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Preface

The Vehicle Routing Problem (VRP) calls for the determination of the optimal set of
routes to be performed by a fleet of vehicles to serve a given set of customers, and it is one
of the most important, and studied, combinatorial optimization problems.

More than 40 years have elapsed since Dantzig and Ramser introduced the problem in
1959. They described a real-world application concerning the delivery of gasoline to service
stations and proposed the first mathematical programming formulation and algorithmic
approach. A few years later, in 1964, Clarke and Wright proposed an effective greedy
heuristic that improved on the Dantzig—-Ramser approach. Following these two seminal
papers, hundreds of models and algorithms were proposed for the optimal and approximate
solution of the different versions of the VRP. Dozens of packages for the solution of various
real-world VRPs are now available on the market. This interest in VRP is motivated by both
its practical relevance and its considerable difficulty: the largest VRP instances that can be
consistently solved by the most effective exact algorithms proposed so far contain about 50
customers, whereas larger instances may be solved to optimality only in particular cases.

This book covers the state of the art of both exact and heuristic methods developed in
the last decades for the VRP and some of its main variants. Moreover, a considerable part
of the book is devoted to the discussion of practical issues.

The realization of this project would have been impossible for us alone to accomplish.
We thus involved an enthusiastic group of very well known experts, whose contributions
form a large part of the recent history of the VRP (as well as that of Mathematical Pro-
gramming and Combinatorial Optimization). As editors, we constantly devoted our efforts
to reducing as much as possible the overlap between chapters and to preserving coherence
and ensuring uniformity of the notation and terminology.

Although focused on a specific family of problems, this book offers a complete
overview of the effective use of the most important techniques proposed for the solution of
hard combinatorial problems. We, however, assume that readers have a basic knowledge
of the main methods for the solution of combinatorial optimization problems (complex-
ity theory, branch-and-bound, branch-and-cut, relaxations, heuristics, metaheuristics, local
search, etc.).

The book is divided into three parts, preceded by an introductory chapter in which we
present an overview of the VRP family, define the most important variants of the problem,
and introduce the main mathematical models. The first part covers the basic and exten-
sively studied version of the VRP, known as capacitated VRP. Three chapters examine the
main exact approaches (branch-and-bound, branch-and-cut, and set-covering-based meth-
ods), while two other chapters review traditional heuristic approaches and metaheuristics,
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respectively. For all methods extensive computational results are analyzed. The second
part covers three main variants of the VRP: the VRP with time windows, the VRP with
backhauls, and the VRP with pickup and delivery. In each chapter, both exact and heuristic
methods are examined. Finally, in the third part, the issues arising in real-world VRP appli-
cations, as the presence of dynamic and stochastic components, are discussed by analyzing
relevant case studies and presenting software packages.

We warmly thank all the people who contributed to this project, which occupied
a considerable amount of the past 3 years: our coauthors, whose competent, patient, and
collaborative activity made possible the completion of this volume; the referees whose com-
ments greatly improved the overall presentation; Peter Hammer, editor-in-chief of SIAM
Monographs on Discrete Mathematics and Applications, who since the very beginning en-
couraged us and followed all the steps of the project; and Vickie Kearn, Deborah Poulson,
Lou Primus, Sara Triller, Marianne Will, Donna Witzleben, Sam Young, and all the people
of SIAM who greatly helped us in the preparation of the overall manuscript.

Paolo Toth
Daniele Vigo

Bologna, December 2000



Chapter 1

An Overview of Vehicle
Routing Problems

Paolo Toth
Daniele Vigo

1.1 Introduction

The last decades have seen an increasing utilization of optimization packages, based on
Operations Research and Mathematical Programming techniques, for the effective man-
agement of the provision of goods and services in distribution systems. The large number
of real-world applications, both in North America and in Europe, have widely shown that the
use of computerized procedures for the distribution process planning produces substantial
savings (generally from 5% to 20%) in the global transportation costs. It is easy to see
that the impact of these savings on the global economic system is significant. Indeed, the
transportation process involves all stages of the production and distribution systems and
represents a relevant component (generally from 10% to 20%) of the final cost of the goods.

The success of the utilization of Operations Research techniques is due to the devel-
opment of computer systems, from both the hardware and the software points of view, and
to the increasing integration of information systems into the productive and commercial
processes.

A different factor of success, as important as the others, is the development of modeling
and algorithmic tools implemented in recent years. Indeed, the proposed models take into
account all the characteristics of the distribution problems arising in real-world applications,
and the corresponding algorithms and computer implementations find good solutions for
real-world instances within acceptable computing times.

In this book, we consider only the problems concerning the distribution of goods
between depots and final users (customers). These problems are generally known as Vehicle
Routing Problems (VRPs) or Vehicle Scheduling Problems. The models and algorithms
proposed for the solution of vehicle and scheduling problems, presented in detail in this
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book, can be used effectively not only for the solution of problems concerning the delivery
or collection of goods but for the solution of different real-world applications arising in
transportation systems as well. Typical applications of this type are, for instance, solid
waste collection, street cleaning, school bus routing, dial-a-ride systems, transportation of
handicapped persons, routing of salespeople, and of maintenance units.

The distribution of goods concerns the service, in a given time period, of a set of
customers by a set of vehicles, which are located in one or more depots, are operated by a
set of crews (drivers), and perform their movements by using an appropriate road network. In
particular, the solution of a VRP calls for the determination of a set of routes, each performed
by a single vehicle that starts and ends at its own depot, such that all the requirements
of the customers are fulfilled, all the operational constraints are satisfied, and the global
transportation cost is minimized. In this section, we describe the typical characteristics of
the routing and scheduling problems by considering their main components (road network,
customers, depots, vehicles, and drivers), the different operational constraints that can be
imposed on the construction of the routes, and the possible objectives to be achieved in the
optimization process.

The road network, used for the transportation of goods, is generally described through
a graph, whose arcs represent the road sections and whose vertices correspond to the road
junctions and to the depot and customer locations. The arcs (and consequently the corre-
sponding graphs) can be directed or undirected, depending on whether they can be traversed
in only one direction (for instance, because of the presence of one-way streets, typical of
urban or motorway networks) or in both directions, respectively. Each arc is associated with
a cost, which generally represents its length, and a travel time, which is possibly dependent
on the vehicle type or on the period during which the arc is traversed.

Typical characteristics of customers are

« vertex of the road graph in which the customer is located,;

* amount of goods (demand), possibly of different types, which must be delivered or
collected at the customer;

» periods of the day (time windows) during which the customer can be served (for
instance, because of specific periods during which the customer is open or the location
can be reached, due to traffic limitations);

» times required to deliver or collect the goods at the customer location (unloading or
loading times, respectively), possibly dependent on the vehicle type; and

« subset of the available vehicles that can be used to serve the customer (for instance,
because of possible access limitations or loading and unloading requirements).

Sometimes, it is not possible to fully satisfy the demand of each customer. In these
cases, the amounts to be delivered or collected can be reduced, or a subset of customers can
be left unserved. To deal with these situations, different priorities, or penalties associated
with the partial or total lack of service, can be assigned to the customers.

The routes performed to serve customers start and end at one or more depots, located
at the vertices of the road graph. Each depot is characterized by the number and types of
vehicles associated with it and by the global amount of goods it can deal with. In some
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real-world applications, the customers are a priori partitioned among the depots, and the
vehicles have to return to their home depot at the end of each route. In these cases, the
overall VRP can be decomposed into several independent problems, each associated with a
different depot.

Transportation of goods is performed by using a fleet of vehicles whose composition
and size can be fixed or can be defined according to the requirements of the customers.
Typical characteristics of the vehicles are

* home depot of the vehicle, and the possibility to end service at a depot other than the
home one;

capacity of the vehicle, expressed as the maximum weight, or volume, or number of
pallets, the vehicle can load,;

* possible subdivision of the vehicle into compartments, each characterized by its ca-
pacity and by the types of goods that can be carried;

devices available for the loading and unloading operations;
* subset of arcs of the road graph which can be traversed by the vehicle; and

* costs associated with utilization of the vehicle (per distance unit, per time unit, per
route, etc.).

Drivers operating the vehicles must satisfy several constraints laid down by union
contracts and company regulations (for instance, working periods during the day, number
and duration of breaks during service, maximum duration of driving periods, overtime). In
the following, the constraints imposed on drivers are imbedded in those associated with the
corresponding vehicles.

The routes must satisfy several operational constraints, which depend on the nature
of the transported goods, on the quality of the service level, and on the characteristics of the
customers and the vehicles. Some typical operational constraints are the following: along
each route, the current load of the associated vehicle cannot exceed the vehicle capacity; the
customers served in a route can require only the delivery or the collection of goods, or both
possibilities can exist; and customers can be served only within their time windows and
the working periods of the drivers associated with the vehicles visiting them. Precedence
constraints can be imposed on the order in which the customers served in a route are visited.
One type of precedence constraint requires that a given customer be served in the same
route serving a given subset of other customers and that the customer must be visited before
(or after) the customers belonging to the associated subset. This is the case, for instance,
of the so-called pickup and delivery problems, wherein the routes can perform both the
collection and the delivery of goods, and the goods collected from the pickup customers
must be carried to the corresponding delivery customers by the same vehicle. Another
type of precedence constraint imposes that if customers of different types are served in the
same route, the order in which the customers are visited is fixed. This situation arises,
for instance, for the so-called VRP with Backhauls, wherein again, the routes can perform
both the collection and the delivery of goods, but constraints associated with the loading
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and unloading operations, and the difficulty in rearranging the load of the vehicle along the
route, mean that all deliveries must be performed before the collections.

Evaluation of the global cost of the routes, and the check of the operational constraints
imposed on them, requires knowledge of the travel cost and the travel time between each
pair of customers and between the depots and the customers. To this end, the original road
graph (which often is very sparse) is generally transformed into a complete graph, whose
vertices are the vertices of the road graph corresponding to the customers and the depots.
For each pair of vertices i and j of the complete graph, an arc (7, j) is defined whose cost
c;; s given by the cost of the shortest path starting from vertex i and arriving at vertex j in
the road graph. The travel time #;, associated with each arc (i, j) of the complete graph,
is computed as the sum of the travel times of the arcs belonging to the shortest path from
i to j in the road graph. In the following, instead of the original road graph, we consider
the associated complete graph, which can be directed or undirected, depending on the
property of the corresponding cost and travel-time matrices to be asymmetric or symmetric,
respectively.

Several, and often contrasting, objectives can be considered for the vehicle routing
problems. Typical objectives are

* minimization of the global transportation cost, dependent on the global distance
traveled (or on the global travel time) and on the fixed costs associated with the used
vehicles (and with the corresponding drivers);

* minimization of the number of vehicles (or drivers) required to serve all the customers;
« balancing of the routes, for travel time and vehicle load;
* minimization of the penalties associated with partial service of the customers;

or any weighted combination of these objectives.

In some applications, each vehicle can operate more than one route in the considered
time period, or the routes can last for more than 1 day. In addition, sometimes it is necessary
to consider stochastic or time-dependent dynamic versions of the problem, i.e., problems
for which, a priori, there is only partial knowledge of the demands of the customers or of
the costs (and the travel times) associated with the arcs of the road network.

More than 40 years have elapsed since Dantzig and Ramser [11] introduced the VRP.
In their paper, the authors described a real-world application (concerning the delivery of
gasoline to gas stations) and proposed the first mathematical programming formulation and
algorithmic approach for the solution of the problem. A few years later, Clarke and Wright
[9] proposed an effective greedy heuristic that improved on the Dantzig—Ramser approach.
Following these two seminal papers, many models and exact and heuristic algorithms were
proposed for the optimal and approximate solution of the different versions of the VRP.
The most important and most effective models and algorithms are described in the various
chapters of this book.

There are several main survey papers on the subject of VRPs. A classification scheme
was given in Desrochers, Lenstra, and Savelsbergh [13]. Laporte and Nobert [32] presented
an extensive survey that was entirely devoted to exact methods for the VRP, and they gave
a complete and detailed analysis of the state of the art up to the late 1980s. Other surveys
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covering exact algorithms, but often mainly devoted to heuristic methods, were presented
by Christofides, Mingozzi, and Toth [7], Magnanti [36], Bodin et al. [4], Christofides [5],
Laporte [30], Fisher [19], Toth and Vigo [41, 42], and Golden et al. [26].

An annotated bibliography was proposed by Laporte [31], and an extensive bibliogra-
phy was presented by Laporte and Osman [33]. A book on the subject was edited by Golden
and Assad [25].

Models and algorithms for the solution of the so-called Arc Routing Problem, i.c.,
the variant of the problem arising when the customers are located not at the vertices but
along the arcs of the road network, are described in the recent book edited by Dror [14].
The particular case of the VRP arising when only one vehicle is available at the depot and
no additional operational constraints are imposed, i.e., the well-known Traveling Salesman
Problem, is extensively described in the classic book edited by Lawler et al. [34].

1.2 Problem Definition and Basic Notation

In this section we give a formal definition, as graph theoretic models, of the basic problems
of the vehicle routing class. These problems, which have received the greatest attention in
the scientific literature, are examined in detail in the first two parts of the book. We first
describe the Capacitated VRP, which is the simplest and most studied member of the family,
then we introduce the Distance-Constrained VRP, the VRP with Time Windows, the VRP
with Backhauls, and the VRP with Pickup and Delivery.

For each of these problems, several minor variants have been proposed and examined
in the literature, and often different problems are given the same name. Although in many
cases the solution methods, particularly the heuristic ones, may be adapted to incorporate
additional features, this indeterminacy in problem definition generally causes much confu-
sion. Therefore, for each problem we first describe the basic version, i.e., the one that in
this book is denoted by the corresponding acronym, and then we discuss the variants. In
addition, we make an explicit distinction between the symmetric and asymmetric versions
of a problem only if models and solution approaches proposed in the literature make use of
this distinction.

Also in this section, we introduce all the relevant notation and terminology used
throughout the book. Additional notation and definitions required to describe particular
variants and practical VRP problems are given in the appropriate chapters. Figure 1.1
summarizes the main problems described in this section and illustrates their connections.

In the figure, an arrow moving from problem A to problem B means that B is an extension
of A.

1.2.1 Capacitated and Distance-Constrained VRP

The first part of this book (Chapters 2—6) concentrates on the basic version of the VRP,
the Capacitated VRP (CVRP). In the CVRP, all the customers correspond to deliveries
and the demands are deterministic, known in advance, and may not be split. The vehicles
are identical and based at a single central depot, and only the capacity restrictions for the
vehicles are imposed. The objective is to minimize the total cost (i.e., a weighted function
of the number of routes and their length or travel time) to serve all the customers.
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Route length
:‘ DCVRP

Mixed service

Backhauling

Time
Windows

Figure 1.1. The basic problems of the VRP class and their interconnections.

The CVRP may be described as the following graph theoretic problem. Let G =
(V, A) be a complete graph, where V = {0, ..., n} is the vertex set and A is the arc set.
Vertices i = 1, ..., n correspond to the customers, whereas vertex O corresponds to the
depot. Sometimes the depot is associated with vertex n + 1.

A nonnegative cost, ¢;;, is associated with each arc (i, j) € A and represents the travel
cost spent to go from vertex i to vertex j. Generally, the use of the loop arcs, (i, i), is not
allowed and this is imposed by defining ¢;; = +oo foralli € V. If G is a directed graph,
the cost matrix ¢ is asymmetric, and the corresponding problem is called asymmetric CVRP
(ACVRP). Otherwise, we have ¢;; = c¢;; forall (i, j) € A, the problem is called symmetric
CVRP (SCVRP), and the arc set A is generally replaced by a set of undirected edges, E.
Given an edge e € E, let «(e) and B(e) denote its endpoint vertices. In the following we
denote the edge set of the undirected graph G by A when edges are indicated by means of
their endpoints (i, j), i, j € V, and by E when edges are indicated through a single index e.

Graph G must be strongly connected and is generally assumed to be complete. Given
a vertex i, let AT (i) denote the so-called forward star of i, defined as the set of vertices j
such that arc (i, j) € A, i.e., the vertices that are directly reachable from i. Analogously,
let A~ (i) denote the backward star of vertex i, defined as the set of vertices j such that arc
(j,i) € A, i.e., the vertices from which i is directly reachable. Given a vertex set S C V,
let 8(S) and E(S) denote the set of edges e € E that have only one or both endpoints in S,
respectively. As usual, when a single vertex i € V is considered, we write 3(i) rather than
(D).

In several practical cases, the cost matrix satisfies the triangle inequality,
(1.1) cix +cxy > ¢y Toralli, j,keV.

In other words, it is not convenient to deviate from the direct link between two vertices
i and j. The presence of the triangle inequality is sometimes required by the algorithms
for CVRP, and this may be obtained in a simple way by adding a suitably large positive
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quantity M to the cost of each arc. However, the drastic distortion of the metric induced
by this operation may produce very bad lower and upper bounds with respect to those
corresponding to the original costs. Note that when the cost of each arc of the graph is equal
to the cost of the shortest path between its endpoints, the corresponding cost matrix satisfies
the triangle inequality.

In some instances the vertices are associated with points of the plane having given
coordinates, and the cost ¢;;, for each arc (i, j) € A, is defined as the Euclidean distance
between the two points corresponding to vertices i and j. In this case the cost matrix is
symmetric and satisfies the triangle inequality, and the resulting problem called Euclidean
SCVRP. Observe that the frequently performed rounding to the nearest integer of the real-
valued Euclidean arc costs may cause a violation of the triangle inequality, whereas this
does not happen if the costs are rounded up.

Each customeri (i = 1, ..., n) is associated with a known nonnegative demand, d;,
to be delivered, and the depot has a fictitious demand dy = 0. Given a vertex set § C V, let
a(s) = Zie s d; denote the total demand of the set.

A set of K identical vehicles, each with capacity C, is available at the depot. To ensure
feasibility we assume that d; < C foreachi = 1, ..., n. Each vehicle may perform at most
one route, and we assume that K is not smaller than K,,;,, where K, is the minimum
number of vehicles needed to serve all the customers. The value of Ky, may be determined
by solving the Bin Packing Problem (BPP) associated with the CVRP, which calls for the
determination of the minimum number of bins, each with capacity C, required to load all
the n items, each with nonnegative weight d;, i = 1, ..., n. Although BPP is NP-hard in
the strong sense, instances with hundreds of items can be optimally solved very effectively
(see, e.g., Martello and Toth [37]).

Givenaset S € V \ {0}, we denote by r(S) the minimum number of vehicles needed
to serve all customers in S, i.e., the optimal solution value of the BPP associated with item
set S. Note that 7(V \ {0}) = Ky,;,. Often, r(S) is replaced by the trivial BPP lower bound

(1.2) [d(8)/C1.

The CVRP consists of finding a collection of exactly K simple circuits (each corre-
sponding to a vehicle route) with minimum cost, defined as the sum of the costs of the arcs
belonging to the circuits, and such that

(i) each circuit visits the depot vertex;
(i1) each customer vertex is visited by exactly one circuit; and

(iii) the sum of the demands of the vertices visited by a circuit does not exceed the vehicle
capacity, C.

Several variants of the basic versions of CVRP have been considered in the literature.
First, when the number X of available vehicles is greater than Ky, it may be possible to
leave some vehicles unused, and thus at most K circuits must be determined. In this case,
fixed costs are often associated with the use of the vehicles, and the additional objective
requiring minimization of the number of circuits (i.e., of the vehicles used) is added to that
requiring minimization of the total cost. Another frequently considered variant arises when
the available vehicles are different, i.e., have different capacities Cy, k = 1, ..., K. Finally,
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routes containing only one customer may not be allowed. In the next section we discuss how
models for the basic CVRP can be adapted to take these additional features into account.

The CVRP is known to be NP-hard (in the strong sense) and generalizes the well-
known Traveling Salesman Problem (TSP), calling for the determination of a minimum-cost
simple circuit visiting all the vertices of G (Hamiltonian circuit) and arising when C > d(V)
and K = 1. Therefore, all the relaxations proposed for the TSP are valid for the CVRP.

The first variant of CVRP we consider is the so-called Distance-Constrained VRP
(DVRP), where for each route the capacity constraint is replaced by a maximum length (or
time) constraint. In particular, a nonnegative length, ¢;; (or t,) is associated with each arc
(i, j) € A (oredge ¢ € E), and the total length of the arcs of each route cannot exceed the
maximum route length, T. If the vehicles are different, then the maximum route lengths
are T,k = 1,..., K. Moreover, when arc lengths represent travel times, a service time,
s;, may be associated with each customer i, denoting the time period for which the vehicle
must stop at its location. Alternatively, the service times can be added to the travel times of
the arcs, i.e., by defining, for each arc (i, j), t;; = ti" S /2+5;/2, where t] ; is the original
travel time of arc (i, j).

Generally, the cost and the length matrices coincide, i.e., ¢;; = f; forall i, j) € A
(orc, =t, foralle € F). Hence, the objective of the problem is to minimize the total length
of the routes or of their duration, when the service time is included in the travel time of the
arcs. The case in which both the vehicle capacity and the maximum distance constraints
are present is called Distance-Constrained CVRP (DCVRP).

Exact and heuristic algorithms for CVRP and DCVRP are described in Chapters 2—4
and 5 and 6, respectively.

1.2.2 VRP with Time Windows

The VRP with Time Windows (VRPTW) is the extension of the CVRP in which capacity
constraints are imposed and each customer 7 is associated with a time interval [a;, b;], called
atime window. The time instant in which the vehicles leave the depot, the travel time, ¢;;, for
each arc (i, j) € A (ort, foreach e € E)and an additional service time s; for each customer
i are also given. The service of each customer must start within the associated time window,
and the vehicle must stop at the customer location for s; time instants. Moreover, in case of
early arrival at the location of customer i, the vehicle generally is allowed to wait until time
instant g;, i.e., until the service may start.

Normally, the cost and travel-time matrices coincide, and the time windows are defined
by assuming that all vehicles leave the depot at time instant 0. Moreover, observe that
the time window requirements induce an implicit orientation of each route even if the
original matrices are symmetric. Therefore, VRPTW normally is modeled as an asymmetric
problem.

VRPTW consists of finding a collection of exactly K simple circuits with minimum
cost, and such that

(i) each circuit visits the depot vertex;

(ii) each customer vertex is visited by exactly one circuit;
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(iii) the sum of the demands of the vertices visited by a circuit does not exceed the vehicle
capacity, C; and

(iv) for each customer i, the service starts within the time window, [a;, b;], and the vehicle
stops for s; time instants.

VRPTW is NP-hard in the strong sense, since it generalizes the CVRP, arising when
a; =0,b; = 400, foreach i € V \ {0}. Moreover, the so-called TSP with Time Windows
(TSPTW) is the special case of VRPTW in which C > d(V)and K = 1.

Exact and heuristic algorithms for VRPTW are described in Chapter 7.

1.2.3 VRP with Backhauls

The VRP with Backhauls (VRPB)is the extension of the CVRP in which the customer set
V \ {0} is partitioned into two subsets. The first subset, L, contains n Linehaul customers,
each requiring a given quantity of product to be delivered. The second subset, B, contains
m Backhaul customers, where a given quantity of inbound product must be picked up.
Customers are numbered sothat L ={1,...,n}and B={n+1,...,n +m}.

In the VRPB, a precedence constraint between linehaul and backhaul customers exists:
whenever a route serves both types of customer, all the linehaul customers must be served
before any backhaul customer may be served. A nonnegative demand, d;, to be delivered
or collected depending on its type, is associated with each customer i, and the depot is
associated with a fictitious demand dy = 0. When the cost matrix is asymmetric, the
problem is called Asymmetric VRP with Backhauls (AVRPB). VRPB (and AVRPB as well)
consists of finding a collection of exactly K simple circuits with minimum cost, and such
that

(i) each circuit visits the depot vertex;
(ii) each customer vertex is visited by exactly one circuit;

(iii) the total demands of the linehaul and backhaul customers visited by a circuit do not
exceed, separately, the vehicle capacity C; and

(iv) in each circuit all the linehaul customers precede the backhaul customers, if any.

Circuits containing only backhaul customers generally are not allowed. Moreover,
observe that precedence constraint (iv) introduces an implicit orientation of the “mixed”
vehicle routes, i.e., the routes that visit both linehaul and backhaul vertices.

Let K; and Kp denote the minimum number of vehicles needed to serve all the
linehaul and backhaul customers, respectively. These values can be obtained by solving the
BPP instances associated with the corresponding customer subsets. To ensure feasibility,
we assume that K is not smaller than the minimum number of vehicles needed to serve all
the customers, i.e., K > max{K;, Kg}.

VRPB and AVRPB are NP-hard in the strong sense, since they generalize the basic
versions of SCVRP and ACVRP, respectively, arising when B = J. Moreover, the so-called
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TSP with Backhauls (TSPB) is the special case of VRPB in which C > max{d(L), d(B)}
and K = 1. The case of VRPB in which time windows are present has been studied in the
literature and is called the VRP with Backhauls and Time Windows (VRPBTW).

Exact and heuristic algorithms for VRPB and AVRPB are described in Chapter 8.

1.2.4 VRP with Pickup and Delivery

In the basic version of the VRP with Pickup and Delivery (VRPPD), each customer i is asso-
ciated with two quantities d; and p;, representing the demand of homogeneous commodities
to be delivered and picked up at customer i, respectively. Sometimes, only one demand
quantity d; = d; — p; is used for each customer i, indicating the net difference between the
delivery and the pickup demands (thus being possibly negative). For each customer i, O,
denotes the vertex that is the origin of the delivery demand, and D; denotes the vertex that
is the destination of the pickup demand.

It is assumed that, at each customer location, the delivery is performed before the
pickup; therefore, the current load of a vehicle before arriving at a given location is defined
by the initial load minus all the demands already delivered plus all the demands already
picked up.

The VRPPD consists of finding a collection of exactly K simple circuits with minimum
cost, and such that

(i) each circuit visits the depot vertex;
(ii) each customer vertex is visited by exactly one circuit;

(iii) the current load of the vehicle along the circuit must be nonnegative and may never
exceed the vehicle capacity C;

(iv) for each customer 7, the customer O;, when different from the depot, must be served
in the same circuit and before customer i; and

(v) for each customer i, the customer D;, when different from the depot, must be served
in the same circuit and after customer i.

Often the origin or the destination of the demands are common (for example they are
associated with the depot, as in CVRP and VRPB), and hence there is no need to explicitly
indicate them. This problem is known as the VRP with Simultaneous Pickup and Delivery
(VRPSPD).

VRPPD and VRPSPD are NP-hard in the strong sense, since they generalize the CVRP
arising when O; = D; = 0 and p; = O for each i € V. Moreover, the so-called TSP with
Pickup and Delivery (TSPPD) is the special case of VRPSPD in which X = 1. The case of
VRPPD in which time windows are present has been studied in the literature and is called
the VRP with Pickup and Deliveries and Time Windows (VRPPDTW). Exact and heuristic
algorithms for an extended version of VRPPD are described in Chapter 9.
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1.3 Basic Models for the VRP

In this section we present the main mathematical programming formulations that can be used
to model the basic VRPs presented in the previous section. In general, we give the models
for the CVRP and discuss how they may be extended to incorporate additional constraints or
different objective functions. Additional formulations can be found in Laporte and Nobert
[32].

Three different basic modeling approaches have been proposed for the VRP in the
literature. The models of the first type, known as vehicle flow formulations, use integer
variables, associated with each arc or edge of the graph, which count the number of times
the arc or edge is traversed by a vehicle. These are the more frequently used models for
the basic versions of VRP. They are particularly suited for cases in which the cost of the
solution can be expressed as the sum of the costs associated with the arcs, and when the
most relevant constraints concern the direct transition between the customers within the
route, so they can be effectively modeled through an appropriate definition of the arc set
and of the arc costs. On the other hand, vehicle flow models cannot be used to handle many
practical issues, e.g., when the cost of a solution depends on the overall vertex sequence
or on the type of vehicle assigned to a route. Moreover, the linear programming relax-
ation of vehicle flow models can be very weak when the additional operational constraints
are tight.

The second family of models is based on the so-called commodity flow formulation.
In this type of model, additional integer variables are associated with the arcs or edges and
represent the flow of the commodities along the paths traveled by the vehicles. Only recently
have models of this type been used as a basis for the exact solution of CVRP.

The models of the last type have an exponential number of binary variables, each
associated with a different feasible circuit. The VRP is then formulated as a Set-Partitioning
Problem (SPP) calling for the determination of a collection of circuits with minimum cost,
which serves each customer once and, possibly, satisfies additional constraints. A main
advantage of this type of model is that it allows for extremely general route costs, e.g.,
depending on the whole sequence of the arcs and on the vehicle type. Moreover, the
additional side constraints need not take into account restrictions concerning the feasibility
of a single route. As a result, they often can be replaced with a compact set of inequalities.
This produces a formulation whose linear programming relaxation is typically much tighter
than that in the previous models. Note, however, that these models generally require dealing
with a very large number of variables.

To simplify the notation, unless explicitly stated, in the following we assume that the
graph G(V, A) (or G(V, E)) is complete.

1.3.1 Vehicle Flow Models

We start by describing an integer linear programming formulation for ACVRP, which is
later adapted to SCVRP. The model is a two-index vehicle flow formulation that uses O (n?)
binary variables x to indicate if a vehicle traverses an arc in the optimal solution. In other
words, variable x;; takes value 1 if arc (i, j) € A belongs to the optimal solution and takes
value O otherwise.
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(1.3) (VRPD) min ) > cyx;
ieV jev

subject to

(1.4) doxj=1  Vjev\{o,
ieV

(1.5) Yoxy=1 VieV\{0},
jev

(1.6) > xo=K,
ieV

(1.7) Y x; =K,
jev

(1.8)- YD oxzr(S  VSCSV\0LS£G,
igs je§

(1.9) x;€{0,1) Vi jeV.

The indegree and outdegree constraints (1.4) and (1.5) impose that exactly one arc
enters and leaves each vertex associated with a customer, respectively. Analogously, con-
straints (1.6) and (1.7) impose the degree requirements for the depot vertex. Note that
one arbitrary constraint among the 2|V| constraints (1.4)—(1.7) is actually implied by the
remaining 2|V| — 1 ones; hence it can be removed.

The so-called capacity-cut constraints (CCCs) of (1.8) impose both the connectivity
of the solution and the vehicle capacity requirements. In fact, they stipulate that each
cut (V \ S, S) defined by a customer set S is crossed by a number of arcs not smaller
than 7 (S) (minimum number of vehicles needed to serve set S). The CCCs remain valid
also if r(S) is replaced by the trivial BPP lower bound (1.2); see, e.g., Cornuéjols and
Harche [10].

Observe that when [S| = 1 or § = V \ {0} the CCCs (1.8) are weakened forms
of the corresponding degree constraints (1.4)—(1.7). Note also that, because of the degree
constraints (1.4)-(1.7), we have

(1.10) DY x=Y > x;  VSCVA{0LS £

igS jeS§ ieS j¢S

In other words, each cut (V \ S, §) is crossed in both directions the same number of times.
From (1.10) we may also restate (1.8) as

(1.11) Y Y xi=r(V\S) VScV.0es.

igS jes
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An alternative formulation may be obtained by transforming the CCCs (1.8), by means
of the degree constraints (1.4)—(1.7), into the well-known generalized subtour elimination
constraints (GSECs):

(1.12) DD x <ISI=r(S)  VSCSV\{0),S#D,

ieS je§

which impose that at least 7(S) arcs leave each customer set S.

Both families of constraints (1.8) and (1.12) have a cardinality growing exponentially
with n. This means that it is practically impossible to solve directly the linear programming
relaxation of problem (1.3)-(1.9). A possible way to partially overcome this drawback is
to consider only a limited subset of these constraints and to add the remaining ones only
if needed, by using appropriate separation procedures. The considered constraints can be
relaxed in a Lagrangian fashion, as done by Fisher [18] and Miller [39] (see Chapter 2), or
they can be explicitly included in the linear programming relaxation, as done in branch-and-
cut approaches (see Chapter 3). Alternatively, a family of constraints equivalent to (1.8)
and (1.12) and having a polynomial cardinality may be obtained by considering the subtour
elimination constraints proposed for the TSP by Miller, Tucker, and Zemlin in [38] and
extending them to ACVRP (see, e.g., Christofides, Mingozzi, and Toth [7] and Desrochers
and Laporte [12]):

(1.13) ui—uj+Cx,-j§C—dj VI,JEV\{O},I#],
such that d; -f—dl <C,

(1.14) d <u; <C VieV\{0]

where u;, i € V \ {0}, is an additional continuous variable representing the load of the
vehicle after visiting customer i. It is easy to see that constraints (1.13)—(1.14) impose both
the capacity and the connectivity requirements of ACVRP. Indeed, when x;; = O, constraint
(1.13) is not binding since #; < C and u; > d;, whereas when x;; = 1, they impose that
u; > u; +d;. (Note that isolated subtours are eliminated as well.)

It is worth noting that the linear programming relaxation of formulation (1.3)-(1.7),
(1.13), (1.14), and (1.9) generally is much weaker than that of formulation (1.3)—(1.9).
Tightening constraints were proposed by Desrochers and Laporte {12].

Model VRP1 can be easily adapted to the symmetric problem. To this end it should
be noted that in SCVRP the routes are not oriented (i.e., the customers along a route may
be visited indifferently clockwise or counterclockwise). Therefore, it is not necessary to
know in which direction edges are traversed by the vehicles, and for each undirected edge
(i, j) € A,i, j # 0, only one of the two variables x;; and x ;; must be used, for example, that
with i < j. Note that when single-customer routes are not allowed, the edges incident to
the depot can be traversed at most once. When, instead, a single-customer route is allowed
for customer j, one may either include in the model both binary variables xo; and x ;o or use
a single integer variable, which may take value {0, 1, 2}. In this latter case, if xo; = 2, then
a route including the single customer j is selected in the solution. In the following models
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we assume that single-customer routes are allowed. The symmetric version of model VRP1
then reads

(1.15) (VRP2) min > cixij

ieV\(n} j>i
subject to
(1.16) Yoxw+ Y xy=2  VieV\{0},
h<i j>i
(1.17) > xo;=2K,
JeVA{0}
(1.18) DD i+ Y k=S VSCSV\{0LS#S,
ieS h<i ieS j>i
hes J#s
(1.19) x; €{0,1} Vi, jeV\{0},i<]
(1.20) x0; €{0,1,2) Y jeV\(0)

The degree constraints (1.16) and (1.17) impose that exactly two edges are incident
into each vertex associated with a customer and that 2K edges are incident into the depot
vertex, respectively. The CCCs (1.18) impose both the connectivity of the solution and the
vehicle capacity requirements by forcing that a sufficient number of edges enter each subset
of vertices. Constraints (1.10)—(1.12) may be adapted to SCVRP in a similar way.

The symmetric version of the two-index models is more frequently defined by using
variables with a single index e associated with the undirected edges e € E. If single-
customer routes are not allowed, all used variables are binary; otherwise, if e ¢ §(0), then
x, € {0, 1}, whereas if x, € §(0), then x, € {0, 1, 2}.

(1.21) (VRP3) min ) cx.
ecl
subject to
(1.22) dYoxe=2 VieV\{0},
eed(i)
(1.23) Y x =2K,
e€d(0)
(1.24) D xez2r(S)  VSCV\{0LS#D,
e€s(S)
(1.25) x. €{0,1} Veds0),

(1.26) x,€{0,1,2) VYees).
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Also in this case, due to (1.22), the CCCs (1.24) may be rewritten as the generalized subtour
elimination constraints:

(1.27) Y xe<IS|-r(S)  VSCV\{0},S#S
ecE(S)

where r(S) may be replaced by the trivial BPP lower bound.

Two-index vehicle flow models have been extensively used to model the basic versions
of SCVRP and ACVRP and some other variants, such as the VRPB, but they generally are
inadequate for more complex versions of VRP. In fact, as mentioned, they can be used only
when the cost of the solution can be expressed as the sum of the costs associated with the
traversed arcs. In addition, it is not possible to directly know which vehicle traverses an arc
used in the solution. Hence, these models are not suited for the cases where the cost (or
the feasibility) of a circuit depends on the overall vertex sequence or on the type of vehicle
allocated to the route.

A possible way to partially overcome some of the drawbacks associated with the
two-index models is to explicitly indicate the vehicle that traverses an arc, so that more
involved constraints may be imposed on the routes. In this way one obtains the so-called
three-index vehicle flow formulation of SCVRP and ACVRP, which uses O(n”K) binary
variables x: variable x;;; counts the number of times arc (i, j) € A is traversed by vehicle
k(k=1,..., K) in the optimal solution. In addition, there are O (nK) binary variables y:
variable y; (i € V; k =1, ..., K) takes value 1 if customer i is served by vehicle & in the
optimal solution and takes value O otherwise. The three-index model for ACVRP is given
in the following.

K

(1.28)  (VRP4) min ¥ > c;; Y xije

ieV jeVv k=1

subject to
K
(1.29) Zy,.k:1 vieV\/{0}
k=1
K
(130) Y v =K,
k=1
(1.31) Yoxp=) xu=yx YieVik=1,.. K,
Jjev jev
(1.32) Y dyu<C  Yk=1,...K,
eV
VSCV\{0LheS,
(1.33) DD wwzyw o7 U
icS j¢s
(1.34) yee€f{0,1) VYieVk=1,....K,

(1.35) xix€{0, 1} Vi jeVik=1,... K
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Constraints (1.29)—(1.31) impose that each customer is visited exactly once, that K vehicles
leave the depot, and that the same vehicle enters and leaves a given customer, respectively.
Constraints (1.32) are the capacity restriction for each vehicle k, whereas constraints (1.33)
impose the connectivity of the route performed by k. These latter constraints may be replaced
by subtour elimination constraints (SECs) (see Fisher and Jaikumar [20]):

(136) >3 xu<ISl-1  VYSCV\(0LIS|22.k=1,....K,

ieS je§

which impose that for each vehicle £ at least 1 arc leaves each vertex set S visited by
k and not containing the depot. Alternatively, the three-index version of the generalized
Miller-Tucker—Zemlin subtour elimination constraints (1.13) can be used.

(1.37) uik—ujk+Cx,-jk§C—dj Vi,je V\{0},i #],

suchthatd; +d; <C,k=1,...,K,
(1.38) di <uy <C VieV\{0}L,k=1,...,K.
Note that these constraints replace also the capacity requirements (1.32).

The undirected version of the above model can be obtained easily by using binary
variables x,;,e € Eandk =1,..., K.

K
(1.39) (VRPS) min ) ¢, ) xu
eckE k=1
subject to
K
(1.40) Yow=1 Viev\(0),
k=1
K
(1.41) D yw=K,
k=1
(1.42) > xa=2yx VieVik=1..,K,
e€d(i)
(1.43) Y dyr<C Vk=1,.. K,
ieV
(1.44) D xu>2y  VSCSVA\{OLheS k=1, K,
eed(S)
(1.45) vk €{0,1}  VieV,k=1,...,K,
(1.46) xx €{0,1}  Ve¢sO,k=1,...,K,

(147) xe €10, 1,2} Veed0),k=1,...,K.
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Three-index vehicle flow models have been extensively used to model more con-
strained versions of the VRP, such as the VRPTW, due to their greater flexibility in incor-
porating additional features (see the next section). The main drawback of these models
is represented by the increased number of variables. On the other hand, they generalize
the two-index models, which may be obtained by simply defining x;; = &, x; 4 for all
(i,j)e Aorx, = Zle % for all e € E, thus allowing both the direct use of all the
inequalities proposed for two-index models and the development of additional and stronger
formulations.

1.3.2 Extensions of Vehicle Flow Models

Vehicle flow formulations, particularly the more flexible three-index ones, may be adapted
to model some variants of the basic versions of SCVRP and ACVRP. In the following we
discuss some of them by describing only the modifications required by the asymmetric
models VRP1 and VRP4. Models VRP2, VRP3, and VRPS can be adapted in a similar way.
The adaptations required to model VRPB, VRPTW, and VRPPD are described in Chapters
7, 8, and 9, respectively.

First, we consider the case in which the graph is not complete, arising when some of
the arcs are missing. This may be immediately incorporated into the considered models by
defining the cost of the missing arcs as a suitably large positive value (practically equivalent
to +oc). When the number of missing arcs is large, i.e., when |[A| = m < n?, the models
may be modified to take advantage of the graph sparsity by explicitly using the forward and
backward stars of the vertices. As an example, model VRP1 becomes

(148)  (VRP6) min »  cyx;

(i,j)EA

subject to

(1.49) Do oxy=1 Vjev\{o}
ieA—(j)

(1.50) > xy=1  VYieV\{o0}
JeAt()

(L51) Y =K,
ieA=(0)

(1.52) > x; =K.
JEAT(0)

(1.53) YooY =S VSCSV\{0LS#0,
JESieA~(JN\S

(1.54) x;€{0,1} V() eA.

A frequent modification of the models we consider is obtained by replacing the single
depot vertex with K vertices, one for each available vehicle. For the asymmetric case,
this is obtained by defining an extended complete digraph G' = (V', A"), where V' :=
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VU{rn+1,...,n+ K — 1} contains K — 1 additional copies of vertex 0, and the cost ¢; j
of each arc in A’ is defined as follows:

cij fori,jeV\{0},
(1 55) C, . Cio fori =% \ {0}7 J € W’
: Y] oy forieW, jeVv\{0},
A fori,jeW,

where W := (0}U{n+1, ..., n+K — 1} is the set of the K vertices of G’ associated with the
depot, and A is a proper value. After this transformation, constraint (1.6) may be replaced
by K constraints of type (1.4), one for each copy of the depot. Analogously, constraint (1.7)
may be replaced by K constraints of type (1.5). This extension was originally proposed by
Lenstra and Rinnooy Kan [35] to transform into an ordinary TSP the m-TSP, which calls
for the determination of a collection of m circuits visiting m times a distinguished vertex
(i.e., the depot) and one time each for the remaining vertices. Observe that, by appropriately
defining A, we may obtain different effects. In particular, when A = M, where M is a very
large positive number, the model requires use of all the K available vehicles, i.e., leads to
the min-cost solution performing exactly K routes. Defining A = 0 leads to the min-cost
solution using at most K routes, whereas defining A = —M leads to the min-cost solution
using K, routes. Different values of A can take into account possible fixed costs associated
with the use of the vehicles.

An alternative way to model the case in which some vehicles may be left unused may
be obtained by replacing constraints (1.6) and (1.7) in model VRP1 with

(1.56) Y xio <K,
ieV

(1.57) D xo; =Y xo,
jev ieV

whereas in model VRP4 constraint (1.30) may be replaced with

K

(1.58) >y < K.

k=1

Generally, the possibility of leaving some vehicles unused is associated with the
presence of fixed costs for their use and, possibly, the additional objective requiring the
minimization of the number of vehicles used, and then of the total routing costs associated
with the use of vehicles. There are different ways to take this requirement into account.
When considering models that impose the use of all the X available vehicles, one may
first compute K,;,, by solving the BPP associated with ACVRP or SCVRP, and then define
K = K. Otherwise, the instance may be extended, as described above, by adding multiple
copies of the depot and the parameter A is set to — M.

When the model allows for the determination of solutions using a number of vehicles
smaller than K, this objective may be easily included by adding a large constant value to
the cost of the arcs leaving the depot. Thus, the optimal solution first minimizes the number
of arcs leaving the depot (hence the number of circuits) then minimizes the cost of the
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other used arcs. In three-index models, where the use of each vehicle may be individually
determined, the fixed costs may be different, and they can be directly included into an
extended objective function rather than being added to the cost of the arcs leaving the depot.

Three-index vehicle flow models may easily take into account the case of a nonho-
mogeneous fleet, where each vehicle may have a different capacity Cy, k = 1, ..., K. This
is obtained by replacing C with C; in the capacity constraints (1.32).

Finally, in some cases, as in Fisher [18], routes serving a single customer are not
allowed. In the models for the ACVRP, this can be imposed by adding the following
additional constraints:

(1.59) xoj +xjo < 1j € V\ {0}

In the models for SCVRP, the infeasibility of the single customer routes can be easily
imposed, as discussed in the previous section, by imposing that each variable associated
with an edge incident into the depot-vertex does not take value 2. In this case, constraints
(1.19) and (1.20) may be replaced by

(1.60) xi; €{0. 1}, jeV,i<j

It should be noted that in many practical cases the above assumption is not constraining.
Indeed, customer j can be served alone in a route if and only if on the remaining K — 1
vehicles there is enough space to load the demand of the other customers, i.e., if r(V\{j}) <
K —1. By replacing r(-) with the trivial BPP lower bound we may restate the above condition
as

(1.61) d; > Cpin = d(V) — (K — C.

If, given an SCVRP (or ACVRP) instance, condition (1.61) is satisfied by no customer
J» then in any feasible solution no customer may be served alone in a route (hence the
constraints preventing single-customer routes are superfluous).

1.3.3 Commodity Flow Models

Commodity flow models were first introduced by Garvin et al. [21] for an oil delivery
problem and later extended by Gavish and Graves [23, 24] to variants of TSP and VRP. These
formulations, in addition to the variables used by the two-index vehicle flow formulations
of section 1.3.1, require a new set of (continuous) variables, associated with the arcs. which
represent the amounts of demand that flow along them. The reader is referred to Laporte and
Nobert [32] for a presentation and a discussion of early commodity flow models. However,
no such model was used to develop exact approaches to VRP.

Baldacci, Mingozzi, and Hadjiconstantinou [2] presented an exact approach to SCVRP,
based on the extension to SCVRP of the rwo-commaodiry flow formulation for the TSP in-
troduced by Finke, Claus, and Gunn [16]. (See also Langevin et al. [29] for an extension of
the model for the TSP with Time Windows.) Since commodity flow formulations require
arc orientation, we define the model on a directed graph equivalent to the undirected one.

The formulation requires the extended graph G = (V’, A") obtained from G by
adding vertex n+ I, which is a copy of the depot node, as explained in section 1.3.2. Routes
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are now paths from vertex 0 to vertex n + 1. Two nonnegative flow variables, y;; and
¥ji are associated with each arc (i, j) € A’. If a vehicle travels from i to j, then y;; and
v;i give the vehicle load and the vehicle residual capacity, respectively, along the arc, i.e.,
yji = C — y;;. The roles are reversed if the vehicle travels from j to i. Therefore, the
equation y;; + y;; = C holds for each arc (i, j) € A"

For any route of a feasible solution, the flow variables define two directed paths, one
from vertex 0 to n + 1, whose variables represent the vehicle load, and another from vertex
n =+ 1 to vertex 0, whose variables represent the residual capacity on the vehicle. In other
words, think of this as one vehicle going from 0 to n + 1, leaving vertex 0 with just enough
product, delivering at every customer an amount equal to its demand, and arriving empty
at vertex n + 1; and think of another vehicle leaving vertex n 4+ 1 empty and picking up at
every customer an amount equal to its demand. An example with four clients and C = 25
is shown in Figure 1.2, where the demands are shown next to each vertex.

As in two-index vehicle flow models, for each arc (i, j) € A', let x; ; be equal to 1
if the arc is in the solution and be equal to O otherwise. Then, an integer formulation of
SCVREP is as follows:

(1.62) (VRPT) min Y cx;

(i, )eA’

subject to

(1.63) Y G-y =2  YieV\{0n+1},
jev’

(1.64) Y yy=dV\{0,n+1)),
FEVA{0.n+1}

(1.65) Z yio=KC—d(V\{0,n+1)),
FEVA{0.n+1}

(1.66) Y. v =KC,
FeV{0,n+1}

(1.67) yij +yji = Cxjj V(i j)e A,

(1.68) Y txpn=2 VieV\{0.n+1},
jevr

(1.69) yij=0 V(@ jed,

(1.70) x; €01} V(@ j)ed.

