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Preface

The theory of probability and mathematical statistics is becoming indispensable

knowledge for an increasing number of engineers and scientists. This is caused by

the enlarging significance of the economic and societal consequences of technolo-

gical systems due to uncertainties affecting performance. That is why the funda-

mental concepts and procedures used to analyse, design, execute and utilize these

systems are, at present, based on the theory of probability and mathematical

statistics.

However, these probabilistic and statistical concepts are still not properly under-

stood or interpreted by experts, including engineers and scientists involved in the

various stages of system developments. The present book is an attempt to improve

this undesirable situation by providing easily understandable descriptions of seem-

ingly intricate probabilistic concepts. The objective of the book is to provide a

concise and transparent explanation of the most important concepts commonly used

in engineering and science.

The book is based on the lecture notes of the author, used in undergraduate and

graduate courses at technical universities. The text is written in simple language using

limited mathematical tools and emphasising the didactic aspects. All the theoretical

concepts and procedures have been systematically illustrated by numerical examples.

Selected, commercially available software products (in particular Excel and

MATHCAD) are utilized in the practical numerical examples given.

Other than a basic knowledge of undergraduate mathematics, no special

prerequisites are needed. This book is in the form of a text book, but can also be

used as a reference handbook by undergraduate and graduate students, engineers

and scientists, and by all specialists in the field of statistical evaluation of data,

reliability analysis and risk assessment.

Due to the limited scope of the book, some concepts and procedures have been

introduced without due theoretical development. In such cases, a reference to

specialised literature is provided. However, in order to make the text understandable,

the theoretical procedures are often illustrated by explanatory examples, which

extend the main text and also indicate further possible applications of the general

theoretical concepts.
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Chapter 1

Introduction

The theory of probability and mathematical statistics is becoming an indispensable

tool in the analysis of many contemporary tasks in engineering and science. Wide-

ranging experience confirms that probability is one of the most important concepts

in modern science. In spite of that, comprehensive understanding of the fundamen-

tal principles of the theory of probability and statistics still seems to be inadequate.

Consequently, the results of numerous applications are often understood and

interpreted loosely and imprecisely.

Nevertheless, an increasing number of procedures applied in various technical

fields are nowadays based on the theory of probability and mathematical statistics

[1, 2]. The majority of new professional rules and provisions, codes of practice and

standards are based on principles of the theory of probability and statistics

[3–5]. Consequently, many engineers, scientists, experts, public officers and other

experts participating in any process of decision making are directly or indirectly

confronted with new knowledge, procedures and terminology [3, 6–8]. The present

book is an attempt to provide a concise introductory text aimed at all classes of

involved specialists, experts and the general public.

It is well recognised that many technological systems including engineering

works suffer from a number of significant uncertainties which may appear at all

stages of design, execution and use [9, 10]. Some uncertainties can never be

avoided or eliminated entirely and must therefore be taken into account when

analysing, designing, executing and using the system. The following types of

uncertainties can be generally recognised [11]:

– Natural randomness of actions, material properties and geometric data;

– Statistical uncertainties due to limited available data;

– Uncertainties of theoretical models due to simplifications;

– Vagueness due to inaccurate definitions of performance requirements;

– Gross errors in design, execution and operation of the system;

– Lack of knowledge of the behaviour of elements in real conditions.

Note that the order of the listed uncertainties corresponds approximately to the

decreasing scope of current knowledge, as well as to the lack of theoretical tools,
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making it problematic to take these uncertainties into account in any analysis.

Depending on the nature of the system, environmental conditions and applied

influences, some types of uncertainties may become critical, while some may turn

out to be insignificant.

The above uncertainties are sometimes classified into two main groups:

– Aleatoric (random) uncertainties;

– Epistemic (notional) uncertainties.

Some of the above mentioned uncertainties are mainly aleatoric (for example

natural randomness), the other can be classified as epistemic (for example lack of

knowledge). Nevertheless theoretical tools to analyse uncertainties are confined

primarily to the theory of probability and mathematical statistics.

The natural randomness and statistical uncertainties (mainly aleatoric) may be

relatively well described by the available methods of the theory of mathematical

statistics. In fact the International Standards [3–5] provide some guidance on how

to proceed. However, lack of reliable experimental data, i.e. statistical uncertainty,

particularly in the case of new elements, actions, environmental influences, and also

specific geometrical data, causes significant problems.

Moreover, the available sample data are often not homogeneous and are

obtained under differing conditions (for example in the case of material properties,

imposed loads, environmental influences and hidden internal dimensions). Then, it

becomes difficult – if not impossible – to use these data for developing general

theoretical models.

Uncertainties regarding applied theoretical models used to analyse the system

may be, to a certain extent, assessed on the basis of theoretical and experimental

investigation. The vagueness caused by inaccurate definitions (in particular of some

performance requirements) may be partially described by the theory of fuzzy sets.

Up to now, however, these methods have been of little practical significance, as

suitable experimental data are very difficult to obtain. Knowledge about the

behaviour of new materials and structural systems is gradually improving thanks

to newly developing theoretical tools and experimental techniques.

The lack of available theoretical tools is obvious in the instances of gross error

and lack of knowledge (epistemic uncertainties), which are, nevertheless, often the

decisive causes of system failures. In order to limit the gross errors caused by

human activity, quality management systems, including the methods of statistical

inspection and control (see for example [3–5]), can be effectively applied.

A number of theoretical methods and operational techniques have been devel-

oped and used to control the unfavourable effects of various uncertainties during a

specified working life. Simultaneously, the theory of reliability has been developed

to describe and analyse the uncertainties in a rational way, and to take them into

account in analysis and verification of system performance. In fact, the develop-

ment of the whole reliability theory was initiated by observed insufficiencies and

failures caused by various uncertainties. At present the theory of reliability is

extensively used in many technical areas to develop and calibrate operational

procedures for assessing reliability.
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That is why the theory of probability and mathematical statistics is becoming an

indispensable discipline in many branches of engineering and science. This is also

caused by the increasing economic and social consequences of various failures

affecting the performance of complex technological systems. Fundamental

concepts and procedures used in analysis of these systems are inevitably based on

the theory of probability and mathematical statistics.

The objective of this book is to provide a concise description of basic theoretical

concepts and practical tools of probability theory and mathematical statistics that

are commonly used in engineering and science. The book starts with the funda-

mental principles of probability theory that are supplemented by evaluation of

experimental data, theoretical models of random variables, sampling theory, distri-

bution updating and tests of statistical hypotheses. In addition two-dimensional

random samples and a short description of random functions are provided.

Examples concerning various technical problems are used throughout the book to

illustrate basic theoretical concepts and to demonstrate their potential when applied

to the analysis of engineering and scientific systems. The text is structured into

12 chapters and 7 annexes as follows.

The basic concepts of probability theory, including the Bayesian approach, are

introduced in Chap. 2. Chapter 3 deals with the necessary techniques for evaluation

of statistical data. General concepts used to describe various discrete and continu-

ous random variables are generally introduced in Chap. 4. Selected theoretical

models of discrete and continuous random variables commonly used in engineering

and science are presented in Chaps. 5 and 6. Chapter 7 is devoted to fundamental

linear and nonlinear functions of random variables describing engineering and

scientific problems. The estimation of population parameters, together with sam-

pling distributions, is described in Chap. 8. One of the keywords of engineering and

scientific applications is the term fractile (sometimes called quantile); relevant

statistical techniques for determining the fractiles of theoretical models and for

estimating them from limited sample data are described in Chap. 9. The testing of

statistical hypotheses is covered in Chap. 10. Two-dimensional samples and

populations, coefficients of correlation and regression (including their estimation

from a sample), and tests of the population coefficients of correlation and regression

are described in Chap. 11. Finally, random functions, more and more frequently

applied in engineering and science, are briefly introduced in Chap. 12. Annexes

summarize characteristic of random samples, parameters of population, theoretical

models of random variables, parameters of functions of random variables,

techniques for estimating fractiles, conventional models of random variables, and

include a brief table of standardized normal distribution.

The book is based on limited mathematical tools and all the theoretical

procedures are systematically illustrated by numerical examples. The text is written

in simple language with an emphasis on didactic aspects. Except for a basic

knowledge of undergraduate mathematics, no special prerequisites are required.

The aim of the book is to provide a concise introductory textbook and handbook

that will provide quick answers to practical questions.
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The size of the book has been kept deliberately limited and, consequently, some

procedures are introduced without detailed theoretical development. In such cases a

reference to specialised literature is provided (particularly to the book [1] and other

publications [12–19]). In order to make the text understandable, the theoretical

procedures are often explained with the help of illustrative examples that supple-

ment the main text and indicate further possible applications of the theoretical

concepts in engineering and science. Due to the limited extend of the book

numerical values of random variables required in examples are mostly taken from

easily accessible tables provided by software products like EXCEL, MATHCAD,

STATISTICA and numerous other products, or from Statistical tables available on

the internet. A brief numerical table for the distribution function of a normal

distribution is also provided in Appendix 7.

The book has the character of a text book, but can be used also as a concise

handbook. It is primarily intended for undergraduate and graduate students of

engineering and science, for engineers, scientific workers, and other specialists

participating in the field of evaluation of statistical data, reliability analysis, risk

assessment and decision making.
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Chapter 2

Basic Concepts of Probability

The basic concepts of the theory of probability, frequently applied in engineering

and scientific tasks, are best illustrated by practical examples. Fundamental terms

like “experiment”, “random event” and “sample space” are supplemented by

descriptions of the common relations between random events. The key notion of

probability is defined, taking into account historical approaches and practical

interpretations related to engineering and scientific applications. The basic rules

for the calculation of probability are illustrated by numerical examples. The

essential concept of conditional probability is clarified in detail and was used to

develop the Bayes’ theorem. Various applications of the theorem are demonstrated

by examples taken from engineering. An extension of the Bayes’ theorem is used to

develop operational procedures for probability updating.

2.1 Experiment, Random Event, Sample Space

This chapter gives a concise overview of the most important concepts and terms of

the theory of probability, especially those which are most often used in reliability

analyses of civil engineering works and systems. The presentation of some concepts

and laws is rather intuitive without rigorous mathematical proofs. More detailed

explanations of all the relevant concepts, theorems and rules may be found in

specialised literature [1, 2].

The most significant fundamental concepts of the theory of probability applied in

structural reliability include:

– Experiment;

– Random event; and

– Sample space (space of events).

These terms are used in classical probability theory, but are also applicable in

contemporary probability theory based on the theory of sets.

M. Holický, Introduction to Probability and Statistics for Engineers,
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2.1.1 Experiment

An experiment in the theory of probability is understood as the realization of a

certain set of conditions π. In the classical approach to the theory of probability it is
often assumed that the experiments can be repeated arbitrarily (e.g. tossing a dice,

testing a concrete cube) and the result of each experiment can be unambiguously

used to declare whether a certain event occurred or did not occur (e.g., when tossing

a dice, obtaining or not obtaining a predetermined number, or when a concrete cube

exceeds or does not exceed a specified value).

However, in practical applications of the theory of probability the assumption of

arbitrary repeatable experiments, each of which leads to an unequivocal result

(even though not known beforehand), is not always realistic (e.g. in the construction

industry, where usually only a very limited number of experiments can be

performed). Contemporary usage of the theory of probability allows for more

general concepts, wherein terms such as experiment, event and sequence of events

are related to the general theory of sets.

The concept of an experiment remains applicable in general. However, specifi-

cation of the conditions π is of the utmost importance, irrespective of whether the

experiment can be realistically carried out. In some cases the experiment can only

be carried out hypothetically. In any case, the specification of the conditions π needs
to be as accurate and as complete as possible. The results and interpretation of any

experiment should always be related to these conditions. The comparison of

experiments carried out under different conditions may lead to serious mistakes

and misunderstandings. Description of the appropriate set of conditions and their

verification should therefore become an indispensable part of every probabilistic

analysis.

2.1.2 Random Event

Probability theory deals with the results of experiments that are not unequivocally

determined in advance by the appropriate set of conditions π, or with experiments

for which a set of conditions that would lead to an unequivocal result either cannot

be provided during an experiment, or is not known at all (or partly unknown). An

experiment of this kind is called a random experiment. The result of a random

experiment is characterised by events that could, but will not necessarily, occur

when the conditions π are realized. Such events are called random events and are

usually denoted by a capital letter from the beginning of the alphabet, e.g. A or B
(possibly with an index). An event that will necessarily occur every time the

conditions π are realized is called a certain event – denoted here by the symbol

U; an event that can never occur is called an impossible event – usually denoted

as V.
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2.1.3 Sample Space

The sample space Λ of a certain random experiment denotes all events which can

occur by the realization of a specified set of conditions π, i.e. those which can be

outcomes of the experiment under consideration. The sample space can be finite

(tossing a dice), or infinite (testing a concrete cube in a testing machine). In some

cases a system of elementary events can be found, i.e. a system of events that cannot

be further divided (e.g. tossing a dice numbers 1–6 represents such elementary

events). In other cases the system of elementary events is not obvious, or does not

exist (testing a cube in a testing machine).

All the fundamental terms that have been introduced – experiment, set of

conditions π, event and sample space Λ – are clarified by the following three simple

examples, which constitute an integral part of this summary. Besides a complemen-

tary explanation of the relevant terms, the following examples provide further

information on the general principles and mathematical tools used to describe

real conditions and accepted simplifying assumptions.

Example 2.1. Tossing a dice is a traditional (and from an educational viewpoint a

very useful) example of a random experiment. In this case the set of conditions π is

trivial. The dice is balanced and symmetrical and cast in a correct way that will not

affect the number obtained when the dice is tossed.

The certain event U denotes the event where any of the numbers 1, 2, 3, 4, 5 or

6 occur.

The impossible event V denotes the event when other numbers appear (e.g. 0, 7,

9 etc.).

Elementary events Ei, i ¼ 1, 2 to 6, which cannot be further divided, denote the

number i ¼ 1, 2 to 6. If the given set of conditions π is satisfied, the occurrence of

every elementary event is equally possible. In this case we can say that it is a system

of equally possible elementary events.

Random events Ai, for example the appearance of the number 1, can be denoted

as A1 ¼ E1; the appearance of the even numbers as A2 ¼ E2 [ E4 [ E6; the

appearance of the numbers divisible by three as A3 ¼ E3 [ E6; the appearance of

the numbers divisible by two or three as A4 ¼ E2 [ E3 [ E4 [ E6, etc. The sample

space Λ (i.e. the total of all possible events which may occur at a toss) is, in this

case, obviously finite.

Example 2.2. The cylinder strength of a specific concrete is examined. The

random experiment is the loading of a test cylinder into a testing machine. The

set of conditions π includes the composition, treatment and age of concrete,

the dimensions of the cube, the speed of the loading, etc. The investigated random

event is the failure of the concrete cylinder at a certain level of loading. If the

loading is sufficiently high, the cylinder always fails; at sufficiently low levels of

loading the failure will never occur. At the loading level corresponding to the

characteristic cylinder strength of concrete the failure may occur (e.g. 5 % of all

cases on average) or may not (e.g. 95 % of all cases).
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Elementary events can be defined in many ways, e.g. by a system of intervals of

equal width within a certain loading range. Consider concrete of the grade C

20 having the characteristic cylinder strength 20 MPa. The possible range of

loading from 10 to 50 MPa is split into the intervals of 4 MPa and elementary

events are defined as the failure of a cylinder at the loading level within each

interval. Figure 2.1 shows the results of 50 experiments under specified conditions

π. Solid bars in each interval indicate the number of failed cylinders. It follows from

Fig. 2.1 that two cylinders failed at the loading level of 18–22 MPa, nine cylinders

failed in the next interval of 22–26 MPa, 17 cylinders failed in the interval of

24–30 MPa, etc. Without doubt, it is not a system of equally possible events (see

Fig. 2.1). The sample space Λ consists of any one-sided or two-sided interval and is

obviously infinite. Figure 2.1 shows a frequently used graphical representation of

experimental results, called a histogram, which is commonly used for the develop-

ment of probabilistic models describing basic variables.

Example 2.3. Consider throwing a dart onto a board indicated in Fig. 2.2. Each

throw represents one realization of a random experiment. The set of conditions π
includes the distance of the board from the throwing point, the size of the board, the

type of dart and other conditions for throwing.

It is assumed that every point of the board can be hit with equal likelihood, and

that the board is always hit (these are, undoubtedly, questionable assumptions).

The hitting of the whole board is therefore a certain event U.
An impossible event V is a throw that misses the board.

A random event, though, may be the hitting of any smaller area, A or B, drawn on
the board (Fig. 2.2), or of any combination of such areas. The system of all possible

areas on the board represents an infinite sample space Λ.

10 20 30 40 50
0

5

10

15

20
Number of failed cylinders

Loading level [MPa]

Fig. 2.1 The number of

failed cylinders versus the

loading level
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2.2 Relations Between Random Events

Example 2.3 indicates a common representation of random events (see Fig. 2.2)

using oval figures illustrating the mutual relations between the random events A, B,
C,. . . (such a representation is called a Venn diagram). In Fig. 2.2 the certain event

U is represented by the whole rectangle, two random events A and B are symbolized

by the ovals. Let us consider some basic relations between events A and B, which
lead to the definition of other important terms and to the derivation of some general

relationships between the random events. Other diagrams similar to Fig. 2.2 may

illustrate all the following relationships and combinations of random events. A

detailed explanation including formal mathematical proofs of all rules may be

found in specialised literature [3, 4].

If an event B occurs every time the conditions π are realized, as a result of which

an event A occurs, we say that event A implies event B, which is usually symboli-

cally denoted as A � B. If the events A and B occur simultaneously every time the

conditions π are realized, we say that an intersection of the two events occurs. An

intersection of the events A and B is denoted as A \ B. If at least one of the events A
and B occurs at every realization of the conditions π, a union of the two events

occurs. This is denoted by A [ B. If event A occurs but event B does not, then the

difference A–B of the two events occurs. Events A and Ā are complementary events

(we also say that event Ā is the opposite of event A) if it holds simultaneously that

A [ Ā ¼ U and A \ Ā ¼ V. It can be shown that the following simple rules (the

commutative, associative and distributive laws) hold for the intersection and union

of random events:

A \ B ¼ B \ A; A [ B ¼ B [ A (2.1)

ðA \ BÞ \ C ¼ A \ ðB \ CÞ; ðA [ BÞ [ C ¼ A [ ðB [ CÞ (2.2)

ðA \ BÞ [ C ¼ ðA [ CÞ \ ðB [ CÞ; A [ ðB \ CÞ ¼ ðA [ BÞ \ ðA [ CÞ (2.3)

These basic rules lead to the definition of more complicated relations of the

intersection and the union of a system of events Ai:

U

A

B

Fig. 2.2 An example of

throwing a dart onto a

board – Venn diagram
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\
i

Ai ¼ A1 \ A2 \ A3 \ . . . \ An[
i

Ai ¼ A1 [ A2 [ A3 [ . . . [ An (2.4)

The following rules (the so-called de Morgan rules), the validity of which

follows from the above relations, are sometimes effectively applied in practical

computations of probabilities of complex events

\
i

Ai ¼ Ai [ A2 [ . . . [ An

[
i

Ai ¼ A1 \ A2 \ . . . \ An (2.5)

The use of these rules is evident from the two following examples.

Example 2.4. A simple serial system loaded by forces P consists of two elements

as shown in Fig. 2.3. Failure F of the system may occur due to failure F1 of the

element 1 or due to failure F2 of the element 2:

F ¼ F1 [ F2

The complementary eventF (no failure) is, according to relation (2.5), described

by an event for which it holds

F ¼ F1 [F2 ¼ F1 \ F2

Example 2.5. A town C is supplied with water from two sources, A and B, by a

pipeline, which consists of three independent branches 1, 2 and 3 (see the scheme in

Fig. 2.4). Let us denote F1 as the failure of branch 1, F2 the failure of branch 2 and

F3 the failure of branch 3. In a case where the sources A and B have sufficient

capacity to supply the town C, the lack of water in that town is described by the

event (F1 \ F2) [ F3; here, either the branch 3 fails or the branches 1 and 2 fail. For

the analysis of this event, however, it may be expedient to study a complementary

event describing the sufficiency of water in the town C.
According to de Morgan’s rules the complementary event of the sufficiency of

water in the town C is described by the event

ðF1 \ F2Þ [ F3 ¼ ðF1 [ F2Þ \ F3

where the event ðF1 [ F2Þ represents sufficient water in the junction of branches

1 and 2, which is at the same time the beginning of branch 3.
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Example 2.6. Let us consider the statically determinate truss structure shown in

Fig. 2.5, consisting of seven members and loaded by forces P. The aim is to

describe an event F as that in which a structural failure occurred. Let Fi denote

the event in which a failure of the element i ¼ 1, 2, . . ., 7 occurred.

The failure of the whole structure (event F) occurs if a failure of at least one of
the members occurs. Therefore it holds that

F ¼
[7
i¼1

Fi

With regard to the conditions of manufacture of the individual members the

events Fimay be mutually dependent and thus are not exclusive. In the computation

of the probability of failure it may then be expedient to consider the complementary

event F for which it holds, according to de Morgan’s rules (2.5)

F ¼
[7
i¼1

Fi ¼
\7
i¼1

Fi

Similar relationships may be effectively used when analysing complex technical

systems.

P P1 2Fig. 2.3 A serial system

A

C

B 

1

3

2

Fig. 2.4 Water supply

system of a town C from

sources A and B

P P

1

2

3

4

5

6

7

Fig. 2.5 Statically

determinate truss structure
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The following additional terms are often used. We say that a system of events Ai

forms a complete system of events if the union of these events is a certain event U.
In that case at least one event, Ai, always occurs. A complete system of mutually

exclusive events is another term that is sometimes used when analysing complex

events. In that case only one event Ai always occurs.

2.3 Definitions of Probability

2.3.1 Classical Definition

Probability describes the occurrence of random events. The definition of probability

is, however, a mathematically intricate problem. Historically it has experienced an

interesting evolution, reflecting the remarkable development of the theory of

probability and its practical applications. The classical definition of probability is

based on a complete system of elementary events. Let an event A consist ofm out of

n, equally likely elementary events where the total number n is formed by a

complete system of mutually exclusive events. The probability of event A is then

given by the quotient

PðAÞ ¼ m=n (2.6)

For probability defined in this way it obviously holds that

0 � PðAÞ ¼ m=n � 1 (2.7)

PðUÞ ¼ n=n ¼ 1; PðVÞ ¼ 0=n ¼ 0 (2.8)

It can also be shown for a system of mutually exclusive events Ai that the

probability of the union of these events is given by the relation

P
[1
i¼1

Ai

" #
¼
X1
i¼1

P½Ai� (2.9)

The classical definition of probability is fully acceptable for many elementary

cases, such as the tossing of a dice in Example 2.1. However, if the dice is not

symmetrical, the classical definition obviously fails. Examples 2.2 and 2.3 further

indicate that a finite system of elementary events is not sufficient for the fundamen-

tal problems of civil engineering. In the attempt to deal with these insufficiencies

other definitions of probability gradually emerged.
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2.3.2 Geometrical Definition

The geometrical definition of probability is related to the throwing of a dart in

Example 2.3. According to this definition, the probability of an event A is equal to

the quotient of the surface area of event A, the denoted area(A), and of the surface

area of the certain event U, the denoted area(U ), i.e. by the quotient

PðAÞ ¼ areaðAÞ=areaðUÞ (2.10)

Thus, the geometric definition attempts to eliminate one insufficiency of the

classical definition, which lies in the finite number of elementary events. However,

this definition still does not take into account the reality that not all the points on the

board (event U ) have the same possibility of occurrence. Obviously, the “surface

area” is not an appropriate measure of occurrence; this difficulty is still to be solved.

2.3.3 Statistical Definition

The statistical definition of probability is based on the results of an experiment

repeated many times. Let us consider a sequence of n realizations of an experiment.

Assume that a certain event A comes up m(A) times out of these n experiments. It

appears that the relative frequency of the occurrence of the event A, i.e. the fraction
m(A)/n, attains an almost constant value with an increasing number of realizations

n. This phenomenon is called the statistical stability of relative frequencies, i.e. of

the fraction m(A)/n. The value to which the relative frequencym(A)/n approaches as
n increases (n ! 1) is accepted as an objective measure of the occurrence of the

event A and is called the probability P(A) of the event A:

PðAÞ ¼ lim
n!1

mðAÞ
n

(2.11)

However, the assumption of statistical stability and convergence indicated in

Eq. (2.11) (i.e. the limit of the quantity derived from the results of experiments)

causes some mathematical difficulties.

2.3.4 Axiomatic Definition

The classical, geometrical as well as statistical definitions of probability attempt to

define not only the probability, but also to propose a rule for its computation –

something that is extremely difficult and perhaps impossible, to achieve.
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The long-term effort to define the basic terms of the theory of probability seems

to reach fruition with the so-called axiomatic system, which is accepted all over the

world. The axiomatic system defines only the term of probability and its funda-

mental properties without providing any practical instructions for its determination.

Note that Eqs. (2.7, 2.8, and 2.9) characterize the common properties of the

classical, geometrical as well as statistical definition of probability:

1. The probability of a certain event is equal to 1;

2. The probability of an impossible event is equal to 0; and

3. If an event A is a union of partial and mutually exclusive events A1, A2, . . ., An,

then the probability of event A is equal to the sum of probabilities of the partial

events.

The axiomatic definition of probability introduces these general properties as

axioms. Probability P is a real function, defined in a sample space Λ above the

certain event U with these properties:

1. If A 2 Λ, then

PðAÞ ¼ � 0 (2.12)

2. For the certain event U, it holds that

PðUÞ ¼ 1 (2.13)

3. If Ai 2 Λ, i ¼ 1, 2, . . . and if for arbitrary i and j Ai \ Aj ¼ V, then

P
[1
i¼1

Ai

 !
¼
X1
i¼1

PðAiÞ (2.14)

It can be seen that the above-mentioned three axioms are confirmed by the

classical, geometrical and statistical definitions. Moreover, the axiomatic definition

of probability also fits the new concept of probability as a measure of the fulfilment

of a statement or requirement, often assessed only by intuition and a subjective view

(an expert judgement). This subjective definition is sometimes called Bayesian

probability. However, it should be noted that in this approach the concept of

reproducible (repeatable) random events, which forms the basis for the probability

determination of an event, is completely impossible.

Note that by using the above axioms, the modern theory of probability transfers

into the general theory of sets. Probability is then defined as a non-negative additive

function of sets, which can be interpreted as a generalization of the term “surface

area” in the geometrical definition of probability.
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2.4 Basic Rules for the Computation of Probabilities

Using Eqs. (2.6, 2.7, 2.8, and 2.9) or axioms Eqs. (2.12, 2.13, and 2.14), other rules,

which can be useful in computations of probabilities, can be derived. If Ai, i ¼
1, 2, . . . n, form a complete system of events, then it evidently holds that

P
[n
i¼1

Ai

 !
¼ PðUÞ ¼ 1 (2.15)

If an event A is a union of partial and mutually exclusive events, Ai, i ¼ 1, 2, . . ., n,
we can write

PðAÞ ¼ P
[n
i¼1

Ai

 !
¼
Xn
i¼1

PðAiÞ (2.16)

For the probability of the union of two arbitrary events A and B (which do not

have to be exclusive) the principle of the summation of probabilities holds

PðA [ BÞ ¼ PðAÞ þ PðBÞ � PðA \ BÞ (2.17)

which follows from Eq. (2.16) for mutually exclusive events A and B � (A \ B), of
which the union is the studied event A [ B.

If Ai, i ¼ 1, 2, . . ., n, is a complete system of mutually exclusive events, then we

obtain from Eq. (2.15)

P
[n
i¼1

Ai

 !
¼
Xn
i¼1

PðAiÞ ¼ PðUÞ ¼ 1 (2.18)

From Eq. (2.18) for complementary events A and Ā it follows that

P �Að Þ ¼ 1� PðAÞ (2.19)

Example 2.7. Let us determine the probability that a serial system described in

Example 2.4 will fail. Let P(F1) ¼ 0.05, P(F2) ¼ 0.05 and P(F1 \ F2) ¼ 0.02.

Then, considering the relation (2.17), we find that

PðF1 [ F2Þ ¼ PðF1Þ þ PðF2Þ � PðF1 \ F2Þ ¼ 0:05þ 0:05� 0:02 ¼ 0:08

Note that the events F1 and F2 are not exclusive (failures of both elements can

occur simultaneously). If they were exclusive, the probability of failure would be

0.10. Other details concerning this example will be provided in the next section by

the principle of multiplication of probabilities.
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2.5 Conditional Probability

Conditional probability P(AjB) of the event A under a complementary condition that

another event B has occurred simultaneously (or before), and has a non-zero

probability, is an important concept in the contemporary theory of probability

which is often used in the theory of structural reliability. The conditional probabil-

ity P(AjB) is defined as the fraction

P AjBð Þ ¼ P A \ Bð Þ=PðBÞ (2.20)

This relation is the basis of the so-called Bayes concept of the theory of

probability (Thomas Bayes (1702–1761)). In two special cases important

simplifications of relation (2.20) are valid. If events A and B are exclusive,

i.e. A \ B ¼ V, then P(AjB) ¼ 0; if an event A implies an event B, i.e. it holds
that A � B, then P(AjB) ¼ P(A)/P(B). If B � A, then P(AjB) ¼ 1. These rules

follow directly from the basic properties of probability described in Sects. 2.2 and

2.3.

A general rule for the multiplication of probabilities follows from Eq. (2.20)

P A \ Bð Þ ¼ PðBÞ P AjBð Þ (2.21)

Consider again the special cases. If the events A and B are exclusive,

i.e. A \ B ¼ V, then P(AjB) ¼ 0 and also P(A \ B) ¼ 0; if A � B, then P(AjB) ¼
P(A)/P(B) and P(A \ B) ¼ P(B); if, conversely, B � A, then P(AjB) ¼ 1 and

P(A \ B) ¼ P(B).
We say that events A and B are independent (the occurrence of event B does not

influence the probability of the occurrence of event A) if it holds that P(AjB) ¼
P(A). Consider the special cases introduced above. If events A and B are exclusive,

then they are dependent because P(AjB) ¼ 0 6¼ P(A) (if A is not an impossible

event). If A � B, then A and B are dependent events, because P(AjB) ¼ P(A)/
P(B) 6¼ P(A), if conversely B � A, then the events A and B are dependent, because

P(AjB) ¼ 1 6¼ P(A). Therefore independent events A and B must not be exclusive,

i.e. A \ B 6¼ V, and satisfy the trivial relations A 6� B and B 6� A.
If two events A and B are independent (and therefore it holds that A \ B 6¼ V,

A 6� B and B 6� A), then it follows from Eq. (2.21)

PðA \ BÞ ¼ PðAÞ PðBÞ (2.22)

Relation (2.22) is the principle of the multiplication of probabilities, according

to which the probability of intersection (a simultaneous occurrence of two indepen-

dent random events) is given by the product of their probabilities. This fundamental

rule is needed for probability integration in the theory of reliability.

Example 2.8. Taking into account relation (2.21), the following relation can be

written for the probability of failure of a serial system, as described in Example 2.7
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PðFÞ ¼ PðF1 [ F2Þ ¼ P F1ð Þ þ P F2ð Þ � PðF1 \ F2Þ
¼ P F1ð Þ þ P F2ð Þ � P F1ð ÞPðF2jF1Þ ¼ 0:10� 0:05PðF2jF1Þ

If the events F1 and F2 are independent, then P(F2jF1) ¼ P(F2) and the failure

probability is given as

PðFÞ ¼ PðF1 [ F2Þ ¼ PðF1Þ þ PðF2Þ � PðF1Þ PðF2Þ ¼ 0:10� 0:0025 ¼ 0:0975

If the events F1 and F2 are perfectly dependent (F1 � F2), i.e. P(F2jF1) ¼ 1,

then

PðFÞ ¼ PðF1 [ F2Þ ¼ PðF1Þ þ PðF2Þ � PðF1Þ ¼ 0:10� 0:05 ¼ 0:05

The serial system acts in this case as a single element. Thus, in general, the

probability of failure of the serial system under consideration fluctuates from 0.05

to 0.0975 depending on the degree of dependence of the events F1 and F2.

Assume that an event A can occur only by the realization of one of the mutually

exclusive events Bi, i ¼ 1, 2, . . ., n (n ¼ 5 in Fig. 2.5), for which the probabilities

P(Bi) are known. If the conditional probabilities P(AjBi) are also known (obviously

P(AjB5) ¼ 0), then the probability of the event A can be assessed as

PðAÞ ¼
Xn
i¼1

PðBiÞ PðA Bij Þ (2.23)

which is called the theorem of total probability.

2.6 Bayes’ Theorem

When an event A occurs, it is natural to investigate which of the events Bi caused A,
i.e. what is the probability of the individual hypotheses Bi assuming that A occurred

(see Fig. 2.6), which is denoted as the probability P(BijA). A very important relation

follows from relations (2.20, 2.21 and 2.23)

PðBi Aj Þ ¼ PðBiÞPðA Bij ÞPn
i¼1

PðBjÞPðA Bj

�� Þ
(2.24)

which is often referred to as the Bayes rule or theorem.

The following important usage of the theory of structural reliability illustrates

the common procedure for the practical application of the Bayes rule. If the failure

of a structure, denoted as event A, can be caused by one of the hypotheses Bi whose
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probabilities of occurrence P(Bi) are known from previous experience, and if the

conditional probabilities P(AjBi) that the failure A occurred in consequence of a

hypothesis Bi are also known, then the probability of failure P(A) can be determined

from the principle of total probability described by Eq. (2.23).

If, however, the failure A did occur, i.e. the event A occurred, and then the

probabilities of the individual hypotheses, which could have caused the failure, are

of importance. We are therefore interested in the conditional probabilities P(BijA),
which can be determined by use of the Bayes rule (2.24).

The practical use of relations (2.23) and (2.24) is illustrated by the following

examples.

