule becomes a 4-day schedule in
the optimized case, (ii) the spread of jobs is more even in the optimized schedule and,
hence, overtime (OT) is cut from 3.17 hours to a total of 0.08 hours (a reduction of 97.5%),

Table 13.4. The optimal schedule for the example scenario.

M
T
W
T
F

Sequence of jobs
H-7-9-10-8-H
H-4-14-6-H
H-2-13-H
H-12-3-H
H-11-5-H

Expected service time (Hours)
6.40
7.30
4.87
4.87
3.35

26.79

13.10. Example Scenario 347

Table 13.5. Schedules for the example scenario with no reactive call-outs.

Manual
schedule

Actual-
optimal
schedule

M
T
W
T
F

H-3-4-H
H-5-H

H-2-6-H
H-8-7a-7b-12-H

H-lla-9a-10-llbc-9bc-13-14-H

M
T
W
T

H-7-9-10-8-H
H-4-14-6-H
H-2-13-H

H-12-3-11-5-H

ST
(bis)
4.25
1.50
8.25
4.25
7.25
25.50
5.25
6.25
7.00
7.00

25.50

TT
(hrs)
1.33
0.67
1.00
1.00
3.17
7.17
1.33
1.33
0.83
1.33
4.83

OT
(hrs)
0.00
0.00
1.00
0.00
2.17
3.17
0.00
0.00
0.00
0.08
0.08

TD
(km)
80
40
80
60
200
460
110
80
60
70
320

(iii) travel time (TT) decreases dramatically in the optimized schedule from 7.17 hours to
4.83 hours (a reduction of 32.6%), and (iv) travel distance (TD) decreases in the optimized
schedule from 460 to 320 kilometers (a reduction of 30.4%).

Employing simple inclusion in the example scenario results in a 5.9% reduction in
travel time, an 11% reduction in overtime, and a 5% reduction in distance traveled; profiles
of the use of FSE time in this case, for the manual and actual-optimal schedules, are shown
in Figure 13.3. Table 13.6 displays both schedules if reoptimization is employed in the

Figure 13.3. A time profile of manual and actual-optimal schedules.

348 Chapter 13. Routing Under Uncertainty

Table 13.6. Schedules for the example scenario with reoptimization.

Manual
schedule

Actual-
optimal
schedule

M
T
W
T
F

H-R-3-R-4-H
H-R-5-H
H-2-6-H

H-R-8-7a-7b-12-H
H-l la-9a-10-l lbc-9bc-13-14-R-H

M
T
W
T
F

H-R-7-9-R-10-H
H-R-4-14-6-H
H-3-5-11-13-H

H-R-2-H
H-8-12-R-H

ST
(his)
8.25
4.75
8.25
8.25
8.25

37.75
7.75
9.50
6.75
9.00
4.71
37.75

TT
(hrs)
1.83
1.00
1.00
1.33
3.33
8.50
2.67
1.67
1.33
1.00
1.00
7.67

OT
(hrs)
1.83
0.00
1.00
1.33
3.33
7.50
2.17
2.92
0.00
1.75
0.00
6.83

TD
(km)
120
70
80
70
200
540
190
100
80
70
70
510

scenario. The three reruns of the VRPSST model, which occur due to reactive call-outs
on Monday, Tuesday, and Thursday, alter the nature of the original optimal schedule and
result in a 9.8% reduction in travel time, a reduction in overtime of 8.9%, and a reduction
in distance traveled of 5.6%. Notice that, in this particular scenario, although travel time
decreases under reoptimization, the percentage reduction in overtime is slightly less than in
the case of simple inclusion.

13.11 Overall Computational Results
The results for all scenarios are shown in Tables 13.7-13.9. These tables display the percent-
age reduction in travel time, overtime, and distance traveled achieved when the optimization

Table 13.7. Results: reactive call-outs ignored.

Scenario
1
2
3
4
5
6
7
8
9
10
11
12
Average

TT (% reduction)
21.4
0.0
15.3
6.5
7.1
6.5
20.6
12.5
10.7
25.0
0.0
32.6
13.6

OT (% reduction)
9.8
26.4
25.0
17.9
0.0
81.0
38.6
0.0
80.0
0.0
0.0
97.4
32.5

TD (% reduction)
20.3
5.2
18.0
14.5
19.2
9.7
20.0
18.8
12.5
28.3
23.1
30.4
18.2

13.11. Overall Computational Results 349

Table 13.8. Results: reactive call-outs—simple inclusion.

Scenario
2
3
5
6
7
8
9
10
11
12
Average

TT (% reduction)
0.0
10.9
2.9
16.7
21.4
14.7
5.9
8.3
0.0
5.9
8.3

OT (% reduction)
0.0
22.9
14.8
26.2
30.7
0.0

44.0
38.8
2.8
11.1
20.1

TD (% reduction)
3.4
14.9
6.7
11.1
21.1
18.8
7.7
15.7
8.3
5.6
11.0

model is used for each scenario in the case of no reactive call-outs, reactive call-outs with
simple inclusion, and reactive call-outs with reoptimization. Computation times required
to obtain the optimal schedule for each scenario, together with their associated VRPSST
problem sizes, are shown in Table 13.10.

If reactive call-outs are ignored (see Table 13.7), the average results over all scenarios
indicate a substantial reduction in travel time (14%) and distance traveled (18%), together
with a dramatic reduction in overtime (33%). Table 13.8 displays the results when reactive
call-outs are implemented using simple inclusion. No results are available for scenarios
1 and 4 as no reactive call-outs occurred during these 2 weeks. Notice that, although the
optimal schedule clearly outperforms the manual schedule, the improvements over current
practice are slightly less than in the previous case (8%, 11%, and 20%, respectively). This
decrease is because reactive call-outs occur at random points of the week and no secondary
optimization is completed once the original schedule has been interrupted. Once reopti-
mization is implemented only minor increases in the reductions beyond the simple inclusion

Table 13.9. Results: reactive call-outs—reoptimization.

