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Preface

This	 is	 the	 companion	 volume	 to	 Fundamentals	 of	 Physics:	 Mechanics,
Relativity,	 and	 Thermodynamics.	 It	 is	 the	 second	 half	 of	 an	 introductory
course	 taught	 at	 Yale	 and	 covers	 electromagnetism,	 optics,	 and	 quantum
mechanics.	 Like	 Volume	 I,	 it	 is	 based	 on	 the	 lectures	 given	 at	 Yale	 to	 a
diverse	 class.	 The	 two	 volumes	 could	 be	 used	 for	 a	 year-long	 course	 in
introductory	physics	that	covers	all	the	major	topics.	It	may	also	be	used	for
self-study.	Some	instructors	may	prescribe	it	as	a	supplement	to	another	text.
The	chapters	in	the	book	more	or	less	follow	the	Yale	lectures	with	a	few

minor	modifications.	The	 style	preserves	 the	classroom	atmosphere.	Often	 I
introduce	the	questions	asked	by	the	students	or	the	answers	they	give	when	I
believe	 they	 will	 be	 of	 value	 to	 the	 reader.	 The	 problem	 sets	 and	 exams,
without	which	one	cannot	learn	or	be	sure	one	has	learned	the	physics,	may
be	 found	 along	 with	 their	 solutions	 at	 the	 Yale	 website,
http://oyc.yale.edu/physics,	 free	 and	 open	 to	 all.	 The	 lectures	 may	 also	 be
found	 at	 venues	 YouTube,	 iTunes	 (https://itunes.apple.com/us/itunes-
u/physics-video/id341651848?mt=10),	and	Academic	Earth,	to	name	a	few.
In	 the	 lectures	 I	 sometimes	 refer	 to	 my	Basic	 Training	 in	 Mathematics,

published	 by	 Springer	 and	 intended	 for	 anyone	 who	 wants	 to	 master	 the
undergraduate	mathematics	needed	for	the	physical	sciences.
This	 book,	 like	 its	 predecessor,	 owes	 its	 existence	 to	many	 people.	 Peter

Salovey,	now	president,	then	dean	of	Yale	College,	persuaded	me	to	be	part
of	 the	first	batch	of	Open	Yale	Courses,	 funded	by	 the	Hewlett	Foundation.
Diana	 E.	 E.	 Kleiner,	 Dunham	 Professor,	 History	 of	 Art	 and	 Classics,
encouraged	 and	 guided	 me	 in	 many	 ways.	 She	 was	 also	 the	 one	 who
persuaded	 me	 to	 write	 both	 these	 books.	 At	 Yale	 University	 Press,	 Joe
Calamia	 has	 been	 an	 invaluable	 guide,	 making	 countless	 suggestions	 to
improve	 the	book’s	 contents.	He	has	 also	 lent	his	 name	 to	many	 subatomic
particles	that	appear	in	this	book.	Once	again	Ann-Marie	Imbornoni	skillfully
shepherded	the	book	through	various	stages	of	production.	I	am	delighted	that
Liz	Casey	was	once	again	able	to	apply	her	editorial	magic	to	the	manuscript,
greatly	improving	not	only	the	punctuation,	syntax,	and	grammar	but	also	the
clarity.	She	made	sure	my	intended	sense	was	captured	by	the	words	used.
I	thank	Professor	Ganpathy	Murthy	(University	of	Kentucky)	and	Branislav

Djordjevic	 (George	 Mason	 University)	 for	 thoughtful	 comments.	 My	 very
special	 thanks	 go	 to	 Phil	 Nelson	 of	 the	 University	 of	 Pennsylvania	 for	 his
detailed	and	insightful	comments	on	many	parts	of	the	book.

http://oyc.yale.edu/physics
http://itunes.apple.com/us/itunes-u/physics-video/id341651848?mt=10


The	writing	of	this	book	started	a	year	ago	and	ended	August	2015	at	the
Aspen	Center	for	Physics	(ACP).	I	am	most	grateful	for	the	climate	provided
by	 the	 ACP	 where	 both	 the	 scientist	 and	 author	 in	 me	 found	 intellectual
nourishment.	 The	 ACP	 is	 supported	 by	 the	 National	 Science	 Foundation
(NSF)	Grant	number	1066293.
A	 large	 portion	 of	 the	 book	 was	 written	 at	 the	 Kavli	 Institute	 for

Theoretical	Physics	(KITP)	in	Santa	Barbara,	where	I	was	fortunate	to	receive
a	Simons	Distinguished	Visiting	Scholar	 award	 for	 Fall	 2014.	The	KITP	 is
supported	 in	 part	 by	 the	 National	 Science	 Foundation	 under	 Grant	 number
NSF	PHY11–25915.	 I	 am	especially	 grateful	 to	Professor	Lars	Bildsten	 for
making	this	possible.
The	day	I	 find	I	cannot	write	books	at	either	of	 these	marvelous	places,	 I

will	switch	to	another	line	of	work.
Barry	Bradlyn	and	Alexey	Shkarin	were	two	exceptional	graduate	students
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CHAPTER	1

Electrostatics	I

We	begin	the	second	half	of	the	course	with	an	introduction	to	a	new	force:
electromagnetism.	Then	we	will	study	optics.	We	will	conclude	with	a	study
of	quantum	mechanics.	Now,	quantum	mechanics	is	not	like	a	new	force.	It’s
a	whole	different	ball	game.	 It’s	not	about	what	 forces	are	acting	on	 this	or
that	object	 that	determine	 its	 trajectory.	The	question	 there	 is:	 should	we	be
even	 thinking	 about	 particles	 going	 on	 any	 trajectory?	 The	 answer	 will	 be
negative.	You	will	find	out	that	most	of	the	cherished	ideas	from	Newtonian
mechanics	 get	 overthrown.	 But	 the	 good	 news	 is	 that	 you	 need	 quantum
mechanics	only	to	study	very	small	things	like	atoms	or	molecules.	Of	course,
the	big	question	is,	where	do	you	draw	the	line?	How	small	 is	small?	Some
people	even	ask	me,	“Do	you	need	quantum	mechanics	to	describe	the	human
brain?”	And	the	answer	 is,	“Yes,	 if	 it	 is	small	enough.”	I’ve	gone	 to	parties
where	 after	 a	 few	minutes	 of	 talking	 to	 a	 person	 I’m	 thinking,	 “Okay,	 this
person’s	brain	needs	a	full-fledged	quantum	mechanical	treatment.”	But	most
of	 the	 time	 everything	 is	 macroscopic,	 and	 you	 can	 describe	 it	 with
Newtonian	mechanics	and	classical	electrodynamics.

1.1			Review	of	F	=	ma
Before	we	start	with	electromagnetism,	let	us	recall	the	interplay	between	the
ideas	 of	 force,	 mass,	 acceleration,	 and	 F	 =	ma	 discussed	 at	 length	 in	 the
prequel	to	this	book,	referred	to	as	Volume	I.	The	only	thing	everyone	knows
from	 the	 nursery	 is	 that	a	 stands	 for	 acceleration,	 and	we	 all	 know	 how	 to
measure	it.	You	find	the	position	now	and	the	position	slightly	later,	take	the
difference,	 divide	 by	 the	 time,	 and	 get	 the	 velocity.	 Even	 though	 velocity
requires	 two	 successive	 position	 measurements,	 we	 talk	 of	 velocity	 “right
now,”	because	you	can	make	 those	 two	successive	measurements	arbitrarily
close	 to	 each	 other,	 and	 in	 the	 limit	 in	 which	 the	 time	 difference	 between
them	 goes	 to	 zero,	 you	 can	 talk	 about	 the	 velocity	 right	 now.	 If	 the
speedometer	in	your	car	points	to	60	miles	per	hour,	that’s	your	velocity	right
now.	Likewise,	find	the	velocity	now,	find	the	velocity	a	little	later,	divide	the
difference	 by	 time,	 and	 you	 get	 the	 acceleration.	 It’s	 also	 an	 instantaneous
quantity.	 If	 you	 step	 on	 the	 gas	 and	 feel	 the	 seat	 pushing	 you,	 that	 reflects
your	acceleration	right	now.
Given	 that	 we	 know	 how	 to	 measure	 acceleration,	 how	 should	 we



determine	 the	mass	 of	 anything?	First	 of	 all	 you	 need	 an	 arbitrarily	 chosen
standard	of	mass.	The	Bureau	of	Standards	has	a	block	of	some	material	that
defines	a	kilogram.	Using	that,	can	you	find	the	value	of	another	mass?	Surely
you	know	that	using	a	weighing	scale	is	not	the	correct	answer	because	that
measures	the	weight	of	the	object	due	to	earth’s	gravity,	while	the	mass	of	an
object	 is	 defined	 anywhere,	 even	 far	 from	 the	 earth.	 Now	 you	 might	 say,
“Well,	take	a	known	force	and	divide	by	the	acceleration	it	produces,”	but	we
haven’t	 talked	 about	 how	 to	measure	 the	 force	 either.	 All	 you	 have	 is	 this
equation	F	=	ma.
One	correct	option	is	to	use	F	=	ma	itself,	as	follows.	Take	a	spring,	attach

one	end	to	a	wall,	hook	the	known	1	kg	mass	to	the	other	end,	pull	it	by	some
amount,	 release	 it,	 and	 measure	 a1,	 the	 acceleration.	 Now	 pick	 any	 object
whose	mass	you	want,	say	an	elephant.	You	detach	that	1	kg	mass,	attach	the
elephant,	 pull	 the	 spring	 by	 the	 same	 amount,	 and	 measure	 aE,	 the
acceleration	of	the	elephant.	Since	you	pulled	the	spring	by	the	same	amount,
the	force	is	 the	same	in	both	cases.	You	don’t	know	and	don’t	have	to	know
what	it	is,	just	that	it	is	the	same.	Therefore	we	know

which	determines	mE,	the	mass	of	the	elephant.
So	imagine	that	the	masses	of	all	objects	can	be	determined	by	this	process.

Can	we	now	use	F	=	ma	to	find	the	trajectory	of	bodies?	No,	we	still	need	to
know	what	forces	will	be	acting	on	a	body	in	any	given	situation.	We	need	to
know	the	F	in	F	=	ma	in	the	given	context.	Newton	does	not	tell	you	that	in
general.	 For	 example,	 for	 the	 spring,	 you	 have	 to	 determine	 what	 force	 it
exerts	when	it’s	pulled	by	various	amounts.	To	this	end,	you	pull	it	by	some
amount	 x,	 attach	 it	 to	 a	 known	 mass,	 find	 the	 acceleration,	 and	 then	 the
product	ma	gives	the	force	as	a	function	of	x,	namely	Hooke’s	law	F	=	−	kx.
So	this	is	an	example	of	your	finding	out	the	left-hand	side	of	Newton’s	law
by	measuring	the	acceleration	of	known	masses.	Newton	did,	however,	give
the	 left-hand	 side	 in	one	 famous	 case,	 the	 law	of	universal	 gravity	between
masses	M	and	m	 in	terms	of	their	separation	r	and	the	gravitational	constant
G:

Using	 this	 law	 we	 have	 been	 able	 to	 do	 some	 very	 impressive	 celestial
mechanics,	right	up	to	the	present.
Unlike	the	spring	force,	there	is	no	real	contact	between	the	earth	and	the

object	 that	 it	 is	 pulling,	 whether	 it	 be	 the	 apple	 or	 the	 moon.	 This	 is	 an



example	 of	 action	 at	 a	 distance.	 It	 was	 a	 great	 abstraction	 to	 believe	 that
things	can	 reach	out	 and	pull	 (or	push)	other	 things	without	 touching	 them.
Gravity	was	the	first	formally	described	force	of	this	kind.
Remember	the	distinction	between	F	=	ma	and	F	=	−	kx.	The	first	is	always

true	and	relates	the	force	on	a	body	to	the	acceleration	it	produces,	but	does
not	tell	us	what	force	F	will	act	in	any	given	situation.	It	is	our	job	to	find	out
every	 time	 what	 forces	 might	 be	 acting	 on	 a	 body.	 If	 it’s	 connected	 to	 a
spring,	we	have	to	study	the	spring	experimentally	to	find	out	that	F	=	−	kx.
So	F	=	ma	is	good	for	three	things:	to	define	mass,	to	determine	the	forces

acting	on	bodies	of	known	mass	by	seeing	how	 they	accelerate,	and	 to	 find
the	acceleration	of	bodies	given	the	forces.
Every	time	a	body	accelerates,	we	must	be	able	to	relate	its	acceleration	to

the	sum	of	all	the	forces	acting	on	it.	But	now	and	then	we	will	not	be	able	to
do	this.	We	can	either	abandon	F	=	ma,	or,	putting	our	faith	in	the	correctness
of	F	 =	ma,	provided	all	 forces	 are	 included,	we	 can	go	on	 to	 discover	 and
characterize	the	new	force	behind	the	discrepancy.

1.2			Enter	electricity
Now	I	will	describe	an	experiment	that	reveals	a	new	force.	I	take	a	comb	and
vigorously	 brush	my	 hair	 and	 and	 then	 touch	 the	 comb	 to	 a	 small	 piece	 of
paper.	I	find	it	sticks	to	the	comb	and	I	can	lift	it.	But	when	I	shake	the	comb
vigorously,	the	paper	falls	down.	What	can	we	learn	from	this?
Clearly,	the	force	between	the	comb	and	paper	is	not	the	force	of	gravity,

because	gravity	doesn’t	care	if	you	comb	your	hair	or	not.	We	may	concede
that	there	is	a	new	force,	but	we	may	conclude	it	is	feeble	compared	to	gravity
because	it	eventually	yields	to	gravity	when	we	shake	the	comb.	It	would	be	a
mistake	to	think	so.	In	fact,	this	new	force	is	roughly	1040	times	stronger	than
the	gravitational	force,	as	determined	by	a	criterion	that	I	will	explain	shortly.
But	first,	let	us	grasp	this	fact	intuitively.
Look	at	Figure	1.1.	You	see	me	holding	the	comb,	which	is	holding	up	the

piece	 of	 paper.	 What	 is	 trying	 to	 pull	 it	 down?	 The	 entire	 planet!	 The
Himalayas	are	pulling	it	down,	the	Pacific	Ocean	is	pulling	it	down,	even	the
Loch	Ness	Monster	is	pulling	it	down.	Everything	is	pulling	it	down.	I	am	one
of	 these	people	generally	convinced	 the	world	 is	acting	against	me,	but	 this
time	I’m	right.	Everything	is	against	me	and	my	comb,	and	yet	we	are	able	to
triumph	 against	 all	 of	 that.	And	 that	 is	 how	you	 compare	 the	 electric	 force
with	the	gravitational	force.	It	takes	the	entire	planet	to	compensate	whatever
force	 I	 created	between	 the	comb	and	 the	piece	of	paper.	Later	we	will	 see
how	the	number	1040	quantifies	this	fact.
Something	 has	 happened	 to	 the	 comb	when	 I	 rubbed	 it	 against	my	 hair,

something	 that	allowed	 it	 to	attract	 the	paper.	We	describe	 that	condition	of



the	comb	by	saying	“The	comb	is	charged.”	If	the	comb	is	briefly	dipped	in
water	and	removed,	we	find	it	no	 longer	attracts	 the	piece	of	paper.	We	say
the	comb	is	now	discharged.

Figure	1.1			The	comb	is	pulling	the	paper	electrostatically,	and	all	of	the	world	is	pulling	the	other	way
gravitationally.

Figure	1.2			Top:	A	negatively	charged	rod	imparts	some	negative	charge	to	the	sphere	upon	contact	and
they	repel	each	other.	Second:	The	negatively	charged	rod	attracts	a	neutral	sphere	by	polarizing	it
without	touching	it.	Third:	A	charged	rod	polarizes	a	dielectric.	The	light	region	in	the	middle	is	the
overlap	of	rectangles	with	positive	(dotted	boundary)	and	negative	charges	(solid	boundary).	The	light
region	is	neutral	and	the	edges	carry	the	uncanceled	charges.	Bottom:	The	charged	spheres	attract
because	they	have	been	charged	oppositely.



I	am	going	to	describe	in	detail	the	microscopic	theory	that	can	explain	this
experiment	and	many	more,	qualitatively	and	quantitatively.	But,	first,	let	us
consider,	 at	 a	 qualitative	 level,	 a	 few	 more	 such	 experiments	 (depicted	 in
Figure	1.2)	and	their	explanations	in	terms	of	these	ideas.
Experiment	1:	Wearing	silk	gloves,	take	an	aluminum	rod	and	rub	it	against	a	passing	furry	animal,
say	a	Yeti.	Briefly	touch	an	uncharged	metallic	sphere,	isolated	from	everything	else.	The	rod	and
sphere	will	repel.
Experiment	2:	Move	the	charged	rod	near	an	isolated	and	uncharged	sphere.	Before	they	touch,	they
will	attract	each	other.	The	same	happens	when	the	metallic	sphere	is	replaced	by	a	piece	of	paper.
Experiment	3:	Take	two	more	uncharged	spheres.	Repeat	the	previous	two	experiments	after
rubbing	the	rod	on	a	piece	of	polyester	and	you	will	find	the	same	results.
Experiment	4:	Take	two	uncharged	spheres;	touch	one	with	the	rod	that	has	been	rubbed	against
Yeti	fur	and	the	other	with	a	rod	that	has	been	rubbed	against	polyester.	This	time	the	two	spheres
will	attract	each	other.
Experiment	5:	Connect	the	spheres	with	a	wire	and	they	no	longer	attract.

Now	we	 turn	 to	 the	 underlying	 theory,	 which	 is	 a	 result	 of	 centuries	 of
investigation.	We	first	consider	some	qualitative	facts.
The	most	important	idea	is	that	everything	is	made	of	atoms.	The	atom	has

a	nucleus	 consisting	of	protons	 and	neutrons.	The	nucleus	 is	 surrounded	by
some	very	 light	particles	called	electrons.	Normally	 the	number	of	electrons
and	protons	 in	 an	 atom	 is	 equal.	Two	protons	will	 repel	 each	other,	 as	will
two	electrons,	but	 the	proton	and	electron	will	attract	each	other.	A	neutron
will	 not	 interact	 with,	 i.e.,	 attract	 or	 repel,	 another	 neutron,	 proton,	 or
electron.	(Here	I	refer	to	electrical	interactions,	not	nuclear	interactions.	These
are	much	 stronger,	 but	 significant	 only	 at	 very	 short	 distances	 [≃	 10−15	m].
The	 neutron	 fully	 participates	 in	 nuclear	 interactions	 and	 the	 electron	 does
not.)	Objects	like	electrons	and	protons	that	take	part	in	electrical	interactions
are	 said	 to	 be	 charged	 or	 to	 carry	 a	 charge,	 while	 neutrons	 are	 said	 to	 be
(electrically)	neutral.
Just	as	mass	is	the	reason	particles	experience	the	force	of	gravity,	charge

is	the	reason	they	interact	electrically.	But	there	are	differences.	There	are	no
gravitationally	 neutral	 particles—everything	 has	 a	 positive	 mass.	 Second,
gravity	 is	always	attractive	but	 the	electric	forces	can	go	either	way.	This	 is
described	 by	 saying	 there	 are	 two	 kinds	 of	 charge,	 positive	 and	 negative,
which	can	cancel	each	other	out	just	like	positive	and	negative	numbers	can.
By	 convention	 the	 proton	has	 positive	 charge	 and	 the	 electron	has	 negative
charge.	Like	charges	 repel	 and	unlike	charges	attract.	A	system	made	of	 an
equal	 amount	 of	 positive	 and	 negative	 charges	 will	 appear	 neutral,	 at	 least
from	a	distance,	when	the	internal	structure	is	irrelevant.	There	is	no	such	way
to	neutralize	gravity.
An	atom	with	equal	number	of	protons	and	electrons	is	neutral.	This	is	due

to	 a	 remarkable	 fact	 that	 the	 electron	 and	 proton	 have	 exactly	 equal	 and
opposite	charges.	This	equality	is	quite	a	mystery	since	the	two	particles	are



otherwise	 very	 dissimilar:	 the	 proton	 is	 about	 1836	 times	 as	 heavy	 and
experiences	forces	that	the	electron	does	not.
Here	 is	 how	 we	 understand	 Experiments	 1	 through	 5	 in	 terms	 of	 the

preceding	facts.
Experiment	1:	Upon	rubbing,	electrons	flow	from	the	Yeti	to	the	rod,	leaving	the	rod	negative	and
Yeti	positive.	The	protons	stay	where	they	are.	The	silk	gloves	keep	the	electrons	in	the	rod	from
jumping	on	to	your	body	and	then	to	the	ground:	silk	is	an	insulator.	When	the	rod	touches	the
sphere,	some	electrons	migrate	to	the	sphere	in	order	to	get	away	from	each	other.	The	sphere	and	the
rod	are	both	negatively	charged	and	repel	each	other.
Experiment	2:	When	the	negatively	charged	rod	goes	near	the	neutral	metallic	sphere,	the	electrons
in	the	sphere	are	repelled	by	the	extra	electrons	in	the	rod,	and	they	preferentially	occupy	the	far	side,
leaving	a	positive	region	near	the	rod.	The	positive	region	is	attracted	to	the	rod	and	the	negative	one
repelled	by	it,	but	the	attraction	wins	since	the	positive	part	is	closer.	Such	free	motion	of	electrons
can	take	place	in	a	conductor.	If	we	replace	the	metallic	sphere	by	a	piece	of	paper,	it	too	gets
attracted,	but	by	a	more	complicated	mechanism.	The	paper	is	a	dielectric.	The	electrons	in	it	are	not
free	to	run	off	to	one	end,	because	paper	is	also	an	insulator,	but	they	can	move	a	little	from	their
orbits	centered	on	the	nuclei	if	coaxed.	Think	of	a	rectangular	piece	of	paper	as	made	of	two
superposed	layers,	one	positive	(bounded	by	the	dotted	line	in	the	figure)	and	made	of	the	nuclei	and
one	negative,	made	of	the	electrons	(bounded	by	the	solid	line).	Initially	the	two	layers	overlap
completely	and	neutralize	each	other	everywhere.	When	the	negative	rod	comes	near	one	edge,	the
electronic	layer	is	displaced	by	a	tiny	amount	(of	atomic	dimensions)	away	from	the	rod,	while	the
positive	nuclei	stay	put.	The	bulk	of	the	paper	(solid	region	of	overlap	in	the	middle)	is	still	neutral,
but	the	edge	near	the	rod	has	a	strip	of	unbalanced	protons	and	the	edge	far	from	it	has	a	strip	of
unbalanced	electrons.	This	process,	in	which	the	positive	and	negative	charges	are	displaced	relative
to	each	other	by	a	small	amount,	is	called	polarization.	Again,	the	attraction	of	the	nearby	positive
strip	beats	the	repulsion	of	the	distant	negative	one.
Experiment	3:	When	the	rod	is	rubbed	against	polyester,	the	electrons	flow	the	other	way:	from	the
rod	to	the	polyester,	leaving	the	rod	positively	charged.	We	can	repeat	the	arguments	from
Experiments	1	and	2,	simply	reversing	the	sign	of	all	charges.
Experiment	4:	Now	one	sphere	is	positively	charged	(by	polyester)	and	one	is	negatively	charged
(thanks	to	Yeti)	and	they	attract.
Experiment	5:	The	wire,	a	conductor,	allows	electrons	to	flow	from	the	negative	to	the	positive
sphere	till	both	become	neutral	(assuming	they	had	equal	and	opposite	charges).

Observe	 that	 in	 all	 cases,	 it	 is	 only	 the	 electrons	 that	 do	 the	 moving.
Consider	 in	particular	Experiment	3,	when	a	positively	charged	 rod	 touches
the	neutral	sphere,	and	both	end	up	positive.	The	protons	do	not	flow	from	the
rod	to	the	sphere.	Instead,	the	rod	starts	out	with	a	deficit	of	electrons	it	lost	to
the	 polyester.	 It	 is	 hungry	 for	 electrons,	 some	 of	 which	 it	 takes	 from	 the
sphere	 when	 it	 touches	 it.	 The	 sphere	 then	 becomes	 positive	 and	 the	 rod
slightly	less	positive.	It	is	as	if	positive	charge	had	migrated	from	the	rod	to
the	 sphere.	 Likewise,	 the	 electric	 current	 in	 a	 wire	 is	 assigned	 a	 direction
conventionally	associated	with	the	flow	of	positive	charge,	while	in	reality	it
is	the	electrons	that	are	moving	in	the	opposite	direction.	We	will	run	into	one
exception:	within	a	cell	or	battery,	current	is	carried	by	positive	and	negative
ions	(non-neutral	atoms	with	an	excess	or	deficit	of	electrons).



1.3			Coulomb’s	law
We	now	progress	 from	a	qualitative	description	of	charges	 to	a	quantitative
one.	 How	 do	we	measure	 or	 quantify	 q,	 the	 charge?	What	 precisely	 is	 the
force	between	 two	static	 charges	q1	 and	q2	 as	 a	 function	of	 their	positions?
All	 the	 answers	 are	 contained	 in	 one	 formula	 called	Coulomb’s	 law,	 after
Charles-Augustine	 de	Coulomb	 (1736–1806).	 Even	 though	 only	Coulomb’s
name	is	on	it,	his	work	was	the	culmination	of	many	previous	efforts.	He	did,
however,	give	the	law	its	final	and	direct	verification,	which	is	why	the	unit
of	charge,	denoted	by	C,	is	called	a	coulomb.
Coulomb’s	law	says	that	the	force	between	two	charges	q1	and	q2,	located

at	points	r1	and	r2	(as	shown	in	Figure	1.3),	is

Figure	1.3			The	forces	between	two	charges	q1	and	q2	located	at	r1	and	r2.	The	force	F12	acts	on	q1
due	to	q2	and	is	equal	and	opposite	to	F21,	similarly	defined.

In	 the	 formula	F21	 (=	−	F12)	 is	 the	 force	on	charge	2,	due	 to	charge	1.	The
figure	 corresponds	 to	 the	 case	 when	 the	 charges	 are	 of	 the	 same	 sign	 and
hence	 repel.	 If	 they	 are	 of	 opposite	 sign,	 the	 forces	 will	 be	 reversed	 and
describe	mutual	attraction.
We	will	spend	considerable	time	unearthing	the	numerous	implications	of

this	formula.
First,	notice	 that	 regardless	of	how	q	 is	measured,	 the	 formula	 shows	 the

charges	pushing	each	other	away	if	they	have	the	same	sign	and	attracting	if



they	have	opposite	signs.
Next,	 the	 formula	 defines	 a	 charge	 of	 one	 coulomb:	 if	 two	 charges,	 1

coulomb	 each,	 are	 separated	 by	 1	meter,	 the	 repulsive	 force	 between	 them
will	be	9	·	109	N.
That’s	 an	 enormous	 force	 (the	 weight	 of	 about	 10,000,000	 adults),	 and

normally	you	don’t	 run	 into	1	coulomb	of	unneutralized	charge.	A	coulomb
arises	more	commonly	when	we	consider	currents:	an	ampere	(denoted	by	A)
is	the	flow	of	one	coulomb	per	second	and	that	is	not	unusual.	(Remember	the
wire	 is	 still	neutral:	 the	 flowing	electrons	are	neutralized	by	a	static	nuclear
background.)
In	 these	units	 the	charge	of	 the	proton,	denoted	by	e,	 is	1.6·	10−19	C	 and

that	of	the	electron	is	−	e.

1.4			Properties	of	charge
Now	 we	 consider	 two	 fundamental	 facts	 about	 charge	 that	 are	 not	 part	 of
Coulomb’s	law:	it	is	conserved	and	it	is	quantized.
As	you	know,	“conserved”	 is	a	physics	 term	for	saying	“does	not	change

with	 time.”	 Electrical	 charge	 may	 migrate	 from	 body	 to	 body	 or	 place	 to
place,	but	the	total	charge	is	conserved,	provided	you	keep	track	of	the	signs.
In	 a	 chemical	 reaction	 or	 in	 particle	 accelerators	 where	 all	 kinds	 of	 new
particles	 are	 produced	 in	 a	 collision,	 the	 total	 charge	 of	 the	 final	 products
always	equals	the	total	charge	of	the	incoming	products.
Charge	 is	 not	 merely	 conserved:	 it	 is	 conserved	 locally.	 I	 will	 illustrate

what	I	mean	by	considering	a	conservation	law	that	is	not	local.	Suppose	I	say
the	number	of	students	in	the	class	is	conserved.	That	means	that	if	you	count
them	at	any	 time,	you	will	get	 the	 same	number.	But	 suppose	 Joe	 suddenly
disappears	 from	 the	 back	 of	 the	 room	 and	 instantaneously	 reappears	 at	 the
front.	 The	 number	 of	 Joes	 is	 conserved.	 This	 is,	 however,	 not	 local
conservation	because	Joe	disappears	 in	one	part	of	 the	world	and	appears	 in
another,	 without	 following	 an	 interpolating	 trajectory.	 Such	 non-local
conservation	 laws	 do	 not	 seem	 to	 exist	 and	 do	 not	 interest	 us,	 since	 they
cannot	 survive	 relativity:	 the	 disappearance	 and	 reappearance	 of	 Joe,
simultaneous	in	one	frame,	need	not	be	simultaneous	in	another	frame.	There
we	 could	 have	 a	 period	 with	 no	 Joe	 anywhere	 or	 two	 Joes.	 If	 you	 want
conservation	laws	that	hold	in	all	frames,	they	have	to	be	local.
The	 conservation	 of	 electrical	 charge	 is	 local.	 So	 charge	 doesn’t	 just

disappear	at	one	place	and	reappear	somewhere	else;	it	just	moves	around.	As
it	moves	we	can	follow	this	motion	continuously.	We	can	employ	this	notion
to	restate	the	local	conservation	of	charge	as	follows.	Suppose	you	mark	off	a
closed	region	of	space	and	(i)	count	all	the	charge	inside	and	(ii)	keep	track	of
all	charge	entering	or	leaving	the	region	via	the	boundary.	You	will	find	that



the	 increase	 (decrease)	of	 the	 enclosed	charge	 is	precisely	 accounted	 for	by
the	charge	flowing	in	(out)	across	the	boundary.	This	would	not	have	been	the
case	with	Joe:	 if	you	had	counted	 the	number	of	Joes	 inside	a	 region	 in	 the
back	of	the	class	and	another	region	in	front	of	the	class,	both	numbers	would
have	jumped	abruptly	with	no	accompanying	flow	of	Joe	at	either	boundary.
The	 conservation	 of	 charge	 had	 been	 assumed	 from	Coulomb’s	 time	 and

played	a	big	part	in	the	explanation	of	the	electrostatic	experiments	described
earlier.
The	 second	 feature	 of	 charge	 is	 that	 it	 is	 quantized.	 That	 means	 the

electrical	charge	does	not	take	a	continuum	of	possible	values,	unlike,	say,	the
x-coordinate	of	any	object,	which	can	be	any	number	you	like.	All	the	charges
we	have	ever	seen	are	integral	(positive	or	negative)	multiples	of	a	basic	unit
of	charge,	e	=	1.6	 ·	10−19	C.	 (Quarks	are	an	exception,	but	 they	are	always
trapped	 inside	 particles	 like	 protons	 and	 neutrons.	 Their	 charge	 is	 also
quantized	 but	 as	 a	 fraction	 of	 e.	 For	 example,	 the	 proton	 is	 made	 up	 of	 2
quarks	 of	 charge	 	 and	 one	 of	 charge	 	 and	 a	 cloud	 of	 quark-antiquark
pairs	of	net	charge	0.)
Paul	 Dirac	 (1902–1984)	 has	 provided	 a	 possible	 explanation	 of	 charge

quantization	 using	 two	 ideas	 I	 have	 not	 discussed	 yet:	magnetic	monopoles
and	quantum	mechanics.	I	nonetheless	digress	here	to	describe	Dirac’s	work
because	 by	 the	 time	 I	 cover	 these	 two	 topics,	 you	may	 have	 forgotten	 the
question	we	are	discussing.	Briefly,	a	magnetic	monopole,	if	it	existed,	would
possess	an	attribute	called	magnetic	charge	that	comes	in	two	signs,	just	like
electric	 charge.	 Monopoles	 of	 like	 charge	 would	 repel	 and	 monopoles	 of
unlike	 charge	 would	 attract	 with	 an	 inverse	 square	 law.	 All	 the	 magnetic
phenomena	 we	 see,	 like	 with	 bar	 magnets,	 are	 associated	 with	 magnetic
dipoles,	which	have	net	 zero	magnetic	 charge	 and	are	 actually	produced	by
electric	currents.	A	magnetic	monopole	will	be	like	a	bar	magnet	with	just	the
north	pole,	something	we	have	not	seen	yet.	So	far	we	have	not	had	direct	and
reproducible	 evidence	 of	 even	 a	 single	 monopole,	 let	 alone	 a	 macroscopic
manifestation	in	the	form	of	a	magnet	with	just	one	pole.	Some	grand	unified
theories,	 however,	 predict	 magnetic	 monopoles.	 They	 are	 expected	 to	 be
fairly	heavy	and	to	interact	more	strongly	than	electric	charges.	Dirac	showed
that	 if	 quantum	 theory	 is	 to	 consistently	 describe	 the	 interaction	 of	 electric
charges	 with	monopoles,	 all	 electric	 charges	 have	 to	 be	 multiples	 of	 some
basic	unit,	 inversely	 proportional	 to	 the	monopole’s	magnetic	 charge.	Thus
even	a	single	monopole,	anywhere	in	the	universe,	guarantees	electric	charge
quantization.	 If	 you	 believe	 that	 anything	 that	 can	 exist	will	 exist,	 you	 can
hope	that	one	day	these	monopoles	will	be	seen.
Let	us	briefly	consider	a	few	facts	you	may	have	known	but	not	wondered

about	at	any	length.
Every	electron,	anywhere	in	the	universe,	is	identical	to	every	other	one:	it



has	exactly	the	same	charge	and	exactly	the	same	mass.	Now,	you	might	say,
“Look,	that’s	a	tautology,	because	if	it	hadn’t	the	same	charge	and	the	same
mass,	you	would	simply	call	it	something	else.”	But	what	makes	my	sentence
non-empty	 is	 that	 there	are	many,	many,	many	electrons	 that	are	absolutely
identical.	This	 never	 happens	macroscopically.	Even	 identical	 twins	 are	 not
identical,	 and	 cars	 that	 are	 supposed	 to	 be	 identical	 are	 not.	 But	 at	 the
microscopic	 level,	 elementary	 particles	 like	 electrons	 are	 identical	 to	 other
electrons	anywhere	in	the	universe,	even	if	 they	were	produced	in	collisions
in	 different	 parts	 of	 the	 universe.	 That	 is	 a	 mystery,	 at	 least	 in	 classical
mechanics,	 though	 relativistic	 quantum	 field	 theory	 gives	 an	 explanation.
(Relativistic	 quantum	 field	 theory	 is	 a	 description	 of	 fields,	 like	 the
electromagnetic	 field,	 satisfying	 the	 laws	 of	 relativity	 and	 quantum
mechanics.	It	forms	the	basis	of	all	modern	particle	theory.)	The	fact	that	they
are	 absolutely	 identical	makes	 our	 life	 easy,	 because	 if	 every	 particle	were
different	 from	 every	 other	 particle,	 we	 could	 not	 make	 many	 useful
predictions.	 For	 example,	 assuming	 that	 the	 hydrogen	 atom	 on	 a	 receding
galaxy	is	 identical	 to	 the	hydrogen	atom	on	the	earth	and	observing	that	 the
light	from	it	has	a	shifted	frequency,	we	deduce	the	galaxy’s	velocity	from	the
Doppler	shift,	instead	of	simply	saying	the	“hydrogen”	in	the	other	galaxy	is	a
different	 atom.	This	 identity	 of	 atoms	 and	molecules	 is	 also	why	 structures
like	DNA	are	stable	and	reproducible.
Why	is	the	charge	of	the	electron	exactly	equal	and	opposite	to	the	charge

of	 the	 proton,	 given	 that	 they	 have	 very	 different	 masses	 and	 non-electric
interactions?	 The	 standard	 model	 of	 strong,	 weak,	 and	 electromagnetic
interaction	can	explain	this	based	on	a	consistency	condition	called	“anomaly
cancellation.”	This	equality	of	charge	is	the	key	to	the	neutrality	of	atoms	and
the	reason	behind	our	existence.	It	is	also	why	we	can	detect	gravity	despite
its	relative	weakness,	a	point	we	will	explore	in	greater	detail	shortly.

1.4.1			Superposition	principle
We	 now	 pass	 to	 an	 application	 of	 Coulomb’s	 law	 when	 there	 are	 three
charges	q1,	q2,	and	q3	at	r1,	r2,	and	r3	as	shown	in	Figure	1.4.	What	will	be
the	force	on	q3	due	to	the	other	two?	Most	students	answer	right	away	that	it
is	the	vector	sum	of	F31	and	F32	in	our	notation,	i.e.,	the	sum	of	the	force	q1
by	 itself	would	exert	on	q3	 and	what	q2	would	exert	by	 itself.	While	 this	 is
indeed	 correct,	 it	 is	 not	 simply	 a	 consequence	 of	 Coulomb’s	 law.	 The	 law
only	 says	 what	 happens	 when	 we	 have	 just	 one	 pair	 of	 charges,	 while	 the
students’	answer	assumes	that	F31,	the	force	on	q3	due	to	q1,	is	unaffected	by
the	 presence	 of	 q2.	 This	 is	 not	 a	 logical	 necessity	 or	 a	 consequence	 of
Coulomb’s	 law,	 and	 it	 is	 not	 even	 true	 if	 effects	 of	 relativistic	 quantum



mechanics	 are	 included.	 We	 then	 find	 that	 when	 there	 are	 three	 charges
present,	 certain	 new	 forces	 appear	 that	 cannot	 be	 described	 in	 terms	 of	 the
pairwise	“two-body”	 interactions.	 In	other	words,	studying	pairs	of	particles
in	isolation	will	not	tell	us	everything	we	need	to	know	when	more	than	one
pair	 is	 present.	However,	 in	 classical	 electrodynamics,	 which	 we	 focus	 on
here,	we	may	add	the	force	q1	would	have	exerted	on	q3	in	the	absence	of	q2
to	the	force	q2	would	have	exerted	on	q3	in	the	absence	of	q1	to	find	the	force
on	q3	when	all	three	are	present.	This	is	called	the	superposition	principle.	I
repeat:	this	is	not	a	logical	consequence	of	Coulomb’s	law,	but	an	empirically
established	 feature	 of	 classical	 electrodynamics	 that	 simplifies	 our	 life
enormously.

Figure	1.4			The	force	on	q3	due	to	charges	q1	and	q2	is	the	sum	of	the	forces	each	would	have	exerted
on	q3	in	the	absence	of	the	other.	This	is	the	superposition	principle.

1.5			Verifying	Coulomb’s	law
Suppose	 I	 give	 you	Coulomb’s	 law	 and	 ask	you	 to	 verify	 it.	How	will	 you
confirm	the	dependence	of	the	force	on	q1,	q2,	and	r	=	|r1	−	r2|?	Think	about
it,	before	reading	the	answers	given	by	my	class.	An	idea	my	class	generated
was	that	we	keep	q1	and	q2	fixed	and	vary	r,	and	measure	the	mutual	force	as
a	function	of	r.	Here	are	two	ideas	my	students	came	up	with	for	measuring
the	 force.	One	was	 to	 connect	 the	 charges	 to	 the	 two	 ends	 of	 a	 spring	 and
watch	how	much	 it	 expanded	 (or	contracted)	 to	balance	 the	electrical	 force.
The	other	was	to	tie	one	of	the	charges	down,	let	the	other	accelerate,	and	use
F	=	ma	to	find	the	force	(as	a	function	of	the	starting	separation	r).
I	should	point	out	that	I	accepted	any	procedure	that	was	right	in	principle

and	did	not	require	that	they	corresponded	to	what	experimentalists,	who	are
devilishly	clever,	would	employ	in	practice.
Notice	that	to	confirm	the	1/r2	dependence,	we	don’t	have	to	know	what	q1

and	q2	are,	as	long	as	we	keep	them	fixed.	Double	(or	triple)	the	r	and	see	if
the	force	(measured	as	described	above)	falls	to	one	fourth	(one	ninth)	of	the
initial.	Of	course,	you	need	to	consider	a	lot	of	values	of	r	to	truly	nail	down



the	r	dependence.
Next,	you	want	to	verify	that	the	force	goes	as	the	first	power	of	q1	and	the

first	 power	 of	 q2.	 Consider	 the	 following	 suggestion:	 “Take	 two	 metal
spheres,	 put	 a	 fixed	 charge	 on	 one	 (this	will	 be	 the	 fixed	 q1)	 and	 vary	 the
charge	on	the	other	(q2),	and	track	the	force.	For	example,	if	you	halve	q2,	the
force	should	drop	to	half	the	old	value.”	To	halve	the	charge	on	sphere	2,	you
cannot	simply	say	“Halve	the	number	of	electrons	dumped	on	it,”	because	the
existence	of	electrons	was	unknown	at	Coulomb’s	time,	and	you	have	to	play
by	 the	 rules	 of	 that	 pre–atomic	 theory	 period.	 After	 some	 discussion	 the
following	acceptable	strategy	was	generated.
Take	 two	charged	spheres	numbered	1	and	2,	 and	 find	 the	 force	between

them.	Do	not	touch	number	1.	Take	sphere	number	2	and	bring	it	in	contact
with	 an	 identical	 uncharged	 sphere	 and	 separate	 them.	 By	 symmetry,	 they
should	each	end	up	with	 .	Even	though	we	did	not	know	what	q2	was,	we
know	we	have	halved	it	in	the	process.	Put	2	at	the	old	location	and	see	if	the
force	has	halved.
We	 physicists	 love	 these	 symmetry	 arguments,	 which	 transcend	 physics

and	 border	 on	 philosophy:	 When	 two	 identical	 spheres	 are	 made	 to	 share
some	charge,	there	is	no	reason	why	nature	would	not	give	each	exactly	half
the	total.
Returning	 to	 the	 spheres,	 by	 another	 splitting,	 you	 can	 get	 a	 sphere	with

charge	 .	By	making	a	sphere	with	 	share	its	charge	with	an	identical	one
carrying	 ,	you	can	get	one	with	 	and	so	on.
That’s	how	we	can	verify	that	the	force	depends	linearly	on	q2.	Of	course,

it	must	then	also	depend	linearly	on	q1,	because	it’s	up	to	us	to	decide	which
one	we	want	to	call	q2.
Here	 is	another	challenge.	 I	give	you	a	charged	sphere	and	I	want	you	 to

find	 how	much	 charge	 it	 carries,	 in	 coulombs.	What	will	 you	 do?	When	 a
student	said:	“Put	it	in	the	vicinity	of	a	reference	charge	and	then	measure	the
acceleration,”	I	asked	her	how	to	get	a	known	reference	charge.	Her	answer
(correct,	 but	 by	no	means	unique)	was	 as	 follows.	Take	 these	 two	 identical
spheres,	each	with	the	same	unknown	charge	q	(say	by	making	them	share	2q
equally),	 place	 them	 at	 a	 known	 separation,	 say	 a	 meter,	 and	 measure	 the
force	needed	to	keep	them	where	they	are.	Use	Coulomb’s	law	to	extract	q2.
If	you	constantly	think	about	how	you	would	measure	anything	you	work

with,	you’ll	understand	physics	more	deeply	and	also	find	solving	problems	a
lot	easier.	If	instead	you	are	busy	pushing	symbols	around	and	chasing	factors
of	2π,	you	will	eventually	be	lost.

1.6			The	ratio	of	gravitational	to	electric	forces



Recall	 the	claim	that	Fg/Fe,	 the	 ratio	of	gravitational	 to	electric	 forces,	 is	of
the	order	10−40.	We	have	to	specify	how	we	got	this	number.	Our	task	is	not
like	 selling	 toothpaste	 where	 one	 can	 glibly	 say	 it	 makes	 teeth	 3.14	 times
whiter:	that	is	a	different	game,	not	subject	to	any	rules.
We	do	have	to	explain	how	we	come	up	with	10−40.	It	turns	out	the	answer

does	depend	 slightly	on	what	 comparison	method	we	choose.	There	will	be
some	variations,	but	they	will	be	tiny	compared	to	the	enormous	ratio,	i.e.,	the
number	 of	 zeros	 may	 range	 from	 37	 to	 43	 depending	 on	 the	 comparison
method.
Consider	two	particles	of	mass	m1	and	m2	and	charges	q1	and	q2,	a	distance

r	apart.	We	find

Fortunately	 the	 ratio	 does	 not	 depend	 on	 the	 separation	 r	 we	 choose	 for
comparison	 since	 both	 forces	 fall	 as	 1/r2.	 It	 does,	 however,	 depend	 on	 the
charges	 and	 masses.	 If	 there	 were	 only	 one	 kind	 of	 particle	 (and	 its
antiparticle)	in	the	universe,	we	could	plug	in	its	mass	and	charge.	But	there
are	 of	 course	many.	However,	we	 can	 focus	 on	 the	 two	 key	 players	 out	 of
which	everything	we	see	is	made,	the	proton	and	electron.
If	we	take	two	electrons	we	get

If	we	take	a	proton	and	an	electron,	the	ratio	will	be	of	order	10−40,	and	if	we
take	 two	protons	 it	will	 be	 of	 the	 order	 10−36.	Gravity	 is	 incredibly	weaker
than	electricity,	no	matter	how	you	slice	it.
If	gravity	is	so	weak,	how	did	anyone	discover	it?	Suppose	we	knew	only

about	electricity	and	didn’t	know	about	gravitation.	One	way	to	find	out	that
there	 is	 an	 extra	 force	 is	 to	 measure	 the	 force	 between	 two	 particles	 to	 a
fantastic	accuracy	and	find	some	discrepancy	in	the	40th	decimal	place.	But
that’s	not	how	it	was	done,	of	course.	Everyone	seems	to	know	the	reason:	the
electric	 force,	 even	 though	 it’s	 very	 strong,	 comes	 with	 opposite	 charges.
Consider	the	planet	Earth.	It	has	lots	and	lots	of	atoms	and	lots	of	charges	in
each	atom,	but	every	atom	is	neutral.	The	moon	too	has	lots	and	lots	of	atoms,
but	they’re	also	neutral.	So	all	the	powerful	electric	forces	amount	to	nothing,
due	to	internal	cancellations.	But	the	mass	of	the	electron	does	not	cancel	the
mass	of	the	proton	in	determining	the	mass	of	the	atoms.	So	mass	can	never
be	hidden,	whereas	charge	can	be	hidden.	That’s	the	reason	why,	in	spite	of



the	 incredible	 amount	 of	 electrical	 forces	 they’re	 potentially	 capable	 of
exerting,	 the	 earth	 and	 moon	 see	 each	 other	 as	 neutral	 entities.	 In	 most
cosmological	 calculations	 you	 can	 forget	 the	 electric	 force.	 The	 remaining
(gravitational)	force	plays	a	dramatic	role	in	the	structure	of	the	universe.
It	is	this	feature	of	gravity,	that	mass	cannot	be	hidden,	that	allowed	us	to

infer	existence	of	dark	matter.	Let	us	recall	how	we	know	of	its	existence	in
our	 own	galaxy.	 If	 a	 star	 is	 orbiting	 the	 center	 of	 our	 galaxy,	 just	 by	using
Newtonian	gravity,	by	knowing	 the	velocity	of	 the	object	as	 it	goes	around,
you	can	calculate	how	much	mass	is	enclosed	by	the	orbit.	In	case	you	forgot,
for	a	circular	orbit,	the	velocity	at	radius	r	is	constrained	by

where	M	is	the	enclosed	mass.	If	you	take	orbits	of	bigger	and	bigger	radius,
you	will	find	more	and	more	enclosed	mass,	until	you	reach	orbits	as	big	as
the	visible	galaxy.	So	far	so	good.	But	you	find	 that	as	you	consider	bigger
orbits,	you	still	keep	picking	up	more	mass,	out	to	some	great	distance.	That
is	 the	dark	matter	halo	of	our	galaxy.	Dark	matter	 is	made	of	hard-to-detect
particles,	but	its	gravitational	effects	cannot	be	hidden.	It	occurs	everywhere,
even	in	galaxy	clusters.	Physicists	around	the	world,	 including	here	at	Yale,
are	 trying	 to	 find	dark	matter.	The	problem	 is,	we	don’t	know	exactly	what
particles	dark	matter	is	made	of.	They	are	not	any	of	the	usual	suspects,	which
would	 have	 interacted	 with	 other	 particles	 and	 been	 detected	 already.	 You
have	 to	 build	 detectors	 that	 will	 detect	 that	 unknown	 species.	 And	 you’re
hoping	 that	 one	 of	 these	 dark	matter	 particles	will	 collide	with	 the	 stuff	 in
your	detector	and	trigger	a	reaction.	Of	course,	there	will	be	lots	of	reactions
due	 to	 other	 particles.	 That’s	 called	 background.	 You’ve	 got	 to	 throw	 the
background	 events	 out	 and	 hope	 that	 whatever	 is	 left	 over	 is	 due	 to	 dark
matter.	 One	 diagnostic	 is	 that	 while	 normal	 particles	 will	 typically	 collide
multiple	 times	 in	 the	 detector,	we	weep	 for	 joy	 if	 the	 dark	matter	 particles
collide	even	once.	The	particles	that	form	dark	matter	are	very	interesting	to
astrophysicists	and	particle	physicists,	and	there	are	many	candidates.

1.7			Coulomb’s	law	for	continuous	charge	density
We	conclude	with	one	final	variant	of	Coulomb’s	law.	We	have	seen	how	to
use	 the	 superposition	 principle	 to	 add	 up	 the	 pairwise	 forces	 on	 any	 one
charge	due	to	many	others.	But	often	we	consider	problems	where	the	charges
are	 continuous.	 (In	 real	 life	 everything	 is	 discrete,	 made	 of	 protons	 and
electrons,	 but	 at	 some	 macroscopic	 scale,	 it	 will	 look	 like	 charge	 is
continuous,	 just	 as	 water,	 which	 is	 made	 of	 molecules,	 appears	 to	 be	 a
continuous	 fluid.)	 We	 tackle	 this	 variation	 just	 as	 we	 did	 the	 problem	 of
gravity	 due	 to	 a	 continuous	 mass	 distribution:	 we	 replace	 the	 sums	 by



integrals.
As	an	example,	 consider	 a	 circular	wire	of	 radius	R	with	λ	 coulombs	per

meter,	 lying	in	 the	xy-plane	with	 its	center	at	 the	origin,	as	shown	in	Figure
1.5.	I	want	to	find	the	electric	force	it	exerts	on	a	point	charge	q	located	at	a
height	 z	 on	 the	 z-axis.	 I	 divide	 the	 loop	 into	 tiny	 segments	 of	 length	 dl.
Consider	 the	 tiny	 highlighted	 segment	 of	 length	dl	 perpendicular	 to	 the	 yz-
plane,	as	shown	in	Figure	1.5.	It	can	be	treated	as	a	point	charge	λdl.	It	exerts
a	force	dF	of	magnitude

Figure	1.5			The	electric	force	due	to	a	loop	in	the	xy-plane,	on	a	charge	located	on	the	z-axis.	The
highlighted	segment	of	length	dl	has	charge	λdl	and	exerts	a	force	dF.	We	keep	only	the	vertical	part
along	the	z-axis	since	the	diametrically	opposite	segment	dl*	(shown	by	a	dotted	curve)	will	cancel	the
horizontal	part.

The	 force	 vector	 lies	 in	 the	 yz-plane.	We	 need	 keep	 only	 the	 vertical	 part,
pointing	 up	 the	 z-axis,	 since	 the	 horizontal	 part	 will	 be	 canceled	 by	 the
segment	dl*	at	the	diametrically	opposite	point,	shown	as	a	dotted	curve.	The
total	vertical	force	has	a	magnitude	given	by	integration:

where	the	factor



projects	out	the	vertical	part	of	dF	and	2π	R	is	the	integral	over	dl.
Once	 you’ve	 done	 such	 a	 calculation	 you	must	 think	 of	ways	 to	 test	 the

result.	Here	are	two	good	tests.	First,	if	you	set	z	=	0,	i.e.,	find	the	force	at	the
center	of	the	loop,	you	should	get	zero	since	every	segment	that	exerts	a	force
toward	the	center	is	countered	by	the	diametrically	opposite	one.	This	is	true
of	our	answer.
The	second	test	is	to	go	very	far	away	from	the	loop,	when	it	should	look

like	a	point	charge	λ	·	2π	R.	How	far	is	far?	Any	one	length,	say	the	diameter
of	my	head,	can	be	made	to	look	impressively	large	or	depressingly	small	by
choosing	 the	 unit	 of	 length	 to	 be	 a	 micron	 or	 a	 light	 year.	 Only	 ratios	 of
lengths	can	be	described	as	large	or	small,	and	to	be	useful,	the	ratios	should
be	 relative	 to	 some	 intrinsic	 length	 in	 the	 problem.	 For	my	 head	 to	 appear
point-like	I	should	be	seen	from	a	distance	many	times	the	size	of	my	head.
For	 the	 loop	 to	appear	point-like,	 it	 should	be	viewed	 from	a	distance	z R.
You	 may	 verify	 that	 in	 this	 limit	 the	 formula	 indeed	 reduces	 to	 the	 force
between	q	and	a	point	charge	2π	Rλ,	separated	by	a	distance	z.



CHAPTER	2

The	Electric	Field

I	begin	with	a	review	of	a	subset	of	ideas	from	the	last	chapter	that	you	will
need	going	forward.

2.1			Review	of	key	ideas
Several	species	of	particles,	 such	as	protons	and	electrons,	have	an	attribute
called	 electric	 charge	 or	 simply	 charge.	 Others	 like	 the	 neutron	 do	 not.
Objects	with	charge	exert	forces	on	other	objects	with	charge.	The	coulomb	is
the	unit	for	measuring	charge.	It	is	denoted	by	C	and	is	defined	by	Coulomb’s
law,	which	I	repeat	for	convenience:

In	the	formula,	q1	and	q2	are	charges	of	the	particles	located	at	r1	and	r2,	and
F12	(=	−	F21)	is	the	force	on	charge	1,	due	to	charge	2.
If	 two	 charges,	 each	 equal	 to	 1	C,	 are	 placed	 one	meter	 apart,	 they	will

experience	 a	 force	 equal	 to	 9	 ·	 109	N.	 Once	 such	 a	 reference	 charge	 (or	 a
known	 fraction	 of	 it)	 is	 given,	 any	 other	 charge	 may	 be	 measured	 using
Coulomb’s	 law.	 (Here	 is	 a	 way	 to	 create	 a	 reference	 charge.	We	 take	 two
identical	uncharged	spheres,	charge	one	by	an	unknown	amount	q	and	 let	 it
share	its	charge	with	the	other.	Each	then	has	q/2	and	the	force	between	them
at	a	known	separation	then	determines	q2/4.)
Charge	can	be	positive	or	negative.	From	Coulomb’s	law	we	see	that	like

charges	 repel	 (i.e.,	F12	 and	F21	 point	 away	 from	each	other)	while	opposite
charges	attract.	The	proton	and	electron	have	charges	e	=	1.6	·	10−19	C	and	−
e	respectively.	The	neutron	has	no	charge.	Finally,	we	need	the	superposition
principle	to	go	beyond	a	pair	of	charges.	This	principle	allows	us	to	compute



the	 force	 on	 any	 one	 charge	 due	 to	many	 others	 by	 adding	 their	 individual
contributions.	 The	 force	 between	 a	 pair	 of	 charges	 is	 indifferent	 to	 the
presence	of	other	charges.
The	 total	 charge	 of	 a	 collection	 of	 charges	 is	 the	 algebraic	 sum	 of	 the

charges	 of	 the	 constituents.	 As	 a	 result,	 an	 atom	with	 an	 equal	 number	 of
electrons	and	protons	is	electrically	neutral.	This	is	the	reason	we	can	detect
the	 gravitation	 force	 between	 the	 earth	 and	 the	moon:	 given	 their	 electrical
neutrality,	 only	 gravity	 remains	 and	 is	 detectable	 despite	 being	 1040	 times
weaker.

2.2			Digression	on	nuclear	forces
Now	for	a	brief	digression.	We	can	understand	the	atom	as	resulting	from	the
attraction	between	the	protons	in	the	nucleus	and	the	electrons.	But	what	are
the	 protons	 doing,	 so	 close	 to	 each	 other	 inside	 a	 nucleus	 of	 size	 10−15	m?
Why	doesn’t	the	Coulomb	repulsion	make	the	nucleus	explode?	The	answer,
which	you	might	already	know,	is	that	protons	experience	another	force,	the
nuclear	 or	 strong	 force,	 which	 is	 attractive	 and	 much	 stronger	 than	 their
Coulomb	repulsion.	If	that	is	so,	how	did	we	manage	to	detect	the	relatively
tiny	electrical	force	hiding	underneath	this	nuclear	force?	The	answer	has	to
do	 with	 the	 fact	 that	 the	 nuclear	 force	 Fn	 has	 a	 very	 different	 distance
dependence	 compared	 to	 the	 electrical	 force	 Fe.	 It	 varies	 with	 distance
roughly	as

where	r0	≃10−15	m	is	called	the	range	of	the	nuclear	force.	The	electric	force
of	course	behaves	as

where	 k	 includes	 q,	 ε0,	 etc.	 As	 a	 result	 of	 the	 different	 r-dependences,	 the
ratio	Fn/Fe,	unlike	Fg/Fe,	is	distance	dependent:

Deep	inside	the	nucleus,	i.e.,	r r0,	e−r/r0≃1	and



and	the	nuclear	force	dominates	because	A k.	As	we	go	to	distances	r r0,	the
exponential	 e–r	 /	 r0	 completely	 suppresses	 the	 factor	 	 and	 the	 Coulomb
repulsion	wins.	Of	course,	the	crossover	between	the	two	forces	is	not	abrupt,
but	occurs	over	the	rough	dimension	of	the	nucleus.
Now	for	the	role	of	the	neutron	in	the	nucleus.	What	are	the	neutrons	doing

here?	Whereas	 they	 are	 nobodies	with	 respect	 to	Coulomb	 interactions,	 the
attractive	 nuclear	 force	 between	 two	 neutrons	 or	 between	 a	 neutron	 and	 a
proton	 is	 as	 strong	 as	 the	 nuclear	 force	 between	 two	 protons.	 (This	 is	 one
reason	protons	 and	neutrons	 are	 collectively	 called	nucleons.)	As	 the	nuclei
get	bigger,	 the	 exponential	 suppression	of	 the	 attractive	nuclear	 force	 really
kicks	in,	while	the	Coulomb	repulsion	between	protons	lives	on.	So	additional
protons	eventually	cause	instability,	while	neutrons	contribute	to	the	stability:
they	 bring	 in	 nuclear	 attraction	 without	 the	 Coulomb	 repulsion	 that
necessarily	accompanies	protons	and	tries	 to	blow	up	the	nucleus.	There	are
far	more	neutrons	than	protons	as	the	nuclei	get	heavier.	(For	example,	
has	92	protons	and	143	neutrons.)	But	neutrons	can	only	do	so	much:	the	laws
of	 quantum	 mechanics	 force	 the	 added	 neutrons	 to	 have	 more	 and	 more
kinetic	 energy,	 and	 beyond	 some	 size	 nuclei	 are	 unstable	 and	 decay	 into
stable	nuclei,	say	by	emitting	α	particles,	which	are	He	nuclei,	made	of	 two
protons	and	two	neutrons.
This	 ends	 the	 brief	 digression	 on	 the	 complicated	 subject	 of	 nuclear

physics.

2.3			The	electric	field	E
Now	for	the	main	business	of	this	chapter:	the	seminal	notion	of	the	electric
field.
Let	us	rewrite	the	force	on	q2	due	to	q1	as	follows:

What	we	have	done	is	to	write	the	force	on	q2	due	to	q1	as	a	product	of	q2
and	E(r2),	which	is	called	the	electric	field	at	the	location	of	q2.
Where	does	this	cosmetic	factorization	of	F21	into	E(r2)	and	q2	lead	us?



First	 we	 will	 say	 that	 the	 interaction	 between	 q1	 and	 q2	 is	 a	 two-step
process:

Step	1.	The	charge	q1	produces	a	field	E(r2)	at	the	location	of	q2	given	by

Step	2.	The	charge	q2	responds	to	the	field	by	feeling	a	force	F21	=	q2E(r2).

Thus	 we	 have	 split	 the	 simple	 Coulomb	 interaction	 into	 two	 parts:	 the
creation	of	the	field	by	one	charge	and	the	response	to	that	field	of	the	other.
Of	course,	we	could	just	as	well	factorize	F12	as	E(r1),	the	field	produced	by
q2	at	the	location	of	q1,	times	q1.
It	 will	 be	 a	 while	 before	 you	 can	 appreciate	 the	 cleverness	 behind	 this

factorization.	For	now,	just	understand	the	terminology	and	the	procedure.
Notice	two	things.

Thing	1:	While	it	takes	two	charges	to	feel	a	force,	it	takes	only	one	charge	to
produce	a	field.	A	charge	q	at	the	origin	produces	the	following	field	at	point
r:

where	er	=	r/r	is	a	unit	vector	in	the	radial	direction,	from	the	origin	(where	q
is)	to	r	where	E	is	being	computed.

Thing	2:	The	field	due	 to	q	 is	non-zero	everywhere,	not	 just	where	 there	 is
another	charge	to	feel	the	field.
We	 think	of	E(r)	as	a	condition	 in	space,	produced	by	 the	presence	of	q.

Something	is	different	at	r	when	q	is	around,	compared	to	when	it	isn’t:	with
q	present,	any	charge	placed	at	r	will	feel	a	force,	while	without	it,	it	will	just
sit	there.
A	 field	 is	 a	 force	waiting	 to	happen:	 just	put	 a	 test	 charge	 there	 and	you

will	see	it	in	action.	The	field	of	a	charge	is	felt	only	by	other	charges.
If	there	are	many	charges,	we	invoke	the	superposition	principle:	the	field

at	some	r	due	 to	many	charges	will	be	 the	(vector)	sum	of	 the	fields	due	 to
each	one.	You	have	to	perform	this	possibly	very	complicated	vector	sum	to
calculate	the	field	there.	To	measure	it	is	easier:	put	a	known	test	charge	q	at
r,	 equate	 the	 force	 it	 experiences	 to	 qE.	 If	 q	 =	 1	C,	 the	 force	 and	E	 are
numerically	equal	but	dimensionally	different.	This	is	why	one	says	the	field



is	the	force	on	a	unit	charge.
Let	 us	 get	 some	 practice	 by	 computing	E	 at	 the	 corner	 (a,a)	 of	 a	 square

with	 charges	q	 at	 the	other	 three	 corners	 (0,0),	 (a,0),	 and	 (0,a)	 as	 shown	 in
Figure	 2.1.	 Once	 you	 get	 this,	 you	 can	 add	 twists:	 make	 the	 square	 into	 a
rectangle,	make	the	charges	unequal	and	of	different	signs,	and	so	forth.

Figure	2.1			The	electric	fields	E1,	E2,	and	E3	at	(a,a)	in	terms	of	the	unit	vectors	i	and	j,	due	to	three
equal	charges	q	located	at	(0,a),	(0,0),	and	(a,0).	The	total	field	at	(a,a)	is	the	vector	sum	of	the	three
pieces.

The	figure	shows	separately	the	three	contributions	E1,	E2,	and	E3	at	(a,a)
due	to	three	equal	charges	q	located	at	(0,a),	(0,0),	and	(a,0):

I	hope	you	can	see	why	the	field	E2	is	half	as	big	as	the	other	two,	and	points
in	the	45◦	direction,	i.e.,	along	i	+	j.	The	corresponding	unit	vector	is	obtained
by	dividing	i	+	j	by	its	length,	√2.	It	is	easy	to	add	the	three	pieces	to	get	the
total	field	at	(a,a):

We	will	soon	be	doing	numerous	versions	of	this	problem,	computing	the
field	due	 to	various	charge	distributions,	discrete	and	continuous.	But	at	 the
outset	 I	 must	 warn	 you	 that	 Coulomb’s	 law,	 as	 stated,	 violates	 relativity.
Suppose	you	and	I	hold	 two	positive	charges	q1	and	q2,	and	I	am	one	light-
year	away	 from	you.	You	hold	your	charge	 in	place	by	pushing	against	 the



repulsive	force	mine	exerts.	Now	I	suddenly	move	mine	away	from	you	by	a
bit.	You	will	 feel	 the	reduced	repulsion	right	away.	I	have	managed	to	send
you	a	signal	instantaneously	and	this	faster-than-light	signaling	is	disallowed.
Does	 electrodynamics	 then	 violate	 relativity?	 No,	 we	 will	 see	 it	 is

remarkably	compatible	with	it.	What	happens	in	the	complete	theory	is	that	if
I	wiggle	my	 charge,	 the	 signal	will	 reach	 you	 a	 year	 later,	 traveling	 at	 the
speed	of	 light.	Until	 such	 time,	 the	 field	 at	 your	 location	due	 to	my	 charge
will	remain	unaltered.
Of	the	two	parts	of	the	story,	the	computation	of	E	in	terms	of	the	charges

and	the	response	of	a	test	charge	q	to	the	field,	only	the	former	gets	modified
in	the	complete	theory.	The	field	at	some	space-time	point,	say	(r	=	0,	t	=	0),
will	 receive	contributions	from	all	other	charges	based	not	on	what	 they	are
doing	now,	but	what	they	were	doing	at	an	earlier	time.	The	amount	by	which
we	have	 to	go	back	 in	 time	 is	 just	 the	 time	 light	would	 take	 to	go	 from	 the
source	of	the	field	to	(r	=	0,	t	=	0).	A	charge	that	was	a	light-year	away	a	year
ago	 will	 be	 contributing	 to	 the	 field	 at	 (0,0).	 This	 is	 called	 the	 retarded
interaction.	We	will	discuss	this	briefly	toward	the	end	of	chapter	15.
What	is	the	role	of	Coulomb’s	law	then?	In	principle	it	is	to	be	used	when

none	of	the	charges	is	moving.	In	this	case,	 the	delay	does	not	matter:	since
every	charge	knows	where	every	other	charge	is,	all	the	signals	have	arrived
and	 are	 unchanging.	 In	 practice	 we	 also	 use	 Coulomb’s	 law	 provided	 the
charges	 in	question	 are	near	 each	other	 and	moving	 at	 ,	 and	 retardation
effects	are	negligible,	as	in	most	electrical	circuits.
Remarkably,	the	second	part	of	the	story,	the	equation	giving	the	response

to	 the	 field,	 F	 =	 qE(r)	 remains	 unaltered	 in	 the	 final	 theory	 of
electrodynamics.	It	is	a	local	relation	between	the	field	at	a	space-time	point
and	 the	 charge	 at	 that	 point.	 The	 field	 at	 any	 point	 could	 be	 a	 very
complicated	 function	of	 every	 charge	 in	 the	history	of	 the	universe,	 but	 the
response	 (of	 test	 charge	 q)	 to	 it	 depends	 only	 on	 its	 current	 value	 at	 the
location	of	the	charge	q.	It	does	not	care	what	went	into	producing	E.	So	the
field	 concept	 is	 essential	 to	making	 electromagnetic	 theory	 compatible	with
relativity.

2.4			Visualizing	the	field
Let	us	go	back	now	to	the	simplest	problem	in	the	world:	the	electric	field	due
to	 one	 charge.	 The	 formula	 is	 very	 simple.	 Let’s	 put	 that	 charge	 q	 at	 the
origin.	The	electric	field	is



where	er	is	the	radial	unit	vector,	r/r.	Sometimes	you	see	Eqn.	2.18	rewritten
as

If	 you	 encounter	 this	 version,	 do	 not	 get	 fooled	 into	 thinking	 the	 field	 is
falling	as	r−3.	It’s	still	r−2	because	there’s	an	extra	r	at	the	top.
So	here	you	have	this	formula.	If	you’re	a	person	who	likes	to	work	with

formulas	this	is	all	you	need.	You	manipulate	the	stuff	on	paper,	and	you	add
different	 fields.	But	people	 like	 to	visualize	 this.	How	do	we	visualize	 this?
That’s	the	real	question.	Suppose	someone	asks	you,	what’s	the	height	above
sea	level	of	a	certain	part	of	the	United	States?	You’ve	got	some	mountains.
You’ve	got	some	valleys.	Somebody	can	give	you	a	function	that	gives	you
the	height	at	any	point	in	the	United	States,	but	it’s	more	revealing	for	most	of
us	to	have	some	kind	of	a	contour	map.	Each	contour	is	a	different	height.	If
you	go	hiking,	you	want	this	map,	not	the	corresponding	function.	Similarly,
you	 want	 a	 pictorial	 representation	 of	 this	 electric	 field.	 Unlike	 the	 height
function,	which	is	a	scalar,	i.e.,	just	a	number	at	each	point,	the	electric	field
is	a	vector	E(r)	at	each	point	r.
Suppose	 I	 want	 to	 communicate	 to	 you	 pictorially	 the	 information

contained	 in	 the	 function	 in	 Eqn.	 2.18.	 I	 begin	 with	 the	 modest	 goal	 of
describing	E	at	just	one	point,	1,	in	Figure	2.2.
Like	 many	 of	 the	 figures	 I	 will	 show	 you,	 it	 is	 a	 two-dimensional	 cross

section	of	a	three-dimensional	configuration.
I	 take	that	point	and	draw	an	arrow	there	to	represent	E(1).	The	length	of

the	 arrow	gives	 the	 size	 of	 the	 field	 in	 some	 scale,	 so	many	 centimeters	 of
length	for	each	newton/coulomb	of	field.	That	is	the	electric	field	at	that	point
1.	Then	I	pick	a	few	points,	say	eight	in	all,	at	the	same	radius.	(The	points	lie
on	 a	 circle	 in	 the	 plane	 of	 the	 paper,	 while	 real	 charges	 live	 in	 three
dimensions.	You	should	think	of	this	as	a	cross	section	of	what	happens	on	a
sphere	of	the	same	radius.)	The	points	are	also	uniformly	distributed	to	reflect
the	isotropy	of	the	electric	field.	The	figure	is	already	telling	you	something:
the	field	is	radially	outward	and	same	in	magnitude	at	points	with	the	same	r.
Be	very	careful	about	what	 it	 is	not	 telling	you.	An	arrow	is	not	 telling	you
what	is	happening	throughout	the	length	of	the	arrow.	It’s	telling	you	what’s
happening	at	the	starting	point,	the	tail.	You	understand	the	arrow	is	in	your
mind.	It’s	not	really	sticking	out	in	space.	It’s	a	property	or	a	condition	at	that
starting	point,	but	we’ve	got	to	draw	it	somehow,	so	we	draw	it	that	way.	(If
E	were	 the	velocity	of	 a	 fluid	 in	 a	 river,	 the	 arrow	starting	at	 some	point	r
would	be	 the	 velocity	at	r	only,	 even	 if	 the	 arrow	 is	 a	 foot	 long	and	passes
over	regions	where	the	actual	water	velocity	is	totally	different	in	magnitude



and	direction.)

Figure	2.2			The	electric	fields	E,	at	a	few	representative	points	on	circles	of	two	different	radii	around	a
charge	at	the	origin.

What	happens	when	we	go	 further	out	 in	r?	 If	 I	put	 a	 test	 charge	 further
away,	it	is	still	going	to	be	repelled	radially,	but	less.	So	I	draw	a	few	arrows
at	representative	points	9–16	and	make	them	shorter,	to	reflect	the	1/r2	nature.
I	 can	 draw	 a	 few	more	 arrows	 and	 hope	 you	 get	 the	 picture	 from	 the	 few
discrete	sampling	points.
Then	someone	had	this	clever	 idea:	 join	all	 these	arrows	as	in	Figure	2.3.

These	are	called	field	lines.
The	actual	charge	and	lines	should	be	drawn	in	three	dimensions	but	Figure

2.3	 shows	 what	 happens	 in	 a	 representative	 plane,	 which	 I	 assume	 for
illustrative	 purposes	 has	 8	 lines.	What	 have	 I	 gained	 and	what	 have	 I	 lost?
Previously	I	knew	the	field	direction	only	at	the	chosen	points	at	some	radii,
but	 now	 I	 know	 it	 throughout	 each	 line.	 On	 the	 other	 hand,	 I	 have	 lost
information	on	the	magnitude	of	the	field:	the	arrows,	whose	lengths	encoded
|E|	are	gone	and	replaced	by	 the	field	 lines	 that	go	on	forever.	They	merely
tell	me	 in	which	direction	E	points,	but	not	how	big	 it	 is.	They	 just	 tell	me
that	the	charge	is	pushing	every	(positive)	test	charge	out	radially	and	that	the
force	is	isotropic.



Figure	2.3			The	electric	field	lines	due	to	a	charge	at	the	origin.	The	actual	charge	and	lines	live	in	three
dimensions,	and	the	figure	shows	what	happens	in	a	representative	plane,	which	I	assume	has	8	lines.

But,	thanks	to	a	miraculous	property	of	the	Coulomb	force,	namely	that	it
falls	 like	1/r2,	 there	 is	 information	even	on	 the	strength	of	 the	electric	 field.
That	information	is	contained	in	the	density	of	electric	field	lines.	By	density
of	 lines,	 I	mean	 the	number	of	 lines	crossing	a	 surface	perpendicular	 to	 the
lines,	divided	by	the	area	of	that	surface.
To	 grasp	 this,	 let	 us	 pick	 some	 convention,	 that	 for	 every	 coulomb	 of

charge,	we	will	draw	a	certain	number	of	lines	emanating	from	it,	say	64.	If
we	draw	a	sphere	of	some	radius	surrounding	the	coulomb,	64	lines	will	cross
that	sphere,	everywhere	perpendicular	 to	 the	surface	and	of	uniform	density,
reflecting	the	isotropy	of	the	electric	field	of	a	point	charge.	If	I	draw	a	bigger
sphere,	 the	 same	 64	 lines	 will	 cross	 that	 sphere	 also,	 but	 they	 will	 be	 less
dense,	with	fewer	lines	per	unit	area.	Since	the	area	of	the	sphere	grows	as	r2,
the	density	of	lines	will	fall	as	1/r2.	This	is	exactly	how	the	field	strength	|E|	≡
E	falls	with	distance.
This	wonderful	ability	of	field	lines	to	encode	the	magnitude	and	direction

of	the	field	exists	only	because	we	are	living	in	three	dimensions	(where	the
sphere	surrounding	the	charge	has	an	area	that	grows	as	r2)	and	dealing	with	a
field	 that	 falls	 as	 1/r2.	 For	 example,	 if	 a	 radial	 field	 that	 falls	 as	 1/r3	 is
represented	by	such	lines,	their	direction	will	faithfully	represent	the	direction
of	the	field,	but	their	density	will	not	represent	the	field	strength	E.
The	 lines	 help	 you	 visualize	 the	 field	 strength.	 Wherever	 the	 lines	 are

dense,	 the	 field	 is	 strong.	Wherever	 the	 lines	 are	 spread	 apart,	 the	 field	 is
weak.	It	is	a	very	precise	statement.	The	only	thing	not	precise	is	how	many
lines	you	want	to	draw	per	coulomb.	That	is	really	up	to	you,	but	you	must	be
consistent.	Once	you	choose	64	lines	per	coulomb,	and	you	are	dealing	with	a
charge	 of	 two	 coulombs,	 you	 should	 draw	 128	 lines	 coming	 out	 of	 it
uniformly	spread	out.	As	long	as	you	do	that,	the	number	of	lines	crossing	per



unit	area	will	be	proportional	to	the	field.
Now,	no	matter	how	many	lines	you	pick	per	coulomb,	there	will	be	spaces

between	the	lines.	That	does	not	mean	the	field	is	zero	between	the	lines.	The
field	is	continuous	in	space	and	not	concentrated	literally	on	these	lines.	You
must	 read	 between	 the	 lines.	 For	 example,	 at	 a	 point	midway	 between	 two
adjacent	lines,	the	field	is	pointing	midway	as	well,	with	an	intensity	given	by
the	density	of	the	lines	at	that	radius.

Figure	2.4			The	electric	field	due	to	a	dipole.	The	two	vectors	shown	at	point	D	are	the	contributions
E+	and	E−	to	E	from	the	two	charges.	Their	vector	sum	will	be	horizontal.

Clearly,	 if	we	consider	 the	 field	of	a	negative	charge,	 the	 lines	will	point
inward,	reflecting	the	attraction	felt	by	the	test	charge.
The	notion	of	 field	 lines	extends	beyond	 the	 field	due	 to	 just	one	charge.

Figure	2.4	 shows	 the	 field	due	 to	a	pair	of	charges	±q,	 called	a	dipole.	The
first	thing	I	want	you	to	notice	is	that	very	close	to	any	one	charge	the	lines
point	uniformly	and	 radially	out	or	 in	depending	on	 its	 sign,	no	matter	how
many	other	charges	there	are.	This	is	because	as	we	approach	any	charge,	the
field	it	produces	diverges	as	1/r2	and	swamps	the	finite	contributions	from	the
others.
Next	 consider	 the	 field	 lines	 labeled	A,	B,	C	 and	D.	Look	at	 line	A.	 It	 is

clear	that	a	(positive)	test	charge	placed	anywhere	on	A	(which	goes	from	the
minus	charge	all	 the	way	to	infinity)	would	be	attracted	to	the	minus	end	of
the	 dipole,	 which	 attracts	 it	 more	 than	 the	 plus	 end	 repels	 it.	 The	 reverse
argument	explains	the	outward	pointing	line	B,	on	which	repulsion	wins.	On
the	line	C,	pointing	from	the	plus	to	the	minus,	both	charges	apply	a	force	to
the	right.	Finally,	look	at	the	line	labeled	D.	It	contains	the	point	D,	which	lies



on	the	perpendicular	bisector	of	 the	 line	 joining	 the	 two	charges.	Notice	 the
field	 line	 at	D	 is	 horizontal.	 This	 directionality	 follows	 from	 a	 symmetry
argument.	The	minus	charge	attracts	the	test	charge	on	a	line	from	D	to	itself;
the	plus	charge	repels	it	along	a	line	joining	it	to	D.	Both	forces	have	the	same
magnitude	(since	D	is	equidistant	from	them),	canceling	vertical	components,
and	additive	horizontal	components.
The	 figure	 also	makes	 it	 clear	 that	any	 closed	 surface	 enclosing	only	 the

plus	 (minus)	 charge	 will	 intercept	 10	 lines	 going	 outward	 (inward).	 If	 we
draw	any	surface	enclosing	both	charges,	the	net	flow	in	or	out	will	be	zero.
This	 is	 your	 qualitative	 introduction	 to	Gauss’s	 law,	 which	 relates	 the	 net
(outgoing	minus	incoming)	number	of	lines	leaving	a	closed	surface	to	the	net
enclosed	 charge.	 (If	 the	 surface	 is	 convoluted	 a	 field	 line	may	exit,	 reenter,
and	exit	again	for	example.	This	will	count	as	a	net	exit	of	one	line.)
Figure	2.5	shows	two	identical	positive	charges.	Far	from	both,	it	will	look

like	 the	 field	of	 a	 point	 charge	of	 double	 the	 strength.	The	number	of	 lines
crossing	 a	 closed	 surface	 enclosing	 both	 charges	 is	 the	 sum	 of	 the	 lines
emanating	from	each.	The	closed	surface	I	have	shown	is	a	nice	ellipse,	but
the	 lines	 crossing	 it	will	 not	 change	 if	 I	 distort	 it	 in	 any	way	 that	 does	 not
exclude	either	charge	(once	again	an	example	of	Gauss’s	law).

Figure	2.5			The	electric	field	due	to	two	positive	charges.	Far	from	both,	it	looks	like	the	field	of	a	point
charge	of	double	the	strength.	The	number	of	lines	crossing	a	closed	surface	enclosing	both	charges	is
the	sum	of	the	lines	emanating	from	both.

What	if	we	had	two	opposite	but	unequal	charges,	say	10	C	and	−	5C,	and
associate	10	and	5	lines	with	each?	You	can	draw	the	sketch	yourself	with	the



following	 features:	 near	 each	 charge	 you	 can	 forget	 the	 other,	 5	 lines	 will
flow	from	the	10	C	to	the	−	5	C,	and	the	rest	will	escape	to	infinity,	becoming
radially	outward	asymptotically,	like	those	of	a	point	charge	10	C	−	5C	=	5	C.
Consider	 finally	 a	 case	 of	 a	 continuous	 charge	 distribution.	 Two	 parallel

metallic	plates	carry	uniform	charge	densities	±σ	(measured	in	C/m2).	This	is
called	a	parallel	plate	capacitor	and	is	depicted	in	the	top	half	of	Figure	2.6.
At	the	left	is	the	view	looking	down	at	an	angle	and	at	the	right	the	view	end-
on,	with	the	plates	coming	out	of	the	paper.	What	do	the	field	lines	look	like?
We	 know	 they	 must	 start	 at	 the	 positive	 charges	 and	 end	 at	 the	 negative
charges.	The	bottom	half	shows	the	deflection	of	a	positively	charged	particle
injected	from	the	left	with	velocity	v0.
If	you	imagine	the	plates	to	be	very	large	in	area,	the	figure	shows	the	part

far	from	the	edges.	(At	the	edges	the	lines	bulge	out	a	bit	midway	between	the
top	 to	 the	bottom	plate.)	You	 should	not	 simply	 accept	 even	 the	qualitative
aspects	 of	 the	 preceding	 picture.	 Look	 very	 near	 the	 positive	 plate.	 In	 the
absence	 of	 the	 negative	 plate,	 the	 field	 lines	 will	 be	 emanating
perpendicularly	 away	 from	 it	 with	 equal	 density	 above	 and	 below	 by
symmetry.	The	 same	goes	 for	 the	negative	plate,	 but	with	 the	 lines	 flowing
into	 it.	 If	you	superpose	 the	 two	plates,	you	can	see	 the	 two	plates	aid	each
other	 in	 the	 region	between,	with	 both	 producing	downward	pointing	 fields
there,	 just	 like	 along	 the	 line	 joining	 the	 charges	 in	 a	 dipole.	 But,	 if	 you
follow	 the	dipole	analogy,	and	consider	points	 just	above	 the	 top	plate,	you
expect	 the	 fields	 from	 the	 two	 plates	 to	 oppose,	 but	 with	 the	 upper	 plate
winning	since	it	 is	closer.	So	some	lines	must	point	up	just	above	the	upper
plate.	Yet	the	figure	shows	no	lines	above	the	upper	plate	and	has	all	the	lines
coming	straight	down,	as	if	there	is	a	perfect	cancellation	of	the	fields	due	to
the	 two	 plates,	 despite	 the	 different	 separations.	 The	 same	 goes	 below	 the
lower	plate,	where	there	are	no	field	lines.	The	answer	to	this	mystery	will	be
revealed	when	we	compute	the	field	due	to	each	plate	later	and	find	that	the
field	due	to	an	infinite	plate	of	uniform	density	does	not	weaken	at	all	as	we
move	away	from	the	plate!	It	is	perpendicular	to	the	plate,	and	it	has	the	same
magnitude	no	matter	 how	 far	we	go,	even	 though	 the	 contribution	 from	 the
individual	 charges	on	 the	plate	 fall	 as	 1/r2.	Consequently,	 the	plates	 cancel
each	other	completely	outside	 the	plates	 (above	 the	 top	plate	and	below	 the
bottom	 plate)	 and	 aid	 each	 other	 inside.	 So,	 the	 figure	 is	 correct	 only	 if	 it
represents	a	finite	section	of	an	infinite	parallel	plate	capacitor,	or	far	from	the
edges	 of	 a	 very	 large	 capacitor.	 The	 real	 finite	 plate	 problem	 is	 far	 more
complicated:	doable	in	principle,	but	not	easy.



Figure	2.6			The	top	half	shows	two	views	of	a	parallel	plate	capacitor	and	the	field	inside	it.	It	is
uniform	except	near	the	edges,	where	it	bulges	out	(not	shown).	The	bottom	shows	the	trajectory	of	a
positively	charged	particle	shot	into	it	from	the	left.

Given	 that	 the	 field	 is	 limited	 to	 the	 space	 between	 the	 plates,	 questions
still	 persist.	 Why	 is	 the	 field	 uniform	 between	 the	 plates	 in	 the	 infinite
capacitor,	unchanging	as	we	move	up	and	down	or	side	to	side?
First	of	all,	it	must	be	clear	that	in	the	infinite	capacitor,	the	field	at	a	given

plane	 parallel	 to	 the	 plates,	 say	 at	 a	 height	 y	 =	 2	 cm	 above	 the	 lower	 one,
cannot	vary	 as	we	move	parallel	 to	 the	plates,	 say	 in	 the	x-direction.	Every
point	at	some	y	is	like	every	other	point:	if	we	look	to	the	left	or	right,	from
any	of	these	points,	we	see	the	two	plates	running	to	±∞.
Here	is	a	more	detailed	argument,	based	on	cause	and	effect.	Suppose	the

field	 varies	 with	 the	 x	 coordinate,	 i.e.,	 has	 a	 non-trivial	 profile	 with	 some
features,	some	ups	and	downs	in	strength.	If	I	slide	the	plates	to	the	right	by	2
cm,	 these	 features	 should	 follow.	 On	 the	 other	 hand,	 I	 can	 argue	 that	 they
should	not	shift	since	the	cause	behind	the	field,	namely	the	infinite,	charged
plates,	look	exactly	the	same	before	and	after	I	slide	them.	If	the	plates	look
the	same	after	a	horizontal	shift,	so	must	the	field	they	produce.
Had	 the	 plates	 been	 finite,	 this	 would	 no	 longer	 have	 been	 true.	 There

would	have	been	a	preferred	midpoint	and	edges	where	the	plates	end.	If	you
move	this	finite	system	horizontally,	 it	will	 look	different	after	 the	shift	and
so	 the	 field	 need	 not	 be	x-independent.	 Indeed,	 it	 is	 not,	with	 bulges	 at	 the
end.
So	 the	 field	 is	 constant	 in	 x.	 Why	 is	 the	 field	 independent	 of	 the	 y

coordinate	as	well?	After	all,	the	y	dimension	is	finite	and	as	a	result	not	all
y’s	are	equivalent.	We	can	tell	if	we	are	moving	toward	or	away	from	either
plate.	Well,	suppose	the	field	got	weaker	as	we	approached	the	middle.	The
lines	must	spread	out,	i.e.,	the	spacing	between	them	must	increase.	But	this	is
impossible	in	the	infinite	case:	if	you	move	a	line,	say	second	from	the	left	in
Figure	2.6,	away	from	its	neighbor	on	the	left,	to	weaken	the	field	to	the	left,
you	move	it	closer	to	the	neighbor	on	the	right,	increasing	the	field	between
them.	Such	variations	with	x	are	not	allowed	in	 the	 infinite	capacitor,	as	we



have	 seen.	 So	 the	 lines	 have	 no	 choice	 but	 to	 go	 straight	 down,	 preserving
their	 density	 as	 y	 varies.	 Again,	 variation	 in	 x	 and	 y	 is	 allowed	 in	 a	 finite
capacitor:	the	lines	do	get	less	dense	as	we	move	toward	the	center,	and	they
bulge	out	at	the	two	ends.
In	 any	 event,	 if	 the	 field	 is	 uniform,	 the	 force	will	 be	 uniform,	 just	 like

force	 of	 gravity	 near	 the	 surface	 of	 the	 earth.	Consequently	 the	 particle	we
shoot	 in	 from	 the	 left	will	 follow	a	parabolic	path,	 as	depicted	 in	 the	 lower
half	of	the	figure.	More	on	this	later.

2.5			Field	of	a	dipole
We	will	now	buckle	down	and	calculate	the	precise	value	of	the	electric	field
due	to	a	dipole.	We	will	write	a	formula	that	is	good	at	all	points,	but	evaluate
it	only	at	some	select	places	where	the	calculation	is	easier.	We	will	examine
the	field	at	distances	large	compared	to	the	separation	between	the	charges.	In
a	 later	 chapter	we	will	 find	a	more	 efficient	way	 to	 find	 the	 field	using	 the
notion	of	a	potential.
Figure	2.7	shows	a	charge	q	at	(a,0)	and	a	charge	−	q	at	(−a,0).	Consider

the	field	at	a	generic	point	(x,	y).	(Once	we	have	the	field	in	the	xy-plane,	we
can	 simply	 rotate	 the	 figure	 around	 the	 x-axis	 to	 get	 the	 answer	 in	 three
dimensions.	 In	other	words,	 the	cross	 section	on	 the	xy-plane	 is	 identical	 to
what	we	will	find	in	any	other	planar	slice	through	the	x-axis.	This	point	will
be	fortified	soon	with	symmetry	arguments.)

Figure	2.7			Dipole	field:	E±	are	due	to	±q	located	at	(±a,0).

Recall	that	the	field	at	the	point	r	due	to	a	single	charge	q	at	the	origin	is

If	 the	 charge	 were	 not	 at	 the	 origin	 (as	 in	 the	 application	 that	 follows
immediately),	r	would	be	 the	vector	 from	where	 the	 charge	 is	 to	where	we
want	the	field.
The	field	due	to	both	±q	at	a	generic	point	(x,	y)	is	the	sum	of	the	individual

contributions	E±.	These	in	turn	can	be	evaluated	by	setting	r	=	r±	in	Eqn.	2.20



and	adding	them	as	follows:

This	general	 formula	may	be	 a	bit	 hard	 to	digest.	Here	 are	 some	 simpler
special	cases.
At	a	generic	point	on	the	x-axis	(y	=	0)	both	E±	are	horizontal	and

(Remember	 that	 limy→0 =	 |x±a|3	 and	 not	 [x±a]3.)	 For	 a	 point
like	A	with	x	>	a,	we	can	drop	the	absolute	value	sign	and	obtain

is	called	 the	dipole	moment.	The	dipole	moment	 is	 the	product	of	q	and	 the
vector	2ai	going	from	the	negative	to	the	positive	charge.
For	x a,	the	field	becomes

because	r,	 the	radial	distance	from	the	center	of	the	dipole	to	(x,	y)	equals	x
when	y	=	0.
For	a	point	on	the	axis	like	E	with	x	<	−	a	you	should	go	back	to	Eqn.	2.24

and	verify	that	 the	field	is	 invariant	under	x	→	−x	and	also	points	along	the
positive	x-axis.
On	the	y-axis,	at	a	point	D	with	coordinates	(0,	y),	I	leave	it	to	you	to	show



that

For	y a,	the	field	becomes

These	results	with	E	∝	p,	when	x	→	∞	or	y	→	∞	are	to	be	expected.	If	we
set	a	=	0	in	Eqn.	2.23	for	the	sum	of	E±,	we	get	E	≡	0	as	we	must:	the	two
charges	sit	on	top	of	each	other	and	fully	neutralize	each	other.	The	total	E	as
a	function	of	a	vanishes	when	a	=	0.	The	net	field	is	non-zero	only	because	a
≠	 0	 and	 the	 non-zero	 part	will	 start	 out	 as	 the	 first	 power	 of	a	 in	 a	Taylor
series	(Chapter	16,	Volume	I).	To	keep	the	dimension	of	the	field	E	the	same,
the	 extra	a	must	 really	be	 ,	which	 is	what	we	 find	 in	Eqns.	 2.29	 and	2.31
since	p	=	2aqi	is	proportional	to	a.
Recall	 that	 the	 field	 of	 a	 single	 charge,	 which	 looks	 like	 a	 hedgehog,	 is

isotropic.	 If	 I	 rigidly	 rotate	 the	 distribution	 of	 field	 lines	 around	 any	 axis
passing	through	the	origin	at	any	angle,	they	look	the	same.	We	may	demand
this	 on	 the	 basis	 of	 the	 following	 symmetry	 argument.	You	must	 agree	 the
charge	is	the	cause	and	the	field	is	the	effect.	The	effect	cannot	change	if	the
cause	does	 not.	Rotating	 around	 the	origin	 leaves	 the	 point	 charge	 alone:	 it
stays	where	it	is	and,	being	a	point,	looks	the	same	as	well	after	the	rotation.	It
follows	that	the	resulting	field	distribution	must	be	unaffected	by	rotation.
On	the	other	hand,	even	if	the	dipole	looks	like	a	point	as	we	go	far	away,

E	is	not	isotropic.	The	field	knows	that	the	dipole	near	the	origin	has	chosen	a
direction	 in	 space,	 defined	 by	p,	 unlike	 a	 single	 charge,	which	 does	 not	 do
that.	A	 generic	 rotation	 around	 an	 arbitrary	 axis	 passing	 through	 the	 origin
will	change	the	orientation	of	the	dipole	(the	cause),	and	the	field	(the	effect)
will	change	accordingly.	On	the	other	hand,	a	rotation	around	the	axis	of	the
dipole	 will	 leave	 it	 alone	 and	 the	 E	 configuration	 it	 produces	 should	 be
unaffected	by	such	a	rotation.	This	is	why	we	were	satisfied	with	finding	E	in
the	xy-plane.	The	answer	in	any	other	plane	may	be	found	by	a	rigid	rotation
around	the	x-axis.

2.5.1			Far	field	of	dipole:	general	case
Far	from	the	dipole,	the	general	formula	Eqn.	2.23	simplifies,	though	it	takes
some	 more	 work	 to	 extract	 the	 part	 linear	 in	 a.	 Following	 the	 details	 will
enhance	your	mathematical	prowess	if	you	suffer	through	them.	Let	us	begin
with	the	exact	result



The	answer	is	some	function	of	a	(and	of	course	x	and	y),	which	vanishes	at
a	 =	 0.	 Near	 this	 zero,	 the	 function	 will	 have	 a	 Taylor	 expansion	 in	 a.	 By
dimensional	analysis,	the	series	has	to	be	in	a	divided	by	a	length	and	the	only
possible	 candidate	 is	 r,	 the	 distance	 from	 the	 center	 of	 the	 dipole.	We	 are
content	to	find	just	the	first	correction	to	zero.	It	will	be	proportional	to	a	or,
equally	well,	the	dipole	moment	p	=	2aqi.
Eqn.	2.32	has	two	parts,	each	with	a	numerator	divided	by	the	denominator,

or	the	numerator	times	the	inverse	denominator.	We	can	get	the	single	power
of	a	 from	either	 term	and	 the	a0	 term	from	the	other.	 If	we	get	a1	 from	the
numerator	we	may	set	a	=	0	in	the	denominator	and	vice	versa.
Consider	the	contribution	from	the	positive	charge

Here	is	some	explanation.	In	the	last	line,	the	first	term	comes	from	keeping
the	a0	term,	namely	r,	in	the	numerator	and	keeping	up	to	linear	terms	in	the
denominator	 (and	hence	 dropping	 the	a2	 in	 the	 expansion	of	 [x	 −	a]2).	The
second	term	comes	from	keeping	the	a	term	in	the	numerator	and	setting	a	=	0
in	the	denominator.	The	terms	kept	are	then

The	E−	terms	are	obtained	by	changing	q	→	−	q,	a	→	−	a:

to	give	a	total	of

E	(to	order	a)



where	I	have	invoked	p	=	2aqi,	p	·	r	=	2axq,	and	applied	(1	+	z)n	=	1+nz	+	.	.	.
,	to	obtain

2.6			Response	to	a	field
Having	seen	how	to	find	the	field	in	a	variety	of	situations	using	Coulomb’s
law,	 let	us	now	consider	 the	 response	of	 charges	 to	 the	 field	using	F	=	qE,
starting	with	 the	 parallel	 plate	 capacitor	with	 a	 uniform	 field	E	 =	 −	 jE0	 in
between	 the	plates,	 as	 indicated	 in	Figure	2.6.	Suppose	 I	 shoot	a	particle	of
mass	 m	 and	 charge	 q	 from	 the	 left,	 with	 a	 velocity	 v0.	 What	 will	 be	 its
position	and	velocity	as	it	exits	the	plates?
The	 force	 on	 the	 charge	 is	 a	 constant,	F	 =	 −	qE0j,	 just	 like	 the	 force	 of

gravity,	which	will	produce	an	acceleration

The	particle	will	follow	a	parabolic	path	given	by



To	compute	its	y	coordinate	when	it	exits	the	capacitor,	we	need	to	know	for
how	long	it	“falls”	at	the	rate	above.	That	time	is	clearly	t*	=	L/v0	where	L	is
the	width	of	 the	capacitor.	 (Even	 though	 the	capacitor	 is	of	 finite	width,	we
use	the	constant	E	field	of	the	infinite	capacitor	as	a	simplification.)	As	in	the
case	of	gravity,	the	time	to	go	a	certain	distance	horizontally	is	determined	by
the	 initial	 horizontal	 velocity	 and	 is	 unaffected	 by	 the	 acceleration	 in	 the
vertical	direction.	So	if	you	set	 t	=	 t*	in	r(t),	you	will	find	out	where	it	will
end	up.
Here	is	one	way	in	principle	to	make	pictures	on	television:	shoot	electrons

from	 the	 left	 into	 the	 region	 between	 two	 pairs	 of	 plates,	 one	 as	 shown
(perpendicular	 to	 the	 page)	 and	 another	 pair	 parallel	 to	 the	 page,	 with	 one
member	of	the	pair	above	and	one	below	the	page.	This	will	cause	motion	up
and	down	and	also	 in	and	out	of	 the	page.	Place	a	 fluorescent	 screen	at	 the
right,	 perpendicular	 to	 the	 beam.	 If	 you	 apply	 the	 right	 electric	 field,	 the
electron	will	land	on	the	screen	and	make	a	little	glowing	dot	just	where	you
want	it.	By	scanning	the	screen	many	times	a	second,	and	by	varying	the	field
appropriately	 and	 modulating	 the	 intensity	 of	 the	 beam,	 you	 create	 the
impression	of	a	steady	picture.	(Actually,	magnetic	fields	were	used	to	deflect
electrons	in	old	cathode	ray	tubes.)

Figure	2.8			The	forces	and	torque	τ	on	a	dipole	p	due	to	a	uniform	horizontal	field	E.	The	torque,
computed	with	respect	to	the	negative	charge,	has	a	magnitude	τ	=	2aqEsinθ	and	tends	to	align	it	with
the	applied	field.	The	vector	τ	=	p	×	E	vanishes	only	when	p	and	E	are	parallel	or	anti-parallel.

2.6.1			Dipole	in	a	uniform	field
What	is	the	force	of	a	uniform	electric	field	on	a	dipole?	Figure	2.8	shows	a
dipole	made	of	charges	±q	a	distance	2a	apart	in	a	horizontal	uniform	electric
field.	 It	 is	 assumed	 the	 charges	 are	 mounted	 at	 the	 ends	 of	 some	 rigid



structure,	 like	a	 rod.	The	 force	on	 the	 two	charges	 is	±qE	 as	 shown.	So	 the
dipole	as	a	whole	will	not	feel	any	net	force,	because	the	two	parts	are	getting
pulled	by	opposite	amounts.	(If	the	electric	field	were	not	uniform,	say	it	were
stronger	 at	 the	 plus	 charge,	 the	 dipole	 would	 accelerate	 to	 the	 right.)	 The
forces,	which	add	up	to	nothing,	collaborate	in	producing	a	torque.	I	hope	you
can	 see	 that	 the	 torque	wants	 to	 align	 the	 dipole	with	 the	 field.	Recall	 that
when	 the	 total	 force	 vanishes,	 the	 torque	may	 be	 computed	with	 respect	 to
any	point.	Choosing	 it	 to	be	 the	 location	of	−	q,	we	find	 it	has	a	magnitude
(see	Figure	2.8)

which	turns	clockwise.	As	a	vector,	the	torque	is	given	by	the	cross	product

which	points	 into	 the	 page.	 If	 you	mount	 this	 dipole	 so	 it	 can	 swing	 in	 the
plane	 of	 the	 paper,	 you	 could	 use	 it	 as	 an	 “electrical	 compass,”	which	will
point	along	the	local	electric	field.	(We	assume	the	rod	supporting	the	charges
at	 its	 ends	 has	 a	 non-zero	 moment	 of	 inertia	 I	 and	 the	 support	 has	 some
friction,	so	that	if	it	started	out	non-parallel	to	E,	it	will	quickly	align	with	E
after	some	damped	oscillations.)
The	 torque	 also	 vanishes	when	 the	 dipole	 is	 anti-parallel	 to	E.	 This	 is	 a

state	of	unstable	equilibrium:	if	disturbed,	it	will	not	return	there	but	end	up
parallel	to	E.	We	can	understand	this	in	term	of	energy.
Recall	 that	a	conservative	force	F(x)	and	the	associated	potential	U(x)	are

related	as	follows:

Next	 recall	 the	 SAT	 analogy:	 “Torque	 is	 to	 force	 as	 angle	 is	 to
displacement.”	The	torque	here	is	τ	=	−	pEsinθ,	where	the	minus	sign	reflects
its	 tendency	 to	 rotate	 the	dipole	clockwise,	 in	 the	direction	of	decreasing	θ.
So	we	may	now	write



In	going	from	Eqn.	2.52	to	2.53	we	have	dropped	a	possible	additive	constant
in	U(θ).
You	see	in	Figure	2.9	that	U(θ)	is	an	inverted	cosine	with	a	minimum	at	θ	=

0,	which	is	a	point	of	stable	equilibrium,	and	a	maximum	at	θ	=	π,	which	is	a
point	 of	 unstable	 equilibrium.	 The	 points	 ±π	 are	 one	 and	 the	 same.	When
perturbed	about	θ	=	0,	 the	dipole	will	execute	simple	harmonic	motion.	For
small	 angles,	 κ,	 the	 restoring	 torque	 per	 angular	 displacement,	 and	ω,	 the
frequency	of	oscillations,	will	be	(in	terms	of	the	moment	of	inertia	I)

Figure	2.9			The	potential	energy	of	a	dipole,	U	=	−	pEcosθ	as	a	function	of	the	angle	θ	it	makes	with	a
field.



CHAPTER	3

Gauss’s	Law	I

In	the	last	chapter	we	learned	that	we	should	think	in	terms	of	electric	fields
and	not	direct	 action-at-a-distance	between	charges	according	 to	Coulomb’s
law.	 In	 this	 parlance,	we	 say	 charges	produce	 fields	 as	 per	Coulomb’s	 law,
and	the	fields	in	turn	act	on	charges	as	per	F	=	qE.
The	field	E(r)	is	a	condition	at	a	point	r,	even	if	there	is	no	charge	at	that

point.	This	condition	is	revealed	when	we	place	a	test	charge	q	there	and	find
a	 force	qE(r)	 acting	on	 it.	The	 field	due	 to	many	charges	 is	 the	 sum	of	 the
fields	due	to	each.
Strictly	speaking,	Coulomb’s	law	is	to	be	applied	only	in	a	static	situation

when	 the	 charges	 do	 not	 move,	 though	 we	 do	 apply	 it	 in	 some	 situations
where	they	move	slowly	compared	to	c,	as	in	circuits.	In	this	chapter,	we	will
assume	a	static	distribution	of	charges	and	apply	Coulomb’s	law.
We	saw	how	field	 lines	can	depict	 the	state	of	 the	electric	 field:	 the	 lines

point	 along	 the	 local	 field,	 and	 their	 areal	 density	 (lines	 per	 unit	 area
perpendicular	 to	 the	 lines)	 is	 proportional	 to	 the	 field	magnitude.	We	could
use	any	number	of	 lines	per	coulomb,	but	once	we	agreed	on	a	convention,
say	64	lines	per	coulomb,	we	had	to	stick	to	it.	We	looked	at	the	field	lines	of
a	dipole	as	well	as	that	of	two	equal	charges.
We	considered	the	dipole	field	quantitatively.	The	answer	was	expressed	in

terms	of	p	=	q(r+	−	r−),	the	dipole	moment	of	charges	±q	located	at	r±.
We	found	a	general	expression	for	the	field	due	to	a	dipole.	We	evaluated	it

exactly	along	the	dipolar	axis	and	perpendicular	to	the	dipolar	axis.	As	for	a
general	direction,	we	considered	the	field	only	for	distances	r a,	the	distance
between	the	charges.	The	main	point	was	 that	 the	 leading	 term	for	E	 fell	as
1/r3.
We	studied	how	charges	responded	to	a	field.	We	saw	what	happened	to	a

charge	shot	into	the	space	between	plates	of	a	capacitor,	where	the	field	was
assumed	to	be	uniform	and	perpendicular	to	the	plates.	Finally,	we	saw	that	a
dipole	moment	in	a	field	experiences	a	torque,	p	×	E,	which	tries	to	line	it	up
with	the	field.	With	that	torque	one	can	associate	a	potential	energy	U	=	−	p	·
E.

3.1			Field	of	an	infinite	line	charge
Here	is	a	standard	problem.	We	have	an	infinite	line	of	charge	parallel	to	the



x-axis,	 say	 a	 charged	 wire,	 of	 which	 a	 finite	 part	 is	 shown	 in	 Figure	 3.1.
Somebody	has	sprinkled	it	with	a	continuous	density	of	λ	coulombs	per	meter.
If	we	cut	out	one	meter	of	this	wire,	we	will	find	λ	coulombs	there.	We	want
to	compute	the	electric	field	everywhere	due	to	this	charge	distribution	using
Coulomb’s	law.	(Let	us	assume	λ	is	positive;	if	it	is	negative,	we	just	have	to
reverse	the	field	everywhere.)
Consider	a	point	P	=	(0,a)	at	a	distance	a	from	the	wire.	What	can	we	say

about	the	field	there	without	doing	the	full	calculation?

Figure	3.1			The	field	due	to	an	infinite	line	charge	with	linear	charge	density	λ.	It	is	found	by	adding	the
contributions	from	tiny	segments	of	width	dx	treated	as	point	charges.	The	figure	shows	clearly	that	the
fields	dE1	and	dE2	due	to	segments	at	x	and	−x	have	the	same	y-components	and	opposite	x-
components.

First	of	all,	it	must	be	intuitively	clear	that	the	field	will	be	the	same	at	all
points	 at	 the	 distance	 a	 from	 the	 wire.	 Any	 x-dependence	 leads	 to	 the
following	contradiction.	Suppose	the	field	had	a	variation	in	the	x-direction.	If
I	 slide	 the	wire	 to	 the	 right	 by	 some	 amount,	 this	 pattern	will	 shift	 by	 that
amount	and	look	different.	On	the	other	hand,	since	the	wire	looks	the	same
before	and	after	the	shift,	so	must	the	field	it	produces.	If	the	cause	(the	wire)
looks	the	same	after	a	shift	in	x,	so	must	be	the	effect,	the	field	it	produces.
The	field	may,	however,	depend	on	y	and	it	does.
Next	we	may	argue	that	the	field	has	to	point	radially	away	from	the	wire;

it	 cannot	 be	 tilted	 to	 one	 side	 or	 the	 other	 since	 the	 infinite	 wire	 does	 not
distinguish	 right	 from	 left.	Here	 is	 another	way	 to	 say	 it.	 Suppose	 the	 field
were	tilted	to	the	right.	Now	rotate	the	wire	by	π	around	an	axis	perpendicular
to	 it	 (the	 y-axis	 in	 Figure	 3.1)	 and	 passing	 through	P.	 The	 field	 lines	 will
rotate	as	well	and	end	up	tilted	to	the	left.	But	the	rotated	wire	looks	the	same
as	the	unrotated	one	and	so	must	the	field	it	produces.	The	only	configuration
that	is	unaffected	by	this	rotation	is	a	field	that	is	everywhere	perpendicular	to
the	wire.
The	 argument	 fails	 if	 the	 wire	 is	 finite.	 A	 finite	 wire	 has	 some	 distinct

features	and	special	points	like	the	midpoint	and	end	points.	It	does	not	look
the	same	if	you	slide	it	parallel	to	itself	and	so	the	field	can	vary	with	x.	The
field	 lines	 may	 tilt	 toward	 the	 left	 end	 if	 the	 point	P	 is	 left	 of	 center	 and



likewise	to	the	right	for	points	to	the	right	of	center.	This	distribution	will	still
turn	into	itself	under	any	operation	that	leaves	the	wire	invariant,	such	as	the
above-mentioned	rotation	by	π	about	its	midpoint.
Returning	to	the	infinite	wire,	let	us	find	how	the	perpendicular	field	varies

with	a.
Look	 at	 Figure	 3.1.	 Let	 us	 take	 a	 segment	 of	 wire	 centered	 at	 x	 and	 of

length	dx,	which	is	so	small	that	we	can	treat	it	as	a	point	charge.	Now	the	dx
as	 drawn	 is	 not	 a	 point,	 but	 in	 the	 end,	 we’re	 going	 to	 make	 it	 arbitrarily
small.	 The	 segment	 is	 like	 a	 point-charge	q	 =	 λdx	 at	 a	 distance	 x	 from	 the
origin.	The	infinitesimal	electric	field	it	produces	at	P	has	a	magnitude

and	points	along	the	vector	joining	(x,0)	and	the	point	P.	We	need	only	keep
its	y	component	since	the	ultimate	x	component	has	to	be	zero,	either	by	our
earlier	 symmetry	 arguments	 or	 by	 the	 explicit	 consideration	 of	 the
contribution	from	the	similar	segment	at	−x.	Convince	yourself	by	looking	at
the	figure	that	when	the	two	contributions	are	added,	the	horizontal	parts	will
cancel	and	the	vertical	part	will	be	double	that	due	to	either	segment.	Let	us
therefore	double	 the	vertical	 contribution	 from	 the	 segment	on	 the	 right	but
remember	to	consider	only	x	≥	0.	Using

to	project	out	the	vertical	part,	we	find	the	total	vertical	field	by	integration:

What	next?	The	integral	can	be	done	by	a	clever	substitution.	What	if	that
trick	does	 not	 occur	 to	 us?	 It	 turns	 out	we	 can	go	quite	 far	 by	dimensional
analysis.	Let	us	express	the	coordinate	x	in	terms	of	a,	the	only	length	in	the
problem,	via	the	dimensionless	variable	w	as

Then	the	limits	for	the	integral	over	 	are	0	and	∞.	Since	dx	=	adw	we
have



Thus	we	have	the	answer	up	to	an	overall	multiplicative	constant	N,	which	is
independent	of	λ	and	a.	Even	before	we	evaluate	N	we	see	a	surprising	thing:
the	field	falls	like	1/a	and	not	1/a2,	even	though	each	piece	of	the	wire	makes
a	 contribution	 that	 falls	 like	 the	 inverse	 square	 of	 the	 distance.	 This	 is
surprising	but	also	inevitable	for	dimensional	reasons.	The	answer	now	had	to
be	proportional	 to	λ,	which	 is	 a	 charge	per	unit	 length	 and	not	 charge.	The
presence	of	the	prefactor	λ	robs	the	denominator	of	one	power	of	the	length,
leaving	behind	one	power	of	the	only	length	in	the	problem,	which	is	a.
This	argument	fails	if	the	wire	is	finite:	now	we	have	another	length	L,	the

length	of	the	wire,	which	can	bring	in	factors	like	L/a	(or	any	function	of	the
dimensionless	 variable	 L/a)	 without	 messing	 up	 the	 dimensionality	 of	 the
answer.	 Indeed,	 in	 this	 case	we	 expect,	 and	 find,	 that	 if	we	 go	 to	 distances
much	greater	than	L,	the	field	will	be	that	of	a	point	charge	λL.
Let	us	now	evaluate	N	by	making	the	substitution

(I	call	the	substitution	variable	θ	rather	than	some	other	Greek	letter,	because
in	 this	 case	 it	 is	 actually	 the	 θ	 in	 the	 figure:	w	 =	 tanθ	 means	 x	 =	 atanθ.)
Observe	that	the	change	of	variable	is	such	that	all	possible	values	of	w	can	be
obtained	by	some	choice	of	θ	because	tanθ	can	go	from	0	to	∞.	Had	we	made
the	substitution	w	=	cosθ,	we	could	never	obtain	w>	1	(or	x	>	a).
Continuing,	we	find



For	future	use	remember	that	the	field	due	to	an	infinite	linear	charge	density
at	a	distance	a	from	the	line	and	lying	in	the	xy-plane	has	a	magnitude

and	points	perpendicularly	away	from	the	wire.
While	Figure	3.1	is	two-dimensional,	the	wire	and	the	field	pattern	live	in

three	dimensions.	What	we	have	in	the	figure	is	a	slice	taken	through	the	xy-
plane.	 The	 full	 field	 configuration	 will	 be	 obtained	 by	 rigidly	 rotating	 the
configuration	 shown	 about	 the	 x-axis.	 We	 can	 slice	 that	 three-dimensional
configuration	 through	 any	plane	 passing	 through	 the	x-axis	 and	we	will	 get
the	 same	 two-dimensional	 configuration.	This	 is	 demanded	by	 symmetry	or
by	the	cause-effect	relationship.	If	I	rotate	the	wire	around	the	x-axis	by	some
angle,	it	looks	the	same.	Therefore	the	field	configuration	it	produces	should
also	 be	 invariant	 under	 that	 rotation.	 The	 field	 pattern	 in	 which	 the	 lines
radiate	uniformly	and	 radially	away	 from	 the	 line	 is	 the	unique	electrostatic
configuration	meeting	 this	 requirement.	 (The	 lines	 could	 also	 point	 radially
inward,	but	that	would	correspond	to	negative	λ	<0.)	The	end	view,	with	the
wire	running	perpendicular	to	the	page,	is	shown	in	Figure	3.2.



Figure	3.2			The	field	due	to	an	infinite	line	charge	seen	end-on,	with	the	wire	perpendicular	to	the	page.
The	wire	and	the	field	distribution	it	produces	are	invariant	under	a	rotation	of	the	wire	about	itself.

In	 three	 dimensions,	 it	 is	 common	 to	 denote	 the	 distance	 measured
perpendicular	to	the	wire	by	ρ	(and	not	a).	So	we	should	write

where	eρ	is	a	unit	vector	in	the	direction	perpendicular	to	the	wire.	(In	the	xy-
plane,	eρ	=	±j.)

3.2			Field	of	an	infinite	sheet	of	charge
Imagine	 an	 infinite	 plane	with	 an	 areal	 charge	 density	σ	 depicted	 in	 Figure
3.3.	This	means	that	if	you	cut	out	a	tiny	part	of	it,	of	area	dA,	it	will	have	a
charge	σdA.	(By	convention,	λ	stands	for	charge	per	unit	length,	σ	for	charge
per	unit	area,	and	ρ	for	charge	per	unit	volume.)	We	want	to	stand	at	a	point	P
a	distance	a	from	the	plane	and	ask	for	the	field	there.

Figure	3.3			The	field	due	to	an	infinite	plane	with	charge	density	σ.	Shown	is	one	contributing	annulus
of	radius	r	and	thickness	dr.	It	produces	a	field	dE	perpendicular	to	the	plane,	as	shown	by	the	long	dark
arrow.	There	is	no	parallel	part	due	to	cancellations	between	parts	of	the	annulus	that	are	diametrically
opposite.	Shown	are	two	such	contributions,	dE1	and	dE2,	due	to	the	two	darkened	parts	of	the	annulus.
The	sum	of	such	vectors	due	to	all	parts	of	the	annulus	is	dE.	The	integral	of	dE	over	all	annuli	will
give	the	final	E	due	to	the	entire	plane.

Once	 again,	 before	 jumping	 into	 the	 calculation,	 let	 us	 see	what	 features
follow	from	general	considerations.
I	think	we	can	agree	that	the	electric	field	at	some	point	a	meters	in	front	of

the	 plane	 will	 be	 independent	 of	 the	 other	 two	 coordinates	 parallel	 to	 the
plane.	Suppose	the	field	varied	as	we	moved	parallel	to	the	plane	at	fixed	a,



with	some	ups	and	downs	in	field	strength.	If	I	move	the	plane	to	the	right	by
one	 inch,	 the	pattern	 should	 follow.	But	 the	 shifted	plane	 looks	exactly	 like
the	 unshifted	 one.	 It	 has	 to	 produce	 exactly	 the	 same	 field,	 of	 the	 same
magnitude	 and	 direction.	 This	 can	 happen	 only	 if	 the	 field	 does	 not	 vary
under	displacements	parallel	to	the	plane.
As	 for	 the	 direction,	 it	 has	 to	 be	 perpendicular	 to	 the	 plane,	 again	 for

symmetry	 reasons.	 If	 you	 tilt	 it	 away	 from	 the	 perpendicular,	 which	 way
would	 you	 tilt	 it?	 The	 infinite	 plane	 defines	 no	 unique	 direction	 except	 the
one	 perpendicular	 to	 it.	 Suppose	 the	 field	 is	 tilted	 away	 from	 the
perpendicular	by	an	angle	of	30	degrees,	say	in	the	direction	of	dE1.	If	I	now
rotate	the	plane	around	an	axis	perpendicular	to	it	and	passing	through	P,	the
direction	 of	 the	 tilt	 will	 rotate	 as	 well	 (ending	 up	 parallel	 to	 dE2	 after	 a
rotation	by	π).	But	the	rotated	infinite	plane	looks	the	same	as	the	unrotated
one,	 and	 so	must	 be	 the	 field	 it	 produces.	The	 only	 field	 configuration	 that
meets	 this	 demand	 is	 the	 one	 where	 the	 field	 is	 everywhere	 normal	 to	 the
plane.
We	can	also	argue	from	symmetry	that	the	magnitudes	of	the	field	should

be	 the	 same	at	 two	points	 that	are	on	opposite	 sides	of	 the	plane	and	at	 the
same	distance	from	it.	If	the	charged	sheet	lies	in	the	xy-plane	we	require	that
E(z)	=	E(−z)	=	E(|z|).	The	charges	on	the	sheet	repel	a	test	charge	at	a	given
distance	from	the	plane	with	the	same	intensity	whether	the	test	charge	be	on
one	side	of	the	plane	or	the	other.	The	directions	will	of	course	be	opposite,
pointing	away	from	the	plane.	Thus	we	may	assert	that

where	k	is	a	unit	vector	along	the	z-axis.
While	 this	 is	 intuitively	 obvious,	 we	 could	 provide	 the	 cause-effect

argument	 by	demanding	 that	 the	 field	 configuration	 should	be	unaffected	 if
the	charged	plane	 is	 flipped	over	 like	a	pancake	by	a	 rotation	around	 the	x-
axis	by	π	since	the	plane	looks	the	same	before	and	after.	The	configuration
written	above	meets	that	requirement.
Armed	with	these	anticipations	based	on	general	symmetry	arguments,	we

turn	 to	 the	 calculation	 that	 will	 yield	 results	 in	 agreement	 with	 our
expectations.	Our	strategy	is	as	follows.	We	will	draw	a	perpendicular	to	the
plane	passing	through	the	point	P	where	we	want	the	field,	as	shown	in	Figure
3.3.	We	will	divide	 the	plane	 into	concentric	annuli	or	 rings	of	 radius	r	and
width	dr,	find	the	contribution	dE	from	each	ring,	and	integrate	them	over	all
rings.
The	contribution	from	a	given	ring	may	be	readily	inferred	from	Eqn.	1.12



for	the	force	on	charge	q	due	to	a	ring	carrying	a	linear	density	λ,	at	a	point	on
its	symmetry	axis,	z	meters	above	it:

The	first	factor	is	the	q1q2/(4πε0)	appropriate	to	the	test	charge	and	the	loop,
the	 second	 reflects	 the	 inverse	 square	 law,	and	 the	 third	 is	 the	cosine	 factor
that	projects	out	the	component	perpendicular	to	the	plane	of	the	loop,	which
alone	survives	when	all	contributions	from	the	loop	are	added.
We	may	import	this	result	after	three	modifications:
•	Drop	the	test	charge	q	to	get	the	field	from	the	force.
•	Set	z	=	a.
•	Relate	σ	to	λ,	the	charge	per	unit	length	of	the	annulus.	A	segment	of	length	1	along	the	annulus	will
have	an	area	1	·	dr	and	contain	1	·	σ	dr	coulombs.	Thus	the	linear	charge	density	in	our	problem	is
related	to	the	areal	charge	density	by

The	resulting	field,	at	a	distance	a	from	the	plane,	is

Since	 E⊥	 in	 Eqn.	 3.20	 is	 the	 infinitesimal	 contribution	 from	 a	 ring	 of
infinitesimal	width	dr,	we	rewrite	it	explicitly	as	an	infinitesimal

and	obtain	the	total	field	by	integration

Once	 again	we	may	 use	 scaling	 to	 figure	 out	 the	a-dependence	 as	 follows.
Setting

we	obtain



The	integral	equals	1,	as	can	be	shown	by	the	substitution	z	=	w2.
The	 preceding	 result	 is	 so	 important,	 I	 will	 repeat	 it	 and	 suggest	 you

memorize	it:

The	most	striking	aspect	of	the	result	is	that	the	field	does	not	decrease	as	we
move	away	from	the	plane.	It	is	independent	of	a,	the	perpendicular	distance
to	the	plane.	Since	each	part	of	it	makes	a	contribution	that	falls	like	1/(a2	+
r2),	 and	we	are	 increasing	 the	distance	 to	every	segment	of	 the	plane	as	we
increase	a,	the	field	should	get	weaker,	right?	And	yet	that	does	not	happen.
We	 can	 understand	 why	 this	 had	 to	 be	 so	 on	 dimensional	 grounds.	 The

field	has	dimensions	of	charge	over	distance	squared.	(Forget	the	ubiquitous
4πε0,	which	is	a	constant.)	For	a	single	charge	q	the	distance	in	question	had
to	 be	 r,	 the	 distance	 between	 the	 charge	 and	 the	 field	 location.	 For	 a	 line
charge,	 the	 answer	 had	 to	 be	 linear	 (by	 the	 superposition	 principle)	 in	 λ,
which	had	units	of	charge	over	length,	leaving	room	for	just	one	length	a,	the
distance	to	the	wire,	to	appear	in	the	denominator.	For	the	plane	the	inevitable
factor	 linear	 in	σ,	which	has	units	of	charge	over	distance	squared,	has	used
up	all	the	inverse	powers	of	length,	leaving	no	room	for	a	to	appear	either	in
the	numerator	or	denominator.	As	I	mentioned	before	in	connection	with	the
wire,	the	argument	fails	if	the	plane	is	of	a	finite	extent,	say	a	square	of	side
L.	In	this	case	the	answer	is	allowed	to	have	factors	like	L2/a2	and	indeed	it
will:	for	a L,	the	field	will	be	that	of	a	point	charge	q	=	σL2.
To	understand	 the	a-independence	of	E	 in	 pictorial	 terms,	 consult	Figure

3.3.	Let	us	start	at	some	a	and	reduce	it	to	get	closer	to	the	plane.	We	find	the
contributions	from	individual	segments	of	each	of	the	rings	do	indeed	go	up
since	 a2	 +	 r2	 decreases.	However,	 the	 contributions,	which	 point	 along	 the
line	joining	the	segment	to	the	field	location,	become	increasingly	parallel	to
the	plane	as	we	approach	it.	(Look	at	dE1	and	dE2	in	the	figure.)	But	we	have
seen	that	 the	parallel	part	gets	canceled	by	symmetry	(within	each	ring)	and
only	the	(tiny)	perpendicular	part	survives.	So	there	are	two	opposing	factors



as	we	 get	 close	 to	 the	 plane:	 the	 contributions	 from	 individual	 segments	 of
any	 given	 ring	 get	 bigger,	 but	 the	 useful	 component	 that	 survives	 the	 sum
over	 segments,	 the	 perpendicular	 part,	 gets	 smaller.	 So	 you	 can	 give
arguments	why	the	field	should	get	weaker	and	arguments	why	it	should	get
stronger	 as	a	 varies.	To	 show	 that	 these	 two	 tendencies	 exactly	 cancel,	 you
have	to	bite	the	bullet	and	do	the	calculation.
We	can	now	find	the	field	between	the	plates	of	a	parallel	plate	capacitor

(ignoring	edge	effects)	with	±σ.	In	the	region	between	the	plates	the	fields	due
to	 the	 two	 plates	 add	 to	 a	 total	 of	 σ/ε0,	 pointing	 from	 the	 positive	 to	 the
negative	plate.	In	the	region	outside	the	plates	the	field	vanishes	because	the
two	 fields	 cancel,	 being	 of	 equal	 and	 opposite	 strength	 and	 independent	 of
distance.

3.3			Spherical	charge	distribution:	Gauss’s	law
Now	 we	 turn	 to	 the	 more	 difficult	 case	 of	 a	 spherical	 charge	 distribution.
Rather	than	attack	it	frontally,	I	will	introduce	you	to	a	powerful	idea	called
Gauss’s	law,	which	will	provide	a	shortcut.
Imagine	a	 solid	ball	of	charge	density	ρ	 (measured	 in	C/m3).	We	want	 to

find	the	field	due	to	this	ball.
Now,	when	we	did	a	similar	problem	in	gravitation,	we	assumed	that	when

you’re	 outside	 the	 sphere,	 the	whole	 sphere	 acts	 like	 a	 point	mass	with	 the
entire	 mass	 sitting	 at	 the	 center,	 and	 that	 when	 you	 are	 inside	 (as	 in	 our
analysis	of	dark	matter),	 the	mass	 inside	 the	 chosen	 radius	 acts	 like	 a	point
mass	at	the	center	and	the	mass	outside	does	not	contribute.
Since	the	electrostatic	force	also	obeys	the	inverse	square	law,	it	should	not

be	surprising	that	we	may	replace	the	word	“mass”	by	the	word	“charge”	in
the	 preceding	 paragraph.	 But	 now	 we	 want	 to	 prove	 all	 this,	 rather	 than
assume	it.
This	is	what	took	Newton	a	long	time.	He	knew	it	was	true	but	he	couldn’t

prove	 it,	 because	 for	 that,	 he	 had	 to	 first	 develop	 integral	 calculus.	 Even
today,	 to	 find	 the	 field	 due	 to	 a	 sphere	 using	 integration	 is	 quite	 difficult.
Think	about	what	you	have	to	do.	Look	at	Figure	3.4.	You	want	the	field	at
point	 P	 at	 location	 r.	 You	 have	 to	 divide	 the	 sphere	 into	 tiny	 little	 cubes
centered	at	r′,	each	carrying	charge	equal	to	the	density	ρ(r′)	(which	happens
to	be	constant	in	this	case)	times	the	volume	of	the	cube,	d3r′.	A	typical	cube
will	 create	 a	 field	dE(r)	 as	 shown.	You	 have	 to	 integrate	 the	dE(r)’s	 from
every	tiny	cube	in	the	sphere.	But	the	contribution	from	each	cube	will	have	a
different	magnitude	and	direction.	Adding	all	these	vectors	is	a	tough	problem
that	 we	 are	 going	 to	 finesse	 by	 invoking	 a	 very	 powerful	 notion	 called
Gauss’s	 law.	 As	 a	 prelude,	 we	 need	 to	 cover	 some	 mathematical	 ideas
involving	areas	and	surface	integrals.



Figure	3.4			The	field	due	to	a	spherical	charge	distribution.	Each	tiny	cube	d3r′	located	at	r′	makes	its
contribution	dE(r)	to	E(r)	as	per	Coulomb’s	law.	These	contributions	have	to	be	vectorially	added	to
obtain	E(r).

3.4			Digression	on	the	area	vector	dA
Imagine	I	am	holding	up	a	tiny	little	planar	area,	like	a	postage	stamp,	in	three
dimensions	 at	 some	 location	r.	 I	want	you	 to	be	 able	 to	visualize	 this	 area.
What	can	I	do	to	specify	it	besides	telling	you	it	is	located	at	r?	The	first	thing
I	can	tell	you	is	how	big	it	is.	I	say	it	is	dA	square	meters	in	size.	I	then	have
to	tell	you	in	which	plane	it	lies.	How	do	I	do	that?
Suppose	it	 lies	 in	 the	xy-plane.	Rather	 than	say	“lies	 in	xy-plane,”	I	could

just	 as	well	 say	 it	 lies	 perpendicular	 to	 the	 z-axis.	 I	 could	 then	 associate	 a
vector	dA	with	this	area,	of	magnitude	dA	and	direction	along	the	z-axis.	But
there	are	two	ways	to	draw	the	perpendicular	to	the	xy-plane:	up	or	down	the
z-axis.	To	 further	 specify	 the	 area,	 to	make	 it	 an	oriented	or	 signed	area,	 I
will	 draw	 arrows	 that	 run	 around	 its	 perimeter	 in	 one	 of	 two	 possible
directions.	The	area	vector	dA	will	point	along	the	thumb	of	our	right	hand	if
we	curl	the	fingers	around	the	loop	in	the	sense	of	the	arrows.	This	is	called
the	right-hand	rule.	 It	 is	 illustrated	in	Figure	3.5	by	the	two	areas	in	the	xy-
plane,	given	by	dA1	=	−	kdA1	and	dA2	=	−	kdA2.	(An	area	without	the	arrows
on	its	perimeter	is	like	a	vector	without	its	head	and	tail	marked.)



Figure	3.5			The	figure	shows	a	generic	(shaded)	area	floating	in	three	dimensions.	The	area	vector	dA
is	given	by	the	right-hand	rule	applied	to	the	arrows	running	around	the	edges.	Also	shown	are	two
areas	lying	in	the	xy-plane	with	a	common	edge.	Their	sum	is	an	area	with	the	common	edge	(shown	by
a	dotted	line)	deleted.	If	we	use	that	dotted	line	as	a	hinge	and	rotate	the	second	area	out	of	the	xy-plane
(as	indicated),	their	sum	is	a	non-planar	area,	bounded	by	the	uncanceled	edges.

The	 upper	 part	 fof	 the	 figure	 shows	 a	 generic	 (shaded)	 area	 vector	 dA,
floating	 in	 three	 dimensions.	 Its	 direction	 is	 determined	by	 the	 sense	of	 the
arrows	running	around	the	edges	as	per	the	right-hand	rule.
Only	a	planar	 area	 can	be	 represented	as	 a	vector.	All	 infinitesimal	 areas

can	be	treated	as	planar.	Finite	areas	that	are	non-planar,	like	a	hemisphere	or
magic	carpet,	cannot	be	represented	by	a	single	vector:	we	cannot	reconstruct
an	entire	macroscopic	surface,	with	all	its	undulations,	given	just	a	magnitude
and	a	direction.
The	use	of	 the	 right-hand	 rule	 in	defining	 areas	might	 remind	you	of	 the

cross	product	and	indeed	there	is	such	an	interpretation	of	areas.	Consider	an
area	 shaped	 like	 a	 parallelogram,	whose	 adjacent	 edges	 are	 defined	 by	 two
vectors	B	and	C	with	angle	θ	between	them.	Then	A	=	B	×	C	 is	the	area	of
the	parallelogram,	with	magnitude	 |BCsinθ|	and	direction	given	by	the	right-
hand	rule.	Infinitesimal	areas	are	bounded	by	infinitesimal	vectors.
Using	vectors	to	describe	areas	or	combining	two	vectors	to	get	a	third	by

the	cross	product	is	possible	only	in	three	dimensions	where	every	plane	has	a
unique	 normal,	 up	 to	 a	 sign.	 In	 four	 dimensions	 you	 cannot	 have	 a	 cross
product	 of	 two	 vectors	 that	 yields	 a	 vector.	 If	 you	 pick	 two	 non-planar
vectors,	 the	 plane	 they	 define	 will	 have	 two	 orthogonal	 directions
perpendicular	to	it.

3.4.1			Composition	of	areas
Even	 though	 infinitesimal	 areas	 are	 given	 by	 vectors,	 the	 natural	 rule	 for
combining	 them	 is	different	 from	vector	 addition,	 unless	 all	 the	 areas	 lie	 in
one	plane.	I	introduce	the	rule	through	an	analogy,	with	one	fewer	dimension;
see	Figure	3.6.



Suppose	we	want	 to	 construct	 a	 curve	 in	 two	 or	 three	 dimensions,	 given
any	number	of	tiny	vectors.	Each	vector	has	two	boundary	points:	its	tip	and
its	tail,	which	are	assigned	opposite	signs.	To	form	the	curve,	we	string	these
vectors	along:	the	tail	of	the	second	vector	touches	the	tip	of	the	first,	the	tail
of	the	third	the	tip	of	the	second,	and	so	on	to	the	last	one.	The	resulting	curve
has	only	two	boundary	points:	 the	tail	of	 the	first	and	the	tip	of	the	last.	All
other	boundary	points	have	canceled	 in	pairs	when	we	joined	 them	head-to-
tail.	Of	course,	 the	perfectly	smooth	curve	is	realized	only	in	the	limit	of	an
infinite	number	of	infinitesimal	vectors.

Figure	3.6			A	curve	C	joining	points	1	and	2	in	the	plane,	composed	of	little	vectors	added	tip-to-tail.
The	tip	and	tail	are	the	boundaries	of	each	arrow.	When	two	arrows	are	glued,	the	touching	tip	and	tail
are	erased.	At	the	end	only	the	tail	of	the	first	vector	and	the	tip	of	the	last	vector	survive.	These	are	the
boundaries	of	C.	The	formation	of	the	curve	by	gluing	arrows	is	not	to	be	confused	with	vector	addition,
which	would	give	V12.	If	the	points	1	and	2	were	also	glued,	we	would	have	a	closed	loop,	while	the
vector	sum	V12	would	vanish.

Do	not	 confuse	 this	composition	of	 the	curve	with	 the	vector	 sum,	which
would	be	a	straight	line	going	from	the	tail	of	the	first	vector	to	the	tip	of	the
last.	 Whereas	 the	 vector	 sum	 remembers	 only	 the	 bottom	 line,	 the	 curve
remembers	 every	 vector	 that	went	 into	 its	 composition.	 For	 example,	 if	 the
curve	is	closed,	say	a	circle,	the	vector	sum	would	simply	vanish.
There	 is	 a	 similar	 rule	 for	 combining	 areas	 to	 form	 two-dimensional

surfaces.	 Consider	 the	 two	 areas	 dA1	 and	 dA2	 in	 Figure	 3.5.	 To	 combine
them,	we	superpose	the	right	edge	of	dA1	and	the	left	edge	of	dA2	with	their
opposing	arrows.	(This	is	analogous	to	placing	the	tail	of	one	vector	on	the	tip
of	the	previous	in	forming	a	curve.)	We	delete	the	overlapping	parts	that	carry
opposite	arrows.	The	“sum”	of	the	areas	is	bounded	by	the	remaining	edges.
Look	at	 the	deleted	portion	shown	by	a	dotted	 line.	 If	we	use	 that	dotted

line	 as	 a	 hinge	 and	 rotate	 the	 second	 area	 out	 of	 the	 xy-plane,	 their	 sum,
bounded	by	the	uncanceled	edges,	is	now	a	non-planar	area.	In	this	manner,	a
generic	 surface	 in	 three	dimensions	may	be	 formed	by	gluing	 together	 little
areas	 or	plaquettes	 and	 deleting	 the	 common	 edges,	 as	 illustrated	 in	 Figure
3.7.	 The	 arrows	 that	 used	 to	 run	 around	 the	 interior	 plaquettes	 have	 been
canceled	 by	 the	 neighboring	 plaquettes	 with	 counter-propagating	 arrows.
What	remains	are	arrows	around	the	perimeter,	which	run	along	the	boundary
of	their	union	or	sum.



Figure	3.7			A	generic	surface	in	three	dimensions	obtained	by	gluing	together	tiny	areas	or	plaquettes.
The	arrows	that	used	to	run	around	the	interior	plaquettes	have	been	canceled	by	the	neighboring
plaquettes	with	counter-propagating	arrows.	What	remains	are	arrows	around	the	perimeter,	which
define	the	boundary	of	the	sum.	Also	shown	for	later	use	is	one	highlighted	interior	area	dS	and	the
electric	field	vector	E	at	that	point.	The	orientation	of	this	area	is	indicated	by	the	arrow	on	one	edge.

3.4.2			An	application	of	the	area	vector
Let	 us	 put	 the	 concept	 of	 the	 area	 vector	 to	 work.	 Imagine	 a	 tube	 with	 a
rectangular	cross	section	of	height	h	and	width	w	carrying	some	fluid	moving
with	velocity	v	parallel	to	its	length,	as	shown	in	Figure	3.8.	What	is	the	flux
Φ,	the	volume	of	fluid	flowing	past	any	cross	section	per	second?
To	find	Φ,	we	pick	as	a	checkpoint	the	leftmost	area	A	in	the	figure	and	ask

how	much	fluid	goes	past	it	in	one	second.	To	this	end,	at	some	time	t	=	0	we
introduce	some	tiny	beads	into	the	fluid	at	A.	After	1	second,	the	beads	would
have	moved	 a	distance	v	 ·	 1	 and	will	 be	 resident	 on	 the	middle	 area	 in	 the
figure,	 which	 is	 a	 shifted	 duplicate	 of	 A.	 The	 fluid	 that	 has	 crossed	 the
checkpoint	 in	 one	 second	 is	 contained	 between	 these	 two	 areas.	 It	 is	 a
parallelepiped	of	base	A	=	wh	and	height	v	·	1	as	shown	in	the	figure.	Thus

Figure	3.8			A	tube	of	cross-sectional	area	A	=	wh,	carrying	a	fluid	with	a	velocity	v	parallel	to	A.	To



monitor	the	flux	(volume	flow	per	second)	past	the	area	A	shown	at	the	left,	we	sprinkle	some	beads
into	the	fluid	at	t	=	0.	One	second	later	the	beads	end	up	at	the	middle	area.	The	volume	between	these
two	fronts	is	the	flow	per	second,	Φ	=	Av	=	A·v.	The	rightmost	area	A′	is	bigger	than	A	by	a	factor
1/cosθ	but	intercepts	the	same	amount	of	flux	or	flow	per	second.	As	shown	in	the	text,	Φ′	=	A′	·	v	=
A′vcosθ	=	A	·	v	=	Φ.	The	inset	shows	the	volume	contained	between	two	tilted	areas	A′	at	times	t	=	0
and	t	=	1,	separated	by	v	·1	meters.

Because	 v	 and	A	 are	 the	magnitudes	 of	 the	 parallel	 vectors	v	 and	A,	we
may	rewrite	the	Φ	above	as	their	dot	product:

Remember	 that	 the	 area,	 A,	 if	 considered	 as	 a	 planar	 object,	 lies
perpendicular	to	the	flow	but	the	area	vector	A,	as	defined	above,	is	parallel
to	v.	So	the	cosθ	factor	that	enters	the	dot	product	is	simply	cos0	=	1.
Invoking	dot	product	in	the	present	case,	when	it	is	just	the	product	of	the

magnitudes	 of	 the	 parallel	 vectors	A	 and	 v,	 seems	 like	 overkill.	 But	 it	 is
introduced	 to	cover	a	more	general	case	depicted	 in	Figure	3.8.	Look	at	 the
right-most	area	A′,	which	also	goes	from	the	ceiling	to	the	floor	but	with	its
plane	tilted	by	an	angle	θ	from	the	vertical.	Now

has	the	same	base	w	as	A	but	a	longer	side	(h/cosθ).	Let	us	compute	the	flux
through	A′.	If	we	wait	one	second,	the	points	in	A′	will	move	a	distance	v	·	1
downstream	 and	 create	 a	 replica	 of	 A′	 there.	 The	 flux	 Φ′	 is	 the	 volume
trapped	between	these	two	tilted	areas.	This	volume	(shown	in	the	inset)	is	the
product	of	the	width	w	and	the	area	of	the	parallelogram	of	base	v,	side	h′,	and
height	h.	Recall	that	the	area	of	a	parallelogram	is	base	times	height.	Thus

which	is	the	same	as	Φ	=	v	·	A	=	vwh.	Thus	even	though	A′	is	bigger	than	A
by	a	factor	1/cosθ,	it	intercepts	the	same	flux	because	it	is	tilted	by	θ	relative
to	v.
A	given	area	can	intercept	the	greatest	flux	(say	of	a	fluid)	by	orienting	its

plane	 perpendicular	 to	 the	 flow,	 or	 its	 area	 vector	 parallel	 to	 the	 flow.
Likewise,	it	intercepts	no	fluid	at	all	if	it	lies	in	a	plane	parallel	to	the	flow,	or
if	 its	 area	 vector	 is	 perpendicular	 to	 the	 flow.	 Most	 importantly,	 for
intermediate	angles,	 the	correct	multiplicative	 factor	 to	use	with	vA	 is	 cosθ.
This	appears	naturally	in	the	dot	product,	which	therefore	seems	tailor-made
for	computing	fluxes.
We	shall	use	 the	 term	“flux”	 to	denote	 the	dot	product	of	an	area	vector

with	any	other	vector	V,	even	if	V	is	not	a	velocity.	In	what	follows	the	vector



in	question	will	be	E,	the	electric	field.

Figure	3.9			The	figure	shows	the	two-dimensional	cross	section	of	field	lines	emanating	from	a	charge
q.	Thus	the	circle	S	represents	a	sphere.	It	is	evident	that	these	lines	cross	any	surface	enclosing	the
charge.	Two	surfaces,	a	sphere	S	and	a	generic	one	S′,	are	shown.	Since	the	number	of	lines	crossing	a
surface	is	proportional	to	the	surface	integral	of	E,	it	means	the	latter	has	the	same	value	on	any	surface
surrounding	q.	The	side	views	of	tiny	areas	dS	and	dS′	on	the	two	surfaces	are	shown,	along	with	the
local	value	of	the	field	E	and	E′.	Whereas	dS	and	E	are	parallel	on	the	sphere	S,	dS′	and	E′
corresponding	to	the	general	case	are	at	an	angle	θ.	The	third	surface	S″	on	the	lower	left-hand	corner
encloses	no	charge	and	has	no	net	lines	flowing	in	or	out.