Example 2.9. For the assessment of an existing reinforced concrete structure,

control tests are available which indicate that the actual strength is lower than the

characteristic value 20 MPa (event B1) with the probability p1
0 ¼ P(B1) ¼ 0.05,

and greater than 20 MPa (event B2) with the probability p2
0 ¼ P(B2) ¼ 0.95. For

the subsequent verification of the strength of the concrete, an inaccurate

non-destructive method is used. Let A denote the possibility that the concrete

strength assessed by the non-destructive method is greater than 20 MPa. Assume

that errors of the non-destructive method can be expressed by conditional

probabilities

P AjB1ð Þ ¼ 0:30; P AjB2ð Þ ¼ 0:90

Thus, due to the inaccuracy of the non-destructive method, concrete with a

strength lower than 20 MPa can be considered as concrete with a strength greater

than 20 MPa with a probability of 0.30; at the same time, concrete of a strength

greater than 20 MPa can be considered with a probability of 0.90.

The probability of the occurrence of event A (non-destructive strength is greater

than 20 MPa) follows from the principle of complete probability (2.23)

PðAÞ ¼
X2
i¼1

PðBiÞP AjBið Þ ¼ 0:05 � 0:30þ 0:95 � 0:90 ¼ 0:87

A

B1 B2 B3 B
5

B4

Fig. 2.6 An event A and

mutually exclusive events Bi
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This means that when using the inaccurate non-destructive method, concrete

strength greater than 20 MPa will be predicted with a probability 0.87. Note that if

the non-destructive tests were absolutely accurate, e.g. if the conditional

probabilities were

PðA B1j Þ ¼ 0; PðA B2j Þ ¼ 1

it would follow from Eq. (2.23)

PðAÞ ¼
X2
i¼1

PðBiÞPðA Bij Þ ¼ 0:05 � 0þ 0:95 � 1 ¼ 0:95

However, from a practical point of view another question is more important:

what is the probability P(B2jA) of hypothesis B2, that concrete for which the

non-destructive test indicates a strength greater than 20 MPa (meaning that event

A occurred) really does have a strength greater than 20 MPa (meaning that event B2

occurred)? This probability can be assessed directly by using the Bayes rule (2.24)

for the probability of hypotheses

PðB2 Aj Þ ¼ PðB2ÞPðA B2j ÞP2
i¼1

PðBjÞPðA Bj

�� Þ
¼ 0:95 � 0:90

0:05 � 0:30þ 0:95 � 0:90 ¼ 0:98

Thus, if the strength is greater than 20 MPa according to the non-destructive test,

then the probability that the concrete really does have a strength greater than

20 MPa increases from the original value of 0.95–0.98.

Bayes’ rule is widely applied in many other practical situations in engineering

practice, e.g. in situations where previous information about the distribution of

probabilities is updated with regard to newly acquired knowledge. This important

procedure of probability updating is described in the following section.

2.7 Probability Updating

Bayes’ rule (2.24) is often applied to the so-called updating of the distribution of

probabilities, which is based on random experiments (often repeated) isolated in

time. Similarly, as in Sect. 2.5, it is assumed that these probabilities P(Bi) are known

from previous experience (sometimes remote, vague or merely subjective). That is

why they are called original (a priori) probabilities and they are denoted simply as

pi
0 ¼ P(Bi).

Experiments are then carried out to determine the conditional probabilities

P(AjBi) of the studied event A, under the assumption that event Bi occurred, the

outcomes of which can be considered as the measures of likelihood that the cause of
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event A was the very event Bi. These conditional probabilities, or values propor-

tional to them, are therefore called likelihoods li / P(AjBi); the symbol / means

“proportional to” (likelihoods li thus need not necessarily be normalized to the

conventional interval <0, 1>). We are inquiring about updated (a posteriori)
probabilities pi

00 ¼ P(BijA) of an event (i.e. hypothesis) Bi updated in accordance

with the result of a new experiment (concerning event A). An important relation for

pi
00 follows directly from the Bayes rule (2.24):

p00i ¼
p0iliP
j

p0jlj
(2.25)

Formula (2.25) obviously holds generally for likelihoods which, unlike

probabilities, are not normalized to the interval <0, 1> and only express the

relative contribution of the events (hypotheses) Bi on the observed event A.
Relation (2.25) is a basis for the updating of probabilities, which is often applied

in many engineering procedures, particularly in the assessment of existing

structures. It is in these cases that present information is combined with previous

(often subjective) information, i.e. with information about a structure at various

points in time, usually quite remote. This is the reason why it is necessary to verify

the conditions under which the previous information was obtained and to resist the

temptation to apply non-homogeneous data, which may be misleading and could

lead to serious mistakes and misunderstandings.

Example 2.10. Consider again the reinforced concrete structure described in

Example 2.9. We observe that from previous control tests original (a priori)
probabilities are known: p1

0 ¼ P(B1) ¼ 0.05 (the probability that the real strength

is lower than the characteristic value of 20 MPa, which is event B1) and p2
0 ¼

P(B2) ¼ 0.95 (the probability that the real strength is greater than 20MPa, event B2).

In the subsequent assessment of the structure supplementary tests of concrete

strength are carried out using core samples, which are sufficiently accurate (unlike

the non-destructive tests from previous Example 2.9). Thus in analysing the results

it is not necessary to consider the inaccuracies. These tests suggest that the

likelihood of event B1 is l1 / P(AjB1) ¼ 0.2 and the likelihood of event B2 is

l2 / P(AjB2) ¼ 0.8 (the likelihoods introduced being already normalized).

Updated (a posteriori) probabilities follow from relation (2.25)

p001 ¼
p01l1P2

j¼1

p0jlj

¼ 0:05 � 0:20
0:05 � 0:20þ 0:95 � 0:80 ¼ 0:01

p002 ¼
p02l2P2

j¼1

p0jlj

¼ 0:95 � 0:80
0:05 � 0:20þ 0:95 � 0:80 ¼ 0:99
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Thus the updated (a posteriori) distribution of probabilities pi
00 is more

favourable than the original (a priori) distribution of probabilities pi
0.

Note that when the supplementary tests suggest that the likelihoods of both

events B1 and B2 are equal, e.g. l1 ¼ P(AjB1) ¼ l2 ¼ P(AjB2) ¼ 0.5, the updated

probabilities equal the original ones (pi
0 ¼ pi

00). If, however, the analysis of event A
showed that the likelihood of event B1 is greater than the likelihood of event B2,

e.g. l1 / P(AjB1) ¼ 0.7 and l2 / P(AjB2) ¼ 0.3, the a posteriori probabilities

change significantly:

p001 ¼
p01 l1P2

j¼1

p0j lj

¼ 0:05 � 0:70
0:05 � 0:70þ 0:95 � 0:30 ¼ 0:11

p002 ¼
p02l2P2

j¼1

p0jlj

¼ 0:95 � 0:30
0:05 � 0:70þ 0:95 � 0:30 ¼ 0:89

The updated (a posteriori) distribution of probabilities pi
00 is then less favourable

than the original (a priori) distribution pi
0. However, the influence of the a priori

distribution still seems to prevail; it disappears only in the case of an extreme

distribution of likelihoods, e.g. when l1 approaches one (l1 / P(AjB1) ! 1) and at

the same time l2 approaches zero (l2 / P(AjB2) ! 0). But, in practice, the distri-

bution of likelihoods is usually similar to the distribution of a priori probabilities.

Example 2.11. Tensile components of an existing structure have been designed for

a load of 2 kN. After reconstruction, the load on each of these components is

increased to 2.5 kN. Prior experience shows that the elements are able to resist a

load of 2.5 kN (event B) with a probability p1
0 ¼ P(B) ¼ 0.8 and they fail with a

probability p02 ¼ PðBÞ ¼ 0:2. Furthermore, it is known from prior experience that

half of these components cannot withstand a load of 2.5 N but are able to bear a

lower load of 2.3 kN (event A). Knowing this, the probability p1
0 ¼ P(B) ¼ 0.8 can

be updated by testing one of these components up to 2.3 kN.

Let us suppose that the test is successful, i.e. the element does not fail with the

2.3 kN load. The likelihood of event B, i.e. l1 / P(AjB) ¼ 1, and of event B, i.e.

l2 / PðA �Bj Þ ¼ 0:5, are estimated from the result of this test. Then an a posteriori
probability follows from relation (2.25),

p001 ¼
p01 l1P2

j¼1

p0j lj

¼ 0:80 � 0:10
0:80 � 1:0þ 0:20 � 0:5 ¼ 0:89

Thus the a priori probability p1
0 ¼ 0.8 is updated to the value p1

00 ¼ 0.89. The

updating of probabilities can now be repeated by another test where the a posteriori
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probability obtained in the previous step will be considered as a priori information.

If the other test is also successful, then the new a posteriori probability will be

p001 ¼
p01l1P2

j¼1

p0jlj

¼ 0:89 � 1:0
0:89 � 1:0þ 0:11 � 0:5 ¼ 0:94

This repetitive procedure of updating probabilities is quite characteristic in

practical applications.

However, what happens when the first test is not successful? If the likelihoods l1
and l2 are estimated in this case as l1 / P(AjB) ¼ 0.5 and l2 / PðA �Bj Þ ¼ 1:0, it
follows for the a posteriori probability p1

00

p001 ¼
p01l1P2

j¼1

p0jlj

¼ 0:80 � 0:5
0:80 � 0:5þ 0:20 � 1:0 ¼ 0:67

which is an unfavourable reduction of the original (a priori) value p1
0 ¼ 0.8. In

such a case it may be useful to carry out additional tests and repeat the updating.

2.8 Bayesian Networks

The Bayesian (causal) networks represent important extensions of Bayes’ theorem

more and are increasingly used in a number of different fields. Several software

tolls have recently been developed to analyse The Bayes’ (for example Hugin,

GeNie, [3] both of which are available on the internet).

The term “Bayesian networks” was coined by Judea Pearl in 1985 [5, 6] to

emphasize three aspects:

– The often subjective nature of the input information.

– The reliance on Bayes’ conditioning as the basis for updating information.

– The distinction between causal and evidential modes of reasoning, which

underscores Thomas Bayes’ famous paper of 1763.

Acyclic directed graphs in which nodes represent random variables and arcs

(arrows) show the direct probabilistic dependencies among them (causal links). In

addition to the chance nodes, the Bayesian network may include deterministic

nodes, decision nodes and utility (value) nodes.

– Chance nodes, drawn usually as ovals, denote random variables that may be

described by discrete (in some cases also by continuous) distribution.

– Deterministic nodes, drawn usually as double ovals, denote deterministic

variables.
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– Decision nodes, drawn as rectangles, denote variables that are under the deci-

sion-maker’s control and are used to model the decision-maker’s options.

– Utility nodes (also called Value nodes), drawn usually as hexagons, denote

variables that contain information about the decision-maker’s goals and

objectives. They express the decision-maker’s preference for a particular out-

come, rather than those outcomes which may have directly preceded it.

The theory of Bayesian network evaluation is quite an extensive topic that is

outside the scope of this introductory text. Further information may be found in

publications [5–7]. In general, the calculation of probabilities is based on the

concept of conditional probabilities and on the theorem of total probability

(Sect. 2.5). Consider the simple network of three chance nodes shown in Fig. 2.7.

It describes the failure of a system (chance node C) assumed to be caused by

material faults (chance node A) and human error (chance node B).
The probability distribution of chance node C follows from the generalised

theorem of total probability (Sect. 2.5) as

PðCkÞ ¼
X

i;j
PðCkjAiBjÞPðAiÞPðBjÞ (2.26)

Here the subscripts k, i and j denote the states of the chance nodes (two or more).

Other procedures of Bayesian network analysis (probability updating, introducing

evidence) are provided in special publications [5–7] and software products [3]. The

following example illustrates only the main procedure of network evaluation

indicated by Eq. (2.26).

Example 2.12. Consider the example indicated in Fig. 2.7. The input data of the

network consists of the initial probabilities of the parent’s nodes A and B, and the

conditional probabilities of the child node C. The three nodes have two alternative

states only: negative (fault, error, failure) and positive (no fault, no error, safe). The

following two tables show the initial probabilities of nodes A and B, and the

conditional probabilities of the child node C.
Initial probabilities of chance nodes A and B

Node A Node B

A1 – Fault 0.05 B1 – Fault 0.10

A2 – No fault 0.95 B2 – No fault 0.90

Conditional probabilities of chance node C (C1 – Failure, C2 – Safe)

A-Material fault B-Human error

C-Failure

Fig. 2.7 Bayesian network

describing failure of a system
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Node A A1 – Fault A2 – No fault

Node B B1 – Error B2 – No error B1 – Error B2 – No error

P(C1|A,B) 0.5 0.1 0.1 0.01

P(C2|A,B) 0.50 0.9 0.9 0.99

The resulting probabilities of node C follows from Eq. (2.26) as

PðC1Þ ¼ PðC1jA1;B1ÞPðA1ÞPðB1Þ þ PðC1jA1;B2ÞPðA1ÞPðB2Þ
þ PðC1jA2;B1ÞPðA2ÞPðB1Þ þ PðC1jA2;B2ÞPðA2Þ PðB2Þ ¼ 0:025

PðC2Þ ¼ PðC2jA1;B1ÞPðA1ÞPðB1Þ þ PðC2jA1;B2ÞPðA1ÞPðB2Þ
þ PðC2jA2;B1ÞPðA2ÞPðB1Þ þ PðC2jA2;B2ÞPðA2Þ PðB2Þ ¼ 0:975

Thus the failure probability of the system is P(C1) ¼ 0.025; the complementary

safe state has a probability of P(C2) ¼ 0.975.

Example 2.13. Figure 2.8 shows an example of an influential diagram describing a

structure under persistent and fire design situations.

The influential diagram in Fig. 2.8 contains seven chance nodes of oval shape

(nodes number 1,2,3,4,5,12,14), four decision nodes of rectangular shape

(6,5,15,16) and six utility nodes of diamond shape (8,9,10,11,13,17).

Note that each decision affects the state of the utility nodes and at the same time

may generate some costs. For example the decision concerning the sprinklers

(decision node 6) affects the state of chance node 2 (extent of the sprinklers) and

at the same time generates some additional costs (utility node 8) caused by the

installation of sprinklers (which may represent a considerable investment). The

sprinklers (chance node 2) may further affect the amount of smoke (chance node

12), the development of any fire (chance node 3) having at least two states: fire stop

and fire flashover.

Utility nodes 8, 10 and 17 may be described by the amount of money needed; the

other utility nodes (nodes 9, 11 and 13) may also include social consequences, such

as injury and loss of human life. Then, however, there is the problem of finding a

common unit for economic and social consequences. In some cases these two

aspects of consequence are combined, and include some compensation costs for

loss of human life; in other cases they are systematically separated for ethical

reasons.

Thus the influential diagram offers both the probabilistic analysis and the utility

aspect of the system. In such a way the influential diagram is a powerful tool for

investigating any system, and for providing rational background information for

decision-makers.
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2.9 Notes on the Fuzzy Concept

Present methods for analysing uncertainties in engineering and science also include

the application of fuzzy sets and fuzzy logic. The concept of fuzzy sets is an

extension of the classical crisp set theory. It was introduced by L.A. Zadeh in

1965 [4]. Its application in engineering was indicated in later publications [8, 9].

Fuzzy concepts are often regarded as concepts which, in their application, are

neither completely true nor completely false, or which are partly true and partly

false. In mathematics and statistics, a fuzzy variable (such as “the temperature”,

“performance” or “serviceability”) is a value which could lie within a certain range

defined by quantitative limits, and can be usefully described verbally with impre-

cise categories (such as “high”, “medium” or “low”).

The difference between the classical “crisp” set and a fuzzy set can be described

as follows. In classical crisp set theory any element in the universe is either a

member of a given set or not. An indicator function attains just two values 1 or 0. In

a fuzzy set the indicator may attain any value in the interval<0,1> and is termed by

Zadeh [4] the membership function. If the membership is 1, then the element is

definitely a member of the set; if the membership is 0, then the element is definitely

not a member.

The basic properties of membership function are indicated in Fig. 2.9. Point x is a
full member of fuzzy set A, point x0 is partly a member of A, and x¨ is not a member

of A. In a mathematical way, fuzzy set A is symbolically represented by a pair (A,ν)
where A is the fuzzy set and ν is the mapping A ! <0,1> of a set A to the interval

<0,1>. The mapping ν is called membership function.

The following example illustrates a possible application of the fuzzy concept in

engineering. The example indicates an analysis of vagueness or imprecision in the

definition of structural performance, as described in detail in paper [10].

3-Flashover

4-Protection

1-Situation

5-Collapse

9-C9

11-C117-Protection10-C10

6-Sprinklers 2-Sprinklers8-C8

12-Smoke

13-C13

15-Size

14-Number16-Escape r.17-C17

Fig. 2.8 Bayesian network describing a structure designed to withstand fire
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Example 2.14. Fuzziness due to vagueness and imprecision in the definition of

performance requirement R is described by the membership function νR(x)
indicating the degree of a structure’s membership in a fuzzy set of damaged

(unserviceable) structures; here x denotes a generic point of a relevant performance

indicator (a deflection or a root mean square of acceleration) considered when

assessing structural performance. Common experience indicates that a structure is

losing its ability to comply with specified requirements gradually and within a

certain transition interval <r1, r2>.

The membership function νR(x) describes the degree of structural damage (lack

of functionality). If the rate (the first derivative) dνR(x)/dx of the “performance

damage” in the interval <r1, r2> is constant (a conceivable assumption), then the

membership function νR(x) has a piecewise linear form as shown in Fig. 2.10. It

should be emphasized that νR(x) describes the non-random (deterministic) part of

uncertainty in the performance requirement R related to economic and other

consequences of inadequate performance. In addition, the randomness of require-

ment R at any damage level ν ¼ νR(x) may be described by the probability density

function φR(x|ν) (see Fig. 2.10), for which a normal distribution, having the constant

coefficient of variation VR ¼ 0.10, is commonly assumed.

The fuzzy probabilistic measure of structural performance is defined [10] by the

damage function ΦR(x) given as the weighted average of damage probabilities

reduced by the corresponding damage level (some theoretical aspects of the exam-

ple are clarified later in this book, details of the theoretical development are given in

[10]). Applied terms and additional details may be found in documents [11–14].

x is fully a 
member of fuzzy
set A 

x´ is partly a 
member of fuzzy set A 

x´´ is not a 
member of fuzzy set A

U

A

Fig. 2.9 A fuzzy set A

26 2 Basic Concepts of Probability



ΦRðxÞ ¼ 1

N

ð1
0

ν ð
ðx

�1
φRðx0jνÞdx0Þdν

Here N denotes a factor normalizing the damage function ΦR(x) to the conven-

tional interval<0, 1> (see Fig. 2.10) andx0 is a generic point of x. The density of the
damage φR(x) follows from (1) as

ϕRðxÞ ¼
1

N

ð1
0

ν ϕRðxjνÞ dν

The damage function ΦR(x) and density function φR(x) may be considered as a

generalized fuzzy-probability distribution of the performance requirement, R, one
that is derived from the fuzzy concept and the membership function νR(x) and can

be used similarly as classical probability distributions.
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Chapter 3

Evaluation of Statistical Data

The evaluation of statistical data representing a random sample taken from a

particular population is frequently moment the first step in many engineering and

scientific tasks. The concept of a general population and the random samples taken

from it is introduced and supplemented by the definition of commonly used sample

characteristics. Emphasis is put on the characteristics, summarized in Appendix 1,

that usually provide the initial background information for the specification of a

theoretical model of population. Sample characteristics regularly used in engineer-

ing and science describe the location, dispersion, asymmetry and kurtosis of

statistical data. The general rules and computational techniques used for determin-

ing sample characteristics of a single random sample, and also for the combination

of two random samples, are illustrated by examples.

3.1 Population and Random Sample

The concepts of population and random sample are extremely important for the

appropriate interpretation of statistical data and their analysis. Population, or “the

universe”, is the totality of items under consideration. A population may be finite

(N sampling units) or infinite. Rather than examining the entire group of N units a

small part of the population, that is a sample of n units, may be examined instead. A

precise definition regarding a population is often difficult to come by, but must be

provided in order to interpret outcomes of statistical investigation correctly

[1, 2]. An excellent description of the basic technique is given in [3, 4] and a

short review is provided in [5]. The correct terminology and procedures are

available in International Standards [6–8].

A sample is one or more units taken from a population and is intended to provide

information on that population. It may serve as a basis for decision-making about

the population, or about the process which produced it. The term “random sample”

refers to the samples that are taken from a population in such a way that all possible

units have the same probability of being taken. The number of sampling units,

M. Holický, Introduction to Probability and Statistics for Engineers,
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called sample size n, may be considerably different. Commonly, samples are

considered to be very small (n < 10), small (n < 30), large (n > 30) or very

large (n > 100). Obviously, with increasing size the samples become more repre-

sentative. However, the sampling procedure is equally important.

If a sample is representative of a population, important conclusions about it can

often be inferred from an analysis of the sample. This phase of statistics is called

inductive statistics, or statistical inference, and is covered in subsequent chapters.

The phase of statistics that seeks only to describe and analyse a given sample is

called descriptive, or deductive, statistics to which is devoted this Chapter.

Example 3.1. A factory produces 70 units of the same type. A random sample of

10 units can be taken from the population of 70 units using a table, or a generator of

random numbers within a range of 1–70. A sample can then be created by taking the

units whose serial numbers are equal to ten generated random numbers.

3.2 Characteristics of Location

The basic characteristic of sample location (or its main tendency) is the sample

mean mX given as

mX ¼ 1

n

Xn

1
xi (3.1)

Here xi denotes sample units. If the sample units are ordered from the smallest to

greatest unit then the subscripts i are generally changed to (i), and the units are then
denoted x(i).

Another characteristic of location is median defined the point separating ordered

sequence of data into two parts such that half of the data is less than the median and

half of the data greater than the median.

Example 3.2. A random sample of measurements of concrete strength contains ten

measurements xi ¼ {27; 30; 33; 29; 30; 31; 26; 38; 35; 32}in MPa. The measured

data, in order of scale, is x(i) ¼ {26; 27; 29; 30; 30; 31; 32; 33; 35; 38}in MPa:

The sample mean mX and the median ~mX are given as

mX ¼ 1

10

X
xi

� �
¼ 31:1MPa; ~mX ¼ 1

2
xð5Þ þ xð6Þ
� � ¼ 30:5MPa

3.3 Characteristics of Dispersion

The basic characteristic of dispersion is called the variance
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s2X ¼ 1

n

Xn

1
ðxi � mXÞ2 (3.2)

In practical applications the standard deviation sX is commonly used instead of

“variance”.

Another measure of dispersion that is frequently applied in engineering and

science is called the coefficient of variation

vX ¼ sX
mX

(3.3)

This is, in fact, a measure of relative dispersion normalised by the sample mean

mX. It is frequently used in engineering when the sample mean mX is not very small.

If the sample meanmX is relatively small then the standard deviation should be used

instead.

In the case of very small samples (n � 10) additional measure of dispersion,

called sample range, is sometimes used; it is defined simply as the difference

between of the greatest and smallest sample unit, x(n) � x(1).
In same specific cases also the mean deviation MD, or average deviation, defined

as the mean of differences jxi � mXj is also used

MDX ¼ 1

n

Xn

i¼1
jxi � mXj (3.4)

Example 3.3. The variance of the sample given in Example 3.1 xi ¼ {27; 30; 33;

29; 30; 31; 26; 38; 35; 32}in MPa is given as

s2X ¼ 1

n

Xn

1
ðxi � mXÞ2 ¼ 11:69ðMPaÞ2

The standard deviation is thus

sX ¼
ffiffiffiffiffi
s2X

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
11:69

p
¼ 3:42MPa

Example 3.4. The coefficient of variation of the data in the random sample given

in Example 3.2 xi ¼ {27; 30; 33; 29; 30; 31; 26; 38; 35; 32} in MPa, is given as

vX ¼ 3:42

31:1
¼ 0:11 ¼ 11%

Example 3.5. Considering ordered measurements from Example 3.2 x(i) ¼ {26;

27; 29; 30; 30; 31; 32; 33; 35; 38}in MPa, the variation range and the mean

deviations are:
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xðnÞ � xð1Þ ¼ 38� 26 ¼ 12 MPa

MDX ¼ 1

n

Xn

i¼1
jxi � mXj ¼ 2:72MPa

3.4 Characteristics of Asymmetry and Kurtosis

The characteristics of asymmetry and peakedness (kurtosis) are used less frequently

than the characteristics of location (the mean mX) and the characteristic of disper-

sion (the variance s2X). However, the characteristics of asymmetry and peakedness

provide valuable information about the nature of the sample, in particular the

distribution of observation to the left and right of the mean and the concentration

of observation about the mean. This information, concerning in particular the

skewness, may be extremely useful for determining the appropriate theoretical

model (probability distribution) of population.

The following moment characteristics are most often used. The coefficient of

asymmetry is defined on the basis of the central moment of the third order as

aX ¼ 1

ns3X

Xn

i¼1
ðxi � mXÞ3 (3.5)

Similarly the coefficient of kurtosis is related to the central moment of the fourth

order as

eX ¼ 1

ns4X

Xn

i¼1
ðxi � mXÞ4 � 3 (3.6)

Note that the above defined coefficients of asymmetry and kurtosis should be

close to zero for samples taken from population having normal distribution.

The coefficient of asymmetry is positive when more sample data is on the left of

the mean, positive when more data is on the right of the mean. The coefficient of

kurtosis is positive when the sample data is located mostly in the vicinity of the

mean, negative when the data is distributed more uniformly. Both these

characteristics (skewness aX and kurtosis eX) are strongly dependent on abnormal

deviations of some sample units (outliers), or errors, particularly in the case of small

samples (n < 30). Then their evaluation may be highly uncertain (and may suffer

from so-called statistical uncertainty due to limited data).

Example 3.6. Considering again data from Example 3.2 given as xi ¼ {27; 30; 33;

29; 30; 31; 26; 38; 35; 32} in MPa, the coefficients of asymmetry and kurtosis are:
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aX ¼ 1

ns3X

Xn

i¼1
ðxi � mXÞ3 ¼ 0:46

eX ¼ 1

ns4X

Xn

i¼1
ðxi � mXÞ4 � 3 ¼ �0:44

The positive coefficient of asymmetry indicates that more observations are on

the left of the mean (in fact 6 of 10 values are on the left of the mean). A slightly

negative coefficient of kurtosis indicates low peakedness (observed values seem to

be distributed slightly more uniformly than those of normal distribution). Note that

the investigated sample is very small (10 values only), and the coefficients obtained,

aXand eX may be inaccurate.

It is interesting to note that there is an empirical relationship between the

skewness aX the mean mX , the median ~mX and the standard deviation sX (called

sometimes as Pearson coefficient of skewness) in the form

aX � 3ðmX � ~mXÞ=sX�

Considering the results of previous Examples 3.2 and 3.3 mX ¼ 31:1MPa;
~mX ¼ 30:5MPa, sX ¼ 3:42MPa and it follows that

aX � 3ð31:1� 30:5Þ
3:42

¼ 0:53

This seems to be a good approximation of the above obtained moment skewness

aX ¼ 0:46. It also demonstrates the intuitively expected result that if the median ~mX

is less than the meanmX, then the skewnessaX is positive. Consequently more data is

located left of the mean than right of the mean.

3.5 General and Central Moments

Most of the samples characteristics described above belong to so called moment

characteristics that are based on general or central moments of the data. The general

moment (about the origin) of the order l (l ¼ 1, 2, 3, . . .) is defined as the arithmetic

mean of the sum of l-powers

m�
l ¼

1

n

Xn

i¼1
xli (3.7)

The central moment (about the mean) of the order l is similarly given as
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ml ¼ 1

n

Xn

i¼1
ðxi � mXÞl (3.8)

The moment characteristics can be then defined as follows.

mX ¼ m�
1 (3.9)

sX ¼ ffiffiffiffiffiffi
m2

p
(3.10)

aX ¼ m3

m
3=2
2

(3.11)

eX ¼ m4

m2
2

� 3 (3.12)

In numerical calculation it is sometime useful to apply the following relations

between the general and central moments

m2 ¼ m�
2 � m2

X (3.13)

m3 ¼ m�
3 � 3mXm

�
2 þ 2m3

X (3.14)

m4 ¼ m�
4 � 4mXm

�
3 þ 4m2

Xm
�
2 � 3m4

X (3.15)

When computers are used to evaluate statistical samples Eqs.. (3.13, 3.14, and

3.15) are not directly used.

3.6 Combination of Two Random Samples

Sometimes it is necessary to combine two random samples taken from one popula-

tion, assuming that the characteristics of both the samples are known, but the

original observations xi are not available. It must be emphasised that only homoge-

neous samples of the same origin (taken from one population under the same

conditions) should be combined. Violation of this important assumption could

lead to incorrect results.

Assume that a first sample of the size n1 has the characteristics m1, s1, a1, while a
second sample of the size n2 has the characteristics m2, s2, a2. Only three basic

characteristics are considered here (the coefficients of kurtosis are rarely available

for combined samples). The resulting characteristics of a combined sample of the

size n can be determined from the following expressions:
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n ¼ n1 þ n2 (3.16)

m ¼ n1m1 þ n2m2

n
(3.17)

s2 ¼ n1s
2
1 þ n2s

2
2

n
þ n1n2

n2
ðm1 � m2Þ2 (3.18)

a ¼ 1

s3

� n1s
3
1a1 þ n2s

3
2a2

n
þ 3n1n2ðm1 � m2Þ s21 � s22

� �
n2

� n1n2ðn1 � n2Þðm1 � m2Þ3
n2

" #

(3.19)

It is interesting to note that the standard deviation s is dependent not only on the

standard deviations of two initial samples s1 and s2, but also on the means of both

the samples. Similarly, the skewness a also depends on the characteristics of the

lower order (means and standard deviations). The relationship for the kurtosis is not

included as it is not commonly used.

It should be noted that if the original data is available then it can be analysed as

one sample; relationships (3.16, 3.17, 3.18, and 3.19) can then be used for checking

newly obtained results. The most important thing is the verification of the hypothe-

sis that both samples are taken from one population.

Example 3.7. An example of the practical application of Eqs. (3.16, 3.17, 3.18,

and 3.19) is shown underneath.

Samples n m s a v

Sample 1 10 30.1 4.4 0.5 0.15

Sample 2 15 29.2 4.1 0.5 0.14

Combined 25 29.56 4.25 0.53 0.14

Note that a different number of sample units may affect the characteristics of the

resulting combined sample. An EXCEL sheet has been developed for calculation if

this is the case.

Sometimes it may occur that the size of one sample, say n1, is not known, and
only the first two characteristicsm1, s1 are available. This is a typical situation when
updating previous data with the characteristics m1, s1, using newly observed data of
the size n2 with the characteristics m2, s2. Then the Bayesian approach may be used

for assessing the unknown value n1 and a corresponding degree of freedom ν1. The
following text is presented here as a guide on how to proceed in that case, just for

information and without the appropriate mathematical clarification.

In accordance with the Bayesian concept [1, 3], the unknown value n1 and a

corresponding degree of freedom ν1 may be assessed using the relations for the

coefficients of variation of the mean and standard deviation V(μ) and V(σ), (the
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parameters μ and σ are considered as random variables in Bayes’ concept) for

which it holds

n1 ¼ s1= m1VðμÞð Þ½ �2; ν1 ¼ 1= 2VðσÞ2
� �

(3.20)

Both unknown variables n1 and ν1 may be assessed independently (generally

ν1 6¼ n1 � 1), depending on previous experience with a degree of uncertainty of the

estimator of the mean μ and the standard deviation σ of the population. Note that for
a new sample it holds that ν2 ¼ n2 � 1.

When the sample size n1 and the degree of freedom ν1 are estimated, the degree

of freedom ν is given as [3]

ν ¼ ν1 þ ν2 � 1 if n1 	 1; ν ¼ ν1 þ ν2 if n1 ¼ 0 (3.21)

Then the resulting size of the combined sample n and the mean m is given by

Eqs. (3.16) and (3.17); the standard deviation s is determined from a modified

Eq. (3.18) as

s2 ¼ ν1s
2
1 þ ν2s

2
2 þ

n1n2
n

ðm1 � m2Þ2
h i

=ν (3.22)

The above relationship may be easily applied using the EXCEL sheet or other

software tools.

Example 3.8. Suppose that from the prior production of a given type of concrete

the following information is available regarding its strength

m1 ¼ 30:1MPa; VðμÞ ¼ 0:50; s1 ¼ 4:4 MPa; VðσÞ ¼ 0:28:

For the unknown characteristics n1 and ν1 it follows from Eq. (3.20) that

n1 ¼ 4:4

30:1

1

0:50

� �2

� 0; ν1 ¼ 1

2� 0:282
� 6

Thus, the following characteristics are subsequently considered: n1 ¼ 0 and

ν1 ¼ 6.

To verify the quality of the concrete, new measurements have been carried out

using specimens from the same type of concrete. The following strength

characteristics have been obtained:

n2 ¼ 5; ν2 ¼ n2 � 1 ¼ 4; m2 ¼ 29:2 MPa; s2 ¼ 4:6 MPa:

Using Eqs. (3.16, 3.17, 3.18 and 3.19), the updated characteristics are as follows:
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n ¼ 0þ 5 ¼ 5

ν ¼ 6þ 4 ¼ 10

m ¼ 0� 30:1þ 5� 29:2

5
¼ 29:2 MPa

s2 ¼ 6� 4:42 þ 4� 5:62 þ 0� 5

5
ð30:1� 29:2Þ2

	 

=10 ¼ 4:52MPa2

Thus, using the previous information, the standard deviation of the new

measurements could be decreased from s ¼ 5.6 MPa to s ¼ 4.5 MPa.