Scenario
2
3
5
6
7
8
9
10
11
12
Average

TT (% reduction)
0.0
10.9
8.8

22.2
21.4
14.7
5.9
8.3
0.0
9.8
9.6

OT (% reduction)
0.0
22.9
7.4

23.1
30.7
0.0
30.8
38.8
41.7
8.9
19.6

TD (% reduction)
3.4
14.9
6.7

22.2
23.7
18.8
7.7
15.7
4.2
5.6
11.7

350 Bibliography

Table 13.10. Problem data and computation times for each scenario.

Scenario

1
2
3
4
5
6
7
8*
9
10
11
12
Average

Jobs
(n-1)

13
14
10
16
11
10
10
6
9
11
13
13

11.33

Days
(K)
5
6
5
6
5
5
5
4
4
4
5
5

4.92

Computational times
(hours)

8.41
11.16
8.87
13.58
11.64
8.46
8.73
0.00
4.99
3.70
7.58
8.38
7.96

"Optimal solution found at the root node of the OUTER tree.

case are achieved. Clearly, these results indicate that reoptimization may be unnecessary
in certain practical cases where large amounts of unscheduled reactive call-outs disrupt the
optimal routing system. Nevertheless, results were completed only up to the end of the
planning horizon, not on a rolling weekly reoptimization basis, and, therefore, depend-
ing on costs and efficiency targets, reoptimization may still be comparatively important to
management.

13.12 Conclusion
The modeling approach presented in this study involved the construction of a VRPSST-based
model and the application of a new solution method to identify optimal schedules of jobs and
to recommend the most efficient routes for the FSEs taking into account stochastic service
times and reactive call-outs. The performance of the model was evaluated by analyzing
existing FSE schedules and investigating the impact on FSE performance of using the model
at two different stages of implementation, one of which is a simulated on-line system.

The results of the optimization model show that improvements of approximately 8%
and 11% in total travel time and distance traveled, respectively, can be achieved, for a given
FSE, when stochastic service times and reactive call-outs are included in the FSE's weekly
schedule. In addition, the average reduction in overtime in such cases is approximately 20%.

Bibliography
[1] C. Bastian and A. Kan. The stochastic vehicle routing problem revisited. European

Journal of Operational Research, 56:407^112, 1992.

[2] D. Bertsimas. A vehicle routing problem with stochastic demand. Operations Re-
search, 40:574-585, 1992.

Bibliography 351

[3] D. Bertsimas, P. Jaillet, and A. Odoni. A priori optimisation. Operations Research,
38:1019-1033, 1990.

[4] R.L. Carraway, T.L. Morin, and H. Moskowitz. Generalized dynamic programming
for stochastic combinatorial optimisation. Operations Research, 37:819-829, 1989.

[5] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[6] E.W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematik, 1:269-271, 1959.

[7] M. Dror. Modelling vehicle routing with uncertain demands as a stochastic program:
Properties of the corresponding solution. European Journal of Operational Research,
64:432-441, 1993.

[8] M. Dror, G. Laporte, and F. Louveaux. Vehicle routing with stochastic demands and
restricted failures. ZOR—Methods and Models of Operations Research, 37:273-283,
1993.

[9] M. Dror, G. Laporte, and P. Trudeau. Vehicle routing with stochastic demands: Prop-
erties and solution frameworks. Transportation Science, 23:166-176, 1989.

[10] M. Dror and P. Trudeau. Stochastic vehicle routing with modified savings algorithm.
European Journal of Operational Research, 23:228-235, 1986.

[11] M. Gendreau, G. Laporte, and R. Seguin. A tabu search heuristic for the vehicle routing
problem with stochastic demands and customers. Working paper, CRT, Montreal
University, Canada, 1994.

[12] M. Gendreau, G. Laporte, and R. Seguin. An exact algorithm for the vehicle routing
problem with stochastic demands and customers. Transportation Science, 29:143-155,
1995.

[13] M. Gendreau, G. Laporte, and R. Seguin. Stochastic vehicle routing. European Journal
of Operational Research, 88:3-12, 1996.

[14] B.L. Golden and W.R. Stewart Jr. Vehicle routing with probabilistic demands. Com-
puter Science and Statistics: Tenth Annual Symposium on the Interface, 503:252-259,
1978.

[15] E.P.C. Kao. A preference order dynamic program for a stochastic travelling salesman
problem. Operations Research, 26:1033-1045, 1978.

[16] V. Lambert, G. Laporte, and F. Louveaux. Designing collection routes through bank
branches. Computers and Operations Research, 20:783-791, 1993.

[17] G. Laporte and F. Louveaux. Formulations and bounds for the stochastic capacitated
vehicle routing with uncertain supplies. In JJ. Gabszewicz, J.F. Richard, and L.A.
Wolsey, editors, Economic Decision Making: Games, Econometrics and Approximate
Algorithms, North-Holland, Amsterdam, 1990, pp. 443^455.

352 Bibliography

[18] G. Laporte and F. Louveaux. The integer L-shaped method for stochastic integer
programs with complete recourse. Operations Research Letters, 13:133-142, 1993.

[19] G. Laporte, F. Louveaux, and H. Mercure. Models and exact solutions for a class
of stochastic location-routing problems. European Journal of Operational Research,
39:71-78, 1989.

[20] G. Laporte, F. Louveaux, and H. Mercure. The vehicle routing problem with stochastic
travel times. Transportation Science, 26:161-170, 1992.

[21] J. Popovic. Vehicle routing in the case of uncertain demand: A Bayesian approach.
Transportation Planning and Technology, 19:19-29, 1995.

[22] D. Roberts. Algorithms for stochastic vehicle routing problems. Ph.D. thesis, Imperial
College, University of London, 1998.

[23] D. Roberts and E. Hadjiconstantinou. Algorithmic developments in stochastic vehi-
cle routing. In P. Kischka, H. Lorenz, U. Derigs, W. Domschke, P. Kleinschmidt,
and R. Moehring, editors, Operations Research Proceedings 1997, Springer-Verlag,
Berlin, 1998, pp. 156-161.

[24] D. Roberts and E. Hadjiconstantinou. A computational approach to the vehicle routing
problem with stochastic demands. In P. Borne, M. Ksouri, and A. El Kamel, editors,
Computational Engineering in Systems Applications, IEEE, 1998, pp. 139-144.

