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Preface

N
The aim of this book is to outline the reo& p@MarkOV chain
networ

models for modeling queueing systems, In re- turing systems,
inventory systems, DNA sequences, geneti ks any other practical
systems. §'\ %

This book consists of eight chapt% h we give a brief intro-

duction to the classical theory on §o& retefland¥ontinuous time Markov

[€)

chains. The relationship betwe v finite states and matrix
theory will also be discussed. lassica rative methods for solving
linear systems will also be j e hen give the basic theory and
algorithms for standard hid rki el (HMM) and Markov decision
process (MDP). x \

Chapter 2 discusses appli s'of continuous time Markov chains

P
to model queueing sy nd e time Markov chain for computing

the PageRank, th of in the Internet. Chapter 3 studies re-
manufacturing s & Wem Markovian models for re-manufacturing,
closed form so nd erical algorithms are presented for solving

the systems. t den Markov models are applied to classify
customers. We propo! ple hidden Markov model with fast numerical
algorithms for solvi & odel parameters. An application of the model
to customer classifica is discussed. Chapter 5 discusses Markov decision
process for custo time values. Customer Lifetime Values (CLV) is an
quantity in marketing management. We present an
arkov decision process to the calculation of CLV with

practical .

In Chzi&7 we discuss higher-order Markov chain models. We propose a
class of higher-order Markov chain models with lower order of model param-
eters. Efficient numerical methods based on linear programming for solving
the model parameters are presented. Applications to demand predictions, in-
ventory control, data mining and DNA sequence analysis are discussed. In
Chapter 7, multivariate Markov models are discussed. We present a class of
multivariate Markov chain model with lower order of model parameters. Effi-
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XIV  Preface

cient numerical methods based on linear programming for solving the model
parameters are presented. Applications to demand predictions and gene ex-
pression sequences are discussed. In Chapter 8, higher-order hidden Markov
models are studies. We proposed a class of higher-order hidden Markov models
with efficient algorithm for solving the model parameters.

This book is aimed at students, professionals, practitioners, and researchers
in applied mathematics, scientific computing, and operational research, who
are interested in the formulation and computation of queueing and manu-
facturing systems. Readers are expected to have some basic knowledge of
probability theory Markov processes and matrix theory.

It is our pleasure to thank the following people and organiZations. The
research described herein is supported in part by RGC grants.ﬁl'ndebted
to many former and present colleagues who collab on thei described
here. We would like to thank Eric S. Fung, Tuen- , K Wong, Ken
T. Siu, Wai-On Yuen, Shu-Qin Zhang and th @Wem for their

helpful encouragement and comments; Wit}x 11 would not have

-+

been possible.
The authors would like to thank O ibn ch Society, Oxford
University Press, Palgrave, Taylor & v & Sons for the per-

s
missions of reproducing the materﬁ' 1 is b%

\§ Wai-Ki CHING

Hong Kong \& \
Hong Kong % \ Michael K. NG

SOFTbank E-Book Center Tehran, Phone: 66403879,66493070 For Educational Use.



1

Introduction

N

ve (1896

Markov chain is named after Prof. Andrei

published his result in 1906. He was born

and died on 20 July 1922 in St. Petersbuig, R

University of St. Petersburg, where h l&ﬂ

torate degree. He is a professor at St sburg.and also a member of the
9

O
ne

Russian Academy of Sciences. He m 1 it continued his teaching
at the university until his death. v i larly remembered for his
study of Markov chains. His re works o arkov chains launched the
study of stochastic processes t ications. For more details about

e following interesting website

Markov and his works, we re re%
e, B
In this chapter, we @ troduction to the classical theory
us i

on both discrete and 0 arkov chains. We then present some
relationships betw ov C f finite states and matrix theory. Some
g linear systems will also be introduced.
ethods for solving Markov chains. We will then
for standard hidden Markov model (HMM)
MDP).

This sectio rief introduction to discrete time Markov chain. Inter-
ested readﬁ%consnl‘c the books by Ross [180] and Haggstrém [103] for
more details.

Markov chain concerns about a sequence of random variables, which cor-
respond to the states of a certain system, in such a way that the state at
one time epoch depends only on the one in the previous time epoch. We will
discuss some basic properties of a Markov chain. Basic concepts and notations
are explained throughout this chapter. Some important theorems in this area
will also be presented.

1.1 Markov (@s
L
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2 1 Introduction

Let us begin with a practical problem as a motivation. In a town there are
two supermarkets only, namely Wellcome and Park’n. A marketing research
indicated that a consumer of Wellcome may switch to Park’n in his/her next
shopping with a probability of a(> 0), while a consumer of Park’n may switch
to Wellcome in his/her next shopping with a probability of (> 0). The fol-
lowings are two important and interesting questions. The first question is that
what is the probability that a Wellcome’s consumer will still be a Wellcome’s
consumer in his/her nth shopping? The second question is what will be the
market share of the two supermarkets in the town in the long-run? An impoar-
tant feature of this problem is that the future behavior of a consumer depends

on his/her current situation. We will see later this marketing proBlem,can be
formulated by using a Markov chain model. §
1.1.1 Examples of Markov Chains \\ §

\ ° \
We consider a stochastic process \\ %

{(xX™ n :g&“a.}‘\\g
that takes on a finite or countable e% \\
Sﬁ

Ezample 1.1. Let X(™) be the f the ay which can be

M= {@r@ ,cloudy}.
One may have the followiMhza%
X©) =sunny, X U@, /(\&ainy, X®) =sunny, X® =cloudy, ....
Ezxample 1.2. L%}e %&uet sales on the nth day which can be

={0,1,2,...,}.

One may have the ng realization:

X0 = =5 X® =2 x® =0 xW=5 ..
°
Remark 1.3, F licity of discussion we assume M, the state space to be
{0,1,2,.. ment in M is called a state of the process.

Definition 1.4. Suppose there is a fizved probability P;; independent of time
such that

P(XHD) — i x™ =5 x(=D —; X0 =i)=P,;, n>0

where ©,J,10,%1, - - -,in—1 € M. Then this is called a Markov chain process.
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1.1 Markov Chains 3

Remark 1.5. One can interpret the above probability as follows: the condi-
tional distribution of any future state X ("1 given the past states

X(O)7 X(Q)7 o ’X(n—l)

and present state X (") is independent of the past states and depends on the
present state only.

Remark 1.6. The probability P;; represents the probability that the process
will make a transition to state i given that currently the process is state j.
Clearly one has

atriz of the process.

%

is called the one-step tm@ob

FEzxzample 1.8. Consider
process (taking values

roblem again. Let X (™ be a 2-state
ing the behavior of a consumer. We
have X(™ = 0 if um s with Wellcome on the nth day and
X (™) =1 if the S % Park’n on the nth day. Since the future
state (which s in the next time) depends on the current
state only, it is ko rocess. It is easy to check that the transition

probabilities are §
Poozl\b o=a, P1=1—p3 and Py =p.
@

Then the one—st@nsition matrix of this process is given by
§ _(1l=-a p
\\ P= ( a 1-p4 ) '

Ezample 1.9. (Random Walk) Random walks have been studied by many
physicists and mathematicians for a number of years. Since then, there have
been a lot of extensions [180] and applications. Therefore it is obvious for
discussing the idea of random walks here. Consider a person who performs a
random walk on the real line with the counting numbers

SOFTbank E-Book Center Tehran, Phone: 66403879,66493070 For Educational Use.



4 1 Introduction

Fig. 1.1. The random walk.

{..,-2,-1,0,1,2,...} \g\.
being the state space, see Fig. 1.1. Each time the t states,can move one
step forward (41) or one step backward (-1) awi abi 0<p<l

si

and (1 — p) respectively. Therefore we hav&l\' abilities

for i = 0,41,42, . ... \‘,"

2
7

Ezample 1.10. (
games, at each , he either wins one dollar with probability p or loses one
dollar wit lity (1 — p). The game ends if either he loses all his money
or he attain: tal amount of N dollars. Let the gambler’s fortune be the
state of the gambling process then the process is a Markov chain. Moreover,

we have the transition probabilities
P ifj=i+1
Pji=<1-pifj=i-1
0 otherwise.

SOFTbank E-Book Center Tehran, Phone: 66403879,66493070 For Educational Use.



1.1 Markov Chains 5

fori=1,2,...,N—1and Pyg = Pyny = 1. Here state 0 and N are called the
absorbing states. The process will stay at 0 or N forever if one of the states is
reached.

1.1.2 The nth-Step Transition Matrix

In the previous section, we have defined the one-step transition probability
matrix P for a Markov chain process. In this section, we are going to investi-
gate the n-step transition probability Pi(j") of a Markov chain process.

Definition 1.11. Define PZ-(;L) to be the probability that a p%ﬂ state j
. I 5
ula =P

will be in state i after n additional transitions. I e

Proposition 1.12. P(") = P™ where P(™ &\te @ion probability
matriz and P is the one-step transition mc& Q

Proof. We will prove the proposition by t l induction. Clearly
the proposition is true when n = 1. aj at the proposition is

true for n. We note that \

7

Then
pot — P PP Py, = [P™1],;.
M

€
By the principle o at%duction the proposition is true for all
non-negative int :
\ [N
Remark 1.13. % at

Ezample 1.14. We aer the marketing problem again. In the model we

have QR
\\\ r-(12)

a 1-p
If « =0.3 an = 0.4 then we have

Py _ pi_ (070.4\" _ (05749 0.5668
0.3 0.6 0.4351 0.4332 ) °

Recall that a consumer is in state 0 (1) if he/she is a consumer of Wellcome
(Park’n). Pég) = 0.5749 is the probability that a Wellcome’s consumer will

SOFTbank E-Book Center Tehran, Phone: 66403879,66493070 For Educational Use.



6 1 Introduction

In n transitions

B
b

=)

Fig. 1.3. The (n + 1)-step tm pro@n
\0\ \
shop with Wellcome on his/her four%pi Pl(g) = 0.4351 is the

probability that a Wellcome’s co ill K ith Park'n on his/her
fourth shopping. Péf) = 0.5668 4 &ob 1 hat a consumer of Park’n

will shop with Wellcome on hi (o) shopping. Pl(f) = 0.4332 is the
probability that a consumer. with Park’n on his/her fourth

shopping. %
Remark 1.15. Consider rkov ocess having states in {0,1,2,...}.

Suppose that we are g im the probability that the process is in
state ¢ is a;,7 = 0, ne\ sting question is the following. What is
the probability t % be in state j after n transitions? In fact,
T ass is in state ¢ and it will be in state j after
ere Pj; is the one-step transition probability
from state i to state j rocess. Therefore the required probability is

T

o0
O =4) x P =3 " a; x [P"];:.
1=0

e N
’ “\\ X0 — (XM, XM )

be the probability distribution of the states in a Markov chain process at the
nth transition. Here XZ-(") is the probability that the process is in state ¢ after

n transitions and -
SXM =1
i=0

It is easy to check that

SOFTbank E-Book Center Tehran, Phone: 66403879,66493070 For Educational Use.



1.1 Markov Chains 7

X+ — px(n)

and
X(n+1) _ P(’I’L-‘rl)x(o) )

Ezample 1.16. Refer to the previous example. If at n = 0 a consumer belongs
to Park’n, we may represent this information as

X0 = (xg”, X{)T = (0,1)".

What happen on his/her fourth shopping?
0704Y' ol
(@) — p@x ) _ [ Y-V T
X = poxt - (§355) 0 S\

This means that with a probability 0.4332 he i Ila er of Park’n
and a probability 0.5668 he/she is a consu elldc his/her fourth
shopping. K \

\0\ \

1.1.3 Irreducible Markov Chain a ns of States

In the following, we define two def% fx&ﬁa‘ues of a Markov chain.
Definition 1.17. In a Markov &st . is stid to be reachable from state
jif Pi(jn) > 0 for somen > m starting from state j, it is pos-
sible (with positive probab% e 1 in finite number of transitions.
Definition 1.18. State sta \e said to communicate if state ¢ and
state j are reachable fi chyother.

Remark 1.19. T @io z@nunica‘cion defines an equivalent relation.
(i) state ¢ com e % te i in 0 step because
S0

D

P XO = x® =j=1>0.

(ii)If state comrm‘&s with state j, then state j communicates with state
1.

(J
(iii)If state i co icates with state j and state j communicates with state
k then state i nicates with state k. Since Pj(:n ),P,i?) > 0 for some m
and n, we

(m+n) _ (m) p(n) (m) p(n)

Py, _ZPhi Py = Py P’ > 0.
heM

Therefore state k is reachable from state i. By inter-changing the roles of i
and k, state 7 is reachable from state k. Hence i communicates with k. The
proof is then completed.
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8 1 Introduction

Definition 1.20. Two states that communicates are said to be in the same
class. A Markov chain is said to be irreducible, if all states belong to the same
class, i.e. they communicate with each other.

Example 1.21. Consider the transition probability matrix

0 £0.00.50.5
11050005
2 \050.50.0

Example 1.22. Consider another transition probability matrix

\.
00000000 NS
0.00.50.00. \\S §

0.00.5 0.5& \
We note that from state 1, 2, 3, it is not possible to @a‘ce 0, i.e

) \
Therefore the Markov chain is not%ci e%’t 1s reducible).

Definition 1.23. For any state§ ov chain, let f; be the probability
that starting in state i, the i1l -enter state i. State i is said to

be recurrent if f; =1 and, w %
We have the followi 0 si%r a recurrent state.

Proposition 1.24 te chain, a state i is recurrent if and only

if \% &"g@ .
)

w N = O

\ \ ot
By using Propos;'?@él one can prove the following proposition.

Proposition 1.25 nite Markov chain, if state i is recurrent (transient)
and state i comm es with state j then state j is also recurrent (transient).

1.1.4 An @s of the Random Walk

Recall the classical example of random walk, the analysis of the random walk
can also be found in Ross [180]. A person performs a random walk on the real
line of integers. Each time the person at state ¢ can move one step forward
(4+1) or one step backward (-1) with probabilities p (0 < p < 1) and (1 — p)

respectively. Since all the states are communicated, by Proposition 1.25, all
states are either recurrent or they are all transient.
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1.1 Markov Chains 9

Let us consider state 0. To classify this state one can consider the following
sum:

We note that

because in order to return to state 0, the number of forward movements should
be equal to the number of backward movements and therefore the number of
movements should be even and

i = <2n> p"(1=p)" \'g'.

n
Hence we have

=y Ay ==y (
m=1 n=1 n=1

Recall that if I is finite then state 0 is ient (%ﬁe it is recurrent. Then
we can apply the Stirling’s formul @s ve result. The Stirling’s
formula states that if n is large% \

If p # 1 then we h%
(2n)
\' Py ' =
N

where \

Therefore when p = %, state 0 is recurrent as the sum is infinite, and when
p# %, state 0 is transient as the sum is finite.

0<a=4p(l-p) <1l
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10 1 Introduction
1.1.5 Simulation of Markov Chains with EXCEL

Consider a Markov chain process with three states {0, 1,2} with the transition
probability matrix as follows:

0 /020503
P=1103010.3
2 \050404

Given that Xy = 0, our objective here is to generate a sequence

(X n=12..7}

Q.
which follows a Markov chain process with the tra@m l@

To generate {X (™} there are three possible \ %\
\' .\§
(i) Suppose X (™ = 0, then we have %

P(X(™D =) =02  PX®D %@3\%'((”“) —2)=0.5;
(ii) Suppose X (™ = 1, then we ha % \
N

P(X"D =0)=05  P( =)= § P(X("Y = 9) = 0.4;
(iii) Suppose X (™ =2, the i&@
S

P(X™) = 0) = 0.3 0.3 P(X0+) =2)=0.4.

Suppose we can genera d ble U which is uniformly distributed
over [0, 1]. Then o erdte istribution in Case (i) when X (™ =0
easily as follows: \
\{ 0 if U €][0,0.2),
( 1 if U€0.2,0.5),

\ 2 if U el0.5,1].
The distribution in %M when X (™ =1 can be generated as follows:

& 0 if Uel0,0.5),
%‘x(w): 1 if Ue€l0.5,0.6),
N

2 if U e€]0.6,1].
The distri]&lkin Case (iii) when X = 2 can be generated as follows:

0 if Uel0,0.3),
XD =1 if U el0.3,0.6),
2 if Ue[0.6,1].

In EXCEL one can generate U, a random variable uniformly distributed over
[0, 1] by using “=rand()”. By using simple logic statement in EXCEL, one can
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1.1 Markov Chains 11

simulate a Markov chain easily. The followings are some useful logic statements
in EXCEL used in the demonstration file.

(i) “B1” means column B and Row 1.

(i) “=IF(B1=0,1,-1)" gives 1 if B1=0 otherwise it gives -1.

(iii) “=IF(A1 > B2,0,1)” gives 0 if A1 > B2 otherwise it gives 1.

(iv) “=IF(AND(A1=1,B2>2),1,0)” gives 1 if Al1=1 and B2>2 otherwise it
gives 0.

(v) “=max(1,2,-1) =2 ” gives the maximum of the numbers.

A demonstration EXCEL file is available at [221] for reference. wogram

generates a Markov chain process \
XM, x@ ,X<30\\§ %

whose transition probability is P and X (0)®

1.1.6 Building a Markov Chain \V@'\ %\'
o

Given an observed data sequence { ec e transition frequency
F)j;, in the sequence by counting the rof tions from state j to state
k in one step. Then one can con t the on p transition matrix for the
sequence {X (™} as follows: \ §

S

1
F \\ F2m

.2\ A (1.1)

$ e Fom

From F', one ci% e %\e?for Pjj; as follows:

where \\ .

\ N
> Fwo 7
j=1

m
0 if Zij =0.
j=1

We consider a sequence {X (™} of three states (m = 3) given by

SOFTbank E-Book Center Tehran, Phone: 66403879,66493070 For Educational Use.



12 1 Introduction

“U"is a column of random numbers in (0,1). Column E (J)

—_

0] gives the the next state given that the current state is 0 (1) [2]

Column P gives the simulated sequence X[t) given that X{0)=0. Xt
U 0 1 2 XMXgo U 0 1 2 XXt U 0 1 2 XMXgR2 0
055 4 1 2 20065 1 1 A 1 082 1 1 A 2 2
074 1 4 2 2 053 1 4 2 2 0% 4 1 2 1 1
072 4 4 2 2 0% 1 42 2 018 1 4 2 2 2
T4 4 2 2 0% 112 2 042 1 A %0 2
096 4 4 2 20 442 2 4 %\2 2
025 4 1 4 1058 0 4 0 \ AN 2 2
08 4 1 2 2 03m 442 2 -1 0 0
097 1 4 2 2 009 1 1 2 4 o 2 2
091 4 42 2 062 4 4 2 38 % 2 2 2
05 4 1 2 2 0% 1 1 A 06 % - 2 2
026 -1 1 A 1 052 0 %\ \ 40 1 1
076 4 1 2 2084 4 4 24 $ 1 2 0 2
03 4 1t 1 079 0 %\ 0 4 1 A 2 2
02 1 1 2 2 0286 -1 @ @.9 -1 1 2 1 1
057 4 1 2 2 04% -1 \ 27 14 2 1
[ | I B 0 04 \ 0 046 0 1 A 1 0
08 1 1 2 2 -1 \\ 007 A 1 2 0 2
0t 0 4 4 0 ) - 0 008 0 1 A 2 2
06 0 A4 o% 0 0 e 0 4 4 0 0
021 1 1 A4 } “ 0 087 0 4 A 0 1
058 4 1 2 -1 1 052 1 1 A 0 1
082 4 2 2 049 1 4 2 1 2
098 1 2 2 024 1 4 2 2 2
08 1 4 2 2 o 2 2 2
081 A 2 2 09 1 4 2 2 2
052 - -1 1 061 1 1 A 2 2
016 0 -1 0 097 0 4 A 1 1
02 A -1 0 04 0 1 A 0 0
019 0 A 0 08 0 1 4 0 0
064 A 2 2 009 1 4 2 0 2

4 Fig. 1.4. Simulation of a Markov chain.
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1.1 Markov Chains 13
{0,0,1,1,0,2,1,0,1,2,0,1,2,0,1,2,0,1,0,1}. (1.3)
We have the transition frequency matrix

133
F=[611]. (1.4)
130

Therefore one-step transition matrices can be estimated as follows:

1/83/7 3/4

P = 3/4 1/7 1/4 . (1.5)
1/83/7 0 \§,
A demonstration EXCEL file is available at [222{@%1@%
'\l‘ .%’

X(t) POO PO1 Po2 P10 %ﬁ %\ P20 P21 P22
o 1 o o o% o \ o o o
o o 1 o o o o o o
1 o o o K\ 1\\ o o o o
1 o o o & X o o o o
o o o 1 “ \ o o o o o
2 o o § o \ o o 1 o
1 o o % \§ o o o o o
1 o o y\ o 1 o o o
2 o o Q \ o o 1 o o
o o \ o \ o o o o o
1 o \ “ o o o 1 o o o
2 o % % o o o 1 o o
1 o ’ % o o 1 o o o
o o !&\ o o o o o o o
o o ° . o o o o o o o
1 o % o 1 o o o o o

F@i) 1 k 6 1 4 1 3 3 1

P(ij) 0.125 0.75 0.125 0.5 0.125 0.375 0.75 0.25

Fig. 1.5. Building a Markov chain.
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14 1 Introduction

1.1.7 Stationary Distribution of a Finite Markov Chain

Definition 1.26. A state i is said to have period d if Pi(i") = 0 whenever n is
not divisible by d, and d is the largest integer with this property. A state with
period 1 is said to be aperiodic.

Example 1.27. Consider the transition probability matrix

01
P (1()).
We note that

Qe’
po_ (01" _1( 14 (=)" 1a(-1)"& X
~\10/) 2 1+(—1)"+1\ = 1) :

We note that PO(S"H) = Pl(f"H) =0, so b@ O@awe a period of
i N
Definition 1.28. State i is said to be e ¥ if it is recurrent and
starting in state © the expected time u proc\ rns to state i is finite.
Definition 1.29. A state is sa@e ordicNaf it is positive recurrent and
aperiodic. \ R

We recall the exampl@m&xproblem with X (0 = (1,0)t. We

observe that \ \
( %( 61 0.52 v .
X @39 o4g ) (1L0)" = (0.61,0.39)",
749 0.5668
(4) _ pa~e(
U= K§§.4Q51 0.4332) (L0)" =

(8) _ pssal0) 0.5715 0.5714 T _ -
X P§,¢ (0.4285 o-o8g ) (10)T = (0.5715,0.4285)",

X(1®((0) = (8’2;1;61 82;;2) (1,007 = (0.5714,0.4286)7 .

It seems that

T = (0.5749,0.4251)7,

lim X™ = (0.57...,0.42...)T.

n—00

In fact this limit exists and is independent of X(®! It means that in the long
run, the probability that a consumer belongs to Wellcome (Park’n) is given
by 0.57 (0.42).
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We note that X = PX(=1) therefore if we let
lim X™ =7

n—oo

then
7= lim X™ = lim PX" Y = pr.

n—o0 n—oo

We have the following definition
Definition 1.30. A vector

™ = (7T0,7T1,...,7Tk_1)t

@
1s said to be a stationary distribution of a finite Markov chai iSatisfies:

(i)

(i) *\*\S&*
Pr=m, i.@ﬂj\x
Proposition 1.31. For any ir@e anc%odic Markov chain having k

states, there exists at least one ribution.

Proposition 1.32. For 1 c periodic Markov chain having k

states, for any initial di %n §
lim | |& |P"X© — 7] = 0.
zk

where ™ is a stati ) »q iy for the transition matriz P.

Proposition Hﬂ e onary distribution  in Proposition 1.32 is unique.
There are a n pular vector norms [|.||. In the following, we

introduce three of t

Definition 1.34. e a vector in R™, then we have Li-norm, L.,-norm

and 2-norm deﬁ@pectively by

?\\\ vl =ilwl,

V1o = max{eil},

and

Ivll2 =

For Educational Use.



16 1 Introduction
1.1.8 Applications of the Stationary Distribution

Recall the marketing problem again. The transition matrix is given by
_(1l—a p
(1207

To solve for the stationary distribution (7o, 71), we consider the following
linear system of equations

(1 —a)mo + Bmy =g

am A (-fmom \%

m = ala+)
| é« ,@.
Therefore in the long run, the marke S ome and Park’n are
respectively \ \
N
(v + &
A

1.2 Continuous Tire\ r ain Process

av ged discrete time Markov chain pro-
changewof state does not occur at a fixed discrete
time. In fact, th em state can be a continuous random
variable. In ou ) going to model queueing systems and re-
manufacturin, ous time Markov process. Here we first give
the definition for oi ess. We then give some important properties

of the Poisson proceSMl
A process is calle isson process if

(A1) the probabi!gt occurrence of one event in the time interval (¢,t + 6t)

In the previous section
cesses. In many situati

is Adt + o(0 A is a positive constant and o(dt) is such that
Q‘\\ o 200
5t—0 Ot
(A2) the probability of occurrence of no event in the time interval (¢,¢ + dt)

is 1 — Aot + o(dt).
(A3) the probability of occurrences of more than one event is o(dt).
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1.2 Continuous Time Markov Chain Process 17

Here an “event” can be an arrival of a bus or a departure of customer. From
the above assumptions, one can derive the well-known Poisson distribution.

We define P,(t) be the probability that n events occurred in the time
interval [0,¢]. Assuming that that P,(¢) is differentiable, then we can get a
relationship between P, (t) and P,_1(¢) as follows:

P, (t+6t) = P,(t) - (1 — Aot — 0(dt)) + Pp—1(t) - (Adt + 0(dt)) + o(dt).
Rearranging the terms we get

Po(t+ 6t) — Pyo(t) o(6t)

5 = AP, () + APp—1(t) + (Po1(t) + Pn(‘gv.
Let §t goes to zero, we have l§ \\

Po(t + 6t) — Po(t)

éltH—I}O 5 = AP, (1) + AP, _\ HO(P\@—F P(t)) 5L
Hence we have the differential-difference w‘uion: \.\
\ " \?
— AP, (1) + AP, x 1,2,
dt o \‘a X 0\
Since P_1(t) = 0, we have the i%a uemn for Py(t) as follows:
dPy(t)
D P =1.
dt @@\;@ 0(0)

The probability Py(0) 1 hat no event occurred in the time

ob!
interval [0,0], so it m 0 e@g the separable ordinary differential
equation for Py(t) h

) _ efAt

which is the pl@“\' vent occurred in the time interval [0, t]. Thus
\ — Po(t) =1- 67)\7:

is the probability t least one event occurred in the time interval [0, t].
Therefore the probab li density function f(t) for the waiting time of the first
event to occur i by the well-known exponential distribution

\\ d(1—e
\ ft) = % =Xe M, t>0.
We note that

= AP (t) + APu_1(t), n=1,2,...
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18 1 Introduction

Solving the above differential-difference equations, we get

(A" oM
n! ’

Po(t) =
Finally, we present the important relationships among the Poisson process,
Poisson distribution and the exponential distribution [52].

Proposition 1.35. The following statements (B1),(B2), and (B3) are equiv-
alent.

(B1) The arrival process is a Poisson process with mean rate \.

(B2) Let N(t) be the number of arrivals in the time interval [0, t en

n,—At \
P(N(t) =n) = M § \
" N N\
(B3) The inter-arrival time follows the &' al @ ion with mean

AL

1.2.1 A Continuous Two- state M %

Consider a one-server queueing sys %WO possible states: 0 (idle)
and 1 (busy). Assuming that th iva. pr the customers is a Poisson

process with mean rate A and of the server follows the expo-
nential distribution with m (t) be the probability that the
server is idle at time ¢ an ability that the server is busy at
time ¢. Using a 51m11ar t derivation of a Poisson process, we

have
P (t+ dt) @ o(t) + (udt + o(6 (t) + o(dt)
P(l) t+ ot ‘\ 1 t (Kdt + o(6t ))P(l)(t) + o(5t).

Rearranging t

“APy(t) + Py (t) + (Pi(t) — Po(t))o(;tt)

RS O HAO RO~ 2
Letting 6t goe@ro, we get

= —APy(t) + pPi(t)

= AR (t) — Py (1)

Solving the above differential equations, we have

b (e~ Ot 4 X)
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1.3 Iterative Methods for Solving Linear Systems 19

and 1
Py(t) = ——(u — pe~ Aty
o(t) =7 u(” [ )
We note that the steady state probabilities are given by
I
lim Py(t) = ——
lim Po(t) = 1+ .
and
lim Py(t) = A
oo A
In fact, the steady state probability distribution can be o ithout

solving the differential equations. We write the syst&of diﬂK quations

in matrix form: §
dPy (t) §
() - (324G
t

Since in steady state, Py(t) = pp and nts and independent
of t, we have

The steady state probabilities ion of the following linear sys-

tem: %

subject to po + p1 \t Q
In fact, very re d in obtaining the steady state probabil-

e

ity distribution a in' Because a lot of system performance such
as expected nu C , average waiting time can be written in terms
of the steady stat distribution, see for instance [48, 49, 50, 52].
We will also apply t & t of steady state probability distribution in the

upcoming chapter the number of states is large, solving the steady
state probability di ution will be time consuming. Iterative methods are
popular approa. solving large scale Markov chain problem.

N
1.3 Iter$

Methods for Solving Linear Systems

In this section, we introduce some classical iterative methods for solving large
linear systems. For more detail introduction to iterative methods, we refer
reader to books by Bini et al. [21], Kincaid and Cheney [130], Golub and van
Loan [101] and Saad [181].
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20 1 Introduction
1.3.1 Some Results on Matrix Theory

We begin our discussion by some more useful results in matrix theory and their
proofs can be found in [112, 101, 130]. The first results is a useful formula for
solving linear systems.

Proposition 1.36. (Sherman-Morrison-Woodbury Formula) Let M be an
non-singular n X n matriz, u and v be two n X k (I < n) matrices such
that the matriz (I, + v Mu) is non-singular. Then we have
(M+uw®) =M — M (L + v M) T v M
\ @
The second result is on the eigenvalue of no —negative%educible
square matrix. § \

Proposition 1.37. (Perron-Frobenius Theori Ab -negative and
irreducible square matriz of order m. Thex \

(i) A has a positive real eigenvalue A which is équal t \ectml radius, i.e.,
A = maxy, |A(A4)| where A\, (A) denotes %ﬁ@ ' e of A.

(i) There corresponds an eigenvector\ nitries being real and
positive, such that Az = )\z. % K
(iii) X is a simple eigenvalue of A&x §\

The last result is on matrix . %e many matrix norms ||.||ps
one can use. In the followi r@e definition of a matrix norm
[|-||as, induced by a vect & |§

Definition 1.38. Give veetor m R™, the matriz norm ||A||pr, for
an n X n matric A in t norm is defined as

:x € R" and ||x||y = 1}.
\
ntroduce three popular matrix norms.

an n X n real matriz, then it can be shown that
-norm and matriz 2-norm induced by ||.||1, ||-||co

S
In the followin% i
1.39:

Proposition

the matriz 1-norm, ma

and |].]2 respectivk&

@ 14112 = max{(3 4,1},
i=1

[14]loc = max{} _ |4},
j=1

||A||2 =V /\mam(AAT)~

Another other popular matrix norm is the Frobenius norm.

and
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1.3 Iterative Methods for Solving Linear Systems 21

Definition 1.40. The Frobenius norm of a square matrix A is defined as

1Allr =

1.3.2 Splitting of a Matrix
We begin with the concept of splitting a matrix. If we are to solve
X1 5

2| =[10] =b. §-"
.'133 5 \
There are many ways to split the matrix A int@ts a@elop iterative

methods for solving the linear system. \
There are at least three different ways of in

Ax =

O Wl
Wl = Wl
V== O

2

Now \%

and therefore

Hence we may write
&‘ x=8"'b-S51A-95)x

where we at S~ exists. Then given an initial guess x(©) of the
solution o , one may consider the following iterative scheme:

x(FHD) = §=1p — §=1(A — §)x(F), (1.6)

Clearly if x*) — x as k — oo then we have x = A~'b. We note that (1.6)
converges if and only if there is a matrix norm ||.||3; such that

1S7HA = 9)llar < 1.
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22 1 Introduction

This is because for any square matrix B, we have
(I-BYI+B+B*+...+B")=1-pB""

and

(o)
Y B*=(-B)"' if lim B"=0.
k_O n—oo
If there exists a matrix norm ||.|5s such that ||B||ar < 1 then
lim ||B"|[a < lim [|Bl[3; =0
@
and we have \g\
lim B" = 0. % \
n—oo \

Therefore we have the following proposition. \\ %\
[}
Proposition 1.41. If x %

S7H(A - 9)jar < {
then the iterative scheme converges to K ‘2

b\ =b.
1.3.3 Classical Iterative Meth&\ \\

Throughout this section, we let &o be split and b be the right
hand side vector. We use x , e initial guess.
Case 1: S = ( . \

v
|
O wl= |
N|=
W= O wl=
| Wi O
[SIE
SN~———
N/\
=

)
)

?\\ x3) = (4.8611 7.2222 4.8611)7
)

(
= (4.1667 6.6667 4.1667)"
(
= (5.0231 6.7593 5.0231)7

x30) = (59983 6.0014 5.9983)7.

When S = I, this is called the Richardson method.
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1.3 Iterative Methods for Solving Linear Systems 23

Therefore
xF+) = §71p — 5714 - §)x™¥)
10 1oo\ ' /0t0 .
=|1w0]-(010 103 x®
10 003 030
020
= (10 10 10)T — (% 0 %) x(*) \'&"
2
xM = (1010 10)T \§ ’\\§
x® = (3.3333 3.3333 33@
xB) = (77778 @v.\a&
x30 = (6.00 %00\%00)?
When S = Diag(ai1, -+, ann)

g
1
Case 3: S = %
0

o O O
S OoOwle
Qwl= O
N———
N
z

5.5556  6.2963 5.8025)7
5.8025 6.1317 5.9122)7
5.9122 6.0585 5.9610)7

b !O
S
I
w
©

x4 = (6.0000 6.0000 6.0000)T.

When S is the lower triangular part of the matrix A. This method is called
the Gauss-Seidel method.
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Proposition 1.42. If A is diagonally dominant then
ID7HA = D)l < 1

and the Jacobi method converges to the solution of Ax = b.