However, it should be noted that the combination of the previous information

with the current measurements might not always lead to favourable results. For

example, if the coefficients of variation are w(μ) ¼ 0.2 and w(σ) ¼ 0.6, then the

unknown characteristics n1 and ν1 follow from Eq. (3.20) as

n1 ¼ 4:4

30:1

1

0:2

� �2

� 1; ν1 ¼ 1

2� 0:62
� 1

In this case

n ¼ 1þ 5 ¼ 6

ν ¼ 1þ 4� 1 ¼ 4

m ¼ 1� 30:1þ 5� 29:2

6
¼ 29:35 MPa

s2 ¼ 1� 4:42 þ 4� 5:62 þ 1� 5

6
ð30:1� 29:2Þ2

	 

=4 ¼ 6:032MPa2

In this case, the mean increased slightly from 29.2 to 29.35, while the standard

deviation increased considerably, from 5.6 to 6.03. However, this is an extreme

case, caused by unfavourable estimates of n1, ν1 and ν following on from

Eqs. (3.20) and (3.21). In practical applications these equations should be applied

with caution, particularly in extreme cases similar to the above example. In

connection with this warning, an important assumption mentioned at the beginning

of this section should be stressed. Only those samples that are evidently taken from

the same population can be used for combining or updating statistical data; other-

wise the results of the combination of two random samples may lead to incorrect

results. On the other hand when two or more samples are taken from one population

then their combination is always valuable.
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3.7 Note on Terminology and Software Products

It should be mentioned that documents such as ISO 3534 and software products

EXCEL, MATHCAD and STATISTICA provide slightly modified terminology

and definitions for basic moment characteristics.

In general two modifications are commonly used for the characteristic of

dispersion:

– The characteristic called here “the sample standard deviation” is also denoted as

“the standard deviation of a sample”, or as “the population standard deviation”

(when n is the population size), and is given as

sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1
ðxi � mXÞ2

r
(3.23)

– The sample estimate of the population standard deviation called here a point

estimate of the population standard deviation and denoted by the symbol ŝX (see
also Chap. 8) is sometimes called the sample standard deviation

ŝX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn

1
ðxi � mXÞ2

r
(3.24)

Expression (3.23) corresponds to Eq. (3.2) for the sample standard deviation.

Expression (3.24) represents a point estimate of standard deviation that is derived

from the mean of the distribution describing the sample variance (based on the

χ2 random variable and discussed in Chap. 8).

Similar modifications of sample characteristics are also available for the skew-

ness and kurtosis. The “sample skewness” a defined here by Eq. (3.5) can be written
in simplified form as

aX ¼ m3

m
3=2
2

¼ 1

ns3X

Xn

i¼1
ðxi � mXÞ3 (3.25)

STATISTICA, EXCEL, MATHCAD and some other software products provide

a point estimate of the population skewness âX (see Chap. 8) as

âX ¼ n2

ðn� 1Þðn� 2Þ
1

nŝX
3

Xn

i¼1
ðxi � mXÞ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp
ðn� 2Þ aX (3.26)

Note that the population estimate ŝX is used in Eq. (3.26). If the sample standard

deviation is used then the estimate of the population skewness would be
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âX ¼ n

ðn� 1Þðn� 2Þ
1

s3X

Xn

i¼1
ðxi � mXÞ3 ¼ n2

ðn� 1Þðn� 2Þ aX (3.27)

The factor enhancing the sample skewness aX in Eq. (3.27) (the fraction

containing the sample size n) is slightly greater than the similar factor in

Eq. (3.26) (for n > 30 by less than 5 %); the difference diminish with increasing

sample size n
Similar modifications of sample characteristics may be found for kurtosis based

on the central moment of the fourth order (see Eq. (3.6)). The relevant formulae can

be found in the help component of the relevant software products. However,

kurtosis is evaluated in practical applications very rarely and only for very large

samples (n > 100).

3.8 Grouped Data, Histogram

When analyzing large size of statistical data n, it is often useful to group them into a

limited number of classes k (usually 7 � k � 20) and to determine the number of

units belonging to each class ni (i ¼ 1,2,. . .k), called class frequency (Σni ¼ n).
Each class is represented by class mark x�i which is the midpoint of the class interval

limited by its lower and upper class limit.

Commonly, the grouped data are presented graphically in the form of a histo-

gram, which is a column diagram showing frequency ni or relative frequency ni/n
for each class. Histograms are very useful graphical tools providing valuable

information about the overall character of the sample. Visual investigation of the

histogram is always recommended. It may provide an initial understanding of the

sample nature.

The mean mX is given by the general moment of the first order Eq. (3.7), which

for grouped data is written as

mX ¼ m�
1 ¼

1

n

Xk

i¼1
nix

�
i (3.28)

The central moments (about the mean) of the order l are for grouped data given

as

ml ¼ 1

n

Xk

i¼1
niðx�i � mXÞl (3.29)

The moment characteristics of grouped data can be determined using the general

formulae (3.10, 3.11, and 3.12). Also the relationships between the general and

central moments provided by Eqs. (3.13, 3.14, and 3.15) can be used in the

numerical evaluation of grouped data.
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Example 3.9. Results of n ¼ 90 tests of concrete strength are grouped into k ¼ 9

classes as indicated in the table below and in the histogram in Fig. 3.1. Visual

investigation of the histogram indicates that the sample is well-ordered (without

outliers), symmetric (the skewness is expected to be close to zero) and slightly less

spiky (more flat) than commonly used normal distribution (a bit of negative kurtosis

is expected).

Class

i
Class interval in

MPa

Class mark x�i in
MPa

Frequency

ni

Product

nix
�
i

Product

niðx�i � mXÞ2
1 16–18 17 1 17 71.309

2 18–20 19 3 57 124.593

3 20–22 21 12 252 237.037

4 22–24 23 15 345 89.630

5 24–26 25 20 500 3.951

6 26–28 27 18 486 43.556

7 28–30 29 11 319 139.062

8 30–32 31 8 248 246.914

9 32–34 33 2 66 114.173

Sum – – 90 2,290 1,070.222

The table shows the class intervals, class marks x�i (in MPa), frequency ni and

products nix
�
i and niðx�i � mXÞ2 used to calculate the general moments of the first

order, and the central moment of the second order. The moments of the order 3 and

4 would be necessary for calculation of the skewness aX and kurtosis eX.
It follows from Eqs. (3.7) and (3.10) and the numerical results shown in the last

row of the above table that the sample mean and standard deviation are

mX ¼ 2290=90 ¼ 25:44MPa and sX ¼ ðm2Þ0:5 ¼ ð1070:222=90Þ0:5
¼ 3:45MPa

0

5

10

15

20

25

17 19 21 23 25 27 29 31 33

n

*xi

i

Fig. 3.1 Histogram of the

grouped data form Example

3.9 (90 observations of

concrete strength)
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The coefficient of variation vX ¼ 3.45/25.44 � 0.14 is relatively high and

indicates a somewhat low quality of material. The other moment characteristics

can be similarly found using the central moments of higher order and general

Eqs. (3.11) and (3.12). This way it can be found that the sample skewness is almost

zero, a ¼ 0.03, and the kurtosis e ¼ �0.53. So the sample is really symmetrical

and slightly more uniform than the normal distribution.
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Chapter 4

Distributions of Random Variables

Two different categories of random variables are commonly used in engineering

and scientific applications of probability and statistics: discrete and continuous

random variables. Every random variable can be described by distribution function

and corresponding probability density function. Commonly used distribution

functions are defined by a limited number of parameters. Similarly as in the case

of sample characteristics, distribution parameters, summarized in Appendix 1, are

used to characterise the location, dispersion, asymmetry and peakedness of a

distribution. So called standardized random variables, having the means equal to

zero and variances equal to 1, are often applied in numerical methods used to

analyse the random properties of engineering and scientific systems.

4.1 Random Variables

Most of the experiments in engineering and science result in random events that can

be described by real numbers, for example by the strength of a material, or the

content of a specified substance. A set of all these numbers, hypothetically obtained

from a given population, form a random variable having a certain probability

distribution.

In general, a variable which may take any of the values of a specified set of

values, and which is associated with a probability distribution is called a random

variable [1, 2]. A comprehensive treatment is provided in [3, 4], a short review

in [5]. A correct terminology of basic terms and a description of statistical

procedures is provided in standards [6–8].

Two basic types of random variables are recognized. A variable, which may take

only isolated values is said to be a “discrete” random variable. A variable which

may take any of the values of a specified set of values is called a continuous random

variable. These two basic types of random variables are commonly used in engi-

neering and scientific applications.
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4.2 Distribution Function

The distribution function of a random variable X is a function Φ(x) defined as the

probability that X is less than or equal to any real value x of the variable X, thus

ΦðxÞ ¼ PðX � xÞ (4.1)

Here X denotes a random variable and x any real value. The general properties of
distribution function Φ(x) of a discrete or continuous random variable X follows

directly from the definition (4.1):

0 � ΦðxÞ ¼ � 1; Φð�1Þ ¼ 0; Φð1Þ ¼ 1 (4.2)

If x1 � x2; then Φðx1Þ � Φðx2Þ (4.3)

Pðx1 < X � x2Þ ¼ Φðx2Þ �Φðx1Þ (4.4)

The above Eq. (4.4) illustrates an important relationship between occurrence

probability P(x1 � X � x2) of a random variable X in a given interval x1 < X � x2
and distribution function Φ(x).

4.3 Discrete Random Variables

A discrete random variable X attains only a countable number of values xi, say x1,
x2, x3, . . ., for example 0, 1, 2, . . .. The general form of the distribution function

(4.1) is then written as

ΦðxjÞ ¼ PðX � xjÞ ¼
X

xi� xj
PðxiÞ ¼

X
xi� xj

PðX ¼ xiÞ (4.5)

The distribution is fully described by probabilities pi of individual values xi

PðxiÞ ¼ PðX ¼ xiÞ ¼ pi (4.6)

The distribution function Φ(xj) and probabilities pi of individual values xi are
shown in Fig. 4.1.

Example 4.1. Consider a random variable X that attains the values 1, 2, 3,. . .,
N with a constant probability

PðxÞ ¼ Pðx ¼ iÞ ¼ 1

N
:
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Here i ¼ 1, 2, 3, . . ., N. This distribution is called discrete uniform (rectangle)

distribution. Its distribution function is

ΦðxÞ ¼ i

N
:

Note that if N ¼ 6 then the random variable describes the outcomes of throwing

a dice, i.e. Numbers 1, 2, 3, 4, 5 and 6.

Example 4.2. A special case of a discrete random variable is the so-called

degenerated random variable X that attains only a certain value μ with the proba-

bility P(x ¼ μ) ¼ 1, thus any other value with zero probability. It is, in fact, not a

random variable as it attains only one value.

4.4 Continuous Random Variables

A continuous random variable X is fully described by distribution functionΦ(x), for
which the full notation ΦX(x) is used when necessary, or by probability density

function φ(x) (the full notation is φX(x)). The distribution function Φ(x) is the

integral of the probability density function φ(x), which is a non-negative real

function describing the relative frequency of the variable X.

0
x1 x2 x3 x4 x5

P(xi)
1

0.5

x1 x2 x3 x4 x5

F(xi)
1

0.5

0·

·

·

·

·

°

°

°

°

x

x

Fig. 4.1 Distribution

function and probabilities of

a discrete random variable X
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ΦðxÞ ¼
ðx
�1

φðxÞdx (4.7)

Thus, the probability density function φ(x) can be obtained as the derivative of

the distribution function (when it exists)

φðxÞ ¼ dΦðxÞ
dx

(4.8)

Their mutual dependence is obvious from Fig. 4.2 (an analogue to Fig. 4.1).

The value xp, indicated in Fig. 4.2, denotes an important value of the random

variable X called a fractile (also called a quantile); it is the value that corresponds to

the probability p ¼ P(X � xp) ¼ Φ(xp) that variable X is less than, or equal to, xp.
It follows from Eqs. (4.4) and (4.7)

Pðx1 < X � x2Þ ¼ Φðx2Þ �Φðx1Þ ¼
ðx2
x1

φðxÞdx (4.9)

The above Eq. (4.9) illustrates an important relationship between the distribution

function Φ(x) and probability density function φ(x).

Example 4.3. Consider a continuous random variable X having the domain xε<a,

b> and the distribution function (see Fig. 4.3)

j(x)
1

0.5

0

F(x)
1

0.5

0

x

x
F(xp)

p = F(xp)

xp

xp

Fig. 4.2 Distribution and

probability density function

of a continuous random

variable X
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ΦðxÞ ¼ x� a

b� a

Then the probability density function follows from Eq. (4.8) as a constant

independent of x

φðxÞ ¼ 1

b� a

This type of distribution of continuous random variables is called uniform or

rectangular distribution. It has a number of practical applications in numerical

calculations and simulation techniques.

4.5 Parameters of Random Variables

Distribution function and probability density functions are commonly described by

distribution parameters. The moment parameters, based on general and central

moments, are more often used. The general moments of a discrete and continuous

random variable of the order l are defined as follows.

μ0l ¼
X
i

xliPðxiÞ (4.10)

μ0l ¼
ð
x

xlφðxÞdx (4.11)

a b

ba

F(x) = (x–a)/(b–a)

j(x) = 1/(b–a)

x

x

1

Distribution function

Probability density 
function 

Fig. 4.3 Uniform

distribution

4.5 Parameters of Random Variables 47



The general moment μ01 of the first order is used to define the mean μ of the

random variable as a basic measure of distribution location

μ ¼ μ01 (4.12)

The central moments of a discrete and continuous random variable of the order l
are defined as follows.

μl ¼
X
i

ðxi � μÞl PðxiÞ (4.13)

μl ¼
ð
x

ðx� μÞlφðxÞdx (4.14)

The central moment of the first order is obviously zero, μ1 ¼ 0. The central

moments of orders 2, 3 and 4 are used to define other important parameters. The

moment of order 2 defines the variance σ2

σ2 ¼ μ2 (4.15)

The square root of the variance is called the standard deviation σ

σ ¼ ffiffiffiffiffi
μ2

p
(4.16)

Standard deviation is commonly used in all types of applications of mathematical

statistics as a basic measure of dispersion. The relative measure of dispersion, used

frequently and particularly in engineering, is called the coefficient of variation V.
It is defined as a ratio of the standard deviation σ and the mean μ as:

V ¼ σ

μ
(4.17)

Here it is assumed that the mean is not zero, μ 6¼ 0. If the mean is very small

(close to zero), then direct use of the variance or standard deviation is preferable.

Nevertheless, the coefficient of variation V is frequently used as an important

measure of relative dispersion that is often applied as an indicator of material

properties and the quality of production.

The central moments of order 3 and 4 are used to define skewness α (a measure

of asymmetry) and kurtosis ε (a measure of peakedness).

α ¼ μ3
σ3

(4.18)
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ε ¼ μ4
σ4

� 3 (4.19)

If the skewness α is positive then the distribution is skewed to the right, in a case

of negative skewness the distribution is skewed to the left. In many engineering

applications, the skewness is an important parameter that may significantly affect

the results of statistical analysis. However, due to the lack of commonly available

data assessment of the skewness may be difficult.

The kurtosis ε is the degree of peakedness relative to normal distribution (that is

why the value 3 is subtracted in Eq. (4.19)). If the distribution has a relatively high

peak, the kurtosis is positive; if the distribution is flat-topped the kurtosis is

negative. In most of the engineering applications only three moment parameters

are used (the mean, variance and skewness). As a rule there is not sufficient data to

specify the kurtosis.

The central moments μ2, μ3, and μ4 can be expressed using the general moments

as follows.

μ2 ¼ μ02 � μ2 (4.20)

μ3 ¼ μ03 � 3μμ02 þ 2μ3 (4.21)

μ4 ¼ μ04 � 4μμ03 þ 6μ2μ02 � 3μ4 (4.22)

These relationships can be derived from the definitions (4.10, 4.11, 4.12, 4.13,

and 4.14). They can be very useful in the practical evaluation of moment parameters

as indicated by the following Example 4.2.

Example 4.4. Consider the uniform (rectangular) distribution, described in Example

4.1, having the probability density function φ(x) ¼ 1/(b�a). The mean μ and the

variance follow from Eqs. (4.12) and (4.15) and Eq. (4.20) as

μ ¼
ðb
a

x
1

b� a
dx ¼ aþ b

2

μ02 ¼
ðb
a

x2
1

b� a
dx ¼ b3 � a3

3ðb� aÞ

σ2 ¼ μ02 � μ2 ¼ ðb� aÞ2
12

; σ ¼ b� a

2
ffiffiffi
3

p

It follows from Eqs. (4.18) and (4.19) that the skewness of a uniform distribution

is zero, α ¼ 0 (it’s a symmetrical distribution), and the kurtosis is negative,

ε ¼ �1,2 (it’s a flat-topped or platykurtic distribution).
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Example 4.5. Skewness αX of any continuous variable X with the probability

density function φX(x) follows from Eqs. (4.14) and (4.18) in an integral form as

αX ¼ 1

σ3X

ð
x

ðx� μXÞ3φXðxÞdx

In practical applications the integration is often done numerically.

4.6 Standardized Random Variable

Standardized random variables are regularly used in tables of random variables, in

subsequent numerical calculations and in simulation techniques. The standardized

random variable has zero mean and variance equal to 1. Both the original random

variable X and the corresponding standardized variable U have the same type of

distribution. If the original variable X has the mean μX and standard deviation σX,
then the corresponding standardized random variable U is defined by the transfor-

mation formula

U ¼ X � μX
σX

(4.23)

The inverse transformation of the standardized variableU to the original variable

X is

X ¼ μX þ σXU (4.24)

Equation (4.24) is often used when determining a particular value xp (for

example a fractile) of the original variable X from the corresponding value up of
the standardized variable U, which is commonly available in tables, in electronic

form on the internet or can be obtained from available software products and tools.

Any type of continuous distribution ΦX(x) of the original random variable X can

be transformed into the standardized distribution ΦU(u). As it is a linear transfor-

mation, the type of distribution of both variables is the same.

The distribution functions of the original variable X and the transformed variable

U (the cumulative probabilities of corresponding values of both variables) must be

equal, thus

ΦUðuÞ ¼ ΦXðxÞ (4.25)

In addition, it is obvious that the differentials of the both the distribution

functions must be equal, thus
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φUðuÞ du ¼ φXðxÞ dx (4.26)

From the linear transformation (4.24) it follows, for the differentials of random

variables X and U, that

dx ¼ σXdu (4.27)

Substituting Eq. (4.27) into Eq. (4.26) the probability density function φU(u) of
the standardized random variable U can be expressed in terms of density function

φX(x) as

φUðuÞ ¼ φXðxÞσX (4.28)

The concept of the standardized random variable can be generalized and applied

to any type of distribution.

Example 4.6. Consider again the uniform distribution described in Example 4.3:

the probability density function φ(x) ¼ 1/(b � a), the mean μ ¼ (a + b)/2, the
standard deviation σ ¼ (b � a)/(2√3). The transformation formulas (4.23) and

(4.24) become

U ¼ X � aþb
2

b�a
2
ffiffi
3

p ¼ 2X � a� b

b� a

ffiffiffi
3

p

X ¼ bþ a

2
þ U

b� a

2
ffiffiffi
3

p

The domain of the standardized variable U is the interval <�√3, √3>. The

distribution function and probability density functions of the variable U are

ΦðuÞ ¼ u

2
ffiffiffi
3

p þ 1

2
; φðuÞ ¼ 1

2
ffiffiffi
3

p

A particular value xp (for example a fractile) of the original variable X can be

obtained from the corresponding value up of the standardized variable U following

transformation formula (4.24)

xp ¼ bþ a

2
þ up

b� a

2
ffiffiffi
3

p

This type of relationship between a fractiles xp of the actual variable X and the

corresponding fractile up of the standardized variable U (which is usually com-

monly available) is frequently used in practice.
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Example 4.7. A random variable X has the probability density function φX(x)
given as

φXðxÞ ¼ 1=5; 2 � x � 3

The mean, standard deviation and skewness of the variable X follow from

Eqs. (4.12, 4.13, 4.14, 4.15, and 4.16) as

μX ¼ 1

5

ð3
�2

xdx ¼ 1

2

σ2X ¼ 1

5

ð3
�2

ðx� 0:5Þ2 dx ¼ 25

12
; σX ¼ 5

6

ffiffiffi
3

p

αX ¼ 1

σ3X

1

5

ð3
�2

ðx� 0:5Þ3 dx ¼ 0

The same results can be obtained from a numerical evaluation of Example 4.4.
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Chapter 5

Selected Models of Discrete Variables

Discrete random variables are often applied to engineering and science problems

when analysing the number occurrence of a certain event. An elementary but

fundamental type of discrete variable that attains only two different values is

described by alternative distribution. It can be generalized for a countable number

of trial repetitions into binomial and hypergeometric distribution. Time-dependent

event are often described by Poisson distribution. The other types of discrete

distributions including geometric, negative binomial and multinomial distribution

are applied less frequently. In addition to specific distribution parameters, the usual

moment parameters, particularly the mean and standard deviation, are used to

characterise the distributions. A review of theoretical models provides Appendix 2.

5.1 Alternative Distribution

Discrete random variables are described in detail in books [1–4] including numeri-

cal tables. A number of engineering and scientific applications are given particu-

larly in [1, 3].

The basic type of discrete distribution of a random variable X is alternative

distribution. The variable X attains only two values 1 and 0 and its probabilistic

function is given as

Pðx ¼ 1Þ ¼ p; Pðx ¼ 0Þ ¼ 1� p (5.1)

Using Eqs. (4.10, 4.12 and 4.15) the mean, variance and standard deviation

follows as

μ ¼ 0 ð1� pÞ þ 1p ¼ p (5.2)

σ2 ¼ ð0� pÞ2 þ ð1� pÞ2p ¼ p ð1� pÞ (5.3)
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σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p ð1� pÞ

p
(5.4)

Though it is a simple distribution, its importance in theoretical developments

and engineering applications is remarkable. Most of the discrete random variables

attaining the values 0, 1, 2, . . . can be expressed as the sum of alternative random

variables; for example, the number of positive trials in a number of independent

experiments. Alternative distribution is also used to develop binomial and Bernoulli

distribution.

Example 5.1. A factory device is utilized for 80 % of work time only. The

probability that the device is in operation is therefore P(x ¼ 1) ¼ p ¼ 0.8, that

the device is out-of-action P(x ¼ 0) ¼ 1 � p ¼ 0.2. Using Eqs. (5.2, 5.3 and 5.4),

the mean of the operating time is obviously μ ¼ p ¼ 0.8, its standard deviation

σ ¼ [p(1�p)]0.5 ¼ 0.4. It is interesting to note that the coefficient of variation (the

relative measure of dispersion) of the operating time is V ¼ σ/μ ¼ 0.5.

5.2 Binomial Distribution

Consider n independent random trials carried out under the same (invariant)

conditions. In each trial a certain event A may occur with the same probability

P(A) ¼ p (called the probability of success), while the probability of complemen-

tary event is Pð �AÞ ¼ 1� p ¼ q. (called the probability of failure). The probability

function gives probabilities that within n independent trials the number of success-

ful trials (event A occurs) is x. This may occur through a number of different

combinations of x successful trials within the total of n trials. The number of such

combinations k is given by the combination number

k ¼ n
x

� �
¼ n

xðn� xÞ (5.5)

Each combination may occur with the probability pxqn�x (x successes and n�x
failures). Thus, the resulting probability function may be expressed as

P x; n; pð Þ ¼ n
x

� �
pxqn�x ¼ n

x

� �
pxð1� pÞn�x

(5.6)

Example 5.2. Binomial distribution is often linked to the so-called Bernoulli

experiment. In a box there are N balls, X white balls and N�X back ones. The

probability that a white ball will be pulled out of the box is
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p ¼ X

N

The probability that a black ball will be chosen is

q ¼ N � X

N

Obviously p + q ¼ 1 (complementary probabilities). In a series of n trials, in

which a ball taken from the box will be always returned back, these probabilities do

not change (invariant conditions). The number of white balls x taken out of the box
is 0, 1, 2, . . ., n and their probabilities P(0;n;p), P(1;n;p), P(2;n;p) may be deter-

mined using Eq. (5.6). For example the probability that in a series of n trials a white
boll will never be, or will always be, pulled out is

Pð0; n; pÞ ¼ qn

Pðn; n; pÞ ¼ pn

The mean, variance, standard deviation, skewness and kurtosis of binomial

distribution may be derived using the so-called moment developing function [1]

μ ¼ np (5.7)

σ2 ¼ npq ¼ npð1� pÞ (5.8)

σ ¼ ffiffiffiffiffiffiffiffi
npq

p
(5.9)

α ¼ q� pffiffiffiffiffiffiffiffi
npq

p (5.10)

ε ¼ 1� 6pq

npq
(5.11)

The coefficient of variation follows from Eqs. (5.7) and (5.9) as

V ¼
ffiffiffiffiffi
q

np

r
(5.12)

Figure 5.1 shows two probability functions P(x; 5; 0.8) and P(x; 10; 0.8)

assuming the probability p ¼ 0.8 ðthe mean μ ¼ np ¼ 4 and 8Þ.
Example 5.3. In a factory five independent machines are utilized, each of which is

in operation for 80 % of the work time. The mean, the standard deviation and the

coefficient of variation are given by Eqs. (5.7, 5.9 and 5.12).
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μ ¼ 5 � 0:8 ¼ 4; σ ¼ ffiffiffiffiffiffiffiffi
npq

p ¼ 0:89; V ¼ 0:22

The probability that only two machines are in operation at any one time may be

determined using binomial distribution, as follows.

Pð2; 5; 0:8Þ ¼ 5

2

� �
0:820:25�2 ffi 0:05

Thus, there is a small probability 0.05 that only two machines will be in

operation during work time.

5.3 Hypergeometric Distribution

Consider a population of N elementary events (for example of certain products),

X of which belong to the event A (non-conforming products), N�X belong to the

complementary event �A (conforming products). The probability function P(x;n;X;N )

describes the probability that x events from n randomly chosen elementary events

(note that max{0,n + X�N} < x < min{X,n}) belong to the (positive) event A.
Using the classical definition of probability, explained in Sect. 2.3, the probability

function can be derived as

Pðx; n;X;NÞ ¼
X
x

� �
N � X
n� x

� �
N
n

� � (5.13)

Hypergeometric distribution differs from the Bernoulli experiment, described in

the previous section, by the fact that elementary events affect the subsequent
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0.4

0.6
P(x;n;p) P(x;5;0.8)

P(x;10;0.8)

x

Fig. 5.1 Probability

function P(x,n,p) of the
binomial distribution
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probability of attaining event A and �A (the products are not returned to the

population) as illustrated by the following example.

Example 5.4. In a population of N ¼ 100 products there are X ¼ 30

non-conforming units. The probability function is given as

Pðx; n; 70; 100Þ ¼
30

x

� �
100� 30

n� x

� �
100

n

� �

The probability that in-between 3 randomly chosen units, n ¼ 3, is one, x ¼ 1,

non-conforming is then

Pð1; 3; 30; 100Þ ¼
30

1

� �
70

3� 1

� �
100

3

� � ¼ 30 � 70 � 69 � 3
100 � 99 � 98 ¼ 0:448

So, there is a relatively high probability 0.448 that 1 from 3 chosen products is

non-conforming.

Similarly as in case of Bernoulli distribution, the hypergeometric distribution is

often characterized by two complementary probabilities

p ¼ X

N
; q ¼ N � X

N
¼ 1� p (5.14)

The mean, variance, standard deviation, coefficient of variation and skewness

follow can be obtained from general expressions (4.10, 4.12, 4.16 and 4.18).

μ ¼ np (5.15)

σ2 ¼ npq
1� n

N

1� 1
N

¼ npð1� pÞN � n

N � 1
(5.16)

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npq

1� n
N

1� 1
N

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞN � n

N � 1

r
; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pÞ
np

N � n

N � 1

s
(5.17)

α ¼ ðN � 2XÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þp ðN � 2nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nXðN � XÞðN � nÞp ðN � 2Þ ¼

ð1� 2pÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þp ðN � 2nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞðN � nÞp ðN � 2Þ (5.18)

Obviously for an increasing population N the basic moment characteristics of

binomial and hypergeometric distributions are approaching (see also Appendix 2).
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5.4 Poisson Distribution

The Poisson distribution is frequently used to describe the time dependent occur-

rence of random events. Let n independent events belonging to a given result A
occurs within an interval T. Thus, an average c of these events occurs within a time

unit

c ¼ n

T
(5.19)

A natural question is to assess the probability that x of these events occurs in a

given interval t, (t < T). It is assumed that n events occurring in the interval T are

mutually independent and, consequently, the probability that each of these events

occurs in the time interval t is

p ¼ t

T
(5.20)

Using binomial distribution (see Eq. (5.6)) the probability function can be now

approximated as

PðxÞ ¼ n
x

� �
pxð1� pÞn�x

(5.21)

Applying now a limit procedure for P(x) with T ! 1, the probability function

(5.21) can be expressed in the usual form

Pðx; λÞ ¼ λx

x!
e�λ (5.22)

Here the parameter λ denotes the average number of events within the time

period t given by the mean of Poisson distribution

μ ¼ λ ¼ ct ¼ nt

T
(5.23)

Using the moment developing function, the variance, standard deviation and

skewness of the variable X can be derived as

σ2 ¼ λ; σ ¼
ffiffiffi
λ

p
; α ¼ 1=

ffiffiffi
λ

p
(5.24)

Figure 5.2 indicates the probability function P(x,λ) for two average numbers of

events λ within the time period t, λ ¼ 0:2 ¼ 0.2 and 2.
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Example 5.5. An automatic machine delives two components in 1 min. During a

period of 8 h 38 components do not comply with the requirements. The basic

parameters and the probability function given by Eqs. (5.22) and (5.23) are then

c ¼ 38

ð8� 60Þ ¼ 0:08; t ¼ 5

2
min; λ ¼ c� t ¼ 0:2; PðxÞ ¼ 0:2x

x!
e�0:2

The probability that in a series of five components two or more components will

be non-conforming can be calculate as

Pðx � 2Þ ¼ 1� Pð0Þ � Pð1Þ ¼ 0:0175

5.5 Geometric Distribution

There are other distributions of discrete random variable that are not so frequently

used in engineering applications. These types of distributions include geometric

distribution, negative binomial distribution, multinomial distribution and multi

hypergeometric distribution. In general, these distributions are particular cases of

the previous type of discrete distributions. Description of other types of distribution

may be found in specialized literature [1]. Let us consider briefly a geometric

distribution that has some important engineering applications.

The geometric distribution in question is related to the binomial distribution

described in Sect. 5.2. It describes the probability P(n) that within n trials (n ¼ 1,

2, 3,) the Bernoulli experiment will be successful just once. For example the first

n�1 trials are unsuccessful (no event A is observed) and subsequent trial number n
is successful (event A occurs). The probability of the successful trial is p, probabil-
ity of the unsuccessful trial is 1 � p ¼ q. Thus the probability that n�1 trials are

unsuccessful and then trial number n is successful can be expressed as

0 2 4 60
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0.4

0.6

0.8

P(x ,l)

P(x ,2)

P(x ,0.2)

x

Fig. 5.2 Probability

function P(x,λ) of the Poisson
distribution
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Pðn; pÞ ¼ pð1� pÞn�1 ¼ p qn�1 (5.25)

Equation (5.25) describes geometric sequence and that is why the distribution is

called geometric distribution. It should be noted that there is an alternative formu-

lation of the geometric distribution when the domain of n ¼ 0, 1, 2,. . .Then in

Eq. (5.25) the exponent of q is n. Here the formulation (5.25) is accepted.

The mean and standard deviation of the variable n is given as

μn ¼ 1=p; σn ¼ p
q=p (5.26)

For small probability p the second expressions (5.26) may be approximated as

σn � 1=p (5.27)

Thus, for small p the standard deviation σn is approximately equal to the mean μn
and coefficient variation Vn ¼ σn/μn approaches one; in fact Vn follows from

expressions (5.26) as

Vn ¼ q ¼ 1� p � 1 (5.28)

The distribution is highly asymmetric having the skewness

αn ¼ 1þ qffiffiffiffiffiffiffiffiffiffiffi
1� p

p ¼ 2� pffiffiffiffiffiffiffiffiffiffiffi
1� p

p � 2 (5.29)

The geometric distribution may have an important engineering or scientific

applications. Assume that the time (or space) interval T is discretized into n basic

intervals in such a way that the probability p of occurrence of a specified event A in

any interval is approximately the same (assumption of the geometric distribution).

Then the probability P(n, p) given by Eq. (5.25) offers a relationship between the

number of basic intervals n (reoccurrence time) and the probability p of the event A
in one basic interval. The mean reoccurrence time μn and its standard deviation σn
can be assessed by Eq. (5.27) as

μn � σn � 1=p (5.30)

The coefficient of variation Vn � 1 indicates a great uncertainty in assessment of

the reoccurrence time (the number of basic intervals) n.
The probability function P(n, p) is a monotonously decreasing function shown in

Fig. 5.3 for two probabilities p ¼ 0.02 and 0.05, having the mean and standard

deviation equal to μn � σn � 50 and 20.

Example 5.6. Assume that the time is discretized into a number of intervals having

the same duration of 1 year. The occurrence of annual extremes of a certain climatic

actions (for example due temperature, snow or wind) can be assumed to be mutually
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independent. Let us define A as an event whereby a particular intensity of the action

(the critical or characteristic value) is exceeded by the annual extreme with the

probability p. Then the reoccurrence of the critical value may be expected within

the time T (number n of time intervals) called the return period. The mean of the

return period μT may be assessed by Eq. (5.30) as

μT ¼ μn � 1=p

However, it should be emphasized that the return period T is a random variable

(assumed here to be described by geometric distribution) that has standard devia-

tion σT approximately equal to the mean μT (see Eq. (5.30))

σT ¼ σn � 1=p

If the probability p of event A is specified by the value p ¼ 0.02 then the mean

reoccurrence time is assessed as μT � 1/p ¼ 50 years (Fig. 5.3). The standard

deviation σT is also approximately equal to 50 years. The coefficient of variation

VT � 1 confirms a considerable uncertainty in the assessment of the return period T.
It should be mentioned that the probability function P(n, p) is a monotonously

decreasing function of n with a high asymmetry (see Fig. 5.3). It indicates that the

reoccurrence time T less than the mean μT ¼ μn � 1/p is more likely than the right

of the mean (see Example 3.6). That is however valid provided that the assumed

geometric distribution is applicable (the probability p that event A occurs in any

basic interval is the same).

