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Why are competent engineers so vital?

Engineering is among the most important of all professions. It is the authors’ opinions that engineers save more 
lives than medical doctors (physicians). For example, poor water, or the lack of it, is the second largest cause 
of human death in the world, and if engineers are given the ‘tools’, they can solve this problem. The largest 
cause of human death is caused by the malarial mosquito, and even death due to malaria can be decreased by 
engineers – by providing helicopters for spraying areas infected by the mosquito and making and designing 
medical syringes and pills to protect people against catching all sorts of diseases. Most medicines are produced 
by engineers! How does the engineer put 1 mg of ‘medicine’ precisely and individually into millions of pills, at 
an affordable price?

Moreover, one of the biggest contributions by humankind was the design of the agricultural tractor, which 
was designed and built by engineers to increase food production many-fold, for a human population which 
more-or-less quadruples every century! It is also interesting to note that the richest countries in the world are 
very heavily industrialized. Engineers create wealth! Most other professions don’t!

Even in blue sky projects, engineers play a major role. For example, most rocket scientists are chartered 
engineers or their equivalents and Americans call their chartered engineers (and their equivalents), scientists. 
Astronomers are space scientists and not rocket scientists; they could not design a rocket to conquer outer 
space. Even modern theoretical physicists are mainly interested in astronomy and cosmology and also nuclear 
science. In general a theoretical physicist cannot, without special training, design a submarine structure to 
dive to the bottom of the Mariana Trench, which is 11.52 km or 7.16 miles deep, or design a very long bridge, a 
tall city skyscraper or a rocket to conquer outer space. It may be shown that the load on a submarine pressure 
hull of diameter 10 m and length 100 m is equivalent to carrying the total weight of about 7 million London 
double-decker buses!

This book presents a solid foundation for the reader in mechanical engineering principles, on which s/he 
can safely build tall buildings and long bridges that may last for a thousand years or more. It is the authors’ 
experience that it is most unwise to attempt to build such structures on shaky foundations; they may come 
tumbling down – with disastrous consequences.

John Bird is the former Head of Applied Electronics in the Faculty of Technology at Highbury College, Portsmouth, 
U.K. More recently, he has combined freelance lecturing at the University of Portsmouth, with Examiner 
responsibilities for Advanced Mathematics with City and Guilds, and examining for the International Baccalaureate 
Organisation. He is the author of over 125 textbooks on engineering and mathematical subjects with worldwide 
sales of one million copies. He is currently a Senior Training Provider at the Defence School of Marine Engineering 
in the Defence College of Technical Training at H.M.S. Sultan, Gosport, Hampshire, U.K.

Carl Ross gained his first degree in Naval Architecture, from King’s College, Durham University; his PhD in 
Structural Engineering from the Victoria University of Manchester; and was awarded his DSc in Ocean Engineering 
from the CNAA, London. His research in the field of engineering led to advances in the design of submarine pressure 
hulls. His publications and guest lectures to date exceed some 290 papers and books, etc., and he is Professor of 
Structural Dynamics at the University of Portsmouth, UK.

See Carl Ross’s website below, which has an enormous content on science, technology and education. 
http://tiny.cc/6kvqhx

http://www.tiny.cc/6kvqhx


Some quotes from Albert Einstein (14 March 1879–18 April 1955)

‘Scientists investigate that which already is; Engineers create that which has never been’

‘Imagination is more important than knowledge. For knowledge is limited to all we now know and understand, 
while imagination embraces the entire world, and all there ever will be to know and understand’

‘Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will live its whole life believing 
that it is stupid’

‘To stimulate creativity, one must develop the childlike inclination for play’
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Preface

Mechanical Engineering Principles 3rd Edition aims to 
broaden the reader’s knowledge of the basic principles 
that are fundamental to mechanical engineering design 
and the operation of mechanical systems.

Modern engineering systems and products still rely 
upon static and dynamic principles to make them work. 
Even systems that appear to be entirely electronic have a 
physical presence governed by the principles of statics.  

In this third edition of Mechanical Engineering 
Principles, a further chapter has been added on 
revisionary mathematics; it is not possible to progress in 
engineering studies without a reasonable knowledge of 
mathematics, a fact that soon becomes obvious to both 
students and teachers alike. It is therefore hoped that this 
further chapter on mathematics revision will be helpful 
and make engineering studies more comprehensible. 
Minor modifications, some further worked problems, 
a glossary of terms and famous engineers’ biographies 
have all been added to the text.

More has been added to the website for this new  edition – 
such as full solutions being made available to both stu-
dents and staff, and much more besides – see page x.

For clarity, the text is divided into four sections, these 
being: 

Part 1 Revision of Mathematics
Part 2 Statics and Strength of Materials 
Part 3 Dynamics 
Part 4 Heat Transfer and Fluid Mechanics

Mechanical Engineering Principles 3rd Edition is 
suitable for the following:

	 (i)	 National	 Certificate/Diploma	 courses	 in	
Mechanical Engineering 

 (ii) Undergraduate courses in Mechanical, 
Civil, Structural, Aeronautical & Marine 
Engineering, together with Naval Architecture

 (iii) Any introductory/access/foundation course 
involving Mechanical Engineering Principles 
at University, and Colleges of Further and 
Higher education.

Although pre-requisites for the modules covered in this 
book include Foundation Certificate/diploma, or similar, 
in Mathematics and Science, each topic considered in 
the text is presented in a way that assumes that the 
reader has little previous knowledge of that topic.

Mechanical Engineering Principles 3rd Edition 
contains over 400 worked problems, followed by over 
700 further problems (all with answers). The further 
problems are contained within some 150 Exercises; 
each Exercise follows on directly from the relevant 
section of work, every few pages. In addition, the 
text contains 298 multiple-choice questions (all 
with answers), and 260 short answer questions, 
the answers for which can be determined from the 
preceding material in that particular chapter. Where at 
all possible, the problems mirror practical situations 
found in mechanical engineering. 387 line diagrams 
enhance the understanding of the theory.

At regular intervals throughout the text are some 
9 Revision Tests to check understanding. For example, 
Revision Test 1 covers material contained in Chapter 1, 
Test 2 covers the material in Chapter 2, Test 3 covers 
the material in Chapters 3 to 6, and so on. No answers 
are given for the questions in the Revision Tests, but 
an Instructor’s guide has been produced giving full 
solutions and suggested marking scheme. The guide is 
offered online free to lecturers/instructors – see below. 

At the end of the text, a list of relevant formulae is 
included for easy reference, together with a glossary 
of terms. 

‘Learning by Example’ is at the heart of Mechanical 
Engineering Principles, 3rd Edition.

JOHN BIRD  
Defence College of Technical Training,  

HMS Sultan, formerly 
University of Portsmouth and  

Highbury College, Portsmouth 
CARL ROSS  Professor, University of Portsmouth
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Free Web downloads
The following support material is available 
from http://www.routledge.com/cw/bird

For Students:

1.  Full worked solutions to all 700 further ques-
tions contained in the 150 Practice Exercises

2. A list of Essential Formulae
3. A full glossary of terms
4. Multiple-choice questions
5.  Information on 20 Famous Engineers men-

tioned in the text

6.  Video links to practical demonstrations by 
Professor Carl Ross http://tiny.cc/6kvqhx

For Lecturers/Instructors:

1– 6. As per students 1–6 above.
7.  Full solutions and marking scheme for each 

of the 9 Revision Tests; also, each test may be 
downloaded for distribution to students. 

8.  All 387 illustrations used in the text may be 
downloaded for use in PowerPoint presentations.

http://www.routledge.com/cw/bird
http://www.tiny.cc/6kvqhx
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Chapter 1

Revisionary mathematics

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Why it is important to understand: Revisionary mathematics
Mathematics is a vital tool for professional and chartered engineers. It is used in mechanical & manufacturing 
engineering, in electrical & electronic engineering, in civil & structural engineering, in naval architecture & 
marine engineering and in aeronautical & rocket engineering. In these various branches of engineering, it is 
very often much cheaper and safer to design your artefact with the aid of mathematics – rather than through 
guesswork. ‘Guesswork’ may be reasonably satisfactory if you are designing an artefact similar to one that 
has already proven satisfactory; however, the classification societies will usually require you to provide the 
calculations proving that the artefact is safe and sound. Moreover, these calculations may not be readily 
available to you and you may have to provide fresh calculations, to prove that your artefact is ‘roadworthy’. 
For example, if you design a tall building or a long bridge by ‘guesswork’, and the building or bridge do not 
prove to be structurally reliable, it could cost you a fortune to rectify the deficiencies. This cost may dwarf 
the initial estimate you made to construct these artefacts, and cause you to go bankrupt. Thus, without 
mathematics, the prospective professional or chartered engineer is very severely handicapped.

1.1 Introduction

As highlighted above, it is not possible to understand 
aspects of mechanical engineering without a good 

knowledge of mathematics. This chapter highlights 
some areas of mathematics which will make the 
understanding of the engineering in the following 
chapters a little easier.

At the end of this chapter you should be able to:

• convert radians to degrees
• convert degrees to radians
• calculate sine, cosine and tangent for large and small angles
• calculate the sides of a right-angled triangle
• use Pythagoras’ theorem
• use the sine and cosine rules for acute-angled triangles
• expand equations containing brackets
• be familiar with summing vulgar fractions
• understand and perform calculations with percentages
• understand and use the laws of indices
• solve simple simultaneous equations
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On
e 1.2 Radians and degrees

There are 2π radians or 360° in a complete circle, thus:

π radians = 180°  from which,

1 rad = �
180°

  or  1° =
180
� rad

where π = 3.14159265358979323846 .... to 20 decimal 
places!

Problem 1. Convert the following angles to 
degrees correct to 3 decimal places:
(a)  0.1 rad (b)  0.2 rad (c)  0.3 rad

(a) 0.1 rad = 0.1 rad ×
180

rad
°

�  = 5.730°

(b) 0.2 rad = 0.2 rad ×
180

rad
°

�  = 11.459°

(c) 0.3 rad = 0.3 rad ×
180

rad
°

�  = 17.189°

Problem 2. Convert the following angles to 
radians correct to 4 decimal places:
(a)  5° (b)  10° (c)  30° 

(a) 5° = 5° × rad
180 36°

=
� � rad = 0.0873 rad

(b) 10° = 10° × rad
180 18°

=
� � rad = 0.1745 rad

(c) 30° = 30° × rad
180 6°

=
� � rad = 0.5236 rad

Now try the following Practice Exercise

Practice Exercise 1 Radians and degrees

1.  Convert the following angles to degrees 
correct to 3 decimal places (where necessary):
(a)  0.6 rad (b)  0.8 rad
(c)  2 rad (d)  3.14159 rad

[(a) 34.377°  (b) 45.837° 
  (c) 114.592°   (d) 180°     ]

2.  Convert the following angles to radians 
correct to 4 decimal places:
(a)  45° (b)  90°
(c)  120° (d) 180°

[(a) 
4
� rad  or  0.7854 rad

 (b) 
2
� rad  or  1.5708 rad  

 (c) 2
3
� rad  or  2.0944 rad

 (d) π rad  or  3.1416 rad     ]

1.3 Measurement of angles

Angles are measured starting from the horizontal ‘x’ 
axis, in an anticlockwise direction, as shown by θ1 to 
θ4 in Figure 1.1. An angle can also be measured in a 
clockwise direction, as shown by θ5 in  Figure 1.1, but 
in this case the angle has a negative sign before it. If, 
for example, θ4 = 300° then θ5 = – 60°.

Figure 1.1

Problem 3. Use a calculator to determine the 
cosine, sine and tangent of the following angles,  
each measured anticlockwise from the horizontal 
‘x’ axis, each correct to 4 decimal places:
(a)  30° (b)  120° (c)  250° 
(d)  320° (e)  390° (f)  480° 

(a) cos 30° = 0.8660 sin 30° = 0.5000       
tan 30° = 0.5774     

(b) cos 120° = – 0.5000 sin 120° = 0.8660       
tan 120° = – 1.7321     

(c) cos 250° = – 0.3420 sin 250° = – 0.9397       
tan 250° = 2.7475     

(d) cos 320° = 0.7660 sin 320° = – 0.6428       
tan 320° = – 0.8391     

180.-" 
9， 

90・
y 

y 270・

0.x L 
e • 

9

9
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e(e) cos 390° = 0.8660 sin 390° = 0.5000       

tan 390° = 0.5774 

(f) cos 480° = – 0.5000 sin 480° = 0.8660       
tan 480° = – 1.7321     

These angles are now drawn in Figure 1.2. Note that 
cosine and sine always lie between –1 and +1 but 
that tangent can be >1 and <1

Figure 1.2

Note from Figure 1.2 that θ = 30º is the same as 
θ = 390º and so are their cosines, sines and tangents. 
Similarly, note that θ = 120º is the same as θ = 480º 
and so are their cosines, sines and tangents. Also, note 
that θ = – 40º is the same as θ = + 320º and so are their 
cosines, sines and tangents.
It is noted from above that 

• in the first quadrant, i.e. where θ varies from 0º 
to 90º, all (A) values of cosine, sine and tangent are 
positive

• in the second quadrant, i.e. where θ varies from 
90º to 180º, only values of sine (S) are  positive

• in the third quadrant, i.e. where θ varies from 
180º to 270º, only values of tangent (T) are positive

• in the fourth quadrant, i.e. where θ varies from 
270º to 360º, only values of cosine (C) are positive

These positive signs, A, S, T and C are shown in 
 Figure 1.3.

Figure 1.3

Now try the following Practice Exercise

Practice Exercise 2  Measurement of 
angles

1.  Find the cosine, sine and tangent of the 
following angles, where appropriate each 
 correct to 4 decimal places:
(a)  60° (b)  90° (c)  150° 
(d)  180° (e)  210° (f)   270° 
(g)  330° (h)  – 30°  (i)   420° 
(j)   450°  (k)  510°

[ (a)  0.5, 0.8660, 1.7321 
(b)  0, 1, ∞ 
(c)  – 0.8660, 0.5, – 0.5774  
(d)  –1,  0,  0 
(e)  – 0.8660, – 0.5,  0.5774 
(f)  0, –1, – ∞  
(g)  0.8660, – 0.5000, – 0.5774 
(h)  0.8660, – 0.5000, – 0.5774 
(i)   0.5, 0.8660, 1.7321 
(j)   0, 1, ∞ 
(k)  – 0.8660, 0.5, – 0.5774]

1.4 Triangle calculations

(a) Sine, cosine and tangent

From Figure 1.4, sin θ = bc
ac   

cos θ = ab
ac

     tan θ = bc
ab

Figure 1.4

Problem 4. In Figure 1.4, if ab = 2 and ac = 3, 
determine the angle θ.

It is convenient to use the expression for cos θ, since 
‘ab’ and ‘ac’ are given.

y 

B = 120・0，480・

θ=30・0，390・

-x x 

B =-40・0，320・
θ=250・7

c 

90・ θ 
a b 

s A 

0・
180・

360・
T c 

270・
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e Hence,  cos θ = =

ab
ac

2
3  = 0.66667

from which, θ = cos–1(0.66667) = 48.19º      

Problem 5. In Figure 1.4, if bc = 1.5 and  
ac = 2.2, determine the angle θ.

It is convenient to use the expression for sin θ, since 
‘bc’ and ‘ac’ are given.

Hence,  sin θ = =
bc
ac

1.5
2.2 = 0.68182

from which,      θ = sin–1(0.68182) = 42.99º 

Problem 6. In Figure 1.4, if bc = 8 and ab = 1.3, 
determine the angle θ.

It is convenient to use the expression for tan θ, since 
‘bc’ and ‘ab’ are given.

Hence,  tan θ = =
bc
ab

8
1.3  = 6.1538

from which,       θ = tan–1(6.1538) = 80.77º      

(b) Pythagoras’ theorem 
Pythagoras’ theorem* states that:  
(hypotenuse)2 = (adjacent side)2 + (opposite side)2  
i.e. in the triangle of Figure 1.5,

ac2 = ab2  + bc2

Figure 1.5

Problem 7. In Figure 1.5, if ab = 5.1 m and  
bc = 6.7 m, determine the length of the  
hypotenuse, ac.

From Pythagoras, ac2 = ab2 + bc2 
   = 5.12 + 6.72  = 26.01 + 44.89
         = 70.90
from which, ac = 70 90.  = 8.42 m

Now try the following Practice Exercise

Practice Exercise 3  Sines, cosines and  
tangents and  
Pythagoras’ theorem

In problems 1 to 5, refer to Figure 1.5.

1.  If ab = 2.1 m and bc = 1.5 m, determine  
angle θ. [35.54°]

2.  If ab = 2.3 m and ac = 5.0 m, determine  
angle θ. [62.61°]

3.  If bc = 3.1 m and ac = 6.4 m, determine  
angle θ. [28.97°] 

4.  If ab = 5.7 cm and bc = 4.2 cm, determine 
the length ac [7.08 cm]

5.  If ab = 4.1 m and ac = 6.2 m, determine 
length bc. [4.65 m] 

(c) The sine and cosine rules
For the triangle ABC shown in Figure 1.6,

*Pythagoras of Samos (born approximately 570BC and 
died around 495BC) was an Ionian Greek philosopher and 
mathematician, best known for the Pythagorean Theorem. To 
find out more go to www.routledge.com/cw/bird

c 

e 
a b 

http://www.routledge.com/cw/bird
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Figure 1.6

the sine rule states:         == ==
a
A

b
B

c
Csin sin sin

and the cosine rule states: a b c bc A2 cos2 2 2== ++ −−

Problem 8. In Figure 1.6, if a = 3 m, A = 20° and 
B = 120°, determine lengths b, c and angle C.

Using the sine rule,    a
A

b
Bsin sin

=  

i.e. 
b3

sin 20 sin120°
=

°

from which, b  = 
3sin120
sin 20

3 0.8660
0.3420

°
°

=
×

  

          = 7.596 m

Angle, C = 180° – 20° – 120° = 40°

Using the sine rule again gives:  
c
C

a
Asin sin

=
 

i.e.      c = a C
A

sin
sin

3 sin 40
sin 20

=
× °

°  
                    = 5.638 m

Problem 9. In Figure 1.6, if b = 8.2 cm. c = 5.1 cm 
and A = 70°, determine the length a and angles B
and C.

From the cosine rule, 

 a b c bc A2 cos2 2 2= + −

  = 8.2 5.1 2 8.2 5.1 cos702 2+ − × × × °

  = 67.24 + 26.01 – 2(8.2)(5.1)cos70°

  = 64.643

Hence, length, a = 64 643.  = 8.04 cm

Using the sine rule: 
a

A
b

Bsin sin
=

 

i.e.               
B

8.04
sin70

8.2
sin°

=

from which,  8.04 sin B = 8.2 sin 70°

and sin B = 
8.2sin70

8.04
°

 = 0.95839

and B = sin 1− (0.95839) = 73.41°

Since A + B + C = 180°,  then   
         C = 180° – A – B = 180° – 70° – 73.41° = 36.59°

Now try the following Practice Exercise

Practice Exercise 4 Sine and cosine rules

In problems 1 to 4, refer to Figure 1.6.

1.  If b = 6 m, c = 4 m and B = 100°, determine 
angles A and C and length a.  

 [A = 38.96°,  C = 41.04°,  a = 3.83 m]

2.  If a = 15 m, c = 23 m and B = 67°, determine 
length b and angles A and C.

 [b = 22.01 m, A = 38.86°, C = 74.14°]

3.  If a = 4 m, b = 8 m and c = 6 m, determine 
angle A. [28.96°]

4.  If a = 10.0 cm, b = 8.0 cm and c = 7.0 cm, 
determine angles A, B and C.

 [A = 83.33°, B = 52.62°, C = 44.05°]

5.  In Figure 1.7, PR represents the inclined jib 
of a crane and is 10.0 m long. PQ is 4.0 m 
long. Determine the inclination of the jib to the 
vertical (i.e. angle P) and the length of tie QR.

Figure 1.7

 [P = 39.73°, QR = 7.38 m]
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The use of brackets, which are used in many engi-
neering equations, is explained through the following 
worked problems.

Problem 10. Expand the bracket to determine A,  
given A = a(b + c + d)

Multiplying each term in the bracket by ‘a’ gives:
A = a(b + c + d) = ab + ac + ad

Problem 11. Expand the brackets to determine A, 
given A = a[b(c + d) – e(f – g)]

When there is more than one set of brackets the 
innermost brackets are multiplied out first. Hence,

A = a[b(c + d) – e(f – g)] = a[bc + bd – ef  + eg] 
 Note that –e × –g = +eg

Now multiplying each term in the square brackets by 
‘a’ gives:

A = abc + abd – aef + aeg

Problem 12. Expand the brackets to determine A, 
given A = a[b(c + d – e) – f (g – h{j – k})]

The inner brackets are determined first, hence
  A = a[b(c + d – e) – f (g – h{j – k})]
  = a[b(c + d – e) – f (g – hj + hk)]
  = a[bc + bd – be – fg + fhj – fhk]
i.e.  A = abc + abd – abe – afg + afhj – afhk

Problem 13. Evaluate A, given  
A = 2[3(6 – 1) – 4(7{2 + 5} – 6)]

 A = 2[3(6 – 1) – 4(7{2 + 5} – 6)]
  = 2[3(6 – 1) – 4(7 × 7 – 6)]
  = 2[3 × 5 – 4 × 43]
  = 2[15 – 172]  = 2[– 157] = – 314

Now try the following Practice Exercise

Practice Exercise 5 Brackets

In problems 1 and 2, evaluate A
1. A = 3( 2 + 1 + 4) [21]
2. A = 4[5(2 + 1) – 3(6 – 7)] [72]

Expand the brackets in problems 3 to 7.