1.3.4 Spectral Radius

Definition 1.43. Given an n X n square matriz A the spectral radius of A is
defined as

Ezxample 1.44.

then the eigenvalues of A are ; i, = 1. Therefore p(A) =1 in
this case.
Proposition 1.45. For @r IIiIHlf [ Al ar-

M

Remark 1.46.1f p(A) e xists a matrix norm ||.||as such that
[|[Allar < 1. \

Using the r \e W the following proposition.
Proposition 1. K

converges to &

& o
for any start ors x(9 and c if and only if p(G) < 1.

Proposition W48. The iterative scheme

xF+D) = g1 — g7 (4 — §)xF) = (I — 571 A)x®) + §71b
converges to A~'b if and only if p(I — S™*A) < 1.

Proof. Take G =1 — S~ 'A and c = S~'b.
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Definition 1.49. An n x n matriz B is said to be strictly diagonal dominant
if
n
| Bii| > Z |Bij| for i=1,2,...,n
=1
Proposition 1.50. If A is strictly diagonally dominant then the Gauss-Seidel
method converges for any starting x(© .

Proof. Let S be the lower triangular part of A. From Proposition 1.48 above,
we only need to show
p(I—S71A) < 1.

Q.
Let A be an eigenvalue of (I — S~1A) and x be its Eorrespon%envector

such that \

ol = 1. \\ \

We want to show \%
[A] < 1.

We note that

and therefore

0 )\CI}1
)\J}g
0 :
...... ann )\xn
,n—1

\\* §|aij|

j=it1

and therefore

n i—1
A< Y agl /[ {aal =D layl | <1
j=1

j=it1
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26 1 Introduction
1.3.5 Successive Over-Relaxation (SOR) Method
In solving Ax = b, one may split A as follows:

A=L+wD+(1—-w)D+U
—_——

where L is the strictly lower triangular part; D is the diagonal part and U is
the strictly upper triangular part.

Ezxample 1.51.

210 000 200 200 Q
121 ) =100 |+w | 020 | +(1-w)|[ 020
012 010 002 02 0
—— —— \
L D

D % U
[ ]
One may consider the iterative schemewi > L\Q as follows:

Xnt1 =S b+ S7H(S — A)x,%;\llq “LA)x,,.
We remark that $ \

I-51'A & A
Moreover, when w = 1, it is ju Gauss-Seidel method. This method is

called the SOR method. 1t i ethod converges if and only if
the iteration matrix has a s ra% than one.

4
Proposition 1.52. T@e@verges to the solution of Ax = b if

and only if p(I — (L + Ap<

1.3.6 Conjuga%ie &od

Conjugate gra% ds are iterative methods for solving linear
system of equation: ere A is symmetric positive definite [11, 101].
This method was fir ed by Hestenes and Stiefel [109]. The motivation
of the method is th kvolves the process of minimizing quadratic functions

such as °

S 7(x) = (Ax —b)"(4x — b).
Here A is ¢ positive definite and this minimization usually takes
place over nce of Krylov subspaces which is generated recursively by

adding a new basic vector A*rg to those of the subspace Vj,_; generated where
g = AX() —b

is the residue of the initial vector xq.
Usually, a sequence of conjugate orthogonal vectors is constructed from
Vi so that CG methods would be more efficient. Computing these vectors can
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1.3 Iterative Methods for Solving Linear Systems 27

be done recursively which involves only a few vectors if A is self-adjoint with
respect to the inner product. The CG methods are attractive since they can
give the exact solution after in most n steps in exact arithmetic where n is
the size of the matrix A. Hence it can also be regarded as a direct method
in this sense. But in the presence of round off errors and finite precision, the
number of iterations may be greater than n. Thus, CG methods can be seen
as least square methods where the minimization takes place on a particular
vector subspace, the Krylov space. When estimating the error of the current
solution in each step, a matrix-vector multiplication is then needed. The CG
methods are popular and their convergence rates can be improved by using

suitable preconditioning techniques. Moreover, it is parameter fr recur-
sion involved are usually short in each iteration and the mem irements
and the execution time are acceptable for many ical p% .

%

The CG algorithm reads:

Given an initial guess x°, A, b, Max, tol:

" NS
oboat @.S\%

If |[ektL pktL),

VEHL — rk+l+§’rk+l >/ <1k, rk > vk
)

end; \%

output&, rktl|),.

Given a Hermitian, positive definite n x n matrix H,,, when the conjugate
gradient method is applied to solving

H,x=Db
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the convergence rate of this method depends on the spectrum of the matrix
H,, see also Golub and van Loan [101]. For example if the spectrum of H,, is
contained in an interval, i.e. 0(H,) C [a, b], then the error in the i-th iteration
is given by

||el|| < 2(\/5_ \/a)z

lleol| = Vb +a
i.e. the convergence rate is linear. Hence the approximate upper bound for the
number of iterations required to make the relative error

el _ 5
ool

is given by §".
%(@ ~1)log(3) +.§§

Very often CG method is used with l@ ¢ conditioner to
ge& i

accelerate its convergence rate. A good p ion ould satisfy the
following conditions.

q
(i) The matrix C' can be constructed ;
(ii) Given right hand side vector iear Cy = r can be solved
efficiently; and
(iii) the spectrum (or singularw of t conditioned system C~1A
should be clustered aroun \C
In the Preconditioned e % (PCG) method, we solve the
linear system % N
A3
instead of the original S %
N
We expect th nv \ r\ate of the PCG method can compensate
@

much more tha in solving the preconditioner system Cy = r
in each iteration step CG method.

Apart from the of condition number, in fact, condition (iii) is
also very commonl@n proving convergence rate. In the following we give
the definition of ng.

°

Definition 1. say that a sequence of matrices S, of size n has a clus-
tered spectr nd one if for all € > 0, there exist non-negative integers
ng and nq, hat for all n > ng, at most ny eigenvalues of the matrix
SrSn — I, have absolute values larger than €.

One sufficient condition for the matrix to have eigenvalues clustered around
one is that
b5} n = In + an

where I, is the n x n identity matrix and L,, is a low rank matrix (rank(ZL,,)
is bounded above and independent of the matrix size n).
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Conjugate Gradient Squared Method

Given a real symmetric, positive definite matrix A of size nxn, the CG method
can be used to solve the linear system Ax = b. But in general a non-singular
matrix can be neither symmetric nor positive definite. In particular for the
applications in queueing systems and re-manufacturing systems in Chapters
2 and 3. In this case, one may consider the normal equation of the original

system. i.e.,
AT Ax = AThb.

Here AT A is real symmetric and positive definite so that CG method could
be applied, but the condition number would then be square .%)ver, it

also involves the matrix-vector multiplication of the form ese will
increase the computational cost. Thus in our co e propose to employ
a generalized CG algorithm, namely the Conju adi ared (CGS)
method, [193]. This method does not involv rixs multiplication
of the form ATr. '%
The CGS algorithm reads: &‘\ \\\'
Given an initial guess x°, A, b, t® \\
X = Xg,; §
r=b— Ax; $

d=s+q;
w = Ad;
X =X+ ad;
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r=r—aw;

otherwise
T
H=r T
B = /v
s=r— f3q;

end? = s+ f(a+Fp); %}
1.3.7 Toeplitz Matrices §\ °
N

Toeplitz matrices
plied sciences a:
in time series
the applications S
plication in solving qlieueing systems and re-manufacturing systems will be
discussed in the Chay and 3.

In the above app
the focus. Direct
sion formula a
Toeplitz m,

atrices have many applications in ap-
hnas the multi-channel least squares filtering
age processing problems [145]. A survey on

D . .
thods for solving Toeplitz systems based on the recur-

only used, see for instance, Trench [199]. For an n x n
hese direct methods require O(n?) operations. Faster al-
gorithms t\t ire O(n log? n) operations have also been developed when
the Toeplitz matrix is symmetric and positive definite.

An important subset of Toepltiz matrices is the class of circulant matrices.
A circulant n x n matrix C is a Toeplitz matrix such that each column is a
cyclic shift of the previous one, i.e.
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Co C1 - Cph—1 Cp
Cp Cop C1 "+ Cp—1
C= (1.7)
Co . 5]
C1 Cg -+ Cp Co

Very often circulant matrices are used to approximate Toeplitiz matrices in
preconditioning or finding approximate solution. Because circulant matrices
have the following nice property. It is well-known that a circulant matrix can
be diagonalized by the discrete Fourier matrix F'. More preciselyx.

FCF* = D = Diag(dy, dy, . . ,&) \\\

where F' is the discrete Fourier matrix with en @

]_ jk)i
Fjp = 76_%7 Js k% =
n

and D is a diagonal matrix with ele
for instance [82]. Here F™* is the conj

multiplication Fy is called the F&
column vector y and can be d 1
unit vector §
we have X §
and \% &

% F, # (17 17 .
because the fi %n %!

nt

.
column vector with all entries being equal.

Therefore r\
1
F(co, Cn, - @ FCe; = DFe; = %(do,dl, cdy)T

and hence the eig@nVegtors of a circulant matrix C can be obtained by using

the FFT in O( operations. Moreover, the solution of a circulant linear
system can btained in O(nlogn) operations.
The F be used in the Toeplitz matrix-vector multiplication. A

¢
Toeplitz matrix’can be embedded in a circulant matrix as follows:

(L)) o

Here matrices S; and Sy are such that C is a circulant matrix. Then FFT can
be applied to obtain r = Ty in O(nlogn) operations.
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1.4 Hidden Markov Models

Hidden Markov Models (HMMs) are widely used in bioinformatics [135],
speech recognition [173] and many other areas [149]. In a HMM, there are
two types of states: the observable states and the hidden states. In a HMM,
there is no one-to-one correspondence between the hidden states and the ob-
served symbols. It is therefore no longer possible to tell what hidden state
the model is in which the observation symbol is generated just by looking
at the observation symbol. A HMM is usually characterized by the following
elements [173]:

e N, the number of hidden states in the model. Althoug %tes are
hidden, for many practical applications there ig often so sical sig-
nificance to the states. For instance, the hidd es T sent the CpG

island and the non-CpG island in the DN% e ote the indi-
vidual states as ° §
S = {s1, 52, % Q.\

and the state at the length ¢t as Q.

e M, the number of distinct observat idden state. The ob-
servation symbols correspond to sic ut of the system being
modeled. For instance, A,C,G, €,0 ation symbols in the DNA

sequence. We denote the indiyidual*sym

1 ,%UM}

.%@ )

and the symbol at thedlen
e The state transitio

[

y distribution in hidden state j, [B];r =

b
Kq
1 1

e The initial state on IT = {m;} where
i =P(Q1=s5;), 1<i<N.

Given appropri alues of N, M, A, B and II, the HMM can be used as a
generator to gi observation sequence

i% 0 ={0,0:05--- Oy}

where T is the number of observations in the sequence. For simplicity, we use
the compact notation

A= (A,B, 1)
to indicate the complete parameter set of the HMM. According to the above
specification, the first order transition probability distribution among the hid-
den states is used. There are three key issues in HHMMs:
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e Problem 1:
Given the observation sequence O = {0103 ---Or} and a HMM, how to
efficiently compute the probability of the observation sequence 7

e Problem 2:
Given the observation sequence O = {0103 ---Or} and a HMM, how
to choose a corresponding state sequence @ = {Q1Q2---Qr} which is
optimal in certain sense ?

e Problem 3: Given the observation sequence O = {010z --- O}, how to
choose the model parameters in a HMM?

For Problem 1, a forward-backward dynamic programming procedure [14] is
formulated to calculate the probability of the observation seq ciently.

For Problem 2, it is the one in which we attem %cov hidden part

of the model, i.e., to find the “correct” state s . In ractical situ-
ations, we use an optimality criteria to sol b od as possible.
The most widely used criterion is to find a singleybest uence, i.e., max-
imize the likelihood P(Q|A, O). This is i

since

for the given observatio&en e\\
S o0
For Problem

t t adjust the model parameters A such that
P(0|4) is maxi Expectation-Maximization (EM) algorithm.
For a complete tutori idden Markov model, we refer readers to the
paper by Rabiner [1 he book by MacDonald and Zucchini [149].

A
1.5 Markov %hon Process

Markov D rocess (MDP) has been successfully applied in equipment
maintenance, fmventory control and many other areas in management science
[4, 209]. In this section, we will briefly introduce the MDP, interested readers
can also consult the books by Altman [4], Puterman [172] and White [208].
Similar to the case of Markov chain, MDP is a system that can move from
one distinguished state to any other possible states. In each step, the decision
maker has to take an action from a well-defined set of alternatives. This action
affects the transition probabilities of the next move and incurs an immediate
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34 1 Introduction

gain (or loss) and subsequent gain (or loss). The obvious problem that the
decision maker facing is to determine a suitable plan of actions so that the
overall gain is optimized. The process of MDP is summarized as follows:

(i) At time t, a certain state i of the Markov chain is observed.

(ii) After the observation of the state, an action, let us say k is taken from a
set of possible decisions A;. Different states may have different sets of deci-
sions.

(iii) An immediate gain (or loss) qi(k)
state ¢ and the action k taken.

(iv) The transition probabilities py;) is then affected by the %2@.

is then incurred according to the current

(v) When the time parameter ¢ increases, transition occur and the

above steps (i)-(iv) repeat. § §

A policy D is a rule of taking actions. It p S o8l
should be made throughout the process. c
of an optimal policy v;(t) is defined as the totalvexp

t decisions or transitions remained. Fo Se ﬁ

t = 1, the value of an optimal policy i by\
Since there is only one-perio tion maximizing the immediate
gain will be taken. For the Wi iod remaining, we have

(&g&«{%‘:@ DHCION (1.10)

riod remaining, i.e.

(1.9)

where « is the
with the trans which are affected by the actions, an optimal
policy should consider e immediate and subsequent gain. The model
can be easily extende more general situation, the process having n

transitions remain k
E max{g"” +a Y plPvi(n - 1)}, (1.11)
J

keA;

§3
Q subsequent gain

From the above equation, the subsequent gain of v;(n) is defined as the ex-
pected value of v;(n — 1). Since the number of transitions remained is count-
able or finite, the process is called the discounted finite horizon MDP. For the
infinite horizon MDP, the value of an optimal policy can be expressed as

v; = max{qgk) +a Zpg.’;)vj}. (1.12)
J

keA;
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1.5 Markov Decison Process 35

The finite horizon MDP is a dynamic programming problem and the infinite
horizon MDP can be transformed into a linear programming problem. Both
of them can be solved easily by using EXCEL spreadsheet.

1.5.1 Stationary Policy

A stationary policy is a policy that the choice of alternative depends only on
the state the system is in and is independent of n. For instance, a stationary
policy D prescribes the action D(i) when the current state is i. Define D
as the associated one-step-removed policy, then the value of policy w;(D) is

defined as ®
&
e N
| $

£

J

N# Ny
Given a Markov decision process with inﬁ@on &coun‘c factor a,
€ Ky

0 < a < 1, choose, for each i, an alternativ

(k) (k) \)“
iré%}f{qi + szpji UJ&
R
Define the stationary policy D $ k@for each ¢, w;(D) = v;, i.e.

the stationary policy is an opti

kel
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2

Queueing Systems and the Web

N
In this chapter, we will first discuss some o@@ﬁ eing systems.
co

The queueing system is a classical applic Markov chain.

We then present an important numerical, algorith on computation
of Markov chain for ranking the web i . This is a modern
applications of Markov though the n i used are classical.

N
2.1 Markovian Queuein@t
An important class of queuei (o}
The main assumptions 0%
rival process and expo ial ‘servi
in the previous secti
means when a cu

has to leave the
more Markovi

e Markovian queueing systems.
ueing system are the Poisson ar-
. The one-server system discussed
system without waiting space. This
finds the server is busy, the customer
L lowing sections, we will introduce some

1 .uneueing system is a classical application
of continuous ar . We will further discuss its applications in
re-manufacturing sys hapter 3. For more details about numerical so-

lutions for queueing nd Markov chain, we refer the read to the books
by Ching [52], Leo& 44], Neuts [159, 160] and Stewart [194].
@

2.1.1 An M/ Y — 2 Queueing System

Now let w er a more general queueing system with customer arrival
rate being \.%Suppose the system has one exponential servers with service
rate being u and there are n — 2 waiting spaces in the system. The queueing
discipline is First-come-first-served. When an arrived customer finds the server
is busy, then customer can still wait in the queue provided that there is a
waiting space available. Otherwise, the customer has to leave the queueing
system. To describe the queueing system, we use the number of customers in
the queue to represent the state of the system. There are n states, namely
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38 2 Queueing Systems and the Web

0,1,...,n—1. The Markov chain for the queueing system is given in Fig. 2.1.
The number of customers in the system is used to represent the states in the
Markov chain. Clearly it is an irreducible Markov chain.

H M ®
DO O m——s
A A A A
Fig. 2.1. The Markov chain for the one-queue syste g\o

If we order the states of the system in incre mb ustomers, it
is not difficult to show that the generator mz& thi ing system is

given by the following n x n tri-diagonal = ) Where

A -

L S
AA+p —p Q.p \
| iSS

(2.1)

4y

0 \
and the underlying@h i rreducible. The solution for the steady-
state probability <\ OR& shown to be
‘%P@ ?p(hpla e 7pn71)T (22)
where §

\/ +1 A n
% H Z and o= Zpi. (2.3)
\ k=1 H i=0
(J
Here p; is the p jlity that there are ¢ customers in the queueing system

in the stead d « is the normalization constant.
Ezxample Q%ider a one-server system; the steady-state probability dis-
tribution is given by

p'(1—p)

where p= —.
1—pn

pi =

When the system has no limit on waiting space and p < 1, the steady-state
probability becomes
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lim p; = p'(1 — p).
n—oo

The expected number of customers in the system is given by
o0
Le=) ipi
i=0
oo
=> ip'(1—p)
0

:ipz(l—p) _ P
(L=p3? 1-p

f{};
%,

2.1.2 An M/M/s/n

Now let us consi &gr

rate being .
servers with s t
the system. The queu
a customer arrives
wait in the queue i

the customer has ‘k
chain for model this

departure of ¢
customers

ng System

| queueing system with customer arrival
i\ has s parallel and identical exponential
and there are n — s — 1 waiting spaces in
ipline is First-come-first-served. Again when
all the servers are busy, the customer can still
that there is a waiting space available. Otherwise,
the system. To apply the continuous time Markov

eueing system, one has to obtain the waiting for one
r when there are more than one customer (let us say k
ueueing system. We need the following lemma

Lemma 2.2. Suppose that X1, Xo,..., X, are independent, identical, expo-
nential random variables with mean =1, and consider the corresponding order
statistics

X=X s =Xp:

Then X1y 1s again exponentially distributed with mean % times the mean of
the original random variables.
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Proof. We observe that
Xy =min(Xy, Xo, ..., Xg).
Xy > x if and only if all X; >z (i = 1,2,...,k). Hence
P{X@) >z} = (P{_)H(;)k> z}P{Xy >z} - P{X) > x}
= (e

= e kno,

Again it is still exponentially distributed with mean 1/(ku). If we use the
number of customers in the queue to represent the state of the systems There

are n states, namely 0,1, ..., n—1. The Markov chain for the g system
is given in Fig. 2.2. The number of customers in th m is use represent
the states in the Markov chain. Clearly it is an i ibl v chain.

\ o“
2u \Q‘S/A%\ s
OO~ $F ©

given by the following matrix Ay = A, 4, Where

If we order the states he'sys % creasing number of customers, it
is not difficult to show % g matrix for this queueing system is
i-dia

S
A@@‘? ’
Az = \%‘Aﬂii o At s —si 24)
\-\\S T e

-\ su

and the u \mg Markov chain is irreducible. The solution for the steady-
state probabi distribution can be shown to be

G

Pl = (00:P15 - Pac1)” (2.5)

where
i+l

A
bi= akl;[l pmin{k, s}
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and .
cfl = sz
=0

Here p; is the probability that there are ¢ customers in the queueing system
in steady state and « is the normalization constant.

2.1.3 The Two-Queue Free System

In this subsection, we introduce a higher dimensional queueing system. Sup-

pose that there are two one-queue systems as discussed in Secti .1,2. This
queueing system consists of two independent queues with the of iden-
2)resp

tical servers and waiting spaces being s; and n; — (i = ectively.
It we let the arrival rate of customers in the q e service rate
of the servers be u; (i = 1,2) then the states que ystem can be

represented by the elements in the followir& \

S={@o<is< %gj
where (i, j) represents the state tha@are i
. ion

d
e

%

mers in queue 1 and j
customers in queue 2. Thus this i&h al queueing model. If we
order the states lexicographicall e g or matrix can be shown to
be the following nimny X ninsg r&%ﬂ or product form [44, 52]:

Az =1, ® &/\27 1,51 A0,1) @ In,. (2'6)

Here ® is the Kroneck 0 ct [101, 112]. The Kronecker tensor
product of two matri es p X ¢ and m X n respectively is a
(pm) X (gn) matri s fo :

T
% 5o a1,B

v
%

The Kronecker t #oduct is a useful tool for representing generator ma-
trices in many g systems and stochastic automata networks [44, 52,
wo-queue free queueing system, it is also not difficult to

138, 194].
dy state probability distribution is given by the probability

show that %‘:
distribution veétor

P(nis1A1.01) © P(nz,szAa,u2)- (2.7)
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1 2 3 k ’I’L1—81—1
w— @

o @ S

.&@mm R .
Q\

j 17,2—82—1

‘Q A @ Customer being served

|Z| Customer waiting in queue

\\ I:I Empty buffer in queue
& .3. The two-queue overflow system.

\'
2.1.4 The @eue Overflow System

Now let us addvthe following system dynamics to the two-queue free system
discussed Section 2.1.3. In this queueing system, we allow overflow of cus-
tomers from queue 2 to queue 1 whenever queue 2 is full and there is still
waiting space in queue 1; see for instance Fig. 2.3 (Taken from [52]). This is
called the two-queue overflow system; see Kaufman [44, 52, 136].

In this case, the generator matrix is given by the following matrix:



2.1 Markovian Queueing Systems 43

Ay=1,, ® A(ﬂz,Sz,Az,uz) + A(n1,81,>\1,u1) ®In, + R® en2ten2' (2'8)

Here ey, is the unit vector (0,0,...,0,1) and
A2 0
Y
R= —/\2 . . (29)
W
0 —X2 0
In fact %\'
A =A3+R® enzTe112 \
where R ® en,” en, is the matrix describing th ow omers from
queue 2 to queue 1. Unfortunately, there is alyti tion for the
generator matrix Ay. \% \\
In view of the overflow queueing system, closed fo ion of the steady
state probability distribution is not alw%qil act, there are a lot
applications related to queueing syst 0S size are very large

=

(34, 35, 36, 43, 44, 52, 80]. Diregt
ity distribution such as the Gauss
be found in [130, 194]. Anothe
lytic methods [138]. Apart fr
ular numerical methods is ed
classical iterations introd C
Seidel method and SO
block structure, block
SOR method are
which combines
Ching et al [21

ving the the probabil-
nd LU factorization can
is called the matrix ana-
ethods, another class of pop-
methods. They include those
such as Jacobi method, Gauss-
es when the generator matrix has
lock Gauss-Seidel method and block
ar‘ s [101]. A hybrid numerical algorithm
ic algorithm has been also introduced by

%ing systems. Conjugate gradient methods

ds

with circulant T ers are efficient solvers for a class of Markov
chains having near<Toepltiz generator matrices. We will briefly discuss this in
the following subsec"%
2.1.5 The Prec ning of Complex Queueing Systems

@

In many co %eueing systems, one observe both block structure, near-

Toeplitz s nd sparsity in the generator matrices. Therefore iterative
method suc G method can be a good solver with a suitable precondi-
tioner.

Circulant-based Preconditioners

In this subsection, we illustrate how to get a circulant preconditioner from a
generator matrix of a queueing system. The generator matrices of the queueing
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networks can be written in terms of the sum of tensor products of matrices.
Very often, a key block structure of a queueing system is the following: (n +
s+ 1) x (n+ s+ 1) tridiagonal matrix:

A —u 0
A+ pu—2u

“AA+(s=Du —su

0

This is the generator matrix of an M/M/s/n eing system,
there are s independent exponential serve; i i
to a Poisson process of rate A\ and each serve

One can observe that if s is fixed an is is close to the fol-
lowing tridiagonal Toeplitz matrix Tri \

the following circulant matrix ¢(Q i: x \
\ . (2.11)
\“ +su —su

It is easy to see that

independent o

réfore for fixed s and large value of n, the
approximate i d eover, ¢(Q) can be diagonalized by the dis-
crete Fourier Transfo and closed form solution of its eigenvalues can
be easily obtained. portant in the convergence rate analysis of CG
method. By apply is circulant approximation to the blocks of the gen-
erator matrices, e preconditioners were constructed and the precondi-
tioned systems o proved to have singular values clustered around one,

and Ching [44]. A number of related applications can
, 48, 50, 52, 55].

Toeplitz-Circulant-based Preconditioners

Another class of queueing systems with batch arrivals have been discussed by
Chan and Ching in [43]. The generator matrices of the queueing systems of s
identical exponential servers with service rate pu take the form
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A —u 0 0 0 ... 0
M At 24 0 0 ... 0
— A A1 A+2u :
A, = : X o —su , (2.12)
: o A+sp -0
—An—2 —An—z - e s
—T1 T2 T3 e —Tep1 ccc SK

where r; are such that each column sum of A, is zero, i.e.

rizx—kzzmxk. \.%

Here A is the arrival rate and A; = Ap; W@ is
an arrived batch is of size i. It is clear m

method of circulant approximation doesynot work
Toeplitz-circulant type of precondition solve this queueing
system Chan and Ching [43]. The id at erator matrix is close
to a Toeplitz matrix whose generagi ctiomhas™d zero on the unit circle
of order one. By factoring the zw @ has no zero on the unit
circle. Using this fact, a Toeplit ant pre itioner is then constructed
for the queueing system. B

%.
S

dense and the
y in this case. A

—_—

0 ion cost and the preconditioner
system can be solved in n . Moreover, the preconditioned
system was proved to havegifigula lustered around one. Hence very
fast convergence rate i ected method is applied to solving the

preconditioned system
plie%eueing systems with batch arrivals and
N erm “negative customer” was first intro-
GTin the modelling of neural networks. Here
is to remove a number of customers waiting
in the queueing system. ample, one may consider a communication net-
work in which mess transmitted in a packet-switching mode. When
a server fails (this &)onds to an arrival of a negative customer) during
a transmission, p, &the messages will be lost. One may also consider a
manufacturing "where a negative customer represents a cancellation of
a job. Thes any practical applications in the modelling of physical
systems. &
In the quenging system, we assume that the arrival process of the batches
of customers follow a Poisson process of rate A. The batch size again follows
a stationary distribution of

pili=1,2,...,).

Here p; is the probability that an arrived batch is of size i. It is also assumed
that the arrival process of negative customers is a Poisson process with rate
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7. The number of customers to be killed is assumed to follow a probability
distribution
bii=1,2,...,).

Furthermore, if the arrived negative customer is supposed to kill 4 customers
in the system but the number of customers in the system is less than i, then
the queueing system will become empty. The killing strategy here is to remove
the customers in the front of the queue, i.e. “Remove the Customers at the
Head” (RCH). For i > 1, we let

T = biT
@
where b; is the probability that the number of customers to is ¢ and
therefore we have . § \
=3 N

N cr QOO NN L e
—A1 A+ ::— Iz —2#u—2 T1 —1‘&73 \\ . —zn_zl
X2 =\ >\+T+2u\'§0 x\\ :

. , N .

: =2 *
An = NI

: : \&% w
—An—2 —An-3 N"_ \ A2 A A+TH S —sp—T1
—V1 —vV2 \U \ - s —Un—-2 —Un-1 T+ SK

Here *\\ 3

and \ .
u1§d ui:T—ZTk fori=2,3,...
° k=1

.hat the 7th column sum is zero. The generator matrices
~Toeplitz structure. Toeplitz-circulant preconditioners can
be constru ilarly and the preconditioned systems are proved to have
singular values®lustered around one, Ching [54].

Finally, we remark that there is another efficient iterative method for solv-
ing queueing systems which is not covered in the context, the multigrid meth-
ods. Interested readers may consult the following references Bramble [32],
Chan et al. [45], Chang et al [47] and McCormick [163].

and v; is define
enjoy the sa
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2.2 Search Engines

In this section, we introduce a very important algorithm used by Google in
ranking the webpages in the Internet. In surfing the Internet, surfers usually
use search engines to find the related webpages satisfying their queries. Unfor-
tunately, very often there can be thousands of webpages which are relevant to
the queries. Therefore a proper list of the webpages in certain order of impor-
tance is necessary. The list should also be updated regularly and frequently.
Thus it is important to seek for fast algorithm for the computing the PageR-
ank so as to reduce the time lag of updating. It turns out that this problem
is difficult. The reason is not just because of the huge size of the @ebpages in
the Internet but also the size keeps on growing rapidly.

PageRank has been proposed by Page et al. [166]%0 refleet thedinportance
of each webpage, see also [223]. Larry Page andSergéy Brintare the founder
of Google. In fact, one can find the following statement @atwGoogle’s website
[228]: “The heart of our software is PageRénke ' a systemdfor ranking web
pages developed by our founders Larry Page“and Seérgey*Brin at Stanford
University. And while we have dozens ofsengineers &#erking to improve every
aspect of Google on a daily basis, PageRank céntitues to provide the basis
for all of our web search tools.”

A similar idea of ranking the “ourmalg HasMeeen proposed by Garfield
[98, 99] as a measure of standingyfor journals,“which is called the impact
factor. The impact factor of agjournal,isdefined as the average number of
citations per recently published“apers, in that journal. By regarding each
webpage as a journal, thistidea was thentextended to measure the importance
of the webpage in the RPageRawk Algerithm.

The PageRank is definedhas followsi let N be the total number of webpages
in the web and we defifn&zavmatrixicalled the hyperlink matriz. Here

0, = 1 kNE webpage tels an outgoing link of webpage j;
” QN Nothéfwise;

and k is the total aumber, of outgoing links of webpage j. For simplicity of
discussion, here we agsuthe that );; > 0 for all 7. This means for each webpage,
there is a link poimntimgyto itself. Hence ) can be regarded as a transition
probability matrix oflasMarkov chain of a random walk. The analogy is that
one may regard asurfer as a random walker and the webpages as the states of
the Markov chain.S%ssuming that this underlying Markov chain is irreducible,
then the steady®state probability distribution
(p1,p2; - 7PN)T

of the states (webpages) exists. Here p; is the proportion of time that the
random walker (surfer) visiting state (webpage) 7. The higher the value of p;
is, the more important webpage 7 will be. Thus the PageRank of webpage i
is then defined as p;. If the Markov chain is not irreducible then one can still
follow the treatment in next subsection.
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An Example

We Consider a web of 3 webpages:1,2,3 such that
1—-1,1—-2,1—-3

2—1, 2—2,
3—2,3—3.

One can represent the relationship by the following Markov chain.

7))

q [ ]
2 \ \
Fig. 2.4. An example %ﬁe %e@
The transition probability mat‘:@qs Nﬂ%chain is then given by

=

4
The steady state proba%x i niof the Markov chain
\% ‘ 1)p27p3)

satisfies %l o
\\.n % d pi+p2+ps=1
Solving the above %

m, we get

342
& (p17p27p3)_<§’§a§)‘
Therefore the 1&'& the webpages is:
ebpage 2 > Wepbage 1 > Webpage 3.

One can also%mterpret the result as follows. Both 1 and 3 point to 2 and
therefore 2 is the most important. Since 2 points to 1 but not 3, 1 is more
important then 3.

Since the size of the Markov chain is huge and the time for computing the
PageRank required by Google is just a few days, direct method for solving the
steady-state probability is not desirable. Iterative methods Baldi et al. [12]
and decomposition methods Avrachenkov and Litvak [9] have been proposed
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to solve the problem. Another pressing issue is that the size of the webpages
grows rapidly, and the PageRank of each webpage has to be updated regularly.
Here we seek for adaptive and parallelizable numerical algorithms for solving
the PageRank problem. One potential method is the hybrid iterative method
proposed in Yuen et al. [215]. The hybrid iterative method was first proposed
by He et al. [107] for solving the numerical solutions of PDEs and it has been
also successfully applied to solving the steady-state probability distributions
of queueing networks [215]. The hybrid iterative method combines the evo-
lutionary algorithm and the Successive Over-Relaxation (SOR) method. The
evolutionary algorithm allows the relaxation parameter w to be adaptive in
the SOR method. Since the cost of SOR method per iteration is fitere,expan-
sive and less efficient in parallel computing for our problent(as the matrix
system is huge), here we will also consider replacingithe rolésof SOR method
by the Jacobi Over-Relaxation (JOR) method [20%,830]. Thesreason is that
JOR method is easier to be implemented in paralleh computitig environment.
Here we present hybrid iterative methods Basedior SOR/JOR and evolution-
ary algorithm. The hybrid method allows, the Telaxatioh,parameter w to be
adaptive in the SOR/JOR method. We give, d\briefimathematical discussion
on the PageRank approach. We thengbriefly describe the power method, a
popular approach for solving the RageRank.

2.2.1 The PageRank Algorithm

The PageRank Algorithm, has been used,Successfully in ranking the impor-
tance of web-pages by Googlé [223jmCousider a web of N webpages with Q
being the hyperlink mafeise, Sincefthetimatrix @ can be reducible, to tackle
this problem, one can eonsider therevised matrix P:

QN Q15%: - v 11---1
_ 11---1
PANNY SN | G | T (2.13)
5 N SR
Qann @ - QNN 11---1

where 0 < a < 1.\Ia‘this case, the matrix P is irreducible and aperiodic,
therefore the steady? state probability distribution exists and is unique [180].
Typical values foracatre 0.85 and (1—1/N), see for instance [12, 223, 106]. The
value o = 0,858 popular one because power method works very well for
this problém{106). However, this value can be considered to be too small and
may distort theoriginal ranking of the webpages, see the example in Section
2.2.3.