Example 5.7. Codes of practice commonly specify the characteristic value of wind

speed as the speed that on average occurs once in 50 years (the so-called 50 years

wind speed). It means that the characteristic value can be expected in any 1 year

period with the probability 0.02. The probability that a building will be subjected to

the characteristic wind speed during the year number n ¼ 10 follows from

Eq. (5.25) as

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05
P(n,p)

p = 0.05

p = 0.02

n

Fig. 5.3 Probability

function of the geometric

distribution P(n,p)
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Pð10; 0; 02Þ ¼ 0:02� 0:9810�1 ¼ 0:017

The probability that the structure will be exposed to the characteristic load

during the 50 years can then be expressed as the sum of geometric series

PðX � 50Þ ¼
X10

i¼1
0:02� 0:98i�1 ¼ 0:02

1� 0:9850

1� 0:98
¼ 0:636

Thus, during the first 50 years the probability that the structure will be exposed to the

characteristic wind pressure is greater (P(X � 50) ¼ 0.636) than the complementary

probability that it will occur after 50 years of structural existence (P(X > 50) ¼ 0.364).
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Chapter 6

Selected Models of Continuous Variables

Most of the random variables used in engineering and scientific applications are

described by continuous variables that may attain any value from a given interval.

The probability density function of a continuous random variable is often

interpreted as the limiting case of a histogram when the number of observations

is increasing to infinity. An elementary type of continuous distribution is the

uniform distribution describing a variable that may attain any value from a given

interval with an equal chance. Frequently used distributions, having the probability

density function of a typical bell shape, and applied in engineering and science,

include the normal, lognormal, Beta as well as different types of extreme value

distributions like the Gumbel, Weibull and Frechet distributions. Other types of

continuous distributions are applied less frequently. A review of selected models of

continuous random variables is provided in Appendix 3.

6.1 Normal Distribution

From a theoretical and practical point of view the most important type of distribu-

tion of a continuous random variable is the well-known normal (Laplace-Gauss)

distribution [1–4]. A symmetric normal distribution of a variable X is defined on an

unlimited interval – 1 < x < 1 (which can be undesirable in some practical

applications) and depends on two parameters only – on the mean μ and standard

deviation σ. Symbolically it is often denoted as N(μ, σ). This distribution is

frequently used as a theoretical model of various types of random variables

describing some loads (self-weight), mechanical properties (strengths), and geo-

metrical properties (outer dimensions). It is convenient for a symmetric random

variable with a relatively low variance (a coefficient of variation V < 0.2). It may

fail for asymmetric variables with a greater variance and a significant skewness

α > 0.3.

The probability density function of a normal random variable Xwith the mean μX
and standard deviation σX is given by the exponential expression

M. Holický, Introduction to Probability and Statistics for Engineers,
DOI 10.1007/978-3-642-38300-7_6, © Springer-Verlag Berlin Heidelberg 2013
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φðxÞ ¼ 1

σX
ffiffiffiffiffi
2π

p exp � 1

2

x� μX
σX

� �2
" #

(6.1)

The proof that μX and σX are the mean and standard deviation of the random

variable X described by the probability density function (6.1) follows from general

Eqs. (4.13, 4.14, 4.15 and 4.16). Furthermore, using Eqs. (4.18) and (4.19) it may be

shown that the skewness αX and kurtosis εX of the normal random variable X are

zero, αX ¼ εX ¼ 0.

No analytical expression is available for the distribution function Φ(x). Never-
theless, numerical tables for the probability density function as well as for the

distribution function are commonly available in literature [1, 2] and on the internet.

A brief numerical table for the distribution function Φ(x) is also available in

Appendix 7. All these tables give the probability density function φ(u) and the

distribution function Φ(u) of the standardized variable U that is derived from the

actual variable X using the formula (4.23) (applicable for any distribution)

U ¼ X � μX
σX

(6.2)

Here μX and σX denote the mean and standard deviation of the actual variable X.
The standardized random variableU has a zero mean and a standard deviation equal

to one; the normal standardized distribution is symbolically denoted N(0, 1).

The probability density function of the standardized random variable U having

the normal distribution N(0, 1) follows from Eqs. (6.1) and (6.2) as

φUðuÞ ¼
1ffiffiffiffiffi
2π

p exp � u2

2

� �
(6.3)

Tabulated values of the probability density function φU(u) and corresponding

distribution function ΦU(u), given in Appendix 7, are transformed to the original

random variable X using the transformation formula (6.2) in a modified form (4.24).

The probability density function of the normal distribution is a symmetrical

function (skewness α ¼ 0,0) as indicated in Fig. 6.1, where it is shown together

with a log-normal distribution (described in the next Section) as having a coefficient

of skewness α ¼ 1,0. Both probability density functions are shown for the

standardized random variable U defined by Eq. (6.2) and having zero mean and

unit standard deviation.
Note that the probability density function of the standardized normal distribution

is plotted for u within the interval<�3,+3>. This interval covers a high occurrence

probability (0.9973) of the variable U (in technical practice such an interval of the

actual variable is sometimes denoted as �3σ interval).

Example 6.1. Let us denote as up the value of the standardised normal variable for

which the distribution function is equal to a specified probability p, thus

64 6 Selected Models of Continuous Variables

http://dx.doi.org/10.1007/978-3-642-38300-7_4
http://dx.doi.org/10.1007/978-3-642-38300-7_4
http://dx.doi.org/10.1007/978-3-642-38300-7_4
http://dx.doi.org/10.1007/978-3-642-38300-7_4
http://dx.doi.org/10.1007/978-3-642-38300-7_4
http://dx.doi.org/10.1007/978-3-642-38300-7_4
http://dx.doi.org/10.1007/978-3-642-38300-7_BM1
http://dx.doi.org/10.1007/978-3-642-38300-7_4
http://dx.doi.org/10.1007/978-3-642-38300-7_BM1
http://dx.doi.org/10.1007/978-3-642-38300-7_4


ΦðupÞ ¼ p

The corresponding value xp of the original variable X, having the mean μX and

standard deviation σX, follows from transformation formula (6.2) as

xp ¼ μX þ up σX

If the probability p ¼ 0.05 then it follows from tables of the standardised

distribution N(0, 1) that up ¼ �1.645 (see also Appendix 7) and the corresponding

value of the original random variable X is

xp ¼ μX � 1:645 σX

If the probability p ¼ 0.001 then up ¼ �3.09 and xp ¼ μX�3.09 σX.

6.2 Lognormal Distribution

A general three parameter log-normal distribution is defined on a one-sided limited

interval x0 < x < 1 or �1 < x < x0 [3–6]. It is an asymmetric distribution that

partly eliminates one of the undesirable properties of the normal distribution,

i.e. the infinite definition domain. A general log-normal distribution is dependent

on three parameters, and for that reason is often called the three-parameter

log-normal distribution. Commonly, the moment parameters can be applied to

define the distribution: the mean μX, the standard deviation σX and the skewness
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0.2

0.3

0.4

0.5
Probability density j(u)

Standardized random variable u

Log-normal distribution LN(0,1,1), a = 1,0 

Normal distribution N(0,1), a = 0

Fig. 6.1 Normal and log-normal distribution (skewness α ¼ 1.0)
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αX. Instead of the skewness αX (when it is unknown or uncertain), the lower or upper
bounds x0 may be used.

A random variable X has a log-normal (general three-parameter) distribution if

the transformed random variable

Y ¼ ln jX � x0j (6.4)

has a normal distribution. In this relation x0 denotes the lower or upper bound of the
variable X, which depends on the skewness αX. If the variable has a mean μX and

standard deviation σX, then the lower or upper bound can be expressed as

x0 ¼ μX � σX=c (6.5)

Here the coefficient c is given by the value of skewness αX according to the

relation

αX ¼ c3 þ 3c (6.6)

from which follows an explicit relation for c [6]

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2X þ 4

q
þ αX

� �1 3=

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2X þ 4

q
�αX

� �1 3=
" #

2�1 3= (6.7)

The dependence of the limit x0 on the coefficient α is apparent from Table 6.1,

where the lower bound u0 ¼ �1/c of the standardized variable U ¼ (X�μ X)/σX is

given for selected values of the coefficient of skewness αX � 0. For αX � 0 values

of u0 with the inverse sign (i.e. positive) are considered. A log-normal distribution

with the skewness αX ¼ 0 becomes a normal distribution (u0 ¼ �1/c ! � 1).

When specifying a theoretical model, it is therefore possible to consider either

the skewness αX or, alternatively, the lower or upper bound of the distribution x0
(in addition to the mean μX and standard deviation σX). Generally, the first alterna-
tive is preferable because more credible information is usually available for the

coefficient of skewness than for the lower or upper bound. In general, the moment

parameter called the coefficient of skewness provides a better characterisation of

the overall distribution of the population (particularly of large populations) than the

lower or upper bounds.

The probability density function and distribution function of the general three-

parameter log-normal distribution may be obtained from the well-known normal

distribution by using a modified (transformed) standardized variable u’ obtained
from the original standardized random variable u ¼ (x�μX)/σX as [6]

u0 ¼ ln uþ 1
c

�� ��� �þ ln jcj ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ c2Þp signðαXÞ (6.8)
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Here sign(αX) equals +1 for αX > 0 and �1 for αX < 0. The probability density

function φLN,U(u) and the distribution function ΦLN,U(u) ¼ ΦLN,X(x) of the

log-normal distribution are given as

φLN;UðuÞ ¼
ϕðu0Þ

uþ 1
c

�� ��� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ c2Þp (6.9)

ΦLN;XðxÞ ¼ ΦLN;UðuÞ ¼ Φðu0Þ (6.10)

Here φ(u0) and Φ(u0) denote the probability density and distribution function of

the standardized normal variable.

A special case of the three-parameter log-normal distribution is the popular

log-normal distribution with the lower bound at zero (x0 ¼ 0) called here

two-parameter log-normal distribution. This distribution depends on two

parameters only – the mean μX and the standard deviation σX (a symbolic notation

LN(μ, σ) is then used). In such a case it follows from Eq. (6.5) that the coefficient c
is equal to the coefficient of variation VX. It further follows from Eq. (6.6) that the

skewness αX of the log-normal distribution with the lower bound at zero is given by

the coefficient of variation VX as

αX ¼ 3VX þ V3
X (6.11)

Thus, the log-normal distribution with the lower bound at zero (x0 ¼ 0) has

always a positive skewness. Consequently, applications of the log-normal distribu-

tion with the lower bound at zero (x0 ¼ 0) can thus lead to unrealistic theoretical

models (usually underestimating the occurrence of negative and overestimating the

occurrence of positive deviations from the mean), particularly for higher values of

the coefficient of variation VX. Then the three-parameter log-normal distribution

may be used. Although the occurrence of negative values can also be undesirable

(unrealistic for most mechanical quantities), it is usually negligible from a practical

point of view.

Example 6.2. The skewness may have a relatively high value (greater than 0.5);

e.g. for the coefficient of variation equal to 0.30 a coefficient of skewness

αx ¼ 0.927 is obtained from Eq. (6.11).

The log-normal distribution is widely applied in the theory of reliability as a

theoretical model for various types of random variables [6]. In general it can be

used for one-sided limited asymmetric random variables including material

properties, actions, and geometrical data. In particular, the log-normal distribution

with the lower bound at zero (x0 ¼ 0) is commonly used for resistance properties

(strengths) of various materials (concrete, steel, timber, masonry).

Table 6.1 The coefficient u0
for selected coefficient of

skewness αX � 0

αX 0 0.5 1.0 1.5 2.0

u0 ¼ �1/c �1 �6.05 �3.10 �2.14 �1.68
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Example 6.3. A concrete cover depth X of a reinforced concrete cross-section has

the mean μ ¼ 25 mm and the standard deviation σ ¼ 10 mm. The probability

density function φ(x) for a normal distribution and for a two-parameter

log-normal distribution (with the lower bound at zero) is shown in Fig. 6.2.

It follows from Fig. 6.2 that the normal distribution predicts some occurrence of

negative values of the concrete cover depth, which may not correspond to reality.

On the other hand, the log-normal distribution with the lower bound at zero

may overestimate the occurrence of positive deviations, which may not be accept-

able and may affect the resulting random variable bending resistance of the cross-

section.

The overestimation of the occurrence of extreme positive deviations is due to a

high skewness α ¼ 1.36 (given by Eq. (6.11)) of the two-parameter log-normal

distribution. Note that the available experimental data on a concrete cover depth

indicate that in most cases the skewness of the distribution is less than 1, and if no

other evidence is available, then the value α � 0.5 is recommended to be assumed.

6.3 Gamma Distribution

Another popular type of one-sided limited distribution is Pearson’s distribution type

III. Its detailed description is available in [1]. A special case of Pearson’s distribu-

tion type III with the lower bound at zero is gamma distribution. The probability

density function of this important distribution is dependent on two parameters only:

on the mean μ and standard deviation σ. To simplify the notation two auxiliary

parameters λ and k are often used

φðxÞ ¼ λk xk�1 expð�λxÞ
ΓðkÞ ; λ ¼ μ

σ2
; k ¼ μ

σ

� 	2

(6.12)
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Fig. 6.2 Probability density functions for the concrete cover depth
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Here ΓðkÞ denotes the gamma function of the parameter k. The moment para-

meters of the gamma distribution follow from Eq. (6.12) as

μ ¼ k

λ
; σ ¼

ffiffiffi
k

p

λ
; α ¼ 2ffiffiffi

k
p ¼ 2σ

μ
¼ 2V; ε ¼ 3α2

2
(6.13)

The curve is bell shaped for k > 1, i.e. for a skewness α < 2 (in the inverse case

the gamma distribution is a decreasing function of x). For k ! 1, the gamma

distribution approaches the normal distribution with parameters μ and σ.
Gamma distribution is applied in much the same way as the log-normal distri-

bution with the lower bound at zero. However, it differs from the log-normal

distribution by its skewness, which is equal to the double of the coefficient of

variation ðα ¼ 2wÞ and is considerably lower than the skewness of the log-normal

distribution with the lower bound at zero. In accordance with Eq. (6.11) it has the

skewness αX ¼ 3VX þ V3
X. That is why gamma distribution is more convenient for

describing some geometrical quantities and variable actions.

Example 6.4. A sample of experimentalmeasurements of a concrete cover depth has

the following characteristics: a sample size n ¼ 157, m ¼ 26.8 mm, s ¼ 11.1 mm,

and a ¼ 0.40. It is a relatively large sample, which can be used for assessing skewness

(long-term experience may be available to verify the obtained value). A histogram of

the experimental measurements and theoretical models of the normal distribution,

log-normal distribution with the origin at zero, gamma distribution and beta distribu-

tion (described in the following Section) is shown in Fig. 6.3. It appears that the

gamma and beta distributions are the most suitable theoretical models. However,

it follows from Eq. (6.13) that the skewness of the gamma distribution is 2 � 11.1/

26.3 ¼ 0.83, thus about double the value assessed from the measurements. Obvi-

ously, the beta distribution would be the most suitable model.

To choose an appropriate theoretical model for experimental data is, in general, a

complicated task. Information about theoretical methods (the so-called goodness of

fit tests) provided by mathematical statistics can be found in literature [1–3]. In this

textbook only some practical aspects and procedures will be indicated.

6.4 Beta Distribution

Beta distribution (also called Pearson’s distribution type I) is defined on a two-sided

interval <a, b> (this interval can be arbitrarily extended and then the distribution

approaches the normal distribution). Generally, the beta distribution depends on four

parameters and is used mainly in those cases where the domain of the random

variable is evidently limited (some actions and geometrical data, e.g. the weight of
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a subway car, fire load intensity, a concrete reinforcement cover depth). The princi-

pal difficulty in a practical application of the beta distribution is the necessity of

estimating four parameters, for which credible data may not always be available [6].

The beta distribution is usually written in the form

φðxÞ ¼ ðx� aÞc�1ðx� bÞd�1

Bðc; dÞðb� aÞcþd�1
(6.14)

where c and d are the so-called shape parameters and B(c,d) is the beta function

(also called the Euler integral). The lower and upper bounds are given as

a ¼ μ� c g σ; b ¼ μþ d g σ; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ d þ 1

cd

r
(6.15)

where g is an auxiliary parameter. The parameters c and d can be derived from

Eq. (6.15) as

c ¼ μ� a

b� a

ðμ� aÞðb� μÞ
σ2

� 1

� �
; d ¼ b� μ

b� a

ðμ� aÞðb� μÞ
σ2

� 1

� �
(6.16)
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Fig. 6.3 Histogram and theoretical models for concrete cover depth of reinforcement
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The moment parameters of the beta distribution can be expressed in terms of the

parameters a, b, c and d as

μ ¼ aþ ðb� aÞc
ðcþ dÞ ; σ ¼ ðb� aÞ

ðcgþ dgÞ (6.17)

α ¼ 2g ðd � cÞ
ðcþ d þ 2Þ ; ε ¼ 3g2ð2ðcþ dÞ2 þ cdðcþ d � 6ÞÞ

ðcþ d þ 2Þðcþ d þ 3Þ � 3 (6.18)

Note that the skewness α and kurtosis ε are dependent on only the parameters c and
d (they are independent of the limits a and b). That is why the parameters c and d are
called the shape parameters. In practical applications the distribution is used for c > 1

and d > 1 (otherwise the curve is J or U shaped); for c ¼ d ¼ 1 it becomes a uniform

distribution; for c ¼ d ¼ 2 it is the so-called parabolic distribution on the interval

<a, b>. When c ¼ d, the curve is symmetric around the mean. When d ! 1, the

curve becomes type III Pearson’s distribution (see Sect. 3.5). If c ¼ d ! 1, it

approaches the normal distribution. Depending on the shape parameters c and d the

beta distribution thus covers various special types of distribution. The location of the

distribution is given by the parameters a and b.
Beta distribution can be defined in various ways. If all four parameters a, b, c and

d are given, it is possible to assess the moment parameters μ, σ, α and ε from

Eqs. (6.15, 6.16, 6.17, and 6.18). In practical applications, however, two other

combinations of input parameters are likely to be applied [6]:

1. The input parameters are μ, σ, a and b. The remaining parameters c and d will be
assessed from Eqs. (6.15) and (6.16), the moment parameters α and ε from

Eqs. (6.17) and (6.18).

2. The input parameters are μ, σ, α and one of the limits a (for α > 0) or b (for

α < 0). The remaining parameters of distributions b (or a), c and d will be

assessed by means of Eqs. (6.15, 6.16 and 6.17).

The beta distribution with the lower bound a ¼ 0 is often used in practical

applications. It can be shown that in such a case the beta distribution is defined as

α � 2V (6.19)

where V ¼ σ / μ is the coefficient of variation. For α ¼ 2 V the curve becomes type

III Pearson’s distribution (see Sect. 3.5). Therefore, if the input parameters are the

mean μ, the standard deviation σ and the skewness α � 2 V, the beta distribution

with a lower limit at zero (a ¼ 0) is fully described. The upper limit of the beta

distribution with the lower bound at zero follows from the relation (6.15)

b ¼ μðcþ dÞ
c

¼ μ 1þ w ð2þ αwÞð Þ
ð2w� αÞ (6.20)
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In Eq. (3.32) the parameters c and d are given as

c ¼ � α

2w

ð2w� αÞ2 �ð4þ α2Þ
ðw αþ 2Þ2 �ð4þ α2Þ (6.21)

d ¼ α

2

ð2w� αÞ2 �ð4þ α2Þ
ðw αþ 2Þ2 �ð4þ α2Þ

2þ αw

α� 2w
(6.22)

Equations (6.21) and (6.22) follow from the general Eqs. (6.13, 6.14, 6.15, 6.16

and 6.17) for the lower bound a ¼ 0.

Example 6.5. Given a mean μ ¼ 25 mm, a standard deviation 10 mm (V ¼ 0.40),

and a skewness α ¼ 0.5, let us assess the parameters of a beta distribution with an

origin at zero (a ¼ 0) for a reinforcement cover layer. The inequality in Eq. (6.19)

is thereby satisfied (0.5 < 2 � 0.4). From Eqs. (6.21) and (6.22) it follows that

c ¼ � 0:5

2� 0:4

ð2� 0:4� 0:5Þ2 � ð4þ 0:52Þ
ð0:4� 0:5þ 2Þ2 � ð4þ 0:52Þ ¼ 4:406

d ¼ 0:5

2

ð2� 0:4� 0:5Þ2 � ð4þ 0:52Þ
ð0:4� 0:5þ 2Þ2 � ð4þ 0:52Þ

2þ 0:5� 0:4

0:5� 2� 0:4
¼ 12:926

For the upper bound of the distribution it follows from Eq. (6.20) that

b ¼ 25ð4:407þ 12:926Þ
4:407

¼ 98:326

Figure 6.4 shows the beta distribution with the parameters assessed above

together with the corresponding normal, log-normal and Gamma distributions

that have the same mean μ and standard deviation σ. Obviously, there are consider-
able differences between the distributions indicated in Fig. 6.4.

The normal distribution (skewness α ¼ 0) predicts the occurrence of negative

values, which may not comply with the real conditions for the reinforcement cover

depth. The log-normal distribution with the lower bound at zero has a skewness

α ¼ 1.264 (given by Eq. (6.11)), which does not correspond to experimental results

and leads to an overestimation of the occurrence of positive deviations (which may

further lead to unfavourable consequences for the resistance of the reinforced

concrete element). The gamma distribution has a skewness α ¼ 2 V ¼ 0.8

(Eq. (6.13)) and is closer to the experimental value 0.5. The most convenient

model seems to be the beta distribution with a skewness α ¼ 0.5 obtained from

experimental data.

The above discussion can be supplemented by statistical tests (see Chap. 10 and

books [1–3]). On the other hand, it should be mentioned that goodness of fit tests
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often fail and do not lead to an unambiguous conclusion. In such a case the selection

of a convenient model depends on the character of the basic variable, on available

experience and on common experience.

6.5 Gumbel Distribution

The extreme values (maximal or minimal) in a population of a certain size are

random variables and their distribution is extremely important for the theory of

structural reliability. Three types of distribution of extreme values are usually

covered in specialised literature, and are denoted as types I, II and III. Each of

the types has two versions – one for the distribution of minimal values, the second

for the distribution of maximal values. All these types of distribution have a simple

exponential shape and are convenient to work with. The extreme value distribution

of type I, which is commonly called the Gumbel distribution, is described in detail.

Descriptions of the other types of distribution can be found in specialised literature

[1, 2].

The distribution function of type I for the maximal values distribution version

(the Gumbel distribution of maximum values) has the form [6]

ΦðxÞ ¼ exp � exp �cðx� xmodÞð Þð Þ (6.23)

It is a distribution defined within an infinite interval, which depends on two

parameters: on the mode xmod and the parameter c > 0. By differentiating the

distribution function we obtain the probability density function in the form

-10 0 10 20 30 40 50 60 70 80
0.00

0.01
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0.04

0.05
Probability density j(x)

Concrete cover x [mm]

Normal distribution N(25;10), a = 0

Beta distribution Beta(25;10)
a = 0, b = 98.3, a = 0.5;

Log-normal distribution LN(25;10)
            a = 0, a = 1.264;

Gamma distribution Gamma(25;10)
a = 0, a = 0.8;

Fig. 6.4 Normal, log-normal, gamma and beta distributions for the concrete cover depth of

reinforcement in a reinforced concrete element
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φðxÞ ¼ c exp �cðx� xmodÞ � exp �cðx� xmodÞð Þð Þ (6.24)

Both these parameters are related to the mean μ and standard deviation σ

xmod ¼ μ� 0:577σ

ffiffiffi
6

p

π
(6.25)

c ¼ π

σ
ffiffiffi
6

p (6.26)

The skewness and kurtosis of the distribution are constant: α ¼ 1.14, ε ¼ 2.4.

An important feature of the Gumbel distribution is the easy transformation of the

distribution function Φ(x) of an original random variable having the mean μ and

standard deviation σ to the distribution function ΦN(x) for the maxima of

populations that are N times greater than the original population. If individual

original populations constituting a new N times greater population are mutually

independent, then the distribution function ΦN(x) is given as

ΦNðxÞ ¼ ΦðxÞð ÞN (6.27)

By the substitution of Eq. (6.23) into Eq. (6.27) ΦN(x) can be written as

ΦNðxÞ ¼ exp � exp �cðx� xmod � lnN=cÞð Þð Þ (6.28)

It follows from Eqs. (6.23) and (6.27) that the mean μN and standard deviation σN
of the maxima of the new N times greater population are

μN ¼ μþ lnðN=cÞ ¼ μþ 0:78 lnðN σÞ; σN ¼ σ (6.29)

Thus the standard deviation of the original population does not change and

σN ¼ σ, but the mean μN is greater than the original value μ by ln(N/c).
The distribution function of type I, for the minimal values distribution (Gumbel

distribution of minimum values) has the form

ΦðxÞ ¼ 1� exp � exp �cðxmod � xÞð Þð Þ (6.30)

This distribution is symmetric to the distribution of maximal values given by

Eq. (6.23). It is therefore also defined within an open interval and depends on two

parameters: on the mode xmod and parameter c > 0. By differentiating the distribu-

tion function we obtain the probability density function in the form

φðxÞ ¼ c exp �c ðxmod � xÞ � exp �c ðxmod � xÞð Þð Þ (6.31)

Both these parameters can be assessed from the mean μ and standard deviation σ
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xmod ¼ μþ 0:577σ

ffiffiffi
6

p

π
(6.32)

c ¼ π

σ
ffiffiffi
6

p (6.33)

Example 6.6. One-year maxima of wind pressure are described by a Gumbel

distribution with a mean μ1 ¼ 0.35 kN/m2, σ1 ¼ 0.06 kN/m2. The corresponding

parameters of 50-year maximum value distribution, i.e. parameters μ50 and σ50,
follow from Eq. (6.29)

μ50 ¼ 0:35þ 0:78� lnð50� 0:06Þ ¼ 0:53 kN=m2; σ50 ¼ 0:06 kN=m2

Figure 6.5 shows both the distributions of 1-year and 50-year maxima of wind

pressure described by a Gumbel distribution.

The probability density functions of the minimum values are symmetric to the

shape of maximal values relative to the mode xmod, as is apparent from Fig. 6.6.

In a similar way, type II distribution, the so-called Fréchet distribution, and type

III distribution, the so-called Weibull distribution, are defined. All three types of

distribution complement each other with regard to possible values of the skewness

α. Each type covers a certain area of skewness, as shown in Fig. 6.7.

Types I and II of the extreme values distribution are often applied in the

description of quantities of which the maximal values are studied (actions), and

type III distribution is applied for quantities of which the minimal values are studied

(e.g. strength and other material properties).

Types I and II of the extreme values distribution are often applied in the

description of quantities of which the maximal values are studied (actions), and

type III distribution is applied for quantities of which the minimal values are studied

(e.g. strength and other material properties).

6.6 Basic Rules for Selecting Distribution

Commonly used continuous distributions (normal, two- and three-parameter

log-normal distribution, gamma and beta distribution) may be selected using a

simple guide based on two basic parameters: relative measure of variance – the

coefficient of variation V; and a measure of asymmetry – the coefficient of skew-

ness α. The basic rules may be summarized as follows:

1. If the skewness α is close to zero, α � 0 (the distribution is symmetric) then

most likely the best distribution to use would be the normal distribution.

However, it should be remembered that the definition domain of the normal

distribution is infinite <�1, 1> and, generally there is a nonzero probability
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of occurrence of negative values (not negligible when the coefficient of variation

V > 0.2). Then truncated (one sided or two sided limited) normal distribution or

beta distribution may be applied.

2. If the skewness α is not negligible, α > 0 (the distribution is asymmetric) then

several distribution could be used: the two-parameter log-normal, the three-

parameter log-normal, the gamma and beta distributions. The two-parameter

log-normal distribution, the three-parameter log-normal distribution and gamma

distributions are one sided limited distribution, whereas the beta distribution is

two sided limited distribution. The two-parameter log-normal and gamma
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Fig. 6.5 Distribution of maximum wind pressure over the periods of 1 year and 50 years
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Fig. 6.6 The Gumbel distribution of the minimum and maximum values
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distributions are limited by zero, the three-parameter lognormal distribution by

lower bound (if the skewness is positive) or upper bound (if the skewness is

negative).

Figure 6.8 indicates possible combinations of the coefficient of variation V
(horizontal axis) and the positive coefficient of skewness α (vertical axis) that

could be accepted by selected continuous distributions: two- and three-parameter

log-normal distribution, gamma and beta distribution. In addition to these

distributions the Gumbel distribution is also included in Fig. 6.8; its skewness

α ¼ 1.14 (independent of the coefficient of variation V ) is indicated by a horizontal
dashed line.

Other types of distribution less frequently applied in engineering and science

may be found in books [3, 4, 7, 8]. A brief review of conventional distributions

provides Appendix 6.

Example 6.7. Consider a non-negative random variable described in Example 6.5.

For some physical reasons the random variable has only positive values limited by

zero and an unknown upper bound. Assume the mean μ ¼ 25 mm, a standard

deviation 10 mm (coefficient of variation V ¼ 0.40), and a skewness α ¼ 0.5. As

the skewness α is significant (not negligible), however less than 2 V, α < 2 V, it
follows from Fig. 6.8 that the beta distribution with lower bound at the origin seems

to be the appropriate type of continuous distribution. Its upper bound is 98.326

(given by Eq. (6.22), see also Example 6.5).

A second possible distribution is the three-parameter log-normal distribution,

which is very general and certainly can take account of the given parameters.

However in that case the lower bound is a negative value. It follows from Table 6.1

that the standardised value of the lower bound is u0 ¼ �6.05 that therefore

x0 ¼ 25�6.05 �10 ¼ �35.5. Consequently, there is some probability of occurrence

of negative values X that can be calculated from Eqs. (6.8) and (6.10) as

P(X < 0) ¼ ΦX(0) � 0.0014.

Another possibility is to use two-parameter log-normal distribution (with the

lower bound at zero). However, due to its high coefficient of variation VX ¼ 0.4 this

distribution has a relatively high skewness equal to 3 VX + VX
3 ¼ 1.264

a

a–1.14

1.140

0

type II type I type III

type III type I type II
Distribution of the maximum values

Distribution of the minimum values

Fig. 6.7 Types of

distribution of extreme

values versus the skewness α
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(Eq. (6.11)). This one sided limited distribution may well fit the left tail of the

distribution but at the same time it amplifies the positive deviations of the random

variable from its mean (there is no upper bound of the distribution).
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Chapter 7

Functions of Random Variables

Functions of random variables defining resulting random variables as functions of

several input random variables regularly enter many engineering and scientific

applications. The elementary functions of a single continuous variable and two or

more independent variables, reviewed in Appendix 4, are supplemented by

functions several random variables. A special function of a single random variable

is the extreme value of samples taken from a population described by various types

of so-called extreme value distributions. These distributions play a substantial role

in a number of practical applications. Another important function of a random

variable is the updating of its probability distribution when newly obtained infor-

mation is taken into account. This procedure is developed as an extension of Bayes´

theorem. Finally, the distribution of a sum of several random variables is discussed

in conjunction with the central limit theorem.

7.1 Function of a Single Random Variable

The functions of random variables enter many engineering and scientific

applications. The distributions of the resulting random variables and their

parameters are derived in detail in publications [1–3]. The following short review

of basic rules and computational procedures are adapted from the description

provided in book [4], paper [5] (for mutually independent variables) paper [6]

(for dependent variables).

The general form of a function Z (resulting variable) of a single random variable

X is expressed as

Z ¼ fðXÞ (7.1)

Assuming that f(X) is a single value function (one-to one mapping), then a given

value z of the random variable Z corresponds to a particular value x ¼ f�1(z), where
f�1(z) denotes the inverse function to f(x) or inverse mapping of z to x.

M. Holický, Introduction to Probability and Statistics for Engineers,
DOI 10.1007/978-3-642-38300-7_7, © Springer-Verlag Berlin Heidelberg 2013
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If the transformation function f(x) is an increasing function of x, then for a given
value z ¼ f(x) the probabilities P(Z � z) and P(X � x) are equal, and the probabil-

ity distribution function ΦZ(z) of the transformed variable Z may be expressed in

terms of the distribution function ΦX(x) simply as

ΦZðzÞ ¼ ΦZðfðxÞÞ ¼ ΦXðxÞ ¼ ΦXðf�1ðzÞÞ (7.2)

This equation can be written in the integral form (see Eq. (4.7)) as

ΦZðzÞ ¼
ðz
�1

φzðzÞdz ¼
ðf�1ðzÞ

�1
φXðxÞdx ¼

ððzÞ
�1

φXðf�1ðzÞÞdx (7.3)

It follows from Eqs. (7.2) and (7.3) that the probability elements φZ(z)dz and
φX(x)dx are also equal

φZðzÞdz ¼ φXðxÞdx (7.4)

Equation (7.4) clearly indicates that the relationship between the probability

density functions φZ(z) and φX(x) depends on the differentials dz and dx of continu-
ous variables Z and X. Consequently the probability density φZ(z) of the

transformed variable Z is related to the probability density functions φX(x) as

follows

φZðzÞ ¼ φXðxÞ
dx

dz
(7.5)

Equation (7.4) may be generalised for a monotonous (both increasing and

decreasing) transformation function f(X) as follows

φZðzÞ ¼ φXðxÞ
dx

dz

����
���� ¼ φXðf�1ðzÞÞ df

�1ðzÞ
dz

����
���� (7.6)

Example 7.1. A random variable X has a normal distribution N(μ,σ) having the

mean μ and standard deviation σ:

φXðxÞ
1

σ
ffiffiffiffiffi
2π

p exp � 1

2

x� μ

σ

� �2
� �

A new random variable U (standardized normal variable) is introduced by

transformation formula defining standardised random variables

U ¼ fðXÞ ¼ X � μ

σ
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The differential du ¼ dx/σ and the ratio of the differentials dx/du ¼ σ . Then it

follows from Eq. (7.5) that the new probability density function φU(u) of the

transform variable U is

φUðuÞ
1ffiffiffiffiffi
2π

p exp � 1

2
u2

� �

This formula is already known from Chap. 6 (Eq. (6.3)) for a standardised

random variable having the normal distribution N(0,1) (the mean equals zero and

the standard deviation equals 1).