3.5			Gauss’s	law	through	pictures
Consider	 a	 charge	q	 and	 the	 field	 lines	 coming	out	 of	 it.	Let	 us	 assign	k

lines	per	coulomb,	where	k	is	an	arbitrary	constant.	The	following	statements
should	be	obvious	from	Figure	3.9.
•	The	number	of	lines	passing	through	a	sphere	S	centered	on	the	charge	is	independent	of	its	radius	r
and	equals	kq,	the	number	emanating	from	q.
•	The	same	number	of	lines	pass	through	any	closed	surface	such	as	S′	that	surrounds	the	charge.
•	If	there	are	several	charges	qi,	i	=	1	.	.	.	n	inside	the	closed	surface	S′,	the	number	of	lines	crossing	is
simply	the	sum	kΣiqi.	This	may	not	be	so	obvious,	since	when	many	charges	are	present,	the	lines
assume	complicated	shapes	instead	of	going	straight	to	infinity.	So	look	at	the	field	lines	due	to	two
positive	charges	in	Figure	2.5.	The	charges	emit	kq1	and	kq2	lines	respectively	(which	happen	to	be
equal	in	this	example).	None	of	these	lines	can	terminate	on	the	other	charge,	since	they	are	both
positive.	So	all	the	kq1	+	kq2	lines	have	to	go	out	of	S′	and	terminate	on	negative	charges	outside	or
escape	to	infinity.	(Again	if	S′	is	very	convoluted,	a	line	may	go	in	and	out	of	it	an	odd	number	of
times	before	finally	escaping.)

Suppose	next	q2	is	negative,	i.e.,	q2	=	−	|q2|	with	|q2|	<	q1.	Now	k|q2|	lines
will	 terminate	on	q2	and	 the	 rest,	kq1	−	k|q2|	=	k(q1	+	q2),	will	 terminate	on
negative	charges	outside	S	 or	 escape	 to	 infinity,	 after	possibly	going	 in	 and
out	of	S	a	 few	times.	The	argument	 is	 readily	generalized	 to	any	number	of
charges,	of	any	sign	and	magnitude.	We	may	assert	that	if	qi	are	the	charges



inside	a	generic	surface	S′,

where	qenc	is	the	total	charge	enclosed	in	S′.

If	you	understand	Eqn.	3.32	based	on	the	pictures,	you	understand	Gauss’s
law,	 for	 this	 is	 what	 it	 essentially	 is,	 once	 we	 express	 the	 number	 of	 lines
leaving	S′	in	terms	of	the	electric	field.
We	will	do	that	in	stages.	First	consider	the	special	case	when	S′	is	a	sphere

S	centered	on	a	single	charge	q	and	consider	 the	areal	density	of	flux	lines.
These	lines	cross	the	sphere	perpendicularly,	or,	if	you	like,	are	parallel	to	the
normal	to	the	surface.

But	since	E(r),	the	magnitude	of	the	electric	field	on	S,	is	given	by

we	may	write

Therefore	the	electric	field	is	proportional	to	the	lines	per	unit	area,	where
the	 area	 lies	 in	 a	 plane	 perpendicular	 to	 the	 lines	 of	E	 or,	 equivalently,	 the
area	vector	is	parallel	to	the	lines	and	to	E.
Consider	now	a	tiny	area	dS	sitting	on	the	surface	of	this	sphere.	I	use	dS

instead	of	dA	 to	signify	 that	 this	 little	area	 is	part	of	a	surface	S,	and	 I	will
follow	this	notation	from	now	on.	Letting	dS	stand	for	its	magnitude,

Let	us	now	re-express	product	E(r)dS	in	terms	of	the	corresponding	vectors	E
and	dS,	which	are	both	radial.	Thus



This	now	allows	us	to	reach	a	very	important	relationship:

Therefore	E	·	dS,	the	electric	flux	coming	out	of	the	area	dS,	is	proportional
to	the	lines	crossing	the	surface.	The	proportionality	constant	is	ε0k,	where	ε0
is	a	fixed	number	and	k	is	up	to	us	to	choose	(once	and	for	all).
If	we	cover	the	surface	of	the	sphere	with	tiny	little	patches	dS	and	add	the

contributions	from	all	of	them	to	the	two	sides	of	Eqn.	3.40,	make	the	patches
smaller	and	smaller,	and	turn	the	sum	into	an	integral	we	obtain:

The	integral	on	the	right	is	called	the	surface	integral	of	E	over	S.	The	symbol
	means	the	surface	is	closed.
Since	the	 lines	crossing	the	sphere	are	 independent	of	 the	radius,	we	may

now	assert	that	the	surface	integral	of	E	over	the	sphere	S	is	also	independent
of	its	radius	r.
Next	consider	an	arbitrary	surrounding	surface	S′	surrounding	the	charge	q

as	 shown	 in	 Figure	 3.9.	We	 know	 the	 total	 number	 of	 lines	 crossing	 it	 are
again	the	same,	namely	kq.	How	do	we	express	this	result	in	terms	of	E′?	If
we	cover	this	surface	with	patches,	the	area	vectors	dS′	will	not	generally	be
radial.	 The	 number	 of	 lines	 these	 patches	 intercept	 will	 not	 be	 the	 product
kε0E′(r)dS′,	 but	 rather	kε0E′(r)dS′cosθ,	where	θ	 is	 the	 angle	 between	E′	 and
dS′.	 If	 you	 think	of	 the	 lines	 as	 the	 flow	of	 something,	 from	 the	 fluid	 flow
analogy	it	is	evident	that	a	given	area	will	intercept	the	most	lines	if	its	area
vector	 is	parallel	 to	E′,	 and	 that	as	 it	 rotates	off	 this	direction,	 their	number
will	diminish	by	the	geometrical	factor	cosθ.	We	have	therefore	the	result	that

Since	 the	 number	 of	 lines	 crossing	 a	 generic	 surface	 is	 independent	 of	 its
shape	 as	 long	 as	 it	 surrounds	 the	 charge,	we	 deduce	 the	 corresponding	 fact



about	the	surface	integral	of	the	electric	field	over	any	generic	surface:

where	we	have	dropped	the	prime	on	E	and	S,	where	the	latter,	from	now	on,
will	 refer	 to	 the	general	surface,	 spherical	or	not.	Eqn.	3.45	 is	Gauss’s	 law
for	a	single	charge.
There	 is	 no	 arbitrary	 constant	 k	 in	 this	 relation	 and	 there	 should	 not	 be.

Whereas	 the	 lines	we	draw	 to	 aid	 our	 imagination	 have	 a	 density	 that	 does
depend	on	k,	 the	electric	 field	at	 a	point	 is	uniquely	defined	by	 the	charges
that	produce	it	or	the	force	it	exerts	on	a	test	charge.	Therefore	its	integral	on
a	closed	surface	better	not	depend	on	k.	The	result	above	is	simply	a	property
of	 the	 electric	 field	 as	 given	 by	 Coulomb’s	 law	 and	 does	 not	 rely	 on	 the
notion	 of	 field	 lines.	 The	 field	 lines	 helped	 us	 anticipate	 the	 final	 answer,
which	can,	however,	be	derived	by	explicit	computation.
As	an	illustration,	consider	the	field	of	a	point	charge	and	spherical	surface

S	centered	on	it.	By	direct	computation

The	 steps	 leading	 to	 Eqn.	 3.48	 need	 some	 explanation.	 There	 a	 surface
integral	 is	 evaluated	 by	 inspection	 and	 the	 answer	 is	 simply	written	 down.
What	 happened	 to	 the	 integration?	 The	 answer	 is	 that	 the	 integrand,	

,	 is	 a	 constant	on	 the	 sphere.	So	E(r)	may	be	pulled	out	of	 the
integral,	like	a	number	19	can	be	pulled	out.	The	integral	of	E(r)dS	over	the
sphere	 then	 reduces	 to	 the	product	 of	 this	 constant	E(r)	 and	 the	 area	 of	 the
sphere.	(Here	is	an	analogy.	If	f(x)	=	f0,	a	constant,	the	definite	integral	over
an	interval	of	length	L	is	the	area	of	a	rectangle	of	height	f0	and	base	L.	More
formally,	f0	may	be	pulled	out	of	the	integral	and	the	remaining	integral	of	dx
is	just	L.)



If	the	surface	S	is	not	spherical,	it	takes	more	work	to	show	that	Eqn.	3.48
still	holds	by	invoking	the	notion	of	a	solid	angle.	The	pictorial	argument	in
terms	of	lines	spared	us	that	effort.
We	now	want	to	extend	Gauss’s	law	to	many	charges	qi,	i	=	1	.	.	.	n.	Now

we	forget	all	about	lines	of	force,	which	can	be	very	complicated.	Instead	we
use	superposition	of	the	fields	to	these	charges,	each	of	which	obeys	Gauss’s
law.	Each	charge	qi	produces	its	own	Ei	that	obeys

for	any	closed	surface	S	containing	the	charge.	By	summing	both	sides	over	i
we	obtain	Gauss’s	law	in	all	its	generality,

where	E	=	Σi	Ei	is	the	total	electric	field	and	qenc	is	the	total	charge	enclosed
by	S.
The	charges	qi	have	to	be	inside	S	to	contribute	to	the	surface	integral	of	E,

or,	 equivalently,	 the	 lines	 flowing	out	of	S.	Consider	 for	 example	an	empty
surface	 S′′	 in	 Figure	 3.9	 with	 the	 charge	 q	 lying	 outside.	 Any	 field	 line
emanating	 from	 the	 charge	 that	 enters	 the	 surface	will	 necessarily	 also	 exit
since	there	is	no	charge	inside	for	it	to	terminate.	Lines	coming	in	are	counted
as	negative	and	 those	coming	out	are	described	as	positive,	and	 the	positive
and	negative	contributions	will	cancel	precisely.	In	terms	of	the	electric	field,
E	·	dS	will	be	negative	where	lines	enter	and	positive	where	they	leave,	and
the	integral	over	S′′	will	be	zero.
For	future	use	I	repeat	the	algorithm	for	computing	the	surface	integral	of	E

over	any	surface	S,	closed	or	not.	Consult	Figure	3.7.
•	Tile	the	surface	with	tiny	areas	or	patches	dS(ri)	located	at	ri.	For	a	closed	surface	the	area	vectors
are	defined	to	point	outward.
•	On	each	tiny	area	compute	the	flux	dΦ(ri)	=	E(ri)	·	dS(ri).

•	Do	the	sum	Σi	dΦ(ri)	=	ΣiE(ri)	·	dS(ri).

•	Repeat	with	smaller	and	smaller	patches	till	the	sum	converges	to	some	limit.	That	defines	∫S	E	·
dS.

In	 some	 special	 cases	 like	 the	 field	 of	 a	 point	 charge	 the	 integral	 can	 be
done	analytically,	but	in	all	cases	it	has	a	well-defined	numerical	value,	which
can	be	determined	as	above.

3.5.1			Continuous	charge	density



Suppose	 S	 contains	 a	 continuous	 blob	 of	 charge,	 with	 charge	 density	 ρ(r)
instead	of	discrete	charges	qi.	To	write	down	Gauss’s	 law	we	need	 the	 total
charge	enclosed.	A	 tiny	cube	of	 size	d3r	=	dxdydz	 at	r	will	 enclose	ρ(r)d3r
coulombs,	 and	 the	 enclosed	 charge	will	 be	 this	 quantity	 integrated	 over	 the
volume	V	within	the	closed	surface	S.
So	the	form	of	Gauss’s	law	we	will	find	most	useful	is	as	follows:

where

In	future	I	will	also	use



CHAPTER	4

Gauss’s	Law	II:	Applications

In	the	last	chapter	we	encountered	Gauss’s	law:

On	the	left-hand	side	we	have	the	surface	integral	of	the	electric	field	over
a	closed	 surface	S,	which	 is	 the	boundary	of	a	volume	V.	On	 the	right-hand
side	is	the	total	charge	enclosed	by	S	divided	by	ε0.	The	charge	enclosed	is	the
volume	 integral	 of	 the	 charge	 density	 ρ(r)	 if	 continuous,	 and	 the	 sum	 over
point	charges	qi	if	discrete.
The	surface	S,	called	the	Gaussian	surface,	is	a	theoretical	construct	to	help

our	calculations.	It	may	be	chosen	at	will,	and	for	every	choice	of	S,	there	is	a
corresponding	equality.	The	Gaussian	surface	could	sometimes	coincide	with
a	real	surface	(say	of	a	conductor).
As	 for	 the	 left-hand	 side,	 recall	 the	 algorithm	 for	 computing	 the	 surface

integral:	divide	S	into	little	areas	or	patches	dS,	add	the	contributions	E	·	dS
from	each	area	(where	E	 is	 the	electric	field	on	 that	 tiny	area),	and	take	 the
limit	of	an	infinite	number	of	patches	of	infinitesimal	size.	Often	the	only	way
to	 do	 this	 integral	 is	 by	 numerical	 means,	 though	 occasionally	 an	 analytic
evaluation	may	be	possible,	such	as	when	E	is	due	to	a	point	charge	and	S	is	a
surrounding	concentric	sphere.
As	for	the	right-hand	side,	the	integrals	of	ρ	can	be	done	by	inspection	in

all	the	cases	we	will	discuss	in	this	chapter.	In	general	you	will	have	to	do	a
multiple	integral	of	the	charge	density	ρ	over	the	volume	V.

4.1			Applications	of	Gauss’s	law
As	 a	 first	 application,	 consider	 the	 field	 due	 to	 a	 uniform	 spherical	 ball	 of
charge	Q	and	radius	R	centered	on	the	origin.	Since	the	sphere	of	charge	looks
the	same	if	we	rotate	it	around	any	axis	passing	through	the	origin,	the	field
distribution	must	have	this	property.	The	only	solution	to	this	requirement	is
the	hedgehog	field,	with	 lines	 fanning	out	equally	 in	all	directions,	with	 the
same	 density	 at	 all	 points	 of	 a	 given	 r.	 In	 terms	 of	 the	 field,	 the	 allowed
configuration	is	of	the	form



We	just	need	to	find	E(r)	and	will	do	so	using	Gauss’s	law.
To	 find	 the	 field	 outside	 the	 charged	 sphere,	we	 choose	 as	 the	Gaussian

surface	S,	a	sphere	of	radius	r	>	R,	as	depicted	in	the	top	left	half	of	Figure
4.1.	The	calculation	proceeds	as	with	a	point	charge:

Figure	4.1			The	use	of	Gauss’s	law	to	find	the	field	due	to	a	uniform	solid	ball	of	charge	outside	(top
left)	and	inside	(top	right)	its	radius	R	by	using	a	spherical	Gaussian	surface	S	of	appropriate	radius.	The
graph	at	the	bottom	shows	E(r),	the	radial	field	as	a	function	of	r.	It	rises	linearly	for	r≤R	and	thereafter
falls	as	1/r2.

which	is	the	field	of	a	point	charge	Q	at	the	origin.
Note	 that	Gauss’s	 law	gives	 just	one	piece	of	 information	about	E(r):	 its



integral	over	a	surface	S.
One	cannot	infer	from	that	a	whole	function	E(r).	For	example,	if	I	say	that

what	can	you	say	about	f(x)?	It	could	be	f(x)	=	7,	f(x)	=	7	+	sinx,	etc.	But	if	I
said	f(x)	is	a	constant	f0	over	the	region	of	integration,	you	could	deduce	f0	=	7
as	follows:

The	moral	is	that	if	a	function	is	a	constant	over	a	region	of	integration,	its
integral	 equals	 that	 constant	 times	 the	 length	 or	 area	 or	 volume	 of	 the
integration	region.
This	 is	what	 happened	 in	Eqn.	 4.3:	 the	 surface	 integral	was	E(r)	 ×	 4πr2.

Equating	this	to	Q/ε0,	we	obtained	Eqn.	4.7.
Gauss’s	 law	 can	 be	 used	 to	 deduce	 the	 entire	 field	 E(r)	 only	 when

symmetry	arguments	can	be	used	to	reduce	the	unknown	to	just	one	number,
E(r)	 on	 the	 Gaussian	 surface.	 Had	 S	 been	 a	 sphere,	 but	 the	 charge	 a	 non-
sphere	with	bumps	and	lumps	here	and	there,	the	surface	integral	of	E	would
still	be	known	 to	be	Q/ε0,	but	one	could	not	use	 this	 to	 find	E(r)	anywhere
because	it	would	vary	over	S.	Similarly,	had	the	charge	been	spherical	but	S
not	spherical,	we	would	again	have	a	result	 that	was	 true,	but	not	helpful	 in
finding	E(r)	anywhere	on	S.
Next	we	want	to	find	the	field	inside	the	sphere	of	charge.	So	we	take	for

the	Gaussian	surface	a	sphere	of	radius	r	<	R,	as	shown	in	the	top	right	half	of
Figure	4.1.	The	 calculation	proceeds	 as	 for	 r	>	R	 but	with	one	 change:	 the
charge	 enclosed	 is	 not	 all	 of	Q	 but	 only	 qenc,	 the	 amount	 enclosed	 by	 the
sphere	 of	 radius	 r.	 Since	 the	 density	 is	 uniform,	 the	 ratio	 of	 the	 enclosed
charge	to	the	total	charge	is	the	ratio	of	their	volumes:

If	you	do	not	like	this	argument,	let	me	rewrite	this	result	as	follows:



where	the	first	factor	is	the	charge	density	and	the	second	factor	is	the	volume
in	question.
The	surface	integral	of	the	field	is	the	same	as	before	and	Gauss’s	law	takes

the	form

Thus	 the	 field	 actually	 grows	 from	 zero	 as	 we	move	 out,	 and	 it	 reaches	 a
maximum	of	Q/(4πε0R2)	at	the	surface.	Thereafter,	it	falls	like	1/r2.	The	field,
radial	in	all	cases,	is	as	follows	for	all	values	of	r:

and	is	depicted	in	the	bottom	part	of	Figure	4.1.	The	two	expressions	agree	on
the	surface	of	the	ball	r	=	R.
Why	does	E(r)	grow	(linearly)	with	r	when	r	<	R?	Because,	as	r	increases,

the	 enclosed	 charge	grows	 as	 r3	 and	 the	 field	 it	 produces,	 acting	 as	 a	 point
charge	at	 the	origin,	falls	as	1/r2.	Once	we	go	outside	the	sphere,	for	r	>	R,
the	 field	 falls	 like	 1/r2,	 since	 we	 do	 not	 pick	 up	 any	 extra	 charge	 as	 we
increase	r,	the	radius	of	the	Gaussian	surface.
These	 results	 may	 be	 taken	 over	 verbatim	 for	 gravity,	 with	 the

understanding	 that	 the	 force	 is	 always	 attractive.	 Consider	 in	 particular	 the
linear	 force,	 which	 points	 toward	 the	 center	 inside	 a	 spherical	 mass.	 This
linear	(restoring)	force	implies	simple	harmonic	motion.	If	the	spherical	mass
in	question	is	the	earth,	this	has	the	following	interesting	consequence.	If	you
drill	a	very	narrow	hole	passing	through	the	center	of	the	earth	(so	narrow	that
the	mass	you	scooped	out	does	not	affect	the	preceding	answer	for	the	field)
and	drop	an	object	into	it,	it	will	oscillate	back	and	forth	between	where	you
are	and	the	diametrically	opposite	point	on	the	globe.	I	invite	you	to	show	that

.	(First	write	down	Gauss’s	law	for	gravity.)



4.2			Field	inside	a	shell
Consider	 a	 uniformly	 charged	 solid	 sphere	 of	 radius	 R2	 from	 which	 a
concentric	sphere	of	radius	R1	<	R2	has	been	scooped	out.	We	want	the	field
due	to	 this	hollow	shell.	By	Gauss’s	 law,	for	r	>	R2	 this	hollow	sphere	will
act	 like	 a	 point	 charge	 centered	 at	 the	 origin.	How	 about	 inside	 the	 hollow
region,	for	r	<	R1?	By	applying	Gauss’s	law	to	a	Gaussian	surface	of	radius	r
<	R1,	we	see	that	the	field	inside	is	zero	because	the	charge	enclosed	is	zero.
This	result	is	equally	true	for	the	gravitational	force.
Let	 us	 try	 to	 understand	 the	 absence	 of	 the	 field	 inside	 a	 hollow	 shell

directly	in	terms	of	Coulomb’s	law.	This	discussion	is	optional.
I	 will	 only	 show	 that	 the	 field	 inside	 a	 hollow	 shell	 of	 radius	 R	 and

infinitesimal	thickness	 is	zero.	I	am	done,	because	the	original	shell	of	finite
thickness	R2	−	R1	can	be	built	out	of	concentric,	infinitesimally	thin	shells	of
radius	ranging	from	R1	to	R2,	each	of	which	contributes	a	zero	to	the	total.
Consider	 then	 a	 point	P	 inside	 such	 a	 shell	 of	 radius	R	 and	 infinitesimal

thickness,	 as	 depicted	 in	 Figure	 4.2.	Assume	 the	 shell	 has	 a	 surface	 charge
density	σ.	(I	invite	you	to	show	that	σ	=	ρdr,	where	ρ	is	the	uniform	density	of
the	charged	sphere	and	dr	is	the	thickness	of	the	shell.)

Figure	4.2			The	aim	is	to	show	that	the	field	at	a	generic	point	P	inside	a	hollow	shell	is	zero.	The
figure	shows	two	oppositely	pointing	cones	of	identical	opening	angle	that	meet	at	P	and	intersect	the
sphere	in	two	caps,	shown	as	dark	ellipses.	The	same	number	of	field	lines	emitted	by	the	test	charge	at
P	pierce	the	two	caps.	This	is	shown	in	the	text	to	imply	that	the	charges	on	these	two	caps	exert	equal
and	opposite	forces	on	a	test	charge	at	P.	It	is	possible	to	cover	the	entire	shell	using	canceling	pairs	of
cones.

If	P	is	the	center	of	the	shell,	we	can	argue	by	symmetry	that	the	field	there
has	 to	 vanish:	 a	 non-zero	E	 at	 the	 center	 necessarily	 has	 to	 point	 in	 some
arbitrary	direction,	violating	the	rotational	symmetry	of	the	problem.	But	we



can	see	more	directly	that	the	field	has	to	be	zero	because	for	every	tiny	patch
of	charge	on	the	shell	pushing	a	test	charge	one	way,	there	is	a	diametrically
opposite	patch	that	exerts	an	equal	and	opposite	force.
But	the	result	is	stronger;	it	says	E(r)	=	0	even	for	a	point	off-center,	like	P

in	 the	 figure.	 We	 would	 like	 to	 show	 that	 this	 too	 follows	 from	 the
cancellation	of	forces	exerted	by	charges	in	different	segments	of	the	shell.	To
this	end	consider	two	cones	of	the	same	opening	angle	pointing	away	from	P
in	 opposite	 directions	 and	 intersecting	 the	 shell	 on	 two	 caps.	 The	 opening
angle	of	the	cones	is	infinitesimal,	as	are	the	planar	areas	they	pierce	through,
denoted	by	dS1	and	dS2.
Instead	of	showing	that	(the	charges	on)	the	caps	exert	equal	and	opposite

forces	 on	 a	 unit	 test	 charge	 at	 P,	 we	 will	 show	 the	 unit	 test	 charge	 exerts
equal	and	opposite	forces	on	the	(charges	on)	the	two	caps.	We	are	then	done
because	action	and	reaction	are	equal	and	opposite	 in	Coulomb’s	law:	if	 the
forces	the	test	charge	at	P	exerts	on	the	caps	are	equal	and	opposite,	so	are	the
forces	 the	caps	exert	on	 the	 test	 charge.	Since	 it	 is	possible	 to	 surround	 the
point	P	with	such	canceling	pairs	of	cones,	we	know	the	net	force	of	the	shell
on	the	charge	at	P	will	be	zero.
So	 imagine	 a	 unit	 test	 charge	 placed	 at	 P	 and	 the	 lines	 emanating

isotropically	 from	 it.	 Since	 the	 cones	 have	 the	 same	 opening	 angle,	 they
contain	the	same	number	of	field	lines	and	thus	the	number	of	lines	crossing
the	two	caps	is	equal.	Now	the	number	of	lines	crossing	the	caps	is,	by	Eqn.
3.42,	kε0E1	·	dS1	and	kε0E2	·	dS2	where	E1	and	E2	are	the	fields	produced	at
the	caps	by	the	test	charge	at	P.
Next	we	collect	some	relevant	facts.
•	The	area	vectors	dS1	and	dS2	are	radial,	being	parts	of	a	sphere.

•	The	electric	fields	E1	and	E2	point	outward	along	the	symmetry	axis	of	the	two	head-to-head	cones.

•	The	angles	between	the	area	vectors	and	the	corresponding	field	vectors	are	the	same	in	both
patches,	and	are	denoted	by	θ.	This	equality	follows	from	the	fact	that	the	angles	opposite	to	the
indicated	θ’s	lie	at	the	base	of	an	isosceles	triangle	(whose	two	equal	sides	are	the	radius	R	and	whose
base	is	the	chord	connecting	dS1	and	dS2).

We	put	all	this	together	and	reason	as	follows:
lines	crossing	cap	1	=	kε0dS1	·	E1	=	kε0dS2	·	E2



where	σ	dSi	=	dqi	is	the	charge	on	cap	i,	i	=	1	or	2.	The	caps	will	behave	as
point	charges	σ	dS1	and	σ	dS2	when	we	take	the	opening	angles	of	the	cones
to	zero.
Look	at	Eqn.	4.21.	 It	 says	dq1E1,	 the	magnitude	of	 the	 force	 the	unit	 test

charge	at	P	exerts	on	the	charges	residing	in	dS1	through	the	field	E1	it	creates
there,	 is	 equal	 to	 dq2E2,	 the	 force	 the	 unit	 test	 charge	 at	 P	 exerts	 on	 the
charges	residing	in	dS2	through	the	field	E2	it	creates	there.	The	two	forces	of
course	have	opposite	directions,	pointing	away	from	the	test	charge.	But	if	the
test	 charge	 exerts	 equal	 and	 opposite	 forces	 on	 the	 caps,	 they	 in	 turn	must
exert	equal	and	opposite	forces	on	the	test	charge,	because	in	Coulomb’s	law
action	and	reaction	are	equal	and	opposite.	(Recall	F12	=	−	F21.)
The	 argument	 relating	 the	 flux	 lines	 intercepted	 by	 the	 two	 caps	 to	 the

fields	 E1	 and	 E2	 relies	 on	 the	 inverse	 square	 law	 of	 the	 electric	 force.
Conversely	one	of	the	earliest	tests	of	the	inverse	square	law	was	the	absence
of	field	inside	a	hollow	sphere.

4.3			Field	of	an	infinite	charged	wire,	redux
We	 have	 already	 seen	 how	 symmetry	 demands	 that	 the	 field	 of	 an	 infinite
wire	with	linear	charge	density	λ	is	constant	if	we	move	parallel	to	the	wire	at
a	fixed	distance	ρ,	and	points	radially	away	from	it:

We	found	that	E(ρ)	=	λ/(2πε0ρ)	by	doing	an	integral	along	the	wire.
Now	we	will	 rederive	E(ρ)	 by	 using	Gauss’s	 law.	 The	 trick	 is	 to	 find	 a

Gaussian	surface	on	which	there	is	a	single	unknown,	E(ρ).	A	natural	choice
is	a	cylinder	of	radius	ρ	coaxial	with	the	wire,	as	shown	in	Figure	4.3,	since
the	field	is	constant	in	magnitude	all	over	it.	However,	it	is	not	enough	to	take
just	 the	curvy	sides	of	 the	cylinder;	we	need	the	two	flat	sides	at	both	ends,
since	the	Gaussian	surface	has	to	be	closed	in	order	for	the	law	to	work,	for	it
to	enclose	a	definite	amount	of	charge.
The	radius	of	the	cylinder	is	clearly	ρ	since	we	want	E(ρ),	but	what	should



be	 its	 length	L?	Since	 the	Gaussian	 surface	 is	 a	 figment	of	our	 imagination
and	not	 really	wrapped	around	the	wire,	we	can	choose	any	 length	we	want
and	then	desperately	hope	that	the	answer	will	not	depend	on	this	arbitrary	L.
Look	at	Figure	4.3.	The	charge	enclosed	within	the	cylinder	is	λ	·	L,	from

the	very	definition	of	λ	as	the	charge	per	unit	length.	So	we	begin	with

Figure	4.3			By	symmetry,	the	field	due	to	an	infinite	wire	is	radial	and	of	constant	magnitude	at	a	fixed
distance	ρ	from	the	wire.	The	Gaussian	surface	is	a	coaxial	cylinder	of	radius	ρ	and	has	an	arbitrary
length	L.	The	charge	enclosed	is	simply	λL.	The	two	flat	faces	make	no	contribution	to	the	flux	since	E
and	dS	are	perpendicular.	The	curved	face,	on	which	the	flux	density	is	constant,	makes	a	contribution
E(ρ)	·	2πρL.

The	surface	breaks	up	into	three	parts:	the	two	flat	ends	and	the	curved	face
parallel	to	the	wire.
We	seem	to	have	a	problem	with	the	flat	faces,	since	E(ρ)	is	not	a	constant

on	the	entire	face	because	different	parts	of	it	are	at	different	distances	from
the	wire.	On	 the	 other	 hand,	we	 have	 seen	 that	Gauss’s	 law	 is	 useful	 only
when	there	is	just	one	constant	E	on	the	entire	surface.	Luckily	we	are	saved
by	the	fact	that	the	area	vectors	dS	and	field	E	are	perpendicular	on	these	two
faces:	 dS	 is	 parallel	 to	 the	 wire	 while	E	 is	 perpendicular	 to	 it	 so	 the	 flux
through	the	flat	faces	is	zero.	Or	if	you	like,	the	field	lines	run	parallel	to	the
flat	faces	and	so	none	cross	it.
We	 are	 then	 left	 with	 the	 curved	 face	 on	 which	 the	 area	 vectors	 dS	 are

radial	and	E(ρ)	is	a	constant	and	radial.	(Remember	that	for	a	closed	surface,
the	area	vector	is	defined	as	positive	if	it	points	outward.)	So	Gauss’s	law	tells
us



The	arbitrary	length	L	has	canceled	out,	as	it	must.
We	 get	 the	 answer	 so	 easily	 only	 because	 of	 the	 high	 symmetry	 of	 the

problem.	 For	 example,	 if	 the	 wire	 had	 been	 non-uniformly	 charged,	 with
λ=λ(x),	we	could	still	equate	the	flux	over	the	cylinder	to	the	charge	enclosed
(the	integral	of	λ(x)	over	the	length	L).	However,	since	E	varies	in	magnitude
and	 direction	 (not	 always	 radial)	 this	will	 only	 tell	 us	 something	 about	 the
integral	of	E	over	the	surface	and	not	about	its	value	at	any	one	place.	On	the
other	hand,	if	the	line	charge	is	replaced	by	a	uniform	cylindrical	distribution,
E	may	be	found	everywhere	using	Gauss’s	law	and	symmetry.

4.4			Field	of	an	infinite	plane,	redux
Consider	an	infinite	plane,	which	we	take	to	be	the	xy-plane.	It	has	a	uniform
charge	density	σ.
Recall	what	the	symmetry	arguments	tell	us.	The	field	is	independent	of	x

or	y	 (but	could	depend	on	z)	and	must	point	perpendicularly	away	 from	 the
plane	with	the	same	magnitude	at	z	and	−	z.	That	is,	E	must	have	the	form

To	find	E(|z|)	we	need	a	Gaussian	surface	on	whose	various	parts	E	is	either
constant	or	perpendicular	to	the	area	vector.	Such	a	surface	is	shown	in	Figure
4.4.	It	is	a	cylinder	of	cross	section	A,	with	its	symmetry	axis	parallel	to	the	z-
axis	and	its	flat	faces	at	±z.
The	 area	 A	 is	 arbitrary	 and	 hopefully	 will	 drop	 out	 of	 the	 answer.	 The

charge	enclosed	 is	 clearly	σA,	where	A	 is	 the	area	of	 the	circle	 the	cylinder
encloses	as	 it	pierces	the	plane.	In	contrast	 to	 the	infinite	wire,	 this	 time	the
curved	side	of	the	cylinder	makes	no	contribution	to	the	surface	integral	since
the	field	is	parallel	to	the	curved	side	and	the	area	vector	is	normal	to	it.	(The
field	 lines	 cross	 the	 two	 flat	 faces	 but	 not	 the	 curved	 face.)	As	 for	 the	 flat
faces,	 on	 the	 upper	 face	 we	 have	 kA·	 kE(|z|)	 =	 A·	 E(|z|).	 The	 same
contribution	 comes	 from	 the	 lower	 face	 where	 both	 E	 and	 the	 area	 have
flipped	 their	orientation	 to	yield	 (−ka)	 ·	 (−kE(|z|))	=	A	 ·	E(|z|).	Gauss’s	 law
then	tells	us



Figure	4.4			Shown	is	an	infinite	plane	with	charge	density	σ.	Symmetry	tells	us	the	field	is	everywhere
normal	to	the	plane	and	constant	in	magnitude	as	we	move	parallel	to	the	plane.	The	Gaussian	surface	is
a	cylinder	of	area	A	and	height	2z,	symmetrically	located	with	respect	to	the	plane.	The	charge	enclosed
is	σA.	As	for	the	flux,	or	surface	integral	of	E,	the	curved	side	makes	no	contribution	because	the	area
vector	and	field	are	perpendicular,	while	the	two	flat	faces	make	equal	contributions	of	E(|z|)A	each,
where	E(|z|)	is	the	constant	value	of	the	field	strength	a	distance	|z|	from	the	charged	sheet.

The	area	has	dropped	out	as	it	must,	and,	remarkably,	there	is	no	dependence
on	z,	the	coordinate	perpendicular	to	the	plane.

4.5			Conductors
Consider	a	chunk	of	copper,	which	is	a	good	conductor.	In	a	good	conductor
not	 all	 of	 the	 electrons	 in	 the	 atoms	 are	 tied	 to	 the	 nuclei,	 but	 shared
communally.	They	are	 free	 to	move	around	 the	material	but	not	 to	 leave	 it.
The	conductor	is	like	a	swimming	pool	for	the	electrons:	they	can	swim	freely
inside	but	cannot	scale	the	walls	at	the	boundary.	If	they	try	that,	all	the	nuclei
will	exert	a	force	to	pull	them	back.	The	energy	needed	to	rip	an	electron	out
of	 the	 material	 is	 called	 the	 work	 function.	 There	 are	 good	 and	 bad
conductors,	and	we	will	discuss	a	perfect	conductor	in	which	the	charges	can
move	freely	in	response	to	the	smallest	field.
We	 will	 now	 make	 many	 predictions	 about	 conductors,	 mainly	 using

Gauss’s	law.

4.5.1			Field	inside	a	perfect	conductor	is	zero
The	 first	 property	 that	 follows	 by	 definition	 is	 that	 in	 a	 static	 situation,	 the



electric	 field	 inside	 a	 perfect	 conductor	 is	 zero.	Had	 there	 been	 a	 field,	 the
charges	 would	 have	 been	 moving	 but	 we	 have	 been	 assured	 it	 is	 an
electrostatic	 situation.	 So	 there	 can	 be	 no	 field.	 The	 no-field	 rule	 does	 not
hold	in	the	non-static	case.
For	example,	 it	 fails	 if	 there	 is	 a	 field	E	 in	 space	and	 I	 suddenly	 insert	 a

chunk	of	conductor	shaped	like	a	rectangular	slab	into	that	region,	as	shown
in	the	top	half	of	Figure	4.5.	Initially	there	will	be	a	field	inside	the	conductor.
It	will	 start	moving	 the	electrons	 (whose	charge	 is	negative)	 in	 the	opposite
direction.	These	will	pile	up	on	the	left	face	as	shown,	leaving	behind	positive
charges	on	 the	other	 face,	due	 to	nuclei	whose	electrons	have	drifted	away.
The	 pileup	will	 continue	 until	 the	 internally	 generated	 field	 due	 to	 the	 two
layers	cancels	the	applied	field	E.	For	an	infinite	slab,	we	know	the	two	faces
would	produce	a	field	σ/ε0	in	the	region	between	them,	opposing	the	external
E.	 For	 a	 finite	 slab	 there	will	 be	 some	 complications	 near	 the	 ends	 but	 the
field	inside	the	conductor	will	still	end	up	vanishing.

Figure	4.5			Top:	Two	conductors	placed	in	an	external	field	E,	which	gets	screened	inside	by
polarization.	In	the	rectangular	slab,	the	internal	field	σ/ε0	due	to	the	charges	on	the	two	faces
neutralizes	E.	Bottom	left:	A	conductor	with	a	hole	in	it	and	some	positive	charges	deposited	on	it.	By
Gauss’s	law,	these	must	be	on	the	outer	surface	and	the	charge	on	the	inner	surface	has	to	be	zero.	If
two	canceling	charges	reside	on	the	inner	surface,	they	would	produce	a	field	E,	which	can	do	work	on
a	test	charge	moving	from	the	+	to	the	−	.	The	test	charge	can	then	be	brought	back	to	the	+	for	free
inside	the	conductor	along	the	dotted	line.	The	cycle	violates	energy	conservation.	Bottom	right:	A
charge	q	placed	inside	the	hole.	The	lines	it	emits	terminate	on	the	inner	wall	(on	the	negative	charges
from	the	conductor	that	piled	up	there)	and	the	lines	are	re-emitted	by	the	positive	charges	that	are	on
the	outer	wall.

If	 a	 time-dependent	 electromagnetic	 field	 encounters	 a	 metal,	 it	 will	 be
screened	 (and	 reflected)	 if	 the	 incident	 frequency	 is	 below	 the	 plasma
frequency	 of	 order	 1016Hz.	 The	 reciprocal	 of	 this	 frequency,	 ≃	 10−16s,	 is
roughly	the	time	it	takes	the	disturbed	system	to	settle	down	to	equilibrium.
In	the	case	of	the	rectangular	conducting	slab,	we	are	able	to	anticipate	the

way	 the	 charges	 in	 the	 conductor	 would	 rearrange	 themselves	 to	 cancel	 or
screen	the	external	field.	What	is	remarkable	is	that	even	if	the	conductor	has



a	crazy	shape,	say	like	a	potato,	it	will	find	a	way	to	rearrange	its	charges	so
as	to	kill	the	field	in	the	interior.	Even	for	a	simple	conductor	like	the	sphere,
it	takes	a	lot	of	work	to	compute	theoretically	the	final	charge	distribution	that
will	exactly	annul	the	external	field	within	the	conductor.	Yet	the	electrons	in
a	metal	are	able	to	figure	this	out	for	any	shape,	almost	instantaneously!	But
you	 should	not	be	 too	 impressed.	They	do	 this	 rather	mindlessly.	First	 they
migrate	against	 the	applied	field	(since	they	have	negative	charge)	and	soon
the	new	immigrants	start	discouraging	newer	immigrants	from	joining	them,
using	 their	 Coulomb	 repulsion.	 Eventually	 this	 repulsion	 will	 balance	 the
force	of	the	external	field	and	the	migration	will	stop.

4.5.2			The	net	charge	on	a	conductor	will	reside	at	the	surface
Suppose	we	 throw	some	positive	 charges	on	a	neutral	 conductor.	They	will
run	 as	 far	 away	 from	 each	 other	 as	 possible.	 Since	 they	 cannot	 leave	 the
conductor,	 you	may	 conjecture	 that	 they	will	 end	 up	 at	 the	 surface.	This	 is
indeed	so	and	we	can	prove	it	using	Gauss’s	law	as	follows.	Take	any	closed
infinitesimal	surface	anywhere	inside	the	conductor	and	apply	the	law.	Since
the	field	is	zero,	its	surface	integral	is	zero,	and	so	is	the	enclosed	charge.
Not	only	is	an	external	field	screened	by	the	conductor,	but	the	additional

charges	we	 throw	in	will	also	produce	zero	field	 inside	 the	conductor.	They
have	to,	for	if	this	were	not	so,	the	mobile	charges	would	move	till	it	is	so.	If
the	 conductor	 is	 a	 sphere,	 we	 know	 that	 the	 charge	we	 dump	 on	 to	 it	 will
spread	uniformly	over	the	surface—this	being	the	configuration	that	produces
zero	 field	 in	 the	 interior.	But,	 amazingly,	even	 if	 the	conductor	 looks	 like	a
potato,	the	charges	will	find	a	way	to	arrange	themselves	on	the	surface	so	as
to	produce	zero	internal	field.

4.5.3			A	conductor	with	a	hole	inside
Suppose	we	throw	some	charge	on	a	conductor	with	a	hole	inside,	as	shown
in	 the	 lower	 half	 of	 Figure	 4.5.	 Will	 all	 the	 charges	 end	 up	 on	 the	 outer
surface	or	will	there	be	some	on	the	inner	surface?	It	turns	out	all	charges	will
be	on	the	outer	surface.	To	prove	this,	consider	a	Gaussian	surface	that	tightly
encloses	 the	 inner	 surface	 and	 lies	 entirely	 within	 the	 conductor,	 an
infinitesimal	 distance	 away	 from	 the	hole.	Since	 the	 field	 on	 this	 surface	 is
zero,	so	will	be	the	charge	enclosed.
Could	this	zero	be	made	of	equal	numbers	of	positive	and	negative	charges

occupying	different	parts	of	the	inner	surface?	Even	if	it	starts	out	that	way,
the	opposite	 charges	 are	 free	 to	 race	 across	 the	 inner	 surface	 and	neutralize
each	other.
This	 would	 be	 obviously	 true	 were	 it	 not	 for	 the	 charges	 on	 the	 outer

surface.	Could	 they	 somehow	exert	 a	 force	on	 these	charges	 to	prevent	 this



reunion?	Suppose	there	were	two	opposite	charges	on	the	inner	boundary,	as
shown	 in	 the	 bottom	 left	 of	 Figure	 4.5.	 The	 field	 lines	 leaving	 the	 positive
charge	 and	 ending	 on	 the	 negative	 charge	 have	 to	 do	 so	within	 the	 cavity.
(The	lines	cannot	go	into	the	conductor.)	If	we	release	a	test	charge	near	the
positive	 charge,	 it	will	 be	 accelerated	 along	 the	 field	 lines	 till	 it	 gets	 to	 the
negative	charge.	We	could	suck	up	its	kinetic	energy	(for	use	elsewhere)	and
bring	it	back	to	the	positive	charge	inside	the	conductor.	This	return	trip	will
cost	no	energy	since	there	is	no	field	inside	the	conductor.	We	could	do	this
cycle	 ad	 infinitum	 and	 extract	 an	 infinite	 amount	 of	 energy	 from	 nowhere,
violating	the	law	of	conservation	of	energy.	The	only	way	to	avoid	this	is	for
the	opposite	charges	to	meet	and	neutralize	each	other.
Next,	 suppose	we	place	a	charge	q	 (assumed	positive)	 inside	 the	hole,	 as

shown	in	the	lower	right	of	Figure	4.5.	Will	the	world	outside	know	about	it?
Since	no	field	can	enter	the	conductor,	how	can	it	tell	the	outside	world	it	is
there?	Yet	 a	Gaussian	 surface	 outside	 the	 conductor	 should	 yield	 a	 surface
integral	corresponding	 to	an	enclosed	charge	q.	The	answer	 is	 shown	 in	 the
bottom	 right	 of	 the	 figure.	 The	 neutral	 conductor	 splits	 into	 positive	 and
negative	charges	±q,	and	the	positive	charges	go	to	the	outer	surface	and	the
negative	ones	 to	 the	 inner	 one.	 (To	be	 specific,	 the	 electrons	will	 go	 to	 the
inner	surface	and	leave	behind	unbalanced	protons	on	the	outer	surface.)	The
field	 lines	 leaving	 the	q	we	placed	 inside	 the	hole	will	 terminate	on	 the	−	q
sitting	on	the	inner	surface,	while	the	+	q	sitting	on	the	outer	surface	will	emit
the	lines	that	penetrate	our	Gaussian	surface.

4.5.4			Field	on	the	surface	of	a	conductor
Consider	 a	 conductor,	 not	 necessarily	 spherical,	 on	 which	 we	 have	 placed
some	charge	 that	 is	now	sitting	on	 the	surface.	While	no	 field	can	enter	 the
conductor,	 what	 can	 we	 say	 on	 the	 surface?	 The	 field	 cannot	 have	 a
component	parallel	to	the	surface,	for	this	will	set	charges	in	motion	along	the
surface,	contrary	to	the	assumed	static	situation.	(Motion	of	charges	along	the
boundary	 is	 not	 forbidden	 by	 the	 nuclei;	 they	 just	 won’t	 let	 them	 escape
outside.)	So	the	field	has	to	be	normal	to	the	surface.	We	will	now	relate	this
E⊥	to	the	local	charge	density	σ.
Figure	 4.6	 shows	 a	 (tilted)	 Gaussian	 cylinder	 of	 infinitesimal	 height,	 of

base	 dS,	 its	 axis	 normal	 to	 the	 surface,	 and	 situated	 half	 inside	 and	 half
outside	 the	 conductor.	 The	 charge	 enclosed	 is	σdS.	 The	 flat	 face	 inside	 the
conductor	does	not	contribute	to	the	flux	as	E	is	zero	inside.	As	for	the	curvy
side,	E	is	either	zero	on	it	(if	it	is	inside)	or	parallel	to	it	(if	it	is	outside),	and
in	neither	case	contributes	to	the	flux.	The	top	face	contributes	E⊥dS.	Gauss’s
law	tells	us



Figure	4.6			The	field	at	the	surface	of	a	charged	conductor	is	calculated	using	a	Gaussian	cylinder	half
inside	and	half	outside	with	its	axis	normal	to	the	surface.	There	is	non-zero	flux	only	on	the	flat	face
outside.	There	is	no	field	inside	and	no	flux	on	the	curved	side	outside,	which	runs	parallel	to	the	field.
Also	shown	are	the	field	at	a	small	area	dS	due	to	the	charges	on	it	(thin	arrows,	solid	outside	and	dotted
inside)	and	the	charges	on	the	rest	of	the	surface	(thick	arrows,	solid	outside	and	dotted	inside).	The	two
contributions	exactly	cancel	inside	and	double	up	outside.	The	charge	density	σ	and	E⊥	can	vary	from
point	to	point.

a	result	worth	committing	to	memory.
We	understand	this	result	as	follows.	Divide	the	charged	surface	into	a	very

tiny	patch	dS	where	we	are	computing	E⊥,	and	the	rest	with	a	hole	where	the
patch	 is.	 Arbitrarily	 close	 to	 dS,	 for	 distances	much	 smaller	 than	 its	 linear
dimensions,	 the	patch	will	behave	 like	an	 infinite	plane	and	produce	a	 field
EdS	pointing	normally	out	on	the	outside	and	normally	in	on	the	inside	with
equal	 strength	 .	 This	 discontinuity	 between	 inside	 and	 outside	 is	 familiar
from	the	 infinite	plane	and	 is	due	 to	 the	charge	density	 that	divides	 the	 two
regions.	 To	 this	 we	 must	 add	 the	 contribution	 Erest	 from	 the	 rest	 of	 the
surface.	 This	 contribution	 will	 be	 continuous	 across	 the	 hole	 because	 the
charges	 in	 the	 rest	 of	 the	 surface	 do	 not	 reside	 in	 the	 hole	 to	 cause	 any
discontinuity.	 This	 continuous	 field	 must	 be	 pointing	 normally	 out	 with
strength	σ/(2ε0)	 to	 kill	 the	 normally	 inward	 field	 due	 to	dS,	 so	 that	 the	 net
field	 inside	 the	 conductor	 will	 be	 zero.	 However,	 when	 we	 go	 outside	 the
conductor,	the	very	same	field	will	reinforce	and	double	that	due	to	dS.
In	short,	the	field	due	to	dS	switches	sign	at	the	surface	(due	to	the	surface

charge),	 while	 that	 due	 to	 the	 rest	 of	 the	 surface	 is	 continuous	 across	 the
surface.	This	is	why	the	two	reinforce	outside	and	cancel	inside.



CHAPTER	5

The	Coulomb	Potential

There	are	two	parts	to	electrodynamics:	find	the	field	E(r)	produced	by	all	the
charges	at	the	location	of	a	charge	q	and	find	its	response	to	the	field	using	F
=	qE.	This	 is	 a	very	complicated	problem	because	each	charge	 is	playing	a
dual	 role:	 producing	 the	 field	 others	 respond	 to	 and	 responding	 to	 the	 field
others	produce.	The	fields	depend	on	the	past	positions	of	all	the	particles	due
to	the	retardation	demanded	by	relativity.
So	 far	we	have	been	making	 life	 tolerable	by	dealing	with	static	charges.

Despite	the	forces	between	them,	we	assume	some	other	force	is	holding	them
in	fixed	positions	so	we	may	use	Coulomb’s	law	to	find	E.	But	there	is	no	fun
in	finding	E	if	none	of	the	charges	is	free	to	respond	to	it.	So	we	are	going	to
relax	 things	 a	 little	bit:	 all	 but	one	charge	will	 be	held	 fixed	and	produce	 a
field	E	given	by	Coulomb’s	law,	and	the	one	solitary	charge	q	will	be	free	to
respond	to	this	field.	As	it	moves,	the	force	it	exerts	on	the	other	charges	will
vary,	but	that	does	not	matter	because	they	are	not	free	to	move	in	response.
We	are	going	to	start	with

where	E(r)	is	due	to	all	the	fixed	charges.	Eqn.	5.1	is	all	we	need	in	principle.
Given	this	equation,	as	well	as	the	particle’s	initial	position	r(0)	and	velocity
v(0),	we	can	determine	the	subsequent	fate	of	the	particle	analytically	in	some
rare	cases	and	numerically	in	all	cases,	given	a	fast	computer.	Using	the	initial
velocity,	we	find	the	position	a	short	time	dt	later	as

and	given	 the	 initial	acceleration	 (decided	by	 the	 field	at	 its	 initial	position)
we	can	find	the	velocity	at	time	dt	as

At	time	dt	we	can	repeat	the	process	and	move	forward	in	time	in	increments
of	dt.	The	errors	vanish	in	the	limit	dt	→	0.



5.1			Conservative	forces	and	potential	energy
This	is	a	topic	that	was	covered	extensively	in	Volume	I.	I	present	here	a	brief
review	in	the	interest	of	continuity.
If	 a	mass	m	 connected	 to	 a	 spring	 of	 force	 constant	 k	 is	 pulled	 by	 some

amount	A	and	released,	we	can	find	its	subsequent	position	x(t)	by	solving	the
differential	equation,	and	from	that	we	can	find	v(t)	by	differentiation.	But	we
found	 that	 certain	 questions	 can	 be	 answered	 much	 more	 easily,	 such	 as
“What	will	be	its	velocity	when	it	is	at	x	=	x0?”	The	trick	is	to	invoke	the	law
of	conservation	of	energy,	which	tells	us	in	this	case

where	the	subscripts	1	and	2	refer	to	two	points	on	the	mass’s	trajectory.	If	x1
and	v1	are	the	initial	position	and	velocity,	we	can	find	v2	(up	to	a	sign)	at	the
point	x2	by	solving	for	it	in	Eqn.	5.4.
More	generally	we	would	have

where	 	is	the	kinetic	energy	and	U1	≡	U(x1)	and	U2	≡	U(x2)	denote
the	potential	energy	that	depends	on	the	forces	acting	on	the	body.
Eqn.	5.5	is	easily	derived	in	d	=	1	starting	with	Newton’s	law.	Here	is	one

way.

which	is	the	work-energy	theorem.
The	quantity



is	 the	work	 done	 by	 the	 force	 when	 the	 body	moves	 by	 dx	 and	 the	 work-
energy	theorem	relates	the	work	done	to	dK,	the	change	in	the	kinetic	energy
of	 the	 body.	 This	 theorem	 relies	 on	 just	 F	 =	 ma	 and	 is	 valid	 for	 all	 F,
including	friction.
Now,	the	definite	integral	of	any	function	of	one	variable	may	be	expressed

as

Combining	this	with	Eqn.	5.9	we	find

The	following	reciprocal	relations	between	F	and	U	are	worth	remembering:

They	allow	us	to	go	from	the	potential	to	the	force	or	vice	versa.
Where	does	the	derivation	fail	if	there	is	friction?	Eqn.	5.11	does	not	apply

since	the	force	of	friction	is	not	just	a	function	of	x;	it	depends	on	the	velocity,
being	always	opposed	to	it	 in	direction.	As	long	as	the	particle	is	moving	in
one	direction,	we	can	pick	a	sign	for	the	frictional	force	to	find	its	impact	on
K	using	the	work-energy	theorem,	but	we	cannot	derive	a	law	of	conservation
of	 energy	 for	 motion	 with	 changes	 in	 direction,	 such	 as	 in	 a	 damped
oscillation.
Deriving	Eqn.	5.5	in	two	(or	higher)	dimensions	may	not	be	possible,	even

if	there	is	no	friction.	Let	us	recall	the	problem	and	its	resolution.
We	 begin	 with	 the	 natural	 definition	 of	 kinetic	 energy	 in	 higher

dimensions:



and	take	its	time	derivative:

So	 far	 there	 is	 no	 problem.	 The	 change	 in	 kinetic	 energy	 when	 the	 force
pushes	the	body	over	a	vector	distance	dr	is	unambiguous:	it	is	F	·	dr.
The	trouble	comes	when	we	string	together	little	dr’s	to	make	a	finite	path

connecting	 two	 points	 1	 and	 2	 as	 shown	 in	 Figure	 5.1:	 there	 are	 infinitely
many	possible	paths,	two	of	which	are	shown.
The	line	integral	in	the	relation

is	generally	path-dependent	and	cannot	be	written	as	U1	−	U2.

Figure	5.1			Two	paths	P1	and	P2	connecting	the	same	end	points	1	and	2.	The	line	integral,	which	is
the	sum	over	F	·	dr,	will	generally	depend	on	the	path.

If,	however,	the	line	integral	is	of	the	form



independent	of	the	path,	and	a	function	of	only	the	end	points,	we	may	write

and	obtain	the	law	of	conservation	of	energy.
A	 force	 for	 which	 the	 line	 integral	 is	 path-independent	 is	 called	 a

conservative	 force.	 One	 may	 think	 such	 forces	 are	 a	 rarity,	 but	 there	 is	 a
recipe	 for	manufacturing	 any	 number	 of	 them.	 Pick	any	 function	U(x,	 y,	 z)
and	define	the	force	by

where	∇U	is	called	the	gradient	of	U	and	pronounced	“grad	U.”
Let	us	see	why	such	a	force	is	conservative.	Since

Thus	F	 ·	dr	 =	dU	 is	 the	 first	 order	 change	 (linear	 in	dx,	dy,	 and	dz)	 in	 the
function	U	due	to	changes	in	x,	y,	and	z.	Consequently

is	the	total	change	in	U	between	the	end	points.	This	leads	to

Thus	 the	 function	U,	which	 generates	F,	 is	 also	 the	 potential	 energy	 in	 the
formula	E	=	K	+	U.
In	the	case	of	d	=	2	it	is	useful	to	think	of	U	as	a	height	measured	above	the



point	(x,	y).	Since	F	·	dr	=	−	∇U	·	dr	=	−	dU	measures	(minus)	the	change	in
“height”	 when	 we	 move	 by	 dr,	 the	 line	 integral	 is	 the	 height	 difference
between	points	1	and	2	and	is	clearly	independent	of	whichever	interpolating
path	we	take.
Once	again,	here	are	the	reciprocal	relations	between	the	potential	and	the

force	in	higher	dimensions:

If	F	 is	 a	conservative	 force	acting	on	 the	body	and	we	want	 to	move	 the
body	 against	 it	 (without	 accelerating	 it),	we	 need	 to	 apply	 a	 force	−	F	 that
exactly	 balances	F.	 The	 right-hand	 side	 is	 the	work	we	must	 do	 to	move	 it
from	1	to	2,	and	the	left-hand	side	is	the	gain	in	potential	energy.
This	 recipe	 for	 producing	 a	 conservative	 force	 is	 exhaustive:	 every

conservative	force	is	the	gradient	of	some	U.
Thanks	to	this	we	can	see	if	a	given	force	is	conservative	or	not	as	follows.

Consider	two	dimensions	first.	If	F	is	conservative,	we	know	its	components
have	the	form

for	some	U.	Consequently

since	the	order	of	partial	derivatives	does	not	matter.
For	example,

In	three	dimensions	we	have	two	more	equations	like	5.40	obtained	by	the
cyclic	permutations	x	→	y,	y	→	z,	z	→	x.
Instead	 of	 saying	 the	 line	 integral	 of	 a	 conservative	 force	 is	 path-

independent	we	could	say	 the	 line	 integral	of	a	conservative	 force	over	any



closed	loop	is	zero.
Here	 is	 the	 logic.	Consider	 two	 different	 paths	P1	 and	P2	 connecting	 the

same	points	1	and	2	in	Figure	5.1.	Start	with	what	we	are	given	and	proceed
as	follows:

The	 passage	 from	 Eqn.	 5.44	 to	 Eqn.	 5.45	 uses	 the	 fact	 that	 when	 the	 end
points	1	and	2	are	exchanged,	the	integral	changes	sign:	on	the	backward	path
F	is	the	same	at	every	point,	while	every	dr	is	reversed.
Eqn.	5.46	states	that	the	integral	over	any	closed	loop	1	→	2	→	1	is	zero.

5.2			Is	the	electrostatic	field	conservative?
You	know	 it	must	be,	given	 the	 time	 I	 spent	 reviewing	conservative	 forces.
But	here	is	a	more	substantial	piece	of	reasoning.
We	 will	 say	 a	 field	E	 is	 conservative	 if	 it	 has	 zero	 line	 integral	 around

every	closed	 loop.	Given	 this,	 the	 force	F	=	qE	 it	exerts	on	a	charge	q	will
also	be	conservative.
How	am	I	going	to	show	that	 in	every	possible	electrostatic	field,	created

by	every	possible	arrangement	of	static	charges,	the	line	integral	of	E	around
every	possible	loop	is	zero?
The	key	step	 is	 to	use	superposition:	 if	 I	can	show	that	 the	 field	due	 to	a

point	charge	is	conservative,	the	field	due	to	many	charges,	which	is	the	sum
of	such	conservative	fields,	is	also	conservative.



Consider	for	example	two	conservative	fields	E1	and	E2	obeying

where	both	integrals	are	over	the	same	(but	arbitrary)	loop.	Now	add	the	two
equations	to	find

which	means	that	E1	+	E2	is	also	conservative.
In	other	words,	if	I	add	two	fields	with	zero	line	integral	around	any	closed

loop,	 I	 get	 a	 field	 that	 also	 has	 zero	 line	 integral	 around	 any	 closed	 loop
because	 the	 integral	of	a	 sum	of	 integrands	 is	 the	sum	of	 the	corresponding
integrals.
To	 show	 that	E	 due	 to	 a	 point	 charge	 is	 conservative,	 I	 will	 show	 it	 is

(minus)	 the	 gradient	 of	 function	V,	 called	 the	 electrical	 potential	 or	 simply
potential:

Here	is	the	potential	due	to	a	charge	q	at	the	origin:

Let	us	see	if	it	does	what	it	should,	namely,	is

Consider	first	the	x-component	of	−	∇V.



It	follows	that

as	desired.
As	usual	we	may	add	a	constant	to	this	potential	V	without	changing	E.	The

present	choice	makes	V	vanish	at	spatial	infinity:	V(r	=	∞)	=	0.
By	construction,	the	reciprocal	relation

has	to	follow.

Figure	5.2			The	work	done	by	the	electric	field	E	when	the	particle	moves	by	a	tiny	amount	dr	is	either
given	by	E	·	dr	or	as	a	sum	of	the	work	done	on	a	radial	segment	erdr	and	an	angular	segment	eθ	rdθ
that	connect	the	same	end	points.	The	angular	part	does	not	contribute	to	the	work	done.



However,	 to	 gain	 practice,	 let	 us	 derive	 the	 above	 relation	 anyway	 by
setting

where	 an	 arbitrary	 infinitesimal	 step	dr	 between	r1	 and	r2	 is	written	 as	 the
vector	sum	of	a	radial	part	erdr	(1	→	3)	and	an	angular	part	eθ	rdθ	(3	→	2)	as
shown	 in	 Figure	 5.2.	 The	 field	 is	 assumed	 to	 be	 a	 constant	E(r)	 over	 this
infinitesimal	loop	1	→	3	→	2	→	1.	Using	er	·	eθ	=	0,	we	find

If	we	now	glue	together	such	infinitesimal	segments	dr	to	form	a	finite	curve,
the	integral	will	be	the	sum	of	contributions	from	each	one	given	above.	The
result,	for	arbitrary	points	1	and	2,	is

The	potential	at	a	point	r,	due	to	charges	q1,	q2,	.	.	.	qi	.	.	.	qN	located	at	r1,
r2	.	.	.	ri	.	.	.	rN,	is	by	superposition,

where	|r−ri|	is	the	distance	between	qi	and	where	we	want	the	potential.	(This
generalizes	Eqn.	5.52	describing	just	one	charge	q1	=	q	at	the	origin	r1	=	0.)
The	 corresponding	 total	 electric	 field	 E	 =	 −	 ∇V	 is	 conservative	 by
superposition.



Note	 that	 there	 are	 no	 vectors	 involved	 in	 Eqn.	 5.67:	 each	 charge
contributes	a	scalar	and	these	are	simply	added	to	give	the	total	potential.	The
power	of	 this	approach	will	be	demonstrated	shortly	when	we	find	 the	 field
due	to	a	dipole.
For	 a	 charge	 q	 moving	 in	 the	 field	 produced	 by	 any	 number	 of	 fixed

charges,	the	law	of	conservation	of	energy	takes	the	following	form	in	terms
of	the	V	in	Eqn.	5.67:

Some	closing	remarks	on	the	potential:	It	is	called	V	and	not	U	because	−
∇U	is	the	force	F	=	qE	while	−	∇V	=	E,	the	field.	Thus	the	electrical	potential
V	is	related	to	the	potential	energy	U	of	a	charge	q	in	that	field	by

In	the	case	of	gravitation	near	the	earth	where	U	=	mgh,	the	corresponding	V
=	gh.	Thus	V	is	the	potential	energy	of	unit	mass	in	the	gravitational	case,	and
V	 is	 the	 potential	 energy	 of	 unit	 charge	 in	 the	 electrostatic	 case.	 (In	many
advanced	courses	one	uses	ϕ	to	denote	the	potential	instead	of	V.)
The	unit	for	potential,	joules	per	coulomb,	is	a	volt.	You	should	use	units	in

all	of	your	calculations.	Without	units	an	answer	like	23	is	meaningless.	You
must	 always	 use	 units.	 I	 may	 not	 always	 use	 units	 but	 then	 I	 have	 tenure.
Once	you	have	tenure	you	don’t	have	to	use	units,	pay	taxes,	show	up	for	jury
duty,	or	avoid	fire	hydrants	when	parking.	Life	after	tenure	resembles	that	of
a	deep	sea	mollusk	that	permanently	attaches	itself	to	a	rock	when	it	reaches
adulthood	and	eats	its	brain	for	food.

5.3			Path	independence	through	pictures
Let	 us	 understand	 the	 path	 independence	 of	 the	 line	 integral	 of	E	 in	 visual
terms.	Figure	5.3	shows	 two	representative	paths	 that	go	from	A	 to	B	 in	 the
field	 of	 a	 point	 charge.	One	path	goes	 radially	 out	 from	A	 to	 4	 and	 then	 at
fixed	 r	 to	 B	 in	 the	 angular	 direction.	 The	 angular	 part	 4	 →	 B	 does	 not
contribute	since	E	is	radial	and	dr	is	tangential.	In	option	A	→	1	→	2	→	3	→
B,	the	angular	parts	A	→	1	and	2	→	3	do	not	contribute	for	the	same	reason,
while	 the	 two	 radial	 parts	 1	→	 2	 and	 3	→	B	 together	 contribute	 what	 the
radial	part	A	→	4	did	in	the	other	option.



Figure	5.3			The	work	done	in	going	from	A	to	B	by	the	field	of	a	point	charge	is	path-independent.	One
path	goes	radially	out	from	A	to	4	and	then	in	the	angular	direction	at	fixed	r	to	B.	The	angular	part	4	→
B	does	not	contribute	since	E	and	dr	are	orthogonal.	In	the	other	path	A	→	1	→	2	→	3	→	B,	the	angular
parts	A	→	1	and	2	→	3	do	not	likewise	contribute,	while	the	radial	parts	1	→	2	and	3	→	B	together
contribute	the	same	as	the	radial	part	A	→	4	in	the	other	path.

Why	are	the	radial	contributions	the	same?	The	path	from	A	 to	4	receives
contributions	 of	 the	 form	E(r)	 ·	dr	 from	 the	 radial	 segments	dr	 =	erdr	 that
constitute	it.	Now	look	at	the	figure.	To	every	segment	in	this	path	there	is	a
corresponding	radial	segment	in	either	1	→	2	(for	r1	≤	r	≤	r2)	or	3	→	B	(for
r3	≤	r	≤	rB)	in	which	E(r)	·	dr	=	E(r)dr	has	the	same	value.	This	is	because	E
and	dr	on	1	→	2	and	3	→	B	are	simply	rigidly	rotated	versions	of	E	and	dr	on
A	 →	 4	 and	 the	 dot	 product	 is	 unaffected	 by	 the	 joint	 rotation	 of	 the	 two
vectors.
In	general	one	can	draw	any	path	 joining	A	 and	B	made	up	of	 radial	and

angular	 segments	 and	 get	 the	 same	 answer	 in	 all	 of	 them.	 The	 angular
segments	 will	 not	 contribute	 and	 the	 sum	 of	 the	 contributions	 from	 all	 the
radial	parts	will	equal	that	of	the	one-shot	move	from	A	to	4.
It	 seems	 reasonable	 that	 by	 making	 the	 grid	 finer	 and	 finer	 we	 can

approximate	any	smooth	path	by	such	radial	and	angular	segments.	But	there
are	some	subtleties.	Even	though	the	smooth	path	and	the	jagged	one	made	of
angular	 and	 tangential	 parts	may	 appear	 indistinguishable	 to	 the	 naked	 eye,
some	 properties	 may	 be	 very	 different.	 Consider	 two	 paths	 connecting
diagonally	opposite	points	on	a	unit	square.	A	straight	path	along	the	diagonal
will	have	a	length	 	while	a	staircase	path	that	moves	in	tiny	steps	parallel	to
the	sides	and	closely	follows	the	straight	line	path	will	have	a	length	2.	So	it	is
not	obvious	that	the	line	integral	of	some	vector	field	V(r)	along	the	smooth



and	jagged	paths	will	be	equal.	Fortunately	∫E	·	dr	is	indeed	the	same	on	the
continuous	 path	 and	 the	 jagged	 approximation	 made	 of	 radial	 and	 angular
segments,	as	was	shown	in	discussions	accompanying	Figure	5.2.
We	 can	 also	 consider	 paths	 that	 leave	 the	 plane	 of	 the	 paper	 or	 are	 not

monotonic	in	r	while	going	from	A	to	B.	The	angular	parts	(which	now	lie	on
a	sphere	of	fixed	r)	will	again	make	no	contribution	since	E	is	radial,	and	the
contribution	of	the	radial	parts	will	add	up	to	the	contribution	of	A	→	4.
Once	we	understand	why	 the	 field	due	 to	one	 charge	 is	 conservative,	we

may	 use	 superposition	 to	 infer	 the	 same	 of	 the	 field	 due	 to	many	 charges.
(Pictures	 will	 not	 help	 in	 this	 case	 because	 the	 total	 E	 can	 be	 very
complicated.)

5.4			Potential	and	field	of	a	dipole
Recall	how	we	found	the	field	of	a	dipole	by	adding	the	vector	contributions
from	 +	 q	 and	 −	 q.	 The	 fact	 that	 the	 two	 vectors	 came	 with	 different
magnitudes	 and	 directions	 contributed	 to	 the	 complexity.	 I	 urge	 you	 to	 go
over	that	derivation	in	Section	2.4	before	proceeding.

Figure	5.4			The	potential	at	the	point	(x,	y)	is	simply	the	sum	of	the	two	scalar	contributions	from	±q	at
(±a,0).

We	will	 now	do	 it	 differently,	 by	 first	 computing	 the	potential	 due	 to	±q
and	 then	 taking	 the	 gradient.	 This	will	 prove	 to	 be	 a	 lot	 easier	 because	 the
potential	 is	a	scalar,	no	vector	addition	 is	 required,	and	 taking	derivatives	 is
an	act	that	can	not	only	be	done	mindlessly,	but	is	better	done	that	way.
Consider	Figure	5.4.	It	is	clear	that



We	want	 to	 evaluate	 this	 expression	 for	 r a.	When	a	 =	 0,	we	 have	V	 ≡	 0
since	the	charges	are	on	top	of	each	other	and	r±	=	r.	We	want	the	first	non-
zero	term	in	the	answer	when	a>0,	the	term	proportional	to	the	first	power	of
a.	Anything	that	goes	like	a2	or	higher	will	be	dropped.
In	Eqn.	5.71	the	numerator	r−	−	r+	contains	at	least	one	power	of	a	(since	it

vanishes	when	a	=	0):

Since	this	expression	goes	into	the	numerator	of	Eqn.	5.71,	and	it	contains
one	power	of	a	and	we	want	no	more,	we	may	evaluate	the	denominator	at	a
=	0,	i.e.,	set	r±	=	r	in	to	obtain

where

is	the	dipole	moment.
If	we	write	x	=	rcosθ,	where	θ	is	the	angle	between	r	and	the	x-axis,	we	see

that	V	falls	like	1/r2.	When	we	take	its	gradient	to	find	E,	it	will	fall	as	1/r3.
Here	are	the	details.



Similarly

Before	 we	 combine	 Ex	 and	 Ey	 to	 form	 the	 vector	 E,	 let’s	 derive	 some
results	we	will	need.	From	Figure	5.4	we	see	that

Given	that	the	dipole	moment	p	=	ip,	it	follows	that

Armed	with	Eqns.	5.90	and	5.91	we	proceed	as	follows:



in	agreement	with	Eqn.	2.42.



CHAPTER	6

Conductors	and	Capacitors

Let	us	begin	with	the	highlights	from	the	last	chapter.	We	focused	on	the	idea
that	 the	 electric	 field	 E	 is	 conservative.	 This	 means	 that	 its	 line	 integral
between	 points	 1	 and	 2	 is	 independent	 of	 the	 path	 connecting	 them,	 or
equivalently	that	its	line	integral	around	every	closed	loop	is	zero.
A	 necessary	 and	 sufficient	 condition	 for	 this	 to	 be	 true	 was	 that	 E	 be

expressible	as	the	gradient	of	a	scalar	function:

where	V	 is	called	 the	potential	 and	 is	measured	 in	volts.	When	we	multiply
both	sides	of	Eqn.	6.1	by	q,	we	obtain	the	electric	force

which	is	also	conservative.	For	a	particle	moving	in	an	electrostatic	field	this
leads	to	the	law	of	conservation	of	energy	with

as	the	potential	energy:

Just	 as	E	 is	 the	 force	 on	 a	 unit	 charge,	V	 is	 the	 potential	 energy	 of	 a	 unit
charge.	 In	 the	 gravitational	 analogy,	 if	 h(x)	 is	 the	 height	 of	 a	 mountain	 at
point	x,	we	may	factorize	the	potential	energy	as

so	that	gh(x)	essentially	encodes	the	altitude	of	the	mountain	and	mgh(x)	the
work	done	to	lug	a	particular	mass	m	to	that	height	from	sea	level.
In	electrostatics	the	voltage	V	is	the	electrical	height	(with	respect	to	some

reference)	and	qV	is	the	work	you	need	to	do	to	drag	a	charge	q	to	that	point
from	the	reference	point	where	V	=	0.
Given	the	potential	V	we	obtain	the	field	as	a	gradient.	For	example,	if	in

two	dimensions



then

where	the	line	integral	may	be	evaluated	along	any	path	with	end	points	1	and
2.
Eqn.	6.8	equates	the	gain	in	potential	energy	to	the	work	you	do	when	you

precisely	balance	the	electric	force	and	drag	a	unit	charge	from	1	to	2.
To	prove	that	E	is	conservative,	I	just	wrote	down	the	potential

for	charge	at	the	origin	and	verified	that	(minus)	its	gradient	gave	the	field:

I	also	showed	how	to	go	backward	from	E	to	V	integrating	E	as	per	Eqn.	6.8.
For	many	charges	qi	located	at	ri,	the	potential	was,	by	superposition,

Pictorial	arguments	were	given	to	explain	the	path	independence	of	the	line
integral.	 For	 a	 single	 charge	 we	 saw	 how	 going	 from	A	 to	 B	 on	 different
paths,	made	of	different	radial	and	angular	segments,	gave	the	same	answer:
the	 angular	 parts	 never	 contributed	 (since	E	 and	dr	were	 orthogonal)	while
the	radial	parts	always	added	up	to	the	same	number	on	every	path.	This	was
because	E(r)dr,	the	work	done	on	a	segment	of	radial	extent	dr	on	one	path,
was	also	done	on	 the	other	path	as	 it	crossed	 that	 range	of	r.	The	vectors	E
and	dr	on	one	path	were	the	rotated	versions	of	their	counterparts	on	the	other
path,	 and	 the	 dot	 products	 between	 the	 field	 and	 displacement	 were
unaffected	by	this	rotation	and	made	the	same	contribution	E(r)dr.



Finally	 we	 saw	 it	 was	 easier	 to	 find	 the	 field	 due	 to	 many	 charges	 by
adding	 their	 potentials,	 which	 were	 just	 some	 scalars,	 and	 then	 taking	 the
gradient,	which	was	 a	 relatively	mindless	 process,	 in	 contrast	 to	 adding	 the
individual	vector	contributions	to	E.	This	was	illustrated	by	computing	E	due
to	a	dipole	and	reproducing	results	found	earlier.

6.1			Cases	where	computing	V	from	E	is	easier
There	are	a	few	cases	where	it	is	easier	to	find	E	from	V	than	the	other	way
around.	An	 example	 is	 the	 problem	 of	 a	 hollow	 spherical	 shell	 of	 radius	R
with	some	charge	Q	spread	uniformly	on	its	surface.
To	find	V	directly	we	could	slice	the	hollow	shell	into	rings	whose	centers

lie	on	the	line	joining	the	origin	to	the	point	r	where	we	want	the	potential,	as
shown	 in	Figure	6.1.	Since	 all	 points	on	 the	 ring	 are	 equidistant	 from	r,	 its
contribution	is	just	the	charge	on	it	divided	by	the	distance	from	points	on	the
ring	to	r	(ignoring	the	4πε0	for	now).	We	then	need	to	integrate	over	all	such
rings,	 the	 closest	 one	 being	 at	 a	 distance	 r	 −	 R	 (and	 zero	 radius)	 and	 the
farthest	one	at	r	+	R	(also	of	zero	radius).	It	can	be	done,	of	course,	but	this
painful	calculation	is	totally	avoidable	in	this	case.
The	 spherical	 symmetry	 of	 the	 problem	 allows	 us	 to	 use	Gauss’s	 law	 to

find	E	very	easily	and	then	integrate	it	to	find	V.
For	r	>	R,	the	sphere	produces	the	field	of	a	point	charge	Q	at	the	origin,

while	inside	the	sphere	the	field	vanishes:

Figure	6.1			To	find	V	due	to	a	spherical	shell	carrying	charge	Q	we	can	slice	it	into	rings	and	integrate
contributions	from	them.	Details	of	this	complicated	integration	are	not	discussed	since	there	is	an
easier	way	using	Gauss’s	law,	and	the	lower	half	shows	the	resulting	V(r).	The	entire	interior	of	the
sphere	is	at	the	same	potential	as	the	surface,	because	E	=	0	inside.	The	surface	potential	is	that	of	a
point	charge	Q	at	the	origin.



To	find	V	we	invoke	the	formula

For	r1	we	choose	the	point	at	infinity,	for	r2	the	coordinate	r	of	any	point
outside	 the	sphere	where	we	want	 the	potential,	and	 for	 the	path	 (which	we
can	choose	at	will	due	to	path	independence)	a	radial	line	from	∞to	radius	r.
The	potential	V(r)	will	of	course	only	depend	on	the	radial	coordinate	r	by	the
spherical	symmetry	of	the	charge	distribution.	We	find:

In	our	convention	V(∞)	=	0	and	so	we	drop	it	to	obtain

To	find	the	potential	inside	the	sphere	we	must	continue	the	line	integral	into
the	sphere.	But	there	is	no	field	inside	the	sphere!	This	does	not	mean	V	=	0
inside,	but	rather	that	the	line	integral	receives	no	further	contributions	as	we
go	 inside.	 Its	value	everywhere	 inside	equals	V(R),	 the	value	at	 the	 surface.
Figure	6.1	shows	a	plot	of	V(r).

6.2			Visualizing	V
We	have	seen	how	drawing	electric	field	lines	gives	us	a	nice	way	to	visualize
the	salient	features	of	E(r).	Even	if	we	have	a	formula	for	it,	it	helps	to	draw
pictures.	We	are	going	to	do	the	same	with	the	potential	V.
Consider	the	simple	case	of	two	infinite	parallel	plates	with	charge	density

±σ.	We	know	the	field	between	them	is	σ/ε0	pointing	from	the	positive	to	the
negative	 plate.	 The	 upper	 plate	 pushes	 down	 a	 unit	 test	 charge	 with	 force
σ/(2ε0)	and	the	lower	one	pulls	it	down	equally	hard	to	produce	a	total	of	σ/ε0.
In	the	region	outside,	that	is,	above	the	upper	plate	and	below	the	lower	one,
the	fields	cancel	because	the	fields	due	to	such	infinite	plates	do	not	diminish
with	distance.
The	lower	plate,	being	a	conductor,	will	be	at	some	fixed	potential,	because

E	=	0	 in	a	conductor.	We	choose	 this	constant	potential	 to	be	0.	 (The	usual
choice	V(∞)	=	0	is	not	so	useful	in	this	context,	or	in	electrical	circuits.)	If	we



lift	a	unit	test	charge	upward,	against	the	downward	pointing	field,	the	work
done	is	just	the	constant	field	E	times	distance.	So	the	potential	at	a	height	y
above	the	negative	plate	is

This	 is	 just	 like	the	gravitational	problem	where	the	potential	energy	of	unit
mass	 at	 a	height	y	 above	 the	ground	 is	gy.	Figure	6.2	 shows	a	 few	 lines	of
constant	V.	These	are	called	equipotentials.	The	figure	corresponds	to	a	case
when	 the	 upper	 plate	 is	 at	 a	 potential	 4	 volts	 above	 the	 lower	 one.	 If	 a	 10
coulomb	charge	falls	from	the	upper	to	the	lower	plate,	it	will	gain	a	kinetic
energy	of	40J.	If	a	proton	of	charge	1.6	·	10−19C	fell,	it	would	gain	a	kinetic
energy	of

where	eV	stands	for	electron	volt	and	has	the	value:

It	 is	 the	energy	a	proton	gains	 if	 it	 falls	down	a	voltage	difference	of	one
volt.	It	is	still	called	an	electron	volt	because	an	electron	(which	does	most	of
the	 falling)	 that	“falls”	 from	 the	negative	 to	 the	positive	 terminal	of	a	1.5	V
battery	will	gain	 the	same	kinetic	energy	of	1.5eV.	This	 is	not	crazy:	 in	 the
figure,	 an	 electron	 released	 at	 the	 lower	 plate	 will	 “fall”	 toward	 the	 upper
plate.	The	analogy	between	voltage	and	height	in	a	gravitational	field	breaks
down	 here	 because	 unlike	 mass,	 which	 always	 falls	 down	 along	 the
gravitational	field,	a	charge	can	go	either	way	depending	upon	its	sign.	Had
there	been	objects	of	negative	mass,	they	would	be	like	helium-filled	balloons
that	have	to	be	tied	down	to	the	floor	to	keep	them	from	rising	to	the	ceiling.



Figure	6.2			A	two-dimensional	cross	section	of	the	equipotentials	(dotted	lines)	due	to	the	uniform
electric	field	(solid	arrows)	between	parallel	plates	(top)	and	that	of	point	charge	(bottom).	Note	that	the
field	is	always	perpendicular	to	the	equipotential	surfaces:	planes	in	the	first	case	and	concentric	spheres
in	the	second.

An	electron	volt	 is	 a	 convenient	unit	of	 energy	not	only	when	discussing
electrons,	which	do	all	the	charge	carrying	in	our	daily	life,	from	lightning	to
electrical	circuits,	but	also	all	atomic	scale	particles	whose	charges	are	small
multiples	of	the	electronic	charge.	This	choice	of	unit	eliminates	the	constant
use	of	numbers	like	10−19.
For	 example,	 the	 total	 energy	 of	 an	 electron	 in	 the	 innermost	 orbit	 of

hydrogen	is	−13.6eV.	This	means	that	it	can	be	knocked	out	of	the	atom	if	this
energy	or	more	is	furnished,	say	by	radiation.	This	removal	of	the	electron	is
called	ionization.

6.3			Equipotentials
Coming	 back	 to	 the	 parallel	 plates,	 note	 that	 the	 lines	 of	 constant	 V,	 the
equipotentials,	 are	 perpendicular	 to	 the	 lines	 of	E.	 I	will	 now	 consider	 one
more	case	where	this	is	again	true	and	then	explain	why	this	is	always	true.
The	 example	 is	 the	 point	 charge	q	 at	 the	 origin	whose	 field	 lines	 radiate

isotropically.	How	about	the	contours	of	constant	V?	Since	V(r)	∝	1/r,	these
are	spheres	of	fixed	radius.	The	radial	field	lines	are	then	perpendicular	to	the
equipotential	spheres,	a	planar	cross	section	of	which	is	shown	in	Figure	6.2.
Suppose	 you	 are	 asked	 to	 bring	 a	 coulomb	 from	 infinity	 to	 the	 origin,

where	there	is	a	charge	q.	The	closer	you	get	to	the	summit,	the	harder	it	is	to



climb	 Mount	 Coulomb	 because	 q	 is	 pushing	 you	 away	 with	 force	 that
diverges	like	1/r2.	The	contours	at	fixed	V	tell	you	how	you	are	doing.	Sadly,
you	will	never	get	to	the	top,	which	is	at	an	unattainable	V	=	∞.	On	the	other
hand,	 if	 you	 are	 carrying	 a	 coulomb	 from	 the	 negative	 plate	 to	 the	 positive
plate,	 which	 is	 higher	 by	 4	V,	 the	 equally	 spaced	 equipotentials	 will	 mark
your	steady	progress	toward	the	top.
Consider	now	the	electric	field	of	a	dipole	and	its	equipotentials.	We	know

they	will	 be	mutually	orthogonal	very	 close	 to	 either	 charge,	where	we	 can
ignore	the	finite	field	due	to	the	other	charge	compared	to	its	own	divergent
1/r2	 contribution	 and	where	 the	 field	 lines	 and	 equipotentials	will	 resemble
what	you	see	in	the	lower	half	of	Figure	6.2.	We	could	establish	their	mutual
orthogonality	everywhere	by	analyzing	the	formula	for	E	and	V.	Instead,	we
will	establish	this	orthogonality	once	and	for	all	for	all	of	electrostatics.
From	the	defining	relation

If	you	are	at	some	point	r,	this	equation	tells	you	how	much	V	will	change
if	 you	 move	 by	 an	 amount	 dr,	 which	 may	 be	 in	 any	 direction.	 But	 some
directions	will	produce	more	change	than	others	for	a	given	value	of	|dr|,	the
length	 of	 the	 step	 you	 take.	 This	 can	 be	 quantified	 if	 we	 rewrite	 the	 dot
product	in	its	alternate	form

where	θ	is	the	angle	between	the	field	and	the	displacement.	Let	us	keep	the
step	length	|dr|	fixed	and	study	the	impact	of	the	angle	θ	relative	to	E.
If	you	move	in	the	direction	of	E,	(θ	=	0)	you	experience	the	biggest	drop

in	V.	Thus	the	electric	field	points	in	the	direction	of	the	greatest	rate	of	drop
in	V.	If	V	were	really	a	height	of	a	volcanic	mountain	and	you	wanted	to	race
to	the	bottom	before	it	blew	up,	you	should	compute	the	gradient	at	each	point
and	move	against	it,	or	compute	the	field	and	move	along	it.	If,	however,	you
were	 racing	 to	 the	 top	 to	 beat	 the	 approaching	 tsunami,	 you	 should	 do	 the
opposite.
But	suppose	you	were	very	happy	at	your	altitude.	You	could	 stay	where

you	were,	 but	 you	 could	 also	move	 perpendicular	 to	 the	 gradient	 or	E	 and
maintain	 the	 altitude:	 now	 cosθ	 =	 0	 =	 dV.	 In	 three	 dimensions	 the	 region
perpendicular	to	E	will	be	a	two-dimensional	plane.	Of	course,	you	can	only
go	an	infinitesimal	distance	along	this	plane,	because	the	direction	of	E	could



change	as	you	moved	and	you	would	have	to	find	the	plane	orthogonal	to	the
field	 at	 the	 new	 location.	By	 patching	 together	 these	 little	 planar	 areas	 you
will	 reconstruct	 the	 equipotential	 surface,	 which	 will	 be	 everywhere
perpendicular	to	E.
In	 the	 simplest	 case	 of	 the	 oppositely	 charged	 parallel	 (infinite)	 plates,

where	E	 has	 a	 constant	 downward	 direction,	 the	 equipotential	 surfaces	 you
get	in	this	manner	will	be	planes	parallel	to	the	charged	plates.	In	the	case	of	a
point	 charge	 your	 little	 equipotential	 patches	 will	 approximate	 spheres	 and
become	spheres	as	the	patch	sizes	go	to	zero.	In	the	dipolar	case	they	will	be
more	complicated	surfaces	that	reduce	to	spheres	near	the	charges.

6.4			Method	of	images
The	 notion	 of	 equipotentials	 can	 be	 exploited	 to	 solve	 a	 class	 of	 problem
using	a	trick	called	the	method	of	images.
Consider	 the	 following	 problem	 depicted	 in	 Figure	 6.3.	 A	 charge	 q	 is

placed	at	a	distance	a	to	the	left	of	an	infinite	conducting	plane	perpendicular
to	 the	 x-axis.	With	 respect	 to	 the	 origin	 (0,	 0,	 0)	 shown	 in	 the	 figure,	 the
charge	 has	 coordinates	 (−a,0,0).	 The	 plane	 is	 grounded,	 i.e.,	 held	 at	 zero
potential	by	the	earth,	which,	given	its	size,	can	give	or	take	charges	to	hold
the	 plane	 at	 its	 own	 potential,	which	 is	 taken	 to	 be	 zero.	What	will	 be	 the
electric	field	in	all	of	space?

Figure	6.3			The	main	features	of	the	field	due	to	a	point	charge	q	in	front	of	an	infinite	grounded
conducting	plane	that	passes	through	the	origin	and	is	perpendicular	to	the	x-axis.	The	figure	is	a	cross
section	in	the	xz	plane.	The	field	lines	leave	the	charge	radially	and	approach	the	conductor	normal	to	its
surface	and	terminate	on	the	induced	negative	charges.	Also	shown	is	a	hemisphere	of	infinite	radius,
which	along	with	the	plane	forms	a	closed	surface	S	at	V	=	0.



We	can	guess	 some	broad	 features	 that	 are	 indicated	 in	Figure	 6.3.	Very
close	to	the	charge	the	field	lines	will	be	isotropic	and	radial.	If	the	plane	did
nothing,	 the	 radial	 field	will	 hit	 the	 plane	with	 a	 component	 parallel	 to	 the
plane	and	pointing	away	from	(0,	0,	0).	But	a	parallel	 field	at	 the	surface	 is
not	 allowed	 in	 a	 conductor	 in	 the	 electrostatic	 situation	 since	 charges	 will
move	in	response	to	it.	Indeed,	this	is	what	they	will	do	initially.	There	will	be
a	current	in	the	direction	of	this	field	pointing	away	from	(0,	0,	0).	This	flow
will	lead	to	an	accumulation	of	unbalanced	negative	charges	until	the	parallel
field	 due	 to	 q	 is	 annulled.	 In	 reality,	 the	 current	 is	 not	 made	 of	 positive
charges	(which	do	not	move)	but	of	electrons,	which	move	against	the	field	of
q.	They	cannot	leave	the	conductor	and	fall	on	top	of	q,	so	they	will	instead
be	concentrated	in	front	of	it,	with	the	maximum	surface	density	at	(0,	0,	0).
The	same	picture	emerges	if	we	think	in	terms	of	the	potential.	The	initial

effect	of	q	is	to	place	different	parts	of	the	plane	at	different	potentials:	since
V	∝	q/r,	points	on	the	plane	closer	to	q	will	be	at	a	higher	potential	than	those
further	away.	This	initial	situation	will	be	quickly	remedied	as	electrons	flow
in	(from	the	ground)	to	the	high	potential	region	to	even	out	the	potential	to
zero	everywhere.
In	 any	 event,	when	 things	 settle	 down	 to	 a	 static	 configuration,	 the	 field

lines	from	q	will	approach	the	conductor	normal	to	its	surface	and	terminate
on	the	induced	negative	charges.	These	must	add	up	to	−	q	in	order	to	gobble
up	 the	 lines	 emanating	 from	+	q.	 The	 field	will	 be	 zero	 to	 the	 right	 of	 the
plane	since	no	lines	can	penetrate	a	conductor.	These	features	are	sketched	in
Figure	6.3.
What	if	the	plane	was	not	grounded?	When	+	q	is	brought	in	front	of	it,	the

neutral	plane	will	separate	or	polarize	into	charges	±q.	The	charges	−	q	will
place	 themselves	 in	 front	 of	 the	 external	+	q	 so	 as	 to	 bring	 the	 plane	 to	 an
equipotential	or	equivalently	to	cancel	the	parallel	field.	The	charge	+	q	will
spread	itself	over	the	plane	to	keep	it	an	equipotential	V0.	The	finite	charge	q
spread	over	an	infinite	plane	will	lead	to	zero	charge	density	σ	and	zero	field.
Can	we	go	beyond	these	qualitative	aspects	and	answer	some	quantitative

questions?	What	exactly	will	be	the	final	field	configuration	to	the	left	of	the
plane,	 where	 E	 is	 non-zero?	 What	 will	 be	 the	 distribution	 of	 the	 induced
negative	charges	on	the	conducting	plane?	What	will	be	the	force	of	attraction
between	q	and	the	negative	charges	in	the	plane?
It	 turns	 out	 we	 can	 answer	 all	 these	 questions	 exactly	 by	 employing	 the

following	clever	trick.
Forget	our	problem	and	look	at	Figure	6.4,	which	shows	the	equipotentials

of	 a	dipole.	Focus	on	 the	 infinite	plane	 that	 perpendicularly	bisects	 the	 line
joining	 the	 charges.	 All	 over	 this	 plane	 V	 =	 0	 because	 points	 on	 it	 are
equidistant	 from	 the	 two	 opposite	 charges	 and	 get	 exactly	 canceling
contributions.	 The	 dipole	 field	 to	 the	 left	 of	 the	 plane	 x	 <	 0	 shares	 many



features	with	our	problem:	the	field	lines	emerge	in	a	spherically	symmetric
manner	from	q	and	terminate	on	the	plane	orthogonally.	Does	the	similarity
end	here,	 or	 is	 the	dipole	 field	 in	 the	 region	x	<	0	 the	 actual	 answer	 to	our
problem	of	a	charge	in	front	of	the	conducting	plane?
The	 answer	 is	 yes,	 but	 the	 reason	 is	 quite	 subtle.	 It	 is	 based	 on	 the

following	uniqueness	theorem:
The	 potential	 V	 inside	 a	 closed	 surface	 S	 is	 uniquely	 determined	 by	 its

values	on	S	and	the	distribution	of	the	charges	inside.
If	these	are	given,	there	is	a	unique	answer	for	V.

Figure	6.4			Equipotentials	in	a	dipole	field.	Their	shape	changes	from	spherical	very	close	to	the
charges	to	the	infinite	plane	at	V	=	0	that	is	the	perpendicular	bisector	of	the	line	joining	the	charges.
The	V	=	0	plane	and	the	hemisphere	at	infinite	radius	form	a	closed	surface	S	on	which	V	=	0,	and	inside
which	is	q.

Postponing	the	proof	of	this	uniqueness	theorem,	let	us	ask	how	it	is	to	be
applied	to	our	problem.	We	had	a	charge	q	 in	front	of	an	infinite	plane.	We
need	a	closed	surface	S	enclosing	the	charge	if	we	are	to	invoke	the	theorem.
To	this	end	we	glue	on	to	the	plane	an	infinite	hemisphere	that	extends	for	all
x	<	0.	On	 this	closed	surface	we	have	V	=	0	and	 inside	 it	we	have	a	 single
charge	q	at	x	=	−	a.
The	dipole	problem	also	has	a	closed	surface	at	V	=	0,	namely	the	infinite

equipotential	 that	 bisects	 the	 dipole	moment	 and	 the	 hemisphere	 of	 infinite
radius	that	lives	in	x	≤	0.	This	closed	region	also	contains	a	charge	q	at	x	=	−
a.	 The	 dipole	 potential	 obeys	 the	 laws	 of	 electrostatics	 using	which	 it	 was
constructed.
Since	the	 two	problems	have	the	same	value	of	V	=	0	on	the	surrounding

surface	(the	infinite	plane	glued	to	the	hemisphere	that	extends	for	x	<	0)	and
the	same	charge	distribution	inside	(charge	q	at	x	=	−	a)	they	must	have	the



same	potential	and	field	everywhere	inside	S.
Thus,	 to	 solve	 the	 problem	 of	 a	 charge	q	 in	 front	 of	 a	 grounded	 infinite

plane,	we	 take	 the	 dipole	 field	 and	 potential	 for	 x	 <	 0	 and	 throw	 away	 the
right	half	with	x>	0.
The	right	halves	are	different	in	the	two	cases:	in	the	given	problem	there	is

no	 field	 or	 charge	 there,	while	 in	 the	 dipole	 problem	 invoked	 by	 the	 trick,
there	is	a	charge	−	q	at	x	=	a	and	the	dipolar	field	due	to	both	the	charges	±q.
The	 crucial	 point	 is	 that	 the	 field	 in	 the	 region	 of	 interest,	 x	 <	 0,	 can	 be

produced	in	two	ways:	by	the	charge	q	in	front	of	the	conducting	plane	and	all
the	induced	negative	charges	on	it,	or	by	the	charge	q	and	the	charge	−	q	at	x
=	a	and	no	conducting	plane.	The	charge	−	q	is	called	the	image	charge.	The
image	is	a	phantom,	like	your	image	behind	a	mirror,	and	does	not	exist	in	the
original	problem.
But	 the	phantom	 is	good	 for	 computing	 the	 force	of	 attraction	between	q

and	the	plane.	Here	is	how.	The	induced	negative	charges	on	the	plane	attract
the	charge	q	through	the	field	they	produce	in	the	region	x	<	0.	But	this	is	the
same	 field	 the	 image	 charge	 would	 have	 produced	 in	 that	 region.	 So	 the
charge	q	will	 be	 attracted	 to	 the	 plane	with	 the	 same	 force	 that	 −	q	would
exert	on	it:

We	can	calculate	 the	 induced	density	σ	 on	 the	plane	as	 follows.	We	 first
find	the	normal	electric	field	at	any	point	on	the	plane	by	adding	the	electric
field	 vectors	 due	 to	 q	 and	 the	 image	 −	 q.	 Then	 we	 recall	 that	 the	 normal
electric	 field	 at	 the	 surface	 of	 a	 conductor	 equals	σ/ε0.	 For	 example,	 at	 the
point	(0,	0,	0)

with	 equal	 contributions	 from	 q	 and	 the	 image	 charge	 −	 q.	 The	 induced
charge	density	is

You	 should	 verify,	 using	 an	 appropriate	 Gaussian	 cylinder,	 that	 I	 have	my
signs	right:	E	is	positive	but	the	area	vector	is	negative	on	the	flat	face	at	x	<
0.
Upon	integrating	the	induced	charge	density	over	the	plane,	we	will	find	it

equals	 −	 q.	 This	 is	 to	 be	 expected	 since	 the	 lines	 of	 force	 that	 leave	 q



terminate	 on	 the	 plane	 in	 one	 description	 and	 on	 the	 image	 charge	 in	 the
other.
Here	 is	 another	 problem	 that	 can	 be	 solved	 by	 the	 method	 of	 images.

Suppose	 you	 place	 a	 charge	 q	 in	 front	 of	 a	 grounded	 (V	 =	 0)	 conducting
sphere	 of	 radius	R	 (rather	 than	 the	 infinite	 plane)	 at	 a	 distance	 a	 from	 the
center.	We	know	the	field	will	be	zero	inside	the	sphere,	but	what	will	 it	be
outside?	 What	 will	 be	 the	 force	 of	 attraction	 between	 q	 and	 the	 induced
charges	on	the	sphere?	What	will	be	the	distribution	of	induced	charge	on	the
sphere?

Figure	6.5			The	charges	q	and	q′	produce	an	equipotential	V	=	0	in	the	form	of	a	sphere.	The	field
outside	the	sphere	also	corresponds	to	a	problem	of	a	charge	q	placed	in	front	of	a	grounded	conducting
sphere	of	radius	R.

The	answer	follows	from	a	solved	problem	depicted	in	Figure	6.5.	We	see	a
charge	q	at	x	=	−	a	and	a	charge	 at	x	=	−	b.	This	pair	produces	an
equipotential	V	=	0	on	a	 sphere	of	 radius	 	centered	at	x	=	0.	Given	

	you	can	also	write	 	(I	urge	you	to	show	that	V	=	0
on	the	circle	r	=	R.	Then	V	=	0	on	the	sphere	r	=	R	follows	by	symmetry.)
To	apply	 the	uniqueness	 theorem	we	need	a	closed	surface	S	 at	 the	same

potential	and	enclosing	the	same	charge	in	both	problems.
Start	with	all	of	space,	a	sphere	of	infinite	radius,	and	scoop	out	a	sphere	of

radius	R	 centered	 at	 the	 origin.	 This	 volume	 has	 two	 boundaries:	 the	 outer
one,	a	sphere	at	infinity,	and	the	inner	one,	a	sphere	of	radius	R.	That	is	our	S,
which	encloses	the	volume	of	interest	in	the	original	problem.
In	the	original	and	the	image	problem	the	potential	V	=	0	on	S.	The	charge

enclosed	is	+	q	at	x	=	−	a	in	both	cases.	So	the	answer	inside	S	is	the	same	in
both	cases.
The	field	outside	 the	sphere	 is	due	 to	q	and	 its	 image	charge	

sitting	at	x	=	−	b.	Upon	computing	the	(normal)	electric	field	on	the	surface	of
the	sphere	due	to	q	and	q′	we	may	equate	it	to	the	surface	charge	density	σ/ε0.
It	will	integrate	to	q′.	Try	to	understand	why.
Again	the	method	of	images	gives	the	correct	field	only	within	the	surface

containing	 the	 real	 charge	 q.	 In	 the	 rest	 of	 the	 universe,	 where	 the	 image
charge	 is	 located	(inside	 the	sphere	of	radius	R	 in	 this	case),	 the	situation	 is



different.	In	the	original	problem	there	is	no	field	inside	the	sphere	because	it
screens	the	field	due	to	q.	In	the	image	problem	there	are	charges	and	fields	in
both	regions,	one	containing	q	and	the	other	q′	but	no	conducting	sphere.
Suppose	 the	 uncharged	 conducting	 sphere	 is	 not	 grounded.	 It	 cannot

borrow	negative	charge	q′	from	the	ground	to	realize	the	V	=	0	equipotential
configuration	discussed	above.	It	manages	as	follows.	The	sphere,	neutral	at
each	 point,	 now	 separates	 or	 polarizes	 into	 charges	 ±q′.	 The	 q′	 (which	 is
negative)	will	spread	itself	over	the	sphere	into	the	σ	described	in	the	V(S)	=	0
problem	 we	 just	 solved,	 and	 the	 −	 q′	 (which	 is	 positive)	 will	 spread	 itself
uniformly	 over	 the	 sphere,	 making	 its	 surface	 an	 equipotential	 at	 V	 =	 −
q′/(4πε0R).	If	you	send	R	→	∞,	the	sphere	becomes	the	infinite	plane	that	we
studied	earlier	and	the	potential	on	it	becomes	V	=	−	q′/(4πε0∞)	=	0.

6.4.1			Proof	of	uniqueness	(optional	section)
The	uniqueness	theorem	of	electrostatics	states	that	given
•	a	closed	surface	S,
•	the	distribution	of	charges	inside	S,	collectively	referred	to	as	qin,

•	and	the	value	of	the	potential	V(S)	on	S,

there	is	only	one	possible	potential	V	inside	S.
First,	you	will	agree	that	if	I	specify	all	the	charges	in	the	universe,	referred

to	 collectively	 as	 qin	 inside	 S,	 and	 qout	 outside	 S,	 you	 can	 of	 course	 write
down	a	unique	V:

once	we	choose	V(∞)	=	0.	This	has	been	our	approach	so	 far:	 tell	us	where
every	charge	is	and	we	can	write	down	V	everywhere	using	superposition	and
the	choice	V(∞)	=	0.
But	we	want	 something	different.	We	want	 to	pick	a	part	of	 the	universe

bounded	by	a	surface	S	and	just	want	V	inside	S.	The	closed	surface	S	could
be	a	mathematical	surface,	like	the	Gaussian	surface,	or	real	surface,	like	the
boundary	 of	 a	 conductor.	We	 are	 given	 qin	 and	 nothing	 about	 qout.	 Do	we
really	need	to	know	where	every	charge	qout	in	the	external	universe	is	to	find
V	in	our	sub-universe?	It	turns	out	we	do	not;	all	we	need	is	V(S),	the	value	of
V	 on	 S.	 In	 other	 words,	 the	 specification	 of	 V(S)	 is	 as	 restrictive	 as	 the
specification	of	all	the	outside	charges	qout	provided	we	only	want	V	inside	S.
I	repeat:	electrostatics	allows	for	only	one	solution	to	V	 inside	S	given	its

value	on	S	and	qin,	the	charge	distribution	inside.
I	will	now	demonstrate	 this	by	 showing	 that	 if	V′	 is	 another	 solution	 that



assumes	the	same	value	V(S)	on	S,	and	corresponds	to	the	same	qin,	then	V	=
V′,	inside	all	of	S.
If	 ,	there	has	to	be	a	reason,	and	it	has	to	be	that	qout	is	now	different

because	qin	 is	 fixed	 by	 assumption.	 So	 let	q′out	 be	 the	 new	distribution.	 (In
Figure	6.6	q′out	differs	from	qout	by	a	third	charge	q3out.)

Figure	6.6			Top	left:	A	set	of	charges	producing	a	potential	V	with	a	value	V(S)	on	a	closed	surface	S.
Top	right:	A	different	set	of	charges	differing	only	outside	S	that	produce	a	different	potential	V′,	which,
however,	agrees	with	V	on	S.	Bottom:	The	difference	of	the	two	sets	of	charges,	non-zero	outside	S	and
represented	by	q3out,	produces	a	difference	potential	Vd	=	V	−	V′,	which	vanishes	on	S.	If	Vd	did	not
vanish	inside,	it	would	change	from	0	and	lead	to	a	field	whose	lines	must	leave	S	(at	1	in	the	figure)
and	reenter	S	(at	2).	These	lines	imply	a	potential	difference	in	Vd	between	1	and	2,	which	are	given	to
be	on	the	equipotential	Vd	=	0.

Here	is	what	we	have:

Subtracting	the	second	line	from	the	first,	we	find

Let	me	explain	 the	 last	 step.	You	know	 that	 if	you	add	or	 superpose	 two
sets	 of	 charges,	 you	 can	 add	 or	 superpose	 the	 corresponding	 potentials	 and
fields.	 I	 hope	you	 can	 see	 that	 if	 you	 subtract	 one	 set	 of	 charges	 (qin,	qout)
from	another	(qin,	q′out),	 the	resultant	“difference”	potential	Vd	=	V	−	V′	and
field	will	be	the	corresponding	differences.	(Instead	of	subtracting,	reverse	the



second	set	of	charges	and	add.)
Let	 us	 look	 at	 the	 last	 equation	 describing	 Vd	 =	 V	 −	 V′.	 It	 vanishes

identically	on	S	and	is	produced	by	the	difference	charges	qout	−	q′out	that	lie
entirely	outside	S.	(In	the	figure	this	is	represented	by	just	one	charge.)	If	Vd,
which	vanishes	on	S,	did	not	vanish	 inside	S,	 it	would	have	 to	change	from
zero	to	non-zero	as	we	go	in.	This	change	will	produce	a	gradient	and	a	field
Ed	=	−	∇Vd.	The	 lines	of	Ed	cannot	begin	or	end	 inside	S	 since	 it	 is	 free	of
charges.	 So	 the	 lines	 that	 enter	 S	 (at	 point	 1	 in	 the	 figure)	 must	 exit
somewhere	(point	2)	on	S.	This	leads	to	a	contradiction.	The	line	integral	of
Ed	 from	 1	 to	 2	 will	 yield	 a	 non-zero	 potential	 difference	 between	 them,
whereas	every	point	on	S	is	supposed	be	at	Vd	=	0.	The	only	way	to	avoid	the
contradiction	is	for	Vd,	which	vanishes	on	S,	to	vanish	inside	all	of	S.	That	is,
V	=	V′	inside	all	of	S.
I	have	only	shown	you	that	V	is	uniquely	specified	by	V(S)	and	qin,	but	not

how	this	unique	solution	is	to	be	found.	We	are	used	to	getting	V	given	all	the
q’s	 but	 not	 some	 of	 the	 q’s	 and	 its	 values	 on	 a	 surrounding	 surface.	 This
requires	more	fancy	techniques	you	will	learn	in	advanced	courses.

6.4.2			Additional	properties	of	the	potential	V(r)
I	will	now	show	you	some	properties	of	V(r),	partly	for	 their	 intrinsic	value
and	 partly	 because	 they	 provide	 another	 route	 to	 proving	 the	 uniqueness
theorem.
Property	 1.	 In	 a	 charge-free	 region	 V(r)	 cannot	 have	 a	 maximum	 or
minimum.
Assume	 to	 the	 contrary	 that	 there	 exists	 a	 point	 r0	 at	 which	 V	 is	 a

minimum.	 This	 means	 V	 increases	 as	 we	 move	 away	 from	 r0	 in	 every
direction.	 This	means	 the	 gradient	∇V	 is	 pointing	 away	 from	r0	 or	 that	 the
electric	 field	 E	 =	 −	 ∇V	 (the	 restoring	 force)	 is	 pointing	 toward	 r0	 as	 we
approach	r0	 in	 any	direction.	The	 surface	 integral	 of	 such	 an	E	 over	 a	 tiny
surface	surrounding	r0	will	be	non-zero	(and	negative).	By	Gauss’s	law,	that
surface	must	enclose	some	negative	charge,	which	violates	the	assumption	the
region	is	charge-free.	If	r0	is	a	maximum,	we	simply	reverse	the	signs	of	the
field	 and	 the	 enclosed	 charge	 in	 the	 preceding	 argument	 to	 arrive	 at	 a
contradiction.

Property	2.	If	V(S)	=	0	on	a	surface	S	enclosing	a	charge-free	region,	V(r)	≡	0
inside	S.
Suppose	V	had	some	non-zero	values	inside	S.	The	largest	of	these	values

is	 a	 maximum	 if	 positive	 or	 a	 minimum	 if	 negative,	 both	 of	 which	 are



forbidden	by	Property	1.	So	V	≡	0	inside	a	charge-free	S	if	V(S)	=	0.
I	 can	 now	 complete	 the	 earlier	 proof	 of	 uniqueness	 in	 a	 different	 way,

starting	from	the	point	where	I	showed	that	the	difference	potential	Vd	=	V	−
V′	 vanishes	 on	 S.	 Because	 S	 bounds	 a	 charge-free	 region	 (the	 difference
charge	vanishes	inside	it),	Property	2	implies	that	Vd	≡	0	inside	S.

6.5			Capacitors
Suppose	you	are	willing	to	do	some	mechanical	work	that	can	be	stored	and
used	later.	One	way	is	to	haul	some	water	up	to	a	tank	at	some	height	above
the	ground,	doing	work	mgh.	When	you	are	 ready	 to	cash	 in,	you	allow	the
water	 to	 flow	 down	 to	 the	 ground	 along	 a	 pipe.	 The	 kinetic	 energy	 of	 the
water	can	be	used	to	turn	a	turbine	blade	or	to	run	a	mill.
Capacitors	are	the	electrical	analogs	of	this	process.	They	provide	a	way	of

storing	electrical	potential	energy	that	can	be	consumed	later.
As	 a	 simple	 example	 consider	 two	parallel	 conducting	 plates	 of	 area	A	 a

distance	d	apart.	Each	plate,	being	a	conductor	with	no	electric	field	allowed
in	its	interior,	is	at	some	fixed	potential.	If	they	are	initially	neutral	they	will
both	 be	 at	 the	 same	 potential,	 which	 we	 take	 to	 be	 0.	 Now	 we	 begin	 to
transfer	some	charge	from	the	lower	plate	to	the	upper	plate.	As	we	continue
it	 will	 become	 harder	 and	 harder	 to	 transfer	 charge	 because	 the	 positive
charges	 in	 the	upper	plate	will	 repel	 the	newcomers.	More	precisely,	 if	Q	 is
the	 charge	 on	 the	 upper	 plate	 (and	 −	Q	 the	 charge	 on	 the	 lower	 plate)	 the
electric	field	opposing	the	charge	transfer	will	be	(ignoring	edge	effects	due
to	finite	size)

The	voltage	difference	between	the	plates	will	be	the	product	of	this	constant
field	and	the	spacing	d:

If	we	define	the	capacitance	of	the	pair	of	plates	by

we	find



for	the	parallel	plate	capacitor.
Here	 is	another	example.	Take	 two	concentric	 spheres	of	 radii	a	<	b	 and

transfer	Q	 coulombs	 from	 the	 outer	 to	 the	 inner	 one.	 Since	 in	 the	 region
between	the	spheres	the	inner	sphere	will	act	like	a	point	charge	Q	centered	at
the	 origin,	 the	 potential	 difference	 is	 clearly	 that	 a	 point	 charge	 would
produce	in	this	region:

Let	us	put	our	result	to	a	test.	Consider	the	case	when	the	spacing	between	the
spheres	d	=	b−a	is	negligible	compared	to	a	or	b.	To	a	tiny	creature	of	size	d,
the	 spheres	 will	 appear	 infinitely	 large	 and	 planar	 and	 the	 formula	 should
reduce	to	that	of	the	parallel	plate	capacitor.	Indeed	it	does.	Upon	setting

Eqn.	6.35	reduces	to

upon	dropping	d2	compared	to	R2	in	the	numerator	and	setting	4πR2	=	A,	the
area	of	the	sphere.
More	 generally,	 we	 can	 build	 a	 capacitor	 out	 of	 any	 two	 conducting

objects.	Each	will	 be	 at	 some	definite	potential	 (being	a	 conductor).	 If	 they
are	initially	uncharged	we	may	take	their	common	potential	 to	be	V	=	0.	As
we	transfer	charge	Q	from	one	to	the	other,	a	potential	difference	proportional
to	Q	will	develop	and	we	may	define

as	the	capacitance	of	this	pair.	For	an	arbitrary	pair	of	conductors,	it	may	be
hard	or	impossible	to	compute	C	analytically.
Let	 us	 understand	why	V	 has	 to	 be	 proportional	 to	Q	 (and	 not,	 say	Q2).



Take	some	arrangement	of	charges	±Q	on	 the	 two	conductors	 that	produces
some	potential	difference	V.	Suppose	you	increase	the	local	charge	density	at
each	point	by	a	factor	λ.	By	superposition,	the	resultant	field	E	and	potential
V	will	also	go	up	by	λ.	The	fact	that	V	→	λV	when	Q	→	λQ	implies	V	is	linear
in	Q.
Capacitance	is	measured	in	coulombs	per	volt	and	is	referred	to	as	a	farad,

in	honor	of	Michael	Faraday	(1791–1867).	A	capacitor	with	C	=	1F	can	hold
one	coulomb	when	the	voltage	difference	between	the	two	conductors	inside
is	 one	 volt.	 A	 farad	 is	 actually	 quite	 a	 big	 unit	 and	 typically	 you	 run	 into
capacitances	of	order	millifarads	(mF)	or	microfarads	(μF).

6.6			Energy	stored	in	a	capacitor
Suppose	we	have	moved	a	charge	Q′	from	the	negative	to	positive	conductor
and	the	voltage	difference	is	V	=	Q′/C.	If	we	transfer	an	extra	dQ′	coulombs
against	this	potential,	we	have	to	do	work

The	total	work	done	when	we	have	transferred	a	charge	Q	is

The	work	done	is	the	energy	stored	in	the	capacitor,	denoted	by	U:

Look	at	Eqn.	6.39.	It	should	remind	you	of

which	is	the	work	we	have	to	do	to	stretch	the	spring	from	x	to	x	+	dx.	Just	as
it	gets	progressively	harder	to	increase	x	because	the	spring	resistance	grows
linearly	 with	 x,	 it	 gets	 progressively	 harder	 to	 transfer	 dQ′	 as	Q′	 increases
because	the	electric	field	opposing	the	transfer	grows	linearly	with	Q′.
The	energy	stored	in	the	capacitor,	Eqn.	6.41,	may	also	be	rewritten,	using

Q	=	CV,	as



6.7			Energy	of	a	charge	distribution
Suppose	we	want	to	bring	a	whole	set	of	charges,	q1,	q2,	.	.	.	qN,	which	were
infinitely	 separated	 from	 each	 other	 to	 a	 configuration	 where	 the	 qi	 are	 at
some	finite	locations	ri.	We	take	all	charges	to	be	positive	and	if	they	are	not,
we	know	how	to	put	in	the	minus	signs	and	change	the	word	“repulsion”	into
“attraction”	as	needed.
When	they	are	infinitely	far	they	don’t	even	know	about	each	other.	They

don’t	 feel	 any	 force.	The	question	 is,	 how	much	work	do	we	have	 to	do	 to
bring	them	to	the	final	configuration?	First	let’s	take	charge	1.	Let	us	place	it
at	r1.	This	takes	no	work	since	there	are	no	other	charges	at	a	finite	distance
from	it	to	exert	a	force	on	it.	Then	we	bring	charge	2	from	infinity	and	put	it
at	r2.	The	work	done,	is	by	definition,	q2	times	the	potential	at	r2	due	to	q1:

which	is	also	the	stored	energy:

This	energy	will	be	given	back	to	us	if	we	let	q2	(or	q1)	fly	off	to	infinity.	To
prevent	 the	 flying	 off,	 we	 assume	 the	 two	 charges	 are	 held	 in	 place	 by	 an
unspecified	force.
Then	we	bring	q3	from	infinity	to	r3.	How	much	work	should	we	do?	It	is

given	by	q3	times	the	potential	at	r3	due	to	q1	and	q2.	The	total	stored	energy
is

The	first	term	is	the	work	done	to	assemble	q1	and	q2,	the	second	is	the	work
done	to	drag	in	q3	from	infinity	against	the	force	due	to	q1,	and	the	last	one	is
the	work	done	to	drag	in	q3	from	infinity	against	the	force	due	to	q2.
Notice	 that	 the	 final	 expression	 for	U	 does	 not	 depend	 on	 the	 order	 in

which	the	charges	were	brought	in	from	infinity.
Finally	for	N	such	charges	the	stored	energy	is



Let	us	understand	this	sum.	First,	it	disallows	i	=	j,	i.e.,	the	self-interaction
of	charge	qi,	the	energy	needed	to	assemble	charge	qi.	We	assume	charge	qi,
say	 an	 electron,	 is	 given	 to	 us	 by	 nature.	 Our	 job	 is	 simply	 to	 bring	 these
preexisting	charges	close	to	each	other	from	infinity.	Next	is	the	factor	of	 .
We	know	from	the	case	of	N	=	3	(Eqn.	6.46)	that	we	should	count	each	pair
only	once.	The	sum	counts	each	pair	twice	and	then	divides	by	2.	Try	this	out
for	small	values	of	N.
Now,	let	me	give	another	simple	example.	I	want	to	take	a	hollow	sphere	of

radius	R	and	uniformly	deposit	Q	coulombs	on	its	surface.	How	much	work
must	 I	 do?	As	 the	 first	 couple	 of	 charges	 come	 in,	 they	 don’t	 run	 into	 any
opposition.	 But	 as	 the	 sphere	 charges	 up	 it	 starts	 fighting	 back.	 At	 some
intermediate	stage,	when	the	charge	on	this	sphere	is	Q′	and	I	want	to	bring	in
a	 charge	dQ′,	 how	much	work	do	 I	 have	 to	 do?	When	 the	 charge	 is	Q′	 the
potential	of	the	surface	of	the	sphere	is	Q′/(4πε0R).	The	whole	sphere	is	at	that
potential	and	I’m	trying	to	bring	in	a	tiny	more	dQ′	from	infinity	and	smear	it
on.	The	work	for	that	will	be

If	I	write	the	stored	energy	as	Q2/2C,	I	find

Compare	this	to	the	capacitance	of	two	concentric	spheres	of	radii	a	<	b:

If	you	send	the	outer	radius	b	→	∞	and	set	 the	 inner	radius	a	=	R,	you	will
find	C	=	4πε0R.	This	makes	sense	because	when	you	charge	a	single	sphere	of
radius	R,	you	are	bringing	charges	from	infinity,	which	is	imagined	to	be	an
equipotential	sphere	of	infinite	radius	and	V	=	0.



CHAPTER	7

Circuits	and	Currents

Toward	the	end	of	the	last	chapter	we	learned	about	capacitors.	You	can	make
a	capacitor	out	of	any	two	conductors.	Just	move	a	charge	Q	from	one	to	the
other.	At	every	stage	each	conductor	will	be	an	equipotential,	and	there	will
exist	 a	 well-defined	 potential	 difference	V,	 which	 has	 to	 be	 linear	 in	Q	 by
superposition.	The	capacitance	is	defined	by	the	relation

In	general	it	is	not	possible	to	analytically	derive	a	formula	for	C,	though	we
succeeded	 in	 two	 simple	 examples	 fabricated	 from	 parallel	 plates	 and
concentric	spheres.
At	 some	 intermediate	 stage	 when	 charge	 Q′	 has	 been	 transferred,	 the

voltage	is	V′	=	Q′/C	and	the	work	done	to	transfer	an	extra	dQ′	is

We	see	that	charging	a	capacitor	is	like	stretching	a	spring:	the	opposition
grows	linearly	with	the	extension	x	in	one	case	and	with	the	charge	Q′	in	the
other.	The	work	you	do	is	stored	in	the	charges	on	the	two	plates:	they	have
been	separated	despite	their	mutual	attraction.	They	want	to	recombine	but	do
not	have	a	path	connecting	the	two	conductors.	When	a	path	is	provided,	say
in	the	form	of	a	wire,	electrons	will	run	from	the	negative	to	the	positive	plate
gaining	kinetic	energy.	Along	the	way	they	can	light	up	a	flashbulb.

7.1			Energy	in	the	electric	field
But	there	is	another	manifestation	of	the	work	done:	there	is	now	an	electric
field	 between	 the	 conductors	 while	 there	 was	 none	 to	 begin	 with.	 For
example,	 in	 the	 parallel	 plate	 capacitor	 there	 is	 a	 constant	 field	E	 =	σ/ε0	 =
Q/(Aε0)	pointing	from	the	positive	to	the	negative	plate.	Let	us	now	relate	the



field	to	the	energy	 	through	the	following	steps:

But	A	 ·	d	 is	 the	volume	between	 the	plates	where	 the	 field	 exists	 (ignoring
fringe	 effects),	 which	 gives	 us	 the	 following	 formula	 for	 uE,	 the	 energy
density	or	energy	per	unit	volume,	due	to	the	electric	field:

Although	 we	 derived	 the	 formula	 in	 the	 context	 of	 a	 simple	 capacitor,	 the
energy	density	due	to	any	E(r)	is	given	by

no	matter	how	it	was	created.	Even	if	E	is	a	time-	and	space-dependent	field
produced	by	a	radio	station,	this	formula	for	the	energy	density	holds	at	that
space-time	point.	It	is	like	saying	that	the	energy	in	a	spring	extended	by	A	is	

	no	matter	what	agency	(human,	Yeti)	brought	about	this	extension.
Since	it	takes	energy	to	establish	the	electric	field,	it	cannot	just	disappear.

The	law	of	conservation	of	energy	will	require	that	you	account	for	it.

7.2			Circuits	and	conductivity
I’m	going	to	assume	you	have	seen	circuits	before	and	I	will	be	brief.	Let	us
begin	with	 the	definition	of	current	 in	a	wire.	 Imagine	 the	wire	as	a	perfect
cylinder	of	cross	section	A.	You	pick	some	cross-sectional	area	and	measure
the	number	of	the	coulombs	that	go	by	per	second.	That	gives	the	current	in
amperes,	 denoted	 by	A.	 The	 ampere	was	 originally	 defined	 in	macroscopic
terms	 by	 the	magnetic	 effects	 of	 currents	 in	wires.	At	 that	 time	we	 did	 not
know	about	atoms	or	electrons.
What	 is	 the	 connection	 between	 such	 a	macroscopic	 electric	 current	 and



what’s	going	on	microscopically?	We	know	electrons	carry	the	current	when
they	move.	Now	we	come	to	one	of	the	biggest	irritants	in	life.	Because	the
electron	charge	 is	defined	 to	be	negative,	when	you	draw	a	picture	with	 the
current	flowing	to	the	right,	electrons	are	actually	moving	to	the	left.	We	will
need	to	keep	an	eye	on	just	the	direction	of	the	current.	We	will	imagine	that
there	are	objects	carrying	charge	+	e	moving	in	the	direction	of	the	current.	At
any	time	you	can	go	back	to	real	life	by	reversing	the	velocity	and	charge	of
these	carriers	to	find	out	what	the	electrons	are	doing.
Back	to	the	current	in	the	wire:	assume	there	are	n	carriers	per	unit	volume

and	each	has	a	charge	e.	From	our	earlier	discussions	of	flux	we	know	that	in
one	 second	 the	 volume	 that	 flows	 past	 any	 cross	 section	 of	 area	 A	 is	 Av,
where	v	is	the	velocity	of	the	carriers.	The	number	of	carriers	in	this	volume
will	be	Avn	and	the	charge	in	this	volume	will	be	Anve.	Thus	the	current	will
be

We	may	write	the	current	as	a	product	of	the	area	A	and	the	current	density	j,
which	is	the	current	per	unit	area:

As	the	area	vector	A	and	current	density	are	parallel	(pointing	along	the	wire)
we	could	write	I	=	jA	as	a	dot	product	of	A	and	the	current	density	vector	j:

(Unfortunately,	 j	 is	 also	 the	 symbol	 we	 use	 for	 the	 unit	 vector	 in	 the	 y-
direction.	I	will	try	to	keep	them	from	both	appearing	in	the	same	discussion.
Unless	stated	otherwise,	j	will	be	the	current	density	vector.)
If	 the	 current	 density	 is	 not	 uniform	 across	 an	 area	 we	 should	 use	 the

surface	integral	of	the	current	density	j	to	find

for	the	total	current.	In	our	discussions	we	will	assume	the	current	density	in
wires	is	uniform.	In	addition,	in	steady	state,	the	current	I	will	be	assumed	to
be	a	constant	along	 the	 length	of	 the	wire:	were	 it	not	 so,	 there	would	be	a
charge	buildup	at	some	point	that	would	eventually	stop	the	flow.
Why	does	current	flow	in	a	wire?	It	is	not	simply	due	to	electronic	motion.

While	electrons	do	indeed	move	very	rapidly	in	solids,	with	typical	speeds	of



order	one	million	meters	per	second,	 this	motion	 is	 random	and	varies	 from
electron	 to	 electron.	 The	 net	 current	 due	 to	 such	motion	 is	 zero:	 for	 every
electron	moving	very	 fast	one	way	 there	 is	 another	moving	equally	 fast	 the
opposite	way.	Over	time	the	electrons	may	swap	momenta	but	as	a	population
they	 have	 this	 random	 velocity	 distribution	with	 zero	 average.	 In	 fact,	 you
could	argue	 that	without	an	external	agency	 that	 singles	out	a	direction,	 the
average	of	these	velocities	has	to	be	zero.	The	electrons	are	like	a	swarm	of
mosquitoes	going	nowhere.
Things	 change	 if	 you	 now	 apply	 a	 field	E	 along	 the	 wire.	 The	 velocity

acquires	a	non-zero	average,	called	 the	drift	velocity.	The	swarm	drifts	with
this	 average	 velocity,	 which	 translates	 into	 a	 current.	 You	 might	 say,	 “I
thought	there	was	no	electric	field	inside	a	conductor.”	Yes,	there	is	no	field
inside	 a	 perfect	 conductor	 in	 electrostatic	 equilibrium.	 The	 charges	 in
electrostatic	 equilibrium	 are	 indeed	 at	 rest,	 at	 the	 macroscopic	 level.	 The
equilibrium	 in	 a	 current-carrying	 wire	 that	 we	 are	 discussing	 is	 dynamic.
There	 is	 a	 net	 drift,	 but	 the	 drift	 has	 attained	 a	 steady	value.	 Instead	of	 the
fixed	positions	the	carriers	have	in	electrostatic	equilibrium,	they	have	a	fixed
average	 drift	 velocity	 (and	 the	 associated	 steady	 current)	 in	 this	 dynamic
equilibrium.
How	can	an	electric	field	produce	a	steady	velocity?	Should	not	the	carriers

keep	accelerating	and	should	not	the	current	grow	indefinitely	with	time?	This
would	be	 the	case	 in	a	perfect	conductor.	What	happens	 in	a	 real	conductor
like	 copper	 is	 the	 following,	 according	 to	 classical	 electrodynamics.	 (A
modification	due	to	quantum	effects	will	be	discussed	later.)	Pick	a	particular
carrier	 at	 some	 time.	 It	 experiences	 a	 force	 F	 =	 eE	 and	 accelerates	 in
response.	(I	am	dropping	vector	symbols	since	everything	is	one-dimensional
and	 along	 the	 wire	 in	 this	 discussion.)	 In	 addition	 to	 its	 random	 initial
velocity,	it	now	picks	up	a	coherent	piece,	a	drift	velocity,	along	the	applied
E.	It	then	collides	with	the	nuclei	in	the	solid.	In	such	a	collision,	it	typically
loses	 some	 energy	 (which	 appears	 as	 resistive	 heat)	 and	 typically	 loses	 all
memory	 of	 its	 original	 velocity	 and	 emerges	 from	 the	 collision	 in	 a	 totally
random	direction.	It	loses	whatever	drift	velocity	it	had	built	up.	Let	us	now
ignore	the	random	motion	(which	does	not	contribute	to	current)	and	focus	on
the	drift	velocity	along	the	applied	E.	If	I	look	at	an	assembly	of	such	carriers
what	will	I	see?	For	each	carrier,	the	drift	velocity	will	depend	on	how	long	it
has	been	accelerating	since	its	last	collision	when	its	(drift)	velocity	was	reset
to	zero.	If	it	has	been	t	seconds	since	the	last	collision,	the	drift	velocity	along
the	field	will	be



The	drift	velocity	averaged	over	all	carriers	will	be

where	 τ	 =	 ,	 the	 mean	 collision	 time,	 is	 the	 average	 time	 since	 the	 last
collision.
Earlier	we	wrote	 a	 formula	 j	 =	nev	 assuming	 all	 carriers	were	moving	 at

one	velocity	v.	We	see	that	the	picture	is	more	complicated.	Henceforth	when
we	write	j	=	nev	it	will	be	with	the	understanding	that	v	is	really	 .	Thus	the
current	density	in	field	E	will	be

We	define	the	conductivity	σ	of	the	material	as	the	ratio	of	the	current	density
to	the	field	that	causes	it:

Eqn.	7.17	tells	us	 that	 in	our	simple	model,	attributed	to	Paul	Drude	(1863–
1906),

Let	us	study	Eqn.	7.17.	Does	it	make	sense?	We	know	why	the	E	is	there:
without	 it	 pointing	 the	 way	 and	 producing	 a	 coherent	 drift	 velocity,	 the
random	motion	of	electrons	will	cause	no	current.	That	the	current	is	bigger	if
you	have	a	bigger	density	of	carriers	is	obvious.	The	inverse	dependence	on
the	mass	of	the	carriers	just	comes	from	a	=	F/m.	The	bigger	the	τ,	the	bigger
the	response,	because	the	carriers	can	go	for	a	longer	time	on	average	before
colliding,	and	therefore	they	have	more	time	to	pick	up	speed	in	the	direction
of	the	field.	The	e2	is	interesting.	One	factor	of	e	comes	because	the	force	on
the	carrier	 is	eE.	The	 second	e	 comes	because	 the	current	 it	 carries	 is	 itself
proportional	to	e.	Notice	that	the	current	is	independent	of	the	sign	of	e.	If	you
make	it	negative,	the	carriers	accelerate	the	other	way,	but	because	they	have
the	opposite	charge,	the	current	will	be	the	same.	This	means	that	you	cannot
tell	the	sign	of	the	current	carriers	by	measuring	the	conductivity.
We	can	 rewrite	 j	 =	σE	 in	 a	way	 that	will	 be	more	 familiar.	Consider	 the

situation	where	 the	 field	E	 is	obtained	by	applying	 the	voltage	difference	V
between	the	two	ends	of	a	wire	of	length	L.	Then	V	=	EL	by	definition.	The
total	current	in	the	wire	is	the	current	density	times	area,	I	=	jA.	Rather	than



saying	the	current	density	is	driven	by	the	electric	field,	let’s	say	the	current	is
driven	by	 the	voltage	difference	between	 the	 two	ends	of	 the	wire.	We	now
end	up	with

is	the	conductance.	Whereas	the	conductivity	σ	=	ne2τ/m	depends	only	on	the
material	 (copper	versus	aluminum),	 the	conductance	G	depends	additionally
on	the	dimensions	of	the	wire.	A	large	conductance	could	come	from	material
with	 small	 conductivity	 if	 the	 wire	 had	 a	 large	 cross	 section	 and	 a	 small
length.
We	are	more	 familiar	with	resistance	R	 than	conductance,	which	appears

when	we	rewrite	Eqn.	7.20

as

Again,	 resistivity	 is	 a	 property	 of	 the	 material,	 and	 the	 resistance	 depends
additionally	on	the	dimensions	of	the	wire.
Eqn.	7.22	 is	 the	well-known	Ohm’s	 law	named	after	Georg	Ohm	 (1789–

1854).	 Resistance	 is	 denoted	 by	 the	 symbol	 R	 and	 is	 measured	 in	 ohms,
represented	by	Ω.	Thus	a	5Ω	resistor	will	allow	a	current	of	2A	to	flow	when
a	voltage	V	=	10	volts	is	applied.
According	to	Eqn	7.23,	the	bigger	the	resistivity,	the	bigger	the	resistance,

which	is	to	be	expected.	In	addition,	if	the	wire	is	made	twice	as	long,	say	by
joining	two	identical	pieces	of	wire,	the	resistance	will	be	twice	as	big.	This	is
true	because	each	resistor	will	suffer	 the	same	voltage	drop,	and	it	will	 take
double	the	voltage	to	drive	the	same	current.	If	you	double	the	area,	resistance
is	turned	into	half	its	value.	This	makes	sense	if	you	think	of	the	wider	wire	as
two	 identical	 wires,	 glued	 side	 by	 side,	 each	 responding	 to	 the	 voltage	 V



across	it	and	carrying	its	own	current.
Two	caveats	are	needed	here.
First,	 I	will	often	 refer	 to	 ideal	conducting	wires	or	 leads	 in	a	circuit	 that

have	no	resistance	and	no	voltage	drop	across	them.	The	current	 	seems
indeterminate,	 but	 only	 if	 seen	 in	 isolation.	 The	 current	 I	 through	 such	 an
ideal	lead	is	decided	by	the	other	circuit	elements	and	batteries.	In	Figure	7.1
it	 is	decided	by	C	and	R	and	the	charge	on	the	capacitor.	In	reality	all	 leads
have	some	resistance	and	some	voltage	drop	across	them,	but	both	these	are
too	small	to	make	a	difference	and	chosen	to	be	zero	for	simplicity.	An	ideal
lead	 is	 like	 a	 massless	 string	 that	 transmits	 a	 force	 between	 two	 massive
objects,	one	of	which	is	being	pulled	by	a	force.	Both	the	force	on	the	string
and	its	mass	are	zero	and	its	acceleration	 	seems	indeterminate,	but	it	is
not.	It	is	decided	by	the	two	non-zero	masses	and	the	applied	force.	Massless
strings	 are	 also	 idealizations	 introduced	 to	 simplify	 the	 calculation	 and	 to
focus	on	the	objects	of	significant	mass.
Next,	when	I	said	that	the	resistivity	was	due	to	the	carriers	bumping	into

the	nuclei,	I	was	simplifying	things.	In	a	perfect	solid,	where	each	nucleus	sits
at	a	precise	location	on	a	periodic	lattice,	the	electrons	do	not	bump	into	them
at	all.	(The	average	time	since	the	last	collision	τ	will	be	infinite.)	This	is	due
to	quantum	mechanics.	The	wave	theory	of	electrons	(more	on	this	later	in	the
book)	allows	them	to	navigate	around	these	nuclei	the	way	a	blind	person	can
navigate	 around	 a	 room	 full	 of	 furniture	 placed	 at	 predictable	 and	 fixed
locations.	 At	 zero	 temperature	 the	 nuclei	 sit	 at	 well-defined	 positions	 on	 a
regular	 lattice	 and	 the	 conductance	 is	 infinite.	At	 non-zero	 temperature,	 the
nuclei	start	jiggling	around	their	nominal	positions	as	part	of	random	thermal
fluctuations.	This	unpredictability	leads	to	collisions	with	the	electrons	and	to
resistance.	There	are	other	 sources	of	 resistance	as	well,	 such	as	 impurities,
which	are	foreign	atoms	that	are	embedded	in	the	solid.
The	 conductivity	will	 generally	 depend	 on	 the	 temperature,	 the	 purity	 of

the	sample,	and	the	strength	of	interaction	between	electrons.	Even	the	mass
m	is	not	the	mass	of	the	electron	in	free	space;	it	is	modified	by	the	lattice	and
electron-electron	 interactions.	Computing	σ	 is	 a	big	 industry	 that	 calls	 for	 a
sophisticated	quantum	mechanical	treatment.

7.3			Circuits
Let	us	begin	with	a	simple	circuit	depicted	 in	Figure	7.1.	 I	 take	a	capacitor,
charge	 it	up	 to	 some	amount	Q(0),	 and	 then	connect	 it	 to	 a	 resistor	R	 via	 a
switch.	What	 happens	when	 I	 close	 that	 switch	 at	 time	 t	 =	 0?	The	 positive
charges	 were	 dying	 to	 get	 over	 to	 the	 negative	 plate,	 but	 they	 could	 not
traverse	the	vacuum	between	plates.	But	if	you	give	them	a	path,	in	the	form
of	 a	 wire,	 they	 will	 go	 through	 that	 and	 come	 back	 to	 the	 other	 plate	 and



neutralize	 their	 opposites.	The	 capacitor	 gets	 discharged	 in	 this	 process	 and
the	voltage	between	its	plates	is	diminished.
We	want	to	calculate	the	currents	and	voltages	in	this	circuit	as	a	function

of	time.	We	follow	two	rules	due	to	Gustav	Kirchoff	(1824–1887):

Figure	7.1			The	RC	circuit.	If	R	is	removed,	charges	will	build	up	at	points	3	and	4.	Their	fields	(shown
by	arrows)	kill	the	field	in	the	leads	and	reinforce	each	other	in	the	gap	where	R	is	to	be	connected.

1.	If	there	is	a	branch	in	the	circuit	at	some	node,	currents	entering	the	node	must	equal	the	currents
leaving	it.	This	is	to	enforce	charge	conservation	and	prohibit	charge	buildup	at	the	nodes,	for	this
will	eventually	stop	the	current.
2.	The	sum	of	the	changes	in	voltage	as	we	go	around	any	loop	must	add	up	to	zero.	This	is	so
because	the	line	integral	of	the	electric	field	on	a	loop	is	0,	or	equivalently	because	the	potential	at
any	point	is	like	an	electrical	height:	if	you	add	all	the	changes	in	height	as	you	go	around	a	loop,	you
must	get	zero.

In	this	circuit	there	are	no	branches	and	just	one	current	I(t).
Next	 let	 us	 add	 the	 height	 changes	 around	 the	 loop,	 starting	 at	 point	 1.

When	we	go	up	through	the	capacitor	to	2,	we	go	up	in	electrical	height	by	an
amount	 	volts.	The	leads	to	the	resistor	have	zero	resistance	and	there	is	zero
voltage	drop	between	2	and	3.	A	resistor	will	not	carry	current	unless	there	is
a	 voltage	 applied	 to	 it.	 Since	 current	 flows	 downhill,	 we	 drop	 by	RI	 volts
when	we	come	from	3	to	4.	There	is	no	further	drop	as	we	go	back	to	point	1
along	the	perfectly	conducting	leads.	Thus	we	have

A	few	words	are	needed	on	the	perfectly	conducting	leads.	We	know	there
can	be	no	field	inside	them.	Yet	we	want	a	field	inside	the	resistor	to	drive	the
current.	How	 does	 this	 field	 suddenly	 appear	 just	within	R?	Here	 is	 a	 very
simplified	explanation.	First	remove	the	resistor	and	let	the	two	ends	3	and	4
connected	to	it	dangle.	Some	tiny	positive	charge	will	initially	flow	from	the
positive	plate	to	the	tip	of	the	upper	wire	(point	3)	till	its	own	field	blocks	the
arrival	 of	 more	 positive	 charges.	 The	 field	 due	 to	 this	 accumulated	 charge
balances	 the	 field	 in	 the	 leads	due	 to	charges	 in	 the	positive	plate.	The	 lead
becomes	 field-free	 and	 equipotential.	 The	 same	 happens	 at	 the	 other	 lead,
which	will	have	some	tiny	negative	charge	at	its	tip.	Notice	that	the	fields	due



to	charges	accumulating	at	points	3	and	4	aid	each	other	(both	pointing	down
in	 the	 figure)	 where	 the	 resistor	 will	 be	 placed.	 If	 we	 now	 reinstate	 the
resistor,	the	accumulated	charges	will	drive	the	current	in	the	resistor.
Back	to	our	circuit	equation,	7.25.	What	is	the	relation	between	I	and	Q?	In

a	time	dt	the	current	I,	as	shown	in	the	figure,	carries	away	a	charge

from	the	upper	plate.	Thus

Feeding	this	into	Eqn.	7.25	we	obtain	a	differential	equation	for	Q:

Upon	integrating	both	sides	of

from	the	initial	time	of	0	(when	the	switch	was	closed)	to	time	t,	we	find

which	means

The	current	is

The	 charge	 on	 the	 capacitor	 starts	 out	 as	Q(0)	 and	 decays	 exponentially
once	you	close	the	switch.	When	will	it	completely	discharge?	The	answer	is
“Never!”	Why	is	the	capacitor	not	able	to	discharge	completely?	As	it	drives
current	through	the	resistor,	it	begins	to	discharge,	the	voltage	across	it	drops,
and	it	is	less	able	to	drive	current	through	the	resistor.	It	is	trying	to	discharge
itself,	but	soon	its	ability	to	do	that	plummets:	there	is	less	and	less	Q	on	it	to



drive	any	more	Q	away	through	the	resistor.	So	Q(t)	will	never	hit	zero	and
neither	will	I(t).	But	in	practice,	it	is	essentially	all	over	after	a	few	times	the
time-constant

The	 reason	 is	 that	 when	 t t0	 we	 have	 e	 raised	 to	 a	 big	 negative	 number,
which	is	negligible.	For	example,	if	we	set	t	=	3RC	=	3t0	in	Eqn.	7.32,	we	find
e−3≃1/20.	 If	 the	 time	 elapsed	 is	 large	 compared	 to	 the	 time-constant	 t0,	 the
decay	 is	 essentially	 complete.	 Here	 is	 another	way	 to	 understand	 the	 time-
constant	t0.	Consider	the	initial	rate	of	decay	of	the	current	as	per	Eqn.	7.32:

We	may	rewrite	this	as

which	means	 that	 if	 the	current	continued	 to	decay	at	 the	 initial	 rate,	 it	will
reach	zero	in	time	t0.	(Of	course,	this	is	not	what	happens—the	rate	of	decay
itself	drops	as	the	current	drops	and	the	current	is	non-zero	for	all	finite	t.)
So	capacitors	can	be	pretty	dangerous.	If	you	open	an	old	amplifier,	even

though	 it’s	not	plugged	 in,	 there	could	be	capacitors	 inside	 that	are	charged
and	the	R	in	the	diagram	could	be	you.	That’s	why	they	always	tell	you,	“Do
not	take	this	amplifier	into	your	bathtub.”
To	 operate	 the	 flashbulb	 in	 your	 camera,	 you	 charge	 up	 a	 capacitor,	 and

when	you	squeeze	the	shutter	you	close	the	circuit	and	let	it	discharge	through
the	bulb.	Here	you	want	 the	 time	constant	 to	be	very	small,	because	after	a
while	people	will	stop	smiling.
Before	we	closed	the	switch,	we	had	a	fully	charged	capacitor	with	energy

At	 t	 =	∞	 the	 capacitor	 is	 discharged	 and	 there	 is	 no	 current	 flowing.	What
happened	 to	 the	 energy?	We	know	 it	went	 into	 heating	 the	 resistor,	 but	we
would	 like	 to	see	 if	 the	 initial	stored	energy	precisely	matches	 the	 loss	over
time.
If	a	current	I	flows	through	a	resistor	across	which	is	a	voltage	V,	it	means	I



coulombs	are	falling	down	V	volts	every	second	for	a	loss	of

(The	 kinetic	 energy	 gained	 in	 the	 fall	 is	 transferred	 via	 collisions	 with	 the
nuclei	into	heat.)	Integrating	this	power	loss	over	all	time	we	get

which	is	exactly	the	initial	energy	in	the	capacitor.