3. 2(x – 2y + 3) [2x – 4y + 6]

4. (3x – 4y) + 3(y – z) – (z – 4x) 
 [7x – y – 4z]

5. 2x + [y – (2x + y)] [0] 

6. 24a – [2{3(5a – b) – 2(a + 2b)} + 3b] 
 [11b – 2a]

7. ab[c + d – e(f – g + h{i + j})] 
 [abc + abd – abef + abeg – abehi – abehj]

1.6 Fractions

An example of a fraction is 2
3

 where the top line, i.e. 
the 2, is referred to as the numerator and the bottom 
line, i.e. the 3, is referred to as the denominator.

A proper fraction is one where the numera-
tor is smaller than the denominator, examples being
2
3

, 1
2

, 3
8

, 5
16

, and so on.

An improper fraction is one where the denomi-
nator is smaller than the numerator, examples being 
3
2

, 2
1

, 8
3

, 16
5

, and so on.

Addition of fractions is demonstrated in the follow-
ing worked problems.

Problem 14. Evaluate A, given A = 
1
2

1
3

+

The lowest common denominator of the two denomi-
nators 2 and 3 is 6, i.e. 6 is the lowest number that both 
2 and 3 will divide into.

Then 
1
2

3
6

=  and 
1
3

2
6

=  i.e. both 1
2  and 1

3  have the 
common denominator, namely 6.
The two fractions can therefore be added as:  

A = 1
2

1
3

+
3
6

2
6

3 2
6

= + =
+  = 5

6

Problem 15. Evaluate A, given A = 
2
3

3
4

+

A common denominator can be obtained by multiply-
ing the two denominators together, i.e. the common  
denominator is 3 × 4 = 12.
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2
3

8
12

=  and 3
4

9
12

=

so that they can be easily added together, as follows:   

A = 2
3

3
4

+  = 8
12  + 9

12  = 
8 9
12

17
12

+
=  

i.e.  A = 
2
3

3
4

+  = 1
5

12

Problem 16. Evaluate A, given A = 
1
6

2
7

3
2

+ +

A suitable common denominator can be obtained by 
multiplying 6 × 7 = 42, because all three denominators 
divide exactly into 42. 

Thus, 1
6

7
42

= ,     2
7

12
42

=  and 3
2

63
42

=

Hence, A  = 
1
6

2
7

3
2

+ +   

= 
7
42

12
42

63
42

7 12 63
42

82
42

41
21

+ + =
+ +

= =  

i.e.  A = 
1
6

2
7

3
2

+ +  = 1
20
21

Problem 17. Determine A as a single fraction, 

given A = x y
1 2

+

A common denominator can be obtained by multiply-
ing the two denominators together, i.e. xy

Thus, 
x

y
xy

1
=  and 

y
x

xy
2 2

=

Hence,  A = 
x y
1 2

+  = y
xy

 + x
xy
2

i.e.  A = y x
xy

2+

Note that addition, subtraction, multiplication and divi-
sion of fractions may be determined using a calculator 
(for example, the CASIO fx-83ES or fx-991ES).

Locate the �
�

 and ��
�

functions on your calculator 
(the latter function is a shift function found above 

the �
�

function) and then check the following worked  

problems.

Problem 18. Evaluate  +
1
4

2
3

 (i) Press �
�

 function

 (ii) Type in 1
 (iii) Press ↓ on the cursor key and type in 4

 (iv) 1
4  appears on the screen

 (v) Press → on the cursor key and type in +

 (vi) Press �
�

 function

 (vii) Type in 2
 (viii) Press ↓ on the cursor key and type in 3
 (ix) Press → on the cursor key

 (x) Press = and the answer 11
12  appears 

 (xi) Press S ⇔ D function and the fraction changes 
to a decimal 0.9166666....

Thus, 
1
4

2
3

11
12

+ =  = 0.9167 as a decimal, correct to  

4 decimal places.

It is also possible to deal with mixed numbers on the 
calculator.

Press Shift then the �
�

 function and ��
�

 appears

Problem 19. Evaluate −51
5

3 3
4

 (i) Press Shift then the �
�

 function and ��
�

  
appears on the screen

 (ii) Type in 5 then → on the cursor key 
 (iii) Type in 1 and ↓ on the cursor key  

 (iv) Type in 5 and 5 1
5  appears on the screen

 (v) Press → on the cursor key

 (vi) Type in - and then press Shift then the �
�

  

function and 5 1
5  – ��

�
 appears on the screen

 (vii) Type in 3 then → on the cursor key 
 (viii) Type in 3 and ↓ on the cursor key  
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5
3 3

4
−  appears on the screen  

 (x) Press = and the answer 29
20  appears

 (xi) Press S ⇔ D function and the fraction changes 
to a decimal 1.45

Thus, 5 1
5

3 3
4

29
20

1 9
20

− = =  = 1.45 as a decimal.

Now try the following Practice Exercise

Practice Exercise 6 Fractions

In problems 1 to 3, evaluate the given fractions

1. 
1
3

1
4

+  [ 7
12 ]

2. 
1
5

1
4

+  [ 9
20 ]

3. 
1
6

1
2

1
5

+ −  [ 7
15 ]

In problems 4 and 5, use a calculator to evaluate 
the given expressions

4. 
1
3

– 3
4

8
21

×  [ 1
21 ]

5. 
3
4

4
5

– 2
3

÷ 4
9

×  [– 9
10 ]

6.  Evaluate 
3
8

5
6

1
2

+ −  as a decimal, correct to 

4 decimal places. [ 17
24  = 0.7083]

7. Evaluate 8 8
9

÷ 2 2
3

 as a mixed number.  

 [ 31
3 ]

8.  Evaluate × −31
5

11
3

1 7
10

 as a decimal, cor-

rect to 3 decimal places. [2.567]

9.  Determine x y
2 3

+  as a single fraction.  

 [ x y
xy

3 2+ ] 

1.7 Percentages

Percentages are used to give a common standard. The 
use of percentages is very common in many aspects 

of commercial life, as well as in engineering. Interest 
rates, sale reductions, pay rises, exams and VAT are all 
examples where percentages are used.
Percentages are fractions having 100 as their  
denominator.

For example, the fraction 40
100  is written as 40% and is 

read as ‘forty per cent’.
The easiest way to understand percentages is to go 
through some worked examples.

Problem 20. Express 0.275 as a percentage.

0.275 = 0.275 × 100% = 27.5%

Problem 21. Express 17.5% as a decimal number.

17.5% = 17 5
100

.  = 0.175

Problem 22. Express 5
8  as a percentage.

5
8  = ×

5
8

100%  = 500
8 % = 62.5%

Problem 23. In two successive tests a student 
gains marks of 57/79 and 49/67. Is the second mark 
better or worse than the first?

 57/79  = 57
79  = ×  

57
79

100%  
5700

79
%=   

= 72.15% correct to 2 decimal places.

 49/67  = 49
67

49
67

100%= ×
4900
67

%=   

= 73.13% correct to 2 decimal places.
Hence, the second test is marginally better than the 
first test.

This question demonstrates how much easier it is 
to compare two fractions when they are expressed as 
percentages.

Problem 24. Express 75% as a fraction.

75% = 75
100  = 3

4

The fraction 75
100 is reduced to its simplest form  

by cancelling, i.e. dividing numerator and denominator 
by 25.
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 37.5% = 37 5
100

.

  =  375
1000   by multiplying numerator and 

denominator by 10   

  =  15
40   by dividing numerator and  

denominator by 25  

  =  38   by dividing numerator and  
denominator by 5

Problem 26. Find 27% of £65.

27% of £65 = ×
27

100
65  = £17.55  by calculator

Problem 27. A 160 GB iPod is advertised as 
costing £190 excluding VAT. If VAT is added at 
20%, what will be the total cost of the iPod?

 VAT = 20% of £190 = ×
20

100
190  = £38

     Total cost of iPod = £190 + £38 = £228
A quicker method to determine the total cost is:  
1.20 × £190 = £228

Problem 28. Express 23 cm as a percentage of 
72 cm, correct to the nearest 1%.

 23 cm as a percentage of 72 cm  = ×
23
72

100%   

= 31.94444...%  
=  32% correct 

to the nearest 
1%

Problem 29. A box of screws increases in price 
from £45 to £52. Calculate the percentage change 
in cost, correct to 3 significant figures.

 % change = −
×  

new value original value
original value

100%

  = 
−

×
52 45

45
100% = ×

7
45

100   

= 15.6% = percentage change in cost

Problem 30. A drilling speed should be set to 
400 rev/min. The nearest speed available on the 
machine is 412 rev/min. Calculate the percentage 
over-speed.

% over-speed  

 = −
×  

available speed correct speed
correct speed

100%

 = 
−

×
412 400

400
100%   

 = ×
12
400

100%  = 3%

Now try the following Practice Exercise

Practice Exercise 7 Percentages 

In problems 1 and 2, express the given numbers 
as percentages.

 1. 0.057 [5.7%]

 2. 0.374  [37.4%]

 3. Express 20% as a decimal number [0.20]

 4. Express 11
16  as a percentage [68.75%]

 5.  Express 5
13  as a percentage, correct to 3 

decimal places [38.462%]

 6.  Place the following in order of size, the 
smallest first, expressing each as percent-
ages, correct to 1 decimal place:

 (a) 12
21  (b) 9

17  (c) 5
9  (d) 6

11

[  (b) 52.9%, (d) 54.5%,  
(c) 55.6%, (a) 57.1% ]

 7.  Express 65% as a fraction in its simplest 

form [ 13
20 ]

 8. Calculate 43.6% of 50 kg [21.8 kg]

 9. Determine 36% of 27 m [9.72 m]

10. Calculate correct to 4 significant figures:
 (a) 18% of 2758 tonnes
 (b) 47% of 18.42 grams
 (c) 147% of 14.1 seconds 

[(a) 496.4 t   (b) 8.657 g   (c) 20.73 s]
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(b) 47 s as a percentage of 5 min (c) 13.4 cm  
as a percentage of 2.5 m

[(a) 14%   (b)  15.67%   (c) 5.36%]

12.  A computer is advertised on the internet at 
£520, exclusive of VAT. If VAT is payable 
at  20%, what is the total cost of the com-
puter? [£624]

13.  Express 325 mm as a percentage of 867 
mm, correct to 2 decimal places.  
 [37.49%]

14.  When signing a new contract, a Premiership 
footballer’s pay increases from £15,500 to 
£21,500 per week. Calculate the percentage 
pay increase, correct to 3 significant figures.

[38.7%]

15.  A metal rod 1.80 m long is heated and its 
length expands by 48.6 mm. Calculate the 
percentage increase in length. [2.7%]

1.8 Laws of indices

The manipulation of indices, powers and roots is a cru-
cial underlying skill needed in algebra. 

Law 1: When multiplying two or more numbers 
having the same base, the indices are added.

For example, × 2 22 3  = +22 3  = 25

and  × ×5 5 54 2 3  = + +54 2 3  = 59  

More generally, am × an = am+n 

For example, ×  = =+a a a a3 4 3 4 7

Law 2: When dividing two numbers having the 
same base, the index in the denominator is subtract-
ed from the index in the numerator.

For example, 2
2

2
5

3
5 3= − = 22  

and  
7
7

7 7
8

5
8 5 3= =−

More generally, a
a

m

n  = am–n 

For example, c
c

c c
5

2
5 2 3= =−

Law 3: When a number which is raised to a power is 
raised to a further power, the indices are multiplied.   

For example, ( ) = = ×  2 2 22 3 2 3 6
 

and  ( ) = = ×  3 3 34 2 4 2 8

More generally,  (am)n = amn 

For example, ( ) = = ×  d d d2 3 2 3 6

Law 4:  When a number has an index of 0, its value is 1. 

For example,      30 = 1 

and    170 = 1 

More generally,     a0 = 1 

Law 5: A number raised to a negative power is the 
reciprocal of that number raised to a positive power.   

For example, 3–4 = 1
34  and 

1
2 3−  = 23

More generally, a–n = 1
an

For example,   a
a
12
2

=−

Law 6: When a number is raised to a fractional  
power the denominator of the fraction is the root  
of the number and the numerator is the power.

For example,    8
2
3  = 823  = (2)2 = 4

and  25
1
2    =  2512  = 251   

= ± 5   (Note that  ≡ 2 )

More generally,   ==a a
m
n mn  

For example,    =x x
4
3 43

Problem 31. Evaluate in index form 53 × 5 × 52

× ×5 5 53 2  = × ×5 5 53 1 2       (Note that 5 means 51)

            = + +53 1 2  = 56       from law 1

Problem 32.   Evaluate 3
3

5

4
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3

5

4  = 35 4−  = 31  = 3

Problem 33. Evaluate 2
2

4

4

  2
2

4

4 = 24 4−   from law 2

  = 20  = 1  from law 4
Any number raised to the power of zero equals 1

Problem 34.   Evaluate 
×3 3
3

2

4

 
×3 3
3

2

4   = 
×3 3
3

1 2

4  = 3
3

1 2

4

+
= 3

3

3

4   

= 33 4−  = 3 1−  from laws 1 and 2

  = 1
3   from law 5

Problem 35. Evaluate 
×10 10

10

3 2

8  

 

×10 10
10

3 2

8  = 
+10

10

3 2

8  = 10
10

5

8  from law 1

  = −105 8  = −10 3  from law 2

  = 
+

1
10 3  = 1

1000  from law 5

Hence, 
×10 10

10

3 2

8  
= −10 3  = 1

1000  = 0.001

Problem 36. Simplify: (a)  (23)4     (b)  (32)5  
expressing the answers in index form.

From law 3: (a)  (23)4 = 23×4 = 212  

   (b)  (32)5 = 32×5 = 310

Problem 37. Evaluate 
×

(10 )
10 10

2 3

4 2

From laws 1, 2, and 3: 
×

(10 )
10 10

2 3

4 2
  = 

×

+

10
10

(2 3)

(4 2)   

= 10
10

6

6  = 106–6  

= 100 = 1

Problem 38. Evaluate:  (a)  41/2    (b)  163/4     
(c)  272/3    (d)  9–1/2

(a) 41/2 = 4  = ±2

(b) 163/4 = 1634  = (2)3 = 8
  (Note that it does not matter whether the 4th root 

of 16 is found first or whether 16 cubed is found 
first; the same answer will result)

(c) 272/3 = 2723  = (3)2  =  9

(d) 9–1/2  = 1
91 2/  = 1

9
 = 

±
1
3

  =  ± 1
3

Problem 39. Simplify a b c ab c2 3 2 5×

 a b c ab c a b c a b c2 3 2 5 2 3 2 5× = × × × × ×

                                   = a b c a b c2 3 1 1 2 5× × × × ×

Grouping together like terms gives: 
 a a b b c c2 1 3 2 1 5× × × × ×

Using law 1 of indices gives:   
 a b c2 1 3 2 1 5× ×+ + + = a b c3 5 6× ×  

i.e.      a b c ab c2 3 2 5×  = a b c3 5 6

Problem 40. Simplify  x y z
x y z

5 2

2 3

 
x y z
x yz

x y z
x y z

5 2

2 3

5 2

2 3
=

× ×

× ×
 = 

x
x

y
y

z
z

5

2

2

1 3
× ×

  = x y z5 2 2 1 1 3× ×− − −  by law 2 

  = x y z3 1 2× × −  = x y z3 2−   or  x y
z

3

2

Now try the following Practice Exercise

Practice Exercise 8 Laws of indices 

In questions 1 to 18, evaluate without the aid of 
a calculator 

 1. Evaluate  2 2 22 4× ×  [27 = 128]

 2. Evaluate  3 3 35 3× × in index form  
 [39 ]

 3. Evaluate  2
2

7

3
 [24 = 16]

 4. Evaluate 3
3

3

5
 [ 3 1

3
1
9

2
2

= =− ]
 5. Evaluate 70  [1]
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2

3 6

7
× ×  [23 = 8]

 7. Evaluate 10 10
10

6

5
×  [102 = 100]

 8. Evaluate 10 104 ÷  [103 = 1000]

 9. Evaluate 10 10
10

3 4

9
×  

 [10 1
10

1
100

0.012
2

= = =− ]
10. Evaluate 5 5 56 2 7× ÷  [5]

11. Evaluate (72)3 in index form [76]

12. Evaluate  (33)2 [36 = 729]

13. Evaluate 3 3
3

7 4

5
×  in index form [36]

14. Evaluate (9 3 )
(3 27)

2 3

2
×

×
 in index form [34]

15. Evaluate (16 4)
(2 8)

2

3
×

×
 [1]

16. Evaluate 5
5

2

4

−

−
 [52 = 25]

17. Evaluate 3 3
3

2 4

3
× −

 [3 1
3

1
243

5
5

= =− ]
18. Evaluate 7 7

7 7

2 3

4
×

×

−

−
 [72 = 49]

In problems 19 to 36, simplify the following, 
giving each answer as a power

19. z z2 6×  [z8]

20. a a a2 5× ×  [a8]  

21. n n8 5× −  [n3]

22. b b4 7×  [b11]

23. b b2 5÷  [ b
b

or 13
3

− ]
24. c c c5 3 4× ÷  [c4] 

25. m m
m m

5 6

4 3
×

×
 [m4]

26. x x
x

( )( )2

6
 [ x

x
or 13

3
− ]

27. x3 4( )   [x12]

28. y2 3( ) −
 [ y

y
or 16

6
− ]

29. t t3 2( )×  [t8]

30. c 7 2( )−
−

  [c14]

31. a
a

2

5

3







   [a

a
or 19

9
− ]

32. 
b
1
3

4







  [ b

b1 or
12

12− ]          
33. b

b

2

7

2









−

 [b10]

34. 
s

1
3 3( )

 [ s
s1 or

9
9− ]

35. p qr p q r pqr3 2 2 5 2× ×  [ p q r6 7 5]

36. x y z
x y z

3 2

5 3  [ x y z y
x z

or2 2
2 2

− − ]

1.9 Simultaneous equations

The solution of simultaneous equations is demonstrat-
ed in the following worked problems.

Problem 41. If 6 apples and 2 pears cost £1.80 
and 8 apples and 6 pears cost £2.90, calculate how 
much an apple and a pear each cost.

Let an apple = A and a pear = P, then:
     6A + 2P = 180 (1)
     8A + 6P = 290 (2)
From equation (1), 6A = 180 – 2P

and            A = P180 2
6
−  = 30 – 0.3333P (3)

From equation (2), 8A = 290 – 6P

and           A = P290 6
8
−  = 36.25 – 0.75P (4)

Equating (3) and (4) gives:  
       30 – 0.3333P = 36.25 – 0.75P
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and 0.4167P = 6.25

and P = 6 25
0 4167

.
.  = 15

Substituting in (3) gives: A  = 30 – 0.3333(15)  
= 30 – 5 = 25

Hence, an apple costs 25p and a pear costs 15p
The above method of solving simultaneous equations 
is called the substitution method.

Problem 42. If 6 bananas and 5 peaches cost 
£3.45 and 4 bananas and 8 peaches cost £4.40, 
calculate how much a banana and a peach each 
cost.

Let a banana = B and a peach = P, then:

           6B + 5P = 345 (1)

                4B + 8P = 440 (2)
Multiplying equation (1) by 2 gives:

       12B + 10P = 690 (3) 

Multiplying equation (2) by 3 gives:

            12B + 24P = 1320 (4) 

Equation (4) – equation (3) gives: 14P = 630

from which,       P = 630
14  = 45   

Substituting in (1) gives:  6B + 5(45) = 345

i.e.   6B = 345 – 5(45)

i.e.   6B = 120

and     B = 120
6  = 20

Hence, a banana costs 20p and a peach costs 45p
The above method of solving simultaneous equations 
is called the elimination method.

Problem 43. If 20 bolts and 2 spanners cost £10, 
and 6 spanners and 12 bolts cost £18, how much 
does a spanner and a bolt cost?