Example 7.2. The wind pressure P can be expressed in terms of wind speed S as

P ¼ fðSÞ ¼ ks2

Here k denotes a quantity dependent on several characteristics of structure and

its surroundings, but independent of the velocity S. The ratio of differentials ds/dp
follows from the transformation formula as

ds

dp
¼ 1

2
ffiffiffiffiffi
kp

p

Then the probability density function φP( p) of the wind pressure can be derived

from the density of wind velocity φS(s) using Eq. (7.5) as

φPðpÞ ¼
φS

ffiffiffiffiffiffiffiffi
p=k

p� �
2

ffiffiffiffiffi
kp

p

The moment parameters of the transformed random variable P may be obtained

by integration considering the above derived probability density function φP( p). It
may, however, require approximations using numerical procedures.

7.2 Function of Two Random Variables

The probability distribution of a function of two variables may be derived in much

the same way in the case of one random variable. Consider a function of two

mutually independent random variables X and Y:

Z ¼ fðX; YÞ (7.7)

The probability density function φZ(z) of the resulting random variable Z can be

expressed as
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φZðzÞ ¼
ð1
�1

φX;Yðf�1ðz; yÞ; yÞ @f
�1ðz; yÞ
@z

����
����dy

¼
ð1
�1

φX;Yðx; f�1ðx; zÞÞ @f
�1ðx; zÞ
@z

����
����dx (7.8)

In general, Eq. (7.8) may not be easily applied and usually numerical integration

has to be used. That is why different approximate techniques are frequently applied

in engineering applications. A simple procedure for assessing moment parameters

of the resulting random variable Z is described in the following Section.

Example 7.3. As an example consider the sum of two random variables

Z ¼ X þ Y

The inverse functions and their derivatives are

x ¼ z�y and y ¼ z�x

@x

@z
¼ @y

@z
¼ 1

The probability density function φZ(z) follows from Eq. (7.8) as

φZðzÞ ¼
ð1

�1
φX;Yðz� y; yÞ dy ¼

ð1
�1

φX;Yðx; z� xÞdx

Furthermore, if X and Y are mutually independent random variables, then the

probability joint density of the two random variables equals to the product of

densities of each random variable, thus

φX;Yðx; yÞ ¼ φXðxÞφYðyÞ

The resulting probability density φZ(z) can then be written as

φZðzÞ ¼
ð1

�1
φXðz� yÞ;φYðyÞ dy ¼

ð1
�1

φXðxÞφYðz� xÞ dx
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7.3 Parameters of Functions of Independent Random

Variables

Another approach to investigating the functions of mutually independent random

variables, and to assessing the probability distribution of the resulting random

variable Z, is to estimate the basic moment parameters (the mean μZ, standard
deviation σZ and skewness αZ) using the Taylor expansion of the transformation

function f(X, Y,. . .) into a power series [5].

Thus instead of deriving probability distribution of the transformed random

variable Z, moment parameters of the resulting random variable are estimated

first and then used to approximate the distribution of the variable Z. Three basic

moment parameters are considered for all random variables in the following: the

mean μ, the standard deviation σ and the skewness α. (supplemented by appropriate

subscripts).

Consider a function of independent random variables X, Y, . . ., resulting in the

variable Z given by a general relationship

Z ¼ f ðX; Y; . . .Þ (7.9)

The variable Z is therefore also a random variable having moment parameters μZ,
σZ, αZ, for which (using the Taylor expansion of f (X, Y,. . .) into a power series)

approximate relationships may be found

μZ ¼ f1ðμX; μY ; . . . σX; σY ; . . . ; αX; αY; . . .Þ (7.10)

σZ ¼ f2ðμX; μY ; . . . σX; σY ; . . . ; αX; αY ; . . .Þ (7.11)

αZ ¼ f3ðμX; μY ; . . . σX; σY ; . . . ; αX; αY ; . . .Þ (7.12)

Appendix 4 provides relationships (7.10, 7.11 and 7.12) for elementary forms of

functions (7.9) considering one or two independent random variables X and Y.
These relationships may be effectively applied to simplify a number of common

expressions describing the behaviour of the resulting random variable Z, such as a

capacity of structural members.

Example 7.4. Consider a simple product of two random variables X and Y.
Equation (7.9) is then written as

Z ¼ aX þ bY þ c

Here symbols a, b and c denote constants. Using formulae in Appendix 4 the

following relationships for the basic moment parameters of Z can be found

μZ ¼ aμX þ bμY þ c
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σ2Z ¼ a2σ2X þ b2σ2Y

αz ¼ a3σ3XαX þ b3σ3YαY
σ3Z

For a numerical illustration let us consider a difference of two random variables

Z ¼ X � Y

Parameters of X (lognormal distribution) are μX ¼ 100, σX ¼ 10, αX ¼ 0.301.

Parameters of X (Gumbel distribution) are: μY ¼ 50, σY ¼ 10, αY ¼ 1.14.

μZ ¼ 100� 50 ¼ 50

σ2Z ¼ σ2X þ σ2Y ¼ 102 þ 102 ¼ 14:142

αZ ¼ σ3XαX þ σ3YαY
σ3Z

¼ 103 � 0:301� 103 � 1:14

14:143
¼ �0:30

Note that due to the difference of input variables the resulting variable Z has a

negative skewness �0.30.

Example 7.5. Consider a simple product of two random variables X and Y.
Equation (7.9) is then written as

Z ¼ X � Y

Using Appendix 4 the following relationships for the basic parameters may be

found

μZ ¼ μX � μY

V2
Z ¼ V2

X þ V2
Y þ V2

XV
2
Y

αZ ¼ V3
XαX þ V2

YαY þ 6 V2
Xw

2
Y

V2
X þ V2

Y þ V2
XV

2
Yð Þ3=2

¼ V3
XαX þ V2

YαY þ 6 V2
XV

2
Y

V3
Z

Note that the product Z of two random variables X and Y having the normal

distribution (αX ¼ αY ¼ 0) is not a normal variable. If, for example, VX ¼ 0.1 and

VY ¼ 0.2, then it follows, using the above formulae, that the resulting coefficient of

variation VZ ¼ 0.22 and the skewness αZ ¼ 0.11.

Example 7.6. Considering wind pressure P ¼ ks2 described in Example 7.2, the

moment parameters of pressure P may be well approximated as follows:
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μP ffi k μ2S þ σ2S
� 	

σP ffi k2σS μ2S þ μSσSαS
� 	1=2

αP ffi 8μ3Sσ
3
SðαS þ 3VSÞ
σ3P

The above expression may be effectively used to approximate a theoretical

model for distribution of the pressure P. If, for example, the mean μS ¼ 30 m/s,

standard deviation σS ¼ 3 m/s (coefficient of variation VS ¼ 0.1) and skewness

αS ¼ 1.14 (Gumbel distribution), then

μP ffi 909k

σP ffi 190k

αP ffi 1:22

Compared with the original variable S, the coefficient of variation and skewness
of the transformed variable P increased: VP � 0.21 and αP � 1.22.

7.4 Parameters of Functions of Dependent Random

Variables

Parameters of functions of two mutually dependent variables can be found in a

paper [6]. Considering again the transformation function (7.10), basic moment

parameters of the resulting variable Z formulae are provided for basic moment

parameters (see Eqs. (3.9, 3.10 and 3.11)):

– The mean μZ
– The central moments of the second power (variance) μZ2 ¼ σZ

2

– The central moment of the third power μZ3, from which the skewness is derived

as αZ ¼ μZ3/σZ
3

The above moments of the variable Z are expressed as function of the relevant

moments of variables X and Y:

– The means μX and μY
– The central moments μXi and μYi (for i ¼ 1,2,3,4)

– The product moment μXi, Yj (for i ¼ 1,2,3 and j ¼ 1,2,3)

An example of the transformation function and the resulting moments taken

from the paper [6] is shown below
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Z ¼ aX þ bY þ c (7.13)

μZ ¼ a μX þ b μY þ c (7.14)

μZ ;2 ¼ a2μX2 þ b2μY2 þ 2a bμX1;Y1 (7.15)

μZ3 ¼ a3μX3 þ b3μY3 þ 3a2bμX2;Y1 þ 3ab2μX1;Y2 (7.16)

Similar expressions are available for a number of linear and nonlinear functions

commonly encountered in engineering applications.

Example 7.7. Consider a sum of two normally distributed and dependent random

variables X and Y given by Eq. (7.13). The central moments of the third power and

skewness of both these variables is zero. Then the moment parameters of the

variable Z follow from Eqs. (7.14, 7.15 and 7.16) as

μZ ¼ aμX þ bμY þ c

σZ
2 ¼ a2σX

2 þ b2σY
2 þ 2a bρσXσY

Here ρ ¼ μX1,Y1/(σX σY) denotes the coefficient of correlation. Note that in this

case of normally distributed random variables X and YμZ3 ¼ μX3 ¼ μY3 ¼ μZ2,
Y1 ¼ μX1,Y2 ¼ 0. Consequently the skewness of the variable Z is zero.

In case of a simple difference Z ¼ X�Y (a ¼ 1, b ¼ �1 and c ¼ 0), the above

expressions become

μZ ¼ μX � μY

σZ
2 ¼ σX

2 þ σY
2 � 2ρσXσY

7.5 Updating of Probability Distributions

A special case of transformation of a random variable X is the updating of its

probability distribution. The prior probability density function φX(x) (provided by

previous experience) may be updated using new information expressed by a

likelihood function L(I/x). If the prior probabilities are described by a continuous

probability density function φX(x) of a random variable X likelihood by a function

L(I/x), where I denotes the outcomes of additional investigation I, then a posteriori
(updated) probability density φX(x|I) may be derived from (7.17) by using integra-

tion instead of the summation as
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φXðxjIÞ ¼
φXðxÞLðIjxÞÐ
φXðxÞLðIjxÞdx

(7.17)

Note that the likelihood L(I|x) is a function describing the potential (it may not be

probability) that the outcome of the updating investigation I (information obtained

from I) is due to the occurrence of x. Formulae (7.17) can be used for the updating

of distribution functions when additional experimental investigations are used for

assessing new or existing structures.

Example 7.8. Assume that a variable X has a normal prior distribution with

probability density function φX(x) having the mean μ and the standard deviation σ.
Additional investigation indicated that the likelihood function L(I|x) is described by

a general three-parameter log-normal distribution having the same standard devia-

tion σ but the mean equal to μ + 0.5 σ and the skewness α ¼ 1. Using a numerical

integration it follows that the updated distribution φX(x|I) has the following moment

parameters

μXjI ¼ μX þ 0:18σX

σXjI ¼ 0:64σX

αX jI ¼ 0:39

Figure 7.1 shows the prior probability density φ(u), likelihood L(I|u) and the

updated probability density function φ(u|I) using standardized random variable U.
It follows from Fig. 7.1 that the updated distribution has considerably lower

variability than the prior distribution. Obviously updating of probability

distributions may be extremely effective when assessing the characteristic values

of the resistance variables using additional tests.

7.6 Central Limit Theorem

The central limit theorem has a number of variants. The following description is

devoted only to practical applications of the theorem devoted to the sum of a

number of random variables. In its classical form the central limit theorem states

[7] that the mean of a sufficiently large number of independent observations, each

taken from a certain population with a finite mean and variance, is approximately

normally distributed. Moreover the distribution has the same mean as the parent

distribution and a variance equal to the variance of the parent distribution divided

by the sample size.

Thus, in this variant, the central limit theorem considers a sample taken from

one distribution (generally non-normal) of the mean μ and variance σ2. It can be
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shown [3] that with increasing sample size n, distribution of the sample mean

m approaches the normal distribution N(μ,σ/√n) with the same mean μ as the parent
distribution and with the reduced standard deviation σ/√n. The formal representa-

tion of this finding may be written like this:

m ¼
Pn

1 xi
n

� N μ;
σffiffiffi
n

p

 �

(7.18)

In other variants of the central limit theorem, convergence of the mean to the

normal distribution also occurs for non-identical parent distributions, as long as

they comply with certain conditions. This outcome holds even when the parent

distributions are non-normal. So, although the distribution of the sample mean

reflects the properties of the parent distribution (particularly its location μ), the
shape of this sampling distribution is symmetrical (normal) and primarily affected

by the sample size n.
In general, the distribution of the means tends to be normal as the sample size

increases regardless of the distribution from which the mean is taken, except when

the moments of the distribution do not exist. However, all practical distributions

applied in engineering and science have definite moments, and thus the central limit

theorem applies. Because of that remarkable result the central limit theorem plays

an important role in many statistical procedures, including the estimation of the

population parameters, testing of statistical hypothesis and quality control.

The central limit theorem may be interpreted in a broad sense as follows: most

natural phenomena are dependent on a number of random variables Xi and may

be approximately described by a sum Y ¼ ∑Xi. If the random variables Xi are

0.0
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j(u|I)

L(I |u)

Standardized variable u

j(u)

Fig. 7.1 Prior probability density φ(u), likelihood L(I|u) and the updated probability density

function φ(u|I )
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mutually independent variables of an identical distribution with the mean μ,
variance σ2 and with an existing third moment, then the variable Y approaches a

normal distribution [3] of the mean nμ and variance nσ2.(the standard deviation

σ√n). The formal representation may be written as

Y ¼
Xn

1
Xi � N nμ;

ffiffiffi
n

p
σ

� 	
(7.19)

Many natural phenomena in the real world may be approximated by a sum of

other random variables and its distribution, as indicated in Eq. (7.19). Conse-

quently, such variables are expected to follow some kind of normal distribution

(with different means and standard deviations) depending on a number of random

variables Xi. This finding seems to be an extremely important piece of information

for the general understanding of the natural phenomena, one that depends on many

uncertainties.

However, practical experience from engineering and science clearly indicates

that some random variables follow somewhat asymmetric (non-normal) distribu-

tion patters; for example, variables (like strength of materials) that are dependent on

the product rather than on a sum of other variables. Then the resulting variable

follows asymmetric log-normal distribution. Obviously some natural phenomena

are the results of more complex relationships, and need to be described by theoreti-

cal models based on experimental evidence. Nevertheless, in many cases a normal

distribution is a good approximation and should be considered whenever there is a

lack of convincing statistical data.

Example 7.9. Consider a population (generally non-normal, say two parameter

log-normal LN2) of the mean μ ¼ 100 and variance σ2 ¼ 225 (the standard devia-

tion σ ¼ 15, coefficient of variation V ¼ σ/μ ¼ 0.15). If the sample size is limited

to n ¼ 9, then in accordance with Eq. (7.18) the sample mean tends to approach

normal distribution

m ¼
P9

1 xi
9

� Nð100; 5Þ

The standard deviation of the resulting normal distribution is given as σ/√n ¼
15/3 ¼ 5.

Figure 7.2 shows both distributions, the parent distribution LN2(100,15) and the

distribution of the sample mean N(100,5). Note that the parent distribution LN2

(100,15) is asymmetrical (positive skewness α ¼ 3 V + V3 ¼ 0.453), the sampling

distribution of the mean is symmetrical (normal) N(100,5)

Example 7.10. Consider the sum of n ¼ 4 independent random variables Xi

Y ¼
X4

1
Xi; μXi

¼ 0:5; σXi
¼ 0:1
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The mean μY and standard deviation σY follow from Eq. (7.19) as

μY ¼ 4� 0:5 ¼ 2; σY ¼ p
4� 0:1 ¼ 0:2

Note the difference between the sum of mutually independent variables Xi and

the multiple of a single variable Y ¼ 4 � X, where X is a random variable having

the same distribution as the input variables Xi which in the sum are considered to be

identical (or perfectly dependent). It follows from Annex 4 that in this case the

mean μY is not changed (μY ¼ 4 � μY), but the standard deviation σY is different.

The standard deviation σY of the resulting variable Y is now given simply as the

product n � σX of the multiplication factor n and the standard deviation σX ¼ σXi

(not √n � σX as in case of independent variables Xi). Thus

μY ¼ 4� 0:5 ¼ 2; σY ¼ 4� 0:1 ¼ 0:4

In the first case a sum of independent random variables Xi the coefficient of

variation VY ¼ 0.2/2 ¼ 0.1, in the second case VY ¼ 0.4/2 ¼ 0.2. There is also a

difference in distribution of the variable Y. In the first case the sum Y tends to be

normally distributed, in the second case the simple multiple Y has the same type of

distribution as X (Y has the same skewness as X, see Annex 4). This example clearly

illustrates the significance of mutual dependency of input random variables Xi on

the distribution of the resulting variable Y.

60 80 100 120 140 160
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0.02

0.04
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0.08

j(x)

X

N(100,5)

LN2(100,15)

Fig. 7.2 Probability density φ(x) of the parent distribution LN2(100,15) and sampling distribution

N(100,5) of the mean m for the sample size n ¼ 9
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7.7 Extreme Value Distribution

The extreme values (the maximum and minimum values) of samples are of great

interest and importance to many engineering and scientific applications. In particu-

lar several natural phenomena (flooding, snow and temperature extremes) can be

well described by one of the extreme value distributions. This Section is devoted to

a short description of the classical extreme value theory and models.

Consider a set of independent and identically distributed random variables (X1,

X2, . . ., Xn) having the probability density function φX(x) and distribution function

ΦX(x). Samples (x1, x2, . . ., xn) of the size n are created in such a way that each xi of
each sample is taken from the corresponding population of variables Xi,. A hypo-

thetical infinite number of the samples (x1, x2, . . ., xn) represents set of random

variables (X1, X2, . . ., Xn). The maximum values of the samples may be then

expressed as the maximum of the random variables (X1, X2, . . ., Xn), thus

Yn ¼ maxðX1;X2; . . .XnÞ (7.20)

The distribution function ΦYn(y) of the maximum value Yn is therefore defined
as

ΦYnðyÞ ¼ PðX1 � y;X2 � y; . . .Xn � yÞ ¼ ΦXðyÞ½ �n (7.21)

Here the assumption of independent random variables (X1, X2, . . .Xn) is taken

into account (see Eq. (2.22) for the probability of intersection of independent

events).

The probability density function φYnðyÞ is derived from Eq. (7.21)

φYnðyÞ ¼
dΦYnðyÞ

dy
¼ n ΦXðyÞ½ �n�1φXðyÞ (7.22)

Obviously, the resulting distribution depends on the sample size n and the initial
distribution of the variable X.

Similarly the minimum value of samples (x1, x2, . . ., xn) of the size n, when each
xi is taken from the corresponding population Xi may be written as

Y1 ¼ minðX1;X2; . . .XnÞ (7.23)

The distribution function ΦY1(y) can now be derived from the complementary

(survival) function as

1�ΦY1ðyÞ ¼ PðX1 > y;X2 > y; . . .Xn > yÞ ¼ 1�ΦXðyÞ½ �n (7.24)

Thus the distribution function is
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ΦY1ðyÞ ¼ 1� 1�ΦXðyÞ½ �n (7.25)

The probability density function is then

φY1ðyÞ ¼
dΦY1ðyÞ

dy
¼ n 1�ΦXðyÞ½ �n�1φXðyÞ (7.26)

Equations (4.22) and (4.26) provide an exact solution for probability density

functions of the maximum and minimum value of a sample of n observations taken
from any type of initial population (including a normally distributed population).

These relationships have been used to derive so-called extreme value distributions,

including Gumbel, Weibull and Frechet distributions, as introduced in Sect. 6.5.

Example 7.11. Consider the exponential distribution

ΦXðxÞ ¼ 1� exp ð�λxÞ

The corresponding distribution function is

φXðxÞ ¼
dΦXðxÞ

dx
¼ λ expð�λxÞ

The distribution function ΦYnðyÞ follows from Eq. (7.21) as

ΦYnðyÞ ¼ ΦXðyÞ½ �n ¼ 1� expð�λxÞ½ �n

The corresponding probability density function is

φYnðyÞ ¼
ΦYnðyÞ
dy

¼ λn 1� expð�λyÞ½ �n�1
expð�λyÞ

Note that the exponential functions are convenient for modeling extreme value

distributions.

Example 7.12. Consider the Gumbel distribution of maximum values defined in

Sect. 6.5 as

ΦðxÞ ¼ exp ð� expð�cðx� xmodÞÞÞ

The probability density function is given as

φXðxÞ ¼
dΦXðxÞ

dx
¼ c exp �cðx� xmodÞð Þ � expð�cðx� xmodÞÞ
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Using Eq. (7.21) the distribution function of the maximum value of a sample of

N observations (capital N is used as in Sect. 6.5) may be derived from Eq. (7.21) as

ΦYN ðyÞ ¼ ΦXðyÞ½ �N ¼ expð� expð�cðx� xmod� lnN=cÞÞÞ

This expression is already provided in Sect. 6.5 by Eq. (6.28). The probability

density function follows from Eq. (7.21) as

φYN
ðyÞ ¼ dΦNðyÞ

dy
¼ N ΦXðyÞ½ �N�1φXðyÞ

For practical use of this equation the previous two expressions for ΦXðyÞ½ �N�1

and φXðyÞ should be adjusted and substituted.
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Chapter 8

Estimations of Population Parameters

The estimation of population parameters from limited sample data is an indispens-

able part of any engineering and scientific application of probability and mathemat-

ical statistics. Based on appropriate sampling distributions, two types of estimate

are commonly applied: point and interval estimates. Point estimates of the popula-

tion mean and variance are obtained as the mean of relevant sampling distributions

evaluated for the sample mean and variance. Interval estimates are obtained as the

intervals of relevant sampling distribution that cover the population parameters with

a given probability called confidence level. Guidance is given on how to specify the

sample size of an experimental investigation with the accuracy required for the

estimate of the population mean. Notes on estimating the population skewness are

also provided. A review of basic formulae used for point estimates of the population

mean, variance and skewness is provided in Appendix 1.

8.1 Sampling Distributions

The concept of population and samples has already been introduced in Chap. 3,

with references to more detailed descriptions provided in [1–4]. It is necessary to be

reminded here that the population is the totality of items under consideration.

Depending on the actual conditions, it may have a limited or an unlimited number

of items or units. The term “item” or “unit” denotes an actual or conventional object

on which a set of observations can be made [5, 6]. When bulk material or continu-

ous material is considered then the unit is a defined quantity of material having a

physical or hypothetical boundary (container, time interval)

A precise and comprehensive definition of a population is the first important step

in any statistical investigation. The population is commonly characterized by a

number of relevant aspects, including time, geographic region, production technol-

ogy, producer, etc. These aspects are substantial for the correct interpretation of

obtained results.

M. Holický, Introduction to Probability and Statistics for Engineers,
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A sample is one or more units taken from a population and intended to provide

information on the population and possibly to serve as the basis for a decision on the

population. The number of sampling units is called sample size. If the sampling

units are taken from the population in such a way that each unit has the same chance

to be taken, then the sample is called a random sample. In what follows only

random samples are considered.

The constants providing information about the population are called parameters

and denoted here mostly by Greek letters; the corresponding quantities obtained

from a sample are called characteristics and are denoted by Roman letters. Obvi-

ously sample characteristics (discussed in Chap. 3) are not constants but random

variables (called often statistics) that differ from sample to sample and that are

described by special types of distributions, called sampling distributions. The most

important sampling distributions are available in literature [1–4] and their numeri-

cal representations are provided by several software products (EXCEL,

STATISTCA, MATHCAD, MATLAB etc.) or from statistical tables available as

a public domain on the internet. A concise table of standardized normal distribution

is provided in Appendix 7.

The sampling distributions are therefore introduced here very briefly. The

distribution of the sample means is described as the normal distribution (this

important sampling distribution has been introduced in Chap. 6 and a table of its

distribution function is given in Appendix 7). The sample variance is described by

χ2-distribution, t-distribution is used for estimation of the means when the popula-

tion variance is unknown, and F-distribution is used for the testing of two sample

variances. A short introduction of these sampling distributions is given below; the

numerical values used in the examples are obtained from the above-mentioned

sources.

8.1.1 χ2-Distribution

The random variable χ2 is the sum of the squares of normalised random variablesUi

having normal distribution.

χ2 ¼
Xv

i¼1
U2

i (8.1)

The distribution depends on one parameter only, ν ¼ 1,2,3. . ., called the degree
of freedom (the number of independent summands). It can be shown that the

moment parameters are as follows

μχ2 ¼ ν; σχ2 ¼
pð2νÞ; αχ2 ¼ 2

pð2=νÞ; εχ2 ¼ 12=ν (8.2)

For example, if the number of the independent variables Ui is ν ¼ 9 then
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μχ2 ¼ 9; σχ2 ¼ 4:24; αχ2 ¼ 0:47; εχ2 ¼ 1:33:

Probability density function φ( χ2) for ν ¼ 9 is shown in Fig. 8.1.

8.1.2 t-Distribution

The random variable t is a ratio of two random variables: the normalised normal

variable U and a function of the χ2 random variable degree of freedom ν:

t ¼ Uffiffiffiffi
χ2

ν

q (8.3)

It can be shown that the moment parameters are as follows

μt ¼ 0; σt ¼
ffiffiffiffiffiffiffiffiffiffiffi
ν

ν� 2

r
; for ν > 2; αt ¼ 0; εt ¼ 6

ν� 4
for

ν > 4 (8.4)

Obviously it is a symmetrical distribution around zero (μt ¼ αt ¼ 0). As

indicated in Fig. 8.2 with an increasing degree of freedom it approaches the

standardised normal distribution N(0,1) (the distribution function is provided in

Appendix 7).

Fig. 8.1 Probability density φ( χ2) for ν ¼ 9 degree of freedom
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8.1.3 F-Distribution

Random variableF is a fraction of two scaled random variables having χ2-distribution
defined as

F ¼
χ2
1

ν1
χ2
2

ν2

(8.5)

It is an asymmetrical distribution having the mode

~F ¼ ν2
ν1

ν1 � 2

ν2 þ 2
for ν1 > 2 (8.6)

The moment parameters of F-distribution are as follows

μF ¼ ν2
ν2 � 2

for ν2 > 2 (8.7)

σF ¼ ν2
ν2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðν1 þ ν2 � 2Þ
ν1ðν2 � 4Þ

s
for ν2 > 4 (8.8)

αF ¼ 2ð2ν1 þ ν2 � 2Þ
ν2 � 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðν2 � 4Þ

ν1ðν1 þ ν2 � 2Þ

s
for ν2 > 6 (8.9)
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p = 0.025p = 0.025

Fig. 8.2 Normal N(0,1) and t-distribution for degree of freedom ν ¼ 9
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εF ¼ 3 ðν2 � 4Þ ðν1 þ ν2 � 2Þðν1ν2 þ 6ν1 þ 6ν2 � 8Þ þ 4ν1
ν1ðν1 þ ν2 � 2Þðν2 � 8Þðν2 � 6Þ � 1

� �
for

ν2 > 8 (8.10)

This distribution is used for testing statistical hypothesis concerning the differ-

ence between two sample standard deviations. The probability density distribution

φ(F) for ν1 ¼ 11 and ν2 ¼ 9 (used in Chap. 10) is shown in Fig. 8.3.

8.2 Point Estimate of the Mean

The sample mean m given by Eq. (3.1) has in general normal distribution N(μ,σ/√n)
having the mean and standard deviation

μm ¼ μ; σm ¼ σ=
p
n (8.11)

Here μ and σ denote the mean and standard deviation of the population. Equation

(8.11) holds approximately for any population distribution (due to the theorem of

central tendency). Thus the unbiased estimate m̂ of the population mean μ is simply

equal to the sample mean m, thus

0 2 4 6
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j(F )
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F0,95= 3.10

F-distribution for

n 1= 11; n 2 = 9

p = 0.05 

Fig. 8.3 Probability density function of F – distribution
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m̂ ¼ m (8.12)

This trivial result for the point estimate of the population mean is independent of

the sample size n. However, it follows from Eq. (8.11) that the standard deviation

σm of the sample meanmmay be relatively large, particularly for small samples and

a great variance of the population. For example, if the sample size is only n ¼ 4,

then the standard deviation σm ¼ σ/2 and the point estimate (8.12) may suffer from

a significant statistical uncertainty.

8.3 Point Estimate of the Variance

The sample variance s2 given by Eq. (3.2) can be described by χ2 distribution with

ν ¼ n�1 degree of freedom. The random variable χ2 follows from Eqs. (8.1) and

(3.2) (substituting
Pn

1 ðxi � mÞ2 ¼ ns2) as

χ2 ¼
Pn

1 ðxi � mÞ2
σ2

¼ n
s2

σ2
(8.13)

Here, the degree of freedom arises from the residual sum-of-squares in the

numerator, and in turn the n � 1 degree of freedom of the underlying residual

vector xi � mf g. The sum of the residuals is necessarily 0. If n�1 values are known,

then the last one can be thus found. That means the residuals are constrained to lie in

a space of dimension n�1. One says that “there are n�1 degree of freedom for the

residual.”

The unbiased estimate ŝ2 of the population variance σ2 corresponds to the mean

μχ2 of the random variable χ2 defined by Eq. (8.2), that is

μχ2 ¼ n
s2

ŝ2
¼ n� 1 (8.14)

The best estimate ŝ of the population standard deviation σ corresponding to the

mean μχ2 of the χ
2 distribution of the sample variance s2 follows from Eq. (8.14) as

ŝ ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1 ðxi � mÞ2
n� 1

s
(8.15)

So, the denominator n�1 in the estimate (Eq. (8.15)) is due to the fact that the

best estimate is derived from the mean of the χ2-distribution describing the sample

variance s2.
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Example 8.1. Consider the sample of measurements of a steel tensile strength

having the standard deviation s ¼ 20.51 MPa that is determined from a sample of

the size n ¼ 100. Obviously the best estimate ŝ2 of the population variance

σ2 follows from Eq. (8.15)

ŝ ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
¼ 20:51

ffiffiffiffiffiffiffiffi
100

99

r
¼ 20:61 MPa

However, if the sample size would be limited to n ¼ 10 and the sample standard

deviation would be the same s ¼ 20.51 MPa (as before for n ¼ 100), then the point

estimate of the population standard deviation would be greater

ŝ ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
¼ 20:51

ffiffiffiffiffi
10

9

r
¼ 21:62 MPa

8.4 Interval Estimate of the Mean

In general the interval estimates provide better information about the possible range

of the population parameters. The interval estimates that cover the population

parameters always correspond to some confidence level (probability close to 1)

that the parameter will be covered by the interval. Commonly, the confidence level

1�2p ¼ 0.90 or 0.95 is accepted, where the probability p ¼ 0.05 or 0.025 denotes

a one sided probability that the estimation limits will be exceeded.

The interval estimates of the population mean depends on whether the popula-

tion standard deviation σ is known or unknown. If the population standard deviation
is unknown then instead of σ the sample standard deviation s and appropriate

sampling distribution is to be considered.

8.4.1 Known σ

The interval that covers the population mean with the confidence level 1–2p follows
from Eqs. (8.11) and (8.12) as

mþ up
σffiffiffi
n

p < μ < mþ u1�p
σffiffiffi
n

p (8.16)

Here up and u1�p denotes the fractiles of standardised normal variable

corresponding to the probabilities p and 1�p.
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Example 8.2. The sample mean of the yield point determined from a sample of

100 observations is 250.5 MPa. The standard deviation of the population is known

from previous experience as σ ¼ 20.51 MPa. The interval estimate corresponding

to the confidence level 0.95 (p ¼ 0.025) is then

250:5� 1:96
20:51ffiffiffiffiffiffiffiffi
100

p < μ < 250:5þ 1:96
20:51ffiffiffiffiffiffiffiffi
100

p

246:5MPa < μ < 254:5 MPa

Here the values �up ¼ u1�p ¼ 1.96 can be obtained from any commonly

available software products (EXCEL, STATISTICA MATHCAD, MATLAB).

8.4.2 Unknown σ

If the population standard deviation σ is unknown then the sample standard devia-

tion s has to be used. The interval estimate corresponding to the confidence level

1–2p is given as

mþ tp
sffiffiffiffiffiffiffiffiffiffiffi

n� 1
p < μ < mþ t1�p

sffiffiffiffiffiffiffiffiffiffiffi
n� 1

p (8.17)

Here tp and t1�p denotes the fractiles of t-distribution corresponding to the the

n�1 degree of freedom and probabilities p and 1�p.

Example 8.3. Consider a similar case as Example 8.2. The sample mean of the yield

point and its standard deviation are now determined from a sample of 10 observations

only. Assume the same numerical values yielding the sample mean m ¼ 250.5 MPa,

the sample standard deviation s ¼ 20.51 MPa. The interval estimate of the popula-

tion mean corresponding to the confidence level 1 – 2p ¼ 0.95 (p ¼ 0.025) and to

the degree of freedom ν ¼ 10 – 1 ¼ 9 ð�t0:025 ¼ t0:975 ¼ 2:262 follows from

Eq. (8.17) as

250:5� 2:262
20:51ffiffiffi

9
p < μ < 250:5þ 2:262

20:51ffiffiffi
9

p

235:0MPa < μ < 266:0MPa

Comparing this interval estimate with the previous one in Example 8.2, it is clear

that due to the unknown standard deviation σ the interval is slightly broader.
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8.5 Interval Estimate of the Variance

The interval estimate of unknown population variance and standard deviation is

derived from χ2-distribution introduced in Sect. 8.1. The confidence level is

now expressed as 1–p1�p2, where p1 and 1�p2 denote the probabilities

corresponding to the lower and upper fractiles χ2p1 and χ21�p2
specified for ν ¼ n�1

degree of freedom. It follows from Eq. (8.13) that the interval covering the

population standard deviation is

ffiffiffiffiffiffiffiffiffiffiffi
n

χ21�p2

s
s < σ <

ffiffiffiffiffiffi
n

χ2p1

s
s (8.18)

As a rule the confidence level 1–p1�p2 is 0,90 or 0,95 usually assuming the

probabilities p1 ¼ p2 ¼ 0.05 or 0.025.