7.4			The	battery	and	the	EMF	
The	trouble	with	the	RC	circuit	is	that	after	you	close	the	switch,	the	current	is
essentially	zero	after	a	few	time	constants.	If	you	want	something	more	long-
lasting	you	need	a	battery	or	cell,	shown	in	Figure	7.2.	I	want	 to	share	with
you	some	fine	points	about	batteries	in	circuits.
Let	us	begin	with	what	you	might	know	already.	Between	the	positive	and

negative	 terminals	 of	 the	 battery	 there	 are	 some	 chemicals	 that	 essentially
remove	electrons	from	the	positive	terminal	and	deposit	them	on	the	negative
terminal.	Soon	this	runs	into	some	opposition:	the	accumulated	charges	do	not
want	more	of	their	type	to	come	their	way.	They	set	up	an	electrostatic	field	E
that	 opposes	 the	 chemical	 forces.	At	 equilibrium	E′,	 the	 chemical	 force	 per
unit	 charge	 balances	 the	 electrical	 force	 per	 unit	 charge,	 E.	 The	 potential
difference	 associated	with	 the	 electric	 field	 is	 the	 nominal	 voltage,	 say	 1.5
volts.	We	are	then	used	to	including	the	battery	in	the	circuit	equation	as	the
source	 of	 an	 upward	 jump	 of	 1.5	 volts	 when	 we	 go	 from	 the	 negative	 to
positive	terminal.



Figure	7.2			Left:	The	electrical	circuit	indicating	the	non-conservative	chemical	force	per	unit	charge	E′
and	the	electrostatic	field	E,	which	are	equal	and	opposite	inside	the	battery.	The	battery	does	work	 q
on	every	charge	q	that	goes	uphill	from	the	negative	to	the	positive	plate.	This	work	is	returned	by	the
electrostatic	field	E	outside	the	battery	when	charges	flow	downhill	from	the	positive	to	negative
terminal	via	the	external	circuit.	Right:	The	mechanical	analogy	in	which	the	non-conservative	force	FL
due	to	the	lift	does	work	mgh	per	cycle.	Because	it	exactly	balances	the	gravitational	force	Fg,	i.e.,	FL	=
−	Fg	in	the	lift	area,	the	work	done	by	FL	is	also	the	difference	in	gravitational	potential	energy.

All	this	seems	familiar	but	there	are	some	subtle	issues	that	I	would	like	to
share	with	you.
Let	us	begin	with	an	analogy	shown	in	the	right	half	of	the	figure.	You	are

coming	down	a	ski	slope,	from	the	top	of	the	lift	T,	to	the	chalet	C.	Gravity	is
pulling	you	down	and	speeding	you	up.	If	there	were	no	trees	that	you	bump
into,	 you	 could,	 in	principle,	 ski	 right	back	up	 the	 slope	 to	 reach	 the	 top	 at
zero	 speed.	 This	 is	 just	 the	 law	 of	 conservation	 of	 kinetic	 plus	 potential
energy	 in	 the	 gravitational	 field.	But	 say	 there	 are	many	 trees	 and	 that	 you
lose	all	the	gained	kinetic	energy	by	colliding	against	them	on	the	way	down
to	C,	and	then	at	the	same	height,	to	the	bottom	of	the	lift	B.	Once	you	reach
the	bottom	B,	gravity	is	finished	with	you.	It	cannot	get	you	to	the	top	T	for
the	 next	 round.	 Indeed,	 gravity,	which	was	with	 you	 coming	down,	will	 be
against	you	going	back	up.	That	has	 to	be	so,	given	that	 it	 is	a	conservative
force.
Someone	observing	you	for	a	whole	day	will	find	you	delivering	energy	to

the	trees	every	cycle.	Something	is	giving	you	that	energy,	or	doing	that	work
on	you	every	cycle.	That	something	cannot	be	gravity	since	the	work	done	by
gravity	in	a	full	cycle	is	zero.	It	has	to	be	a	force	with	a	non-zero	line	integral
over	a	closed	loop.	It	has	to	be	a	non-conservative	force.
That	force	is	of	course	the	one	due	to	the	ski	lift.	The	lift	applies	a	force	FL

that	 exactly	 balances	Fg,	 the	 force	 of	 gravity,	 as	 it	 carries	 you	 up	 from	 the
bottom	of	the	lift	B	to	the	top	T:

The	work	done	by	the	lift	on	the	upward	trip	is



Non-conservative	 forces	 are	defined	by	 their	circulation,	which	 is	 their	 line
integral	over	a	closed	loop.	How	shall	we	define	the	circulation	of	FL	that	is
non-zero	only	over	an	open	segment	B	→	T	inside	the	lift?	We	simply	add	an
extra	portion	 that	 completes	 the	 loop	by	going	back	 from	T	 to	B	 along	any
path	outside	the	lift,	say	T	→	C	→	B	in	the	figure.	You	can	choose	a	different
way	to	close	the	loop	but	it	will	not	matter	since	FL	is	identically	zero	outside
the	segment	B	→	T.	Letting	 	denote	this	loop	integral,	we	have	the	result

upon	invoking

As	Fg	 is	 conservative,	 potential	 energy	 difference	Ug(T)	 −	Ug(B)	 can	 be
traded	 for	 kinetic	 energy	 along	any	 path	 connecting	T	 to	B.	You	 cannot	 do
this	inside	the	lift	because	the	floor	keeps	you	from	falling.	But	you	can	leave
the	lift	and	ski	downhill	from	T	→	C	→	B	during	which	ride

which	nicely	relates	 ,	the	work	done	by	the	lift	to	increase	the	gravitational
potential	energy,	to	the	work	done	by	gravity	on	the	skier.
Eqn.	7.44	equates	 ,	 the	 line	 integral	of	 the	non-conservative	 force	FL	of

the	 lift	around	a	closed	 loop,	 to	 the	gravitational	potential	energy	difference
between	the	top	and	bottom	of	the	lift	due	to	the	conservative	force	Fg.	Such	a
relation	exists	because
•	 ,	the	integral	of	FL	around	any	closed	loop,	is	simply	its	integral	within	the	lift,	because	FL	is	zero
everywhere	else,	and
•	FL	=	−	Fg	during	the	climb,	so	that	this	integral	is	also	the	gravitational	potential	difference
between	top	and	bottom.

Now	return	to	the	left	half	of	the	figure	with	the	battery.	The	analogy	with
the	ski	lift	should	help	you	as	you	go	along.



The	electrostatic	field	E	is	set	up	by	the	charges	deposited	at	the	terminals
by	the	chemicals	in	the	battery	and	points	from	+	to	−	inside	the	battery,	just
like	Fg	but	with	one	trivial	difference:	E	is	the	force	on	a	unit	charge	while	Fg
was	 the	 force	on	 the	skier,	not	necessarily	of	unit	mass.	When	 the	circuit	 is
closed,	 positive	 charges	 can	 flow	 from	 the	 +	 to	 the	 −	 terminal	 through	 the
resistor.	(In	reality	it	is	the	electrons	going	the	other	way.)	In	the	resistor	they
deliver	the	excess	kinetic	energy	the	electric	field	gives	them	to	the	nuclei	via
collisions	 (that	 heat	 up	 the	 resistor)	 and	 finally	 end	 up	 at	 the	 negative
terminal.	 They	 cannot	 go	 up	 to	 the	 positive	 terminal	 using	 the	 electrostatic
field,	which	 now	 opposes	 this	motion	 inside	 the	 battery.	Here	 is	where	 the
non-conservative	chemical	force	E′	of	the	battery	(the	analog	of	the	lift	force
FL)	comes	into	play.	It	lifts	the	charges	against	the	internal	electrostatic	field
E	and	deposits	them	in	the	positive	terminal.	The	electromotive	force	or	emf
is	defined	as	the	closed	loop	integral	of	E′,	which	is	the	work	done	on	a	unit
charge	around	a	closed	loop:

The	loop	is	composed	of	 the	path	from	the	negative	 to	 the	positive	 terminal
inside	the	battery	and	an	arbitrary	path	outside	that	closes	it.	It	does	not	matter
how	 we	 choose	 this	 path	 because	 the	 entire	 contribution	 to	 	 comes	 from
inside	 the	 battery	 on	 the	 segment	 going	 from	 the	 negative	 to	 the	 positive
terminal.	That	is,

Next,	because	E′	=	−	E	inside	the	battery	(just	like	Fg	=	−	FL),	we	deduce

This	difference	in	potential	can	be	converted	to	kinetic	energy	on	any	path
going	 from	 the	+	 terminal	 to	 the	−	 terminal.	Any	 path	 inside	 the	 battery	 is
blocked	 by	 the	 chemical	 forces	 (the	way	 the	 lift	 keeps	 the	 skier	 at	 the	 top
from	 falling	 to	 the	 bottom).	But	 any	 path	 outside,	 provided	 by	 the	 external
circuit,	is	permitted.	This	is	what	happens	when	the	circuit	is	closed.
The	main	point,	which	you	may	not	have	appreciated	in	earlier	encounters,

is	 that	 even	 though	 the	 voltage	 concept	 is	 associated	with	 the	 conservative



electrostatic	 field	E,	 it	 is	numerically	 equal	 to	 the	closed	 loop	 integral	of	a
non-conservative	 chemical	 field	E′.	 The	 non-conservative	 chemical	 force	 is
needed	for	the	battery	to	do	work	cycle	after	cycle,	as	charges	go	around	the
circuit.	The	conservative	electric	 field	 takes	energy	 from	 the	chemical	 force
inside	the	battery	and	gives	it	to	the	charges	in	the	circuit.
If	you	do	not	want	to	look	under	the	hood,	you	may	simply	(and	correctly)

assume	 that	 when	 you	 travel	 across	 the	 battery	 from	 the	 negative	 to	 the
positive	terminal,	the	electrostatic	potential	goes	up	by	the	emf	 .	Sometimes
the	voltage	across	the	terminals	of	the	battery	is	denoted	by	the	more	familiar
V	rather	than	 	since	they	are	numerically	equal.
Let	 us	 write	 an	 equation	 for	 the	 circuit	 in	 Figure	 7.2.	 As	 we	 add	 the

changes	in	voltage	starting	from	point	1,	we	find	it	goes	up	by	V2−V1	=	 	for
1	→	2	 and	 by	 zero	 for	 2	→	3	 (perfectly	 conducting	wire	with	 no	 drop);	 it
drops	by	IR	during	3	→	4	and	by	zero	for	4	→	1.	Thus	we	have

which	is	sometimes	written	as	V	=	IR.

7.5			The	RC	circuit	with	a	battery
The	circuit	is	shown	in	Figure	7.3.	You	have	a	battery	with	emf	 ,	a	capacitor
C,	a	resistor	R,	and	a	switch	that	is	initially	open.	The	wire	joining	the	lower
plate	of	the	capacitor	and	the	negative	terminal	of	the	battery	ensures	that	they
are	both	at	the	same	potential,	say	V	=	0.	The	upper	plate	of	the	capacitor	is
also	at	V	=	0	 since	 there	 is	no	 field	between	 the	plates	 to	create	a	potential
difference.	The	positive	terminal	of	the	battery	is	at	V	=	 	due	to	the	electric
field	inside.	You	might	think	that	some	of	the	charges	in	the	negative	terminal
will	 flow	 to	 the	 lower	plate	of	 the	 capacitor	due	 to	 inter-electron	 repulsion.
This	does	not	happen	because	 the	negative	charges	 in	 the	negative	 terminal
are	bound	 to	 the	positive	 charges	 in	 the	positive	 terminal	 along	with	whom
they	 were	 created	 by	 the	 chemicals.	 Flowing	 to	 the	 lower	 plate	 of	 the
capacitor	 would	 increase	 their	 separation	 from	 the	 positive	 charges	 and
increase	 the	 energy.	The	positive	 and	negative	 charges	 in	 the	 two	 terminals
would	 love	 to	 reunite	 inside	 the	 battery	 but	 are	 prevented	 by	 the	 chemical
forces.
Now	 let	 us	 close	 the	 switch.	 The	 positive	 terminal	 at	 voltage	 	 is	 now

connected	to	the	positive	plate	of	the	capacitor.	Positive	and	negative	charges
that	 wanted	 to	 reunite	 inside	 the	 cell	 but	 were	 held	 back	 by	 the	 chemical
forces	still	cannot	reunite,	but	they	can	get	closer:	some	positive	charges	will
begin	 rushing	 to	 the	 upper	 plate	 of	 the	 capacitor	 and	 an	 equal	 number	 of



negative	charges	will	rush	to	the	lower	plate.	Because	there	is	a	resistor	in	the
circuit,	 the	 current	 will	 be	 finite.	 As	 the	 current	 flows,	 the	 capacitor	 will
develop	 a	 voltage	 that	 opposes	 this	 current.	The	 current	will	 stop	when	 the
opposing	 voltage	 exactly	 balances	 the	 battery.	 Soon	we	will	 find	 out	when
this	happens.

Figure	7.3			The	circuit	with	a	battery,	resistor,	capacitor,	and	switch.	Shown	are	the	non-conservative
chemical	force	per	unit	charge	E′	and	the	electrostatic	field	E,	which	are	equal	and	opposite	inside	the
battery.	Before	the	switch	is	closed	both	plates	of	the	capacitor	are	uncharged	and	at	the	same	potential.
When	the	switch	is	closed,	equal	and	opposite	charges	flow	to	the	plates	of	the	capacitor	(as	shown),
which	then	begins	to	oppose	the	very	battery	that	feeds	it.

When	 some	 positive	 and	 negative	 charges	 leave	 the	 two	 terminals,	 the
electrostatic	 force	 inside	 the	 battery	momentarily	 becomes	weaker	 than	 the
chemical	 force,	 which	 immediately	 deposits	 opposite	 charges	 on	 the	 two
terminals	to	bring	the	voltage	difference	back	to	 .
Look	 at	 what	 has	 happened	 after	 the	 switch	 was	 closed.	 Some	 positive

charges	 created	 inside	 the	 cell	 have	 gone	 to	 the	 positive	 terminal	 and
continued	 onward	 to	 the	 positive	 plate	 of	 the	 capacitor.	 Some	 negative
charges	 created	 inside	 the	 cell	 have	 gone	 to	 the	 negative	 terminal	 of	 the
battery	 and	 on	 to	 the	 negative	 plate	 of	 the	 capacitor.	 But	 negative	 charges
flowing	from	the	negative	terminal	 to	 the	negative	plate	of	 the	capacitor	are
equivalent	 to	positive	 charges	or	 current	 flowing	 from	 the	negative	plate	of
the	capacitor	 to	 the	negative	 terminal	of	 the	battery.	On	the	whole	 it	 is	as	 if
some	positive	current	has	 flowed	around	 the	circuit,	even	 though	no	charge
has	flowed	across	the	gap	between	the	plates	in	the	capacitor.
It	 is	 this	 current	 we	 want	 to	 describe,	 qualitatively	 first	 and	 then

quantitatively.	Initially	the	current	will	be	 /R	because	the	battery	is	the	only
driving	force.	But	as	the	current	flows,	it	charges	up	the	capacitor,	and	if	you
look	at	the	figure	you	can	see	that	the	capacitor	would	like	to	drive	a	current
in	 the	 opposite	 direction	 from	 the	 battery.	 It	 bites	 the	 hand	 that	 feeds	 it.
Eventually	we	expect	 that	 the	capacitor	will	 exactly	counter	 the	battery	and
then	 the	current	will	 stop.	To	know	when	 this	will	happen	we	have	 to	do	a
calculation	after	first	writing	down	the	circuit	equation.
Since	there	are	no	branches,	we	just	have	to	deal	with	just	one	current	I(t).



Starting	 at	 a	 point	 below	 the	 battery,	 as	we	move	past	 it,	we	go	up	by	 a
voltage	 	and	then	we	drop	by	an	amount	IR	when	we	cross	the	resistor	and
another	Q/C	when	we	go	from	the	positive	to	the	negative	plate	and	arrive	at
the	starting	point.	Setting	the	sum	of	all	the	voltage	changes	to	zero	we	find

Convince	yourself	that	the	current,	which	is	now	responsible	for	charging
the	capacitor	(rather	 than	discharging	as	 in	 the	previous	example	with	just	a
capacitor	and	resistor),	is	related	to	Q	by

Combining	 the	 last	 two	 equations	 we	 arrive	 at	 an	 equation	 obeyed	 by	 the
charge

We	 could	 solve	 this	 equation	 easily	 if	 it	were	 not	 for	 the	 	 on	 the	 right.
Since	it	is	a	constant,	we	eliminate	it	as	follows.	Define	 	as	follows

Eqn.	7.54	now	becomes	(upon	realizing	the	time	derivative	of	C 	vanishes):

We	have	already	solved	this	equation	before	and	the	answer	is

Since	the	initial	charge	on	the	capacitor	Q(0)	=	0,	we	see	from	Eqn.	7.55	that

and	Eqn.	7.55	implies	that



using	the	fact	that	Q(∞)	=	C .
We	 find	 from	Eqn.	7.62	 that	 the	voltage	on	 the	capacitor,	Q(t)/C,	 always

falls	short	of	 	and	reaches	that	value	only	asymptotically	as	t	→	∞.	Since	the
capacitor	is	fighting	the	very	battery	that	is	charging	it,	it	is	nourished	less	and
less	by	it	as	it	approaches	the	battery	in	stature.	But	it	cannot	ever	become	its
equal.
The	current	is	found	by	differentiating	Q(t):

This	simple	analysis	should	give	you	a	feeling	for	how	physics	works.	You
develop	 models	 of	 the	 capacitor,	 resistor,	 and	 battery	 and	 write	 down	 the
circuit	 (differential)	 equation	 that	 reflects	 the	 basic	 principles	 like	 charge
conservation	and	conservative	forces.	You	solve	the	equations	and	are	stuck
with	what	they	predict.	The	mathematics	rules	after	that	point.	And	whatever
it	tells	you,	you	rush	out	to	the	lab	to	verify.	For	example,	you	may	want	your
capacitor	 to	 attain	 80	 percent	 of	 its	maximum	 charge	 and	 you	may	 like	 to
know,	“How	long	should	I	wait?”	Simply	set	Q(t)/Q(∞)	=	.8	in	Eqn.	7.63	and
solve	for	 t.	(If	you	want	it	 to	hold	100	percent	of	the	maximum	charge,	that
will	never	happen.)
A	 final	 check	 on	 energetics.	 The	work	 done	 by	 the	 battery,	WBatt,	 is	 the

integral	of	the	power	P.	Since	the	battery	lifts	I	coulombs	per	second	over	a
“height”	 	volts,	the	power	delivered	by	it	is

and	the	energy	delivered	over	all	time	is



I	leave	it	to	you	to	verify	that	this	is	the	sum	of	the	final	energy	stored	in	the
capacitor	and	the	heat	dissipated	in	the	resistor,	both	contributing	equally.

7.6			Miscellaneous	circuits
The	following	is	a	review	of	DC	circuits.	The	same	rules	apply	in	AC	circuits,
which	we	will	study	later	in	this	course.	Look	at	Figure	7.4.

Figure	7.4			A:	Adding	resistors	in	parallel.	B:	Adding	capacitors	in	parallel.	C:	Adding	resistors	in
series.	D:	Adding	capacitors	in	series.	The	circuit	elements	are	enclosed	in	a	black	box	(dotted	line)
with	just	two	leads	coming	out.

Part	A	shows	two	resistors	R1	and	R2	in	parallel,	hidden	in	a	box,	shown	by
dotted	lines.	Just	two	terminals	marked	in	and	out	are	visible.	We	have	to	find
out	 what	 effective	 resistance	 resides	 inside.	 So	we	 hook	 the	 terminals	 to	 a
battery	of	known	voltage	V,	measure	the	current	I	that	flows,	and	declare	that
the	resistance	inside	is

The	figure	shows	the	current	I	entering	the	box	and	splitting	into	two	parts	I1
and	I2,	which	must	add	up	to	I.	We	then	reason	as	follows:



This	formula	says	that	the	final	resistance	is	less	than	either	one.	(Check	this.)
This	too	makes	sense,	as	a	parallel	path	to	either	one	implies	more	current	and
less	resistance.	You	may	also	check	that

which	 states	 that	 the	 current	 flowing	 in	 one	 branch	 is	 proportional	 to	 the
resistance	of	the	other.	This	makes	sense:	the	greater	the	opposition	to	current
the	other	branch	offers,	the	more	likely	the	current	is	to	come	your	way.
Now	 turn	 to	 part	 B	 with	 two	 capacitors	 in	 parallel.	 To	 find	 out	 their

effective	capacitance,	we	will	apply	a	voltage	V,	find	the	charge	Q	that	flows
in,	and	assign	a	value

to	 the	capacitance	 inside.	The	charge	 that	 flows	divides	 into	Q1	and	Q2	and
each	capacitor	feels	the	full	applied	V.	Thus



Thus	 capacitors	 in	 parallel	 add.	You	 can	 almost	 see	 this	 from	 the	 figure.	 If
you	just	let	the	two	capacitors	touch	and	become	one,	the	combination	has	an
area	 equal	 to	 the	 sum	of	 the	 areas	 and	 the	 same	 separation	 between	 plates.
From	the	formula	C	=	ε0A/d	we	see	C	=	C1	+	C2.	In	general	if	the	capacitors
are	 totally	different	 in	design,	we	must	 return	 to	 the	more	basic	notion	 that
capacitance	is	a	measure	of	how	much	charge	can	be	held	for	a	given	applied
voltage	and	that	when	connected	in	parallel,	the	holding	capacity	is	additive.
Part	C	shows	two	resistors	in	series.	Clearly

Finally,	part	D	shows	two	capacitors	in	series.	The	battery	sends	in	±Q	to
the	upper	plate	of	C1	and	the	lower	plate	of	C2.	If	the	two	plates	in	the	middle
do	 nothing	 there	 will	 be	 a	 field	 between	 these	 two	 plates,	 with	 the
corresponding	energy	per	unit	volume.	However,	the	energy	can	be	reduced	if
the	lower	plate	of	C1	borrows	−	Q	from	the	upper	plate	of	C2.	This	traps	the
field	 lines	 between	 the	 two	 plates	 of	 each	 capacitor,	 causing	 a	 reduction	 in
energy.	Given	this	arrangement	of	charges,	it	is	evident	that

In	 summary,	 capacitances	 in	 parallel	 simply	 add,	 just	 like	 resistances	 in
series.	 The	 inverses	 of	 capacitances	 add	 in	 series,	 just	 like	 the	 inverse	 of
resistances	in	parallel.



CHAPTER	8

Magnetism	I

Every	 time	you	 think	you’re	done	with	 the	 laws	of	physics,	 somebody	does
some	experiment	 that	doesn’t	 fit	what	you	know,	and	you	have	 to	make	up
new	stuff.	That	takes	us	to	our	next	topic:	magnetism.	Don’t	believe	the	myth
that	magnetism	was	discovered	in	Ancient	Greece,	when	parents	noticed	kids
were	sticking	their	art	work	on	the	refrigerator	using	some	little	black	rocks.
It	 is	 true,	 however,	 that	magnetic	 phenomena	 in	 lodestone	were	 discovered
before	the	common	era	and	later	used	to	make	compass	needles.

8.1			Experiments	pointing	to	magnetism
I’m	 going	 to	 give	 you	 a	 string	 of	 more	 modern	 experiments	 (depicted	 in
Figure	8.1)	that	tell	you	there	is	something	going	on	that	is	not	described	by
anything	 I’ve	 described	 so	 far	 in	 this	 course,	 new	 phenomena	 that	 are
inexplicable.
Here’s	 the	 simplest	one.	There	are	 two	parallel	wires	carrying	currents	 I1

and	I2	 in	 the	same	direction.	The	wires	are	 found	 to	attract	each	other.	This
force	cannot	be	electrostatic	since	the	wires	are	neutral.	You	can	confirm	this
by	placing	a	test	charge	next	to	either	wire	and	finding	no	response.	Next,	if
you	reverse	one	of	the	currents	the	force	becomes	repulsive.	You	might	guess
a	new	 law:	parallel	 (anti-parallel)	 currents	attract	 (repel).	However,	 it	 is	not
going	to	be	easy	to	find	a	force	vector	pointing	from	one	wire	to	the	other	by
combining	 the	 vectors	 corresponding	 to	 the	 two	 colinear	 currents:	 their	 dot
product	will	change	sign	under	current	reversal	but	will	be	a	scalar	rather	than
a	vector,	while	the	cross	product	of	the	colinear	current	vectors	will	be	zero.

Figure	8.1			Three	examples	of	the	magnetic	force:	parallel	currents	attracting,	anti-parallel	currents
repelling,	and	a	moving	charge	q	>	0	attracted	to	a	current	in	the	same	direction.	Not	shown	is	the
repulsion	if	the	charge	moves	anti-parallel	to	the	current.

Let	us	simplify	one	of	the	two	players	in	the	last	discussion	and	replace	one



wire	by	a	charge	q	>0	as	shown	in	Figure	8.1.	When	the	charge	q	sits	next	to
the	 wire	 nothing	 happens.	 This	 is	 expected	 since	 the	 wire	 is	 neutral.	 The
charge	then	begins	to	move	at	speed	v	parallel	to	the	current.	It	is	now	found
to	 be	 attracted	 to	 the	 wire.	 It	 starts	 bending	 in	 toward	 the	 wire.	 That	 also
cannot	 be	 due	 to	 the	 electrical	 force,	 which	 doesn’t	 care	 if	 the	 charge	 is
moving	or	not.	And	if	the	charge	reverses	its	velocity	and	moves	anti-parallel
to	the	current,	the	force	becomes	repulsive.	So,	this	is	one	class	of	phenomena
or	experiments	that	eludes	description	in	terms	of	what	I	have	covered	so	far.
Consider	 next	 the	most	 familiar	 case:	 bar	magnets.	 They	 seem	 to	 have	 a

north	and	a	south	end,	and	opposite	ends	attract	and	like	ends	repel	just	like
electric	charges.	How	do	you	decide	which	end	is	north?	You	can	randomly
pick	one	end	of	a	reference	magnet	as	north;	if	the	end	of	another	magnet	is
attracted	to	it,	that	is	the	south	end	and,	if	repelled,	the	north	end.	This	is	how
you	would	 decide	which	 charges	 are	 positive	 and	which	 are	 negative,	 as	 a
matter	of	convention.	But	the	words	“north”	and	“south”	have	an	independent
connotation	 (Canada	 is	 to	 the	 north	 of	 the	 United	 States)	 that	 removes	 the
arbitrariness.	 If	you	mount	 a	natural	magnet	on	a	pivot	 so	 it	 can	 swing	and
form	a	compass,	it	will	line	up	in	the	north-south	direction	on	earth.	The	end
that	points	to	the	north	(arctic)	is	the	north	pole	N	of	the	compass	needle.	This
sounds	wrong;	 it	 should	 repel	 the	 north	 pole	 of	 the	 earth,	 instead	 of	 being
attracted	to	it.	The	explanation	is	that	the	giant	magnet	inside	the	earth,	which
produces	 the	 terrestrial	 field,	 is	 actually	 upside	 down—with	 its	 magnetic
south	 pole	 (which	will	 attract	 the	 north	 pole	 of	 the	 compass	 needle)	 in	 the
arctic	 and	 its	magnetic	 north	pole	 in	 the	 antarctic,	 as	 shown	 in	 the	 leftmost
part	of	Figure	8.2.	(This	is	another	nuisance	like	the	minus	sign	in	the	electron
charge.)	To	map	out	 the	 field	of	 a	bar	magnet,	place	 the	compass	needle	at
various	places,	let	it	settle	down	and	draw	a	little	vector	from	its	south	pole	to
its	 north	 pole,	 and	 join	 the	 little	 arrows	 to	 define	 the	 lines	 of	 the	magnetic
field.	 You	 will	 end	 up	 with	 the	 familiar	 picture	 shown	 in	 Figure	 8.2.	 The
north	end	of	the	bar	magnet	is	where	the	lines	emerge	and	the	south	is	where
they	return.	 If	you	could	go	 inside	 the	magnet	with	your	needle,	you	would
find	the	lines	that	entered	the	south	end	continue	up	the	magnet	and	emerge	as
the	lines	leaving	the	north	pole.	Magnetic	lines	form	closed	loops.



Figure	8.2			The	earth,	a	bar	magnet,	and	an	electromagnet.	The	direction	of	the	field	lines	is	determined
at	each	point	by	a	compass	needle.	The	end	marked	N	is	the	north	pole	of	the	needle.	While	this	end
points	toward	the	south	pole	of	the	bar	magnet,	it	points	toward	the	geographic	north	of	the	earth
because	the	magnetic	poles	of	the	earth	are	aligned	opposite	to	the	geographic	poles.

Another	 baffling	 experimental	 fact	 is	 that	 you	 could	 make	 a	 magnet	 by
driving	current	through	a	solenoid	as	shown	in	the	figure.	The	compass	needle
responds	to	the	field	of	this	electromagnet	as	it	did	to	that	of	the	bar	magnet.
Magnet	is	reversed	if	you	reverse	the	current.
All	 this	 should	 be	 enough	 to	 convince	 you	 that	 something	 beyond

electrostatics	is	at	work.	Why	didn’t	we	need	this	something	before,	and	why
do	 we	 need	 it	 now?	 What	 is	 new	 in	 the	 phenomena	 just	 described	 to
distinguish	them	from	problems	we	have	been	studying	so	far?	What	feature
distinguishes	these	phenomena	from	electrostatics?
After	 some	 discussion	 my	 class	 was	 able	 to	 zero	 in	 on	 the	 answer:	 the

charges	are	now	moving.	Go	back	to	the	charge	q	that	was	drawn	to	the	wire
carrying	current	I.	The	charge	in	question	is	moving	and	so	are	the	charges	in
the	 current-carrying	wire.	Stop	 the	 charge	or	 the	 current	 and	 the	 force	goes
away.	(The	bar	magnets	seem	to	violate	this	characterization	since	nothing	is
moving.	Actually	there	are	circulating	atomic	currents	behind	the	magnetism.
More	on	this	later.)
So,	 magnetism	 is	 caused	 by	 moving	 charges	 and	 it	 is	 felt	 by	 moving

charges.	We	 need	 to	 figure	 out	 how	 the	 velocities	 enter	 the	 game	 in	 both
parts.
Having	impressed	you	with	an	array	of	inexplicable,	magnetic	phenomena,

I	will	now	give	you	 the	 fundamental	equations	of	magnetostatics,	 equations
that	 summarize	 everything	 I’ve	 described	 so	 far.	 (The	 “statics”	 in
magnetostatics	 may	 seem	 inappropriate	 after	 just	 saying	 that	 magnetism
involves	moving	 charges.	 It	 refers	 to	 the	 fact	 that	 the	macroscopic	currents
involved	are	constant	in	time.)
There	will	be	two	parts	to	magnetostatics,	just	as	in	electrostatics.	The	first

part	will	 specify	 the	 force	 felt	by	a	moving	charge	 in	a	magnetic	 field.	The
second	will	specify	how	currents	produce	a	magnetic	field	B.
The	 force	 on	 a	 charge	 is	 called	 the	 Lorentz	 force	 in	 honor	 of	 Hendrik

Lorentz	(1853–1928).	He	did	not	discover	this	law	but	made	other	profound
contributions	to	electrodynamics.	Here	it	is:

The	first	term	in	Eqn.	8.1	is	the	familiar	electric	force.	As	mentioned	before,
this	part	is	unaffected	by	relativity:	it	simply	relates	the	E	at	some	space-time
point	to	the	force	F	it	exerts	on	a	charge	at	that	same	point.	The	fact	that	there
is	a	delay	between	cause	and	effect	complicates	the	calculation	of	E	in	terms



of	 the	 charges	 that	 produce	 it,	 but	 not	 on	what	 it	 does	 to	 the	 charge	q,	 the
latter	being	a	local	relationship	in	space-time.
The	second	 term	 is	 the	magnetic	 force.	 It	 too	 is	unmodified	by	 relativity,

with	 the	 understanding	 that	 the	 force	 stands	 for	 the	 rate	 of	 change	 of	 the
correct	relativistic	momentum	 	and	not	its	low	velocity	limit
mv.	 You	 can	 take	 the	 Lorentz	 force	 law	 as	 the	 summary	 of	 years	 of
experiment.
How	will	you	measure	E	and	B	at	a	point	given	this	formula?
We’ve	done	 it	before	for	E.	Take	a	coulomb	and	put	 it	at	 rest	where	you

want	E.	 Find	 the	 force	 on	 it,	 and	 that’s	E.	 If	 you	 placed	 5	 coulombs,	 you
divide	 the	 force	by	5.	Finding	 the	electric	 field	 is	easy	because	 its	direction
coincides	with	the	acceleration	of	the	charge.
In	the	magnetic	problem,	there	are	lots	of	vectors	involved,	as	indicated	in

Figure	8.3.

Figure	8.3			The	magnetic	force	on	a	charge	q,	moving	at	velocity	v	in	a	field	B,	is	F	=	qv	×	B.

There	 is	 v	 the	 velocity	 of	 the	 charge,	B	 the	 magnetic	 field,	 and	 finally
magnetic	 force	F	 given	 by	 their	 cross	 product.	 Suppose	 I	 ask	 you,	 “Which
way	 is	 B	 pointing?”	You	 cannot	 use	 a	 compass	 needle.	 That	 is	 cheating;	 I
want	 you	 to	 use	 just	 the	 Lorentz	 force	 law.	One	 option	 (in	 principle)	 is	 to
shoot	 a	 few	 charged	 particles	 in	 different	 directions	 and	 find	 out	 how	 they
bend.	The	ones	with	velocity	exactly	parallel	to	B	won’t	bend	at	all	since	v	×
B	vanishes.	Once	you	have	figured	that	out,	you	have	a	plane	orthogonal	to	B
to	fire	one	more	particle.	The	force	on	it	will	have	a	magnitude	qvB	since	sin
θ	=	1	in	the	cross	product	of	perpendicular	vectors,	and	the	sense	in	which	the
particle	bends	will	tell	us	along	which	of	the	two	possible	directions	normal	to
the	plane	B	points.
The	unit	for	the	magnetic	field	is	the	tesla.	A	one-coulomb	charge	moving

at	one	meter	per	 second	perpendicular	 to	a	one-tesla	 field	will	 experience	a
force	of	one	newton.
Whenever	 a	 force	 acts	 on	 a	 body,	 you	 know	P	 =	 v	 ·	F	 is	 the	 power	 it

delivers,	 the	rate	at	which	it	does	work.	If	you	compute	that	for	 the	Lorentz
force	you	find



The	magnetic	force	makes	no	contribution	because	v	×	B	is	perpendicular	to	v
and	hence	has	zero	dot	product	with	v:

The	 magnetic	 force	 is	 always	 perpendicular	 to	 the	 velocity	 of	 the	 particle.
That	means	it	never	does	any	work.	So	you	may	say,	“Who	cares	about	such	a
thing?”	Electric	 fields	 do	 a	 lot	 of	work.	They	 speed	up	particles,	 they	 slow
them	down.	By	contrast,	the	kinetic	energy	of	a	particle	will	never	change	due
to	 the	magnetic	 field.	And	yet	you	will	 see	 that	 it	 is	extremely	useful	as	an
intermediary	in	transferring	energy,	as	in	a	generator	or	motor.

8.2			Examples	of	the	Lorentz	force,	the	cyclotron
We	 are	 now	 going	 to	 do	 some	 simple	 problems	 to	 acquaint	 you	 with	 the
magnetic	force.
In	the	first	problem,	depicted	in	Figure	8.4,	I	have	a	beam	of	particles,	all

of	which	have	the	same	mass	m	and	charge	q	>0,	but	going	from	left	to	right
with	different	speeds.
I	want	to	select	out	those	that	have	a	certain	speed.	I	want	a	velocity	filter.

Here	is	how	it	is	done.	I	take	two	parallel	plates	and	charge	them	up	so	there
is	an	electric	field	as	in	Figure	8.4.	The	particles	will	then	bend	downward	in
this	 constant	 downward	 electric	 field.	 Now	 I	 introduce	 a	 magnetic	 field	B
going	 into	 the	page.	Throughout	 this	book	a	vector	pointing	away	from	you
and	into	the	page	is	shown	by	a	symbol	⊗	and	a	vector	coming	toward	you
from	the	page	is	shown	by	⊙	or	simply	a	dot.	Now	what	is	v	×	B?	It	points
straight	up	and	has	a	magnitude	qvB,	which	varies	with	v,	the	particle	speed.
Particles	with	a	speed	v*	satisfying

will	go	undeflected	and	get	out	at	the	right	end,	while	the	others	will	either	hit
the	upper	plate	(v	>	v*)	or	the	lower	one	(v	<	v*)	assuming	the	plates	are	long
enough.	 If	 the	particle	velocity	v	>	v*,	 the	magnetic	 force	beats	 the	electric
force	and	bends	the	particle	upward.	If	not,	the	opposite	happens.	The	device
works	because	the	magnetic	force	cares	about	the	particle	velocity,	while	the
electric	force	does	not.



Figure	8.4			A	beam	of	positively	charged	particles	moving	along	the	x-axis	with	various	velocities
enters	a	velocity	filter,	a	region	of	a	crossed	electric	field	E	(down	the	y-axis)	and	magnetic	field	B	(into
the	page,	in	the	−	z	direction).	Those	moving	at	a	speed	v**	=	E	/	B	pass	through	while	faster	(slower)
ones	hit	the	top	(bottom)	plate.

Another	standard	example	of	the	Lorentz	force	is	shown	in	the	left	half	of
Figure	8.5.
There	 is	 a	 uniform	magnetic	 field	 going	 into	 the	 page.	 I	 shoot	 a	 particle

with	q	>	0	 in	 the	plane	of	 the	page	as	 indicated.	What	will	 it	do?	 It	 feels	a
force	v	×	B	and	bends	 to	 the	 left.	At	 the	new	location	 it	again	 feels	a	 force
perpendicular	 to	 the	 instantaneous	 velocity	 and	 bends	 again.	 It	 is	 like
planetary	motion.	It	will	go	in	a	circle.	It’s	not	speeding	up,	because	the	force
is	always	perpendicular	to	velocity.	You	don’t	change	the	kinetic	energy,	but
you	change	the	direction	of	motion.	If	you	want	to	trap	charged	particles,	you
put	them	in	a	magnetic	field.	They	will	not	go	anywhere,	 just	run	around	in
circles.
These	 circular	 orbits	 have	 a	 remarkable	 property	 because	 the	 magnetic

force,	unlike	gravity,	 is	velocity-dependent.	 If	 the	orbit	 has	 a	 radius	 r,	 non-
relativistic	 Newtonian	 mechanics	 (assumed	 to	 be	 valid	 at	 the	 velocities	 in
question)	 tells	 us	 to	 equate	 the	 requisite	 centripetal	 force	 to	 the	 available
magnetic	force:

Figure	8.5			Left:	A	particle	of	mass	m	and	positive	charge	q	enters	a	magnetic	field	perpendicular	to	the
page,	which	bends	it	into	a	counterclockwise	circular	orbit.	A	negative	charge	would	orbit	clockwise.
The	frequency	ω	depends	only	on	q/m	and	not	the	orbit	radius	or	velocity.	Right:	A	cyclotron	exploits
this	feature	of	ω.	A	particle	injected	near	the	center	goes	along	a	circular	arc	within	that	dee.	When	it



crosses	to	the	other	dee	it	gets	a	kick	due	to	a	voltage	drop	between	the	dees.	When	it	comes	around
back	to	the	first	dee,	the	polarity	is	reversed	and	it	gets	another	kick,	still	falling	downhill.	At	the	end	it
is	shot	out	of	the	machine.

(I	didn’t	write	the	cross	product,	because	v	is	perpendicular	to	B.)	Canceling
one	power	of	v	from	both	sides	we	find

In	a	circular	orbit	the	tangential	velocity	v	is	related	to	the	angular	velocity	ω
by

which	then	implies

The	striking	feature	of	this	result	is	that	the	orbital	frequency	ω,	called	the
cyclotron	 frequency,	 is	 independent	 of	 the	 velocity	 of	 the	 particle	 and	 the
radius	 of	 the	 orbit.	 It	 just	 depends	 on	 q/m,	 the	 charge-to-mass	 ratio	 of	 the
particle	 in	 a	 given	magnetic	 field.	This	means	 that	 if	 you	 shoot	many	 such
particles	into	the	plane	perpendicular	to	the	field	at	different	speeds,	they	will
form	orbits	of	different	radii,	but	all	the	orbits—big	and	small,	fast	and	slow
—will	be	traversed	in	the	same	time.
Ernest	Lawrence	(1901–1958),	who	was	on	the	Yale	faculty	briefly	before

going	off	 to	Berkeley,	made	sensational	use	of	 this	property	 in	devising	 the
cyclotron,	a	particle	accelerator.	But	first	consider	a	simpler	accelerator.	You
take	a	battery	with	a	voltage	V,	connect	it	to	two	parallel	plates,	and	set	up	a
field	 between	 them.	 You	 release	 a	 proton	 from	 the	 positive	 plate	 and	 it
accelerates	toward	the	negative	plate,	gaining	kinetic	energy	 .	When
it	reaches	the	negative	plate,	it	finds	you	have	cleverly	made	a	hole	that	lets	it
emerge	 through	 it	 with	 a	 velocity	 v	 =	 .	 That	 is	 your	 particle
accelerator.	If	you	want	to	accelerate	it	to	higher	and	higher	energies,	you	can
either	 get	 batteries	 with	 a	 bigger	 and	 bigger	 voltage	 or	 let	 a	 series	 of
accelerators	like	the	one	described	above	accelerate	the	particle	in	sequence.
Indeed	 this	 is	 essentially	 how	 the	 one	 at	 the	 Stanford	 Linear	 Accelerator
Center	 (SLAC)	works,	 though	 it	 uses	 a	 suitable	AC	voltage	 that	 repeatedly
keeps	kicking	the	particle	over	a	two-mile	stretch.



What	 Lawrence	 invented	 had	 a	 different	 design	 that	 uses	 electric	 and
magnetic	fields	as	follows.	Take	a	closed	metallic	cylinder	with	a	broad	base
and	a	very	small	height	and	slice	 it	 into	 two	equal	halves	along	a	diameter.
The	halves	are	called	“dees”	for	obvious	reasons.	Leave	a	small	gap	between
the	dees	as	 shown	 in	 the	 right	half	of	Figure	8.5.	Apply	a	magnetic	 field	B
perpendicular	to	the	plane	of	the	dees.	Connect	a	battery	of	voltage	V	 to	the
two	dees,	thereby	placing	them	at	different	potentials.	A	field	E	and	potential
difference	V	will	be	created	 in	 the	space	between	 the	dees.	Near	 the	center,
inject	 into	 the	 positive	 dee	 a	 positively	 charged	 particle	 at	 some	 tangential
velocity	v.	It	will	bend	in	the	magnetic	field	into	a	circular	orbit,	emerge	after
a	half-circuit,	and	enter	the	other	dee.	During	the	jump,	it	will	gain	a	kinetic
energy	qV	because	of	the	potential	difference	between	the	dees.	After	another
half	 circle,	 as	 it	 reenters	 the	 original	 dee,	 it	 will	 lose	 the	 kinetic	 energy	 it
gained	because	now	the	field	is	opposed	to	it.	What	was	a	downhill	journey	in
the	previous	jump	is	now	uphill.	This	is	not	a	good	accelerator.	Suppose	that
we	very	cleverly	swap	the	terminals	of	the	battery	just	before	the	second	jump
so	 that	 the	 particle	 gets	 another	 boost	 to	 its	 kinetic	 energy	 of	 qV.	 It	 now
travels	 on	 a	 bigger	 circle	 due	 to	 its	 increased	 speed.	When	 it	 arrives	 at	 the
next	jump	we	repeat	the	swap.	The	particle	will	keep	picking	up	speed	on	its
spiral	 path,	 always	going	down	 in	 potential,	 like	 something	out	 of	Escher’s
drawings.	 Eventually	 the	 orbital	 radius	 exceeds	 the	 dees	 in	 size,	 and	 the
accelerated	particle	is	ejected	for	the	intended	collision.
The	flaw	with	this	design	is	that	we	need	to	do	the	terminal	swapping	very

fast.	But	 there	 is	compensating	good	news	hidden	 in	what	 I	said	earlier:	we
need	to	swap	the	leads	at	 the	same	frequency	because	ω	remains	unaffected
by	the	change	in	speed	and	radius.	You	can	probably	guess	that	Lawrence	did
not	swap	the	polarity	of	the	dees	manually	or	ask	his	graduate	student	to	do	it:
he	just	applied	an	AC	voltage	of	the	desired	ω.
Lawrence’s	first	cyclotron	was	about	5	inches	in	diameter	and	could	give	a

proton	an	energy	of	80,000	eV.	(This	is	like	connecting	a	battery	with	80,000
volts	to	our	parallel	plate	accelerator.)	Later	he	used	bigger	magnets	to	reach
16,	000,000	eV’s.	His	idea	was	this:	you	do	not	need	a	million-volt	battery	to
impart	 a	million	eV	 of	 energy	 to	 a	 particle;	 you	 just	 give	 it	 a	million	 small
kicks	 of	 1	 eV	 each.	 Eventually	 a	 different	 design	was	 required	 because	 the
non-relativistic	kinematics	 that	went	 into	 the	preceding	derivation	no	 longer
applied.	 The	 next	 generation	 of	 the	 accelerators,	 called	 betatrons,	 were
designed	to	operate	at	relativistic	energies	and	will	be	discussed	later.

8.3			Lorentz	force	on	current-carrying	wires
The	Lorentz	formula	describes	the	magnetic	force	felt	by	a	single	charge,	like
an	electron.	This	is	useful	in	certain	contexts,	like	in	designing	a	cathode	ray



tube	 or	 an	 accelerator.	 But	 often	 the	moving	 charges	 are	 part	 of	 a	 current-
carrying	wire.	Let	us	derive	the	force	law	that	applies	to	macroscopic	currents
starting	from	Lorentz’s	microscopic	expression.
Consider	a	wire	of	cross	section	A	carrying	current	I	assumed	to	be	uniform

along	its	length.	The	wire	may,	however,	twist	and	turn	so	that	the	direction
of	the	current	is	variable.	We	want	to	find	the	force	on	a	little	segment,	which
I	write	as	a	vector	dl.	The	wire	is	bathed	in	a	magnetic	field	B(r),	which	may
be	assumed	constant	over	 this	 tiny	 segment.	There’s	going	 to	be	a	 force	on
this	segment	because	 there	are	 little	charged	guys	moving	 in	 the	wire.	Each
one	 feels	 a	 force	 ev	 ×	B.	We	must	 add	 them	 all	 up.	 If	 this	 segment	 has	 a
length	dl,	how	many	charges	are	we	talking	about?	It	is	the	density	of	carriers,
n,	 times	 the	 volume	 of	 the	 segment,	 which	 is	 Adl.	 Thus	 the	 force	 on	 the
segment	is

Now	I’m	going	to	do	a	little	switch	here.	The	force	contains	the	product	of	dl,
the	magnitude	of	the	vector	dl	and	the	velocity	vector	v.	Since	both	v	and	dl
point	along	the	wire,	we	can	attach	the	vector	symbol	to	dl	and	replace	v	by
its	magnitude	v:

Figure	8.6			The	magnetic	force	dF	on	a	segment	dl	of	a	wire	carrying	current	I	is	Idl	×	B.	This	is	simply
the	sum	of	the	forces	on	the	individual	carries	inside	dl.

both	of	which	describe	a	vector	of	magnitude	vdl	pointing	along	the	current.	It
follows	that

But	enAv	is	the	current	I,	and	so	the	force	on	dl	is

a	result	worth	remembering.



Here	is	an	illustrative	example.	There	is	a	uniform	magnetic	field	B	coming
out	of	the	page	in	the	+z	direction,	and	a	semicircular	wire	lying	in	the	plane
of	the	page	(the	xy-plane),	carrying	a	counterclockwise	current	I,	as	shown	in
the	 left	 half	 of	 Figure	 8.7.	 Let	 us	 find	 the	 force	 on	 its	 diameter	 and
semicircular	part.
The	 force	 on	 the	 diameter	 is	 easy	 to	 figure	 out	 since	 the	 entire	 segment

points	in	one	direction.	It	has	a	magnitude

and	points	down	the	y-axis.
As	for	the	semicircle,	the	figure	shows	a	segment	dl	at	an	angle	θ	from	the

x-axis.	Since	B	and	dl	are	perpendicular,	the	force,	perpendicular	to	both,	lies
in	 the	 plane	 of	 the	 page	 and	 points	 radially	 outward	 as	 shown,	 with	 a
magnitude	dF	=	IBdl.	The	figure	also	shows	another	segment	dl*	at	angle	π	−
θ,	 which	 feels	 a	 force	 dF*	 with	 the	 same	 y	 component	 and	 opposite	 x-
component.	Since	only	the	y-component	will	survive,	we	compute	only	that

Figure	8.7			Left:	Loop	in	the	xy-plane,	and	the	field	coming	out	of	the	page.	Right:	Loop	and	field	in
the	same	xy-plane.	In	both	cases	the	total	force	on	the	loop	vanishes.

Be	aware	that	the	sinθ	above	is	not	the	usual	factor	that	gives	the	dependence
of	 the	 cross	product	on	 the	 angle	between	 the	 two	vectors.	That	 angle	 is	 in
fact	 	 here,	 because	B	 (coming	out	of	 the	page)	 and	dl	 (in	 the	plane	of	 the
page)	 are	perpendicular.	The	angle	θ	 here	 comes	 from	projecting	out	 the	y-
component	of	dF.	Since	dl	=	Rdθ,	 the	total	force	on	the	semicircle,	pointing
up	the	y-axis	is

which	exactly	cancels	 the	downward	 force	on	 the	diameter.	So	 the	 force	on



the	closed	loop	is	zero.
Suppose	B	is	now	parallel	to	the	page	and	pointing	up	the	y-axis,	as	shown

in	the	right	half	of	the	figure.	The	force	on	the	horizontal	segment	will	be	of
the	same	magnitude	2IBR	since	the	current	is	still	perpendicular	to	B,	but	will
point	out	of	 the	page.	On	 the	 semicircle,	dl,	 the	 segment	 located	 at	 angle	θ
from	the	x-axis	and	B	are	no	longer	perpendicular	but	at	angle	θ.	The	force	of
magnitude	dF	=	IBdlsinθ	will	be	pushing	the	segment	into	the	page.	This	time
the	sin	θ	is	the	factor	that	enters	the	cross	product.	The	integral	of	dF	is	once
again	2IBR	and	it	cancels	the	force	on	the	diameter.
It	can	be	shown	that	the	force	on	any	closed	loop	in	a	uniform	B	is	zero:

where	I	have	pulled	the	constant	B	out	of	 	and	used	the	fact	that	the	vector
sum	of	all	the	little	dl’s	forming	a	closed	loop	vanishes.

8.4			The	magnetic	dipole
Next	consider	a	rectangular	loop	of	area	A	=	w	·	l	immersed	in	a	uniform	field
B	pointing	along	the	z-axis	as	shown	in	Figure	8.8.	The	loop	carries	a	current
I	in	the	sense	shown	1	→	2	→	3	→	4	→	1.	Let	us	choose	the	arrows	running
around	 the	 area	 to	 specify	 its	 orientation	 to	 be	 in	 the	 same	 sense	 as	 the
current.	If	you	curl	the	fingers	of	your	right	hand	around	the	current	(don’t	do
this	at	home)	your	thumb	will	point	along	the	area	vector	A.
The	 field	 will	 exert	 no	 net	 force	 on	 the	 loop	 by	 symmetry.	 For	 every

segment	 dl	 pointing	 one	way,	 there	 is	 one	 in	 the	 opposite	 side	 of	 the	 loop
pointing	exactly	the	opposite	way,	experiencing	the	opposite	force,	because	B
is	constant.
The	field	will,	however,	exert	a	torque	that	causes	rotation	around	the	axis

OO′.	 The	 torque	 is	 due	 to	 the	 segments	 12	 and	 34,	 which	 experience	 a
perpendicular	 force	 of	 magnitude	 BwI	 pointing	 away	 from	 the	 loop.	 (The
other	two	sides,	23	and	41,	which	also	experience	a	force	pointing	out	of	the
loop,	do	not	contribute	to	any	torque.)	The	“lever	arm”	for	the	torque	is	lsinθ
where	θ	is	the	angle	between	A	and	B.	This	may	be	clearer	in	the	side	view	in
the	 lower	 left	 of	 the	 figure,	 looking	 at	 the	 loop	 along	 the	 rotation	 axis	OO′
straight	at	the	edge	41.	So	the	torque	on	the	loop	is



Figure	8.8			A	current	loop	of	area	A	=	l	·	w	in	a	magnetic	field	B.	The	net	force	on	it	is	zero	and	the	net
torque	is	τ	=	μ	×	B,	where	the	magnetic	moment	μ	=	IA.	The	torque	is	due	to	the	forces	on	segments	1–
2	and	3–4,	which	try	to	rotate	it	around	the	axis	OO′	in	the	sense	indicated.	Forces	on	2–3	and	4–1	try	to
stretch	out	the	loop	but	not	turn	it.	The	inset	in	the	corner	shows	a	side	view	along	the	axis	OO′	to
clarify	the	torque	calculus.

The	 sin	θ	 tells	 us	 clearly	 that	we	 are	dealing	with	 the	 cross	product	 of	 two
vectors,	B,	and	the	magnetic	moment	μ,	which	is	parallel	to	A:

That	is,

The	 torque	τ	wants	 to	 align	 the	moment	μ	with	 the	 field	B.	Thus	 a	 little
loop	can	be	used	as	a	compass:	the	normal	to	it	will	point	along	B.
We	call	μ	the	magnetic	moment	of	the	loop	because	it	is	analogous	to	the

electric	 dipole	moment.	You	might	 remember	 that	 an	 electric	 dipole	p	 in	 a
field	E	experiences	a	torque

which	 also	 tries	 to	 align	p	with	E.	 So	 a	 current	 loop	 looks	 like	 a	magnetic
dipole	 in	 a	magnetic	 field.	 In	 other	 words,	 the	 loop	 behaves	 like	 a	 pair	 of
opposite	 magnetic	 charges,	 separated	 in	 the	 direction	 of	 A.	 If	 magnetic
charges	 or	 monopoles	 existed,	 this	 would	 be	 simply	 a	 magnetic	 dipole,
aligning	itself	with	the	magnetic	field.	So	far	we	have	not	found	reliable	and
reproducible	evidence	of	magnetic	charges,	or	monopoles,	that	would	produce
a	 radially	 outgoing	 or	 incoming	 magnetic	 field.	 We	 have	 only	 loops	 that



behave	like	dipoles.	Just	as	the	electric	moment	p	is	the	product	of	the	charge
and	the	separation	between	them,	the	magnetic	μ	is	the	product	of	the	current
and	the	area.
Besides	responding	to	a	magnetic	field	the	way	an	electric	dipole	responds

to	an	electric	field,	the	loop	also	produces	a	magnetic	field	that	looks	like	the
electric	 field	 of	 the	 electric	 dipole	 at	 long	 distances.	 We	 will	 eventually
compute	this	field,	but	only	for	a	simple	case.
Given	the	torque,	we	can	integrate	it	to	obtain	a	potential	energy

The	potential	 is	minimized	 (maximized)	when	 the	moment	 is	 parallel	 (anti-
parallel)	 to	 the	 field.	Unlike	 in	 the	 case	of	 the	 electrical	 dipole,	 this	 energy
only	 keeps	 track	of	 the	mechanical	work	done	 to	 turn	 the	 loop,	 but	 not	 the
electrical	work	done	to	keep	the	current	in	the	loop	constant	as	it	turns.

8.5			The	DC	motor
Now	 it	 turns	 out	 I	 can	make	 some	money	 out	 of	 this	 torque.	 I	 can	 build	 a
device.	 The	 device	 I’m	 going	 to	 build	 is	 an	 electric	 motor.	 I	 take	 two	 bar
magnets	and	place	them	north-to-south	as	shown	in	the	top	left	of	Figure	8.9.
In	this	region	of	a	constant	B,	I	place	a	current	loop	fed	by	a	battery.	The	loop
is	free	to	rotate	about	an	axis	parallel	to	the	leads.	If	the	current	is	as	shown,
the	loop	will	rotate	till	μ	aligns	itself	with	B.	Assuming	its	motion	is	damped
by	some	little	friction,	it	will	stop	in	that	position.	That	will	be	the	brief	life	of
my	motor.	It’s	going	to	turn	till	the	moment	lines	up	with	the	field	and	that’s
the	end.	And	if	it’s	already	lined	up,	it	won’t	even	do	that.	This	is	not	going	to
sell.	So	what	do	I	have	to	do?
A	very	good	suggestion	that	came	up	in	class	was	to	use	an	AC	supply.	But

what	 if	 I	 just	have	a	DC	source?	Switching	 the	poles	every	half	cycle	got	a
good	laugh	but	no	one	thought	it	was	a	good	idea.	The	actual	solution	is	very
clever.	Let	us	get	there	in	stages.



Figure	8.9			Top	left:	A	view	of	a	current	loop	in	the	field	of	two	permanent	magnets.	The	torque	on	it
will	rotate	it	till	μ	and	B	are	parallel.	If	the	current	is	then	reversed,	it	will	swing	by	another	180	degrees
and	so	on.	This	reversal	is	done	using	the	commutator	shown	in	the	inset	(top	right).	The	dotted	line	is	a
spring	that	holds	the	brushes	in	place.	Bottom:	Side	view	of	the	motor.

First,	 instead	of	 switching	 the	poles,	 I	 can	 switch	 the	 leads	 at	 the	battery
that	feeds	the	rotating	loop.	Every	time	the	loop	thinks	it	has	found	happiness,
that	it	has	reached	an	energy	minimum,	I	say	no.	I	turn	the	energy	minimum
to	 a	 maximum	 just	 when	 it	 gets	 there	 by	 reversing	 the	 current.	 So	 it	 goes
another	half	turn	and	I	do	it	again.	The	motor	will	now	work,	but	I	can	never
leave	 this	motor	and	go	anywhere,	because	 I	have	 to	stick	around	 to	switch
the	leads.	It	is	high	maintenance.
Now	for	 the	real	answer.	 If	you	don’t	know	the	answer,	you	will	be	very

impressed,	as	I	was.	That	is	the	gap	between	pure	science	and	applied	science.
It	 makes	 all	 the	 difference.	 The	 practical	 guys	 invented	 the	 commutator,
shown	 in	 the	 insert	 in	 Fig.	 8.9.	 The	 two	 leads	 from	 the	 spinning	 loop	 are
connected	to	two	semicircular	metallic	half-rings,	which	rotate	with	the	loop
and	have	a	tiny	space	between	them.	The	battery	is	not	hard-wired	to	the	loop.
Instead	 it	 is	 connected	 to	 the	 half-rings	 with	 two	 spring-loaded	 metallic
brushes;	this	allows	the	half-rings	to	spin	without	breaking	the	contact.	Now
you	 can	 see	what	 happens	 from	 the	 figure.	 Initially	 the	 positive	 terminal	 is
connected	to	 the	bottom	half-ring,	 the	negative	terminal	 to	 the	 top	half-ring,
so	that	the	current	goes	in	and	comes	out	as	shown.	But	half	a	revolution	later,
the	half-rings	switch	places,	and	the	polarity	and	current	are	reversed.



CHAPTER	9

Magnetism	II:	Biot-Savart	Law

We	have	 finished	 the	 first	 part	 of	magnetism,	which	 concerns	 the	magnetic
forces	 and	 torques	on	moving	 charges	 and	 current-carrying	wires.	We	 now
turn	 to	 the	 second	 part,	 which	 deals	 with	 how	 the	 magnetic	 fields	 are
produced	by	moving	charges	and	currents.
At	the	microscopic	level	the	magnetic	field	is	produced	by	moving	charges,

but	the	formula	for	that	is	quite	difficult	to	calculate,	because	the	charges	are
moving	around	producing	the	magnetic	field,	and	the	field	at	any	one	location
depends	on	what	they	were	doing	at	various	times	in	the	past.	This	is	just	like
electric	 fields,	 which	 are	 also	 difficult	 to	 calculate	 if	 charges	 are	 moving
because	relativity	forbids	instantaneous	action-at-a-distance.	In	electrostatics,
we	 beat	 the	 problem	 by	 saying,	 “Look,	 none	 of	 these	 charges	 ever	moved.
They’ve	been	there	forever.”	Consequently	where	they	are	now	is	where	they
were	at	any	time	in	the	past	and	we	could	calculate	the	field.	In	the	magnetic
case	 we	 cannot	 stop	 the	 charges,	 for	 we	 will	 then	 stop	 the	 current	 that
produces	 the	 field.	 Instead	 we	 say	 that	 the	 currents	 are	 steady,	 time-
independent.	This	is	a	clever	way	out	for	now:	the	charges	are	moving	in	the
wire	but	the	current,	which	causes	the	field,	is	constant.	Electron	Joe	who	is
here	in	the	wire	now	may	be	replaced	by	electron	Shmoe	a	little	later,	but	that
makes	no	difference	to	the	current.	It	is	steady.	So	the	magnetic	field	that	is
produced	 will	 also	 be	 time-independent.	 That	 is	 what	 we	 mean	 by
magnetostatics.
Do	not	confuse	a	steady	current	with	a	single	particle	moving	at	a	steady

velocity.	That	is	not	a	steady	current.	You	see	the	difference?	With	a	steady
current,	 if	 you	 sit	 at	 any	 one	 point	 in	 a	wire,	 the	 current	 going	 past	 you	 is
always	 the	 same.	 If	 you	 have	 an	 ammeter	 that	 measures	 the	 current,	 its
reading	will	be	steady.	By	contrast,	a	single	charge	at	constant	velocity	causes
a	current	only	at	its	location.	When	it	moves,	the	current	goes	with	it.	There	is
a	current	only	where	 there	 is	charge.	 It	 is	 like	saying	 that	when	I	go	on	 the
freeway	at	40	miles	an	hour,	I	do	not	myself	constitute	steady	traffic,	because
there	is	no	traffic	where	I	am	not.	Once	I	pay	the	toll	collector	and	pass	the
tollbooth,	it	is	all	over	for	the	revenue.	On	the	other	hand,	with	a	steady	traffic
the	money	will	be	pouring	in	steadily.
So	the	question	is,	what	is	the	magnetic	field	produced	by	a	tiny	element,	a

tiny	piece	of	current-carrying	wire?	The	magnitude	of	current	in	the	wire	is	I
no	matter	where	we	slice	it,	but	the	wire	can	twist	and	turn,	and	the	element	in



question	is	represented	by	a	vector	dl.	It’s	part	of	a	bigger	loop,	which	feeds	it
the	 current	 and	 takes	 it	 out,	 but	 its	 contribution	 depends	 on	 its	 orientation
encoded	 in	dl.	 Let	 us	 say	 it	 is	 located	 at	 r′.	 I	want	 the	 field	 at	 the	 point	 r.
Every	 segment	 of	 wire	 will	 produce	 a	 little	 magnetic	 field,	 dB.	 The
expression	for	the	field	is	called	the	Biot-Savart	law:

That	 constant	 	 (like	 its	 electric	 counterpart	 )	 is	 cooked	 up	 so	 that	 if	 I
measure	the	current	in	amperes	and	the	distances	r	and	r′	in	meters,	the	field
comes	out	in	tesla.
That	is	one	nasty	formula,	unlike	Coulomb’s	law.	Whereas	the	cause	of	the

electric	field	is	a	point	charge,	the	cause	of	the	magnetic	field	is	a	vector	dl.
That	in	turn	is	so	because	the	cause	of	the	magnetic	field	is	charge	in	motion,
which	introduces	its	own	velocity	vector.
Because	there	is	no	vector	associated	with	a	point	charge,	the	field	had	to

point	along	the	line	joining	the	charge	to	the	point	where	we	want	the	field,
along	the	separation	vector.	There	is	no	way	any	other	vector	can	get	into	the
act.	 The	 current	 element,	 on	 the	 other	 hand,	 has	 got	 its	 own	 direction,	 in
addition	to	where	it	is.	It	describes	the	way	the	wire	is	going	at	that	point.	It	is
the	presence	of	 this	 extra	vector	dl	 that	 allows	 the	 formation	of	yet	 another
vector	by	combining	it	with	the	separation	vector	r	−	r′	into	a	cross	product.
That	is	how	you	get	these	cross	products.

9.1			Practice	with	Biot-Savart:	field	of	a	loop
As	 the	 first	 illustration	of	 the	 law	we	will	 be	 finding	 the	 field	 of	 a	 circular
loop	carrying	current	I	of	radius	R,	centered	at	the	origin,	and	lying	in	the	xy-
plane,	as	shown	in	Figure	9.1.	We	will	only	consider	the	field	at	a	point	with
coordinates	(0,	0,	z)	or	position	vector	r	=	kz.
As	with	a	circle	of	charge,	we	divide	the	loop	into	segments,	find	the	field

due	 to	 each,	 and	 add	 up	 the	 result.	 First	 consider	 the	 indicated	 segment	 dl
located	at	a	point	r′	on	the	y-axis.	It	 is	half	 in	and	half	out	of	 the	page	(just
like	the	loop	itself),	with	the	current	going	in.	We	take	the	cross	product	of	dl
and	(r−r′)	and	divide	by	some	scalars.	The	cross	product	has	to	(i)	lie	in	the
plane	of	the	page	since	dl	is	normal	to	it	and	(ii)	be	normal	to	r	−	r′,	the	other
vector	in	the	cross	product.	So	dB	has	to	point	in	the	yz-plane.	The	magnitude
of	this	vector	is



There	 is	no	“sinθ”	 factor	 in	 the	cross	product,	 the	vectors	 in	question	being
perpendicular.

Figure	9.1			Field	due	to	current	loop	(half	in	and	half	out	of	the	page)	at	a	point	on	its	symmetry	axis.
The	vector	dB	is	the	contribution	from	a	segment	dl	that	is	going	into	the	page	and	is	perpendicular	to
the	separation	vector	r	−	r′.	We	keep	only	the	z-component	since	the	part	parallel	to	the	xy-plane	will	be
canceled	by	the	diametrically	opposite	element	dl*.

Only	the	component	of	dB	pointing	up	the	z-axis,

is	going	 to	survive,	because	 the	diametrically	opposite	segment	dl*,	coming
out	 of	 the	 page,	 will	 make	 a	 contribution	 with	 the	 same	 z-component	 and
opposite	y-component.	The	final	result	for	the	total	field	is

using	∫	dl	=	2πR.
At	the	center	of	the	loop,	the	origin,

while	as	z	→	∞,



This	field	is	exactly	what	we	found	for	the	electric	field	of	the	electric	dipole
at	long	distances,	apart	from	the	inevitable	substitution	ε0↔1/μ0.
Finding	 the	 magnetic	 field	 at	 a	 point	 off	 the	 symmetry	 axis	 is	 very

complicated	because	we	no	longer	have	all	the	symmetries.	The	result,	which
I	 state	without	proof,	 is	 that	 far	 from	 the	dipole	 the	 field	 is	 exactly	 like	 the
electric	field	of	the	electric	dipole,	depicted	in	Figure	9.2.
As	 claimed	 earlier,	 not	 only	 do	 the	 magnetic	 dipole	 and	 electric	 dipole

experience	similar	torques	in	the	corresponding	fields,	the	fields	they	produce
are	also	identical	at	long	distances.	Things	are	very	different	up	close.	If	you
go	close	to	an	electric	dipole,	you	find	two	opposite	charges.	If	you	go	close
to	 a	 magnetic	 dipole,	 you’ll	 find	 no	 magnetic	 charges	 at	 the	 center,	 just	 a
current	 loop.	 So	 nature	 gives	 us	 magnetic	 dipoles,	 but	 not	 magnetic
monopoles.

Figure	9.2			Field	due	to	a	current	loop	at	generic	off-axis	points	(schematic).	It	resembles	the	electric
field	of	an	electric	dipole	until	you	get	close	to	the	origin:	rather	than	running	into	a	pair	of	oppositely
charged	monopoles,	you	run	into	a	current	loop.

9.2			Microscopic	description	of	a	bar	magnet
Now	suppose	I	stack	a	whole	lot	of	loops	coaxially,	say	by	wrapping	a	wire
around	a	cardboard	cylinder	many	times	into	a	spiral.	Given	that	a	single	loop



produces	the	dipole	field,	it	is	plausible	that	what	we	get	looks	like	the	field
of	an	electromagnet	depicted	in	Figure	8.2.	This	field	also	looks	exactly	like
that	of	a	bar	magnet.	As	far	as	a	compass	needle	is	concerned,	it	behaves	the
same	way	around	both.
Consider	the	following.	We	can	have	a	magnetic	field	produced	by	current-

carrying	 loops.	We	 can	 also	 have	 a	 permanent	magnet	 with	 no	 currents	 in
sight.	This	magnet	is	not	connected	to	anything.	So	we	have	an	option.	Either
we	can	say	that’s	a	new	kind	of	magnetism	produced	by	God	knows	what,	or
we	can	say,	“We	believe	that	everything	is	coming	from	electric	currents.”	If
we	take	the	second	point	of	view	the	question	is,	where	are	the	currents	in	a
bar	 magnet?	 They	 come	 from	 the	 electrons	 in	 the	 atoms.	 Every	 atom	 has
electrons	going	around	 the	nucleus,	 and	every	moving	electron	 is	 a	 current.
(This	 picture	 of	 orbits	will	 be	modified	by	quantum	mechanics,	 but	 not	 the
final	result.)	Imagine	nine	electrons	in	the	plane	of	the	paper,	all	going	around
their	atoms	as	shown	in	the	left	half	of	Figure	9.3.	In	the	region	between	the
atoms,	 they	 go	 in	 opposite	 directions.	 They	 cancel.	 The	 only	 thing	 that
doesn’t	cancel	is	the	current	along	the	perimeter	or	edge.	Thus	a	single	layer
of	atoms	can	produce	a	current	at	the	edge.	It	will	be	permanent	since	atomic
currents	are.

Figure	9.3			Left:	The	uncanceled	edge	currents	of	a	layer	of	nine	atoms.	Right:	The	surface	currents	of
a	permanent	magnet	made	of	many	such	layers.

Now	 that	 is	 just	 a	 two-dimensional	 current	 loop	 due	 to	 a	 single	 atomic
layer,	but	you	can	think	of	a	magnetic	solid	as	made	of	layers	of	such	atoms.
At	the	edge	of	each	layer	is	its	current.	So	a	magnetic	material	can	effectively
have	a	sheet	of	current	on	its	surface,	which	will	produce	a	magnetic	field.	In
the	case	of	the	cylindrical	magnet	shown	in	Figure	9.3	the	electronic	orbits	lie
in	 a	 plane	perpendicular	 to	 the	 length	of	 the	 cylinder	 and	 the	 edge	 currents
flow	along	the	curved	side,	producing	a	field	along	the	axis,	as	per	the	right-
hand	rule.
Even	 this	 crude	description	of	magnetism	 leaves	us	with	 some	questions.

Why	 isn’t	 everything	magnetic?	Why	 not	 a	 potato?	 It	 has	 atoms	 that	 have
electrons,	right?	Why	aren’t	their	orbits	lined	up	to	produce	a	magnetic	field?



And	if	they	do	line	up,	which	direction	should	they	choose	for	the	north-south
axis?
First	of	all,	some	materials	may	not	become	magnets	because	the	electrons

they	contain	move	in	orbits	whose	net	contribution	 to	 the	magnetic	moment
of	 the	 atom	 is	 zero.	 For	 example,	 there	 could	 be	 two	 electrons	 orbiting	 in
opposite	directions.	If	the	atom	as	a	whole	does	not	have	a	magnetic	moment
there	is	no	question	of	macroscopic	magnetism.
Even	if	every	atom	has	some	uncanceled	magnetic	moment,	 the	moments

from	different	 atoms	may	point	 in	 random	directions,	 adding	up	 to	nothing.
The	 random	 orientation	 is	 a	 reflection	 of	 thermal	 agitation.	 Things	 like	 to
jiggle	when	you	heat	them.	If	you	take	a	bar	magnet	on	your	fridge	and	put	it
on	a	hotplate	for	a	while,	you	will	find	it	becomes	less	magnetic.	And	if	you
heat	 it	 above	 the	 Curie	 temperature	 the	 jiggling	 will	 be	 so	 intense	 that
magnetism	 will	 be	 destroyed.	 But	 if	 you	 now	 cool	 it	 below	 the	 Curie
temperature,	magnetism	will	be	restored.
A	deep	question	arises	at	this	point.	It	is	clear	how	a	magnet,	with	its	north

and	 south	 poles	 pointing	 aligned	 in	 some	 direction,	 becomes	 non-magnetic
upon	heating.	But	if	as	it	is	cooled	below	the	Curie	temperature	it	magnetizes,
which	 way	 will	 the	 magnetization	 point?	 (Here	 we	 assume	 the	 crystal	 the
atoms	form	does	not	provide	a	direction.)	How	are	the	little	moments	to	agree
on	a	common	direction	to	point	along	in	the	magnetically	ordered	state?	The
answer	 is	 that	 they	 need	 some	 help	 in	 the	 form	 of	 an	 external	 field.	 The
presence	 of	 such	 a	 magnetic	 field	 nudges	 the	 moments	 to	 align	 with	 it,
because	they	are	dipoles	in	a	field.	What	happens	if	you	turn	off	the	magnetic
field?	 In	 some	 cases	 the	 chaos	 sets	 in	 right	 away	 and	 the	 magnetization
disappears.	 In	 ferromagnetic	 materials	 below	 the	 Curie	 temperature,	 the
dipoles	 remain	 aligned	 in	 that	 direction	even	after	 you	 turn	 off	 the	 external
field.	Why?	Because	when	aligned	by	the	external	field,	the	dipoles	produce
their	own	magnetic	field	that	is	strong	enough	to	keep	them	aligned	even	after
the	external	field	is	removed.	It	pulls	itself	up	by	its	own	bootstraps.	(It	is	like
helping	 a	 kid	 ride	 a	 bike	 by	 giving	 an	 initial	 push	 to	 impart	 a	 minimum
sustainable	velocity	and	then	letting	the	kid	take	over.)	Thus	magnetism	is	a
cooperative	effect.	It	can	exist	only	if	the	thermal	agitation	is	not	too	strong	to
kill	the	ordering	tendency	generated	by	the	moments	themselves.

9.3			Magnetic	field	of	an	infinite	wire
Now	 for	 a	 classic	 problem,	 the	 magnetic	 field	 of	 an	 infinite	 straight	 wire
carrying	current	I.	Figure	9.4	shows	such	a	wire	along	the	x-axis.	We	will	find
the	field	at	the	point	r	=	(0,a)	in	the	xy-plane.	As	usual	we	take	some	segment
of	length	dx	 located	at	r′	=	(x,0)	and	find	its	contribution.	The	segment	dl	=
idx	is	along	x	and	the	separation	vector	r	−	r′	is	as	shown	and	also	lies	in	the



xy-plane.	Their	cross	product	points	out	of	the	page	and	has	magnitude

Figure	9.4			Left:	Contribution	from	a	segment	dl	=	idx,	which	is	at	an	angle	θ	relative	to	the	separation
vector	r	−	r′.	The	resulting	dB	comes	out	of	the	page.	(Vectors	coming	out	of	the	page	are	shown	by	a
circle	with	a	dot	at	the	center.)	The	segment	dl*	at	−x	makes	the	same	contribution.	The	field
everywhere	is	found	by	translations	along	the	wire	and	rotations	around	the	x-axis.	A	charge	q	moving
parallel	to	the	wire	feels	an	attractive	force.	Right:	View	looking	into	the	x-axis,	with	the	current
coming	out	of	the	page.

(The	segment	dl*	at	−x	makes	the	same	contribution	as	dl.)
You	may	fill	in	the	missing	step	by	showing	that

upon	making	the	familiar	substitution	x	=	atanθ.	As	before,	by	writing	x	=	aw
and	 changing	 variables	 you	 can	 show	 that	 the	 x-integral	 is	 a	 constant	 (a
dimensionless	 integral)	 times	 1/a.	 Even	 more	 simply,	 the	 integral	 has
dimensions	of	inverse	length	and	the	only	length	in	town	in	a.
Symmetry	now	allows	us	to	get	the	field	everywhere.	First,	the	field	will	be

the	same	as	we	move	parallel	to	the	infinite	wire.	Next,	the	wire	lives	in	three
dimensions	and	what	we	see	in	the	figure	is	cross	section	in	the	xy-plane.	We
can	obtain	the	full	configuration	by	rotating	what	we	see	around	the	x-axis.	A
view	looking	into	the	wire	with	the	current	coming	out	of	the	page	is	shown
to	the	right.	In	 terms	of	eϕ,	a	unit	vector	 in	 the	azimuthal	direction,	we	may
write



The	right-hand	rule	is	at	work	here:	 if	your	fingers	curl	along	with	B,	 the
thumb	points	along	the	current.
Whereas	 the	 infinite	 charged	 wire	 seen	 end-on	 has	 electric	 field	 lines

coming	radially	out,	the	infinite	wire	has	magnetic	field	lines	that	encircle	the
wire,	closing	in	on	themselves.	Both	fields	fall	as	1/a	even	though	individual
segments	make	contributions	that	fall	as	inverse	distance	squared.
This	formula	is	going	to	explain	a	few	phenomena	that	were	mentioned	at

the	 outset.	 Look	 at	 Figure	 9.4,	 which	 shows	 a	 charge	 q	 >	 0	 moving	 with
velocity	 v	 parallel	 to	 the	 wire	 and	 perpendicular	 to	 B.	 It	 feels	 a	 force	 of
magnitude

toward	the	wire.	Reversing	the	velocity	v	or	the	current	changes	attraction	to
repulsion.
It	 follows	 immediately	 that	 if	 we	 replace	 the	 single	 charge	 q	 by	 a	 wire

carrying	current	I′	in	the	same	direction,	it	too	will	be	attracted.	We	can	make
life	easy	by	considering	both	wires	to	be	infinite.	However,	the	force	between
them	will	also	be	infinite.	So	we	define	the	force	per	unit	length	on	the	second
wire.	Recalling	the	force	due	to	B	on	a	segment	dl	carrying	current	I′,

we	see	that	the	attractive	force	per	unit	length	(|dl|=1)	on	the	second	wire	due
to	the	first	is	of	magnitude

Changing	 the	direction	of	either	current	changes	attraction	 to	 repulsion.	We
also	 see	 that	 the	 answer	 is	 symmetric	 between	 I	 and	 I′	 and	 hence	 obeys
Newton’s	 third	 law.	 It	 is	 this	 formula	 that	was	 used,	 long	 before	we	 knew
about	 atoms	 and	 electrons,	 to	 define	 the	 ampere	 in	macroscopic	 terms:	 two
parallel	 wires	 carrying	 one	 ampere	 each	 and	 one	meter	 apart	 will	 exert	 on
each	other	a	force	per	unit	length	=	2	·	10−7	N/m	(upon	setting	μ0	=	4π	·	10−7

N	·	s2/C2	in	Eqn.	9.19).
Earlier	we	asked	“How	are	we	going	to	construct	the	vector	that	gives	the

force	between	current-carrying	wires	that’s	attractive	when	they	are	parallel,
and	 repulsive	 when	 they	 are	 anti-parallel?”	 Nothing	 simple	 involving	 the



current	 vectors	 would	 work.	 The	 dot	 product	 was	 a	 scalar	 and	 the	 cross
product	 vanished.	 We	 see	 that	 the	 correct	 answer	 is	 a	 rather	 complicated
sequence	 of	 two	 cross	 products.	 The	 first	 cross	 product	 is	 from	 the	 Biot-
Savart	law	and	yields	the	B	due	to	the	first	wire	as	a	cross	product	of	every
segment	dl,	and	the	separation	vector.	The	second	is	the	cross	product	of	this
B	 with	 the	 current	 segment	 dl′	 of	 the	 second	 wire.	 (The	 same	 scenario
describes	the	force	between	a	wire	and	a	moving	charge	if	we	replace	dl	by
v.)	Whereas	 force	 of	 attraction	 between	 two	 charges	 is	 simply	 q1q2/r2,	 the
force	 of	 attraction	 between	 two	wires,	 even	 though	 it	 is	 given	 by	 a	 simple
formula,	hides	an	orgy	of	cross	products.

Figure	9.5			Left:	Ampère’s	law	for	a	circle.	Middle:	Two	segments	subtending	the	same	angle.	Right:
Arbitrary	Ampèrean	loop.

9.4			Ampère’s	law
Ampère’s	 law	 is	 to	 magnetostatics	 what	 Gauss’s	 law	 was	 to	 electrostatics.
Recall	what	we	did	there.	We	took	the	field	of	a	point	charge	q	and	computed
its	surface	integral	on	a	sphere	centered	on	it.	We	found	the	answer	was	q/ε0
independent	of	the	radius	of	the	sphere	because	the	area	of	the	sphere	went	as
r2	while	the	field	decreased	as	1/r2.	We	then	went	on	to	show	that	the	surface
integral	was	the	same	on	any	closed	surface	enclosing	the	charge.	Finally,	we
used	 superposition	 to	 show	 that	 the	 surface	 integral	 of	 E	 on	 any	 closed
surface	was	the	total	charge	enclosed	divided	by	ε0.
Now	 for	 Ampère.	 Consider	 the	 field	B	 due	 to	 an	 infinite	 wire	 carrying

current	I.	Let	us	see	the	wire	end-on,	as	shown	in	the	leftmost	part	of	Figure
9.5,	 with	 the	 current	 coming	 out	 at	 us	 and	 the	 field	 lines	 circulating
counterclockwise.
At	the	left	third	of	the	figure	we	have	a	circular	path	of	radius	r	encircling

the	 current.	 Consider	 the	 line	 integral	 of	 B	 around	 this	 loop,	 called	 the
circulation.	Both	the	line	segment	and	field	are	in	the	azimuthal	direction:



which	makes	the	line	integral	very	simple:

The	line	integral	or	circulation	is	independent	of	the	radius	of	the	circle.	This
is	analogous	 to	 the	statement	 that	 the	surface	 integral	of	 the	electric	 field	 is
the	same	for	any	sphere	centered	on	the	charge,	independent	of	its	radius.
Next	consider	loops	made	of	radial	and	angular	segments.	Parts	of	two	such

loops	subtending	the	same	angle	at	the	origin	are	shown	in	the	middle	of	the
figure.	Consider	the	segment	that	goes	along	a	circle	from	5	→	3	→	4.	The
contribution	of	this	segment	is

Consider	another	segment	that	subtends	the	same	angle	but	along	the	path	1
→	2	→	3	→	4.	The	angular	part	1	→	2	gives

the	 radial	 part	 2	 →	 3	 gives	 nothing	 since	B	 is	 azimuthal,	 and	 finally	 the
angular	part	3	→	4	gives

The	final	result	is	clearly	the	same	for	both	paths	since	it	depends	only	on	the
total	angle	swept	in	the	journey.	Consequently	the	circulation	will	be	the	same
on	any	path	that	encloses	the	current	and	is	composed	of	any	number	of	radial
and	angular	parts.
The	rightmost	part	of	the	figure	considers	an	arbitrary	loop	and	a	segment

dr	that	is	neither	radial	nor	angular	but	a	little	bit	of	both:



In	 the	 line	 integral	 only	 the	 angular	 part	 survives	 the	 dot	 product	 with	 the
purely	azimuthal	magnetic	field:

Thus	the	line	integral	of	B	around	any	closed	path	equals	μ0	times	the	current
enclosed.
This	 is	 analogous	 to	 the	 statement	 that	 the	 surface	 integral	of	 the	electric

field	 on	 any	 surface	 surrounding	 the	 charge	 equals	 the	 enclosed	 charge
divided	by	ε0.	This	is	the	most	general	Gauss’s	law	for	a	single	charge.	From
this	 we	 can	 get	 Gauss’s	 law	 for	 any	 collection	 of	 point	 charges	 by	 using
superposition	 for	 the	 fields	 they	produce.	Let	 us	 similarly	 extend	Ampère’s
law,	from	a	single	current	to	many.
Suppose	there	are	many	currents	I1,	.	.	.	IN	enclosed	by	the	contour	C	lying

in	 the	 plane	 of	 the	 page,	 as	 shown	 in	 Figure	 9.6.	 We	 may	 superpose	 the
corresponding	magnetic	fields	to	obtain	a	result	relating	the	circulation	or	the
line	 integral	 of	 the	 total	B	 around	 a	 closed	 contour	C	 to	 the	 total	 current
enclosed,	the	celebrated	Ampère’s	law:

Remember	 the	 convention.	 If	 your	 fingers	 are	 curving	 along	 the
counterclockwise	contour,	your	thumb	will	stick	out	of	the	page,	and	a	current
coming	out	of	 the	page	 (⊙)	 is	 counted	as	positive.	A	current	going	 into	 the
page	 (⊕)	will	be	counted	as	negative.	The	current	 in	 the	 right-hand	side	of
Eqn.	 9.29	 has	 to	 be	 counted	 with	 this	 sign.	 For	 example,	 if	 two	 one-amp
currents	 came	 out	 and	 two	 went	 in,	 the	 line	 integral	 of	 B	 will	 vanish.	 A
current	not	enclosed	by	the	contour	will	not	contribute	to	the	line	integral.	If
we	repeat	the	preceding	derivation	with	a	contour	not	encircling	the	current,
the	answer	will	still	be	proportional	to	the	angle	swept	out	by	the	contour,	but
this	angle	will	be	zero:	as	we	traverse	the	loop,	the	angle	will	first	go	up	and
then	 go	 down	 back	 to	 its	 initial	 value	 as	 we	 complete	 the	 circuit.	 Draw	 a
figure	to	convince	yourself	if	needed.



Figure	9.6			Ampère’s	law	for	a	contour	C	enclosing	many	currents,	some	coming	out	⊙	and	some
going	in	⊕.	The	currents	may	be	written	as	the	surface	integrals	of	the	current	density	j	over	the	surface
S	=	∂C	bounded	by	C.

All	 this	 is	 just	 like	Gauss’s	 law,	which	 equates	 the	 surface	 integral	 of	E
over	 a	 closed	 surface	S	 to	 the	 total	 charge	enclosed,	paying	attention	 to	 the
sign	of	each	charge.	A	charge	not	enclosed	by	S	will	not	contribute:	any	flux
from	 it	 that	 enters	 the	 closed	 surface	will	 also	 leave	 it,	 having	 nowhere	 to
terminate	in	the	interior.
But	there	are	some	differences.
First	 of	 all,	 Eqn.	 9.29	 describes	 a	 situation	 in	which	 the	 currents	 Ij	were

assumed	 to	 be	 carried	 by	 infinitely	 long	 and	 straight	 wires	 for	 which	 the
formula	 giving	B	 was	 simple.	We	 want	 to	 lift	 that	 restriction.	 Let	 us	 first
rewrite	 the	 currents	 enclosed	 by	 C	 as	 the	 surface	 integral	 of	 the	 current
density	 j	 over	 the	 surface	S	 (shaded	 in	 the	 figure).	Ampère’s	 law	 takes	 the
form

(The	 current	 density	 will	 be	 non-zero	 only	 where	 the	 wires	 cross	 S.	 The
integral	of	j	over	the	cross	section	of	wire	n	will	be	In.)
It	seems	reasonable	that	this	relation	between	the	line	integral	of	B	around

C	and	the	surface	integral	of	current	densities	over	a	surface	S	bounded	by	C
should	 depend	 only	 on	 the	 current	 densities	 on	 that	 surface	 and	 not	 on
whether	 they	 were	 carried	 by	 infinite	 wires	 (as	 in	 our	 derivation)	 or	 some
other	 set	 of	 wires	 that	 crossed	 S	 with	 the	 same	 currents	 but	 otherwise
unrestricted	away	from	S.	This	reasonable	guess	is	actually	correct	and	can	be
proved	from	the	Biot-Savart	law	using	somewhat	more	advanced	methods.	So
by	Ampère’s	law	we	shall	mean	Eqn.	9.30	with	no	restriction	on	the	currents
away	from	S.
Now	for	the	second	difference.	I	proved	Gauss’s	law	in	three	dimensions.

The	closed	surface	S	lived	in	3d	and	enclosed	the	charge	that	was	the	integral
of	the	charge	density	ρ	over	the	volume	enclosed	by	the	S.	This	volume	was



uniquely	 defined.	 On	 the	 other	 hand,	 the	 preceding	 derivation	 of	Ampère’s
law	was	done	in	 two	dimensions:	 the	contour	C	 lay	 in	a	plane	(of	 the	page)
perpendicular	to	the	current.	The	contour	enclosed	a	unique	(planar)	surface	S
and	the	current	in	the	right-hand	side	of	Ampère’s	law	penetrated	that	surface.
But	wires	live	in	three	dimensions.	What	happens	to	Ampère’s	law	given	that
a	contour	C	in	3d	can	encircle	a	wire	without	lying	in	a	plane	and	given	that
one	can	draw	an	infinite	number	of	surfaces	S	for	which	the	same	contour	is
the	boundary	C?	Make	 sure	 you	 follow	 this.	 Imagine	 a	 closed	metallic	 rim
that	you	dip	in	some	soap	solution.	The	soap	film	will	form	some	surface	with
the	rim	as	the	boundary.	If	the	loop	is	not	planar,	neither	will	the	surface	be.
You	can	apply	Ampère’s	 law	 to	 this	case,	with	 the	soap	 film	as	 the	surface
and	the	rim	as	the	boundary.	Now	blow	some	air	into	the	film.	It	will	bulge
out	and	define	a	new	surface,	but	the	rim	will	still	be	its	boundary.	Figure	9.7
illustrates	 this	point.	Will	Ampère’s	 law	continue	to	hold	with	 the	same	rim
and	the	bulging	surface?	That	is	the	question	we	address.
In	 Figure	 9.7,	 the	 contour	 C	 is	 the	 boundary	 of	 both	 S	 and	 S′.	 If	 we

integrate	B	over	C,	will	it	equal	μ0	times	the	current	crossing	both	S	and	S′?
The	answer	is	affirmative	because	the	same	current	I	crosses	both.	So	either
surface	can	be	used	 in	Ampère’s	 law.	 (If	 the	current	entering	S	was	not	 the
current	leaving	S′,	there	is	either	non-conservation	of	charge	or	a	continuous
time-dependent	pileup	of	charge	 in	 the	volume	bounded	by	S	 and	S′,	which
are	glued	at	C.)
Proving	Ampère’s	 law	for	a	non-planar	S	given	its	validity	on	planar	S	 is

quite	 easy	 and	 is	 illustrated	 in	 the	 lower	 half	 of	 Figure	 9.7.	 First	 take	 an
infinitesimal	loop,	labeled	1,	which	we	can	treat	as	planar.	The	line	integral	of
B	around	that	loop,	the	circulation	C1	(in	the	same	sense	as	the	arrows	along
its	edges	specifying	its	orientation),	is	equal	to	(μ0	times)	the	current	crossing
it,	j1	·	dA1.	Now	glue	to	that	another	planar	area,	dA2,	with	one	common	edge
traversed	in	the	opposite	sense,	just	as	when	we	glued	two	infinitesimal	areas.
This	defines	a	larger	area	with	the	common	edge	deleted.	Although	the	loops
share	an	edge,	they	need	not	and	do	not	lie	in	the	same	plane.	The	circulation
of	B	 around	 the	 combined	 loop	C1+2	 is	 the	 sum	 of	 the	 circulations	 around
each	because	 the	common	edge	cancels.	The	current	 crossing	 the	 combined
area	 is	 the	sum	of	 the	currents	crossing	each.	Proceeding	 in	 this	manner	we
can	prove	Ampère’s	law	for	a	non-planar	boundary	of	an	arbitrary	non-planar
surface	in	three	dimensions:



Figure	9.7			Top:	The	contour	C	is	the	boundary	of	both	S	and	S	′.	Since	the	same	current	I	crosses	both,
by	charge	conservation,	either	can	be	used	in	Ampère’s	law.	Bottom:	Ampère’s	law	for	a	composite
non-planar	surface	made	by	gluing	two	planar	surfaces	with	a	common	edge.	The	circulations	of	the
two	loops	add,	as	do	the	currents	crossing	them.	I	have	suppressed	μ0	and	shown	the	canceled	part	of
the	common	edge	by	a	dotted	line.

9.5			Maxwell’s	equations	(static	case)
We	now	break	 for	 a	mathematical	 interlude.	Given	 the	Lorentz	 formula	 for
the	forces	the	fields	exert	on	the	charges,	what	we	need	to	conclude	the	story
is	 a	 complete	 set	 of	 rules	 for	 computing	 the	 fields	 due	 to	 any	 set	 of	 static
charges	and	 time-independent	currents.	What	we	have	so	 far	 is	Gauss’s	 law
for	 electrostatics,	 derived	 from	 Coulomb’s	 law,	 and	 Ampère’s	 law	 for
magnetostatics,	derived	from	the	Biot-Savart	law.	Here	they	are

where	S	is	a	closed	surface	that	bounds	the	volume	V	in	Gauss’s	law	and	C	is
the	contour	that	bounds	the	open	surface	S	in	Ampère’s	law.
The	preceding	equations	specify	the	surface	integral	(flux)	of	E	and	the	line

integral	(circulation)	of	B.	What	about	the	surface	integral	(flux)	of	B	and	the
line	integral	(circulation)	of	E?
We	already	know	that	too.	First,	because	E	is	conservative,



Next,	 given	 that	 magnetic	 lines	 never	 start	 or	 end	 (there	 being	 no
monopoles)	 it	 follows	that	 the	lines	entering	any	closed	surface	will	have	to
also	leave	it.	This	means	there	can	be	no	net	magnetic	flux	coming	out	of	a
closed	surface

Equations	 9.32	 to	 9.35	 are	 called	 the	 integral	Maxwell	 equations	 for	 the
static	 case.	 (A	more	common	version,	 fully	equivalent,	 involves	derivatives
and	emerges	when	the	loops	and	surfaces	become	infinitesimal.)
They	are	the	best	way	to	summarize	what	we	have	learned	so	far.	This	is	so

because	of	the	mathematical	result	that	a	vector	field	like	E	or	B	is	uniquely
determined	 if	 it	 vanishes	 at	 infinity	 and	 if	 its	 circulation	 around	 every	 loop
and	the	integral	over	every	closed	surface	are	specified.	This	is	exactly	what
the	 Maxwell	 equations	 do	 in	 terms	 of	 charges	 and	 currents,	 which	 are
assumed	to	be	given.	There	is	also	a	procedure	for	finding	the	fields	given	this
data.	 We	 will	 not	 discuss	 this	 procedure	 since	 it	 calls	 for	 a	 lot	 more
mathematical	machinery.	We	will	be	content	with	being	able	to	find	the	fields
in	a	few	problems	endowed	with	a	high	degree	of	symmetry.



CHAPTER	10

Ampère	II,	Faraday,	and	Lenz

We	have	just	finished	learning	Ampère’s	law.	We	will	now	put	it	to	work	for
us	by	using	it	to	compute	the	magnetic	field	in	certain	situations	with	a	high
degree	of	symmetry.	Recall	the	law:

where	S	 is	a	surface	with	boundary	C,	and	Ienc	 is	the	sum	of	all	the	currents
crossing	 S,	 given	 by	 the	 surface	 integral	 of	 j	 over	 S.	 If	 your	 right	 hand
encircles	the	contour	in	the	sense	in	which	it	is	traversed,	your	thumb	defines
the	 positive	 direction	 for	 the	 currents.	 For	 a	 contour	 traversed
counterclockwise	in	the	plane	of	the	page,	the	positive	direction	is	straight	out
of	the	page.	Note	that	C	is	a	specific	closed	loop	but	S	can	be	any	surface	with
C	as	its	boundary.
The	 right-hand	 rule	 is	 everywhere	 and	 you	 should	master	 and	 exploit	 it.

Our	ability	to	use	the	thumb	against	the	four	fingers	is	what	distinguishes	us
from	 the	 lower	primates,	who	 just	 do	not	get	 the	 right-hand	 rule.	There	 are
cave	 drawings	 of	motors	 and	 generators	 that	 were	 doomed	 to	 failure	 since
those	 cave	 dwellers	 were	 curving	 all	 five	 fingers.	 Then	 the	 right-hand	 rule
was	invented.	It	is	an	invention	that	matches	the	wheel	and	fire	in	significance
and	after	that	there	was	no	stopping	us.



Figure	10.1			Verification	of	Ampère’s	law	on	an	infinite	semicircle.

10.1			Field	of	an	infinite	wire,	redux
Ampère’s	law	is	like	Gauss’s	law:	it	makes	a	statement	about	the	integral	of
the	field.	It	is	always	true,	but	only	on	special	occasions	can	you	deduce	the
field	everywhere	from	the	knowledge	of	its	integral.	Recall	that	Gauss’s	law
applies	 to	 every	 charge	 distribution	 and	 every	 surface	 surrounding	 it.	 This
will	not	help	us	find	E	everywhere.	How	can	you	expect	to	find	the	integrand
given	just	the	integral?	You	cannot,	except	in	highly	symmetric	situations.	In
a	 problem	 with	 spherical	 or	 cylindrical	 symmetry,	 the	 integrand	 was	 a
constant	on	 the	entire	Gaussian	 surface,	 so	 that	 the	 integral	was	 simply	 this
constant	 times	 the	 region	 of	 integration.	 For	 example,	 all	 over	 a	 Gaussian
sphere	of	radius	r	surrounding	a	spherically	symmetric	distribution	of	charge,
the	 field	was	 known	 to	 be	 radial	 and	 of	 constant	magnitude	E(r).	 Thus	 the
surface	 integral	 was	 4πr2E(r).	 Relating	 this	 to	 the	 charge	 enclosed	 in	 this
sphere	we	could	deduce	E(r).
So	 it	 is	 with	 Ampère’s	 law.	 Like	 Gauss’s	 law,	 it	 is	 always	 true,	 but	 its

efficacy	 in	 finding	 the	 field	 relies	 a	 lot	 on	 symmetry.	 Here	 is	 an	 example
where	we	do	not	have	such	symmetry.	Consider	the	field	of	a	ring	in	the	xy-
plane,	of	radius	R,	centered	at	the	origin	and	carrying	a	current	I,	as	shown	in
Figure	10.1.	Though	we	computed	 the	 field	only	at	points	 (0,	0,	z)	 lying	on
the	z-axis,	it	will	suffice	for	our	purposes.	Recall	that	the	field	points	up	the	z-
axis	(from	the	right-hand	rule	applied	to	the	current)	and	has	magnitude



Let	us	do	the	line	integral	of	B	on	an	infinite	semicircular	loop	with	the	z-axis
as	its	diameter.	Thus	the	loop	begins	at	z	=	−	∞,	goes	up	the	z-axis	through	the
center	 of	 the	 loop	 to	 z	 =	∞,	 and	 bends	 around	 in	 a	 huge	 semicircle,	which
closes	the	loop	at	z	=	−	∞.	First	consider	the	integral	on	the	infinite	semicircle.
We	do	not	know	the	field	off	axis	in	detail,	but	we	do	know	that	the	dipolar
field	falls	like	1/r3.	(This	is	evidently	true	on	the	axis	as	z	→	∞	in	the	formula
above.)	An	integrand	that	falls	like	1/r3,	when	integrated	over	a	curve	whose
length	grows	only	as	r,	vanishes	as	r	→	∞.	On	the	straight	path	from	−	∞	to
∞the	contribution	is

which	is	perfect,	since	the	current	enclosed	is	indeed	I	and	goes	into	the	page,
as	required	by	the	clockwise	contour.
But	the	point	is	that	we	cannot	go	backward:	we	cannot	deduce	Bz(z)	given

that	 the	 integral	 on	 this	 contour	 is	 μ0I,	 because	 the	 integrand	 Bz(z)	 varies
along	the	contour.
Having	made	this	point,	I	turn	to	a	case	where	there	is	enough	symmetry	to

find	B	 from	 Ampère’s	 law:	 the	 field	 of	 an	 infinite	 wire.	 Look	 at	 the	 wire
shown	in	Figure	10.2,	with	its	current	coming	out	of	the	page.	What	can	we
say	without	doing	a	calculation?	Any	field	distribution	we	end	up	with	has	to
be	invariant	under	translations	along	the	wire	since	the	current	is.	It	must	be
invariant	 under	 rotations	 around	 the	 axis	 of	 the	 wire	 since	 the	 current	 is.
These	are	very	general	statements	stemming	from	translational	and	rotational
symmetry.	In	the	case	of	the	electric	field	of	a	charged	wire,	we	also	argued
the	field	at	any	point	cannot	be	tilted	to	the	right	or	left	along	the	axis	of	the
wire,	 since	 if	 we	 rotated	 the	 wire	 and	 field	 pattern	 by	 π	 around	 an	 axis
perpendicular	to	the	wire,	the	line	of	charge	would	look	the	same	but	the	field
would	have	reversed	its	tilt.	This	would	constitute	a	change	in	effect	without	a
change	 in	cause.	This	argument	does	not	hold	 for	 the	current-carrying	wire:
the	current	distinguishes	left	from	right.	So	we	peek	into	the	underlying	Biot-
Savart	law,	the	cross	product	in	which	precludes	a	component	of	B	parallel	to
dl	segment	by	segment.	So	let	us	take	a	slice	perpendicular	to	the	wire,	with
the	current	coming	out	of	 the	page.	Since	 the	wire	and	 the	current	 it	carries
look	 the	 same	 if	 the	wire	 is	 rotated	around	 its	own	 axis,	 there	 are	only	 two
possible	configurations	with	this	property:	the	lines	go	in	or	out	radially	or	the
lines	go	in	circles	around	the	wire.	The	radial	configuration	is	ruled	out	for	so



many	reasons,	some	of	which	I	give	just	to	give	a	feeling	for	such	arguments:
radiating	 lines	 imply	monopoles	 that	 do	 not	 exist,	 the	 cross	 product	 in	 the
Biot-Savart	 law	 prevents	 a	 radial	 field	 segment	 by	 segment,	 and,	 finally,
when	I	rotate	the	wire	by	π	around	a	perpendicular	axis,	the	current	flips	sign
but	the	radial	field	does	not.

Figure	10.2			Left:	The	use	of	Ampère’s	law	to	find	the	field	of	an	infinite	wire.	The	figure	shows	the
view	staring	into	the	current,	which	is	coming	out	of	the	page.	The	Ampèrean	contour	lies	on	a	plane
normal	to	it.	The	displayed	features	of	the	field	can	be	deduced	by	symmetry.	Right:	Finding	B	for	a
wire	of	non-zero	thickness	and	uniform	current	density.	The	dark	circle	of	radius	R	represents	the
current-carrying	conductor	and	the	other	two	circles	the	Ampèrean	loops.

So	we	can	be	pretty	sure	the	lines	encircle	the	wire,	with	the	circulation	in
the	sense	determined	by	the	right-hand	rule,	as	shown	in	the	left	half	of	Figure
10.2.	This	configuration	meets	the	requirement	that	if	I	rotate	the	current	and
field	 configuration	 by	 π	 about	 an	 axis	 perpendicular	 to	 the	 wire,	 both	 the
direction	of	current	and	the	sense	of	circulation	reverse.
The	Ampèrean	loop	of	choice	is	a	concentric	circle	of	radius	r.	We	know

that	on	this	loop

where	B(r)	is	a	constant	because	r	is.	The	circulation	is

From	Ampère’s	law



which	is	what	we	got	by	integrating	the	Biot-Savart	law	(Eqn.	9.16).
It	is	reasonable	to	object	that	in	the	time	it	took	to	furnish	all	the	symmetry

arguments	 we	 could	 have	 done	 the	 integral	 in	 the	 Biot-Savart	 law.	 That	 is
perhaps	right,	but	consider	the	following	variation	shown	in	the	right	half	of
Figure	10.2.	We	replace	 the	 infinitely	 thin	wire	by	one	with	a	circular	cross
section	of	radius	R.	The	current	I	 is	uniformly	distributed	across	the	circular
cross	section.	The	current	density	now	is

What	is	the	magnetic	field?	If	we	try	going	directly	to	the	Biot-Savart	law
we	will	be	looking	at	a	nasty	three-dimensional	 integral	due	to	 the	non-zero
thickness	of	the	wire.	But	Ampère’s	law	applied	to	a	circular	contour	allows
us	to	use	all	the	symmetry	arguments	we	invoked	for	an	infinitely	thin	wire.
We	find	for	r	≤	R

which	means

Like	the	electric	field	inside	a	sphere	of	charge,	the	field	rises	linearly	with	r
inside	the	wire,	peaks	at	r	=	R,	and	drops	off	like	1	/r	beyond.	The	initial	rise
is	due	to	the	fact	that	the	current	enclosed	by	the	Ampèrean	circle	inside	the
wire	 grows	 like	 r2,	 while	 its	 influence	 drops	 like	 1/r.	 Outside	 the	 wire,
increasing	the	radius	of	the	contour	does	not	lead	to	any	increase	in	enclosed
current,	while	the	field	due	to	it	drops	like	1/r.
Similarly,	just	as	the	electric	field	of	a	spherical	charge	outside	its	radius	is



that	of	a	point	charge	at	the	center,	the	magnetic	field	outside	the	radius	of	a
wire	 carrying	 a	 uniform	 current	 density	 is	 that	 of	 a	 zero-thickness	 wire
carrying	all	the	current.
The	 analogy	 continues.	 Suppose	 you	 scooped	 out	 a	 coaxial	 cylindrical

region	of	radius	a	from	the	interior	of	the	wire.	It	is	now	hollow	for	0	≤	r	≤	a
and	 carries	 the	 current	 only	 in	 the	 region	 a	 <	 r	 ≤	 R.	 Ampère’s	 law	 and
symmetry	will	tell	you	that	inside	the	hollow	region	there	will	be	no	magnetic
field.

10.2			Field	of	a	solenoid
Imagine	a	cardboard	tube	of	cross-sectional	radius	R	around	which	you	wrap
N	turns	of	a	wire	carrying	a	current	I,	as	shown	in	the	left	half	of	Figure	10.3.
We	know	that	the	field	of	a	single	loop	is	like	that	of	a	tiny	magnet	with	its

north-south	ends	lined	up	along	the	dipole	moment	μ.	The	lines	go	up	inside
the	 loop,	 and	 they	 return	 outside	 the	 loop	 and	 join	 up	 below	 the	 loop.	The
solenoid,	made	of	many	 turns,	 is	 like	a	stack	of	 these	dipoles	NSNSNS	.	 .	 .
lined	up	end	to	end.	We	should	not	be	surprised	that	it	should	create	the	field
of	 a	 cylindrical	 bar	magnet.	On	 the	 plane	P⊥	 that	 bisects	 the	 solenoid,	 the
field	 outside	 will	 be	 pointing	 straight	 down.	 As	 the	 length	 of	 the	 solenoid
approaches	 infinity,	 the	 curved	 parts	 near	 the	 end	 will	 also	 get	 pushed	 to
infinity	and	the	field	lines	outside	will	be	pointing	straight	down	everywhere.
In	other	words,	 for	an	 infinitely	 long	solenoid,	every	plane	perpendicular	 to
the	 axis	 will	 look	 like	 P⊥.	 (This	 is	 like	 a	 parallel	 plate	 capacitor,	 whose
curved	field	lines	near	the	edges	are	banished	to	infinity	as	the	plates	become
infinitely	 large.	 The	 electric	 field	 lines	we	will	 see	 in	 the	 finite	 part	 of	 the
universe	will	 be	 parallel	 to	 each	 other	 and	 perpendicular	 to	 the	 plates.)	We
want	to	use	Ampère’s	law	to	find	Bin	and	Bout,	the	field	strengths	inside	and
outside	 the	 infinite	 coil,	 pointing	 up	 and	 down	 respectively.	 These	 fields
could	depend	on	the	distance	from	the	axis.
You	may	be	tempted	to	choose	a	circular	Ampèrean	loop	coaxial	with	the

solenoid.	 This	will,	 however,	 give	 0=0:	 no	 current	 crosses	 it	 (meaning	 any
surface	bounded	by	 it)	and	 the	 field	has	no	azimuthal	component.	To	get	 to
the	right	loop	we	must	slice	the	solenoid	parallel	to	its	axis,	bisecting	its	cross
section,	one	half	of	which	is	shown	at	the	right	in	Figure	10.3.
First	consider	Bout	and	Ampère’s	law	applied	to	the	contour	C′:

The	horizontal	sides	23	and	41	do	not	contribute	to	the	line	integral	because
the	 field	and	dr	 are	perpendicular.	The	oppositely	oriented	vertical	 sides	21



and	43	are	parallel	 (anti-parallel)	 to	Bout	and	contribute	+	Bout	 (12)	L	and	−
Bout(34)L	 respectively.	These	 contributions	must	 cancel	 each	other	 since	 no
current	 is	enclosed	by	C′.	This	means	Bout	has	 the	same	magnitude	on	both
these	sides:	Bout	(12)	=	Bout	(34).	Now	let	us	widen	the	loop,	sending	the	side
12	off	to	infinity	where	Bout	must	vanish.	It	follows	it	must	vanish	on	34	as
well.	Since	we	can	place	34	anywhere	(outside	the	solenoid)	we	conclude	Bout
≡	0.	 (The	B	due	 to	an	 infinite	coil	will	vanish	at	 infinity	while	E	due	 to	an
infinite	 sheet	 does	 not,	 because	 the	 former	 is	 infinite	 in	 one	 dimension,	 the
length	of	the	solenoid,	while	the	latter	is	infinite	in	two	dimensions.	This	can
be	verified	by	working	out	B	for	longer	and	longer	solenoids.)

Figure	10.3			Left:	A	finite	solenoid.	The	field	lines	go	up	the	solenoid	inside	and	return	outside.	Right:
The	cross	section	of	the	infinite	solenoid.	The	field	is	parallel	to	the	solenoid	inside	and	outside.	C	and
C′	are	two	Ampèrean	loops.

Next	consider	Ampère’s	 law	on	contour	C,	partly	 in	and	partly	out	of	 the
solenoid	 as	 shown.	 The	 horizontal	 sides	 contribute	 zero	 individually.	 The
vertical	side	outside	does	not	contribute	since	we	have	shown	that	Bout	=	0.
The	 vertical	 side	 inside	 contributes	 BinL.	 With	 the	 contour	 traversed	 as
shown,	 the	current	enclosed	 is	positive	 if	going	 into	 the	page.	 If	 there	are	n
turns	per	unit	length,	Ampère’s	law	tells	us

Notice	 two	 things.	 First,	 the	 length	 L	 cancels	 out,	 as	 it	 should,	 since	 it
characterizes	a	fictitious	Ampèrean	loop	and	cannot	be	present	in	the	answer
for	 the	 field.	 Second,	 the	 current	 enclosed	 does	 not	 depend	 on	 where	 the
vertical	side	of	the	loop	is	inside	the	solenoid.	It	follows	that	Bin	 is	constant
inside	 the	 solenoid.	 So	 here	 is	 the	 final	 answer,	 assuming	 the	 axis	 of	 the
solenoid	coincides	with	the	z-axis:



This	is	another	result	worth	memorizing.

Figure	10.4			Left:	Front	view	of	toroid.	Right:	The	mentally	sliced-up	toroid.	The	Ampèrean	loop
shown	is	the	dotted	concentric	circle	of	radius	a	<	r	<	b.	A	loop	that	is	smaller	or	larger	encloses	no	net
current	and	implies	zero	field.

The	 infinitely	 long	 solenoid	 is	 an	 idealization	 in	which	 the	 return	 flux	 is
banished	 to	 infinity.	Any	 finite	 solenoid	 is	 going	 to	 have	 the	 return	 flux	 as
well	as	complications	at	the	ends.	The	lines	that	leave	the	north	pole	have	to
return	to	the	south	pole	so	that	they	may	close	in	on	themselves.	This	makes	it
impossible	 to	 use	 Ampère’s	 law	 to	 find	 the	 field	 of	 a	 finite	 solenoid.	 (In
practice	we	use	the	infinite	solenoid	result	for	a	finite	solenoid	as	long	as	we
do	not	go	near	the	ends	or	too	far	off	axis.)
A	toroidal	solenoid	beats	this	problem	by	being	finite	and	yet	free	of	ends.

The	 trick	 is	 to	bend	 the	 linear	solenoid	we	have	been	discussing	 into	a	hula
hoop,	joining	the	top	and	bottom.	The	result	looks	like	a	donut,	with	the	flux
trapped	 inside	 (where	 the	dough	would	be	 in	a	donut)	and	closing	on	 itself.
Often	the	core	is	filled	with	iron,	which	encourages	the	flux	to	stay	inside	the
donut.	Figure	10.4	should	give	you	an	idea.	I	have	chosen	the	cross	section	of
the	dough	to	be	rectangular	instead	of	circular	for	simplicity.	To	find	the	field
using	Ampère’s	law	we	need	to	slice	the	donut	the	way	we	would	to	butter	it.
The	cross	section	that	emerges	 is	shown	in	 the	right	half	of	 the	figure.	(The
slice	can	bisect	the	donut	along	the	equator	shown	by	the	line	marked	B,	or	lie
above	or	below	this.	In	all	cases	the	cross	section	will	be	the	same	because	of
the	 assumed	 rectangular	 cross	 section.)	 The	 slice	 is	 bounded	 by	 two
concentric	circles	of	radius	a	<	b.	The	wires	sliced	(mentally)	that	are	inside
the	 inner	 circle	 have	 currents	 coming	out	 of	 the	page	 and	 those	outside	 the
outer	circle	have	 the	currents	going	 in.	The	Ampèrean	contour	 is	a	circle	of
radius	a	<	r	<	b	 shown	by	the	dotted	 line.	The	field	 is	azimuthal	and	has	a
magnitude	Bϕ(r)	at	radius	r.	Note	that	the	direction	of	the	field	agrees	with	the
direction	 of	 current	 flow	 as	 required	 by	 the	 right-hand	 rule.	 Ampère’s	 law
tells	us



where	N	is	the	total	number	of	turns.	Thus

The	field	is	not	constant	within	the	donut:	it	is	strongest	on	the	inner	rim	r	=	a
and	gets	weaker	as	we	go	out	to	r	=	b.
The	 field	 is	 clearly	zero	when	r	 is	not	between	a	 and	b	because	 the	 total

current	enclosed	is	either	trivially	zero	(r	<	a)	or	a	zero	due	to	cancellation	of
opposite	currents	(r	>	b).
We	can	subject	our	result	to	a	test.	Imagine	the	inner	and	outer	radii	of	the

toroid	have	become	astronomical	but	 their	difference	b	−	a	 is	 finite.	 In	 this
limit,	any	finite	section	of	the	toroid	will	look	like	a	straight	tube	because	we
cannot	detect	the	curvature	of	such	a	large	circle.	The	azimuthal	field	Bϕ	will
become	a	field	along	the	axis	of	this	tube.	The	variation	of	Bϕ(r)	within	a	<	r
<	b	can	be	neglected	because	the	function	1/r	hardly	varies	in	the	interval	a	<
r	<	b	for	astronomical	a	and	b	and	fixed	b	−	a.	In	this	limit	the	field	should
approach	that	inside	an	infinite	linear	solenoid	and	indeed	it	does:

where	R	can	be	a	or	b,	 it	does	not	matter,	and	we	may	take	either	N/2πa	or
N/2πb	as	being	equal	to	n,	the	number	of	turns	per	unit	length.
This	wraps	up	our	 study	of	electrostatics	and	magnetostatics.	A	complete

mathematical	characterization	of	everything	we	have	done	is	given	below:



where	 S	 is	 a	 closed	 surface	 that	 bounds	 the	 volume	V	 in	 Eqns.	 10.23	 and
10.26	and	any	open	surface	S	bounded	by	the	curve	C	in	Ampère’s	law	(Eqn.
10.24).
The	 Lorentz	 force	 law	 tells	 you	 what	 the	 fields	 do	 to	 the	 charges	 and

currents,	and	 the	 four	Maxwell	equations	 tell	you	how	the	 fields	 in	 turn	are
determined	by	the	charges	and	currents.
This	would	have	been	 the	end	of	 the	 story	 in	a	world	where	charges	and

currents	did	not	change	with	time.

Figure	10.5			The	rectangular	conducting	loop	pulled	by	me	to	the	right	at	speed	v	in	a	magnetic	field	B
going	into	the	page	(shown	by	a	circle	with	a	cross).	The	carriers	move	in	the	wire	(counterclockwise)
from	1	to	2	with	a	speed	u.	The	total	velocity	of	the	carriers	is	V	=	v+u	as	shown	in	the	inset.	Work	is
done	by	the	field	along	u	and	by	me	along	v.	The	lightbulb	glows	due	to	the	transfer	of	mechanical	to
electrical	energy	mediated	by	B,	which	does	no	net	work.

10.3			Faraday	and	Lenz
But	of	course	they	do	change	with	time!	And	we	have	to	deal	with	that.	I	am
aware	of	 the	mental	 load	you	have	to	carry	as	one	new	idea	after	another	 is
introduced.	“Drinking	out	of	the	fire	hose”	was	an	expression	that	often	came
up	 in	 class.	 But	 we	 are	 not	 too	 far	 from	 the	 end	 of	 our	 discussion	 of
electromagnetism	 and	 you	 will	 enjoy	 the	 way	 the	 missing	 pieces	 fall	 into
place.	It	is	one	of	the	finest	examples	of	mathematical	physics.
I	 am	 now	 going	 to	 lead	 you	 through	 some	 experiments	 that	 force	 us	 to

change	some	of	these	Maxwell	equations	of	the	static	case	to	their	final	form.
In	the	first	experiment,	depicted	in	Figure	10.5,	there	is	a	uniform	magnetic

field	B	going	into	the	page	to	the	right	of	some	line,	say	x	=	0.	It	is	zero	to	the
left.



The	solenoid	or	magnet	producing	the	B	 is	not	shown	in	the	figure	so	we
can	focus	on	the	main	item,	which	is	a	rectangular	loop	of	wire	of	width	w	in
the	plane	of	the	page.	A	part	of	it	of	length	L	lies	within	the	field.	A	lightbulb
is	part	of	 the	circuit.	When	the	loop	is	static	 the	bulb	does	not	glow.	Now	I
begin	 to	 drag	 the	 loop	 to	 the	 right	 at	 some	 speed	 v.	 What	 do	 you	 think
happens?
Everyone	 in	 class	 was	 able	 to	 guess	 that	 the	 bulb	 would	 now	 glow,	 the

most	common	reason	being	that	I	would	not	have	drawn	it	otherwise.	Let	us
see	 if	can	we	go	beyond	 this	 type	of	 reasoning	 that	helps	you	ace	 the	SAT.
Why	is	the	lightbulb	glowing?	Is	there	some	new	physics?
Whenever	you	see	a	lightbulb	glow,	you’re	looking	for	a	battery.	There	is

no	battery	in	the	circuit.	And	yet	there	must	be	an	emf,	because	every	time	a
charge	makes	 one	 full	 trip	 around	 the	 loop,	 it	 delivers	 some	 energy	 to	 the
glowing	 bulb.	 Who	 is	 providing	 the	 energy?	 Who	 is	 pushing	 the	 charges
around	this	loop?	We	defined	the	emf	to	be	the	line	integral	of	the	force	per
unit	 charge	 pushing	 the	 charges	 around	 the	 loop.	Whatmight	 the	 force	 be?
And	why	does	it	kick	in	only	when	I	move	the	loop?
The	last	sentence	is	usually	enough	of	a	clue	for	the	students	to	figure	out

that	the	force	on	the	unit	charge	introduced	to	compute	 	is	the	v	×	B	Lorentz
force.
When	studying	electricity	we	defined	the	emf	to	be

Now	that	we	know	about	magnetism	we	must	use	a	more	general	definition	of
the	 emf	 as	 the	 line	 integral	 of	 the	 electromagnetic	 Lorentz	 force	 on	 a	 unit
charge:

where	dl	is	a	segment	of	a	physical	loop	moving	at	velocity	v.	In	our	problem
there	is	no	E	and	the	entire	emf	comes	from	the	v	×	B	term.
If	you	 look	at	 the	 loop	you	see	 that	 the	edge	12	 is	moving	 to	 the	 right	at

speed	v	 in	the	field	B.	The	unit	charges	in	that	segment	feel	the	v	×	B	force
that	points	from	1	to	2.	The	force	has	a	magnitude	vB	and	its	contribution	to
the	emf	is	vBw.	The	forces	on	the	horizontal	sections	are	perpendicular	to	the
sections	and	make	no	contribution	to	the	emf.	Finally,	there	is	no	force	on	the
segment	 34	 in	 the	 field-free	 region.	 Thus	 the	 emf,	 computed	 in	 the
counterclockwise	sense,	is



So	far	so	good.	We	understand	this	experiment	without	bringing	in	any	new
stuff.	There	is	just	one	paradox	to	be	dealt	with.	We	proved	at	the	very	outset
that	 the	 magnetic	 field	 doesn’t	 do	 any	 work.	 Remember,	 the	 original
argument	for	why	it	doesn’t	do	any	work	was	that	v	·	(v	×	B)	=	0.	But	here,	v
×	B	 is	along	the	wire	and	so	is	the	current.	It	looks	as	if	there	is	a	magnetic
field	pushing	these	charges	along	segment	12	and	doing	net	work	every	time	a
charge	goes	around	the	circuit.	What	is	happening?
The	answer	has	many	parts.
First	of	all,	the	actual	velocity	of	the	charges	in	the	wire	is	not	just	the	loop

velocity	v	along	the	x-axis,	but	also	the	velocity	u	along	 the	wire	due	to	the
current	in	the	loop.	The	total	velocity	(shown	in	Figure	10.5)	is	thus

and	the	total	magnetic	force	per	unit	charge	is

and	the	power	delivered	vanishes:

I	want	to	explain	the	two	canceling	pieces.
If	I	want	to	pull	the	loop	at	a	steady	speed	v	I	have	to	balance	the	leftward

component	 (−Bu)	 i	 of	V	×	B.	This	 requires	 I	provide	power	P	=	Buv.	How
does	this	power	get	transmitted	to	the	bulb?
For	this	we	consider	the	component	+	Bv	j	pointing	up	the	y-axis.
It	does	not	accelerate	the	charges	up	the	wire	in	the	y-direction	because	it	is

precisely	 balanced	 by	 an	 internal	 electrostatic	 field	 Ec	 which	 arises	 as
follows.	 Imagine	 there	 is	 no	 bulb	 and	 we	 have	 an	 open	 circuit	 with	 a	 gap
between	points	3	and	4.	As	I	begin	to	drag	the	loop,	the	magnetic	force	Bv	up
the	wire	will	initially	pile	up	positive	charges	at	end	3	and	leave	an	equal	and
opposite	 negative	 charge	 at	 4.	 These	 are	 the	 charges	 which	 produce	 the
electrostatic	field	Ec.	Some	of	its	field	lines	will	point	straight	down	the	gap
from	3	 to	 4	 and	others	will	 enter	 the	wire	 at	 3	 and	 return	 to	 4.	The	 charge



pileup	will	continue	till	Ec	inside	the	wire	balances	Bv	in	the	segment	12.	(So
what	 is	 disallowed	 in	 a	 perfect	 conductor	 is	 not	 a	 net	 field	 but	 a	 net	 force.
Here	 the	 electric	 field	 arises	 to	 cancel	 the	 magnetic	 force	 along	 the	 wire.)
Now	 imagine	 inserting	 the	 bulb	 and	 allowing	 current	 to	 flow.	 The	 built-up
charges	will	 flow	down	 the	 filament	 from	3	 to	 4,	 converting	 their	 potential
energy	 to	 heat.	 This	 flow	will	 initially	weaken	Ec	 to	 below	Bv,	 which	will
promptly	pump	in	more	charges	to	restore	the	balance.	It	is	this	electrostatic
field	Ec	against	which	the	y-component	Bv	pumps	the	charges,	doing	work	at
a	rate	P	=	Bvu.	Thus	the	power	(per	unit	charge)	expended	by	me	in	pulling
the	 loop	 is	 exactly	 equal	 to	 the	 work	 done	 against	 the	 electric	 field	Ec,	 in
charging	the	points	3	and	4	and	keeping	the	bulb	glowing.
Though	 the	 magnetic	 field	 does	 no	 work,	 I	 need	 it	 to	 push	 the	 charges

against	Ec.	I	cannot	grab	them	and	force	them	through	the	bulb	with	my	bare
hands.	 It	 is	 the	B	 field	which	 converts	 the	 force	 I	 exert	 to	 the	 right	 to	 the
upward	force	on	the	charges	inside,	against	Ec.	It	converts	macroscopic	power
provided	by	me	as	I	drag	the	loop,	to	the	microscopic	power	delivered	to	the
charges	 which	 in	 turn	 deposit	 it	 inside	 the	 bulb.	 It	 takes	 macroscopic
mechanical	power	 from	me	and	 turns	 it	 into	microscopic	power	provided	 to
the	charges.
Here	 is	 an	 equivalent	 way	 to	 check	 the	 balance	 of	 energy.	 The	 power

delivered	to	the	bulb	is	Pres	=	 I.	Now,	we	know	that	once	the	loop	carries	a
current,	I	will	have	to	work	against	the	force	Idl	×	B	on	each	piece	of	wire	dl
carrying	current	I.	The	force	on	segment	12	is	F	=	IBw	to	the	left.	The	power	I
supply	dragging	the	loop	at	speed	v	against	this	force	is	Pme	=	IBwv.	But	since
Bvw	 =	 	 (force	 on	 a	 unit	 charge	 times	 the	 distance	 over	which	 it	 acts),	 the
power	I	supply	is	also	Pme	=	 I.
In	short,	the	loop	is	a	generator.	If	I	want	to	light	a	bulb,	one	option	is	to

set	up	a	magnetic	field	perpendicular	to	the	ground,	connect	the	lightbulb	to	a
metallic	rectangle,	grab	it,	and	keep	running.	As	long	as	I	keep	running,	 the
lightbulb	will	keep	glowing.	But	there	is	a	problem	with	this	besides	having
to	 run	 non-stop.	 When	 the	 trailing	 segment	 34	 crosses	 into	 the	 field,	 the
current	will	 stop.	 The	 clockwise	 contribution	 to	 the	 emf	 from	 that	 segment
will	 oppose	 the	 counterclockwise	 contribution	 from	12.	The	 line	 integral	 of
the	force	on	a	unit	charge	will	be	zero.
Now	 we	 fully	 understand	 the	 forces	 and	 energies	 involved	 in	 this

experiment	in	terms	of	the	v	×	B	force.	There	seems	to	be	no	need	to	monkey
with	the	Maxwell	equations	I	wrote	down	earlier.	But	there	is,	and	it	becomes
apparent	 when	 I	 introduce	 the	 reasonable	 assumption	 that	 the	 principle	 of
relativity	applies	to	the	laws	of	electromagnetism.	Here	is	how.
Return	to	the	loop	I	was	dragging	and	running	with	to	light	up	the	bulb.	Let



us	go	to	the	frame	where	the	loop	and	I	are	at	rest.	I	am	free	to	assume	I	am	at
rest	and	the	magnet	creating	the	field	is	moving	to	the	left.	Indeed	it	could	be
that	I	was	always	at	rest	and	I	hired	some	guys	to	carry	the	magnet	and	run
the	other	way.	I	still	expect	my	lightbulb	to	glow.	Lots	of	things	are	relative,
but	whether	a	lightbulb	glows	or	not	is	not	relative.	A	glowing	lightbulb	is	a
glowing	 lightbulb	 in	 any	 frame	 of	 reference.	 The	 power	 it	 consumes	 may
vary,	but	the	fact	that	it	glows	is	undeniable.
So	how	am	I,	in	the	loop	rest	frame,	supposed	to	understand	the	glowing	of

the	 lightbulb?	 It	 is	 true	someone	 is	now	moving	 the	magnet,	and	B	 is	 time-
dependent:	if	at	some	time	t	=	0	it	was	non-zero	to	the	right	of	the	line	x	=	0,
then	at	time	t	it	is	non-zero	to	the	right	of	x	=	−	vt.	The	field	has	changed	from
zero	to	non-zero	in	the	region	−	vt	<	x	<0.	But	this	cannot	produce	any	v	×	B
force	because	the	loop	is	at	rest	and	v	≡	0.
So	what	force	could	be	pushing	the	charges	around	the	loop?	If	we	believe

the	Lorentz	 force	F	=	q(E	+	v	×	B)	 is	 all	 there	 is,	we	are	 left	with	 just	 the
electric	force,	now	that	v	×	B	is	dead.	In	this	case,	we	can	deduce	that	if	the
principle	of	 relativity	applies	 to	electromagnetism,	 there	must	be	an	electric
field	 in	 the	 frame	 of	 reference	 where	 the	 loop	 is	 fixed	 and	 the	 magnet	 is
moving.	Not	only	that,	it	must	be	an	electric	field	whose	line	integral	around
the	 loop	 is	 non-zero:	 charges	 in	 the	 loop	 are	 going	 round	 and	 round	 doing
work	every	cycle,	lighting	up	the	bulb.	The	corresponding	emf	must	be	due	to
this	electric	field.
All	 the	 electric	 fields	 we	 have	 studied	 till	 now	 were	 produced	 by	 static

charges,	determined	by	Coulomb’s	 law,	and	conservative.	Now	we	find	 that
without	the	help	of	any	uncompensated	charges,	we	can	get	an	electric	field
with	non-zero	circulation	in	a	changing	magnetic	field.
Can	we	say	any	more	about	this	electric	field	E	besides	the	fact	that	it	has	a

non-zero	circulation?
We	can,	if	we	apply	relativity	to	a	simpler	related	problem.	Go	back	to	the

magnet	 frame,	and	replace	 the	 loop	moving	at	velocity	v	with	a	unit	charge
traveling	with	the	same	velocity	v	in	the	plane	of	the	paper.	It	will	experience
a	force	v	×	B	(along	the	y-axis)	and	begin	to	accelerate	along	y	 in	response.
Now	we	go	to	the	frame	at	velocity	v	in	which	the	particle	is	instantaneously
at	rest.	Let	us	work	in	the	low	velocity	(Newtonian)	limit,	when	acceleration
and	force	are	 invariant	when	we	change	 inertial	 frames.	The	particle	should
experience	the	same	acceleration	or	force	in	its	rest	frame.	If	this	acceleration
is	due	to	an	electric	field,	it	must	be	given	by



Figure	10.6			The	situation	in	the	loop	frame.	The	pattern	of	E	(arrows	along	y)	and	B	(into	page	along	−
z)	moves	to	the	left	at	−	v,	along	with	the	magnet	producing	the	B	field	(not	shown).	The	electric	field	E
=	v	×	B	produces	an	emf	in	the	loop	because	it	makes	a	non-zero	contribution	only	on	segment	12.

(The	 exact	 formula,	 which	we	will	 not	 derive	 here,	 agrees	with	 this	 in	 the
limit	of	small	velocities	and	differs	by	terms	of	order	v2/c2	and	higher.	We	do
not	 need	 the	 fully	 relativistic	 treatment	 to	 understand	 glowing	 lightbulbs.)
Since	the	loop	rest	frame	is	also	the	particle	rest	frame,	there	must	be	a	field	E
=	v	×	B	in	the	loop	rest	frame.	This	is	shown	in	Figure	10.6.	(Not	shown	in
the	figure	is	the	moving	magnet	that	produces	the	B	field.)
If	the	loop	is	partly	in	and	partly	out,	the	 	due	to	this	E	is	just	Ew	=	vBw

coming	from	segment	12.	There	is	nothing	from	34	as	B	=	0	and	E	=	0	there
and	finally	E	is	perpendicular	to	the	other	two	segments.
To	summarize,	 the	emf	 in	 the	 loop	can	be	understood	 in	 two	ways	 in	 the

two	frames:	as	the	line	integral	of	the	v	×	B	force	in	the	lab	or	magnet	frame
or	of	the	electric	field	E	=	v	×	B	in	the	loop	frame.
The	new	physics	is	that	a	changing	magnetic	field	can	produce	an	electric

field	with	nonzero	circulation.
Now,	 it	 turns	 out	 there	 is	 a	 master	 formula	 that	 describes	 the	 glowing

lightbulb	 not	 only	 in	 these	 two	 cases	 (loop	 fixed	 or	 magnet	 fixed)	 but
everything	in	between,	where	both	the	loop	and	field	could	be	changing	with
time	and	the	emf	could	be	due	to	both	E	and	B.	It	is	called	Faraday’s	law	and
it	states



On	 the	 left	 we	 have	 ,	 defined	 as	 the	 line	 integral	 of	 full	 electromagnetic
Lorentz	force	on	a	unit	charge	on	a	loop	C.	The	loop	C	is	a	real	flexible	loop,
a	conductor	carrying	charges.	It	moves	and	v	is	the	velocity	of	the	segment	dl.
On	the	right	Φ	is	the	magnetic	flux	penetrating	any	surface	S	bounded	by	the
loop	C.
The	 minus	 sign,	 associated	 with	 Heinrich	 Lenz	 (1804–1865),	 gives	 the

sense	in	which	 	will	drive	a	current	in	the	loop:	the	emf	will	try	to	fight	the
change	in	flux.	For	example,	if	the	flux	is	increasing,	it	will	drive	a	current	in
the	loop,	the	field	due	to	which	will	oppose	the	flux.	If	the	flux	is	decreasing,
it	will	drive	a	current	that	produces	a	flux	in	the	same	sense,	trying	to	prop	it
up	at	its	old	value.	Hence	what	the	emf	fights	is	not	flux	itself,	but	the	change
in	flux.
Lenz’s	minus	 sign	often	 takes	us	 to	 the	 final	 answer	much	 faster	 than	all

the	cross	products.

Figure	10.7			The	current	induced	in	the	loop	depends	only	on	the	rate	of	change	of	flux	through	it,	and
not	on	whether	the	change	is	due	to	the	moving	loop,	the	moving	electromagnet,	or	the	changing	current
in	the	magnet.	The	arrows	in	the	loop	show	the	orientation	of	the	magnetic	moment	of	the	loop	due	to
the	induced	current.

Before	applying	Faraday’s	law	Eqn.	10.36	to	the	general	case	of	a	flexible
loop	 moving	 in	 a	 space-time–dependent	 B,	 let	 us	 consider	 an	 illustrative
example	that	made	a	profound	impression	on	Einstein,	who	refers	to	it	in	his
relativity	paper.	The	 leftmost	part	of	Figure	10.7	shows	a	 loop	of	wire	near
the	north	pole	of	an	electromagnet.	 If	we	move	 the	 loop	up,	away	 from	 the
magnet,	 the	 flux	 through	 it	decreases	and	 the	current	due	 to	 	must	 flow	as
shown	to	fight	this	decrease.	This	is	also	what	we	would	get	from	computing
v	×	B	for	the	carriers	in	the	moving	loop.	The	same	 	arises	if	the	magnet	is
moved	down	or	the	current	through	it	reduced,	for	they	both	reduce	the	flux
through	the	loop.	But	now	 	is	attributed	to	a	non-conservative	electric	field
produced	by	the	changing	magnetic	field.
The	opposite	 	arises	if	the	loop	is	moved	toward	the	magnet	or	the	current

in	 it	 increased.	Of	course,	 if	 the	 loop	and	 the	magnet	move,	 the	emf,	which
still	depends	only	on	the	rate	of	change	of	flux,	will	be	due	to	both	E	and	v	×



B	forces.
This	tendency	of	the	loop	to	oppose	change	can	also	be	understood	in	terms

of	attraction	and	repulsion	of	magnetic	poles,	as	shown	in	Figure	10.7.	If	you
are	trying	to	bring	the	loop	and	magnet	closer	(rightmost	part	of	figure),	 the
magnetic	moment	μ	in	the	loop	induced	by	 	will	have	its	north	end	pointing
toward	the	north	end	of	the	electromagnet	(so	the	poles	repel).	The	opposite
happens	(poles	attract)	if	you	are	trying	to	increase	the	separation	(middle	part
of	figure).	In	both	cases	the	force	between	the	loop	and	the	magnet	opposes
you.
Faraday’s	 law	and	Lenz’s	minus	 sign	 explain	 all	 cases	 in	one	 stroke:	 the

generated	 	opposes	the	change	of	flux.
Let	us	now	return	to	the	loop	and	the	lightbulb	and	see	how	Faraday’s	law

explains	the	emf	 	in	the	lab	frame	and	the	loop	frame.
First	 let’s	 do	 the	 easy	 part,	 when	 there’s	 a	 fixed	magnetic	 field	 and	 I’m

dragging	the	loop.	What	is	the	flux	penetrating	this	loop?	It	is	just	the	product
of	the	constant	magnetic	field,	the	width	of	the	loop	and	L,	the	length	of	the
loop	that	is	in	the	field:

Now	let’s	take	minus	the	time	derivative	of	both	sides.	On	the	left	is	E.	On
the	right	B	is	not	changing,	w	is	not	changing,	but	L	is	changing.	The	rate	of
change	of	L	is	v,	the	speed	of	the	loop.	This	means

Previously	 we	 had	 seen	 that	 the	 	 due	 to	 v	 ×	B	 had	 a	 magnitude	Bvw	 in
segment	12	and	was	pushing	the	charges	counterclockwise.	The	minus	sign	in
Eqn.	 10.38	 says	 exactly	 that	 in	 Lenz’s	 convention.	 The	magnetic	 flux	 was
going	into	the	page.	As	the	loop	moved	to	the	right,	the	flux	penetrating	the
loop	into	the	page	increased.	Therefore	the	current	produced	by	 	had	to	flow
in	 such	 a	 way	 as	 to	 reduce	 the	 flux	 going	 into	 the	 page.	 To	 produce	 flux
coming	out	of	the	page	the	current	had	to	flow	counterclockwise.
If	I	dragged	the	loop	to	the	left,	the	enclosed	flux	would	decrease	and	the

current	generated	by	 	should	try	to	prop	it	up,	and	so	it	will	flow	clockwise.
This	agrees	with	the	direction	of	the	v	×	B	force	in	segment	12.
Finally,	when	 the	 loop	 is	 entirely	 inside	 the	 field,	 there’s	 going	 to	 be	 no

more	emf,	because	the	flux	through	it	is	not	changing.	We	have	already	seen
this	in	terms	of	v	×	B:	when	the	loop	is	fully	in,	the	contributions	to	 ’s	in	the
segments	12	and	34	due	to	v	×	B	are	equal	and	opposite.
So	far	there	is	nothing	in	Faraday’s	law	that	we	could	not	deduce	from	just

the	v	×	B	force.	Is	there	any	new	content,	and	if	so,	when	do	we	encounter	it?



We	encounter	it	if	we	go	to	the	loop	frame.	Faraday’s	law	tells	us	that	since
the	flux	through	the	loop	is	changing	(now	because	the	magnet	is	moving	the
other	way)	 there	will	be	an	emf.	It	 is,	however,	due	to	an	electric	field	with
non-zero	circulation.	The	law	only	specifies	that	the	circulation	has	to	equal	−
(dΦ	/	dt),	but	not	what	E	is.	But	in	the	simple	loop	experiment	we	were	able
to	invoke	arguments	based	on	relativity	to	show	that	E	=	v	×	B	and	points	up
in	the	segment	12,	which	is	in	the	magnetic	field,	and	is	zero	in	34,	which	is
outside	the	field.	It	is	perpendicular	to	the	other	two	sides.	The	emf	due	to	this
electric	field	comes	from	just	the	segment	12	and	equals	vBw.
So	the	new	stuff	in	Faraday’s	law	is	the	fact	that	a	changing	magnetic	field

implies	 an	 electric	 field	 of	 specified	 circulation.	 Let	 us	 try	 to	 extract	 the
precise	connection	between	these	two,	starting	with	the	definition	of	 	as	the
circulation	of	the	electromagnetic	Lorentz	force	on	a	unit	charge

where	C	is	a	loop	in	space	around	which	 	is	to	be	computed,	and	is	the	flux
penetrating	S,	which	is	any	surface	bounded	by	C.	The	loop	is	a	real	piece	of
wire,	and	v	is	the	velocity	of	a	segment	dl.	Thus	v	×	B	refers	to	the	magnetic
force	 experienced	 by	 the	 charges	 in	 a	 segment	 dl	 of	 the	 wire	 that	 have
inherited	its	instantaneous	velocity	v.
In	the	right-hand	side	the	rate	of	change	of	flux	receives	contribution	from

both	 the	 changing	 magnetic	 field	 and	 the	 changing	 loop	 and	 surface	 S	 it
bounds.	 I	will	 show	later	 in	 this	chapter	 that	 these	 two	contributions	can	be
nicely	 separated	 into	 two	parts	 that	 can	be	 identified	with	 the	E	 and	v	 ×	B
contributions	to	 	on	the	left-hand	side.	Since	this	derivation	is	quite	tricky,	I
will	 first	 extract	 the	 relation	 between	 the	 circulation	 of	E	 and	 the	 changing
magnetic	field	by	a	shortcut,	leaving	the	complicated	derivation	as	an	option
at	the	end.
The	 relation	 between	 the	 circulation	 of	 E	 and	 the	 changing	 B	 field	 is

deduced	 by	 first	 considering	 a	 loop	 that	 is	 not	 in	 motion.	 This	 is	 surely
allowed	since	the	answer	holds	for	any	state	of	motion	of	the	loop.	Now	there
is	no	v	at	play	and	the	contour	C	is	fixed.	It	need	not	even	be	associated	with
any	 real	 conductor.	 It	 is	 simply	a	 closed	 loop	 in	 space	used	 to	compute	 the
circulation	of	E.	We	highlight	this	by	writing	a	segment	of	C	as	dr	instead	of
dl.	We	find	in	this	case

The	derivative	d/dt	in	front	of	the	integral	has,	in	the	general	case,	two	parts:



one	due	to	the	changing	C	or	S,	and	the	other	due	to	the	changing	B.	But	now
that	C	 is	assumed	to	be	fixed,	we	may	take	the	derivative	inside	the	integral
where	it	can	act	on	B	to	give	us

The	partial	derivative	signifies	that	we	are	only	computing	the	rate	of	change
of	 B	 with	 respect	 to	 time	 and	 not	 the	 spatial	 coordinates	 within	 S.	 This
relation	between	the	fields	E	and	B,	which	has	no	reference	to	any	conductors
and	how	they	may	be	moving,	is	one	of	the	final	four	Maxwell	equations.	It
replaces

which	we	had	written	down	before	 to	express	 the	conserving	nature	of	E	 in
electrostatics.	The	 lesson	 we	 have	 just	 learned	 is	 that	 in	 the	 presence	 of	 a
time-dependent	B,	the	electric	field	has	a	non-zero	circulation	given	by	Eqn.
10.41.
Let	us	see	what	we	have	so	far.	We	started	with

In	 the	right-hand	side	 the	 time	derivative	generates	 two	terms:	one	from	the
time-dependence	of	B	 and	one	 from	 the	 time-dependence	of	S	 (because	 the
loop	is	moving).	In	other	words

We	have	just	seen	that

It	must	then	be	true	that	the	second	terms	match	on	both	sides:



If	 you	 want	 to	 know	 how	 this	 is	 demonstrated,	 you	 must	 read	 the	 next
optional	 section	where	 I	 discuss	 the	 case	 of	 a	 changing	 loop	 in	 a	 changing
field.	But	 in	 case	you	 skip	 it,	 here	at	 least	 is	 a	brief	 sketch.	Look	at	Figure
10.8,	which	depicts	a	simple	case	that	is	somewhat	easy	to	visualize.	It	shows
a	circular	loop	C1	at	time	t	evolving	into	a	circular	loop	C2	at	time	t	+	dt.	The
obvious	 surface	 to	use	 for	computing	 the	 flux	at	 t	+	dt	 is	 the	planar	 shaded
circular	 area	 S2.	 But	 we	 are	 free	 to	 use	 any	 other	 surface	 with	 the	 same
boundary	C2.	Let	us	use	S′2,	which	 is	 just	S1	plus	ΔS,	 the	 (cylindrical)	 area
swept	out	by	the	moving	loop.	The	advantage	is	that	the	contribution	to	
from	the	changing	surface	is	the	contribution	from	ΔS.	From	the	figure	we	see
that	a	portion	dl	of	the	loop	moving	at	velocity	v	sweeps	out	an	area	vdt	×	dl
and	makes	a	contribution	−	B	·	(vdt	×	dl)	=	v	×	B	·	dl	dt	to	–dΦ.	The	sum	of
these	contributions	around	the	loop	gives

which	 precisely	matches	 the	v	 ×	B	 term	 in	 .	 It	 should	 be	 evident	 that	 the
result	holds	even	if	the	initial	and	final	loops	are	not	circular	and	the	velocity
v	 varies	with	dl.	 There	 are	 a	 lot	 of	minus	 signs	 and	 orientation	 of	 areas	 to
watch	out	for.	All	this	is	described	in	the	next	section.