One can interpret (2.13) as follows. The idea of the algorithm is that,
for a network of N webpages, each webpage has an inherent importance of
(1 — a)/N. If a page P; has an importance of p;, then it will contribute an
importance of ap; which is shared among the webpages that it points to. The
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importance of webpage P; can be obtained by solving the following linear
system of equations subject to the normalization constraint:

Dp1 Qi1 Qi2 - QN p1 1

D2 Q21 Q22 -+ Q2N D2 1— 1
T SO o DS
: : R : N :

PN QN1 QN2 - QNN DN 1

Since

N
Zpi =1,
i=1

(2.14) can be re-written as
(p1,p2s-...on)" = P(pm’\@ §§
S S

2.2.2 The Power Method

\

The power method is a popular meth %o i PageRank problem.

The power method is an iterative me T solv e largest eigenvalue in

modulus (the dominant eigenvaluk tgpc onding eigenvector [101].
e

The idea of the power method rie ained as follows. Given an
n X n matrix A and suppose ‘d&

%L single eigenvalue of maximum
modulus and the eigenvalue%
O -2 Al

labelled such that
A e 2
(ii) there is a linearly i d @ n unit eigenvectors. This means that
there is a basis h

A
such that \ %\
Au@:% =12 om0 = 1

Then begin with a@l vector x(9), one may write
(J

%p) — apu® 4 ayu® 4t g, u™,

Now we it initial vector with the matrix A as follows:

A0 =% AFu® + .+ a, AFu™ = al)\]fu(l) +...+ an)\]flu(")

k k
kg 4 (22 () An (n)
= A7 au’ + )\— a,u"’ + ...+ )\— an,u .
1 1

Since
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Ai .
| |<1 fori=2,...,n,
Al
we have Ak
kli»IEo|A1|k:0 fori=2,...,n.

Hence we have
AFxO) g M),

To get an approximation for u(* we introduce a normalization in the iteration:

Ak+15(0)

_ \ @
Ig+1 = ||Akx(0)||2 \\
then we have . § %
lim e+l = lim al)\l 1!“&
k—o0 k—o00 ||a1)\]fx %
m is the PageRank

It turns out that for the PageRank problent, th
is 1 and the corresponding eigenvecto 1
vector. The main computational cost m mes from the matrix-
te

vector multiplications. The conve % thepower method depends
on the ratio of |Aa/A1| where A & a tively the largest and the

second largest eigenvales of the It proved by Haveliwala and

Kamvar [106] that for the S% g&v&lue of P, we have

% a<l.
Since A\; = 1, the conv ra power method is «, see for instance
[101]. A popular v ! 1\‘& With this value, it was mentioned in
Kamvar et al. [1% method on a web data set of over 80

million pages c 50 iterations.

t
esvi
2.2.3 An Examp!e ‘%
In this subsection, ﬁ&sider a small example of six webpages. This example

demonstrates tha lue of a = 0.85 can be too small and distort the true
ranking of the es even if the web size is small. In the example, the
webpages a ed as follows:

Webpage &, 4,5,

Webpage 2 — 2,3,5,6.
Webpage 3 — 1,2,3,4,5,6.
Webpage 4 — 2,3,4,5.
Webpage 5 — 1,3, 5.
Webpage 6 — 1,6.
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From the given structure of the webpages, we have the hyperlink matrix as
follows:

0.2500 0.0000 0.1667 0.0000 0.3333 0.5000
0.0000 0.2500 0.1667 0.2500 0.0000 0.0000

1 0.2500 0.2500 0.1667 0.2500 0.3333 0.0000
@= 0.2500 0.0000 0.1667 0.2500 0.0000 0.0000
0.2500 0.2500 0.1667 0.2500 0.3333 0.0000
0.0000 0.2500 0.1667 0.0000 0.0000 0.5000

then the steady state probability distribution is given by

\.ﬁ'
(0.2260, 0.0904, 0.2203, 0.1243, 0.2203, 0.1186)\\

and the ranking should be 1 >3>5>4>6 >x®a =
0.2375 0.0250 0.1667 0. 2%% 3

0.0250 0.2375 0.1667 0& .02

p_ 0.2375 0.2375 0.1667 375 0.

1 0.2375 0.0250 0.166 @y?)
0.2375 0.2375 0.1@375
.0

0.0250 0.2375

2 .
In this case, the steady state pr@ty istriBution is given by
(0.2166, 0.10@92@.2092, 0.1334)"
and the ranking shoul m 6 >4 > 2. We observe that the
ranking of states 6 and%int% ed in the two approaches.
Yuen et al. [215, 216]. We first give a review

2.2.4 The SO
In this sectio e
probability of a k
g linear system, in particular solving the steady

state probability distei on of a finite Markov chain. We then introduce

q?nd the Hybrid Method

rid algorithm for solving the steady state

method, it has been discussed in Chapter one. Now we
ar linear system Bx = b, the JOR method is a classical
iterative he idea of JOR method can be explained as follows. We
write B = — B) where D is the diagonal part of the matrix B. Given
an initial guess of the solution, xg, the JOR iteration scheme reads:

algorithm. For t
consider a non

Xnt1 = (I —wD 1B)x, + wD~'b

= B,x, + wD™'b. (2.15)

The parameter w is called the relaxation parameter and it lies between 0 and
1 [11]. Clearly if the scheme converges, the limit will be the solution of
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Bx =b.

The choice of the relaxation parameter w affects the convergence rate of the
SOR/JOR method very much, see for instance [215, 216]. In general, the
optimal value of w is unknown. For more details about the SOR/JOR method
and its property, we refer readers to [11, 101].

The generator matrix P of an irreducible Markov chain is singular and
has a null space of dimension one (the null vector corresponds to the steady
state probability distribution). One possible way to solve the steady state
probability distribution is to consider the following revised system:

Ax = (P+ele,)x =el \g\. (2.16)

where e,, = (0,0,...,0,1) is a unit vector. The ste@ate bility distri-
se

bution is then obtained by normalizing the s% , tance Ching
[52]. We remark that the linear system (2.16)1 ci nal dominant.
The hybrid method based on He et al. [107] ue » [215] consists of
four major steps: initialization, mutationsevaluatio daptation.

In the initialization step, we defin ﬁiz population k of the
approximate steady-state probabilit utio is means that we also
define k approximates to initializ gori en use the JOR itera-
tion in (2.15) as the “mutation 7 T@ the ion step, we evaluate how
“good” each member in the p by measuring their residuals. In
this case, it is clear that th t al the better the approximate

and therefore the better ghe b population. In the adaptation
step, the relaxation para o) eak” members are migrated (with
certain probability) tow; eg axation parameter. The hybrid algo-

rithm reads: \
generate an initial population of k (2 < k <

Step 1: Initialj x
n) identical st% e ity distributions as follows:
ei:i:1,2,...,k}

where e; = (1,1,. .@Ve then compute
@

4 T = ||Bez—b||2
and define elaxation parameters {wy, wa, ..., wy} such that
1-27)(k—14
wl':T—I—%, 1=1,2,... k.

Here 7 € (0,1) and therefore w; € [1,1—7]. We set 7 = 0.01 in our numerical
experiments. We then obtain a set of ordered triples

{(es,wi, ) i =1,2,...,k}.
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Step 2: Mutation: The mutation step is carried out by doing a SOR/JOR
iteration on each member x; (x; is used as the initial in the SOR/JOR) of the
population with their corresponding w;. We then get a new set of approximate
steady-state probability distributions: x; for i = 1,2,..., k. Hence we have a
new set of

{(xi,wi,ri) i =1,2,... k}.
Goto Step 3.

Step 3: Evaluation: For each x;, we compute and update its residual

T, = ||BX’L —b||2 §§.
This is used to measure how “good” an approxim is. I [ for some
j then stop and output the approximate stea ro distribution
x;. Otherwise we update r; of the ordered K ° \§
2,. %, k} %’

{(xi,wi, i) i =1,2,.
and goto Step 4. §\\.\ \\\'

Step 4: Adaptation: In this st@ r@ factors wy of the weak
t1 e

members (relatively large 7;) in opula moving towards the best
one with certain probability. T, ¢ arried out by first performing a
linear search on {r;} to find t factor, w;. We then adjust all

the other wy, as follows: % \
w — . ; 54 01) % (W, +wj) € [1,1 — 7]
k= herwise,
where 6; is a r iTle, —0.01,0.01]. Finally the best w; is also
adjusted by ¢ %\

(’LU1+’Ll)2+...+’u}j_1+w]‘+1+...+’wk)

w; = 0o x w; + 1%& 1
where d; is a randon ber in [0.99,1]. A new set of {w;} is then obtained

and hence \‘.
\\ {(xi,wiy i) i =1,2,... k).
Goto Step \

2.2.5 Convergence Analysis

—

g
[$2§
+
gl

In this section, we consider the linear system Bx = b where B is strictly
diagonal dominant, i.e.
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N
|Bii| > Z |B;j| for i=1,2,...,N
i=Tg#i

where N is the size of the matrix.
We first prove that the hybrid algorithm with SOR method converges for
a range of w. We begin with the following lemma.

Lemma 2.3. Let B be a strictly diagonal dominant square matriz and

N
then % %
||[Bulloo <1 for 0<w K}%
[}
where By, is defined in (2.13). \x %
Proof. Let x be an n x 1 vector such th&%;@ are going to prove

that | Buxlle < 1 @ <
00;131“; y=(D- @(1@ wl)x
R s:&\mwmx

K = max E *J 1
o 4~ |Bi <
Jj=1,g#i

K).

ml " " _U)Bm,m—l Bmm Ym
(1- ihﬁ wBiy - wB1m o

(1 —U))Bgz T2

Tm

o
=)
_
|
g
S5
3
3

Case 1: 1 <w < 2/(K +1).

For the first equation, we have
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m
Bllyl = (1 — w)Bllxl + ’LUZBlej.
j=2
Since

lzi <1 and Y [By;| < KBy,
j=2

we have
lyi] <1 —w|+wK =w(l+K)—1<1.

For the second equation, we have

Since

m

S g

Since ) & .
and Z |B1;| < |Bul,

&
%'. | <l—w+w=1.

For the se@ation, we have

Baoys = (1 — w)Baowy + wBa1y1 +w Z Byja;.
j=3

we have

Since
m

ly1] <1, |=;] <1 and Z | B2j| < |Baal,
=172
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we have
lyol <1 —w+w =1

Inductively, we have |y;| < 1 and hence ||y||cc < 1. Therefore
[|Bwlloo <1 for 0<w<1.
Combining the results, we have
[|Bulloo <1 for 0<w<2/(1+K).

Proposition 2.4. The hybrid algorithm converges for w € [1,2/(1 + K) — 7]
where 0 < 7 < 1/(1 + K).

q @
Proof. We note that \\
f(T) - wE[T,2I}E?fK)—T]{||(® §
exists and less than one and let us denot % i

< £ . Therefore in
each iteration of the hybrid method, the matrixwor ) of the residual
is decreased by a fraction not less than . By fact that
15T < T@\\
the hybrid algorithm is convergent\ \‘\
i with JOR method converges for

We then prove that the hybri ri
a range of w. We have the

Lemma 2.5. Let B be a%
then % \'\
’% Kw<l for T<w<l-—r
defined i

where By, is

By using the sin@roach in as in Proposition 2.4, one can prove that

Proposition 2.6. ybrid iterative method converges for w € [r,1 — 7].
°

Proof. We obse®t

Q\\\ f(r) = max {)|Bulli}

exists and less than one and let us denote it by 0 < f(7) < 1. Therefore in
each iteration of the hybrid method, the matrix norm ( ||.||1 ) of the residual
is decreased by a fraction not less than f(7). By using the fact that

ST < [[SThIIT]]x,

the hybrid algorithm is convergent.
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We note that the matrix A in (2.14) is irreducibly diagonal dominant only
but not strictly diagonal dominant. Therefore the condition in Lemma 2.3
and 2.5 is not satisfied. However, one can always consider a regularized linear
system as follows:

(A+el)x=h.

Here I is the identity matrix and € > 0 can be chosen as small as possible.
Then the matrix (A+€el) is strictly diagonal dominant but this will introduce
a small error of O(e) to the linear system. Numerical results in Yuen et al.
[215, 216] indicate that the hybrid algorithm is very efficient in solving steady

state distribution of queueing systems and ranking webpages in,the Web.
Here we present some small scale numerical results (three di ta sets)
for two typical values of o in Tables 2.1 and 2.2 (T§en fro ere k is

the size of population and NV is the number of w,

Table 2.1. Number of iterations for%nce g— 1/N).

JOR Data Set 1 Da t @ 2
N 100 200 300 400 100

k=2 41 56 42 42 5 26 32 25
k=3 56 60 42 42 35 43 25
k=4 46 59 42 32 38 25

k=5 56 60 43

SOR

15 18 14 19 15
23 16 23 18 21 29 15
21 16 21 18 19 26 18
% 21 16 20 20 20 25 17

°
scussed two important applications of Markov chain, the
queueing networks and the Modern PageRank algorithm.
For the latt lication, in fact, it comes from the measurement of prestige
in a network. The computation of prestige in a network is an important issue
Bonacich and Lloyd [25, 26] and it has many other applications such as social
networks Wasserman and Faust [206] and disease transmission, Bell et al. [15].
A number of methods based on the computation of eigenvectors have been
proposed in the literatures, see for instance Langville and Meyer [137]. Further
research can be done in developing models and algorithms for the case when

In this chapter
classical
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Table 2.2. Number of iterations for convergence (o = 0.85).

JOR Data Set 1 Data Set 2 Data Set 3
N 100 200 300 400 100 200 300 400 100 200 300 400

k=2 42 56 44 47 61 82 66 64 18 28 32 26
k=3 55 60 45 52 62 81 63 62 18 36 42 26
k=453 59 45 49 58 71 62 62 18 33 38 26
k=553 65 45 49 61 70 64 62 18 32 37 26

SOR Data Set 1 Data Set 2 Data Set 3
N 100 200 300 400 100 200 300 400 100 200 300 400

k=219 17 17 16 16 14 15 15 15 14
k=3 28 26 17 24 16 22
k=424 23 19 21 16 20
k=528 26 19 21 17 21

there are negative relations in the networksiTai et al. n a network, being
chosen or nominated by a popular or 1 webpage) would add
one’s popularity. Instead of supporti mbe egative relation means

being against by a member in the K . \\\
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Re-manufacturing Systems

3.1 Introduction \\\\'\ '\\\S

In this chapter, the inventory controls of gem ands

inventory systems is discussed. In fac research papers on
inventory control of repairable items of them describe the
system as a closed-loop queueln wi stant number of items
inside [78, 158, 201]. Disposal s [ is allowed in the models
presented here. The justificatio 1 is at accepting all returns will
lead to extremely high inv ence very high inventory cost.

Sometimes transshipment d among the inventory systems

to reduce the rejection rate retu r re-manufacturing models can be
found in [117, 200, 196] ood s and current advances of the related
topics can be found in Y157].

As a modern stra encourage the customers to buy prod-
ucts, the custom odeturn the bought product with full refund
Wlthln a perio result, many customers may take advantage
of this policy a e turers have to handle a lot of such returns.

Very often, the retur ill in good condition, and can be put back to
%md packaging. The first model we introduce here

uation. The model is a single-item inventory sys-
s is captured by using a queueing network. In this
ind the returns are assumed to follow two independent
P01sson pro e returns are tested and repaired with the standard re-
ulrement ired returns will be put into the serviceable inventory and
non—repalrab turns will be disposed. The repairing time is assumed to be
negligible. A similar inventory model with returns has been discussed in [110].
However, the model in [110] includes neither the replenishment costs nor the
transshipment of returns. In this model, the inventory system is controlled
by a popular (r, Q) continuous review policy. The inventory level of the ser-
viceable product is modelled as an irreducible continuous time Markov chain.

attempt to model
tem for handling
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The generator matrix for the model is given and a closed form solution for
the system steady state probability distribution is also derived.

Next, two independent identical inventory systems are considered and
transshipment of returns from one inventory system to another is allowed.
The joint inventory levels of the serviceable product is modelled as a two-
dimensional irreducible continuous time Markov chain. The generator matrix
for this advanced model is given and a closed form approximation of the solu-
tion of the system steady state probability distribution is derived. Analysis of
the average running cost of the joint inventory system can be carried out by
using the approximated probability distribution. The focus is on the inven-
tory cost and the replenishment cost of the system because the replenishment
lead time is assumed to be zero and there is no backlog or lesSyofydemands.
It is shown that in the transshipment model, the r8jéetion rate ofsthe returns
is extremely small and decreases significantly wiienjtlle re;orderssize (Q + 1)
is large. The model is then extended to multipleNinventery/return systems
with a single depot. This kind of model is ‘Ofyparticulaitintgrest when the re-
manufacturer has several re-cycling locations. Sifice thedlogations can be easily
connected by an information network, execssive returus«can be forwarded to
the nearby locations or to the main depotndirectly. ‘Lhis will greatly cut down
the disposal rate. The handling of us€d ‘machings iMIBM (a big recovery net-
work) serves as a good example for'ghe application of this model [92]. More
examples and related models cap®esfound in {92, pp. 106-131].

Finally, a hybrid system_cousists ef%a“we-manufacturing process and a
manufacturing process is diseussed. (Bhey hybrid system captures the re-
manufacturing process andygh€ systenjcaniproduce serviceable product when
the return rate is zero.

The remainder of thisschaptér is erganized as follows. In Section 3.2, a
single-item inventorygmede! forthandling returns is presented. In Section 3.3,
the model is extended“to theycase'that lateral transshipment of returns is
allowed among the inventerywsystems. In Section 3.4, we discuss a hybrid re-
manufacturing system. Finallyy concluding remarks are given in Section 3.5.

3.2 An InventerysModel for Returns

In this section, assingle-item inventory system is presented. The demands
and returns ofgtheproduct are assumed to follow two independent Poisson
processes wath™mean rates A and p respectively. The maximum inventory
capacity of the system is (). When the inventory level is (), any arrived return
will be disposed. A returned product is checked/repaired before putting into
the serviceable inventory. Here it is assumed that only a stationary proportion,
let us say a x 100% of the returned product is repairable and a non-repairable
return will be disposed. The checking/repairing time of a returned product is
assumed to be negligible. The notations for later discussions is as follows:

(i) A™!, the mean inter-arrival time of demands,
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(ii) p~1, the mean inter-arrival time of returns,

(iii) a, the probability that a returned product is repairable,
(iv) @, maximum inventory capacity,

(v) I, unit inventory cost,

(vi) R, cost per replenishment order.

An (r,Q) inventory control policy is employed as inventory control. Here,
the lead time of a replenishment is assumed to be negligible. For simplicity
of discussion, here we assume that » = 0. In a traditional (0,Q) inventory
control policy, a replenishment size of @) is placed whenever the inventory

level is 0. Here, we assume that there is no loss of demand in our model. A
replenishment order of size (Q + 1) is placed when the invent 0%% 0 and
there is an arrived demand. This will then clear thegarrived de nd bring
the inventory level up to @, see Fig. 3.1 (Taken f] ]). t, State ‘—1’

for instance.

Disposal 1—-a)pu

Returns Checking/ Demands

Repairing

The states of t kov chain are ordered according to the inventory
levels in ascendin and get the following Markov chain.
+ 1) system generator matrix is given as follows:

\\ (1) Adap —A 0

—ap A+ap —A

: —ap A+ ap —A
Q - —ap A

The steady state probability distribution p of the system satisfies
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A A

OO . ;

| ap ap

(3.2)

Fig. 3.2. The Markov chain. \g\.

By direct verification the following proposi were obtained.

Proposition 3.1. The steady state pro P is giwen by

pi=K(1- p”‘i%'o (33)
where \
ap
p=— and K .
A ) p) — p(L — p@t)
By using the result of the s bability in Proposition 3.1, the

following corollary is obtaineéd.

Corollary 3.2. The e@ m%\ level is
Q Q \ 2 2
_— NN Q R QQ+1) Qe p*(1-p9)

\ upq = pK(1—p9th)
and the mean r@tment rate is

At _AK(1—p)p

\\)\Xpox Ml (ap)~t  (1+p)

Proposition 3.3. If p < 1 and Q is large then

S

K~(1+Q)™

and the approximated average running cost (inventory and replenishment cost)
18
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L QL Al—p)pR
2 (1+p01+Q)

The optimal replenishment size is

2X(1 = p)pR 2auR ( 2\ >
@ \/ (1+p)I I A+ap (34)
One can observe that the optimal replenishment size Q* increases if A\, R

increases or I decreases.
We end this section by the following remarks.

@
e The model can be extended to multi-item case when the imit in
the inventory capacity. The trick is to use ind u networks

to model individual products. Suppose ther

c@)

ment order and the probability of getti i rn are given by
iy iy Iy Ry and a; respectively. Then the i enishment size of
each product ¢ will be given by (3.4 r\

viceable product if it is assumed
e. Then the inventory levels of the
e output process of an M/M/1 queue

e To include the inventory ¢ n
approximations for the st
ventory levels of the \%

S
that capacity for st T ur&
returns form an M eias

process with same mean rate, see the

in steady-stat a

lemma below, \ \ .

Lemma 34: @cess of an M/M/1 queue in steady state is
h

again a Poisson p same mean as the input rate.

Proof. We first Mt if X and Y be two independent exponential ran-
dom variables ans A~ and g1 respectively. Then the probability
density functii. the random variable Z = X + Y is given by

@ fo) = e - M

Let the arrival rate of the M/M/1 queue be A and the service rate of the
server be p. There are two cases to be considered: the server is idle (the
steady-state probability is (1 — A\/u) by (see Chapter 2) and the server is
not idle (the steady state probability is A/u.)

For the former case, the departure time follows f(z) (a waiting time for an
arrival plus a service time). For the latter case, the departure time follows
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pe##. Thus the probability density function g(z) for the departure time
is given by

(1= 2)(:) + 2 uer) = e = 2o

w—A w—A
A2 Az § —HZ 4 \eTHZ
—me +m€ + Ae .
Thus
g9(z) = Ae™™

is the exponential distribution. This implies that the departufiéyprocess is
a Poisson process. Because from Proposition 1.35, the d% process
is a Poisson process with mean A if and only e int\ ture time
follows the exponential distribution with mx .

ment and the
comes a tandem
stem steady state
. Numerical method
d has been applied to
for instance [43, 44, 48,

e One can also take into account the lea F& a
checking/repairing time of a return. In thig cas

queueing network and the analytic tiqn
probability distribution is not av. i
based on preconditioned conju, ien
solve this type of tandem que& yste ke
50, 52, 55]. * \\

3.3 The Lateral Tr odel

In this section, an inve o) h consists of two independent inven-
tory systems as deseri th ious section is considered. For simplicity
of discussion, bo e e ‘agsumed to be identical. A special feature
of this model i e Shipment of returns between the inventory
systems is all shipment of demands has been studied in a
number of papers stantial savings can be realized by sharing of
inventory via the la sshipment of demands [179]. Here, this concept
is extended to the ng of returns. Recall that an arrived return will be

disposed if the inve
lateral transshi
whenever one
is not yet

level is @ in the previous model. In the new model,
oof returns between the inventory systems is allowed
is full (whenever the inventory level is Q) and the other
inventory level is less than Q). Denote z(t) and y(t) to
evels of the serviceable product in the first and the second
inventory system at time ¢ respectively. Then, the random variables z(¢) and
y(t) take integral values in [0, Q]. Thus, the joint inventory process

{(z(t), (1)), t = 0}

is again a continuous time Markov chain taking values in the state space
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S:{(xay):xzov'”7Q7 y2077Q}

The inventory states were ordered lexicographically, according to x first and
then y. The generator matrix for the joint inventory system can be written
by using Kronecker tensor product as follows:

B=1g119A4+A® g1 +AA+ AR A (3.5)

where

and 00 \ §
A= ﬂs;ﬁ '§§ (3.7)
W&

and Ig4q is the (Q+1) x (Q+1 it he steady state probability
vector q satisfies %
& =1 (3.8)
We note that the genesator iﬁ ible and it has a one-dimensional
u

null-space with a right tor, see [101, 203]. The steady state
probability vector gy orm of the positive null vector of B. Let

hat the inventory level of the serviceable
vstem and j in the second inventory system.
system performance can be written in terms
of g;;. For examp rejection probability is ggg. Unfortunately,
closed form solution ot generally available. Very often by making use

7/

@

1

S el (BGS) method is applied to solve the steady state
probability distribution [50, 101, 203]. In the following, instead of solving the

Proposition 3.5. Let p be the steady state probability distribution for the
generator matriz A in Proposition 3.1. If p < 1 then

dap
(Q+1)%(1—p)?
The probability vector q = p ® p is an approrimation of the steady state
probability vector when Q is large.

[[B(p ®P)|loc <
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Proof. The probability vector p is just the solution of (3.2). By direct verifi-
cation, one have 1*(p ® p) = 1 and

IoA+Ax)(pop)=(p2Ap+Ap®p)=(pR0+0®p)=0.
Therefore from (3.5)
Bpop)=(A2A)(pep)+(A®4)(p@p) = (4p® Ap) + (Ap ® Ap).
One could observe that

IA]lc =2, [IPllec < K and ||A||oo=aﬂ$,°

The lo-norm of an p X ¢ matrix Z is defined as f@:

1Zlloc = max 2224@}@ |
Therefore, &" \$.
P,

L\ p)
If one adopt q = p ®% %m steady state probability distri-
bution, then the approXithated o plenishment size of each inventory
system is the same as i sition 3. y allowing transshipment of returns,
the rejection rate S o o inventory systems will be decreased

CS

Note that the ap ha‘cion is valid only if @ is large, the error is of order
0@Q7). .&.
3.4 The&Jrid Re-manufacturing Systems

In this section, we propose a hybrid system, a system consists of a re-
manufacturing process and a manufacturing process. The proposed hybrid
system captures the re-manufacturing process and the system can produce
serviceable product when the return rate is zero. The demands and the re-
turns are assumed to follow independent Poisson processes. The serviceable
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product inventory level and the outside procurements are controlled by a
popular (r, Q) continuous review policy. The inventory level of the serviceable
product is modelled as an irreducible continuous time Markov chain and the
generator matrix is constructed. It is found that the generator matrix has a
near-Toeplitz structure.

Then a direct method is proposed for solving the steady state probabili-
ties. The direct method is based on Fast Fourier Transforms (FFTs) and the
Sherman-Morrison-Woodbury Formula (Proposition 1.36). The complexity of
the method is then given and some special cases analysis are also discussed.

3.4.1 The Hybrid System

In this subsection, an inventory model which capfures the resmanufacturing
process is proposed. Disposal of returned produet s allowedwwhén the return
capacity is full. In the model, there are two dtypesvofsinyentory to be man-
aged, the serviceable product and the returnedwproduét.“IThe demands and
the returns are assumed to follow independent’ Poissenznprocess with mean
rates A and ~y respectively. The re-manuf@eturingprocess’is then modelled by
an M/M/1/N queue: a returned product,acts ‘@as a.eustomer and a reliable
re-manufacturing machine (with pro@ssitg rate p)Mcts as the server in the
queue. The re-manufacturing processyls stoppedswhenever there is no space
for placing the serviceable produgti(ie, when théwserviceable product inventory
level is Q). Here we also asswmnésthad whenthe return level is zero, the system
can produce at a rate of 7_(ckpouentidlly, distributed).

The serviceable productinventory leveldand the outside procurements are
controlled by a popular Q) contintous review policy. This means that when
the inventory level dropsitow:, an outside procurement order of size (Q — r)
is placed and arrivédeat oiice. Bortsimplicity of discussion, the procurement
level r is assumeditowess-1, This means that whenever there is no serviceable
product in the SyStem andstherelis an arrival of demand then a procurement
order of size (Q=l)sis plaecd and arrived at once. Therefore the procurement
can clear the backloggedydemand and bring the serviceable product inventory
to Q. We also assume\that it is always possible to purchase the required
procurement. The Winventory levels of both the returns and the serviceable
product are modelledyas Markovian process. The capacity N for the returns
and the capacityp@for’serviceable product @) are assumed to be large. Fig. 3.3
(Taken from [T8WIF]) gives the framework of the re-manufacturing system.

3.4.2 The Generator Matrix of the System

In this subsection, the generator matrix for the re-manufacturing system is
constructed. Let z(t) and y(t) be the inventory levels of the returns and
the inventory levels of the serviceable products at time ¢ respectively. Then
x(t) and y(t) take integral values in [0, N] and [0, Q] respectively. The joint
inventory process
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x(t) Procurement
Manu- T
facturing - Inventory A
y(t) of -
v Re-manu- p’ Serviceable
- facturing - Product

Returns

Q.
Fig. 3.3. The hybrid syster\ \\\

{(at).y(1). ¢ > . \%
is a continuous time Markov chain taking va t@ space

S ={(w.y) =0, @A§ 2
By ordering the joint inventory stat %cog x ly, according to x first
and then y, the generator matrix fo i %my system can be written
as follows: \

: % , (3.10)

where

0
0
®: /~‘ , (3.11)

T+ =X 0
-7 T4+A=X
By =vIgy1 + -7 . =A , (3.12)
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Atp = 0
At p—A
B =~Ig+1+ A , (3.13)
A+ p—=A
- A

By =B —~lg41.

Here Iy is the (Q+1) x (Q+1) identity matrix . The steady state probability
distribution p is required if one wants to get the performance of the system.
Note that the generator A; is irreducible and from the Perron and Frobenius

theory [101] it is known that it has a 1-dimensional null-sp moa right
positive null vector. Hence, as mentioned in Section 3.2.1, % consider

an equivalent linear system instead. Q \
Gx = (A +FT)x =f, Whex§7 0\@ (3.14)

Proposition 3.6. The matriz G is nonsingu

However, the closed form solution &ﬁt available. Iterative
methods such as (PCG) method is effigi solwi e probability vector p
when one of the parameters N and% d, SQ; nstance [48, 50, 52, 55].
However, when both @ and N are n he fast convergence rate
of PCG method cannot be gua ecially when the smallest singular
value tends to zero very fast roximation methods for solving
the problem can be found in t wing subsection, a direct method

is proposed for solving (3. 4

“@\S&\

We consider taki an preximations to the matrix blocks in A;. We
ir rices:

define the follo % :
c(U)
¢(B) —c(U)
\ S , (3.15)

g1 e(B) —e(U)
—vIg+1 ¢(Bn)

cy=| " , (3.16)

(3.17)
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T+A =A —T
—T T+A=A
TH+A =X
—-A —T T+
A+p —A 0

o(B) =vlg+1 + L= ) g\o (3.19)

_ a7
where %% \
91:(17\[ %+1:(0"”a0’1>
are 1-by-(Q + 1) unit VN e%e ark that
@0 %Tegﬂeczﬂ'

Therefore the \is % circulant block matrix and another block
matrix with sn% e first and the last diagonal blocks.

In view of the abo lation, the problem is equivalent to consider
the solution of the li em having the form Az = b where A is a block-

Toeplitz matrix gi‘ﬁ
g All ...... Alm

QW
QY 4o || 52)

Here
Aij = Ci—j + uT vV (323)

where C;_; is an n X n circulant matrix, and u;—; and v are k X n matrices
and £ << m,n so that A;; is an n X n near-circulant matrix, i.e., finite rank
being less than or equal to k. We remark that the class of matrices A is
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closely related to the generator matrices of many Markovian models such as
queueing systems [50, 142, 143], manufacturing systems [48, 50, 52, 55, 58]
and re-manufacturing systems [76, 92, 201].

Next, we note that an n x n circulant matrix can be diagonalized by using
the discrete Fourier matrix Fj,. Moreover, its eigenvalues can be obtained in
O(nlogn) operations by using the FFT, see for instance Davis [82]. In view
of this advantage, consider

D11 Dlm Ell Elm
i Dy ... Doy, Es ... Eom
(Im (9 Fn)A(Im ® Fn) = . : : + : : (324)
Dm1 Dmm Em] .
=D+ E. \
Here D;; is a diagonal matrix containing the i ues @ and
[ ]
Ey; = (Fiul )(vF, j)(y§\§ (3.25)
Also note that
x4y
x1y
E= )
X 1Y -
x7 (3.26)
T .
- | N
§ O

matrix P suc

Note that D %éil@eqlitz matrix and there exists a permutation

= diag(Ty, Ty, ..., T,) (3.27)

where T; is an m X \eplitz matrix. In fact direct methods for solving
Toeplitz systems t based on the recursion formula are in constant use,
see for instance, h [199]. For an m x m Toeplitz matrix T}, these methods
require O(m?) ons. Faster algorithms that require O(mlog® m) opera-
tions have eloped for symmetric positive definite Toeplitz matrices,
see Amrna,%C agg [5] for instance. The stability properties of these direct
methods are ussed in Bunch [38]. Hence by using direct methods, the lin-
ear system Dz = b can be solved in O(nm?) operations. The matrix X is an
mn X mk matrix and the matrix Y is an mk X mn matrix.

To solve the linear system, we apply the Sherman-Morrison-Woodbury
Formula (Proposition 1.36). The solution of Az = b can be written as follows:

z=D"'"b—-D'X(I,,, +YD'X)"'Y D 'b. (3.28)
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3.4.4 The Computational Cost

In this section, the computational cost of the proposed method is discussed.
The main computational cost of (3.28) consists of

) FFT operations in (3.25);
1) Solving r = D~ 'b;
2) Solving W = D~1X;
3) Matrix multiplication of YW;
4) Matrix multiplication of Yr;
) Solving (I, +YD71X)~!

The operational cost for (C0) is of O(mnlogn). The operatlo
is at most O(nm?) operations by using direct solv r To ‘t stem The

cost for (C2) is at most O(knm?) operations in operational
cost for (C3) is of O(k*nm?) because of the sp The cost for
(C4) is O(knm) operations. Finally the c i ) operations.

Hence the overall cost will be (km?(n + k?)) o
In fact the nice structure of D allo 0 = b in a parallel
computer. Moreover DW = X consis s near systems (a mul-
tiple right hand sides problem). s ¢ e solved in a parallel
computer. Therefore the cost of ( & be reduced by using par-
, osts of (C1) and (C2) can

allel algorithms. Assummg tha smal
be reduced to O(m*) and ( e tlme units respectively when n
parallel processors are used

I

3.4.5 Some Spe01al n

In this section, k i d t mall and some special cases of solving
(3.28) is discuss

Case (i When§ 3 ) are equal, then we see that all the columns
of X are equal and’t C2 w1ll be at most O(nm?) operations. Hence

the overall cost will e (m 4+ n) + mnlogn) operations.

