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Preface

Given that the size of textbooks has nearly tripled during my own career,
without a corresponding increase in the cranial dimensions of my stu-
dents, I have always found it necessary, like my colleagues elsewhere, to
cull the essentials into a manageable size. I did that in the course Funda-
mentals of Physics I taught at Yale, and this book preserves that feature.
It covers the fundamental ideas of Newtonian mechanics, relativity, fluids,
waves, oscillations, and thermodynamics without compromise. It requires
only the basic notions of differentiation and integration, which I often
review as part of the lectures. It is aimed at college students in physics,
chemistry, and engineering as well as advanced high school students and
independent self-taught learners at various stages in life, in various careers.

The chapters in the book more or less follow my 24 lectures, with
a few minor modifications. The style preserves the classroom atmo-
sphere. Often I introduce the questions asked by the students or the
answers they give when I believe they will be of value to the reader.
The simple figures serve to communicate the point without driving up
the price. The equations have been typeset and are a lot easier to read
than in the videos. The problem sets and exams, without which one
cannot learn or be sure one has learned the physics, may be found
along with their solutions at the Yale website, http://oyc.yale.edu/physics,
free and open to all. The lectures may also be found at venues
such as YouTube, iTunes (https://itunes.apple.com/us/itunes-u/physics-
video/id341651848?mt=10), and Academic Earth, to name a few.

The book, along with the material available at the Yale website, may
be used as a stand-alone resource for a course or self-study, though some
instructors may prescribe it as a supplement to another one adapted for
the class, so as to provide a wider choice of problems or more worked
examples.

To my online viewers I say, “You have seen the movie; now read the
book!” The advantage of having the printed version is that you can read it
during take-off and landing.

xiii

https://itunes.apple.com/us/itunes-u/physicsvideo/id341651848?mt=10
https://itunes.apple.com/us/itunes-u/physicsvideo/id341651848?mt=10
http://oyc.yale.edu/physics


xiv Preface

In the lectures I sometimes refer to my Basic Training in Mathemat-
ics, published by Springer and intended for anyone who wants to master
the undergraduate mathematics needed for the physical sciences.

This book owes its existence to many people. It all began when Peter
Salovey, now President, then Dean of Yale College, asked me if I minded
having cameras in my Physics 200 lectures to make them part of the first
batch of Open Yale Courses, funded by the Hewlett Foundation. Since my
answer was that I had yet to meet a camera I did not like, the taping began.
The key person hereafter was Diana E. E. Kleiner, Dunham Professor, His-
tory of Art and Classics, who encouraged and guided me in many ways.
She was also the one who persuaded me to write this book. Initially reluc-
tant, I soon found myself thoroughly enjoying proselytizing my favorite
subject in this new format. At Yale Universtity Press, Joe Calamia was my
friend, philosopher, and guide. Liz Casey did some very skilled editing.
Besides correcting errors in style (such as a long sentence that began in
first person past tense and ended in third person future tense) and matters
of grammar and punctuation (which I sprinkle pretty much randomly),
she also made sure my intent was clear in every sentence.

Barry Bradlyn and Alexey Shkarin were two graduate students and
Qiwei Claire Xue and Dennis Mou were two undergraduates who proof-
read earlier versions.

My family, frommywife, Uma, down to little Stella, have encouraged
me in various ways.

I take this opportunity to acknowledge my debt to the students at
Yale who, over nearly four decades, have been the reason I jump out of
bed on two or three days a week. I am grateful for their friendship and
curiosity. In recent years, they were often non-majors, willing to be per-
suaded that physics was a fascinating subject. This I never got tired of
doing, thanks to the nature of the subject and the students.



chapter 1

The Structure of Mechanics

1.1 Introduction and some useful tips
This book is based on the first half of a year-long course that introduces
you to all the major ideas in physics, starting from Galileo and Newton,
right up to the big revolutions of the twentieth century: relativity and
quantummechanics. The target audience for this course and book is really
very broad. In fact, I have always been surprised by the breadth of inter-
ests of my students. I don’t know what you are going to do later in life, so I
have picked the topics that all of us in physics find fascinating. Some may
not be useful, but you just don’t know. Some of you are probably going to
be doctors, and you don’t know why I’m going to cover special relativity
or quantum mechanics. Well, if you’re a doctor and you have a patient
who’s running away from you at the speed of light, you’ll know what to
do. Or, if you’re a pediatrician, you will understand why your patient will
not sit still: the laws of quantummechanics don’t allow a very small object
to have a definite position and momentum. Whether or not you become a
physicist, you should certainly learn about these great strides in the human
attempt to understand the physical world.

Most textbooks are about 1,200 pages long, but when I learned
physics they were around 400 pages long. When I look around, I don’t
see any student whose head is three times as big as mine, so I know that
you cannot digest everything the books have. I take what I think are the
really essential parts and cover them in these lectures. So you need the lec-
tures to find out what’s in the syllabus and what’s not. If you don’t do that,

1



2 The Structure of Mechanics

there’s a danger you will learn something you don’t have to, and we don’t
want that, right?

To learn physics well, you have to do the problems. If you watch me
online doing things on the blackboard or working through derivations in
the book, it all looks very reasonable. It looks like you can do it yourself
and that you understand what is going on, but the only way you’re going
to find out is by actually doing problems. A fair number are available, with
their solutions, at http://oyc.yale.edu/physics/phys-200. You don’t have to
do them by yourself. That’s not how physics is done. I am now writing
a paper with two other people. My experimental colleagues write papers
with four hundred or even a thousand other people when engaged in the
big collider experiments like the ones in Geneva or Fermilab. It’s perfectly
okay to be part of a collaboration, but you have to make sure that you’re
pulling your weight, that everybody makes contributions to finding the
solution and understands it.

This calculus-based course assumes you know the rudiments of dif-
ferential and integral calculus, such as functions, derivatives, derivatives
of elementary functions, elementary integrals, changing variables in inte-
grals, and so on. Sometime later, I will deal with functions of more than
one variable, which I will briefly introduce to you, because that is not
a prerequisite. You have to know your trigonometry, to know what’s a
sine and what’s a cosine and some simple identities. You cannot say, “I
will look it up.” Your birthday and social security number are things you
look up; trigonometric functions and identities are what you know all the
time.

1.2 Kinematics and dynamics
We are going to be studyingNewtonianmechanics. Standing on the shoul-
ders of his predecessors, notably Galileo, Isaac Newton placed us on the
road to understanding all the mechanical phenomena for centuries until
the laws of electromagnetism were discovered, culminating in Maxwell’s
equations. Our concern here is mechanics, which is the motion of bil-
liard balls and trucks and marbles and whatnot. You will find out that the
laws of physics for this entire semester can be written down on the back
of an envelope. A central purpose of this course is to show you repeat-
edly that starting with those few laws, you can deduce everything. I would
encourage you to think the way physicists do, even if you don’t plan to be a
physicist. The easiest way to master this subject is to follow the reasoning I

http://oyc.yale.edu/physics/phys-200
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give you. That way, you don’t have to store too many things in your head.
Early on, when there are four or five formulas, you can memorize all of
them and you can try every one of them until something works, but, after
a couple of weeks, you will have hundreds of formulas, and you cannot
memorize all of them. You cannot resort to trial and error. You have to
know the logic.

The goal of physics is to predict the future given the present. We
will pick some part of the universe that we want to study and call it “the
system,” and we will ask, “What information do we need to know about
that system at the initial time, like right now, in order to be able to predict
its future evolution?” If I throw a piece of candy at you and you catch
it, that’s an example of Newtonian mechanics at work. What did I do? I
threw a piece of candy frommy hand, and the initial conditions are where
I released it and with what velocity. That’s what you see with your eyes.
You know it’s going to go up, it’s going to follow some kind of parabola,
and your hands get to the right place at the right time to receive it. That is
an example of Newtonian mechanics at work, and your brain performed
the necessary calculations effortlessly.

You only have to know the candy’s initial location and the initial
velocity. The fact that it was blue or red is not relevant. If I threw a gorilla
at you, its color and mood would not matter. These are things that do not
affect the physics. If a guy jumps off a tall building, we want to know when,
and with what speed, he will land. We don’t ask why this guy is ending it
all today; that is a question for the psych department. So we don’t answer
everything. We ask very limited questions about inanimate objects, and
we brag about how accurately we can predict the future.

The Newtonian procedure for predicting the future, given the
present, has two parts, kinematics and dynamics. Kinematics is a complete
description of the present. It’s a list of what you have to know about a sys-
tem right now. For example, if you’re talking about a piece of chalk, you
will want to know where it is and how fast it’s moving. Dynamics then
tells you why the chalk goes up, why it goes down, and so on. It comes
down due to the force of gravity. In kinematics, you don’t ask for the rea-
son behind anything. You simply want to describe things the way they are,
and then dynamics tells you how and why that description changes with
time.

I’m going to illustrate the idea of kinematics by following my pre-
ferred approach: starting with the simplest possible example and slowly
adding bells and whistles to make it more and more complicated. In the



4 The Structure of Mechanics

initial stages, some of you might say, “Well, I have seen this before, so
maybe there is nothing new here.” That may well be true. I don’t know
howmuch you have seen, but it is likely that the way you learned physics in
high school is different from the way professional physicists think about it.
Our priorities, and the things that we get excited about, are often different;
and the problems will be more difficult.

1.3 Average and instantaneous quantities
We are going to study an object that is a mathematical point. It has no
size. If you rotate it, it will look the same, unlike a potato, which will look
different upon rotation. It is not enough to just say where the potato is;
you have to say which way its nose is pointing. The study of such extended
bodies comes later. Right now, we want to study an entity that has no spa-
tial extent, a dot. It canmove around all over space.We’re going to simplify
that too. We’re going to take an entity that moves only along the x-axis. So
you can imagine a bead with a straight wire going through it, which allows
it to only slide back and forth. This is about the simplest thing. I cannot
reduce the number of dimensions. I cannot make the object simpler than
a mathematical point.

To describe what the point is doing, we pick an origin, call it x= 0,
and put some markers along the x-axis to measure distance. Then we will
say this guy is sitting at x= 5. Now, of course, we have to have units and
the unit for length is going to be the meter. The unit for time will be a
second. Sometimes I might not write the units, but I have earned the right
to do that and you haven’t. Everything has got to be in the right units. If
you don’t have the units, and if you say the answer is 42, then we don’t
know if you are right or wrong.

Back to the object. At a given instant, it’s got a location. We would
like to describe the object’s motion by plotting a graph of space versus
time. A typical graph would be something like Figure 1.1. Even though
the plot is going up and down, the object is moving horizontally, back
and forth along the spatial x-axis. When it is at A, it’s crossing the origin
from the left and going to the right. Later, at B, it is crossing back to the
left. In the language of calculus, x is a function of time, x = x(t), and the
graph corresponds to some generic function that doesn’t have a name. We
will also encounter functions that do have a name, like x(t)= t, x(t)= t2,
x(t)= sin t, cos t, and so on.
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Figure 1.1 Trajectory of a particle. The position, x(t), is measured vertically
and the time, t, is measured horizontally.

Consider v̄, the average velocity of an object, given by

v̄= x(t2)− x(t1)
t2 − t1

(1.1)

where t2 > t1 are two times between which we have chosen to average the
velocity. In the example in Figure 1.1, v̄< 0 for the indicated choice of t1
and t2 since the final x(t2) is less than the initial x(t1).

The average velocity may not tell you the whole story. For example,
if you started at x(t1) and at time t1 ended up at point C with the same
coordinate, the average velocity would be zero, which is the average you
would get if the particle had never moved!

The average acceleration, ā, involves a similar difference of velocities:

ā= v(t2)− v(t1)
t2 − t1

. (1.2)

Now for an important concept, the velocity at a given time or instan-
taneous velocity, v(t). Figure 1.1 shows some particle moving a distance
�x between times t and t + �t. The average velocity in that interval is
�x
�t . What you want is the velocity at time t. We all have an intuitive
notion of velocity right now. When you’re driving your car, if the needle
says 60 miles per hour, that’s your velocity at that instant. Though veloc-
ity seems to involve two different times in its very definition—the initial
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time and the final time—we want to talk about the velocity right now. That
is obtained by examining the position now and the position slightly later,
and taking the ratio of the change in position to the time elapsed between
the two events, while bringing the two points closer and closer in time.We
see in the figure that when we do this, both �x→ 0 and �t→ 0, but their
ratio becomes the tangent of the angle θ , shown in Figure 1.1. Thus the
velocity at the instant t is:

v(t)= lim
�t→0

�x
�t

= dx
dt

. (1.3)

Once you take one derivative, you can take any number of deriva-
tives. The derivative of the velocity is the acceleration, and we write it as
the second derivative of position:

a(t)= dv
dt

= d2x
dt2

. (1.4)

You are supposed to know the derivatives of simple functions like x(t)= tn
( dxdt = ntn−1), as well as derivatives of sines, cosines, logarithms, and expo-
nentials. If you don’t know them, you should fix that weakness before
proceeding.

1.4 Motion at constant acceleration
We are now going to focus on problems in which the acceleration a(t) is
just a constant denoted by a, with no time argument. This is not the most
general motion, but a very relevant one. When things fall near the sur-
face of the earth, they all have the same acceleration, a=−9.8ms−2 =−g.
If I tell you that a particle has a constant acceleration a, can you tell me
what the position x(t) is? Your job is to guess a function x(t) whose second
derivative is a. This is called integration, which is the opposite of differenti-
ation. Integration is not an algorithmic process like differentiation, though
it is governed by many rules that allow us to map a given problem into
others with a known solution. If I give you a function, you know how to
take the derivative: change the independent variable, find the change in
the function, divide by the change in the independent variable, take the
ratio as all changes approach zero. The opposite has to be done here. The
way we do that is we guess, and such guessing has been going on for three
hundred years, and we have become very good at it. The successful guesses
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are published as Table of Integrals. I have a copy of such a table at home,
at work, and even in my car in case there is a breakdown.

So, let me guess aloud. I want to find a function that reduces to the
number a when I take two derivatives. I know that each time I take a
derivative, I lose a power of t. In the end, I don’t want any powers of t.
It’s clear I have to start with a function that looks like t2. Well, unfortu-
nately, we know t2 is not the right answer, because the second derivative is
2, while I want to get a. So I multiply the original guess by 1

2a and I know
x(t)= 1

2at
2 will have a second derivative a.

This certainly describes a particle with an acceleration a. But is this
the most general answer? You all know that it is just one of many: for
example, I can add to this answer some number, say 96, and the answer
will still have the property that if you take two derivatives, you get the
same acceleration. Now 96 is a typical constant, so I’m going to give the
name c to that constant. We know from basic calculus that in finding a
function with a given derivative, you can always add a constant to any one
answer to get another answer. But if you only fix the second derivative,
you can also add anything with one power of t in it, because the extra part
will get wiped out when you take two derivatives. If you fixed only the
third derivative of the function, you can also add something quadratic in t
without changing the outcome.

So the most general expression for the position of a particle with
constant acceleration a is

x(t)= 1
2
at2 + bt+ c (1.5)

where b, like c, is a constant that can be anything.
Remember that x(t) in the figure describes a particle going from side

to side. I can also describe a particle going up and down. If I do that, I
would like to call the vertical coordinate y(t). You have to realize that in
calculus, the symbols that you call x and y are arbitrary. If you know the
second derivative of y to be a, then the answer is

y(t)= 1
2
at2 + bt+ c. (1.6)

Let me go back now to Eqn. 1.5. It is true, mathematically, you can add
bt + c as we did, but you have to ask yourself, “What am I doing as a
physicist when I add these two terms?” What am I supposed to do with
b and c? What value should I pick? Simply knowing that the particle has
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an acceleration a is not enough to tell you where the particle will be. Take
the case of a particle falling under gravity with acceleration −g. Then

y(t)= −1
2
gt2 + bt+ c. (1.7)

The formula describes every object falling under gravity, and each has its
own history. What’s different between one object and another object is the
initial height, y(0)≡ y0, and the initial velocity v(0)≡ v0. That’s what these
numbers b and c are going to tell us. To find c in Eqn. 1.7 put time t= 0 on
the right and the initial height of y0 on the left:

y0 = 0+ 0+ c (1.8)

which tells us c is just the initial coordinate. Feeding this into Eqn. 1.7 we
obtain

y(t)= −1
2
gt2 + bt+ y0. (1.9)

To use the information on the initial velocity, let us first find the velocity
associated with this trajectory:

v(t)= dy
dt

= −gt+ b (1.10)

and compare both sides at t= 0

v0 = b. (1.11)

Thus b is the initial velocity. Trading b and c for v0 and y0, which makes
their physical significance more transparent, we now write

y(t)= −1
2
gt2 + v0t+ y0. (1.12)

Likewise for the trajectory x(t) when the acceleration is some constant a,
the answer with specific initial position x0 and initial velocity v0 is

x(t)= 1
2
at2 + v0t+ x0. (1.13)
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In every situation where the body has an acceleration a, the location
has to have this form. So when I throw a candy and you catch it, you are
mentally estimating the initial position and velocity and computing the
trajectory and intercepting it with your hands. (The candy moves in three
spatial dimensions, but the idea is the same.)

Now, there is one other celebrated formula that relates v(t), the final
velocity at some time, to the initial velocity v0 and the distance traveled,
with no reference to time. The trick is to eliminate time from Eqn. 1.13.
Let us rewrite it as

x(t)− x0 = 1
2
at2 + v0t. (1.14)

Upon taking the time-derivative of both sides we get

v(t)= at+ v0 (1.15)

which may be solved for t:

t= v(t)− v0
a

. (1.16)

Feeding this into Eqn. 1.14 we find

x(t)− x0 = 1
2
a
[
v(t)− v0

a

]2

+ v0
[
v(t)− v0

a

]
(1.17)

= v2(t)− v20
2a

(1.18)

which is usually written as

v2 − v20 = 2a(x− x0) (1.19)

where v and x are assumed to be the values at some common generic
time t.
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1.5 Sample problem
We will work through one standard problem to convince ourselves that
we know how to apply these formulas and predict the future given the
present. Figure 1.2 shows a building of height y0 = 15m.

I am going to throw a rock with an initial velocity v0 = 10m/s from
the top. Notice I am measuring y from the ground. The rock is going to
go up to point T and come down as shown in Figure 1.2. You can ask me
any question you want about this rock, and I can give the answer. You can
ask me where it will be 9 seconds from now, how fast will it be moving 8
seconds from now, and so on. All I need are the two initial conditions y0
and v0 that are given. To make life simple, I will use a= −g = −10ms−2.
The position y(t) is known for all future times:

y= 15+ 10t− 5t2. (1.20)

Of course, you must be a little careful when you use this result. Say you
put t equal to 10, 000 years. What are you going to get? You’re going to
find y is some huge negative number. That reasoning is flawed because you
cannot use the formula once the rock hits the ground and the fundamental
premise that a=−10ms−2 becomes invalid. Now, if you had dug a hole of

Figure 1.2 From the top of a building of height y0 = 15m, I throw a rock with
an initial upward velocity of v0 = 10m/s. The dotted line represents the trajectory
continued back to earlier times.
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depth d where the rock was going to land, y could go down to −d. The
moral is that when applying a formula, you must bear in mind the terms
under which it was derived.

If you want to know the velocity at any time t, just take the derivative
of Eqn. 1.20:

v(t)= 10− 10t. (1.21)

Let me pick a few more trivial questions. What is the height ymax of the
turning point T in the figure? Eqn. 1.20 tells you y if you know t, but we
don’t know the time t∗ when it turns around. So you have to put in some-
thing else that you know, which is that the highest point occurs when it’s
neither going up nor coming down. So at the highest point v(t∗)=0. From
Eqn. 1.21

0= 10− 10t∗ which means t∗ = 1s. (1.22)

So we know that it will go up for one second and then turn around
and come back. Now we can find ymax:

ymax = y(t∗)= y(1)= 15+ 10− 5= 20m. (1.23)

When does it hit the ground? That is the same as asking when y= 0,
which is our origin. When y= 0,

0= 15+ 10t− 5t2. (1.24)

The solutions to this quadratic equation are

t= 3s or t= −1s. (1.25)

Why is it giving me a second solution? Can t be negative? First of all,
negative times should not bother anybody; t= 0 is when I set the clock to
zero, and I measured time forward, but yesterday would be t = −1 day,
right? So we don’t have any trouble with negative time; it is like the year
300 BC. The point is that this equation does not know that I went to a
building and launched a rock or anything. What does it know? It knows
that this particle had a height of y= 15 m and velocity v= 10 m/s at time
t=0, and it is falling under gravity with an acceleration of−10ms−2. That’s
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all it knows. If that’s all it knows, then in that scenario there is no build-
ing or anything else; it continues a trajectory both forward in time and
backward in time, and it says that one second before I set my clock to 0,
this particle would have been on the ground. What it means is that if you
had released a rock at y= 0 one second before I did with a certain speed
that we can calculate (v(−1) = 20m/s from Eqn. 1.21), your rock would
have ended up at the top of the building when I began my experiment,
with the same height y = 15m, and velocity v0 = 10 m/s. So sometimes
the extra solution is very interesting, and you should always listen to the
mathematics when you get extra solutions.

When Paul Dirac was looking for the energy of a particle in rela-
tivistic quantum mechanics, he found the energy E was connected to its
momentum p, massm, and velocity of light, c, by

E2 = p2c2 +m2c4, (1.26)

in accord with a relation we will encounter in relativity. Now, this
quadratic equation has two solutions:

E= ±√
c2p2 +m2c4. (1.27)

You may be tempted to keep the plus sign because you know energy
is not going to be negative. The particle’s moving, it’s got some energy and
that’s it. This is correct in classical mechanics, but in quantum mechanics
the mathematicians told Dirac, “You cannot ignore the negative energy
solution in quantum theory; the mathematics tells you it is there.” It turns
out the second solution, with negative energy, was telling us that if there
are particles, then there must be anti-particles, and the negative energy
particles, when properly interpreted, describe anti-particles of positive
energy.

So the equations are very smart. When you find some laws in mathe-
matical form, you have to follow themathematical consequences; you have
no choice. Here was Dirac, who was not looking for anti-particles. He was
trying to describe electrons, but the theory said there are two roots to the
quadratic equation and the second root is mathematically as significant as
the first one. In trying to accommodate and interpret it, Dirac was led to
the positron, the electron’s anti-particle.
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Returning to our problem, if you were only asking for the maximum
height ymax, and not the time t∗ when it got there, there is a shortcut using

v2 = v20 + 2a(y− y0). (1.28)

Using v= 0, v0 = 10m/s and a= −10ms−2 we find

ymax − y0 = 5m (1.29)

—that is, the rock reached a maximum height of 20m from the ground.
You can find the speed when it hits the ground (y= 0) using

v2 = 102 + 2 · (−10)(0− 15)= 400 which means v= ±20m/s.

(1.30)

The root we should take for when it hits the ground is of course −20m/s.
As mentioned earlier, the other root +20m/s is the speed with which it
should have been launched upward, from y = 0 at t = −1, to follow the
dotted trajectory in the figure.

1.6 Deriving v2 = v20 + 2a(x− x0) using calculus
I want to derive Eqn. 1.19, v2 = v20 + 2a(x − x0) in another way that
illustrates the judicious use of calculus.

Start with

dv
dt

= a (1.31)

and multiply both sides by v and write v= dx
dt in the right-hand side:

v
dv
dt

= a
dx
dt

. (1.32)

Now I’m going to do something that is viewed with suspicion, which is just
to cancel the dt on both sides. Although I agree that you’re not supposed
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to cancel that d in dy
dx , canceling the dt on both sides gives valid results if

interpreted carefully. Doing so here gives us

vdv= adx. (1.33)

This equation tells us that in an infinitesimal time interval
[
t, t+ dt

]
, the

variables v and x change by dv and dx, and these changes are related as
above in the limit dx,dv,dt → 0. Now the limit of dx → 0 or dv → 0 (as
compared to their ratio) is of course trivial, and Eqn. 1.33 reduces to 0=0.
However, the way we interpret and use Eqn. 1.33 is as follows. Suppose in
the finite time interval [t1, t2], the variable v changes from v1 to v2, and x
changes from x1 to x2. Let us divide the interval [t1, t2] into a very large
number N of equal sub-intervals of width dt, and let dx and dv be the
changes in x and v in the interval

[
t, t+ dt

]
. The relation between these

changes is given in Eqn. 1.33. If we sum up the N changes on both sides of
Eqn. 1.33 as N → ∞, the sums converge to nontrivial limits, namely the
corresponding integrals:∫ v2

v1

vdv= a
∫ x2

x1

dx (1.34)

1
2
v22 − 1

2
v21 = a(x2 − x1). (1.35)

Thus it must be understood that the two sides of a relation like Eqn.
1.33 are to be ultimately integrated between some limits to obtain a useful
equality.

Eqn. 1.19 follows upon setting

v2 = v, v1 = v0,x2 = x,x1 = x0. (1.36)



chapter 2

Motion in Higher Dimensions

2.1 Review
In the last chapter we took the simplest case, of a point particle moving
along the x-axis with a constant acceleration a. What is the fate of this
particle? The answer is that at any time t, the location of the particle is
given by

x(t)= x0 + v0t+ 1
2
at2, (2.1)

where x0 and v0 are its initial position and velocity. If you took the
derivative of this, you would get

v(t)= v0 + at. (2.2)

You can easily check, by taking one more derivative, that this particle
does indeed have a constant acceleration a. This equation, which gives
the velocity of the object at time t, in terms of its initial velocity and
acceleration can be inverted to give t in terms of v:

t= v− v0
a

. (2.3)

15
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Feeding this into Eqn. 2.1 we obtain the result that makes no reference to
time:

v2 = v20 + 2a(x− x0). (2.4)

It is understood v and x correspond to some common time.
I showed you in the end how we can use calculus to derive this result.

It is important to brush up on your calculus. When a student says, “I know
calculus,” sometimes that means the student knows it, and sometimes that
means he or she once met someone who did. One solution for that is to
get a copy of a textbook I wrote called Basic Training in Mathematics.
This is a little awkward: I don’t want to foist my book on you. On the
other hand, I don’t want to withhold relevant information. If you’re going
into any science that uses mathematics—chemistry, engineering, or even
economics—you should find the contents of that book useful. Don’t wait
for the movie: it is not coming.

2.2 Vectors in d = 2
The next difficult thing is to consider motion in higher dimensions.
Everything moves around in d = 3. However, I’m going to use only two
dimensions for most of the time. Whereas the difference between one
dimension and two is very great, that between two and higher dimensions
is not. Later we will encounter a few concepts that make sense in d = 3
but not d< 3. String theorists will tell you that actually we need 9 spatial
dimensions plus time to describe superstrings, which will be discussed in
depth in Chapter 3,498 of this book.

Picture some particle that’s traveling in the x− y plane as shown in
Figure 2.1. This is not an x versus t plot or a y versus t plot. It’s the actual
path the particle traces out on the x− y plane. You might say “Where is
time?” One way to mark time is to imagine the particle carries a clock
with it, and put markers every second. Four representative markers at t=
1, 2, 33, and 34 are shown. It obviously is going much slower between 33
and 34 than between 1 and 2.

The kinematics of this particle requires a pair of numbers x and y.
It’s more convenient to lump these into a single entity, called a vector. The
simplest context in which one can motivate a vector and the rules for deal-
ing with vectors is to look at movements in the plane. Let’s imagine that
when I went camping I walked for 5 km from the base camp on the first
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Figure 2.1 Path of a particle in d= 2. Equal intervals in time are indicated by
markers on the path numbered 1, 2, . . . , 33, and 34.

day and another 5 km on the second day. How far am I from the base
camp? You cannot answer that, even if I promised to move only along the
x-axis. It’s not enough to say I went 5 km. I have to tell you whether I went
to the right or to the left. So I could be 10 km, 0 km or −10 km from base.
If I say not just that I walked 5 km, but specified whether it was ±5 km,
that takes care of all ambiguity in one dimension.

But in d = 2 the options are not just left and right, but an infinity
of possible directions. For example, on the first day I could leave the base
camp at the origin and move along the arrow labeled A to arrive at the
point labeled 1 in Figure 2.2(a). The second hike is described by the arrow

Figure 2.2 Adding vectors. Part (a) shows how to add vectors and that
A+B=B+A. Part (b) illustrates the meaning of multiplying a vector by a
number (2 in this example) and the null vector 0.
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B, which starts where A ended and brings me to 2. These two arrows are
examples of vectors and I use them here for describing displacement, or
changes in position. Vectors can be used to describe many other physical
quantities, as we will see.

A vector is an arrow that has got a beginning and an end. This is why
one says a vector has a magnitude and a direction. The magnitude is how
long it is, and direction is its angle relative to some fixed direction, usually
the x-axis. When you refer to a vector A in your notes, you’re supposed to
put a little arrow on top like this: �A. In textbooks, vectors are in boldface:
A. If you don’t put an arrow on top or do not use boldface, you’re talk-
ing about just a number A. When applied to a vector A, A stands for its
length.

From Figure 2.2(a), we see that there is a very natural quantity that
you can call A+B. One day I moved by A and on the next by B. If I want
to do it all in one shot, what is the equivalent step I should take from the
start? It’s obvious that the bottom line of my two-day trip is this object C.
We will call thatA+B. It does represent the sum, in the same sense that if
I gave you 4 bucks and then I gave you 5 bucks, you have the equivalent of
a single payment of 9 bucks. Here, we are not talking about a single num-
ber, but a displacement in the plane, and C indeed represents an effective
displacement due to A and B.

So here is the rule for adding two vectors that comes from a study of
displacements: you draw the first one and at the end of that first one, you
begin the second one, and their sum starts at the beginning of the first and
ends at the end of the second.

You can verify, as illustrated in the figure, that A+B is the same as
B+Awhere you first drawB and fromwhereB ends you drawA. You will
end up with the same point, 2, as shown by the sum of the dotted arrows.

The next thing I want to do is to define the vector that plays the
role of the number 0, which has the property that when you add it to any
number, it gives the same number. The vector 0 that I want to call the zero
or null vector should have the property that when I add it to any vector,
I should get the same vector. So you can guess who it is: a vector of no
length. I cannot show you the 0. If you can see it, I’m doing something
wrong.

Look at part (b) of Figure 2.2. What if I draw A, then I add to it
another A to get A+A. You have to agree that if there’s any vector that
deserves to be called 2A, it is this guy,A, stretched to twice its length. Now
we have discovered a notion of multiplying a vector by a number. If you
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multiply it by 2, you get a vector twice as long and in the same direction.
Then we’re able to generalize that and say, if you multiply it by 2.6, you get
a vector 2.6 times as long. So multiplying a vector by a positive number
means to stretch it (or shrink it) by that factor.

Let us keep going. I want to think of a vector that I can call −A.
What do I expect of −A? I expect that if I add −A to A, I should get 0,
which plays the role of 0 among vectors. What should I add to A so I
get the null vector? It’s clear that you want to add a vector that looks like
−A in part (b) of Figure 2.2, because, if you go from the start of A to the
finish of −A, you end up where you started and you get this invisible 0
vector. So the minus vector is the same vector flipped over, pointing the
opposite way. That’s like −1 times a vector. Once you have got that, you
can do −7.3 times a vector: just take the vector, rescale it by 7.3 and flip it
over. Multiplying a vector by a number is called scalar multiplication, and
ordinary numbers are called scalars. You can do more complicated things.
You can take one vector, multiply it by one scalar, take another vector,
multiply that by another scalar, and add the two of them. We know what
all those operations mean now. You don’t have to memorize the rules for
all this. The only rule is: “Dowhat comes naturally.” Dowhat you normally
do with ordinary numbers.

2.3 Unit vectors
Let us go back to the same x − y plane. I’m going to introduce two very
special vectors. They are the unit vectors: i and j, pointing along the x and
y axes and of unit length, as shown in Figure 2.3. If I had a third axis per-
pendicular to the page, I would draw a k , but we don’t need that yet. I
claim I can write any vector you give me as a number Ax times i, plus a
number Ay times j. There’s nothing you can throw at me that lies in the
plane that I cannot describe as some multiple of i plus some multiple of j.
It’s intuitively clear, but I will just prove it beyond any doubt. Here is some
vectorA. It is clear from the figure that it is the sum of the dotted horizon-
tal vector and the dotted vertical vector, by the rules of vector addition.
The horizontal part, parallel to i, has to be a multiple of i. We know that
because we can stretch i by whatever factor we like. Call that factor Ax,
which happens to be positive in this example. It is called the x-component
of A or the projection of A along i or along the x-axis. The vertical
part is likewise jAy where Ay is the y-component of A, or the projection
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Figure 2.3 The unit vectors i and j and an arbitrary vector A= iAx + jAy built
out of them.

of A along j or along the y-axis. Therefore I have managed to write
A as

A= iAx + jAy. (2.5)

We refer to the pair i and j, in terms of which any vector can be
expressed, as basis vectors or as the basis.

If you gave me a particular vector A as an arrow of some length A
and orientation θ relative to the x-axis, what do I use for Ax and Ay? You
can see from trigonometry that

Ax =A cos θ (2.6)

Ay =A sin θ . (2.7)

Conversely, given the components, the length and angle are

A=
√
A2

x +A2
y (2.8)

θ = tan−1 Ay

Ax
. (2.9)

Eqns. 2.6 to Eqn. 2.9 will be invoked often. So please commit them to
memory.
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If you give me a pair of numbers, (Ax,Ay), that’s as good as giving
me this arrow, because I can find the length of the arrow by Pythago-
ras’ theorem and I can find the orientation from tan θ = Ay

Ax
. You have the

option of either working with the two components ofA or with the arrow.
In practice, most of the time we work with these two numbers, (Ax,Ay).
In particular, if we are describing a particle whose location is the position
vector r, then we write it in terms of its components as

r= ix+ jy. (2.10)

The changes in r are the displacement vectors and examples are A and B in
Figure 2.2 that described the two hikes.

I have not given you any other example of vectors besides the dis-
placement vector, but at the moment, we’ll define a vector to be any object
that looks like somemultiple of i plus somemultiple of j. If I tell you to add
two vectors A and B, you have got two options. You can draw the arrow
corresponding to A and attach to its end an arrow corresponding to B,
and then add them, as in Figure 2.2. But you can also do the bookkeeping
without drawing any pictures as follows:

A+B= iAx + jAy + iBx + jBy (2.11)

= i(Ax +Bx)+ j(Ay +By) (2.12)

so that the sum C is the vector with components (Ax +Bx,Ay +By).
In the above, I have used the fact that vectors can be added in any

order. So I grouped the things involving just i and likewise j. Then I argued
that since iAx and iBx are vectors along i, their sum is a vector of length
Ax +Bx also along i. I did the same for j.

In summary if

A+B=C (2.13)

then

Cx =Ax +Bx (2.14)

Cy =Ay +By (2.15)

which can be summarized as follows:
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To add two vectors, add their respective components.
An important result is thatA=B is possible only if Ax =Bx and Ay =

By. You cannot have two vectors equal without having exactly the same x
component and exactly the same y component. If two arrows are equal,
one cannot be longer in the x direction and correspondingly shorter in
the y direction. Everything has to match completely. The vector equation
A=B is actually a shorthand for two equations: Ax =Bx and Ay =By.

2.4 Choice of axes and basis vectors
I have in mind a vector whose components are 3 and 5. Can you draw
the vector for me? If you immediately said, “It is 3i+ 5j,” you’re making
the assumption that I am writing the vector in terms of i and j. I agree i
and j point along two natural directions. For most of us, given that the
blackboard or notebook is oriented this way, it is very natural to line up
our axes with it. But there is no reason why somebody else couldn’t come
along and say, “I want to use a different set of axes. The x and y axes or
i and j are not nailed in absolute space. They are human constructs and
we’re not wedded to any of them.”

Quite often, it’s natural to pick the axes in a certain way to suit the
problem. If you are studying a cannon ball launched from the earth, it
makes sense to pick the horizontal as the x axis and the vertical as the y
axis, but, mathematically, you don’t have to. Another set of rotated but
mutually perpendicular unit vectors i′ and j′ that form another basis can
also be rescaled and added to form any given vector A in the plane. For
example, when we study objects sliding down an inclined plane, we will
choose our axes parallel and perpendicular to the incline.

If I draw an arrow A on a blank sheet of paper, it has life of its own
without reference to any axes. The same vector A can be written either in
terms of i and j, which is the old basis, or in terms of i′ and j′, the new basis.
How do the components (A′

x,A′
y) in the new basis relate to the components

of the old basis? It’s a simple problem, but I just want to do it so you get
used to working with vectors.

For this we need the very busy Figure 2.4. It shows the old x and
y axes and the x′ and y′ axes obtained by rotating the x − y axes coun-
terclockwise by an angle φ. The unit vectors i′ and j′ are likewise rotated
versions of i and j. The components in the two bases are shown by dotted
lines and are simply the projections of A along the various axes. We want
to relate (A′

x,A′
y) to (Ax,Ay).
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Figure 2.4 The same vector A is written as iAx + jAy in one frame and as
i′A′

x + j′A′
y in the other. The dotted lines indicate the components in the two

frames.

First we express i′ and j′ in terms of i and j using the figure:

i′ = i cosφ + j sinφ (2.16)

j′ = j cosφ − i sinφ. (2.17)

Here are the details. The vector i′ has got a horizontal part, which is its
length, namely, 1, times cosφ, and a vertical part that is 1 times sinφ. How
about j′? It is at an angle φ relative to j. So its y-component is cosφ. Finally,
its x or horizontal component is (− sinφ), where the minus sign comes
because it is pointing to the left, along the negative x-axis. All that remains
now is to eliminate i′ and j′ in favor of i and j inA= i′A′

x + j′A′
y and equate

it to A written in terms of i and j:

A= i′A′
x + j′A′

y (2.18)

= (i cosφ + j sinφ)A′
x + (j cosφ − i sinφ)A′

y (2.19)

= i(A′
x cosφ −A′

y sinφ)+ j(A′
x sinφ +A′

y cosφ) (2.20)

= iAx + jAy. (2.21)
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When we equate the coefficients of i and j on the right-hand sides of Eqns.
2.20 and 2.21, we obtain the desired expression for Ax and Ay in terms of
A′

x and A′
y:

Ax =A′
x cosφ −A′

y sinφ (2.22)

Ay =A′
x sinφ +A′

y cosφ. (2.23)

So, you can pick your basis vectors any way you like and so can I.
Your basis is obtained from mine by a counterclockwise rotation by an
angle φ. The same entity A, the same arrow which has an existence of
its own, independent of axes, can be described by you and by me using
different components. Your components with primes on them are related
to mine by Eqns. 2.22 and 2.23. This is called the transformation law for
the vector components under rotation of basis vectors.

Now, you can ask the opposite question. How do I get A′
x and A′

y in
terms of Ax and Ay? The quickest way is to replace φ by −φ: if we go from
the unprimed to the primed system by a rotation φ, then rotation by −φ

is the way to go from the primed to the unprimed basis. The result, using
cos(−φ)= cosφ and sin(−φ)= − sinφ, is

A′
x =Ax cosφ +Ay sinφ (2.24)

A′
y = −Ax sinφ +Ay cosφ. (2.25)

That turns out to be the correct answer. But I want you to think about
another way to show this, which often seems to bother some students. If I
told you

3x+ 5y= 21 (2.26)

4x+ 6y= 26, (2.27)

you certainly know how to solve for x and y, right? You have got to juggle
the two equations, multiply the first by 6, the second by 5, and subtract to
isolate x and so on. Why is it when some of you see Eqns. 2.22 and 2.23,
you don’t realize it’s the same kind of problem, where you can multiply
Eqn. 2.22 by cosφ, Eqn. 2.23 by sinφ and add to isolate A′

x, for example?
For any particular value of φ, sinφ and cosφ are just some numbers. For
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example, if I pick φ = π

3 = 60◦, cosφ = 1
2 and sinφ = √

3
2 . The equations

become (for this angle)

Ax = 1
2
A′

x −
√
3
2

A′
y (2.28)

Ay =
√
3
2

A′
x + 1

2
A′

y. (2.29)

If you multiply the second by
√
3 and add it to the first you obtain

Ax + √
3Ay = 2A′

x which means (2.30)

A′
x = 1

2
Ax +

√
3
2

Ay (2.31)

=Ax cos
π

3
+Ay sin

π

3
(2.32)

in accordance with Eqn. 2.24. So go forth and treat sinφ and cosφ
as plain numbers and juggle Eqns. 2.22 and 2.23 to derive Eqns. 2.24
and 2.25. Along the way of course you will have to use identities like
sin2 φ + cos2 φ = 1.

The components of the vector depend on who is looking at the vec-
tor. However, there’s one quantity that’s going to come out the same, no
matter who is looking at the vector. It is the length of the vector. It is unaf-
fected by the rotation of axes. It is an invariant under rotations. You may
verify from Eqns. 2.24 and 2.25 that

(A
′
x)

2 + (A
′
y)

2 = (Ax cosφ +Ay sinφ)2 + (−Ax sinφ +Ay cosφ)2

(2.33)

=A2
x(cos

2 φ + sin2 φ)+A2
y(sin

2 φ + cos2 φ)
(2.34)

=A2
x +A2

y. (2.35)

The AxAy term is gone since its coefficient is 2(cosφ sinφ − sinφ cosφ).
I want to conclude with one important point. We learned that a vec-

tor is a quantity that has a magnitude and a direction. A more advanced
view of vectors is that they are a pair of numbers (in d= 2) which, under
rotation of axes, transform as per Eqns. 2.24 and 2.25. Anything that trans-
forms this way is called a vector. We already know about the position
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vector r and the changes in it, the displacement vectors (used in describing
the hike). How about more vectors? There turns out to be a very nice way
to produce vectors, given one vector like the position vector. And that’s
the following.

2.5 Derivatives of the position vector r
Let’s take a particle in the x− y plane that moves from r at time t to r+�r
at time t+ �t as in Figure 2.5. At time t its location is

r= i x(t)+ j y(t) (2.36)

and at t+ �t it is

r+ �r= i(x(t)+ �x)+ j(y(t)+ �y) so that, (2.37)

�r= i�x+ j�y and by the usual limiting process, (2.38)

v= lim
�t→0

�r
�t

= dr
dt

= i
dx
dt

+ j
dy
dt

. (2.39)

Figure 2.5 The particle moving along some curved path goes from r at time t to
r+�r at time t+�t. The velocity v is the limit of the ratio �r

�t as �t→ 0, and
thus parallel to �r, which eventually becomes tangent to the curve.
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When you move just along the x-axis, you wait a small time �t and
youmove by an amount�x, and their ratio gives the velocity in the appro-
priate limit. When you move in the plane, your position and its change are
both vectors.

Can you see why the derivative of a vector is also a vector? Because
�r, the difference in the vector between two times, is itself a vector. Divid-
ing it by �t is like multiplying by 1/�t, but we know that when we
multiply a vector by a number, we simply rescale the vector. So the limit
will be some arrow that we call the instantaneous velocity vector. It will be
tangential to the curve r(t) and point toward the instantaneous direction
of travel.

If I gave you the location of a particle as a function of time, you
can find its velocity by taking derivatives. For example, if I say a particle’s
location is

r= t2 i+ 9t3 j (2.40)

then its velocity at time t is

v= 2t i+ 27t2 j. (2.41)

You can take a derivative of the velocity or the second derivative of
the position to get the acceleration vector

a(t)= dv
dt

= d2r
dt2

= 2 i+ 54t j (in our example). (2.42)

You can then also multiply a by the mass m, which is a scalar unaf-
fected by rotations, to get a vector ma, which Newton’s law equates to
another vector, the force F.

Even though we started with one example of a vector r, we’re now
finding out that its derivative has to be a vector and the derivative of the
derivative is also a vector. When you learn relativity, you will find out
there’s again one vector that’s staring at you, the analog of the position vec-
tor, but with four components. But more vectors can be manufactured by
multiplying vectors by scalars (likemass) or taking derivatives with respect
to a parameter that plays the role analogous to time.

Here is an illustration of vector addition and differentiation. Imagine
an airplane in flight, as depicted in Figure 2.6. Let rpg be the location of a
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Figure 2.6 The position of the ball relative to (some origin on) the ground rbg is
the vector sum of the position of the ball relative to the (tail of the) plane, rbp, and
the position of (the tail of) the plane rpg relative to the ground.

fixed point in the airplane, say the tail, with respect to a fixed point on the
ground. Imagine that in the airplane there is a ball located at rbp as mea-
sured from this fixed point in the airplane. By vector addition the location
of the ball with respect to the ground is

rbg = rbp + rpg . (2.43)

Upon taking a time derivative and in the same notation, the law of
composition of velocities follows:

vbg = vbp + vpg , (2.44)

which says the velocity of the ball as seen by a person on the ground is the
velocity of the ball relative to the airplane plus the velocity of the airplane
relative to the ground. Taking yet another derivative we may relate the
accelerations:

abg = abp + apg . (2.45)

In the special case of a airplane moving at constant velocity, apg = 0. Then
we find

abg = apg , (2.46)



Motion in Higher Dimensions 29

which means, in this case, the acceleration of the ball is the same as mea-
sured by an observer on the ground and an observer on the airplane. These
results will be recalled in our study of relativity.

2.6 Application to circular motion
Now we’ll take a concrete problem where you will see how to take deriva-
tives to obtain very useful results. I’m going to write a particular case of
r(t):

r(t)=R(i cosωt+ j sinωt) (2.47)

where R and ω are constants. What is going on as a function of time?
What’s this particle doing? Look at the length squared of this vector:

r2x + r2y =R2(cos2 ωt+ sin2 ωt)=R2. (2.48)

That means the particle is going around in a circle of radius R as shown in
Figure 2.7. The x component is R cosωt and the y component is R sinωt

Figure 2.7 The particle moves along a circle of radius R with an angular
velocity ω.
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where ω is a fixed number. As t increases, this angle ωt increases and the
particle goes round and round. Let’s get a feeling for ω. As time increases,
the angle increases and we can ask how long it will take the particle to
come back to the starting point. Suppose the starting point was on the x-
axis. As t increases, ωt increases, and the particle will come back at a time
T such that

ωT = 2π . (2.49)

Thus ω is related to the time period T by

ω = 2π
T

= 2π f (2.50)

where f = 1
T is the frequency or number of cycles per second. It is measured

in Hz, which stands for Hertz. Since in every cycle the particle rotates
by 2π , and it completes f revolutions per second, ω = 2π f is called the
angular velocity and measures the radians swept out per second.

Notice that in equating a full cycle to 2π , I am using radians and
not degree to measure angles. For those who have not seen a radian, it’s
just another way to measure angles, wherein a full circle, which we used to
think was worth 360◦, now equals 2π radians. Since 2π � 6.3, a radian
is roughly 60◦. You will see the advantages of using radians later. For
now just remember that a half circle, instead of being 180◦, will now be
π radians, and a quarter circle will be π

2 , and so forth.
How fast is this particle moving? It’s going around a circle, the angle

is increasing at a steady rate ω, and so we know it’s going at a steady speed.
Let us verify that by computing the velocity

v(t)= dr(t)
dt

(2.51)

=R
(
i
d cosωt

dt
+ j

d sinωt
dt

)
(2.52)

=Rω(−i sinωt+ j cosωt). (2.53)

At t = 0, the velocity is v = Rω cos 0 j = Rωj, so it is moving straight up
at speed v = ωR. You may verify that it has the velocity as shown in the
figure at later times. The magnitude of the velocity is always ωR although
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the direction is changing. From the figure we see it remains tangential to
the circle. The constancy of the speed v at an arbitrary time may also be
established by computing

v2 = (ωR)2(sin2 ωt+ cos2 ωt)= (ωR)2 (2.54)

v= ωR. (2.55)

Remember the tangential velocity is v= ωR.
Let’s take the derivative of the derivative to find the acceleration a

and its magnitude:

a= −ω2R(i cosωt+ j sinωt)= −ω2r (2.56)

a= ω2R. (2.57)

That’s a very important result. It tells you that when a particle moves
in a circle of radius R at constant speed v, it has an acceleration, called the
centripetal acceleration, directed toward the center and of magnitude

a= ω2R= (ωR)2

R
= v2

R
. (2.58)

This acceleration at constant speed reflects the fact that velocity is a vec-
tor and you can change the velocity vector by changing its direction. For
example, if a car is going on a racetrack and the speedometer says 60 miles
per hour, the lay person’s view is that the car is not accelerating. But you
will say from now on that it indeed has an acceleration equal to v2

R even
though no one’s stepping on the accelerator or the brake.

Suppose the particle is not moving fully around a circle but travers-
ing just a quarter of the circle. When it is traveling the quarter of a circle, it
has the same acceleration directed toward the center of that quarter circle.
In other words, you don’t have to be moving actually in a circle to have the
acceleration v2

R . At any instant, the curve you are following can be locally
approximated as part of some circle, and, in the formula a= v2

R , the accel-
eration is directed toward the center of that circle, R is its radius and v the
instantaneous tangential velocity.



32 Motion in Higher Dimensions

2.7 Projectile motion
I want to consider a particle for which r0 and v0 are the position and
velocity at t = 0 and which has a constant vector acceleration a. What
is its location at all future times? By analogy with what I did in one
dimension

r(t)= r0 + v0t+ 1
2
at2. (2.59)

Once you know r0 and v0, you can find the position of the object at all
future times. Let’s take one simple example. Somebody in a car has decided
to drive off a cliff as shown in Figure 2.8(a). We want to know when and
where the car hits the ground.

We pick our origin (0, 0) at the foot of the cliff. Let the height of the
cliff be h. The car is traveling with some initial speed v0x in the horizontal
direction. Equation 2.59 is really a pair of equations, one along x and one
along y with a=−jg, v0 = v0xi, and r0 =hj. Separating out the components

x(t)= 0+ v0xt+ 0 (2.60)

y(t)= h+ 0− 1
2
gt2. (2.61)

Notice that the evolution of the two coordinates is completely indepen-
dent. The time t∗ when the car hits the ground (y = 0) satisfies the

Figure 2.8 (a) A car flies off the cliff at (0,h) and lands at (d, 0). (b) A projectile
is launched with initial velocity v0 = (i+√

3j)m/s. The range is R= 0.35m and
the maximum height reached is ymax = 0.15m.
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equation

0= h− 1
2
gt∗2 (2.62)

t∗ =
√
2h
g
. (2.63)

This is exactly how long it would take to hit the ground had it simply top-
pled over the edge from rest. The horizontal velocity does not delay the
crash one bit (unless you take into account the curvature of the earth). As
to where the car lands, the location is given by (x(t∗), 0)= (d, 0) where

d= v0xt∗ = v0x

√
2h
g
. (2.64)

Finally the problem of projectile motion is depicted in Figure 2.8(b).
You fire a projectile from (0, 0) with some velocity v0 at some angle θ . It
will go up and then come down, moving horizontally at the same time.
Where is it going to land? What is the maximum height ymax to which it
rises? With what speed will it hit the ground? At what angle should you
fire your projectile so it will go the furthest?

Here are the equations that contain all the answers, namely Eqn. 2.59
written out in component form:

x(t)= 0+ v0xt= v0 cos θ · t (2.65)

y(t)= 0+ v0yt− 1
2
gt2 = v0 sin θ · t− 1

2
gt2. (2.66)

You can solve them but it is good to have an idea of what’s coming.
Imagine you have this monster cannon to fire things. It has a fixed muzzle
speed, v0, but allows you to fire at any angle. How do you aim it so the ball
goes as far as possible? There are two schools of thought. One says, aim at
your enemy and fire horizontally. Then the ball lands on your foot because
it has zero time of flight (assuming the cannon is at zero height). The other
school says, maximize the time of flight and point the cannon vertically. It
goes up, stays in the air for a very long time, and lands on your head. Then
it hits you: the correct answer is somewhere between 0 and 90◦ = π

2 . The
naive guess 45◦ = π

4 turns out to be correct.
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Now I want to show you how to use the equations to prove this.
What’s the strategy for finding the range? You see how long the ball is
in the air and multiply that by the constant horizontal velocity v0 cos θ .
Again, let t∗ be the time when it hits the ground. The y-equation

0= t∗
(
v0 sin θ − 1

2
gt∗

)
(2.67)

has two solutions:

t∗ = 0,
2v0 sin θ

g
. (2.68)

So the cannon ball is on the ground on two occasions. One is initially.
We are not interested in that trivial solution. If the time you are interested
in is t∗ �= 0, you’re allowed to divide both sides of Eqn. 2.67 by it and get

t∗ = 2v0 sin θ

g
(2.69)

and the range

R= v0xt∗ = v0 cos θ · t∗ = 2v20 sin θ cos θ
g

= v20 sin 2θ
g

(2.70)

using sin 2θ = 2 sin θ cos θ . For the greatest range we must make sin 2θ as
large as possible, which occurs for 2θ = π

2 or θ = π

4 = 45◦. For any smaller
range you will find there are two possible angles that work since sin(2θ)=
sin(π − 2θ).

The maximum height is the y-coordinate at the half-way time 1
2 t

∗ =
v0 sin θ

g :

ymax = 0+ v0y
1
2
t∗ − 1

2
g
(
1
2
t∗
)2

= (v0 sin θ)
v0 sin θ

g
− 1

2
g
[
v0 sin θ

g

]2

= v20 sin
2 θ

2g
. (2.71)
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We could equally well find the half-time 1
2 t

∗ by setting the vertical
velocity to zero:

0= v0 sin θ − g
t∗

2
. (2.72)

How about the velocity at impact? The horizontal part is of course
v0 cos θ since there is no acceleration in that direction. The vertical part
starts out at v0 sin θ and decreases at a rate g:

vy = v0 sin θ − gt (2.73)

so that at t∗ it has a value

v(t∗)= v0 sin θ − g
2v0 sin θ

g
= −v0 sin θ , (2.74)

which is just the opposite of the initial vertical speed. The magnitude of
the final velocity is the same as the initial one since reversing one of the
components of v does not change its length.

There are endless variations. You pick some point off the ground
at (X,Y) and want the projectile to arrive there. You are given the launch
angle θ and have to find the launch speed v0. How do you do that problem?
You assume the projectile arrives at the destination (X,Y) at some time t∗.
You go to the x equation and demand that x(t∗)=X and solve for t∗. Plug
this time into y and demand y(t∗)=Y and solve for v0.

Sometimes the problems are embellished to make everyone feel
involved. For example, instead of a ball dropping, nowadays there’s a mon-
key or horse that is falling down, so people in life sciences can say, “Hey,
we should learn physics since it seems to have applications to our sub-
ject.” All those gyrating creatures are very interesting and look great in
color, but, in the end, you are told, “Treat the horse as a point particle.”
If you’re going to treat the horse as a point particle, why include its color
picture? But I agree there are times when only a horse will do. When the
Godfather wants to get the contract for Johnny Fontaine, he doesn’t tell
his consigliere, “Hey, Tom, put half a point particle on Jack’s bed.” That
would have been a disastrous approximation.

By the way, don’t forget to treat the falling car in Figure 2.8 as a point
particle.



chapter 3

Newton’s Laws I

3.1 Introduction to Newton’s laws of motion
This is a big day in your life: you are going to learn Newton’s laws, in terms
of which you can understand and explain a very large number of phenom-
ena. It’s really amazing that so much information can be condensed into
three laws.

Your reaction may be that you have already seen Newton’s laws, that
you have applied them in school. I realized fairly late in life that they are
more subtle than I first imagined. It’s one thing to plug in all the numbers
and say, “I knowNewton’s laws and I know how they work.” But as you get
older and you have more spare time, you think about what you are doing.
This is something I have had the luxury of doing, and I have realized the
laws are more tricky. I want to share some of that understanding.

The first law, or the law of inertia, says, “If a body has no forces act-
ing on it, it will maintain its velocity.” In other words, in the absence of
external forces, a body at rest will remain at rest and a body in motion will
retain its velocity. It is not surprising that a body at rest will remain so if
not acted upon by a force. We see that all the time. I place an eraser on the
table. It will stay put unless I do something to it.

The great discovery that Galileo and Newton made was that you
don’t need a force for a body to move at constant velocity. You don’t
see that in daily life—everything seems to come to rest unless you keep
pushing or pulling it. But we all know that the reason things come to a
halt is that there is always some friction or drag bringing them to rest.
If you take a hockey puck on an air cushion and give it a push, it seems

36
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it can travel for a very long time. Galileo and Newton abstracted from
this an ideal situation in which friction was totally eliminated and the
bodies kept moving forever with no help. If you go to outer space, you
can check for yourself that, if you throw something, it will go on forever
without your intervention. It’s in the nature of things to retain a con-
stant velocity. It is not velocity, but a change in velocity, that calls for a
force.

The law of inertia is not valid for everybody. I’ll give an example
from your own life. You go on an airplane and then, after the usual delays,
the plane begins to accelerate down the runway. At that time, if you leave
anything on the floor, you know it’s no longer yours. It’s going to slide
backward and the physicist in the last row is going to collect everything.
That is an example of a frame in which the law of inertia does not work:
bodies accelerate with no applied force. Once the plane stops accelerating,
the law of inertia becomes operative. It fails when it decelerates during
landing when everything now slides to the front.

If Newton’s law of inertia works for you, you are called an inertial
observer and your frame of reference is called an inertial frame. The plane
that’s taking off is not an inertial frame, but the one that is cruising is. The
earth seems to be a pretty good inertial frame, because if you leave some-
thing at some place, it just stays there—unless the thing is your iPod and
the place is Grand Central Station. But this is not a violation of Newton’s
laws, just the laws of New York City.

Although not every frame is inertial, there are plenty of inertial
frames to go around. If you find even one inertial observer, namely one
person for whom this law of inertia works, I can find for you an infi-
nite number of other people for whom this is true. Who are these people?
They are people moving at constant velocity with respect to the first iner-
tial observer. Suppose you are in a train and you’re moving past me with
velocity u, and we both look at some object with no forces on it. We will
not agree on its velocity or the velocity of anything: things at rest for me
will be moving backward for you at velocity −u, and everything at rest in
your train will be moving at velocity u according to me. In short, you and
I will differ on the velocity of any object by our relative velocity. But we
will agree on the acceleration of any object since it is unaffected by adding a
constant to velocity. Adding a constant velocity to objects does not change
the fact that those which were maintaining constant velocity still maintain
a constant (but different) velocity. Thus neither is every observer inertial,
nor is an inertial observer unique.
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You must know the earth is not precisely inertial. The earth has
an acceleration. Can you see why? Yes, it’s spinning around itself and
going around the sun, both of which constitute accelerated motion. But
the acceleration due to motion around the sun at speed v and radius r is
a= v2

r = .006 ms−2, which is a very small number, say compared to g. The
same goes for the acceleration due to the earth’s rotation about its own
axis, which is roughly .03ms−2 or roughly g/300 at the equator.

The first law might seem tautological because we never see anything
that retains its velocity forever, and every time we see velocity change we
say that a force is acting. But it’s not a big hoax, because you can set up
experiments in free space, far from everything, where objects will, in fact,
maintain their velocity forever. It’s a useful concept even on the earth,
because the earth is approximately inertial.

3.2 Newton’s second law
Newton’s second law says, “If a body has an acceleration a, then you need
a force

F=ma (3.1)

to produce that acceleration.”
In this chapter we will focus on one dimension and write

F=ma (3.2)

where F and a are along the x-axis.
A few words about units. Acceleration is measured in ms−2. Mass is

measured in kilograms or kg. So force has units kilogram meters per sec-
ond squared. But we get tired of saying that long expression, so we call that
a Newton, denoted by N. If you had invented mechanics, we’d be calling it
by your name, but it is too late for you now.

Here is a typical problem that you may have solved in your first pass
at Newton’s laws. A force of 36N is acting on a mass 4 kg. What’s the accel-
eration? You divide 36 by 4 and you find it is a= 9 ms−2. You say, “Okay,
I know Newton’s laws.”

It’s actually more complicated than that. Take yourself back to the
seventeenth century, when Newton was inventing these laws. You have an
intuitive definition of force: when somebody pushes or pulls an object we
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say a force is acting on it. Suddenly, you are told there is a law F = ma.
Are you better off in any way? Can you do anything with this law? What
does it help you predict? Can you even tell if it’s true? Here’s a body that’s
moving. Is Newton right? How are we going to check? Well, you want to
measure the left-hand side and you want to measure the right-hand side.
If they’re equal, you will say the law is working. What can you measure in
this equation?

Let’s start with acceleration. What’s your plan for measuring accel-
eration? What instruments will you need? If you say a watch and ruler,
that would be correct provided by ruler you don’t mean Queen Elizabeth.
Here is your ruler and here is a Rolex. Tell me exactly how you plan to
measure acceleration. Everyone seems to know the answer. First, let it
go a little distance, and take the distance over time. That gives you the
velocity now. Let it go a little more, and repeat the velocity measurement.
Take the difference of the two velocities and divide by the difference of the
two times, and you have got the acceleration. Since the body has moved a
finite distance in a finite time, this gives the average acceleration. You want
to make these three positional measurements more and more rapidly. In
the end, as all the time intervals shrink to 0, you will measure what you
can say is the acceleration now, the second derivative d2x

dt2 = a(t) defined in
calculus.

Back to testing if what Newton told you is right: You see an object in
motion, youmeasure a, and you get a certain numerical value, say 10ms−2.
But that’s not yet testing the equation, because you still have to find F and
m. What’s the mass of this object? One common idea is to take a standard
mass and balance the unknownmass on a seesaw by adjusting its position.
But suppose you were in outer space. There’s no gravity. Then the seesaw
will balance even if you put a potato on one side and an elephant on the
other side. What you are doing now is appealing to the notion of mass as
something that’s related to the pull of the earth on the object. You have got
to go back and wipe out everything you know. If F =ma is all you have,
there is no mention of the earth in these equations. You only know how
to measure a, but not the other two. So you have a problem. You cannot
say that since F=ma, it follows thatm= F

a ; that is circular reasoning since
you have not told me how to measure F either.

Let me give you a hint. How do we decide how long a meter is? You
seem to know that it is arbitrary. A meter is not deduced from anything.
Napoleon or somebody said, “The size of my ego is one meter.” That’s a
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new unit of length. Seriously, at the National Bureau of Standards there
used to be a rod made of some special alloy in a glass case, and that defined
the meter. There are fancier definitions now, but let us stick to this simple
one. (See http://physics.nist.gov/cuu/Units/meter.html formore details on
definitions of units.) Then I ask you, “What is two meters and what is
three meters?” We have ways of handling that. You take the meter and
attach it to a duplicate, and that’s two meters. You can cut it in half, using
dividers and compasses; you can split the meter into any fractions you like.
Likewise for mass, we will take a chunk of some material and we will call
it a kilogram. That is a matter of convention, just like one second is some
convention.

I’m going to give you a glass case that contains a block of some metal
defined as one kilogram. Then I give you another object, an elephant.
What’s the mass of the elephant? Here is a hint: I also give you a spring.We
cannot do the seesaw experiment because it requires gravity. A spring, on
the other hand, will exert a force even in outer space. Here’s what we do.
We hook one end of the spring to a wall and we pull the other end from
its equilibrium position by some amount and we attach the one-kilogram
mass to it.We don’t knowwhat force it exerts, but it will not matter.We let
it go and measure the initial acceleration, a1. Then we bring the elephant
(another point particle) of unknown mass mE, pull the spring by the same
amount so it can exert the same force, and find the acceleration aE of the
elephant. Assuming only that the same extension produces the same force
in the two cases, we have

1 · a1 =mE aE (3.3)

mE = 1 · a1
aM

. (3.4)

Once you have the mass of the elephant you can use it to measure
any other massmo by using

mo =mE
aE
ao

(3.5)

where aE and ao are produced by the same force.
There are subtleties even here. For example, how do we know that

when we pull the spring the second time with the elephant, it will exert
the same force as the first time when the 1 kg was attached to it? After all,

http://physics.nist.gov/cuu/Units/meter.html
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springs wear out. That’s why you change the shock absorbers in your car.
So first, we have to make sure the spring exerts a fixed force every time
(for a given extension). How are we going to check that? We don’t have
the definition of force yet. But we can do the following. We pull the one-
kilogram mass and let it go, and we note the acceleration. Then, we pull it
again, by the same amount, and let it go; we do it ten times. If every time
we get the same acceleration, we are convinced this is a reliable spring that
is producing the same force under the same conditions. On the eleventh
time we pull the spring and attach the elephant. With some degree of con-
fidence, we can say we are applying the same force on the elephant as on
the one-kilogram mass.

Why is this discussion so important? Because you need to know that
everything you or I write down in the notebook or on the blackboard as
a symbol is actually a measurable quantity, or, as they say in France, Les
Mesurables. You should know at all times how you measure anything that
enters your theory or calculation. If not, you are just doingmath or playing
with symbols. You are not doing physics.

This discussion also tells you that the mass of an object has nothing
to do with gravitation but with howmuch it hates to accelerate in response
to a force. Newton tells you forces cause acceleration. But the acceleration
is not the same on different objects for a given force. Certain objects resist
it more than others. They are said to have a bigger mass. We can be pre-
cise about how much bigger by saying, “If the acceleration of a body in
response to a given force is 1

10 that of a 1-kilogram mass, then the mass of
the body is 10 kilograms.”

3.3 Two halves of the second law
We have seen how all objects can be attributed a mass. Now go back to
the spring. I want to know how much force F(x) it exerts when I pull it by
a certain amount x, which is measured from the point when the spring is
neither compressed nor expanded as shown in Figure 3.1. If x is positive,
it means the spring is stretched; if it’s negative, it means the spring is com-
pressed. Now I can measure F(x) for any given x because I can measure the
acceleration it produces on a known mass m and use F = ma. So I pull it
by various amounts, measure F, and draw a graph. It will be a straight line
with some slope −k for small values of x:

F= −kx (3.6)
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Figure 3.1 (Left) The massm is attached to a spring (dotted line) of force
constant k. The other end of the spring is attached to a wall. The displacement x
is measured from the equilibrium position of the spring. (Right) The force F(x)
as a function of x.

where k is called the force constant. The minus sign says, if you pull it to
the right, so that x is positive, the spring will exert a force in the negative
direction. If you compress it, then x is negative and the spring will exert
a force in the direction of increasing x. All springs will have a graph like
this for small enough distortions from equilibrium. Beyond that the line
may bend or the spring may even snap. In any case, we now have a way to
measure k for any given spring in the regime when F(x) is linear in x.

I want you to think about the two equations F=ma and F= −kx. If
the first one is Newton’s law, then what’s the other one? What’s the differ-
ence between saying F = −kx and F =ma? Let me paraphrase the answer
I usually hear from students: “F =ma is universally true, independent of
the nature of the force acting on a body, while F = −kx is only describing
the spring.” That is essentially correct, and I will now elaborate.

The cycle of Newtonian dynamics has two parts.
The first one is to find the acceleration a of a body, the force on

which is somehow known, using a= F
m . The force F is the cause and the

acceleration a is the effect and a= F
m is the precise relation between them.

The second is to deduce experimentally what force F will be acting
on a given body at any given time. For example, if a mass is attached to
a spring that has been extended by x, we must do the experiment to find
that the spring force is F = −kx. Newton does not tell us that. He never
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tells us what F is in a given context, with the exception of gravity where
he also furnished the left-hand side of F = ma with his law of universal
gravitation. If two like charges repel each other, we need Coulomb’s law
to tell us that the force varies as 1/r2. The nuclear force, say between a
proton and neutron, falls exponentially with distance. Surely Newton did
not tell us this. But once we have experimentally determined a new force
F, we can use his second law to deduce the a it would produce, assuming
classical mechanics is applicable.

When a new force, like the electric force, is discovered, the F due to
it can be measured in one of two ways. One is to compare it to a known
force that balances it. For example, to find how the repulsive force between
two charged bodies varies with distance, we can glue them to the two ends
of a spring of known k and measure by how much it is extended in equi-
librium. Another way is to release the charges (of known mass) from rest
with some separation, measure the initial acceleration of either, and then
computema.

So physicists are busy either finding a from F (as when computing
the orbit of a satellite given the force law for gravity) or F from a (as when
stretching springs to find k or dropping apples from trees to measure the
force of gravity).

Now, a small digression on gravity. Consider a body near the surface
of the earth, the force of gravity on it being F = −mg where g = 9.8ms−2.
That’s something you find out by dropping things from a tower. Consider
a in the field of gravity. We find it is

a= −mg
m

= −g (3.7)

for all bodies. That’s a very remarkable property of the gravitational force—
the cancellation of m. If you look at the electrical force, on the proton
and electron for example, it’s not proportional to the mass of either object.
It’s proportional to the electric charge of the object. Therefore, when you
divide by the mass to get the acceleration, the response of different bodies
is inversely proportional to the mass. But gravity has a remarkable prop-
erty that the pull of the earth is itself proportional to the mass of the object.
So, when you divide by the same m to find a, it cancels and everything
falls at the same rate on the surface of the earth. In fact, that is a property
of gravitational fields anywhere, even in outer space. Everything—gold,
silver, diamonds, particles, elephants—all accelerate the same way. This
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remarkable fact was known for a long time, but it literally took an Einstein
to figure out why nature behaves in that fashion, why the two masses asso-
ciated with a body are equal. One is the inertial mass, which is how much
a body hates velocity change, how hard it resists acceleration, the mass
in F=ma. That quality can be measured far from planets, far from every-
thing. The other is gravitational mass, which is themeasure of howmuch it
is attracted to the earth or any other body. There’s no reason why these two
attributes had to be equal. Is this just an accident or is it part of a big pic-
ture? It turns out that it’s part of a big picture called the general theory of
relativity. Here is Albert Einstein’s description of gravity. Imagine a stream
and some kids dropping various leaves or paper boats in it. Nomatter what
they drop (within reason) the object’s trajectory will follow the flow lines
of the water. The path of all objects is predetermined. This is what gravity
does to spacetime—it defines trajectories for objects: anything you release
will follow the trajectory etched in spacetime. If you oppose this flow, like
a kid holding on to his paper boat, the resistance you feel is the weight of
that object. What determines the flow lines at each point? The matter and
energy in the universe, as dictated by Einstein’s equations.

Here’s a simple example of a complete Newtonian problem. A mass
is attached to a spring. It is pulled by a certain amount x and then released.
What is it going to do? Newton says F=ma, which in this case becomes

m
d2x
dt2

= −kx. (3.8)

To proceed, we must know m and k, and I have already discussed how
these are measured. Now we have a mathematically complete problem:
find the function x(t) whose second derivative is equal to − k

m times the
function x(t). Then, we go to the math department and say, “What’s the
solution to this equation?” This is a problem in mathematics and the
answer—that it’s going to be oscillating back and forth—will come from
doing the math. Later we will do some of that math ourselves. For now, I
am simply pointing out that once we have stated the laws in mathematical
form, solving for the consequences is a mathematical problem.

Here is another example. Newton discovers a force of gravity acting
on everything. Here’s the sun in Figure 3.2, orbited by a planet. At this
instant, the planet may be moving at some velocity v. The acceleration of
the planet is due to the force of gravity between the planet and the sun,
which Newton tells you is directed toward the sun, proportional to the
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Figure 3.2 The planet is separated from the sun by r. The force F on it was
determined to be always opposite to r, i.e., pointing toward the sun and falling as
1
r2 . (The force is slightly offset from r for clarity.)

product of the two masses, and which decreases with distance as 1
r2
. This

completely specifies the left-hand side of F=ma. That’s the law of universal
gravitation. Then again, because the second derivative of the position is
connected to the position, you go to the mathematicians and say, “What
orbit is the solution to that equation?” and they will tell you it is an ellipse.

Of course, Newton did not have mathematicians he could go to. He
was the math guy. Not only did he formulate laws of gravitation, he also
invented calculus and figured out how to solve the differential equation
that came out of his F=ma. There has been no one like him. Here I speak
of Newton the scientist; Newton the man had many flaws.

3.4 Newton’s third law
The third law says that if there are two bodies, called 1 and 2, then F12, the
force on 1 due to 2, is minus the force on 2 due to 1:

F12 = −F21. (3.9)

Action and reaction are equal and opposite. Coulomb’s law and the law of
gravity both have this feature. You may assume it for every force in this
course.

We are now going to put the laws to work. You have to be good at
writing down the forces acting on a body. That’s what all these problems
are going to boil down to.Do not forget the existing forces and do not make
up your own forces. I have seen both happen. Every force, with the excep-
tion of gravity, is a force due to direct contact with the body: a rope is
pulling it, a rod is pushing it, you are pushing it, you are pulling it, one
block is pushing another, and so on. Gravity is one force that acts on a
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body without the source of the force actually touching it. (Later electro-
magnetic forces can come in, but not in this book.) That’s it. Once more
with feeling: With the exception of gravity all forces we will discuss in this
book will be contact forces.

We are going to begin with simple problems in mechanics. They will
get progressively more difficult. Let’s start with our first triumph. There
is some object of mass 5 kilograms and I apply 10 N on it. What’s the
acceleration? Everyone knows it is a= 10

5 =2ms−2. Youmay have done this
before, but I hope now you understand how we know the force is 10N and
how we know the mass is 5 kg. The algebra is, of course, very trivial here.

Next, I have a 3-kg block placed against a 2-kg block, and I’m push-
ing the former with 10 N as shown in Figure 3.3. I want to know what
happens. One way is just to use your common sense and realize that these
two blocks are going to move together. You know intuitively that if they
move together, they will behave like an object of mass 5 kg and the acceler-
ation will again be 2ms−2. What about gravity? What about the force due
to the table on which the masses are moving? Imagine that this occurs in
outer space where there is no gravity and no need for a table.

There’s another way to do this problem, which is to draw free-body
diagrams. Here you can pick any one body that you like and apply F=ma
to it, provided you identify all the forces acting on that body. We’ll first
pick the 3-kg mass. My 10 N is certainly acting on it. What other force is
acting? The force of the 2 kg, which has a magnitude f acting to the left.

Figure 3.3 Top: A force of 10 N acts on the two blocks, viewed as a single
entity. Bottom: The free-body diagram for the two blocks showing all the forces
on each block. Notice the third law is being invoked.
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Do not include the force exerted by the 3 kg on the 2 kg. Next consider
the 2-kg mass. There is the same f , but acting to the right by the third law.
Here is the mistake some people make: they add to that the 10 Newtons.
They feel that the 2 kg will surely feel it since that is what is behind all the
acceleration. That will be a mistake. That’s an example of adding a force
that you should not be adding. The only force acting on this little guy is
this little f .

Now we do F=ma for these two guys:

10− f = 3a (3.10)

f = 2a (3.11)

10= 5a upon adding the previous two equations (3.12)

a= 2. (3.13)

Notice I’m using the same acceleration for both. I know that if the
second mass accelerated faster than the first one, then the picture is com-
pletely wrong; it will not feel the force due to the first. If it accelerated less
than the first, the first would have plowed into the second. Since that also
cannot happen, they’re moving with the same acceleration. There’s only
one unknown a. Once you got a = 2, you can go back to Eqn. 3.11 and
obtain f = 4 N. Now we know the full story: 4 N acting on 2 kg gives it an
acceleration of 2 ms−2, while (10− 4)= 6 N acting on the 3 kg gives the
same a= 2ms−2.

Here’s another variation shown in Figure 3.4. I have a 3-kg mass
attached by a rope to a 2-kg mass, which I pull with a force of 10N. Again,
your common sense tells you that I am pulling something whose effec-
tive mass is 5 kg; the answer is 2ms−2. Let’s confirm that systematically by
using the free-body diagrams in the lower half of the figure. Now, there
are really three bodies here: the two blocks and the rope connecting them.
In all these examples, I assume the rope is massless. We know there is no
such thing as a massless rope, so what we mean is a rope whose mass is
negligible compared to the two blocks being pulled. We’ll take the ide-
alized limit where the mass of the rope is 0. The 3 kg is being pulled by
the rope to the right with a force that I’m going to call T, which stands
for tension. The rope is being pulled backward by the 3 kg with a force T
by the third law. What is the force on the other end of the rope? What
should that be? If you said T, that is right, but not because the rope would
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Figure 3.4 (Top) A force of 10 N pulls the two blocks connected by a massless
rope, all treated as a single entity. (Bottom) The free-body diagram for the two
blocks and the rope, which experiences equal and opposite forces of magnitude T
called the tension.

snap otherwise. Something else will be a problem. If the two forces on its
ends don’t cancel, you have a net force. What are you going to divide by
to get the acceleration? Zero, right? So, a massless body cannot have a net
force on it, because its acceleration would then be infinite. Massless bodies
will always have equal and opposite forces on the two ends. In the case of
the rope, this is called the tension on the rope. The tension is not 0 just
because this T and that −T cancel. Suppose you are being pulled by my
favorite animals—the elephants—from both sides by equal and opposite
forces. You won’t find any consolation in the fact that these forces add up
to 0 as you get subdivided.

Now, you can invoke F =ma for the three objects, starting from the
left:

T = 3a (3.14)

T −T = 0 a (3.15)

10−T = 2a. (3.16)

We add the three equations and we get 10= 5a or a= 2ms−2 and T = 6 N.
So, the tension on the rope is 6 Newtons. This is very important: when
you buy a rope, the specifications will tell you how much tension the rope
can take before it will snap; if your plan is to accelerate a 3-kg mass with
an acceleration of 2ms−2, you better have a rope that can take the tension
of 6 N.
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If you see the rope in isolation you find its acceleration is indetermi-
nate according to Eqn. 3.15. This is correct; it is the non-zero masses that
determine a for everybody, and the rope goes along with this a for free.

3.5 Weight and weightlessness
Now let’s see what happens when you ride an elevator. In Figure 3.5 you are
the stick figure standing on the weighing scale on the floor of an elevator
that has a positive (upward) acceleration a. What will the scale register?
We will draw free-body diagrams as in the right half of the figure for you
and the massless spring. The spring is being pushed down by you with a
forceW and up by the floor with the same force since it is massless. It will
compress by an x such thatW = kx, and x will somehow be displayed by a
needle or digital readout.

(We should note a subtle thing that you may not have realized. Every
[massless] spring is pushed or pulled by equal and opposite forces ±F at
the two ends since otherwise it would have a = F/0 = ∞. So which of
these two appears in F = −kx? Recall the mass spring system. One end

Figure 3.5 (Left) An elevator is accelerating at a rate a and you are standing on
a scale whose spring is shown by a dotted line. (Right) The free-body diagram for
you and the spring. The spring is compressed at each end by a forceW.
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of the spring is anchored to the wall. When we pull the other end by +x,
we apply a force F = +kx to the right. The wall exerts a force F = −kx at
the other end. In response to the +kx we apply, the spring exerts a force
F = −kx on us or on the mass attached to it, and that is the F we use in
writing down F=ma for the mass.)

The equation describing you in the elevator is

W −mg =ma̧ which means (3.17)

W =m(g + a). (3.18)

If the elevator is standing still and a= 0 we see that W =mg is just
your weight. If the elevator is accelerating upwardW =m(g + a), and the
needle will show a number greater than your weight. You will actually feel
heavier. The spring not only has to support you from falling through the
floor but also has to accelerate you counter to what gravity wants to do.
That’s why we have the g + a. Say you picked up some speed and are now
coasting upward at a steady speed. Then, a= 0 again andW =mg. As you
come to the top of the building, the elevator has to decelerate so that it can
lose its positive velocity and come to rest. So a will be negative now. If a is
negative, then g + a< g. Let us write in this case a= −|a|, so that

W =m(g − |a|), (3.19)

which makes it explicit that W < mg. You will feel that your weight is
reduced.

On the way down your initial acceleration is negative because you’re
picking up speed toward the ground. You will feel less heavy. You can see
that if |a| = g, your downward acceleration is that due to free fall under
gravity and you will feel weightless. This can happen when the cable has
snapped. You don’t feel any weight because your normal weight is the
opposition the floor offers to keep you from falling through it; but now
the floor is also falling at the same rate. It’s wrong to think that when you
feel weightless you have escaped the pull of gravity. We all know that in a
falling elevator you definitely do not escape the pull of gravity. It’s going to
catch up with you in a few seconds. The same goes for the people floating
around in space stations. They have not escaped the pull of gravity either;
they have just stopped fighting it, and they are all accelerating toward the
earth at a rate v2

r = g∗, where g∗ is the (reduced) acceleration due to gravity
at the radius r of the orbit. If they had really escaped the pull of gravity,
their spaceship would be off to the far reaches of the universe.



chapter 4

Newton’s Laws II

4.1 A solved example
The goal of physics is to be able to predict something about the future,
given something about the present. I’m going to provide a very simple
example that illustrates how Newton’s laws are to be used for this purpose.
This treatment will be brief since I will return to this problem in greater
detail later.

Figure 4.1 shows a frictionless table, on which is a massm attached to
a spring of force constant k. The other end of the spring is attached to an
immobile wall. The dotted outline of the mass shows it when it is displaced
by an amount x from equilibrium. I want to pull the mass by some amount
A and let it go. So that’s the knowledge of the present. What’s this guy
going to do? That’s the typical physics problem. It can get more and more

Figure 4.1 A massm attached to a spring of force constant k in its equilibrium
position, when the spring is neither extended not compressed. The dotted outline
of the mass shows it when it is displaced by an amount x from equilibrium.

51



52 Newton’s Laws II

complex. You can replace the mass by a planet; you can replace the spring
by the sun, which is attracting the planet; you can bring in many planets;
you can make it more and more complicated. But they all boil down to a
similar exercise: I have some information now and I want to be able to say
what will happen next.

Combining F = ma and F = −kx we obtain the equation that seals
the fate of the mass:

d2x
dt2

= − k
m
x(t). (4.1)

This is a differential equation: you have to find a function x(t) whose
second derivative is− k

m times itself. A differential equation tells you some-
thing about an unknown function x(t) in terms of its derivatives, and you
are supposed to find it given this information. Instead of running to the
mathematicians, let us solve this equation by guessing, which is a totally
legitimate way to solve a differential equation.

Here is how we guess the answer. Let’s make our life simple by taking
a case where k=1,m=1. Later on, we can put back any k andm. I’m look-
ing for a function whose second derivative is minus that function. Now, as
a word problem, it rings a bell, right? Do you know such a function? Expo-
nential is good. Trigonometric functions are good too, provided youmean
sin and cos. I’m going to dismiss the exponential, which is actually a very
good guess. If you took x(t)= et , we have

d2x
dt2

= et �= −x(t). (4.2)

It does not help to consider x(t)= e−t since the minus sign will get squared
when you take two derivatives, and you will still end up with +x(t). Now
e±it, where i= √−1, will work, but we do not want to deal with complex
numbers yet.

We just want a function that reproduces itself when we take two
derivatives. So, I make a guess,

x(t)= cos t, (4.3)



Newton’s Laws II 53

and you can check that it works:

d2x
dt2

= d2 cos t
dt2

= − cos t= −x(t). (4.4)

Did you follow the way this very elementary problem is solved? It’s solved
by making a guess. But something is not quite okay with this solution. If
I put t = 0, I get x = 1. Why should it be true that I initially pulled it by
exactly one meter? I could have pulled it by 2 or 3 or 9 meters. I want to
be able to decide how much I pulled it by at t= 0. Suppose it was pulled to
5m and released. I want x(0)=5. This can be arranged by making a choice

x(t)= 5 cos t. (4.5)

Does the 5 screw up everything? It doesn’t, because it just comes along for
the ride:

d2x
dt2

= d2 [5 cos t]
dt2

= −5 cos t= −x(t). (4.6)

Now I have an answer that does everything I want it to do. At the initial
time, it gives me 5 times cos 0, which is 5; and that’s what I said was the
initial displacement. I find dx

dt = −5 sin t, which vanishes at t= 0. That too
is correct; I pulled it and let it go. So, the instant I released it, it had no
velocity. It satisfies Newton’s laws, and that’s the answer. I want to do this
simple example in totality because this is the paradigm. This is the example
after which everything else is modeled.