Example 8.4. Consider the sample standard deviation from previous example

s ¼ 20.51 MPa determined from a sample of 10 observations. Considering

the confidence level 1–p1�p2 ¼ 0.90 and p1 ¼ p2 ¼ 0.05, ν ¼ n�1 ¼ 9, then

χ20:05 ¼ 3:325 and χ20:95 ¼ 16:92 (see Fig. 8.1). It follows from Eq. (8.18)

ffiffiffiffiffiffiffiffiffiffiffi
10

16:92

r
20:51 < σ <

ffiffiffiffiffiffiffiffiffiffiffi
10

3:325

r
20:51

15:77 < σ < 35:57

This example clearly indicates that the interval covering the population standard

deviation σ with the probability 0.90 may be significantly broad and that the point

ŝ ¼ 21.62 MPa obtained for sample size n ¼ 10 in Example 8.1 suffer from a great

statistical uncertainty.

8.6 Specification of the Sample Size

It is expected that random samples obtained by experimental investigation will

represent well the populations that are being studied. In particular it is often

required that the estimated population mean is satisfactorily accurate and has a

limited error. It clearly follows from the Sect. 8.1 that the relative error in the

estimated population mean μ depends on the sample size n. Determination of an

appropriate sample size n is therefore an important step in any experimental

investigation. The adequate statistical procedure depends on whether the population

standard deviation σ is known or unknown.
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8.6.1 Known σ

If the population coefficient of variation σ is known (from previous experience or

from similar populations) then the maximum deviation of the population mean

estimate follows from Eq. (8.16) as

up
σffiffiffi
n

p
����

���� (8.19)

Then the relative error δ can be obtained by dividing the above absolute error by
the population mean μ. Then

δ ¼ up
σ

μ

1ffiffiffi
n

p
����

���� ¼ up
Vffiffiffi
n

p
����

���� (8.20)

Here V ¼ σ/μ denotes the population coefficient of variation. The required

sample size can then be expressed in terms of the coefficient V as

n >
upV

δ

� �2

(8.21)

Here up denotes the normalised normal random variable corresponding to the

probability p; Thus, the probability (confidence level) that the relative error δ will

not be exceeded is 1�2p (commonly equal to 0.90 or 0.95).

Example 8.5. It is known that the concrete strength has a coefficient of variation

V ¼ 0.13. If the relative error in estimating the population mean μ should be at the

most 10 % (that corresponds to δ < 0.10), then it follows from Eq. (8.21) that the

number of specimens to be investigated should be

n >
1:96� 0:13

0:1

� �2

¼ 6:5

So, at least 7 specimens should be used.

8.6.2 Unknown σ

If the population standard deviation σ is unknown, then the sample standard

deviation s and t-distribution are to be considered. Then Eqs. (8.19, 8.20 and

8.21) become
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tp
sffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

����
���� (8.22)

δ ¼ tp
s

m

1ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
����

���� ¼ tp
vffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
����

���� (8.23)

n >
tpv

δ

� 	2

þ 1 (8.24)

Here tp denotes the p-fractile of the t- distribution corresponding to the proba-

bility p and to the sample coefficient of variation v ¼ s/m.

Example 8.6. Assume that the sample coefficient of variation v ¼ 0.13 is deter-

mined from a small sample of the size n ¼ 7 (degree of freedom ν ¼ 6). If the

relative error in estimating the population mean μ should be at the most 10 % (that

corresponds to δ < 0.10), then it follows from Eq. (8.24) that the number of

specimens to be investigated should be

n >
2:447� 0:13

0:1

� �2

þ 1 ¼ 11:1

Here tp ¼ 2.447 is determined for ν ¼ 6 and p ¼ 0.025. So, at least

12 specimens should be tested, more than in the case of known σ when only

7 specimens are required.

8.7 Estimation of the Skewness

The sample skewness a (the coefficient of asymmetry without subscrip) is a very

sensitive sample characteristic substantially affected by deviations and possible

errors of observed data, particularly in the case of small samples. It is strongly

recommended that the sample skewness (as well as kurtosis) be evaluated with the

utmost caution. In particular dubious data and outliers should be carefully verified,

tested and if need be deleted from further investigation.

The corresponding sampling distribution is complicated and its description is

beyond the scope of this introductory text. As already indicated in Chap. 3 by

Eqs. (3.26) and (3.27) there are alternative expressions commonly used for an

unbiased point estimate of the population skewness. STATISTICA software

products provide another expression, assuming that the population standard devia-

tion σ is known

â ¼ n

ðn� 1Þðn� 2Þσ3
Xn

1
ðxi � mÞ3 ¼ n2

ðn� 1Þðn� 2Þ
m3

σ3
(8.25)
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Here m3 denotes the third central moment given by Eq. (3.8). If the population

standard deviation σ is unknown then it should be substituted by the estimate ŝgiven
by Eq. (8.15). The resulting expression for the point estimate of the population

skewness â then becomes

â ¼ n

ðn� 1Þðn� 2Þŝ3
Xn

1
ðxi � mÞ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

ðn� 2Þs3
1

n

Xn

1
ðxi � mÞ3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp
ðn� 2Þ a (8.26)

Here the sample skewness a is given by Eq. (3.5). The expression (Eq. (8.26))

gives the same result as Eq. (3.26), and is commonly used by software products

(EXCEL, MATLAB and MATHCAD and other statistical packages).

The enhanced factor of the sample skewness a in Eq. (8.26) is greater than 1 and
with increasing sample size n the factor decreases and ultimately approaches 1. It

should be noted that the population standard deviation σ may surprisingly increase

the estimate â given by Eq. (8.25) compared with the expression Eq. (8.26) (the

population standard deviation σ may be less than the population estimate ŝ ).
However, the differences between expressions Eqs. (8.25) and (8.26) are significant

only for small samples (sample size n < 30) and diminish with increasing n; if the
sample size n > 30 then the enhanced factor according to expression Eq. (8.25) is

less than 1,10, the enhanced factor according Eq. (8.26) less than 1,05 (see also

discussion in Sect. 3.7).

Uncertainty in evaluating skewness is usually characterized by the variance σ2â
(the standard deviation σâ) of the point estimate â made from limited sample data

taken from the normal population

σ2â ¼
6nðn� 1Þ

ðn� 2Þðnþ 1Þðnþ 3Þ (8.27)

An approximate value of the variance Eq. (8.27) is 6/n but this is inaccurate for

small samples of the size n < 30. For the sample size n > 30 (recommended for

estimating population skewness) the standard deviation σâ of the point estimate â
can be approximated as

σâ ffi
ffiffiffiffiffiffiffiffi
6=n

p
: (8.28)

Approximately, it can be stated that if the point estimate is, in absolute value,

greater than a double of this value, then the skewness is considered to be significant

and the population is assumed to be asymmetric (not normal). The above procedure

for estimating population skewness â is illustrated by the following numerical

example.
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Example 8.7. Consider the sample skewness a ¼ 1,00 determined from a sample

of 30 observations.

The estimated population skewness â; in accordance with Eq. (8.25) used in

STATISTICA, assuming the population standard deviation σ is known, and the

ratio m3

σ3 is equal to 1, is given as

â ¼ 302

29� 28
1:00 ¼ 1:11

The formula Eq. (8.26) yields assuming the sample skewness a � m3

σ3 ¼ 1

â ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30� 29

p

28
1:00 ¼ 1:05

Obviously, the enhanced factor obtained from formula Eq. (8.25) (involving the

population standard deviation σ) is slightly greater than that obtained from

Eq. (8.26) (in which the estimate of population standard deviation ŝ is considered).
If the population is normal, then the standard deviation of the estimate can be

assessed using Eq. (8.28)

σâ ¼
ffiffiffiffiffiffiffiffi
6=n

p
¼ 0:45

The skewness is to be considered as significant because

a ¼ 1:00 > 2� 0:45

Thus, the population from which the sample is taken cannot be considered as

symmetric (normally distributed).
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Chapter 9

Fractiles of Random Variables

A fractile is the value of a random variable corresponding to a given probability of

occurrence of values smaller than the fractile. It is an important concept used in

many engineering and scientific applications. If a random variable is defined by a

known theoretical model then the fractile is simply the point at which the distribu-

tion function attains the specified probability. However, estimation of fractiles from

limited sample data without having a theoretical model of the random variable is a

more complicated task. Two different methods are commonly used: the classical

coverage method and the prediction method. Operational techniques are provided

for both methods and their comparison, taking into account the confidence level of

the coverage method offered. In addition, the Bayessian approach to fractile

estimation is explained, by way of updating prior data with newly obtained infor-

mation. A review of fundamental procedures provides Annex 5.

9.1 Fractiles of Theoretical Models

One of the most important keywords in the theory of structural reliability is the term

“fractile” of a random variable X (or of its probability distribution). In some

publications and software products the term “quantile” [1, 2] is used, but more

frequently the term fractile [3–5] is accepted (used also in this book). For a given

probability p, the p-fractile xp denotes such a value of the random variable X, for
which it holds that values of the variable X smaller than or equal to xp occur with the
probability p. If Φ(x) is the distribution function of the random variable X, then it

follows from Eq. (4.1) that the value Φ(xp) is equal to the probability p, thus the
fractile xp can be defined as

PðX � xpÞ ¼ ΦðxpÞ ¼ p (9.1)
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The same definition holds for a standardised random variable U (given by the

transformation Eq. (4.23)), when in Eq. (9.1) U is substituted for X and up is

substituted for xp. Figure 9.1 illustrates the definition given in Eq. (9.1).

Fractiles up of standardised random variables U are commonly available in

tables. Figure 9.1 illustrates the definition of the fractile described by Eq. (9.1)

for a standardised random variable U; it shows the distribution function Φ(u), the
probability density function φ(u), the probability p (equal to 0.05) and the fractile up

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

Probability density j(u) 

u

up

 p

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Distribution function F(u) 

u

up p

Fig. 9.1 Definition of the fractile for a standardised random variable U
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(equal to �1.645) for the distribution of a standardised variable U having the

normal distribution.

In general, the fractile xp of an original random variable X may be calculated

using tables for up available for standardised random variables U with a relevant

type of distribution. It follows from the transformation Eq. (4.23) that the fractile xp
may be determined from the standardised random variable up (found in available

tables) using the relationship

xp ¼ μþ upσ ¼ μð1þ upVÞ (9.2)

where μ denotes the mean, σ the standard deviation and V the coefficient of

variability of the observed variable X.
If the probability p < 0.5, then the value xp is often called the lower fractile, for

p > 0.5 the xp is called the upper fractile. Figure 9.2 shows the lower and upper

fractiles up of a standardised random variable U with a normal distribution for

probabilities p ¼ 0.05 and 0.95, and thus denoted u0.05 and u0.95.
The values up of the lower fractile of a standardised random variable U having a

normal distribution for selected probabilities p are given in Table 9.1. Considering

the symmetry of the normal distribution, the values up of the upper fractile can be

assessed from Table 9.1 by the substitution of p with 1�p and by changing the sign
of values up (from negative to positive). Detailed tables can be found, for example

in textbooks [1, 2], in the standard ISO 12491 [5], and in specialised literature.

For a standardised random variable having a general three-parameter log-normal

distribution the value up of the standardised random variable is dependent on the

skewness α. The values up for selected skewnesses α and probabilities p are given in
Table 9.2.

The fractile corresponding to the probability p ¼ 0.05 is usually applied for an

assessment of the characteristic value of material properties (strength of concrete,

yield strength of steel, masonry strength). However, the design values of dominant

variables are fractiles which correspond to a lower probability (p ffi 0.001), the

design values of non-dominant variables are fractiles corresponding to a greater

probability (p ffi 0.10).

In the case of a log-normal distribution with the lower bound at zero, which is

described in Sect. 6.2, it is possible to calculate the fractile from the value of the

fractile unorm.p of a standardised random variable having the normal distribution

using the relation

xp ¼ μffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V2

p exp unorm;p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ V2Þ

p� �
(9.3)

where unorm,p is the fractile of a standardised random variable with a normal

distribution, μ is the mean and V the coefficient of variation of the variable X. An
approximation of Eq. (9.3) is often applied in the form
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xp ffi μ expðunorm;p � VÞ (9.4)

whose accuracy is fully satisfying for V < 0.2, but is commonly used for greater V
as well.

Example 9.1. Let us assess the fractile xp of a normal and two parameter

log-normal distribution (with the lower limit at zero) for probabilities p ¼ 0.001;

0.01; 0.05 and 0.10, assuming the coefficient of variation V ¼ 0.3. We know that

the log-normal distribution with the lower limit at zero has, in this case, a positive

skewness α ¼ 0.927 (according to Eq. (6.11)), which needs to be known for

interpolation in Table 9.2. The resulting values xp are given in the following table

in the form of dimensionless ratios xp/μ (the ratio of the fractile to the mean), which

were assessed in different ways for the normal and for the log-normal distribution.

Table of the fractions xp/μ.

Fraction xp/μ for

Probability p

0.001 0.010 0.050 0.100

Normal distribution, Equation (9.2), Table 9.1 0.073 0.302 0.506 0.615

Log-normal distribution, Equation (9.2), Table 9.2 0.385 0.483 0.591 0.658

Log-normal distribution, Equation (9.3), Table 9.1 0.387 0.484 0.591 0.657

Log-normal distribution, Equation (9.4), Table 9.1 0.396 0.496 0.610 0.681

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
0.0

0.1

0.2

0.3

0.4
Probability density j(u)

Standardized random variable U having normal distribution

 p = 0.05 1- p = 0.05

 u0.05 = -1.645  u0,95 = 1.645

Fig. 9.2 The lower and upper fractiles of a standardised random variable U having a normal

distribution

Table 9.1 Fractile up of a standardised random variable having the normal distribution

p 10�7 10�6 10�5 10�4 0.001 0.010 0.050 0.100 0.200 0.500

�up 5.199 4.753 4.265 3.719 3.091 2.327 1.645 1.282 0.841 0.000
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The above table of ratios xp/μ shows the expected difference between the

fractiles of normal and log-normal distributions. The lower fractile of the normal

distribution is significantly lower than the corresponding fractile of the log-normal

distribution, particularly for small probabilities p. The table also shows that the

approximate formula Eq. (9.4) provides satisfactory results for computation of

the fractile of the log-normal distribution (the error will decrease by decreasing

the coefficient of variation V ).
The fractile of the gamma distribution can be calculated from the available

tables for type III Pearson distribution [5, 6]. To calculate the fractile of the beta

distribution, the available tables of an incomplete beta function may be used, or it

can be assessed by an integration of the probability density function according to

definition Eq. (9.1). However, when it is needed (and neither appropriate tables nor

software products are available), the fractile of the beta distribution, which is bell

shaped (for shape parameters c > 2 and d > 2), may be assessed approximately

from Eq. (9.2) using the table values of up for a standardised log-normal distribu-

tion, having the same skewness α as the beta distribution. An analogical procedure

may be also used for other types of distribution.

The fractile xp can be easily assessed for the Gumbel distribution. From

Eq. (6.23) and definition Eq. (9.1) follows an explicit relation for xp directly

dependent on the probability p

xp ¼ xmod � 1

c
lnð� lnðpÞÞ ffi μ� ð0:45þ 0:78 lnð� lnðpÞÞÞσ (9.5)

where the mode xmod and parameter c are substituted by relations Eqs. (6.25) and

(6.26).

Example 9.2. Let us determine the upper fractile of the wind pressure from

Example 6.6 described by a Gumbel distribution when a probability p ¼ 0.98 is

considered. It is known from Example 6.6 that for the 1-year maximum μ1 ¼ 0.35

kN/m2, σ1 ¼ 0.06 kN/m2. The fractile x0.98 for such parameters follows from

Eq. (9.5)

x0:98 ¼ 0:35� 0:45þ 0:78� ln � lnð0:98Þð Þð Þ � 0:06 ¼ 0:51 kN=m2

The corresponding fractile of the maximum for a period of 50 years (as shown in

Example 6.6 where μ50 ¼ 0.53 kN/m2, σ50 ¼ 0.06 kN/m2) is

x0:98 ¼ 0:53� 0:45þ 0:78� ln � lnð0:98Þð Þð Þ � 0:06 ¼ 0:69 kN=m2

Simple mathematical operations with the Gumbel distribution, including the

computation of fractiles, are the main reasons why this distribution is so popular.

The Gumbel distribution is frequently used as a theoretical model of random

variables describing climatic and other variable actions that are defined on the

114 9 Fractiles of Random Variables

http://dx.doi.org/10.1007/978-3-642-38300-7_6
http://dx.doi.org/10.1007/978-3-642-38300-7_6
http://dx.doi.org/10.1007/978-3-642-38300-7_6


basis of the maximal values in a given period of time (for example in one or several

years).

9.2 Fractile Estimation from Samples: Coverage Method

Theoretical models are very rarely known precisely in practical applications. In

civil engineering, it is often necessary to assess the fractile of a random variable (for

example, the strength of a new or unknown material) from a limited sample, the size

n of which may be very small (n < 10). Furthermore, random variables may have a

high variability (the coefficient of variation is sometimes greater than 0.30). The

assessment of the fractile of a population from a very small sample is then a serious

problem, which is solved in mathematical statistics by various methods of estima-

tion theory. In the following, three basic methods are briefly described: the cover-

age method, the prediction method and the Bayesian method for the estimate of the

population fractile.

The keyword of the coverage method for fractile estimation from a sample of

limited size n is confidence γ, i.e. the probability (usually 0.75, 0.90 or 0.95) that the
estimated value covers the population fractile (that is why the method is called the

coverage method). The estimator xp,cover of the lower fractile xp is determined by

the coverage method in such a way that

Pðxp;cover < xpÞ ¼ γ (9.6)

Thus, the estimator xp,cover is lower (on the safe side) than the unknown fractile

xp with the probability (confidence) γ.
In the following summary practical formulas are given without being derived,

assuming that the population has a general three-parameter distribution

characterised by the skewness α, which is assumed to be known from previous

experience. Besides that, it is assumed that the mean μ of the population is never

known in advance and that the estimate is based on the average m obtained from a

sample. The standard deviation s of the population is assumed to be either known, in

which case it is used, or unknown, in which case the sample standard deviation s is
used instead.

If the standard deviation σ of the population is known from previous experience,

the estimator xp,cover of the lower p-fractile is given by the relation

xp;cover ¼ m� κpσ (9.7)

If the standard deviation of the population σ is unknown, then the sample

standard deviation s is considered

xp;cover ¼ m� kps (9.8)
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The coefficients of estimation κp ¼ κ (α, p, γ, n) and kp ¼ k (α, p, γ, n) depend on
the skewness α, on the probability p corresponding to the fractile xp, which is

estimated, on the confidence γ and on the size n of the population. The knowledge

of the confidence γ that the estimate xp,cover will be on the safe side of the real value
is the greatest advantage of the classic coverage method. In documents [7, 8] the

confidence γ is recommended by the value 0.75. In cases of the demands of

increased reliability, when a detailed reliability analysis is required, a higher

value of confidence, say 0.95 may be more appropriate [4].

9.3 Fractile Estimation from Samples: Prediction Method

According to the prediction method [5] the lower p-fractile xp is estimated by the

so-called prediction limit xp,pred, for which it holds that a new value xn + 1 randomly

drawn from the population will be lower than the estimate xp,pred with only the

probability p, i.e. it holds that

Pðxnþ1 < xp;predÞ ¼ p (9.9)

It can be shown that for a growing n the estimator xp,pred defined in this way is

asymptomatically approaching the unknown fractile xp. It can also be shown that

the estimator xp,pred corresponds approximately to the estimator obtained by the

coverage method xp,cover for a confidence γ ¼ 0.75.

If the standard deviation σ of the population is known, then the lower p-fractile is
estimated by the value xp,pred according to the relation

xp;pred ¼ mþ upð1=nþ 1Þ1=2σ (9.10)

where up ¼ u (α, p) is the p-fractile of a standardised log-normal distribution,

having the skewness α.
If, however, the standard deviation of the population is unknown, then the

sample standard deviation s must be considered instead of σ

xp;pred ¼ mþ tpð1=nþ 1Þ1=2s (9.11)

where tp ¼ t(α, p, ν) is the p-fractile of the generalised Student’s t-distribution for

ν ¼ n�1 degrees of freedom, which has a skewness α (information about the

Student’s distribution and about the number of degrees of freedom may be obtained

from Sect. 8 and from other specialised sources [1, 2])
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9.4 Comparison of the Coverage and Prediction Methods

The coverage and predictive methods represent two basic procedures of estimation

of the population’s fractile from an available sample of a limited size n. If the
standard deviation of the population σ is known, then Eqs. (9.7) and (9.10) are

applied, in which two analogical coefficients κp and�up(1/n + 1)1/2 appear. Both of

these coefficients depend on the sample size n; the coefficient κp of the coverage

method depends more on the confidence γ. Table 9.3 shows the coefficients κp and
�up(1/n + 1)1/2 for p ¼ 0.05 and selected values of n and γ when a normal

distribution of the population is assumed.

It follows from Table 9.3 that both the coefficients approach with n ! 1 the

value 1.64, valid for a theoretical model of normal distribution (see Table 9.1). The

coefficient κp of the coverage method increases with increasing confidence γ. Note
that for a confidence γ ¼ 0.75 it holds that κp ffi �up(1/n + 1)1/2. Thus, for

γ ¼ 0.75 the coverage method leads to approximately the same estimate as the

prediction method, xp,cover ffi xp,pred (for γ > 0.75 the xp,cover < xp,pred).
If the standard deviation of the population σ is unknown, Eqs. (9.8) and (9.11)

are applied, in which two analogical coefficients kp and �tp(1/n + 1)1/2 appear.

Both of these coefficients depend again on the sample size n, but the coefficient kp
of the coverage method depends more on the confidence γ. Table 9.4 and Fig. 9.3

show the values of coefficients kp and �tp(1/n + 1)1/2 for p ¼ 0.05 and selected

values of n and γ when a normal distribution of the population is assumed.

It is obvious from Table 9.4 and Fig. 9.3 that with increasing the sample size n
both the coefficients kp and �tp(1/n + 1)1/2 approach the value 1.64, which is valid

for a theoretical model of normal distribution (see Table 9.1). In the case of the

coverage method, the coefficient kp increases with increasing confidence γ and the

relevant estimates xp,cover of the lower fractile decrease (on the safe side). Note that
as in the case of the known standard deviation σ both coefficients are approximately

equal, kp ffi �tp(1/n + 1)1/2 and for the confidence γ ¼ 0.75 the coverage method

leads to approximately the same estimate, xp,cover ffi xp,pred, as the prediction

method.

Also the skewness (asymmetry) of the population α may significantly affect the

estimate of the population’s fractile. Tables 9.5 and 9.6 show the coefficients kp
from Eq. (9.8) for three values of the skewness α ¼ �1.0, 0.0 and 1.0, a probability

Table 9.3 Coefficients κp and �up(1/n + 1)1/2 from Eqs. (9.7) and (9.10) for p ¼ 0.05 and a

normal distribution of the population (when σ is known)

Sample size n

Coefficients 3 4 5 6 8 10 20 30 1
γ ¼ 0.75 2.03 1.98 1.95 1.92 1.88 1.86 1.79 1.77 1.64

κp γ ¼ 0.90 2.39 2.29 2.22 2.17 2.10 2.05 1.93 1.88 1.64

γ ¼ 0.95 2.60 2.47 2.38 2.32 2.23 2.17 2.01 1.95 1.64

�up(1/n + 1)1/2 1.89 1.83 1.80 1.77 1.74 1.72 1.68 1.67 1.64
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Table 9.4 Coefficients kp and �tp(1/n + 1)1/2 from Eqs. (9.8) and (9.11) for p ¼ 0.05 and a

normal distribution of the population (when σ is unknown)

Coefficient

Sample size n

3 4 5 6 8 10 20 30 1
γ ¼ 0.75 3.15 2.68 2.46 2.34 2.19 2.10 1.93 1.87 1.64

kp γ ¼ 0.90 5.31 3.96 3.40 3.09 2.75 2.57 2.21 2.08 1.64

γ ¼ 0.95 7.66 5.14 4.20 3.71 3.19 2.91 2.40 2.22 1.64

�tp(1/n + 1)1/2 3.37 2.63 2.33 2.18 2.00 1.92 1.76 1.73 1.64

kp for g = 0.95

0 5 10 15 20

10

5

0
 n

Coefficients kp and -tp(1/n+1)1/2

1.64

kp  for g = 0.90

kp for g = 0.75

-tp(1/n+1)1/2

Fig. 9.3 Coefficients kp and �tp(1/n + 1)1/2 for p ¼ 0.05 and a normal distribution of the

population (when σ is unknown)

Table 9.5 Coefficient kp from Eq. (9.8) for p ¼ 0.05, γ ¼ 0.75 and a log-normal distribution

having the skewness α (when σ is not known)

Skewness

Sample size n

3 4 5 6 8 10 20 30 1
α ¼ �1.00 4.31 3.58 3.22 3.00 2.76 2.63 2.33 2.23 1.85

α ¼ 0.00 3.15 2.68 2.46 2.34 2.19 2.10 1.93 1.87 1.64

α ¼ 1.00 2.46 2.12 1.95 1.86 1.75 1.68 1.56 1.51 1.34

Table 9.6 Coefficient kp from Eq. (9.8) for p ¼ 0.05, γ ¼ 0.95 and a log-normal distribution

having the skewness α (when σ is not known)

Skewness

Sample size n

3 4 5 6 8 10 20 30 1
α ¼ �1.00 10.9 7.00 5.83 5.03 4.32 3.73 3.05 2.79 1.85

α ¼ 0.00 7.66 5.14 4.20 3.71 3.19 2.91 2.40 2.22 1.64

α ¼ 1.00 5.88 3.91 3.18 2.82 2.44 2.25 1.88 1.77 1.34
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p ¼ 0.05 and confidences γ ¼ 0.75 (Table 9.5) and γ ¼ 0.95 (Table 9.6). Values of

the coefficients from Table 9.6 are shown in Fig. 9.4.

It is evident from Tables 9.5 and 9.6 that as the sample size n increases, the

coefficients kp approach the values of up, which are valid for a theoretical model of

log-normal distribution (see Table 9.2). Thus, the influence of the skewness does

not disappear when n ! 1, and it is especially significant for small samples and a

greater confidence γ ¼ 0.95 (see Fig. 9.4).

A similar dependence on the skewness may be observed in the case of the

generalised Student’s t-distribution for which the fractiles tp are given in Table 9.7.
These values tp are applied with the prediction method using formula (9.11) and

further in the Bayes method. That is why Table 9.7 gives the values of fractiles tp
directly depending on the number of degrees of freedom ν. As in Tables 9.6 and 9.7,
the probability p ¼ 0.05 and three skewnesses α ¼ �1.0; 0.0 and 1.0 are

considered.

It follows from Table 9.7 that as the size of the sample n increases, the values of
tp approach the theoretical values of up, which are valid for a model of the

log-normal distribution with the appropriate skewness, and are given in Table 9.2.

Therefore, the influence of the skewness again (as in the case of kp) does not

disappear for n ! 1, but it is especially significant for small samples

(it increases with a decreasing sample size n).

Example 9.3. A sample of size n ¼ 5 measuring the strength of concrete has an

average m ¼ 29.2 MPa and a standard deviation s ¼ 4.6 MPa. It can be assumed

that the population is normal and that its standard deviation σ is unknown. The

characteristic strength fck ¼ xp, where p ¼ 0.05 is firstly assessed by the coverage

method. If the confidence is γ ¼ 0.75, then it follows from Eq. (9.8) and Table 9.4

that

xp;cover ¼ 29:2� 2:46� 4:6 ¼ 17:9 MPa

10

  5

  0
 n

1.64

0 5 10 15 20

a = –1.00

a = 0.00

a = +1.00

  kp

Fig. 9.4 Coefficient kp for p ¼ 0.05 and a confidence γ ¼ 0.95 (when σ is unknown)
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If a higher confidence γ ¼ 0.95 is required, then

xp;cover ¼ 29:2� 4:20� 4:6 ¼ 9:9 MPa

If the predictive method is used, then it follows from Eq. (9.11) and Table 9.4

that

xp;pred ¼ 29:2� 2:33� 4:6 ¼ 18:5 MPa

The characteristic strength obtained by the predictive method is only a little

greater than the value according to the coverage method with the confidence

γ ¼ 0.75. However, if a higher confidence γ ¼ 0.95 is required, then the predictive

method leads to a value which is almost twice as great as the value obtained by the

coverage method.

If the sample comes from a population with a log-normal distribution and a

positive skewness α ¼ 1, then the coverage method with the confidence γ ¼ 0.75

(Table 9.5) gives an estimator

xp;cover ¼ 29:2� 1:95� 4:6 ¼ 20:2 MPa

which is a value that is 13 % greater than when the skewness is zero.

Similarly, it follows for the predictive method from Eq. (9.11) and Table 9.7 that

xp;pred ¼ 29:2� 1:74�
ffiffiffiffiffiffiffiffiffiffiffi
1

5
þ 1

r
� 4:6 ¼ 20:4 MPa

where the value tp ¼ �1.74 is given, in Table 9.7, for α ¼ 1.0 and ν ¼ 5�1 ¼ 4.

The resulting strength is in this case is 10 % greater than the value which

corresponds to the normal distribution (α ¼ 0).

Table 9.7 Coefficient �tp from Eq. (9.11) for p ¼ 0.05 and a log-normal distribution with the

skewness α (when σ is unknown)

Skewness

Coefficient �tp for ν ¼ �1 degrees of freedom

3 4 5 6 8 10 20 30 1
α ¼ �1.00 2.65 2.40 2.27 2.19 2.19 2.04 1.94 1.91 1.85

α ¼ 0.00 2.35 2.13 2.02 1.94 1.86 1.81 1.72 1.70 1.64

α ¼ 1.00 1.92 1.74 1.64 1.59 1.52 1.48 1.41 1.38 1.34
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9.5 Bayesian Estimation of Fractiles

If previous experience is available for a random variable (for example, in the case of

a long-term production), it is possible to use the so-called Bayes method, which

generally follows the idea of updating the probabilities described in Sect. 2.7. The

Bayes method of fractile estimation is described here without deriving any impor-

tant relations. A more detailed description is given in documents ISO [6, 8] and

other specialised literature [1].

Let us assume that a sample of a size n with an average m and a standard

deviation s is available. In addition, that an average m0 and a sample standard

deviation s0 assessed from an unknown sample of an unknown size n0 are known

from previous experience. It is, however, assumed that both the samples come from

the same population having a mean μ and standard deviation σ. The two samples

may then be combined. This would be a simple task if the individual values of the

previous set were known, but it is not the case. However, the Bayes method must

still be used.

The characteristics of the combined sample are generally given by relations

[6, 8]

n00 ¼ nþ n0 (9.12)

ν00 ¼ νþ ν0 � 1 if n0 � 1; ν00 ¼ νþ ν0 if n0 ¼ 0

m00 ¼ ðmnþ m0n0Þ=n00

s002 ¼ ðνs2 þ ν0s02 þ nm2 þ n0m02 � n00m002Þ=ν00

The unknown values n0 and ν0 may be assessed using the relations for the

coefficients of variation of the mean and standard deviation v(μ) and v(σ),
(parameters μ and σ are considered as random variables in the Bayes concept) for

which it holds [6, 8]

n0 ¼ s0= m0vðμÞð Þ½ �2; ν0 ¼ 1= 2vðσÞ2
� �

(9.13)

Both the unknown variables n0 and ν0 are assessed independently (generally

ν0 6¼ n0�1), depending on previous experience concerning the degree of uncer-

tainty of the estimate of the mean μ, and the standard deviation σ of the population.

The next step of the procedure applies the prediction method of fractile estima-

tion. The Bayes estimator xp,Bayes of the fractile is given by a relationship similar to

Eq. (9.11) for a predictive estimator, assuming that the standard deviation σ of the

population is not known

xp;Bayes ¼ m00 þ t00pð1=n00 þ 1Þ1=2s00 (9.14)
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where t
00
p ¼ t

00
p ðα; p; ν

00 Þ is a fractile of a generalised Student’s t-distribution having

an appropriate skewness α, for ν00 degrees of freedom (which is generally different

from the value n00�1).

If the Bayes method is applied for an assessment of material strength, advantage

may be taken of the fact that the long-term variability is constant. Then the

uncertainty of an assessment of σ and the value v(σ) are relatively small, and the

variables ν0 assessed according to Eq. (9.13) and ν00 assessed according to Eq. (9.12)
are relatively high. This factor may lead to a favourable decrease of the value t

00
p and

to an augmentation of the estimate of the lower fractile of xp, according to

Eq. (9.14). On the other hand, uncertainties in assessment of the mean μ and the

variable v(μ) are usually great, and previous information may not significantly

affect the resulting values n00 and m00.
If no previous information is available, then n0 ¼ ν0 ¼ 0 and the resulting

characteristics m00, n00, s00, ν00 equal the sample characteristics m, n, s, ν. In this

case the Bayes method is reduced to the prediction method and Eq. (9.14) becomes

Eq. (9.11); if σ is known, Eq. (9.10) is used. This particular form of the Bayes

method, when no previous information is available, is considered in international

documents CEN [7] and ISO [8].

Example 9.4. If previous experience were available for Example 9.3, the Bayes

method could be used. Let us suppose that the information is

m0 ¼ 30:1 MPa; vðμÞ ¼ 0:50; s0 ¼ 4:4 MPa; vðσÞ ¼ 0:28:

It follows from Eq. (9.13) that

n0 ¼ 4:4

30:1

1

0:50

� �2

< 1; ν0 ¼ 1

2� 0:282
� 6

Further on these values are thus considered: n0 ¼ 0 and ν0 ¼ 6. Because ν ¼
n�1 ¼ 4, it follows from Eq. (9.12)

n00 ¼ 5, ν00 ¼ 10, m00 ¼ 29.2 MPa, s00 ¼ 4.5 MPa.