[25] E. Sniedovich. Analysis of a preference order travelling salesman problem. Operations
Research, 29:1234-1237, 1981.

[26] W.R. Stewart Jr. and B.L. Golden. Stochastic vehicle routing: A comprehensive
approach. European Journal of Operational Research, 14:371-385, 1983.

[27] D. Teodorovic, E. Krcmar-Nozic, and G. Pavkovic. The mixed fleet stochastic routing
problem. Transportation Planning and Technology, 19:31-43, 1995.

[28] D. Teodorovic and G. Pavkovic. A simulated annealing technique approach to the vrp
in the case of stochastic demand. Transportation Planning and Technology, 16:261—
273, 1992.

[29] F. Tillman. The multiple terminal delivery problem with probabilistic demands. Trans-
portation Science, 3:192-204, 1969.

Chapter 14

Evolution of
Microcomputer-Based
Vehicle Routing Software:
Case Studies in the
United States

Edward K. Baker

14.1 Introduction
To say that there has been an explosion of microcomputer-based software for the VRP in
the last decade is an understatement. The availability and scope of the vehicle routing
software packages today exceed expectations of but a few years ago. In their early survey
paper, Golden, Bodin, and Goodwin [10], acknowledging that microcomputers were by then
commonplace, reviewed 13 commercially available packages and noted that several other
packages were under development. By contrast, the 1997 edition of Logistics Software
[12], compiled by Andersen Consulting for the Council of Logistics Management, lists 559
microcomputer logistics software packages available from 263 vendors. Within this group,
133 packages, offered by 80 vendors, feature a traffic routing and scheduling component.

This explosion was perhaps inevitable. As the various components of the logistics
supply chain, facility location, production scheduling, inventory management, and vehicle
routing, yielded to microcomputer modeling methods, early papers, such as those by Ge-
offrion [7] and Geoffrion and Powers [8], called for the use of comprehensive optimization
models in the analysis of distribution systems. With the advent of microcomputer-based
geographic information systems and reasonably priced 100 MHz processors and gigabyte
hard drives, the fuse was lit. Today, the vast majority of vendors offering vehicle routing
and scheduling packages maintain internet websites that discuss their products in detail and
allow either an online or a downloadable demonstration.

We do not attempt to review and compare individual vehicle routing software pack-
ages or to provide a mechanism by which to choose a package for a specific application.
Rather, our purpose is to provide some perspective on the evolution of the currently available
microcomputer-based packages for vehicle routing and to give some insight into the direc-
tion of their future development. To accomplish this, the 1986 survey of Golden, Bodin, and
Goodwin is used as a starting point. We follow the earlier authors' call for a wider scope of

353

354 Chapter 14. Evolution of Microcomputer-Based Vehicle Routing Software

problem definition and application of the vehicle routing problem. We discuss the evolu-
tion of program capabilities with particular focus on the increased use of GIS and Graphic
User Interface (GUI), and we discuss the optimization algorithms in use in several leading
packages. Additionally, a summary of conversations with several software developers and
current customers contributes to the discussion of how the state of the art evolved to its
current position and to where it may proceed.

Given these objectives, this chapter focuses on the microcomputer-based packages
for the VRP available from four vendors: CAPS Logistics (now part of Baan Supply Chain
Solutions), RouteSmart Technologies, Roadnet, and MicroAnalytics. These four vendors
were selected for several reasons. First, each vendor has some longevity in the market.
The last three are mentioned in the 1986 survey paper. The CAPS vehicle routing package
dates from 1984. Second, the four vendors operate on a national scale and boast client lists
of national prominence. Third, each vendor features a specific product designed primarily
for and around the VRP. Finally, each vendor offers substantial user support in the form of
training center courses or user group support or both. Details of each vendor are given in
Table 14.1

CAPS Logistics was incorporated in 1979 in Atlanta, Georgia, with faculty from the
Georgia Institute of Technology among its principals. In 1989, CAPS Logistics introduced
the basic routing, shipment planning, and supply chain platforms as part of its CAPS LOGIS-

Table 14.1. Vendors and vehicle routing packages reviewed.

Vendor Package
CAPS (now SSAGlobal) RoutePro
500 West Madison
Suite 1600
Chicago, Illinois 60661
(312)258-6000
www.ssaglobal.com
RouteSmart Technologies RouteSmart
8850 Stanford Boulevard
Columbia, MD 21045
(301) 596-7444
www.routesmart.com
Roadnet Technologies Roadnet 5000
2311 York Road
Timonium, MD21093
(410) 560-4298
www.roadnet.com
MicroAnalytics Truckstops
2200 Clarendon Blvd
Suite 1002
Arlington, VA 22201-3364
(703)841-0414
www.bestroutes.com

www.ssaglobal.com
www.routesmart.com
www.roadnet.com
www.bestroutes.com

14.1. Introduction 355

TICS TOOLKIT. With this foundation, clients could build software solutions customized to
their logistics and transportation needs. In 1997, CAPS Logistics expanded and enhanced
its product line with the introduction of five new products and upgrades of four existing
products, including the TOOLKIT. In September 1998, CAPS Logistics was acquired by
Baan Company, a leading international supplier of enterprise applications.

RouteSmart Technologies had it origins in Distinct Management Consultants, a trans-
portation and distribution consulting company founded in 1980 by several faculty members
from the School of Business at the University of Maryland. As its client base and applica-
tion needs grew, Distinct formed a partnership with Bowne Consulting to become Bowne
Distinct in 1985. The new company's routing software product was named RouteSmart. In
1997, Bowne Distinct became a business partner with ESRI, the leading company in GIS
applications. In 1999, to be more clearly identified with its primary product, Bowne Distinct
became RouteSmart Technologies.

Roadnet Technologies was founded in 1983 by a group of computer technology en-
trepreneurs. The initial Roadnet Vehicle Routing and Scheduling System was an early
success, and in 1986 Roadnet was purchased by the United Parcel Service (UPS). In 1995,
Roadnet Technologies became part of the UPS Logistics Group. Although now a subsidiary
of a major corporation, UPS, Roadnet Technologies operates as an independent company
in meeting its customer's software needs and requirements.