There are two final points about this solution.
First, there is the other option x(t)= sin(t) that occurs to some stu-

dents. There is nothing wrong with this option; it just is not needed in this
particular example. Equation 4.5 is not the final and most general solution
to the problem; it is a solution that certainly works for the one example I
had, in which a mass is pulled to 5m and released.

Second, when k andm are not both 1, we go back to the general case

d2x
dt2

= − k
m
x(t). (4.7)



54 Newton’s Laws II

The solution to this is

x(t)=A cos

√
k
m
t (4.8)

where A, which was 5 in our example, is arbitrary in general and is called
the amplitude. We will deal with the oscillator in depth later. At this point,
we just want to get a feeling for how F = ma is applied in real life, with
some help from the mathematicians.

4.2 Never the whole story
Is this the whole story of the mass and spring, or is something missing?
Does the mass oscillate forever as predicted by the Eqn. 4.1 we just solved?
It does not: it eventually comes to rest. If you never knew about friction,
and you solved for x(t) with just the spring force, you would find it didn’t
work. So, you are at a fork in the road. You can say either that Newton’s
laws are incorrect or that you are missing some forces. In the latter case,
you will look around and eventually deduce the frictional force by insisting
that F=ma works with its inclusion. We will see how this is done later in
this chapter.

It turns out that even if there were no friction Eqn. 4.1 would not
be the correct law, which is given by Einstein’s relativistic dynamics. By
that I mean, if you really pull a real spring by 5m on a frictionless sur-
face and release it, its motion will not be exactly 5 cos t; it will be off
by a very, very, very tiny amount that you probably will not discover in
most laboratories. But if the mass begins to move at a velocity that is
comparable to that of light, then this equation will make the wrong pre-
dictions. On hearing that even Newton can be wrong in this sense, some
people say, “What kind of business are you in? Every once in a while
some authority is proven wrong.” I’ll tell you right now. Everything we
know is wrong at some level. Newton didn’t try to describe things mov-
ing at speeds comparable to light. He dealt with the problems he could
deal with at that time. So his laws have a limited domain of validity.
You can always push the frontiers of observation until you come to a
situation where any given law breaks down. While the special theory of
relativity does better than Newtonian mechanics for large velocities, it
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too fails if the mass becomes very tiny, of atomic dimensions. Then you
need the laws of quantummechanics discovered byHeisenberg, Dirac, and
Schrödinger, and of course their laws also have problems in some exper-
imental domain. Sometimes we correctly abandon the formalism; but we
should not be too eager to do that. In the present case, the problem is not
with formalism but with not including friction. The failure at the quan-
tum level comes not because we did not include some forces, but because
the very notions of force or trajectories x(t) seem to be invalid at that
scale.

4.3 Motion in d = 2
We’re going to move on to higher dimensions, where position, velocity,
acceleration, and force are all vectors. So let’s again start with simple prob-
lems in d= 2 and make them more and more complex. There is no limit
to how difficult mechanics problems can be. If you go back and read some
Cambridge University exams from 1700 or 1800, you will find some really
difficult problems. Finally, quantum mechanics was invented and life got
a lot easier.

Consider amassm sitting on a table as shown in the left half of Figure
4.2. Because we’re in two dimensions, we need to have two axes x and y.
Recall that

F=ma (4.9)

Figure 4.2 A massm sitting on a table, (left) without and (right) with friction.
The coefficient μ=μs if the block is at rest and μ=μk if it is moving.
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is a vector equation. If two vectors are equal, then their x and y compo-
nents have to match:

Fx =max (4.10)

Fy =may. (4.11)

I’m going to apply them to this block. There are no known forces acting
in the x direction, and the block is not moving in that direction. Therefore
it’s a case of 0= 0. Now I look in the y direction. In the free-body diagram
there is the force of gravity mg acting down the y-axis; I will often denote
this vector by mg, where g = −9.8jms−2. If that’s all you had, the block
would fall through the table. Because the block is not falling, we know
the table is exerting an opposing force denoted by N, where N stands for
normal. And normal is a mathematical term for perpendicular. Evidently
N is a positive force andmg is a negative force in the y direction. Thus

N −mg =may. (4.12)

In this application of the Newtonian equation, I know the right-hand
side. It is 0 because I know this block is neither sinking into the table nor
flying off the table. It’s sitting on the table; it has no velocity or acceleration
in the y-direction. I come to the conclusion

N =mg. (4.13)

4.4 Friction: static and kinetic
Now I’m ready to introduce another force, the force of friction, f. How do
we infer there is a force of friction? Consider the mass on the table in the
right half of Figure 4.2.What experiment will tell you there is another force
called friction? You find that to keep the mass moving at constant velocity,
you have to apply a force. That means the force you’re applying is canceled
by something else, because there is zero acceleration. Here is another good
answer: You give the mass a push and soon it stops moving; there must
have been a force that produced the deceleration. But even before that,
even before it starts moving, you find that, if you push it, it doesn’t move.
Say I push the podium. If I push it gently, it does not move. But if I push
hard enough it begins to move. What’s happening before it moves? I’m
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applying a force and I’m getting nothing in return for it. So I know there is
another force exactly balancing mine, and that’s the force of static friction.
Let us call the force I am applying Fme. I’m applying it to the right, and so
there has to be another force of equal magnitude to the left. Notice it is not
a fixed force: it’s whatever it takes to keep the mass from moving. It will
not be less than what I apply, because then the mass will move; it cannot
be more than what I apply because then it will start moving me backward.
So, static friction is a force that has a range from 0 to some maximum. The
maximum turns out to be

fs = μsN (4.14)

where μs is a number called the coefficient of static friction and N is the
normal force. In our example you may useN=mg. So the force of friction
seems to depend on how heavy the object is that’s sitting on the table. But
it doesn’t depend on the area of contact. For example, it does not increase
if we rest the block on another face with greater area. You might expect
more friction because there’s more contact. But that is not so, for reasons
not readily explained within our elementary treatment. In reality, friction
has a subtle origin at the atomic level.

If static friction provides a force equal to the force that I apply, up
to a maximum of μsN, what happens when I exceed the maximum? The
object I am pushing will start moving. Once it starts moving, the frictional
force, which is always directed opposite to the velocity, changes to

fk = μkN (4.15)

where μk is the coefficient of kinetic friction. We find that in all situations
μk < μs. Let us say μs = 0.25 and μk = 0.2 for the block on the table. If
I apply a force that is 0.1 times its weight, it won’t move; at 0.2 times its
weight it won’t move; at a quarter of its weight it’s a tie; at 0.26 of its weight
the block will start moving. Once it starts moving, the frictional force will
drop to 0.2 times its weight, and the body will accelerate if I maintain the
same force as when it first begins moving.

4.5 Inclined plane
Now we are going to do the one problem that has sent more people away
from physics than anything else. It is called the inclined plane. A lot of
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people who do not remember where they were during the Kennedy assas-
sination say, “I remember the day I saw the inclined plane; that’s the day I
decided I’m not going into physics.” This is very bad publicity for our field.
You come into a subject hearing about relativity and quantum mechan-
ics, and we hit you with this. So why am I still doing this? Because this is
the entry ticket into the business. It is inconceivable to me that you could
understand more advanced topics without being able to understand this
one. Go ahead and mock the inclined plane, but only after you can prove
you have mastered it.

Here is the notorious problem. There is a mass m sitting on a plane,
inclined at an angle θ as shown in the left half of Figure 4.3. We know it’s
going to slide down the hill, but we want to be more precise. The whole
purpose of Newton’s laws is to quantify things for which you already have
an intuition. The novel thing about the inclined plane is that for the first
time we are going to pick our x and y axes not along the usual direc-
tions, but parallel and perpendicular to the incline. What are the forces
on this mass? I have told you, first deal with contact forces. But the only
thing in contact with the mass is the plane. In general the inclined plane
can exert a force along and perpendicular to its own surface, but I’m first
going to take a case where there is no friction. By definition the plane
cannot exert a force along its own length, so it can only exert a nor-
mal force N. Then there’s only one other force, the force of gravity that
we agreed we have to remember. Even though the earth is not touching
this block, it is able to reach out from down below and pull this block
down. These are the two forces, and the mass will do what these forces tell
it to do.

Figure 4.3 A massm sitting on an inclined plane, without friction (left) and
with friction (right).
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First I have to take thismg pointing down and break it up into com-
ponents alongmy x and y axes. That’s called resolving the force into various
directions. Now, the key to this is to know that this angle θ of the plane is
the same as the angle between vertical and the normal to the plane. You
have to agree that if I draw a line perpendicular to the horizontal and
I draw a line perpendicular to the incline, the angle between those two
perpendiculars will be the same as the angle between the two lines with
which I began. This is because “make perpendicular” means “rotate by π

2 .”
If you rotate both lines by π

2 , the angle between the rotated lines will be
the same. The vertical is perpendicular to the horizontal, and the normal
perpendicular to the inclined plane. Once you understand that, the rest
is easy.

So here are my equations:

mg sin θ =max (4.16)

N −mg cos θ =may. (4.17)

Now we know that this block is sliding down the incline. It’s not
going into the plane, and it is not flying out of the plane. That’s the rea-
son we measure our y coordinate perpendicular to the plane: it does not
change, unlike the traditional x and y, both of which do. So ay = 0 in
Eqn. 4.17, which implies

N =mg cos θ . (4.18)

Then you come to Eqn. 4.16. We cancelm and read off the answer

ax = g sin θ . (4.19)

That’s the big result, that the mass will slide down the hill with an acceler-
ation g sin θ . This provides a good way to measure g, because if you drop
something vertically, it falls too fast for you to time it. But if you let it go
down an incline, by making θ very small, you can reduce the acceleration
by a factor sin θ .

Here’s another thing I should tell you right now. The professionals
don’t put in numbers until the very end. So, if you are told the incline is
an angle of 37 degrees, and g = 9.8msec−2, don’t start putting numbers
into the first equation. I know for some of you it’s traumatic to work with
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symbols. There are many reasons to work with symbols rather than with
numbers till the end. First of all, if you have already put the numbers in and
I suddenly tell you, “Hey, I was wrong about the slope, it’s really 39 degrees
and not 37,” you are forced to do the whole calculation again. But if you
use symbols to derive the formula for ax and then ask me, “What’s your
θ?” you can just plug that in. Likewise, if I change the value of g because
someone made a better measurement, you simply change g in the very last
expression for ax. You can also see if your answer had some mistakes in it.
Suppose you got ax = g2 sin θ . You will know it’s wrong because the units
do not match. Maybe you have the trigonometry wrong. Maybe it’s really
ax = g cos θ? You can do a few tests. For example, as the plane becomes
less and less inclined, you have to get less and less acceleration, and when
θ → 0, so must ax, which must then be proportional to sin θ . Or, if you
make the incline almost vertical, the block is just falling under gravity with
ax = g. The result ax = g cos θ does not do that when we set θ = π

2 . Finally,
ax = g sin θ is independent ofm. That’s an interesting property of the result
you would not notice if you kept numbers everywhere. So we will agree to
work with symbols until the end.

Now we are going to make life a little more complicated by adding
friction, as shown in the right half of Figure 4.3. Let the block be at rest
and imagine there are some hinges on the inclined plane that allow me to
increase θ from 0 to π

2 . I want to know when the block will begin to slide
down. Let me cut to the chase and write the equations:

N −mg cos θ =may (4.20)

mg sin θ − f =max. (4.21)

The first equation is the same as before and tells us that since ay = 0,

N =mg cos θ . (4.22)

In the second equation, do not write f = μsN because the frictional force
is not always μsN; it is whatever it takes to keep the block still, up to a
maximum ofμsN. In other words, if θ is very small, the frictional force will
in fact be a much smaller amount f =mg sin θ , which you get by setting
ax = 0 in the right-hand side.
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Let us crank up the angle to θ∗, beyond which it cannot stay still. At
this angle the friction is maximum and we can assert

mg sin θ∗ = μsN = μsmg cos θ ∗, (4.23)

which gives us a way to measure μs:

μs = tan θ∗. (4.24)

Again, the mass cancels. So, it doesn’t matter how heavy a car you parked
on the slope, as long asμs was the same. But g cancels too. So, whether you
park your car on the earth or park it on another planet, the same restriction
tan θ ≤μs applies.

When we pass this limit, when tan θ > μs, the block will begin to
slide down. It will now have a non-zero downhill acceleration because it
is kinetic friction μkN that now opposes the velocity and μk < μs. The
operative equations are

N −mg cos θ =may (4.25)

mg sin θ − μkN =max. (4.26)

What’s the acceleration now? I take the y equation that says as before
that N =mg cos θ since ay = 0, and plug that into the x equation to obtain
the downhill acceleration of the block:

mg sin θ − μkmg cos θ =max (4.27)

g(sin θ − μk cos θ)= ax. (4.28)

4.6 Coupled masses
Next is a problem of two massesm andM connected by a string that goes
over a massless pulley mounted at the top of a frictionless inclined plane,
as shown in Figure 4.4. What can we say before doing the math? IfM>m
am I assured it’ll go downhill? No, it depends on the angle θ because only
part of its weight, Mg sin θ , is helpful in going downhill while all of mg is
pullingm down. All we know for sure is that for a fixed θ , the bigger mass
M will go down the slope as M → ∞ while the smaller mass m will go
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Figure 4.4 (Left) Two masses linked by a massless rope and massless pulley.
(Right) The free-body diagram.

straight down as θ → 0. Let us figure out now when exactly the balance
shifts.

Since we have two masses here, no choice of axes is going to make all
their motions simple: m goes straight up and down while M glides along
the slope. Let us ignore the boring N =Mg cos θ equation for the y coor-
dinate and focus on the motion along the plane. In the free-body diagram
I have shown the same tension T wherever the rope is involved. For a
straight massless rope it is clear the opposing forces at the ends must have
the same magnitude T since there can be no net force on a massless object.
For a rope that curves around the pulley, the explanation is more subtle,
as I will explain momentarily.

ForM, the equation along the x-direction is

Mg sin θ −T =Ma. (4.29)

Form the equation in the up direction is

T −mg =ma (4.30)

where I have deliberately used the same a as in Eqn. 4.29. I am not saying
the acceleration ofM andm are equal as vectors. They do not even have the
same direction:mmoves up and down whileMmoves along the plane. By
a I mean the components of the two accelerations in the allowed directions
of motion, defined to be positive ifM is moving downhill andm is moving
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up. This equality reflects the inelasticity of the rope: if m moves up one
inch,M will slide downhill one inch along the incline. If the displacement
is the same, so are the velocity and acceleration. We can solve for a by
adding Eqns. 4.29 and 4.30 to obtain

Mg sin θ −mg =Ma+ma which means (4.31)

a= g
[
M sin θ −m

m+M

]
. (4.32)

Does this solution make sense? Now you notice that for a to be positive
and forM to go downhill, it’s not enough thatM>m; we needM sin θ >m
because only the forceMg sin θ is pullingM downhill: the forceMg cos θ is
trying to ram it into the inclined plane, and that’s being countered by the
normal force N.

Can we use this formula when a< 0, that is, when M moves uphill?
After all, I did all my analysis assuming it’s going down. Yes, we can. All
the forces I drew here—N,Mg, and so on—are not going to change when
you change the body’s direction of motion. Gravity is always going to pull
down whether the block moves with it or against it. So once you have a
formula for positive a, you can apply it to negative a as well. However, if
friction is present, you cannot do that because you have to assume a partic-
ular direction of motion before you can assign a direction to the frictional
force in the equations of motion.

Now let’s consider why the forces at the two ends of the rope emerg-
ing from the pulley have equal magnitudes T. Assume that the pulley is
massless and that the rope does not slip; that as the masses move and
rope moves over the pulley, the pulley is forced to rotate without rela-
tive slippage. In this case the part of the rope instantaneously in contact
with the pulley and the pulley may be viewed as one rigid body. (It is like
a bicycle chain whose links mesh with the teeth on the wheel the pedal is
turning.) The tensions on the rope at the two ends are clearly trying to
rotate this body in opposite directions, as is clear in the free-body diagram
in Figure 4.4. If these tendencies are not exactly balanced—that is, if these
forces are not equal in magnitude—they would produce an infinite rota-
tional acceleration of this massless rigid body, just like a non-zero force
would produce infinite linear acceleration on a massless object. By the
no-slip condition, this means an infinite linear acceleration for the two
masses, which is impossible because the masses are non-zero and have
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finite forces acting on them. So the forces at the two ends of the rope
emerging from the pulley must have equal magnitudes. (We will return
to a proper study of rotations and the case of the massive pulley in Chap-
ter 10.) Note that even though the rotational effects of the two non-parallel
forces cancel, their non-zero vector sum can produce linear acceleration of
the pulley. The axle about which the pulley rotates provides an equal and
opposite force to prevent this. Luckily this last force does not contribute
to rotations around the axle.

4.7 Circular motion, loop-the-loop
Now we’ll turn to some interesting problems in circular motion of vari-
ous kinds. The first, shown in part A of Figure 4.5, describes a ride in an
amusement park. You sit in these baby rockets hanging from a rope along
with other petrified victims. The whole thing begins to spin, and the rope,
instead of remaining vertical, starts tilting at an angle θ , which we want
to determine as a function of the tangential speed v and radius R of the
circular orbit. We apply F = ma and start listing the forces on the baby
rocket. Gravity provides the usual mg pointing down. The rope can only
exert a force T along its length. Let us trade the tension along the rope for
the sum of two equivalent forces, a vertical part, Ty = T cos θ , and a hor-
izontal part, Tx = T sin θ directed toward the center of the circular orbit.
The equations are

T cos θ −mg = 0 vertical (4.33)

T sin θ =ma=m
v2

R
radial or horizontal. (4.34)

In the first equation, we recall that by assumption the rocket’s orbit is a
horizontal circle and it has no net acceleration in the vertical direction. In
the second, we recall from Section 2.7 that a body moving in a circle of
radius R at speed v has a centripetal acceleration v2

R . So this is a case where
we know a in F=ma. Eliminating T we find

tan θ = v2

Rg
. (4.35)
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Figure 4.5 (Left) An ”amusement” ride in which you go around in a horizontal
circle of radius R in a baby rocket. The rope supporting you necessarily makes
an angle θ = tan−1 v2

Rg with the vertical. (Right) A car going around a circular
racetrack of radius R at speed v. The road has a banking angle that obeys
tan θ = v2

Rg . The normal force N has a horizontal part that gives the necessary
force mv2

R to bend the path into a circle. The symbol ⊗ is used in both parts
to indicate that the rocket or car is going into the page, away from you. The
convention is based on how an arrow with feathers would appear going away
from you. Likewise � indicates an arrow coming out of the page toward you.

It is worth finding the tension on the rope since our lives may depend on
it. It is

T =mg

√
1+

(
v2

Rg

)2

(4.36)

using T =
√
T2
x +T2

y .
Here is another interesting problem. You are driving on a circular

racetrack of radius R at a speed v. Suppose the plane of the road is strictly
horizontal, perpendicular to g. Some agency has to exert a force mv2

R on
the car to bend it into this circle. It is of course the road that does this,
thanks to the frictional force f ≤ μsmg directed toward the center. (I use
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μs, the static coefficient, and notμk, the kinetic one, even though the car is
moving, because we are discussing the force in the radial direction and the
car has no velocity in that direction, unless it is skidding. Note also that
the car does not really have to travel in a circle; all we need is that at this
instant the trajectory is part of some circle of radius R.)

If you don’t have the requisite static friction, if μsmg < mv2
R , your

car will not be able to make the curve; it will fly off. But there is a clever
way in which you can still make the turn without any friction, and that
is to bank your road by an angle θ as shown in the right half of Figure
4.5. Imagine now you’re going into the paper. The frictionless road only
exerts a normal forceN. Let us resolve that force into a vertical partN cos θ
and a horizontal one N sin θ directed toward the center of the circle. The
equations are

N cos θ =mg (4.37)

N sin θ =m
v2

R
. (4.38)

Eliminating N we find the banking angle to be

tan θ = v2

Rg
. (4.39)

Let me elaborate. You want the car to go around the bend at a certain
speed. If you bank your road at that angle, you don’t need any friction to
make the turn. Even though the frictionless road can only exert a normal
force, thanks to banking, a part of the normal force points toward the cen-
ter, providing the requisite centripetal force. Of course, when you drive on
a real road, you do not have to travel at exactly this speed for a given R, for
any small differences will be made up by the frictional force of the tire. It
is just that you do not want to rely on friction for the entire radial force.

Finally, the famous loop-the-loop problem, which defies common
sense, is shown in Figure 4.6. You come down on a roller-coaster track
from some height H, you go on a vertical circle, and for a while you
are upside down. The eternal question is, “Why don’t you fall down?”
We’ll find we can understand this phenomenon fully with Newton’s laws.
The forces on the coaster are mg acting down and the force of the track,
which has to be normal to it since it is assumed to be frictionless. But
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Figure 4.6 The roller coaster comes down from a height H and goes into a loop
in the vertical plane. Why does it not not fall down? The forces on it aremg
acting down and the track force N also acting down! It does fall, as explained in
the text. The three arrows forming a triangle in the inset show the initial velocity
v−�v/2 just before it reaches the top, the change �v in a small interval near the
top, and the final velocity v+�v/2 just after it passes the top.

it too points down! We are doomed! Why don’t we fall? The answer is
that we do fall, that is, we accelerate downward, but this does not mean
we get any closer to the center. The two forces mentioned combine to
bend the coaster into a circular path and produce the requisite downward
centripetal acceleration:

N +mg =m
v2

R
. (4.40)

Solving for N we find

N =m
(
v2

R
− g

)
. (4.41)

If N comes out positive, that is, points down in our convention,
which happens if v2

R > g, we are safe. If it comes out negative, that is, if

v2

R
< g, (4.42)



68 Newton’s Laws II

it means the track exerts an upward force, which is impossible, unless there
is some other mechanism, like a T-bracket, that goes under the track and
supports the coaster even if it is just hanging upside down. I believe such
things exist in real roller coasters, in case they get stuck at the top or do
not go fast enough. In our idealized coaster, without any of this backup,
the speed vmust obey

v2 >Rg (4.43)

to safely make the loop.
We will figure out the minimum height from which it must be

released to satisfy this condition when we derive the law of conservation
of energy.

Let us be sure to understand again why accelerating down does not
always mean gaining speed toward the earth. If you drop an apple, acceler-
ating down means really picking up speed toward the ground, toward the
center of the earth. It starts with zero vertical speed and picks up speed. In
our example, the coaster is also accelerating, but the tiny change in veloc-
ity in a tiny time, which points radially down in Figure 4.6 near the top of
the loop, is now added to a huge horizontal velocity pointing to the left.

We will now see that this implies the velocity has a constant magni-
tude and changing direction. Consider the impact of adding a tiny change
�v to a velocity v on the magnitude of velocity. Assume �v can be in
any direction relative to v.The resultant velocity has a magnitude squared
given by

|v+ �v|2 = (v+ �v) · (v+ �v) (4.44)

= v · v+ 2v · �v+ �v · �v (4.45)

= v2 + 2v · �v+ |�v|2 (4.46)

�v2 = 2v · �v+ |�v|2 (4.47)

dv2

dt
= 2v · dv

dt
= 2v · a. (4.48)

(To find dv2
dt , we need to keep just the term linear in �v.) This equation

generally implies a non-zero rate of change of the magnitude of v, unless
�v and the acceleration a are perpendicular to v, as is the case at all times
in circular motion.
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Figure 4.7 You fire two bullets from a tower at increasing speeds, which land
farther and farther away (points 1 and 2). Beyond a critical speed, the bullet
would go into orbit. It has of course never ceased to accelerate toward the earth.

So a little later, the total velocity vector merely gets rotated with no
change in length and becomes tangent to the circle at a slightly different
point. Going around in a circle is an example of constantly accelerating
toward the center but not getting any closer.

Here is another example of this phenomenon. Suppose you are on a
tower and you fire a gun horizontally as shown in Figure 4.7. The bullet
hits the ground at point 1, under the pull of gravity. If you fire another
bullet at a greater velocity it will land a little further away, at point 2.While
greater initial speed will extend the time of flight even on a flat earth, the
flight is further enhanced by the earth curving under the bullet. There will
be a certain speed at which the bullet will keep falling but will not get any
closer to the center, because the earth is falling under it just as fast. It is
in orbit, as shown by the circle. That is in fact how you launch a bullet
into orbit. So, what’s the first thing you should do when you fire this gun?
Move away, because it’s going to come back in about 84 minutes and get
you from behind at 17,650 miles per hour. This calculation assumes that
there is no atmosphere, which of course leaves you with an even more
pressing problem.



chapter 5

Law of Conservation of Energy

5.1 Introduction to energy
The law of conservation of energy is a robust and powerful one. When
the laws of quantum mechanics were discovered in the subatomic world,
many cherished notions were abandoned. You must have heard the ugly
rumors: particles do not have a definite position and definite velocity at
a given time. They don’t move along continuous trajectories. You might
think the particle must have had an interpolating trajectory connecting
two sightings, but it does not, and to assume it does causes conflict with
experiment. While many of the ideas of Newtonian mechanics were aban-
doned, the notion of a conserved energy survived the quantum revolution.
There was a period when people were studying nuclear reactions, and the
energy they began with didn’t seem to be the energy they ended up with.
Niels Bohr, the father of the atom, suggested that maybe the law of conser-
vation of energy was not valid in quantum theory. Then in 1931Wolfgang
Pauli decided to put his money on the law of conservation of energy; he
postulated that some other tiny electrically neutral particle, which escaped
detection, was carrying away the missing energy. That was a radical posi-
tion to take in those days, when people did not lightly postulate new
particles, as compared to today when if you don’t postulate a few new par-
ticles you don’t get your Ph.D in particle physics. Pauli’s particle, called a
neutrino, was detected after many, many years in 1959 by Clyde Cowan
and Frederick Reines. Nowadays, neutrinos are one of the most exciting,
elusive, and mysterious things one could study, and they hold the key to
many puzzles concerning the universe.

70
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Let’s see how the notion of energy conservation arises, starting with
one dimension. When a force acts on a body, it changes its velocity. In one
dimension, this simply means speeding up or slowing down. We’re going
to find the relation between the speed accumulated when a force acts on a
body for some time and the distance the body has traveled in that time.

Consider the case when the force F is constant, not varying with time.
That produces an acceleration a= F

m . In the first chapter we learned that if
a body has constant acceleration a,

v2 = v20 + 2a(x− x0) (5.1)

where v and x are the current velocity and position, and v0 and x0 the cor-
responding initial values. In those days of kinematics, we didn’t ask, “Why
does it have a constant acceleration?” We were just told, “It has a con-
stant acceleration; just find out what happens.” Now that we have learned
dynamics, we know acceleration has a cause, namely some force. So I’m
going to replace a by F

m and make one more cosmetic change in notation.
All the initial (final) quantities will carry a subscript 1 (2). Then Eqn. 5.1
takes the form

v22 = v21 + 2
F
m
d (5.2)

where d= x− x0 ≡ x2 − x1 is the distance traveled during this interval.

5.2 The work-energy theorem and power
Equation 5.2 says that when the force acts on a body, it changes the veloc-
ity, and the change depends on how far the force has been acting, on how
many meters it has been pushing the object. The change is not simply in
velocity but in velocity squared. Let usmove everything involving the force
to one side and the particle to the other side:

1
2
mv22 − 1

2
mv21 = Fd. (5.3)

The combination 1
2mv2 is called kinetic energy and is denoted by K. The

product Fd is called the work done by the force and denoted by W. The
units ofW are Newton-meters and we replace that by joules or J.
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We have found the simplest version of the work-energy theorem:

K2 −K1 = Fd=W. (5.4)

What if there are 36 forces acting on the body? Which one should I
use? Say I’m pulling and you’re pushing. Then, F has got to be the net force,
because Newton’s law connects the net force to the acceleration. If you and
I have a tug of war, and we cancel each other out to zero, then there’s no
acceleration, and the body with some initial velocity will maintain its ini-
tial velocity. The work-energy theorem says, The change in kinetic energy
is equal to the work done by all the forces. In this case, there is no change in
energy, though there are two forces at work that cancel. It turns out that
it is sensible to define the work done by me, which is equal to F times the
distance traveled, and the work done by you, which will be given an oppo-
site sign. When do we attach a plus sign and when do we attach a minus
sign? If you go back and review the whole derivation, you will see it was
understood that a was a positive quantity. Then everything works. If the
body is moving to the right, and I’m pushing to the right, then the work
done by me is positive. And if you were pushing to the left and the body
still moved to the right, the work done by you is negative. In other words,
if you get your way, if things move the way you’re pushing, the work done
by you is positive. If the object is moving counter to your will, in the oppo-
site direction to your force, the work done by you is negative. I’m lifting
this piece of chalk at constant velocity from the ground. Its kinetic energy
is not changing. That means the total work done on the chalk is zero, but
not because there are no forces on it. There is gravity acting down, and I
am countering gravity with exactly mg. The work done by me is positive
because I want the chalk to go up, and it does. If it goes up by an amount
h, the work done by me is W = mgh. The work done by gravity in the
meantime is −mgh and the total work done is zero.

Let us imagine all of this occurs in a time �t and the distance moved
is d= �x. Then if you divide both sides of Eqn. 5.4 by �t and take all the
usual limits

dK
dt

= F
dx
dt

= Fv≡ P (5.5)

where P is defined as the power. So power is the rate at which work is done.
For example, if I climb a twelve-story building, I have done some work,
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my mg times the height of the building. I can climb the building in one
minute; I can climb the building in one hour. The work done is the same,
but the power is a measure of how rapidly work is done. That’s why it’s the
product of force and velocity or work divided by time. The units for power
are joules per second. That also has a new name, which is watts or justW.
You may use a kilowatt, or kW, which is a thousand watts. So, if you have
a 60W bulb, it’s consuming energy at the rate of 60 joules per second.

Now let’s turn to the next generalization, when the force is not a con-
stant but varies with x. Do we know any example of a force that varies
with x? A spring is a good example, with F(x) = −kx. Even gravity is a
good example, if we consider large distances. I think it is no secret that
the force of gravity ismg only near the earth and that if you go sufficiently
far, you will notice gravity itself is getting weaker. It will still look like mg ′

locally but g ′ won’t be a fixed 9.8ms−2; it will be decreasing as we move
away from the earth.

What is the work-energy theorem when the force varies? Let’s draw
ourselves a force F(x) that varies with x, as in Figure 5.1. I’m just taking any
function of x that I want. Now the acceleration is not constant because the
force is not a constant. We cannot apply the formula W = Fd because F
varies over the distance d. So we resort to the usual trick in calculus: find
an interval of width dx that is as narrow as you want, so that during that

Figure 5.1 When a variable force F(x) acts on a body that moves by a distance
dx, it does work dW = F(x)dx shown by the shaded rectangle.



74 Law of Conservation of Energy

period F is essentially a constant equal to F(x), the value of F at that x. For
that tiny interval I can still say that the change in K is

dK = F(x)dx. (5.6)

Geometrically, F(x)dx is the area of the thin rectangle whose base is
dx and whose height is the function F at that x. (If F(x) < 0, the area is
counted as negative.) If you eventually went from x1 to x2, then the work
done by the force is given by the area under that graph in the sense of
calculus. In every segment you pick up the change in kinetic energy dK,
you add it all up to get K2 − K1 from the left-hand side. The right-hand
side is the integral of the function F(x) between x1 and x2. The general
work-energy theorem now says

K2 −K1 =
∫ x2

x1

F(x)dx≡W. (5.7)

Even if you have never heard of an integral, if I give you a function you
can still deal with this problem. You’ll come to me and say, ”Give me your
function. I’m going to plot it on some kind of graph paper with a grid on it,
and I’m just going to count the number of tiny squares enclosed. That’s the
area and that’s the change in kinetic energy.” So integration is just finding
the area bounded by the function at the top, the x axis below, and two
vertical lines at the starting and ending points x1 and x2.

Now here is a little digression, a three-minute introduction to a great
secret for finding the area. If you give me a function and you tell me to find
the area under it from x1 to x2, I can show you a trick. You don’t have to
draw anything on graph paper. First, I find a function G(x) specified by its
derivative

F(x)= dG
dx

. (5.8)

Then I claim (and will prove shortly) that∫ x2

x1

F(x)dx=G(x2)−G(x1). (5.9)

This is the opposite of taking derivatives: now we want a function
whose derivative is given to be F. If I say F(x) = x3, then G(x) is that
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function whose derivative is x3. Now, I know I have to start with x4 because
when I take derivatives, I will lose a power. But I will also get an unwanted
4 in front. I fight that by putting a 4 downstairs and find G(x)= x4

4 . You
might point out that if you have a function whose derivative is some-
thing, adding a constant doesn’t change the derivative. Then you can say,
“Well, we are in trouble now because the world cannot agree on what G is,
because if I have oneG, you can get another one with a different constant.”
But the beauty is that when you take G(x2)−G(x1), this difference in the
choice of c goes away. So most of the time we don’t bother with the con-
stant. Sometimes we make a special choice that recommends itself, as you
will see when we study gravity on a celestial scale. The choice of constant
is like the choice of origin in the projectile problem: any origin will do, but
it is convenient to choose it as the point of take-off.

Why isG(x) the function whose derivative is F(x)? Let us call the area
from some arbitrary point x0 to the point x as G(x). If I add a little more
area, out to x+ dx, the extra area is F(x)dx. This, by definition, is dG, the
change in G. Dividing by dx and taking the limit, we see F = dG

dx . How do
different G’s differing by a constant arise? By choosing different starting
points x0 from which to reckon the area. But whatever we choose for x0,
the change in the area due to changing the upper limit x is always given by
dG= F(x)dx.

5.3 Conservation of energy: K2 + U2 = K1 + U1

Let us now incorporate what we have discussed so far and write

K2 −K1 =
∫ x2

x1

F(x)dx=G(x2)−G(x1)≡G2 −G1, (5.10)

which we can rearrange to give

K2 −G2 =K1 −G1. (5.11)

We now make a little cosmetic change, and introduce the function

U(x)= −G(x) F(x)= −dU
dx

(5.12)
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in terms of which we obtain the standard form

E2 ≡K2 +U2 =K1 +U1 ≡E1. (5.13)

This is the law of conservation of energy; E = K + U is called the total
mechanical energy and U is called the potential energy. Conservation of
energy in physics has a totally different meaning from “Turn the lights
off when you leave the room!” Here it means that when a body is mov-
ing under the effect of this force F(x), even though it is speeding up and
slowing down, a certain special combination

E= 1
2
mv2 +U(x) (5.14)

does not change with time. If you know the value of E at one time, you
know E at all times.

Let’s consider a simple example. We take a rock, and we drop it.
We know it’s picking up speed; we know it’s losing height. So, you may
expect there is some quantity that is a combination of height and speed,
a combination which does not change in this exchange. We can find
that combination by this law. In the case of gravity where F = −mg the
expression for U is

U =mgy since it obeys (5.15)

−dU
dy

= −mg = F. (5.16)

The energy conservation law takes the form

E2 = 1
2
mv22 +mgy2 = 1

2
mv21 +mgy1 =E1. (5.17)

In the mass and spring system, the corresponding relations are

U(x)= 1
2
kx2 since it obeys (5.18)

−dU
dx

= −kx= F(x) (5.19)
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and the conservation law assumes the form

E2 = 1
2
mv22 + 1

2
kx22 = 1

2
mv21 + 1

2
kx21 =E1. (5.20)

Let us put that to work. I’m going to pull the mass by an amount A
and let it go. I want to know how fast it will be moving when it comes to
some point, say, x = 0. If you go back to Newton’s laws, this is a pretty
complicated problem. Think about why. You start with a mass at rest. If
you pull it by an amount A, a force −kA initially acts on it. That will pro-
duce an acceleration, −kA/m, which will give it a small negative velocity
by the time it moves a distance�x to the left. But once it comes to the new
location, a different force will be acting on it, because the x is now differ-
ent from A. So the acceleration during the next tiny interval is different,
and the gain and the velocity during that second interval will be different
from that in the first. You have to add all these changes to find the velocity
at x= 0. That’s a difficult proposition, but with the law of conservation of
energy you’ll do that in no time. Let’s do it, not just for x= 0, but an arbi-
trary x. We set x1 =A, v1 = 0 at the start and drop the subscript 2 on x and
v at the generic point to obtain

1
2
mv2 + 1

2
kx2 = 0+ 1

2
kA2. (5.21)

At the initial time, all the energy is potential energy; there is no
kinetic energy because there is no motion. At any subsequent time, we
can solve for the velocity at any location x. If you want x = 0, that’s very
easy:

1
2
mv2 + 1

2
k · 02 = 0+ 1

2
kA2 (5.22)

v2 = kA2

m
(5.23)

v= ±
√
kA2

m
= ±A

√
k
m

= ±ωA. (5.24)

We get two answers because the mass may be going past the origin in
either direction. If it is passing the origin for the first time, it will bemoving
to the left with a negative velocity.
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For the case of general x, Eqn. 5.21 tells us

v(x)= ±
√

k
m

√
A2 − x2. (5.25)

You can see why finding the velocity is so much easier now; it is
because we have calculated the kinetic energy change produced by the
spring between two points x1 and x2 once and for all by doing the integral
of the spring force and encoding that in U(x1)−U(x2).

Now, let us take another problem: a mass is hanging from the ceiling.
Let us choose the origin of the vertical coordinate y at the lower end of the
undistorted spring, so that the force due to the spring is −ky. There will
now be two kinds of potential energy, the gravitational and spring-based,
because there are two forces:

K2 −K1 =
∫ y2

y1

F(y)dy (5.26)

=
∫ y2

y1

(−mg − ky
)
dy (5.27)

=mg(y1 − y2)+ 1
2
k
(
y21 − y22

)
, (5.28)

which can be written as

K2 +mgy2 + 1
2
ky22 =K1 +mgy1 + 1

2
ky21. (5.29)

5.4 Friction and the work-energy theorem
One bad apple ruins the whole thing: friction. Let’s take a body with the
spring force −kx and a frictional force f acting on it. I will try as usual
to get a law of conservation of energy when friction is acting, and you
will see that I will not succeed. It looks like everything here is water-
tight, right? You tell me all the forces acting on a body. I integrate each
force from start to finish and call that the difference of the corresponding
potential energies, as I did in the case of a vertical spring-mass system
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subject to the spring and gravity. Then I have got my result. So here
we go:

K2 −K1 =
∫ x2

x1

F(x)dx=
∫ x2

x1

(−kx)dx+
∫ x2

x1

f (x)dx

(5.30)

= 1
2
kx21 − 1

2
kx22 +

∫ x2

x1

f (x)dx (5.31)

(
K2 + 1

2
kx22

)
−

(
K1 + 1

2
kx21

)
=

∫ x2

x1

f (x)dx. (5.32)

If we do the integral over f (x) and call that the difference of potential
energies due to friction, we can take that to the left-hand side and get a for-
mula for energy as a sum ofK and two potential energies.What is stopping
me? The answer is that the force of friction is not a function of just x. You
might say, “What do you mean? I’m pushing this mass, and I know how
hard it’s pushing me back.” But then I tell you, “Push it the opposite way!”
Then, you’ll find the force of friction, at the very same location, is pointing
in the opposite direction. This is unlike the force of a spring, which is −kx
whether you’re going toward the origin or away from it. The same is true
for gravity. Gravity is pulling down with a force −mg and it doesn’t care
whether the object is going up or coming down; at a given location there
is a fixed force. So the problem is not that the frictional force varies with x
but that the force is also a function of the direction of velocity, which can
have either sign. Thus f = f (x, v(x)). Let us postpone the evaluation of the
integral over f and write

(
K2 + 1

2
kx22

)
−

(
K1 + 1

2
kx21

)
=

∫ x2

x1

f (x, v(x))dx (5.33)

E2 −E1 =
∫ x2

x1

f (x, v(x))dx. (5.34)

I cannot evaluate the integral of f given just x1 and x2, because it can
go from x1 to x2 directly or after one or more oscillations. During these
oscillations the velocity will change sign repeatedly and so will the force of
friction at any given x.Wemust break down the total journey into segments
wherein the velocity and f have a definite sign at each x.
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Here is an example where we consider just one segment within which
v has a definite sign and hence so does f . I pull a mass to x=A and let go.
First assume a small amount of friction. I know that when themass returns
to the center it won’t be going quite as fast as without friction. And I also
know that when it overshoots to the other side, it will not go all the way
back to x = −A. I want to find A′, the coordinate of the left-most point.
For this leftward journey from x=A to x=A′ the force is a well-defined
function: f = +μkmg pointing to the right. The displacement is negative:
d= −(A−A′) and the work done by friction is

Wf = −μkmg(A−A′)≡ −f · (A−A′) (5.35)

and the energy equation is

E2 −E1 =
∫ x2

x1

f (x, v(x))dx= −f · (A−A′) (5.36)

1
2
kA

′2 − 1
2
kA2 = −f · (A−A′) (5.37)

where we have set K1 = K2 = 0 at the start and finish. This quadratic
equation for A′ may be rearranged as follows:

k
2
(A′ −A)

[
A′ +A− 2f

k

]
= 0. (5.38)

The root A′ = A is trivial: it corresponds to the initial point where the
kinetic energy is indeed zero and the total energy equals the initial energy.
Let us analyze the nontrivial solution

A′ = −A+ 2f
k
. (5.39)

As we crank up f
k from 0 to A, A′ starts moving rightward from x = −A

and turns positive when we pass f
k = A

2 . That is, the final point now lies at
positive x: the oscillator never evenmakes it back to the equilibrium point.
Raising f further, we reach the limiting case f

k = A when the nontrivial
solution coalesces with the trivial one: the mass never leaves x = A since
the spring force, at its very maximum of kA, exactly equals the frictional
force. (In this discussion we assume μs = μk.)
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Here is the bottom line for the law of conservation of energy. You
take all the forces acting on a body and equate K2 −K1 to the work done,
the integral of all the forces. Divide the forces into conservative forces
(gravity, spring) that depend on location only and the non-conservative
like friction (which is the only non-conservative force we will consider).
The integral over each conservative force will turn into an associated
potential energy difference. LetWf be the work done by friction. The final
result will be

E2 −E1 =Wf with (5.40)

E= 1
2
mv2 +Us +Ug + . . . (5.41)

where the potential energyUs is due to the spring,Ug is due to gravity, and
so on.



chapter 6

Conservation of Energy in d= 2

6.1 Calculus review
We begin with some mathematical preparation for what I’m going to do
next. Let’s take some function f (x) shown in Figure 6.1. I start at some
point xwith a value f (x).When I go to a nearby point, x+�x, the function
changes by�f = f (x+�x)− f (x). All these tiny quantities are exaggerated
in the figure so you can see them. We are going to need approximations
to the change in the function as �x→ 0. A common one is to pretend the
function is linear with the local value of the slope f ′(x)= df

dx , as depicted by

Figure 6.1 The change, �f , in a function f (x) as x changes by �xmay be
approximated by �f � f ′(x)�x, where f ′(x)= df

dx . The solid line is the actual
function and the dotted line is the approximation by a straight line of slope f ′(x).

82
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the dotted line. The change in f along the straight line is f ′(x)�x. It differs
from the actual �f by a tiny amount because the function is not following
the same slope that you have to begin with; it’s curving up. Take a concrete
example:

f (x)= x2 (6.1)

f (x+ �x)= x2 + 2x�x+ (�x)2 (6.2)

�f = 2x�x+ (�x)2 (6.3)

�f = f ′(x)�x+ (�x)2. (6.4)

This result is valid for �x of any size. We see that the exact change is
f ′(x)�x plus something quadratic in �x. If we are interested in very small
�x, we may start ignoring all but the term linear in �x:

�f = f ′(x)�x+O(�x)2 (6.5)

where O(�x)2 signifies that the neglected terms are of order (�x)2 and
higher.

Often we will use

�f � f ′(x)�x (6.6)

as an approximation for small �x.
Consider, for example, f (x) = (1 + x)n and its values near x = 0.

Clearly f (0) = 1. Suppose you want the function at a point x very close
to the origin. In this case �x = x− 0 is just x itself and the approximate
value will be

f (x)= f (0)+ f ′(0)x+ . . .=1+n (1+ x)n−1
∣∣
x=0 x+ . . .=1+nx+ . . . ,

(6.7)

a result we will exploit mercilessly.
On other occasions, we will take the limit �x → 0 in the end and

write the equality

df = f ′(x)dx (6.8)
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with the understanding that both sides are to be integrated to obtain

∫ 2

1
df = f (x2)− f (x1)=

∫ x2

x1

f ′(x)dx. (6.9)

6.2 Work done in d = 2
Now we are going to derive the work-energy theorem and the law of con-
servation of energy in two dimensions. I am hoping I will get some relation
like K1 +U1 =K2 +U2, whereU=U(x, y). How do you visualize the func-
tion of two variables f (x, y)? On top of each point (x, y) you measure the
value of f (x, y) in the third perpendicular direction. The function defines a
surface over the x− y plane and the distance from the plane to the surface
is the value of f at the point (x, y). For example, (x, y) could be coordinates
of a point in the United States and the function could be the temperature
T(x, y) at that point. So you plot on top of each point in the United States
the local temperature.

Once I have got the notion of a function of two variables, I want to
move around the plane and ask how the function changes. But now I have
an infinite number of options. I can move along x, I can move along y, I
can move at some intermediate angle. Consider derivatives along the two
principle directions x and y. We’re going to define a partial derivative as
follows. You start at the point (x, y), go to the point (x+ �x, y), subtract
the function at the starting point, divide by �x, and take �x → 0. This
defines the partial derivative with respect to x:

∂f
∂x

= lim
�x→0

f (x+ �x, y)− f (x, y)
�x

. (6.10)

The curly ∂ instead of d tells you it’s the partial derivative. As you move
horizontally, you notice you don’t do anything to y. We could make it
very explicit by using a subscript y as follows:

∂f
∂x

∣∣∣∣
y
= lim

�x→0

f (x+ �x, y)− f (x, y)
�x

. (6.11)
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We will not do that: if one coordinate is being varied, all the others (of
which there is just one in d=2) will be assumed fixed. In the same notation

∂f
∂y

∣∣∣∣
x
≡ ∂f

∂y
= lim

�y→0

f (x, y+ �y)− f (x, y)
�y

. (6.12)

Let’s get some practice with f = x3y2. To find ∂f
∂x we see how f varies

with x keeping y constant. That means we treat y like a number such as 5
when we encounter it. So we have

∂f
∂x

∣∣∣∣
y
= 3x2y2 (6.13)

∂f
∂y

∣∣∣∣
x
= 2x3y. (6.14)

We know from the calculus of one variable that you can take the derivative
of the derivative. Here are the four possible second derivatives and their
explicit values for f = x3y2:

∂

∂x

(
∂f
∂x

)
≡ ∂2f

∂x2
= 6xy2 (6.15)

∂

∂y

(
∂f
∂y

)
≡ ∂2f

∂y2
= 2x3 (6.16)

∂

∂x

(
∂f
∂y

)
≡ ∂2f

∂x∂y
= 6x2y (6.17)

∂

∂y

(
∂f
∂x

)
≡ ∂2f

∂y∂x
= 6x2y. (6.18)

Notice that themixed or cross derivatives are equal:

∂2f
∂y∂x

= ∂2f
∂x∂y

. (6.19)
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That’s a property of the generic functions that we will encounter. I’d
like to give you a feeling for why that is true. For what follows, bear in
mind that when you make a small displacement in the plane, the change
in any function is approximately

�f � ∂f
∂x

�x+ ∂f
∂y

�y, (6.20)

which becomes an equality in the limit �x→ 0, �y→ 0 and �f → 0:

df = ∂f
∂x

dx+ ∂f
∂y

dy. (6.21)

These limits appear naturally when we plan to sum over the infinitesimal
changes to get the corresponding integrals.

Armed with this, let us ask howmuch the function changes when we
go from some point (x, y) to (x+ dx, y+ dy) in Figure 6.2. We’re going to

Figure 6.2 Two ways to go from (x, y) to (x+�x, y+�y): move horizontally
and then vertically or vice versa. That the change in f must be the same both
ways becomes the requirement that ∂2f

∂y∂x = ∂2 f
∂x∂y .
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make the move in two stages. We go via an intermediate point (x+ dx, y)
and add the changes df1 and df2 in each step:

df1 = ∂f
∂x

∣∣∣∣
(x,y)

dx (6.22)

df2 = ∂f
∂y

∣∣∣∣
(x+dx,y)

dy (6.23)

df = ∂f
∂x

∣∣∣∣
(x,y)

dx+ ∂f
∂y

∣∣∣∣
(x+dx,y)

dy. (6.24)

Notice that the second step requires the y partial derivative at (x+ dx, y).
Because the partial derivative is itself just another function of x and y, we
may write to leading order in dx

∂f
∂y

∣∣∣∣
(x+dx,y)

= ∂f
∂y

∣∣∣∣
(x,y)

+ ∂2f
∂x∂y

dx. (6.25)

Upon feeding this into Eqn. 6.24 we find

df = ∂f
∂x

∣∣∣∣
(x,y)

dx+ ∂f
∂y

∣∣∣∣
(x,y)

dy+ ∂2f
∂x∂y

∣∣∣∣
(x,y)

dxdy. (6.26)

If we first moved up to (x, y+ dy) and then to (x+ dx, y+ dy), we would
get a change in f with x and y interchanged. Equating the results from the
two ways to find the change in f between (x, y) and (x+dx, y+dy) we find

∂2f
∂x∂y

∣∣∣∣
(x,y)

dxdy= ∂2f
∂y∂x

∣∣∣∣
(x,y)

dydx. (6.27)

Canceling the products of the infinitesimals, we get the equality of the
mixed derivatives.
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6.3 Work done in d = 2 and the dot product
Let us come back to deriving the law of conservation of energy in two
dimensions. In one dimension we found that if K = 1

2mv2,

dK
dt

=mv
dv
dt

=mva= Fv= F
dx
dt

(6.28)

dK = Fdx upon canceling dt above (6.29)

K2 −K1 =
∫ x2

x1

F(x)dx upon integrating both (6.30)
sides above

=U(x1)−U(x2), which can be (6.31)
rearranged to give

K2 +U2 =K1 +U1 (6.32)

provided F did not depend on anything else besides x, such as v(x).
We want to try the same thing in two dimensions. What expression

should I use for the work done in two dimensions, given that the force and
displacement are both vectors with two components each? How should
I multiply all these parts in generalizing dW = Fdx? Here is the solution.
I’m going to find dK

dt for a body moving in two dimensions and call that the
power P= dW

dt just as in d= 1. For that I need a formula for kinetic energy.
The obvious choice that reduces to what we know is correct for motion
along just x or y is

K = 1
2
mv2 = 1

2
m(v2x + v2y). (6.33)

Now we find

dK
dt

=m
(
vx
dvx
dt

+ vy
dvy
dt

)
(6.34)

= Fxvx + Fyvy = Fx
dx
dt

+ Fy
dy
dt

(6.35)

dK = Fxdx+ Fydy (6.36)

where I have used Newton’s second law F=mdv
dt and multiplied both sides

of Eqn. 6.35 by dt, which is allowed in the sense explained earlier. If I define
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the work done as

dW = Fxdx+ Fydy, (6.37)

I find, just as in d= 1, that

dK = dW = Fxdx+ Fydy. (6.38)

The force and displacement are both vectors

F= iFx + jFy (6.39)

dr= idx+ jdy (6.40)

and their components enter dW in the combination dW = Fxdx + Fydy.
Likewise the power Pmay be written as

P= dK
dt

= Fxvx + Fyvy. (6.41)

Given two vectors

A= iAx + jAy (6.42)

B= iBx + jBy, (6.43)

we see that the combination AxBx +AyBy appears very naturally. It has a
name: the dot product of A and B, denoted by A ·B. That is, by definition,

A ·B=AxBx +AyBy. (6.44)

In this notation

dW = F · dr (6.45)

P= F · v. (6.46)

A few factoids about A ·B. First

A ·A=A2
x +A2

y =A2 (6.47)
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where A is the length of A.
Next if θA and θB are the angles A and Bmake with the x-axis, then

A ·B=AxBx +AyBy (6.48)

=A cos θAB cos θB +A sin θAB sin θB (6.49)

=AB [cos θA cos θB + sin θA sin θB] (6.50)

=AB cos [θB − θA]=AB cos [θA − θB] , (6.51)

which is usually written more compactly as

A ·B=AB cos θ , (6.52)

where it is understood θ is the angle between the vectors. It can be mea-
sured from A to B or the other way since cos θ is unaffected by a sign
change in θ .

Equation 6.52 works even in d= 3 becauseA and B can still be made
to lie in a plane and θ defined as the angle between them in this plane.
However, in terms of components we must bring in all three components:

A ·B=AxBx +AyBy +AzBz, (6.53)

a result that seems reasonable and one which can be verified after some
messy trigonometry.

The dot product is symmetric since cos θ = cos(−θ):

A ·B=B ·A. (6.54)

Note that if we set A=B, then A ·A=AA cos 0=A2.
The two definitions of the dot product, Eqns. 6.44 and 6.52, are fully

equivalent. If you are thinking in terms of the components, AxBx +AyBy is
more natural, while if you are thinking in terms of arrows of some lengths
and angles, AB cos θ is preferred. Which one you use depends on your
goals.

For example, to establish an important property that the dot product
is distributive:

A · (B+C)=A ·B+A ·C (6.55)
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it is easier to proceed as follows

A · (B+C)=Ax(Bx +Cx)+Ay(By +Cy) (6.56)

=AxBx +AyBy +AxCx +AyCy =A ·B+A ·C.
(6.57)

On the other hand, using A · B = AB cos θ , it is easier to establish the
following very useful results:

• If A and B are parallel, i.e., θ = 0, their dot product is a maximum.
• If A and B are perpendicular, their dot product is zero.
• Under a rotation of axes, A · B is invariant or unchanged, because the

lengths and the relative angle are unchanged by a rotation of axes.

Of course, for every proof with one definition, a possibly more cumber-
some one, which uses the other definition, also exists.

Let us return to the work-energy theorem using the dot product
notation:

dK = F · dr= dW. (6.58)

The work done by a force when it moves a body by a vector dr is the length
of the force vector times the distance traveled, times the cosine of the angle
between the force vector and the displacement vector. That is also the
change in kinetic energy dK. Let us make a big trip in the x − y plane,
shown in Figure 6.3, starting from a point r1 ≡ 1 and ending at r2 ≡ 2, and
made up of a sequence of little segments dr in each one of which I calcu-
late F ·dr. When I add their contributions to the change in K and the work
done, I get, as the segments’ sizes tend to zero,

∫ 2

1
dK =K2 −K1 =

∫ 2

1
F · dr. (6.59)

The right-hand side is called the line integral of the force F between 1 and
2 along a path P.
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Figure 6.3 The line integral of a force between points 1 and 2 along a path P1 is
the sum of dot products F · dr over tiny segments that make up the path, in the
limit dr→ 0. Also shown by a dotted line is another path P2 between the same
end points.

6.4 Conservative and non-conservative forces
Suppose it is true, just like in one dimension, that the line integral of the
force is something that depends only on the end points. Let us call the
answerU(1)−U(2), just like we did in one dimension. I am done, because
then I have

K2 +U2 =K1 +U1. (6.60)

To make sure this is correct, I ask the mathematicians a question: “You
told me the integral of F(x) from start to finish is really the difference of
another function G at the upper limit minus G at the lower limit, with G
related to F by F = dG

dx . Is there a similar result in d= 2?” Sadly, this is not
the case. What could go wrong? Yes, friction will do it, but let us assume
there is no friction, and that F depends only on r. Can something still be
wrong?Well, let me ask you the following question. Suppose I go from 1 to
2 along path P1 and another person goes along path P2. Do you think that
person will do the same amount of work, even though the force is now
integrated on a longer path? In two dimensions, there are thousands of
ways to go from one point to another point. Therefore, this integral is not
specified by just the end points; it depends on the entire path, which needs
to be specified. If the work done depends on the path, then the answer
cannot be of the formU(1)−U(2), which depends only on the end points.

I digress to point out that even in d = 1, there are many ways to
go from x1 to x2 > x1. For example, we can go directly to x2 or we can
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overshoot to x3 and swing back to x2. The answer will be the same, because
for every segment from x2 to x3 that makes a contribution F(x)dx, an
equal and opposite contribution exists on the way back to x2, because F(x)
remains the same, and dx changes sign. In this sense, every force F(x) in
d = 1 is conservative. Of course, if it is friction we are talking about, the
two canceling pieces now add, because F = F(x, v(x)) reverses sign along
with dx.

Returning to d = 2, I am going to show that the work done by a
generic force will be path-dependent. To generate a random force, I asked
my class to give me numbers from 1 to 3, and I got the following list: 2, 2,
2, 1, 1, and 2. Using these randomly generated numbers as coefficients and
exponents, I wrote down a force:

F(x, y)= i2x2y2 + jxy2 (6.61)

For example, the 2x2y2 is from the first three 2’s chosen by the class.
Is it true for this generic force, essentially picked out of a hat, that the

work done in going from one point to another depends only on the end
points, or does it depend in detail on how you go between the end points?
We will find that the work done along two paths, joining the same two end
points, will give two different answers.

Let’s find the work done inmoving from the origin, (0, 0), to the point
(1, 1). I will take the two paths shown in Figure 6.4. In one path I go hor-
izontally until I’m at (1, 0), below the point (1, 1), and then straight up to
(1, 1). In the other path, I’m going straight up to (0, 1) and then on hori-
zontally to (1, 1). So, let’s find the work done when I go the first way. I’m

Figure 6.4 The line integral of a vector from (0, 0) to (1, 1) along two paths.
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going to integrate F ·dr first on the horizontal segment, then on the vertical
segment. On the x-axis if I move a little bit I have

dr= idx (6.62)

F(x, y)= i2x2y2 + jxy2 = 0 because y= 0 on the x-axis (6.63)

F · dr= 0. (6.64)

In other words, the work done in this segment is zero because F itself
vanishes when y= 0. In the vertical segment from (1, 0) to (1, 1),

dr= jdy (6.65)

F(x, y)= i2x2y2 + jxy2 = i2y2 + jy2

because x= 1 on this segment (6.66)

F · dr= y2dy (6.67)∫
F · dr=

∫ 1

0
y2dy= 1

3
. (6.68)

So the work done on this path isW1 = 0+ 1
3 = 1

3 .
On the second path, we have no contribution from the vertical seg-

ment because F = 0 for x = 0. In the horizontal segment at y = 1, we
have

dr= idx (6.69)

F(x, y)= i2x2y2 + jxy2 = i2x2 + jx

because y= 1 on this segment (6.70)

F · dr= 2x2dx (6.71)∫
F · dr=

∫ 1

0
2x2dx= 2

3
. (6.72)

So the work done on this path isW2 = 0+ 2
3 = 2

3 .
The answer is path-dependent.
I have shown you that if we took a random force, the work done is

dependent on the path. For this non-conservative force, you cannot define
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a potential energy, whereas in one dimension any force other than friction
allowed you to define a potential energy.

Our quest for a conserved energy leads us to search for a conser-
vative force, a force for which the work done in going from 1 to 2 is
path-independent.

6.5 Conservative forces
At first sight a conservative force looks miraculous. A randomly generated
force was seen to have a line integral that depended on the path. How can
the path dependence ever go away? Do conservative forces exist, and, if
yes, how are we to find them?

Do not despair. Here is an algorithm that will produce any number
of conservative forces.

• Take any function U(x, y).
• The corresponding conservative force is

F= −i
∂U
∂x

− j
∂U
∂y

. (6.73)

• The potential energy associated with this conservative force will be U
itself.

Here is an example.

U(x, y)= xy3 (6.74)

∂U
∂x

= y3 (6.75)

∂U
∂y

= 3xy2 (6.76)

F= −iy3 − j3xy2. (6.77)

Letme prove to you that the recipe works. The change in the function
U, due to a small deviation from (x, y) to (x+ dx, y+ dy), is

dU = ∂U
∂x

dx+ ∂U
∂y

dy (6.78)
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in the limit as all changes go to zero. Writing this in terms of F

dU = −Fxdx− Fydy= −F · dr. (6.79)

Adding all the little pieces and changing the sign of both sides, we get

U(1)−U(2)=
∫ 2

1
F · dr=K2 −K1, (6.80)

which is the law of conservation of energy with U as the potential energy.
So I cooked up a force such that F ·dr was a change in a certain func-

tion U. If I add all the F · dr’s, I’m going to get the change in the function
U from start to finish. We are beginning to see why certain integrals do
not depend on the path. Here is an analogy. Forget about integrals. Imag-
ine I am on some hilly terrain. I start at one point, and I walk to another
point. At every portion of my walk, I keep track of my change in altitude,
with uphill as positive and downhill as negative. That is like my dU. I add
them all up. The total height change will be the difference in the heights
of the end points. Now, you start with me but go on a different path. You
wander all over the place but finally stop where I stopped. If you kept track
of how long you walked, it won’t be the same as my walk. But if you also
kept track of how many feet you climbed at each step and added them all
up, you would get the same answer I got. I repeat: if what you were keep-
ing track of was the height change in a function, then the sum of all the
height changes will simply be the height at the end minus the height at the
beginning, independent of the path. Conversely, starting with the height
function, if you manufacture a force F whose components are its partial
derivatives, F · dr will measure the height change in each segment, and
the line integral will yield the total height change between start and finish,
independent of the path.

Consider the line integral of a conservative force on a closed loop,
that is, when the starting and ending points 1 and 2 in Figure 6.3 coincide.
Because this represents the change in U between some point and the same
point, it vanishes for any loop. This is expressed as follows:

∮
F · dr= 0 if F is conservative. (6.81)
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Are there other ways tomanufacture the conservative force? No! One
can show that every conservative force can be obtained by differentiating
some corresponding U.

Remember how I went out on a limb with the randomly chosen force
the class generated and promised I was going to do the integral along two
paths and get two different answers? What if the force had been a conser-
vative force? Then I would have been embarrassed, because I would find,
after all the work, that both paths gave the same answer. So, I had to make
sure right away that the force was not conservative. How could I tell? I
asked myself, “Could there be some function U (the negative of) whose
x and y derivatives could equal i2x2y2 + jxy2?” I knew the answer was no
because if I took a y derivative of such a U to get Fy, then Fy should have
one less power of y than Fx, but in our example the powers of y were the
same in both. I will describe shortly a better way to analyze this question.

While it is true that even one example of path dependence (as illus-
trated above) is enough to show a force is non-conservative, getting the
same answer on two or even two thousand paths between any number
of fixed end points does not mean the force is conservative. It could be
accidental. Some other path or some other end points may show the force
is non-conservative. Conversely it could happen that a non-conservative
force, like the one I just worked with, has the same integral for two partic-
ular paths joining two particular end points by pure accident. I took that
gamble and lucked out.

But if the force is really conservative, how are we to show that? Here
is the wonderful test I promised. If F is conservative, it must come from a
U by taking partial derivatives, as per Eqn. 6.73. It follows that

∂Fx

∂y
= − ∂2U

∂y∂x
(6.82)

∂Fy

∂x
= − ∂2U

∂x∂y
which means (6.83)

∂Fx

∂y
= ∂Fy

∂x
because the cross derivatives are equal. (6.84)

If I give you a force and ask you, “Is it conservative?” you simply see if

∂Fx

∂y
= ∂Fy

∂x
. (6.85)
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If it is, you know the force is conservative; if not, it is not.
The example we considered,

F(x, y)= i2x2y2 + jxy2, (6.86)

fails the test:

∂Fx

∂y
= 4x2y �= ∂Fy

∂x
= y2. (6.87)

The two most ubiquitous forces, gravitational and electrostatic, are
conservative.

For longer discussion of this topic that fills in many blanks, see my
Basic Training in Mathematics.

6.6 Application to gravitational potential energy
Let’s take the most popular example: the force of gravity near the surface
of the earth given by Fg = −jmg ≡ mg where g = −jg. It is conservative
because the x derivative of Fy vanishes, and there is no Fx to differentiate,
so that ∂Fx

∂y = ∂Fy
∂x =0.What is the potentialU that led to this? You can easily

guess that U =mgy will obey Fy = − ∂U
∂y . You can also have U =mgy+ 96,

but we will not add those constants. In the law of conservation of energy,
K1 +U1 =K2 +U2, adding a 96 to theU on both sides doesn’t do anything.
You already knew this from our study of motion in one dimension, and I
am pointing out that this is also true in two dimensions.

Consider an application. Figure 6.5 shows a roller-coaster track that
has a wiggly shape. At every x, there’s a certain height y(x) and a potential
energy U(x) = mgy(x), which is essentially just the profile of the roller-
coaster track. If a coaster begins at rest at point A at the top, what is its
total energy? It has a potential energy given by the height h, it has no
kinetic energy, and so the total energy is just E1 =mgh. But the total energy
cannot change as the coaster goes up and down. So, you draw a line at
height E1 to represent this total energy. If the coaster is at some point x,
then U1(x) is its potential energy and the rest of E1 is its kinetic energy
K1(x) as shown. As it oscillates up and down during its ride, the coaster
gains and loses kinetic and potential energies, which always add up to the
same E1.
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Figure 6.5 The roller-coaster ride. The total energy is fixed at E1 or E2 in the
two examples discussed. At every point x, the sum of the potential energy U(x)
and the kinetic energy K(x) equals a constant E. If the energy is E2, the coaster
can only be found between B and C or to the right of D. It is disallowed in the
region CD where the potential energy exceeds the total energy, and K would have
to be negative.

Consider a roller coaster whose total energy is E2. We release it from
rest at point B. It’ll come down, pick up speed, slow down, stop, and turn
around atC, because, at that point, the potential energy is equal to the total
energy and there is no room for any kinetic energy. It’ll rattle back and
forth between B and C. If we release it from rest at D, it will have the same
energy E2, and it will coast down to the end of the ride. But it can never go
from C toD because in the region CD it would have more potential energy
than total energy, and hence negative kinetic energy, which is impossible.

However, according to laws of quantum mechanics, a particle with
energy E2 can disappear from the region BC and tunnel to D with the
same energy. I use the word tunnel because in classical mechanics, the
particle cannot cross the potential energy barrier in the interval CD. In
quantum theory you cannot raise this objection because particles do not
move along continuous, interpolating trajectories between two observed
locations.

Back to the coaster:We can use energy conservation to find the speed
at any point along the track. We can use it to determine the minimum
height H from which the coaster in Figure 4.6 must be released so as to
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reach the top of the loop (at a height 2Rmeasured from the ground) at the
minimum requisite speed of v=√

Rg. We write

1
2
m · 02 +mgH = 1

2
mRg +mg(2R) (6.88)

H = 5
2
R. (6.89)

A final note. The law of conservation of energy for the coaster as I
stated it is incomplete, because gravity is not the only force acting. There
is FT , the normal force of the track. Look, if I didn’t want to have any force
but gravity, I could take this roller coaster and just push it over the edge
of a cliff. That converts potential to kinetic energy, but the outcome is not
going to be good for the riders. Park designers build a track because they
want the customers to survive the ride and come back for more. So the
track should exist, and the consequent FT should be included in comput-
ing the work. Luckily, this normal force does no work, because FT · dr= 0
in every portion. So the correct thing to do would be to say K2 −K1 is the
integral of all the forces, divide them into FT due to the track and Fg due
to gravity, and drop FT for the reason mentioned.



chapter 7

The Kepler Problem

7.1 Kepler’s laws
Next we discuss one of themost famous problems involving a conservative
force: celestial motion under the influence of Newtonian gravity. We’re
going to make a big leap beyond inclined planes, pulleys, and whatnot; we
are going to understand how planets move around the sun. That’s a mega
problem, right? The little m’s you put in the equation are not the masses
of a pulley or a block, but the mass of Jupiter or the sun. You’re doing
something of cosmological proportions. And you don’t need to know too
much more to do that. You’re almost there.

The situation was as follows at Newton’s time. Nicolaus Copernicus
had proposed that the way to think about our solar system is to put the sun
S at a fixed point as shown in Figure 7.1 and let the planets move around it.
I have shown just one planet called P. You have to agree that Copernicus’s
contribution was truly remarkable. First of all, that was an era when it was
not “publish or perish” but “publish and perish.” It was not a good idea
to come out and say what you thought about celestial objects. More than
that, how did Copernicus ever figure this out? Even today, even when I
know the heliocentric model is correct, when I look around, it doesn’t at
all look like this to my eyes. I concede that if you looked at our solar system
from far away, it would look very simple. But what is our vantage point?
We are sitting on the third planet from the sun, spinning around our own
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axis, and going around the sun. We think we are at rest, and everything is
spinning around the opposite way. To deduce from that chaos this simple
picture was quite remarkable. This shift in thinking is properly called the
Copernican revolution.

After the Copernican revolution, people decided to take the data we
get with the earth as the center, transcribe the data with the sun as the cen-
ter, and analyze the new results. Tycho Brahe was a Danish aristocrat who
had his own lab and studied the solar system. Johannes Kepler, a mathe-
matician, was his assistant who worked on this problem for forty years and
then published his findings in the form of three profound laws that were
well worth the wait. So what if Kepler gave us just three laws after forty
years? It is still better than Congress.

(I have to tell all of you who are going into science not to wait forty
years to publish. You’re not going to get a job; you are not going to get
a grant; and if you get a Ph.D, you will be at retirement age when you
graduate. In today’s climate such long-term projects are at risk. One of the
rare counter-examples that comes to my mind is the work by Raymond
Davis Jr. on neutrinos, which lasted more than thirty years and ultimately
helped resolve an outstanding puzzle connected to them.)

Here are Kepler’s three laws, followed by explanations.

• The planets move in elliptical orbits with the sun S at a focal point.
• As the planet moves, its position vector SP in Figure 7.1 sweeps out

equal areas in equal times, say as between 1 and 2 and between 3 and 4 .
• The ratio T2

a3
, where T is the time period and a the semi-major axis of

the ellipse, is the same for all planets.

Let me remind you that an ellipse is the locus of points the sum of
whose distances from the two focal points (r + r′ in Figure 7.1) is a con-
stant. To draw an ellipse, you take a string of length 2a and you nail its
two ends to the focal points S and E using thumbtacks and pass it over the
pencil tip at P as shown in Figure 7.1. Keeping the string taut, you trace
a closed loop, and you have the ellipse whose major axis is 2a and whose
semi-major axis is a. Thus for the ellipse

r+ r′ = 2a. (7.1)

Let us understand why the string length 2a is also the major axis, the width
of the ellipse in the x-direction. Imagine the pencil at point A. The length
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Figure 7.1 The solar system seen from afar, with just one planet P shown. The
orbit is an ellipse with the sun S at one focal point, and a major axis 2a that
obeys r+ r′ = 2a. The position vector sweeps out equal areas in equal times, for
example, between 1 and 2 and between 3 and 4.

of the string goes from S to A, and back from A to E. Take the segment AE
that is covered twice, and borrow one cover to match the segment BS, and
you see that the length of the string spans the major axis 2a.

If you move the two focal points to a single point, you get the circle
with radius R = a. (The minor axis 2b is the width in the perpendicular
direction and will not figure in this elementary treatment.) If the sun is
at S, what is at the other focal point E? Nothing, as far as anyone can tell,
though there are rumors Elvis has been sighted there. The labeling in the
figure acknowledges this very credible possibility.

Now for Kepler’s second law. Follow any one planet for a fixed
period, say one week, as it moves from 1 to 2. Measure the area swept out,
which is the area between the radius vectors r1, r2 and the part of the orbit
between 1 and 2. Repeat this for any other one-week period, say between
3 and 4, and you will measure the same area. Indeed, this rate of sweeping
area is equal even for infinitesimal times, which allows us to say

dA
dt

= constant. (7.2)
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Kepler’s third law states that

T2

a3
= same for all planets in the solar system (7.3)

where T is the time period and a is the semi-major axis. In other words, if
you plug in T = 365 days and a= 93, 000, 000 miles for the earth (assum-
ing it is on a circular orbit, which it nearly is), you get some number:
roughly 2.96 · 10−19 s2m−3. Now compute this ratio for Jupiter, and you get
3.01 · 10−19 s2m−3. Very impressive!

Students often ask if Kepler’s laws have corrections. They certainly
do, like every other law. First of all, planets are not moving just under the
influence of the sun but also other planets, especially Jupiter. Secondly,
the Newtonian law of gravitation has been modified by Einstein’s general
theory of relativity. Both these effects prevent the orbit from being closed.
The major axis slowly rotates with time, and this is called precession of
the perihelion, the effect being most pronounced for Mercury. After all the
corrections explicable in Newtonian terms, a tiny amount, 43 degrees of
an arc per century, remained unexplained. (A degree of arc is 1/3600 of
a degree.) In a remarkable feat of human invention, the general theory
of relativity explained that last discrepancy.

Kepler’s data were available to Newton. Newton, as you know, was
sent home from college because there was a plague in Cambridge. He went
and lived in his old village, contemplating gravitation. Newton had already
invented F =ma but not the F for the particular case of gravity. He then
went on to do just that.

7.2 The law of universal gravity
Newton built on his earlier insight that you have to associate a force with
acceleration and not with velocity. If you follow a planet as it moves
around, thinking it is force that causes velocity, you won’t get any defini-
tive answer as to what is behind the force. On the other hand, if you
calculate the acceleration of the planet, you will find that, at every instant,
it points toward the sun. (This is obvious for the circular orbit.) If all bodies
are accelerating toward the sun, it’s fairly clear the reason for the accelera-
tion is the sun. You then postulate a force that’s exerted by the sun on the
planet that bends it into a circle. Your job is to find that force.
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What’s the nature of the force? Again, it was Newton who figured
out that the force that bends the planets around the sun is the same as the
force that bends the moon around the earth or makes the apple fall to the
earth. Now, the fact that the moon, orbiting at a radius Rm at a speed vm, is
accelerating toward the earth at a rate

am = v2m
Rm

(7.4)

is something you have already learned in this course. As for the apple, it
also is accelerating toward the earth at a rate

aa = g � 9.8ms−2, (7.5)

independent of its massma.
Let us guess the formula for the force on the apple, looking at just the

magnitude, the direction being obviously toward the center of the earth.
Near the earth, we all know, the acceleration of every body is the same.
Therefore from a= F

m , we deduce that the force of gravity on a falling body
is itself proportional to the mass of the body, so that themmay cancel out.
So we can write for the apple

Fa =maf (Me,Ra) (7.6)

where the unknown function f depends onMe, the mass of the earth, and
its radius Re, which is also the distance Ra between the apple and the center
of the earth.

What else do we need? The third law says that if there’s a force on
the apple exerted by the earth, the apple must exert an equal and oppo-
site force on the earth. Consider the earth and the apple—but imagine the
apple getting bigger and bigger. The formula is not going to change. Wait
until the apple is huge compared to the earth. Then you will have to agree
that the earth is falling toward the apple rather than the other way around.
Under this exchanged role, the force on the earth must then be propor-
tional to Me. Thus, for any two bodies of mass m and M, we obtain an
expression for the force compatible with Newton’s third law,

F= (Mm)f (R), (7.7)
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where R is the distance between their centers. We don’t know the distance
dependence; we don’t know the function f (R).

To find it, let us compare the acceleration of the apple and the moon
due to the pull of the earth:

aa = Mema

ma
f (Ra) (7.8)

am = MeMm

Mm
f (Rm) (7.9)

aa
am

= f (Ra)
f (Rm)

. (7.10)

We know aa = 9.8ms−2. What about am? It is given by kinematics to
be am = v2m

Rm
. Does anybody know how far the moon is? If you guessed a

million miles, that is not bad; the correct answer is 238, 000 miles. If you
make an estimate that’s off by a factor of 4 in astrophysics, it’s fine, but if
you say Rm = 1000 miles, we should have a very long talk. Anyway, let us
round it off and say Rm = 240, 000 miles.

Next, what’s the radius of the earth? You have some idea, right?
How far is California? Three thousand miles. And how many hours is
the time difference? Three hours. So that is one hour per thousand miles.
If you go all the way around the earth and come back, the accumulated
time difference has to be 24 hours. That means the earth has a circum-
ference of roughly 24, 000 miles. Dividing by 2π � 6, we get Re � 4000
miles.

I know that we should work with meters and kilometers but, like
the rest of you, once I get on the freeway I’m watching how many miles
per hour I’m driving, not how many meters per second. Nonetheless,
we Americans do use a lot of British units. If you go buy insulation
at Home Depot, it’s rated in BTUs per slug per poundal, right? Some-
times you wonder why we fought the War of Independence if we’re still
using those units. Anyway, my brain is split. When I do physics, I use
the metric system. When I shop at Home Depot, I use the Home Depot
units.

Back to finding the acceleration of the moon, am = v2m
Rm

. We’ll assume
every orbit is a circle; that assumption turns out to be not so bad, even for
planets. We already have Rm, which also gives us the length of the orbit
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2πRm, which it completes in roughly T = 28 days, yielding a velocity vm =
2πRm
T and an acceleration

am = (2πRm/T)2

Rm
. (7.11)

If you plug in the numbers, you find

aa
am

� 3600= f (Ra)
f (Rm)

. (7.12)

Given that Rm
Ra

= 240000
4000 = 60, you don’t have to be a Newton to figure out

that

f (R)= 1
R2

. (7.13)

Combining this with Eqn. 7.7, we find the great law of universal gravity:

F=G
Mm
R2

(7.14)

G= 6.67 · 10−11Nm2kg−2, (7.15)

where G is the universal gravitational constant that balances the units in
Eqn. 7.14 and ensures that the numerical value we obtain at the surface of
the earth reproduces g = 9.8ms−2.

In this argument, we are assuming that the distance between the
apple and the earth is Re, the radius of the earth. Why not use the height
of the tree from which the apple fell? Because Newton’s formula is actually
written down for two point-like objects, with an unambiguous distance
between them. The correct way to handle the earth is to divide it intomany
small pieces and find the force on the apple due to each piece and add, or
rather, integrate, over their contributions. The result will be that the earth
acts as if all its mass were concentrated at its center.Newton knew this to be
true, but he could not prove it to his satisfaction for many years, which is
why he delayed publication. Even today it is a hard problem in integration.

Here is another similar result. Suppose you are inside a hollow spher-
ical shell of some mass M. What force will you feel? It is clear that if you
are at the center, you will feel no force because for every piece of matter
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in the shell pulling you one way, there is an identical one pulling you the
opposite way. What is not obvious, but true, is that the gravitational force
will be zero inside the entire shell. Of course, outside the shell the force will
be that of a point massM sitting at the center. In summary, for any spher-
ically symmetric distribution of mass, the force felt by a body at radius r is
due to all the mass inside a sphere of radius r, acting as a point mass at the
center, while the mass outside contributes nothing.

Equation 7.14 is rightly called the law of universal gravitation. It was
a tremendous leap of faith to believe that the laws that are operative near
the earth also apply to the moon and beyond. This was the year 1687; peo-
ple believed in witchcraft and harbored all kinds of superstitions. They
were not thinking in modern scientific terms. They had a lot of illusions
about what the heavens were made of. To believe they’re made of the same
stuff, and controlled by the same laws, was far from obvious in those days.

Newton’s leap of faith has proven extraordinarily prescient: not only
the law of gravitation but all the laws of physics that we deduce near the
earth seem to work over the entire universe, not just now, but even in the
distant past and, we hope, in the future. Indeed, given the long times light
takes to get to us from far away galaxies and quasars, much of what we see
in the heavens today happened a long time back, and yet we analyze them
using the recently discovered laws.We have sampled a very tiny part of the
universe, over a tiny period of time, but we apply the laws we deduce here
and now to the far reaches of the universe and all the way back in time to
the big bang. We confidently predict the future fate of the universe. It’s a
great break for us that the laws we find seem to be universal and eternal. It
need not have been so.

7.3 Details of the orbits
I will apply the law of gravity to the simple case where a planet of mass m
orbits a sun of mass M >>>m so that the latter may be assumed to stay
put despite the pull of the planet. The origin of coordinates is chosen to be
at the sun. We have the equation we need,

m
d2r
dt2

= −GMm
r2

er, (7.16)

where er = r
r is a unit vector that points from the sun to the planet.
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This is now a problem in calculus, and everything Kepler said should
come out of its solution. You should find that planets move in elliptical
orbits. You should find that equal areas are swept out in equal times. You
should find the square of a time period divided by the cube of the major
axis is independent of the planet’s mass.

Even centuries later, I find it takes the class in advanced mechan-
ics quite an effort to solve this equation. It is one thing to write it down,
another to actually solve it and get the elliptical orbits. But Newton did all
that hundreds of years ago.

Just imagine that you wrote Eqn. 7.16 but couldn’t solve it. You
would have found the correct law of gravity, but you could never be sure
it was right, or convince others, because you could not find the conse-
quence of your equations. That is not unheard of. Consider the theory
of quarks, which we believe to be the constituents of protons, neutrons,
and so forth. We think we know the underlying equations of motion and
forces between quarks. But we do not yet have a way to show, analyti-
cally, that the underlying equations imply the phenomenon or particles
that we see. However, by solving them approximately on big computers,
we are fairly certain, after years of work, that the equations are correct. For
a new theory to be accepted, its signature consequences must be worked
out exactly or approximately, and these must agree with experiment to
persuasive accuracy.

Returning to our problem: although we have the means to prove the
orbits are elliptical in general, we are going to specialize to circular orbits.
You’re always allowed in an equation to make an assumption and plug it
in to see if it works. We are going to assume there is a circular orbit of
radius r, in which the planet is moving at speed v, and see if it is permitted
by the laws of motion and gravity. In the radially inward direction, F=ma
gives us

m
v2

r
= GMm

r2
. (7.17)

The left-hand side is the effect, the right-hand side is the cause. If you’re
spinning a rock tied to a string in a circle, it has an acceleration toward the
center, and the string is providing the requisite force. Here, it’s the unseen
force of gravity from the sun, reaching out to a planet and pulling it in. So
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let’s cancel the m and one power of r from both sides to get a very useful
equation:

v2r=GM. (7.18)

We find we can have a circular orbit of any radius we like, provided
the speed satisfies this equation. If you want to launch a satellite at some
radius r, launch it at this speed at that radius. And as long as you satisfy
the equation, it does not matter if the thing that is orbiting is actually a
satellite, a space station, or a potato, because the mass of the object has
dropped out, taking with it the identity of the object.

This is all we can get out of Newton’s laws. Let’s go back to see how
much of Kepler follows. We have shown that the circle, which is a special
case of the ellipse, is possible. How about equal areas in equal time? It’s
obviously true in this problem, because by assumption, the planet is going
at a constant speed on a circle of fixed radius r. So, the only thing left to
knock off is Kepler’s third law, relating the time period to the size of the
orbit.