Let   s = a spanner   and   b = a bolt.
Therefore, 2s + 20b = 10  (1)

and     6s + 12b = 18 (2)

Multiplying equation (1) by 3 gives:
   6s + 60b = 30 (3) 
Equation (3) – equation (2) gives:  48b = 12

from which,       b = 12
48  = 0.25   

Substituting in (1) gives: 2s + 20(0.25) = 10

i.e.    2s = 10 – 20(0.25)

i.e.    2s = 5

and      s = 5
2  = 2.5

Therefore, a spanner costs £2.50 and a bolt costs 
£0.25  or  25p

Now try the following Practice Exercises

Practice Exercise 9  Simultaneous  
equations

1.  If 5 apples and 3 bananas cost £1.45 and  
4 apples and 6 bananas cost £2.42, deter-
mine how much an apple and a banana each 
cost. [apple = 8p, banana = 35p]

2.  If 7 apples and 4 oranges cost £2.64 and  
3 apples and 3 oranges cost £1.35, determine 
how much an apple and an orange each cost.
 [apple = 28p, orange = 17p]

3.  Three new cars and four new vans sup-
plied to a dealer together cost £93000, and 
five new cars and two new vans of the same 
models cost £99000. Find the respective 
costs of a car and a van. 
 [car = £15000, van = £12000]

4.  In a system of forces, the relationship  
between two forces F1 and F2 is given by:

   5F1 + 3F2 = – 6
   3F1 + 5F2 = – 18
 Solve for F1 and F2
 [F1 = 1.5, F2 = – 4.5]

5.  Solve the simultaneous equations: 
a + b = 7

 a – b = 3 [a = 5, b = 2]
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8a – 3b = 51
 3a + 4b = 14 [a = 6, b = – 1]

Practice Exercise 10  Multiple-choice 
questions on 
revisionary 
mathematics 

(Answers on page 335)

 1.  73º is equivalent to:
 (a)  23.24 rad    (b)  1.274 rad
 (c)  0.406 rad    (d)  4183 rad

 2.  0.52 radians is equivalent to:
 (a)  93.6º   (b)  0.0091º
 (c)  1.63º  (d)  29.79º

 3.  3π/4 radians is equivalent to:
 (a)  135º  (b)  270º
 (c)  45º  (d)  67.5º

 4.  In the right-angled triangle ABC shown in 
Figure 1.8, sine A is given by:

 (a)  b/a  (b)  c/b
 (c)  b/c  (d)  a/b

Figure 1.8

 5.  In the right-angled triangle ABC shown in 
Figure 1.8, cosine C is given by:

 (a)  a/b  (b)  c/b
 (c)  a/c  (d)  b/a

 6.  In the right-angled triangle ABC shown in 
Figure 1.8, tangent A is given by:

 (a)  b/c  (b)  a/c
 (c)  a/b  (d)  c/a

 7.  In the right-angled triangle PQR shown in 
Figure 1.9, angle R is equal to:

  (a)  41.41º (b)  48.59º
 (c)  36.87º    (d)  53.13º

Figure 1.9

 8.  In the triangle ABC shown in Figure 1.10, 
side ‘a’ is equal to:

 (a)  61.27 mm
 (b)  86.58 mm
 (c)  96.41 mm
 (d)  54.58 mm

Figure 1.10

 9.  In the triangle ABC shown in Figure 1.10, 
angle B is equal to:

 (a)  0.386º (b)  22.69º
 (c)  74.71º (d)  23.58º

10.  Removing the brackets from the expres-
sion: a[b + 2c – d{(e – f) – g(m – n)}] gives:

 (a)  ab + 2ac – ade – adf + adgm – adgn
 (b)  ab + 2ac – ade – adf – adgm – adgn
 (c)  ab + 2ac – ade + adf + adgm – adgn
 (d)  ab + 2ac – ade – adf + adgm + adgn

11. 5
6

1
5

2
3

+ −  is equal to:

 (a)  1
2   (b)  11

30

 (c)  1
2

−   (d)  1 7
10

p 

3αn 

Q 
4cm R 

A 

52・
75mm 30町田3

B 
a 

c 

A 

b 
c 

c a B 
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3
12

3
2 2

3
1
3

+ ÷ −   is equal to:

 (a)  12
7   (b)  19

24

 (c)  2 1
21  

 (d)  15
8

13. 
3
4

1 3
4

÷  is equal to:

 (a)  3
7   (b)  1 9

16

 (c)  1 5
16   (d)  2 1

2

14.  11 mm expressed as a percentage of  
41 mm is:

 (a)  2.68, correct to 3 significant figures
 (b)  2.6, correct to 2 significant figures
 (c)  26.83, correct to 2 decimal places
 (d)  0.2682, correct to 4 decimal places

15. The value of 2
2

1
3

4
−

−

−
 is equal to:

 (a)  1     (b)  2   

 (c)  – 1
2     (d) 1

2

16.  In an engineering equation 3
3

1
9r

4
= . The 

value of r is:
 (a)  – 6    (b)  2
 (c)  6  (d)  – 2 

17. 16
3
4

− is equal to:

 (a)  8  (b)  – 1
23

 (c)  4  (d)  1
8

18.  The engineering expression (16 4)
(8 2)

2

4
×

×
 is 

equal to:
 (a)  4  (b)  2 4−

 (c)  1
22   (d)  1

19. (16
1
4

−
 – 27

2
3

−
) is equal to:

 (a)  7
18   (b)  – 7

 (c)  1 8
9   (d)  – 8 1

2

20.  The solution of the simultaneous equa-
tions: 3a – 2b = 13 and 2a + 5b = – 4  
is:

 (a)  a = – 2, b = 3
 (b)  a = 1, b = – 5
 (c)  a = 3, b = – 2
 (d)  a = – 7, b = 2
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For fully worked solutions to each of the problems in Practice Exercises 1 to 10 in this chapter,  
go to the website:  

www.routledge.com/cw/bird
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Pa
rt 

On
e Revision Test 1 Revisionary mathematics

This Revision Test covers the material contained in Chapter 1. The marks for each question are shown in brackets 
at the end of each question.

 1.  Convert, correct to 2 decimal places: 

 (a)  76.8° to radians

 (b)  1.724 radians to degrees (4)

 2.  In triangle JKL in Figure RT1.1, find:

 (a)   length KJ correct to 3 significant figures

 (b)   sin L and tan K, each correct to 3 decimal places

Figure RT1.1

(4)

 3.  In triangle PQR in Figure RT1.2, find angle P in 
decimal form, correct to 2 decimal places    

Figure RT1.2

(2)

 4.  In triangle ABC in Figure RT1.3, find lengths AB 
and AC, correct to 2 decimal places

Figure RT1.3 

(4)

 5.  A triangular plot of land ABC is shown in  
Figure RT1.4. Solve the triangle and determine its 
area

Figure RT1.4

(9)

 6.  Figure RT1.5 shows a roof truss PQR with rafter 
PQ = 3 m. Calculate the length of (a) the roof  rise 
PP′ (b) rafter PR, and (c) the roof span QR. Find 
also (d) the cross-sectional area of the roof truss

Figure RT1.5

(10)

 7.  Solve triangle ABC given b = 10 cm, c = 15 cm 
and ∠A = 60°. (7)

 8.  Remove the brackets and simplify  
2(3x – 2y) – (4y – 3x) (3)

 9.  Remove the brackets and simplify  
10a – [3(2a – b) – 4(b –a) + 5b] (4)

10.  Determine, correct to 2 decimal places, 57% of 
17.64 g (2)

11.  Express 54.7 mm as a percentage of 1.15 m,  
correct to 3 significant figures. (3) 

12. Simplify:

 (a)  −
3
4

7
15

 (b)  − +15
8

2 1
3

35
6  

 (8)
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 (a)  17
9

3
8

33
5

× ×

 (b)  ÷6 2
3

11
3

 (c)  11
3

2 1
5

2
5

× ÷  (10)

14. Evaluate:

 (a)  3 2 23 2× ×

 (b)  49
1
2  (4)

15. Evaluate:

 (a)  2
2

7

2
 (b)  10 10 10

10 10

4 5

6 2
× ×

×
 (4)

16. Evaluate:

 (a)  2 2 2
2

3 2

4
× ×

 (b)  
2 16

8 2

3 2

3
( )

( )

×

×

 (c)  










−
1

42

1

 (7)

17. Evaluate:

 (a)  (27) −
1
3  (b)  









 −











−
2
3

2
9

2
3

2

2  (5)

18. Solve the simultaneous equations:

 (a)   2x + y = 6 
5x – y = 22

 (b)   4x – 3y = 11 
3x + 5y = 30 (10)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 1,  
together with a full marking scheme, are available at the website: 

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 2

Further revisionary  
mathematics

Why it is important to understand: Further revisionary mathematics

In engineering there are many different quantities to get used to, and hence many units to become familiar 
with. For example, force is measured in newtons, electric current is measured in amperes and pressure is 
measured in pascals. Sometimes the units of these quantities are either very large or very small and hence 
prefixes are used. For example, 1000 pascals may be written as 103 Pa which is written as 1 kPa in prefix 
form, the k being accepted as a symbol to represent 1000 or 103. Studying, or working, in an engineering 
discipline, you very quickly become familiar with the standard units of measurement, the prefixes used and 
engineering notation. An electronic calculator is extremely helpful with engineering notation. 

Most countries have used the metric system of units for many years; however, there are other coun-
tries, such as the USA, who still use the imperial system. Hence, metric to imperial unit conversions, 
and vice-versa, are internationally important and are contained in this chapter.

Graphs have a wide range of applications in engineering and in physical sciences because of their 
inherent simplicity. A graph can be used to represent almost any physical situation involving discrete 
objects and the relationship among them. If two quantities are directly proportional and one is plotted 
against the other, a straight line is produced. Examples of this include an applied force on the end of a 
spring plotted against spring extension, the speed of a flywheel plotted against time, and strain in a wire 
plotted against stress (Hooke’s law). In engineering, the straight line graph is the most basic graph to 
draw and evaluate.

There are many practical situations engineers have to analyse which involve quantities that are vary-
ing. Typical examples include the stress in a loaded beam, the temperature of an industrial chemical, the 
rate at which the speed of a vehicle is increasing or decreasing, the current in an electrical circuit or the 
torque on a turbine blade. Differential calculus, or differentiation, is a mathematical technique for analys-
ing the way in which functions change. This chapter explains how to differentiate the five most common 
functions. Engineering is all about problem solving and many problems in engineering can be solved using 
calculus. Physicists, chemists, engineers, and many other scientific and technical specialists use calculus in 
their everyday work; it is a technique of fundamental importance. Integration has numerous applications 
in engineering and science and some typical examples include determining areas, mean and r.m.s. values, 
volumes of solids of revolution, centroids, second moments of area and differential equations. Standard 
integrals are covered in this chapter, and for any further studies in engineering, differential and integral 
calculus are unavoidable.

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850
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2.1 Units, prefixes and engineering 
 notation 

Of considerable importance in engineering is knowl-
edge of units of engineering quantities, the prefixes 
used with units, and engineering notation.
We need to know, for example, that

  80 kN = 80 × 103N which means 80,000 
 newtons

and 25 mJ = 25 × 10–3J which means 0.025 joules

and  50 nF = 50 × 10–9F which means 0.000000050 
 farads

This is explained in this chapter.

SI units
The system of units used in engineering and science 
is the Systeme Internationale d’Unites (International 
System of Units), usually abbreviated to SI units, and 
is based on the metric system. This was introduced in 
1960 and is now adopted by the majority of countries 
as the official system of measurement.
The basic seven units used in the SI system are listed 
on page 22 with their symbols.
There are, of course, many other units than the seven 
shown. These other units are called derived units and 
are defined in terms of the standard units listed.
For example, speed is measured in metres per  second, 
therefore using two of the standard units, i.e. metres 
and seconds.

At the end of this chapter, you should be able to:

• state the seven SI units
• understand derived units
• recognise common engineering units
• understand common prefixes used in engineering
• use engineering notation and prefix form with engineering units
• understand and calculate metric to imperial conversions and vice versa
• understand rectangular axes, scales and co- ordinates
• plot given co-ordinates and draw the best straight line graph 
• determine the gradient and vertical-axis intercept of a straight line graph
• state the equation of a straight line graph
• plot straight line graphs involving practical engineering examples
• state that calculus comprises two parts – differential and integral calculus
• differentiate y = axn

 by the general rule
• differentiate sine, cosine, exponential and logarithmic functions
• understand that integration is the reverse process of differentiation
• determine integrals of the form axn where n is fractional, zero, or a positive or negative integer 

• integrate standard functions – cos ax, sin ax, eax, 
x
1

• evaluate definite integrals
• evaluate 2 by 2 and 3 by 3 determinants
• determine scalar (or dot) products of two vectors
• determine vector (or cross) products of two vectors

Vectors are an important part of the language of science, mathematics, and engineering. They are 
used to discuss multivariable calculus, electrical circuits with oscillating currents, stress and strain in 
structures and materials, and flows of atmospheres and fluids, and they have many other applications. 
Resolving a vector into components is a precursor to computing things with or about a vector quantity. 
Because position, velocity, acceleration, force, momentum, and angular momentum are all vector quan-
tities, resolving vectors into components is a most important skill required in any engineering studies.
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Quantity Unit Symbol
Length metre m (1 m = 100 cm

= 1000 mm)
Mass kilogram kg (1 kg = 1000 g)
Time second s
Electric  
current

ampere A

Thermo-
dynamic 
temperature

kelvin K (K = °C + 273)

Luminous 
intensity

candela cd

Amount of  
substance

mole mol

Some derived units are given special names.
For example, force = mass × acceleration, has units of 
kilogram metre per second squared, which uses three of 
the base units, i.e. kilograms, metres and seconds. The 
unit of kg m/s2 is given the special name of a newton.
Below is a list of some quantities and their units that 
are common in engineering.

Quantity Unit Symbol
Length metre m
Area square metre m2

Volume cubic metre m3 

Mass kilogram kg
Time second s
Electric current ampere A
Speed, velocity metre per second m/s
Acceleration metre per second 

squared
m/s2

Density kilogram per cubic 
metre

kg/m3

Temperature kelvin or Celsius K or °C
Angle radian or degree rad or °
Angular velocity radian per second rad/s
Frequency hertz Hz
Force newton N
Pressure pascal Pa
Energy, work joule J
Power watt W
Electric potential volt V

Capacitance farad F
Electrical  
resistance 

ohm Ω

Inductance henry H
Moment of force newton metre N m
Stress pascal Pa
Torque newton metre N m
Momentum kilogram metre per 

second
kg m/s

Common prefixes
SI units may be made larger or smaller by using pre-
fixes which denote multiplication or division by a par-
ticular amount.
The most common multiples are listed below. Knowl-
edge of indices is needed since all of the prefixes are 
powers of 10 with indices that are a multiple of 3.

Prefix Name Meaning
T tera multiply 

by 1012 
i.e. × 1,000,000,000,000

G giga multiply 
by 109 

i.e. × 1,000,000,000

M mega multiply 
by 106  

i.e. × 1,000,000

k kilo multiply 
by 103 

i.e. × 1,000

m milli multiply 
by 10–3 i.e. × =

1
10

1
10003

 = 0.001

µ micro multiply 
by 10–6 i.e. × =

1
10

1
1,000,0006

  

= 0.000001
n nano multiply 

by 10–9  i.e. × =
1

10
1

1,000,000,0009  

= 0.000 000 001
p pico multiply 

by 10–12 i.e. × =
1

10
1

1,000,000,000,00012

= 0.000 000 000 001

Here are some examples of prefixes used with engi-
neering units.
A frequency of 15 GHz means 15 × 109 Hz, which 
is 15,000,000,000 hertz*, i.e. 15 gigahertz is written 
as 15 GHz and is equal to 15 thousand million hertz. 
Instead of writing 15,000,000,000 hertz, it is much 
neater, takes up less space and prevents errors caused 
by having so many zeros, to write the frequency as 
15 GHz.
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A voltage of 40 MV means 40 × 106 V, which is 
40,000,000 volts, i.e. 40 megavolts is written as 40 MV 
and is equal to 40 million volts.

Energy of 12 mJ means 12 × 10–3 J  or 12
103

J  or 12
1000

J, 

which is 0.012 J, i.e. 12 millijoules is written as 12 mJ 
and is equal to 12 thousandths of a joule.

A time of 150 ns means 150 × 10–9 s or 150
109

s, which is  

0.000 000 150 s, i.e. 150 nanoseconds is written as 150 ns  
and is equal to 150 thousand millionths of a second.

A force of 20 kN means 20 × 103 N, which is 20,000 
newtons, i.e. 20 kilonewtons is written as 20 kN and is 
equal to 20 thousand newtons.

Engineering notation
Engineering notation is a number multiplied by a power  
of 10 that is always a multiple of 3.
For example, 

43,645 = ×43.645 103  in engineering notation and 
0.0534 = × −53.4 10 3  in engineering notation

In the list of engineering prefixes on page 22 it is ap-
parent that all prefixes involve powers of 10 that are 
multiples of 3. 

For example, a force of 43,645 N can be re-written as 
×43.645 103N and from the list of prefixes can then be 

expressed as 43.645 kN. Thus,

43,645 N ≡ 43.645 kN

To help further, on your calculator is an ‘ENG’ button. 
Enter the number 43,645 into your calculator and then 
press ‘=’ 
Now press the ‘ENG’ button and the answer is 

×43.645 103 .
We then have to appreciate that 103 is the prefix ‘kilo’ 
giving 43,645 N ≡ 43.645 kN
In another example, let a current be 0.0745 A
Enter 0.0745 into your calculator. Press ‘=’
Now press ‘ENG’ and the answer is × −74.5 10 3 .
We then have to appreciate that 10–3 is the prefix ‘milli’ 
giving 0.0745 A ≡ 74.5 mA

Problem 1. Express the following in engineering 
notation and in prefix form: 
              (a) 300,000 W          (b) 0.000068 H

(a) Enter 300,000 into the calculator. Press ‘=’
 Now press ‘ENG’ and the answer is 300 × 103

  From the table of prefixes on page 22, 103 cor-
responds to kilo. 

  Hence, 300,000 W = 300 × 103 W in engineering 
notation

  = 300 kW in prefix form

(b) Enter 0.000068 into the calculator. Press ‘=’
 Now press ‘ENG’ and the answer is 68 × 10−6 

  From the table of prefixes on page 22, 10−6 cor-
responds to micro.

  Hence, 0.000068 H = 68 × 10−6 H in engineering 
notation

    = 68 µH in prefix form

Problem 2. Express the following in engineering 
notation and in prefix form:  
                  (a) 42 × 105 Ω              (b) 47 × 10−10 F

(a) Enter 42 × 105 into the calculator. Press ‘=’
 Now press ‘ENG’ and the answer is 4.2 × 106  
  From the table of prefixes on page 22, 106 cor-

responds to mega.

*Heinrich Rudolf Hertz (22 February 1857–1 January 1894) 
was the first person to prove the existence of electromagnetic 
waves. The scientific unit of frequency was named hertz in his 
honour. To find out more go to www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


24 Mechanical Engineering Principles

Pa
rt 

On
e

Practice Exercise 11 Engineering notation 

In problems 1 to 12, express in engineering nota-
tion in prefix form: 

 1. 60,000 Pa [60 kPa]

 2. 0.00015 W [150 µW or 0.15 mW]

 3. 5 × 107 V [50 MV]

 4. 5.5 × 10–8 F [55 nF]

 5. 100,000 N [100 kN]

 6. 0.00054 A [0.54 mA or 540 µA]

 7. 15 × 105 Ω [1.5 MΩ]

 8. 225 × 10–4 V [22.5 mV]

  Hence, 42 × 105 Ω = 4.2 × 106 Ω in engineering 
notation

 = 4.2 MΩ in prefix form

(b)  Enter 47 ÷ 1010 = 47
10,000,000,000

 into the cal-
culator. Press ‘=’

 Now press ‘ENG’ and the answer is 4.7 × 10–9  
  From the table of prefixes on page 22, 10–9 cor-

responds to nano.
  Hence, 47 ÷ 10–10 F = 4.7 × 10–9 F in engineering 

notation
                                         = 4.7 nF in prefix form

Problem 3. Rewrite (a) 14,700 mm in metres  
(b) 276 cm in metres (c) 3.375 kg in grams

(a)  1 m = 1000 mm 

 Hence, 1 mm = = = −1
1000

1
10

103
3 m

 Hence, 14,700 mm = 14,700 × 10–3 m = 14.7 m

(b) 1 m = 100 cm hence 1 cm = = = −1
100

1
10

102
2  m

 Hence, 276 cm = 276 × 10–2 m = 2.76 m
(c) 1 kg = 1000 g = 103 g 
 Hence, 3.375 kg = 3.375 × 103 g = 3375 g

Now try the following Practice Exercise

 9. 35,000,000,000 Hz [35 GHz]

10. 1.5 × 10–11 F [15 pF]

11. 0.000017 A [17 µA]

12. 46200 Ω [46.2 kΩ]

13. Rewrite 0.003 mA in µA [3 µA]

14. Rewrite 2025 kHz as MHz [2.025 MHz]

15. Rewrite 5 × 104 N in kN [50 kN]

16. Rewrite 300 pF in nF [0.3 nF]

17. Rewrite 6250 cm in metres [62.50 m]

18. Rewrite 34.6 g in kg [0.0346 kg]

19.  The tensile stress acting on a rod is 5600000 
Pa. Write this value in engineering notation.

 [5.6 × 106 Pa = 5.6 MPa]

20.  The expansion of a rod is 0.0043 m. Write 
this in engineering notation.

 [4.3 × 10–3 m = 4.3 mm]

2.2 Metric – US/Imperial Conversions 

The Imperial System (which uses yards, feet, inches, 
etc. to measure length) was developed over hundreds of 
years in the UK, then the French developed the Metric 
System (metres) in 1670, which soon spread through 
Europe, even to England itself in 1960. But the USA 
and a few other countries still prefer feet and inches.

When converting from metric to imperial units, 
or vice versa, one of the following tables (2.1 to 2.8) 
should help.

Table 2.1 Metric to Imperial length

Metric US or Imperial
1 millimetre, mm 0.03937 inch
1 centimetre, cm = 10 mm 0.3937 inch
1 metre, m = 100 cm 1.0936 yard
1 kilometre, km = 1000 m 0.6214 mile

Problem 4. Calculate the number of inches in 
350 mm, correct to 2 decimal places.

350 mm = 350 × 0.03937 inches = 13.78 inches from 
 Table 2.1
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Problem 5. Calculate the number of inches in 
52 cm, correct to 4 significant figures.

52 cm = 52 × 0.3937 inches = 20.47 inches from Table 2.1

Problem 6. Calculate the number of yards in 
74 m, correct to 2 decimal places.

74 m = 74 × 1.0936 yards = 80.93 yds from Table 2.1

Problem 7. Calculate the number of miles in 
12.5 km, correct to 3 significant figures.

12.5 km = 12.5 × 0.6214 miles = 7.77 miles from 
 Table 2.1

Table 2.2 Imperial to Metric length

US or Imperial Metric
1 inch, in 2.54 cm
1 foot, ft  = 12 in 0.3048 m
1 yard, yd  = 3 ft 0.9144 m
1 mile = 1760 yd 1.6093 km
1 nautical mile = 2025.4 yd 1.852 km

Problem 8. Calculate the number of centimetres 
in 35 inches, correct to 1 decimal place.

35 inches = 35 × 2.54 cm = 88.9 cm from Table 2.2

Problem 9. Calculate the number of metres in 66 
inches, correct to 2 decimal places.

66 inches = 66
12

 feet = 66
12

 × 0.3048 m = 1.68 m from 
 Table 2.2

Problem 10. Calculate the number of metres in 
50 yards, correct to 2 decimal places.

50 yards = 50 × 0.9144 m = 45.72 m from Table 2.2

Problem 11. Calculate the number of kilometres 
in 7.2 miles, correct to 2 decimal places.

7.2 miles = 7.2 × 1.6093 km = 11.59 km from Table 2.2

Problem 12. Calculate the number of (a) yards 
(b) kilometres in 5.2 nautical miles.