Case ) If the ma is a block-circulant matrix, then all the matrices T;
(3. 27 are circ atrices. The cost of (C1) and (C2) can be reduced

to O (nmlogm, (nm2 logm) operations respectively. Hence the overall

cost will be m(mlogm + logn)) operations.

Case (iii) matrlx A is a block tri-diagonal matrix, then all the matrices
T; in (3. 27 are tri-diagonal matrices. The cost of (CO) will be O(nlogn).
The cost of (C1) and (C2) can be reduced to O(nm) and O(nm?) operations
respectively. Hence the overall cost will be O(m? + n(m? 4 logn)) operations.

We end this section by the following proposition. The proposition gives
the complexity for solving the steady state probability distribution p for the
generator matrix (3.10) when Q ~ N.
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Proposition 3.7. The steady state probability distribution p can be obtained
in O(N3) operations when Q ~ N.

Proof. In the view of case (iii) in this section, the complexity of our method
for solving (3.14) is O(N?) when Q =~ N while the complexity of solving (3.14)
by LU decomposition is O(N*).

3.5 Summary
In this chapter, we present the concept of re-manufacturing sy§tems. Sev-

eral stochastic models for re-manufacturing systems are discu: steady
state probability distributions of the models are ei@btai ineelosed form

or can be solved by fast numerical algorithms. del oncern only
single-item, it will be interesting to extend th s item case.
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Hidden Markov Model for Customers
Classification

4.1 Introduction @ .\§
In this chapter, a new simple Hidden Markov Model \ is proposed. The
process of the proposed HMM can be od llowing example.

4.1.1 A Simple Example \L §\
We consider the process of ch

recording the number of do e wing the die [173]. Suppose we
have two dice A and B, eh& e r faces (1,2,3 and 4). Moreover,

Die A is fair and Die B ig hia T ility distributions of dots obtained
by throwing dice A an giventin Table 4.1.

Table(4. b, @tribuﬁons of dice A and dice B.
\\ 1 2 3 4
1/4 1/4 1/4 1/4
\ 1/6 1/6 1/3 1/3
®

Each time a o be chosen, we assume that with probability «, Die A
is chosen, a robability (1 —«), Die B is chosen. This process is hidden

as we don’ hich die is chosen. The value of « is to be determined. The
chosen die is then thrown and the number of dots (this is observable) obtained
is recorded. The following is a possible realization of the whole process:

A—-1—-A—-2—-B—-3—-A—-4—-B—->1-B—>2—---—,

We note that the whole process of the HMM can be modelled by a classical
Markov chain model with the transition probability matrix being given by
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A 0 0| « « « «
B 0 0jl—-al—al—al—a«a
1 1/41/6| 0 0 0 0
2 1/41/6] 0

3 1/41/3] 0
4 1/41/3] 0

o O O
o O O
o O O

The rest of the chapter is organized as follows. In Section 4.2, the estima-
tion method will be demonstrated by the example giving in Section 4.1. In
Section 4.3, the proposed method is extended to a general case. In Section
4.4, some analytic results of a special case are presented. In Seati n.4.5, an
application in customers classification with practical data ta%l a com-

i

puter service company is presented and analyzed. @1}7’ mmary is
given in Section 4.6 to conclude this chapter. \\ \
NI Ni
4.2 Parameter Estimation \ %'\
\'\ \
In this section, we introduce a simpl i ax od of a, Ching and

Ng [60] Clearly in order to define e to estimate o from an
observed data sequence. We suppo @buﬁon of dots (in steady

state) is given by §
a& note that

o 0 0
1- 0 0
13 § + 15 § + 5 0P
0 I _al_ ol _ a
12371237 12
0 I _ a1 oal_a
123 123 12
If we ignore the hidden states (the first diagonal block R), then the ob-
servable states follo transition probability matrix given by the following
matrix o
\ 1 1 1 1
N\ gthgtogtnsts
~ 2402 a2 a2
\ P=1f @t @i @" @

=
[
W
=
[
w
=
[

(1,1,1,1).

—
)
N~ — W

Il
W[ =0 =0
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Thus it is easy to see that the stationary probability distribution of P is
given by
1 al al al ag
P=G sty 123 12
This probability distribution p should be consistent with the observed distri-
bution q of the observed sequence, i.e.

| —

1 ol ol ol a)T

N B - 111,
6 12'6 12’3 12’3 12

z(1:(674174:’3

This suggests a nature method to estimate . The unknown transition prob-

ability « can then be obtained by solving the minimisation p@o
Jwin [ -l \'\ §

If we choose ||.|| to be the ||.]|2 then one e @owing minimi-
sation problem: §
NN
: _all2 — ' 2
omin [l —all3 ' &\ :
zzJ\
In this case, it is a standard C(§§d l@uams problem and can be
st

solved easily. For more detailed Si tistical inference of a HMM,

we refer readers to the boo@ @\d Zucchini [149].
AN

4.3 Extension of @e@

In this section, t Ee ation method is extended to a general

HMM with m hi at, rMobservable states. In general the number

of hidden stat n two. Suppose the number of hidden states
is m and the stationarydi tion of the hidden states is given by

\\a = (a1, 9, .., Q).
Suppose the n@ observable state is n and when the hidden state is

i(i=1,2,...,m stationary distribution of the observable states is

\\ (Pi1s pi2, - s Pin)-

We assume that m,n and p;; are known. Given an observed sequence of the
observable states, one can calculate the occurrences of each state in the se-
quence and hence the observed distribution q. Using the same trick discussed
in Section 3, if we ignore the hidden states, the observable states follow the
one-step transition probability matrix:
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P11 P21 " Pmi ap az - g
- P12 P22 - Pm2 Qo Qg - Q2
2 =1 . . . =p(1,1,...,1) (41)
Pin P2n """ Pmn Ay Oy, ** - Oy
where
m m m
p= (Z QkPk1, Zakpk2, ) Zakpkn)T-

It is easy to check that
n Qe
Pp=p and » pp= \\
"N &
Thus the following proposition can be proved& ° %

Proposition 4.1. The vector p is the st%y pr y distribution of

Ps.
2 \‘\ \
Therefore the transition probabilities id% es

can be obtained by solving §
@ |§
subject to
%& %ﬂd ay > 0.
\ \ [N
4.4 Specia@ is

In this section, a d scussion is given for the model having 2 hidden
states. In this case ay re-write (4.1) as follows:

a1 a1 oy B
(1_a11_a1...1_a1) —p(L,1,....1)  (42)

where
p = (ap11 + (1 — a)par,api2 + (1 — @)paz, - .., ap1n + (1 — @)pan)”.

It is easy to check that
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n
Pp=p and Zpizl

i=1
and therefore p is the steady state probability distribution.
Suppose the observed distribution q of the observable states is given, then
a can be estimated by the following minimization problem:

min||p — ql|3
[0

subject to 0 < a < 1 or equivalently

. 2
o2, 2 fommet (= o g N
The following proposition can be obtainedby\& V@i\@'.

Proposition 4.2. Let

1—P2) > |lg— p2|l2cos(d)

- - (4.3)
,(P1—Pp2) > I[P1 — P2ll2
Here < .,. > is the rd inner product on the vector space R",
(J

%&' p1 = (p11, P12, - - - ,p1n)T

and \5
P2 = (p21,p22, - - ,P2n)To

Moreover, ||.||2 is the Ly-norm on R™ and 6 is the angle between the vectors

(@—p2) and (p1 —Pp2).

Two hyperplanes H; and H, are defined in R™. Both hyperplanes are perpen-
dicular to the vector (p1 — p2) and H; contains the point p; (distribution) for
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i =1,2, see Fig. 4.1 (Taken from [69]). From (4.3), Proposition 4.2 and Fig.
4.4, any point q' on the left of the hyperplane H; has the following property:

lla — p2|l2 cos(6) > [|[p1 — p2lle-

Hence for such q’, the optimal « is 1. For a point q” on the right of the
hyperplane Hs, then cos(f) < 0 and hence the optimal « is zero. Lastly, for
a point q in between the two hyperplanes, the optimal « lies between 0 and
1 and the optimal value is given by 7 in (4.3). This special case motivates us
to apply the HMM in the classification of customers.

*q

S

@. The graphical interpretation of Proposition 4.2.

4.5 Application to Classification of Customers

In this section, the HMM discussed in the Section 4.4 is applied to the cus-
tomers classification of a computer service company. We remark that there are
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a number of classification methods such as machine learning and Bayesian
learning, interested readers can consult the book by Young and Calvert [214].
In this problem, HMM is an efficient and effective classification method but
we make no claim that HMM is the best one.

A computer service company offers four types of distant calls services I, II,
IIT and TV (four different periods of a day). From the customer database of the
users, the information of the expenditure distribution of 71 randomly chosen
customers is obtained. A longitudinal study has been carried out for half a year
to investigate the customers. Customers’ behavior and responses are captured
and monitored during the period of investigation. For simplicity of discussion,
the customers are classified into two groups. Among them 22 ciiStomers are
known to be loyal customers (Group A) and the other 49 custouiers are not
loyal customers (Group B). This classification is ugefuhto marketing managers
when they plan any promotions. For the custondersiur GroupsA¥ promotions
on new services and products will be given to_themy While fomthe customers
in Group B, discount on the current services'willibe offeredito’them to prevent
them from switching/churning to the competitor comgpaniés.

Two-third of the data are used to build the"HMM¥and the remaining data
are used to validate the model. Therefore, 16 candidates are randomly taken
(these customers are labelled in gheffirstr 16 ¢ustomers in Table 4.2) from
Group A and 37 candidates from group B.4Théwemaining 6 candidates (the
first 6 customers in Table 4.2) fromiGroup A and,12 candidates from Group B
are used for validating the construeted HMNy, A HMM having four observable
states (I, II, IIT and IV) andstwo~hidden‘states (Group A and Group B) is
then built.

From the informationfef the custémers in Group A and Group B in Table
4.3, the average expenditure’distributions for both groups are computed in
Table 4.3. This meanssthata customer in Group A (Group B) is characterized
by the expendituge distribution insthe first (second) row of Table 4.3.

An interestingpreblémsisthefollowing. Given the expenditure distribution
of a customer, hewsto classifyathe customer correctly (Group A or Group B)
based on the information'in Table 4.4?7 To tackle this problem, one can apply
the method discussed in,prévious section to compute the transition probability
« in the hidden statest®@his value of o can be used to classify a customer. If
« is close to 1 then theycustomer is likely to be a loyal customer. If « is close
to 0 then the custome? is likely to be a not-loyal customer.

The values®@fta” for all the 53 customers are listed in Table 4.2. It is
interestinggio. ndte that the values of « of all the first 16 customers (Group A)
lie in the interyal [0.83,1.00]. While the values of « of all the other customers
(Group B) lie in the interval [0.00,0.69]. Based on the values of « obtained, the
two groups of customers can be clearly separated by setting the cutoff value 3
to be 0.75. A possible decision rule can therefore be defined as follows: Classify
a customer to Group A if a > [, otherwise classify the customer to Group
B. Referring to Fig. 4.1, it is clear that the customers are separated by the
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Table 4.2. Two-third of the data are used to build the HMM.
Customer I II IIT IV « Customer I II IIT IV «
1 1.00 0.00 0.00 0.00 1.00 2 1.00 0.00 0.00 0.00 1.00
3 0.99 0.01 0.00 0.00 1.00 4 0.97 0.03 0.00 0.00 1.00
5 0.87 0.06 0.04 0.03 0.98 6 0.85 0.15 0.00 0.00 0.92
7 0.79 0.18 0.02 0.01 0.86 8 0.77 0.00 0.23 0.00 0.91
9 0.96 0.01 0.00 0.03 1.00 10 0.95 0.00 0.02 0.03 1.00
11 0.92 0.08 0.00 0.00 1.00 12 0.91 0.09 0.00 0.00 1.00
13 0.83 0.00 0.17 0.00 0.97 14 0.82 0.18 0.00 0.00 0.88
15 0.76 0.04 0.00 0.20 0.87 16 0.70 0.00 0.00 0.30 0.83
17 0.62 0.15 0.15 0.08 0.69 18 0.57 0.14 0.
19 0.56 0.00 0.39 0.05 0.68
21 0.47 0.52 0.00 0.01 0.63
23 0.25 0.75 0.00 0.00 0.04
25 0.21 0.01 0.78 0.00 0.32
27 0.18 0.11 0.11 0.60 0.22
29 0.15 0.15 0.44 0.26 0.18 30
31 0.04 0.55 0.20 0.21 0.00 xﬂ 0.00 0.00 0.00
33 0.00 0.00 1.00 0.00 0.1 % .00 0.00 0.00 0.00
35 0.00 0.00 0.92 0.08 @36 \ 0.94 0.00 0.06 0.00
37 0.03 0.01 0.96 0.00 O: \) 02 0.29 0.00 0.69 0.00
39 0.01 0.97 0.00 0. 4& .01 0.29 0.02 0.68 0.00
41 0.00 0.24 0.00 % 0.00 0.93 0.00 0.07 0.00
43 0.00 1.00 0. . 0.00 1.00 0.00 0.00 0.00
45 . 0.00 0.00 0.00 1.00 0.06
47 0.00 1.00 0. A\ 48 0.00 0.96 0.00 0.04 0.00
49 0.00 0.9 \: 0:0 50 0.00 0.76 0.03 0.21 0.00
D032 0.63,0:07 52 0.00 0.13 0.02 0.85 0.01
\~\ 15 0,080
S
T . ge expenditure of Group A and B.
I II II1 1A%
0.8806 0.0514 0.0303 0.0377
\ 0.1311 0.5277 0.1497 0.1915
$
hyperplan e hyperplane Hjp is parallel to the two hyperplanes H; and
H> such thattit has a perpendicular distance of 3 from Hs.

The decision rule is applied to the remaining 22 captured customers.
Among them, 6 customers (the first six customers in Table 4.4) belong to
Group A and 12 customers belong to Group B. Their « values are computed
and listed in Table 4.4. It is clear that if the value of (3 is set to be 0.75, all

the customers will be classified correctly.
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Table 4.4. The remaining one-third of the data for the validation of the HMM.

Customer I II III IV «a Customer I 1II III IV «

iy 0.98 0.00 0.02 0.00 1.00 2’ 0.88 0.01 0.01 0.10 1.00
3’ 0.74 0.26 0.00 0.00 0.76 4 0.99 0.01 0.00 0.00 1.00
5’ 0.99 0.01 0.00 0.00 1.00 6’ 0.89 0.10 0.01 0.00 1.00

v 0.00 0.00 1.00 0.00 0.10 8 0.04 0.11 0.68 0.17 0.08
9’ 0.00 0.02 0.98 0.00 0.09 10° 0.18 0.01 0.81 0.00 0.28
11 0.32 0.05 0.61 0.02 0.41 12’ 0.00 0.00 0.97 0.03 0.10
13 0.12 0.14 0.72 0.02 0.16 14’ 0.00 0.13 0.66 0.21 0.03
15’ 0.00 0.00 0.98 0.02 0.10 16’ 0.39 0.00 0.5 %QO
17 0.27 0.00 0.73 0.00 0.38 18’ 0.00 0.80 0. .00

N
4.6 Summary \“Q?\ -§

In this chapter, we propose a simple H with 1on methods. The
framework of the HMM is simple and t ]%%\1 rs can be estimated
efficiently. Application to customers cati practical data taken
from a computer service companyfis nteddand “analyzed. Further disus-
sions on new HMMs and applic t'& 1 @in Chapter 8.

N
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Markov Decision Process for Customer
Lifetime Value

5.1 Introduction ® .\

In this chapter a stochastic dynamic progqlrrm Nith Markov chain
is proposed to capture the customer % ) antage of using the

ng
Markov chain is that the model can ntox ount of the switch of
titors. Therefore customer

the customers between the compa S ¢ e
relationships can be described i Nabl , see for instance Pfeifer

and Carraway [169]. Stochastic ic programming is then applied to solve
%ﬁo

%

the optimal allocation of r maximizing the CLV. The

proposed model is then appli ? t cal data in a computer services
company. \
b

The customer equit, ured in making the promotion plan
S0 as to achieve an a le,a sonable budget. A popular approach
is the Customer Li alu ). Kotler and Armstrong [134] defined

a profitable cust « , household, or company whose revenues
over time exc an ble amount, the company costs consist of
attracting, selli g that customer.” This excess is called the
CLV. In some literat is also referred to “customer equity” [19]. In
fact, some researche e CLV as the customer equity less the acquisition
cost. Nevertheless,& thesis CLV is defined as the present value of the
projected net ca; s that a firm expects to receive from the customer
over time [42]. fizing the importance in decision making, CLV has been
successfully in the problems of pricing strategy [18], media selection
[115] and ptimal promotion budget [22].

To calculate the CLV, a company should estimate the expected net cash
flows receiving from the customer over time. The CLV is the present value of
that stream of cash flows. However, it is a difficult task to estimate the net
cash flows to be received from the customer. In fact, one needs to answer, for
example, the following questions:
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(i) How many customers one can attract given a specific advertising budget?
(ii) What is the probability that the customer will stay with the company?
(iii) How does this probability change with respect to the promotion budget?

To answer the first question, there are a number of advertising models, one
can find in the book by Lilien, Kotler and Moorthy [146]. The second and
the third questions give rise to an important concept, the retention rate. The
retention rate [118] is defined as “the chance that the account will remain with
the vendor for the next purchase, provided that the customer has bought from
the vendor on each previous purchase”. Jackson [118] proposed an estimation
method for the retention rate based on historical data. Other %for the
retention rate can also be found in [89, 146].
Blattberg and Deighton [22] proposed a for
CLV (customer equity). The model is simple a

caleulation of

the return from acquisition spending and t
In their model, CLV is defined as

CLV=am—-—A +

N——
acquisition (51)
T n
=am—A %‘ %(H—d—r)
where a is the acquisition rat \ t of acquisition spending, m is the
margin on a transaction, the spending per customer per year,
on) and d is the yearly discount rate

r is the yearly retention i
appropriate for mark “Moreover, they also assume that the
acquisition rate a tion are functions of A and R respectively,
and are given by \ \\

S

and
) = ro(1 — e~ K2R)

where a¢ and rg a h)stimated ceiling rates, K; and K5 are two positive

constants. In thi er, a stochastic model (Markov decision process) is
proposed for th ation of CLV and the promotion planning.

The res \ apter is organized as follows. In Section 5.2, the Markov
chain mo delling the behavior of the customers is presented. In Sec-

tion 5.3, stochastic dynamic programming is then used to calculate the CLV
of the customers for three different scenarios:

(i) infinite horizon without constraint (without limit in the number of promo-
tions),

(ii) finite horizon (with limited number of promotions), and

(iii) infinite horizon with constraints (with limited number of promotions).
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In Section 5.4, we consider higher-order Markov decision process with appli-
cations to CLV problem. Finally a summary is given to conclude the chapter
in Section 5.5.

5.2 Markov Chain Models for Customers’ Behavior

In this section, Markov chain model for modelling the customers’ behavior in
a market is introduced. According to the usage of the customer, a company
customer can be classified into N possible states

{0,1,2,...,N — 1},

Take for example, a customer can be classifie
low-volume user (state 1), medium-volume
user (state 3) and in order to classify all
introduced. A customer is said to be in state
of the competitor company or he/she di t pur;
period of observation. Therefore at any ¢

to exactly one of the states in {0,1 N - ith these notations, a
Markov chain is a good choice to & %tions of customers among

the states in the market.
A Markov chain model is ¢ i an N x N transition probability
matrix P. Here P;;(i,j = 0,% , the transition probability that
te » r

a customer will move to s th iod given that currently he/she

n the market belongs

is in state j. Hence t io ility of a customer in state i(i =
0,1,...,N —1) is give It derlying Markov chain is assumed to
be irreducible then n ribution p exists, see for instance [180].

This means that %

such that
W\ e Sn-t iz (52

=0

(J
By making use ationary distribution p, one can compute the retention
probability of, mer as follows:

Di 1 N—-1
— | (1= Pyp) =1-— E pi Poi
N—1 ( i0 4704
(Zj:l Dy 1- i=1

Po
~ po(1 — Pyo)
L —po

P (5.3)

=1

This is the probability that a customer will purchase service with the company
in the next period. Apart from the retention probability, the Markov model
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can also help us in computing the CLV. In this case ¢; is defined to be the
revenue obtained from a customer in state i. Then the expected revenue is
given by

N-1
Z CiDj- (54)
i=0

The above retention probability and the expected revenue are computed under

the assumption that the company makes no promotion (in a non-competitive

environment) through out the period. The transition probability matrix P can

be significantly different when there is promotion making by the company. To

demonstrate this, an application is given in the following subsectio%igreover,
t

when promotions are allowed, what is the best promotion st ch that

the expected revenue is maximized? Similarly, wh the egy when
there is a fixed budget for the promotions, e. u promotions
is fixed? These issues will be discussed in th ing by using the

stochastic dynamic programming model. \\, \\

5.2.1 Estimation of the Transitio %&b' i

In order to apply the Markov ch '@, o o estimate the transi-

tion probabilities from the practii% . ubsection, an example in

the computer service company o de rate the estimation. In the

captured database of customer (¢ ﬁr as four important attributes
er

(A,B,C, D). Here A is the 7, each customer has an unique
identity number. B is th (week) when the data was cap-

tured. C' is the “Revenuel ich i tal amount of money the customer
spent in the captured i “Hour”, the number of hours that the
customer consumed, i ap %eek.

e

The total nu o a available is 20. Among these 20 weeks,
the company h o) “8 consecutive weeks and no promotion for
other 12 conse\ ehavior of customers in the period of promo-
tion and no-promogion nvestigated. For each week, all the customers
are classified into fo (0,1,2,3) according to the amount of “hours”
consumed, see Ta e recall that a customer is said to be in state 0, if
he/she is a custome mpetitor company or he/she did not use the service
for the whole w Y °

\\ Table 5.1. The four classes of customers.

State 0 1 2 3

Hours 0.00 1 —20 21 —40 > 40

From the data, one can estimate two transition probability matrices, one
for the promotion period (8 consecutive weeks) and the other one for the
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no-promotion period (12 consecutive weeks). For each period, the number of
customers switching from state ¢ to state j is recorded. Then, divide it by
the total number of customers in the state i, one can get the estimations for
the one-step transition probabilities. Hence the transition probability matrices
under the promotion period P(") and the no-promotion period P(?) are given
respectively below:

0.8054 0.4163 0.2285 0.1372
0.1489 0.4230 0.3458 0.2147
0.0266 0.0992 0.2109 0.2034
0.0191 0.0615 0.2148 0.4447

and
0.8762 0.4964 0.3261 @ A
0.1064 0.4146 0.3 AR

P2 —

P —

0.0053 0.0267 0.
PW is very different from P®). In fact, enC e than one type of
promotion in general, the transition i es for modelling the
behavior of the customers can be Km n th
5.2.2 Retention Probability§m§\
The stationary distribution@w ov chains having transition prob-
ability matrices P() and% ectively by

pM %30\&, 0.0738,0.6265)"

and \b \

The retention li

,0.0285,0.0167,0.7856) .

.3)) in the promotion period and no-promotion
period are given resp v 0.6736 and 0.5461. It is clear that the reten-
tion probability is si ly higher when the promotion is carried out.

From the custome a in the database, the average revenue of a customer
is obtained in diff; tates in both the promotion period and no-promotion
period, see Tab!%below. We remark that in the promotion period, a big
discount was, gi the customers and therefore the revenue was significantly
less than ue in the no-promotion period.

From (5.4), the,expected revenue of a customer in the promotion period (as-
sume that the only promotion cost is the discount rate) and no-promotion
period are given by 2.42 and 17.09 respectively.

Although one can obtain the CLVs of the customers in the promotion pe-
riod and the no-promotion period, one would expect to calculate the CLV in a
mixture of promotion and no-promotion periods. Especially when the promo-
tion budget is limited (the number of promotions is fixed) and one would like
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Table 5.2. The average revenue of the four classes of customers.

State 0 1 2 3

Promotion 0.00 6.97 18.09 43.75

No-promotion 0.00 14.03 51.72 139.20

to obtain the optimal promotion strategy. Stochastic dynamic programming
with Markov process provides a good approach for solving the above prob-

lems. Moreover, the optimal stationary strategy for the customers.in different
states can also be obtained by solving the stochastic dyna"@mming

problem. § §

5.3 Stochastic Dynamic Progra@

The problem of solving the optimal pr
the framework of stochastic dynamic
stochastic dynamic programming
CLV under optimal promotion stra

as follows: \

i) N, the total number

(

(i) A;, the set containing

(iii) 7, number of mo&em&

(indexed by t = 1,. :

( ui arrying out the action k£ in each period
< ey

iv) dg, the resour
m a customer in state ¢ with
q

V) cl(-k), the r
the action

(vi) pgf), t&t' bility for customer moving from state j
e in each period;

to state ¢ under't

(vii) o, discount &

Similar to the roduced in Chapter 1, the value of an optimal policy

v;(t) is defined @% e total expected revenue obtained in the stochastic
g

dels. In this section,
d for maximizing the

in state i (indexed by k);
he planning horizon

=

dynamic progr model with ¢ months remained for a customer in state

ifori=20 land t =1,2,...,T. Therefore, the recursive relation
for maximi e revenue is given as follows:
N—1
k k
Ui(t) = iré%x Cl(- ) — dk + « Z pg-i)vj(t — 1) . (55)
; =

In the following subsections, three different CLV models based on the above re-
cursive relation are considered. They are infinite horizon without constraints,
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finite horizon with hard constraints and infinite horizon with constraints. For
each case, an application with practical data in a computer service company
is presented.

5.3.1 Infinite Horizon without Constraints

The problem is considered as an infinite horizon stochastic dynamic program-
ming. From the standard results in stochastic dynamic programming [209],
for each i, the optimal values v; for the discounted infinite horizon Markov
decision process satisfy the relationship

Therefore we have \%
vy > cgk) —dp 4@%“\\\' (5.7)
S

for each 4. In fact, the optimal val@ar allest numbers (the least
upper bound over all possible values) satisfy these inequalities.
This suggests that the proble t ing the v;’s can be transformed
into the following linear pro n [4, 208, 209]:
4 ‘\‘
1 §
min § M
8 S
subject to ~\\ QKM (5.8)
%ik) \ o? pglf)v], for i=0,...,N —1;
v; i=0,...,N -1

The above linear p &ming problem can be solved easily by using EXCEL
spreadsheet. In add , a demonstration EXCEL file is available at the fol-
lowing site [224 so Fig 5.1 (Taken from [70]). Return to the model for
the computer company, there are 2 actions available (either (P) pro-
motion or -promotion) for all possible states. Thus A; = {P, NP} for
all i =0,...7 — 1. Moreover, customers are classified into 4 clusters, there-
fore N = 4 (possible states of a customer are 0,1,2,3). Since no promotion
cost is incurred for the action (INVP), therefore dyp = 0. For simplification, d
is used to denote the only promotion cost instead of dp in the application.
Table 5.4 presents optimal stationary policies (i.e., to have promotion D; =
P or no-promotion D; = NP depends on the state i of customer) and the
corresponding revenues for different discount factors o and fixed promotion
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oA

ﬂ ‘£| :l'"}‘ieafﬁ‘f'brgslving the Optimal Policy
= -

The LP for Solving the Optimal Policy

Fig. 5.1. EXCE}L @m@e orizon problem without constraint.
costs d. For in: \\ %S}notion cost is 0 and the discount factor is
0.99, then the 1 i
promotion should be

is that when the current state is 0 or 1, the
2 or 3, no promotiofl i uired, i.e. Dy = D3 = NP, (see the first column
of the upper left h of Table 5.3). The other values can be interpreted

. Dy = D1 = P, and when the current state is
similarly. From tlﬁ' erical examples, the following conclusions are drawn.

@
e  When the romotion cost d is large, the optimal strategy is that the
compa; not conduct any promotion on the active customers and

should only conduct promotion scheme to both inactive (purchase no ser-
vice) customers and customers of the competitor company. However, when
d is small, the company should take care of the low-volume customers to
prevent this group of customers from churning to the competitor compa-
nies.

e It is also clear that the CLV of a high-volume user is larger than the CLV
of other groups.
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e The CLVs of each group depend on the discount rate « significantly. Here
the discount rate can be viewed as the technology depreciation of the
computer services in the company. Therefore, in order to generate the
revenue of the company, new technology and services should be provided.

Table 5.3. Optimal stationary policies and their CLVs.

a=099a=095a=090a=099 a=0.95a=0.90 a=0.99 = 0.95 a = 0.90

zo 4791 1149 687 4437 1080 654 40

8

vo 1112 204 92 1023 186 %

v 1144 234 119 1054 216 .

v 1206 295 179 1118 27

vs 1328 415 206 1240 399 89 3 382 281
P

Do P P
D, P P
Dy, NP NP
Ds NP NP

P P
P P P
NP NP NP

@P NP NP NP
4 d=5

a=090a=0.99 a=0.95a=0.90

566 3056 827 541

58 675 119 51
88 707 151 82
151 775 217 145
269 899 339 264

P P P P
NP NP NP NP
NP NP NP NP
NP NP NP NP

5.3.2 Fin &izon with Hard Constraints

In the computer service and telecommunication industry, the product life cy-
cle is short, e.g., it is usually one year. Therefore, the case of finite horizon
with limited budget constraint is considered. This problem can also be solved
efficiently by using stochastic dynamic programming and the optimal rev-
enues obtained in the previous section is used as the boundary conditions.



96 5 Markov Decision Process for Customer Lifetime Value

The model’s parameters are defined as follows:

n = number of weeks remaining;
p = number of possible promotions remaining.

The recursive relation for the problem is given as follows:

vi(n,p) = max {”) —dp+a X5 P v - Lp =1,
NP —dyp +a PO Pﬁvp)vj (n—1,p)}
form=1,..., e and p=1,...,Dmaz and

N—1
0i(n,0) = N —dyp+a 3 p%\[@— 1& (5.10)
§=0 \% %
o
forn=1,...,Nmqe- The above dynamic pﬁmin can be solved
easily by using spreadsheet EXCEL. A demonstra CEL file can be
5.$»
m

found at the following site [225], see ig™ from [70]). In the

numerical experiment of the computer co the length of planning
period is set to be N = 52 a axi mber of promotions is
Pmaz = 4. By solving the dynami amini blem, the optimal values

and promotion strategies are lis Table 5. he optimal solution in the

table is presented as follows; § \
@t@& ),
ct% ue, and t; is the promotion week of

where r* is the optim,
the optimal promoti
summarized as fo

e “” means no promotion. Findings are

q
e For differe promotion cost d, the optimal strategy for
the custome t d 3 is to conduct no promotion.
e While for those in ; the optimal strategy is to conduct all the four

promotions as ea’ ossible.
e Instate 1, the opti strategy depends on the value of d. If d is large, then
1)

no promotion b conducted. However, when d is small, promotions are
carried out strategy is to put the promotions as late as possible.

5.3.3 In %ﬂorizon with Constraints

For comparisons, the model in Section 5.3.2 is extended to the infinite hori-
zon case. Similar to the previous model, the finite number of promotions
available is denoted by pmax. Then the value function v;(p), which represents
the optimal discounted utility starting at state ¢ when there are p number of
promotions remaining, is the unique fixed point of the equations:
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E_D 0.108374021] 0012100243 0.005322744| 0376202993 (.876202093
n
21c- : —
| 22 | Alpha= | 0%
2|
24 |Boundary Conditions
|25 | V1 V2 i
|3 c=0 | Mpha=08] 110468254 179126724
i 095 234 242403 205204285
|2 | | 093] 1144125366 1206 199505
|88 [c-1 098] 110545357
n 095 216414551 78
Bl | 0% 10s4mmi31
B | 09 10122459 [ [ [ [ | |
k] 095 108586600
ETH | nao FE 270 | [ [ [ | | i
L] 4] v [ W] Result {WDP {Pelicy / 4] | ﬂJJ

it
gt | || Busoosies |

I 73 B |
by Docon. | FRWS FIPLE L. (Tovertmtive.|[EMicomtt . [ S 12108

\' N—1 N—1
= max cgp) Q@ p;f)vj (p—1), CZ(NP) —dnp+ o Z p;ivp)vj (») ¢,
: =

(5.11)

forp=1,...,Pmax, and

J?

N-1
v;(0) = cENP) —dyp+a Z p(NP)vj(O). (5.12)
=0
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Table 5.4. Optimal promotion strategies and their CLVs.

« State 0 State 1 State 2 State 3
0.9 (1,2,3,4,67) (1,45,50,52,95) (-,-y-,158) (-,-,-,-,276)

d=00.95(1,2,3,4,138) (45,48,50,51,169) (----,234) (----,335)
0.99 (1,2,3,4,929) (47,49,50,51,963) (----,1031) (-,--,-,1155)

0.9 (1,2,3,4,64) (47,49,51,52,92) (----155) (- 274)

d=10.95(1,2,3,4,133) (47,49,51,52,164) (----,230) (----,351)
0.99 (1,2,3,4,872) (47,49,51,52,906) (-,---,974) (-,-,-,-,1098)
0.9 (1,2,3,4,60) (49,50,51,52,89) (--,-,-,152

)
)
( )
d=20.95(1,2,3,4,128) (48,50,51,52,160) (-,-,-,-,225)
0.99 (1,2,3,4,815) (48,49, 51,52,849) (-,1=,-,917)
0.9 (1,2,3,4,60) (—,—,—,—,87) \ 50)
d=30.95(1,2,3,4,123) (49,50,51,52,15 22
0.99 (1,2,3,4,758) (48,50, 51,52 -
0.9 (1,2,3,4,54) (—,—,—,—584)
d=140.95(1,2,3,4,119) (—,—,— A\
0.99 (1,2,3,4,701) (49,50, 5

2
-y

0.9 (1,2,3,4,50)
d=50.95(1,2,3,4,114)
0.99 (1,2,3,4,650)

with four unknowns ha i n. We note that (5.11) can be com-
puted by the value ite i i.e. as the limit of v;(n,p) (computed
in Section 5.3.2), i . Alternatively, it can be solved by linear
programming [4]¢

We note that v;(0) is not included in the linear programming constraints and
the objective function; v;(0) is solved before hand using (5.12). A demonstra-
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tion EXCEL file can be found at the following site [226], see also Fig. 5.3
(Taken from

[70]).