Let us plug into Eqn. 7.18 the fact that the velocity of the planet is the
circumference divided by the time period

v= 2πr
T

, (7.19)

to obtain

4π 2r3

T2
=GM (7.20)

T2

r3
= 4π 2

GM
, (7.21)

which is Kepler’s third law, since r is the semi-major axis a for a circle, and
the right-hand side does not depend on the planet, just the sun.

What did Newton do that went further than Kepler? Kepler said T2

a3
was a constant for all planets but did not say what the constant was in
terms of anything else. Newton tells us what it is in terms of the mass of
the sun, π and G. If we plug in M = 2 · 1030 kg for the sun, we find 4π2

GM is
essentially the same number � 3 · 10−19s2m−3 that we encountered earlier
in connection with the T2

a3
data for the earth and Jupiter.
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A similar thing happened in atomic physics. A schoolteacher called
Johann Balmer was analyzing the frequencies of light emitted by atoms
like hydrogen, and he observed that all the frequencies were given by the
formula

f =R
(
1
n2
1
− 1

n2
2

)
(7.22)

where R is a constant (for a particular atom) and n1 and n2 > n1 are any
two positive integers. He knew the value of R from the data but not in
terms of anything more fundamental. Bohr then derived a formula of this
form frommaking a quantum postulate, and in the process he obtained an
expression for R in terms of fundamental constants like Planck’s constant,
the mass, and charge of the electron and so forth. Balmer did for Bohr
what Kepler did for Newton, which was to condense the complicated data
into some simple form so that theorists could have a crack at it. Bohr did
for atoms what Newton did for gravity, which was to provide the theory
underlying the phenomenologically observed behavior.

Now you can do a variety of problems using T2

a3 = 4π2
GM , where M is

the mass of the heavy object, the “sun” in the problem. One interesting
example is the following, depicted in Figure 7.2. It shows the the earth, as
we look down from above the North Pole. I’m at point A and I want to
watch a tennis game being played at B. I have access to radio waves, but
they cannot go through the earth and they can only travel in straight lines.
The solution is to have three satellites forming a nice triangle as shown.
Each covers a part of the surface of the earth. If B can send the image to
satellite 3, then 3 can send it to 1 along the dotted line, and then 1 can beam
it to me since I lie within its broadcast cone. If you have three suitably
placed satellites, they can help you connect any point on the earth to any
other point in thismanner. But the satellites better be where you think they
are at all times. If they’re constantly moving around, it doesn’t work. So,
what you really want are geosynchronous satellites. If you look down at the
North Pole, you see the earth is spinning counterclockwise. To stay on top
of a fixed point above the earth, these satellites should be rotating around
the earth once every 24 hours. The only question is, at what altitude should
I launch them? I put in T = 24 hours in

T2

a3
= 4π 2

GM
(7.23)



112 The Kepler Problem

Figure 7.2 The view as we look down at the North Pole shows three
geosynchronous satellites, each of which hovers over a fixed point on the earth,
takes 24 hours per revolution, and covers a part of the earth as shown. By
communicating with them, and allowing them to communicate with each other,
any point on the earth can communicate with any other. If B can send the image
of a game to satellite 3, it can send it to 1 along the dotted line, and that in turn
can beam it to me at A.

and get the radius of a= 42, 200 km. Once I have the radius, v= 2πa
T (Eqn.

7.19) will tell me at what velocity they should be launched into orbit. Nat-
urally, using more than three satellites will provide better television and
cell phone connections.

7.4 Law of conservation of energy far from the earth
What’s the potential energy I can associate with the gravitational force?We
have already seen that near the earth

Fg = −jmg (7.24)
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is conservative since ∂Fx
∂y = ∂Fy

∂x = 0. The corresponding potential we have
been using is

U =mgy, (7.25)

where y measured vertically up from the ground. With this choice U = 0
on the ground.

Now consider the formula for the force valid for all distances:

Fg = −er
GMm
r2

= −r
GMm
r3

= −(ix+ jy+ kz)
GMm
r3

, (7.26)

using the fact that er, the unit vector in the radial direction, is just r
r .

I claim that this force comes from the following potential upon
taking partial derivatives:

U(r)= −GMm
r

. (7.27)

If this were true we should find Fx = − ∂U
∂x :

−x
GMm
r3

= −∂U
∂x

(7.28)

and likewise for y and z. By symmetry, if it works for x, it will work for y
and z. Consider

−∂U
∂x

=GMm
∂(1/r)

∂x
(7.29)

= −GMm
1
r2

· ∂r
∂x

(7.30)

= −GMm
r2

· ∂
√
x2 + y2 + z2

∂x
(7.31)

= −GMm
r2

· 1
2

1√
x2 + y2 + z2

2x (7.32)

= −x
GMm
r3

= Fx Q.E.D. (7.33)
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As in d= 2 if Fx = − ∂U
∂x and similarly for y and z, it follows that

F · dr= −
[
∂U
∂x

dx+ ∂U
∂y

dy+ ∂U
∂z

dz
]

= −dU (7.34)

∫ 2

1
F · dr= −

∫ 2

1
dU =U(1)−U(2), (7.35)

that is, the line integral of F is path-independent and U is the correspond-
ing potential energy.

Note that g may be written in terms of G, the mass of the earth Me

and its radius Re by invoking the law of universal gravity for a body of mass
m at the surface of the earth:

F= GMem
R2
e

≡mg which means (7.36)

g = GMe

R2
e
. (7.37)

If we want to considermotion on a celestial scale wemust use the for-
mula for U that is valid for all distances and use for the conserved energy
the expression

E= 1
2
mv2 − GMm

r
. (7.38)

7.5 Choosing the constant in U
Since for any r

E= 1
2
mv2 − GMm

r
(7.39)

is the exact conserved energy, we may expect that for an object moving at
a modest height y above the earth, this must reduce to

E= 1
2
mv2 +mgy. (7.40)
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The potential energy in the exact result will equal the approximate one
valid near the earth if

−GMm
Re + y

=mgy= GMm
R2
e

y (7.41)

upon using g = GM
R2e
.

But there is no way this equality can be correct, because the two sides
have opposite signs!

The resolution is that when you define a potential U, you are free to
add a constant. In different schemes you may choose different constants
without any contradiction, because only the difference U1 −U2, in which
the constant drops out, is ever invoked in a physical problem.However, if a
direct comparison of U itself in two different schemes is made, there need
not be any agreement. That is what is happening here. The person working
near the earth chooses the potential Ue that vanishes at the surface of the
earth, y= 0, while a person doing celestial mechanics chooses a potential
Uc that vanishes at r=∞. Let c be the difference between the two schemes:

Ue(r)=Uc(r)+ c. (7.42)

To find c, choose a point on the surface of the earth with r=Re and y= 0
where Ue vanishes:

mg · 0= −GMm
Re

+ c (7.43)

which means

c= GMm
Re

(7.44)

Ue(r)=Uc(r)+ GMm
Re

. (7.45)
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Thus the exact potential, shifted by a suitable constant to make it vanish at
y= 0, gives for Ue the exact expression

Ue(Re + y)= −GMm
Re + y

+ GMm
Re

(7.46)

=GMm
(
1
Re

− 1
Re + y

)
(7.47)

=GMm
y

Re(Re + y)
(7.48)

�m
GM
R2
e
y=mgy (7.49)

upon ignoring the y compared to Re in the Re + y in Eqn. 7.48.
Finally, consider the total energy of a circular orbit. Recall that for

the radial direction we have from the second law

m
v2

r
= GMm

r2
so that (7.50)

mv2 = GMm
r

. (7.51)

So the kinetic energy is exactly half the magnitude of the potential energy.
The total energy is

E= 1
2
mv2 − GMm

r
(7.52)

= GMm
2r

− GMm
r

= −GMm
2r

= −K. (7.53)

So, for a particle in a circular orbit, the total energy is negative and equals
half the potential energy or the negative of the kinetic energy. (This assumes
we are using the potential Uc appropriate for celestial mechanics, which
vanishes at infinity: Uc(r→ ∞)= 0.) You will find that even if you solved
for the elliptical orbit, the total energy would be negative. This is a general
property: an object that is never able to escape the sun’s pull, that keeps
orbiting it, has negative total energy. Let us see why. A body with nega-
tive total energy E< 0 can never run off to infinity: at infinity the potential
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energy is zero and the entire energy is kinetic, and that is supposedly nega-
tive, which is impossible. So the assumption that a body of negative energy
escaped to infinity is wrong.

So, if you see a comet and want to know if it will come back again,
add the kinetic and potential energies. If it’s positive, it won’t come back;
if it’s negative, the comet is trapped. Zero is the dividing line, when the
comet will collapse at the finish line at infinity. (See if you understand why
you do not need the mass of the comet to perform this test.)

Suppose you start at the surface of the earth and start shooting things
upward. As you crank up the speed, they will go farther and farther away,
and beyond some escape velocity ve they will never come back. What is
the minimum speed for escape? You should ensure that it goes to infinity
with no kinetic energy to spare. You want it to just manage to get infinity,
stagger, and fall down. Well, if it has no kinetic energy at infinity and no
potential energy at infinity, its total energy is 0. Therefore, by the law of
conservation of energy, the total energy at launch must be zero:

0= 1
2
mv2e − GMm

Re
, which determines ve to be (7.54)

ve =
√
2GM
Re

. (7.55)

You can now go ahead and read some cutting-edge articles. For
example, you have heard about dark matter, right? Most of the universe
seems to be made out of stuff we cannot see. You, me, we all add up to a
very small percentage of the total mass. How do people know there is dark
matter if we cannot see it? By the use of v2R=GM, which relates the speed
of an orbiting object at radius R to the mass inside the orbit that is pulling
it into orbit. As you follow the trajectories of objects orbiting around the
galactic center at radius R, the enclosed mass should grow with R, and it
should stop growing once the orbit size passes the observed radius of the
matter in the galaxy (except for a few odd balls like the one whose orbit we
are following). But it keeps growing for a considerable distance beyond,
telling us there is a halo of dark matter. Even dark matter cannot hide
its gravitational effect. Every galaxy seems to have a dark matter halo that
extends beyond the visible part.



chapter 8

Multi-particle Dynamics

8.1 The two-body problem
Next we begin our study of the dynamics of more than one body. You
might think we already did this when we studied the solar system, con-
sisting of the sun and all the planets. But we considered only one planet,
and the sun just stood there as a source of the gravitational force. That was
essentially a one-body problem.

As usual, let me start with the simplest possible case of two bodies
moving in one dimension. They have coordinates x1 and x2 and massesm1

andm2 as shown in Figure 8.1. The first body obeys

m1
d2x1
dt2

= F1, (8.1)

which I am going to rewrite as

m1ẍ1 = F1 (8.2)

Figure 8.1 A system of two bodies in d= 1 at x1 and x2 with their CM at X. Far
to the right is a planet.
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where the two dots on ẍ tell you we are taking two time derivatives, a
convenient notation if you take only a few time derivatives. Divide the
forces on body 1 into two parts:

m1ẍ1 = F12 + F1e (8.3)

where F12 is the force on 1 due to 2 and F1e the sum of all external forces
on 1 due to everything else. Similarly for 2, and in the same notation

m2ẍ2 = F21 + F2e. (8.4)

The universe has many bodies, and I have just picked these two as part of
my system and lumped the rest under the label “external.” For example, a
spring could be mediating a force between the masses, which could also be
“falling” under the gravitational pull of some large planet far to the right
on the x-axis. The spring is just a way of transmitting force from one body
to the other; it is the source of the internal forces F12 = −F21. The external
force Fe is the gravitational pull of the planet. Now I squash the spring
and let go. The masses will both accelerate to the right under Fe and also
oscillate relative to each other under the elastic force due to the spring,
which I will refer to as simply spring force.

8.2 The center of mass
We are going to manipulate Eqns. 8.3 and 8.4 to get some interesting
results. Let us add their left-hand sides and equate them to the sum of
the right-hand sides:

m1ẍ1 +m2ẍ2 = F12 + F1e + F21 + F2e. (8.5)

I now invoke Newton’s third law,

F12 = −F21, (8.6)

whatever the underlying force: gravity, spring, electrostatic, and so forth.
This whole chapter is about milking this one simple result, this cancella-
tion of F12 and F21. Next, I lump all the external forces F1e and F2e into one
external force Fe:

Fe = F1e + F2e. (8.7)
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I then have this equation:

m1ẍ1 +m2ẍ2 = Fe. (8.8)

I multiply and divide the left-hand side by the total mass

M=m1 +m2 (8.9)

to obtain

M
[
m1ẍ1 +m2ẍ2

M

]
= Fe, (8.10)

M
d2X
dt2

= Fe, where (8.11)

X=
[
m1x1 +m2x2

M

]
(8.12)

is called the center-of-mass coordinate or the CM.
What I have done is correct, but why did I do that? I have introduced

a fictitious entity, the center of mass. The center of mass has a location X,
which is a weighted average of x1 and x2:

X= m1x1 +m2x2
M

= m1

m1 +m2
x1 + m2

m1 +m2
x2. (8.13)

Ifm1 =m2 =m, thenM= 2m and

X= x1 + x2
2

(8.14)

lies midway between the particles. If m1 >m2, X will be closer to m1 and
vice versa. The weighted sum gives a certain coordinate, but there is noth-
ing there. All the stuff is either at x1 or x2. The center of mass is the location
of a mathematical entity. It’s not a physical entity. But we care, because it
behaves like a body. After all, if you were shown only Eqn. 8.11, you would
say, “Well, this guy’s talking about a body of mass M undergoing some
acceleration due to the force Fe.” Thus, the center of mass is a fictitious
body, whose mass is the total mass of these two particles, and whose accel-
eration is controlled by only the total external force. This is the key. All the
internal forces have canceled out, and what remains is the external force.
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If you have three bodies, you can do a similar manipulation with
extra forces like F23 = −F32 and so on, and you will end up with Eqn. 8.11
with one obvious change:

X= m1x1 +m2x2 +m3x3
M

= m1x1 +m2x2 +m3x3
m1 +m2 +m3

. (8.15)

We write such sums in a compact notation:

X=
∑3

i=1mixi∑3
i=1mi

, (8.16)

which can be generalized to N particles by replacing the 3 by N.
Once more with feeling: the CM responds only to the total external

force; it doesn’t care about internal forces. I’ll give an example. A cou-
ple of samurai are having a fight in an airplane, punching each other and
so on. It is a flight and fight situation. The rest of the passengers get fed
up and throw them out. So, they’re falling down, affecting each other’s
dynamics. This samurai will feel a force due to that samurai, that samurai
will feel a force due to this samurai, but the center of mass is still going to
drop like a rock. It’s going to feel a force (m1 +m2)g, and it will have an
acceleration g.

Suppose at some point one falling samurai cuts the other into two
pieces. So now we have three bodies: the first protagonist and the other
two, who used to be one. You can take these three bodies, find their center
of mass, and it will be the same story—the center of mass will just keep
accelerating at the same g, as if nothing happened.

Indeed, if you were following the CM alone, you would see no sign
of all this violence and the involuntary partitioning of the second samurai.
The system is becomingmore andmore complicated, but nothing changes
the dynamics of the center of mass, undergoing free fall under gravity.

In summary, the CM can accelerate only due to external forces, like
gravity in this example. If there were no external forces, then the center of
mass would behave like a free particle. If it was not moving to begin with,
it won’t move later. If it was moving to begin with, it will maintain the
initial velocity.
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Figure 8.2 The CM vector R lies on r2 − r1, the line joining the tips of r1 and r2.

If you’re living in two dimensions, you define a CM vector R for two
particles as follows and as indicated in Figure 8.2:

R= iX+ jY = m1r1 +m2r2
m1 +m2

, (8.17)

which is equal to two relations

X= m1x1 +m2x2
m1 +m2

(8.18)

Y = m1y1 +m2y2
m1 +m2

. (8.19)

I have shown the CM situated on the line connecting the masses.
Why? One way to understand this is to choose a new x′-axis that passes
through the masses and a new y′-axis perpendicular to it. Since the masses
only have an x′ coordinate, the weighted average must also have only an x′

coordinate.
Here’s another example. You take a complicated collection of masses

and springs, connected by ropes and chains and whatnot. You throw the
whole mess into the air. All the different parts of it are jiggling and doing
complicated movements, but if you follow the center of mass, in other
words, at every instant you compute

R=
∑N

i=1miri∑N
i=1mi

, (8.20)

it will simply follow the parabolic path of a body curving under gravity.
If at some point this complicated object fragments into two disconnected
chunks that fly off on their own paths, the CM will continue as before.
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Here is a very useful alternative for finding the CM of a collection of
masses.

1. Take a subset of them and replace them with all their mass sitting at
their center of mass. Replace the rest by their total mass sitting at their
center of mass.

2. Find the center of mass of these two centers of mass, properly weighted.

Let us verify the equivalence of this to the standard definition, for the
case of three bodies. The original recipe to compute X was

X= m1x1 +m2x2 +m3x3
m1 +m2 +m3

. (8.21)

Next we follow the new recipe and divide the system into two parts, one
made of masses numbered 1 and 2, of total mass M12 = m1 + m2, and
the third one by itself. We first compute the CM of 1 + 2 following the
standard definition:

X12 = m1x1 +m2x2
M12

(8.22)

and combine it with object 3 and see what happens if we follow the recipe

XRecipe = m3x3 +M12X12

m3 +M12
(8.23)

= m3x3 +m1x1 +m2x2
m1 +m2 +m3

(8.24)

=X. (8.25)

Along the way, I have used Eqn. 8.22, which implies thatM12X12 =m1x1 +
m2x2.

Clearly, in a general case, we can subdivide the masses into more
than two subsets and follow the same procedure.

As long as you are dealing with a countable number of masses, find-
ing the CM is just plug and chug, in one or higher dimensions. Things
become more interesting if I give you an extended body, like a rod of mass
M and length L, shown in the upper part of Figure 8.3. Where is the center
of mass?We have to adapt the previous definition for discrete masses. The
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Figure 8.3 (Top) A rod of length L and massM. (Bottom) An L-shaped object
made of two rectangles. The points 1 and 2 are the CMs where all their mass may
be assumed to be concentrated. The point marked CM is the weighted sum of 1
and 2.

trick is to partition the rod into tiny pieces of length dx located a distance
x from the origin, chosen to be at the left end of the rod. The mass of this
segment is M

L dx, the product of the mass per unit length and the length of
the sliver. Its location is x.

Now, youmight object that the segment extends from x to x+dx and
doesn’t have a definite coordinate. This objection is valid for any finite dx,
but in the end, we will let dx→ 0 and the objection will disappear in that
limit. The CM is now given by the ratio of integrals, rather than sums as in
Eqn. 8.20:

X=
∫ L
0

M
L xdx∫ L

0
M
L dx

(8.26)

= 1
L
x2

2

∣∣∣∣L
0

(8.27)

= L
2
. (8.28)

So the center of mass of this rod, to nobody’s surprise, is right at the
midpoint. We knew this before doing the integral. What was behind that
intuition? If you take the origin at the midpoint of the rod, you can argue
that for every sliver with coordinate x, you have another equally mas-
sive one at −x, and that the weighted average of these two points is zero.
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The CM, which is the weighted average of all these zeros, also lies at the
geometric center.

This symmetry argument applies even for a two-dimensional body,
like a rectangle. We can argue that its CM is at its geometric center. This
is because for each tiny square segment of size dx · dy at (x, y) (measured
from the geometric center), we can find an equal one at (−x,−y), and
the weighted average of the two will be at the origin (0, 0). The weighted
average of all these zeros will also be (0, 0).

Now consider a rod whose linear mass density, or mass per unit
length, varies as some function ρ(x). Then by the usual argument

X=
∫ L
0 ρ(x)xdx∫ L
0 ρ(x)dx

. (8.29)

For example, if ρ(x)=Ax, where A is some constant

X=
∫ L
0 Axxdx∫ L
0 Axdx

(8.30)

= L3/3
L2/2

= 2L
3
, (8.31)

which is biased to the right as you would expect.
Consider next an L-shaped object shown in the lower part of

Figure 8.3. Where is its CM? We resort to the trick of first reducing each
rectangle to its CM and then doing the weighted sum of the two CMs. By
the symmetry argument, the CM of each rectangle is at its geometric cen-
ter, the points numbered 1 and 2. We may imagine their total masses M1

andM2 to be concentrated at these points. The CM is the weighted sum of
these two point masses, and it lies along the line joining them. Its precise
location is easily found if the masses and dimensions of the rectangles are
known.

Now for one final CM calculation, the most difficult one you are sup-
posed to know. The object is a triangle of massM, base 2w, and height h,
as shown in Figure 8.4. It has an area

A= 1
2
2wh=wh (8.32)
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Figure 8.4 The CM calculation of a triangle of base 2w and height h. It is
viewed as a weighted sum over rods of width dx and height 2y(x).

and a mass per unit area or areal density

ρ = M
A

= M
wh

. (8.33)

Where is the center of mass of this object? Again, by symmetry, you can
tell that Y , the y coordinate of the center of mass, must be zero. For every
tiny square dxdy with some coordinate (x, y), there is a matching one with
coordinate (x,−y). For X, you have to do some honest work. We will
divide and conquer.

Let us imagine the triangle as composed of thin rectangles of width
dx and height 2y(x), as indicated. (Each strip is not quite a rectangle,
because the edges are slightly tapered, but when dx→ 0, they will reduce
to rectangles.) The mass dm of the rectangle at a given x is

dm= M
A
2y(x)dx= M

wh
2y(x)dx, (8.34)

which is just the product of the mass per unit area M
A and the area of the

strip 2y(x)dx. We find y(x) using similar triangles:

y(x)
w

= x
h

which means y(x)= wx
h
. (8.35)
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The weighted average of x is then

X= 1
M

∫ h

x=0

M
wh

2y(x)xdx (8.36)

= 1
wh

∫ h

0
2
wx
h
xdx (8.37)

= 2
h2

∫ h

0
x2dx (8.38)

= 2
3
h. (8.39)

We could have anticipated that X would be skewed to the right, and
this formula quantifies that intuition. Note in Eqn. 8.37 that this two-
dimensional problem maps onto a one-dimensional one, with a linear
density proportional to x, that is, ρ(x) ∝ x. This is because each vertical
strip may be replaced by a point mass on the x-axis proportional to y(x),
which in turn grows linearly with x.

To summarize, when we work with extended bodies or more than
one body, we can replace the entire body by a single point for certain
purposes. The single point is called a center of mass or CM. The CM is
fictitious. It has a mass equal to the total mass. It has a location R that
moves in response to the total external force:

M
d2R
dt2

= Fe. (8.40)

The center of mass is not aware of internal forces, and that’s what we want
to exploit.

One class of problems has a net external force Fe, and there we
know that the CM responds as a point to Fe, regardless of its constituents.
For example, a jumbled mass of constituents tossed in the air follows
the parabolic trajectory of a point mass, in response to gravity. This
is just a one-body problem, which we have studied extensively. So we
move on.
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8.3 Law of conservation of momentum
Now consider the case Fe = 0. That means

d2R
dt2

= 0 (8.41)

dR
dt

= some constant. (8.42)

Let us multiply both sides by the total mass M, which is itself a constant,
to obtain

M
dR
dt

= some other constant. (8.43)

What is this constant? This question requires a digression into the
concept of momentum. Themomentum p of a single particle is given by

p=mv. (8.44)

We may rewrite F=ma as

F=m
d2r
dt2

=m
dv
dt

= dmv
dt

= dp
dt

, (8.45)

that is, the force is the rate of change of momentum.
The CM, though fictitious, is endowed with a well-defined position

R= m1r1 +m2r2
M

(8.46)

and a velocity, given by differentiation of both sides

dR
dt

= m1
dr1
dt +m2

dr2
dt

M
. (8.47)

Let us define its momentum as we did for a real particle

P=M
dR
dt

. (8.48)
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Now we find, using Eqn. 8.47, that

P=M
dR
dt

=
[
m1

dr1
dt

+m2
dr2
dt

]
(8.49)

= p1 + p2. (8.50)

In summary, the CM momentum is the sum of the momenta of all the
particles and only external forces can change it:

M
d2R
dt2

= dP
dt

= Fe. (8.51)

If Fe = 0, the CM momentum P is conserved. This means the sum
over all the individual momenta is conserved, as long as the particles
interact only with each other, and nothing external.

A classic example is two people standing on ice. Their total initial
momentum is 0. The ice is going to support them vertically against gravity,
but if it’s frictionless, it cannot apply any force parallel to the plane of the
ice. For example, if you and I are standing on ice, and we push against each
other and fly apart, my momentum vector has to be exactly the opposite
of your momentum vector.

Next consider a mass m1 that collides with a mass m2 in the absence
of external forces. Then P, the total initial momentum, equals P′, the total
final momentum:

P=m1v1 +m2v2 =m1v′
1 +m2v′

2 =P′. (8.52)

I use no primes and primes on the initial and final velocities rather than the
labels 1 and 2, which are now used to distinguish the two particles. Dur-
ing the collision, one mass exerts a force on the other mass, but the other
mass exerts an opposite force on the first. So the rate of change of momen-
tum of one is equal and opposite at every instant to the rate of change of
momentum of the other. Hence the total momentum is unaffected, even if
the individual momenta change.

This is called the law of conservation of momentum. In terms of p,

p1 + p2 = p′
1 + p′

2. (8.53)



130 Multi-particle Dynamics

Let us be sure we get it. Take a collection of bodies. At a given
instant every one has its own velocity and its momentum. Add up all
the momenta. If you are in one dimension, just add the numbers; if in
two dimensions, add the vectors to obtain the total momentum. That total
momentum does not change, if there are no outside forces acting.

The law of conservation of momentum survived the revolutions of
relativity and quantum mechanics, although the explicit formula p=mv
did not.

So far, we have considered the following two cases:

• The CM is subject to an external force Fe �= 0, and it moves in response
like a single particle of massM, as illustrated by the falling samurai.

• The external force Fe = 0, and the CM has a non-zero velocity or
momentum that is conserved.

Now I finally consider a problem where there are no external forces, and
the CM is initially at rest and stays put.

Recall the dynamics of the sun and the earth. My earlier description
of the sun sitting still and the earth moving around it is not acceptable for
the following reason. The momentum of the sun, Ps, is not changing, and
it equals 0. Themomentum of the earth, Pe, is changing as it orbits the sun.
Their total momentum is therefore changing, which is not allowed, when
the only force is their mutual attraction. Stated differently, what is wrong
with our earlier description is that the center of mass of the sun and earth
does not move uniformly in a straight line, or remain at rest, as it should.
Instead, as the earth orbits the fixed sun, the CM, which lies on the line
joining the sun and the earth, goes around the sun as well. The CM of
the earth and sun should not accelerate. If it was initially at rest, it should
remain at rest. If it had an initial velocity, it should maintain that velocity,
and we can choose to view it from a frame in which it is at rest. (Going
to a frame at a fixed relative velocity to our initial one will not alter our
status as inertial observers.) Figure 8.5 portrays the correct description.
I’m considering a solar system where the sun is not as big as ours relative
to the planets, so I can show the center of mass distinctly. (Our sun is
so much more massive than the average planet that the CM typically lies
inside the sun.) When the two bodies are at 1 and 2, the CM is where it is
as shown, and it will be there later when they are at 3 and 4. So both the
bodies will revolve around their common CM, which stays put.
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Figure 8.5 The sun (big circle) and a planet (small circle) orbiting around their
CM in some solar system where the sun is not quite as massive as ours. The
arrows give the instantaneous momenta at points 1 through 4. Our sun is so
massive compared to most planets that the CM typically lies inside the body of
the sun.

Our earlier description with the fixed sun, while not strictly correct,
is an excellent approximation to the truth for our solar system, given how
much more massive our sun is than the planets (except for Jupiter). In the
limit m

M → 0, the CM falls right on top of the sun, and neither moves. This
was the limit we were tacitly assuming earlier.

You have to be careful when you apply F=ma in the radial direction,
for, say, the planet. You should write

GMm
r212

= mv2

r1
(8.54)

where v is its velocity, r12 is the distance between the sun and the planet,
and r1 is the distance between the planet and the CM, the point about
which it goes in its circular orbit. In other words, the force of gravity on
the planet or the sun is a function of the distance between the planet and
the sun, not the distance to the CM, whereas the centripetal force depends
on the radius of the orbit, which is the distance to the CM.

Next, a few more examples of a CM coordinate R that is free from
forces and immobile.

Consider a closed railway carriage of length L and massM that con-
tains a point horse of mass m. The horse is at the left end of the carriage,
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which we choose to be x= 0. The CM of the carriage is at x= L
2 . The initial

CM of the horse and carriage is at

X= m · 0+M 1
2L

m+M
. (8.55)

Assuming the track is frictionless, the CM cannot move.
Now the horse decides to walk over to the right end of the carriage.

You will know something is going on without looking in, because when
the horse moves to the right, the carriage will move to the left, to keep the
CMfixed. Let us find out by howmuch themidpoint of the carriagemoves.
Say it goes to x = 1

2L− δ. The horse then has a coordinate 1
2L− δ + 1

2L,
because it is now 1

2L to the right of the center of the carriage. Equating X
before and after, we find

m · 0+M 1
2L

m+M
= m · (L− δ)+M( 12L− δ)

m+M
(8.56)

M
L
2

=m · (L− δ)+M
(
L
2

− δ

)
with a solution

(8.57)

δ = mL
m+M

. (8.58)

Once again, if m
M → 0, the carriage will not move when the horse does.

Yet another problem is depicted in Figure 8.6. There is a boat of
length L and mass M, whose left-most point is located d meters from the
shore. You have a mass m, and you are x meters from the left end. You
want to jump ship. Rather than leap from where you are, you decide to
walk to the left-most part of the boat and then jump, because you would
rather jump dmeters than d+ xmeters. Again, assuming the water exerts
no horizontal force on the boat, you will find you have to jump more than
d. If you move to the left, the boat will move to the right, to keep the CM,
shown by a big cross, at a fixed distanceX from the shore.When you arrive
at the left edge of the boat, you will be more than dmeters from shore. Let
us find out how far you have to jump.

Let D be the final distance from the shore to the left end of the boat,
which is also how much you need to jump. The CM of the boat has a
coordinate D+ L

2 . With the origin at the shore, let us equate the X before
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Figure 8.6 (Top) You (tiny circle of massm) and the boat of massM, before.
(Bottom) You at the left end of the boat, which has shifted slightly to the right
keeping the CM fixed at X.

and after, after first canceling the total mass from the denominator in both
sides:

m(d+ x)+M
(
d+ L

2

)
=mD+M

(
D+ L

2

)
(8.59)

D= m(d+ x)+Md
M+m

= d+ mx
m+M

,

(8.60)

which is more than d and less than d+ x. Thus it helps to walk to the edge
of the boat, but not by as much as you would naively expect.

Let’s ask what happens when you leap to the shore and are airborne.
The CM cannot move, so if you zoom to the left, the boat will move to
the right. Equivalently, the total momentum cannot change. Originally,
themomentumwas 0; nobodywasmoving. Suddenly you’removing to the
left, and the boat has to move the other way. Of course, its velocity is not
the opposite of yours; its momentum is. So, the big mass of the boat times
the small velocity of the boat will be equal and opposite to your small mass
times your big velocity.

Now you have landed on the shore. Your momentum is 0. What’s
happening to the boat? Is it going to stop now? No, the boat will not stop
just because you hit the shore. The boat will keep moving because there’s
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no force on the boat; it will keep moving. The question you may have is,
“How come there is suddenly momentum in the system when it had none
before?” The answer is that an external force has now come into play: the
force of friction between you and the earth. Previously, it was just you and
the boat, and you couldn’t change your total momentum. But the ground
is now obviously pushing you to the right because you, who were initially
flying to the left, have stopped. So the combined system—you and the
boat—have a rightward force acting during the time it took to stop you;
it’s that momentum that’s carried by the boat. A better way to say this is as
follows. You and the boat exchanged momenta: you push the boat to the
right, you move to the left. Then your momentum is reduced to zero by
the shore, and the earth as a whole takes up the missing momentum. The
boat has no reason to change its momentum, and it keeps going. Can you
calculate the speed of the boat? No. I only told you that you jumped and
landed on the shore, and that’s not enough to predict how fast the boat
will be moving. But if I told you your velocity when you leaped off the
boat, then of course you know your momentum and can deduce that of
the boat.

8.4 Rocket science
There is no use struggling through a physics course if at the end you
cannot claim to do rocket science. So we are going to derive the rocket
equation. Everyone knows that if you blow up a balloon and let it go, the
balloon goes one way, and the air goes the other way. Action and reaction
are equal; even lay people know that. I don’t want to go into the rocket
problem in any great detail, just enough to get you familiarized with how
the key equations are derived.

Figure 8.7 partA shows a rocket whosemass at time t isM and whose
velocity is v. The rocket emits gases, and the gases have a certain exhaust
velocity of magnitude v0, pointing away from the rocket. The value of v0
is fixed relative to the rocket, not relative to the ground. If you are riding
inside the rocket and you look at the fumes coming out of the back, they
will be leaving you at that speed v0. Their velocity relative to the ground
will be v− v0: the velocity −v0 relative to the rocket plus the velocity v of
the rocket relative to the ground.

A short time dt later, the rocket has a massM− δ because it has lost
some of its own body mass δ in the form of exhaust fumes. The rocket’s
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Figure 8.7 (A) The rocket at time t as seen from the ground. (B) The rocket at
time t+ dt as seen from the ground. It has lost mass δ in the form of emitted
gases and gained speed dv. The fumes of mass δ (the blob) are moving at a speed
(v− v0) relative to the ground. (C) The rocket and fumes at time t+ dt in the
frame moving at velocity v(t). The fumes have an exhaust velocity −v0 in the
rocket frame.

velocity is now v+ dv. Let us balance the momentum before and after:

Mv= (M− δ)(v+ dv)+ (v− v0)δ. (8.61)

The left-hand side is clearly just the momentum of the rocket before this
short interval. The right has first the new mass of the rocket times its new
velocity. Next is the momentum of the blob of fumes emitted: its mass δ

times its velocity relative to the ground of v− v0. I write δ to the right of
(v− v0) so that when you open the brackets you do not make the mistake
of thinking δv is a change in v. Let us open up the brackets and manipulate
as follows (keeping δ to the right):

Mv=Mv+Mdv− v · δ − dv · δ + v · δ − v0 · δ (8.62)

which simplifies to

v0δ =Mdv or (8.63)

δ

M
= dv

v0
. (8.64)
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Along the way, I have dropped a quantity dv · δ because it is quadratic in
the infinitesimals, and hence negligible compared to the infinitesimals dv
and δ.

The next thing is to integrate these equations. The rocket emitted gas
of mass δ in time dt. The mass of the rocket then was reduced toM− δ. In
the language of calculus, M(t) is the mass of the rocket at time t, and dM
is the change in the function M:

dM=M(t+ �t)−M(t). (8.65)

We have seen that

dM= (M− δ)−M= −δ, (8.66)

so that Eqn. 8.64 becomes

−dM
M

= dv
v0

which integrates to (8.67)

ln
M0

M
= v

v0
(8.68)

v(t)= v0 ln
M0

M(t)
, (8.69)

assuming the rocket had an initial velocity of 0 and mass M0. Remember
that at large times,M(t) cannot fall below the mass of the empty rocket.

8.5 Elastic and inelastic collisions
A body of mass m1 and velocity v1 collides with a body of mass m2 and
velocity v2, with all velocities shown as positive in Figure 8.8. Our goal is
to find the final velocities v′

1 and v′
2. We need two conditions to find two

unknowns, right? The conservation of momentum is always good for one
equation as long as there are no external forces like friction:

m1v1 +m2v2 =m1v′
1 +m2v′

2. (8.70)

You need a second equation to solve for the two unknowns, and that’s
where there are two extreme cases.
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Figure 8.8 (Top) A body of massm1 and velocity v1 collides with a body of
massm2 and velocity v2, with all velocities shown as positive. (Bottom) The two
bodies with final velocities v′

1 and v′
2.

One is called the totally inelastic collision in which the two masses
stick together and move at a common velocity v′

1 = v′
2 = v′. That means

there is just a single unknown v′, which we find by going back to Eqn. 8.70

m1v1 +m2v2 = (m1 +m2)v′ with a solution (8.71)

v′ = m1v1 +m2v2
m1 +m2

. (8.72)

The other kind of collision is called totally elastic. Here the kinetic
energy is conserved:

1
2
m1v21 + 1

2
m2v22 = 1

2
m1(v′

1)
2 + 1

2
m2(v′

2)
2. (8.73)

You can juggle Eqns. 8.70 and 8.73 and solve for v′
1 and v′

2. The
answer is

v′
1 =

[
m1 −m2

m1 +m2

]
v1 +

[
2m2

m1 +m2

]
v2 (8.74)

v′
2 =

[
m2 −m1

m1 +m2

]
v2 +

[
2m1

m1 +m2

]
v1. (8.75)

Because one of these two simultaneous equations (Eqn. 8.73) is quadratic
in the velocities and will not yield to the familiar trick for linear ones, here
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is some help for those who want to derive Eqns. 8.74 and 8.75. Rewrite
Eqn. 8.73 as

1
2
m1v21 − 1

2
m1(v′

1)
2 = 1

2
m2(v′

2)
2 − 1

2
m2v22 (8.76)

m1(v1 − v′
1)(v1 + v′

1)=m2(v′
2 − v2)(v2 + v′

2) (8.77)

while Eqn. 8.70 says

m1(v1 − v′
1)=m2(v′

2 − v2). (8.78)

Upon dividing Eqn. 8.77 by this we get

(v1 + v′
1)= (v2 + v′

2). (8.79)

The last two linear equations 8.78 (which is just a rearrangement of
Eqn. 8.70) and 8.79 may be readily solved for v′

1 and v′
2 to yield Eqns. 8.74

and 8.75.
You have to be very careful in using the conservation laws. You can-

not use the law of conservation of energy in an inelastic collision. For
example, if two identical bodies with opposite velocities collide and stick
together to form a single mass at rest, they have lost their initial kinetic
energy.

Here is an example that illustrates the proper use of conservation
laws. You have a pistol and you want to know with what speed the bullet
comes out. In the old days, the following technique was used. Figure 8.9
shows a ballistic pendulum. You hang a chunk of wood of mass M from

Figure 8.9 A bullet of massm and velocity v0 plows into a suspended block of
wood of massM, and the two of them rise as a pendulum to height h.
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the ceiling. Then you fire the bullet of known massm and unknown speed
v0. The bullet rams into this chunk of wood, and the whole thing is set in
motion. The combination is like a pendulum, which will rise up to a cer-
tain maximum height h that you can easily measure. From that maximum
height, you can calculate the speed of the bullet.

Youmight be naive and decide not to care about intermediate details,
and find v0 by equating the initial kinetic energy of the bullet 1

2mv20 to the
final potential energy (M+m)gh of the block and bullet. That is

(M+m)gh= 1
2
mv20 (8.80)

where the only unknown is v0. That’s wrong because you cannot use the
law of conservation of energy in the totally inelastic collision between the
bullet and the block. Some energy will go into heating up the block. But
you can use the law of conservation of horizontal momentum during the
collision, since gravity cannot change the total horizontal momentum dur-
ing the practically instantaneous collision. So in the first totally inelastic
collision you may assert that

mv0 = (M+m)V , (8.81)

which determines the velocity V with which the block and bullet begin to
swing as a pendulum. The pendulum then climbs to a height h with no
further loss of energy, allowing you to write

1
2
(M+m)V2 = (M+m)gh. (8.82)

Combining Eqns. 8.81 and 8.82 we find

(M+m)gh= 1
2
(M+m)V2 (8.83)

= 1
2
(M+m)

[
mv0

M+m

]2

= m2v20
2(M+m)

. (8.84)

The initial or muzzle velocity of the bullet is then

v0 =
[
1+ M

m

]√
2gh. (8.85)
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Notice that after the initial inelastic collision the energy of the block
and bullet is

m2v20
2(M+m)

= 1
2
mv20

[
m

m+M

]
(8.86)

<
1
2
mv20, (8.87)

which reflects the energy loss in the inelastic collision.

8.6 Scattering in higher dimensions
The problems we did on scattering explain how the basic conservation
laws of energy and momentum are to be applied. But they fail to indicate
the great importance of scattering experiments in our understanding of
fundamental physics. For example, we learned only from scattering that
the atom has a hard nucleus. It was known, in the early twentieth cen-
tury, that the negative charge of the point-like electrons was balanced
by a compensating positive charge. In one popular model, called the
“plum-pudding model,” the atom was a positive spherical charge, with the
electrons embedded in it. The scattering experiments of Ernest Ruther-
ford changed everything. By shooting a beam of alpha particles (helium
nuclei with two protons and two neutrons) at a gold foil and detecting
the scattered particles in various directions, he deduced the structure of
the nucleus. In particular, he was stunned to notice that some of the alpha
particles came right back, turned around by 180o. No soft mush of pos-
itive charge (as in the plum-pudding model) could have done that. He
then assumed the atomic nucleus was hard and point-like, contained all
the mass and charge, and exerted a 1/r2 electric repulsion on the alpha
particles. He computed what fraction of incident particles would suffer a
deflection by an angle θ from the incident direction. The scattering data
were in perfect agreement with his prediction and provided a brilliant
confirmation of the point-nucleus, the cornerstone of Bohr’s model of the
atom. (Luckily for Rutherford, his treatment of the scattering as a Kepler
problem with a repulsive 1/r2 force gave answers that coincided with that
of the quantum treatment, which came many years later.)

During the years 1966 to 1978 Jerome Friedman, Henry Kendall,
and Richard Taylor of the Stanford Linear Accelerator Center, shot high-
energy electrons at nucleons (a common name for protons and neutrons).
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The incident electron emitted photons of extremely short wave length,
and these were exquisite probes of nucleon structure at very short length-
scales. They revealed that the proton was not a point charge but was made
up of two “up” quarks, which carried a fraction 2

3 of the proton charge,
and one “down” quark, which carried − 1

3 of the proton charge. Likewise,
the neutron was made up of two down quarks and one up quark. These
charges were in agreement with the assignments made by the inventors of
the quarkmodel, Murray Gell-Mann andGeorge Zweig. (Besides the three
quarks, the nucleons also contain a cloud of short-lived quark–antiquark
pairs and “gluons,” which bind the quarks. Scattering can also probe this
cloud.)

In three dimensions, the law of conservation of momentum for a
two-particle collision takes the form of a vector equation

p1 + p2 = p′
1 + p′

2. (8.88)

If the collision is totally inelastic, the final blob will have massm1 +m2 and
move at a velocity V that satisfies momentum conservation:

V= p1 + p2

m1 +m2
. (8.89)

If the collision is elastic we may assume exactly as in d= 1,

1
2
m1v21 + 1

2
m2v22 = 1

2
m1(v′

1)
2 + 1

2
m2(v′

2)
2, (8.90)

which may be rewritten in terms of momenta as

p21
2m1

+ p22
2m2

= (p′
1)2

2m1
+ (p′

2)2

2m2
(8.91)

since

p2

2m
= m2v2

2m
= 1

2
mv2. (8.92)

In d= 2, Eqns. 8.88 and 8.90 furnish three equations, not enough to
determine the four numbers p′

1 and p′
2. This is because, unlike in d = 1,

a collision is not fully specified by the incoming momenta. We need to
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Figure 8.10 An alpha particle approaching a gold nucleus with impact
parameter b. If you assume the nucleus is immobile and exerts a Coulomb force
1/r2, you can calculate the direction θ in which the alpha particle will emerge, as
a function of b and the energy. If a beam of particles with a distribution of b’s is
given, one can predict the particle flux in any direction θ .

know the impact parameter b shown in Figure 8.10, and the nature of the
force between them (e.g., 1/r2) if they are point-like, or their radii, if they
are impenetrable spheres that exert a force on each other upon contact.

There is one problem where we can make a definite prediction with-
out knowing b. Let m1 =m2 =m, and let us assume initially p2 = 0. Upon
equating the lengths squared of both sides of

p1 + p2 = p′
1 + p′

2 (8.93)

we find for this case when p2 = 0,

(p1 + p2) · (p1 + p2)= (p′
1 + p′

2) · (p′
1 + p′

2) (8.94)

p21 = (p′
1)

2 + (p′
2)

2 + 2p′
1 · p′

2 (8.95)

while Eqn. 8.91 says

p21 = (p′
1)

2 + (p′
2)

2, which means (8.96)

p′
1 · p′

2 = 0. (8.97)

Because p′
1 · p′

2 = p′
1p′

2 cos θ12 this means either the angle θ12 between the
final particles will be 90o or p′

1 = 0, in which case the outgoing particle 2
and the incoming particle 1 have exchanged momenta, clearly conserving
energy and momentum.

Observe that we do not have enough information to figure out the
individual angles, just the relative angle θ12.



chapter 9

Rotational Dynamics I

9.1 Introduction to rigid bodies
In this chapter we graduate to objects like potatoes that are not point-like.
For such extended objects, it is not simple to say where “it” is. We can pick
a point on the object, like the CM, and locate it, but still we do not have the
whole story. We need to say which way the potato is pointing, an issue we
did not have with point particles. We could go all the way and consider a
body like a snake, which is not only extended but also capable of changing
its shape. That is too hard, so I will focus on extended but rigid bodies,
whose shape is fixed—like a dead snake. By definition, if you take any two
points on a rigid body, the distance between them will not change with
time. No body is exactly rigid, though Al Gore during debates comes close.

The dynamics of rigid bodies in three dimensions is fairly compli-
cated, so we will begin with two dimensions. Our usual ploy of starting
with one dimension will not work here, because no rotations are possible
in d= 1.

Consider a planar object—say a thin sheet of metal cut into some
shape—that moves in the plane of the page, as shown in Figure 9.1. As you
can see, it does something fairly complicated. Regardless of how it actually
got from state 1 to state 2, we can attain the final state 2 from the initial
state 1 by (i) moving the body until any one point F, which could be, but
need not be, the CM, has reached its final location and (ii) following this
with a rotation around an axis passing through F. The translation brings
the body to the dotted configuration. The rotation axis passes through F,
so as to attain the final state 2 without disturbing F, already in its final
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position. There is a nonobvious generalization to three dimensions: we
can go from the initial to the final configuration of a rigid body by a trans-
lation, followed by a rotation by a suitable angle, about a suitable axis. Let
us return to the planar body d= 2 for now.

To specify it completely at any time, I have to tell you the coordinates
of F and the rotation. To define the rotation, we draw an imaginary line
on the body from F to any other fixed point, say the pointy edge, as shown
in the inset of Figure 9.1. Then we say what angle θ this line makes with a
fixed direction, usually the x-axis. If I give you the location of F and θ , you
can reconstruct the configuration of the body shown in Figure 9.1.

Translations are what we have been studying all the time. We are
experts on that subject. So we want to focus initially on a body that is only
rotating but not translating. Once we have sharpened our skills, we will
introduce the translations. To this end, imagine that I have driven a nail
through one point F. The nail keeps it from translating but not from rotat-
ing about the nail axis. This rotation is fully specified by θ , which is the
rotational analog of x.

We are going to set up an analogy between one dimensional trans-
lation described by x(t) and two dimensional rotations described by θ(t).

Figure 9.1 A rigid planar body undergoing translation and rotation in a plane
as it goes from state 1 to state 2. The dot represents the fixed point F. The solid
line from F to the pointy edge of the object allows us to follow its rotation.
In state 2 the original orientation is shown in dotted lines and the curved arrow
shows the rotation θ needed to bring it to the final orientation.
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You’ll find the analogy very helpful. The number of things you have to
remember will be reduced if you learn to map the problem of rotations to
the problem of translation in one dimension.

9.2 Angle of rotation, the radian
Even though the body is in two dimensions, you need just this one angle
θ to specify its orientation. How do we want to measure θ? The stan-
dard preference in daily life is to measure it in degrees. When the body
completes one full revolution, we say it has turned by an angle of 360◦.
We’re going to use something else: radians. Why would anybody think
of a radian? What’s wrong with degrees? All the novels say, “I was going
down the wrong path and then I did a 180.”

Here is how a radian arises and why we like it. Consider a point on
the body, at a distance r from the center at angle θ from the x-axis as
shown in Figure 9.2. You agree that if the rigid body is rotating, this point
will be traversing a circle of radius r. How long is the arc s that it traces
out from the time it was at θ = 0? Here is one way to calculate it. If the
point traversed a full circle, we know s= 2πr. If it has rotated by θ ◦, the
arc length, by simple proportionality, is

s= θ o

360
(2πr). (9.1)

Figure 9.2 As the rigid body rotates around some fixed point F, a typical point
P at a distance r from F moves on a circle of radius r.
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Someone then decided tomake life easy by calling θ o in degrees times
2π
360 as the same angle measured in radians. The angle in radians will simply
be denoted by θ with no superscript. That is

θ = 2πθ o

360
. (9.2)

In terms of θ you find a very neat formula

s= rθ . (9.3)

The linear distance traveled, s, is simply the angle traversed in radians
times the distance r to the axis of rotation. That a full circle is worth
2π radians follows from Eqn. 9.2. Equation 9.3 agrees with the familiar
expression C= 2πr for the circumference.

If 360o = 2π radians, a radian is roughly 57.4o. It looks like an odd
thing to pick, but it’s odd only if you start with 360 degrees. People from
an alien culture might not use 360 at all. On the other hand, I believe 2π
would be discovered in any advanced civilization.

You have to know a few popular angles in radians. For instance, a
quarter circle is 90◦ = π

2 , while 60
◦ = π

3 , 45
◦ = π

4 , and 30◦ = π

6 .
If we take the time derivative of Eqn. 9.3, s= rθ , we find

ds
dt

= r
dθ
dt

(9.4)

because r is a constant by the rigid body condition. Clearly ds
dt is the actual

tangential speed vT , or the magnitude of the velocity in the tangential
direction. If at this instant this point in the body separated and flew off,
it would emerge with that speed tangent to the circle. Thus

vT = rω where (9.5)

ω = dθ
dt

(9.6)

is called the angular velocity and is measured in radians per second. It is
positive for counterclockwise rotation.
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What is the angular velocity of the moon as it goes around the earth?
In roughly 28 days it covers 2π radians so

ω � 2π
28 ∗ 24 ∗ 60 ∗ 60 = 2.6 · 10−6rad · s−1. (9.7)

Remember, the rigid body as a whole has a single angular velocity,
but the tangential velocity of a point a distance r from the axis of rotation
varies as ωr.

9.3 Rotation at constant angular acceleration
Let’s take a problem where the angular velocity ω is itself changing. We
define the angular acceleration α by

α = dω
dt

= d2θ
dt2

(9.8)

measured in rad · s−2. Consider a rotating circular saw where its ω itself is
changing. Any point on it, at a distance r from the center, has two compo-
nents of the usual (linear) acceleration. First, even if ω is a constant, it has
the centripetal acceleration directed toward the center:

ar = v2T
r

= ω2r2

r
= ω2r. (9.9)

If in addition ω itself is changing, the tangential velocity vT = ωr will also
change, and there will be a tangential acceleration

aT = dvT
dt

= r
dω
dt

= rα. (9.10)

If you are driving around a circular racetrack in a car, a non-zero aT will
result when you step on the gas and see the speedometer needle move up.
In addition, even at constant speed, the seat belt will remind you of the
centripetal acceleration ar.
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In summary here are the relations between angular and tangential
quantities:

s= rθ (9.11)

vT = rω (9.12)

aT = rα. (9.13)

The bottom two equations follow upon differentiating the top one, bearing
in mind that in a rigid body r, the distance of any point from the axis of
rotation, will not change with time.

Suppose you are standing on a rotating platform that is undergoing
angular acceleration, and you want to know what frictional force you need
to stay fixed on the platform. The answer is

FT =maT =mrα (9.14)

Fr = −mar = −mω2r (9.15)

in the tangential and radial directions.
We can borrow many results from linear motion described by x by

making the obvious substitutions. For a body that has a constant angular
acceleration α, in obvious notation,

θ = θ0 + ω0t+ 1
2
αt2 (9.16)

ω = ω0 + αt (9.17)

ω2 = ω2
0 + 2α(θ − θ0). (9.18)

Suppose a chain-saw blade spinning at ω0 is brought to rest after n
revolutions. What is α, assuming it was constant?We simply setω=0 and
θ − θ0 = 2πn radians in Eqn. 9.18 and solve for α.

9.4 Rotational inertia, momentum, and energy
Now let’s find the kinetic energy of a rotating rigid body. It has a mass, and
if it’s spinning, all the little particles making up the body are moving, and
they have their own K = 1

2mv2. We want to compute the total K summed
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Figure 9.3 A simple rigid body made of three point masses attached to a fixed
hub by three massless rigid rods. When a force F1 acts on 1, only the tangential
component FT1 produces angular acceleration.

over all the particles. For that purpose, it’s convenient to begin with the fol-
lowing simpler rigid body, shown in Figure 9.3. It is made up of massesm1,
m2, andm3 attached by rigid massless rods of length r1, r2, and r3 to a fixed
massless point-like hub about which the body can rotate. Say it is rotating
with a common angular velocity ω. The kinetic energy of this object is the
kinetic energy of each mass summed over all the masses. Now, what’s the
velocity of each mass? If you consider m1, its velocity is necessarily per-
pendicular to the line joining it to the point of rotation. It has no radial
velocity because r1 cannot change. The magnitude of its velocity, entirely
tangential, is v1 = ωr1. In general for mass i

vi = ωri (9.19)

and the kinetic energy of all of them is

K = 1
2
m1v21 + 1

2
m2v22 + 1

2
m3v23 (9.20)

=
3∑

i=1

1
2
miv2i (9.21)

=
3∑

i=1

1
2
miω

2r2i . (9.22)
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Inmy example, the summation goes from i=1 to i=3; you canmake
up a body where the sum goes from 1 to 30, 000. Often I will not indicate
the range of values of i in the sum.

Notice that in Eqn. 9.22, unlikemi and ri, ω does not have a subscript
i because it is the same for all parts of the rigid body. So, you can pull it
out of the sum and write K as follows:

K = 1
2
ω2

3∑
i=1

mir2i (9.23)

≡ 1
2
Iω2 where (9.24)

I =
3∑

i=1

mir2i (9.25)

is called themoment of inertia.
The moment of inertia is determined not only by the masses that

make up the body but also by how far they are from the axis of rotation. If
all the masses just fell on top of the axis, the body would have no moment
of inertia, though it would have amass. Likewise, if the samemass is spread
out more from the axis of rotation, the moment of inertia will be more. It
requires a calculation to find the moment of inertia.

If someone says, “Here are the masses; please find me the moment of
inertia,” you should say, “I cannot do it until you tell me the point around
which you plan to rotate the body.” The moment of inertia is defined with
respect to a point. The mass is just the mass, but the moment of iner-
tia depends on the point with respect to which you’re computing it. For
example, in Figure 9.3 we are assuming the rotation is around the hub. If,
however, it is around some other point, we would need the distances to
that point to find the relevant moment of inertia.

When we compare K= 1
2mv2 to K= 1

2 Iω
2, we see that in the world of

rotations, ω plays the role of v and I plays the role of m. It is then natural
to construct the rotational analog of the momentum p = mv, called the
angular momentum:

L= Iω. (9.26)
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Next we seek the rotational analog of F=ma= dp
dt . That’s going to be

equal to some mystery object, which we will call the torque τ . What does
it equal?

τ = dL
dt

(9.27)

= d [Iω]
dt

= I
dω
dt

(9.28)

= Iα (9.29)

where we can pull the I out of the derivative because it is not changing:
even as the body rotates and the masses move, ri, the distance of mass i
from the axis of rotation, does not change. We will now relate the torque
to the external forces acting on the masses by the following manipulations:

τ = Iα (9.30)

=
∑
i

mi r2i α (9.31)

=
∑
i

mi ri α ri (9.32)

=
∑
i

mi aTi ri (9.33)

=
∑
i

FTi ri (9.34)

where in arriving at the last equation I have used the fact that mass
mi times the tangential acceleration aT = riα is FTi, the tangential com-
ponent of the force on mass i. Note that the tangential component of
the force is positive if it is in the direction of increasing angle, that is,
counterclockwise.

In summary, the torque is a sum of torques on each mass, and the
torque on each mass is the product of the tangential component of the
external force acting on it and the distance ri to the axis of rotation. (I say
“external” because there are internal forces that keep the body rigid and
that do not figure in this.) Figure 9.3 shows an example with just one force
acting on mass 1.
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We will follow the convention that a torque is positive if it will cause
positive acceleration, that is, in the direction of increasing θ .

Here are two illustrations, shown in Figure 9.4. The left half shows
a merry-go-round that you want to accelerate. You should apply a force
tangent to the wheel for maximum effect. If you apply a force in a general
direction as shown by the bold arrow, the tangential part will contribute to
τ and produce some α, while the radial part, which tries to change r, will
be balanced by internal forces from the rigid body.

The right half shows a door. People from some civilization have just
invented the door; they have thought about hinges but have not quite fig-

Figure 9.4 (Left) A merry-go-round being pushed by a force F. Only the
tangential part F sinγ produces torque and angular acceleration. The angle γ is
measured from (the continuation of) r to F. If we reverse the direction of F in the
figure, γ will exceed π and the torque will become negative and lead to clockwise
acceleration. The radial part F cosγ is canceled by internal forces in the rigid
body. (Right) A view from above of a door on hinges in the early days, with
two possible placement of knobs. The figure shows a poorly placed door knob
numbered 1 and applied force (dotted line), and a better choice (number 2 and
solid line). We can read τ = Fr sinγ in two equivalent ways: r times F sinγ , the
component of the force perpendicular to the separation from the axis r, or F
times r sinγ , the component of r perpendicular to the line of action of the
applied force F. For computing torque, the door knob may be taken to have zero
size, so that F acts where r ends.
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ured out where to put the doorknob. They say, “As the proud inventors
of the door, we have complete freedom. Maybe we will place the knob
right next to the hinges.” Then they realize that something is wrong—they
are applying a lot of force but not getting anywhere. They finally get it:
whereas force was everything in linear motion, for rotations, the place-
ment is relevant. If you want to get your money’s worth, you have to take
the doorknob as far as you can from the hinges and put it near the other
end. But they are not done yet. They apply a force on the knob as far as
possible from the hinges but along the line joining the knob to the hinge,
the horizontal direction in the figure, and they end up ripping the door off
the hinges. Eventually it dawns on them: if you want to get some serious
rotation going, you should really go as far as possible from the pivot point
and apply the force in the direction perpendicular to the vector joining the
pivot point and the point of application of the force. All this is encoded in
the definition of the torque as

τ = Fr sinγ (9.35)

where γ is the angle measured from r, vector from the axis to the point of
application of the force, to the force vector F. In both the merry-go-round
and the door depictions, the torque is positive because γ <π . If we reverse
F, the torque will change sign because sinγ will be negative for γ > π .

We can read τ = Fr sinγ in two equivalent ways: r times F sinγ , the
component of the force perpendicular to r, the separation from the axis,
or F times r sinγ , the component of r perpendicular to F, as indicated in
the figure.

Now we turn to the concept of work. Once again, everything can be
related to what we know for translations, simply reexpressed in terms of
quantities more pertinent to rotations. Consider a force that acts on one
of the masses. Its radial part will do no work, because it is trying to change
r, which is impossible if the body is indeed rigid. Let its tangential part
rotate the body by an angle dθ . The arc length traversed is rdθ and the
work done is

dW = FTds= FTrdθ (9.36)

= τdθ (9.37)
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in accord with our expectations that the product of force and linear
displacement should be replaced by the product of torque and angular
displacement. Because K has the same meaning, the work-energy theorem
becomes

dK = dW = τdθ . (9.38)

9.5 Torque and the work-energy theorem
Here is an example of

dW = τdθ . (9.39)

Consider a pendulum that is simply a massless string of length l attached
at one end to the ceiling and at the other to a bob of mass m, as shown in
Figure 9.5. The angle θ between the string and the vertical is initially 0. I
want to bring it to an angle θ0. I want to know howmuch work is required.
Consider some intermediate angle θ . The force T supplied by the string
necessarily points along the string. The gravitational force acting on the
bob may be resolved into the tangential and radial parts as shown. The
radial partmg cos θ will be balanced by T. The tangential partmg sin θ has
to be balanced by a force Fme that I must apply to keep it from slipping back
to the vertical. (I displace the bob without giving it any kinetic energy.) If

Figure 9.5 A pendulum made up of a massless string length l and a bob of mass
m. The forcemg is resolved in the radial and tangential directions. The bob has
climbed up a height h= l− l cos θ .
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I increase θ by dθ , this force moves a distance ds = ldθ along an arc. As
dθ → 0, this arc becomes a linear segment of the same length, and the
work done, which is force times distance, becomes

dW =mg sin θ(ldθ), (9.40)

which may equally well be written as the torque times angular displace-
ment:

dW = (mgl sin θ)dθ = τdθ . (9.41)

The work done by me to bring it up to angle θ0 is

W =
∫ θ0

0
mgl sin θdθ =mgl(1− cos θ0). (9.42)

Here is a cross-check. From the figure it is clear the bob has climbed
up a height h= l− l cos θ0 and its potential energy is U =mgl(1− cos θ0),
which in turn equals the work done. The kinetic energy was always 0.

Table 9.1 contains a list of correspondences between angular and
linear dynamics.

To this list we just need to add that the tangential displacement s,
velocity vT , and acceleration aT are simply r times the angular counter-
parts, θ , ω, and α.

Note that all the previously described rotational dynamics simply
follow from Newton’s laws.

Table 9.1 Linear and angular quantities

Entity Linear Angular
Displacement x θ

Velocity v ω

Acceleration a α

Inertia m I =∑
mr2

Momentum p=mv L= Iω

Rate of change of momentum F=ma= dp
dt τ = Iα = dL

dt = Fr sin θ

Kinetic energy 1
2mv2 1

2 Iω
2

Work dW = Fdx dW = τdθ
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You are now ready to do a variety of simple problems. For example,
if a force F1 is applied to mass 1 in Figure 9.3, what will be the angular
acceleration? It is τ/I. We know how to find I by summing mr2 over the
three masses, and τ is just FT1r1. Once you have α, if it is constant, you
can compute ω at later times and so on. There is really just one technical
obstacle you have to overcome if you want to do rigid body dynamics, and
that is to know how to compute the moment of inertia for all kinds of
objects. If I give you 37 masses mi, each with a distance ri from the point
of rotation, it’s a trivial thing. But often you are not given a discrete set of
masses, but a continuous blob. Just as you did in determining the center
of mass, you have to replace the sums by integrals.

9.6 Calculating the moment of inertia
Let’s take some rigid bodies and try to find their moments of inertia. First
consider one-dimensional objects, a rod of length l and mass M shown
in Figure 9.6. Taking the origin at the CM of the rod, we divide it into
tiny pieces of length dx centered at some x, just as we did for the CM

Figure 9.6 (Top) The moment of inertia of a rod found as the integral over tiny
segments of width dx. (Bottom) The moment of inertia of a disk viewed as a sum
over contributions from annuli of radius r and thickness dr.
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calculation. The only difference is that now we consider the mass of the
tiny segment times the square of x rather than x:

ICM =
∫ l/2

−l/2

M
l
x2dx (9.43)

= M
l

x3

3

∣∣∣∣l/2
−l/2

(9.44)

= Ml2

12
. (9.45)

The simplest two-dimensional object to consider is a ring of massM
and radius R. To find ICM , its moment of inertia around the CM, which is
the center of the circle, imagine dividing it into tiny pieces. Every one of
the pieces is at the same distance R from the center. So the summir2i , with
every ri = R, is just MR2. The mass was spread out, but luckily spread out
in such a way that every part of it was the same distance R from the center.

More challenging is the disk of massM and radius R. To find ICM , we
have to organize our thinking. We must think of the disk as made up of
concentric rings of radius r and thickness dr, one of which is shown. The
mass of this annulus may be found as follows. The area of the annulus is

dA= π
(
(r+ dr)2 − r2

)= 2πrdr+O(dr2). (9.46)

Its mass is the mass per unit area times the area:

dM= M
πR2

2πrdr (9.47)

and its contribution to ICM is just this mass dM times its r2:

dICM = M
πR2

2πr · r2dr which integrates to (9.48)

ICM =
∫ R

0

M
πR2

2πr · r2dr (9.49)

= MR2

2
. (9.50)
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Suppose I made an error somewhere and obtained ICM =MR2. You
should know it is wrong, because ICM =MR2 is possible only if all the mass
is at a distance R from the center, but we know some of the mass is a lot
closer. So the moment of inertia for a disk has to be less thanMR2.

We saw that

ICM = Ml2

12
(9.51)

for a rod. If you plan to nail it at its CM and spin it, this is the rotational
inertia you will be up against. But suppose you want to spin it around the
left end? We repeat the old calculation of ICM but we measure x from the
left end and integrate from 0 to l:

IEnd =
∫ l

0

M
l
x2dx (9.52)

= M
l

x3

3

∣∣∣∣l
0

(9.53)

= Ml2

3
. (9.54)

Notice that IEnd > ICM = Ml2
12 . More precisely

IEnd = ICM +M
[
l
2

]2

. (9.55)

In fact I will be smallest about the CM. We will prove in the next chapter
that, in general, the moment of inertia I of a planar object around any
perpendicular axis that is a distance d away from the CM is ICM +Md2.



chapter 10

Rotational Dynamics II

10.1 The parallel axis theorem
Let us recall what we have learned about rigid bodies that are confined
to lie and rotate in a plane, such as a rod or a sheet of some metal cut
out into some arbitrary shape. The body has a mass M. It can translate
and rotate, but for now we nail a point on it to the plane and let it rotate
about that axis, with plans to bring in translations later on. A single angle
θ , measured in radians, suffices to tell us what it is doing, because all it
can do is rotate about the fixed point. This angle θ is to rotations what x
was to translations. There is a corresponding angular velocity ω = dθ

dt and
acceleration α = dω

dt = d2θ

dt2
. The novel attribute, owing to the object being

extended and not point-like, is its moment of inertia I. If we imagine it
as being made of point masses mi sitting at a distance ri from the axis,
we find

I =
∑
i

mir2i . (10.1)

Note that I is a quantity that depends on how the mass is distributed rela-
tive to the axis about which it is rotating. It plays the role that mass did in
translational motion. If the body is continuous, the sum is replaced by the
corresponding integral. The angular momentum L

L= Iω (10.2)

159
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plays the role of momentum p=mv, and F=ma= dp
dt is replaced by

τ = Iα = dL
dt

(10.3)

where the torque is defined by

τ =
∑
i

riFi sinγi (10.4)

where γi is the angle measured from ri, the vector from the point of rota-
tion to the point of application of the force, and force vector Fi. We may
rewrite the expression for torque in two other useful ways:

τ = F⊥r= Fr⊥ (10.5)

where F⊥ is the component of the force perpendicular to r and r⊥ is the
component of r perpendicular to F.

In our convention a torque was positive (negative) if it implied
counterclockwise (clockwise) acceleration.

The kinetic energy is

K = 1
2
Iω2. (10.6)

All the rotational equations, say the one for K, are simply the results from
linear motion as applied to the constituents of the rigid body.

Finally, at each point in the body, the tangential displacement,
velocity, and acceleration are just r times the angular ones

s= rθ vT = rω aT = rα. (10.7)

We practiced computing moments of inertia of various objects (rod
and disk) and concluded with the observation that for a rod

Iend = ICM +M
[
L
2

]2

. (10.8)

We will now see that this is an example of a more general result:
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The parallel axis theorem: The moment of inertia for a planar body
about any axis is

I = ICM +Md2 (10.9)

where d is the distance from the CM to the new axis. (In the rod example
d= L

2 .)
Here is the proof. As a warm-up, we will do it in d = 1 for a rod

of a given linear mass density ρ(x), that is, where ρ(x)dx is the mass of
an infinitesimal segment of width dx at the point x. Let us choose as our
origin the CM, and measure x from it. Let the new axis pass through the
point x=d, as shown in Figure 10.1. The moment of inertia about the new
axis is

I =
∫
Rod

ρ(x)(x− d)2dx (10.10)

=
∫
Rod

ρ(x)(x2 + d2 − 2xd)dx (10.11)

=
∫
Rod

ρ(x)x2dx+ d2
∫
Rod

ρ(x)dx− 2d
∫
Rod

ρ(x)xdx (10.12)

= ICM +Md2 − 2d
∫
Rod

ρ(x)xdx. (10.13)

The first two terms are welcome: they are required in the theorem. The
cross term is like a leftover part after you have assembled your bookshelf
from Ikea. We need to get rid of it. Luckily it is zero, for the following
reason. By definition

∫
Rod

ρ(x)xdx=M
∫
Rod ρ(x)xdx

M
=MX (10.14)

where X is the CM. What is X? Our origin is at the CM itself and with
respect to that origin, the CM has zero coordinate, X= 0.
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Figure 10.1 (Top) The moment of inertia calculation about an axis a distance d
from the CM, which is not necessarily at the midpoint of the rod if the density is
not uniform. The rod is made up of segments of width dx, one of which is shown
at a distance x from the CM and x− d from the new axis. (Bottom) The parallel
axis now passes through a point with a vector separation d from the CM. The
body is made up of tiny areas of size dx dy, one of which is shown, separated by r
from the CM and r′ from the new parallel axis.

Thus, the moment of inertia is the smallest with respect to the CM;
any other axis adds anMd2.

Now let us do it in d = 2. I remind you that the length squared of
A+B is

|A+B|2 = (A+B) · (A+B)

=A ·A+B ·B+ 2A ·B=A2 +B2 + 2A ·B. (10.15)

Let ρ(x, y) be the mass per unit area, let r be the position vector of a point
with the origin at the CM, and let d be the location of the new axis. Clearly
the position vector of a point relative to the new axis is

r′ = r− d. (10.16)
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Now we repeat the earlier proof with vectors galore:

I =
∫
body

ρ(x, y)|r− d|2dxdy (10.17)

=
∫
body

ρ(x, y)(r2 + d2 − 2d · r)dxdy (10.18)

=
∫
body

ρ(x, y)r2dxdy+ d2
∫
body

ρ(x, y)dxdy (10.19)

− 2d ·
∫
body

ρ(x, y)rdxdy

= ICM +Md2 − 2Md ·R (10.20)

where the last term vanishes for the same reason as in d= 1: R is the CM
position in a coordinate system with the CM itself as the origin.

Here is an illustration of the power of this result. Suppose that
instead of rotating a disk about its center you wanted to hold fixed a point
at its circumference. We cannot view the disk as a union of concentric
annuli centered around the new axis as we did for ICM. Only a part of
every annulus would fit into the disk, and we would need to figure out
how much, if we want to compute I directly. Of course, we will do no
such thing: we will invoke the parallel axis theorem to say, for a disk of
radius R

Iedge = ICM +MR2 = 3MR2

2
. (10.21)

Consider for example a coin that is standing on its rim on some surface. It
has just one point of contact with the surface. If we demand that there be
no slipping, the point of contact cannot move relative to the surface as it
rolls. So the coin will simply rotate around this point (at this instant) and
the relevant I will be 3MR2

2 .

10.2 Kinetic energy for a general N-body system
Now let’s turn to a result involving kinetic energy, whose derivation has a
flavor similar to the previous one, which is why I want to present it side-
by-side. Imagine a whole collection of massesmi, not necessarily forming a
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rigid body. For example, they could be stars forming a galaxy. The formula
for the kinetic energy of this collection is

K =
∑
i

1
2
miv2i , (10.22)

where vi are the magnitudes of the velocities vi as seen by some generic
observer. These velocities will of course depend on the frame of reference
of the observer. LetVCM be the velocity of the CM as seen by this observer.
Consider a special observer who is co-moving with the CM. To her the
CM is at rest. If vCMi is the velocity of the object as seen by this co-moving
observer, then by the law of composition of velocities derived in Chapter 2
(Eqn. 2.44),

vi =VCM + vCMi . (10.23)

In this notation, the superscript CMmeans “in the frame moving with the
CM.” No superscript means in the original generic frame, and the sub-
script CM or i means “of the CM” or “of the particle i.” Thus vCMi is the
velocity of particle i in the CM frame and vi is the speed of the particle i in
the original generic frame. We now manipulate Eqn. 10.22 as follows:

K = 1
2

∑
i

miv2i (10.24)

= 1
2

∑
i

mi|VCM + vCMi |2 (10.25)

= 1
2

∑
i

mi(V2
CM + |vCMi |2)+VCM ·

∑
i

mivCMi (10.26)

= 1
2
MV2

CM +KCM + 0. (10.27)

The first term is the kinetic energy of the center of mass, a point
containing the entire mass of the object and moving with a velocity VCM.
The second term is the K as measured by the co-moving observer who
uses the velocities vCMi for particle i. If you were really traveling with the
center of mass, and you made a measurement of how fast every particle
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in it was moving, this would be the kinetic energy you would attribute to
these particles. The third term in Eqn. 10.26 vanishes because

∑
i

mivCMi = 0. (10.28)

Here is the reason. In any generic frame, by definition,

MR=
∑
i

miri. (10.29)

Taking the time-derivative of both sides we find, also in any frame,

MVCM =
∑
i

mivi. (10.30)

Now apply this to the observer co-moving with the CM:

MVCM
CM =

∑
i

mivCMi . (10.31)

The left-hand side vanishes because VCM
CM is the velocity of the CM as seen

by a person riding with the CM. This means the right-hand side, which
appears in the last term in Eqn. 10.26, also vanishes.

Equation 10.27 is valid for any collection of objects, whether they
be parts of a rigid body or stars in a galaxy. It is going to be very useful
to us when we study rigid bodies that rotate and translate. In that con-
text, it means that as far as the kinetic energy goes, we may simply add
the K of the translational motion of the CM to the K of rotations about
the CM.

K =KCM +Krot (10.32)

10.3 Simultaneous translations and rotations
Now consider a disk, say a tire in a car. There are different things you
could imagine. Lift the car off the ground, and let the tires spin; that has
rotational energy K=Krot = 1

2 ICMω2. That’s the pure rotation we have been
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studying so far. Next, let the tire hit the ground and set the car in motion.
Suddenly slam the brakes and prevent the tire from turning. The skidding
tire still moves with a certain velocity, which is due to just the translational
motion of the center of mass, with K=KCM = 1

2mV2
CM. This too is familiar,

just like that of a point particle.
In general, the tire will rotate around the center and also translate.

The linear velocity of the center of mass and the angular velocity around
the center don’t have to be connected in any way. Suppose you start your
car on an icy road. The tire is spinning, but the car is not moving. So, that’s
a case of VCM = 0, ω �= 0. In the case of a skid, we have VCM �= 0, ω = 0.
We are interested in the case where there is no slipping relative to the
ground; the wheels are not burning rubber. Now there is a correlation
between the angular velocity and the linear velocity, and the motion is
called “rolling without slipping.” When the tire rolls without slipping,
by the time it finishes one full revolution, the car will have moved the
distance equal to the circumference of the tire. So every part of the tire
touches the ground once, while the car moves a distance equal to the
circumference.

Let us calculate the velocity when the tire rolls without slipping. If it
made f revolutions per second and in each revolution the car moves 2πR
meters

VCM = 2πRf = ωR (10.33)

where I have used the fact that ω = 2π f . Now we have

K = 1
2
MV2

CM + 1
2
ICMω2 because of Eqn. 10.27 (10.34)

= 1
2
Mω2R2 + 1

2
MR2

2
ω2 = 1

2
3MR2

2
ω2 (10.35)

= 1
2
Iedgeω2 (10.36)

because of Eqn. 10.21, the parallel axis theorem.
This very interesting result tells you that you can view the entire

energy of the tire as due to pure rotation with angular velocity ω around
this point of contact P in Figure 10.2. If the tire is indeed rotating around
that point, it means that point cannot be moving. And I will now try to
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Figure 10.2 A tire of radius R that is rolling clockwise at ω without slipping.
At the contact point P, the CM velocity VCM cancels the tangential velocity ωR,
while at the top, T, it doubles it. The point P is instantaneously at rest with
respect to the road.

convince you. How fast are the different parts of the tire moving? The car
as a whole is moving at VCM . In addition, the tire is spinning. To find the
velocity of any point on the circumference, you should add the tangential
velocity ofmagnitudeωR to the CM velocity. At P, the point of contact, the
two cancel, while at the top T, they add to give 2VCM. Thus, in a car going
past you at 200 miles per hour, there is a part with zero velocity and a part
with a velocity 400 miles per hour relative to the ground. It’s not obvious
that a zooming car has one part of it that’s not moving at all. But at every
instant, the part of the tire that touches the ground has zero instantaneous
velocity.

10.4 Conservation of energy
Suppose I release an object of massM from the top of a hill of height h. If
it is a point mass, I know its speed when it comes down:

Mgh= 1
2
Mv2 (10.37)

v=√
2gh. (10.38)

But if it is a coin of radius R that is rolling without slipping, when it reaches
the bottom the center of mass cannot move at VCM =√

2gh because it has
to be rotating about its axis to avoid slipping. Some rotational energy is
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mandated. So now we write

Mgh= 1
2
MV2

CM + 1
2
ICMω2 (10.39)

= 1
2
3MR2

2
ω2 = 1

2
3M
2

(ωR)2 = 3M
4

V2
CM (10.40)

VCM =
√
4gh
3

<
√
2gh. (10.41)

This formula for the disk (of zero thickness) is also valid for a cylin-
der rolling about its symmetry axis, because the cylinder may be viewed as
a coaxial stack of disks whose moments of inertia add.

For a solid sphere, we can do this again using ICM = 2
5MR2 and the

parallel axis theorem. How about a hollow sphere of the samemass? Argue
that it will have a greater moment of inertia. The exact answer is 2

3MR2. If
I roll a hollow sphere and a solid sphere of the same mass and radius, the
latter will come down faster.

You can readily imagine all kinds of new problems. You remember
that in the loop-the-loop, the velocity squared of a point mass at the top
of the loop has to be bigger than or equal to Rg if it is to follow the track.
Suppose the object in question is a cylinder or sphere. The condition on
the velocity at the top is still the same, but the height from which you
release it has to be greater, because if it rolls without slipping, it also has to
have a rotational energy correlated to its translational energy.

To summarize, when rigid bodies move, they have translational and
rotational energy. In general, they are independent numbers, but when
you have rolling without slipping, the angular velocity and the linear veloc-
ity are connected by VCM =ωR. So, it’s not surprising that the total energy
has a contribution from both, which you can write either in terms of the
angular velocity or the linear velocity. In other words, if I know how fast
the wheel is spinning, I can tell you how fast the car is moving. If I tell
you how fast the car is moving, I know the rate at which the wheels are
spinning.

10.5 Rotational dynamics using τ = dL
dt

Let me take a simple example. A group of rogue toddlers decided their par-
ents were not pushing their merry-go-round of mass M fast enough, and
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Figure 10.3 A rocket-powered merry-go-round of massM. Each engine has a
thrust F, massm, and contributesmR2 to the moment of inertia.

so they decided to use rocket propulsion. Initially they had only one rocket
of mass m, but it nearly blew the axle holding the platform. While the
rocket did provide a torque, it also provided a force that would have caused
linear acceleration of the entire system, but for the axle, which applied a
counterforce. To avoid this, they got a second identical rocket and installed
it diametrically opposite to the first, with its thrust oriented to assist the
first as in Figure 10.3. The engines have a thrust F each and together they
apply a torque τ = 2FR. This will produce an angular acceleration

α = τ

I
= 2FR

1
2MR2 + 2mR2

. (10.42)

Given this, we canmanufacture any number of trivial problems. For exam-
ple, how many revolutions would the merry-go-round have completed
after time t if it started from rest? It would have rotated by

θ(t)= 1
2
αt2 radians. (10.43)

10.6 Advanced rotations
Now we consider slightly more complicated problems. A block of massm
is supported by a massless rope that wraps around a pulley of radius R and
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Figure 10.4 Free-body diagram of a block of massm supported by a massless
rope that wraps around a pulley of radius R and massM.

mass M as shown in Figure 10.4. We want to find out with what accel-
eration the block descends. Let T be the tension in the rope, as shown in
the free-body diagram. We have the following equations of motion for the
block (F =ma) and the pulley (τ = Iα) and the no-slip condition relating
α and a:

mg −T =ma (10.44)

TR= Iα = 1
2
MR2α (10.45)

a=Rα. (10.46)

I have chosen the down direction as positive for the block and clockwise
as positive for the torque, in contrast to the usual. This should prepare you
for dealing with unconventional choices.

I have not shown the force exerted by the pivot supporting the pulley
because this force does not contribute to the torque about the pivot: r⊥ =0.
In Eqn. 10.46 I have related the angular acceleration of the pulley to the
linear acceleration of the block. The mass can go down one inch only if
the pulley turns by a corresponding amount to release one more inch of
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rope. By taking derivatives, we equate the tangential acceleration αR to a,
the linear acceleration of the mass.

In Eqn. 10.45, I have used ICM = 1
2MR2. Canceling one power of R in

that equation and adding it to Eqn. 10.44 we find

mg =ma+ 1
2
MRα =ma+ 1

2
Ma (10.47)

a= g
m

m+ 1
2M

. (10.48)

We can check our result as follows. If the block drops a height h, then
its final velocity is, from the relation v2 = v20 + 2ad,

v2 = 2ah= 2g
m

m+ 1
2M

h, (10.49)

which can be rearranged to give

1
2
mv2 + 1

2
Mv2

2
=mgh (10.50)

1
2
mv2 + 1

2
MR2

2
ω2 =mgh, (10.51)

which respects energy conservation.
Again we can add more complications. We could go back to the

problem of one block sliding down the incline and couple it to another
block moving vertically. We could decide to assign a non-zero moment of
inertia to the pulley.

10.7 Conservation of angular momentum
So far, we have looked at examples of τ = Iα with τ �= 0. Now I’m going to
consider problems where the total torque on a collection of bodies is zero.
Then because τ = dL

dt , the total angular momentum will be conserved.
Here’s one example. There is a disk spinning around a spindle pass-

ing through a hole at its center. The disk has some moment of inertia I1,
and angular velocity ω1. Infinitesimally above this disk, and on the same
spindle, is a second non-rotating disk with moment of inertia I2. If the
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upper disk falls on the lower one and the two rotate as one unit, what will
be the final ω? Angular momentum conservation tells us

I1ω1 + I2 · 0= (I1 + I2)ω (10.52)

ω = I1
I1 + I2

ω1. (10.53)

This should remind you of the problem in translational motion
where m1 slams into m2, which is at rest, and the two move together as
a unit following the totally inelastic collision.

Here is a similar problem. A merry-go-round of radius R is spinning
at ω1 and has angular momentum L1 = I1ω1 where I1 = 1

2MR2. I drop a
point kid of mass m on its outer rim. The kid and the merry-go-round
now rotate together. What will be the final ω? The kid has to be brought
from rest to the tangential speed of the rim. The merry-go-round will
apply a force on the kid to speed up the kid, and the kid will exert an
equal and opposite force that will slow the merry-go-round. The torques
will be equal and opposite. So we may use the conservation of angular
momentum for the entire system, to find ω:

I1ω1 = (I1 +mR2)ω (10.54)

ω = I1ω1

I1 +mR2
(10.55)

wheremR2 is the moment of inertia of the kid sitting at the edge.