(a)  5.2 nautical miles = 5.2 × 2025.4 yards  
 = 10532 yards from Table 2.2

(b)  5.2 nautical miles = 5.2 × 1.852 km = 9.630 km 
from Table 2.2

Table 2.3 Metric to Imperial area

Metric US or Imperial
1 cm2 = 100 mm2 0.1550 in2

1 m2 = 10,000 cm2 1.1960 yd2

1 hectare, ha = 10,000 m2 2.4711 acres
1 km2 = 100 ha 0.3861 mile2

Problem 13. Calculate the number of square 
inches in 47cm2, correct to 4 significant figures.

47cm2 = 47 × 0.1550 in2 = 7.285 in2  from Table 2.3

Problem 14. Calculate the number of square 
yards in 20 m2, correct to 2 decimal places.

20 m2 = 20 × 1.1960 yd2 = 23.92 yd2 from Table 2.3

Problem 15. Calculate the number of acres in 23 
hectares of land, correct to 2 decimal places.

23 hectares = 23 × 2.4711 acres = 56.84 acres from 
 Table 2.3

Problem 16. Calculate the number of square miles 
in a field of 15 km2 area, correct to 2 decimal places.

15 km2= 15 × 0.3861 mile2 = 5.79 mile2 from Table 2.3

Table 2.4 Imperial to Metric area

US or Imperial Metric
1 in2 6.4516 cm2

1 ft2 = 144 in2 0.0929 m2

1 yd2 = 9 ft2 0.8361m2

1 acre = 4840 yd2 4046.9 m2

1 mile2 = 640 acres 2.59 km2

Problem 17. Calculate the number of square cen-
timetres in 17.5 in2, correct to the nearest square 
centimetre.

17.5 in2 = 17.5 × 6.4516 cm2 = 113 cm2 from Table 2.4

Problem 18. Calculate the number of square 
metres in 205 ft2, correct to 2 decimal places.

205 ft2 = 205 × 0.0929 m2 = 19.04 m2 from Table 2.4
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Problem 19. Calculate the number of square  metres 
in 11.2 acres, correct to the nearest square metre.

11.2 acres = 11.2 × 4046.9 m2 = 45325 m2  from   
 Table 2.4

Problem 20. Calculate the number of square 
 kilometres in 12.6 mile2, correct to 2 decimal places.

12.6 mile2, = 12.6 × 2.59 km2 = 32.63 km2 from 
 Table 2.4

Table 2.5 Metric to Imperial volume/capacity

Metric US or Imperial
1 cm3 0.0610 in3

1 dm3 = 1000 cm3 0.0353 ft3

1 m3 = 1000 dm3 1.3080 yd3

1 litre = 1 dm3 = 1000 cm3 2.113 fluid pt = 1.7598 pt

Problem 21. Calculate the number of cubic 
inches in 123.5 cm3, correct to 2 decimal places. 

123.5cm3 = 123.5 × 0.0610 in3 = 7.53 in3 from   
 Table 2.5

Problem 22. Calculate the number of cubic feet 
in 144 dm3, correct to 3 decimal places.

144 dm3 = 144 × 0.0353 ft3 = 5.083 ft3 from Table 2.5

Problem 23. Calculate the number of cubic yards 
in 5.75 m3, correct to 4 significant figures.

5.75 m3 = 5.75 × 1.3080 yd3 = 7.521 yd3 from Table 2.5

Problem 24. Calculate the number of US fluid 
pints in 6.34 litres of oil, correct to 1 decimal place.

6.34 litre = 6.34 × 2.113 US fluid pints = 13.4 US fluid 
pints from Table 2.5

Table 2.6 Imperial to Metric volume/capacity

US or Imperial Metric
1 in3 16.387 cm3

1 ft3  0.02832 m3 

1 US fl oz = 1.0408 UK fl oz  0.0296 litres
1 US pint (16 fl oz) = 0.8327 UK pt  0.4732 litres
1 US gal (231 in3) = 0.8327 UK gal  3.7854 litres

Problem 25. Calculate the number of cubic cen-
timetres in 3.75 in3, correct to 2 decimal places. 

3.75 in3 = 3.75 × 16.387 cm3 = 61.45 cm3 from Table 2.6

Problem 26. Calculate the number of cubic me-
tres in 210 ft3, correct to 3 significant figures.

210 ft3 = 210 × 0.02832 m3 = 5.95 m3 from Table 2.6

Problem 27. Calculate the number of litres in 
4.32 US pints, correct to 3 decimal places.

4.32 US pints = 4.32 × 0.4732 litres = 2.044 litres from 
 Table 2.6

Problem 28. Calculate the number of litres in 
8.62 US gallons, correct to 2 decimal places.

8.62 US gallons = 8.62 × 3.7854 litres = 32.63 litres 
from Table 2.6

Table 2.7 Metric to Imperial mass

Metric US or Imperial
1 g = 1000 mg 0.0353 oz
1 kg = 1000 g 2.2046 lb
1 tonne, t, = 1000 kg 1.1023 short ton
1 tonne, t, = 1000 kg 0.9842 long ton

The British ton is the long ton, which is 2240 
pounds, and the U.S. ton is the short ton which is 
2000 pounds.

Problem 29. Calculate the number of ounces in a 
mass of 1346 g, correct to 2 decimal places.

1346 g = 1346 × 0.0353 oz = 47.51 oz from Table 2.7

Problem 30. Calculate the mass, in pounds, in a 
210.4 kg mass, correct to 4 significant figures.

210.4 kg = 210.4 × 2.2046 lb = 463.8 lb from Table 2.7

Problem 31. Calculate the number of short tons 
in 5000 kg, correct to 2 decimal places.

5000 kg = 5 t = 5 × 1.1023 short tons = 5.51 short tons 
from Table 2.7
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Problem 32. Calculate the number of grams in 
5.63 oz, correct to 4 significant figures. 

5.63 oz = 5.63 × 28.35 g = 159.6 g from Table 2.8

Problem 33. Calculate the number of kilograms 
in 75 oz, correct to 3 decimal places.

75 oz = 75
16

lb = 75
16

 × 0.4536 kg = 2.126 kg from 

 Table 2.8

Problem 34. Convert 3.25 cwt into (a) pounds 
(b) kilograms.

(a) 3.25 cwt = 3.25 × 112 lb = 364 lb from Table 2.8
(b)  3.25 cwt = 3.25 × 50.802 kg = 165.1 kg from 

  Table 2.8

Temperature
To convert from Celsius to Fahrenheit, first multiply by 
9/5, then add 32.
To convert from Fahrenheit to Celsius, first subtract 32, 
then multiply by 5/9.

Problem 35. Convert 35ºC to degrees Fahrenheit.

F = +
9
5

C 32  hence 35ºC = +
9
5

(35) 32 = 63 + 32 = 95ºF

Problem 36. Convert 113ºF to degrees Celsius.

C = +
9
5

C 32(F − 32) hence 113ºF = − =
5
9

(113 32) 5
9

(81)  

 = 45ºC

A summary of metric to imperial conversions, and vice 
versa, is shown on page 328.

Practice Exercise 12  Metric/imperial 
conversions 

In the following Problems, use the metric/impe-
rial conversions in Tables 2.1 to 2.8

 1. Calculate the number of inches in 476 mm, 
correct to 2 decimal places [18.74 in]

 2. Calculate the number of inches in 209 cm, 
correct to 4 significant figures  [82.28 in]

 3. Calculate the number of yards in 34.7 m, 
correct to 2 decimal places  [37.95 yd]

 4. Calculate the number of miles in 29.55 km, 
correct to 2 decimal places  
 [18.36 miles]

 5. Calculate the number of centimetres in 
16.4 inches, correct to 2 decimal places 
 [41.66 cm]

 6. Calculate the number of metres in 78 
inches, correct to 2 decimal places  
 [1.98 m] 

 7. Calculate the number of metres in 15.7 
yards, correct to 2 decimal places 
 [14.36 m]

 8. Calculate the number of kilometres in 3.67 
miles, correct to 2 decimal places 
 [5.91 km]

 9. Calculate the number of (a) yards (b) kilo-
metres in 11.23 nautical miles  
 [(a) 22,745 yd (b) 20.81 km]

10. Calculate the number of square inches in 
62.5 cm2, correct to 4 significant figures 
 [9.688 in2]

11. Calculate the number of square yards in 
15.2 m2, correct to 2 decimal places 
 [18.18 yd2] 

12. Calculate the number of acres in 12.5 
hectares, correct to 2 decimal places 
 [30.89 acres]

13. Calculate the number of square miles in 
56.7 km2, correct to 2 decimal places 
 [21.89 mile2]

Table 2.8 Imperial to Metric mass

US or Imperial Metric
1 oz = 437.5 grain 28.35 g 
1 lb = 16 oz  0.4536 kg
1 stone = 14 lb  6.3503 kg
1 hundredweight, cwt = 112 lb 50.802 kg
1 short ton  0.9072 tonne
1 long ton  1.0160 tonne

Now try the following Practice Exercise
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29. Calculate the number of grams in 7.78 oz,  
 correct to 4 significant figures [220.6 g]

30. Calculate the number of kilograms in  
 57.5 oz, correct to 3 decimal places 
 [1.630 kg]

31. Convert 2.5 cwt into (a) pounds (b) kilograms 
 [(a) 280 lb (b) 127.2 kg]

32. Convert 55ºC to degrees Fahrenheit [131ºF]

33. Convert 167ºF to degrees Celsius [75 ºC]

2.3 Straight line graphs

A graph is a visual representation of information, show-
ing how one quantity varies with another related quantity.

The most common method of showing a relationship 
between two sets of data is to use a pair of reference 
axes – these are two lines drawn at right angles to each 
other, (often called Cartesian or rectangular axes), as 
shown in Figure 2.1.

A (3, 2)

4

�4 �3 �2 �1 0

3

2

1

�1

�2

�3

�4

Origin

C (�3, �2)

B (�4, 3)

y

x1 3 42

Figure 2.1

The horizontal axis is labelled the x-axis, and the verti-
cal axis is labelled the y-axis.
The point where x is 0 and y is 0 is called the origin. x 
values have scales that are positive to the right of the 
origin and negative to the left.
y values have scales that are positive up from the origin 
and negative down from the origin.
Co-ordinates are written with brackets and a comma 
in between two numbers. 
For example, point A is shown with co-ordinates (3, 2) 
and is located by starting at the origin and moving 3 
units in the positive x direction (i.e. to the right) and 
then 2 units in the positive y direction (i.e. up).

14. Calculate the number of square centi-
metres in 6.37 in2, correct to the nearest 
square centimetre [41 cm2] 

15. Calculate the number of square metres in 
308.6 ft2, correct to 2 decimal places 
 [28.67 m2]

16. Calculate the number of square metres 
in 2.5 acres, correct to the nearest square 
metre [10117 m2]

17. Calculate the number of square kilometres 
in 21.3 mile2, correct to 2 decimal places 
 [55.17 km2]

18. Calculate the number of cubic inches in 
200.7 cm3, correct to 2 decimal places 
 [12.24 in3]

19. Calculate the number of cubic feet in 
214.5 dm3, correct to 3 decimal places 
 [7.572 ft3]

20. Calculate the number of cubic yards in 
13.45 m3, correct to 4 significant figures 
 [17.59 yd3] 

21. Calculate the number of US fluid pints in 
15 litres, correct to 1 decimal place 
 [31.7 fluid pints]

22. Calculate the number of cubic centimetres 
in 2.15 in3, correct to 2 decimal places 
 [35.23 cm3]

23. Calculate the number of cubic metres in 
175 ft3, correct to 4 significant figures 
 [4.956 m3]

24. Calculate the number of litres in 7.75 US 
pints, correct to 3 decimal places 
 [3.667 litres]

25. Calculate the number of litres in 12.5 US 
gallons, correct to 2 decimal places 
 [47.32 litres]

26. Calculate the number of ounces in 980 g, 
correct to 2 decimal places [34.59 oz] 

27. Calculate the mass, in pounds, in 55 kg, 
correct to 4 significant figures [121.3 lb]

28. Calculate the number of short tons in  
4000 kg, correct to 3 decimal places 
 [4.409 short tons]



Further revisionary mathematics 29

Pa
rt 

On
e

When co-ordinates are stated, the first number is al-
ways the x value, and the second number is always the 
y value.
Also in Figure 2.1, point B has co-ordinates (– 4, 3) and 
point C has co-ordinates (–3, –2)
The following table gives the force F newtons which, 
when applied to a lifting machine, overcomes a corre-
sponding load of L newtons.

F (newtons) 19  35  50  93 125 147
L (newtons) 40 120 230 410 540 680

 1. Plot L horizontally and F vertically.
 2. Scales are normally chosen such that the graph oc-

cupies as much space as possible on the graph pa-
per. So in this case, the following scales are chosen:

Horizontal axis (i.e. L): 1 cm = 50 N
Vertical axis (i.e. F): 1 cm = 10 N

 3. Draw the axes and label them L (newtons) for the 
horizontal axis and F (newtons) for the vertical 
axis.

 4. Label the origin as 0.
 5. Write on the horizontal scaling at 100, 200, 300, 

and so on, every 2 cm. 
 6. Write on the vertical scaling at 10, 20, 30, and so 

on, every 1 cm. 
 7. Plot on the graph the co-ordinates (40, 19), 

(120, 35), (230, 50), (410, 93), (540, 125) and 
(680, 147) marking each with a cross or a dot.

 8. Using a ruler, draw the best straight line through 
the points. You will notice that not all of the points 
lie exactly on a straight line. This is quite normal 
with experimental values. In a practical situation 
it would be surprising if all of the points lay ex-
actly on a straight line.

 9. Extend the straight line at each end. 
10. From the graph, determine the force applied when 

the load is 325 N. It should be close to 75 N. This 
process of finding an equivalent value within the 
given data is called interpolation. 

 Similarly, determine the load that a force of 45 N 
will overcome. It should be close to 170 N.

11. From the graph, determine the force needed to over-
come a 750 N load. It should be close to 161 N. This 
process of finding an equivalent value outside the 
given data is called extrapolation. To extrapolate 
we need to have extended the straight line drawn.

 Similarly, determine the force applied when the 
load is zero. It should be close to 11 N. 
Where the straight line crosses the vertical axis is 
called the vertical-axis intercept. So in this case, 
the vertical-axis intercept = 11 N at co- ordinates 
(0, 11)

The graph you have drawn should look something like 
Figure 2.2 shown below.
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Figure 2.2 

In another example, let the relationship between two 
variables x and y be y = 3x + 2

When x = 0, y = 3 × 0 + 2 = 0 + 2 = 2

When x = 1, y = 3 × 1 + 2 = 3 + 2 = 5

When x = 2, y = 3 × 2 + 2 = 6 + 2 = 8, and so on.

The co-ordinates (0, 2), (1, 5) and (2, 8) have been 
produced and are plotted, with others, as shown in  
Figure 2.3.
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Figure 2.3 
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 n (rev/min) 560 720 900 1010 1240 1410

 V (volts)  80 100 120  140  160  180

  It is suspected that one of the readings taken 
of the speed is inaccurate. Plot a graph of 
speed (horizontally) against voltage (verti-
cally) and find this value. Find also (a) the 
speed at a voltage of 132 V, and (b) the volt-
age at a speed of 1300 rev/min. 
 [1010 rev/min should be 1070 rev/min;  
 (a) 1000 rev/min (b) 167 V]

2.4  Gradients, intercepts and 
 equation of a graph

Gradient

The gradient or slope of a straight line is the ratio 
of the change in the value of y to the change in the 
value of x between any two points on the line. If, as x 
 increases (→), y also increases (↑), then the gradient 
is positive.
In Figure 2.4(a), a straight line graph y = 2x + 1 is 
shown. To find the gradient of this straight line, choose 
two points on the straight line graph, such as A and C. 

(a)
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Figure 2.4

Then construct a right angled triangle, such as ABC, 
where BC is vertical and AB is horizontal.

Practice Exercise 13 Straight line graphs 

1.  Corresponding values obtained experimen-
tally for two quantities are:

x  –5 –3 –1 0 2 4
y  –13 –9 –5 –3 1 5

  Plot a graph of y (vertically) against x (hori-
zontally) to scales of 2 cm = 1 for the hori-
zontal x-axis and 1 cm = 1 for the vertical 
y-axis. (This graph will need the whole of 
the graph paper with the origin somewhere 
in the centre of the paper).

 From the graph find: 

 (a)  the value of y when x = 1

 (b)  the value of y when x = –2.5

 (c)  the value of x when y = –6

 (d)  the value of x when y = 5

 [(a)  –1 (b)  –8 (c)  –1.5 (d)  4]

2.  Corresponding values obtained experimen-
tally for two quantities are:

x –2.0 –0.5    0 1.0 2.5  3.0  5.0
y –13.0 –5.5 –3.0 2.0 9.5 12.0 22.0

 Use a horizontal scale for x of 1 cm = 1
2

 unit

  and a vertical scale for y of 1 cm = 2 units and 
draw a graph of x against y. Label the graph  
and each of its axes. By interpolation, find 
from the graph the value of y when x is 3.5 
 [14.5]

3.  Draw a graph of y – 3x + 5 = 0 over a range 
of x = –3 to x = 4. Hence determine (a) the 
value of y when x = 1.3 and (b) the value of 
x when y = –9.2 [(a)  –1.1 (b)  –1.4]

4.  The speed n rev/min of a motor changes 
when the voltage V across the armature is 
varied. 
The results are shown in the following table:

When the points are joined together a straight line 
graph results, i.e. y = 3x + 2 is a straight line graph.

Now try the following Practice Exercise
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Then,

gradient of AC 
change in y
change in x

CB
BA
7 3
3 1

4
2

2

= =

=
−

−
= =

In Figure 2.4(b), a straight line graph y = –3x + 2 is 
shown. To find the gradient of this straight line, choose 
two points on the straight line graph, such as D and F. 
Then construct a right angled triangle, such as DEF, 
where EF is vertical and DE is horizontal.

Then,

 gradient of DF

3

change in y
change in x

FE
ED

11 2
3 0

9
3

−−

= =

=
−

− −
=

−
=

Figure 2.4(c) shows a straight line graph y = 3.  Since 
the straight line is horizontal the gradient is zero.

y-axis intercept

The value of y when x = 0 is called the y-axis inter-
cept. In Figure 2.4(a) the y-axis intercept is 1 and in 
Figure 2.4(b) the y-axis intercept is 2.

Equation of a straight line graph

The general equation of a straight line graph is:
y = mx + c

where m is the gradient or slope, and c is the y-axis 
intercept

Thus, as we have found in Figure 2.4(a), y = 2x + 1 rep-
resents a straight line of gradient 2 and y-axis intercept 
1. So, given an equation y = 2x + 1, we are able to state, 
on sight, that the gradient = 2 and the y-axis intercept 
= 1, without the need for any analysis.

Similarly, in Figure 2.4(b), y = –3x + 2 represents a 
straight line of gradient –3 and y-axis intercept 2. 

In Figure 2.4(c), y = 3 may be re-written as y = 0x + 3  
and therefore represents a straight line of gradient 0 
and y-axis intercept 3.

Here are some worked problems to help understanding 
of gradients, intercepts and equation of a graph.
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Figure 2.5

(a)  A right angled triangle ABC is constructed on the 
graph as shown in Figure 2.6.
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(b) The y-axis intercept at x = 0 is seen to be at y = 3.
  y = mx + c is a straight line graph where  

m = gradient and c = y-axis intercept. 
 From above, m = 5 and c = 3
 Hence, equation of graph is: y = 5x + 3

Problem 37. Determine for the straight line 
shown in Figure 2.5: 

(a) the gradient and (b) the equation of the graph



32 Mechanical Engineering Principles

Pa
rt 

On
e

 (c)  y = – 3x – 4 (d) y = 4
 [(a) 4, – 2 (b) – 1, 0 (c) – 3, – 4 (d) 0, 4]

3.  Draw on the same axes the graphs of  
y = 3x – 5 and 3y + 2x = 7. Find the co-ordi-
nates of the point of intersection. 
  [(2, 1)]

4.  A piece of elastic is tied to a support so 
that it hangs vertically, and a pan, on which 
weights can be placed, is attached to the free 
end. The length of the elastic is measured as 
various weights are added to the pan and the 
results obtained are as follows:

Load, W (N)  5 10 15 20  25
Length, l (cm) 60 72 84 96 108

  Plot a graph of load (horizontally) against 
length (vertically) and determine:

 (a)  the value of length when the load is 17 N,
 (b)   the value of load when the length is 74 cm, 
 (c)   its gradient, and (d) the equation of the 

graph.
 [(a)  89 cm (b)  11 N (c)  2.4 
  (d)  l = 2.4W + 48]

5.  The following table gives the effort P to lift 
a load W with a small lifting machine:

W (N) 10  20  30  40  50   60
P (N) 5.1 6.4 8.1 9.6 10.9 12.4

  Plot W horizontally against P vertically and 
show that the values lie approximately on 
a straight line. Determine the probable re-
lationship connecting P and W in the form  
P = aW + b. [P = 0.15W + 3.5]

2.5 Practical straight line graphs

When a set of co-ordinate values are given or are  
obtained experimentally and it is believed that they 
 follow a law of the form y = mx + c, then if a straight 
line can be drawn reasonably close to most of the co-
ordinate values when plotted, this verifies that a law of 
the form y = mx + c exists.  From the graph,  constants 

Problem 38. Determine the equation of the 
straight line shown in Figure 2.7.
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The triangle DEF is shown constructed in Figure 2.7.