: : =B8]

=) #ﬁ@ %EQE@) i) }EM_) ﬁ@iﬁ(_) IE[D BHD REW HHE ;LEJ_XJ‘
oo R A BT .@_|
| HrameEiE $12 .
Bl | =|
A | B ST = [ | F [ i \ K [ I [ =
[ The DP for Solving the Optimal Policy in Infinite Horizon Case =
2 |- 2
3 |Alpha= 0% Constraint :
_4_ Transition Matrix (Promotion) Revenue : p=4 p=3 NV p=1
5 | 0.4230471300] 0.0992123090| 0.0614950400| 04162460240 69744000360 | 154085TIASATT 152 3450760005 | 147990(5925157  146.1128782500
6 | 0.345787410]  0.2100223010] 02148183280 0.2264724400] 150843540000 2060308635335 2505607016 | 2004301748572 | 1974016237450
7 02147246970) 02033724850 0.4447368850| 0137162340 437531406500 2?48750877934 27224546231853_ _?iﬁg*.@raws?z 266 4099813036
8 | 01488808010) 0.0265400660] 0.0190770570) 08054322470 0 12¢.t813»302631 [ 121 30811 EAT N LIBAIBTI65 | 114 ES0EDL4DTS
9| P N\ N\ AN
| 10'] Transition Matrixe (o Promotion) [ |
1 0.4145008800| 0.0623025120] 0.0286821300] 04084144620 140327343000 1557‘2!17608410 153{351Im589 150.3557340753 | 1473681172637 | 144,
12 03936771040 0.1 0158384660 0.3260075850] 5171727748003 134T QLBBQG?EIMQS 2161079335187 | 2131918050852 | 210
13 02741040830 0.206315750| 0.2808000170f 0.2380325420] 130.2048217000 [ N34 §428361873336 224799?244 3376874080817 | 3348203530380 | 331
14 04063740210) _0.0121002430] _0.0053227440) 0.9762020030 | 1233820546995 wLinegisoraies | 1177006zl | 14 ETIOdTE | 1L
5] Y 3
|16 |Bouniary Conditions e QO 3 N
17 1) = 144.1566579357 N o BN
18 |v_20)= 2100873770333 | N S\
18 v 30)= 3317363016342 | | R N
20 |+ 40)= 111.3313280537 ! |
£ QNS AN
22 |Optimal k= 3310.3526400403 Folicy T - ) % N N\ N
23 v 1= 147.3881172837 12 N d e b _‘_
24 v 2ll)= 2131918050852 .. VL - \a
35 v 3= 3348203530388 7 NN\  Nam |
36 |v 4= 1146008014075 R N N\ N\ WAY . &
27 v 1= 150.3667340753 R \ ___:_ ¥ _l_ q
28 v 2= 2161070336187 AUERN N
P 337 6874880817 A W ) | - N i :
30 v 4= 1182197244825 § N N Y
31 e 10)= 1531351104580 N _.;_%3'_ ~ N
(32 |v 28)= 218207206218 VL = N\
(33 v 30)= 3403547007273 ) I . o | 5
3 k 1

I W\ Sheal ) [4] =
it WY | (B

gt | ) || s oosiest |@Mmmm&m [ ExcuiyDocnn | Fws Feie | Brovectrive. |[EMioontt.. B4 SEE (208

Fig. 5.3. EXCEL"for solving infinite horizon problem with constraints.

Tables 5% and 5.6 give the optimal values and promotion strategies of the
computer service company. For instance, when the promotion cost is 0 and
the discount factor is 0.99, then the optimal strategy is that when the current
state is 1,2 or 3, the promotion should be done when there are some available
promotions, i.e. Di(p) = Da(p) = D3(p) = P for p = 1,2,3,4, and when the
current state is 0, no promotion is required, i.e. Do(p) = NP for p =1,2,3,4.
Their corresponding CLVs v;(p) for different states and different numbers of



100 5 Markov Decision Process for Customer Lifetime Value

remaining promotion are also listed (see the first column in the left hand side
of Table 5.6.

From Tables 5.5 and 5.6, the optimal strategy for the customers in states
1, 2 and 3 is to conduct no promotion. Moreover, it is not affected by the
promotion cost and the discount factor. These results are slightly different
from those for the finite horizon case. However, the optimal strategy is to
conduct all the four promotions to customer with state 0 as early as possible.

Table 5.5. Optimal promotion strategies and their CLVs.

d=0 d=1 Wo—>
@ =099 a=095a=090a=099 a=0.95a=0.90 d\ﬁ =0.95 @ =0.90

zo 11355 3378 2306 11320 33 3310 2248
w(l) 610 117 55 609 115 53
un(l) 645 149 85 644 147 84
vw(l) 713 215 149 712 %4\ 213 147
vs(1) 837 337 267 836 \ 6 335 266
w(2) 616 122 60 6 % 118 56
uw(2) 650 154 89 k 150 86
va(2) T8 219 152 1 216 149
vs(2) 842 341 271 338 268
un(3) 656 158 9 \7 4 % 153 88
va(3) T4 224 5 219 151
vs(3) 848 345 4 340 270
w(4) 628 131 124 60
vn(4) 662 162 158 89
v2(4) 730 2 7 & 221 152

) 854 7 0 343 o211

1) P P P 3 P P
Di(1) NP NP NP NP NP NP
Da(1) NP NP NP NP NP NP
Ds(1) NP N NP NP NP NP NP NP
Do(2) P k P P P P P P P
Di(2) NP Nk NP NP NP NP NP NP NP
Da(2) NP . NP NP NP NP NP NP NP
Ds(2) NP §' NP NP NP NP NP NP NP
Do (3) P\V P P P P 3 P P
Di(3) N\ P NP NP NP NP NP NP NP
Ds(3) NP NP NP NP NP NP NP NP NP
Do(4) P P P P P P 3 P P
D4 NP NP NP NP NP NP NP NP NP
D4y NP NP NP NP NP NP NP NP NP
Ds4) NP NP NP NP NP NP NP NP NP




5.3 Stochastic Dynamic Programming Models 101

Table 5.6. Optimal promotion strategies and their CLVs.

d=3 d=14 d=5

a=099a=095a=090a=099a=095a=090a=0.99 a=0.95 a=0.90

To 11239 3276 2218 11200 3242 2189 11161 3208 2163

) 607 114 52 606 113 51 605 112 50
) 641 146 83 641 146 82 640 145 81
) 710 212 146 709 211 145 708 211 145
) 834 334 265 833 333 264 832 332 264
) 610 116 54 608 114 52 606,50 @12 50
) 645 149 84 643 147 83 &\ 145 81
) 713 214 148 711 213 oW 211 145
) 837 336 266 835 334 333 264
) 613 119 56 610 11%\\ 3 113 50
) 647 151 86 645 4&&0 83% 42 146 81
) 715 216 149 713 21 14\ 710 211 145
) 834 333 264
)

)

)

)

839 338 268 837 36\
616 121 57 612 \ 608 113 50
650 152 87 64% 49 \ 643 146 81

2(4) 718 218 150 ‘1&» 21 a7 711 212 145
v3(4) 842 340 269 8 266 835 334 265
Do(1) P P P % P P P P
Di(1) NP NP N P, \ NP NP NP NP
Dy(1) NP NP

P, N% P NP NP NP NP
NP NP & , NP NP NP NP NP
P P P P P P P
NP NP NP NP NP NP NP

P

NP NP NP NP NP NP

)

)

)

)

)

;

) NP P NP NP NP NP NP

) P \"P P P P P P
Di(3) NP NP NP NP NP NP NP
D»(3) NP NP NP NP NP NP NP

) \P

)

)

)

)

Ds(3 NP NP NP NP NP NP NP NP
Dy (4 P \ P P P P P P
D,(4 NP N NP NP NP NP NP NP
D»(4

NP

NP
NP s NP NP NP NP NP NP NP
NP NP NP NP NP NP NP
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5.4 Higher-order Markov decision process

The MDP presented in previous section is a first-order type, i.e., the transition
probabilities depend on the current state only. A brief introduction has been
given in Chapter 1. For the HDMP, the transition probabilities depend on the
current state and a number of previous states. For instance, the probabilities
of a second-order MDP moving from state s; to state s; depend only on the
latest two states, the present state s; and the previous state s,. The transition
probability is denoted by pp;;. In this section, we are interested in studying a
Higher-order Markov Decision Process (HMDP) with applications to the CLV

problems. o
In the infinite horizon case, there are infinite number of i ith the
initial state s; and the previous state s;. The poli pre§ n alterna-

tive, say k*, for the transition out of states sy, te probability
of being in state s; after one transition is p d thi ability is re-
written as p(1, j). Now using the alternati ed ne can calculate

the probabilities of being in the various stat afte\' transitions; these

probabilities can be denoted by \' L ;%

p(2,1) for I

5 .

@ being in state s; and state
;) thevalternative that D prescribes

tate s;, the expected reward to

Similarly one can calculate the
sp, after n transitions. Denoting

for use after n transitions if
be earned by D on the (n+ )3

&k&& i) (5.13)

4=
and the present @ ) §
\ p(n, j)g; """, (5.14)
»
Thus the total exp‘&eward of D is given by

o N-1

[ee]
‘Q‘ng*) +> " Y plng)a) ", (5.15)
\\ n=1  j=0
Choosing &h that

¢ <Q forall 1=0,1,...,N—1. (5.16)

and k € A;, the sum is absolutely convergent. This sum is called the value of
the policy D, and it is denoted by wp;(D). It is clear that

lwni(D)] < Q(1 —a)~ . (5.17)
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5.4.1 Stationary policy

A stationary policy is a policy that the choice of alternative depends only on
the state the system is in and is independent of n. D(h, ) is defined to be the
stationary policy with the current state s; and the previous s;,. For a Markov
decision process with infinite horizon and discount factor a, 0 < a < 1, the
value of an optimal policy is defined as follows:

vp; = lub {wp;(D)|D a policy with initial state s; and previous state 65,18)
where lub is the standard abbreviation for least upper bound.

Proposition 5.1. For a Markov decision process with infing %ﬁn, dis-

count factor a;, where 0 < o < 1, and
NN
Up; = km&f{qgk) +a Z i, ®, Ly, @* L (5.19)
J=0 \ \
Then, for each h,i, up; = vp;. \.\ \.\
Proof. Fixing h,i = 0,1,...,N — 1, %e \icy with initial state

s; and previous state sp. Suppos cri altérnative k£* on the first
transition out of sj,s;; and de& ij ociated one-step-removed

policy. Then §

\ §=0

\ a4 N-1

&\ Ek) +a Z P%’Uz’j} = Uhi-
\ 3=0

Therefore uy; is an @ound for the set

{wni(D) olicy with initial state s; previous state s}
°
and \
N oni = lub {wpi(D)} < up;.
Considering ternative kj; such that

N-1 N-1

_ (k) (k) _ (kns) (kni)

ups = max{q;” +a ZO i} =a " +a ZO Phaj Vi
J= J=

For any given € > 0 and for each j, a policy Dy, is chosen with initial state s;
and previous state s, such that
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Upi — € < wpi(D};)-

Define a policy D with initial state s; and previous state s, as follows: use
alternative kp; out of states s;, and state s;, then for each h,i if the system
moves to state s; on the first transition, policy Dj; is used thereafter. We have

N-1
Up; = q§ " 4 ZP%Z; )Uz‘j
j=0

N-—1
<™ +a Y pht) (wiy (Dy) + )
j=0

N1

=q h)+azp§n’;)
=0

= wpi(D) 4+ ae

< Vp;i + €.

Since € is arbitrary, up; < vp;. The re

Proposition 5.2. (Stationary Po %
cess with infinite horizon and w
h,i, an alternative ky; such th®

(k) % \i) (kni),
el %\® BRI
*0 =0
Define the station@l) @, 1) = kpi. Then for each h,i, wp;(D) =
\ Q )

we have &h
\o v=q+aPv
where \§
\x: ['UO’(), V0,15---V0,N—1,V1,05- - - 'UN—l,N—l]Ty

q= [QO,Q1, -+3qdN—-1,90, - - "QN—l]T

)

and (o)

P = [phi;z ].
The superscript are omitted in the above vectors. For 0 < o < 1, the matrix
(I — «P) is nonsingular and the result follows.
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According to the above two propositions, the optimal stationary policy
can be obtained by solving the following LP problem:

min {zg,0 + o1 + -+ +Ton-1+T10+ -+ TN_1,N-1}

subject to
® N~ ® , (5.20)
xhzqu +azph”x217 h7Z:07177N_1a
j=0
ke A,.

5.4.2 Application to the calculation of CLV \%'.

In previous sections, a first-order MDP is applie
pany. In this section, the same set of custo
HMDP. Comparison of two models will be gi r72).

The one-step transition probabilities are given in S .3. Similarly, one
can estimate the second-order (two—step&n&itlo ilities. Given that
the current state ¢ and previous state customers switching
to state j is recorded. Then, divide it tota er of customers in the
current state i and previous state

1 ained are the second-order
transition probabilities. The transgitio s under the promotion and
no-promotion period are given iv\% le 5.7.

Table 5.7. ’Mﬁon %\ansition probabilities.
A\

9

] % No-Promotion

w0 3 0 1 2 3

6°0.0088 0.8957 0.0904 0.0098 0.0041
549 0.0320 0.6484 0.3051 0.0329 0.0136
324 0.1172 0.5199 0.3069 0.0980 0.0753

2 0.0394 0.0205 0.7287 0.2400 0.0227 0.0086

1952 0.1661 0.0375 0.3584 0.5117 0.1064 0.0234
074353 0.2169 0.1563 0.2505 0.4763 0.1860 0.0872
368°0.3158 0.2271 0.3203 0.1727 0.3750 0.2624 0.1900
0.2371 0.1043 0.0834 0.6551 0.2253 0.0847 0.0349
451 0.4323 0.2043 0.1183 0.3048 0.4783 0.1411 0.0757
0.1235 0.3757 0.2704 0.2304 0.2032 0.3992 0.2531 0.1445
) 0.1030 0.2500 0.2630 0.3840 0.1785 0.2928 0.2385 0.2901

) 0.4822 0.2189 0.1496 0.1494 0.6493 0.2114 0.0575 0.0818
(3,1) 0.2263 0.3343 0.2086 0.2308 0.2678 0.4392 0.1493 0.1437
) 0.1286 0.2562 0.2481 0.3671 0.2040 0.3224 0.2434 0.2302

) 0.0587 0.1399 0.1855 0.6159 0.1251 0.1968 0.1933 0.4848
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The transition probability from state 0 to state 0 is very high in the first-
order model for both promotion and no-promotion period. However, in the
second-order model, the transition probabilities

(0,0) — 0,(1,0) — 0,(2,0) > 0 and (3,0)—0

are very different. It is clear that the second-order Markov chain model can
better capture the customers’ behavior than the first-order Markov chain
model.

In Tables 5.8, 5.9 and 5.10, the optimal stationary policy is given for
the first-order and the second-order MDP respectively for different values of
discount factor a and promotion cost d. Once again, (P) repr conduct
promotion and (NP) represents to make no promgtion. It 4 that the
optimal stationary policies for both models are \e sense that
D; = D;; fori =0,1,2,3 in all the tested case
optimal stationary policy D;; depends not optimal policy
depends on the current state only in the &r but also on the

value of « and d. It is observed that the (kor ov decision process
always gives better objective value. \ \

5.5 Summary \' \\
Finally, we end this chap h \ g summary. In this chapter,
stochastic dynamic prog e proposed for the optimization
of CLV. Both cases of 4nfiniteyh d finite horizon with budget con-
straints are discussed. e‘r ¢ n be solved by using linear program-

1
ming techniques, t ro n be solved by using dynamic program-
ming approach. Ei k can be implemented easily in an EXCEL
spreadsheet. T Spplied to practical data of a computer ser-
vice company. kes use of the proposed CLV model to make
and maintain value-l ionships with the customers. We also extend
-order setting. Optimal stationary policy is also

the idea of MDP to
obtained in this ca; x
Further researc& e done in promotion strategy through advertising.

Advertising is a tant tool in modern marketing. The purpose of adver-
tising is to en potential users’ responses to the company by providing
osing a particular product or service. A number of mar-
ah be found in Lilien et al. [146] and the references therein. It
has been shown that a pulsation advertising policy is effective, Mesak et al.
[150, 151, 152, 153] and Ching et al. [74]. It will be interesting to incorporate
the pulsation advertising policy in the CLV model.
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Table 5.8. Optimal strategies when the first-order MDP is used.

d=0 d=1 d=2

a=099a=095a=090a=099a=0.95a=090 a=0.99 a=0.95 a=0.90

xo 4791 1149 687 4437 1080 654 4083 1012 621

v 1112 204 92 1023 186 83 934 168 74
v 1144 234 119 1054 216 110 965 198 101
va 1206 295 179 1118 278 171 1030 261 163
vs 1328 415 296 1240 399 289 1153 382 281
Do P P P P P P P P P
D, P P P P P P P %’ P
Ds NP NP NP NP NP N, P NP
Ds NP NP NP NP NP N, NP NP
d= d= d=

a=099a=095a=090a=099 a=0.9

xo 3729 943 590 3375 ) 3056 827 541

vo 845 151 65 755 675 119 51
v 877 181 94 78 %4 707 151 82
vy 942 245 156 85 3 \1 775 217 145

vy 1066 366 899 339 264

P P P
NP NP NP
NP NP NP
NP NP NP

Do P P
Dy P P
Dy, NP NP
D3 NP NP
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Table 5.9. Optimal strategies when the second-order MDP is used.

d=0 d=1 d=2

a=099a=095a=090a=099a=095a=0.90a=0.99 a=0.95 a=0.90

zo 19001 5055 3187 17578 4785 3066 16154 4520 2950

voo 1034 177 74 943 158 65 853 140 56
vo1 1081 217 108 991 200 100 901 182 93
voz 1168 299 184 1080 282 177 991 266 170
voz 1309 433 312 1220 417 305 1132 401 298
vio 1047 188 83 956 169 74 866 152 66
vir 1110 242 129 1020 224 120 93 %%7 112
viz2 1195 322 204 1107 306 1 ﬁ\ 0 190
viz 1347 466 339 1259 450 & 1 4

9

43 326
veo 1071 209 102 981 191 174 85
vo1 1135 265 149 1046 2 ° 230 133
vop 1217 341 221 1129 J& 14 \1 1 310 207
vez 1370 487 358 1283 71 35 \ 95 456 345
vzo 1094 230 120 1004 b % 915 195 104
vs1 1163 290 171 1074 % 985 256 156

vz 1239 359 236 1151 3 1062 327 223
vsz 1420 531 398 &

©
—_

P P P

P
NP P NP NP
NP NP NP
NP NP NP

NP
‘\‘ NP
P\ P p P p P
& p p p p p
NP
NP
p
p

1245 501 385
Doo P P P

Doy P P P
Dg2 NP NP NP

Dos NP NP 1\%
D P p

D11 P P

Dis NP NP

Dis NP N

Doy P P

NP NP NP
NP NP NP
P P P
Doy P \ P P P
Dss NP SS NP NP NP NP NP
Ds; NP NP NP NP NP NP NP

M P P

P P P P P
Dy P P \[P P P P P P P
Dz P NP SO NP P NP NP P NP NP

24

Dss NP %. NP NP NP NP NP NP NP
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Table 5.10. Optimal strategies when the second-order MDP is used.

a=099a=095a=090a=099a=0.95a=090a=0.99 a=0.95a=0.90

xo 14731 4277 2858 13572 4148 2825 13224 4093 2791

voo 763 124 50 690 117 49 670 115 48
vor 811 167 87 739 159 86 717 156 84
voz 902 251 164 830 243 162 809 240 160
voz 1044 386 293 972 378 290 951 375 288
vio 776 135 59 703 127 57 682 124 55
vin 841 191 107 768 182 105 74 \ 103
vi2 930 275 184 858 267 & 63 180
viz 1083 420 321 1012 412 & 409 317
veo 801 158 79 728 150 146 74
var 867 214 127 794 2 4 e 201 121
vaz 953 295 202 881 2& 00 \0 284 198
ve3 1107 442 340 1035 4 33\\ 14 430 336
vzo 825 179 97 752 b % 731 167 93
vz1 896 240 149 800 227 144
vz 973 313 218 879 301 213
vz 1158 487 381 1065 476 377

NP NP NP
NP NP NP

Doy P P NP NP NP NP
Doi P NP NP NP NP NP
Do2 NP NP NP NP NP NP
Dos NP NP N NP NP NP
D P p p p p
Du P p p NP NP
Dis NP NP NP NP NP
Diz NP N NP NP NP
Dy P P P P P
Doy P \ P P P
Doy NP Ss

D33 NP NP $

D3z P P P P P
Dy P P w P P P
Ds; P NP& P NP NP NP
Ds; NP o NP NP NP NP
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Higher-order Markov Chains

6.1 Introduction \\\\'\ .\\%

Data sequences or time series occur frequestly in ma; orld applications.

One of the most important steps in an 2 ence (or time series)
a

is the selection of an appropriate ma for the data. Because

it helps in predictions, hypothesis Qs nd covery. A data sequence
{X (™} can be logically represe ve

( 7 (T))’

where T is the length of&%u %X(i) € DOM(4) (1 <4 < T),
associated with a defineéhge ic ta type. In our context, we consider
and assume other typestiised’ cafi, b pped to one of these two types. The
domains of attributessasse ate% these two types are called numeric and
categorical respect A ricsdomain consists of real numbers. A domain
fine ‘%hif it is finite and unordered, e.g., for any
a # b, see for instance [102]. Numerical data
detail, see for instance [33]. Mathematical tools
spectral analysis are employed frequently in the
a sequences. Many different time sequences models

developed in the literatures, see for instance [33].
sequences, there are many situations that one would
-order Markov chain models as a mathematical tool, see
, 147, 149, 174]. A number of applications can be found in
the literaturesy[114, 149, 175, 207]. For example, in sales demand prediction,
products are classified into several states: very high sales volume, high sales
volume, standard, low sales volume and very low sales volume (categorical
type: ordinal data). A higher-order Markov chain model has been used in
fitting observed data and apply to the wind turbine design. Alignment of
sequences (categorical type: nominal data) is an important topic in DNA
sequence analysis. It involves searching of patterns in a DNA sequence of

sequences have been s
such as Fourier transfo
analysis of numeri
have been proposed,
For categori
like to employ
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huge size. In these applications and many others, one would like to
(i) characterize categorical data sequences for the purpose of comparison and
classification; or
(ii) to model categorical data sequences and hence to make predictions in the
control and planning process.
It has been shown that higher-order Markov chain models can be a promising
approach for these purposes [114, 174, 175, 207].

The remainder of this chapter is organized as follows. In Section 6.2, we
present the higher-order Markov chain model. Estimation methods for the
model parameters are also discussed. In Section 6.3, the higher-order Markov

chain model is applied to a number of applications such as D equences,
sales demand predictions and web page predictions. Further n of the
model is then discussed in Section 6.4. In Section we a model to
the Newsboy’s problem, a classical problem in me ces. Finally
a summary is given in Section 6.6. °

L S$
6.2 Higher-order Markov Ch@'\ :\\'

In the following, we assume that @a po&

Q

sequence takes values in the set \
@ ?\N}

and m is finite, i.e., a sequ categories or states. The conven-
tional model for a k-th e aih has (m — 1)m* model parameters.
The major problem in chpk model is that the number of param-
iti eases exponentially with respect to the
order of the mode er of parameters discourages people from
in\directly.

higher-order Markov chain model which in-
rameter for each extra lag. The model can be

) in a categorical data

=

volves only one additj

written as follows: \
k
P(X(n) :s\ "= N 7X("—k) = ]k) = Z /\iqjoji (6'1)
)
\ i=1
where \\§ .

and @ = [g;;] is a transition matrix with column sums equal to one, such that

k
0< Z)\inoji <1, Jjo,ji € M. (6.2)
=1
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The constraint in (6.2) is to guarantee that the right-hand-side of (6.1) is
a probability distribution. The total number of independent parameters in
this model is of size (k +m?). Raftery proved that (6.1) is analogous to the
standard AR(n) model in the sense that each additional lag, after the first is
specified by a single parameter and the autocorrelations satisfy a system of lin-
ear equations similar to the Yule-Walker equations. Moreover, the parameters
Qjoj; and A; can be estimated numerically by maximizing the log-likelihood of
(6.1) subjected to the constraints (6.2). However, this approach involves solv-
ing a highly non-linear optimization problem. The proposed numerical method
neither guarantees convergence nor a global maximum even if it converges.

6.2.1 The New Model \\

In this subsection, we extend Raftery’s mode eral higher-

order Markov chain model by allowing @ to v h lags. Here we
t \

assume that the weight ); is non-negative ¢

zfjx "@ (6.3)

It should be noted that (6.1) a%
‘4@ +k+1—1) (64)
%

where X Hh+1-1) g ¢ abi
k+1—1). Using (6.3 e

tribution of the states at time (n +

at @ is a transition probability matrix,

we note that eac (n is in between 0 and 1, and the sum of

all entries is als % tery’s model, it does not assume A to be

non-negative ditional constraints (6.2) should be added

to guarantee tha he probability distribution of the states.
Raftery’s model in%g? n be generalized as follows:

k
\\Q%WU AiQiX ., (6.5)
\' ;

The total @; independent parameters in the new model is (k + km?).

We note th
=Q2=...= Q4

then (6.5) is just the Raftery s model in (6.4).

In the model we assume that X(*+*+1) depends on X("+%) (5 =1,2,...,k)
via the matrix @; and weight \;. One may relate @); to the i-step transition
matrix of the process and we will use this idea to estimate @);. Here we as-
sume that each @); is an non-negative stochastic matrix with column sums
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equal to one. Before we present our estimation method for the model param-
eters we first discuss some properties of our proposed model in the following
proposition.

Proposition 6.1. If Qy is irreducible and A\, > 0 such that

k
0<A <1 and Y A=1
i=1
then the model in (6.5) has a stationary distribution X when n — oo in-

dependent of the initial state vectors XO XM XED | The stationary
distribution X is also the unique solution of the following line%ﬁem of

equations: \
(I=) NQi)X=0 and @1. §
i=1
er ible states taken

Here I is the m-by-m identity matriz (m is
by each data point) and 1 is an m X 1 vecto
rder Markov chain.

Proof. We first note that if Ay = 0, then ismo
Therefore without loss of generality, o al t A > 0. Secondly if
Q) is not irreducible, then we consi caseyt ¢ = 1 and in this case,
clearly there is no unique Stationark i the system. Therefore Qy,
is irreducible is a necessary con or the nce of a unique stationary
distribution. §
Now let \ \
Y(n+k+1)x kﬂ% k) X (n+2)yT
e
be an nm x 1 vector. N i '

N
S S

Y%

R (6.6)
: . . . 0
o o 0 I 0
\a‘
is an km x k:m@e matrix. We then define
\\ MQr T 0 0 - 0
: 01 0 :
R— 00 (6.7)
)\n—lQn—l 1




6.2 Higher-order Markov Chains 115

We note that R and R have the same characteristic polynomial in 7

k
det[(=1)F T (MQ1 — D)TF T+ Y T NQir )]

=2

Thus R and R have the same set of eigenvalues.

It is clear that R is an irreducible stochastic matrix with column sums
equal to one. Then from Perron-Frobenius Theorem [11, p. 134], all the eigen-
values of R (or equivalently R) lie in the interval (0,1] and there is exactly
one eigenvalue equal to one. This implies that

n

lim R...R= lim (R)" = VU? \%"

is a positive rank one matrix as R is irreducible %ﬁor@ve
lim Y+ = im P
=V
PO

Here a is a positive number becaus #* is non-negative. This
implies that X (™ also tends to a K vy distzibution as ¢t goes to infinity.

Hence we have \
lim X(n+®l®ix(n+k+1—i)
74 ‘\‘
and therefore we have \ \
% X \iQiX.

N
The stationary @ o satisfies
)1 @ip‘( =0 with 17X =1. (6.8)

The normalization ‘¢o int is necessary as the matrix

\\ (I=> XQi)
i=1
has an one—§sional null space. The result is then proved.

We remark that if some \; are equal to zero, one can rewrite the vector
Y, +k+1 in terms of X; where A; are nonzero. Then the model in (6.5) still has
a stationary distribution X when n goes to infinity independent of the initial
state vectors. Moreover, the stationary distribution X can be obtained by
solving the corresponding linear system of equations with the normalization
constraint.
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6.2.2 Parameters Estimation

In this subsection, we present efficient methods to estimate the parameters
Q; and \; for i = 1,2,..., k. To estimate @Q;, one may regard ); as the i-
step transition matrix of the categorical data sequence {X(™}. Given the
categorical data sequence {X (™}, one can count the transition frequency f;lz)
in the sequence from State [ to State j in the i-step. Hence one can construct
the i-step transition matrix for the sequence {X (™} as follows:
£y
(4)

12

FO —

(@)
1m

where

(6.11)

otherwise.

N
N
We note that §

O(L?) operations, wh
total computation.
operations. Here k

The followin

Propositi@he estimators in (6.11) satisfies

1 complexity of the construction of F® is of
he length of the given data sequence. Hence the
xity of the construction of {F(W}E_ is of O(kL?)
number of lags.

sition shows that these estimators are unbiased.

E(f) = ¢V E [ S 1Y

i=1

Proof. Let T be the length of the sequence, [ql(;)] be the ¢-step transition

probability matrix and X; be the steady state probability that the process is
in state [. Then we have
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B(ffy=T-X-q

and

EQ i =T-%-O q))=T X
j=1 j=1

Therefore we have
m

E(f) =ay - EQ_ ).

Jj=1

In some situations, if the sequence is too short then Ql (especially Qk)

. A . . J .

contains a lot of zeros (therefore @), may not be 1rredumbl@er, this
S

method

did not occur in the tested examples. Here we pi®pose t

for the parameter estimation. Let W () be the p ity ‘@u‘cion of the
i-step transition sequence, then another possi im r (); can be
W®H1t, We note that if W is a positi ctor, N M1t will be a
positive matrix and hence an irreducible nm

Proposition 6.1 gives a sufficient co n.\fo ence X(™ to con-
verge to a stationary distribution X. S as n goes to infinity
then X can be estimated from the se {xX\v computing the propor-

tion of the occurrence of each state S and let us denote it by X.
From (6.8) one would expect th\ K

%i ) } (6.12)
\:1
This suggests one possi&y ‘e&te the parameters

A Tseeey k)
o

as follows. On ns% following minimization problem:

\ % C

L DShI veX - X

i=1

subject to &
X
@ Ai=1, and X\ >0, Vi

Here ||.| is&in vector norm. In particular, if ||.|| is chosen, we have the

following minimization problem:
L

Il
-

Nk

min max
P

M@X—X]

1

!
subject to
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k
> Ai=1, and X\ >0, Vi
i=1

Here [-]; denotes the Ith entry of the vector. The constraints in the optimiza-
tion problem guarantee the existence of the stationary distribution X. Next
we see that the above minimization problem can be formulated as a linear
programming problem:

min w

subject to

problem:

subject to

%..‘ Ai=1, and X >0, Vi
\ i=1
The corres&m linear programming problem is given as follows:

m
min E wy
A
=1

subject to
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w1 >\1
wa . P 1| A2
D S (1Ko S IERT’S J) B
Wi )\k
w1 >\1
Wa N A A A A A2
=S SACE LS SRS {) R
W, Ak

In the above linear programming formulation,@ber bles is equal
to k and the number of constraints is equ + complexity of
solving a linear programming problem is O is the number of
variables and L is the number of binary
constraints and the objective function)

We remark that other norms suc M2 ca be considered. In this
case, it will result in a quadratic i oblem. It is known that in
approximating data by a linear fi o179, s ||-]]1 gives the most robust
answer, ||.||o avoids gross discre ith the'data as much as possible and

if the errors are known to b ed then ||.||2 is the best choice.
In the tested examples, o onsi norms leading to solving linear

programming problems, : \

6.2.3 An Exam;%&t @

We consider a s% { f%hree states (m = 3) given by
1

1,2 ,1,2,3,1,2,3,1,2,3,1,2,1, 2} (6.13)
The sequence {X (”)®e written in vector form
XM =(1,0,0)7, k:: (1,0,0)7, X® =(0,1,0)7, ..., X®9 =(0,1,0)7.
We Considerx en from (6.13) we have the transition frequency matrices
\ 133 141
FO=[611] and F@P=[323]. (6.14)
130 310

Therefore from (6.14) we have the i-step transition probability matrices (i =
1,2) as follows:
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1/83/7 3/4 1/74/71/4
Q1 = (3/4 1/7 1/4) and Qo = (3/7 2/7 3/4) (6.15)

1/83/7 0 3/71/7 0
and 9 9 1
X=(2,2 )T,
(575’5)
Hence we have 13 57 31
(1357 31,
@ (35’140’140) ’
and A7 61 8
% (AT 61 8.
@ (140’ 140° 35)

Y,
N

subject to

‘%". (AL AL, w*) = (1,0,0.0286),

and we hav del

XD = @, XM, (6.16)

We remark that if we do not specify the non-negativity of A; and Ao, the
optimal solution becomes

(AT, A5*, w™) = (1.80, —0.80,0.0157),

the corresponding model is
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XD = 1.800;X™ — 0.80Q,X ™1, (6.17)

Although w** is less than w*, the model (6.17) is not suitable. It is easy to
check that

(1 A —0.2321
1.800: | 0 | —0.800, 1| = 11214 |,
0 0 0.1107

therefore A7* and A3* are not valid parameters.
We note that if we consider the minimization problem:

min wy + we +w
AT w1 2 3 @.
subject to § \\
2 \
wy 2 5 35

wy > =2+ =M+

w 2 -
225 1407 \
2 57 \\
S _Z
2= 5+ﬁ§140)‘x

w3

2y
7

w3

wy, A1, Ag > 0.
The optimal sol \e the previous min-max formulation and is
equal to
( . i%\: = (1,0,0.0286,0.0071,0.0214).
6.3 Some App@ons

%

our model to some data sequences. The data sequences
are the DN ce and the sales demand data sequence. Given the state
vectors X —k,n—k+1,...,k—1, the state probability distribution
at time n can be estimated as follows:

In this section

k
X = 300X,

i=1

In many applications, one would like to make use of the higher-order Markov
chain models for the purpose of prediction. According to this state probability
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distribution, the prediction of the next state X (™ at time n can be taken as
the state with the maximum probability, i.e.,

XM =j, it (XO) < XM, vi<i<m.