MicroAnalytics was founded in 1984. The company, based in Arlington, Virginia,
found early acceptance and success with its vehicle routing product, TruckStops. One of
its earliest successes was with the Canadian Postal System in Toronto, where the company
maintains offices. The company has remained true to its focus on personal computer-based
routing systems and offers the lowest-priced systems among those considered here. In
addition to the TruckStops product, MicroAnalytics offers the OptiSite Distribution Man-
agement Systems, the GeoNet location system, and the BUSTOPS Student Transportation
System.

This selection of vehicle routing software products reflects the biases of the author.
In the initial step in this investigation, the author tried the telephone numbers of all 13
software products listed in the 1986 survey article. To its credit, and perhaps to the credit
of Bell Atlantic, only MicroAnalytics had the same number. The author had known of the
Truckstops package since 1986, when he was a consultant to Ryder Truck Rental in Miami,
Florida. Additionally the author has been an Academic Link partner with CAPS Logistics
since 1996. He has visited the CAPS headquarters and training center in Atlanta, Georgia,
and has taken the CAPS training courses using both the Supply Chain Designer and the
RoutePro modules of the CAPS toolkit. The Roadnet package was mentioned in the 1986
survey paper and has since been acquired by UPS. This vertical integration allows Roadnet
entry to a global customer base. Finally, RouteSmart Technologies combines the vehicle
routing expertise of Bowne Distinct together with the unique GIS capabilities of ESRI.
These associations made it easier to talk with the software designers and engineers and to
be able to identify customers who recently made a selection decision.

For readers interested in guidance in selecting a software package, the 1999 edition
of Logistics Software CD-ROM is available from the Council of Logistics Management,
Publications Department, 2805 Butterfield Road, Suite 200, Oak Brook, IL 60523, or from
their website, http://clml.org. Additionally, the survey by Hall and Partyka [11] reviewed
the program capabilities and features, including price and required computing platforms, of

http://clm1.org

356 Chapter 14. Evolution of Microcomputer-Based Vehicle Routing Software

20 available packages. A comprehensive checklist for selecting a logistics network design
software is available from Insight, Inc. at www.insight-mss.com. An article comparing a
number of supply chain management software packages appeared in the January 2004 issue
of Logistics Today. The article may be found at www.logisticstoday.com.

14.2 Definition of the VRP
The formal graph theoretic definitions of the CVRP and its variants with distance and time
window constraints, backhauls, and combined pickups and deliveries are given in Chapter
1. These more formally defined problems tend to have concise mathematical formulations
based on a number of crucial assumptions that streamline the model. Generally, these
problems and their variants have received a great deal of attention from academic researchers.
For an excellent survey of classic vehicle routing formulations and solution methods, see
Bodin et al. [3].

Although consistent sets of test problems are limited, some recent studies offered
computational comparisons of vehicle routing algorithms. Chapters 2 through 9 of this
book describe state-of-the-art exact and heuristic algorithms, along with the discussion of
their computational performance, for the CVRP (Chapters 2-6) and its main variants: the
VRPTW (Chapter 7), the VRPB (Chapter 8), and the VRPPD (Chapter 9).

The types and definitions of the VRP addressed by the various software packages
considered in this study are typically much more general. For example, one vendor says
that its software can be used "to determine which vehicle should serve each customer
location and the best stop sequence to accommodate your customer's time windows while
minimizing your travel time" [12].

Regardless of how formally the VRP is defined, three components must be specified:
the customers, the products, and the vehicles. Once these components are specified, the
software package, through a sequence of algorithms, produces a set of vehicle routes.

14.2.1 Customer Specification

The customers to be serviced typically are the stops to be visited by the vehicles in the
vehicle routing application. The customer typically is specified by its name or by an internal
identification number. The customer location generally includes the street address and the
latitude and longitude of the location. With the prevalence of geocoding software and the
need for a visual map display of the customer locations and vehicle routes, a major portion
of commercially available software packages is devoted to file manipulation and geocoding.
The Truckstops package, for example, allows the creation of a "data specification file"
that allows data to be read from existing customer files into a truckstops customer file.
Similarly, data may be exported from Truckstops to other files to allow customary reports
to be generated.

The demands of each customer location may be specified simply as a number of units
or may be composed of a sequence of orders of multiple products specified in various di-
mensions. The customer orders may be either pickups or deliveries that may be interspersed
on the route or identified as a backhaul that may be loaded only on the return portion of the
route.

www.insight-mss.com
www.logisticstoday.com

14.2. Definition of the VRP 357

Time window constraints are now so commonplace that all the packages surveyed
allowed for their incorporation. The specification of the time windows allows for multiple
windows to exist on multiple days through the week. The windows are specified with open
and close times, and some packages, RoutePro, for example, allow cost penalties to be
assessed for deviations from specified window openings.

Capacities or other limitations may sometimes exist at a customer site or loading
dock. These restrictions may limit the amount of product delivered at any one time due to
storage constraints or may limit the height or length of a truck that may be used to service
that customer location. These "mateability" constraints are also addressed in the vehicle
specifications.

14.2.2 Product Specification

Products are usually described by name and dimensionality. The typical dimensions of
products are size (cubic feet), weight, and floor space. The floor space is how much square
footage of the trailer floor space each unit of product requires. This type of dimensionality
may also be measured in terms of pallets that can be loaded in the trailer.

Occasionally, products must be considered for their compatibility with one another
or for the requirement of a special service, such as refrigeration. Additionally, a trailer may
have to be cleaned if a particular product is transported. This requirement often is necessary
when transporting various chemicals.

14.2.3 Vehicle Specification

The world of vehicle routing software allows various types and descriptions of vehicles to
be specified. The vehicles must be identified by number and capacity so that amounts of
product to be transported may be determined. In some cases, special features of the vehicle's
capacity may be of interest. For example, the number of separate storage compartments in
a tanker truck may allow various products to be delivered by the same vehicle. In another
case, the presence of access doors in the midsection of a trailer may allow pickups and
deliveries to be interspersed without requiring the trailer to be unloaded. Additionally, if
loading dock mateability is an issue, vehicle length and height may also be required.