 Gradient of DE = =
− −

− −
=

−

DF
FE

3 ( 3)
1 2

6
3

 = –2

and the y-axis intercept = 1
Hence, the equation of the straight line is:  
 y = mx + c  i.e.  y = –2x + 1

Now try the following Practice Exercise

Practice Exercise 14  Gradients, intercepts 
and equation of a 
graph 

1.  The equation of a line is 4y = 2x + 5. A table 
of corresponding values is produced and is 
shown below. Complete the table and plot a 
graph of y against x. Find the gradient of the 
graph.

x –4 –3 –2 –1 0 1 2 3 4
y –0.25  1.25  1.25 

 [Missing values: – 0.75, 0.25, 0.75, 1.75,  

 2.25, 2.75 Gradient = 1
2

]

2.  Determine the gradient and intercept on the 
y-axis for each of the following equations:

 (a)  y = 4x – 2 (b) y = – x  
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(a) The gradient of the straight line AC is given by

 AB
BC

 = −

−

28 7
0.00040 0.00010

 = 21
0.00030

 = 
× −

21
3 10 4  = 

−

7
10 4  = 7 × 104 

 = 70000 N/mm2

Thus, Young’s Modulus of Elasticity for aluminium 
is 70000 N/mm2. 
Since 1 m2 = 106 mm2, 70000 N/mm2 is equivalent to 
70000 × 106 N/m2, i.e. 70 × 109 N/m2 (or pascals).
From Figure 2.8:
(b)  The value of the strain at a stress of 20 N/mm2 is 

0.000285, and
(c)  The value of the stress when the strain is 0.00020 

is 14 N/mm2

N.B. 1 N/mm2 = 1 MN/m2 = 1 MPa

Now try the following Practice Exercise

Practice Exercise 15  Practical problems 
involving straight line 
graphs 

1.  The following table gives the force F new-
tons which, when applied to a lifting ma-
chine, overcomes a corresponding load of L 
newtons.

Force F (newtons) 25  47  64 120 149 187
Load L (newtons) 50 140 210 430 550 700

Choose suitable scales and plot a graph of F 
(vertically) against L (horizontally). Draw the 
best straight line through the points. Deter-
mine from the graph (a) the gradient, (b) the 
F-axis intercept, (c) the equation of the graph, 
(d) the force applied when the load is 310 N, 
and (e) the load that a force of 160 N will 
overcome. (f) If the graph were to continue in 
the same manner, what value of force will be 
needed to overcome a 800 N load?

 [(a)  0.25  (b)  12 (c)  F = 0.25L + 12  
(d)  89.5 N (e)  592 N (f)  212 N]

2.  The following table gives the results of tests 
carried out to determine the breaking stress 
σ of rolled copper at various temperatures, t:

Stress σ (N/cm2) 8.51 8.07 7.80 7.47 7.23 6.78
Temperature  
t (°C)

75   220  310  420  500  650

m (i.e. gradient) and c (i.e. y-axis intercept) can be 
 determined. 
Here is a worked practical problem.

Problem 39. In an experiment demonstrating 
Hooke’s law, the strain in an aluminium wire was 
measured for various stresses. The results were:

Stress N/mm2 4.9 8.7 15.0
Strain  0.00007 0.00013  0.00021
Stress N/mm2 18.4 24.2 27.3
Strain 0.00027 0.00034  0.00039

Plot a graph of stress (vertically) against strain 
(horizontally). Find:
(a)   Young’s Modulus of Elasticity for 

 aluminium which is given by the gradient 
of the graph,

(b)   the value of the strain at a stress of 20 N/mm2,
(c)   the value of the stress when the strain is 

0.00020.

The co-ordinates (0.00007, 4.9), (0.00013, 8.7), and 
so on, are plotted as shown in Figure 2.8. The graph 
produced is the best straight line which can be drawn 
corresponding to these points. (With experimental re-
sults it is unlikely that all the points will lie exactly 
on a straight line.) The graph, and each of its axes, are 
labelled. Since the straight line passes through the ori-
gin, then stress is directly proportional to strain for the 
given range of values.

S
tr

es
s 

(N
/m

m
2 )

0.00005
0

4

8

12
14
16

20

24

28

0.00015 0.00025
Strain 0.000285

0.00035

y

x

A

BC

Figure 2.8
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Plot a graph of stress (vertically) against 
temperature (horizontally). Draw the best 
straight line through the plotted co- ordinates. 
Determine the slope of the graph and the 
 vertical axis intercept.

 [–0.003, 8.73 N/cm2]

3.  The velocity v of a body after varying time 
intervals t was measured as follows:

t (seconds)  2    5    8    11   15    18
v (m/s)  16.9 19.0 21.1 23.2 26.0 28.1

Plot v vertically and t horizontally and draw 
a graph of velocity against time. Determine 
from the graph (a) the velocity after 10 s, 
(b) the time at 20 m/s and (c) the equation 
of the graph.

 [(a) 22.5 m/s (b) 6.5 s (c) v = 0.7t + 15.5]

4.  An experiment with a set of pulley blocks 
gave the following results:

Effort, E 
(newtons)  9 11 13.6  17.4  20.8 23.6
Load, L  
(newtons) 15 25 38   57   74  88

Plot a graph of effort (vertically) against load 
(horizontally) and determine (a) the gradi-
ent, (b) the vertical axis intercept, (c) the law 
of the graph, (d) the effort when the load is 
30 N and (e) the load when the effort is 19 N. 

[(a)  1
5

or 0.2 (b)  6 (c)  E = 0.2L + 6  
(d) 12 N (e) 65 N]

2.7 Basic differentiation revision

Differentiation of common functions

The standard derivatives are summarised in Table 2.9 
and are true for all real values of x.

Table 2.9 Standard Differentials

y or f(x) dy
dx  

or f ʹ(x)

axn anxn−1

sin ax a cos ax
cos ax −a sin ax
eax a eax

ln ax
x
1

In Table 2.9, y
x

d
d

 is the gradient, or slope, of ‘y’ with 
respect to ‘x’.
The differential coefficient of a sum or difference is 
the sum or difference of the differential coefficients of 
the separate terms.
Thus, if f(x) = p(x) + q(x) – r(x), (where f, p, q and r are 
functions), then f ´(x) = p´ (x) + q´ (x) – r´ (x)
Differentiation of common functions is demonstrated 
in the following worked problems.

Problem 40. Find the differential coefficients of: 

(a) y = 12x3 (b) y = 
x
12

3

If y = axn then y
x

d
d

 = anxn–1

(a)  Since y = 12x3, a = 12 and n = 3 thus  
y
x

d
d

 = (12)(3)x3–1 = 36x2

(b)  y = 
x
12

3  is rewritten in the standard axn form as 

y = 12x–3 and in the general rule a = 12 and  
n = –3

 Thus 
y
x

d
d

 = (12)(–3)x–3–1 = –36x–4 = –
x
36

4

Problem 41. Differentiate: (a) y = 6 (b) y = 6x

(a)  y = 6 may be written as y = 6x0, i.e. in the general 
rule a = 6 and n = 0.  

 Hence 
y
x

d
d

 = (6)(0)x0–1 = 0

2.6 Introduction to calculus

Calculus is a branch of mathematics involving or lead-
ing to calculations dealing with continuously varying 
functions – such as velocity and acceleration, rates of 
change and maximum and minimum values of curves.
Calculus has widespread applications in science and 
engineering and is used to solve complicated problems 
for which algebra alone is insufficient.

Calculus is a subject that falls into two parts: 

(i) differential calculus (or differentiation) and
(ii) integral calculus (or integration)
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Problem 45. Find the gradient of the curve  
y = 3x4 – 2x2 + 5x – 2 at the points (0, – 2) and (1, 4).

The gradient of a curve at a given point is given by 
the corresponding value of  the derivative. Thus, since  

y = 3x4 – 2x2 + 5x – 2 then the gradient = 
y
x

d
d

 = 12x3 – 4x + 5

At the point (0, – 2), x = 0.  
Thus the gradient = 12(0)3 – 4(0) + 5 = 5
At the point (1, 4), x = 1.  
Thus the gradient = 12(1)3 – 4(1) + 5 = 13

Now try the following Practice Exercise

Practice Exercise 16  Further problems on 
differentiating com-
mon functions 

In Problems 1 to 6 find the differential coeffi-
cients of the given functions with respect to the 
variable.

1. (a) 5x5 (b) 
x
1   [(a) 25x4 (b) –

x
1

2
]

2. (a) −

x
4
2

 (b) 6   [(a) 
x
8

3
 (b) 0]

3. (a) 2x (b) 2 x   [(a) 2 (b) 
x

1 ] 

4. (a) x3 53   (b) 
x

4   [(a) x5 23  (b) –
x

2
3

]

5. (a) 2 sin 3x (b) – 4 cos 2x  [(a) 6 cos 3x  
(b) 8 sin 2x]

6. (a) 2e6x (b) 4 ln 9x   [(a) 12e6x (b) 
x
4 ]

7.  Find the gradient of the curve y = 2t4 + 3t3 –  
t + 4 at the points (0, 4) and (1, 8)  
 [–1, 16]

8. (a)  Differentiate 

y = 
θ
2

2  + 2 ln 2θ – 2(cos 5θ + 3 sin 2θ ) – 
θ

2
e3

 (b)  Evaluate 
θ

dy
d

 when θ = π
2

, correct to 4 

significant figure. 

 [(a) 
θ
−4

3  + 
θ
2  + 10 sin 5θ –  

 12 cos 2θ + θ

6
e3  (b) 22.30]

  In general, the differential coefficient of a constant  
is always zero.

(b) Since y = 6x, in the general rule a = 6 and n = 1

 Hence 
y
x

d
d

 = (6)(1)x1–1 = 6x0 = 6

  In general, the differential coefficient of kx, 
where k is a constant, is always k.

Problem 42. Find the derivatives of:  

(a) y = 3 x   (b) y = 
x

5
43

(a)  y = 3 x  is rewritten in the standard differential 
form as y = 3x1/2

 In the general rule, a = 3 and n = 1
2

  Thus 
y
x

d
d

 = (3)










1
2 x

−
1
2

1

 = 3
2

x
−

1
2  = 

x
3

2 1/2  = 
x

3
2

(b)  y = 
x

5
43

 = 
x
5
4/3  = 5x−4/3 in the standard differen-

tial form.
 In the general rule, a = 5 and n = − 4

3

  Thus 
y
x

d
d

 = (5) −










4
3 x(−4/3)−1 = −20

3
x−7/3  

     =

 

−

x
20

3 7/3  = 
−−

x

20

3 73

Problem 43. Find the differential coefficients of: 
(a)  y = 3 sin 4x (b)  f(t) = 2 cos 3t  with respect to 
the variable

(a)  When y = 3 sin 4x, a = 4, so that  
y
x

d
d

 = (3)(4 cos 4x) = 12 cos 4x from Table 2.9

(b)  When f(t) = 2 cos 3t, a = 3, so that  
f ´(t) = (2) (−3 sin 3t) = −6 sin 3t

Problem 44. Determine the derivatives of:  

(a) y = 3e5x (b) f (θ) = θ

2
e3  (c) y = 6 ln 2x

(a) When y = 3e5x, a = 5, so that  
y
x

d
d

 = (3)(5)e5x = 15e5x from Table 2.9

(b)  f (θ) = θ

2
e3  = 2e–3θ, a = – 3, so that  

f ́ (θ) = (2) (–3)e–3θ = –6e–3θ = 
6

e3

−−
θθ

(c) When y = 6 ln 2x then y
x

d
d

 = 6










x
1

 = 
x
6
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2.8 Revision of integration 

The general solution of integrals of the  
form axn 

The general solution of integrals of the form axn∫ dx, 
where ‘a’ and ‘n’ are constants and n ≠ –1, is given by:  

∫ axn dx = 
+

+ax
n 1

n 1

 + c

Note that ax xdn∫ actually represents the area under 
the curve y = axn and c is an arbitrary constant.
Integrals of this type are called indefinite integrals. 
(Section 2.9 below explains definite integrals where 
limits are applied to the integral, for example, ax xd )n

a

b
∫

Using the above rule gives:

 (i)  For ∫ x3 4 dx, a = 3 and n = 4, so that  

∫ x3 4 dx = 
+

+x3
4 1

4 1

 + c = 
3
5

x5 + c

 (ii) For ∫ t t4
9

d3 , a = 
4
9

, n = 3 and t = x, so that  

 ∫ t t4
9

d3  = 
+









+

+t c4
9 3 1

3 1

 = 








+

t c4
9 4

4

 = ++t c1
9

4

 (iii)  For ∫ x
2

2
dx = ∫ −x2 2 dx, a = 2 and n = –2, so 

that ∫ −x2 2dx = 
− +

− +x(2)
2 1

2 1

 + c = 
−

−x2
1

1

 + c 

= 
x
2

−  + c, and 

 (iv)  For ∫ x dx = ∫ x
1
2 dx, a = 1 and n = 

1
2

, so 

that ∫ x
1
2 dx  = (1)

+

+
x
1
2

1

1
2

1

 + c = 
x
3
2

3
2

 + c 

= 
2
3

x3  + c

Each of these results may be checked by differentiation.

(a) The integral of a constant k is kx + c. 
 For example, 8∫  

dx = 8x + c and 5∫ dt = 5t + c

(b) When a sum of several terms is integrated the result 
is the sum of the integrals of the separate terms. For 
example,

 ∫ ( )+ −x x3 2 52 dx = ∫ x3 dx + ∫ x2 2dx – ∫ 5 dx 

         = x3
2

2

+ x2
3

3
 – 5x + c

Standard integrals

Since integration is the reverse process of differentia-
tion the standard integrals listed in Table 2.10 may be 
deduced and readily checked by differentiation.

Table 2.10 Standard Integrals 

y ∫ y dx

1. ∫ axn

+

+ax
n 1

n 1

+ c (except when n = –1)

2. ∫ ax xcos d
a
1

 sin ax + c

3. ∫ ax dxsin – a
1

 cos ax + c

4. ∫ xe dax

a
1

eax + c

5. ln x + c

Problem 46. Determine: x7 d2x∫  

The standard integral, ∫ ax xdn
= 

+

+ax
n 1

n 1

 + c

When a = 7 and n = 2,

 ∫ x7 d2x = 
+

+x7
2 1

2 1

 + c = x7
3

3

 + c or x7
3

3  + c

Problem 47. Determine: t t2 d3∫

When a = 2 and n = 3,

  ∫ t t2 d3  = 
+

+t2
3 1

3 1

 + c = 
t2
4

4

 + c = 
1
2

t4 + c

Note that each of the results in worked examples 46 
and 47 may be checked by differentiating them.

Problem 48. Determine: x8d∫
x8d∫  is the same as x x8 d0∫  and, using the general 

rule when a = 8 and n = 0 gives:

 ∫ x x8 d0  = 
+

+
+x c8

0 1

0 1
 = 8x + c

In general, if k is a constant then k xd∫ = kx + c

∫ x
x1 d
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Problem 49. Determine: x x2 d∫
When a = 2 and n = 1, then

∫ x x2 d
 
= ∫ x x2 d1  = 

+
+

+x c2
1 1

1 1

 = +
x c2
2

2

 = x c2 ++

Note that when an integral contains more than one term 
there is no need to have an arbitrary constant for each; 
just a single constant c at the end is sufficient.

Problem 50. Determine: 
x

x5 d
2∫

∫ ∫ −=
x

x x x5 d 5 d
2

2

Using the standard integral, ax xdn∫ , when a = 5 and 
n = – 2 gives:

 
∫ −x x5 d2 = 

− +

− +x5
2 1

2 1

 + c = 
−

−x5
1

1

 + c = –5x–1 + c 

    = x
5

−−  + c

Problem 51. Determine: x x3 d∫

For fractional powers it is necessary to appreciate 

amn  = a
m
n  – see Chapter 1, page 12.

∫ ∫=x x x x3 d 3 d
1
2

 
= 

+

+
x3

1
2

1

1
2

1

 + c = 
x3
3
2

3
2

 + c 

 = 2x
3
2  + c = 2 x3 + c

Problem 52. Determine: x x4cos3 d∫  

From 2 of Table 2.10, 

∫ x x4cos3 d  = (4)










1
3 sin 3x + c = 

4
3

sin 3x + c

Problem 53. Determine: d5sin 2∫ θ θ

From 3 of Table 2.10,  

∫ d5sin 2θ θ  = (5) −










1
2

 
cos 2θ + c = – 

5
2  

cos 2θ + c

Problem 54. Determine: x5e dx3∫
From 4 of Table 2.10,

∫ x5e dx3 = (5) 










1
3

 
e3x + c = 

5
3

e3x + c

Problem 55. Determine: 
x

x3
5

d∫
From 5 of Table 2.10,  

∫ ∫

















=
x

x
x

x3
5

d 3
5

1 d  = 3
5

 ln x + c

Now try the following Practice Exercise

Practice Exercise 17 Standard integrals 

Determine the following integrals:

1. (a)  ∫ x4d  (b)  ∫ x x7 d

 [(a) 4x + c (b) +x c7
2

2 ]

2. (a)  ∫ x x5 d3  (b)  ∫ t t3 d7

 [(a) +x c5
4

4  (b) +t c3
8

8 ]

3. (a)  ∫ x x2
5

d2  (b)  ∫ x x5
6

d3

 [(a) +x c2
15

3  (b) +x c5
24

4 ]

4. (a)  ∫ ( )−x x x2 3 d4  (b)  ∫ ( )− t t2 3 d3

 [(a) − +x x c2
5

3
2

5 2  (b) 2t – +t c3
4

4 ]

5. (a)  ∫ x
4

3 2
dx (b) ∫ x

3
4 4

 dx  

 [(a)  − +
x

c4
3

 (b)  − +
x

c1
4 3 ]

6. (a)  2 ∫ x3 dx (b)  ∫ x x1
4

d54

 [(a) +x c4
5

5  (b) +x c1
9

94 ]

7. (a)  ∫ x x3cos 2 d  (b)  ∫ d7sin3θ θ

 [(a)  +x c3
2

sin 2  (b)  θ− + c7
3

cos3 ]

8. (a)  ∫ x x3sin 1
2

d  (b)  ∫ x x6cos 1
3

d

 [(a)  − +x c6cos 1
2

 (b)  +x c18sin 1
3

]
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9. (a)  ∫
3
4

e2x dx (b)  ∫ x
2
3

 dx

 [(a)  + c3
8

e x2  (b)  +x c2
3

ln ]

2.9 Definite integrals

Integrals containing an arbitrary constant c in their re-
sults are called indefinite integrals since their precise 
value cannot be determined without further  information. 
Definite integrals are those in which limits are  applied.
If an expression is written as  x

a

b
, ‘b’ is called the 

upper limit and ‘a’ the lower limit.
The operation of applying the limits is defined as:  
 x

a

b
 = (b) – (a)

For example, the increase in the value of the integral 
x2 as x increases from 1 to 3 is written as ∫ x2

1

3
dx, 

where the lower limit is 1, and the upper limit is 3.
Applying the limits gives:

∫ x2

1

3

dx = +










x c
3

3

1

3

 = c c3
3

1
3

3 3

+








− +









   

 = (9 + c) – c1
3

+








  = 8

2
3

Note that the ‘c’ term always cancels out when limits are 
applied and it need not be shown with definite  integrals.

Problem 56. Evaluate: ∫ x3
1

2
dx

∫ x3
1

2
dx = 











x3
2

2

1

2

 = {  
3
2

0,1(2)2} – {  
3
2

0,1(1)2} = 6 – 1
1
2

 

= 4
1
2

Problem 57. Evaluate: ∫ −
−

x(4 )2

2

3
dx

∫ −
−

x(4 )2

2

3

dx = −










−

x x4
3

3

2

3

 

 = {4(3) – 
(3)

3
`

3

} –{4(–2) – 
−( 2)
3

3

}

 = {12 – 9} – {–8 – −8
3

} 

 = {3} – {–5
1
3

} = 8
1
3

Problem 58. Evaluate:  ∫ +x x x(3 2 )d
0

2

∫ +x x x(3 2 )d
0

2

 = ∫ +x x x(3 2 )d2

0

2

 

 = +










x x3
2

2
3

2 3

0

2

 = { }+











− +

3(2)
2

2(2)
3

0 0
2 3

  = 6 + 
16
3

 = 11
1
3

 or 11.33

Problem 59. Evaluate: ∫
π

x x3sin 2 d
0

/2

∫ x x3sin 2 d
0

/2π

 = −
















π

x(3) 1
2

cos2
0

/2

 

 = −










π

x3
2

cos2
0

/2

 = {– 
3
2

cos 2
π




2
} – {–

3
2

cos 2(0)} 

 = {– 
3
2

cos π } – {–
3
2

cos 0}

 = {– 
3
2

 (–1)} – {–
3
2

 (1)} 

 = 
3
2

 + 
3
2

 = 3

Problem 60. Evaluate: ∫ t t4cos3 d
1

2

∫ t t4cos3 d
1

2

 = t(4) 1
3

sin3
1

2


















  = 









t4

3
sin3

1

2

 

 = 







4
3

sin6  – 







4
3

sin3

Note that limits of trigonometric functions are al-
ways expressed in radians – thus, for example, sin 6 
means the sine of 6 radians = –0.279415…. where π  
radians = 180º

Hence, ∫ t t4cos3 d
1

2
 = −









4
3

( 0.279415..)  –

 







4
3

(0.141120..)

 = (–0.37255) – (0.18816) 
 = –0.5607
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Problem 61. Evaluate: ∫ e dx4 x2

1

2
 correct to 4 

significant figures.

∫ x4e dx2

1

2
 = 4

2
e x2

1

2

 = 2 e x2
1

2
 = 2[e4 – e2]

 = 2[54.5982 – 7.3891] 
 = 94.42

Problem 62. Evaluate: ∫ u
3

41

4 du correct to 4 
significant figures.

∫ u
3

41

4

 
du = 









u3

4
ln

1

4

 = 3
4

[ln 4 – ln 1] 

  = 
3
4

[1.3863 – 0] = 1.040

Now try the following Practice Exercise

Practice Exercise 18 Definite integrals 

In Problems 1 to 7, evaluate the definite integrals 
(where necessary, correct to 4 significant figures).