10.4			Optional	digression	on	Faraday’s	law
Let	us	return	to	Faraday’s	law

We	have	used	 it	 in	bits	 and	pieces.	We	have	extracted	 from	 it	 the	Maxwell
equation	 relating	 the	 circulation	 of	E	 and	 the	 changing	magnetic	 flux.	We
have	explained	the	emf	of	the	loop-generator	in	two	situations:



Figure	10.8			The	conducting	loop	C1	at	time	t	bounds	S1,	the	lower	face	of	the	cylinder.	It	moves	to	C2
at	t	+	dt	and	bounds	S2,	which	is	the	top	face	of	the	cylinder.	We	trade	S2	for	S′2	=	S1	+	ΔS,	where	ΔS
is	the	curved	side	of	the	cylinder.	This	is	allowed	because	the	boundary	is	still	C2:	in	the	sum	the
common	edges	C1	and	−	C1	(traversed	in	opposite	directions	in	S1	and	ΔS)	get	erased,	leaving	behind
C2.	A	tiny	rectangular	part	of	ΔS	is	the	cross	product	vdt	×	dl,	where	vdt	is	the	vector	distance	traversed
by	the	segment	dl	in	time	dt.	The	area	vector	points	inward	and	the	addition	of	these	areas	gives	ΔS.

•	The	emf	is	the	integral	of	E	and	–dΦ/dt	is	due	to	the	changing	B.
•	The	emf	is	the	integral	of	v	×	B	and	–dΦ/dt	is	due	to	the	motion	of	the	loop	in	a	static	B.

But	 the	 remarkable	 power	 of	 Faraday’s	 law	 is	 its	 ability	 to	 describe	 the
most	general	situation,	wherein	–dΦ/dt	corresponds	to	a	flexible	loop	moving
in	a	space-time–dependent	magnetic	field,	and	the	emf	is	the	line	integral	of
both	electric	and	magnetic	forces.	Let	us	pursue	this	feature	further.
Let	the	moving	loop	bound	a	surface	S1	at	time	t	and	S2	at	t	+	dt,	as	shown

in	Figure	10.8.	The	change	in	flux	is

In	 general	 S1	 and	 S2	 can	 have	 any	 shape.	However,	 for	 the	 visually	 and
artistically	 challenged	 like	 myself,	 I	 limit	 the	 discussion	 to	 a	 simple	 case.
(The	 arguments	 are	 good	 for	 the	 general	 case.)	 Imagine	 a	 closed	 hollow
cylinder	made	of	 two	 flat	 faces	and	a	curved	side.	The	 lower	 face	 is	our	S1
and	 its	 circumference	 C1	 is	 the	 loop	 of	 wire	 at	 time	 t.	 The	 area	 vector
associated	 with	 S1	 points	 up	 by	 the	 right-hand	 rule.	 This	 also	 means	 B
pointing	up	contributes	positive	flux.	The	upper	face	of	the	cylinder	is	S2,	and
its	circumference	C2	is	where	the	loop	has	ended	up	at	t	+	dt.	The	area	vector
for	S2	also	points	up.
In	this	simple	case,	 the	loop	has	moved	straight	up	the	curved	face	of	the

cylinder	between	times	 t	and	 t	+	dt,	with	every	segment	dl	moving	with	 the
same	velocity	v.	The	 flat	 faces	can	be	of	any	 size,	but	 the	curved	 face,	ΔS,



which	is	swept	out	by	the	moving	loop	in	time	dt,	should	be	thought	of	as	an
infinitesimal	of	first	order	in	dt.
It	is	natural	to	evaluate	the	flux	penetrating	C2	at	time	t	+	dt	on	the	upper

face	 S2,	 since	 it	 is	 the	 simplest	 surface	 bounded	 by	 C2.	 However,	 the
corresponding	integral,	the	first	term	in	Eqn.	10.48,	has	two	effects	in	one:	it
is	an	integral	of	the	field	at	a	later	time	on	a	later	surface.	To	deal	with	these
two	changes	one	at	a	 time,	we	will	 trade	S2	 for	another	surface	S′2	with	 the
same	boundary	C2.	We	are	allowed	to	do	this	because	the	flux	is	going	to	be
the	 same	 for	 any	 surface	with	 the	 same	 boundary.	And	we	want	 to	 do	 this
because	we	want	to	separate	the	effects	of	the	moving	loop	and	the	changing
field.	What	choice	of	S′2	will	do	the	trick?	Imagine	that	S2	 is	a	rubber	sheet
stretched	across	the	circular	rim	C2	of	a	cylindrical	drum.	Now	slowly	deform
S2	 (blow	air	 into	 it	 from	above)	 till	 it	 becomes	 the	 rest	 of	 the	 cylinder:	 the
curved	side,	which	we	call	ΔS,	and	the	flat	bottom	S1.	This	is	the	surface	S′2.
Its	boundary	is	still	the	rim	C2.
It	 is	 intuitively	 clear	 that	S′2	 is	 just	S1	 plus	 the	 curved	 face	ΔS	 (which	 is

why	we	call	it	ΔS).	But	let	us	verify	that	the	two	areas	have	been	added	as	per
the	 rules	 for	 gluing	 areas	 (deleting	 oppositely	 oriented	 edges	 that	 overlap).
Consult	Figure	10.8.
First	observe	that	ΔS,	the	surface	swept	out	by	the	moving	loop	in	the	time

dt,	 is	 itself	 made	 of	 tiny	 rectangular	 areas	 swept	 out	 by	 each	 segment.
Consider	a	segment	dl	of	C1	that	moves	at	velocity	v.	The	area	it	sweeps	out
in	 time	 dt	 has	 a	magnitude	 |v|	 dt|dl|.	 The	 area	 vector	 is	 given	 by	 the	 cross
product

and	points	into	the	cylinder.	This	orientation	is	to	be	expected.	Originally	S1
and	 S2	 had	 area	 vectors	 pointing	 up,	 by	 the	 right-hand	 rule	 and	 by	 the
convention	for	counting	upward	flux	as	positive.	If	we	began	with	S2	littered
with	little	upward	pointing	arrows	defining	the	orientation	of	the	smaller	areas
it	is	composed	of,	and	deformed	it	continuously	to	the	shape	S′2,	the	arrows	in
the	 curved	 side	 ΔS	 would	 end	 up	 pointing	 inward,	 while	 the	 arrows	 on	 S1
would	point	up.
(In	the	general	case	dl	and	v	need	not	be	perpendicular	and	v	need	not	be

the	same	for	all	segments.	The	cross	product	continues	to	give	the	correct	area
of	the	parallelogram	|v|dt|dl|	sinθ	swept	out.)
When	such	rectangular	areas	are	glued	together	to	form	ΔS,	the	oppositely

oriented	vertical	edges	of	neighbors	will	cancel	while	the	top	edges	will	form



C2	and	the	bottom	edges	will	form	−	C1	(which	is	just	C1	running	backward)
respectively.	The	 surface	ΔS	 thus	 has	 two	 edges,	 a	 lower	 one	−	C1,	 and	 an
upper	one,	which	is	C2.	When	ΔS	is	next	glued	on	to	S1	to	form	S′2	as	shown
in	the	figure,	the	overlapping	edges	C1	of	S1	and	−	C1	of	ΔS	will	get	erased
and	the	other	edge	of	ΔS,	namely	C2,	will	become	the	boundary	of	S′2.	Since
C2	is	also	the	boundary	of	S2,	we	may	swap	S2	for	S′2.
So	we	can	trade	S2	for	S′2.	I	have	argued	we	should,	because	it	will	sort	out

the	 separate	 contributions	 from	 the	 changing	 field	 and	 changing	 loop.	 This
will	now	be	shown.
We	begin	with

upon	using	dS	=	vdt	×	dl	 in	 the	middle	 term	on	 the	 right-hand	side	of	Eqn.
10.52	to	arrive	at	the	last	equation.
Let	us	now	group	the	first	and	third	terms,	which	involve	the	same	surface

S1	but	the	field	at	two	different	times:



I	changed	B(t	+	dt)	to	B(t)	in	the	second	integral	since	the	difference	between
them	 is	 of	 order	dt	 and	 there	 is	 already	 a	dt	 in	 front	 (from	 the	 size	of	ΔS).
Dividing	both	sides	by	dt	and	taking	the	limit	dt	→	0	we	obtain

I	have	removed	the	subscripts	1	and	2	on	S	and	C	for	there	is	only	one	of	each
in	the	limit	dt	→	0.
So	we	have	in	the	end

Amazingly,	 the	 magnetic	 parts,	 which	 depend	 on	 the	 loop’s	 motion,
perfectly	 match	 on	 both	 sides	 and	 can	 be	 canceled,	 leaving	 us	 with	 the
Maxwell	equation

There	 is	 now	no	 reference	 to	 the	 velocity	 of	 the	 segments	dl	 of	 any	 real



loop.	What	we	have	instead	is	a	relation	between	the	circulation	of	E	around
some	 contour	C	 and	 the	 rate	 of	 change	 of	magnetic	 flux	 through	 a	 surface
bounded	by	C.	To	emphasize	this	I	have	denoted	a	segment	of	this	imaginary
contour	by	dr.
Let	 me	 make	 a	 subtle	 point	 about	 the	 derivation.	 The	 correct	 magnetic

force	on	the	charges	in	the	wire	used	for	computing	the	emf	is	really	V	×	B
with	V	=	v	+	u,	where	v	 is	 the	velocity	of	 the	wire	segment	dl	and	u	 is	 the
velocity	 of	 the	 carriers	 along	 the	 wire	 attributed	 to	 the	 current	 they	 carry.
(This	is	just	like	the	two	parts	of	the	velocity	of	charges	on	the	leading	edge
12	 of	 the	 rectangular	 loop	 being	 dragged	 in	 a	magnetic	 field.)	However,	 in
computing	the	emf	we	find	this	extra	piece	in	V	does	not	matter:

I	could	set	(u	×	B)	·	dl	=	0	because	both	the	velocity	u	and	the	segment	dl	are
parallel	to	the	wire.



CHAPTER	11

More	Faraday

We	have	seen	that	Faraday’s	law	implies	that	a	changing	magnetic	field	will
lead	 to	 an	 electric	 field	 with	 a	 non-zero	 circulation,	 as	 specified	 by	 the
Maxwell	equation:

As	 in	 the	 case	 of	 Gauss’s	 and	 Ampère’s	 laws,	 we	 cannot	 deduce	 the
induced	electric	 field	given	 just	 its	circulation.	However,	 if	 the	problem	has
enough	symmetry	we	can.	We	begin	with	an	example.

11.1			Betatron
The	betatron	was	 invented	 to	 circumvent	 the	problem	with	 the	 cyclotron	 at
relativistic	 energies.	 Recall	 the	 operation	 of	 the	 cyclotron.	 It	 had	 two
semicircular	dees	whose	diameters	were	 lined	up	with	a	 tiny	space	between
them.	A	perpendicular	magnetic	field	penetrated	the	dees	and	bent	the	charge
injected.	 The	 path	 of	 a	 charge	 injected	 into	 the	 first	 dee	 got	 bent	 into	 a
semicircle.	 As	 it	 jumped	 to	 the	 other	 dee,	 a	 downhill	 voltage	 was	 applied
across	the	gap	to	give	it	a	kick.	It	then	went	around	the	second	dee	at	a	higher
speed	 and	 bigger	 radius.	 When	 it	 jumped	 back	 to	 the	 first	 dee,	 it	 got	 yet
another	downhill	kick,	because	by	this	time	the	polarity	of	the	dees	had	been
reversed.	After	many	such	downhill	kicks,	it	was	ejected	from	the	machine	at
a	high	velocity.	It	was	possible	to	arrange	the	reversal	of	the	polarities	of	the
dees	 despite	 the	 changing	 speed	 and	 radius	 because	 of	 the	 following
remarkable	feature	of	the	kinematics.
Newton’s	law	in	the	radial	direction	implies	that	in	a	circular	orbit

which	means	 the	 frequency	 of	 the	 orbit	 remains	 fixed	 even	 as	 the	 particle
speeds	up	and	the	orbit	size	increases.	Thus	the	requisite	alternating	voltage



between	the	dees	could	be	provided	by	simply	connecting	them	to	any	source
of	AC	voltage	of	that	frequency.
At	 high	 velocities	 the	 preceding	 Newtonian	 kinematics	 becomes

inapplicable.	The	correct	equation	is	still

but	the	momentum	is	not	p	=	mv	but

With	this	new	v	dependence	of	momentum,	ωis	no	longer	independent	of	r.
The	 betatron	 does	 not	 rely	 on	 the	 constancy	 of	 ω	 or	 an	 electrostatic

potential	to	accelerate	the	particle.	It	has	a	totally	different	design	in	which	a
space-time–dependent	magnetic	field	produces	a	circulating	electric	field	that
accelerates	the	particle.	The	same	magnetic	field	also	bends	the	particle	into	a
circular	orbit	of	fixed	radius.	Here	are	the	details.
First	 a	 kinematic	 result.	 Consider	 a	 particle	 of	 relativistic	 momentum	 p

defined	in	Eqn.	11.5.	Imagine	it	going	around	in	a	circle	and	also	picking	up
speed.	The	 change	 in	p	 has	 two	 parts,	 as	 shown	 in	 the	 right	 half	 of	 Figure
11.1.	Ignore	the	tangential	part	due	to	increase	in	magnitude	dp	(which	will	be
produced	 by	 a	 tangential	 force)	 and	 focus	 on	 the	 centripetal	 part	 due	 to
changing	direction.	From	the	figure	it	 is	clear	that	the	change	of	momentum
in	the	radial	direction	is



Figure	11.1			Left:	The	electromagnet	produces	a	field	B(r,	t)	pointing	down.	Its	profile	at	any	typical
time	is	shown	as	B(r),	with	an	average	Bav.	(The	thickness	of	the	downward	arrows	also	indicates	the
decay	of	the	field	with	r.)	As	B	grows	with	time	an	azimuthal	Faraday	field	E(R,	t)	accelerates	the
particle.	At	each	instant	the	v	×	B	force	due	to	B(R,	t)	is	adjusted	to	provide	the	requisite	centripetal
force	to	keep	it	orbiting	in	a	circle	of	radius	R.	Right:	Top	view	of	the	orbit.	At	time	t	the	particle	is
moving	tangentially	at	θ	=	0	and	at	t	+	dt	it	has	acquired	some	increase	in	magnitude	dp	and	a	change	in
direction	by	dθ,	and	a	consequent	change	in	radial	momentum	dpr	=	pdθ.

This	means	the	rate	of	change	of	momentum	in	the	radial	direction	is

This	 result,	based	on	geometry	and	vectors,	 is	 true	whether	p	=	mv	 as	 in
non-relativistic	mechanics	or	given	by	Eqn.	11.5.	In	the	non-relativistic	case
this	leads	to	the	familiar	result	for	the	centripetal	force:

Now	 for	 the	 betatron.	 Figure	 11.1	 shows	 an	 electromagnet	 producing	 a
downward	field	B(r,	t).	At	some	typical	time,	it	has	a	profile	in	r	as	indicated
by	the	graph	B(r).	The	field	grows	steadily	with	time,	starting	from	0	so	that,
as	 time	goes	by,	 the	 only	 change	 in	 the	profile	 is	 a	 uniform	 (same	 at	 all	 r)
rescaling	 of	 the	 function	 B(r).	 On	 a	 circle	 of	 radius	 R	 centered	 on	 the
symmetry	axis	of	 the	magnet,	 this	 field	produces	an	azimuthal	electric	 field
E(R,	t)	obeying	Faraday’s	law

where	Φ(r	<	R,	t)	is	the	flux	enclosed	within	the	circle	of	radius	R	at	time	t.
(Lenz’s	minus	sign	is	implicit	in	the	direction	of	E	shown	in	the	figure.)
We	shall	assume	and	ensure	as	we	go	along	that	the	particle	orbits	at	the

fixed	radius	r	=	R	even	as	its	speed	changes.
Let	 us	 define	 an	 average	 r-independent	 field	Bav(t)	 that	will	 produce	 the

same	flux	inside	r	<	R	as	the	actual	field:

The	electric	field	may	now	be	related	to	Bav:



This	azimuthal	electric	field	will	change	the	magnitude	of	momentum	p	as
follows:

Integrating	this	over	time	assuming	p(0)	=	Bav(0)	=	0,	we	obtain

This	will	be	the	magnitude	of	the	momentum	of	the	particle	at	time	t.
Meanwhile	the	same	magnetic	field	B(R,	 t)	is	also	required	to	provide	the

requisite	 centripetal	 force	 to	 keep	 the	 particle	 orbiting	 at	 r	 =	R	 despite	 its
growing	 momentum.	We	 have	 seen	 (Eqn.	 11.7)	 that	 the	 rate	 of	 change	 of
radial	momentum	is	 .	We	equate	this	to	the	available	centripetal	force
qv	×	B:

using	v	=	ωR.	Canceling	ω	we	find

Although	all	of	B(r,	t)	inside	r	<	R	contributes	to	the	changing	flux	(that	in
turn	generates	E(R,	t)),	only	the	field	at	the	orbit	B(R,	t)	applies	the	centripetal
v	×	B	force.
Look	at	Eqns.	11.14	and	11.16.	The	first	tells	you	the	momentum	p(t)	the

particle	 has	 acquired	 in	 time	 t	 due	 to	 the	 acceleration	 produced	 by	E.	 The
second	 tells	 you	 what	 value	 of	 p(t)	 the	 v	 ×	B	 force	 at	R	 can	 handle,	 i.e.,
manage	 to	 bend	 into	 a	 circle.	 Equating	 the	 two	 expressions	 to	 satisfy	 the
assumption	of	a	circular	orbit	of	radius	R,	we	find	the	condition	for	operation:

For	the	betatron	to	work	the	average	field	within	r	<	R	should	be	double	the



field	at	r	=	R	at	every	instant.	This	is	what	I	have	tried	to	convey	in	the	figure
by	plotting	B(r)	and	Bav	at	one	 time.	 If,	however,	all	we	do	 is	crank	up	 the
current	 in	 the	 electromagnet	 and	uniformly	 raise	 the	 profile	 of	B(r)	 (by	 the
same	factor	for	all	r),	the	condition	Bav(t)	=	2B(R,	t)	will	hold	at	all	times	if	it
holds	initially.
The	magnetic	field	is	playing	a	dual	role.	By	its	time-dependence	inside	r	<

R,	 it	 is	producing	 the	circulating	electric	 field	E	 (which	 then	accelerates	 the
particle)	and,	through	its	v	×	B	force	at	the	orbital	radius	R,	it	is	keeping	it	in
a	circle	even	as	the	magnitude	of	p	grows.
The	betatron	beats	the	relativistic	kinematics	but	it	too	eventually	runs	into

problems	because	charged	particles	emit	radiation	when	accelerating,	and	the
loss	invalidates	the	preceding	analysis.

11.2			Generators
Now	for	a	practical	topic:	a	power	generator.	Remember,	I	told	you	that	one
way	 to	 light	 up	 a	 bulb	 is	 to	 take	 the	 conducting	 loop	 and	 keep	 running,
making	sure	the	loop	is	partly	in	and	partly	out	of	the	perpendicular	magnetic
field.	Another	option	was	to	sit	still	with	the	loop	and	pay	someone	to	run	the
other	 way	 with	 the	 magnet.	 These	 options	 for	 changing	 the	 flux	 are	 good
material	 for	 jokes	 about	 how	many	 Yalies	 it	 takes	 to	 light	 a	 bulb,	 but	 not
practical.	 Here	 is	 a	 better	 way.	 Look	 at	 the	 top	 half	 of	 Figure	 11.2,	 which
shows	a	generator	from	an	angle.	There	is	a	loop,	taken	for	convenience	to	be
a	square	of	side	a.	It	is	free	to	spin	about	the	axis	as	shown	by	the	big	curved
arrow.	It	is	immersed	in	a	constant	magnetic	field	B	produced	by	a	permanent
magnet.	The	loop’s	area	vector	A	is	perpendicular	to	the	plane	of	the	loop	and
is	at	an	angle	θ	relative	to	B.	The	flux	penetrating	this	area	is

There	 are	 two	 leads	 coming	 out.	 First	 assume	 open-circuit	 conditions,	 in
which	the	leads	are	not	connected	to	anything.	Ignore	the	arrows



Figure	11.2			The	generator.	The	square	loop	of	side	a	is	in	the	field	of	a	permanent	magnet.	When	it	is
rotated,	an	emf	will	appear,	which	is	equal	to	the	integral	of	the	v	×	B	force	or	the	rate	of	change	of	flux.
In	the	open	circuit,	this	emf	will	cause	charges	to	pile	up	at	the	leads	as	shown,	until	their	internal
electrostatic	field	balances	the	emf.	When	the	circuit	is	closed	a	current	will	flow	and	do	work	on	a
bulb,	for	instance,	and	work	will	have	to	be	done	by	an	outside	agent	to	turn	the	loop.

near	 the	 ends.	 Suppose	 I	 begin	 to	 turn	 the	 loop	 in	 the	 sense	 of	 the	 curved
arrow	with	angular	frequency	ω.	That	is

There	is	going	to	be	an	emf.	As	before,	we	can	compute	it	in	two	ways.	We
can	integrate	the	v	×	B	force	on	each	of	the	four	sides	of	the	loop	or	look	at
the	rate	of	change	of	flux	penetrating	it.
In	the	first	approach,	we	note	that	in	the	sides	23	and	41	the	vector	v	×	B	is

perpendicular	to	the	segments	dl	and	hence	does	not	contribute	to	the	emf.	As
for	section	12,	it	is	better	to	see	the	side	view	in	the	lower	half	of	the	figure.
The	segment	12	is	rotating	counterclockwise	at	a	speed	ω	·	a/2	and	the	force
on	a	unit	 charge	 is	 (a/2)ωBsinθ	 pointing	 from	2	 to	1	and	 its	 line	 integral	 is
(a/2)ωBasinωt.	 The	 opposite	 side	 34	 makes	 an	 equal	 contribution	 (in	 the
same	sense)	for	a	total	of

Now,	 	is	supposed	to	be	computed	around	a	closed	loop	and	we	have	an
open	circuit	with	a	gap	between	 the	 leads	 in	 the	edge	41.	 In	 the	 limit	of	an
infinitesimal	gap,	which	 I	 assume	here,	 this	makes	no	difference.	Or	 if	 you
like,	you	may	set	v	×	B	=	0	in	the	gap	in	computing	the	emf.



What	will	this	emf	due	to	the	v	×	B	force	do?	It	will	try	to	drive	a	current
that	will	fight	the	change	in	flux.	As	shown	in	the	figure,	the	loop	is	going	to
intercept	 less	 flux	 as	 it	 turns	 in	 the	 sense	 indicated.	 So	 the	 current	 would
begin	 to	 flow	 from	4	→	3	→	2	→	1	 to	 counter	 it.	 (You	 should	 check	 this
using	the	right-hand	rule.)	However,	in	the	open-circuit	condition,	the	current
cannot	flow	around	the	gap	between	the	leads.	So	±	charges	will	pile	up	at	the
open	leads	as	shown,	until	 the	electric	field	 they	create	 inside	 the	conductor
balances	 the	 v	 ×	 B	 force.	 The	 electric	 force	 due	 to	 the	 built-up	 charges
therefore	has	a	line	integral	equal	in	magnitude	to	 	inside	the	generator.	But,
being	 conservative,	 it	 must	 have	 the	 same	 integral	 on	 any	 path	 joining	 the
terminals	 outside	 the	 generator.	 This	means	 that	 in	 the	 outside	world	 there
will	 be	 a	 path-independent	 electrostatic	 voltage	 difference	 between	 the
terminals	equal	to	 .
This	 is	 exactly	 what	 happened	 in	 the	 battery.	 There	 a	 nonconservative

chemical	 force	 was	 piling	 up	 positive	 and	 negative	 charges	 in	 the	 two
terminals	and	 this	went	on	 till	 the	Coulomb	field	set	up	by	 these	charges	 in
the	opposite	direction	exactly	balanced	it.	The	conservative	electrostatic	force
that	 balanced	 the	 non-conservative	 chemical	 force	 inside	 the	 battery	 had	 to
have	the	opposite	line	integral	inside	the	battery,	equal	in	magnitude	to	 .	But
being	a	conservative	force,	it	had	to	have	the	same	line	integral	on	any	path
joining	 the	 terminals	 but	 lying	 outside	 the	 battery	 as	well.	 So	 in	 the	world
outside	 the	 battery,	 there	 was	 a	 potential	 difference	 V	 =	 	 between	 the
terminals	waiting	to	be	used	to	light	up	a	bulb	or	drive	a	motor.
There	is	a	subtle	issue	arising	from	the	fact	that	the	emf	in	the	generator	is

time-dependent	 (varies	 as	 sinωt).	The	 electric	 field	 required	 to	 balance	 it	 is
therefore	 not	 really	 static.	 However,	 as	 long	 as	 ω	 is	 not	 too	 big,	 the
retardation	 effects	 will	 be	 small,	 and	 the	 electric	 field	 due	 to	 the	 built-up
charges	can	continue	to	balance	the	changing	v	×	B	force	at	every	instant.	We
can	continue	to	use	the	ideas	from	electrostatics	including	that	of	a	potential
and	voltage.
Back	 to	 the	 battery.	 Once	 the	 battery	 is	 connected	 to	 a	 device,	 the

accumulated	 charges	 begin	 to	 flow	 downhill	 from	 the	 plus	 to	 the	 minus
terminal	 through	 the	device.	This	will	momentarily	weaken	 the	electrostatic
field	inside	the	battery,	and	the	chemical	forces	will	briefly	win,	replenish	the
terminals,	and	quickly	restore	the	balance	inside.	This	response	will	be	quick
enough	for	the	outside	world	to	get	a	steady	voltage	between	the	terminals	if
the	current	drawn	is	below	some	limit.
Likewise,	once	 the	generator	 is	 connected	 to	 a	device	 that	draws	current,

the	charge	buildup	at	the	leads	of	the	loop	will	momentarily	decrease	and	will
not	fully	balance	the	v	×	B	force.	The	uncompensated	part	of	the	v	×	B	force
will	cause	some	charge	accumulation	 till	 the	Coulomb	and	v	×	B	 forces	are
rendered	equal	and	opposite.	Usually	this	will	happen	so	quickly	that	we	will



not	see	the	momentary	voltage	drop	unless	we	draw	too	much	current.	But	if
we	do,	we	will	see	the	lights	dim	for	a	brief	period.
We	 now	 face	 a	 paradox	 previously	 encountered	 in	 our	 discussion	 of	 a

conducting	 loop	being	dragged	 in	a	perpendicular	B	 field.	 In	both	cases	we
have	an	electric	 field	 inside	a	perfect	conductor.	 Is	 this	not	 forbidden	by	 its
very	definition?	The	answer,	as	before,	is	that	the	real	constraint	in	a	perfect
conductor	that	prevents	the	unlimited	acceleration	of	its	free	charges	is	that	of
zero	net	 force	 and	not	zero	electric	 field.	Thus	 the	moment	 the	v	×	B	 force
appears	 due	 to	 the	 rotation	 of	 the	 loop,	 a	 compensating	 electrostatic	 force
generated	by	the	charge	buildup	is	not	only	allowed	but	required.
In	 the	open-circuit	 configuration,	 there	 is	 a	voltage	available	between	 the

terminals,	 which	 could	 be	 connected	 to	 the	 power	 outlets	 in	 your	 home,
waiting	to	be	used.	It	does	not,	however,	cost	you	till	you	plug	in	a	device	and
draw	current.	It	costs	no	energy	to	turn	the	loop	because	there	are	no	currents
in	any	of	its	four	segments	to	experience	the	Idl	×	B	force.
This	changes	when	we	connect	the	leads	to	a	resistor	R	and	current	begins

to	flow.	The	power	consumed	by	the	resistor	is

where	I	=	 /R.	Who	is	paying	for	this?	I	am,	assuming	I	am	turning	the	loop.
This	 requires	energy	because	 the	current-carrying	 loop	experiences	a	 torque
opposing	 the	 rotation.	 The	 energy	 is	 of	mechanical	 origin,	 provided	 by	me
turning	 the	 crank	 (or	 the	 turbine	 blades	 rotated	 by	 running	 water).	 The
mechanical	power	supplied	is	torque	times	angular	velocity	for	rotations.	The
torque	has	a	magnitude

and	the	power	supplied	by	me	is

since	 	=	ωABsinθ	as	per	Eqn.	11.22.
The	turbines	in	the	real	world	have	a	sizable	mass	and	moment	of	inertia,

as	well	as	friction.	It	takes	some	power	to	keep	them	spinning	even	without	a
current	 load	 placed	 by	 consumers.	 The	 minute	 you	 plug	 a	 toaster	 into	 the
socket,	 you	 start	 drawing	 current,	 and	 that	 current	 flows	 right	 through	 the
loop	in	 the	generator,	making	it	 that	much	harder	 to	rotate.	That’s	when	the
steam	turbines	really	get	to	work.	That’s	what	you	pay	for.

11.3			Inductance
Consider	the	setup	depicted	in	Figure	11.3.	I	wrap	some	turns	of	wire	around



a	 cardboard	 tube	 and	 connect	 this	 primary	 solenoid	 to	 some	 alternating
voltage.	 Focus	 on	 the	 situation	 at	 one	 instant	 when	 the	 primary	 current	 is
flowing	as	shown.	There	is	going	to	be	some	magnetic	flux	going	through	it,
pointing	down	the	solenoid.	There	is	a	second	wire,	the	secondary,	wrapped
around	the	primary	a	few	times	and	with	its	ends	dangling	as	leads.	What	will
I	find	at	the	leads	of	the	secondary	solenoid	at	this	instant?

Figure	11.3			At	this	instant	the	current	in	the	primary	coil	produces	a	B	flux	that	points	down	and	links
with	the	secondary.	If	this	current	increases,	 	and	the	Faraday	field	EF	in	the	secondary	will	fight	it	by
driving	a	current	that	will	cause	the	buildup	of	±	charges	as	shown	in	the	open-circuit	configuration.
These	will	set	up	a	Coulomb	field	EC	=	−	EF	since	there	can	be	no	net	field	in	a	conductor.	The
magnified	view	of	a	piece	of	the	secondary	shows	this.	The	conservative	field	EC	will,	however,	have
the	same	line	integral	between	the	+	and	−	terminals	outside	the	coil	as	it	did	inside,	and	this	will
translate	into	a	difference	in	voltage	V(+)	−	V(−)	≡	V+−	=	 .

If	the	current	through	the	primary	changes,	so	does	the	flux	inside	it.	That
means	 the	 flux	 through	 the	 secondary	 also	 changes	 since	 both	 coils	 wrap
around	 the	 same	 flux.	 Let	 the	 primary	 current	 be	 increasing	 at	 this	 instant.
This	means	the	downward	B	is	increasing.	There	is	going	to	be	an	emf	 (t)	in
the	secondary	to	counter	this	increase.	This	time	the	emf	is	not	due	to	the	v	×
B	force,	but	the	induced	electric	field	EF	as	mandated	by	Faraday’s	law:

The	direction	of	EF	will	be	as	indicated	in	the	magnifier,	in	order	that	it	may
drive	a	current	that	will	oppose	the	increase	in	flux.
For	computing	 	integrate	EF	counterclockwise	along	the	following	loop	 :

Begin	at	the	end	of	the	lead	marked	−	,	and	then	move	leftward	into	the	top	of
the	secondary,	through	it	till	you	emerge	at	the	lower	end,	then	rightward	to
the	 point	marked	 +	 ,	 and	 finally	 back	 to	 point	 −	 via	 the	 curve	marked	EC.



(This	 curve	 does	 not	 correspond	 to	 a	 physical	 wire;	 it	 is	 a	 path	 used	 for
computing	 .)
The	 field	EF	 will	 not	 succeed	 in	 driving	 the	 current	 the	way	 it	wants	 to

because	of	the	open	circuit.	It	will,	however,	pile	up	charges,	leaving	the	top
lead	with	 a	net	negative	 charge	 (as	 the	 current	 flows	away	 from	 it)	 and	 the
bottom	with	a	net	positive	charge	(as	the	current	flows	into	it).	These	piled	up
charges	 will	 very	 quickly	 set	 up	 an	 electrostatic	 or	 Coulomb	 field	EC	 that
exactly	balances	 the	Faraday	 field	EF	 as	 indicated	 in	 the	magnified	view	 in
the	figure.	Just	as	in	the	battery,	we	have	a	conservative	field	balancing	a	non-
conservative	one	inside	the	solenoid.	This	implies	a	voltage	V+−	between	the
+	and	−	leads	that	equals	 ,	as	shown	below.	However,	unlike	in	the	battery,
the	emf	and	voltage	V+−	are	time-dependent.
Here	 is	 an	 equivalent	 demonstration	 that	 a	 voltage	 difference	V	 =	 	will

appear	 between	 the	 leads	 of	 the	 secondary	 in	 the	 open-circuit	 configuration
shown.

Once	 the	 secondary	 circuit	 is	 closed	 and	 current	 begins	 to	 flow	 through
some	device,	these	±	charges	will	begin	to	migrate	to	the	opposite	terminals
and	 disappear.	However,	 as	 long	 as	 the	 alternating	 current	 does	 not	 change
too	fast,	there	will	always	be	enough	electric	charges	to	ensure	that	the	total
electric	field	inside	the	coil	(the	sum	of	EC	and	EF)	continues	to	vanish	and
that	 the	 voltage	 difference	 V+−	 =	 	 appears	 between	 the	 leads	 of	 the
secondary.
Once	again	we	really	should	not	be	using	Coulomb’s	law	or	electrostatics

for	this	problem,	since	they	are	applicable	only	for	fixed	electric	charges.	But
as	 long	 as	 the	 retardation	 effects	 are	 negligible,	we	 can	 continue	 to	 use	 the



twin	 notions	 of	 an	 electrostatic	 Coulomb	 force	 that	 can	 instantaneously
neutralize	 a	 time-dependent	 Faraday	 force	 EF,	 and	 the	 corresponding
potential	V+−.
I	have	devoted	considerable	time	to	show	you	how	you	may	use	the	notion

of	 a	 potential	 difference	 between	 the	 terminals	 of	 a	 battery,	 generator,	 and
solenoid	in	the	world	outside,	despite	the	presence	of	non-conservative	forces
inside.	There	is,	however,	one	difference	between	the	solenoid	and	the	other
two.	The	v	×	B	of	the	generator	and	the	chemical	forces	of	the	battery	do	not
preclude	 the	existence	of	a	conservative	electrostatic	 field	and	 its	associated
potential	V	=	 	between	the	terminals.	But	the	Faraday	field	EF	is	a	different
matter.	The	 time-dependent	 flux	of	 the	solenoid	may	not	be	confined	 to	 the
solenoid—it	can	leak	to	the	sides	and	indeed	has	to	leave	the	solenoid	during
its	return	from	the	north	end	to	the	south.	If	this	flux	penetrates	a	circuit,	we
cannot	define	a	path-independent	potential	in	its	presence	because	 E	·	dr	≠
0.	So	we	must	either	hope	this	flux	leakage	is	negligible	or	find	a	way	to	keep
it	out	of	 the	circuit.	An	excellent	way	is	 to	wrap	 the	primary	and	secondary
coils	around	a	toroidal	iron	core.	Now	almost	all	of	its	flux	will	be	trapped	in
the	iron	core	and	not	venture	into	the	vacuum	outside	(due	to	some	energetics
that	we	cannot	discuss	here).
The	 bottom	 line	 is	 that	 with	 the	 preceding	 caveats,	 when	 the	 secondary

solenoid	is	part	of	a	circuit,	you	may	demand	that	the	sum	of	all	the	voltage
changes	 is	 zero	 if	you	go	around	a	 loop	 that	 includes	 the	 secondary,	with	a
jump	V+−	≡	V(+)	−	V(−)	=	 	as	we	cross	the	secondary.

11.4			Mutual	inductance
Let	 us	 relate	 the	 emf	 in	 the	 secondary	 coil	 to	 the	 alternating	 current	 in	 the
primary.	We	normally	write

for	a	loop	enclosing	flux	Φ.	The	emf	in	the	secondary	is	actually

where	N2	is	the	number	of	turns	in	the	secondary.	The	reason	for	the	factor	N2
is	that	the	field	EF	is	to	be	integrated	from	one	end	of	the	solenoid	to	the	other
to	find	 2	and	each	turn	contributes	–dΦ/dt.	Equivalently,	each	turn	is	like	a
little	battery	with	 	=	–dΦ/dt	and	N2	of	these	have	essentially	been	hooked	up



in	series.	So	the	relevant	quantity	here	is	Φ2	the	flux	linked	to	the	coil	2:

where	Φ	is	the	flux	crossing	each	turn,	the	flux	running	through	the	length	of
the	primary	solenoid.	Thus

Let	us	calculate	Φ2	The	magnetic	field	inside	the	primary	is

where	n1	=	N1/l	is	the	turns	per	unit	length	of	the	primary	and	I1	is	the	current
through	it.	By	construction,	all	the	flux	inside	the	primary	is	linked	to	every
turn	 in	 the	 secondary.	The	magnetic	 flux	 linking	with	 the	 secondary	coil	of
cross	section	A2	is

where	I	have	defined	the	quantity

called	 the	mutual	 inductance	 of	 solenoids	 1	 and	 2.	 The	mutual	 inductance
Φ2/I1	is	the	flux	linking	with	solenoid	2	due	to	unit	current	in	solenoid	1.	That
Φ2	is	linearly	proportional	to	I1	is	to	be	expected	based	on	the	superposition
principle.	 If	 you	 double	 the	 current	 in	 the	 primary	 you	 double	 the	 field	 it
produces	 because	 you	 can	 think	 of	 the	 doubled	 current	 as	 the	 sum	 of	 two
identical	 currents	 flowing	 in	 the	 same	 wire,	 each	 producing	 its	 own	 field.
(This	also	follows	from	the	Biot-Savart	law.)
Putting	all	this	together

Consider	the	relation



which	 claims	 that	 the	 flux	 linking	 with	 solenoid	 2	 due	 to	 unit	 current	 in
solenoid	 1	 is	 the	 same	 as	 the	 flux	 linking	 solenoid	 1	 due	 to	 unit	 current	 in
solenoid	 1.	 It	 is	 not	 obvious	 because	 according	 to	 Figure	 11.3,	 all	 the	 flux
produced	by	1	also	penetrates	2,	but	the	opposite	is	not	true.	The	result	would
be	more	obvious	 if	 both	 solenoids	were	wound	 around	 the	 same	 toroid,	 for
then	 the	 flux	 due	 to	 either	 runs	 through	 the	 same	 toroidal	 core.	 The	 result,
however,	is	valid	even	in	the	non-obvious	cases.
In	general,	we	can	define	and	measure	the	mutual	inductance	M12	=	M21	=

M	of	any	two	loops	(not	necessarily	wound	around	the	same	core)	by	driving
unit	 current	 in	 either	 loop	 and	 finding	 how	much	 of	 its	 flux	 links	with	 the
other.	Mutual	inductance	can	be	very	important	in	designing	circuits.	It	can	be
useful	when	 intentionally	 coupling	 two	 loops.	However,	 at	 other	 times,	 the
circuit	 may	 have	 two	 closed	 loops	 in	 proximity	 that	 were	 not	meant	 to	 be
coupled,	 but	 end	 up	 experiencing	 the	 unwanted	 emf’s	 due	 to	 a	 changing
current	in	the	other.
Inductance	 is	 measured	 in	 henrys	 (H)	 in	 honor	 of	 Joseph	 Henry	 (1797–

1878).
Consider	two	coils	with	N1	and	N2	turns	wrapped	around	the	same	donut-

shaped	core	with	an	alternating	current	flowing	in	the	primary.	Since	the	same
field	penetrates	both,	the	ratio	of	the	flux	linkage	is	simply	in	the	ratio	of	the
number	of	turns	and	this	carries	over	to	the	ratio	of	the	emf’s	upon	taking	the
time	derivative	of	the	flux:

We	 are	 evidently	 talking	 about	 a	 transformer	 here.	 You	 apply	 an	 AC
voltage	 to	 the	 primary	 and	 a	 proportional	 AC	 voltage	 appears	 in	 the
secondary.	It	could	be	higher	or	lower,	depending	on	the	ratio	N2/N1—it	could
be	 a	 step-up	 or	 step-down	 transformer.	 You	 can	 also	 decide	 to	 drive	 the
current	 through	 the	 secondary	 to	 get	 a	 voltage	 on	 the	 primary	 with	 the
reciprocal	 ratio	 of	 voltages.	 Although	 you	 can	 step	 up	 or	 step	 down	 the
voltage,	you	cannot	create	energy	this	way.	You	also	cannot	step	up	or	down
DC	voltages	using	this	principle.

11.5			Self-inductance
Now	we	turn	 to	a	very	 important	circuit	element,	 the	 inductor.	 It	 is	a	single
solenoid	and	it	can	be	part	of	a	circuit	carrying	a	current	I(t).	We	know	that
when	the	current	goes	through	a	resistor	there	is	a	voltage	drop	Vin	−	Vout	=
IR,	 between	 where	 the	 current	 comes	 in	 and	 goes	 out.	 What	 will	 be	 the
corresponding	voltage	drop	for	an	inductor?



The	wire	 in	 the	 solenoid	 is	 a	 perfect	 conductor,	 and	 therefore	 it	 takes	no
voltage	 at	 all	 to	 drive	 a	 steady	 current	 through	 it.	 But	 when	 the	 current
through	 the	 inductor	 is	 changing,	 the	drop	across	 it	will	be	non-zero	by	 the
Faraday	effect,	due	to	the	emf	generated	in	the	solenoid	by	its	own	changing
current.
Time-dependent	currents	rise	naturally	in	AC	circuits	and	also	in	a	transient

process	like	the	one	depicted	in	Figure	11.4,	which	we	will	initially	focus	on.
Figure	11.4	shows	a	battery	of	terminal	voltage	V0	connected	in	series	to	an

inductor	L	 and	 resistor	R	 via	 a	 switch	S.	When	S	 is	 closed,	 the	 current	 that
begins	 to	 flow	will	 produce	 a	magnetic	 flux	 in	 the	 coil.	 An	 emf	 	 will	 be
generated	in	the	coil	to	oppose	this	growth.	The	emf	is	the	rate	of	change	of
Φsel,	 flux	 linking	with	 the	 coil	due	 to	 its	 own	current.	By	 the	 superposition
principle,	the	field	and	flux	have	to	be	linear	in	the	current.	So	we	may	define
the	self-inductance	denoted	by	L

as	the	constant	of	proportionality.	Postponing	for	a	while	the	computation	of
L,	we	proceed	to	find	 	in	terms	of	it:

Figure	11.4			An	LR	circuit.	When	the	current	flows,	the	drop	across	the	inductor	(as	we	follow	the
current)	is	LdI/dt.	Inside	the	inductor,	the	induced	field	EF	is	neutralized	by	the	Coulomb	field	EC	due
to	built-up	charges,	as	shown	in	the	magnified	view	of	a	tiny	segment	of	the	coil.	The	emf	 	receives	a
non-zero	contribution	to	the	line	integral	of	EF	only	inside	the	coil	from	the	−	to	the	+	terminal.	This	in
turn	equals	the	line	integral	of	EC	from	+	to	−	inside,	which	is	also	the	integral	outside	the	coil	because
EC	is	conservative.	This	leads	to	V(+)−V(−)	≡	V+−	=	 .	The	dotted	lines	do	not	correspond	to	a



physical	wire.

We	will	 ignore	 the	 minus	 sign	 and	 use	 it	 instead	 as	 a	 guiding	 principle
when	we	consider	specific	situations	and	want	to	know	which	way	a	voltage,
field,	or	current	will	be	directed.
As	 before	 if	 we	 enclose	 the	 inductor	 in	 a	 black	 box,	 that	 is	 to	 say,	 we

assume	its	changing	flux	is	somehow	confined	to	its	interior	and	does	not	link
with	the	rest	of	the	circuit,	we	can	ask	what	voltage	we	will	measure	between
the	 leads.	This	 is	going	 to	be	a	 familiar	discussion,	and	 let	us	do	 it	one	 last
time	with	feeling,	but	with	some	variations	to	relieve	the	monotony.
Suppose	the	current	is	coming	in	to	L	as	shown	in	Figure	11.4,	and	is	trying

to	 increase.	 The	 Faraday	 field	 EF	 will	 try	 to	 push	 charges	 in	 a	 way	 that
opposes	 the	 increasing	 current,	 causing	 the	 +	 and	 −	 charges	 to	 pile	 up	 as
shown.	So	it’s	the	same	story	again.	There	can	be	no	net	field	inside	the	coil,
which	is	a	perfect	conductor.	The	Faraday	field	EF	is	canceled	by	a	Coulomb
field	EC.	The	two	will	have	equal	and	opposite	line	integrals	inside	the	coil.
So	we	may	equate	 ,	line	integral	of	EF	from	−	terminal	to	the	+	terminal,	to
the	 voltage	 difference	 between	 the	 external	 leads.	 Just	 to	 reinforce	 various
concepts,	I	present	the	previous	arguments	in	a	string	of	equations:

This	means	that	for	people	thinking	outside	the	box	(that	confines	the	flux),
there	is	a	path-independent	potential	difference

between	the	two	ends	of	the	inductor.	Once	again	we	assume	that	the	notion
of	 a	potential	may	be	 extended	 from	 the	 truly	 static	 situation	 to	 the	present
one	where	it	is	time-dependent.



The	 implications	 for	 circuit	 theory	 is	 that	 if	 we	 follow	 the	 current	 in	 a
circuit,	there	will	be	a	voltage	drop	of	IR	when	we	pass	the	resistor	and	a	drop
of	LdI/dt	 across	 the	 inductor,	 between	 the	 end	where	 the	 current	 enters	 and
the	end	where	it	leaves.	If	the	current	is	increasing,	this	really	will	be	a	drop.
But	 if	 the	current	 is	decreasing	 (and	still	 flowing	 in	 the	 indicated	direction)
the	drop	will	actually	be	negative.
Thus	unlike	in	the	resistor,	the	voltage	“drop”	across	the	inductor	need	not

be	a	drop	 in	 the	direction	of	 the	current.	 It	 is	decided	by	 its	 rate	of	change.
The	arrows	in	circuit	diagrams	generally	show	only	the	direction	of	I	but	not
its	rate	of	change.	So	LdI/dt	can	have	either	sign.
Let	us	return	to	the	LR	circuit	of	Figure	11.4	and	ask	what	happens	when

the	 switch	S	 is	 closed.	 Let	 us	 impose	 the	 condition	 of	 zero	 voltage	 change
around	a	closed	loop.	The	loop	to	use	is	the	following:	Start	from	the	positive
terminal	of	the	battery,	go	along	the	connecting	wire	to	the	+	terminal	of	the
inductance,	 jump	 to	 the	 −	 terminal	 along	 the	 dotted	 curve	 marked	 EC,
bypassing	the	interior	of	the	solenoid	with	its	nasty	EF	for	a	drop	LdI/dt,	go
through	 the	resistor	 for	a	drop	of	IR	and	onward	 to	 the	negative	 terminal	of
the	battery,	and	go	around	the	battery	against	the	dotted	curve	to	the	positive
terminal	 for	 a	 gain	 of	V0.	 The	 sum	 of	 all	 these	 changes	must	 be	 0,	 or	 the
magnitude	of	the	gain	in	voltage	must	equal	the	magnitude	of	the	drop:

So	this	is	the	equation	to	solve.	Since	the	next	chapter	is	all	about	solving
this	 and	 many	 such	 equations,	 let	 us	 wrap	 up	 the	 discussion	 with	 the
calculation	of	L,	defined	as

The	 flux	 linking	with	 itself	 is	 the	 product	 of	 the	 number	 of	 turns	 times	 the
value	of	B	=	μ0nI	times	the	cross-sectional	area	A:

where	l	is	the	length	of	the	solenoid.

11.6			Energy	in	the	magnetic	field



How	 much	 energy	 is	 stored	 in	 an	 inductor	 carrying	 current	 I?	 This	 is	 a
meaningful	 question	 because	when	 you	 begin	 to	 drive	 a	 current	 through	 an
inductor,	 you	 are	 doing	 some	work.	 The	 changing	 current	 is	 opposing	 you
with	a	voltage	LdI/dt,	and	you’re	ramming	it	down	in	spite	of	that	opposition.
The	power	needed	is

Upon	integrating	both	sides	from	t	=	0	to	t	=	t,	and	assuming	I(0)	=	0,	we	find
the	stored	energy	is

So	it	takes	some	energy	to	build	up	a	current	in	the	inductor	just	like	it	takes
some	energy	to	charge	up	a	capacitor.
Feeding	in	the	explicit	expression	for	L	shown	in	Eqn.	11.52,

Since	Al	 is	 the	 volume	 over	 which	 the	 field	B	 =	 μ0nI	 exists,	 the	magnetic
energy	per	unit	volume	is

For	 this	 discussion	 it	 is	 better	 to	 consider	 a	 toroidal	 solenoid	whose	 flux	 is
very	well	 confined.	The	 final	 formula	 for	uB	 is	 exact	 and	can	be	derived	 in
many	other	ways.
Recall	that	the	energy	density	in	the	electric	field	is



So	uE	and	uB	are	given	by	very	similar	formulas.	Both	are	quadratic	in	the
fields	and	even	the	constants	behave	similarly:	μ0,	which	is	normally	upstairs
in	every	formula,	comes	downstairs	here,	and	 0,	which	is	always	downstairs
in	every	formula,	comes	upstairs	here.
So	 let	 me	 summarize	 what	 you	 should	 remember	 from	 all	 of	 this.	 The

circuit	element	called	an	inductor	is	just	a	coil	of	wire	that’s	wrapped	around
some	core.	When	you	change	 the	current	 through	 the	 inductor,	 it’s	going	 to
fight	it.	It’s	not	like	a	resistor.	A	resistor	fights	any	current.	An	inductor	fights
only	a	change	in	current.	All	this	is	summarized	in	the	circuit	equation

Even	without	solving	this	equation	we	can	say	some	things	based	on	what
we	 know.	 For	 example,	 the	 current	 in	 the	 circuit	 infinitesimally	 after	 the
switch	is	closed	must	be	0.	Why	not	something	else,	say	.2	A?	A	current	that
jumps	 from	zero	 to	something	non-zero	 in	zero	 time	would	have	an	 infinite
derivative.	 This	 is	 not	 allowed	 since	 LdI/dt	 cannot	 ever	 exceed	V0.	 So	 the
current	 in	the	inductor	will	never	jump.	On	the	other	hand,	 if	you	connect	a
battery	to	a	resistor	the	current	can	immediately	assume	the	value	I	=	V/R.
These	 restrictions	 follow	 from	 energy	 considerations.	 The	 current	 in	 the

inductor	implies	a	stored	energy	of	 .	If	the	current	jumps	instantaneously,
so	 does	 the	 stored	 energy,	 implying	 infinite	 power	 in	 or	 out,	 which	 is
impossible.	 On	 the	 other	 hand,	 a	 resistor	 stores	 no	 energy	 and	 the	 current
through	it	can	jump	when	a	switch	is	opened	or	closed.



CHAPTER	12

AC	Circuits

By	AC	I	mean	“not	DC.”	The	currents	and	voltages	may	not	be	oscillatory	in
each	case,	but	in	all	cases	they	will	be	varying	with	time.	The	circuits	could
contain	resistors,	inductors,	and	capacitors.

12.1			Review	of	inductors
Let	 me	 start	 by	 reviewing	 inductors	 before	 returning	 to	 circuits	 containing
them.
An	inductor	 is	very	different	from	the	resistor	 in	circuit	 theory	both	in	its

energetics	 and	 its	 mathematical	 treatment.	 When	 you	 connect	 a	 resistor	 to
some	voltage	V(t),	the	current	is	determined	by

which	is	an	algebraic	equation.	This	means	you	can	use	elementary	algebra	to
solve	for	the	current:	simply	divide	both	sides	by	R	and	obtain

You	 can	 make	 the	 network	 more	 complicated—add	 a	 few	 more	 resistors,
connect	 some	 in	 series	 and	others	 in	 parallel,	 and	 so	 forth.	No	matter	what
you	do,	you	can	always	combine	them	by	the	usual	rules	 to	find	the	current
leaving	the	battery.	If	you	follow	that	current	and	you	run	into	a	branch,	there
are	 simple	 rules	 to	 tell	 you	 in	 what	 ratio	 the	 current	 will	 split	 among	 the
branches.	You	do	not	need	any	calculus	to	deal	with	this	problem.
When	 you	 bring	 in	 inductors,	 things	 are	 different.	 If	 you	 have	 a	 current

going	 through	 an	 inductor,	 there	 will	 necessarily	 be	 a	 voltage	 drop	 in	 the
direction	 of	 the	 current.	 The	 “drop”	 could	 be	 negative	 if	 the	 current	 is
decreasing.	The	first	difference	you	notice	is	that	the	relation	between	voltage
and	 current	 is	 not	 an	 algebraic	 equation,	 but	 a	 differential	 equation.	 In	 due
course	I	will	tell	you	how	to	solve	the	differential	equations.



The	 second	 difference	 between	 the	 inductor	 and	 resistor	 is	 that	 when	 a
current	flows	through	a	resistor,	whatever	energy	you	provide	is	gone	in	the
form	of	heat.	It	is	dissipated.	The	lightbulb	glows	and	that’s	the	end.	With	an
inductor,	when	you	begin	to	drive	a	current,	you	are	building	a	magnetic	field
inside	the	inductor	and	there’s	an	energy	associated	with	the	magnetic	field.
That	stored	energy	will	be	given	back	to	you	later	on.	So	it’s	like	a	capacitor.
It	takes	work	to	charge	a	capacitor,	because	you’ve	got	to	take	charges	from
one	plate	 and	keep	on	piling	 them	 in	 the	other	plate,	 despite	 the	opposition
you	get.	But	then	if	you	connect	the	plates	to	a	bulb	and	squeeze	the	trigger	in
your	camera,	the	discharging	capacitor	gives	back	the	energy	you	put	into	it.
Let	us	start	with	a	simple	problem,	depicted	in	Figure	12.1.	I	apply	a	fixed

voltage	V0	to	a	resistor	R	and	inductor	L	connected	in	series	through	an	open
switch	S.	Ignore	for	now	the	part	in	dotted	lines	with	the	large	resistor	R′.	Or
imagine	R′	=	∞	so	that	no	current	goes	there.
When	I	close	the	switch	how	big	a	current	will	begin	to	flow?	The	circuit

equation	is

Because	 the	 inductor	 is	 a	 resistance-free	wire,	 you	may	 think	 a	 current	 I	 =
V0/R	 will	 start	 flowing	 immediately,	 but	 we	 have	 seen	 that	 that	 is	 wrong.
Instead	the	current	will	start	to	climb	continuously	from	zero.
What	is	the	function	I(t)	that	describes	the	current?	Let	us	begin	with	some

basic	deductions.

Figure	12.1			The	LR	circuit	coupled	to	a	battery	via	a	switch.	The	dotted	part	of	the	circuit	connected	to
a	very	large	resistor	R′	can	be	ignored	for	now	and	will	be	referred	to	later.

As	the	current	starts	climbing	up,	the	resistor	uses	up	a	voltage	RI	and	only
the	balance	V0	−	RI	is	available	to	sustain	dI/dt.	As	the	current	increases,	the



propensity	to	increase	decreases.	We	expect	that	after	a	very	long	time,	it	will
settle	down	to	some	value.	We	can	find	 it	by	setting	dI/dt	=	0	 in	 the	circuit
equation	Eqn.	12.4:

I	call	this	current	I(∞)	because	the	current	will	be	seen	to	reach	this	value	only
at	t	=	∞.	This	is	reminiscent	of	a	battery	trying	to	charge	a	capacitor	through	a
resistor.	Initially	all	of	V0	was	available	for	driving	the	current	through	R,	but
as	the	capacitor	starts	charging	up,	it	begins	fighting	the	battery.	The	current
gets	 smaller	and	smaller	but	never	quite	 stops	 since	 the	capacitor	can	never
equal	the	battery	in	its	opposition.	A	similar	thing	happens	when	a	capacitor
discharges	through	a	resistor.	It	never	gets	fully	drained	for	any	t	<∞	because
as	it	drains,	it	has	less	and	less	voltage	left	to	discharge	through	the	resistor.
In	the	present	case	of	the	LR	circuit,	as	the	current	grows,	it	becomes	its	own
enemy	due	to	the	increasing	drop	across	R.
However,	 the	 current	 can	 reach	 any	 fraction	 of	 I(∞),	 say	 .95,	 in	 a	 finite

time.	 To	 find	 the	 time	 t*	when	 this	 happens,	we	 need	 to	 buckle	 down	 and
solve	for	I(t)	starting	with

But	for	the	V0	on	the	right,	we	could	solve	this	easily.	So	we	eliminate	it	as
follows.	Let	us	write	the	current	as	a	sum	of	the	asymptotic	value	I(∞)	=	V0/R
and	the	rest,	denoted	by	Ĩ:

If	we	 substitute	 this	 into	Eqn.	12.6,	we	 find	 (noting	 that	 I(∞)	has	 zero	 time
derivative),



which	can	be	solved	by	inspection:

is	 the	 time-constant	 for	 the	 LR	 circuit	 and	 I0	 is	 arbitrary,	 as	 in	 all	 linear
equations.
To	find	I0	we	impose	the	initial	condition	that	the	full	current	vanishes	at	t

=	0:

This	result	again	illustrates	the	interplay	between	theory	and	experiment.	We



study	things	experimentally,	define	and	measure	some	physical	variables	like
L,	C,	R,	 and	 I,	 write	 down	 some	 equations	 governing	 them,	 and	 solve	 the
equations.	Then	we	get	a	very	precise	prediction	for	what	will	happen	under
some	 given	 conditions,	 which	 we	 run	 off	 to	 verify	 experimentally.	 In	 the
present	instance,	we	don’t	have	to	guess	at	what	time	t*	the	current	will	come
to	95	percent	of	its	maximum	value.	It	is	the	solution	to

and	has	a	value	≃	3τ.
As	 with	 the	 capacitor,	 the	 time-constant	 gives	 us	 a	 natural	 unit	 of	 time

appropriate	 to	 this	problem.	We	know	 the	current	will	 never	 reach	 I(∞)	but
we	also	know	that	 if	we	wait	a	long	time,	it	will	get	really	close.	It	 is	τ	 that
tells	us	what	“long	time”	means—it	means	many	times	τ.
Let	us	say	we	have	waited	 till	 t	=	1000τ.	Now	we	open	 the	switch.	What

will	happen?	Normally	when	you	try	to	reduce	the	current,	 the	inductor	will
fight	 back	 by	 driving	 its	 own	 current	 to	 prop	 up	 the	 current.	 But	 now	 it	 is
going	to	be	very	frustrated	because,	with	the	switch	open,	it	cannot	drive	any
current!	Also,	 how	 is	 it	 supposed	 to	 get	 rid	 of	 its	magnetic	 energy	 all	 of	 a
sudden?	The	answer	is	that	when	you	open	the	switch,	the	continuing	current
will	 begin	 to	 pile	 up	 charges	 of	 opposite	 types	 at	 the	 two	 terminals	 of	 the
switch.	The	plus	charges	will	be	at	the	terminal	where	the	current	was	headed
before	interruption	and	the	minus	at	 the	other.	Usually	this	will	 lead	to	very
high	electric	fields	and	cause	a	spark	to	jump	the	gap.	The	spark	is	the	current
carried	by	air	molecules	that	have	been	ionized—separated	into	positive	and
negative	parts—by	the	strong	field.
So	it	can	be	very	dangerous	to	interrupt	the	current	in	a	solenoid.	Do	you

know	 how	 people	 tackle	 this	 problem?	 They	 connect	 a	 large	 resistor	R′	 in
parallel	with	L	as	shown	in	dotted	lines	in	Fig.	12.1.	When	the	switch	is	in	the
closed	position,	R′	plays	hardly	any	role;	when	the	current	comes	to	the	node
where	the	inductor	and	R′	are	in	parallel,	it	takes	one	look	at	the	huge	R′	and
says,	 “I’m	going	 the	 other	way.”	But	when	you	 throw	 the	 switch	open,	 the
current	is	suddenly	all	for	going	through	R′.	It	knows	it	has	no	other	choice.
You	have	given	the	inductor	a	path	through	R′	to	discharge	its	energy,	and	it
will	 take	 that	 path	 even	 if	 R′	 is	 large.	 The	 current	 will	 continue	 to	 flow
through	L	 in	 the	 same	direction	 as	 before	 and	 then	 return	 counterclockwise
through	R′	back	to	L.	The	resistor	will	eventually	burn	up	the	stored	magnetic
energy.	Let	us	compute	the	rate	at	which	that	happens,	starting	with	the	circuit
containing	just	L	and	R′:



Let	me	go	over	the	derivation	just	to	hammer	home	the	question	of	signs.	As
we	 go	 counterclockwise	 (the	 assumed	 direction	 of	 the	 current)	 starting	 at	 a
point	below	the	resistor,	we	drop	by	R′I	when	we	get	to	the	upper	end	of	R′,
and	then	drop	another	LdI/dt	on	crossing	the	terminals	of	L.	The	equation	sets
the	 sum	of	 these	“drops”	 to	zero.	 (The	“drop”	across	L	will	 end	up	being	a
rise	because	dI/dt	<	0.)
Solving	this	very	familiar	equation	we	find	the	current	decays

exponentially

The	time-constant	L/R′	gives	you	an	idea	of	how	long	you	have	to	wait	before
the	inductor	is	essentially	(but	never	fully)	discharged.
Now	for	the	energy	check.	In	the	beginning	the	inductor	had	 .	This

better	equal	the	time-integral	of	the	power	P	=	I2R′	dissipated	in	the	resistor:

12.2			The	LC	circuit
Now	I’m	going	to	describe	a	slightly	more	complicated	circuit	with	an	L	and
a	C	hooked	up	as	shown	in	Figure	12.2.
Assume	 that	 at	 t	 =	 0,	 the	 capacitor	 is	 charged	 as	 shown	 and	 there	 is	 no

current.	 The	 +	 charges	will	 find	 their	 way	 around	L	 to	 the	 other	 plate	 and
neutralize	 the	 –	 charges	 there,	 and	 eventually	 the	 capacitor	 will	 discharge.
Had	 you	 connected	 C	 to	 a	 resistor,	 the	 story	 would	 have	 ended	 with	 the
discharge	of	the	capacitor.	But	when	it	discharges	through	L,	it’s	not	the	end
of	the	story.	Why	is	that?	The	inductor	would	be	carrying	a	current	by	then,
and	it	cannot	suddenly	stop	carrying	that	current.	It	is	in	fact	not	allowed	to,



by	energy	conservation.	So	it’s	going	to	keep	driving	the	current	for	a	while
till	 the	current	 is	zero.	The	 inductor	has	no	energy	now	(since	 I	=	0)	and	 is
ready	 to	 quit,	 but	 the	 capacitor	 is	 fully	 charged	 and	we	 are	 almost	 back	 to
where	we	 started	with	 one	 difference:	 the	 capacitor	 is	 charged	 the	 opposite
way.	So	you	wait	another	half	cycle	and	you	are	really	back	to	the	beginning
and	 the	 oscillations	 go	 on	 forever.	 The	 figure	 shows	 a	 few	 intermediate
configurations	 and	 where	 the	 energy	 is	 stored.	 The	 frequency	 of	 this
oscillation	will	shortly	be	shown	to	be	 .

Figure	12.2			The	LC	circuit	at	various	times.	The	electric	field	in	the	capacitor	and	the	magnetic	field	in
the	inductor	oscillate	with	frequency	 .	The	energy	alternates	between	being	entirely
magnetic	in	L	due	to	the	current	and	entirely	electric	in	C	due	to	the	built-up	charge.	When	the	current	is
at	a	maximum	the	charge	on	the	capacitor	is	zero	and	vice	versa.	The	electric	and	magnetic	fields	in	the
capacitor	and	inductance	are	shown	by	fat	arrows.

We	can	make	these	heuristic	arguments	precise	by	solving	the	equation

As	 we	 go	 counterclockwise	 around	 the	 loop,	 there	 is	 a	 drop	 LdI/dt	 at	 the
inductor	 and	 a	 gain	 Q/C	 across	 the	 capacitor	 for	 the	 direction	 of	 current
shown	 at	 time	0+.	 Since	Q	 is	 the	 charge	 on	 the	+	 plate,	 I	 reduces	 it	 if	 it	 is
flowing	as	shown.	So

So	the	equation	for	Q	is

Now,	we	have	seen	exactly	this	equation	before,	right?	Recall	the	equation
for	a	mass	coupled	to	a	spring



Mathematically,	 the	two	equations	have	essentially	 the	same	solution	except
for	a	change	in	symbols.	One	may	involve	electric	charges	and	the	other	may
involve	masses.	You	don’t	care.	The	equation

where	dog	is	a	function	of	time,	has	exactly	the	same	solution.	What	does	it
matter	what	 you	 call	 the	unknown	variables?	Once	you	 assure	me	 that	cow
and	elephant	are	 time-independent,	 just	as	m,	k,	L,	and	C	are,	 I	can	 tell	you
the	dog	will	oscillate	at	a	frequency

Since	the	solution	to	x(t)	was

where	A	is	the	amplitude	and	ϕ	is	the	phase,	the	answer	for	Q	is

I	have	set	I	=	−	dQ/dt	because	a	positive	current	in	the	sense	shown	depletes
the	capacitor,	and	I	denote	the	frequency	of	oscillations	by	ω0,	since	another
frequency	ω	will	appear	shortly.
Let	us	also	choose	ϕ	=	0,	since	ϕ	is	simply	a	nuisance	when	we	have	only

one	oscillator.	(A	non-zero	ϕ	here	means	that	the	oscillator	does	not	reach	its
maximum	when	t	=	0.	In	that	case	let	us	reset	the	clock	to	coincide	with	the
maximum.	There	will	be	no	complaints	since	no	one	else	is	using	the	clock.
This	would	not	be	true	if	there	were	two	oscillators,	since	there	can	be	a	fight
over	who	gets	to	reach	the	maximum	at	t	=	0.	Barring	coincidences,	only	one
[the	winner]	can	have	its	maximum	at	t	=	0,	and	the	loser	must	use	a	non-zero



ϕ.)
Figure	 12.2	 shows	 the	 flow	 of	 energy	 between	 all	 electric	 in	C	 and	 all

magnetic	 in	L.	When	 the	 current	 is	maximum	 the	 charge	 is	 zero,	 and	 vice
versa.
We	 see	 that	 the	 charge	 does	 indeed	 oscillate	 as	 anticipated	 by	 heuristic

arguments.	But	we	know	much	more	having	solved	 the	equation.	We	know
that	 the	 frequency	of	oscillations	 is	 .	We	know	 that	 the	 time	 it	 takes	 to
complete	 a	 cycle	 is	 independent	 of	 the	 amount	 of	 initial	 charge	 on	 the
capacitor.	 The	 analogy	 with	 the	 mechanical	 oscillator	 is	 complete.	 For
example,	starting	with	the	capacitor	charged	to	one	coulomb	and	zero	initial
current	is	equivalent	to	pulling	the	mass	by	1	meter	and	releasing	it	from	rest.
Table	12.1	shows	a	complete	dictionary.
Thanks	 to	 this	 table,	 if	you	know	 that	 an	 inductor	cannot	 instantaneously

change	its	current,	you	may	infer	that	the	mass	cannot	instantaneously	change
its	velocity.	It	will	be	very	instructive	for	you	to	explore	this	analogy	further.

Table	12.1			Mechanical	and	electrical	equivalents

12.2.1			Driven	LC	circuit
Next,	we	connect	L	and	C	in	series	to	an	alternating	voltage	V(t)	=	V0	cosωt
as	shown	in	Figure	12.3.	The	circuit	equation	is

This	ω	 is	 not	 the	 natural	 frequency	 of	 oscillation,	ω0.	 It	 is	 some	 externally
given	frequency,	 like	60	Hz	from	your	wall	outlet.	What	happens	now?	We
have	to	again	guess	the	solution.	We	want	a	function	Q(t)	such	that	when	we
take	two	derivatives	and	add	that	second	derivative	to	some	multiple	of	Q(t),
we	get	some	constant	times	a	cosine.	It	is	evidently	a	cosine.	So	let	us	assume
a	solution	of	the	form



Figure	12.3			The	driven	LC	circuit.

and	stick	it	into	the	equation.	We	find

Since	 cos	 ωt	 is	 not	 identically	 zero,	 we	 may	 cancel	 it	 and	 find	 that	 our
solution	works	if	the	prefactor	Q0	is	given	by

So	that	finally

Actually	we	may	modify	the	answer	as	follows:

where	 the	 extra	 term	 is	 the	 solution	 to	 the	 case	 V0	 =	 0,	 Eqn.	 12.33.	 You
should	verify	that	adding	it	does	not	invalidate	Eqn.	12.38.	For	now	I	choose
A	 =	 0	 to	 simplify	 the	 discussion	 and	 promise	 to	 address	 the	 extra	 term	 in
depth	in	the	next	chapter.
The	thing	that	catches	our	eye	in	Eqn.	12.39	is	that	when

that	 is,	when	 the	driving	 frequency	equals	 the	natural	 frequency,	we	have	a
resonance	with	a	diverging	amplitude	Q0.	You’d	better	not	drive	this	circuit
at	the	resonant	frequency.	That’s	also	true	of	a	mechanical	oscillator.
Notice	 that	 in	 the	LC	 circuit	 the	voltage	goes	as	 cosωt,	while	 the	current



(with	A	=	0)	goes	as	sinωt:

That’s	something	I	want	you	to	think	about.	The	current	is	not	in	step	with	the
voltage,	whereas	in	a	resistor	circuit,	the	current	follows	the	voltage.	It	has	the
same	profile	as	the	voltage,	simply	divided	by	R.	But	here,	V	is	a	cosine,	and	I
is	a	sine.	When	one	guy	is	at	a	maximum,	the	other	is	at	a	zero.	They	are	out
of	phase	by	90	degrees.
That	means	a	current	as	a	function	of	time	is	not	equal	to	the	voltage	as	a

function	of	time	divided	by	any	time-independent	quantity,	as	it	used	to	be	in	a
purely	 resistive	 circuit.	 You	 cannot	 divide	 cosωt	 by	 any	 time-independent
quantity	and	turn	it	into	sinωt.	It	looks	like	you	have	to	say	goodbye	to	Ohm’s
law	in	AC	circuits.	But	 there	 is	a	way	 to	get	some	kind	of	Ohm’s	 law	even
here,	and	we	will	derive	it	shortly.

12.3			The	LCR	circuit
We	are	going	 to	solve	 for	 the	current	 in	 the	LCR	circuit	driven	by	a	cosine
voltage,	shown	in	Figure	12.4.	The	circuit	equation	is

where	Q(t)	 is	 the	 integral	of	 I(t).	The	equation	 thus	 involves	 the	current,	 its
derivative,	and	its	integral.

12.3.1			Review	of	complex	numbers
Solving	this	equation	is	going	to	require	complex	numbers,	which	are	crucial
here	and	in	many	other	situations.	For	example,	we	rely	heavily	on	imaginary
numbers	when	we	 itemize	our	 tax	deductions.	 I’m	assuming	you	have	 seen
complex	numbers	in	some	course	or	in	Volume	I,	which	treats	them	in	great
detail.	Just	to	be	safe,	I’ll	give	you	a	lightning	review.	I	will	only	tell	you	the
essentials,	 but	 having	 done	 so	 I’m	 going	 to	 assume	 that	 you	 can	 use	 them
freely	 and	 that	 I	 can	 invoke	 them	as	often	 as	needed.	 It	 is	 up	 to	you	 to	get
prepared	 for	 this,	 based	 on	 your	 past	 training	 and	 the	 following	 review	 of
complex	numbers.



Figure	12.4			The	LCR	circuit	driven	by	a	cosine	voltage.	For	the	direction	of	current	shown,	note	that	Q
increases	with	time.

•	A	complex	number	z	is	written	in	terms	of	two	real	numbers	x	and	y	and

as

and	visualized	as	a	point	(x,	y)	in	the	xy-plane,	as	in	Figure	12.5.	This	is	the
Cartesian	form	of	 the	complex	number.	All	you	need	to	know	henceforth	 is
that	i2	=	−1.
•	The	complex	conjugate	of	z	is

Figure	12.5			The	complex	plane	where	z	=	x	+	iy	is	the	Cartesian	form	of	z	represented	by	(x,	y).	The
polar	form	is	represented	by	|z|	and	θ	=	tan−1(y/x).	The	conjugate	z*	has	the	opposite	imaginary	part.

We	call	x	 and	y	 the	 real	 and	 imaginary	parts	 of	 z.	Thus	 z	 and	 z*	have	 the
same	real	parts	and	opposite	imaginary	parts.



•	The	real	and	imaginary	parts	of	z	may	be	found	as	follows:

This	works	 for	 the	 real	 and	 imaginary	 parts	 of	 any	 function	 of	 z.	 Take,	 for
example,

In	finding	f*(z)	you	must	complex	conjugate	not	only	z	but	also	any	complex
constants	that	enter.	For	example,	if

then

•	Two	complex	numbers	are	equal	if	and	only	if	their	real	and	imaginary	parts	are	equal.
•	The	sum	of	two	complex	numbers	is

which	is	just	like	vector	addition.	The	novelty	with	complex	numbers	is	that
we	can	also	multiply	them.
•	Their	product	is

•	The	modulus	or	absolute	value	of	the	complex	number	is

and	is	simply	the	length	of	the	line	joining	the	origin	to	(x,	y).
•	The	phase	(see	Fig	12.5)	is	the	angle	between	the	position	vector	and	the	real	or	x	axis:



•	To	divide	z1	by	z2,	we	bring	in	the	modulus	of	z2	as	follows:

We	are	done,	since	we	can	evaluate	the	product	in	the	numerator	and	divide
the	real	and	imaginary	parts	by	the	real	number	|z2|2.
•	Euler’s	formula	(proved	in	Volume	I)	is

Using	cos(−θ)	=	cosθ	and	sin(−θ)=−sinθ

You	could	also	obtain	this	by	complex	conjugating	both	sides	of	Eqn.	12.58,
assuming,	as	we	do,	that	θ	is	real	and	only	i	has	to	be	conjugated	to	−	i.
•	Thanks	to	Euler	we	may	write	z	in	polar	form

using	eiθ	e−iθ	=	e0	=	1.
•	To	multiply	two	complex	numbers	is	easy	in	the	polar	form:

Thus	to	multiply	one	complex	number	by	the	second,	rescale	the	modulus	of
the	first	by	the	modulus	of	the	second	and	rotate	it	by	the	phase	of	the	second.
Notice	 and	 remember	 that	 the	 modulus	 of	 a	 product	 is	 the	 product	 of	 the
moduli	|z1z2|	=	|z1|·	|z2|.



Figure	12.6			The	multiplication	of	z1	by	z2	rescales	z1	by	|z2|	and	rotates	it	by	θ2.	Thus	θ3	=	θ1	+	θ2.

•	Division	is	equally	easy	(unlike	in	the	Cartesian	case):

Thus	complex	multiplication	and	division	accomplish	two	things—rescaling	and	rotation—in	one
shot.	This	is	the	key	feature	we	will	use,	and	it	is	illustrated	in	Figure	12.6.
•	Any	equation	among	complex	numbers	implies	another	in	which	both	sides	are	complex
conjugated.	This	is	done	by	complex	conjugating	all	numbers	in	each	side.	That	is,	the	real	parts	are
left	alone	and	the	imaginary	parts	are	reversed.	The	reason	this	works	is	that	if	two	complex	numbers
are	equal,	their	real	and	imaginary	parts	must	separately	match.	You	cannot	borrow	from	the	real	part
and	add	it	to	the	imaginary	part.	They	are	apples	and	oranges.	So	if	the	real	and	imaginary	parts
match	on	two	sides	of	a	complex	relation,	they	will	match	if	the	imaginary	parts	are	reversed	on	both
sides.
There	is	an	analogy	with	vectors	in	two	dimensions.	Two	vectors	are	equal	only	if	their

components	along	x	and	y	are	separately	equal.	Thus	a	vector	equation	in	two	dimensions	is	really
two	equations,	one	for	the	coefficient	of	i	and	the	other	for	the	coefficient	of	j	on	the	two	sides.	If	two
equal	vectors	are	reflected	on	the	x-axis	(i.e.,	their	y-components	are	reversed),	the	reflected	vectors
will	be	equal.

12.3.2			Solving	the	LCR	equation
Now	we	will	use	all	this	machinery	to	solve	the	LCR	circuit	equation:

Consider	the	capacitor	term

The	 indefinite	 integral	 might	 bother	 you	 since	 it	 leaves	 the	 charge	 on	 a
capacitor	uncertain	by	an	amount	 that	depends	on	 the	 lower	 limit.	You	will



see	that	this	uncertainty	will	not	prevent	us	from	solving	for	the	current	I(t),
because	I(t)	is	the	derivative	of	Q(t).
Guessing	 the	 answer	will	 be	 hard.	 You	 are	 trying	 to	 find	 a	 function	 I(t)

such	 that	when	you	differentiate	 it	and	add	 to	 it	 some	multiple	of	 itself	and
then	 add	 some	 multiple	 of	 its	 integral,	 you	 get	 something	 proportional	 to
cosωt.	Neither	a	pure	sinωt	nor	cosωt	can	do	it.
But	you	can	guess	the	answer	if	V(t)	=	V0eαt.	In	this	case	you	can	guess	that

the	 current	will	 itself	 be	 some	multiple	 I0eαt	 of	 eαt	 as	well.	 This	 guess	will
work	because	eαt	will	 remain	eαt	whether	you	 integrate	 it,	differentiate	 it,	or
leave	 it	 alone.	 So	 you	 can	 cancel	 out	 this	 time-dependent	 factor	 in	 all	 the
terms	 in	 the	 equation	 and	 get	 a	 time-independent	 relation	 relating	 I0	 to	 the
voltage	amplitude	V0	 and	 the	circuit	parameters	R,	L,	 and	C.	Unfortunately,
no	one	 is	 interested	 in	 this	voltage,	because	 it’s	growing	exponentially	 fast,
or,	if	you	put	a	minus	sign	in	the	exponent,	it’s	dying	exponentially.
To	solve	the	problem	with	a	cosωt	voltage	we	are	going	to	use	a	trick	based

on	the	superposition	principle	for	linear	equations.
Consider	the	following	two	equations:

Thus	 Ic	 and	 Is	 are	 currents	 driven	 by	 the	 cosine	 voltage	V0	 cosωt	 and	 sine
voltage	V0sinωt	 respectively.	We	 do	 not	 know	what	 they	 are	 at	 this	 point.
Now	multiply	both	sides	of	Eqn.	12.68	by	i	and	add	it	to	the	first	to	obtain

To	arrive	at	the	first	equation	I	have	simply	used	the	fact	that	the	sum	of	two
derivatives	 (or	 integrals)	 is	 the	 derivative	 (or	 integral)	 of	 the	 sum.	 In	 the
second	equation	I	have	introduced	a	complex	exponential	current



which	is	the	response	to	a	complex	exponential	voltage	Ve	=	V0eiωt.
You	may	wonder	where	 this	 is	 going.	Why	 am	 I	 bringing	 in	 a	 complex

voltage,	 when	 no	 one	 asked	 me	 to	 and	 when	 I	 could	 not	 even	 solve	 the
problem	with	the	real	cosine	potential?	Here	is	the	reason.
•	I	can	easily	find	the	current	Ie	that	flows	in	response	to	the	complex	exponential	voltage	Ve	=

V0e
iωt	thanks	to	the	nice	properties	of	the	exponential	function.

•	The	current	I	really	want,	namely	Ic	that	flows	in	response	to	V0	cosωt,	is	the	real	part	of	Ie.

Look	at

Let	 us	 take	 one	 time	 derivative	 of	 both	 sides	 to	 eliminate	 the	 indefinite
integral:

We	can	now	guess	the	form	of	the	solution	Ie:	it	is	also	a	complex	exponential

where	 the	 constant	 I0	 could	 itself	 be	 complex.	This	 guess	 is	 going	 to	work
because	all	three	terms	on	the	left—the	derivatives	and	the	function—will	be
the	same	exponential.	Substituting	this	assumed	form	into	Eqn.	12.74	we	find

Upon	canceling	iωeiωt	from	both	sides	we	find

is	called	the	impedance.



The	same	relation	between	I0	to	V0	and	Z	is	obtained	if	we	start	with

and,	 rather	 than	 differentiating	 it	 with	 respect	 to	 t	 as	 we	 did,	 evaluate	 the
indefinite	integral	as	follows:

Thus	we	simply	drop	the	time-independent	contribution	from	the	lower	limit.
This	 procedure,	 which	 gives	 the	 same	 answer	 as	 before,	 makes	 the
calculations	 easier	 in	 circuit	 theory	 because	 it	 allows	 us	 to	 assign	 to	 the
capacitor	a	contribution	1/(iωC)	to	Z.	I	will	resort	to	it	in	the	future.
The	 impedance	 Z	 has	 the	 same	 units	 as	 resistance.	 For	 example,	 if	R	 =

100Ω,C	=	100μF,L	=	.1H,ω	=	100π,

Notice	 the	 magic	 of	 the	 complex	 exponential:	 it	 has	 turned	 an	 equation
involving	 integrals	 and	derivatives	 into	 an	 algebraic	 one,	Eqn.	 12.78	 for	 I0,
which	may	be	found	by	simply	dividing	both	sides	by	Z	to	obtain

12.3.3			Visualizing	Z
Let	us	visualize	Z	in	the	complex	plane,	as	in	Figure	12.7.	It	has	a	real	part	R
and	an	imaginary	part	(ωL−1/(ωC)).
The	magnitude	of	Z	is

and	its	phase	is



Figure	12.7			The	impedance	in	polar	and	Cartesian	forms.	At	resonance	Z	=	R	and	ϕ	=	0.	The	minimum
of	|Z|	occurs	at	 .

So	we	may	write,	in	future,

For	later	use	remember	that

The	current	that	flows	in	response	to	the	complex	exponential	voltage	is

To	 find	 Ic(t),	 the	 solution	 to	 the	 cosine	 voltage	 that	 is	 the	 real	 part	 of	 the
exponential	voltage,	we	simply	take	the	real	part	of	Ie(t)	and	obtain

The	 amplitude	 of	 the	 physical	 current,	 ,	 is	 related	 to	 ,	 the
amplitude	of	the	complex	current,	as	follows:



Let	us	write	out	Ic	explicitly	so	we	may	analyze	it	later	in	some	depth:

12.4			Complex	form	of	Ohm’s	law
Let	 us	 begin	 with	 the	 fact	 that	 when	 the	 driving	 voltage	 is	 a	 (complex)
exponential,	so	is	the	current,	and	its	amplitude	I0	obeys	an	algebraic	equation

which	is	solved	by	simply	dividing	both	sides	by	Z:

This	is	as	easy	as	Ohm’s	law,	except	for	the	fact	that	Z,	which	plays	the	role
of	R	 in	DC	 circuits,	 is	 complex.	We	 can	 replace	 the	 original	AC	 circuit	 in
Figure	12.4	by	a	DC-like	circuit	shown	in	Figure	12.8	where	the	exponential
eiωt	is	removed	from	the	voltage	and	the	current.	Only	their	amplitudes	V0	and
I0	 appear	 and	 the	 circuit	 elements	 are	 replaced	 by	 their	 contributions	ZR	 =
R,ZL	=	iωL,	and	ZC	=	1/(iωC)	to	the	impedance.	The	voltage	equation	is

Figure	12.8			The	representation	of	the	LCR	circuit	in	DC-like	terms	where	each	circuit	element	is
replaced	by	its	impedance.	The	common	factor	eiωt	has	been	removed	from	the	currents	and	voltages,
whose	amplitudes	V0	and	I0	alone	appear.	The	amplitudes	of	the	complex	voltage	drops	across	R,	L,



and	C	are	denoted	by	VR(=	RI0),	VL(=	iωLI0),	and	 .	The	physical	time-dependent

counterparts	are	obtained	by	reinstating	the	eiωt	factor	and	taking	the	real	part.

Once	 we	 have	 solved	 for	 the	 complex	 current	 amplitude	 I0,	 the	 real,
physical,	time-dependent	current	can	be	obtained	upon	reinstating	the	eiωt	and
taking	the	real	part:

If	the	physical	current	Ic	is	the	real	part	of	Ieeiωt,	what	is	the	real,	physical,
time-dependent	 voltage	V(t)	 across	 any	 circuit	 element?	 The	 easiest	 case	 is
the	resistor.	The	drop	across	it	is,	from	first	principles,

Thus,	to	get	VR(t),	the	physical	voltage,	we	must	multiply	the	complex	time-
independent	VR	by	eiωt	and	take	the	real	part.	Only	because	R	was	real	could
we	interchange	the	two	operations	of	taking	the	real	part	and	multiplying	by
R.
Next	consider	the	inductor.	The	real,	physical,	time-dependent	voltage	drop

across	it	is

Again,	 to	 get	VL(t),	 the	 physical	 voltage	 drop	 across	 the	 inductor,	we	must



begin	with	the	complex	time-independent	amplitude	VL,	multiply	by	eiωt,	and
take	 the	 real	part.	Only	because	L	was	 real	could	we	 interchange	 taking	 the
real	part	of	the	current	and	multiplying	it	by	L.
Likewise	 the	 real,	 physical,	 time-dependent	 voltage	 drop	 across	 the

capacitor	is

Only	because	1/C	was	real	could	we	interchange	taking	the	real	part	of	the
current	and	multiplying	it	by	1/C.



CHAPTER	13

LCR	Circuits	and	Displacement	Current

The	 last	 chapter	 concluded	 with	 an	 expression	 for	 the	 current	 in	 an	 LCR
circuit	driven	by	a	cosine	potential.	The	circuit	equation	was

This	 was	 a	 differential	 equation.	 We	 managed	 to	 turn	 it	 into	 an	 algebraic
equation	 by	 following	 a	 strategy	 that	 I	 now	 restate	 in	 slightly	 different
language.
We	decided	to	solve	instead	a	different	problem	where	V(t)	was	a	complex

exponential	and	Ie(t)	the	corresponding	current:

Why?	Because,	if	we	could	somehow	solve	this	problem,	the	answer	to	our
original	problem	would	be	the	real	part:

This	was	 due	 to	 superposition.	 The	 voltage	V0eiωt	 is	 the	 sum	 of	 a	 real	 and
pure	imaginary	voltage

which	 must	 therefore	 produce	 the	 sum	 of	 two	 currents,	 one	 real	 and	 one
purely	 imaginary.	 The	 complex	 current	 Ie	 flowing	 in	 response	 to	 the
exponential	can	always	be	written	as	a	sum	of	its	real	and	imaginary	parts:

Because	R,	L	and	1/C	are	real,	a	real	voltage	V0	cosωt	can	only	produce	a	real
current,	which	must	therefore	be	Ic,	where	the	subscript	c	stands	for	“cosine.”
(The	 purely	 imaginary	 part	 iV0sinωt	 produces	 the	 purely	 imaginary	 current



iIs.	It	is	the	answer	to	a	problem	with	an	oscillating	sine	voltage.)
The	answer	to	our	problem	is	then	the	real	part	of	the	current	produced	by

V0eiωt.
This	modified	problem	with	the	complex	exponential	is	very	easy	to	solve

by	guessing,	due	to	the	wonderful	property	of	the	exponential	that	it	remains
the	same	whether	you	leave	it	alone,	integrate	it,	or	differentiate	it.	So	we	can
readily	guess	the	form	of	the	solution	Ie:	 it	 is	also	a	complex	exponential	of
the	same	frequency:

Substitution	into	the	circuit	equation	gives,	upon	canceling	eiωt	everywhere,

Eqn.	13.7	is	the	algebraic	equation	analogous	to	IR	=	V	for	a	purely	resistive
circuit.	It	is	solved	by	dividing	by	the	impedance	Z:

The	time-dependent	current	produced	by	the	exponential	voltage	V0eiωt	is

The	current	produced	by	the	physical	cosine	voltage,	V0	cosωt	=	Re	[V0eiωt],
is	given	by	the	real	part	of	Ie:



The	complex	amplitude	of	the	complex	current	 	and	the	amplitude	of
the	real	current	 	are	related	as	follows:

Since	in	the	end	the	current	was	real,	you	could	say,	“I	don’t	want	to	deal
with	 complex	numbers.”	You	could	 take	 an	undetermined	mixture	of	 cosωt
and	sinωt,	put	 it	 into	 the	equation,	and,	after	a	 lot	of	manipulation,	 find	 the
same	 answer.	 But	 the	 beauty	 of	 the	 complex	 numbers	 is	 that	 the	 formulas
relating	current	and	voltage	come	out	in	one	package	and	are	as	easy	to	use	as
Ohm’s	law.	I	will	later	describe	more	complicated	circuits	where	an	approach
with	just	real	numbers	will	be	intractable.

13.1			Analysis	of	LCR	results
Let	us	resume	our	analysis	of	the	salient	features	of

Figure	13.1			The	amplitude	of	the	current	as	a	function	of	frequency	ω	in	units	of	ω0	for	a	typical
circuit.	The	maximum	of	Ic0	occurs	at	 .

•	Consider	first	the	amplitude	of	the	current	Ic0(t).	Look	at

Unlike	 in	 a	 resistive	 circuit,	 the	 size	 of	 the	 current	 is	 frequency-dependent.
Figure	13.1	is	the	plot	of	Ic0(ω)	as	a	function	of	ω	for	a	typical	circuit.	As	ω
varies,	so	does	Ic0.	When	ω	→	0,	you’ve	got	a	 	in	the	denominator.



That’s	going	to	beat	everything	and	we	find

The	current	therefore	starts	out	as	0	at	ω	=	0.	This	corresponds	to	the	fact	that
if	the	voltage	had	been	a	DC	source	instead	of	an	AC	source—that’s	what	ω	=
0	means—the	capacitor	would	charge	till	its	voltage	equaled	V0	and	then	the
current	would	stop.	That	would	be	the	final	answer.
As	ω	 increases,	 Ic0	will	 initially	 grow	 linearly.	 It	will	 eventually	 have	 to

come	down	because	at	very	large	ω,	the	ωL	term	in	|Z|	will	dominate	and

Thus	 Ic0	 will	 fall	 like	 1/ω	 at	 very	 large	 frequencies.	 In	 between	 these	 two
extremes,	 it	 will	 reach	 a	 maximum.	 If	 you’re	 trying	 to	 get	 the	 maximum
current,	you	want	to	minimize	the	denominator	|Z|.	Recall	that

There’s	nothing	you	can	do	about	the	R2	inside	the	square	root.	But	you	can
play	ωL	and	1/ωC	against	each	other	and	find	a	frequency	when	they	cancel
each	other:

This	 happens	 when	 the	 driving	 frequency	 is	 the	 natural	 frequency.	 At	 that
resonant	frequency,	the	current	amplitude	will	be	simply

It’s	as	if	L	and	R	were	not	there.	They	have	neutralized	each	other.	However,
off	resonance	they	do	turn	on	and	they	are	responsible	for	the	sharp	resonant
peak.	Do	you	know	where	that	comes	into	play	in	your	daily	life?
The	answer	I	had	in	mind	was	the	radio.	Now	younger	people	are	always

carrying	 some	 recorded	medium.	 But	 if	 you	 listen	 to	 radio,	 like	 in	 the	 old



days,	you	run	into	the	following	problem.	Every	room	is	full	of	radio	signals.
Everyone	wants	your	attention.	All	the	radio	stations	are	sending	signals	right
now,	and	you	want	to	pick	just	one	station	that	you	like.	So	what	happens	if
your	 favorite	 station	sends	 that	 information	at	a	certain	ωf?	 If	 that’s	all	you
want,	you	go	to	the	store	and	buy	an	LCR	circuit	with	L	and	C	chosen	so	that
ω0	 =	ωf.	 You	 will	 get	 a	 huge	 response	 when	 you	 get	 the	 signal	 from	 that
station.	Now	say	there	are	other	stations	with	different	frequencies.	You	may
not	want	to	listen	to	them,	but	you	may	have	to	listen	to	some	of	them,	if	their
frequency	 is	 anywhere	 in	 the	 resonant	 peak.	 Your	 radio’s	 response	 to	 that
station	will	not	be	0.	It	will	be	a	lot	smaller	than	at	the	peak	but	not	0	and	you
can	hear	it	in	the	background.	If	R	is	very,	very	small,	this	response	function
will	 be	very	 large	 at	 resonance	but	 also	very	narrow,	 and	you	can	keep	 the
stations	 from	 interfering	 by	 assigning	 them	 non-overlapping	 frequencies,
differing	by	at	least	the	width	of	each	peak.
What	if	you	changed	your	mind	and	wanted	to	listen	to	some	other	station?

What	should	you	do?	Buy	one	radio	for	this	station,	one	radio	for	that	station,
and	so	on?	You	know	the	answer:	you	fiddle	with	the	dial.	What	do	you	think
it	 does?	 It	 changes	 the	 capacitance.	 How	 do	 you	 think	 that	 is	 done?	Now,
don’t	 rush	out	and	smash	open	your	 radio.	You	will	 see	nothing	 that	makes
any	sense.	But	 in	 the	old	days,	when	all	 the	parts	were	big,	you	could	 look
inside	and	see	a	variable	capacitor.	How	do	you	vary	the	capacitance?	Recall
that	for	the	parallel	plate	capacitor	of	plate	area	A	and	separation	d

So	one	option	is	 to	change	the	surface	area	to	vary	C,	but	how	does	turning
the	dial	do	that?	The	actual	geometry	is	a	little	different	but	 the	idea	is	 this.
Suppose	 the	 two	 plates	 of	 the	 capacitor	 did	 not	 fully	 overlap.	 Then	 the
effective	area	A	in	the	formula	is	not	the	full	area	A	of	each	plate	but	a	smaller
amount	depending	on	 the	overlap.	Turning	 the	dial	changes	 the	overlap.	 (In
practice	there	are	several	overlapping	plates	and	they	are	semicircular.)	That
will	give	you	a	range	of	resonance	frequencies,	and	that’s	the	range	you	can
hear.
•	Next	consider	the	phase	of	the	current:

At	small	ω,	 the	capacitor	 term	dominates,	 tanϕ	 is	negative,	and	so	is	ϕ.	The
current,	which	goes	as	cos(ωt	−	ϕ),	then	leads	the	voltage.



At	 large	 ω	 the	 inductive	 term	 ωL	 dominates	 and	 ϕ	 is	 positive	 and	 the
current	 lags	behind	 the	voltage.	Finally,	 at	ω	=	ω0	 the	phase	ϕ	=	0	 and	 the
current	is	in	step	with	the	voltage.
Consider	the	case	when	the	voltage	is	cosωt	and	the	current	lags	as	cos(ωt

−	ϕ).	You	cannot	 turn	 the	 first	cosine	 into	 the	second	upon	dividing	by	any
real	 time-independent	 function.	You	cannot	get	 the	current	 from	the	voltage
by	dividing	by	 something	 like	 resistance.	 It	 seems	 like	a	 farewell	 to	Ohm’s
law.	 Yet	 within	 complex	 numbers	 you	 can	 turn	 exp(iωt)	 into	 expi(ωt	 −	 ϕ)
when	you	divide	by	eiϕ.	This	possibility	in	the	world	of	complex	numbers,	of
rescaling	 and	 rotating	 the	 phase	 of	 a	 complex	 number	 in	 one	 stroke,	 by
dividing	by	another	complex	number,	 is	exactly	what	 the	doctor	ordered	for
turning	 the	 voltage	 amplitude	V0	 into	 the	 current	 amplitude	 I0	 =	V0/Z.	 The
doctor	in	question	was	Dr.	Charles	Steinmetz	(1865–1923),	a	mathematician
and	engineer	who	worked	for	General	Electric	and	invented	this	approach	to
AC	circuits	using	complex	numbers.
•	The	instantaneous	power	delivered	by	the	source	is,	from	first	principles,

(Although	 V(t)	 and	 I(t)	 are	 the	 real	 parts	 of	 the	 respective	 complex
exponentials,	 the	 power	 P(t)	 is	 not	 the	 real	 part	 of	 the	 product	 of	 these
complex	exponentials	because	the	product	of	real	parts	is	not	the	real	part	of
the	product.	More	on	this	later.)
For	now,	notice	P(t)	 oscillates	with	 time.	The	oscillations	 reflect	 the	 fact

that	L	and	C	are	either	acquiring	energy	or	giving	it	back.	So	let	us	average
P(t)	over	a	full	cycle	using	some	trig	identities:

The	 periodic	 functions	 all	 average	 to	 zero	 over	 a	 full	 cycle	 and	we	 are	 left
with	 .	Thus	the	average	power	is

where	cosϕ	is	called	the	power	factor.

13.1.1			Transients	and	the	complementary	solution



Let	me	alert	you	to	a	problem.	The	solution	I	wrote	down,

has	no	free	parameters	in	it.	You	tell	me	the	time,	and	I	tell	you	the	current.
Whatever	the	voltage	is,	you	take	that,	shift	the	phase	by	ϕ,	and	divide	by	|Z|.
But	 you	 know	 that	 a	 second	 order	 equation	 in	 time	 must	 have	 two	 free
parameters.	 These	 must	 correspond	 to	 the	 charge	 on	 the	 capacitor	 and	 the
current	at	some	time,	say	t	=	0.	(These	are	the	electrical	analogs	of	the	initial
position	and	velocity	of	the	oscillator.)	Where	are	those	free	parameters	going
to	come	from?	I	will	give	you	a	clue	and	let	you	ruminate	a	bit.	The	clue	is
this:

If	you	still	don’t	have	it,	here	is	another	clue:	superposition.
Anyway,	here	is	the	answer.	We	have	seen	many	times	that	V1	+	V2	drives

a	 current	 I1	+	 I2	 in	obvious	notation.	 It	 follows	 that	V0	 cos	ωt	+	0	drives	 a
current	 I(t)	 +	 Icom(t)	 where	 Icom	 is	 the	 current	 flowing	 when	 no	 voltage	 is
applied.	 It	 is	 called	 the	 complementary	 solution	 You	 might	 say,	 “There	 is
obviously	zero	current	if	there	is	zero	voltage,”	but	I	have	to	remind	you	that
you	can	have	current	without	an	external	voltage	if	 there	is	stored	energy	to
begin	with.	This	is	like	saying	that	a	mass-spring	system	can	oscillate	without
any	driving	force	if	someone	had	initially	stretched	the	spring	and	let	it	go	or
given	 the	mass	 a	 kick	 imparting	 to	 it	 some	 kinetic	 energy.	 In	 the	 electrical
case	someone	could	have	charged	a	capacitor	and	then	connected	it	to	R	and	L
or	 thrown	 open	 the	 switch	 on	 an	 inductor	 carrying	 current	 with	 stored
magnetic	energy.
So	let	us	look	at

We	try	an	exponential	solution

and	find	the	constraint



Since	A	≠	0,	we	get	a	solution	only	if	α	is	a	root	of

The	roots,	assuming

are	given	by

The	 general	 solution	 is	 a	 sum	 of	 the	 two	 solutions	 with	 arbitrary
coefficients:

If	 this	solution	 is	 to	be	 real	we	need	A±	 to	be	complex	conjugates	 (this	will
ensure	Icom	=	I*com)



Figure	13.2			The	decay	of	the	transient	current	or	complementary	solution	Icom.

where	χ	is	arbitrary	and	A	is	some	real	positive	number.	This	leads	to

illustrated	in	Figure	13.2.	Consequently	the	complete	answer	to	the	driven	AC
circuit	is

The	constants	A	and	χ	may	be	chosen	to	match	the	initial	conditions.
However,	 the	complementary	 function	 is	a	 transient:	 it	dies	exponentially

and	if	we	are	only	interested	in	the	long-term,	we	may	ignore	it.	A	transient
could	burn	your	circuit,	but	it	doesn’t	matter	after	a	long	time,	if	you	survive
the	early	stages.	It’s	a	lot	like	this	course.

13.2			Power	of	the	complex	numbers
I	will	now	explain	why	it	does	not	help	to	go	back	to	real	numbers	to	do	AC
circuit	 theory.	 Recall	 that	 the	 answer	 to	 the	 simple	 LCR	 circuit	 was	 a	 real
cosine,	namely	cos(ωt	−	ϕ),	which	you	could	arrive	at	by	substituting	a	linear
combination	 of	 cosωt	 and	 sinωt,	 and	 using	 the	 equation	 to	 determine	 the
coefficients.	You	may	be	tempted	to	avoid	complex	numbers	for	this	reason.
But	consider	a	more	complicated	circuit	illustrated	in	the	upper	half	of	Figure
13.3.

Figure	13.3			A	complicated	circuit	where	complex	numbers	are	indispensable.	At	the	top	are	the	actual
circuit	elements	and	time-dependent	currents	and	driving	voltage.	At	the	bottom	is	the	DC-like
description	using	complex	impedances	and	the	voltage	amplitude	V0	and	current	amplitude	I

0
1,	I

0
2,

and	I03.	The	two	loops	used	for	the	voltage	equation	are	shown	by	fat	arrows.



The	circuit	has	a	 resistance	R1	 connected	 in	series	 to	a	parallel	circuit,	 in
which	one	leg	has	an	L2	and	a	C2	in	series	and	the	other	leg	a	resistor	R3.	The
driving	voltage	is	V0	cosωt.	The	currents	flowing	are	labeled	I1,	I2,	and	I3.
Our	 job	 is	 to	 find	 these	 oscillatory	 currents	 in	 magnitude	 and	 in	 phase.

Recall	the	fundamental	equations	for	a	circuit.	At	every	branch	the	incoming
current	should	be	equal	to	the	outgoing	current:

This	 means	 there	 are	 only	 two	 independent	 currents,	 which	 will	 be
determined	by	two	voltage	equations.	We	can	take	these	currents	to	be	I2	and
I3.	Once	we	solve	for	them,	I1	will	be	given	by	their	sum.
Next	 we	 have	 voltage	 equations	 demanding	 that	 the	 sum	 of	 the	 voltage

drops	be	zero	in	two	independent	loops.	Loop	1	includes	the	source	V(t),	and
elements	R1,	L2,	and	C2.	The	smaller	loop	2	includes	C2,	L2,	and	R3.	Both	are
traversed	in	the	sense	shown.

In	 the	 second	 equation	 the	drops	 across	L2	 and	C2	 come	with	 a	minus	 sign
because	 the	 loop	 is	 traversed	 opposite	 to	 the	 direction	 of	 the	 current	 I2
flowing	 through	 them.	 By	 comparison	 the	 loop	 1	 is	 traversed	 in	 the	 same
sense	as	I1	and	I2.
What	if	you	picked	a	third	(outer)	loop	3	that	included	just	R1	and	R3?	The

corresponding	equation

can	 be	 obtained	 as	 a	 linear	 combination	 of	 the	 other	 two	 equations.	 In	 this
case	 the	 linear	 combination	 is	 simply	 the	 sum.	 As	 expected,	 you	 can	 have
only	two	independent	equations	to	determine	two	currents.
We	have	a	complicated	situation	here,	and	it	gets	even	messier	with	more

loops.	You	have	the	derivative	of	 this	current	coupled	to	 the	 integral	of	 that
current	and	so	on.	How	are	we	going	to	solve	the	equations?	Trying	to	guess
can	very	quickly	become	intractable.
But	if	we	use	complex	numbers,	we	can	reduce	the	problem	to	something

that	looks	like	a	DC	circuit.



First	we	replace	the	given	voltage	by	V0eiωt	=	V0	cosωt	+	 iV0sinωt.	Since
all	 the	equations	are	 linear	relations	between	the	voltages	and	currents,	with
real	coefficients	R,	L	and	1/C,	the	real	part	of	the	voltage	can	only	produce	the
real	part	of	the	current.	So	we	will	simply	take	the	real	part	of	the	currents	at
the	end.
We	assume	the	complex	currents	are	of	the	form

(Previously,	when	there	was	only	one	current	in	the	picture,	I	used	a	subscript
0	 to	 denote	 the	 current	 amplitude	 I0.	 Now	 0	 has	 become	 a	 superscript,	 the
subscript	 [1,2,	 or	 3]	 being	 used	 to	 distinguish	 the	 different	 currents.)
Substituting	into	the	three	circuit	equations	and	canceling	the	common	eiωt	we
arrive	at

These	are	three	linear	time-independent	equations	for	three	unknowns	I01,
I02,	 and	 I03.	 Apart	 from	 the	 fact	 that	 the	 coefficients	 are	 complex,	 this
situation	 is	 no	 worse	 than	 a	 purely	 resistive	 circuit.	 The	 lower	 half	 of	 the
figure	 shows	 how	 we	 can	 replace	 each	 element	 by	 the	 corresponding
impedance:

No	matter	 how	 complicated	 the	 circuit,	we	 can	 keep	 doing	 this.	We	 can
combine	impedances	in	series	by	just	adding	them	and	impedances	in	parallel
by	adding	reciprocals	and	then	inverting.



For	 example,	 let	 us	 consider	 the	 total	 impedance	 seen	 by	 the	 voltage
source.	First	we	compute	Zp,	the	impedance	of	the	parallel	branch:

The	total	impedance	seen	by	V0	is

and	the	current	flowing	out	of	it	is

The	actual	physical	current	is	the	real	part	of	I01eiωt:

The	time-dependent	voltage	drop	across	various	elements	is	computed	from
the	currents	as	described	at	 the	end	of	 the	 last	chapter.	For	example,	VR3(t),
the	drop	across	R3,	is

The	voltage	drop	across	L2	is	the	real	part	of	the	complex	voltage	drop	across
it,	 which	 in	 turn	 is	 the	 product	 of	 the	 complex	 current	 and	 the	 complex
impedance:

Suppose	I	knew	I1	and	wanted	to	know	how	it	divides	into	I2	and	I3	at	the
node.	I	proceed	exactly	as	in	resistive	circuits	and	assign	the	current	to	each
branch	in	proportion	to	the	impedance	of	the	other	branch:



The	time-dependent	current	I2(t)	will	be

The	recipe	of	taking	the	real	part	at	the	end	fails	when	we	consider	power,
because	 the	 power	 is	 quadratic	 in	 the	 complex	 quantities.	 Let	 us	 see	what
goes	wrong.
The	power	delivered	by	the	voltage	source	is,	from	first	principles,	just	the

product	of	the	instantaneous	voltage	and	current:

The	point	is	that	the	product	of	the	real	parts	of	two	complex	numbers	is	not
the	real	part	of	their	product:

This	 power	 averaged	 over	 a	 cycle	 has	 already	 been	 derived	 (see	 Eqn.
13.28):

We	can	rewrite	the	preceding	formula	as	follows:



In	a	simple	LCR	circuit,	 	since	|Z|cosϕ	is	just	R,	the	real	part	of	Z.
Except	 for	 the	 factor	 	 that	 comes	 from	 time-averaging,	 this	 is	 the	 familiar
expression	for	 the	power	consumed	by	 the	 resistor.	The	L	and	C	 sometimes
consume	power	and	sometimes	give	it	back,	with	zero	average	over	a	cycle.
The	 factor	 of	 	 can	 be	 eliminated	 by	 defining	 a	 root-mean-square	 or	 RMS
voltage	and	current	in	terms	of	which	Pav	takes	a	form	identical	to	that	in	DC
circuits:

When	 we	 say	 the	 voltage	 in	 our	 homes	 is	 110	 V	 we	 are	 talking	 RMS
voltage.	The	maximum	magnitude	of	voltage	during	a	cycle	is	

13.3			Displacement	current
We	are	approaching	the	finish	line	for	electromagnetic	theory.	We	need	to	do
one	last	bit	of	fiddling	with	the	Maxwell	equations.	So	far	all	the	changes	to
the	 equations	were	mandated	 by	 new	 experiments,	 as	when	we	 produced	 a
time-dependent	magnetic	field	by	moving	a	magnet	near	a	loop	of	wire.	But
now	we	are	going	to	consider	a	change	mandated	by	pure	thought.	It	is	due	to
Maxwell.	Look	at	 a	part	 of	 a	 circuit	 shown	 in	Figure	13.4.	We	don’t	know
where	 it	 begins	 or	 ends,	 and	 we	 don’t	 care.	 There’s	 an	 alternating	 current
flowing	 in	 the	 circuit.	 (Of	 course	 no	 charge	 is	 crossing	 the	 gap	 in	 the
capacitor;	 it	 is	 just	sloshing	back	and	forth	first	 in	one	direction	and	then	in
the	other.)
Now	 here	 is	 the	 problem	 or	 paradox	 that	Maxwell	 noticed	 and	 resolved.

Look	at	Ampère’s	law

where	C	 is	 a	 loop	 to	 the	 left	of	 the	capacitor	and	 Ienc	 is	 the	current	passing
through	any	surface	with	that	loop	as	the	boundary.
First	we	consider	a	flat	surface	S	bounded	by	C	(assumed	to	be	planar	for



convenience)	with	 the	 current	 I(t)	 piercing	 it.	Now	we	 say,	 “That’s	 not	 the
only	surface	with	that	loop	C	as	the	boundary.	We	should	be	able	to	draw	any
surface	with	the	loop	as	the	boundary.”	So	we	take	another	surface	S′.	We	are
still	okay,	because	whatever	current	passes	this	S	also	passes	through	S′	so	as
to	 avert	 charge	buildup,	 charge	violation,	 or	both.	The	 law	 is	 still	 good.	So
giddy	with	success,	we	say,	why	not	S′′?	That’s	our	new	surface.	It	goes	all
the	way	around	one	of	 the	plates	of	 the	capacitor.	Now	we	have	a	problem
because	 there	 is	 no	 current	 passing	 through	 S′′.	 If	 I	 draw	 an	 even	 bigger
surface	that	fully	encloses	the	capacitor	and	goes	all	the	way	around	the	other
plate,	we	are	again	okay	because	now	the	same	current	I(t)	passes	through	it.
It	is	this	surface	S′′	for	which	things	don’t	work.

Figure	13.4			Part	of	an	AC	circuit.	When	we	apply	Ampère’s	law	to	a	loop	C	we	run	into	a	problem
when	the	surface	it	bounds	goes	from	S	or	S′	to	S′′	since	no	current	I(t)	passes	S′′.	However,	an	electric
flux	does	cross	S′′	and	it	makes	the	same	contribution	for	S′′	as	the	current	I(t)	did	for	S	or	S′.

So	what	would	you	do	if	you	were	Maxwell?	You	would	realize	you	have
to	modify	 the	Ampère	 equation.	 Sometimes	 people	modify	 equations	 based
on	 real	 experiments,	 and	sometimes	based	on	 thought	experiments.	Einstein
loved	 doing	 these	 thought	 experiments,	 which	 are	 called	 gedanken
experiments.	You	don’t	really	do	the	experiment,	but	you	say,	“If	I	did	this,
what	will	happen?”	If	that	leads	to	a	problem	you	have	to	modify	your	theory.
So	we	have	to	add	something	to	the	right-hand	side	of	Ampère’s	equation.

That	 something	 should	 not	 make	 any	 contribution	 on	 S	 or	 S′,	 but	 on	 S′′	 it
should	make	exactly	the	same	contribution	the	physical	current	I(t)	made	on	S
or	S′.	There	are	many	ways	 to	 find	 that	something	depending	on	how	much
math	you	know.	Here	is	an	appropriate	one.
We	all	agree	that	in	the	region	between	the	plates,	we	have	no	current.	But

we	do	have	something	else	between	the	plates	we	don’t	have	in	the	wire.	You
know	what	that	is?
It	 is	 the	 electric	 field.	 I	 am	 going	 to	 relate	 the	 current	 in	 the	 wire	 that

penetrates	S	to	this	electric	field	that	penetrates	S′′.	Here	we	go:



is	called	the	displacement	current	and	its	density	is

You	might	think	that	equality	Eqn.	13.80	allows	me	to	replace	μ0Ienc	by	μ0Id.
Instead	 I	 am	 going	 to	 add	 it.	 Am	 I	 double	 counting?	 Let	 us	 look	 at	 the
modified	Maxwell	equation

and	see	how	this	procedure	solves	the	problem.
If	 you	 took	 a	 surface	 like	 S	 that	 slices	 through	 the	 wire	 (a	 perfect

conductor),	there	is	no	electric	field.	Only	the	μ0Ienc	term	contributes.	If	you
employed	S′′,	which	goes	between	 the	plates,	 there	 is	no	 I	 there,	but	 there’s
the	rate	of	change	of	electric	flux	and	its	contribution	is	numerically	equal	to
that	of	Ienc.	Thus	the	circulation	of	B	around	the	contour	C	is	independent	of
which	surface	is	used.
There	was	no	double	counting	when	we	added	the	contributions	from	j	and



jd	because	only	one	or	the	other	was	non-zero	on	the	surfaces	considered.
Here	are	our	final	equations	for	electromagnetism:

where	 S	 is	 a	 closed	 surface	 that	 bounds	 the	 volume	V	 in	 Eqns.	 13.85	 and
13.88	and	any	open	surface	S	bounded	by	the	curve	C	in	13.86	and	13.87.
Consider	 the	symmetry	of	 the	equations	for	E	and	B.	The	 line	 integral	of

the	electric	 field	 is	proportional	 to	 the	 rate	of	change	of	magnetic	 flux.	The
line	 integral	 of	 the	 magnetic	 field	 is	 proportional	 to	 the	 rate	 of	 change	 of
electric	flux	but	there	is	another	Ampèrean	term.	The	surface	integral	of	E	is
given	 by	 the	 charge	 enclosed	 while	 there	 is	 no	 such	 right-hand	 side	 for	B
since	there	are	no	monopoles.	However,	in	free	space	or	vacuum,	where	ρ	=	j
=	0,	the	equations	become	symmetric.
In	the	next	chapter	we	will	find	that	these	equations	admit	electromagnetic

waves	as	 a	 solution.	These	waves	consist	of	non-zero	electric	 and	magnetic
fields	 arbitrarily	 far	 from	 any	 ρ	 or	 j.	 One	 would	 not	 expect	 them	 from
Coulomb’s	law	or	the	Biot-Savart	law.	They	are	possible	because	of	the	term
Maxwell	added.
This	is	a	very	important	day	in	your	life,	because	now	you	finally	know	all

of	electromagnetism.	It	is	completely	described	by	Eqns.	13.84	to	13.88.	No
one	knows	any	more,	at	least	in	classical	theory.	You	don’t	have	to	pack	your
head	with	all	kinds	of	results.	You	can	derive	everything	I	have	taught	so	far
given	 the	Lorentz	 force	 law	 and	 the	 four	Maxwell	 equations	 (and	 an	 IQ	of
600).



CHAPTER	14

Electromagnetic	Waves

Now	we’re	going	 to	solve	Maxwell’s	equations	and	deduce	 the	existence	of
electromagnetic	waves.	No	matter	how	many	 times	 I	 talk	about	 it,	 I	 remain
awestruck.	Here	again	are	the	Maxwell	equations:

where	S	is	a	closed	surface	that	bounds	the	volume	V	in	Eqns.	14.1	and	14.2
and	any	open	surface	S	bounded	by	the	curve	C	in	14.3	and	14.4.
The	 first	 one	 tells	 you	 charges	 emit	 or	 absorb	 electric	 field	 lines	 or	 flux

depending	on	 their	magnitude	and	 sign.	So	 the	net	 amount	of	 charge	 in	 the
volume	controls	the	net	flux	coming	out.	The	second	one	tells	you	that	if	you
integrate	B	over	any	surface,	that	is,	if	you	count	the	net	number	of	field	lines
coming	out,	you’re	going	to	get	0.	That	is	true	because	field	lines	begin	and
end	with	charges	and	there	are	no	magnetic	charges	or	monopoles.	Magnetic
field	lines	have	neither	a	beginning	nor	an	end.	They	close	in	on	themselves.
So	 if	 you	 pick	 any	 surface,	 whatever	 goes	 in	 has	 to	 come	 out.	 The	 third
equation,	in	the	static	case,	used	to	say	the	electric	field	was	conservative.	But
then	we	found	that	a	changing	magnetic	field	can	sustain	a	non-conservative
electric	 field.	 The	 last	 one	 says	 a	 changing	 electric	 field	 can	 produce	 a
magnetic	field.	In	addition,	a	current	can	also	produce	a	magnetic	field	as	per
Ampère.
For	the	purpose	of	studying	waves,	I’m	going	to	focus	on	free	space,	where

ρ	=	j	=	0.	They	could	be	non-zero	arbitrarily	far	away.	In	the	static	case	this



would	mean	 no	E	 or	B	 as	 per	Coulomb	 or	Biot-Savart	 because	 both	 fields
drop	off	 like	1/r2	or	faster	as	we	move	away	from	the	charges	and	currents.
But	now	we	will	find	they	can	survive	on	their	own,	untethered	from	charges
and	currents.	The	reason	electromagnetic	waves	can	survive	in	a	vacuum	far
from	 all	 charges	 and	 currents	 is	 that	 once	 you’ve	 got	 E	 and	 B	 fields
somewhere,	 they	 cannot	 just	 disappear	 due	 to	 the	 energy	 they	 contain.	 It’s
like	 the	LC	 circuit.	 If	 your	 capacitor	 is	 charged	 to	 begin	with	 and	 contains
electric	field	energy,	as	it	discharges	it	sets	up	a	current	in	the	inductor	with
stored	magnetic	field	energy.	The	current	does	not	stop	when	the	capacitor	is
discharged;	it	keeps	going	till	it	charges	the	capacitor	the	opposite	way.	The
current	 keeps	going	back	 and	 forth.	The	LC	circuit	 is	 an	 example	with	 just
one	degree	of	freedom	Q(t),	the	charge	in	the	capacitor	(or	the	current	in	the
circuit,	which	is	the	derivative).	By	contrast,	in	electrodynamics	E(x,	y,	z)	and
B(x,	y,	z)	are	the	corresponding	variables,	with	one	vector	each	for	each	point
in	space.
Without	 charges	 and	 currents	 the	 Maxwell	 equations	 become	 very

symmetric	between	E	and	B.	Neither	has	a	surface	integral.	The	line	integral
of	one	guy	is	proportional	to	the	rate	of	change	of	flux	of	the	other.
Deriving	 the	 wave	 equation	 from	 Maxwell’s	 equations	 is	 a	 dramatic

moment	 in	 physics	 that	 I	 am	 eager	 to	 share	 with	 you.	 But	 if	 you	 cannot
recognize	 the	wave	equation	when	 it	miraculously	emerges	 (to	 the	sound	of
trumpets)	 you	 are	 not	 going	 to	get	 the	 thrill.	 So	 I	will	 remind	you	of	 some
facts,	covered	in	depth	in	Volume	I.
The	wave	equation	in	one	dimension	for	a	variable	ψ(x,	t)	is

where	v	is	the	velocity	of	the	wave.
I	would	like	to	show	that	E	and	B	obey	such	a	differential	equation	starting

with	 Maxwell’s	 equations.	 But	 in	 the	 form	 displayed	 above,	 the	 Maxwell
equations	involve	integrals	over	arbitrary	loops,	surfaces,	and	volumes.	What
we	need	is	a	version	of	the	Maxwell	equations	that	involves	only	derivatives.
It	 is	 these	 differential	 equations	 that	 one	 usually	 means	 by	 Maxwell’s
equations.	 The	 (differential)	 Maxwell	 equations	 follow	 upon	 applying	 the
integral	version	to	arbitrary	but	infinitesimal	loops,	surfaces,	and	volumes.	It
is	then	quite	easy	to	manipulate	the	differential	version	to	arrive	at	the	wave
equation.
First	I	will	derive	the	differential	versions	of	 the	Maxwell	equations	for	a

restricted	class	of	E	 and	B	 that	depend	only	on	y	 and	 t,	 and	have	only	one
component	each:	E	along	z	and	B	along	x:



The	resulting	pair	of	equations,	obtained	by	imposing	Maxwell’s	equations	on
these	restricted	fields,	are	simple,	but	I	will	show	how	they	lead	to	the	wave
equation	for	E	and	B.	Though	not	all	its	solutions	have	definite	wavelength	or
frequency	(they	could	describe	just	localized	blips	moving	at	speed	c),	I	will
present	 sinusoidal	 solutions	 of	 definite	 wavelength	 and	 frequency.	 I	 will
derive	a	formula	for	the	energy	in	the	electromagnetic	waves	and	discuss	their
origin.
This	will	be	followed	by	two	optional	topics.
The	first	concerns	the	derivation	of	the	Maxwell	equations	for	arbitrary	E

and	B	and	in	the	presence	of	non-zero	ρ	and	j.	I	express	them	toward	the	end
in	 the	 language	of	vector	calculus.	This	option	 is	 for	 those	who	want	 to	see
Maxwell’s	 equations	 in	 their	most	 general	 and	 compact	 form,	 having	 come
this	far.	For	completeness	I	show	that	when	applied	to	the	restricted	E	and	B
of	 Eqns.	 14.6	 and	 14.7	 and	 ρ	 =	 j	 =	 0,	 we	 end	 up	 with	 the	 same	 pair	 of
equations	as	in	the	simpler	treatment.
Next	 I	 ask	 if	 the	 fields	 that	 obey	 the	Maxwell	 equations	 on	 infinitesimal

loops,	surfaces,	and	volumes	will	do	so	on	macroscopic	ones.	That	is,	 is	 the
passage	 from	 the	macroscopic	 to	 the	microscopic	 reversible?	The	 answer	 is
affirmative.	You	can	either	take	my	word	for	it,	or	follow	the	demonstration
of	the	following	fact:
If	 Maxwell’s	 equations	 are	 obeyed	 on	 arbitrary	 infinitesimal	 loops,

surfaces,	and	volumes,	they	will	be	obeyed	on	all	macroscopic	ones.

14.1			The	wave	equation
There	are	many,	many	waves:	water	waves,	elastic	waves,	sound	waves,	and
so	on.	I	am	going	to	discuss	waves	on	a	string.
Imagine	a	string	that’s	been	clamped	at	two	ends	(x	=	0	and	x	=	L	in	Figure

14.1).	The	thin	horizontal	line	is	the	x-axis	and	that	is	the	string’s	position	in
static	equilibrium.	Each	point	on	the	string	is	labeled	by	the	value	of	x	that	it
will	have	when	the	string	is	in	the	equilibrium	position.	The	displacement	of
the	 string	 at	 the	point	 labeled	x	 at	 time	 t	 is	 denoted	ψ(x,	 t),	 and	 is	 our	new
dynamical	 variable.	 It	 is	 the	 one	 for	 which	 we	 would	 like	 to	 write	 the
equations	of	motion.
The	string	is	under	some	tension	T	because	you	have	hung	some	weights	at

the	ends	or	tightened	it	with	some	screws,	as	in	a	violin.	Without	the	tension,
none	 of	 what	 follows	 would	 work,	 as	 you	 will	 see.	 The	 other	 essential
parameter	 is	μ,	 the	mass	 per	 unit	 length.	To	 find	 it	 you	 put	 the	 string	 on	 a
weighing	scale,	you	find	the	mass,	and	you	divide	by	the	length.	For	example,



if	you	have	a	ten-meter	string	and	it	weighs	one-hundredth	of	a	kilogram,	then
the	mass	per	unit	length	is	μ	=	10−3	kilograms	per	meter.
Now,	 I	 pull	 or	 pluck	 this	 string	 in	 some	 way,	 given	 by	 the	 solid	 curve

ψ(x,0)	 in	 the	 figure,	 and	 I	 want	 to	 know	 what	 the	 whole	 string	 will	 do.
Compare	 this	 to	 the	mass	 and	 spring	 system,	 oscillating	 in	 the	 y-direction.
There	you	pull	the	mass	out	to	some	new	location	y(0),	let	it	go,	and	want	to
know	y(t).	There	was	 just	 one	degree	 of	 freedom,	 the	 location	of	 the	mass,
y(t).	The	answer	was	y(t)	=	y(0)cosωt.	Here,	at	every	point	x	between	0	and	L,
I	have	some	segment	of	the	string.	I	emphasize	that	x	here	is	not	a	dynamical
variable,	 but	 a	 label	 for	 the	 dynamical	 variable	 ψ(x).	 Which	 gives	 the
displacement	of	each	 segment	 from	equilibrium.	 I	displace	all	 those	 infinite
degrees	of	freedom	to	ψ(x,0)	at	time	0,	and	I	let	them	go.	I	want	to	know	ψ(x,
t).	For	this	we	need	to	find	the	equation	satisfied	by	ψ(x,	t).

Figure	14.1			The	string	at	some	generic	time,	say	t	=	0.	It	is	under	tension	T,	has	mass	μ	per	unit	length,
and	is	fixed	at	x	=	0	and	x	=	L.	The	highlighted	segment	has	a	width	dx,	with	the	same	tension	T	pulling
the	two	ends	but	at	slightly	different	angles.	The	displacement	ψ	and	angles	θ	are	exaggerated	for
clarity.	The	derivation	is	valid	only	when	all	these	are	very	small.

What	principle	will	decide	the	behavior	of	this	string?	Newton’s	law	is	the
answer.	There	are	no	new	laws	that	I’m	going	to	invoke.	I’m	not	going	to	say,
“Well,	we	studied	masses	and	springs	before;	today	it’s	time	to	study	strings
and	here	is	the	new	law	of	motion.”	There’s	only	one	law	of	motion.	That’s	F
=	ma.	 My	 whole	 purpose	 is	 to	 show	 you	 that	 this	 law	 really	 does	 control
everything;	that’s	why	it’s	a	super	law.
The	 string	 is	 a	 long,	 extended,	 and	 complicated	 object.	 I	 isolate	 a	 tiny

segment	 of	 length	dx	 highlighted	 in	 the	 figure.	 I	 am	 going	 to	 calculate	 the
total	 force	 on	 it	 and	 equate	 it	 to	 its	mass	 times	 acceleration.	Gravity	 is	 not
necessary	for	vibrations,	and	we	will	neglect	its	effect.
The	figure	shows	the	forces	at	the	ends	of	the	little	segment.	Both	equal	the

tension	T,	which	 doesn’t	 change	 from	 point	 to	 point	 in	magnitude.	But	 the
angle	at	which	the	tension	acts	is	not	necessarily	the	same.	It	is	tangents	to	the
string,	 and	 the	 direction	 of	 the	 tangent	 (measured	 from	 the	 horizontal)	 is
changing	from	θ(x)	 to	θ(x	+	dx).	The	string	 is	curving	 in	general;	 therefore,
the	tangents	to	the	string	at	two	ends	of	the	tiny	bit	are	not	quite	the	same	and
there	is	generally	a	net	force	on	the	bit.
So,	I’m	going	to	find	the	vertical	component	of	the	two	forces	and	take	the



difference.	 The	 upward	 force	 at	 x	 +	 dx	 will	 be	 T	 sin(θ(x+dx))	 and	 the
downward	 force	 on	 the	 left	 side	 will	 be	 −	 Tsin(θ(x))	 yielding	 a	 total	 of
T[sin(θ(x	+	dx))	−	sin(θ(x)].	That’s	going	to	be	mass	times	acceleration.	The
mass	of	this	little	segment	is	the	mass	per	unit	length	μ	times	the	length	of	the
segment,	 which	 is	 dx.	 Now,	 what	 is	 the	 acceleration	 in	 the	 language	 of
calculus?	No,	it	is	not	 	but	 	because	ψ(x,	t)	is	the	vertical	coordinate
of	the	string	bit.	What’s	jumping	up	and	down	is	ψ,	so	the	acceleration	is	its
second	 derivative,	 and	 I	 use	 the	 partial	 derivative	 because	ψ(x,	 t)	 can	 vary
with	x	and	t.	So	F	=	ma	becomes

Now,	come	to	 the	 left-hand	side	and	assume	the	angles	 involved	are	very
small,	i.e.,	that	the	string	does	not	deviate	too	much	from	being	horizontal.	If
you	remember	the	series

and	keep	only	terms	up	to	order	θ,	you	may	then	approximate	as	follows:

Eqn.	14.8	becomes

Dividing	 both	 sides	 by	T	 and	dx	 and	 letting	dx	→	 0,	we	 finally	 obtain	 the
wave	equation



This	is	a	partial	differential	equation.	It	is	usually	rewritten	as

In	summary,	when	you	pull	a	string	up,	it	comes	down	because	the	tensions
at	 the	 two	 ends	 of	 the	 string	 bit	 have	 vertical	 components	 that	 don’t	 quite
cancel.	So,	the	net	force	depends	on	the	rate	of	change	of	sinθ	≃	 ,
i.e,	the	rate	of	change	of	the	rate	of	change,	and	that’s	why	you	get	 	on
the	 left-hand	 side.	 The	 second	 time	 derivative	 on	 the	 right	 is	 just	 the
acceleration	of	the	string	bit.
You	should	verify	that	v	has	dimensions	of	velocity.	It	will	 turn	out	to	be

the	velocity	of	waves	on	the	string.	If	you	pluck	the	string	and	make	a	little
bump	and	let	it	go,	the	bump	will	move	at	speed	v.	One	way	to	deduce	this	is
to	consider	the	nature	of	the	solutions	to	this	equation.	What	functions	do	you
think	will	 enter?	Based	on	 the	 single	oscillator	you	might	be	 thinking	 sines
and	 cosines.	 Such	 solutions	 exist,	 but	 the	 class	 of	 solutions	 is	much	 bigger
than	 that.	 I’m	going	 to	write	down	 for	you	 the	most	general	 solution	 to	 the
wave	equation:	ψ	can	be	any	 function	you	want	of	x	−	vt.	 I	don’t	care	what
function	it	is.	So	if	w	stands	for	combination	x	−	vt,	then

where	 f(w)	 is	 whatever	 function	 you	 want.	 If	 f	 depends	 on	 x	 and	 t	 only
through	this	combination	x	−	vt,	it	will	satisfy	the	wave	equation.	To	see	this,
use	the	chain	rule:	if	w	=	x	−	vt	then	f	=	f(w)	and



By	the	same	logic	f(x	+	vt)	also	satisfies	the	wave	equation.
What	does	it	mean	for	ψ(x,	t)	to	be	a	function	of	just	x	−	vt?	It	means	that	if

you	 change	 x	 and	 change	 t	 in	 such	 a	way	 that	 x	 −	 vt	 does	 not	 change,	 the
function	does	not	change.
Consider	the	bell-shaped	function

where	x0	is	some	constant.	It	obeys	the	wave	equation	even	though	it	does	not
readily	 come	 to	 your	mind	when	 you	 think	 of	 a	wave,	 the	way	 the	 sine	 or
cosine	 does.	 At	 t	 =	 0,	 the	 bell-shaped	 curve	 is	 peaked	 at	 x	 =	 0,	 where	 the
exponential	 is	 largest.	At	 a	 later	 time	 it	 is	 peaked	 at	 x	 =	 vt	 because	 that	 is
where	the	exponential	is	largest.	Hence	the	peak	moves	at	velocity	v.	What	is
true	for	the	peak	is	also	true	for	any	other	point,	say	where	x	−	vt	=	6.5.	It	too
moves	at	speed	v.	The	entire	curve	moves	to	the	right	without	any	distortion
at	speed	v.
This	is	true	for	any	function	f(x	−	vt),	which	just	slides	to	the	right	at	speed

v:	if	you	increase	t	by	dt	and	x	by	vdt,	you	find	f	retains	its	value	because	f(x	+
vdt	−	v(t	+	dt))	=	f(x	−	vt).
The	most	general	solution	to	the	wave	equation	is	any	function	you	like	of

x	−	vt	plus	any	function	you	like	of	x	+	vt.	The	first	will	describe	waves	going
to	 the	 right,	 and	 the	 second	will	 describe	waves	 going	 to	 the	 left.	You	 can
superpose	them	because	the	wave	equation	is	linear.

14.2			Restricted	Maxwell	equations	in	vacuum
As	mentioned	at	the	outset,	 in	order	to	derive	the	wave	equation	we	need	to
extract	 the	 differential	 version	 of	 the	 Maxwell	 equations	 from	 the	 integral



one.	We	consider	 the	 fields	 in	vacuum	with	ρ	=	 j	=	0.	This	 is	now	 the	 first
track,	in	which	I	derive	the	restrictions	imposed	by	Maxwell	on	the	restricted
class	of	functions	described	in	Eqns.	14.6	and	14.7	and	repeated	below:

The	equations	fall	into	two	classes:	those	that	involve	infinitesimal	cubes	and
those	that	involve	infinitesimal	loops.

14.2.1			Maxwell	equations	involving	infinitesimal	cubes
The	equations	of	interest	in	the	vacuum	are

Consider	first	E,	assumed	to	be	of	the	form

What	conditions	do	the	integral	Maxwell	equations	impose	on	this	function?
The	infinitesimal	volume	we	use	will	be	a	cube	of	sides	dx,	dy,	and	dz,	with

its	faces	parallel	to	the	principal	planes	and	centered	at	some	generic	point,	as
shown	in	Figure	14.2.
We	 must	 add	 E	 ·	 dS	 from	 every	 face	 and	 get	 0.	 That’s	 the	 condition

imposed	by	Maxwell’s	equation.	There	are	six	faces	on	this	cube.	The	figure
focuses	on	faces	1,	2,	and	3	 that	we	can	see,	and	not	−1,−2,	and	−	3	on	the
opposite	side	that	we	cannot	fully	see.	Let’s	look	at	face	1	and	ask	what	we
get	 for	 the	 surface	 integral	 of	E.	Clearly	E	 ·	dS	 is	 non-zero	because	dS1	 is
parallel	to	E1.	But	on	surface	−1,	E	is	the	same	since	it	does	not	vary	with	z,
but	 dS−1	 points	 down,	 in	 the	 direction	 of	 the	 outward	 normal.	 The	 same
electric	field	is	sitting	on	the	opposite	faces	of	 the	cube	but	 the	area	vectors
dS	 are	 opposite.	 The	 net	 contribution	 of	 these	 two	 opposite	 faces	 to	 the
surface	integral	is	therefore	zero.
We	can	restate	these	words	in	terms	of	flux	lines.	The	flux	is	non-zero	on	1

and	 −1	 because	 the	 lines	 are	 perpendicular	 to	 the	 face,	 but	 their	 net
contribution	is	zero	because	the	lines	entering	one	face	leave	the	opposite	face
with	the	same	density.



Figure	14.2			The	infinitesimal	cube	on	the	surface	of	which	E	is	integrated.	The	three	visible	faces	are
labeled	1,	2,	and	3	and	the	ones	opposite	to	them	are	labeled	−1,	−2,	and	−3.	Only	E	on	faces	1	and	−1
is	shown	to	avoid	clutter.

Then	there	are	other	faces,	like	3	and	−3.	Neither	makes	any	contribution	to
the	surface	integral	because	the	area	vector	and	field	are	perpendicular	or,	if
you	like,	the	field	lines	run	parallel	to	the	faces	and	no	flux	penetrates	them.
The	same	thing	goes	for	2	and	−2.	So	we	get	a	net	surface	integral	or	flux	of	0
in	the	end,	either	because	the	field	is	orthogonal	to	the	area	vector,	or,	if	it’s
parallel,	it	has	the	same	value	on	opposite	faces	with	opposite	area	vectors.
So	 the	 surface	 integral	 of	 E	 vanishes	 on	 this	 tiny	 cube,	 given	 just	 the

assumed	 functional	 form.	 If	 you	 repeat	 the	 calculation	 for	B	 you	 encounter
pretty	much	the	same	logic,	except	that	the	lines	of	B	run	along	x.	They	are
parallel	 to	 the	 faces	 1,−1,3,−3.	The	 only	 faces	 they	 penetrate	 are	 2	 and	−2.
They	do	not	individually	vanish	but	cancel	each	other:	the	field	is	the	same	on
the	two	faces	and	the	area	vectors	are	opposite.
So	our	assumed	solutions

identically	 satisfy	 the	 Maxwell	 equations	 14.26	 and	 14.27	 for	 surface
integrals	 over	 arbitrary	 infinitesimal	 cubes.	 So	 no	 constraint	 on	 Ez	 or	 Bx
emerges	by	imposing	these	integral	Maxwell	equations	on	them.

14.2.2			Maxwell	equations	involving	infinitesimal	loops
Now	for	the	other	two	Maxwell	equations,	involving	line	integrals:



Whereas	there	is	only	one	kind	of	infinitesimal	cube,	there	are	really	three
kinds	 of	 infinitesimal	 loops,	 lying	 in	 the	 principal	 (xy,	 yz,	 and	 zx)	 planes.
Equations	derived	from	one	such	loop	cannot	be	derived	from	the	other	two,
i.e.,	 the	 loops	 generate	 independent	 equations.	On	 the	 other	 hand	 it	 can	 be
shown	that	equations	coming	from	additional	loops,	lying	in	arbitrary	planes,
can	be	deduced	from	those	coming	from	the	principal	planes.

Figure	14.3			Loops	in	the	three	principal	planes.

Consider	 loop	 I	 in	 Figure	 14.3	 first.	 The	 area	 vector	 is	 pointing	 in	 the
positive	y	direction	as	per	the	right-hand	rule.	We	have	to	now	look	at	the	line
integral	of	E	around	 the	 loop	and	demand	 it	equals	−	dΦB/dt.	The	edges	12
and	 34	 do	 not	 contribute	 since	 E	 is	 perpendicular	 to	 them.	 The	 non-zero
contributions	from	edges	23	and	41	cancel	since	E	is	the	same	on	both	(as	it	is
x-independent)	 but	 the	 segments	 are	 traversed	 in	 opposite	 directions	 in	 the
line	integral.	Therefore	 E	·	dr	around	this	tiny	loop	is	0.	There	better	not	be
any	magnetic	flux	coming	out	of	this	loop.	This	is	indeed	so:	B	runs	parallel
to	 the	 loop	 and	 its	 flux	 does	 not	 penetrate	 the	 loop.	 Equivalently,	 the	 area
vector	points	in	the	+y	direction	that	is	normal	to	B.
Next	we	demand	that	the	line	integral	of	B	around	loop	I	equals	μ0ε0	times

the	rate	of	change	of	electric	flux.	The	magnetic	field	is	perpendicular	to	the
edges	23	and	41,	which	 therefore	make	no	contributions.	 It	 is	parallel	 to	34
and	anti-parallel	to	12,	and	being	z-independent,	has	the	same	value	on	both
edges.	So	the	contributions	from	these	two	edges	cancel.	There	better	not	be
any	 electric	 flux	 coming	out	 of	 this	 loop.	This	 is	 indeed	 so	because	E	 runs



parallel	 to	 the	 loop,	 or	 equivalently,	 the	 area	 vector	 that	 points	 in	 the	 +y
direction	is	normal	to	E.
So	 far	we	 have	 obtained	 no	 restrictions	 at	 all	 on	 the	 fields:	 all	 equations

reduce	to	0	=	0.	But	we	still	have	loops	in	the	other	two	planes.	Consider	loop
II	whose	area	vector	is	along	the	+x	axis.	Let	us	impose	the	condition	on	the
circulation	of	E:

The	right-hand	side	is	easily	calculated:

In	the	left-hand	side	of	Eqn.	14.33	we	get	nothing	from	the	edges	41	and	23
since	 they	 are	 orthogonal	 to	E.	 The	 edges	 12	 and	 34,	which	 are	 oppositely
oriented,	make	the	contribution

Even	 though	 the	segments	are	oppositely	directed	 their	contributions	do	not
cancel	since	Ez	need	not	be	the	same	on	both	sides.	To	first	order	in	dy

which	when	substituted	into	Eqn.	14.35	gives

Equating	this	to	minus	the	rate	of	change	of	ΦB	given	by	Eqn.	14.34	we	find

At	last	we	have	a	condition	on	the	functions	Ez(y,	t)	and	Bx(y,	t).



The	other	equation

reduces	to	0	=	0.	The	left-hand	side	is	zero,	because	B	is	perpendicular	to	the
plane	of	the	loop	and	makes	no	contribution	to	the	line	integral	on	any	of	the
edges.	The	right-hand	side	vanishes	because	the	lines	of	E	run	parallel	to	the
plane	of	the	loop	and	do	not	pierce	it,	or,	if	you	like,	the	area	vector	(along	i)
and	E	(along	k)	are	orthogonal.
We	can	get	one	more	non-trivial	condition	by	considering	 loop	 III.	 I	will

simply	give	the	result	since	the	steps	are	quite	similar:

I	urge	you	to	fill	in	the	steps.