Flow conservation constraints (1.63) impose that the difference between the sum of
the commodity flow variables associated with arcs entering and leaving each vertex i is
equal to twice the demand of /. Constraints (1.64)—(1.66) impose the correct values for
the commodity flow variables incident into the depot vertices. Finally, constraints (1.67)
and (1.68) impose the relation between vehicle flow and commodity flow variables and the
vertex degree, respectively.
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0 n+l

Figure 1.2. Example of flow paths on a route (C = 25).

Baldacci, Mingozzi, and Hadjiconstantinou {2] showed that the linear relaxation of
this mixed integer program dominates that of model VRP1 when the CCCs (1.8) are dropped.
The elimination of these inequalities, of course, weakens formulation VRP1 to a great extent,
and thus the result is not so surprising.

1.3.4 Set-Partitioning Models

The set-partitioning (SP) formulation of the VRP was originally proposed by Balinski and
Quandt [3] and uses a possibly exponential number of binary variables, each associated
with a different feasible circuit of G. More specifically, let H = {H], ..., H,} denote the
collection of all the circuits of G, each corresponding to a feasible route, with g = |H|.
Each circuit H; has an associated cost ¢;. In addition, let a;; be a binary coefficient that
takes value 1 1f vertex i is visited (or covered, in the set partitioning jargon) by route H;
and takes value 0 otherwise. The binary variable x;, j =1, ..., ¢, is equal to 1 if and only
if circuit H, is selected in the optimal solution. The model is

(1.71) (VRP8) min Zc,x,
j=!
subject to
4
(1.72) Dayxj=1 VYieV\{0},
j=!
q
(1.73) Zx_,- =K,
=t
(1.74) x;ef01) Vji=1,...,4q.

Constraints (1.72) impose that each customer i is covered by exactly one of the selected
circuits, and (1.73) requires that K circuits are selected. This is a very general model
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that may easily take into account several constraints as, for example, time windows, since
route feasibility is implicitly considered in the definition of set H. Moreover, the linear
programming relaxation of this formulation typically is very tight.

Observe that if the cost matrix satisfies the triangle inequality, then the set partitioning
model may be transformed into an equivalent set-covering (SC) model VRP8' by writing
(1.72) as

q
(1.75) Y ayxjz1  VieV\{0}
Jj=1

Any feasible solution to model VRPS is also feasible for VRPS', and any feasible solution to
VRP8' may be transformed into a feasible solution of VRP8 of not greater cost. Indeed, if
the VRP§' solution is infeasible for VRPS, this means that one or more customers are visited
more than once. Then, these customers may be removed, by applying shortcuts, from all
but one of the routes where they are included. Since the triangle inequality holds, each such
shortcut would not increase the cost of the solution. The main advantage of using the VRP8’
formulation with respect to the VRP8 one is that in the former only inclusion-maximal
feasible circuits, among those with the same cost, need be considered in the definition of
‘H. This considerably reduces the number g of variables. In addition, when using the
VRP8’ formulation the dual solution space is considerably reduced since dual variables are
restricted to nonnegative values only.

One of the main drawbacks of the VRP8 and VRP8’ models is represented by the huge
number of variables, which, in non-tightly-constrained instances with tens of customers, may
easily run into the billions. The explicit generation of all the feasible circuits (columns) is
thus normally impractical, and one has to resort to a column generation approach to solve
the linear programming relaxation of models VRP8 and VRP8' (see Chapter 4).

1.4 Test Instances for the CVRP and Other VRPs

Despite the interest in VRPs by the scientific community and by practitioners, the computa-
tional testing of the solution methods for the VRP generally has been carried out by consid-
ering only a limited set of Euclidean test instances, which were proposed by Christofides and
Eilon [6] and by Christofides, Mingozzi, and Toth [7]. These instances are identified with a
variety of names by the various authors who used them in their papers and this may cause
some confusion. Therefore, in this book we adopted the unified naming scheme described
by Vigo [43] to identify the test instances used for CVRP and DCVRP.

The naming scheme for the instance data and solutions is an extension of that adopted
by Augerat et al. [1]. The name of each instance should allow one to determine quickly its
characteristics. In particular, the names have the form tnnnvkkp and are made up of five
positional fields. The first field, t, is one alphabetical character that identifies the problem
type and is equal to

* E for Euclidean SCVRP instances,

* S for non-Euclidean SCVRP instances,
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» A for ACVRP instances, and

¢ D for symmetric DCVRP instances.

The second field of the name, nnn, is a three-digit integer that denotes the number of vertices
of the problem graph, i.e., including the depot vertex. The third field, v, is normally equal
to “-”, but it may be an alphabetical character used to distinguish several instances that are
characterized by the same number of vertices and available vehicles. The fourth field, kk,
is a two-digit integer that denotes the number of available vehicles. Finally, the Jast field
of the name, p, is an alphabetical character that identifies the paper where the problem data
are first given or an alternative source for them, as follows:

* a Hays [28] and Eilon, Watson-Gandy, and Christofides [15},

* ¢ Christofides, Mingozzi, and Toth [7],

* d Dantzig and Ramser {11] and Eilon, Watson-Gandy, and Christofides [15],
* e Christofides and Eilon [6],

« £ Fisher [18],

* g Gaskell [22] and Eilon, Watson-Gandy, and Christofides [15],

* h Hadjiconstantinou, Christofides, and Mingozzi [27],

* m Christofides, Mingozzi, and Toth [8],

* n Noon, Mittenthal, and Pillai [40],

¢ v Fischetti, Toth, and Vigo [17], and

¢ w Clarke and Wright [9] and Eilon, Watson-Gandy, and Christofides [15].

For example, according to this naming scheme, E0O51-05¢e identifies the classical 50-
customers Euclidean instance with 5 available vehicles proposed by Christofides and Eilon
[6], and A073-03v identifies the 72-customers ACVRP instance with 3 vehicles described
by Fischetti, Toth, and Vigo [17].
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Chapter 2

Branch-and-Bound
Algorithms for the
Capacitated VRP

Paolo Toth
Daniele Vigo

2.1 Introduction

The branch-and-bound method has been used extensively in recent decades to solve the
CVRP and its main variants. In many cases, as for the Asymmetric CVRP (ACVRP) and
the Distance-Constrained CVRP (DCVRP), these algorithms still represent the state of the
art with respect to the exact solution methods. In their extensive survey devoted to exact
methods, Laporte and Nobert [23] gave a complete and detailed analysis of the branch-and-
bound algorithms proposed up until the late 1980s.

In this chapter, we concentrate on the most recent branch-and-bound algorithms,
proposed during the last few years for the exact solution of CVRP, for both symmetric and
asymmetric cost matrices. When the explicit distinction between SCVRP and ACVRP is not
needed, we simply use CVRP. Although no new result has been presented for the DCVRP,
we briefly review the known algorithms for this problem, too.

As mentioned in the introduction, the CVRP is an extension of the well-known Trav-
eling Salesman Problem (TSP), calling for the determination of a Hamiltonian circuit with
minimum cost visiting a given set of points exactly once. Therefore, many exact approaches
for the CVRP were inherited from the extensive and successful work done for the exact solu-
tion of the TSP. Until the late 1980s, the most effective exact approaches for the CVRP were
mainly branch-and-bound algorithms, which used basic combinatorial relaxations, such as
the Assignment Problem (AP), the degree-constrained Shortest Spanning Tree (SST), and
the state space relaxation. Recently, more sophisticated bounds were proposed, like those
based on Lagrangian relaxations or on the additive approach, which substantially increased
the size of the problems that can be solved to optimality by branch-and-bound.

29



30 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

When presenting the basic relaxations used to compute lower bounds, we treat sepa-
rately problems with asymmetric and symmetric cost matrices. In fact, although the sym-
metric problems are special cases of the asymmetric ones, the latter were much less studied
in the literature and the exact methods developed for them have in general a poor perfor-
mance when applied to symmetric instances. Analogously, not all the approaches proposed
for symmetric problems can be easily adapted to solve asymmetric problems.

In section 2.2 we consider the basic combinatorial relaxations proposed for ACVRP
and SCVRP. We next present, in section 2.3, the more effective relaxations based on La-
grangian and additive approaches. In section 2.4 the main features and the relative per-
formance of the branch-and-bound algorithms are discussed. Section 2.5 examines the
relaxations proposed for the DCVRP, and in the last section we draw some conclusions and
outline possible future directions of research.

We remind the reader that throughout this chapter, the graphs, directed or undirected,
are assumed to be complete. Information on the performance of the computers used for
testing the algorithms presented, expressed in Mflops, is taken (when available) from Don-
garra [10]. In this chapter we extensively refer to the basic notation and to the models
presented in Chapter 1.

2.2 Basic Relaxations

In this section we describe the basic combinatorial relaxations for ACVRP and SCVRP that
were used within the early branch-and-bound algorithms.

The first type of relaxation may be obtained from the integer linear programming
(ILP) formulations of ACVRP and SCVRP (see section 1.3) by dropping the constraints
used to impose the connectivity and the capacity requirements, such as the Capacity-Cut
Constraints (CCCs) or the Generalized Subtour Elimination Constraints (GSECs). The
resulting problem amounts to an AP or to a b-matching problem for the asymmetric and
symmetric case, respectively.

The second type of relaxation leads instead to the solution of cardinality-constrained
shortest spanning arborescences and trees for the asymmetric and symmetric case, respec-
tively. These relaxations are obtained by weakening the CCCs or GSECs so as to impose
only the connectivity of the solution and by ignoring part of the degree requirements of the
vertices.

As we will see at the end of this section, the quality of the lower bounds obtained with
these relaxations is generally poor and substantial efforts are needed to improve them.

2.2.1 Bounds Based on Assignment and Matching

Laporte, Mercure, and Nobert [22] proposed the first branch-and-bound algorithm for
ACVRP. The algorithm is based on the relaxation obtained from model VRP1 of section
1.3.1 by dropping the CCCs (1.8). The resulting problem is a Transportation Problem (TP),
calling for a min-cost collection of circuits of G visiting once all the vertices in V\ {0}, and
K times vertex 0. This solution can be infeasible for ACVRP since

(i) the total customer demand on a circuit may exceed the vehicle capacity, and

(ii) there may exist “isolated” circuits, i.e., circuits not visiting the depot (vertex 0).
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It is well known that determining the optimal TP solution requires O(n*) time. In
practice, it is more effective to transform the problem into an AP defined on the extended
complete directed graph G’ = (V’, A”), obtained by adding K — 1 copies of the depot vertex
as described in section 1.3.2, where the extended cost matrix, ¢’, is defined by (1.55). The
resulting relaxation is thus

(2.1 (AP) L.p = min Z Z ¢} xij
ieV’ jev’

subject to

(2.2) Yoxj=1 VjeV,
ieV

2.3) Y oxj=1 VieV,
jeVv

(24) Xij > 0 Vl,_] eV,

Several efficient public domain codes for the AP are available; see, e.g., Dell’ Amico
and Toth [8].

The counterpart, for the symmetric case, of the AP relaxation is the so-called b-
matching relaxation, which may be obtained by considering model VRP3 of section 1.3.1
and by removing the CCCs (1.24). The resulting relaxed problem requires the determination
of a min-cost collection of cycles covering all the vertices and such that the degree of each
vertex 7 18 equal to b;, where b; = 2 for all the customer vertices, and by = 2K for the depot
vertex.

2.5) (b-matching) Ly = min Zcexe
eek
subject to
(2.6) Y xe=b VieV,
eed (i)
.7 x. € {0, 1} Ve &8(0),
(2.8) x. €10, 1,2} Y e € §(0).

This relaxation was used by Miller [25], after the development of efficient algorithms
for the »-matching problem (see, e.g., Miller and Pekny [27]), which can solve it in time
O(|V|?|E|). Similar to what may happen to the AP relaxation for the ACVRP, the b-
matching solution may be infeasible for SCVRP since

(i) the demand associated with a cycle may exceed the vehicle capacity, and
(i) some cycle may be isolated, i.e., disconnected from the depot.

Also, in this case it is possible to obtain an equivalent 2-matching relaxation by adding
K — 1 copies of the depot.
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2.2.2 Bounds Based on Arborescences and Trees

An alternative combinatorial relaxation for the ACVRP is based on the solution of degree-
constrained spanning arborescences. This relaxation may be obtained from model VRP1 by
(1) removing the outdegree constraints (1.5) for all the customer vertices and (ii) weakening
the CCCs (1.8) so as to impose only the connectivity of the solution, i.e., by replacing the
right-hand side with 1. The resulting relaxed problem, called the K-Shortest Spanning
Arborescence problem (KSSA), is

2.9) (KSSA)  Lgssa =min ) Y cyx;
ieV jeVv

subject to

(2.10) Y oxy=1  VjeV\{o}
ieV

(2.11) Y xo=K,
ieV

(2.12) Y x; =K,
jev

(2.13) YD oxizl VSSV\(0LS£H,
igS jes

(2.14) x; €0,  VijeV.

The KSSA can be effectively solved by considering two separate subproblems:

(i) the determination of a min-cost spanning arborescence with outdegree K at the depot
vertex, defined by (2.9), (2.10), (2.12), (2.13), and the continuous relaxation of (2.14),
with variables x;; fori € V, j € V \ {0}, and

(i1) the determination of a set of K min-cost arcs entering the depot, defined by (2.9),
(2.11), and the continuous relaxation of (2.14), with variables x;o fori € V.

Therefore, Lgssa can be determined in O(n?) since the first subproblem can be solved
in O(n?) time (see Gabow and Tarjan [16] and Toth and Vigo [28]), while the second
subproblem clearly requires O(n) time.

A similar lower bound may be obtained by considering the antiarborescence rooted at
the depot (KSSAA), in which the branches are union of paths starting from the customers
and directed toward the depot, whereas in the KSSA the paths are oriented in the opposite
way. It is easy to see that the Lggs44 bound may be obtained by computing the KSSA
on the transpose of the original cost matrix. In the following, we use the best of these two
bounds, defined as

(2.15) Liyssa = max{Lggsa, Lxssaa)-

The above-described lower bound was never used within branch-and-bound algo-
rithms, and the preliminary computational results discussed in the next section show that its
quality is generally poor and inferior to that of the lower bound L 4p. However, it should
be mentioned that for a problem closely related to the SCVRP and ACVRP, such as the
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symmetric and asymmetric VRP with backhauls (see Chapter 8), Toth and Vigo [29] suc-
cessfully used a Lagrangian relaxation based on the solution of KSSAs, solving to optimality
problems with up to 100 customers.

Several relaxations based on spanning trees were proposed for SCVRP by extending
the well-known 1-tree relaxation proposed by Held and Karp [19] for the TSP. The earliest
branch-and-bound algorithm based on such relaxations, which proved to be able to solve
small size instances, was proposed by Christofides, Mingozzi, and Toth [7]. More recently,
Fisher [14] presented another tree-based relaxation that requires the determination of a so-
called K -tree, defined as a min-cost set of n + K edges spanning the graph. The approach
used by Fisher is based on formulation VRP3 of section 1.3.1 with the additional assumption
that single-customer routes are not allowed. This is imposed by defining as binary all the
variables associated with edges incident into the depot. However, as Fisher observed, in
many cases this assumption is not constraining (see section 1.3.2 for a discussion).

Fisher modeled the SCVRP as the problem of determining a K -tree with degree equal
to 2K at the depot vertex, and with additional constraints imposing the vehicle capacity
requirements and the degree of each customer vertex, which must be equal to 2.

The determination of a K-tree with degree 2K at the depot requires O(n*) time
(see Fisher [15]). This degree-constrained K-tree relaxation may easily be obtained by
considering formulation VRP3 and by removing the degree constraints (1.22) for the cus-
tomer vertices and weakening the CCCs (1.24) into connectivity constraints by replacing
the right-hand side with 1. The resulting relaxed problem is

(2.16) (K -tree) min Z CeX,
ecE

subject to

(2.17) Z x, = 2K,
ec3(0)

2.18) Dorzl  SSV\{0LS#0.
ecd(S)

(2.19) x,€{0,1} VeecE.

It can easily be seen that the K-tree solution may be infeasible for SCVRP because
some vertices may have degree different from 2. Moreover, the demand associated with the
branches leaving the depot may exceed the vehicle capacity.

2.2.3 Comparison of the Basic Relaxations

The basic relaxations of ACVRP and SCVRP presented in the previous sections have in gen-
eral a poor quality, as shown by the results presented in this section, obtained by considering
widely used test instances from the literature.

Table 2.1 reports the percentage ratios of the different lower bound values for ACVRP
with respect to the optimal solution value, when applied to the ACVRP real-world instances
of pharmaceutical and herbalist’s product delivery in downtown Bologna, described by
Fischetti, Toth, and Vigo [13]. In particular, the table contains the ratios corresponding
to Lap, L ¢4, and the overall additive bound L pp, which is described in section 2.3.1.
The average gap, over the eight instances, of the lower bound with respect to the optimal
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Table 2.1. Percentage ratios of different ACVRP lower bounds with respect to the optimal
solution value on real-world instances.

Problem n K %LAP %L/KSSA %LADD
A034-02v 33 2 85.8 78.7 90.1
A036-03v 35 3 90.9 75.2 93.2
A039-03v 38 3 93.8 77.6 96.1
A045-03v 44 3 934 75.6 95.7
A048-03v 47 3 93.6 79.0 97.2
AD56-03v 55 3 88.5 754 94.3
A065-03v 64 3 92.6 75.6 95.5
A071-03v 70 3 91.7 79.3 94.6

91.3 77.1 94.6

solution value is about 8.7% for Lsp and 22.9% for L ¢.,. As a consequence, none of
these instances were solved by a branch-and-bound based on such basic relaxations, whereas
they were solved by adopting the L 4pp bound, whose average ratio is 5.4%. Moreover,
the computational experiments described by Fischetti, Toth, and Vigo [13] show that on
randomly generated instances the gap was normally much smaller, being equal to 2% to 5%
for L4p and to 1% to 2% for L 4pp.

Table 2.2 reports the average percentage ratios of the basic lower bounds Ly and
Ly with respect to the optimal or the best-known solution value, for a set of widely used
Euclidean CVRP instances from the literature. The table also reports the ratios of L4p,
L' ¢s4 and of the overall additive lower bound L 4pp by Fischetti, Toth, and Vigo [13],
which are clearly valid lower bounds for SCVRP as well.

The L g values are those reported by Fisher [14], who used real-valued cost matrices.
The best-known solution values used to compute the ratios are those reported by Toth and
Vigo [30], which were obtained by using real-valued cost matrices. The Ly values were
computed with the CPLEX 6.0 ILP solver. All the remaining lower bound values were

Table 2.2. Percentage ratios of different basic SCVRP lower bounds with respect to the best
known solution value of Euclidean instances.

Problem n K %Lyy %Ly;  %Lysss %Lap %Lapp
E045-04f 44 4 714  626% 622 574 70.3
EO51-05e 50 5 879 849 794 809 87.5
E072-04f 71 4 809 777 720  69.8 779
E076-10e 75 10 767 762 69.2 710 76.1
E101-08e 100 8 864 815 775 807 86.1
E101-10c 100 10 703  77.6* 722 665 69.6
E135-07f 134 7 634 592 575 415 60.3
E151-12¢ 150 12 805  784% 73.6 686 77.6
E200-16c 199 16 724 741 664 646 722

767 747 700 674 75.5

1Single-customer routes not allowed.

*May include single-customer routes.
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computed by using integer cost matrices, where the arc cost is defined as the real cost
multiplied by 10,000 and rounded to the nearest integer. The final value is then scaled down
by dividing it by 10,000. It should be recalled that the problem considered by Fisher in [14]
was slightly different from what we defined as CVRP, since the single-customer routes were
not allowed. In particular, among the instances reported in Table 2.2, those marked with an
asterisk may include single-customer routes. As a consequence, the L g7 values computed
by Fisher for these instances may by slightly larger than those that could be obtained in the
case where single-customer routes are allowed.

By observing Table 2.2, it can be noted that none of the basic relaxations reaches a
quality sufficient to solve moderate-size problems. As an example, we used the Fischetti,
Toth, and Vigo code FTV, proposed for the ACVRP and based on the additive bound L 4pp:
the largest SCVRP instance it could solve included 47 customers (i.e., problem E048-04y
not included in the table), and some problems with 25 to 30 customers were not solved to
optimality.

2.3 Better Relaxations

As discussed in the previous section, the basic combinatorial relaxations available for both
ACVRP and SCVRP have a poor quality, and, when used within branch-and-bound ap-
proaches, they allow for the optimal solution of small instances only. Therefore, different
improved bounding techniques were proposed, which considerably increased the size of the
instances solvable by branch-and-bound algorithms. In particular, for the ACVRP we exam-
ine the additive bounding procedures proposed by Fischetti, Toth, and Vigo [13], whereas for
the SCVRP we describe the bounding procedures based on Lagrangian relaxation proposed
by Fisher [14] and Miller [25]. We also describe the bound based on the set partitioning
formulation proposed by Hadjiconstantinou, Christofides, and Mingozzi [18].

2.3.1 Additive Bounds for ACVRP

The following two relaxations were introduced by Fischetti, Toth, and Vigo [13], who
embedded them into overall additive bounding procedures. The additive approach was
proposed by Fischetti and Toth [12] and allows for the combination of different lower
bounding procedures, each exploiting different substructures of the considered problem.
When applied to a minimization problem of the form min{cx : x € F}, each procedure
returns a lower bound, p, and a residual cost matrix, ¢, such that

¢

IA IV

0+ Cx < cx, x€F.

The entries of ¢ represent lower bounds on the increment of the optimal solution value
if the corresponding arc is imposed in the solution. The different bounding procedures are
applied in sequence, and each of them uses as costs the residual cost matrix returned by
the previous procedure (obviously, the first procedure starts with the original cost matrix).
The overall additive lower bound is given by the sum of the lower bounds obtained by the
different procedures. It can easily be shown that if the lower bounding procedures are based
on linear programming relaxations, as those described for ACVRP (i.e., AP and KSSA), the
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linear programming reduced costs are valid residual costs. For further details see Fischetti,
Toth, and Vigo [13] and Fischetti and Toth [12].

2.3.1.1 Disjunctive Lower Bound

The first relaxation described by Fischetti, Toth, and Vigo [13] is based on a disjunction on
infeasible arc subsets. A given arc subset B C A is called infeasible if no feasible solution
to ACVRP can use all its arcs, i.e., when

(2.20) D xw<IBl-1

(a,b)eB

is a valid inequality for ACVRP. For any given (minimal) infeasible arc subset B C A, the
following logical disjunction holds for each x € F, where F is the set of all the feasible
ACVRP solutions:

21) V (xe0®={xeR : xy=0)}).

(a.b)cB

Then, |B| restricted problems can be defined, each denoted as RP?®, by including the
additional condition x,, = 0, imposed for a different arc (a, b)) € B. For each RP% a
valid lower bound, 9#“°, is computed through the AP relaxation described in the previous
section, with ¢, = M = 400 to impose x,;, = 0. The disjunctive bound

(2.22) Lp = min {9’ : (a, b) € B}

clearly dominates the lower bound L 4 p based on AP since #® > L4 for all (a, b) € B.
A possible way to determine infeasible arc subsets B, used in [13], is the following.
First solve the AP relaxation with no additional constraints, and store the corresponding
optimal solution (xi*j 11, j € V). If x* is feasible for ACVRP, then clearly L4p cannot
be improved; otherwise, a suitable infeasible arc subset B is chosen to possibly improve
it. Note that imposing x,, = O for any (a,b) € A such that x}, = 0 would produce
99 = L ,p, hence a disjunctive bound Lp = L 4p. Therefore, B is chosen as a subset of

A* = [(i, jyeA: xh= 1}, if any, corresponding to one of the following cases:
(i) a circuit disconnected from the depot vertex,
(i1) a sequence of customer vertices whose total demand exceeds C,

(iii) a feasible circuit that leaves uncovered a set of customers, S, whose total demand
cannot be served by the remaining K — 1 vehicles, i.e., such that ¥ (S) > K — 1, where
r(S) represents the minimum number of vehicles needed to serve all the customers
in S.

Different choices of the infeasible arc subset B lead to different lower bounds. There-
fore, Fischetti, Toth, and Vigo [13] used an overall additive bounding procedure, called
ADD_DISJ, which considers, in sequence, different infeasible arc subsets so as to produce
a possibly better overall lower bound.
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Procedure ADD_DIS] starts by solving the AP relaxation with no additional con-
straints and defines the initial lower bound as L 4 p and the arc set A* as the arcs used in the
optimal AP solution. Then, iteratively, an infeasible subset B, if any, is chosen from A* and
used for the computation of the disjunctive lower bound returning a lower bound L  and the
corresponding residual cost matrix. The current additive lower bound is increased by Lp
and the set A* is updated by removing from it all the arcs whose corresponding variables
are not equal to 1 in the current optimal solution of the disjunctive bound. The process is
iterated until A* does not contain further infeasible arc subsets. Procedure ADD_DISJ can
be implemented, through parametric techniques, to have an overall time complexity equal
to O(n*).

2.3.1.2 lower Bound Based on Min-Cost Flow

The second lower bound described by Fischetti, Toth, and Vigo [13] is a projective bound
based on a min-cost flow relaxation of ACVRP. Let {8y, ..., S,} be a given partition of V
with 0 € S, and define

Ar=JE®),  Ar=4\A4,
h=0

where E(Sy) is the set of arcs internal to set S,. In other words, A is partitioned into
{A, A>}, where A, contains the arcs internal to the subsets Sy, and A, contains those
comnnecting vertices belonging to different Sy’s.

In the following, a lower bound L p based on projection is described. The bound is
givenby Lp =t + 9, where 9,1 = 1,2, is alower bound on ) (¢;; : (i, j) € A*NA;)
for every (optimal) ACVRP solution A* C A.

The contribution to L » of the arcs in A, (internal to the given subsets S) is initially
neglected, i.e., ¥, is set equal to 0. The rationale for this choice is clarified later. As to
¥, this is computed by solving the following linear programming relaxation, called R1,
obtained from model VRP1 by weakening degree equations (1.4)—(1.7) into inequalities, to
take into account the removal of the arcs in A, and imposing the CCCs (1.8) and (1.11)

only for the subsets So, Si, ..., S,. The model of R1 is
(2.23) (R1) ¥, = min Z Cijxij
(I.J)EA;
subject to
1 Vje V{0l
(2.24) Z xij < _
i€V, j)eds K, j=0,
1 VieV\{0},
(2.25) PO B 'l—o \ (0}
JeVili.j)ea, ’ =Y,
VA S, h=0,
SEUREED 3 DD 35 DT ROV LI
P8y JES €Sy j¢Si Fop =1,....m,

2.27) xi; € {0, 1} Y (i, j) € A
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This model can be solved efficiently, since it can be viewed as an instance of a min-
cost flow problem on an auxiliary layered network, as illustrated in Figure 2.1. The network
contains 2(n + m + 2) vertices, namely,

* two vertices, say it and i, foralli € V;
¢ two vertices, say a; and by, forallh =1, ..., m;
* asource vertex, s, and a sink vertex, ¢.
The arcs in the network, and the associated capacities and costs, are
s forall (i, j) € Ay: arc (i*, j7) with cost ¢;; and capacity +00;

e forallh =0, ..., m: arcs (a;, i Ty and (i~, by) foralli € S, with cost 0 and capacity
13Gfi #0)or K (ifi = 0);

e forallh =0,...,m: arc (ay, by) with cost 0 and capacity [Sy| —7(Sy) (if # # 1) or
|Sol + K — r(V \ Sp) (if h = 0);

e forallh =0,...,m: arcs (s, ay) and (by, t), both with cost 0 and capacity |S,| (if
h # 1or|S|+ K (if A =0).

It can easily be seen that finding the min-cost s-¢ flow of value n + K on this network
actually solves relaxation R1. The worst-case time complexity for the computation of ,,
and of the corresponding residual costs, is O (n?) by using a specialized algorithm based on
successive shortest path computations.

Different choices of the vertex partition {Sy, ..., S, } lead to different lower bounds.
Note that choosing S, = {h} for all A € V produces a relaxation R1 that coincides with
the AP relaxation of section 2.2.1. When, on the other hand, nonsingleton S,’s are present,
relaxation R1 can take into account the associated CCCs (that are, instead, neglected by
AP), while losing a possible contribution to the lower bound of the arcs inside S, (which
belong to A;) and weakening the degree constraints of the vertices in Sy. Fischetti, Toth,
and Vigo [13] used, in sequence, different partitions obtaining an overall additive procedure,
called ADD_FLOW.

The procedure is initialized with the partition S, = {k} for all & € V (i.e., with the
AP relaxation). At each iteration of the additive scheme, relaxation R1 is solved, the current
lower bound is increased, and the current costs are reduced accordingly. Then a convenient
collection of subsets Sy, , - .., Sy, (With r > 2) belonging to the current partition is selected
and the subsets are replaced with their union, say, §*. The choice of this collection is made
to produce an infeasible set $*, i.e., a vertex set whose associated CCC is violated by the
solution of the current relaxation R1. This, hopefully, produces an increase of the additive
lower bound in the next iteration. The additive scheme ends when either m = 1 or no
infeasible §* is detected.

Procedure ADD_FLOW takes O(n*) time, and the resulting additive lower bound
clearly dominates bound L 4 p, which is used to initialize it. On the other hand, no dominance
relation exists between ADD_FLOW and procedure ADD_DISJ. Therefore, Fischetti, Toth,
and Vigo proposed to apply procedures ADD_DISY and ADD_FLOW in sequence, again in
an additive fashion. To reduce the average overall computing time, procedure ADD_FLOW
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Figure 2.1. The auxiliary layered network for relaxation R1.

was stopped when no increase of the current additive lower bound L 4p was observed for

five consecutive iterations.

Table 2.1 reports the percentage ratios of the overall additive bounding procedure
when applied to the ACVRP real-world instances of pharmaceutical and herbalist’s product
delivery in downtown Bologna. It can be noted that the additive procedures considerably

improve the L 4p lower bound.

2.3.2 Further Lower Bounds for ACVRP

Other bounds for the ACVRP may be derived by generalizing the methods proposed for
the symmetric case. For example, Fisher [14] proposed a way to extend to ACVRP the
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Lagrangian bound based on a K -tree derived for the SCVRP (described in section 2.3.3). In
this extension the Lagrangian problem calls for the determination of an undirected K -tree
on the undirected graph obtained by replacing each pair of directed arcs (i, j) and (j, 1)
with a single edge (i, j) with cost c; ; = min{c;;, cji}. No computational testing for this
bound was presented by Fisher [14].

Possibly better bounds may be obtained by explicitly considering the asymmetry of
the problem, i.e., by using K -arborescences rather than K-trees and by strengthening the
bound in a Lagrangian fashion as proposed by Toth and Vigo [28, 29] for the capacitated
shortest spanning arborescence problem and the VRPB, respectively.

2.3.3 Lagrangian Lower Bounds for SCVRP

Fisher [14] and Miller [25] proposed to strengthen the basic SCVRP relaxations by dualizing,
in a Lagrangian fashion, some of the relaxed constraints. In particular, Fisher included in the
objective function the degree constraints (1.22) and some of the CCCs (1.24), whereas Miller
included some of the GSECs (1.27). Note that Fisher did not allow single-customer routes.
As in related problems, good values for the Lagrangian multipliers associated with the
relaxed constraints are determined by using a standard subgradient optimization procedure
(see, e.g., Held and Karp [19] and Held, Wolfe, and Crowder [20]).

The main difficulty associated with these relaxations is represented by the exponential
cardinality of the set of relaxed constraints (i.e., the CCCs and the GSECs) which does not
allow for the explicit inclusion of all of them into the objective function. To this end,
both Fisher and Miller proposed to include only a limited family F of CCCs or GSECs
and to iteratively add to the Lagrangian relaxation the constraints violated by the current
solution of the Lagrangian problem. In particular, at each iteration of the subgradient
optimization procedure, the arcs incident to the depot in the current Lagrangian solution
are removed. Violated constraints (i.e., CCCs or GSECs, depending on the approach), if
any, are separated (i.e., detected) by examining the connected components obtained in this
way. This separation routine is exact, i.c., if a constraint associated with, say, vertex set S
is violated by the current Lagrangian solution, then there is a connected component of that
solution spanning all the vertices in S and violating the constraint. The new constraints are
added to the Lagrangian problem, i.e., to F, with an associated multiplier, and the process
is iterated until no violated constraint is detected (hence the Lagrangian solution is feasible)
or a prefixed number of subgradient iterations has been executed. Slack constraints are
periodically purged (i.e., removed) from F.

Fisher [14] initialized F with an explicit set of constraints containing the customer
subsets nested around K + 3 seed customers. The seeds were chosen as the X customers
farthest from the depot in the routes corresponding to an initial feasible solution, whereas the
last three were the customers maximally distant from the depot and the other seeds. For each
seed, 60 sets were generated by including customers according to increasing distances from
the seed. After 50 subgradient iterations, new sets were added to F by identifying violated
CCCs in the current Lagrangian solution as previously explained. The step size used in
the subgradient optimization method was initially set to 2 and was reduced by a factor of
0.75 if the lower bound was not improved in the last 30 iterations. The number of iterations
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of the subgradient optimization procedure performed at the root node of the branch-and-
bound algorithm ranged between 2000 and 3000. The overall Lagrangian bound, LAGr,
considerably improved the basic K -tree relaxation and was, on average, larger than 99%
of the optimal solution value for the three Euclidean instances with n < 100 solved to
optimality in Fisher [14] (see section 2.3.5).

Miller [25] initialized JF as the empty set, and at each iteration of the subgradient pro-
cedure detected violated GSECs and additional constraints belonging to the following two
classes. The first type of constraint is given by additional GSECs which were added when
the current Lagrangian solution x contains k (with £ > 2) overloaded routes. The customer
set of these new GSECs is the union of the sets Sy, ..., Sy associated with the GSECs vio-
lated by x. This increases the probability that arcs connecting customers belonging to the
overloaded routes to those in sets Sy, ..., S; are selected by the »-matching solution. The
second type of constraint was added when x contained routes that were underloaded, i.e.,
whose associated load was smaller than the minimum vehicle load C;, defined by (1.61).
In this case for each such set §, with 0 € S, a constraint of the form

(2.28) Y xsISI-1,

ecE(S)

which breaks the current underloaded route in x, was added to F. The procedure was
iterated until no improvement was obtained over 50 subgradient iterations. The step size is
modified in an adaptive way every five subgradient iterations to produce a slight oscillation
in lower bound values during the progress of the subgradient procedure. If the lower bound
is monotonically increasing, the step size is increased by 50%; if the oscillation of the lower
bound value is greater than 2%, the step size is reduced by 20%, and when the oscillation
is smaller than 0.5% it is increased by 10%. The final Lagrangian bound LAG,, of Miller
is considerably tight, being on average 98% of the optimal solution value for the eight
problems with n < 50 solved in Miller [25] (see section 2.3.5).

2.3.4 Lower Bounds from a Set-Partitioning Formulation

Hadjiconstantinou, Christofides, and Mingozzi [18] proposed a branch-and-bound algo-
rithm where the lower bound is computed by heuristically solving the dual of the linear
programming relaxation of the Set-Partitioning (SP) formulation of the SCVRP.

As described in section 1.3.4, the SP formulation of the VRP was originally proposed
by Balinski and Quandt [2] and uses a possibly exponential number of binary variables,
each associated with a different feasible circuit of G.

Model VRPS of section 1.3.4 is a very general one and may easily take into account
several constraints (as, for example, time windows), since route feasibility is implicitly
considered in the definition of set . Agarwal, Mathur, and Salkin [1] proposed an exact
algorithm for SCVRP based on the SP approach, whereas several successful applications of
this technique to tightly constrained VRPs were reported by Desrosiers et al. [9]. (See also
Chapters 4 and 7 of the present volume.) Moreover, the linear programming relaxation of
this formulation typically is very tight.
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Hadjiconstantinou, Christofides, and Mingozzi [18] proposed to obtain a valid lower
bound for SCVRP by considering the dual of the linear relaxation of model VRP8:

(2.29) (DVRP8) max Kmo+ Y m;
i=1
subject to
(2.30) T+ Y m<e Vi=l..,M,
iéH}'
(2.31) 7; unrestricted Vi=0,...,n.
where m;,i = 1,..., n, are the dual variables associated with the partitioning constraints

(1.72) and m is that associated with constraint (1.73). It is clear that any feasible solution to
problem DVRPS provides a valid lower bound for SCVRP. Hadjiconstantinou, Christofides,
and Mingozzi [18] determined the heuristic dual solutions by combining in an additive way
two relaxations of the original problem: the g-path relaxation proposed by Christofides,
Mingozzi, and Toth [7], and the K-shortest path relaxation proposed by Christofides and
Mingozzi [6]. The proposed approach was able to solve randomly generated Euclidean
instances with up to 30 vertices and instances proposed in the literature with up to 50
vertices, within a time limit of 12 hours on a Silicon Graphics Indigo R4000 (12 Mflops).
The percentage ratios of the overall bound Lgp computed in [18] on some test instances
from the literature are reported in Table 2.3.

2.3.5 Comparison of the Improved Lower Bounds

The lower bounds described in this section are considerably better than those corresponding
to the basic relaxations on which they are based, and they allow for the solution of quite
larger problems.

We presented in Table 2.1 the percentage ratios of the lower bound obtained by the
additive bounding procedure for ACVRP described in section 2.3.1. As to the symmetric
case, a direct computational comparison of the effectiveness of the bounds presented in this
chapter is not possible. In fact, as illustrated in Table 2.3, each author either considered
a slightly different problem (e.g., in Fisher [14] single-customer routes were not allowed,
whereas Miller [25] allowed them) or solved a completely different set of instances. The
only instance that has been tackled by almost all the authors is the 50-customers Euclidean
problem described by Christofides and Eilon [5], indicated as E051-05e. However, also in
this case all the authors defined the cost matrix in a different way. In particular, Table 2.3
includes the Lagrangian bounds by Fisher and Miller described in section 2.3.3, compared
with the corresponding basic relaxations, the bound Lgp based on the SP formulation by
Hadjiconstantinou, Christofides, and Mingozzi described in section 2.3.4, and the overall
additive bound L 4pp of section 2.3.1. In Table 2.3 an asterisk denotes the instances that
were solved to optimality by the corresponding branch-and-bound code.

We included in the table the Lg¢ and the Lagrangian bound LAGgr values com-
puted by Fisher [14] by using real-valued cost matrices, and we compared the bounds with
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Table 2.3. Comparison of the percentage ratios of the basic and improved lower bounds
for SCVRP with respect to different test instances.

Problem n K %L\, %LAGL, %L}, %LAG:, %L,
S007-02a 6 2 100.0 *
S013-04d 12 4 96.8 *
E016-05m 15 5 976 *
E021-04m 20 4 100.0 *
E022-04g 21 4 90.1 99.7 *
E023-03g 22 3 96.5 100.0 *
E026-08m 25 8 100.0 *
E030-03g 29 3 71.7 95.3 *
5031-07w 30 7 96.0 *
E031-0%h 30 9 97.9 *
E033-03n 32 3 86.5 98.9 *
E036-11h 35 11 99.5 *
E041-14h 40 14 98.9 *
E045-04f 44 4 626 99.6 *

E051-05e 50 5 849 96.7 929 96.9* 98.5*
E072-04f 71 4 777 98.3 *

E076-10e 75 10 762 90.5 97.6
E101-08e 100 8 815 95.1 95.9
E101-10c 100 10  77.6 99.8 *

E135-07f 134 7 592 974

E151-12¢c 150 12 784 90.7 97.2
E200-16c 199 16  74.1 84.7

' Real-valued costs and single-customer routes not allowed.
*Rounded integer costs.

*Real costs multiplied by 10,000 and rounded to the nearest integer.
*Solved to optimality.

respect to the optimal or the best-known-solution values determined by using real-valued
cost matrices and reported by Toth and Vigo [30]. Over the nine instances considered by
Fisher, the average ratio of Lk is 74.7% while that of LAG k1 1s 94.8%.

The results reported in Table 2.3 relative to the Lagrangian bound LAGy,s are those
obtained by Miller [25] by using integer rounded cost matrices and whose overall ratio is
about 98%. The table also includes some values of the pure b-matching relaxation computed
by Miller [26].

Finally, the Lgp values are computed by using integer costs for the arcs, defined as
the Buclidean distance between the endpoints multiplied by 10* and then rounded to the
nearest integer. The ratios for these bounds are obtained by comparing the scaled-down
value of the lower bound with the optimal or the best-known-solution value determined by
using real-valued cost matrices.



44 Chapter 2. Branch-and-Bound Algorithms for the Capacitated VRP

2.4 Structure of the Branch-and-Bound Algorithms
for CVRP

We now briefly describe the main ingredients of the branch-and-bound algorithms used for
the exact solution of ACVRP and SCVRP, recently proposed in the literature.

2.4.1 Branching Schemes and Search Strategies

The two algorithms proposed for ACVRP by Laporte, Mercure, and Nobert [22] and by Fis-
chetti, Toth, and Vigo [13] have the same basic structure, derived from that of the algorithm
for the asymmetric TSP described by Carpaneto and Toth [4] and originally proposed by
Bellmore and Malone [3]: the first one uses as lower bound the AP relaxation (see section
2.2.1), whereas the second uses the additive bounding procedure described in section 2.3.1.

The branching rules used by both algorithms are related to the subtour elimination
scheme used for the asymmetric TSP, and they handle the relaxed constraints by imposing
the connectivity and the capacity requirements of the feasible ACVRP solutions.

At a node v of the branch-decision tree, let I, and F, contain the arcs imposed and
forbidden in the current solution, respectively (with I, = @ and F,, = @ if v is the root node).
Given the set A* of arcs corresponding to the optimal solution of the current relaxation, a
nonimposed arc subset B := {(ay, b1), (a2, b3), ..., (an, by)} C A* on which to branch is
chosen.

Fischetti, Toth, and Vigo defined B by considering the subset of A* with the minimum
number of nonimposed arcs among those defining a path or a circuit that is infeasible
according to conditions (i), (ii), and (iii) in section 2.3.1. Note that since the additive
bounding procedure modifies the objective function of the problem, an optimal solution of
the relaxed problem that is feasible for ACVRP is not necessarily optimal for it. Therefore,
if A* defines a feasible ACVRP solution whose cost is greater than the current lower bound
value, set B is chosen as the feasible circuit through vertex 0 with the minimum number
of nonimposed arcs. Then & = |B| descendant nodes are generated. The subproblem
associated with node v;,i = 1, ..., h, is defined by excluding the ith arc of B and by
imposing the arcs upto i — 1:

(2“32) IU,- = IVU{(al’bl)a-"’(ai—l’bi—l)}9
(2.33) Fy, == F,U{(a;, b))},

where I, = I,.

Laporte, Mercure, and Nobert defined B as an infeasible subtour according to condi-
tions (i) and (ii) of section 2.2.1 and used a more complex branching rule in which, at each
descendant node, at most r arcs of B are simultaneously excluded, where r := [d(S)/C1,
S is the set of vertices spanned by B, and d(S§) represents the sum of the demands of the
vertices in S. In this case, since at most ('If |) descendant nodes may be generated, the set
B is chosen as the one minimizing ('f h.

These algorithms adopt a best-bound-first search strategy, i.e., branching is always
executed on the pending node of the branch-decision tree with the smallest lower bound
value. This rule allows for the minimization of the number of subproblems solved at the
expense of larger memory usage, and it is computationally proved to be more effective
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than the depth-first strategy, where the branching node is selected according to a last-in-
first-out rule.

Many branching schemes were used for SCVRP, and in this case almost all are ex-
tensions of those used for the TSP. The first scheme we consider, proposed by Christofides,
Mingozzi, and Toth [7], is known as branching on arcs, and it proceeds by extending partial
paths, starting from the depot and finishing at a given vertex. At each node of the branch-
decision tree, an arc (i, j) is selected to extend the current partial path, and two descendant
nodes are generated: the first node is associated with the inclusion of the selected arc in the
solution (i.e., x;; = 1), while in the second node the arc is excluded (i.e., x;; = 0).

Miller [25] used the same branching scheme, where the arc selected for branching is
determined by examining the solution obtained by the Lagrangian relaxation based on b-
matching described in section 2.3.3. When a partial path is present in the current subproblem
ending, say, with vertex v, the arc (v, &) belonging to the current Lagrangian solution is
selected. If the current subproblem does not contain a partially fixed path, e.g., at the root
node or when a route has been closed by the last imposed arc, the arc connecting the depot
with the unrouted customer j with the largest demand is selected for branching. In this
case a third descendant node is also created, by imposing xo; = 2, i.e., by considering, if
feasible, the route containing only customer j.

Fisher [14] used a mixed scheme where branching on arcs is used whenever no partial
path is present in the current subproblem. In this case the currently unserved customer
i with the largest demand is chosen and the arc (i, j) is used for branching, where j is
the unserved customer closest to i. At the node where arc (¢, j) is excluded from the
solution, branching on arcs is again used, whereas at the second node the scheme known as
branching on customers is used. One of the two ending customers, say, v, of the currently
imposed sequence of customers is chosen, and branching is performed by enumerating the
customers that may be appended to that end of the sequence. A subset T' of currently
unserved customers is selected (for example, that including the unserved customers closest
tov)and |T |+ 1 nodes are generated. Each of the first |T'| nodes corresponds to the inclusion
in the solution of a different arc (v, j), j € T, while in the last node all the arcs (v, j), j € T
are excluded.

The mixed branching scheme was used by Fisher to attempt the solution of Euclidean
CVRP instances with real distances and about 100 customers, but this proved unsuccessful.
In fact, Fisher observed that in instances where many small clusters of close customers
exist (as is the case of several instances from the literature), any solutions in which these
customers are served contiguously in the same route have almost the same cost. Thus,
when the sequence of these customers has to be determined through branching, unless an
extremely tight bound is used, it would be very difficult to fathom many of the resulting
nodes. Therefore, in Fisher [14] an alternative branching scheme was proposed, aimed
at exploiting macro properties of the optimal solution whose violation would have a large
impact on the cost, thus allowing the fathoming of the corresponding nodes. To this end, a
subset 7' of currently unserved customers is selected and two descendant nodes are created:
at the first node the additional constraint ) _, s 7, e = 2[d(T)/C7 is added to the current
problem, while at the second node the constraint ), s, X > 2[d(T)/C7 + 2 is imposed.
Some ways to identify suitable subsets, as well as additional dominance rules, were described
by Fisher [14].
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2.4.2 Reduction, Dominance Rules, and Other Features

Several rules may be used to possibly remove some arcs that cannot belong to an optimal
solution, by forbidding their use in the computation of bounds and allowing for the early
detection of infeasibilities and dominance relations, thus speeding up the solution of CVRP.
Many of these rules are inspired by the work done on the TSP. In the following we refer,
for short, to the more general case of the ACVRP and we explicitly remove arcs from A.
An often-used alternative way to remove arcs from A, which preserves the completeness of
graph G and simplifies the notation, is obtained by setting the cost of the arcs to be removed
equal to a very large positive value, say, M, practically equivalent to +o0c.