1. (a)  ∫ x xd
1

2
 (b)  ∫ ( )−x x1 d

1

2

 [(a)  1.5 (b)  0.5]

2. (a)  ∫ x5 2

1

4
dx (b)  ∫ −− t t3

4
d2

1

1

 [(a)  105 (b)  –0.5]

3. (a)  ∫ ( )−
−

x x3 d2

1

2
 (b)  ∫ ( )− +x x4 32

1

3
dx

 [(a)  6 (b)  –1.333]

4. (a)  ∫ x x2 d
0

4
 (b)  ∫ x

x1 d
22

3

 [(a)  10.67 (b)  0.1667]

5. (a)  ∫
3
2

cos d
0

θ θ
π

 (b) ∫ 4cos d
0

/2
θ θ

π

 [(a)  0 (b) 4]

6. (a)  ∫ 2sin 2 d
/6

/3
θ θ

π

π

 (b) ∫ t3sin
0

2
dt

 [(a)  1 (b)  4.248]

7. (a)  ∫ 3e t3

0

1

dt (b) ∫ x
x2

3
d

2

3

 [(a)  19.09 (b)  0.2703]

2.10 Simple vector analysis

Determinants

For a 2 by 2 determinant: 
a b
c d

 = ad – bc

For example, 
−5 3

4 2
= (5)(2) – (–3)(4) = 10 – –12 

  = 22

For a 3 by 3 determinant: 
a b c
d e f
g h i

 

 = a 
e f
h i

 – b 
d f
g i

 + c 
d e
g h

 

 = a(e × i – f × h) – b(d × i – f × g) + c(d × h – e × g)

For example, 
−

−

− −

3 1 4
5 2 1
6 3 1

 = 3
− −

2 1
3 1

 –1
−

−

5 1
6 1

 + (–4)
−

−

5 2
6 3

 = 3(–2 – –3) – 1(5 – 6) – 4(15 – 12) 

 = 3(1) – 1(–1) – 4(3) = 3 + 1 – 12 = – 8

i, j, k unit vectors

A method of completely specifying the direction of 
a vector in space relative to some reference point is 
to use three unit vectors, i, j and k, mutually at right 
angles to each other, as shown in Figure 2.9.

y

x

0

z

k

j
i

Figure 2.9
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The unit vectors are defined by: i = (1, 0, 0) j = (0, 1, 0)  
k = (0, 0, 1)

The scalar or dot product of two vectors

Let a = a1i + a2 j + a3k and b = b1i + b2 j + b3k
then a • b = (a1i + a2 j + a3k) • (b1i + b2 j + b3k)

Multiplying out the brackets gives:
a • b =  a1b1i • i + a1b2i • j + a1b3i • k + a2b1 j • i  

+ a2b2 j • j + a2b3 j • k + a3b1k • i + a3b2k • j  
+ a3b3k • k

However, it may be shown that
  i • i = j • j = k • k = 1 and  

i • j = i • k = j • i = j • k = k • i = k • j = 0
Thus, the scalar or dot product,  
 a • b =  a1b1 + a2b2 + a3b3

For example, if a = 2i + j – k and b = i – 3j + 2k  
then a • b = (2)(1) + (1)(– 3) + (– 1)(2) = – 3
A further example:  Calculate the work done by a 

force F = (–5i + j + 7k) N when 
its point of application moves 
from point (–2i – 6j + k) m to the 
point (i – j + 10k) m.

Work done = F • d where d  = (i – j + 10k) – (–2i – 6j + k) 
= 3i + 5j + 9k

Hence, work done = (–5i + j + 7k) • (3i + 5j + 9k) 
 = –15 + 5 + 63 = 53 N m

The vector or cross product of two vectors

When a = a1i + a2 j + a3k and b = b1i + b2 j + b3k   
then it may be shown that

the vector or cross product, a × b = 
i j k
a a a

b b b
1 2 3

1 2 3

For example, if a = i + 4j – 2k and b = 2i – j + 3k

then a × b = −

−

i j k
1 4 2
2 1 3

 = i 
−

−

4 2
1 3

 – j 
−1 2

2 3
 + k 

−

1 4
2 1

 = i(12 – 2) – j(3 – –4) + k(–1 – 8)
 = 10i – 7j – 9k

A further example:  A force of (2i – j + k) newtons acts 
on a line through point P  having 
co-ordinates (0, 3, 1) metres. 
Determine the moment vector 
about point Q having co-ordinates 
(4, 0, – 1) metres.

Position vector, r  = (0i + 3j +k) – (4i + 0j – k)  
= –4i + 3j + 2k

Moment, M = r × F where 

M = −

−

i j k
4 3 2
2 1 1

 = (3 + 2)i – (–4 – 4)j + (4 – 6)k 

 = (5i + 8j – 2k) N m

Now try the following Practice Exercises

Practice Exercise 19  Simple vector analysis 

1. Calculate the value of 
−2 3

5 1
  

 [17]

2. Evaluate 
− −

1 2
5 7

  
 [3]

3. Find the value of 
−

−

− −

2 3 1
5 0 4
1 4 2

  
 [–6]

4. Find the value of 
−

−

−

3 2 5
7 1 2
4 0 1

  
 [–19]

5.  Find the scalar product a  •  b when  
a = 3i + 2j – k and b = 2i + 5j + k [15]

6.  Find the scalar product p  •  q when 
p = 2i – 3j + 4k and q = i + 2j + 5k [16]

7.  Given p = 2i – 3j, q = 4j – k and  
r = i + 2j – 3k, determine the quantities

(a)  p • q (b)  p • r (c)  q • r 
 [(a) – 12  (b) – 4  (c) 11]

8.  Calculate the work done by a force  
F = (–2i + 3j + 5k) N when its point of ap-
plication moves from point (–i – 5j + 2k) 
m to the point (4i – j + 8k) m [32 N m]
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 9.  Given that p = 3i + 2k, q = i – 2j + 3k and  
r = –4i + 3j – k determine

 (a)  p × q (b) q × r

 [(a) 4i – 7j – 6k (b) –7i – 11j – 5k]

10.  A force of (4i – 3j + 2k) newtons acts on 
a line through point P having co-ordinates 
(2, 1, 3) metres. Determine the moment 
vector about point Q having co-ordinates 
(5, 0, –2) metres.  
 [M = (17i + 26 j + 5k) N m]

Practice Exercise 20  Multiple-choice ques-
tions on further revi-
sionary mathematics 

(Answers on page 335)

1. Differentiating y = 4x 5  gives:

 (a)  =
y
x

xd
d

2
3

6  (b)  =
y
x

xd
d

20 4

 (c)  =
y
x

xd
d

4 6  (d)  =
y
x

xd
d

5 4

2. ∫ − t t(5 3 )d2  is equal to:

 (a)  5 – t3  + c (b)  –3t3  + c
 (c)  – 6t + c (d)  5t – t3  + c

3.  A graph of resistance against voltage for an 
electrical circuit is shown in Figure 2.10. 
The equation relating resistance R and volt-
age V is:

 (a)  R = 1.45 V + 40 (b)  R = 0.8 V + 20
 (c)  R = 1.45 V + 20 (d)  R = 1.25 V + 20

4.  The gradient of the curve y = –2x3  + 3x + 5 
at x = 2 is:

 (a)  –21  (b)  27

 (c)  –16  (d)  –5

5.  The value of ∫ −(3sin 2 4cos )d
0

1
θ θ θ , correct  

to 4 significant figures, is:

 (a)  –0.06890 (b)  –1.242
 (c)  –2.742 (d)  –1.569
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Figure 2.10

6.  A graph of y against x, two engineering 
quantities, produces a straight line.

 A table of values is shown below:

x 2 –1 p
y 9  3 5

 The value of p is:

 (a)  – 1
2

 (b)  –2 (c)  3 (d) 0

7. If y = 5 −x 23 , 
y
x

d
d  is equal to:

 (a)  x15
2

 (b)  − +x x c2 25

 (c)  −x5
2

2  (d)  −x x5 2

8. 2
9

3t td∫  is equal to:

 (a)  t
18

4
 + c (b)  t2

3
2  + c

 (c)  t2
9

4  + c (d)  t2
9

3  + c

9.  A water tank is in the shape of a rectangular 
prism having length 1.5 m, breadth 60 cm 
and height 300 mm. If 1 litre = 1000 cm3, the 
capacity of the tank is:

 (a)  27 litre (b)  2.7 litre
 (c)  2700 litre (d)  270 litre
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10.  Evaluating ∫
π

θ
x x3sin3 d3  gives:

 (a)  1.503 (b)  – 18 (c)  2 (d)  6

11.  Here are four equations in x and y. When x is 
plotted against y, in each case a straight line 
results. 

 (i) y + 3 = 3x (ii) y + 3x = 3

 (iii) − =
y x
2

3
2

 (iv) = +
y x
3

2
3

  Which of these equations are parallel to 
each other?

 (a)  (i) and (ii) (b)  (i) and (iv)
 (c)  (ii) and (iii) (d)  (ii) and (iv)

12.  Differentiating i = 3 sin 2t – 2 cos 3t with 
respect to t gives:

 (a)  3 cos 2t + 2 sin 3t (b)  6(sin 2t – cos 3t)

 (c)  
3
2

cos 2 t + 
2
3

sin 3t (d)  6(cos 2t + sin 3t)

13. ∫ −t t dt(5sin3 3cos5 )  is equal to:

 (a)  –5 cos 3t + 3 sin 5t + c
 (b)  15(cos 3t + sin 3t) + c

 − − +t t c(c) 5
3

cos3 3
5

sin5

 − +t t c(d) 3
5

cos3 5
3

sin5

14.  Which of the straight lines shown in Figure 
2.11 has the equation y + 4 = 2x ?

 (a)  (iv) (b)  (ii) (c)  (iii) (d)  (i)

15. Given y = + x y
x

3e 2ln3 , d
d

x  is equal to:

 (a)  +
x

6e 2
3

x  (b)  +
x

3e 2x

 (c)  +
x

6e 2x  (d)  +3e 2
3

x

16. Given f(t) = 3t4 – 2, f ´(t) is equal to:

 (a) 12t3 – 2 (b)  3
4

t5  – 2t + c

 (c)  12t3 (d)  3t5 – 2

17. ∫ +










x1 4
e

d
2x

 is equal to:

(iii)

(ii)(i)

(iv)

6

xx0 6

�4 0 4

�6 �6

�6

�6

�6�6

�6

6

x
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yy

60 x

6

620

6

Figure 2.11

 (a)  
8

e2x  + c (b)  x + 
4

e2x

 (c)  x – 2
e2x

 + c (d)  x – 8
e2x

 + c

18.  In an experiment demonstrating Hooke’s 
law, the strain in a copper wire was  measured 
for various stresses. The results included

Stress (me g-
apascals)

18.24   24.00   39.36

Strain 0.00019  0.00025  0.00041

  When stress is plotted vertically against 
strain horizontally a straight line graph 
results. Young’s modulus of elasticity for 
copper, which is given by the gradient of 
the graph, is:

  (a)  96000 Pa (b)  1.04 × 10–11 Pa
 (c)  96 Pa (d)  96 × 109 Pa

19.  The gradient of the curve y = 4x2–7x + 3 at 
the point (1, 0) is

 (a)  3 (b)  0 (c)  1 (d)  –7

20.  Evaluating ∫ t2e dt3

1

2

, correct to 4 signifi-
cant figures, gives:

 (a)  2300 (b)  255.6 (c)  766.7 (d)  282.3

For fully worked solutions to each of the problems in Practice Exercises 11 to 20 in this chapter,  
go to the website:

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Revision Test 2 Further revisionary mathematics

This Revision Test covers the material in Chapter 2. The marks for each question are shown in brackets at the end 
of each question.

 1.  If 12 inches = 30.48 cm, find the number of mil-
limetres in 23 inches. (3)

 2.  State the SI unit of:

 (a)  force (b)  pressure (c)  work (3)

 3.  State the quantity that has an SI unit of:

 (a)  kilograms (b)  rad/s
 (c)  hertz (d)  m3 (4)

 4.  Express the following in engineering notation in 
prefix form:

 (a)  250,000 J (b)  0.00005 s
 (c)  2 × 108W   (d)  750 × 10−8F (4)

 5.  Rewrite:

 (a)  0.0067 mA in µA

 (b)  40 × 104 kN as MN (2)

 6.  Determine the value of P in the following table of 
values

  x 0 1 4
  y = 3x − 5 −5 −2 P (2)

 7.  Corresponding values obtained experimentally 
for two quantities are:

 x −5 −3 −1 0 2 4
 y −17 −11 −5 −2 4 10

 Plot a graph of y (vertically) against x (horizontal-
ly) to scales of 1 cm = 1 for the horizontal x- axis 
and 1 cm = 2 for the vertical y-axis.

 From the graph find:
 (a) the value of y when x = 3
 (b) the value of y when x = − 4
 (c) the value of x when y = 1
 (d) the value of x when y = − 20 (8)

 8.  If graphs of y against x were to be plotted for 
each of the following, state (i) the gradient, and 
(ii) the y-axis intercept.

 (a)  y = −5x + 3  (b)  y = 7x

 (c)  2y + 4 = 5x (d)  5x + 2y = 6 (8)

 9.  The resistance R ohms of a copper winding is 
measured at various temperatures t°C and the 
results are as follows:

 R (Ω) 38 47 55 62 72

 t (°C) 16 34 50 64 84

 Plot a graph of R (vertically) against t (horizon-
tally) and find from it:

 (a)  the temperature when the resistance is 50 Ω 

 (b)  the resistance when the temperature is 72°C 

 (c)  the gradient 

 (d)  the equation of the graph. (10)

10.  Differentiate the following functions with respect 
to x:

 (a)  y = 5x2 – 4x + 9
 (b)  y = x4 – 3x2 – 2 (4)

11.  If y = 
x

3
 determine 

y

x

d

d
 (2)

12. Given f(t) = t5 , find f ′(t) (2)

13.  Calculate the gradient of the curve y = 3
3

cos x  

 at x = 
π
4  correct to 3 decimal places. (4)

14. Find the gradient of the curve f(x) = 7x2 – 4x + 2  
at the point (1, 5) (3)

15. If y = 5 sin 3x – 2 cos 4x find y
x

d
d

 (2)

16. Determine the value of the differential coefficient 

 of y = 5 ln 2x − 
3

e2 x  when x = 0.8 correct to 3

 significant figures. (4)

In Problems 17 to 19, determine the indefinite integrals.

17. (a)  ∫ ( )+x x4 d2  (b)  ∫ x
x1 d

3
 (4)

18. (a)  
x

x
2

d
23∫  (b) 

x
xe

1

3
2 d0.5x∫









+ −  

(6)
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19. (a)  ∫ +(2 ) d2θ θ

 (b)  ∫










+ −x
x

e xcos 1
2

3 dx2  (6)

Evaluate the integrals in problems 20 to 22, each, 
where necessary, correct to 4 significant figures:

20. (a)  ∫ ( )−t t t2 d2

1

3

 (b)  ∫ ( )− +
−

x x x2 3 2 d3 2

1

2

 (6)

21. (a)  ∫ t t3sin 2 d
0

/ 3π

 (b)  ∫ x xcos
1

3
d

/ 4

3 / 4

π

π

 
(7)

22. (a)  ∫ ( )+x x2e dx

0

1

 (b)  
1

2

∫ −








r

r
r1 d3  (6)

23. Evaluate (a)  
−5 3

4 2

  (b)  
−

−

− −

3 1 4
5 2 1
6 3 1

 (7)

24.  If a = 2i + 4j – 5k and b = 3i – 2j + 6k  deter-
mine:

 (i)  a•b (ii)  a × b (7)

25. Determine the work done by a force of F newtons 
acting at a point A on a body, when A is displaced 
to point B, the co-ordinates of A and B being 
(2, 5, −3) and (1, −3, 0) metres respectively, and 
when F = 2i − 5j + 4k newtons. (5)

26. A force F = 3i – 4j + k newtons act on a line pass-
ing through a point P. Determine moment M of  
the force F about a point Q when P has co-ordi-
nates (4, −1, 5) metres and Q has co-ordinates  
(4, 0, −3) metres. (6)
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Further revisionary mathematics

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 2,  
together with a full marking scheme, are available at the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Chapter 3

The effects of forces  
on materials

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Why it is important to understand: The effects of forces on materials
A good knowledge of some of the constants used in the study of the properties of materials is vital in most 
branches of engineering, especially in mechanical, manufacturing, aeronautical and civil and structural 
engineering. For example, most steels look the same, but steels used for the pressure hull of a submarine 
are about 5 times stronger than those used in the construction of a small building, and it is very important 
for the professional and chartered engineer to know what steel to use for what construction; this is because 
the cost of the high-tensile steel used to construct a submarine pressure hull is considerably higher than 
the cost of the mild steel, or similar material, used to construct a small building. The engineer must not 
only take into consideration the ability of the chosen material of construction to do the job, but also its 
cost. Similar arguments lie in manufacturing engineering, where the engineer must be able to estimate the 
ability of his/her machines to bend, cut or shape the artefact s/he is trying to produce, and at a competitive 
price! This chapter provides explanations of the different terms that are used in determining the properties 
of various materials. The importance of knowing about the effects of forces on materials is to aid the design 
and construction of structures in an efficient and trustworthy manner.

At the end of this chapter you should be able to:
•	 define	force	and	state	its	unit
• recognise a tensile force and state relevant practical examples
• recognise a compressive force and state relevant practical examples
• recognise a shear force and state relevant practical examples
•	 define	stress	and	state	its	unit
• calculate stress σ from σ = F

A
•	 define	strain
• calculate strain ε from ε = x

L  

•	 define	elasticity,	plasticity,	limit	of	proportionality	and	elastic	limit
• state Hooke’s law
•	 define	Young’s	modulus	of	elasticity E and stiffness
• appreciate typical values for E
• calculate E from E = σ

ε
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• perform calculations using Hooke’s law
• plot a load/extension graph from given data
•	 define	ductility,	brittleness	and	malleability,	with	examples	of	each
•	 define	rigidity	or	shear	modulus
• understand thermal stresses and strains
• calculates stresses in compound bars

3.1 Introduction

A force exerted on a body can cause a change in either 
the shape or the motion of the body. The unit of force 
is the newton*, N.

No solid body is perfectly rigid and when forces are 
applied	to	it,	changes	in	dimensions	occur.	Such	changes	
are not always perceptible to the human eye since they are 
so	small.	For	example,	the	span	of	a	bridge	will	sag	under	
the weight of a vehicle and a spanner will bend slightly 
when tightening a nut. It is important for engineers and 
designers	to	appreciate	the	effects	of	forces	on	materials,	
together with their mechanical properties.The three main 
types of mechanical force that can act on a body are: 

(i) tensile (ii) compressive and (iii) shear

3.2 Tensile force

Tension	 is	a	 force	 that	 tends	 to	stretch	a	material,	as	
shown	in	Figure	3.1.	For	example,

 (i) the rope or cable of a crane carrying a load is in 
tension

Figure 3.1

	(ii)	 rubber	bands,	when	stretched,	are	in	tension
(iii)	 when	a	nut	is	tightened,	a	bolt	is	under	tension

A	 tensile	 force,	 i.e.	 one	 producing	 tension,	 increases	
the length of the material on which it acts.

3.3 Compressive force

Compression is a force that tends to squeeze or crush a 
material,	as	shown	in	Figure	3.2.	For	example,

Figure 3.2

 (i) a pillar supporting a bridge is in compression
 (ii) the sole of a shoe is in compression
 (iii) the jib of a crane is in compression

A	compressive	force,	i.e.	one	producing	compression,	
will decrease the length of the material on which it acts.

3.4 Shear force

Shear is a force that tends to slide one face of the  
material	over	an	adjacent	face.	For	example,

 (i) a rivet holding two plates together is in shear if 
a tensile force is applied between the plates − as 
shown in Figure 3.3

*Sir Isaac Newton	(25	December	1642–20	March	1727)	was	an	
English	polymath.	His	single	greatest	work,	the	‘Philosophiae	
Naturalis	Principia	Mathematica’	(‘Mathematical	Principles	of	
Natural	Philosophy’),	showed	how	a	universal	force,	gravity,	
applied	to	all	objects	in	all	parts	of	the	universe.	To	find	out	
more go to www.routledge.com/cw/bird

For国 For閣

Force For鴨

http://www.routledge.com/cw/bird


The effects of forces on materials 49

Pa
rt 

Tw
o

Figure 3.3

	(ii)	 a	guillotine	cutting	sheet	metal,	or	garden	shears,	
each provide a shear force

 (iii) a horizontal beam is subject to shear force
 (iv) transmission joints on cars are subject to shear 

forces

A	shear	force	can	cause	a	material	to	bend,	slide	or	twist.

Problem 1.	 Figure	3.4(a)	represents	a	crane	and	
Figure	3.4(b)	a	transmission	joint.	State	the	types	
of	forces	acting,	labelled	A to F.

Figure 3.4

(a)	 	For	the	crane,	A,	a	supporting	member,	is	in	com-
pression,	B,	a	horizontal	beam,	is	in	shear,	and	
C,	a	rope,	is	in	tension.

(b)	 	For	 the	 transmission	 joint,	parts D and F are in 
tension,	and	E,	the	rivet	or	bolt,	is	in	shear.

3.5 Stress

Forces acting on a material cause a change in dimensions 
and the material is said to be in a state of stress.	Stress	
is the ratio of the applied force F to cross-sectional 
area A of the material. The symbol used for tensile and 
compressive stress is σ (Greek letter sigma). The unit of 
stress is the pascal*, Pa,	where	1	Pa	= 1 N/m2. Hence

σ = FA  
Pa

where F is the force in newtons and A is the cross-sec-
tional area in square metres. For tensile and compres-
sive	forces,	the	cross-sectional	area	is	that	which	is	at	
right angles to the direction of the force. For a shear 

force the shear stress is equal to F
A
,	where	the	cross-

sectional area A is that which is parallel to the direction 
of the shear force. The symbol used for shear stress is 
the	Greek	letter	tau,	τ.

Problem 2. A rectangular bar having a cross-
sectional	area	of	75	mm2 has a tensile force of 
15	kN	applied	to	it.	Determine	the	stress	in	the	bar.

Cross-sectional area A =	75	mm2 =	75	× 10−6	m2	 

and force F =	15	kN	=	15	× 103 N 

Stress in bar, σ = F
A   = 

×

× −

15 10 N
75 10 m

3

6 2   

=	0.2	× 109 Pa	= 200 MPa

Problem 3.	 A	wire	of	circular	cross-section,	has	 
a	tensile	force	of	60.0	N	applied	to	it	and	this	
force	produces	a	stress	of	3.06	MPa	in	the	wire.	
Determine	the	diameter	of	the	wire.