10.8 Angular momentum of the figure skater
Consider a single particle with momentum p=mv. If there are no forces,
the momentummv cannot change, and that translates into a constant v. If
the body could reduce its mass in half, it could double its velocity keeping
the momentum constant. But bodies have no way of changing their mass.
But if they are not rigid, they can change their moment of inertia, by rear-
ranging their mass distribution. This way they can change their ω, keeping
the product L= Iω constant.

Consider a figure skater with her hands extended outward, spinning
at some rate, as shown in the left half of Figure 10.5. She is a rigid body with
some I1 andω1. Then the skater briefly becomes non-rigid as she raises her
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Figure 10.5 Left: A spinning figure skater with her hands extended outward.
Right: Raising her arms over her head, the skater has reduced her moment of
inertia and increased her angular velocity, without changing their product, her
conserved angular momentum.

hands over her head and reduces her moment of inertia to I2 and angular
frequency to ω2 such that

I1ω1 = I2ω2. (10.56)

If she extends her arms out again, she slows down. Though she is non-
rigid during some of this exercise, her L is conserved because there are no
external torques.

However, her kinetic energy changes in this process. For example, let
her initial moment of inertia with arms extended be double the final one
with arms drawn over her head: I1 = 2I2. This means

ω2 = 2ω1 (10.57)

K2 = 1
2
I2ω2

2 = 1
2

(
1
2
I1
)
(2ω1)2 = 2K1. (10.58)

The final kinetic energy is double the initial one. While the halving of the
I compensates the doubling of the ω where angular momentum is con-
cerned, this is not so for K, which is quadratic in ω. Where does the extra
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energy come from? It comes from her muscles that apply the centripetal
force as she pulls in her arms. The centripetal force is always there to
keep her extended arms moving in a circle, but it does work only when
her arms move radially, for that is when dW = F · dr �= 0. (We ignore the
gravitational work needed to raise her arms.)



chapter 11

Rotational Dynamics III

11.1 Static equilibrium
I’m going to consider cases where there is no external torque. If there’s no
torque, we know the angular velocity is constant. But I’m going to take a
case where this constant value of angular velocity is itself zero. There is
no motion, there is no torque. So you might say, “What’s there to study?”
Well, sometimes it’s of great interest to us to know that the object has no
angular velocity, for example, if the object is a ladder we have climbed. The
ladder better not have any angular acceleration either. What does it take to
keep the ladder from falling over? That’s the kind of problem we’re going
to discuss.

Obviously the forces on the ladder should add up to zero; otherwise
F=ma will ensure the CM accelerates. But F= 0 is not good enough, as is
clear from the the rocket-propelled merry-go-round: the thrusts are equal
and opposite and cancel as forces, but the torques they produce add.

Because the cause of rotation is the torque, we want the total torque
to vanish as well. So the condition for static equilibrium of a rigid body is

∑
i

Fxi = 0 (11.1)

∑
i

Fyi = 0 (11.2)

∑
i

τi = 0 (11.3)

175
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where the index i in the sums runs over all the applied forces in the x and
y directions and all torques.

11.2 The seesaw
Look at Figure 11.1, which shows a seesaw with a kid of mass m1 sitting
to the left of the supporting pivot P and similarly a kid numbered 2 sitting
to the right. Let these kids have coordinates x1 and x2 with respect to the
origin P. First we write down all the forces on the seesaw.We see F1 =m1g,
F2 =m2g (where g= −9.8jm/s2) due to the weight of the kids. Of course,
that cannot be the whole story, because the seesaw is not falling to the
ground. There is the pivot P, which exerts an upward normal force N.

The force equations are

0= 0 along the x direction (11.4)

N + F1 + F2 = 0 along the y direction, (11.5)

where F1 and F2, are the y-components of F1 and F2. Assume that F1 is
known and that we are trying to solve for F2. Clearly we cannot solve for
F2 andN using just one useful equation. This is where the torque equation
comes in.

Now, if a body is rotating about an axis, we are used to equating the
torque around that axis to the rate of change angular momentum about
that axis or point. But what if it is not rotating? About what point should
we compute the torque? You can say it’s not rotating through one axis,

Figure 11.1 Two kids on a seesaw. The supporting pivot provides a force N
upward. The total torque due to the kids’ weights F1 =m1g, F2 =m2g and the
pivot force N is zero.
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compute the total torque with respect to that axis, and equate it to zero
to get the third equation. But then someone else can say it is not rotat-
ing about some other point and get yet another equation. So we can write
down an infinite number of equations, one for each choice of pivot point
or axis. But we have only two unknowns, F2 and N, and they can only sat-
isfy two equations. So, we have to hope that the extra equations we get by
varying the pivot point all say the same thing. And that’s what I will show
you.

First consider just this rod in equilibrium. It has forces F1, . . .FN

acting on it, and these add up to zero. They act at positions x1, . . .xN , mea-
sured from some point on the rod I have chosen for torque computation.
That it is in equilibrium according to me implies

∑
i

Fi = 0 (11.6)

τ =
∑
i

τi =
∑
i

Fi⊥xi = 0. (11.7)

If you choose a different point along the rod for torque computation, you
will replace every x by x− d if your axis is to the right of mine by d. The
torque you get will be

τ ′ =
∑
i

Fi⊥(xi − d)=
∑
i

Fi⊥xi − d
∑
i

Fi⊥ = 0+ 0, (11.8)

where the first zero is there because it is just the total τ according to me,
and the second zero arises because the total force FT =∑

i Fi is zero and so
its perpendicular component FT⊥.

The proof gets tricky if the rotation axis is chosen off the rod or off
the x-axis. We will address it later.

Anyway, when you compute the torque, you may pick any point
you like provided the total force is zero. However, some choices are bet-
ter suited than others for some purposes. For example, if you were asked
simply to find F2 but not the normal force N, there’s a particular choice
of pivot point that is optimal. That choice is the one in which this normal
force doesn’t get to enter the torque equation and corresponds to com-
puting the torque about the pivot point P, where the normal force N acts.
Now N will drop out of the torque equation, because r⊥ = 0. In general,
always compute the torque relative to a point where an unknown force is
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acting, because then the unknown force cannot contribute to the torque
equation.

Following that rule we get

F1x1 + F2x2 = 0 (11.9)

where x1 is negative and x2 is positive. Because F1 and F2 are negative, F1x1
will be positive (counterclockwise) and F2x2 will be negative (clockwise).
We can readily solve Eqn. 11.9 for F2. Once we have it, we can go back
to Eqn. 11.5 and find the normal force N. Suppose F1 = −100 Newtons,
x1 =−4m and x2 = 5m, then F2 =−80 Newtons and it follows from Eqn.
11.5 that N = 180 Newtons.

11.3 A hanging sign
Now, Figure 11.2 depicts a more complicated problem. There is a rod of
length L and mass m, supported by some kind of pivot on the wall at one
end and a wire anchored to the wall at the other end. The rod will even-
tually support a sign, which was not ready in time for this problem. My
concern is the tension on the wire, which I do not want to exceed some

Figure 11.2 A rod of length L supported by a wire with some tension T and a
pivot on the wall that applies a force P.
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limit. The straightforward way to find T is to write the free-body diagram
for the rod and demand that the net force and torque vanish:

Px −T cos θ = 0 (11.10)

T sin θ + Py −mg = 0 (11.11)

τP + τW + τm = 0 (11.12)

where the three torques are due to the pivot, the tension on the wire, and
the weightmg about any point.

We have three equations for three unknowns: Px,Py,T. But if all I
want is the tension T, I can get it from just the torque equation if I choose
as the point for its computation the pivot itself. Then P drops out and we
find

T sin θ · L−mg · L
2

= 0 with a solution (11.13)

T = mg
2 sin θ

. (11.14)

Observe that I am following the standard convention that a counterclock-
wise torque is positive.

In a practical problem, you may have a rod of weight mg = 2000 N
and a wire that can only withstand a tension Tmax. Then the computed T
must obey

T = mg
2 sin θ

<Tmax (11.15)

sin θ >
mg

2Tmax
. (11.16)

If Tmax = 4000 N, this gives us

sin θ >
1
4
. (11.17)
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Now, if I am curious, I can go back and find out Px and Py from the
force equations:

Px =T cos θ = mg cos θ
2 sin θ

(11.18)

Py =mg −T sin θ = mg
2
. (11.19)

Interestingly, the wire and the pivot each support half the weight of the
rod no matter what θ is.

Notice that I computed the torque due to gravity as if all the mass
was concentrated at the CM. This is true but not obvious, because the def-
inition of the CM as the weighted sum of the masses in the body does not
necessarily mean the CM can also stand in for the whole body in com-
puting τ . You should always go back to first principles and check. The
only thing we know is F=ma and the force of gravity. Let us next imagine
dividing the rod into tiny pieces, each of which is small enough to say it has
a definite location x measured from the pivot and a mass m

L dx, exactly as
in the CM calculation. The total torque about the pivot is then the integral

τ =
∫ L

0
x
mg
L

dx= g
∫ L

0
x
m
L
dx= gmX. (11.20)

Except for the factor g, the second integral is familiar from the CM calcula-
tion asmX, where X = L

2 is the CM. There the x entered as the coordinate
to be weighted; here it is the r⊥ for torque calculation. This τ = mgX is
indeed what we would find if we lumped all the mass at the CM. This
result is valid even if the mass density ρ(x) is not a constant; the integral
would still bemX.

11.4 The leaning ladder
The last of the equilibrium problems is the one I mentioned in the begin-
ning of this chapter. I have a ladder of mass m and length L leaning on a
wall at some angle θ , as shown in Figure 11.3. The wall is frictionless and
the floor has a static coefficient of friction μs, which you may assume is
given to you. I have not climbed the ladder yet; I just want to rest it against
the wall and make sure it does not slide down. Can you see intuitively that
θ has to exceed some lower limit for the ladder not to slide? Let’s just write
down all the equations for equilibrium to find this limit.
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Figure 11.3 A ladder of massm and length L is leaning against a frictionless
wall and standing on a floor with some coefficient of friction μs. The normal and
frictional forces due to the floor are shown separately.

We knowmg can be assumed to be acting at the the center of the rod.
The frictionless wall can only exert a force perpendicular to itself, called
W for wall. The floor is exerting a normal force N and a frictional force f
directed inward to balanceW. That’s it. The force equations along r x and
y are:

f −W = 0 (11.21)

N −mg = 0. (11.22)

All that is left is the torque, and that’s where we have the choice. We can
take the torque around any point we like. If we want to punish ourselves,
we can take a torque around some crazy point and then N and f will all
come into the problem, and we will have to work that much harder. The
trick, again, is to take the torque where the ladder touches the floor. Then
N and f are gone, and what do we have? We have mg trying to rotate it
clockwise and W trying to rotate counterclockwise. Let us use the first of
the two definitions of the torque

τ = Fr⊥ = F⊥r. (11.23)
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For the weight r⊥ = L
2 cos θ and for the wall it is L sin θ . So we have

mg
L
2
cos θ =WL sin θ with the solution (11.24)

W = mg
2

cot θ . (11.25)

But nowwe have a restriction: the frictional force must obey f ≤μsN.
Consider the two equations:

f < μsN = μsmg (11.26)

f =W = mg
2

cot θ , (11.27)

which lead to the inequality

mg
2

cot θ < μsmg (11.28)

tan θ >
1
2μs

. (11.29)

That means θ has to be bigger than some number, because tan θ

always increases with θ for the angles under consideration. For example,
if μs = .5, we need θ >= 45o = π

4 . If I want to climb up the ladder, I need to
add my weight to the force and torque equations. The torque will depend
on where I am on the ladder, and I will need to make sure I can climb all
the way up.

11.5 Rigid-body dynamics in 3d
Rigid-body dynamics is quite easy as long as everything lies in the plane:
all the mass is concentrated on the plane, all the forces are in the plane;
all the vectors separating the point of application of the force to the point
of rotation are in the plane. As we look down the plane, the only possible
rotation is clockwise (negative) or counterclockwise (positive) about an
axis perpendicular to the plane. The torque is τ =F⊥r= r⊥F where r is the
distance to the axis from the point of application of the force.
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That was then. But now we have to deal with the fact that in real life
objects like tops and potatoes are not just planar andmove in three dimen-
sions. This is one case where not all the essential ideas can be conveyed in
anything fewer than three dimensions.

So we will go to d = 3 but stay with a single point mass for a while.
More complicated bodies can be built out of point masses. What is the
analog of τ = Iα when the mass is running around in d= 3? How do you
define torque and angular momentum in d= 3?

Suppose I have a point massm in d= 3 at a location r with respect to
some origin, as shown in the left half of Figure 11.4. Let F be the force on
it. As in d=2, we want to combine the two vectors r and F and get a torque
out of it. We want the magnitude of the torque to be rF sinγ as in d = 2
because the two vectors still lie in one plane, which could have been our old
d = 2 plane. But now we need to specify the orientation of this common
plane in d=3 to specify the direction of the torque. A natural choice is the
normal to the plane. But there are two possible orientations of the normal!
We break the tie by defining the torque to point in the direction in which
a screw will advance if turned from r to F. This completely defines the
torque vector τ . What we have arrived at is called the cross product of r
and F, written as

τ = r× F. (11.30)

In general C, the cross product of two vectors A and B,

C=A×B, (11.31)

points in the direction in which a screw would advance if you turned it
from A to B, and it has a magnitude

C=AB sinγ , (11.32)

where γ is the angle measured from A to B in their common plane, as
shown in the right half of Figure 11.4.

This rule for fixing the direction of the cross product is called the
right-hand rule for the following reason. If you grab the z-axis with your
right hand and your fingers curl around it fromA to B as shown by the big
arrow, the torque points along the thumb, or the positive z-axis. This is
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Figure 11.4 Left: The unit vectors i, j, and k shown for later use. We consider
the torque τ due to force F with respect to a point (the origin) from which it is
separated by r. The vectors F and (the continuation of) r (dotted line) define the
shaded plane in which angle γ is measured from r to F. The magnitude of τ is
assigned as in d= 2: τ = Fr sinγ . The vector τ = r× F, called the cross product
of r and F, is oriented perpendicular to the plane in the sense dictated by the
right-hand rule. Right: The cross product of A and B (whose common plane is
chosen to be the x− y plane for convenience) points in the direction a typical
screw would advance if turned from A to B, as indicated by the curved arrow
wrapping around the z-axis. It has a magnitude AB sinγ , where γ is the angle
measured from A to B. Instead of the screw rule, one can invoke the right-hand
rule: if the fingers of the right hand curl from A to B, the thumb points along the
cross product C.

why we homo sapiens can teach our children the cross product and lower
primates can’t.

Let us briefly digress to gain familiarity with the cross product.
Whereas the dot product of two vectors that yields a scalar is defined

in any number of dimensions, the cross product of two vectors that yields a
vector makes sense only in d= 3. This trick of using two vectors to define
a unique direction perpendicular to the plane they define works only in
d= 3. In d= 4, there will be two independent directions perpendicular to
the plane defined by any two vectors.
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Back to the cross product. If we reverse the order of the factors in the
cross product it changes sign:

B×A= −A×B (11.33)

because the screw will advance the opposite way in B×A, or equivalently,
γ will change sign. If we set A=B, then we find

A×A= −A×A= 0 (11.34)

in agreement with the result C =AB sinγ , which also yields 0 when γ =
0. Indeed, the cross product vanishes even if B is any scalar η times A:
the cross product of two parallel vectors is zero. This is good because the
parallel vectors do not define a plane.

Let us compute the cross product for the basis vectors depicted in the
left half of Figure 11.4. Consider i× j. It points along k by the right-hand
rule and has unit length because|i| · |j| sin π

2 = 1. Here is a table of the nine
possible cross products of the unit vectors:

i× i= j× j= k× k= 0 (11.35)

i× j= k= −j× i (11.36)

j× k= i= −k× j (11.37)

k× i= j= −i× k. (11.38)

Recall that we wrote the dot product in two equivalent ways:

A ·B=AB cos θ =AxBx +AyBy +AzBz. (11.39)

We now want to write the cross product in terms of components instead
of lengths and angles. We can guess the formula for A × B in terms of
components by placing them both in the x− y plane or choosing the x− y
plane so the two of them lie on it. If the vectors make angles γA and γB
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with the x-axis as shown in Figure 11.4, the cross product C has only a
z-component given by

Cz =AB sin(γB − γA) (11.40)

=AB(sinγB cosγA − cosγB sinγA) (11.41)

=A cosγA B sinγB −A sinγA B cosγB (11.42)

=AxBy −AyBx. (11.43)

It is not hard to guess and to verify that if the vectors had been in
some arbitrary plane so that C had all three components, the complete
answer would have been

Cx =AyBz −AzBy (11.44)

Cy =AzBx −AxBz (11.45)

Cz =AxBy −AyBx. (11.46)

Once you have one component, say Cz, you get the next by making the
cyclic change x→ y, y→ z, z→ x everywhere.

In this form it is clear that

(A+B)×C=A×C+B×C. (11.47)

For example, if F = (A + B) × C then for the x-component, following
Eqn. 11.44,

Fx = (Ay +By)Cz − (Az +Bz)Cy (11.48)

=AyCz +ByCz −AzCy −BzCy (11.49)

= (AyCz −AzCy)+ (ByCz −BzCy), which means (11.50)

F=A×C+B×C. (11.51)

Thus the cross product is distributive: the brackets can be opened out
as with ordinary products of numbers. The reverse is also true: like terms
can be grouped into brackets.

Now back to torque. Here are two applications of Eqn. 11.47.
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First we will show that if the total force FT on a body vanishes, and
the total torque τT is zero about one point, it will be zero about any other.
Suppose relative to one point we have

τT =
∑
i

ri × Fi = 0. (11.52)

(Notice that I have used 0 instead of 0 as is commonly done.) Switching to
another point located at r0 changes every ri into ri − r0:

τ
′
T =

∑
i

(ri − r0)× Fi = τT − r0 ×
∑
i

Fi = 0+ 0 (11.53)

where we have pulled out r0 from the sum over i using the distributive
nature of the cross product.

Next consider the torque on a body in a uniform gravitational field
g, which means simply that every mass m will experience a force mg.
Near the earth, g = −9.8 k ms−2, if the vertical direction is along the z-
axis. Assume the body is made of countable massesmi at positions ri. The
torque is

τ =
∑
i

ri ×mig (11.54)

=
[∑

i

miri

]
× g (11.55)

=MR× g (11.56)

where R is the CM. Thus the torque behaves as if all the mass M were
concentrated at the CM position R.

Now for the definition of angular momentum. Unlike

τ = Iα = I
dω
dt

= dL
dt

(11.57)
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in the planar case, we will now have a vector equation:

τ = dL
dt

. (11.58)

Evidently the angularmomentum L has to be a vector because τ is a vector.
In the plane we saw that

L= Iω =mr2ω =m(rω)r=mv⊥r (11.59)

for an object that is part of a rigid body and hence forced to go around
in a circle of radius r, with its velocity vector always perpendicular to the
position vector. What if the object in question is not part of a rigid body?
Then it could have a velocity that is not necessarily perpendicular to the
position vector. The rigid body case suggests we keep only the part of its
velocity perpendicular to r in the magnitude of L:

L=mv⊥r=mvr sinγ (11.60)

where γ is the angle between v and r. The sinγ gives us the clue for the
formula for the vector L in d= 3:

L= r× p. (11.61)

This cross product would also arise naturally if we were guided by math-
ematics and sought a way to combine r and p to form a vector. Of course
(−19) times this answer would also be a cross product, but the above-
mentioned choice of L has the essential feature that its time derivative is
the torque τ :

dL
dt

= d
[
r× p

]
dt

(11.62)

= dr
dt

× p+ r× dp
dt

(11.63)

= p
m

× p+ τ (11.64)

= 0+ τ . (11.65)
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These steps call for some explanation. By working with components you
may satisfy yourself that the derivative acts on the cross product r × p
just as it does on the ordinary product of two functions, provided we keep
the order of the two factors r and p the same. Next I have used the fact that
because the velocity andmomentum are parallel (related bym), their cross
product vanishes. The bottom line is that

τ = dL
dt

. (11.66)

In the case of a planar body that is made up of many point masses
in the plane indexed by i, each one of them has its own angular momen-
tum Li, each of which must be pointing out of the plane or into the plane:
because ri and pi both lie in the plane, their cross product points perpen-
dicular to that plane. That is why both torque and angular momentum
were treated as scalars and not as vectors. Once a vector is constrained to
lie up or down one axis, we can forget about the fact that it is a vector. We
just say it’s plus if it’s up and minus if it’s down.

In the case of a point mass that belonged to a rigid body, angular
momentum had to do with actual rotations around some axis. But the def-
inition L= r×p holds for any particle with linear momentum, even if it is
not going around in a circle, even if it is going in a straight line. Is this idea
consistent with the older one? Consider Figure 11.5. Suppose a piece from
the edge of a counterclockwise-rotating disk of radius r flies off from the
3 o’clock position and moves linearly along the tangential or y-direction.
Before the fragmentation it had

L1 =mv1r1⊥ = p1r1 = p1r. (11.67)

We believe it will maintain this L because there are no forces or torques
acting on it. Indeed it does: p1 = p2, because there are no forces and even
though r2 > r1, r2⊥ = r1⊥ = r, the radius of the disk.

So, every moving particle will have an angular momentum about any
given point, unless the line of its momentum vector goes through that
point. Thus, even if the particle had never been part of the disk but simply
traveled along the dotted line with a momentum p=p1 =p2, it would have
had the constant angular momentum L= r× p with respect to the origin.
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Figure 11.5 Angular momentum is defined by L= r× p whether or not the
particle is actually going around a point. The figure shows a point at the 3 o’clock
position at the rim of a rotating disk. It has an angular momentum L1 = r1 × p1.
Now it flies off along the tangent to the position r2 and has the angular momen-
tum L2 = r2 × p2. Because there are no forces or torques on it when it flies off, we
expect that L1 = L2. This is true: even though r2 > r1 in magnitude, the
component perpendicular to the momentum is unchanged and equal to the
radius r of the disk, while p1 = p2 for a free particle.

Consider now a collection of bodies. Each one obeys

dLi

dt
= τ i = τ ie +

∑
j

τ ij (11.68)

where τ ie is the torque on i due to external forces and τ ij the torque on it
due to force Fij exerted on it by particle j. If we sum the terms over i, we
get for the total angular momentum

dL
dt

= τ e +
∑
i,j

ri × Fij. (11.69)
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Suppose the total external torque τ e = 0. Then is dL
dt = 0? We can still use

Fij = −Fji but we have different factors of ri and rj that multiply the forces.
Let us first consider just two particles i= 1 and j= 2 and see why L is con-
served. (The argument applies unchanged with more particles.) Consider
the internal torques and use F21 = −F12:

r1 × F12 + r2 × F21 = (r1 − r2)× F12. (11.70)

It will vanish provided the cross product vanishes and that in turn is
assured if r1 − r2 and F12 are parallel, that is, the force between the bodies
points along the vector separating them. This is true for the case of gravita-
tion, as we have seen, and true for the electrostatic force as well. One could
argue on philosophical grounds that if i and j were the only two particles
in the universe, the only possible direction for their mutual force to point
along is their separation vector, unless the universe has some other intrinsi-
cally preferred direction.We believe it does not, and the conservation of L
follows from this isotropy of space. Of course, once there are other bodies
there is no reason the mutual force between any two could not be affected
by the others. But it seems that is not the case, at least in classical physics.
In other words, once we find how a pair of particles interact in isolation,
we do not need to modify that interaction in the presence of additional
particles: each pair continues to interact as before. This is another lucky
break for us.

11.6 The gyroscope
The gyro is one problem where the math rather than your intuition will
serve you better. Here is the gyro in Figure 11.6. Focus on the side view
of the gyro. The gyro is a massless rod, supported by the tower at one end
and attached to a cylinder of mass m at the other. The cylinder is free to
spin about its axis, but first assume that it is not spinning and that I am
propping up the cylinder with my finger. Now I let go. Everybody should
know what follows: the rod and gyro will start rotating clockwise in the
vertical plane about an axis perpendicular to the page. You don’t need to
take Physics 200 to know that. Let us make sure that agrees with τ = dL

dt .
The torque τ = r×mg has a magnitude τ =mgl and is directed into the
page by the right-hand rule. We should be very clear that when angular
momentum points into the paper, it doesn’t mean the gyro goes into the
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Figure 11.6 Top: The gyro resting on a tower, spinning with angular
momentum L as seen from the side at t= 0. The rotating cylinder has all the mass
and moment of inertia. Gravity exerts a downward force and a corresponding
torque going into the page. Bottom: The view from the top at times ∓ 1

2dt. The
bold arrows indicate the direction of rotation of the cylinder as seen from the
top. The gyro has acquired a dL= τdt perpendicular to L. The horizontal vector
L(0)= L is not shown to prevent cluttering. The angles are exaggerated in the
figure for clarity. To first order in the infinitesimals |L± 1

2dL|2 = L2 because
L · dL= 0. Thus L simply gets rotated by an angle dφ = dL

L in time dt.

paper. It just means the axis around which the gyro rotates is pointing into
the paper.

This is it, if we have a gyro and it does not occur to us to spin the
cylinder.

So let us spin it. Now it’s a different ballgame. The gyro has an initial
angular momentum. Which way is it pointing? That’s the first thing you
have to understand. Every part of the cylinder is spinning, and the angular
momentum of every part—if you do the r× p—will point radially out, in
the direction of the total L as shown.

Let us look at the impact of the gravitational torque over a time
dt symmetrically chosen around t = 0. The top view shows the gyro at
t=∓ 1

2dt. The angular momentum change dL=τdt is going into the paper
in the side view and pointing straight up in the top view. The angular
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momenta at t = − 1
2dt, 0, and

1
2dt all have the same length to first order

in the infinitesimals:

|L± 1
2
dL|2 = L2 ± L · dL+ 1

4
|dL|2 � L2 (11.71)

because L · dL= 0. As usual we drop the last term |dL|2 ∝ dt2 because it is
a quadratic infinitesimal.

That’s why the gyro doesn’t fall even though it acquires a dL. For
a static rod, getting an angular momentum going into the paper really
means swinging down. But if a rotating gyro has an angular momentum
to begin with, and we add on a perpendicular change, the new angular
momentum is just a rotated version of the old angular momentum. So,
when seen from the top, the gyro will be executing what’s called precession.
The gyro itself will just slowly go round and round with one end resting
on top of the tower.

Does this remind you of the satellite going around the earth versus
the dropped apple? Both accelerate toward the earth. In the case of the
apple, the gravitational acceleration produces a downward velocity that
adds to zero initial downward velocity, and the apple simply picks up
speed toward the earth. A satellite, on the other hand, has a large veloc-
ity in the tangential direction to begin with, and adding a tiny radial bit
only changes its direction as it moves to a different part of its circular orbit
a little bit later.

Same thing with the gyro. It gets the same change in angular momen-
tum dL whether or not the cylinder is spinning. But in one case, you add
dL to zero and conclude it’s going to swing down; in the other case, you
add dL to a non-zero L and conclude that L will rotate.

Let us calculate �p, the frequency of precession. Look at the lower
half of the figure, the view from the top. In a time dt, the dL vector grows
to a length τdt and L itself rotates by dφ. Applying the formula for the arc
length ds= rdφ to the triangle made of L− dL/2, dL and L+ dL/2,

τdt= Ldφ, which means (11.72)

�p = dφ
dt

= τ

L
= mgl

ICMω
(11.73)

where ICM = 1
2mR2 for the rotating cylinder. (You may worry that dL is a

chord and not an arc, but this difference vanishes when dL→ 0.)



chapter 12

Special Relativity I:
The Lorentz Transformation

Although the general public associates the theory of relativity with Ein-
stein’s monumental work of 1905, it is actually a lot older, going back to
Galileo and Newton. According to the relativity principle, two observers
in uniform relative motion will deduce the same laws of physics. That view
of relativity has remained unchanged even after Einstein. However, in the
Galilean version, the laws considered were those of mechanics, which was
pretty much everything in those days. In the nineteenth century, it began
to look as if the laws of electromagnetism and light did not respect the rel-
ativity principle. Einstein then rescued the principle, but he threw many
cherished Newtonian ideas of space and time under the bus in the bargain.
His 1905 work is referred to as the special theory of relativity, in contrast
to his general theory, which came out in 1915. It was a theory of gravi-
tation, and it is universally considered one of the greatest feats of human
imagination and invention.

We will limit ourselves to special relativity, once again working with
theminimumnumber of spatial dimensions, which happens to be just one.
Time, which was once viewed as an absolute parameter, will turn out to be
an additional dimension, in a sense to be made precise later.

194
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12.1 Galilean and Newtonian relativity
The standard pedagogical technique for explaining relativity is in terms
of some high-speed trains. Imagine two such (infinite) trains parked in
parallel tracks in the station, along the x-axis. You board one train and see
the other at rest. All the blinds are now closed; you are not to look outside
yet. You settle down and explore the world around you. You pour yourself
a drink, you play pool, you juggle some tennis balls, you play with your
mass-spring system, and so on, and you develop a certain awareness and
understanding of the mechanical world. Then you go to sleep. While you
are sleeping, one of two things happens: either your train is left alone or
some unseen hand gives your train a velocity of 200 miles per hour. The
question is, when you wake up, can you tell which of the two things has
happened without looking outside? Will anything inside this train betray
that velocity? Now, you might say, “I know I am not moving because the
sign up there says Amtrak.” That is a kind of sociological reason, not a
physics reason based on experiments. The claim of relativity is that you
just will not know if you are moving or not. However, if the train picks up
speed or slows down, you will know right away. If it picks up speed, you
find yourself pushed against the back of the seat; if the driver slams on the
brake, you will slam into the seat in front of you. So accelerated motion
can be detected in a closed train without looking outside. The question is
whether uniform velocity can produce detectable changes inside the closed
train. The answer is no, according to relativity.

There is an equivalent way to say that everything looks the same
when you wake up: Newton’s laws continue to be valid in themoving train.
If Newton’s laws are valid, everything mechanical will look the same. Our
expectations of what happens when, say, two billiard balls collide, or a
mass and spring system oscillates, are all based on Newton’s laws. So the
claim is that Newton’s laws will be unchanged when this uniform velocity
is imparted to you.

Recall that if Newton’s laws worked for you, you are called an iner-
tial observer, and your frame of reference is called an inertial frame. Not
all observers or frames are inertial. For example, F = ma won’t be true
in an accelerating train: You leave things on the floor and they will slide
backward. So with no apparent force acting on them, things will begin to
accelerate. That’s why an accelerating train is a non-inertial frame. We are
not interested in that situation. So assume you started out in the station
as an observer for whom the laws of Newton hold. The claim is they will
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hold when you wake up, even if in the meantime you have been given a
uniform velocity.

Remember the train standing next to yours in the beginning. Sup-
pose when you wake up, you open the blinds and see the other train
moving at 200 miles per hour. That there is motion between you and the
other train is an undeniable, experimental fact. The question is, can you
tell if your train is responsible for this relative motion? Maybe nothing
happened to you and the other train is moving the opposite way at 200
miles per hour? The relativity principle states that you really cannot tell.
You can only tell that there is relative motion between the two trains that
was not there before, but not “who is really moving.”

This means that if you observe relative motion between you and the
other inertial observer, you have every right to insist that you are not mov-
ing and the other observer is moving the opposite way and vice versa. But
I repeat: You can make this argument only for uniform relative motion. If
your train is accelerating, you cannot say “I’m not accelerating; the other
train is accelerating in the other direction,” because you are the one who is
slamming your head on the seat in front of you, and nothing is happening
to the other person. Or if you are in a rocket that is taking off and the G
forces are enormous, you are in danger, not everyone on earth.

Now, back to the train. Suppose you look outside the window on the
other side, and you see some cows going 200 miles per hour. Now what? I
know you are thinking it must be the train traveling at 200 miles per hour.
That conclusion is again based on non-physics notions. You are forget-
ting that it is logically possible that somebody put the whole landscape on
wheels when you went to sleep, making the cows outside the train appear
to move the opposite way. It is not likely that someone would go to such
lengths just to fool you, but if they did, you would not know.

That’s why in these thought experiments we don’t like to open the
window and look at the landscape, because then we have a bias. We will
just look at the other train. Then, when you detect relative motion, you
really cannot tell who is actually moving. This is clearer if, instead of two
trains, you have two spaceships in outer space in relative motion and no
other background.

12.2 Proof of Galilean relativity
I will now show that the laws of mechanics that you will deduce after wak-
ing up will be the same, namely Newtonian, even if you have acquired
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a uniform velocity while you slept. This will explain once and for all why
everythingmechanical will look the samewhen you wake up. First we need
to do some groundwork.

We begin with the notion of an event. An event is something that
happens at a certain place at a certain time. For example, if a firecracker
goes off somewhere at some time, the x is where it happened and the t is
when it happened. So (x, t) are coordinates in spacetime. Once again space-
time does not require Einstein’s involvement at all. Even cave dwellers
organizing a party knew that you have to say where (next to the dead
T-rex) and you have to say when (at sunset). The fact that you need x
and t, or, if you’re living in three spatial dimensions, the fact that you need
x, y, z, and t is not new. What is new will be clear soon.

Figure 12.1 shows two frames of reference, with their x-axes aligned.
All the action is along the x-axis. We draw a perpendicular y-axis for ped-
agogical reasons, but we rarely deal with the y coordinate. I am in frame S
and you are in frame S′.

Actually S is not just me sitting at the origin, x=0: I am part of a huge
team of people who are at rest relative to me. I have my agents all over the
x-axis; they are my eyes and ears. If there’s a firecracker exploding to the
right, my guys will tell me, even if I am not personally there. So when I
say I see something, I really mean my buddies and I, all traveling in the
same train at the same speed, spread all over space, taking notes on what’s
happening. We may have to pool our information later, but we will know

Figure 12.1 The same event (solid dot) is assigned coordinates (x, t) by me (S)
and (x′, t′) by you (S’). In the pre-Einstein days t= t′ not only initially (when our
origins crossed and clocks were synchronized) but always. At time t, your origin
is to the right of mine by an amount ut. So the firecracker going off at location x
at time t according to me happens at x′ = x− ut according to you.
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this explosion took place at (x, t). In short, it takes a village to measure the
spacetime coordinates of events. And you, sitting at your origin x′ =0, also
have your own village of informers in S′.

Now, imagine you are sliding to the right according to me at a uni-
form velocity u. You start out to my left; you pass me; and then a little later
you are somewhere to the right. We arrange it so that when you pass me,
that is, when our origins cross, you set your clock to zero and I set my clock
to zero. So here’s an event: You and I crossed.What are the coordinates for
that event? According to me, that event occurred at my origin x= 0, and
the time was chosen to be t=0. According to you, because your origin was
also on top of my origin, x′ = 0 as well. In Newtonian mechanics there is
one time for all of us, and it was chosen to be 0 when our origins crossed.
We made the coordinate of the event, our crossing, (0, 0) for both you and
me.

Now for a second event: a firecracker going off, shown by a black dot
in Figure 12.1. I assign to it coordinates (x, t).

What do I expect you to say? You measure the distance from your
origin, and you call this point x′; the time is still t′ = t. What’s the relation
of x′ to x? Well, this event took place at time t, so I know that your origin
is off to the right by u times t. So the distance from your origin for this
event, I maintain, is x′ = x− ut. In summary we have

x′ = x− ut (12.1)

t′ = t. (12.2)

Henceforth we will denote the common time by t. This is called the
Galilean transformation of coordinates in honor of the man who played
a major role in articulating the principle of relativity.

Eqn. 12.1 may be inverted to express my x in terms of your x′:

x= x′ + ut. (12.3)

So far x and t have been unrelated, and they could be chosen inde-
pendently. At any time t, the coordinates of an event x can have any value.
Let us now imagine that I am using (x, t) to describe a moving particle, say
a bullet, and that x(t) is its location at time t according to me. Likewise
x′(t) is its location according to you at the same common time t′ = t. By
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the previous logic, the functions x(t) and x′(t) also differ by ut:

x′(t)= x(t)− ut. (12.4)

Let v= dx
dt be its velocity according to me. Then w, the velocity according

to you, follows from differentiating Eqn. 12.1 with respect to t and bearing
in mind that u is a constant:

w= dx′

dt
= dx

dt
− u= v− u. (12.5)

This is how velocities transform in Galilean relativity. This agrees with
common sense and our day-to-day experience. For example, if I say the
bullet is going at v= 600 mph, and you are going to the right in your train
at u= 200 mph, you should measure the bullet speed to be reduced by 200
mph, and you should find thatw=600−200=400mph. Taking onemore
derivative of Eqn. 12.1, we find for the acceleration of the moving object

a′(t)= d2x′

dt2
= d2x

dt2
= a(t) (12.6)

because u is a constant. That means you and I agree on the acceleration of
the body. We disagree on where the body is. We disagree on how fast the
body is moving. But we agree on the acceleration of the body, because in
going fromme to you all we do is add a constant to all velocities. Therefore,
if according to you the velocity of the body is constant, according to me
the velocity of the body is also a constant, but a different constant. Or, if the
body has an acceleration, we’ll both get the same acceleration. This fact is
key to determining the fate of Newton’s law when we change frames.

Imagine that I study, in my inertial frame, two bodies with coordi-
nates x1 and x2, which exert a force that depends on the distance between
them, say F(x1 − x2) = A/|x1 − x2|, where A is some constant with units
Newton-meters. The masses obey

m1
d2x1
dt2

= A
|x1 − x2| (12.7)

m2
d2x2
dt2

= − A
|x1 − x2| , (12.8)
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where F12 = −F21 in accordance with the third law. We have already seen
that we can replace my accelerations on the left-hand side by your primed
ones. But we can also replace my coordinate differences on the right by
your primed ones because this is implied by x′

1 = x1 − ut and x′
2 = x2 − ut:

|x′
1 − x′

2| = |(x1 − ut)− (x2 − ut)| = |x1 − x2|. (12.9)

Thus my Eqns. 12.7 and 12.8 imply identical equations for you, in S′:

m1
d2x′

1

dt2
= A

|x′
1 − x′

2|
(12.10)

m2
d2x′

2

dt2
= − A

|x′
1 − x′

2|
. (12.11)

It should be clear that this argument is quite general. You should try to
apply it to a mass-spring system seen in the two frames, using the fact that
the extension or compression of the spring is the same for both observers.

So this is the trick. Newton’s laws work in my inertial frame, S; my
unprimed coordinates obey them. I can then use the Galilean transforma-
tion to show that you, in S′, will find that your primed ones will obey them
as well.

We can also say it differently. If you wake up from your nap in a
moving train and examine the world around you, you are going to get the
same Newtonian laws as before. This can be proven by a person on the
ground using the previous argument with you as the observer S′.

This is the way one can prove the principle of relativity in Newtonian
mechanics.

Finally, suppose that the relative velocity u is not constant. Then the
accelerations will not agree because a′ = a− du

dt and F=ma will fail in the
accelerating frame. The person will see objects accelerating without any
force acting on them and know she is non-inertial.

12.3 Enter Einstein
We now fast forward about three hundred years. By this time André-
Marie Ampère, Michael Faraday, Carl Gauss, and others had discovered
the basic equations of electricity and magnetism. James Clerk Maxwell
condensed these findings into his compact “Maxwell’s equations” and, by
modifying one of them to achieve mathematical and physical consistency,
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predicted electromagnetic waves. The wave velocity that Maxwell calcu-
lated, 3 · 108m/s, was widely known at that time to be the velocity of light,
c. It was then correctly concluded that light must just be an electromag-
netic wave. And the question was, for which observer is this c= 3 · 108m/s
going to be the velocity of light?

Let me elaborate. Later we will calculate the velocity of waves on a
string clamped at two ends as a function of the tension on the string and
the mass density. That’s the velocity as seen by a person in the lab, one for
whom the string is at rest except for its tiny transverse vibrations. Likewise,
if you calculate the speed of sound in a room, that speed is with respect to
the air in that room, because sound waves travel in air. In general, the cal-
culated velocity of a wave will be with respect to the medium that supports
it. An observer moving relative to the medium will measure a different
velocity.

So it was naturally assumed that the speed c calculated by Maxwell
was for an observer at rest with respect to the ether, the medium that
was postulated to carry electromagnetic waves, the way air carries sound
waves. People wanted to know more about this ether. First of all, the ether
must be everywhere because we can see the sun, and we can see the stars.
Then you can ask, how dense is the ether? Usually the denser the medium,
the more rapidly signals travel. For example, sound travels much faster in
a very dense material like iron than in air. So the ether would have to be
very, very dense. And yet it allows celestial bodies to move through it for
years and years without slowing down. It’s a very peculiar medium. And
the question is, how fast are we moving relative to this medium?

In 1887 Albert Michelson and Edward Morley did the experiment
to find out. Suppose their lab was moving a speed v relative to ether at
the instant of measurement. They should find the speed of light to be
c− v. They got a speed of exactly c! Perhaps at the very moment Michel-
son and Morley performed their experiment, their lab just happened to
be at rest with respect to the omnipresent ether. Fine. But we know that
this has to change in 12 hours, when the lab’s velocity due to the earth’s
rotation is reversed, and in 6 months, when the velocity around the sun is
reversed. You cannot be at rest with respect to the ether at all these times,
and you cannot get the same answer of c all the time. Yet that is exactly
what happens when you perform the experiment!

So people tried other solutions. Consider the speed of sound,
760 miles per hour. Why doesn’t that change from day to day as the earth
rotates around its own axis and around the sun? How can you and I talk
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to each other, oblivious of these high speeds? The reason, of course, is that
the earth carries the air with it as it spins around itself and around the sun.
So if you can carry the medium with you, then it doesn’t matter how fast
you’re moving. When we fly, we carry the air with us in the plane, and
sound travels at the same speed inside the moving plane as in a static one.
When I ask for a pillow, it takes the flight attendant the same duration of
time to pretend he did not hear me, independent of the speed of the plane.
So, people tried to argue that the earth carries the ether with it, the same
way it carries the air with it. But it’s very easy to show, by looking at dis-
tant stars, that this cannot be true. I don’t have room here to tell you more.
(Read up on aberration of starlight if you want.) You cannot take the ether
with you, and you cannot leave it behind; that was the impasse.

The velocity of light posed quite a problem. Let us pause to absorb
that. Imagine a bullet going to the right at a certain speed v. You move
to the right at some speed, say 1

2v. I expect you to measure the speed of
the bullet to be 1

2v. But if this were a light beam and not a bullet, you are
supposed to get the value v= c nomatter what your speed was. You go at a
speed 3c

4 along the beam, and you still measure the value of c. None of the
models of ether or materials could explain this.

At this point Einstein entered the scene, and he explained the baffling
behavior of light as follows. Recall that in Galilean relativity, an inertial
observer who goes to sleep in a train parked at the station cannot tell, upon
waking up, if the train has acquired a uniform velocity. But if the velocity
of light depended on how fast the train was moving, then by comparing
the velocity of light before and after the nap, the observer could deduce
the speed of the train without looking outside. Because motion at uniform
velocity produced detectable changes, without any reference to the out-
side world, it was not relative but absolute. Even though mechanical laws
remained the same in a moving train, laws of electricity and magnetism
would betray its velocity.

But, of course, this is not what happens, and the speed of light does
not change with the speed of the train. This means electric and magnetic
phenomena are part of the natural conspiracy to hide our uniform veloc-
ity. Just as mechanical phenomena won’t tell us how fast we’re moving
without looking outside, neither will electromagnetic phenomena.

To Einstein it was obvious that nature would not design a system in
which mechanical laws are the same in a moving frame, but laws of elec-
tromagnetism are different. So he postulated that all phenomena, whatever
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their nature, will be unaffected by going to a frame at constant veloc-
ity relative to the initial one. That was a very bold postulate, because it
even applies to biological phenomena, which were not his specialty. But
he believed that either all natural phenomena would follow the principle
of relativity, or none would.

Einstein had a faith that underlying laws of nature would have a
certain uniformity across all natural phenomena. It’s not a religious issue—
otherwise I wouldn’t bring it up in the classroom—but it is certainly the
credo of all scientists, at least all physicists, that there is some elegance
and consistency in the laws of nature. Even though they may not believe
in design by any personal god, they do believe in this underlying, rational
system that we are trying to uncover. This belief has been reinforced over
and over again.

12.4 The postulates
Here are the two great postulates of Einstein’s special relativity.

Postulate I. All inertial observers are equivalent.
Postulate II. The velocity of light is independent of the state of motion of
the source and the observer.

In postulate I, “equivalent” means each inertial observer is as privi-
leged as any other to discover the laws of nature. If I find some laws, and
you’re moving relative to me at uniform velocity, you’ll find the same laws.
And if you and I find each other in relative motion, you have as much
right to claim you are at rest and I am moving as I have to claim that
I am at rest and you are moving. There is complete symmetry between
observers in uniform relative motion. There is no symmetry between peo-
ple in non-uniform motion. As I said, non-uniform motion creates effects
that can destroy me and not destroy you. So, no one’s trying to talk his
way out of acceleration, whereas you can talk your way out of uniform
velocity. That’s the first postulate. This was understood even in the time of
Newton. What is new now is that all inertial observers are equivalent with
respect to all natural phenomena, including the electromagnetic, and not
just mechanical phenomena.

As per postulate II, if a light beam is emitted by a moving rocket, it
doesn’t matter: it travels at c. If a light beam is seen by a moving rocket, it
doesn’t matter: it will measure c. All people will get the same answer for
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the velocity of light. It is a postulate because it cannot be deduced from
anything else.

It looks as if Einstein has solved the problem by saying that light
behaves this way because it is part of the big conspiracy to hide uniform
motion. But you will see that he has made an expensive bargain trying to
save relativity. His postulates will be seen to force him and us to give up
many cherished notions of Newtonian physics. Think about why. Say a car
is going 200 miles per hour according to me. You get into your own car
and follow that car at 50 miles per hour. I expect you to measure its speed
to be 150 miles per hour. But what if you also got 200 miles per hour?
Now, this is not what happens for cars traveling at the speeds I mentioned,
but that is exactly what happens if the car is replaced by a pulse of light.
You must agree that is really incompatible with our daily notions and the
formula w = v − u. When you put v = c, somehow w has got to come
out to be c and not c − u. Because that does not happen in the Galilean
transformation, it has to go.

12.5 The Lorentz transformation
We are led to seek a new rule or transformation connecting (x, t) and
(x′, t′), such that when the velocity of light is computed, we get the same
answer of c in both frames. Here is a clue to how things will work out. Sup-
pose I send a pulse to the right at speed c, and you are going to the right
at 3c

4 . My Newtonian expectation is that you should measure the speed of
the pulse as c

4 . But you insist it is c. What will I say to you? Because you are
finding velocity of the pulse as the distance traveled divided by the time
taken and you are getting four times the answer I expected, I will say your
“meter” sticks are somehow shorter than a meter. Specifically, I would say
they have shrunk to one-fourth their original size (when we were at rel-
ative rest), resulting in your measurement of a velocity four times what I
expected.

But there’s another possibility. Your clocks, which used to be iden-
tical to mine when we were at relative rest, may be running slow. So you
let the light travel for four seconds and thought it was only one second.
That’s why you measured a velocity four times bigger than what I expect.
Ormaybe both your meter sticks and clocks are messed up. But something
has to give, and so in searching for the replacement to the Galilean trans-
formation of coordinates Eqns. 12.1 and 12.2, we will no longer assume
length and time intervals are the same for both observers.
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Consequently, the spatial coordinate of the event I labeled (x, t) will
not be x′ = x− ut according to you, but

x′ = γ (x− ut) (12.12)

where γ is the fudge factor to convert lengths from me to you. Similarly,
I modify your expectation that x= x′ + ut′ (we admit the possibility that
t′ �= t) to read

x= γ (x′ + ut′) (12.13)

where the fudge factor γ is the same from me to you and vice versa, because
otherwise we would not be equivalent, and one of us would be holding the
shortened “meter” stick. Since u→ −u when we change from me to you,
we expect γ to be a function of u2. We proceed to nail down γ as follows.

Suppose we sent off a light pulse when our origins coincided, and
this pulse set off the firecracker at (x, t) according me and (x′, t′) according
to you. Because the light pulse took t seconds to travel xmeters according
to me and took t′ seconds to go x′ meters according to you, and we both
agree on the value of c, it must be true for this particular event that

x= ct and x′ = ct′. (12.14)

Let us multiply the left-hand side of Eqn. 12.12 by the left-hand side
of 12.13 and equate the result to the product of the right-hand sides to
obtain

xx′ = γ 2(xx′ + xut′ − x′ut− u2tt′). (12.15)

Upon setting x= ct, x′ = ct′ we find

c2tt′ = γ 2(c2tt′ + uctt′ − uct′t− u2tt′) (12.16)

1= γ 2
(
1− u2

c2

)
(12.17)

γ = 1√
1− u2

c2

. (12.18)
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Note that once we have found the length conversion factor γ it does
not matter that we deduced it from this specific event involving a light
pulse. It can be applied to Eqns. 12.12 and 12.13 valid for a generic event.
Putting γ back into Eqn. 12.12 we obtain

x′ = x− ut√
1− u2

c2

. (12.19)

We now go to x= γ (x′ + ut′), Eqn. 12.13, isolate t′ and express it entirely
in terms of x and t as follows:

t′ = 1
u

(
x
γ

− x′
)

= 1
u

(
x
γ

− γ (x− ut)
)

= γ

u

(
x
γ 2

− (x− ut)
)

= γ

u

(
x(1− u2

c2
)− (x− ut)

)

= t− ux
c2√

1− u2/c2
. (12.20)

To summarize, imagine I am (in frame) S and you are (in frame) S′,
and you are moving to the right (increasing x direction) at speed u. Let
my coordinates for an event be (x, t) and let your coordinates for the same
event be (x′, t′). The Lorentz transformation tells us that

x′ = x− ut√
1− u2/c2

(12.21)

t′ = t− u
c2
x√

1− u2/c2
. (12.22)

Observe that the Lorentz transformation reduces to the Galilean
transformation if the velocity between you and me is much smaller than
the velocity of light, that is, u

c << 1. So the relativistic formula really kicks
in only for velocities comparable to the velocity of light.
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Youmust clearly understand what the formula is connecting. Things
are happening in space and in time, right? Say something happens here.
That something has a spatial coordinate and a time coordinate, according
to two observers who originally had their origins and their clocks coin-
cide when they passed. And one is moving to the right at speed u. Then
the claim is that if the event had coordinates (x, t) for one person, for the
other person moving to the right at speed u, the same event would have
coordinates (x′, t′), related to (x, t) as above.

Now we can see why Einstein gets the credit for making the world
four-dimensional. After all, the four coordinates x, y, z, and t were present
before he came along. But t′ was always equal to t in the old days, no
matter how you moved. In Einstein’s theory, x, y, z, and t get scrambled
into primed variables. Here is an analogy. Imagine creatures restricted to
the x − y plane. When they rotate axes, x and y get scrambled into each
other. Now, there is a third dimension perpendicular to these two, labeled
by z, but if all their rotations are limited to the x − y plane, z will never
mix with x and y, and z′ = z before and after rotation. This is what makes
their world two-dimensional. If you now permit these creatures to rotate
out of the x − y plane, then z will indeed begin to mix with x and y, by
tiny imperceptible amounts for small tilts (and they may not realize that
z is just another coordinate) and sizable ones for larger tilts where z gets
seriously mixed up with x and y. In our problem u

c is the tilt in space-
time. When our experiments were limited to u

c << 1, we thought t was an
invariant, the same for all observers. Einstein then showed us the complete
picture.

You can already see that the theory will not admit velocities bigger
than the velocity of light because the square root

√
1− u2/c2 then becomes

imaginary. So the one single velocity that we wanted to be the same for
everybody is also the greatest possible velocity, and no observer can move
with respect to another at a speed that is equal to or in excess of the speed
of light.

The fact that an event has different coordinates in different sys-
tems doesn’t mean the laws deduced are different. For example, suppose
I’m on the ground and I throw a piece of chalk; it goes straight up and
comes straight down. If you see me from a moving train, you would think
it went up and down but along a parabola. No one says the chalk will
also go up and down for you, only that its motion will still obey New-
ton’s laws. That’s all you really mean by saying things look the same in
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both inertial frames. Even though Einstein’s theory upheld the princi-
ple of relativity, it discarded Newton’s laws. They had to be modified at
velocities comparable to c. However, relativity assures us that the same
modified laws will be deduced by two observers in uniform relative
motion.



chapter 13

Special Relativity II:
Some Consequences

13.1 Summary of the Lorentz transformation
Let us begin with the Lorentz transformation, which relates the coordi-
nates of an event in two different frames of reference, with the primed one
moving at a velocity u relative to the unprimed one:

x′ = x− ut√
1− u2/c2

(13.1)

t′ = t− u
c2
x√

1− u2/c2
. (13.2)

The Lorentz transformation is the cornerstone of relativity; all the
funny stuff you hear about—the shrinking rods, the twin paradox—
everything comes from these simple equations, derived without even
calculus. If you consider the stresses and strains on a loaded steel beam,
the mathematics involved is a whole lot more difficult. That is the remark-
able thing about relativity. In extracting the bizarre consequences of these
equations, Einstein showed as much courage as brilliance. If you derived
these equations, you own them and have no choice but to deduce and
defend the consequences.

Now, some of you might be rattled by Eqns. 13.1 and 13.2; it’s not
clear what is being stated. Let me explain. The velocity u is a fixed number.

209
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That’s your speed relative tomine. I see some event happening, and I give it
a pair of numbers, (x, t). You give the same event another pair of numbers,
(x′, t′), and they are related by the Lorentz transformation.

Here is the analogy. Consider the x − y plane with a point P as in
Figure 13.1. I assign to it a pair of numbers, (x, y). Now, you have a dif-
ferent coordinate system, rotated relative to mine by some angle θ . Our
coordinates are related as follows

x′ = x cos θ + y sin θ (13.3)

y′ = −x sin θ + y cos θ . (13.4)

The angle θ is the analog of the velocity u. If θ = 0, you and I agree
completely. In general, you plug in my (x, y) into these equations and get
your (x′, y′). Let’s take θ = π

4 . In that case,

x′ = (x+ y)√
2

and y′ = (−x+ y)√
2

. (13.5)

So, for every angle, the cosine and sine will reduce to some numbers; both
happen to be 1/

√
2 here. For example, if (x, y) is (1,1), and your axis is

obtained from mine by a counterclockwise rotation of 45o, my (1, 1) lies
right on your x′ axis. So, I expect you to say y′ = 0, and this is indeed so.
And how about x′? It becomes (1+1)/

√
2=√

2, the length of the position
vector, which is entirely along the x′ direction.

Figure 13.1 The same point P (solid dot) is assigned coordinates (x, y) by me
and (x′, y′) by you. The pairs of coordinates are linearly related. The dotted lines
indicate the sizes of the coordinates in the two frames.
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The Lorentz transformation is very similar. For example, the first
equation can be written as

x′ =
[

1√
1− u2/c2

]
x−

[
u√

1− u2/c2

]
t (13.6)

so that

1√
1− u2/c2

and
u√

1− u2/c2
(13.7)

are the analogs of cos θ and sin θ . The same goes for the second equation
involving t′. For a given u, these are just numbers depending on u, and
(x′, t′) is a linear combination of (x, t). But I should warn you that the coef-
ficients in square brackets are not cosine or sine of anything, because if
they were, their squares should add up to 1, and they don’t. It is, however,
still a linear homogeneous transformation. Linear means the new coordi-
nates (x′, t′) are related to the first powers of the old coordinates (x, t). They
don’t involve t2 or x3 and so forth. Homogeneous means that only the first
power is present. This ensures that if (x, t)= (0, 0), then (x′, t′)= (0, 0) as
well.

Suppose you wish to invert these equations and write (x, t) in terms
of (x′, t′). There are two options open for you. One is to say these are simul-
taneous equations. You have to find a way to solve for (x, t) in terms of
(x′, t′) and all these funny coefficients involving u. You treat them all as
constants and juggle them around, multiply by this, divide by that, and
so on, to isolate x and t in terms of (x′, t′). But you shouldn’t do that
because you know what the answer should be, namely, the old Lorentz
transformation with the velocity reversed:

x= x′ + ut′√
1− u2/c2

(13.8)

t= t′ + u
c2 x

′√
1− u2/c2

. (13.9)

(For rotations, you can express (x, y) in terms of (x′, y′) by reversing
θ in Eqns. 14.4 and 14.5.)
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A crucial step in getting some mileage out of the Lorentz transfor-
mation is to take a pair of events. Let event 1 have coordinates (x1, t1)
according to me, (x′

1, t
′
1) according to you, and similarly for event 2. If

you write the Lorentz transformation for the two events and subtract the
primed coordinates of 1 from those of 2 you will find

�x′ = �x− u�t√
1− u2/c2

(13.10)

�t′ = �t− u
c2

�x√
1− u2/c2

(13.11)

where �x= x2 − x1 et cetera. Note that the differences are not necessarily
small.

The differences in coordinates also obey the same Lorentz transfor-
mation as the coordinates, thanks to the linearity of the Lorentz transfor-
mation. If you want the differences that I get in terms of yours, you just
have to reverse the sign of u:

�x= �x′ + u�t′√
1− u2/c2

(13.12)

�t= �t′ + u
c2

�x′√
1− u2/c2

. (13.13)

13.2 The velocity transformation law
The two events chosen above were unrelated. Now consider them to be
related as follows:

• Event 1: I fire a gun.
• Event 2: The bullet hits the wall and gets embedded.

The bullet moves by an amount �x in time �t according to me, and
by �x′ in time �t′ according to you.
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Let us agree on the following notation for velocities once and for all:

v= �x
�t

velocity of any object according to me (13.14)

w= �x′

�t′
velocity of any object according to you (13.15)

u= your velocity relative to me, (13.16)

where all �’s should of course be infinitesimals approaching 0 as we are
talking about instantaneous velocities. Suppose I say the bullet has velocity
v. To find the velocity w according to you, we take the ratio of Eqns. 13.10
and 13.11:

�x′

�t′
= �x− u�t

�t− u
c2�x

=
�x
�t − u

1− u
c2

�x
�t

→ v− u
1− uv

c2
=w (13.17)

where, in the end, we have let all the difference go to 0. For small velocities
(dropping the terms that go as 1/c2) we get results agreeing with common
sense. Equation 13.17 is the relativistic velocity transformation law .

Let us get used to going from your description to mine. Suppose you
think a particle has velocityw. What will I think? Nowwe use Eqns. 13.12–
13.13. Taking the ratios as before and recalling the definition of w we get

v= w+ u
1+ vw

c2
, (13.18)

which amounts to changing the sign of u, and exchanging w and v in
Eqn. 13.17. This velocity transformation law is what makes it possible to
have an upper limit on velocity. If velocities added as in the old days, there
can be no upper limit. If I tell you that according to relativity, nothing
can go faster than the speed of light, you might try to beat the system as
follows. You might ask if there can be a gun whose bullets go at three-
fourths the velocity of light? I would say yes, and you would then ask,
“How about a train that goes at 3c

4 ?” I would say that seems to be allowed.
Then you can say, “Let me get into this train at 3c

4 and fire a bullet at 3c
4 ;

then, from the ground, it should appear to be going at 1.5c.” Well, that’s
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the naive pre-relativistic expectation. But if you put w= 3c
4 and u= 3c

4 into
the correct formula Eqn. 13.18, you get the correct answer to be

v=
3c
4 + 3c

4

1+ 9
16

= 24
25

c. (13.19)

If I apply this to a light pulse seen by you (w= c), the speed I will find is

v= c+ u
1+ u/c

= c. (13.20)

13.3 Relativity of simultaneity
We used to think simultaneity was absolute. If two events occurring in Los
Angeles and New York are simultaneous for me, fixed on the planet, then
for you, flying in a rocket, they should be simultaneous. How can they not
be? If two things are happening right now in different places for me, the
same has to be true for you. But it’s not, as a consequence of the Lorentz
transformation.

Before I explain that, I must point out that there is one case when
simultaneity is absolute. If the two events occurred at the same time and
the same place,�x=0,�t=0, then the transformation will tell you�x′ =
0,�t′ = 0. If I clapped my hands, my two hands were at the same place
at the same time. If someone says my hands were not at the same place
at the same time, she is saying I didn’t clap. Relativity may change the
coordinates of an event as we change observers, but it will not deny the
very event.

Now for the general case of the relativity of simultaneity. You, S′,
are in the train, as shown in the upper half of Figure 13.2. To make
two things happen simultaneously at the two ends of the train, you go
to the middle of the train and send two flashes of light that go to the
back (B) and front (F) of the train and set up two explosions. Because
you’re in the middle of the train, you know the explosions will be simul-
taneous for you. Now, I see you from the ground. What do I see? The
front F of the train is moving away from the light pulse, while the back B
is rushing to meet the light pulse. Now, the velocity of light is the same
for everybody and independent of the velocity of the source. If the back
end is rushing to meet the light pulse and the front end is running away
from the light pulse, I know the explosion at the back of the train occurs
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Figure 13.2 Top: The train as seen by you, observer S′, at rest on the train. You
emit a light pulse from the center of the train (big dot), which hits the front and
back ends F and B at the same time, setting off two simultaneous explosions
(small dots). Bottom: I, observer S, see you and the train moving to the right at
speed u. I see the back end of the train rushing to meet the light pulse and the
front end running away from it. The figure clearly shows the pulse reaching the
back end B, while the pulse headed for F, the front, has not yet arrived.

first. Now, why do we bring in the two counter-propagating light pulses
and not a pair of counter-propagating pigeons to trigger simultaneous
events? Because the velocity of light is the same for everybody, indepen-
dent of the motion of the source or the observer. That’s a postulate. That’s
why many arguments in relativity involve doing things with light pulses
or communicating with light pulses: we know the speed of light in any
situation. (We know a lot less about pigeons.) Therefore, we know you
couldn’t have done any better in making them simultaneous, and I know
for sure I will disagree with you. There’s no answer to the question, who is
right?

Here is an analogy. Look again at Figure 13.1. First, if two points have
the same x and y coordinates in one set of axes, this will be true in any other
set of axes because they are on top of each other. Next, if I pick two points
that lie on a line parallel to the x-axis, then for me they have the same
y. If you use rotated axes, you will say they have different y′-coordinates.
There is nothing absolute about having the same y coordinate; it depends
on the frame. In relativity, this happens to be true for time as well as space,
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and the two frames are related not by a relative rotation but by a relative
velocity.

13.4 Time dilation
The next surprise has to do with clocks and time. You and I buy two iden-
tical clocks. Then you get into your train and start moving relative to me.
I will find that your clock is running slow, and you will say the same about
mine.

How dowe turn this issue of the time period of the clock into a pair of
events? I have my clock, and it goes tick, tick, tick. I pick two events. Event
1 is a tick of the clock, and event 2 is the next tick. Let me put the clock
at the origin of my coordinates system. (It doesn’t really matter where it
is.) The spacetime coordinate of the first tick is (x= 0, t = 0). What is the
location of the clock during the second tick? Because I’m talking about a
clock at rest in my frame, if the first event took place at x= 0, the second
one also takes place at x = 0. The two successive ticks of the clock are
separated in space by 0 and in time by τ0, its time period. That means
�x = 0 and �t = τ0. According to you the time between two successive
ticks is

�t′ = τ0 − 0 u2

c2√
1− u2/c2

= τ0√
1− u2/c2

. (13.21)

Because the denominator is < 1, we find �t′ > τ0. For example, if
u
c = 3

5 , you will say my clock has a time period 5
4τ0. In fact, anyone moving

relative to me will say my clock is slow.
Let us rederive this result by choosing the inverse Lorentz transfor-

mation, in which case my coordinates are written in terms of yours. Now
we find

�t= τ0 = �t′ + u
c2

�x′√
1− u2/c2

(13.22)

and bring in the other equation that states that the two events (successive
ticks of my clock) took place at the same point for me:

�x= 0= �x′ + u�t′√
1− u2/c2

, (13.23)
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which means �x′ = −u�t′. (This just means you see me and my clock
moving to the left at speed u.) Feeding this into Eqn. 13.22 we conclude
that

τ0 = �t′(1− u2/c2)√
1− u2/c2

= �t′
√
1− u2/c2, (13.24)

which agrees with Eqn. 13.21.
Now, here is a paradox. Just as I will say your clock is slow, you’ll

say my clock is slow. How can we both accuse each other of having slow
clocks? (A related question for the psych majors: how can two people
simultaneously look down on each other?) Here’s the answer that’s usually
given. If I take a real clock like my watch and you ask why it looks slow
to you when I’m moving relative to you, it’s difficult to answer because it
has electronics and stuff, and I am still working on setting the clock on my
VCR. For all of us who are technically challenged, there is a clock that’s
particularly simple. It has two mirrors a distance L apart in the y-direction
and a light pulse that bounces up and down between the mirrors as shown
in partA of Figure 13.3. Every time the pulse completes a round trip, it sets
off some detector at the lower end, and the clock goes “tick.” The pulse
travels a total distance 2L in the vertical direction between ticks, so that

Figure 13.3 Part A shows my light clock in my frame. The light pulse goes
straight up and down a total distance 2L between ticks. Part B shows the same
clock as seen by you, to whommy clock seems to be moving to the left at speed u.
You say the clock has slowed down because the zigzag path is longer than the
straight up-and-down path, while the velocity of light is the same for both. A
clock at rest in your frame will be moving to the right according to me, and its
light pulse will be moving in a zigzag path and hence running slow according
to me.
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τ0 = 2L/c is the time period of my clock. Now you are moving relative to
me at velocity u, so according to youmy clock is moving to the left at speed
u, and it looks like part B in the figure. The light beam in my clock is going
on a zigzag path along the hypotenuse. The time period t′ according to you
obeys the equation

ct′ = 2

√
L2 +

(
ut′

2

)2

, (13.25)

which can be solved to give

t′ = 2L/c√
1− u2/c2

= τ0√
1− u2/c2

. (13.26)

In this argument I am invoking the fact that the vertical distance
between the mirrors in the y-direction is L for both observers. Here is one
way to understand this. Suppose you and I paint an infinite line at height
y= y′ = 1 meter when we are at relative rest. As we now move relative to
each other, our lines must match: there is no reason one should be below
the other given the equivalence of inertial observers. The point is that the
two lines, which extend forever, can be compared anywhere and at any
time and do not run away from each other the way localized objects like
clocks or rods do.

Why do we like this clock? Because we know everything about the
operation of the clock. We know that the zigzag path is longer than the
straight up-and-down path, because the transverse coordinate is known to
be the same for both. Because the velocity of light is the same in all frames
of reference, light going on a longer path is simply going to take longer.
So, I know your clock would slow down, and you can say my clock has
slowed down by the same factor because the zigzag paths have the same
lengths.

What if you have some other clock with gears and wheels and teeth?
How do I know that it too slows down when you go on your train? I don’t
know exactly why it appears slowed to me, but I know that it too should
appear slowed just like the light clock. To see this, consider a light clock
L and an electronic clock E of the same time period that you take on the
train. You of course will find them to be in sync because you are inertial
and think you are at rest. Let the clocks be at the same location x′ = 0 with
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their ticks synchronized at t′ = 0. The next ticks of the two clocks have
the same spatial and time coordinates in your frame, and therefore in my
frame. The clocks will be in sync according to me as well.

Therefore, all clocks must do the same thing as the light clock,
regardless of their mechanisms, and that includes biological clocks. Now
you yourself are a biological clock: I look at you, say over a period of 40
or 60 years, and I notice some changes. You become taller; your hair turns
white; your teeth fall out. I don’t care how your life systems work, but you
are a clock and you’ve got to slow down in my view if you move relative
to me. That’s why physicists can make predictions about what happens to
living systems even though that’s not our main business, which happens to
be staring at our shoes at cocktail parties.

13.4.1 Twin paradox

Say my twin goes on a space mission at some high speed for 20 years. Let’s
say he was 20 when he left, so that in the pre-relativity days, I would expect
him to be 40 when he gets back. But he will come back younger, because
as a clock, he has slowed down. What I think is 20 years could be 10 for
him. So, he can come back 10 years younger than me. But what if he says
the same thing and expects me to be younger?

Who will be younger? There can only be one answer to that question,
and if I can get it one way, it has to be right.

Now, I have no reason to believe that I moved. I have been inertial
the whole time, and I predict he will be younger. He cannot say the same,
because he must have accelerated: he cannot go away and come back with-
out first speeding up, then slowing down, reversing, speeding up toward
home, and finally coming to rest on the earth. During all these periods of
acceleration my twin has lost the right to argue he is equal to me.

Coming to the counter-moving clocks: suppose they both read zero
when they cross. Now we wait for some time during which they are mov-
ing in opposite directions at uniform speed. A direct comparison will be
impossible as long as they are both non-accelerated. To compare them,
one or both of them have to change directions and of course velocities.
If they did this symmetrically, they will agree at the second comparison,
but if one was inertial the whole time and the other was not, the latter
would be behind. If two of a set of triplets went away in opposite directions
and returned on symmetric paths, they will both be younger than the one
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who stayed behind in the inertial frame. This is not science fiction at all.
If you want to be alive for the year 3000, you can do it. You do the math;
you find the appropriate speed (nearly that of light) so you will be, say,
just 2 years older; you get into the rocket and off you go to a distant star
(nearly 500 light years away); and you come back. Fortunately, you can-
not foist pictures of your trip on any of your friends because they will be
long dead.

Now, this experiment is done all the time with subatomic particles.
They are accelerated in Fermilab, for example. They go around in a ring,
and, just by virtue of their motion, they live a very long time. Particles that
are supposed to have a short lifetime (which you calculate in their own rest
frame) live much longer because they are moving.

Summary: Every clock runs the fastest in its own rest frame. (If it is a
light clock, the light pulse follows the zigzag path in any other frame and
appears to be slow.)

13.4.2 Length contraction

Length contraction refers to the fact that if you and I bought two identi-
cal meter sticks, and you set off in a plane or a rocket, I will claim your
meter stick is actually shorter than a meter, and you will say the same
about mine. In fact, way back, in the derivation of the Lorentz transfor-
mation, the fudge factor I calculated, taking your lengths into my lengths,
is precisely connected with this factor. If you say the length of an object is
something, I will tell you that the length is actually less because your meter
sticks are short. And you will say the same aboutmy lengthmeasurements.

Let me prove that to you. Let’s take a rod that’s moving at a speed
u. You’re carrying the rod, and I want to find its length. What should I
do? I’m going to introduce a pair of events to find the length of the rod.
Remember this rod is zooming past me. Event 1 is when the front end
of the rod hits a certain marking on my graduated x-axis, and event 2 is
when the back end of the rod crosses another point. The distance between
those two is the length of the rod, provided one condition is met: I must
locate the two ends simultaneously. Otherwise, I will screw up, right? If I
find the front end now, go on a lunch break and come back, and then locate
the other end, I will get a smaller result, even negative, because during this
time period the rod has been sliding to the right.

Consequently, the two events have coordinates with �x= L,�t = 0
in my unprimed frame. In your primed frame the two measurements took
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place at the two ends of the static rod; hence they are separated by its rest
length L0. Thus

L0 = L− u · 0√
1− u2/c2

. (13.27)

If you cross-multiply, you get the relation between the rest length L0

and the length in the frame in which the rod is moving at speed u:

L= L0

√
1− u2/c2. (13.28)

We could equally well consider the inverse transformation, and pic-
ture the rod to be at rest in the primed coordinates. In that case we
find

L= L0 + u�t′√
1− u2/c2

(13.29)

0= �t′ + uL0
c2√

1− u2/c2
(13.30)

where the second equation signifies that I measured the two ends simulta-
neously and tells us�t′ =−uL0/c2. Feeding this into the first equation, we
find once again that L= L0

√
1− u2/c2.

So, a rod will appear longest in its rest frame and a clock will appear
fastest in its rest frame.

In what sense is this length contraction real? In what sense is a meter
stick contracted to half a meter the same as a half-meter stick that is not
moving? The answer is that they will both fit in a static case half a meter
long: the static half-meter stick for all times, and the moving one for just
one instant.

I can say your meter stick is only half a meter long if you move fast
enough. But you are inertial, and you can saymymeter stick is half a meter
long. How then do you explain my result that your stick is half as long as
mine instead of the other way around? I will now discuss this paradox.
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13.5 More paradoxes
13.5.1 Too big to fall

You and I bought identical rods one meter long, but you and your rod
are now moving along the x-axis on top of my infinitely long table, at a
velocity u such that γ −1 = √

1− u2/c2 = .5, as shown in the top part of
Figure 13.4. The table has a hole .5m long. I will find that there will be an
instant when the entire rod fits within the hole. But you say, “My rod is a
meter long, I am at rest, you and your table are the ones moving to the left
at speed u. The hole that you think is .5 meter long actually is .25 meters
long. So, there will never be a time when the two ends of my meter stick

Figure 13.4 At the top are two snapshots (1,2) in my (table) rest frame: the rod
has shrunk to .5 meters and is sliding over my infinite table, approaching a hole
.5 meters long. At my time 1, the rod is to the left of the hole; at my time 2 it fits
right over the hole with its right and left ends (R) and (L) aligned with the right
and left ends (r and l) of the hole. In the lower part are three views from the rod
(your) rest frame. At some earlier rod time, −1, the table is rushing to the left
with a hole .25 meters long. The right end (r) of the hole passes the right end of
the rod (R) at rod time 2f . At a later time 2b, the left end (l) of the hole passes the
left end (L) of the rod. Events 2f and 2b took place simultaneously at my time 2.
If we introduce a weak gravitational field near the hole (tiny vertical arrow), the
rod will fall through according to me, and it must do so according to you as well.
But how? The answer is provided in the main text.
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lie entirely within that hole.” When this experiment is performed, will the
rod fit in the hole or not? That is the paradox. It is depicted and resolved
in Figure 13.4.

Look at times labeled 1 and 2 in the top part of the figure. At my time
1, the rod is approaching the hole. At my time 2, its right and left ends (R
and L) line up with the right and left (r and l) ends of the hole. So the rod
does fit in the hole according tome. But you do not agree. Your description
is shown in the lower parts of the figure. At your (and the rod’s) time −1,
the table is rushing to the left with a hole .25 meters long. Next, the right
end (r) of the hole passes the right end of the rod (R) at your (rod) time
2f . At a later time 2b, the left end (l) of the hole passes the left end (L)
of the rod. The rod is a full meter long, and at no time does it lie entirely
within the hole. The events that took place at your times 2f and 2b took
place simultaneously for me at my time 2.

This disagreement can be made more dramatic if we add a tiny
gravitational field near the hole, pointing along the small arrow in the
uppermost figure. Now the shrunken rod will fall through the hole in my
table frame. Then it must also fall through according to you, because there
cannot be two answers to whether or not it did. Here is the explanation
of how a rod of length 1.0 m can fall through a hole of width 0.25 m, fol-
lowing W. Rindler, American Journal of Physics 29:365 (1961). It will help
in this discussion to assume, without altering the paradox, that the hole is
infinitesimally wider than the shrunken rod.

First, imagine that a trapdoor under the table supports the rod until
the left end of the rod crosses the left end of the hole. This will support
the rod until it is fully over the hole. Let this crossing of the two left ends
define the origin in spacetime: (x, t)= (x′, t′)= (0, 0).

I will refer to your inertial frame as the rod frame, though you will
keep going at velocity u, even if the rod begins falling. You share only the
rod’s horizontal velocity after it begins to fall.

At t = 0, the trapdoor drops down rapidly, allowing the rod to fall
unhindered under gravity, with a tiny acceleration a. In the table frame,
the entire rod begins to accelerate at time t = 0. We may safely employ
pre-relativistic, Newtonian theory to describe the downward acceleration
under the weak gravitational force. At time t>0, a point on the rod located
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at x has the vertical coordinate z(x, t) (measured downward):

z(x, t)= 1
2
at2 · �(t) where (13.31)

�(t)= 0 if t< 0 (13.32)

= 1 if t> 0. (13.33)

The function �(t) is just a compact way of saying that the downward
acceleration exists only for t > 0. That z(x, t) is independent of x reflects
the fact that all parts of the rod suffer the same acceleration under gravity
and that the falling rod remains horizontal.

All we need to do now is to transcribe this result, spacetime point by
spacetime point, to your frame, to find out what you will see. Using

t=
(
t′ + ux′

c2

)
γ (13.34)

and the fact that the transverse coordinate of any event is the same for
both frames, we find

z′(x′, t′)= z(x, t)= 1
2
a
(
t′ + ux′

c2

)2

γ 2 · �
(

γ

(
t′ + ux′

c2

))
(13.35)

where (x′, t′) and (x, t) correspond to the same spacetime point.
Though all points in the rod begin falling at the same time t = 0 in

the table frame, these events are not simultaneous in the rod frame. While
the left end begins falling at t′ = 0, the rest of the rod begins falling at an
earlier (negative) time, which I will call the drop-time, t′d(x

′) that depends
on x′. Equation 13.34 tells us that t= 0 corresponds to

t
′
d(x

′)= −ux′

c2
. (13.36)

As expected, the left end x′ =0 starts dropping at t′ =0. As wemove toward
the right end, the drop-time turns more and more negative. The right end
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itself is seen to be the first one to start falling, at time

t
′
d(x

′ = L0)= −uL0

c2
, (13.37)

where L0 is the rest length of the rod.
To avoid negative times, let us define a shifted time in your frame:

t′′ = t′ + uL0

c2
. (13.38)

Now the right end starts falling at your time t′′ =0, the left end starts falling
after t′′ = uL0

c2 , and intermediate points begin falling at intermediate times.
In your frame, the falling rod is not straight. In the time interval 0<

t′′ < uL0
c2
, the rod is horizontal with z′ = 0 from its left-most end up to

some drop-point x′
d, and it droops downward beyond. We determine the

drop-point x′
d as a function of t′′ by turning to the same Eqn. 13.34, which

previously gave us the drop-time t′d(x
′) as a function of x′. We find

x
′
d(t

′)= −c2t′

u
= −c2

u

[
t′′ − uL0

c2

]
= L0 − c2t′′

u
. (13.39)

At t′′ = 0, the whole rod is straight, while at t′′ = uL0/c2, even the left
end has begun falling.

In your frame, the right edge of the hole moves leftward at speed u,
and it is always at z′ =0. Since it was to the right of the right end of the rod
to begin with, it will never overtake the drop-point, which moves leftward
at a speed c2

u . Since
c2
u > c, by the time the right edge of the hole crosses

any point on the rod, that point will have already fallen below z′ = 0. (That
c2
u > c does not imply interactions or signals propagating at superluminal
velocities. The points thatmake up the rod fall independently of each other
and do not interact with each other in our treatment.)

If this discussion leads you to conclude that the notion of a rigid body
does not exist in relativity, you are correct.

In summary, you and I can accuse each other of using shortened
rods, and we can both be right. This is because the operational way to
find the length of a moving body involves measuring the two ends simul-
taneously, and simultaneity is relative: you will say you measured the two
ends of my rod at the same time and I will disagree, and vice versa.
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13.5.2 Muons in flight

Muons are particles produced in the upper atmosphere and detected on
earth. After an (average) lifetime of 2.2μs in their rest frame, they decay
into an electron and a neutrino-antineutrino pair. Their lifetime multi-
plied by c equals roughly 660 meters, far short of the distance between
their birth in the upper atmosphere and their detection on earth. How
then do they make it to the ground? The answer depends on the point
of view. Earthlings will say the muon lifetime of 2.2μs in its rest frame is
prolonged by relativistic time dilation. In other words, the birth and death
of the muon will coincide with successive ticks of a clock of period 2.2μs
in the muon rest frame, and this clock will appear slowed to us on earth.
The muon, on the other hand, will agree that it lives only 2.2μs, but it will
claim that the distance between the upper atmosphere and the ground is a
lot less than we claim it is, due to length contraction. The dying muon is
like a clock that has slowed down according to us, and the atmosphere is
like a rod that has Lorentz contracted according to the muon.



chapter 14

Special Relativity III:
Past, Present, and Future

In this chapter we continue to explore the consequences of the Lorentz
transformation.

14.1 Past, present, and future in relativity
Let’s take the equation for the time difference between two events num-
bered 1 and 2:

�t′ = �t− u�x
c2√

1− v2
c2

. (14.1)

First, something happens; then, something else happens, and �t = t2 − t1
is a separation in time between them. Let’s say �t > 0 so that the second
event occurred after the first event, according tome, using unprimed coor-
dinates. How about according to you? Well, �t′ doesn’t have to have the
same sign as �t because you subtract from it this number, u�x

c2 , which can
be arbitrarily large and positive. Therefore, you can find that �t′ could
be negative. Surely you understand that’s a big deal. I say this happened
first and that happened later. Then, you say, no, it happened the oppo-
site way. Now, this can lead to serious logical contradictions, especially if
event 1 is the cause of event 2. Here is a standard example both in special
and general relativity that people talk about: event 1 is the birth of some
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kid’s grandmother, and event 2 is the kid’s birth. The birth of the kid takes
place long after the birth of the grandmother, according to me. What if,
from some other point of view, the kid is born, but the grandmother is not
yet born, and something is done to prevent her from being born. Where
did the grandchild come from? Or consider this: event 1, I fired a bullet.
Event 2, somebody is hit. And you go to the frame of reference in which
the person has been hit, and I haven’t fired the bullet. Now, you come and
you finish me off. So now, we have a person wounded for no apparent rea-
son because the cause (my firing) has been eliminated. That simply cannot
happen. Einstein recognized that if A can be the cause of B, we better not
find an observer for whom these events occur in reverse order, because if
the cause occurs after the effect, then there is some time left for somebody
to prevent the cause itself from happening, and we will have an effect with
no perceivable cause. So, we want to make sure that the sign of �t′ can-
not be reversed whenever the first event is or could have been the cause of
the second event. So, you ask Eqn. 14.1: if �t is positive, when will �t′ be
negative? That is simple algebra; you want the second term in the numer-
ator to beat the first term. That will happen in any frame with velocity u
obeying

u�x
c2

> �t (14.2)

u
c

>
c�t
�x

. (14.3)

Now compare the two distances:

• c�t, the distance a light pulse can travel in the time�t between the two
events.

• �x, the actual spatial separation between the events.

If c�t > �x, there is enough time for a light signal to go from event 1 to
event 2. In this case the frame we are looking for is going faster than light:
u
c > 1. Such a frame of course does not exist. So the order of events is the
same for all possible observers. But this is the case when event 1 could
have been the cause of event 2 because a light signal could have been used
to cause event 2. By the same logic if c�t < �x, there isn’t enough time
for a light signal to go from event 1 to event 2. In this case the frame we
are looking for moves at u

c < 1. Such a frame of course exists. So the order
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of events is different, with 2 occurring before 1. But this is the case when
event 1 better not have been the cause of event 2. This is assured if the
maximum speed with which one can influence other events is the speed
of light. Because this pair of events is separated by a time that is too short
even for a light signal to go from 1 to 2 in time, they could not have been
causally connected.