The operational cost of the vehicle typically depends on the time or distance over
which the vehicle is operated. The time and distance each vehicle operates is a function of
vehicle speed and highway conditions. Speeds at rush hour, for example, are usually less
than at off-peak times on city streets. Additionally the drop, service, or dwell times of a
vehicle may be dependent on the type and amount of product delivered and on the customer
to whom the delivery is made.

Finally, the starting and ending positions of each vehicle each day may be distinct.
Additionally, as routing information becomes available throughout the day, the customer
stops may be dynamically routed as the uncertainty of the customer demand is realized.

If driver scheduling and costs are a consideration, driver pay rates, work rules, relief or
break requirements, and other capabilities must be considered. In the case of trips covering
multiple days, the consequences of single man over the road or driving teams must be
considered. In a local delivery situation, the operation of more than one route in a day or
redispatch may be considered.

358 Chapter 14. Evolution of Microcomputer-Based Vehicle Routing Software

14.3 Algorithms
The construction of vehicle routes in vehicle routing software packages generally is a multi-
step process. This multistep process usually involves an initial route construction procedure
and a route improvement procedure. Both procedures may involve a combination of man-
ual and automatic operations that are repeated until the user is satisfied with the resulting
solution.

In the case of initial route construction, it is often the case that the user has a set
of feasible routes that are being operated that may be used as a starting point or as an
initial routing template. All packages considered here provide the user with the capability
to create routes manually through a point-and-click construction process. The route under
construction may be made to appear graphically on a map of the customer service area,
allowing the user to get a sense of the spatial configuration of the routes.

The automatic selection of customer stops for each route is available on all packages.
Depending on the type of algorithm used, however, the user may require some experience
or expertise in the use of the automatic procedure before a desirable set of routes can be
produced automatically.

The algorithms used by most packages are a combination of heuristics and local
improvement procedures (see Chapters 5 through 9). RoutePro allows the user to select
from among insertion and nearest-neighbor methods to build initial routes. Truckstops
uses a method based on the generalized assignment heuristic of Fisher and Jaikumar [6] to
seed routes and completes the route structure with a variant of the method of Clarke and
Wright [4].

Once an initial set of vehicle routes is available, the routes may be edited by various
means. All packages allow the user to manually edit the routes. This type of editing
generally is done on a map showing customers and routes in a spatial perspective. By using
the mouse, customers may be dropped from or added to routes or moved from one route to
another. The packages check all the constraints of the proposed move and report or disallow
any infeasibilities.

All packages considered also include a set of local improvement procedures along the
lines of the 2-opt and 3-opt methods of Lin and Kernighan [14] and the method of Or [16].
The user may specify the routes on which the procedures are to operate and may specify
the amount of time or computing effort to be expended.

The efficacy of the optimization procedures employed by the state-of-the-art vehicle
routing packages is validated by their widespread implementation; however, little in the way
of comparison testing has been done. MicroAnalytics does report solving three of Fisher's
[5] problems to within 1.9% of optimality with the Truckstops package within an elapsed
time of 15 minutes.

14.4 Future Trends in Vehicle Routing Software
To get a sense of the future direction of the vehicle routing software industry, materials of
each of the products and companies were reviewed and telephone interviews were conducted
with several of the software developers and with some of their major customers. As noted
earlier, many companies have academic roots. In talking with the software developers, one
is struck by the academic feel of the companies, not only in their personnel but also in their

14.4. Future Trends in Vehicle Routing Software 359

"campuses." The software developers are highly trained, often with advanced degrees, and
they have extensive knowledge of both computer hardware and software development. For
successful software companies to have exceptional people probably should not be surprising.
As Don Ratliff, former chief technology officer at Baan Logistics Solutions, put it, "You
can't afford to hire average software developers, you've got to get the best" [17].

With a view toward the future, software developers must keep one eye on the latest
hardware and software developments and the other on their everchanging customer needs.
Adapting to changes in computer hardware is something that all the surveyed companies
have done very well. Each has a well-documented list of press releases extolling how its
latest product releases have adapted to the changing architectural landscape of the computer
world. Several developers mentioned the importance of keeping watch on what Microsoft
is doing and the direction that the software giant's operating systems and support software
developments are taking.

Interviews with software developers revealed several areas in which the companies are
working to respond to customer needs. Larry Levy of RouteSmart Technologies mentioned
two problems related to workloads [13]. The first problem involves the so-called Period
Routing Problem, where workloads need to be balanced over days of the week or over
several weeks. In a related area, Levy mentioned the importance of matching skill level of
crews to the tasks that are to be performed at the customer location. The skill-matching
problem raises issues such as, How should routing interact with skill set constraints, and,
What is it worth to a customer to have this capability?

Mike Micco, director of product development for Routing Applications at Baan Lo-
gistics Solutions, identified the decisions of when and how to use common carriers as part of
the routing solution as an area for future investigation [15]. This nuance augments the client
defined routing problem with the availability of third-party carriers to form a more general
transportation problem. The problem is further complicated by the possible existence of
contractual agreements between the client and specific third-party carriers.

Several software developers mentioned "collaborative dispatching" as an area for
future work. Collaborative dispatching would allow several users to view the routing solu-
tion as a dynamic model where changes to the vehicle routes could be made in real time.
Such operations would assume the existence of two-way communication links between the
dispatcher and each vehicle, as well as a client-server network configuration among the
dispatchers. The two-way communication and data links between dispatchers and vehicles
are current technology and are in use in many routing applications today. The collaborative
aspects of dispatching and the protocols necessary for the system and vehicle response to
real-time changes is an area in which further research must be conducted.

On the client side, trucking companies now recognize that using a computing system
for their vehicle routing is essential [1]. The skepticism of early users has, in most cases,
been replaced by acceptance and trust. Although at first clients wanted to see their routes
mapped out and to take a major role in interactively building routes, clients now wish to
take advantage of the second level of savings that comes with implementation of a vehicle
routing package, that is, the reduction of onerous manual labor. This fact was reaffirmed by
Miller Distributing of Fort Worth, Texas [2].