Force F =	60.0	N	and	stress	σ =	3.06	MPa 
                  =	3.06	×	106 Pa	

Since	σ  =
F
A then	area,	A	= 

F
σ

 = 
×

60.0 N
3.06 10 Pa6

  

 =	19.61	× 10−6m2 =	19.61	mm2

Cross-sectional area           A = 
π d

4

2
  

hence	 	 									19.61	= 
π d

4

2

*Blaise Pascal	(19	June	1623–19	August	1662)	was	a	French	
polymath.	A	child	prodigy,	he	wrote	a	significant	 treatise	on	
the	subject	of	projective	geometry	at	 the	age	of	sixteen,	and	
later	corresponded	with	Pierre	de	Fermat	on	probability	theory,	
strongly	 influencing	 the	 development	 of	modern	 economics	
and social science. 
To	find	out	more	go	to www.routledge.com/cw/bird
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from	which,	 	 d 2 = 
π

×4 19.61   

and     d =
π

×









4 19.61  =	5.0

i.e.      diameter of wire = 5.0 mm

Now try the following Practice Exercise

Practice Exercise 21  Further problems  
on stress

1.  A rectangular bar having a cross-sectional 
area	of	80	mm2 has	a	tensile	force	of	20	kN	
applied	to	it.	Determine	the	stress	in	the	bar.	
	 [250	MPa]

2.	 	A	circular	section	cable	has	a	tensile	force	of	
1 kN applied to it and the force produces a 
stress	of	7.8	MPa	in	the	cable.	Calculate	the	
diameter	of	the	cable.	 [12.78	mm]

3.	 	A	square-sectioned	support	of	side	12	mm	is	
loaded	with	a	compressive	 force	of	10	kN.	
Determine	the	compressive	stress	in	the	sup-
port.	 [69.44	MPa]

4.	 	A	bolt	having	a	diameter	of	5	mm	is	 load-
ed	so	that	the	shear	stress	in	it	is	120	MPa.	 
Determine	the	value	of	the	shear	force	on	the	
bolt.	 [2.356	kN]

5.	 	A	split	pin	requires	a	force	of	400	N	to	shear	
it. The maximum shear stress before shear 
occurs	is	120	MPa.	Determine	the	minimum	
diameter	of	the	pin.	 [2.06	mm]	

6.	 	A	 tube	of	outside	diameter	60	mm	and	 in-
side	diameter	40	mm	is	subjected	to	a	tensile	
load	of	60	kN.	Determine	 the	 stress	 in	 the	
tube.		 [38.2	MPa]

3.6 Strain

The fractional change in a dimension of a material pro-
duced by a force is called the strain. For a tensile or 
compressive	force,	strain	is	the	ratio	of	the	change	of	
length to the original length. The symbol used for strain 
is ε (Greek epsilon). For a material of length L metres 
which changes in length by an amount x metres when 
subjected	to	stress,

ε = x
L

Strain	 is	 dimension-less	 and	 is	 often	 expressed	 as	 a	
	percentage,	i.e.

percentage strain = x
L

× 100

For	 a	 shear	 force,	 strain	 is	 denoted	 by	 the	 symbol	 
γ	(Greek	letter	gamma)	and,	with	reference	to	Figure	3.5,	 
is given by:

γ = x
L

Figure 3.5

Problem 4.	 A	bar	1.60	m	long	contracts	axially	
by	0.1	mm	when	a	compressive	load	is	applied	to	
it.	Determine	the	strain	and	the	percentage	strain.

Strain ε  = =
×

= = 0 0000625

contraction
original length

0.1mm
1.60 10 mm
0.1

1600
.

3
 

Percentage strain =	0.0000625	×	100	= 0.00625%

Problem 5.	 A	wire	of	length	2.50	m	has	a	per-
centage	strain	of	0.012%	when	loaded	with	a	
tensile	force.	Determine	the	extension	of	the	wire.

Original length of wire =	2.50	m	=	2500	mm 

and strain = 
0.012
100  =	0.00012

Strain	 ε = x
L

extension
original length

	hence,	 

extension x = εL =	(0.00012)(2500)	= 0.30 mm

Problem 6. (a) A rectangular section metal bar 
has	a	width	of	10	mm	and	can	support	a	maximum	
compressive	stress	of	20	MPa;	determine	the	mini-
mum breadth of the bar when loaded with a force
of	3	kN.	(b)	If	the	bar	in	(a)	is	2	m	long	and	decreas-
es	in	length	by	0.25	mm	when	the	force	is	applied,
determine the strain and the percentage strain.

Applied 
shearfor四
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y， 
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(a)	 Since	stress,	σ = F
A

force
area

	 then,	area,	A  = 
σ

=
×

F 3000 N
20 10 Pa6

  

         =	150	×	10−6 m2	=	150	mm2

 Cross-sectional area = width ×	breadth,	hence

                breadth = =
area

width
150
10

 = 15 mm

(b) Strain, ε = =
contraction

original length
0.25
2000

 = 0.000125

 Percentage strain =	0.000125	×	100	= 0.0125%

Problem 7. A pipe has an outside diameter of  
25	mm,	an	inside	diameter	of	15	mm	and	length	
0.40	m	and	it	supports	a	compressive	load	of	 
40	kN.	The	pipe	shortens	by	0.5	mm	when	the	load	
is	applied.	Determine	(a)	the	compressive	stress		
(b) the compressive strain in the pipe when 
supporting this load.

Compressive force F =	40	kN	=	40000	N,	 

and cross-sectional area A = 
π ( )−D d
4

2 2 ,

where D = outside diameter =	25	mm	 
and   d = inside diameter =	15	mm.

Hence,	 π

π

= −

= − ×

= ×

−

−

A
4

(25 15 )mm

4
(25 15 ) 10 m

3.142 10 m

2 2 2

2 2 6 2

4 2

(a)	 	Compressive	stress,	σ  = =
× −

F
A

40000 N
3.142 10 m4 2    

         =	12.73	×	107Pa	 
         = 127.3 MPa

(b)	 	Contraction	of	pipe	when	loaded,	 
 x =	0.5	mm	=	0.0005	m,	and	original	length	

  L =	0.40	m.	Hence,	compressive	strain,	 

 ε = =
x
L

0.0005
0.4

 = 0.00125  (or 0.125%)  

Problem 8.	 A	circular	hole	of	diameter	50	mm	is	
to	be	punched	out	of	a	2	mm	thick	metal	plate.	The
shear	stress	needed	to	cause	fracture	is	500	MPa.

Determine	(a)	the	minimum	force	to	be	applied	
to	the	punch,	and	(b)	the	compressive	stress	in	the	
punch at this value.

(a)	 	The	area	of	metal	to	be	sheared,	A = perimeter of 
hole × thickness of plate. 

	 Perimeter	of	hole	= πd = π(50	×	10−3) =	0.1571	m.
	 Hence,	shear	area,	 A  =	0.1571	×	2	×	10−3  

=	3.142	×	10−4 m2

	 Since	shear	stress	= force
area

,	 

shear force = shear stress × area 
    =	(500	×	106 ×	3.142	×	10−4) N
    =  157.1 kN,
which is the minimum force to be applied to the punch.

(b) Area of punch  = 
π π

=
d
4

(0.050)
4

2 2
  

             =	0.001963	m2

 Compressive stress 

  = 
force
area  = 

×157.1 10 N
0.001963m

3

2   

                 =		8.003	×	107 Pa	= 80.03 MPa,	
which is the compressive stress in the punch.

Problem 9. A rectangular block of plastic  
material	500	mm	long	by	20	mm	wide	by	300	mm	
high has its lower face glued to a bench and a force 
of	200	N	is	applied	to	the	upper	face	and	in	line	
with	it.	The	upper	face	moves	15	mm	relative	to	
the	lower	face.	Determine	(a)	the	shear	stress,	and	
(b)	the	shear	strain	in	the	upper	face,	assuming	the	
deformation is uniform.

(a)	 Shear	stress,	τ = 
force

area parallel to the force
 Area of any  face parallel to the force  

=	500	mm	×	20	mm
   =	(0.5	×	0.02)	m2 =	0.01	m2

	 Hence,	shear stress, τ  = 
200 N

0.01m2
 

= 20000 Pa or 20 kPa

(b)	 Shear	strain,	γ = 
x
L 	(see	side	view	in	Figure	3.6)

       = 15
300

 = 0.05 (or 5%)
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Figure 3.6

Now try the following Practice Exercise

Practice Exercise 22  Further problems  
on strain 

1.	 	A	 wire	 of	 length	 4.5	 m	 has	 a	 percentage	
strain	of	0.050%	when	loaded	with	a	tensile	
force.	Determine	the	extension	in	the	wire.	
	 [2.25	mm]

2.	 	A	metal	bar	2.5	m	long	extends	by	0.05	mm	
when	 a	 tensile	 load	 is	 applied	 to	 it.	Deter-
mine	(a)	the	strain,	(b)	the	percentage	strain.	
	 [(a)	0.00002		(b)	0.002%]

3.	 	An	 80	 cm	 long	 bar	 contracts	 axially	 by	  
0.2	mm	when	a	compressive	load	is	applied	
to	it.	Determine	the	strain	and	the	percentage	
strain.	 [0.00025,	0.025%]

4.	 	A	pipe	 has	 an	 outside	 diameter	 of	 20	mm,	
an	 inside	 diameter	 of	 10	 mm	 and	 length	  
0.30	m	and	it	supports	a	compressive	load	of	
50	kN.	The	pipe	shortens	by	0.6	mm	when	
the	load	is	applied.	Determine	(a)	the	com-
pressive	stress,	(b)	the	compressive	strain	in	
the pipe when supporting this load. 
	 [(a)	212.2	MPa		(b)	0.002	or	0.20%]

5.	 	When	a	circular	hole	of	diameter	40	mm	is	
punched	out	of	a	1.5	mm	thick	metal	plate,	
the shear stress needed to cause fracture is 
100	MPa.	Determine	(a)	the	minimum	force	
to	be	applied	to	the	punch,	and	(b)	the	com-
pressive stress in the punch at this value. 
	 [(a)	18.85	kN	(b)	15.0	MPa]

6.	 	A	 rectangular	 block	 of	 plastic	 material	  
400	mm	 long	by	15	mm	wide	 by	300	mm	 	
high	has	its	lower	face	fixed	to	a	bench	and	
a	force	of	150	N	is	applied	to		the	upper	face	

and in line with it. The upper face moves  
12	mm	relative	to	the	lower	face.	Determine	
(a)	the	shear	stress,	and	(b)	the	shear	strain	in	
the	upper	face,	assuming	the	deformation	is	
uniform.	 [(a)	25	kPa		(b)	0.04		or		4%]

3.7 Elasticity, limit of proportionality
  and elastic limit

Elasticity is the ability of a material to return to its orig-
inal shape and size on the removal of external forces.
Plasticity is the property of a material of being perma-
nently deformed by a force without breaking. Thus if a 
material	does	not	return	to	the	original	shape,	it	is	said	
to be plastic.
Within	certain	load	limits,	mild	steel,	copper,	poly-

thene	and	rubber	are	examples	of	elastic	materials;	lead	
and plasticine are examples of plastic materials.

If a tensile force applied to a uniform bar of mild steel 
is gradually increased and the corresponding extension of 
the	bar	is	measured,	then	provided	the	applied	force	is	not	
too	large,	a	graph	depicting	these	results	is	likely	to	be	as	
shown	in	Figure	3.7.	Since	 the	graph	 is	a	straight	 line,	
extension is directly proportional to the applied force.

Figure 3.7

The point on the graph where extension is no longer 
proportional to the applied force is known as the limit 
of proportionality. Just beyond this point the mate-
rial	can	behave	in	a	non-linear	elastic	manner,	until	the	
elastic limit	is	reached.	If	the	applied	force	is	large,	it	
is found that the material becomes plastic and no longer 
returns to its original length when the force is removed. 
The material is then said to have passed its elastic limit 
and the resulting graph of force/extension is no longer 

a straight	 line.	 Stress,	σ =
F
A
,	 from	Section	 3.5,	 and	

since,	for	a	particular	bar,	area	A	can	be	considered as 
a	constant,	then	F α σ. 
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Strain	ε = x
L
,	from	Section	3.6,	and	since	for	a	particu-

lar bar L	is	constant,	then	x α ε. Hence for stress applied 
to a material below the limit of proportionality a graph 
of	stress/strain	will	be	as	shown	in	Figure	3.8,	and	is	a	
similar	shape	to	the	force/extension	graph	of	Figure	3.7.

Figure 3.8

3.8 Hooke’s law

Hooke’s law states: 
Within the limit of proportionality, the extension of a 
material is proportional to the applied force

It	follows,	from	Section	3.7,	that:
Within the limit of proportionality of a material, the 
strain produced is directly proportional to the stress 
producing it

Young’s modulus of elasticity
Within	the	limit	of	proportionality,	stress	α	strain,	hence	

stress = (a constant) × strain

This constant of proportionality is called Young’s 
modulus of elasticity* and is given the symbol E. 
The value of E may be determined from the gradient 
of the straight line portion of the stress/strain graph. 
The dimensions of E are	pascals	(the	same	as	for	stress,	
since strain is dimension-less).

E = 
σ
ε

 Pa

Some	typical values	for	Young’s	modulus	of	elasticity,	
E,	include:
Aluminium	 alloy	 70	GPa	 (i.e.	 70	×	 109	 Pa),	 brass	

90	 GPa,	 copper	 96	 GPa,	 titanium	 alloy	 110	 GPa,	
	diamond	1200	GPa,	mild	steel	210	GPa,	lead	18	GPa,	
tungsten	410	GPa,	cast	iron	110	GPa,	zinc	85	GPa,	glass	
fibre	72	GPa,	carbon	fibre	300	GPa.

Stiffness
A	material	having	a	large	value	of	Young’s	modulus	is	
said	 to	have	a	high	value	of	material	stiffness,	where	
stiffness	is	defined	as:

Stiffness = F
x

force
extension

For	example,	mild	steel	is	a	much	stiffer	material	than	
lead.

Since	 E = 
σ
ε
,		σ = 

F
A   and  ε = 

x
L , 

then E = 

F
A
x
L

 = FL
Ax

 = 



















F
x

L
A

i.e. E = (stiffness) ×









L
A  

Stiffness	 =










F
x  is also the gradient of the force/exten-

sion	graph,	hence

E = (gradient of force/extension graph) 









L
A  

*Thomas Young	(13	June	1773	–	10	May	1829)	was	an	English	
polymath. He is famous for having partly deciphered Egyptian 
hieroglyphics	 (specifically	 the	 Rosetta	 Stone).	 Young	 made	
notable	scientific	contributions	to	the	fields	of	vision,	light,	solid	
mechanics,	energy,	physiology,	language,	musical	harmony	and	
Egyptology.	To	find	out	more	go	to	www.routledge.com/cw/bird
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Since	L and A	for	a	particular	specimen	are	constant,	
the	 greater	Young’s	modulus	 the	 greater	 the	material	
stiffness.

Problem 10.	 A	wire	is	stretched	2	mm	by	a	force	
of	250	N.	Determine	the	force	that	would	stretch	
the	wire	5	mm,	assuming	that	the	limit	of	propor-
tionality is not exceeded.

Hooke’s law states that extension x is proportional to 
force F,	provided	that	the	limit	of	proportionality	is	not	
exceeded,	i.e.	x α F or x = kF where k is a constant.
When	 x =	2	mm,	F =	250	N,	 
thus	 	 2	= k(250),	from	which,	 

constant k = 2
250

 = 1
125

When	 x =	5	mm,	then	5	= kF 

i.e.	 	 5	= 










1
125

F 

from	which,	force	F =	5(125)	=	625	N
Thus to stretch the wire 5 mm, a force of 625 N is 
required.

Problem 11.	 A	tensile	force	of	10	kN	applied	to	a	
component	produces	an	extension	of	0.1	mm.	
Determine	(a)	the	force	needed	to	produce	an	ex-
tension	of	0.12	mm,	and	(b)	the	extension	when	
the	applied	force	is	6	kN,	assuming	in	each	case	
that the limit of proportionality is not exceeded.

From	 Hooke’s	 law,	 extension	 x is proportional to 
force F within	the	limit	of	proportionality,	i.e. x α F or   
x = kF,	 where	 k	 is	 a	 constant.	 If	 a	 force	 of	 10	 kN	 
produces	 an	 extension	 of	 0.1	mm,	 then	 0.1	 = k(10),	

from	which,	constant  k = 0.1
10

 =	0.01

(a)	 When	an	extension	x =	0.12	mm,	then	 
0.12	= k(F),	i.e.	0.12	=	0.01	F,	from	which,	 

force F = 0.12
0.01

 = 12 kN

(b)	 When	force	F =	6	kN,	then	 
extension x = k(6)	=	(0.01)(6)	= 0.06 mm

Problem 12.	 A	copper	rod	of	diameter	20	mm	
and	length	2.0	m	has	a	tensile	force	of	5	kN	
applied	to	it.	Determine	(a)	the	stress	in	the	rod	 
(b) by how much the rod extends when the load is 

applied. Take the modulus of elasticity for copper 
as	96	GPa.

(a) Force F =	5	kN	=	5000	N	and	cross-sectional	area	

A = π d
4

2
= π ( )0.020

4

2
=	0.000314	m2

 Stress, σ  = F
A

=
5000 N

0.000314m2
 

=	15.92	×	106 Pa	= 15.92 MPa

(b)	 Since E  = σ
ε

 then strain ε  = σ
=

×

×E
15.92 10 Pa

96 10 Pa

6

9
 

     
   =	0.000166

	 Strain		ε = x
L
,	hence	extension,	 

x = εL =	(0.000166)(2.0)	=	0.000332	m
 i.e. extension of rod is 0.332 mm

Problem 13.	 A	bar	of	thickness	15	mm	and	hav-
ing a rectangular cross-section carries a load of 
120	kN.	Determine	the	minimum	width	of	the	bar	
to	limit	the	maximum	stress	to	200	MPa.	The	bar,	
which	is	1.0	m	long,	extends	by	2.5	mm	when	
carrying	a	load	of	120	kN.	Determine	the	modulus	
of elasticity of the material of the bar.

Force,	F =	120	kN	=	120000	N	and	cross-sectional	area	
A =	(15x)10−6	m2,	where	x is the width of the rectangu-
lar bar in millimetres. 

Stress	 	σ = F
A
,	from	which,	 

A = 
σ

=
×

F 120000 N
200 10 Pa6

=	6	× 10−4 m2  

            =	6	×	10−4 ×	106 mm2 
              =	6	× 102	mm2 =	600	mm2

Hence,	 	 600	=	15x,	from	which,	 

width of bar,	x = 600
15

 = 40 mm

Extension of bar =	2.5	mm	=	0.0025	m	

Strain	 	ε = x
L

 = 0.0025
1.0

 =	0.0025

Modulus of elasticity, E  = stress
strain

 = ×200 10
0.0025

6
  

=	80	×	109 = 80 GPa

Problem 14. An aluminium alloy rod has a length 
of	200	mm	and	a	diameter	of	10	mm.	When	sub-
jected to a compressive force the length of the rod is 
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199.6	mm.	Determine	(a)	the	stress	in	the	rod	when	
loaded,	and	(b)	the	magnitude	of	the	force.	Take	the	
modulus	of	elasticity	for	aluminium	alloy	as	70	GPa.

(a)	 Original	length	of	rod,	L =	200	mm,	final	length	of	
rod =	199.6	mm,	hence	contraction,	x =	0.4	mm.	 

Thus,	strain,	ε = =
x
L

0.4
200

 =	0.002

	 Modulus	of	elasticity,	E = σ
ε

stress
strain

  

hence stress, σ = Eε =	70	× 109 ×	0.002
                 =	140	× 106	Pa	= 140 MPa

(b)	 Since	stress	σ = F
A

force
area

,	then	force,	F = σA

	 Cross-sectional	area, A  = π π
=

d
4

(0.010)
4

2 2
  

=	7.854	× 10−5 m2

	 Hence,	compressive force,  
F = σA =	140	× 106	× 7.854	× 10−5	= 11.0 kN

Problem 15. A brass tube has an internal diameter 
of	120	mm	and	an	outside	diameter	of	150	mm	and	
is	used	to	support	a	load	of	5	kN.	The	tube	is	500	mm	
long	before	the	load	is	applied.	Determine	by	how
much	the	tube	contracts	when	loaded,	taking	the	
modulus	of	elasticity	for	brass	as	90	GPa.

Force	in	tube,	F =	5	kN	=	5000	N,	and

cross-sectional	area	of	tube,	

 A π π( ) ( )= − = −

=

D d
4 4

0.150 0.120

0.006362m

2 2 2 2

2

Stress	in	tube,	σ = =

= ×

F
A

5000 N
0.006362m
0.7859 10 Pa

2

6

Since	the	modulus	of	elasticity, E = σ
ε

stress
strain

then	strain,	 ε = σ
=

×

×E
0.7859 10 Pa

90 10 Pa

6

9
 =	8.732	×	10−6

Strain,		 	 				ε = 
x

L
contraction

original length 	thus,	 

contraction,	x = εL  =	8.732	× 10−6 ×	0.500
                  =	4.37	× 10−6 m.

Thus,	when loaded, the tube contracts by 4.37 μm

Problem 16. In an experiment to determine the 
modulus	of	elasticity	of	a	sample	of	mild	steel,	
a wire is loaded and the corresponding extension 
noted. The results of the experiment are as shown.

Load (N) 0 40 110 160 200 250 290 340

Extension 
(mm)

0 1.2 3.3 4.8	 6.0 7.5 10.0 16.2

Draw	the	load/extension	graph.	
The mean diameter of the wire is 1.3 mm and  
its	length	is	8.0	m.	Determine	the	modulus	of	
elasticity E of	the	sample,	and	the	stress	at	the	limit	
of proportionality.