In other words, we are going to say that if there isn’t enough time for
a light signal to go from event 1 to event 2, then event 1 could not have
been the cause of event 2. Therefore, for the theory to make logical sense,
no signal should travel faster than the speed of light.

When we heard rumors in 2011 about neutrinos traveling faster than
light, most of us did not believe them. This is not because we believe
in Einstein’s infallibility (even he did not), but because we believe in the
causal structure in our world. If it is absent, if events are not related by
cause and effect, there is no point looking for laws correlating them.

Our current view of spacetime is shown in Figure 14.1. One axis is of
course the x-axis. Along the other we measure ct rather than t so that both
coordinates have the same dimension, a natural requirement if we want to
treat space and time as symmetrically as possible. (Any velocity besides c
would do the trick but would be unnatural, given the unique role played
by c in the theory. It would also lead to inelegant formulas, polluted by the
presence of this arbitrarily chosen velocity.)

Event 1 shows me at the origin of spatial coordinates when my clock
says zero; I’m at (0, 0) in spacetime. In the Newtonian world, any point
with t > 0, say event 2 or 4, is said to be in my absolute future, and any
event with t< 0, say event 3 or 5, is called my absolute past, and all points
on the x-axis with t = 0 are called “present.” These labels are absolute
because all observers will agree on the order (including simultaneity) of
these events. Events in my future can be affected by me. For example, if I
decide at event 1 that I want an explosion to occur at 4 or 2, I can make
that happen. Events 3 and 5 are in my past—someone at 5, for example,
can decide to harm me at 1 and do it. Thus, in the Newtonian world, we
have three regions: future, past, and present, all labels being absolute, valid
in any other frame.

After Einstein, we draw new lines at x = ±ct, which describe light
signals traveling past 1 in both directions. Thus, for example, the line x= ct
describes a light signal that originated to my left, reached me at t= 0, and
kept going to the right for t> 0.



230 Special Relativity III: Past, Present, and Future

Figure 14.1 Relative to some event at the origin (0, 0), Newtonian spacetime is
divided into the absolute future (points with ct> 0), absolute past (ct< 0), and
absolute present ct= 0, where “absolute” means for all observers. Relativistic
spacetime, depicted in the figure, is very different. I am at the origin (0, 0), named
event 1. Event 2 lies to my absolute future, meaning that I can influence it and it
will occur later according to all observers. Event 3 lies in my absolute past; it can
affect me here and now at 1 and all observers will say it occurred earlier. Event 4
is in my future but not my absolute future, meaning I can find someone for
whom it occurs before 1. However, no logical paradoxes will arise because I
cannot affect 4 by using any signal that travels at or less than the speed of light.
Likewise, event 5 is in my past but not absolute past; I can find someone who
says it happened after 1.

Consider now event 2. Because ct>x, there is enough time for a light
signal to go from 1 to 2. Not only is event 2 in the future of 1 according to
me, it will be that way according to anybody else. In other words,�t is pos-
itive for me, but, if you go back to Eq. 14.1, because ct > x, you will never
find anybody who says 2 occurred earlier than 1. Another way to say it is
that sitting at 1, I can make event 2, say an explosion, happen by sending a
signal that travels slower than light. Therefore, 1 could have caused 2. And
therefore, there is no messing around with the order of these events. Note
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that all we ask is that 1 could have been the cause of 2 and not that it actu-
ally was. If it could have been the cause, the theory automatically makes 1
occur before 2 for all observers. By this logic, all events lying above the 45◦

lines x= ±ct are called my absolute future. By “absolute,” I mean lying in
the future of 1 not only according to me but according to all observers. It
may not be later by the same number of seconds, but it will be later. Events
in the absolute future lie in the “forward light cone.” I use the word cone
because in higher spatial dimensions these points will lie inside a cone.

Similar ideas apply to points in the backward light cone, labeled abso-
lute past in the figure. Thus event 3 could have been the cause of what’s
happening to me right now at 1, because from that event, a signal could
have been sent to arrive where I am right now at a speed less than c.

Now consider events outside the light cone, called “elsewhere,” such
as 4. Suppose at event 1, I open an envelope and it says something ter-
rible is going to happen at 4. Say the distance to 4 is two seconds times
the velocity of light, and it is to occur one second later. There is noth-
ing I can do, even though it has not happened yet (according to me). In
the Newtonian days, there was something I could have done: tell someone
else to really hurry up and get there and do something. But now I cannot
do that because that would require that person to travel faster than light,
and that’s not allowed; it is outside the light cone. So, even though you
know someone is planning to do something evil there, you cannot avert
it. That’s a very important thing for people who are going to law school.
You know we got the DNA defense from biology, right? “My client’s DNA
doesn’t match; you must acquit.” Here’s another defense from physics. If
your client was accused of doing something at 4, and he was last seen at
1, you can argue that “My client was outside the light cone.” The “out-
side the light cone defense” is absolutely watertight. If an event is outside
your client’s light cone, the client cannot be held responsible. Your client
would have had to send a signal faster than light, and every jury knows
that is impossible. As for an event like 4, the status is that I can actually
find other observers moving at a speed less than light for whom 4 occurs
before 1. So, the order of these events can be reversed. But it will not lead
to logical contradictions because we know the two events could not have
been causally connected. Similarly, 3 is to my absolute past, so it could
be responsible for all the trouble I am having right now, but 5 cannot be
blamed for what is happening to me at 1.

So, spacetime, which we used to divide into the upper half plane and
lower half planes, the future and past, separated by a line called present or
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now, is now divided into three regions: the absolute future that you can
affect, the absolute past that can affect you, and “elsewhere,” which con-
tains events that cannot affect you and cannot be affected by you (sitting
at (0, 0)).

The consequences of the Lorentz transformation, whose equations
are deceptively simple, a lot simpler than some equations for angular
momentum, are really stupendous. If you invent a theory like this, you
have to make sure that there are no contradictions. When you notice that
the order of events can be reversed, you might panic. But the theory is so
beautiful, it is so internally consistent; it says you can reverse the order
of events only if they could not have been causally connected. Within the
theory, “not being causally connected” means a signal would have to travel
faster than light to go from the first event to the second.

14.2 Geometry of spacetime
Now we turn to something that is mathematically very pretty and physi-
cally rather profound.

The coordinates of a point are not sacred. They are dependent on
who is looking at them and from what orientation. Recall the relation
between new coordinates (x′, y′) and the old (x, y) when we rotate the axes:

x′ = x cos θ + y sin θ (14.4)

y′ = −x sin θ + y cos θ . (14.5)

But even in this world, something is sacred: x′2 + y′2 = x2 + y2. Namely,
the distance from the origin (or more generally, the distance between two
points) is unaffected by rotations. This distance is called an invariant. The
same goes for the dot product between two vectors, because it involves
their lengths and the angle between them, none of which is affected by the
rotation of axes.

So, it is reasonable to ask, in the relativistic case, where people can-
not agree on the time coordinate or space coordinate, whether the square
of the time coordinate plus the square of the space coordinate will be the
same for two people. We find out that that’s not the case; x2 + t2 is not
invariant. But even before you do that, you should shudder at the prospect
of writing something like this. You cannot add t2 and x2, because they have
different dimensions. We have to have both coordinates in spacetime with
units of lengths or time. The standard trick is to introduce an object with
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two components with the same dimensions. I’m going to call the object X.
The first component of X is going to be called x0 which is just ct. The sec-
ond is going to be called x1, which is just our familiar x. In four dimensions
you have X= (x0,x1,x2,x3), which is sometimes written as

X= (x0, r)= (ct,x, y, z) (14.6)

where r is the usual three-dimensional position vector. Why do I switch
from ct and x to x0 and x1? If you’re doing superstrings, you need ten
coordinates: one will be x0, the time, and the other nine will be spatial
coordinates, x1 . . .x9. Numerical indices rather than letters of the alphabet
are preferred, because we may run out of letters but will never run out of
numbers. It is alsomore natural to sum over a numerical index than letters.

What does the Lorentz transformation look like when I write it in
terms of the components of X? I leave it to you to check that in terms of
the dimensionless velocity β

x′
0 = x0 − βx1√

1− β2
(14.7)

x′
1 = x1 − βx0√

1− β2
(14.8)

β = u
c
. (14.9)

Now, you see the relationship is nice and symmetric. If you write
it in terms of x and t, the coordinates transformation law is asymmetric
because one has units of length and one has units of time. As for the other
transverse coordinates in the y and z directions

x′
2 = x2 x′

3 = x3. (14.10)

In other words, the length perpendicular to the motion is something you
can always agree on.

Let’s return to the question of whether (x′
0)2 + (x′

1)2 = x20 + x21 as in
rotations. It is not. However, the following is true:

(x′
0)

2 − (x′
1)

2 = x20 − x21 = s2 (14.11)

where s2 is called the spacetime interval.
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Let us verify this fundamental result starting with Eqns. 14.7
and 14.8:

(x′
0)

2 − (x′
1)

2 = (x0 − βx1)2 − (x1 − βx0)2

1− β2

= (x20 − x21)(1− β2)
1− β2

= x20 − x21. (14.12)

In terms of more familiar quantities this becomes

(ct′)2 − (x′)2 = (ct)2 − x2. (14.13)

If we consider the difference between two events (not necessarily
infinitesimal), they also obey

(�x′
0)

2 − (�x′
1)

2 = �x20 − �x21 = �s2 (14.14)

because coordinate differences transform just like the coordinates.
This result says that even though people cannot agree on the time

or space coordinates of an event or time or space coordinate differences
between two events, they can agree on this quadratic function of the coor-
dinates or differences, which we called s2. It is an example of an invariant, a
name given to something unchanged under a given transformation (which
here is the Lorentz transformation). Note that despite the notation, s2 is
not always positive. You can verify that s2 is positive inside the light cones
when it is described as time-like; s2 is negative outside the light cone when
it is referred to as space-like; and it vanishes on the light cone, when it is
alluded to as light-like.

While in ordinary rotations you take the sum of the squares, here you
must take the difference of the squares. And that’s just the way it is. Even
though time is like another coordinate that mixes with space, it’s not quite
the same. You can go forward or backward in the spatial direction, but
not in the time direction. The three-dimensional space in which we live is
Euclidean, and the invariant distance is given by the sum of the squares of
all the coordinates. Spacetime is not Euclidean.
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Including the transverse coordinates (perpendicular to the velocity
u), s2 becomes

s2 = (x′
0)

2 − (x′
1)

2 − (x′
2)

2 − (x′
3)

2 = x20 − x21 − x22 − x23. (14.15)

Most of the time, I’m not going to worry about transverse coordi-
nates.

14.3 Rapidity
Just as trigonometric functions naturally enter the formulas relating old
and new coordinates under rotations in the x− y plane, hyperbolic func-
tions are tailor-made for the Lorentz transformation. If you already know
these functions you will appreciate their utility, and if not, you can use this
opportunity to learn about them here, in which case I urge you to fill in the
missing proofs of various identities. You can also skip this section without
loss of continuity.

Let us begin with some properties of these functions and then turn
to their application. The hyperbolic functions sinh θ (pronounced “cinch”
θ) and cosh θ are the analogs of sin θ and cos θ , and defined as follows in
terms of e±θ :

cosh θ = eθ + e−θ

2
(14.16)

sinh θ = eθ − e−θ

2
. (14.17)

A key identity follows from this definition by straightforward computa-
tion:

cosh2
θ − sinh2

θ = 1. (14.18)

Note the minus sign compared to cos2 θ + sin2 θ = 1. The addition
formulas that also follow from the definitions are

cosh(A+B)= coshA coshB+ sinhA sinhB (14.19)

sinh(A+B)= sinhA coshB+ coshA sinhB. (14.20)
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The hyperbolic analog of tan θ , pronounced “tanch” θ , is:

tanh θ = sinh θ

cosh θ
= eθ − e−θ

eθ + e−θ
. (14.21)

It vanishes as θ → 0 and tends to ±1 as θ →±∞.
The addition formula

tanh [A+B]= sinh(A+B)
cosh(A+B)

= tanhA+ tanhB
1+ tanhA tanhB

(14.22)

follows from the addition formulas Eqn. 14.19 and 14.20 for sinh and cosh.
Now for the application to relativity, starting with the velocity addi-

tion formula. We have seen that if an object has velocity w according to
you and you are moving with a velocity u with respect to me, its velocity
with respect to me is not v=w+ u as in non-relativistic physics but

v
c

=
w
c + u

c

1+ u
c
w
c

(14.23)

where the denominator 1 + uw
c2

plays a crucial role in keeping velocities
from exceeding c.

Suppose we express the dimensionless velocities u
c ,

v
c , and

w
c in terms

of the rapidities θu, θv, and θw defined as follows:

u
c

= tanh θu (14.24)

v
c

= tanh θv (14.25)

w
c

= tanh θw. (14.26)

Observe that both sides lie in the range [−1,+1]. You can invert these
formulas to find the θ corresponding to some dimensionless velocity. For
example, in the case of β = u

c :

θu = ln

√
1+ β

1− β
. (14.27)
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The relativistic velocity addition formula now takes the form

tanh θv = tanh θw + tanh θu

1+ tanh θw tanh θu
= tanh [θw + θu] (14.28)

by virtue of Eqn. 14.22. This leads to the remarkably simple result

θv = θw + θu. (14.29)

In other words, rapidities simply add when compounded, unlike veloci-
ties. Thus if you see an object moving at rapidity θw, and you are moving
with respect to me with a rapidity θu, I will ascribe to the object a rapid-
ity θv = θw + θu. While this means rapidities can grow without limit when
we jump from frame to frame, the property | tanh θ | ≤ 1 ensures that the
corresponding velocity never exceeds c.

Now consider the Lorentz transformation. Given that

u
c

= tanh θu (14.30)

= sinh θu

cosh θu
(14.31)

=
√
cosh2

θu − 1
cosh θu

(14.32)

we can readily invert the above to obtain the following expressions for
cosh θu and sinh θu:

cosh θu = 1√
1− u2

c2

= 1√
1− β2

(14.33)

sinh θu = u/c√
1− u2

c2

= β√
1− β2

, (14.34)

which satisfy cosh2
θu − sinh2

θu = 1.
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We may rewrite the Lorentz transformation, Eqns. 14.7 and 14.8, in
terms of θu as

x′
0 = x0 cosh θu − x1 sinh θu (14.35)

x′
1 = −x0 sinh θu + x1 cosh θu, (14.36)

which are analogous to the formulas for rotations. The invariance of the
spacetime interval

(x′
0)

2 − (x′
1)

2 = x20 − x21 = s2 (14.37)

follows from cosh2
θ − sinh2

θ = 1, just as x′2 + y′2 = x2 + y2 follows from
cos2 θ + sin2 θ = 1.

Suppose a Lorentz transformation parametrized by θ1 relates X′ to
X and then a second one involving θ2 relates X′′ to X′. If we now directly
express X′′ in terms of X by eliminating X′, we will find that it is given
by a Lorentz transformation with rapidity θ1 + θ2. (This will require using
the addition formulas Eqns. 14.19 and 14.20.) Again this just means that
rapidities add under a sequence of two Lorentz transformations just like
rotation angles add under a sequence of two rotations.

Even a cursory reading of this section should impress upon you how
marvelously the inventions of mathematicians fulfill and often anticipate
the needs of the physicist.

14.4 Four-vectors
Let me introduce some notation now. Our friend X = (x0,x1,x2,x3) =
(x0, r) is the first example of a four-vector. Later we will see other four-
vectors with four components each. If A= (a0,a1,a2,a3) is a four-vector,
its components will transform like those of X:

a
′
0 = a0 − βa1√

1− β2
(14.38)

a
′
1 = a1 − βa0√

1− β2
(14.39)

a′
3 = a3 (14.40)

a
′
4 = a4 (14.41)

if the relative velocity is in the a1 direction.
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This transformation law is what defines a four-vector, more pre-
cisely a four-vector under Lorentz transformations, just as r transforms
like a three-vector under ordinary rotations. Just as we took the three
components of space and added one more of time to form the posi-
tion four-vector X, every four-vector we encounter will be the union of
a three-vector like r and a fourth component that, like time, is unaffected
by ordinary rotations but gets mixed up with the others under Lorentz
transformations.

Now we’re going to define a dot product of two four-vectors A and B:

A ·B= a0b0 − a1b1. (14.42)

I leave it to you to show that in a different frame

A′ ·B′ = a
′
0b

′
0 − a

′
1b

′
1 = a0b0 − a1b1 =A ·B (14.43)

for the same reason that X · X was invariant under the Lorentz transfor-
mation.

14.5 Proper time
Now I am going to apply the notion of the spacetime interval to the study
of a single particle. Previously, �x and �t were separations between two
random, unrelated or arbitrary events. But now I want you to consider the
following events. A particle moves in spacetime from point 1 to point 2,
traveling a distance dx in time dt according to some generic observer. So,
these are two events in the life of a particle, lying on its trajectory. Let’s
look at the infinitesimal spacetime interval ds2 = c2dt2 − dx2 between the
two events. We’re going to rewrite this as follows:

ds2 = c2dt2 − dx2 = (cdt)2
√
1− 1

c2

(
dx
dt

)2

(14.44)

ds= cdt
√
1− v2

c2
(14.45)

where dx
dt = v is the velocity of the particle. Because ds is an invariant, the

same for all observers, let us calculate it according to the particle itself.
The particle does not think it is moving and so it sets v = 0. So the two
events, particle sighted here and particle sighted there, have different x
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coordinates for a generic observer, but they are the same point according
to the particle. However, the particle does think some time dτ has elapsed.
Therefore, in terms of the dτ of the particle

ds= cdτ . (14.46)

The time τ , measured by a clock moving with the particle, is called proper
time. In other words, if the particle had its own clock, dτ is the time it
would say elapsed between these two successive points in its trajectory. It’s
not hard to understand why everybody agrees on proper time. You and I
don’t have to agree on how much time elapsed between when the particle
was here and when it was there. But if we ask how much time elapsed
according to the particle, we are all asking the same question, and we all get
the same answer, dτ .

Remember for future use that the proper time difference dτ between
two events in the trajectory of a particle is related to the time difference dt
according to an observer who ascribes to the particle a velocity v as follows:

dτ = dt
√
1− v2

c2
which means (14.47)

dt
dτ

= 1√
1− v2/c2

. (14.48)



chapter 15

Four-momentum

InNewtonianmechanics particles have coordinates, let us say (x, y), which
could vary with time. From these we form a two-dimensional vector r=
ix+ jy. In a rotated frame the components (x′, y′) are given by

x′ = x cos θ + y sin θ (15.1)

y′ = −x sin θ + y cos θ . (15.2)

An entity V is defined as a vector (in two dimensions) if it has two
components (Vx,Vy) that, under rotation of the axes, go into V ′

x and V ′
y,

related to (Vx,Vy) exactly as in Eqn. 15.1 and 15.2.
Now, I say to you, “Okay, that’s one vector, the position vector r.

Can you point to another vector?” You might suggest the velocity v= dr
dt

as an answer. That is right, but why does taking the derivative of a vec-
tor produce another vector? Well, what’s the derivative? You change the
vector by some �r , and you divide it by the time difference �t. Now, the
change in the vector is obviously a vector, because the difference of two
vectors is a vector. Dividing by time is like multiplying by the reciprocal of
the time. That’s like multiplying by a number or a scalar, because time does
not respond to rotations. And I’ve told youmultiplying a vector by a num-
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ber also gives you a vector, maybe longer or shorter. Therefore, �r/�t
is a vector because it’s the difference of r later minus r now, and divid-
ing by a tiny �t is the same as multiplying by a large number—10, 000 or
1, 000, 000, it doesn’t matter. And the limit v= dr

dt is also a vector. There-
fore, when you take a derivative of a vector with respect to a parameter like
time, which does not respond to rotations, you get a vector. Once you get
this derivative, it becomes addictive. You can take second derivatives, and
you get the acceleration a. Then you can multiply that by mass or iner-
tia, which is postulated to be a scalar or invariant under rotations. Thus
the product ma is a vector, which Newton equates to the force F, also a
vector.

What I want to do is generate more four-vectors using this idea of
starting with the position four-vector X. Now, take this X to be the coor-
dinate in spacetime of an object that’s moving. I want to take the derivative
of that to get myself something I could call the velocity vector in relativ-
ity. But the derivative cannot be the time derivative. I can of course take
the time derivative, but the time derivative of a vector in four dimensions
is not a vector, because time is like any other component. It’s like taking
the y derivative of x for a moving particle to get the velocity. That doesn’t
give you a vector. You have to take a derivative with respect to something
that does not transform under the Lorentz transformation, something that
does not change from one observer to the other. Do you have any idea
where I’m going with this? I mean, you can take the derivative with respect
to τ , the time as measured by the particle. So, I’m going to form a new
quantity V called four-velocity,

V = dX
dτ

=
(
dx0
dτ

,
dx1
dτ

)
. (15.3)

By construction, V will be a four-vector. By that I mean, its four com-
ponents will transform when you go to a moving frame just like the four
components ofX. But we do not have a good intuition for the τ -derivative.
While dx and dt are the separations measured by a generic observer, dτ is
the time elapsed according to the particle. So we rewrite Eqn. 15.3 for V
in terms of quantities that are directly measured by the generic observer.
To this end, we replace τ -derivatives by t-derivatives by invoking
Eqn. 14.48:



Four-momentum 243

V = dX
dτ

= dX
dt

· dt
dτ

(15.4)

= 1√
1− v2/c2

dX
dt

(15.5)

= 1√
1− v2/c2

(
c
dt
dt
,
dx
dt

)
(15.6)

=
(

c√
1− v2/c2

,
1√

1− v2/c2
dx
dt

)
(15.7)

=
(

c√
1− v2/c2

,
v√

1− v2/c2

)
, (15.8)

where the last equation applies when all four dimensions are exhibited.
The four-velocity has an unusual feature: its "length squared”

V ·V =V2
0 −V2

1 = c2 (15.9)

does not depend on how fast the particle is moving! You can verify this
the hard way, by computing V2

0 −V2
1 starting with Eqn. 15.7, or the easy

way by evaluating the invariant in a frame in which the particle is at rest
and V = (c, 0).

Now we are ready to define the four-momentum P as the mass m
times the four-velocity V :

P=m
dX
dτ

(15.10)

=
(

mc√
1− v2/c2

,
mv√

1− v2/c2

)
= (p0,p1) (15.11)

in two dimensions

=
(

mc√
1− v2/c2

,
mv√

1− v2/c2

)
= (p0,p1,p2,p3) (15.12)

in four dimensions.
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For this to be a four-vector, m should be the same in all frames, that
is, invariant under Lorentz transformations.

So, we have manufactured a new beast with four components. What
is it? Let me keep just the component of velocity in the x direction, but still
call it a four-vector.

Consider first

p1 = mv√
1− v2/c2

. (15.13)

For v
c << 1, we find (upon setting the denominator to unity)

p1 =mv. (15.14)

Thus we conclude that p1 stands for the momentum of the particle in the
relativistic theory. However, if the particle picks up speed, we need to take
into account the denominator. As v→ c, p1 grows without limit: that is, in
this theory, there is a limit to the particle velocity but not its momentum.

Some people like to write

p1 =
(

m√
1− v2/c2

)
v≡m(v)v (15.15)

where m(v)=m/
√
1− v2/c2 is a new velocity dependent mass. They also

refer tom(0)=m as the rest massm0. Their point is that if you introduce a
velocity dependent mass, then momentum can still be mass times velocity
as in the old days. We will not do that: for usm is always the rest mass, and
momentum is now a more complicated function of this mass and velocity.

Suppose v
c is small but not utterly negligible. Then we can use a

slightly better formula for momentum by using

(1+ x)n = 1+ nx+ . . .

for x<< 1, to write

1√
1− v2/c2

=
[
1− v2

c2

]−1/2

= 1+ v2

2c2
+ . . . (15.16)
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and

p1 =mv+m
v3

2c2
+ . . . (15.17)

where the ellipses (dots) stand for even smaller corrections we are ignor-
ing. We can calculate more such correction terms or simply use the exact

expression with the
√
1− v2

c2 in it.
It is also clear that if we bring in p2 and p3 we just get the vector

p= mv√
1− v2/c2

. (15.18)

What does the 0-th component

p0 = mc√
1− v2/c2

(15.19)

stand for? If we set v= 0 we get the mass of the particle times c, which is a
constant. Let us go to the next level of approximation and write as before,

p0 =mc+ 1
2c
mv2 + . . . (15.20)

We see that if we multiply both sides by c finally something familiar
emerges:

cp0 =mc2 + 1
2
mv2 + . . . (15.21)

We see that the second term on the right is just the non-relativistic
kinetic energy. So it must be that all higher powers of v

c shown by
the ellipsis stand for corrections to kinetic energy as we consider faster
particles.

But it must then be that the first termmc2 also stands for energy, but
of a particle at rest. This is called its rest energy. Einstein did not tell us how
to extract this energy (in contrast to kinetic energy ofmotion, which can be
extracted, say, in hydroelectric power generators using turbines that slow
down the water). Later on, when people discovered fusion or fission, they
found that some amount of mass was missing at the end of the reaction
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and that this missing mass (upon multiplying by c2) exactly equaled the
additional kinetic energy of the final particles. For this reason P is called
the energy-momentum or momentum four-vector.

To summarize, we have seen two four-vectors:

X= (x0,x1)= (ct,x) the position four-vector (15.22)

P= (p0,p1)=
(
E
c
,p
)

the energy-momentum or momentum four-vector
(15.23)

Here are some consequences of P being a four-vector.

• The components of P transform as follows when we go from one frame
to another:

p′
0 = p0 − βp1√

1− β2
(15.24)

p′
1 = p1 − βp0√

1− β2
(15.25)

p′
2 = p2 (15.26)

p′
3 = p3 (15.27)

where β = u
c . We will ignore p2 and p3 from now on.

It will be instructive for you to verify that this transformation law is
in accord with another way of finding p′

0 and p′
1. To this end, con-

sider a particle moving at speed v as seen by the unprimed observer.
Write explicit formulas for p0 and p1 in terms ofm and v and keep them
handy. Now ask what velocity w this particle will have according to the
observer moving at velocity u. Write down her expressions for p′

0 and
p′
1 in terms of w, and now write w in terms of u and v. Check that the
result agrees with what is above. To save paper you may set c= 1 in this
exercise.

• PA · PB is invariant, where PA and PB are any two four-momenta, which
could refer to two different particles A and B or the same particle, in which
case A=B.
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First consider just one particle and the value of P · P. Because it can be
found in any frame, find it in its own co-moving frame. In this case
p1 = 0 and p0 =mc. Thus

P2 ≡ P · P= p20 − p21 =m2c2. (15.28)

You may verify that if you went to a generic frame and wrote down
expressions for p0 and p1 in terms of v, you would get the same result.
If there are two particles we may assert that

PA · PB = pA0pB0 − pA1pB1 = EAEB

c2
− pA1pB1 (15.29)

will have the same value for all observers. In the rest frame of particle B,
PA · PB =EAmB where by EA, I mean the energy of A as measured in the
rest frame of B.

A photon has no mass. This means

K ·K = 0 (15.30)

where K is a common name for the four-momentum of any photon.
The photon has no rest frame; in any frame it moves at c. However, its
components (k0,k1) will undergo Lorentz transformation as we change
frames of reference. The components of K again stand for E/c and
momentum of the photon. Zero mass means that

0=K ·K = k20 − k21 −→ k1 = ±k0. (15.31)

In the above equation, the spatial momentum k1 can be positive or
negative, but k0, which corresponds to energy, is always positive.
The energy and momentum of photons are usually denoted by ω and k:

K = (k0,k1)=
(ω

c
,k
)
. (15.32)

The zero-mass condition becomes

k= ±ω

c
. (15.33)
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An equivalent way to show the zero-mass condition explicitly is the
following:

K = (k,k) right moving photon (15.34)

K = (k,−k) left moving photon (15.35)

where it is understood that k > 0. Thus a single number, the photon
momentum ±k, fixes the K in one spatial dimension.
You could equally well write K in terms of ω instead of k:

K =
(ω

c
,
ω

c

)
right moving photon (15.36)

K =
(ω

c
,−ω

c

)
left moving photon. (15.37)

• Four-momentum, if conserved in one frame, is conserved in any frame
related by a Lorentz transformation.
The virtue of momentum as we derived it is that if it is conserved in one
frame, it will be conserved in any other. For example, if particles A and
B turn into C,D,E, and in one frame we have

Pinitial = PA + PB = PC + PD + PE = Pfinal (15.38)

then in any other frame we will have

P
′
initial = P

′
A + P

′
B = P

′
C + P

′
D + P

′
E = P

′
final (15.39)

because if two vectors Pinitial and Pfinal are equal in one frame they are
equal in any other. This must be clear from analogy with usual vectors:
if A+B=C, that is, the three form a triangle in one frame, then they
will also form a triangle in a rotated frame. Or one can say that because
A+ B−C = 0, the null vector, the LHS will be the null (zero) vector
in any frame because the rotated version of the null vector is the null
vector. In the case of the Lorentz transformation, if Pfinal − Pinitial = 0,
the difference vector will vanish in any frame if it vanishes in one.
It also follows that if you did not like my definition of four-momentum
and made up your own, yours may not have the property of being con-
served in all frames if conserved in one. Conservation in all frames is
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what makes momentum an important quantity, and for that it has to be
a four-vector.

15.1 Relativistic scattering
Let us consider some examples of relativistic kinematics.

15.1.1 Compton effect

Imagine a photon of momentum K moving along the x-axis, bouncing
off a stationary electron of momentum P, as shown in Figure 15.1. This
process is called the Compton effect. We consider the one-dimensional
version of this process, in which the final electron and photon are forced
to travel along the x-axis. What is the energy of the outgoing photon? I will
show you how to do this problem using units in which c= 1. This makes
the manipulations easier. I will also show you how we can eventually re-
instate factors of c guided by dimensions. With these units, the initial and
final photon momenta look as follows:

K = (ω,ω), K ′ = (ω′,−ω′) (15.40)

The electron’s four-momenta are, before and after,

P= (m, 0) P′ = (E′,p′) with E′2 − p′2 =m2. (15.41)

In preparation for what follows, let us compute some dot products
of four-vectors using

A ·B= a0b0 − a1b1. (15.42)

Figure 15.1 A photon bounces off an electron at rest. This is the
one-dimensional version of Compton scattering.
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The following will be needed:

K ·K ′ = (ωω′ − (ω)(−ω′))= 2ωω′ (15.43)

P ·K = (mω − 0 ω)=mω (15.44)

P ·K ′ = (mω′ − 0 ω′)=mω′. (15.45)

Begin with the conservation law

K + P=K ′ + P′. (15.46)

Because no one cares about the details of P′, the scattered electron, we
isolate and square it (take the dot product with itself) because we know
that for any particle, no matter how it is moving, the square of the four-
momentum will bem2c2 =m2 (with c= 1). Here are the details.

P′ · P′ ≡ (P′)2 =m2 = (P+K −K ′)2 (15.47)

= P2 +K2 +K
′2 + (2P ·K − 2P ·K ′ − 2K ·K ′)

(15.48)

=m2 + 0+ 0+ 2
(
mω −mω′ − 2ωω′)

(15.49)

0=m(ω − ω′)− 2ωω′ (15.50)

1
ω′ = 1

ω
+ 2

m
(15.51)

1
ω′ = 1

ω
+ 2

mc2
(15.52)

where, in the last equation, I restored the c2 because ω is an energy and so
is mc2. In the three-dimensional case, the photon can emerge at an angle
θ relative to the x-axis and we find

1
ω′ = 1

ω
+ 1− cos θ

mc2
. (15.53)
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(Equation 15.52 corresponds to θ = π .) Compton did the scattering and
confirmed this prediction, and this was very instrumental in convincing
the community of the reality of the photon as a particle.

15.1.2 Pair production

What is the minimum energy E of the incident proton that strikes the pro-
ton at rest so that in the end we have a p, p, p , and p̄, that is, three protons
and an antiproton as in Figure 15.2? (Anti-particles have the same mass as
particles.)

The energy-momentum of the incident proton is P1 = (E,p), that
of the target is P2 = (m, 0). (Remember c = 1.) In the lab frame the total
momentum is

PLab
Tot = P1 + P2 = (E+m,p). (15.54)

In the minimal reaction the final four particles will have the mini-
mum energy, but they can’t all be at rest due to momentum conservation.
So we go to the CM frame in which the two initial protons approach
each other with opposing spatial momenta; that is, their four-momenta
are (Ecm,pcm) and (Ecm,−pcm). Thus the initial total momentum is PCM

Tot =
(2Ecm, 0). The final four-momentum of the four particles, now allowed to
be created at rest, is

PCM
Tot = (4m, 0). (15.55)

Figure 15.2 Top: The collision of a projectile proton and a static target proton,
leading to three protons and an antiproton produced with the minimum energy.
The final four particles cannot be at rest in the lab frame due to momentum
conservation. Bottom: The minimal collision as seen in the CM frame, where the
final four particles are allowed to be at rest.



252 Four-momentum

Now recall that for any four-vector V , V ·V is invariant, the same in
all frames. Applying this to the total momentumwe find, for theminimum
energy process,

CM frame PTot · PTot = 16m2

Lab frame PTot · PTot =E2 +m2 + 2mE− p2 =m2 +m2 + 2Em.

Equating the results of PTot ·PTot computed in two frames gives the desired
result

E= 7m= 7mc2. (15.56)

If we thought only about energy, we would guess that the proton
coming out of the accelerator should have an energy E = 3mc2, which,
along with the mc2 of the target proton, would be able to produce the
final four particles at rest. But momentum has to be conserved, of course,
and the projectile has to have an energy 7mc2, not 3mc2, to pay for this
extra mandatory kinetic energy of the final four particles. The Bevatron
was constructed in the Lawrence Berkeley National Laboratory with the
energy per proton slightly above 7mc2. Using it, Owen Chamberlain and
Emilio Segrè successfully produced the antiproton in 1955.

At the Large Hadron Collider in CERN (European Organization for
Nuclear Research), protons circulating one way collide with protons cir-
culating the other way at the same energy, so that the lab frame is also
the CM frame. Now all the beam energy goes to particle production. Each
colliding proton would have to have just E= 2mc2 to make the final three
protons and an antiproton at rest. Of course the Large Hadron Collider
is interested in producing the Higgs boson and bigger fish and not the
antiproton.

15.1.3 Photon absorption

Finally, consider the case of photon absorption. If an atom absorbs a pho-
ton of energy ω, the atom will recoil, and its mass will increase due to the
absorbed energy. We want to find the new mass. This confuses some stu-
dents, who say, “But you said the mass of a particle is unaffected by its
momentum: even if E and p change with velocity, E2 − c2p2 =m2c4 always!
So what does it mean to compute the new mass of the atom?” As long as
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a particle retains its identity, as the electron and photon do in Compton
scattering, it will preserve its mass, but that is not the case here: a pho-
ton has disappeared and an “excited” atom has appeared. The atom in an
excited internal state is to be viewed as a different particle, with its mass
m′ as a free parameter. We want to find the value ofm′. (The electron does
not seem to have internal states of different energy, which is why we did
not have this issue in Compton scattering.)

Your guess may be m′ = m + ω/c2. Let us work it out, following
Figure 15.3, this time keeping the explicit factors of c and also writing
down the conservation law for each component of the four-momentum.

Let

P= (mc, 0) (15.57)

K =
(ω

c
,
ω

c

)
= (k,k) (15.58)

P′ =
(

m′c√
1− v2/c2

,
m′v√

1− v2/c2

)
(15.59)

be the four-momenta of the initial atom at rest, the incoming photon, and
the final atom respectively. The conservation law for four-momentum or
energy-momentum is

P+K = P′. (15.60)

Figure 15.3 A photon is absorbed by an atom of massm, which recoils and
goes into an excited state. It is viewed as a different particle with a somewhat
bigger massm′.
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In terms of components:

mc+ ω

c
= m′c√

1− v2/c2
conservation of energy of E/c;

(15.61)

0+ k= m′v√
1− v2/c2

momentum conservation. (15.62)

Now you can juggle these equations and solve form′, but again there
is a quicker way using four-vectors. Because we just wantm′, we need only
calculate P′ · P′ =m′2c2 as follows:

m′2c2 = P′ · P′ (15.63)

= (P+K) · (P+K) (15.64)

= P · P+K ·K + 2P ·K (15.65)

=m2c2 + 0+ 2(mc
ω

c
− 0 · ω

c
) (15.66)

m′ =
√
m2 + 2m

ω

c2
. (15.67)

We can approximate as follows for small ω

mc2
:

m′ =m
√
1+ 2

ω

mc2
=m(1+ ω

mc2
+ . . .)=m+ ω

c2
+ . . . (15.68)

in accord with the naive expectation that ignores recoil. In other words,
not all the photon energy can go into boosting the atom’s rest mass,
because it also needs to move to conserve the initial photon momentum.
Thus the increased rest energy plus kinetic energy has to equal the photon
energy.

Remember the following tricks when you deal with relativistic colli-
sions: (1) In the four-vector equations square that four-momentum about
which you know the least, because the answer for the square is alwaysm2c2.
(2) Sometimes the momentum you need to square may not be standing
alone in one side of the equation. If this happens, isolate it (by moving
other terms to the other side) and square it.



chapter 16

Mathematical Methods

16.1 Taylor series of a function
I am going to introduce you to some mathematical tricks. As you’ve prob-
ably noticed by now, a lot of physics has to do with mathematics, and if
you’re not good in math, you’re not going to be good in physics.

The first important trick is called the Taylor series. The philosophy
of the Taylor series is the following: There is some function f (x) depicted
in Figure 16.1. But I’m going to imagine that you can only zero in on a
tiny region near x= 0. And the question is, how will you write an approx-
imation for this whole function, valid away from x = 0? Suppose I don’t
show you anything except what’s happening at x= 0; I show you only f (0).
The value of the function is 92. What should you do away from x=0? You
have no additional information about this function; you don’t know if it’s
going up or going down. The best approximation you can make is the flat
line in Figure 16.1. There’s no reason to tilt it one way or the other, given
the information you have. If you do not pick the constant to be 92 you will
even miss the answer at the one place (x = 0) where you were given the
value.

255



256 Mathematical Methods

Figure 16.1 A sample function f (x) and two approximations to it near x= 0
based on the Taylor series. The flat line f (x)= f (0) assumes f (x) does not change
as we move away from x= 0. It is based on the first term in what is called the
Taylor series. The second line f (x)= f (0)+ f ′(0)x is the linear approximation
based on two terms, and it matches the function and its derivative at x= 0. It
assumes the slope does not change.

So, the first approximation of the function you will say is

f (x)= f (0)+ . . . (16.1)

where the ellipsis means there may be corrections away from x = 0 but
you do not know them. The left-hand side stands for the actual function
and the right to an approximation that matches the real thing at x = 0
with possible unknown corrections as we move away. If it turns out that
f (x) is really constant, the horizontal line in Figure 16.1 will be the exact
representation of the function.

To set f (x)= f (0) is like saying “The temperature today (x= 0) is 92.
I don’t know anything else, so my best guess away from x = 0 would be
92, shown by the horizontal dotted line f (x)= 92.” But if you know that
this is summer and that the temperature is going up from day to day at
a known rate, and somebody tells you, “I know that the rate of change of
temperature is df

dx

∣∣∣
0
today,” you can use that information to predict what

the temperature will be tomorrow or what it must have been yesterday.
That is to say, for x �= 0 you can improve our approximation to f using
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your knowledge of its derivative at x= 0:

f (x)= f (0)+ df
dx

∣∣∣∣
0
· x+ . . . (16.2)

≡ f (0)+ f ′(0) · x+ (16.3)

where I am using another popular notation

f ′(x)= df
dx

, f ′′(x)= d2f
dx2

, . . . (16.4)

where the number of primes denotes the number of derivatives. This nota-
tion is convenient if we do not plan taking toomany derivatives. Since f ′(0)
is the derivative at x= 0, when you multiply it by x you get the best guess
for the change as we go away from x = 0. What we are approximating
the function by is a straight line with the correct intercept and the cor-
rect slope, shown in Figure 16.1. If it turns out that the function really is
a straight line, you are done. It’s not even an approximation; it will track
the function all the way to infinity. But it can happen, of course, that the
function decides to curve upward, as I’ve shown in this example, and this
linear approximation will not work if you go too far. For a while, you’ll be
tangent to the function, but then it will bend away from you. So, it’s really
good for a very small x and you can say, “Well, I want to do a little better
when I go further out.”

This approximation ignores the rate of change of the rate of change.
The linear approximation assumes that the rate of change is fixed at the
rate of change at the origin. And the rate of change of the rate of change is
the second derivative f ′′(0). Suppose you were given that as well. How do
you use it? The answer is

f (x)= f (0)+ f ′(0) · x+ f ′′(0) · x
2

2! + . . . (16.5)

Why should you divide by 2!? Because our goal is to generate an approxi-
mation that has whatever you know about the function built into it and the
1
2! ensures it has the right second derivative at x= 0. Let’s check that and the
other features as well.

First of all, let’s compare the two sides of Eqn. 16.5 at x= 0. The left-
hand side is f (0). On the right-hand side, when you put x= 0, you kill the
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x and x2 terms and are left with f (0), and that matches the left-hand side.
So, you certainly have the right value of the function here.

Then you say, “What if I take the derivative of the function and com-
pare at x = 0?” Let’s first take the derivative of both sides of Eqn. 16.5.
We find

f ′(x)= 0+ f ′(0)+ f ′′(0)x+ . . . (16.6)

The left-hand side is f ′(x). When we take the derivative of the right-hand
side of Eqn. 16.5, the first term f (0), being constant, gives a 0. The deriva-
tive of the x in the second term is 1, and finally the derivative of x2 is 2x,
so I get f ′′(0) times x. Now we evaluate the derivative at x = 0. That kills
the term with a residual x, and the derivative of my approximate function
matches the derivative of the actual function.

How about the second derivative of this function? Take two deriva-
tives on the left-hand side of Eqn. 16.5 to get f ′′(x) on the left. See what
happens on the right-hand side. If you take two derivatives, the only sur-
vivor is the x2 term, which leaves f ′′ with a coefficient 1. Now, if you set
x = 0, the left becomes f ′′(0) and so does the right. Thus with the 1

2! , the
function you have cooked up has the right value, the right slope, and the
right rate of change of the slope at the origin.

It’s very clear what you should do to go beyond. If you knew more
derivatives, the approximation you would write would be

f (x)= f (0)+ df
dx

∣∣∣∣
0
· x+ d2f

dx2

∣∣∣∣
0
· x

2

2! + d3f
dx3

∣∣∣∣
0
· x

3

3! + · · · d
nf

dxn

∣∣∣∣
0
· x

n

n! + . . .

(16.7)

And you go as far as you can. If you know 13 derivatives, put in the 13
before you surrender to the dot-dots. That’s still an approximation, unless
the function happened to be a polynomial of degree 13.

Now, sometimes you hit the jackpot, and you know all the deriva-
tives. If someone tells you all the derivatives of the function, then why
stop? Add them all up:

f (x)=
∞∑
n=0

dnf
dxn

∣∣∣∣
0
· x

n

n! (16.8)
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where the n= 0 term is just f (0).
And if you do the infinite summation at every value of x, and, if that

summation is meaningful and gives you a finite number, that, in fact, is
exactly the function you were given. That is the Taylor series: an infinite
number of terms that, if they sum up to something finite, will actually be
as good as the left-hand side.

Here’s a famous example:

f (x)= 1
1− x

. (16.9)

You and I know this function; we know how to put it in a calculator; we
know how to plot it. You give me an x and I subtract it from 1 in the
denominator, and that’s the value of the function. But instead, suppose
this function was revealed to us in stages. Say we were told just f (0). What
is f (0) here? Set x= 0 and get f (0)= 1. Now, let’s take the derivative of this
function,

df
dx

= 1
(1− x)2

, (16.10)

and evaluate it at x= 0, to get f ′(0)= 1.
If you now take the second derivative of this function, which I don’t

feel like doing, and evaluate that at x= 0, you will find it is equal to 2!. In
fact, the n-th derivative at the origin is n!. That’s very nice, because then
the Taylor series becomes

f (x)= 1+ x+ x2 + x3 + . . .=
∞∑
n=0

xn. (16.11)

The Taylor series is this infinite sum. In practice, you may be happy to just
keep a couple of terms.

So, let’s get a feeling for what those couple of terms can do for us.
Let me take x = 0.1; the real answer is 1

.9 = 1.1111. . ., where the 1’s go
on forever. That’s the target value. What do you get with the series? The
series starts at 1, plus one-tenth, plus 1 over 100, plus 1 over 1000, and
so on. And you can see, as I keep more and more terms, I keep just fill-
ing up these 1’s. If you stop at 1 over 1000, you stop right there, at 1.111.
I hope it is clear to you, perhaps from this simple example, that if you
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kept all the terms of the series, you really will get this infinite number of
recurring 1’s.

Consider the infinite Taylor series. Now, summing an infinite num-
ber of numbers is a delicate issue. I don’t want to go there at all; I discuss
that in my math book. But here are some caveats. Sometimes a summakes
no sense, and you have to quit. For example, put x= 2. The correct func-
tion is 1

1−2 , which is−1. Our approximation for x=2 looks like 1+2+4+
8. . .. First of all, this sum is going to grow to infinity, because the numbers
are getting bigger and bigger. This sum seems to be all positive, while the
correct answer is negative. Obviously, the series doesn’t work. So, the next
lesson of our Taylor series is this: you can write down the series, but it may
not sum up to anything sensible beyond a certain distance from the start-
ing point. So, if you’re doing a Taylor series at x= 0, and you go to x= 2,
you may find, as we did above, that it just doesn’t work. So, you can ask,
“How far can I go from the origin?”Well, in this simple example, we know
that at x = 1 the function is going to infinity; that’s why you couldn’t go
there or past that to the right of that point. The function is well defined on
the other side for x> 1, but this series, this knowledge of the function and
all its derivatives at the origin, is not enough to get you to the other side.
So, this is a case where there are obvious problems at x=1. It turns out that
you cannot also reach or go to the left of x=−1, even though the function
has no obvious problem there. Or consider a function like 1/(1+ x2), with
no evident troubles for any x. And yet, if you take the Taylor series for it,
you will find that if you go beyond |x| ≥ 1 the series blows up. (This prob-
lem arises because the function blows up at x=±i. Here you really need to
look in the complex plane to see how far you can go before the series breaks
down.)

I don’t want to go into the mathematical theory of series. I just want
to tell you that functions can be approximated by series. And, if you’re
lucky, you can get by with a few terms. If you are luckier and know all
the derivatives, the whole summay converge to give a finite answer within
some interval, in which case, the series is as good as the function. One
person can use 1/(1 − x), the other one can use the infinite series, and
both are morally and mathematically equal in every sense, as long as they
don’t stray outside the region of validity of the infinite series.
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Finally, note an obvious generalization: if f and its derivatives are
given at x= a and not at x= 0, by the same logic, we may write

f (x)=
∞∑
n=0

dnf
dxn

∣∣∣∣
a
· (x− a)n

n! (16.12)

where the n= 0 term is f (a).

16.2 Examples and issues with the Taylor series
Now let’s return to a popular example that I’ve been using a lot, (1+ x)n.
That’s a function for which we want the Taylor series. We see f (0) is 1.
What’s the derivative of the function? It’s n(1 − x)n−1, which reduces at
x= 0 to just n. That’s how we get the famous result

(1+ x)n = 1+ nx+ . . . (16.13)

If x is small enough, you stop there, because the next term is going to
involve an x2 and then an x3 will follow and so on. If x is tiny, we have no
respect for big powers of x; we just cut them off. But if we want the next
term, we’ll have to take the second derivative

d2(1+ x)n

dx2
= n(n− 1)(1+ x)n−2, (16.14)

which has a value n(n− 1) at x= 0 so that now

(1+ x)n = 1+ nx+ n(n− 1)
2! x2 + . . . (16.15)

What happens if we consider the case when n is a positive integer like
2? After all, we know from the days in the nursery that

(1+ x)2 = 1+ 2x+ x2, (16.16)
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while the series above gives

(1+ x)2 =1+ 2x+ 2(2− 1)
2! x2 + . . .=1+ 2x+ x2 + . . . (16.17)

What are the ellipses doing there when we have the whole answer already?
Luckily, the next term in the series will have a factor 2(2− 1)(2− 2) that
vanishes, as will all subsequent terms which will also contain the (2− 2)
factor. By this argument, the expansion will terminate after the xn term if n
is an integer. For other powers, fractional or negative, this will not happen.
(I suggest you play with n= −1.)

Now for an example from relativity. The energy of a particle is

E= mc2√
1− v2/c2

=mc2
[
1− v2

c2

]− 1
2
=mc2 + 1

2
mv2 + . . . (16.18)

We never knew the first term was there (it cancels out of all equations
where we balance kinetic energy). We just kept the first nontrivial term
1
2mv2 and did mechanics this way for three hundred years. So, the approx-
imations can really be useful. If you say, “Well, I want to be exact,” you can
go back and use the full

√
1− v2/c2. Unfortunately, somebody or other

will tell you, “That’s not exact either. There is quantum mechanics, which
tells you the whole thing is wrong, that particles do not move on trajecto-
ries.” I have a lot of respect for approximations. If we could not describe
the world approximately, we could not have accomplished what we have.
No one knows the exact answer to a single question you can pose: if your
question requires an answer to arbitrary precision, we just cannot pro-
vide it. Sometimes we do not even know if the question is meaningful in
a more advanced theory, as was the case with trajectories when we moved
from Newtonian to quantummechanics. Newtonian mechanics works for
small velocities. Relativistic mechanics works for any velocity, but not for
really tiny objects for which you have to use quantummechanics and then
relativistic quantummechanics. If we bring in gravity we need general rel-
ativity. So, as old theories always give way to new theories, approximations
are very important as we inch forward.
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16.3 Taylor series of some popular functions
Now I’m going to consider the following function: ex. This is one you all
know and love. Every child knows ex is its own derivative. This means
every derivative of ex is ex. Why do we like that here? Because all the
derivatives at the origin are known and equal just 1. It follows that

ex =
∞∑
n=0

xn

n! . (16.19)

Now I need to know the value of e, because when I lock my suitcase
and check it at the airport, I use either e or π , because they’re the only two
numbers I can derive, as compared to my anniversary. So, if I forget the
value of e, I just say

e= e1 = 1+ 1
1! + 12

2! + 13

3! + . . . (16.20)

and keep finding terms till my suitcase opens. It is roughly 2.718, which
is enough for most locks. Now, π is a good number too, but the rules for
computing its digits are somewhat more difficult.

Here is the very nice property of the exponential series: It is good for
any x, unlike the series for 1/(1− x) that crashed and burned at |x| = 1.
This series is always good. You put x = 37 million, you have 1 plus 37
million, half of 37 million squared, a sixth of 37 million cubed, and so on;
but don’t worry, these factorials downstairs will eventually tame it down
and make it converge, and the result will give you e to whatever number
you chose. That’s something that I’m not proving.

We all see that Eqn. 16.19 defines a function of x, but why call it e
raised to a power x? Is the x in the series really a power? You know that
when integer powers are involved, when you raise a number to a power
and multiply it by the number to a different power, the product is a num-
ber to the sum of the two powers. Powers combine. Thus 2526 = 211. That’s
true for 2 or any number raised to an integer power; but how do we know
this is true for ex, especially when x is not an integer? Let us verify this
property by multiplying the series for ex and ey to see if we get the series
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for ex+y, working out the first few powers until we are convinced:

exey =
(
1+ x+ x2

2
. . .

)(
1+ y+ y2

2
. . .

)
(16.21)

= 1+ x+ y︸︷︷︸
linear

+xy+ x2

2
+ y2

2︸ ︷︷ ︸
quadratic

+xy2

2
+ yx2

2
+ . . . (16.22)

= 1+ (x+ y)+ (x+ y)2

2
+ . . . (16.23)

= ex+y. (16.24)

The proof carries over even if x and y are replaced by complex numbers, a
result we will be using shortly.

Now look at cosx. What do I need to know to write the series for
it at x = 0? We know the cosine of 0 is 1. If you take the derivative you
get − sinx, and its value at 0 is 0. You take one more derivative and get
(− cosx), which is −1 at the origin, and so on. Every other derivative will
vanish, and the surviving derivatives will alternate between ±1 to give

cosx= 1− x2

2! + x4

4! − x6

6! + . . . (16.25)

=
n∑

n=0

(−1)n
x2n

(2n)! . (16.26)

It is clear from the series that cos x is an even function: cosx =
cos(−x) because only even powers of x appear. Near x = 0, it starts at 1
and falls down quadratically. So a very useful approximation is

cos= 1− x2

2! + . . . (16.27)

It is not clear from the series that cosx is bounded. If you cut it off
after some number of terms, it’s not going to work. In the beginning, 1− x2

2!
looks very good as the cosine starts coming down from 1. But eventually
this approximation will go bad on you and become too negative, but then
the next term x4

4! will turn it around but soon drive the answer to values that
are too positive, and so on. If, however, you add all the powers, remarkably,
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you will reproduce this nice function that will oscillate with period 2π . It
is very hard to imagine that the series in Eqn. 16.26 is actually the cosine
with all its properties, but it is.

By similar reasoning,

sinx= x
1! − x3

3! + x5

5! + . . . (16.28)

=
n∑

n=0

(−1)n
x2n+1

(2n+ 1)! . (16.29)

It is obvious that this is an odd function, sin(−x)=− sinx, but not obvious
that it is bounded or periodic.

The series for sinx and cosx converge for all finite values of x, just
like the one for ex.

If you are stranded and bored at some airport, take cosine squared
plus sine squared using the series and group terms with the same power
of x. You’ll first find a 1 from squaring the 1 in the cosx, and the net
coefficient of all non-zero powers of x will miraculously vanish.

16.4 Trigonometric and exponential functions
Let us introduce, without any preamble right now, the number i= √−1.
The only property I need is that i2 =−1, i3 =−i, i4 =+1 , i5 = i, and so on.
Consider the following rather strange object, eix. Now e is some number,
and, if you want to raise it to a power, say 2, that’s fine. But now we want
to raise e to a complex power, ix. What does that even mean? Multiply e
by itself ix times? Well, that definition of powers is no good. But the series
for ex defines it for all x, and we boldly define ex for even complex values of
the exponent to be the same series with ix in place of x. So, the exponential
function is simply defined by the power series and not the notion of raising
e to some power. Thus

edog = 1+ dog+ dog2

2! + . . . (16.30)

This way we can raise e to various things: real numbers, complex num-
bers, matrices, whatever you want. If you have a pet, you can put that up
in the exponent. Of course, you’ve got to be careful. You cannot raise e
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to dog, because the units don’t match: there’s a dog here and dog2 there,
and so on. So you should divide it by some standard dog, like Presi-
dent Obama’s dog. Take some standard and divide by it; then you have
something dimensionless like this:

e
dog
Bo = 1+ dog

Bo
+ 1

2!
[
dog
Bo

]2

+ . . ., (16.31)

which converges for dogs of any size.
That’s a fantastic leap of imagination. Let’s consider the series for eix:

eix =
∞∑
n=0

inxn

n! . (16.32)

Using what we know about the powers of i we get the following terms:

eix = 1+ ix+ i2x2

2! + i3x3

3! + i4x4

4! + . . . (16.33)

=
[
1− x2

2! + x4

4! − x6

6! + · · ·
]

+ i
[
x− x3

3! + x5

5! + . . .
]
,

(16.34)

which leads to the following all-time hit due to Leonhard Euler:

eix = cosx+ i sinx. (16.35)

This is a super-duper formula worth memorizing. Life as we know
it cannot go on without this formula. It says that the trigonometric and
exponential functions are very intimately connected by the power series.
A particularly beautiful case of this formula follows if you put x= π :

eiπ + 1= 0. (16.36)

Everybody agrees this has to be one of the most beautiful formulas we can
imagine, involving all the key numbers in mathematics: π , defined from
ancient times as a ratio of circle to diameter; i, the mother of all complex
numbers; e, the base for the logarithm; and finally 0 and 1, from which we
can build all numbers in binary.
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Now let’s do the following two other variations, and then we’ll move
on. If I change x to −x in Eqn. 16.35, I get

e−ix = cosx− i sinx, (16.37)

using the even/odd nature of cosx and sinx. I now combine Eqns. 16.35
and 16.37 to obtain

cosx= eix + e−ix

2
(16.38)

sinx= eix − e−ix

2i
. (16.39)

This means that if you have exponential functions, you can manu-
facture trigonometric functions out of them, provided you’re not afraid
to use complex exponents. And all the identities about sines and cosines
will follow from this. For example, if you take cosine squared plus sine
squared, you’re supposed to get 1. Well, you can square the right-hand
sides of Eqns. 16.38 and 16.39 and add them and you will get 1 provided
you remember eixe−ix = ei(x−x) = e0 = 1.

16.5 Properties of complex numbers
Now I’m going to do a little more with complex numbers. I introduced you
to i by saying it’s the square root of minus 1. Complex numbers entered
our life even though we didn’t go looking for them. You can write down
equations with real numbers with no intention of invoking anything fancy,
like this:

z2 + 1= 0, (16.40)

and you find there is no solution to this equation. You can say, “I want z2 =
−1,” and you can manufacture a number i with the property i2 = −1; and
then, of course, you can have z=±i as your answer. So, complex numbers
arose first in attempts to solve quadratic equations with real coefficients.
Let me write you a slightly more interesting quadratic equation,

z2 + z+ 1= 0. (16.41)
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Recall the answer

z= −1± √−3
2

. (16.42)

But we don’t know what to do with
√−3, so we will write it as

√−1 · √3
and end up with

z= −1
2

±
√
3
2

i. (16.43)

These are formally solutions to Eqn. 16.40 in the following sense.
Take one of the roots, say the one with the+ sign; put that into Eqn. 16.40,
and it will work:

z2 + z+ 1=
(

−1
2

+
√
3
2

i

)2

− 1
2

+
√
3
2

i+ 1 (16.44)

= 1
4

− 2
1
2

√
3
2

i+
(√

3
2

i

)2

− 1
2

+
√
3
2

i+ 1 (16.45)

= 1
4

−
√
3
2

i− 3
4

− 1
2

+
√
3
2

i+ 1= 0. (16.46)

All you have to know in these manipulations is that i2 =−1. Using this one
property, you can now solve any quadratic equation. People realized that
if we enlarge numbers to include complex numbers, then we can solve any
n-th order polynomial equation and obtain n roots. If it’s quadratic, it’ll
have two roots; if it’s cubic, it’ll have three roots. The roots may be com-
plex even if the coefficients in the equation are all real. Because complex
numbers arose from equations with real coefficients, will the equations
with complex coefficients perhaps lead to even crazier numbers? Luckily
or unluckily, this is not so: a complex polynomial equation of degree n
with complex coefficients will have n roots, generally complex.

Now, a very important point to notice is that this whole thing, z =
− 1

2 ± √
3
2 i, is a single complex number. Don’t think of it as the sum of two

numbers; it cannot be simplified any further, just as a two-dimensional
vector V= 2i+ 3j cannot be simplified further.
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Figure 16.2 The complex plane with a typical point z= x+ iy and its conjugate
z∗ = x− iy. In polar form, z is assigned a length r and an angle θ . We will see that
z= reiθ . Note that we measure y and not iy along the y-axis.

We are going to generalize this particular case and introduce now a
complex number z as follows:

z= x+ iy. (16.47)

Just as x stood for a generic real number, z stands for a generic complex
number. However, z has two parts: x, called the real part, and y, called
the imaginary part. In the root of the quadratic equation − 1

2 + √
3
2 i, the

real part is − 1
2 and the imaginary part is

√
3
2 . We’re going to visualize the

complex number z = x+ iy as a point in the complex plane as shown in
Figure 16.2. Note that the point (x, y) stands for z = x + iy. We intro-
duce a related complex number known as z∗, pronounced z-star, called
the complex-conjugate of z and given by

z∗ = x− iy. (16.48)

It’s obtained from z by changing the sign of i, or reflecting z on the real
axis.
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How does one add, multiply, and divide complex numbers? First, if
z1 = x1 + iy1 and z2 = x2 + iy2, we will define their sum as follows:

z1 + z2 = (x1 + x2)+ i(y1 + y2), (16.49)

which is really just like adding vectors. Subtracting is similar.
If you want to get the real or imaginary part of z, you do the

following:

Re[z]≡ x= z+ z∗

2

Im[z]≡ y= z− z∗

2i
. (16.50)

Of course, given z=x+ iy, you can spare all this and read off the real
and imaginary parts by inspection. However, you will soon need the real
and imaginary parts of more complicated expressions. In general, if you
are given some expression f , its complex conjugate f ∗ is obtained from f by
changing every i to −i and leaving all real numbers alone. For example, if

f = (cosA+ i sinB)2 = cos2A− sin2 B+ 2i cosA sinB (16.51)

then

f ∗ = (cosA− i sinB)2 = cos2A− sin2 B− 2i cosA sinB, (16.52)

assuming A and B are real. The real and imaginary parts of f may be read
off by inspection or generated by the more formal prescription

Re[f ]= (f + f ∗)
2

(16.53)

Im[f ]= (f − f ∗)
2i

. (16.54)

What is z1 times z2? Just open the brackets and remember i2 = −1.
Thus
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z1 · z2 = (x1 + iy1)(x2 + iy2) (16.55)

= x1x2 − y1y2 + i(x1y2 + y1x2). (16.56)

Re[z1z2]= x1x2 − y1y2 (16.57)

Im[z1z2]= x1y2 + y1x2. (16.58)

Something very nice happens when you multiply z by z∗:

zz∗ = (x+ iy)(x− iy)= x2 + y2 ≡ |z|2. (16.59)

We refer to

|z| =√
x2 + y2 (16.60)

as themodulus of the complex number z, which is also the length r of z in
Figure 16.2 by Pythagoras’ theorem.

I’m going to use z∗ to help divide z1 by z2. What is

z1
z2

= x1 + iy1
x2 + iy2

? (16.61)

If I had only x2 in the bottom, I could divide x1 and iy1 by it, because it is an
ordinary real number, but now I have to divide by x2 + iy2. The trick is to
multiply the top and bottom by the complex conjugate of the denominator
and proceed as follows:

z1
z2

= x1 + iy1
x2 + iy2

= (x1 + iy1)(x2 − iy2)
(x2 + iy2)(x2 − iy2)

(16.62)

= (x1 + iy1)(x2 − iy2)
|z2|2 . (16.63)

The denominator is an ordinary real number, |z2|2, while in the numera-
tor you can open out the brackets. Remember that if you have a complex
denominator, and you don’t like it, multiply top and bottom by the com-
plex conjugate of the denominator, and the new denominator will become
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a purely real (positive) number. This whole thing, |z2|2, could be 36, for
example. So, dividing by a complex number is not a problem.

16.6 Polar form of complex numbers
Now you’re going to use Euler’s result

eix = cosx+ i sinx. (16.64)

Let’s take the complex number z= x+ iy in Figure 16.2. Let us intro-
duce, just as we would for an ordinary vector, the angle θ and the length r,
which is just |z|. Whenever you have a vector, you can talk about the Carte-
sian components x and y, or you can talk about the polar components, the
length r and the angle θ it makes with the x-axis. Their interrelationship is
as follows:

x= r cos θ y= r sin θ (16.65)

r=√
x2 + y2 θ = tan−1 y

x
. (16.66)

Let us do the same starting with the Cartesian form of z and write

z= x+ iy= r cos θ + ir sin θ = r(cos θ + i sin θ)= reiθ , (16.67)

which is called the polar form. One refers to r as the amplitude of z and θ

as the phase of z. The complex conjugate is

z∗ = re−iθ and (16.68)

|z|2 = z∗z= reiθ · re−iθ = r2. (16.69)

Note that the modulus z is the same as the amplitude r:

|z| = r=√
x2 + y2. (16.70)

The Cartesian and polar forms both describe the same number. One
displays transparently the real part and imaginary parts; the other, its
amplitude and its angle relative to the real axis. It is easier to add complex
numbers in the Cartesian form (just add the real and imaginary parts),
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while the polar form is best for multiplying and dividing, as I will show
now.

Consider the product of two complex numbers, z1 = r1eiθ1 and z2 =
r2eiθ2 . It is

z1z2 = r1eiθ1r2eiθ2 = r1r2ei(θ1+θ2). (16.71)

If you want to multiply two complex numbers, multiply the lengths to get
the length of the product and add the phases to get the phase of the product,
as shown in Figure 16.3. It’s a lot easier to multiply them in this form than
in Cartesian form, as we did in Eqn. 16.56.

If the polar form is well suited for multiplying, it’s even better suited
for dividing:

z1
z2

= r1eiθ1

r2eiθ2
(16.72)

= r1
r2
e(iθ1−θ2). (16.73)

Figure 16.3 The rule for multiplying z1 and z2: add the phase angles θ1 and θ2 to
get the phase of the product and multiply the amplitudes r1 and r2 to get the
amplitude of the product.
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To divide by a complex number, divide by its modulus and subtract its phase
from the phase of the numerator.

Here is what I want you to carry in your head, because it’s very, very
important. Every complex number has a length and a direction. When
you multiply by a second complex number, you’re able to do two things
at the same time. You’re able to rescale it, and you’re able to rotate it. You
rescale by the length of the second factor, and you rotate by the phase angle
carried by the second factor. The fact that two operations are done in one
shot is one of the reasons complex numbers play an incredibly important
role in physics, as well as in engineering and mathematical physics. I also
find imaginary numbers useful when computing my tax deductions.



chapter 17

Simple Harmonic Motion

We’re now going to study what are called small oscillations, or simple
harmonic motion. Take any mechanical system that is in a state of equi-
librium. Equilibrium means the forces on the body add up to zero. It has
no desire to move. If you give it a little kick, a push away from the equilib-
rium point, what will happen? There are two main possibilities. Imagine
a marble on top of a hill. That is in unstable equilibrium because if you
give the marble a nudge, it will roll downhill and never return to you. The
other possibility involves stable equilibrium: if you push the system away
from equilibrium, there are forces bringing it back. The standard example
is a marble in a bowl: when it is shaken from its position at the bottom,
it will rock back and forth until it settles again. A rod hanging vertically
from the ceiling from a pivot, when pulled to the side and released, will
swing back and forth. These are examples of simple harmonic motion,
which results whenever any system is slightly disturbed from stable
equilibrium.

The example that we’re going to consider is a mass m, resting on
a table, connected to a spring, which in turn is connected to the wall.
The spring is not stretched or contracted; the mass is at rest, as shown in
Figure 17.1. That’s what I mean by equilibrium. Now let it be displaced by
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Figure 17.1 The massm rests on a table and is connected to a spring of force
constant k, which is anchored to the wall. The displacement from equilibrium is
denoted by x. It is positive in the figure but it could also be negative if the mass
were to be displaced the other way.

an amount x from this point of equilibrium. The spring force is F = −kx
and Newton’s law says

m
d2x
dt2

= −kx. (17.1)

If the mass strays to the right, x is positive and −kx is to the left, so as to
send it back toward its equilibrium position. If x is negative, the restoring
force is positive, again pointing to the equilibrium position.

We want to understand the behavior of such a mass. How do we
solve this problem? Our job is to find the function x(t) that satisfies this
equation, which we rewrite as follows:

d2x
dt2

= −ω2x (17.2)

ω =
√

k
m
. (17.3)

You can make it a word problem and say, “I’m looking for a func-
tion whose second derivative is minus itself, except for this number ω2.”
Trigonometric functions have the property that if you take two deriva-
tives, they return to minus themselves. So, you can guess that x = cos t
but it won’t work, as I showed you before. On the other hand, the
guess

x(t)=A cosωt (17.4)
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will obey this equation. While A is clearly the amplitude, ω is related to
the frequency of oscillations as follows. If I start at t= 0 when x=A, how
long do I have to wait until it comes back to A? I have to wait a time T,
such that

ωT = 2π (17.5)

because that’s when the cosine returns to 1. That means the time that I
have to wait is

T = 2π
ω

. (17.6)

You can rewrite this as

ω = 2π
T

= 2π f (17.7)

where f = 1
T is what we would normally call frequency, which is howmany

oscillations it completes per second. It is the inverse of the time period. In
physics talk, frequency usually means ω.

So, if you pull a mass and let it go, it oscillates with a frequency that
is connected to the force constant and the mass. If the spring is very stiff
and k is very large, the frequency is very high. If the mass is very big and
the motion is very sluggish, f is diminished. So, all that stuff you expect
intuitively is quantified by the solution to the equation, but there is more.
For example, it is not intuitively obvious that if you make the mass four
times as big, you will double the time period.

One remarkable part of the solution is that you can pick any A you
like without changing ω or T. Think about what that means. The ampli-
tude A is the amount by which you pulled the mass when you let it go.
You find that whether you pull the spring by one inch or by ten inches, it
takes the same time to finish a full back-and-forth motion. If you pull it by
two inches, compared to one inch, it has a longer way to go. But if you pull
it by two inches, the spring is going to be that much more tense, and it’s
going to exert a bigger force so that it will go faster for most of the time;
that’s very clear. But the fact that it goes faster in exactly the right way to
complete the trip in exactly the same time is rather a miraculous property
of Eqn. 17.2. If you tamper with it, if you add to the force even a tiny extra
term, say proportional to x3, then this feature is gone. It’s like saying that
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planets move around the sun in closed elliptical orbits only under the 1
r2

force. It is not true if the force falls as 1
r2.0000001

.
Now consider the following variant of this solution. You set your

clock to 0 at the origin in the graph. Suppose I set my clock to 0, right there
on the dotted vertical line in Figure 17.2 at t = π

2 . When my clock says 0,
x is not at the maximum; it vanishes. But it’s the same physics, and it’s the
same equation. Where, then, is the solution that describes what I see? It
is there and it comes from the fact that we had the latitude of adding a
certain angle φ, called a phase, to the solution:

x(t)=A cos [ωt+ φ] . (17.8)

Your choice is φ = 0 and mine is φ = π

2 . You can verify that whatever we
pick for φ, the above x(t) will be a solution because two derivatives of the
solution with the φ is also −ω2 times itself. And, whatever you pick for
A, it will still work, because A cancels out of both sides in Eqn. 17.2. So,
whenever you have an oscillator, say, a mass and spring system, and you
want to know what x is going to be at all times, it is not enough to know
that it obeys Eqn. 17.2; you need to know the amplitude and the phase.
These are determined by knowing two things about the solution, which is
usually the x and v at some time, usually t= 0. For this reason we refer to
them as initial value data.

Let me give you an example. Suppose an oscillator has x(0)= 5 and
velocity v(0)=0, at t=0. What does that mean? I pulled the mass by 5 and
I let it go. I give you the values of the spring constant k and the mass m,
and I say, “What’s the future x?”

Figure 17.2 The function A cosωt for the case A= 4, ω = 1. The dotted vertical
line is another possible way to set the clock to zero, another choice of phase,
namely φ = π

2 .
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First observe that the velocity corresponding to our solution Eqn.
17.8 is

v(t)= −ωA sin(ωt+ φ). (17.9)

So we know two things at t= 0:

5=A cos [0+ φ] (17.10)

0= −Aω sin [0+ φ] . (17.11)

The second equation gives us two choices: either A= 0, which is a trivial
solution, or φ = 0, which lets A survive this test. The first equation with
φ = 0 gives A= 5 leading to the solution x(t)= 5 cosωt. This is a problem
where we did not need a non-zero φ. But it could have been that when you
joined the experiment, you were somewhere to the right of the origin, on
the vertical dotted line in Figure 17.2, when you set your clocks to zero.
Then you would have, as your initial conditions, x = 0, v = −5ω, which
means φ = π

2 . Of course A= 5 as before.
Let us agree that, if there’s only one oscillator, it is perverse to set your

clock to 0 at any time other than when the oscillator is at its maximum
displacement, so that

x(t)=A cosωt. (17.12)

(If there are two oscillators oscillating out of step, it’s impossible to make
φ =0 for both of them: you can set your clock to 0 when one of them is at a
maximum, but then the othermay not be at its maximum.) Going forward,
remember that the velocity and acceleration are, for all future times,

v(t)= −ωA sinωt (17.13)

a(t)= −ω2A cosωt
(

= − k
m
x(t) in accordance with F=ma

)
.

(17.14)

So the velocity also oscillates sinusoidally but with an amplitude ωA.
The acceleration also oscillates but with an amplitude ω2A. These two
results are true for any phase φ.
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Let us explicitly verify the law of conservation of energy. Consider
the total energy:

E(t)= 1
2
mv2 + 1

2
kx2 (17.15)

= 1
2
mω2A2 sin2 ωt+ 1

2
kA2 cos2 ωt (17.16)

= 1
2
kA2 because ω2 = k

m . (17.17)

Thus, by magic, the time-dependent terms sin2 ωt and cos2 ωt have
the same coefficient, and you find that E(t) actually does not depend on
time at all. Even though position and velocity are constantly changing,
this combination will not depend on time. At the instant when the mass
has reached one extremity and is about to swing back, it has no veloc-
ity; it only has an x = A, and the energy of the oscillator is all potential
energy, 1

2kA
2.

17.1 More examples of oscillations
If a body is in stable equilibrium, and you disturb it, it rocks back and
forth, executing simple harmonic motion. The standard textbook example
is the mass on a spring, which we just studied. But it is a very generic
situation, as shown in Figure 17.3. Skipping the mass-and-spring example,
let us go the top right, where we have a beam hanging from the ceiling by a
cable that is fixed to its center of mass (CM). If you twist it by an angle θ , it
will try to untwist itself. Now we don’t have a restoring force but we have
a restoring torque. What can be the expression for the restoring torque τ ?
When you don’t do anything, the cable doesn’t do anything, so τ vanishes
when θ = 0. If θ �= 0, it is some function of θ , and the leading term in the
Taylor expansion would be proportional to θ :

τ (θ)= −κθ . (17.18)

The coefficient κ is the torsion constant, and the minus sign tells you it’s
a restoring torque. That means if you make θ positive, the torque will try
to twist you the other way. The torsion constant, which is the restoring
torque per unit angular displacement, is to rotations what the spring con-
stant was to linear oscillations: the restoring force per unit displacement.
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Figure 17.3 Some examples of simple harmonic motion. The left shows the
eternal favorite, the mass and spring; top right is a beam hanging from the ceiling
by a cable; the bottom left and right show a physical pendulum supported at the
pivot P, when it is in equilibrium, and when it is displaced by an angle θ . The
vector g represents the downward gravitational field of magnitude 9.8m/s2.

You have to find this κ , which is not given, the way k is. Once you do, you
can say

I
d2θ

dt2
= −κθ (17.19)

where I is the moment of inertia of the beam about the point of suspen-
sion.

Mathematically, this equation is identical in form to

m
d2x
dt2

= −kx (17.20)

with the substitution x→ θ ,m→ I, k→ κ . So the answer follows:

θ(t)=A cosωt (17.21)

ω =
√

κ

I
. (17.22)
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The mass-spring system executes linear oscillations, while the beam
executes angular oscillations. Another example of the latter is the simple
pendulum on the lower left of the figure. The pendulum has a bob of mass
m hanging by a massless rod of length l. If you let it hang vertically, it will
stay that way forever. No torque, no motion. Suppose you pull it by an
angle θ and release it. To predict the future, you need to find I and κ . Now
I is easy: for a single mass m at a distance l from the pivot point, I =ml2.
To find κ , you need to find the restoring torque per angular displacement.
If you displace by θ , the torque about the pivot point is

τ = −mgl sin θ � −mglθ (17.23)

where I have approximated sin θ by θ , which is the leading term in the
Taylor expansion. With just this term, we can read off κ :

κ = −τ

θ
=mgl. (17.24)

So

ω =
√

κ

I
=

√
mgl
ml2

=
√
g
l
, (17.25)

from which follows the familiar formula

T = 2π
ω

= 2π

√
l
g
. (17.26)

Notice that if you displace the pendulum by large angles, when sin θ can-
not be approximated by θ , the frequency will no longer be independent of
the amplitude.

Note that finding ω took some work. You had to disturb the system
from equilibrium and find the restoring torque per unit angle κ =− τ

θ
and

also compute I, whereas in the case of the mass-spring system, you were
simply given m and k. In the case of the twisted cable, κ will be given to
you, because computing it from first principles requires work beyond the
scope of this course.

Let us move from a pendulum with all the mass concentrated in the
bob to a physical pendulum, some irregularly shaped flat planar object, as
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shown in the middle of the second line of Figure 17.3. You drive a nail
through it at some pivot point P and hang it on the wall. It will come to
rest in a certain equilibrium configuration. Think about where the center
of mass will be. It will lie somewhere on the vertical line going through
P—otherwise the force of gravity, which is effectively acting at the CM,
will produce a torque around P.

Let us look at the forces. This body, when hanging in its rest position,
has two forces on it: the nail, which is pushing up, and the weight of the
body mg, which is pushing down, cancel each other. The nail will keep it
from falling. The nail will not keep it from swinging, because the force of
the nail, acting as it does at the pivot point, is unable to exert a torque,
whereas the minute you rotate the body, mg is able to exert a torque, as
is clear from the figure. That’s why if you rotate it and let go, it will start
swinging back and forth.

What will the torque be? It will be the same as before: −mgl sin θ ,
where l is now the distance between the pivot point and the center of mass.
As far as the torque is concerned, it’s as if all the mass were sitting at the
CM. But the moment of inertia is not as if all the mass is sitting at the CM,
in which case it would be ml2. So don’t make that mistake. All the mass
is not sitting at the CM; it is all over the place. The moment of inertia is
I = ICM +ml2 by the parallel axis theorem, where ICM is hard to compute
for an irregular object.

So, every problem that you will ever get will look like one of these
two. Either something is moving linearly with a coordinate that you can
call x, or something is rotating or twisting by an angle you can call θ . And
if you want to find out the frequency of vibration, you have to disturb
it from equilibrium—by pulling the mass, twisting the cable, or displacing
the pendulum from its equilibrium position—in order to find the restoring
force or torque per unit displacement.

17.2 Superposition of solutions
I will now go over more complicated oscillations using some of the
formulas we learned in the last chapter. Here is the most important one:

eiθ = cos θ + i sin θ . (17.27)

This is a formula worth memorizing. You should realize that given any
expression involving complex numbers, you can get another equation by
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taking the complex conjugate of both sides, where every i is changed to
minus i. That will give you

e−iθ = cos θ − i sin θ . (17.28)

This is true because if two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2
are equal, then the real and imaginary parts are separately equal, and so are
their complex conjugates: z∗

1 = x1 − iy1 = x2 − iy2 = z∗
2 . The two previous

equations can be inverted to give

cos θ = eiθ + e−iθ

2
(17.29)

sin θ = eiθ − e−iθ

2i
. (17.30)

You don’t need trigonometric functions once you have the exponen-
tial function, provided you let the exponent be complex or imaginary. This
is one example of unification. People always say Maxwell unified this, and
Einstein tried to unify that. Unification means things that you thought
were unrelated are, in fact, related, and they are different manifestations
of the same thing. When we first discovered trigonometric functions, we
were thinking right-angle triangles, opposite sides and adjacent sides, and
so on. Then, we discovered the exponential function, which, by the way,
was used by bankers who were trying to calculate compound interest con-
tinuously at every instant. The fact that those functions are related is a
marvelous result, but it emerges only if you invoke complex numbers.

Finally, remember that there are two ways to write a complex
number:

z= x+ iy= reiθ ≡ |z|eiθ . (17.31)

Now we use the new tools to attack the familiar equation

ẍ≡ d2x
dt2

= −ω2
0x ω0 =

√
k
m

(17.32)

where the second derivative of x is written as ẍ, and ω0, the natural
frequency of vibrations of the oscillator, has been given a subscript to dis-
tinguish it from other ω’s that will arise shortly. Earlier we solved this
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equation by turning it into a word problem: “What is the function, x(t),
with the property that two derivatives of the function look like the func-
tion itself, except for a proportionality constant?” We raked our brains
and we remembered that sines and cosines had this property. One deriva-
tive is no good; it turns sine into cosine and vice versa. Two derivatives
bring back the function you started with, which is why the answer could
be sines or cosines. But now I’m going to solve the equation a different
way. I know a function that is even better—it reproduces itself when it is
differentiated once. If so, it’s obvious that its 92-nd derivative will also look
like the function. But recall why we rejected

x(t)=Aet. (17.33)

I want to get something proportional to −x(t) upon taking two
derivatives, and this does not do it: I get +x(t). It does not help to try
something like Ae−t because after two derivatives I again get+x(t). So this
function is no good. Also, it doesn’t look like what I want. Even without
doing much work, I know that if I pull this spring it’s going to go back and
forth, whereas these functions are exponentially growing or they’re expo-
nentially falling; they just don’t do the trick. But now we have a way out:
let the exponent be complex.

We are going to make a guess, called an ansatz in the business:

x(t)=Aeαt (17.34)

where we will now allow α to be some general complex number.
The ansatz is a tentative guess with some parameters, A and α in

this instance, the judicious choice of which may yield a solution. If you’re
lucky, it will work. If not, you move on and try another solution; it is just
like speed dating.

So, let’s take the ansatz in Eqn. 17.34, put it in Eqn. 17.32, and
demand that it be satisfied:

ẍ+ ω2
0x= 0 (17.35)

α2Aeαt + ω2
0Ae

αt = 0 (17.36)

A(α2 + ω2
0)e

αt = 0. (17.37)
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Our ansatz will work if we manage to get (Aeαt)(α2 + ω2
0) to vanish.

How many ways are there to kill this beast? The choice A= 0 is called the
trivial solution and corresponds to the oscillator sitting still forever. So A
can be anything, except 0. Now eαt never vanishes (even if α is complex),
so it is not the cause of the zero. So it must be that

α2 + ω2
0 = 0 which means α = ±iω0. (17.38)

(More generally, if in place of eat, which never vanishes, we had any func-
tion that did not vanish identically, we can still cancel it by picking a time
when it is non-zero, and deduce Eqn. 17.38.)

So now I have two solutions of the form Aeαt. For A you can pick any
number you like, in fact, real or complex—it doesn’t matter. The equation
is satisfied. But α can be only one of two numbers: ±iω0.

How do we choose between the two solutions

x+(t)=Aeiω0t and (17.39)

x−(t)=Ae−iω0t? (17.40)

It turns out that we can pick both, and I’ll tell you what I mean
by that. Let us begin with the fact that Eqn. 17.32 is a homogeneous, lin-
ear differential equation. I’ll have to tell you what that means through an
example:

17
d96x
dx96

+ 16
d3x
dx3

+ 2x= 0. (17.41)

It is homogeneous because you only find a single power of x anywhere,
which happens to be the first power here. It is a linear equation because
you find either the function x or its derivatives, but never the squares of
cubes or higher powers of x or the derivatives. Note that the 96-th deriva-
tive does not change this fact; it is still the 96-th derivative of x and not,
say, x3. By contrast,

d2x
dt2

+ 3x2 = 0 (17.42)

is a non-linear equation because of the x2 term. A linear equation has a
very important property that lies at the heart of so many things we do.
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This is called the principle of superposition, and it states: if x1(t) and x2(t)
are two solutions of a homogeneous linear equation, then so is any linear
combination of them with constant (t-independent) coefficients A and B:

x(t)=Ax1(t)+Bx2(t).