The level of user trust has developed in some cases to the point where the user wants
minimal interaction with the routing system. The desired user scenario is to allow orders to
be received and processed electronically and to have the vehicle routes generated without

360 Bibliography

user intervention. Dispatch sheets would then be sent automatically to each vehicle at
the beginning of the work period. This type of hands-off solution requires a new level of
robustness in the routing system and its algorithms that heretofore had been provided by the
human component. Data errors and anomalies under this scenario must be analyzed within
the routing system so that appropriate action may be taken so that a workable solution is
produced within the scheduling time frame.

Although the clients of vehicle routing software are becoming much more accepting
and sophisticated in their use of the products, their focus remains clearly on the bottom line.
This focus is not lost on the software development companies. They are acutely attuned to
the fact that each of their customers is interested in saving money. The overall theme of
the future directions of vehicle routing from clients is, "How can we use this technology to
obtain a solution with more value?" and the response of each software developer is, "How
can we work with you to accomplish this?"

A recent article [9] states, "To be done right, e-commerce logistics requires integration
of systems from the Web front end to the customer's signing for the package." Within this
larger context of e-logistics, vehicle routing and scheduling has become an integral part of
the customer fulfillment system. Complete fulfillment of customer service requirements
must provide for the tracking of individual customer deliveries through the vehicle routing
and scheduling process from the customer's website access to the system. As vendors of
enterprise resource planning systems add these capabilities to their suites, the scope of
vehicle routing and scheduling will expand to become a vital component in the optimal
structuring of e-logistics systems.

14.5 Summary and Conclusions
As the power and speed of microcomputers have increased dramatically in recent years, so
have the capabilities of vehicle routing packages. Early packages that could be had for less
than a thousand dollars solved TSPs. Today, packages costing more than a hundred times as
much can be used to optimize the entire logistics supply chain from purchase of materials,
through manufacturing, to the final delivery of the product to the customer.

In retrospect, the conclusions of Golden, Bodin, and Goodwin have held true. The
explosion of microcomputer vehicle routing software packages has continued. The modern
packages are more powerful and more flexible, handling larger and more complex problems
than their predecessors. Additionally, the number of implementations producing important
cost savings has grown significantly. Perhaps only the cost of the packages, which has
increased substantially, does not fulfill earlier expectations. But considering the power and
capability of the current systems, there has been a significant increase in the value of the
product.

Bibliography
[1] Anonymous. Oshawa foods embracing latest computer technologies. Truck News, 14,

October 1994.

[2] Anonymous. The truck stops here. Beverage World, August 1995.

Bibliography 361

[3] L.D. Bodin, B.L. Golden, A. A. Assad, and M. Ball. Routing and scheduling of vehicles
and crews, the state of the art. Computers and Operations Research, 10:63-212,1983.

[4] G. Clarke and J.V. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:568-581, 1964.

[5] M.L. Fisher. Optimal solution of vehicle routing problems using minimum fc-trees.
Operations Research, 42:626-642, 1994.

[6] M.L. Fisher and R. Jaikumar. A generalized assignment heuristic for the vehicle
routing problem. Networks, 11:109-124, 1981.

[7] A.M. Geoffrion. Making better use of optimization capability in distribution system
planning. AIIE Transactions, 11, 1979.

[8] A.M. Geoffrion and R.F. Powers. Facility location analysis is just the beginning.
Interfaces, 10:22-30, 1980.

[9] A. Gilbert. Fulfilling expectations. InformationWeek, October 25, 1999.

[10] B.L. Golden, L.D. Bodin, and W.T. Goodwin. Microcomputer-based vehicle routing
and scheduling software. Computers and Operations Research, 13:277-285, 1986.

[11] R.W. Hall and J.G. Partyka. On the road to efficiency. OR/MS Today, 24:38^16,1997.

[12] R.C. Haverly and J.F. Whelan. Logistics Software. Andersen Consulting, New York,
1997.

[13] L. Levy. Telephone interview, February 1999.

[14] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling salesman
problem. Operations Research, 21:498-516, 1973.

[15] M. Micco. Telephone interview, February 1999.

[16] I. Or. Traveling salesman-type combinatorial optimization problems and their relation
to the logistics of regional blood banking. Ph.D. dissertation, Department of Industrial
Engineering and Management Sciences, Northwestern University, Evanston, IL, 1976.

[17] H.D. Ratliff. Personal communication, 1999.

This page intentionally left blank

Index

ABACUS, 81
ACVRP, see asymmetric capacitated

vehicle routing problem
adaptive memory, 134, 138, 144, 162,

230
additive approach, 35-39, 42, 44, 47,

204-205
ant systems (AS), 144-145, 148
antiarborescence, see shortest spanning

antiarborescence
AP, see assignment problem
arborescence, see shortest spanning

arborescence
assignment problem (AP), 29-31, 35,

36,38,48,202,216,231
asymmetric capacitated vehicle routing

problem (ACVRP), 6, 9, 11,
13, 17, 19,23,29-31,33-40,
42,44,47,85,216

asymmetric traveling salesman problem
(ATSP), 44, 47, 145

asymmetric vehicle routing problem
with backhauls (AVRPB), 9,
196-198,200,202,208,214,
216,217

asymptotic behavior, 102, 104, 118, 121,
165-166, 170,231

average-case behavior, 103-106
AVRPB, see asymmetric vehicle routing

problem with backhauls

^-matching, 41,43
benchmark instances, see test problems
Benders' decomposition, 232
beverage industry, 255-258

bin packing problem (BPP), 7, 9, 12, 18,
47,61,62,64,67-69,74,103,
196, 199, 253

black-and-white traveling salesman
problem, 81

BPP, see bin packing problem
branch-and-bound, 29-49, 86, 89-92,

94-96, 165, 176,208,210,
235,337

branch-and-cut, 53-81
branch-and-price, 86, 97, 99-100
bundle method, 167

capacitated arc routing problem
(CARP), 288, 293, 301,303

capacitated arc routing problem with
vehicle-site dependencies
(CARP-VSD), 287-307