From Eq. (9.14) the fractile estimate follows as

xp;Bayes ¼ 29:2� 1:81�
ffiffiffiffiffiffiffiffiffiffiffi
1

5
þ 1

r
� 4:5 ¼ 20:3 MPa

where the value t
00
p ¼ 1.81 is given in Table 9.7 for α ¼ 0, and ν00 ¼ 10. The

resulting strength is thus greater (by 10 %) than the value obtained by the predictive

method.

If the population has a log-normal distribution with the skewness α ¼ 1, then it

follows from Eq. (9.14) considering the value t
00
p ¼ 1.48, given in Table 9.7, that
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xp;Bayes ¼ 29:2� 1:48�
ffiffiffiffiffiffiffiffiffiffiffi
1

5
þ 1

r
� 4:5 ¼ 21:9 MPa

which is a value greater by 8 % than the Bayes estimator for α ¼ 0.

Examples 9.3 and 9.4 clearly show that the estimate of characteristic strength

(a fractile with the probability p ¼ 0.05) assessed from one sample may be

expected within a broad range (in Examples 9.3 and 9.4 from 9.9 to 21.9 MPa),

depending on the applied method, required confidence, previous information, and

on assumptions concerning the population. Note that besides the alternatives

considered in Examples 9.3 and 9.4 concerning confidence level and skewness,

knowledge of the standard deviation σ of the population and the assumption of a

normal distribution or even a negative skewness (in the case of some high- strength

materials) may be applied.

In general, more significant differences in the resulting fractiles may occur when

the design values of strength are estimated, i.e. fractiles corresponding to a small

probability, than when characteristic values (p ffi 0.001) are considered. However,

a direct estimate of such fractiles from very small (n < 10) or small samples

(10 < n < 30) of the population can be made only if a sufficient amount of

information concerning the distribution of the relevant random variable is available.

In such a case, it is advisable to compare the results of a direct assessment of the

design value with an indirect assessment when the characteristic value is estimated

first as a 5 % fractile – then the design value is determined using material partial

factors.
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Chapter 10

Testing of Statistical Hypotheses

The testing of statistical hypotheses is one of the essential topics of mathematical

statistics, and is often used in engineering and scientific applications. In general, a

given hypothesis about a population based on limited sample data is verified

specifying a certain high probability (0.95) that the hypothesis is accepted. The

complementary small probability (0.05), called significance level, is the probability

that the hypothesis will be rejected, even though it is correct (Type I error). Another

error may occur when the hypothesis is accepted, although incorrect (Type II error).

Operational techniques are provided for testing the deviation of a sample mean

from the population mean, testing the deviation of a sample variance from the

population variance, testing the difference between two sample means, and testing

difference between two sample variances. Two additional frequently applied tests

are included: tests of good fit of a given theoretical model, and the testing of outliers

in a sample.

10.1 Statistical Tests

Statistical hypotheses are statements, assumptions, or guesses about populations

that are to be verified using limited sample data. The procedures of testing the

hypotheses consist of specific rules enabling a decision about the population to be

made on the basis of sample information. Such decisions are called statistical

decisions [1, 2]. The additional terminology used here also follows the standards

[3–5]. An important statistical technique concerns tests of outliers [6].

A typical testing procedure may be described as follows: a certain random

variable characterizing the hypothesis, called tested variable x, is defined and its

probability distribution is investigated. In particular its critical values xp (one or two
values), are specified in such a way that an unfavourable value of x occurs only with
a small probability α, called the significance level (commonly between 0.01 and

0.05). The critical values xp are specified fractiles of tested variables that define the
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acceptance and rejection region (see Fig. 10.1). As a rule there are two critical values

xp1 and xp2 corresponding to the probabilities p1 ¼ α/2 and p2 ¼ 1�α/2 [1, 2].

Let the data available from a sample yield the value of the tested variable equal

to x0, called the test value. Then, if the test value x0 is within the margin of

acceptance delineated by the critical values xp, the hypothesis is accepted; if test

value x0 is outside the margin of acceptance (i.e. inside the rejection area), the

hypothesis is rejected. The whole test procedure may be summarized by the

following steps:

1. Tested variable x is defined.
2. The critical values xp are specified for the significance level α.
3. The test value x0 is evaluated using sample information.

4. The statistical decision is made:

(a) If x0 is inside the acceptance margin, the hypothesis is accepted.

(b) If x0 is inside the rejection area the hypothesis is rejected.

It should be emphasised that statistical decisions are made with limited informa-

tion, and will therefore show some errors regarding any decision that is made. There

will always be some non-zero probability that a hypothesis will be rejected when it

should have been accepted; this error is called Type I error. The Type I error occurs

with the probability equal to the significance level α. Commonly, the significance

level is a small probability, typically α ¼ 0.05 (a more strict significance, level) or

α ¼ 0.01 (less strict significance level), that the hypothesis will be rejected

incorrectly. So, with an increasing significance level (probability) α the decision

becomes more strict (i.e. the chance of rejecting the hypothesis increases).

However, there is another error which cannot be avoided, and this is called Type

II error. It refers to the decision that a hypothesis is accepted when it should be

rejected. Analysis of the probability of Type II error is more complicated than just

the specification of the significant level α (which is the probability of a Type I error)

and will not be discussed here in detail. Nevertheless, it should be mentioned that

with a decreasing probability of Type I error (significance level α), the probability
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significance level α ¼ 0.05
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of Type II error increases. Note that both types of errors (Type I and Type II) may

generally occur in statistical decisions.

Regions of acceptance and rejection for tests based on the standardised random

variable u having normal distribution are shown in Fig. 10.1, together with the

critical values up1 ¼ uα/2 ¼ �1.96 and up2 ¼ u1�α/2 ¼ 1.96 corresponding to a

significance level of α ¼ 0.05.

10.2 Deviation of Sample Mean from Population Mean

The hypothesis that a sample having the mean m is taken from a population with the

mean μ is to be tested. The sample size is denoted by n. The testing procedure

depends on whether the standard deviation of the population σ is known or

unknown and the sample standard deviation s must be used instead of σ.

10.2.1 Known Standard Deviation

If the population standard deviation σ is known, the mean m is a normally

distributed random variable with the mean m and the variance σ2/n. Then the

difference of the sample mean m from the population mean μ is tested using a

variable expressed as

u ¼ m� μ

σ

ffiffiffi
n

p
(10.1)

Here u is the normally distributed standardised random variable. The tested

value u0, evaluated for a particular sample mean m, is compared with the critical

value up specified for a given significance level α.

Example 10.1. Consider a test based on the standardised normal variable u. If the
significance level α ¼ 5 % (2.5 % on each side of the distribution), then the critical

values up are taken from the standardised normal distribution (numerical values

determined from table in Annex 7 or by a software product) as

u0:025 ¼ �1:96; u0:975 ¼ 1:96Þ

Thus the critical values may be expressed as up ¼ �1.96. Note that if the

significance level α ¼ 1 % (0.5 % on each side) then the critical values are

up ¼ �2.576.

Example 10.2. A sample of n ¼ 16 tests of concrete strength yields the mean

value m ¼ 28.8 MPa. From long term production it follows that the population

mean is μ ¼ 31.0 MPa and standard deviation σ ¼ 4.20 MPa. The hypothesis that
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the sample mean is equal to the population mean is to be tested. From Eq. (10.1) the

test value follows as

u0 ¼ 28:8� 31:0

4:20

ffiffiffiffiffi
16

p
¼ �2:095

It follows from Example 10.1 that for the significance level α ¼ 5 % the critical

values�uα/2 ¼ u1�α/2 ¼ 1.96. Obviously the test value u0 ¼ �2.095 is outside the

acceptance region delineated by the critical value�1.96 (see also Fig. 10.1) and the

hypothesis that the sample is taken from the population having the mean μ ¼ 31.0

MPa is to be rejected.

However, if the significance level α ¼ 1 % (with decreasing error of Type I and

with increasing error of the Type II), the critical values are �2.576 and the

hypothesis that a sample having the mean m ¼ 28.8 MPa is taken form the

population having the mean μ ¼ 31.0 MPa is to be accepted.

10.2.2 Unknown Standard Deviation

If the population standard deviation σ is unknown, then it should be substituted by

its point estimate s, and instead of the tested variable u the variable t should be used.
Then Eq. (10.1) becomes

t ¼ m� μ

s

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
(10.2)

The variable t has t-distribution with n�1 degrees of freedom. For large samples

(n > 30) the t-distribution can be approximated by the standardized normal

distribution.

Example 10.3. Consider again the sample of n ¼ 16 tests from Example 10.2 with

the mean m ¼ 28.8 MPa and standard deviation s ¼ 4.20 MPa. The hypothesis that

the sample is taken from the population having the mean is μ ¼ 31.0 MPa is to be

tested. From Eq. (10.2) the test value follows as

t0 ¼ 28:8� 31:0

4:20

ffiffiffiffiffi
15

p
¼ �2:029

For the significance level α ¼ 5 % the critical value �tα/2 ¼ t1�α/2 ¼ 2.131 for

ν ¼ 16�1 ¼ 15 degrees of freedom (taken from tables or determined by using a

software products). The test value u0 ¼ �2.029 is then inside the acceptance area

�2.131 and the hypothesis is to be accepted.
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10.3 Deviation of Sample Variance from Population

Variance

The deviation of the variance s2 of a sample of n units taken from a population

having the variance σ2 is to be tested. The tested variable is defined as χ2 variable
that has already been introduced in Chap. 8.

χ2 ¼ ns2

σ2
(10.3)

Here the variable χ2 should be considered with n�1 degrees of freedom. The

critical values of the variable χ2 should be defined separately for the critical values

given by the lower boundary χ2p1 and the upper boundary χ2p2 corresponding to the

significance levels α ¼ p1 + 1�p2 ( χ
2-distribution is asymmetrical).

Example 10.4. The variance of the sample of n ¼ 16 tests in Example 10.3 is

5.1 MPa. Its deviation from the population standard deviation σ ¼ 4.2 should be

tested on the significance level α ¼ 1�p2 ¼ 2.5 % (only the upper boundary is

considered). It follows from Eq. (10.3) that the test value

χ20 ¼
16� 5:12

4:22
¼ 23:6

The critical value can be determined from tables or by software products for

ν ¼ 16�1 ¼ 15 degrees of freedom as χ2p2 ¼ χ20:975 ¼ 27.5. As χ20 < χ2p2 the

deviation of the sample variance from the population variance is insignificant. The

probability density function φ( χ2) for ν ¼ 15 degrees of freedom is shown in

Fig. 10.2.

10.4 Difference Between Two Sample Means

Consider two samples of sizes n1 and n2, the means m1 and m2 and variances σ21
and σ22. The difference between the means m1 and m2 (it is assumed that m1 > m2)

is to be tested. The statistical tests have two different procedures, depending on the

following circumstances:

– The variances are known but generally different, σ21 6¼ σ22
– The variances are unknown and sample variances s21 and s22 must be considered
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10.4.1 Variances are Known

If the variances are known but generally different, σ21 6¼ σ22, then it could be shown

(see also Sect. 10.2) that the following tested variable is a standardised normal

variable

u ¼ m1 � m2ffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
1

n1
þ σ2

2

n2

q (10.4)

The critical value uα/2 and u1�α/2 (the lower and upper values) are determined for

a specified significance level α, similarly as in Sect. 10.2.

Example 10.5. There are two producers of bricks with the following

characteristics of tests concerning strength (in MPa):

– n1 ¼ 12, m1 ¼ 10.73, σ1 ¼ 1.512

– n2 ¼ 10, m2 ¼ 9.84, σ2 ¼ 1.603

The test value follows from Eq. (10.4) as

u0 ¼ 10:73� 9:84ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5122

12
þ 1:6032

10

q ¼ 1:330

Considering the significance level α ¼ 0.05 the critical values up are uα/2 ¼
�1.96 and u1�α/2 ¼ 1.96. The difference between the means is insignificant (the

test value is within the margin of acceptance as uα/2 < u0 < u1�α/2) and the

hypothesis that the mean values of the brick strengths is the same in both factories

can be accepted.

10.4.2 Variances are Unknown

If the variances are unknown sample variances s21 and s22 must be considered then

it could be shown (see also Sect. 10.2) that the following tested variable has the

t-distribution

t0 ¼ m1 � m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
1

n1�1
þ s2

2

n2�1

q (10.5)

The critical values tα/2 and t1�α/2 are based on the combination of two critical

values t1,α/2 and t2,α/2 of t-distribution and degrees of freedom ν1 ¼ n1�1 and

ν2 ¼ n2�1 appropriate to the samples involved and can be expressed as
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tα=2 ¼ �t1�α=2 ¼
t1;α

s2
1

n1�1
þ t2;α

s2
2

n2�1

s2
1

n1�1
þ s2

2

n2�1

(10.6)

Here the symmetry of t-distribution is taken into account.

Example 10.6. There are two producers of bricks with the following

characteristics of brick testings:

– n1 ¼ 12, m1 ¼ 10.73, s1 ¼ 1.492

– n2 ¼ 10, m2 ¼ 9.84, s2 ¼ 0.813

The test value follows from Eq. (9.4) as

t0 ¼ 10:73� 9:84ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4922

11
þ 0:8132

9

q ¼ 1:695

The critical value follows from Eq. (10.6) considering ν1 ¼ 11, ν2 ¼ 9,

α ¼ 0.05, t1,α/2 ¼ �2.201 and t2,α/2 ¼ �2.262 (determined by tables or using

software products):

� tα
2
¼ t1�α

2
¼ 2:201 1:4922

11
þ 2:262 0:8132

9

1:4922

11
þ 0:8132

9

¼ 2:217

As in the previous Example 10.4, the difference between the means is insignifi-

cant, as the test value is within the margin of acceptance tα/2 < t0 < t1�α/2 and the

hypothesis that the mean value of the strength in both factories is the same can be

accepted.

10.5 Difference Between Two Sample Variances

Consider again two samples of the sizes n1 and n2, the means m1 and m2 and

variances s21 and s22 . The statistical hypothesis that both samples are taken from

populations with the same variance σ2 (its value is not needed) is to be tested. In this
case the tested variable is defined using sampling distribution F for ν1 ¼ n1�1 and

ν2 ¼ n2�1 degrees of freedom:

F ¼
n1

n1�1
s21

n2
n2�1

s22
(10.7)
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The subscripts referring to samples are commonly chosen in such a way that

s21 > s22. So the critical value Fp > 1 (a one-sided critical area for the significance

level α ¼ 0.05 or 0.01).

Example 10.7. Consider the two samples from Example 10.6:

– n1 ¼ 12, s1 ¼ 1.492

– n2 ¼ 10, s2 ¼ 0.813

The statistical hypothesis that variances of corresponding populations are equal

is to be tested on the significance level α ¼ 0.05. The test value F0 follows from

Eq. (10.7):

F0 ¼
12
11
1:4922

10
9
0:8132

¼ 3:31

The critical value Fp ¼ F1�α ¼ F0.95 (the upper fractile 0.95) for n1�1 ¼ 11

and n2�1 ¼ 9 degrees of freedom is 3.10 (see Fig. 8.3) and the hypothesis is

therefore rejected (the difference between the variances is significant as

F0 > Fp ¼ 3.10).

10.6 Tests of Good Fit

The statistical hypothesis that a given sample of n observations is taken from a

population of a certain type of distribution Φ(x) can be examined using different

tests. The most general seems to be the χ2-test that can be used for both discrete and
continuous random variables. Another popular test is called the K-test (developed
by A.N. Kolmogorov).
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132 10 Testing of Statistical Hypotheses

http://dx.doi.org/10.1007/978-3-642-38300-7_8


The definition domain of a random variable x is discretised by the values xi
(i ¼ 1, 2, . . .k) into k classes and the class frequencies ni are compared with the

relevant theoretical values n [Φ(xi+1) � Φ(xi)] ¼ n ΔΦ(x). The classes should be

adjusted to the condition that the minimum theoretical class frequency is

5, n ΔΦ(x) � 5. The tested variable is then given as

χ2 ¼
Xk

1

ni � nΔΦðxiÞ½ �2
nΔΦðxiÞ (10.8)

The critical value χ2p ¼ χ21�α is determined for specified significance level α.

Typically α ¼ 0.05 as a strict level or α ¼ 0.01 for less strict level. The critical

value χ2p corresponds to the upper fractile having the probability α ¼ 1�p (0.05 and

0.01) of being exceeded. The degree of freedom is in this case given as ν ¼ k�c�1,

where c denotes number of distribution parameters that are determined using

sample data (c ¼ 2 for normal distribution).

Example 10.8. Consider the test results described in Example 3.9. The following

table summarises the χ2-test and illustrates the use of Eq. (10.8). It shows classes

1–9, class marks xi (in MPa), the frequency ni, and the theoretical frequencies

niΔΦ(xi) assuming the normal distribution having the mean μ ¼ 25.44 MPa and

standard deviation σ ¼ 3.45. The table also indicates the calculation of the test

variable χ2.
The frequencies ni, and niΔΦ(xi) are also shown in Fig. 10.3. For each class the

full columns represent the observed frequencies ni and the transparent columns the

theoretical frequencies niΔΦ(xi). It appears from a visual investigation of Fig. 10.3

Fig. 10.3 Frequencies ni, and the theoretical frequencies niΔΦ(xi) assuming normal distribution,

μ ¼ 25.44 MPa and standard deviation σ ¼ 3.45
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that the differences ni�niΔΦ(xi) are not substantial, and that the normal distribution

pattern may fit the observed data well.

i xi ni niΔΦ(xi) ni � n ΔΦðxiÞ½ �2 ni niΔΦ(xi) ni � n ΔΦðxiÞ½ �2
1 17 1 1.044 0.002

2 19 3 3.645 0.416

3 21 12 9.093 8.450 16 13.770 4.973

4 23 15 16.209 1.461 15 16.209 1.461

5 25 20 20.646 0.417 20 20.646 0.417

6 27 18 18.792 0.627 18 18.792 0.627

7 29 11 12.222 1.494 11 12.222 1.494

8 31 8 5.680 5.380 10 7.560 5.954

9 33 2 1.887 0.013

Σ 18.260 89.198 14.925

In order to comply with the recommendation to combine classes when the

theoretical frequency n ΔΦ(x) is less than 5, the first three and last two classes are

combined. Then the test value χ2 follows from Eq. (10.8) as

χ2 ¼ 14:925=89:198 ¼ 0:167

The critical value for the confidence level α ¼ 0.05 and ν ¼ k�c�1 ¼ 6�2�1 ¼ 3

degress of freedom is χ2p ¼ χ21�α ¼ χ20:95 ¼ 7:815 and the hypothesis that normal

distribution fits the observed data well is confirmed.

A visual inspection of Fig. 10.4 confirms the test conclusion that the normal

distribution, having the mean μ ¼ 25.44 MPa and standard deviation σ ¼ 3.45, fit

the available data of concrete strength well.
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Fig. 10.4 Histogram and probability density function φ(x) of normal distribution
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Example 10.9. A sample of 100 observations is split into 8 classes, taking into

account conditions concerning the theoretical class frequency n ΔΦ(x) � 5.

Then the test value is determined using Eq. (10.8) as χ20:95 ¼ 1.55. The critical

value χ2p is determined for significance level α ¼ 0.05 (upper fractile 0.95), and

ν ¼ 8 � 2 � 1 ¼ 5 degrees of freedom (c ¼ 2 for normal distribution). The

critical value is then χ20:95 ¼ 11.07. Obviously, normal distribution is a suitable

theoretical model.

Figure 10.4 shows the histogram of the data together with the probability density

function of the normal distribution having the mean μ ¼ 25.44 MPa and standard

deviation σ ¼ 3.45 MPa.

10.7 Tests of Outliers

If the minimum or maximum observation of a sample is at a markedly greater

distance from the remaining observations, then it could be an outlier (caused by an

error in the observation). It should be verified by a statistical test to determine

whether the deviation of such an observation is just random or significant, and then

it may be discounted from any further evaluation.

Two tests of outliers are commonly used: Grubbs test and Dixons test. In both

cases it is assumed that the sample has been taken from a population having the

normal distribution. Sample data are ordered upward into a raw:

xð1Þ � xð2Þ � xð3Þ � . . . � xðn�1Þ � xðnÞ (10.9)

The extreme values x(1) and x(1) are to be tested.

10.7.1 Grubbs Test

The Grubbs test was developed by F.E. Grubbs. The procedure is dependend on

whether the standard deviation of the population σ is known or not. If σ is known,

then the tested variable is given as

τ0 ¼
m� xð1Þ

σ
or τ0 ¼

xðnÞ � m

σ
(10.10)

If σ is unknown, then the sample standard deviation s should be used instead of

σ, and the tested variable is then given as

τ00 ¼
m� xð1Þ

s
or τ00 ¼

xðnÞ � m

s
(10.11)
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The critical values τp and τ
0
p are given in special tables that are available on the

internet and copied below for the usual significance levels α ¼ 1�p ¼ 0.05 and

0.01. If

τ0 � τp or τ00 � τ0p (10.12)

then the deviations of the extreme values are considered as random. In the opposite

case the deviations are considered to be significant and the relevant observations

should be discounted from any further evaluation.

Example 10.10. The relative compaction of sand and gravel are recorded using

12 randomly chosen specimens:

0.83; 0.88; 0.84; 0.78; 0.82; 0.82; 0.86; 0.81; 0.98; 0.83; 0.85; 0.80

Sample data are ordered upwards into a row as follows:

0.78 � 0.80 � 0.81 � 0.82 � 0.82 � 0.83 � 0.83 � 0.84 � 0.85 � 0.86 �
0.88 � 0.98

The value 0.98 seems to be dubious. The mean and standard deviation of the

above sample are m ¼ 0.842 and s ¼ 0.049. The test value follows from

Eq. (10.11) as

τ00 ¼ 0:98� 0:842

0:049
¼ 2:816

The critical value for the significance level α ¼ 0.01 is τ
0
0:99 ¼ 2.663. Thus the

observed value 0.98 is really an outlier and should be deleted from further analysis.

Critical values τp and τ
0
p for the Grubbs test

n α: 0.05 0.01 n α: 0.05 0.01

3 1.412 1.414 15 2.493 2.800

4 1.689 1.723 16 2.523 2.837

5 1.869 1.955 17 2.551 2.871

6 1.996 2.130 18 2.577 2.903

7 2.093 2.265 19 2.600 2.932

8 2.172 2.374 20 2.623 2.959

9 2.237 2.464 21 2.644 2.984

10 2.294 2.540 22 2.664 3.008

11 2.343 2.606 23 2.683 3.030

12 2.387 2.663 24 2.701 3.051

13 2.426 2.714 25 2.717 3.071

14 2.461 2.759
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10.7.2 Dixon Test

The Dixon test, developed by W.J. Dixon, is based directly on the sample data

Eq. (10.9) and does not need sample characteristics (the mean and standard devia-

tion). If the minimum observation x(1) is dubious, then the tested variable is defined
as

ω0 ¼
xð2Þ � xð1Þ
xðnÞ � xð1Þ

(10.13)

or, if x(n) is also dubious then the tested variable is

ω0
0 ¼

xð2Þ � xð1Þ
xðn�1Þ � xð1Þ

(10.14)

Similarly, if the maximum value x(n) is dubious then the tested variable is

ω ¼ xðnÞ � xðn�1Þ
xðnÞ � xð1Þ

(10.15)

or, if x(1) is also dubious then the tested variable

ω0
0 ¼

xðnÞ � xðn�1Þ
xðnÞ � xð2Þ

(10.16)

The critical values ωp and ω
0
p are given in special tables that are available on the

internet and copied below for the common significance level α ¼ 1�p ¼ 0.05 and

0.01. If

ω0 � ωp or ω0
0 � ω0

p (10.17)

then the deviations of the extreme values are considered as random. In the opposite

case the deviations are considered to be significant and the relevant observations

should be discounted from any further evaluation.

Critical values ωp and ω
0
p for the Dixon test

n α: 0.05 0.01 n α: 0.05 0.01

3 0.941 0.988 17 0.320 0.416

4 0.765 0.889 18 0.313 0.407

5 0.642 0.780 19 0.306 0.398

6 0.560 0.698 20 0.300 0.391

7 0.507 0.637 21 0.295 0.384

8 0.468 0.590 22 0.290 0.378

9 0.437 0.555 23 0.285 0.372

(continued)
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10 0.412 0.527 24 0.281 0.367

11 0.392 0.502 25 0.277 0.362

12 0.376 0.482 26 0.273 0.357

13 0.361 0.465 27 0.269 0.353

14 0.349 0.450 28 0.266 0.349

15 0.338 0.438 29 0.263 0.345

16 0.329 0.426 30 0.260 0.341

Example 10.11. Let us apply the Dixon test for the data describe in Example

10.10. As the maximum observation x(n) ¼ 0.98 is dubious, the following

observations are needed

xð1Þ ¼ 0:78; xðn�1Þ ¼ 0:88; xðnÞ ¼ 0:98

The test value follows from Eq. (10.15) as

ω0
0 ¼ 0:98� 0:88

0:98� 0:78
¼ 0:5

The critical value for n ¼ 12 and the significance level α ¼ 0.01 is ωp ¼ 0.482

(obtained from tables on internet). Thus, the maximum value x(n) ¼ 0.98 is really

an outlier and should be deleted from further analysis.
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Chapter 11

Correlation and Regression

Two dimensional random variables are frequently investigated in engineering and

scientific applications. Normal distribution is commonly assumed as a theoretical

model for the population of two dimensional random variables. The mutual linear

dependence of the two variables is described by the coefficient of correlation.

Regression lines are used to analyse the dependence of one random variable, on

one hand as the dependent variable, on the other as the independent variable. While

the correlation is a symmetrical property with respect to the two random variables,

regression is influenced by the choice of a dependent or independent variable. The

estimate of the coefficients of correlation and regression from sample data is an

extremely important task, as only limited samples for two dimensional random

variables are commonly available. For the same reason testing concerning the

coefficient of correlation and regression is an essential step in many engineering

and scientific applications.

11.1 Two-Dimensional Random Variables

Very often in engineering or scientific practice a relationship between two or more

variables has to be investigated. It is then desirable to express this relationship in

mathematical form. It should be emphasised that correlation theory investigates the

mutual dependence of two or more variables, while regression analysis studies the

dependence of one random variable (as a dependent variable) on the other variable

that is considered independent [1, 2].

When only two variables are involved, then we talk about simple correlation or

regression. When more than two variables are involved, then multiple correlation

or regression is applied [3, 4]. This chapter will consider only simply correlation

and regression. A detailed discussion concerning the multivariate random variables,

probabilistic models, parameters of population and sample characteristics can be

found in specialist literature [1, 2].
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If two variables (two characteristics) X and Y are studied for each item (entity),

every time a set of conditions π (see Sect. 2.1) is realised, i.e. a certain random event

is realised, and given that the variable X takes on the very value x, and the variable

Y takes on the very value y, then the variables X and Y form a pair of joint random

variables. An example is the force X and the weight Y studied when a concrete cube

fails when loaded under given conditions into a test machine. It is certainly possible

to study more than two characteristics, e.g. the force, weight and moisture content.

In the following, only two-dimensional random variables, having two normally

distributed components (two joint random variables), X and Y, are analysed. The

realisations of each component are denoted by the small letters x and y. The
summary of all possible realizations, x and y, of a pair of joint random variables,

X and Y, is called the two-dimensional population. Similarly, as in the case of the

one-dimensional random variable, the two-dimensional random variable is

described by the distribution of probabilities, i.e. by a function which determines

the probability that the random variables X and Y make up part of some given sets

(for continuous random variables), or take on some given values (for discrete

random variables). The two-dimensional distribution function Φ(x, y) (sometimes

denoted ΦXY(x, y)) gives, for every pair of values x, y, the probability that the

random variable X is less than, or equal to, x, and the random variable Y is less than,

or equal to, y

Φðx; yÞ ¼ PðX � x; Y � yÞ (11.1)

The probability density function of a continuous random variable φ(x) is the

derivative (if it exists) of the distribution function

φðx; yÞ ¼ @2Φðx; yÞ
@x@y

(11.2)

The marginal distribution function of the variable X, ΦX(x), is a special case of
the distribution function Φ(x, y) without any constraint on the variable Y, i.e. for all
realizations Y < 1

Φðx;1Þ ¼ PðX � x; Y � 1Þ ¼ ΦXðxÞ (11.3)

The marginal distribution function of the variable Y, ΦY(y), is defined in a

similar way. It is a special feature of the distribution function Φ(x, y), without
any constraint on the variable X, i.e. for the sum of all possible realizations of the

variable X < 1

Φð1; yÞ ¼ PðX � 1; Y � yÞ ¼ ΦYðyÞ (11.4)

We can say that the random variables X and Y are independent if it holds that
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Φðx; yÞ ¼ Φðx;1Þ Φð1; yÞ ¼ ΦXðxÞΦYðyÞ (11.5)

Then it holds for the probability density function that

φðx; yÞ ¼ φXðxÞφYðyÞ (11.6)

where φX(x) and φY(y) are the marginal probability density functions of the

variables X and Y.
The two-dimensional random variable is described by moment parameters and

various types of distribution (usually by the normal), in a similar way to

one-dimensional variables. Besides the one-dimensional moments which lead to

the definition of averages μX, μY, and the standard deviations σX, σY, the joint

moments of both variables X and Y are also applied. The most important one is

the joint central moment of the first order σXY, which is called the covariance

σXY ¼
ð
ϕðx; yÞðx� μXÞðy� μYÞdxdy (11.7)

The covariance provides the basis for the definition of the correlation coefficient

ρXY

ρXY ¼ σXY
σXσY

(11.8)

It always holds for the value of the correlation coefficient that �1 � ρXY � +1.

If the variables X and Y are independent, then ρXY ¼ 0. An inverse proposition

holds only in the case of the two-dimensional normal distribution (which is

commonly applied and is described below). In the case of multivariate random

variables X [X1, X2,. . . Xn], the covariance σij and the correlation coefficients ρij
between the individual components X1, X2,. . . Xn form matrices. The matrix of

covariances is applied in the transformation of the vector of dependent variables to

the vector of independent random variables, which are used in reliability analysis of

more complex problems (see the software product STRUREL).

11.2 Two-Dimensional Normal Distribution

A two-dimensional normal distribution of two continuous random variables X and

Y, having the parameters μx, μy, σx, σy, and a correlation coefficient ρxy ¼ ρ, is given
by the following equation
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φðx; yÞ ¼ 1

2π σX σY
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p
exp � 1

2ð1� ρ2Þ
x� μX
σX

� �2

� 2ρ
x� μX
σX

� �
y� μY
σY

� �
þ y� μY

σY

� �2
 ! !

ð11:9Þ

The marginal distributions φX(x) and φY(y) are also normal and have parameters

μX, σX and μY, σY similar to the conditional distributions for given y ¼ y0 and

x ¼ x0, which have parameters μx + ρ(y0�μY)σX/σY, σx(1�ρ2)1/2 and μY + ρ(x0 �
μX)σ Y/σX, σY(1 � ρ2)1/2 [1]. The conditional distributions may come in useful for

(very frequent) indirect experimental verification of properties of one of the joint

random variables X and Y by means of the other.

Similarly, as in the case of the one-dimensional random variable through

transformations, the standardized random variables U and V are given as

U ¼ X � μX
σX

; V ¼ Y � μY
σY

(11.10)

The standardized two-dimensional normal distribution can then be written in the

form

φðu; vÞ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2

p exp � 1

2ð1� ρ2Þ u2 � 2ρuvþ v2
� �� �

(11.11)

The bivariate normal distribution can be generalized [1, 2] to a distribution of

multivariate random variables described by the vector X [X1, X2,. . . Xn], where the

covariance’s and correlation coefficients between the individual components X1,

X2,. . . Xn, form matrices.

11.3 Two-Dimensional Samples

As a result of the sampling procedure, paired observations x1,y1; x2,y2;. . .; xn,yn,
may be obtained and analysed in a similar way to one dimensional random samples.

Thus the sample means mX and mY, and sample standard deviations sX and sY, may

be obtained using the formulae given in Chap. 3. However, in addition to these

moment characteristics, so-called product-moments can be generally defined. In the

following, only the first order product moment, called covariance, is considered.

Using a sample of paired observations x1,y1; x2,y2;. . .; xn,yn, the sample covari-

ance is given as

sXY ¼ 1

n

X
i

ðxi �mxÞðyi �myÞ (11.12)
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Note that an unbiased estimate of the population’s covariance should have the

denominator n�1 similar to the case of the one dimensional random variable

discussed in Chap. 8. Analogically to (11.8), the sample correlation coefficient

follows as

rXY ¼ sXY
sXsY

¼
P
i

ðxi � mXÞðyi � mYÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ðxi � mXÞ2
P
i

ðyi � mYÞ2
r (11.13)

The sample correlation coefficient rXY is often used for the numerical expression

of the mutual linear dependence between X and Y in a number of paired

observations. The value of rXY lies between �1 and +1. If it equals one of these

limits, it means that the dependence between X and Y in a number of paired

observations is exactly linear. When possible, a scatter diagram showing the

observed set should be used to verify the linearity, and possibly to reduce the

domain so that the assumption of linearity is justified.

Usually, the coefficient of correlation is used to classify verbally the degree of

mutual dependence of random variables X and Y. The following scale is sometimes

used:

|rXY | � 0.3 low degree of dependence

0.3 < |rXY | � 0.5 some degree of dependence

0.5 < |rXY | � 0.7 significant degree of dependence

0.7 < |rXY | � 0.9 high degree of dependence

0.9 < |rXY | very high degree of dependence

The above scale provides only an indicative marking of mutual dependence that

is not based on any objective criteria.