The reduction rules may be applied either to the original problem or to a subproblem
associated with a node of the branch-decision tree, where arcs of a given subset [ are imposed
in the solution, as happens in branch-and-bound and branch-and-cut algorithms. In this case
the arcs of I define complete routes and paths, some of which may enter or leave the depot.
For reduction purposes, all the customers belonging to the p complete routes (with o > 0)
induced by I are removed from V. Let G = (V, A) be the subgraph of G induced by vertex
set V obtained from V by removing all the customers belonging to complete routes in 7,
andletK = K — p. Moreover, let P = (P, ..., P,} be the set of paths induced by I, each
defined as an ordered set of vertices, and let 4; and ¢; denote the first and the last vertex
of path P;, j = 1, ..., r. To simplify the notation, each customer vertex i covered by no
arc in T is represented by a degenerate path P; € P made up by a singleton vertex, where
hj =t; =i. Note that when I = @, then r = |P| = n and each path is degenerate.

The first type of reduction rule tries to remove from A all the arcs that, if used, would
produce infeasible ACVRP solutions:

1. For each arc (i, j) € 1, remove from A all the arcs (i, p),peVifi #0,and (p, j),
peVifj#£o0.

2. For each nondegenerate path P; such that 4;, ¢; # 0, remove all the arcs which would
form a subtour disconnected from the depot. If 4; = 0 (resp., t; = 0), we may remove
arc (#;, 0), (resp., (0, h;)) when

d(P,) < Coin =d(V) — (K — 1)C,

i.e., when, on the remaining K — 1 vehicles, there is not enough space to load the
demand of the other customers.

3. For each pair of paths P;, P; € P such that d(P;) + d(P;) > C, remove arc (;, h;)
from A if ;, h; # 0.

The second type of reduction rule tries to remove for A the arcs that, if used, would
not improve the currently best known solution. For example, let L and U be a lower and an
upper bound on the optimal ACVRP solution value, respectively. For each (i, j) € A let j
be the reduced cost of arc (i, j) associated with the lower bound L. It is well known that
the reduced cost of an arc represents a lower bound on the increase of the optimal solution
value if this arc is used. Therefore, for each (i, j) € AifL+75 ; > U we may remove (i, j)
from A.
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Whenever a customer has only one entering or leaving arc belonging to A, we may
impose this arc (by adding it to /), redefine the set of complete routes and paths in I, and
again execute steps 1-3 above.

The performance of the branching schemes may be enhanced by means of adominance
test proposed by Fischetti and Toth [11]. A node of the branch-decision tree where a partial
sequence of customers v, . . ., w is fixed can be fathomed if there exists a lower cost ordering
of the customers in the sequence starting with v and ending with w. The improved ordering
may be heuristically determined, e.g., by means of insertion and exchange procedures.

In addition, several branch-and-bound algorithms include the use of heuristic algo-
rithms that exploit the information associated with the relaxed problems to obtain feasible
solutions that may improve the current incumbent solution (see, e.g., Fisher [14] and Fis-
chetti, Toth, and Vigo [13]).

2.4.3 Performance of the Branch-and-Bound Algorithms

Laporte, Mercure, and Nobert {22] used their algorithm LMN to solve, on a VAX 11/780
computer (0.14 Mflops), ACVRP test instances where demands d; and costs ¢;; were ran-
domly generated from a uniform distribution in [0, 100] and rounded to the nearest integer.
The vehicle capacity was defined as

C:=(0101-w ma&c{d;} +ad(V),
Je

where « is a real parameter chosen in [0, 1]. The number of available vehicles was defined
as K = Ky, and was computed by using the trivial BPP lower bound. Note that larger
values of o produce larger C and hence smaller values of K. (Whena = 1, ACVRP reduces
to the asymmetric TSP, since K = 1.) No monotone correlation between « and the average
percentage load of a vehicle, defined as 100 d(V)/(K C), can instead be inferred. Laporte,
Mercure, and Nobert considered o = 0.25, 0.50, 0.75, and 1.0, producing K = 4, 2,2, and
1, respectively.

For each pair (n,«), five instances were generated and algorithm LMN was run by
imposing a limit on the total available memory. The LMN algorithm was able to solve
instances with up to 90 vertices if & > 0.50 (i.e., with K < 2). For the larger values of
n, only half or fewer of the instances were actually solved, while with « = 0.25 only the
instances with 10 vertices and one of those with 20 vertices were solved. The computing
times for the most difficult instances solved were above 5000 seconds, whereas no statistics
were reported for the nonsolved instances. The algorithm was also tested on instances of
the same type but with K = K, +2 or K = Ky, + 4. These problems proved much
easier than the previous ones.

Fischetti, Toth, and Vigo [13] tested their algorithm FTV on the same class of randomly
generated instances used for LMN, with K = K;;;. Algorithm FTV was able to solve all
the instances with up to 300 vertices and up to four vehicles within 1000 CPU seconds
on a DECstation 5000/240 (5.3 Mflops). On these instances the additive lower bound
considerably improved the AP value. Algorithm FTV was also tested on a class of more
realistic problems where the cost matrices were obtained from those of the previous class
by triangularizing the costs, i.e., by replacing each ¢;; with the cost of the shortest path
from i to j. The number of vehicles K and the average percentage vehicle load, say, r,
were fixed, and the vehicle capacity was defined as C := [1004(V)/(rK)]. Instances
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of this type with up to 300 vertices and eight vehicles and with r equal to 80% and 90%
were solved, those with # > 150 being easier than the smaller ones. Algorithm FTV was
applied to eight real-world instances with up to 70 vertices and three vehicles, coming from
pharmaceutical and herbalist’s product delivery in the center of an urban area with several
one-way restrictions imposed on the roads. These instances proved more difficult than the
randomly generated ones: the computing time and the number of nodes were higher than
those required for analogous random instances. Moreover, the average gap, over the eight
instances, of the additive bound with respect to the optimal solution value was about 5.5%
(that of AP being 8.9%), whereas on random instances the gap was normally much smaller
(1% to 2% for the additive bound and 2% to 5% for the AP bound).

The results of branch-and-bound algorithms for symmetric problems were discussed
in section 2.3.5. The branch-and-bound algorithm by Miller [25] was applied to Euclidean
SCVRP instances from the literature, where the edge costs are computed as the Euclidean
distances between the customers and rounded to the nearest integer. The algorithm was
able to solve problems with up to 50 customers within 15,000 seconds on a Sun Sparc 2 (4
Mflops). The branch-and-bound algorithm by Fisher [ 14] was successfully applied to some
Euclidean CVRP instances with real-valued cost matrices and with no single customer route
allowed. The largest solved instance included 100 customers and was solved within less
than 60,000 seconds on an Apollo Domain 3000 computer (0.071 Mflops).

2.5 Distance-Constrained VRP

Exact methods for the Distance-Constrained VRP and CVRP (DVRP and DCVRP, respec-
tively) received relatively little attention in the literature. Moreover, since the seminal
articles by Laporte, Nobert, and Desrochers [21, 24], no new exact algorithm specifically
designed to handle these problems has been presented. In the following we briefly describe
the algorithm presented in [24] for the symmetric version of the more general DCVRP case.

Laporte, Nobert, and Desrochers [24] assumed, as usual, that the travel time and arc
cost matrices coincide and are symmetric, i.e., &;; = ¢;; foreachi, j € A,i < j, and thatno
service time is present, i.e., s, = O for eachi € V. The algorithm is based on an adaptation
of formulation VRP2 for SCVRP described in section 1.3. The model is

(2.34) (DCVRP) min » Y cijxy
ieV\{n} j>i
subject to
(2.35) D4+ Y x=2  YieV\{0},
h<i Jj>i
(2.36) Z xo; = 2K,
jeviio)
2.37) DD x <ISI=r(S)  VSCSVA\{0LS#B,
ieS j=>i
jes
(2.38) x;€{0,1} Vi, jeV\{0},i<},

(2.39) x9; € {0, 1, 2} Y jeV\{0}.
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The degree constraints (2.35) and (2.36) impose that exactly two edges are incident
into each vertex associated with a customer and that 2K edges are incident into the depot
vertex, respectively. The GSECs (2.37) impose the connectivity of the solution, the vehicle
capacity and the maximum route length requirements, by forcing that a sufficient number
of edges leaves each subset of vertices. Given a subset S of customer vertices, the quantity
r'(8) represents the minimum number of vehicles needed to serve all the customers in S.
This quantity is given by the maximum between r(S), which takes into account the capacity
constraints, and the smallest value v satisfying

(2.40) v=[H,(S)/L], v=r(S),..., mn{K, |S[},

where H,(S) is the optimal cost of a multiple TSP visiting all customers in § and using
exactly v tours passing through the depot. Since the multiple TSP is an NP-hard problem,
an approximation from below of the above value may be obtained by using any lower bound
on the value of H,(S).

The lower bound used in [21, 24] is based on the continuous relaxation of model
DCVRP in which the GSECs (2.37) are initially removed. The approach adopted by Laporte
and others may be seen as a forerunner of the branch-and-cut algorithms, since the initial
continuous relaxation is iteratively strengthened by adding violated GSECs and, at the root
node of the branch-decision tree, Gomory cuts [17].

The branch-and-bound algorithm described by Laporte, Nobert, and Desrochers [24]
was able to consistently solve randomly generated Euclidean DCVRP instances with up
to 20 customers and different numbers of vehicles within 500 CPU seconds on a Cyber
173 computer (about 1.5 Mflops). Some larger problems, involving up to 45 customers,
were also solved when both the capacity and the maximum distance constraints were loose
and few vehicles were available. Non-Euclidean randomly generated problems were also
considered in [24]. Laporte, Desrochers, and Nobert [21] specialized the algorithm to the
case in which the capacity constraint is not present (DVRP), and they obtained analogous
results.
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Chapter 3

Branch-and-Cut Algorithms
for the Capacitated VRP

Denis Naddef
Giovanni Rinaldi

3.1 Introduction and Two-Index Flow Model

In this chapter we are concerned with solving the basic symmetric Capacitated VRP (CVRP)
to optimality by a method known as branch-and-cut. This method has been extremely
successful in finding optimal solutions of large instances of a closely related problem, the
Symmetric Traveling Salesman Problem (STSP). However, the amount of research effort
spent to solve the CVRP by this method is not comparable with what has been dedicated to
the STSP; the reader should not expect that we will report such spectacular results.

The amount of research catried out on branch-and-cut applied to the CVRP is still
quite limited and most of it is not yet published. The main goal of this chapter is to bring
the results obtained in the last decade to public attention. At the time of this writing, several
research groups were working on the subject, but not all their results were available. We
mention these projects later so the interested reader can be alert for forthcoming results.

We concentrate on what in Chapter 1 was called the rwo-index flow model. Whether
this model is the most suitable for the branch-and-cut approach is not obvious, but the success
of the corresponding model for the STSP certainly pleads for it. However, we also mention
another formulation that seems to give promising preliminary computational results: the
two-commodity network flow model studied by Baldacci, Mingozzi, and Hadjiconstantinou
[7].

We start by recalling and integrating some of the definitions and the notation given in
Chapter 1 and by stating a formal definition of the problem.

We are given an undirected complete graph G(V, E) with node set V containing n+ 1
nodes numbered 0, 1, ..., n. The distinguished node O corresponds to the depot, and the
other nodes correspond to the n clients. We denote by Vj, the set of clients, i.e., Vo = V \ {0}.
For each client i, we are given a positive demand d;. With each edge ¢ € E, we associate
a positive cost value ¢, which corresponds to the cost of traveling along it. Let K be the
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fixed number of vehicles available at the depot. All vehicles are assumed to have the same
capacity C.

For a subset F of E, G(F) denotes the subgraph (V(F), F) induced by F, where
V(F) is the set of nodes incident to at least one edge of F.

A route is defined as a nonempty subset R C E of edges for which the induced
subgraph G(R) is a simple cycle containing the depot 0 (i.e., 0 € V(R), G(R) is connected,
the degree of each node of V(R) in G(R) is 2) and such that the total demand of the nodes
in V(R)\{0} does not exceed the vehicle capacity C. Such a route represents the trip of one
vehicle leaving the depot, delivering the demand of the nodes in V (R) (traveling along the
edges in R), and going back to the depot. The cost of a route is the sum of the edge costs ¢,
over all edges ¢ € R. Note that we allow the degenerate case |V (R)| = 2, in which a route
R is the set consisting of two identical copies of an edge of E incident with node 0. In all
the other cases, an edge appears only once in a route.

A K-route is the union of K routes R, R,, ..., Rx such that each node i € V;
belongs to exactly one set V(R;), 1 < j < K. The costof a K -route is the sum of the costs
of the K different routes defining it. Each K-route defines a feasible solution to CVRP,
and the optimization problem consists of finding a minimum length K-route. A K-route
induces a partition P = {8}, S2, ..., Sk} of Vj into K subsets such that d(S;) < C for
i=1,2,..., K. Such a partition is called a feasible K -partition and represents a feasible
assignment of the clients to the vehicles. Each feasible K-partition may correspond to
several K -routes.

In the two-index flow model, we associate to each K-route R a vector x® ¢ RE,
i.e., a real vector indexed by the elements of E, such that the value of a component x*
associated with edge e is the number of times e appears in the K -route R. Such a vector is
called the representative vector of R. (The terminology characteristic or incidence vectors
is usually used for vectors whose components are 0 or 1, which is not the case here since
xR ef0,1,2})

For a subset F of the edge set E and for a vector y € RE, we denote by y(F) the sum
> cpYe- Fr S C V,T CV,SNT = @, we denote by (S : T), 8(5), and E(S) the sets
of edges with one endpoint in § and the other in 7', with one endpoint in § and the other in
V\S, and with both the endpoints in S, respectively.

We can now formulate the problem of finding a minimum c-cost feasible K -route as
an integer linear program. It is easy to check that the set of representative vectors of all the
K -routes of G coincides with the feasible set of the following integer linear program:

(3.1) (IPCVRP)) min Y _ c.x.
ecE
subject to
(3.2) x@B@) =2 VieW,
(3.3) x(8(0)) = 2K,
(3.4) x(8(S)) > 2 [@-’ Y@ £SCV,
(3.5) 0<x,<1 VeeE\s0),
(3.6) 0<x,<2 VeedsO),

3.7 X, integer VeeE.
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The constraints (3.2)—(3.3) and (3.4) are commonly called the degree equations and the
capacity inequalities, respectively. In the following we see that there are several types of
capacity inequality, and (3.4) will be referred to as the rounded capacity inequalities. Due
to (3.4), the integer linear program IP(CVRP) has an exponential number of constraints.
However, as we will see in the next sections, the difficulty in solving IP(CVRP) to optimality
does not arise solely from this fact.

In section 3.2 we outline the branch-and-cut approach, and in sections 3.3 and 3.4 we
survey some of the theoretical and computational work that has been done on the CVRP
polytope to provide a branch-and-cut algorithm with suitable tools for solving some non-
trivial CVRP instances to optimality. Finally, in section 3.6 we give some computational
results based on a branch-and-cut implementation of Augerat et al. [6] and we mention
some very recent results of Ralphs et al. [39] and Blasum and Hochstéttler [8]. We end with
conclusions and perspectives for further research.

3.2 Branch-and-Cut

In this section we give a short overview of the branch-and-cut method. For an extensive and
comprehensive description of this method and areas of successful application, see Padberg
and Rinaldi [36], Jiinger, Reinelt, and Rinaldi [19], Jiinger, Reinelt, and Thienel [20], Thienel
[41], Junger and Thienel [21], and Caprara and Fischetti [9].

The linear relaxation of an integer linear program /P is the linear program obtained
trom IP by dropping the condition that all variables have to be integers. For example, the
linear relaxation of IP(CVRP) is obtained by dropping the constraints (3.7). Therefore,
the optimal value z; p of the relaxation (in the minimization case) is a lower bound to the
optimal value z;p of the integer linear program, i.e., z,p < zsp.

If the number of constraints of an integer linear program is small enough so that its
linear relaxation can be fed into an LP solver, a classical method to solve it is branch-and-
bound with linear programming bounds. That is, we solve first the linear relaxation. If
the optimal solution x is integral, we are done; otherwise we choose a variable x, with a
fractional value and build two new linear programs. In the first we add an upper bound to x,
equal to |x. |, while in the second we set a lower bound on x, equal to [x,]. (By [x.] and
[x.] we denote the largest integer not greater than x, and the smallest integer not smaller
than x,, respectively.) From there, we proceed by classical branch-and-bound, in which the
bounds are given by the optimal solution values of the linear programs associated with the
nodes of the search tree.

When the number of linear constraints of IP is large or when the linear relaxation is
strengthen by adding some families of valid inequalities, which typically have exponential
size, then the constraint system cannot be fed into an LP solver and a cutting plane technique
has to be used to solve the linear program.

Let IP be an integer program and LP{oc) be its linear relaxation, possibly enriched by
additional valid inequalities, having a very large number of constraints, and let us assume
that we want to minimize the objective function. The cutting plane algorithm works as
follows.

For A > 0, let LP(h) be a linear program consisting of a subset of reasonable size
of the constraints in LP(c0). Solve LP(k), which yields an optimal solution x. If this
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solution is feasible for IP, it is an optimal solution; otherwise we assume we have a black
box algorithm that gives us at least one constraint of LP(oc) violated by x*, if one exists, or
else tells us that all such constraints are satisfied. If some violated constraints are returned,
LP(h + 1) is obtained from LP(4) by adding them to LP(#). Note that for every 2 > 0, if
Z1py) 1s the optimal value of LP(k), we have zpppy < ZLpih41) < 2LPoo) < 21p.

The black box algorithm is called the separation algorithm. Therefore, we normally
end with an optimal solution either to the integer program IP or to its linear relaxation
LP(c0). In practice we may have a separation algorithm that is not exact, that is, it may
return no violated inequality although there are some. What follows remains true also in
this case, since the value of the last linear program is still, as we just noted, a lower bound
onz;p.

If we have not terminated with an optimal solution to IP, we decompose the problem
into two new problems, for example, by adding upper and lower bounds to a variable whose
current value is fractional, as is done in branch-and-bound. This process is called branching.
Then we solve each new problem recursively, that is, by this very same method, and the
optimal solution to the original problem will be the best of these two solutions (an infeasible
LP(-) returns a value of +00). Such an integration of enumeration with cutting plane is the
kernel of the method called branch-and-cut.

Note that in branch-and-cut, enumeration and cutting plane benefit from each other:
on the one hand, the bound produced at each node of the enumeration tree is in general
better than in branch-and-bound, because new inequalities are added to the formulation of
the corresponding subproblem; on the other hand, the separation algorithm takes advantage
from the branching process as it produces a perturbation on the fractional solution that could
not be cut away by an inequality of LP(00). Such a cross fertilization of different techniques
is typical also for other components of branch-and-cut (see the cited references) and is the
basic philosophy underlying the whole method.

In the case of IP(CVRP) we can let LP(0) be

(LP(0)) min Zce X,
ecE
subject to

x(8({0)) = 2K,

@i =2 VieV\{0}
0<x, <1 Yee E\S§{0),
0<x.,<2 Ve € 8({0))

and let LP(00) be the linear program consisting of the objective function and constraints (3.1)
through (3.6). Therefore, the cutting plane procedure consists of finding rounded capacity
constraints violated by the optimal solution of LP(%), & > 0. As we see in section 3.4, this
is not a major difficulty. We exit the cutting plane procedure either with an optimal solution
to IP(CVRP) or with an optimal solution x* to the linear relaxation which is not an optimal
solution to IP(CVRP). There are at least two ways to execute the branching process. The
first, and the one most often used, is to choose a variable that is fractional, say, x. (for
simplicity let us assume that x, is restricted to only two values, 0 and 1). Then consider, on
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one subproblem, the solutions in which x.» = 0 and, on the other, those in which x,» = 1.
An alternative, and, as we will see in section 3.5, a preferable, way to perform branching
is to use a set S* such that [%S*)'I = ¢ and the value x*(8(8™)) is close to 2t + 1. We can
branch by considering on one subproblem those solutions for which x(§(5*)) = 2¢ and on
the other those for which x(5($™)) > 2t 4+ 2. As we will see, and will explain why, in
section 3.5, we favor the case where t = 1.

Branch-and-cut has been very successful in solving many combinatorial optimization
problems (see Caprara and Fischetti [9]); however, it may give poor performances if some
of its components are too weak. This unpleasant situation happens, for example, when

(i) we do not have a good algorithm with which to perform the cutting plane phase,
(1) the number of iterations of the cutting plane phase is too high,
(iii) the linear program becomes unsolvable because of its size, or

(iv) the tree generated by the branching procedure becomes too large and termination
seems unlikely within a reasonable amount of time.

There is no remedy for (i) and (ii), except that, for (i), branch-and-cut, as already
mentioned, does not necessarily require that the relaxed LP be solved to optimality, and we
can go into the branching phase even if that LP has not been solved exactly. Therefore,
it is not strictly necessary to have an exact separation procedure; a good heuristic usually
suffices.

Problem (iii) can be avoided most of the time with some extra effort, such as a regular
clean up of the linear program by deleting inactive constraints. For more details, see the
above-mentioned references on branch-and-cut. If we make the effort, for CVRP and STSP
instances this is never a problem. However, this is not the case, for example, in dealing
with linear relaxations of problems related with large uncapacitated plant location problems,
where the variable upper-bounding constraints of the type x; ; < y;, although polynomial
in number, pose a serious problem.

We are left with problem (iv), which is the central problem of branch-and-cut. Most
failures are due to this situation. For IP(CVRP), as we will see, we have a good separation
algorithm for the rounded capacity constraints, and none of the first three problems leads
us to failure. Nevertheless, branch-and-cut applied as described here is doomed to failure
even on quite small instances. As we will see, one solution is to change LP(00), either by
modifying some inequalities or by adding others. Why this helps is now explained.

There is a direct relationship between problem (iv) and the gap between the solution
value of the integer program and that of its linear relaxation. Note that this is also true
for branch-and-bound with linear bounding. So the only possible fix to problem (iv) is to
strengthen the linear relaxation, i.e., to add some linear inequalities that are satisfied by all
solutions. These inequalities, although unnecessary in the integer formulation, force the
optimal solution value of the linear relaxation to get closer to an optimal solution value of
the integer program. Finding such inequalities is in general not an easy task and is part of
the so called polyhedral study of the problem, which is the subject of the next section.

Therefore, in the cutting plane phase we will be looking for not only violated rounded
capacity constraints but also for many other types of violated inequality.
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3.3 Polyhedral Studies

We assume that readers are familiar with the basic elements of polyhedral analysis. For a
reference, see, e.g., Nemhauser and Wolsey [35].

The CVRP polytope CVRP(n, d, C, K) is the convex hull of the representative vectors
of all the K -routes.

Like any polytope, it has a linear description given by a finite number of linear inequal-
ities. This linear description is the most we can strengthen the LP relaxation of IP(CVRP),
since solving that strengthened relaxation amounts to solving the CVRP. Unfortunately, we
are far from knowing this complete linear description. However, many successful appli-
cations of polyhedral analysis to the design of algorithms for solving hard combinatorial
problems to optimality rely on a very small subset of the inequalities that provide a complete
linear description of a given polyhedron.

Unlike the STSP polytope, the CVRP polytope has not received much attention.
Moreover, most of the known results have not been published yet. Therefore, in this section
we give a survey of the current results.

Like the STSP polytope, the CVRP polytope is not of full dimension; however, unlike
the STSP polytope, the dimension of the CVRP polytope is not a simple function of the
problem size (number of nodes) but depends, in a complex way, on all the terms of the
quadruple (n, d, C, K). In the case of the STSP polytope, we know that the only equations
satisfied by all the feasible solutions are the degree constraints and all their linear combi-
nations. In the case of the CVRP polytope these equalities also hold, but in general many
others do, too. For example, it may be the case that in all the K -routes, the clients of a given
set S are served by exactly ¢ vehicles, and therefore the equality x(§(S)) = 2¢ holds for
the representative vectors of all the K -routes. In the extreme case, assuming that X is large
enough to guarantee the existence of at least one solution, this solution may be unique, and
thus the dimension of CVRP(n, d, C, K) is 0. (This is the case when only one K -partition
exists and all its sets have cardinality 1 or 2.)

The difficulty in determining the dimension of the polytope makes the task of proving
that an inequality induces a facet particularly hard. Therefore, we concentrate on describing
inequalities that are shown to be valid for the CVRP polytope; determining the conditions
under which they also define facets it is often still an open issue, or it requires taking into
account a great deal of tedious technical conditions. Whether these inequalities are powerful,
from a computational point of view, can be decided in various ways. For example, via
computational experiments, we can check if using them yields better performances for an
exact solution algorithm. Unfortunately, this method may produce erroneous conclusions;
it is not infrequent that some inequalities are totally useless for certain instances but very
useful for others.

An alternative approach is to prove the facet-inducing property with respect to a
relaxation of the CVRP polytope, that is, a polytope that contains the CVRP as a face and
is possibly full dimensional, thus making the task of proving the facet-inducing property
more manageable. We could then consider powerful an inequality that induces a facet of
the relaxation, although it might happen that the same does not hold true for the CVRP
polytope.

Two relaxations have been used in the literature. The first comes directly from the
most successful relaxation of the STSP polytope, the graphical relaxation (see Cornuéjols,
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Fonlupt, and Naddef [12] and Naddef and Rinaldi [31, 32]). In this relaxation, introduced
for the CVRP by Cornuéjols and Harche [13], a vehicle may visit any client without making
a delivery, and it may do so an arbitrary number of times for that same client. It may also
make the delivery for a client and then visit it again later in the trip. To be more formal, let us
extend the definition of a route by introducing the notion of a partial closed walk, defined as
amultiset R of edges (the same edge may appear several times in R) such that the multigraph
built on R, replacing an edge by as many its copies as there are in R, is Eulerian and contains
node 0. A K-walk is the union of K partial closed walks with the additional condition that
it induces a feasible K -partition. With every K-walk we associate a representative vector,
the components of which give the number of times each edge is present in it. The graphical
CVRP polyhedron (GCVRP) is the convex hull of the representative vectors of all the K -
walks of the graph. This polyhedron is unbounded and has the nice feature of being of
full dimension. Note that if we know the multiset of edges of a K-walk, we do not have
enough information to produce a solution to the problem. Actually, we must find a feasible
assignment of the clients to the partial closed walks, and this task turns out to be NP-hard. If
the triangular inequality is satisfied by the cost vector ¢, then there always exists an optimal
K -walk that is a K-route. Therefore, in this case, rather than CVRP, one can solve rather
casily its graphical relaxation.

The second relaxation is by Araque, Hall, and Magnanti [3] and aims at removing
the degree equations from the formulation. Each feasible solution of the relaxation is a set
of disjoint paths of the subgraph of G induced by V;, each with associated total demand
not exceeding C. It is easy to see that each feasible solution of this problem corresponds
to a feasible solution of the CVRP (and the cost of the two solutions always differs by the
constant amount 2 ). ¢(;) after we replace the cost of each edge ¢;; with the Clarke and
Wright savings [10] —cy; — ¢o; 4 ¢;;. To avoid situations where a set of clients is served by a
fixed number of vehicles in all feasible solutions, which would imply that the representative
vectors of all the feasible solutions satisfy the same equation, as mentioned earlier, the
number of vehicles is also relaxed to be arbitrarily large. The convex hull of the set of all
representative vectors of such sets of disjoint paths forms a full dimensional polyhedron,
assuming that there are no pairs of clients whose total demand exceeds the capacity C.
Indeed, if i and j are such thatd; +d; > C, then x;; = 0 is an equation satisfied by all the
solutions.

3.3.1 Capacity Constraints

The capacity inequalities for the CVRP polytope play, in some sense, the same role as the
subtour elimination inequalities for the STSP polytope: they are also exponentially many
(there is one for each subset S of V;) and all are necessary to define IP(CVRP). However,
while all the subtour inequalities define facets of the STSP polytope, the same does not
always hold for the capacity inequalities.

There is actually a hierarchy of capacity inequalities, all sharing the same left-hand
side but having right-hand sides of nondecreasing value. The higher the right-hand side
value, the stronger the inequality but the harder the corresponding separation problem.
Observe that the left-hand side of the inequality, evaluated at the representative vector of a
K -route, gives the number of edges of the K -route that belong also to the cut §(S). Roughly
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speaking, this is the number of times the vehicles in the K -route cross the boundary of the
set S.

We survey all the inequalities of the hierarchy from the weakest to strongest.

A fractional capacity inequality has as a right-hand side

a(s)

(3.8) 2 ol

The separation problem for these inequalities is quite easy and is solvable in polynomial
time (see section 3.4); however, they are almost never supporting for the CVRP polytope
since their left-hand sides, evaluated at one of its vertices, have integral value. Nevertheless,
it is not difficult to see that IP(CVRP), where the right-hand side of (3.4) is replaced by
(3.8), still is a valid integer linear programming formulation of the problem. Thus its linear
programming relaxation, obtained by dropping the integrality requirements, yields a bound
that can be computed in polynomial time.

A rounded capacity inequality is obtained by rounding the right-hand side (3.8) to
the nearest larger integer. The resulting inequality is (3.4) and the associated separation
problem is much more difficult than the one of the fractional inequality, although it is still
computationally affordable (see section 3.4). This inequality may not be supporting yet
in some cases. A better lower bound on the left-hand side of the inequality is given by
taking twice the minimum number of bins of capacity C needed to pack the items of the
set S, whose sizes are given by the vector d. We call this number of bins r(S). When
(@] # r(S), then the rounded capacity inequality relative to S is not supporting.

A weak capacity inequality has 2r (S) as aright-hand side. Sinceitis N P-hard to com-
pute r(S), the separation problem for these inequalities is difficult (see [15]). Nonetheless,
although it might sound surprising, a weak capacity inequality is, in general, not supporting
because it does not take into account the demands outside the set S under consideration.

Let P denote the set of all feasible K -partitions of V,. For any nonempty set S C Vj
and for any K -partition P = {S1, ..., Sk}, define

B(P.S) ={i: 5 NS #d}.

This quantity is obviously equal to the number of vehicles needed to satisfy the demands of
all clients in S in the K -partition P.
The function R : 2% — Z, defined by

(3.9) R(S) = min (P, S)

clearly gives the minimum number of vehicles needed to satisfy all client demands in S in
a feasible K-partition. Any P € P for which the minimum in (3.9) is attained is called a
tight feasible K -partition relative to S.

The weak capacity inequality may not be supporting because there may be no tight
feasible X partition P for which B(P, §) = r(S), although it is possible to pack the items
of set § into 7(S) bins. This situation calls for the ultimate version of the inequality.

A capacity inequality is the one having 2R(S) as a right-hand side. This inequality
is supporting by definition. Whether the inequality defines a facet of the CVRP polytope
still depends (for complete graphs) on the structure of the vector d and on the values K
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and C. This issue was investigated in Cornuéjols and Harche [13], where conditions are
given under which the capacity inequality induces a facet of the CVRP polytope. Since the
computation of 7(S) is a special case of the computation of R(S), the separation for the
capacity inequalities is hard.

An example, by Cornuéjols and Harche [13], where the last three right-hand sides are
different, has eight clients, K =4, C =7,d = {5, 3,3, 3,4,4, 4,2}, and S is given by the
first four clients. The resulting right-hand sides are

R =4>r(S)=3> [@1:2.

An inequality is tight for a given vector x* € R¥ if the left-hand side of the inequality
evaluated at x* equals the right-hand side. We say that a K-route is tight for a set S if it
contains exactly 2R(S) edges of the coboundary 5(S) of S. That is, the capacity inequality
is tight for the representative vector of that K-route. We also use the term “tight” when
R(S) is replaced by r(S).

3.3.2 Generalized Capacity Constraints

Let us consider now a set S = {5, ..., S} of t > 1 disjoint subsets of Vy. If we add up
the ¢ capacity inequalities defined by each subset, clearly we obtain a valid inequality that
is dominated by each of the capacity inequalities used in this operation. On the other hand,
it may happen that no feasible K -partition tight relative to, say, S| is also tight for all the
remaining 7 — 1 sets. In this case we can increase the right-hand side of the inequality by at
least two units, while preserving its validity, obtaining a new inequality that is not dominated
by any capacity constraint. How much can the right-hand side be increased without losing
the validity? The largest value of the right-hand side is given by

2R(S) = 2 min {Zﬂ(P, S):Pe P} .

i=1

The resulting inequality

(3.10) Y x(3(S)) = 2R(S)

i=]

is called the generalized capacity inequality and was defined in De Vitis, Harche, and Rinaldi
[14], where sufficient conditions for it to be facet defining for the GCVRP polyhedron as
well as for the CVRP polytope are given.

Since the function R(-) is difficult to compute, as a more tractable valid inequality for
a cutting plane algorithm we consider a weak version of the generalized capacity inequality.
Let H be a subset of V) containing all the subsets in S and assume that d(5;) < C holds
fori =1,...,t. Thenwe definer(H | S}, Sz, ..., ;) to be the bin packing solution of the
problem having bin capacity of C, one item with size d(u) for each node u in H \ | J_, Si,
and one item having size d(S) for each § € §. Alternatively, r(H | Sy, Sz, ..., 5;) canbe
seen as the optimal solution of a bin packing problem with one item of size d(u) for each
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node u of G, where all items in each subset § € S are constrained to stay together in the
same bin.
In the case H = V, we define the weak generalized capacity inequality to be

(3.11) X(B(Vo)) + Y x(8(S)) 2 2 +2r(Vo | S1, S, ..., S))

i=1

or, equivalently, as x(§(Vp)) = 2K holds,

> x(B(S)) =2 +20(Vo | S1, S, .-+, 5) — K).

i=1

The validity of this inequality is implied by the definition of its right-hand side.

While it is very difficult to check if a generalized capacity inequality is violated,
because of the function R(-), checking if its weak version is violated amounts to solving a
bin packing problem to compute r (Vg | S1, S2. ..., S;). Although bin packing is NP-hard,
it is recognized to be computationally affordable for a wide number of instances (also see
section 3.3.5).

3.3.3 Framed Capacity Constraints

Let S be as in the previous section. If in the inequality (3.11) we replace Vj by any of its
subsets H containing all the sets §; fori = 1,2, ..., ¢, then we get the new inequality

(3.12) x(6(H)) + Zx(c?(S,-)) >2t+2r(H|81,8,...,5)

i=1

that is a generalization of (3.11), which we call the framed capacity constraint. This in-
equality was proposed by Pochet [37] and Augerat [4]. The proof of its validity is a special
case of the proof of validity for the path-bin inequalities of section 3.3.5.

Observe that this inequality may be violated while the weak generalized capacity may
not be.

As an example of a framed capacity constraint, consider an instance where ¢ = 4,
the sets Sy, S5, S3, and S4 have 8, 7, 7, 7 clients, respectively, all with unit demands, and
C = 10. Moreover, the set H \ U?:] S; has only two clients with demands 5 and 6.
For this case r(H | Si, $2, 83, S4) = 6; hence x(8(H)) + Zf‘=1 x(8(S8)) = 20 is valid.
Note that the sum of the five weak capacity constraints would yield a right-hand side of
16 instead of 20. Indeed, there are many other framed capacity constraints in this case;
for example, S = {S1, S}, H = §1 U S, U {the client of demand 5}, or § = {53, S4},
H = 83U S5, U {the client of demand 6}, both have 10 as a right-hand side, while 8 is the
sum of right-hand sides of the corresponding three weak capacity constraints.

3.3.4 Valid Inequalities from STSP

A K-route and a Hamiltonian cycle have very close structures: they are both connected
subgraphs of G where all nodes in V, have degree 2. The only difference occurs at node 0,
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which has a different degree in the two subgraphs. Indeed, a K-route is a special case
of a tour that is a feasible solution of the already cited graphical relaxation of STSP. A
tour (see Cornuéjols, Fonlupt, and Naddef [12]) is defined as a multiset & of edges such
that the multigraph obtained from @ is Eulerian, connected, and spans G. Of course
any inequality valid for all tours of G is also valid for all its K-routes (and for all its
Hamiltonian cycles). What about the reverse? Is a valid inequality for STSP also valid for
its graphical relaxation? Remember that the incidence vectors of all the Hamiltonian cycles
satisfy all the degree equations. Therefore, if we add any linear combination of the degree
equations to a valid inequality, we obtain again a valid inequality that defines the same face
of the STSP polytope. The two inequalities are said to be equivalent. Thus, we usually
say that a valid inequality for the polytope can be written in different (equivalent) forms.
Naddef and Rinaldi [32] have studied the connections between STSP and its graphical
relaxation; in particular, they showed that any valid inequality for the STSP, written in a
certain form, is also valid for all tours and therefore for all K -routes. We make this more
precise now.

An inequality ax > ay (where a and x are vectors of R%) is in tight triangular form
(IT form) if for all triples of distinct nodes i, j, k € V, we have a;; < a;; + a;, and for
every i € V there exists ](l) € V and k(l) € V such that Ajidkiy = Aiji) + Aikiy-

The tight triangular form of the STSP valid inequalities was introduced by Naddef
and Rinaldi [32] and became, for many reasons, the standard form of STSP inequalities.
One reason is that the representation of a facet of the STSP polytope by an inequality in
TT form is unique (up to scaling by a nonnegative constant). Naddef and Rinaldi [32] also
show how to transform any STSP valid inequality into its equivalent TT form.

We give a direct proof of the following theorem.

THEOREM 3.1. All the valid inequalities for the STSP polytope, written in TT form, are
valid for the CVRP polytope.

Proof. Assume a valid inequality ax > aq for the STSP polytope in TT form is not valid
for the CVRP polytope. Let R be a K -route, the representative vector x* of which satisfies
ax® < ag. Choose two edges (0,1) and (0, j) incident with the depot and belonging to
different routes in R. Since the triangular inequality holds, removing these two edges and
adding edge (i, j) yields a (K — 1)-route R’ (perhaps violating some capacity constraints)
with ax® < ag. Repeating this process, we end up with a Hamiltonian cycle I" such
that ax™ < ag, which contradicts the fact that ax > ay is a valid inequality for the STSP
polytope. 0

A survey of the most well-known STSP valid inequalities with an intuitive idea of
their validity can be found in Naddef and Pochet [30].

The feasible solutions of CVRP inherit in a complex way the structure of the Hamilto-
nian cycles and those of the bin packing solutions. The inequalities of the previous section
deal only with the “bin packing part” of the problem, while inequalities coming from STSP
only deal with the “routing part.” Therefore, it is not surprising if often STSP inequali-
ties define faces of the CVRP polytope that are not of high dimension. However, these
inequalities can be strengthened if we take into account the bin packing part of the problem.

To understand better how this can be done, it is useful to understand the role that some
classes of STSP inequality play in the definition of the STSP polytope. As an example we



64 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

consider the well-known class of comb inequalities. For further classes see Naddef and
Pochet [30].

A comb is defined by a handle H and an odd number of teeth 77, T, . . ., T; satisfying
the following conditions:

HnNhonL, . ..TCV,
T\H#0 V1<j<t,
T,NH#0 Vi<j<t,
LNT; =0 Vi<i<j<t,
t > 3 and odd.

The comb inequality in TT form is

X(S(H))+ ) x(8(T;)) = 3t + 1

i=l

or equivalently

X(S(H) > (t+1) = )_(x(5(T))) —2).

i=1

We now give an informal proof of the validity for the comb inequalities for the STSP
polytope. In the following, Hamiltonian cycle can be replaced by closed walk or by K-
route. Take any Hamiltonian cycle I" such that [’ N §(T;)| =2 foralli =1,...,¢. Then
ITN8(H)} = t since there must be at least one edge of I' in (7;\ H : T;NH) for each tooth T;.
Now, since a cycle must intersect the coboundary of any node set in a even number of edges
and since ¢ is odd, we must have |I' N3 (H)| > ¢+ 1. So all such Hamiltonian cycles satisfy
the inequality. As explained by Naddef and Pochet [30], in most inequalities described in
term of handles and teeth, the role of the teeth is in some sense to force a prescribed number
of edges out of the handles. Does the inequality remain valid for a Hamiltonian cycle I’
such that [’ N&(T;)| =2+ 2s; fori =1, ..., t? It can be shown that the minimum number
of edges of I' N §(H) is not reduced by more than 2 Zi:] s; over the former minimum of
3t + 1. Thus the inequality is valid for all the Hamiltonian cycles.

To see how comb inequalities can be rather weak for the CVRP polytope, consider
the following three simple observations.

1. If the handle does not contain the depot and R(H) > (t 4+ 1)/2, then obviously the
comb inequality will be implied by the capacity constraint on the handle H. If the
handle contains the depot and R(V \ H) > (t + 1)/2, then the same holds.

2. If all teeth have a bin packing value of 1, but no two can be entirely picked up by
a same vehicle, then there are no K-routes for which the comb inequality is tight.
Section 3.3.5 shows how to transform such an inequality to one that at least has some
K -routes on the induced face.

3. If a tooth 7; has a bin packing value higher than 1, or if it contains the depot and the
bin packing value of its complement is more than 1, then all the K -routes will have
at least four edges in §(7;), and therefore the comb inequality will be dominated by
another inequality.
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We now try to strengthen a comb inequality by taking the capacity constraint into
account. While the intersection of the coboundary of a node set S (a handle or a tooth)
with a Hamiltonian cycle has cardinality at least 2, the intersection with a K -route is at least
2R(S). In general, to describe a strong inequality, 2R(S) is the value to be considered;
however, as done for the capacity constraints, for the sake of computational tractability we
replace it by its relaxation r(S), or even by [@].

In view of the previous explanation of how comb inequalities can be derived, we try
now to see how we can “force” edges out of the handle by using the capacity constraints.
To do so, we need that, when the nodes of a tooth 7; are visited by the minimum number of
necessary vehicles, at least one edge of (7; \ H : T; N H) is used. The following condition,
by Laporte and Nobert [25], is given precisely in this spirit: Let H, T}, T», ..., T; define a
comb such that no tooth contains the depot and

(3.13) HL\H) +r(TiNH) > r(T3);

then the following inequality is valid (Laporte and Nobert [25]):

(3.14) X(B(H) + Y x(B(T) = t+1+2) r(T).

i=l i=I

Note that if 7(7;) = 1 for all i, then the condition (3.13) obviously always holds, and we just
get the comb inequality. Therefore, 3.14 is a proper generalization of a comb inequality.

What about the case in which a tooth, say, 7}, contains the depot? Since a comb
inequality is equivalent to the inequality defined by taking the complement of its handle,
we may assume, without loss of generality, that 0 € T; \ H. Of course, the demands of
the nodes outside T} now play a role, since they force a minimum number of edges in the
coboundary of 7. Therefore, in this case, assuming that for all the other teeth r(7;) = 1
holds, the right-hand side of the comb inequality would be 37 — 1 + 2r(V \ T}).

So far we have considered some simple situations when the plain comb inequality is
not supporting for the CVRP polytope and the right-hand side can be modified to strengthen
it. Deciding in general whether a comb inequality is supporting, finding the correction in the
right-hand side to make it supporting, deciding if the strengthened version is facet defining,
and, finally, in case it is not, determining the correction in the coefficients to make it facet
defining seem all to be difficult tasks and of increasing complexity. For example, for the
case considered earlier of a comb with the depot in a tooth, it is likely that not only the bin
packing value of V\T; should be taken into account but also that of H U (U?I2 T;), anode
set that contains the clients of H N 7. Figure 3.1 shows an example with each node of
demand 1 (the depot is represented by a square node), C =3, R(V\T)) =r(V\Ti) = 2.
The right-hand side of the strengthened comb inequality would be 12, but no K-path is
tight for that inequality. The lowest value we can reach on the left-hand side is 14. Note
that replacing #(V \ Ty) by R(V \ T) does not help here, since we assumed that these two
values coincide. One could then increase the right-hand side to 14, but still what we get
does not define a facet: all K -routes that satisfy the new inequality to equality have exactly
four edges in (7)), and therefore the face that it induces is contained in the one induced by
the capacity inequality associated with V \ T7. All this is to say that things are not easy.

A vehicle routing problem can be reduced to a pure TSP by the following operation:
Replace the depot by a set D of K nodes. Since we deal with complete graphs, we set
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Figure 3.1. An example with the depot in a tooth.

x, = 0 for each edge e having both endpoints in D, or alternatively, as done by Ralphs et
al. [39], we just assume that there are no edges between any two nodes in D. Every node of
D is linked to every client node by an edge of the same cost as in the original problem. A
K -route yields a Hamiltonian cycle in the new graph. Conversely, a Hamiltonian cycle such
that the sum of the demands of the clients on every path between two consecutive visits to
the nodes in D is at most C yields a K -route. Take a comb inequality in the new graph. If
we contract all the nodes of D, we are back to the original graph, but the combs may now
have teeth that intersect in the depot. Therefore it is quite natural to address combs with
intersecting teeth in the depot as possible valid inequalities for CVRP.

A comb can be defined more generally by a handle H and an odd number of teeth
1,71, ..., T, T4, ..., T, satisfying

HN,T,....T,. CV,

T/2\H#@ V1=zj<t,
I,NH#Y Vi<j<ru,

NT; =0 Vi<i<j<r,
I;NT; = {0} Vr4+l<i<j<t,
t > 3 and odd,

where r may be any value between 0 (all teeth intersect) and ¢ (no teeth intersect nor contain
the depot). The teeth 7, to T; intersect in the depot; if r = ¢ — 1, only one tooth does.
Moreover, assume that the full set of K vehicles is needed to satisfy the demand of all the
nodes outside a tooth containing the depot, thatis, R(V\T;) = Kforall j =r +1,...,¢.
Then the following comb inequality is valid:

X(SCH) + Y x(B(T) =t +1+2r + 2K —1).

i=1

We give not a formal proof of validity but only an intuitive explanation. If a K-route is
going to intersect the coboundary of a tooth T; containing the depot only 2K times, then at
least one edge of (H N T; : T; \ H) must be in that K-route. The argument then proceeds
as in the case of regular comb inequalities. Note that if some teeth not containing the depot
cannot be served by a single vehicle and satisfy the Laporte—Nobert condition, then we can
strengthen the inequality like we have already seen.
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3.3.5 Valid Inequalities Combining Bin Packing and STSP

As we saw, the plain STSP inequalities ignore the demands, while the capacity inequalities
ignore the routing conditions. Here we try to combine the two aspects of the problem, as
we started to do with the framed capacity inequalities of section 3.3.3 and with the comb
inequalities.

The path-bin inequalities defined below are a generalization of the framed capacity
inequalities defined in section 3.3.3 and of the comb inequalities defined in section 3.3 4.
They were defined by Pochet [37] and Augerat [4]. Since this material was not readily
available at the time of writing, we include the necessary proofs.

A path-bin support is defined by a handle H, by teeth T\, T», .. ., T;, and by spots
Si, 82, ..., S,. For notational simplicity, we let 7, ; stand for S;.

These sets satisty the following conditions:

H T, T,...,Tiys C Vo,
dI))<C  V1<j<t+s,
S;CH  VYl<j<s,
INH#AB  Vi<j<=i,
Ti\H#£0 VI<j<y,
TNT, =0 VY1<i<j<t+s,
t+s>1.

The difference with respect to a comb is that, for a path-bin support, we impose that the
total demand of a tooth or of a spot be less than or equal to the vehicle capacity C and there
is no parity requirement on the numbers s or t. Figure 3.2 represents a path-bin support
with three teeth and one spot.