capacitated concentrator location
problem (CCLP), 118,312

capacitated location problem with time
windows (CLPTW), 165

capacitated vehicle routing problem
(CVRP), 5-8, 11, 22

capacity constraints, 5, 8, 16, 19, 49, 55,
59-61,63-65,70,77,92, 148,
159, 160, 166, 177,202

exact separation of, 71-72
fractional, 60, 71,72
framed, 62
generalized, 61-62, 72, 74
rounded, 55-57, 60, 71, 73, 80

capacity-cut constraints (CCCs), 12, 14,
30-33, 37, 38, 40, 199,
202-204

CAPS logistics, 250, 260, 261, 354, 355

363

364 Index

CARP, see capacitated arc routing
problem

CARP-VSD, see capacitated arc routing
problem with vehicle-site
dependencies

CCC, see capacity-cut constraints
CCLP, see capacitated concentrator

location problem
cheapest insertion algorithm, 164, 235,

319
chromosomes, 140, 141
Clarke and Wright algorithm, 110-116,

122, 125, 131, 144, 164, 214,
247, 333, 358

clique cluster constraints, 70
clique constraints, 70, 98
CLPTW, see capacitated location

problem with time windows
cluster-first, route-second algorithms,

110,216,230
cocycle constraints, 92
column generation, 22, 86-88, 91, 92,

97, 99, 120, 169, 173, 178,
179, 234-236

comb constraints, 64, 65, 67
commodity flow models, 11, 19-21, 81
computational results, 33-35, 42-43,

47-48, 76, 78-81, 100-102,
111, 113,115, 118, 120, 122,
132, 133, 136, 140, 145, 146,
181-183, 210-214, 217-221,
236-237, 260, 319, 324-327,
348-350

cone constraints, see cocycle constraints
connectivity constraints, 335
constructive algorithms, 235
continuous relaxation, see linear

programming relaxation
core problem, 209, 210
CPLEX, 34, 210
crossover, 141, 143, 164
cutting plane, 55, 56, 91, 96-99
CVRP, see capacitated vehicle routing

problem

dairy industry, 260-264

Dantzig-Wolfe decomposition, 99, 169,
172, 234

DCVRP, see distance-constrained
capacitated vehicle routing
problem

degree constraints, 12, 14, 37, 55, 199,
335

deterministic annealing (DA), 133-134
disabled persons transportation problem,

229, 230, 236
disjunctive bounds, 36-37
distance-constrained capacitated vehicle

routing problem (DCVRP), 8,
22, 29,48

distance-constrained vehicle routing
problem (DVRP), 5-8,48

diversification, 134, 135, 137, 163
dominance criteria, 45-47, 209
dual problem, 42, 88, 205, 208
dual-ascent, 94-96, 259, 311
DVRP, see distance-constrained vehicle

routing problem
dynamic programming, 92-94, 100,

171,175, 176, 180, 185, 207,
232-233, 235, 253, 333

ejection chains, 137, 138, 230
enterprise resource planning (ERP), 245,

360
ERP, see enterprise resource planning
Euclidean distance, 7,43
Euclidean instances, 22, 23, 34, 41, 42,

45, 48, 49, 80
Eulerian tour, 232
evolutionary algorithms, 162, 164
exchanges

2-opt, 134, 138, 145, 161-163, 217,
259, 271, 273, 358

3-opt, 122, 134,137, 161, 217, 358
edge, 122, 161
A-interchange, 121, 131, 134, 137,

138, 162
Or, 122, 161,162, 358

experimental testing, see computational
experiments

Index 365

farthest insertion algorithm, 217, 263
flow conservation constraints, 20, 168
food industry, 259-260

GAP, see generalized assignment
problem

GCVRP, see graphical capacitated
vehicle routing problem

generalized assignment problem (GAP),
117,166,168,215,275,358

generalized subtour elimination
constraints (GSECs), 13, 30,
40,41,49

genetic algorithms (GA), 140-144, 164
geographic information systems (GIS),

245, 278, 280, 305, 306, 353,
355

GIRO, 250
GIS, see geographic information systems
granular tabu search (GTS), 148
graphical capacitated vehicle routing

problem (GCVRP), 59, 61
graphical relaxation, 58, 63
GRASP, see greedy randomized

adaptive search procedure
greedy randomized adaptive search

procedure (GRASP), 319,
326, 327

GSEC, see generalized subtour
elimination constraints

GTS, see granular tabu search

Hamiltonian cycle, 8, 62-64, 66, 72
Hamiltonian tour, 232

insertion algorithms, 135, 160, 162, 164,
229,235,259,271,317

see also cheapest insertion and
farthest insertion algorithms

intensification, 134, 135
interface arcs, 198, 203
inventory routing problem (IRP),

309-327
IRP, see inventory routing problem

/£-shortest spanning arborescence
(KSSA), 32, 35

knapsack problem, 90
KSSA, see ^-shortest spanning

arborescence

L-shaped method, 333
Lagrangian relaxation, 29, 33, 45,

166-168, 172, 173, 179,
202-204

linear programming relaxation, 11, 13,
21,22,32,37,41,49,55,56,
58, 87-89, 92, 93, 96, 102,
103, 105, 159, 171, 172, 181,
200-202, 204, 206, 235

location-routing problem, 333
LP relaxation, see linear programming

relaxation

matching problem, 30-31, 113, 234, 337
maximum route length constraints, 8,

117,135,290
MicroAnalytics, 354, 355
minimum-cost flow problem, 37-39, 203
multicommodity flow problem, 158,

173, 174, 179, 227
multiple traveling salesman problem, 49,

177, 334
multistar constraints, 71,81
mutation, 140-143, 164

NDP, see newspaper distribution
problem

neighborhood, 98, 122, 129-131,
133-135, 137, 139, 161-163,
165,230

neural networks (NN), 231
newspaper distribution problem (NDP),

268-271
newspaper industry, 266-280

odd hole constraints, 98-99

path-bin constraints, 67-69
period vehicle routing problem, 247, 359
petal algorithms, 120
polyhedral analysis, 58-71, 184
precedence constraints, 3, 9, 142, 196,