14.3			The	wave!
Let	 us	 begin	 with	 the	 pair	 of	 equations	 our	 restricted	 fields	 must	 obey	 to
satisfy	Maxwell’s	equation:

This	simple	pair	is	enough	to	deduce	the	existence	of	electromagnetic	waves.
Take	the	partial	y-derivative	of	the	first	equation	and	add	it	to	the	partial	t-

derivative	of	the	second	equation	to	obtain

We	recognize	Eqn.	14.45	as	the	wave	equation	for	Ez.



By	 adding	 μ0ε0	 times	 the	 t-partial	 derivative	 of	 the	 first	 to	 the	 y-partial
derivative	of	the	second	equation	we	obtain	the	wave	equation	for	Bx:

This	 is	 the	 first	 dramatic	 moment:	 to	 discover	 that	Maxwell’s	 equations
(including	 the	 term	Maxwell	 added)	 imply	 electromagnetic	waves.	What	 is
oscillating	 now	 is	 not	 some	 string	 or	 medium.	 It	 is	 just	 the	 electric	 and
magnetic	fields	varying	in	vacuum.
The	second	dramatic	moment	follows	if	we	compute	the	velocity	v.	Since

1/v2	multiplies	the	second	time	derivative	in	the	wave	equation,	we	infer	that

Now	remember	that

which	means

which	 was	 immediately	 recognized	 as	 the	 velocity	 of	 light.	 From	 this
Maxwell	 conjectured	 that	 light	 was	 an	 electromagnetic	 wave.	 Now	 v	 =	 c
doesn’t	mean	that	electromagnetic	waves	are	the	same	as	light.	For	example,
we	 now	 know	 that	 gravity	 waves	 also	 travel	 at	 the	 speed	 of	 light.	 But
Maxwell	had	conjectured	correctly.	It	was	clearly	demonstrated	not	long	after
by	Heinrich	Hertz	(1857–1894)	that	sparks	created	in	one	circuit	were	able	to
generate	currents	in	an	antenna	placed	several	feet	away.	By	forming	standing
waves	Hertz	confirmed	the	wave	velocity	was	c.
So	we	now	have	a	new	understanding	of	what	light	is.	It	is	simply	made	of

electromagnetic	waves	traveling	at	speed	c.	It	consists	of	varying	electric	and
magnetic	fields.	What	we	have	seen	is	an	example	of	a	simple	wave,	but	one
can	show	in	general	that	if	you	took	the	most	general	E	and	B	you	would	get



the	following	wave	equation	in	vacuum

where	Φ	is	any	component	of	E	or	B.
Think	about	how	wonderful	all	 this	 is.	You	do	experiments	with	charges,

with	 currents,	 and	 you	 describe	 the	 phenomena	 as	 best	 as	 you	 can.	 You
measure	 ε0	 from	 electrostatics	 and	 μ0	 from	 magnetostatics,	 throw	 in
Maxwell’s	 displacement	 current	 for	 consistency,	 and	 out	 comes	 the	 wave,
which	turns	out	to	be	a	description	of	light!	It	doesn’t	get	any	better	than	that.

14.4			Sinusoidal	solution	to	the	wave	equation
As	mentioned	 before,	 the	 solutions	 to	wave	 equations	 just	 have	 to	move	 at
speed	 c;	 they	 do	 not	 have	 to	 be	 periodic	 in	 time	 or	 space,	 i.e.,	 to	 have	 a
frequency	or	wavelength.	They	could	 represent	 a	 single	 localized	pulse	 that
moves	at	speed	c.
But	 there	 are	 periodic	 solutions.	 Here	 is	 a	 simple	 example	 from	 our

restricted	family:

where	 the	 amplitudes	 E0	 and	 B0	 are	 free	 parameters,	 as	 are	 the	 angular
frequency	ω	and	wave	number	k,	which	are	related	to	the	more	familiar	time
period	T	and	wavelength	λ	as	follows:

This	is	confirmed	when	we	write	the	oscillating	function	in	terms	of	T	and
λ:



Changing	 t	 by	T	 or	 y	 by	 λ	 changes	 the	 argument	 of	 the	 sine	 by	 2π,	 which
remains	 unaffected.	 Equations	 14.53–14.54	 describe	 plane	 waves:	E	 and	B
have	the	same	values	on	a	plane	perpendicular	to	the	y-axis.
Applying	the	Maxwell	equations

to	the	sinusoidal	functions	above,	we	find	the	following	constraints:

Upon	canceling	cos	(ωt	−	ky)	from	both	sides	we	are	left	with

Equating	the	quotient	of	the	left-hand	sides	to	the	quotient	of	the	right-hand
sides	we	find

which	tells	us	the	E	field	is	bigger	than	B	by	a	factor	c	in	this	plane	wave.
Equating	the	product	of	the	left-hand	sides	of	Eqn.	14.62	and	Eqn.	14.63	to

the	product	of	the	right-hand	sides,	we	find

which	is	a	result	we	could	also	get	 if	we	substituted	the	sine	waves	 into	 the
wave	equation.	(Remember,	once	the	two	Maxwell	equations	are	satisfied,	the
wave	equation,	which	results	from	combining	them,	is	automatically	satisfied
and	 will	 yield	 no	 additional	 constraints.)	 There	 are	 two	 solutions	 to	 this



equation

The	frequency	ω	is	traditionally	treated	as	positive	and	the	two	choices	of	k
correspond	to	the	two	directions	of	propagation.	Indeed	we	find	that	if	we	set
k	=	ω/c	in	the	sine	wave	it	becomes	a	function	of	y	−	ct:

which	 is	 a	 right-moving	 wave.	 The	 other	 choice	 k	 =	 −	 ω/c	 will	 yield	 a
function	of	y	+	ct,	describing	a	left-moving	wave.
Another	way	to	write	ω	=	kc	is

This	says	the	source	pushes	out	f	cycles	per	second,	each	of	length	λ	so	that
the	wave	front	advances	by	λf	meters	per	second,	which	 is	by	definition	 the
wave	velocity.
To	summarize,	the	plane	waves	have	two	free	parameters	E0	and	ω,	while

B0	and	k	are	related	to	them	by	the	Maxwell	equations.
Here	is	what	we	have	so	far	for	describing	a	wave	going	along	+y:

Observe	that	the	vector	E	×	B	points	along	+y,	the	direction	of	propagation.
Suppose	I	want	a	wave	going	the	opposite	way.	A	reasonable	guess	is

Since	it	is	of	the	form	f(y	+	ct),	the	wave	is	certainly	moving	along	−y	and
it	 will	 satisfy	 the	 wave	 equation.	 But	 it	 will	 not	 satisfy	 all	 the	 Maxwell
equations.	The	wave	equation	is	obtained	by	combining	two	of	the	Maxwell
equations,	and	satisfying	it	does	not	mean	satisfying	the	two	that	led	to	it.	Can
you	see	what	 is	wrong	with	 the	“solution”	above?	 It	 is	 that	E	×	B	does	not



point	along	−y;	it	still	points	along	+y.	So	we	have	to	reverse	B	to	obtain	the
correct	answer

This	is	the	wave	depicted	in	Figure	14.4.
I	know	this	is	the	correct	answer	for	another	reason.	Take	the	wave	going

along	the	−y	axis,	as	shown	in	Figure	14.4.	Rotate	the	entire	configuration	by
180	 degrees	 around	 the	 z	 axis.	 Can	 you	 do	 that	 in	 your	 head?	 Rotate	 the
whole	pattern	and	it’s	now	going	the	opposite	way,	and	in	the	process	you	can
see	this	B	will	change	sign,	and	point	along	+	x	in	the	first	half	wavelength.
Now,	one	of	 the	principles	of	natural	 laws	is	 that	 if	something	is	a	solution,
the	rotated	thing	is	also	a	solution.	This	is	true	because	space	in	itself	does	not
have	a	preference	 for	one	direction	over	another.	However,	you	must	 rotate
all	 the	 things	 that	matter.	For	example,	 if	you	have	a	grandfather	clock	and
you	rotate	only	the	clock	so	it	lies	on	its	side	it	won’t	work,	because	the	clock
is	 very	 sensitive	 to	 the	 earth.	But	 if	 you	 rotate	 the	 earth	 and	 the	 clock,	 the
clock	will	 run	 as	 before.	 In	 fact,	 that’s	 happening	 all	 the	 time	 as	 the	 earth
spins	 and	 goes	 around	 the	 sun.	What	 are	 the	 relevant	 things	 that	 should	 be
rotated	 along	with	 the	 electromagnetic	wave?	 Since	 it	 lives	 in	 the	 vacuum,
there	 is	 nothing	 else	 to	 rotate—we	 are	 allowed	 to	 rotate	 just	 the	 pattern
around	any	axis	and	expect	the	result	to	be	a	possible	solution.

Figure	14.4			A	plane	wave	with	Ez	=	E0sin(ωt	+	ky)	and	Bx	=	−	B0sin(ωt	+	ky)	at	t	=	0	moving	in	the
negative	y-direction	or	along	E	×	B.	The	wave	pattern	describes	the	condition	on	points	lying	on	the	y
axis	at	t	=	0.	This	field	on	the	axis	is	the	field	on	the	entire	xz-plane	normal	to	that	point.	The	wave	is
polarized	along	+z.	With	time,	the	pattern	will	move	past	the	origin	at	speed	c	in	the	−y	direction.	The
four	insets	in	the	bottom	show	what	is	happening	at	the	origin	(x	=	y	=	z	=	0)	at	various	times.	At	t	=	0,
both	fields	vanish.	The	maxima	at	y	=	λ/4	reach	the	origin	at	time	t	=	λ/4	c	=	T/4.	At	t	=	T/2,	the	fields
vanish	again.	At	t	=	3	T/4,	the	maximally	negative	fields	reach	the	origin.	At	t	=	T	both	fields	again
vanish.



As	another	example	suppose	we	rotate	the	pattern	in	Figure	14.4	around	the
y-axis,	the	axis	of	propagation.	Both	E	(i.e.,	the	polarization)	and	B	will	rotate
in	the	same	plane,	remaining	perpendicular	to	each	other.	By	the	time	E	in	the
first	half	wavelength	is	rotated	to	point	along	+	x,	B	will	point	along	+z.
Figure	 14.4	 shows	 the	 electric	 and	magnetic	 fields	 at	 one	 instant	 in	 time

(which	we	choose	 to	be	 t	=	0),	 for	 a	wave	moving	 in	 the	−y	 direction.	The
vector	E	always	lies	in	the	xz-plane	and	its	direction	(along	+z	in	the	figure)	is
called	the	polarization	of	the	wave.	The	field	B	also	lies	in	the	xz-plane	and	is
parallel	 to	 the	 x-axis.	 Remember	 that	 the	 vectors	 in	 the	 figure	 describe	 the
fields	at	points	on	the	y-axis.	However,	because	it	is	a	plane	wave,	they	have
the	same	values	on	the	entire	xz-plane	passing	through	that	point.
As	times	goes	by,	the	wave	pattern	shown	moves	past	the	origin	at	speed	c

in	 the	−y-direction.	The	 four	 insets	 in	 the	bottom	show	what	happens	at	 the
origin	(x	=	y	=	z	=	0)	as	time	goes	by.	At	t	=	0,	the	fields	vanish	at	the	origin,
as	shown	 in	 the	 figure.	The	maxima	 in	E	 and	B	 at	y	=	λ/4	get	 to	 the	origin
with	a	delay	t	=	λ/(4c)	=	T/4.	At	t	=	T/2,	both	fields	again	vanish.	At	t	=	3T/4,
they	are	maximal	again	but	reversed	in	sign.	At	 t	=	T,	 the	cycle	is	complete
and	E	and	B	vanish.
The	wave	is	traveling	in	a	direction	perpendicular	to	E	and	B,	along	E	×	B.

If	it	hits	an	electron	the	oscillating	electric	field	will	make	the	electron	move
up	and	down.	The	electron	will	also	feel	a	v	×	B	force.	But	because	B0	=	E0/c,
the	ratio	of	magnetic	to	electric	force	will	be	v/c.	For	electrons	in	circuits	v/c	
	1.	So	when	a	radio	wave	sets	the	electrons	in	your	antenna	in	motion,	the

electric	force	dominates.	But	in	astrophysical	situations,	where	particles	travel
at	velocities	close	to	c,	the	two	forces	can	become	comparable.
The	 electromagnetic	 wave	 is	 said	 to	 be	 transverse.	 This	 just	 means	 the

oscillation	 is	 in	 the	plane	perpendicular	 to	 the	direction	of	propagation.	 If	 I
wiggle	a	taut	string	tied	to	a	wall,	the	wiggle	will	move	toward	the	wall,	with
the	displacement	in	a	plane	normal	to	propagation.	So	that	too	is	a	transverse
wave.	On	the	other	hand,	sound	waves	are	longitudinal:	the	air	molecules	set
into	motion	(by	my	diaphragm)	when	I	speak	move	back	and	forth	along	the
direction	of	the	wave.
The	perfectly	polarized	plane	wave	is	hard	to	find.	The	light	from	the	bulbs

in	our	homes	is	a	chaotic	mixture	of	different	polarizations,	frequencies,	and
phases.	Plane	waves	are	also	an	idealization.	The	light	from	the	bulb	or	any
point	 source	goes	out	 spherically.	But	 far	 from	 the	center,	when	 this	 sphere
has	a	huge	radius,	the	wave	may	appear	planar	over	small	areas.
Let	us	understand	how	Polaroid	glasses	work.	The	polarizers	in	the	glasses

have	a	preferred	direction,	called	the	polarization	axis.	They	will	allow	light
to	pass	completely	if	it	is	polarized	along	this	axis	and	block	it	completely	if	it
is	 polarized	 in	 the	 perpendicular	 direction.	 For	 intermediate	 angles	 θ,	 the
component	of	E	parallel	to	the	polarization	axis	will	be	allowed	to	pass,	and



the	 part	 perpendicular	 will	 be	 blocked.	 If	 the	 stuff	 coming	 in	 is	 randomly
polarized,	 you	 can	 cut	 down	 about	 50	 percent	 of	 the	 light	 if	 you	 use	 the
polarized	 lens,	 no	 matter	 which	 way	 it	 is	 oriented.	 However,	 when	 light
reflects	off	 a	 shiny	horizontal	 surface	 (like	 a	 lake)	 it	 tends	 to	 come	 to	your
eyes	 polarized	 horizontally.	 Therefore	 your	 lenses	 should	 be	 polarized
vertically	to	be	most	effective	in	cutting	the	glare.
Imagine	looking	at	a	light	source	through	two	superposed	polarized	lenses.

No	matter	 what	 kind	 of	 light	 enters	 the	 first	 lens,	 it	 will	 emerge	 polarized
along	 its	 polarization	 axis.	 As	 the	 axis	 of	 the	 second	 lens	 is	 rotated,	 the
amount	of	light	transmitted	to	your	eyes	will	change	and	go	to	zero	when	the
two	axes	are	perpendicular.	No	light	can	make	it	through	both.
The	 light	 that	 you	 and	 I	 see	 has	 a	 very	 limited	 range	 of	 the	 possible

wavelengths,	roughly	between	400	to	700	nanometers.	On	the	shorter	side	are
ultraviolet	 light	 and	X-rays;	 on	 the	 longer	 side	 are	 infrared	 light	 and	 radio
waves.	They	are	all	electromagnetic	waves	differing	only	in	ω	or	λ	=	2πc/ω.
The	prefixes	“ultra”	and	“infra”	therefore	refer	to	frequency.	Nature	designed
our	 eyes	 to	 respond	only	 to	 a	 range	 of	ω’s,	 probably	 because	 those	 are	 the
frequencies	 emitted	 by	 our	 most	 common	 enemies.	 If	 you	 had	 different
enemies	 you	 would	 have	 different	 eyesight.	 Maybe	 if	 you	 had	 a	 lot	 of
enemies	 you	would	 have	 eyes	 all	 over	 your	 head,	 like	 some	 insects.	 Since
Nature	gave	us	just	two,	I	assume	we	must	be	pretty	safe.

14.5			Energy	in	the	electromagnetic	wave
When	there	is	an	electromagnetic	wave	in	any	region,	there	is	stored	energy
there.	By	studying	capacitors	and	inductors	we	have	deduced	that	the	energy
per	unit	volume	is

You	 may	 wonder	 if	 this	 formula	 also	 works	 for	 fields	 generated	 by	 some
radio	 station.	 It	 does,	 because	 the	 formulas	 above	 are	 local.	They	only	 care
about	what	the	field	is	at	any	point	and	not	its	origin.	For	example,	it	doesn’t
matter	if	E	is	produced	by	static	charges	or	by	a	changing	magnetic	field.	It	is
like	saying	that	the	kinetic	energy	of	a	soccer	ball	is	 	whether	it	got	that
velocity	by	rolling	down	a	hill	or	by	a	kick	from	you.
Imagine	 then	 a	 wave	 entering	 a	 field-free	 region.	 That	 region	 now	 has

energy	 brought	 in	 by	 the	 wave.	 For	 a	 sinusoidal	 plane	 wave	 the	 energy



densities	are

implies	 that	 the	magnetic	 force	v	×	B	 is	weaker	 than	 the	electric	 force	by	a
factor	v/c.	You	may	expect	 that	 the	magnetic	energy	density	 is	also	smaller.
But	the	energy	densities	are	actually	equal:

because	c2	=	1/(μ0ε0).	The	total	energy	density	is

This	energy	density	is	time-dependent	and	space-dependent.	You	can	sit	at
one	place	and	ask,	“What	 is	 the	energy	density	averaged	over	a	full	cycle?”
Because	the	average	value	of	sin2θ	over	a	full	cycle	is	 ,	the	average	energy
density	is

You	will	 get	 the	 same	 answer	 if	 you	 average	 over	 a	wavelength	 at	 a	 fixed
time.	The	reason	is	that	given	the	periodicity	in	space	and	time,	anything	that
happens	at	any	one	place	over	a	full	period	will	happen	at	one	time	over	a	full
wavelength.
What	is	the	intensity	I,	defined	to	be	the	watts	per	meter	squared	brought	in



by	 the	 wave?	 If	 I	 take	 a	 frame	 one	 meter	 by	 one	 meter	 and	 hold	 it
perpendicular	 to	 the	wave,	 I	 is	 the	number	of	 joules	 crossing	 it	 per	 second.
That’s	easily	calculated	from	the	energy	density	using	familiar	reasoning.	The
wave	 that	 passes	 my	 one-square-meter	 frame	 in	 one	 second	 occupies	 a
volume	1	·	cm3	and	therefore	contains	an	energy	uT	c.	Thus

For	the	wave	in	question,	this	becomes	(upon	averaging	over	a	cycle)

The	Poynting	 vector	 (not	 a	 typo,	 but	 in	 honor	 of	 John	 Poynting	 [1852–
1914])

gives	not	only	the	direction	of	propagation,	but	also	Ī,	the	average	intensity	of
the	wave.
At	the	surface	of	the	earth	sunlight	brings	in	roughly	I	=	1000W/m2.	That	is

pretty	 amazing:	 over	 the	 entire	 surface	 of	 the	 earth	 facing	 the	 sun,	 it	 is
pumping	in	1,000	joules	per	square	meter	every	second!	The	sun	is	93	million
miles	away	emitting	power	in	all	directions	and	we	lie	on	a	sphere	of	radius
93	 million	 miles	 and	 still	 1000	W/m2	 is	 our	 share.	 You	 can	 imagine	 the
prodigious	output	from	the	sun.	It	 is	 interesting	to	estimate	 the	electric	field
that	 comes	with	 sunlight	given	 the	 energy	density.	 It	 is	 roughly	1,000	volts
per	 meter.	 This	 means	 that	 if	 that	 field	 were	 uniform,	 there	 would	 be	 a
potential	difference	of	1,000	volts	across	one	meter.	However,	the	field	is	not
uniform	and	varies	randomly	in	space	and	time.

14.6			Origin	of	electromagnetic	waves
Where	are	these	electromagnetic	fields	coming	from?	The	answer	is	that	they
are	produced	by	charges	and	currents.	But	did	 I	not	 say	you	don’t	need	 the
currents	or	the	charges,	that	these	waves	can	exist	in	free	space,	arbitrarily	far



from	both?	So	which	is	right?	The	answer	is	this.	Static	charges	and	currents
produce	 fields	 that	 die	 away	 as	 1/r2.	However,	 time-dependent	 charges	 and
currents	 can	 radiate	 electromagnetic	 waves.	 Waves	 are	 produced	 by
accelerating	 charges.	 Wewillnot	 derive	 this	 profound	 fact	 in	 this	 course.
Oscillating	charges	are	a	special	case	of	accelerating	charges.	If	charges	travel
at	 uniform	 velocity	 as	 they	 do	 in	 a	 straight	 wire	 they	 don’t	 produce
electromagnetic	waves.	Suppose	you	took	a	capacitor	and	connected	it	 to	an
AC	source.	The	charges	and	currents	will	go	back	and	forth.	The	electric	field
between	the	plates	will	be	time-dependent.	When	you	have	a	time-dependent
electric	 field	 you’ll	 have	 a	magnetic	 field	 going	 around	 it	 because	 the	 line
integral	of	B	will	have	to	be	proportional	to	the	rate	of	change	of	electric	flux.
And	that	induced	B	will	itself	be	time-dependent	and	will	produce	an	electric
field	 going	 around	 it.	 So	 basically	 these	 fields	will	wind	 around	 each	 other
whenever	they’re	dependent	on	time,	and	they	can	then	free	themselves	from
the	capacitor	and	take	off,	the	way	a	soap	bubble	floats	away	from	the	ring	it
is	initially	attached	to.	All	you	need	are	two	plates	and	an	AC	source	to	make
electromagnetic	waves.	You’ll	make	them	at	 the	frequency	of	the	source,	so
you	may	not	be	able	to	see	them.	Neither	will	your	dog,	but	some	gadget	will
be	 able	 to	 pick	 them	 up.	 In	 the	 radio	 station	 there	 is	 a	 circuit	 with	 an
oscillating	current	 that	emits	 the	waves.	The	waves	reach	your	radio	and	set
the	electrons	in	the	antenna	in	motion,	assuming	the	circuit	is	tuned	properly.
Thus	the	waves	and	their	sources	are	really	 like	you	and	your	parents.	At

some	point	you	are	free	from	your	parents;	you	are	able	 to	manage	on	your
own,	but	you	had	parents	somewhere,	sometime,	right?	The	electromagnetic
waves	can	go	on	their	own,	but	they	are	not	produced	on	their	own.	They	are
produced	by	time-varying	charges	and	currents.

14.7			Maxwell	equations—the	general	case	(optional)
We	 now	 derive	 the	 general	 differential	 Maxwell	 equations	 following	 from
infinitesimal	volumes	and	surfaces,	for	arbitrary	E	and	B	and	in	the	presence
of	ρ	and	j.	(The	fields	are	not	the	restricted	ones	from	Eqns.	14.6	and	14.7.)
These	are	what	one	means	by	the	Maxwell	equations.

14.7.1			Maxwell	equations	involving	infinitesimal	cubes
We	will	first	extract	the	differential	Maxwell	equation	contained	in

by	applying	it	to	an	infinitesimal	cube	in	Figure	14.5.	The	three	visible	faces
are	labeled	1,	2,	and	3	and	the	ones	opposite	to	them	are	labeled	−1,	−2,	and



−3.	The	flux	coming	out	of	faces	1	and	−1,	with	areas

Figure	14.5			The	infinitesimal	cube	on	the	surface	of	which	E	is	integrated.	The	three	visible	faces	are
labeled	1,	2,	and	3	and	the	ones	opposite	to	them	are	labeled	−1,	−2,	and	−3.	Only	E	on	faces	1	and	−1
is	shown	to	avoid	clutter.

are	 entirely	 due	 to	Ez,	 which	 pierces	 them	 perpendicularly.	 (The	 other	 two
components	run	parallel	to	these	faces	and	do	not	contribute	to	flux.)
Their	net	contribution	is

The	other	two	pairs	of	opposite	faces	make	similar	contributions	for	a	total
of

According	to	the	integral	Maxwell	equation	this	equals

Upon	canceling	dxdydz	we	arrive	at	one	of	the	Maxwell	equations	in	its	final
form:



Since	there	are	no	magnetic	charges	the	corresponding	equation	for	B	is

To	summarize,	a	non-zero	flux	out	of	 the	cube	results	 from	the	 imperfect
cancellation	 of	 contributions	 from	 opposite	 faces	 with	 oppositely	 pointing
normals,	which	is	why	it	is	determined	by	the	variation	of	each	component	of
E	and	B	along	its	own	direction.
Now	for	 a	 subtle	point.	Why	don’t	we	consider	 the	variation	of	E	 and	B

within	a	face	(taking	it	to	be	a	constant	in	computing	the	flux)	but	do	consider
variations	between	opposite	faces?	Consider	for	definiteness	the	integral	of	Ez
on	faces	1	and	−1.	We	are	trying	to	match	the	surface	integral	to	the	enclosed
charge,	which	 is	proportional	 to	 the	volume	dxdydz.	The	area	of	 the	faces	1
and	−1	uses	up	a	dxdy,	leaving	us	with	just	a	dz	that	comes	from	considering
the	variation	between	the	two	faces	1	and	−1	separated	by	dz.

14.7.2			Maxwell	equations	involving	infinitesimal	loops
Let	us	extract	the	Maxwell	equation	coming	from

on	a	loop	depicted	in	Figure	14.6,	lying	in	the	xy-plane	with	area	vector

The	area	vector	points	in	the	positive	z	direction	as	per	the	right-hand	rule,
coming	out	of	the	page.	We	have	to	now	look	at	the	line	integral	of	E	around
the	loop	and	demand	it	equals	−∂ΦB/∂t.
The	right-hand	side	of	Eqn.	14.100	is	easily	calculated:



Figure	14.6			Line	integral	of	E	around	an	infinitesimal	loop	L	in	the	xy-plane,	with	contribution	from
each	side	shown.	Only	variations	of	Ex	along	y	and	Ey	along	x	matter,	for	only	they	make	contributions
of	order	dxdy	that	matches	the	rate	of	change	of	flux	Bzdxdy.

In	 the	 left-hand	side,	 the	edges	12	and	34,	which	are	oppositely	oriented,
make	the	net	contribution

Even	 though	 the	segments	are	oppositely	directed	 their	contributions	do	not
cancel	since	Ex	need	not	be	the	same	on	both	sides.	To	first	order	in	dy

where	the	minus	sign	is	present	because	the	12	has	a	smaller	y	coordinate	than
34.
When	substituted	into	Eqn.	14.103	the	preceding	result	gives

The	 edges	 23	 and	 41,	 which	 are	 also	 oppositely	 oriented,	 make	 the
contribution

Adding	the	contributions	from	the	four	edges	gives

Equating	this	to	minus	the	rate	of	change	of	Φ2	(Eqn.	14.102)	we	find



Once	again	we	neglected	certain	variations,	like	that	of	Ex	within	an	edge
parallel	to	x	as	we	integrate	along	it.	We	do	this	because	we	are	trying	to	get	a
result	proportional	to	dxdy,	and	a	dx	 is	used	up	in	the	line	integral	along	the
edge,	 leaving	behind	 a	dy	 for	 variations	 across	 opposite	 edges	 separated	by
dy.
In	short,	 the	non-zero	circulation	around	a	loop	comes	from	the	imperfect

cancellation	between	opposite	sides	that	are	 traversed	in	opposite	directions,
and	 hence	 upon	 the	 variation	 of	 the	 components	 of	E	 and	B	 in	 the	 other
orthogonal	directions.
By	considering	loops	in	the	yz	and	zx	planes	we	will	obtain	two	more	such

equations	with	the	cyclic	permutation	of	the	indices:	x	→	y	→	z	→	x.
Here	is	the	complete	set:

It	can	be	shown	that	no	new	independent	equations	emerge	by	considering
loops	not	in	the	principal	planes.
The	other	Maxwell	equation

gives	three	such	equations	with	roles	of	E	and	B	reversed	and	the	additional
contribution	from	the	current	density	j:



Together	 with	 the	 two	 equations	 relating	 the	 derivatives	 of	E	 and	B	 to
electric	and	magnetic	charges,

we	have	a	total	of	eight	Maxwell	equations.
These	equations	can	be	displayed	more	compactly	by	introducing	the	entity

It	is	not	an	ordinary	vector,	because	its	components	are	not	numbers.	It	is
called	a	differential	operator;	it	is	an	entity	waiting	to	act	on	functions	to	its
right.	 When	 it	 does,	 it	 will	 yield	 numbers,	 namely	 the	 derivatives	 of	 the
functions.
We	are	already	familiar	with	one	example,	the	gradient:

which	is	a	numerical	vector	for	a	given	function	V.	Since	V	is	a	scalar	∇V	is	a
vector	field,	described	by	an	independent	vector	at	every	point	in	space.
For	now	treat	∇	as	a	vector	with	which	we	can	form	dot	and	cross	products

with	ordinary	vectors	like	E	and	B	with	one	restriction:	∇	must	always	be	to
the	left	of	the	fields	so	it	may	differentiate	them.
In	this	spirit	consider	the	dot	product	of	∇	with	a	vector	field,	say	E:



The	expression	∇	·	E	is	pronounced	“divergence	of	E”	or	“div	E”	where	“div”
rhymes	with	“give.”	 In	 this	notation	we	may	 rewrite	Eqns.	14.98	and	14.99
compactly	as

Thus	the	divergence	of	the	electric	field	is	proportional	to	the	charge	density
and	 the	 divergence	 of	 the	 magnetic	 field	 is	 zero,	 reflecting	 the	 absence	 of
monopoles.	Since	ρ	is	a	scalar	so	must	be	∇	·	E,	and	by	extension	∇·	B.
Next	consider	the	cross	product	of	∇	with	E:

The	expression	∇	×	E	is	pronounced	“curl	E.”	This	notation	allows	us	to	write
the	 other	 six	 Maxwell	 equations	 14.109	 to	 14.111	 and	 14.113	 to	 14.115
compactly	as

As	the	right-hand	sides	of	the	last	two	equations	are	vectors,	so	must	be	the
left-hand	sides,	∇	×	E	and	∇	×	B.
There	is	just	one	tricky	issue:

for	the	left-hand	side	is	a	numerical	and	the	right-hand	side	is	still	waiting	to
differentiate	something.



I	am	now	ready	to	state	all	of	classical	electrodynamics.	These	are	encoded
in	the	final	Maxwell	equations	in	differential	and	integral	form	(labeled	I–IV)
and	the	Lorentz	force	law:

14.7.3			Consequences	for	the	restricted	E	and	B
How	do	these	general	Maxwell	equations	constrain	the	restricted	functions

in	 vacuum,	when	ρ	 =	 j	 =	 0?	Not	 surprisingly,	 the	 constraints	will	 coincide
with	the	pair	of	equations	we	obtained	earlier	when	we	derived	the	Maxwell
equations	considering	only	the	restricted	functions.	For	completeness,	I	show
how	that	comes	about.
Consider	the	Maxwell	equations	I	and	II	in	vacuum:

They	 are	 identically	 satisfied	 by	 the	 assumed	 functions	 in	 Eqns.	 14.6	 and



14.7:	 the	 only	 non-zero	 electric	 component	 Ez	 has	 no	 z-derivative	 and	 the
only	non-zero	magnetic	component	Bx	has	no	x-derivative.	No	constraint	on
Ez	or	Bx	emerges	by	imposing	the	Maxwell	equations.
Now	for	the	other	two	Maxwell	equations	(in	vacuum):

In	the	first	equation	for	∇	×	E,	since	B	in	the	right-hand	side	has	only	an	x
component,	we	consider	the	same	component	for	the	curl	on	the	left-hand	side
as	well:

This	tells	us	(since	Ey	=	0)

You	may	check	that	the	equations	for	the	other	two	components	reduce	to	0	=
0.
The	second	equation	for	∇	×	B,	given	the	non-zero	components	of	E	and	B,

leads	to	just	one	non-trivial	constraint:

The	fields	Ez	and	Bx	we	have	introduced	have	to	satisfy	just	the	following
two	conditions	to	obey	all	the	Maxwell	equations:

These	are	just	the	pair	we	found	on	the	easier	track.



14.8			From	microscopic	to	macroscopic	(optional)
We	 have	 gone	 from	 the	 integral	 to	 the	 differential	 version	 of	 the	Maxwell
equations.	Can	we	go	the	other	way,	or	is	there	loss	of	information	in	taking
the	 infinitesimal	 limit?	 Yes,	 we	 can,	 just	 as	 we	 can	 reconstruct	 a	 function
given	 its	 derivative.	Using	 elementary	 theorems	of	 vector	 calculus,	 one	 can
show	that	the	differential	Maxwell	equations	in	the	left	half	of	Eqns.	14.128
to	14.131	imply	the	corresponding	integral	Maxwell	equations	to	their	right.
In	 this	 section	 I	will	 show	 you	 the	 arguments	 that	 lie	 at	 the	 heart	 of	 these
theorems.	Since	the	differential	Maxwell	equations	simply	encode	the	content
of	 integral	 Maxwell	 equations	 applied	 to	 infinitesimal	 loops,	 surfaces,	 and
volumes,	 I	 just	 have	 to	 prove	 that	 if	 the	 (integral)	Maxwell’s	 equations	 are
satisfied	 for	every	 infinitesimal	 loop,	 surface,	and	volume,	 then	 they	will	be
satisfied	for	all	macroscopic	ones.

14.8.1			Maxwell	equations	involving	cubes
We	begin	with	the	equations	relating	the	surface	integrals	of	E	and	B	 to	the
enclosed	charges.	Consider	first	E.
By	assumption

is	valid	in	every	infinitesimal	volume	V.	I’m	going	to	take	V	to	be	a	cube	of
sides	dx,	dy,	 and	dz	 and	S	 to	be	 its	 surface	as	 indicated	 in	Figure	14.7.	The
cube	contains	charge	qenc.	The	surface	is	made	of	the	six	faces	of	the	cube	as
shown	in	the	upper	left	part	of	Figure	14.7.	The	area	vectors	dSi	i=±1,±2,±3
for	each	face	point	along	the	outward	normal	and	the	field	on	face	i	is	Ei.	By
definition,	the	surface	integral	of	E	is	the	sum	of	Ei	·	dSi	over	the	six	faces.
For	the	reason	explained	earlier,	 the	value	of	Ei	 is	 taken	to	be	constant	over
each	face	but	variations	between	opposite	faces	are	kept	track	of.
All	this	goes	for	the	second	cube	V′	that	encloses	charge	q′enc.



Figure	14.7			Two	cubes	with	outward	pointing	area	vectors	at	the	top	are	glued	to	form	the	solid	shown
in	the	bottom.	The	common	faces	with	oppositely	pointing	area	vectors	are	deleted	in	the	process.	The
visible	faces	are	numbered	1,	2,	and	3	and	the	ones	opposite	to	them	are	numbered	−1,	−2,	and	−3.

Start	with	the	given	fact	that	Maxwell’s	equation	holds	for	each	cube:

By	adding	the	two	equations	we	get

Suppose	we	now	glue	the	two	cubes	together	as	shown	in	the	lower	half	of
the	 figure	 to	 form	 the	 rectangular	 solid	 V′′.	 The	 right-hand	 side	 of	 the
previous	equation	is	the	charge	enclosed	in	V′′.	If	the	Maxwell	equation	holds
for	it,	the	left-hand	side	must	be	the	surface	integral	of	E	over	the	surface	of
V′′.	This	must	be	true	despite	the	fact	that	the	V′′	has	only	10	of	the	12	faces
belonging	 to	 the	 two	cubes	V	 and	V′.	Two	faces,	one	 from	each	cube,	were
lost	in	the	gluing	process.	Fortunately,	their	absence	does	not	matter	because
their	contributions	cancel	each	other:

This	 is	 true	 because	 the	 same	 field	 is	 integrated	 on	 both	 faces	 when	 they
coalesce



while	 the	area	vectors	 (pointing	outward	from	the	 two	cubes)	are	equal	and
opposite:

This	allows	us	to	rewrite

where	the	sum	is	over	the	10	faces	of	S′′,	which	encloses	the	volume	V′′	and
charge	q′′enc.	This	is	precisely	Maxwell’s	equation	for	V′′.
Evidently	 we	 can	 go	 on	 to	 approximate	 arbitrarily	 complicated

macroscopic	 volumes	 by	 gluing	 infinitesimal	 cubes	 in	 this	 manner,	 and
Maxwell’s	equation	will	be	valid	for	all	of	them	if	it	is	valid	in	the	little	cubes
used	 to	 form	 them.	 The	 reason	 will	 be	 the	 same	 as	 when	 two	 cubes	 were
glued:	the	charge	enclosed	in	the	final	volume	will	be	the	sum	of	the	charges
in	the	infinitesimal	cubes	that	were	glued	to	form	it,	and	the	surface	integral
on	the	final	volume	will	be	the	sum	of	the	surface	integrals	on	the	constituent
infinitesimal	cubes	because	the	internal	faces	shared	by	cubes	(with	opposing
area	vectors)	will	make	canceling	contributions.
The	argument	works	verbatim	for	B	upon	making	the	substitution	E	→	B

and	qenc	≡	0.

14.8.2			Maxwell	equations	involving	loops
We	begin	with	the	Maxwell	equation	relating	the	line	integrals	of	E	to	the	rate
of	change	of	the	flux	of	B.	Similar	arguments	hold	if	the	roles	are	exchanged
and	 the	 contribution	 of	 the	 current	 j	 is	 included	 with	 that	 of	 the	 changing
electric	flux.
Figure	 14.8	 shows	 two	 infinitesimal	 loops	 L1	 and	 L2	 around	 whose

boundary	E	 is	integrated	in	the	sense	of	the	arrows	circulating	around	them.
We	are	given	that	Maxwell’s	equations	hold	for	L1	and	L2



where	E1	and	E2	are	the	values	of	the	electric	field	on	the	loops	1	and	2	and
B1	and	B2	are	the	values	of	the	magnetic	field	on	the	infinitesimal	surfaces	or
plaquettes	enclosed	by	loops	1	and	2.

Figure	14.8			Two	oriented	planar	areas	or	plaquettes	are	glued	to	form	the	non-planar	area	shown	in	the
bottom.	The	common	edges	with	oppositely	running	arrows	are	deleted.

Suppose	we	glue	the	two	loops	along	a	common	edge	to	form	the	loop	L1	+
L2.	Adding	the	two	previous	equations	we	find

because	 the	 flux	 penetrating	 the	 composite	 loop	L1	 +	L2	 is	 the	 sum	 of	 the
fluxes	penetrating	the	two	plaquettes.	If	this	is	to	be	the	Maxwell	equation	for
L1	 +	 L2,	 the	 left-hand	 side	 must	 equal	 the	 line	 integral	 of	 E	 around	 the
perimeter	of	L1	+	L2.	Now	 the	perimeter	of	L1	+	L2	 has	 two	edges	missing
compared	to	its	constituents,	the	edge	from	L1	and	the	edge	from	L2	that	were
glued.	 Remarkably	 these	 missing	 edges	 do	 not	 matter	 because	 their
contributions	would	 have	 canceled	 anyway:	 the	 same	E	 lives	 on	 the	 edges
when	they	coalesce	but	is	integrated	in	opposite	directions	in	the	two	loops.	It
follows	that	if	the	Maxwell	equation	held	for	the	smaller	loops	it	would	hold
for	 the	 composite	 one.	 We	 can	 approximate	 arbitrarily	 large	 and	 complex
loops	bounding	arbitrary	surfaces	by	gluing	smaller	ones	as	above.
Next	consider	the	corresponding	Maxwell	equation	for	the	magnetic	field:



Except	for	the	current	term	j,	we	are	simply	exchanging	the	roles	of	the	E	and
B	 fields.	The	analysis	goes	 through	with	 the	current	density	j	because	when
we	 glue	 two	 loops,	 the	 sum	 of	 the	 currents	 through	 them	 is	 the	 current
through	the	composite	loop,	just	as	it	was	for	the	flux.

Figure	14.9			A	non-planar	loop	bounding	a	non-planar	surface	in	three	dimensions.	It	is	made	by	gluing
little	plaquettes	bounded	by	oppositely	oriented	edges.	The	line	integral	of	any	field	around	the
perimeter	of	the	macroscopic	surface	is	the	sum	of	the	line	integrals	around	each	little	plaquette	that
forms	it.	The	contributions	from	internal	edges	cancel	in	pairs	leaving	behind	only	the	contributions
from	the	edges	around	the	big	surface.	The	flux	or	current	crossing	the	big	surface	is	the	sum	of	the
fluxes	or	currents	crossing	the	little	plaquettes.	Consequently,	if	Maxwell’s	equation	holds	on	the
constituent	plaquettes,	it	holds	on	the	macroscopic	surface.

In	three	dimensions	there	is	a	complication	with	loops	that	we	do	not	have
with	 cubes.	 Consider	 the	macroscopic	 surface	 in	 Figure	 14.9.	 If	Maxwell’s
equation	holds	on	every	plaquette	used	 to	 tile	 it,	 it	will	 hold	on	 the	 surface
because	 the	 flux	crossing	 the	 surface	 is	 the	 sum	of	 the	 fluxes	crossing	each
plaquette,	and	the	line	integral	of	any	field	around	the	boundary	is	the	sum	of
the	 line	 integrals	 around	 the	 constituent	 plaquettes.	 The	 fact	 that	 the
plaquettes	in	question	do	not	lie	in	the	principal	planes,	whereas	the	ones	for
which	we	established	Maxwell’s	 equation	did,	 is	not	 a	problem	because	we
may	approximate	any	surface	using	plaquettes	in	the	principal	planes.



CHAPTER	15

Electromagnetism	and	Relativity

There	 are	 many	 aspects	 of	 the	 interplay	 between	 relativity	 and
electromagnetism.	I	will	reluctantly	limit	myself	to	two	topics.
The	 first	 is	 a	more	 or	 less	mandatory	 exercise,	 which	 shows	 that	 if	 you

knew	about	Coulomb’s	 law	 for	 electrostatics	 and	believed	 in	 relativity,	 you
could	deduce	the	existence	of	the	magnetic	force,	v	×	B.
The	second	is	a	more	formal	topic:	we	ask	what	modifications,	if	any,	are

needed	 if	Maxwell’s	 equations	 are	 to	 conform	 to	 the	 principle	 of	 relativity,
namely	that	 the	equations	have	the	same	form	for	all	 inertial	observers.	The
answer	is	that	no	changes	are	needed:	electrodynamics,	as	we	have	discussed
it	so	far,	complies	with	this	principle.	However,	electrodynamics	does	require
some	 cosmetic	 changes	 in	 which	 certain	 three-vectors	 are	 grouped	 with
scalars	 to	 form	 four-vectors.	 Once	 these	 four-vectors	 are	 identified	 and	 the
equations	 expressed	 in	 terms	 of	 them,	 many	 separate	 (vector	 and	 scalar)
equations	 collapse	 into	 single	 four-dimensional	 equations,	 the	 way	 the
conservation	of	energy	and	momentum	of	Newtonian	mechanics	became	the
conservation	of	the	energy-momentum	four-vector	P	in	relativistic	mechanics.
Most	importantly,	the	four-dimensional	equations	have	the	same	form	for	all
inertial	observers,	i.e.,	invariant	under	Lorentz	transformations.
There	 is	 one	 big	 difference	 between	 mechanics	 and	 electromagnetism:

while	 the	 expressions	 for	 energy	 and	 momentum	 had	 to	 be	 first	 modified
(e.g.,	p	=	mv	→	mv	 /	 )	before	the	momentum	four-vector	could	be
assembled,	no	such	changes	are	needed	in	electrodynamics.	For	example,	the
Lorentz	force	law	does	not	receive	any	corrections	to	higher	orders	in	v/c.	The
force	is	still	F	=	q(E	+	v	×	B),	though	now	it	constitutes	three	components	of
a	four-force	determined	by	the	four-velocity	and	fields.	The	fourth	component
relates	the	power	to	the	fields	and	four-velocity.

15.1			Magnetism	from	Coulomb’s	law	and	relativity
Relativity	 unifies	 electricity	 and	 magnetism	 by	 showing	 that	 they	 are	 not
independent	unrelated	phenomena,	which	is	how	it	seemed	in	the	static	case.
Their	dynamics	got	coupled	when	they	varied	with	time,	as	in	Faraday’s	law.
What	I	mean	by	unification	is	that	E	and	B	mix	with	each	other	as	we	change
frames,	 the	 way	 x	 and	 t	 do	 under	 Lorentz	 transformations.	 I	 will	 now
demonstrate	one	amusing	result	that	illustrates	this:	given	the	Coulomb	force,



you	 can	 deduce	 the	 velocity-dependent	 magnetic	 force	 and	 even	 derive	 its
magnitude	if	you	believe	in	special	relativity.
Consider	 a	 positive	 charge	q	moving	parallel	 to	 the	 current	 in	 an	 infinite

wire.	We	know	the	charge	will	be	attracted	to	the	wire.	Pretend	we	only	know
Coulomb’s	 law	 and	 are	 unfamiliar	with	magnetism.	We	 cannot	 explain	 this
attraction,	which	seems	to	be	due	to	its	velocity	v.	So	we	decide	to	go	to	the
inertial	frame	that	moves	at	the	same	velocity	as	the	charge.	In	that	frame	the
charge	 has	 come	 to	 rest.	 No	 new	 physics	 beyond	 electrostatics	 must	 be
involved	in	explaining	the	behavior	of	the	charge.
You	will	 agree	 that	 if	 the	charge	was	attracted	 to	 the	wire	 in	 the	original

frame,	it	will	be	attracted	in	the	new	frame	as	well.	The	transverse	coordinate
is	not	affected	by	motion	parallel	to	the	wire.	But	now	we	are	worse	off:	we
see	a	neutral	wire	attracting	a	static	charge.	How	come?	It	is	true	the	wire	as	a
whole	is	now	moving	backward	at	velocity	−	v	but	it	is	still	neutral!	It	is	also
no	use	saying	the	wire	has	Lorentz	contracted:	a	contracted	but	neutral	wire
still	cannot	attract	a	static	charge.
The	resolution,	which	is	not	really	obvious,	is	shown	in	Figure	15.1.
Replace	 the	 neutral	 wire	 in	 its	 rest	 frame	 (lab	 frame)	 by	 two	 oppositely

charged	rods,	with	charge	density	of	±λ0	coulombs	per	unit	length.	The	rods
are	 initially	 at	 rest.	There	 is	no	current	 and	no	charge	on	 the	wire.	The	 test
charge,	at	rest,	is	unaware	of	these	rods.	Now	slide	the	positively	charged	rod
to	the	right	with	some	speed	V	and	the	negatively	charged	rod	to	the	left	with
the	same	speed,	giving	it	a	velocity	−	V.	Their	currents	add	because	the	left-
moving	negative	charges	also	constitute	a	current	to	the	right.	Due	to	length
contraction,	the	charge	densities	of	the	rods	go	up,	but	by	the	same	amount,	to

Figure	15.1			Top:	The	situation	in	lab	frame.	A	neutral	wire	modeled	by	two	infinitely	long	rods	with
equal	and	opposite	charge	densities	in	their	rest	frames,	moving	with	equal	and	opposite	velocities	(and
suffering	equal	Lorentz	contractions),	producing	a	current	to	the	right.	A	charge	q	>	0	moving	to	the
right	is	attracted	to	it.	Bottom:	The	situation	in	the	charge’s	rest	frame.	The	positive	rod	appears	slower
and	it	is	less	Lorentz	contracted;	the	opposite	is	true	for	the	negative	rod.	The	wire	appears	negatively
charged,	and	the	charge	is	electrostatically	attracted	to	it.



keeping	 the	wire	 still	 neutral.	A	 static	 charge	will	 still	 feel	no	 force	 toward
this	neutral	wire.
What	is	the	current,	the	number	of	coulombs	crossing	any	checkpoint?	It	is

the	 charge	 per	 unit	 length	 times	 the	 length	 of	 rod	 that	 slides	 past	 the
checkpoint	in	one	second,	namely	V:

To	make	my	point	without	too	much	algebra	I	am	going	to	consider	small
velocities	 and	 drop	 terms	 of	 higher	 order	 than	 V2/c2.	 The	 current	 then
becomes

as	expanding	 the	denominator	of	Eqn.	15.4	using	 the	binomial	 theorem	will
produce	terms	of	order	V3/c3	or	higher.
Now	give	the	charge	q	some	positive	velocity	v.	It	is	found	to	be	attracted

to	the	wire	by	virtue	of	its	motion.	We	do	not	understand	the	physics	behind
this.	So	we	move	to	a	frame	traveling	at	v	to	bring	the	charge	to	a	halt.	In	this
rest	frame	of	the	charge,	the	positively	charged	rod	has	slowed	down	from	V
to	V+,	 its	Lorentz	contraction	has	gone	down,	and	so	has	 its	charge	density.
(In	 the	 limit	of	 low	velocities,	V+	=	V	−	v.)	The	negatively	charged	 rod	has
sped	up	(to	V−	=	V	+	v	in	the	small	velocity	limit)	and	its	charge	density	has
gone	 up	 due	 to	 increased	 Lorentz	 contraction.	 In	 the	 rest	 frame	 of	 the	 test
charge,	the	wire	is	negatively	charged!	No	wonder	the	charge	is	attracted	to	it.
To	 find	 the	 magnitude	 of	 this	 attraction,	 I	 will	 introduce	 another

simplification:	 I	will	 assume	 the	 particle	moves	 at	 speed	V	 also.	 In	 its	 rest
frame	the	positive	rod	is	at	rest	with	density



and	the	negative	rod,	moving	at	velocity	−2V	(with	corrections	of	order	V3/c3)
has	density

leading	to	a	net	charge	density	on	the	two	rods	of

This	charged	wire	exerts	the	familiar	attractive	electric	force	on	a	charge	q	at
distance	r,

where	the	minus	sign	means	the	force	is	toward	the	wire.	In	the	low	velocity
Newtonian	 limit,	 force	 and	 acceleration	 are	 the	 same	 in	 the	 lab	 frame.	We
therefore	 expect	 that	 in	 the	 lab	 frame	 a	 charge	 q	 moving	 at	 velocity	 V	 a
distance	r	from	the	wire	will	experience	an	attractive	force

where	 I	 have	 introduced	 a	 new	 constant	 μ0	 =	 1/(ε0c2),	 at	 least	 in	 this
discussion,	where	magnetism	was	never	explicitly	introduced	but	c	was	there
from	the	beginning	in	all	the	relativistic	formulas.
We	of	 course	 encountered	 this	 force	 along	 a	 different	 path.	 In	 our	 initial

study	 of	 magnetism	 μ0	 was	 introduced	 in	 the	 Biot-Savart	 law	 as	 an
independent	 constant	 describing	 a	 new	 phenomenon	 called	magnetism.	The
force	 between	 the	 moving	 charge	 and	 current-carrying	 wire	 came	 from
calculating	B	using	the	Biot-Savart	law	for	an	infinite	wire	and	invoking	the
Lorentz	force.	The	relation	μ0ε0	=	1/c2	emerged	only	in	the	last	chapter.
You	 may	 think	 the	 previous	 demonstration	 may	 become	 invalid	 if	 the



assumption	v	=	V	 that	 I	made	 for	 convenience	was	 relaxed.	 It	does	not	 and
you	are	free	to	give	the	charge	a	different	velocity	v	≠	V	and	work	to	the	same
order	to	obtain	Eqn.	15.12.
Meanwhile	consider	 this:	 the	 final	answer	expresses	 the	 force	 in	 terms	of

the	current	 I	with	no	 separate	 reference	 to	 the	V	 of	 the	 rods	or	 their	 charge
density.	Therefore	we	expect	that	if	we	could	change	the	velocity	of	the	rod
without	changing	the	current,	the	answer	must	be	the	same.	This	of	course	we
can	do:	the	same	I	can	be	produced	by	rods	with	a	smaller	linear	density	and
larger	velocity	or	larger	density	and	smaller	velocity.
To	 summarize,	 given	 just	 electrostatics,	 the	 existence	 of	 the	 velocity-

dependent	 magnetic	 force	 can	 be	 deduced	 if	 we	 believe	 in	 Einstein’s
relativity.	Conversely,	 electromagnetic	 theory,	which	 includes	magnetism	 in
just	 the	 right	way	mandated	 by	 relativity,	 is	 already	 consistent	with	 special
relativity.

15.2			Relativistic	invariance	of	electrodynamics
The	rest	of	this	chapter	is	somewhat	formal	in	nature.	No	new	phenomena	are
involved	and	you	cannot	compute	anything	new	using	what	follows.	We	will
discuss	 certain	 questions	 of	 principle	whose	 resolution	 reveals	 the	 stunning
beauty	of	the	formalism.	You	will	also	end	up	learning	that	electrodynamics
is	a	gauge	theory,	like	its	cousins,	the	weak	and	strong	interactions.	Sheldon
Glashow,	Abdus	Salam,	and	Steven	Weinberg	described	electromagnetic	and
weak	interactions	as	gauge	theories.	David	Gross,	Frank	Wilczek,	and	David
Politzer	showed	that	only	a	gauge	theory	(quantum	chromdynamics,	or	QCD)
could	 describe	 the	 strong	 interactions	which	 are	 known	 to	 become	weak	 at
short	distances	and	strong	at	long	distances.
You	will	find	the	answer	to	two	common	questions.	If	the	magnetic	force

depends	on	the	velocity	of	the	charges,	it	is	the	velocity	according	to	whom?
When	Maxwell’s	equations	give	the	velocity	of	light	as	c,	it	is	as	measured	by
whom?	The	answer:	both	are	velocities	as	measured	by	any	inertial	observer.
Einstein	 assures	you	 that	 you	 can	 apply	 the	 same	 laws	of	physics	 as	 if	 you
were	not	moving,	even	when	another	inertial	observer	says	you	are.

15.3			Review	of	Lorentz	transformations
The	most	familiar	example	of	the	Lorentz	transformation	is	of	the	space-time
coordinates:



where	 u	 denotes	 the	 velocity	 of	 the	 primed	 frame	 relative	 to	 the	 unprimed
frame	along	the	x-axis.	(I	use	v	to	denote	the	velocity	of	a	particle.)
We	 like	 to	 work	 with	 four-vectors	 whose	 components	 have	 the	 same

dimension.	Thus	we	introduce	the	position	four-vector	X:

The	Lorentz	transformation	is	now	more	symmetric:

The	two	components	unaffected	by	the	motion	are	suppressed.	I	will	do	this
often	and	yet	refer	to	the	truncated	vector	as	a	four-vector.	Four-vectors	will
not	 be	 in	 boldface.	 The	 boldface	 is	 reserved	 for	 the	 spatial	 parts	 of	 four-
vectors,	as	in

where	P	is	the	energy-momentum	four-vector.
In	general	a	four-vector	V	has	components	(V0,V1,V2,V3)	that	transform	into

linear	combinations	of	each	other	exactly	as	(x0,	X1,	X2,	X3)	do.	For	motion	in
the	1-direction,



Given	this	transformation	law,	it	follows	that	the	“dot	product”	of	two	four-
vectors	V	and	W	is	Lorentz	invariant.	That	is,	if

The	minus	signs	in	the	dot	products	are	part	of	life	in	space-time.

15.3.1			Implications	for	Newtonian	mechanics
While	 the	 laws	 of	 nature	must	 be	 the	 same	 for	 all	 inertial	 observers,	 these
need	not	be	the	laws	in	use	before	Einstein.	In	particular,	Newton’s	laws	are
not	invariant	in	form	under	Lorentz	transformations.	The	relativistic	equations
of	dynamics	 take	 their	place	because	only	 they	assume	the	same	form	in	all
inertial	frames.
This	is	why

was	replaced	by

Here	τ	is	proper	time,	P	is	the	energy-momentum	four-vector



and	F	is	the	four-force	with	components

Equation	 15.31	 satisfies	 Einstein’s	 requirement	 that	 it	 assume	 the	 same
form	after	a	Lorentz	transformation	to	another	frame.	This	is	true	because	τ	is
an	 invariant	 and	F,	P,	 and	X	 all	 transform	 the	 same	 way	 under	 a	 Lorentz
transformation.
Let	us	make	sure	we	understand	 this	statement.	Suppose	we	know	in	one

frame	that	the	four-force	and	four-momentum	are	related	as	follows:

Multiply	the	second	equation	by	−β	=	−u/c	and	add	it	to	the	first	and	divide	by
	to	obtain

where	F′0	and	P′0	are	the	components	of	the	four-force	F′	four-momentum	P′
in	 the	primed	 frame	moving	at	velocity	u.	Doing	 the	 same	 thing	 for	F′1	we
conclude	that	in	the	primed	frame



Essential	to	this	proof	is	the	fact	that	τ	is	the	same	for	both	observers,	the	way
t	used	 to	be	 in	 the	Galiliean	 transformation,	and	 that	F	 and	P	 transform	 the
same	way,	as	four-vectors.
Likewise,

will	transform	into

because	m	and	τ	are	invariant.
Having	seen	the	fate	of	mechanics	after	Einstein’s	revolution,	it	is	time	to

ask	what	happens	to	the	laws	of	electrodynamics.	Of	course	they	too	must	be
the	 same	 in	 all	 inertial	 frames,	but	 should	 they	be	 the	 laws	discovered	well
before	Einstein,	the	laws	I	have	described	in	the	preceding	chapters?	Should
they	 be	 modified	 as	 Newton’s	 laws	 of	 mechanics	 were?	 Amazingly,	 no
modifications	 are	 needed.	 The	 laws	 of	 electrodynamics	 before	 Einstein	 are
fully	compatible	with	relativity,	 though	this	was	not	known	while	they	were
being	 discovered.	 It	 turned	 out	 that	 one	 could	 simply	 rewrite	 the	Maxwell
equations	14.128	through	14.131	and	the	Lorentz	force	in	terms	of	 two	new
four-vectors	J	and	A	that	emerge.	The	resulting	equations	have	the	same	form
in	all	Lorentz	frames.	The	same	velocity	of	light	appears	in	all	the	frames.
I	cannot	show	this	 in	all	 its	generality	without	going	too	far	astray.	 I	will

occasionally	have	to	state	a	few	results	without	proof.	I	just	want	to	give	you
a	 feeling	 for	what	happens	 and	 to	prepare	 and	encourage	you	 to	pursue	 the
details	on	your	own.

15.4			Scalar	and	vector	fields
We	 have	 seen	 that	 vectors	 and	 scalars	 are	 defined	 with	 respect	 to	 some
specific	 transformations	 like	 rotations	 or	 Lorentz	 transformations.	 For
example,	 a	 vector	 V	 (which	 could	 be	 a	 particle’s	 velocity)	 with	 two
components	 (Vx,	 Vy)	 in	 one	 frame	 of	 reference	 will	 have	 two	 different
components	V′x,	V′y	 in	 a	 rotated	 coordinate	 system.	A	 scalar	 like	V	 ·V	will
have	the	same	value	in	both	frames.
But	consider	now	not	just	one	scalar	but	a	scalar	field	S,	which	is	a	scalar



function	of	the	coordinates.	At	each	point	in	space	there	is	a	value	for	S.	Thus
a	 field	 is	 a	 system	with	 an	 infinite	 number	 of	 degrees	 of	 freedom.	 At	 any
given	point,	the	scalar	field	has	the	same	value	in	the	two	coordinate	systems,
used	by	two	different	observers.
Here	we	consider	the	simplest	case,	a	scalar	with	respect	to	rotations	in	d	=

2.	 A	 scalar	 S	 is	 a	 number	 at	 each	 point,	 S(x,	 y).	 A	 good	 example	 is	 the
temperature	 at	 the	 point	 (x,	 y).	 If	 you	 change	 to	 a	 new	 set	 of	 coordinates
related	by	a	rotation,

as	shown	in	Figure	15.2,	the	same	temperature	distribution	will	be	described
by	a	different	function	S′(x′,	y′)	such	that

In	other	words,	(x,	y)	and	(x′,	y′)	are	two	ways	to	refer	to	the	same	point	and
the	 temperature	 there	 is	 the	 same	 for	both	observers.	The	point	may	have	a
different	name	for	different	people	but	the	temperature	there	has	an	objective,
coordinate-independent	meaning.
For	example,

describes	a	distribution	peaked	at	(x	=	a,	y	=	0).	In	the	system	rotated	by	
(imagine	the	figure	with	 ),	the	distribution	will	be	peaked	at

The	function	peaked	at	(x′	=	0,	y′	=	−	a)	is	given	by



Figure	15.2			The	same	point	P	in	two	dimensions	has	coordinates	(x,	y)	and	(x′,	y′)	in	two	systems	of
coordinates	related	by	a	rotation	θ.	A	scalar	like	temperature	has	the	same	numerical	value	at	P	for	both
observers.	A	vector	V	actually	looks	different	to	the	two:	it	has	only	a	y	component	in	the	unprimed
frame	and	a	bit	of	x′	and	y′	components	in	the	primed	frame.	When	 ,	only	the	x′	component	of	the
vector	V	is	non-zero.	The	coordinates	of	(x	=	a,	y	=	0)	become	(x′	=	0,	y′	=	−	a).

The	function	S′(x′,	y′)	is	obtained	from	S(x,	y)	by	expressing	(x,	y)	in	terms
of	(x′,	y′).	Both	describe	the	same	physical	situation.
Imagine	now	a	vector	field	V(x,	y),	like	the	wind	velocity	at	(x,	y).	Whereas

a	 scalar	 like	 temperature	 has	 the	 same	 value	 at	 a	 given	 point	 (labeled
differently	 of	 course	 in	 the	 two	 frames)	 a	 vector	 (like	 velocity)	will	 appear
rotated	to	a	rotated	observer.	In	the	rotated	frame,	the	vector	at	(x′,	y′)	will	be
the	 rotated	 version	 of	 the	 vector	 at	 the	 corresponding	 point	 (x,	 y).	 In	 other
words,

Figure	 15.2	 shows	 a	 vector	V.	 It	 is	 entirely	 along	 the	 y	 axis.	 In	 the	 frame
rotated	by	 ,	it	is	entirely	along	x′.
The	inverse	transformation	is	obtained	by	sending	θ	→	−	θ:



15.5			The	derivative	operator
Consider	next	the	equation

in	the	unprimed	frame.	What	will	it	look	like	in	the	primed	frame?	The	right-
hand	side	will	be	ρ′(x′,	y′)/ε0	since	ρ	is	a	scalar.	Remember	that	in	the	equation

(x,	y)	and	(x′,	y′)	refer	to	the	same	point	in	space.
The	left-hand	side	looks	like	a	dot	product	of	∇	and	E,	and	we	expect	it	to

be	invariant.	That	is,	we	expect	the	equation	in	the	primed	coordinates	to	read

But	this	expectation	needs	to	be	verified	because	∇	is	not	an	ordinary	vector,
with	numerical	components.	Here	is	the	verification.
Consider	the	left-hand	side	of	Eqn.	15.55.	We	want	to	express	all	unprimed

quantities	in	terms	of	primed	ones	and	see	if	we	get	an	identical	expression.
Let	us	start	by	replacing	E(x,	y)	by	the	rotated	E′(x′,	y′)	as	per	Eqns.	15.53	and
15.54:

where	 it	 is	 understood	 that	 the	 primed	 fields	 are	 functions	 of	 the	 primed
coordinates.	 This	 is	 the	 easy	 part.	 Next	 we	 need	 to	 trade	 the	 unprimed
derivatives	for	primed	ones.
In	 general	 if	F′(x′,	 y′)	 is	 a	 function	 of	 x′	 and	 y′,	 we	 can	 only	 define	 its

derivatives	with	 respect	 to	x′	and	y′	but	not	another	unrelated	pair	 (x,	y).	 If,
however,	 the	 pairs	 are	 related	 by	 some	 transformation,	 like	 the	 one	we	 are
considering,



then	we	can	view	F′	as	a	function	of	(x,	y)

and	take	its	derivatives	with	respect	to	(x,	y)	using	the	chain	rule:

From	the	transformation	laws	Eqns.	15.59	and	15.60	we	have

For	any	function	F′(x′,	y′)	we	have	then

Since	this	is	true	for	any	F′,	one	writes

where	 the	 equality	means	 the	 left-	 and	 right-hand	 sides	 will	 give	 the	 same
result	when	acting	on	any	F′.	If	you	can	overlook	the	fact	that	the	two	sides
contain	not	numbers,	but	derivatives,	you	will	notice	that



where	↔	means	 the	 two	 transform	 the	same	way	 into	primed	objects	under
rotations.	This	is	what	ensures	that

is	rotationally	invariant,	like	any	dot	product.	Let	us	verify	this	explicitly	by
going	back	to	Eqn.	15.58	and	making	the	substitution:

We	have	 therefore	established	 that	∇	 ·	E	 not	only	 looks	 like	a	 scalar	but
also	transforms	like	one.	(This	was	also	implied	by	Eqn.	15.55,	which	equated
it	 to	a	 scalar	ρ/ε0.)	Similarly,	∇	×	E	 looks	 like	and	 transforms	 like	a	vector
under	rotations.

15.6			Lorentz	scalars	and	vectors
An	 analogous	 procedure	 exists	 for	 defining	 and	 manipulating	 scalars	 and
vectors	when	we	pass	from	rotations	to	Lorentz	transformations.
A	Lorentz	scalar	is	invariant	under	the	Lorentz	transformations.	Examples

are	X	·X	or	X	·	P.
A	Lorentz	vector,	or	simply,	four-vector	V	=	(V0,	V1)	transforms	as



The	inverse	transformation	is	obtained	by	reversing	β:

Applying	 the	 chain	 rule	 as	 before,	 now	 to	 functions	 of	 (x0,	 x1)	 ≡	 (ct,x),
yields

By	comparing	this	result	the	resuls	to	Eqns.	15.76	and	15.77	we	see	that	(∂/
∂x0,	∂/∂x1)	does	not	transform	like	(V0,	V1);	there	are	some	problematic	minus
signs.	But	if	we	define

then	the	components	of	∇	transform	like	a	four-vector:

The	following	operator	is	therefore	Lorentz	invariant:



as	may	be	verified	from	Eqns.	15.81	and	15.82.	What	 this	means	 is	 that	 for
any	F′(x′0,	x′1)

This	 is	 generally	 true	 no	matter	what	F′	 is.	 If,	 however,	 it	 is	 a	 scalar	 field
obeying

we	may	rewrite	Eqn.	15.85	as	the	statement	of	the	Lorentz	invariance	of	∇	·
∇F:

In	more	familiar	terms	∇	·∇	=	∇′	·	∇′	stands	for

If	 we	 bring	 in	 all	 four	 coordinates,	 the	 entity	 that	 transforms	 as	 a	 four-
vector	is

and



15.7			The	four-current	J
I	have	mentioned	that	electrodynamics	can	be	written	in	four-vector	notation
in	terms	of	two	four-vectors	J	and	A.	Here	is	the	first.
Consider	the	charge	density	ρ	and	current	density	j.	I	will	drop	the	vector

symbol	for	the	current	when	discussing	motion	along	just	x,	just	as	I	replaced
(x,	y,	z,	t)	=	(r,	t)	by	(x,	t)	to	introduce	and	study	the	Lorentz	transformations
in	Volume	I.	The	main	point	is	that	the	mixture	of	space	and	time	is	evident
with	just	x	and	t	around,	and	usually	y	and	z	just	come	along	for	the	ride.
Consider	 a	 tiny	 lump	 of	 charge	 at	 rest	 with	 density	 ρ0.	 The	 current

associated	with	it	is	zero.	If	we	see	the	lump	from	a	frame	in	which	it	moves
at	velocity	v,	we	will	find	an	increased	density	due	to	length	contraction	in	the
direction	 of	 motion,	 and	 a	 non-zero	 current	 because	 the	 charge	 is	 now
moving:

This	is	identical	in	form	to

where,	 just	 to	highlight	 the	analogy,	I	have	referred	to	the	invariant	mass	as
m0	instead	of	just	m.
Thus	we	have	the	correspondence	between	two	four-vectors



where	the	symbol	↔	means	that	the	two	objects	will	transform	the	same	way
under	Lorentz	transformations.
As	usual	let	us	introduce	factors	of	c	so	that	all	the	components	of	the	four-

vectors	have	the	same	dimensionality.	This	leads	to	the	correspondence	of	the
transformation	laws	of	the	energy	momentum	four-vector	P,	the	four-current
J,	and	the	position	vector	in	space-time	X:

The	components	of	J	are	labeled	in	many	equivalent	ways:

15.7.1			Charge	conservation	and	the	four-current	J
The	fact	that	electric	charge	is	conserved	can	be	expressed	in	the	form	of	the
following	 equation.	 Imagine	 a	 closed	 surface	 S	 bounding	 a	 volume	V.	 The
surface	integral	of	the	current	density	j,	which	is	the	charge	flowing	per	unit
area	per	 second,	must	 equal	 the	 rate	of	decrease	of	charge	 in	V	 if	 charge	 is
neither	created	nor	destroyed.	So	we	may	write

Recall	that	the	integral	Maxwell	equation

implied	the	following	differential	Maxwell	equation

So	the	corresponding	continuity	equation,	relating	j	and	ρ,	is

Amazingly	 this	 is	 a	 four-dimensional	 equation,	 invariant	 under	 Lorentz
transformations	because	it	may	be	written	as	a	four-dimensional	dot	product:



Whereas	 the	 components	 of	 other	 four-vectors	 like	 J	 or	 P	 or	 X	 are	 the
scalar	and	vector	parts	with	the	same	sign,	e.g.,	X	=	(x0,	X1,	X2,	X3)	=	(ct,	x,	y,
z),	the	components	of	∇	have	negative	signs	in	front	of	the	spatial	derivatives
as	part	of	 its	definition.	As	a	 result,	 its	 four-dimensional	dot	product	with	J
does	not	have	the	usual	minus	signs	found	in	Lorentz	invariant	dot	products
of	typical	vectors	like	X	or	P.

15.8			The	four-potential	A
Potentials	 are	 introduced	 into	 electrodynamics	 for	 many	 reasons,	 one	 of
which	is	to	facilitate	the	solution	of	Maxwell’s	equations.
Let	 us	 begin	 with	 the	 Maxwell	 equations	 (which	 cannot	 be	 written	 too

often),	in	the	differential	version:

Our	goal	 is	 to	solve	for	E	and	B	given	 the	charges	and	currents	and	 then
find	the	force	on	charges	using	the	Lorentz	force	law.
Notice	that	the	middle	two	equations	do	not	depend	on	ρ	and	j.	There	is	a

way	 to	 parameterize	 E	 and	 B	 so	 that	 these	 two	 equations	 are	 identically
satisfied.	Here	 is	 a	 simpler	 example	 of	 this	 strategy	before	 I	 get	 to	 the	 real
problem.	Suppose	A(t)	and	B(t)	are	two	variables	that	are	required	to	obey



for	all	times.	If	we	parameterize	them	by	an	angle	θ(t)	as

Eqn.	15.111	will	be	identically	satisfied	no	matter	what	θ(t)	is.	If	all	we	had
was	 Eqn	 15.111,	 we	 are	 done.	 But	 we	 still	 have	 Eqn.	 15.112,	 which	 can
restrict	θ(t).	We	stick	our	parameterization	Eqn.	15.113	into	Eqn.	15.112	and
we	find	the	constraint

with	a	solution	θ(t)	=	6t	±	mπ,	where	m	is	any	integer.
Now	for	the	actual	problem.	Here	is	the	parameterization	for	E	and	B	that

makes	the	middle	two	Maxwell	equations	into	identities:

The	vector	potential	A	generates	B	as	its	curl,

very	much	like	the	way	the	scalar	potential	V	gave	us	the	electrostatic	field	E
as	 its	 gradient:	 −	∇V	 =	E.	 In	 the	 time-dependent	 case	 we	 know	E	 is	 not
conservative	and	its	circulation	is	controlled	by	the	changing	magnetic	field.
This	is	incorporated	by	the	inclusion	of	 	in	Eqn.	15.116.
Let	us	see	how	the	parameterization	in	terms	of	V	and	A	renders	the	middle

Maxwell	equations	into	identities.
First	we	see	that

due	to	the	cancellation	of	mixed	derivatives.



Next	 plug	 Eqn.	 15.116	 and	 15.115	 into	 the	 left-hand	 side	 of	 Maxwell
equation	III:

Along	the	way	I	have	used

Whether	 or	 not	 you	 followed	 all	 this,	 remember	 the	 bottom	 line:	 the	 two
Maxwell	 equations	 that	 do	not	 involve	 charges	 and	 currents	 are	 identically
satisfied	if	we	write	E	and	B	 in	 terms	of	 the	scalar	and	vector	potentials	as
follows:

This	is	the	analog	of	setting	 and	B(t)	=	 .	There	we
saw	 that	 θ(t)	 could	 be	 anything	 if	 all	 we	 cared	 about	 was	 A2	 +	 B2	 =	 5.
Likewise	V	and	A	are	arbitrary	as	long	as	we	only	care	about	the	middle	two
Maxwell	 equations,	 unrelated	 to	 charges	 and	 currents.	We	 now	 turn	 to	 the
other	 two	 Maxwell	 equations	 (the	 analog	 of	 A2	 −	 B2	 =	 5cos12t	 that
determined	θ(t))	to	find	the	equations	obeyed	by	V	and	A.
Before	we	 substitute	 Eqns.	 15.126	 and	 15.125	 in	 the	Maxwell	 equations

with	charge	and	current	densities	in	the	right-hand	side,	there	is	one	issue	we
have	to	confront.



15.8.1			Gauge	invariance
Whereas	I	can	walk	into	a	room	with	some	test	charges	and	measure	E	and	B
at	 every	 point,	 this	 is	 not	 so	 for	V	 and	A.	 The	 reason	 is	 that	 they	 are	 not
unique:	 if	 a	 certain	 V	 and	 A	 lead	 to	 an	 E	 and	 B,	 another	 pair	 ( ,	 Ã),
depending	on	an	arbitrary	function	χ,

will	lead	to	the	same	E	and	B.	You	should	verify	this.	The	change	of	V	and	A
by	derivatives	of	χ	is	called	a	gauge	transformation.	The	pairs	(V,	A)	and	( ,
Ã)	 are	 said	 to	 be	 gauge	 equivalent	 or	 the	 gauge	 transforms	 of	 each	 other.
Long	 ago	we	 learned	 that	 the	 potential	V	 is	 defined	 only	 up	 to	 an	 additive
constant	 in	 electrostatics	 and	 gravity.	 Gauge	 invariance	 reflects	 the	 even
greater	 latitude	 of	 the	 potentials	 in	 the	 general	 case	 of	 time-dependent
electromagnetism.
Remember	 how	we	 used	 the	 freedom	 to	 add	 a	 constant	 to	V	 to	 suit	 our

purpose?	For	celestial	problems	we	chose	the	constant	such	that	V(r	→	∞)	=
0.	For	problems	near	the	earth	we	chose	V	to	vanish	at	its	surface	r	=	RE:	V(r
=	RE)	=	0.
Likewise	we	use	gauge	freedom	to	simplify	some	calculations	by	choosing

from	 the	 family	 of	 physically	 equivalent	 V	 and	 A	 one	 representative	 by
imposing	 an	 extra	 condition,	 called	 the	 gauge	 condition,	 on	 them.	 For
example,	we	can	demand	that	we	trade	the	original	A	for	a	gauge	transform	Ã
obeying

This	 is	called	 the	Coulomb	gauge.	 It	 is	 true,	 though	 I	will	not	prove	 it,	 that
any	A	can	be	gauge	transformed	(by	a	judicious	choice	of	χ)	to	Ã	obeying	the
Coulomb	gauge	condition.
The	gauge	we	want	to	use	in	this	discussion	of	relativistic	invariance	is	the

Lorentz	gauge

which	for	use	 in	 the	near	future	I	will	 rewrite	as	follows	(dropping	the	 tilde



since	this	will	be	the	only	gauge	for	A	from	now	on):

With	 this	 condition,	 the	 Maxwell	 equations	 with	 charges	 and	 currents
become	wave	equations	that	determine	(V,	A)	in	terms	of	them.	I	will	derive
one	of	them	and	leave	the	rest	to	you.

15.9			Wave	equation	for	the	four-vector	A
Start	with

and	introduce	the	definition	of	E	in	terms	of	V	and	A

to	obtain

upon	using

At	this	stage,	V	and	A	are	entangled	by	Eqn.	15.134.	Now	remember	that

and



(time	derivative	of	Lorentz	gauge,	Eqn.	15.131).	(15.138)
Put	all	this	into	Eqn.	15.134	and	obtain	an	equation	that	involves	just	V:

Similar	manipulations	with	 the	equation	 for	∇	×	B	will	yield	an	equation
involving	just	A	upon	imposing	the	Lorentz	gauge	condition.
Here	is	the	final	set	of	equations	coming	from	rewriting	the	equations	for	E

and	B	that	involve	ρ	and	j	in	terms	of	V	and	A:

These	 are	 called	 the	 inhomogeneous	wave	 equations	 or	 the	wave	 equations
with	 sources.	 Their	 solutions	 will	 exhibit	 the	 retardation	 demanded	 by
relativity:	A(t,	r)	will	receive	contributions	from	J(t′,	r′)	where	t′	=	t	−	|r−r′|/c.
These	 equations	 were	 written	 down	 well	 before	 Einstein.	 What	 was

realized	after	him	was	that	V	and	A	combine	to	form	the	four-potential

and	 that	 Eqns.	 15.140	 and	 15.141	 could	 be	 combined	 into	 a	 single	 wave
equation	relating	the	four-vector	A	to	the	four-vector	J.
To	verify	this
(i)	divide	the	first	equation	for	V	by	c;
(ii)	remember	ρc	is	the	0-th	component	of	J,	and	V/c	is	the	0-th	component	of	A;	and

(iii)	finally,	invoke	1/(ε0c
2)	=	μ0.

This	will	lead	to

with	A	defined	as	in	Eqn.	15.142.	We	may	rewrite	this	equation	as



This	equation	implies	that	A	=	(V,	A)	is	a	four-vector.	The	reason	is	that	the
right-hand	side	is	the	four-vector	J	and	the	combination	of	derivatives	on	the
left-hand	 side	 (given	 by	 the	 dot	 product	 of	 ∇	 with	 ∇)	 is	 invariant	 under
Lorentz	transformations.	So	A	must	transform	like	J,	which	is	a	four-vector.
The	 key	 to	 Lorentz	 invariance	 is	 the	 choice	 of	 the	 Lorentz	 gauge,

introduced	earlier	in	Eqn.	15.130,

because	it	too	may	be	rewritten	in	four-dimensional	notation	as

because

As	with	∇	·	J,	there	are	no	minus	signs	in	the	dot	product	since	∇	contains
them	in	its	definition.
Thus	all	 the	key	equations	can	be	written	 in	 terms	of	 four-vectors	and	all

equations	have	the	same	form	in	all	Lorentz	frames	with	the	same	velocity	c
appearing.	 The	 key	 point	 is	 that	 this	 did	 not	 call	 for	 changing	 any	 of	 pre-
Einstein	electrodynamics,	only	re-expressing	it	in	terms	of	four-vectors.
When	Maxwell	came	up	with	the	wave	equation	a	question	that	arose	was

this:	“For	whom	is	the	wave	velocity	c?”	Generally	the	velocity	of	a	wave	is
with	 respect	 to	 the	 medium	 that	 supports	 it.	 Assuming	 that	 light	 was
supported	by	a	medium	called	ether,	it	was	assumed	that	the	value	c	would	be
measured	only	by	an	observer	at	rest	with	respect	to	the	ether.	It	then	seemed
obvious,	to	people	thinking	in	terms	of	the	Galilean	transformation

which	implied	the	velocity	transformation	law

that	the	velocity	of	light	would	be	different	from	c	for	any	observer	moving
relative	 to	 the	 ether.	 One	 could	 hope	 to	 find	 one’s	 velocity	 relative	 to	 this



ether	by	measuring	the	velocity	of	light	and	subtracting	c.
Of	course,	the	same	light	velocity	c	was	obtained	no	matter	when	or	where

or	 by	whom	 it	was	measured.	 This	 led	 to	 some	 real	 confusion	 till	 Einstein
finally	 arrived	 on	 the	 scene	 and	 banished	 ether	 as	 an	 unnecessary	 concept
(which	never	had	 to	be	 invoked	 in	deriving	 the	wave	equation).	 If	one	used
the	 Lorentz	 transformation	 to	 change	 space-time	 coordinates,	 the	 wave
equation	would	remain	invariant	and	the	same	value	of	c	would	appear	for	all
inertial	observers.
Before	Einstein,	Hendrik	A.	Lorentz	(1853–1928),	Joseph	Larmor	(1857–

1942),	and	others	had	suggested	that	motion	against	the	ether	causes	clocks	to
slow	 and	 rods	 to	 shrink	 in	 exactly	 the	 manner	 that	 Einstein	 later	 deduced.
Henri	Poincare	(1854–1912)	even	wrote	down	the	Lorentz	transformations	in
the	modern	form	and	showed	that	it	preserved	the	form	of	the	wave	equation
for	light.	However,	in	the	view	of	Lorentz	and	others,	length	contraction	and
time	dilatation	were	real	effects	caused	by	absolute	motion	with	respect	to	the
all-pervasive	medium,	 the	ether.	 It	was	Einstein	who	explained	these	effects
were	relative	and	required	by	relativistic	invariance.

15.9.1			Why	work	with	V	and	A?
Why	bother	with	A	=	(V/c,A),	given	that	they	are	not	unique	and	need	to	be
constrained	by	an	arbitrary	gauge	condition?	For	one	thing,	A	is	a	four-vector
and	we	could	cast	 the	Maxwell	equations	 in	 terms	of	 it	 to	demonstrate	 their
Lorentz	 invariance.	 Why	 not	 start	 with	 the	 Maxwell	 equations	 and	 the
Lorentz	 force	 law	 in	 terms	 of	 E	 and	 B	 and	 show	 that	 they	 are	 Lorentz
invariant?	The	reason	is	that	E	and	B	do	not	become	parts	of	four-vectors,	but
parts	of	a	tensor,	an	idea	that	may	not	be	familiar	to	you.	If	you	do	not	want
to	prove	Lorentz	 invariance	you	are	 indeed	free	 to	avoid	V	and	A	and	work
with	E	and	B.
When	we	come	to	quantum	theory	the	situation	changes.	We	find	we	have

no	 choice	 but	 to	 work	 with	 V	 and	A.	 There	 is	 no	 known	 formalism	 that
directly	works	with	E	and	B	fields.
An	 experiment	 suggested	 by	 the	 work	 of	 Yakir	 Aharanov	 (1932–)	 and

David	Bohm	(1917–1992)	provides	a	dramatic	illustration	of	why	we	need	to
work	with	A.	Imagine	particles	moving	in	a	plane,	say	the	plane	of	the	page,
pierced	perpendicularly	by	an	 infinitely	 long	 impenetrable	solenoid	carrying
some	magnetic	flux.	Outside	the	solenoid	B	=	0	but	A	≠	0.	(In	other	words,	A
is	non-zero	 inside	and	outside	 the	solenoid,	but	 it	has	a	curl	only	 inside	 the
solenoid.)	As	 the	 particles	 are	 forbidden	 from	going	 into	 the	 solenoid,	 they
should	not	be	sensitive	to	the	flux	inside.	Yet	they	are!	Without	ever	entering
the	solenoid,	moving	only	in	an	area	where	B	=	0,	they	are	able	to	sense	the
flux	 inside	 the	 solenoid.	Understanding	 this	 experiment	 requires	 a	 quantum
mechanical	treatment	that	unavoidably	invokes	A.



Finally,	 as	 I	mentioned	earlier,	 the	 theories	of	 electromagnetic,	weak	and
strong	 interactions	 are	 all	 gauge	 theories.	 This	 is	 one	 reason	 I	 dragged	 you
through	this.

15.10			The	electromagnetic	tensor	
Let	us	return	to	classical	electrodynamics.	Suppose	you	do	not	want	to	work
with	 the	 four-potential	 A	 and	 prefer	 E	 and	 B	 fields.	 How	 is	 relativistic
invariance	of	 electrodynamics	demonstrated	 in	 terms	of	E	 and	B	 if	 they	do
not	team	up	with	some	other	scalars	to	form	four-vectors	and	instead	their	six-
components	 combine	 to	 form	 a	 tensor?	To	 answer	 this	we	 have	 to	 bite	 the
bullet	and	get	acquainted	with	tensors.

15.10.1			Tensors

Recall	that	a	scalar	in	three	dimensions	has	just	one	(30)	component.	A	vector
V	has	31	=	3	components,	denoted	as	Vx,	Vy,	Vz	or	V1,	V2,	V3.	A	second	rank
tensor	T,	which	is	the	only	tensor	I	will	discuss,	has	32	=	9	components.
What	are	the	components	of	T	and	how	do	they	transform	under	rotations?
As	you	can	guess,	the	components	of	T	are	labeled	either	T11,	T12,	.	.	.	T33

or	 Txx,	 Txy	 .	 .	 .	 Tzz.	 Under	 a	 rotation	 of	 axes	 the	 9	 components	 of	 T	 will
transform	into	linear	combinations	of	each	other,	analogous	to	the	way	the	3
components	 of	 a	 vector	 do.	What	 are	 the	 transformation	 rules?	One	way	 to
find	them	is	to	make	up	a	tensor	by	gluing	together	two	vectors	V	=	(Vx,	Vy,
Vz)	and	W	=	(Wx,	Wy,	Wz)	as	follows:

The	components	of	the	rotated	tensor	are	then	found	from	the	components
of	 the	rotated	vectors.	For	example,	under	a	 rotation	by	θ	 around	 the	z-axis
we	know



and	similarly	for	W.	Thus	we	know	that

and	 so	on.	We	now	demand	 that	 these	 transformation	 rules	 are	 true	 for	 all
second	rank	tensors,	even	if	they	were	not	obtained	by	fusing	two	vectors.	For
example,

is	true	for	all	tensors	for	rotations	around	the	z-axis.
Although	the	nine	components	rotate	into	linear	combinations	of	each	other

as	indicated	above,	some	linear	combinations	of	them	may	form	smaller	sets
that	 rotate	 into	each	other.	Here	 is	an	example	you	will	 recognize.	Consider
the	combination

when	T	is	made	out	of	V	and	W.	You	know	that	this	will	go	into	itself	under
rotations,	i.e.,

because	 the	sums	above	are	 just	 the	dot	products	obeying	V	 ·W	=	V′	 ·	W′.
But	 the	 result	 holds	 even	 if	T	 is	 not	 composed	 of	 two	 vectors,	 because	 the
answer	 only	 depends	 on	 the	 transformation	 rules	 for	 T,	 which	 apply	 to	 all
tensors.	I	urge	you	to	verify	this	from	Eqns.	15.158	to	15.164	for	the	special



case	of	z-rotations.
We	 learn	 another	 very	 deep	 result	 from	 the	 above:	 if	 you	 set	 two	 tensor

indices	equal	and	sum	over	them,	the	tensor	drops	down	in	rank	by	two.
Thus	Tij	in	general	is	a	second	rank	tensor	but

has	rank	2−2	=	0,	and	is	hence	a	scalar.
From	 the	 components	 of	 T	 we	 can	 also	 form	 the	 following	 linear

combinations	 to	 produce	 an	 antisymmetric	 tensor	 ,	 where	 components
change	sign	under	exchange	of	indices

They	are	generated	from	Tij	as	follows:

when	A	is	composed	of	V	and	W.
Components	like	 xx	vanish	because	the	candidate	 xx	=	VxWx	−	WxVx	≡	0.

Finally	components	 yx,	 zy,	and	 xz	are	simply	negatives	of	 xy,	 yz,	and	
zx	and	hence	not	independent.
So	an	antisymmetric	tensor	in	three	dimensions	has	only	three	independent

components.	But	so	does	a	vector	 in	three	dimensions!	Indeed	we	recognize
the	three	combinations	Eqns.	15.171	to	15.173	as	the	components	of	the	cross
product	V	×	W:

Not	 surprisingly	 the	 three	 components	 of	 A	 transform	 into	 linear
combinations	of	each	other	under	rotations.	(After	all	they	are	the	components
of	the	vector	V	×	W.)
It	 is	 only	 in	 three	dimensions	 that	we	have	 this	 luxury	of	 two	 equivalent



descriptions:	use	two	(necessarily)	unequal	indices	to	label	the	components	an
antisymmetric	 tensor	 (e.g.,	 xy)	 or	 use	 the	 unique	 third	 index	 (z)	 to	 label	 a
vector	component	(V	×	W)z.
The	torque	τ	=	r	×	F	is	an	example	of	an	antisymmetric	second	rank	tensor,

which	has	 just	 the	right	number	of	components	 to	be	a	vector	 in	d	=	3.	The
same	goes	for	the	angular	momentum	L	=	r	×	p.
The	curl	of	 the	vector	potential	 is	 also	an	antisymmetric	 tensor	of	 rank	2

but	with	a	twist:	the	first	factor	in	the	cross	product	is	not	an	ordinary	vector
but	a	set	of	derivatives:

Once	 again,	 not	 every	 antisymmetric	 tensor	 has	 to	 be	 formed	 from	 two
vectors	V	and	W.	It	is	defined	simply	by	its	antisymmetry	and	transformation
properties.
In	 three	 dimensions	 we	 can	 think	 of	 the	 curl	 either	 as	 a	 vector	 or	 an

antisymmetric	tensor.	But	if	we	are	to	generalize	it	to	the	four	dimensions	of
space-time,	the	curl	should	be	viewed	as	an	antisymmetric	tensor,	as	we	shall
see	presently.

15.10.2			The	electromagnetic	field	tensor	
A	general	four-tensor	Tμν	will	have	16	components.	Its	response	to	a	Lorentz
transformation	 follows	 from	 the	 way	 four-vectors	 transform.	 Consider	 first
the	special	case	where	T	is	composed	of	two	four-vectors	V	and	W:

In	this	case

and	we	know	how	V′	and	W′	are	related	to	V	and	W.	For	motion	along	the	1-
direction,



As	with	rotations,	we	demand	that	all	tensors	transform	this	way,	whether
or	not	they	were	constructed	from	two	vectors.
The	antisymmetric	tensor

will	 have	6	 independent	 components,	which	 transform	 into	 combinations	of
each	other.	(This	is	another	result	I	state	but	do	not	prove.)
The	 antisymmetric	 tensor	 of	 interest	 to	 us	 is	 ,	 the	electromagnetic	 field

tensor.	 In	analogy	with	B	=	∇	×	A	 (Eqn.	15.179),	 	 is	defined	as	 the	 four-
dimensional	curl	of	the	four-vector	potential	A:

Unlike	other	 three-vectors	 like	j	or	p	 that	combine	with	scalars	 like	cρ	or
E/c	 to	 form	 four-vectors,	E	 and	B	 combine	with	 each	other	 to	 form	 the	 six
independent	 components	 of	 the	 antisymmetric	 Lorentz	 tensor	 .	 They
transform	into	combinations	of	each	other	under	Lorentz	transformations.
Here	 is	 a	 trivial	 example.	 In	one-space	and	one-time	dimension,	 the	only



non-zero	component	is	 01	=	−	 10	=	−	Ex/c.	(There	can	be	no	magnetic	field
in	 one-space	 dimension.)	Being	 the	 sole	 component,	 it	 has	 to	 go	 into	 itself
under	a	Lorentz	transformation.	Let	us	verify	this	using	Eqn.	15.185:

using	 01	=	−	 10.
Equations	15.116	and	15.115,

which	expressed	E	and	B	in	terms	of	V	and	A	and	ensured	that	the	Maxwell
equations	not	involving	charges	and	currents	are	identically	satisfied,	are	now
replaced	by	a	single	tensor	equation	15.189:

When	 the	 other	 Maxwell	 equations	 involving	 charges	 and	 currents	 are
written	 in	 terms	 of	 A,	 they	 relate	 it	 to	 J	 in	 a	 manner	 we	 have	 already
encountered:

The	four-force	F	on	a	charge	q	may	be	written	in	terms	of	 	and	the	four-
velocity

as	follows:

This	gives,	in	one	stroke,	the	Lorentz	force	and	the	power	for	μ	=	x,	y,	z	and	μ



=	0	respectively.	I	leave	the	verification	to	you.
On	 the	 left	 side	of	Eqn.	15.203	we	have	a	one-index	object,	a	vector,	 the

four-force	 F.	 On	 the	 right	 we	 have	 a	 potentially	 three-index	 object:	 two
indices	from	 μν	and	one	from	Vν.	However,	the	index	ν	drops	out	from	both
because	 it	 is	 repeated	 and	 summed	 over	 (with	 the	 usual	 sign	 difference
between	the	0–0	and	space-space	terms	required	in	any	four-dimensional	dot
product).	 Thus	 the	 right-hand	 side	 also	 transforms	 like	 a	 vector.	A	 relation
equating	 two	 vectors	 will	 of	 course	 have	 the	 same	 form	 after	 a	 Lorentz
transformation	since	both	sides	respond	the	same	way.
Earlier	I	asked	according	to	which	observer	is	the	velocity	v	in	v	×	B	to	be

measured.	The	answer,	we	see	above,	is	“according	to	any	inertial	observer.”
We	can	rewrite	Eqn.	15.203	as

where	 the	 dot	 product	 is	 again	 a	 sum	 over	 a	 repeated	 index	with	 the	 usual
minus	 signs.	 If	 	 had	 been	 a	 vector,	 the	 dot	 product	 with	 V	 would	 have
yielded	 a	 scalar.	 However,	 	 is	 a	 tensor	with	 two	 indices	 and	 only	 one	 of
them	 is	 neutralized	 in	 the	 dot	 product	with	V,	while	 the	 other	 survives	 and
matches	the	index	of	F.
We	 begin	 to	 understand	 why	 the	 Lorentz	 force	 does	 not	 contain	 higher

powers	of	velocity.	The	only	velocity	we	can	use	is	the	four-velocity	and	its
square	 is	c2.	 So	 functions	 of	V	 ·V	 that	 could	modify	 the	 answer	 are	 trivial.
Potential	corrections	linear	in	 	and	cubic	in	V,	like	(V	·	 	·	V)	V	(where	the
two	dot	products	on	either	side	of	 	kill	both	its	 indices),	vanish	identically
because	 	 is	 antisymmetric	 under	 the	 exchange	 μ	 ↔	 ν	 while	 VμVν	 is
symmetric.
Here	is	all	of	electrodynamics	in	a	nutshell	(in	the	Lorentz	gauge):

Writing	 	 as	 the	 four-dimensional	 curl	 of	 A	 reduces	 half	 the	 Maxwell
equations	 to	 identities.	 The	 other	 two	 determine	 A	 in	 terms	 of	 J	 via	 Eqn.
15.205	in	the	Lorentz	gauge.
Remember	the	procedure	for	using	these	equations:
•	Given	J,	solve	for	A	(in	the	Lorentz	gauge)	from	Eqn.	15.205.	(I	have	not	told	you	how	to	handle



this	purely	mathematical	problem.)
•	Work	out	 	as	the	four-dimensional	curl	of	the	four-potential	A	as	per	Eqn.	15.207.
•	Use	 	in	the	Lorentz	force	law	Eqn.	15.208	to	find	the	fate	of	any	charge	q.



CHAPTER	16

Optics	I:	Geometric	Optics	Revisited

We	 just	 finished	 with	 Maxwell’s	 theory	 of	 light.	 We	 took	 Ampère’s	 law,
Faraday’s	 law,	 displacement	 current,	 and	 so	 on	 and	 produced	 the	 dramatic
result:	 electromagnetic	 waves	 can	 exist	 on	 their	 own,	 travel	 away	 from
charges	 and	 currents,	 and	 actually	 describe	 light.	 Light	 is	 an	 oscillatory
phenomenon,	but	what	is	oscillating	is	not	a	medium	like	a	string	or	water	on
a	 lake,	but	electric	and	magnetic	 fields.	The	 field	 is	a	condition	at	a	certain
point	 that	 you	 can	 determine	 with	 test	 charges.	 You	 sit	 at	 that	 point	 and
measure	 it,	 and	 you	 find	 that	 sometimes	 the	 field	 points	 up,	 sometimes	 the
field	points	down,	sometimes	it	is	strong,	and	sometimes	it	is	weak.	It’s	that
condition	in	space	that	travels	in	an	electromagnetic	wave.

16.1			Geometric	or	ray	optics
The	 preceding	 point	 of	 view	 came	 near	 the	 second	 half	 of	 the	 nineteenth
century,	after	many	centuries	of	studying	light.	What	I’m	going	to	do	next	is
present	 a	 simpler	 version	 of	 optics,	 discovered	 long	 before	 Maxwell.	 It	 is
relevant	 when	 the	 wavelength	 of	 light	 is	 much	 smaller	 than	 the	 scale	 of
observation.	In	daily	life,	for	example,	we	are	thinking	in	terms	of	centimeters
and	meters,	whereas	the	wavelength	of	light	is	of	the	order	5	·	10−7	m.	In	this
situation	 you	 may	 forget	 about	 Maxwell’s	 waves	 and	 use	 this	 simplified
theory	called	geometric	optics,	very	much	the	way	you	can	forget	relativistic
mechanics	 and	 use	 its	 Newtonian	 version	 for	 small	 velocities,	 .	 In
geometric	optics	light	goes	in	a	straight	line	from	start	to	finish,	say	from	the
source	to	your	eye,	unless	it	hits	something.	This	is	why	it	is	also	called	ray
optics.	If	you	apply	Maxwell’s	theory	to	a	situation	where	the	wavelength	is
very	 small	 you	 arrive	 at	 this	 ray	 approximation.	 (We	 will	 not	 derive	 this
approximation.)	 When	 I	 say	 “very	 small,”	 you	 always	 have	 to	 ask,	 “Very
small	 compared	 to	 what?”	 Do	 you	 understand	 that?	 Just	 saying	 that	 the
wavelength	 is	 small	 has	 no	 meaning.	 I	 can	 pick	 units	 in	 which	 the	 same
wavelength	is	1	million	or	1	over	a	million.	Small	and	large	can	be	changed
by	change	of	units.
What	you	need	is	another	relevant	length	in	play,	to	serve	as	the	reference

for	λ.	This	is	illustrated	in	Figure	16.1.	I	take	an	opaque	partition	with	a	hole.
On	one	 side	 I	place	a	 source	of	 light	 and	on	 the	other	 I	place	a	 screen	at	 a
distance	L.	The	light	from	the	source,	assumed	to	be	at	a	distance	 	d,	goes



through	the	hole	and	forms	an	image	on	the	screen.	Now	I	can	tell	you	what	I
mean	by	 saying	 the	wavelength	λ	 is	 small	 or	 large:	 geometric	 optics	works
only	if	 	1.	Let	us	keep	L/d	fixed	so	that	the	condition	becomes	 	1.	If
λ	 	 d	 we	may	 use	 geometric	 or	 ray	 optics.	 In	 this	 limit	 the	 image	 on	 the
screen	is	found	by	drawing	straight	lines,	as	shown	in	the	upper	half	of	Figure
16.1.	The	screen	behind	the	hole	is	illuminated	in	a	region	that	has	the	same
shape	and	size	as	the	hole.
If	 λ	 	d	 is	 not	 satisfied,	 the	 light	 fans	 out	 of	 the	 hole	 and	 illuminates	 a

region	on	the	screen	much	bigger	than	the	geometric	shadow.	The	smaller	the
hole,	 the	 more	 the	 light	 fans	 out.	 The	 degree	 of	 brightness	 does	 not	 fall
monotonically	 as	 we	 move	 off	 center	 but	 oscillates.	 The	 oscillatory	 curve
depicts	the	intensity	I	or	brightness	as	we	move	off	center.	Though	geometric
optics	cannot	describe	all	this,	it	reigned	for	centuries	because	its	limitations
became	 apparent	 only	 for	 apertures	 small	 comparable	 to	 the	wavelength	 of
visible	light	λ	≃	5	·	10−7	m.

Figure	16.1			Top:	geometric	optics.	The	beam	of	parallel	rays	crosses	a	hole	of	dimension	d	 	λ	and
forms	an	image	of	the	same	shape	and	size	as	the	hole.	(We	are	keeping	L	/	d	fixed.)	Bottom:	When	a
plane	wave	(whose	crests	and	troughs	are	shown	by	solid	and	broken	lines)	hits	a	hole	with	d	 	λ,	it
fans	out	to	illuminate	a	region	of	the	screen	that	is	much	bigger	than	the	hole.	The	oscillatory	curve
depicts	I,	the	intensity	or	brightness,	as	we	move	off	center.

Why	 did	 I	 not	 start	 with	 geometric	 optics	 and	 work	 my	 way	 up,
culminating	in	the	final	description	of	light	due	to	Maxwell,	instead	of	going
back	in	time	to	geometric	optics?	There	are	many	reasons.	The	first	is	that	this
course	is	focused	on	electromagnetic	theory	and	light	came	out	as	a	surprise
at	 the	end.	The	next	 is	 that	 I	do	not	plan	 to	 simply	go	over	all	 the	 ideas	of
geometric	 optics.	 Instead	 I	 am	 going	 to	 show	 you	 a	 single	 overarching
principle	 from	 which	 all	 those	 seemingly	 unrelated	 results	 can	 be	 derived.
Finally,	Maxwell’s	theory	isn’t	the	last	word	on	light	either.	It	fails	when	you
consider	 light	 of	 very	 low	 intensity.	 If	 light	 becomes	 really	 dim	 you	might
think	 that	 all	 that	 will	 happen	 is	 that	 the	 magnitudes	 of	 E	 and	 B	 (whose
squares	measure	intensity	I)	become	smaller	and	smaller.	But	something	else



happens.	 You	 find	 that	 light	 energy	 is	 not	 coming	 in	 continuously	 like	 it
should	in	a	wave,	but	in	discrete	packets.	These	are	called	photons.	You	will
not	be	aware	of	photons	 if	 the	 light	 is	very	 intense	because	 there	will	be	so
many	of	them	coming	at	you,	just	as	you	are	unaware	that	water	is	made	of
molecules	when	you	take	a	shower	or	when	you	look	at	the	ocean	and	study
its	 waves.	 You	 don’t	 see	 the	 molecules	 and	 you	 don’t	 need	 them	 for
describing	 ocean	 waves.	 Likewise,	 you	 do	 not	 need	 to	 deal	 with	 photons
unless	 the	 light	 is	 very	 feeble.	But	 such	 is	 the	 condition	 in	 the	microscopic
world,	and	we	will	talk	about	photons	at	length	as	part	of	quantum	mechanics.
In	 short,	 having	 dealt	 with	 Maxwell,	 we	 will	 first	 go	 back	 in	 time	 to

geometric	optics	and	then	forward	to	the	quantum	theory	of	photons.

16.2			Brief	history	of	c
What	did	people	of	antiquity	know	about	light?	After	some	false	starts,	they
figured	out	that	anything	bright	or	shiny	emits	something	called	light	and	we
can	 see	 it.	 It	 seemed	 to	 travel	 in	 a	 straight	 line,	 and,	 for	 the	 longest	 time,
people	 did	 not	 know	 how	 fast	 it	 traveled.	 It	 looked	 like	 it	 traveled
instantaneously	from	source	to	sensor,	because	observers	couldn’t	measure	its
travel	 time	 in	daily	 life.	This	 is	 unlike	 sound.	You	know	sound	 travels	 at	 a
finite	speed,	because	if	you	yell	at	a	mountain,	it	yells	back	with	a	delay	you
can	 time	even	with	your	pulse.	From	 the	delay	you	can	 find	 the	velocity	of
sound.
Galileo	tried	to	find	the	velocity	of	light	in	a	similar	manner.	He	asked	one

of	 his	 buddies	 to	 stand	 on	 top	 of	 one	 mountain,	 while	 he	 stood	 on	 top	 of
another	mountain	a	mile	away.	Each	had	a	lantern	with	a	shutter.	First	Galileo
would	 open	 his	 shutter,	 and	 the	 instant	 his	 friend	 saw	 the	 flash	 of	 light,	 he
would	open	his	 shutter	 to	signal	back	 to	Galileo,	who	was	 timing	 the	 round
trip.	He	soon	realized	 that	he	was	not	measuring	 the	 time	for	 the	 round	 trip
but	the	sum	of	their	reaction	times	because	he	observed	the	same	delay	when
his	friend	was	very	close.	It	was	clear	that	to	measure	the	speed	of	light,	if	it
were	finite,	would	require	a	very	long	distance	of	travel.	Given	the	accuracy
of	time	measurement	in	those	days,	we	can	see	that	even	the	distance	equal	to
the	 circumference	 of	 the	 earth	 would	 not	 have	 been	 enough	 because	 light
would	take	only	about	 -th	of	a	second	to	traverse	that.
The	 first	 successful	 scheme	 for	 measuring	 the	 velocity	 of	 light	 came	 in

1676	 from	 Olaf	 Römer	 (1644–1710).	 His	 brilliant	 strategy	 is	 depicted	 in
Figure	 16.2.	You	 see	 the	 earth	 and	 Jupiter,	 initially	 located	 at	E1	 and	 J1	 in
their	 journey	 around	 the	 sun	 (S).	 Jupiter	 has	 a	 moon	 called	 Io,	 which
Newtonian	physics	assures	us	will	orbit	with	a	definite	time	period	T.	Every
time	 he	 saw	 Io	 go	 over	 a	 certain	 position	 (involving	 an	 eclipse)	 relative	 to
Jupiter,	 Römer	 noted	 the	 time	 in	 his	 lab	 book.	 Let	 me	 call	 this	 notation	 a



pulse,	 as	 though	 Io	 were	 visible	 only	 when	 it	 was	 at	 this	 specific	 location
relative	to	Jupiter.	The	first	pulse	(shown	as	a	solid	line	in	the	inset)	reaches
the	earth	when	it	is	in	position	E1.	Let	us	call	that	time	t	=	0.	If	nothing	but	Io
moved,	the	subsequent	pulses	should	arrive	at	 t	=	T,	 t	=	2T,	and	so	forth,	as
shown	 by	more	 solid	 lines.	 But	 Römer	 observed	 that	 as	 the	 earth	made	 its
journey	 around	 the	 sun,	 the	 actual	 pulses	 were	 delayed	 relative	 to	 the
expectations.	The	spacing	between	the	expected	and	actual	pulses,	shown	by
dotted	 lines,	 grew.	 (The	 growth	 is	 exaggerated	 in	 the	 figure.)	Römer	 found
that	 when	 the	 earth	 had	 reached	 the	 diametrically	 opposite	 point	 E2	 six
months	 later,	 the	delay	was	about	22	minutes.	Let	us	assume	Jupiter	hardly
moves	during	this	period,	though	Römer	could	easily	account	for	that	motion.
He	 attributed	 the	 22-minute	 delay	 to	 the	 extra	 time	 light	 takes	 to	 cross	 the
diameter	of	the	earth’s	orbit.	Using	the	best	estimate	for	the	diameter	(close	to
200	million	miles)	he	obtained	a	velocity	of	roughly	200,000	km/s,	which	is
2/3	that	of	the	correct	answer	of	300,000	km/s.	(Had	he	used	the	correct	delay
of	 about	 16.7	 minutes,	 he	 would	 have	 come	 a	 lot	 closer.)	 His	 theory	 was
initially	 greeted	with	 disbelief	 but	 his	 stunned	 colleagues	 saw	 he	was	 right
when	Io	moved	according	to	his	predictions.	Nonetheless,	it	took	a	while	for
his	 result	 to	 be	 generally	 accepted.	 Though	 Römer	 was	 off	 by	 some	 30
percent	in	the	value	of	c,	his	was	a	spectacular	achievement	given	that	before
he	came	along	people	had	no	clue	about	the	speed	of	light,	not	even	whether
it	 was	 finite.	 After	 him,	 people	 started	 doing	 laboratory	 experiments	 to
measure	the	velocity	of	light,	knowing	its	approximate	value.

Figure	16.2			Römer’s	experiment.	The	first	pulse	of	light	from	Jupiter’s	moon	Io	(when	it	assumes	a
specific	position	in	its	orbit)	arrives	at	earth	when	it	is	at	E1	and	Jupiter	is	at	J1.	This	pulse	is	shown	by
the	very	first	solid	line	at	t	=	0	in	the	inset	at	the	bottom.	The	next	pulse	should	arrive	after	one	time
period	T,	but	it	is	delayed	and	shown	as	the	dotted	line.	The	delay	between	the	expected	and	actual
signals,	exaggerated	for	clarity,	keeps	increasing	and	reaches	a	maximum	of	about	22	minutes	after	six
months,	when	the	earth	is	at	the	diametrically	opposite	point	E2.	(The	motion	of	Jupiter	to	J2	will	be
ignored	in	our	discussion.)	The	delay	was	correctly	attributed	by	Römer	to	the	extra	time	taken	to
traverse	the	diameter	of	the	earth’s	orbit.



16.3			Some	highlights	of	geometric	optics
As	mentioned	 earlier,	my	 intent	 is	 not	 to	 discuss	 in	 depth	 all	 the	 results	 of
geometric	optics,	but	to	introduce	you	to	a	principle	from	which	all	the	results
of	geometric	or	ray	optics	follow.	Though	I	will	give	only	a	few	illustrative
examples,	 you	 may	 rest	 assured	 that	 every	 result	 of	 geometric	 optics
involving	mirrors	and	lenses	may	be	deduced	from	this	single	principle.

Figure	16.3			Geometric	optics	description	of	(a)	reflection,	(b)	refraction	(Snell’s	law),	(c)	focusing,
and	(d)	image	formation	by	a	mirror.

Here	are	the	results	that	I	will	derive	to	illustrate	the	point.	Look	at	the	four
parts	of	Figure	16.3.
•	(a)	When	light	bounces	off	a	plane	mirror,	i	=	r,	where	i	and	r	are	the	angles	of	incidence	and
reflection	measured	from	the	normal.	I	will	refer	to	this	as	the”i	=	r”	law,	though	the	actual	angles
may	carry	other	names	like	α	or	β.
•	(b)	When	light	goes	from	a	medium	with	refractive	index	n1	and	velocity	c/n1	to	a	medium	with
refractive	index	n2	and	velocity	c/n2,	the	angles	of	incidence	and	refraction	obey	Snell’s	law:

Thus	when	light	goes	from	a	rare	medium	(small	n)	to	a	dense	medium	(large	n),	it	will	bend	closer	to
the	normal	to	the	interface.	If	you	run	the	ray	backward,	from	the	dense	medium	to	the	rare	medium,
it	will	bend	further	away	from	the	normal.	It	is	understood	that	in	addition	to	the	refracted	ray,	there
is	in	general	a	reflected	ray	obeying	i	=	r.
•	(c)	If	a	parallel	beam	of	light	coming	from	infinity	or	from	far	(what	does	far	mean	in	this	context?)
is	incident	on	a	parabolic	mirror	along	its	symmetry	axis,	the	rays	converge	at	the	focal	point	F	at	a
distance	f	measured	from	the	middle	of	the	mirror.	Every	ray	parallel	to	the	axis	goes	through	the
focal	point.	Your	TV	dish	receives	the	parallel	beam	from	the	satellite	and	gathers	it	all	at	the	focal
point,	where	it	is	picked	up	by	the	receiver.	If	you	reverse	the	rays,	you	have	a	car	headlight	with	the
bulb	at	F	emitting	rays	that	hit	the	mirror	at	several	angles	and	emerge	as	a	parallel	beam	along	the
symmetry	axis.
•	(d)	If	the	source	of	light,	the	object,	were	not	the	point	at	infinity,	but	an	upright	arrow	of	height	h0
a	finite	distance	u	away,	the	location	v	and	height	hi	of	the	image	are	found	as	follows,	in	the	simplest
case.	From	the	tip	of	the	arrow	you	draw	a	line	parallel	to	the	axis	toward	the	mirror.	It	gets	reflected



and	goes	through	the	focal	point.	Then	you	draw	a	line	from	the	tip	through	the	focal	point,	and	that
hits	the	mirror	and	comes	out	parallel	to	the	axis.	The	crossing	point	of	these	two	reflected	rays	is
where	the	image	of	the	tip	of	the	arrow	lies.

The	relation	of	the	various	distances	is

What	I	call	v	and	u,	others	may	call	i	and	o,	for	image	and	object.
•	(e)	A	similar	formula	holds	for	lenses.	Consider	for	example	a	convex	lens	or	focusing	lens,	which
is	a	piece	of	glass	with	the	property	that	when	you	shine	rays	of	light	parallel	to	the	axis	from	one
side,	they	all	meet	at	the	focal	point	a	distance	f	away	on	the	other	side	(not	shown	in	the	figure
because	we	will	revisit	it	later).	If	you	have	an	object	on	one	side	a	distance	u	from	the	lens,	the
image	will	be	on	the	other	side	at	a	distance	v	assuming	u	>	f.	The	image	will	be	upside	down	and	the
various	distances	will	obey	the	same	Eqn.	16.2.
Of	course,	in	more	complicated	cases	some	of	these	lengths,	say	f	or	v,	could	be	negative,	the

image	upright	and	virtual,	etc.

Now	for	the	single	unifying	principle	from	which	these	assorted	facts	can
all	be	derived.	It	is	called	Fermat’s	principle	of	least	time	due	to	none	other
than	 Pierre	 Fermat	 (1601–1665),	 who	 made	 the	 famous	 conjecture	 (only
recently	proven	by	Andrew	Wiles)	about	the	non-existence	of	integer-valued
solutions	to	xn	+	yn	=	zn	for	n>	2.	His	principle	says:

Light	will	go	from	start	to	finish	on	a	path	that	takes	the	least	amount	of	time.
I	hope	you	will	share	my	delight	in	deriving	so	many	diverse	results	from

this	single	principle,	in	not	having	to	carry	all	that	miscellaneous	baggage	in
your	head.	Let	us	start	applying	the	principle.

16.4			The	law	of	reflection	from	Fermat’s	principle
Let	us	 say	 I	 am	at	B	 and	you	are	 at	A	 in	Figure	16.4.	You	 send	me	a	 light
signal.	What	 path	 will	 it	 take?	What	 is	 the	 path	 of	 least	 time?	 Everybody
knows	it	is	a	straight	line.	No	point	going	any	other	way.	So	that	tells	you	that
light	 travels	 in	 straight	 lines	 when	 there’s	 no	 other	 obstacle	 because	 the
straight	line	is	the	shortest	path	between	A	and	B.
Next	I	want	the	light	to	hit	the	mirror	and	then	come	to	me.	It	is	like	a	race

where	 the	 racers	 have	 to	 leave	 A,	 touch	 the	 wall	 (mirror),	 and	 reach	 B.
Whoever	 gets	 to	 B	 first	 wins.	 Now	 there	 are	 different	 tactics	 open	 to	 the
racers.	Some	may	meander	like	crazy	as	they	head	for	the	wall.	These	are	sure
losers.	We	ignore	them	for	it	is	obviously	best	to	go	on	a	straight	line	to	the
wall.	 Even	 then	 there	 remains	 a	 question:	 where	 to	 touch	 the	 wall?	 One



person	may	say,	“Look,	I	was	told	to	touch	the	wall,	so	I’m	going	to	get	that
out	of	the	way	first.	I’m	going	to	run	straight	to	the	wall,	touch	the	point	right
in	 front	of	A,	 and	 then	 run	straight	 to	B.”	Fine,	 that’s	a	possibility.	Another
person	can	say,	“Let	me	touch	the	wall	right	in	front	of	B,	then	run	straight	to
B.”	 There	 are	 infinitely	 many	 options	 open.	 We	 must	 find	 from	 all	 these
possible	paths,	made	of	two	straight	segments,	the	one	of	least	time.
So	the	only	question	the	ray	of	light	(or	racer)	has	to	ask	is	the	following:

“Where	should	I	hit	that	mirror	(or	wall)?”	Let’s	call	a	generic	reflection	point
X	and	let	x	be	its	horizontal	distance	from	A	(measured	parallel	to	the	mirror).
Let	L	be	 the	horizontal	distance	between	A	and	B	and	 let	h1	and	h2	be	 their
perpendicular	distances	from	the	mirror.

Figure	16.4			The	path	of	least	time	for	the	ray	to	leave	A	and	reach	B	after	reflecting	off	the	mirror	at	X
is	found	by	minimizing	T(x),	the	sum	of	the	lengths	AX	and	XB	as	a	function	of	x.	The	minimum	is
attained	only	at	the	point	where	i	=	r.

I	will	simply	calculate	and	add	the	lengths	of	AX	and	XB,	divide	by	c	to	get
the	 time	T(x)	as	a	 function	of	x,	and	 then	minimize	T(x).	By	 the	Pythagoras
theorem

We	equate	the	x	derivative	to	0	to	find	the	least	time:

Thus	the	optimal	x	satisfies



which	 is	 the	desired	 result.	This	 is	 the	 first	victory	 for	 the	principle	of	 least
time.

16.5			Snell’s	law	from	Fermat’s	principle
Next	 I’m	going	 to	 reproduce	Snell’s	 law,	which	applies	when	 light	changes
mediums.	 Look	 at	 Figure	 16.5.	 The	 ray	 has	 to	 go	 from	A,	 which	 is	 in	 the
medium	with	 index	n1	 at	 a	distance	h1	 from	 the	 interface,	 to	B,	which	 is	 in
medium	 2	 of	 index	 n2	 at	 distance	 h2	 from	 the	 interface.	 The	 separation
between	A	and	B	(measured	parallel	to	the	interface)	is	L.
Here	is	the	racer	analogy.	Imagine	you	are	A,	a	lifeguard	on	the	beach,	and

B	 is	a	person	screaming	 for	help	 in	 the	ocean.	How	do	you	get	 there	 in	 the
least	amount	of	 time?	One	point	of	view	 is	 to	 say,	“Let	me	go	 in	a	 straight
line	all	the	way	from	A	to	B	because	I	heard	somewhere	that	the	straight	route
is	 a	 winning	 strategy.”	 But	 that	 may	 not	 be	 so	 good	 when	 you	 change
mediums,	because	maybe	you	want	to	spend	less	time	in	the	water,	where	you
are	slower.	Another	point	of	view	is	to	say,	“Let	me	go	as	far	as	I	can	on	land,
till	I	am	in	front	of	the	victim,	and	then	swim	perpendicular	to	the	shore	to	B.”
There	are	infinitely	many	options.	To	find	the	winning	strategy	we	will	again
minimize	 the	 travel	 time,	 remembering	 that	 this	 is	 no	 longer	 synonymous
with	least	distance	due	to	the	difference	in	velocities.

Figure	16.5			Using	the	principle	of	least	time	to	find	Snell’s	law	for	refraction.	The	problem	is	similar
to	reflection	except	for	the	two	different	velocities	in	the	two	segments.	The	figure	assumes	n2	>	n1,
i.e.,	that	light	travels	slower	in	medium	2.	The	reversed	ray	going	from	B	to	A	will	bend	away	from	the
normal	(θ1	>	θ2).	The	condition	 	places	an	upper	limit	on	θ2	for	refraction.	Beyond	this	limit
there	will	be	total	internal	reflection	back	to	medium	2.



We	must	now	divide	 the	distance	 in	each	medium	by	 the	velocity	 in	 that
medium	(c/n)	 to	 find	 the	 time	spent	 there,	add	 the	 two	 times,	and	minimize
the	total.	The	subsequent	steps	are	very	similar	to	reflection.	First,

We	equate	the	x	derivative	to	0	to	find	the	least	time:

The	x	for	least	time	satisfies

which	is	Snell’s	law.
Here	is	some	practical	advice	based	on	the	material	discussed	above.	If	you

are	 a	 lifeguard,	 you	 should	 keep	 in	 readiness	 the	 ratio	 of	 your	 running	 and
swimming	speeds,	i.e.,	n1/n2,	so	that	you	know	where	to	hit	the	water	when	a
victim	calls.
Next,	 if	you	are	at	 the	bottom	of	a	 lake	and	you	 shine	a	 flashlight	 to	get

help,	remember	the	emergent	light	rays	will	bend	away	from	the	normal.	This
will	 be	 the	 case	 if	 you	 trace	 the	 ray	backward	 from	B	 to	A	 in	Figure	 16.5.
Some	light	will	get	reflected	(with	i	=	r)	and	the	rest	transmitted	as	per	Snell’s
law.	 If,	however,	 the	angle	θ2	 from	your	 side	exceeds	a	certain	value,	 there
will	be	no	acceptable	angle	 for	 the	 light	 to	emerge	because	Snell’s	 law	will
make	the	impossible	requirement	sin	θ1	>	1.	In	this	case	the	beam	will	suffer
total	internal	reflection	and	no	light	will	make	it	out	of	the	water.

16.6			Reflection	off	a	curved	surface	by	Fermat
We	have	seen	that	when	a	ray	reflects	off	a	planar	surface,	Fermat’s	principle
leads	to	i	=	r.	Imagine	now	a	generalization	in	which	it	bounces	off	a	curved
surface.	It	is	intuitively	clear	that	it	will	still	obey	i	=	r,	provided	the	angles
are	measured	from	the	local	normal.	In	other	words,	the	tangent	approximates
the	curved	surface	by	a	plane	near	the	point	of	incidence,	and	the	local	normal



lies	perpendicular	to	it.
Reading	the	proof	of	this	claim	is	optional	but	not	remembering	the	result,

which	will	be	invoked	here	and	there.
Consider	 the	 situation	 depicted	 in	 Figure	 16.6.	Whereas	 the	 plane	mirror

was	 represented	 by	 a	 straight	 line	 in	 Figure	 16.4,	 the	 non-planar	 surface	 is
now	portrayed	by	a	curve	r(t),	where	t	is	a	parameter	that	labels	points	on	it.
You	can	pretend	r(t)	is	the	path	traced	out	by	a	particle	as	a	function	of	time	t.
Consider	now	light	that	leaves	the	point	r1,	hits	the	mirror	at	r(t),	and	goes	to
r2.	We	want	to	vary	t	or	r(t)	and	look	for	a	path	of	least	time.	The	parameter	t
has	 nothing	 to	 do	with	 the	 time	 taken	 by	 light	 to	 travel	 from	 r1	 to	 r2	 after
reflection.

Figure	16.6			Ray	going	from	r1	to	r2	after	bouncing	off	a	non-planar	mirror	defined	by	the	curve	r(t).
The	unit	vectors	e1	and	e2	are	shown	to	have	opposite	projections	along	the	tangent	vector	 	on
the	path	of	least	time.	(The	path	shown	is	not	one.)	The	normal	N(t)	is	shown	by	a	dotted	line,	as	is	the
continuation	of	the	tangent	vector	T(t)	in	the	opposite	direction.

Let	us	define	the	unit	vectors

and	T(t),	 the	 local	 tangent	 to	 the	 mirror	 at	 r(t),	 which	 is	 just	 the	 velocity
vector	of	the	fictitious	particle

The	local	normal	N(t)	is	shown	by	dotted	lines.
We	want	to	vary	t	(and	through	it	the	point	of	reflection	r(t))	and	show	that



the	path	of	least	time	obeys	i	=	r	where	the	angles	i	and	r	lie	between	e1	and
N(t)	and	e2	and	N(t)	respectively.
Instead	of	measuring	the	angles	i	and	r	from	the	normal,	let	us	measure	the

angles

from	the	tangent	in	the	counterclockwise	sense,	as	indicated.	What	we	need	to
show	is	then

since	i	=	r.
The	total	distance	D(t)	traveled	by	the	ray	is	a	function	of	the	parameter	t,

which	determines	the	point	of	reflection:

Remember	that	only	r(t)	depends	on	t:	r1	and	r2	are	fixed.	The	travel	time	is
D(t)/c.
Now	let	us	rewrite	D(t)	in	terms	of	dot	products	and	proceed	as	follows:

where	e1(t)	and	e2(t)	are	the	unit	vectors	from	r(t)	to	the	starting	and	ending



points	r1	and	r2.	The	least-time	condition	(the	minimum	of	D(t)/c)	is

Thus,	e1(t)	and	e2(t)	have	equal	and	opposite	projections	along	the	tangent	T,

which	proves	Eqn.	16.18.

16.7			Elliptical	mirrors	and	Fermat’s	principle
Light	is	supposed	to	take	the	path	of	least	time.	This	is	exactly	what	happened
in	the	case	of	reflection	and	refraction	(Snell):	there	was	a	unique	path	of	least
time	and	light	took	it.	But	what	if,	in	addition	to	one	path	of	obviously	least
time	(obeying	i	=	r),	there	are	many	more	paths	that	take	the	same	(least)	time
between	the	same	two	end	points?	That’s	what	we’re	going	to	talk	about	now.
Take	 an	 elliptical	 room,	 shown	 in	Figure	16.7	with	 reflecting	walls.	You

stand	at	one	of	the	focal	points	F1.	Your	task	is	to	send	a	laser	beam	that	hits
the	wall	and	goes	to	a	person	at	the	other	focal	point	F2.	You	know	what	you
have	 to	 do.	The	 tangent	 to	 the	wall	 at	X	 is	 like	 a	 horizontal	mirror,	 as	was
proved	in	the	last	section.	It	is	clear	that	if	you	send	the	ray	there,	it	will	end
up	at	F2	because	it	will	satisfy	i	=	r.	(The	light	ray	doesn’t	care	if	the	mirror
bends	 away	 from	 the	 point	 X.	 As	 far	 as	 the	 ray	 is	 concerned,	 it	 could	 be
reflecting	off	the	infinite	tangent	plane.)
While	this	is	a	correct	answer,	it	is	not	the	only	correct	answer.	It	turns	out

that	no	matter	in	what	direction	you	send	your	ray	from	F1,	no	matter	what
the	reflection	point	P	is,	it	will	arrive	at	F2.	In	other	words,	I	am	asserting	that
no	 matter	 where	 P	 is,	 the	 angle	 of	 incidence	 α	 will	 equal	 the	 angle	 of
reflection	β,	both	measured	from	the	normal	at	P.
If	 you	wanted	 only	 to	 use	 ray	 optics,	 one	way	 to	 verify	 this	 claim	 is	 to

establish	 analytically	α	 =	β	 at	 every	point	P	 on	 the	 ellipse.	You	 could	 start
with	the	equation	for	the	ellipse	in	terms	of	its	semimajor	and	semiminor	axes
a	and	b,

compute	the	normal	to	the	ellipse	at	a	generic	point	P	=	(x,	y),	and	verify	that



it	bisects	∠F1PF2.
I	will	 now	 show	 that	 Fermat’s	 principle	 allows	 us	 to	 finesse	 this	 tedious

calculation.
My	argument	rests	on	the	fact	that	every	path	from	F1	to	F2	via	any	point	P

on	the	ellipse	has	the	same	length	as	F1XF2,	itself	a	path	of	least	time.	Then
according	 to	 Fermat’s	 principle,	 all	 such	 paths	 obey	 the	 laws	 of	 geometric
optics,	in	particular	α	=	β.
The	 fact	 that	 all	 the	paths	have	 the	 same	 length	and	hence	 take	 the	 same

time	follows	from	the	definition	of	the	ellipse	as	the	locus	of	points	the	sum	of
whose	distances	to	the	two	focal	points	is	constant.	Remember	this	is	how	an
ellipse	 is	 drawn.	 If	 you	 drive	 two	 thumbtacks	 into	 the	 paper	 to	 anchor	 the
ends	of	a	string,	stretch	it	taut	with	a	pencil,	and	move	the	tip	around,	it	will
trace	out	an	ellipse.	In	the	notation	of	Figure	16.7	this	means

Figure	16.7			With	elliptical	walls,	every	path	F1PF2	is	a	path	of	least	time.	It	is	obvious	that	the	path
via	X	takes	the	least	time	and	also	obeys	i	=	r.	Not	so	obvious	but	true	is	that	these	two	features	hold	for
all	the	paths	going	via	any	point	P	on	the	ellipse.	This	is	why	all	rays	leaving	F1	focus	at	F2.	(The	tiny
vertical	barrier	at	the	center	excludes	the	direct	path	between	the	focal	points.)

Since	 the	 time	 taken	by	 light	 to	go	 from	F1	 to	F2	 is	 (r1	 +	 r2)/c,	 every	path
takes	the	same	time,	no	matter	what	P	is.	This	common	time	is	also	the	least
time	since	one	of	the	paths	is	the	symmetric	path	that	goes	via	X,	known	to	be
a	path	of	least	time	from	the	plane	mirror	example.
Recall	 that	 the	 path	 of	 least	 time	 is	 characterized	 by	 the	 fact	 that	 if	 you

change	 the	 point	 of	 reflection	 slightly	 there	will	 be	 no	 change	 in	 the	 travel
time	(or	distance)	 to	first	order.	Now	take	any	path	F1PF2.	 If	you	modify	 it
slightly	by	changing	P	a	bit,	the	time	taken	will	not	change	at	all	(not	just	to
first	order)	because	on	either	 side	of	 this	path	are	paths	of	exactly	 the	same
time.
Now	for	another	practical	tip.	Imagine	that	this	elliptical	wall	that	reflects



light	is	replaced	by	a	steel	wall	that	reflects	bullets.	You	have	a	gun	with	just
one	bullet	left.	You	are	at	F1	and	your	mortal	enemy	is	at	F2,	similarly	armed.
In	what	direction	will	you	fire?	One	student	said,	“At	your	enemy,”	and	I	had
to	concede	he	was	right.	I	was	so	in	love	with	the	complicated	solution	I	had
in	mind	that	I	had	overlooked	the	obvious.	So	I	said,	“Imagine	there	is	a	small
steel	 partition	 between	 you	 two.	 Now	 what	 will	 you	 do?”	 Now	 everyone
agreed	that	they	would	aim	at	X.	That	will	certainly	work,	but	you	know	now
that	you	can	fire	in	any	direction	and	still	hit	the	enemy.	The	strategy	works
because	 bullets	 are	 like	 light.	 They	 obey	 i	 =	 r.	 The	 bullet	 bouncing	 off	X
obviously	obeys	i	=	r.	I	have	just	shown	this	is	true	for	any	point	of	reflection
P.	You	will	thank	me	if	you	ever	have	to	use	this	rule.	While	your	opponent,
who	took	only	Physics	101,	is	standing	at	F2	wasting	valuable	time	aiming	for
the	midpoint	X,	you,	who	took	Physics	201,	will	fire	immediately	from	F1	in
any	old	direction	and	score	a	hit.	 (Obviously	you	will	not	aim	exactly	away
from	F2	because	on	the	rebound	the	bullet	will	first	hit	you	and	then	the	steel
partition.)
The	strategy	also	works	for	sound	of	small	wavelength	and	high	frequency

(geometric	acoustics):	 if	you	are	at	F1,	you	may	summon	your	dog	at	F2	by
blowing	the	whistle	in	any	direction	(again	assuming	a	partition	at	the	center
that	obstructs	direct	sound	propagation).
The	take-away	message	is	this:	if	there	are	many	paths	that	take	the	same

time	 between	 two	 given	 end	 points,	 rays	 leaving	 the	 first	 in	many	 different
directions	will	converge	at	the	second	upon	reflection.
Remember	 that	not	only	do	 the	 rays	 leaving	F1	converge	at	F2,	 they	 take

the	same	time	to	do	this	via	every	P.	(I	want	you	to	contrast	this	with	a	case
where	the	rays	converge	at	F2	but	after	taking	different	periods	of	time.)	The
equal	travel	time	means	that	if	there	were	a	candle	at	F1	forming	an	image	at
F2	 and	 you	 suddenly	 extinguished	 it,	 the	 image	 would	 disappear	 abruptly,
after	 the	delay	(r1	+	r2)/c,	and	not	gradually	as	it	would	if	 the	different	rays
took	 different	 times.	 If	 you	 emitted	 a	 flash,	 all	 the	 radiated	 energy	 would
converge	 at	F2	 at	 the	 same	 time.	 But	 for	 this,	 the	 satellite	 dish	 would	 not
focus	the	incident	energy	and	your	dog	at	F2	would	not	hear	you.

16.8			Parabolic	mirrors
Having	seen	that	focusing	becomes	possible	when	there	is	more	than	one	path
of	least	time,	let	us	try	to	understand	a	focusing	mirror	shown	in	Figure	16.8
in	these	terms.	Light	comes	in	parallel	rays	from	some	source	at	infinity.	You
want	 to	 put	 a	mirror	 of	 profile	y(x)	 in	 the	way	of	 the	 parallel	 beam	 so	 that
every	one	of	these	parallel	rays	will	hit	the	mirror	and	come	to	the	focal	point



F	after	traveling	the	same	distance.
(The	 actual	mirror	will	 be	 its	 surface	 of	 revolution	 of	 y(x)	 and	 reside	 in

three	dimensions.	For	example,	if	this	curve	were	a	parabola,	the	actual	mirror
would	be	a	parabolic	dish,	the	type	used	for	satellite	TV.)
Let	us	now	design	the	mirror.

Figure	16.8			The	parabolic	mirror	has	its	focal	point	at	F,	a	distance	f	to	the	right	of	the	center	of	the
mirror,	with	coordinates	(0,0).	The	race	begins	at	line	L1	perpendicular	to	the	symmetry	axis.	The	line
L2	is	also	perpendicular	to	the	axis	and	is	at	a	distance	f	to	the	left	of	the	center,	(0,0).	Each	ray	hits	the
mirror	at	some	(x,	y)	and	goes	to	F.	Since	the	distance	from	(x,	y)	to	F	is	the	same	as	the	distance	to	the
line	L2	(the	defining	property	of	the	parabola),	every	ray	travels	the	same	distance	L1	−	L2.	Three	such
equal	distances	are	shown	with	one,	two,	and	three	vertical	bars.

Since	the	rays	begin	at	the	point	at	infinity,	they	will	all	take	infinite	time
to	get	to	F	no	matter	how	they	get	there.	There	is	no	way	to	pick	one	or	more
of	these	paths	as	the	ones	taking	the	least	time.	So	let	us	measure	all	distances
traveled	 by	 the	 parallel	 rays	 from	 a	 fixed	 line	L1	 normal	 to	 the	 axis,	 rather
than	 from	 the	 point	 at	 infinity,	 to	 make	 a	 meaningful	 comparison	 of	 finite
distances.	Let	us	first	take	the	ray	that	goes	along	the	symmetry	axis.	It	passes
through	 F,	 goes	 a	 distance	 f,	 hits	 the	 mirror	 at	 (0,0),	 and	 comes	 back	 a
distance	f	to	the	point	F.	This	is	obviously	a	path	of	least	time	and	obeys	i	=	r
=	0.	Now	draw	a	 line	L2	 perpendicular	 to	 the	 axis,	 but	 behind	 the	mirror	 a
distance	f	away.	The	total	distance	traveled	by	this	ray	is	the	distance	between
the	 two	parallel	 lines,	L1	and	L2.	This	 is	 true	because	once	 the	 ray	hits	 the
mirror,	 the	 distance	 it	 travels	 upon	 reflection	 back	 to	F	 is	 the	 same	 as	 the
distance	to	the	line	L2	behind	the	mirror.	Therefore	the	time	to	go	from	L1	to
F	 after	 reflection	 is	 the	 time	 to	 go	 from	 L1	 to	 L2.	 Now	 consider	 a	 second
parallel	ray	above	the	axis	that	hits	the	mirror	at	some	X	=	(x,	y).	We	want	it
to	 travel	 to	F	 taking	 the	 same	 time	 as	 the	 first	 ray.	This	will	 happen	 if	 the
distance	from	X	to	F	is	the	same	as	the	distance	from	X	to	the	line	L2.	Make
sure	you	understand	this.	If	there	were	no	mirror,	all	rays	parallel	to	the	axis
would	 take	 the	 same	 time	 to	 go	 from	 L1	 to	 L2.	 Instead,	 they	 go	 the	 same



distance	by	first	hitting	 the	mirror	and	 then,	 rather	 than	going	straight	on	 to
L2,	 go	 to	F,	which	 is	 equidistant.	Three	 such	 segments	of	 equal	 lengths	 are
shown	by	one,	two,	and	three	crossbars.
We	now	have	a	condition	on	the	shape	of	the	mirror:	it	is	a	curve	y(x)	with

the	property	that	every	point	on	it	is	equidistant	from	a	point	F	and	a	line	L2.
(The	distance	to	the	line	is	the	perpendicular	or	shortest	distance.)	If	you	can
find	such	a	curve	(or	its	surface	of	revolution	in	three	dimensions)	that’s	the
curve	or	surface	you	want	to	take	to	your	mirror	maker.
We	 know	 such	 a	 curve:	 it	 is	 a	 parabola,	 which	 is	 the	 locus	 of	 points

equidistant	from	a	given	point	(F	in	our	problem)	and	a	given	line	(L2	in	our
problem).	Let	us	find	the	equation	for	the	mirror	surface	using	this	property.
With	the	origin	of	coordinates	(0,0)	at	the	center	of	the	mirror,	let	us	label	a

generic	point	on	the	mirror	as	(x,	y).	What	we	want	is	the	expression	for	the
function	 y(x).	 We	 will	 derive	 it	 simply	 by	 imposing	 the	 definition	 of	 the
parabola.
Equating	the	distances	from	the	point	(x,	y)	to	the	focal	point	F	and	to	the

line	L2	we	find	for	the	upper	ray:

Squaring	both	sides	and	simplifying,

which	defines	a	parabola.	(You	may	be	more	used	to	a	parabola	of	the	form	y
=	ax2,	which	rises	above	the	x-axis	quadratically,	symmetric	about	the	y-axis.
What	I	have	above	is	a	rotated	version	with	x	and	y	interchanged.)



CHAPTER	17

Optics	II:	More	Mirrors	and	Lenses

It	 is	easy	 to	summarize	 the	 last	chapter	 in	a	sentence:	Light	obeys	Fermat’s
principle	of	least	time.	From	this	principle	we	derived	the	laws	of	reflection,
refraction	 (Snell’s	 law),	 the	 unusual	 reflecting	 properties	 of	 the	 elliptical
mirror,	 and	 the	 equation	 for	 the	 parabolic	 mirror.	 We	 understood	 how
focusing	 occurs	when	 there	 are	multiple	 paths	 of	 least	 time	 connecting	 the
object	and	image.

17.1			Spherical	approximations	to	parabolic	mirrors
If	you	want	a	mirror	that	will	focus	a	beam	parallel	to	the	axis,	no	matter	how
wide,	 you	 need	 a	 parabolic	 mirror.	 A	 parabolic	 mirror	 is	 what	 you	 would
order	for	the	Hubble	telescope.	But	if	you	cannot	afford	a	parabola,	there	is	a
cheap	alternative:	a	 sphere.	Now,	a	 sphere	 is	not	quite	a	parabola,	but	 I	 am
sure	you	will	appreciate	that	a	slice	from	the	sphere	can	mimic	the	parabola
up	 to	some	distance,	as	shown	 in	Figure	17.1.	Beyond	 that	of	course	 it	will
deviate.	But	if	you	consider	only	beams	very	near	the	axis,	 then	the	two	are
equivalent,	except	for	the	cost.
We	will	often	refer	to	spherical	mirrors	in	this	chapter.
Let	 us	 begin	 by	 asking	 ourselves	 the	 following	 question:	 if	 we	 take	 a

hollow	sphere	of	 radius	R,	 slice	a	part	of	 it,	 and	paint	 the	convex	side	with
silver,	what	will	be	the	focal	length	of	the	concave	mirror?
Look	at	Figure	17.1.	We	choose	as	 the	origin	of	 coordinates	 the	 leftmost

point	 of	 the	 circle,	 because	 this	 point	 will	 serve	 as	 the	 origin	 of	 the
approximate	 parabola.	 In	 these	 coordinates	 the	 equation	 for	 the	 circle	 of
radius	R	centered	at	(r,	0)	is

Figure	17.1			Part	of	the	sphere	of	radius	R	(dotted	line)	approximates	a	parabola	(solid	line)	if	we	do



not	go	too	far	off	the	symmetry	axis.	The	spherical	mirror	has	 	in	this	approximation.

which	simplifies	to

First	let	us	ignore	the	x2	on	the	right	and	compare	the	equation	to	that	of	the
parabola,	y2	=	4xf.	We	find	the	focal	length	of	the	spherical	mirror	is

But	we’re	not	done	yet,	because	we	just	threw	away	the	x2	term.	We	need	a
reason	 for	 that.	 It	 involves	 the	 following	 notion	 of	 big	 and	 small	 lengths.
Whenever	we	deal	with	a	mirror	or	a	lens,	lengths	like	u,	v,	f	are	all	going	to
be	treated	as	big	numbers.	Lengths	like	y	that	take	you	off	the	axis	are	going
to	be	considered	relatively	small	numbers.	The	reason	is	that	if	this	is	not	so,
an	object	of	height	y	will	not	lead	to	a	well-defined	image.	(Even	a	parabolic
mirror,	which	exactly	focuses	a	parallel	beam	of	any	width,	will	not	produce	a
sharp	image	of	an	object	at	a	finite	distance	if	its	height	violates	the	smallness
condition.)	Lengths	like	x	that	are	proportional	to	y2	are	even	smaller.	So	the
hierarchy	is	this:	u,	v,	f	are	big,	y	is	small,	x	is	small	squared.	Now	look	at	the
two	terms	on	the	right	in	Eqn.	17.2.	One	is	x	times	R,	the	other	is	x	times	x.	So
x	times	R	beats	x	times	x	by	a	factor	x/R.	So	we’re	going	to	drop	the	x2	term
and	get	the	parabola	as	an	approximation.	In	this	approximation	we	have

This	equation	 is	consistent	with	 the	notion	 that	x	 is	quadratic	 in	 the	already
small	quantity	y	or,	equivalently,	 that	 it	 is	smaller	by	an	additional	factor	of
y/R:

We	know	a	sphere	can	mimic	a	parabola	only	for	small	deviations	from	the
axis.	This	can	be	quantified	now:	if	the	rays	come	so	far	off	the	axis	that	x2	is
not	negligible	comparable	to	xR,	the	spherical	mirror	will	neither	look	like	a
parabola	nor	focus	like	one.
Whereas	the	parabolic	mirror	has	only	one	privileged	point,	namely	F,	the

spherical	mirror	has	a	second	one:	the	center	of	the	sphere	C,	at	a	distance	R	=



2f.