To evaluate the performance and effectiveness of the higher-order Markov
chain model, a prediction accuracy r is defined as

RER SN

Using the example in the previous section, t 0ssi diction rules can
be drawn as follows: \.\ \

204 2 ST AN

X(n-‘rl) X( _

. x@ )
=1,
(W= () =9,

The prediction accur or quence in (6.13) is equal to 12/19 for
both prediction rules: 1l }&e iction accuracies of other rules for the
sequence in (6. SS he value 12/19.

Next we p rical results on different data sequences are
discussed. In the followi , we solve min-max optimization problems to
determine the parame of higher-order Markov chain models. However,
we remark that th s'of using the ||.||; optimization problem as discussed
in the previous secti re about the same as that of using the min-max
formulation. %.

6.3.1 Th equence

In order to determine whether certain short DNA sequence (a categorical data
sequence of four possible categories: A,C,G and T) occurred more often than
would be expected by chance, Avery [8] examined the Markovian structure
of introns from several other genes in mice. Here we apply our model to the
introns from the mouse aA-crystallin gene see for instance [175]. We compare
our second-order model with the Raftery’s second-order model. The model
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Table 6.1. Prediction accuracy in the DNA sequence.

2-state model 3-state model 4-state model

New Model 0.57 0.49 0.33
Raftery’s Model 0.57 0.47 0.31
Random Chosen 0.50 0.33 0.25

123

parameters of the Raftery’s model are given in [175]. The results are reported

in Table 6.1.

The comparison is made with different grouping of states as
[175]. In grouping states 1 and 3, and states 2 and 4 we have

Our model gives § %

X = (0.4858,0.5142)" \-0. d Ay =0.2471.

model. Our model gives

0.5467 0.4747
\ ) 8286 0.2293 0.2727
\ E\ 2164 0.2240 0.2525

X = (0.48& 9,0.2272)T, A\ =1.0 and Xy =0.0
If there is no grou;& e have a 4-state model. Our model gives

@
'%' 0.2268 0.2987 0.2274 0.1919
0.2492 0.3440 0.2648 0.2795
0.3450 0.0587 0.3146 0.3030 | °
0.1789 0.2987 0.1931 0.2256

0.3814 0.2293 0.2773 0.2727
0.2532 0.2560 0.2305 0.2424

0.1891 0.2907 0.2368 0.2323
0.1763 0.2240 0.2555 0.2525

gested in
model.
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X = (0.2395,0.2869,0.2464,0.2272)T, A\ =0.253 and Xy = 0.747.

When using the expected errors (assuming that the next state is randomly
chosen with equal probability for all states) as a reference, the percentage gain
in effectiveness of using higher-order Markov chain models is in the 3-state
model. In this case, our model also gives a better estimation when compared
with Raftery’s model. Raftery [174] considered using BIC to weight efficiency
gained in terms of extra parameters used. This is important in his approach
since his method requires to solve a highly non-linear optimization problem.
The complexity of solving the optimization problem increases when there are
many parameters to be estimated. We remark that our estimation method is
quite efficient.

6.3.2 The Sales Demand Data

A large soft-drink company in Hong Kong presently facesamin-house problem
of production planning and inventory control. Axpressifigaissiie that stands out
is the storage space of its central warehouséwhich offeninds itself in the state
of overflow or near capacity. The companysis thusinsirgent needs to study
the interplay between the storage spacerequirement,and the overall growing
sales demand. There are product statessduetasthe, level of sales volume. The
states include

state 1: very slow-movinga(very low*sales yolume);
state 2: slow-moving;

state 3: standard;

state 4: fast-moving;

state 5: very fast-nfoving (veryghigh sales volume).

Such labellings arg useful'fromboth marketing and production planning points
of view. For ingtaneeyin the, production planning, the company can develop a
dynamic programming (PR Janedel to recommend better production planning
so as to minimize its inventory build-up, and to maximize the demand satis-
faction as well. SincegtheMumber of alternatives at each stage (each day in the
planning horizon) areweny large (the number of products raised to the power
of the number of production lines), the computational complexity of the DP
model is enormgus-+A’ priority scheme based on the state (the level of sales
volume) of thesproduct is introduced to tackle this combinatorial problem,
and therefére, aneffective and efficient production plan can be obtained. It is
obvious that the accurate prediction of state (the level of sales volume) of the
product is important in the production planning model.

In Figure 6.1 (Taken from [62]), we show that the states of four of the
products of the soft-drink company for some sales periods. Here we employ
higher-order Markov chain models to predict categories of these four products
separately. For the new model, we consider a second-order (n = 2) model and
use the data to estimate Q; and \; (i = 1,2). The results are reported in
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Table 6.2. For comparison, we also study the first-order and the second-order
full Markov chain model. Results shows the effectiveness of our new model.
We also see from Figure 6.1 that the change of the states of the products A, B
and D is more regular than that of the product C. We find in Table 6.2 that
the prediction results for the products A, B and D are better than that of C.

Table 6.2. Prediction accuracy in the sales demand data.

Product A Product B Product C Product D

First-order Markov Chain Model 0.76 0.70 0.39 %74
Second-order Markov Chain Model 0.79 0.78 0. \ .83
New Model (n = 2) 0.78 0.7\ } 0.78
Random Chosen 0.20 0 0.20

L 8
Product A \%ﬂ &

NN roduct B

3 JMJ “

2 \\

50 100 Q o 100 200 300
p % Product D

5 5
4 4
3 i 3
2 2
]

20 40 60 80 100 120 140 50 100 150 200 250

Fig. 6.1. The states of four products A,B,C and D.
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6.3.3 Webpages Prediction

The Internet provides a rich environment for users to retrieve useful informa-
tion. However, it is easy for a user to get lost in the ocean of information. One
way to assist the user with their informational need is to predict a user’s future
request and use the prediction for recommendation. Recommendation systems
reply on a prediction model to make inferences on users’ interests based upon
which to make recommendations. Examples are the WebWatcher [121] system
and Letzia [141] system. Accurate prediction can potentially shorten the users’
access times and reduce network traffic when the recommendation is handled
correctly. In this subsection, we use a higher-order Markov chain, model to
exploit the information from web server logs for predicting users=aetions on
the web.

The higher-order Markov chain model is built, emna»web_sérver log file. We
consider the web server log file to be prepro¢éssed, intogascollection of user
sessions. Each session is indexed by a unique,user;ID andistarting time [183].
Each session is a sequence of requests where @ach rgquest corresponds to a
visit to a web page. We represent each requesteas a state.,Then each session is
just a categorical data sequence. Moregveryswe dengteteach Web page (state)
by an integer.

Web Log Files and Preprocessing

Experiments were conductedvoma redl™\Web 1og file taken from the Internet.
We first implemented a data, preprocessing) program to extract sessions from
the log file. We downloaded twio web®log files from the Internet. The data set
was a web log file from*the EPARWIWAW server located at Research Triangle
Park, NC. This logacontauted 47748 transactions generated in 24 hours from
23:53:25 EDT, August*29, t6723:58:07, August 30, 1995. In preprocessing, we
removed all thefinvalid’requestsyand the requests for images. We used Host
ID to identify wisiters and"a80’ minutes time threshold to identify sessions.
428 sessions of lengths bétween 16 and 20 were identified from the EPA log
file. The total number ¢fweb pages (states) involved is 3753.

Prediction Models

By exploring théssession data from the web log file, we observed that a large
number of@imilaw sessions rarely exist. This is because in a complex web site
with variety ofypages, and many paths and links, one should not expect that
in a given time period, a large number of visitors follow only a few paths. If
this is true, it would mean that the structure and contents of the web site
had a serious problem. Because only a few pages and paths were interested by
the visitors. In fact, most web site designers expect that the majority of their
pages, if not every one, are visited and paths followed (equally) frequently. The
first and the second step transition matrices of all sessions are very sparse in
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our case. In fact, there are 3900 and 4747 entries in the first and the second step
transition matrices respectively. Nonzero entries only contain about 0.033%
in the total elements of the first and the second step transition matrices.

Based on these observations, if we directly use these transition matrices to
build prediction models, they may not be effective. Since the number of pages
(states) are very large, the prediction probability for each page may be very
low. Moreover, the computational work for solving the linear programming
problem in the estimation of )\; are also high since the number of constraints
in the linear programming problem depends on the number of pages (states).
Here we propose to use clustering algorithms [114] to cluster the sessions. The
idea is to form a transition probability matrix for each session, to ¢enstsuct the
distance between two sessions based on the Frobenius norm&{See*Definition
1.40 of Chapter one) of the difference of their transitien probability matrices,
and then to use k-means algorithm to cluster the sessions  Assavresult of the
cluster analysis, the web page cluster can be usedsto constriictva higher-order
Markov chain model. Then we prefetch those Wweb doduments that are close
to a user-requested document in a Markoy, chaiir model.

We find that there is a clear similaritjnaméngythésessessions in each clus-
ter for the EPA log file. As an example we’shéw iusEigure 6.2 (Taken from
[62]) that the first, the second and; thietliird step teansition probability ma-
trices of a cluster in EPA log file. Therearef70\pages involved in this cluster.
Non-zero entries contain about 1892%, 2.06% ‘and 2.20% respectively in the
total elements of the first, the ge¢ond amdy,the third step transition matrices.
Usually, the prediction of thewextwelipage is based on the current page and
the previous few pages [1]"¥LChérefore, Wewse a third-order model (n = 3) and
consider the first, the Se@end“@ndytheythird transition matrices in the con-
struction of the Markowehain modelNAfter we find the transition matrices,
we determine \; andpuldh6ur newshigher-order Markov chain model for each
cluster. For the above mentiGhed eluster, its corresponding A1, A2 and A3 are
0.4984, 0.4531 afd,0:0485a¢espectively. The parameters show that the predic-
tion of the nextmwebdpage,strongly depends on the current and the previous

pages.

Prediction Results

We then presentfthe.prediction results for the EPA log file. We perform clus-
tering based,onsthéir transition matrices and parameters. Sixteen clusters are
found expétintenttally based on their average within-cluster distance. There-
fore sixteen thizd-order Markov chain model for these clusters are determined
for the prediction of user-request documents. For comparison, we also com-
pute the first-order Markov chain model for each cluster. Totally, there are
6255 web documents for the prediction test. We find the prediction accuracy
of our method is about 77%, but the prediction accuracy of using the first-
order full Markov chain model is only 75%. Results show an improvement in
the prediction. We have applied these prediction results to the problem of



0
10F 4 101
20 4 20 °
301 1 30f
401 1 40r
501
60
70t . . . . L. . H
0 10 20 30 40 50 60 70
nz =94
(a)

128 6 Higher-order Markov Chains

\) 30 40 50 60 70
\ nz =108

(c)
Fig. 6.2. The a), second (b), third (c) step transition matrices.
N

°
integrated \@ng and prefetching [212]. The slight increase of the pre-

diction ac an enhance a prefetching engine. Experimental results in
[212] show thatwthe resultant system outperforms web systems that are based
on caching alone.
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6.4 Extension of the Model

In this section, we consider an extension of the higher-order Markov chain
model, Ching et al. [71]. The higher-order Markov chain model (6.5):

k
Xkt = 3 NQiXokr1-i
i=1

can be further generalized by replacing the constraints

k \ %
0< > Mgl <1, doji € % @ L.
i=1
We expect this new model will have b %ﬁd uracy when appro-
priate order of model is used. K x
Next we give the sufficient con 't% the% ed model to be station-
ary. Similar to the proof in [174], it e% hat

Proposition 6.3. Suppose th , } is defined by (6.5) where the
constraints 0 < A <1 are r \

by

then the model (6, stati distribution X when n — oo independent
of the initial st& s xﬂ 4

The stationary distr M is also the unique solution of the linear system
of equations: Q

.%&r\ii,\i )X =0 and 17X =1

We ca@ method in Section 6.2.2 to estimate the parameters ;. For
ear

Ai, the lin gramming formulation can be considered as follows. In view
of Proposition 6.3, suppose the model is stationary then we have a stationary
distribution X. Then X can be estimated from the observed sequence {X ()}
by computing the proportion of the occurrence of each state in the sequence.
In Section 6.2.2, it suggests one possible way to estimate the parameters

s
Il
—

A=Ay, An)
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as follows. In view of (6.12) one can consider the following optimization prob-
lem

k k
m}}n Z)\ZQZ-X—X zrri\lnmax lZ)\iQiX—Xl
i=1 o) i=1 j
subject to
k
i=1

and

k
0< S Mgl <1, o, ji € M. ’
< ; ig5e;, <1, jo,ji € \%ﬁ

Here []; denotes the jth entry of the vector. tha
mization problem can be re-formulated as a
oblem, one can

stated in the previous section. Instead of solii in
inear programming

8
also formulate the /;-norm optimization prob nt
problems, we note that the number of v%ﬁ i k and the number
of constraints is equal to (2mk+1 +2m+ ing proposition (see
in§ m +

above opti-
g problem as

also [175]), we can reduce number 0 a 1) if we formulate
the estimation problem as a nonli

Proposition 6.4. The constmi% é
0 L3N j;')é:%\jo,jie/w

g (maﬁ{ @"mw{/\iﬁ}@xwﬁ}) >0 (6.18)

k N
Z <max{)\i®x{q§?j,} — max{—2X;, 0} mln{q%é}) <1 (6.19)
: x‘ Ji ‘ Ji v
)
Proof. We @ first part of the inequality. If inequality (6.18) holds,

then }
(1) _ (i) (%)
Aiqjoji - Z Aiqjoji + Z )\iqjoji

and

i=1 Xi>0 Ai<0 4
> Y aimin{gl) }+ > Amax{q)) }
a0 an<o U
>0.

Conversely, we assume that



6.4 Extension of the Model 131

k
ijaji S Ma ZAzqu)h Z 0

i=1
Suppose
winlo3 ) = o,
and A _
max{a)) } = 43,
then

- Niminfg b 30 Amax{a) b= 37 gy, +

au>o0 an<o 7 >0 § A
This is equivalent to (6.18). One can use sim%&gd e the second
part and hence the proof. \\' \

In the following, we give a simple exaxiple to de ate our estimation
methods. We consider a sequence {X (t\ %\ = 2) given by
QSR 202 2 )

{1,1,2,2,1,2,2,1,

2, 1i\
The sequence {X )} can be wri@n vectoxm

XMW =@1,07, x®= (@ @N, LX) = (0,1)T.
We consider k£ = 2,3,@1‘0@
matrices

\\ 50 pw_ (14 (6:22)
\@@, e

- o=@, 0w
@ (gﬂ 2) Q= <é§g ;’lﬁg) (6.24)

and X = (0.35,0.65)T". In this example, the model parameters can be obtained
by solving a linear programming problem. It turns out that the parameters
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obtained are identical the same for both || - ||; and | - ||sc. We report the
parameters for the case of k = 2,3,4. For k = 2, we have

(A5, A5) = (1.4583, —0.4583).

For k = 3, we have
(AT, A5, %) = (1.25,0,—0.25).

For k = 4, we have
(AT, A5, A%, A%) = (0,0, —0.3043,1.3043).
@

Next we present the numerical comparisons with the dat%he pre-
vious section, (let us denote it by “Sample”) a SO t data set
of 3-state sequence from the mouse aA-crystalli , ( enote it by

)

“DNA”). The length of the sequence of “Sam
sequence of “DNA” is 1307. The results a\

length of the
les 6.3 and 6.4
below.

ted
We then present the x? statistics d @ observed data se-
quence, one can obtain the distributio te\

one can obtain the th@al T ty distribution of the states
% @27 M Em)

Then the Y2 stai i as
m

S (E¢—01)2'

The smaller thi Yis the better the model will be.
We note he “Sample” data set, significant improvement in predic-
tion accur% served when the order is increased from 2 to 4. In this case,
except the lastwgtate all the other states can be predicted correctly. For all the
“DNA” data set, the best model is our new extended model with order 4, 3,2
corresponding to 2-state, 3-state, 4-state sequence. For the 2-state and 3-state
sequence, we can get much better prediction accuracy than the higher-order
Markov chain in the previous section. For the 4-state sequence, we also can
get the same prediction accuracy as the model in previous section.
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Table 6.3. Prediction accuracy and x? value.

n=2

Sample (2-state) DNA (2-state)

Extended Model (][.||
Extended Model (]].]]1)
Ching’s Model (]].||oo)
Ching’s Model (]|.||1
Randomly Chosen

o) 0.3889 (x? = 1.2672

0.5295 (x? = 0.0000)
0.5295 (x* = 0.0000)
0.6842 (x? = 3.1368 )
0.6842 (x? = 3.1368 )
0.5000

0.5295 (x? = 0.0000
0.5295 (x? = 0.0000
0.5000

)
0.3889 (x? = 1.2672)
)
)

n=23

Sample (2-state) DNA (2-state)

Extended Model (|
Extended Model (|
New Model (||.|]sc)
New Model (][.]]1)
Randomly Chosen

Al
[-[11)

)

0.3529 (x? = 0.3265)
0.3529 (x* = 0.3265)
0.6842 (x* = 3.1368)
0.6842 (x? = 3.1368

0.5000

0.5299 (x?
0.5299 (x?

2

n=4

Extended Model (]].]|c0)

New Model (||.||1)
New Model (||.|]sc)
New Model (][.]]1)
Randomly Chosen

Sample (2—%
0.9375 (x? =,0.2
0.9375 (@4

0.6842 ( 43
0.68 2%3.13 ) 045295 (> = 0.0000
. 0% 0.5000

and x? value.

DNA (4-state)

New Model
New Mode
Randomly((

Extended Mod
Extended Mode
New Model (
New Model
Rando n

0.3303 (x* = 0.0030)
0.3287 (x? = 0.0022)
0.3303 (x? = 0.0030)
0.3287 (x* = 0.0022)
0.2500
DNA (4-state)
0.4946 (x? = 4.24E — 4) 0.3083 (x* = 0.0039)
0.4893(x* = 8.44E — 5) 0.3282 (x* = 0.0050)
0.4858 (x? = 7.09E — 4) 0.3277 (x* = 0.0032)
0.4858 (x? = 7.09F — 4) 0.3282 (x* = 0.0052)
0.3333 0.2500

Sample (3-state) DNA (4-state)

Extended Model (|
Extended Model (|
New Model (][.]||s)
New Model (|].]|1)
Randomly Chosen

I+/]o0)
BIEY

0.4666 (x> = 1.30E — 4) 0.3085 (x* = 0.0039)
0.4812(x* = 4.55F — 5) 0.3031 (x* = 0.0047)
0.4858(x? = 7.09E — 4 ) 0.3277 (x* = 0.0032)
0.4858(x? = 7.09F — 4) 0.3285 (x* = 0.0044)

0.3333 0.2500

133
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6.5 Newboy’s Problems

The Newsboy’s problem is a well-known classical problem in management
science [158] and it can be described as follows. A newsboy start selling news-
paper every morning. The cost of each newspaper remaining unsold at the
end of the day is C, (overage cost) and the cost of each unsatisfied demand is
Cs (shortage cost). Suppose that the probability distribution function of the
demand D is given by

Prob (D=d)=ps >0, d=1,2,...,m. (6.25)

long-run cost for a given amount of order size r wi e ing two cases.

The objective here is to determine the best amount r* of T to be
ordered such that the expected cost is minimize(@ysri‘te A\ expected
f&w
)G,

(i) If the demand d < r, then the cost will
(ii) if the demand d > r, then the cost wil r)

Therefore the expected cost when the or: siqe ii en by

(6.26)

Expected Ov st xpectéd Shortage Cost

Let us define the cumulativ@ili ion of the demand D as follows:

d

D
F(d) = R&ro@d) for d=1,2,...,m. (6.27)
We have the foll UQ .
Proposition % \
@ 1) =C, — (Cy+ C)F(r) (6.28)
and §

%2 (r—1)=~Cs+ (Cy + C5)F(r — 1). (6.29)
By using th@ emma and making use of the fact that F(r) is monoton-
ically incr r, we have the following proposition.

Proposition 6.6. The optimal order size r* is the one which satisfies

% < pp). (6.30)

Fr-U<g7a S
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6.5.1 A Markov Chain Model for the Newsboy’s Problem

One can further generalize the Newsboy’s problem as follows. Suppose that the
demand is governed by a Markov chain, i.e., the demand tomorrow depends
on the demand today. Again the demand has m possible states. We shall order
the states in increasing order. The demand at time ¢ is said to be in state ¢ if
the demand is ¢ and is denoted by the vector

ith entry

We let @ (an m x m matrix) to be the transition probabili iX of the

Markov process of the demand. Therefore we have% \

1 -2 O
o
Here we assume that @ is irreducible ano%i the@ary probability
distribution S exists, i.e.
DN

Now we let r; € {1,2,...,m} &ze \\wx‘c order given that the

current demand is j and C(r},& the situation that the size
of order is r; and the actu i. We note that C(r;,i) is a

more general cost than the o arly the optimal ordering policy
depends on the state of twr n because the demand probability
distribution in the nex io

n the state of the current demand.
The expected cost is t en &
@%& ZSJ‘ X <ZC<Tj’i)qij> (631)
\ j=1 i=1

where ¢;; = [Q];j is t %ition probability of the demand from the state
j to the state <. In rds, g;; is the probability that the next demand
will be in state ¢ at the current demand is in state j. The optimal
ordering policy -

% (ri,r3,...,m5)
is the one inimizes (6.31). We observe that if the current demand is

7, then we o eed to choose the ordering size r; to minimize the expected
cost. Since

min&({ry,re, ..., rm}) = Zsj X (minZC(rj,i)qij> , (6.32)
I j=1 fE A

the optimal ordering size r} can be obtained by solving



136 6 Higher-order Markov Chains
m
rrgn;C(rj,i)qij. (6.33)
By using Proposition 6.6, we have
Proposition 6.7. If

Co(’l‘j — ’L) if Tj Z )

Clr ) = { Cyli— ;) if 75 < i (6:34)

and let

k
B0 = a Q.
j ; i \\
then the optimal ordering size 17 satisfies \@ §

Fy(rt —1) < 04?:0@;)@

N

We remark that one has to estimat
chain model. We will propose an esti

apply the Markov
or ¢;; as discussed in

the previous section. We note tha ij i i,7 =1,2,...,m, (the
demand distribution is stationar md%m of the current demand
state) then the Markov Newsbo 1 descri above reduces to the classi-
cal Newsboy’s problem. Let i ample to demonstrate that the
extension to a Markov chain y, is and important.

Ezample 6.8. Suppose xw \(1, 2,...,2k) (m = 2k) follows a
Markov process with t@witi ability matrix @ of size 2k x 2k given

.0 1

N N
$
0 (6.35)

ol
é 0--0 1 0

and the cost,i in (6.34) with C, = C;. Clearly the next demand can be
determine inly by the state of the current demand, and hence the opti-
mal expec&t is equal to zero when the Markov chain model is used. When
the classical Newsboy model is used, we note that the stationary distribution
of @) is given by

- 4
= o O
o

1
2k

The optimal ordering size is equal to k by Proposition 6.6 and therefore the
optimal expected cost is C,k.

(1,1,..., D)7,
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According to this example, it is obvious that the more “information” one
can extract from the demand sequence, the better the model will be and hence
the better the optimal ordering policy one can obtain. Therefore it is natural
for one to consider a higher-order Markov chain model. The only obstacle
here is the huge number of states and parameters. We employ a higher-order
Markov chain model that can cope with the difficulty.

Let us study the optimal ordering policy for this higher-order Markov chain
model. Define the set

D=1{G= (1,2, )" | jr€{1,2,...,m} for k=1,2,...,n}.

let 2

TP

pic = P(Xiqny1 =E; | Xoy1 = Ej, Xigo @ . >§: E;. }

(G = (j1,72,---,jn)T) to be the probability det@time (t+n+1)
is ¢ given that the demand at the time ¢ + Tk % ...,m} for k =
1,2,...,n. Here E; is an unit vector reprgsenting t e of demand. This
means that the demand distribution at@a depends only on the
states of the demand at the time ¢+ 1 cers nd this is also true for
the optimal ordering policy. In thQ orc@a ov chain model (3.26),
we have N

where sq is ind@ @ 4
% G= (jl»j% cee »jn)T)
be the ordering @en the demands of the previous n periods are
e
@

J1,J2y -5 Jn. The d cost for all ordering policies G € @ is then given
by

% "
@a@ => s (Z C(rg,i)pi,c> . (6.36)
Ged i=1

The optim%ering policy {r& | G € @} is the one which minimizes (6.36).
We remark the computational complexity for computing all the optimal or-
dering policies rg is of O(m™) operations because |$| = m™. However, we
observe that if the demands of the previous n periods are ji, jo,. .., jn, then
we only need to solve the ordering size rg which minimizes the expected cost.
Since
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m m
min E(P) = Z sg X (Ilrlén Z C(re, z)pi,g) , (6.37)
j=1 i=1
the optimal ordering size r¢, can be obtained by solving
m
minZC(rg,i)pi’G, re €{1,2,...,m}.
"¢ =
By Proposition 6.6 again, if

CO(TG — ’L) if rg >

C(TG’i):{Cs(i—rc) if rg <i %"
and let \% §

then the optimal ordering size r{, satisfies Mqu%é
\'\
< :
a

Fo(rg —1) < @'
Therefore, in order to compute the g size, the main task here
is to estimate the probabilities @eqniv&le to estimate the parameters

A and @Q; based on the observi &:e.

6.5.2 A Numerical Exa e

In this subsection, we n \ion of the higher-order Markov model
to a generalized N ro 7]. The background is that a large soft-
drink company f: n- e blem of production planning and inven-
tory control. T }%Bf products A, B and C having five different
possible sales 14 d 5). Such labelling is useful from both mar-
keting and product g points of view. The categorical data sequences
for the demands of ducts of the soft-drink company for some sales
periods can be fou 57]. Based on the sales demand data, we build the
higher-order Marko els of different orders. These models are then applied

to the problem run production planning and the following cost matrix
is assumed \
?\\ 0 100 300 700 1500
100 0 100 300 700
C = 300 100 0 100 300

700 300 100 0 100
1500 700 300 100 O

Here [C];; is the cost when the production plan is for sales volume of state ¢ and
the actual sales volume is state j. We note that the costs here are non-linear,
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i.e. [Cli; # c|i—j|, where ¢ is a positive constant. When the unsatisfied demand
is higher, the shortage cost is larger. Similarly, when the holding product is
more, the overage cost is larger. For the higher-order Markov model, we find
that the third-order model gives the best optimal cost. Here we also report
the results on the first-order model and the stationary model for the three
product demand sequences. The results are given in Table 6.5 (taken from
[57)).

Table 6.5. The optimal costs of the three different models.

Product A Product B Pro%’
Third-order Markov Model 11200 % 0

First-order Markov Model 27600
Stationary Model

6.6 Summary

In this chapter, a higher-order odel is proposed with esti-
mation methods for the m he higher-order Markov chain

model is then applied to a n ications such as DNA sequences,
sales demand predictions %e ictions, Newsboy’s problem. Fur-

ther extension of the m@
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Multivariate Markov Chains

7.1 Introduction

By making use of the transition probabili
ical data sequence of m states can be

model. In this chapter, we extend this

sequences. One would expect cate%r&' ata sequences generated by similar
sources or same source to be co 0 er. Therefore by exploring
these relationships, one can de e models for the categorical data
sequences and hence better

The outline of this chapte
tivariate Markov chain mNﬁ

v

Section 7.1, we present the mul-
on methods for the model param-
o multi-product demand estimation

eters. In Section 7.3, we

problem. In Section 7. D o credit rating is discussed. In Section
7.5, an applicatio ple quences is presented. In Section 7.6, we
apply the model i 0

a higher-order a

i s. In Section 7.7, we extend the model to
1 v chain model. Finally, a summary is given
in Section 7.8 t 1 apter.

7.2 Construct@f Multivariate Markov Chain Models
@

In this section opose a multivariate Markov chain model to represent
iple categorical sequences generated by similar sources or
we assume that there are s categorical sequences and each

has m possible'states in the set
M={1,2,...,m}.

Let Xflj ) be the state vector of the jth sequence at time n. If the jth sequence
is in state [ at time n then we write
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Xgij):el:(ow"aoa 1 70"'70)t'
~—
jth entry

In the proposed multivariate Markov chain model, we assume the following
relationship:

x0)

S
=D A PUPXP for j=1,2,...,s (7.1)

n
k=1

where
- o °
and . \%‘
> Ag=1, for j=1,2 @ § (7.3)
= N
The state probability distribution of the k@e n+1) depends
on the weighted average of P(jk)Xglk) H i) s

. He
matrix from the states in the kth seque oeth
and X,(lk) is the state probability distr o

In matrix form we write x \

/\13P(15) X%l)

e
&12]‘7&
X 3%(22) %P | | x®

(7.2)

sition probability
the jth sequence,
sequences at time n.

6h
X
Xpp= |70 . .
x(® P&\(sm... AaPC) )\ x

Although the s is not equal to one (the column sum of PUF)
is equal to one), we'sti e following proposition.
Proposition 7.1. rameters A\ji > 0 for 1 < j,k < s, then the matriz
Q has an eigenvalu [ to one and the eigenvalues of QQ have modulus less
than or equal to %.
Proof. By usi '2), the column sum of the following matrix
\ A1 A2 Asn
A2 Ao ot Ag2
A= . . .
)\l,s )\2,5 T )\5 s

is equal one. Since Aj; > 0, A is nonnegative and irreducible. By Perron-
Frobenius Theorem, there exists a vector
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T
y= (y17y2a"'7ys)

such that
yTA —_ yT.

‘We note that N
1, P =1,,, 1<ij<s,

where 1,, is the 1 x m vector of all ones, i.e.,
1,,=(1,1,...,1).

Then it is easy to show that we have \%"

(y11m7y21m7~--7ys]-m)Q: (yllmay ay§
and hence one must be an eigenvalue of Q. \ ° %
We then show that all the eigenvalues les@or equal to one.
Let us define the following vector-norm
N \.

||z||v=1rgggs{||zi||1:z=<zhz§'~s> SETER)
It is straightforward to show that m’ls@—norm on R™s. It follows

that we can define the followin X norm

||Q||M®s @anv =1},
Iy 4 iy
Since PU) is a transiti xx, %ment of P(i9) are less than or equal
to 1. We have &
L,

1 k I<i,j<s.
Here |[[.||; is the \ or\w or. It follows that

X Pz + N )® Nis Pz ||y < |2y - Z)\ij =1,1<i<s
W

IN

and hence ||Q||nr ince the spectral radius of @ is always less than or
equal to any matei m of @, the result follows.
°
Propositio ppose that the matrices PU%) (1 < j,k < s) are irre-
ducible an% for 1 < j,k <s. Then there is a unique vector
X = (x(l), x? . ,x(s))T

such that x = Qx and
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Proof. By Proposition 7.1, there is exactly one eigenvalue of @) equal to one.
This implies that
lim Q" = vu®

n—oo

is a positive rank one matrix as @ is irreducible. Therefore we have

lim x,41 = lim @Qx, = lim Q"xy = vul'xy = av.
n— oo n—oo n—oo

Here « is a positive number since x # 0 and is nonnegative. This implies that

X, tends to a stationary vector as n goes to infinity. Finally, we note that if

Xg is a vector such that

Now Suppose that there exists y such thatyy # x

then @x( and x are also vectors having thi ty. E\

Then we have "
x - &Wr— dﬂ&
This is a contradiction and t @ t wr x must be unique. Hence the
result follows. % }\
We note that x is n% ahi ribution vector, but x(%) is a prob-

ability distribution vec e oposition suggests one possible way
to estimate the mo etérs The idea is to find A;; which minimizes
[|@% — %X|| under vec\ (-1l

\P\

7.2.1 Estima&@ arameters

In this subsection w M e some methods for the estimations of PU¥) and
%\qs§

Aji. For each dat nce, we estimate the transition probability matrix
by the following . Given the data sequence, we count the transition
frequency from tes in the kth sequence to the states in the jth se-
quence. Henc n construct the transition frequency matrix for the data
sequence. ing a normalization, the estimates of the transition prob-
ability matrices can also be obtained. We note that one has to estimate s?
m X m transition frequency matrices for the multivariate Markov chain model.

More precisely, we count the transition frequency fi(jjii) from the state i in

the sequence {x%k)} to the state 7; in the sequence {xsf )} and therefore the
transition frequency matrix for the sequences can eb constructed as follows:
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GO £b)

11 ml
GE) k)

F(jk) _ 12 fm
PESI. (k)

m m

.(jk (jk
péalk; ...... p%ze}c;
P(Jk) _ ﬁlJQ """" pnjﬂ
ﬁﬁif) ...... k)
where \
i

N

0 ‘ er%
Besides the estimates of PUF), eeds& imate the parameters \j.
We have seen that the multi chain model has a stationary
vector x in Proposition 7.2. to e estimated from the sequences

by computing the propo%b ence of each state in each of the
sequences, and let us d e

@( %,..,f&s)ﬁ
One would exp % \

Q\ .
1 P2 ..o\ p(s)
Ao 2o P(22) ... ,\2sp(28)
§ . . . X~ X. (7.4)

) AP AL P(s9)

°
From (7.4), it%sts one possible way to estimate the parameters A =
{Ajr} as fact, by using ||.]|c as the vector norm for measuring
the differencesin (7.4), one may consider solving the following minimization
problem:
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,

lz )\jkP(jk)fc(k) — gc(j)]

min max
P
k=1
subject to
s (7.5)
> k=1,
k=1
and

Ak >0, Vk.

\

Problem (7.5) can be formulated as s linear programming problems as follows,
see for instance [79)].
For each j:

min w;
A

subject to

In the next subsecti

of a multivariate 3

e’give an example to demonstrate the construction
chain model from two data sequences.

@
7.2.2 An
Consider thi wing two categorical data sequences:
S1=1{4,3,1,3,4,4,3,3,1,2,3,4}
and

Sy =1{1,2,3,4,1,4,4,3,3,1,3,1}.