Example 11.1. Measurements of ten components yield as a rule positive

deviations from the nominal width and high shown in the following table.

i 1 2 3 4 5 6 7 8 9 10

xi 3 4 4 5 6 7 7 8 8 9

yj 4 6 5 6 7 4 8 7 6 9

The following characteristics can be found

mX ¼ 6:1; mY ¼ 6:2; sX ¼ 1:92; sY ¼ 1:54; sXY ¼ 1:88; rXY ¼ 0:64

The coefficient of correlation rXY ¼ 0.64 indicates a significant degree of mutual

dependence of deviations from width and height. The point graph of observed

values is shown in Fig. 11.1.
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11.4 Regression Lines

Regression lines describe a linear dependence of one of the variables Y or X on the

other variable considered as an independent variable. The regression line of the

dependent variable Y on the independent variable X is written as

Y ¼ a0 þ a1X (11.14)

The constants a0 and a1 denote the coefficients of regression of Y on X. Similarly,

the regression line of dependent X on independent Y is written as

X ¼ b0 þ b1Y (11.15)

The constants b0 and b1 are the coefficients of regression of X on Y. Figure 11.1
shows regression lines (11.4) and (11.15) for the data of Example 11.1.

The regression coefficients a0 and a1 (and similarly b0 and b1) are commonly

derived using the well known method of the least squares minimising the residuum

Xn

i¼1
ðyi � a0 � a1xiÞ2 (11.16)

Using this method it can be shown that the regression coefficients are

a0 ¼ mY � rXYmXsY=sX (11.17)

a1 ¼ rXYsY=sX (11.18)

Similarly the regression coefficients b0 and b1 are given as

b0 ¼ mX � rXYmXsX=sY (11.19)
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Fig. 11.1 Point diagram of

data in the Example 11.1
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b1 ¼ rXYsX=sY (11.20)

Example 11.2. Measurements of ten components described in Example 11.1

indicate the following regression coefficients (Fig. 11.2)

a0 ¼ 6.2 � 0.64 � 6.1 � 1.54/1.92 ¼ 3.07; a1 ¼ 0.64 � 1.54/1.92 ¼ 0.51

b0 ¼ 6.1 � 0.64 � 6.2 � 1.92/1.54 ¼ 1.15; b1 ¼ 0.64 � 1.92/1.54 ¼ 0.80

So, the regression lines of Y on X and X on Y are

Y ¼ 3.07 + 0.51 X and X ¼ 1.15 + 0.80 Y
Note that the regression lines intersect at the mean point (mX ¼ 6.1; mY ¼ 6.2).

11.5 Estimation of the Coefficient of Correlation

The sampling distribution of the coefficients of correlation r ¼ rXY can be

approximated by normal distribution, using the transformation (a simplified nota-

tion for r is used for rXY in the following)

z ¼ 1

2
ln
1þ r

1� r
(11.21)

The mean and standard deviation of the transformed variable z are

μz ¼
1

2
ln
1þ ρ

1� ρ
(11.22)

σz ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p (11.23)
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of Example 11.2
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Here ρ denotes the coefficient of the correlation of the population, and n is again
size of the sample that has been used to determine the coefficient of correlation.

The point estimate of the population coefficient of correlation ρ is equal to the

sample coefficient of correlation r. The interval estimate of ρ can be made using the

transformation (11.21). The two sided interval estimate can be expressed as

zþ up σz < μz < zþ u1�p σz (11.24)

This interval covers the unknown mean μz with the confidence level (probability
coefficient) 1�2p; up and u1�p are the standardized normal variables corresponding

to the probabilities indicated in the subscripts. Taking into account the standard

deviation σz given by Eq. (11.23), the interval estimate given by Eq. (11.24) can be

written as

zþ upffiffiffiffiffiffiffiffiffiffiffi
n� 3

p < μz < zþ u1�pffiffiffiffiffiffiffiffiffiffiffi
n� 3

p (11.25)

The whole estimation procedure for the population coefficient of correlation ρ
can be summarised by the following main steps.

– Transformation of r into the variable z.
– Determination of values up and u1�p for specified confidence level 1�2p.
– Determination of the interval estimate of μz using Eq. (11.25).

– Recalculation of the population using transformation (11.22).

Example 11.3. Consider a sample of n ¼ 16 observations having the sample

coefficient of correlation r ¼ 0.73. The interval estimate for the population coeffi-

cient of correlation should be determined by the confidence level 1�2p ¼ 0.95.

The above mentioned estimate procedure yields

– For r ¼ 0.73 the transformed variable z ¼ 0.9287

– For p ¼ 0.025 the standardised variables are up ¼ �1.96 and u1�p ¼ 1.96

– The interval estimate for the variable z

0:9287� 1:96ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 3

p < μz < 0:9287þ 1:96ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16� 3

p

0:3851 < μz < 1:4723

– The interval estimate of the population correlation coefficient ρ

0:37 < ρ < 0:90
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11.6 Estimation of the Coefficients of Regression

The population coefficients of regression α0, α1, β0, β1, corresponding to the sample

coefficients a0, a1, b0, b1, are to be estimated. It is assumed that a sample of

n observations is described by the characteristics mX, mY, sX, sY, and the sample

coefficients of regression a0, a1, b0, b1.
It can be shown that the sampling distributions of regression coefficients are

normal, with the mean and standard deviation of the coefficient a0 as

μa
0
¼ α0; σa

0
¼ σYffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

X

s2X

s
(11.26)

The mean and standard deviation of the coefficient a1 are

μa
1
¼ α1; σa

1
¼ σY

sX
ffiffiffi
n

p (11.27)

Similar expressions hold for the regression coefficients b0 and b1.
Taking into account Eqs. (11.26) and (11.27), it follows that the point estimates

of the population regression coefficients α0, α1, β0, β1 are equal to the sample

coefficients a0, a1, b0, b1.
The interval estimates covering the unknown population coefficients with the

confidence level (probability) 1�2p are given by similar expressions to those given

in Chap. 8. For the regression coefficient α0 it holds that

a0 þ upDfa
0
< α0 < a0 þ u1�pDfa

0
(11.28)

Substituting the standard deviationDfa0 with the expression given in Eq. (11.26)
it follows that

a0 þ up
DfYffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

X

s2X

s
< α0 < a0 þ u1�p

DfYffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

X

s2X

s
(11.29)

The population standard deviation σY is generally unknown, and must be

assessed by using the estimate of residual variance s2YjX about the regression line

with the expression

s2YjX ¼ 1

n� 2

Xn

i¼1
ðyi � a0 � a1xiÞ2 (11.30)
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The residual variance s2YjX given by Eq. (11.30) represents a point estimate of the

variance as a sum of residuum squares divided by the degree of freedom to n�2.

Then the interval estimate of the population coefficient α0 (11.28) may be written as

a0 þ tp
DfYjXffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

X

s2X

s
< α0 < a0 þ t1�p

DfYjXffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

X

s2X

s
(11.31)

Due to the assessment of the population standard deviation by residual standard

deviation, t random variable is used instead of the standardised normal u variable.

Similarly the interval estimate of the population coefficient α1 is given as

a1 þ upffiffiffi
n

p DfY
sX

< α1 < a1 þ u1�pffiffiffi
n

p DfY
sX

(11.32)

Again, the assessment of population variance using the residual variance

Eq. (11.31) can be written as

a1 þ tpffiffiffi
n

p DfYjX
sX

< α1 < a1 þ t1�pffiffiffi
n

p DfYjX
sX

(11.33)

The resulting inequalities Eqs. (11.31) and (11.33) can also be written for the

population coefficients of regression β0 and β1.

Example 11.4. A sample of n ¼ 16 measurements of cubic strength Y and cylin-

drical strength X of concrete yields the regression coefficients a0 ¼ 0.39 and

a1 ¼ 1.03 that are considered as the point estimates of the population coefficients

α0 and α1. To determine the interval estimates the following quantities are evaluated:

mX ¼ 14:3 MPa; sX ¼ 2:96 MPa; sY jX ¼ 1:92 MPa

For specified confidence level 0.95 (p ¼ 0.025), and the degree of freedom to

n�2 ¼ 14, the value tp ¼ �2.145 and t1�p ¼ 2.145. The interval estimates are

0:39� 2:145
1:92ffiffiffiffiffi
16

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 14:32

2:962

r
< α0 < 0:39þ 2:145

1:92ffiffiffiffiffi
16

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 14:32

2:962

r

1:03� 2:145ffiffiffiffiffi
16

p 1:92

2:96
< α1 < 1:03� 2:145ffiffiffiffiffi

16
p 1:92

2:96

Thus the resulting interval estimates are

� 4:69 < α0 < 5:47

0:68 < α0 < 1:38
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11.7 Boundaries of the Regression Line

It is interesting to know that the region where the population regression line Y ¼
α0 + α1 X may occur with a given confidence level (probability) 1�2p. It can be

derived from the above estimates of the population regression coefficients α0 and α1
that the location of the regression line is limited by the lower and upper limits given

by the following inequality

a0 þ a1X þ tp
DfYjXffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðX � mXÞ2

s2X

s
< a0þ

< a0 þ a1X þ t1�p

DfYjXffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðX � mXÞ2

s2X

s
(11.34)

The variable t is again taken from t distribution for n�2 degree of freedom.

Example 11.5. Considering Example 11.4 Eq. (11.34) may be written as

0:39þ 1:031X � 2:145
1:92ffiffiffiffiffi
16

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðX � 14:3Þ2

2:962

s
< α0 þ α1X < 0:39þ 1:031X

þ 2:145
1:92ffiffiffiffiffi
16

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðX � 14:3Þ2

2:962

s

The graphical representation of this inequality is shown in Fig. 11.3. The curves

denoted as the lower and upper limits represent the limits of the area where the

population regression line is expected with a confidence level (probability) of 0.95.

There is only a small probability 0.025 that the regression line will be above or

below the designated area. Obviously, with increasing confidence level, the

expected region of the population regression line is getting larger.

11.8 Tests of Correlation Coefficient

There are two frequently used tests concerning the sample coefficient of correlation

r to verify the hypothesis that:

– A sample is taken from a population having the coefficient of correlation ρ,
– Two samples are taken from populations having the same coefficient of correla-

tion ρ.
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In the first case the difference between the sample coefficient r and the popula-

tion coefficient of correction ρ is assessed, considering a given significance level α
(0.01 or 0.05). The tested variable is defined as

u ¼ ðz� μzÞ
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
(11.35)

Here, the variable z is given by the transformation (11.21) of the sample

coefficient r, and μz.by the same transformation, but for the population coefficient

ρ. The test value u0 is compared with the critical values taken from the standardised

normal variable up1 ¼ uα/2 ¼ �1.96 and up2 ¼ u1�α/2 ¼ 1.96 for the significance

level α ¼ 0.05 or up1 ¼ uα/2 ¼ �2.58 and up2 ¼ u1�α/2 ¼ 2.58 for the significance

level α ¼ 0.01.

Example 11.6. The coefficient of the correlation 0.34 of the wind speed at 2 and

10 m aboveground level is evaluated from a sample of n ¼ 1,187 observation. The

hypothesis that the sample is taken from a population having the coefficient of

correlation ρ ¼ 0.4 is to be tested. The test value follows from Eq. (11.35) as

u0 ¼ ð0:3541� 0:4236Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1187� 3

p
¼ 2:391

The critical value up2 ¼ u1�α/2 ¼ 2.58 is greater than the test value and the

hypothesis is accepted.

In the second case the tested variable is defined as

u ¼ z1 � z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1�3
þ 1

n2�3

q (11.36)

Here again the transformation (11.21) is used for sample coefficients of

correlations r1 and r2 to get the variables z1 and z2. The critical values are the
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same as in the first case: up1 ¼ uα/2 ¼ �1.96 and up2 ¼ u1�α/2 ¼ 1.96 for the

significance level α ¼ 0.05 or up1 ¼ uα/2 ¼ �2.58 and up2 ¼ u1�α/2 ¼ 2.58 for

the significance level α ¼ 0.01.

Example 11.7. Two samples similar to that in Example 11.6 are available:

– n1 ¼ 1,187, r1 ¼ 0.34

– n2 ¼ 956, r2 ¼ 0.40

The test value follows from Eq. (11.36) as

u0 ¼ 0:3541� 0:4236ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1187�3
þ 1

956�3

q ¼ �1:597

Assuming the significance level α ¼ 0.05, the critical value up1 ¼ uα/2 ¼ �1.96

and the difference of the two coefficients of correlation is insignificant.

11.9 Tests of Regression Coefficients

As mentioned previously, in Sect. 11.8, there are two types of tests concerning the

coefficients of regression a0 and a1 and the population coefficients α0 and α1
(regression of Y on X, see Sect. 11.4). The following hypotheses are to be tested:

– A sample having the regression coefficients a0 and a1 is taken from a population

with the coefficients α0 and α1
– Two samples are taken form populations with the same coefficients of

regression.

Analogous test are applied for the coefficients b0 and b1 and β0 and β1 for the
regression of variable X on Y. The following procedures concern only regression of
Y on X and the first type of the tests.

Assuming that the population standard deviation σY is known, the tested variable
of the first type of the tests is given as

u00 ¼
ða0 � α0Þ

ffiffiffi
n

p

σY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

X

s2x

s (11.37)

u10 ¼
ða1 � α1ÞsX

ffiffiffi
n

p
σY

(11.38)

The critical values are taken from the standardised normal variable up1 ¼ uα/2 ¼
�1.96 and up2 ¼ u1�α/2 ¼ 1.96 for the significance level α ¼ 0.05 or up1 ¼ uα/2 ¼
�2.58 and up2 ¼ u1 � α/2 ¼ 2.58 for the significance level α ¼ 0.01.
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If the standard deviation σY is unknown, then it must be substituted by the

residual standard deviation sY|X, and the tested variable of the first type of tests

becomes

t00 ¼
ða0 � α0Þ

ffiffiffi
n

p

sYjX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

X

s2X

s (11.39)

t10 ¼
ða1 � α1ÞsX

ffiffiffi
n

p
sYjX

(11.40)

In this case, the critical values are taken from the t distribution tp1 ¼ tα/2 and

tp2 ¼ t1�α/2 for the significance level α ¼ 0.05 or 0.01 and ν ¼ n�2 for the degree

of freedom.

Example 11.8. Consider again the sample mentioned in Example 11.6: the sample

size is n ¼ 1,187, the coefficient of regression a0 ¼ 5.4 ms�1 and a1 ¼ 1.85, the

residual standard deviation sY|X. ¼ 3.66 ms�1. The characteristics of the indepen-

dent random variable X are mX ¼ 13.2 ms�1 and sX ¼ 2.12 ms�1. The hypothesis

that the population coefficients of regression are α0 ¼ 4 ms�1 and α1 ¼ 2 is to be

tested.

The test value follows from Eqs. (11.39) and (11.40) as

t00¼
ð5:40� 4:0Þ ffiffiffi

n
p

3:66
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 13:22

2:122

q ¼ 2:09

t10 ¼
ð1:85� 2:00Þ12 ffiffiffiffiffiffiffiffiffiffi

1187
p

3:66
¼ �2:99

Considering the significance level α ¼ 0.05 and the number of the degree of

freedom ν ¼ n � 2 ¼ 1,185, the critical values may be taken from a standardised

normal variable as up1 ¼ uα/2 ¼ �1.96, and up2 ¼ u1�α/2 ¼ 1.96. The difference

of the sample coefficients from the population coefficients is significant, and the

hypothesis rejected.
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Chapter 12

Random Functions

Random functions and random fields are applied in current engineering and scien-

tific tasks more and more frequently. Random functions are actually random

variables that are functions of deterministic arguments, for example of time, planar

or spatial coordinates. A brief introduction to random functions includes a defini-

tion of the basic parameters such as the mean, variance and autocorrelation func-

tion. The definition of the stationary and ergodic functions is supplemented by a

description of the spectral representation of stationary random functions. The

fundamental properties of random functions and operations with commonly used

random functions are illustrated by practical examples.

12.1 Basic Concepts

A random function or a random field X(t) of a deterministic argument t (spatial or
planar coordinates, time) is a function delivering for a given argument t a random
variable X ¼ X(t) [1–4]. In agreement with previously used symbols random

functions will be denoted by capitals, such as X(t), Y(t), Z(t). . ., their individual
realizations by the lower case letters x(t), y(t), z(t). . .. If the fixed values of the

argument are denoted by t1, t2, t3. . . then the corresponding random variables

represent a system of different random variables

Xðt1Þ;Xðt2Þ;Xðt3Þ . . . (12.1)

If the number of arguments ti, i ¼ 1,2,.., m increases then the system of random

variables (12.1) describes sufficiently well the random function X(t). Thus, the
random function is a generalisation of the system of random variables.

Example 12.1. The inside temperature of a structure depends on a number of

circumstances difficult to describe completely. Consequently the temperature is

considered as a random function X(t) of the deterministic argument t representing
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the spatial coordinates and time. Similarly, wind speed may be considered as a

random function of the coordinates and time.

12.2 Parameters of Random Function

The mean mX(t) of a random function X(t) is defined analogously to the mean of

random variables described in Sect. 4.5. Taking into account the fact that the

probability density φXðx; tÞ of a random function X(t) is generally dependent on

two variables, on a point x of variable X ¼ X(t) and on the deterministic argument t,
then the mean μX(t) is a generalisation of the definition (4.11)

μXðtÞ ¼
ð1
�1

xφXðx; tÞdx (12.2)

The mean μX(t) is a deterministic function of t that represents the basic compo-

nent of the random function X(t) describing its location (or central tendency). The

difference X(t) � μX(t) is called the fluctuation component of the function X(t).

This fluctuation component is used to define the variance σ2XðtÞ of the random

function X(t) in a similar way to defining the variance σ2X of a random variable

X given by Eq. (4.14). Thus the variance σ2XðtÞ is defined as

σ2XðtÞ ¼
ð1
�1

XðtÞ � μXðtÞ½ �2φXðx; tÞdx (12.3)

The variance σ2XðtÞ is a measure of dispersion of the random function X(t) around
the mean μX(t) as indicated in Fig. 12.1.

Instead of the variance σ2XðtÞ the standard deviation σXðtÞ is often used in

technical applications. Following relationship (4.16) the standard deviation is

defined as the square root of the variance

σXðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
σ2XðtÞ

q
(12.4)

It is interesting to note that although the realization x(t) and the mean μX(t) of the
random function X(t) in Fig. 12.1 have a similar shape, the character of the random

function Y(t) in Fig. 12.2 is different. Nevertheless, both random functions X(t) and
Y(t) have the same variance. If, for example, for the given argument t1 a realisation
x(t1) of the function X(t) is above the mean μX(t1), then it is very likely that also the
value x(t2) of the same realisation at a nearby point t2 will also be above the mean

μX(t2). This cannot be said about the random function Y(t) shown in Fig. 12.2. So, it
can be intuitively stated that values of the random function X(t) have a greater

degree of mutual correlation than the values of the random function Y(t).
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Note that the subscripts X,Y indicating the random functions X(t) and Y(t) may be

omitted in unambiguous cases.

12.3 Correlation Function

The mutual dependence of two random variables X(t1) and X(t2) can be expressed

by the coefficient of correlation discussed in detail in Chap. 11. However, the

random variables X(t1) and X(t2) depend on deterministic arguments t1 and t2
Consequently, the covariance (11.7) becomes a function of t1 and t2 and is com-

monly called the correlation function, sometimes the auto-correlation function

(even though strictly speaking it should be called the covariance function, this

being the name used in literature). Following the general principles of Chap. 11, the

correlation function KX(t1,t2) is defined as

0

X(t)

mX(t)

t

Fig. 12.1 Random function

X(t)

Y(t)

t

mY(t)

0

Fig. 12.2 Random function

Y(t)
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KXðt1; t2Þ ¼
ð ð1

�1

�
x1 � μXðt1Þ

��
x2 � μXðt2Þ

�
φ2ðx1; x2; t1; t2Þdx1dx2 (12.5)

Here, φ2ðx1; x2; t1; t2Þ denotes two dimensional probability density function, as

used previously in Chap. 11.

The correlation function KX(t1,t2) defined by Eq. (12.5) has several important

properties that are essential from a practical point of view. Firstly, it follows

directly from the definition (12.5) that for an identical argument t1 ¼ t2 ¼ t the

correlation function KX(t1,t2) becomes the variance σ2XðtÞ

KXðt; tÞ ¼ σ2XðtÞ (12.6)

So, the correlation function KX(t1,t2) automatically includes information on the

variance σ2XðtÞ that does not need to be specified separately.

There are another three basic properties of the correlation function KX(t1,t2) that
can be derived from the definition (12.5) indicated in Fig. 12.3:

1. The correlation function KX(t1,t2) is symmetrical with respect to t1 and t2

KXðt1; t2Þ ¼ KXðt2; t1Þ (12.7)

2. It follows from the definition (12.5) that

KXðt1; t2Þ � σXðt1ÞσXðt2Þ (12.8)

3. The correlation function of a random function X(t) and the sum Y(t) of function
X(t) and a deterministic function ξ(t), Y(t) ¼ X(t) + ξ(t) is the same

KXðt1; t2Þ ¼ KYðt1; t2Þ (12.9)

Instead of the correlation function KX(t1,t2) so-called normalised correlation

function (corresponding to the coefficient of correlation defined for two random

variables (11.8)) is used

RXðt1; t2Þ ¼ KXðt1; t2Þ
σXðt1ÞσXðt1Þ (12.10)

It follows from the property (12.8) that the normalised correlation function

(12.10) is a function of two variables, and that its values are within the interval

<�1, 1> similar to the values of the coefficient of correlation (12.8).

When two random functions, say X(t) and Y(s), are involved together then

mutual correlation function may be needed
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KXYðt; sÞ ¼
ð ð1

�1

�
x� μXðtÞ

��
y� μYðsÞ

�
φ2ðx; y; t; sÞdxdy (12.11)

The random functions X(t) and Y(s) are said to be mutually dependent when the

correlation functionKXYðt; sÞ is not exactly equal zero. Together with the correlation
function KXYðt; sÞ the normalised correlation function RXYðt; sÞ is used

RXYðt; sÞ ¼ KXYðt; sÞ
σXðtÞσYðsÞ (12.12)

Example 12.2. Consider a random function describing harmonic vibration

XðtÞ ¼ A cosðωtþ εÞ

Here A ≧ 0 and ε are random variables, ω ≧ 0 is assumed to be a constant. If the

phase shift ε is independent of A and ε has a uniform distribution within the interval

<0, 2π> then the random function is fully described by the joint distribution

φðA; εÞ ¼ 1

2π
φðAÞ; 0 � ε � 2π

The mean of the random function follows from Eq. (12.2) as

μXðtÞ ¼
ð ð1;2π

�1;0

1

2π
φðAÞA cosðωtþ εÞdAdε ¼ 0

t1

t2

KX

0

(t1,t2)

Fig. 12.3 Correlation

function KX(t1,t2)
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The correlation function may be obtained from the definition (12.5) in the form

KXðt1; t2Þ ¼ 1

2
μ02;A cos ω ðt1 � t2Þ½ �

The variance is obtained from Eq. (12.6)

KXðt; tÞ ¼ σ2XðtÞ ¼
1

2
μ02;A

Finally, the normalised correlation function follows Eq. (12.10)

RXðt1; t2Þ ¼ KXðt1; t2Þ
σXðt1ÞσXðt2Þ ¼ cos ω ðt1 � t2Þ½ �

Note that with increasing |t1 � t2| ! 1 the correlation function does not

converge at zero but always fluctuates within the interval <�1, 1>.

12.4 Stationary Random Functions

The stationary random functions represent an important group of random functions

by which many mathematical operations may be substantially simplified. That is

why non-stationary functions are often transformed into stationary functions.

A random function is stationary if its mean μX(t) is constant (and may be denoted

simply as μX), and if the correlation function KX(t1,t2) depends on the difference

t1 � t2 ¼ τ thus

μXðtÞ ¼ μX; KXðt1; t2Þ ¼ KXðt1 � t2Þ ¼ KXðτÞ (12.13)

The correlation function KX(τ) depends now on one variable τ only. Conse-
quently it follows from Eq. (12.6) that the variance is constant

KXð0Þ ¼ σ2X (12.14)

Equations (12.7) and (12.8) can now be stationary functions simplified as

follows:

– The correlation function KX(τ) is even function as

KXð�τÞ ¼ KXðτÞ (12.15)

– It follows from the definition (12.8) that

158 12 Random Functions



KXðτÞ � σ2X (12.16)

The normalised correlation function R(τ) of a stationary random function X(t)
follows from Eq. (12.10) as

RXðτÞ ¼ KXðτÞ
σ2X

(12.17)

Example 12.3. Consider a random function with a simple correlation function

(subscript indicating the random function is omitted)

KðτÞ ¼ σ2 expð�cjτjÞ

The correlation functionKðτÞ ¼ σ2 expð�cjτjÞ is shown in Fig. 12.4 for selected
values of the constant c.

Note that for c approaching 0, the correlation function becomes constant

(as indicated in Fig. 12.4 by the dashed line). In that case, the values of the random

functions at two different points are completely dependent and the function is

reduced to the random variable. With an increasing constant c, the correlation

function K(τ) ¼ σ2exp(�c|τ|) approaches the horizontal axes τ (except τ ¼ 0 where

K(τ) ¼ σ2). This is the case when the values of the random function at two different

points are mutually independent (their correlation is zero).

Example 12.4. Another commonly used correlation function (the subscript

indicating the random function is omitted) of stationary random function is

KðτÞ ¼ σ2 expð�c0jτjÞ cosðc1τÞ

Here c0 ≧ 0 and c1 ≧ 0 are constants determining the shape of the correlation

function. The function is shown in Fig. 12.5. While the correlation function

described in the previous Example 12.2 attains only positive values, the above

correlation function fluctuates periodically from positive to negative values. For

c1 ¼ 0 both the correlation functions are identical.

12.5 Ergodic Random Functions

Most of the stationary random functions comply with another important property in

that – they are ergodic. A random function is said to be ergodic if all required

properties of the function may be deduced from one realisation in a sufficiently

large interval of the argument t. In mathematical formulation (subscript X is
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omitted) a function is said to be ergodic if the following relationships concerning

the mean μ and correlation function K(τ) are valid.

μX ¼
ð1
�1

xφðx; tÞ dt ¼ lim
T!1

1

2T

ðT
�T

xðtÞdt (12.18)

KXðτÞ ¼
ð ð1

�1
ðx1 � μÞðx2 � μÞφ2ðx1; x2; t1; t2Þdx1dx2

¼ lim
T!1

1

2T

ðT
�T

xðtÞ � μ½ � xðtþ τÞ � μ½ �dt (12.19)

It is well to note that there are stationary random functions which are not

ergodic. Figure 12.6 shows such an example.

Example 12.5. A random function Y(t) is given by a sum of the stationary ergodic

function X(t) and the random variable Z (mutually independent).

K(t ) =s 2exp(-c|t |)
c = 0

c1

c2

c1 < c2

t

s 2

0

Fig. 12.4 Correlation

function K(τ) ¼ σ2exp
(�c|τ|) of a stationary
random function

K(t )=s 2exp(-c0|t |)cos(c1t)

2p/c1

c1 = 0

c1 ≠ 0

t

0

s 2

Fig. 12.5 Correlation

function K(τ) ¼ σ2exp
(�c0|τ|)cos(c1τ) of a
stationary random function
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YðtÞ ¼ XðtÞ þ Z

Three realizations of Y(t) are shown in Fig. 12.6. The mean and correlation

function of Y(t) are

μYðtÞ ¼ μXðtÞ þ μz

KYðτÞ ¼ KXðτÞ þ σ2Z

The mean μY(t) depends on a particular realization of Z (there are three

realizations z1, z2 and z3 as shown in Fig. 12.5) and cannot be determined from

one realization yi(t) of Y(t). Thus Y(t) is an example of stationary but not ergodic

random function.

It should be mentioned that the definition of ergodic random function is not

unified. The ergodic properties are sometimes required only with respect to the

mean or the correlation function (not with respect to both).

12.6 Spectral Representation of Random Functions

The spectral representation of random function is commonly understood as its

expression in the form of a sum of harmonic functions having different amplitudes

and frequencies. It’s a special case of canonic decomposition of random functions

when the coordinate functions are

cos ωkt; sin ωkt; k ¼ 0; 1; 2; . . . (12.20)

Here ωk denotes the frequencies of the coordinate functions (12.20).

Consider a stationary random function X(t) in the definite interval<�T, T>. The

corresponding correlation function KX(τ) has the definition domain of the argument

y(t)

y2(t)

y3(t)

y1(t)

mX(t)

z3

t

z3
z1

0

Fig. 12.6 An example of a

stationary random function

which is not ergodic
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τ ¼ t1 � t2 the interval <�2T, 2T>. It is known that any even function can be

expressed using the Fourier sequence with cosine function only:

KXðτÞ ¼
X1

k¼0
Dk cosωkτ; ωk ¼ k

π

2T
(12.21)

D0 ¼ 1

2T

ð2T
0

KXðτÞdτ (12.22)

Dk ¼ 1

T

ð2T
0

KXðτÞ cosðωkτÞdτ (12.23)

This is a canonic representation of the correlation function from which the

canonic representation of the of stationary random function follows as

XðτÞ ¼ μX þ
X1

k¼0
ðAk cosωkτ þ Bk cosωkτÞ (12.24)

The coefficients Ak and Bk are mutually independent random variables of the

zero means and the variance Dk. The expression (12.24) is called the spectral

decomposition of the random function X(t).
Substituting τ ¼ 0 into Eq. (12.21) the variance of the random function X(t)

follows as

σ2X ¼
X1

k¼0
Dk (12.25)

Thus the variance of the function is equal to the sum of variance of all the

harmonic functions of the spectral decomposition. Equation (12.25) indicates that

the variance σ2X can be decomposed into partial variances Dk corresponding to

frequencies ωk. Distribution of the partial variances Dk, with regard to the

frequencies ωk, shown in Fig. 12.7, is called spectrum of the stationary random

function.

The above procedure can be extended to the infinite interval <�1, 1> in

which the summation is replaced by integrals. In this way the partial variances Dk

(12.23) are replaced by the spectral density function S(ω) of the stationary random

function given by the integral

SðωÞ ¼ 1

π

ð1
�1

KXðτÞ cosðωτÞdτ (12.26)

The spectral density S(ω) is a continuous even function that generalizes the

partial variancesDk given in Eq. (12.23). The correlation function KX(τ) can then be
expressed on the basis of the spectral density S(ω) as
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KXðτÞ ¼ 1

2

ð1
�1

SðωÞ cos ðωτÞdω (12.27)

Equations (12.26) and (12.27) represent formulae of the Fourier transformation

that are commonly written in a complex form (in the following formulae i ¼ √�1)

as

SðωÞ ¼ 1

π

ð1
�1

KXðτÞ exp ð�iωτÞdτ (12.28)

KXðτÞ ¼ 1

2

ð1
�1

SðωÞ exp ð�iωτÞdω (12.29)

The variance (12.25) can be now given in an integral form

σ2X ¼ KXð0Þ ¼
ð1
0

SðωÞdω (12.30)

Thus the integral (12.28) of the spectral density S(ω) is equal to the variance of

the stationary random function. This finding is frequently used in practical assess-

ment of the variance of stationary random function.

Example 12.6. A random function has the correlation function (subscript

indicating the random function is omitted)

KðτÞ ¼ σ2ð1� jτ Þ;j jτj � 1

The spectral density S(ω) follows from Eq. (12.26)

SðωÞ ¼ σ2

π

ð1
�1

ð1� τj jÞ cosðωτÞ dτ ¼ 4σ2

πω2 sin
2 ω

2

� �

Dk

wk
0

Fig. 12.7 Spectrum of a

stationary random function
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Appendix 2: Theoretical Models of Discrete
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Appendix 6: Conventional Probabilistic Models

Introduction

Probabilistic models of basic variables used in different reliability studies often

deviate from each other. Obviously, the reliability studies based on different

probabilistic models may lead to different results, to a greater or lesser degree,

and to undesirable discrepancies in recommendations concerning the partial safety

factors, combination factors and other elements of reliability. It is the aim of this

Appendix to propose conventional models in order to enable an efficient compari-

son of reliability studies of various structural members made of different materials

(steel, concrete, composite). It is intended that this Appendix be used independently

of the main text, hence it has been written as a self-contained document with its own

references and figures.

The probabilistic models of basic variables presented in this Appendix are

intended to be used primarily for calibration procedures expected in the near future

in connection with the incorporation of Eurocodes [1, 2, 3, 4] and ISO standard

[5] into the national systems of codes. Proposed models are specified considering

middle values of action variances, common structural conditions and normal

quality control of material properties. Recent documents of JCSS [6, 7], CIB reports

[8–11], SAKO report [13] and other references [14–18] are taken into account.

Conventional Models

The following conventional models of basic variables are primarily intended to be

used in time-invariant reliability analyses (using Turkstra’s combination rule) of

simple reinforced concrete and steel members. However, the annual maximum

value distribution supplemented by appropriate parameters describing time-variant

properties can also be applied in time-variant reliability analysis.

Table 1 includes three fundamental categories of basic variables (actions, mate-

rial strengths and geometric data), supplemented by uncertainty factors for action

M. Holický, Introduction to Probability and Statistics for Engineers,
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effects and structural resistance. Note that the data indicated in summary Table 1

represents only reasonable conventional models, which may not be adequate in

some specific cases (for example, for the wind load of high-rise buildings).

For the purpose of comparative and calibration studies, the mean values μX of all
the variables X are related to the characteristic value Xk used in the design calcula-

tion. The last column of Table 1 shows the occurrence probability of value X as

being smaller than the characteristic value Xk

P X < Xkf g ¼ ΦX Xkð Þ (1)

Here ΦX denotes the distribution function of the basic variable X. Note that due
to several reasons (historical development of codified values, quality control of

materials) these probabilities in general differ from those recommended for

specifications of the characteristic values Xk in the Eurocodes (for example, the

actual probability of the material strengths X being less than Xk is only 0.02, rather

than the recommended value 0.05, as given in EN 1990 [1]).
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Appendix 7: Standardized Normal Distribution

−4 −3 −2 −1    0  1 2 3 4

0,1

0,2

0,3

u

0,4

Area ¼ ΦUðuÞ � 0:5 ¼
ðu
0

1ffiffiffiffiffi
2π

p exp � u2

2

� �
du

u

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
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u

Z 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
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