17.2			Image	formation:	geometric	optics
We	have	 confirmed	 that	 a	 parabolic	mirror	 and	 its	 spherical	 approximation
can	 focus	 parallel	 light	 rays	 coming	 from	 infinity	 starting	 with	 just	 the
principle	of	least	 time.	Good!	But	mirrors	are	expected	to	do	more	than	just
focus	 parallel	 beams	 emanating	 from	 an	 object	 at	 infinity.	 They	 are	 also
supposed	 to	 form	 sharp	 images	 of	 objects	 of	 finite	 height	 placed	 at	 a	 finite
distance.
In	this	section	I	will	analyze	this	problem	using	ray	tracing	(for	objects	that

are	 not	 too	 tall)	 just	 to	 illustrate	 how	 it	 is	 done.	 I	 will	 derive	 the	 relation
between	the	object	 location	u	and	size	h0	 (which	we	may	take	as	 input)	and
the	image	location	v	and	height	hi,	which	we	may	take	as	output.	In	the	next
section	I	will	re-derive	the	same	final	formulas	using	Fermat’s	principle.
Consider	an	arrow	of	height	h0	at	a	distance	u	from	the	mirror	as	shown	in

Figure	17.2.	We	want	to	know	where	the	image	of	its	tip	will	be	formed.	We
find	 it	 by	 drawing	 two	 rays	 whose	 fate	 we	 know	 from	 Fermat.	 The	 first
travels	 to	 the	mirror	horizontally	and	upon	reflection	goes	 through	 the	 focal
point.	The	second	one	goes	to	the	mirror	through	the	focal	point	and	emerges
horizontal.	We	 know	 this	 because	 if	we	 run	 this	 ray	 backward,	we	 see	 the
horizontal	ray	hit	the	mirror	and	go	through	the	focal	point.	But	if	while	going
backward	it	is	a	path	of	least	time	connecting	the	end	points,	it’s	also	a	path	of
least	time	going	forward.

Figure	17.2			A	spherical	mirror.	The	solid	lines	are	two	rays	used	to	find	the	relation	between	u,	v,	and	f
for	an	object	placed	a	finite	distance	away.	The	rays	leave	(u,	h0),	hit	the	mirror	at	(x0,	h0)	or	(xi,−hi)
and	meet	at	the	image	(v,−hi).	The	dotted	line	is	a	third	ray	that	hits	the	mirror	at	(0,0)	and	meets	the
other	two	at	the	image	point.

The	 two	reflected	 rays	meet	at	a	point	 that	defines	 the	 tip	of	 the	 inverted
image	 of	 the	 arrow.	 Let	 this	 occur	 at	 a	 distance	 v	 at	 a	 height	 hi.	 (By
convention	if	hi	is	positive	the	image	is	at	(v,	−	hi).)	We	want	to	determine	hi
and	v	in	terms	of	h0	and	u	that	we	may	choose	at	will.
Equating	the	tangents	of	the	two	opposite	angles	α	we	find



where	xi	has	been	ignored	compared	to	f.	Similarly	from	the	two	equal	β’s	we
have

where	x0	has	been	 ignored	compared	 to	 f.	Equating	 the	products	of	 the	 left-
hand	sides	to	the	product	of	the	right-hand	sides	and	canceling	hih0,	we	find

which	can	be	rearranged	to	the	familiar	form

The	ratio	of	the	image	size	to	the	object	size	hi/h0	follows	from	Eqn.	17.7:

The	 ratio	 of	 the	 object	 size	 to	 the	 image	 size	 is	 just	 the	 ratio	 of	 the	 object
distance	to	the	image	distance.
Equations	17.9	and	17.10	determine	hi	and	v	in	terms	of	the	parameters	h0

and	u	that	we	may	choose	at	will.	Of	course,	we	may	use	these	equations	to
find	any	two	parameters	given	the	other	two.	For	example,	in	some	problem
we	may	want	the	image	to	be	at	a	given	v,	in	which	case	the	same	formula	can
be	used	to	find	the	requisite	u.
The	magnification	M	is	defined	to	be

In	this	case	of	positive	u	and	v,	the	minus	sign	signifies	that	the	image	will
be	 inverted.	 In	 some	 other	mirrors,	 you	will	 find	 v	 is	 negative	 because	 the
image	is	virtual.	Then	M	will	be	positive,	meaning	the	image	is	upright.	When
you	 look	 into	 the	 bathroom	mirror,	 your	 image	 has	 the	 same	 orientation	 as
your	face,	not	upside	down.
Although	 we	 only	 considered	 the	 tip	 of	 the	 object	 and	 its	 image,	 these



arguments	 hold	 for	 any	 other	 point	 on	 the	 object	 because	 v,	 the	 image
location,	is	independent	of	h0,	the	height	of	the	tip.	In	other	words,	the	image
of	the	upright	arrow	will	be	an	inverted	arrow.

17.2.1			A	midlife	crisis
Some	 years	 after	 learning	 geometric	 optics,	 long	 after	 all	 the	 exams	 were
over,	I	began	to	ask	myself	 the	following.	We	draw	just	 two	rays	and	claim
their	 intersection	point	 is	 the	 location	of	 the	image	(of	 the	 tip	of	 the	arrow).
But	any	two	rays	will	always	meet	somewhere	unless	they	are	parallel.	(This
will	 happen	 even	 if	 you	 distort	 the	 mirror	 from	 its	 spherical	 or	 parabolic
shape.)	Why	 should	 that	 point	 be	 the	 image	 point?	What	 if	 I	 draw	 another
ray?	How	do	I	know	it	too	will	come	to	the	same	spot?	In	other	words,	two
rays	 crossing	 somewhere	 is	 inevitable,	 but	 three	 or	 more	 crossing	 at	 one
(image)	 point	 would	 be	 more	 compelling	 evidence	 of	 image	 formation	 by
focusing	of	rays.
So	I	considered	one	more	ray	(dotted	line	in	Figure	17.2)	reflecting	off	the

center,	 where	 the	 tangent	 is	 vertical.	 We	 know	 it	 must	 obey	 i	 =	 r,	 which
imposes	an	additional	constraint	on	hi,	h0,	u,	and	v:

If	this	constraint	is	not	satisfied	it	will	mean	that	the	third	ray	cannot	obey	the
law	of	reflection	and	also	pass	through	the	intersection	point	of	the	first	two
rays.	Luckily	this	condition	is	satisfied;	see	Eqn.	17.10.

17.3			Image	formation	by	Fermat’s	principle
So	we	have	 three	reflected	rays	meeting	at	one	point.	That	 is	 reassuring	but
not	 enough.	Maybe	 it	 worked	 out	 because	 the	 third	 ray	 hit	 the	mirror	 at	 a
special	 (symmetric)	 point.	 If	 I	 draw	yet	 another	 one,	 hitting	 the	mirror	 at	 a
more	generic	point,	how	will	I	know	it	too	will	also	come	to	the	same	image
point?
Using	 ray	 optics	 we	 can	 show	 once	 and	 for	 all	 that	 all	 reflected	 rays

converge	at	 the	 image	point,	 regardless	of	 the	height	y	at	which	they	hit	 the
mirror	(provided	it	is	small	compared	to	f	or,	in	the	spherical	case,	R).
But	I	want	to	derive	the	same	result	using	the	principle	of	least	time.	In	this

approach	the	rays	leave	the	object	in	many	directions,	hit	the	mirror	at	various
heights	y,	and	meet	at	 the	 image,	after	having	 traveled	 the	same	distance	or
having	taken	the	same	time,	which	should	also	be	the	least	time.	I	will	show
this	in	two	stages.
1.	I	will	show	that	the	ray	that	hits	the	mirror	at	y	=	0,	namely	at	the	origin	(0,0),	is	a	path	of	least



time	(and	obeys	i	=	r).
2.	I	will	show	that	the	same	time	is	taken	by	other	rays	that	hit	the	mirror	at	neighboring	values	of	y.
That	is	to	say,	the	travel	time	is	y-independent	for	small	y.

Before	I	embark	on	this	I	must	warn	you	that	the	y-independence	of	travel
time	 is	not	exact.	 It	will	be	valid	only	when	powers	of	y	higher	 than	y2	 are
neglected.	This	is	not	because	the	sphere	is	an	approximation	to	a	parabola;	it
is	true	even	for	the	parabola.	The	latter	may	perfectly	focus	a	parallel	beam	of
arbitrary	 width,	 but	 it	 will	 not	 form	 perfect	 images	 of	 objects	 at	 a	 finite
distance	unless	y	is	small.
Here	are	 two	 results	we	will	need.	The	 first	 is	 the	equation	of	 the	mirror

surface:

The	next	is	the	binomial	approximation	to	(A2	+	a)1/2	for	

Now	look	at	Figure	17.3,	which	shows	an	object	of	height	h0	at	u	and	an
inverted	image	of	height	hi	at	v.
We	are	free	to	choose	h0	and	u	at	will,	and	we	need	a	way	to	determine	hi

and	v,	the	image	height	and	location.
Our	strategy	will	be	to	compute	D(y),	the	path	length	as	a	function	of	y,	and

see	if	it	can	be	made	y-independent	by	judicious	choice	of	hi	and	v.

Figure	17.3			The	path	length	for	the	ray	that	goes	from	object	O	to	image	I	via	the	point	X	=	(x,	y)	on
the	mirror	is	the	sum	of	the	hypotenuses	of	the	two	right	triangles	OX1	and	IX2.	It	is	independent	of	y	to
order	y2.	All	paths	therefore	take	the	same	time,	which	is	also	the	least	time.

The	distance	traveled	by	the	ray	that	hits	the	mirror	at	height	y	is	the	sum	of
the	hypotenuses	of	the	two	right	triangles	OX	1	and	IX2:



We	are	going	to	keep	terms	of	quadratic	order	in	y	and	h	and	linear	order	in	x
since	x	=	y2/4f	on	the	mirror	surface.	In	this	approximation

Let	us	write	this	as

We	want	the	result	not	to	depend	on	y.
The	first	line	is	D(0),	the	path	length	for	reflection	off	the	vertical	tangent

at	y	=	0.	It	serves	as	the	reference.	The	coefficient	of	 the	linear	term	can	be



made	to	vanish	if

That	is,

If	 this	 condition	of	vanishing	 first	derivative	of	D(y)	 at	y	=	0	 is	 satisfied,	 it
follows	 that	 the	path	 through	y	=	0	 is	a	path	of	 least	 time.	Not	surprisingly,
from	the	figure	we	can	see	that	 this	 just	says	that	 i	=	r	 for	reflection	off	 the
vertical	tangent.	This	only	determines	the	fate	of	a	single	ray,	one	that	hits	y	=
0.
This	condition	alone	does	not	fix	the	image	location	because	we	can	slide

the	image	along	the	reflected	ray,	keeping	hi/v	or	 the	angle	subtended	fixed.
This	is	to	be	expected	because	it	 is	not	enough	that	the	paths	infinitesimally
close	 to	 y	 =	 0	 all	 have	 the	 same	 path	 length.	 This	will	 be	 true	 even	 if	 the
mirror	were	flat.	What	we	are	looking	for	is	a	mirror	that	is	curved	in	just	the
right	way	that	the	path	length	is	constant	over	a	wider	region,	to	achieve	the
focusing	of	rays	reflected	off	a	continuum	of	points	near	y	=	0.
To	 this	 end	we	 turn	 to	 the	 quadratic	 terms.	 Demanding	 that	 they	 vanish

requires	the	vanishing	of	the	second	derivative:

This	means

which	is	the	second	of	the	equations	obtained	by	ray	optics.
Any	 powers	 of	 y	 that	 survive	 in	 a	more	 accurate	 calculation	must	 be	 of

order	y3	or	higher.	We	cannot	do	anything	about	them	since	we	have	used	up
the	 two	degrees	of	 freedom	at	our	disposal,	namely	hi	 and	v	 to	kill	 the	 first
two	powers.	Unless	these	higher	order	terms	are	anomalously	large,	the	graph
of	 D(y)	 versus	 y	 will	 be	 extremely	 flat	 near	 y	 =	 0.	 The	 (approximate)
constancy	 of	 path	 length	 means	 the	 constancy	 of	 travel	 time.	 Since	 y	 =	 0
corresponds	 to	 path	 of	 least	 time	 (reflecting	 off	 a	 vertical	 tangent	 at	 the



origin)	all	are	paths	of	least	time.
If	h	or	y	gets	 large	enough	for	 the	neglected	 terms	 to	become	significant,

the	image	will	be	blurred.
To	summarize,	we	have	imposed	the	condition	of	least	time	for	paths	with

a	continuous	range	of	y	to	ensure	that	rays	hitting	the	mirror	not	only	at	y	=	0
but	 nearby	 all	 meet	 to	 produce	 a	 focused	 image.	 This	 in	 turn	 gave	 us	 two
equations	(the	vanishing	of	the	first	and	second	derivatives	of	D(y)	at	y	=	0)
that	 determined	hi	 and	 v	 as	 a	 function	 of	h0	 and	u.	 These	 equations	 agreed
with	those	of	ray	optics.

17.4			Tricky	cases
There	are	countless	applications	of	the	equation

for	mirrors	and	lenses.	As	mentioned	earlier,	some	of	these	variables	can	be
negative	 in	complicated	cases.	For	example,	 in	 the	case	of	a	 lens	where	 the
(virtual)	 image	 is	 on	 the	 same	 side	 as	 the	 object,	 v	 is	 negative.	 A	 convex
mirror,	 which	 spreads	 out	 a	 parallel	 beam	 instead	 of	 focusing	 it,	 has	 a
negative	f.	Only	u	and	h0	can	always	be	chosen	to	be	positive	by	convention.
While	the	equation	above	will	work	in	all	situations	if	you	pay	attention	to	the
signs,	 it	 is	 interesting	 to	 look	at	one	or	 two	cases	where	 the	standard	 recipe
does	 not	 work,	 either	 in	 ray	 optics	 or	 least	 time.	 Both	 examples	 involve
virtual	images.
The	first	involves	a	convex	mirror	with	negative	f,	that	is	to	say,	the	image

of	a	point	at	infinity	is	a	virtual	focal	point.
The	 second	 involves	 a	 virtual	 image	 of	 an	 object	 in	 front	 of	 a	 concave

mirror	with	u	<	f.
We	 will	 see	 how	 the	 standard	 recipe	 fails	 in	 both	 cases	 and	 how	 it	 is

modified	to	give	results	that	agree	with	Eqn.	17.25.

17.4.1			Fermat’s	principle	for	virtual	focal	points
Consider	a	convex	mirror	shown	in	Figure	17.4.	When	a	parallel	beam	(solid
lines)	 is	 incident	 on	 it	 from	 the	 right,	 the	 reflected	 rays	 diverge	 rather	 than
converge.
It	is	known	in	ray	optics	that	the	reflected	rays	will	seem	to	be	coming	from

a	virtual	focal	point	behind	the	mirror	at	a	distance	|f	|,	that	is,	they	will	meet
at	F	if	continued	backward,	into	the	mirror.
We	 want	 to	 prove	 this	 result	 using	 Fermat’s	 principle.	 It	 looks	 like	 we

cannot	even	get	started	because	the	rays	that	come	to	the	mirror	from	infinity



diverge	upon	reflection	and	never	really	meet	again.	How	are	we	to	compare
their	 travel	 times	 and	pick	 the	one	of	 least	 time	 if	 there	 is	 no	 common	end
point?	This	seems	to	be	a	result	in	geometric	optics	we	cannot	derive	from	the
principle	of	least	time.	Actually	we	can,	but	in	two	stages.
First	assume	the	mirror	is	reflective	on	both	sides.	Look	at	the	dotted	lines

on	the	concave	side	of	the	mirror.	We	see	rays	parallel	to	the	axis	come	from
the	left.	By	Fermat’s	principle,	applicable	on	the	concave	side,	these	rays	will
meet	 at	F	 and	 also	 obey	α	 =	β.	Now	 continue	 the	 dotted	 lines	 through	 the
mirror	 to	 the	convex	 side	as	 solid	 lines	and	 reverse	 the	arrows	on	 them.	At
this	stage,	these	are	just	some	lines	and	may	not	correspond	to	physical	rays.
But	if	we	extend	the	normal	through	to	the	convex	side,	we	see	rays	coming
from	the	right	parallel	to	the	axis	and	bouncing	off	the	mirror	obeying	α	=	β.
This	is	exactly	what	a	real	physical	ray	bouncing	off	a	curved	surface	would
do.	 It	 then	 follows	 that	 if	 the	 outgoing	 physical	 ray	 on	 the	 convex	 side	 is
continued	 to	 the	 concave	 side,	 it	 will	 pass	 through	 F.	 Thus	 F	 will	 be	 the
virtual	focal	point	for	the	convex	mirror.

Figure	17.4			On	the	concave	side	we	see	a	parallel	beam	(dotted	rays)	incident	on	a	concave	mirror.	We
know	from	Fermat	(applicable	here)	that	these	will	focus	at	F	and	obey	α	=	β.	If	we	continue	the	dotted
lines	to	the	convex	side	as	solid	lines	and	reverse	the	arrows,	we	see	rays	come	in	parallel	to	the	axis
from	the	right	and	bounce	off	the	mirror,	obeying	α	=	β,	as	a	physical	ray	would.	It	follows	that	all
outgoing	physical	rays,	if	continued	back	into	the	mirror,	would	pass	through	F.

17.4.2			Ray	optics	for	virtual	images
Now	we	 consider	 a	 problem	 for	which	 the	 standard	 recipe	 from	 ray	 optics
fails.	Consider	a	concave	mirror	and	an	object	that	is	at	a	distance	u>	2f.	We
are	supposed	to	find	the	image	by	drawing	two	rays,	one	that	goes	in	parallel
and	 comes	 out	 of	F	 and	 the	 other	 that	 goes	 in	 via	F	 and	 emerges	 parallel.
Their	intersection	will	be	at	a	distance	v	<	2f,	as	shown	in	Figure	17.2.	As	you
reduce	u,	you	increase	v	till	you	hit	u	=	2f.	Then	v	=	2f	as	well,	and	the	object
and	 its	 inverted	 image	 are	 equidistant	 from	 the	mirror.	Suppose	 I	move	 the



object	closer.	The	image	will	move	out	with	v>	2f.	When	the	object	 is	at	F,
then	 1/v	 =	 0,	 which	means	 v	 =	 ∞.	 This	 is	 just	 the	 reverse	 of	 an	 incoming
parallel	beam	converging	at	F.	Now	let	us	push	our	luck	and	let	u	<	f.	Where
is	the	image?	From

we	 find	 that	v	<	0.	But	 a	negative	v	means	 the	 image	 is	behind	 the	mirror!
How	 can	 there	 be	 an	 image	 behind	 an	 impenetrable	mirror?	The	 answer	 of
course	 is	 that	 there	 isn’t	 an	 image	 there	 but	 it	 will	 look	 that	 way.	 To
understand	this	we	can	try	some	ray	tracing,	as	indicated	in	Figure	17.5.	First
we	draw	a	ray	from	the	tip	(T)	of	the	object	that	hits	the	mirror	parallel	to	the
axis	and	then	gets	reflected	through	F.	This	ray,	call	it	ray-1,	is	supposed	to
intersect	the	ray	that	first	crossed	F,	hit	the	mirror,	and	emerged	parallel.	But
if	you	draw	a	 ray	 from	 the	 tip	T	 to	F,	 it	 points	away	 from	 the	mirror!	 It	 is
never	going	to	reflect	off	the	mirror	at	all.	So	what	we	are	told	to	do	is	this:
draw	 the	 second	 ray,	 ray-2,	 from	 F	 to	 T.	 If	 you	 continue	 it	 till	 it	 hits	 the
mirror,	 it	 will	 emerge	 parallel	 upon	 reflection.	 (This	 is	 true	 because	 if	 you
reverse	 the	 entire	 ray,	 you	 have	 an	 incoming	 parallel	 ray	 hitting	 the	mirror
and	 ending	 up	 at	F.)	 So	we	 have	 successfully	 drawn	 two	 rays	 obeying	 the
laws	 of	 reflection,	 but	 they	 are	moving	 away	 from	 each	 other	 and	will	 not
intersect	 in	 the	 right	 side	 of	 the	 mirror.	 On	 the	 other	 hand,	 if	 continued
backward	 through	 the	mirror	 (dotted	 lines	 in	 the	 figure),	 the	 rays	will	meet.
The	meeting	point	is	the	virtual	image	of	the	tip	because	the	rays	of	light	will
seem	to	be	coming	from	there.

Figure	17.5			Virtual	image	formation	for	concave	mirror	when	the	naive	construction	fails.	First,	the
ray	from	the	tip	T	and	passing	through	F	does	not	hit	the	mirror.	So	it	is	continued	the	other	way	till	it
does	and	emerges	parallel	(ray	2).	But	it	does	not	intersect	ray	1	which	hits	the	mirror	parallel	to	the
axis	and	gets	reflected	through	F.	However,	if	continued	to	the	dark	side,	rays	1	and	2	appear	to	come
from	the	virtual	image	on	the	left.	The	standard	equation	holds	with	v	=	−	|v|	negative.

A	question	still	remains:	will	the	virtual	image	location	|v|	to	the	left	of	the
mirror	 obey	 Eqn.	 17.25?	 It	 will,	 despite	 the	 fact	 that	 the	 image	 is	 virtual.



Equate	 the	 two	 expressions	 for	 tanβ,	 one	 from	 the	 small	 right	 triangle	with
vertical	side	h0	and	the	other	from	the	larger	one	with	vertical	side	hi:

Now	do	the	same	for	angle	α:

We	have	seen	this	pair	before	and	know	that	they	lead	to	Eqn.	17.25	and	the
magnification	formula.	For	example,	equating	 the	quotients	of	 the	 two	sides
we	find

because	|v|	=	−	v.	Equation	17.30	is	the	same	as	Eqn.	17.8	for	the	real	image.
The	least	time	approach	can	also	reproduce	these	results,	but	only	after	we

invoke	some	clever	tricks.

17.5			Lenses	à	la	Fermat
Look	at	 the	lens	 in	Figure	17.6.	I	have	an	object	O,	which	is	 infinitesimally
tall	at	the	distance	u	to	the	left	of	the	center	of	the	lens.	I	want	the	lens	to	form
its	image	I	on	the	other	side,	at	a	distance	v,	through	the	convergence	of	many
rays,	all	taking	the	least	time.	The	shortest	route	goes	straight	from	object	to
image	a	distance	u	+	v,	while	others	that	cross	the	lens	at	higher	altitudes	are
longer.	They	still	have	a	chance	 to	be	competitive	because	 least	distance	no
longer	means	least	time:	light	travels	in	the	lens	at	a	reduced	velocity	of	c/n.
This	means	that	as	far	as	travel	time	goes,	1	cm	of	lens	is	equal	to	n	cm	of	air.
The	figure	shows	one	ray	going	in	a	straight	line	through	the	thickest	part

of	the	lens.	Another	skips	the	lens	entirely	and	grazes	over	the	topmost	point
P.	We	will	simply	equate	the	times	for	two	extremes.	That	the	times	are	equal
for	 intermediate	 heights	 (in	 the	 usual	 approximation	 of	 dropping	 higher
powers	of	small	quantities)	is	harder	to	show	and	will	not	be	attempted	here.



Figure	17.6			The	focusing	lens	whose	faces	are	part	of	spheres	of	radius	R.	The	time	taken	to	go	from
the	object	(O)	to	the	image	(I)	is	the	same	along	the	two	indicated	paths.	The	shorter	path	straight
through	the	lens	takes	the	same	time	as	the	one	that	grazes	the	top	(P)	because	light	travels	at	speed	c/n
in	the	lens.

Assuming	 that	 each	 lens	 surface	 is	 part	 of	 a	 sphere	 of	 radius	R,	 the	 old
formula

from	our	study	of	spherical	mirrors	tells	us	that	the	distance	δ	in	the	figure	is

where	h	is	the	height	of	the	lens.
The	 ray	 that	 goes	 straight	 travels	 a	 distance	 u	 −	 δ	 to	 the	 lens,	 then	 a

distance	2δ	inside	the	lens,	and	finally	a	distance	v	−	δ	on	the	other	side	to	the
image	 point.	 If	we	 divide	 the	 distances	 in	 air	 by	 c	 and	 the	 distances	 in	 the
glass	by	c/n	we	find	the	total	time	is

Multiplying	both	sides	by	c	we	find	the	part	in	the	lens	counts	for	a	distance
2nδ	as	advertised:

For	the	path	that	grazes	the	topmost	point	at	P,



For	the	paths	to	take	the	same	time,	we	need

We	are	free	to	call	the	combination	2(n−1)/R	what	we	want,	but	in	calling	it
	we	are	implying	it	is	the	inverse	focal	length.	And	it	is.	If	we	set	u	=	∞,	that
is,	place	the	object	at	infinity,	the	image	location	v	must	equal	f.	This	is	true	in
Eqn.	17.38.
Notice	 that	 there	 are	 two	ways	 to	 find	 the	 focal	 length.	One	 is	 to	 do	 an

experiment	 with	 parallel	 rays	 and	 see	where	 they	meet.	 But	 what	 we	 have
here	 is	 a	 calculation	 of	 the	 focal	 length	 in	 terms	 of	R	 and	n.	 The	 resulting
formula	will	tell	you	what	to	do	if	your	lens	has	a	focal	length	that	is	too	big
or	too	small.	You	can	vary	it	by	varying	either	n	or	R.	You	can	take	different
materials	or	you	can	take	different	radii	of	curvature.

17.6			Principle	of	least	action
Fermat’s	 principle,	 which	 describes	 light,	 can	 be	 generalized	 to	 describe
particles.	 Consider	 a	 Newtonian	 particle	 that	 goes	 from	 (x1,	 t1)	 to	 (x2,	 t2).
Generically,	 there	 is	 only	 one	 Newtonian	 trajectory	 passing	 through	 both.
(Two	 points	 on	 a	 trajectory	 replace	 the	 initial	 position	 and	 velocity	 at	 one
point	 in	 fixing	 the	 trajectory.)	 It	 follows	 a	 trajectory	 xN(t)	 shown	 in	 Figure
17.7,	determined	by	solving	F	=	ma.	How	is	that	path	xN(t)	different	from	all
possible	paths	x(t)	 one	 could	draw	between	 those	 two	end	points?	 It	 is	 true
that	 at	 each	 point	 it	 obeys	 md2x/dt2	 =	 −	 dV/dx.	 But	 that	 is	 a	 very	 local
statement.	 Is	 there	 anything	 global	 we	 can	 say	 about	 the	 trajectory	 as	 a
whole?
The	answer	is	that	we	can:	it	is	the	path	of	least	action,	where	the	action	S

is	defined	as



If	 I	give	you	a	path	x(t),	you	can	find	 its	action	S	 [x(t)]	as	a	function	of	 the
path	by	integrating	the	difference	of	the	kinetic	and	potential	energies	on	this
path.	 Thus	 S	 is	 a	 function	 of	 the	 entire	 path	 x(t)	 under	 consideration.	 A
function	of	a	function	is	called	a	functional	and	this	one	is	written	S[x(t)].
The	claim	is	that	the	Newtonian	path	is	the	path	of	least	action.

Figure	17.7			The	thick	line	is	the	actual	path	taken	by	the	particle	on	the	path	of	least	action.	The
thinner	line	shows	a	neighboring	path	that	deviates	by	δx(t)	at	time	t.	The	total	change	in	action	δS	due
to	this	change	is	required	to	vanish	to	first	order	in	δx(t).	This	yields	the	Euler-Lagrange	equation,
which	reduces	to	F	=	ma.

In	the	case	of	reflection,	in	looking	for	the	path	of	least	time,	we	considered
very	simple	paths.	They	were	made	of	two	straight	segments	and	specified	by
just	one	variable:	the	value	of	x	where	the	ray	hit	the	mirror.	If	xmin	led	to	the
path	of	least	time,	it	had	to	be	the	solution	to

Equivalently	we	could	say	that	since

dT,	the	change	in	T	to	first	order	in	dx,	vanishes	at	xmin.	So	it	should	really	be
called	 the	path	of	stationary	 time	and	not	 least	 time.	 (Whether	or	not	 it	 is	a
minimum	is	determined	by	the	second	derivative,	which	we	did	not	examine.)
But	the	name	has	stuck	in	optics	and	mechanics.
The	 problem	 of	 minimizing	 S	 in	 mechanics	 is	 more	 difficult	 than

minimizing	T(x)	for	reflection.	Whereas	T(x)	is	a	function	of	the	only	variable



at	hand,	 the	 location	x	of	 the	point	of	reflection,	 the	action	S	depends	on	an
entire	 function	 x(t).	 The	 path	 is	 not	 assumed	 to	 be	 made	 of	 straight	 lines.
Given	 the	 two	 end	 points	 (x1,	 t1)	 and	 (x2,	 t2)	 we	 need	 to	 consider	 every
conceivable	path	joining	them.	We	have	to	select	the	path	of	least	action	from
among	these.	We	may	still	use	the	fact	that	if	the	path	of	least	action	is	altered
infinitesimally	 by	 an	 amount	 δx(t)	 at	 time	 t,	 as	 shown	 in	 Figure	 17.7,	 the
action	 should	 not	 change	 to	 first	 order	 in	 δx(t).	 This	 is	 a	 problem	 in	 the
calculus	 of	 variations.	 The	 analog	 of	 dT/dx	 =	 0	 are	 the	 Euler-Lagrange
equations.	These	turn	out	to	be	just	Newton’s	laws.	In	other	words,	to	follow
the	path	of	least	action,	the	particle	need	not	compute	S	 in	advance	for	each
possible	path	and	then	pick	the	winner;	 it	has	only	to	obey	Newton’s	law	at
each	instant.
Why	do	we	bother	with	the	principle	of	least	action	if	the	equations	we	get

in	 the	 end	 are	 equivalent	 to	 Newtonian	 mechanics?	 There	 are	 many
advantages	 that	 were	 appreciated	 even	 in	 the	 years	 following	 this
development.	 You	 can	 find	 them	 in	 any	 book	 on	 advanced	 mechanics	 or
online.	 More	 recently,	 Richard	 Feynman	 (1918–1988)	 discovered	 a	 simple
way	to	state	the	laws	of	quantum	mechanics	in	terms	of	the	action	of	classical
paths.	There	 is	no	such	 route	 starting	with	F	=	ma.	All	of	modern	quantum
field	theory	is	stated	in	this	 language	of	action.	For	example,	 if	you	want	 to
formulate	the	theory	of	how	quarks	and	gluons	interact,	you	do	not	seek	the
analog	of	F	=	ma,	you	seek	the	correct	action	written	in	terms	of	quark	and
gluon	 variables.	 (The	 action	 is	 not	 the	 time-integral	 of	 the	 difference	 of
kinetic	and	potential	energies	except	 in	the	simplest	problems	of	mechanics.
For	a	particle	 in	a	magnetic	 field,	 the	action	 is	cooked	up	so	 that	 the	Euler-
Lagrange	equations	reduce	to	F	=	q(E	+	v	×	B).	Incidentally,	the	action	can
be	written	only	in	terms	of	A	and	V	and	not	E	and	B.)

17.7			The	eye
The	 human	 eye	 and	 visual	 system	 are	 very	 very	 impressive.	 You	 place	 an
object	 in	 front	of	 it	 and	 the	 lens	 in	 the	 eye	 forms	an	 inverted	 image	on	 the
retina.	The	inversion	of	the	image	is	a	well-defined,	objective,	and	verifiable
claim.	If	I	look	into	your	retina	as	you	look	at	an	upright	candle,	the	image	of
the	candle	will	be	inverted.	But	this	inversion	doesn’t	seem	to	bother	us.	After
all,	at	what	stage	do	we	really	see	something?	It’s	not	very	clear.	Do	we	see	it
in	 the	 retina	or	 do	we	 see	 it	 in	 the	brain?	There	 is	 simply	 a	 1:1	 correlation
between	what’s	registered	in	my	retina	and	what	I	run	into	in	my	real	life.	I’m
walking	 around,	 and	 I	 bump	 into	 the	 upside-down	 table.	 The	 fact	 that	 it’s
upside-down	 in	 the	 retina	 is	 not	 relevant.	 I	 know	 how	 to	 place	 an	 upside-
down	cup	of	coffee	on	the	upside-down	table.	The	brain	has	learned	how	to
translate	 the	 image	 on	 the	 retina	 into	 what	 we	 will	 encounter.	 In	 fact,	 the



brain’s	 ability	 to	 manipulate	 images	 has	 been	 demonstrated	 in	 a	 bizarre
experiment,	where	participants	wore	glasses	that	 inverted	retinal	 images	one
more	time.	After	a	few	days,	those	guys	were	just	fine.	So	the	visual	system
has	a	lot	of	software	behind	it.	I	learned	that	the	hard	way	when	I	had	an	eye
operation	 and	 the	 doctor	 pulled	 off	 the	 bandage	with	 a	 flourish.	 I	was	 in	 a
panic:	 I	 could	 not	 focus	 and	 was	 seeing	 double.	 My	 doctor	 didn’t	 seem
particularly	worried.	He	said,	“You’ll	be	fine	in	a	few	days.”	Now	I’ve	heard
that	line	before	and	was	not	comforted.	But	slowly,	my	vision	got	better	and
better,	 not	 due	 to	 any	 more	 surgery.	 Slowly	 my	 brain	 began	 to	 reprogram
itself	with	respect	to	the	new	parameters,	to	once	again	correlate	the	images	in
the	eye	with	what	was	actually	out	there.
So	 much	 for	 the	 impressive	 software.	 But	 let	 us	 look	 at	 the	 hardware

responsible	 for	 the	 imaging	 on	 the	 retina.	We	 can	 see	 a	 potential	 problem
there.	The	retina	is	at	a	fixed	distance	from	the	lens,	equal	to	the	diameter	of
the	 eyeball.	 That	means	 v	 is	 fixed.	 Even	 as	 we	 vary	 u,	 the	 location	 of	 the
object,	we	want	a	sharp	image	on	the	retina	at	fixed	v.	But	we	know	from	the
lens	equation

that	v	is	determined	by	u	and	should	vary	with	it.	How	does	the	eye	manage?
The	answer	is	that	something	we	have	always	held	constant	so	far,	the	focal
length	f,	changes.	That	is	the	amazing	thing	about	the	human	lens.	It’s	made
out	 of	 some	 jelly-like	 stuff,	 and	 there	 are	 some	 muscles	 pulling	 it.	 If	 the
muscles	pull	it,	it	will	become	longer	and	thinner,	and	it	will	have	one	focal
length.	If	the	muscles	relax,	it	will	have	another	focal	length.	When	I	look	at
an	object	far	away,	the	muscles	are	in	the	relaxed	state.	As	the	object	comes
closer,	it	takes	a	certain	effort	to	focus	on	it.
Let	us	move	on	to	the	image	so	produced	on	the	retina.	I	will	use	another

principle	 from	ray	optics	best	 suited	 for	 this	discussion:	 the	 ray	 through	 the
center	of	 the	 lens	goes	straight	 through.	 (At	 the	center	 the	opposite	 faces	of
the	lens	are	parallel,	if	we	do	not	go	too	far	off-axis,	and	light	refracts	coming
in	and	going	out	as	if	through	a	glass	slab	with	parallel	faces.	In	this	case	we
know	it	emerges	in	the	same	direction	and	with	a	lateral	displacement	that	is
negligible	in	this	context.)	From	the	upper	half	of	Figure	17.8	we	see	that	the
apparent	size	of	anything,	the	size	of	its	image	on	the	retina,	is	decided	by	the
angle	subtended	by	the	object,	θ	≃	 tanθ	=	h/u.	If	the	object	is	small,	we	just
bring	it	closer	till	h/u	is	big	enough.	If	we	could	do	this	indefinitely,	we	would
not	need	a	microscope.	If	we	want	to	see	little	bacteria,	we	just	pull	the	little
guys	really	close	to	our	eye.	But	this	does	not	work	beyond	some	point.	The
eye	cannot	focus	anything	that	is	closer	than	the	near	point,	which	is	roughly



N	=	25	cm	away.	The	muscles	pulling	on	the	lens	cannot	deform	it	any	more.
For	an	object	of	fixed	height	h,	the	best	you	can	do	is	therefore

Figure	17.8			Top:	Without	the	magnifying	lens	the	biggest	subtended	angle	θ0	is	obtained	by	placing
the	object	at	the	near	point	N.	Bottom:	With	the	magnifying	lens,	the	subtended	angle	is	larger	because
the	object	is	now	closer	than	N,	but	the	virtual	image	(with	the	same	opening	angle	θ)	is	far	away	and
easier	on	the	eye.

Suppose	you	bring	it	closer	anyway.	There	is	good	news	and	bad	news.	The
good	news	is	that	the	image	on	the	retina	is	bigger.	The	bad	news	is	that	the
big	image	is	blurry.	Your	lens	cannot	focus	the	image	on	the	retina	because	it
is	too	close.	The	solution	is	to	view	it	through	a	magnifying	lens.	As	shown	in
the	figure,	it	produces	a	virtual	image	with	the	same	subtended	angle,	but	at	a
convenient	 distance.	Usually	 the	 preferred	v	 is	 large.	 In	 the	v	 =	∞	 limit	we
have

i.e.,	you	place	the	object	at	the	focal	point	of	the	lens.	The	angular	size	of	the
object	(now	at	u	=	f)	is



The	magnification	is	defined	as	the	ratio	of	subtended	angles

Thus	a	lens	with	f	=	2.5	cm	will	cause	a	magnification	of	25/2.5	=	10.
It	 is	 possible	 to	 improve	on	 the	magnification	beyond	N/f	 a	 bit	 if	we	 are

willing	to	suffer	a	little.	We	begin	with	the	formula	for	the	general	placement
of	the	object	(not	necessarily	at	F):

Clearly	M	 increases	as	 |v|	decreases,	but	we	cannot	make	it	 too	small:	we
require	 |v|	 ≥	 N	 for	 us	 to	 see	 the	 virtual	 image	 clearly.	 Thus	 the	 best
magnification	possible,	with	the	virtual	image	at	the	near	point,	is

The	price	you	pay	for	the	extra	1	in	magnification	is	that	you	have	to	look	at
an	 image	 at	 the	 limit	 of	 your	 capabilities,	 which	 can	 be	 very	 tiring	 after	 a
while.	 You	 might	 gladly	 give	 up	 this	 gain	 of	 1	 in	 magnification	 for	 the
comfort	of	an	image	at	infinity	if	you	were	a	jeweler	or	watchmaker.
Can	you	really	see	something	at	infinity?	You	can,	if	it	 is	infinitely	large.

The	 idea	 is	 that	 if	 you	 make	 the	 object	 bigger	 and	 bigger	 as	 it	 recedes,
keeping	the	angle	subtended	constant,	you	will	see	it	no	matter	how	far	away
it	is.	In	practice,	infinity	really	means	far	enough	that	the	rays	that	come	from
it	are	very	nearly	parallel.



CHAPTER	18

Wave	Theory	of	Light

We	 now	 go	 forward	 in	 time	 from	 geometric	 optics.	 As	 always,	 it	 was
overthrown	by	the	one	authority	we	all	must	bow	to:	experiment.
If	your	theory	doesn’t	agree	with	the	experiment	it’s	over,	even	if	your	first

name	 is	 Isaac	 or	 Albert.	 And	 conversely,	 if	 you’re	 an	 unknown	 newcomer
who	makes	 predictions	 that	 agree	with	 experiment	 you	 become	 a	 rock	 star.
Everything	 is	 based	 on	 experiment.	 That’s	 the	 only	 way	 we	 change	 our
minds.	Now	you	might	say,	“Why	do	you	keep	doing	this	to	us?	We	believe
everything	you	 tell	 us.	We	write	 everything	down.	We	do	 the	 problem	 sets
and	 then	you	 say,	 ‘Oh,	 the	 theory	 I	 taught	 you	 the	other	 day	 is	 inadequate.
Here’s	 a	 better	 theory.’	 What’s	 going	 on?	 Are	 physicists	 really	 wrong	 so
often?”	I	have	to	be	very	careful	when	I	say	we	are	wrong	because	the	news
leaks	 to	 the	 press	 and	 the	 media	 who	 will	 say,	 “Physicists	 think	 they’re
always	wrong.”	In	fact,	 I’ve	gone	on	record	saying,	“We’re	always	wrong.”
What	I	mean	is	that	no	matter	how	many	laws	we	find,	one	day	we	will	find
some	new	experiments	that	are	not	explained	by	these	laws.	That’s	not	really
bad	news.	That’s	what	keeps	us	in	business.	We	want	to	find	something	that
doesn’t	fit	anything	we	know.	For	example,	Newtonian	mechanics	is	wrong	in
the	sense	that	it	doesn’t	work	when	velocities	approach	the	speed	of	light,	but
it’s	not	wrong	in	the	sense	that	the	predictions	it	made	in	its	proper	domain	do
not	 work	 anymore.	 It	 was	 supposed	 to	 work	 in	 a	 limited	 range	 of
experimental	observations.	If	you	cross	the	limit,	if	you	build	accelerators	that
send	 particles	 at	 very	 high	 speeds,	 you	 may	 find	 the	 particles	 don’t	 obey
Newtonian	mechanics.	Then	you	need	Einstein’s	special	relativity.
Now	if	you	have	a	theory	like	Einstein’s,	a	new	theory	that	overthrows	the

old	theory	and	explains	new	phenomena,	there	is	still	one	extra	requirement.
Can	you	guess	what	that	might	be?	It	is	that	the	old	experiments,	which	were
explained	by	the	old	theory,	must	be	explained	by	the	new	theory	as	well.	In
fact	 the	new	theory,	when	it’s	a	good	one,	will	also	explain	why	people	fell
for	the	old	theory	for	so	many	years.	Relativity	does	just	that.	It	works	for	all
velocities	 up	 to	 the	 speed	 of	 light,	 but	 if	 you	 let	 	 you	 will	 get	 back
Newtonian	 mechanics.	 Similarly,	 quantum	 mechanics	 is	 essential	 for	 very,
very	 tiny	objects	at	 the	atomic	scale,	but	 if	you	apply	 it	 to	big	 things	you’ll
find	 that	 the	 world	 begins	 to	 look	 Newtonian.	 The	 quantum	 equations	 of
motion	reduce	to	Newton’s	laws	for	macroscopic	objects.
We	 now	 turn	 to	 the	 experiments	 that	 signaled	 the	 limits	 of	 geometrical



optics.	I	will	tell	you	in	due	course	why	we	didn’t	realize	there	was	something
wrong	with	it	for	so	long.
Consider	the	experiment	I	already	mentioned	at	the	beginning	of	geometric

optics.	 In	 it	 there	 is	 an	 opaque	 partition	 with	 light	 coming	 from	 one	 side,
going	 through	 a	 hole	 and	 illuminating	 a	 screen	 on	 the	 other	 side.	 The
illuminated	region	is	of	the	same	shape	and	size	as	the	hole.	As	you	shrink	the
hole,	 the	 light	 begins	 to	 spread	out	 to	 bigger	 and	bigger	 areas.	 It	 no	 longer
forms	the	geometric	 image	of	 the	aperture.	In	addition,	 the	intensity	of	 light
oscillates	and	dies	off	as	we	move	off	the	center.	These	features	are	not	going
to	come	from	geometric	optics.	Something	has	to	take	its	place.	A	major	clue
came	 from	 the	 experiment	 performed	 in	 1801	 by	 Thomas	 Young	 (1773–
1821).	That	dramatic	experiment	really	demolished	the	ray	theory	of	light.	It
involves	a	phenomenon	called	interference.
Young’s	experiment	is	depicted	in	Figure	18.1.	We	are	looking	down	at	a

rectangular	 experimental	 region.	 Light	 is	 emitted	 by	 a	 source	E	 on	 the	 left
wall.	At	the	right	wall	is	a	screen	to	receive	the	light.	(The	screen	and	the	rest
of	 the	 apparatus	 have	 a	 dimension	 perpendicular	 to	 the	 page.)	Between	 the
two	walls	is	an	opaque	barrier	with	two	slits	S1	and	S2,	which	can	be	open	or
closed.	The	top	half	of	the	figure	shows	the	intensity	I1(y)	as	a	function	of	the
coordinate	y	measured	along	the	back	wall,	with	just	S1	open.	The	pattern	for
I1(y)	is	almost	flat	with	a	slight	peak	in	front	of	slit	1.	Not	shown	is	a	similar
pattern	for	I2(y)	with	only	slit	S2	open.



Figure	18.1			Top:	Light	from	the	emitter	E	at	the	left	passes	via	one	open	slit	S1	in	the	opaque	partition
and	illuminates	the	screen	behind	with	an	intensity	pattern	I1(y)	that	is	almost	flat	and	slightly	peaked	in
front	of	slit	1.	A	similar	pattern	I2(y)	obtains	when	only	slit	S2	is	open	(not	shown).	Bottom:	When	both
slits	are	open	the	result	is	the	oscillatory	pattern	I1+2	instead	of	I1	+	I2,	the	sum	of	the	two	intensities
(shown	by	a	dotted	curve).	At	the	point	X,	there	is	less	light	with	both	slits	open	than	with	one.

What	 intensity	I1+2	do	you	expect	when	both	slits	are	open?	If	 this	was	a
case	of	sunlight	streaming	through	two	windows,	your	expectation	would	be
that	 you	 will	 simply	 get	 the	 sum	 of	 the	 intensities.	 If	 you	 sat	 in	 a	 region
illuminated	by	both	windows,	you	expect	to	have	more	light	and	warmth	than
with	just	one	window	open.	This	expectation	is	shown	by	a	dotted	line	labeled
I1	 +	 I2	 in	 the	 lower	 half	 of	 the	 figure.	 This	 expectation	 would	 indeed	 be
realized	if	you	were	talking	about	sunlight	streaming	through	two	windows.
However,	 this	 is	not	what	happened	 in	Young’s	experiment.	He	found	an

intensity	pattern	labeled	as	I1+2,	where

In	the	screen	(which	extends	perpendicular	to	the	page),	these	oscillations	in
I1+2	correspond	to	vertical	stripes	of	bright	and	dark.
This	is	called	interference.	Here	are	the	main	differences	between	I1+2	and

I1	+	I2.	At	a	place	like	M	the	intensity	is	four	times	that	with	just	one	slit	open
and	not	 twice.	Then	there	are	places	where	you	get	 less	 light	with	both	slits



open	than	with	just	one	open,	the	most	dramatic	of	these	being	places	like	X
that	got	 some	 light	when	one	or	 the	other	 slit	was	open,	 but	 no	 light	 at	 all
with	both	slits	open.
The	oscillatory	graph	I1+2	does	not	make	any	sense	in	ray	optics:	it	explains

neither	 the	broad	 regions	 illuminated	when	one	narrow	slit	 is	open	nor	why
opening	 a	 second	 slit	 can	make	 it	 darker	 at	 a	 point	 like	X.	But	 I1+2	 is	 very
familiar	 from	experiments	with	waves,	 say	 in	water.	 (Take	a	peek	at	Figure
18.4	 if	you	want.	We	will	 return	 to	 it	 later	 in	some	detail.)	 Imagine	 that	 the
source	of	light	is	replaced	by	a	source	of	water	waves	of	some	wavelength	λ.
The	 opaque	 partition	with	 slits	 is	 replaced	 by	 a	 barrier	 with	 two	 slits.	 The
screen	on	which	 light	 is	 incident	on	 the	 right	 is	 replaced	by	a	 line	of	 corks
bobbing	up	 and	down	 to	measure	 the	wave	 amplitude.	Then	 the	 intensities,
which	are	squares	of	these	amplitudes,	will	look	just	like	I1,	I2,	and	I1+2.	More
importantly,	they	can	be	readily	explained	by	wave	theory,	as	we	shall	see.
This	is	why	Young’s	interference	experiment	convinced	everyone	that	light

was	a	wave.	He	could	even	find	the	wavelength	λ,	though	he	had	no	idea	what
was	waving.	That	had	to	await	Maxwell.
Why	do	we	not	see	interference	of	light	when	we	open	a	second	window?

Does	 not	 every	 place	 get	 brighter?	 If	 you	were	warm	 at	X	 due	 to	 the	 light
coming	from	window	S1	and	you	told	somebody,	“Hey,	this	is	good,	open	the
other	window,”	you	will	end	up	getting	more	light	and	warmth.	You	will	not
get	less,	because	the	interference	pattern	as	described	by	the	oscillatory	graph
I1+2	will	be	realized	only	under	the	following	conditions.
1.	The	light	must	have	definite	wavelength.	The	reason	is	that	the	locations	of	the	maxima	and
minima	vary	with	λ	and	these	features	will	get	washed	out	in	a	mixture.	Sunlight,	which	is	a	mixture
of	many	λ’s,	does	not	qualify.
2.	The	wavelength	λ	must	be	comparable	to	or	larger	than	the	size	of	the	slits	or	the	spacing	between
them.	This	is	also	not	true	for	sunlight	entering	through	two	windows.

Figure	18.2			If	the	oscillations	are	too	rapid,	any	probe	(such	as	your	eyes)	would	sense	the	average	of
I1+2,	the	dotted	curve	I1	+	I2.

If	 monochromatic	 light	 (light	 of	 definite	 λ)	 were	 coming	 in	 from	 two
windows	 to	 a	 certain	 place,	 there	 could,	 in	 principle,	 be	 oscillations	 due	 to
interference,	but	the	spacing	between	the	crests	and	troughs	would	be	so	small



none	of	your	senses	would	discern	them.	Your	eyes	would	spatially	average
the	pattern	I1+2	over	many	cycles	and	only	see	the	dotted	line	I1	+	I2	shown	in
Figure	18.2.

18.1			Interference	of	waves
Let	us	look	at	interference	in	general,	for	any	kind	of	wave.	Let	us	denote	by
ψ	 whatever	 is	 oscillating.	 It	 can	 be	 the	 deviation	 from	 equilibrium	 of	 the
position	of	a	string,	air	pressure,	or	the	height	of	water.	The	 inhomogeneous
linear	wave	equation	in	one-space	dimension	is

S(x,	t)	is	called	the	source	term	or	driving	term.	This	could	describe	a	string
that	is	responding	not	only	to	its	internal	forces,	but	also	an	external	force,	say
a	violin	bow.
In	higher	dimensions,	it	is

The	wave	equation	is	linear.	This	implies	that	if

because	we	can	take	the	derivatives	in	∇	·	∇	through	A	and	B.	This	means	that
you	can	take	two	solutions,	ψ1	and	ψ2,	which	are	the	responses	to	S1	and	S2,
multiply	by	constants	A	or	B,	and	add	them	to	get	the	response	to	AS1	+	BS2.
That’s	 the	 principle	 of	 superposition.	 Clearly	 it	 holds	 for	 the	 homogeneous
case	with	no	sources	S1	=	0	and	S2	=	0.
What	if	someone	tried	to	convince	you	that	the	ψ	in	a	linear	homogeneous

problem	is	always	positive?	How	will	you	refute	that	argument?	The	answer
is	 that	 if	 ψ	 were	 such	 a	 positive	 solution,	 then	 (−1)ψ,	 which	 is	 always



negative,	would	also	have	to	be	a	solution.
If	ψ	can	be	positive	or	negative,	it	cannot	stand	for	things	that	are	always

positive	 such	 as	 the	 brightness	 of	 light	 or	 the	 energy	 in	 a	wave.	The	worst
thing	you	can	have	is	no	light.	You	cannot	have	negative	brightness.	That	is
why	in	the	electromagnetic	theory	of	light,	brightness	is	not	measured	by	the
electric	 (or	 magnetic)	 field,	 which	 can	 have	 either	 sign,	 but	 by	 something
quadratic	in	the	field,	which	we	have	seen	is	the	intensity	I.	The	intensity	in
general	(say	of	sound)	is	proportional	to	the	square	of	whatever	is	oscillating.
It	is	the	measure	of	the	energy	contained	in	the	wave.
Therefore	when	you	have	one	 source	 producing	 some	 light	 and	 a	 second

source	producing	some	light,	together	they’ll	produce	a	field	that	is	the	sum	of
the	two	fields.	What	you	can	add	or	superpose	is	ψ,	which	in	this	case	happen
to	be	E	and	B.	You	cannot	add	the	intensities.	But	there	is	a	definite	rule	for
total	intensity,	which	follows	from	its	definition.	If

In	 the	 last	equation,	 the	first	 two	 terms	are	positive,	but	 the	 last	can	have
either	sign.	It	is	the	one	that	causes	the	oscillations.	However,	the	oscillations
cannot	be	more	negative	 than	 the	sum	of	 the	 first	 two	 terms	since	 the	 total,
being	a	square,	must	be	positive.
So	 there	 are	 two	 levels	 at	which	 things	 happen	with	waves.	There	 is	 the

thing	that	actually	oscillates	and	obeys	the	wave	equation,	and	then	there	is	its
square,	 which	 represents	 energy	 or	 brightness.	 The	 superposition	 principle
applies	 to	 the	 thing	 that	 oscillates	 and	 not	 to	 its	 square.	 That’s	 why	 in	 the
experiment	 when	 you	 open	 a	 second	 slit,	 some	 places	 like	 X	 can	 become
darker	than	they	were	with	just	one	slit	open.
We	will	shortly	begin	our	study	of	quantum	mechanics.	There	too	we	will

encounter	a	ψ	called	the	wave	function.	Now	that’s	a	very	bizarre	object.	Let
me	just	say	for	now	that	it	is	intrinsically	complex.	Remember	the	harmonic
oscillator	where	we	viewed	the	physical	variable	x	=	Acosωt	as	the	real	part
of	x	=	Aeiωt?	We	brought	in	the	complex	exponential	because	it	made	it	easier
to	 solve	 certain	 equations.	 In	 the	 end	 we	 took	 just	 the	 real	 part.	 But	 in
quantum	mechanics	all	of	ψ,	 its	 real	part	and	 imaginary	parts,	 is	needed.	 In
fact	 there	 is	 an	 i	 right	 in	 the	Schrödinger	 equation,	 the	 analog	of	Newton’s
law.	There	is	no	escaping	complex	numbers	in	quantum	mechanics.
Clearly	in	the	quantum	case	the	analog	of	intensity	cannot	be	ψ2	because	it



is	not	always	positive	or	even	real.	For	example,	if	ψ	=	3+4i,	then	ψ2	=	9	−	16
+	 24i.	 You	 must	 know	 enough	 about	 complex	 numbers	 to	 guess	 the
corresponding	intensity:

In	 general	 you	may	 take	 I	 =	 |ψ|2,	 for	 if	ψ	 happened	 to	 be	 real,	 you	will
simply	find	|ψ|2	=	ψ2.

18.2			Adding	waves	using	real	numbers
Let	 us	 start	 our	 study	 of	 interference	 of	 waves	 in	 the	 following	 simple
context.	Imagine	that	you	just	sit	at	one	point	and	let	two	waves	come	to	you.
We	are	looking	not	at	the	wave	as	a	function	of	x	and	t	(in	one	dimension)	but
as	a	function	of	just	 t	at	your	location.	For	example,	you	could	be	on	a	lake
and	someone	could	be	rocking	a	boat	somewhere	and	sending	out	ripples	with
a	frequency	ω.	At	your	location	ψ1(t),	the	water	level	relative	to	the	tranquil
lake	is

Now	someone	else	starts	sending	a	second	wave	of	the	same	amplitude,	at	the
same	frequency,	but	out	of	step,	with	a	phase	difference	ϕ:

Remember	 the	phase	difference	between	 two	waves	 is	physically	significant
and	cannot	be	eliminated	by	resetting	your	clock.	We	assume	that

With	both	 sources	 sending	waves,	 the	height	of	 the	water	 (relative	 to	 the
tranquil	lake)	will	be	simply	the	sum	of	the	two	heights:

This	 is	 not	 obvious	 but	 true.	 It	 follows	 from	 the	 linearity	 of	 the	 wave
equation.	(Water	waves	sometimes	obey	a	non-linear	equation	in	which	case
the	heights	will	not	be	additive	when	both	sources	are	on.)	To	proceed	further
we	need	a	trig	identity:



If	you	have	some	doubts	about	the	formula	you	can	test	special	cases.	For
example,	if	α	=	β,	we	have	2cosα	on	the	left	and	2cos0	×	cosα	=	2cosα	on	the
right.	If	β	=	0,	we	get	cosα	+	1	on	the	left	and	 	on	the	right,	which	also
matches.	Finally	both	sides	are	invariant	under	α	↔	β.	While	these	successful
tests	do	not	mean	the	formula	is	right,	a	failure	would	immediately	condemn
it.
Anyway,	this	is	the	right	formula,	and	in	our	case	it	gives

The	sum	therefore	is	a	signal	with	amplitude	 	and	phase	 .
Let	 us	 check	 the	 formula	 in	 a	 couple	 of	 special	 cases.	 If	 ϕ=0,	 the	 two

signals	 are	 identical.	We	 don’t	 need	 any	 fancy	 stuff	 to	 know	 the	 answer	 is
2Acosωt	and	indeed	this	is	true	for	our	answer.	Another	case	you	can	do	very
easily	in	your	head	is	ϕ	=	π.	Since	cos(θ	+	π)	=	−	cosθ,	 the	second	signal	is
exactly	 the	opposite	 of	 the	 first	 and	must	 cancel	 it	 at	 all	 times.	This	 agrees
with	our	result	since	 .
This	was	a	 special	 case	where	 the	 two	waves	had	 the	 same	amplitude.	 If

they	 had	 different	 amplitudes	 the	 formula	 would	 be	 messier	 but	 the	 main
features	 would	 persist	 except	 for	 some	 inevitable	 differences,	 such	 as	 the
impossibility	of	perfect	cancellations.

18.3			Adding	waves	with	complex	numbers
I	am	now	going	to	re-derive	Eqn.	18.18	using	complex	numbers.	One	of	the
reasons	 is	 that	 I	want	 you	 to	 get	 used	 to	 complex	numbers	 in	 readiness	 for
quantum	mechanics.
Recall	that	a	complex	number	z	may	be	written	in	two	ways	as	indicated	in

Figure	18.3(a).	These	are	the	Cartesian	and	polar	forms:



We	 should	 know	 how	 to	 express	 the	 polar	 coordinates	 in	 terms	 of	 the
Cartesian:

and	vice	versa

Figure	18.3			(a)	Polar	and	Cartesian	forms	of	z.	(b)	The	complex	ψ	and	its	real	part,	the	physical	ψ.	(c)
Adding	two	complex	ψ’s.

A	real	function	ψ	=	Acosωt	may	therefore	be	written	as

Let	us	define	a	complex	ψ



whose	real	part	is	our	ψ:

as	 shown	 in	 Figure	 18.3(b).	 One	 can	 visualize	 ψ	 as	 a	 rotating	 complex
number	of	 length	A	 and	phase	angle	θ	=	ωt,	 and	ψ	 as	 its	 instantaneous	 real
part.	As	time	goes	by,	the	vector	ψ	rotates	and	its	projection	on	the	real	axis
describes	the	physical	and	real	variable	ψ.	If	there	were	a	light	source	shining
down	the	y-axis,	the	shadow	of	ψ	on	the	real	axis	would	be	our	ψ.
Suppose	we	want	to	add	two	such	real	waves

Since	the	sum	of	the	real	parts	is	the	real	parts	of	the	sum,	we	may	first	add
the	complex	ψ’s	and	then	take	the	real	part:

Adding	the	complex	ψ’s	is	easy.	From	Figure	18.3	we	can	see	that	the	sum	ψ1
+	ψ2	 is	the	sum	of	two	planar	vectors.	That	the	sum	vector	bisects	the	angle
between	 ψ1	 and	 ψ2	 follows	 from	 the	 congruence	 of	 the	 two	 triangles	 that
make	 up	 the	 parallelogram.	This	means	 the	 phase	 of	 the	 sum	 is	 .	The
length	of	ψ1	+	ψ2	follows	from	vector	analysis

In	our	problem	this	means

Consequently,	the	sum	in	polar	form	is

and



in	agreement	with	Eqn.	18.18.	As	−	π	≤	ϕ	≤	π,	 	is	never	negative	and	the
modulus	sign	in	Eqns.	18.37	and	18.38	may	be	dropped.
Finally	I	am	going	to	do	the	addition	ψ1	+	ψ2	algebraically,	without	the	aid

of	any	pictures:

using

Taking	the	real	part	of	Eqn.	18.41	we	obtain	Eqn.	18.18	once	again.

18.4			Analysis	of	interference
Let	us	now	analyze	the	double-slit	experiment	armed	with	all	these	results.	A
plane	wave	comes	from	the	left	and	hits	a	partition	with	two	slits	and	some	of
it	escapes	to	the	other	side	where	we	have	placed	a	screen,	as	shown	in	Figure
18.4.	We	want	to	understand	the	variation	of	intensity	I(y)	as	a	function	of	the
variable	y	measured	along	the	screen.	If	you	look	at	the	partition	from	where
the	screen	 is,	you	will	 see	 two	glowing	slits.	 It	 is	 intuitively	clear	 that	each
acts	 as	 a	 source	 of	 light.	 (This	 idea	 was	 formalized	 by	 Christian	 Huygens
[1629–1695],	who	used	it	to	propagate	the	wave	in	time	by	treating	each	point
on	the	instantaneous	wave	front	as	a	point	source	of	 light.)	The	waves	from
each	 slit	 will	 radiate	 outward	 from	 that	 slit.	 They	 will	 be	 emitted	 in	 step
because	the	crests	and	troughs	of	the	incoming	wave	that	generate	them	reach
the	slits	at	the	same	time.	The	functions	describing	the	radial	waves	are



Figure	18.4			A	distant	emitter	of	light	E	produces	the	incoming	plane	wave,	which	in	turn	sets	off
synchronized	radial	waves	from	the	two	slits.	The	radial	waves	then	reach	different	points	on	the	screen
labeled	by	y,	with	different	phase	differences.	Their	sum	squared	will	determine	the	intensity	there.	It	is
a	maximum	(constructive	interference)	at	points	like	M	and	a	minimum	(destructive	interference)	at
points	like	X.

Unlike	a	plane	wave	traveling	along	y,	which	behaves	as	cos(ky−ωt),	these
waves	go	out	 radially	 from	 the	 slits	with	a	phase	 that	 changes	with	r	 as	kr,
where	 r	 is	measured	 from	 the	 slits.	Whereas	 the	 plane	wave	 had	 the	 same
phase	at	a	given	y	(at	some	fixed	time,	say	t	=	0),	these	radial	waves	have	the
same	phase	at	a	given	r.	I	show	a	couple	of	crests	and	troughs	of	these	radial
waves.
The	 radial	 waves	 then	 reach	 different	 points	 on	 the	 screen	 labeled	 by	 y,

with	different	phase	differences.	The	square	of	 their	 sum	will	determine	 the
intensity	there.	We	want	to	compute	I1+2(x).
Let	 us	 think	 in	 terms	 of	water	waves	 rather	 than	 electromagnetic	waves,

since	we	can	visualize	them	more	easily	and	the	ideas	are	the	same.	Looking
down	 at	 the	 shallow	 tank	 of	water	 shown	 in	 Figure	 18.4	we	 see	 crests	 and
troughs	of	 the	 incoming	plane	wave,	 shown	by	 solid	 and	dotted	 lines.	 I	 am
sitting	at	the	far	right,	at	a	point	Y,	which	is	at	a	distance	r1	from	slit	S1	and	a
distance	 r2	 from	 S2.	 The	 water	 at	 Y	 will	 be	 bobbing	 up	 and	 down	 by	 an
amount	 equal	 to	what	 the	 signal	 from	S1	 tells	 it	 to	 do	 plus	what	 the	 signal
from	S2	tells	it	to	do.
Let	us	add	the	two	contributions	at	my	location



using	Eqn.	18.17	for	the	addition	of	cosines.	The	final	answer	is	unaffected	by
the	 change	 r1↔r2,	 because	 the	 cosine	 is	 an	 even	 function.	 This	means	 that
whatever	happens	at	a	certain	point	above	the	symmetric	point	M	will	have	to
happen	at	the	same	distance	below	M.
Equation	18.49	tells	us	that	the	signal	at	point	Y	has	amplitude	 ,

frequency	ω,	and	(an	inconsequential)	phase	 .
What	we	really	care	about	is	the	intensity	at	that	point,	given	by	the	square

of	the	amplitude:

From	now	on	I	will	drop	the	subscript	on	I1+2	since	we	will	only	consider
the	case	with	both	slits	open.
Let	us	analyze	how	I(r1,	r2)	varies	as	we	move	up	and	down	the	screen.	Let

δ	denote	the	difference	in	path	lengths	from	the	two	slits	to	a	generic	point	on
the	screen:

Then	what	we	want	to	study	is	the	behavior	of

First	consider	a	point	M	symmetrically	located,	equidistant	from	the	slits.	For
this	point	δ	=	0	and

At	this	point	 the	 total	ψ1+2	has	double	 the	amplitude	due	to	each	slit	and	an
intensity	 I	 that	 is	 four	 times	 as	 big.	 This	 is	 a	 point	 of	 constructive
interference.
We	 can	 understand	 this	 in	 real	 time	 as	 follows.	 The	 two	 slits	 produce



waves	that	are	synchronized	because	the	crests	and	troughs	of	the	plane	wave
that	generate	them	hit	the	slits	simultaneously.	These	radial	crests	and	troughs
then	 travel	 the	 same	 distance	 to	 reach	M	 and	 arrive	 in	 sync.	Thus	 the	 total
signal	at	every	instant	is	double	that	due	to	one	slit,	the	amplitude	is	double,
and	the	intensity	is	quadruple.
As	we	move	off	center,	δ,	the	difference	in	path	length,	will	grow	and	the

cosine	in	Eqn.	18.52	will	fall.	It	will	hit	zero	when

At	this	location	the	signals	from	the	two	slits	exactly	cancel	each	other.	The
signal	from	S2	is	delayed	by	half	a	time	period	(because	it	has	to	travel	half	a
wavelength	more).	You	can	see	in	the	cosine	that	if	you	move	by	half	a	period
or	wavelength,	you	reverse	its	sign.	Thus	when	ψ1	tells	the	water	to	go	up,	ψ2
tells	 it	 to	 go	 down	 by	 the	 same	 amount.	 At	 every	 instant	 the	 signals	 are
negatives	of	each	other	and	the	net	result	is	identically	zero.
This	is	a	point	of	destructive	interference.
As	we	move	further	away	from	M,	the	pattern	repeats	itself.	If	we	go	up	in

y	till	r2	−	r1	is	a	full	wavelength,	it	is	as	if	the	difference	were	zero	and	we	hit
another	 maximum.	 Above	 that	 is	 the	 second	 minimum,	 where	 the	 path
difference	is	3λ/2,	and	so	on.	What	happens	at	a	certain	distance	above	M	also
happens	at	the	same	distance	below	M.
The	following	formula	says	it	all:

Consider	 the	 fact	 that	opening	a	 second	slit	 can	make	a	 spot	 like	X	dark,
whereas	it	used	to	be	bright	with	just	one	slit	open.	This	can	happen	only	with
waves.	In	ray	theory,	the	rays	that	come	with	two	slits	open	will	be	the	sum	of
the	rays	 that	come	from	each	one.	Likewise	 in	Newton’s	corpuscular	 theory
of	light,	the	number	of	light	corpuscles	coming	to	a	point	on	the	screen	with
two	 slits	 open	 will	 be	 the	 sum	 of	 the	 numbers	 coming	 from	 each.	 The
contribution	 from	one	 slit	 cannot	 cancel	 the	 contribution	 from	another.	 It	 is
like	mosquitoes:	if	you	have	two	holes	in	the	mosquito	net,	you	get	twice	as
many	mosquitoes.	Had	 negative	mosquitoes	 been	 possible,	 two	 holes	 could
have	led	to	fewer	mosquitoes	than	one	hole.	But	it	is	not	and	they	do	not.



But	 this	 can	 happen	 with	 waves.	 The	 thing	 with	 waves	 is	 that	 what	 is
additive	is	ψ,	which	is	not	always	positive.	This	leaves	room	for	cancellations
and	 interference.	 Young’s	 experiment	 with	 light	 exhibited	 interference.	 He
did	not	know	what	light	was.	He	did	not	know	about	electromagnetic	waves,
but	he	didn’t	need	to.	If	you	shine	light	through	two	slits	and	you	get	the	dark
and	bright	and	dark	and	bright	fringes,	you	(and	everyone	else)	are	convinced
you	are	dealing	with	a	wave.
His	experiment	also	determined	the	wavelength	of	light	as	follows.
Let	 us	 begin	 with	 the	 conditions	 for	 constructive	 and	 destructive

interference,	 Eqns.	 18.56–18.57,	 expressed	 in	 terms	 of	 δ	 =	 r2	 −	 r1.	 Let	 us
trade	them	for	expressions	in	terms	of	the	parameters	more	readily	measured,
and	 defined	 in	 Figure	 18.5A:	 d,	 the	 spacing	 between	 slits,	 and	 (L,	 y),	 the
coordinates	of	the	point	in	question	relative	to	the	origin	(0,0).	We	will	write
down	an	exact	result	for	the	distances	first	and	then	approximate	it	using	the
smallness	of	d/L,	keeping	only	the	first	power	of	d	(as	we	did	with	the	dipole
field).	The	distance	y	could	be	of	 the	same	order	as	L	and	is	not	considered
small.

Figure	18.5			A:	Computation	of	the	exact	path	difference	r2	−	r1.	B:	Approximate	computation
assuming	the	screen	is	so	far	away	that	the	rays	are	parallel.



where	θ	is	the	angle	of	the	vector	r	joining	the	origin	(0,0),	midway	between
the	slits,	to	the	point	(L,	y).
The	nature	of	the	approximation	can	be	made	more	transparent	by	deriving

the	same	result	more	quickly	in	another	way.	Look	at	Part	B	of	the	figure.	It
shows	 r1	 and	 r2	 as	 parallel	 lines	 going	 to	 a	 very	 distant	 screen.	 The	 extra
distance	associated	with	r2	is	dsinθ.
In	terms	of	d	and	θ	we	may	now	write	Eqns.	18.56	and	18.57	as

where	m	 is	an	 integer.	Beyond	some	m	we	cannot	satisfy	 the	equations.	For
example,	there	will	be	no	maxima	with	mλ	>	d,	for	this	would	require	sin	θ	=
mλ/d	>	1.	As	you	can	see	from	the	figure,	the	longest	path	difference	is	d	(for
both	r1	and	r2	pointing	straight	up	or	straight	down	with	 ).
These	equations	can	be	used	 to	 locate	 the	(angles	of	 the)	various	maxima

(besides	 the	central	maximum)	and	minima.	Conversely,	 from	 the	measured
angles	one	can	infer	λ.	One	can	do	this	for	light,	without	knowing	it	is	the	E
and	B	that	are	oscillating.
Now	 you	 can	 see	 why	 people	 in	 the	 old	 days,	 working	 with	 light	 on	 a

macroscopic	scale,	got	fooled	by	geometric	optics.	If,	say,	d	=	1	mm	and	λ	≃	5
·	 10−7m,	 the	 angular	 difference	 between	 the	 central	 maximum	 and	 first
minimum	is	of	order	5	·	10−4	radians.	If	you	see	this	from	a	distance	of	1	cm,
the	spacing	between	maxima	will	be	around	5	·	10−4	cm.	 If	 the	 interference
pattern	is	this	dense,	the	eye	only	sees	an	average	of	I1+2	over	many	cycles,	in
which	case	it	reduces	to	I1	+	I2,	the	result	expected	in	geometric	optics.
Here	 is	 another	 practical	 tip	 from	 Physics	 201.	 Imagine	 you	 have	 some

oceanfront	 property	 and	 are	 relaxing	 on	 your	 yacht.	 There	 is	 an	 oil	 rig	 out
there	sending	waves	that	rock	your	boat	when	you	are	trying	to	relax,	so	you
build	a	wall	 to	keep	the	ocean	waves	out.	Then	one	day	there	is	a	breach	in



the	wall	(S1)	and	the	waves	start	coming	in.	You	have	two	options.	One	is	to
try	to	plug	the	hole,	but	let’s	say	you’ve	got	no	bricks,	no	mortar,	no	time,	no
patience.	 But	 you	 have	 a	 sledgehammer.	 With	 that	 you	 can	 make	 another
hole.	 If	 these	water	waves	 are	 of	 a	 definite	wavelength,	 you	 can	 locate	 the
second	hole	(S2)	so	that	 the	sum	of	the	waves	cancel	at	your	yacht	 location.
(They	 are	 now	 twice	 as	 big	 on	 your	 neighbor’s	 yacht,	 but	 that	 is	 not	 your
problem:	you	did	not	rise	to	the	top	of	your	profession	by	worrying	too	much
about	your	rivals.)

18.5			Diffraction	grating
A	diffraction	grating	is	a	generalization	of	the	double	slit:	instead	of	just	two
slits,	imagine	a	very	large	number	of	equally	placed	slits,	assumed	infinite	in
the	following	analysis.	Figure	18.6	shows	a	finite	segment	of	this	grating.	One
way	 to	makes	gratings	used	 to	 involve	 taking	a	piece	of	glass	covered	with
soot	and	then	drawing	evenly	spaced	lines	on	it	that	allow	light	to	pass	when
illuminated	from	one	side.	Nowadays	there	are	far	superior	techiniques.
With	 two	 slits	 we	 saw	 that	 their	 contributions	 sometimes	 add	 and

sometimes	 cancel	 depending	 on	 the	 angle.	With	 an	 infinite	 number	 of	 such
slits,	the	only	way	to	get	all	the	slits	to	contribute	constructively	is	for	all	the
path	 differences	 to	 be	multiples	 of	 λ.	 One	 such	 case	 is	 simply	 the	 forward
direction,	 when	 all	 the	 emitted	 waves	 go	 an	 equal	 distance	 to	 the	 screen
(assumed	 to	 be	 far	 away)	 and	 therefore	 add	 in	 step.	 (Sometimes	 they	 are
focused	by	a	lens	to	form	an	image	on	a	nearby	screen.)	The	next	maximum
occurs	when	each	path	length	differs	from	its	neighbor	by	λ.	From	Figure	18.6
you	can	see	that	this	means	dsinθ	=	λ.	More	generally	the	maxima	will	occur
at	angles	where	the	path	difference	obeys

At	any	other	angle,	the	path	difference	between	neighboring	paths	will	be
some	δ.	In	terms	of	the	complex	ψ	(whose	real	part	we	will	take	at	the	end)
we	are	trying	to	add

where	 the	 first	 term	is	some	reference	contribution	chosen	by	convention	 to
have	zero	phase.	Let	us	rearrange	the	sum	as	follows:



Each	 term	 in	 the	 first	 bracket	 is	 a	 number	 of	 modulus	 A	 and	 phase	mkδ.
Imagine	 adding	 a	 string	 of	 vectors	 of	 length	 A,	 which	 slowly	 twist	 in
orientation.	Their	sum	will	go	round	and	round	and	give	something	of	order
A.	The	same	goes	for	the	second	bracket	and	the	constant	−	A.	If,	however,

Figure	18.6			Part	of	a	diffraction	grating.	If	dsinθ,	the	path	difference	between	adjacent	slits	is	a
multiple	of	λ,	and	the	signals	from	all	the	slits	add	constructively.

the	arrows	will	be	parallel	and	add	up	to	a	length	NA	 if	there	are	N	slits.	Of
course	the	condition

encountered	 in	 Eqn.	 18.65.	 Unlike	 the	 maximum,	 the	 condition	 for	 the
minima	(which	lie	between	the	maxima)	is	harder	to	find	for	N	slits.
Suppose	you	send	in	white	light	to	a	grating.	The	central	maximum,	which

corresponds	 to	 δ	 =	 0,	 is	 a	maximum	 for	 all	 colors	 or	 all	 λ’s	 since	 all	 rays
travel	 the	 same	 distance	 in	 the	 forward	 direction	 to	 the	 screen.	 The	 central
maximum	 (m	 =	 0)	 will	 therefore	 also	 be	 white.	 However,	 the	 secondary
maxima,	 with	 m	 ≠	 0,	 will	 be	 at	 angles	 determined	 by	 λ.	 What	 is	 a	 path
difference	of	one	wavelength	for	red	will	not	be	one	wavelength	for	blue.	So



the	colors	in	the	incoming	white	light	will	split	into	different	directions,	with
the	maxima	determined	by	the	following	condition	on	the	path	difference	δ:

where	λc	is	the	wavelength	of	color	c.	The	grating	acts	like	a	prism	that	splits
the	colors.
If	 you	 look	 at	 white	 light	 coming	 from	 the	 sun	 you’ll	 find	 some	 colors

missing,	 some	 lines	 of	 darkness	 in	 a	 broad	 band	 of	 sunlight	 split	 into	 its
various	 colors.	 For	 example,	 these	 could	 be	 at	 the	 wavelengths	 emitted	 by
hydrogen.	 Now,	 hydrogen,	 like	 all	 atoms,	 not	 only	 likes	 to	 emit	 light	 of
certain	 wavelengths,	 it	 also	 likes	 to	 absorb	 only	 those	 wavelengths.
Consequently	when	white	 light	makes	 its	way	 out	 of	 the	 sun’s	 interior,	 the
hydrogen	atoms	on	the	way	absorb	these	colors,	leading	to	the	observed	dark
lines.	 These	 lines	 in	 the	 absorption	 spectrum	 are	 as	 good	 a	 fingerprint	 of
hydrogen	as	the	lines	in	the	emission	spectrum.	They	tell	us	the	sun	contains
hydrogen.	That	 is	 how	people	 know	what	 elements	 are	 present	 on	 different
planets	or	stars.	It	was	not	at	all	clear	in	the	ancient	days	that	stars	and	planets
were	made	of	 the	 same	 stuff	we	 see	on	earth.	Now	we	know	 that	 the	 same
elements	 as	 here	 are	 out	 there,	 because	 we	 can	 identify	 the	 atoms	 by	 the
missing	 lines,	 the	colors	 they	gobble	up	as	white	 light	makes	 its	way	out	of
the	interior,	or	by	the	colors	they	emit.

18.6			Single-slit	diffraction
We	have	already	seen	in	 the	double-slit	experiment	 that	when	light	emerges
from	a	slit,	it	fans	out	radially,	with	the	slit	as	a	point	source.	So	what	is	there
to	 study	with	 just	 one	 slit?	 The	 answer	 is	 that	 the	 point	 source	 description
holds	only	if	the	wavelength	is	much	bigger	than	the	slit	width.	In	the	double-
slit	experiment,	I	only	specified	the	slit	separation	d	and	not	width,	which	was
assumed	to	be	zero.
However,	 every	 real	 slit	 will	 have	 some	 width,	 which	 I	 will	 call	 D	 to

distinguish	it	from	the	slit	separation	d	in	the	double-slit	experiment.	The	slit
will	 behave	 like	 a	 point	 only	 if	 its	 width	D	 is	 much	 smaller	 than	 λ.	 Now
consider	a	case	when	D	is	comparable	to	or	bigger	than	λ,	and	a	fresh	analysis
is	called	for.
When	 seen	 from	 the	 dark	 side	 the	 slit	 will	 be	 glowing.	 Let	 us	mentally

divide	 the	single	slit	 into	many	adjacent	mini-slits,	each	small	enough	 to	be
approximated	 by	 a	 point.	 In	 the	 forward	 direction,	 all	 mini-slits	 will	 make
contributions	 in	phase.	As	we	move	away	the	contributions	will	begin	 to	go
out	of	step	and	the	sum	will	diminish.	We	can	find	the	angle	θ	at	which	they
will	add	up	to	zero.	It	is	given	by



This	is	not	a	typo.	Look	at	Figure	18.7A.	Suppose,	for	simplicity,	that	there
are	N	mini-slits.	Number	 1	 and	N	 are	 in	 step	 if	Dsinθ	 =	 λ.	 This	may	 seem
wrong	for	a	minimum.	But	 these	 two	are	not	 the	only	mini-slits	we	have	 to
worry	about.	We	have	 to	account	 for	all	N.	So	 let	me	pair	 them	as	 follows.
The	first	and	the	 -th	mini-slit	are	out	of	step	by	λ/2	and	neutralize	each
other.	 The	 same	 goes	 for	 the	 second	 and	 the	 	mini-slit,	 and	 so	 on.	 So
when	 the	 end-to-end	 path	 difference	 is	 λ,	 I	 can	 organize	 the	mini-slits	 into
canceling	pairs,	with	a	path	difference	of	λ/2	within	each	duo.	After	that	first
zero,	 there	 are	 further	 oscillations,	 but	 usually	 it	 is	 pretty	much	 all	 over	 as
shown	in	part	B	of	the	figure.	The	half-width	of	the	central	maximum	is

If	 λ/D	 	 1,	 then	 θ	 ≃	 λ/D,	 the	 angular	 width	 of	 the	 emergent	 beam,	 is
negligible	 and	 we	 are	 in	 the	 realm	 of	 geometrical	 optics.	 As	 D	 becomes
smaller	and	comparable	to	λ,	the	emergent	beam	fans	out	more	and	more.	For
example,	when	D	=	2λ,	 .	Now	you	definitely	need	wave	optics.

Figure	18.7			A:	The	condition	for	N	→	∞	mini-slits	(square	dots)	making	up	a	single	slit	of	width	D	to
cancel	is	that	the	path	difference	between	the	first	and	last	is	λ.	This	means	each	mini-slit	can	be	paired
with	one	with	path	difference	λ/2,	and	the	duo	cancel	each	other.	If	the	mini-slits	are	labeled	1	to	N,	we
pair	1	with	 ,	2	with	 ,	etc.	B:	The	resulting	intensity	on	a	screen.	Only	a	few	oscillations	are
shown.

You	 can	 now	 understand	 the	 common	 statement	 that	 in	 order	 to	 see	 an
object	of	size	D	clearly	you	need	light	of	wavelength	λ	 	d.	Let	the	object	be
a	hole	of	size	D	(not	necessarily	circular,	but	with	some	sharp	features)	in	an
opaque	screen.	We	“see”	the	hole	by	shining	light	from	one	side	and	looking
at	the	illuminated	part	of	the	screen	on	the	other	side.	If	λ	 	D.	the	diffraction



peak	 is	 very	 narrow,	 geometric	 optics	 applies,	 and	 the	 bright	 image	 of	 the
hole	 is	directly	 in	 front	of	 it	 and	shows	 its	 fine	 features.	As	we	 lower	λ	 the
diffraction	peak	broadens	out	and	the	image	starts	getting	fuzzy.	When	λ≃D,
the	beam	spreads	out	by	a	half-angle	of	π/2,	the	light	fans	out	completely,	and
we	have	lost	any	semblance	of	a	sharp	image.

18.7			Understanding	reflection	and	crystal	diffraction
Look	at	a	line	of	atoms	shown	in	Figure	18.8	that	form	a	regular	lattice,	as	in
a	crystal.	Light	is	incident	on	them	at	an	angle	θ1	relative	to	the	normal	to	the
line	of	atoms.	You	know	the	surface	will	reflect	it	such	that	i	=	r.	But	why?	If
you	 thought	 of	 light	 as	 made	 of	 particles,	 and	 the	 surface	 crystal	 as
continuous,	i	=	r	corresponds	to	just	an	elastic	collision	in	which	momentum
perpendicular	to	the	surface	is	reversed.	But	we	are	committed	to	waves	after
Young’s	experiment.	And	we	also	know	the	surface	is	made	up	of	an	array	of
atoms	and	is	not	a	continuum.	We	have	to	explain	i	=	r	in	these	terms.

Figure	18.8			Part	of	an	array	of	atoms	reflecting	an	incident	beam.	Atom	1	gets	the	incident	light	before
2,	but	its	emitted	light	has	to	travel	farther	in	the	reflected	direction.	(The	common	delay	between
absorption	and	emission	cancels	out.)

To	 this	end	we	need	 to	know	how	atoms	“reflect”	 light.	 It	 turns	out	 they
first	 absorb	 it	 and	 then	 re-emit	 it.	 An	 atom	 that	 re-emits	 light	 does	 so
isotropically,	with	no	memory	of	the	incoming	direction.	So	how	can	all	this
isotropic	emission	end	up	producing	a	strong	signal	along	just	one	direction
obeying	i	=	r?	It	must	be	that	this	is	the	direction	in	which	the	emitted	waves
add	in	phase.	To	see	that	this	is	so,	we	need	consider	just	two	adjacent	atoms
numbered	1	and	2	in	Figure	18.8.	You	can	see	that	atom	1	gets	hit	first	by	the
incoming	wave	fronts	and	 then	atom	2	a	 little	 later,	because	 the	 light	has	 to
travel	 an	 extra	 distance,	 the	 side	 d32	 in	 the	 right	 triangle	 132.	 Assume	 the
atoms	re-emit	instantaneously	(the	common	delay	drops	out).	In	the	outgoing



direction,	the	emitted	light	from	2	has	a	head	start,	a	distance	d41	in	the	right
triangle	241.	So	atom	1	gets	the	incident	light	sooner	than	2,	but	its	reflected
light	has	to	travel	a	longer	distance	than	the	light	emitted	by	2.	For	the	final
waves	to	be	in	step,	we	need	the	two	distances	to	be	equal:

and	so	i	=	r.	(I	am	assuming	λ	>	2d,	in	which	case	there	are	no	other	solutions.
Otherwise,	there	could	be	solutions	in	which	the	path	difference	is	a	multiple
of	λ	and	θ2	≠	θ1.)
Consider	now	X-rays	 incident	on	a	crystal-like	diamond,	or	matter	waves

(which	you	will	 learn	 about	 later)	 incident	 on	nickel.	The	 crystal	 has	many
layers	of	atoms,	periodically	stacked	one	below	the	other.	All	 the	layers	can
receive	 and	 re-transmit	 the	 waves.	 Then	 we	 need	 to	 ask	 how	 the	 reflected
wave	 from	different	 layers	will	 interfere.	This	 is	 considered	 in	Figure	 18.9.
The	upper	layer	reflects	waves	obeying	 i	=	r	 for	reasons	just	discussed.	The
reflected	wave	 from	 the	 second	 layer	 lags	 because	 it	 has	 to	 travel	 an	 extra
distance	dA2	+	d2B	=	dsinθ	+	dsinθ.	For	 this	not	 to	make	any	difference	we
require	the	Bragg	condition:

where	θ	is	the	angle	between	the	incident	beam	and	the	line	of	atoms,	not	its
normal.	 Once	 this	 condition	 for	 two	 successive	 layers	 to	 be	 in	 phase	 is
satisfied,	 all	 the	 layers	 will	 also	 scatter	 in	 phase	 because	 the	 relevant	 path
differences	will	also	be	multiples	of	λ.
Whereas	 reflection	 by	 one	 layer	 (obeying	 i	 =	 r)	 will	 take	 place	 for	 any

angle	of	 incidence,	coherent	diffraction	by	all	 the	 layers	will	occur	only	 for
certain	values	of	incident	angle	θ	obeying	the	Bragg	condition.	These	special
angles	can	be	achieved	either	by	changing	the	direction	of	the	beam	incident
on	a	fixed	crystal	or	by	rotating	the	crystal	illuminated	by	a	fixed	beam.



Figure	18.9			The	condition	for	all	layers	to	reflect	waves	in	phase	is	that	the	path	difference	between
successive	layers	is	a	multiple	of	λ.	Note	θ	is	the	angle	between	the	incident	beam	and	the	line	of	atoms
and	not	the	normal	to	the	line.

18.8			Light	incident	on	an	oil	slick
If	 there	 is	 an	oil	 slick	on	a	wet	 street,	 you	 see	many	colors	 in	 the	 reflected
light.	Here	is	what	is	happening.	We	have	three	regions:	air	at	the	top,	next	oil
of	thickness	δ,	and	water	below	that.	The	incident	light	can	reflect	off	the	two
interfaces	and	the	sum	of	the	two	reflected	waves,	seen	by	someone	looking
down	on	the	slick,	can	interfere	constructively	or	destructively.

18.8.1			Normal	incidence
First	consider	the	simpler	case	where	white	light	strikes	the	air-water	interface
along	 the	 normal,	 as	 shown	 in	 Figure	 18.10.	 Some	 of	 it	 gets	 reflected	 and
some	transmitted.	The	reflected	signal	is	ψ1	in	Figure	18.10.	The	transmitted
signal	hits	the	oil-water	interface	and	some	of	it	gets	reflected.	This	reflected
light	 then	crosses	back	 to	 the	air	as	ψ2	 and	 interferes	with	ψ1.	Their	 sum	 is
what	you	see	looking	down.	(I	have	displaced	ψ1	and	ψ2	from	the	normal	for
clarity.)
The	sum	depends	on	the	phase	difference	between	ψ1	and	ψ2.	Say	we	want

ψ1	 and	ψ2	 to	 interfere	destructively.	The	 requisite	 condition	depends	on	 the
wavelength.	Suppose	 the	color	blue	 is	suppressed	 this	way.	This	means	 that
looking	down	on	the	slick	we	will	see	white	minus	the	blue.	If	the	thickness
of	 oil	 varies,	 the	 color	 we	 see	 will	 also	 vary.	 If	 ψ1	 and	 ψ2	 interfered
constructively,	the	color	in	question	(say	blue)	would	be	enhanced	relative	to
the	 others	 in	 what	 we	 see.	 In	 any	 event,	 the	 initial	 ratio	 of	 colors	 in	 the
incident	 white	 light	 gets	 altered,	 with	 some	 colors	 getting	 suppressed	 and
some	enhanced,	leading	to	multiple	colors	in	what	we	see.



Figure	18.10			Normal	incidence	on	a	thin	layer	of	oil	on	top	of	a	layer	of	water.	(Rays	reflected	from
the	first	and	second	interface	are	displaced	slightly	from	the	normal	and	each	other	for	clarity.)

Let	us	 find	 the	 condition	 for	 constructive	 and	destructive	 interference	 for
incident	light	of	wavelength	λ.	There	are	two	ingredients	to	consider.
The	first,	which	I	do	not	expect	you	to	know,	is	that	when	light	reaches	the

interface	to	a	denser	medium	(i.e.,	greater	refractive	index	n)	it	will	suffer	an
extra	 phase	 shift	 of	 π	 upon	 reflection	 back	 to	 the	 rarer	 medium.	 In	 our
example	this	phase	shift	will	occur	when	oil	(n0	=	1.5)	reflects	light	back	to
air	(n	=	1)	but	not	at	the	next	interface	when	the	water	(nw	=	1.33)	reflects	it
back	to	oil.
The	 second	 ingredient	 has	 an	obvious	 part,	 that	ψ2	 has	 to	 travel	 an	 extra

distance	of	2δ	compared	to	ψ1,	and	a	non-obvious	part,	that	the	corresponding
phase	shift	is	2π	for	every	wavelength	λ0	in	oil.
The	 wavelength	 λ0	 in	 oil	 will	 not	 be	 the	 wavelength	 λ	 in	 air.	 We	 may

understand	this	in	terms	of	two	defining	relations:

Notice	I	use	the	same	f	in	oil	and	in	water	but	not	the	same	λ.	The	reason	is
that	light	is	generated	by	some	source	at	some	frequency	 f	and	this	can	lead
only	 to	 waves	 of	 that	 f	 even	 if	 it	 crosses	 from	 one	medium	 to	 another.	 In
Huygens’s	approach,	 the	 light	 in	 the	 first	medium	acts	as	 the	source	 for	 the
light	in	the	second	medium	and	so	it	will	drive	it	at	the	same	frequency.	The
lower	velocity	will	be	due	to	the	shorter	wavelength.
Or	 think	 in	 terms	 of	 water	 waves.	 Suppose	 some	mechanical	 vibrator	 is

producing	waves	on	water	with	some	f.	Let	us	say	the	wave	velocity	depends
on	the	depth	of	water	and	this	depth	suddenly	changes	when	the	waves	enter	a
second	 region.	The	waves	 in	 the	 second	 region	will	 still	 rise	 and	 fall	 at	 the
same	 frequency	as	 the	driving	vibrator	 even	 if	 they	propagate	more	 slowly.
The	reduced	velocity	will	be	due	to	the	reduction	in	λ.



Equations	18.78	and	18.79	tell	us	that

So	an	extra	distance	of	2δ	is	worth	 	wavelengths	and	a	phase	delay
in	wave	ψ2	of

For	ψ1	we	have

Thus	the	total	phase	difference	between	the	two	waves	reaching	the	observer
(including	the	extra	π	from	the	air-oil	interface)	is

We	want	this	to	be	a	multiple	of	2π	for	constructive	interference

and	an	odd	multiple	of	π	for	destructive	interference:

If	 the	formulas	appear	strange,	 it	 is	due	 to	 the	extra	π	coming	from	the	first
reflection.
Here	 is	 an	 example	with	 some	 numbers.	 Suppose	 a	 film	 of	 oil	 produces

constructive	 interference	 for	λ	=	400nm	 and	destructive	 interference	 for	λ	=
500nm.	What	is	δ?	The	data	given	may	be	written	as	follows.	For	constructive
interference	of	light	with	λ	=	400	nm	we	need



For	destructive	interference	of	light	with	λ	=	500	nm	we	need

We	 see	 that	 the	 first	 point	 of	 agreement,	 the	 smallest	 value	 of	 δ	 for	which
both	conditions	are	satisfied,	is

which	corresponds	to

If	 we	 go	 further	 down	 the	 two	 sequences,	 we	 will	 find	 a	 second	 common
value:	2n0δ	=	3000nm,	which	translates	into	δ	=	1000nm.	But	δ	=	333.33nm	is
the	smallest.
I	leave	it	to	you	to	construct	variations	on	this	theme:	change	the	media	so

that	a	phase	change	of	π	occurs	at	both	interfaces	or	neither.

18.8.2			Oblique	incidence
A	 non-trivial	 variation	 occurs	 when	 the	 incoming	 light	 strikes	 the	 first
interface	 at	 an	 angle	θ1	 relative	 to	 the	 normal	 as	 shown	 in	 Figure	 18.11.	 It
then	 enters	 the	 second	 medium	 at	 an	 angle	 θ2	 determined	 by	 Snell’s	 law,
reflects	off	 the	 second	 interface	obeying	 i	=	r,	 and	 finally	 re-enters	 the	 first
medium	at	an	angle	θ1	 to	 the	normal.	The	phase	shifts	of	π	are	 the	same	as
before	but	the	path	differences	are	more	complicated.



Figure	18.11			Oblique	incidence	on	a	thin	layer	of	oil	on	top	of	a	layer	of	denser	oil.	(There	is	phase
shift	of	π	at	each	interface,	so	we	may	ignore	their	combined	effect.)

Consider	 the	 simple	 case	where	 there	 is	 no	 uncanceled	π.	 This	 is	 true	 in
Figure	 18.11,	 when	 the	 refractive	 index	 gets	 bigger	 at	 both	 interfaces	 and
there	is	a	shift	of	π	at	each	interface	for	a	total	of	2π,	which	may	be	ignored.
Let	 the	 refractive	 index	 of	 the	 middle	 medium	 be	 n.	 The	 conditions	 for
constructive	and	destructive	interference	will	turn	out	to	be

Here	are	the	details.	The	wave	ψ1	has	to	travel	an	extra	distance

The	wave	ψ2	travels	an	extra	optical	distance	(equivalent	distance	in	air)

The	net	path	difference	is

which	leads	to	Eqns.	18.90	and	18.91.



CHAPTER	19

Quantum	Mechanics:	The	Main	Experiment

We	are	going	to	focus	on	quantum	mechanics	from	now	on	till	the	end.	I’ve
got	bad	news	and	good	news.	The	bad	news	is	that	it	is	going	to	be	hard	for
you	to	follow	the	physics	intuitively,	and	the	good	news	is	that	nobody	can.
Richard	Feynman,	one	of	the	leading	physicists	of	our	time,	used	to	say	that
no	one	understands	quantum	mechanics.	Here	then	is	my	modest	goal.	Right
now,	 I’m	 the	 only	 one	 who	 doesn’t	 understand	 quantum	 mechanics.	 After
these	lectures,	every	one	of	you	will	be	unable	to	understand	it.
I	want	you	to	think	about	this	as	a	real	adventure.	Try	to	think	beyond	the

exams	and	grades.	It’s	one	of	the	greatest	and	deepest	discoveries	in	physics
and	in	all	of	science.	It	is	remarkable	how	people	figured	out	the	underlying
laws	from	the	experiments.
I	will	not	follow	the	historical	route.	It	 is	pedagogically	not	 the	best	way.

You	go	 through	 all	 the	wrong	 tracks	 and	 false	 starts.	When	 the	 dust	 settles
down,	a	certain	picture	emerges	and	that’s	the	picture	I	want	to	give	you	from
the	beginning.	I	will	describe	experiments	that	were	perhaps	not	done	in	the
manner	(or	sequence)	 in	which	I	describe	 them,	but	 rest	assured	 that	 if	 they
were	performed,	the	results	would	be	as	described.	The	central	experiment	is
the	 double-slit	 experiment,	 which	 Feynman	 has	 identified	 as	 exhibiting	 the
heart	of	quantum	mechanics.	 It	 not	only	 shows	 in	 the	clearest	possible	way
the	failure	of	Newtonian	mechanics	and	Maxwell’s	wave	theory	of	light,	but
it	also	gives	us	clues	on	how	to	go	forward.	How	can	this	experiment,	which
proved	 wave	 theory	 unambiguously	 and	 paved	 the	 way	 for	 Maxwell’s
triumph,	 also	 lead	 to	 his	 theory’s	 downfall?	 The	 answer	 is	 the	 usual	 one:
because	we	pushed	the	experiment	to	a	new	range	of	parameters.

19.1			Double-slit	experiment	with	light
Recall	the	highlights	of	the	standard	double-slit	experiment.	There	is	light	of
some	wavelength	λ	coming	from	the	left	and	incident	on	an	opaque	partition
with	two	slits	and	emerging	on	the	other	side	where	it	is	detected.	Assume	a
photographic	 plate	 is	 used	 for	 detection.	 It	 is	made	 of	 tiny	 little	 pixels	 that
change	 color	 when	 light	 hits	 them	 and	 forms	 a	 picture.	 It	 is	 a	 detector
particularly	suited	for	the	variant	that	follows.
You	measure	the	intensity	I1	with	slit	S1	open,	the	intensity	I2	with	just	slit

S2	 open,	 and	 then,	 with	 both	 slits	 open,	 the	 intensity	 I1+2,	 which	 exhibits



interference.	A	dramatic	aspect	of	interference	is	that	there	are	points	that	are
bright	when	one	or	the	other	slit	is	open	but	dark	when	both	are.	The	reason	is
that	the	ψ	in	this	problem,	the	one	which	can	be	superposed,	is	the	electric	or
magnetic	field.	When	two	slits	are	open,	you	add	the	fields,	not	the	intensities
that	are	proportional	 to	 the	square	of	 the	 total	 field.	The	 two	fields	 that	add
can	have	any	relative	sign	or	phase,	and	they	can	even	cancel	each	other	out.
We	do	not	see	this	kind	of	interference	with	sunlight	streaming	into	a	room

through	 two	windows	 because	 that	 light	 is	 a	mixture	 of	many	 λ’s	 and	 any
surviving	 interference	 pattern	 I1+2	 oscillates	 so	 rapidly	 that	 our	 senses	 can
only	detect	its	spatial	average,	which	is	just	I1	+	I2.	Interference	of	waves	was
a	 familiar	 phenomenon	 before	Young	 came	 along:	 just	 dropping	 two	 rocks
into	a	 tranquil	 lake	allows	one	 to	 see	 the	 interference	of	 the	 two	concentric
waves	 produced.	 So	when	Young	 demonstrated	 the	 interference	 of	 light,	 it
was	clear	to	one	and	all	that	light	was	a	wave.	And	then	Maxwell	derived	his
wave	 equations	 and	 that	 seemed	 to	 be	 the	 last	 step	 in	 a	 complete	 theory	of
optics.

19.2			Trouble	with	Maxwell
The	 interference	 pattern	 looks	 good	 for	 Maxwell’s	 wave	 theory	 till	 you
implement	 the	 following	 change:	You	make	 the	 source	 of	 light	 dimmer	and
dimmer.	 If	 you	 are	 unable	 to	 turn	 down	 the	 brightness	 enough,	 you	 can
always	move	the	source	far	away.
Imagine	you	 insert	a	new	photographic	 film,	 turn	on	a	bright	 source,	and

call	it	a	day.	The	next	morning	you	find	a	pattern	of	light	and	dark	stripes	as
shown	 in	 Figure	 19.1A.	 When	 you	 repeat	 the	 experiment	 with	 a	 dimmer
source,	you	get	fainter	stripes	(not	shown).	Then	you	make	a	drastic	reduction
in	 the	 source	 brightness	 and	 wait	 overnight.	 You	 find	 no	 pattern,	 just	 six
pixels	 that	 have	 been	 exposed,	 at	 seemingly	 random	 locations,	 as	 shown	 in
Figure	19.1B.	If	you	make	the	source	weak	enough,	you	can	have	a	situation
in	which	 you	 just	 get	 one	 hit	 during	 the	whole	 night.	 Now	 all	 this	 is	 very
strange.	 If	 light	were	 a	wave,	 no	matter	 how	weak,	 it	 should	 illuminate	 the
entire	screen.	It	cannot	hit	just	certain	pixels.	So	something	else	is	hitting	that
screen	and	it’s	not	a	wave.



Figure	19.1			The	figure	shows	the	top	view	of	the	wave	and	the	slits	and	a	frontal	view	of	the	film.	A:
Pattern	on	film	with	a	strong	source.	The	light	is	coming	from	below	toward	the	double-slit.	B:	Pattern
with	dim	source,	showing	six	exposed	pixels.

You	 continue	 the	 experiment	 at	 this	 low	 intensity	 of	 one	 hit	 per	 night	 to
probe	 this	 further.	 You	 make	 further	 observations	 and	 measure	 the
momentum	imparted	to	the	film	on	each	exposed	pixel.
You	find	that	each	exposed	pixel	has	received	exactly	the	same	amount	of

momentum	p.	By	varying	λ	you	establish	 that	 the	value	of	 this	momentum	is
related	to	it	as	follows:

where

is	 called	Planck’s	 constant.	 (In	 the	old	days	 the	name	was	 reserved	 for	h	=
2πħ.)	In	terms	of	the	wave	number	(phase	change	per	unit	length)

Eqn.	19.1	becomes

Next	 you	 find	 that	each	 exposed	pixel	 receives	 a	 fixed	 amount	 of	 energy
related	to	the	frequency	of	the	incident	light	as	follows:

The	most	natural	interpretation	of	these	results	is	that	light	of	frequency	ω	or,



equivalently,	wave	number	k,	 is	made	up	of	particles,	 the	photons,	with	 the
following	energy	and	momentum:

Since	ω	 =	 kc	 it	 follows	 that	 the	 energy	 and	momentum	 of	 the	 photons	 are
related	as	follows:

or	E2	=	c2p2,	which,	when	compared	to

tells	 us	 photons	 are	massless	 particles.	 The	 only	way	 they	manage	 to	 have
momentum	without	mass,	given	the	formula

is	by	moving	at	the	speed	of	light.
If	you	keep	the	extremely	dim	source	on	for	many	many	days,	you	find	that

the	spots,	which	initially	appeared	to	be	random,	gradually	fill	out	to	form	the
stripes	of	the	earlier	experiments.
Amazingly	 then,	 what	 the	 incident	 beam	 of	 low	 intensity	 reveals	 is	 that

light,	 which	 you	 thought	 was	 a	 continuous	 wave,	 is	 actually	 made	 up	 of
discrete	 particles.	 If	 you	 turn	 on	 a	 bright	 light	 source	 you	miss	 this	 aspect
because	millions	 of	 these	 photons	 rush	 in	 and	 form	 the	 interference	 pattern
instantaneously.	You	see	the	dark	and	bright	fringes	right	away,	and	you	think
it’s	 due	 to	 a	wave	 that	 hits	 the	 entire	 film	 instantaneously.	But	 if	 you	 look
under	the	hood,	you	find	every	pattern	is	formed	by	tiny	little	dots	that	appear
individually.
Now	if	all	somebody	told	you	was	that	light	was	made	of	particles,	that	it

was	not	continuous,	that	in	itself	would	not	be	so	disturbing.	You	are	used	to
that	 notion.	 For	 example,	 you	 know	 that	 water,	 which	 you	 perceive	 as
continuous,	is	actually	made	of	water	molecules.	Many	things	that	you	think
of	as	continuous	are	made	up	of	little	molecules.	That’s	not	the	surprise.	The
surprise	 is	 that	 these	photons	are	not	and	cannot	be	your	standard	classical
particles	 of	 the	 type	 that	 appear	 in	 Newtonian	 or	 Einsteinian	 mechanics,
following	 continuous	 trajectories	 decided	 by	 the	 applied	 forces.	 The	 reason
behind	this	conclusion	is	the	interference	pattern	I1+2.	Let	us	understand	why.



Suppose	the	photon	were	a	classical	particle,	by	which	I	mean	governed	by
the	laws	of	Newton	or	Einstein.	What	do	we	expect	it	to	do	in	the	double-slit
experiment?	Look	at	Figure	19.2.

Figure	19.2			Two	paths	a	photon	can	take,	via	slits	1	or	2.	I	try	to	show	that	4	photons	come	to	X,	the
zero	of	the	interference	pattern	I1+2,	via	one	or	the	other	slit,	by	drawing	4	x’s	at	a	nearby	point	P.
When	both	are	open	I	get	zero	at	X	instead	of	8.

Say	only	slit	S2	is	open.	The	photons	will	take	some	path	going	through	the
slit	S2	on	their	way	to	the	pixel	on	the	film.	A	similar	result	applies	when	only
S1	is	open.	What	should	happen	when	both	are	open?	The	answer	is	that	the
number	 arriving	 at	 any	 point	 has	 to	 be	 the	 sum	 of	 the	 numbers	 that	 came
through	each	slit.	Classical	particles	on	the	trajectory	headed	for	one	slit	have
no	idea	whether	the	second	slit	is	open	or	closed	or	that	it	even	exists.	So	the
number	 arriving	 at	 some	 point	with	 two	 slits	 open	must	 be	 the	 sum	 of	 the
numbers	 with	 either	 one	 open.	 In	 other	 words	 I1+2	 =	 I1	 +	 I2	 is	 a	 logical
necessity	for	classical	particles.
Consider	in	particular	the	point	X,	which	is	a	zero	of	I1+2.	Say	on	a	given

day	4	photons	come	to	X	with	just	S1	open	and	4	photons	come	with	just	S2
open.	(I	have	shown	these	4	photons	by	x’s	at	a	nearby	point	P.)	We	expect	8
to	arrive	with	both	open	but	we	know	that	no	photons	will	arrive	at	X.	How
can	you	 cancel	 a	 positive	number	of	 particles	 coming	 through	one	 slit	with
more	positive	number	of	particles	coming	from	a	second	slit?	It	is	impossible
to	understand	this	in	terms	of	classical	particles.	They	cannot	know	how	many
slits	 are	 open	 and	 they	 cannot	 produce	 a	 pattern	 that	 depends	 on	 the
separation	 between	 the	 two	 slits.	 The	 fact	 that	 this	 happens	 is	 proof	 that
photons	are	not	classical	particles.
By	contrast,	a	wave	has	no	trouble	knowing	how	many	slits	are	open	and

how	far	apart	 they	are,	because	it	 is	not	localized.	The	wave	comes	and	hits
both	 the	 slits	 simultaneously	 and	 knows	 their	 spacing.	 There	 is	 room	 for
cancellations	 when	 two	 slits	 are	 open	 due	 to	 destructive	 interference.	 So
maybe	 we	 should	 go	 back	 to	 the	 view	 that	 light	 is	 just	 a	 wave,	 as	 Young
convinced	 us?	But	 that	 too	 is	 no	 longer	 an	 option	 in	 view	 of	what	we	 just
learned:	a	wave	cannot	deposit	energy	and	momentum	on	just	one	pixel.



So	 the	 photon	 has	 particle-like	 and	 wave-like	 attributes.	 We	 may
summarize	the	data	as	follows:
•	Light	of	wave	number	k	and	frequency	ω	=	kc	is	made	up	of	particles	(photons)	each	of	which
carries	the	same	energy	E	=	ħω	and	the	same	momentum	p	=	ħk.	The	energy	and	momentum	are
localized	in	these	particles.
•	The	distribution	of	a	large	number	of	photons	in	the	double-slit	experiment	is	given	by	the
interference	pattern	produced	by	a	wave	of	that	k	or	λ.

There	 is	no	point	 in	asking	 if	 light	 is	a	particle	or	a	wave.	These	words	are
inadequate	to	describe	light.	It	is	what	it	is	as	described	above.	If	we	send	in	a
million	photons,	one	at	a	 time,	each	will	 land	at	a	definite	pixel	of	 the	 film
and	they	will	collectively	produce	the	interference	pattern.
Suppose	 a	million	 photons	 have	 formed	 an	 interference	 pattern	 of	 bright

and	 dark	 lines	 on	 the	 film,	 whose	 form	 we	 can	 predict	 from	 a	 simple
interference	calculation	with	waves	of	this	λ.	Now	we	send	in	the	1,	000,	001-
th	photon.	Where	will	it	go?
We	do	not	know	for	sure.	We	only	know	that	if	we	repeat	the	experiment	a

million	 times,	 we	 get	 this	 pattern.	 We	 cannot	 anticipate	 the	 outcome	 of	 a
single	trial	with	just	one	photon.	We	just	know	that	the	odds	are	high	where
the	 function	 I1+2	 is	 large,	and	 the	odds	are	 low	where	 the	 function	 is	 small,
and	the	odds	are	zero	where	the	function	is	zero.	So	the	role	of	the	wave	is	to
determine,	 via	 its	 intensity,	 the	 probability	 P(r)	 that	 the	 photon,	 a	 particle
with	 localized	energy	and	momentum,	will	be	absorbed	by	a	pixel	at	r.	The
probability	 is	 computed	 by	 adding	 the	 waves	 from	 the	 two	 slits	 and	 then
squaring.

19.3			Digression	on	photons
I	want	 to	digress	briefly	 to	 clarify	 a	historical	 fact:	 photons	were	not	 really
found	 by	 looking	 at	 the	 pixels	 of	 a	 photographic	 plate.	 They	 were	 first
predicted	by	Einstein	based	on	fairly	complicated	thermodynamic	arguments.
He	 showed	 that	 radiation	 of	 frequency	 ω	 behaved	 as	 if	 it	 were	 made	 of
particles,	each	of	energy	E	=	ħω.	Einstein	dropped	the	characterization	“as	if”
and	argued	for	the	actual	existence	of	these	particles.	He	showed	in	1905	that
he	could	explain	the	photoelectric	effect	very	easily	in	terms	of	these	photons.
We	will	 see	 how	 in	 just	 a	moment.	 Later,	 in	 1927,	 very	 direct	 evidence	 of
photons	was	provided	by	Arthur	Compton	(1892–1962),	who	showed	that	the
scattering	of	light	of	wave	number	k	and	frequency	ω	by	an	electron	could	be
described	simply	as	a	relativistic	elastic	collision	between	the	electron	and	a
massless	 particle,	 the	 photon,	with	 energy	E	 =	 ħω	 and	momentum	 p	 =	 ħk.
Einstein	got	the	Nobel	Prize	for	his	work	on	the	photon,	rather	than	for	either
theory	of	relativity.



19.3.1			Photoelectric	effect
Now	for	 the	 first	 experiment	 that	 is	explained	by	photons,	 the	photoelectric
effect.	 Recall	 that	 in	 a	metal	 some	 electrons	 are	 communal.	 Say	 each	 atom
donates	 one	 electron	 to	 the	 whole	 metal.	 They	 can	 run	 all	 over	 the	 metal.
They	 don’t	 have	 to	 be	 near	 their	 parent	 nuclei.	 But	 they	 cannot	 leave	 the
metal.	They	are	trapped	in	an	electrostatic	well,	as	shown	in	Figure	19.3A.	It
costs	 a	minimum	 energy	W,	 called	 the	work	 function,	 to	 get	 them	out	with
zero	kinetic	energy.	(Imagine	a	well	of	depths	h,	at	 the	bottom	of	which	are
objects	of	mass	m.	To	pull	them	out	[at	rest]	you	need	to	supply	a	minimum
energy	W	 =	mgh.	 If	 you	 give	more	 than	 the	minimum,	 they	will	 come	 out
with	some	kinetic	energy.)

Figure	19.3			A:	Electrons	in	a	metal	are	in	a	well	of	depth	W.	A	photon	is	able	to	liberate	them	if	it	has
enough	energy.	B:	The	plot	of	the	kinetic	energy	of	the	ejected	electron	versus	photon	energy	ħω	(for
ħω	≥	W).

There	 is	 a	 natural	 way	 to	 furnish	 this	 energy.	 Since	 the	 electron	 has	 an
electric	charge	you	can	apply	an	electric	field	to	act	on	it	and	rip	it	out	after
doing	 the	 requisite	 work.	 Since	 light	 is	 nothing	 but	 electric	 and	 magnetic
fields,	you	can	try	shining	light	at	the	metal.	The	electric	field	should	grab	the
electron	and	shake	it	loose.	And	once	it	escapes,	it	can	take	off.
You	do	this	and	find	nothing	comes	out.	Since	the	force	eE	on	the	electron

grows	with	 intensity	 I	∝	 |E|2,	 you	 crank	 up	 the	 intensity	 of	 light	 and	 still
nothing	 happens.	 Then	 you	 discover	 that	 if	 you	 increase	 the	 frequency	 of
light,	suddenly	electrons	start	coming	out.	They	come	out	even	if	the	light	at
this	increased	frequency	is	very	feeble.	A	feeble	source	of	light	leads	to	fewer
electrons	coming	out,	but	they	do	come	out	now.	You	measure	K,	the	kinetic
energy	of	the	emergent	electrons,	and	plot	K	versus	ω	and	find	the	graph	in
Figure	19.3B.	The	graph	is	simplicity	itself:



This	 graph	 makes	 no	 sense	 within	 Maxwell	 theory.	 How	 can	 feeble	 light
(with	 a	 tiny	 field	E)	 of	 high	 frequency	 liberate	 electrons	while	 strong	 light
(with	 a	 large	E)	 at	 low	 frequencies	 cannot?	 But	 it	 makes	 perfect	 sense	 in
terms	 of	 photons.	 The	 low-frequency	 beam	 consists	 of	 a	 large	 number	 of
photons,	 each	 of	 which	 carries	 less	 energy	 than	 it	 takes	 to	 liberate	 the
electrons.	 It	 is	 like	 sending	 a	 large	 number	 of	 toddlers	 (working
independently)	 to	 lift	 a	 suitcase.	They	 just	 cannot	 do	 it.	On	 the	 other	 hand,
even	 a	 single	 adult	 can.	 This	 is	 analogous	 to	 what	 happens	 when	 a	 feeble
high-frequency	light	composed	of	high-energy	photons	is	used.
The	graph	is	readily	understood	as	follows.	If	ħω	<	W,	no	electrons	come

out.	 If	 ħω>W,	 out	 of	 the	 photon’s	 energy	 ħω,	 a	 share	W	 goes	 to	 pull	 the
electron	 out	 of	 the	 well	 of	 depth	W,	 and	 the	 rest,	 ħω−W	 =	K,	 goes	 to	 the
kinetic	energy	of	the	liberated	electron.	By	1905	it	was	known	that	the	energy
of	photoelectrons	increases	with	increasing	frequency	of	incident	light	and	is
independent	of	the	intensity	of	the	light.	However,	the	precise	manner	of	the
increase	was	not	experimentally	determined	until	1914,	when	Robert	Millikan
(1868–1953)	showed	that	Einstein’s	prediction	was	correct.

19.3.2			Compton	effect
Now	for	Compton’s	1927	experiment,	which	provided	very	direct	evidence	of
photons.	 Imagine	 shining	X-rays,	 i.e.,	 light	of	 some	λ	 (or	wave	number	k	=
2π/λ)	along	the	x-axis	on	a	free	and	static	electron,	as	shown	in	the	left	half	of
Figure	19.4.
(In	 reality	 the	electron	 is	bound	 to	an	atom.	However,	 the	 incident	X-ray

photons	have	so	much	energy	that	 the	initial	electron	may	be	treated	as	free
and	at	rest.)	The	electron	scatters	the	light	into	some	direction	and	recoils	in
some	 other	 direction,	 as	 shown	 in	 the	 right	 half	 of	 the	 figure.	 Forget	 the
electron	and	just	observe	the	scattered	light.	The	light	scattered	in	a	direction
θ	relative	to	the	x-axis	is	found	to	have	a	wavelength	λ′	obeying

Figure	19.4			Left:	Light	(γ)	of	wavelength	λ	or	wave	number	k	=	2π/λ	(photons	of	momentum	ħk	and



energy	ħω)	is	incident	in	the	x-direction	on	an	electron	e−	at	rest.	Right:	The	light	(photon)	comes	out	at
a	direction	θ	with	a	shifted	wavelength	λ′,	and	the	electron	recoils	conserving	energy	and	momentum.

where

is	called	the	Compton	wavelength	of	the	particle	of	mass	m.	This	result	can	be
derived	very	simply	if	you	do	the	following:
1.	Treat	the	incoming	light	as	made	of	photons	of	energy	E	=	ħω	and	momentum	ħk.	The	four-
momentum	of	the	photon	is	K	=	(ħω,	ħk).	The	initial	electron	has	a	four-momentum	Pe	=	(mc,0).

2.	Assume	energy	and	momentum	are	conserved	in	the	collision	and	solve	for	the	final	photon	four-
momentum	K′	=	(ħω′,	ħk′).	This	was	done	in	Volume	I	and	I	will	not	repeat	it	here.	If	you	translate
the	final	k′	to	λ′	you	get	Eqn.	19.12.

Notice	 how	 we	 go	 back	 and	 forth	 between	 waves	 and	 particles.	 Light	 is
characterized	by	a	wavelength	and	by	 the	corresponding	photon	momentum
and	by	the	frequency	and	the	corresponding	photon	energy.	When	you	think
about	the	particles,	you	think	of	the	energy	and	momentum.	When	you	think
about	the	waves,	you	think	of	frequency	and	wave	number.	After	Compton’s
experiment	one	could	not	doubt	the	reality	of	the	photons.
You	 may	 have	 heard	 that	 Einstein	 was	 very	 unhappy	 with	 quantum

mechanics	 and	did	not	 join	 the	 chorus.	There	 is	 even	an	 impression	 that	he
had	become	 just	another	conservative	 in	his	old	age.	This	 is	utterly	 false.	 If
you	 look	 at	 the	 history,	 you	 will	 find	 he	 made	 enormous	 contributions	 to
quantum	mechanics	 from	 the	very	outset.	Even	Planck	was	equivocal	about
the	reality	of	the	photons	that	were	implied	by	his	own	formula.	Einstein	took
their	 existence	 seriously	 and	 applied	 it	 to	 the	 photoelectric	 effect.	 He
computed	the	specific	heat	of	solids	using	oscillators	of	quantized	energy	to
represent	lattice	vibrations.	Schrödinger	acknowledges	his	debt	to	Einstein	for
his	 wave	 equation.	 So	 when	 you	 hear	 that	 Einstein	 didn’t	 like	 quantum
mechanics,	 do	 not	 think	 he	 couldn’t	 do	 the	 problem	 sets.	 It’s	 that	 he	 had
problems	with	 the	 problem	 sets.	He	 did	 not	 like	 the	 probabilistic	 nature	 of
quantum	 mechanics,	 but	 he	 had	 no	 trouble	 divining	 what	 was	 going	 on.
Indeed	 he	 himself	 ushered	 in	 probabilities	 in	 his	 treatment	 of	 induced
radiation.	If	someone	says	“I	don’t	like	that	joke”	there	can	be	two	reasons:	he
or	she	they	didn’t	get	the	joke	or	got	it	but	didn’t	think	it	was	funny.	It	was
the	latter	for	Einstein	and	quantum	mechanics.	He	certainly	understood	all	the
complexities	of	quantum	mechanics.	He	has	said	he	had	spent	far	more	time



wrestling	 with	 quantum	 mechanics	 than	 either	 the	 special	 or	 the	 general
theory	of	relativity.	It	 is	true	that	till	 the	end	he	didn’t	find	a	formalism	that
satisfied	him.	The	formalism	I’m	giving	you	certainly	works	in	the	sense	that
its	every	prediction	has	been	correct.	Until	something	better	comes	to	replace
it,	we	will	keep	using	it.

19.4			Matter	waves
Now	came	the	French	physicist,	Louis	de	Broglie	(1892–1987),	who	argued
as	 follows	 in	 his	 PhD	 thesis.	 If	 light,	 which	 we	 thought	 was	 a	 wave,	 is
actually	made	 up	 of	 particles,	 perhaps	 things	 that	we	 always	 thought	 of	 as
particles,	 like	 electrons,	 must	 have	 a	 wave	 associated	 with	 them,	 with	 a
wavelength	related	to	their	momentum	as	follows

If	this	is	right,	we	should	see	interference	in	the	double-slit	experiment	with
electrons.
Equation	19.14	is	of	course	the	same	as

for	photons	with	one	conceptual	difference.	For	 light,	λ	 is	a	natural	quantity
and	the	photon	and	its	momentum	p	are	the	surprises,	while	for	electrons	the
momentum	 p	 is	 a	 natural	 quantity	 and	 the	 associated	 wavelength	 λ	 is	 the
surprise.
In	 the	 case	 of	 the	 electron	 or	 other	 massive	 particles	 like	 protons	 or

neutrons,	 	 is	 called	 the	 de	 Broglie	 wavelength.	 The	 double-slit
experiment	for	electrons	aimed	at	testing	de	Broglie’s	hypothesis	is	designed
in	 pretty	 much	 the	 same	 way	 as	 for	 photons,	 but	 with	 some	 obvious	 and
inevitable	differences.	First,	 the	source	of	electrons	 is	different—it	could	be
some	electrode	that	boils	off	electrons	with	negligible	kinetic	energy	K.	These
are	 then	 accelerated	 to	 some	 fixed	 momentum	 p	 by	 allowing	 them	 to	 fall
through	a	potential	V	such	that

Notice	that	I	use	the	non-relativistic	expression	for	 the	kinetic	energy	of	 the
particle.	This	will	be	the	case	except	for	photons,	which	always	travel	at	c	and
obey	E	=	pc.



A	velocity	filter	may	be	used	to	ensure	that	all	electrons	reaching	the	slits
have	 the	 same	 p	 and	 hence	 the	 same	 de	 Broglie	 wavelength.	 All	 this	 was
simply	accomplished	in	the	case	of	light	by	a	monochromatic	source.
To	 detect	 electrons,	 you	 replace	 the	 photographic	 film	 with	 a	 row	 of

electron	detectors	or	a	single	detector	that	can	slide	along	the	right	edge	as	in
in	Figure	19.5.	These	detectors	 can	 amplify	 a	 single	 electron	 that	 hits	 them
into	 an	 avalanche	 that	 leads	 to	 a	 macroscopic	 current.	 You	 generate	 a
histogram	 of	 events	 triggered	 by	 the	 detected	 electron	 as	 shown	 by	 x’s	 in
Figure	 19.5.	 After	 several	 hits,	 the	 histogram	 of	 the	 number	 of	 electrons
arriving	in	some	fixed	time	will	form	the	pattern	I1	with	just	S1	open,	I2	with
just	S2	open,	and	I1+2	with	both	slits	open.	The	period	of	the	oscillations	will
be	 determined	 by	 the	 de	 Broglie	 wavelength	 λ	 =	 2πħ/p	 of	 the	 electrons,
confirming	its	wave-like	nature.

Figure	19.5			Top:	Electrons	go	from	emitter	E	to	a	sliding	detector	D	with	just	slit	S1	open.	The	figure
shows	a	possible	classical	trajectory	connecting	the	two	end	points.	The	histogram	I1(y)	is	generated	by
recording	the	arrivals	(shown	by	x’s)	over	a	fixed	time	period.	Not	shown	is	a	similar	pattern	with	S2
open.	Bottom:	As	with	photons,	an	interference	pattern	I1+2	≠	I1	+	I2	is	seen	with	both	slits	open.	In
particular,	no	electrons	come	to	a	point	like	X	with	both	slits	open,	though	they	did	come	with	one	or	the
other	open.

Now	the	surprise	is	not	that	the	electron	hits	only	one	detector,	depositing
all	 its	 charge,	 energy,	 and	momentum	 there.	 It	 is	 supposed	 to	 do	 that;	 it	 is



after	 all	 a	 particle	with	 localized	 attributes.	What	 is	 surprising	 is	 that	when
two	slits	are	open,	you	get	the	interference	pattern.	At	a	place	like	M	you	get
four	times	as	many	electrons	as	with	one	slit	open,	and	not	double.	Even	more
dramatic	are	locations	like	X	where	you	don’t	get	any	electrons	with	both	slits
open,	whereas	you	used	to	get	some	with	just	one	slit	open.
This	 is	 the	end	of	Newtonian	mechanics	 for	particles	 like	electrons.	 If	an

electron	 were	 a	 Newtonian	 particle	 it	 would	 go	 from	 the	 emitter	 E	 to	 the
detector	D	 via	 one	 or	 the	 other	 slit.	 Opening	 a	 second	 slit	 would	 have	 no
effect	on	the	number	going	through	the	first.	A	particle	is	aware	only	of	the
space	right	next	to	it	and	cannot	sense	or	respond	in	any	way	to	another	slit
far	from	the	one	it	is	headed	for.	The	number	coming	with	two	slits	open	had
to	 be	 the	 sum	 of	 the	 numbers	 coming	 in	with	 either	 one	 open.	 You	 cannot
explain	 points	 like	X	 where	 no	 electrons	 come	 with	 both	 slits	 open,	 while
some	did	with	just	one.
Now	some	people	may	say,	“Well,	if	you	have	a	lot	of	electrons	coming	in,

maybe	these	guys	coming	out	of	S1	bumped	into	those	guys	coming	out	of	S2
so	 that	 the	 final	 intensity	was	not	 I1	+	 I2.	Nobody	came	 to	X	 because	 these
collisions	diverted	the	electrons	headed	for	X	to	some	other	direction.”	This	is
wrong	on	many	counts.
First,	 it	 is	very	unlikely	 that	 random	collisions	of	 this	 type	can	produce	a

nice	and	repeatable	interference	pattern	correlated	with	the	incoming	electron
momentum	p	and	the	slit	separation	d.
Second,	you	can	lay	the	notion	of	a	classical	electron	to	rest	by	making	the

electron	source	so	feeble	that,	at	a	given	time,	there’s	only	one	electron	in	the
experimental	region.	We	know	when	it	left	the	emitter	E	and	when	it	came	to
the	detector	D.	It	cannot	collide	with	itself.	And	yet	it	knows	two	slits	are	open
because	 after	 many	 runs,	 the	 interference	 pattern	 emerges.	 A	 Newtonian
particle	 cannot	 know	 that	 two	 slits	 are	 open.	 So	 the	 electron	must	 have	 an
associated	 wave	 that	 knows	 how	 many	 slits	 are	 open,	 knows	 what	 their
spacing	is,	and	can	interfere	with	itself.
For	 completeness	 let	 me	 mention	 that	 the	 de	 Broglie	 hypothesis	 was

originally	 confirmed	 not	with	 the	 double-slit	 but	 by	 diffraction	 off	 a	 nickel
crystal	in	1927	by	Clinton	Davisson	(1881–1958)	and	Lester	Germer	(1896–
1971).	 If	 you	 shine	 a	 beam	 of	 mono-energetic	 electrons	 (which	 have	 been
accelerated	to	a	fixed	momentum	and	are	hence	associated	with	a	definite	de
Broglie	wavelength	λ)	at	a	crystal,	you	find	that	the	electrons	scatter	only	for
incident	 angles	 θ	 relative	 to	 the	 plane	 of	 atoms	 that	 satisfy	 the	 Bragg
condition	2dsinθ	=	nλ	where	d	is	the	spacing	between	layers	of	atoms	and	n	is
an	integer.	This	experiment	had	been	presaged	by	Walter	Elasser	in	the	early
1920s	and	finally	succeeded	after	some	serendipitous	incidents	and	accidents.
To	summarize,	 light,	which	we	 thought	was	a	wave,	 is	made	of	particles,



and	 electrons,	 which	 we	 thought	 were	 particles,	 are	 guided	 by	 waves.
Everything	exhibits	wave-particle	duality	in	the	microscopic	world.

19.5			Photons	versus	electrons
In	 the	 double-slit	 experiment	 described	 so	 far,	 photons	 have	 behaved	 very
much	like	the	electron	(which	is	a	stand-in	for	all	other	particles	like	protons,
neutrons,	pions,	etc.).	Let	me	remind	you	of	the	similarities.
1.	Both	exhibit	wave-like	interference:	the	function	I1+2(y)	≡	I(y)	oscillates	on	the	line	of	detection
parameterized	by	a	coordinate	y.
2.	The	λ	of	the	underlying	wave	may	be	deduced	from	the	spacing	between	maxima	and	minima,	the
slit	separation	d,	and	distance	L	to	detectors	or	film	without	knowing	what	the	wave	actually
describes.	For	photons	λ	would	be	just	the	wavelength	of	the	incident	electromagnetic	wave,	while
for	electrons	it	would	be	the	de	Broglie	wavelength.
3.	In	both	cases	I(y)	gives	the	likelihood	of	a	photon	or	electron	triggering	a	pixel	or	detector	at	the
point	y.

But	as	we	go	forward	and	develop	the	quantum	theory,	the	photon	ends	up
being	treated	very	differently	from	the	electron.	This	is	the	case	because	the
photon	is	different.
First	of	all,	the	photon	can	never	be	at	rest.	Being	massless,	it	has	to	travel

at	c.	By	contrast	an	electron	can	be	brought	to	rest	and	there	is	a	regime	where
non-relativistic	kinematics	applies.	Next,	the	number	of	electrons	is	conserved
(in	the	non-relativistic	regime):	an	electron	never	appears	out	of	nowhere,	nor
does	 it	 disappear	 into	 nothing.	 By	 contrast,	 the	 number	 of	 photons	 can
change,	 and	 even	 does	 so	 during	 this	 experiment,	 increasing	 by	 one	 during
emission	by	the	source	and	decreasing	by	one	during	absorption	by	the	pixel.
This	 leads	 to	 a	 different	 interpretation	 of	 the	 intensity	 I(y)	 and	 of	 the

underlying	wave	that	produces	it.
1.	The	wave	underlying	the	photon	is	just	the	electromagnetic	wave,	described	by	E	and	B.	The
intensity	is	I(y)	∝	|E(y)|2	+	|B(y)|2,	dropping	constants	like	ε0,	μ0,	and	c.	(Go	back	and	consult	Eqn.
14.87	and	the	ones	leading	to	it.)	In	the	case	of	electrons,	the	underlying	wave,	called	the	wave
function	ψ(y),	does	not	correspond	to	any	classical	field.	It	is	an	entity	we	are	forced	to	introduce	to
explain	the	double-slit	experiment.	All	we	know	is	that	in	the	experiment	with	mono-energetic
electrons,	it	is	attributed	a	wavelength	λ	=	2πħ/p.	The	intensity	is	taken	to	be	I(y)	=	|ψ(y)|2,	and	not
I(y)	=	ψ2(y),	just	in	case	ψ	is	complex.

2.	In	the	case	of	the	electrons	I(y)	=	|ψ(y)|2	encodes	the	probability	P(y)	of	finding	the	electron	at	y.
Hence	we	write

This	 relation	 between	 |ψ(y)|2	 and	 the	 probability	 of	 finding	 an	 electron	 at	y
was	proposed	by	Max	Born	(1882–1970);	it	is	one	of	the	pillars	of	quantum
mechanics.	 If	 the	 experiment	 is	 repeated	many	 times,	P(y)	=	 |ψ(y)|2	will	 be



proportional	to	the	density	of	electrons	found	at	y.
In	 the	 case	 of	 photons	we	do	 not	 identify	 I(y)	∝	 |E(y)|2	 +	 |B(y)|2	 as	 the

probability	of	finding	a	photon	at	y.	Instead	we	identify	it	with	the	probability
of	 its	 being	 absorbed	 by	 an	 atom	 or	 pixel	 at	 y.	What	 is	 the	 big	 difference
between	the	photon	being	absorbed	at	y	and	the	photon	being	found	at	y?	The
answer	is	that	the	absorption	of	the	photon	has	a	very	precise	location,	namely
of	the	pixel	that	changed	color	or	the	atom	that	absorbed	it.	This	is	not	so	for
the	 location	 of	 the	 photon,	 because	 there	 is	 no	 trace	 of	 the	 photon	 after
detection.	If	I(y)	is	the	probability	of	finding	the	photon	at	y,	then	where	is	it?
It	is	gone	after	detection.
By	 contrast,	 the	 detected	 electron	 is	 actually	 there,	 rattling	 around	 inside

the	 detector	 as	 a	 distinct	 entity	 carrying	 charge	−e	 and	mass	m.	 So	we	can
meaningfully	 say	 I(y)	 is	proportional	 to	 the	probability	of	 an	electron	being
found	at	y,	of	it	actually	being	at	y	upon	detection.
There	 is	 a	 fundamental	 problem	 with	 assigning	 any	 probability	 function

P(y)	for	a	photon	being	at	y.	Consider	a	macroscopic	electromagnetic	field.	Its
energy	 density	 is	 proportional	 to	 the	 product	 of	 P(y)	 (the	 probability	 the
photon	is	at	y)	and	the	energy	ħω	of	each	photon:

dropping	all	constants.	But	there	is	no	meaning	to	λ(y),	the	“wavelength	at	y.”
It	 appears	 that	 P(y),	 the	 proposed	 probability	 of	 finding	 the	 photon	 at	 y,
depends	not	just	on	the	values	of	E(y)	and	B(y)	at	y,	but	also	on	the	non-local
quantity,	the	wavelength.	This	can	only	be	inferred	from	the	values	of	fields
over	a	distance	comparable	 to	 the	wavelength,	which	need	not	be	 small.	So
the	only	reasonable	candidate	for	P(y),	the	probability	of	finding	a	photon	at
y,	is	a	non-starter.
The	bottom	 line	 is	 that	unlike	 electrons,	 photons	do	not	have	an	associated
wave	function	ψ(y)	from	which	we	can	obtain	P(y)	=	|ψ(y)|2	following	Born.
The	rest	of	this	book	will	deal	only	with	the	quantum	mechanics	of	massive

particles	like	electrons,	for	which	we	can	define	a	wave	function	ψ(y)	and	for
which	P(y)	=	|ψ(y)|2	is	the	probability	of	finding	them	at	y.
I	 will	 also	 limit	 myself	 to	 non-relativistic	 quantum	 mechanics,	 which

means	the	(kinetic)	energy	and	momentum	of	the	particles	are	related	by	the
approximate	formula



and	not	 the	exact	one	 .	The	photon	will	enter	here	and	 there
and	 affect	 the	 dynamics	 of	 the	 electron,	 as	 in	 Compton	 scattering	 or	 the
emission	 and	 absorption	 of	 light	 by	 atoms.	 It	 can	 have	 an	 energy	 and
momentum	but	not	its	own	wave	function	ψ(y).

19.6			The	Heisenberg	uncertainty	principle
The	fact	 that	particles	are	described	by	waves	that	control	 the	probability	of
their	being	 somewhere	 and	 that	 a	particle	 in	 a	 state	of	momentum	p	 has	 an
associated	de	Broglie	wave	of	wavelength

implies	the	celebrated	Heisenberg	uncertainty	principle.

19.6.1			There	are	no	states	of	well-defined	position	and	momentum
There	are	many	ways	to	state	the	principle	and	let	us	begin	with	one:

It	is	impossible	to	prepare	a	particle	in	a	state	in	which	its	momentum	and
position	(along	one	axis)	are	exactly	known.	The	product	of	the	uncertainties
Δx	and	Δp	is	required	to	obey

This	 formula,	 as	written,	 is	 applicable	 only	 if	Δx	 and	Δp	 conform	 to	 the
precise	 definition	 of	 uncertainties	 in	 quantum	 theory.	 Postponing	 this
definition	 for	 later,	 we	 will	 instead	 identify	 in	 each	 context	 a	 reasonable
measure	of	what	we	could	call	 the	uncertainties	 in	position	and	momentum.
The	 products	 of	 these	 heuristic	 uncertainties	 naturally	 need	 not	 be	 bounded
below	by	ħ/2.	However,	they	will	always	be	of	the	same	order:

where	factors	like	2	or	π	are	not	guaranteed	to	match	on	both	sides,	and	it	is
understood	that	 the	Δp	 that	multiplies	Δx	 is	Δpx.	The	main	point	 is	 that	ħ	≃



10−34	J	 ·	s	 sets	 the	overall	scale	 for	 these	quantum	effects	and	a	 factor	of	π
here	and	there	does	not	change	this.	(The	only	2π	I	will	rigidly	retain	is	in	de
Broglie’s	formula	λ	=	2πħ/p,	where	all	the	quantities	are	precisely	defined.)
Let	 us	 now	 try	 (in	 vain)	 to	 produce	 a	 state	 of	 well-defined	 position	 and

momentum.	There	 is	no	problem	doing	 this	 in	classical	mechanics:	we	 let	a
particle	roll	down	a	slope	till	its	momentum	reaches	a	value	p0	at	some	point
r0	and	label	the	state	by	the	pair	(r0,p0).
Let	us	 try	 something	similar	 in	 the	quantum	case	 for	motion	along	 the	y-

axis.	We	first	accelerate	the	electron	by	letting	it	gain	kinetic	energy

Figure	19.6			In	an	attempt	to	localize	the	electron’s	position	and	momentum	in	the	y-direction,	we	send
it	along	the	x-axis	through	a	slit	of	width	D	in	the	y-direction.	The	emergent	electron	has	positional
uncertainty	Δy	≃	D	and	a	y-momentum	that	has	angular	spread	at	least	as	great	as	that	of	the	first
diffraction	peak	2θ	≃	2λ/D.

using	an	accelerator	of	voltage	V.	We	fire	it	in	the	x-direction	toward	a	slit	of
width	D	in	the	y-direction	as	shown	in	Figure	19.6.	An	electron	just	emerging
on	the	other	side	has	a	position	right	in	front	of	the	slit.	We	may	reasonably
take	as	the	uncertainty	in	its	y-position

A	 different	 definition	may	 change	 this	 by	 a	 factor	 of	 order	 unity,	which	 is
why	we	use	the	≃	symbol.	We	can	make	Δy	as	small	as	we	want	by	reducing
D.
What	is	its	y-momentum?	It	came	in	with	momentum	p0	in	the	x-direction



and	 nothing	 in	 the	 y-direction.	 Classically	 it	 would	 have	 the	 same	 y-
momentum	(zero)	just	after	crossing	the	slit.	Since	this	momentum	is	known
exactly,	 it	 looks	 like	Δpy	=	0	and	ΔyΔpy	=	0.	However,	 this	 is	not	so	 in	 the
quantum	theory.	The	incoming	electron	has	an	associated	wave	with

and	 when	 such	 a	 wave	 hits	 a	 slit,	 it	 diverges	 on	 the	 other	 side	 due	 to
diffraction.	We	have	seen	that	the	wave	has	a	significant	amplitude	not	just	in
the	forward	direction,	but	up	to	the	first	zero,	which	occurs	at	an	angle

The	opening	angle	of	this	diffraction	cone	is

A	particle	 capable	 of	 landing	 anywhere	 in	 the	 central	maximum	must	 be
endowed	with	the	requisite	y-momentum	that	will	 take	it	 there	from	the	slit.
Although	the	wave	is	significant	only	within	this	central	maximum,	it	 is	not
strictly	zero	outside.	So	the	y-momentum	also	has	a	probability	distribution	of
angular	width	no	smaller	than	2θ,	which	translates	into

Cross	multiplying	by	D,	which	is	just	Δy,	we	arrive	at

The	ħ	on	the	right-hand	side	is	solid,	but	the	4π	is	not,	since	it	can	be	easily
changed	by	a	slight	and	reasonable	redefinition	of	Δpy	and	Δy.	(For	example,
we	could	say	Δpy	 is	larger	because	the	diffraction	pattern	is	not	strictly	zero
outside	the	central	peak.)	This	is	why	we	drop	the	numerical	factors	of	order
unity	and	write

I	emphasize:	it	is	not	that	we	do	not	know	the	py	of	the	emergent	electron;	it



does	not	have	a	definite	py	when	 it	emerges	 from	the	slit	because	 there	 is	a
non-zero	probability	of	getting	any	answer	in	the	diffraction	peak.	A	particle
whose	 momentum	 measurement	 has	 a	 probability	 of	 giving	 a	 range	 of
answers	cannot	be	said	to	have	a	definite	momentum.
Do	not	 be	 fooled	by	 the	 fact	 that	 at	 various	 times	we	may	know	various

things	that	seem	to	contradict	the	uncertainty	principle.	At	the	outset	we	knew
the	momentum	exactly:	 it	was	p0	 in	 the	x-direction	and	0	 in	 the	y-direction.
We	had	no	idea	where	it	was	in	the	y-direction.	Just	after	 it	crossed	the	slit,
we	knew	its	y-location	to	within	an	uncertainty	Δy	≃	D.	But	in	this	state	it	had
an	indefinite	y-momentum,	with	a	non-zero	probability	for	pointing	anywhere
in	 the	 central	 diffraction	 peak.	 Later,	 when	 that	 electron	 hit	 a	 particular
detector,	we	could	work	backward	 to	 find	out	what	momentum	it	must	have
had	to	arrive	at	this	location	starting	from	the	slit.	This	retroactive	knowledge
that	we	obtain	only	after	it	hits	the	detector	does	not	describe	a	property	of	the
electron	when	it	emerged	from	the	slit.
It	 is	 an	 inescapable	 property	 of	 waves	 that	 you	 cannot	 confine	 them

spatially	 with	 a	 slit	 without	 forcing	 them	 to	 fan	 out.	 The	 result	 	 was
known	well	before	quantum	mechanics	in	the	study	of	single-slit	diffraction.
The	 new	 input	 from	 quantum	 theory	 is	 that	 λ	 now	 describes	 a	 particle	 of
momentum	 and	 the	 fanning	 out	 translates	 into	 an	 uncertainty	 in	 y-
momentum.
The	 role	 of	 probability	 here	 is	 very	 different	 from	 classical	 mechanics.