Associated with the path-bin support, we define a path-bin subproblem that is the
following constrained bin packing problem. Let I be the set of items. Each tooth T}, 1 <
J <t,andspotS;, 1 < j <s,defines one item of size d(7;) and d(S§;), respectively. Each
nodev € H\ (U'jf1 T;) defines one item of size d,. The bin size is the vehicle capacity C.
Letr'(H | T, ..., T;1s) be the minimum number of bins needed to contain all items of /
with the additional constraint that a bin can contain the items corresponding to at most two
teeth.

Figure 3.2. A path-bin support with three teeth and one spot.
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To link this constrained bin packing subproblem to the solutions of CVRP, we define
an H-path of a K-route of CVRP as a connected component of the intersection of one of
the routes with E(H). In this definition, a single route can define several H-paths, but in
all cases, the number of edges of the K-route in §(H) equals two times the number of its
H -paths. This holds because the depot does not belong to H and thus each H-path contains
two edges of §(H) in the K -route.

The purpose of the constrained bin packing subproblem is to compute the minimum
number of H -paths, over all K -routes of CVRP, under the condition that the demand of a
tooth or spot must be satisfied by a single vehicle, i.e., those K -routes use exactly two edges
of each tooth or spot coboundary. Such an H-path can contain at most two teeth and each
such H-path corresponds to a feasible bin. More precisely, as the bin packing subproblem
considers only the demand in A U (U;:l T;), it uses only local information and will only
provide a lower bound on this minimum in the same sense as r (S) is a lower bound on R(S).
The first example in Figure 3.3 illustrates this correspondence between the H -paths and the
bin packing subproblem. This result is formalized in the following proposition.

PROPOSITION 3.2. If x is a solution of CVRP satisfying x(3(T;)) =2for1 < j <t+s,
then the following inequality holds:

(3.15) ¥EH) =2 (H | Th, ..., Tivo),
wherer’'(H | Th, ..., T,+) is the value of the constrained bin packing problem.

Proof. Let ® be a K-route that contains the minimum number of edges in §(H), among
all K-routes satisfying the conditions of the proposition. Consider the set F of edges of
® with both the endpoints in H. The number of connected components of G’ = (H, F)
is exactly half the number of edges of ® in §(H). Assume that the side condition of the
bin packing problem is violated, i.c., that a connected component intersects three teeth, say,
T;, T;, and T, in that order (going from one extremity to the other). Since T; has nodes
outside the handle H, ® must intersect §(T;) in at least four edges, a contradiction with our
choice of ©. O

Figure 3.3. Tight solutions for a path-bin inequality (C = 10).
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The path-bin inequality transforms the inequality (3.15) into a valid inequality for
CVREP. It is based on a well-known property of the bin packing problem, which says that
splitting an item into two parts cannot decrease the optimal number of bins by more than
1. This property is translated in terms of solutions of CVRP to build the valid inequality.
Putting the item 7 (tooth or spot) in one bin means satisfying the demand d(7;) by only
one vehicle, therefore x(8(7;)) = 2. Splitting the item 7; into two parts and allowing
these two parts to be in different bins means allowing the demand d(7;) to be satisfied
by two vehicles and x(8(7})) = 4. So, as Z’j":] x(8(T;)) is an even integer, each time
Z;J:l [x(8(T})) — 2] is increased by 2, the number of H-paths cannot be reduced by more
than 1 and the coboundary of H cannot be reduced by more than 2. Consequently, we have
the following theorem.

THEOREM 3.3. For any path-bin support (H, Ty, ..., T,, S\, . ..., 8;), the associated path-
bin inequality

t+s
(3.16) X(B(H) = 2r'(H | Ti...., True) — Y (x(B(T))) = 2)

j=1

is valid for the CVRP polytope.

Figure 3.3 represents three tight solutions of the path-bin inequality using the same
support as in Figure 3.2, the first corresponding to a constrained bin packing solution, the
second with a tooth split into two parts, and the last with a spot split into two parts.

Computing r'(H | T, ..., T, 81, ..., S) is harder than computing r(H) which is
NP-hard. For small sets H, the exact bin packing algorithm of Martello and Toth [26, 27]
can be adapted to deal with the additional constraint on the teeth. For larger sets H, the
lower bounding procedure of Martello and Toth [26, 27] can be adapted. Two trivial lower
boundsonr'(H | Ty,...,T;. S1, ..., S;)are [t/2] and [d(HU (U';:1 T;))/C1. Asr'(H |
Ty, ....1:, Sy, ..., S;) appears only at the right-hand side of the path-bin inequality (3.16),
replacing it by any lower bound still yields a valid inequality.

As x(8(T})) = 2 in any feasible solution of CVRP, a set T; or §; will be introduced
in the path-bin inequality only if its removal would reduce the value of the bin packing
subproblem; otherwise the inequality without this set 7; dominates the inequality with the
set T;.

]Note that if some tooth 7; is such that (7;) > | but satisfies condition (3.13) of
Laporte and Nobert, then it is easy to modify the path-bin inequality to take this case into
account.

3.3.6 Valid Inequalities from the Stable Set Problem

The following inequality generalizes Araque’s [2] star inequalities (not to be confused
with the star inequalities for the STSP polytope defined in Fleischmann [17] nor with the
mutltistar inequalities mentioned in section 3.4) for the special case of CVRP occurring when
all demands are equal.



70 Chapter 3. Branch-and-Cut Algorithms for the Capacitated VRP

A clique cluster (see Pochet [37] and Augerat [4]) is defined by Wy, ..., W,, subsets
of V; such that

W:NW, = {v} Vi<i<j<w,
r(w) =1 Vi<i<w,
r(W,UWw;) > 1 Vi<i<j<w.

Thus any two sets intersect in the same node v, and each set can be served by one vehicle,
but not the union of two of them. The node v is called the nucleus of the cluster.

The capacity conditions imply that at most one set W; can have a coboundary that
intersects a K -route in exactly two edges. Therefore, the following inequality is valid:

(3.17) D x(EW) = 4w - 2.

i=1

Note that the nucleus cannot consist of more than one node. Assume W; N W; = N for
all1 <i < j < w with |N| > 1; then any tight K-tour for the clique cluster inequality is
tight for the capacity constraint on N, i.e., for x(§(N)) > 2. Therefore the face induced by
(3.17) would be contained in the face defined by the capacity constraint on the set N. In
the case of a nucleus N with more than one node, one can modify an inequality proposed
by Araque, Hall, and Magnanti [3] for the unit capacity CVRP. The valid inequality in this
case is (see [37])

Y xEW)) — (w = 2x(3(N)) = 2w +2.

i=1

The star inequality is a particular case of a much larger class of inequalities. Consider a
rank inequality facet defining for the stable set polytope. A rank inequality is defined for
some special graph G; each variable is associated with a node of G and has a coefficient of
1, while the right-hand side is the stability number of G;. Special graphs are, for example,
cliques or chordless cycles of odd length. A rank inequality for the stable set polytope can
be translated into a valid inequality for the CVRP polytope in the following way. The nodes
of G, correspond to subsets of clients of CVRP with total demand not exceeding the vehicle
capacity but such that the union of any two of them requires two vehicles to be served. If
two nodes of G, are adjacent, then the corresponding sets intersect, let us say, for simplicity,
in a single node. Assume the stable set inequality has p as right-hand side, this means that
at most p sets of clients can have a coboundary that intersects a K-route in exactly two
edges, yielding the inequality

> " x(8(W)) = 4w —2p.

i=1

Well-known rank inequalities for the stable set polytope are the clique constraints, which
say that at most one node of a clique can belong to a stable set. These yield the clique
cluster inequalities. As long as the sets intersect pairwise we get a clique; therefore one
inequality for the stable set polytope may yield several valid inequalities for the CVRP.
Many, of course, will not even be supporting the CVRP polytope.
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Another well-known inequality is the odd hole inequality, which says that at most ¢
nodes of a chordless cycle of length 2¢ 4 1 can belong to a stable set. This would correspond
to taking 2¢ + 1 subsets Wy, ..., Wy, of V, such that

W,NWio = (v} V0<i<2t (mod2t+1),
WinW; =0 YO<ij<2, |i—jl>1,
r(Wy=1 VY0<i<?2t,

r(W;UWiy)>1  VO<i<2r (mod2t+1).

That is, the sets form an odd hole, the intersection of two consecutive sets is just a node, and
two consecutive sets (modulo 27 + 1) cannot be served by the same vehicle. Then at most ¢
sets W; can have x(8(W;)) = 2 for any representative vector x of a K -route. Therefore the
following inequality is valid:

(3.18) D x(B(W)) = 6t +4.

i=]

It should now be obvious that the facial structure of the CVRP polytope is extremely
complex and that there is still a lot to investigate in this field. For more on this topic we
refer the reader to the papers cited above.

3.4 Separation Procedures

Throughout this section we assume that ¥ € R is a fractional point satisfying all the con-
straints (3.2), (3.3), (3.5), and (3.6). We aim at describing efficient (possibly of polynomial
time complexity) procedures to find a valid inequality for the CVRP polytope, belonging to
one of the classes described in the previous section, that is violated by x.

3.4.1 Exact Separation of Capacity Constraints

We address only the problem of separating the fractional and the rounded capacity inequal-
ities.

The separation problem for the fractional capacity inequality is solvable in polyno-
mial time, as shown by McCormick, Rao, and Rinaldi [29], by reducing it to a network
flow problem. Using the same idea, Blasum and Hochstittler [8] provided a polynomial
separation for a generalization of the fractional capacity inequalities that they call multistar
inequalities.

Let Gz be the weighted graph induced by the edges whose associated components
of x are strictly positive and by all edges incident to node {0}. Each edge of Gx has
the corresponding component of ¥ as a weight. Produce a new graph G’ by replacing
the weight x, by x, — d;/C for all edges e = (0,i) withi € V;. It easy to see that if
in G there is a minimum cut with negative weight, then the shore of this cut that does
not contain node 0 defines a fractional capacity inequality violated by x. Unfortunately, a
standard (polynomial time) algorithm for computing the minimum cut of G, cannot be used,
because such a graph may have edges with a negative weight. To overcome this problem,
consider an auxiliary graph G obtained from G; by adding a node » + 1 connected to
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all nodes 1,2, ..., n. All edges of G7 with both endnodes in {1, 2, ..., n} have the same
weight as the corresponding edges of Gz. Fori = 1,2, ...,ntheedges (0,i)and (i,n+1)
get weights max{0, xp;) — &;/C} and max{0, d;/C — X}, respectively. Because the
network G’; has nonnegative weights, the minimum weight cut separating 0 from n + 1 can
be computed in polynomial time. In McCormick, Rao, and Rinaldi [29] it is shown that the
minimum cut F” separating 0 from n 41 in G7 yields a minimum cut ¥’ for G’ by removing
the edges incident with n + 1. Moreover, the weight of F” exceeds the weight of F' by the
amount Z = ) ;_ max{0, d;/C — X(0,}. Thus, if the weight of F” is strictly less than Z,
then its shore not containing » + 1 defines a violated fractional capacity inequality. If this
weight is nonnegative but strictly less than Z + 2, then all fractional capacity inequalities
are satisfied, but it may be possible that the defined rounded inequality is violated. If w is
more than Z + 2, no rounded capacity inequalities are violated.

To explore the second situation, De Vitis and Rinaldi [15] use a procedure that produces
all the cuts of G7 separating 0 from n 41 in increasing order of their weights. The procedure
stops as soon as a cut is produced that has weight greater than or equal to Z + 2. For each cut
generated by the procedure a check for violation of the corresponding rounded inequality
is performed. There is no guarantee that the number of cuts produced is polynomial in n.
However, for the size of the instances contained in the usual testbeds, the running time of
this procedure is never too long.

3.4.2 Heuristics for Capacity and Related Constraints

The previous algorithm for the rounded capacity inequalities may be too slow. We de-
scribe here a heuristic separation procedure for them as well for the generalized capacity
constraints.

Given x and S C V and v ¢ S, we call x({v} : S) the amount by which v sees §.
Given § C V, if one wants to add a node v to S and have x (§(S U {v})) as small as possible,
then, because of the degree equations, one has to choose the node v that sees S by the largest
amount. Following the terminology of some authors, we say that a set S is built by max-back
order starting at S, if initially S = Sy, and at each iteration a node that sees the current set
by the largest amount is added.

Greedy Rounded Capacity Heuristic. Let Sy be a set such that x(6(Sp)) = 2. For
example, Sy could be just a node or the set of nodes of a path of edges with weight equal to 1
having maximal length. Grow § starting from S until it reaches Vy by max-back order. At
each step check if the corresponding rounded capacity constraint is violated. Note that, due
to the degree equations, it is easy to keep track of x(4(S)) just by knowing by how much
the entering node v sees S \ {v}. Repeat such a procedure for all possible choices of S.

In Augerat et al. [5], a tabu search procedure based on the previous idea is given and
is shown to give good results.

Ralphs et al. [39] suggested another approach when the previous greedy heuristic
fails. First, they work on the modified problem in which the depot is replaced by a set
D of K nodes as described earlier. They try to decompose the solution X into a convex
combination of Hamiltonian cycles. We will not go into the details of how this can be done.
If the decomposition succeeds, then they look at all the Hamiltonian cycles of that convex
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Figure 3.4. An example of fractional solution.

Figure 3.5. The two solutions of the convex combination.

combination and check whether one of the paths between two consecutive visits to D yields
a set S such that the corresponding rounded capacity constraint is violated. Note that if we
use such a sophisticated separation algorithm, it may also be worth the effort to check the bin
packing value of these sets. The authors report success in this approach. Our experience is
that when we encountered such a convex combination, we rarely found a violated capacity
inequality. The example of Figure 3.4, to which we will come back later, is taken from
a fractional solution to E030-03g (also known as ei130) (see section 3.6); the edges e
in solid lines have x, = 1, and those in dotted lines have x, = 0.5. The capacity of the
vehicles is C = 4500 and K = 3. The solution is a convex combination of the two 3-routes
displayed in Figure 3.5, each with coefficient 0.5. It is easy to check that none of the sets
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of nodes of each route violates a capacity constraint in the fractional solution x since only
one route, in each solution, goes over capacity, but it has an x-coboundary of 4.

Heuristic for the Weak Generalized Capacity Constraints. This heuristic starts
with a partition of Vj into (hopefully maximal) sets of x-coboundary equal to 2. If we have
shrunk (recursively) each path of edges with weight equal to 1 to a single node, we can start
with a partition where each set is a node of the shrunken graph (although there may still be
sets of more than one node having coboundary of weight 2). Note that finding a partition
into maximal sets of coboundary of weight 2 can be done in polynomial time, since finding
all sets of minimum coboundary in an undirected graph is polynomial (see Karzanov and
Timofeev [22]), but the previously described partition is in general good enough to start our
heuristic. At each step of the procedure we check whether the current partition violates the
generalized capacity constraint. This amounts to solving a bin packing problem, which, for
the size of instances we are dealing with, can be done in a moderate amount of time.

If the check fails, we merge the two sets S; and S; of the partition that see each other
by the largest amount, i.e., such that x(S; : §;) = max, ; x(S, : S;).

Going back to the example of Figure 3.4, as shown in Figure 3.6, the initial partition
yields a violated weak generalized capacity constraint. The partition is given by the circled
sets. The capacity of the vehicles is C = 4500 and K = 3. The demands of the sets of the
partition are 3175, 3700, 1500, 300, 150, and 3925, and all have a x-coboundary value of 2.

Figure 3.6. An example of violated generalized capacity constraint.
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The bin packing value is 4 since the item of size 1500 cannot fit with the first two or with
the last one.

Note that the nodes in the set S¢ do not play a significant role in this inequality. In
fact there is also a framed capacity constraint violated by the same amount. It is defined by
the handle H = V \ (8¢ U {0}) and the two sets S| and §,. We have x(§(H)) = 4, but if
only two vehicles serve H, then S; and S, cannot be served each by a single vehicle, as is
currently the case since x(8(S1)) = X(3(S;)) = 2, because then none of these vehicles can
serve the node with demand 1500.

3.4.3 STSP Constraints

Naddef and Thienel [33, 34] give separation routines for the STSP that can very easily be
adapted to the CVRP. Moreover, these routines can easily be adapted to take into account
the Laporte—Nobert conditions (3.13). The computational results given in this paper are
done with an earlier version of these routines developed by Clochard and Naddef [11].

3.5 Branching Strategies

We devote a special section to branching since it is a critical component of any branch-and-
cut implementation.

As described in section 3.2, there are several ways to perform a branching. The first
is to choose an edge e* for which the corresponding variable is fractional in the current LP
optimal solution and split the set of solutions into those that use the edge (x,» = 1) and
those that do not (x.» = 0) (assuming, of course, that x.« can take only these two values).
We call this method edge or variable branching.

A crucial problem is to choose the variable on which such a branching should be
performed. For the case of STSP, a general rule, proposed for the first time by Padberg and
Rinaldi [36], is to choose a variable x,- whose value falls into a small interval centered at
0.5 and, in case this happens for more variables, to choose the one among them with largest
cost. Note that the branching on variables is very asymmetric in the sense that setting a
variable to 1 amounts to choosing one of the n + K edges of a K-route, while setting a
variable to 0 corresponds to deciding that one out of O(n?) edges is not in a K -route. This
has made some researchers think that it could be a better choice to select a variable with
a higher fractional value, say, 0.75. Although some authors report no success with such a
choice for the STSP, we have tried it in the case of the CVRP.

Some researchers have proposed to choose a variable such that, if set to 1, it would
extend an existing path of edges already set to 1. Among all possible choices, the one that
leads to a path of largest total demand should be preferred. The idea behind this strategy
is that it implies many other variables to be set to 0: those associated to the edges incident
with an internal node of the path and those incident with the extremities of the path and with
a node whose demand is not compatible with the total demand of the path. The asymmetry
problem is now even more evident and therefore this does not seem to be a good choice
to us.

Applegate et al. [ 1] suggested choosing a candidate set of variables for branching and
selecting the best among them by LP festing, i.¢., by solving both linear programs induced
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by the two possible values of the variable. The best variable is then chosen as the one for
which the minimum of the two objective function values is the largest.

To give an example of how the different strategies behave for the CVRP, we report
on some computational tests performed on 15 instances chosen from the literature, using
the branch-and-cut code developed by Augerat et al. [6] with a depth first search procedure
and limiting the depth of the search tree to 30. Because the behavior of the branch-and-cut
algorithm depends on so many implementation details, as has been observed, and because
of the small number of experiments, the results have to be taken with some caution.

As a first experiment, three possible strategies were tested for branching variable
selection:

(A1) choice of the variable with largest cost among those with value close to 0.5,

(A2) choice of the variable with largest cost among those with value close to 0.75,
and

(A3) the best in an LP test performed on 10 variables of values between (.45 and
0.65.

We give the number of problems solved, total times (in hours:minutes), and the number
of times the strategy led to a smaller search tree. Unfortunately, the unsolved problems bias
the times since, contrary to what one may expect, because of the depth first search strategy
and our limit of the tree depth, these take less time than the others. See Table 3.1.

Clochard and Naddef [11] proposed, for the first time in branch-and-cut, to use an
alternative branching strategy, which we will call branching on an inequality. It was imple-
mented for the STSP using inequalities dealing with the coboundaries of sets. Any closed
walk must use a positive even number of edges of any coboundary. Let S be a node set such
that x(8(S)) =~ 2¢ + 1. Then we can decompose the problem into two subproblems: one
where x(8(S)) < 2¢ holds and one where x(6(S)) > 2t 4+ 2 holds. They report significant
improvements in difficult STSP instances over the classical variable branching. For exam-
ple, Naddef and Thienel [34] get an improvement by a factor of 3 in solving the difficult
ts225 instance of the TSPLIB library collected by Reinelt [40].

Branching on inequalities was used for the first time in Augerat [4] and Augerat et
al. [6] for the CVRP. In this case the most interesting situation happens when there is a
node set S for which x(8(S)) &~ 3. As in the case of branching on variables, there is an
imbalance between the side for which we impose x(§(S)) = 2 and the side where we impose
x(8(S)) > 4. Imposing that all the clients of set S are served by the same vehicle amounts
to considering S as a unique client with demand equal to the sum of the demands in S. If
its total demand is high enough, then one of the K -routes is almost fixed, and therefore this
side of the search tree will be solved faster than the other side.

Table 3.1.
Strategy  Solved instances Time  # best
Al 13 24:30 0
A2 12 18:40 0

A3 15 14:00 15
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The computational results of this section are taken again from Augerat [4], where six
strategies were tested:

(B1) Select S for which x(3(S)) is the closest to 3.0.

(B2) Select S for which x(8(S)) is the closest to 2.85.

(B3) Select S for which x(5(S)) is the closest to 3.15.

(B4) Select S for which 2.75 < x(8(S)) < 3 and d(S) maximum.

(B5) Select S for which 2.75 < x(8(S)) < 3 and the distance from S to depot is
maximum (ties are split by total demand); by distance we mean the sum of the
distances to the depot of the two nodes of § that are the closest to it.

(B6) Select S for which 2.75 < x(8(S)) < 3 and contains the largest number of
supernodes; a supernode is a set that has been identified as having in the current
solution a coboundary of weight 2, for example, the nodes of a maximal path
of edges of weight 1, or the node sets the coboundary of which have been set
to 2 in previous branchings.

The seventh parameter in the choice of set S, namely, its cardinality, would have been
worth testing. This parameter was not considered to keep the selection procedure as simple
as possible. The cardinality of § might be important because the smaller the S, the easier
should be the subproblem where x(8(S)) > 4.

The sets § are built by the same procedure that is used to heuristically find violated
capacity constraints, as described in the previous section. The results are reported in Ta-
ble 3.2.

Note that several strategies may have given trees of the same sizes for the same
instance; for this reason the entries of the last column of the table do not add up to 15.

It is clear from these results that because of the asymmetry issue mentioned earlier,
it is better to choose a set of coboundary strictly less than 3. It is also evident that the last
three strategies are the clear winners.

Another experiment considered if it is worthwhile spending time on looking for a
good branching set by LP testing. The selection was done by LP testing from sets with
coboundary weight falling into three intervals. The results are summarized in Table 3.3.

In a final experiment, selecting was done by LP testing and according to three criteria:
edge branching, branching on inequalities, and a mix of the two. Edges were selected from
a set made of the one with value closest to 0.75 and the 10 with value closest to 0.5. Sets

Table 3.2.
Strategy  Solved instances Time # best
Bl 14 14:55 7
B2 13 26:10 |
B3 13 26:25 1
B4 14 5:40 4
B5 13 5:30 3
B6 13 5:25 2
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Table 3.3.
Condition Solved instances  Time
250 <6(85) <2.85 14 17:00
2.75 <4(8) <3.00 14 5:50
2.85 <48(S5) <£3.10 14 18:00
Table 3.4.
Strategy Time #best Average BC* nodes
Test on edges 14:00 4 76
Test on sets 4:57 10 50
Test on edges+sets ~ 5:51 6 35

*Branch-and-cut.

were selected considering one representative from those satisfying each of the following
three conditions: x(8(S)) closest to 3, 2.85, and 3.15, respectively. Finally, three more sets
S were selected among those with x(6(S)) falling into the interval [2.75, 3]: the one with
the largest total demand, the one with the largest cardinality, and the one with maximum
distance from the depot. Table 3.4 summarizes the results.

It seems clear that the two last strategies in the table are the best. More extensive
computational experiments have shown that the extra time spent by LP testing in choosing
proper branchings almost always pays off: it may cut by a factor of more than 2 the total time
to solve harder instances, although it may double the time for the very easy ones. However,
the latter situation does not affect the evaluation because we believe that areasonable measure
of performance for an exact algorithm should be “How many instances from a test set can
we solve with a limited time for each?”

To conclude, we list a set of rules for the selection of S, derived by analyzing the
above experimental results:

* 2,75 < x(8(5)) £3.0and d(S) > C/2.
+ §is “far” from the depot.

+ |S] is small (W C S with x(§(W)) set to 2 in previous branchings is counted as a
unique node).

¢ §is contained or at least intersects a former branching set.

The idea behind these conditions is that if the set S contains a few nodes, then with
the last rule we will soon have partitioned its nodes between different vehicles. Moreover,
the assignment to the vehicles of clients that are far from the depot seems to be critical; the
second rule aims at making such an assignment as soon as possible.

3.6 Computational Results

The computational study reported here is the one of Augerat et al. [6]. It was made with
a branch-and-cut algorithm that makes use of many of the separation procedures and the
strategies described in the previous sections. Because the algorithm was developed by three
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groups of researchers, its implementation was not done with the purpose of being efficient.
Rather than a state-of-the-art software, the code is a kind of experimental environment
that can easily accommodate various separation routines and algorithmic strategies with
the purpose of making comparison testing readily available. Another source of extensive
computational experimentation is Ralphs et al. [39].

The main drawback of such a code is the lack of several components that are common
to most branch-and-cut codes, like, among others, pool management and the possibility of
having only subsets of variables active in the solution of the linear programs. In addition,
the visit of the enumeration tree is done using the depth-first, which is the easiest to im-
plement but also the least effective. Last, but not least, the algorithm was implemented via
independent pieces of code communicating through files written in the mass storage. Such
an algorithmic design provided some flexibility to the developers but has, of course, a price
in terms of efficiency.

Due to these facts, the computational results and the performance indicators reported
in [6] are not to be taken as reliable evidence of the actual potential of the technique.
Nevertheless, the algorithm was able to find for the first time an optimal solution, and
it proved its optimality for two instances of 135 nodes proposed by Fisher [16]. To our
knowledge, these are still the largest instances for which a certified optimal solution has
been computed.

The computational results of Augerat et al. [6] are summarized in Tables 3.5 and 3.6.
The instances that form the test bed for the study were all taken from the literature. (Most

Table 3.5. Computational results (only for the root node) from Augerat et al. [6].

Upper Lower

Problem bound bound Gap #Cuts #LPs CPU*
E022-049 375. 37s. 0. 100 21 2
E023-03g 569. 569. 0. 43 9 1
E030-03g 534. 534. 0. 243 50 17
E033-04g 835. 835. 0. 389 27 8
E045-04f 724. 724. 0. 168 24 7
E045-04£™ 748. 723.541 0. 173 28 19
E051-05e 521. 517.581 0.66 737 62 31
E072-04f 238. 235. 0.84 443 69 82

E072-04£" (a) 269.241 240408 0.65 300 50 208
E072-04f (b) 241974 240408 0.65 300 50 29

EQ76-10e 832. 793.545 4.85 1949 111 761
E076-07s 683. 664.361 2.81 1283 77 236
E076-08s 735. 713.601 3.00 1686 101 351
E076-14s 1032. 953.794 820 2157 72 466
E101-08e 815. 799.398 1.95 1749 11 494
E101-10c 820. 820. 0. 1706 48 472
E135-07f 1165. 1159.27 024 4481 136 1428
E135-07f" 116296  1159.28 032 3397 138 1098

*Seconds in a Sun Sparc 20.

*)Real distances with three decimal digits.
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Table 3.6. Computational results from Augerat et al. [6].

Problem Optimum #Cuts #LPs #B&Cnodes CPU*
E051-05e 521. 908 129 7 54
E072-04f 237. 603 390 51 180
E072-04f® (a) 241973 1670 1862 239 4622
E072-04£™ (b) 241.973 484 280 31 98
E135-07f 1162. 13482 3086 423 20570
E135-07£ 1162.95 10450 4833 633 15774

*Seconds in a Sun Sparc 20.
(+)Real distances with three decimal digits.

are available from the electronic library TSPLIB of Reinelt {40].) The naming convention
for the instances is that explained in section 1.4.

All these instances are of Euclidean type. As is now customary, for the computation
of the distances the convention of TSPLIB is adopted, i.e., the real Euclidean distance
between any pair of nodes is rounded to the nearest integer. To compare the results with
those of Fisher [16], an exception is made for the £ instances marked with (4), which are
obtained from the corresponding ones by taking only the first three decimal digits of the
real Euclidean distances.

In Table 3.5 we summarize the results concerning the computation at the end of the
root node of the enumeration tree. The values of the column labeled Upper bound are taken
from the literature, while those of the column Lower bound are value obtained after adding
the cutting planes. Each value of the column Gap is the ratio of the difference between the
optimal value and the lower bound over the lower bound. For the cases were the optimal
value is not computed, the upper bound is used instead. The columns labeled # Cuts, # LPs,
and CPU give the total number of valid inequalities generated, the number of LP calls, and
the total CPU time, respectively. Seven instances were solved to optimality at the root node.

Table 3.6 summarizes the results for the five instances that were solved to optimality
by performing some enumeration steps. The columns of the table report the optimal value,
the total number of cuts generated, the total number of LP iterations, and the total CPU
time, respectively. The last four values do not include those concerning the root node that
are reported in Table 3.5.

For the instances with 76 and 101 nodes, the algorithm was not able to terminate the
computation in a reasonable amount of time.

In a further computational study, Ralphs et al. [39] (see also [38] and [23]) imple-
mented a parallel branch-and-cut algorithm that exploits the ideas mentioned in section 3.3 4.
Such an algorithm was able to find an optimal solution of value 815 (and prove its optimality)
for the instances E0101 - 08e, improving by two units the best known solution. Moreover,
for the first time it proved the optimality of the best known solution for EO76 - 08s and im-
proved the best known solution for E076 - 07 by one unit, providing a proof of optimality.
Table 3.7 summarizes these results.

Another, more recent, study was reported by Blasum and Hochstittler [8], who de-
veloped an algorithm using the same branching strategy and separation procedures as in
[6] with some modifications. For example, they developed a heuristic procedure for sepa-
rating the rounded capacity inequalities based on their algorithm for the separation of the



3.7. Conclusions 81

Table 3.7. Computational results from Ralphs et al. [39].

Problem Optimal value #B&C nodes # processors CPU*

E076-07s 682 115991 9 278613
E076-08s 735 484245 60 1927422
E101-08e 815 244968 80 1900671

*Seconds in a network of IBM RS/6000 (from 120 to 135 MHz).

multistar inequalities mentioned in section 3.4. However, they used the state-of-the-art
branch-and-cut framework ABACUS, developed by Jiinger and Thienel [21]. The results
are comparable with those of Tables 3.5 and 3.6, taking into account, of course, the dif-
ferences in computer speed and LP solver efficiency. It is remarkable, however, that the
algorithm was able to solve two difficult 76-node problems to optimality with computing
times considerably shorter than those reported in Tabie 3.7. The instances E076-07s and
E076-08s where solved with 6717 and 6 259 nodes, respectively, in 27,550 and 35,466
seconds, respectively, on a 400 MHz Sun Ultrasparc II. No proof of optimality is reported
for the third difficult problem of Table 3.7.

3.7 Conclusions

Using branch-and-cut to solve the CVRP is at the beginning of its development. We believe
that a better understanding of the underlying polytope and further effort in designing efficient
separation routines should yield much better computational results than those reported here.
Various groups around the world are working on the subject, and new results should appear
very soon. In particular, other formulations have been studied that yield polytopes that
are different from the one studied in this chapter. See, for example, the two-commodity
network flow formulation studied by Baldacci, Mingozzi, and Hadjiconstantinou {7]. This
formulation, described in Chapter 1, does not yet provide better results than those reported
here.

Some variants of the vehicle routing can appear in the literature as particular cases
of more general problems. For example, the unit demand (d; = 1 for all {) CVRP can be
seen as a particular case of the Black-and-White TSP of Ghiani, Laporte, and Semet [18];
therefore, so can the CVRP in which we split the client demands, since in that case every
client with demand d; can be replaced by d; clients with unit demand, the distance between
the copies of the same client being 0. A polyhedral study of the split demand CVRP was
carried out by Martinez, Mota, and Rinaldi {28]. Finally, for further material on the linear
relaxation of CVRP, see the survey of Laporte [24].
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Chapter 4

Set-Covering-Based
Algorithms for the
Capacitated VRP

Julien Bramel
David Simchi-Levi

4.1 Introduction

In this chapter we present several set-covering-based approaches for solving the Capacitated
VRP (CVRP) and provide an analysis of the effectiveness of the approach. Throughout the
chapter we consider the symmetric case, the CVRP, although the presented methods may
be applied to the ACVRP as well. For this purpose, let the index set of the n customers be
denoted V = (1,2,...,n}. We let O denote the depot and V° = V U {0} the node set of
the corresponding complete graph. Associated with customer i € V is the demand d; > 0,
which represents the load that must be picked up at customer i’s location. We let C denote
the vehicle capacity, and we assume there are K vehicles available to perform the delivery.
Clearly, feasibility requires that d; < C foreachi € V. Let t;; denote the length of edge
(i, j) with i, j € VO It is assumed that the distances t;; satisfy the triangle inequality;
otherwise, one can add a large constant cost to all nodes (or to all edges).

A classical method, first suggested by Balinski and Quandt [3], for solving the CVRP
is based on formulating the problem as a set-covering problem. The idea is as follows.
Enumerate all feasible routes, where a feasible route is one that starts and ends at the depot
and picks up a total load not exceeding C. Let the index set of all feasible routes be
R =1{1,2,..., R}. Let c, be the cost (e.g., length) of route r, and let S, C V denote those
customers appearing in route r for all r € R. Define

o — 1 if customer i is served in route r,
71 0 otherwise

for each customer i € V and each route r € R. Also, for every r € R, let

_ | 1 ifroute r is in the optimal solution,
=1 0 otherwise.

85
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In the set-covering formulation of the CVRP, the objective is to select a minimum-cost set
of feasible routes such that each customer is included in some route. It is

(P) min Y

reR

subject to

4.1 Y ey =1 YieV,
reR

4.2) Y o» <K,
reR

v, € {0, 1} VreR.

Constraints (4.1) require that each customer appear in at least one route, while constraints
(4.2) impose that at most K route be used. Observe that we have written constraints (4.1)
as inequality constraints instead of equality constraints. The formulation with equality
constraints is equivalent since we have assumed that the distance matrix {#;;} satisfies the
triangle inequality and therefore each customer will be visited exactly once in the optimal
solution. The formulation with inequality constraints will be used here since it turns out to
be easier to work with for implementation.

This mathematical programming formulation was used successfully by Cullen, Jarvis,
and Ratliff [13] to design heuristic methods for the VRP. Exact algorithms based on this
method were developed by Agarwal, Mathur, and Salkin [1] and more recently by Bixby [5]
and Hadjiconstantinou, Christofides, and Mingozzi [18]. The method is quite general and
can be applied to a large number of problems. We list only a few examples here. For the VRP
with time windows and no capacity constraint, Desrosiers, Soumis, and Desrochers [16]
considered this same model and solved a number of problems to optimality. For the CVRP
with time windows (VRPTW) (i.e., with a capacity constraint), Desrochers, Desrosiers, and
Solomon [14] devise a branch-and-bound algorithm to solve a number of Solomon’s [26]
original time-window constrained problems to optimality or near optimality. In the context
of the multidepot vehicle scheduling problem, Ribeiro and Soumis [24] successfully used
this approach. Similar methods have also been used to solve crew scheduling problems;
see, for instance, Hoffman and Padberg [21]. Finally, the survey of Desrosiers et al. [15] is
an excellent source for column generation-based approaches to crew scheduling problems,
particularly in urban transit systems and for airline companies.

The general algorithmic form common to the set-covering-based methods described
in this chapter is as follows. In the first step, the linear programming relaxation of the
set-covering problem (obtained by removing the integrality constraint on the y variables)
is solved using the method of column generation (without enumerating all possible routes).
The resulting fractional optimal solution value is then a lower bound on the value of the
optimal integer solution. Then, from the set of columns generated so far (which may only be
a small part of R), an integer solution is sought using, e.g., a cutting plane or branch-and-cut
approach. This solution is not guaranteed to be the optimal integer solution over all columns
of R, but it is likely to be close. If a branch-and-price approach is used, additional columns
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are generated at each node of the branch-and-bound tree, resulting in the optimal integer
solution over all columns in R.

In the next section, we describe the column generation problem. In section 4.3, we
review a number of methods that have been developed to solve the linear programming
relaxation of problem P, specifically, the column generation problem. In section 4.4, we
describe some of the methods that can be used to find an optimal or near-optimal integer
solution to P. In section 4.5, we present some of the computational results on the methods
we have described. Finally, in section 4.6, we provide analyses that shed some light on why
a method of this type can be effective.

4.2 Solving the Linear Programming Relaxation of P

To solve the linear programming relaxation of problem P without enumerating all the routes,
we can use the column generation technique. A detailed explanation of this method is given
below, but the general idea is as follows. A portion of all possible routes is enumerated,
and the linear relaxation with this partial route set is solved. The solution to this linear
program is then used to determine if there are any routes not included in the formulation
that can further reduce the objective function value. This is the column generation step.
Using the values of the optimal dual variables (with respect to the partial route set), we solve
a simpler optimization problem where we identify if there is a route that should be included
in the formulation. Then the linear relaxation of this expanded problem is resolved. This is
continued until no additional routes are found that can reduce the objective function value.
In that case, we can show that an optimal solution to the linear program is found, one that
is optimal for the complete route set.

Specifically, we first enumerate a partial set of routes R' € R and formulate the
corresponding linear relaxation of the set-covering problem with respect to this set:

(P) min Y ¢y
reR’
subject to
(4.3) Z oy > 1 YieV,
reR’
(4.4) Y w <Kk,
reR’
v >0 YreR.
Let y be the optimal solution to problem P, and let # = {7, 72, ..., ,} be the corre-

sponding optimal dual variables associated with constraints (4.3). Let § be the optimal dual
variable associate with constraint (4.4). We would like to know whether y (or, equivalently,
(7, @) is optimal for the linear relaxation of problem P (respectively, the dual of the lin-
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ear relaxation of problem P). To answer this question, observe that the dual of the linear
relaxation of problem P is

(Pp) max Zn,- — Ko

ieV
subject to
4.5) Zairni —0<ec YreR,
ieV
>0 YieV,
g >0.

Clearly, if (7, ) satisfy every constraint in (4.5), then it is optimal for problem P,
and therefore y is optimal for the linear programming relaxation of problem P. How can
we check whether (77, 0) satisfies every constraint in problem Pp? Observe that the vector
(7, 0) is not feasible in problem Pp, if we can identify a single constraint, r, such that

(4.6) > et > e +9.

ieV

Consequently, if we can find a column r minimizing the quantity ¢, — ), «;,7; and this
quantity is less than —@, then a violated constraint is found. In that case the current vector
(7, 6) is not optimal for problem Pp,. The corresponding column just found can be added
to the formulation of problem P, which is solved again. The process repeats itself until no
violated constraint (negative reduced cost column) is found; in this case we have found the
optimal solution to the linear relaxation of problem P (the vector y) and the optimal solution
to problem Py, (the vector (7, 0)).

The column-generation problem is then to identify a feasible route r € R that satisfies
(4.6). Define &, to be the reduced cost of column r, ie., & = ¢, + 0 — e s, i, for each
r € R. Also define d(S) = ) ;. ¢ d; for any § C V. The task is then to solve the column
generation problem, which is

(CG)  Gwin = Min [5, - d(S,) < C}.

It is not clear how this column-generation problem, CG, should be solved. Problem
CG is itself NP-hard since, even given S;, evaluating ¢, (or ¢, ) requires solving the Traveling
Salesman Problem (TSP) with respect to vertex set S, U{0}. We consider several approaches
to this subproblem in the next section. This includes the work of Agarwal, Mathur, and Salkin
[1], Bixby, Coullard, and Simchi-Levi [6], Bixby [5], and Hadjiconstantinou, Christofides,
and Mingozzi [18] on the CVRP, and the related work of Desrochers, Desrosiers, and
Solomon [14] on the VRPTW.

In summary, the column-generation algorithm for solving the linear relaxation of
problem P can be described as follows:

Column-Generation Algorithm

Step 1. Generate an initial set of columns R’.

Step 2. Solve problem P’ and get optimal primal variables, y, and optimal
dual variables, (7, 6).
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Step 3. Solve problem CG, or identify routes r € R satistying ¢, < 0.
Step 4. For every r € R with ¢, < 0 add the column  to R’ and go to Step 2.
Step 5. If no routes r have ¢, < 0, i.e., Cyin = 0, then stop.

The procedure produces a vector y which is the optimal solution to the linear relaxation of
problem P. The objective function value ), 5. ¢, ¥, is then a lower bound on the optimal
solution value to the CVRP, i.e., the optimal integer solution value to P.

We note here a number of implementation tricks that can improve the convergence
of the column generation algorithm. The column generation step (Step 3) usually turns out
to be the most time consuming. To reduce the computation time of this step, the following
additional features can be implemented. First, it is important to generate a good set of
initial routes in Step 1. To do this, a large number of quick heuristics for the CVRP can be
used. In fact, if a good dual solution is available, then it can be used to help generate routes
with low reduced cost (with respect to this dual solution). Several methods for estimating
good dual variables were given by Agarwal, Mathur, and Salkin [1] and Hadjiconstantinou,
Christofides, and Mingozzi [18]. Second, it is important that in each iteration of Step 3
a number of routes with negative reduced cost be generated, not just one. In addition, it
is particularly helpful to generate sets of new columns that are disjoint (as in an integer
solution).

4.3 Set-Covering-Based Solution Methods

We describe four methods that have been developed to solve, or nearly solve, the linear
programming relaxation P’ of the set-covering problem. The first three deal specifically
with solving CG or generating a lower bound on ¢y, the minimal reduced cost of a feasible
route. The last method diverges from these in that it attempts to solve directly the dual
Pp using a branch-and-bound method. In section 4.4 we consider several approaches for
solving the integer program. We then give computational results on all the methods we have
described.

4.3.1 Branch-and-Bound Algorithm for Problem CG

Agarwal, Mathur, and Salkin [1] devised a branch-and-bound algorithm to solve problem
CG. This branch-and-bound algorithm is based on developing a lower bound on ¢, for any
route r € R.

The branch-and-bound approach constructs a route of minimum reduced cost that
satisfies the constraint on the vehicle capacity. Branching is based on selecting a customer
i € V and considering the two subproblems: find a minimum reduced cost route that
includes i and find a minimum reduced cost route that excludes i. For this purpose, the
method uses the following branching variables:

1 if customer i is in the route,
X = .
0 otherwise

foreachi € V. At each node of the branch-and-bound tree, there are three sets of interest.
Let S; € V denote those customers that must be included in the route (i.e., those customers
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i € V for whom x; has been set to 1). The set S € V consists of those customers that
cannot be included in the route (i.e., those customers i for whom x; has been set to 0). The
set S, = V' \ (S U S)) consists of those customers that have not yet been branched on.

At each node of the branch-and-bound tree, a lower bound on ¢, is calculated. For
this purpose, let ¢(S) denote the length of an optimal traveling salesman tour through set
S U {0} with § C V. This is a lower bound on the minimal reduced cost of a feasible route.
Let S denote the route with minimal reduced cost in this part of the branch-and-bound tree.
Then §; € S and S C §; U S,. To construct the bound, for any set 7 C V and a customer
i ¢ T define g;(T) = min; zc7{t;; + tix —t;¢}. Thenitis easy to see that forall 7 C V and
ieT,

.7 (T Uih = c(T) + ¢:(T).

In general, if M = §\ S and m = |M| then it is clear that

co(8) = c(S1) + ) _gi(S1)/m.

ieM

Therefore, given Sy, So, and S, (i.e., at a particular node of the branch and bound tree), if
we know that at most m additional customers can be added to the route, then

q:(S1)
c(S)zc(S1)+Zx,w .

ieS,

In addition, it is simple to get an estimate of the value of m based on the demand sizes and
the remaining vehicle capacity C = C — Y, es, di- This can be done by ranking the demand
sizes in Sy in increasing order and finding the largest value of k such that the sum of the first
k values does not exceed C. Then m is set to this k. Define pi, foreach i € S, as follows:

pi = qi(S1)/m —w;.

Then a lower bound on ¢y, is given by

(LB) min LB =c(S) — ) _# +min Y xp;
ies i€Sy

subject to

Z dix; < C,

ieS,

x; €10, 1} Vi e S,.

This last problem is a knapsack problem for which effective, although nonpolynomial,
algorithms exist (see the excellent book by Martello and Toth [22]). In addition, since only
a lower bound on ¢y, is sought, it is not necessary to solve this knapsack problem as an
integer program. Since the linear program is solved trivially, this is often a better approach
in practice. In addition, rather than solving a TSP at each node (to evaluate ¢(S1)), a lower
bound can be computed based on (4.7).
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To make the algorithm run more efficiently, Agarwal, Mathur, and Salkin implemented
a number of additional features. To avoid excessive fluctuations of the value of the dual
variables from iteration to iteration, Agarwal, Mathur, and Salkin imposed an additional set
of constraints on the dual variables. They add to problem Py, the constraints

n; <1, ieV,

for some constant . The value of ¢ can be increased gradually toward the end of the
algorithm to avoid any of these constraints being tight in the final linear programming
solution. According to the authors, this technique substantially increased the convergence
rate.

Similar approaches to (computationally) stabilize column generation procedures were
applied by Du Merle et al. [17]. There, stronger primal and dual components were used,
in particular, the perturbation of the right-hand side together with the introduction of the
available or expected dual information. See Du Merle et al. [17] for details.

4.3.2 Polyhedral Branch-and-Bound Algorithm

Bixby, Coullard, and Simchi-Levi [6] developed a cutting plane algorithm for solving prob-
lem CG. To present their approach we first define a few terms. Let E denote the set of edges,
and let (i, j) denote a particular edge. For any set of nodes § € VO, let §(S) denote those
edges of E that have exactly one end in S. Below set my = 0. They consider the following
integer programming formulation of problem CG:

min Z tijXij — Zﬁiyi

(i.)EE ieve

subject to

(4.8) Z xj =2y VieV
(. jyesiph

4.9) > oxyz-242m+2y  VScV'keS £eVOAs,
(i.7)Yed(S)

(4.10) Y dyi <€,
ieV

4.11) xj€{0, 1} V(@G ek,

(4.12) y; €{0,1} VieV,

(4.13) yo =1,

where x;; is 1 if edge (i, j) is in the tour and 0 otherwise, y; is 1 if node i is in the tour and
0 otherwise. Note that, because of (4.11), routes with only one customer are not allowed.

Constraints (4.8) are the assignment constraints, requiring that for every node in the
tour there are exactly two adjacent edges. Constraints (4.9) are the subtour elimination
constraints, which ensure that for all sets S, such that both S and V° \ § contain nodes in
the tour, there have to be at least two edges in §(S) included in the tour. So, (4.8), (4.9),
and (4.13) along with the integrality conditions in (4.11) define the set of subtours or cycles
through the depot node.
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To solve this integer program, Bixby, Coullard, and Simchi-Levi [6] introduced a
number of cuts, including the subtour elimination constraints (4.9) and the two-matching

constraints:
Z Xxij + Z (—=x;) =1,

(i, ))es(HN\T . )eT

where (H, V°\ H) is a partition of the nodes V° and T is a node disjoint subset of the edges
in §(H) with |T| > 3 and odd. These are exactly the same as the two-matching constraints
for the TSP.