By counting the transition frequencies
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$1:4—-3—-1-3—-4—-4—-3—-3—-1—-2—-3->4

and
S9:1—-2—-3—-4—-1—-4—-4—-3—-3—-1—-3—-1
we have
0020 0021
1000 1000
(1) _ (22) _
Frli=tlqqie] ad F=1111,
0021 1011

Moreover by counting the inter-transition frequencies

@
51:4313443312§§"

N§§ .
and Si1:4 3 1 3 4 4 &' 1 %3 4
Se:1 2 3 4 1 4 1 3 1

we have \ \

ransition probability matrices:

\ 01%0

. . 00lo
P(ll 2 5 P(12): 2012 ,

2 P13

% 0\ 5015

300250 0033

(21 i (22 £000

P 138 P2 = ?111

: P01

&2003 3073

§1151T .11 114
i% G s " =Gayl
By solving the corresponding linear programming problems, the multivariate

Markov chain models for the two categorical data sequences S; and Sy are
then given by

x| = 0.5000PMx{ 1 0.5000P(12) %)
x| = 0.8858 PO 4 0.1142 PP
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7.3 Applications to Multi-product Demand Estimation

Let us consider demand estimation problems stated as in Section 6.3.2. We
study the customer’s sales demand of five important products of the company
in a year. The sales demand sequences are generated by the same customer and
therefore we expect that they should be correlated to each other. Therefore by
exploring these relationships, one can develop the multivariate Markov chain
model for such demand sequences, hence obtain better prediction rules.

We first estimate all the transition probability matrices P(*) by using the
method proposed in Section 7.2 and we also have the estimates of the state
distribution of the five products:

= (0.0818,0.4052, 0.0483, 0.0335, 0.0037, 0.4275) %5
= (0.3680,0.1970, 0.0335, 0.0000, 0,003, 0.3978) ",
xs = (0.1450, 0.2045, 0.0186, 0.0000,:0.0037, 0.6283)"
x4 = (0.0000, 0.3569, 0.1338, 0.1896:0:0632: 02565) ",
= (0.0000, 0.3569, 0.1227, 0:226310:052010,2416)” .

By solving the corresponding minimization\problems,throtigh linear program-
ming we obtain the optimal solution:

0.0000 10000:0¥000040.0000 0.0000
0.0000 1.600070.0006.6.8000 0.0000
A= [Ajx] = | 0.0000:0:0000 0.000050.0000 1.0000
0.000836:0000,0.0000 0.4741 0.5259
0.6000:0.0000,0:0000 1.0000 0.0000

and the multivariate Markovighain fedéhfor these five sequences is as follows:
x (1 SR )
X£12)1 N\, P(22)x£,2)
X513+1 =1 (35)"515)

Xty — @l PO X 1 0.5250P15) %)
e

where
020707 0.1509 0.0000 0.2000 0.0000 0.0660

0:4343 0.4528 0.4444 0.2000 1.0000 0.3491
Pl 0.0101 0.1321 0.2222 0.2000 0.0000 0.0283
0.0101 0.0943 0.2222 0.2000 0.0000 0.0094
0.0000 0.0000 0.2000 0.0000 0.0000 0.0094
0.4747 0.1698 0.1111 0.2000 0.0000 0.5377

0.4040 0.2075 0.0000 0.2000 1.0000 0.4340
0.1111 0.4717 0.3333 0.2000 0.0000 0.1321
p22) _ 0.0202 0.0566 0.3333 0.2000 0.0000 0.0094
0.0000 0.0000 0.0000 0.2000 0.0000 0.0000
0.0000 0.0000 0.1111 0.2000 0.0000 0.0000
0.4646 0.2642 0.2222 0.2000 0.0000 0.4245
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0.2000 0.0947 0.1515 0.1639 0.0714 0.2154
0.2000 0.1895 0.2727 0.2295 0.1429 0.1846
0.2000 0.0421 0.0000 0.0000 0.0000 0.0154
0.2000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2000 0.0105 0.0000 0.0000 0.0000 0.0000
0.2000 0.6632 0.5758 0.6066 0.7857 0.5846

0.2000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2000 0.4947 0.1389 0.0196 0.0588 0.6087
0.2000 0.0842 0.3056 0.1765 0.0588 0.1014
0.2000 0.0000 0.3056 0.5686 0.5294 0.0290
0.2000 0.0105 0.0556 0.1569 0.3529 0.0000
0.2000 0.4105 0.1944 0.0784 0:0000 0.2609

PG5 —

p4) —

0.2000 0.0000 0.0000 0.0000, 0:0800 0,0000
0.2000 0.4737 0.2121 0.0328%:0000 06462
0.2000 0.1053 0.21210%.96:20.0714,0:0923
0.2000 0.0000 0.2424,0.5410 0.57 2480308
0.2000 0.0105 0.0303,0:1803x0¢2857%0.0000
0.2000 0.4105 0.3030,0°0492, 0:0%14 0.2308

0.2000 0.0000%.0006"0.00680,0.0000 0.0000
0.2000 0.4842,0.1667 0.0496+0.0588 0.6087
0.2000 0.1083:0:1667%0.1569 0.0588 0.1159
0.200040°0000,0.4444,0:6275 0.6471 0.0290
0.2000 0.0005 0s02%3%01569 0.2353 0.0000
0.20000:4000 '0.2944 0.0392 0.0000 0.2464

p4s) —

P4 —

According to the multivariate Markow chain model, Products A and B are
closely related. In pagticalar, thesales demand of Product A depends strongly
on Product B. The'wmain rdaSen i8"'that the chemical nature of Products A
and B is the safiéybut they have different packaging for marketing purposes.
Moreover, Produets=C, D"and E’are closely related. Similarly, products C and
E have the same produet™layor, but different packaging. It is interesting to
note that even through\Products D and E have different chemical nature but
similar flavor, the résultSishow that their sales demand are also closely related.

Next we use the‘multivariate Markov chain model, to make predictions
on the state X; at tim® ¢ which can be taken as the state with the maximum
probability, i.e§

)A(t = j, lf [)A(t]l S [kt]j,V1 S 7 S m.
To evaluate the performance and effectiveness of our multivariate Markov

chain model, a prediction result is measured by the prediction accuracy r
defined as

T
1
r=mx D 8 x 100%,
t=n+1
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where T is the length of the data sequence and

5t:{]., if)A(t:Xt

0, otherwise.

For the sake of comparison, we also give the results for the first-order Markov
chain model of individual sales demand sequence. The results are reported in
Table 7.1. There is noticeable improvement in prediction accuracy in Product
A while improvements are also observed in Product D and Product E. The
results show the effectiveness of our multivariate Markov chain model.

Q °
Table 7.1. Prediction accuracy in the sales demand %\

Product A Product

First-order Markov Chain ~ 46% 45% \
Multivariate Markov Chain 50% 45% 63 \ 52% 55%

7.4 Applications to (‘§§
erable interest in modelling the

In the last decade, thereﬁ
dependency of the crediteri practical importance and relevance

of risk analysis of credi olio! 0, 30, 85, 86, 87, 88, 90, 93, 120, 119,
122, 161, 164, 168, specification of the model that explains
and describes th e e credit risks can have significant impli-
cations in prici it ri ecurities and managing credit risky portfolios.
The discrete-t1 Markov Chain model has been used among
academic researchers rket practitioners in modelling the transitions
of the ratings of a & sk over time. The credit transition probability
matrix represents &elihood of the future evolution of the ratings. The
credit transition &ility matrix can be estimated based on the available
empirical data fi t ratings. Standard & Poor and Moodys are the major
providers o it rating data. They provide and update from time to
time the data for various individual companies and countries.
Credimneory has been widely applied in the actuarial discipline for
calculating a policyholder’s premium through experience rating of the policy-
holder’s past claims. Mowbray [155], Bithlmann [37] and Klugman, Panjer and
Willmot [133] provided an excellent account on actuarial credibility theory.
Siu and Yang [190] and Siu, Tong and Yang [191] provided some discussions on
the use of Bayesian credibility theory for risk measurement. By employing the
idea of credibility theory, one can provide an estimate for the credit transition
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probability matrix as a linear combination of the empirical credit transition
probability matrix and a prior credit transition probability matrix [113] et
al. Here we consider an approach that can provide an analytically tractable
way to estimate credit transition probability matrix. The estimator for tran-
sition probability matrices of ratings is a linear combination of a prior matrix
given by the empirical transition matrix estimated directly from Standard &
Poor’s data and a model-based updating matrix evaluated from the ordered
probit model. This approach provides market practitioners with an intuitively
appealing and convenient way for the estimation of the unknown parameters
and credit transition probability matrices in the multivariate Markov chain
model Kijima et al [128].

7.4.1 The Credit Transition Matrix

In this subsection, we assume that the estimaté'ofach credittransition prob-
ability matrix can be represented as a linearfeombinatiow 6t peior credit transi-
tion probability matrix and the empirical credit®ransition probability matrix,
where the empirical credit transition probability matrixus calculated based on
the transition frequencies of ratings (seeySe¢tiofr %.3)¥Then, by Proposition
7.1, there exists a vector X of statienary probability distributions, we can
estimate the necessary parameters‘based on the'stationary distributions for
the ratings.

Let QUF) denote the prior creditstranSifion probability matrix. The empir-
ical estimate PUR) of the crédit-transition probability matrix can be obtained
using the method in Section 7421. Heére,we specify the prior credit transition
probability matrix by thegreditrtransition) probability matrix created by Stan-
dard & Poor’s. The creditatransitionptobability matrix produced by Standard
& Poor’s has widely been usediasialbenchmark for credit risk measurement
and managementimythe)finance ‘and banking industries. For the purpose of
illustration, we assigh avcommonyprior credit transition probability matrix for
the two credit ‘tisky,assets agsghe credit transition probability matrix created
by Standard & Poar’s to%wepresent the belief that the credit transition prob-
ability matrices for theltworcredit risky assets are essentially the same based
on the prior information. If more prior information about the credit rating
of each credit risky ‘asset is available, we can determine a more informative
prior credit transitiow probability matrix for each credit risky asset. For a
comprehensive@yverview and detailed discussion on the choice of prior distri-
butions basedson prior information, refer to some representative monographs
in Bayesian Statistics, such as Lee [139], Bernardo and Smith [17] and Robert

[178], etc. Then, the estimate PY™ of the credit transition probability PU*)
is given by
PO = . QUR) 1 (1 —wjp)PUM | k=1,2,....,n, (7.6)

where 0 < wjp <1, for each j,k =1,2,...,n. From proposition 7.1, we have
that
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>\11Pe(11) )\12Pe(12) /\lnpe(ln)
At PPV 2o PPz, PEM

>
Q
>

(7.7)
Anlpe(nl) )\n2Pe(n2) e )\nnpe(nn)

Let

1
>‘jk = )\jkwjk

and B
A = AL = wj).-

Then, it is easy to check that for each j,k =1,2,...,n, we i@.

Ak + ATk = A \
We note that the estimation of Aj, and w;pi ale ® estimation of
Ajj and AZ;. Then, (7.7) can be written in t owi :
ALQUY 4 32, POV ... 3 5
ALQEY 423, PR . AL +Q
Q)+ 3, P i 9 S

Now, we can formulate o

and 3
Y Vi, k.
Let
@ m
0.%,: lz( RL,QUY 1 32, UM ,A(m]
k=1

N ;
Then, Pro&\.Q) can be re-formulated as the following set of n linear
programming problems as in Chapter 6. It is clear that, one can also choose
vector ||.||1 instead of the vector norm ||.||oo. The resulting problem can be
still as a linear programming problem. A detailed application in credit rating
can be found in Siu et al. [188].
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7.5 Applications to DNA Sequences Modeling

In this section, we test multivariate Markov chain models for DNA sequences
and analyze their correlations, Ching et al [66]. Because of its extraordinary
position as a preferred model in biochemical genetics, molecular biology, and
biotechnology, Escherichia coli K-12 was the earliest organism to be suggested
as a candidate for whole genome sequencing. The complete genome sequence
of E. coli was obtained in 1997 [24]. A complete listing of E. coli open reading
frames (ORFs), that is, long contiguous reading frame without STOP codons,
is now available at the website [227]. In the tests, we used this database in all
of our computations. The lengths of the DNA sequences we te ‘qi;e from
1000 to 4000.

In the first test, we tried to use (A,C,G,T) as t i tates that
a multivariate Markov chain model can take. Ho
construct any useful models. Each DNA sequ t of the other
DNA sequences, i.e., Aj; = 1 and A;; = 0 fors i own that amino
acids are encoded by consecutive sequences es, called codon.
Taking this fact into account, in the i ultivariate Markov
chain model, one identifies 12 symbo fo

the first position, the four letters ‘ \ \

!

in the second position and @a S
% //)

in the third position of &in M f period three. Using this approach,
alphabet sequence \ \{%
K T ......

is re-written a; "
"GT'T"......
and therefore the transi probability for a letter doublet being different
according to the i the hypothetical codon. For instance, below is
the transition matr he DNA sequence (b2647) in the database:
(J

0 0 .O 0 0 0 0 ]0.4067 0.3898 0.3109 0.3320

0 0 0 0 0 0 0 ]0.1498 0.1332 0.1965 0.1066

0 0 0 0 0 0 |0.3303 0.3608 0.3812 0.4344

0 0 0 0 0 0 |0.1131 0.1162 0.1114 0.1270
0.3648 0.3 0.2400 0.2324] 0 0 0 0 0 0 0 0
0.3007 0.1570 0.2083 0.3622| 0 0 0 0 0 0
0.1352 0.1614 0.3550 0.0865| O 0 0 0 0 0 0 0
0.1993 0.3094 0.1967 0.3189| O 0 0 0 0 0 0 0

0 0 0 0 ]0.2189 0.3030 0.1173 0.1788| 0 0 0 0

0 0 0 0 ]0.2274 0.2576 0.3548 0.2291| O 0 0 0

0 0 0 0 ]0.1684 0.2449 0.1848 0.2821| O 0 0 0

0 0 0 0 |0.3853 0.1944 0.3431 0.3101| O 0 0 0

Because we order the states as
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(ATGCAITIG/C/A”T”GHC”),

the transition matrix is a 3-by-3 cyclic matrix. The cyclic matrix has nonzero
blocks at (2,1)th, (3,2)th and (1, 3)th blocks and other blocks are zero. This
structure allows us to implement the multivariate Markov chain model more
efficiently in the estimation of the parameters.

E. coli has been a paradigm for the identification of motifs. The basic idea
for identifying significant motifs is to design, a priori, a probabilistic model
permitting generation of a theoretical genetic sequence and then compute the
expected frequency of a given motif in this model-derived sequence. This lat-
ter theoretical motif frequency is subsequently compared with t fre.quency
observed in the real sequence. If the difference between the uencies
is important, one can surmise that the motif refl Qological
significance (c.f. [108]). Several periodic Markov been intro-
duced for this purpose, see for instance [28] a
from the previous ones in the sense that ion from more
than one ORF sequences. This approach may be,useful’ tain ‘style’ exists
within the genes of the organism (in fa odo ases do exist in FE.

coli).

We have tried to construct the iate v chain models for the
DNA sequences in the database ofWE.“edli, esults for modeling DNA
sequences are reported in Table n Tab “the target DNA sequences
in the first column means that tivariate Markov chain models are con-
structed for these DNA seq equences in the second column

c h

are the related DNA sequelices! riate Markov chain model for the
target DNA sequence. numb bracket is the weighting parameter
e

(Ajk) of the related D e multivariate Markov chain model.
For instance, the it sequence (b0890) is as follows:
X (b0890) _ 0&9 b3593 4 () ngo P(b0S90 b0890) x (b0890)
are some DNA sequences depending only on

We see from Ta :
the other DNA seq ex Y
4 02150, 1320, b4232, 2411, b2645,

and

@
@
&44, b1687,b3894, 01510, 01014, b2557.
These DN ces were selected to evaluate their biological functions and
understand their dependence of other DNA sequences.

We would like to consider the state vector X%bog%) of the DNA sequence

(b0924) at the base n depends on the state vectors X240 of the DNA
sequence (b2647), and itself. More precisely, we have the following multivariate
Markov chain model:

X (00924) _ () 356 P(b0924 b2647) ¢ b2647 | () 644 P(b0924 b0924) ¢ (60924)
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The transition matrices P(P0924 b2647) 5y p(00924 00924) 416 given by

0 0 0 0 0 0 0 0 |0.1465 0.1853 0.2197 0.2263

0 0 0 0 0 0 0 0 0.3248 0.3553 0.2962 0.3060

0 0 0 0 0 0 0 0 0.4108 0.3198 0.3662 0.3621

0 0 0 0 0 0 0 0 ]0.1178 0.1396 0.1178 0.1056
0.3556 0.3146 0.3763 0.3631| O 0 0 0 0 0 0 0
0.1907 0.2347 0.1820 0.2083| O 0 0 0 0 0 0 0
0.1796 0.2066 0.1714 0.1548| O 0 0 0 0 0 0 0
0.2741 0.2441 0.2703 0.2738| O 0 0 0 0 0 0 0

0 0 0 0 |0.1530 0.1257 0.1640 0.1751 0 0 0 0

0 0 0 0 |0.2616 0.3115 0.2397 0.2404| O 0 0 0

0 0 0 0 ]0.3548 0.3403 0.3975 0.3056| O 0 0 0

0 0 0 0 ]0.2306 0.2225 0.1987 0.2789| O 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0.3605 0.3061 0.4628 0.1798| O 0 0 0 0
0.1905 0.0713 0.2695 0.3146| O 0 0 0 0
0.1429 0.3040 0.1097 0.1011| O 0 0 0 0
0.3061 0.3187 0.1580 0.4045| O 0 0 0 0
0 0 0 0 ]0.3133 0.1065 9:03 0 0 0
0 0 0 0 |0.2026 0.271 454 0 0 0
0 0 0 0 ]0.2946 0.45 0 0 0
0 0 0 0 ]0.1895 0.% 0 0 0

\&24 b0924) are cyclic matrices.

e DNA sequence (b2647) plays
ivariate Markov chain models of
A sequence corresponds to outer
ed antigenic variation phenomenon,
that allows the cell to i e response of the host.

We also comp ivari Markov chain model with the Markov
model of a singl . &'he improvement in accuracy of using the
multivariate i 1 over the Markov chain model of a single
DNA sequence e last column of Table 7.2. We find that the
prediction accuracy he multivariate Markov chain model is signif-
icantly higher than using the Markov chain model of a single DNA
sequence. %

On the other one would like to construct the conventional first-
order Markov ¢ .scribing multiple DNA sequences. However, such model
require a la er of training data (i.e., the length of the DNA sequence
should be ugh) to accurately estimate the transition probabilities of
each base occutring after every possible combination of the proceeding bases.
In the tests, the lengths of short DNA sequences are about 1000 and there
are 97% transition probabilities of the conventional model that cannot be
estimated. For the long DNA sequences (their lengths are about 4000), there
are still 96% transition probabilities of the model that cannot be estimated.
Therefore, the applicability of such conventional model is difficult.

respectively. We see that P(?092

It is interesting to note from
an important role in the cons
other DNA sequences. We
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Table 7.2. Results of the multivariate Markov chain models.

Target DNA sequences in the Improvement in
DNA sequences multivariate Markov chain model accuracy (%)
(weighting parameters)

b4289 b1415 (1) 56.25
b2150 3830 (1) 49.00
b2410 b3830 (1) 47.16
b1320 b2410 (0.9963), b2546 (0.0037) 41.32
b4232 b1415 (0.9992), b3830 (0.0008) 36.57
b779 b779 (0.457), b3081 (0.260), 57.81
b2411 (0.106), b1645 (0 177 QO
b3081 b3081 (0.426), b2411 (0.574 4&5
b1023 b1023 0 252), b2411 (O 7 0
b2411 b779 0 476), b1645 0.
b2645 b1645
b1435 b3081 ( b14
b2076 b2076 (0. 417 b0344 3) 7 83
b0344 b2076 (0.826), (Q 1 4\\ 60.07
b1687 b2076 O 937), . 13.94
b3894 K 27.79
b3593 . 9 7) 36.23
b3987 , 54.06
-080)
b0890 0.182) 30.37
b1510 0.315) 37.61
b1014 44.43
b2557 . (0.886) 39.23
b0924 ) 54.53
The advan chaln model in biological applications is its

ever, its use is limited to a single DNA se-
rkov chain model presented here has removed
ving its effectiveness. The extension allows us to
ences directly and analyze them as a whole. Because
eal with a very large number of DNA sequences, scal-

effectiveness in p
this limitation whi

model multiple DN
biological apphca

7.6 Applications to Genetic Networks

In this section, we applied the multivariate Markov chain model to model
genetic networks, Ching et al. [64]. One of the important focus of genomic
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research is to understand the mechanism in which cells execute and control
the huge number of operations for normal functions, and also the way in
which the cellular systems fail in disease. Models based on methods such as
neural networks, non-linear ordinary, Petri nets, differential equations have
been proposed for such problem, see for instance Smolen et al. [192], Bower
[29] and DeJong [83].

Another approach is to model the genetic regulatory system by a Boolean
network and infer the network structure and parameters by real gene expres-
sion data. By using the inferred network model, we may be able to discover the
underlying gene regulatory mechanisms and therefore it helps to make useful
predictions by computer simulation. The Boolean network model §ias first in-
troduced by Kauffman [125, 126]. Advantages of this model eanbe, found in
Akutsu et al. [3], Kauffman [125, 126] and Shmulevieh et alN18457185].

In this network model, each gene is regarded ‘asva’ vertextef*the network
and is quantized into two levels only (express (@) ernot-expréss (1)). Akutsu
et al. [3] proposed the noisy Boolean networks Yogethetwith an identification
algorithm. In their model, they relax the requirément ef\eonsistency imposed
by the Boolean functions. Regarding the @tfectivenesstofear Boolean formalism,
Shmulevich et al. [184, 185] proposedaa®PBN fhat edn share the appealing
rule-based properties of Boolean net®oerksvand it is%obust in the presence of
uncertainty. Their model is able to shoW a €learsseparation between different
subtypes of gliomas as well as between different sarcomas by using multi-
dimensional scaling. A logical représéngation, of cell cycle regulation can also
be found in Shmulevich et af={184, ¥85N\However, it is widely recognized
that reproducibility of meagufements and-between-slide variation are major
issues. Moreover, genetitfegulation, alse exhibits uncertainty on the biological
level. Shmulevich also proposéd daimeans of structural intervention method for
controlling the statienarysbehavioran PBNs.

Boolean netwerkunodellifigyis éommonly used for studying generic coarse-
grained properties,of, large. genetic ‘networks without knowing specific quan-
titative detailssBooleanenetwork is deterministic, the only uncertainty is the
initial starting state. Generally speaking, a Boolean network G(V, F) consists
of a set of nodes

V ={v1,v9,...,0,}

and v;(t) represengsthestate (0 or 1) of v; at time ¢. A list of Boolean functions
F= {f(l)’ f(2)7 s f(n)}
represents the rules regulatory interaction between nodes:
vi(t+1) = fO(v(t), i=1,2,...,n,
where
v(t) = (v1(t),v2(¢), ..., va(t)).

In general, there may contain some unnecessary nodes in a Boolean function.
For a Boolean function (), the variable v;(t) is said to be fictitious if
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FO(0i(t), . vim1(8), 0,0i11(8), - . va(t))
= f(])(’U1<t), e ,Ui_1<t), 1,’1)Z'+1(t), e ,Un(t))

for all possible values of

Ul(t), . ,vi,l(t),v”l(t), N 7’Un(t).

We remark that when a Boolean network is used in the construction of under-
lying genetic networks, then n represents the number of genes under considera-
tion, each vertex v; represents the ith gene, and v; () represents the expression
level of the ith gene at time ¢, taking either 0 or 1. The expression level of each

gene is functionally related to that of other genes. Computati%ﬁels that

reveal these logical relations have been constructed in Bodn sMendoza
et al. [154] and Huang et al. [116].

Standard Boolean networks are deterministi ev e biological
aspect, an inherent determinism is not reaso S it S an environ-
ment without uncertainty. The existence vy O ic function and

of the dynamical
et al. [184]. In the
ount of samples may
come the deterministic

interaction is caused by intrinsic self-or
system instead of “hard-wired” logica
empirical aspect, sample noise and r
cause incorrect results in logical r
rigidity of Boolean networks, the
works (PBNs) is essential. Not
Boolean networks, but also it i
data and model selection,

PBNs were firstly pro%
tory network. The mod% e

Y

where each predi 7 d %dﬁctor determining the value of the gene v;
and {(7) is the% e predictors for the gene v;. It is clear that
§ F=JF.
i=1

We notice that w@e number of possible PBN realization IV is equal to 1

(ie., TTr, 1(3) e PBN reduces to the standard Boolean network. Let
cg-z) be the ty that the j-th predictor, f]@, is chosen to predict the ith

gene if cgi) is‘positive and this probability can be estimated by Coeflicient of
Determination (COD); Dougherty et al. (2000). Let us briefly describe COD

here. Firstly, let €§i) be the optimal error achieved by f;i) and ¢; is the error
of best estimate of ith gene in the absence of any conditional variable, then

we have )
W_a-q
;" =

€
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For all positive 9;”, we can obtain cg-i) by:

(%)
(i) _ b,
S0 0y > 0
k=1

(@)

Clearly, ¢;” must satisfies
3 .
ch =1. for ¢=1,...,n. %\o
N
For any given time point, the expression level h % determined
by one of the possible predictors f @) for 1 N obability of a

J
transition from v(t) to v(t + 1) can be obﬁx %

200 KON N
e el
i=1 | k=1 x \
On the other hand, the level of@es @ne j to gene i can be esti-

mated by

ion probabilities or I;(v;), we first need
e remark that for each set of F; with
redictors is equal to 22" as 1 < (i) < 22",

# %

Before evaluating eith

to obtain all the :

1 <i < n,the i

it is also true K ¢ ing probabilities
Q [y

It implies that the of parameters in the PBN model is about O(n22").
Obviously, the nufber of parameters increases exponentially with respect the
so, the COD used in obtaining c,(c’) must be estimated
from the t ata. Hence, it is almost impractical to apply this model
due to eith odel complexity or parameters imprecision owing to limited
sample size. For the microarray-based analysis done by Kim et al. (2000), the
number of genes in each set of F; was kept to a maximum of three.

We note that PBN is a discrete-time process, the probability distribution
of gene expression at time ¢t 4+ 1 of the ith gene can be estimated by the
gene expression of other n genes at time t via one-lag transition matrix. This
is a Markov process framework. We consider the multivariate Markov chain

number of gen
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model to infer the genetic network of n genes. In this network, no prior in-
formation on n genes relationships is assumed, our proposed model is used to
uncover the underlying various gene relationships, including genes and genes
cyclic or acyclic relationships. From our own model parameters, it is sufficient
to uncover the gene regulatory network. However, one would like to have a
fair performance comparison between PBNs and our model, we would like
to illustrate using our model parameters to estimate some commonly used
parameters in PBNs efficiently. In PBNs with n genes, there are n disjoint
sets of predictors F; and each of them is used for an unique gene sequence.
In particular, for the d-th set of predictors F,;, we notice that the possibility

corresponding to each predictor f; @) can be obtained from ability
stationary vector and the detail is glven as follows. We can e% the con-

ditional probability distribution X i for d ou pre base t+ 1
given by a set of genes input express10n at b%\
d
Xi(l,).. in —Prob( t+1 | V k‘\ yn)

= Z Adk P (dk)Ei
k

n
=1
(

where i, € {0,1} and P denot co P(F)  Clearly, each prob-

ability vector X (4) iy isa unlt a
probability vectors we nee

it represents that the j- t
and

or each d, there are 2 number of
i = 0 for some j € {1,...,n},
any influence to the d-th gene,

V=151, 41,-in
%Gtors could be reduced by half. After all
ated, the probability c ) of the predictor

the number of esti
the essential X (d)

( ) can be es

where &

. f(d) Z17 . ’in) € {031}

and X, . otes the h entry of the vector X;, . ;. If céd) = 0, the
predictor s not exist and it should be ehmlnated It is interesting to

justify how the'expression of ith gene is affected by the expression of jth gene,
therefore, the degree of sensitivity from jth gene to ith gene can be estimated
by equation (7.10) mentioned in previous section. We notice that there are
two situations that I;(V;) = 0, Shmulevich et al. [186], namely,

(i) If A;; = 0, then jth gene does not give any influence on ith gene.
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(ii) The first two columns of the matrix P() are identical, that means no
matter the expression of jth gene is, the result of the probability vector is
not affected.

7.6.1 An Example

Here we give an example to demonstrate the construction of our model pa-
rameters. We consider the following two binary sequences:

§1 = {07 03 la 07 O, 07 03 Oa 17 ]-a 07 0}
@
and \g\
s2 ={1,1,0,0,1,0,0,0,0,1, . \
We have the frequency matrices as follows: \\ %\
[ ]

(62 K. 53 )
() SR

After normalization we have th% on%mty matrices:
3 5 3
Py — (@Y '%:(Z%),
§ 7
pet g 3 p2) _ <§ %>‘
§ 8e3 7 4
Moreover we also% & 31
ce (3 1ir
% \Og\( ch
CE X
7o _ (L 9T
\ V2 - (12? 12) .
After solving the li gramming problem, the multivariate Markov model

of the two blnary%. ces is given by

1 > 1 > 2
W =05P00VY 4 0.5P02 V)

?\\ V2, = 1.0PCYVY 4 0.0PAV),

The conditional probability distribution vector Xé}o) can be estimated as:

4 15,7

M) _ g 5pl 1 T p12) (1 )T — (2L 1o
Xoo =05PM (1,007 + 05PN (L,0)" = (¢,

We can obtain the rest of the vectors in the similar way and get:
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31 29 13
xO _ (2 T 1) _ 27 197
0,1 (4’ 4) ’ 1,0 (42’42)
and 17 7
1 _ 0 O
X1 _<24’24) ’
As X2 2 = 0, therefore we have,
5 3
X(z) :X(z) —(Z = T
0,0 0,1 (8’ 8)

and
21

2 2 g
X - x@ - 4y \'&
From previous section, the probability cgi) can b @ed &e results are
given in the Tables 7.3 and 7.4. \

<
=
<

1 1 1 1

1 1 1
NG 1
0 0§ 1 11 1 1

0
1 0 0 1 1
1

\ 0 “a 0 1 0 1
0.04 0.02 0.03 0.01 0.02 0.01

(]

@
@E XS % (X < (X x (XY
?\\ 41 129

7
_%XZXEXQ_OOZL

Because of A5 = 0, the set of predictors for the second sequence can reduce
significantly.

From Tables 7.3 and 7.4, the level of sensitivity I;(v;) can be obtained by
direct calculation. For example,
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Table 7.4. The second sequence results.

TN S A A

00— 0 0 1 1
1— 0 1 0 1

¢? 042 0.2 0.250.13

Ii(v1) = 0(0.27) + 2(0.11) + £(0.12) +0.05

+$ 08) + 0(0.04) + 0.04
+3(0.1) 4 0.04 + 0(0.04) +
+(

0
0'4(_).03) + 5(0.01) + 5(0&%0(0%
and we have \§ %\

12(1)1) = 0.4, _[1(1)2) = OZK 0.
\
According to the calculated values I; e at the first sequence
somehow determine the second seq oweyer, tlils phenomena is already
illustrated by the fact that Aoy = 21 the multivariate Markov
chain model. §
7.6.2 Fitness of the M%i\eb §\
al

The multivariate Mark n@esented here is a stochastic model.

Given all the state vec 1,...,n, the state probability distri-

bution Vg_]f_)l can
bility distributi
t+ 1 can betS he

V(t+1) = + 1)) < [V(E+1)]; forall 1 <i<2.
By making use of % tment, our multivariate Markov chain model can

(0.
(0.

)

t
t g (7.1). According to this state proba-
digtion methods for the jth sequence at time

ith the maximum probability, i.e.,

be used to uncove ules (build a truth table) for PBNs. With higher
prediction accur have more confidence that the true genetic networks
are uncovered model. To evaluate the performance and effectiveness,
the predicti acy of all individual sequences r and the joint sequences
R are defi réspectively as follow:

n T

r= % < 336 x 100%,

i=1 t=1
where

5@ — 1, if ¥ () = vi(t)
t 0, otherwise.



164 7 Multivariate Markov Chains

and

T
1

R=— E ) 100
Txt:1tx "

where
5 — 1, if¥t)=wvi(t) foralll<i<n
£7010, otherwise.

Here T is the length of the data sequence. From the values of r and R, the
accuracy of network realization for an individual sequence and for a whole set
of sequences could be determined respectively. In this subsection, we test our
multivariate Markov chain model for yeast data sequence.

Test with the Gene Expression Data of Yeast

Genome transcriptional analysis has been showntg¥e important in medicine,
and etiology as well as in bioinformatics. Ouevot the applieations of genome
transcriptional analysis is the eukaryotic cell cyele ingyeast® The fundamental
periodicity in eukaryotic cell cycle includes, the gveéntswof DNA replication,
chromosome segregation and mitosis. Hartwell@andsKastan [105] suggested
that improper cell cycle regulationgnaytead to genomic instability, especially
in etiology of both hereditary and%spomtamedtisjeancers, Wang et al. [205];
Hall and Peters [104]. Eventuallynit,is believed,to play one of the important
roles in the etiology of both hereditarysand spontaneous cancers. Genome
transcriptional analysis helps inexploring, the cell cycle regulation and the
mechanism behind the cell'gycle *Raymondlet al. [176] examined the present of
cell cycle-dependent perigdicity ing0220, transcripts and found that cell cycles
appear in about 7% ofranseripts.\Those transcripts are then extracted for
further examination, Wiien*the time, eourse was divided into early G1, late G1,
S, G2 and M phasentheresultyshowed that more than 24% of transcripts are
directly adjacent06ther tramscripts in the same cell cycle phase. The division
is based on the'sizéwof) thesbuigsiand the cellular position of the nucleus. Further
investigating resultion these transcripts also indicated that more than half are
affected by more than ‘ene“eell cycle-dependent regulatory sequence.