Suppose	I	sprayed	a	stream	of	classical	particles	at	an	opening	and	they	came
out	in	a	range	of	angles	on	the	other	side	and	hit	a	screen.	Here	too	I	can	give
the	odds	that	particles	will	arrive	at	some	point	on	the	screen.	But	this	use	of
probability	is	a	practical	strategy	and	not	mandated	by	fundamental	principles
of	classical	mechanics,	which	in	fact	allow	us	to	predict	where	each	and	every
particle	would	land.	On	a	given	trial	each	particle	that	was	fired	had	to	go	to
one	particular	 spot	on	 the	 screen.	 In	 the	quantum	case	we	are	 talking	about
just	one	electron,	not	a	beam.	That	single	electron	is	capable	of	arriving	at	a
range	of	points	on	the	screen,	each	with	some	probability.	This	is	the	sense	in
which	 it	 does	 not	 have	 a	 definite	momentum	when	 it	 leaves	 the	 slit.	 In	 the
case	of	the	classical	particle,	its	measured	momentum	might	have	been	given
by	a	probability	distribution,	but	it	had	a	definite	momentum,	We	just	did	not
know	it.	In	the	quantum	case	the	electron	coming	out	of	the	slit	did	not	have	a
definite	momentum.	Assuming	it	must	have	had	a	definite	momentum	is	like
assuming	 it	 must	 have	 gone	 through	 one	 particular	 slit	 in	 the	 double-slit
experiment.	This	idea	will	be	discussed	more	as	we	go	along,	so	do	not	worry
if	you	cannot	digest	it	right	now.

19.6.2			Heisenberg	microscope



We	have	seen	above	that	given	the	underlying	wave,	a	state	of	well-defined
position	and	momentum	simply	does	not	exist.	In	trying	to	prepare	an	electron
with	 a	 narrow	 range	 of	 positions,	 we	 ended	 up	 giving	 it	 a	 spread	 in	 its
momentum.	This	was	understood	using	wave	theory,	in	which	diffraction	of	a
wave	is	very	natural.
We	 would	 like	 to	 understand	 this	 in	 the	 particle	 picture.	 Let	 us	 say	 an

electron	is	in	a	state	of	definite	momentum	p	and	we	want	to	locate	it.	If	we
could	 do	 this	without	 altering	 its	momentum	 in	 any	way,	we	would	 have	 a
state	of	definite	position	and	momentum.	This	is	forbidden	by	the	following
version	of	the	uncertainty	principle:
The	act	of	 locating	the	position	of	an	electron	to	within	Δx	will	 introduce

an	uncertainty	in	its	momentum	Δp	satisfying

Here	we	turn	to	a	simple	experiment	whose	sole	aim	is	to	find	the	position
of	the	electron.	The	electron	lives	on	the	x-axis	as	shown	in	Figure	19.7.	We
hope	to	locate	it	by	shining	light	along	the	x-axis	and	observing	it	from	above
with	a	microscope	of	aperture	D,	capable	of	sliding	along	x.
To	proceed,	we	first	need	to	derive	an	expression	for	the	resolving	power	of

a	 microscope,	 which	 is	 its	 ability	 to	 distinguish	 nearby	 objects.	 Look	 at
Figure	 19.7A.	 Consider	 two	 point-like	 objects	 on	 the	 x	 axis	 a	 distance	 Δx
apart	and	at	a	distance	 f	 in	front	of	the	aperture	(where	 f	 is	 typically	but	not
necessarily	the	focal	length	of	the	lens	used).
In	 geometric	 optics	 the	 rays	 through	 the	 center	 of	 a	 lens	 go	 straight	 and

form	two	sharp	images	separated	by	an	angle	2α	where,	for	small	α,

In	wave	optics,	the	images	inside	the	microscope	are	not	point-like	but	spread
over	the	angle	±θ	where



Figure	19.7			The	Heisenberg	microscope.	Left:	Two	points	a	distance	Δx	apart	form	two	images	of
width	θ	(due	to	diffraction)	inside	the	microscope.	For	them	to	be	distinguished	we	require	α	>	θ.	Right:
Light	from	the	left	illuminates	the	electron	and	enters	the	microscope	within	a	cone	of	angle	ε	≃	D/2f,
where	D	is	the	aperture.	This	makes	the	final	photon	momentum	and	hence	the	final	electron
momentum	in	the	x-direction	uncertain.

due	to	diffraction	through	the	aperture.	For	θ	small,	this	becomes

For	the	objects	to	be	clearly	resolved	into	two	distinct	entities	we	need	the
peak	separation	to	exceed	the	peak	width:

or

Now,	according	to	the	right	half	of	Figure	19.7,	the	scattered	photon	can	enter
the	microscope	in	a	cone	of	opening	angle	2ε	given	by



Thus	we	arrive	at	the	resolving	power	of	the	microscope	in	terms	of	λ	and	ε:

a	 well-known	 result	 in	 classical	 optics.	 (A	 more	 accurate	 one	 is	 .)
There	is	no	lower	limit	on	just	Δx:	at	fixed	ε	we	can	reduce	it	arbitrarily	by
reducing	 λ.	 Since	 two	 point-particles	 cannot	 be	 distinguished	 if	 they	 come
closer	than	Δx,	we	may	rightly	call	Δx	the	uncertainty	in	their	location.
How	about	 the	electron’s	momentum?	Look	at	Figure	19.7B.	Assume	the

electron	 had	 a	 well-defined	 momentum	 before	 the	 position	 measurement.
(The	uncertainty	principle	does	not	 forbid	one	variable,	 in	 this	case	p,	 from
having	a	well-defined	value.)	The	photon	comes	in	with	momentum

in	 the	 x-direction,	 scatters	 off	 the	 electron,	 and	 enters	 the	 microscope
(assumed	 to	 be	 with	 the	 same	 magnitude	 of	 momentum).	 It	 can	 enter	 it
anywhere	 in	 the	 cone	 of	 half-angle	 ε.	 So	 its	 final	 x-momentum	 has	 an
uncertainty	of	order

This	uncertainty	in	the	photon	momentum	translates	into	the	same	uncertainty
in	the	electron’s	final	momentum	by	the	conservation	of	momentum.
In	summary,	we	have	used	the	microscope	to	produce	an	electron	in	a	state

with	uncertainties	Δx	and	Δpx	obeying

With	the	approximate	Δpx	and	Δx,	and	with	factors	of	order	unity	ignored,	we
write

Since	 it	 takes	 at	 least	 one	 photon	 to	 detect	 the	 electron,	 the	 uncertainty
product	can	only	get	bigger	if	more	photons	are	involved.
Here	 is	 a	 point	worth	 repeating:	 it’s	 not	 the	 fact	 that	 the	 photon	 came	 in

with	 a	 large	 momentum	 or	 that	 it	 transferred	 a	 large	 momentum	 to	 the
electron	that	causes	the	uncertainty	in	the	final	electron	momentum;	it	is	the
fact	that	the	photon	went	into	the	microscope	with	an	uncertainty	in	its	angle.



This	uncertainty	in	the	angle	turns	into	the	uncertainty	in	the	x-component	of
the	 photon’s	 final	 momentum	 and	 hence	 the	 electron’s	 final	 momentum.
(Remember,	 when	 we	 say	 the	 photon	 or	 electron	 has	 an	 uncertainty	 in	 its
momentum,	we	are	not	speaking	of	our	ignorance;	we	are	saying	it	does	not
have	 a	 definite	 momentum.)	 Once	 again	 the	 argument	 requires	 us	 to	 pass
deftly	 between	 the	 wave	 and	 particle	 pictures.	 This	 sleight	 of	 hand	 can	 be
avoided	once	the	full	theory	is	mastered.	Then	it	will	be	possible	to	define	Δx
and	Δp	precisely	and	derive	a	precise	lower	bound	for	the	uncertainty	product

19.7			Let	there	be	light
Let	 us	 take	 stock	 of	 the	 double-slit	 experiment.	Consider	 just	 one	 electron.
We	 know	 it	 was	 emitted	 when	 the	 emitter	 recoiled.	We	 also	 know	 it	 was
subsequently	 detected	 by	 a	 detector.	 These	 are	 undeniable	 facts.	 Even
quantum	mechanics	cannot	 change	 them.	But	what	happened	between	 these
two	 observations?	 We	 cannot	 say,	 because	 we	 did	 not	 see	 the	 electron	 in
between.	It	seems	reasonable	to	assume	that	it	followed	a	specific	trajectory
that	went	 from	the	emitter	E	 to	 the	detector	D	via	one	or	 the	other	slit.	We
may	not	know	which	path	it	took,	but	surely	it	must	have	taken	one	of	the	two
paths.	 This	 reasonable	 assumption	 is	 flatly	 contradicted	 by	 the	 interference
pattern.	 If	 in	 each	 case	 the	 electrons	 followed	 a	 definite	 trajectory	 passing
through	one	or	the	other	slit,	they	cannot	be	aware	of	the	other	slit,	and	I1+2	=
I1	+	I2	would	be	an	inevitable	consequence.

Figure	19.8			When	a	lightbulb	is	placed	near	the	slits	to	see	which	slit	the	electron	took,	we	find	that	the
ones	that	were	observed	showed	no	interference	while	the	ones	that	escaped	detection	produce
interference	oscillations	on	top	of	the	featureless	I1	+	I2	(dotted	line).

Suppose	we	do	not	buy	this	notion	that	an	electron	does	not	go	through	a
particular	slit.	We	place	a	glowing	lightbulb	right	after	the	two	slits	as	shown
in	Figure	19.8.	Whenever	an	electron	makes	it	past	 the	slits,	we	will	see	 for



ourselves	 which	 slit	 it	 went	 through.	 Then	 there	 can	 be	 no	 talk	 about	 not
going	through	a	definite	slit	or	not	having	a	definite	trajectory.	Every	electron
that	registered	a	click	at	a	detector	is	then	classified	as	having	passed	through
S1	or	S2,	as	having	followed	a	definite	trajectory.	By	sheer	logic	we	have	to
add	the	numbers	through	each	slit	to	get	the	total	number:	we	must	have	I1+2
=	I1	+	I2.
Indeed	this	is	what	will	happen	if	every	electron	that	was	picked	up	by	the

detector	was	also	seen	on	 its	way	 to	 the	detector.	But	once	 in	a	while	some
electrons	may	make	it	to	the	detector	without	being	observed	near	the	slits.	So
in	addition	to	electrons	labeled	as	coming	via	S1	or	S2,	there	is	a	third	species
of	 electrons:	 those	 which	 were	 not	 observed,	 which	 slipped	 by.	 The
reasonable	assumption	that	 they	too	would	behave	like	the	others	we	saw	is
wrong.	They	profoundly	alter	the	distribution.	Let	us	say	that	of	the	electrons
that	 triggered	 the	detectors,	 10%	escaped	undetected	by	 the	 lightbulb.	They
are	 the	 ones	 to	 which	 we	 cannot	 ascribe	 a	 particular	 slit,	 a	 particular
trajectory.	We	now	find	 that	 the	distribution	 I1+2	 looks	 like	 I1	+	 I2	plus	a	≃
10%	wiggle.	 In	 other	 words,	 the	 numbers	 of	 electrons	 that	 we	 caught	 and
identified	 as	 going	 through	 slit	 1	 or	 slit	 2	 add	 up	 the	 way	 they	 do	 in
Newtonian	 mechanics,	 but	 the	 electrons	 that	 slipped	 by	 without	 detection,
which	we	cannot	associate	with	a	 specific	 slit	or	a	 specific	 trajectory,	 show
the	 interference	 pattern.	 They	 must	 know	 about	 both	 slits	 to	 produce	 an
interference	pattern	that	depends	on	the	slit	separation	d.
Think	 about	 this:	 the	 ones	 that	 were	 seen	 near	 either	 slit	 act	 as	 if	 they

followed	 a	 definite	 trajectory	 (through	 a	 specific	 slit)	 while	 the	 ones	 that
slipped	by	act	as	 if	 they	did	not	follow	any	specific	 trajectory,	because	they
knew	about	both	slits.
It	 is	very	surprising	that	whether	or	not	we	see	the	electron	makes	such	a

difference.	When	we	study	an	object	in	Newtonian	mechanics,	we	don’t	care
if	the	object	is	observed	or	not	at	every	stage.	We	shoot	two	billiard	balls	at
each	other	and	predict	the	outcome	given	the	initial	data.	As	they	collide,	we
may	 be	 watching	 them	 or	 may	 not	 be	 watching	 them.	 The	 outcome	 is
independent	of	our	watching.	We	believe	in	an	objective	reality	described	by
natural	laws;	our	observing	it	at	intermediate	stages	is	incidental	and	does	not
influence	 the	 outcome.	Newtonian	 mechanics	 allows	 for	 an	 ideal	 observer
who	can	observe	without	affecting	the	outcome.
Why	 then	 does	 observation	make	 such	 a	 difference	 to	 the	 electrons?	 To

answer	this	let	us	ask	how	we	observe	the	electron	to	see	which	slit	it	passed
through.	 Look	 at	 Figure	 19.9.	 The	 slits	 are	 a	 distance	 d	 apart	 in	 the	 y-
direction.	We	need	to	obtain	an	 image	that	can	resolve	distances	of	order	d.
We	have	seen	(Eqn.	19.45)	that	to	locate	a	particle	to	a	precision	Δx,	we	need
to	 employ	 photons	 that	 will	 necessarily	 transfer	 an	 indefinite	 amount	 of



momentum	Δpx	given	by

Figure	19.9			The	photon	used	to	determine	which	slit	the	electron	took	produces	an	uncertainty	in	its	y-
momentum	of	order	 	and	in	its	direction	of	order	 ,	which	is	of	the	same
order	as	the	angular	separation	2θ*	between	two	successive	minima.

Although	I	will	keep	the	factor	of	4π	 in	the	following	discussion,	only	the	ћ
matters.
Let	us	apply	that	formula	here	with	some	obvious	modifications.	We	want

to	know	which	slit	the	electron	took.	So	we	want	to	be	able	to	tell	an	electron
at	 slit	 1	 from	an	 electron	 at	 slit	 2.	The	 slits	 are	 a	 distance	d	 apart	 in	 the	 y-
direction.	So	we	swap	x	for	y	in	Eqn.	19.48	and	let	d,	the	distance	between	the
slits,	play	the	role	of	Δx.	We	deduce	that	determining	which	slit	the	electron
took	will	introduce	the	following	uncertainty	in	its	y-momentum:

Now,	 the	 incoming	 electron	 had	 a	 momentum	 p0	 in	 the	 horizontal	 (x)
direction	and	a	wavelength	λ0	=	2πћ/p0.	The	uncertainty	Δpy	introduced	by	the
position	measurement	will	cause	an	angular	uncertainty	in	py	of	size



On	the	other	hand	the	angular	spacing	2θ*	between	successive	maxima	and
minima	(Figure	19.9)	is	deduced	from

to	be

The	 factor	 of	 2	 between	 θ*	 and	 θ	 (Eqn.	 19.55	 for	 the	 separation	 between
minima	 and	 Eqn.	 19.53	 for	 the	 angular	 uncertainty	 caused	 by	 the	 position
measurement)	 is	 not	 important.	 What	 matters	 is	 that	 they	 are	 of	 the	 same
order,	which	is	enough	to	wash	out	the	interference	pattern.
The	 act	 of	 observation	 by	 photons	 is	 dramatic	 and	 traumatic	 for	 the

electron	but	not	for	you	and	me.	Right	now,	I’m	getting	slammed	by	millions
of	photons,	but	I’m	taking	it	like	a	man.	But	for	the	electron,	it	is	a	different
story.	A	single	collision	with	a	photon	can	be	like	getting	hit	by	a	truck.	The
key	 is	 not	 just	 the	 huge	 momentum	 of	 the	 photon	 but	 the	 fact	 that	 the
momentum	 transfer	 is	unknown	by	amount	of	order	 .	Dimming	 the
light	source	will	not	help;	 it	will	 just	 reduce	 the	number	of	photons	and	 the
likelihood	 of	 detection	 but	 not	 the	 punch	 delivered	 by	 the	 photons	 that	 do
collide	with	the	electron.
Why	 do	 undetected	 electrons	 exhibit	 interference	 but	 not	 macroscopic

objects	 like	bullets?	Suppose	 the	electron	gun	 is	 replaced	by	a	machine	gun
and	the	opaque	barrier	by	a	concrete	wall	with	a	hole	in	it.	“They”	have	tied
you	to	a	post	on	the	other	side	and	are	firing	bullets	at	the	hole	from	the	left.
In	 other	 words,	 you	 are	 the	 “detector.”	 You	 are	 naturally	 anxious	 as	 you
dodge	the	bullets	coming	through	the	hole	and	now	a	“friend”	offers	to	help
you	 by	 making	 a	 second	 hole	 at	 a	 location	 that	 ensures	 destructive



interference.	You	 refuse,	 because	 in	 the	 double-slit	 experiment	with	 bullets
the	second	hole	will	not	help.	Why	does	something	that	works	at	the	atomic
level	fail	at	the	macroscopic	level?	There	are	two	reasons.
The	first	has	to	do	with	the	wavelength	λ=2πћ/p.	If	in	the	equation	p	=	mv

you	set	m	=	1	g	 and	v	=	103	m/s,	 you	get	 a	λ	 of	order	10−34m.	That	means
these	oscillations	at	your	location,	a	few	meters	down	the	road,	will	be	also	of
this	order,	give	or	take	a	few	powers	of	10.	For	reference,	the	size	of	a	single
proton	 is	 about	 10−15	m	 and	 there	will	 be	 around	1019	 oscillations	 over	 the
size	of	a	proton.	No	macroscopic	sensor	(like	you,	tied	to	the	back	wall)	can
detect	 that.	 Only	 the	 spatial	 average,	 which	 looks	 like	 I1+I2,	 will	 be
perceptible.	 The	 probabilities	 for	 getting	 shot	will	 be	 additive	 over	 the	 two
slits,	and	life	with	two	slits	open	will	be	roughly	twice	as	much	at	risk	as	with
just	one	open.
The	 second	 reason	 interference	 is	hard	 to	 see	 in	 the	macroscopic	 scale	 is

that	 macroscopic	 systems	 are	 being	 constantly	 (and	 often	 unintentionally)
observed:	by	ambient	light,	by	air	molecules	that	bump	into	them,	by	cosmic
rays,	and	possibly	by	dark	matter.	 If	you	could	 isolate	your	system	from	all
these	 and	 could	 detect	 oscillations	 of	 an	 absurdly	 small	 spatial	 period,	 you
would	see	interference	effects	even	in	macroscopic	systems.	Starting	from	the
atomic	 scale,	 experimentalists	 have	been	 systematically	 trying	 to	 get	 bigger
and	bigger	systems	to	display	such	interference,	suspended	in	limbo	between
more	than	one	classical	state	at	a	given	time.

19.8			The	wave	function	ψ
Let	 us	 compare	 the	 kinematics	 of	 quantum	 mechanics	 and	 classical
mechanics.	 In	 classical	mechanics	 the	 state	 of	 a	 particle	 is	 specified	 by	 its
position	r	and	momentum	p.
In	 quantum	 theory	 the	 particle	 is	 described	 at	 any	 one	 time	 by	 the	wave

function	 ψ(r).	 Remember	 ψ(r)	 describes	 one	 particle,	 not	 a	 swarm	 of
particles.	Thus	we	have	gone	from	just	two	variables	(r,p)	to	a	whole	function
ψ(r).	What	does	the	function	tell	us	about	the	particle?	From	the	probabilistic
picture	 that	 emerged	 from	 the	double-slit	 experiment	we	have	 learned	 that	 |
ψ(r)|2	 gives	 the	 odds	 of	 finding	 the	 particle	 at	 r.	 We	 will	 assume	 this
interpretation	of	ψ	 holds	 in	 all	 situations.	An	example	 is	 depicted	 in	Figure
19.10.	 It	 describes	 a	 particle	 in	 one	 spatial	 dimension	 (described	 by	 the
coordinate	 x)	 unlike	 the	 particle	 in	 the	 double-slit	 experiment,	 which	 was
moving	in	two	dimensions,	with	coordinate	r	=	(x,	y).



Figure	19.10			An	example	of	a	generic	wave	function	ψ(x)	of	a	particle	confined	to	the	x-axis	and	the
corresponding	probability	distribution	|ψ(x)|2	over	a	part	of	the	x-axis.

Here	 is	 one	 more	 thing	 we	 know	 about	 wave	 functions	 from	 the
interference	 pattern	 in	 the	 double-slit	 experiment:	 The	 ψ	 describing	 the
incoming	 particle	 of	momentum	 p	 is	 associated	with	 a	 definite	wavelength	

.
We	 do	 not	 know	 any	 more	 about	 the	 actual	 functional	 form	 of	 ψ.

(Remember	 that	 in	 Young’s	 experiment	 it	 was	 possible	 to	 extract	 the
wavelength	of	 light	 from	 the	 interference	pattern	without	knowing	anything
more	 about	 the	 wave,	 in	 particular	 that	 it	 represented	 oscillating	E	 and	B
fields.)	For	example,	it	could	be	that	 .	There	is	no	way
to	deduce	the	functional	form	of	ψ	from	just	the	double-slit	experiment.
Instead	it	is	given	by	a	postulate:
A	 particle	 of	 momentum	 p	 in	 the	 x-direction	 is	 described	 by	 a	 wave

function

The	subscript	p	reminds	us	it	is	a	state	of	momentum	p	and	the	constant	A
in	front	will	remain	undetermined	for	now.
Observe	 that	 this	 is	 a	 complex	 wave	 function.	 It	 obeys	 the	 uncertainty

principle

in	 the	 following	 manner.	 By	 definition	 Δp	 =	 0	 because	 this	 is	 a	 state	 of
definite	momentum	p.	So	we	need	Δx	=	∞.	This	is	indeed	true	for	this	|ψp(x)|2,
which	is	flat	(independent	of	x)	and	gives	no	indication	of	where	the	particle
is:



By	 being	 complex	ψp	 has	managed	 to	meet	 two	 seemingly	 incompatible
demands:	 it	 has	 a	 wavelength	 λ	 associated	 with	 it	 (to	 encode	 the	 particle
momentum)	 and	 yet	 its	 absolute	 value	 (squared)	 is	 constant,	 giving	 no
information	on	the	position.
The	oscillations	in	ψ(x)	ended	up	being	erased	when	we	multiplied	it	by	ψ*

(x)	 to	 compute	 |ψ(x)|2.	 Does	 this	mean	 that	 any	 interference	 pattern	 I1+2(y)
produced	by	this	complex	wave	will	also	be	flat	and	non-oscillatory?
No!	When	this	complex	plane	wave	hits	the	two	slits,	the	slits	will	give	rise

to	 two	 complex	 interfering	 radial	 waves	 on	 the	 other	 side,	 of	 the	 same
wavelength.	(That	is,	diffraction	through	the	slits	preserves	p,	 the	magnitude
of	p,	and	all	uncertainties	refer	to	its	direction.)

where	 r1	 and	 r2	 are	 the	 distances	 from	 the	 two	 slits	 as	 displayed	 in	 Figure
19.11	 and	 serve	 as	 coordinates.	 This	 function	 ψ(r1,	 r2)	 will	 in	 fact	 show
oscillations	in	|ψ(r)|2	where	the	particle	is	detected:

Figure	19.11			A	single	complex	plane	wave	producing	two	radial	waves	upon	hitting	the	two	slits.	The



crests	and	troughs	of	wavelength	λ	correspond	to	the	real	part.

exactly	as	in	the	Young	experiment,	Eqn.	18.50.
It’s	fair	to	say	that	if	you	did	not	know	complex	exponentials,	you	wouldn’t

have	gone	beyond	this	point	in	the	development	of	quantum	mechanics.	The
wave	function	of	an	electron	of	definite	momentum	is	a	complex	exponential.
Complex	functions	enter	quantum	mechanics	in	an	essential	way.	It’s	not	that
the	function	ψp(x)	 is	really	Acos(px/ћ)	and	we	are	trying	to	write	it	as	a	real
part	 of	 a	 complex	 exponential	 to	 simplify	 some	 calculation.	 We	 need	 this
complex	beast	if	we	want	to	describe	a	particle	of	definite	momentum	p	and
totally	unknown	location.
I	 emphasize	 that	 I	 did	 not	 derive	 the	 result	 that	 ψp	 ≃	 eipx/ћ	 describes	 a

particle	 with	 momentum	 p	 in	 the	 x-direction.	 It	 is	 a	 postulate.	 Arguments
based	on	the	double-slit	experiment	were	merely	espoused	to	make	the	final
answer	 seem	 reasonable.	 You	 cannot	 derive	 the	 postulates	 of	 quantum
mechanics	by	pure	logic	or	mathematics.	You	have	to	guess	postulates	of	the
underlying	theoretical	structure	from	the	data	and	see	how	well	they	work.

19.9			Collapse	of	the	wave	function
Consider	a	particle	with	a	wave	function	ψ(x)	and	the	associated	probability
P(x)	=	 |ψ(x)|2.	Suppose	now	we	catch	it	at	some	point,	say	x	=	5.	If	 there	is
any	reality	to	this	detection,	the	particle	must	be	found	at	x	=	5	if	its	position
is	 measured	 immediately	 afterward.	 This	 means	 that	 right	 after	 the
measurement,	both	ψ(x)	and	P(x)	must	collapse	to	narrow	spikes	at	x	=	5.	This
collapse	of	the	wave	function	is	postulated	to	happen	and	is	found	to	happen.
In	the	double-slit	experiment,	the	oscillatory	I1+2(y)	at	the	detectors	describes
the	situation	before	the	electron	is	detected.	Once	it	triggers	a	detector,	both	ψ



and	P	collapse	to	the	detector.
Of	 course,	 as	 time	 passes	 the	 collapsed	 wave	 function	 may	 evolve	 and

broaden	 out.	 The	 collapsed	 function	 applies	 only	 immediately	 after	 the
measurement.

19.10			Summary
Here	is	a	summary	of	what	we	have	discussed	so	far.
1.	At	the	microscopic	level	all	entities	exhibit	wave-particle	duality.
2.	Light,	which	was	believed	to	be	a	wave,	is	actually	made	of	individual	particles	called	photons,
which	represent	bundles	of	energy	and	momentum.	Monochromatic	light	consists	of	photons	all	of
which	have	exactly	the	same	momentum	p	given	by	de	Broglie’s	formula

and	the	same	energy	determined	by	the	frequency	of	light

3.	Electrons,	protons,	and	the	like,	which	were	known	to	be	particles	with	localized	energy,
momentum,	and	charge,	exhibit	wave-like	qualities	in	a	double-slit	experiment.	The	de	Broglie
relation	between	momentum	and	wavelength	is	the	same	as	for	photons:

though	I	write	it	with	λ	on	the	left-hand	side	to	indicate	that	λ	and	not	p	is	the	unexpected	feature	for	a
particle.
4.	Each	(massive)	particle	is	associated	with	a	wave	function	ψ(r)	whose	absolute	value	squared	|
ψ(r)|2	gives	the	likelihood	of	finding	the	particle	at	r.	If	the	particle	is	detected	at	r,	ψ(r)	collapses	to
a	spike	at	r	just	after	measurement.	An	immediate	position	remeasurement	will	give	the	same	answer.
It	may	of	course	change	as	time	goes	by.
5.	The	possibility	of	interference	implies	that	the	particles	referred	to	above	are	not	classical:	they	do
not	follow	a	definite	trajectory	(for	example,	through	a	particular	slit	in	the	double-slit	experiment)
between	observations.	Assuming	they	do	implies	I1+2	=	I1	+	I2,	which	contradicts	experiment.

6.	The	interference	pattern	is	destroyed	if	the	slit	the	particle	took	is	determined,	say	by	shining	light.
This	occurs	because	the	photons	employed	introduce	a	minimum	uncertainty	in	momentum,	which	is
enough	to	wash	out	the	pattern.
7.	Macroscopic	bodies	do	not	show	interference	because	they	are	constantly	being	bombarded	by	the
environment	and	because	any	pattern	that	survives	would	exhibit	absurdly	rapid	spatial	oscillations.
8.	The	wave	function	associated	with	a	particle	of	definite	momentum	p	in	the	x-direction,	or	simply,
a	state	of	definite	momentum	p,	is



9.	In	every	quantum	state,	the	roughly	estimated	uncertainties	Δx	and	Δp	have	to	obey	the	Heisenberg
uncertainty	principle:

(up	to	factors	like	2π	etc.,	and	likewise	in	the	y-direction).
If	Δx	and	Δp	are	 the	precisely	defined	uncertainties,	and	not	 the	heuristic

estimates,	we	may	write

The	 uncertainty	 principle	 merely	 reflects	 the	 fact	 that	 trying	 to	 localize	 a
wave	 in	one	direction	(say	by	passing	 it	 through	a	narrow	slit)	makes	 it	 fan
out.
You	have	been	exposed	to	so	many	new	results	in	this	chapter.	There	is	not

much	 I	 can	 do	 to	 relieve	 the	 information	 load	 or	 to	 make	 it	 appear	 more
natural,	because	it	is	not	natural.	However,	I	want	to	extract	from	these	results
what	I	consider	 to	be	postulates,	notions	 that	cannot	be	deduced	by	 logic	or
from	other	postulates.	The	list	is	not	rigorous	and	I	will	enlarge	and	amend	it
as	we	go	along.
Even	 though	 the	 particles	 in	 the	 double-slit	 experiment	 moved	 in	 two

dimensions,	 I	 want,	 for	 pedagogical	 purposes,	 to	 extract	 postulates	 for	 a
particle	moving	in	just	one	dimension,	described	by	a	coordinate	x.
Postulate	1.	The	state	of	a	particle	living	on	the	x-axis	is	completely	specified	by	a	wave	function
ψ(x)	(generally	complex)	that	contains	all	the	information	about	it.
Postulate	2.	The	relative	probability	of	finding	the	particle	at	x	is	given	by

P(x)	=	|ψ(x)|2.

If	 the	 particle	 is	 detected	 at	 x,	 ψ(x)	 collapses	 to	 a	 spike	 at	 x	 just	 after
measurement.
Postulate	3.	A	particle	in	a	state	of	momentum	p	is	described	by

If	we	bring	ψp(x)	to	the	standard	form	of	a	wave	written	in	terms	of	λ

we	see	that	not	only	does	this	postulate	subsume	the	de	Broglie	formula



relating	 the	 wavelength	 to	 the	 momentum	 p,	 but	 it	 also	 goes	 beyond,	 by
specifying	the	actual	functional	form.
What	about	the	uncertainty	principle?	It	is	not	a	postulate;	it	follows	from

combining	what	is	postulated	(relating	momentum	to	wavelength)	with	results
from	classical	wave	theory.



CHAPTER	20

The	Wave	Function	and	Its	Interpretation

Even	though	the	last	chapter	ended	with	a	summary,	I	will	go	over	the	facts
again	since	they	are	quite	bizarre	and	talking	about	them	often	is	one	effective
way	to	digest	them.
Electrons,	photons,	protons,	neutrons	are	all	particles.	I	will	simply	refer	to

them	collectively	as	electrons	in	this	discussion.	Let	there	be	no	doubt	about
what	I	mean	by	a	particle	here:	if	one	of	them	hits	your	face,	you	will	feel	it	in
only	one	tiny	region,	 in	just	one	spot.	The	electron	will	dump	all	 its	charge,
all	its	momentum,	all	its	energy	to	one	little	part	of	your	face.	There’s	nothing
extended	about	 the	 impact,	 the	kind	you	would	expect	 from	getting	hit	by	a
wave	 front.	 If	 it	 is	 a	 particle	 in	 all	 these	ways,	where	 is	 the	 problem?	The
problem	 appears	when	 you	 do	 the	 double-slit	 experiment.	 That’s	what	 puts
the	nail	in	the	coffin	for	Newtonian	or	classical	physics.	Recall	the	essentials.
There	is	a	source,	like	an	electron	gun,	that	emits	electrons	on	the	left,	there	is
a	partition	with	two	slits	in	the	middle,	and	an	array	of	detectors	(or	a	sliding
detector)	on	the	right.	The	electron	gun	has	been	engineered	to	send	electrons
of	 a	 definite	 momentum	 and	 energy	 by	 accelerating	 them	 down	 a	 definite
potential.	 If	 this	gun	 is	 far	away	 to	 the	 left,	 then	 the	only	way	electrons	are
going	 to	 hit	 the	 slits	 is	 if	 they	 are	 essentially	 moving	 in	 the	 horizontal
direction.	What	 do	we	 really	 know	when	we	do	 the	 experiment?	Once	 in	 a
while	 the	 gun	will	 emit	 an	 electron	 and	 recoil	 like	 a	 rifle.	 That’s	when	we
know	 the	 electron	 has	 left.	 Then	we	 don’t	 know	 anything	 for	 a	while,	 and
then	 one	 of	 the	 counters	 goes	 “click.”	 That	means	 the	 electron	 has	 arrived
there.	This	is	all	we	really	know.	Everything	else	we	say	about	the	electron	is
conjecture	at	this	point.	We	know	it	was	here	first,	and	we	know	it	was	there
later.	 The	 question	 is,	 what	 was	 it	 doing	 in	 between?	We	might	 say,	 “We
don’t	know	the	trajectory	it	followed	because	we	did	not	track	it,	but	it	must
have	 followed	 some	 trajectory,	 either	 through	 slit	 1	 or	 through	 slit	 2.”	This
reasonable	assumption	contradicts	experiment:	it	predicts	I1+2	=	I1	+	I2,	which
is	false.	A	dramatic	illustration	is	seen	at	the	point	that	was	labeled	X,	a	zero
of	the	interference	pattern.	We	used	to	get	N	electrons	per	hour	with	one	slit
open,	and	N	electrons	per	hour	with	the	second	slit	open,	and	none	with	both
open,	 instead	 of	 2N.	 This	 was	 not	 the	 result	 of	 electrons	 from	 one	 slit
colliding	 with	 electrons	 from	 the	 other	 and	 deflecting	 them	 away	 from	 X,
because	 the	 same	 result	 is	 obtained	 if	 the	 experiment	 is	 done	with	 just	 one



electron	in	the	region	at	any	given	time.
That	is	the	great	mystery.	That	is	the	end	of	Newtonian	physics.
It	 then	gets	even	more	mysterious	 if	we	 try	 to	 see	which	slit	 the	electron

took	by	placing	a	glowing	lightbulb	near	the	slits.	Now	we	find	that	the	ones
that	were	detected	are	additive	over	 the	slits,	while	 the	ones	 that	 slipped	by
produce	an	interference	pattern.	So	the	behavior	of	the	electron	is	affected	by
whether	we	see	it	or	not.	This	is	true	because	the	light	used	to	see	which	slit
the	electron	took	necessarily	transfers	to	the	electron	some	momentum	whose
uncertainty	 was	 estimated	 to	 be	 of	 the	 order	 ,	 where	 d	 is	 the	 slit
separation.	This	in	turn	translates	into	an	uncertainty	in	the	electron	direction
by	 an	 angle	 comparable	 to	 that	 which	 separates	 successive	 maxima	 and
minima	 in	 the	 interference	 pattern.	 The	 pattern	 gets	 washed	 out	 upon
detection.
We	do	not	 see	 such	 interference	patterns	on	a	macroscopic	 scale	because

macroscopic	 objects	 are	 constantly	 being	 bombarded,	 intentionally	 or
otherwise,	and	any	interference	pattern	that	miraculously	survives	will	be	of
an	absurdly	small	wavelength	and	escape	detection.	Only	the	spatial	average,
which	reduces	to	I1	+	I2,	will	be	detected.
What	 are	 we	 to	 make	 of	 the	 oscillatory	 pattern	 I1+2	 in	 the	 double-slit

experiment?	A	trained	physicist	 like	you	will	say,	“Hey,	 this	reminds	me	of
interference,	 which	 I	 have	 encountered	 with	 water	 waves	 and	 sound.
Obviously	there	is	some	underlying	wave	and	some	wavelength.	The	minute
you	give	me	the	wavelength	and	a	slit	separation,	I	can	calculate	this	pattern
using	d	sinθ	=	mλ.	Conversely,	from	the	angles	at	which	maxima	occur	I	can
infer	λ.”	You	go	on	and	find	that	the	wavelength	is	some	number	2πћ	=	2π	·
1.05	·	10−34J	·	s	divided	by	the	momentum	p	of	the	incoming	electrons:

In	other	words,	you	find	that	if	you	sent	in	more	energetic	electrons,	that	is,
accelerate	 them	through	bigger	voltage	 to	 increase	 their	p,	 the	wavelength	λ
goes	down	inversely,	with	2πћ	as	the	constant	of	proportionality.
So	you	can	successfully	predict	this	pattern	given	the	electron	momentum

and	the	wave	of	corresponding	λ,	but	what	does	it	tell	you	about	what’s	going
on?	What	good	is	that	pattern?	The	pattern	tells	you	that	if	you	repeated	the
experiment	with	this	electron	gun	a	million	or	a	billion	times	and	plotted	the
histogram	of	electrons	registering	at	different	counter	locations,	the	histogram
would	 eventually	 fill	 out	 and	 take	 the	 shape	 I1+2	 produced	 by	 wave
interference.	However,	this	wave	is	not	associated	with	a	stream	of	electrons.
The	single	electron	in	the	experimental	region	is	controlled	by	this	wave.	It’s



not	a	wave	of	charge	or	of	matter	as	in	water	or	a	string.	It’s	a	mathematical
function,	and	you	are	driven	to	it	as	the	only	way	you	know	to	get	this	wiggly
graph	I1+2:	give	the	wave	a	definite	wavelength	and	let	it	interfere.	And	what
does	 it	 mean	 for	 the	 individual	 trial?	 It	 gives	 you	 the	 odds	 of	 where	 the
electron	will	land	on	that	screen.
So	 there	 seems	 to	 be	 a	 function	whose	 square	 at	 a	 point	r	 gives	 you	 the

probability	 of	 finding	 the	 electron	 at	 r.	 That	 function	 is	 called	 the	 wave
function	 ψ(r).	 Given	 the	 wave	 and	 the	 relation	 p	 =	 2πћ/λ,	 the	 uncertainty
principle	 ΔxΔp	 	ћ	 follows.	One	way	 to	 arrive	 at	 it	 is	 to	 try	 to	 engineer	 a
situation	in	which	the	product	of	the	uncertainties	in	the	electron	position	and
momentum	 is	 arbitrarily	 small.	 We	 will	 find	 it	 is	 possible	 in	 classical
mechanics	but	not	quantum	mechanics.
First	consider	classical	mechanics.	We	send	a	beam	of	classical	particles	of

definite	 momentum	 p0	 in	 the	 horizontal	 or	 x-direction	 and	 let	 it	 strike	 a
partition	 with	 a	 slit	 of	 width	D	 in	 the	 transverse	 y-direction.	 Any	 particle
emerging	from	the	slit	has	py	=	0	(since	it	is	still	moving	horizontally),	and	a	y
coordinate	with	uncertainty	Δy	=	D.	 Since	Δpy	=	0,	 the	uncertainty	product
vanishes.	Besides,	we	can	make	Δy	as	small	as	we	want	by	reducing	D.
This	is	of	course	not	true	for	a	quantum	particle	like	the	electron.	It	is	still

true	that	the	electron	just	emerging	from	the	slit	has	Δy	≃	D.	However,	its	fate
is	governed	by	a	wave	with	λ	=	2πћ/p0.	The	wave	fans	out	by	diffraction	to	an
angle	θ	given	by	Dsinθ	=	λ.	The	final	electron	has	a	non-zero	probability	of
hitting	points	on	the	screen	at	any	angle	within	the	principal	maximum	of	the
diffraction	pattern,	i.e.,	within	±θ.	To	get	there	it	needs	to	have	a	y	component
of	momentum	with	an	uncertainty	Δpy	 	2p0sinθ	=	2p0λ/D	=	4πћ/D,	in	accord
with	the	uncertainty	principle.
The	uncertainty	principle	 is	valid	 in	 the	macroscopic	 scale	but	 irrelevant.

Consider	 an	 object	 of	 mass	 1	 kilogram	 whose	 location	 is	 known	 to	 the
accuracy	of	the	size	of	1	proton,	which	is	10−15m.	So	we	have	here	an	object
made	of	≃	 1026	 protons	 and	we	know	 its	 location	 to	 the	width	of	1	proton.
That	is	good	enough	for	most	imaginable	purposes.	The	corresponding	Δp	=
10−19kg	·m/s	translates	into	uncertainty	in	velocity	of	10−19m/s.	Now	how	bad
is	that?	Suppose	I	knew	the	velocity	to	this	accuracy,	and	I	let	the	body	travel
for	one	year.	Since	a	year	is	roughly	107s,	that	becomes	a	position	uncertainty
of	 10−12m,	 which	 is	 one-hundredth	 the	 size	 of	 an	 atom.	 So	 you	 see,	 these
uncertainties	are	not	important	in	daily	life.
What	 is	 the	 incoming	wave	 that	 produces	 this	 interference	 pattern	 in	 the

double-slit	 experiment	 conducted	with	 electrons	of	 definite	momentum	p	 in
the	x-direction?	We	know	 the	wavelength	 is	λ	 =	 2πћ/p,	 but	many	 functions
can	oscillate	with	this	λ.	The	correct	answer	is	the	complex	exponential



where	the	constant	A	is	unspecified	at	this	stage.	The	label	p	reminds	us	that	it
is	not	just	any	old	ψ;	it	is	one	that	describes	a	particle	of	momentum	p.	Such
nomenclature	 is	 common	and	will	 be	 employed	often	 in	what	 follows.	This
function	manages	 to	encode	 the	oscillations	of	 the	correct	wavelength	 in	 its
phase	and	yet	possess	an	absolute	value	squared	|ψp(x)|2	that	is	y-independent.
So	 the	 particle	 location	 is	 completely	 unknown	 and	 the	 probability
distribution	 absolutely	 flat,	 which	means	 Δx	 =	 ∞,	 as	 required	 of	 a	 state	 of
definite	momentum.
I	emphasize	that	the	preceding	ψp	with	its	flat	P(r)	describes	the	incoming

wave	 before	 it	 hits	 the	 two	 slits.	 After	 passing	 through	 them,	 the	 wave
emerges	 as	 two	 radial	 waves	 that	 interfere	 and	 produce	 an	 oscillating	P(y)
along	the	line	of	detectors.

20.1			Probability	in	classical	and	quantum	mechanics
Suppose	you	flip	a	coin	and	ask,	“Which	way	will	 it	 land?”	This	calls	 for	a
very	 difficult	 calculation.	 But	 it	 can	 be	 done	 in	 principle,	 because	 once
released	 from	 your	 hand,	 the	 coin	 can	 land	 in	 only	 one	 way.	 That	 is	 the
determinism	of	Newtonian	mechanics.	If	you	knew	the	exact	initial	position,
velocity,	 linear	momentum	and	angular	momentum,	 the	viscosity	of	air,	and
so	on,	you	could	predict	whether	it	was	going	to	land	heads	or	tails.	There	is
no	 fundamental	need	 to	 resort	 to	probability.	 In	practice,	no	one	can	do	 the
calculation.	What	you	do	in	practice	is	throw	the	same	coin	5,000,000	times,
you	find	out	the	odds	for	heads	or	tails,	and	you	say,	“I	predict	that	when	you
throw	 it	next	 time,	 it	will	be	heads	with	probability	0.56.”	That	 is	how	you
make	statistical	predictions.	You	did	not	have	to	use	statistics,	but	you	did	so
as	a	practical	strategy	when	faced	with	an	impractical	calculation.
Next,	suppose	I	toss	a	coin	and	when	it	lands	on	my	palm,	I	close	my	palm

without	 looking.	When	 I	 uncover	my	 palm	 and	 look	 at	 the	 coin,	 it	may	 be
heads	 or	 it	 may	 be	 tails.	 Suppose	 I	 got	 heads.	 It	 was	 heads	 even	 before	 I
opened	my	 hand,	 right?	The	measured	 outcome	 preexisted	 inside	my	 hand.
What	 I	 saw	 was	 what	 it	 was	 doing	 even	 before	 I	 looked.	 This	 is	 how
probability	works	in	classical	mechanics.
I’ll	give	another	example,	with	a	continuum	of	possible	outcomes.	Figure

20.1	shows	 the	probability	of	 locating	me	somewhere.	 It	 is	peaked	near	my
home	in	Cheshire,	and	near	Yale,	and	has	some	sizable	value	on	the	infamous
Route	10	connecting	the	two.	Somebody	has	studied	me	for	a	long	time	and
said,	 “If	 you	 look	 for	 this	 guy,	 here	 are	 the	 odds	 of	 finding	 him	 at	 various
locations.	Either	he’s	working	at	home,	working	at	Yale,	or	driving	on	Route



10.”	The	first	 thing	 to	understand	 is	 that	 the	spread-out	probability	does	not
mean	I	am	myself	spread	out,	unless	I	got	into	a	terrible	accident	on	Route	10.
I’m	in	only	one	place	at	any	one	time.	Only	the	graph	of	the	odds	is	extended.
Well,	suppose	you	catch	me	at	the	point	X	on	one	of	your	many	trials.	If	you
catch	me	only	once,	you	don’t	know	if	the	prediction	for	P(x)	is	any	good,	so
you	repeat	it.	You	locate	me	many	times	and	plot	the	histogram	and	you	get
the	 graph	 that	 looks	 like	 this	P(x).	 The	 important	 thing	 is,	 every	 time	 you
catch	 me	 somewhere,	 I	 was	 already	 there;	 you	 just	 happened	 to	 catch	 me
there.	My	 location	 was	 not	 known	 to	 you,	 but	 I	 had	 one.	 I	 had	 a	 definite
location	 because	 in	 the	 macroscopic	 world	 I’m	 moving	 in,	 my	 location	 is
being	 constantly	measured.	 You	 didn’t	 ask	 or	 you	 didn’t	 find	 out,	 but	 I’m
plowing	through	air	molecules.	I’ve	slammed	into	them.	They	remember	that.
I	 ran	 over	 this	 ant.	 The	 last	 thing	 the	 ant	 did	was	measure	my	 position,	 at
considerable	cost	to	itself.

Figure	20.1			The	probability	of	finding	me	somewhere	during	a	typical	day	at	home	in	Cheshire,	along
Route	10,	or	at	Yale.

Now	let	us	look	at	Figure	20.2.	It	is	no	longer	me	that	is	being	described	by
P(x),	 but	 an	 electron	 that	 is	 shared	 by	 two	 nuclei,	N1	 and	N2.	Whereas	 in
classical	physics	 there	 is	 just	a	probability	 function	P(x),	 in	quantum	 theory
there	is	an	underlying	wave	function	ψ(x),	which	in	turn	determines	P(x)	=	|
ψ(x)|2.	The	electron	is	described	by	ψ1(x)	when	it	is	centered	around	nucleus
N1,	 with	 a	 corresponding	 probability	 P1(x)	 =	 |ψ1(x)|2.	 It	 does	 not	 have	 a
precise	location	since	it	can	be	found	anywhere	the	function	is	non-zero.	Let
us	say	we	are	only	going	to	make	crude	position	measurements	that	only	tell
us	near	which	nucleus	the	electron	is.	If	the	wave	function	is	ψ1,	we	know	we
will	find	it	near	nucleus	N1,	that	it	belongs	to	N1.	Likewise	ψ2(x)	is	centered
around	 nucleus	 N2	 with	 a	 corresponding	 probability	 P2(x)	 =	 |ψ2(x)|2	 and
describes	an	electron	known	to	be	near	N2	and	belonging	to	N2.



Figure	20.2			Top	left:	The	wave	functions	ψ1	for	an	electron	centered	near	nucleus	N1	or	ψ2	centered
around	nucleus	N2.	Top	right:	Their	sum	ψ1	+	ψ2,	which	is	also	a	possible	wave	function.	Bottom:	The
corresponding	probability	P1+2(x).

Now	 quantum	 theory	 also	 allows	 for	 another	 state	ψ1+2	 =	ψ1	 +	ψ2.	 It	 is
peaked	near	both	nuclei,	 as	 is	P1+2	=	 |ψ1+2|2.	The	electron	 is	now	 in	a	 state
that	belongs	to	neither	nucleus.	Once	again,	if	you	catch	the	electron,	you	will
catch	all	of	it	in	one	place,	near	one	or	the	other	nucleus.	It	is	the	odds	that	are
spread	out	across	both	nuclei.
All	 this	looks	just	 like	the	probability	of	my	being	at	my	home,	on	Route

10,	or	at	Yale.	But	there	is	a	big	difference:	if	you	catch	the	electron	in	state
ψ1+2	near	nucleus	N2,	it	is	wrong	to	think	that	it	was	there	before	you	located
it.	So	where	was	it?	It	was	not	near	either	nucleus.	It	had	no	location	till	you
found	its	location.	To	assume	it	was	definitely	near	one	nucleus	or	the	other
before	locating	it	is	like	assuming	the	electron	went	through	one	or	the	other
slit	when	you	did	not	detect	it	using	light.	Assuming	so	leads	to	consequences
at	odds	with	experiment.
I	repeat:	finding	the	electron	near	N1	or	N2	 is	not	quite	like	finding	me	in

Cheshire	or	finding	me	at	Yale,	because	in	those	cases,	on	a	given	day	on	a
given	measurement,	 you	 could	 have	 only	 gotten	 one	 answer,	 depending	 on
where	 I	actually	was.	Right	 now	 if	 you	 look	 for	me,	 you	 can	only	 find	me
here,	slaving	on	this	book.	You	cannot	find	me	anywhere	else.	But	in	the	case
of	 the	 electron,	 the	 one	 and	 the	 same	 electron,	 on	 a	 given	 trial,	 at	 a	 given
instant,	is	fully	capable	of	being	here	or	there.
There	 is	 one	 common	 feature	between	classical	 and	quantum	probability.

Once	a	particle	given	by	some	P(x)	is	actually	caught	at	some	point,	say	x	=	5,
we	 know	 for	 sure	 it	 will	 be	 there	 at	 least	 for	 an	 infinitesimal	 time	 after
detection.	The	function	P(x)	collapses	to	the	point	x	=	5.	In	the	quantum	case,
the	underlying	wave	function	also	undergoes	collapse.
In	 short,	 probability	 enters	 classical	 mechanics	 to	 make	 up	 for	 our

imperfect	knowledge	of	 the	 state	of	 a	particle.	 In	quantum	mechanics,	 even



given	the	maximal	information	allowed	by	the	theory,	i.e.,	the	wave	function
ψ(x),	one	still	needs	probabilities	in	an	unavoidable	way.	The	second	crucial
difference	is	that	while	in	both	cases	there	is	a	non-negative	function	P(x),	in
the	 quantum	 case,	 there	 is	 a	 layer	 beneath	P(x),	 namely	 the	wave	 function,
which	 can	 be	 negative	 or	 even	 complex	 and	 can	 be	 superposed	 to	 produce
interference.
Classically	we	think	of	measurement	as	revealing	a	preexisting	property	of

the	 object,	 like	 its	 position.	 But	 in	 quantum	 theory,	 it’s	 not	 that	 you	 don’t
know	 the	 particle	 location,	 but	 that	 it	 does	 not	 have	 a	 location.	 It	 is	 not
anywhere.	It’s	the	act	of	position	measurement	that	confers	a	definite	location
on	the	electron.	Until	you	detect	it,	it	could	have	been	anywhere	P(x)	did	not
vanish.	That	 state	of	being,	where	 something	can	be	 simultaneously	here	or
there,	 in	 the	 sense	 that	 on	 that	 single	 occasion,	 it	 could	 be	 found	 in	 either
location,	has	no	analog	in	the	classical	world.	If	anybody	tries	to	give	you	an
example	of	 this	phenomenon	 from	daily	 life,	don’t	believe	 it,	 because	 there
are	 no	 examples	 in	 the	macroscopic	world	 that	 look	 like	 this.	No	 analogies
should	satisfy	you,	because	this	has	no	analog	in	the	macroscopic	world.
How	small	does	an	object	have	to	be	before	it	exhibits	quantum	mechanical

behavior,	 before	 it	 can	 be	 doing	 two	 things	 at	 the	 same	 time?	 That	 is	 an
experimental	question	being	probed	vigorously	 these	days.	We	know	 that	 if
it’s	really	small	like	an	electron,	it’s	always	quantum	mechanical.	If	it	is	large
like	 a	 bowling	 ball,	 it	 will	 seem	 to	 have	 a	 well-defined	 position	 and
momentum	at	all	times.	People	are	trying	to	build	bigger	and	bigger	systems
that	 can	 be	 in	 this	 state	 of	 limbo.	 Creating	 a	 situation	 when	 an	 object	 is
capable	 of	 being	 found	 here	 and	 there,	 or	 doing	 this	 and	 doing	 that
simultaneously,	 requires	 that	 you	 isolate	 the	 object	 from	 the	 outside	world.
This	gets	harder	as	the	object	gets	bigger.	Whereas	an	electron	in	an	atom	is
usually	in	a	vacuum,	macroscopic	objects	are	under	constant	bombardment	by
the	environment.	That’s	what	ruins	everything.
This	 is	 a	 major	 problem	 in	 building	 quantum	 computers.	 A	 quantum

computer,	 you	 might	 know,	 has	 qubits.	 Unlike	 the	 classical	 bits	 in	 your
laptop,	which	are	in	either	one	of	the	classical	states	traditionally	called	0	or
1,	a	single	qubit	can	be	in	a	state	where	it	can	be	found	in	either	0	or	1	on	a
given	trial.	It’s	like	the	electron	going	through	both	the	slits.
So	a	quantum	bit	can	explore	both	classical	possibilities	at	the	same	time.	If

you	build	a	computer	with	10	qubits	it	can	be	exploring	210	classical	states	at
the	 same	 time,	 in	 the	 sense	 that	 a	 measurement	 can	 yield	 any	 of	 the	 210

classical	answers.	And	if	it	has	a	million	bits,	it	is	exploring	21,000,000	classical
states	at	the	same	time.	This	allows	it	to	solve	certain	problems	exponentially
faster	 than	what	 is	 currently	 known	 to	 be	 possible	 on	 a	 classical	 computer.
This	means	 that	 if	 the	 classical	 computer	needs	1017	 seconds	 (rough	age	of



the	 universe)	 to	 solve	 a	 problem,	 the	 quantum	 computer	 can	 do	 so	 in	 17
seconds.	However,	it	first	needs	to	be	built	and	needs	to	be	programmed	to	do
this.	As	of	now,	not	only	do	we	not	have	a	quantum	computer	with	more	than
a	 handful	 of	 qubits,	 but	 very	 few	 problems	 are	 known	 that	 can	 be	 solved
exponentially	 faster	 on	 a	 quantum	 computer	 and	 for	 which	 we	 have	 the
requisite	program.	There	is	one	celebrated	program	due	to	Peter	Shor	that	can
factorize	a	huge	number	into	its	two	prime	factors	in	a	few	seconds,	while	a
classical	 one	 could	 take	 the	 age	 of	 the	 universe	 to	 do	 it.	 This	may	 surprise
you.	You	can	multiply	a	100-digit	prime	number	by	a	100-digit	prime	number
on	 your	 computer	 almost	 instantaneously.	 But	 if	 I	 gave	 you	 the	 200-digit
product	 and	 asked	 you	 to	 find	 the	 two	 prime	 factors	with	 a	 hundred	 digits
each,	you	won’t	find	it	in	years.	That’s	why	one	of	the	ways	to	securely	send
your	 credit	 card	 information	 on	 the	 internet	 is	 to	 use	 very	 large	 numbers
obtained	by	multiplying	two	primes	to	encrypt	them.	Decryption	requires	its
prime	 factors.	 These	 cannot	 be	 found	 even	 though	 the	 large	 number	 (the
product)	is	broadcast	openly.	But	if	you	have	a	quantum	computer,	made	up
of	these	qubits,	and	used	Shor’s	algorithm,	you	can	actually	factor	the	number
in	a	few	seconds.
This	 gives	 you	 two	 options	 if	 you	 have	 secretly	 managed	 to	 build	 a

quantum	computer.	Either	you	can	become	famous	and	win	the	Nobel	Prize
(or	even	get	an	NSF	grant),	or	you	can	go	on	 the	biggest	shopping	spree	of
your	life,	because	you	can	get	anyone’s	credit	card	number.	When	you	come
to	that	fork,	you	can	decide	which	way	you	want	to	go.	Maybe	you	can	take
both	choices,	if	you	are	small	enough.
There	are	many	quantum	systems	that	can	do	one	of	two	things,	which	can

be	 in	 a	 state	 that	 is	 both	 this	 and	 that.	 These	 are	 all	 potential	 qubits.	 The
problem	is	that	they	cannot	be	in	contact	with	the	outside	world,	because	even
a	single	contact	with	 them	can	destroy	 the	quantum	state	of	 limbo,	 the	way
the	 photon	 used	 to	 locate	 the	 electron	 in	 the	 double-slit	 experiment	 can
destroy	the	interference	pattern.	So	you	have	to	keep	your	quantum	computer
fully	 isolated.	 But	 a	 computer	 that	 is	 not	 talking	 to	 the	 outside	 world,
unfortunately,	 is	 also	 not	 talking	 to	 you.	This	means	 you	 cannot	 ask	 it	 any
questions,	 and	 if	 it	knows	 the	answer,	 it	 cannot	 tell	you.	So	 sometimes	you
want	it	to	talk.	Sometimes	you	don’t	want	it	to	talk.	What	should	you	do?	You
have	to	build	a	quantum	system	with	which	you	sometimes	make	contact	in	a
controlled	way	to	give	it	the	problem.	Then	you	want	to	leave	it	alone	while	it
quantum-computes.	Finally	you	make	a	measurement	to	find	out	the	answer.

20.2			Getting	to	know	ψ
Let	 us	 continue	 our	 study	 of	 quantum	 mechanics.	 Recall	 that	 in	 classical
mechanics	the	pair	(x,p)	is	the	full	story.	Given	that,	I	know	everything	I	need



to	 know	 at	 any	 one	 instant.	 The	 kinetic	 energy	 is	K	 =	 p2/2m,	 the	 angular
momentum	is	(in	higher	dimensions)	r	×	p,	and	so	on.	Everything	is	given	in
terms	 of	 the	 coordinates	 and	 momenta.	 In	 quantum	 theory,	 we	 don’t	 even
know	 where	 the	 particle	 is.	 We	 have	 a	 wave	 function	 ψ(x)	 describing	 the
state,	and	|ψ(x)|2	gives	the	likelihood	of	finding	the	particle	at	x.
What	 are	 the	 conditions	 on	 the	 function	ψ?	The	 first	 is	 that	 it	 should	 be

continuous	 and	 single-valued	 so	 that	 at	 each	 point	 it	 gives	 a	 unique	 P(x).
Another	 technical	 requirement	 is	 that	 it	 should	 be	 square-integrable:	 the
integral	of	 |ψ(x)|2	 over	 all	 of	 space	must	be	 finite.	This	 is	 the	principle	 that
allows	 us	 to	 place	 restrictions	 on	 the	 allowed	 values	 of	 energies	 in	 bound-
state	problems.	These	are	problems	where	E,	the	total	energy	of	the	particle,
is	 less	 than	V(±∞),	 the	potential	 energy	 at	 infinity,	 and	 escape	 to	 infinity	 is
classically	forbidden.	(If	the	particle	escaped	to	infinity,	it	would	be	required
to	have	negative	kinetic	energy	K	(±∞)	=	E	−	V	<	0.)	In	the	quantum	case,	we
will	find	that	at	generic	energies	the	integral	of	|ψ|2	blows	up	exponentially	in
L,	the	size	of	the	universe.	These	states	are	simply	dismissed	and	the	allowed
energies	are	identified	as	those	at	which	the	square	integral	is	bounded.
There	are	two	exceptions	to	the	square	integrability	and	unfortunately	they

are	 rather	commonplace.	The	 first	are	 the	states	of	definite	momentum	with
constant	 |ψp(x)|2.	Their	 square	 integral	grows	 linearly	with	 the	 size	L	of	 the
universe.	 This	 linear	 divergence	 is	 a	 borderline	 case	 we	 can	 handle	 using
what	are	called	delta	functions,	to	be	discussed	near	the	end	of	the	book.	The
other	 exceptions	 are	 states	 of	 exactly	 known	position,	which	 I	 have	 loosely
referred	 to	 as	 “spikes”	 centered	 at	 some	 point.	 These	 are	 also	 described	 by
delta	 functions.	 For	 now	 you	must	 accept	 these	 functions	 despite	 their	 not
having	a	finite	square	integral.	You	can	also	view	them	as	limits	of	functions
that	are	square-integrable.
Apart	 from	these	 restrictions,	ψ	 can	be	whatever	you	 like.	 In	particular	 if

ψ1(x)	and	ψ2(x)	are	two	allowed	wave	functions	so	is	the	linear	combination
Aψ1(x)	+	Bψ2(x).	The	linear	superposition	describes	a	state	in	which	it	can	be
found	doing	what	it	does	in	ψ1	(peaked	near	nucleus	N1)	or	what	it	does	in	ψ2
(peaked	near	nucleus	N2),	with	relative	probabilities	|A|2	and	|B|2.
I	have	been	saying	that	|ψ(x)|2	gives	the	probability	of	finding	the	particle	at

x.	This	statement	needs	to	be	refined.	I’ll	tell	you	why.	Consider	a	statistical
event	that	has	a	countable	number	of	outcomes.	For	example,	when	you	throw
a	 die,	 there	 are	 6	 possible	 outcomes.	 You	 can	measure	 or	 assign	P(1),	 the
probability	for	obtaining	1,	P(2)	the	probability	for	2,	and	so	on.	These	are	the
odds	for	getting	any	number	from	1	to	6.	Since	some	number	has	to	come	up,
we	require	that	the	probability	that	some	number	will	show	up	equals	unity:



This	 is	 called	 the	 normalization	 condition.	 An	 example	 of	 a	 normalized
probability	distribution	is	depicted	in	Figure	20.3A:

The	same	information	is	contained	in	the	unnormalized	relative	probabilities:

Figure	20.3			A:	The	normalized	probability	distribution	P(i),	i	=	1	.	.	.	6	for	6	discrete	outcomes.	B:	The
probability	density	P(x)	for	a	continuous	probability	distribution.	The	shaded	area	P(x)dx	is	the
probability	of	finding	the	particle	between	x	and	x	+	dx.

From	the	unnormalized	P′’s	I	can	get	the	normalized	P’s	by	rescaling:

Now	 suppose	 the	 set	 of	 outcomes	 is	 not	 countable	 as	 with	 a	 die,	 but
continuous,	 like	 the	 location	 of	 an	 electron.	 Then	 you	 cannot	 give	 a	 finite
probability	for	any	particular	x.	(In	physics	we	often	use	“finite”	to	mean	“not
infinitesimal”	rather	 than	“not	 infinite.”)	If	 the	probability	for	any	one	point
was	 some	 finite	 number,	 the	 sum	 over	 an	 infinity	 of	 such	 points	 will	 be
infinite	 and	 cannot	 be	 rescaled	 to	 unity,	 i.e.,	 cannot	 be	 normalized.	 So	 we
introduce	the	notion	of	a	probability	density	P(x)	defined	as	follows:



That	means	 that	 if	 you	 draw	 a	 graph	 of	 |ψ(x)|2	 =	P(x)	 and	 take	 a	 sliver	 of
width	dx	at	x,	the	area	of	the	rectangle	P(x)dx	is	the	probability	of	finding	the
electron	between	x	and	x	+	dx,	as	indicated	in	Figure	20.3B.	So	you	assign	an
infinitesimal	 probability	 to	 an	 infinitesimal	 region.	 The	 statement	 that	 the
particle	has	 to	be	somewhere,	namely,	 that	all	 the	probabilities	add	up	 to	1,
becomes	the	normalization	condition

Now	a	ψ	that	did	not	obey	this	condition	also	contains	the	same	information:
the	odds	are	big	where	 |	ψ|2	 is	big,	 small	where	 it	 is	 small,	 zero	where	 it	 is
zero,	and	so	on.	So	when	you	multiply	ψ(x)	by	any	number,	you	don’t	change
the	predictions	of	 the	 theory,	namely	the	relative	odds.	It	 is	 just	 that	 if	your
original	ψ(x)	had	a	square	integral	of	unity,	the	new	one	will	not.
Thus	 the	 wave	 function	ψ	 of	 quantum	mechanics	 is	 very	 different	 from

other	ψ’s	you	may	have	encountered	elsewhere.	For	example,	if	ψ(x)	stood	for
the	 displacement	 of	 a	 vibrating	 string,	 2ψ(x)	 is	 a	 totally	 different
configuration	of	the	string.	If	you	took	the	electric	field	and	made	it	twice	as
big,	that’s	a	different	situation,	because	the	forces	on	the	charges	are	doubled
and	the	energy	density	quadrupled.	But	in	quantum	mechanics,	ψ(x)	and	any
multiple	of	 it	stand	for	the	same	physical	state.	The	only	job	of	ψ	 is	 to	give
you	the	relative	odds.	If	you	wish,	you	can	rescale	it	so	it	is	normalized	and
gives	the	absolute	probability	density.
Here	is	an	analogy.	Suppose	you	are	a	cop	asking	a	witness	which	way	the

burglar	 ran,	 and	 she	 wants	 to	 say	 at	 45	 degrees	 to	 the	 x-axis;	 she	 can	 say
“Along	 i	 +	 j.”	 She	 can	 also	 say	 “Along	 96i	 +	 96j.”	What	 she	 is	 trying	 to
convey	is	not	a	vector	but	a	ray	or	a	direction.	For	this	reason	one	says	that	in
quantum	mechanics	 the	wave	 function	 is	 a	 ray.	Of	 all	 the	 rays	 obtained	by
rescaling	a	given	ψ(x),	it	is	common	to	pick	one	that	is	normalized	to	unity.
Look	at	the	simple	example	depicted	in	Figure	20.4.	Let

This	ψ	describes	an	electron	that	is	going	to	be	found	with	equal	probability
anywhere	within	 |x|	<	a	 and	never	outside.	This	 fact	will	 not	 change	 if	 you
replace	A	by	10A	or	ψ(x)	by	10	ψ(x).
(This	function	is	not	single-valued	at	x	=	±a	where	it	abruptly	plunges	from

A	to	0.	I	still	use	it	because	it	is	easy	to	work	with	in	the	following	illustrative
calculation.	 If	 you	wish	 you	 can	 think	 of	 it	 as	 the	 limit	 of	 a	 single-valued



function	that	drops	very	very	rapidly	to	zero	near	|x|	=	a.)
Of	this	family	of	physically	equivalent	functions,	we	are	now	going	to	pick

one	that	is	normalized,	i.e,	obeys

Figure	20.4			An	unnormalized	wave	function	that	is	non-zero	and	constant	for	−	a	<	x	<	a.	Its	height	A
may	be	chosen	to	normalize	it.

by	a	judicious	choice	of	A.	Since

we	choose

is	normalized.	 (Actually	we	can	still	multiply	A	by	a	pure	phase	eiθ	without
affecting	 |A|2.	 It	 is	 common	 to	 choose	 the	 normalization	 factor	A	 to	 be	 real
whenever	possible.)
Another	popular	example	is	the	bell-shaped	Gaussian:

This	 function	 starts	 out	 with	 a	 value	A	 at	 x	 =	 0	 and	 falls	 off	 to	 negligible
values	when	λ	 	Δ.	where	△	is	called	the	width	of	the	Gaussian.	Because	this
ψ	is	real,	normalization	requires	the	integral	of	ψ2(x)	to	equal	unity:



Setting	α	=	1/Δ2	in	the	tabulated	integral

we	arrive	at	the	following	normalized	wave	function:

20.3			Statistical	concepts:	mean	and	uncertainty
Here	are	some	basic	ideas	from	statistics	that	will	be	needed	in	our	study	of
quantum	mechanics.
Suppose	there	is	a	variable	v	that	can	take	on	many	values	vi,	[i	=	1	.	.	.	N]

that	are	supposed	to	occur	with	normalized	probability	P(i)	according	to	some
theory	or	hypothesis.	For	example,	we	may	be	 talking	about	a	die,	with	 the
following	normalized	probabilities	P(i)	for	obtaining	one	of	the	six	numbers

To	verify	 this	 statistical	description	of	 the	die	we	must	 toss	 it	N	 times	or
toss	N	identical	dice	once	and	see	if	N(i),	the	number	of	times	a	given	value	i
occurs,	obeys

A	collection	of	such	identical	dice	is	called	an	ensemble.
The	most	complete	statistical	description	of	the	dice	is	given	by	the	full	list

of	P(i).	This	can	be	quite	tedious	if	the	die	has,	say,	30,000	faces.	Then	one
provides,	 as	 a	 first	 attempt	 at	description,	 just	one	number	called	 the	mean,
which	is	the	weighted	average	of	the	possible	values:

(If	P′(i)	is	an	unnormalized	distribution,	we	must	divide	the	weighted	sum	by
ΣjP′(j).)
For	the	die	the	mean	is



Now,	you	can	get	 the	same	mean	with	 two	different	P(i)’s,	one	with	a	very
narrow	 spread	 in	 the	 possible	 values	 and	 one	 with	 a	 broad	 spread.	 To	 tell
them	apart,	we	provide	a	measure	of	how	wide	 the	distribution	 is	using	 the
standard	deviation

So	first	we	take	the	weighted	average	of	the	squares	of	the	deviations.	Then
we	 take	 the	 square	 root	 to	 obtain	 a	 quantity	with	 the	 same	dimension	 as	v.
(Without	the	square,	the	average	of	the	deviations	vi	−	 v 	will	be	zero.	I	invite
you	to	show	this.)
For	the	die

For	a	continuous	variable	like	x	with	a	normalized	probability	density	P(x)	we
make	the	expected	modifications:

In	the	context	of	quantum	theory	P(x)	=	|ψ(x)|2,	 x 	is	called	the	expectation
value	 and	Δx	 the	uncertainty.	 I	 have	mentioned	 that	 the	 precise	 uncertainty
principle



holds	only	if	Δx	is	the	precisely	defined	uncertainty.	Eqn.	20.29	provides	that
definition.	A	similar	definition	holds	for	Δp	 in	 terms	of	 the	probabilities	for
getting	different	values	for	momentum.	These	probabilities	will	be	discussed
in	the	next	chapter.
Consider	 as	 an	 example	 the	 normalized	 wave	 function	 shown	 in	 Figure

20.4:

It	 is	visually	obvious	 that	 the	expectation	value	vanishes	by	symmetry.	This
can	be	easily	confirmed:

The	uncertainty	can	be	crudely	estimated	to	be	Δx	≃	2a.	More	precisely,	the
uncertainty	squared	is

and	the	uncertainty	is

To	test	these	predictions	we	again	need	an	ensemble	of	a	large	number	of
particles	 all	 prepared	 in	 the	 same	 quantum	 state	 ψ(x)	 with	 the	 same



probability	 density	 in	 position	 P(x).	 There	 is	 one	 difference	 between	 the
classical	and	quantum	ensembles.	 In	 the	classical	ensemble	with	N	 identical
particles,	 roughly	N	 ·	P(x)dx	 particles	would	 be	 between	 x	 and	 x	 +	dx	 just
before	 and	 just	 after	 the	 measurement.	 In	 the	 quantum	 case	 each	 particle
would	have	been	in	a	state	of	limbo	prior	to	measurement,	in	which	it	could
be	caught	at	any	x	where	P(x)	did	not	vanish.	The	particles	 in	 the	ensemble
would	acquire	a	definite	position	only	after	the	position	measurement.



CHAPTER	21

Quantization	and	Measurement

As	usual,	let	us	begin	with	a	quick	review	of	recent	material.	We	have	been
studying	 a	 particle	 living	 in	 one	 spatial	 dimension,	 described	 by	 the
coordinate	x.	Everything	we	need	to	know	about	that	particle	at	one	instant	is
contained	 in	 the	 wave	 function	 ψ(x),	 which	 could	 be	 complex.	 This	 is
quantum	kinematics,	 the	analog	of	 the	 statement	 in	classical	mechanics	 that
(x,p)	 describe	 the	 state	 of	 the	 particle.	 Given	 this	 pair,	 all	 other	 dynamical
variables	 like	kinetic	energy	and	angular	momentum	(in	higher	dimensions)
have	fixed	values.	For	example,	 .	(Dynamics	is	the	question
of	how	this	state	changes	with	time	and	is	given	by	Newton’s	laws.	Later	we
will	study	the	equation	that	governs	the	time	evolution	of	ψ.)
Whereas	 in	 classical	 physics	 two	 numbers	 tell	 you	 the	 whole	 story,

quantum	theory	requires	a	whole	function	ψ(x).	We	know	a	function	is	really
an	infinite	amount	of	information	because	at	every	point	x	the	function	has	a
value	ψ(x)	and	we	have	to	specify	all	those	values.
What	 sort	 of	 information	 does	 this	 ψ(x),	 which	 is	 supposed	 to	 tell	 us

everything,	contain?	How	is	 that	 information	to	be	extracted?	We	have	seen
that

is	the	probability	density	for	finding	the	particle	at	the	point	x.	By	that	I	mean
P(x)dx	 is	the	probability	that	the	particle	will	be	detected	between	x	and	x	+
dx.	We	 like	 to	 impose	 the	 requirement	 that	 the	 total	 probability	 to	 find	 the
particle	 anywhere	 add	 up	 to	 1.	That	 is	 a	 convention	 and	 not	 a	 fundamental
requirement.	It’s	up	to	you	to	define	probability.	You	may	tell	your	friend	that
the	odds	that	you	will	get	through	this	course	is	50:50.	These	numbers	add	up
to	100	and	not	1,	but	they	convey	correctly	that	your	chances	of	passing	and
failing	are	equal.	The	normalized	probabilities	are	P(pass)	=	50/(50+50)	=	.5
and	P(fail)	=	50/(50+50)	=	.5.
Likewise	 in	quantum	theory	 the	wave	function	you	are	given	need	not	be

normalized	and	obey	instead



If	 you	 choose,	 you	 can	 rescale	 the	 given	ψ	 by	 a	 factor	 	 and	 obtain	 a
normalized	ψ.	We	will	 generally	 do	 this.	Of	 course	 it	 is	 understood	 that	N
should	 be	 finite	 so	 that	 this	 rescaling	 is	 possible.	 So	 we	 want	 the	 wave
function	 ψ	 to	 be	 normalizable	 or	 square-integrable,	 and	 not	 necessarily
normalized.	We	also	require	that	ψ(x)	be	single-valued:	it	must	have	only	one
value	at	each	point	x.	So	jumps	are	not	allowed.	(The	illustrative	examples	at
the	end	of	the	last	chapter	that	violated	this	requirement	could	be	viewed	as	a
limit	of	an	allowed	function.)	Apart	from	that	you	can	write	your	own	ticket.
The	ψ	of	quantum	mechanics	is	not	like	the	ψ’s	you	have	seen	before,	say

in	the	vibrating	string	or	water	waves.	If	the	displacement	ψ(x)	of	a	string	or	a
body	of	water	 is	multiplied	by	6,	 it	describes	a	different	 state.	On	 the	other
hand	ψ	and	a	multiple	of	it	describe	the	same	physical	state	and	give	the	same
relative	probabilities.
We	 have	 seen	 one	 particular	 ψ	 that	 describes	 a	 particle	 of	 definite

momentum	p:

Though	I	gave	some	arguments	 in	 favor	of	 it,	 this	 is	 really	a	postulate.	The
subscript	on	ψp(x)	tells	us	that	this	is	not	any	old	ψ,	but	one	that	describes	a
particle	 with	 a	 special	 attribute:	 it	 has	 definite	momentum	 p.	We	 use	 such
labels	all	the	time.	We	don’t	go	to	a	party	and	say,	“Hi,	I	am	human.”	We	say
something	like	“I	am	Alexey”	or	“I	am	Barry,”	because	that	says	a	little	more
about	us	than	just	which	species	we	belong	to.

Figure	21.1			Wave	function	of	a	particle	localized	near	x	=	5.

The	 probability	 density	 in	 this	 state	 of	 precisely	 known	 momentum,
(Δp=0),	 is	 independent	 of	 x	 and	 equals	 the	 constant	 |A|2.	We	 have	 no	 idea
where	it	is	and	Δx	=	∞.	This	is	in	accord	with	the	uncertainty	principle.
Here	 is	 another	 example	 of	 a	 wave	 function	 with	 some	 characteristic.

Suppose	a	particle	is	known	to	be	close	to	x	=	5	as	a	result	of	a	crude	position
measurement	(using	photons	of	small	momentum)	that	did	not	determine	x	to
arbitrary	precision.	What	function	will	describe	 that	particle?	You	cannot	of
course	 come	 up	 with	 the	 precise	 form	 with	 just	 the	 information	 I	 gave,



because	many	 functions	 can	be	peaked	 around	x	=	5.	However,	 you	 should
not	 be	 surprised	 if	 the	 answer	 is	 something	 like	 the	 one	 in	 Figure	 21.1.
Conversely	 if	you	were	given	 this	wave	function,	you	should	be	able	 to	see
right	away	that	it	describes	a	particle	very	likely	to	be	found	near	x	=	5.

21.1			More	on	momentum	states
Suppose	I	give	you	a	state

What	can	you	say	about	the	particle?	By	comparing	it	with	the	prototype

you	can	deduce	it	has	a	definite	momentum

(Don’t	 worry	 about	 units;	 they	 are	 contained	 in	 the	 “96,”	 which	 is	 really
96m−1.)
Similarly	if	an	electron	has	been	accelerated	from	rest	by	a	voltage	V0,	its

momentum	is	fixed	by

and	the	wave	function	of	the	electron	coming	out	of	the	accelerator	(along	the
positive	x-axis)	is

Now	 we	 must	 deal	 with	 the	 pre-factor	 A,	 which	 has	 remained	 arbitrary
because	its	value	has	no	physical	significance.	It	is	conventional	to	choose	A
to	normalize	the	wave	function,	by	demanding

There	is	no	choice	of	A	that	will	work	because	|A|2	is	multiplied	by	the	size
of	our	universe,	which	extends	from	−	∞	to	+	∞.	A	common	way	out	of	this



predicament	 is	 to	 pretend	 our	 universe	 is	 large	 but	 finite	 and	 has	 no
boundaries.	 (This	may	 even	 be	 the	 case	 in	 reality.)	 In	 the	 one-dimensional
case	we	may	take	it	to	be	a	circle	of	radius	R	and	circumference

You	 can	 form	 such	 a	 circle	 by	 taking	 a	 line	 of	 length	L	 and	gluing	 its	 two
ends	together.	If	the	line	is	parameterized	by	a	coordinate	0	≤	x	≤	L	the	circle
is	obtained	by	joining	x	=	0	and	x	=	L,	as	shown	in	Figure	21.2.	In	this	closed
universe	if	you	throw	a	rock	it	will	come	back	and	hit	you	from	behind.	You
can	even	see	this	happen	if	you	wait	for	the	light	to	come	all	the	way	back	to
your	 eyes.	But	 such	 peculiarities	 in	 the	 cosmic	 scale	will	 not	matter	 to	 the
quantum	mechanics	of	a	tiny	atom	or	electron.	These	little	guys	don’t	care	if
the	universe	does	not	exist	beyond	this	room,	any	more	than	you	care	in	your
daily	life	that	the	earth	is	not	flat.
While	 we	 introduced	 the	 circumference	 of	 the	 universe	 as	 an	 artifact	 to

normalize	ψp,	 there	are	many	present-day	experiments	 in	which	 the	electron
actually	lives	on	a	ring,	not	just	of	finite	size,	but	of	radius	R	on	the	scale	of	a
micron	(10−6	m).

Figure	21.2			A	typical	periodic	function	on	the	circle,	which	has	been	opened	out	to	a	line	of	length	L
with	the	understanding	that	x	=	0	(θ	=	0)	and	x	=	L	(θ	=	2π)	describe	the	same	point.	Note	how	ψ	joins
with	itself	smoothly	when	the	ends	are	glued.

In	any	event,	we	can	finally	write	down	the	normalized	ψp	on	this	circle:

21.2			Single-valuedness	and	quantization	of	momentum
Since	 the	 universe	 is	 a	 circle,	 it	 could	 also	 be	 parameterized	 by	 an	 angle	θ
restricted	 to	 0	 ≤	θ	 ≤	 2π.	 It	 is	 obvious	 that	 a	 point	 labeled	 by	 an	 angle	θ	 is
identical	 to	 the	 one	 labeled	 by	 θ	 +	 2π.	 The	 single-valued	 condition	 for	 ψ
assumes	the	form

This	just	means	that	ψ	is	a	periodic	function	of	θ	with	period	2π.	We	are	also



free	to	use	a	linear	coordinate	x	that	runs	around	the	circle

In	terms	of	x,	the	single-valuedness	condition	becomes

as	illustrated	in	Figure	21.2.
Let	us	consider	in	this	universe	a	normalized	state	of	definite	momentum

The	probability	density	P(x)	is	x-independent:

and	is	normalized	as	promised:

So	far	there	has	been	no	restriction	on	p:	it	could	be	any	real	number.	This
changes	when	the	single-valued	requirement

imposed	on	all	wave	functions	on	the	circle,	is	imposed	on	ψp:

This	means



As	eiθ	lies	on	the	unit	circle	in	the	complex	plane	and	has	period	2π,

In	 the	 unlikely	 event	 you	 are	 shaky	 about	 this,	 here	 is	 a	 second	 chance.
Starting	with

and	 equating	 the	 real	 and	 imaginary	 parts	 of	 the	 two	 sides,	 we	 find	 two
conditions:

There	are	infinitely	many	solutions	to	this	pair:

The	allowed	values	of	momentum	are

I	will	often	use	the	symbol	pm	to	denote	the	momentum	associated	with	the
integer	m:

and	use	m	 instead	of	pm	as	 the	 label	 for	 the	state.	The	 label	m	has	 the	nice
feature	that	it	runs	over	the	integers.
Pictorially,	these	allowed	values	p	=	pm	ensure	that	the	cosine	and	sine,	the

real	 and	 imaginary	 parts	 of	 the	wave	 function,	 complete	 an	 integer	 number



(m)	 of	 full	 cycles	 as	 we	 go	 around	 the	 circle	 and	 join	 smoothly	 on	 to
themselves.	For	example,	the	real	part	of	the	wave	function	varies	as

and	as	x	grows	from	0	to	L,	the	argument	of	the	cosine	changes	by	2π	m	and	it
completes	m	full	cycles.	The	same	goes	for	the	imaginary	part,	the	sine.	The
case	of	m	=	0	is	special,	because	ei0	=	1.	This	constant	wave	function	is	also
periodic	but	completes	zero	cycles.	(When	m	=	0,	the	real	part	[cosine]	equals
1	and	the	imaginary	part	[sine]	vanishes.)

21.2.1			Quantization
Now	 this	 is	 a	 very	 big	moment	 in	 your	 life.	Why?	 Because	 you	 have	 just
encountered	the	quantization	of	(the	allowed	values	of)	a	dynamical	variable,
which	happens	to	be	the	momentum	p	in	this	instance.	This	is	the	quantum	of
quantum	mechanics.	Classically,	 a	 particle	 living	 in	 a	 circle	 can	 travel	with
any	momentum,	but	quantum	mechanically,	only	the	values	given	by	pm	are
allowed.	The	 quantization	 came	 from	demanding	 that	 the	wave	 function	 be
single-valued.	The	origin	of	quantization	is	often	a	mathematical	requirement:
single-valuedness	in	this	case	and	normalizability	in	some	others.
In	 the	 limit	 in	which	L	 is	 very,	very	 large,	 on	 the	macroscopic	 scale,	 the

spacing	between	the	allowed	values	of	p	=	2πmћ/L	becomes	very,	very	small,
and	 you	 may	 not	 even	 realize	 that	 p	 is	 taking	 only	 discrete	 values.	 The
difference	between	two	adjacent	allowed	values	of	p	is

When	m	 changes	 to	m	 +	 1,	p	 changes	 by	 a	 number	 of	 order	 10−34kg	 ·	m/s
assuming	L	 is	of	 the	order	of	a	meter.	At	 this	scale,	 the	quantum	world	will
appear	 classical.	 By	 contrast,	 in	 a	 quantum	 ring	 of	 radius,	 say	 1μm,	 the
quantization	of	p	will	be	a	very	real	effect	that	needs	to	be	reckoned	with.
For	a	particle	moving	on	a	circle,	it	is	natural	to	rewrite	the	quantization	of

p

in	a	more	appealing	way:



as	 the	 quantization	 of	angular	momentum	 pR	 in	multiples	 of	 ћ,	 a	 condition
you	 may	 have	 encountered	 earlier	 without	 proof.	 Now	 you	 see	 it	 is	 a
consequence	of	demanding	single-valuedness.
Let	us	rewrite	the	function	ψp	in	terms	of	m	and	θ:

The	state	is	the	same,	whether	we	refer	to	it	by	its	momentum	and	write	it	as	a
function	of	x,	or	by	its	angular	momentum,	and	write	it	as	a	function	of	θ.	I
will	go	back	and	 forth	between	 these	 two	equivalent	 labels	p	and	m	 for	 the
state.	Later	on	m	will	stand	for	the	mass	of	the	particle,	but	in	this	chapter	it
will	label	the	allowed	values	of	momentum	and	angular	momentum.

21.2.2			The	integral	of	ψp(x)

Here	is	one	important	result	that	you	should	commit	to	memory:	The	integral
of	every	ψp(x)	vanishes	except	for	p	=	0.
Here	is	the	proof:

because	 the	 sine	 and	 cosine	 complete	m	 full	 cycles.	The	 case	p	 =	m	 =	 0	 is
special:



Let	us	re-derive	this	directly	with	the	complex	exponential	so	you	get	used
to	it.	We	need	the	result

which	is	valid	even	if	α	is	complex,	and	in	particular	purely	imaginary.	(In	the
latter	case	you	may	prove	it	yourself	by	using	Euler’s	formula	to	convert	the
exponential	 to	 the	 sines	 and	 cosines,	 integrating	 them	 and	 rewriting	 the
answer	in	terms	of	complex	exponentials.)	Proceeding,	we	find

assuming	m	 ≠	 0.	 If	m	 =	 0,	 the	 preceding	 formula	 yields	 the	 indeterminate
form	0/0.	It	is	then	best	to	go	back	to	the	integral	and	find	readily	that

21.3			Measurement	postulate:	momentum
Let	 us	 now	 consider	 a	 particle	 on	 a	 ring	 described	 by	 some	 generic	 wave
function	 ψ(x)	 depicted	 earlier	 in	 Figure	 21.2.	 Of	 course,	 ψ(x)	 meets	 itself
smoothly	 when	 you	 go	 around	 the	 circle:	 it	 is	 a	 single-valued	 function	 of
period	L.	But	 it	 is	 not	 a	 state	 of	 definite	momentum	or	 angular	momentum
because	it	is	not	an	oscillating	exponential	of	definite	λ.
What	can	we	say	about	the	particle	in	such	a	generic	state?
The	 first	 is	 old	 stuff:	 |ψ(x)|2	 =	 P(x)	 gives	 the	 probability	 density	 as	 a

function	of	x.	That	means	that	if	you	take	a	million	particles	on	a	million	rings
each	in	exactly	this	quantum	state	and	make	the	position	measurements	(using
a	 Heisenberg	 microscope	 to	 locate	 x	 to	 arbitrarily	 high	 precision,	 with	 no
concern	for	p)	the	resulting	histogram	will	look	like	P(x).
But	 there	 is	more	 to	 life	 than	 just	 knowing	 the	 answer	 to	 “Where	 is	 the

particle?”	In	classical	mechanics	you	can	also	ask,	“What	is	its	momentum?”
The	only	time	we	seem	to	know	the	answer	for	sure	in	quantum	mechanics	is
if	ψ(x)	 =	ψp(x),	 the	 complex	 exponential	 with	 a	 definite	 period	 λ	 =	 2πћ/p.



What	about	a	general	single-valued	wave	function	not	of	this	form?	What	will
we	 find	 if	 we	 measure	 momentum?	 Will	 the	 theory	 again	 give	 the
probabilities	 for	 the	 different	 outcomes?	Will	we	need	 to	 introduce	another
wave	function	A(p)	that	varies	with	p	and	gives	the	probability	for	obtaining	a
value	p	by	the	relation	P(p)	=	|A(p)|2?
(Bear	in	mind	that	ψp(x)	is	a	function	of	x	labeled	by	the	momentum	p	you

are	guaranteed	to	get	upon	measurement,	while	A(p)	is	a	function	of	p,	whose
mod-square	gives	the	odds	for	measuring	various	values	of	p.)
I	do	not	expect	you	to	answer	these	questions	because	they	are	not	decided

by	logic	or	mathematics.	We	need	a	postulate	like	the	one	that	said	|ψ(x)|2	is
P(x).	 The	 postulate	would	 tell	 us	 how	 to	 get	P(p),	 the	 odds	 for	 getting	 the
value	p	in	a	momentum	measurement.
Let	us	work	toward	the	general	case	by	first	considering	a	simple	example

where	A(p1)	 and	A(p2)	 are	 constants	 independent	of	x,	while	 	 and	
	are	two	allowed	momenta,	and	ψp1(x)	and	ψp2(x)	the	corresponding

normalized	wave	functions.
This	is	a	superposition	of	two	normalized	wave	functions	ψp1(x)	and	ψp2(x)

each	describing	a	state	of	definite	momentum	(p1	or	p2).	We	only	know	that	if
A(p2)	were	 zero,	we	would	 surely	 get	p1	 and	 if	A(p1)	were	 zero	we	would
surely	get	p2.	But	 suppose	neither	 is	 zero.	Will	we	get	 a	momentum	 that	 is
some	weighted	average	of	p1	and	p2?	What	 if	 this	average	 is	not	one	of	 the
allowed	 values	 of	 p	 on	 the	 circle?	 What	 will	 be	 the	 state	 right	 after	 the
measurement?	Will	it	be	single-valued	on	the	circle?
The	answer	is	given	by	the	two-part	measurement	postulate:
•	Part	1.	The	result	of	a	momentum	measurement	will	yield	p1	with	relative	probability	P′(p1)	=

|A(p1)|
2	and	p2	with	relative	probability	P′(p2)	=	|A(p2)|

2.	(We	use	probability	and	not	probability
density	because	the	allowed	values	of	p	are	discrete	and	labeled	by	the	integer	m.)
•	Part	2.	The	state	right	after	the	measurement	will	be	a	state	of	the	momentum	that	was	obtained	in
the	measurement.

There	are	many	points	to	note	in	this	postulate.
1.	The	only	values	a	momentum	measurement	will	yield	correspond	to	the	two	associated	with	the
wave	functions	in	the	superposition,	namely	p1	or	p2,	not	some	kind	of	average	of	the	two.	The
possible	momenta	correspond	to	single-valued	wave	functions.

2.	From	the	relative	probabilities	P′(p1)	=	|A(p1)|
2	and	P′(p2)	=	|A(p2)|

2,	we	may	extract	the	absolute



probabilities	in	an	obvious	way:

3.	It	is	crucial	that	the	functions	ψp(x)	in	Eqn.	21.46	be	normalized	for	Part	1	to	be	valid.	Why	do	we

suddenly	care	how	ψp(x)	is	normalized	after	saying	repeatedly	that	the	number	A	in	Ae
ipx/ћ	does	not

matter?	The	answer	is	that	the	overall	scale	of	any	given	wave	function	is	unphysical,	but	not	the
relative	scales	of	two	wave	functions.	Thus	we	may	rescale	the	ψ(x)	on	the	left-hand	side	of	Eqn.
21.46,	say	by	a	factor	of	10,	and	simultaneously	both	ψp1(x)	and	ψp2(x)	on	the	right-hand	side	also
by	10.	(Thus,	instead	of	using	normalized	ψp(x),	you	may	rescale	all	of	√them	by	some	common
amount.	For	example,	you	can	drop	the	 	in	front	of	both	of	them.)
Here	is	an	analogy.	In	a	world	of	rays,	where	only	directions	matter,	we	can	use	i	or	10i	to	indicate

east	and	j	or	13j	to	indicate	north.	But	to	indicate	northeast,	we	may	use	i	+	j	or	10i	+	10j	or	13i	+	13j
but	not	10i	+	13j.
Hereafter	every	state	of	definite	momentum	ψp(x)	will	be	assumed	to	be	normalized	to	unity.

4.	If	the	measurement	yields	the	value	p1,	the	state	ψ,	which	used	to	be	a	sum	over	ψp1(x)	and
ψp2(x),	collapses	to	just	one	term,	namely	ψp1(x).	A	similar	result	holds	if	p2	is	obtained.

5.	If	the	measurement	yields	the	value	p1,	an	immediate	remeasurement	will	again	yield	p1.	This	has
to	be	true	if	there	is	any	sense	to	saying	that	the	particle	was	found	in	a	state	of	momentum	p1	when
momentum	was	measured.	As	time	goes	by	the	state	may	change,	but	the	value	p1	should	persist	at
least	for	an	infinitesimal	time.	The	same	thing	happens	in	a	position	measurement:	the	wave	function
collapses	to	the	point	where	the	particle	was	found	right	after	measurement.
6.	These	results	generalize	in	an	obvious	manner	when	the	superposition	describing	the	state	includes
an	arbitrary	number	of	terms:

where	j	is	a	label	that	runs	over	all	allowed	values	of	momenta.
A	natural	label	for	pj	is	the	integer	m	(the	angular	momentum	in	units	of	ћ)

that	enters	the	quantization	condition:



In	terms	of	m,	the	most	general	such	superposition	assumes	the	form

In	this	notation	|A(pm)|2	gives	the	relative	probability	for	obtaining	pm	and	the
state	collapses	to	the	one	particular	m	that	was	measured.	To	find	the	absolute
probability	we	use

(The	label	m′	being	summed	over	in	the	denominator	is	just	like	m	and	runs
over	the	same	values.)
Equation	21.51	does	not	mean	there	is	always	an	infinite	number	of	terms

in	the	superposition.	We	can	always	restrict	the	sum.	For	example,	we	obtain
the	simple	example	we	began	with	by	choosing	just	A(p1)	and	A(p2)	≠	0.	Even
simpler	 is	 the	 case	 with	 just	 one	 of	 them,	 say	 A(p43)	 ≠	 0.	 This	 would
correspond	in	our	notation	to	ψp43(x)	where

7.	(This	is	an	optional	topic.	Come	back	to	it	later	if	you	are	feeling	overwhelmed.)	There	is	a
different	way	to	get	the	normalized	probabilities.	Instead	of	rescaling	the	P’s	as	in	Eqn.	21.52	we
could	normalize	the	given	ψ(x)	to	reach	the	same	goal.	In	other	words,	if	we	first	normalized	the
given	ψ(x)	and	then	computed	the	coefficients	A(p)	for	the	normalized	ψ(x),	these	coefficients	would
automatically	give	the	normalized	probabilities:	P(p)	=	|A(p)|2.	I	state	this	without	proof	and	invite
you	to	check	this	for	the	simple	case	with	just	two	non-zero	A(p)’s.	If	you	start	with	the	ψ(x)	in	Eqn.
21.46,	compute	the	integral	of	|ψ(x)|2	and	do	the	appropriate	rescaling	to	normalize	ψ,	you	will	find
that	the	rescaled	Ã(p)’s	are	given	in	terms	of	the	original	A(p)	by



and	likewise	for	Ã(p2).	This	ensures	that

So	that	is	the	complete	answer	to	the	question	of	what	we	will	get	when	we
measure	momentum	 for	wave	 functions	of	 the	 form	 in	Eqn.	21.51.	We	have
graduated	from	wave	functions	of	 the	form	ψp(x),	which	were	guaranteed	to
yield	the	value	p,	 to	functions	that	are	superpositions	of	such	functions	with
coefficients	A(p).	In	this	case	the	measurement	postulate	tells	us	we	could	get
any	p	that	was	present	in	the	sum	with	relative	probability	|A(p)|2.
What	about	functions	not	of	this	form?	This	is	a	reasonable	question.	While

it	 is	 obvious	 that	 every	 superposition	 of	 ψp(x)	 with	 coefficients	 A(p)	 is
periodic	in	L	(because	each	term	is)	and	therefore	represents	an	allowed	wave
function	 on	 the	 circle,	 the	 converse	 is	 not	 obvious.	 Is	 every	 allowed	 wave
function	ψ	that	obeys	ψ(x)	=	ψ(x+L)	such	a	superposition?	If	not,	what	is	the
corresponding	measurement	postulate?
Here	is	the	great	news:	There	are	no	other	allowed	wave	functions	besides

such	 superpositions!	 This	 is	 a	 purely	 mathematical	 result	 due	 to	 Joseph
Fourier	 (1768–1830).	 (In	 learning	 quantum	 mechanics	 it	 is	 important	 to
distinguish	 between	 postulates	 deduced	 from	 experiment	 and	 theorems
deduced	by	mathematical	reasoning.)
Fourier’s	theorem	I.	Every	allowed	wave	function	ψ(x)	obeying	ψ(x)	=	ψ(x	+	L)	may	be	written	as	a
superposition	of	ψp(x)’s	with	suitable	coefficients	A(p):

Fourier’s	theorem	II.	The	coefficients	A(p)	corresponding	to	a	given	ψ(x)	are	given	by	the	following
integrals:

Consider	 the	 first	 theorem.	 On	 the	 left	 is	 a	 generic	 wave	 function	 ψ(x)
obeying	ψ(x)	 =	ψ(x	 +	L).	 It	 has	 a	 period	L.	 On	 the	 right	 are	 the	 functions
describing	 particles	 with	 a	 definite	 momentum,	 ψp(x),	 where	 p	 =	 2πmћ/L.
These	 too	 are	 periodic	 in	 L,	 but	 in	 addition	 they	 also	 complete	 mfull
trigonometric	 cycles	within	 the	 length	 L.	 Fourier’s	 theorem	 assures	 us	 that
any	periodic	(single-valued)	function	on	the	circle	may	be	written	as	a	linear
superposition	of	such	oscillatory	ψp(x)	with	some	coefficients	A(pm).



This	 result	may	be	more	 familiar	 to	 some	of	you	 if	 rewritten	 in	 terms	of
states	of	definite	angular	momentum	pR	=	mћ	defined	earlier	and	θ	=	x/R:

The	above	postulate	now	becomes

(You	may	 have	 encountered	 Fourier	 series	written	 in	 terms	 of	 the	 real	 and
imaginary	parts	of	eimθ.)
While	the	first	theorem	assures	us	that	every	legitimate	function	ψ(x)	on	the

ring	can	be	written	as	a	sum	over	ψp(x)	with	coefficients	A(p),

the	 second	 tells	 us	 how	 to	 determine	 the	 expansion	 coefficients	A(p)	 for	 a
given	ψ(x):

Without	 explicit	 knowledge	 of	 these	 coefficients,	 we	 cannot	 give	 the
probabilities	for	obtaining	the	different	p’s.
For	now	I	ask	you	to	accept	Fourier’s	theorems.	I	will	say	a	few	things	in	a

later	 section	 that	may	 help	 you	 understand	 them	 in	 terms	 of	more	 familiar
ideas	from	elementary	vector	analysis.

21.3.1			An	example	solvable	by	inspection
I	begin	with	an	example	where	finding	the	A(p)	ends	up	being	very	easy.
The	state	is

where	A	 is	some	real	constant.	This	is	a	 legitimate	wave	function	because	it
obeys	ψ(x)	=	ψ(x	 +	L).	We	know	 from	Fourier’s	 theorem	 that	 this	 function
may	be	written	as	a	series	of	the	form	Eqn.	21.60.



We	can	always	find	the	A(p)	using

but	it	turns	out	that	in	this	case	we	can	read	off	the	A(p)	by	inspection	if	we
first	cast	ψ(x)	in	a	suggestive	form	using	Euler’s	identity.	Here	are	the	details.

where	 in	 the	 last	 equation	 I	 employ	 the	 integer	m	 as	 a	 label	 instead	 of	 the
corresponding	momentum	p	=	2πmћ/L.
We	have	managed	to	write	the	given	ψ(x)	in	the	form	of	a	Fourier	series

By	 comparing	 Eqns.	 21.68	 and	 21.69	 we	 can	 see	 that	 the	 only	 possible
momenta	are

and	the	coefficients	are



It	 should	 be	 obvious	 that	 since	 the	 two	 non-zero	 A(pm)’s	 are	 equal,	 the
normalized	probabilities	are

If	measurement	yields	a	value	m=3,	the	state	will	reduce	to	ψm=3(x).
Let	 us	 now	 re-derive	 the	 same	 A(pm)	 using	 Fourier’s	 theorem	 of	 Eqn.

21.61:

Let	us	now	write	 	and	continue



Both	 exponentials	 describe	 states	 of	 definite	 momentum.	 I	 have	 already
shown	that	their	integral	is	zero	unless	the	momentum	vanishes.	This	happens
in	 the	 first	 term	 when	 m	 =	 3	 and	 the	 exponential	 becomes	 e0	 =	 1	 and
integrates	to	L,	giving

Likewise	 the	 second	 exponential	 survives	 integration	when	m	 =	 −	 3	 and
leads	to

If	m	 ≠	±3,	 both	 exponentials	 complete	 an	 integral	 number	 of	 oscillations
and	integrate	to	zero.	So	A(m	≠	±3)	=	0.
These	are	just	the	values	we	obtained	earlier	by	simply	writing	the	given	ψ

(a	cosine)	 in	 terms	of	states	of	momentum	with	m	=	±3	and	reading	off	 the
coefficients	by	inspection.

21.3.2			Using	a	normalized	ψ

I	mentioned	earlier	that	if	the	original	ψ	is	normalized,	|A(p)|2	will	be	absolute
probabilities.	 Let	 us	 verify	 this	 for	 the	 case	 where	 we	 are	 given	 an
unnormalized	ψ

We	must	choose	A	so	that



As	x	goes	from	0	to	L,	the	angle	within	the	cosine	changes	by	6π.	It	completes
three	full	cycles.	We	have	seen	many	times	that	the	average	of	cos2θ	over	any
number	of	full	cycles	is	 .	So	we	find

To	find	A(p)	we	simply	rewrite	the	cosine	in	terms	of	exponentials:

Comparison	to	Eqn.	21.60	tells	us	they	are

The	 non-vanishing	 absolute	 probabilities	 are	 given	 by	 the	 squares	 of	 these
numbers



and	add	up	to	1	as	promised.
The	expectation	value	of	p	is	evidently	zero,	but	here	are	the	steps:

because	 .
The	uncertainty	squared	is

21.4			Finding	A(p)	by	computation
Now	we	turn	to	the	example	where	you	actually	have	to	do	an	integral	to	find
A(p)	(and	then	square	it	to	get	P(p)).
We	take	the	interval	of	length	L	to	be	in	the	range

The	ends	x	=	±L/2	are	to	be	glued	to	form	the	circle.	The	un-normalized	wave
function	of	interest

is	depicted	in	Figure	21.3	for	the	case	A	=	1	as	a	function	of	αx.



Figure	21.3			An	exponential	wave	function	that	dies	very	rapidly	as	we	approach	the	end	points	±L/2,
which	are	glued	to	form	the	circle.

It	 is	 highest	 at	 the	 origin	 and	 falls	 exponentially	 at	 the	 same	 rate	 for
positive	 and	negative	x	 due	 to	 the	 |x|	 dependence	of	ψ.	How	 far	 can	we	go
from	the	origin	before	ψ	becomes	negligible?	That	happens	when	α|x|	is	large
or	when	 |x|	 	1/α.	So	 this	 is	a	particle	whose	position	has	an	uncertainty	of
order	1/α:

We	can	vary	the	width	Δx	by	varying	α	but	it	is	understood	that	even	if	ψ	is
broad	near	the	origin	it	is	negligible	at	the	points	±L/2	that	are	glued	to	form
the	circle.	In	other	words	we	assume

Let	us	explore	 the	content	of	 this	wave	 function.	The	 first	question	 I	 can
ask	is,	“If	I	look	for	its	position	what	will	I	find?”	The	probability	density	is
given	by

which	is	also	an	exponential	but	with	double	the	slope	as	ψ.
Let	us	now	normalize	it	by	demanding

To	simplify	life,	I	am	going	to	extend	the	limits	to	∓∞.	This	is	an	insignificant
modification	 because,	 by	 assumption,	 αL	 is	 large	 and	 ψ2(x)	 is	 dead	 long
before	we	get	to	the	ends	at	x	=	±L/2	(which	are	glued).	So	the	normalization
condition	is



Before	computing	A(p),	let	us	pause	to	find	the	statistical	properties	of	this
state.	 By	 symmetry,	 x 	 =	 0.	 The	 uncertainty	 squared	 and	 uncertainty	 are
(setting	L	=	∞)

not	far	from	our	crude	estimate	Δx	≃	1/α	of	Eqn.	21.102.
Now	we	compute	A(p).	We	cannot	get	 them	by	inspection,	because	 the	ψ

above	 is	 not	 a	 sum	 of	 complex	 exponentials	 corresponding	 to	 states	 of
definite	momentum.	We	have	to	deal	with	the	general	recipe

The	integral	is	a	little	tricky	because	|x|	equals	x	when	x>	0	and	−x	when	x
<	0.	So	let	us	break	up	the	integral	into	two	parts,	one	for	x>	0	and	one	for	x	<
0:



The	evaluation	of	I+	is	simple	and	only	the	lower	limit	contributes

I	leave	it	to	you	to	show	(by	changing	x	to	−x	in	the	integral)	that

Therefore

Strictly	 speaking	we	 are	 interested	 in	 this	 function	 only	 at	 the	 quantized
values	 of	 p.	 Let	 us	 assume	 here	 that	 L	 is	 very	 large	 and	 p	 essentially
continuous.	Ignoring	overall	constants,	the	function	has	the	form



It	 is	 peaked	 at	 p	 =	 0	 and	 falls	 off	 smoothly	 on	 a	 scale	 set	 by	 αћ.	 To
characterize	its	width	roughly,	we	identify	the	point	where	it	falls	to	a	fourth
of	its	maximum	value	because	it	is	easy	to	locate.	This	happens	at

Thus	the	uncertainty	in	p	is	of	the	order

which,	combined	with

gives	us

Thus	we	find	that	the	narrower	the	function	is	in	x,	the	bigger	the	spread	in
the	possible	momenta	you	can	get.	So	squeezing	 it	 in	x	broadens	 it	out	 in	p
and	 the	 opposite	 is	 also	 true.	 And	 that	 is	 the	 origin	 of	 the	 uncertainty
principle.
Long	before	quantum	mechanics,	 it	was	known	 in	Fourier	 analysis	 that	 a

function	that	is	narrow	in	x	needs	many	wave	numbers	k	or	wavelengths	λ	in
its	expansion.	This	was	stated	in	the	form

with	 no	 reference	 to	 ћ.	 Quantum	 mechanics	 enters	 when	 we	 associate	 a
momentum	p	=	ћk	with	the	wave	number	k.	Multiplying	both	sides	by	ћ	we
arrive	at	the	uncertainty	principle.
To	apply	the	precise	form	of	the	uncertainty	principle,

Δx	and	Δp	have	to	be	the	uncertainties	defined	in	Eqns.	20.26	and	20.29.	We
already	have	found	 .	Computing	the	uncertainty	Δp	from	P(p)	is
complicated	 by	 the	 fact	 that	 p	 takes	 on	 discrete	 values	 p	 =	 pm.	 There	 is	 a
simple	way	to	proceed	in	the	limit	L	→	∞,	when	the	allowed	p’s	become	very



close.	In	that	limit	we	may	replace	the	sum	over	p	of	any	function	f(p)	by	an
integral

Here	 is	 the	 logic	 behind	 this	 trick,	 which	 is	 used	 a	 lot	 in	 many	 advanced
courses.	If	you	want	to	skip	the	details	and	just	use	the	result	above,	jump	to
Eqn.	21.136.
Remember	 how	 the	 integral	 of	 a	 function	 f(x)	 is	 found.	 We	 plot	 f(x)

vertically	at	a	dense	set	of	points	xi	separated	by	dx,	and	do	the	sum

In	our	case,	we	have	 functions	 like	P(pm)	defined	at	points	 	with	a
spacing

which	vanishes	as	L	→	∞.
Let	us	verify	that	our	probabilities	add	up	to	1.	By	definition	of	the	integral

Therefore	the	sum	over	P(pm)	that	we	want,	because	it	lacks	the	dp	to	make	it
into	an	integral,	is	related	to	the	integral	as	follows	(in	the	limit	dp	→	0	or	L
→	∞):

I	 invite	you	to	verify	the	last	step	by	doing	the	integral.	Notice	that	L	drops



out	and	the	sum	of	all	the	P(pm)	is	1.	This	is	to	be	expected	because	ψ(x)	was
normalized	to	1.
Continuing,

not	far	from	our	rough	estimate	of	2αћ	of	Eqn.	21.127.	Continuing,

in	accordance	with	the	precise	uncertainty	principle	 .

21.5			More	on	Fourier’s	theorems
This	is	a	mathematical	digression	for	those	who	are	not	familiar	with	Fourier
series.	Consider	an	arbitrary	vector	V	in	three	dimensions.	We	may	write	it	in
terms	of	the	unit	vectors	i,	j,	and	k	as

Starting	from	the	origin	we	can	get	to	the	tip	of	any	vector	V	by	moving	along
x	 by	 Vx,	 along	 y	 by	 Vy,	 and	 along	 z	 by	 Vz.	 No	 vector	 can	 evade	 this
construction.	 One	 refers	 to	 the	 triad	 i,	 j,	 and	k	 as	 a	 basis	 because	 we	 can
synthesize	any	V	in	terms	of	them.	For	our	purposes	it	is	better	to	rename	the
three	components	as	V1,	V2,	and	V3	and	the	three	basis	vectors	as	follows:



and	rewrite	the	expansion	in	Eqn.	21.145	as

The	 reason	we	use	 numerical	 subscripts	 is	 that	 it	 is	 easy	 to	 sum	over	 them
(rather	than	over	x,	y,	and	z)	and	they	do	not	fail	us	if	we	want	to	sum	over
more	than	26	values.
Equation	21.149	is	the	vector	analog	of

the	Fourier	series	in	Eqn.	21.56	or	Eqn.	21.59	for	periodic	functions.	In	one
case	we	 express	 a	 generic	 vector	V	 in	 terms	 of	 basis	 vectors	 ei	 and	 in	 the
other,	 a	 generic	 function	ψ(x)	 in	 terms	 of	 basis	 functions	ψpm(x).	 The	 only
difference	 is	 that	 in	 the	 latter	case	we	sum	over	an	 infinite	number	of	basis
functions	labeled	by	p	or	m.
Each	basis	vector	ei	has	unit	length	and	is	orthogonal	to	the	other	two.	This

orthonormality	is	written	as	follows:

where

is	called	 the	Kronecker	delta.	 Instead	of	saying	all	 the	 time	“1	 if	 i	and	 j	are
equal,	0	if	they’re	different,”	we	use	the	symbol	δij.	It	is	a	very	concise	way	to
say	that	each	basis	vector	ei	is	of	unit	length	perpendicular	to	the	others.
Let	us	pursue	this	analogy	to	find	a	way	to	extract	the	coefficients	A(p)	of



the	 Fourier	 expansion.	 Suppose	 you	 have	 in	 mind	 a	 specific	 vector	V	 (an
arrow	of	definite	length	and	orientation)	and	want	to	write	it	 in	terms	of	the
basis	 vectors.	 For	 this	 you	 need	 the	 coefficients	Vi.	 Suppose	 you	 want	V2.
Then	you	take	the	dot	product	of	both	sides	of	Eqn.	21.149	with	e2

(The	left-hand	side	is	the	length	of	V	 times	the	cosine	of	the	angle	it	makes
with	the	unit	vector	e2	=	j.)	Only	the	second	term	in	the	sum	survives	because

More	 generally	 if	 we	 have	 in	 n-dimensions	 n	 vectors	 that	 are	 mutually
orthogonal	and	of	unit	length,	their	orthonormality	may	be	written	concisely
in	terms	of	the	Kronecker	delta	as

Every	vector	in	this	n-dimensional	space	may	be	written	as

To	find	 the	coefficient	Vj,	we	 take	 the	dot	product	of	both	sides	with	ej	and
find



Try	to	remember	this	result	for	a	while:

I	 use	 the	 freedom	 to	 rewrite	 the	 dot	 product	 with	 the	 order	 of	 the	 vectors
reversed	 so	 it	 will	 closely	 resemble	 an	 expression	 in	 Fourier	 theory	 that
follows	shortly.
Now	turn	to	the	Fourier	expansion

To	find	the	coefficient	A(p′)	the	way	we	found	Vj	we	would	like	the	analog
of	the	orthonormality	relation	of	the	basis	vectors

for	the	basis	function	ψp(x).
Here	it	 is.	Given	two	basis	functions	ψp(x)	and	ψp′(x),	we	define	their	dot

product	to	be	a	certain	integral	because	it	equals	δpp′:

This	will	allow	us	to	find	the	coefficients	A(p).
Proof	of	orthonormality	of	ψp(x):



where	 in	 the	 last	 step	 I	have	 invoked	a	 result	 I	 asked	you	 to	memorize:	 the
integral	of	every	ψp(x)	over	the	circle	is	zero	unless	p	=	0,	in	which	case	the
integrand	 is	 a	 constant.	 This	 result	 applies	 here	 since	 the	 integrand	 in	Eqn.
21.167	corresponds	to	p	=	2π(m′	−	m)ћ/L.
Now	I	claim	the	analog	of	Vj	=	ej	·V:

Here	are	the	steps	in	the	proof,	analogous	to	Eqns.	21.153	through	21.156.

Table	21.1			Vector	versus	function	expansions



Table	 21.1	 gives	 the	 complete	 correspondence	 between	 vectors	 and
functions.
Let	us	take	stock	of	where	we	are.	There	is	a	particle	on	a	ring	described	by

some	ψ(x).	We	want	 to	 know	what	 answers	 we	will	 get	 if	 we	measure	 its
momentum.	 Single-valuedness	 dictated	 that	 the	 allowed	momenta	 obey	 the
quantization	rule

The	absolute	probability	P(p)	for	finding	any	one	of	these	allowed	values	is
given	by	the	following	recipe:

assuming	 ψ(x)	 has	 been	 normalized.	 If	 not,	 |A(p)|2	 =	 P′(p),	 the	 relative
probability.	 If	 a	 value	 p0	 is	 obtained,	ψ(x)	 collapses	 to	ψp0(x)	 immediately
following	the	measurement.

21.6			Measurement	postulate:	general
After	 the	 concrete	 example	of	momentum,	we	are	 ready	 for	 a	more	general
statement	 of	 the	 measurement	 postulate.	 Let	 α	 denote	 the	 set	 of	 allowed
values	of	 some	dynamical	 variable	 	 represented	 in	 classical	mechanics	by
some	function	of	x	and	p.	For	example,	 	can	be	the	momentum	itself	and	p
one	 of	 its	 allowed	 values;	 	 can	 be	 angular	momentum	 and	mћ	 one	 of	 its
allowed	values;	 	could	be	the	energy	and	E	one	of	its	allowed	values	(more
on	 this	 variable	 in	 the	 following	 chapters).	 Let	 ψα(x)	 denote	 a	 normalized
state	in	which	 	is	guaranteed	to	yield	a	particular	value	α.	(This	is	like	ψp(x)



which	 is	guaranteed	 to	yield	 the	value	p	 formomentum.	 I	will	 tell	 you	 later
how	to	actually	find	the	functions	ψα(x)	for	each	 .	For	now	assume	that	for
each	variable	 	we	know	the	corresponding	ψα(x).)
First	 we	 have	 two	 purely	 mathematical	 results	 that	 generalize	 Fourier

series.
1.	We	may	expand	any	ψ(x)	as	a	linear	combination

2.	The	coefficients	of	the	expansion	are	given	by

The	physics	now	enters	in	the	form	of	the	measurement	postulate:	When	the
variable	 	 is	measured	on	a	particle	described	by	 the	ψ(x)	 in	Eqn.	21.175,
the	probability	of	obtaining	a	particular	value	of	α,	say	α0,	is	given	by	P(α0)	=
|A(α0)|2.	If	measurement	yields	a	value	α0,	 the	state	right	after	measurement
collapses	from	the	sum	over	α	to	just	the	one	term	ψα0(x).
This	is	very	general:	under	measurement,	the	particle	goes	from	being	in	a

superposition	of	states	with	different	possible	values	for	some	variable	to	the
one	state	in	the	sum	in	which	it	was	detected.	It	could	go	from	being	in	many
places	 to	 being	 in	 just	 the	 one	 place	 where	 it	 was	 detected,	 from	 being	 in
many	states	of	momentum	to	the	one	found	in	the	momentum	measurement,
from	being	near	either	slit	to	being	near	the	one	where	the	photons	from	the
lightbulb	 detected	 it.	 This	 collapse	 is	 due	 to	 the	 inevitable	 effect	 of
measurement	and	it	is	one	of	the	most	dramatic	postulates.
The	measurement	postulate	gives	 the	answer	 to	 a	question	 that	 comes	up

often:	How	do	we	ever	know	what	 state	 a	particle	 is	 in?	Here	 is	 an	answer
that	 is	 often	 applicable:	 It	 is	 in	 a	 state	 corresponding	 to	 the	 value	 of	 some
observable	that	was	just	measured.	Thus,	if	we	measured	p	and	obtained	p	=
p0,	the	state	right	after	measurement	is	ψp0(x).	In	addition,	if	we	can	compute
the	 time-dependence	 of	 a	 known	 initial	 state	 using	 the	 laws	 of	 quantum
dynamics	 (time-dependent	 Schrödinger	 equation)	we	will	 know	 the	 state	 at
future	times	as	well.

21.7			More	than	one	variable
Let	us	briefly	consider	not	one	variable,	but	 two,	 say	x	 and	p.	Classically	a
particle	 can	 be	 in	 a	 state	 with	 definite	 values	 (x0,p0)	 for	 position	 and



momentum.	 I	 can	 prepare	 such	 a	 state	 as	 follows:	 I	 push	 the	 particle	 till	 it
picks	up	the	desired	momentum	p0	as	it	reaches	some	point	x0.	At	that	instant,
I	 assign	 to	 it	 the	 pair	 (x0,p0).	 If	 I	 remeasure	 position	 and	 momentum
immediately,	I	will	get	the	same	pair	(x0,p0).	A	series	of	rapid	measurements
of	position	and	momentum	will	yield	the	string	(x0,p0,x0,p0,	.	.	.).	In	fact	I	can
measure	p	first	and	then	x	or	the	other	way	around	and	it	will	not	matter.
All	this	changes	in	the	quantum	case.	Let	us	say	the	particle	was	in	a	state

of	definite	momentum,	ψp0(x).	I	measure	momentum	and	I	get	p0.	I	have	no
idea	where	the	particle	is.	So	I	locate	it	using	the	Heisenberg	microscope.	Say
I	 find	 it	 at	 x	 =	 5.	 The	wave	 function	 right	 after	 this	 position	measurement
becomes	ψx=5(x),	which	is	peaked	at	x	=	5.	But	I	cannot	say	the	particle	is	in	a
state	 (x	 =	 5,	 p	 =	 p0)	 because	 if	 I	 measure	 p	 just	 to	 make	 sure,	 I	 will	 not
necessarily	get	p0.	To	see	what	I	could	get,	I	must	first	write	ψx=5(x)	as	a	sum
of	states	of	definite	momentum

where

I	can	get	any	p	that	is	present	in	the	sum,	any	p	for	which	A(p)	≠	0.	I	could
get	2p0.	Or	I	could	get	−	p0	if	such	a	term	were	present.	Since	an	immediate
remeasurement	does	not	necessarily	yield	p0,	the	particle	can	never	be	said	to
have	 been	 in	 a	 state	 (x	 =	 5,	 p	 =	 p0).	 Suppose	 the	 second	 momentum
measurement	gave	an	answer	−	p0.	Is	the	particle	in	a	state	(x	=	5,	p	=	−	p0)?
No,	because	in	the	subsequent	position	measurement	(in	this	state	of	definite
momentum	 −	 p0)	 every	 point	 on	 the	 ring	 is	 equally	 probable,	 with	 no
preference	for,	or	memory	of,	x	=	5.	A	string	of	rapid	x	and	p	measurements
will	 therefore	 yield	 a	 string	 of	 generally	 unpredictable	 and	 non-repeating
numbers	as	we	alternately	expand	a	 function	narrow	 in	position	 in	 terms	of
functions	of	sharp	momentum	and	vice	versa.	There	is	no	sense	in	which	the
particle	can	be	said	to	have	a	well-defined	value	of	position	and	momentum.
The	pair	(x,p)	happens	to	be	maximally	incompatible.	There	are	other	pairs

of	 variables	 in	 quantum	 theory	 that	 can	 have	 simultaneously	 well-defined
values	 for	 both,	 where	 the	 same	 pair	 of	 measured	 values	 will	 repeat	 upon
successive	 remeasurement	 and	 where	 the	 order	 of	 measurement	 will	 not
matter.	We	will	encounter	one	example	in	the	next	chapter.



CHAPTER	22

States	of	Definite	Energy

Let	us	continue	our	study	of	the	measurement	postulate	in	its	general	form.	It
has	no	analog	in	classical	mechanics.	There,	if	we	know	the	state	variables	(x,
p)	 (or	 its	 generalizations	 to	 higher	 dimensions)	 we	 need	 not	 measure	 any
other	 dynamical	 variable.	 For	 example,	 the	 angular	 momentum	 (in	 three
dimensions)	 is	given	by	L	=	r	×	p.	We	could	measure	 it	directly,	but	 if	we
knew	r	and	p,	we	could	just	compute	the	cross	product.
We	saw	that	in	quantum	theory	ψ(x)	describes	the	state	and	plays	the	role

of	 the	 pair	 (x,p).	 It	 contains	 all	 possible	 information	 on	 the	 particle	 at	 any
given	 time.	While	 the	 questions	we	 ask	 are	 not	 too	 different	 from	 classical
mechanics	and	take	the	form,	“What	will	I	get	if	I	measure	 ?,”	where	 	is
some	 variable	 like	 position	 or	 momentum,	 the	 answer	 is	 generally
probabilistic	 in	 nature.	 For	 example,	 given	 a	 generic	ψ(x)	 if	we	 ask	 for	 the
result	 of	 a	 position	measurement	we	 are	 told	 that	 the	 outcome	x	will	 occur
with	a	probability	density

If	 the	particle	 is	 found	at	x	=	x0,	 the	wave	 function	ψ(x)	will	 collapse	 from
whatever	it	was	to	ψx0(x),	a	spike	at	x0.
The	 collapse	 of	 the	 probability	 occurs	 in	 classical	 mechanics	 as	 well.

Recall	 the	 probability	 distribution	P(x)	 for	 finding	me	 somewhere	 near	my
home	 or	 my	 office	 or	 en	 route.	 If	 you	 catch	 me	 somewhere,	 the	 classical
distribution	 collapses	 to	 where	 I	 was	 caught.	 The	 difference	 is	 that	 I	 was
where	 I	 was	 caught	 even	 before	 you	 caught	 me:	 I	 was	 being	 constantly
observed	 by	 a	 stream	 of	 photons	 or	 air	 molecules,	 for	 example.	 At	 the
quantum	level,	we	have	the	underlying	wave	function	in	addition	to	P(x).	The
spread-out	ψ	is	not	like	the	spread-out	P(x):	it	describes	a	particle	that	really
is	nowhere	in	particular.	It	has	no	position	prior	to	measurement.	This	state	of
limbo	has	no	classical	analog.
Things	 get	 much	 more	 complicated	 if	 we	 ask	 the	 same	 question	 of	 a

momentum	measurement.	The	answer	is	longer	and	given	in	several	stages.
1.	By	postulate,	a	state	of	momentum	p	is	described	by	the	wave	function



In	a	finite	universe	of	circumference	L,	the	normalized	state	is

and	the	condition	of	single-valuedness	restricts	the	allowed	values	of	momentum	to

From	now	on	I	will	use	n	to	denote	the	integer	since	m	will	be	reserved	for	the	mass.	Despite	this,	I
previously	used	m	as	the	index	for	momentum	and	angular	momentum	because	the	angular
momentum	associated	with	rotations	around	an	axis	is	traditionally	written	as	mћ.
2.	Given	all	this,	the	measurement	postulate	tells	us	that	a	momentum	measurement	will	yield	a	result
pn	with	probability	P(pn)	=	|A(pn)|

2	where	A(pn)	is	the	coefficient	in	the	expansion

where	I	use	both	pn	and	p	to	denote	one	of	the	allowed	momenta.	So	the	sum	over	n	and	the	sum	over
p	stand	for	the	same	thing,	the	sum	over	all	allowed	momenta.
The	expansion	coefficient	A(p)	may	either	be	read	off	by	inspection	in	some	cases	or	computed	in

all	cases	by	evaluating	the	integral

The	coefficient	A(p)	can	be	complex	just	like	ψ(x).	But	P(p)	=	|A(p)|2	will	always	be	real	and	non-
negative.
3.	If	the	measurement	yields	a	value	pn,	the	state	ψ(x),	which	used	to	be	a	superposition,	collapses	to
ψpn(x).	An	immediate	remeasurement	of	p	will	yield	pn.	The	rest	of	ψ	will	get	chopped	out.	It’s	like
Polaroid	glasses.	The	electric	field	E	in	the	incoming	light	can	be	polarized	in	any	direction
perpendicular	to	the	direction	of	propagation,	but	once	it	goes	through	the	glasses	it	will	be	polarized
along	the	axis	of	the	lenses.	The	component	of	E	in	the	perpendicular	direction	will	be	chopped	off.
So	measurement	is	like	a	filtering	process.	Out	of	the	sum	over	many	terms,	measurement	filters	the
one	term	that	corresponds	to	the	one	answer	you	got.

Let	us	be	clear	about	the	roles	of	ψ(x)	and	ψp(x)	in	Eqn.	22.5.	The	function
ψ(x)	describes	the	state	the	particle	is	in.	It	is	an	arbitrary	periodic	function	on
the	circle.	We	want	to	know	the	result	of	a	momentum	measurement	on	this
state.	 The	 functions	 ψp(x)	 are	 also	 functions	 on	 the	 ring,	 but	 they	 are
postulated	to	have	a	definite	momentum	p	associated	with	them.	If	a	particle



is	in	ψp(x),	a	momentum	measurement	is	guaranteed	to	give	the	value	p.	The
outcome	 of	 a	 momentum	 measurement	 on	 ψ(x)	 is	 more	 complicated.	 It	 is
determined	by	writing	 the	given	ψ(x)	 as	a	 linear	combination	of	ψp(x)	 as	 in
Eqn.	 22.5.	 Unlike	 the	 case	 of	ψp(x),	 we	 can	 get	 any	 p	 that	 appears	 in	 the
expansions	and	the	probability	for	this	is	P(p)	=	|A(p)|2.	If	the	state	had	many
p’s	 in	 its	 expansion,	 it	 collapses	 to	 the	 one	 term	 that	 was	 found	 upon
measurement.	Of	course	one	possible	special	case	is	that	the	sum	has	only	one
term,	say	only	A(p3)	≠	0.	Then	the	outcome	is	certain	to	be	p3	and	the	state	is
unaffected	by	the	measurement	and	remains	ψp3(x).
The	 following	 analogy	 may	 help.	 We	 know	 that	 any	 three-dimensional

vector	V	may	be	expressed	as	V	=	Vxi	+	Vyj	+	Vzk.	A	basis	vector	 like	 i	 is
every	 bit	 a	 vector	 like	 V;	 it	 just	 happens	 to	 be	 aligned	 with	 one	 of	 the
coordinate	axes.
This	 recipe	 generalizes	 to	 all	 dynamical	 variables	 A,	 by	 which	 I	 mean

anything	that	is	a	function	of	x	and	p	in	classical	mechanics.	For	example,	the
angular	momentum	L	is	a	dynamical	variable	given	by	L	=	r	×	p.	The	energy
of	a	particle	of	mass	m	attached	to	a	spring	of	force	constant	k	and	undergoing
simple	harmonic	motion	is	another:

All	this	is	for	one	variable	at	a	time.	Generally	you	may	not	have	states	in
which	two	(or	more)	variables	have	well-defined	or	guaranteed	values.	If	you
try	to	prepare	a	particle	with	a	definite	value	for	one,	it	may	be	spread	out	in
the	other,	 in	the	sense	that	measurement	of	the	second	variable	could	give	a
range	of	answers.	If	you	measure	the	second	one	and	get	some	answer,	there
is	no	guarantee	 the	 first	will	give	 the	old	value	with	certainty.	This	was	 the
case	for	position	and	momentum.	However,	in	this	chapter	we	will	meet	a	pair
of	variables	both	of	which	can	be	specified	simultaneously.
Back	to	 .	Let	α	denote	the	set	of	allowed	values	of	some	variable	 .	Let

ψα(x)	denote	a	state	in	which	the	variable	is	guaranteed	to	yield	a	value	α.	For
example,	 	can	be	the	momentum,	pn	=	2πnћ/L	one	of	its	allowed	values,	and
ψpn(x)	the	corresponding	wave	function.	Mathematics	tells	us	the	following.
1.	We	may	expand	any	ψ(x)	as	a	linear	combination

2.	The	coefficients	of	the	expansion	are	given	by



Physics	then	tells	us	the	following:	When	the	variable	 	is	measured	on	a
particle	 described	 by	 the	 ψ(x)	 in	 Eqn.	 22.8,	 the	 probability	 of	 obtaining	 a
result	α	is	given	by	P(α)	=	|A(α)|2.	If	measurement	yielded	a	particular	value	α
=	α0,	the	state	right	after	measurement	collapses	from	the	sum	over	α	to	just
the	one	term	ψα0(x).
This	recipe	is	not	as	complete	as	the	one	for	momentum	because	I	have	not

given	you	the	wave	functions	ψα(x)	that	are	states	of	definite	value	for	 .	Till
we	 have	 these,	we	 cannot	 hope	 to	 express	 the	 given	ψ	 in	 the	 form	of	Eqn.
22.8.
For	this	we	need	another	postulate.	Pick	any	observable	 	and	the	postulate

will	 tell	you	how	to	find	ψα(x).	However,	 the	equations	determining	ψα	will
depend	 on	 what	 	 is.	 You	 change	 your	 mind	 on	 which	 	 you	 want	 to
measure,	 and	 you	 have	 a	 new	 equation	 to	 solve.	Rather	 than	 deal	with	 this
procedure	 in	 all	 its	 generality,	 let	 us	 consider	 one	 case	 of	 the	 greatest
importance,	 where	 	 is	 the	 energy	 E	 and	 ψE(x)	 the	 corresponding	 wave
functions	of	definite	E.
Energy	plays	a	central	role	in	the	dynamics,	when	we	ask	how	an	arbitrary

initial	wave	function	ψ(x,	0)	evolves	with	time	into	ψ(x,	t).	It	will	turn	out	that
as	long	as	the	potential	V	is	time-independent,	the	answer	is	most	easily	found
by	 first	 expressing	 the	 initial	 ψ(x,	 0)	 as	 a	 linear	 combination	 of	 ψE(x).	 A
remarkable	corollary	will	be	that	if	a	particle	is	found	to	have	energy	E	 in	a
measurement,	not	only	does	 the	state	collapse	 to	ψE(x)	and	stay	 that	way	at
least	for	an	infinitesimal	amount	of	time	(as	it	would	for	any	variable),	it	will
stay	that	way	forever!	All	this	will	be	elaborated	when	we	turn	to	dynamics	in
the	next	chapter.	For	now	I	just	want	you	to	take	my	word	that	of	all	possible
variables,	there	are	excellent	reasons	for	focusing	on	the	case	 	=	E	and	the
corresponding	wave	functions	of	definite	energy	ψE(x).

Postulate	for	ψE(x).	The	states	of	definite	energy	E	are	the	normalizable	single-valued	solutions	to
the	time-independent	Schrödinger	equation

This	 is	 the	 master	 formula.	 Do	 not	 worry,	 I	 will	 see	 you	 through	 this
equation.
Now	you	might	say,	“Why	don’t	you	just	give	me	ψE(x)	as	you	did	ψp(x)

and	be	done	with	it?”	The	problem	is	that	the	time-independent	Schrödinger



equation	depends	on	what	V(x)	is.	Every	possible	V(x)	has	its	own	Eqn.	22.10
and	its	own	family	of	solutions	ψE(x).	There	will	be	one	family	of	functions
ψE(x)	for	V(x)	=	kx2	and	another	for	V(x)	=	k′x4.	(In	three	dimensions	you	can
have	an	electron	in	the	1/r	potential	due	to	the	proton	and	the	corresponding
wave	function	ψE(r)	of	the	hydrogen	atom.)
We	will	often	 focus	on	bound	states,	 states	 in	which	 the	energy	E	 is	 less

than	V(±∞),	 the	 potential	 at	 x	 =	 ±∞.	 This	 is	 the	 case	where	 classically	 the
particle	cannot	escape	to	infinity,	for	if	it	did,	its	kinetic	energy	K(±∞)	=	E	−
V(±∞)	would	have	to	be	negative,	which	is	impossible.	In	such	cases	we	will
find	 that	 solutions	 to	 the	 Schrödinger	 equationare	 possible	 only	 at	 some
quantized	 values	 of	 energy	 En	 labeled	 by	 some	 integer	 n,	 with	 the
corresponding	wave	functions	ψEn(x)	≡	ψn(x).	Solving	Eqn.	22.10	will	tell	us
both	 the	 allowed	 energies	 En	 and	 the	 ψEn(x).	 Then	we	 can	 go	 on	 and	 find
A(En)	and	the	probabilities.	But	first	we	have	to	solve	the	equation.
Why	are	there	bound-state	solutions	only	for	some	values	E	=	En?	We	will

see	that	at	other	energies	the	solutions	blow	up	exponentially	either	as	x	→	∞
or	as	x	→	−∞	or	both,	and	hence	they	are	not	normalizable.	When	the	particle
is	confined	to	a	finite	ring,	we	do	not	have	the	problem	of	blowup	at	spatial
infinity,	but	that	of	single-valuedness.	This	requirement,	which	quantized	the
momenta,	will	be	seen	to	quantize	the	energies	on	the	ring.

22.1			Free	particle	on	a	ring
The	first	problem	I	want	to	solve	involves	a	free	particle,	one	for	which	V(x)
≡	 0.	 Let	 us	 imagine	 it	 lives	 on	 a	 circle	 of	 circumference	 L	 =	 2πR.	 The
Schrödinger	equation	(Eqn.	22.10)	assumes	the	form

Let	us	rearrange	the	equation	to	read:

Remember	 that	 the	 E	 we	 are	 looking	 for	 is	 now	 encoded	 in	 k	 via	 the
preceding	equation.
The	solutions	to	this	equation	are	of	the	form



where	A	and	B	are	some	constants.	Let	us	verify	 this.	Every	 time	we	take	a
derivative	of	eikx	we	pull	down	an	 ik	 for	a	 total	of	 (ik)2	=	−	k2.	The	second
exponential	 also	 yields	 the	 same	 factor	 because	 (−ik)2	 =	 −	 k2	 as	 well.
Consequently	ψE(x)	satisfies

Upon	comparison	to	the	prototype

the	 exponential	 functions	 in	 Eqn.	 22.14	 are	 seen	 to	 be	 states	 of	 definite
momentum

If	we	now	express	k	in	terms	of	E	using	Eqn.	22.13	we	find

Thus	we	may	rewrite	Eqn.	22.14	in	terms	of	the	energy	label	E	as

Look	at	Eqn.	22.18.	It	is	exactly	as	in	classical	mechanics!	In	other	words,	if	I
told	you	a	free	particle	of	energy	E	was	running	around	in	a	circle	with	kinetic
energy	E,	you	would	say	that	its	momentum	is	determined	by

So	what	is	new	in	the	quantum	case?
There	 are	 two	 profound	 differences	 between	 classical	 and	 quantum

mechanics.
1.	The	allowed	values	of	p	are	restricted	in	the	quantum	theory	to	the	values



It	 is	convenient	 in	 this	section	 to	 let	n	only	 take	 the	values	0,	1,	2,	 .	 .	 .	and
define:

with	the	understanding	that	for	n	≠	0,	±pn	are	the	allowed	momenta.
The	allowed	values	of	energy	are	therefore	quantized	to

The	corresponding	wave	functions	are

2.	Whereas	a	classical	particle	of	energy	E	can	also	have	one	of	two	momenta	 ,	it	has
to	choose	one	or	the	other	in	any	situation.	The	quantum	particle	on	the	other	hand	can	be	in	a	stateof
indefinite	momentum	displayed	in	Eqn.	22.19,	in	which	it	can	yield	either	value	with	relative
probabilities	|A|2	and	|B|2.

22.1.1			Analysis	of	energy	levels:	degeneracy
Consider	the	fact	that	a	state	of	momentum	is	given	by	a	unique	function	up
to	an	overall	normalization

while	a	state	of	definite	energy	involves	two	independent	functions



The	functions	e±ipnx/ћ	are	independent	in	the	sense	that	one	cannot	be	obtained
from	 the	 other	 by	 multiplying	 by	 an	 x-independent	 constant.	 Of	 the	 two
coefficients	A	and	B	we	may	choose	one	to	be	equal	to	1	using	the	freedom	in
the	 overall	 scale,	 but	 a	 ratio	 A/B	 remains	 a	 meaningful	 parameter	 that
determines	 the	 relative	 odds	 for	 pn	 versus	 −pn.	 This	 extra	 parameter	 in	ψE
makes	 the	 computation	of	 probabilities	P(E)	 a	 little	 tricky.	Here	 is	 how	we
handle	it.
Let	ψ(x)	be	the	state	that	is	given	to	us,	for	which	we	want	the	probabilities

for	 various	 outcomes	 in	 an	 energy	 measurement.	 Forget	 about	 ψE(x)	 and
express	the	given	ψ(x)	as	a	linear	combination	of	ψp(x)	and	group	the	terms	as
shown:

I	am	not	using	normalized	ψp(x)	but	that	will	not	matter	since	scaling	them	all
by	 	 to	normalize	them	will	not	affect	 the	relative	probabilities.	(We	are
able	to	ignore	the	normalization	requirement	only	because	they	are	all	off	by
the	amount	 .	This	preserves	the	“ray.”)
In	 the	preceding	form,	 the	un-normalized	probability	for	any	allowed	p	 is

obvious:	P(±pn)	=	|A(±pn)|2.	To	find	the	probability	for	any	energy	En	we	use
the	 fact	 that	because	En	 is	quadratic	 in	 the	momentum,	 the	probabilities	 for
both	±pn	will	contribute	to	the	probability	for	En.	For	example,	both

The	relative	probability	for	this	energy	to	occur	is	the	sum	of	the	probabilities
for	the	two	momentum	outcomes	that	correspond	to	this	energy:

The	absolute	probability	is



Clearly	what	is	true	for	n	=	3	is	true	for	any	other	n	except	n	=	0	when	there	is
just	one	A(p	=	0).
When	 the	 energy	En	 is	 obtained	 in	 a	measurement,	 the	wave	 function	 in

Eqn.	22.30	collapses	to	the	corresponding	two	terms	in	the	expansion	of	ψ(x)
with	the	corresponding	momenta:

In	this	collapse	the	ratio	A(pn)/A(−pn)	is	preserved.
On	the	other	hand,	if	momentum	was	measured	and	the	result	pn	(or	−	pn)

was	obtained,	the	state	would	collapse	to	A(pn)eipnx/ћ	or	A(−pn)e−ipnx/ћ.
Go	back	to	a	definite	energy	state

While	any	choice	of	A	and	B	makes	it	a	state	of	definite	energy,	two	choices
have	 added	 attractions.	 Suppose	 only	A	 ≠	 0.	This	 is	 now	a	 state	 of	 definite
momentum	as	well.	We	could	label	it	by	a	pair	of	numbers

The	state	of	opposite	momentum	could	likewise	be	labeled

Unlike	 the	 incompatible	 pair	 x	 and	p,	 for	which	 it	 is	 impossible	 to	 get	 a
state	with	labels	(x,	p),	we	can	have	the	pair	(E,	p).	The	reason	is	that	when
V(x)	≡	0,



and	one	can	measure	p	and	compute	E	from	it.
For	 each	E	 (except	 0)	 there	 are	 two	momentum	 states	 with	 that	 energy.

This	is	called	degeneracy.	In	general	an	energy	level	is	degenerate	if	there	are
two	or	more	 independent	wave	 functions	with	 that	 energy.	This	 situation	 is
depicted	in	Figure	22.1.

Figure	22.1			The	energy	states	of	a	particle	on	a	ring	labeled	by	the	pair	(E,	p).	There	are	two	states	at
each	allowed	energy	corresponding	to	two	possible	directions	of	momentum	 	except	at	E	=

p	=	0,	which	is	non-degenerate.	The	“height”	of	the	levels	goes	as	n2.	The	vertical	arrows	on	the	sides
denote	transitions	down	from	n	=	2	to	n	=	1	by	the	emission	of	a	photon	of	energy	ћω	=	E2	−	E1	and	up
from	n	=	1	to	n	=	3	by	the	absorption	of	a	photon	of	energy	ћω	=	E3	−	E1.