199, 202, 233

366 Index

probabilistic analysis of algorithms, 103,
166,231

projective bounds, 37, 202-203

reoptimization, 344-345
Roadnet, 258, 260, 354, 355
Roadshow, 258, 260
roll-on-roll-off problem, 252-253
route-first, cluster-second algorithms,

110, 120-121, 130, 143,333
RouteSmart technologies, 250, 293, 354,

355
RPP, see rural postman problem
rural postman problem (RPP), 304

savings algorithm, see Clarke and
Wright algorithm

SCP, see set-covering problem
SCVRP, see symmetric capacitated

vehicle routing problem
SEC, see subtour elimination constraints
seed customers, 40, 117, 118, 166, 292
separation problem, 59
separation procedures, 13, 40, 56,

71-75, 204
sequential insertion algorithms, 114-116
set-covering problem (SCP), 22,

85-106, 197, 253
set-partitioning problem (SPP), 11, 21,

41-42, 169-171, 174, 200,
234,315

shortest spanning antiarborescence
(SSAA), 32, 203, 204

shortest spanning arborescence (SSA),
32-33,137,201,202,204

shortest spanning tree (SST), 29, 32-33,
201,231

shortest-path problem, 4, 42, 99,
167-168, 173, 175

simulated annealing (SA), 130-133, 164
single-customer routes, 13, 14, 19, 35,

42
soft time windows, 179-180
solid waste collection, 247-254,

287-307
SPP, see set-partitioning problem

SSA, see shortest spanning arborescence
SSAA, see shortest spanning

antiarborescence
SST, see shortest spanning tree
stable set problem, 69-71
star constraints, 69
stochastic programming, 333, 336
stochastic vehicle routing problem

(SVRP), 331,334
STSP, see symmetric traveling salesman

problem
subgradient optimization procedure, 40,

167, 203, 206
subtour elimination constraints (SECs),

16,91, 175
subtour elimination scheme, 44
supply chain, 353
SVRP, see stochastic vehicle routing

problem
sweep algorithm, 116-117, 162, 263
symmetric capacitated vehicle routing

problem (SCVRP), 6, 9, 13,
14,19,20,29,40-41

symmetric traveling salesman problem
(STSP), 53, 58, 59, 62-66,
75-76, 145

tabu search, 134-140, 162-164, 230
tabu thresholding, 231
Taburoute algorithm, 135, 138, 139
test problems, 22-23, 33, 115, 134, 18

197-198, 236
threshold-accepting algorithms, 133
time or length constraints, 143, 148,

159, 166
TP, see transportation problem
transportation problem (TP), 30, 201,

202, 204
traveling salesman problem (TSP), 5, 8,

18,33,88,90, 113, 121, 135,
141, 146, 147, 168

traveling salesman problem with
backhauls (TSPB), 10

traveling salesman problem with pickup
and delivery (TSPPD), 10, 231

Index 367

traveling salesman problem with
stochastic travel times
(TSPST), 333

traveling salesman problem with time
windows (TSPTW), 9, 19, 177

triangle inequality, 6, 22
truncated branch-and-bound, 118-120
TSP, see traveling salesman problem
TSPB, see traveling salesman problem

with backhauls
TSPLIB, 76, 80
TSPPD, see traveling salesman problem

with pickup and delivery
TSPST, see traveling salesman problem

with stochastic travel times
TSPTW, see traveling salesman problem

with time windows
two-matching constraints, 92

vehicle flow formulation, 11
two-index, 11

vehicle routing problem
with backhauls (VRPB), 3, 9-10,

33
with backhauls and time windows

(VRPBTW), 10, 177
with pickup and delivery (VRPPD),

10, 180,225-238
with pickup and delivery and time

windows (VRPPDTW), 10,
225-238

with simultaneous pickup and
delivery (VRPSPD), 10

with stochastic demands (VRPSD),
333-335

with stochastic service times
(VRPSST), 331-350

with stochastic travel times
(VRPST), 333

with time windows (VRPTW), 8-9,
17,86,88,92, 102, 142,259,
273

vehicle scheduling problem, 1
VRPB, see vehicle routing problem with

backhauls

VRPBTW, see vehicle routing problem
with backhauls and time
windows

VRPPD, see vehicle routing problem
with pickup and delivery

VRPPDTW, see vehicle routing problem
with pickup and delivery and
time windows

VRPSD, see vehicle routing problem
with stochastic demands

VRPSPD, see vehicle routing problem
with simultaneous pickup and
delivery

VRPSST, see vehicle routing problem
with stochastic service times

VRPST, see vehicle routing problem
with stochastic travel times

VRPTW, see vehicle routing problem
with time windows

worst-case behavior, 96, 103, 161, 231,
232

	The Vehicle Routing Problem
	SIAM Monographs on Discrete Mathematics and Applications
	ISBN 0-89871-579-2
	List of Contributors
	Contents
	Preface
	1 An Overview of Vehicle Routing Problems
	Part I Capacitated Vehicle Routing Problem
	2 Branch-and-Bound Algorithms for the Capacitated VRP
	3 Branch-and-Cut Algorithms for the Capacitated VRP
	4 Set-Covering-Based Algorithms for the Capacitated VRP
	5 Classical Heuristics for the Capacitated VRP
	6 Metaheuristics for the Capacitated VRP

	Part II Important Variants of the Vehicle Routing Problem
	7 VRP with Time Windows
	8 VRP with Backhauls
	9 VRP with Pickup and Delivery

	Part III Applications and Case Studies
	10 Routing Vehicles in the Real World: Applications in the Solid Waste, Beverage, Food, Dairy, and Newspaper Industries
	11 Capacitated Arc Routing Problem with Vehicle-Site Dependencies: The Philadelphia Experience
	12 Inventory Routing in Practice
	13 Routing Under Uncertainty: An Application in the Scheduling of Field Service Engineers
	14 Evolution of Microcomputer-Based Vehicle Routing Software: Case Studies in the United States

	Index