Another useful set of cuts for the subtour polytope are the cocycle or cone inequalities,
as in Seymour [25]. (See also Bauer [4] on facets of the cycle polytope.) They can be stated
as follows:

> xj— x>0, ScVhkesS £eviy\s.
(i, ))E8(S\ (k. )

Finally, the authors used a type of cutting plane for the knapsack polytope based
on minimal covers. A minimal cover is a subset § © V for which ), _¢d; > C and
D e s\(jy 4i < C for all nodes j in the set S. For each such set we have the following set of
valid minimal cover constraints:

Y wsisi-1

ies
Some of these inequalities have been incorporated in a branch-and-cut algorithm. The
algorithm was tested on several instances of problem CG, arising from CVRPs, with up to

51 customers. Some of these results are reported in Table 4.2. For further details, see Bixby,
Coullard, and Simchi-Levi [6] and Bixby [5].

4.3.3 Pseudo-Polynomial Lower Bound on ¢y,

Desrochers, Desrosiers, and Solomon [14] devised a branch-and-bound algorithm to solve
the column-generation problem and thus the linear programming relaxation of the set-
covering model. They considered the VRPTW, but we describe here how this method can
be applied to the CVRP. They generated a lower bound on ¢, using dynamic programming.
Thus each calculation of this bound requires only pseudo-polynomial time. Further details
on VRPTW may be found in Chapter 7.

To be able to solve CG using dynamic programming (with a state space of manageable
size), we modify problem P to allow routes that visit the same customer more than once. The
benefits of including this modification will be clear in a moment. Unfortunately, this method
has the disadvantage of expanding the set of feasible routes. The model, call it problem
P,. (where m stands for the “modified” formulation), is defined as follows. Enumerate all
feasible routes, satisfying the capacity constraint, that may visit the same customer a number
of times; each such visit increases the total load by the demand of that customer. Let the
number of routes (columns) be R,,, and let ¢, be the total distance traveled in route r. For
each customeri € Vandrouter =1, 2, ..., R, let

&;, = number of times customer i is visited in route r.
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Also, foreachr = 1,2, ..., R,,, define

| 1 ifroute r is in the optimal solution,
=10 otherwise.

The CVRP can be formulated as

’R"’”
(P,) min Y ¢y
r=1

subject to
7?—m
(4.14) D&y =1 YieV,
r=1
T\’,m
(4.15) Y w2k,
r=1
(4.16) yel{0,1} VYr=12...,Rpu.

This is the set-covering problem solved by Desrochers, Desrosiers, and Solomon [14] in the
context of the VRPTW. Clearly, the optimal integer solution to problem P,, is the optimal
solution to the CVRP. However, the optimal solution values of the linear relaxations of
problem P, and problem P may be different. Of course, the linear relaxation of problem
P,, provides a lower bound on the linear relaxation of problem P.

To solve the linear programming relaxation of problem P,, we use the method de-
scribed above (for solving the linear programming relaxation of problem P). We enumerate
a partial set R,, of routes; solve problem P/, which is the linear relaxation of problem P,
defined only on this partial set of routes; and use the dual variables to see whether there
exists a column not in the partial set with Z?:l &,m; > ¢, + 0. If there exists such a
column(s), we add it (them) to the formulation and solve the resulting linear program again.
Otherwise, we have the optimal solution to the linear programming relaxation of problem
P,.

The modification we have made makes the column-generation step (the solution of
CG) computationally easier, at the cost of only generating a lower bound. This can be done
in pseudo-polynomial time using dynamic programming, as described next.

We need the following definitions. Given a path IT = {0, u;, ua, ..., u;}, where it is
possible that u; = u; fori # j, the total load of this path is defined as 3";_, d,,. That is,
the total load of the path is the sum, over all customers in [T, of the demand of a customer
multiplied by the number of times that the customer appears in I1. Let {c;; : i, j € V)
denote a general distance measure between all pairs of nodes in V°. In what follows we
use ¢;; = t;; — @, foralli, j, € V0, where 7, = 0. Let f;(q) be the cost (evaluated using
a distance measure {c;;}) of the least-cost path that starts at the depot and terminates at
customer i with a total load of g (this is called a g-path). This can be calculated using the
following recursion:

@17 fitg) = min | £,(q — di) + ¢,
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with the initial conditions

+0o0 otherwise.

Filg) = { coi ifg=d,

Finally, let fiO (¢9) = fi(g) + cig. Thus, fio(q) is the minimum reduced cost of a tour
that starts at the depot, visits a subset of the customers, of which customer i is the last to be
visited, and terminates at the depot with total load g. Observe that finding f(q) for every
q,1<qg <C,everyi,i € V, requires O (n*C) calculations.

The recursion chooses the predecessor of i to be a node j # i. This requires repeat
visits to the same customer to be separated by at least one visit to another customer. In
fact, expanding the state space of this recursion can eliminate 2-loops: loops of the type
...i, j,i.... This forces repeat visits to the same customer to be separated by visits to at
least two other customers. According to the approach proposed by Christofides, Mingozzi,
and Toth [11], this is done as follows. Let p;(g) denote the predecessor of i in the path of
cost fi(g) fori € Vand 1 < g < C. Then define g;(g) as the cost of the least-cost path
from the depot to customer i € V with a total load of ¢ and not having p;(g) as the last
customer visited before i. Then, we have (foralli € Vand 1 < g < C)

fity =min ([ fiq —d) + ¢ 1 # pyla ~ )] [81a —d) + s 11 = p@) |}
and
gi(@) =min {[£,(q = d) +cyi i # p(q = d) and j # pi(a) .
[es@—dp+ejiti=pila—dyand j # p@]}.

Finally, let £(q) = fi(q) + cio and g](q) = gi(q) + cio. Note that f;(q) < gi(g) for
alli € Vand1 < g < C. This dynamic program can lead to a stronger relaxation of the
set-covering model with little extra computational effort. For a more detailed discussion
of this recursion and methods of efficient implementation, see Christofides, Mingozzi, and
Toth [11, 12] or Desrochers, Desrosiers, and Solomon [14].

The algorithm proceeds as follows. If there existsag, 1 < g < C,and ani € V with
£%gq) < 0, then we add the corresponding column to the set of columns in problem P/, .
If, on the other hand, fl.0 (¢) = 0O for every ¢ and i, then the current solution is the optimal
linear programming solution to P,,.

4.3.4 Solving Pp via Dual-Ascent and Branch-and-Bound

A different approach to this same set-covering model was developed by Hadjiconstantinou,
Christofides, and Mingozzi [18]. Instead of attacking the primal problem P, they devised
a branch-and-bound algorithm to solve the dual problem Pp,. The problem is solved us-
ing a dynamic programming heuristic in conjunction with a Lagrangian ascent procedure.
This produces strong lower bounds on the optimal solution value of the CVRP (the primal
problem) which are used in a branch-and-bound framework.

We first describe the lower bounding procedure. Let R; C R denote all feasible
routes that visit customeri € V. Forallr € R,let C, = } ;¢ d; denote the total load on
route r.
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THEOREM 4.3.1. Let ¢, denote a lower bound on route r € R. Then a lower bound on the
optimal solution value to the CVRP is given by

LB = d; min [&—]
£ reR; LC,
ieV
Proof. We define the following feasible dual solution (u1, #2, ..., u,, v) where {u;};cy are

the dual variable associated with constraints (4.3) and v is the dual variable associated with
constraint (4.4).
Foreachi e V, let

TS
u; = d; min [—]
reR,» Cr

and let v = 0. We show that (i, u, ..., u,, v) is feasible for Pp. This is clear since, for
any route r € R, we have

Ed > dm1n—> dmm—_gu,—l-v 0
LeR; LeR;
ies, ieS, ieS, ieS,

For each i € V and each d; < ¢ < C define the set R,(g) as those routes of R; that
have total load exactly g. Then the set R; can be decomposed as follows:

Ri =Ri(d) URi(di + DU --- UR;(O).

It is clear that
. [Qr] . [ . [Qr]}
min | == | = min min | = |t.
reR; LC, di<q<C lLreRiq) L g

If we denote ¢;, = min,eg, ) {c,}, then the lower bound can be rewritten

C.
4.18) LB=Y"d min [ﬂ]
< di=g<CL q

4.3.4.1 Computation of Bounds

Several lower bounds (c; q) can be computed to evaluate (4.18).

The bounds calculated in section 4.3.3, namely, fi(q) (evaluated using ¢;; = #;,
i,j e VY foreachi € V andd;, < g < C can be used in (4.18) since f;(q) < ¢, for all
r € Ri(q).

Building on the definitions of f;(g), g;(¢), and p;(g) in section 4.3.3 (evaluated with
cij =t foralli, j € V°) we can determine another bound. For this purpose, define v;(g)
as the cost of the least-cost route without 2-loops, starting at the depot, passing through
customer i, and ending at the depot with total load g. Such a route is called a through
q-route. The route defining 1;(g) can be calculated as follows:

filgh+ filg+di —q)  if pilg) # pilg +di — ¢),
Vi(q) = mm+ min{f;(q") + gi(q +di — q"),
di<q' =T gi{q) + fi(qg +di — g")} otherwise.
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Now /;(g) can be used as a lower bound on ; p in (4.18). Formally, the lower bound LB1
is

. [¥i(@
(4.19) LB1=Y 4, ., min_ [—q]

ieV 9

4.3.4.2 Ascent Procedure

The lower bound LB1 can be improved by observing the following. Consider each of the
n routes, one for cach i € V, achieving the minimums in (4.19). Define d so that the route
corresponding to i € V has cost ¥;(d). Let this route be r}. If we superimpose these
routes, the degree of each node will be even (and at least two). Let §; denote the degree of
customer i with respect to route 7. Then calculate the weighted degree of node i as

- d
Di=255-é.

jev

If D; = 2foralli € V, then the solution represented by U;r} is a feasible solution
to the CVRP; otherwise, we can apply the following penalty procedure to improve the
bound LB1. Let A = (A, Az,..., ;) denote penalties on the nodes. Redefine the cost
matrix so that cl’-j =c¢j+M+A;foreachi,j € VO, The functions f;(g), gi(g), and
¥;(g) can be recalculated using c; o resulting in a new bound L B1(}). The optimal CVRP
solution is unaffected by this penalty vector, since it adds only a constantterm2 )", _, A; to
the objective. Now L B1(1) can be maximized using a standard subgradient optimization
procedure. See Hadjiconstantinou, Christofides, and Mingozzi [18] for details. At the
conclusion of this subgradient procedure, a feasible dual solution with value close to the
optimal is generated; this is a lower bound on the optimal solution value of the CVRP.

Hadjiconstantinou, Christofides, and Mingozzi [18] developed another lower bound-
ing method based on determining the k-shortest paths between the depot and node i € V.
These two bounds are used to bound the objective function in a branch-and-bound tree. For
details see Hadjiconstantinou, Christofides, and Mingozzi [18].

4.4 Solving the Set-Covering Integer Program

In the previous section we introduced several methods for solving a linear relaxation of the
set-covering formulation of the CVRP, problem P, or in the case of section 4.3.4, the dual
Pp. The linear relaxation of problem P is likely to be fractional and therefore there is still
the problem of finding an integer solution. In this section, we describe a number of ways to
use the current set of columns to generate an optimal or a near-optimal integer solution.
We consider two general approaches and then give some additional comments on
various computational aspects of this problem. The first, a cutting plane method, does not
generate any additional columns from this point on. It therefore solves the integer program
defined only on the current set of columns. This method is not guaranteed to generate
the optimal solution to P since there may be columns in the optimal integer solution that
have not yet been generated. In practice, this solution is probably close to the optimal one,
and in any case, any integer solution will come with a worst-case bound on its relative
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error (because of the lower bound provided by the optimal solution value of the linear
programming relaxation). The second method, branch-and-price, generates new columns
during its search and therefore solves problem P exactly (this is the method of Desrochers,
Desrosiers, and Solomon [14]). That is, it solves the integer program over the entire set of
columns R without necessarily generating all of the feasible routes in the set. Branch-and-
price is generally more complicated since it may require incorporating information about
the branch-and-bound search within the column generation problem.

If an upper bound on the optimal integer solution value is known, then the following
preprocessing step should be performed. Let Zyg denote the value of the upper bound, and
let Z; 5 denote the value of a lower bound (either Z'* or a lower bound on it). Then any
column (route) with reduced cost not smaller than Zyg — Z; g can be immediately eliminated
from the model.

4.4.1 A Cutting Plane Method

A computationally attractive approach for solving the CVRP using only the current set of
columns is a method called the cutting plane approach. Given a fractional solution to P, we
can generate a set of constraints that will cut off this fractional solution. After adding these
constraints to the formulation, we can resolve the linear program, and if it is integer, we have
found the optimal integer solution (among the columns R'). If it is still fractional, then we
continue generating constraints and resolving the linear program until an integer solution is
possibly found. Additionally, one can implement this strategy within a branch-and-bound
framework. Typically, this is called branch-and-cut. This method was successfully used
by Padberg and Rinaldi [23] to solve the TSP and by Hoffman and Padberg [21] to solve
crew-scheduling problems.

Again, the best integer solution found using this method should be close to optimal,
and in any case a bound on the relative error is readily obtainable.

Cutting Plane Algorithm

Step 1. Generate an initial set R’ of columns.

Step 2. Solve, using column generation, problem P’ (i.e., the linear
programming relaxation of P).

Step 3. If the optimal solution to problem P’ is integer, stop.
Else, generate cutting planes separating this fractional solution.
Add these cutting planes to the linear program P’.

Step 4. Solve the linear program P’. Goto Step 3.

The key to success of this method is to be able to efficiently generate constraints
that will separate a fractional solution from all integer solutions (Step 3). We describe two
specific kinds of constraints and demonstrate how they can be efficiently identified. Let R’
be the set of routes at the end of the column generation procedure. To generate constraints,
construct the intersection graph G. The graph G has a node for each column in R'. Two
nodes in G are connected by an undirected edge if the corresponding columns have at least
one customer in common. Observe that a solution to the CVRP where no customer is visited
more than once can be represented by an independent set in this graph. An independent set
is a collection of nodes of G such that no two nodes are connected by an edge.



98 Chapter 4. Set-Covering-Based Algorithms for the Capacitated VRP

This observation gives rise to two simple inequalities that can be added to the for-
mulation. In what follows, let y denote the (fractional) optimal solution to the current
formulation.

4.4.1.1 Clique Constraints

Select a subset of the nodes of G, say, H, such that every pair of nodes i, j € H is connected
by an edge of G. Each set H, called a clique, must satisfy the following condition:

(4.20) > w =L

reH

Clearly, if there is anode j ¢ H such that j is adjacent to every i € H, then we can replace
H with H U {j} in inequality (4.20) to strengthen it (this is called lifting). In that sense, we
would like to use inequality (4.20) when the set of nodes H is maximal.

Hoffman and Padberg [21] suggested several procedures for clique identification, one
of which is based on the fact that small-size cliques can be found quickly by enumeration.
For this purpose, select v to be the node with minimum degree among all nodes of G.
Clearly, every clique of G containing v is a subset of the neighbors of v, denoted by T (v).
Thus, starting with v as the current clique, that is, H = {v}, we add an arbitrary node w
from T (v) to H. We now delete from 7'(v) all nodes that are not connected to w. Continue
adding nodes in this manner from the current set 7'(v) to H until either there is no node in
T (v) connected to all nodes in H, or T (v) = @. In the end, H will be a maximal clique.
We then can calculate the weighr of this clique, that is, the sum of the values y, of the
columns in the clique. If the weight is more than 1, then the corresponding clique inequality
is violated. If not, then we continue the procedure with a new starting node. The method
can be improved computationally by, for example, always choosing the heaviest node (the
one where y, is the largest) among those nodes eligible to enter the clique.

4.4.1.2 Odd Hole Constraints

Define a cycle H = {uy, us, ..., u,} in G, such that node u; is adjacent to u;4,, for each
i=1,2,...,2—1,and node u, is adjacent to node u,. A cycle H is called an odd cycle if
the number of nodes in H, |H| = £, is odd. An odd cycle is called an odd hole if there is
no edge connecting two nodes of the cycle except the £ edges defining the cycle. It is easy
to see that in any optimal solution to the CVRP each odd hole must satisfy the following

property:
H} -1
@21) Yos<Hol

2
reH

Hoffman and Padberg used the following procedure to identify violated odd hole
constraints. Starting from an arbitrary node v € G, construct a layered graph G,(v) as
follows. The node set of G.(v) is the same as the node set of . Every neighbor of v in G is
connected to v by an edge in G,(v). We refer to v as the root, or level 0 node, and we refer
to the neighbors of v as level 1 nodes. Similarly, nodes at level k > 2 are those nodes in G
that are connected (in G) to a level £ — 1 node but are not connected to any node at level <
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k — 1. Finally, each edge (u;, u;) in G,(v) is assigned a lengthof 1 — y, — ¥, > 0. Now
pick anode u in G¢(v) at level k > 2 and find the shortest path from u to v in G,(v). Delete
all nodes at levels i (1 < i < k) that are either on the shortest path or adjacent to nodes
along this shortest path (other than nodes that are adjacent to v). Now pick another node w
that is adjacent (in G) to u in level k. Find the shortest path from w to v in the current graph
G¢(v). Combining these two paths with the edge (1, w) creates an odd hole. If the total
length of this cycle is less than 1, then we have found a violated odd hole inequality. If not,
we continue with another neighbor of « and repeat the process. We can then choose a node
different from u at level k. If no violated odd hole inequality is found at level k, we proceed
to level k£ + 1. This subroutine can be repeated for different starting nodes (v) as well.

4.4.1.3 Branching Strategies

Another method with which to find the best integer solution among the set of columns R’
is the branch-and-cut method. This method consists of splitting the problem into easier
subproblems by fixing the value of a certain branching variable. In this case, a suitable
choice is y, for some route r. The branching variable is set to 1 in one branch of the tree and
0 in the other. To each of these subproblems, independently, are added a series of constraints
(cuts) strengthening the linear programming formulation. These constraints can be along
the same lines as those discussed in section 4.4.1.

Exact branching and cutting strategies together with a column generation scheme are
easily defined if the CVRP (or VRPTW) is first modeled as a multicommodity flow problem
and then decomposed using the Dantzig—Wolfe approach. Therefore, many decisions can
be taken on the flow variables or on a combination of these. See Chapters 3 and 7, where
many suggestions are provided.

4.4.2 Branch-and-Price

The methods described in the previous section enable us to solve the CVRP on the restricted
set of columns: those generated in the process of solving the linear programming relaxation
of P. If true optimality of the integer solution is sought (as opposed to a solution that might
be very close to optimal), then solving the integer program over all columns of R is much
more difficult.

In this case, we describe a branch-and-bound procedure where additional columns
are generated at each node of the branch-and-bound tree. We describe here the approach
of Desrochers, Desrosiers, and Solomon [14] for the VRPTW. The main difficulty with the
approach described here is that it must be possible to incorporate information about the node
of the branch-and-bound tree in the column-generation procedure. For instance, assume we
branch on variables y, as described in the previous section. It is simple to incorporate the
information that y, = 1 for a particular route » (in one branch of the tree) in the column
generation procedure. This is done by simply omitting the nodes of S, from the column
generation procedure. However, it is not clear how to incorporate the information that y, = 0
into the dynamic programming procedure. Typically, an approach based on expanding the
state space will not be computationally attractive. Therefore Desrochers, Desrosiers, and
Solomon do not branch on these variables.
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Desrochers, Desrosiers, and Solomon branch on the edge variables, i.e., whether an
edge (i, j) is used or not used by some route in the integer optimal solution. If we signify this
branching variable by x;; = 0 or 1, let us consider how this affects the column generation
problem CG in each branch of the tree. The information in the branch with x;; = 1 can be
incorporated into the column-generation step by setting c;; = —o¢ in the dynamic program
described in section 4.3.3, forcing the minimum cost route to use edge (i, j). For the other
branch (x;; = 0) we set c;; = 400 so that the edge (i, j) is never used in a generated route.

4.4.3 Additional Comments on Computational Approaches

We note that developing a successful algorithm to solve a set-covering problem using column
generation requires quite a bit of computational testing. In particular, there are a number of
tricks to reduce computational time and manage the computer’s memory (e.g., generating
new columns, throwing away columns that have not been basic in a number of iterations).

In general, to get good integer solutions, it is more important to generate new columns,
even heuristically, at all or several nodes of the branch-and-bound tree, than to spend time
designing complex branching and cutting plane strategies. If optimal or near-optimal com-
patible columns are not present, it is useless to work hard on these strategies (even if the
lower bound, computed by using only the columns selected in the optimal basis, is very
good).

Finally, we suggest another computational trick to more effectively generate columns
that are disjoint, collectively exhaustive, and of minimal cost. Cutting planes are used only
temporarily to fix columns at value 1. Each time this happens, already-generated cutting
planes are removed and new columns are generated on the residual problem (the problem
consisting of the customers not served by routes fixed to 1). The lower bound on this residual
problem might improve, but much more important, the “missing” columns may now appear
to complete the big puzzle into an integer solution.

4.5 Computational Results

We report here some computational results on each of the approaches we have described. The
results for the CVRP of Agarwal, Mathur, and Salkin [1], Bixby [5], and Hadjiconstantinou,
Christofides, and Mingozzi [18] are on the standard test problems of Christofides, Mingozzi,
and Toth [11]. The results of Desrochers, Desrosiers, and Solomon [14] on the VRPTW are
on the standard test problems of Solomon [26]. (For further details and results on VRPTW,
see Chapter 7.)

In Tables 4.1, 4.2, and 4.3, we list the problem name and number of customers, the
value of the lower bound (Z'F), and the value of the upper bound ZYB provided by the
particular method used in the paper. The optimal integer solution to the routing problem is
denoted Z* where applicable. The effectiveness of the lower bound is therefore defined as
100(Z1B /ZUB) or 100(Z'®/ Z*), depending on whether an optimal solution to the problem
is known.

As one can see, almost uniformly across all cases, the lower bound provided by the
linear programming relaxation of the set-covering formulation is “very strong.” In addition,
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Table 4.1. Results of Agarwal, Mathur, and Salkin [1].

Effectiveness
Problem n ZY ZUB  of lower bound
E016-03m 15 268 276 97.1%
E016-05m 15 326 332 98.2%
E021-04m 20 351 358 98.0%
E021-06m 20 430 430 100.0%
E022-04g 21 374 375 99.7%
E022-06m 21 479 494 97.0%
E026-08m 25 606 607 99.8%

Table 4.2. Results of Bixby [5].

Effectiveness
Problem n ZY  ZUB  of lower bound
S007-02a 6 114 114 100.0%
S013-044 12 279 290 96.2%
E021-06m 20 430 430 100.0%
E022-04g 21 375 375 100.0%
E023-03g 22 566 569 99.5%
E030-04s 29 503 503 100.0%
E051-05e 50 518 521 99.4%

Table 4.3. Results of Hadjiconstantinou, Christofides, and Mingozzi [18].

Best available  Effectiveness

Problem n Z upper bound  of lower bound
E016-05m 15 326.92 334.96 97.6%
E021-06m 20 430.88 430.88 100.0%
E026-08m 25 621.73 621.73 100.0%
E031-09h 30 597.18 610.10 97.9%
E036-11h 35 694.89 698.60 99.5%
E041-14h 40 852.24 861.79 98.9%
E051-05e 50 516.51 524.61 98.5%
E076-10e 75 815.31 835.26 97.6%
E101-08e 100 792.42 826.14 95.9%
E151-12c¢ 150 1000.07 1028.42 97.2%

Note: The lower bound here is not Z'F.
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Table 4.4. A Sample of Results from Desrochers, Desrosiers, and Solomon [14].

Effectiveness
Problem n ZY Z*  of lower bound
R103 25 4546 4546 100.0%

R107 50 7032 7111 98.9%
R108 25 3962 3972 99.8%
R110 50 6924 697.0 99.3%

c101 100 827.3 8273 100.0%
C103 50 3614 3614 100.0%
Cl106 100 827.3 8273 100.0%
c107 100 8273 8273 100.0%

RC103 25 3321 3328 99.8%
RC104 25 3059 306.6 99.8%
RC105 25 411.0 4113 99.9%
RC108 25 2803 2945 95.2%

the upper bounds are also very close to the lower bound and therefore very close to the
optimal value.

The problems given in Table 4.4 are for a randomly selected sample of the problems
that were solved to optimality by Desrochers, Desrosiers, and Solomon [14]. This list
therefore represents those problems that are more likely to have an effective lower bound.
However, it is clear that the lower bound is most likely very strong for a large class of
problems. In the next section, we consider the theoretical question of why the bound is so
effective.

4.6 Effectiveness of the Set-Covering Formulation

We now analyze the strength of the linear programming relaxation of problem P. The ef-
fectiveness of the above approaches depends critically on the so-called integrality gap: the
difference between the values of the optimal integer solution and the optimal solution to
the linear relaxation of problem P. If the lower bound provided by the linear programming
relaxation is not very tight (i.e., the gap is large), then the methods described most likely will
not be computationally effective. On the other hand, when the gap is small, the procedures
are likely to be effective.

Fortunately, many researchers have reported that the linear relaxation of the set-
covering problem P provides an optimal solution value very close to the optimal integer
solution value. Evidence of this can be found in Desrochers, Desrosiers, and Solomon
[14] for the case of the VRPTW and Hoffman and Padberg [21] for crew-scheduling prob-
lems. That is, the solution to the linear relaxation of problem P provides a very tight lower
bound on the integer programming solution value. For instance, in their paper, Desrochers,
Desrosiers, and Solomon reported an average relative gap between the optimal solution
value to the linear relaxation and the optimal integer solution value of only 0.733%.

We cite results concerning the gap’s size measured by using both worst-case and
average-case criteria. In particular, the average-case analysis shows that, asymptotically,
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the relative error between the optimal solution value to the linear relaxation of P and the
optimal integer solution value tends to zero as the number of customers increases.

4.6.1 Worst-Case Analysis

Itis interesting to characterize the largest possible value of the ratio Z*/Z*. A simple bound
can be constructed using the Iterated Tour Partitioning (ITP) heuristic (see Haimovich and
Rinnooy Kan {19] or Altinkemer and Gavish [2]). For the equal demand case (d; = 1 for
all i € V), we get (see Altinkemer and Gavish [2])

2 1
7% < ZITPh o = ,i+(1_—)L* VY,
< ‘Cgo )LV

where L*(V?) is the length of the optimal traveling salesman tour through V and the depot.
It is easy to show that Z* > 23" . £, /C. Using Held and Karp’s lower bound [20], one
can show that

L*(v()) S %ZLP,

thus giving the 2.5 bound. For the general demand case, following this same line of reasoning
it is possible to show that Z*/Z < 3.5. It is not known if these bounds are tight.

Worst-case analyses of the set-covering model for a special case of the CVRP were
performed in Chan, Simchi-Levi, and Bramel [10]. They looked at the Bin Packing Problem
(BPP), which can be viewed as a CVRP where all the customers are at the same location at
a fixed (nonzero) distance from the depot. Chan, Simchi-Levi, and Bramel showed that for
the BPP, Z*/[Z'F] < 4/3, and they provided an example achieving this bound. Therefore,
if this special case is any indication, the lower bound provided by the optimal solution to
the linear programming relaxation of the set-covering problem is strong indeed. That is, the
lower bound is at least 75% of the value of the optimal integer solution.

4.6.2 Average-Case Analysis

We now present a probabilistic analysis of this model. A similar analysis was performed
for the VRPTW, resulting in similar conclusions, by Bramel and Simchi-Levi [8]. Here we
perform this same analysis for the CVRP.

To present the analysis, we assume the customers are dispersed in the Euclidean
plane, specifically, customer i € V is located at x; € R2. We assume, without loss of
generality, that the depot is at the origin, and we denote by | x| the Euclidean distance
between point x € R? and the depot. We also scale the vehicle capacity to 1 and therefore
assume d; € (0, 1] foreachi € V. We assume, for the purposes of simplifying the analysis,
that the fleet size is not limited.

Consider the n customer locations to be independently distributed according to a
distribution 0 with compact support in R2. Let the customer demands {d; : i € V} be
drawn from a distribution ® with density ¢ which is assumed to be Lipschitz continuous of
order ¢ > 1 on [0, 1]. (For x ¢ [0, 1], ¢(x) = 0.) A function ¢ is Lipschitz continuous of
order ¢ on § if there exists an H such that

lp(x) — ¢ < H|x — y|*, x,y€S.
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This implies in particular the existence of a constant Hy such that ¢(x) < Hy for all
x € [0, 11. Finally, we assume that a customer’s location and its load are independent of
each other.

THEOREM 4.6.1. Let the customer locations x|, Xy, . . ., X, be a sequence of independent
random variables having a distribution (1 with compact support in R2. Let the customer
demands be independently and identically distributed like ®. Let Z'® be the value of the
optimal fractional solution to P, and let Z* be the value of the optimal integer solution to P,
that is, the value of the optimal solution to the CVRP. Then

lim lZLP = lim lZ* almost surely.
n—>oo R n—»oon
It is interesting to note that the value of these limits is also known. Bramel et al. [7]
showed that as the number of customers increases, the quantity Z* /n tends almost surely to
2yE[d], where E[d] is simply the customer’s expected distance to the depot and y is the bin
packing constant associated with &. The bin packing constant is defined as follows. Let &}
denote the number of bins required to pack » items drawn from &. Then y = lim,,_, b}/n,
andnote that y € [0, 1]. The value 1/y can be interpreted as the asymptotic average number
of items per bin in an optimal solution.
The result described in Theorem 4.6.1 says that almost surely <(Z* — Z'P) — 0 as
n — oc. It is also important in results of this type to characterize the rate of convergence
of this quantity to zero.

4.6.2.1 Motivation

We do not present a proof of Theorem 4.6.1. For that, we refer the reader to Bramel and
Simchi-Levi {9]. However, we do provide a simplified analysis that gives some insight
into why Theorem 4.6.1 holds. To do this we consider a simpler discrete vehicle routing
model, defined as follows. Define a customer type to be a location x € R? and demand
w € [0, 1]. That is, two customers of the same type are located at the same location and
have identical customer demands. Consider a discretized vehicle routing model in which
there is a finite number, W, of possible customer types. In a particular instance, let n; be
the number of customers of type i fori = 1,2,..., W, and letn = Z:L n; be the total
number of customers. Clearly, this discretized CVRP can be solved by formulating it as a
set covering problem.

Let a vehicle assignment be a vector (ay, as, . .., aw), Where a; > O are integers, such
that a single vehicle can feasibly serve a; customers of type i foreachi = 1, 2, ..., W, with-
out violating the capacity constraint. Index all the possible vehicle assignments 1, 2, ..., R’
and let ¢, be the total length of the shortest feasible route serving the customers in vehicle
assignment . (Note R’ is independent of n.) The CVRP can be formulated as follows. Let

a;, = number of customers of type i in vehicle assignment »
foreachi =1,2,..., Wandr =1,2,..., R Let

v, = number of times vehicle assignment r is used in the optimal solution.
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Then problem P, is

P
(Ps) min ) ¢y,
r=1
subject to

®
E a; yr > ny, i=12, ..., W,
r=1

vy, €{0,1), r=12...,R.

Let Z} be the optimal solution value of P,; and let ZLF be the optimal solution value to its
linear relaxation. Clearly, we can also formulate this discrete problem as an instance of
problem P. If we compare the solution to P, and to P we see that problems P and P; must
have the same optimal solution values, i.e., Z* = Z}. Observe that a feasible solution to
the linear programming relaxation of P can be used to construct a feasible solution to the
linear programming relaxation of P,, and therefore

(4.22) 7IF < 7.

Define ¢ = max,_ - g{c-}, i.., ¢ is the length of the longest route among the R’
vehicle assignments. Then, we have the following lemma.

LEMMA 4.6.2.

7W < z7r < 2P 4 we < 2 +we

Proof. The left-most inequality is trivial while the right-most inequality is due to (4.22). To
prove the central inequality, note that in P, there are W constraints (one for each customer
type). Let . forr = 1,2, ..., R’ be an optimal solution to the linear programming relax-
ation of P, and observe that there exists such an optimal solution with at most W positive
variables, one for each constraint. We construct a feasible solution to P, by rounding the
linear programming solution up; that is, for each r = 1,2, ..., R’ with y, > 0 we make
y» = land foreachr = 1,2,..., R’ with j, = 0 we make y, = 0. The increase in the
objective function is therefore at most W times the largest possible cost of a route, c. O

Observe that the upper bound on Z* obtained in Lemma 4.6.2 consists of two terms.
The first, Z'*, is a lower bound on Z*, which clearly grows with the number of customers,
n. The second term (W¢) is the product of two numbers that are fixed and independent of n.
Therefore, the upper bound on Z* of Lemma 4.6.2 is dominated by Z'*, and consequently
we see that for large n, Z* ~ Z'P, exactly what is implied by Theorem 4.6.1. Indeed,
much of the proof of Theorem 4.6.1 is concerned with approximating the distributions u
and ¢ with discrete distributions and forcing the number of different customer types to be
independent of n.

We now outline the main steps in the proof of Theorem 4.6.1. It is clear that Z'F < Z*
and therefore, almost surely, lim,, , }I(Z* — Z'"®) > 0. The interesting part is to find an
upper bound on Z* that involves Z"* and shows that lim,,_, ., %(Z* — Z'Py < 0, almost
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surely. We do this in essentially the same way as before. To mimic that approach, we
introduce a series of discretizations of the customer parameter distributions. We discretize
the customer locations using a grid of squares. Each customer is then moved to the center
of the square in which it is located. We do the same with the customer demands: we
select a unit and round each customer demand to a multiple of this unit. The proof then
proceeds to show the following. For the purposes of this discussion, let ZP and Z* denote
the optimal linear relaxation value and the optimal integer solution value, respectively, of
the set-covering formulation of the discretized vehicle routing problem. Under specific
rounding schemes, as the discretization becomes finer,

« the relative difference between Z* and Z* decreases,
» the relative difference between ZLP and Z'P decreases, and
o the relative difference between Z* and Z'* decreases (as in the motivation above).

One can see then how the result follows from these points. Proving these results is rather
involved and we therefore do not go through the details here (the interested reader can see
Bramel and Simchi-Levi [9]). We note that a byproduct of the analysis is a bound on the
rate of convergence which is O(n*°). That is, E[Z*] = E[ZF] + O(n%/3).
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Chapter 5

Classical Heuristics for the
Capacitated VRP

Gilbert Laporte
Frédéric Semet

5.1 Introduction

Several families of heuristics have been proposed for the VRP. These can be broadly classi-
fied into two main classes: classical heuristics, developed mostly between 1960 and 1990,
and metaheuristics, whose growth has occurred in the last decade. Most standard construc-
tion and improvement procedures in use today belong to the first class. These methods
perform a relatively limited exploration of the search space and typically produce good
quality solutions within modest computing times. Moreover, most of them can be casily
extended to account for the diversity of constraints encountered in real-life contexts. There-
fore, they are still widely used in commercial packages. In metaheuristics, the emphasis
is on performing a deep exploration of the most promising regions of the solution space.
These methods typically combine sophisticated neighborhood search rules, memory struc-
tures, and recombinations of solutions. The quality of solutions produced by these methods
is much higher than that obtained by classical heuristics, but the price to pay is increased
computing time. Moreover, the procedures usually are context dependent and require finely
tuned parameters, which may make their extension to other situations difficult. In a sense,
metaheuristics are no more than sophisticated improvement procedures, and they can simply
be viewed as natural enhancements of classical heuristics. However, because they make
use of several new concepts not present in classical methods, they are covered separately,
in Chapter 6.

Classical VRP heuristics can be broadly classified into three categories. Constructive
heuristics gradually build a feasible solution while keeping an eye on solution cost, but
they do not contain an improvement phase per se. In two-phase heuristics, the problem is
decomposed into its two natural components, clustering of vertices into feasible routes and

109
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actual route construction, with possible feedback loops between the two stages. Two-phase
heuristics are divided into two classes: cluster-first, route-second methods and route-first,
cluster-second methods. In the first case, vertices are first organized into feasible clusters,
and a vehicle route is constructed for each of them. In the second case, a tour is first built on
all vertices and is then segmented into feasible vehicle routes. Finally, improvement meth-
ods attempt to upgrade any feasible solution by performing a sequence of edge or vertex
exchanges within or between vehicle routes. These three classes of methods are covered
in the next three sections, respectively. The distinction between constructive and improve-
ments methods, however, is often blurred since most constructive algorithms incorporate
improvements steps (typically 3-opt (Lin [26])) at various stages. Since the number of avail-
able methods and variants is very large, we concentrate on the truly classical heuristics and
enhancements, leaving some variants aside. For additional readings on classical heuristics
for the VRP, see Christofides, Mingozzi, and Toth [10], Bodin et al. [6], Christofides [9],
Golden and Assad [21], and Fisher [16].

Most of the heuristics developed for the VRP apply directly to capacity constrained
problems (CVRPs) and normally can be extended to the case where an upper bound is also
imposed on the length of any vehicle route (DCVRPs), even if this is not always explicitly
mentioned in the algorithm description. Most heuristics work with an unspecified number
K of vehicles, but there are some exceptions to this rule. This is clarified for each case. The
distance matrix used in the various heuristics described in this chapter can be symmetric or
not, but very little computational experience has been reported for the asymmetric case. One
important exception is Vigo [44]. A few methods have been designed for planar problems.

5.2 Constructive Methods

Two main techniques are used for constructing VRP solutions: merging existing routes using
a savings criterion, and gradually assigning vertices to vehicle routes using an insertion cost.

5.2.1 Clarke and Wright Savings Algorithm

The Clarke and Wright [11] algorithm is perhaps the most widely known heuristic for the
VRP. It is based on the notion of savings. When two routes (0, ...,i,0) and (0, j, ..., 0)
can feasibly be merged into a single route (0, ...,1%, j,...,0), a distance saving s5;; =
cio + coj — ¢;j is generated. This algorithm naturally applies to problems for which the
number of vehicles is a decision variable, and it works equally well for directed or undirected
problems, but Vigo [44] reports that the behavior of the method worsens considerably in the
directed case, although the number of potential route merges is then halved. A parallel and
a sequential version of the algorithm are available. The algorithm works as follows.

Step 1 (savings computation). Compute the savings s;; = cjo+co; —¢;; fori, j=1,...,n
and i # j. Create n vehicle routes (0,7, 0) fori = 1, ..., n. Order the savings in a nonin-
creasing fashion.

Parallel version
Step 2 (best feasible merge). Starting from the top of the savings list, execute the following.
Given a saving s;;, determine whether there exist two routes, one containing arc or edge
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(0, j) and the other containing arc or edge (i, 0), that can feasibly be merged. If so, combine
these two routes by deleting (0, j) and (7, 0) and introducing (i, j).

Sequential version

Step 2 (route extension). Consider in turn each route (0, i, ..., j, 0). Determine the first
saving 5y or s;¢ that can feasibly be used to merge the current route with another route
containing arc or edge (k, 0) or containing arc or edge (0, £). Implement the merge and
repeat this operation to the current route. If no feasible merge exists, consider the next route
and reapply the same operations. Stop when no route merge is feasible.

There is great variability in the numerical results reported for the savings heuristics,
and authors often do not mention whether the parallel or the sequential version is considered.
In Table 5.1, we compare these two versions on the 14 symmetric instances of Christofides,
Mingozzi, and Toth [10], using real distances. These results indicate that the parallel version
of the savings method clearly dominates the sequential one. Computing times on a Sun
Ultrasparc 10 workstation (42 Mflops) are typically less than 0.2 second.

5.2.2 Enhancements of the Clarke and Wright Algorithm

One drawback of the original Clarke and Wright algorithm is that it tends to produce good
routes at the beginning but less interesting routes toward the end, including some circum-
ferential routes. To remedy this, Gaskell [19] and Yellow [48] proposed generalized savings
of the form s;; = c;0 + co; — Ac;j, where A is a route shape parameter. The larger the A,

Table 5.1. Computational comparison of two implementations of the Clarke and Wright
algorithm.

Best known
Problem Sequential  Parallel  solution value

E051-05e 625.56 584.64 524.61!
E076-10e  1005.25 900.26 835.26!
E101-08e 082.48 886.83 826.14!
E101-10c 939.99 833.51 819.56!
E121-07c 129133  1071.07 1042.11!
E151-12c  1299.39 113343 1028.42!
E200-17¢ 1708.00 1395.74 1291.45!
D051-06¢C 670.01 618.40 555.431
D076-11c 989.42 975.46 909.68!
D101-0%c 1054.70 973.94 865.94!
D101-11c 952.53 875.75 866.37!
D121-11c¢ 1646.60 1596.72 1541.14%
D151-14¢ 1383.87 1287.64 1162.55%
D200-18c  1671.29  1538.66 1395.85!
!Taillard [41].

2Rochat and Taillard [37].
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the more emphasis is put on the distance between the vertices to be connected. Golden,
Magnanti, and Nguyen [22] report that using A = 0.4 or 1.0 yields good solutions, taking
into account the number of routes and the total length of the solution.

The Clarke and Wright algorithm can also be time consuming since all savings must
be computed, stored, and sorted. Various enhancements have been proposed by a number of
authors to speed up computations and to reduce memory requirements. Most of this work
took place in the 1970s and at the early 1980s, when researchers worked with computers
much less powerful than current workstations. Instances involving 200 to 600 vertices
could take from 25 to 300 seconds on an IBM 4341 computer, using a straightforward
implementation of the parallel savings method (Nelson et al. [30]). Now, a 200-vertex
instance can be solved in 0.3 second on a Sun Ultrasparc 10 workstation with the same kind
of implementation. Therefore, these enhancements are useful only for very large instances
(more than 1000 vertices). When implementing the savings heuristic, two main issues must
be addressed: determination of the maximum saving value and storage requirements.

Computing the maximum saving value is the most time consuming part of the al-
gorithm. Three approaches can be considered. The first uses a full sort (e.g., quicksort)
implemented in a straightforward manner. The second approach is an iterative limited sort
that can be performed by means of a heap structure (Golden, Magnanti, and Nguyen [22]).
A heap is a binary tree where the savings are stored in a such way that the value of the
father node is always greater than or equal to that of the son nodes. When two routes are
merged, the heap is rebuilt efficiently to eliminate the saving associated with the selected
link and all savings corresponding to an interior vertex of a route. The third approach is
an iterative computation of the maximum saving value (Paessens [33]). Assuming that
distances are positive and that the triangle inequality holds, Paessens shows that 5;; > §
whenever ¢p; > 0.55 and ¢p; > 0.5%, where 5 is the current maximum saving value.
This necessary condition is then used to efficiently identify the larger saving values. The
three approaches have been implemented by Paessens. Numerical results are reported on
four instances with three different vehicle capacities. The iterative determination of the
maximum saving value tends to be the most efficient on the average. However, important
variations in the computing times can occur, depending on the vehicle capacity, which is
not the case when a complete sorting approach is used. To increase the savings method
performance in terms of computing time and memory requirements, some authors proposed
considering only a subset of all possible savings. Golden, Magnanti, and Nguyen [22]
suggested superimposing a grid over the network. The grid is divided into rectangles,
and all edges between vertices belonging to nonadjacent rectangles are eliminated with the
exception of the edges linking vertices to the depot. Savings are then computed on this sub-
network. Paessens [33] proposed disregarding edges with ¢;; > o maxXge(, . ) cox for some
constant «.

Nelson et al. [30] investigated more complex data structures based on heaps to limit
storage requirements and thus obtain more efficient updating operations. They presented
four different ways to use adjacency information to eliminate all edges associated with an
interior vertex. For noncomplete graphs, the most efficient implementation requires 7m+3n
storage locations, whereas the storage requirement is only 3m -+ 3n for complete graphs,
where m is the number of edges. This is achieved by using hashing functions to identify the
vertices associated with a given edge and to determine the location of all edges associated
with an interior vertex. The last implementation proposed uses several smaller heaps instead

.....
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of one large heap. Ata given step, the heap contains only savings associated with noninterior
vertices which exceed a threshold value. The heap is then processed until it is empty. A
new threshold value is finally selected and a new heap is constructed. This is repeated until
all edges have been considered. Numerical results show that the last implementation is
the best. Instances containing 1000 vertices typically can be solved in 180 seconds on an
IBM 4341 computer.

5.2.3 Matching-Based Savings Algorithms

Desrochers and Verhoog [12] and Altinkemer and Gavish [2] described an interesting
modification to the standard savings algorithm. The two algorithms are rather similar.
At each iteration the saving s,, obtained by merging routes p and g is computed as
Spg = t(Sp) +1(8y) — (S, U §,), where S; is the vertex set of route k and £(S;) is
the length of an optimal Traveling Salesman Problem (TSP) solution on ;. A max-weight
matching problem over the sets S; is solved using the s,, values as matching weights, and
the routes corresponding to optimal matchings are merged, provided feasibility is main-
tained. Several variants of this basic algorithm are possible, one of which approximates the
t(Sy) values instead of computing them exactly.

Another matching based approach is described by Wark and Holt [45]. These authors
used a matching algorithm to successively merge clusters, defined as ordered sets of vertices,
at their endpoints. Matching weights may be defined as ordinary savings, or these may be
modified to favor mergers of clusters whose total weight is far below vehicle capacity or
whose length is far below the allowed distance limit on a vehicle route. Starting with n
back and forth vehicle routes, the algorithm successively merges clusters. After a merge
is performed, only a few lines or columns of the savings matrix need be updated. If all
clusters are matched with themselves, then some of them are split with a given probability.
The process thus grows a tree of sets of clusters from which a best solution can be selected.

‘We compare these three matching-based algorithms in Table 5.2 on the 14 instances of
Christofides, Mingozzi, and Toth [10], and we also provide a comparison with the parallel
version of the Clarke and Wright heuristic. These results must be interpreted with care.
First, the rounding rules used for the ¢;; coefficients are not the same for all heuristics used
in the comparison. This rule is not reported for the Desrochers and Verhoog algorithm.
Altinkemer and Gavish round distances to the nearest integer. The Wark and Holt and best
known solutions are obtained with real distances. Also, the Altinkemer and Gavish results
are the best of approximately 40 runs, using several parameters and algorithmic rules. The
Wark and Holt results are the best of five runs. Computation times vary between 0.03 and
0.33 second on a Sun Ultrasparc 10 for the Clarke and Wright algorithm, and between
21.40 and 3087.73 seconds on an [BM 3083 for each round of the Altinkemer and Gavish
algorithm. Desrochers and Verhoog report average computing times between 38 and 3200
seconds on an unspecified machine. Each run of the Wark and Holt algorithm requires
on average between 4 and 107 minutes on a Sun 4/630MP. Despite the above remarks, it
can safely be said that the use of a matching-based algorithm yields better results than the
standard Clarke and Wright method, but at the expense of much higher computation time.
The Wark and Holt heuristic is clearly the best of the three matching-based methods in terms
of solution quality. Bold numbers in the table indicate that the algorithm has identified a
best known solution.
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Table 5.2. Computational comparison of four savings-based heuristics.

Clarke Desrochers Altinkemer Wark

and and and and Best known
Problem Wright!  Verhoog?® Gavish? Holt*  solution value
E051-05e 578.64 586 556 524.6 524.61°
E076~10e  900.26 885 855 835.8 835.26°
E101-08e 886.83 889 860 830.7 826.14°
E101-10c  833.51 828 834 819.6 819.56°
E121-07c 1071.07 1058 1047 1043.4 1042.11°
E151-12¢ 113343 1133 1085 1038.5 1028.42°
E200-17c 1395.74 1424 1351 1321.3 1291.45°
D051-06c  618.40 593 577 555.4 555.43°
D076-11c 97546 963 939 911.8 909.68°
D101-09¢ 973.94 914 913 878.0 865.94°
D101-11c 875.75 882 874 866.4 866.37°
D121-11c 1596.72 1562 1551 1548.3 1541.145
D151-14c 1287.64 1292 1210 1176.5 1162.555
D200-18c 1538.66 1559 1464 1418.3 1395.85°

!Parallel savings heuristic implemented by Laporte and Semet (Table 5.1).
2Desrochers and Verhoog [12].