I	want	to	emphasize	that	the	state

is	not	a	state	of	definite	momentum:	we	can	get	 	with	probabilities	|A|2

and	|B|2	respectively.	It	is,	however,	a	state	of	definite	energy	E	because	E	is
blind	to	the	sign	of	p.	In	other	words,	the	state	of	definite	momentum	is	also	a
state	of	definite	energy,	but	the	converse	is	not	true.
If	we	shine	light	on	this	“atom”	it	can	undergo	transitions	illustrated	by	the

two	vertical	arrows	on	the	side:	down	from	n	=	2	to	n	=	1	by	the	emission	of	a
photon	of	energy



and	up	from	n	=	1	to	n	=	3	by	the	absorption	of	a	photon	of	energy

Only	 light	 of	 the	 appropriate	 frequency	 can	 induce	 such	 transitions	 and,
conversely,	by	looking	at	the	frequencies	that	induce	such	transitions,	we	can
learn	about	the	energy	level	structure	of	the	“atom.”
Experiments	 at	 Yale	 (and	 elsewhere)	 have	 verified	 the	 prediction	 that	 if

you	 take	 a	 small	 enough	 metallic	 ring	 in	 a	 magnetic	 field	 it	 will	 have	 a
persistent	 (permanent)	 current,	 which	 is	 not	 due	 to	 a	 battery	 or
superconductivity.	The	experiments	can	measure	 the	 tiny	current	due	 to	one
electron.	 In	 this	 context	 the	 circumference	 L,	 which	 was	 an	 artifact	 for
normalizing	 wave	 functions	 in	 free	 space,	 is	 a	 physically	 significant
parameter	describing	the	quantum	ring	on	the	scale	of	a	micron.
A	 real	 atom	 is	more	complicated	mathematically	 than	a	particle	 in	a	 ring

because	the	electron	is	confined	by	the	Coulomb	force.	But	the	ideas	are	the
same:	 only	 some	 energies	 are	 allowed	 and	 they	 may	 be	 degenerate,
corresponding	usually	to	different	values	of	angular	momentum.	(Whereas	in
a	 ring	 the	 angular	 momentum	 can	 have	 only	 two	 signs,	 clockwise	 and
counterclockwise,	 leading	 to	 a	 twofold	 degeneracy,	 in	 three	 dimensions	we
also	have	many	possible	planes	of	rotation.)	When	you	studied	atoms	earlier
maybe	 you	 encountered	 shells	 with	 2	 electrons	 or	 8	 electrons	 and	 so	 on.
These	numbers	 represent	degeneracies.	From	the	 frequencies	of	emitted	and
absorbed	light	we	can	deduce	the	energy	level	structure	of	the	atom.
It	is	quantum	mechanics	that	rigidly	limits	the	set	of	allowed	energies	and

wave	 functions	 of	 bound	 states,	 and	 the	 corresponding	 frequencies	 of
emission	and	absorption.	This	 is	why	atoms	come	in	a	countable	number	of
varieties	(H,	He,	and	so	on),	and	atoms	of	any	one	kind,	say	He,	are	also	the
same	across	the	universe	(given	that	electrons,	protons,	and	neutrons	are	the
same	across	the	universe,	which	is	amazing	in	itself).	This	reproducibility	is
what	allows	us	to	deduce	what	atoms	are	contained	in	distant	stars	and	how
fast	some	galaxies	are	moving	by	the	Doppler	shift	of	the	emitted	light.	Here
is	 an	 example.	 The	 hydrogen	 atom	 has	 two	 levels	 that	 are	 close,	 and	 the
wavelength	of	the	light	emitted	when	it	jumps	down	is	21	centimeters.	This	is
a	standard	fingerprint	of	hydrogen	anywhere	in	the	universe.	If	the	observed
wavelength	is	not	21	cm	but	22	cm,	you	may	say,	“I	guess	it	is	not	hydrogen.”
Nonetheless,	 the	 correct	 answer	 is	 that	 it	 is	 hydrogen,	 but	 that	 galaxy	 is
moving	 away	 from	you,	 and	 its	 light	 is	Doppler	 shifted	 into	 the	 red.	 If	 the
galaxy	were	coming	toward	you,	the	line	would	be	blue	shifted.	If	you	believe
that	 hydrogen	 atoms	 all	 over	 the	 universe	 are	 the	 same,	 and	 the	 frequency
shift	 is	 only	 due	 to	 the	 motion	 of	 the	 galaxy,	 you	 find	 two	 things:	 its



constitution	and	its	speed	of	recession.	The	interpretation	of	the	observations
of	Edwin	Hubble	(1889–1953),	which	related	the	red	shift	of	galaxies	to	their
distance,	was	used	to	demonstrate	the	expansion	of	the	universe.
Quantization	is	no	less	important	in	biology	and	the	life	sciences.	It	is	what

ensures	 that	 the	molecules	 that	play	a	central	 role	 in	molecular	biology	and
genetics	 constitute	 a	 discrete	 set	 of	 possibilities,	 which	 may	 be	 reliably
produced	over	and	over	again,	 the	way	digital	music	can	be	copied	with	no
errors,	unlike	analog	music,	which	cannot.

22.2			Thinking	inside	the	box
Now	 for	 a	 very	 standard	 pedagogical	 exercise,	 called	 the	 particle	 in	 a
quantum	well,	and	a	limiting	case	of	the	well,	the	particle	in	a	box.	It	is	more
representative	of	quantization	than	the	particle	on	a	ring	because	the	particle
is	confined	by	a	potential	just	like	the	electron	is	in	an	atom.

22.2.1			Particle	in	a	well
The	particle	 in	 the	well	 experiences	a	potential	V(x),	 two	versions	of	which
are	 shown	 in	 the	 left	 half	 of	 Figure	 22.2	 by	 dotted	 and	 solid	 lines.	 Both
approach	V(x)	=	V0	for	x	→	±∞.	We	want	to	find	the	allowed	states	of	definite
energy.	A	potential	that	changes	gradually	(dotted	lines)	is	more	realistic	and
also	 better	 suited	 to	 analyze	 various	 kinds	 of	 trajectories	 as	 a	 function	 of
energy	in	the	classical	description.	However,	in	order	to	simplify	the	math	in
the	 quantum	mechanical	 treatment,	 we	 will	 use	 a	 square	 well	 whose	 sides
abruptly	rise	from	0	to	V0	at	x	=	0	and	x	=	L,	as	depicted	by	the	solid	lines.

Figure	22.2			Left:	A	well	of	finite	depth	V0,	where	the	dotted	line	gives	the	realistic	version	and	the
solid	line	the	artificial	one	to	facilitate	the	quantum	treatment.	Right:	A	well	of	infinite	depth	or	a	box.

Let	us	 consider	 the	 classical	 dynamics	 first.	The	 energy	of	 the	particle	 is



made	up	of	the	kinetic	term	K(x)	and	the	potential	term	V(x),	the	total	being
an	x-independent	constant	E	is	shown	by	a	horizontal	line.	We	are	interested
mainly	in	the	case	E	<	V0	shown	in	the	figure.	The	particle	is	then	in	a	bound
state	and	can	never	escape	to	infinity	because	the	kinetic	energy	would	then
be	negative:	K(±∞)	=	E	−	V(±∞)	=	E	−	V0	<	0,	which	is	impossible.
If	the	trapped	particle	moving	to	the	right	hurls	itself	against	the	confining

potential	with	some	initial	velocity,	it	will	climb	till	it	reaches	zero	velocity	at
the	 turning	point	xR	 and	 then	start	 rolling	down	 into	 the	well.	 It	will	do	 the
same	 at	 xL	 if	 it	 is	 moving	 the	 other	 way.	 It	 will	 rattle	 back	 and	 forth	 at
constant	total	energy	between	the	two	turning	points.
For	E	>	V0	the	particle	can	escape	to	infinity.	If	launched	from	the	far	left,

it	will	speed	up	on	descending	into	the	well,	slow	down	on	the	way	out,	and
exit	with	the	initial	velocity	(in	this	case	where	V(∞)	=	V(−∞)).	We	will	not
spend	much	time	on	this	case	of	the	unbound	particle	because	its	energy	is	not
quantized.
Now	for	 the	quantum	 treatment	of	 the	well.	To	 find	 the	allowed	energies

and	wave	functions	ψE(x)	we	go	back	to	the	Schrödinger	equation:

We	 were	 able	 to	 solve	 for	 the	 case	 V	 ≡	 0	 in	 terms	 of	 states	 of	 definite
momentum.	 For	 special	 cases	 like	 	 an	 analytical	 solution	 is
possible.	For	some	arbitrary	V(x)	there	is	usually	no	analytical	solution.
Consider	 the	case	of	constant	V	=	V0.	 It	 is	 just	 as	easy	 to	 solve	as	V	=	0

because	 we	 can	 take	 the	 V0ψ	 in	 the	 left-hand	 side	 of	 the	 Schrödinger
equationto	the	right-hand	side,	absorb	V0	into	E,	and	change	E	to	E	−	V0:

This	is	just	like	the	free-particle	problem	with	no	V	but	with	E	replaced	by	E
−	V0.	Unfortunately	the	V(x)	describing	the	well	is	not	a	constant.	However,
we	can	consider	a	square	well	in	which	the	potential	is	piecewise	constant	and
jumps	from	V0	to	0	and	back	to	V0	as	x	increases,	as	shown	by	the	solid	line.
This	 allows	 us	 to	 tame	 the	 problem	by	 the	 following	 “divide	 and	 conquer”
procedure.
We	 divide	 space	 into	 regions	 I,	 II,	 and	 III	 as	 in	 the	 figure	 and	 solve	 for

ψE(x)	in	each	region.	Because	V	is	a	constant	in	each	region	we	can	make	the
change	E	→	E	−	V	 and	solve	 for	what	will	 look	 like	 the	 free-particle	wave



equation.	But	then	we	have	to	glue	the	solutions	together	so	that	ψ	and	 	are
continuous	at	the	interfaces	between	regions	I	and	II	and	between	regions	II
and	 III.	 I	 have	 already	 argued	 for	 the	 continuity	of	ψ.	The	 continuity	of	
follows	 from	 the	 Schrödinger	 equationitself.	 If	 	 is	 discontinuous	 at	 some
point,	 	will	blow	up	there	and	the	equationcannot	be	satisfied	because	the
other	terms,	E	ψ	and	Vψ,	are	finite.
Let	us	begin	with	ψI,	the	solution	in	region	I.	It	obeys

I	have	traded	the	subscript	E	(obvious	in	this	context)	for	I,	the	region	label.
Although	we	do	not	know	E	yet,	let	us	first	assume	E	<	V0	and	see	if	there

are	 any	 solutions	 in	 this	 range.	 This	 is	 the	 case	 in	 which	 the	 particle	 is
hopelessly	 trapped	 in	 the	 well	 in	 classical	 mechanics.	 Since	 E	 −	 V0	 is
negative,	let	us	introduce	a	real	positive	parameter	κ	as	follows:

In	terms	of	κ,	the	Schrödinger	equationbecomes

with	the	general	solution

where	A	and	B	are	arbitrary	at	this	point.	But	look	at	the	B	term:	it	blows	up
exponentially	as	x→	−∞.	This	makes	ψI	non-normalizable.	So	we	choose	B	=
0.	 The	 remaining	 A	 term	 vanishes	 exponentially	 as	 we	 move	 along	 the
negative	x-direction,	and	 it	becomes	negligible	 for	 large	and	negative	κx,	or
for

So	the	wave	function	dies	off	more	and	more	rapidly	as	V0	−	E	increases.	For
future	use	remember	that	ψI	vanishes	in	all	of	region	I	in	the	limit	V0→	∞.
By	similar	reasoning



with	the	same	κ	as	in	region	I.	Now	we	must	choose	C	=	0	to	kill	the	growing
exponential.	 Once	 again	 remember	 that	 if	 we	 let	 V0	 →	 ∞,	 the	 falling
exponential,	which	is	all	that	is	left	of	ψIII(x),	simply	vanishes.
A	dramatic	feature	of	quantum	mechanics	 is	 that	 for	 finite	V0	 the	particle

has	a	non-zero	probability	to	be	in	the	classically	forbidden	regions	I	and	III.
While	 quantum	 theory	does	not	 totally	 forbid	 excursions	 into	 this	 region,	 it
does	curb	the	excursions	exponentially.
This	 leaves	us	with	 region	 II	where	V	=	0.	We	have	 just	 the	 free-particle

solutions	of	the	form	 .	With	foresight	we	trade	the	exponentials	for
sines	and	cosines	and	write

Of	 the	 six	 possible	 parameters,	 two	 (B	 and	C)	 were	 set	 to	 zero	 to	 avert
blowup	at	x	=	∓∞.	The	remaining	four,	A,	D,	F,	and	G,	seem	to	be	just	what
we	 need	 to	 satisfy	 the	 four	 conditions	 of	matching	ψ	 and	dψ/dx	 at	 the	 two
interfaces.	This	 is	 an	 illusion.	Consider	 for	 example	 the	 interface	between	 I
and	II	at	x	=	0,	where	these	conditions	become

The	overall	scale	of	ψ,	i.e.,	the	overall	scale	of	A,	D,	F,	and	G,	which	I	have
emphasized	 has	 no	 physical	 significance,	 does	 not	 help	 satisfy	 these
conditions.	 If	 we	 could	 not	 match	 the	 wave	 function	 and	 its	 slope	 at	 the
interface	 for	 some	 choice	 of	ψ,	 rescaling	 it	 (and	 its	 derivative)	 everywhere
will	not	help	since	ψ	(and	its	derivative)	appear	in	both	sides	of	the	matching
conditions.	To	make	this	transparent,	we	may	choose	one	of	the	coefficients,
say	A,	to	be	equal	to	1,	leaving	us	with	just	three	free	parameters.	With	four
conditions	and	three	genuine	parameters,	we	seem	doomed.	But	there	is	one
hidden	parameter:	the	energy	E,	which	we	took	to	be	an	arbitrary	real	number.
It	is	found	that	for	special	choices	of	E	(the	allowed	values)	the	wave	function
obeys	all	the	continuity	equations	and	also	dies	off	at	x	=	±∞.	I	refer	you	to	a
more	advanced	 text	 for	a	graphical	but	not	 totally	analytic	demonstration	of
this	 fact.	 (However,	 I	will	 show	you	a	case	wherein	energy	quantization	for
bound	states	can	be	demonstrated	analytically.)



A	typical	bound-state	solution	is	shown	in	Figure	22.3.
This	 counting	 of	 parameters	 and	 the	 existence	 of	 normalizable	 solutions

only	at	some	special	energies	holds	even	if	we	go	from	the	single	square	well
to	a	more	complicated	one,	as	long	as	we	are	talking	about	a	bound	state	with
E	<	V(±∞).	To	see	this,	take	the	well	in	Figure	22.3	and	add	another	segment
numbered	IV,	between	II	and	III,	with	a	different	constant	potential	V′0	which
then	reverts	to	V0	in	region	III,	as	shown	in	Figure	22.4.

Figure	22.3			A	bound-state	wave	function	in	a	well	at	one	of	the	allowed	energies.	As	the	confining
potential	V0	→	∞,	and	the	well	becomes	the	box,	the	exponential	tail	outside	the	well	(regions	I	and	III)
shrinks	to	zero	width	and	ψ(x)	is	non-zero	only	in	region	II,	the	box.

Figure	22.4			A	modification	of	the	simple	well	with	an	extra	segment.

The	new	region	IV	introduces	two	extra	parameters.	(This	is	true	even	if	V′0
>	E	because	even	the	rising	exponential	is	allowed	in	the	finite	region	IV.)	It
also	 introduces	one	more	 interface	and	two	more	matching	conditions.	Thus
adding	 more	 and	 more	 segments	 still	 leaves	 us	 one	 parameter	 short.	 By
adding	such	segments	of	variable	widths	and	heights	we	can	approximate	any
given	V(x),	such	as	the	one	sketched	in	Figure	22.5.	We	will	always	have	to
tune	the	energy	to	get	a	normalizable	solution	that	vanishes	as	x	→	±∞.



Figure	22.5			Particle	of	energy	E	in	a	potential	V(x)	for	the	case	E	<	V(±∞)	when	it	is	not	allowed	to	go
to	±∞.	Classically	its	excursions	are	limited	to	the	right	and	left	turning	points	xR	and	xL,	where	its
kinetic	energy	K(x)	=	E	−	V(x)	vanishes.	(If	V(x)	exceedes	E	in	points	between	xL	and	xR,	there	will	be
more	turning	points	and	the	well	will	break	up	into	classically	disconnected	regions.)	Quantum	theory
allows	short	forays	into	the	classically	forbidden	region.	At	the	far	left	is	an	“initial”	value	of	ψE(x0)
with	some	slope	(solid	line)	and	its	numerical	continuation	in	either	direction	(dotted	line).

Let	us	understand	in	another	way	how	energy	quantization	for	bound	states
arises	 in	 a	 generic	 potential	 with	E	 <	 V(±∞).	 Go	 back	 to	 the	 Schrödinger
equation

and	think	of	x	as	“time”	and	ψ(x)	as	a	coordinate	that	varies	with	this	“time”
as	it	goes	from	−∞	to	∞.	The	Schrödinger	equationdetermines	the	evolution	of
a	coordinate	ψE(x)	as	a	function	of	“time”	x	 in	a	“time-dependent”	potential
V(x),	 the	 way	 Newton’s	 law	 relates	 the	 second	 time	 derivative	 of	 the
coordinate	 to	 the	 applied	 force.	 Let	 us	 begin	 at	 some	 “time”	 x0	 	 0,	 with
some	initial	“coordinate”	ψ(x0)	and	(“initial	velocity”)	(dψ/dx)x0	and	solve	or
integrate	 the	 equation	 numerically	 on	 a	 computer	 as	 a	 function	 of	 “time”
using	our	Newton’s	law,	Eqn.	22.55.
Remember	how	you	“solve	it	on	a	computer.”	You	start	with	some	initial

position	x(0)	and	velocity	v(0)	at	time	t	=	0.	You	use	the	initial	velocity	to	get
the	position	a	very	small	time	Δt	later	(x(Δt)	=	x(0)	+	v(0)Δt)	and	similarly	the
initial	acceleration	(from	Newton’s	law)	to	get	v(Δt)	and	keep	inching	forward
in	steps	of	size	Δt.	You	can	repeat	the	calculation	with	a	smaller	value	of	Δt	to
get	more	accurate	results.
Unlike	in	mechanics,	we	want	the	solution	for	“times”	past	(x	<	x0)	as	well

as	 future	 times	 to	 make	 sure	 it	 is	 well	 behaved	 for	 all	 x.	 If	 we	 try	 to
implement	our	“time”	evolution	on	a	computer	to	earlier	“times,”	we	will	find
that	generically	 the	solution	blows	up	as	x	→	−∞.	We	saw	this	explicitly	 in
the	square	well,	which	we	could	solve	analytically.	Recall	the	solution	in	Eqn.



22.51	for	region	I,	which	had	a	piece	that	blew	up	as	x	→	−∞:

To	avert	the	blowup	as	x	→	−∞	we	had	to	choose	B	=	0.	It	turns	out	that	we
can	achieve	 the	same	end	in	another	way	that	 is	applicable	 to	 the	numerical
solution.	This	 is	 done	 by	 a	 judicious	 choice	 of	 initial	 conditions	 ψ(x0)	 and
(dψ/dx)x0.	 Although	 the	 overall	 scale	 of	 ψ(x0)	 and	 (dψ/dx)x0	 is	 physically
without	 significance,	 their	 ratio	 is	 a	 real	degree	of	 freedom.	 It	 is	 in	 fact	 the
only	 freedom	we	have.	To	see	how	choosing	 this	 ratio	 judiciously	can	have
the	 effect	 of	 setting	 B	 =	 0,	 consider	 the	 ratio	 of	 (dψ/dx)	 to	 ψ(x)	 of	 the
analytical	solution	at	some	point:

Suppose	we	demand	that	this	ratio	equal	κ:

This	 can	 happen	 only	 if	B	 =	 0.	Thus	 there	 is	 a	magic	 value	 of	 the	 ratio	 of
(dψ/dx)x0	to	ψ(x0)	(which	happens	to	be	κ	in	this	example,	independent	of	x0)
that	corresponds	to	B	=	0	in	the	analytical	solution.	This	means	that	if	we	try
to	integrate	the	square	well	problem	numerically	the	ratio	that	ensures	a	well-
behaved	solution	for	x	→	−∞	will	turn	out	to	be	κ	for	any	x0.
This	 strategy	works	 for	 the	numerical	 solution	 in	 the	general	 case.	There

too	 we	 will	 find	 by	 trial	 and	 error	 that	 there	 is	 always	 a	 particular	 (x0-
dependent)	 ratio	of	 (dψ/dx)x0	 to	ψ(x0)	 that	will	 kill	 the	growing	exponential
for	x	→	−∞.	This	 is	 reasonable:	we	are	 trying	 to	 impose	one	constraint	 (no
growing	 exponential	 as	 x	 →	 −∞)	 using	 one	 free	 parameter,	 the	 ratio	 of
(dψ/dx)x0	to	ψ(x0).
Having	made	this	choice	to	avert	the	blowup	for	x	→	−∞,	we	now	integrate

the	equation	toward	increasing	x.	We	have	to	live	with	what	we	get	since	the
only	freedom,	the	ratio	of	(dψ/dx)x0	to	ψ(x0),	has	been	used	up.	We	will	find
oscillations	inside	the	well	and	exponential	growth	for	x	 	L.	In	other	words,
the	exponentially	growing	term	(present	in	region	III	for	the	square	well)	will
now	raise	its	ugly	head	for	large	positive	x.	If,	however,	we	keep	varying	the
energy	E	 in	the	time-independent	Schrödinger	equation,	we	may	find	that	at
some	special	isolated	values	the	growing	exponential	will	be	absent	as	x	→	∞



as	well,	and	ψ(x	→	±∞)	will	die	exponentially.	These	will	be	the	allowed	or
quantized	values	of	the	bound-state	energies.
Although	 this	 problem	 of	 generic	 V(x)	 cannot	 be	 solved	 in	 closed	 form

analytically,	I	hope	the	preceding	analysis	has	persuaded	you	that	energy	has
to	be	quantized	for	bound	states.	For	those	who	insist	on	an	analytic	example,
I	will	provide	one	shortly.
But	first,	a	brief	comment	on	the	case	E	>	V0.	The	particle	is	now	free	to

escape	to	infinity	with	positive	kinetic	energy.	The	Schrödinger	equationwill
allow	oscillatory	(and	hence	bounded)	solutions	in	all	three	regions,	and	there
will	be	no	need	to	kill	one	coefficient	in	each	of	the	regions	I	and	III.	We	will
find	 a	 two-parameter	 family	 of	 solutions	 at	 every	 energy,	 though	 one
parameter	may	 be	 rescaled	 to	 1	without	 changing	 anything.	An	 example	 of
one	such	well	and	(the	real	part	of)	its	wave	function	are	given	in	Figure	22.6.
Notice	that	the	wave	number	k	 increases	inside	the	well	due	to	the	speeding
up	of	the	particle.

Figure	22.6			Real	part	of	a	wave	function	describing	an	unbound	state	(E	>	V0).	The	particle	has	a
larger	kinetic	energy	(and	smaller	λ)	inside	the	well.

22.2.2			The	box:	an	exact	solution
Let	 us	 pass	 to	 the	 box,	 which	 is	 the	 limit	 V0	 →	 ∞	 of	 the	 well.	 The
quantization	of	energy	 is	demonstrated	easily	 in	 this	 limit.	According	 to	 the
formula

the	exponential	tail	on	either	side	of	the	well	(Figure	22.3)	shrinks	to	zero	as
V0→	∞,	and	consequently	ψI(x)	is	non-zero	only	inside	the	box.
Since	V	=	0	inside,	we	just	do	what	we	did	with	the	free	particle	earlier.	I

repeat	it	here:



(Note	that	E	is	back	as	a	subscript,	there	being	only	one	region.)
Before	you	got	into	quantum	mechanics	you	might	have	said	(based	on	the

oscillator	 that	 satisfies	 a	 similar	 equation	with	 two	derivatives	 in	 t)	 that	 the
solutions	are	of	the	form

After	 entering	 the	 quantum	 world	 and	 seeing	 oscillating	 exponentials
everywhere	you	may	be	tempted	to	favor

where	C	and	D	are	some	constants.	Both	choices	are	equally	correct	because
we	 can	write	 the	 trigonometric	 functions	 in	 terms	 of	 complex	 exponentials
and	vice	versa.	For	a	given	A	and	B	you	could	get	the	corresponding	C	and	D
using	Euler’s	formula.
It	turns	out	better	to	use	Eqn.	22.62	with	sines	and	cosines	here.	Once	again

the	first	 impression	that	at	every	E	 there	are	 two	independent	solutions	with
coefficients	 A	 and	 B	 is	 an	 illusion,	 because	 only	 their	 ratio	 is	 of	 physical
importance.	With	 this	 one	 free	 parameter,	 we	 have	 to	 satisfy	 the	 boundary
conditions	 at	 the	 edges	 of	 the	 box.	Since	ψ	 vanishes	 identically	 outside	 the
box,	 the	 ψ	 inside	 must	 vanish	 at	 the	 two	 ends	 by	 continuity	 or	 single-
valuedness.
This	boundary	condition	ψ(ends)	=	0	is	insensitive	to	the	overall	scale	of	ψ.

If	a	given	ψ	does	not	vanish	at	the	ends,	neither	will	a	rescaled	one.	Therefore
we	have	 two	conditions	and	one	real	parameter,	which	means	solutions	will
exist	 only	 at	 special	 energies.	 (What	 about	 two	 more	 conditions	 due	 to
matching	 	at	the	ends?	The	answer	is	that	we	do	not	match	the	slopes	and
let	 	blow	up	at	x	=	0	and	x	=	L.	This	is	permitted	on	this	occasion	as	V	also
diverges	there.)
Let	us	see	how	the	boundary	conditions	restrict	A	and	B	and	also	determine

the	allowed	energies.	At	x	=	0	we	demand

which	means	B	=	0.	The	cosine	has	to	be	killed	since	it	refuses	to	vanish	at
the	left	end	of	the	box.	At	the	right	end	we	want



If	 we	 satisfy	 this	 by	 killing	 A,	 we	 would	 kill	 the	 entire	 solution.	 So	 we
demand

This	means	k	is	restricted	to	be

and	the	energy	is	quantized	to	be

The	corresponding	wave	functions	are

Since	the	average	value	of	sin2θ	over	half	a	period	is	 ,	the	wave	function	has
an	integral

which	means	the	normalized	wave	function	is

Look	 at	 the	 first	 few	 energies	 and	wave	 functions	 shown	 in	Figure	 22.7.
The	following	features	are	always	true.
•	The	levels	are	non-degenerate,	unlike	on	a	ring.
•	Every	ψ	has	a	kink	at	the	ends	and	so	 	diverges	there.	But	that	is	permissible	in	this	case	because
V	also	blows	up	at	the	walls.	This	is	why	we	did	not	match	the	slopes	at	the	ends	of	the	box.
•	The	solution	with	label	n	completes	n	half	cycles	over	the	length	of	the	box.	These	are	exactly	the
functions	that	arise	in	the	solution	to	the	wave	equation	of	a	string	clamped	at	the	two	ends.	These	are
called	its	normal	modes:	If	we	deform	the	string	to	take	one	of	these	shapes,	i.e.,	

	and	let	it	go,	every	part	will	go	up	and	down	in	step	at	frequency	ωn	=	knv,
where	v	is	the	wave	velocity:



Figure	22.7			First	three	energy	levels	and	wave	function	in	a	box.

We	will	encounter	a	similar	result	in	quantum	dynamics:	a	state	that	begins	as
ψE(x)	at	time	zero	will	preserve	its	form	and	simply	pick	up	a	time-dependent
phase	factor	in	front.
The	 fact	 that	 the	 quantization	 of	 energies	 has	 the	 same	 origin	 as	 the

classical	 quantization	 of	 the	 frequencies	 of	 a	 string	 is	 the	 reason	 why	 the
Schrödinger	 equationwas	 immediately	 embraced	 by	 the	 community	when	 it
was	announced.	One	suddenly	understood	why	energy	is	quantized:	by	trying
to	fit	some	number	of	half	wavelengths	into	the	box	one	is	fixing	the	allowed
wavelengths	or	wave	numbers	k	and	that	translates	into	allowed	energies.
•	The	allowed	values	of	n	do	not	include	0	or	negative	integers,	whereas	these	were	allowed	for	free
particles	on	a	ring.	Here	is	the	reason.	On	the	ring	we	had

If	we	set	n	=	0	above	we	get	ψ0	=	Aei·0	=	A,	whereas	if	we	set	n	=	0	in	Asin	
	the	corresponding	ψ0(x)	≡	0.	Likewise	when	we	change	n	to	−n

which	is	an	independent	function,	whereas	under	the	same	change



which	is	just	−1	times	Asin	 	and	hence	not	a	second,	independent	solution.
•	You	can	probe	the	energy	levels	by	shining	light	and	seeing	what	frequency	of	light	the	particle
absorbs	or	emits.	When	you	learn	more	quantum	mechanics,	you	will	see	that	the	wave	functions
control	the	rate	of	absorption	and	emission.
•	The	probability	density	in	one	of	these	states	is

•	The	ground	state	energy	is	 .	Why	is	it	not	zero?	If	you	were	in	a	prison	of	size	L	and
infinitely	high	walls	what	would	be	your	lowest	energy	state?	I	know	I	would	just	sit	on	the	floor	and
feel	sorry	for	myself.	But	such	a	state	of	zero	momentum	and	fixed	position	is	not	allowed	for	the
particle	by	the	uncertainty	principle.	Since	the	particle’s	position	is	known	to	be	within	the	box,	its
uncertainty	is	Δx	≃	L,	and	its	momentum	uncertainty	bounded	below	by	 ,	and	its	energy

should	be	of	order	 .	Indeed	the	ground	state	energy	is	of	order	ћ2/mL2	(dropping
factors	of	order	unity).	Furthermore	the	wave	function	sinπx/L	seems	to	be	an	admixture	of	

,	which	implies	 .	(I	say	“seems	to	be”	even	though	ψ1(x)	is	clearly	a	sum	of	exp	

,	because	the	wave	function	ψ1(x)	has	this	form	only	inside	the	box.	It	is	identically	zero

outside.	However,	such	a	function	can	be	expressed	as	a	superposition	of	states	of	definite
momentum	inside	and	outside	the	box.	These	momentum	functions,	non-zero	on	the	infinite	line,	can
have	a	continuous	range	of	allowed	p	unlike	those	on	a	finite	ring.	Their	normalization	is	very	tricky
due	to	the	infinite	volume.	However,	the	bottom	line	is	that	a	suitable	superposition	of	such
momentum	functions,	non-zero	on	all	of	space,	will	add	up	to	zero	outside	the	box	and	to	ψ1(x)
inside	the	box.	This	superposition	will	contain	not	just	the	two	momenta	 ,	but	a	continuum	of
momenta	given	by	a	distribution	centered	at	p	=	0	and	of	“width”	Δp	≃	ћ/L.)
Such	uncertainty	principle	arguments	abound	in	physics.	For	example,	to	estimate	the	lowest

kinetic	energy	of	a	proton	in	a	nucleus	whose	size	is	Δx	≃	10−15m	we	set	 	and	estimate	the
ground	state	kinetic	energy	to	be	of	order	 .

The	box	is	the	simplest	example	of	quantization	of	bound-state	energies	by
boundary	conditions.	It	is	the	caricature	for	atoms.	An	electron	remains	bound
to	an	atom	by	a	deep	1/r	potential	between	the	electron	and	the	nucleus.	We
need	 to	 solve	 the	 Schrödinger	 equation	 in	 three	 dimensions,	 which	 is	 an
obvious	generalization	of	the	one-dimensional	version.	But	it	is	much	harder
to	solve.	Even	Schrödinger	needed	help	from	a	mathematician.	The	solution
gives	 the	 energy	 levels,	 with	 the	 right	 degeneracies	 and	 the	 corresponding
wave	functions	ψE(r).	The	“size”	of	the	wave	functions	is	of	the	order	of	the
Bohr	radius



where	me	 is	 the	 electron	 mass.	 The	 estimated	 kinetic	 energy	 based	 on	 the
uncertainty	 principle	 (keeping	 track	 of	 just	 powers	 of	 ten)	 is	 around	

.	 Indeed	 the	 electron	 volt	 is	 a	 natural	 unit	 of	 energy	 for	 atomic
physics.
Bear	 in	 mind	 that	 to	 do	 the	 quantum	 mechanics	 you	 need	 to	 know	 the

classical	potential	energy	V(x),	which	you	need	to	stick	into	the	Schrödinger
equationto	 find	 the	allowed	energies	and	ψE’s.	 If	 the	 system	 is	an	oscillator
you	need	the	force	constant.	If	 it	 is	an	atom,	you	should	know	the	Coulomb
potential.	 If	 it	 is	 a	 nucleon	 in	 the	 nucleus,	 you	 need	 the	 nuclear	 potential,
which	is	usually	of	the	form	 ,	where	r0	≃	10−15m	=	1fermi.

22.3			Energy	measurement	in	the	box
It	has	taken	so	long	to	find	and	analyze	the	states	of	definite	energy	ψE(x)	≡
ψn(x)	 that	you	may	have	 forgotten	why	we	did	all	 this.	Let	me	 remind	you,
just	in	case.	The	goal	was	to	find	the	possible	outcomes	and	their	probabilities
when	 an	 energy	measurement	 was	 performed	 on	 some	 arbitrary	 state	ψ(x).
Now	we	return	to	the	recipe,	but	this	time	fully	armed	with	all	its	ingredients.
First	we	expand	ψ(x)	for	a	particle	in	the	box,	as	a	superposition

after	having	determined	the	A(n)	by

The	probability	for	finding	the	system	in	a	state	with	label	n	is

Here	is	a	somewhat	artificial	example	to	illustrate	this	formula.	Let	us	take
the	normalized	ψ	to	be



(Notice	that	the	ψ	we	chose	to	consider	also	vanishes	outside	the	box	just
like	the	ψn’s	did.	The	reason	is	 that	 if	 it	did	not,	 it	could	not	be	built	out	of
ψn’s.	 I	 asserted	 earlier	 that	 no	matter	what	variable	A	we	 choose,	 it	will	 be
possible	to	express	any	given	ψ	as	a	linear	superposition	of	the	ψα.	Actually
there	are	some	restrictions	on	 the	ψ’s	 for	which	 this	 is	 true.	One	of	 them	 is
that	they	cannot	wander	into	a	region	where	all	the	ψn	vanish.	Our	ψ	violates
this	condition	at	one	point	x	=	0.	It	should	therefore	be	seen	as	the	limit	of	a
family	of	functions	that	drop	more	and	more	precipitously	as	x	→	0	from	the
right.)
Continuing,

The	main	features	of	the	result	are	that	P(n)	falls	with	n	like	1/n2	and	that	it
vanishes	whenever	n	is	a	multiple	of	4.	(Try	to	see	why	by	sketching	the	first
four	wave	functions	on	top	of	ψ(x).)
As	a	concrete	example	of	Eqn.	22.88	let	us	compute	the	probability	that	the

particle	will	be	found	in	the	ground	state	n	=	1:



CHAPTER	23

Scattering	and	Dynamics

Consider	the	following	problem	in	classical	mechanics.	You	fire	a	particle	of
mass	 m	 and	 momentum	 p0	 from	 the	 far	 left	 on	 level	 ground.	 It	 then
encounters	 a	 potential	 hill	 that	 grows	 smoothly	 from	 0	 to	 a	 constant	V0	 as
shown	in	Figure	23.1.
What	happens	depends	on	the	energy	E	=	p02/2m	of	the	particle.	If	E	<	V0

(upper	part	of	figure),	the	particle	will	climb,	losing	kinetic	energy	K(x)	and
gaining	 potential	 energy	 V(x),	 keeping	 the	 total	 constant	 and	 equal	 to	 E,
shown	as	a	flat	line	in	the	figure.	It	will	stop	at	the	turning	point	xT	where	E	=
V(xT)	 and	 roll	 back	 to	 you.	 This	 is	 called	 reflection.	 If	 you	 crank	 up	 the
energy	and	reach	E	>	V0	(lower	half	of	figure),	the	projectile	will	go	over	the
top	and	exit	with	some	positive	kinetic	energy	K	=	E	−	V0	and	you	will	never
see	 it	 again.	 This	 is	 called	 transmission.	 Even	 if	 the	 hill	 is	 invisible	 from
where	you	shoot	the	projectile,	you	can	determine	V0:	it	is	the	lowest	launch
energy	E	at	which	the	projectile	fails	to	come	back.	Scattering	is	used	in	this
manner	to	probe	the	forces	between	subatomic	particles	by	shooting	them	at
each	other	and	seeing	how	they	scatter.

23.1			Quantum	scattering
Now	 let	 us	 explore	 the	 same	 scattering	process	 in	quantum	mechanics.	The
proper	 way	 to	 handle	 this	 is	 to	 employ	 the	 time-dependent	 Schrödinger
equation,	which	tells	us	how	any	initial	ψ(x,0)	evolves	with	time	into	ψ(x,	t).
Look	 at	 Figure	 23.2.	 The	 smooth	V(x)	 in	 the	 classical	 discussion	 has	 been
replaced	 by	 the	 step	 of	 height	 V0	 to	 facilitate	 computation.	 For	 ψ(x,0)	 we
choose	 ψin,	 a	 normalized	 wave	 function,	 called	 a	 wave	 packet.	 It	 is	 well
localized	 in	 space	 and	made	 up	 of	 states	 with	 positive	 values	 of	 p	 sharply
peaked	 around	 some	p0,	with	Δx	 and	Δp	 obeying	 the	 uncertainty	 principle.
Then	we	let	 the	 time-dependent	Schrödinger	equationtake	over	and	compute
its	 fate	 for	 large	 future	 times.	 (See	 this	 calculation	 as	 a	 black	 box	 and	 just
consider	 the	 results.)	What	 happens	 depends	 on	 the	 average	 energy	 of	 the
incident	packet.



Figure	23.1			Classical	scattering	off	a	potential	that	rises	smoothly	from	0	at	x	→	−∞	to	V0	as	x	→	∞.	If
E	>	V0,	transmission	is	guaranteed	and	if	E	<	V0,	reflection	is	guaranteed.

Figure	23.2			Time-dependent	view	of	scattering	for	the	case	E	>	V0.	(The	smooth	V(x)	in	the	classical
discussion	has	been	replaced	by	the	step	to	facilitate	computation.)	A	wave	packet	ψin	of	mean
momentum	p0	and	mean	energy	greater	than	V0	is	incident	from	the	left	at	t	=	0.	After	a	long	time	as	t
→	∞,	it	turns	into	two	packets:	a	reflected	one	ψR	with	mean	momentum	−	p0	and	a	transmitted	one	ψT
with	smaller	momentum	p′0.	Assuming	the	incident	packet	is	normalized	to	unity,	the	square	integrals
of	the	reflected	and	transmitted	packets	give	the	reflection	and	transmission	coefficients	R	and	T.

23.1.1			Scattering	for	E	>	V0
I	 illustrate	 in	 Figure	 23.3	 the	 case	 where	 the	 average	 incident	 energy	

,	which	is	what	interests	us	most.	(The	constant	energy	line
with	E	>	V0	is	not	shown.)	By	the	time	t	→	∞,	the	incident	packet	would	have
split	into	the	reflected	packet	ψR(x,	t),	which	moves	in	region	I	toward	x	=	−	∞
with	 average	 momentum	 −	 p0,	 and	 the	 transmitted	 packet	 ψT(x,	 t),	 which
moves	 in	 region	 II	 toward	 x	 =	 ∞with	 average	 momentum	 p′0	 =	 ћk	 where
(ћk′)2/2m	 =	E	 −	V0.	 By	 the	 basic	 postulate	 on	 probability	 density,	 the	 total
areas	 under	 |ψR(x,	 t	 →	 ∞)|2	 and	 |ψT	 (x,	 t	 →	 ∞)|2,	 respectively,	 give	 the
probability	R	 that	 the	 particle	 is	 at	 the	 far	 left	 asymptotically	 and	 thus	 has
been	 reflected,	 and	 the	 probability	T	 that	 it	 is	 at	 the	 far	 right	 and	 has	 been
transmitted.



If	we	send	 in	a	very	 large	number	of	particles	all	 in	 the	same	state	ψin,	a
fraction	R	will	get	reflected	and	a	fraction	T	will	get	transmitted.	This	is	what
happens	when	an	accelerator	shoots	out	a	beam	of	projectiles	at	some	target
and	the	scattered	particles	are	picked	up	by	many	detectors.

Figure	23.3			Time-independent	quantum	treatment	of	a	particle	that	approaches	a	step	potential	with
energy	 .	The	incident	and	reflected	waves	coexist	to	the	left	of	the	barrier	as	waves	of
opposite	momenta	 	and	the	transmitted	wave	becomes	a	wave	with	momentum	

.	Shown	are	typical	values	of	kinetic	energy	K(x),	potential	energy	V(x),	and	total
energy	E	>	V0.

I	merely	 describe	 this	 involved	 computation	 and	 skip	 the	 details	 because
we	have	not	yet	studied	the	time-dependent	Schrödinger	equationand	because
the	 final	 answer	 can	 be	 found	 using	 just	 the	 time-independent	 Schrödinger
equationin	a	certain	limit.
That	limit	is	approached	by	making	the	incident	packet	broader	and	broader

in	x	and	sharper	and	sharper	around	the	mean	momentum	p0	=	ћk.	The	same
broadening	 happens	 to	 the	 transmitted	 and	 reflected	 packets.	 At	 this	 point
they	 are	 no	 longer	 packets	 but	 extended	waves.	 The	 incident	 and	 reflected
waves	coexist	to	the	left	of	the	barrier	as	waves	of	opposite	momenta	±p0	and
the	transmitted	wave	becomes	a	wave	with	momentum	 .	The
reflection	and	transmission	coefficients	R	and	T	are	fully	determined	by	p0	=
ћk,	 the	 sharply	 defined	 initial	 momentum	 and	V0.	 In	 this	 limit	 there	 is	 no
sense	of	time,	and	the	values	of	R	and	T	may	be	found	in	terms	of	p0	and	V0
by	 solving	 the	 time-independent	 Schrödinger	 equationwith	 appropriate
boundary	conditions.
Here	 are	 the	 details	 of	 the	 time-independent	 approach	 to	 scattering.	 The

treatment	of	familiar	material	will	be	brief.	We	just	have	two	regions	I	and	II
and	in	each	of	them	we	may	write	as	before



Note	that	k′	is	smaller	than	k	because	of	the	loss	of	momentum	in	climbing
up	the	step.
Since	 there	 is	 no	 exponential	 blowup	 as	 |x|	→	∞,	 we	may	 keep	 all	 four

coefficients,	which	allow	for	incoming	(toward	the	step)	and	outgoing	(away
from	 the	 step)	 waves	 in	 both	 regions.	 However,	 if	 we	 are	 to	 describe	 the
scattering	process	under	discussion,	we	want	an	incoming	wave	only	in	region
I,	producing	a	reflected	wave	in	region	I	and	a	transmitted	wave	in	region	II.
So	we	choose	D	=	0	to	kill	the	incoming	wave	in	region	II.
You	may	have	noticed	 that	 the	momentum	wave	 functions	have	not	been

normalized	by	the	usual	factor	 	because	we	are	in	infinite	volume	with	L
=	∞.	We	cannot	put	the	system	on	a	ring	either	because	we	do	not	want	the
transmitted	wave	to	come	back	at	us	from	the	left!	Fortunately	we	can	find	R
and	T	using	only	the	ratios	of	A,	B,	and	C,	leaving	the	overall	normalization
unspecified.	 It	will	 not	 enter	R	 and	T.	 (Although	 in	 this	 example	we	 could
finesse	the	question	of	normalization	in	the	infinite	volume,	you	should	know
that	there	is	a	subtle	way	to	normalize	momentum	states	in	infinite	volume.	It
works	only	because	their	square	integral	diverges	linearly	with	the	length	L	of
the	universe,	as	compared	 to	wave	functions	whose	square	 integrals	diverge
exponentially	with	L.	The	latter	are	simply	disallowed.)
Since	the	overall	scale	of	the	wave	function	is	arbitrary,	let	us	choose	A	=

1.	The	coefficients	B	and	C	must	ensure	that	ψ	and	 	are	continuous	at	x
=	0:

The	solution	is

How	 should	we	 define	R	 and	T	 now	 that	 there	 is	 no	 sense	 of	 time?	We
cannot	define	them	in	terms	of	the	ratios	of	areas	under	these	wave	functions



since	all	such	areas	are	infinite.	So	let	us	turn	to	basics	and	ask	how	we	would
define	R	 and	T	 if	we	had	many	projectiles	at	our	disposal.	We	would	 fire	a
large	 number,	 say	 10000,	 at	 the	 step,	 and	 if	 6000	 come	 back	 and	 4000	 get
through	we	would	define

(We	may	have	to	increase	all	the	numbers	till	the	ratios	R	and	T	stabilize.)
Look	 at	 the	 incoming,	 reflected	 and	 transmitted	 wave	 functions	 with

amplitudes	1,	B	and	C.	If	there	are	a	large	number	of	projectiles,	all	given	by
the	 same	 wave	 functions,	 their	 number	 density	 will	 be	 proportional	 to	 the
probability	density.	The	particles	will	have	a	velocity	 	in	region	I
and	 	 in	region	II.	There	 is	a	steady	stream	of	particles	coming	 in	and
getting	reflected	or	transmitted.	So	we	cannot	work	with	the	total	number	of
particles	 (infinite)	 and	 must	 deal	 with	 the	 number	 arriving	 and	 getting
scattered	or	reflected	per	second.	That	is,	we	must	work	with	the	currents.
Recall	from	our	study	of	electric	currents	that

where	j	is	the	current	density,	ρ	is	the	particle	density,	and	v	is	the	velocity.	In
one	dimension	the	current	(particles	crossing	some	checkpoint	per	second)	is
the	same	as	 the	current	density	(no	area	normal	 to	 the	current	 to	divide	by).
So

Similarly

The	 crucial	 factor	 	 in	 the	 transmitted	 current	 ensures	 that	we	 take
into	account	not	only	the	density	of	particles	but	their	velocity	in	computing
their	arrival	rate	at	the	far	right.
So	finally	we	have



Observe	 that	R	 +	 T	 =	 1,	 expressing	 the	 conservation	 of	 probability.	 For	 a
steady	beam	of	projectiles,	this	means	the	number	arriving	per	second	equals
the	number	reflected	per	second	plus	the	number	transmitted	per	second.
Had	 we	 used	 the	 time-dependent	 Schrödinger	 equationwe	 would	 have

arrived	at	exactly	 these	values	of	R	and	T	 in	 the	 limit	 in	which	 the	 incident
packet	had	a	sharply	defined	momentum	p0.
Now	it	is	time	to	analyze	the	results.
•	If	V0	=	0,	i.e.,	there	is	no	step,	we	expect	no	reflection	and	we	do	indeed	find	R	=	0.

•	Even	when	the	incident	energy	exceeds	the	step	height,	the	particle	has	a	non-zero	probability	to
bounce	back.	This	happens	in	quantum	theory	because	the	particle	is	controlled	by	a	wave	and	waves
undergo	reflection	when	there	is	a	change	of	medium,	or,	in	this	case,	a	change	in	potential	from	0	to
V0.

•	If	E	→	∞,	the	potential	energy	is	negligible	compared	to	kinetic	energy,	k′/k→1,	and	T	→	1,	i.e.,
there	is	perfect	transmission	even	in	quantum	theory.

23.1.2			Scattering	for	E	<	V0
The	wave	function	that	behaves	well	at	spatial	infinity	is

as	indicated	in	Figure	23.4.

Figure	23.4			Time-independent	quantum	treatment	of	a	particle	that	approaches	a	step	potential	with
energy	 .	The	incident	and	reflected	waves	√coexist	to	the	left	of	the	barrier	as	waves	of
opposite	momenta	 	and	the	transmitted	wave	is	exponentially	damped	with	

.	Shown	are	typical	values	of	kinetic	energy	K(x)	and	potential	V(x)	energy.

The	matching	conditions	are



with	the	solution

The	reflected	current	has	a	value

Thus	 when	 the	 step	 is	 taller	 than	 the	 incident	 energy,	 there	 is	 complete
reflection	of	the	incident	current:	R	=	1.	But	if	R	=	1,	what	does	the	non-zero
|C|2	do	to	the	condition	R	+	T	=	1?	The	result	|C|2	>	0	only	means	that	there	is
an	exponential	tail	of	probability	in	the	forbidden	region,	and	does	not	imply
a	 transmitted	 current.	 (The	 formula	 j	 =	P(x)v	 does	 not	 apply	 here	 since	 the
wave	function	does	not	describe	particles	moving	with	a	real	momentum.	A
more	advanced	definition	of	current	will	yield	a	vanishing	current	in	region	II
and,	in	fact,	whenever	ψ	is	real.)

23.2			Tunneling
Suppose	the	barrier,	instead	of	going	on	forever	at	the	value	V0,	dropped	to	0
beyond	some	point,	as	in	region	III	of	Figure	23.5.	In	region	II	both	e±κx	are
allowed,	but	the	ultimate	amplitude	for	transmission	through	the	barrier	ends
up	being	exponentially	small	if	we	match	ψ	and	dψ/dx	at	the	two	interfaces.
The	wave	function	will	always	“leak	out”	into	region	III	as	long	as	the	height
and	 width	 of	 the	 barrier	 are	 finite.	 Once	 the	 particle	 leaks	 to	 the	 allowed
region,	it	need	not	hide;	it	can	go	with	a	real	momentum,	equal	in	fact	to	the
incident	momentum	 (assuming	V	 is	 the	 same	 on	 either	 side	 of	 the	 barrier).
There	 will	 also	 be	 a	 non-zero	 current	 flowing	 to	 the	 right.	 This	 leakage	 is
called	barrier	penetration.	It	means	that	if	you	send	a	particle	with	an	energy
not	enough	to	overcome	the	barrier	in	classical



Figure	23.5			A	particle	coming	in	from	the	left	with	energy	less	than	the	barrier	height	can	manage	to
tunnel	to	the	other	side	because	ψ	is	non-zero	in	the	barrier.	Once	it	gets	to	the	other	side	the	wave
function	is	once	again	oscillatory.

Figure	23.6			Inside	the	potential	well	created	by	the	other	nucleons,	the	alpha	has	an	oscillating	wave
function.	It	tunnels	to	r1	(with	exponential	suppression)	and	escapes	to	infinity	(again	with	an
oscillating	ψ).

mechanics,	quantum	mechanics	gives	it	a	small	chance	of	being	found	on	the
other	side.
So	no	barrier	is	completely	safe	in	quantum	theory.	Here	is	a	final	survival

tip.	You	are	in	a	prison	with	walls	of	finite	height	and	thickness.	What’s	your
strategy?	I	say	go	ram	yourself	against	the	walls	as	often	as	you	can,	because
there	is	a	small	probability	that	you	will	suddenly	find	yourself	on	the	other
side.
This	is	what	happens	in	alpha	decay.	The	alpha	particle,	which	is	just	the

helium	 nucleus,	 resides	 inside	 a	 big	 radioactive	 nucleus.	 The	 attraction
between	the	alpha	and	the	rest	of	the	nucleons	creates	an	attractive	well	V(r)
that	keeps	the	alpha	inside	for	energies	below	the	barrier	height,	as	shown	in
Figure	23.6.	But	the	barrier	tapers	off	as	we	move	away	from	the	nucleus	and
at	r1	 it	falls	below	the	energy	E	of	the	alpha.	The	alpha	can	then	tunnel	and
come	 out	 as	 a	 legitimate	 free	 particle	 beyond	 r1.	 The	 alpha	 particle	 does
exactly	what	I	told	you	to	do.	It	goes	rattling	back	and	forth	inside	the	nucleus
and	once	in	a	while	it	manages	to	penetrate	the	barrier	and	come	out.	This	is
the	alpha	decay	of	the	nucleus.
The	alpha	pounds	on	the	walls	with	a	very	high	frequency	f,	which	we	may

estimate	as	follows.	The	nucleus	has	a	size	Δ,	the	momentum	of	the	alpha	is
of	the	order	ћ/Δ,	its	velocity	is	of	the	order	ћ/(mΔ),	and	so	it	bounces	back	and



forth	with	a	frequency

dropping	all	factors	of	order	unity.	For	ћ	≃	10−34J	·	s,	m	≃	10−27	kg,	and	Δ	≃
10−15m	we	 find	 f	≃	 1023Hz.	 (A	better	 estimate	 is	1021Hz.)	That	 is	 the	good
news.	 The	 bad	 news	 is	 that	 the	 tunneling	 probability	 per	 attempt	 is
exponentially	 small,	 say	≃	 10−38.	 It	 could	 take	 about	 a	 billion	 years	 for	 a
successful	 escape.	 But	 you	 do	 not	 have	 to	 wait	 that	 long	 for	 your	 Geiger
counter	 to	 click	 because	 a	 very	 large	 number	 of	 nuclei	 are	 simultaneously
trying	 to	 decay.	 By	 comparison,	 your	 prison	 escape	 is	 even	 less	 likely	 to
succeed,	but	if	you	have	given	up	on	your	lawyer	or	a	presidential	pardon,	it
may	be	your	best	bet.

23.3			Quantum	dynamics
You	want	to	know	the	theory	of	everything?	You’re	almost	there,	because	I’m
going	to	reveal	to	you	the	law	of	(non-relativistic)	quantum	dynamics.	It	tells
you	how	things	change	with	time.	It	is	the	analog	of	F	=	ma.	It	is	called	the
time-dependent	Schrödinger	equation,	or	simply	the	Schrödinger	equation.	It
contains	 Newton’s	 laws	 as	 part	 of	 it,	 because	 if	 you	 can	 do	 the	 quantum
theory,	you	can	always	find	hidden	 in	 it	 the	classical	 theory.	 It	describes	an
astounding	 number	 of	 phenomena	 around	 you	 on	 this	 planet	 and	 in	 the
cosmos.	There	are	of	course	some	phenomena	it	cannot	describe,	but	it	goes	a
long	long	way.
We	 have	 seen	 that	 the	 wave	 function	 ψ(x)	 is	 the	 analog	 of	 (x,	 p)	 in

Newtonian	mechanics.	 It	 contains	 the	maximum	possible	 information	 about
the	 particle.	Of	 course,	 extracting	 this	 information	 is	 a	 lot	more	 difficult	 in
quantum	theory	than	in	classical	theory.	Classically,	if	you	were	given	(x,	p)
and	 wanted	 to	 know	 what	 you	 would	 get	 if	 you	 measured	 any	 dynamical
variable,	 some	 function	 of	 coordinates	 and	 momenta,	 like	 the	 angular
momentum	 L	 =	 r	 ×	 p,	 you	 just	 entered	 the	 values	 of	 (x,	 p)	 (or	 its
generalization	 to	 three	 dimensions)	 in	 the	 expression	 for	 the	 variable.	 The
answer	 to	 the	 corresponding	question	 in	 quantum	mechanics	 is	 so	 long	 and
tedious	 you	will	wish	 you	 had	 not	 asked:	 express	 the	 given	ψ	 as	 a	 sum	 of
functions	ψα(x)	with	coefficients	A(α)	and	so	forth.	Even	with	all	this	you	just
get	the	probabilities	for	various	outcomes.	Let	us	not	go	over	all	that	again.
What	we	want	 to	 do	 is	 consider	 the	 dynamics.	How	does	ψ	 change	with

time?	If	it	has	a	value	ψ(x,	0)	at	time	t	=	0,	what	is	ψ(x,	t),	at	a	later	time	t?
What	is	the	analog	of	F	=	ma?
I	am	just	going	to	write	it	down:	the	evolution	of	ψ(x,	t)	is	determined	by



the	time-dependent	Schrödinger	equation

We	will	restrict	ourselves	to	the	case	of	time-independent	potentials	V(x,	t)
=	V(x),	even	though	the	time-dependent	Schrödinger	equation	is	valid	for	that
case	as	well.
Before	looking	at	solutions	to	the	equation	let	us	explore	some	obvious	and

striking	features.
The	first	is	that	 	enters	the	very	equation	of	motion.	When	we	used

complex	 numbers	 as	 an	 artifact	 for	 solving	 problems	 in	 circuits	 or
oscillations,	it	was	a	matter	of	convenience.	The	quantity	of	interest	to	us	was
always	real,	whether	it	was	the	coordinate	of	an	oscillator	or	the	current	in	a
circuit.	But	the	i	here	is	deeply	embedded,	right	into	the	equation	of	motion.
We	 have	 already	 seen	 that	 without	 it	 we	 could	 not	 write	 down	 a	 state	 of
definite	momentum	 .
The	second	is	that	unlike	Newton’s	laws	for	x(t),	this	is	first	order	in	time.

This	means	that	as	our	initial	condition	we	need	just	ψ(x,	0).	The	Schrödinger
equationwill	 tell	 us	 what	 ∂ψ/∂t	 is,	 just	 like	 Newton’s	 law	 determines	 the
acceleration	in	terms	of	the	force.
The	ψ(x,	t)	in	Eqn.	23.22	is	not	anything	particular:	every	ψ(x,	t)	obeys	this

equation	just	like	every	classical	trajectory	x(t)	obeys	Newton’s	second	law.
Do	 not	 get	 confused	 between	 this	 equation	 and	 the	 time-independent

Schrödinger	equation	you	saw	in	the	last	chapter:

In	 the	 above	 there	 is	 no	 time	 and	ψE(x)	 are	 not	 generic,	 but	 special	 wave
functions	corresponding	 to	 states	of	definite	energy.	However,	 this	 equation
will	reenter	the	discussion	very	soon.
How	 can	 we	 calculate	 the	 future,	 given	 the	 present	 using	 this	 equation?

How	do	we	solve	this	equation?	I’m	going	to	do	it	at	different	levels.
1.	Just	write	down	a	particularly	simple	solution	and	verify	that	it	satisfies	the	equation.	Understand	a
remarkable	property	of	that	solution.
2.	Understand	how	that	solution	could	be	derived.	This	is	optional.
3.	Show	how	to	find	the	future	wave	function	ψ(x,	t)	for	any	given	initial	state	ψ(x,	0)	building	on	the
simple	solution.

23.3.1			A	solution	of	the	time-dependent	Schrödinger	equation



Provided	V	 is	 time-independent,	 i.e.,	V	=	V(x),	 the	following	is	a	solution	to
the	time-dependent	Schrödinger	equation:

On	 the	 left-hand	 side	 is	 a	 particular	 solution	 to	 the	 time-dependent
Schrödinger	equation,	which	carries	the	label	E	because	it	 is	built	out	of	the
solution	ψE(x)	 of	 the	 time-independent	 Schrödinger	 equation.	 Let	 us	 verify
the	claim,	starting	with	the	left-hand	side:

I	have	drawn	on	the	fact	that	the	partial	time	derivative	acts	only	on	the	
part	of	ψE(x,	t)	and	does	so	as	the	ordinary	or	total	derivative.
Now	for	the	right-hand	side:

The	 partial	 x-derivative	 acts	 only	 on	 the	 ψE(x)	 part	 of	 ψE(x,	 t)	 (as	 a	 total
derivative)	 and	 that	 along	 with	 V(x)ψE(x)	 gives	 EψE(x)	 because	 ψE(x)	 is	 a
solution	 to	 the	 time-independent	 Schrödinger	 equation	 23.23.	 From	 Eqns.
23.28	and	23.31	we	see	the	time-dependent	Schrödinger	equation	is	satisfied.



23.3.2			Derivation	of	the	particular	solution	ψE(x,	t)

Suppose	we	say,	“Look,	we	don’t	know	if	we	can	find	every	possible	solution
to	 the	 time-dependent	Schrödinger	 equation.	So	 let’s	begin	with	 the	modest
goal	of	looking	for	solutions	of	the	product	form

where	X(x)	is	a	function	only	of	x	and	T(t)	is	a	function	only	of	t.”	These	are
by	no	means	the	only	types	of	solutions.	(We	will	see	examples	that	are	not.)
But	right	now	we	are	desperate	for	any	solution,	even	of	the	restricted	form,
because	such	a	 tactic	has	proven	 fruitful	 in	previous	encounters	with	partial
differential	equations.	To	see	if	even	this	modest	goal	can	be	reached,	we	take
the	assumed	form	and	stick	it	into	the	equation.	Once	again	we	note	that	the	t-
derivative	acts	only	on	T(t)	and	 the	x-derivative	only	on	X(x).	Consequently
the	time-dependent	Schrödinger	equation	tells	us	that	our	product	form	must
obey

We	now	divide	both	sides	by	X(x)T(t)	to	arrive	at

Only	 the	 total	derivatives	with	respect	 to	 t	and	x	appear,	because	 the	partial
derivatives	act	only	on	functions	of	the	corresponding	variable.
Look	at	Eqn.	23.34.	On	the	left-hand	side	is	a	function	only	of	t	and	on	the

right-hand	side	is	a	function	only	of	x.	(This	is	why	we	required	that	V	have
no	time-dependence.)	Can	the	left-hand	side	vary	with	t?	It	cannot,	because	if
it	did,	 the	 right-hand	side,	which	has	no	 t	 in	 it,	cannot	keep	up.	So	 the	 left-
hand	side	must	be	t-independent.	The	right-hand	side	cannot	depend	on	x	for
the	same	reason.	Both	sides	must	equal	a	t	and	x-independent	constant,	which
I	will	call	E	for	a	good	reason:

The	 original	 partial	 differential	 equation	 has	 broken	 down	 into	 two



ordinary	differential	equations	for	the	product	solution:

The	solution	to	the	first	equation	is	obviously

and	X(x),	 the	 solution	 to	 the	 second,	 is	 the	 function	 we	 have	 been	 calling
ψE(x)!	Thus	the	product	solution	is

In	 other	words,	 a	 product	 solution	 exists	 only	 if	 the	 time-dependent	 part
T(t)	is	the	exponential	 	and	the	x-dependent	part	X(x)	is	a	solution	to	the
time-independent	 Schrödinger	 equation	 corresponding	 to	 the	 energy	E.	 The
allowed	solutions	of	the	product	form	will	exist	only	for	the	allowed	energies
E.
This	completes	the	derivation	of	the	product	solution.

23.4			Special	properties	of	the	product	solution
Look	at	the	product	solution	in	Eqn.	23.39.	If	we	set	t	=	0	on	both	sides	we
find

Thus	 the	 product	 solution	 begins	 as	 ψE(x)	 and	 as	 time	 goes	 by,	 all	 that
happens	is	that	it	picks	up	a	phase	factor	 	and	turns	into

The	 x-dependence	 does	 not	 change	 with	 time	 at	 all!	 Recall	 my	 earlier
analogy	 to	a	 string.	 If	you	pluck	a	 string	 (clamped	at	x	=	0	and	x	=	L)	 into
some	 arbitrary	 shape	 ψ(x,	 0)	 and	 let	 it	 go,	 it	 will	 wiggle	 and	 jiggle	 in	 a
complicated	 fashion	 into	 some	 ψ(x,	 t)	 dictated	 by	 the	 wave	 equation.	 If,
however,	you	started	it	out	in	the	state



it	will	evolve	into

As	time	goes	by,	the	profile	of	the	string	will	change	only	in	its	overall	scale
by	the	cosine	factor.	Every	part	will	rise	and	fall	in	step.
As	in	the	case	of	the	string,	in	the	product	solution	of	Eqn.	23.41	the	ψ	at

every	x	oscillates	 the	same	way,	as	 .	But	unlike	in	the	case	of	 the	string
where	 the	 cosine	 factor	 changes	 the	 appearance	 of	 the	 string	 with	 time,
nothing	measurable	changes	with	 time	 in	ψn(x,	 t).	Consider	 for	example	 the
particle	that	starts	out	in	state	n	of	the	box.	It	evolves	into

The	probability	density	at	time	t	is

Thus	 the	odds	of	 finding	 the	particle	 at	 some	x	 does	not	 change	with	 time!
The	 oscillating	 complex	 exponential	 plays	 a	 role	 in	 the	 time-dependent
Schrödinger	 equation	 when	 	 acts	 on	 it,	 but	 drops	 out	 of	 |ψ|2.	 It’s	 very
interesting.	The	wave	 function	depends	on	 time	and	yet	 in	a	practical	 sense



the	 physical	 properties	 don’t	 depend	 on	 time.	 This	 is	 analogous	 to	 what
happens	in	states	of	definite	momentum:	they	oscillate	as	eipx/ћ	(which	defines
a	de	Broglie	wavelength	λ	=	2πћ/p)	but	the	probability	density	P(x)	is	flat.
If	a	system	is	found	to	be	in	a	state	ψE(x)	after	an	energy	measurement,	it

stays	that	way	not	just	for	an	infinitesimal	time	but	forever.	The	phase	factor
e−iEt/ћ	does	not	affect	P(x,	t).
Next	consider	P(p,	 t),	 the	probability	of	 finding	a	momentum	p	 in	a	state

that	starts	out	as	a	state	of	definite	energy	ψE(x).	If	at	t	=	0	we	expand

then	at	a	later	time

This	means	that	as	time	evolves	each	initial	A(p)	picks	up	a	phase:

and	the	probability	for	measuring	a	value	p	does	not	change	with	time:

The	same	goes	for	all	observables:	the	probabilities	do	not	change	with	time.
For	this	reason	the	product	states	are	called	stationary	states.	The	little	clouds
you	see	in	textbooks	describing	the	electronic	states	of	the	atom	correspond	to
the	 time-independent	distributions	Pn(r)	 in	some	definite-energy	state	of	 the
atom	labeled	n.
If	an	electron	in	such	an	atomic	state	does	not	evolve	with	time,	how	does

it	jump	from	one	state	to	another	and	absorb	or	emit	a	photon?	The	answer	is



that	if	the	atom	were	truly	isolated	it	would	remain	in	the	state	ψn	forever.	If,
however,	we	shine	light	on	it,	we	are	applying	new	forces	on	the	electron.	The
vector	and	 scalar	potentials	ϕ	 and	A	 describing	 the	E	 and	B	of	 the	 incident
electromagnetic	wave	will	enter	the	time-dependent	Schrödinger	equation	for
as	long	as	the	radiation	is	turned	on.	During	this	time	the	initial	state	with	a
definite	n	can	evolve	into	a	sum	over	many	such	states.	At	the	end,	we	may	be
left	with	the	atom	in	a	different	state	and	the	electromagnetic	field	with	one
more	or	one	less	photon.
Actually	even	an	atom	with	no	externally	applied	electromagnetic	field,	in

a	 vacuum,	 can	 jump	 to	 a	 lower	 level	 by	 emitting	 a	 photon.	 This	 is	 called
spontaneous	 emission.	 You	 leave	 an	 isolated	 hydrogen	 atom	 in	 the	 first
excited	state,	come	back	a	short	time	later,	and	find	the	fellow	has	come	down
to	 the	 ground	 state.	 And	 you	 say,	 “Look,	 I	 didn’t	 turn	 on	 any	 electric	 or
magnetic	field:	E	=	0,	B	=	0.	What	made	the	atom	come	down?”	Where	is	the
field?	It	 turns	out	 that	 the	state	E	=	0,	B	=	0	 is	 like	a	state	x	=	p	=	0	of	 the
oscillator,	sitting	still	at	the	bottom	of	the	potential	well.	We	know	that’s	not
allowed	in	quantum	mechanics.	You	cannot	have	x	=	0,	p	=	0.	It	turns	out	in
the	 quantum	 theory	 of	 the	 electromagnetic	 field,	E	 and	B	 are	 like	 x	 and	p.
That	means	the	state	of	definite	E	cannot	be	a	state	of	definite	B.	In	particular
E	 =	 0,	 B	 =	 0	 is	 impossible.	 It	 looks	 that	 way	 in	 the	 macroscopic	 world,
because	 the	 fluctuations	 in	E	 and	B	 are	 very	 small.	 Therefore,	 just	 as	 the
oscillator	 in	 its	 lowest	 energy	 state	 has	 got	 some	 probability	 to	 be	 jiggling
back	 and	 forth	 in	 x	 and	 p,	 the	 vacuum	 has	 its	 own	 vacuum	 fluctuations	 in
which	we	may	find	E	≠	0	and	B	≠	0.	These	fluctuations	can	tickle	the	atom
and	 cause	 the	 “spontaneous”	 emission.	 There	 can	 be	 no	 spontaneous
absorption,	because	the	field	is	in	its	lowest	energy	state	and	has	no	energy	to
give	the	atom.	I	promised	you	the	theory	of	everything,	but	that	interlude	was
the	theory	of	nothing,	the	vacuum.

23.5			General	solution	for	time	evolution
The	product	solutions	are	very	special.	In	general	things	do	change	with	time
because	the	solutions	are	generally	not	of	the	product	form	X(x)T(t).	It	is	very
easy	 and	 instructive	 to	 manufacture	 a	 non-product	 solution.	 If	ψ1(x,	 t)	 and
ψ2(x,	t)	are	two	solutions	to	the	time-dependent	Schrödinger	equation,	then	so
is	a	linear	combination

because	 the	 time-dependent	 Schrödinger	 equation	 is	 linear.	 Since	 the	 two



exponentials	 are	 different,	 we	 cannot	 pull	 out	 a	 common	 time-dependent
factor	 and	 the	 solution	 above	 is	 not	 of	 the	 product	 form	 X(x)T(t).	 One
consequence	 is	 that	 measurable	 quantities	 like	 P(x,	 t)	 will	 become	 time-
dependent.
Let	us	take	as	an	example	the	superposition	of	the	two	lowest	energy	states

in	the	box:

In	 this	state	energy	measurement	can	give	only	 two	answers,	E1	or	E2,	with
absolute	probabilities:

Suppose	we	had	chosen	A(1)	=	3	and	A(2)	=	4.	Then

It	is	wiser	in	this	case	with	just	two	A’s	to	get	the	absolute	probabilities	from
the	relative	ones	by	dividing	by	|A(1)|2	+	|A(2)|2	=	25	instead	of	normalizing
the	initial	wave	function	ψ1+2(x)	by	computing	its	square	integral.	You	might
want	to	verify	that,	if	you	did	this,	the	rescaling	factor	for	ψ1+2(x)	would	be	 .
Although	 the	odds	 for	 different	 energies	 do	not	 change	with	 time,	 this	 is

not	so	for	other	observables.	The	probability	density	for	position	is



The	probability	 density	P(x,	 t)	 is	 evidently	 time-dependent.	 For	 example,	 if
A(1)	=	A(2)	=	1,

Other	densities	like	P(p,	t)	also	vary	with	time.
Whereas	 in	 a	 state	 of	 definite	 energy	 nothing	 changes	with	 time,	 in	 this

state,	 made	 of	 two	 different	 energies,	 P(x,	 t)	 changes	 with	 time.	 To	 see
appreciable	 change	we	must	wait	 at	 least	 a	 time	Δt	 comparable	 to	 the	 time
period	T	of	the	oscillating	cosine:

where	factors	like	2	and	π	have	been	dropped	and	ΔE	=	E2	−	E1	is	the	spread
in	the	energy	of	the	state.
This	 is	 a	 special	 case	 of	 the	 energy-time	 uncertainty	 principle	 to	 be



discussed	 in	 the	next	chapter.	 It	 states	 that	a	system	with	a	spread	ΔE	 in	 its
energy	needs	a	minimum	time	Δt	 	ћ/ΔE	to	show	appreciable	change.
Let	us	generalize	to	a	sum	over	all	energy	states:

which	also	solves	the	time-dependent	Schrödinger	equation	by	linearity.	What
sort	of	initial	state	did	this	evolve	from?	Setting	t	=	0	we	find

Thus	we	can	predict	the	future	of	any	initial	state	that	may	be	written	in	this
form.	This	is,	however,	no	restriction,	since	the	general	mathematical	theorem
alluded	to	earlier	assures	us	that	any	function	ψ(x,	0)	may	be	expanded	in	this
form	with	coefficients

(There	is	no	need	to	conjugate	ψn(x)	because	it	is	real.)
We	have	 therefore	 the	 following	 recipe	 for	 finding	 the	 state	ψ(x,	 t)	given

the	arbitrary	initial	state	ψ(x,	0)	in	any	time-independent	potential	V(x):
1.	Express	the	initial	state	as

with	coefficients

2.	The	state	at	later	times	is	obtained	by	appending	a	factor	e−iEt/ћ	to	every	A(E):

While	the	mathematical	theorems	assure	us	that	ψ(x,	0)	may	be	expanded	in
terms	of	states	in	which	any	other	observable	A	has	a	definite	value	α,



with	the	same	rule

the	coefficients	of	the	state	at	a	later	time,	A(α,	t),	will	not	be	simply	given	by
A(α,	0)	times	some	phase	factor.	One	can	show	that	instead	each	A(α,	t)	will
generally	be	some	complicated	linear	combination	of	all	the	A(β,	t)’s.	This	is
the	reason	that	one	expends	so	much	time	in	computing	the	solutions	ψE(x)	to
the	time-independent	Schrödinger	equation:	it	holds	the	key	to	the	future.

23.5.1			Time	evolution:	a	more	complicated	example
In	the	preceding	example	we	were	given	the	initial	state	as	a	combination	of
box	wave	functions	ψ1(x)	and	ψ2(x)	and	had	to	compute	its	evolution.	We	just
had	to	append	the	exponentials	e−iE1t/ћ	and	e−iE2t/ћ	due	to	time	evolution	to	the
coefficients	A(1)	 and	A(2).	Now	 let	us	 turn	 to	 a	more	complicated	 situation
where	we	are	given	ψ(x,	0)	as	a	function	of	x	but	not	written	out	as	a	linear
combination	of	ψE(x).	 In	 this	 case	we	 first	 have	 to	 find	out	 the	 coefficients
A(E)	of	the	linear	combination	and	then	attach	the	exponentials	to	them.
Consider	as	an	example	the	following	initial	state	in	a	box

(This	function	does	not	vanish	at	x	=	L	and	is	therefore	not	a	function	that	can
be	expanded	 in	 terms	of	box	wave	functions	 that	do	vanish	at	 the	ends.	We
should	therefore	see	it	as	the	limit	of	a	family	of	functions	that	plunge	to	zero
more	and	more	 rapidly	as	x	→	L.	Equivalently,	 the	sum	over	box	 functions
can	 approximate	 it	 arbitrarily	well	 except	 at	 x	 =	L,	 but	 this	will	 suffice	 for
illustrative	purposes.)
Before	 doing	 the	 time	 development	 let	 us	 probe	 the	 initial	 state	 a	 little

more,	 starting	 with	 the	 computation	 of	 P(n),	 the	 absolute	 probability	 of
finding	the	system	in	energy	state	n.	This	is	going	to	be	a	problem	where	we
will	have	many	(possibly	infinite)	non-zero	A(n)≡A(En)	and	normalizing	them
after	 computing	 them	 could	 be	 hard.	 On	 the	 other	 hand	 the	 initial	 state	 is
simple	 enough	 to	 be	 normalized.	 So	we	will	 do	 that	 first,	 and	 the	A(n)	we
compute	from	it	will	come	out	normalized.	We	require



which	means	the	normalized	wave	function	is

The	coefficients	are	(for	E	=	En)

For	example,	the	probability	of	finding	the	system	in	the	ground	state	of	the
box	is

Here	 is	 a	 brief	 aside.	 Since	 the	 initial	 state	 is	 normalized	 we	 have	 an
interesting	mathematical	result

which	may	be	written	as	a	celebrated	result	due	to	Euler:

Back	to	the	time	evolution	of	the	state.	Our	general	formula,	applied	to	this
case,	gives



Figure	23.7	 shows	 the	evolution	of	P(x,	 t)	 for	parameters	 	 and
the	sum	over	n	 truncated	at	n	=	50.	The	times	selected	are	t	=	0,	 ,	π.	I	will
explain	this	choice	of	times	a	little	later.
One	can	show	analytically	that

using	properties	of	the	sine	and	the	result

(If	n	is	even,	so	is	n2	and	exp[−iπ	×	even]	=	+	1	=	(−1)n,	while	if	n	is	odd	so	is
n2	and	exp[−iπ	×	odd]=−1=(−1)n.)	Thus	after	a	time	π,	the	wave	function	ψ(x,
t)	changes	sign	(we	do	not	see	it	in	P(x,	t))	and	gets	reflected	around	 	and
after	another	π	it	comes	right	back	to	ψ(x,0).

Figure	23.7			Time-dependence	of	P(x,	t)	for	 	and	 	at	times	0,	 ,	π.	Note

the	oscillations	at	t	=	0	near	x	=	L	=	1	where	the	initial	wave	function	plunges	to	0	from	1.	You	can	see
the	symmetry	ψ(x,	t)	=	−	ψ(1−x,	t	+	π).	The	minus	sign	is	lost	in	going	from	ψ(x,	t)	to	P(x,	t).



By	 comparison,	 the	 2π	 periodicity	 is	 obvious	 because	 the	 time-dependent
factor	e−2πin2	in	Eqn.	23.84	equals	1	for	any	integer	n.
Such	 simple	 periodic	 behavior	 is	 uncommon	 and	 usually	 occurs	 only	 in

problems	 that	 can	be	 solved	analytically.	The	density	P(x,	 t)	generally	does
not	 repeat	 itself.	 So	 the	 only	 take-away	message	 for	 you	 should	 be	 that	 as
time	 goes	 by,	 the	 initial	ψ(x,	 0)	 and	P(x,	 0)	 evolve	 into	ψ(x,	 t)	 and	P(x,	 t),
which	we	can	calculate.
Now	to	explain	why	I	chose	the	times	0,	 	and	π	and	not,	say,	0,	1,	and	2

seconds	in	Figure	23.7:	the	times	are	chosen	in	natural	units	arising	from	the
problem	itself.	Suppose	you	wanted	to	show	various	states	of	a	pendulum	of
length	L	and	mass	m.	You	should	display	the	pendulum	at	times	comparable
to	its	period	so	that	you	can	show	interesting	stages	of	one	or	two	oscillations.
For	example,	if	it	had	a	time	period	of	10s,	it	makes	sense	to	show	its	position
every	 second	 or	 two	 and	 not	 every	 nanosecond	 or	 every	 year.	Dimensional
analysis	gives	a	way	 to	associate	a	 time	constructed	out	of	L,	m,	and	g.	We
write

where	 the	 equation	 aims	 to	balance	only	 the	units	by	 suitable	 choice	of	 the
constants	a,	b,	and	c.	Continuing,

which	gives	us	the	following	natural	unit	of	time

Notice	 that	 T	 is	 not	 the	 actual	 time	 period	 of	 the	 pendulum	 (a	 2π	 is
missing).	In	general	the	motion	may	not	even	be	periodic.	A	natural	time	unit
simply	avoids	the	introduction	of	very	large	or	very	small	times	in	discussing
the	problem	in	question.	For	example,	in	studying	planetary	motion	a	year	is	a
natural	unit,	not	a	nanosecond.
To	 find	 a	 natural	 time	 scale	 for	 a	 quantum	 problem,	 we	 may	 extract	 a



frequency	ω	=	E1/ћ	 from	its	 lowest	energy,	and	a	corresponding	time	using	
.	 (Using	E2	 instead	will	only	change	 the	unit	by	a	numerical	 factor	of

order	 unity.)	 In	 our	 problem,	 for	 our	 choice	 of	 parameters,	 this	 leads	 to	
,	 which	 leads	 to	 the	 natural	 time	 unit	 T	 =	 2π.	 I

emphasize	 that	 in	 general	 such	 a	 natural	 time	 unit	 does	 not	 imply	 periodic
behavior	with	period	T,	or	even	periodic	behavior,	 though	both	happened	to
be	true	in	our	example.



CHAPTER	24

Summary	and	Outlook

Now	it	is	time	to	consolidate	everything,	to	present	the	subject	starting	from
its	 postulates.	Whereas	 one	 could	 simply	 say	 “ ”	 and	 launch	 you
into	a	study	of	mechanics,	there	is	a	lot	of	groundwork	that	has	to	be	done	in
the	quantum	case.	Now	that	the	ground	work	is	behind	us,	it	will	be	useful	to
have	 in	 one	 place	 all	 the	 rules	 of	 the	 quantum	 cookbook.	 These	 rules	 or
postulates	 summarize	 findings	 from	 experiments	 and	 cannot	 be	 deduced	 by
pure	cerebration.
There	are	many	ways	 to	write	down	 the	postulates	and	 there	can	even	be

arguments	about	how	many	there	are.	What	I	present	below	are	the	postulates
appropriate	to	this	course,	and	they	are	restricted	to	a	single	massive	particle
in	 one	 dimension.	Given	 these,	 and	 some	mathematical	 results,	 you	 can	 do
any	 of	 the	 problem	 sets.	 Following	 this,	 I	 will	 dig	 a	 little	 deeper	 into	 the
postulates	to	unify	some	of	them	into	a	single	one.	That	digression	is	optional
but	 recommended	 if	 you	 are	 thinking	 beyond	 this	 course.	 The	 chapter	will
conclude	 with	 the	 study	 of	 more	 than	 one	 particle	 and	 the	 energy-time
uncertainty	principle.

24.1			Postulates:	first	pass
1.	Postulate	I.	The	complete	information	on	the	state	of	a	particle	at	any	fixed	time	is	given	by	the
complex,	continuous,	normalizable	wave	function	ψ(x).	States	of	definite	position	and	momentum	are
non-normalizable	exceptions	that	need	special	treatment.
2.	Postulate	II.	The	probability	density	for	finding	the	particle	at	x	is	given	by

If	a	particle	is	found	at	some	x0,	the	wave	function	collapses	to	a	spike	at	x0.
If	P(x)	is	normalized,	then

Normalization	is	a	convenience	and	not	a	requirement	because	rescaling	ψ	has
no	physical	effect.
3.	Postulate	III	(momentum	states).	A	state	guaranteed	to	yield	a	momentum	p	upon	measurement
is	described	by



This	function	cannot	be	normalized	by	any	choice	of	A	on	the	infinite	line.
If	 we	 fold	 the	 finite	 line	 into	 a	 ring	 of	 circumference	 L,	 we	 can	 choose	

.	The	requirement	of	single-valuedness,	ψ(x)	=	ψ(x	+	L),	leads	to	the
quantization	of	momentum	to	the	values

The	 quantization	 of	 p	 follows	 by	 mathematical	 reasoning	 given	 the
requirements	on	ψ.	It	is	not	a	postulate.
4.	Postulate	IV	(energy	states).	A	state	guaranteed	to	yield	the	result	E	upon	energy	measurement	is
the	solution	to	the	time-independent	Schrödinger	equation

Solving	this	equation	with	appropriate	boundary	conditions	will	determine	the
allowed	values	E	and	corresponding	functions	ψE(x).	Notice	that	V	is	assumed
to	depend	only	on	x	and	not	on	t.	States	of	definite	energy	exist	only	when	V
is	 time-independent.	 (This	 is	also	 the	condition	 for	a	conserved	energy	E	 to
exist	classically.)
Mathematical	interlude:	Let	 	be	a	dynamical	variable,	such	as	momentum

or	energy,	and	ψα(x)	a	wave	function	that	describes	a	state	guaranteed	to	yield
an	 answer	α	 (like	 pn	 or	En)	 if	 	 is	measured.	Mathematical	 considerations
(not	discussed	here)	assure	us	that	any	ψ(x)	may	be	written	as	a	superposition

where	the	coefficients	of	the	expansion	are	given	by

5.	Postulate	V	(measurement).	If	 	is	measured	in	the	state	(described	by)	ψ(x),	the	only	possible
outcomes	α	are	the	ones	that	appear	in	the	superposition	Eqn.	24.6	and	occur	with	probability



Right	after	a	measurement	yielding	the	result	α0,	the	state	will	collapse	(from
being	a	sum	over	α)	to	ψα0(x).	An	immediate	remeasurement	of	 	will	yield
the	same	value	α0.
Complication	 due	 to	 degeneracy:	 Sometimes	 there	 will	 be	 two	 or	 more

independent	 wave	 functions	 that	 can	 correspond	 to	 the	 same	 value	 of	 a
variable	 .	An	example	 is	 the	 free	particle	on	a	 ring:	 at	 energy	E	 there	 are
two	 states	 of	 definite	 momentum	 	 described	 by	 independent
functions	e±ipx/ћ.	Any	linear	combination	of	them	is	a	state	of	definite	energy.
To	find	P(E)	in	this	case,	it	is	best	to	express	the	given	ψ(x)	in	terms	of	ψp(x),
compute	 the	 probabilities	 for	 ,	 and	 add	 them	 to	 obtain	

.
Complication	 due	 to	more	 than	 one	 variable:	 If	we	 are	 interested	 in	 two

variables	 there	 may	 not	 be	 a	 state	 in	 which	 both	 are	 guaranteed	 to	 have
definite	 values.	 In	 the	 case	 of	 position	 and	 momentum	 there	 are	 no	 such
states.	On	the	other	hand,	for	a	free	particle	on	a	ring	it	is	possible	to	have	a
state	with	guaranteed	E	and	p.
6.	Postulate	VI	(time	evolution).	The	time	evolution	of	the	wave	function	is	governed	by	the	time-
dependent	Schrödinger	equation:

In	this	equation	V	=	V(x,	t)	may	depend	on	time.
It	may	be	verified	by	substitution	that	if	V	=	V(x),	the	following	is	a	solution:

where	 E	 and	 ψE(x)	 are	 the	 solutions	 to	 the	 time-independent	 Schrödinger
equation	24.5.	It	is	called	a	stationary	state	because	none	of	the	probabilities
(P(x),	P(p),	P(α))	vary	with	time.
A	superposition	of	such	stationary	states	with	arbitrary	coefficients	A(E),

is	also	a	solution	to	the	time-dependent	Schrödinger	equation	by	its	linearity.
If	we	ask	what	kind	of	 initial	 state	corresponds	 to	 such	a	 solution,	we	 find,
upon	setting	t	=	0,



This	is	no	restriction	at	all	on	the	initial	state,	since	the	mathematics	assures
us	that	any	function	ψ(x,	0)	may	be	written	as	a	superposition	of	ψE(x).	Thus
Eqn.	 24.11	 describes	 the	 solution	 to	 the	 most	 general	 problem	 of	 time
evolution	one	could	pose	in	a	time-independent	V.
If	Eqn.	24.12	is	valid	at	 t	=	0,	 it	 is	valid	at	 time	 t,	provided	of	course	we

choose	the	coefficients	A	as	a	function	of	time:

Comparing	this	to	Eqn.	24.11	we	find

Thus	the	coefficients	of	the	expansion	have	a	very	simple	time	evolution	if	the
general	 state	 is	 written	 in	 terms	 of	 ψE(x).	 In	 other	 words,	 although
mathematically	ψ(x)	 may	 be	 written	 as	 a	 superposition	 of	 states	ψα(x)	 that
have	well-defined	values	for	any	variable	 ,	only	the	expansion	coefficients
in	terms	of	states	of	definite	energy	have	this	simple	time-dependence.
Do	not	 look	 for	 the	 uncertainty	 principle	 among	 the	 postulates:	 it	 can	 be

deduced	 given	 that	 the	 particle	 is	 described	 by	 a	 wave	 function	 and	 that
definite	momentum	corresponds	to	definite	wavelength.

24.2			Refining	the	postulates
The	postulates	as	written	above	would	not	be	found	in	any	book.	I	gave	them
to	you	 as	 a	 set	 of	 rules	 that	would	 allow	you	 to	 handle	 the	material	 in	 this
course.	Quantum	mechanics	is	one	big	recipe	but	even	as	recipes	go	the	above
list	is	wanting.	There	are	at	least	two	deficiencies	you	may	have	noticed.
1.	For	every	variable,	there	seems	to	be	a	different	prescription	for	finding	wave	functions	with
definite	values	for	that	variable.	For	example,	I	simply	gave	you	ψp(x)	=	Ae

ipx/ћ	as	the	state	of
definite	momentum,	while	I	asked	you	to	solve	the	time-independent	Schrödinger	equation	to	obtain
ψE(x).	Since	one	can	imagine	an	infinite	number	of	such	variables,	corresponding	to	arbitrary
functions	of	x	and	p,	there	must	be	an	infinite	number	of	such	prescriptions.	Are	there	really	an
infinite	number	of	such	postulates,	one	for	each	variable?
2.	I	treated	x	differently	from	any	other	variable.	First,	I	was	evasive	about	(the	wave	function	for)	a
state	of	definite	position	x	=	x0,	simply	referring	to	it	as	a	spike	at	x0.	Next,	the	rule

where



was	never	applied	to	the	case	where	 	was	the	position:	I	never	wrote	ψ(x)	as
a	linear	combination	of	states	of	definite	position	with	some	coefficients	A(x)
and	 did	 not	 relate	 the	 mod-squared	 of	 the	 expansion	 coefficients	 to	 the
probability	of	finding	the	particle	at	some	x.	Instead	I	gave	P(x)	=	|ψ(x)|2	as	a
postulate.

24.2.1			Toward	a	compact	set	of	postulates
I	 will	 now	 remedy	 these	 interrelated	 defects	 to	 the	 extent	 that	 is	 possible
within	the	constraints	of	this	course.
Consider	first	the	momentum	states.	Following	some	plausibility	arguments

based	on	the	double-slit	experiment,	these	were	postulated	to	be

Without	changing	the	substance	of	this	postulate	let	me	rewrite	it	as	follows:
Postulate	III.	A	state	of	definite	momentum	p	is	a	solution	to	the	differential	equation

You	 can	 solve	 this	 equation	 in	 your	 head	 and	 see	 that	 the	 solutions	 are
indeed	 the	ones	 in	Eqn.	24.17.	The	arbitrary	 scale	 factor	A	 appears	because
ψp(x)	 appears	 on	 both	 sides.	 Given	 one	 solution,	 you	 can	 get	 another	 by
rescaling.	A	common	way	to	choose	A	is	to	impose	the	cosmetic	requirement
of	normalization.

24.2.2			Eigenvalue	problem
The	 familiar	 differential	 equation	 (24.18)	 and	 its	 solution	 are	 a	 simple
introduction	to	the	fertile	realm	of	the	eigenvalue	problem.	Let	us	take	some
time	to	explore	it.	Take	some	arbitrary	function	f(x)	and	differentiate	it.	It	will
turn	into	a	new	function.	For	example,



Let	us	rewrite	these	as

which	you	should	take	to	be	a	definition	of	D.	One	calls	D	an	operator.	Just
like	a	function	is	a	recipe	that	takes	in	a	variable	x	and	spits	out	a	value	f(x),
an	 operator	 takes	 in	 a	 function	 f(x)	 and	 spits	 out	 another	 function.	 The
function	 f(x)	 is	 always	 placed	 to	 the	 right	 of	 the	 operator,	 as	 in	D[f(x)]	 or
simply	Df.	The	thing	D	does	to	f(x)	is	to	differentiate	it.
The	operator	D	is	linear,	meaning

which	is	a	familiar	property	of	differentiation.	All	operators	we	will	consider
here	will	be	linear.
It	is	natural	to	define	the	operator	D2	as	a	D	followed	by	another	D	and	as

having	the	following	effect:

Don’t	 let	 the	 exponent	 in	 D2	 fool	 you	 into	 thinking	 it	 is	 a	 non-linear
operator.	After	all,

You	 can	 form	 operators	 that	 are	 sums	 of	 various	 powers	 of	 D	 each
multiplied	by	some	constant.
In	 general	 operators	 modify	 the	 function	 they	 operate	 on	 and	 turn	 them

into	 other	 functions.	 But	 sometimes	 an	 operator	may	 have	 some	 privileged
functions,	 called	 its	eigenfunctions,	on	which	 its	 effect	 is	 to	 simply	multiply
them	 by	 a	 constant,	 called	 the	 eigenvalue.	 Let	 us	 consider	 the	 eigenvalue
equation	for	D.	Its	eigenfunctions	must	obey



where	 the	 constant	 κ	 is	 the	 eigenvalue.	 The	 solution	 or	 eigenfunction	 is
clearly

In	 other	 words,	 although	 the	 effect	 of	 differentiation	 by	 D	 is	 usually	 to
transform	 a	 function	 into	 something	 else,	 there	 are	 some	 functions,	 the
exponentials,	on	which	the	effect	of	D	is	to	multiply	them	by	a	constant.	It	is
common	 to	 label	 the	 eigenfunctions	 by	 the	 corresponding	 eigenvalues	 as
follows:

At	this	point,	there	is	no	restriction	on	the	eigenvalue	κ.
In	this	language	we	may	say	that	the	states	of	definite	momentum	ψp(x)	are

eigenfunctions	of	the	operator

called	the	momentum	operator	in	quantum	theory,	and	therefore	the	solutions
to

where	p	is	the	eigenvalue.	In	summary,
Postulate	III	(momentum	states).	The	states	of	definite	momentum	p	are	eigenfunctions	of	P:

If	 the	solution	ψp(x)	 lives	on	a	 ring	of	circumference	L,	 the	single-valued
requirement	restricts	the	eigenvalues	p	to	 .

24.2.3			The	Dirac	delta	function	and	the	operator	X
Just	one	more	such	operator	and	we	are	done.	It	is	called	X	and	this	is	what	it
does	to	any	f(x)	placed	to	its	right:

Thus	the	action	of	X	 is	 to	take	the	given	function	 f(x)	and	change	it	 into	the
new	function	xf(x).	Evidently	X2	is	an	X	followed	by	another	X	and	thus



We	can	form	more	complicated	operators	using	X	and	P,	whose	action	 is
quite	obvious.	For	example,

Consider	the	eigenfunctions	of	the	operator	X,	remembering	that

If	it	had	an	eigenfunction	fx0(x)	with	eigenvalue	x0,	it	would	have	to	satisfy

But	look!	Multiplying	by	x	has	a	different	effect	at	different	x,	and	yet	we	are
looking	for	a	function	that	when	multiplied	by	x	becomes	a	constant	x0	times
that	 function!	 How	 can	 any	 function	 retain	 its	 functional	 form	 (up	 to	 a
multiplicative	 constant)	 when	 multiplied	 by	 x?	 And	 yet	 there	 is	 such	 a
function.	 It	 is	 a	 little	weird	 as	 you	might	 expect.	 It	 is	 called	 a	Dirac	 delta
function	 or	 simply	 the	 δ-function.	 It	 is	 a	 limit	 of	 any	 number	 of	 smooth
functions,	 and	 here	 is	 one	 example.	 Look	 at	 Figure	 24.1.	 It	 shows	 three
rectangles	of	decreasing	width	w	and	increasing	height	1/w	centered	at	x	=	x0.
All	 have	 unit	 area.	 If	 you	 take	 the	 limit	 w	 →	 0	 you	 get	 the	 Dirac	 delta
function	δ(x	−	x0),	shown	by	a	vertical	arrow	going	to	infinity.	It	is	infinitely
tall	at	x0,	zero	everywhere	else,	and	still	has	unit	area:

The	delta	function	is	even,	like	the	one	in	Figure	24.1	whose	limit	it	is:

Let	us	 see	how	 the	Dirac	delta	 function	δ(x	−	x0)	 satisfies	 the	eigenvalue
equation



Consider	first	a	point	x	≠	x0.	Now	both	sides	vanish	due	to	the	δ(x	−	x0).	So	it
does	not	matter	that	the	δ-function	on	one	side	has	an	x	multiplying	it	and	on
the	other	side	an	x0.	At	x	=	x0,	the	x	on	the	left-hand	side	becomes	x0	and	the
two	sides	again	agree.
Here	is	another	way	to	say	it.	The	factor	x	 rescales	any	 f(x)	by	a	variable

amount	x,	but	our	eigenfunction	 lives	only	at	one	point	x	=	x0	where	 it	gets
rescaled	by	x0.	So	it	is	correct	to	say	that	it	gets	rescaled	everywhere	by	just
one	number,	x0.
You	 can	 only	 plot	 the	 δ-function	 before	 taking	 the	 limit	w	 →	 0	 of	 the

rectangular	spike	(see	the	left	half	of	Figure	24.1)	or	any	function	with	the	δ-
function	as	the	limit.	The	limiting	function	itself	has	the	only	two	values,	zero
or	 infinity.	Luckily	we	never	 need	 the	 function	 by	 itself,	 just	 some	 integral
within	which	it	appears.	Eqn.	24.42	will	then	tell	us	exactly	how	to	handle	it.

Figure	24.1			Left:	Three	rectangles	centered	at	x	=	x0,	of	width	w	and	height	1	/w	as	w	→	0.	The	height
and	width	of	the	broadest	alone	are	shown.	The	limit,	shown	by	the	arrow,	is	the	delta	function	δ(x	−
x0).	It	is	even:	δ(x	−	x0)	=	δ(x0	−	x).	Right:	The	integral	of	g(x)	times	δ(x	−	x0)	receives	a	non-zero
contribution	only	infinitesimally	close	to	x0.	Within	this	interval	g(x)	≃	g(x0)	is	a	constant	that	can	be
pulled	out	of	the	integral,	and	the	delta	function	then	integrates	to	1.

Let	g(x)	be	some	smooth	function.	Consider	the	integral



just	 before	 the	 limit	w	→	 0	 is	 taken.	 The	 integrand	 vanishes	 for	 any	 x	 not
infinitesimally	 close	 to	 x0	 due	 to	 δ(x	 −	 x0);	 see	 Figure	 24.1.	 So	 the	 entire
integral	 comes	 from	 an	 infinitesimal	 region	 around	x0.	We	manipulate	 it	 as
follows:

where	 I	 could	 pull	 out	g(x0)	 from	 the	 integral	 because	 the	 smooth	 function
g(x)	 is	 essentially	 constant	within	 the	 infinitesimal	 neighborhood	 of	 x	 =	 x0.
Thus	δ(x	−	x0)	can	be	used	to	pull	out	or	sample	the	value	of	g(x)	at	x0:

For	example,

and

and

Now	 back	 to	 quantum	mechanics.	 Let	 g(x)	 be	 a	 wave	 function	ψ(x).	 Its



value	at	x0	is	sampled	by	δ(x	−	x0):

Compare	 this	 to	 a	 mathematical	 result	 for	 extracting	 the	 coefficients	 of
expansion	of	a	generic	ψ(x)	in	terms	of	states	of	definite	value	for	a	general
variable	 :

The	correspondence	is	obvious:

Thus	 we	 see	 that	 the	 wave	 function	ψ(x0)	 is	 itself	 the	 coefficient	 in	 the
expansion	 of	ψ(x),	 the	 “amount”	 of	 δ(x	 −	 x0)	 we	 need	 in	 the	 expansion	 of
ψ(x).	By	the	measurement	postulate	then

and	we	see	that	the	rule	for	x	is	like	that	for	any	other	variable	such	as	p	or	E.
The	 only	 difference	 is	 that	 since	 x0	 is	 a	 continuous	 variable,	 P(x0)	 is	 a
probability	density	whose	integral	over	all	x0	is	1,	and	not	a	probability	whose
sum	over	all	possibilities	is	1.
If	you	are	following	this	closely	you	will	ask,	“Where	is	the	analog	of

which	 says	 any	ψ(x)	may	 be	 expanded	 in	 terms	 of	 functions	 of	 definite	 ,
which	is	now	position?”	Go	to



and	make	the	exchange	x	↔	x0	to	obtain

Comparing	this	to	Eqn.	24.61	we	find	the	correspondence

Thus	 I	 have	 exhibited	 a	 generic	ψ(x)	 as	 an	 integral	 (rather	 than	 sum)	 over
states	(spikes)	of	definite	position	x0	with	coefficients	ψ(x0).
I	mentioned	earlier	that	states	of	definite	position	and	momentum	are	non-

normalizable.	 In	 the	case	of	momentum	|ψp(x)|2	 is	a	constant	whose	 integral
over	 all	 of	 space	 is	 infinite.	 For	 the	 case	 of	 position	we	 find	 the	 following
square-integral

(I	have	used	one	of	the	delta	functions	to	sample	the	other	at	x	=	x0.)
Having	seen	that	the	position	and	momentum	can	both	be	analyzed	on	the

same	 footing,	as	eigenvalue	problems,	 let	us	 take	a	 second	 look	at	 states	of
definite	energy,	which	are	the	solutions	to



upon	using	 	 and	 the	 fact	 that	 the	 action	of	V(X)	 on	 f(x)	 is	 to
replace	it	by	V(x)f(x).
Comparing	Eqn.	24.72	to	the	formula	from	classical	mechanics

we	 see	 that	 the	 states	 of	 definite	 energy	 are	 the	 solutions	 to	 the	 eigenvalue
equation

or	more	abstractly,

In	 the	 left-hand	 side	 we	 take	 the	 classical	 expression	 for	 energy	E	 as	 a
function	of	x	and	p	and	replace	every	x	by	X	=	x,	and	every	p	by	 	and
we	let	the	result	act	on	the	ψE(x)	sitting	to	its	right.
The	combination

is	called	the	Hamiltonian	operator	or	simply	Hamiltonian.	It	depends	on	the
potential	V(x).	For	example,	in	the	case	of	the	harmonic	oscillator	it	is

This	means	that	the	states	of	definite	energy	for	the	quantum	oscillator	are	the
normalizable	solutions	to

The	time-independent	Schrödinger	equation	may	be	written	in	 terms	of	H
as

24.3			Postulates:	Final



We	are	now	ready	to	combine	the	postulates	into	the	following	set,	which	is
more	compact	and	free	of	the	defects	in	the	initial	set.
1.	Postulate	I.	The	complete	information	on	the	state	of	a	particle	is	given	by	a	complex,	continuous
wave	function	ψ(x)	which	is	normalizable	except	for	states	of	definite	x	or	p.
2.	Postulate	II.	Let	 (x,	p)	be	a	dynamical	variable,	such	as	momentum	or	position	or	a	function
thereof,	like	energy.	Then	its	allowed	values	α,	and	the	corresponding	ψα(x),	are	the	normalizable
(except	in	the	case	of	position	and	momentum),	single-valued	solution	to

(I	use	partial	derivatives	of	x	in	anticipation	of	additional	coordinates	y	and	z.)
Mathematical	 interlude:	 A	 mathematical	 result	 assures	 us	 that	 any	 ψ(x)

may	be	written	as

where

3.	Postulate	III.	If	 	is	measured	in	the	state	ψ(x),	the	only	possible	outcomes	are	the	α’s	that	appear
in	the	superposition	above	and	the	probability	for	each	α	is

The	 state	 right	 after	measurement	will	 collapse	 from	 the	 sum	over	α	 to	 the
single	 term	 corresponding	 to	 the	 value	 of	 α	 obtained.	 An	 immediate
remeasurement	of	 	will	yield	the	same	value.
4.	Postulate	IV.	The	time	evolution	of	the	wave	function	is	governed	by	the	time-dependent
Schrödinger	equation:

In	this	equation	the	classical	potential	V	=	V(x,	t)	may	depend	on	time.

24.4			Many	particles,	bosons,	and	fermions
What	does	quantum	mechanics	of	more	than	one	particle	look	like?	There	are
some	obvious	consequences	like	more	coordinates	and	some	real	surprises	of



quantum	origin.
First	 let	 the	 two	particles	be	different,	 say	a	proton	and	an	electron.	Now

each	 of	 them	 has	 its	 position,	 say	 x1	 and	 x2,	 and	 these	 appear	 in	 the	 two-
particle	wave	function	ψ(x1,	x2).	The	probability	density	for	finding	particle	1
at	x1	and	particle	2	at	x2	is

With	three	particles	you	will	have	a	ψ(x1,	x2,	x3)	and	so	on,	but	I	will	stop
with	two	because	you	can	learn	some	profound	things	in	about	fifteen	minutes
just	by	exploring	this	case.
Imagine	both	particles	are	in	a	box	and	the	electron	is	in	state	n	=	3	and	the

proton	is	in	state	n	=	5.	The	corresponding	ψ(x1,	x2)	is	of	the	product	form

The	probability	density	for	finding	the	electron	at	x	=	4	and	the	proton	at	x
=	8	is	given	by

If	instead	we	ask	for	the	probability	density	for	finding	the	electron	at	x	=	8
and	the	proton	at	x	=	4,	the	probability	density	would	be

which	 is	 quite	 different.	 For	 example,	 if	 the	 box	 had	 a	 size	 L	 =	 40,	 then
P3,5(x1	=	4,x2	=	8)	would	vanish	while	P3,5(x1	=	8,x2	=	4)	would	not.
That’s	perfectly	okay,	because	they	are	two	different	probabilities	for	two

different	outcomes:	 finding	 the	electron	here	and	 the	proton	 there	 is	not	 the
same	 as	 finding	 the	 electron	 there	 and	 the	 proton	 here.	 To	 verify	 the
probabilities,	 I	 take	many	many	boxes	with	electrons	 in	 the	 state	n	=	3	and
protons	in	the	state	n	=	5	and	measure	their	positions	and	tally	my	findings	in
the	 form	of	 a	histogram	 in	 two	dimensions	 labeled	by	x1	 and	x2.	Following



each	measurement	I	can	unambiguously	assign	the	measured	positions	to	the
electron	or	the	proton.	In	the	end	the	histogram	should	agree	with	P3,5(x1,x2).
If	I	find	the	electron	at	x	=	8	and	the	proton	at	x	=	4,	that	would	be	consistent
with	(but	not	fully	confirm)	the	predictions,	but	if	I	found	the	electron	at	x	=	4
and	the	proton	at	x	=	8	even	once	that	would	deal	a	fatal	blow	to	the	theory
because	the	proton	should	not	be	found	at	x	=	8,	which	is	a	zero	of	its	wave
function.

24.4.1			Identical	versus	indistinguishable
Something	very	dramatic	happens	if	the	two	particles	are	identical.	The	words
“identical	 particles”	 have	 a	 connotation	 in	 quantum	mechanics	 that	 is	 very
different	 from	 that	 in	 classical	mechanics.	Consider	 identical	 twins.	 I	mean
absolutely	identical.	They	are	separated	at	birth	and	they	are	moving	around.
Even	though	they	look	identical	 in	every	way,	we	can	still	follow	them.	We
know	 this	 is	 Joe	and	 that	 is	Moe.	We	can	keep	 track	of	 them	continuously.
Consider	 the	following	experiment	 involving	these	twins,	depicted	in	Figure
24.2.	There	 are	 four	 doors	 in	 a	 room	 and	 Joe	 enters	 from	door	A	 and	Moe
enters	from	door	B,	and	both	are	headed	for	the	center	of	the	room.	There	are
now	 two	options.	Either	 they	 exit	 via	 the	 doors	 in	 front	 of	 their	 entry	 door
(left	half	of	figure)	or	cross	over	and	Joe	exits	via	door	C	andMoe	via	door	D.
Now	suppose	you	saw	them	entering	the	room	in	the	beginning,	and	you	left
the	 room	briefly	and	came	back	 in	 time	 to	 see	 them	 leaving	 the	 room.	You
cannot	 tell	whether	 they	 crossed	 or	 not,	 because	 you	 just	 see	 two	 identical
twins	 at	 these	 doors.	 But	 somebody	 knows	 what	 has	 happened,	 somebody
who	was	watching	them	at	all	times.	So	even	though	they	are	identical,	they
are	distinguishable.	They	cannot	swap	roles	without	someone	knowing.

Figure	24.2			Two	identical	twins	Joe	and	Moe	enter	doors	A	and	B	and	exit	via	doors	C	and	D,	along
two	possible	classical	paths.	In	quantum	theory	we	cannot	say	which	of	the	two	things	depicted
happens.	Had	these	been	identical	macroscopic	twins	Moe	and	Joe	we	could,	based	on	continuous
observation.

But	 imagine	now	 that	 these	are	not	classical	 twins	but	quantum	particles,
like	electrons,	which	do	not	have	a	definite	 trajectory	between	observations.
You	know	an	electron	was	emitted	at	door	A	and	another	at	door	B	and	they
were	eventually	detected	at	doors	C	and	D.	You	cannot	tell	who	really	went
where.	Was	it	this	guy	or	was	it	that	guy?	There’s	no	way	to	tell.	So	when	you



have	identical	particles	whose	trajectories	you	cannot	follow,	when	you	catch
a	particle	here	and	a	particle	there,	you	cannot	say	Joe	was	here	and	Moe	was
there.	It’s	not	allowed,	because	you’re	not	following	them	continuously.	You
can	only	say,	“I	found	a	particle	here,	and	I	found	a	particle	there”	and	not	“I
found	Joe	here	and	Moe	there.”	Therefore	the	theory	cannot	assign	different
probabilities	 for	 finding	 particle	 1	 here	 and	 particle	 2	 there,	 and	 particle	 2
there	and	particle	1	here,	because	 the	 two	outcomes	are	 indistinguishable.	It
must	give	the	same	odds	for	two	indistinguishable	outcomes:

We	 saw	 this	 was	 not	 true	 for	 the	 product	 function	 written	 above	 for	 the
electron-proton	 system.	 It	 vanished	when	 the	 electron	was	 at	x	 =	 4	 and	 the
proton	was	at	x	=	8	but	not	 the	other	way	around.	Product	 functions	cannot
describe	two	electrons	in	a	box.
However,	we	can	cook	up	a	 function	 that	 respects	 the	 indistinguishability

of	the	particles	by	superposing	the	two	alternatives;

In	 this	 superposition	of	 two	product	 states,	one	has	particle	1	 in	 state	n	=	3
and	particle	2	in	state	n	=	5	and	the	other	has	particles	with	exchanged	states.
The	 subscript	S	 stands	 for	 symmetric,	meaning	 that	 because	we	have	 added
the	two	possible	product	states	related	by	particle	exchange,	the	two	particles
now	play	 symmetric	 roles.	You	can	only	 infer	 from	 this	wave	 function	 that
there	is	one	particle	in	n	=	3	and	one	in	n	=	5	and	not	that	particle	1	is	in	n	=	3
and	2	is	in	n	=	5.
Formally,	 this	 means	 the	 symmetric	 wave	 function	 is	 insensitive	 to	 the

exchange	of	particle	coordinates:

If	 we	 exchange	 the	 coordinates	 x1	 and	 x2,	 the	 two	 terms	 in	 the	 symmetric



wave	function	exchange	roles	and	their	sum	is	unaffected.	The	labels	1	and	2
in	 the	 quantum	 wave	 function	 no	 longer	 refer	 to	 the	 individual	 particles,
which	do	not	have	a	specific	identity	anymore.
The	symmetric	function	is	also	unaffected	if	we	leave	x1	and	x2	alone	and

swap	the	state	labels:

This	is	an	equivalent	way	of	saying	that	all	we	know	is	that	there	is	a	particle
in	n	=	3	and	a	particle	in	n	=	5.
In	any	event,	 the	probability	density,	which	 is	simply	 the	mod-squared	of

ψ,	has	the	requisite	symmetry

Figure	 24.3	will	 help	 you	 visualize	 the	 situation.	 On	 the	 left	 is	 the	 state
with	particle	1	in	n	=	3	and	particle	2	in	n	=	5,	and	in	the	middle	is	the	state
with	 particle	 1	 in	n	 =	 5	 and	particle	 2	 in	n	 =	 3.	These	 are	 the	 two	product
states.	Both	these	states	are	allowed	in	quantum	theory	if	we	are	talking	about
a	proton	and	an	electron	 in	 the	box,	 and	 they	are	 counted	as	distinct	 states.
But	if	they	are	two	identical	particles,	the	labeling	makes	a	distinction	that	is
meaningless	 in	 quantum	 theory.	 There	 is	 only	 one	 allowed	 state,	 the
symmetric	one	depicted	on	the	right.	We	just	see	two	particles,	one	in	n	=	3
and	one	in	n	=	5,	with	no	labels.

Figure	24.3			At	the	left	is	a	state	with	particle	1	(Joe)	in	state	n	=	3	and	particle	2	(Moe)	in	state	n	=	5
and	in	the	middle	a	state	with	the	particles	exchanged.	These	states	are	permitted	in	quantum	theory	if
the	particles	are	different	and	count	as	two	different	possible	outcomes.	If	they	are	identical,	only	the
depiction	at	the	right,	which	carries	no	labels,	is	allowed.

More	generally	for	any	two	quantum	states	a	and	b	(not	just	box	states	n	=
3	and	n	=	5	as	in	our	example)	the	allowed	wave	function	is



I	can	get	the	symmetric	state	by	adding	to	the	product	state,	a	state	in	which
x1	and	x2	are	exchanged	keeping	a	and	b	fixed	or	vice	versa.	Both	reflect	the
fact	that	the	particles	have	no	identity.	The	probability	density	is

In	 the	symmetric	wave	function	we	finally	seem	to	have	found	a	way	for
describing	 two	 electrons,	 one	 in	 n	 =	 3	 and	 one	 in	 n	 =	 5,	 respecting	 the
requirement	of	indistinguishabilty.	However,	this	is	not	true.	It	works	for	two
identical	pi-mesons	or	pions	but	not	two	electrons.	But	what	else	could	we	do
besides	symmetrize	the	product	wave	function?
There	 is	 another	 allowed	 combination	 called	 the	 antisymmetric	 wave

function	where	we	subtract	the	product	state	with	the	exchanged	ordering:

This	seems	to	violate	the	premise	that	exchanging	identical	particles	should
not	make	any	difference.	However,	in	quantum	theory	ψ	itself	is	not	directly
observable	 (remember	 ψ	 and	 −	 ψ	 are	 the	 same	 state)	 and	 only	 quantities
quadratic	in	ψ	such	as	P	=	|ψ|2	are.	Indeed	we	find	that

So	 in	 quantum	 mechanics,	 there	 are	 two	 options	 for	 identical	 particles.
Either	 you	 can	 take	 the	 product	 function	 and	 add	 to	 it	 the	 product	with	 the



exchanged	coordinates	to	obtain	the	symmetric	wave	function	ψS,	or	subtract
the	product	with	the	exchanged	coordinates	to	obtain	the	antisymmetric	wave
function	ψA.	Remarkably	every	particle	in	the	universe	goes	with	one	camp	or
the	 other.	 Particles	 called	 bosons	 always	 choose	 the	 symmetric	 wave
functions,	 and	 particles	 called	 fermions	 always	 choose	 the	 antisymmetric
wave	 function.	Every	 particle	 is	 either	 boson	 or	 fermion.	 Pions	 are	 bosons.
Electrons	 are	 fermions.	 Quarks	 are	 fermions.	 Photons	 and	 gravitons	 are
bosons.	 For	 example,	 two	 pions	 of	 definite	 momentum	 p1	 and	 p2	 will	 be
symmetric	under	exchange.	We	cannot	say	which	one	has	momentum	p1	and
which	has	momentum	p2.	We	can	only	say	there	is	a	pion	with	p1	and	a	pion
with	 p2.	 If	 you	 put	 two	 identical	 bosons	 in	 a	 box,	 their	 symmetric	 wave
function	 will	 remain	 the	 same	 when	 you	 exchange	 them.	 If	 you	 put	 two
identical	 fermions	 in	 a	 box,	 their	 wave	 function	 will	 change	 sign	 if	 you
exchange	 them.	 (If	 you	 put	 non-identical	 particles,	 say	 an	 electron	 and	 a
proton,	 you	 may	 use	 a	 product	 wave	 function.	 If	 you	 exchange	 the
coordinates,	you	generally	get	a	different	product	state,	and	not	±1	times	the
original.)
The	previous	discussion	assumes	the	states	a	and	b	are	different.	Let	us	see

what	happens	if	a	=	b.	For	bosons	we	find

where	 the	 overall	 factor	 of	 2	 is	 physically	 unimportant.	 So	 bosons	 have	 no
problem	being	in	the	same	state,	and	if	we	consider	more	bosons	we	will	find
that	 they	 love	 being	 in	 the	 same	 state	 as	 others,	 a	 feature	 exploited	 in	 the
laser,	and	one	which	we	must	reluctantly	skip.
We	are	more	interested	in	the	dramatic	case	of	two	identical	fermions.	Can

they	both	be	in	the	same	quantum	state?	If	we	set	a	=	b	in	the	antisymmetric
function,	we	find

This	 is	 the	 famous	 Pauli	 exclusion	 principle,	 which	 says	 two	 identical
fermions	cannot	be	in	the	same	quantum	state.
Notice	 also	 that	 even	 if	a	 ≠	b	 the	 two	 fermions	 cannot	 occupy	 the	 same

position:	if	we	set	x1	=	x2	=	x	we	find	ψA	vanishes:

(This	 is	 not	 for	 the	 trivial	 reason	 that	 two	 particles	 cannot	 sit	 at	 the	 same



point.	Quantum	theory	allows	two	pions	to	be	at	the	same	point.)	Since	ψA(x1,
x2)	 vanishes	 when	 x1	 =	 x2,	 by	 continuity	 it	 is	 also	 small	 when	 x1	 and	 x2
approach	each	other.	Thus	two	identical	fermions	avoid	each	other,	not	due	to
any	repulsive	forces	between	them,	but	due	to	the	Pauli	principle.
What	 does	 the	 Pauli	 principle	 say	 when	 we	 have	 three	 fermions?	 If	 we

demand	that	 the	wave	function	change	sign	whenever	we	exchange	any	two
fermions,	we	come	up	with

I	invite	you	to	verify	that	in	addition	if	you	set	any	two	coordinates	equal	or
any	two	state	labels	equal,	ψa,b,c,A(x1,	x2,	x3)	vanishes.	There	is	a	way	to	write
down	such	 totally	antisymmetric	wave	functions	 for	any	number	of	 identical
fermions.	If	you	know	determinants,	here	is	the	answer	for	three	particles:

You	 can	 rely	 on	 the	 theory	 of	 determinants	 or	 verify	 by	 explicit
computation	 that	 this	wave	 function	 vanishes	whenever	 two	 of	 the	 rows	 or
columns	are	equal,	that	is,	when	two	of	the	coordinates	or	state	labels	become
equal.	 It	 also	 changes	 sign	when	 two	 rows	 or	 columns	 are	 exchanged.	 For
more	particles,	you	just	need	a	bigger	determinant.
We	 need	 the	 symmetric	 and	 antisymmetric	 states	 only	 if	 the	 particles	 in

question	 are	 identical.	 Even	 if	 there	 is	 the	 slightest	 difference	 between	 two
particles,	 they	 will	 be	 treated	 as	 distinguishable	 and	 described	 by	 product
wave	 functions.	What	makes	 the	 formalism	worthwhile	 is	 that	 there	 are	 in
nature	many	many	 particles	 that	 are	 absolutely	 identical.	 Every	 electron	 is
identical	 to	 every	 other	 electron.	 One	 could	 have	 been	 produced	 in	 an
accelerator	on	 the	earth	and	 the	other	 in	another	galaxy.	You	put	 those	 two
guys	 in	 a	 box	 or	 an	 atom	 and	 they	 will	 obey	 the	 Pauli	 principle.	 It	 is
remarkable	 how	 nature	 manages	 to	 churn	 out	 exactly	 identical	 particles	 in
such	widely	separated	regions	of	the	universe.

24.4.2			Implications	for	atomic	structure
Let	us	try	to	work	out	the	structure	of	atoms	based	on	what	we	know.	First	we



have	to	compute	the	stationary	states	of	an	electron	in	the	field	of	a	nucleus	of
charge	Ze,	where	Z	is	the	number	of	protons.
This	 means	 solving	 the	 Schrödinger	 equationin	 three	 dimensions	 with	 a

potential

From	the	classical	expression	for	energy

and	the	final	Postulate	II,	we	know	ψE(x,	y,	z)	obeys	the	Schrödinger	equation

The	solution,	which	I	will	skip,	gives	the	following	spectrum.	The	allowed
energies	are

The	levels	are	degenerate:	there	are	n2	levels	at	a	given	n.	In	addition,	the
electron	 has	 a	 twofold	 degree	 of	 freedom	 called	 spin	 corresponding	 to	 an
internal	angular	momentum	 	not	connected	with	motion	and	not	discussed
so	far.	So	the	real	degeneracy	is	2n2,	which	takes	on	values	2,	8,	18,	.	.	.	.	The
probability	densities	P(r)	for	a	particle	in	level	n	and	with	maximum	allowed
angular	momentum,	being	found	in	a	spherical	shell	between	r	and	r	+	dr,	are
functions	peaked	at	a	radius	n2	a0	where

is	the	Bohr	radius.	For	this	reason	the	states	at	any	n	are	often	called	shells.	In
some	books	these	are	depicted	as	orbits	or	clouds	of	that	radius.



Given	 the	 spectrum	of	 an	 atom	we	 can	predict	 the	 frequencies	 of	 light	 it
will	emit	or	absorb	when	the	value	of	n	changes:

We	can	even	compute	 the	rate	at	which	it	will	absorb	or	emit	 light,	but	 this
will	require	invoking	the	wave	functions	ψE.
Combined	with	the	Pauli	principle,	we	can	understand	a	lot	of	chemistry	by

asking	what	the	electrons	will	be	doing	in	a	given	atom.
Hydrogen	has	just	one	electron,	which	we	may	place	in	the	n	=	1	state	with

spin	 	or	spin	− .	Helium	has	Z	=	2,	and	its	two	electrons	occupy	the	n	=	1
level	with	opposite	spins.	Lithium	has	Z	=	3	and	its	third	electron	has	to	go	to
one	of	 the	eight	n	=	2	states.	(At	this	point	we	may	have	to	include	the	fact
that	the	two	electrons	in	the	inner	states	n	=	1	may	screen	some	of	the	nuclear
charge	seen	by	the	n	=	2	electron.)	We	keep	going	till	we	hit	Neon	whose	10
electrons	fill	the	n	=	1	and	n	=	2	shells.	If	we	add	one	more	electron	we	need
to	go	to	the	next	level	n	=	3.	This	is	the	case	for	Na	(sodium),	which	has	11
electrons.	When	the	11th	electron	looks	in	toward	the	nucleus	it	sees	a	charge
1e,	 since	 the	 10	 inner	 electrons	 screen	 the	 rest	 of	 the	 nuclear	 charge.	 Its
binding	energy	is	a	low	5.1eV.	The	atom	then	looks	longingly	at	F	(fluorine),
which	has	9	electrons.	Its	seven	n	=	2	electrons	have	a	huge	binding	energy	of
17.46eV	each.	There	is	room	for	one	more	electron	in	its	n	=	2	shell.	If	the	Na
could	unload	its	lone	n	=	3	electron	to	the	vacancy	in	the	n	=	2	shell	of	F,	the
two	atoms	could	lower	 their	combined	energy.	This	 is	what	 they	do	given	a
chance.	But	after	this	transfer,	the	Na	atom	will	be	positively	charged	and	the
F	 atom	 negatively	 charged.	 The	 two	 will	 be	 electrostatically	 bound	 by	 the
ionic	bond	to	form	the	NaF	molecule.
The	pattern	is	clear.	Atoms	with	filled	shells	(like	He	or	Ne)	will	have	no

incentive	to	talk	to	anyone	else.	Atoms	with	a	lone	electron	in	the	outermost
shell	(valance	electron)	will	try	to	unload	it	on	atoms	with	a	vacancy	in	their
outermost	shell.	 (The	same	goes	for	more	 than	one	 transferred	electron.)	As
the	shells	get	filled	this	behavior	will	repeat.	This	explains	the	periodic	table.
Given	that	maxim	“Happiness	is	a	filled	shell,”	we	can	anticipate	who	will	be
interested	in	whom.	There	are,	however,	some	surprises	and	anomalies	in	the
many-electron	atoms	that	we	cannot	get	into	here.
Our	 belief	 in	 our	 description	 of	 the	 quantum	 world	 is	 based	 on	 very

different	 considerations	 compared	 to	 the	 classical	 world.	 For	 example,	 if
Newton	 says,	 “I	 can	 show	 using	 my	 laws	 that	 the	 planetary	 orbits	 are
ellipses,”	 this	 can	 be	 confirmed	 by	 direct	 observation.	 (In	 this	 case,	 the
observation	had	already	been	done	by	Kepler	before	Newton.)	For	atoms,	on
the	 other	 hand,	 all	 we	 have	 are	 the	 energy	 levels	 and	 corresponding	 wave



functions.	 Using	 these	 we	 can	 predict	 the	 structure	 of	 atoms	 and	 their
interaction	 with	 each	 other	 and	 with	 the	 electromagnetic	 field.	 It	 is	 the
spectacular	 agreement	 between	 theory	 and	 experiment	 that	 corroborates	 our
faith	in	quantum	mechanics	as	the	way	to	describe	the	atomic	world	to	which
we	do	not	have	direct	sensory	access.

24.5			Energy-time	uncertainty	principle	We	now	consider	the
energy-time	uncertainty	principle

This	inequality	presumes	a	particular	definition	of	Δt	to	be	described	later	and
may	have	to	be	replaced	by	ΔE	Δt	 	ћ	or	ΔE	Δt	≃	ћ.	This	is	because	even	if
ΔE	is	the	precisely	defined	uncertainty	(see	Eqn.	24.128),	there	is	no	unique
definition	 of	 Δt.	 This	 is	 because	 time	 is	 not	 a	 dynamical	 variable	 with	 a
probability	 distribution,	 instead	 it	 is	 a	 parameter	 on	 which	 dynamical
variables	like	x(t)	and	ψ(t)	depend.	We	all	know	exactly	what	the	time	is	by
looking	at	a	clock	and	Δt	is	not	the	uncertainty	in	time.
What	does	Δt	mean?	For	what	definition	of	Δt	is	Eqn.	24.114	valid?	What

do	Eqn.	24.114	and	its	variants	signify?
They	often	reflect	the	fact	that	in	order	for	a	phenomenon	to	be	ascribed	a

well-defined	period,	it	must	complete	many	cycles.
Suppose,	upon	observing	you	for	some	time,	I	assert	that	you	go	from	New

Haven	to	New	York	City	and	back	once	a	day.	I	plot	your	distance	x(t)	from
New	Haven	as	a	 function	of	 time	and	find	you	complete	a	 full	cycle	 in	one
day.	For	me	to	say	with	absolute	confidence	that	the	frequency	of	your	visits
is	once	a	day,	I	need	to	have	seen	you	do	this	for	many	days.	If	you	have	been
doing	 this	 just	 two	 days	 in	 a	 row,	 it	 is	 not	 enough,	 though	 after	 ten	 days	 I
become	more	certain.	I	am	never	really	sure	because	you	may	stop	any	time.
To	be	absolutely	positively	sure,	I	have	to	wait	an	infinite	time.	But	what	can
I	 say	 after	 a	 finite	 period	 of	 observation?	 I	would	 like	 to	 say	 I	 know	 f,	 the
frequency	 of	 your	 visits,	 with	 some	 uncertainty	 Δf,	 which	 should	 decrease
with	the	observation	time	Δt.	But	what	is	Δf?
Suppose	I	have	collected	data	over	a	 time	Δt	 (not	necessarily	small).	The

slice	of	time	Δt	will	 typically	enclose	a	non-integer	number	of	trips	because
you	 will	 typically	 be	 somewhere	 in	 the	 course	 of	 your	 round	 trip	 at	 the
beginning	and	at	the	end	of	the	interval	Δt.	Thus	N,	 the	number	of	trips	you
made	 in	 this	 time	 Δt,	 will	 be	 uncertain	 by	 an	 amount	 of	 order	 1.	 So	 the
estimated	frequency	will	be



and	the	uncertainty	in	f	will	be

There	 is	a	more	 technical	definition	of	Δf.	 If	 I	use	a	Fourier	 transform	 to
express	your	x(t)	during	the	observation	period	Δt	as	a	sum	of	truly	periodic
waves	that	last	for	all	time,	it	will	be	a	sum	over	a	continuum	of	frequencies,
with	 coefficients	 peaked	 at	 f0	 =	 (24	 hrs)−1,	 and	 a	width	 of	 order	 1/Δt,	 once
again	leading	to	Eqn.	24.117.

Figure	24.4			A	series	of	reeds	ordered	by	resonant	frequency	and	pointing	out	of	the	page	are	shown
end	on.	The	top	shows	their	early	response	to	a	frequency	f0	equal	to	that	of	the	central	reed.	(The
rectangles	show	the	range	of	motion	of	each	reed	as	seen	end	on.)	The	bottom	shows	the	response	after
many	periods.

Here	 is	 a	mechanical	 example	 of	 this	 phenomenon.	Look	 at	 Figure	 24.4,
which	shows	a	line	of	reeds	arranged	according	to	their	resonant	frequencies,
with	 one	 end	 fixed,	 and	 the	 other	 end	 pointing	 out	 of	 the	 page	 and	 free	 to
vibrate	up	and	down.	If	we	now	stimulate	them	with	a	mechanical	vibrator	at
some	 f0,	we	may	expect	only	the	reed	of	that	 f0	 to	respond	strongly.	But	we
will	find	that	when	we	turn	on	the	vibrator	with	its	dial	set	at	f0,	many	of	the
reeds	near	 the	one	at	 f0	 also	 respond	substantially,	as	 indicated	 in	 the	upper
half	of	 the	 figure.	The	 rectangles	 show	 the	 range	of	motion	of	each	 reed	as
seen	end	on.
This	 occurs	 because	 the	 reeds	 do	 not	 care	 what	 the	 dial	 on	 the	 vibrator



says:	they	go	by	what	they	have	experienced	up	to	a	time	Δt,	which	is	a	finite
wave	train	of	a	periodic	stimulus	of	length	Δt.	However,	as	time	goes	by	they
will	 get	 the	message	 that	 we	 are	 applying	 a	 periodic	 force,	 and	 eventually
only	the	reed	at	f0	will	show	any	appreciable	response,	as	shown	in	the	lower
half	of	the	figure.
All	this	has	nothing	to	do	with	quantum	mechanics	and	merely	reflects	the

fact	that	to	measure	the	period	(or	frequency)	of	something	you	need	to	wait	a
few	cycles,	and	that	the	longer	you	wait,	the	better	will	be	your	determination
of	the	frequency.
Now	 for	 quantum	mechanics.	 Suppose	we	 have	many	 identical	 atoms	 in

their	 ground	 states	 (with	 energy	 E0)	 and	 we	 want	 to	 find	 out	 their	 higher
levels.	To	 this	end	we	 turn	on	 laser	 light	of	 some	 frequency	 f0	 and	 see	 if	 it
gets	absorbed.	If	it	does,	we	know	there	is	a	state	at	energy	E0	+	hf0	≡	E0	+
ћω0.	 However,	 what	 we	 will	 find	 is	 that	 initially	 the	 atoms	 will	 make
transitions	not	only	to	states	separated	by	hf0	=	ћω0,	but	also	several	states	on
either	side.	Once	again	the	dial	on	the	laser	may	read	f0	or	ω0,	but	the	atoms
are	going	with	the	data	they	have	over	the	time	Δt.	They	will	respond	to	the
frequencies	of	waves	that	make	up	this	finite	(in	time)	train	whose	expansion
Fourier	coefficients	are	given	by	a	distribution	peaked	at	f0	with	a	width	Δf	≃
1/Δt.	 Thus	 the	 spread	 in	 energy	 of	 the	 incoming	 photons	 and	 of	 the	 final
atomic	states	will	be

The	 meaning	 of	 ΔE	 is	 not	 the	 amount	 by	 which	 energy	 conservation	 is
violated.	 It	 is	 the	 range	 of	 possible	 energies	 that	 could	 be	 absorbed	 by	 the
atom	 if	 the	 energy	 transfer	 from	 the	 field	 has	 been	 going	 on	 for	 time	 Δt.
However,	 once	 the	 atom	 absorbs	 a	 photon	 with	 one	 of	 these	 energies,	 the
radiation	field	would	have	lost	an	equal	amount	of	energy.
This	 is	 analogous	 to	 the	 Δp	 of	 the	 photon	 entering	 the	 Heisenberg

microscope.	 It	 is	 not	 the	 amount	 by	 which	 momentum	 conservation	 is
violated:	instead	Δp	gives	the	range	of	momenta	the	photon	could	have	upon
measurement.	Once	one	of	these	values	is	measured,	you	can	be	sure	that	the
scattered	 electron	will	 have	 just	 the	 right	momentum	 to	 satisfy	momentum
conservation.	After	 scattering,	 the	 combined	photon-electron	 system	will	 be
in	 a	 superposition	 of	 product	 states	 with	 photon	 momentum	 p,	 electron
momentum	P	−	p,	and	total	momentum	P,	shown	below	in	obvious	notation:



We	are	given	that	the	coefficients	A(p)	are	significant	only	within	a	width	Δp
of	 the	 average	p0.	Even	 though	 the	 photon	 can	be	 detected	with	 a	 range	 of
momenta	p,	in	every	case	the	electron	will	have	the	missing	momentum	P	−
p.	Measuring	the	photon	momentum	collapses	the	sum	over	product	states	to
the	one	that	was	observed.
Consider	next	a	system	in	some	stationary	state	of	initial	energy	Ei.	If	we

turn	 on	 a	 constant	 potential	V0	 at	 time	 t	 =	 0,	 the	 system	will	 jump	 to	 final
states	of	energy

for	a	time	Δt.	This	is	so	because	the	applied	potential	is	not	really	a	constant,
but	a	step	function	that	jumped	from	0	to	V0	at	t	=	0.	This	process	violates	the
conservation	of	the	energy	of	the	system	by	 .	However,	the	energy	of
the	 system	 and	 the	 external	 agency	 that	 suddenly	 imposed	 the	 potential	V0
will	be	conserved.
Next	consider	an	atom	that	has	been	sitting	in	an	excited	state	of	energy	En

for	 some	 time	Δt	 before	 it	 decays	 to	 its	 ground	 state.	During	 the	 time	 it	 is
excited	its	wave	function	varies	with	time	as	e−iEnt/ћ.	The	Fourier	transform	of
this	 function	 (in	 existence	 only	 for	 the	 time	 Δt)	 will	 have	 a	 width	 ћ/Δt.
Consequently	 the	 light	 emitted	 by	 this	 atom	when	 it	 relaxes	 to	 the	 ground
state	will	have	a	 spectrum	centered	around	ωn,0	=	 (En	−	E0)/ћ	 and	of	width
(called	the	line	width)	ΔE	≃ћ/Δt.	Once	again	this	spread	ΔE	only	means	that
the	atom	and	radiation	field	begin	in	a	superposition	of	energy	states	with	the
atom	having	some	energy	and	the	field	the	rest	of	the	conserved	energy.	The
energy	of	 the	atom	and	 the	 field	will	always	equal	a	 fixed	conserved	value,
just	 like	 the	 total	 momentum	P	 in	 the	 Eqn.	 24.119.	 The	 statement	 that	 “a
system	 that	 has	 been	 in	 existence	 for	 a	 finite	 time	 cannot	 be	 assigned	 a
definite	 energy”	 has	 to	 be	 understood	 as	 above	 and	 not	 as	 a	 violation	 of
energy	conservation.
There	is	another	way	to	derive	and	interpret	ΔEΔt	 	ћ.	Let	us	begin	with	an

analogy.	Suppose	the	grade	distribution	of	a	class	is	some	bell-shaped	curve
with	some	average	 G 	and	width	ΔG.	Now	some	educator	comes	along	with	a
scheme	 to	 improve	 the	 average.	 If	 the	 benefits	 of	 the	 strategy	 are	 to	 be
convincing,	the	center	of	the	distribution	 G 	has	to	move	by	at	least	the	width
ΔG	when	the	changes	are	implemented.
Now	carry	this	idea	to	the	quantum	problem.	Consider	a	wave	packet	with

mean	momentum	p0	and	an	uncertainty	Δp.	Its	width	in	x	must	be



The	center	of	the	packet	moves	by	a	detectable	amount	when	it	moves	by	at
least	the	uncertainty	Δx.	With	a	mean	velocity	 	the	time	required	is

Now	 consider	 ΔE,	 the	 spread	 in	 the	 energy	 of	 the	 particle	 due	 to	 Δp,	 the
spread	in	the	momentum	of	the	wave	packet:

This	tells	us	the	spread	in	the	energy	of	the	wave	packet	is

Substituting	in	Eqn.	24.122	we	find	ΔE·	 .
To	summarize,	if	a	particle	is	in	a	state	with	uncertainty	ΔE	in	energy,	the

time	it	takes	to	move	by	Δx,	the	uncertainty	in	its	position,	obeys	Δt	≥	 .	We
have	a	precise	inequality	here	because	both	ΔE	and	Δt	are	precisely	defined.
We	 have	 already	 seen	 one	 example	 of	 this	 in	 the	 last	 chapter.	 In	 a	 state

made	 of	 two	 box	 states	 of	 energies	E1	 and	E2,	 the	minimum	 time	 Δt	 over
which	one	could	see	appreciable	change	in	P(x,	t)	(see	Eqns.	23.64	and	23.66)
was	given	by

where	ΔE	≃	E2	−	E1.
This	argument	is	very	general.	Consider	a	quantum	state	and	a	variable	

that	is	measured.	There	will	be	a	range	of	possible	outcomes	with	probability
P(α),	expectation	value



and	uncertainty

In	a	stationary	state	of	some	energy	E,	neither	 	nor	Δ 	will	change	with
time	because	P(α)	will	not.
Suppose	now	that	the	system	starts	out	in	a	superposition	of	energy	states.

Then	P(α)	and	 	can	change	with	time,	the	way	P(x,	t)	did	when	we	started
off	 the	particle	 in	a	box	state	ψ(x,	0)	=	Ax	made	of	many	energy	levels.	Let
ΔE	 be	 the	 range	 of	 energies	 in	 the	 superposition.	 Let	 Δt	 be	 the	 time	 over
which	 	changes	by	an	amount	equal	to	the	uncertainty	in	 .	In	other	words
Δt	is	given	by

From	the	time-dependent	Schrödinger	equation	one	can	compute	the	rate	of
change	of	 	and	establish	a	precise	inequality

In	other	words,	if	a	system	has	an	energy	uncertainty	ΔE	in	its	wave	function,
the	 minimum	 time	 Δt	 it	 takes	 a	 variable	 	 to	 change	 by	 the	 width	 in	 its
probability	distribution	(precisely	defined	by	its	uncertainty	Δ )	is	 .	Since
a	quantity	with	 an	 intrinsic	uncertainty	Δ 	 in	 its	 value	has	 to	 change	by	 at
least	that	amount	for	us	to	know	it	has	changed,	Δt	is	the	minimum	time	for
this	 change	 to	 be	 detectable.	 The	minimum	 time	 depends	 on	 the	 choice	 of
variable	 .	The	 smallest	 of	 such	 times	defines	 the	natural	 timescale	 for	 the
system,	which	is	the	time	it	takes	to	notice	any	kind	of	change	in	the	system
with	 respect	 to	 any	 observable.	 This	 minimum	 time	 grows	 as	 the	 energy
content	 of	 the	 state	 becomes	 sharper	 and	 sharper.	 Finally,	 for	 a	 state	 of
definite	energy,	we	have	to	wait	forever	to	witness	any	change.
Let	us	apply	this	argument	to	a	problem	we	have	already	analyzed:	an	atom

that	lives	in	an	excited	state	for	a	short	time	τ	and	decays	to	the	ground	state.



The	initial	atomic	state	is	clearly	not	a	stationary	state	because	things	change;
the	 atom	 relaxes	 to	 the	 ground	 state.	 So	 the	 initial	 state	must	 have	 been	 a
superposition	of	many	energy	states.	We	know	from	the	preceding	argument
that	the	spread	ΔE	is	related	to	the	time	Δt	over	which	something	noticeable
happens	by

Since	the	atom	decays	in	a	time	τ,	called	the	lifetime,	and	since	its	decay	is
certainly	a	noticeable	event,	it	is	fair	to	assert	that	Δt	≃	τ.	This	leads	to

This	 is	what	 leads	 to	 the	 statement	 that	a	 system	with	a	 lifetime	 τ	has	an
uncertainty	 in	 its	 energy	 .	What	 this	means	 is	 that	 such	 an	 unstable
state	 is	a	state	 in	a	superposition	of	ψE’s	with	 the	values	of	E	spread	over	a
width	ΔE.

24.6			What	next?
The	end	of	this	book	is	just	the	beginning	of	your	journey	into	physics.	There
is	 so	much	 to	 learn	 on	 every	 front.	 For	 example,	 the	 quantum	mechanics	 I
described	 here	 is	 based	 on	 the	 Schrödinger	 equation	 and	 begins	 with	 the
Newtonian	expression	for	kinetic	energy

This	works	if	the	particles	involved	have	kinetic	energies	small	compared	to
the	rest	energy	mc2.	When	this	condition	is	not	met,	we	need	the	relativistic
wave	 equation	 due	 to	 P.	 A.	 M.	 Dirac,	 who	 begins	 with	 the	 relativistic
expression

At	 some	point,	 the	Dirac	 theory	 too	becomes	 inadequate.	For	 example,	 two
energy	 levels	 of	 hydrogen	 that	 are	 supposed	 to	 be	 degenerate	 in	 the	 Dirac
theory	 were	 found	 to	 differ	 slightly	 by	 what	 is	 called	 the	 Lamb	 shift.	 To
explain	this	we	need	quantum	field	theory,	which	treats	matter	and	radiation
in	accordance	with	 the	 laws	of	quantum	mechanics	 and	 relativity.	Quantum
field	theory	has	proven	to	be	a	powerful	way	to	describe	and	possibly	unify
electromagnetic,	weak	and	strong	interactions	into	one	big	gauge	theory.	But



this	 too	 has	 some	 problems:	 there	 are	 unwanted	 infinities	 at	 intermediate
stages	 in	 the	calculation	of	 finite	answers.	There	 is	a	 recipe	 for	 fixing	 these
infinities	 and	 extracting	 the	 finite	 answers	 (which	 agree	 exceptionally	 well
with	experiment,	say	in	describing	the	Lamb	shift),	but	the	fix	does	not	work
for	gravity,	which	we	would	want	to	include.
String	 theory	 is	 a	 potential	 solution	 to	 all	 the	 woes	 of	 field	 theory:	 no

infinities	appear,	gravity	is	seamlessly	incorporated,	and	even	the	number	of
space-time	dimensions,	which	could	be	anything	in	field	theory,	is	fixed	to	be
10.	 All	 this	 is	 very	 seductive.	 However,	 there	 are	 some	 technical
complications	at	the	present	time,	and,	more	significantly,	the	real	differences
due	 to	 strings	 appear	 only	 at	 the	 unimaginably	 small	 distance	 called	 the
Planck	 length	 ≃	 10−35m,	 which	 is	 10−20	 times	 the	 proton	 size.	 (For
comparison,	 the	 radius	 of	 the	 atom	 is	 roughly	10−20	 times	 the	 radius	 of	 the
earth’s	orbit	around	the	sun.)	The	energy	required	to	test	string	physics	would
be	1015	times	that	of	the	Large	Hadron	Collider,	which	operates	at	1012eV.	So
even	 if	string	 theory	 is	 right,	 it	may	be	hard	 to	verify	 that	 it	 is	so,	based	on
what	we	can	experimentally	probe	today.	But	strings	should	play	a	significant
role	 in	 the	 very	 early	 universe,	 and	 that	 is	 why	 people	 are	 looking	 for
remnants	of	“stringy	physics.”
So	you	have	a	lot	to	learn	and	you	better	get	started!



Constants

G	=	6.7	·	10−11m3	·	kg−1	·	s−2			gravitational	constant
e	=	1.6	·	10−19C			proton	charge
me	=	9.1	·	10−31kg			electron	mass
mp	=	1.7	·	10−27kg			proton	mass

ћ	=	1.05	·	10−34J	·	s			Planck’s	constant

1	Amp	=	1	·	C/s
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electromotive	force,	133
electromotive	force,	 ,	emf,	130
electron	volt,	101
elliptical	mirrors	à	la	Fermat,	349
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Lorentz	transformation:	review,	305
LR	circuit	with	battery,	221
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quantum	dynamics,	533
quantum	field	theory,	12,	584
quantum	mechanics:	main	experiements,	406
qubits,	449

radio,	248
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