In our study, we uSe,the data set selected from Yeung and Ruzzo [213].
In the discretization,if,an expression level is above (below) its standard de-
viation from thesaverage expression of the gene, it is over-expressed (under-
expressed) andgplie eorresponding state is 1 (0). Our main goal is to find out
the relationshipain’ 213 well-known yeast transcripts with cell cycle in order
to illustrate the ability of our proposed model. This problem can be solved
by using a PBN theoretically. However, there are problems in using PBNs in
practice. It is clearly that the method of COD is commonly used to estimate
the probabilities of each predictor céd) for transcript d. Unfortunately, owing
to limited time points of the expression level of each gene (there are only 17
time points for the yeast data set), it is almost impossible to find a value of

cgd) which is strictly greater than that of the best estimation in the absence
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of any conditional variables. Therefore, most of the transcripts do not have
any predictor and it leads to all of the parameters in PBN are impossible
to be estimated. Moreover, PBN seems to be unable to model a set of genes
when n is quite large. Nir et al. [162] suggested Bayesian networks can infer a
genetic network successfully, but it is unable to infer a genetic network with
cell cycle relationship. Ott et al. [165] also suggested that even if in a acyclic
genetic network with constraints situation, the number of genes in Bayesian
networks should not be greater than 40 if BNRC score are used. Kim et al.
[129] proposed a dynamic Bayesian network which can construct of cyclic reg-
ulations for medium time-series, but still it cannot handle a large network.
Here, we use the multivariate Markov chain model for training t ast data.
The construction of a multivariate Markov chain model for S\% set only
requires around 0.1 second. We assume that ther o anywprior knowledge
about the genes. In the construction of the multi M hain model,
each target gene can be related to other gene&d o
el

alues of A;; in
our model, one can determine the occurr 1

jth transcript,

i.e., in a set of transcripts, there present a inter*relati of any jth tran-
script in this set. Based on the built t chain model, 93%
of transcripts possibly involves in so Cc e found. Some of the
results are shown in Table 7.5. ‘ m

Table 7.5. Results of ®1®aﬂm chain model.
C;S

No. Name of

L elated transcripts
(its phase \j,
level of influence)

YMRO031c(1,1.00,1.00)

te 2 YDLO18c (2,0.50,0.50)
g N YOR315w(5,0.50,0.50)
§ % YMLO027w(2,0.33,0.39)

'\3 YJIL079¢(5,0.33,0.38)
N eGl 3  YPL158¢(1,0.33,0.42)
x YDL101¢(2,0.33,0.43)
\ YKLO69w(4,0.33,0.43)
\ YER001w(3,0.50,0.50)
RG

5w early G1 4 YKL113¢(2,1.00,0.88)

In Table 7.5, the first column indicates the number of data set we display.
The second column gives the name of target transcript. The third column
shows which phase the target gene belongs to. The fourth column shows the
most possibly cell cycle length of the target transcript. Finally, the last column
displays the name of required transcripts for predicting the target transcript,
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the corresponding phase of required transcripts, their corresponding weights
Aij in the model, as well as an estimated value of the level of influence from
related transcript to the target transcript. Although the level of influence can
be estimated based on our model parameters, its computational cost in the
PBN method increases exponentially respect to the value of n.

We find in Table 7.5 that the weighting A;; provides a reasonable measure
for the level of influence. Therefore the proposed method can estimate the
level of influence very efficiently. Finally, we present in Table 7.6 the prediction
results of different lengths of cell cycles for the whole data set and the results
show that the performance of the model is good.

Table 7.6. Prediction resul

Length of  No. of occurrence
cell cycle in this type
phases required  of cell cycle

N

9 %

W N =

ﬁlg rturbation and intervention. We
certai

Further research can %
note that a PBN allo ter-gene relations in the dynamic
process and it will evo aceo to certain fixed transition probabili-
i ec}% to control this process so as to achieve

£

ties. However, the
itate’ PBNs to evolve towards some desirable
ﬂs‘mdied. It has been shown that given a tar-
cili transition to it by toggling the state of a
o

particular gene fro r vice-versa Shmulevich et al. [187]. But mak-

ing a perturbation %d intervention can only be applied at one time
point. The dynamis e system thereafter still depends on the network it-

self. Thus the net ay eventually return to some undesirable state after
a number of st@other way to tackle this problem is to by use struc-
tural interv change the stationary behavior of the PBNs Shmulevich
et al. [185 proach constitutes transient intervention. It involves the
structural integyention and therefore it will be more permanent. By using the
proposed multivariate Markov chain model, it is possible to formulate the gene
intervention problem as a linear control model. To increase the likelihood of
transitions to a desirable state, more auxiliary variables can be introduced in
the system Datta et al. [81]. Moreover, costs can be assigned to the control

inputs and also the states researched such that higher terminal costs are as-
signed to those undesirable states. The objective here is to achieve a target

1
1
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state probability distribution with a minimal control cost. The model can be
formulated as a minimization problem with integer variables and continuous
variables, Zhang et al [218].

7.7 Extension to Higher-order Multivariate Markov
Chain

In this section, we present our higher-order multivariate Markov chain model
for modelling multiple categorical sequences based on the models in Sections

6.2 and 7.2. We assume that there are s categorical sequenc order n
and each has m possible states in M. In the extended model, me that
the state probability distribution of the jth seque ime 1 depends
on the state probability distribution of all th es (i ng itself) at
times t =r,r —1,...,r —n + 1. Using the sa ati the previous
two subsections, our proposed higher-orde rde variate Markov
chain model takes the following form: \
>

q
x\7) :izn:/\(h)P(jk§ %\2 s (7.11)
T+1 ik E\' +1,\ g Ly ey .
where
: Jq%lghgn (7.12)

and

The probability digtsi ﬂ%h sequence at time ¢ = r +1 depends
on the weighted . ,)be ny1- Here P,Ej ") is the hth-step transition

probability m s the hth-step transition from the states in
the kth sequen i — h + 1 to the states in the jth sequence at
time t =r 41 and A} weighting of this term.

1...,x£]2n+1)T for j=1,2,...,s

be the nm x 1 \@ then one can write down the following relation in matrix

form: \

X0, B pa2) ... gty [ XV
X£2421 B2 B(22) ... B(2s) x?

X1 = . = : : : : . = QX
X7(~21 B(51) B(52) A B(SS) XSAS)
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I 0

Bl — 0 I 0
. .
0 0 0

mnXxXmn

and if ¢ # j then

o
o
o
O/O

\ )
We note that each column sum of @ is n@w o one but each

column sum of P(J k) s equal to one. We e fo I‘OpOSlthHS
\

Proposition 7.3. If /\y,i) >0 forl <y q@ < n, then the matriz

Q has an eigenvalue equal to one zger& of @ have modulus less

than or equal to one. \§

Proposition 7.4. Suppose th ( <s,1 < h<mn)areirreducible

and )\;k) >0 forl1<j k< s < hen there is a vector

( \h .,X
with &
‘\\(o\ X0, x0T

1xUW) =1, for 1<j<s

1=(1,1,...,1) of I

The transition @111‘61(% P can be estimated by counting the tran-
described in Sectlon 6.2 of Chapter 6 and Section 7.2.
at X is not a probability distribution vector, but x() is
bution vector. The above proposition suggests one possi-
ble way to te the model parameters AE?). The key idea is to find )\E?)
which minimizes ||@Q% — X|| under certain vector norm || - ||. The estimation
method is similar to those in Chapter 6. The proofs of Propositions 7.3 and

7.4 and detailed examples of demonstration with an application in production
planning can be found in Ching et al. [65].
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7.8 Summary

In this chapter, we present the a multivariate Markov chain model with estima-
tion methods for the model parameters based on solving linear programming
problem. The model has been applied to multi-product demand estimation
problem, credit rating problem, multiple DNA sequences and genetic net-
works. We also extend the model to a higher-order multivariate Markov chain
model. Further research can be done on the following issues.

(i) New estimation methods when there are missing data in the given se-
quences.

(ii) The case when the model parameters \;; are allowed egative

values. The treatment can be similar to the diseussion \ 6.4.
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Hidden Markov Chains

§'o
. S
8.1 Introduction \1{% v&\'

Hidden Markov models (HMMs) have been applied %y real-world appli-
cations. Very often HMMs only deal W@‘S ansition probability
i
dde

distribution among the hidden states, n ection 1.4. Moreover,
the observable states are affected gm tatés but not vice versa. In
this chapter, we study both higher- hi rkov models and interac-

tive HMM in which the hidden diréetly affected by the observed
states. We will also develop n ds for the model parameters in
both cases. %

The remainder of this ter i ed as follows. In Section 8.2, we
present a higher-order n odel. In Section 8.3, we discuss an
interactive HMM. In . iscuss a double higher-order hidden
Markov models. Fi um ill be given to conclude this chapter in
Section 8.5.

§\ &\ a
8.2 Higher-or e@ﬂs

In this section, we a higher-order Hidden Markov Model (HMM) and
the model is appli &mdeling DNA sequences, see Ching et al. [61]. HMMs
have become in ifgly popular in the last few decades. Since HMMs are
tical structure, they can form the theoretical basis in a
ations such as the DNA sequences [135], speech recognition
[173] and computer version [39]. A standard HMM is usually characterized by
the following elements [173]:

(i) N, the number of states in the model. Although the states are hidden, for
many practical applications, very often, there is physical significance to
the states. We denote the individual states as

S ={51,52,...,5n},
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and the state at the length t as ¢;.

(ii) M, the number of distinct observation symbols (or state) for the hidden
states. The observation symbols correspond to the physical output of the
system being modeled. We denote the individual symbols as

V = {’Ul,l}g, cee ,'UM}.
(iii) The state transition probability distribution
A = {ai;}

where N . %,‘

(v) The initial state distribution IT = {w&w‘fg\ere Q\'\

™= Pl =§ 1 Q
Given appropriate values of %B ® the HMM can be used as
a generator to give an observati uence
%1%\BT

N
where each observation Qs bols from V, and T is the number
of observations in the s e. ‘o licity, we use the compact notation
to indicate th %e

specification, ve t
the transitions amon,
analysis, higher-orde
among the observa
a stochastic proc
is believed tha
capture an

A,B, )

\ N

er set of the HMM. According to the above
order Markov process is used in modeling
dden states in a HMM. In the DNA sequence
v models have been used to model the transitions
tes, see [28, 100]. An mth order Markov process is
ere each event depends on the previous m events. It
-order Markov model (in the hidden layer) can better
data sequences such as the DNA sequences. The main aim
of this pap& evelop higher-order HMMs (higher-order Markov model for
the hidden states). The main difference between the traditional HMM and a
higher-order HMM is that in the hidden layer, the state transition probability
is governed by the mth order higher-order Markov model

Qiy g1yt g1 — P(Qt—i-l = Sit+1 |Qt = Sit’ s Qt—m41 = Sit—m+1)'

We assume that the distribution IT of initial m states is given by
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Ty igyonrimy = P(q1 = Siy,G2 = Siyy oo+ @ = S, )

Here we will present solution to the three problems for higher-order HMMs.
Recall that they are practical problems in the traditional HMMs (see Section
1.4).

e Problem 1 Given the observation sequence
O =010;3...07

and a higher-order HMM, how to efficiently compute the probability of
the observation sequence?

e Problem 2 Given the observation sequence \g\o
and a higher-order HMM, how to choos \p\ ate sequence
Q= q1925--ar \A
2\'\ \'
which is optimal in certain sense (e.g. %1 she aximum likelihood)?
e Problem 3 Given the observai enC\
&1 2 %

and a higher-order HM@ @w model parameters?
N ‘\%

8.2.1 Problem 1 \ \

For Problem 1, we cal@th %ility of the observation sequence,
%' @102 ...Or,

given the high%r % ., P[O|A]. One possible way of doing this is

through enumerating sible state sequence of length T. However, this

calculation is comp‘& ly infeasible even for small values of 7" and N.

We apply the for ckward procedure [14] to calculate this probability
of the observatiOni nce. We define the forward variable

\ °
as followsz\\\

at(it—m—i-la o 77f.t) = P(Ol» BRRE) Ota‘]t—m—l—l = Sit_m_Ha s G = Szt|A)7

0O =0,0;...01

Q

o (T )

where m < t < T, i.e., the conditional probability that the subsequence of
the first ¢ observations and the subsequence of last m hidden states ending at
time t are equal to

. S;

v1...v; and S

t—m+1 °° t
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respectively, are given by the model parameters A. We see that if we can
obtain the values of

ar(ir—m+1, - -597) ¥ Ar—mt1s .-, 0T,

then it is obvious that P[O|A] can be obtained by summing up all the values
of

ar(ir—mi1,---,iT).
It is interesting to note that the values of ar(ir—m41,- .., ir) can be obtained
by the following recursive equation and the details are given as follows:

m

(F1) Initialization: aum (i1, 42, - ,im) = Tiy ia, i - | | b3, (05 §a‘
=1
(F2) Recursive Equation: at+1(it_m+2,it_m+3,\ ) :§

” S
Z at(it—m+17"'77;t) P& 7qt+®+1)'
Gt —m41=1
P(Qt+]1V: Sivir | A, Gt—m1 %&1’@&;))

= Z (Tt —m1,, -
it—m+1:1 \x \
N \
(F3) Termination: P(O|AE:§ (ST —mt1y - -5 0T)-
The initiation step calcuMche probabilities as the joint proba-

bility of hidden states nitia rvations. The recursion step, which
is the main part of t ulation. Finally, the last step gives the
sum of the terminal forward variables
nner, a backward variable 3¢ (i1, 42, . .., 9m)
yeeesim) =

q:% -y Qt+m—1 = Siter,l;A), 0<t<T —m.

ar(ir—mi1, .-
can be define

P(Opim...O

(B1) Initialization; eim)=1,0<t<m—1,1<4y,... im <N.

(B2) Recursive e ﬁx: Be(i1, i, ... im) =
N \§

E %-H o Orlgisr = Sigyys -+ Germ—1 = Sty 1> Gitm = Sigp> A)-
Gttm=

P(Ot1ml@tam = Sipyns A) - P(@egm = Sipinl@t = Siys- s Gtrm—1 = Sip 15 A)
N

= bk(Orym)Begaliz, - im k) - Qi i ke
k=1

The initialization step arbitrarily defines Br—_¢(i1,42,...,%mn) to be 1. The in-
duction step of the backward calculation is similar to the forward calculation.
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8.2.2 Problem 2

In Problem 2, we attempt to uncover the whole hidden sequence give the
observations, i.e. to find the most likely state sequence. In practical situa-
tions, we use an optimality criteria to solve this problem as good as possible.
The most widely used criterion is to find the best sequence by maximizing
P[Q|A, O]. This is equivalent to maximize P(Q, O|A). We note that

P(Q,0|4)
P(QIA,0) = ————=.
(QI4.0) = s
Viterbi algorithm [204] is a technique for finding this “best” hi quence
Q =1{q1,42,.-.,qr} for a given observation sequence O = ..., O7}.
Here we need to define the following quantity: & Q

S; O A),

N

5t(it—m+1a ‘e ,it) = max P(ql = Sz

q15---:9t—m \

U

for m <t <T and 6;(4t—m+1,---,%) is the best s ighest probability)
along a single best state sequence at ti ounts for the first ¢
observations and ends in state .S;,. B tion, ve

Ott1(tt—met2, .- - 7it+1\\ \\\
- ISQtIEljiiﬁN{(st(it_m §\ .%’”H““v’ﬂ-l} ’ bit+1(0t+1)' (8‘1)

To retrieve the state sequ &s eep track of the argument which
maximized (8.1) for ea a 't% ., i¢. this can be done via the array
S

A1 (Gt—mty - - 0t41) rocedure for finding the best state
sequence is as follo s:\ ‘
(U1) Initializatiai\\ \ ~

S (i1, .- a%m...,qmsZm,ol,...,omA)

— = Sivsentm =S, |A) - [ P(O;14,4; = Si))

j=1
\ m
@ . . .
%ﬁﬂihi%m’im Hbij(vj)v 1 <iq,40,... %, < N.

j=1

We als& (i1, - im) = 0.
(U2) Recursion:
Ot41(Ft—mt2s - -+ Gt4+1)

= max  P(gy1 = Si, Orp1ld,qu = i1, .., qp = 4t,01,...,0¢) -

q1y--qt—m+1

Plgr = Siys .- a0 = Si,, O1, ..., 04| 4)
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= max
1<qt—m+1<N
P(Ot+1|/1,ql = Siu' g1 = Sit+17017' . .,Ot) .
P(qis1 = Si | A = Siy, ..., qe = Si,, 01,...,0y)

Ot (Tt—mt1s - -5 0¢) -

= 1§qtr_njf1§N Ot(tt—ma1s---s8¢) - P(Opg1| A, g1 = Sipy) -
P(qt-i-l = Sit+1 |A7 dt—m+1 = Sit7m+17 s Q= S'Lt)
= lgqtl;nijSN{ét (it—m+1’ CREE it) . ait—m+17'-~7it+1} : bit+1 (Ut+1)~

Form+1<t<T and 1 <141 < N, we have
Arp1(G—mey2, - 0t41)
=argmaxy<g, ... SN{ét(it—m-&-la s @ﬁtm§ﬂ}-
(U3) Termination \§
P = 5 §
1<qT_mTi§.,q${{T‘”§.
R ‘“’@*’w&”qwﬂw}
8.2.3 Problem 3 \ \
In Problem 3, we attempt '@t %l parameters A by maximizing
the probability of the Ob% S iven the model. Here we choose
A such that P[O|4] is imiged e assumption that the distribution
IT of the initial m stat&xo ing the EM algorithm. Define
@ 0, 4)l0g (0, Q[
NS
The EM algorm \ main steps, namely E-step, calculating the
)

0
function C(A, A) and ep, maximizing C (A, A) with respect to A. Now,
we define €;(iq, ia, .. ) as follows:

+
et(il,iz,...,i@ P(g = Siyy Qa1 = Sigy ooy Qtam = Sim+1|0,/1).
We can wri he expression of €;(i1,%2,...,%m+1) in terms of a(-) and
G(-) that uted in the previous two sub-sections:
Et(il, iz, ey im—i—l)

= b’im+1 (OH‘m)P[OH-m-i-l v OT|qt+1 = Si27 o Qtpm = Sim+17/1] :
P(qt+m = im+1|qt = Siuqt—i-l = Siza ey Qtdbm—1 = Siva] :
P[O10s ... Otym—1,9t = Siy,@t41 = Sins -+ Gtym—1 = Si,, | A)

= Qppm—1001,92, i) @iy i Diss (Ot ) Begr (12,835 -y Imge1).
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Therefore we obtain

(1,92, imy1) = P(qe = Siy, qer1 = Sigs ooy Qe4m = Si, 1|0, A)

Qppm—1(01,92, - im )iy iy Do (Otgem) Beg1 (2, Ges - oy Ima1)

P[O|A]

Next we define

N N
Ve (11,82, - - - 0k) = Z Z (1,92, -+ Gmy1)-

igr1=1 im1=1

If we sum ¢ (i1,49,...,4m+1) over the index ¢, we get a which
can be interpreted as the expected number of ti sequence
S, Siy - -+ S, occurred. Similarly, if we sum e ver ¢, we get

a quantity which can be interpreted as the
state sequence S;, Si, - -+ S;,,
is given as follows:

Ye(i1) = Z Z

(

Ve (i1, 12) =

i1 imt

> :

E.

Il
et
£

N

N
Slm1 = Ailiz---im+1/ Z Ai1i2---im+17
im+1:1
T—m
Ej(vr) = > 7 (5),

t=1, such that O;=wvg

bj(vr) = Ej(on)/ Y Ej(vn).

k=1
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8.2.4 The EM Algorithm

In this subsection, we discuss the convergence of the EM algorithm. We begin
with the following lemma.

Lemma 8.1. Given p;,q; > 0 such that

then

then we have ' $
-2 log& @

This is true becausg w@ tl&mng inequality
% 1%@—1 for >0
and the equali%s i y if z = 1. Hence the result follows.

Now, suppose w model with parameter set A and we want to
obtain a better m ith parameter set A. Then one can consider the log
likelihood as follows;

S

log P[O|A] = Z log P[0, Q|A].
Q

Since

P[0, Q4] = PIQ|O, A]P[O|4],

we get

log P[O[7] = log P[0, Q[ — log P[Q|0, 7).
By multiplying this with P[Q|O, A] and summing over @, we get the following
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log PO[A] = > P[Q|O, Allog P[0, Q[A] - _ P[Q|0, AJlog P[Q|O, 7.
Q Q

We denote _ _
C(4,4) = > P[Q|O, Allog P[0, Q[4]
Q

then we have

log P[O[A] — log P[O|A] = C(A,A) — C(A, A)

Pl
+ %: P[Q|O, A]log m.

The last term of the right-hand-side is the r entr P[Q|O, A
relative to P[Q|O, A] which is always non-negati e .
Hence we have % ° \
log P[O[4] — log P[0 4] zgw\m - )
q
and equality holds only if _ \% \\%

or i N
PlQ |§: @

one can always make e -negative. Thus the likelihood of the
new model is grea r eq the likelihood of the old model. In fact,
if a maximum is% tﬂi/l and the likelihood remains unchanged.
Therefore it ¢ ow%t he EM algorithm converges to a (local or
global) maximurf® \

Proposition 8.2. %algom'thm converges to a (local or global) mazi-

@
8.2.5 Heuristi&fhod for Higher-order HMMs

N

The conv &model for an mth order Markov model has O(N™*!) un-
known pa&rs (transition probabilities) where N is number of states. The
major problem in using such kind of model is that the number of parameters
(transition probabilities) increases exponentially with respect to the order of
the model. This large number of parameters discourages the use of higher-
order Markov models directly. In this subsection, we develop an efficient esti-
mation method for building a higher-order HMM when the observation symbol
probability distribution B is known.
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We consider the higher-order Markov model discussed in Chapter 6 whose
number of states is linear in m. Our idea is to approximate an nth order
Markov model of the demand as follows:

Qtim = Z AiPiQipm—i (8.2)

i=1

where Q:4; is the state probability distribution vector at time (¢ + ¢). In
this model we assume that Quy,+1 depends on Qiv; (i = 1,2,...,n) via
the matrices P; and the parameters \;. One may relate P; to the ith step
transition probability matrix for the hidden states. In the model,@he pumber

of states is O(mN?) whereas the conventional nth order M del has
O(N™*1) parameters to be determined.

Given the hidden state probability distributi ob ion probabil-
ity distribution is given by

Y, = Bx\t§ §\\\' (8.3)

where B is the emission probabilities ma&. ) and (8.3) form a

higher-order HMM. !

For Model (8.2), in Chapter 6 we TOPO cient methods to esti-
mate A; and \;. Given an observe ce tyi—1, A; are estimated by
first counting the i-step transiti equienc e observed data sequence
and then by normalization to &tr&o probabilities. In Chapter 6,

we have proved that \& \
'\', §
th% Z ‘ = )\i PlZ

i
where Z can be o%t}le by first counting the occurrence
frequency of ea&“ by normalization. They considered solving

A; by the follox i

i problem:
\\“mnz - AP
=1
Ay
\a‘ m
\\ A=1 and X >0.

\ i=1
It can be sh%easily that if ||.|| is taken to be ||.||1 or ||.||co then the above

problem can be reduced to a linear programming problem and hence can be
solved efficiently.

Consider a higher-order HMM with known emission probabilities B and
observation data sequence

NE

Il
—

subject to

0102 A OT,
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how to choose A; and \; so as to build a higher-order HMM? We note that
by (8.3), the stationary probability distribution vector for the observation
symbols is given by W = BZ. Therefore if W can be estimated and B is given,
the probability distribution vector Z for the hidden states can be obtained.
For such stationary vector Z, the first-order transition probability matrix A
for the hidden states is then given by

A=17Z(1,1,..., )7 (8.4)

(noting that AZ = vecZ). With this idea, we propose the following steps to
construct a higher-order HMM.

Qe’
Step 1: The lth element of W is approximated by \\

Therefore we consider solving Z by

S

Step 3: Find the most pro der@nce Q1, Q2, ..., Q7 based
on the observation sequence § \%

@’ .
and the matrix A iw ed 4).

Step 4: With ro@idden sequence
% % Q27 R QTa
we can esti% % ing the number of the transition frequency of

the hidden states by normalization.

Step 5: Solve )@leing
(J

\\U min[|Z — 3" \PZ
\ i=1
subject tok

Step 2: From (8.3), we expect (W — SZ) be Q%o the zero vector.

T

NE

)\izl and )\120
i=1
The advantage of our proposed method is that one can solve the model pa-

rameters efficiently with reasonable accuracy. In the next section, we illustrate
the effectiveness of this efficient method.
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8.2.6 Experimental Results

In this section, we test our higher-order HMMs and the heuristic model for the
CpG island data. We simulate a higher-order HMM for the CpG islands. In
the genome where-ever the dinucleotide CG occurs (frequently written CpG to
distinguish it from the C-G base pair across the two strands) the C nucleotide
(cytosine) is typically chemically modified by methylation. There is a relatively
high chance of this methyl-C mutating into a T, with the consequence that
in general CpG dinucleotides are rarer in the genome than would be expected
from the independent probabilities of C and G. Usually, this part corresponds
to the promoters or “start” regions of many genes [31]. In D sequence
analysis, we often focus on which part of the sequence belon island
and which part of the sequence belongs to non- isla& HMM
formulation, we have two hidden states (N = 2)\§

N
S1 = CpGisland and Sy %C®7
DS

and we have four observations symbols (M = 4):

X . \T
’U1=A, UQZC,§G,% .
The model parameters based on th%mi&“\(]p(} island are used. The

transition probabilities are then@

=0.72,
=0.81,
=0.12,
=0.21,
= 0.28,
=0.19,
= 0.88,
=0.79.
and \
= Algs = S1) = 0.1546,
=Clg, = 1) = 0.3412,
Q¢ P(O; = Tlg; = 51) = 0.1544,
@ P(O; = Alg; = So) = 0.2619,
\ P(O; = Clg; = S5) = 0.2463,
\ P(O; = Glg; = S5) = 0.2389,

Given these values, the HMM can be used as a generator to give an obser-
vation sequence. We generate 100 observation sequences of length 7" = 3000.
Based on these observation sequences, we train three models. The three models
assume that the hidden states sequence is a first-order model, a second-order
model and a third-order model respectively. We calculate
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P(O|A) and P(Q,0|A)

for each of the models. We also report the results obtained by using our
proposed heuristic model. The average results of 100 comparisons are given
in Table 8.1. It is clear that the proposed estimation algorithm can recover
the second-order Markov model of the hidden states.

Table 8.1. log P[O|A].

First-order Second-order Third-order

The Heuristic Method -1381 -1378 - t.‘
EM Algorithm (no. of iter) -1377 (2.7) -137@ -%7 )
° \§
Finally, we present the computation ti %er it % required for the
heuristic method and the EM algorit Ta »We remark that the
heuristic method requires only one iter. e he proposed heuristic

method is efficient.

f//,

Table 8.2. Co

{7

cond-order Third-order

1.98 5.05

12.88 40.15

N
S$
8.3 The Intera% idden Markov Model

&)ose an Interactive Hidden Markov Model (THMM)

hidden states depend on the current observable states.
ralization of the HMM discussed in Chapter 4. We note
M is different from classical HMMs where the next hidden
ed by the previous hidden states only. An example is given
to demonstrate IHMM. We then extend the results to give a general IHMM.

In this section,
where the transi
The ITHHM i
that this ki

8.3.1 An Example

Suppose that we are given a categorical data sequence (in steady state) of
volumn of transactions as follows:
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1,2,1,2,1,2,2,4,1,2,2,1,3,3,4, 1.

Here 1=high transaction volume, 2= medium transaction volume, 3=low
transaction volume and 4=very low transaction volume. Suppose there are
two hidden states: A (bull market period) and B (bear market period). In
period A, the probability distribution of the transaction volume is assumed
to follow

(1/4,1/4,1/4,1/4).

In period B, the probability distribution of the transaction volume is assumed

to follow

(1/6,1/6,1/3,1/3). §,~
In the proposed model, we assume that hidden are &Vable but
the transaction volume are observable. We wou 0 the hidden
state by modelling the dynamics by a Marko

In the Markov chain, the states are \' .\\\'

A,B,l,Z%.\ \

We assume that when the observab is 2 the probabilities that
the hidden state is A and B are & v .gmand 1 — «; (depending on )
respectively in next time step. si& ability matrix governing
the Markov chain is given by %

2
7

¥

8.3.2 Estimatiomyof ters

In order to define WM, one has to estimate the model parameters
aq, 00,3 and ay n observed data sequence. One may consider the
following two-ste ition probability matrix as follows:

a
4

1— 0¢1+6¥21‘013+064 0 0 0 0

& 3ga41_a1_ga2_a3_ga4 I Oa T Oa T Oa T Oa

1 1 1 1
p?— 0 stRotTEs Ry
1 0 0 44 %2 24 22 2 Q3 1 Qg
? 12? 12:13 12% 12
0 0 sS4 i

0 0 foaif,ai? ali &
FTT26T23 123 12

Using the same track as in Chapter 4, one can extract the one-step tran-
sition probability matrix of the observable states from Pj as follows:
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1 1 1 1
§+%§+T§§—%§—%

oo |1t 25-21-2

Py = i+%i+%i_0ﬁi_%
? 12? 123% 12‘1‘} 12
_+%_+%__%__%
6 12 6 12 3 12 3 12

However, in this case, we do not have a closed form solution for the station-
ary distribution of the process. To estimate the parameter a;, we first estimate
the one-step transition probability matrix from the observed sequence. This
can be done by counting the transition frequencies of the states in Qbserved

sequence and we have \
SN

?%%9 \ %
p=|2373 0\
DN

We expect that

&/f@w
,

and hence «; can be obtained b ng minimization problem:

(8.5)

Y,
D <
2y

subject to

14,
%

Here ||.||F is the

7

0
Yy
M-

This is equivalent t e following four independent minimization prob-
lems (i) - (iv) an O‘&(\:,an be solved in parallel. This is an advantage of
the estimation met e remark that one can also consider other matrix

norms for the g&m function (8.5), let us say ||.||a, or ||.||a., and they
i

7,

may result in rogramming problems.

. . 1 1,9 1 aq 4 9 1 (6751 1 2 1 aq .9 .
0 o oM JE+ )+ -5 TG )k
.. . . 1 a7 1 2 1 a7 1 2 1 aq .9 1 Qaq 1 21.
(i) a2: min {(G+5 ) +(G+ o3 +G-R)tE-— -5k
. . 1 a1 .\9 1 a1\ 9 1 (o5} 1 2 1 (o5} 1 2.
(i) ag: min {(G+5)+(GHR) +E-5 )+ -3k
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1 1
n {G+2 o2+ M

3 . s _2 ___2 ___2
(iv) aa: min {(5+ 33 s T TRt )

Solving the above optimization problems, we have

aj=1, aj=1 o5=0 a;=1

00[1/41/41/41/4
00/1/61/61/31/3
p_ | TO[0 000
1000 0 0 0
01{0 0 0 0
1000 0 0

and ~§\ X
3/41/4] 0 * %'\

Hence we have

8.3.3 Extension to the C&a %

The method can be e@to al case of m hidden states and n
observable states. We

observable states istgi

P11 P12 - Pin
P21 P22 " P2n

%\"2“'anm Dm1 Pm2 "+ Pmn
ie. & -
h. . .
\'%'2]@ = aipe; HJ=1,2,...,n
k=1

Here we a %a‘u a;; are unknowns and the probabilities p;; are given.
Suppose [Q];; 15 the one-step transition probability matrix estimated from the
observed sequence. Then for each fixed 7, a;5,j = 1,2,...,m can be obtained
by solving the following constrained least squares problem:
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subject to

m
E Al = 1
k=1

and
a;r >0 for all i, k.

The idea of the IHMM presented in this subsection is further extended to
address the following applications and problems in Ching et al. [67].

(i) THMM is applied to some practical data sequences in sales demand data

sequences. o
(ii) there are only a few works on modelling the non-linear of cate-

gorical time series can be found in literature. I continuotis=state case,
the threshold auto-regressive model is a w n h. The idea
is to provide a piecewise linear approxima an r autoregres-
sive time series model by dividing th pa several regimes
via threshold principle. The IHMM provi a er approximation
of the non-linear behavior of categorical, tim dividing the state

space of the Markov chain process Ve\
8.4 The Double Higher@r H& Markov Model

In this section, we present, ;@ %r extracting information about
the hidden or unobservabl%zﬂ

n from two observation sequences.
The observations in ea only depends on the hidden state in-
formation, but also de ous observations. It is clear that both
the dynamics of hi servation states are required to model
higher-order Ma

tes
ns this kind of models to be Double Higher-
order Hidden 0 MMs).
The model d s follows. We write 7 for the time index set
\% 0,1,2,.. )
of the model. Let { \

be an unobservable process representing the hidden
states over diﬁ%me periods. We assume that {V;}.c7 is an nth-order

11

discrete-time ti mogeneous Markov chain process with the state space
\\ VZ{’Ul,’UQ,...,’UM}.

The state transition probabilities matrix

A= {a(jt+n)}

of the nth-order Markov chain {V;}:c7 are given by
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a(jt-’rn) = P(‘/t-‘,-n = th+n|‘/t = th, ey W+n_1 = th+n71)
L<je,- s Jtgn—1 < M. (2.1)

To determine the probability structure for the nth-order Markov chain {V; }1er
uniquely, we need to specify the initial state conditional probabilities

17 = {x(i;)}

as follows:

m(jk) = P(Vk = v, Vi = 05, Va = vjp, ..o, Vi1 = 05, ), 1625 n.
(

Let \
{Iitier § . %
for a stochastic process and it is assumed l@ double hidden
b

Let O
" i &%t \z+1)‘

¢ .&
Y
Then, we assume that ‘&Xit' obabilities matrix
\: x i (ie1)}

of the process { he imand the hidden state V411 = v. The initial
distribution 17 + be specified. Given appropriate values for n,
M, I, Al II andSB, M can be adopted to describe the generator
that drives the realizati he observable sequence
\\ I=10L1... I,
(J

where T is the of observations in the sequence. In order to determine
the DHHM applications one can apply similar method of maximum
likelihood on and the EM algorithm discussed in Section 8.2. A de-
tailed disc&l of the model and method of estimation with applications

to the extraction of unobservable states of an economy from observable spot
interest rates and credit ratings can be found in Siu et al. [189].
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8.5 Summary

In this chapter, we present several new frameworks of hidden Markov models
(HMMs). They include Higher-order Hidden Markov Model (HHMM), In-
teractive Hidden Markov Model (IHMM) and Double Higher-order Hidden
Markov Model (DHHMM). For both HHMM and THMM, we present both
methods and efficient algorithms for the estimation of model parameters. Fur-
ther research can be done in the applications of these new HMMs.
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