3 Altinkemer and Gavish [2]. Best of approximately 40 versions.

4Wark and Holt [45]. Best of five runs.

STaillard [41].

SRochat and Taillard [37].

5.2.4 Sequential Insertion Heuristics

We now describe two representative algorithms based on sequential insertions. Both apply
to problems with an unspecified number of vehicles. The first, by Mole and Jameson [29],
expands one route at a time. The second, proposed by Christofides, Mingozzi, and Toth [10],
applies in turn sequential and parallel route construction procedures. Both methods contain
a 3-opt improvement phase.

5.2.4.1 Mole and Jameson Sequential Insertion Heuristic

The Mole and Jameson algorithm uses two parameters A and p to expand a route under
construction:

a(i, k, j) = ci + cj — Acij,
ﬁ(l! k’ .]) = HCok — a(i! k’ j)'

The algorithm can be described as follows.

Step 1 (emerging route initialization). If all vertices belong to a route, stop. Otherwise,
construct an emerging route (0, &, 0), where k is any unrouted vertex.

Step 2 (next vertex). Compute for each unrouted vertex k the feasible insertion cost
a* (i, k, jr) = min{a(r, k, s)} for all adjacent vertices r and s of the emerging route,
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where #; and j; are the two vertices yielding «*. If no insertion is feasible, go to Step 1.
Otherwise, the best vertex k&* to insert into the emerging route is the vertex yielding
B* (i, k*, jir) = max {(B8(y, k, ji)} over all unrouted vertices & that can feasibly be in-
serted. Insert k* between iy« and ji-.

Step 3 (route optimization). Optimize the current route by means of a 3-opt procedure
(Lin [26]), and go to Step 2.

Several standard insertion rules are governed by the two parameters A and p. For
example, if A = 1 and u = 0, the algorithm will insert the vertex yielding the minimum
extra distance. If . = u = 0, the vertex to be inserted will correspond to the smallest sum
of distances between two neighbors. If u = oc and A > 0, the vertex furthest from the
depot will be inserted.

5.2.4.2 Christofides, Mingozzi, and Toth Sequential Insertion Heuristic

Christofides, Mingozzi, and Toth [10] developed a somewhat more sophisticated two-phase
insertion heuristic that also uses two user-controlled parameters A and u.

Phase 1. Sequential route construction.

Step 1 (first route). Set a first route index & equal to 1.

Step 2 (insertion costs). Select any unrouted vertex iy to initialize route k. For every
unrouted vertex i, compute §; = cg; + AcCii, .

Step 3 (vertex insertion). Let §;» = min,es, {;}, where S; is the set of unrouted vertices
that can be feasibly inserted into route k. Insert vertex i* into route k. Optimize route k
using a 3-opt algorithm. Repeat Step 3 until no more vertices can be assigned to route .
Step 4 (next route). If all vertices have been inserted into routes, stop. Otherwise, set
k :=k 4 1 and go to Step 2.

Phase 2. Parallel route construction

Step 5 (route initializations). Initialize k routes R, = (0,i,,0) (t = 1, ..., k), where k is
the number of routes obtained at the end of Phase 1. Let J = {R,, ..., R}

Step 6 (association costs). For each vertex i not yet associated with a route and for each
feasible route R, € J, compute &, = co; + (ic;y;, and g,-; = min, {g,;}. Associate vertex i
with route R;- and repeat Step 6 until all vertices have been associated with a route.

Step 7 (insertion costs). Take any route R, € J and set J := J \ {R,}. For every vertex i
associated with route R,, compute &,; = ming s {&;} and 1; = &,; — ;.

Step 8 (vertex insertion). Insert into route R, vertex i* satisfying 1, = max;eg, {7;}, where
S; 1s the set of unrouted vertices associated with route R, that can feasibly be inserted into
route R,. Optimize route R, using a 3-opt algorithm. Repeat Step & until no more vertices
can be inserted into route R,.

Step 9 (termination check). If |J| # @, go to Step 6. Otherwise, if all vertices are routed,
stop. If unrouted vertices remain, create new routes starting with Step 1 of Phase 1.

Comparisons between these two constructive algorithms were performed by
Christofides, Mingozzi, and Toth [10] on their 14 standard benchmark instances. Results
are presented in Table 5.3. This comparison indicates that the sequential insertion heuris-
tic of Christofides, Mingozzi, and Toth [10] (CMT in the table) is superior to the Mole
and Jameson algorithm. It yields better solutions in less computing time. It is also better
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Table 5.3. Computational comparison of two sequential insertion heuristics.

Mole and CMT
Jameson! Two-Phase? Best known
Problem f* Time* f* Time® solution value

E051-05e 575 50 547 2.5 524.614
E076-10e 910 110 883 4.2 835.264
E101-08e 882 36.0 851 9.7 826.14*
E101-10c 879 372 827 6.4 819.56*
E121-07c¢c 1100 68.9 1066 113 1042.11%
E151-12c 1259 7.7 1093 118 1088.424
E200-17¢ 1545 119.6 1418 16.7 1291454
D051-06c 599 51 565 26 555.43%
D076-11lc 969  10.1 969 4.4 909.634
D101-09c 999 28.6 915 7.0 . 865.94%
D101-11lc 883 35.3 876 6.3 866.374
Di121-11c 1590 54.3 1612 8.7 1541.14°
D151-14c¢ 1289 63.6 1245 10.1 1162.55°
D200-18c 1770 110.0 1508 15.8 1395.854

IResults were obtained by Christofides, Mingozzi, and Toth [10], except for the
first three instances which were solved by Mole and Jameson [29].

2Christofides, Mingozzi, and Toth [10].
3Seconds on a CDC6600.

*Taillard [41].

5Rochat and Taillard [37].

than Christofides, Mingozzi, and Toth’s implementation of the Clarke and Wright algorithm
while requiring about twice the computing time. Again, the rounding convention is not
specified, but solution values obtained with the CMT heuristic are in general far from the
best known.

5.3 Two-Phase Methods

In this section we first describe three families of cluster-first, route-second methods. The
last subsection is devoted to route-first, cluster-second methods. There are several types of
cluster-first, route-second methods. The simplest ones, referred to as elementary clustering
methods, perform a single clustering of the vertex set and then determine a vehicle route on
each cluster. The second category uses a truncated branch-and-bound appfoach to produce
a good set of vehicle routes. A third class of methods, called petal algorithms, produces a

large family of overlapping clusters (and associated vehicle routes) and selects from them
a feasible set of routes.

5.3.1 Elementary Clustering Methods

We now present three elementary clustering methods: the sweep algorithm (see Gillett
and Miller [20], Wren [46], and Wren and Holliday [47]), the Fisher and Jaikumar [17]
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generalized-assignment-based algorithm, and the Bramel and Simchi-Levi {7} location-
based heuristic. Only these last two heuristics assume a fixed value of the number of
vehicles K.

5.3.1.1 Sweep Algorithm

The sweep algorithm applies to planar instances of the VRP. Feasible clusters are initially
formed by rotating a ray centered at the depot. A vehicle route is then obtained for each
cluster by solving a TSP. Some implementations include a postoptimization phase in which
vertices are exchanged between adjacent clusters, and routes are reoptimized. To our knowl-
edge, the first mentions of this type of method are found in a book by Wren [46] and in
a paper by Wren and Holliday [47], but the sweep algorithm is commonly attributed to
Gillett and Miller [20], who popularized it. A simple implementation of this method is
as follows. Assume each vertex i is represented by its polar coordinates (6;, p;), where
6; is the angle and po; is the ray length. Assign a value 67 = O to an arbitrary vertex i*
and compute the remaining angles from (0, 7*). Rank the vertices in increasing order of
their 6;.

Step 1 (route initialization). Choose an unused vehicle k.

Step 2 (route construction). Starting from the unrouted vertex having the smallest angle,
assign vertices to vehicle & as long as its capacity or the maximal route length is not exceeded.
In tightly constrained DVRPs, 3-opt may be applied after each insertion. If unrouted vertices
remain, go to Step 1.

Step 3 (route optimization). Optimize each vehicle route separately by solving the corre-
sponding TSP (exactly or approximately).

5.3.1.2 Fisher and Jaikumar Algorithm

The Fisher and Jaikumar algorithm is also well known. Instead of using a geometric method
to form the clusters, it solves a Generalized Assignment Problem (GAP). It can be described
as follows.

Step 1 (seed selection). Choose seed vertices ji in V to initialize each cluster £.

Step 2 (allocation of customers to seeds). Compute the cost d;; of allocating each customer
i to each cluster k as dj; = min{co; + ¢ij, +¢j0, Coj, + €jii + cio} — (coj + €j,0)-

Step 3 (generalized assignment). Solve a GAP with costs d;;, customer weights ¢g;, and
vehicle capacity Q.

Step 4 (TSP solution). Solve a TSP for each cluster corresponding to the GAP solution.

ij»

The number of vehicle routes K is fixed a priori in the Fisher and Jaikumar heuristic.
The authors proposed a geometric method based on the partition of the plane into K cones
according to the customer weights. The seed vertices are dummy customers located along
the rays bisecting the cones. Once the clusters have been determined, the TSPs are solved
optimally using a constraint relaxation—-based approach (Miliotis [28]). However, the Fisher
and Jaikumar [17] article does not specify how to handle distance restrictions, although some
are present in the test problems of Table 5.4.
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5.3.1.3 Bramel and Simchi-Levi Algorithm

Bramel and Simchi-Levi [7] described a two-phase heuristic in which the seeds are deter-
mined by solving a capacitated location problem and the remaining vertices are gradually
included into their allotted route in a second stage. The authors suggest first locating K
seeds, called concentrators, among the n customer locations to minimize the total distance
of customers to their closest seed while ensuring that the total demand assigned to any
concentrator does not exceed (. Vehicle routes are then constructed by inserting at each
step the customer assigned to that route seed having the least insertion cost. Consider a
partial route k described by the vector (0 = ig, iy, ..., g, ig41 = 0),let T, = {0, iy, ..., i;},
and denote by #(7}) the length of an optimal TSP solution on 7. Then the insertion cost
d; of an unrouted customer i into route £ is djz = (T U {i}) — #(T}). Since comput-
ing dj exactly may be time consuming, two approximations d;; are proposed: direct cost,
dix = miny—; . ¢{2c;;, }, and nearest insertion cost, d;x = minj—o, .. ¢{Ci,i + City,, — Ciip,1)-
The authors showed that the algorithm defined by the first rule is asymptotically optimal.

5.3.2 Truncated Branch-and-Bound

Christofides, Mingozzi, and Toth [10] proposed a truncated branch-and-bound algorithm for
problems with variable K, which is essentially a simplification of a previous exact algorithm
by Christofides [8]. The search tree in this procedure contains as many levels as there are
vehicle routes, and each level contains a set of feasible and nondominated vehicle routes. In
the following implementation proposed by the authors, the tree is so simple that it consists
of a single branch at each level, since all branches but one are discarded in the route selection
step. However, a limited tree could be constructed by keeping a few promising routes at
each level. In what follows, F}, is the set of free (unrouted) vertices at level A.

Step 1 (initialization). Set s ;= 1 and F, := V \ {0}.

Step 2 (route generation). If F, = @, stop. Otherwise, select an unrouted customer i € Fj,
and generate a set R; of routes containing i and customers in F,. These routes are gradually
generated using a linear combination of two criteria: savings and insertion costs.

Step 3 (route evaluation). Evaluate each route r € R; using the function f(r) = #(S, U
{O}) + u(Fy, \ S,), where S, is the vertex set of route r, £(.S, U {0}) is the length of a good
TSP solution on S, U {0}, and u(F}, \ §,) is the length of a shortest spanning tree over the
yet unrouted customers.

Step 4 (route selection). Determine the route r* yielding min,cg, {f(r)}. Seth :=h + 1
and Fy, := F,_; \ S,». Go to Step 2.

We provide in Table 5.4 comparative computational results for the four algorithms
described in sections 5.3.1 and 5.3.2. Again, the comparison is made on the 14 Christofides,
Mingozzi, and Toth [10] benchmark instances. Bramel and Simchi-Levi [7] used real
distances. For the remaining algorithms, the rounding convention is not specified.

In terms of solution quality, these methods seem to perform better than the constructive
algorithms presented in section 5.2. Also, for less computational effort, the truncated
branch-and-bound algorithm tends to produce better solutions than the sweep algorithm.
The Fisher and Jaikumar method seems to work well on most instances, but a number of
reported solution values have been questioned by some authors (see Wark and Holt [45,



Table 5.4. Computational comparison of four constructive heuristics.

Location- Truncated Best

Generalized based branch-and- known

Sweep! assignment? heuristic? bound* solution

Problem F** Time*  f*?2  Time? f**  Time*  f**  Time* value
E051-05e 532 12.2 524 9.3 524.6 68 534 7.1 524.61°
EQ76-10e 874 24.3 857 12.0 848.2 406 871 15.6 835.26°
E101-08e 851 65.1 833 17.7 832.9 890 851 38.2 826.14°
E101-10c 937 50.8 824 6.4 826.1 400 816 39.3 819.56°
E121-07c 1266 104.3 — — 1051.5 1303 1092 51.1 1042.11°
El51-12c¢ 1079 142.0 1014 33.6 1088.6 2552 1064 81.1 1028.42°
E200-17c¢ 1389 252.2 1420 40.1 1461.2 4142 1386 1384 1291.45°
DO51-06cC 560 114 560 15.2 — —_ 560 5.3 555.43%
D076-11c 933 23.8 916 20.6 — — 924 13.6 909.63°
D101-09c 888 58.5 885 52.2 — — 885 33.4 865.94%
D101-11c 949 53.6 876 6.3 — —_ 878 45.2 866.37°
Di21-11c 1776 85.5 — — — — 1608 61.8  1541.14%
D151-14c 1230 134.7 1230 121.3 — — 1217 74.0 1162.556
D200-18c 1518 238.5 1518 136.6 — — 1509 135.6 1395.85°

! Gillett and Miller [20], implemented by Christofides, Mingozzi and Toth [10).

2Fisher and Jaikumar [17]. Computing times are seconds on a DEC-10, considered by Fisher and Jaikumar

to be seven times slower than CDC6600.

3Brame! and Simchi-Levi [7]. Computing times are seconds on an RS6000, Model 550.
Nearest insertion costs were used in this implementation.

4Christofides, Mingozzi and Toth [10]. Computing times are seconds on a CDC6600.

STaillard [41].

SRochat and Taillard [37].
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p- 1163]). The location-based heuristic of Bramel and Simchi-Levi seems often to improve
on the Fisher and Jaikumar method.

5.3.3 Petal Algorithms

A natural extension of the sweep algorithm is to generate several routes, called petals, and
make a final selection by solving a set partitioning problem of the form

min Z dkxk
keS
subject to

ZaikkaI Vi=1,...,n,
keS§
x; € {0, 1} YkesS,

where S is the set of routes, x; = 1 if and only if route k belongs to the solution, a;; is the
binary parameter equal to 1 only if vertex i belongs to route k, and dj is the cost of petal
k. If the routes correspond to contiguous sectors of vertices, then this problem possesses
the column circular property and can be solved in polynomial time (Ryan, Hjorring, and
Glover [38]).

This formulation was first proposed by Balinski and Quandt [3], but it becomes im-
practical when |S]| is large. Agarwal, Mathur, and Salkin [1] used column generation to
solve small instances of the VRP optimally (10 < n < 25). Heuristic rules for produc-
ing a promising subset S’ of simple vehicle routes, called 1-petals, have been put forward
by Foster and Ryan [18] and by Ryan, Hjorring, and Glover [38]. Renaud, Boctor, and
Laporte [36] go one step further by including in S’ not only single vehicle routes but also
configurations, called 2-petals, consisting of two embedded or intersecting routes. The
generation of 2-petals is quite involved and is not be described here.

Renaud, Boctor, and Laporte [36] compared their results with their own implementa-
tion of the sweep algorithm (Gillett and Miller [20]) and of the petal algorithm of Foster and
Ryan [18]. The 14 standard benchmark problems were solved with real distances. Results
presented in Table 5.5 indicate that the 2-petal algorithm produces solutions whose value is
on the average 2.38% above that of the best known (compared with 7.09% for sweep and
5.85% for 1-petal). Average computing times are 1.76 seconds for sweep, 0.26 second for
1-petal, and 3.48 seconds for 2-petal. The larger times taken by sweep and 2-petal are due
to the postoptimization phase, which is absent from I-petal. Sweep uses 3-opt, whereas
2-petal uses 4-opt* (Renaud, Boctor, and Laporte [35]).

5.3.4 Route-First, Cluster-Second Methods

Route-first, cluster-second methods construct in a first phase a giant TSP tour, disregarding
side constraints, and decompose this tour into feasible vehicle routes in a second phase.
This idea applies to problems with a free number of vehicles. It was first put forward
by Beasley [4], who observed that the second-phase problem is a standard shortest-path
problem on an acyclic graph and can thus be solved in O(n?) time using, for example,
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Table 5.5. Computational comparison of three petal heuristics.

1-petal 2-petal Best known
Sweep! algorithm? algorithm® solution
Problem f*3 Time? f*? Time? f** Time? value

E051-05e 531.90 0.12 531.90 0.10 524.61 0.76 524.61*
E076-10e 88420 0.17 88502 007 85409 0.52 835.26*
E101-08e 84634 1.18 83634 032 83040 3.84 826.144
E101-10c 91951 0.64 82477 021 82477 2.11 819.56*
E121-07c 1265.65 3.52 125284 0.61 1109.14 1170  1042.11*
E151-12c 107538 2.53 107050 041 1054.62 5.93 1028.42¢
E200-17c 1396.05 3.60 140684 041 135423 6.21 1291.454
D051-06c  560.08 0.16 560.08 0.09 560.08 0.56 555.434
D076-11c 96551 0.19 968.89 0.07 92275 043 909.63*
D101-09c 883.56 147 87780 0.25 87729 291 865.944
D101-11c 911.81 0.85 894.77 0.17 885.87 1.69 866.374
D121-11c 178530 2.24 1773.69 0.26 158520 3.3! 1541.14°
D151-14c 1220.71 3.00 122020 026 119451 358 116255
D200-18c 1526.64 4.91 151595 0.35 147031 519  139585*
! Giliett and Miller [20], implemented by Renaud, Boctor, and Laporte {36].

ZFoster and Ryan [18], implemented by Renaud, Boctor, and Laporte [36].

3Renaud, Boctor, and Laporte [36]. All computing times are seconds on a Sun Sparcstation 2 (210.5Mips,
4.2 Mflops), with 32 megabytes RAM.

4Taillard [41].
SRochat and Taillard [37}.

Dijkstra’s [13] algorithm. In the shortest-path algorithm, the cost d;; of traveling between
nodes i and j is equal to co; +co; +£ij, where £;; is the cost of traveling from i to j on the TSP
tour. Haimovich and Rinnooy Kan [23] showed that if all customers have unit demand, this
algorithm is asymptotically optimal. However, this is not so for general demands, except in
some trivial cases (Bertsimas and Simchi-Levi [5]). We are not aware of any computational
experience showing that route-first, cluster-second heuristics are competitive with other
approaches.

5.4 Improvement Heuristics

Improvement heuristics for the VRP operate on each vehicle route taken separately or on
several routes at a time. In a first case, any improvement heuristic for the TSP can be
applied. In the second case, procedures that exploit the multiroute structure of the VRP can
be developed.

5.4.1 Single-Route Improvements

Most improvement procedures for the TSP can be described in terms of Lin’s [26] A-opt
mechanism. Here, A edges are removed from the tour, and the A remaining segments are
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reconnected in all possible ways. If any profitable reconnection (the first or the best) is
identified, it is implemented. The procedure stops at a local minimum when no further
improvements can be obtained. Checking the A-optimality of a solution can be achieved
in O(n*) time. Several modifications to this basic scheme have been developed. Lin and
Kernighan [27] modified X dynamically throughout the search. Or [31] proposed the Or-opt
method, which consists of displacing strings of 3, 2, or 1 consecutive vertices to another
location. This amounts to performing a restricted form of 3-opt interchanges. Checking
Or-optimality requires O(n?) time. In the same spirit, Renaud, Boctor, and Laporte [35]
developed a restricted version of the 4-opt algorithm, called 4-opt*, which attempts a subset
of promising reconnections between a chain of at most w edges and another chain of two
edges. Checking whether a solution is 4-opt* requires O(wn?) operations. Johnson and
McGeoch [24] performed a thorough empirical analysis of these and other improvement
procedures for the TSP and concluded that a careful implementation of the Lin—Kernighan
scheme yields the best results on average. Since the description of this technique is rather
extensive, readers are referred to the Johnson and McGeoch article for further details.

As mentioned, several heuristics described in this chapter already incorporate some
form of reoptimization at intermediate steps. The Clarke and Wright algorithm is different
in this respect in that it is typically implemented as a pure constructive heuristic, without
reoptimization. To investigate the effect of postoptimization on the Clarke and Wright
algorithm, we implemented two versions of 3-opt. In the first one, FI, the first improving
move is performed, whereas in the second one, BI, the whole neighborhood is explored
to identify the best improvement. Comparative results on the 14 Christofides, Mingozzi,
and Toth [10] instances are presented in Table 5.6. Again, all running times are below 0.2
second on a Sun Ultrasparc 1 workstation (42 Mflops). The effect of applying 3-opt after
the Clarke and Wright constructive heuristic is sometimes negligible, but it can reach 2%
in some instances. The use of 3-opt, when applied after the sequential heuristic, is never
sufficient to correct the relative inefficiency of the constructive step. The best solutions are
consistently obtained by the parallel savings algorithm combined with 3-opt and BI. This
algorithm is very fast to run (it requires an average of 0.13 second on the 14 benchmark
instances) and produces solutions whose value is on average 6.71% above that of the best
known. This compares with 7.08% for parallel savings without 3-opt, 18.75% for sequential
savings without 3-opt, and 7.09% for the Renaud, Boctor, and Laporte [36] implementation
of the sweep algorithm.

5.4.2 Multiroute Improvements

Thompson and Psaraftis [42], Van Breedam [43], and Kindervater and Savelsbergh [25] pro-
vide descriptions of multiroute edge exchanges for the VRP. These encompass a large num-
ber of edge exchange schemes used by several authors (see, e.g., Stewart and Golden [40],
Dror and Levy [14], Salhi and Rand [39], Fahrion and Wrede [15], Potvin et al. [34], Os-
man [32], and Taillard [41]). The Thompson and Psaraftis paper describes a general b-cyclic,
k-transfer scheme in which a circular permutation of b routes is considered and & customers
from each route are shifted to the next route of the cyclic permutation. The authors show that
applying specific sequences of b-cyclic, k-transfer exchanges (with b = 2 or b variable, and
k = 1 or 2) yields interesting results. Van Breedam classified the improvement operations
as string cross, string exchange, string relocation, and string mix, which all can be viewed as



Table 5.6. The effect of 3-opt on the Clarke and Wright algorithm.

V'S

Sequential Parailel

No + 3-opt  + 3-opt No + 3-opt  + 3-opt Best known
Problem 3-opt! FI? B K%  3-op?® FI¢ BI” K? solution value
E051-05e 62556 62420 62420 5 584.64  578.56  578.56 6 524.61°
EQ76-10e 100525 99194 99194 10 900.26 888.04 888.04 10 835.26°
E101-08e 982.48 980.93 980.93 8 886.83 878.70 878.70 8 826.14°
E101-10c 93999  930.78 928.64 10 8335l 824.42 82442 10 819.56°
E121-07c 1291.33 123290 1237.26 7 1071.07 104943 1048.53 7 1042.11°
E151-12¢c 1299.39 127034 127034 12 113343 112824 112824 12 1028.42°
E200-17c¢ 1708.00 1667.65 1669.74 16 139574 1386.84 1386.84 17 1291.45°
D051-06c  670.01 66359 66359 6 61840 61666 616.66 6 555.43°
D076-11c 98942  988.74 988.74 12 97546 97479 97479 12 909.68°
D101-09c 105470 1046.69 1046.69 10  973.94 968.73  968.73 9 865.9°
D101-11c 95253 94379 943.79 11 875.75  868.50  868.50 11 866.37°
D121-11c 164660 1638.39 1637.07 11 1596.72 1587.93 158793 11 1541.1419
D151-14c 1383.87 137415 1374.15 15 1287.64 1284.63 1284.63 15 1162.55'0
D200-18c 167129 165258 165258 20 1538.66 152324 152194 19 1395.85°

!'Sequential savings.
2Sequential savings + 3-opt and first improvement.
3Sequential savings + 3-opt and best improvement.
4Sequential savings: number of vehicles in solution.

SParallel savings.

SParallel savings + 3-opt and first improvement.
7Parallel savings + 3-opt and best improvement.
8parallel savings: number of vehicles in solution.

9Taillard [41].

19Rochat and Taillard [37).
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Figure 5.1. String cross.

VRN

(a) Before (b) After

Figure 5.2. String exchange.

VA

(a) Before (b) After

Figure 5.3. String relocation.

special cases of 2-cyclic exchanges, and provides a computational analysis on test problems.
Kindervater and Savelsbergh define similar operations and perform experiments mostly in
the context of the VRP with time windows.

‘We now summarize Van Breedam’s analysis. The four operations considered are

« String cross (SC). Two strings (or chains) of vertices are exchanged by crossing two
edges of two different routes; see Figure 5.1.

* String exchange (SE). Two strings of at most k vertices are exchanged between two
routes; see Figure 5.2.

* String relocation (SR). A string of at most k& vertices is moved from one route to
another, typically with £ = 1 or 2; see Figure 5.3.

* String mix (SM). The best move between SE and SR is selected.
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To evaluate these moves, Van Breedam considers the two local improvement strategies,
FI and BI. Van Breedam then defines a set of parameters that can influence the behavior of
the local improvement procedure. These parameters are the initial solution (poor, good),
the string length (k) for moves of type SE, SR, SM (k¢ = 1 or 2), the selection strategy
(F1, BI), and the evaluation procedure for a string length k¥ > 1 (evaluate all possible
string lengths between a pair of routes, increase k¥ when a whole evaluation cycle has been
completed without identifying an improvement move). To compare the various improvement
heuristics, Van Breedam selects 15 tests problems among 420 instances. However, nine
of these include either pickup and deliveries constraints or time-windows constraints and
are therefore not relevant within the context of this chapter. The remaining six instances
contain capacity constraints where all customers have the same demand, so that the capacity
constraint is exactly satisfied and only SC or SE moves can be performed. Therefore, the
following conclusions should be interpreted with caution. The first observation made by
Van Breedam is that it is better to initiate the search from a good solution than from a poor
one, in terms of both final solution quality and computing time. Also, the best solutions
are obtained when SE moves are performed with a string length £ = 2. However, using
k = 2 is about twice as slow as using k = 1. Overall, SE moves appear to be the best. This
is confirmed in a further comparison of local improvement, simulated annealing, and tabu
search heuristics using various types of moves. The local improvement heuristic with SE
moves yields solution values that are 2.2% above the best known, compared with 4.7% for
SC moves, but computing times are more than four times larger with SC moves.

5.5 Conclusions

More than 35 years have passed since the publication of the savings heuristic for the VRP,
and during this period a wide variety of solution techniques have been proposed. Com-
parisons between these heuristics are not always easy to make, especially since several
implementation features can affect the performance of an algorithm. Also, the number and
size of test problems used in the comparisons is rather limited, and researchers have not sys-
tematically applied the same rounding conventions, although this has been corrected in the
last few years. It is now clear that in terms of solution quality, classical heuristics based on
simple construction and local descent improvement techniques do not compete with the best
tabu search implementations described in Chapter 6. However, several methods presented
in this chapter can be easily adapted to other variants of the VRP and are easy to implement.
This explains to a large extent their widespread use in commercial software. Thus, the
Clarke and Wright algorithm remains probably the most popular method in practice. When
followed by the BI version of 3-opt, it produces in almost no time solution values that fall
within about 7% of the best known results. Much better performances are observed with
some other algorithms (for example with the 2-petal algorithm), but the price to pay is often
coding complexity.

Because metaheuristics for the CVRP outperform classical methods in terms of so-
lution quality (and sometimes now in terms of computing time), we believe there is little
room left for significant improvement in the area of classical heuristics. The time has come
to turn the page.
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Chapter 6

Metaheuristics for the
Capacitated VRP

Michel Gendreau
Gilbert Laporte
Jean-Yves Potvin

6.1 Introduction

In recent years several metaheuristics have been proposed for the VRP. These are general
solution procedures that explore the solution space to identify good solutions and often
embed some of the standard route construction and improvement heuristics described in
Chapter 5. In a major departure from classical approaches, metaheuristics allow deterio-
rating and even infeasible intermediary solutions in the course of the search process. The
best known metaheuristics developed for the VRP typically identify better local optima than
earlier heuristics, but they also tend to be more time consuming.

We are aware of six main types of metaheuristic that have been applied to the VRP:
Simulated Annealing (SA), Deterministic Annealing (DA), Tabu Search (TS), Genetic Al-
gorithms (GA), Ant Systems (AS), and Neural Networks (NN). The first three algorithms
start from an initial solution x; and move at each iteration ¢ from x, to a solution x,,; in
the neighborhood N (x;) of x,, until a stopping condition is satisfied. If f(x) denotes the
cost of x, then f(x,,) 1s not necessarily less than f(x,). As a result, care must be taken
to avoid cycling. GA examines at each step a population of solutions. Each population is
derived from the preceding one by combining its best elements and discarding the worst.
Ant systems is a constructive approach in which several new solutions are created at each
iteration using some of the information gathered at previous iterations. As was noted by
Taillard et al. [63], tabu search, genetic algorithms, and ant systems are methods that record,
as the search proceeds, information on solutions encountered and use it to obtain improved
solutions. Neural networks is a learning mechanism that gradually adjusts a set of weights
until an acceptable solution is reached. The rules governing the search differ in each case,
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and these must also be tailored to the shape of the problem at hand. Also, a fair amount
of creativity and experimentation is required. Our purpose is to survey some of the most
representative applications of local search algorithms to the VRP. For generic articles and
textbooks on these metaheuristics, see Rumelhart and McClelland [57], Wasserman [73],
van Laarhoven and Aarts [71], Goldberg [30], Davis [15], Pirlot [46], Reeves [52], Dorigo,
Maniezzo, and Colorni [17], Osman and Kelly [44], Osman and Laporte [45], Aarts and
Lenstra [1], and Glover and Laguna [29]. Gendreau, Laporte, and Potvin [24] and Golden
et al. [32] report how various metaheuristic methods have been applied to the VRP and to
the VRP with time windows. In the following six sections of this chapter we report on
implementations of all six algorithms to the solution of the VRP. Some of this material is
borrowed or adapted from Gendreau, Laporte, and Potvin [24].

6.2 Simulated Annealing
At iteration ¢ of simulated annealing, a solution x is drawn randomly in N(x,). If f(x) <
f(x;), then x,11 is set equal to x; otherwise,
.} x with probability p,,
Y+1:= 1y, with probability 1 — p,,

where p, is usually a decreasing function of ¢ and of f(x) — f(x;). It is common to define
p: as

6.1 p=exp(=[£(0 = )] /8),

where ¢, denotes the temperature at iteration ¢. The rule employed to define 6, is called a
cooling schedule. Typically, 6, is a decreasing step function of ¢: initially, 6, is set equal to
a given value A; > 0 and is multiplied by a factor (0 < & < 1) after every T iterations, so
that the probability of accepting a worse solution should decrease with time. Three common
stopping criteria are the value f* of the incumbent x* has not decreased by at least 771 % for
at least k; consecutive cycles of 7 iterations; the number of accepted moves has been less
than 71,% of T for k; consecutive cycles of T iterations; and k3 cycles of T iterations have
been executed.

6.2.1 Two Early Simulated Annealing Algorithms

Two early implementations of simulated annealing in the context of the VRP are those of
Robusté, Daganzo, and Souleyrette [55], and Alfa, Heragu, and Chen [2]. In the first case,
the authors defined a neighborhood structure by combining several mechanisms: reversing
part of a route, moving part of a route into another part of the same route, trading vertices
between two routes. The algorithm was tested on four instances (n = 80, 100, 120, 500),
but no comparisons with alternative methods are available. In the second implementation,
Alfa, Heragu, and Chen [2] used a route-first, cluster-second heuristic (Beasley [6]) to
construct a first solution, followed by 3-opt (Lin [39]) for the search process. The method
was applied to three instances (n = 30, 50, 75) and did not produce competitive results.
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6.2.2 Osman'’s Simulated Annealing Algorithms

Osman’s [43] implementation of simulated annealing is much more involved, and also more
successful. It uses a better starting solution, some parameters of the algorithm are adjusted
in a trial phase, richer solution neighborhoods are explored, and the cooling schedule is
more sophisticated. The neighborhood structure of this algorithm uses a A-interchange
generation mechanism in which two routes p and ¢ are first selected, together with two
subsets of customers S, and S,, one from each route, satisfying |S,| < A and |S,| < A.
The operation swaps the customers of S, with those of S, as long as this is feasible. The
sets S, or S, can be empty, and therefore this family of operations includes simply shifting
customers from one route to another. Because the number of combinations of route pairs
and choices of S, and S, is usually large, this procedure is implemented with A = 1 or 2
and, in the most efficient versions of the algorithm, the search stops as soon as an improving
move is identified. (When this does not happen, the whole neighborhood must be explored.)
An inferior version of this algorithm consists of examining a whole neighborhood and of
implementing the best move.

The algorithm that was implemented was tested on symmetric VRPs with an unspec-
ified number of vehicles. It operates as follows.

Phase 1. Descent algorithm.

Step 1 (initial solution). Generate an initial solution by means of the Clarke and Wright
algorithm [12].

Step 2 (descent). Search the solution space using the A-interchange scheme. Implement an
improvement as soon as it is identified. Stop whenever an entire neighborhood exploration
yields no improvement.

Phase 2. Simulated Annealing Search.
Step 1 (initial solution). Use as a starting solution the incumbent obtained at the end of
Phase 1, or a solution produced by the Clarke and Wright algorithm. Perform a complete
neighborhood search using the A-interchange generation mechanism without, however, im-
plementing any move. Record A, and A, the largest and smallest absolute changes in
the objective function, and compute 8, the number of feasible (potential) exchanges. Set
0 = Apax, 6 : =0,k :=1,k3 :=31 := 1, t* := 1 (this is the iteration at which the best
known solution has been identified within the current cycle). Let x| be the current solution
and x* 1= x,.
Step 2 (next solution). Explore the neighborhood of x, using A-interchanges. When a
solution x with f(x) < f(x,) is encountered, set x, | := x; if f(x) < f(x"),setx* 1= x
and 6* := 6. If a whole exploration yields no better solution than x,, let x be the best
solution encountered in the neighborhood of x, and set
_ |} x  with probability p,,

Fril = { x, with probability 1 — p,,
where p; is defined by (6.1). If x,,) := x;,set 6 := 1.
Step 3 (temperature update). Occasional incrementrule: if§ = 1, set6,,; := max{6,/2, 6%},
§ :=0and k := k + 1. Normal decrement rule: If § = 0, set 0,| := 6,/[(nB + n/t) Apax
Apinl- Sett =t + 1. If k = k3, stop. Otherwise, go to Step 2.
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The cooling schedule employed by Osman differs from what is commonly done in SA.
The temperature is not decreased continuously nor as a step function. Instead, it decreases
continuously as long as the current solution is modified. Whenever x,,; = x;, the current
temperature is either halved or replaced by the temperature at which the incumbent was
identified. It is not clear to what extent this modified cooling schedule is instrumental to
the success of the algorithm.

The algorithm was implemented with A = 1, using the best Phase 1 solution to initiate
Phase 2. In total, 26 instances were tested. We report in Table 6.1 results obtained on the
classical 14 instances proposed by Christofides, Mingozzi, and Toth [11], some of which
contain a distance restriction, i.e., an upper limit L is imposed on the length of any vehicle
route. Bold numbers mean that the algorithm has identified a best known solution.

Table 6.1 indicates that Osman’s SA algorithm generally produces good results, but
it sometimes misses the mark significantly and rarely identifies a best known solution.

Table 6.1. Computational results for Osman’s SA algorithm (with first improving moves).

Best known Time?

Problem ! solution value
E051-05e 528 524.611:3.45.6.8.9,10.12 1674
E076-10e 838.62 835.26%° 6434.3
E101-08e 829.18 826.143%5 9334.0
E101-10c¢ 826 819.5634.5.6.9.11.12 632.0
E121-07c 1176  1042.1113456 315.8
E151-12¢ 1058 1028.423 5012.3
E200-17c 1378 1291457 2318.1
D051-06c 55543  555.431.3:45612 3410.2
D076-11c  909.68 909.68!:3.46 626.5
D101-09c 866.75 865.94%4 957.2
D101-1lc 890 866.371:3:46.12 305.2
D121-11lc 154598 1541.14° 7622.5
D151-14c 1164.12 1162.55° 84,301.2
D200-18c 1417.85 1395.857 5708.0

1Osman [43].

2Seconds on a VAX 86000 computer.

3Taillard [62].

4Gendreau, Hertz, and Laporte [23].

5Xu and Kelly [76].

SRego and Roucairol [54].

"Rochat and Taillard [56].

8Bullnheimer, Hartl, and Strauss [9].

9Bulluheimer, Hartl, and Strauss [10].
10Optimal solution (see Hadjiconstantinou, Christofides, and Mingozzi [33]).
1Qptimal solution (see Golden et al. [32]).
12Toth and Vigo [67].
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Computing times tend to be relatively long. Overall, applying SA to the VRP does not yield
results that are competitive with those produced by the best tabu search implementations.

6.2.3 Van Breedam’s Experiments

We note in closing this section that Van Breedam [69] compared and tested several versions
of SA using different neighborhood structures. Tests were conducted on the 14 Christofides,
Mingozzi, and Toth [11] instances. These experiments are useful in helping to identify best
SA strategies, but overall they confirm the superiority of tabu search—based heuristics.

6.3 Deterministic Annealing

Deterministic annealing operates in a way that is similar to simulated annealing, except
that a deterministic rule is used for the acceptance of a move. Two standard implemen-
tations of this technique are threshold accepting (Dueck and Scheurer [19]) and record-
to-record travel (Dueck [18]). At iteration ¢ of a threshold-accepting algorithm, solution
x;41 1s accepted if f(x,y1) < f(x;) + 61, where 9, is a user controlled parameter. In
record-to-record travel a record is the best solution x* encountered during the search. At
iteration ¢, solution x,, is accepted if f(x,,) < 6, f(x,), where 6, is a user-controlled
parameter in general slightly larger than 1. Golden et al. [32] applied a record-to-record
travel heuristic to 20 large scale instances of the VRP, eight of which include distance
restrictions. Data sets for these instances can be obtained on the web site http:/www-
Bus.colorado.edu/Publications/workingpapers/kelly. Comparisons were made with results
obtained by applying the Xu and Kelly TS heuristic {described in section 6.5) on the same

Table 6.2. Computational results for the record-to-record algorithm of Golden et al. [32].

Record-to-record Xu—Kelly’s TS Best known
Problem f* Time' f* Time?  solution value
E241-22k 720.44 5.69 747.23 2314.00 711.07°
E253-27k 881.04 6.01 881.07 1465.77 868.70°
E256-14k  587.09 23.01 589.10 340.20 587.09*

E301-28k 1029.21 8.15 1066.59 4101.02 1016.83°
E321-30k 1103.69 21.83 1118.09 1577.30 1096.183
E324-1¢k 749.15 3149  746.56 501.82 746.56
E361-33k 1403.05 1242 1435.90 5718.38 1400.96°
E397-34k 1364.23 32.62 1377.79 4340.07 1363.34°
E400-18k 93433 69.19 932.68 852.72 932.68°
E421-41k 187517 31.05 193496 103,839.73 1875.174
E481-38k 165793 47.55 1656.66 8943.45 1650.423
E484-19k 1137.18 101.09 1140.72 1151.10 1136.05°
Minutes on a 100MHz Pentium-based PC,

2Minutes on a DEC ALPHA workstation.

3Xu and Kelly [76].

4Golden et al. [32].

Toth and Vigo [67].
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instances. Not only is the record-to-record heuristic much faster than the Xu and Kelly im-
plementation, but it generates a better solution in 11 cases of 20. Results taken from Golden
et al. [32] are reported in Table 6.2. As explained by Toth and Vigo [67], all instances of
this series involving a distance restriction contain errors in the Xu and Kelly column and
therefore have been omitted.

6.4 Tabu Search

In tabu search, sequences of solutions are examined as in simulated annealing, but the next
move is made to the best neighbor of the current solution x,. To avoid cycling, solutions
that were recently examined are forbidden, or tabu, for a number of iterations. To alleviate
time and memory requirements, it is customary to record an attribute of tabu solutions rather
than the solutions themselves. The basic tabu search mechanism can be enhanced by several
computational features, such as diversification and intensification strategies, as described
by Glover and Laguna (28, 29] and Hertz, Taillard, and de Werra [34], for example.

Over the last 10 years or so, tabu search has been applied to the VRP by several
authors. Some of the first tabu search algorithms (Willard [75], Pureza and Franga [51]) did
not yield impressive results, but subsequent implementations were much more successful.
These include the work of Osman [43], Taillard [62], Gendreau, Hertz, and Laporte [23],
Xu and Kelly [76], Rego and Roucairol [54], Rego [53], and Barbarosoglu and Ozgur [3].
In addition, Rochat and Taillard [56] introduced a useful and powerful concept, the adaptive
memory, which can be used to enhance any tabu search-based algorithm. In the same vein,
Toth and Vigo [67] introduced granular tabu search, whose principles have far-reaching
applicability.

6.4.1 Two Early Tabu Search Algorithms

One of the first attempts to apply tabu search to the VRP is due to Willard [75]. Here, the
solution is first transformed into a giant tour by replication of the depot, and neighborhoods
are defined as all feasible solutions that can be reached from the current solution by means
of 2-opt or 3-opt exchanges (Lin [39]). The next solution is determined by the best nontabu
move. On three of the Christofides, Mingozzi, and Toth [11] benchmark problems, the
proposed algorithm does not appear to be competitive with most known approximation
algorithms. Pureza and Franca [51] defined the neighbors of a solution by moving a vertex
to a different route or by swapping vertices between two routes while preserving feasibility.
As in Willard, the best nontabu feasible move is selected at each iteration. While better than
Willard’s algorithm, this implementation did not produce especially good results. Further
research has shown that more sophisticated search mechanisms are required to make tabu
search work.

6.4.2 Osman’s Tabu Search Algorithm

In Osman [43], neighborhoods are again defined by means of the A-interchange generation
mechanism, with A = 2. This includes a combination of 2-opt moves, vertex reassignments
to different routes, and vertex interchanges between two routes. In one version of the
algorithm called BA (best admissible), the whole neighborhood is explored and the best
nontabu feasible move is selected. In the other version, FBA (first best admissible), the
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first admissible improving move is selected if one exists; otherwise, the best admissible
move is implemented. Results reported in Table 6.3 indicate that these two tabu search
implementations produce excellent results, but these can still be improved in most cases.

6.4.3 Taburoute

With respect to the previous tabu search implementations, the Taburoute algorithm of Gen-
dreau, Hertz, and Laporte [23] is rather involved and contains several innovative features.
The neighborhood structure is defined by all solutions that can be reached from the cur-
rent solution by removing a vertex from its current route and inserting it into another route
containing one of its p nearest neighbors using GENI, a Generalized Insertion procedure
developed by Gendreau, Hertz, and Laporte [22] for the Traveling Salesman Problem (TSP).
This may result in eliminating an existing route or in creating a new one. A second important
feature of Taburoute is that the search process examines solutions that may be infeasible
with respect to the capacity or maximum route length constraints. More precisely, the
objective function contains two penalty terms, one measuring overcapacity, the other mea-
suring overduration, each weighted by a self-adjusting parameter: every 10 iterations, each
parameter is divided by 2 if all 10 previous solutions were feasible or multiplied by 2 if all
were infeasible. This way of proceeding produces a mix of feasible and infeasible solutions
and lessens the likelihood of being trapped in a local minimum. At various points during
the search process, Taburoute reoptimizes the route in which a vertex has just been inserted.
This is achieved by using the Unstringing and Stringing (US) TSP postoptimization routine
developed by Gendreau, Hertz, and Laporte [22].

Taburoute does not actually use a tabu list but instead uses random tabu tags. When-
ever a vertex is moved from route r to route s at iteration ¢, its reinsertion into route r is
forbidden until iteration ¢ 48, where 8 is an integer randomly drawn from the interval [5, 10].
Yet another feature of Taburoute is the use of a diversification strategy, which consists of
penalizing vertices that have been moved frequently in order to increase the probability of
considering slow-moving vertices. The objective function is artificially increased by adding
to it a term proportional to the absolute frequency of movement of the vertex v currently
being considered. Finally, Taburoute uses false starts. Initially, several solutions are gener-
ated and a limited search is carried out on each of them. The best identified solution is then
selected as a starting point for the main search.

We now provide a short description of Taburoute (see the original article [23] for a
detailed discussion of the parameter choices). In what follows, W is the set of vertices
considered as candidates for reinsertion into another route at each iteration, g < |W| is
the number of these vertices for which a tentative reinsertion is actually made, and k is the
number of consecutive iterations without improvement.

Step 1 (initialization). Generate [,/n/2] initial solutions and perform tabu search with
W = V\{w}, g = Sm, and k = 50. This value of g ensures that the probability of selecting
one vertex from each route is at least 90%.

Step2 (solution improvement). Starting with the best solution observed in Step 1, perform
tabu search with W = V \ {vy}, ¢ = 5m, and k = 50n.

Step 3 (intensification). Starting with the best solution observed in Step 2, perform tabu
search with & = 50. Here W is the set of the ||V|/2] vertices that have been most often
moved in Steps | and 2, and g = {W].
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Table 6.3. Computational comparison of tabu search algorithms.

Osman’ Taillard® Taburoute’ Rochat and Xu and Rego and Toth and
(BA) andard best Taillard'” Kelly*3 Roucairol ! Vigo'?
Problem f* Time! r fr Time? r r I Time? I ' Time®
E051-05e 52461 1.12 524.61 524.61 6.0 524.61 524.61°° 29.22%° 524,61 524.61 0381
E076-10e 844 1.18 83526 83577 53.8 835.32 835.26*° 48.80%° 835.32 838.60 2.21
E101-08e 835 11.25 826.14 82945 184 826.14 826.14%° 71.93%3 827.53 82856 2.39
E101-10c 81959 6.79 819.56 819.56 16.0 819.56 819.56*° 56.614 819.56 819.56 1.10
E121-07c 104211 2331 1042.11 107347 222 104211 10421145 91.23*° 1042.11 104287 3.18
El51-12c¢ 1052 51.25 1028.42 1036.16 58.8 1031.07 1029.56*° 149.90* 1044.35 1033.21 451
E200-17¢c 1354 32.88 1298.79 132265 909 1311.35 1291.45 1298.58%5 272.52%43 1334.55 131825 7.50
D051-06c 55544 234 55543 55543 135 555.43 555.43° 30.67° 55543 55543 0.86
D076-11c 913 338 909.68 91323 54.6 909.68 965.62° 102.13° 909.68 920.72 2.75
D101-09¢c 866.75 20.00 865.94 86594 256 865.94 881.38° 98.15° 866.75 869.48 2.90
D101-11c 866.37 9298 866.37 86637 65.7 866.37 91524° 152.98° 866.37 866.37 1.41
D121-11c 1547 2238 1541.14 1573.81 59.2 154593 1618.55° 201.75° 1550.17 154551 9.34
D151-14c 1188 40.73 1162.55 1177.76 71.0 1162.89 Nosowion 168,087 1164.12 1173.12 5.67
D200-18c 1422 55.17 1397.94 1418.51 99.8 1404.75 1395.85 1439.29° 368.37° 1420.84 1435.74 9.11

Minutes on a VAX 8600.