Let us prove this for the oscillator case to understand where linearity
comes in. Given

ẍ1 + ω2
0x1 = 0 (17.43)

ẍ2 + ω2
0x2 = 0, (17.44)

let us multiply the first by a constant A, the second by B, and add
to get

Aẍ1 +Aω2
0x1 +Bẍ2 +Bω2

0x2 = 0 (17.45)

d2(Ax1 +Bx2)
dt2

+ ω2
0(Ax1 +Bx2)= 0, (17.46)

which clearly shows that x(t)=Ax1(t)+Bx2(t) is also a solution. We used
the fact that any derivative of a linear combination is the same linear com-
bination of the derivatives and that the non-derivative term was linear in
x. Try doing this for the non-linear case, say Eqn. 17.42, and you will find
it does not work because 3Ax1(t)2 + 3Bx2(t)2 �= 3(Ax1(t)+Bx2(t))2.

The bottom line is that if you give me two independent solutions
to a homogeneous linear equation, I can manufacture an infinite number
of solutions because I can pick A and B any way I like. The solutions x1
and x2 are like unit vectors i and j, whose linear combinations with all
possible coefficients yield an infinite number of vectors in two dimensions.
A word of caution: i and 3i are also two vectors, but by combining them
you can only get solutions parallel to i. These two vectors are said to be
linearly dependent, which in this simple case means one is a multiple of
the other. Likewise eiαt and 5eiαt cannot be used to build anything other
than multiples of eiαt. However, e−iαt is an independent object because it is
not a multiple of eiαt.



288 Simple Harmonic Motion

By the same analogy with i and j, if a linear combination of two
linearly independent functions equals another linear combination, the
coefficients have to match on both sides. Thus

Aeαt +Be5αt =Ceαt +De5αt implies (17.47)

A=C B=D. (17.48)

17.3 Conditions on solutions to the harmonic oscillator
Let us then consider the general solution

x(t)=Aeiω0t +Be−iω0t. (17.49)

How do we decide what A and B are? In general they are arbitrary.
But on a given day, when you pull the mass by 9 cm and release it from
rest, A and B have to be chosen so that at t = 0, x(0) = 9 and the veloc-
ity v(0) = 0. But I have a bigger problem. The answer is manifestly not
real, and we know x is a real function. That is not a mathematical require-
ment of the equation, but a physical requirement. To say that x is real
means the following. A complex number x+ iy has a complex conjugate
x− iy, and the property of real numbers is that when you take the com-
plex conjugate, nothing happens: it satisfies the condition z= z∗. There is
no imaginary part whose sign you can flip. Real numbers are their own
complex conjugates.

So, I’m going to demand that this solution, in addition to satisfying
the basic equation, also is real. To do that, I’m going to demand x(t) equals
its complex conjugate x∗(t):

x∗(t)=A∗e−iω0t +B∗e+iω0t = x(t)=Aeiω0t +Be−iω0t. (17.50)

To find x∗(t) given x(t), I conjugated everything in sight. The com-
plex conjugates of A and B became A∗ and B∗. The complex conjugate of
e+iω0t is e−iω0t and vice versa, because the i goes to minus i while t and ω0

are real numbers and nothing happens to them.
So x(t)= x∗(t) for all times t, if the coefficients of e±iω0t in Eqn. 17.50

match:

A=B∗ B=A∗. (17.51)



Simple Harmonic Motion 289

However, if A= B∗, then B=A∗ follows automatically because both
are saying the same thing:A andB have equal real parts and opposite imag-
inary parts. This can also be seen another way. Conjugating both sides of
A= B∗, we get A∗ = (B∗)∗ = B because conjugating any complex number
twice changes the sign of its imaginary part twice, which is equivalent to
doing nothing: (z∗)∗ = z.

The reality of x then leads to the solution

x(t)=Aeiω0t +A∗e−iω0t . (17.52)

In other words, B is not an independent number; it has to be the complex
conjugate of A if x is to be real. I hope you can see at a glance that the
solution above is real, because whatever the first animal is, the second is
its complex conjugate and has the opposite imaginary part. When you add
them, the answer will be real. But A is not necessarily real. In polar form it
has a modulus |A| and a phase φ, so that

x(t)= |A|eiφeiω0t + |A|e−iφe−iω0t = |A|ei(φ+ω0t) + |A|e−i(φ+ω0t)

= |A| [ei(φ+ω0t) + e−i(φ+ω0t)
]
. (17.53)

Now, what is this function I have in brackets? You should be able to
recognize this creature as a cosine. We have ended up with

x(t)= 2|A| cos(ω0t+ φ). (17.54)

This describes an oscillator of amplitude 2|A| and phase φ. Notice
how the amplitude and phase of the oscillator were encoded in a single
complex number A.

Suppose you had chosen to use sinω0t and cosω0t as the two basic
solutions instead of e±iω0t. The general solution would have been

x(t)=A cosω0t+B sinω0t (17.55)

where A and B are arbitrary. However, demanding that x be real will force
them both to be real. No matter how you slice it, a physical oscillator
will have in its solution just two free parameters: they could be two real
numbers A and B as above or one complex number A= |A|eiφ as before.
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Now, this is a long and difficult way to get back the old answer. Your
reactionmay be, “We don’t need these complex numbers.We have enough
problems in life; we’re doing well with sines and cosines, thank you.” But
now I’m going to give you a problem where you cannot talk your way out
by just turning it into a word problem.

17.4 Exponential functions as generic solutions
Here is the problem: a mass m, connected to a spring of force constant k,
is moving on a surface with friction. The minute there is friction, you have
an extra force. We know that if you’re moving to the right, the force of
friction is to the left, and, if you are moving to the left, the force is to the
right, that is, the frictional force is velocity dependent. The equation that
crudely models this velocity dependence is

mẍ= −kx− γmẋ (17.56)

where I include a factor m in the frictional coefficient to simplify subse-
quent algebra. Dividing bym, our equation becomes

ẍ+ γ ẋ+ ω2
0x= 0. (17.57)

Can you solve this as a word problem? It’s going to be difficult,
because you want a function that, when you take two derivatives, add some
amount of its own derivative, and then some of itself, gives zero. It is not
clear a trigonometric function can do that. However, an exponential has
to work because it reproduces itself no matter how many derivatives you
take. Thus we make the ansatz

x(t)=Aeαt. (17.58)

Note that I do not explicitly use a complex exponential. If α is meant to
be complex, it will come out that way; we are not forcing it to be real in
making this ansatz. When we feed it into Eqn. 17.57 we find, because every
derivative brings a factor of α,

A(α2 + γα + ω2
0)e

αt = 0. (17.59)
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Once again,A cannot be the cause of the zero, because if A vanishes you’ve
killed the whole solution and eαt is not going to vanish, so the only way is
for the stuff in brackets to vanish:

(α2 + γα + ω2
0)= 0 (17.60)

That means the α that you put into this guess must be one of the
roots

α± = −γ ±√
γ 2 − 4ω2

0

2
= −γ

2
±

√
γ 2

4
− ω2

0. (17.61)

The general solution is

x(t)=Aeα+t +Beα−t (17.62)

=A exp

[(
−γ

2
+

√
γ 2

4
− ω2

0

)
t

]

+B exp

[(
−γ

2
−

√
γ 2

4
− ω2

0

)
t

]
. (17.63)

The motion described by the solution depends on the value of γ

2ω0
.

17.5 Damped oscillations: a classification
Let us classify the different kinds of behavior that emerge as we vary γ

2ω0
.

17.5.1 Over-damped oscillations

We first consider the over-damped case

γ

2
> ω0. (17.64)

In this case both roots α± are real and both are negative: α− is negative
being a sum of two negative numbers, while α+ is negative because the
positive square root is smaller than γ /2. This means that x(t → ∞)→ 0,
which is in accord with our expectation that friction will eventually bring
the oscillations to an end.
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How about A and B? First of all, they are both real as can be seen by
equating x(t) to its conjugate. Because the exponentials are real they do
not respond to conjugation and we require A=A∗ and B=B∗.

To find A and B, we need two pieces of data, which I will take to
be initial position, x(0), and the initial velocity, v(0). If we put t = 0 in
Eqn. 17.62 we find

x(0)=A+B. (17.65)

Next I take the derivative of Eqn. 17.63 and then set t= 0 to find

v(0)=Aα+ +Bα−. (17.66)

Solving these simultaneous equations will yield A and B. To test yourself,
try showing that if the oscillator is displaced to some x(0)> 0 and released
from rest, that is, v(0) = 0, then x(t) never becomes 0 and hence cannot
become negative. This means the mass will simply relax to its equilibrium
position without any oscillations.

17.5.2 Under-damped oscillations

In turning on friction we got carried away: from being 0 in the very first
example, γ jumped to a value greater than 2ω0. Consider now the inter-
mediate case when 0<γ < 2ω0. What do the solutions look like now? We
should be able to guess that, at least for very tiny values of γ , the oscilla-
tor will oscillate as before, but with a slowly diminishing amplitude. Let us
verify and quantify this expectation.

The roots now become

α± = −γ

2
±

√
γ 2

4
− ω2

0 (17.67)

= −γ

2
± i

√
ω2

0 − γ 2

4
(17.68)

≡ −γ

2
± iω′. (17.69)
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We have introduced yet another frequency

ω′ =
√

ω2
0 − γ 2

4
< ω0, (17.70)

which describes the oscillatory part of the motion. Note that the roots are
complex conjugates

α+ = α∗
− (17.71)

and the general solution becomes

x(t)=Aeα+t +Beα−t (17.72)

= e− 1
2 γ t

[
Aeiω

′t +Be−iω′t
]
. (17.73)

I leave it to you to verify that once again x= x∗ implies A∗ =B because the
A and B terms get exchanged under complex conjugation. Repeating the
analysis for the case γ = 0, this solution may be rewritten as

x(t)=Ce− 1
2 γ t cos

[
ω′t+ φ

]
where (17.74)

C= 2|A| and A= |A|eiφ . (17.75)

Figure 17.4 shows what the damped oscillation looks like for A= 2,
γ = 1, and ω′ = 2π . This is typically what you will see if you excite any

Figure 17.4 Damped oscillations with x(t)= 4e−.5t cos(2π t), i.e, A= 2, γ = 1,
and ω′ = 2π . The falling exponential shows the decay of the amplitude.
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system with some modest amount of frictional loss. If γ is very small, you
may not realize the oscillations are being damped.

17.5.3 Critically damped oscillations

Having considered the cases γ > 2ω0 (over-damped) and γ < 2ω0 (under-
damped), we turn to the critically damped case γ = 2ω0. In this case α+ =
α− =− γ

2 . Where is the second solution to accompany Ae− γ t
2 ? We know in

every problem there must be two solutions, because we should be able to
pick the initial position and velocity at will. That’s an area of mathematics
I don’t want to enter now, but you can verify that the second solution is
Bte− γ t

2 , which is not a pure exponential. You will find the derivation of this
solution in my math book. The general solution for the critically damped
case is thus

x(t)= e− γ t
2 [A+Bt] . (17.76)

Try to show in this case that A= x(0) and B= v(0)+ γ

2 x(0).

17.6 Driven oscillator
Next we turn to a more challenging problem. I have, as before, the mass,
the spring, and friction. But now I’m going to apply an extra force,
F0 cosωt. This is called a driven oscillator. Imagine that I am actively shak-
ing the mass with my hand, exerting the force F0 cosωt. Now there are
three ω’s: ω0 =

√
k
m , the natural frequency of the undamped free oscillator;

ω′ =
√

ω2
0 − γ 2

4 , which entered the under-damped oscillator; and finally ω,
the frequency of the driving force, which is completely up to me to choose.
The equation to solve is

mẍ+ γmẋ+ kx= F0 cosωt, (17.77)

which we rewrite as

ẍ+ γ ẋ+ ω2
0x= F0

m
cosωt. (17.78)

This problem is difficult because you cannot guess the answer to it by
turning it into a word problem: neither x(t)∝ cos(ωt) nor x(t)∝ sin(ωt) is
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a good ansatz because you cannot have all four terms be functions of the
same kind as the ansatz. In fact, only an exponential can lead to all four
terms being the same functional form (exponential) because taking any
number of derivatives will leave it alone. But our driving force is a cosine
and not an exponential.

Here is a clever trick to beat this problem. Recall that with no driving
force if

ẍ1 + γ ẋ1 + ω2
0x1 = 0 and (17.79)

ẍ2 + γ ẋ2 + ω2
0x2 = 0, (17.80)

then multiplying the first by a constant A and the second by a constant B,
and adding we found that Ax1 +Bx2 was also a solution:

d2[Ax1 +Bx2]
dt2

+ γ
d[Ax1 +Bx2]

dt
+ω2

0 [Ax1 +Bx2]= 0. (17.81)

I have used the fact that the derivatives of a linear combination Ax1 +Bx2
are the same linear combination of the derivatives.

Suppose now that there is a driving force behind x1 and x2:

ẍ1 + γ ẋ1 + ω2
0x1 = F1(t)

m
(17.82)

ẍ2 + γ ẋ2 + ω2
0x2 = F2(t)

m
. (17.83)

It follows by the same manipulations that

d2[Ax1 +Bx2]
dt2

+ γ
d[Ax1 +Bx2]

dt
+ ω2

0 [Ax1 +Bx2]

=A
F1(t)
m

+B
F2(t)
m

. (17.84)

In other words, in a linear equation, the response to a linear combination
of forces is the corresponding linear combination of responses.
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Now for the trick. Let x(t) be the solution to

ẍ+ γ ẋ+ ω2
0x= F0

m
cosωt (17.85)

and y(t) the solution to

ÿ+ γ ẏ+ ω2
0y= F0

m
sinωt. (17.86)

(We could call these two solutions x1 and x2, but there is a reason for this
nomenclature.) Multiply the second equation by i and add it to the first to
obtain

d2
[
x+ iy

]
dt2

+γ
d
[
x+ iy

]
dt

+ ω2
0

[
x+ iy

]= F0

m
(cosωt+ i sinωt)

= F0

m
eiωt (17.87)

z̈+ γ ż+ ω2
0z= F0

m
eiωt where (17.88)

z(t)= x(t)+ iy(t). (17.89)

This is a special case of Eqn. 17.84 with A= 1 and B= i.
So, in Eqn. 17.88 I have manufactured a problem in which the thing

that’s vibrating is not a real number, but z= x+ iy. The force driving it is
also not a real number; it is F0

m e
iωt. The point is that if I can solve the problem

somehow, I can get x(t) as the real part of the answer. (The imaginary part
of it, y(t), will be the solution to the fictitious Eqn. 17.86 I concocted.)

And I can solve Eqn. 17.88 for z(t) very easily because I can now
make the ansatz

z(t)= z0eiωt. (17.90)

Because every derivative pulls out an iω we have

[−ω2 + iωγ + ω2
0

]
z0eiωt = F0

m
eiωt. (17.91)
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We may safely cancel eiωt because it is not identically zero to obtain the
equation for z0:

z0 = F0/m[−ω2 + iωγ + ω2
0

] (17.92)

= F0/m
Z(ω)

where we have defined (17.93)

Z(ω)= [−ω2 + iωγ + ω2
0

]
. (17.94)

The magic of the exponential is that the differential equation 17.88 has
reduced to an algebraic equation for the (complex) amplitude z0

Z(ω)z0 = F0

m
, (17.95)

which is solved by dividing both sides by Z(ω):

z0 = F0/m
Z(ω)

. (17.96)

It follows that

z(t)= z0eiωt = [F0/m] eiωt

Z(ω)
. (17.97)

All we need to do now is take the real part to get x(t). If you thought
that this means replacing eiωt by cosωt you are wrong, because

Z(ω)= [−ω2 + iωγ + ω2
0

]
(17.98)

is itself a complex number whose real and imaginary parts can mix with
the real and imaginary part of eiωt . So here is the correct way to do this.
Take Z(ω) in Cartesian form

Z(ω)= [
ω2

0 − ω2]+ iωγ (17.99)
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and write it in polar form

Z(ω)= |Z|eiφ where (17.100)

|Z| =
√[

ω2
0 − ω2

]2 + ω2γ 2 (17.101)

φ = tan−1
[

ωγ

ω2
0 − ω2

]
. (17.102)

Figure 17.5 shows Z in the complex plane.
Return to Eqn. 17.97 with this result to obtain

z(t)= [F0/m]eiωt

Z(ω)
= [F0/m] eiωt

|Z|eiφ (17.103)

= F0
m|Z|e

i(ωt−φ). (17.104)

Now we can take the real part easily because F0
m|Z| is real. Here is the final

answer:

x(t)= F0
m|Z| cos(ωt− φ)≡ x0 cos(ωt− φ). (17.105)

Notice that the cause, F0
m cos(ωt), produces an effect that is reduced

in magnitude by |Z| and shifted in phase into cos(ωt−φ). While there is a
way to obtain both these transformations with real numbers, it is so much

Figure 17.5 The complex number Z(ω) in its Cartesian and polar forms.
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easier with complex numbers: dividing the force by a complex number
Z = |Z|eiφ achieves both these effects in one shot. Bear in mind that the
phase φ cannot be eliminated by choice of the origin in time because it is
the phase relative to that of the applied force F0 cosωt.

Let us pause to analyze Eqn. 17.105. Keeping F0
m fixed, let us vary ω,

the frequency of the driving force, to see what happens to x0, the amplitude
of vibrations. When ω = 0, that is, when the force does not vary with time,
we find

|Z(0)| =
√[

ω2
0 − ω2

]2 + ω2γ 2

∣∣∣∣
ω=0

= ω2
0 (17.106)

so that

x0 = F0

mω2
0
= F

k
, (17.107)

which makes sense: a constant force F will produce a displacement F
k .

When ω → ∞, we find x0 → 0. Somewhere in between these
extremes, the response peaks. It is clear that if γ is very small, we get
the biggest response when ω = ω0: this is when |Z| is the smallest. This
is called resonance. It tells us that the response of the system to a driving
force is greatest when the driving frequency equals the natural frequency.
Imagine you are pushing a kid on a swing, by periodically supplying the
force. If you are not paying attention and pushing at your own frequency,
sometimes you will slow the kid and sometimes you will speed up the kid.
It is best to push exactly when the kid is moving away from you. Note that
in a real swing γ >0, and there is no danger of the kid flying off to infinity.

Radios exploit the phenomenon of resonance. Right now this room
is filled with electromagnetic signals from many stations, and yet you are
able to listen to the one you want. The trick is that you can adjust the
natural frequency of the electrical circuits picking up the signal by turning
the dial to match that of the station of interest. For this plan to succeed,
you need the graph in Figure 17.6 to be extremely sharp. Imagine that
there are just two stations at two frequencies. Even if you tune the radio to
resonate with one, you will be getting a tiny response from the tail of the
other one. The goal is to keep this interference to a minimum.

Where are the free parameters in this problem? Everything seems
determined in Eqn. 17.105. What if this solution does not agree with some
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Figure 17.6 The amplitude z0(ω) for a system with ω0 = 1 and γ = 0.1 driven
by an external force with F0

m = 1.

initial condition, such as a specified x(0) or v(0)? The answer is that we
can add to this solution (called the particular solution) any solution to the
equation with F(t)=0, referred to as the complementary solution and given
in Eqn. 17.73. Thus the most general solution to the driven oscillator is

x(t)= F0
m|Z| cos(ωt− φ)+ e− 1

2 γ t
[
Aeiω

′t +Be−iω′t
]
. (17.108)

Even after adding this term x(t) satisfies Eqn. 17.78 because the
added terms disappear when we compute the left-hand side. Another
way to see this is to invoke superposition: consider the right-hand side
of Eqn. 17.78 to be F0

m cos(ωt)+ 0 and add the response due to 0, which
is the complementary function. The numbers A and B can once again be
chosen to match the initial conditions, say the initial position and velocity.
One may forget about the complementary function at large times, because
it dies out exponentially.

Finally, consider the force pushing the kid as described earlier. It is
periodic but not simply the function cosωt. (For example, the force on the
kid acts only for a small part of each period, while the cosine is non-zero
except twice in a period.) Amazingly, we can use the technique described
above to find the response to any periodic force, not necessarily a simple
cosine or oscillatory exponential function. This is thanks to the mathe-
matician Joseph Fourier, who showed that any function F(t) with period T
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may be written as a sum of oscillating exponentials, with suitable periods,
multiplied by suitable coefficients Fn:

F(t)=
∞∑

n=−∞
Fne2π int/T ≡

∞∑
n=−∞

Fneiωnt where (17.109)

ωn = 2πn
T

. (17.110)

In the right-hand sides of Eqns. 17.109 and 17.110, we have a sum of forces
with frequencies ωn = 2πn

T . I state without proof that the coefficients are
determined by the given F(t) as follows:

Fn = 1
T

∫ T

0
F(t)e−iωntdt. (17.111)

We are done because we know the response z0(n) due to each oscillat-
ing term Fneiωnt in the sum, and by previous linearity arguments the total
response is the corresponding sum over responses:

z(t)=
∞∑

n=−∞
z0(n)eiωnt where (17.112)

z0(n)=
Fn
m

Z(ωn)
. (17.113)

If the driving force F(t) is real, the z(t) above will automatically turn
out to be real. If you want more practice using complex numbers, you are
invited to read the following proof.

First note that

−ωn = 2π(−n)
T

= ω(−n) (17.114)

F∗
n = 1

T

∫ T

0
F(t)e+iωntdt (17.115)

= 1
T

∫ T

0
F(t)e−i(−ωn)tdt= 1

T

∫ T

0
F(t)e−iω(−n)tdt (17.116)

= F−n. (17.117)
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Now pair the contributions from the terms in Eqn. 17.112 with any n and
−n:

z0(n)eiωnt + z0(−n)eiω(−n)t =
Fn
m

Z(ωn)
eiωnt +

F−n
m

Z(ω−n)
eiω(−n)t

(17.118)

=
Fn
m

Z(ωn)
eiωnt +

[
Fn
m

Z(ωn)
eiωnt

]∗

,

(17.119)

which is manifestly real, being a sum of something plus its conjugate. We
have also used

Z(ω(−n))=Z(−ωn)=Z∗(ωn), (17.120)

because for any ω we have

Z(ω)= [−ω2 + iωγ + ω2
0

]
(17.121)

Z∗(ω)= [−ω2 − iωγ + ω2
0

]=Z(−ω). (17.122)



chapter 18

Waves I

We are moving to another topic: waves. Everyone has a good intuitive feel-
ing for waves. Suppose you drop some object in a lake and you see ripples
traveling outward from the center. If you keep your eye level with the water
you will find these ups and downs going outward. This is why one says a
wave is some displacement of a medium. That’s not a perfect definition
because electromagnetic waves travel in a vacuum. For this course you
should imagine waves as what happens when you excite a medium. Once
you have the example of water waves, you can latch onto that example
every time I say “wave.”

Here’s the way to think about the wave. You understand the har-
monic oscillator pretty well, right? A mass and spring system in equilib-
riumwill sit there forever. If you give it a kick, it will start vibrating around
its equilibrium position. There you have to keep track of only one variable,
x(t), which is the location of the mass at time t. The wave is an oscillation
of an entire medium, and that means that at every point in space (where
there is some medium) there is something that’s ready to oscillate. You
have then a system with an infinite number of degrees of freedom because
the height of the water at each point is an independent variable. If you
don’t do anything to the water, it will stay at the height, but, if you fid-
dle with it or drop something, it will start vibrating. I’m going to use the
symbol ψ(x, t) to denote the change in the height of the water from its

303
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undisturbed value at the point x at time t, or more generally, the displace-
ment of the medium from its equilibrium configuration. Unlike the case of
the single oscillator, x is not the dynamical variable here. Instead it labels
the points in the medium, and ψ(x, t) is the dynamical variable: it is the
thing jumping up and down. For simplicity I am considering waves in one
dimension; in general I will have to invoke ψ(x, y, z, t).

The wave travels with some velocity v. If you drop a rock in a lake,
you see when the waves get to the shore, you measure the distance to the
shore divided by the time taken, and that’s the velocity. If someone lights a
firecracker, you can find the velocity of the sound by determining how far
away you were from the firecracker and how long it took for the sound to
reach you. That’s the velocity of sound in air. Unlike the velocity of light,
which doesn’t depend on anything, all other wave velocities depend on
various conditions. The velocity of sound in air depends on the tempera-
ture, for example. Sound can also travel in a solid. You can take an iron
rod, which you know is made up of a lot of atoms, and hit it with a ham-
mer. You basically compress these atoms and they in turn compress the
atoms next to them, and the shock wave travels through this rod; that’s
also called sound. That travels at a speed much faster than the speed of
sound in air. Thunder and lightning are the most famous examples of dif-
ferent velocities for different phenomena: the light gets to you first, and
then the sound.

Waves can be longitudinal or transverse, as shown in Figure 18.1.
When I talk to you, this is what happens. The air in this room is at

some constant pressure; the pressure is pushing your eardrum from the
outside and also transmitted through your Eustachian canal and push-
ing the drum from the inside. The two pressures balance and you don’t
feel anything. As I talk, my vocal chords move back and forth and they
increase and decrease the air pressure. These pressure waves propagate
through the air to your ear. They hit your eardrum, which feels the chang-
ing pressure outside, relative to the fixed pressure inside. So the eardrum
goes back and forth in response. Behind the eardrum are the three little
bones that transmit the motion of the eardrum to a fluid inside. There
are little hairs shaking in this fluid, sending signals to your brain, which
in turn tries to figure out what I am saying. That’s a long and impressive
chain of transducers of sound energy to your brain. I draw the line at the
eardrum; I don’t want to go on the other side. But what I do know is that
a sound wave is a longitudinal wave: the back-and-forth motion of air is
in the same direction as the sound signal—both are along the line joining
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Figure 18.1 Top: A sound wave is longitudinal: the sound goes from left to
right and the air also vibrates back and forth. Bottom: The wave on a string is
transverse: the wave goes from left to right, but the string moves up and down.

you to me. In a longitudinal wave like sound, the motion of the medium is
in the same direction as the motion of the wave.

This is not always the case: In a transverse wave the medium moves
perpendicular to the wave velocity. Take a string, clamp it down at the
right end, pull it tight to give it some tension, and then give it a little flick
at the left end. The blip you create will travel along the string, but the
displacement of the string (the blip) is perpendicular to the velocity, as
shown in Figure 18.1. This is a transverse wave.

Do not confuse themotion of themediumwith themotion of the sig-
nal. The string, at any given point, is either at rest or going up and down,
but the signal is going from left to right. Even in the case of sound, when
I talk to you, the air molecules may wiggle back and forth in the direction
of the velocity, but their average position does not change; the molecule
hitting your ear is not the one that was next to my mouth. So, the medium
doesn’t actually propagate along with the wave. The game called Tele-
phone illustrates this: kids line up and each kid tells the next kid some
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secret; the secret is eventually transmitted all the way to the end. What
has traveled is the secret. The kid at the head of the line has not physically
moved to the other end. Each kid hears something from the neighbor on
one side and passes it on to the neighbor on the other side. Then each goes
back to doing nothing. That’s what happens in the string as the blip trav-
els. A section of the string that is not doing anything initially jumps up
and down for a while when the blip passes through. Then it settles down
and the section next to it starts moving.

18.1 The wave equation
There are many, many waves: water waves, electromagnetic waves, elastic
waves, and so on. I want to consider one concrete example of a wave so
you can develop a feeling for how to handle them. I’m going to discuss
waves on a string.

Imagine a string that’s been clamped at two ends (x= 0 and x= L in
Figure 18.2). The thin horizontal line is the x-axis, and that is the string’s
position in static equilibrium. Each point on the string is labeled by the
value of x that it will have when the string is in the equilibrium position.
The displacement of the string at the point labeled x at time t is denoted
ψ(x, t), and this is our new dynamical variable. It is the one for which we
would like to write the equations of motion.

Figure 18.2 The string under tension T has mass μ per unit length and is
fixed at x= 0 and x= L. The highlighted segment has a width dx, with the same
tension T pulling the two ends but at slightly different angles. The displacement
ψ and angles θ are exaggerated for clarity. The derivation is valid only when all
these are very small.
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The string is under some tension T. That means you hang some
weights at the ends or you tighten it with some screws, as in a violin.
The tension means that the string is dying to break apart if you cut it.
Without the tension, none of what follows would work, as you will see.
Another essential parameter here is μ, the mass per unit length. To find it
you put the string on a weighing scale, you find the mass, and you divide
by the length. For example, if you have a ten-meter string and it weighs
one-hundredth of a kilogram, then the mass per unit length is μ = 10−3

kilograms per meter.
Now, I pull or pluck this string in some way, given by the solid curve

ψ(x, 0) in the figure, and I want to know what the whole string will do.
Compare this to the mass and spring system. There you pull the mass out
to some new location x(0), you let it go, and you want to know x(t). There
was just one degree of freedom, the location of the mass, x(t). The answer
was x(t)= x(0) cosωt. Here, at every point x between 0 and L, I have some
segment of the string. The displacement of each segment from equilibrium
is a degree of freedom,ψ(x). I displace all those infinite degrees of freedom
to ψ(x, 0) at time t, and I let them go. I want to know ψ(x, t). For this we
need to find the equation satisfied by ψ(x, t).

What authority will decide the behavior of this string? Newton’s law
is the answer. There are no new laws that I’m going to invoke. I’m not
going to say, “We studied masses and springs before; today it’s time to
study strings, and here is the new law of motion.” There’s only one law
of motion. That’s F =ma. My whole purpose is to show you that this law
really does control everything; that’s why it’s a super law.

The string is a long, extended, and complicated object. I isolate a tiny
segment of length dx highlighted in the figure. I am going to calculate the
total force on it and equate it to its mass times acceleration. Gravity is not
necessary for vibrations, and we will neglect its effect.

The figure shows the two forces on the little segment. Both equal
the tension T, which doesn’t change from point to point in magnitude.
But the angle at which the tension acts is not necessarily the same. It is
tangent to the string, and the direction of the tangent (measured from the
horizontal) is changing from θ(x) to θ(x + dx). The string is curving in
general; therefore, the tangents to the string at the two ends of the tiny bit
are not quite the same, and there is generally a net force on the bit.

So, I’m going to find out the vertical component of the two forces and
take the difference. The upward force at x + dx will be T sin(θ(x + dx)),
and the downward force on the left side will be −T sin(θ(x)), yielding a
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total of T
[
sin(θ(x+ dx))− sin(θ(x))

]
. That’s going to be mass times accel-

eration. The mass of this little segment is the mass per unit length μ times
the length of the segment, which is dx. Now, what is the acceleration in
the language of calculus? No, it is not d2x

dt2
but ∂2ψ(x,t)

∂t2
because ψ(x, t) is the

vertical coordinate of the string bit. What’s jumping up and down is ψ ,
so the acceleration is its second derivative, and I use the partial derivative
because ψ(x, t) can vary with x and t. So F=ma becomes

T
[
sin(θ(x+ dx))− sin(θ(x))

]= μdx
∂2ψ(x, t)

∂t2
. (18.1)

Now, come to the left-hand side and assume the angles involved are
very small, that is, that the string does not deviate too much from being
horizontal. If you remember the series

sin θ = θ − θ 3

3! + . . . (18.2)

cos θ = 1− θ 2

2! + . . . (18.3)

tan θ = θ − θ3
3! + . . .

1− θ2
2! + . . .

=
(

θ − θ 3

3! + . . .

)(
1+ θ 2

2! + . . .

)
= θ + . . .

(18.4)

and keep only terms up to order θ , you may then approximate as follows:

sin θ � θ � tan θ = ∂ψ

∂x
. (18.5)

Equation 18.1 becomes

T
[

∂ψ

∂x

∣∣∣∣
x+dx

− ∂ψ

∂x

∣∣∣∣
x

]
= μdx

∂2ψ(x, t)
∂t2

. (18.6)

Dividing both sides by T and dx and letting dx→ 0, we finally obtain the
wave equation

∂2ψ(x, t)
∂x2

= μ

T
∂2ψ(x, t)

∂t2
. (18.7)
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This is a partial differential equation. It is usually rewritten as

∂2ψ(x, t)
∂x2

= 1
v2

∂2ψ(x, t)
∂t2

(18.8)

v=
√
T
μ
. (18.9)

You should verify that v has dimensions of velocity. It will turn out
to be the velocity of waves on the string.

In summary, when you pull a string up, it comes down because the
tensions at the two ends of the string bit have vertical components that
don’t quite cancel. So, the net force depends on the rate of change of
sin θ � tan θ = ∂ψ(x,t)

∂x , that is, the rate of change of the rate of change, and
that’s why you get ∂2ψ(x,t)

∂x2 on the left-hand side. The second time-derivative
on the right is just the acceleration of the string bit.

Two questions are usually asked at this point. From the figure we see
that dx is actually the horizontal projection of the string bit. Shouldn’t we
use its full length in finding the mass of the bit? Shouldn’t we worry that
because different parts of the string have stretched by different amounts
the mass density μ is really μ(x)? We do not worry, because of the small
angle approximation. By Pythagoras’ theorem the length of the string bit
is (see the figure)

dl=√
(dx)2 + (dψ)2 = dx

√
1+

[
∂ψ

∂x

]2

(18.10)

� dx

(
1+ 1

2

[
∂ψ

∂x

]2
)

(18.11)

= dx(1+ 1
2
tan2 θ)� dx (18.12)

because tan2 θ is at least quadratic in θ . Thus in this approximation every
part of the string is stretched in the horizontal direction by the same
amount as before it was plucked. That is why the tension has a constant
magnitude T along its length.

The second question is why we do not worry about the difference in
the horizontal components of T at the two ends. The answer is that these
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components are proportional to cos θ = 1+ θ2
2 + ..� 1 if we stop at first

order in θ .
Equation 18.8 is ubiquitous and describes any elastic medium dis-

turbed a little bit from equilibrium. The small disturbances ψ obey such
an equation and v is the velocity of their propagation.

18.2 Solutions of the wave equation
What are the consequences of this wave equation? Why is v the velocity of
the wave? To find out, let us go from the finite string to an infinitemedium,
like an infinite lake.

To proceed we need to guess a solution to this equation. In the case
of the oscillator we said, “I have an equation: the second derivative of x is
equal to some number times x. The answer is cosωt or sinωt.” But nowwe
have the second derivatives with respect to space and second derivatives
with respect to time. I know that this ψ is going to oscillate up and down
in space and time. To break down the problem, imagine a water wave that
is traveling; the ripples are traveling. If you took a snapshot of the wave at
a given time, it would go up and down in space. Or, if you stood at one
point in the water and let the wave go past you, the water would go up
and down in time. So the wave oscillates in space and time, and we have to
guess the answer. I could tell you how to deduce the answer, but I do not
have room here. I’m just going to write down a solution and verify that it
obeys the wave equation, and then I wil analyze it. Now there are many,
many solutions to the equation. The solution I’m going to write down is

ψ(x, t)=A cos(kx− ωt). (18.13)

Beware! This k is not a force constant. It is a new symbol called the
wave number. We know that ω must have units of inverse time and kmust
have dimensions of inverse length in order that the argument of the cosine
is dimensionless.

Let’s verify that the Eqn. 18.13 is a solution to the wave equation.
Consider ∂2ψ

∂x2 . When you take a partial derivative with respect to x it says
forget about time; treat x as the only variable. So

∂2ψ

∂x2
= −Ak2 cos(kx− ωt). (18.14)
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Likewise

∂2ψ

∂t2
= −Aω2 cos(kx− ωt). (18.15)

The wave equation

∂2ψ

∂x2
= 1

v2
∂2ψ

∂t2
then demands that (18.16)

−Ak2 cos(kx− ωt)= −A
ω2

v2
cos(kx− ωt). (18.17)

We cancel A and the cos(kx−ωt) because neither is identically zero.
This means that a solution of the form Eqn. 18.13 exists for any amplitude
A. (Of course,A cannot be anything. The calculation assumed sin θ � tan θ

and cos θ �1. So, once youmake an approximation and you get an answer,
you should not blindly apply the answer to circumstances where the equa-
tion itself is not valid. Even though the answer says you can have any
A, in practice you shouldn’t use it for an A for which the small angle
approximation fails.)

Canceling A cos(kx − ωt) from both sides of Eqn. 18.17, we find a
solution of the assumed form exists provided the parameters ω and k
satisfy

k= ±ω

v
. (18.18)

We will always choose ω to be positive, and the two signs of k will be seen
to correspond to the two possible directions of propagation.

Now let us write the solution that respects the condition Eqn. 18.18,
considering first the case k= ω

v :

ψ(x, t)=A cos(kx− kvt)=A cos
[
k(x− vt)

]
. (18.19)

This equation says that ψ(x, t), which could have depended on x and
t separately, depends on them only through this combination x − vt. In
other words, x and t do not separately determine ψ(x, t); only this combi-
nation x− vt does. If the combination has a certain value, ψ has a certain
value. If I change x and t keeping x − vt constant, the function doesn’t
change. I will now argue that this really means it’s a wave that’s traveling at
a velocity v.
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Let’s take the bell-shaped function

f (x)=Ae−k2x2 . (18.20)

It peaks at x= 0. Take the same function with x replaced by x− vt. Where
does this function

f (x, t)=Ae−k2(x−vt)2 (18.21)

have its maximum? It has a maximumwhen x= vt. So, if you followed this
f (x, t)= f (x− vt) as a function of time, the peak that was at x= 0 at t = 0
moves to x= vt at time t: the shape moves undistorted at a velocity v.

Returning to our wave, it just looks like A coskx at t = 0, and we all
know it has a maximum or crest at x = 0. If you wait a bit, where is this
maximum? If you increase time a little bit by dt, you have to increase x by
dx such that the two changes kdx and ωdt cancel, keeping the argument of
the cosine at zero. But that means that

dx
dt

= ω

k
= v. (18.22)

That means the crest is moving at the velocity v.
It follows that ψ

[
k(x− vt)

]
describes a wave traveling to the right at

speed v. If you want a wave traveling to the left, you should pick k= −ω

v ,
and the solution will be of the form ψ

[
k(x+ vt)

]
.

Calculus buffs can verify that any function f (x − vt) (not just the
cosine) satisfies the wave equation. To see this, use the chain rule: if w=
x− vt then f = f (w) and

∂f
∂x

= df (w)
dw

· ∂w
∂x

= df (w)
dw

· 1 (18.23)

∂2f
∂x2

= d2f (w)
dw2

· 12 (18.24)
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∂f
∂t

= df (w)
dw

· ∂w
∂t

= df (w)
dw

· (−v) (18.25)

∂2f
∂t2

= d2f (w)
dw2

· (−v)2 so that finally (18.26)

1
v2

∂2f
∂t2

= d2f (w)
dw2

= ∂2f
∂x2

, (18.27)

from which it follows that not only f (x− vt) but also f (x+ vt) satisfies the
wave equation. Even

ψ(x, t)=Ae−k2(x−vt)2 (18.28)

obeys the wave equation, even though it does not readily come to your
mind when you think of a wave, the way the cosine does.

Note that every wave in a given medium has a definite velocity, but
only plane waves have a definite wave number and frequency. In particular
the wave in Eqn. 18.28 has a velocity v but does not repeat in time or space.
Once the peak zips past you, it is all over.

18.3 Frequency and period
We now ask, “What is k and what is ω in A cos(kx − ωt)?” We are all
good at visualizing a function of one variable, but this is a function of two
variables. Let us first understand this function at a fixed time, say t= 0. At
t= 0, it looks like A coskx, which starts out at A at x= 0 and finishes a full
cycle when we move a distance x, such that kx = 2π . This distance is by
definition the wavelength λ and obeys kλ = 2π . Thus k, the wave number,
is related to the wavelength λ that we understand more intuitively by the
formula

λ = 2π
k

or k= 2π
λ
. (18.29)

Figure 18.3 shows the plot for A= 2, k= 1 (λ = 2π � 6.28).
Now, you can ask if I would have obtained a different relation

between k and λ had I picked some other time than t = 0. Think about
it: ωt0 is some angle φ0 inside the cosine; it’s just going to shift the whole
pattern by some amount. Changing the phase won’t change the fact that
the peak-to-peak distance is λ.
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Figure 18.3 The wave A cos(kx−ωt) at t= 0 as a function of x for the choice
A= 2, k= 1. For k= 1, λ should be 2π � 6.28 according to Eqn. 18.29, and
indeed it is. The maxima are called crests and the minima are called troughs.

Next we ask, “What does it look like to a person sitting at a certain
location, as a function of time?” For example, the waves could be manu-
factured in the ocean and sent toward the shore. You stand at one place
near the shore; the wave is going past you. You will bob up and down,
and that’s what I want to describe mathematically. So, I pick some location
x= 0 for convenience, and then ψ(0, t)=A cosωt. I didn’t miss the minus
sign; for a cosine, it doesn’t matter if you change the angle to minus the
angle. So, consider the same graph, this time as a function of time, and ask
what happens. You start with a maximum at t = 0, and as t increases, the
function oscillates and reaches its next maximum, a crest at a time T called
the time period such that

ωT = 2π or ω = 2π
T

= 2π f (18.30)

where f is the frequency. This relation between ω and T should be familiar
from the single oscillator. The minima are called troughs.

So, if you like, you can write the plane wave as

ψ(x, t)=A cos
(
2πx
λ

− 2π t
T

)
. (18.31)
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It’s strictly equivalent to A cos(kx− ωt), and you may write it either
way. Equation 18.31 makes it more obvious that when x changes by λ or t
changes by T, nothing happens to the cosine because you are changing the
argument by 2π .

Let us now rewrite the relation ω = kv in terms of λ and f = 1
T :

v= ω

k
= 2π f

2π
λ

= λf , (18.32)

which can be understood as follows. Suppose I am at the origin and hold
an infinitely long string. When I start wiggling my end with frequency f ,
the pulses will travel to the right. Let’s wait one second. In one second,
I would have manufactured f of these full cycles, and each has length λ.
Thus the wavefront would have advanced to x=λf after one second, which
is the velocity by definition. I ammaking λ-sized objects, f per second, and
pushing them out, so the front of the wave advances a distance λf in one
second.

Figure 18.4 shows the wave varying in both x and t for the choice
A= k= 1 and ω = 2 for x and t in the interval [0, 4π]. If you mentally slice
it at fixed x or t, shown by the dotted lines, you can count two periods in x
and four in t.

Figure 18.4 The wave A cos(kx−ωt) with A= 1,k= 1,ω = 2 or λ = 2π ,T =π

in the range [0, 4π] for both x and t. If you slice it at fixed t, you will see two full
periods in x (see dotted line at t= 2π), and if you slice it at fixed x, you will see
four periods in t (see dotted line at x= 2π). The lines track the maxima or crests,
but one could pick any point within the cycle.



chapter 19

Waves II

19.1 Wave energy and power transmitted
It is obvious that a vibrating string has more energy than a string that
is not vibrating. I want to calculate the energy in a string vibrating with
displacement

ψ(x, t)=A cos(kx− ωt). (19.1)

Now, if it’s an infinitely long string, the energy in it is infinite, so you define
the energy per unit length. Take a portion of the string, associated with a
segment of width dx, and ask, “How much energy does it have?”

The energy has a kinetic part and a potential part. The kinetic part is
simple:

dK = 1
2
μdx

[
∂ψ

∂t

]2

. (19.2)

This is just the mass of the segment times the square of the velocity. For
the solution in Eqn. 19.1 this becomes

dK = 1
2
μdxA2ω2 sin2(kx− ωt). (19.3)

316
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The potential energy dU has a more subtle origin. The string is
under tensionT.When the string is displaced from equilibrium, a segment
associated with the interval dx has a length (see Figure 18.2)

dl=√
dx2 + (dψ)2 = dx

√
1+

[
∂ψ

∂x

]2

� dx

(
1+ 1

2

[
∂ψ

∂x

]2
)
.

(19.4)

Thus it has expanded by an amount

δl= dl− dx= 1
2

[
∂ψ

∂x

]2

dx (19.5)

against a tension T. So the work pumped in and stored as potential
energy is

dU =Tδl= 1
2
T
[
∂ψ

∂x

]2

dx. (19.6)

For the solution in Eqn. 19.1 this becomes

dU = 1
2
Tk2A2 sin2(kx− ωt) · dx= 1

2
μA2ω2 sin2(kx− ωt) · dx= dK

(19.7)

upon using

Tk2 =T
ω2

v2
=Tω2μ

T
= μω2. (19.8)

Notice that the kinetic and potential energies are equal at every value
of x and t. In particular, when the string bit is maximally displaced, it has
no velocity and hence no dK. It also has no dU because the slope is zero
and so is the stretch δl. When the displacement is zero, it has the greatest
velocity and slope and hence the greatest dK and dU. This is unlike the
harmonic oscillator, where due to the conservation of energy, K and U
add up to a constant, and when one is large the other is small. This is not a



318 Waves II

problem for the string bit because it is not an isolated system, and energy
is pumped into (or out of) it by its neighbors.

The total energy is

dE= dK + dU = 2dK = μdxA2ω2 sin2(kx− ωt). (19.9)

The energy per unit length or energy density u is then

u(x, t)= μA2ω2 sin2(kx− ωt). (19.10)

Of interest is the average energy density ū, where the average is over
a full cycle in space (a wavelength) or a full cycle in time (a full period T).
The average of sin2 is 1

2 in either case, and we have the final result

ū= 1
2
μA2ω2. (19.11)

What is the average power sent into this wave by the person exciting
the medium? Imagine that the string is tied to the point at infinity and
that I have been wiggling it from x = 0. Let us say at this time the waves
have gone out to some point x= L. The string is inert beyond that point.
After one more second, an extra segment of length v has begun vibrating.
What is the average energy contained in the extra segment? It is v times
the average energy per unit length, 1

2μA
2ω2. So the average energy I pump

in per second, or the average power, is

P= 1
2
μA2ω2v= ūv. (19.12)

A special property of life in one dimension is that this wave goes
undiminished in amplitude. You can go 10 miles or 100 miles from me,
and the amplitude is still the A that I produced at the source, because all
the energy goes along this line. There is no escape or spreading out. What
happens in three dimensions is more typical. If you have a very tall tower
on top of which you put a speaker, the energy radiates out in concentric
spheres as time goes by. The power at the source is now spread over bigger
and bigger spheres as you go farther out. In three dimensions we have the
notion of intensity, which is the power per unit area. If there is a speaker
sending out sound waves, and I take a one-meter by one-meter window
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and hold it in front of me and ask how much power crosses it on average,
that is the intensity I in W/m2. Of course, the window doesn’t have to be
one square meter big. You can take a tiny square, provided you divide the
power by its area to find I. You don’t have that notion in one dimension
because you cannot hold a window in one dimension perpendicular to the
velocity.

If you are rmeters from the source of sound in three dimensions, the
power P is spread over a sphere of area 4πr2 and the intensity is

I = P
4πr2

W/m2. (19.13)

This is true also for electromagnetic waves.
The intensity of sound, β , is measured in decibels (dB) defined as

follows:

β = 10 Log10
I
I0

dB (19.14)

where I0 = 10−12W/m2 is the reference intensity, the minimum an average
human ear can detect. Thus the minimum intensity we can hear is zero dB
according to this formula.

A whisper is 15 dB, while a rock concert or jet engine is around 120
dB. In a rock concert

10 Log10
I
I0

= 120 (19.15)

I
I0

= 1012 (19.16)

I = I0 · 1012 = 1W/m2. (19.17)

Due to the logarithmic scale, an increase in intensity by a factor of
100, 000 causes an increase of 50dB. Our sense of loudness seems to grow
as the log of the intensity rather than the intensity itself. We need the log-
arithmic scale because the ratio of the largest intensity we can tolerate to
the smallest we can hear is one trillion!

The difference in decibels between two different intensities I1 and I2
is equal to 10 Log10

I1
I2
.
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19.2 Doppler effect
Now we will consider a totally different property of wave propagation that
I’m going to illustrate with sound: theDoppler effect. This term refers to the
well-known phenomenon that a source of definite frequency, like a siren
on a fire truck, will be heard as a higher frequency when the fire truck is
coming toward the observer and a lower one when it’s going away from
the observer. We want to know why, and by how much, the frequency
changes. The answer is based on v= λf .

Let us take a source S in the left half of Figure 19.1 that is sit-
ting still, emitting waves that spread out spherically. Three equally spaced
crests are shown at a particular time. You are the observer O, standing
off to the right listening to the sound. The waves go by you and you
observe a certain wavelength. That’s the distance from one crest to the
next; call it λ0. (We need a subscript because soon another λwill enter.) As
usual,

λ0f0 = v (19.18)

Figure 19.1 At the left we have a source at rest and observer O at rest. The three
crests emitted are equally spaced in the air and also as perceived by O. At the
right we have the source moving at velocity u. The wavefronts now get crunched
in the forward direction because the source travels a bit to the right between
emitting one crest and the next. In the backward direction the opposite happens.
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where f0 is the frequency. Now suppose the source is moving to the right
at a certain speed u as shown in the right half. It’s not hard to visualize that
the waves in the air will get squashed in the forward direction to the right:
having emitted one crest, the source moves to the right a little bit before
emitting the next crest. The new λwill be λ0 minus the distance the source
travels in a time T = 1

f0
. Thus

λ = λ0 − uT = λ0 − u
f0
. (19.19)

What is the new frequency f that you will hear? It is determined by the
usual relation

λf = v. (19.20)

You must understand that, even though the source is moving to the
right, the velocity of sound is not altered by that process. A moving truck
does not emit sound at an increased speed in the forward direction. The
speed of sound with respect to a medium is controlled by the properties
of the medium, not the velocity of the source. If the medium is air, the
sound can travel only at a certain speed. On the other hand, if there is a
machine gun on a moving truck that sprays bullets in all directions at the
same speed in its frame, then according to a person on the ground, the
ones in the forward direction would be moving faster than the ones in
the backward direction. In any case, the new frequency is

f = v
λ

= v
λ0 − u

f0

= v
v
f0

− u
f0

= f0
1− u

v

. (19.21)

The observed frequency f is the normal frequency f0 divided by
1− u

v < 1. So the observed frequency will go up. If you want to see what
happens to the left of the source, you simply reverse the velocity of the
source (moving to the right) relative to the sound waves (now moving to
the left to meet the observer on the left) in the same formula. So the answer
covering both cases is

f = f0
1∓ u

v

. [source coming toward (19.22)

(away from) static observer].
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Your common sense should tell you which sign applies when.
What happens with light and at relativistic speeds u? The velocity

of light will be c in vacuum, but the frequency will change for many rea-
sons. First of all, the ambulance clock slows down according to you by the
standard relativistic time dilatation, even if it’s not coming toward you or
going away from you, but going around you, so that f < f0. This is called the
transverse Doppler effect. There is, in addition, the more familiar Doppler
effect due to source motion toward or away from you, while will reduce to
Eqn. 19.22 when u

c << 1.
Now for sonic booms, which can be traced back to

f = f0
1∓ u

v

. (19.23)

Relativity was chock-full of formulas where the denominator could vanish
but never did because c was the limiting speed. But the speed of sound v is
not an upper limit at all, and we have planes that travel at u> v. As u→ v,
the crests are getting crunched more and more in the forward direction
until u= v, and all the crests pile right on top of each other; that’s when
a sonic boom occurs. If you could go faster than that, you would leave
behind a trail of waves, with nothing in front of you. So, if there were a jet
plane coming toward you faster than the speed of sound, you would not
have time to get out of the way—the jet would hit you before the sound
waves hit you.

Now, here’s one more variant of the Doppler effect: the observer is
moving toward the source, which is at rest. The siren (at rest in the air)
is emitting nice spherical waves, but you are rushing to meet them with
velocity−u.What’s the frequency at which you will see crests? In the frame
of reference of the air, the sound is moving to the right at speed v, and you
are moving to the left at speed u. So, you are zipping past the waves at
a speed u+ v, and the crests are spaced at a distance λ0 apart. (Nothing
happens to the spacing between them; they are just as they are in the left
half of Figure 19.1.) The frequency according to you will be the distance
you move relative to the medium in one second divided by the length of
each cycle:

f = u+ v
λo

= v
λ0

(
1+ u

v

)
= f0

(
1+ u

v

)
. (19.24)
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If you are running away from the source, you should change the sign. The
general formula is then

f = v
λ0

(
1± u

v

)
= f0

(
1± u

v

)
(19.25)

[observer moving toward (away from) static source].

So, when you move toward the source, the correction factor appears
in the numerator; when the source moves toward you, the correction
factor appears in the denominator. You have to use common sense in
choosing the ± sign. For example, it’s obvious that if you’re rushing to
meet the waves you should get a higher frequency. You can go on and ask
what happens if you are moving and the ambulance is also moving. The
fun never ends.

19.3 Superposition of waves
The rest of this chapter focuses on one essential property of waves called
interference. Look at the wave equation. It’s a linear equation. Don’t be
fooled by the 2’s in ∂2ψ

∂x2
or ∂2ψ

∂t2
. That doesn’t make it quadratic; it’s still the

first power of ψ on both sides. Then verify the following in your mind:
If ψ1 and ψ2 are solutions, so is ψ1 + ψ2. What that really means is the
following. Suppose you emit some sound and you’re sending some wave
ψ1 that travels through space. Then, I turn you off and I turn on another
speaker; let’s say the speaker emits another sound described by ψ2. If you
and the speaker emit sound at the same time, then the air disturbance will
be simply the sum ψ1 + ψ2. So, if one cause produces one wave and a sec-
ond cause produces a second wave, then, when both are turned on, the
wave they produce will simply be the sum. This is the principle of super-
position, and it follows from the linearity of the wave equation. From here
until the end of the chapter we will analyze a variety of situations where
we add two waves.

The simplest problem is the following. Pick a certain spot, say x =
0, and listen to two plane waves that are now functions of just t: ψ1 =
A cosω1t and ψ2 =A cosω2t. I’ve chosen the two waves to have the same
amplitude, but not necessarily the same frequency. So, the signal you will
hear will be

ψ = ψ1 + ψ2 =A cosω1t+A cosω2t. (19.26)
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Now, you can use the trigonometric identities and figure out what hap-
pens, but I want you to think a little bit first. Think about these two waves.
If they have the same frequency, it’s trivial, right? If ω1 = ω2 = ω, then
ψ = 2A cosωt. That just means they reinforce each other. At every instant
you get double the ψ you got before. Say the frequencies are not equal.
Initially they are in step. This cosine is 1, and that cosine is 1, and they add
up to 2A. As time goes by, ω1t and ω2t start differing, and the cosines are
not in step anymore. After a while the two cosines are off by half a cycle,
or the angles inside them differ by an odd multiple of π . Then they will
completely cancel. If you wait longer they will again be in step and so on.
One way to think about it is to imagine two runners going around on a cir-
cular track. They start out together, but they have slightly different speeds.
As they go around, one starts lagging behind the other, and they will be on
different parts of the circle. If you wait long enough, they will again line up
at the start line but with one difference: the fast runner will have done an
integer number of laps more than the other.

Consider two frequencies ω1 =2 and ω2 =3, which are small enough
for us to follow the oscillations, as depicted in Figure 19.2. At t = 0 they
are in step (runners start off together), at t = π their phases differ by π

(runners are on opposite sides of the track) and they cancel, and finally at
t = 2π they are in step (the slow one has done two laps and the fast one
three). This repeats every 2π seconds.

Figure 19.2 Superposition of two waves of unit amplitude A= 1 and angular
frequencies ω1 = 2, and ω2 = 3. At t= 0 they are in step, at t=π their phases
differ by π and they cancel, at t= 2π they are in step, and this repeats every 2π
seconds.
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Next consider the case where ω1 and ω2 are large but differ by a tiny
amount. Now we are better off invoking

cosA+ cosB= 2 cos
[
1
2
(A+B)

]
cos

[
1
2
(A−B)

]

in Eqn. 19.26 to find

ψ(t)= 2A cos
[
1
2
(ω1 − ω2)t

]
cos

[
1
2
(ω1 + ω2)t

]
. (19.27)

Suppose for example ω1 −ω2 = 2 while ω1 +ω2 = 2 · 106. Then Eqn. 19.28
reads

ψ(t)= [2A cos t] cos
[
106t

]
. (19.28)

In the time it takes the first cosine to finish one cycle, the sec-
ond has completed a million. Conversely, in the time it takes the second
cosine to finish 100 cycles, the first has hardly changed. Thus we can treat
[2A cos t] as the slowly varying amplitude for the second rapidly oscillat-
ing cosine. The rise and fall of this amplitude is called the beat and can
be picked up by the ear. Figure 19.3 shows what happens when ω1 = 41
rads/s and ω2 = 39 rads/s. Notice that the envelope of the rapid oscilla-
tions is itself a cosine and that the time T between two maxima is π and
the beat frequency is ωb = 2π

T = 2 = ω1 − ω2. You might have thought it
should be ωb = 1

2 (ω1 − ω2), based on the argument inside the first cosine
in Eqn. 19.28. It is true that only after a time 2π the amplitude returns
to 2A, and that after a time T = π it returns to −2A. However, −2A is
still an amplitude maximum, just as loud as 2A. Alternatively, think of the
time period of the beats as the interval between two successive zeros of the
amplitude. These occur twice in every full cycle of cos

[ 1
2 (ω1 − ω2)t

]
.

Piano tuners use beats as follows. They hit the tuning fork, and it
vibrates at some prescribed frequency, say f = 440 Hz. Imagine that your
piano is slightly off; maybe it’s at 438 Hz. The beat frequency will be 2Hz.
The tuner will keep fiddling with the piano until the beat (not the total
sound) disappears.
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Figure 19.3 Beats due to two waves of unit amplitude A= 1 and large but
nearly equal angular frequencies ω1 = 41,ω2 = 39. The (angular) beat frequency
is supposed to be ωb = 41− 39 rads/s, which means a time T = 2π

ωb
=π between

beats, in accord with the figure.

19.4 Interference: the double-slit experiment
Now we turn to a more complicated problem where I’m going to add two
waves. In the case of beats I sat at one location and added two waves com-
ing to me as a function of time. Now I am going to see how two waves
interfere at different points in space in what is called the double-slit exper-
iment, depicted in Figure 19.4. It shows a huge tank of water as seen from
the top. There is a vibrating source E at the left end that emits water waves.
These wavefronts will be concentric circles near the source, but if you go
far to the right of the source, you can treat the wavefronts as just paral-
lel lines. The figure shows three crests and two troughs, the wavelength λ

and amplitude A. Next these waves hit an impenetrable barrier with two
slits in it, labeled S1 and S2. These two slits will themselves start generating
their own waves that radiate out from them to the right. The figure shows
a crest and trough from each using solid and dotted lines.

Suppose you have a detector of water wavesD (say a floating piece of
cork skewered on a vertical rod), which you can place anywhere along the
right side of the rectangular experimental region tomeasure the amplitude
of water waves. What amplitude will it measure at different points?

First take a pointM exactly midway between these two slits, lying on
the perpendicular bisector of the line joining the slits.What are you getting
here? You are getting a signal from each slit. They will arrive in step or in
phase, because they were both generated by the same plane wave from the
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Figure 19.4 The double-slit experiment, from left to right. We are looking
down at a tank of water. Waves are emitted from E, far enough away that the
crests and toughs are parallel lines. Three crests (solid lines) and two troughs
(dotted lines) are shown. They hit the two slits S1 and S2, and the semicircular
waves emerge from the slits. A few maxima (and minima) are shown by solid
(and dotted) lines. The thin and thick notches on the lines marked L1 and L2

correspond to maxima and minima along these two paths. The interference
pattern at the far right is measured by a detector D, which can slide along the
back wall. The pointM is a maximum and X is a minimum. The maxima and
minima measured by the detector refer to the variation of the amplitude squared
due to interference of two waves, not to be confused with the oscillations of ψ
itself, as shown to the left of the slits along with its λ. The amplitude squared
with just one slit open is shown by a dark dotted line and is assumed to be
essentially constant.

left that hit the two slits in phase and have traveled the same distance to
reach M. So, when a crest from S1 reaches M, a crest from S2 will reach
M, and likewise for the troughs. Assuming each slit generates a wave of
amplitude A, their sum at M will have an amplitude 2A. (We ignore the
slight decrease in amplitude as the waves spread out from the slits.) So the
water will be very choppy atM. If you shut off one slit, the amplitude will
go back to just that from one hole (shown by the nearly constant dotted
line). It makes sense that two open holes give you 2A.

But consider the point X above M, where the figure shows a snap-
shot of the two waves arriving from the two slits, with crests and troughs
indicated by thick and thin markers. Let us denote the distance from the
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two slits to X by L1 and L2. Whereas at M we had L1 = L2 by symmetry,
that is not so at X. At X, the difference L1 − L2 = λ

2 . As you know, between
every two crests there is a trough where ψ is minus the amplitude, unlike
at the crest where ψ is equal to the amplitude. So when L1 − L2 = λ

2 , when
a crest from S2 arrives, a trough from S1 arrives, canceling it. Later, when
a trough from S2 arrives, a crest from S1 cancels it. In fact, at every instant,
whatever signal comes from S2, minus that will come from S1. This is the
case because a path difference of λ

2 corresponds to a phase difference of π
in the function cos 2πx

λ
. The water will be completely still at X at all times.

The amplitude there will be zero. This point X is called an interference
minimum, whileM is an interference maximum. AtM the interference is
constructive, and at X it is destructive.

That point X is very interesting. Look what the theory is telling you.
It says that if you sit there, the water, which was bobbing up and downwith
just one slit open, won’t move at all when there are two slits open. It’s the
property of waves: two waves can lead to nothing, but one wave cannot—
it has nothing to neutralize it. This is something you have to get straight.
For example, if a hole in your mosquito net is letting mosquitoes in, it will
not help to make another hole. Interference does not exist for particles like
mosquitoes, because mosquitoes are never negative in number.

Now, if I go further up the right side of the rectangle, I reach a point
where the difference L1 − L2 is the full wavelength, and then I’m back to
being in step. Of course, a full wavelength means that the 13-th crest from
S1 and the 14-th from S2 arrive in step, but we don’t care, as long as a crest
comes with a crest; we have constructive interference. As we move up and
down the back wall, the amplitude of the sum of the twowaves oscillates, as
indicated by the solid wiggly line, which has a maximum atM, a minimum
at X, and so on. Remember that the maxima and minima measured by the
detector refer to the variation of the amplitude (squared) due to interfer-
ence of two waves, not to be confused with the oscillations of ψ itself, as
shown to the left of the slits along with its λ. (The dotted line is the ampli-
tude squared due to just one slit, and it is roughly constant. At a point
where this amplitude is, say, 5 cm, the water goes up and down by 5 cm.)

For those who want to go a little deeper, the semi-circular waves
emanating from the slits have the form

ψ1(r, t)=A cos(kr1 − ωt) and ψ2(r, t)=A cos(kr2 − ωt)

(19.29)
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where r1 and r2 are the distances from the slits to the point r we are inter-
ested in. (Actually, in two dimensions, A itself falls off with distance, but
that is a much smaller effect, which we ignore.) At any given time, the
lines of constant phase for ψ1 and ψ2 are semi-circles centered at S1 and S2
respectively, because the phase depends only on r1 and r2. Pick a point for
the detector. It has some value of r1 = L1 and r2 = L2. At any given time t
we can ignore the time-dependent phase ωt common to both waves. Their
phase difference is then simply k(L1 − L2) = 2π

λ
(L1 − L2). It follows that

a path-length difference mλ, where m= 0,±1,±2. . . , causes phase differ-
ence of ±2πm and hence constructive interference, while a difference of a
half-integer wavelength causes a phase difference equal to an odd multiple
of π and hence destructive interference.

The exact condition for destructive and constructive interference is

L2 − L1 =mλ m= 0,±1,±2 for (19.30)
constructive interference

L2 − L1 =
(
m+ 1

2

)
λ m= 0,±1,±2 for (19.31)

destructive interference.

To find the point of constructive or destructive interference is a mat-
ter of simple geometry. For example, to locate the first point of destructive
interference, you measure the distances from the slits, using Pythagoras’
theorem, take the difference, and set it equal to λ

2 . However, we often
employ the following approximation for computing L2 − L1, when the
back wall and detector are at a distance far greater than d and λ. Then
the lines going from the slits to the detector are nearly parallel, as shown
in Figure 19.5. Say they leave at an angle θ from the forward direction to
reach the detector. Then you can see that the extra distance from the lower
slit is d sin θ where d is the distance between the slits. (The equality of the
two θ ’s in the figure should be familiar from the dark days of the inclined
plane.) Thus we may set

L2 − L1 = d sin θ (19.32)

in Eqns. 19.30 and 19.31. Given the values of d and λ, one can say at
what angle θ one will observe the first minimum and so forth. Conversely,
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Figure 19.5 Computing the path difference in the double-slit experiment when
the detector is very far from the slits. The dotted lines are the troughs.

given d and the angle θ at a maximum or minimum, one can deduce the
wavelength λ.

In the early nineteenth century it was not clear whether light was
a wave or a stream of particles. Thomas Young performed a double-slit
experiment with light that showed an interference pattern and thereby
nailed it: it is impossible to reduce the number of particles coming to a
point like X (to zero) by opening a second slit. He also managed to deduce
the wavelength from knowing d and θ , without knowing exactly what
medium was supporting light waves and what it was that was oscillating!

19.5 Standing waves and musical instruments
I take a string, attach one end to a wall, and start shaking the free end. Let’s
say I shake it just once and send a pulse moving to the right as in part A
of Figure 19.6. When this blip gets to the wall it finds the string cannot
vibrate there. Thus the wall will exert a suitable force to ensure that the
signal the wall sends out, along with the signal I send in, add up to zero
there. The result of that is that the signal generated by the wall becomes
the reflected wave, reversed in direction and sign as shown in part B.

Here is another way to understand the reflected wave. Suppose there
is no wall, and I live to the right of where it used to be. I see you send a
blip to the right as in Part A of the figure, and I manufacture an inverted
mirror image of that traveling toward the reflection point R, as shown by
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Figure 19.6 Part A: The blip I generate (up-and-down arrow at left) goes to the
wall at the right (solid vertical line). Part B: The blip gets reflected from the wall
at point R, reversed in direction and in sign. Part C: There is no wall, but a blip
comes from the right and cancels the original blip at the wall for all times. The
former keeps moving to the left and becomes the reflected blip of part B.

the dotted curve in part C. I arrange it so that when the two blips cross,
they exactly cancel at the putative wall location for all times. Then, they
go through each other (by the superposition principle), and my pulse will
cross over to the left as your reflected wave. Because there is no movement
of the string at R under this combined influence, it means that even if I
clamp the string there with a wall that doesn’t allow the string to move, it
doesn’t change the outcome. That is how we convince ourselves that the
incoming pulse gets reflected as described.

Now I want to study, not a single incoming one-shot pulse, but an
incoming periodic wave ψi =A cos(kx−ωt). A continuous signal goes in,
and how does it come out? It comes out as

ψr(x, t)= −A cos(−kx− ωt)= −A cos(kx+ ωt) (19.33)

where I’ve chosen the wall to be at x= 0 and reversed the amplitude and
the direction of motion of the incoming wave to get the reflected wave. I
keep sending stuff to the wall, and the wall keeps reflecting that back to
me. Both waves coexist in the region to the left of the wall to yield

ψ(x, t)= ψi + ψr = 2A sin
[
kx

]
sin [ωt] using (19.34)

cosx− cos y= 2 sin
[
x+ y
2

]
sin

[
y− x
2

]
. (19.35)
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So the string oscillates with a frequencyω everywhere, but the ampli-
tude at a point x is 2A sinkx. This is called a standing wave. Whenever
kx= 0,−π ,−2π . . . there is no vibration. (Remember x is negative to the
left of the wall.) Such points are called nodes. Exactly in between two nodes
at kx= − π

2 ,− 3π
2 , . . ., et cetera, are anti-nodes where the amplitude has the

maximum of 2A. Figure 19.7 shows a standing wave on a string for the
case A= .5 and k= 1 or λ = 2π . The vibrating string is a blur, shown by
the shaded regions. Note that the distance between two nodes is λ

2 .
If you grab a node with your fingers, it won’t matter because the

string was not planning to vibrate there anyway. You can also grab two
nodes and it still will not matter. Using this fact, we can solve the follow-
ing problem of a string that is clamped at both ends, x=0 and x=L. What
are the possible frequencies of vibration? To solve this, we first ask, “What
are the possible standing waves?” The answer: the string length L has to be
equal to an integer multiple n of 1

2λ. But the string length has already been
given to us as L, so it is the possible values of λn or kn, labeled by n, that
have to adjust themselves to obey

L= n
λn

2
n= 1, 2, 3, which means kn = 2π

λn
= nπ

L
(19.36)

ωn = knv= nπv
L

(19.37)

fn = nv
2L

≡ nf1 (19.38)

Figure 19.7 Nodes and anti-nodes on a string with A= 0.5 and k= 1 or
λ = 2π . The incoming and reflected waves form a standing wave, with nodes at
0,−π ,−2π , . . . and anti-nodes at − π

2 ,− 3π
2 , . . . The vibrating string is a blur,

shown by the shaded region.
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where I have used ω= vk and where f1 is called the fundamental frequency.
The displacement of the string in a mode of vibration labeled by n is

ψn(x, t)=A sin
[nπx

L

]
sin

[
nπvt
L

]
, (19.39)

which I got from Eqn. 19.34 using ωn = knv. The first three modes are
shown in Figure 19.8.

A string clamped at two ends can only vibrate in either the funda-
mental frequency ω1 = πv

L or an integer multiple of it, where the integer
gives the number of anti-nodes over the length of the string.

Now, this reasoning can be bodily lifted for the following problem.
Take a tube of length L, blocked by walls at the two ends. The longitudinal
sound wave can go back and forth and form standing waves. The equation
obeyed is still the wave equation, and the two ends are again nodes because
the walls will not permit any longitudinal vibration there. We can use the
same picture as in Figure 19.8 and the frequencies ωn will be given by the
same formula. The only subtlety is that now the graphs in Figure 19.8 do
not represent transverse motion of the molecules, but instead they mea-
sure the longitudinal displacement from equilibrium. If the height of the
graph is 2mm somewhere, it means the molecules there are moving back
and forth (and not up and down) by 2mm. Out of habit, we plot every-
thing on the y-axis, but that doesn’t mean the motion is perpendicular to
the tube.

Figure 19.8 The plots of A sin
[
nπx
L

]
for n= 1, 2, 3 and L=π . The mode with n

half-wavelengths has a frequency ωn = nπv
L .
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Figure 19.9 From the top: First two modes of vibration of a tube of length π

closed at the right end and open at the left end followed by the first mode of a
tube of length π open at both ends. You can read off the λ’s by inspection and
deduce the frequencies from v= λf .

Here is a challenge. I take a tube, closed at one end and open at the
other, like a Pepsi bottle, and blow into it. I hear a whistle at a certain fre-
quency. What determines that? Because I’m making the noise at the open
end, it is an anti-node. That is where the amplitude will be the biggest, and
of course there is a node at the closed end where longitudinal motion is
impossible. So, what pattern can I draw? I want maximum vibration at the
open end and nothing at the other end. The lowest one I can draw looks
like the top part of Figure 19.9. Because we see a quarter of a cycle on
the interval of length L, we deduce λ = 4L and the frequency f = v

4L . The
middle picture corresponds to f = 3v

4L . When one end is open and one end
is closed, the frequencies are odd multiples of the fundamental frequency
f1 = v

4L .
Finally, consider a tube open at both ends, with anti-nodes at the

ends. The vibration is depicted in the lowest part of Figure 19.9. Clearly
λ= 2L and f = v

2L . And again, you will find here all frequencies are integer
multiples of the fundamental. So, the story is this: as long as the two ends
are both open or both closed (both nodes or anti-nodes), all frequencies
are integer multiples of the fundamental one. If one end is open and the
other is closed, you’ll get odd multiples of the fundamental.

A challenge: How does a trumpeter vary the pitch by varying the
length of the vibrating air column or a violinist by moving her fingers?



chapter 20

Fluids

20.1 Introduction to fluid dynamics and statics
This is a relatively simple topic. If you took any kind of high school
physics, you would have seen fluids. Whenever I say fluid, you are free
to imagine water or oil.

20.1.1 Density and pressure

Let us begin with a basic property of the fluid, the density, denoted by ρ.
The density of water is ρw = 1, 000 kg/m3. The more subtle concept is the
one of pressure. If you dive down to the bottom of a swimming pool, the
pressure goes up. What is the formal definition of pressure? That’s what I
want to explain.

If we pick a point in the fluid and say the pressure there is such and
such, we mean the following. Say you get into that fluid and you want to
carve out a little space for yourself, maybe a glass cube, and you want to
live inside that cube. The water is trying to push you in from all sides and
compress this cube. You therefore have to push out on all the walls. If the
force you exert on a wall is some F and the area of that wall is A, that ratio
is the pressure. The pressure will not depend on which wall you choose,
provided the cube you are in is infinitesimal. The pressure is an intensive
measure of how hard the water is trying to push in. Even if you don’t insert
the cube, that pressure is still there, but one way to measure the pressure

335
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Figure 20.1 A gas in a cylinder with a massless piston of area A on top. The
massm exerts a force F=mg and a pressure P= mg

A Pascals.

is to try to go in there and push the fluid out and ask how hard it pushes
back. The unit of pressure is N/m2 and is called a Pascal.

Here’s another example of pressure. You have a gas inside a cylinder
as shown in Figure 20.1, with a massless piston at the top. The pressure
of the gas and the pressure of the outside world are the same. But if you
want to increase the pressure in the gas, you can put some extra weights
on the piston. That mg will push down, and mg divided by the area of
the piston A will be extra pressure P = mg

A Pascals that you apply. That’s
also the pressure of the gas if there is no atmosphere outside. If there is
atmosphere outside, the total pressure is the atmospheric pressure plus
mg
A . The atmospheric pressure is everywhere. So, when you push down on
the piston to compress the gas further, you are adding to the atmospheric
pressure this extra force divided by area. The total is called the absolute
pressure, and the extra bit due to the mg is called the gauge pressure. For
example, when your car has a flat, the bright side of it is that the pressure
inside the tire is not zero; it equals the atmospheric pressure. But that does
not help you because the same pressure is also outside. When you stick a
gauge in the valve stem and you measure something, say 32 psi, that’s the
gauge pressure.

20.1.2 Pressure as a function of depth

Pressure is a condition in a fluid. One important property of pressure in a
fluid is that all points at a given depth have the same pressure. We under-
stand that as follows. I imagine a little horizontal cylindrical section of the
same fluid, shown by dotted lines in the lower part of the container in
Figure 20.2. Remember this is not a real cylinder. This is the same fluid,
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Figure 20.2 The horizontal dotted cylinder marks a part of the fluid in
equilibrium under forces from the left L and right R. The vertical dotted cylinder
marks a part of the fluid in equilibrium under forces from the top T and
bottom B and its weightMg.

and I have mentally isolated a part of the fluid that looks like a cylinder;
this mental image is represented in dotted lines.

Can the pressure on the two sides—L and R—be different? No,
because if the pressure on the left were bigger than the pressure on the
right, the pressure times area on the left would exceed the pressure times
area on the right, and the fluid would move to the right. But it’s not doing
anything. It’s in equilibrium, and the only way that can happen is if it is
being pushed equally from both sides. So, the pressure cannot change at a
given depth.

Now let’s take a cylinder that is vertical, with the top and bottom
labeled T and B. It has a base area A and height h. The argument I just
gave to exlain why the pressures at L and R in the horizontal cylinder had
to be equal will now tell you that the pressures at the top T and bottom
B cannot be equal. If they were equal, acting on equal areas, they would
produce a net upward force of zero, and there would be nothing to keep
the cylinder of water from falling down. So there must be a net upward
force to equal the weight of that cylinder of the fluid. We are now going to
calculate the pressure difference using this notion.

Let’s call the pressures P1 and P2 at depths h1 and h2 and equate the
net upward force to the weight of the marked body of fluid, which is g
times its massM= ρAh:

A(P2 − P1)=Mg = ρAhg = ρAg(h2 − h1), (20.1)
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which may be rewritten as

P2 = P1 + ρg(h2 − h1). (20.2)

The areaA cancels out, as it should, because the pressure difference cannot
depend on what body of water I choose to focus on.

How about forces on the sides of the cylinder? They cancel at every
height, because at every height the push from the left and right is equal.

It’s standard to take 1 to be the point right at the surface (so that h1 =
0), to take point 2 to be any point inside, and to call the depth of that point
simply h. Thus h increases as we move down the fluid. The pressure at any
point in the fluid is the pressure at the top, which is usually atmospheric
pressure PA, plus ρgh:

P= PA + ρgh. (20.3)

The pressure at the surface of the lake is due to the atmosphere. If you dive
to some depth h, the pressure goes up by ρgh. If you go to the bottom of the
ocean, there will be an incredible amount of pressure outside, while inside
there is just the atmospheric pressure in your lungs. That’s why the human
body cannot survive at the bottom of the ocean. That’s why a submarine
must be engineered to withstand the pressure difference. But fish don’t
have that problem, because fish are breathing the water. The water is going
into their system and pushing out with the same pressure as the water
outside.

Now, how about atmospheric pressure? The atmospheric pressure
arises because we are ourselves living in the bottom of a pool, but a pool
filled with air. The density of the air above our heads decreases with alti-
tude and essentially vanishes beyond a height h� 105 m. The atmospheric
pressure at the bottom of this pool, due to the entire air column above,
is PA = 105 Pascals. So, we are living at the bottom of a pool where the
pressure is 105 Pascals, relative to interstellar space. That pressure doesn’t
kill us because it acts both from the outside pushing in and from inside,
pushing out. But you must have seen the dramatic experiment where a
can is heated until some of the air expands and escapes, and then the can
is sealed and cooled: the resultant drop in pressure is big enough to cause
the can to implode.

Now, ask yourself the following question: If our atmosphere, instead
of being a column of air, was a column of water, how high would it be to
exert the same pressure? The answer is
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105Pa= ρwgh. (20.4)

The density of water is ρw = 103 kg/m3, and let’s pretend g = 10ms−2.
Cancel all the powers of 10, to get h� 10m, or roughly 32 feet.

Now we are going to put the formula P=P0 +ρgh to work. The first
thing you can do is to build yourself a barometer. The barometer tells you
what the pressure is right now. When I said that the atmospheric pres-
sure is 105 Pa, I was using average pressure. Atmospheric pressure doesn’t
really stay locked at that value. Each day there are fluctuations. That’s why
the weather report tells you the pressure is going up or the pressure is
going down. Here is one way to measure atmospheric pressure. You take
a container, fill it with some liquid, take a test tube, evacuate it completely,
and stick it head first into the fluid as shown in Figure 20.3. There is a
complete vacuum at the top of the tube. The atmosphere is pushing down
on the surface (point X), so the fluid will rise up to some height h. What’s
going to be the height? It will be such that the pressure at the point Y , level
with the fluid outside, equals the pressure at the surface of the fluid outside
the tube (point X). We are simply equating the pressure at two points X
and Y , which are at the same height.

NowX is at the atmospheric pressure PA, which we are trying tomea-
sure. At Y the pressure is the zero pressure at the top of the tube, plus the
ρgh of the fluid. Thus

PA = 0+ ρgh. (20.5)

Figure 20.3 A barometer. The pressure at X, the atmospheric pressure PA,
equals the pressure at Y , which equals 0 from the evacuated region, plus ρgh of
the vertical column.
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So, if you build this gadget, this barometer out of water, the water col-
umn will rise to the height of roughly 32 feet. But nobody wants a gadget
32 feet high, so what you use instead is mercury, because it’s very dense.
You want to get the same atmospheric pressure, but you want to have a
bigger ρ and a smaller h, which is close to 760 millimeters. That’s why the
weather guy says that the pressure today is so many millimeters, that the
mercury is dropping, and so forth. Now, I’m not sure why they bother to
give the numbers, because for most of us, those numbers don’t mean any-
thing. Here’s a number: 746 millimeters. Does it speak to you? Not to me.
It’s not like saying that the temperature today it is 67 degrees Fahrenheit,
for which I have a real feeling. So the weather report on millimeters of
mercury goes through me like a beam of neutrinos. You can use any fluid
you like, but you have to remember your choice. Thus, if the reading is
760 millimeters, be sure it is mercury, because if it’s water the person is
talking about, you are in serious trouble.

Imagine you are trying to drink from a straw. Now, remember the
fluid is now water. It’s not mercury now, because you’re doing a different
experiment. You know that when you drink from a straw you create a
partial vacuum in your mouth, like the top of the evacuated test tube in
the figure, except the pressure is not zero in your mouth—it’s just lower
than the atmosphere. So, you have to reduce the pressure more and more
in your mouth until this fluid can climb up to your mouth. If you just want
the water to make it to your mouth, the reduced pressure you need in your
mouth depends on the height of the straw. If you want to drink water from
a well that is more than 32 feet deep, you are out of luck. Even if your
head is a complete vacuum, you cannot get the water to climb more than
32 feet.

Next, I give you a fluid that doesn’t mix with water and I tell you to
find its density. There are many ways to do this. One is to find the mass
and volume of that fluid and divide. But here is another option. You take
what’s called a U-tube, shown in Figure 20.4. No, that’s not where they post
all the embarrassing videos, or the lectures on which this book is based; it
is a physics contribution to pop culture that somehow did not do as well.
Let’s say you fill it up with one fluid in one leg and the other fluid in the
other: oil on the left and water on the right. The figure is supposed to
tell you right away that oil is less dense than water. We can quantify that
by equating the pressure at two points at the same depth, say along the
dark dotted line. The pressures must be equal at all points on that line: if
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Figure 20.4 A U-tube, used to find the density of a fluid relative to another
with which it does not mix, such as oil (left) and water (right). Equating the
pressures at two points that lie at the same height in the liquid (on the dark
dotted line), one deduces ρ1gh1 + ρ2g�= ρ2gh2 + ρ2g�. One can use the light
dotted line as well for comparison by subtracting ρ2g� from both sides.

we isolate an imaginary horizontal cylinder there, it should not be pushed
sideways. So we conclude

PA + ρ1gh1 + ρ2g� = PA + ρ2g(h2 + �). (20.6)

Canceling PA and ρ2g� from both sides, we find the desired relation
between the densities

h1
h2

= ρ2

ρ1
. (20.7)

If you know the density of one fluid, you can find the density of the other.
Notice that even though you cannot connect points lying on the light

dotted line with a cylinder of water, you can equate pressures there by
starting at the solid dotted line and working your way up the same fluid.
But you cannot compare the pressures at two points on a horizontal line
above the light dotted line, say a line that passes the top of the water
column, because it does not pass through the same fluid.

20.2 The hydraulic press
Now for yet another application of the fact that the pressure in a fluid
is equal at two points at the same height: the hydraulic press. Figure 20.5
depicts two pistons of different areas A1 and A2 connected as shown and
filled with a body of some incompressible fluid, which means its volume
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Figure 20.5 A hydraulic press that amplifies the force is made of two cylinders
of different cross sectional areas A1 and A2, connected by a horizontal segment.
Given P2 = F2

A2
= F1

A1
=P1, the equality of the pressures, and A1x1 =A2x2 (the

equality of volumes displaced in the two sides), we find F2
F1

= A2
A1

= x1
x2
. A small

force F2 acting on the right cylinder pushes the incompressible fluid by a distance
x2, and this leads to large force F1 on the left that moves the piston over a smaller
distance x1. Energy is conserved because F1x1 = F2x2, as in a lever.

cannot be changed by changing pressure. Now, no liquid is really incom-
pressible, but close approximations exist, like water. On the left piston will
be some object I want to lift by applying a force on the right piston.

When I push down on the right piston with a force F2, what happens
at the other side? If these pistons are at the same height, we know that
P1 = P2. However, this equality is essentially true even if the pistons move
a bit at the two ends, because most of the pressure is due to the forces
on the pistons and not the ρgh contribution of the fluid. On equating the
pressures

F2
A2

= F1

A1
which means F1 = F2

A1

A2
. (20.8)

Suppose we have an elephant at the left of weight F1, and I want to
lift it by applying a force F2 at the right. If

A1
A2

=1000, if I apply one Newton
at the right, I’ll lift a 1000–N elephant on the other side.

But this is not the oldest trick in the book. An even older one,
invented by cave people, is that if you have a lever you can amplify the
force. But you must know from that example that you don’t get something
for nothing. In other words, when I lift the elephant, the fact that F1 �= F2
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is perfectly okay. But the work I do at the right must be the work delivered
at the other side; that is the law of conservation of energy. The work I do
is the force multiplied by the distance, and the force in turn is the pressure
times area. So we want to confirm that

F1x1 = F2x2 or P1A1x1 = P2A2x2. (20.9)

Because P1 = P2, we require that A1x1 = A2x2, which merely equates the
volume displaced at the two sides. This means the total volume of the
fluid is unchanged, which in turn is assured by incompressibility. I can-
not get more joules out than in, using any device. But the press is still
useful, because I may be willing to move a whole meter at the right to lift
the elephant by one millimeter.

This is also how the brake in your car works. You press the brake
pedal, which pushes on a narrow cylinder filled with brake fluid. You push
it quite a bit, several centimeters at your end; at the other end is a broad
cylinder whose piston pushes on the drum, retarding the rotating wheel.
It moves a very tiny amount but exerts an enormous amount of force. The
brake fluid has the same pressure at both places, but the force you apply
with your foot is much, much smaller than the force that the drum will
exert on the rotating wheel. (In practice, this effect is compounded by an
intervening lever that amplifies the force exerted by your foot.)

20.3 Archimedes’ principle
WhenArchimedes was taking a bath, he noticed that something immersed
in a fluid seems to weigh less. Imagine that you have attached an object
to some kind of a spring balance and weighed it so that the −kx of the
spring was the mg of the object. If you do the same thing again with the
object now immersed in a fluid, you will find it seems to weigh less. And
the question is, “How much less?” Archimedes’ answer is very simple. The
weight loss equals the weight of fluid displaced.Now, how do you show that?
One way, which I like, is as follows. Look at Figure 20.6, which shows an
irregular object, say a stone, of weight Mg suspended in a fluid. Now, if
the thing hanging here is itself a chunk of the same fluid shaped like that
stone, you will not have to do anything, because that chunk of fluid can
float at that height for free. But if you now take that chunk of fluid out and
put a stone there of the same shape, the rest of the fluid doesn’t know what
you’re doing. It applies the same force that it would to support its own
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Figure 20.6 The irregular object of massM displaces a volume of liquid equal
to its own. The loss in its weight is the weight of that body of liquid. This is more
readily seen for a regular object like the cylinder shown to the right. At the top
left is a boat whose weight equals the weight of the liquid displaced by the
fraction immersed.

kin. Namely, the rest of the fluid is in a configuration ready to support that
amount of fluid. So, if you took that fluid out and put in something else
with the same shape, the fluid will apply the same amount of force. The
rest of the weight is of course your problem. You provide the remaining
force, the reduced weight.

Now, one formal way to prove Archimedes’ principle is to consider
a cylindrical object of area A and height h as shown in Figure 20.6. What
is the net force of buoyancy? It’s PB, the pressure at the bottom times the
area, minus PA, the pressure at the top times the area. We have already
seen the difference in pressure is PB − PA = ρlgh where ρl is the density of
the liquid. The net force of buoyancy is then

Fbuoyancy = ρl · hA · g, (20.10)

which is the weight of the liquid displaced. You can extend this result to
irregular shapes by imagining them to be made up of many arbitrarily thin
cylinders of various lengths glued together.

So, basically the body weighs less in water because the lower part of
the body is being pushed up harder than the upper part of the body is being
pushed down, which happens because the pressure increases with depth.

Figure 20.6 assumes the objects immersed are made of materials like
iron. The weight of that chunk of iron will be more than the weight of
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the water displaced, and you will have to provide the difference to hold it
up. But suppose the object was not made of iron, but made of cork. If it’s
cork, it won’t want to be there, under water. Right? Because then the force
applied by the water is more than the weight it takes to support it. So, the
cork will bob up to the surface. The same goes for the human body, as the
Mafia has figured out: if you want the body to stay under water you will
have to add weights to it in the form of concrete shoes. Or, closer to home,
it’s like a rubber ducky in your bath. If you want to keep the rubber ducky
under the water level, you have to hold it down. You relax for a moment,
and it will bob right up to the surface.

Suppose you do not hold it down. We know some fraction f of the
volume V of the object O (for example, the rubber ducky) is going to be
inside the water and the rest outside. You can already guess what f is, but
let’s prove it. Equating the weight of the water displaced to the weight of
the object gives us

ρw(fV)g = ρoVg or f = ρo

ρw
. (20.11)

In other words, if the floating material has 90% the density of water,
90% of it will be submerged. That’s exactly what happens with ice, which
has a smaller density than water. Normally, when you cool something it
decreases in volume and the density goes up, but water actually expands
slightly when you cool it below 4◦C. That’s why ice floats on water and why
icebergs are mostly under water, and why we have movies like Titanic.

Archimedes’ principle has many applications. Say we want to build a
boat of steel. Now, please don’t say, “How do you make a steel boat float in
water?” It’s not a solid steel boat. If you are thinking about a solid steel boat,
you should get into another line of work. The boat is made out of steel, but
it’s completely hollow. Look at the floating boat in Figure 20.6. You can
easily calculate how deep this one should sink to balance its weight. If you
give me the weightMg of the boat and the area A of the base, I’ll tell you it
will sink to depth H such that

ρw(HA)g =Mg. (20.12)

Then, of course, you can load some cargo, and the boat will sink evenmore
to displace enough water to equal its weight plus that of the cargo. How
much cargo can the boat take?With the maximumweight of the cargo, the
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boat is infinitesimally away from being fully immersed, that is, the volume
of water displaced equals that of the hollow boat.

20.4 Bernoulli’s equation
This is the first time we will consider fluids in motion. Once again I will
only invoke F=ma, but we have to be clever, as when wementally isolated
a chunk of water and demanded that it be in equilibrium to find out how
the pressure varied with depth.

Figure 20.7 is the standard picture in all the textbooks. This is the best
we have been able to come up with after three hundred years. The incom-
pressible fluid of density ρ is now flowing in a pipe. We pick two points
along the flow labeled 1 and 2, and we focus on the fluid in between. The
cross section of the pipe is changing, with values A1 and A2; the velocity
has values v1 and v2; the altitude (from some reference height) has values
h1 and h2; and finally the changing pressure has values P1 and P2. Remem-
ber that in the following discussion h1 and h2 are heightsmeasured upward
from some reference level, in contrast to the h used earlier (in formulas like
P = PA + ρgh), which stood for the depth measured downward from the
surface.

We are going to find a relation between the above-mentioned quan-
tities at two locations 1 and 2 using the law of conservation of energy.

20.4.1 Continuity equation

First a purely kinematical result. If the fluid is incompressible it obeys the
continuity equation, which says that the rate of volume flow in at 1 equals
the rate of flow out at 2. What comes in has to go out of this fixed volume
(between points 1 and 2) because the density cannot change. How much
water do you think comes in through the pipe at point 1 in a time dt? Can
you visualize in yourmind that, in time dt, the fluidmoves a distance dx1=
v1dt at the left end and therefore a volumeA1v1dt enters at the left end, and
likewise at 2 a volume A2v2dt exits? Equating the input and output rates
and canceling dt we find

A1v1 =A2v2, (20.13)

which is called the continuity equation.
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Figure 20.7 The flow of a fluid along a pipe of varying cross section, pressure,
and height. We focus on the part initially between cross-sectional areas A1 and
A2. In a time dt, it is left unchanged but for a sliver of volume A1dx1 =A1v1dt,
which has been removed from the left and appended to the right end as a sliver
of equal volume A2dx2 =A2v2dt.

Think of cars going down a freeway as the freeway gets narrow.
Unlike in real life, let us not allow the cars to pile up. We want the density
of cars to be the same. That means if there’s a narrow section of the road,
the cars have to go faster to maintain the traffic flow. It follows that if I
go to one checkpoint and see how many cars pass me per second there,
the same number will cross anywhere else. So the speeds will be in inverse
proportion to the width of the road (or area in the case of the pipe) so that
the product remains the same.

Now, we are going to find a constraint between the variables at 1 and
2. Think about what is going to happen before you derive any formula.
Does it make sense to you that, left to itself, the fluid will slow down on the
way to the top, because it’s got to work against gravity? Therefore, there’s
going to be some connection between the height and the velocity of the
fluid, just from the law of conservation of energy. But you must remember
that if there are external forces on a system, E = K + U is not fixed but
changes by an amount equal to the work done by external force, which
in our case is exerted by the rest of the fluid on either side of the chosen
volume:
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E2 −E1 = Work done by external forces. (20.14)

We are going to apply this to the fluid between these two cross sections
A1 and A2. Imagine it is colored differently from the rest. At every point
in the region between 1 and 2 the fluid has a certain velocity and height
and thus a certain potential and kinetic energy at time t = 0. A little later
this body of colored fluid that we follow mentally has moved a bit to the
right. If we compare the “before” to the “after,” most of the fluid is doing
the same thing except that a sliver of width dx1 = v1dt and mass A1v1dtρ
is missing at the left and has been appended to the right end as a sliver of
width dx2 = v2dt and mass ρA2v2dt. The change in kinetic energy due to
this transfer is

dK =A2v2dt
1
2
ρv22 −A1v1dt

1
2
ρv21 (20.15)

and the change in potential energy is

dU =A2v2dtρgh2 −A1v1dtρgh1. (20.16)

The work done by the pressure at 1 is F1dx1 = +P1A1dx1 = P1A1v1dt
and the work at the other end is −P2A2v2dt, which is negative because the
displacement is opposite to the applied force. The work-energy theorem
of Eqn. 20.14 now says

A2v2dt
1
2
ρv22 +A2v2dtρgh2 −A1v1dt

1
2
ρv21 −A1v1dtρgh1

=A1v1dtP1 −A2v2dtP2. (20.17)

Canceling A1v1dt=A2v2dt (continuity equation) from both sides we
arrive at

1
2
ρv22 + ρgh2 − 1

2
ρv21 − ρgh1 = P1 − P2, (20.18)

which is rearranged to arrive at Bernoulli’s equation

P1 + 1
2
ρv21 + ρgh1 = P2 + 1

2
ρv22 + ρgh2. (20.19)
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It is true there’s a pump somewhere pushing the fluid in the begin-
ning, but you don’t have to go all the way to the pump. In the end you only
ask what is in contact with the chosen segment of the fluid. It is the fluid to
the left that is doing work on the segment and fluid to the right on which
the segment is doing work.

In a real fluid, the walls will in fact exert a force parallel to themselves.
There will be a drag on the fluid because the fluid really doesn’t like to
move right up against the walls. It will move more easily in the middle of
the tube. Different parts of the fluid will be going at different speeds, and
there will be a lot of dissipation due to this effect called viscosity. We’re
ignoring viscosity and all other losses in deriving Bernoulli’s equation.

20.5 Applications of Bernoulli’s equation
Figure 20.8 shows a tank of water filled to a heightH. Your goal is to punch
a hole on the side at a height h so that the water that sprays out lands on
the dog’s bowl. This is a two-part problem: (i) find the velocity v2 of the
water as it emerges horizontally from the hole; (ii) equate the distance it
travels before hitting the ground to d.

For point 1 of Bernoulli’s equation choose a point on the surface of
the water in the tank. Assuming the height drops very slowly due to the
leak, you may set v1 = 0. The pressure P1 = PA, the atmospheric pressure.
For point 2, choose a point just outside the hole. Clearly h2 = h, and P2 =
PA. We find the velocity v2 using

Figure 20.8 Choose the height h such that the dog gets a drink.
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PA + ρwgH + 1
2
ρw02 = PA + ρwgh+ 1

2
ρwv22, which means (20.20)

v22 = 2g(H − h). (20.21)

The water has the same speed it would have had if it had freely fallen verti-
cally a distance H − h. However, the body of water coming out of the hole
is not the water from the top. If you put in some coloring at the top and
punch a hole, the water immediately coming out of the hole would not be
colored.

If the jet of water travels for a time t before hitting the ground, then
from familiar kinematics,

h= 1
2
gt2 (20.22)

d= v2t. (20.23)

Eliminating t and using Eqn. 20.21 we find

h= d2

4(H − h)
, (20.24)

which has two solutions spaced equally above and below the midpoint H
2 :

h= H ± √
H2 − d2

2
. (20.25)

If you choose the higher solution for h, the water will come out slowly
but have a large time-of-flight; if you choose the smaller one, the situation
will be reversed. Observe that the farthest the jet can go is d=H (beyond
which the square root become imaginary), and for this you must punch
the hole at the half-way point h= H

2 .
The next example is the atomizer in the left half of Figure 20.9. There

is some perfume in the container at the atmospheric pressure PA. You now
squeeze the bulb that sends a jet of fast-moving air over the nozzle at the
top at some velocity v2. This lowers the pressure there below PA and sucks
the perfume out through the nozzle and blows it on your face.

The last application of Bernoulli is the Venturi meter shown in the
right half of Figure 20.9. Suppose that oil of density ρo is flowing in a pipe,
and you want to know the flow rate in m3/s. It is of course A1v1, but you
only know A1 but not v1. So you create a constriction of area A2 in the flow
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Figure 20.9 The atomizer and Venturi meter.

and then hook up a U-tube as shown in the figure. The U-tube has some
other fluid of density ρf > ρo that does not mix with oil. Because of the
continuity equation A1v1 =A2v2. The oil will be moving faster in the con-
striction and the pressure there will be less. This difference is easily related
to the height h shown in the figure as follows. Start at the solid horizontal
line where the pressures must be equal in the two legs to some P0 because
they are in a static fluid and at the same height. The pressures P1 and P2

at the middle of the pipe (dotted line) are then P0 plus the corresponding
ρhg terms. Canceling a common term on both sides due to the oil above
the height h, we get

P1 − P2 = (ρf − ρo)gh. (20.26)

Thus the equations we have are

P1 + 1
2
ρov21 = P2 + 1

2
ρov22 (20.27)

A1v1 =A2v2 (20.28)

P1 − P2 = (ρf − ρo)gh which may be solved to give
(20.29)

v1 =
√

2(ρf − ρo)gh
ρo

[
(A2

1/A2
2)− 1)

] . (20.30)



chapter 21

Heat

21.1 Equilibrium and the zeroth law: temperature
This chapter—devoted to the study of heat, temperature, and heat transfer—
sets the stage for our study of thermodynamics.

You already have an intuitive notion of temperature. Let us begin
here with what may be new: the notion of thermal equilibrium. Systems
are said to be in thermal equilibrium when their macroscopic proper-
ties, properties discernible by macroscopic probes like the naked eye or
a thermometer, have stopped changing.

Take a cup of hot black coffee and take another cup of cold pink soda,
and keep them both thermally isolated from each other and the outside
world. No matter how long you wait, the coffee will be hot and uniformly
black and the soda cold and uniformly pink. The coffee and soda are in
their respective states of thermal equilibrium.

If you now pour the contents of one cup into the other, there will be
a period when the system is not in equilibrium in the sense that it doesn’t
have a well-defined temperature or composition. For example, if you just
poured the coffee from the top, the hot black coffee is initially on the top
and the cold pink soda at the bottom. There will be a period of transition
when you really cannot even say what the temperature of the mixture is.
Some parts are hot, and some parts are cold; the system doesn’t have a
global temperature, and it is changing at a macroscopic scale. It also does
not have a uniform composition; some parts are black, some are pink, and

352
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some are in between. But if you wait long enough, until the two parts have
gotten to know each other, they will turn into some undrinkable lukewarm
mess, but the nice thing about the mess is that it will have a well-defined
temperature and uniform composition. Further waiting will not change
anything. That’s again a system in equilibrium.

Here’s another example. Suppose you take a gas and you put it inside
a cylinder with a massless piston of area A on top, as in the left half
of Figure 21.1. You put on some weights mg, and they exert a pressure
P = mg/A. (We assume there is no atmosphere outside pushing down
on the cylinder. We also ignore the pressure ρgh due to the mass of the
gas because the gas is so light.) We say that it’s in equilibrium because
the macroscopic things, things you can see with your naked eye, are not
changing. It’s just going to sit there. But if you suddenly remove a third of
the weights, the piston is going to shoot up, shake around a little bit, and
then settle down in a new location in a new state of equilibrium after some
time. In between these two states of equilibrium you will see the piston
moving, the gas turbulent with eddies and vortices, and the pressure high
in some regions but low in other regions. These are non-equilibrium states
of the system.

Here is a summary of the difference between the microscopic and
macroscopic. At the microscopic level the atoms and molecules that form
the liquid or the gas are always in well-defined states at every instant,

Figure 21.1 Left: The gas is inside the cylinder capped by a piston of area A.
The weights on the piston exert a force F and pressure F

A . Right: A thermometer
with a liquid that expands from the bulb into the thin calibrated stem.
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even if the system is not in equilibrium. Each molecule has a definite
location and velocity, which determine its future in accordance with New-
ton’s laws. But, at a macroscopic level, when you don’t look into the
fine details, global attributes like temperature and pressure don’t have
a well-defined value away from equilibrium. Conversely, in equilibrium,
although macroscopic attributes like temperature and pressure appear
fixed and uniform, at a molecular level there is a lot of motion and activity.

Now, whenever a system is in equilibrium, we can assign to it a tem-
perature that we call T. Right now we don’t know anything about this
temperature, other than your intuitive feeling for it. So we’re going to build
it up from scratch.

Let us begin with the zeroth law of thermodynamics—zeroth law
because after the first two laws were codified, it was realized that there
was a notion even more basic. The zeroth law says, “If A and B are at the
same temperature, and B and C are at the same temperature, then A and
C are at the same temperature.”

You are probably asking: “You call this a law?” Yes, it is the key to our
being able to speak about temperature globally. It is the assumption that if
I use a thermometer to measure something at one place and then dip the
thermometer into something that is elsewhere, and it reads the same num-
ber, then I may conclude these two entities, which never met each other
directly, are also the same temperature. That means if I bring them into
thermal contact they will continue to be in equilibrium. That seems pretty
obvious to you, but the whole notion of temperature is predicated on the
fact that you can define an attribute that you can globally compare between
two systems that never met directly, but met a third common system.

21.2 Calibrating temperature
Once we have some idea of hot and cold, we wish to be more quantitative.
Describing somebody as tall or short is a good start but we usually want
to know how tall—how many feet, how many inches. The need for more
quantitative information led to the idea, “Let’s find things in the world
that seem to vary with temperature and use that variation to quantify
temperature, and build thermometers.”

Here is an example. You take this metallic meter stick at the National
Bureau of Standards, kept in some glass case, at some temperature. You
make a duplicate of it and you lay it outside. What you find is that if
the room is hotter than inside the glass case, the stick outside the case
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expands to a new length. It contracts when the room is colder. Nothing has
been done to the stick in the air-conditioned glass case, so this one outside
must be expanding and contracting. One way to define temperature is to
correlate the length of the stick with temperature in any unique fashion.
For example, the temperature could be the length of the stick in centime-
ters, measured by comparison with the one in the glass case. However, if
this metallic stick is to be a portable thermometer, we need to compare
it to something portable that does not expand or contract when heated
or cooled. We could take a meter stick made of wood and notice that its
length matches the one in the glass case no matter how hot or cold the
room is. We could then carry this wooden meter stick and a metallic one
and use the difference in lengths as a measure of temperature.

The very first thing we can do is to use the zeroth law to say when
two things are at the same temperature. You successively dip the metallic
stick in two buckets containing two fluids, giving it enough time to equili-
brate. If it ends up having the same length (as measured by the wooden
stick), you say the fluids are at the same temperature. You could go a step
further and declare that if the lengths do not match, the greater length
corresponds to the hotter fluid. To specify how much hotter, we may say
the length of the metallic stick in centimeters (as measured by the wooden
stick) is the temperature. You may not be used to measuring temperature
in centimeters, but that unit of measurement is just as good as degrees,
just as 760millimeters (of mercury) is an acceptedmeasure of atmospheric
pressure.

In practice one picks something a little easier than this metal stick–
wooden stick combination. We know liquids expand when you heat them.
If you fill your gas tank on a hot day, you have to leave some room at the
top for the expansion. One way to measure temperature is to take some
liquid, put it in a jar, mark the level, and watch the liquid expand or con-
tract to a new height andmark that height. (Here we neglect the expansion
of the jar itself and need to verify that is valid by other means.) You can
associate each marking with a certain temperature. This mark can be zero,
that can be 5, that can be 19; you have to make sure that it’s monotonic, so
that 21 is hotter than 19 in some objective sense, say by noting that some
substance melts at 21 but not 19.

A more practical design for the thermometer is shown in the right
half of Figure 21.1. You have a lot of fluid in a big reservoir or bulb, con-
nected to a very thin stem evacuated at the top. What’s clever about this is
that even if the liquid expands by one percent in volume, it can climb up
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the narrow stem quite a bit, that is, a little bit goes a long way, because the
stem is so narrow. In fact, the stem is so narrow, it is embedded inside a
prism that magnifies the mercury or alcohol column so you can see it with
the naked eye.

Next we want to design thermometers so that people in different
parts of the world, different countries, different labs, can all agree. So, we
will make it possible for everyone to make his or her own thermometer
by the following recipe. We will dip this thermometer in a bucket that
contains some ice and water in equilibrium. Coexistence of ice and water
seems to occur only at one temperature. That’s called the melting point of
ice or the freezing point of water. We go to the lake where ice and water
coexist, we dip the thermometer there, and we find that the reading does
not change as long as ice and water coexist. It changes only when all the
water has turned into ice or vice versa. Whatever reading we get we will
postulate to be 0 degrees centigrade or 0◦C. That is just a definition. In
the thermometer in Figure 21.1, we mark the point on the stem as 0◦C.
But right now you can only tell if another object is at, above, or below 0◦C
using this thermometer with just one marking.

So we need to find another universally accessible thing, which, as
you all know, is the boiling point of water. If you take water in a pres-
sure cooker and put it on a stove, it heats up and heats up and then
begins to boil and evaporate. As long as water and steam coexist, the
temperature remains fixed, as you can tell because the mercury in the
thermometer does not rise. That coexistence temperature is going to be
called 100 degrees centigrade or 100◦C. You stick your thermometer in
when this happens and mark the height of the liquid as 100◦C. Then, you
take the interval on the stem between the 0 and 100 markings (Figure
21.1), and you divide it into 100 equal parts. Because the markings can
continue outside this interval, this unit defines the temperature outside
as well. (This is like saying that a meter stick can be used to measure
lengths more or less than a meter.) If the liquid has gone 79% of the way
from the 0 mark and the 100 mark, the temperature is 79 degrees. That
is the centigrade scale. You know there are different scales. You can have
the Fahrenheit scale, or any other scale in which what you want to call the
freezing point is a different number. Somebody thinks it’s zero; another
person thinks it’s 32. You can again assign to the boiling point a differ-
ent number: 100 or 212, and you can divide this interval into 100 parts,
180 parts, whatever you like. But the philosophy has the same three steps.
You find two points that are reproducible conveniently, divide the region
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between them into some number of equal steps, and name the scale after
yourself.

Now, there are some problems with this approach. One is that the
boiling point of water does not seem to be a very reliable standard. If I
boil water at high elevations, like in Aspen, for example, it doesn’t seem
to be as hot as it is at sea level. I know that because when I cook rice, I
find it doesn’t cook fully when the water is boiling in Aspen, but it does
when the water is boiling in New Haven. I know it’s boiling earlier in the
mountains than in the plains, based on a physical phenomenon, the cook-
ing of rice. A thermometer calibrated at sea level will not agree with one
on the mountains. So, who’s going to decide what the real boiling tem-
perature is: the person on the plains or on the mountain? You have to be
careful when you say boiling point and freezing point, because these are
not independent of altitude, pressure, et cetera.

Nowadays, people have much fancier definitions for calibration, and
I will tell you a little bit about that later. But, for now, don’t worry about
the fact that water boils differently at different altitudes; we could all agree
to calibrate at sea level, and the relevant conditions at sea level are pretty
much constant all over the world.

Now we will turn to a far deeper problem that exists even after you
have figured out reliable and reproducible boiling and freezing points.
If you make a thermometer with your favorite fluid, say mercury, and I
make one with alcohol, they will agree at 0 and they will agree at 100
because that’s how we fixed it. We rigged it so at 0 everyone says 0, at
100 everyone says 100. But how about 75 degrees? I say it’s 75, if my fluid
has climbed three-fourths of the way to the top. At that point, yours may
not have climbed three-fourths of the way. In other words, we have the
two graphs shown in Figure 21.2. Along the x-axis, we measure temper-
ature according to, say, the mercury thermometer. Along the y-axis we
plot the temperatures according to another thermometer, say, alcohol. The
straight line y= x is provided for comparison and simply equals the read-
ing on themercury thermometer. The two agree at 0 and 100 by definition.
The curved one does not agree with the reference in between. When the
mercury thermometer says it is 75, the other may say it is 55. You will
have to pick one liquid and say, “We swear by that liquid, and when that
liquid’s gone halfway toward 100, we’ll say it’s 50 degrees.” To pick a liq-
uid you’ll have to have an international convention, and before you know
it, there will be an argument between the alcohol lobby and the mercury
lobby.
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Figure 21.2 The x-axis is labeled by the reading of a reference thermometer, say
with mercury. Along the y-axis are plotted the readings as per another—say, an
alcohol—thermometer (curved line) along with a straight line y= x, which is just
the reading of the same mercury thermometer plotted for easy comparison.

What if I can show you hundreds of thermometers that agree with
each other all the way? Clearly we should go with the hundreds that
agree. Who are these guys? They are the gas thermometers. Here is the
explanation of how they work. It takes some effort, but it’s worth it.

First I take a small quantity of gas inside a cylinder at some pressure
P. The volume V is just the volume up to the piston. This is my reference
thermometer. I put it inside boiling water until it reaches equilibrium and
then write down the value of the product [PV]0, where the subscript 0 tells
us it is the reference gas. I repeat with the tub of coexisting water and ice,
and I keep track of the product again. Now I label points on the x-axis by
the product (see Figure 21.3). To the place on the x-axis corresponding to
freezing, I assign the value 0◦C and I assign the value 100◦C to the boiling
point. I divide the interval between the ice value and boiling value into
100 equal parts. This defines the centigrade scale according to this gas ther-
mometer. To find the temperature of a body, I place my gas thermometer
against it, wait for equilibrium, and measure the product [PV]0. What-
ever number on the centigrade markings this product falls on, that is the
temperature in centigrade. Thus the point [PV]0 = 350 in the figure corre-
sponds to the temperature 75◦C. I can continue this scale to the left of the
ice point and to the right of the boiling point.

I now consider two more gas thermometers with different amounts
of gases of different kinds, and I plot their PV as a function of my centi-
grade scale (based on [PV]0) measured along the x-axis. Two such lines are
shown in the figure. The main point is that they are both straight lines. This
guarantees that the thermometers will agree not only at the end points
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Figure 21.3 Comparison of different gas thermometers labeled 0, 1, and 2.
The x-axis is labeled by one and the other two correspond to two other gas
thermometers, possibly filled with different dilute gases. The linearity of the
graphs guarantees that the thermometers will agree not only at 0 and 100, where
they have to, but also everywhere in between given the similarity of triangles abd
and ace. When [PV]0 = 350, the temperature is 75◦C.

where they have to, but also in between and beyond. Let us understand
why. Look at the lower one labeled 2 and the shaded right triangle that
extends from 0 to 100 in the x-direction and the corresponding values of
[PV]2 in the y-direction. The value of [PV]2 grows linearly between the ice
and boiling points, as shown by the hypotenuse of the shaded triangle. Of
course, no one wants to know what [PV]2 is; we want the corresponding
temperature in centigrade. This means we must associate with each value
of [PV]2 a certain temperature. By convention we label the ice point as
0◦C and the boiling point as 100◦C. Next we divide the difference in [PV]2
between freezing and boiling into 100 equal parts, and each one is one
degree centigrade, as shown in the vertical side of the triangle. This way
if [PV]2 rises by 75% of the difference in [PV]2 between the ice and boil-
ing points, the temperature reading according to thermometer 2 will be
75◦C. But this will also be the temperature of the corresponding point in
the x-axis, for it too would be 75% of the way between 0 and 100 by similar
triangles abd and ace. By the same logic, thermometer 1, which uses [PV]1
as the measure of temperature, will also agree with the other two every-
where. Indeed, any gas thermometer whose measure of temperature is via
PV will be represented by a linear plot, and it will agree with its fellow gas
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thermometers everywhere. The slope of the plot will vary with the kind
and amount of gas (for example, doubling the volume of gas at the same
pressure will double the PV and the slope), but that will only change the
spacing in PV per degree centigrade.

The basic point is that a straight line is completely determined by any
two points on it.

It is essential that the x-axis itself be calibrated by a gas thermometer.
If there were a thermometer that disagreed with the gas thermometer at
intermediate points, and we used that to label the x-axis, the PV plots of
all the gas thermometers would be curved.

There appears to be just one requirement for a good gas thermome-
ter: the gas has to be very dilute. Given this requirement, everybody can
build and use the gas thermometer.

21.3 Absolute zero and the Kelvin scale
Comparison of different gas thermometers (Figure 21.3) reveals not only
that each gas thermometer is represented by a straight line, but that all
these lines cross the x-axis at −273.16◦C. (In reality, the PV plots stop
short of 0, and one extrapolates linearly to see where they would hit zero.)
There is something very special about that temperature because it is shared
by all gases. It is called the absolute zero of temperature. It’s called abso-
lute zero for many reasons. One is that, unlike the 00 centigrade, which
is by no means the absolute lowest possible temperature, the absolute 0
is the lowest possible temperature. Why? Because the gas pressure can’t
be reduced below zero. That’s it. It cannot go below having no pressure.
Later, we’ll find reasons why no further cooling is even conceptually possi-
ble. That will require you to understand what hot and cold mean at the
atomic level. But right now, Figure 21.3 shows that all gas thermome-
ters point to this temperature. So people decided that calling the freezing
point of water 0 is artificial. That’s based on human preoccupation with
water. But if you think laws of physics describe the whole universe, what
about planets where there is no water? Suppose you’re talking to a differ-
ent civilization: Planet of the Apes, say. You tell them, “Apes, we’re going
to sync our temperatures; 0 is when water freezes,” and they say, “What is
this thing called water?” You cannot identify water as the stuff they drink,
because you don’t know what these apes are drinking. Maybe they drink
methane or liquid hydrogen. On the other hand, if you say, “Take any gas
and wait until the product of the pressure and volume go to zero, and then
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call that zero,” that will be a universal standard. It’s not tied to something
called water. The absolute zero is referred to as 0K, where K stands for
(Lord) Kelvin.

Having picked the zero, we need one other temperature to form a
scale. It was decided the triple point of water would be assigned a value
273.16K. What’s the triple point of water? Water and ice can coexist along
a line in the P− T plane, and water and steam can coexist along another
line. There is a certain magical point at which the lines meet, and there
ice, water, and steam can coexist. The system cannot choose among those
three options. We will assign to that point a temperature+273.16 K in the
Kelvin scale. (For our purposes the triple point is essentially the freezing
point, which we called “Freeze” in the figure, at a particular pressure.) The
centigrade and Kelvin scales differ only in the location of the zero; a change
of 1◦ in the Kelvin scale is also a change of 1◦ in the centigrade scale. The
difference between absolute zero and the triple point of water is 273.16
degrees in both scales.

Now there is a rule. (I do not say “unwritten” for it is written.) You
may say, “50 degrees centigrade,” but you’re not supposed to say, “50
degrees Kelvin.” You have to say “50 Kelvin.” I keep forgetting this but
so far nothing terrible has happened to me. But you should remember
this rule when you take the GRE or go for a job interview. Once you get
tenure, you too can say “50 degrees Kelvin,” whenever you want, with no
dire consequences.

21.4 Heat and specific heat
Heat is denoted by the symbol Q. What are we talking about when we
talk about heat? Again, let’s use your intuition. Say we have a bucket of
water and we want to heat it up. We put the bucket on top of a stove that
we think is hotter than the water, and when the two are brought together,
somehow the water begins to feel hotter and hotter. We say we’ve heated
the water, and we say we have transferred heat. Now, scientists were not
always sure what really was being transferred. What goes from the stove to
the water? Why is it that the stove, if it’s not plugged in, gets cooler as the
water gets hotter? Some theorists imagined there was a certain caloric fluid
that is abundant in hot things, and not so abundant in cold things. When
we put hot and cold together, this fluid flows from hot to cold, and in the
process heats the cold thing. It was decided to measure heat transferred in
calories. So next we have to define a calorie. You want to ask, “How much
heat does it take to raise the temperature of this bucket of water by ten
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degrees?” Here is the rule: The number of calories you need is equal to the
mass of water in grams times the change in temperature

�Q=m�T. (21.1)

In other words, if you had 4 grams of water, and you did something
to it and the temperature went up by 7 degrees, you have, by definition,
pumped in 28 calories. If this was a kilogram of water, this would be
28 kilo-calories. Sometimes we use grams and calories; sometimes we use
kilograms and kilo-calories. But the definitions are consistent: if you put a
kilo in the gram, put a kilo in the calories.

Now, suppose you want to talk about heating something else, say a
gram of copper. Then you write down the following rule. The amount of
heat it takes to heat up anything must be proportional to the amount of
stuff you’re trying to heat up. That’s our intuitive notion. If you have one
chunk of gold that takes some number of calories, and you have a second
identical chunk, that should take the same number of calories. If you put
them together, it is clear that whatever this caloric fluid is, you will need to
double what was required by one chunk. So, �Q has to be proportional to
the mass of the substance. And it’s got to be proportional to what you’re
aiming for, namely, increase in temperature. But this is true for any sub-
stance, whether you’re heating copper, wood, or gold. No matter what you
are heating, the heat needed is proportional to mass and to the change in
temperature. So, what is it that distinguishes one material from another?
We introduce the number c here, called the specific heat, and write

�Q=mc�T. (21.2)

The specific heat c is the property of that material, and we will soon
discuss how it is to be measured. Equation 21.1 tells us c = 1 cal/g for
water:

cw = 1kcal/kg = 1cal/g. (21.3)

You have to understand that formulas will depend on certain param-
eters in a generic way, and on other things in a material-specific way. In
this example the dependence on m and �T is generic, while that on c is
specific to some material.



Heat 363

Here is another example of this logic. I can ask by how much a rod
will expand if I heat it by �T. The increase �L has to be proportional to
the original length. To see this, take a meter stick that expands by some
amount and put another identical meter stick next to it. The two-meter
stick will clearly expand by twice as much as the one-meter stick. So, we
put the length L in the right-hand side. There is, of course, the �T, which
causes the expansion. No matter what you are heating—a block of wood
or a block of steel—it is true that

�L∝ L�T. (21.4)

But then the fact that heat has different effects on copper versus wood
is indicated by introducing a number α, called the coefficient of linear
expansion, which depends on the material, to obtain

�L= αL�T. (21.5)

So copper will have a certain α, iron will have a different α, and so
on. Suppose you say, “Well, I had some material and when I heated it up
by one degree, its length increased by nine inches; another one increased
by two inches.” Is it clear that the first one expands more readily? No,
because the first one could have been amile long, and the second one could
have been ten feet long. So, you have to take out certain factors that are
universal, and the rest of it you put into a property of the material.

Given that water has (by definition) a certain specific heat cw =
1 kcal/kg, I can measure the specific heat of other materials as follows.
I take a container with some water in it. Let’s assume the container has no
mass, so I don’t have to worry about it. The water of mass m2 is at some
initial temperature T2. I have some new material, lead, and I want to find
its specific heat. So, I take the lead of mass m1 in the form of pellets, I
heat the pellets to some temperature T1, and I drop these pellets into this
water. When I put the pellets into the water, there will be a period when
the temperature is not defined. Soon the water and pellets will settle down
to some common, final, equilibrium temperature called Tf and will have a
massm1 +m2.

We will now postulate that the total change in Q is zero. In other
words, if heat Q is lost by one body and gained by another body, the loss
and the gain must equal. It’s a new law, called the conservation of heat. You
can make up all the new laws you want. You don’t know if they’re right,
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Figure 21.4 Calorimetric problem: What will be Tf ?

but this is the law you first make up. What can you say in this particular
problem? I urge you to draw the picture in Figure 21.4 for such calorimet-
ric problems. It shows themassesm1 (lead) andm2 (water) at temperatures
T1 and T2 before, and their final state at Tf after they are combined. The
sum of all the �Q’s is zero:

�Q1 + �Q2 =m1c1(Tf −T1)+m2c2(Tf −T2)= 0. (21.6)

Note that the �Q for the water will be positive because Tf > T2 (water
gains heat) while the lead pellets, which lose heat, will have a negative �Q
because Tf <T1.

You know the mass of the water is m2, the mass of the pellets is m1,
and c2 = 1kcal/kg. You can measure T1,T2, and Tf and hence solve for c1.

It turns out that the specific heat of materials is not really a constant;
it can vary with temperature and generally vanishes as T → 0K. There is
a big industry calculating the specific heats of materials as a function of
T, starting from atoms and quantum mechanics. We can treat them as
constants over some limited range, say, near room temperature, which is
roughly 300 K.

None of the things treated as constants is ever truly constant. The
previous description with constant specific heats was espoused before we
even knew about atoms. Physicists were doing the best they could. They
found empirically that using the specific heat of lead, determined as above,
and the specific heat of gold, determined the same way, in a third exper-
iment performed with lead and gold using those values of specific heat,
the �Q’s indeed added up to zero, that Q was conserved. But this was
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based on the best possible measurements of that epoch. In a later epoch,
when more accurate measurements were performed, over a bigger range
of temperatures, it was found that the specific heat could not be taken as
temperature-independent, if calories were to be conserved in calorimetric
experiments.

21.5 Phase change
Now for a twist. I take some ice at −30◦C. I’ve gone to centigrade now so
we can better relate to ice. I put the ice on some source of heat, a device
that will pump in a fixed number of calories every second. As a function
of time, I’m expecting the temperature of the ice to go up. Every second, I
get some number of calories, and those calories are going to produce for
me somemci�T where ci is the specific heat of ice. Remember the specific
heat of ice is not the same as the specific heat of water. Even though ice is
also made up of water molecules, the calories needed to heat one gram of
ice by one degree is roughly half what it takes to heat one gram of water.
Because m and ci are constants, �Q is proportional to �T. The rate of
temperature rise will be proportional to the rate at which the heat flows
into the system. The temperature of the ice goes initially from −30◦C to

Figure 21.5 Different phases of water from ice below 0◦C to water above 100◦C.
As time t increases, a steady flow of calories first heats the ice below 0◦C to A,
where it melts at 0◦C between A and B. The water then heats up between B and
C, and then it evaporates at 100◦C between C and D, before becoming
superheated steam.



366 Heat

−20◦C to −10◦C and so on as in Figure 21.5. But once it hits 0, point A, it
gets stuck. Although I know heat is coming in, the ice is not getting hot-
ter. Then I notice that the ice is beginning to melt. There will be a period
when, as I pump in calories, I don’t get any increase in temperature, but
I get conversion of ice into water. This is called a phase change. A phase
change occurs when a substance changes its atomic arrangement, in this
case, from a regular array that forms a solid into a liquid whose atoms are
free to run around.

An atom in a solid is like a kid in a classroom: you have an assigned
seat but you can fidget in that seat. A liquid in a container is more like
a playground with a fence; the atoms get to run around within a certain
contained space.

Return to the period when there is some water with chunks of ice
floating on it, between A and B. Until all the ice is converted to water,
the whole system is stuck at that temperature, 0◦C. It is called “No ice left
behind.” That’s a very interesting property. Now, if you really put a pot
on a stove and drop a chunk of ice in it, you know what will happen. The
bottom of the ice will melt; it may even boil and evaporate, yet the top
may still be solid. That’s not what I’m talking about, because that’s not a
system where there’s a globally defined temperature. I want you to heat the
ice ever so slowly; the minute you put in a little bit of calories, you give
it enough time for the whole system to share that heat, so that the whole
system has one single common temperature. When you do this, you will
find the temperature stays fixed until all the ice has melted.

The caloric price you have to pay to bring about the melting is called
the latent heat of fusion, L. It has a value of 80kcal/kg for water, and it
varies from substance to substance.

Once everything has become water, and the point B is reached, the
uniform system of water starts increasing in T. I guess you know the next
stopping point. When you come to 100◦C, point C, again it gets stuck until
everything vaporizes, and beyond point D it is all steam. Then, you can
have superheated steam, which is even higher than 100◦C. The caloric cost
involved per kilogram in this phase change is the latent heat of vaporiza-
tion, Lv. It is around 500Kcal/kg. That’s information I don’t carry in my
head.

So, if I give you some ice at −30◦C and I give you a budget of 5, 000
calories, where will it end up? Look at in Figure 21.5. You have to first
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spend a few calories going from below A to A at 0◦C, and, if you have
some calories left, you can start melting the ice; maybe you’ll run out of
stuff there and get stuck between A and B, with a mixture of ice and water.
If you have still more calories at your disposal, you can melt it all (point B)
and start heating the water and keep going till it is all steam, and heat that
steam and so on.

The kind of problems you can get are fairly simple most of the time.
The only time when you can really get in trouble is in the following situ-
ation. Suppose I mix some water at +20◦C and some ice at −40◦C. What
will be the end product? Now, this is a subtle problem. If you had water at
+20◦C and you added more water at +60◦C, you can easily guess that it
would end up as water at an in-between temperature, which you can eas-
ily calculate. Now it’s more subtle. The answer will depend on how much
ice and how much water you have. If by water at +20◦C you mean the
Atlantic Ocean and by ice you mean a couple of ice cubes, we know what’s
going to happen. These ice cubes are going to get clobbered; they’re going
to melt. You will end up with all water. Then, you can easily calculate the
final temperature Tf of the water by writing down (all in centigrade) and
solving

0=Macw(Tf − 20)+Mici(0− (−40))+MiL+Micw(Tf − 0)
(21.7)

=Macw(Tf − 20)+Mici40+MiL+MicwTf (21.8)

where Ma and Mi are masses of the Atlantic and the ice cubes, ci and cw
the specific heats of ice and water, and L the latent heat of melting. The
first term is the �Q for the ocean as it drops from 20◦C to Tf . The next
is the �Q for ice as it goes from −40◦C to 0◦C, the next is the heat of
melting for the ice, and finally the heat gained by the melted ice to become
water at Tf .

In general, given some ice below zero and some water above, you will
not know in advance whether you will end up with all ice, a mixture at 0◦C,
or all water. You can first make the optimistic assumption that you will
end up as all water at an unknown temperature Tf . Write your equations,
including the heat it takes to melt the ice, and solve for Tf . If you get a
positive answer you can use it, because the assumption that you heated
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up the ice, you melted the ice into water, and then heated up the water
from 0 to the final water at Tf is correct. But if you did the calculation
and obtained a negative value of Tf , that result is inconsistent with the
assumptions in the equation. Then, you can try something else; you can
assume it is all ice at the end. If you think Tf is down there, below A, then
you’ve simply heated the ice from very cold ice to not-so-cold ice. You
brought this water down from T > 0 to 0, sucking out the mc�T to do
that, then you’ve taken out the latent heat of melting to turn the water at
0 into ice at 0, and then you’ve cooled that ice down to the final Tf below
A. Then, all those losses of the original water equal the gain of the initial
ice. If, when you solve for Tf , you get a negative number, then you’re okay.
That will certainly be the case if I sprinkle two drops of water on a big
iceberg; we know it’s going to end up as ice.

But if I give you numbers that are wishy-washy, when it is not so
clear whether ice will win or water will win, you may be forced to consider
a third possibility if these two fail: you end up with some amount of water
and some amount of ice at 0 degrees, between A and B. Then the question
is not what the final temperature is—it is 0—but how much is ice and how
much is water.

You solve that as follows. Start with the water at some point between
B and C, say at 25◦C. You extract heat �Q=mwcw25 from that water to
bring it to water at 0◦C, which is the final equilibrium temperature. You
start giving that heat to the ice, first to move it from below A to A. It does
that by absorbing that mici�T, the mass of the ice times specific heat of
ice times �T. If the ice was at −40◦C, then �T =+40. You certainly have
enough heat to do that because you know that, in the end, any ice we have
is at 0◦C. Whatever remains of the heat you extracted from the water, you
now use to melt the ice at the rate of L kcal/kg. The unmelted ice is the
amount of ice at the end, and the rest of the mass is water.

21.6 Radiation, convection, and conduction
We now discuss different ways of transferring heat.

Radiation is heat energy transfer from some body to another with-
out the benefit of any intervening medium, like heat from the sun, which
is really electromagnetic radiation. Electromagnetic radiation doesn’t need
air; it doesn’t need anymedium to propagate. In fact, if it needed amedium
like air, we would not get any heat from the sun because between the
earth and the sun is mostly vacuum. Thus, if you were in front of one
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of these space heaters, with glowing red coils, and you were feeling warm
and someone started pumping the air out of that room, your last thought
would be, “Yeah, but I am still warm.”

The second way of heat transfer is called convection, explained by
the following example. You have water in a pan; you put it on a hot plate.
Then, in the lower part of it, the water gets hot.When it gets hot it expands,
and when it expands the density goes down; therefore, by buoyancy it will
start raising up. Remember, a chunk of water belongs in water. A chunk
of something else with lower density will float to the top. But the point
is, water doesn’t have a fixed density. If you heat it up, the density goes
down, so the water downstairs has a lower density—like a piece of cork,
it will rise to the top. When it rises to the top, the cold water with the
higher density will fall down. So, you set up a current. Hot rises to the top
and cold comes down. And this also happens in the atmosphere. On a hot
day, the air next to the ground gets really heated up and it rises, and the
cold air comes down, and this process creates thermal currents. So, here
you’re trying to equalize the temperature between a region that is cold and
a region that is hot by the actual motion of some material. In radiation, you
don’t have the medium transferring heat because a medium is not even
present. In convection, the medium actually moves and by that process
heat is transferred.

The final form of heat transfer, the one I want to focus on more
quantitatively, is conduction, which is something you’ve all experienced.
Why does a skillet have a wooden handle? There is a simple reason: given
that your body is at 98 degrees and the skillet is, say, 200 degrees, a
steel handle would have heat flowing from the skillet to your hand. We
want to understand the rate at which heat flows from the hot end to the
cold end.

I’m now going to introduce a new term called heat reservoir. A reser-
voir is another body like you and me, except it’s not at all like you and
me. It’s enormous. It is so big that its temperature cannot be changed. If
you can sit on it, you will fry and you’ll evaporate, but its temperature will
not change. No body is really a reservoir. If you drop an ice cube in the
Atlantic, you’ll lower the temperature of the Atlantic but only by a negli-
gible amount. So, take the limit Atlantic goes to infinity, and you have a
reservoir. Reservoirs have one label, namely, their temperature. The room
in which you are sitting is a good approximation to a reservoir. If you put
a cup of hot coffee here, we say it will come to room temperature. Actually,
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Figure 21.6 Heat flow from a hot reservoir to a cold one through a conducting
rod of length L and cross-sectional area A.

the room temperature rises a bit to meet that of the coffee, but this increase
is negligible in practice. We can attribute to the room a temperature quite
independent of bodies that go in and out of it.

Look at Figure 21.6. A rod of length L and cross section A is con-
nected at the right to a reservoir at T2 (maybe a tank of water-ice mixture
at 0 degrees) and at the left to a reservoir at T1 (say a water-steam mixture
at 100◦C). We know heat is going to flow from the hot end to the cold end.
We want to write a formula for how much heat flows per second. What
will it be proportional to? Cross section is one correct answer. We can
understand this result as follows. You take one rod, and for convenience
let’s just take it to be of rectangular cross section. Take another identical
rod, and it will also transfer the same amount of heat for a given amount
of time. Just glue them together to form a rod of twice the cross section.
It’s going to transmit twice the amount of heat, and it has twice the area.
So, the rate of heat flow is going to be proportional to the cross-sectional
area A. And why is the heat flowing? It’s flowing because of a temperature
difference �T. So, that’s always there; that’s the underlying cause behind
heat transfer. That’s the dynamics in thermodynamics; that’s what makes
the heat flow. But then, we find as an empirical fact that the rate of heat
flow decreases as the distance between the reservoirs, the length of the rod,
increases. Heat flow seems to depend not just on the temperature differ-
ence but on its gradient in space. So, you want to divide by L, the length
of the rod separating the hot and cold ends. These features of heat transfer
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happen to be truly independent of what material we are talking about. So
far we have

dQ
dt

∝A
(T1 −T2)

L
. (21.9)

Again, having put all these universal factors, you have to ask, “How
does the formula differentiate between a copper rod and a wooden rod?”
The answer again is that you have to put one more number κ , the thermal
conductivity, which depends on the material:

dQ
dt

= −κA
(T1 −T2)

L
. (21.10)

Theminus sign in front says that if T decreases with increasing x (that is, it
gets colder as we go to the right), the heat current flows along the positive
x-direction.

Let us raise the same question once more with feeling: “I have two
reservoirs, hot and cold. I connected them with two different rods. This
rod carried twice the amount of heat per second as the other rod. Is it
necessarily a better conductor?” No. Maybe it had 10, 000 times the cross
section. So, what you want to do is to make the playing field level: com-
pare rods of the same cross section, same temperature difference, and
same length, and then ask which conducts more heat. That depends on
the material and that’s the role of κ .

21.7 Heat as molecular kinetic energy
In the old days, people just said that heat was a caloric fluid, and they
postulated the conservation law for the fluid. You can postulate what you
want, but you have to make sure it works The conservation of calories did
seem to work, in the sense that all the �Qs in any reaction did seem to
add up to zero. But then people started getting hints that this fluid was not
conserved and that this thing we call heat is not entirely independent of
other things we have studied.

So, where do you get the clue? When we studied mechanics, we
talked about two cars in a totally inelastic collision—they slam into one big
static lump; in the end we have no kinetic energy and no potential energy.
We just gave up and said, “Look, conservation of energy does not apply to
this inelastic collision.” On the other hand, we find that in such a collision
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the bodies become hot. So calories are not conserved either: they are cre-
ated in a collision. There are more clues. You take cannon balls and drop
them from a big tower. When they hit the sand, they start heating up. Or
you drill a hole in a cannon to guide the ball, which is what Count Rum-
ford did in 1790, and you find that you need to constantly pour water to
keep the drill bit from heating up. You find all the time that, whenmechan-
ical energy is lost, things heat up, that is, calories appear from nowhere.
So, you get a suspicion that maybe there’s a rule connecting the mechani-
cal energy that you cannot account for, that seems lost, to a corresponding
gain in calories. Maybe the conservation of mechanical energy and of heat
could both be salvaged into a single law of conservation of energy if joules
measure energy you can see, and calories energy you cannot see. That is
the premise. If that is the case, we must first determine the exchange rate
between calories and joules.

James Prescott Joule performed the experiment shown in Figure 21.7.
You have an insulated container in which there is water and a shaft
attached to fins. The shaft can rotate. At its top is a pulley with a weight
hanging as shown. There is a rope wrapped around the shaft, and when
you let this weight go down, it’s going to spin the shaft. The fins churn up
the water. Now, you can keep track of howmuchmechanical energy is lost,
right? This mass was at rest at first and it lost potential energy Mgh as it
came down. Let’s say it’s got some kinetic energy at the end that is less than

Figure 21.7 Joule’s experiment to find the mechanical equivalent of heat,
4.2kJ/kcal. As the weight descends, the fins turn and heat up the water. The
missing mechanical energy in the weight becomes heat energy. (It is assumed
that the rest of the apparatus does not absorb any appreciable part of the
generated heat.)
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Mgh. Some number of joules are gone but the water heats up. When the
water gets hot, you can ask how many calories were supplied to the water
by looking at the mass and specific heat of the water and the increase in
temperature. Then you ask if there is a proportionality between the joules
and calories. You find it is 4.2 joules to a calorie, called the mechanical
equivalent of heat. In other words, if you can expend 4.2 joules of mechan-
ical energy, you get one calorie to be used for heating. In the example of
the colliding cars, one car had some kinetic energy, and the other had
some kinetic energy, all measured in joules; they slammed together, and
they came to rest. That means you can take all those joules, divide by 4.2,
and get some number of calories �Q. Then those calories will produce
an increase in temperature of the cars, such that �Q=mc�T, where c is
specific heat of whatever material the cars were made of.

In practice, there will be other losses. You heard the crash: that’s some
sound energy gone; you won’t get it back. Some sparks were flying; that’s
light energy that’s gone. You subtract all that out, and you find that in the
end, the calories explain the missing joules.

Counting heat as another form of energy, we can save the law of con-
servation of energy. It is not violated, even during inelastic collisions, if
you include heat as a form of energy using 4.2 joules per calorie. What
right do we have to call heat energy?Whenwe say some kid is energetic, we
mean the kid is always running aroundmindlessly, back and forth. Energy
is associated with motion. These two cars were moving, and we have every
right to say they have kinetic energy. How about potential energy then?
Well, if the car starts climbing up a hill and slows down, we think it has
potential. If you let it go, it will come back and give you the kinetic energy.
So, most people think of energy as just kinetic energy. That is what seems
to have been lost in the collision. And yet, you get calories in return, so
you ask yourself, “How is the calorie related to kinetic energy?”

The correct answer to that came only when we understood that
everything is made of atoms. It turns out that the kinetic energy of atoms
is what we call heat. But you have to be very careful. I take a cylinder full of
very cold gas. I throw it at you. That whole cylinder is moving. That’s not
what I call heat; the cylinder is not hotter due to its overall motion. That is
motion you can see. I’m talking about a cylinder of gas that doesn’t seem
to be going anywhere; yet it has motional energy because the little guys
inside are going back and forth. If you kept track of the kinetic energy of
every single molecule in this car, every single molecule in that car, and you
added them up, you would get exactly the same number, before and after.
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The only difference will be that, originally, each car also had some global
common velocity, macroscopic velocity you could see. On top of it, it had
random motion of the molecules that made up the car. So did the other
car. When they slammed together, the macroscopic motion was traded for
thermal motion.



chapter 22

Thermodynamics I

22.1 Recap
In the last chapter we took the notion of temperature, for which we have
an intuitive feeling, and turned it into somethingmore quantitative, so you
can not only say this is hotter than that, you can say by howmuch, by how
many degrees. We agreed to use the absolute Kelvin scale for temperature
and to use the product of PV of a gas thermometer as a measure of tem-
perature T. The Kelvin scale has its origin (T = 0) at −273.16◦C, which
is where PV vanished for any dilute gas. In other words, it appears that
pressure times volume is some constant times this temperature T. That’s
the scale chosen by nature, and it doesn’t seem to depend on the gas that
you use. I can use one; you can use another one. People on another planet
can use a different gas. There is really nothing below this T = 0.

The next thing I mentioned was that initially people believed in the
caloric fluid. Hot things have a lot of it, and cold things have less of it, and
the caloric flows from hot to cold. Caloric is conserved, which allows you
to do some problems in calorimetry. That promoted heat to a new and
independent entity, different from all other things.

Then it turned out that heat was not so unrelated to other things
in mechanics. You can heat up water by putting it on the stove, and the
caloric fluid flows from the stove into the water. But there’s a different
way to heat the water. This is not the most economical way to make your
coffee but I’m just telling you as a matter of principle. Buy two Ferraris,
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slam them into each other, take a pot of water, and put it on top of the
cars. It will heat up because the Ferraris will be hot. What happened to
the kinetic energy of the two cars? It is really gone. In the old days, we
would have said that we cannot apply the law of conservation of energy
to this inelastic collision. That was our way out of the whole issue. But
then we had another problem: caloric fluid was not conserved, because
slamming the two cars produced this extra heat. So both the law of con-
servation of energy and the law of conservation of the caloric fluid seemed
to be violated. Luckily both could be saved if heat was counted as a form
of energy. When mechanical energy disappears, a definite amount of heat
energy appears. Howmany calories can you get if you sacrifice one joule of
mechanical energy? Joule did the experiment with his gadget, which had a
shaft with some fins that turned in some water as some weight went down
and heated the water. Equating the loss of mechanical energy to the calo-
ries needed for the heating, he found the mechanical equivalent of heat:
4.2 joules = 1 calorie.

22.2 Boltzmann’s constant and Avogadro’s number
When we say something is hotter, what do we mean on a microscopic
level? The answer is based on the profound fact that everything is made
up of atoms.

Take the simple example where temperature enters: the gas ther-
mometers from the last chapter. The linearity of the PV plots as a function
of T means that PV is proportional to the absolute temperature T. What
parameters do you think enter the right-hand side of the proportionality
relation

PV ∝T? (22.1)

The amount of gas is correct. The amount of atoms is even more correct.
But suppose you were not aware of atoms. Then what would you mean
by “amount of gas”? It would have to be the mass. What’s the reasoning?
We know that if you have some amount of gas producing the pressure
in a box, and you put in twice as much stuff, it should produce twice as
much pressure. That’s actually correct. We can write for one particular gas
sample of massm:

PV ∝mT. (22.2)
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As usual, after these generic factors are incorporated, you still need
a constant of proportionality α that is specific to the gas. (It will be
renamed before you get a chance to confuse it with the coefficient of linear
expansion.) So now we write

PV = αmT. (22.3)

Experimentally we find that α depends on the gas, not unlike the
specific heats of various substances. But there is an intriguing relation
between the α’s for various species and the αH for hydrogen. For this
discussion, and to grasp the main point, let us pretend that there are only
three atomic species, hydrogen, helium, and carbon, and that as gases they
always occur in atomic and not molecular form. It is found that for helium
αHe = 1

4αH and for carbon αC = 1
12αH. In other words, one gram of helium

produces the same pressure of 1
4 grams of hydrogen, and one gram of

carbon produces the same pressure as 1
12 grams of hydrogen (at some

fixed V).
IfmH ,mHe, andmC denote the masses ofH,He, and C, the preceding

results may be summarized as follows:

PV = αHmHT = aH
[mH

1

]
T (22.4)

= αHemHeT = αH

4
mHeT = αH

[mHe

4

]
T (22.5)

= αCmCT = αH

12
mCT = αH

[mC

12

]
T and so on. (22.6)

So it looks like the mass of the gas has to be divided by numbers like
4 or 12 to find its true effectiveness in contributing to pressure and that if
these rescaled masses are used, the same proportionality constant αH may
be used for all gases.What do these rescaled masses mean and why are the
rescaling factors nice round numbers? Here is the answer, with no details
of how it was arrived at, because that would take way too long.

• All matter, including gases, is made of atoms (and also molecules, but I
will refer to them all as atoms).

• The masses of hydrogen, helium, and carbon atoms are in the ratio

H :He :C= 1 : 4 : 12. (22.7)
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Thus in Eqns. 22.4–22.6, the mass of each gas is really being divided by
a number proportional to the mass of the constituent atoms. The result
is clearly proportional to the number of atoms in each sample. In other
words, PV is proportional to the product of T and N, the number of
atoms in the sample with a constant of proportionality that is independent
of the gas.

Thus we may write

PV = kNT (22.8)

where this new constant k= 1.38 · 10−23J/K is independent of the gas and
is called Boltzmann’s constant.

Bear in mind that we are discussing an ideal gas, one whose atoms
move independently of each other with no interatomic force. Gases tend to
become ideal at low densities, when the typical separation between atoms
is large and the interatomic forces negligible.

The numberN of gas atoms in a typical sample is huge. In particular,
one gram of the lightest atom, hydrogen, has NA = 6 · 1023 atoms, where
NA is called Avogadro’s number. (So, NA is the reciprocal of the mass of
a hydrogen atom in grams.) It’s simply a number, like a dozen, and it is
also called a mole. Sometimes the word mole is also used to stand for the
amount of any substance that has a mole of atoms in it. Thus a mole of
carbon has a mass of 12 grams. It is a natural unit to use for counting
atoms, the way a dozen is a natural unit for eggs, a light year is a natural
unit for cosmological distances, and a kilogram is a natural unit for the
mass of humans.

In terms of n, the number of moles defined by

n= N
NA

, (22.9)

the equation of state, the relation between P, V , and T for the ideal gas
becomes

PV =NkT = nNAkT (22.10)

= nRT where (22.11)

R=NAk= 8.31
J

K ·mole
, (22.12)
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where R=NAk is the universal gas constant, equal to 2 cals/oC/mole, easy
to remember and the same for all gases. Initially Rwas what was measured
and people worked with the moles n. Then they looked under the hood
and found that the gas is made of individual atoms, and they switched
from the macroscopic parameters n and R to the microscopic N and k.

22.3 Microscopic definition of absolute temperature
Look at PV =NkT = nRT. Is there a microscopic basis for this equation?
In other words, once we believe in atoms, do we understand why there is a
pressure at all in a gas? For this purpose, we will take an L× L× L cube of
gas as shown in Figure 22.1. Inside this is some gas and it has some pres-
sure, and I want to know the value of the pressure. Consider the shaded
face of the cube. It has to be nailed down to the other faces; otherwise,
it’ll just come flying out because the gas is pushing it out. The pressure is
the force on this face divided by area. The atoms are constantly bounc-
ing off the wall, and every time one bounces on a wall, its momentum
changes. So, who’s changing the momentum? Well, the wall is changing
the momentum. It’s reversing it, for example, if the atom bounces head-on
and goes back, as in the figure. That means the atom pushes the wall with
some force, and the wall pushes back with the opposite force. It’s the force

Figure 22.1 A cubic box with N gas atoms inside. The figure shows an atom of
velocity v hitting the shaded wall and reversing its velocity. The corresponding
momentum change is due to the wall, which exerts a force on the atom. The
opposite force the atom exerts on the wall is its contribution to the pressure.
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that the atom exerts on the wall that I’m interested in. I want to find the
force on this particular face and divide by its area to find the pressure. You
can find the pressure on any face; it is going to be the same in equilibrium.

I have N atoms, randomly moving inside the box, each suffering col-
lisions with the walls, bouncing off like a billiard ball would at the walls of
the pool table, and going to another wall and doing it again. Now, that’s a
very complicated problem, so we’re going to simplify it. We are going to
assume that one-third of the atoms are moving from left to right or right
to left (perpendicular to the shaded face), one-third are moving up and
down, and one-third are moving in and out of the page. Of course, you
will have to assign equal numbers to these directions, for nothing in the
gas favors any one. So 1

3N atoms are going back and forth between this
shaded wall and the one opposite to it. The figure shows you a side view.

The force on an atom is the rate of change of momentum:

F=ma=m
dv
dt

= d(mv)
dt

= dp
dt

. (22.13)

Next we assume all the atoms have the same speed, which I’m going to call
v. Take one particular atom that hits the shaded wall and bounces back. Its
momentum changes from mv to −mv; therefore, the change in momen-
tum is 2mv. How often does that collision take place? Once it hits that wall,
it has to go to the other wall and come back. It has to go a distance 2L, at
a speed v. The time it takes is 2L

v and the frequency of collisions with the
shaded wall is v

2L . So

dp
dt

=momentum change per collision× collisions per second

= 2mv · v
2L

. (22.14)

That is the force due to one atom. It’s not a continuous force. The atom
hits the wall, there’s a little force exchange between the two, then there’s
nothing, and then you wait until it comes back and hits the wall again.
If that were the only thing going on, most of the time there would be no
pressure, and suddenly there would be a lot of pressure, and then nothing.
But, fortunately, this is not the only atom. There are roughly 1023 guys
pounding against the wall. In a short time, even 10−5 seconds, there will
be a large number of atoms hitting the wall. The force will appear to be
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steady rather than staccato. The average force due to all the atoms hitting
this wall is

F̄= mv2

L
· 1
3
N. (22.15)

The other 2
3N atoms are moving parallel to this wall and apply no force

on it.
We’re almost done. What about the average pressure? It is the

average force divided by the area of that face

P= 1
3
N

mv2

L · L2
. (22.16)

This is very nice because L3 is just the volume of my box. I send it to
the other side and find

PV = 1
3
Nmv2. (22.17)

This is what the microscopic theory tells you: if your atoms all have
a single speed, if they’re moving randomly in space so that a third of them
are moving back and forth against that shaded wall and the opposite wall,
then PV = 1

3Nmv2. Experimentally, you find PV =NkT. So, you compare
the two expressions and out comes one of the most beautiful results:

1
2
mv2 = 3

2
kT. (22.18)

This profound formula not only confirms the kinetic theory, that
there are atoms, but it also gives for the first time the microscopic mean-
ing of temperature. What you and I call the absolute temperature of a gas
is, up to the factor 3

2k, simply the kinetic energy of the atoms. If you put
your hand into a container with some gas and it feels hot, the temper-
ature you’re measuring is the kinetic energy of the atoms. We see why
absolute zero is absolute. As you cool your gas, the kinetic energy of atoms
steadily decreases, but you cannot go below not moving at all, right? That’s
the lowest possible kinetic energy. That’s why it’s absolute zero. At that
point, everybody stops moving. That’s why you have no pressure. Now,
these results are modified by the laws of quantummechanics, but we don’t
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have to worry about that now. In classical physics, it’s correct to say that
when the temperature goes to absolute zero, all motion ceases.

So, bear in mind that absolute temperature is a measure of atomic
kinetic energy for a gas. Every ideal gas, whatever it’s made of, has the
same kinetic energy per atom at a given temperature. The kinetic energy
will be the same, but not the velocity. As the carbon atom is heavier than
hydrogen, it will be moving slower at that temperature in order to have the
same kinetic energy.

22.4 Statistical properties of matter and radiation
In a gas, the atoms are moving anywhere they want in the box. In a
solid, every atom has a place. If you take a two-dimensional solid, the
atoms form a nice array; for example, a square grid or lattice. They are
not absolutely locked to the points on the grid; instead, they execute sim-
ple harmonic motion about the lattice points. They experience a potential
that looks like an egg carton. The minima of the potential are at the lat-
tice points. If an atom moves off the minimum in any direction, there is
a restoring force to bring it back to the minimum. At T = 0 all the atoms
will sit at these minima. If there is an atom here, at this minimum, I know
that if I go 100 times the lattice spacing in the x or y direction (for a square
lattice), there will be another atom sitting there. That’s called long-range
order. If you heat up that solid, the atoms start vibrating. If you put the
solid on top of a hot plate, the atoms in the hot plate will bump into
these atoms and start them vibrating. Their average locations still exhibit
long-range order. But, in a hot solid, the atoms are making violent oscil-
lations around their assigned positions. If you energize them more and
more, there is nothing to prevent them from rolling over to the next min-
imum. Once that happens, all hell breaks loose, because they don’t have
any reason to stop there. They start going everywhere. That’s what we call
melting.

A liquid is more subtle. If you look at a liquid locally, the interatomic
spacing is very tightly constrained. Locally, the environment around an
atom is known, but if you go a short distance, I cannot give you a precise
location where you may find another atom. So, we say a liquid has short-
range positional order, but not long-range order. An ideal gas has no order
at all. If I tell you there’s a gas atom here, I cannot tell you where anybody
else is because nobody has any assigned location in relation to others.
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Going back to the gas, of course, a third of the atoms are not all mov-
ing in one direction. They’re moving in random directions. They are also
notmoving at a fixed speed v either. If I give you a gas at 300K and you take
this formula Eqn. 22.18 literally and calculate from it a certain v, you will
not find every atom at that velocity. Not only are the atomsmoving in ran-
domdirections, they are alsomoving with essentially all possible velocities.
The velocity you are getting from this formula is some kind of average. If
you have the ability to see the gas atoms and measure each velocity, what
is the probability P(v) that you get a magnitude v? The answer for a typical
case is shown in Figure 22.2 and has the form

P(v)∝ v2e−mv2
2kT . (22.19)

It has a certain peak, a most probable velocity (actually speed). The
average kinetic energy will obey 1

2mv2 = 3
2kT. This is called the Maxwell-

Boltzmann velocity distribution, though it should be called the speed
distribution. This is the detailed description of what’s happening in a gas.
A given temperature does not pick a unique velocity, but it picks a unique
graph for P(v) parametrized by T. You will understand this distribution
better upon reading the end of Chapter 24.

Here’s a digression. Take a box containing just radiation; in other
words, go inside a pizza oven. Take out all the air; the oven is still hot,

Figure 22.2 The probability P(v)∝ v2e−mv2
2kT that an atom in a gas will have a

speed v.
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and the walls of the oven are emitting electromagnetic radiation. Electro-
magnetic radiation comes in different frequencies, and you can ask how
much energy is contained in every possible frequency range. You know
each frequency is a color if it is in the visible range. So, how much energy
is in the red and how much is in the blue? That graph P(ω) as a function
of ω also looks like the Maxwell-Boltzmann distribution and is called the
Planck distribution. Whereas for atoms, P(v) is determined by tempera-
ture, the Boltzmann constant k, and the mass of the molecules, P(ω) is
determined by temperature, the Boltzmann constant, the velocity of light,
and Planck’s constant � � 10−34J.s. You give me a temperature, and I will
draw you another one of these roughly bell-shaped curves. As you heat
up the furnace, the shape will change, shifting to the right, toward higher
frequencies.

In summary, a temperature for electromagnetic radiation implies a
particular distribution of energy at each frequency, while for a gas it means
a distribution of atomic velocities.

One prediction of the Big Bang theory is that the universe was
formed roughly 13.8 billion years ago. In the earliest stages the tempera-
ture of the universe was incredibly high, and then as the universe expanded
it cooled. Today, at the current size, it has a certain average temperature,
which is a remnant of the Big Bang. And that temperature means that we
are sitting in the furnace of the Big Bang. But the furnace has cooled a
lot over the billions of years. The temperature of the universe is around
3K. You determine that by pointing your telescope at the sky. Of course,
you’re going to get light from this star and that star. Ignore all the pointy
things and look at the smooth background, and it should be the same in
all directions. Plot that radiation as a function of ω, and you’ll get a perfect
fit to the Planck distribution with T � 3K. If you go to intergalactic space,
that is your temperature. We’re all living in that heat bath at 3 degrees, and
it is getting colder as the universe expands.

22.5 Thermodynamic processes
Now we are going to study thermodynamics in detail. There is only one
system we will study, which is an ideal gas sitting inside a cylinder as
shown in Figure 22.3. It has a pressure P1 and a volume V1. I’m going
to put a dot in the P−V plane at (P1,V1), and that’s my gas. The state of
my gas is summarized by where I put the dot. Every dot here is a possible
state of equilibrium for the gas. Remember, if you look under the hood,
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Figure 22.3 Left: A piston and cylinder combination. The weights balance the
pressure P of the gas inside. (The atmospheric pressure is assumed to be zero or
added to that of the weights.) The volume V is just the volume below the piston.
Right: A point (P1,V1) representing a state of the gas and a possible quasi-static
path in the P−V plane to state (P2,V2). To move quasi-statically, the weights
must be replaced by fine grains of sand, which may be added or removed.

the gas is made up of roughly 1023 atoms. The microscopic state of the gas
is obtained by giving 1023 locations and 1023 velocities. According to New-
ton, that’s the maximum information you can give me about the gas right
now.With that and Newton’s laws, I can predict the future state. But when
you study thermodynamics, you don’t really want to look into the details.
You want to look at gross macroscopic properties, and there are two that
you need: pressure and volume. Now, you might say, “What about tem-
perature?” Why don’t I have a third axis for temperature? Why is that not
a property? Because PV = NkT. I don’t have to give you T, if I give you
P and V . By the way, PV =NkT only applies to ideal gases, whose atoms
and molecules are so far apart that they don’t feel any forces between each
other unless they collide. In general PV=NkT will be replaced by an equa-
tion of state, which is in general a complicated relation between P, V , and
T. But we are going to study only dilute ideal gases.

Back to the gas in the cylinder. It had three weights on top of the
piston. I suddenly pull out one weight. What do you think will happen?
The piston will now shoot up and bob up and down a few times. Then,
after a fraction of a second, it will settle down at a new location (P2,V2). By
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“settle down,” I mean after a while I will not see any macroscopic motion.
Then the gas has a new pressure and a new volume. It’s gone from being
at 1 to being at 2. What happened in between the starting and finishing
points? You might say, “Look, if it was here in the beginning, and if it was
there later, it must’ve followed some path.” Not really. Not in this process,
because if you do it very abruptly, suddenly throwing out one-third of the
weights, there’s a period when the piston rushes up, when the gas is not
in equilibrium. There is no single pressure you can associate with the gas.
The bottom of the gas doesn’t even know the top is flying off. It’s at the
old pressure. At the top the gas is at a lower pressure. We don’t call that
equilibrium. So, the dot, representing this system, moves off the graph. It’s
off the radar, and only when it has finally settled down, when the entire
gas has made up its mind on what its pressure is, can you represent it once
again as a point (P2,V2).

22.6 Quasi-static processes
Now we have a little problem. We have these equilibrium states, but when
you try to go from one to another the system flies off the P − V plane.
So, you want to find the means by which you can stay on the PV plane as
you change the state of the gas. That brings us to the notion of a quasi-
static process. A quasi-static process is trying to have it both ways, in which
you want to change the state of the gas, and you don’t want it to leave the
PV diagram. You want it to be always infinitesimally close to equilibrium.
So, what you really want is not three big fat weights on the piston, but
many, many tiny grains of sand that produce the pressure. Now, remove
one grain of sand. The piston moves a tiny bit and very quickly settles
down. It is again true that during the tiny bit of settling down you didn’t
know what it was doing, but you certainly nailed it at the second location
very close to the first. You remove one grain at a time and make the grains
smaller and smaller, and you wait longer and longer between these changes
to permit equilibration. Then, in a mathematical sense, you will be able to
connect the dots representing equilibrium states to form a continuous line.
That is a quasi-static process. Our discussions are not totally academic
because many processes at real speeds are approximately quasi-static. For
example, the internal combustion engine in your car completes thousands
of cycles per minute, and yet at each instant the gas inside is close enough
to equilibrium to be represented in the P−V plane.
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The above quasi-static process is also reversible, whichmeans the fol-
lowing. If, when I took off a grain of sand, the representative point moved
from one dot in the P − V plane to a nearby dot, then, when I put the
grain back, it’ll go back to where it was. So you can go back and forth. But
now, that’s an idealized process. If you have friction, and you take out a
grain and it goes up, then when you put the grain back, it will not come
back to quite where it was. You cannot put Humpty Dumpty back. Thus
most processes are irreversible, even if you do them slowly, due to effects
like friction. We will assume in our discussion that idealized reversible
processes exist.

In the old days, when we studied a single particle in the x− y plane,
I just said the particle goes from here to there. There was no restriction on
how fast it moved. Particles had trajectories no matter how quickly they
moved. As for thermodynamic systems, you cannot move them too fast.
They are extended and you have a huge number of atoms described by a
few macroscopic numbers like pressure. You cannot change one part of
the gas without waiting for the rest of it to respond, readjust, and achieve
a global value for the new pressure and other thermodynamic variables.

22.7 The first law of thermodynamics
Every dot in the P−V plane denotes an equilibrium state. In every state
of the system, I’m going to define a new variable, U, called the internal
energy of the gas. For the ideal gas, to which we will restrict most of our
discussions, it is simply the kinetic energy of the gas molecules. (For non-
ideal gases, solids, and liquids, U is the total energy including potential
energy.) Thus

U = 3N
2
kT = 3

2
nRT = 3

2
PV (22.20)

using PV =NkT = nRT. That means that, at any given point in the P−V
diagram, you have a certain internal energy. Notice that the internal energy
of an ideal gas depends only on the temperature.That’s something very, very
important. If the temperature has not changed, the internal energy has not
changed.

Note the change in notation: in mechanics E stood for the total
energy and U for the potential energy. Now U stands for the total energy.
What is worse, in the case of the ideal gas the thermodynamic U is all
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kinetic! You just have to learn to live with such conflicting notations.
When different parts of the subject are invented by different people, this
will happen: k is used to denote the spring constant, the momentum of the
photon, and now Boltzmann’s constant! The best we can hope for is that
two different definitions of the same symbol do not appear in the same
discussion.

I’m ready to write down what’s called the first law of thermodynamics
that talks about what happens if you make a move in the P−V plane from
point 1 to point 2. The internal energy will change by dU =U2 −U1. We
want to ask what causes the internal energy of the gas to change. There
are two ways you can do it: you can do work on the gas by moving the
piston, or you can put the gas on a hot plate. If you put it on a hot plate, we
know it’s going to get hotter. If it gets hotter, the temperature goes up. If
the temperature goes up, the kinetic and hence internal energy goes up. Of
course, you can put it on a cold plate and take out some heat. So in general

dU = �Q− �W. (22.21)

Here �W is positive if work is done by the gas, and it is negative if work
is done on the gas. As for �Q, it is positive (negative) if heat is put in
(taken out).

Note that the infinitesimal change inU is denoted by dU while small
quantities of heat and work are denoted by �Q and �W. The reason will
follow later.

What’s the formula for work done by the gas? If it expands against
the applied pressure

�W = Fdx= PA dx= PdV . (22.22)

If the gas is compressed so that dx < 0, then the work done by the gas is
negative. That leads to this great first law of thermodynamics, as applied
to the gas:

dU = −PdV + �Q (first law). (22.23)

It expresses the law of conservation of energy. It says the energy of
the gas changes either because you pushed the piston or the piston pushed
you; or because you put it on a hot plate or cold plate to add or take out
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heat. We are now equating putting it on a hot plate or cold plate as also
equivalent to giving or taking out energy, because we recognize heat as
energy.

If you fix the piston so it cannot move, and you put it on a hot
plate, the PdV part will vanish because there is no chance of a dV . On
a hot plate there are fast-moving molecules. When they collide with the
slow-moving gas molecules, typically the slow ones become a little faster
and the fast ones a little slower, and therefore there will be a transfer of
kinetic energy to the gas. Another thing you can do is thermally isolate
your gas so no heat can flow in or out of it, and then you can either have
the volume increase or decrease. If the gas expands, dV is positive and the
−PdV is negative, and so is dU. That’s because the molecules are beat-
ing up on the piston and moving the piston. Remember, applying a force
doesn’t cost you anything. But if the point of application moves, you do
work. And who’s going to pay for it but the gas? It’ll pay for it through its
loss of internal energy. Conversely, if you push down on the gas, dV will
be negative and dU = −PdV will be positive, and the energy of the gas
will go up.

Let us now calculate the work done in a process where a gas goes
from a point V to a nearby point V + dV when the pressure is at P(V), as
in Figure 22.4. The infinitesimal work done, dW = P(V)dV , is the shaded

Figure 22.4 During an infinitesimal change by dV , the work done by the gas is
the shaded area dW =PdV . If this were an isothermal process, some heat �Q
would flow in from the reservoir to keep T and U constant. For a finite process
the work done is the area between the V axis, the graph P(V), and the vertical
lines at V =V1 and V =V2.
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area, and the work done over a macroscopic path is

W1→2 =
∫ V2

V1

P(V)dV . (22.24)

The work is the area enclosed by the function P(V), the V-axis and
the vertical linesV=V1 andV=V2. To get an analytical expression for the
work you need to know P as a function of V . We are going to consider a
special case of an isotherm, a graph of a gas at a given temperature. Because
PV = nRT, if T is constant, PV is a constant. The graph is a rectangular
hyperbola: the product of P and V constant, so when the P increases, V
decreases, and vice versa.

We want to take the gas for a slow quasi-static ride from 1 to 2 along
the curve P(V)= NkT

V . The work done by the gas is

W1→2 =
∫ V2

V1

P(V)dV =NkT
∫ V2

V1

dV
V

=NkT ln
V2

V1
. (22.25)

If I make it go backward from 2 to 1, the work done by the gas is
given by the same area, but with a minus sign. If you go to the right, the
area is considered positive. If you go to the left, the area is considered
negative. The integral Eqn. 22.25 of course gives the right answer for both
cases because the ln will change sign under V1 ↔V2.

If that is W1→2, the work done by the gas, what is the heat input?
Recall the first law

dU = �Q− PdV . (22.26)

This gas did not change its temperature, and U = 3
2NkT implies U

didn’t change. So

�Q= PdV (22.27)

every step of the way and the gas has had a heat input of

Q=NkT ln
V2

V1
. (22.28)
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What do you think is happening to the gas here? Think of the piston
and weight combination as the gas expands a little bit isothermally. The
expansion should cool the gas if it were isolated because expansion costs
energy. However, the gas is held at a fixedT by placing it on some reservoir,
like a hot plate. Thus when it tries to cool down, heat �Q flows from the
reservoir, maintaining the temperature, as indicated by the vertical arrow
in Figure 22.4. So, what the gas is doing in this case is taking heat energy
from below (assuming that is where the reservoir is) and working against
the atmosphere and weights above. It takes in with one hand and gives out
to the other, converting heat into work, without changing its own energy.

22.8 Specific heats: cv and cp
You have to be careful when you talk about specific heats of gases, and here
is why. For liquids and solids, given dQ=mcdT, we define c= dQ

dT per unit
mass of the substance. For a gas, you’ve already seen that what you want to
count is not the actual mass, but the moles. Every molecule gets a certain
amount of energy, namely 3

2kT, and so you just want to count the number
of molecules, or the number of moles. Now, there are many ways in which
you can pump heat into a gas, but let’s agree that we will always take one
mole from now on and not one kilogram. Take a mole of some gas and call
themolar specific heat as the energy needed to raise the temperature of one
mole by one degree. If you take one mole, it has energyU= 3

2NAkT= 3
2RT.

From the first law

�Q= dU + PdV (22.29)

dQ
dT

= dU
dT

+ P
dV
dT

. (22.30)

There’s a problem here. Did you or did you not allow the volume to
change while adding heat? That’s going to determine what the specific heat
is. In other words, when a solid is heated, it expands such a tiny amount
that we don’t worry about the work done by the expanding solid against
the atmosphere. But, when you heat a gas, the volume changes so much
that the work it does against the external world is non-negligible. There-
fore, the specific heat is dependent on what you allow the volume term
to do.