ZMinutes on a Silicon Graphics workstation (36MHz, 5.7 Mfilops).
3Minutes on a DEC ALPHA workstation DEC OSF/1 v 3.0).

4Xu and Kelly [76].

3Golden et al. [32].

SMinutes on a Pentium 200 MHz PC (about three times faster than the Silicon Graphics
workstation used for Taburoute, and twice as slow as the DEC ALPHA workstation
used by Xu and Kelly).

7QOsman [43).

8Taillard [62].

9Gendreau, Hertz, and Laporte [23].
10Rochat and Taillard [56].

11Rego and Roucairol [54], parallel implementation.

12Toth and Vigo [67).
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As can be seen in Table 6.3, Taburoute produces high-quality results and often yields
a best known solution.

6.4.4 Taillard’s Algorithm

The Taillard [62] tabu search implementation contains some of the features of Taburoute,
namely, random tabu durations and diversification. It defines the neighborhood using the
A-interchange generation mechanism (Osman [43]). Rather than executing the insertions
with GENI, the algorithm uses standard insertions, thus enabling each insertion to be carried
out in less time, and feasibility is always maintained. Every so often, individual routes are
reoptimized using the optimization algorithm of Volgenant and Jonker [72].

A novel feature of Taillard’s algorithm is the decomposition of the main problems
into subproblems. In planar problems, these subproblems are obtained by initially parti-
tioning vertices into sectors centered at the depot and into concentric regions within each
sector. Each subproblem can be solved independently, but periodical moves of vertices to
adjacent sectors are necessary. This makes sense when the depot is centered and vertices
are uniformly distributed in the plane. For nonplanar problems, and for planar problems
not possessing these properties, the author suggests a different partitioning method based of
the computation of shortest spanning arborescences rooted at the depot. This decomposi-
tion method is particularly well suited for parallel implementation as subproblems can then
be distributed among the various processors. The combination of these strategies yields
excellent computational results.

6.4.5 Xu and Kelly’s Algorithm

With respect to the previous two tabu search algorithms, Xu and Kelly [76] used a more so-
phisticated neighborhood structure. They considered swaps of vertices between two routes,
a global repositioning of some vertices into other routes, and local route improvements.
The global repositioning strategy solves a network flow model to optimally relocate given
numbers of vertices into different routes. Approximations are developed to compute the
ejection and insertion costs, taking vehicle capacity into account. Route reoptimizations are
performed by means of 3-opt exchanges (Lin [39]) and a tabu search improvement routine.
The algorithm is governed by several parameters, which are dynamically adjusted through
the search. A pool of best solutions is memorized and periodically used to reinitiate the
search with new parameter values. Overall, this algorithm has produced several best known
solutions on benchmark instances, but it is fair to say that it is not as effective as some
other tabu search implementations. It tends to require a substantial computational effort,
and properly tuning its many parameters can be problematic.

6.4.6 Rego and Roucairol’s Algorithms

The main feature of the Rego and Roucairol [54] tabu search algorithm is the use of ejection
chains to move from one solution to the next. An ejection consists of moving a vertex to the
position occupied by another vertex, thus creating a chain reaction of £ levels. For a given
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route orientation, denote by v;_; the predecessor of v; and by v;,. its successor. An £-level
ejection chain consists of replacing the triplets (v, v¥, v¥ 41) (=0, ..., £) by the triplets
Wk, o vk 1) (k=1,..., £ and of relocating v. A legitimacy condition is defined to
ensure that the resulting solution remains feasible, i.e., that no arc appears more than once.
At a general step of the algorithm, several vertices are considered as candidate for an ejection,
together with their closest neighbors that do not yield an illegitimate ejection chain. As in
Taburoute, infeasible intermediate solutions are considered. A parallel implementation of
this procedure was developed. Again, this TS implementation yields good-quality results
but does not measure up to the best known algorithms. A variant of this algorithm, called
the subpath ejection method, was introduced by Rego [53]. Unfortunately, it does not seem
to improve on previous TS algorithms.

6.4.7 Barbarosoglu and Ozgur’s Algorithm

Barbarosoglu and Ozgur [3] describe a rather simple tabu search algorithm containing
no diversification strategy and in which only feasible solutions are examined. Neighbor
solutions are defined by means of a A-interchange scheme that favors vertices relatively far
from the centroid of their current route and close to the centroid of the new route. Route
reoptimizations are performed by applying a 2-opt procedure. The method was applied to
the six capacitated instances of the Christofides, Mingozzi, and Toth [11] set and yielded
interesting results.

6.4.8 Adaptive Memory Procedure of Rochat and Taillard

One of the most interesting developments to have occurred in the area of tabu search in
recent years is the concept of adaptive memory developed by Rochat and Taillard [56]. It
is mostly used in TS, but its applicability is not limited to this type of metaheuristic. An
adaptive memory is a pool of good solutions that is dynamically updated throughout the
search process. Periodically, some elements of these solutions are extracted from the pool
and combined differently to produce new good solutions. In the VRP, vehicle routes selected
from several solutions will be used as a starting point. The extraction process gives a larger
weight to those routes belonging to the best solutions. When selecting these routes, care must
be taken to avoid including the same customer twice in a solution. This restriction means
that the selection process often will terminate with a partial solution that will have to be
completed using a construction heuristic. In the example depicted in Figure 6.1, extracting
routes A, D, and H from a memory of two solutions results in a partial solution. Rochat
and Taillard showed that the application of an adaptive memory procedure can enhance a
search strategy. This has enabled them to obtain two new best solutions on the 14 standard
VRP benchmark instances.

6.4.9 Granular Tabu Search of Toth and Vigo

Granular Tabu Search (GTS) is yet another very promising concept. It was introduced by
Toth and Vigo [67] and has yielded excellent results on the VRP. The main idea behind GTS



6.4. Tabu Search 139

15

Memory solution 1 Memory solution 2

New partial solution

Figure 6.1. Creating a new partial solution in the adaptive memory procedure.

stems from the observation that the longer edges of a graph have only a small likelihood
of belonging to an optimal solution. Therefore, by eliminating all edges whose length ex-
ceeds a granularity threshold, several unpromising solutions will never be considered by
the search process. Toth and Vigo suggested using v = Sc, where 8 is a sparsification
parameter typically chosen in the interval [1.0, 2.0], and c¢ is the average edge length of
a solution obtained by a fast heuristic. If 8 € [1.0, 2.0], then the percentage of remain-
ing edges in the graph tends to be in the 10% to 20% range. In practice, the value of
B is dynamically adjusted whenever the incumbent has not improved for a given number
of iterations and is periodically decreased to its initial value. Neighbor solutions are ob-
tained by performing a limited number of edge exchanges within the same route or between
two routes. The authors proposed a procedure able to examine all potential exchanges in
O(JE(v)|) time, where E(v) = {(i, j) € E : ¢;j < v}U [, and I is a set of important
edges such as those incident to the depot or belonging to high-quality solutions. Toth and
Vigo implemented a version of GTS containing several of the features of Taburoute. As
the results presented in Table 6.3 show, GTS produces excellent solutions within very short
computing times.
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6.4.10 Computational Comparison

Asrightly pointed out by Barr et al. [4] and Golden et al. [32], properly testing metaheuristics
is fraught with difficulties:

* These algorithms are usually governed by several user-controlled parameters. Pa-
rameter setting should be done on a different set of instances from those used for the
final tests.

« “Standard results” should be reported for one setting of the parameters. “Best results”
corresponding to the best parameter values should be given alongside.

It is difficult to interpret computing times in the case of parallel implementations.

Comparable instance values should be used in all comparisons. For example, in the
case of the VRP, different distance truncation rules yield vastly different results (see
Gendreau, Hertz, and Laporte [23]).

There is now a consensus among researchers that stricter testing practices must be
enforced, but this has not always been the case. The comparative results presented in
Table 6.3 should be read with these remarks in mind. These show that TS generally yields
very good solution values on the 14 benchmark instances. Two of the best known solution
values are known to be optimal, and the remaining ones are probably very close to being
optimal. It is now time to move to a new set of larger instances, including those recently
developed by Golden et al. [32].

On the algorithmic side, the time has come to concentrate on the development of
faster, simpler (with fewer parameters), and more robust algorithms, even if this causes a
small loss in solution quality. These attributes are cssential if we want to see more of our
algorithms implemented in commercial packages.

6.5 Genetic Algorithms

A genetic algorithm is a randomized global search technique that solves problems by im-
itating processes observed during natural evolution. This problem-solving paradigm was
initially proposed by Holland [35], although it was 10 years before it was fully recognized
in the research community. A pure GA is a generic problem-solving method that uses little
heuristic information about the problem domain. It thus can be applied to a wide range
of ill-defined problems that do not lend themselves to specialized methods. Basically, a
GA evolves a population of bitstrings, or chromosomes, where each chromosome encodes
a solution to a particular instance. This evolution takes place through the application of
operators that mimic natural phenomena observed in nature (e.g., reproduction, mutation).
A simple GA is described in the following. We then explain how this paradigm can be
applied to a sequencing problem like the VRP.

6.5.1 Simple Genetic Algorithm

Starting from some randomly generated initial population of chromosomes X! = (x|, ..., x}},
a simple GA may be described as follows. At each iterationt =1, ..., T, apply k times
Steps 1 to 3 (k < N/2), then apply Step 4.
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Step 1 (reproduction). Select two parent chromosomes from X'.

Step 2 (recombination). Generate two offspring from the two parent chromosomes using
a crossover operator.

Step3 (mutation). Apply a random mutation to each offspring (with a small probability).
Step4 (generation replacement). Create X’+' from X' by removing the 2k worst solutions
in X' and replace them with the 2k new offspring.

In this algorithm, parameter 7 is the number of generations and & the number of
selections per generation. The best solution produced over the T generations is the final
result of this algorithm. In Step 1, the selection of the parents is probabilistically biased in
favor of the best chromosomes. In Step 2, new offspring are produced through crossover
by exchanging bit substrings found on the two parents. Each offspring may then be slightly
modified in Step 3 by flipping a bit value from zero to one, or from one to zero, with a small
probability at each position. Finally, generation replacement takes place in Step 4. Through
this process, it is expected that an initial population of randomly generated chromosomes
will improve as parents are replaced by better offspring. Some theoretical results support
this claim (Holland [35], Goldberg [30}).

6.5.2 Application to Sequencing Problems

The classical approach presented in the previous section is not appropriate for sequencing
problems, like the TSP or the VRP. For one thing, the bit string representation of a solution
is not natural and is typically replaced by a path representation, namely, a string of integers
where each integer stands for a particular vertex. The position of each integer on the
string denotes its ordering on the route (with the last vertex being implicitly connected to
the first one). Secondly, specialized order-based crossover and mutation operators must
be developed to produce new offspring sequences. For example, Figure 6.2 illustrates
the application of the classical one-point crossover on two parent routes 0, 1, 2, 3, 4, 5 and
0,4,3, 2,5, 1, where vertex 0 stands for the depot; substrings coming from parent 2 are bold.
Two offspring are created by exchanging the substring located after a randomly selected
cutpoint (after the third position, in this example). Clearly, neither of the offspring is a valid
sequence, due to duplication and omission of vertices. A straightforward application of the
classical mutation operator would also lead to the same kinds of difficulties.

Specialized crossover and mutation operators thus were proposed in the literature to
produce new offspring sequences from parents (Potvin [48]). Figure 6.3 represents one of
them, called the order crossover (OX) (Oliver, Smith, and Holland {42]). First, two cut
points are randomly selected, and the substring located between these cut points on parent 1
is assigned to the offspring. In the example, the cut points are selected after the third and
the fifth position, respectively. The remaining positions are then filled one at a time, starting

Parent 1 01 2 3 4 5
Parent 2 0 4 3 2 5 1
Offspring 1 01 2 2 5 1
Offspring 2 0 4 3 3 4 5

Figure 6.2. One-point crossover.
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Parent 1 01 2 3 4 5
Parent 2 0 4 3 2 5 1
Offspring 1 - - - 3 4 -
Offspringl : 0 2 5 3 4 1

Figure 6.3. Order crossover.

after the second cut point, by considering the vertices in the order found on the second parent
(wrapping around, when the end of the string is reached), while avoiding duplications. A
second offspring may be created by inverting the role of the parents. Through OX, the
offspring tend to inherit the relative order of the vertices on the parent strings. Other
operators tend to preserve the position of the vertices (Goldberg and Lingle [31]) or the
edges of the parent solutions (Whitley, Starkweather, and Fuquay [74]).

With respect to mutation, simple remove-and-reinsert (RAR) or swap operators have
been devised that move one or two vertices to some other position on the string. In Figure 6.4,
an RAR mutation is shown: vertex 2 is randomly selected and moved from position 3 to
position 5. Note that a few vertices must be shifted accordingly. Other, more involved,
mutation operators have also been devised, like inversion (Holland [35]).

Experience with genetic algorithms for solving combinatorial problems showed that
the classical algorithmic framework, with mutation acting as a secondary operator to slightly
perturb solutions, does not yield competitive results. Because of its general applicability,
this framework does not exploit enough information about the problem to produce high-
quality solutions. To be effective, the genetic algorithm must be hybridized with a local
search method, either a local descent (Braun [8], Davis [15], Muhlenbein, Gorges-Schleuter,
and Kramer [41], Suh and Gucht [61], and Ulder et al. [68]) or even a tabu search (Fleurent
and Ferland [21]), specifically designed for the problem at hand. In this case, the local
search method may be viewed as a powerful mutation operator integrated within the genetic
algorithm and applied with some probability to each offspring. Alternatively, this approach
may be viewed as a multistart local search method, with starting points obtained through a
sampling of the search space provided by the genetic algorithm.

6.5.3 Application to the VRP

The literature on the development of genetic algorithms for solving the VRP is rather scant.
This contrasts with the applications for the TSP (Potvin [48]) or more complex variants
of the VRP with time windows (VRPTW) and precedence constraints (Blanton and Wain-
wright [7], Potvin and Bengio [49], Potvin, Duhamel, and Guertin {50], Thangiah [65],
Thangiah [64], and Thangiah et al. [66]). In the first case, the abundance of research is
related to the fact that the TSP is a well-known canonical problem, which provides a useful

Offspringl : 0 1
Offspring 1 0 1

Wi
09| A~
| L

3
4

Figure 6.4. RAR mutation.
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testbed for experimenting with new ideas. In the second case, the presence of complicating
constraints, in particular time windows, has until recently hampered the development of
effective problem-solving methods. Thus, there was clearly an opportunity for the GA to
provide competitive results, given its relative robustness in the presence of complex con-
straints. In fact, some very effective implementations have been reported in the literature
for the VRPTW (Potvin and Bengio [49], Thangiah [64]). The work done on the CVRP,
including its distance or time-constrained variant, was mostly aimed at evaluating the im-
pact of different components or parameters of a GA on the efficiency of the search. Van
Breedam [70] compares a GA with previously developed simulated annealing and tabu
search heuristics on different types of vehicle routing problems, including the CVRP. He
also performs a statistical analysis of the impact of various parameters on solution quality
for the genetic algorithm and simulated annealing. Given that a solution to a VRP is made
of multiple routes (as opposed to the TSP), the path representation is extended and contains
multiple copies of the depot, with each copy acting as a separator between two routes. For
example, the string shown in Figure 6.5 would correspond to a VRP solution made of three
routes: the first route contains vertices 1 and 2, the second route contains vertices 3 and 4,
and the last route only contains vertex 5.

A classical order-based crossover operator, known as PMX (Goldberg and Lingle [311),
and a RAR mutation operator are then adapted for this extended representation. At each
iteration, these operators are applied until the required number of feasible offspring solu-
tions is produced (infeasible offspring are discarded). Van Breedam also use a local descent
operator based on four different types of exchange move and applies it only to the best
solution in the current population. Using his own set of 15 test problems with 100 vertices,
among which the first six are CVRPs, the author demonstrates that the local descent operator
has a significant positive impact on the performance of the GA. Overall, the best solutions
produced by the genetic algorithm, simulated annealing, and tabu search (all developed by
Van Breedam) are of comparable quality. The genetic algorithm requires more computation
time than the other two methods, but the author points out that “no attention has been paid
to the efficiency of the code.” No comparison is provided with other metaheuristics for the
VRP reported in the literature, as the primary goal of this work was to evaluate the impact of
different parameters on solution quality. Another GA application for the time-constrained
CVRP may be found in Schmitt [58, 59]. An interesting feature of this work is that a
route-first, cluster-second approach is used, thus allowing the classical path representation
(without separators) to be used. That is, the strings manipulated by the GA correspond
to megaroutes over all vertices. A solution to the VRP is then identified through a sweep
procedure starting with the vertex in first position on the string. A route ends when either
the capacity or the maximum route time constraint would be exceeded by including the next
vertex. The latter vertex is then used to initiate a new route. Using this approach, each
string can be decoded into a feasible solution to the problem. The implementation proposed
by Schmitt [59] uses the OX crossover operator and a swap mutation operator, where two
randomly selected vertices exchange their position. To improve the performance of the GA,

Sting : 0 1 2 0 3 4 0 5

Figure 6.5. Representation of a VRP solution.
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this mutation operator is then replaced by a 2-opt local search method (Croes [14], Lin [39]),
applied with a probability of 0.15 to each offspring. This GA was tested on the Christofides,
Mingozzi, and Toth [11] test problems with mixed results: the GA proved better than the
Clarke and Wright [12] heuristic but worse than simple construction heuristics combined
with improvement procedures. In all cases, the GA was more computationally expensive
than the competing methods. In Bean [5], an encoding scheme based on random keys was
proposed to address sequencing problems. In this case, each element of the sequencing
problem is tagged with a randomly generated key. Decoding these keys into a solution
of the problem typically is accomplished through a sorting procedure. For the VRP, each
customer is tagged with a random integer, which stands for the vehicle that will service the
customer, plus a real number taken in the interval (0, 1). By sorting these keys, the sequence
of customers on each vehicle route is obtained. This application of random keys for the
VRP is provided only for illustrative purposes in Bean [5] and is not explored further. Based
on these scarce results, it is fair to say that genetic algorithms are not yet competitive on the
VRP, particularly in view of some recent tabu search developments. However, almost all
research efforts with genetic algorithms have focused on the TSP or time window variants
of the VRP. The successes obtained on the latter class of problems tend to indicate that more
work on the VRP could lead to competitive implementations.

6.6 Ant Algorithms

Ant systems methods are inspired from an analogy with real ant colonies foraging for food.
In their search for food, ants mark the paths they travel by laying an aromatic essence called
pheromone. The quantity of pheromone laid on a path depends on the length of the path
and the quality of the food source. This pheromone provides information to other ants that
are attracted to it. With time, paths leading to the more interesting food sources, i.e., those
close to the nest and with large quantities of food, become more frequented and are marked
with larger amounts of pheromone. Overall, this process leads to an efficient procedure for
procuring food by ant colonies.

This observation led Colorni, Dorigo, and Maniezzo [13] to propose a new class of
metaheuristics for solving combinatorial problems based on the following correspondences:
Artificial ants searching the solution space simulate real ants exploring their environment,
objective function values are associated with the quality of food sources, and values recorded
in an adaptive memory mimic the pheromone trails.

To illustrate the basic principles of the approach, we briefly describe a simple AS for
the TSP, the problem to which Colorni, Dorigo, and Maniezzo first applied their method.
With each (v;, v;) are associated two values: the visibility n;; (the inverse of edge length),
which is a static value, and the pheromone trail I';;, which is updated dynamically as
the algorithm proceeds. At each iteration, artificial ants starting from each vertex of the
graph construct n new tours using a probabilistic nearest neighbor heuristic with a modified
distance measure. This measure is derived from #;; and I';; to favor the selection of cities
that are close and connected by edges with a high pheromone value. At the end of each
iteration, trail values are updated by first allowing a fraction (1 — p), where 0 < p < 1,
of the old pheromone to evaporate and by then laying new pheromone on the edges of the
tours built during this iteration. If edge (v;, v;) was used by ant k and the length of the tour
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constructed by this ant was Ly, the pheromone trail is increased by Af.‘,. = 1/Ly. The trail
value for edge (v;, v;) is thus updated as follows: ‘

N

F,‘j = pFi_j + Z Aé{/’»
k=1

where N is the number of ants. This process of tour construction and trail update is repeated
for a fixed number of iterations. It is important to note the role of the evaporation parameter
(1 — p) that prevents poor solutions obtained in early iterations from conditioning the search
too strongly at later stages of the algorithm.

The method was refined by the addition of several features on applications such as
the symmetric and asymmetric TSP (Dorigo, Maniezzo, and Colorni [17], Dorigo and
Gambardella [16]). A general conclusion can be drawn from these papers that while the
method can sometimes produce excellent results, it cannot usually compete with other
metaheuristics or specialized local search heuristics, unless it is hybridized one way or
another with a local optimizer.

So far, only three papers have dealt with the application of ant systems to the VRP. In
the first one, Kawamura et al. {37] proposed a complex hybrid variant of AS that involves
2-opt improvement procedures and probabilistic acceptance rules reminiscent of simulated
annealing. The method was applied to two geometric 30- and 60-customer instances and
it identified the optimal solution in both cases. No other tests were performed, which
makes it difficult to assess the effectiveness of this procedure. The other two papers are
by Bullnheimer, Hartl, and Strauss [9, 10]. In their first paper, the authors developed a
hybrid ant systems in which each vehicle route produced in a given iteration is improved
by the 2-opt heuristic before trail update. This algorithm also uses terms related to vehicle
capacity and distance savings with respect to the depot when selecting the next vertex to be
visited. In the trail update step, they use a number of “elitist ants” to account for the best
solution found so far (these ants are assumed to always travel on this best solution). Their
computational experiments on the 14 problems of Christofides, Mingozzi, and Toth [11]
indicate that the addition of a 2-opt step and the use of elitist ants are clearly beneficial. The
best results obtained over 30 distinct runs range from O to 14.09% above the best known
solutions to the problems with an average error of 4.43% (see Table 6.4).

In their second paper, the authors refined their algorithm in several ways: (a) the
capacity term previously used in the vertex selection rule, which was quite expensive to
compute, is dropped, and the saving term is incorporated directly in the visibility term in a
parametric fashion. (b) Only the |n/4] nearest neighbors of any vertex are considered when
choosing the next customer to visit. (¢) Only the five best solutions found in each iteration
are used for trail update, and the pheromone quantity laid is further weighted according
to the solution’s rank. These various changes have led to shorter run times and improved
solutions. The computational resuits obtained on the 14 benchmark problems are quite good
with an average error of only 1.51% above the best known solutions (see Table 6.4) and
CPU times that are very reasonable.

Overall, these results are quite encouraging considering the very limited experience
with the application of ant systems to the VRP. If one recalls the improvements obtained
by later implementations of other metaheuristics, it seems reasonable to expect future ant
systems implementations to be more competitive.
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Table 6.4. Computational results for the ant systems algorithms.

Hybrid ant systems Improved Best known
Problem 1 Time? f* Time?  solution value
E051-05e  524.61 0.6 52461 0.1 524.61
E076-10e 870.8 24 844.31 1.3 835.26
E101-08e 87943 11.3 832.32 3.8 826.14
E101-10c 819.96 10.1 81956 5.0 819.56
E121-07¢c 1072.45 16.2 1065.21 9.2 1042.11
E151-12c 1147.41 28.5 1061.55 184 1028.42
E200-17c 147340 822 134346 87.6 129145
D051-06c¢c 562.93 0.2 56024 0.1 55543
D076-11c¢c 948.16 3.5 916.21 1.7 909.68
D101-09¢c 886.17 1.3 866.74 4.8 865.94
D101-11c  869.86 3.1 867.07 5.8 866.37
D121-11c 1590.52 43 155992 11.0 1541.14
D151-14c 1202.01 26.6 119599 275 1162.55
D200-18c 1504.79 573 1451.65 81.8 1395.85

IBest value over 30 runs.

2Minutes on a Pentium 100.

6.7 Neural Networks

Neural networks are computational models composed of units that are richly interconnected
through weighted connections, like neurons in the human brain: a signal is sent from one
unit to another along a connection and is modulated through the associated weight. Al-
though superficially related to their biological counterpart, artificial neural networks exhibit
characteristics related to human cognition. In particular, they can learn from experience and
induce general concepts from specific examples through an incremental adjustment of their
weights. These models were originally designed for tasks associated with human intelli-
gence and where traditional computation has proven inadequate, like artificial vision and
speech understanding. More recently, they have been applied to combinatorial problems as
well, starting with the pioneering work of Hopfield and Tank [36]. The TSP,in particular,
has been the subject of many investigations with the Hopfield-Tank model, the elastic net
(EN) (Durbin and Willshaw [20]), and the self-organizing map (SOM) (Kohonen [38]). The
EN and SOM models are quite remote from classical neural networks, but they have proved
to be more effective on the TSP than the (more classical) Hopfield-Tank model. However,
neither of these methods is yet competitive with other metaheuristics (Potvin [47]).

The elastic net and self-organizing maps are deformable templates that adjust them-
selves to the contour of the vertices to solve a TSP, as illustrated in Figure 6.6. The white
circles are vertices and the small black circles are units of the model. These units are linked
to form a ring. Starting from some arbitrary configuration, the location of each unit on
the ring is incrementally adjusted (like the connection weights of classical neural network
models), until at least one unit becomes sufficiently close to each vertex. At the end, each
vertex is assigned to the closest unit. Through this assignment, the ordering of the units
along the ring determines an ordering of the vertices on the TSP tour. EN and SOM work
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(d

Figure 6.6. Evolution of a deformable template in (a), (b), (c), and the final solution (d).

similarly, but they differ in the mechanisms used to control the migration of units toward
the vertices.

Deformable templates can be easily applied to pure geometric problems, like Eu-
clidean TSPs. However, they are not designed to handle additional constraints, like capacity
and maximum route time constraints, which often break the geometric nature of the prob-
lem. Only a few recent efforts have been devoted to the VRP, mostly based on variants of the
SOM (Ghaziri [25], Ghaziri [26], Ghaziri [27], Matsuyama [40], and Schumann and Ret-
zko [60]). A generalization of these models from the TSP to the VRP is obtained by using
many deformable templates, one for each route. Typically, the models are applied with an
increasing number of rings (routes) until a feasible solution is identified. Because multiple
rings are now present, a competition takes place among the rings to get an equal share of
vertices. The procedure suggested by Ghaziri [26] for the CVRP may be summarized as
follows:

Step 1 (ring competition and migration). Repeat until there is a unit sufficiently close to
each vertex:

1.1 Consider the next vertex (wrap around when the last vertex has been done) and
set 1t as the current vertex.

1.2 Associate a selection probability with each ring.

1.3 Select a ring according to the probability distribution defined in step 1.2.

1.4 Tentatively assign the current vertex to the closest unit on the selected ring and
move this unit (as well as some of its neighbors on the ring) toward the current
vertex.

Step 2 (vertex assignment). Permanently assign each vertex to the closest unit to produce
a solution.
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The probability associated with each ring is dynamically adjusted as the algorithm
unfolds. At the start, the distance between the current vertex and the closest unit on the
ring plays the dominant role. Later on, the capacity constraint is taken into account, as
rings that cannot accommodate the current vertex without violating this constraint (due to
the tentatively assigned vertices) becomes less likely to be selected. At the end, only feasi-
ble rings have a nonnegligible probability of being selected. In a later study, Ghaziri [27]
extended this model to address the VRP with maximum route time constraints through
a modification of the probability distribution over the rings. Computational results on
the Christofides, Mingozzi, and Toth [11] test set have shown that these models pro-
duce solutions of relatively good quality but are not competitive with alternative meta-
heuristics, in particular tabu search (Gendreau, Hertz, and Laporte [23] and Rochat and
Taillard [56]).

6.8 Conclusions

This survey of metaheuristics for the VRP shows that the best of these methods can find
excellent and sometimes optimal solutions to instances with a few hundred customers,
albeit at a significant cost in computation time. Tabu search now emerges as the most
effective approach. Procedures based on pure genetic algorithms and on neural networks
are clearly outperformed, while those based on simulated or deterministic annealing and on
ant systems are not quite competitive. Considering the performance improvements obtained
with successive implementations of any given approach, it appears, however, that hybrid
ant systems and genetic algorithms may, in the future, be able to match the effectiveness of
existing tabu search heuristics, since these approaches have not been fully exploited. Another
observation is that the data sets currently used as benchmarks are made up of instances that
are too small to allow one to differentiate sharply between the various implementations of
some of the metaheuristics, tabu search in particular. Data sets corresponding to larger
instances are thus required. In the same vein, one may wonder how these metaheuristics
would perform on the much larger instances often encountered in practical applications.
Given their computing requirements, heuristics with such a level of sophistication may
be unable to solve satisfactorily these large instances in any reasonable amount of time,
especially if real-time applications are contemplated. With respect to the classical heuristics
presented in Chapter 5, metaheuristics are rather time consuming, but they also provide much
better solutions. Typically, classical methods yield solution values between 2% and 10%
above the optimum (or the best known solution value), while the corresponding figure for the
best metaheuristic implementation is often less than 0.5%. This is illustrated in Figure 6.7.
It is time to develop simpler methods capable of quickly providing good quality solutions.
This will probably be achieved by speeding up the best available metaheuristics, rather than
investing more effort on classical approaches. The GTS algorithm proposed by Toth and
Vigo is an important step in the right direction. It draws from the vast expertise accumulated
in the field of metaheuristics and exploits some of their best concepts. Yet, by carefully
exploiting the problem structure, it manages to avoid most of the unnecessary computations
carried out in previous tabu search algorithms.
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7.1 Introduction

The VRP with Time Windows (VRPTW) is the extension of the CVRP where the service at
each customer must start within an associated time window and the vehicle must remain at
the customer location during service. Soft time windows can be violated at a cost, while hard
time windows do not allow for a vehicle to arrive at a customer after the latest time to begin
service. In the latter case, if it arrives before the customer is ready to begin service, it waits.
We will concentrate on hard time window scenarios, for which research has flourished over
the last two decades.

As mentioned in Chapter 1, the VRPTW is NP-hard. Indeed, even finding a feasible
solution to the VRPTW with a fixed fleet size is itself an NP-complete problem (Savels-
bergh [77]). Hence, the early work on the VRPTW was case study oriented (Pullen and
Webb [73], Knight and Hofer [56], Madsen [65]). Later research shifted focus to the design
of heuristics able to solve realistic-size problems and the development of effective optimal
approaches.

This chapter is organized as follows. The first section presents a multicommodity
network flow formulation with time and capacity constraints for the VRPTW. Approximation
methods proposed in the literature to derive upper bounds are then reviewed in section 7.3.
Section 7.4 explains how lower bounds can be obtained using optimal approaches, namely,
Lagrangian relaxation and column generation. Next, section 7.5 provides branching and
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cutting strategies that can be embedded within these optimal approaches to produce integer
solutions through a branch-and-bound scheme. Then, sections 7.6 and 7.7 present special
cases and extensions to the VRPTW, respectively. We review computational experience
with leading algorithms in section 7.8. Finally, conclusions are drawn in section 7.9.

7.2 Problem Formulation

Starting from the notation given in Chapter 1, the VRPTW is defined on the network G =
(V, A), where the depot is represented by the two nodes 0 and n + 1. All feasible vehicle
routes correspond to paths in G that start from node 0 and end at node n+ 1. A time window
is also associated with nodes 0 and n + 1, i.e., [ag, bo] = [@n+1, but1] = [E, L], where
E and L represent the earliest possible departure from the depot and the latest possible
arrival at the depot, respectively. Moreover, zero demands and service times are defined
for these two nodes, that is, dy = dy+1 = so = sp»+1 = 0. Feasible solutions exist only
ifag=FE < mjn,'ev\{(); b —tyand b,y = L > miniev\{o} a; + s; + t;o. Note also that
an arc (i, j) € A can be eliminated due to temporal considerations, if a; + s; + #;; > b;,
or to capacity limitations, if d; + d; > C, or to other factors. Finally, let us mention
that when vehicles are allowed to remain at the depot, especially in the case where the
primary objective consists of minimizing the number of vehicles used, the arc (0,n + 1)
with ¢g n+1 = fo.n+1 = 0 must be added to the arc set A.

We next present a mathematical programming formulation for the VRPTW involving
two types of variables: flow variables x;ji, (i, j) € A,k € K, equalto 1 if arc (i, j) is used
by vehicle k£ and 0 otherwise, and time variables wy, i € V, k € K, specifying the start of
service at node { when serviced by vehicle k.

7.2.1 Formulation

The VRPTW can then be formally described as the following multicommodity network flow
model with time window and capacity constraints:

(7.1) (VRPTW) min 3 > ez

keK (i.j)cA
subject to
(7.2) Y > xmp=1 VieN,
keK jeAt()
(1.3) > xop=1 VkeKk,
JeAT(®)
(7.4) Y. xj— D xju=0 Vkek,jeN,
ieA™(j) ieA*(j)
(7.5) Y tipa=1  Vkek,

ieA=(n+1)
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(7.6) Xijpwie +5i +t; —wip) <0 YVkeK, (,)) €A,

(1.7) a; Zx,-l,-kfu),-kfb,- Zx,-jk VkeK,ieN,
jeAati jE€ATH)

(7.8) E<wyp<L YkeK,ie{0n+1}

(7.9) Yod Y xp=<C Vkek,
ieN  jeAt(i)

(7.10) x>0 YkeK, (i,j)e A,

(7.11) xip €10,1}  YkeK, (i, j)eA.

The objective function (7.1) of this nonlinear formulation expresses the total cost.
Given that N = V \ {0, n + 1} represents the set of customers, constraints (7.2) restrict
the assignment of each customer to exactly one vehicle route. Next, constraints (7.3)—(7.5)
characterize the flow on the path to be followed by vehicle k. Additionally, constraints (7.6)—
(7.8)and (7.9) guarantee schedule feasibility with respect to time considerations and capacity
aspects, respectively. Note that for a given k, constraints (7.7) force w;; = 0 whenever
customer i is not visited by vehicle k. Finally, conditions (7.11) impose binary conditions
on the flow variables.

The binary conditions (7.11) allow constraints (7.6) to be linearized as

(7.6a) Wik + §i +[,'_,‘ — Wi < (1 —x,-_,-k)Ml-j VkeK, (i, ]) €A,

where M;; are large constants. Furthermore, M;; can be replaced by max{b;+s;+1;; —a;, 0},
(i, j) € A, and constraints (7.6) or (7.6a) need only be enforced for arcs (i, j) € A such
that M;; > 0; otherwise, when max{b; +s; +1;; —a;, 0} = 0, these constraints are satisfied
for all values of w;z, w i, and x; ;.

7.2.2 Network Lower Bound

The network lower bound can be derived by relaxing the time and capacity constraints (7.6)—
(7.9). Generally, the bound deteriorates as time window width increases or as capacity
constraints become tighter. This bound is often of poor quality, as there is usually an
integrality gap with respect to the number of vehicles. Note, however, that if the latter
constraints are not binding and if a; = b; for all i € N, we obtain the fixed schedule
problem for which the network lower bound is optimal.

7.2.3 Linear Programming Lower Bound

The linear programming lower bound is obtained as the solution to the linear program
using constraints (7.6a) in place of (7.6) and with the binary requirements (7.11) omitted.
This 1s the above network flow problem with the additional time and capacity constraints.
Nevertheless, in many cases, this bound is no better than the network relaxation bound.
This is because it is relatively easy to obtain a fractional near-optimal linear programming
solution to problem (7.1)—(7.10) for which the time constraints are inactive. To see this, set
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the time variables at the center of their respective time windows, i.e., wy, = (a; + b;)/2,
i € N,k € K. Then, constraints (7.6a) are satisfied if for all (i, j) € Aand k € K

a,-—i—b,- a+b
( )+Si + i — (JTL) < (I =) (bi +5; + 1 — aj).

2

Since any existing arc (i, j) € A satisfies a; 4+ s; +1;; —b; < 0, and constraints (7.6a)
are only defined for arcs (i, j) such that b; + 5; + #;; — a; > 0, the previous constraint set
can be rewritten as

bj—ai—si—t; ..
=t [ R e . VkeK, (ij)eA.
xUk_Z( b,-+s,-+t,~j—aj @)
In the above inequality, the right-hand side is greater than or equal to % Therefore,
(7.6a) is always satisfied if x;; < %forall (i,j) € A,k € K,suchthatb; +s;+t;—a; > 0.
A similar argument can be used for the capacity constraints.

7.2.4 Algorithms

Much stronger lower bounds can be derived by decomposing the VRPTW model into intel-
ligently selected blocks and using these in the solution process. This requires an extensive
effort and is the subject of section 7.4. In the next section, we focus on the derivation of upper
bounds through approximate methods. Virtually all methods to be described in these two
sections conduct some form of preprocessing. This involves reducing time window width
and eliminating infeasible arcs. These processes are described at length by Desrosiers et
al. [35].

7.3 Upper Bounds: Heuristic Approaches

Given the inherent computational difficulty of the VRPTW, a variety of heuristics have been
reported in the literature, mostly for the hard time window version. In this section, we
review some of these approximation methods.

7.3.1 Route Construction

Route construction algorithms build a feasible solution by inserting at every iteration an
unrouted customer into a current partial route. This process is performed either sequentially,
one route at a time, or in parallel, where several routes are considered simultaneously. Two
key questions are posed in the design of such methods: Which customer to select next
for insertion? Where will it be inserted? To address these questions, researchers have
considered criteria involving the minimum additional distance and time, maximum savings,
and others.

Sequential insertion heuristics were proposed by Solomon [83]. His extensive compu-
tational results highlighted a two-phase insertion algorithm. In the first phase, each unrouted
customer is assigned its best feasible insertion position based on the minimum additional
distance and time required. In the second, the method selects the customer to insert using a
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maximum savings concept. Solomon [82] also showed that the worst-case ratio of this and
many other approximation methods on r-customer problems is of at least order n. A parallel
variant of the above insertion procedure was suggested by Potvin and Rousseau [71].

7.3.2 Route Improvement

Route improvement methods iteratively modify the current solution by performing local
searches for better neighboring solutions. Generally, a neighborhood comprises the set of
solutions that can be reached from the present one by swapping a subset of r arcs between
solutions. An r-exchange is implemented only if it leads to an improved feasible solution.
It can be performed within or between routes. The process terminates when an r-optimal
solution is found, that is, one that cannot be improved by further r-interchanges.

Early route improvement procedures were proposed by Russell [75], Cook and Rus-
sell [21], and Baker and Schaffer [5]. Although these authors kept  small, r = 2 or 3, the
neighborhoods generated still proved very large. This led to effective but severely time-
consuming methods. To alleviate this problem, later procedures relied on OR-opt exchanges
(Or [67]), which consider only currently adjacent customers for 2- and 3-opt interchanges.
Solomon, Baker, and Schaffer [84] extended this method to the VRPTW by also accounting
for the time orientation of a route. That is, at each iteration, up to three adjacent customers
are shifted to a later position on the same route, between two currently consecutive cus-
tomers. Schedule shifts also are used to speed up the screening of infeasible solutions.
The efficient implementation of this process and of the objective function evaluation was
addressed by Savelsbergh [77, 78, 79]. Further suggestions were offered by Kindervater
and Savelsbergh {55] and Cordone and Wolfler Calvo [26].

Another OR-opt based algorithm was suggested by Thompson and Psaraftis [91].
They defined the neighborhood of the current solution in terms of feasible transfers of sets
of demands belonging to adjacent customers. The exchanges are attempted among a subset
of routes that form a cyclic permutation. The authors implemented a method based on 2-
and 3-cyclic 1-transfers.

7.3.3 Composite Heuristics

Composite heuristic methods blend route construction and improvement algorithms. Kon-
toravdis and Bard [61] devised a heuristic that combines a greedy heuristic and randomiza-
tion to produce initial routes in parallel. These are then improved through local search. As
part of this phase, certain routes may be eliminated. The authors also proposed three lower
bounds for the fleet size. Two are based on bin packing structures generated by the capacity
or time window constraints. The other is derived from the associated graph created by pairs
of customers who have incompatible demands or time windows.

Russell [76] developed a procedure that embeds route improvement within the tour
construction process. The rationale is that this may alleviate some of the difficulties of tour-
improvement algorithms to subsequently improve initial solutions. He proposes to switch
customers between routes as well as the elimination of routes during the construction process.

Cordone and Wolfler Calvo [27] used similar ideas in the design of a composite
heuristic, where local search is performed hierarchically. First, within a classical 2- and
3-opt exchange framework, they attempted to decrease the number of routes by moving a
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route into others, one customer at a time. Second, another heuristic was used to try to step
away from a local optimum. This procedure resolves the problem with a partly modified
objective function since the current solution may not be a local optimum for the related
objective.

7.3.4 Metaheuristics

Metaheuristics are the core of recent work on approximation methods for the VRPTW, and
they mainly include simulated annealing, tabu search, and evolutionary algorithms such as
genetic search. Unlike local search heuristics that terminate once a local optimum has been
reached, these methods explore a larger subset of the solution space in the hope of finding
a near-optimal solution. Whereas simulated annealing depends mostly on random steps to
escape local optima, tabu search uses short- and long-term memory to avoid cycling and to
orient the search toward unexplored regions of the solution space. Evolutionary algorithms
are derived from an analogy with the natural evolution process and consist of iteratively
selecting, recombining, and mutating encoded solutions to obtain superior individuals.

In recent years, several efficient tabu search approaches have been proposed. Taillard
et al. [88] described a metaheuristic based on tabu search for the VRP with soft time windows.
By strongly penalizing any lateness, the same approach can also be used to address the
problem with hard time windows. The metaheuristic relies on the concept of adaptive
memory introduced by Rochat and Taillard [ 74] and on the decomposition and reconstruction
procedure proposed by Taillard [87] for the VRP. The adaptive memory is in fact a pool of
routes taken from the best solutions visited during the search. This memory is first partially
filled with routes produced by a randomized insertion procedure based on Solomon’s I1
heuristic [83]. At each iteration of the metaheuristic, a solution is constructed, through a
randomized selection process, from the routes in the adaptive memory. This solution is then
improved through repeated calls to the tabu search heuristic. The routes of the resulting
solution are then stored in the adaptive memory (provided that the memory is not full or that
the solution is better than the worst solution stored in memory), and the process continues
until some stopping criterion is met.

The calls to the tabu search heuristic are driven by a decomposition and reconstruction
mechanism that partitions (through a sweep procedure) the current solution into a number
of disjoint subsets of routes. Each subset is then processed by a different tabu search, and
the best routes found for every subset are merged to form the new solution for the next
decomposition and reconstruction step. These steps are repeated for a certain number of
iterations, and the decomposition changes from one iteration to the next by choosing a
different starting angle for creating partitions through the sweep procedure. The tabu search
is quite standard and consists of choosing at each iteration the best nontabu solution in the
neighborhood of the current solution. This neighborhood is created through an exchange
procedure, called CROSS exchange, that swaps sequences of consecutive customers between
two routes. This operator generalizes both the 2-opt* (Potvin and Rousseau [72]) and Or-
opt (Or [67]) exchanges, but it is a special case of the A-interchanges (Osman [68]) since
it restricts the subsets of customers chosen in each route to be consecutive. To optimize
individual routes, the neighborhood is enlarged by including CROSS exchanges that apply
to a single route: two edges are removed from a route, and the segment between the two
edges is moved to another location within the same route.
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Whereas most tabu search heuristics are based on a two-phase approach in which an
improvement procedure is invoked after an initial solution has been completely constructed,
a metaheuristic embedding reactive tabu search in the parallel construction approach of
Russell [76] was developed by Chiang and Russell [18]. Reactive tabu search was first
proposed by Battiti and Tecchiolli [6] and consists of dynamically varying the size of the
tabu list during the search process: the list size is increased if identical solutions occur
too frequently, and it is decreased if no feasible solution can be found because all feasible
moves are tabu. Using various customer ordering rules and criteria for measuring the best
insertion points, the procedure first constructs six different solutions by gradually inserting
customers and calling the tabu search heuristic on the partial solutions. The best of these
solutions is then used as a starting point for the final call to the heuristic. In all steps,
the A-interchange mechanism [68] is used to generate the neighborhood, and two types
of exchanges are allowed: swilch one customer from one route to another and exchange
two customers that belong to different routes. A very similar approach, embedding a tabu
list—enhanced simulated annealing algorithm within a parallel construction procedure, was
proposed by Chiang and Russell [17].

Other tabu search heuristics for the VRPTW were developed by Carlton [16], Potvin
et al. [70], and Brandao [15]. Cordeau, Laporte, and Mercier [25] introduced a tabu search
heuristic that generates a single initial solution and applies a very simple exchange procedure
for a predetermined number of iterations. An exchange removes a chosen customer from
its current route and inserts it into the route of a different vehicle by using a least-cost
insertion criterion. When the search terminates, exchanges within the routes of the best
identified solution are performed by a postoptimizer that uses a specialized TSPTW heuristic
(Gendreau et al. [43]). A diversification mechanism based on solution attributes is used to
ensure a broad exploration of the solution space. The heuristic was also enhanced to deal
with different extensions of the VRPTW. Specifically, using the algorithmic framework
proposed by Cordeau, Gendreau, and Laporte [23] for the Periodic VRP and the Multidepot
VRP, the authors derived a unified tabu search procedure able to handle these generalizations
of the VRPTW. The heuristic was adapted to these environments by introducing a new type
of exchange that modifies the combination of visit days or the depot assigned to a customer.
In addition, Cordeau and Laporte [24] showed that the Site-Dependent VRPTW can be
solved using the same methodology. In the latter problem, several types of vehicle are
available, and compatibility constraints restrict the choice of vehicle that can visit each
custormner.

Another alternative to the two-phase construction and improvement approach used
in most metaheuristics is a guided local search method described by Kilby, Prosser, and
Shaw [54]. The guided local search paradigm is a memory-based approach that shares
similarities with tabu search but operates by augmenting the cost function with a penalty term
based on how near the search moves to previously visited local minima, thus encouraging
diversification. The method is used to drive a local search heuristic that modifies the current
solution by performing one of four moves: 2-opt exchanges within a route, switching a
customer from one route to another, exchanging customers that belong to two different
routes, and swapping the ends of two routes. Instead of building an initial solution with a
complex procedure, all customers are first assigned to a virtual vehicle, whereas the routes
for the actual vehicles are left empty. Because a penalty is associated with not performing a
visit, a feasible solution will be constructed in the process of minimizing cost. The guided
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local search algorithm starts from this solution and performs a series of moves until a local
minimum is reached. The objective function is then changed by adding a term that penalizes
the presence of the arcs used in the solution. The search simply iterates by finding new local
minima and accumulating more penalties until a stopping criterion is met.