Consider cv, the specific heat at constant volume where you don’t let
the volume change; you clamp the piston. You pump in heat by putting it
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on a hot plate. All the heat goes directly to internal energy. None of that is
lost to expansion. Setting dV = 0 in Eqn. 22.30 and n= 1 in U = 3

2nRT,

cv = dQ
dT

∣∣∣∣
V

= dU
dT

= 3
2
R. (22.31)

Then, there’s cp, the specific heat at constant pressure defined as fol-
lows. You have some gas at some pressure. You pump in some heat but
you don’t clamp the piston. You let the gas expand freely at the same pres-
sure. For example, if it’s being pushed down by the atmosphere, you let the
piston move up if it wants to, maintaining the same pressure. If it moves
up a little bit, some of the heat that you put in goes to changing its internal
energy and some into doing the work PdV . So now

cp = dQ
dT

∣∣∣∣
P
= dU

dT
+ P

dV
dT

= 3
2
R+ d(PV)

dT
= 3

2
R+ d(RT)

dT

= 3
2
R+R= 5

2
R= cv +R (22.32)

where we have taken P, which is being held fixed, into the T derivative and
used PV =RT for one mole.

You should have expected cp > cv because some of the heat goes into
expanding the gas and only the rest into raising its T. This is confirmed
and quantified by the result

cp = cv +R. (22.33)

Finally, consider the ratio that will come in later:

γ = cp
cv

= 5
3
. (22.34)

Notice that neither cp nor cv depends on what particular mono-
atomic gas is involved. All will have the same specific heat per mole or
molar specific heat. They won’t have the same specific heat per gram,
because one gram of two different gases will have a different number of
moles or atoms.

One final caveat: all this is for amono-atomic gas, whose constituents
are essentially points, with just the kinetic energy of translation. Compare
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this to, say, a diatomic gas, whose molecules are two atoms joined together
like a dumbbell. The kinetic energy of the dumbbell has two parts, as you
learned long ago. It can rotate around some axis and its CM can also move
in space. So, the internal energy has also got two parts: due to the motion
of the center of mass and due to rotation. Some molecules also vibrate.
The value of γ is not 5

3 for these.



chapter 23

Thermodynamics II

23.1 Cycles and state variables
Let us begin with the first law

dU = �Q− �W = �Q− PdV , (23.1)

which says that dU, the change in the energy of the gas, equals the heat
input �Q minus the work done by the system, �W = PdV . Why do we
refer to some infinitesimals with a � and some with a d?

This has to do with whether these refer to simply small quantities or
to small quantities that correspond to a change in a state variable, which
is some function that depends on the state of the gas, specified by P and
V . Consider the internal energy U. It is a state variable. That means that
at each point in the P−V plane it has a definite value. If we take the gas
for a spin and come back to where we started, U will return to its orig-
inal value. It will not matter what path we took: if you are back where
you started, U is back to its value. Thus in Figure 23.1, if we start at some
(P,V) and go around the shaded area in the clockwise sense and return,
so does U to U(P,V). For example, for an ideal gas, U = 3

2PV , and dU is
the change in this function due to a slight change in state. At any point
(P,V) we may speak of the internal energy resident in the gas. If you
peek in and add the kinetic energies of all the molecules, you will get this
number.

This is not so for the work W. We cannot speak of the work in the
gas—it does not correspond to anything resident in the system. Consider

394
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Figure 23.1 The work done by a gas as it goes over a closed cycle equals the
area enclosed by the cycle in the P−V plane. During AB the gas expands and
does work, and during BA it is compressed and has work done on it. The shaded
area is the algebraic sum of the two.

what happens when we go around the closed loop shown in Figure 23.1.
What is the work done? We have seen in the last chapter that, for an open
segment, it is the area under the graph if we move in the direction of
increasing V and minus that if we move to the left. For the closed region
shown, it must be clear that as we move along the upper part, from A to
B in the direction shown, the work done is the area under that part of the
curve. Then as we move back along the lower part, from B to A, we must
subtract the area under that segment. The algebraic sum of these is the
area of the shaded region. This is written as follows

Wcycle =
∮

P(V)dV . (23.2)

If there were a definite value ofW attached to each state, there would
be a problem: after addingWcycle to the system, you have come back to the
same state! So there isn’t a definite value of W attached to each state; W
is not a function W(P,V), unlike U, which is. On the other hand, we can
always say some tiny amount of work �W was done by the system; it is
just a number.

Just like W, there is no function Q(P,V) associated with each state.
You cannot peek into the gas and say, “I see this amount of heat there.” Let
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me prove it. Say there is some Q that you claim is resident in the system
when it is at (P,V). I then send you away and take the gas through the
cycle shown. Because U(P,V) is back to its old value, and workWcycle was
done by the system, the Q in the system must have increased by Wcycle.
Now you come back, and I ask you how much heat there is in the system.
You will give the old answer because the system is in exactly the same
state, but I knowQ has increased by the area of the closed loop. SoQ is not
a state variable, though we can always say some number of calories �Q
were added to the system.

In summary, only if F(P,V) is a state variable will we use dF to
represent the change in that function as we move to a neighboring point.

23.2 Adiabatic processes
We have already considered the work done under an isothermal process:
WT

1→2 =NkT ln V2
V1
. In the isothermal case, you keep the gas on a hot plate

at a given temperature T, and as the volume changes, heat comes in or
goes out to maintain T. A process at constant pressure P is called isobaric.
The work done is trivial: WP

1→2 = P(V2 − V1), which is just the area of a
rectangle of height P and width V2 −V1.

Now I’m going to consider the adiabatic process in which the gas is
thermally isolated, so �Q ≡ 0. You wrap this guy in a blanket and you
do things to it. Consider point A in Figure 23.2, which under isothermal
expansion ends up at B, on the same isotherm T = T1. Likewise, from A′

the system can expand isothermally at T =T2 to C. Which is higher, T1 or
T2? Take a point on A′ on T2 directly below A. It has the same volume as A
but lower pressure, so PV =NkT is less. So T2 <T1.

But suppose I start at A and let the gas expand adiabatically. The
gas expands against the external pressure but no heat is allowed to come
in. It’ll pay for the work through its own internal energy, which will go
down, and that means T will go down. The gas will be cascading down
from one isotherm to another, until you stop somewhere at the lower tem-
perature, such as the pointD at T2. Another way to say this is that the drop
in pressure for a given increase in volume would be more precipitous for
the adiabatic process. The evolution will not be P ∝ 1/V , but something
steeper. What is the equation for an adiabatic process? What is P as the
function of V?



Thermodynamics II 397

Figure 23.2 The figure shows two isothermal curves at T1 and T2 and two
adiabatic curves crossing them. In the latter case P falls more rapidly with
increasing V because it gets no help from outside.

This will be determined by the first law of thermodynamics. First we
combine the definition of adiabatic, �Q= 0, with the first law to obtain

�Q= dU + PdV = 0. (23.3)

This equation relates the change in U to the change in V in an adia-
batic process. GivenU= 3

2nRT, it follows that dU= 3
2nRdT=ncvdT. Using

PV = nRT we find

ncvdT + nRT
V

dV = 0. (23.4)

Canceling the n and rearranging

cv
R
dT
T

+ dV
V

= 0. (23.5)

Note that because n drops out, we could have analyzed just one mole of
the gas from the outset.

Not only does this equation tell us what we expect intuitively—that
if the volume increases (dV > 0), the temperature decreases (dT < 0)—it
quantifies the dT, drop in temperature under adiabatic expansion (or its
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opposite under adiabatic compression). However, what we wanted to do
was relate dV to dP, to see how the adiabatic evolution takes place in the
P−V plane. Let us postpone that and first get a result connectingV and T,
because it will be very useful later. We can then use PV =RT to eliminate
T from that result.

Integrating Eqn. 23.5 between states 1 and 2 yields

cv
R
ln

T2

T1
+ ln

V2

V1
= 0. (23.6)

We may rewrite this as follows:

ln

([
T2

T1

]cv/R

· V2

V1

)
= 0 (23.7)

[
T2

T1

]cv/R

· V2

V1
= 1 using ln1= 0 (23.8)

Tcv/R
2 V2 =Tcv/R

1 V1, (23.9)

which may be rewritten as

Tcv/RV =C, (23.10)

where C is a constant along the adiabatic path connecting state 1 to state
2. For an ideal mono-atomic gas, cv/R would be just 3

2 , but let us keep it in
this form for now.

To find pressure as the function of volume on an adiabatic curve, we
eliminate T in

Tcv/RV = C (23.11)[
PV
R

]cv/R

V = C (23.12)

Pcv/RV (1+cv/R) =C′, another constant (23.13)

PV
cv+R
cv = C′′ on raising both sides above (23.14)

to the R/cv power.
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Finally, we have the familiar version

P1V
γ

1 = P2V
γ

2 = PVγ =C where (23.15)

γ = cv +R
cv

= cp
cv
. (23.16)

Here P and V refer to a generic point on the adiabatic curve, and we have
renamed the final constant C′′ in Eqn. 23.14 as C. It’s not a constant you
can look up in a book like the velocity of light. It depends on this particular
sample of gas. (When we say the energy is constant for a particle, it is not
a universal constant like Boltzmann’s constant k; instead, it is constant for
this particle on this particular trajectory, say, as it gains height and loses
speed. Here, as the gas loses P and gains V in an adiabatic process, PVγ

remains fixed at a value C that depends on the particular sample.)
Now we calculate the work done in an adiabatic process, say from B

to C in Figure 23.2.

WQ=0
B→C =

∫ VC

VB

P(V)dV (23.17)

=
∫ VC

VB

CV−γdV (23.18)

=
[
C
V1−γ

C

1− γ
−C

V1−γ

B

1− γ

]
(23.19)

=
[
PCV

γ

C
V1−γ

C

1− γ
− PBV

γ

B
V1−γ

B

1− γ

]
(23.20)

= PBVB − PCVC

γ − 1
(23.21)

where we have used C= PCV
γ

C = PBV
γ

B in the penultimate step.

23.3 The second law of thermodynamics
We come to the last part of thermodynamics, which to me is the most
beautiful. It starts out with the following consideration. There are certain
things in this world that seem perfectly allowed but don’t seem to hap-
pen. Take the Joule experiment. You take water in a cylinder with a shaft
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with fins that can spin. You hang some weight over a pulley, and, as the
weight goes down, the shaft spins; the water heats up. You film a movie of
that, and the movie is so detailed you can even see individual molecules.
Now you play the movie backward. What do you find? Suddenly, the
weight starts moving up, the shaft spins the other way, and the water cools
down. This does not violate any of the laws you have learned, including the
first law of thermodynamics. When the weight went down and the water
heated up, some amount of work was done on the water, and the energy
of the water went up. In the reverse process, the energy of the water went
down and the weight went up, and an equal amount of work was done by
the water. But that reverse process doesn’t seem to happen, even though
microscopically there is nothing funny about it. If you looked at the col-
lisions between the water molecules and the fins, you would not know at
the microscopic level whether the movie was going forward or backward;
every collision would obey Newton’s laws, and energy and momentum
would be conserved. Why is the reverse process, allowed by all the laws
of mechanics, somehow forbidden from happening in real life?

Here is another example. Consider an eraser on a table. I give it a
push and it moves a bit and stops. The table and eraser heat up. Take a
movie of that. Play it backward. You will find the table and eraser cool
down, and the erasermoves backward, picking up speed. Youmight laugh,
but you have no reason to do so right now, because the movie doesn’t
contradict any physics you have learned—just your expectations based on
your daily experience. In the reverse process, every atom is made to stop,
turn around, and move in the reverse direction at the reversed velocity.
And every collision between atoms on the desk and atoms on the eraser
will obey all the laws of mechanics in the forward and backward movies.

In the cases we have considered, the common feature seems to be
that kinetic energy can turn into heat easily, but not so the reverse.

Now take a different kind of example. I put some gas molecules in
one-half of a box, with a partition holding them in that side. Then I remove
this partition and I wait a little bit. The gas will fill up the box. That’s like
perfume leaking out of the bottle. Now I take a movie of these molecules
and play the movie backward. In the backward movie the gas which had
spread over the box, will spontaneously gather in the left half. The movie
does not violate any of the laws of mechanics. But what it portrays does
not happen.

I take a chunk of some hot copper and a chunk of some cold copper.
I place one on top of the other, thermally isolate them from the outside
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world, come back in an hour, and they have both become lukewarm. That’s
fine. But now maybe, if I wait long enough, the lukewarm chunks will
spontaneously separate into hot and cold. That doesn’t seem to happen.
The heat seems to flow spontaneously from hot to cold but never back
from cold to hot. But flowing from cold to hot would not violate the law
of conservation of energy. As long as the same number of calories go
from cold to hot, it doesn’t violate anything. And yet that doesn’t seem
to happen.

This list of things allowed by all known laws and yet forbidden in
nature can go on and on. Because we cannot explain this interdiction with
any known laws of physics, we elevate it to a new law. The new law could
say all of these things are forbidden. That’s not a good enough law. The list
of forbidden processes is a mile long.

Amazingly, there is one law, a single law, that not only is qualitative,
but is quantitative, and it tells you exactly which things can happen and
which cannot. That is the second law of thermodynamics.What form does
it take? We will introduce a certain quantity called entropy. The second
law will say that the entropy of the universe will never decrease. If the pad-
dle spun the other way, the weight went up, and the water cooled down,
you can show the entropy of the universe would have actually gone down.
That’s why that’s not allowed. If you drop an egg and it splatters all over the
floor, it cannot rejoin and rise back to your hand, for this too would cause
a decrease of entropy of the universe. So will the unmixing of lukewarm
into hot and cold and all the other forbidden things.

This great law was discovered following the investigations of an
engineer called Sadi Carnot. One does not generally wake up and say,
“I’m going to discover a great law.” You just go about your business,
but you need to recognize it when you’ve stumbled on something big,
as Archimedes did in his bathtub. Carnot had a very practical question
about engines, like the steam engine. You take some coal, you burn it to
boil some water, it turns into steam, which in turn pushes the pistons that
turn the wheels that make the train go forward. What happens in a steam
engine is described schematically in the left half of Figure 23.3. Heat Q1

from a reservoir at T1 goes into the engine. Out comes some mechani-
cal work W and some exhaust emission Q2 at a lower temperature T2. In
the case of the steam engine T1 is the temperature of the furnace, Q1 the
heat generated by burning the coal; T2 is generally room temperature. If
you ever have the opportunity to see a steam engine, you will notice that
there’s a lot of hot steam coming out of the side. That is Q2. Note that Q2

is defined to be positive coming out of the engine.
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Figure 23.3 A heat engine (left) takes in heat Q1 from a reservoir at T1, does
some workW, and rejects heat Q2 to a colder reservoir at T2. Things go the other
way in a refrigerator (right): workW is pumped in to transfer heat Q2 from T2 to
a higher temperature T1.

The engine operates in a cycle, that is, it can do all of this (absorbQ1,
do workW, and reject Q2) over and over again.

You can fill in the corresponding items for a gasoline engine.
On the right half of the figure is a device called the refrigerator: it

takes in Q2 from a cold place (freezer), has some work inputW (from the
electrical socket that powers the compressor), and emitsQ1 =Q2 +W into
the environment (your kitchen). The refrigerator will play an important
part later, but let us return to the engine for now.

By the first law, the work done by the engine (which manifests itself
as the kinetic energy of the locomotive or automobile) is

W =Q1 −Q2. (23.22)

We define a quantity called efficiency η. It’s the work you want (W),
divided by the heat you pay for (Q1):

η = W
Q1

= Q1 −Q2

Q1
= 1− Q2

Q1
. (23.23)

Every engine takes in heat. Some of it is converted to work and some
of it is rejected. To the extent heat is rejected, the efficiency is less than 1.
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Why not build an engine that doesn’t reject any heat at the lower temper-
ature T2? Why not take all the heat and convert it to work? Carnot gave
a great argument for the most efficient engine you can build operating
between these two temperatures T1 (at which heat is produced) and T2 (at
which heat is rejected). He showed that there is an upper limit to η and the
limit is less than 1.

What is this limiting η and how did he find it? He needed a postulate.
Carnot’s postulate is the old version of the second law of thermodynamics,
and it is fully equivalent to the modern version that makes reference to
entropy. Here is Carnot’s law: You cannot build an engine whose sole effect
is to transfer some heat from a cold body to a hot body.

But we already have noticed that heat cannot flow from cold to hot
spontaneously; that is why two lukewarm blocks of copper cannot separate
into hot and cold blocks. All Carnot seems to say is that this cannot hap-
pen, because he postulates it cannot. In fact, from this one postulate, one
may develop the notion of entropy, which in turn will be used to outlaw
all the forbidden processes with a single restriction on entropy.

It doesn’t take much effort to have heat flow from hot bodies to cold
bodies: just connect them with a metal rod and wait. The sole effect of that
is the transfer of heat from hot to cold. That’s the natural order of things.
Carnot is saying that you can never build a contraption whose sole effect
is the transfer of heat from a cold body to a hot one. That is going to be
taken as a reasonable postulate, and we want to see what we can get out
of that postulate. It turns out that this postulate is going to put a bound
on the efficiency of heat engines, by demanding that you must necessarily
reject some heatQ2. From this postulate evolved the second law, assuming
more and more sophisticated forms, and culminating in the language of
entropy.

23.4 The Carnot engine
The engine that Carnot conceived is depicted in Figure 23.4. Take an
isotherm at T1 with points A and B on it. Draw an isotherm at T2 < T1.
You remember the adiabatic curves are much steeper. So draw two adia-
batic curves leaving A and B at T1 to joinD and C on the colder isothermal
at T2. Then, take an ideal gas from A to B to C to D and back to A. That
is the Carnot cycle. In the process AB, take the cylinder with the gas in it,
sitting on top of a reservoir at T1, and slowly lift the grains of sand on the
piston so it expands to a volume B at the same temperature. Then, having
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Figure 23.4 The Carnot cycle, running as an engine. It can also be reversed to
run as a refrigerator. The process A→B is isothermal expansion at T1 during
which heat Q1 is drawn in from the hot reservoir. The part B→C is adiabatic
expansion, and the system cools down to T2. (The box surrounding the system
signifies thermal isolation.) The part C→D is isothermal compression at T2

when Q2 is rejected to the cold reservoir. Finally the adiabatic compression
D→A closes the cycle.

reached B, you thermally isolate the gas (shown by a box surrounding it
on the figures at the right). Take out even more grains of sand. Now, it’s
expanding without any energy coming in. It cools down to point C at T2

along the adiabatic curve BC. Now you put it on a cold reservoir at T2 and
slowly start putting the sand grains back until you get to C. Finally, you
isolate the gas and put more grains of sand back until you come back to A.
Obviously, such a path exists because of the way isothermal and adiabatic
lines crisscross the PV plane.

The important feature of the Carnot cycle is that it’s reversible. It’s
reversible because at every stage, you are almost in equilibrium. If you
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take out a grain of sand and the piston moves up, you can put it back and
move the piston back. If it absorbs some heat going one way, it will reject it
going the other way. So, it can also run backward as a refrigerator (shown
in Figure 23.4) following A → D → C → B → A. Some heat Q2 is taken
from the lower reservoir and the heat Q1 is delivered to the upper reser-
voir because some work W is done on the refrigerator. You might say,
“You violated the second law. You have transferred heat from a cold to a
hot body!” But it was not the only thing that happened, because some com-
pressor somewhere did some work. Some water in a dam flowed downhill
to generate that electrical power. You paid your electric bill. Things are
not how they used to be. What is not allowed is to have heat flow from
cold to hot with nothing else changed.

Notice that after doing its cycle, the gas comes back to the starting
point A. That means you can do it over and over again, and Q1,Q2, andW
refer to one cycle. That’s why it’s a useful engine. (You can alway make a
disposable, one-shot engine that converts heat fully to work: take a hot gas
in a cylinder, and release the piston so it can rise up and lift some weights
and cool down in the process. You have converted some heat fully to work,
but things are not back where they were. We are only interested in engines
that operate in cycles.) Carnot’s question was, “What’s the efficiency of this
engine?” You might wonder why someone would be interested in the η of
such a primitive engine. Before I explain that, let us first calculate η.

To find η = 1− Q2
Q1

we needQ1 andQ2. Because AB is isothermal, the
heat input Q1 is the work doneW

T1
A→B:

Q1 =WT1
A→B = nT1 ln

VB

VA
. (23.24)

Likewise

Q2 =WT2
D→C = nT2 ln

VC

VD
(23.25)

where in Q2 the ratio of initial to final volumes VC
VD

appears rather than VD
VC

because Q2 has been defined as the heat rejected. So

η = 1− Q2

Q1
= 1−

nT2 ln
VC
VD

nT1 ln
VB
VA

. (23.26)
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First notice n drops out as it should, because the efficiency should not
depend on how much gas we take. If we double the gas, we simply double
Q1,Q2, and W. It turns out we can even cancel the logarithms using the
following result I will prove in a moment:

VB

VA
= VC

VD
. (23.27)

The final result is simplicity itself:

η = 1− T2

T1
. (23.28)

In what follows, I will use η to always denote this maximum efficiency.
Now for Eqn. 23.27. We have seen in Eqn. 23.11 that in an adiabatic

processVTcv/R is a constant, that is, for two points x and y on the adiabatic
curve,

VxTcv/R
x =VyTcv/R

y . (23.29)

Apply this to the pair x= B, y=C and x=A, y=D. Because A and B are
at T1 and C and D are at T2, we find

VBT
cv/R
1 =VCT

cv/R
2 (23.30)

VAT
cv/R
1 =VDT

cv/R
2 . (23.31)

Dividing the left side by the left and the right side by the right we find
Eqn. 23.27.

I’ve taken an ideal gas over a cycle and found out that it does func-
tion like a very primitive heat engine because it takes some heatQ1, rejects
some heatQ2, and does someworkW=Q1 −Q2 given by the area enclosed
by the cycle. The ratio of work done to heat absorbed happens to depend
only on the upper and the lower temperatures. It does not depend on
the gas.

I will show that this efficiency is a theoretical maximum. No engine
can beat the Carnot engine in efficiency, not even one built in 2013. This
analysis is reminiscent of relativity. To show you why time slows down
in a moving frame, I took a very simple clock, where a light beam went
up and down between two mirrors. That’s not your idea of a clock, but
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you can see why it slows down. But then you know that every clock has to
slow down the same way, because all clocks in a moving rocket must run
at the same rate. Otherwise, you can compare the two clocks and find out
you are moving. Likewise, if you take a very primitive engine, but you can
show that it is the most efficient engine, you are done finding the upper
limit on the efficiency of all engines.

Here is Carnot’s argument, based on the postulate that it’s impossible
to find a process the sole result of which is to transfer some heat from a
cold body to a hot body. You have to grant Carnot that postulate, which
we accept to be phenomenologically valid. Given that postulate, Carnot
will now show you that no engine can beat his engine.

The key to the Carnot engine is that it is a reversible engine. That
means the Carnot engine, starting at the point A, can go backward to
D then C then to B and then back to A. If the Carnot engine were run
backward, it would look like a refrigerator: it would take in heat Q2 at T2,
somebody would do work W on it, and it would reject Q1 at T1. That’s
what we’re going to use to show that you cannot beat the Carnot engine.

Here is a concrete demonstration that’s good enough for our present
purpose. Let us say our illustrative Carnot engine takes 100 calories, deliv-
ers 20 calories in work, and rejects 80 calories operating between some
two temperatures T1 and T2. I am taking a particular example where the
efficiency is η = W

Q1
= 20

100 = .2. Now, if you say you have a better engine,
what you really mean is that your engine, also operating between the same
two temperatures, can take 100 calories and deliver more than 20 calories
of work, let us say 40 calories, and reject only 60 calories. This is shown
at the left in the box in Figure 23.5. To disprove your claim, I am going
to get a Carnot engine that is twice as big as the original one and then I
am going to run it backward. Mind you, it is not more efficient; it just has
twice as much gas. What will that Carnot engine, called 2×Carnot* in the
right half of the box, do? It will take 160 calories from the colder reservoir,
it will want 40 calories of work input, and it will dump 200 calories at the
upper reservoir, as shown in the right half of the box. I want the reverse
Carnot (refrigerator) to be twice as big for the following simple reason:
Your engine is delivering 40 calories of work per cycle; my refrigerator
needs 40 to run. We can directly take the work output from your engine
and feed it to my refrigerator. Your heat engine produces work, my refrig-
erator needs work, and I’ve scaled its size so that its appetite matches your
engine’s output.
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Figure 23.5 If you have an engine that is more efficient than Carnot’s it can be
combined with his (reversed and rescaled) to form a machine whose sole effect is
to transfer heat from a cold to a hot reservoir. In this case the Carnot took in
100 calories, did 20 calories of work, and rejected 80. The supposed rival, which
took in 100, did 40 of work, and rejected 60, is shown on the left half of the box.
The machine called 2×Carnot* in the right half of the box is the original Carnot
reversed and doubled in size. The gadgets taken together (and enclosed within
the box) equal a third one, shown in the far right, which transfers 100 calories
from cold to hot with no other effects.

Now, let’s draw a box around these two guys and not look under the
hood to see what we’ve got. At the end of a full cycle, when everything is
done, we find that all the gases, all the pistons, have come back to where
they were at the outset. No need to plug this gadget into the wall because
the refrigerator at the right is getting the power from this heat engine at
the left. I look at the lower reservoir; I see 100 calories leaving: 60 coming
down and 160 going up. I look at the upper reservoir; I see 200 calories
in and 100 out. So basically, the combined gadgets are equal to a single
gadget that transfers 100 calories per cycle from the cold reservoir at T2

to a hotter one at T1 with no other changes anywhere in the universe, and
that is not allowed. Therefore, your claim that you have an engine more
efficient than the Carnot engine has to be false.

The numbers I picked above are simply representative, but you can
take any set of numbers as long as your engine does better than mine:
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instead of 40 calories of work output, it could have been 30 calories. If it
produced 30, I’ll get an engine that is 3

2 times as big as the standard Carnot
engine and run it backward. Your 30 calories will feed my refrigerator,
and you will find 50 calories of heat flowing from a cold body to a hot
body per cycle, with no other changes anywhere in the universe. This is
how Carnot’s engine, even though very primitive, is the standard for all
engines. The key to the result is that the Carnot engine is reversible.

The Carnot engine was based on the ideal gas. Given its reversibility,
we were able to show that no engine could bemore efficient. Consider now
any other reversible engine, running on any substance. We already know
it cannot be more efficient than Carnot’s. It also cannot be less efficient.
To show this, repeat our previous argument, but with this reversible one
running backward, coupled to the Carnot running forward, to produce
a combination that transfers heat from cold to hot with no other effects.
For example, if the less efficient but reversible engine took 100 calories
and converted only 10 to work, you can run it backward and power it
using a Carnot engine half as big as our illustrative one, which takes in
50 calories and delivers 10 calories of work. You should verify that the
combination will transfer 50 calories from cold to hot in every cycle, with
no other effects, which is not allowed. The only acceptable result is that all
reversible engines are equally efficient, Carnot’s being the one that we have
studied in depth. The efficiency of actual engines will always be less than
this limit because of losses.

23.4.1 Defining T using Carnot engines

We have shown that

η = 1− T2

T1
(23.32)

where the temperature T is defined by the ideal gas equation PV =NkT.
We can introduce an absolute temperature T, with no reference to any
specific substance, using reversible engines as follows.

We define the ratio of absolute temperatures T1 and T2 of any two
objects by the relation

η = 1− T2

T1
(23.33)
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where η is the efficiency of a reversible heat engine operating between T1

and T2, known to be independent of any details of the engine, the sub-
stance it runs on, and so forth. Next we fix the absolute values by defining
T at the triple point of water to be 273.16. We are done.

Suppose you get me a bucket of some fluid. To find its absolute tem-
perature TB, I will run any reversible engine between the bucket of fluid
(the hot reservoir) and a bucket containing water at its triple point (the
cold reservoir), measure its η, and obtain TB by solving

η = 1− 273.16
TB

. (23.34)

Here I assume TB > 273.16. If not, I will switch reservoirs. The engine
can be made arbitrarily small so as not to affect the temperature of either
bucket.

Let us leave the practical domain and go back to more theoretical
issues that were raised earlier, namely, how Carnot’s result can be used to
define entropy and how the single law of increasing entropy can succeed
in forbidding all the processes we said were forbidden, like the unmixing
of hot and cold.



chapter 24

Entropy and Irreversibility

24.1 Entropy
As promised at the end of the last chapter, we will now go from Carnot’s
practical considerations on the efficiency of heat engines to the notion of
entropy.

In computing the efficiency of the Carnot engine, we found that
the heat absorbed from the reservoir at T1 and the heat rejected into the
reservoir at T2 are in the ratio (consult Figure 23.4)

Q2

Q1
= T2

T1
, (24.1)

which we can rewrite as

Q1

T1
− Q2

T2
= 0. (24.2)

Note that in this convention, Q1 was the heat absorbed from the hot
reservoir during AB, while Q2 was the heat rejected in CD into the cold
reservoir.

Let us add two harmless 0’s on the left and write

Q1

T1
+ 0+

[
−Q2

T2

]
+ 0= 0 (24.3)

411
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so that the four terms correspond to the four parts in the Carnot cycle. The
part AB contributes Q1

T1
because Q1 was absorbed from the hot reservoir at

T1. The adiabatic segment BC contributes the first zero. The segment CD
contributes the −Q2

T2
because Q2 was rejected into the cold reservoir at T2.

The last adiabatic segment DA gives the final zero.
Let us change conventions and uniformly define �Qi to be the heat

absorbed by the system and rewrite Eqn. 24.3 as follows:

∑
i

�Qi

Ti
= 0 (24.4)

where the sum is over the different segments in the closed loop.
Eqn. 24.4 is the heart of the whole entropy concept. It tells us there

is another state variable lurking around besides the energy U. Remember
a state variable is one that returns to its initial value when we go around
a closed loop. The internal energy U is a state variable because if you go
around a cycle and come back to the same point (P,V), U (which is given
by U = 3

2PV for an ideal gas) returns to the old value. If the loop is made
up of some discrete segments labeled by i (as in the Carnot cycle) and dUi

is the change in segment i we write

∑
i

dUi = 0. (24.5)

If the cycle is some arbitrary continuous loop, we write

∮
dU = 0. (24.6)

By contrast, if you add the �Qi’s around a loop, you will get the area
enclosed by the closed loop, which is the work done by the system in the
cycle. So Q is not a state variable.

Now look at Eqn. 24.4. It says that even though the �Qi’s do not add
up to zero in a cycle, if we divide each �Qi by the value of Ti, the sum
vanishes. This suggests that we define a new variable, the entropy S of the
system, as follows.
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The entropy S is a state variable that changes by

dS= �Q
T

∣∣∣∣
rev

(24.7)

when heat �Q is added reversibly, that is, with the system arbitrarily close
to equilibrium.

By this definition S returns to its initial value after any Carnot cycle:

∑
dSi = 0. (24.8)

However, to merit the title of state variable Eqn. 24.8 should be valid
for any closed loop, not just the Carnot cycle bounded by adiabatic and
isothermal curves. In other words we want

∮
dS= 0 (24.9)

for all loops. This happens to be true. The proof (which you may skip if you
wish) relies on the fact that you cannot convert heat fully into work with no
other effects because this means η = 1, in violation of Carnot’s result.

Now for the proof that over any closed cycle
∮
dS= 0. Imagine the

system going on a loop as shown in Figure 24.1 and an auxiliary reservoir
at T0. Take one loop segment labeled i. If during this it needed heat input
�Qi, let it be delivered by a Carnot refrigerator acting between the reser-
voir at T0 and the system temperature Ti. Let �Q0i be the heat extracted in
this step from the reservoir at T0, and let �Wi be the work needed by this
refrigerator to pump the heat. Being a Carnot refrigerator it obeys

�Q0i

T0
= �Qi

Ti
. (24.10)

Summing this over the closed loop (in parts of which �Qi and �Q0 may
be negative, as in segment j in the figure) we find

Q0

T0
=

∮
dQ
T

(24.11)
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Figure 24.1 A system is taken quasi-statically through a cycle. In the segment
labeled i it needs some heat �Qi, which it gets from a Carnot refrigerator
operating between the system’s current temperature and a reservoir at T0. The
refrigerator needs work �Wi. If it happens that �Q< 0, as is the case at point j,
the heat will be sucked out of the system by a Carnot engine and dumped into
the reservoir at T0.

where Q0 is the total heat extracted from the reservoir. If Q0 is zero, we
have the desired result

∮
dQ
T

=
∮

dS= 0. (24.12)

We will see that this has to be so. (In the expression for dS we use dQ/T
rather than �Q/T because this ratio stands for the differential dS.)

If Q0 > 0, it means some heat has been lost by the reservoir. Because
the system and all the auxiliary Carnot engines have come back to where
they started, by conservation of energy this heat must have been converted
fully to an equivalent amount of work delivered by all the Carnot engines
and our system, that is, with η = 1, which is impossible. If Q0 < 0, we can
run the whole thing backward (because all steps are reversible in all the
Carnot engines and our system) and change the sign of Q0 to positive and
get the previous contradiction.
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Even if you did not follow this argument you must at least note it is
important that �Q has to be added reversibly if we want to relate it to dS
by �Q

T = dS.
Thus there are now two state variablesU and S. Because we have only

defined the change in S, its absolute value is indeterminate up to a con-
stant, just like the potential. Using this freedom we may arbitrarily assign
a value S0 to the entropy at some point (P0,V0) and find its value at any
arbitrary point (P,V) experimentally by adding the changes dS = dQ

T in
going from (P0,V0) to (P,V). We can take any path because each point
has a well-defined value of S and the difference in S between two points is
independent of the path joining them.

To summarize, we know S is a state variable and that its change is
given by Eqn. 24.7. But we have no idea what this quantity S stands for,
in contrast to �Q, dV , or dU, which appeal to our intuition directly. But
even in the early days people like Rudolf Clausius realized, “Here’s another
variable we have unearthed. We may not fully know what it means, but it
is a state variable, so we better take it very seriously.”

Let us bring S into the picture by rewriting the first law

dU = �Q− PdV (24.13)

as follows. Because U is a state variable, the change dU is independent of
how heat is added to the system. So let us assume it is added reversibly,
allowing us to write

dU =TdS− PdV . (24.14)

Mathematically this tells us U is a function of S and V and that

T = ∂U
∂S

(24.15)

P= −∂U
∂V

. (24.16)

Because we are now focused on S, let us rewrite the first law as

dS= 1
T
dU + P

T
dV . (24.17)
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This equation tells us that S (for a fixed amount of gas, say 197 moles) is a
function of its macroscopic properties: volume V , energy U, and that

∂S
∂U

∣∣∣∣
V

= 1
T

∂S
∂V

∣∣∣∣
U

= P
T
. (24.18)

These two equations are worth committing to memory.
Before we develop a feeling for what Smeans, I want you to get some

practice calculating the entropy change for a couple of processes armed
with just

dS= dQ
T

∣∣∣∣
rev
. (24.19)

First consider m grams of ice that are going to be melted at 0◦. We
have to add the latent heat L= 80cal/g reversibly, that is, add a little heat
from a reservoir at (0+ ε)◦C (with ε → 0) and let it be fully absorbed by
the entire specimen of ice and water till it reaches a new equilibrium state
with a little more water. And then keep doing this till all the ice has melted,
at which point

S2 −S1=
∫ 2

1

dQ
T

= mL
Tice

cal/K where Tice = 273.16K. (24.20)

In this simple case where T is fixed at Tice, it can be pulled out of the
integral, which givesmL.

Next we consider a more complicated problem: heating m grams of
water, from T1 to T2. The entropy change is

S2 − S1 =
∫ 2

1
mcw

dT
T

=mcw ln
T2

T1
. (24.21)

Once again, remember that the heat should be added reversibly: you don’t
just dump the water at T1 on a saucepan at T2: instead you bring it in con-
tact with a succession of reservoirs, each infinitesimally above the previous
one, to take the water from T1 to T2, giving it enough time to equilibrate
with each reservoir.

If you cooled it from a higher to lower temperature, you can use the
same formula and the result will be negative because T2 <T1.
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Finally we turn to an entropy calculation involving a gas, whose
results are going to be very instructive. Take a gas and let it expand isother-
mally at temperature T from volume V1 to V2 as shown in Figure 24.2.

As when the ice was melted, T is constant and can be pulled out of
the integral

S2 − S1 =
∫ 2

1

dQ
T

= 1
T

∫ 2

1
dQ= Q

T
(24.22)

where Q is the total heat absorbed by the gas. Since U is fixed in this
isothermal process, Q is the work done by the gas. Thus

S2 − S1 =
∫ 2

1

dQ
T

=
∫ 2

1

PdV
T

=
∫ 2

1

nRTdV
VT

=nR ln
V2

V1
. (24.23)

If at every point there is a unique entropy, then the entropy differ-
ence between 2 and 1 should be independent of how we go from 1 to 2. So,
instead of following the isotherm let us go straight down the P axis to the
point 0, which has the same volume as 1 and the same pressure as 2, that
is, V0 =V1 and P0 = P2. The entropy changes are

Figure 24.2 The entropy change between 1 and 2 at the same T can be
computed by integrating dQ

T along the isotherm or any other path, such as the
one that goes via point 0.
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S0 − S1 = ncv
∫ T0

T1

dT
T

= n
3R
2

ln
T0

T1
= n

3R
2

ln
T0

T
(because T1 =T)

(24.24)

S2 − S0 = ncp ln
T2

T0
= n

5R
2

ln
T
T0

(because T2 =T) (24.25)

S2 − S1 = n
3R
2

ln
T0

T
+ n

5R
2

ln
T
T0

= n
3R
2

ln
T0

T0
+ n

2R
2

ln
T
T0

= nR ln
T
T0

(24.26)

= nR ln
V2

V1
(upon using T

T0
= T1

T0
= P1V1

P0V0
= P1

P2
= V2

V1
),

(24.27)

using many equalities implied in Figure 24.2: T = T1 = T2, V1 = V0, and
P0 = P2. So, we can find the entropy change anyway we like. We usually
pick the easiest path.

Remember I told you there are many, many phenomena that seem
forbidden in our world. A lot of things can happen one way but not
the other way, and we asked what law might prevent all of them from
happening. Now I’m ready to state the mega law that enforces all that.

24.2 The second law: law of increasing entropy
The second law of thermodynamics says

dS≥ 0 for the universe. (24.28)

There you have it; that’s the great law: Any process that reduces the entropy
of the universe is forbidden.

Now we have to see how this law can forbid the processes that seem
disallowed. First consider Carnot’s version of the second law, that you can-
not have a process in which some heat goes from a cold body to a hot
body with no other changes anywhere. Let’s first calculate the entropy
change when the two bodies are reservoirs fixed at T1 and T2, briefly
connected by a conducting rod of negligible mass (whose heat content is
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negligible). Because these are reservoirs they are always in equilibrium and
have well-defined temperatures, allowing us to invoke

dS= �Q
T

∣∣∣∣
rev
. (24.29)

So if �Q flows from T1 to T2,

dS= −�Q
T1

+ �Q
T2

= �Q
[
1
T2

− 1
T1

]
. (24.30)

If T1 > T2 (hot to cold), then dS > 0 and the process is allowed, while if
T1 <T2 (cold to hot), it is not allowed. Notice that energy is conserved but
entropy increases: even though the energy gains are equal and opposite,
the changes in entropy are not.

Next consider some mass m of copper at some temperature T1 and
an equal mass of copper at T2 that are isolated from each other. Each has
a well-defined entropy. Let us now place them in contact, keeping them
thermally isolated from the rest of the world. They will end up at a com-
mon temperature T∗ = 1

2 (T1 +T2) just by symmetry. Energy, of course, is
conserved, and that’s in fact how we determine T∗. But look at the entropy.

The naive answermay be that for the combined system dS=0 follows
from Eqn. 24.29 because �Q= 0, which in turn follows from the fact that
the system was thermally isolated. This is wrong, because the process was
not reversible; the systemwas nowhere near equilibriumwhen the samples
at two different temperatures were brought together abruptly. There was
a period of non-equilibrium when they went off the radar, without even a
globally defined temperature.

However, after a long time, when they have settled down to T∗, they
do have well-defined entropies, and we can ask what these final entropies
are. To find them, we forget about the actual process and instead imagine
taking each block from its initial to its final temperature in a sequence
of steps never far from equilibrium, during which the blocks have well-
defined entropies and for which dS could be computed using Eqn. 24.29.

Here is an analogy. Suppose you are on some mountain at some
point 1 with height h1. You hike to a new place 2. I want to know the
height difference h2 − h1. It is simply the sum of the height differences for
every step you took. Suppose now that instead of hiking from 1 to 2, you
used your yogic skills to disappear at 1 and reappear at 2. Even though you
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were invisible during the transit, there is a well-defined height difference
between your initial and final locations. However, it cannot be found by
adding up the height changes for each step you took, because you did not
get from here to there by taking steps; you went off the radar and reap-
peared. But I can find the height difference between the end points by
simply walking myself from 1 to 2 and adding up all the height changes.
I can take any route I want connecting the same two end points. My hike
is like the reversible path used to compute the entropy change, while your
yogic journey is like the actual irreversible process.

So let us imagine the cooler block being steadily heated by putting
it in contact with a sequence of reservoirs, each a little hotter than the
previous one, keeping the block never far from equilibrium and slowly
bringing it to T∗. Similarly, the hotter block is slowly brought down to
T∗ = 1

2 (T1 + T2). The entropy change for the two of them is, in terms of
the specific heat c:

Sfinal − Sinitial =mc
∫ T∗

T1

dT
T

+mc
∫ T∗

T2

dT
T

(24.31)

=mc
[
ln

T∗

T1
+ ln

T∗

T2

]
=mc ln

T∗2

T1T2
. (24.32)

Let us now confirm that the change in S is positive. At every stage,
when we brought the hot one down a little by sucking out �Q and pushed
the cold one up a little by pumping in �Q, the entropy change was pos-
itive because we divide the heat gained by a smaller temperature than the
heat lost.

To absolutely establish the positivity of Sfinal − Sinitial we need to show
that T∗2 >T1T2. Is 1

4 (T1 +T2)2 >T1T2? Since this can be rearranged to give
“Is (T1 −T2)2 > 0?” the answer is of course yes.

So, when hot and cold meet and create lukewarm, the entropy of the
universe goes up. It follows, therefore, that if lukewarm spontaneously sep-
arated into hot and cold, the entropy would go down, and that’s why that
doesn’t happen. That’s why a jar of lukewarm water doesn’t spontaneously
separate into a cold part and a hot part. Such a separationwould not violate
the law of conservation of energy, but it would violate the law of increas-
ing entropy. So evolution in one direction is allowed, because entropy goes
up, but the opposite is not allowed, because that would correspond to a
spontaneous decrease of entropy.
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Figure 24.3 (Left) The gas is originally restricted to the left half of the thermally
isolated box by a partition. (Right) When the partition is suddenly removed,
the gas expands and fills the whole box. If a movie of this is made and played
backward, the gas will go back to the left half. This is, however, forbidden by the
second law.

Finally, consider the following process depicted in Figure 24.3.
State 1 refers to a gas confined by a partition to the left half of a ther-

mally isolated box. The gas has reached equilibrium, and it has spread out
uniformly over this volume. State 1 corresponds to a point in the P −V
plane. Now, I suddenly remove the partition. There is a period when the
gas goes off the radar because it is not in a state of equilibrium. Just after
the partition is removed, the gas doesn’t have a well-defined pressure: it is
non-zero in the left half of the box; it is zero in the right half, which is still
a vacuum. That is why the gas has gone off the P−V plane. After you wait
long enough, the gas is again in equilibrium, in state 2.

What is the entropy change now? Once again here’s the wrong way to
do the calculation. You say, “Well, dS= �Q

T , but this whole box is thermally
isolated, and so �Q= 0, and the entropy change is zero.” This could not
possibly be the right answer. If 2 had the same entropy as 1, there should be
no obstacle to going back to 1 spontaneously. But we know that the process
2→1 will never happen spontaneously—you cannot put the genie back in
the bottle.

So the entropy must have gone up under this “free expansion”
against a vacuum. We should not find the change in entropy by blindly
applying dS = �Q

T because this process was abrupt, and it was far from
equilibrium in the intermediate stages, whereas the correct formula says
the process must be reversible, never far from equilibrium:

dS= �Q
T

∣∣∣∣
rev
. (24.33)
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What are we to do? The answer is the same as with the two copper
blocks: to forget what actually happened and take the system through a
sequence of reversible steps from the initial equilibrium state to the final
equilibrium state.

Because the end points of the gas are very much present as points
in the P −V plane, we can find the entropy difference by adding up the
changes in S along any reversible path connecting the end points.

While any path will do, there is a very simple path we can use because
the initial and final temperatures are the same. This is because the gas does
no work against the vacuum into which it is expanding, and it gets no heat
because it is thermally isolated. So U2 = U1, and being an ideal gas, this
implies T2 = T1. We may therefore join the end points by an isotherm.
The entropy change under an isothermal expansion is already known from
Eqn. 24.23:

S2 − S1 = nR ln
V2

V1
. (24.34)

So in this experiment, the way to calculate the entropy change is to
forget about what actually happened and do the following instead. Take
the initial gas, put a piston at the halfway point, apply a counter pressure
to balance the internal pressure, and slowly let it expand, keeping it all the
while on a reservoir at T. At every stage the dS for the reservoir cancels
that for the system because the �Q’s are equal and opposite, and their
temperatures are essentially equal. (I say “essentially” because the reservoir
had to be infinitesimally hotter than the gas for the gas to absorb heat.)
In this process, the entropy of the universe does not change at all. The
entropy gain of the gas balances the entropy loss of the reservoir. But it is
the entropy gain of the gas that I am after. I used this reversible process as
a device for finding the entropy gain of the gas alone, because that was the
same gain it incurred in the irreversible free expansion.

This was the same story when two chunks of copper that were at
T1 and T2 were brought together to form a chunk at T∗ = 1

2 (T1 + T2). In
the actual irreversible process the blocks were thermally isolated and the
entropy of the universe�SU went up, because the universe in this case was
just the two chunks of copper. Thus in this case,�SU =�Schunks. However,
to find the �Schunks, we cooked up a reversible process in which a whole
sequence of reservoirs was called into play, to slowly bring the blocks to
their final temperatures. Here the entropy gain for the blocks was the same
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as in the original process, but that of the universe was zero: at every stage,
the entropy change of the reservoirs exactly negated that of the blocks,
because heat transfer between either chunk and the reservoirs took place
at essentially the same temperature.

24.3 Statistical mechanics and entropy
I am finally ready to explain what entropy stands for at a microscopic
level according to statistical mechanics, whose key ideas I will now briefly
introduce.

Consider the free expansion of a gas, and, in particular, Eqn. 24.34
for the simple case where the gas expands from some volume V1 = V to
V2 = 2V . We saw that

S2 − S1 = nR ln
V2

V1
= nR ln 2. (24.35)

Note that n, the number of moles, is a macroscopic quantity. For example,
it is the mass of the hydrogen gas in grams or the mass of the carbon gas in
grams divided by 12. The universal gas constant R= 2cals/mole is likewise
relevant to the macroscopic description.

By the microscopic description, I mean the one where we are armed
with the fact that the gas is made of atoms and in particular that we may
rewrite Eqn. 24.35 as

S2 − S1 = nR ln
V2

V1
=Nk ln

V2

V1
=Nk ln 2= k ln 2N (24.36)

where we have used R=NAk and that the number of atoms is N = nNA.
The formula S2 − S1 = nR ln V2

V1
was discovered long before atoms were

proven to exist. You recall that the derivation never referred to atoms.
Equation 24.36 is the first time the number of atoms has entered the for-
mula for entropy. Rewriting it in terms of N requires the knowledge that
there are atoms. From this, or by some other means, Boltzmann divined
the formula for the entropy of a gas in terms of what the individual atoms
are doing. That is at the heart of statistical mechanics, which gives you the
microscopic basis of thermodynamics.

The truly microscopic theory would follow the evolution of every
atom using Newton’s laws, thereby tracking the state of the gas in maxi-
mum possible detail. In practice, this voluminous data for 1023 atoms is
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neither computable nor digestible, if computed. Here is where statistical
mechanics comes in with a more modest and realizable goal.

Statistical mechanics focuses on only the following attributes of the
gas: energy U, volume V , and number of particles N. Despite the micro-
scopic chaos, with atoms darting about here and there and colliding with
each other and the walls, these three numbers do not change. They are eas-
ily measured by macroscopic means, includingN, which is the mass of the
gas divided by the mass of the atoms, presumed known from independent
microscopic measurements. By contrast, the individual atomic momenta
and coordinates are perpetually changing.

Remarkably, the entropy of the gas in equilibrium is determined in sta-
tistical mechanics solely by these three unchanging macroscopic quantities.
Boltzmann’s formula for S(U,V ,N) is so important that it is carved on
his gravestone. When we physicists go to Vienna, we skip the orchestras
and first go to Boltzmann’s grave and read this formula once more with
reverence. It summarizes a lifetime of work. Here it is:

S(U,V ,N)= k ln�(U,V ,N), (24.37)

where �(U,V ,N) is the number of different microscopic states or micro-
states of the system compatible with its macroscopic properties, namely U,
V, and N.Wewill verify that it gives the correct entropy change under free
expansion from V1 to V2.

The first step is to count the microstates of the gas. For this we must
know what they are. A microstate is a collection of data that fully specifies
the complete and exhaustive state of the gas, using which its future may
be determined by Newton’s laws. Thus it is the collection of every atomic
coordinate and every atomic momentum. We need to count the number
of states in which every atomic coordinate lies inside the box of volume V
and the momenta are such that the sum of the individual kinetic energies
adds up to U.

To follow the upcoming arguments, you need to know this: If a sys-
tem has N members (atoms in our example) and each can be in m states,
independent of what the others are doing, the total number of allowed
states for the system ism×m× . . .×m=mN . For example, a coin can be
only heads or tails (m= 2), and, if we toss 3 of them (N = 3), we can get
23 = 8 results. If we throw 42 dice, we can get 642 results. Make sure you
get this.
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For pedagogical reasons the complete dependence of S on N will not
be computed here. But we will find that as long as N is fixed, the partial
derivatives of S with respect to U and V can be evaluated with no error,
and these will confirm beyond any doubt that Boltzmann’s S indeed cor-
responds to the one in thermodynamics by reproducing PV = NkT and
U = 3

2NkT.
First consider the spatial coordinates. Because each atom is point-

like in our description, its position is a point. If we equate the number of
possible positions to the number of points inside the volumeV , the answer
will be infinite no matter what V is! So what one does is divide the box
mentally into tiny cells of volume a3 where a is some tiny number deter-
mined by our desired accuracy in specifying atomic positions in practice.
Let us say we choose a= 10−6m. In a volume V , there will be V/a3 cells
indexed by i=1, 2, . . . ,V/a3. We label the atomsA, B, and so forth, and we
say in which cell each one is. If A is in cell i= 20 and B in cell i= 98000, et
cetera, that’s one microscopic arrangement. We can assign them to other
cells and in case we permute them, say with A→B→C→D→A, that is
counted as another arrangement (except when two exchanged atoms are
in the same cell). Thus when the gas is restricted by the partition to volume
V1, and each of the N atoms has V1/a3 possible cell locations,

�1 =
[
V1

a3

]N

, (24.38)

and

S1 = k ln
[
V1

a3

]N

=Nk ln
V1

a3
. (24.39)

If, after free expansion, the volume is V2,

S2 = k ln
[
V2

a3

]N

=Nk ln
V2

a3
. (24.40)

Notice that S depends on the cell size a. If we change a, we will change
S by a constant, because of the lna3 term. This is unavoidable until quan-
tum mechanics comes in to specify a unique cell size. However, changes
in S will be unaffected by the varying a, just as adding a constant to the
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potential energy does not affect the application of the law of conservation
of energy K1 +U1 =K2 +U2.

But there is another problem with this result. The state of the atom
is not given by just its location, but also its momentum p. Thus every �

above should be multiplied by a factor �p(U) that counts the number of
momentum states open to the gas at a given value of U. Again one divides
the possible atomic momenta into cells of some size. Whereas the atoms
could occupy any spatial cell in the box independently of the others, now
they can only assumemomentum configurations in which the total kinetic
energy of the gas adds up to a given fixed U.

Thus, the formula to use is

�=
[
V
a3

]N

× �p(U) (24.41)

S(U,V)=Nk ln
V
a3

+ k ln�p(U). (24.42)

Luckily we do not need to evaluate �p(U) in this example because U does
not change during free expansion and so neither does �p(U). It will drop
out in the difference S2(U,V2)− S1(U,V1). Later we will compute �p(U)
for the general processes in which U varies as well.

The change in entropy is

S2 − S1 =Nk ln
V2

a3
−Nk ln

V1

a3
=Nk ln

V2

V1
=Nk ln 2 in our example

(24.43)

independent of a and in agreement with what we got from thermodynamics,
before we knew there were atoms! However, in earlier times S2 − S1 was
written in terms of the macroscopic attribute, the number of moles n and
the macroscopic parameter, the universal gas constant R= 2 cal/mole:

S2 − S1 = nR ln
V2

V2
. (24.44)

Because a drops out, in computing the change in S, we sometimes
choose the cell size a3 to be half the volume for pedagogical reasons. In
this case each atom has only two positions: left or right. If initially all are
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in the left (with the partition in place) there is just one way, �1 = 1, S1 = 0,
while if both choices are open (with the partition removed), �2 = 2N and
S2 =Nk ln 2 and S2 − S1 =Nk ln 2 as before.

If every equilibrium state has a unique entropy (up to a constant)
what do we mean when we say S is maximized in equilibrium?

The preceding case of free expansion illustrates the answer to this
common question. Initially the gas occupies the left half and is in equilib-
rium. The entropy assigned is S1. Nothing will change if we leave it alone,
including S1. Now we remove the partition or constraint and wait until a
new equilibrium is reached. The law of increasing entropy says that the
new S2 will be greater than the old S1. Thus the entropy increased, not
when the system was in equilibrium, but when some external conditions
keeping it there were changed to allow a new equilibrium state. In other
words, the change in entropy is a result of our lifting some constraint (the
partition) that made available a new equilibrium state to the system that
was initially constrained to live in the old equilibrium state. Removing the
constraint can only open up more options (or keep them the same), which
is why S either rises or stays put. We will return to this theme shortly.

Here is another example. Two different gasesA and B occupy the two
halves of a partitioned box. The two halves settle down, reach equilibrium,
and have some total well-defined entropy Sinitial. This entropy does not
change with time. Suppose we now remove the constraint, the partition.
The separated gases do not represent an equilibrium state in the absence
of the partition. There will be macroscopic changes as the gases begin to
mix, and there will be a period when S is not defined. Finally the system
will assume a new equilibrium state with both gases uniformly spread out
over the entire box and an entropy Sfinal > Sinitial.

So here is what statistical mechanics and in particular S=k ln� have
done for us.

• Given us a microscopic basis for entropy that is a lot more com-
prehensible than dS = �Q

T and that is also capable of reproducing all
thermodynamic results, as illustrated in the case of free expansion.

• Made it clear why S will go up (or stay fixed) in a spontaneous process:
when a constraint is removed more states � become available.

• Explained why A→ B happens spontaneously but not B→A: because
themacroscopic state B can be realized inmanymore ways than stateA.

• Given us a deeper and more accurate picture of equilibrium states.
Consider the gas after the partition is removed and it fills the whole box
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evenly. This uniform density corresponds to our image of the equilib-
rium state in thermodynamics. Statistical mechanics tells us that while
this is typicallywhat happens, small deviations from this will occur with
a calculable probability determined by the following sole postulate of
classical statistical mechanics.
Postulate of statisticalmechanics: In equilibrium, every allowedmicro-
scopic state of an isolated system has the same probability.
It is this postulate that ensures S will go up in a spontaneous process
when a constraint is removed: less constraints mean more microscopic
states are allowed.
To illustrate the other implications of this postulate for an ideal gas, let
us assume every atom has just two positional states: left or right half of
the box. There are 2N allowed microscopic states and all occur with the
same probability. But this does not mean every possible value of a macro-
scopic observable is equally probable. The fraction f = n

N of particles in
the right half is a macroscopic variable. Not every f is equally likely.
Consider the configuration with all the particles in the left half: n = 0
and f = 0. It can occur in only one way. It is like tossing 1023 coins and
getting all heads—possible but highly improbable. If you now let one of
the particles be in the right half, that is, n= 1, there are N ways for this
to happen because there are N choices for who gets to be the odd atom.
So this situation is N times more likely than the one with all in the left
half. More generally, the situation with n atoms in the right and N − n
in the left, by elementary combinatorics, can occur in

�(N,n)= N!
n!(N − n)! (24.45)

ways. Therefore f = n
N is �(N,n) times more likely than f = 0, the one

with all atoms in the left half.
As n increases, so does �(N,n), which reaches a maximum at n= N

2 :

�= �max = N!
N
2 ! · N

2 ! . (24.46)

Beyond the half-way point, � falls and reaches the value 1 when n=N.
Figure 24.4 shows �(30,n). This graph allows us to say, for this gas of
30 atoms, what the odds are for any partitioning of atoms between left
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Figure 24.4 The number of microscopic configurations with N − n particles on
the left half of the box and n on the right, for N = 30.

and right. If every value of n is allowed, it means that in equilibrium
the density will be inhomogeneous and not be uniquely determined by
U and V . But this is not the situation to which statistical mechanics
is applied. Rather it is intended for a typical gas for which N � 1023.
Now the distribution will become very sharply peaked at f = .5 and the
chances of getting anything really different from a 50/50 split will be
negligible. It can be shown that typically f will not deviate from f̄ = .5
by more than a number of order 1/

√
N. Thus the variable f will lie in

the range f = f̄ ± 1√
N . Likewise, deviations from the average P̄ will exist

but will be relatively very small, and one may associate P̄ with the P in
PV =NkT as N →∞.
In general the likelihood of obtaining a certain value for a macroscopic
observable in equilibrium is proportional to the underlying number of
microscopic arrangements.

We now return to our discussion of entropy. It is often said that
entropy is a measure of how disordered your system is. To have all the
atoms of the two species confined to two different halves of the box is per-
fectly natural if there is a partition to enforce the separation. However, once
the partition is removed, this condition would be unnatural and extremely
ordered in the face of the newly opened possibilities. This initial order,
introduced by design, will quickly and spontaneously evolve into a fully
mixed state. Thus opening the partition and allowing the gases to mix
increases the disorder. The technical measure of disorder is the (log of
the) number of microscopic arrangements that can lead to a given macro-
scopic situation. The spontaneous evolution from order to disorder under



430 Entropy and Irreversibility

the removal of a constraint occurs because there are so many more ways
to be disordered than to be ordered.

Here is another example. You take a container with a vertical parti-
tion, and pour clear water in one side and red water in the other. You have
an ordered state. It can last forever as long as there is a partition. If you
remove the partition, the red and clear water will soonmix, because there’s
no reason for the red particles to stay on one side forever. Eventually
the mixture will become pink. This disordered configuration is inevitable,
because there are many more ways to remain pink than to remain sepa-
rated. Likewise, pink spontaneously separating into red and colorless, the
emergence of order from chaos, is very, very improbable and points in the
direction of lower entropy.

Although the unmixing seems disallowed by the law of increasing
entropy, it is not strictly disallowed, just overwhelmingly unlikely. For
example, if you are in one side of a room, there is a chance of one part
in roughly 1/(21023) that all the air molecules spontaneously end up in the
other half. But don’t hold your breath; it is not likely to happen in the
remaining age of the universe. The second law of thermodynamics may be
a statistical law, but when it says something is “unlikely” it means “so over-
whelmingly, ridiculously, unlikely you should forget about its happening
in the entire history of the universe.”

Be aware of one thing: the entropy of a part of the universe can go
down. It’s just the entropy of the whole universe that cannot go down. All
of life is an example of lowering entropy: the creation of tomatoes out of
mud and fertilizer is a highly organizing process where the entropy is really
going down. But if you keep track of the rest of the world, you will find that
there is a greater increase of entropy somewhere else. Or take your freezer:
your refrigerator sucks heat out of your freezer, and the entropy of the
freezer goes down, but elsewhere in the room there’s a bigger increase due
to the heat emitted from the back of the refrigerator. If you take account
of everything, the entropy of the universe will go up or remain the same;
it will never go down.

24.4 Entropy of an ideal gas: full microscopic analysis
We will now compute the entropy (up to a constant) of an ideal gas of N
atoms, energyU, and restricted to a volumeV using Boltzmann’s formula.
We will assume N never changes but that U and V could. So we want
S(U,V).
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The energy of an ideal gas is entirely kinetic and independent of
particle positions. We have to find the logarithm of the number of states
�(U,V) compatible with the prescribed values of U and V .

We have already seen that

�(U,V)=
[
V
a3

]N

�p(U) (24.47)

where V/a3 counts the possible positions for each atom and �p(U) is the
number of microscopic arrangements of momenta for the entire gas that
respect the condition that the total kinetic energy be U. (In computing the
change in S during free expansion we ignored �p(U) because U was the
same before and after free expansion. Here we want U to vary and so need
to work a little harder and find �p(U).)

The internal energy is (for the allowed configuration with every atom
inside the box)

U =
N∑
i=1

1
2
m|vi|2 =

N∑
i=1

|pi|2
2m

=
N∑
i=1

p2ix + p2iy + p2iz
2m

where p=mv is the momentum.

(24.48)

Let us now form a vector P with 3N components

P= (p1x,p1y,p1z,p2x.......,pNz), (24.49)

which is simply the collection of the 3 components of the N momen-
tum vectors pi. If we renumber the components of P with an index j =
1, . . . , 3N,

P= (P1,P2, . . .P3N), (24.50)

that is to say,

P1 = p1x,P2 = p1y,P3 = p1z,P4 = p2x, . . . ,P3N = pNz, (24.51)
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we may write

U =
3N∑
j=1

P2
j

2m
. (24.52)

Regardless of their position, the atoms can have any momentum as
long as the components satisfy Eqn. 24.52. So we must see how many
possible momenta exist obeying this condition. The condition may be
rewritten as

3N∑
j=1

P2
j = 2mU. (24.53)

This is the equation for a hyper-sphere of radius R = √
2mU in 3N

dimensions just as

x2 + y2 =R2 is a circle or 1-sphere and (24.54)

x2 + y2 + z2 =R2 is the usual sphere or 2-sphere. (24.55)

In mathematical literature the circle in d = 2 and the usual sphere in
d= 3 are both referred to as spheres, and the circumference and area are
both referred to as areas. The areas are 2πR and 4πR2 respectively in
the familiar examples. By dimensional analysis, a sphere of radius R in d
dimensions has an area that goes as Rd−1. In our problem R= [√

2mU
]

and d=3N − 1�3N. If we divide the individual momenta into cells of size
b3, which like a3 is small but arbitrary, the total number of states allowed
to the gas behaves as

�(V ,U)=VNU3N/2F(m,N,a,b) (24.56)

where we have focused on the dependence onU andV and lumped the rest
of the dependence onm, a, b, andN in the unknown function F(m,N,a,b).
We do not need F because we just want to take

S= k ln�= k
[
N lnV + 3N

2
lnU

]
+ k lnF(m,N,a,b) (24.57)
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and find itsV andU partial derivatives, to which Fmakes no contribution.
These derivatives are

∂S
∂V

∣∣∣∣
U

= kN
V

(24.58)

∂S
∂U

∣∣∣∣
V

= 3kN
2U

. (24.59)

If we identify the two derivatives above with P
T and 1

T following Eqn.
24.18, that is, as they were in thermodynamics, we obtain

kN
V

= P
T

which is just PV =NkT (24.60)

3kN
2U

= 1
T

which is just U = 3
2NkT . (24.61)

Thus we are able to derive these equations of state of the ideal gas from the
Boltzmann definition of entropy.

With more work we could get the full N-dependence of � as well. It
has interesting consequences, but I will not go there, leaving it to you to
pursue the topic on your own.

Two final remarks on Boltzmann’s formula. First,

S= k ln� (24.62)

is valid not only for the ideal gas but any thermodynamic system.However,
computing � is generally impossible except for some idealized models.

Next, consider two systems that are independent. Then

�= �1 × �2 (24.63)

that is, the number of options open to the two systems is the product of the
numbers open to each. This ensures that the total entropy, S, is additive:

S= S1 + S2. (24.64)
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24.5 Maximum entropy principle illustrated
I have already explained briefly what it means to say that the entropy is
defined only in equilibrium, and also that it is a maximum in equilibrium.
I resume that discussion with an illustrative example.

Imagine a box of gas separated by an insulating partition, with ener-
gies U0

1 and U0
2 in the left and right halves respectively. The initial entropy

of the system is

S01+2 = k ln
[
�1(U0

1 ) · �2(U0
2 )
]

(24.65)

in obvious notation. The two sides may not be at the same temperature,
but there is nothing they can do about it, because of the insulating bar-
rier. Suppose we now let the barrier conduct heat, so that energy can flow
between the two sides.

Intuitively we expect that energy will flow till the two sides have
reached the same T. On the other hand, statistical mechanics says the final
state will be one of maximum entropy. We will now verify that the two
conditions are equivalent.

Let us find out how statistical mechanics determines the final parti-
tion of the total energy

U0 =U0
1 +U0

2 . (24.66)

The new equilibrium entropy is

S1+2 = k ln

⎡
⎣ U0∑

U1=0

�1(U1) · �2(U2 =U0 −U1)

⎤
⎦ (24.67)

where the sum runs over all possible assignments of U1, from the lowest
value (assumed to be 0) to the maximum, the entire energy U0. The initial
entropy comes from just one term in the sum with U1 =U0

1 and U2 =U0
2 ,

a condition imposed by the barrier.
Without the barrier, all the partitions of the total energy are allowed.

The final entropy is obviously larger, because all the extra terms in the sum
are positive. But the crucial point is not that there are more terms, but that
there are usually some new individual terms that are astronomically larger
than the initial one �1(U0

1 ) · �2(U0
2 ). The largest term can be found by
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maximizing the product�1(U1) ·�2(U2 =U0 −U1) with respect toU1. Let
U∗

1 be the value of U1 that maximizes the product and let U∗
2 =U0 −U∗

1 .
Let us maximize the logarithm of the product instead, to find

0= d ln
[
�1(U1) · �2(U2 =U0 −U1)

]
dU1

(24.68)

= d ln�1(U1)
dU1

∣∣∣∣
U∗
1

+ d ln�2(U2)
dU2

∣∣∣∣
U∗
2

dU2

dU1
(24.69)

= 1
kT1

− 1
kT2

(because dU2
dU1

= d(U0−U1)
dU1

= −1). (24.70)

In other words, the largest term corresponds to the partitioning of energy
such that the temperatures are equal on the two sides. This confirms
the assertion that the equality of final temperatures when the partition
becomes conducting is synonymous with maximizing entropy.

The product �1(U1) · �2(U2 =U0 −U1) drops off very rapidly as we
move away from the maximum atU∗

1 . So �1+2, the sum over partitions, or
“the area under this graph,” is then �max ·W , where W is some effective
width, which will be some tiny fraction ofU0, the maximum allowed range
for U1. We will see that the details ofW will not matter. Continuing,

�1+2 = �1(U∗
1 ) · �2(U∗

2 ) ·W (24.71)

S1+2 = k ln�1(U∗
1 )+ k ln�2(U∗

2 )+ k lnW (24.72)

� S1(U∗
1 )+ S2(U∗

2 ). (24.73)

We have dropped the lnW term compared to the first two terms, which
are typically of order N lnU (see Eqn. 24.57) with N � 1023. It is often
the case in statistical mechanics that the sum over terms is replaced by
the largest term (or the area under the graph is replaced by the maximum
height of the function), with negligible error in the logarithm, which is
eventually and inevitably taken. Physically, it means in the example under
consideration that, even though the total energy can be divided in all possi-
ble ways, you are not likely to find any division that differsmacroscopically
from the one at the maximum. Observe that only when we approximate
the sum over partitions with the dominant term (which causes an utterly
negligible error in the logarithm) does the total �1+2 become the product
of the individual �’s, and the total S1+2, the sum of individual entropies.
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Let us get a sense of the numbers involved. Imagine that initially we
had ideal gases withN atoms each on both sides, with the temperature and
energy on the right being three times that on the left:

U0
1 =U U0

2 = 3U. (24.74)

The initial entropy, with the insulating partition is, from Eqn. 24.57,

Sinitial = 3Nk
2

[
ln

U
N

+ ln
3U
N

]
+ terms that are unaffected by the partition. (24.75)

The final state with equal T and hence energy 2U in each side has entropy

Sfinal = 2× 3Nk
2

[
ln

2U
N

]
+ the same unaffected terms. (24.76)

The change in entropy is

Sfinal − Sinitial = 3Nk
2

ln
4
3
, (24.77)

which means the ratio of allowed configurations is

�final

�initial
=

[
4
3

]3N/2

� 101.87·10
22

(24.78)

for N = 1023.
You are invited to show that if the conducting partition is also mov-

able, the maximization of entropy will require that the total volume will be
shared in such a manner that

P1

kT1
= P2

kT2
, (24.79)

which reduces to P1 = P2 because T1 =T2.
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24.6 The Gibbs formalism
Josiah Willard Gibbs was the greatest homegrown physicist produced by
the United States. He spent his whole life at Yale, where his father was
a professor of sacred languages. He obtained his bachelor’s degree and
doctorate there, joined the faculty, and taught until his death in 1903.
He seems to have been an extraordinarily modest, generous, and cheerful
person, in addition to being an exceptionally deep and original physicist.
Among his many contributions to mathematics, physics, and chemistry, I
will single out his alternative to Boltzmann’s statistical mechanics.

Recall that Boltzmann considered an isolated system, with a con-
served energy U. He postulated equal probability for every allowed
microscopic state of this energy. The central function was the entropy,

S(U)= k ln�(U), (24.80)

where �(U) was the number of states available to the system with energy
U. (We holdV andN fixed for this discussion.) When internal constraints
were removed, the systems would try to maximize entropy. The absolute
temperature emerges as a partial derivative:

∂S
∂U

= 1
T
, which can be rewritten as (24.81)

∂ ln�

∂U
= 1

kT
. (24.82)

In contrast to Boltzmann, who gave a statistical description of iso-
lated systems with a definite energy U, Gibbs wanted to describe systems
at a definite temperature by virtue of being in thermal equilibrium with a
heat reservoir at a fixedT. For example, the system could be a gas, confined
to a heat-conducting box, placed inside a gigantic oven at that T.

Due to the coupling to the reservoir, the energy of the system can
vary without limit, and the goal now is to find the probability P(i) that the
system would be found in a particular state i, of energy εi, and to find the
appropriate version of the law of maximizing entropy.

There is no need for a new postulate. All results will follow from the
fact that the system plus reservoir is an isolated system, with a fixed total
energy U0, to which Boltzmann’s treatment applies.
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Let �R(U) be the number of states available to the reservoir when it
has energy U. Let the lowest energy state of the system carry an index 0,
and let us set the corresponding energy ε0 = 0 for convenience. When the
system is in the one particular state 0, the reservoir has the entire energy
U0, and it can be in any one of �R(U0) states. Thus the system plus reser-
voir can be in one of 1× �R(U0) states. If the system is in one particular
state i of energy εi > 0, the number of states available to the reservoir plus
system is now reduced to 1 × �R(U0 − εi). Since every state of the joint
system is equally probable, the ratio of probabilities for the system to be in
state i versus state 0 is simply the ratio

P(i)
P(0)

= 1× �R(U0 − εi)
1× �R(U0)

. (24.83)

Let us take the logarithm of both sides and manipulate as follows:

ln
[
P(i)
P(0)

]
= ln

[
�R(U0 − εi)

]− ln
[
�R(U0)

]
(24.84)

= − ∂ ln�R(U)
∂U

∣∣∣∣
U0

εi + 1
2

∂2 ln�R(U)
∂U2

∣∣∣∣
U0

(εi)2 + . . .

(24.85)

= − εi

kT
+ . . . (24.86)

In going from Eqn. 24.85 to Eqn. 24.86, I have recalled the definition of
the temperature T of the reservoir (Eqn. 24.82),

∂ ln�R(U)
∂U

= 1
kT

, (24.87)

and dropped all but this first derivative in the Taylor series. The second and
higher derivatives are successive derivatives of 1/kT, and they vanish since
the T of a reservoir, by definition, remains fixed nomatter what energy the
system has. (It is like saying that when you stick a thermometer in your
mouth to measure the body temperature, the drop in body temperature
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is negligible.) Remember, we do not require the system itself to be small,
only that the reservoir be overwhelmingly larger.

Taking antilogarithms of both sides of Eqn. 24.86, we find the ratio
of probabilities to be

P(i)
P(0)

= e−εi/kT . (24.88)

From the ratio of probabilities we may construct an absolute proba-
bility P(i) (which gives 1 when summed over all values of i):

P(i)= e−εi/kT

Z
where (24.89)

Z=
∑
i

e−εi/kT . (24.90)

We call Z=Z(T) the partition function and e−εi/kT the Boltzmann weight.
Many interesting quantities can be deduced from Z(T). For example,

the average energy is

Ū =
∑
i

εiP(i)=
∑

i εie
−εi/kT

Z
(24.91)

= kT2 ∂

∂T

[∑
i e

−εi/kT
]

Z
= kT2 · 1

Z
· ∂Z
∂T

(24.92)

= kT2 ∂ lnZ(T)
∂T

. (24.93)

If we know Z(T) in closed form, we can extract the average energy by dif-
ferentiation. It is a lot easier to compute Z(T) than�(U), because the sum
over i is unrestricted in energy.

As an illustration, consider an ideal gas in a box of volume V , in
contact with a reservoir of temperature T. Choose as the system just one
atom, and consider the rest of the gas and the reservoir as part of a new
reservoir. (The Gibbs approach applies to systems of any size, as you may
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verify by going over the derivation above.) Its partition function is

Z1(T)= 1
a3

∫
box

dxdydz · 1
b3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dpxdpydpz

exp

[
−p2x + p2y + p2z

2mkT

]
(24.94)

=VT3/2f (m,k,a,b) (24.95)

where f (m,k,a,b) is a function that will not affect the mean energy since
it is T-independent. In performing the p-integrals, I introduced rescaled
variables wx = px/

√
T et cetera, and wrote each p-integral as T1/2 times an

integral over the corresponding w that did not depend on T. Now we see
that for one atom,

Ū1 = kT2 ∂ lnZ1(T)
∂T

(24.96)

= kT2 ∂
[
lnT3/2 + lnV + ln f (m,k,a,b)

]
∂T

(24.97)

= 3
2
kT. (24.98)

For an ideal gas with N non-interacting atoms,

ŪN = 3
2
NkT. (24.99)

In Gibbs’s approach, T is fixed, UN can fluctuate, and ŪN is its average. It
can be shown that asN→∞, deviations from ŪN are negligible compared
to ŪN . It is this average, with negligible (relative) fluctuations, that plays
the role of the internal energy U in thermodynamics, for which statistical
mechanics provides a microscopic foundation.

Themaximum entropy principle applied to the system and the reser-
voir may be expressed in terms of the system alone as follows: When
internal constraints are removed in a system in equilibrium with a reser-
voir at some T, the system evolves tominimize its free energy F(T) defined
as follows:

F(T)= −kT lnZ. (24.100)



Entropy and Irreversibility 441

I will not prove this here, and I hope that you are nowmotivated to pursue
the subject on your own.

24.7 The third law of thermodynamics
We have no time to delve into the third law of thermodynamics, which
declares that the entropy of all systems approaches 0 as T → 0. You will
realize that quantum mechanical considerations must have gone into this
assertion, because entropy in classical statistical mechanics is defined only
up to a constant. In quantum theory, the allowed states of a system are dis-
crete and countable. As T → 0, we see from Eqn. 24.88 that any state with
energy higher than the ground state (chosen to have ε0 = 0) has vanish-
ing probability. The system has only one accessible quantum state, which
ensures that S=0. This law is definitely true for all systems of finite extent.
Occasionally, infinite systems could have multiple ground states. Physical
considerations show that if the system is found in one of these ground
states, it will never evolve into any of the others.
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γ = cp/cv, 392

absolute future, 229
absolute past, 229
absolute zero, 360
acceleration, 6
adiabatic processes, 396
amplitude, 54
angular momentum, 150
angular velocity, 30, 146
anti-nodes, 332
Archimedes’s principle, 343
average acceleration, 5
average energy density of wave, 318
average velocity, 5
Avogadro’s number, 378
axes, rotations of, 22

ballerina, 173
ballistic pendulum, 138
barometer, 339
basis, 20
basis vectors, 22
beat, 325
Bernoulli’s equation, 346, 348
Bevatron, 252
Big Bang, 384
Boltzmann weight, 439
Boltzmann’s constant k, 378

calculus review, 82
caloric fluid, 361
calories, 361
Carnot, 401
Carnot engine, 403
causality and relativity, 227
center-of-mass coordinate or the CM, 120

centripetal acceleration, 31
circular motion, 29, 64
CMmomentum, 129
CM of planet and sun, 130
CM of rod, 124
CM of triangle, 126
coefficient of kinetic friction, 57
coefficient of linear expansion, 363
coefficient of static friction, 57
collision, totally elastic, 137
collision, totally inelastic, 137
collisions, 136
complex-conjugate of z, 269
complex number: amplitude and phase,

272; imaginary part, 269; modulus of
z, 271; polar form, 272; real part, 269

complex number z, 269
components of vector, 19
Compton effect, 249
conduction, 369
conservation of energy, 75
conservative and non-conservative

forces, 92
conservative force, test for, 97
conservative forces, 81
constant acceleration, 6
constructive interference, 328
continuity equation, 346
convection, 369
Copernicus, 101
coupled masses, 61
crest, 314
cross product, 183, 184

damped oscillations, 291
decibels, 319
density, 335
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destructive interference, 328
differential equation, 52
dimensionless velocity β = u

c , 233
displacement, 18
Doppler effect, 320
Doppler effect, transverse, 322
dot product, 88, 89
dot product of four-vectors, 239
double-slit experiment, 326
dynamics, 2, 3

efficiency, 402
energy, 70
energy density of wave, 318
energy-momentum, 246
entropy, 401, 412
equation of state, 378, 385, 433
ether, 201
Euler’s formula for eix, 266
event, 197
exhaust velocity, 134

first law of thermodynamics, 388
fluids, 335
force, 36
force constant, 42
four-momentum, 241, 243
four-momentum of photon, 247
four-vector, 238
four-velocity, 242
Fourier series for oscillator, 300
free expansion, 421
free-body diagrams, 46
friction, 54, 56
fundamental frequency, 333

Galilean transformation, 198
gas thermometers, 358
general theory of relativity, 44, 104
geometry of spacetime, 232
geosynchronous satellites, 111
Gibbs, 437
gravitational mass, 44

gravitational potential, choice of constant,
114

gyroscope, 191

harmonic oscillations, rotational, 280
harmonic oscillator, phase, 278
heat, 361
heat current, 371
heat reservoir, 369
heat transfer, 368
homogeneous, linear differential equation,

286
hydraulic press, 341
hyperbolic tangent, 236

impact parameter, 142
inclined plane, 57
inertial frame, 37, 195
inertial mass, 44
inertial observer, 37, 195
initial coordinate, 8
initial value data, 278
initial velocity, 8
instantaneous velocity, 5
interference maximum, 328
interference minimum, 328
internal energy U, 387
invariant, 25, 232
isobaric process, 396
isotherm, 390

Kelvin scale, 361
Kepler’s laws, 101
kinematics, 2, 3
kinetic and static friction, 54
kinetic energy, 71
kinetic energy, translations plus rotations,

165
kinetic energy for N bodies, 163
kinetic theory, 381

ladder, in equilibrium, 180
Large Hadron Collider, 252
latent heat of fusion, 366
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latent heat of vaporization, 366
law of conservation of energy, 70
law of conservation of momentum, 128,

129
law of inertia, 36
law of universal gravitation, 45
length contraction, 220
light-like intervals, 234
line integral, 91
linear homogeneous transformation, 211
linearly dependent, 287
long-range order, 382
loop-the-loop, 66
Lorentz transformation, 204, 206

major axis, 102
mass, measurement of, 40
Maxwell-Boltzmann distribution, 383
mechanical energy, 76
mechanical equivalent of heat, 373, 376
microstates, 424
mixed or cross derivatives, 85
molar specific heat, 391
mole, 378
moment of inertia, computation, 156
moment of inertia, definition, 150
momentum, 128
mono-atomic gas, 392

neutrino, 70
Newton’s laws, 36, 38, 45
nodes, 332
non-conservative force, 94
normal, 56
null vector, 18
number of moles, 378

orbits in gravity, 108
oscillations: critically damped, 294;

over-damped, 291; under-damped, 292
oscillator: complimentary solution, 300;

driven, 294

paradoxes in relativity, 222

parallel axis theorem, 160
partial derivative, 84
partial differential equation, 309
particular solution, 300
partition function, 439
Pascal, 336
past, present, and future in relativity, 227
phase change, 365
physical pendulum, 282
Planck distribution, 384
position vector, 21
postulate of statistical mechanics, 428
potential energy, 76
power, 72
precession of gyro, 193
precession of the perihelion, 104
pressure, 335
principle of superposition, 287
projectile motion, 32
projection, 19
proper time, 240

quasi-static process, 386

radians, 30, 145
radiation, 368
rapidity, 236
reference intensity, 319
relativistic velocity transformation law, 213
relativity postulates, 203
resolving the force, 59
resonance, 299
rest energy, 245
reversible, 387
right-hand rule, 183
rigid-body dynamics, 143
rigid-body dynamics in 3d, 182
rockets, 134
rolling without slipping, 166
Rutherford scattering, 140

scalar multiplication, 19
scalars, 19
scattering in 3d, 140
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second law of thermodynamics, 399, 418
simple harmonic motion, 275
simultaneity, 214
space-like intervals, 234
spacetime, 197
spacetime interval, 233
specific heat, 362
specific heat at constant pressure, cp, 392
specific heat at constant volume, cv, 391
stable equilibrium, 275
standing wave, 332
state variables, 394
static equilibrium of rigid bodies, 175
static friction, 57
statistical mechanics, 423

Taylor series, 255; (1+ x)n, 261; cosx and
sinx, 264; ex, 263; explicit form, 261

Taylor series for e ix, 265
temperature, 354
tension, 47, 48
thermal conductivity, 371
thermal equilibrium, 352
thermometers, 355
third law of thermodynamics, 441
time dilatation, 216
time-like intervals, 234
torque, 151

torsion constant, 280
troughs, 314
tunneling in quantum theory, 99
twin paradox, 219
two-body problem, 118

unit vectors, 19
universal gas constant R, 379
universal gravitational constant, G, 107
unstable equilibrium, 275

vector transformation law, 24
vectors, 18

watts, 73
wave equation, 308, 310
wave intensity, 318
wave number, 310
wavelength, 313
waves, 303; energy and power, 316;

interference, 323; longitudinal, 304;
superposition of, 323; transverse, 304

weight and weightlessness, 49
work done by the force, 71
work done in d= 2, 84
work-energy theorem and power, 71
work-energy theorem with friction, 78

zeroth law of thermodynamics, 354
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