Metaheuristics combining genetic algorithms, simulated annealing, and tabu search
were proposed by Thangiah, Osman, and Sun [89]. Initial solutions for the metaheuristics are
obtained by either the push-forward insertion method [83] or a sectoring heuristic based on
genetic algorithms. This heuristic first clusters the customers using the genetic algorithm
and then routes the customers within each sector using a cheapest insertion method. At
each iteration, the crossover operator exchanges a randomly selected portion of the sector
divisions between selected individuals to produce offspring for the next generation. The
simulated annealing algorithm starts from an initial solution produced by cither of these
methods and tries to identify an improved solution at each iteration using the A-interchange
mechanism of Osman [68]. To diversify the search process and avoid moves that result in
cycles, the simulated annealing algorithm is in fact combined with tabu search, and moves
are thus selected at each iteration from a list of nontabu candidates. The search process
allows for intermediate infeasible solutions by using an objective function that imposes
penalties on capacity and time window constraint violations. The authors also compared
these metaheuristics with a less sophisticated local search descent method with moves
selected from the set of A-interchanges.

Homberger and Gehring [48] proposed two evolution strategies for the VRPTW. Like
genetic algorithms, evolution strategies belong to the class of evolutionary algorithms, and
both methods manipulate populations of individuals that represent solutions to an opti-
mization problem. However, evolution strategies do not encode individuals. Instead, the
evolution process is simulated on problem solutions, and the search operators manipulate
these solutions directly. The two solution methods described by the authors are based on the
popular (2, 1) evolution strategy. Starting from a population P (¢) with p individuals, sub-
sets of individuals are randomly selected and recombined to yield a total of A > w offspring.
Each offspring is then subjected to a mutation operator, and the  most fitted offspring are
finally chosen to form the new population P (¢ + 1). The fitness of an individual normally is
proportional to the objective function value of the corresponding solution. Since the parents
are not involved in the selection process, deterioration may occur during the evolution, and
the search may thus escape from a local optimum.

In the first method, new individuals are generated directly through mutations and no
recombinations take place. Mutations are obtained by performing one or several moves
from the families of Or-opt [67], 2-opt* [72], and A-interchanges [68]. In the second
method, offspring are generated through a two-step recombination procedure in which three
individuals are involved. To initialize both methods, the individuals of a starting population
are generated by means of a stochastic approach based on the savings algorithm of Clarke
and Wright [20]. Throughout the evolution, the fitness criterion discriminates individuals
first by the number of vehicles used and then by total distance traveled. One important
drawback of this approach is that the two methods tend to produce solutions of inconsistent
quality from one test instance to another. As a result, choosing between the two strategies
is very difficult, and both methods should be used to ensure that a good quality solution
is obtained for any given instance. Related work on genetic algorithms was conducted by
Potvin and Bengio [69], Blanton and Wainwright [9], and Thangiah and Petrovic [90].
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To date, these metaheuristics have produced excellent quality solutions, but they
also have to contend with two main difficulties. First, they are very time consuming in
comparison with local search heuristics. Second, finding appropriate transformations that
change a current feasible solution into another is a challenge. This is relatively simple for
the classical VRP (see the survey paper by Golden et al. [45]) as well as for the VRPTW, but
it becomes extremely difficult for most extensions encountered in real-world applications,
such as multiple depots, heterogeneous fleet of vehicles, driver work rule restrictions, and
others. An interesting application of tabu search to a real-world problem was described by
Semet and Taillard [81].

7.3.5 Parallel Implementations

The parallel implementations line of research has been followed to explore whether tabu
search methods retain solution quality when computing time is truncated. Parallelization
consists of partitioning the neighborhood among several processors. The results of their
searches are fed to a master processor, which, in turn, supplies them with fresh informa-
tion. Schulze and Fahle [80] reported encouraging results. Badeau et al. [4] examined a
parallel implementation of the heuristic by Taillard et al. [88]. The authors concluded that
parallelization of the sequential algorithm maintains solution quality for equal computing
efforts. This implies a substantial speed increase in practice.

7.3.6 Optimization-Based Heuristics

Koskosidis, Powell, and Solomon [62] exploited a mixed-integer programming model to
generalize the Fisher and Jaikumar [40] heuristic for problems with soft time windows.
At each iteration, customers are assigned to vehicles by solving a Capacitated Clustering
Problem. The route and schedule of each vehicle is then derived by solving the corresponding
TSP with soft time windows. The TSP solutions also generate the improved approximate
clustering costs to be used at the next iteration.

Approximation methods also can be derived directly from optimization algorithms,
by heuristically solving different phases of the process. More specifically, this includes
partial exploration of a branch-and-bound tree. For example, one can obtain an integer
solution by using a depth-first strategy and then explore the tree for the remaining available
CPU time. Alternatively, elimination of branches on heuristic ground rules accelerates the
decision process and may provide quite good solutions.

7.3.7 Asymptotically Optimal Heuristics

An asymptotically optimal heuristic method, called the Location Based Heuristic (LBH), is
proposed by Bramel and Simchi-Levi [12] and represents another generalization of the Fisher
and Jaikumar [40] approach. That is, while Koskosidis, Powell, and Solomon [62] assign
customers to vehicles by solving a capacitated clustering problem, Bramel and Simchi-
Levi [12] transform the VRPTW into a Capacitated Location Problem with Time Windows
(CLPTW). This problem consists of determining where vehicles should be housed given a
set of possible depot locations and which customers they should serve.
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The constraints forcing each customer to be served by exactly one vehicle are relaxed,
and the resulting problem is separable by site and solved through Lagrangian relaxation.
For a given set of multipliers, the solution to the Lagrangian problem provides information
used to construct feasible solutions to the CLPTW and the VRPTW. By identifying each
possible depot location with a customer site, the reduced costs of the N problems are used
to determine seed customers and the set customers that feasibly can be associated with each
seed. The cost of this solution is then compared to the cost of the best known solution and
the multipliers are updated to start a new iteration. The heuristic terminates when the step
size reaches a preset value. Bramel and Simchi-Levi use probabilistic analysis to prove that
the heuristic is asymptotically optimal. Note that the LBH variant for the VRP was shown
earlier to be asymptotically optimal by Bramel and Simchi-Levi [11]. Furthermore, since
the LBH is an extension of the generalized assignment heuristic of Fisher and Jaikumar [40],
this also exhibits asymptotically optimal behavior (see [14]).

7.4 Lower Bounds from Decomposition Approaches

In this section, we present two decomposition approaches that derive lower bounds for the
VRPTW. Other work on optimization methods includes the early papers by Christofides,
Mingozzi, and Toth [19] and Kolen, Rinnooy Kan, and Trienekens [60]. Their methods
were based on dynamic programming and state space relaxation.

The exact methodology presented in sections 7.4 and 7.5 is general enough to effec-
tively contend with the VRPTW as well as a wide variety of supplementary issues. In fact,
as long as the extended model falls within the unified framework proposed by Desaulniers
et al. [29], the same methodology can be applied. This is a major advantage over the heuris-
tic methods presented in section 7.3 which most of the time require substantial effort to
accommodate new situations.

7.4.1 Lagrangian Relaxation

Lagrangian relaxation is a popular decomposition approach that can be used for differ-
ent VRPTW formulations and variants. The usual trade-off between ease of solving the
Lagrangian subproblem and the quality of the bound obtained is straightforward for the
VRPTW. If the difficult time- and capacity-related constraints are relaxed, the resulting
Lagrangian subproblem is a pure network flow problem, for which the integrality property
holds (see Geoffrion [44]). The Lagrangian bound then will be no better than the linear
programming lower bound. As discussed above, the integrality gap generally will be too
large to be explored by branch-and-bound. To improve the Lagrangian bound, one should
then retain the complicating constraints in the Lagrangian subproblem and relax part of the
network flow constraints. Choosing these appropriately preserves a constrained shortest
path structure for the Lagrangian problem. At present, this type of structure constitutes
the basis of the most successful decomposition approaches for the VRPTW (Lagrangian
relaxations, bundle methods, and column generation).

Specifically, given the set of multipliers o« = (o;, i € N) associated with constraints
(7.2) requiring that each customer be visited once, the Lagrangian subproblem L (&) obtained
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by relaxing these constraints in the objective function is defined as

minz Z c,-,x,-{,—k—i-zz o {1 - Z Xijk

keK (i, eA keK ieN JEAT()

subject to (7.3)—(7.11).

This subproblem involves a modified objective function and constraint sets (7.3)—
(7.11)—that is, the path constraints (7.3)—(7.5); constraint set (7.6) and the time window
constraints (7.7)—(7.8), which together ensure the feasibility of the time schedule; con-
straints (7.9), which guarantee capacity availability; and the binary requirements (7.11) on
the flow variables. An appealing property of this structure is that it can be decomposed into
| K| disjoint subproblems, one for each vehicle. Furthermore, each subproblem represents
an elementary shortest-path problem with capacity and time window constraints, whose
solution can be obtained on a bounded polyhedron.

For any multiplier vector «, the optimal objective function value of the Lagrangian
subproblem L (e) is a (dual) lower bound for the solution of the respective VRPTW problem.
In addition, when all vehicles are identical, only one subproblem needs to be solved to
compute this bound. The problem of finding the Lagrangian bound L defined as

L = max L(a)
o

is a concave nondifferentiable maximization problem. Subgradient and bundle methods
(Kohl and Madsen [59]) have been applied to determine optimal multiplier values. Due
to the time window and capacity constraints, the subproblems do not possess the integral-
ity property. Consequently, solving them as integer programs narrows the integrality gap
between the optimal solution of the linearized version of formulation (7.1)~(7.10) and the
optimal integer VRPTW solution to (7.1)—(7.11).

7.4.2 Capacity and Time-Constrained Shortest-Path Problem

The elementary version of this problem is NP-hard and no polynomial or pseudo-polynomial
algorithms are known for its solution. However, when nonelementary path solutions are
allowed, i.e., solutions where paths may involve cycles of finite duration or load due to
the time window and capacity restrictions present in the subproblem, pseudo-polynomial
algorithms have been developed for its solution (see Desrosiers et al. [35]).

The inclusion of nonelementary paths is a computational necessity that potentially
weakens the lower bound obtained. However, some strength in the bound can be regained
by using a 2-cycle elimination procedure (Houck et al. [49], Kolen, Rinnooy Kan, and
Trienekens [60]) within the solution process for the constrained shortest-path problem. Note
that a 2-cycle is a cycle where a customer is visited twice with only one customer between.
Yet, paths containing cycles cannot appear in any solution to the VRPTW since the covering
constraints (7.2) enforce that each customer must be visited exactly once. Hence, they have
to be eliminated during the search for integer solutions.

In addition to the above schemes, Fisher, Jérnsten, and Madsen [41] used a Lagrangian
relaxation based on a K -tree structure, where K is the set of available vehicles. This is an
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extension of the classical 1-tree approach for the TSP to the case of capacity constrained
vehicles [39]. In their approach it is assumed that each route contains at least two customers.
The authors relax the flow conservation as well as the capacity and time constraints. Vehicle
capacity is handled by introducing constraints requiring that some nonempty subsets of
customers S, S C N, |S| > 2, must be serviced by at least k(S) vehicles, that is,

Y DD xip = k(S),

keK ;5 i€§

where S = V\S. Time windows are treated similarly: if the path (not necessarily from
node 0 to n + 1) represented by the set of arcs A’ C A violates the time window restrictions,

the constraint
Do xk<IAl~1
kek (i, j)eA’

is generated and Lagrangian relaxed. New capacity and time constraints are generated as
they are violated.

7.4.3 Variable Splitting

Generally, variable splitting leads to various Lagrangian relaxation schemes, each exploiting
different solvable structures. In this dual approach, the variables in some of the constraints
are renamed. New constraints, coupling the original and the new variables, are introduced
and Lagrangian relaxed. This decomposes the problem into two or more independent
problems. In the VRPTW, the sums

JeAT (@)

are replaced by the integer variables y;; in some constraints. One may think of each such
variable as the number of times customer i is serviced by vehicle k. The new constraints

Z Xijk = Yik VieN, keKk,
JEAT()

are introduced and Lagrangian relaxed. The resulting Lagrangian subproblem now decom-
poses into two problems, one in the y;; variables and one in the flow, time, and capacity
variables.

For the VRPTW, it is natural to decompose the problem into a semiassignment-type
problem, defined using the new variables in constraint set (7.2) and solved by inspec-
tion, and a set of shortest-path problems with capacity and time constraints, one for each
available vehicle. In this case, variable splitting does not allow for any improvement of
the Lagrangian lower bound since the semiassignment problem possesses the integrality
property. The capacity constraints can alternatively be considered in the semiassignment
problem, yielding a generalized assignment problem. In conjunction with the time win-
dow constrained shortest-path problem, this may result in a theoretical improvement of the
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Lagrangian bound, unfortunately unobserved in practice. Halse [46] implemented this latter
decomposition approach. Finally, the reader can find an analysis of the quality of the bounds
obtainable from variable splitting for the VRPTW in Kohl [57].

7.4.4 Column Generation

The column generation approach represents a generalization of the Dantzig—Wolfe decom-
position [28]. It has successfully been applied to the VRPTW by Desrochers, Desrosiers,
and Solomon [33] and Kohl et al. [S8]. We emphasize the importance of presenting the
decomposition process in its entirety starting from the multicommodity network flow for-
mulation rather than directly formulating the problem as a set-partitioning problem on which
column generation is applied. Indeed, this clearly illustrates how to exploit the multicom-
modity network flow model to devise efficient branching and cutting strategies compatible
with the column generation approach in order to obtain integer solutions as discussed in
section 7.5.

The decomposition is based on two structures: a master problem and a subproblem.
The master problem retains constraint sets (7.1)—(7.2) and (7.11), i.e., the objective func-
tion, the covering of each customer exactly once, and the binary requirements on the flow
variables. The subproblem involves a modified objective function, to be detailed later, and
constraint sets (7.3)—(7.11). Again, it decomposes into |K | independent subproblems, each
an elementary shortest path problem with capacity and time window constraints.

7.4.5 Set-Partitioning Formulation

The master problem can be reformulated to highlight a set-partitioning structure. To see
this, consider the process of solving the relaxed subproblem that generates elementary paths
and possibly paths containing finite cycles. Each such path p can be described using integer
flow values fi‘,-kp, (i, j) € A. Let Q be the path set. Then, for a given k € K, any
solution x;,; to the master problem can be expressed as a nonnegative convex combination
of paths:

X =Y Sy YO ) EA Y Gp=1. 0,20 VpeQ.
pe peEQ

Define now parameter cy,, as the cost of path p for vehicle k. Let also the nonnegative
integer constant a;;, indicate the number of times customer I is visited by vehicle k on path
p. Formally,

Ckp = Z c,-j)?l-jkp VkeKk, pGQ,
(i.j)eA

aip= Y. iy VieN keK, peq.
JEAT(D)



170 Chapter 7. VRP with Time Windows

Substituting these expressions into (7.1)—(7.2) and (7.11) and rearranging the summation
order expresses the master problem as a set-partitioning structure:

(7.12) min YY" cipbhy

keK peQ
subject to
(7.13) Y'Y awbp=1 VieN,
keK peQ
(7.14) > 6p,=1 VkeKk,
peER
(7.15) 0p>0 VYkeKk, peQ,
(7.16) Xigp =) FijpOp VK€K, (G, )) € A,
peft
(7.17) xijk€f0,1})  VYkeKk, @ j)eA.

In (7.14), the coefficient of 6, is equal to 1 for all k € K and p € Q. Indeed, this
constraint corresponds to (7.3) or to (7.5) in the original formulation, i.e.,

Z Xojk = Z Xinplk =1 VkeKk.

JjeAH(O) ieA-(n+1)

7.4.6 Lower Bound

A (primal) lower bound on the optimal integer solution of the VRPTW model can be derived
from the following bilevel solution process. At the top level, the relaxed master problem
is optimized over the current subset of columns as a linear program defined by (7.12)-
(7.15). At the bottom level, the subproblem looks for minimum marginal cost columns
given the available cost information. If the minimum is negative, the corresponding column
is sent above to be appended to (7.12)—(7.15) and this coordinating problem is solved again.
Otherwise, the lower bound has been found as the current linear programming optimal
solution. This bound has proved very effective in practice for the VRPTW and many
other vehicle-routing and crew-scheduling environments [35]. Recently, it was shown to
be asymptotically optimal by Bramel and Simchi-Levi [13], which explains in part its
performance.

This bound is equal to the previously defined Lagrangian bound L. To see this, let
a;,i € N, and ¥, k € K, be the dual variables associated with constraint sets (7.13) and
(7.14), respectively. These are obtained by solving (7.12)—(7.15) over the current subset of
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columns with the simplex method. They can be used to define the marginal cost ¢, of path
p for subproblem £ as

Cip = Chp — E Qidikp — Yk

ieN
= 3 i el X ) n( X )
(i.j)EA ieN JEAT(i) JEAT (D)
= Z (cij — ai)Xijip + Z (Coj = V) Xojkp-
(i.j)eA ieN (0.))eA

In turn, the marginal cost ¢;;, (i, j) € A, of an arc can then be expressed as

_ Cij — O if i€ N,
.o =1 i
H ¢ij — yx otherwise.

The marginal cost column minimization problem over the set €2 can now be formulated

min E E E,-jx,-‘,-k

keK (i, j)eA

as

subject to (7.3)(7.11).

This optimization problem is equivalent to solving the Lagrangian subproblem L(er)
defined in section 7.4.1.

A set of negative marginal cost paths is generated every time the subproblem is solved
by dynamic programming. At every iteration but the last, this set generally has a fairly
high cardinality. This observation forms the basis for accelerating the solution of the linear
relaxation of the master problem, i.e., the linear program (7.12)—(7.15), by selecting several
columns simultaneously. Moreover, node-disjoint paths can be selected by using a greedy
algorithm. Such choices replicate the structure of integer solutions and often prove beneficial
downstream in the branching phase. The current best dual lower bound also can be used
at branching nodes to stop the iterative process before reaching the optimality criteria.
This diminishes the tailing-off effect experienced by column-generation methods for linear
programming settings.

7.4.7 Commodity Aggregation

When all vehicles are identical, as is the case for the generic VRPTW, the linear relaxation
of the master problem admits a commodity-independent formulation. This commodity
aggregation results in a single subproblem and allows the master problem to be formulated
with fewer variables and constraints. The commodity-independent formulation is equivalent
to the classical linear relaxation of the set-partitioning formulation with an additional limit
placed on the number of vehicles used. Indeed, index & can be removed from parameters
cxp and a;;,. We then aggregate the convex combination constraints (7.14) by letting

0= 6, Vpeq.
kekK
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This results in ) peg #, = |K|, making index k unnecessary for (7.12)—(7.13) and
resulting in the formulation

(7.18) (VRPTW) min ) c,0,
peR
subject to
(7.19) > apo,=1 VieN,
peQ
(7.20) > 6, =IKl,
peER
(7.21) 0,20 Vpegq,
(7.22) 0= 6, Vpeq,
kek
(7.23) Y Op=1 VkeKk,
peQ
(7.24) 6,>0 VkeK, peQ,
(7.25) X =Y Fippbp VEkeEK, (.)) €A,
peQ
(7.26) xj€{0,1}  VkeKk, (i,)) €A

Relaxing the binary requirements also eliminates constraints (7.25), which become
irrelevant. For any fractional 8 ,-solution to (7.18)—(7.21), there exists a solution in 6;,, that
satisfies (7.22)—(7.24). Setting

P

Okp_IKI VkeK, peq,
provides such a solution. Consequently, since any solution consisting of the aggregated
variables 8,, p € €,, can be converted into a solution in terms of the disaggregated
variables 0,, k € K, p € Q, problem (7.18)—(7.21) can be used as the linear relaxation of
the master problem.

In the case where the solution of the aggregated linear relaxation of the master problem
is integer, it is easy to convert it to a binary solution in terms of the variables 8;,. One simply
has to assign the first solution path to the first vehicle, the second path to the next vehicle, and
so on. Finally, if the aggregated solution is mixed integer, both above conversion processes
need to be applied accordingly.

7.4.8 Hybrid Approach

Kallehauge [51] and Kallehauge, Larsen, and Madsen [52] implemented a hybrid approach
combining the Lagrangian relaxation approach used by Kohl and Madsen [59] with the
generalized Dantzig—Wolfe decomposition of Desrochers, Desrosiers, and Solomon [33]
and Kohl et al. [58]. In the first phase, Lagrangian relaxation is used to take advantage of the
faster multiplier convergence and the easier subproblems. Then, in phase two, Kallehauge,
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Larsen, and Madsen switch to Dantzig—Wolfe decomposition and use the columns found in
phase one to initiate the procedure.

7.5 Integer Solutions

Usually, to solve the original multicommodity flow formulation (7.1)—~(7.11) optimally, one
has to make branching and cutting decisions on the binary flow variables and on time vari-
ables when their integrality is required. The decomposition process involving Lagrangian
relaxation or column generation is then repeated at each branching node. Since the solutions
obtained from the Lagrangian subproblem L(a) of section 7.4.1 define paths that usually
are not feasible for the whole problem, it is difficult to design good branching and cutting
strategies. Alternatively, column generation offers much more flexibility since the values
of the original variables of the multicommodity flow model can be easily derived.

Specifically, these can be divided into path-exclusive and path-shared decisions. The
former concern only a single path, such as fixing a flow variable at 0 or at 1, or dividing the
time window of a time variable. These local decisions are made directly on the subproblem
network without altering the shortest-path solution approach. The columns that no longer
satisfy a branching decision are removed from the current master problem. The latter deci-
sions concern several paths, such as when an integer cut on the total cost is imposed. These
global decisions are kept at the master problem level. We now present several examples of
branching and cutting decisions on arc flow and time variables for the VRPTW. Additionally,
we discuss the possibility of making binary decisions on path flow variables.

7.5.1 Binary Decisions on Arc Flow Variables

Since any customer ¢ must be covered exactly once, the linear combinations of flow variables

Xiggk = Z injk YieN, JCATG), K'CK,
keK' jel

are good candidates for binary branching decisions. When x;, ¢+ is fractional at the current
branching node, it can be set to 1 on one branch and to O on the other. In the former
case, x;;x = 1 requires only that some customer (or the depot) in subset J be visited
immediately after customer i by some vehicle. However, x;;; = 1 forces customer i and
J to be consecutively serviced by vehicle k. Similarly, if [/]| = 1, then this customer must
immediately succeed customer i. Finally, when J = A (i), the decision x; ;5 = 1 assigns
customer i to a vehicle in subset K'. In particular, if | X'| = 1, then this vehicle must service
customer 7. All the branching decisions discussed above do not affect the mathematical
structure of the constrained shortest-path subproblem. As an example, setting the variable
xijk,with j € N, to | eliminates the arcs {(i, j) € A : j' # jland{(/’, j) € A : i’ #1i}
from network G. Or, fixing variable x;;x at 0 allows arc (i, j) € A to be deleted from
network G.

7.5.2 Integer Decisions on Arc Flow Variables

While a number of other viable flow variable mixes to be used for branching and cutting
can be easily accommodated at the subproblem level, others cannot. As an illustration of
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linear combinations that need to be addressed at the master problem level, consider the one
that calculates the number of vehicles routed in subset K’:

X =Y. Y xopn YK CK, J=ATG)\{n+1}.
kek' jeJ

When the value of this variable Xy is fractional, branching forces it to values either less
than or equal to | %o, g+ ] or greater than or equal to [ %y, ¢ ], respectively. As another example,
in a problem where the minimum number of vehicles is sought, a cut on the variable xy, ¢,
J = A*(i)\ {n + 1}, can be introduced when this is fractional. Yet another instance occurs
when the objective function has integer cost coefficients but its current value is fractional.
Then

D 2 e | Y Y i

keK (i,j)eA kek (i,j)cA

is a valid cut. This is a specific case of the family of cuts that can be described as a weighted
sum of the flow variables:

(7.27) Yo byxizb,

keK (,j)eA

where b;;, (i, j) € A, and b are unrestricted parameters. Applying the decomposition
process to the above constraint results in an equivalent constraint in the master problem,

written as
> by, > b,

peQ

where b, = 3 ; cabijfijip, k € K, p € K, is the contribution of path p to con-
straint (7.27). Denoting by 8 its associated dual variable, it is fairly easy to show that
the marginal cost ¢;;, (i, j) € A, of an arc becomes

G = C,’j—di—ﬂb,’j if ieN,
Y7 1 eij — v — Bbij otherwise.

7.5.3 Binary Decisions on Path Flow Variables

It is easy to show that replacing in the aggregated set-partitioning formulation (7.18)—(7.26)
the binary requirements (7.26) by

(7.28) 0,binary V¥ peQ

yields a formulation equivalent to the multicommodity network flow formulation (7.1)-
(7.11). Using the simplifications presented in the last paragraphs of section 7.4.4, this new
formulation can be restricted to (7.18)—(7.21) and (7.28). This transformation opens up the
possibility of defining branching decisions on the binary path flow variables 8,,, p € €.
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On the one hand, when such a variable takes a fractional value, it is very simple
to set it to 1 by adjusting the right-hand side of constraint (7.20), removing the covering
constraints (7.19) associated with the customers covered by the corresponding path, and
removing the nodes associated with these customers in the subproblem network. Such
a decision simplifies the problem without altering its structure. On the other hand, as
mentioned in several papers, it is much more difficult to impose the alternate decision, that
is, to set to 0 a fractional path flow variable. Indeed, in this case, one must ensure that
the corresponding path will not be generated again by the subproblem. Forbidding the
generation of specific paths modifies the nature of the subproblem and requires the use of a
different dynamic programming algorithm for solving it.

One possibility would be to use a k-shortest-path algorithm, where k is set to the
number of forbidden paths plus one. However, such an algorithm has not yet been proposed
in the literature when time window constraints are considered. Another possibility consists
of using a dynamic programming algorithm for time-constrained shortest-path problems
(for example, that of Soumis and Desrochers [34]) coupled with a prelabeling procedure,
such as the one proposed by Arunapuram, Mathur, and Solow [3]. A prelabel is defined for
each node of each forbidden path except for the last node. This prelabel represents the part
of the forbidden path from the source node to the node associated with the prelabel, and it
contains additional information that forbids the extension of this label to the next node on
the forbidden path.

To our knowledge, this branching strategy has yet to be tested on VRPTW instances.
We conjecture that it should be useful for fixing path variables with a fractional value close
to 1 to rapidly reduce the size of the problem without losing the exactness of the algorithm.

7.5.4 Subtour Elimination and 2-Path Cuts

For each nonempty subset of customers S € N, define the following variable to represent

the flow into §:
x® =33 xije

keK ;£ jeS

where S = V \ S. The usual subtour elimination constraints can be formulated as x(S) >
1, § € N, |S| = 2. These can be generalized by replacing their right-hand sides with « (S),
the smallest number of vehicles needed to service all customers in S. Constraint

x(8) Z k()

is called a x -path inequality since it requires that at least « paths enter subset S in any feasible
integer solution. For the VRPTW, the lower bounds obtained by considering capacity alone
are unlikely to be very strong, especially when the time windows are relatively binding.
Since the time constraints must be taken into account as well, it is difficult to calculate « (S).
For this reason, Kohl et al. [58] restricted their attention to subsets S satisfying

1 <x(8) <2 and «(§5)>2,

where % (S) denotes the value of x(S) in a given solution. In other words, the authors try
to identify subsets of customers S requiring at least two vehicles but presently serviced by
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less than two. To determine whether « (§) = 1 for a particular S, one needs to check if the
available capacity on a single vehicle is sufficient—which can be done in linear time—and
the feasibility of the corresponding TSPTW. This latter problem is NP-hard in the strong
sense, but when |S| is rather small, the problem is relatively easy to solve by dynamic
programming [37, 66]. Therefore, for such problem sizes, there is a fast, although not
polynomial, algorithm to determine whether «(S) > 2.

Larsen [63] devised a parallel branch-and-bound implementation of the approach used
by Kohl et al. [58]. Further improvements proposed by Larsen include a forced early stop
and column deletion. The forced early stop terminates the route-generation process as soon
as one route with negative reduced cost is returned. The idea behind this stopping criterion
is that the routes generated in the initial phase are often of low quality and therefore it is
profitable to cut down the execution time at this stage. The column deletion procedure deletes
from the master problem any column that has not been part of a basis at a given number of
branch-and-bound nodes. This reduces the time spent solving the linear relaxation of the
master problem, although some routes might have to be recomputed later on. Experimental
results indicated that to avoid having to regenerate deleted routes, column deletion should not
be performed too often. Larsen [63] suggests applying it after every 20 branch-and-bound
nodes. This approach was later used by Kallehauge, Larsen, and Madsen [52].

7.5.5 k-Path Cuts and Parallelism

Cook and Rich [22] enhanced the above method by improving the search for  -path inequali-
ties and allowing values of « up to 6. Specifically, the authors used Karger’s [$3] randomized
minimum-cut algorithm to generate cutting planes. Moreover, they parallelized the cutting
plane generator and also the branch-and-bound, using the TreadMarks {8] distributed shared
memory system. The value of ¥ (S), § C V, is derived by finding the minimum number of
vehicles required in a smaller VRPTW instance. If this number is greater than £(S), a valid
k-path inequality is generated. We discuss their computational results in section 7.8.

7.5.6 Integer Decisions on (Fractional and Integer) Time Variables

Fractional and integer time variables constitute a meaningful branching tool for problems
with fairly narrow time windows. To describe their handling, we first compute the start of
service at customer i € N as

w,-:Z Zﬁ),-k,,@kp YieN,

keK peQ

where W;, represents the unique start of service at customer i on path p of vehicle k. If
a customer i is visited more than once on path p, i.e., on a cycle, the start of service W;y,
is taken as the sum of all the times when service begins. Then, w; above represents the
weighted average of these times. If variable w; is required to be integer but presently takes
the fractional value, ;, then two branches are created:

w; < |d;] and w; > [4;].
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These decisions are imposed on the subproblem network G by redefining the time
window at node i. Note that this type of decision is also applicable for an integer value
w; obtained as a convex combination of different service times on several paths. The two
branches are then given by

w,—fﬁ),-—l and w; > w;.

On each branch, the columns that do not satisfy the corresponding decision are removed
from the current subset of master problem columns.

7.6 Special Cases

The following two special cases of the VRPTW have attracted attention in the literature.
Both can be addressed using the exact methodology presented in the previous sections.

7.6.1 Multiple TSP with Time Windows

The multiple TSP with time windows problem, an uncapacitated VRPTW, results by elimi-
nating the capacity constraints (7.9) from formulation (7.1)—(7.11). It is also an immediate
generalization of the fixed-schedule problem where time windows are restricted to a single
value. It has attested itself as a very rewarding model for applications in school and urban
bus, ship, engine, and aircraft scheduling.

The early optimization-based heuristics of Appelgren [1, 2] on ship scheduling,
Levin [64] on aircraft fleet size, and Swersey and Ballard [86] on school-bus schedul-
ing all relied on discretizing the time windows. They contributed to the impetus for much
more powerful approaches developed recently. Such exact algorithms for m-TSPTW were
developed in the context of urban bus scheduling by Bianco, Mingozzi, and Ricciardelli [7]
and Desaulniers, Lavigne, and Soumis [32] and in the setting of daily aircraft scheduling
by Desaulniers et al. [31]. The last two algorithms are variations of the column-generation
approach for the VRPTW presented earlier.

7.6.2 VRP with Backhauls and Time Windows

We consider the variant of the VRP with Backhauls and Time Windows (VRPBTW) problem
where all deliveries must be made before any pickups take place. To show that this problem
is a special case of the VRPTW, one must first define load variables /;;, i € V, k € K,
specifying the quantity already delivered by vehicle & just after servicing node i, and rewrite
the capacity constraints (7.9) the same way as the time window constraints:

(7.29) xijplli +dj = 1) =0 VkeK, (i) €A,

(7.30) d; Z Xijk | = i <C Z Xijk VkeK,ieN,
JEAT() JeAt()
(731)  lu=0 VYkeKk,

(7.32) 0<l,s<C Vkek.
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Next, one partitions N in two subsets of customers, N” and N”, that s, those requiring
a delivery and those requiring a pickup, respectively. Then one removes from A all arcs
linking a node in N to a node in N” and replaces constraint sets (7.30) and (7.32) by the
following three sets of constraints:

(7.30a) d; Z Xije | < iy <C Z Xijk VkeK,ie ND,
Jjeat(H JeAT()

(7300) (C+ad)| Y x| <he=2C| Y xin VkeK,ieN”P,

JeAr (i) JEAT(D)

(7.32a) C<lhnr=2C VYkeKk,

where d; denotes the quantity of load to be delivered or picked up at node i. Given these
load intervals (7.30a), (7.30b), and (7.32a), as well as constraint set (7.29), one can see that
when the delivery portion of a vehicle route is completed, C new units of loading capacity
are restored to undertake pickups. Finally, note that (7.29) are always satisfied for cross
arcs between N2 to N”. Hence, these constraints are not defined for these arcs.

Given the above transformation, optimal VRPTW algorithms can then be employed
for the VRPBTW. Gélinas et al. [42] illustrated such an approach. More complex algorithms,
however, are necessary when the pickup and delivery requests can be performed in any order.
A real-world application for this problem structure was reported by Braca et al. [10]. Given
the very large problem size, the authors used a decision support system based on a variation
of the LBH heuristic (Bramel and Simchi-Levi [11]) to route school buses for the New York
City Board of Education.

7.7 Extensions

In this section, we present several VRPTW extensions for which formulation (7.1)—(7.11)
can be adapted or generalized. Most of the resulting models can be directly treated us-
ing Lagrangian relaxation or column generation embedded in a branch-and-bound search
tree. For the others, the same methodology applies but with more complex tools, namely,
specialized constrained shortest-path algorithms.

7.7.1 Heterogeneous Fleet, Multiple-Depot, and Initial Conditions

The VRPTW model (7.1)—(7.11) can be generalized to account for vehicles of different
size, for multiple depots, and even for situations requiring specific initial conditions for
each vehicle. Indeed, in these settings, a specific network G* = (V*, A%), with its own
origin and destination depot-nodes, is defined for each vehicle k € K, and all ¢;; and ;;
parameters are indexed by k. To some extent, customer demands d; and time windows
[a;, b;] can depend on the servicing vehicle k.

In the presence of multiple depots or a heterogeneous flect, vehicle aggregation can be
performed if the conditions are identical for all vehicles in the same group. One constraint
similar to (7.20) is retained for each group to describe the number of available vehicles
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within that group. The assignment of a route to a specific vehicle within a group can be
done after the solution is obtained.

7.7.2 Fleet Size

Vehicle use can be taken into account by including a fixed charge c in the cost of all arcs
(0, j), j € N. Inthis case, the number of vehicles utilized can be minimized by assigning a
very large value to c. On the other hand, one may wish to set an upper limit ¥ on the number of
vehicles that can be deployed. For the basic VRPTW, this can easily be imposed by defining
K such that |K| = «. However, when considering several depots or a heterogeneous fleet,
the following constraint must be added to the multicommodity network flow formulation
with one network G* per vehicle:

Z Z Xowk). jk = K,

keK jeN*

where N* denotes the set of customers compatible with vehicle k and O(k) the origin depot-
node of network G*. Like the covering constraints (7.2), this constraint is relaxed in the
objective function when using Lagrangian relaxation or remains at the master problem level
in a column generation approach.

7.7.3 Multiple Time Windows

The definition of a single time window per customer can be extended to include multiple ser-
vice options. This may necessitate changing the objective function to account for preferred
service times. Multiple time windows primarily have been examined in the multiperiod
VRP framework, where they constitute full days. Each customer must be visited a specified
namber of times within the planning horizon. This problem is discussed further in the survey
by Solomon and Desrosiers [85]. Note, however, that this generalization can be treated by
Lagrangian relaxation and column-generation schemes that use time window-constrained
shortest paths as substructures.

7.7.4 Soft Time Windows

Recall that soft time window constraints allow the vehicle to start service at the customer
before or after its time window, respectively. As a result, the vehicle incurs additional costs.
Formulation (7.1)—(7.11) can be extended to include soft time windows as in the following
two scenarios. In the first, only deadlines can be violated at a cost and by a length of time
limited by b;, i € N. In this case, enlarged hard time windows [a;, b; + b1, i € N, are
defined together with the following nondecreasing penalty functions that depend on the start
of service time of vehicle k:

0 if wi € [a;, bil,

ci(wi) = { gi(wi)  ifwi € (by, b + b)),

where g;(-) is a positive nondecreasing function. This can be treated directly by Lagrangian
relaxation or column generation with the sole modification of computing these additional
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costs on the arrival at a customer node in the constrained shortest-path dynamic programming
algorithm (see Desaulniers et al. [29]).

Building on the previous instance, the second setting considers that the earliest start
times can be violated at a cost and by a length of time limited by a, i € N. Similarly,
augmented time windows [a; — a], b; + b;],i € N, are defined together with the following
penalty functions:

hi(a; —wi)  if wy € [ai — a], a;),
ci(wig) =41 0 if wy € [a;, bi],
&i(wir) if wi € (bi, b; + b}],

where A; is a positive constant and g;(-) is again a positive nondecreasing function. This
more general case can be addressed by the proposed methodologies but requires a specialized
dynamic programming algorithm developed by Ioachim et al. [50], which can handle linear
decreasing node costs.

7.7.5 Time- and Load-Dependent Costs

The VRPTW can be extended to include arc costs z;; (), (i, j) € A, that depend on time and
load variables. Indeed, soft time windows can be viewed as yielding such arc costs when
j €N:

zij{wjr) = cij + ¢j(wj).

Another example was provided by Desaulniers, Lavigne, and Soumis [32] for the
m-TSPTW with linear waiting costs. For that problem, the arc costs are given by

Zij (Wik, WjK) = €5 + o (Wi — Wik — $i — 1i),

where @ is a positive constant corresponding to the cost charged for waiting one unit of
time, and wj; — wy — §; — ¢; indicates the amount of time spent waiting on arc (Z, j). As
mentioned by the authors, such waiting costs can be taken into account similarly in other
routing problems with time windows, such as the VRPTW.

Arc costs depending on load variables were considered in the extension of the VRP
with Pickup and Delivery involving time window constraints proposed by Dumas, Desrosiers,
and Soumis [38]. In that version of the problem, the cost of using an arc (i, j) depends on
the load [;; of the vehicle k traversing it:

zij{li) = gilicij,

where g;(-) is a positive nondecreasing function. Such load-dependent arc costs can be
easily transferred to the VRPTW.

7.7.6 Driver Considerations

To devise vehicle routes that do not incur excessive driver costs or infeasible driver schedules,
some aspects of the driver-scheduling problem can be considered while solving the VRPTW.
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For instance, assuming that each driver is assigned to a single vehicle route, the following
three driver-scheduling aspects are of interest: a guaranteed minimum number of hours
credited per route, a maximum number of hours worked per route, and break periods of
minimal duration within long routes. As shown by Desaulniers et al. [30], the first two
aspects can be modeled using resource variables that are handled in a way similar to the
time and load variables. The last aspect can be treated by considering a multiple-stage
network where each stage contains a copy of the customer nodes, and a partial path through
the nodes of the same stage corresponds to a partial vehicle route without break periods.
The maximum duration of these partial routes is controlled through the use of resource
variables. Arcs imposing a break of minimum duration are defined from the nodes of each
stage to the nodes of the next stage. Other driver considerations also can be integrated into
an extended VRPTW model.

7.8 Computational Results for VRPTW

In this section, we review computational experience with leading algorithms proposed for
finding the optimal or heuristic solution of VRPTW. To date, the optimal algorithm of Kohl
etal. [58] solved 70 of the 87 Solomon benchmark short horizon problems [33] to optimality.
Recently, four additional problems were solved by Larsen [63] and six more by Cook and
Rich [22] and Kallehauge, Larsen, and Madsen [52]. In particular, the new sequential
implementation by Cook and Rich [22] of Kohl et al.’s [58] algorithm using the 2-path cuts
succeeded in solving three additional problems. Their computational experience indicates
that the marginal benefit of considering 3-path cuts in the sequential algorithm was an
improved value of the LP relaxation in several problems. Yet, these cuts did not lead to any
additional problems being solved or improvements in solution time. Three more problems
were solved by using the parallel version with up to 16 processors. Several unsolved
instances that exhibited attractive integrality gaps were resolved by using 32 processors
and increasing the maximum value of « to 6. Three other problems were solved this way.
Insight gained from this phase also led Cook and Rich to increase the time limit for the
16-processor version and solve one additional instance.

Larsen [63] was the first to provide exact solutions to any of the 81 Solomon long-
horizon problems. He solved 17 problems in this set. Cook and Rich [22] solved 13
additional ones, while 16 more problems were solved by Kallehauge, Larsen, and Mad-
sen [52]. Tables 7.1, 7.2, and 7.3 provide the cost of the best solutions, in terms of total
distance, identified by either Kohl et al. [58] (KDMSS), Larsen [63] (L), Kallehauge, Larsen,
and Madsen [52] (KLM), or Cook and Rich [22] (CR). The column K indicates the number
of vehicles used in the solution. These solutions were computed with approximate distances
obtained by multiplying the real distances by 10 and truncating the result. Hence, some
routes may not satisfy all time window constraints if real distances were used.

Homberger [47] extended the Solomon test problems to sizes of up to 1000 customers.
Cook and Rich [22] and Kallehauge, Larsen, and Madsen [52] solved seven problems with
200 customers (one r-problem and six c-problems). The latter authors solved to optimality
two additional c-problems, one with 400 customers and the other with 1000 customers.

Several researchers derived excellent near-optimal results on Solomon’s test prob-
lems. In particular, high-quality solutions were obtained in reasonable computing times by
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Table 7.1. Optimal (total distance) solutions on the 11- and 12-problems.
Problem K Dist.  Authors Problem K Dist.  Authors

r101.25 8 617.1 KDMSS r201.25 4 4633 CR+KLM
r101.50 12 1044.0 KDMSS r201.50 6 7919 CR+KLM
r101.100 20 16377 KDMSS r201.100 8 11432 KIM
r102.25 7 547.1 KDMSS 1202.25 4 4105 CR+KLM
rl02.50 11 909 KDMSS r202.50 5 6985 CR+KLM
r102.100 18 1466.6 KDMSS r202.100

r103.25 5 4546 KDMSS r203.25 3 3914 CR+KLM

r103.50 9 7729 KDMSS r203.50

r103.100 14 12087 CR+L r203.100

r104.25 4 4169 KDMSS 1204.25

r104.50 6 6254 KDMSS 1204.50

r104.100 r204.100

r105.25 6 530.5 KDMSS r205.25 3 3930 CR+KLM
r105.50 9 8993 KDMSS r205.50 5 6909 L+KLM
r105.100 15 13553 KDMSS r205.100

r106.25 3 4654 KDMSS r206.25 3 3744 CR+KLM
r106.50 5 793 KDMSS r206.50

r106.100 13 12346 CR+KLM || r206.100

r107.25 4 4243 KDMSS r207.25 3 3616 KLM
r107.50 7 711.1 KDMSS r207.50

r107.100 11 10646 CR+KLM |} r207.100

r108.25 4 3973 KDMSS r208.25 1 3309 KILM
r108.50 6 6177 CR+KLM || r208.50

r108.100 r208.100

r109.25 S 4413 KDMSS r209.25 2 3707 KLM
r109.50 8 786.8 KDMSS r209.50

r109.100 13 11469 CR+KLM || r209.100

r110.25 4 4441 KDMSS 1210.25 3 4046 CR+KLM
r110.50 7  697.0 KDMSS 1210.50

r110.100 12 1068.0 CR+KLM | r210.100

r111.25 S 4288 KDMSS r211.25 2 3509 KLM
rl111.50 7 7072 CR+KLM || r211.50

rl11.100 12 10487 CR+KLM || 1211.100

rl112.25 4 393 KDMSS

r112.50 6 6302 CR+KLM

r112.100

the metaheuristics of Rochat and Taillard [74] and Taillard et al. [88]. The heuristics of
Homberger and Gehring [48] were also competitive and improved several previously best
known solutions. The approach of Kilby, Prosser, and Shaw [54] generated particularly
good results on problems with few vehicles and long routes. Similar results were reported
by Chiang and Russell [18]. Finally, Cordeau, Laporte, and Mercier [25] produced new
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Table 7.2. Optimal (total distance) solutions on the cl- and c2-problems.
Problem K  Dist. Authors || Problem KX  Dist. Authors

c101.25 3 1913 KDMSS }i c201.25 2 2147 CR+L
¢101.50 5 3624 KDMSS || c201.50 3 3602 CR+L
c101.100 10 827.3 KDMSS || c201.100 3 589.1 CR+KLM
c102.25 3 1903 KDMSS || c202.25 2 2147 CR+L
¢102.50 5 3614 KDMSS | c202.50 3 3602 CR+KLM
c102.100 10 8273 KDMSS || c202.100 3 589.1 CR+KLM
c103.25 3 190.3 KDMSS || c203.25 2 2147 CR+L
¢103.50 5 3614 KDMSS || ¢203.50 3 3598 CR+KLM
c103.100 10 826.3 KDMSS || c203.100 3 588.7 KLM
c104.25 3 1869 KDMSS || c204.25 2 2131 CR+KLM
¢104.50 5 3580 KDMSS || c204.50 2 350.1 KLM
c104.100 10 8229 KDMSS | ¢204.100

cl05.25 3 1913 KDMSS || c205.25 2 2147 CR+L
¢105.50 5 3624 KDMSS || c205.50 3 3598 CR+KLM
cl05.100 10 8273 KDMSS |j ¢205.100 3 5864 CR+KLM
c106.25 3 191.3 KDMSS || c206.25 2 2147 CR+L
¢106.50 5 3624 KDMSS || ¢206.50 3 359.8 CR+KLM
cl06.100 10 8273 KDMSS || c206.100 3 586.0 CR+KLM
c107.25 3 191.3 KDMSS || c207.25 2 2145 CR+L
c107.50 5 3624 KDMSS || c207.50 3 3596 CR+KLM
c107.100 10 827.3 KDMSS || c207.100 3 585.8 CR+KLM
c108.25 3 1913 KDMSS || c208.25 2 2145 CR+L
¢108.50 5 3624 KDMSS || c208.50 2 3505 CR+KLM
c108.100 10 827.3 KDMSS || c208.100 3 5858 KLM

c109.25 3 1913 KDMSS
c109.50 5 3624 KDMSS
c109.100 10 827.3 KDMSS

best solutions for a number of instances and competitive results for the others, although
their metaheuristic was designed primarily to address various multilevel generalizations.
Table 7.4 provides the best known solutions obtained by these heuristics. Distances with at
least three decimal places were used. In addition, the heuristics considered a hierarchical
objective function where solutions with a smaller number of vehicles and larger total dis-
tance dominate those with more vehicles and shorter distances. The authors are denoted in
the table as follows: Rochat and Taillard [74] (RT), Chiang and Russell [17) (CR2), Taillard
et al. [88] (TBGGP), Homberger and Gehring [48] (HG), Kilby, Prosser, and Shaw [54]
(KPS), and Cordeau, Laporte, and Mercier [25] (CLM).

The tables highlight the best known solutions that we are aware of at the time of
writing. Because the interest in this area will continue to grow as industry emphasizes
responsiveness, we would like researchers to help us keep current t