A graph of load/extension is shown in Figure 3.9

Figure 3.9

E = 
σ
ε

=

F
A
x
L

 = 



















F
x

L
A

F
x

 is the gradient of the straight line part of the load/

extension graph.

Gradient,	
F
x  = =

× −

BC
AC

200 N
6 10 m3 = 33.33 × 103 N/m

Modulus	of	elasticity	= (gradient of graph)
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Length	of	specimen,		L =	8.0	m	and	cross-sectional	area	 

 A = π π ( )
=

d
4

0.0013
4

2 2

                        =	1.327	×	10−6	m2

Hence modulus of elasticity,  

 E = (33.33 × 103)
×











−

8.0
1.327 10 6  = 201 GPa

The	 limit	 of	 proportionality	 is	 at	 point	 D	 in	 Fig-
ure 3.9 where the graph no longer follows a straight  
line.	 This	 point	 corresponds	 to	 a	 load	 of	 250	 N	 as	
shown.

Stress at the limit of proportionality 

   = force
area

 = 
× −

250
1.327 10 6   

               =	188.4	×	106	Pa		= 188.4 MPa

Note that for structural materials the stress at the elastic 
limit is only fractionally larger than the stress at the 
limit	of	proportionality,	thus	it	is	reasonable	to	assume	
that the stress at the elastic limit is the same as the 
stress	 at	 the	 limit	 of	 proportionality;	 this	 assumption	
is	made	in	the	remaining	exercises.	In	Figure	3.9,	the	
elastic limit is shown as point F.

Now try the following Practice Exercise

Practice Exercise 23  Further problems on 
Hooke’s law  

	 1.	 	A	wire	 is	 stretched	1.5	mm	by	a	 force	of	
300	 N.	 Determine	 the	 force	 that	 would	
stretch	the	wire	4	mm,	assuming	the	elastic	
limit of the wire is not exceeded. 
	 [800	N]

	 2.	 	A	rubber	band	extends	50	mm	when	a	force	
of	 300	 N	 is	 applied	 to	 it.	 Assuming	 the	
band	 is	within	 the	elastic	 limit,	determine	
the	extension	produced	by	a	force	of	60	N.	
	 [10	mm]

	 3.	 	A	 force	 of	 25	 kN	 applied	 to	 a	 piece	 of	
steel	 produces	 an	 extension	 of	 2	 mm.	
Assuming	the	elastic	limit	is	not	exceeded,	
determine (a) the force required to produce 
an	extension	of	3.5	mm,	(b)	the	extension	
when	the	applied	force	is	15	kN.	
	 [(a)	43.75	kN	(b)	1.2	mm]

 4.	 	A	 test	 to	 determine	 the	 load/extension	
graph for a specimen of copper gave the 
following results:

Load (kN) 8.5 15.0 23.5 30.0
Extension (mm) 0.04 0.07 0.11 0.14

	 	Plot	 the	 load/extension	 graph,	 and	 from	
the graph determine (a) the load at an ex-
tension	of	0.09	mm,	and	(b)	the	extension	 
corresponding	to	a	load	of	12.0	kN.	
	 [(a)	19	kN		(b)	0.057	mm]

	 5.	 	A	circular	section	bar	is	2.5	m	long	and	has	
a	diameter	of	60	mm.	When	subjected	to	a	
compressive	 load	of	30	kN	 it	shortens	by	
0.20	mm.	Determine	Young’s	modulus	of	
elasticity for the material of the bar. 
	 [132.6	GPa]

 6.	 	A	 bar	 of	 thickness	 20	 mm	 and	 having	 a	
rectangular cross-section carries a load of 
82.5	kN.	Determine	(a)	the	minimum	width	
of the bar to limit the maximum stress to 
150	MPa,	 (b)	 the	modulus	of	elasticity	of	
the	material	of	the	bar	if	the	150	mm	long	
bar	 extends	 by	 0.8	 mm	 when	 carrying	 a	
load	of	200	kN.	
	 [(a)	27.5	mm		(b)	68.2	GPa]

	 7.	 	A	 metal	 rod	 of	 cross-sectional	 area	  
100	mm2 carries a maximum tensile load 
of	 20	 kN.	 The	 modulus	 of	 elasticity	 for	
the	material	of	the	rod	is	200	GPa.	Deter-
mine the percentage strain when the rod is  
carrying	its	maximum	load.	 [0.10%]

	 8.	 	A	metal	tube	1.75	m	long	carries	a	tensile	
load and the maximum stress in the tube 
must	 not	 exceed	 50	MPa.	 Determine	 the	
extension of the tube when loaded if the 
modulus of elasticity for the material is 
70	GPa.	 [1.25	mm]

	 9.	 	A	piece	of	aluminium	wire	is	5	m	long	and	
has	a	cross-sectional	area	of	100	mm2. It is 
subjected	to	increasing	loads,	the	extension	
being recorded for each load applied. The 
results are:

Load (kN) 0 1.12 2.94 4.76 7.00 9.10
Extension 
(mm)

0 0.8	 2.1 3.4 5.0 6.5
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	 	Draw	 the	 load/extension	graph	and	hence	
determine the modulus of elasticity for the 
material	of	the	wire.	 [70	GPa]

10.	 	In	an	experiment	to	determine	the	modulus	
of	elasticity	of	a	sample	of	copper,	a	wire	
is loaded and the corresponding extension 
noted. The results are:

Load (N) 0 20 34 72 94 120
Extension 
(mm)

0 0.7 1.2 2.5 3.3 4.2

	 	Draw	 the	 load/extension	 graph	 and	 de-
termine the modulus of elasticity of the 
sample if the mean  diameter of the wire is  
1.23	mm	and	its	length	is	4.0	m.	
	 [96	GPa]

3.9 Ductility, brittleness and 
 malleability

Ductility is the ability of a material to be plastically 
deformed	 by	 elongation,	 without	 fracture.	 This	 is	 a	
property that enables a material to be drawn out into 
wires.	For	ductile	materials	such	as	mild	steel,	copper	
and	 gold,	 large	 extensions	 can	 result	 before	 fracture	
occurs	with	increasing	tensile	force.	Ductile	materials	
usually have a percentage elongation value of about 
15%	or	more.

Brittleness is the property of a material manifested 
by fracture without appreciable prior plastic defor-
mation.	 Brittleness	 is	 a	 lack	 of	 ductility,	 and	 brittle	
materials	such	as	cast	 iron,	glass,	concrete,	brick	and	
ceramics,	 have	 virtually	 no	 plastic	 stage,	 the	 elastic	
stage being followed by immediate fracture. Little or 
no	 ‘waist’	 occurs	 before	 fracture	 in	 a	brittle	material	
undergoing a tensile test.

Malleability is the property of a material whereby 
it can be shaped when cold by hammering or rolling. 
A malleable material is capable of undergoing plastic 
deformation without fracture. Examples of malleable 
materials	include	lead,	gold,	putty	and	mild	steel.

Problem 17.	 Sketch	typical	load/extension	
curves	for	(a)	an	elastic	non-metallic	material,	
(b) a brittle material and (c) a ductile material. 
Give a typical example of each type of material.

(a) A typical load/extension curve for an elastic non-
metallic	material	is	shown	in	Figure	3.10(a),	and	
an example of such a material is polythene.

Figure 3.10

(b) A typical load/extension curve for a brittle ma- 
terial	is	shown	in	Figure	3.10(b),	and	an	example	
of such a material is cast iron.

(c)  A typical load/extension curve for a ductile ma- 
terial	is	shown	in	Figure	3.10(c),	and	an	example	
of such a material is mild steel.

3.10 Modulus of rigidity

Experiments have shown that under pure torsion (see 
Chapter	12),	up	to	the	limit	of	proportionality,	we have 
Hooke’s	law	in	shear,	where	

shear stress
shear strain

 = rigidity (or shear) modulus

or            τ
γ

 = G (3.1)

where τ =	shear	stress,	γ =	shear	strain	(see	Figures	3.5	
and	3.6)	and	G = rigidity (or shear) modulus.

3.11 Thermal strain

If a bar of length L	and	coefficient	of	linear	expansion	α 
were subjected to a temperature rise of T,	its	length	will	
increase by a distance αLT,	as	described	in	Chapter	22.	

E E 

Extension Extension 

(a) (b) 

E 

Ex1ension 

(c) 
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Thus the new length of the bar will be:

L + αLT = L(1 + αT)

Now,	as	the	original	length	of	the	bar	was	L,	then	the	
thermal strain due to a temperature rise will be:

ε = α
=

LT
L

extension
original length

i.e.                thermal strain, ε = αT

However,	if	the	bar	were	not	constrained,	so	that	it	can	
expand	freely,	there	will	be	no	thermal	stress.
If,	 however,	 the	 bar	were	 prevented	 from	 expanding	
then there would be a compressive stress in the bar.

Now ε  

α

=
−

=
− +L L T

L

original length new length
original length

(1 )

  

 = α− −L L L T
L

i.e.									strain,	ε = −αT
and,	since	stress	= strain × E,
then          σ = − αTE

Problem 18. A steel prop is used to stabilise a 
building,	as	shown	in	Figure	3.11.	(a)	If	the	
compressive	stress	in	the	bar	at	20°C	is	30	MPa,	
what will be the stress in the prop if the 
temperature	is	raised	to	35°C? (b) At what tem-
perature will the prop cease to be effective?
Take E =	2	× 1011N/m2 and α =	14	× 10−6/°C.

Figure 3.11

(a)	 Additional	thermal	strain,	εT = −αT
            = −(14	×	10−6/°C) ×	(35	−	20)°C    
 i.e. εT  = −14	×	10−6 × 15	= −210 × 10−6

	 Additional	thermal	stress,	σ T  = EεT

             =	2	× 1011 N/m2 × (−	210	×	10−6)
 i.e.    σ T  = − 42 MPa
 Hence,	the	stress	at	35°C = initial stress + σ T
           = (−30	−	42)	MPa
 i.e.      σ = −72 MPa
(b)	 For	 the	 prop	 to	 be	 ineffective,	 it	will	 be	 neces-

sary for the temperature to fall so that there is no  
stress	in	the	prop,	that	is,	from	20°C the tempera-
ture	must	fall	so	that	the	initial	stress	of	30	MPa		
is	nullified.	Hence,	drop	in	stress	= −30	MPa

	 Therefore,	drop	in	thermal	strain 

 = σ
=

− ×

×E
30 10 Pa
2 10 Pa

6

11
 = −	1.5	× 10−4 

	 Thermal	strain,	ε = αT
	 from	which,	temperature	 

  T = ε
α

=
− ×

×

−

−

1.5 10
14 10

4

6
 = −	10.7°C

	 Hence,	 the	 drop	 in	 temperature	T	 from	 20°C is  
−10.7°C

	 Therefore,	 the temperature for the prop to be 
ineffective =	20°C −	10.7°C = 9.3°C

Now try the following Practice Exercise

Practice Exercise 24  Further problem on 
thermal strain

1.  A steel rail may be assumed to be stress free 
at	5°C. If the stress required to cause buck-
ling of the rail is −50	MPa,	at	what	tempera-
ture will the rail buckle? It may be assumed 
that	the	rail	is	rigidly	fixed	at	its	‘ends’.	Take  
E =	2	× 1011N/m2	and α =	14	×	10−6/°C. 
	 [22.86°C]

3.12 Compound bars

Compound bars are of much importance in a number of 
different	branches	of	engineering,	including	reinforced	
concrete	pillars,	composites,	bimetallic	bars,	and	so	on.	
In	 this	 section,	 solution	of	 such	problems	usually	 in-
volves	two	important	considerations,	namely

(a)  compatibility (or considerations of displace-
ments)

(b) equilibrium

Building 

Prop 

Riaid明。or



The effects of forces on materials 59

Pa
rt 

Tw
o

N.B. It is necessary to introduce compatibility in 
this	section	as	compound	bars	are,	in	general,	statically	
indeterminate	 (see	Chapter	7).	The	following	worked	
problems demonstrate the method of solution.

Problem 19. A solid bar of cross-sectional area 
A1,	Young’s	modulus	E1	and	coefficient	of	linear	
expansion α1 is surrounded co-axially by a hollow 
tube of cross-sectional area A2,	Young’s	modulus
E2	and	coefficient	of	linear	expansion	α2,	as	shown	
in	Figure	3.12.	If	the	two	bars	are	secured	firmly	
to	each	other,	so	that	no	slipping	takes	place	with
temperature	change,	determine	the	thermal	stresses
due to a temperature rise T. Both bars have an 
initial length L and α1 > α2

Figure 3.12 Compound bar

There	are	two	unknown	forces	in	these	bars,	namely	F1 
and F2;	therefore,	two	simultaneous	equations will be 
	required	to	determine	these	unknown	forces.	The	first	
equation can be obtained by considering the compat-
ibility	 (i.e.	 ‘deflections’)	 of	 the	 bars,	with	 the	 aid	 of	
Figure 3.13.

Figure 3.13 ‘Deflections’	of	compound	bar

Free expansion of bar (1) = α1 LT
Free	expansion	of	bar	(2)	= α2 LT
In	practice,	 however,	 the	final	 resting	position	of	 the	
compound bar will be somewhere in between these two 
positions (i.e. at the position A−A in Figure 3.13). To 
achieve	this,	it	will	be	necessary	for	bar	(2)	to	be	pulled	

out by a distance ε2L	and	for	bar	(2)	to	be	pushed	in	by	
a distance ε1L,	where
 ε1 = compressive strain in (1)
and ε2 =	tensile	strain	in	(2)
From	considerations	of	compatibility	(‘deflection’)	 in	
Figure	3.13,
  α1LT − ε1L = α2LT + ε2L
Dividing	throughout	by	L	gives: 
  α1T − ε1 = α2T + ε2
and  ε1 = (α1 − α2)T − ε2
Now,		 σ1 = E1 ε1  

and  σ2 = E2 ε2 (or  ε2 = σ
E

2

2
)

Hence,	 σ1 = (α1 − α2) E1T − E1ε2

i.e.  σ1 = (α1 − α2) E1T − σ2
E
E

1

2
	 (3.2)

To	obtain	the	second	simultaneous	equation,	it	will	be	
necessary to consider equilibrium of the compound bar.
Let F1 = unknown compressive force in bar (1) 
and F2 =	unknown	tensile	force	in	bar	(2)
Now,	from	equilibrium	considerations,	
 F1 = F2

but σ1 = 
F
A

1

1
 and σ2 = 

F
A

2

2

Therefore,	 σ σ=A A1 1 2 2

or        σ1 = 
σσ A

A
2 2

1
 (3.3)

Equating	equations	(3.2)	and	(3.3)	gives

           
σ A

A
2 2

1
 = (α1 − α2)E1T − σ2

E
E

1

2
  

i.e. σ2

E
E

1

2
 + 

σ A
A
2 2

1
 = (α1 − α2)E1T

and  σ +










E
E

A
A2

1

2

2

1
 = (α1 − α2)E1T

from		which,	 			σ2  = 
α α−

+










E T
E
E

A
A

( )1 2 1

1

2

2

1

  

= 
α α−

+









E T

A E A E
E A

( )1 2 1

1 1 2 2

2 1

Bar① 

L 

加 ①

Bar② 

L α，LT 

A 

a，u: 

Bar② 

.，L 

E2LI 

A 

Bar① 

L 

加 ①

Bar② 

L α，LT 

A 

a，u: 

Bar② 

.，L 

E2LI 

A 

L 
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i.e.   σσ αα αα
=

−
+
E E A T

A E A E
( )

( )2
1 2 1 2 1

1 1 2 2
	(tensile)	 (3.4)

and   σ1 = 
σ A

A
2 2

1

i.e. σσ
αα αα

=
−

+
E E A T

A E A E
( )

( )1
1 2 1 2 2

1 1 2 2  
(compressive) 

(3.5)

Problem 20.	 If	the	solid	bar	of	Problem	19	did	
not	suffer	temperature	change,	but	instead	was	
subjected to a tensile axial force P,	as	shown	in	
Figure	3.14,	determine	σ1 and σ2

Figure 3.14 Compound bar under axial tension

There	are	two	unknown	forces	in	this	bar,	namely,	F1 
and F2;	therefore,	two	simultaneous	equations	will	be	
required. 
The	first	 of	 these	 simultaneous	 equations	 can	 be	 ob-
tained	by	considering	compatibility,	i.e.

deflection	of	bar	(1)	=	deflection	of	bar	(2)
or   d1 = d2

But   d1 = ε1L and d2 = ε2L  
Therefore,	 ε1L = ε2L  
or   ε1 = ε2   

Now,		 	 ε1 = 
σ
E

1

1
 and ε2 = 

σ
E

2

2

Hence,	 	
σ
E

1

1
 = 

σ
E

2

2

or   σ
σ

=
E

E1
2 1

2
	 (3.6)

The second simultaneous equation can be obtained by 
considering the equilibrium of the compound bar.
Let F1 = tensile force in bar (1)
and F2 =	tensile	force	in	bar	(2)
Now,	from	equilibrium	conditions

 P = F1 + F2

i.e. P = σ1A1 + σ2A2	 (3.7)

Substituting	equation	(3.6)	into	equation	(3.7)	gives:

 P = 
σ E

E
2 1

2
A1 + σ2A2 = σ2

+










E A
E

A1 1

2
2   

     = σ2

+









A E A E
E

1 1 2 2

2
   

Rearranging	gives: σ2 = 
P E

A E A E( )
2

1 1 2 2+
 (3.8)

Since	 	 	
E

E1
2 1

2
σ

σ
=

then      σ1 = 
P E

A E A E( )
1

1 1 2 2+
 (3.9)

N.B. If P	is	a	compressive	force,	then	both	σ1 and σ2 
will	be	compressive	stresses	(i.e.	negative),	and	vice-
versa if P were tensile.

Problem 21.	 A	concrete	pillar,	which	is	rein-
forced	with	steel	rods,	supports	a	compressive	
axial	load	of	2	MN.	
(a)	 	Determine	stresses	σ1 and σ2 given the fol-

lowing:
									For	the	steel,	A1 =	4	×	10−3 m2 and  

E1 =	2	×	1011 N/m2

										For	the	concrete,	A2 =	0.2	m
2 and  

E2 =	2	×	10
10 N/m2

(b)	 	What	percentage	of	the	total	load	does	the	
steel reinforcement take?

(a)	 F	rom	equation	(3.9),	 

σ1  = − 
P E

A E A E( )
1

1 1 2 2+
  

= − 
2 10 2 10

4 10 2 10 0.2 2 10

6 11

3 11 10( )
× × ×

× × × + × ×−

 = − 
4 10

8 10 40 10
4 10
48 10

10
12

17

8 8

17

8

9

( )
×

× + ×
=

×

×
=   

                     = − 83.3 ×	106

 i.e.  the stress in the steel,  
σ1 = − 83.3 MPa (3.10)

	 From	equation	(3.8),	 

 σ2  = −
P E

A E A E( )
2

1 1 2 2+
  

= − 2 10 2 10
4 10 2 10 0.2 2 10

6 10

3 11 10( )
× × ×

× × × + × ×−

Bar② 

P 

L 

Bar① 

P 
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Now try the following Practice Exercises

Practice Exercise 25  Further problems on 
compound bars

1.	 	Two	layers	of	carbon	fibre	are	stuck	to	each	
other,	 so	 that	 their	 fibres	 lie	 at	 90° to each 
other,	 as	 shown	 in	 Figure	 3.15.	 If	 a	 tensile	
force of 1 kN were applied to this two-layer 
compound	bar,	determine	the	stresses	in	each.	
For	layer	1,	E1 =	300	GPa	and	A1 =	10	mm2

 	For	 layer	 2,	 E2 =	 50	 GPa	 and	 A2 = A1 =  
10	mm2

Figure 3.15 Carbon	fibre	layers

 [σ1 =	85.71	MPa,	σ2 =	14.29	MPa]

2.	 	If	the	compound	bar	of	Problem	1	were	sub-
jected	 to	 a	 temperature	 rise	 of	 25°C,	what	
would the resulting stresses be? Assume 
the	coefficients	of	 linear	expansion	are,	 for	  
layer	 1,	α1 =	 5	×	 10−6/°C,	 and	 for	 layer	 2,	  
α2 =	0.5	×	10−6/°C. 
 [σ1 =	80.89	MPa,	σ2 =	19.11	MPa]

Practice Exercise 26  Short-answer 
questions on the 
effects of forces on 
materials

 1.  Name three types of mechanical force that 
can act on a body.

 2.	 	What	is	a	tensile	force?	Name	two	practical	
examples of such a force.

 3.	 	What	 is	 a	 compressive	 force?	 Name	 two	
practical examples of such a force.

	 4.	 	Define	a	shear	force	and	name	two	practi-
cal examples of such a force.

	 5.	 	Define	elasticity	and	state	two	examples	of	
elastic materials.

	 6.	 	Define	plasticity	and	state	two	examples	of	
plastic materials.

       = − 4 10
8 10 40 10

4 10
48 10

10
12

16

8 8

16

8

8

( )
×

× + ×
=

×

×
=   

              = −8.3 ×	106

 i.e.  the stress in the concrete,  
σ2 = −8.3 MPa (3.11)

(b)	 	Force	in	the	steel,	 
F1 = σ1A1 

     = − 83.3 ×	106 ×	4	×	10−3 = 3.33 × 105 N
  Therefore,	 the percentage total load taken by 

the steel reinforcement

   = 
F

totalaxial load
100%1 ×   

= 3.33 10
2 10

100%
5

6
×

×
×  = 16.65%

Problem 22.	 If	the	pillar	of	problem	21	were	 
subjected	to	a	temperature	rise	of	25°C,	what	
would be the values of stresses σ1 and σ2?  
Assume	the	coefficients	of	linear	expansion	are,		
for	steel,	α1 =	14	×	10−6/°C,	and	for	concrete,	 
α2 =	12	×	10−6/°C.

As α1 is larger than α2,	the	effect	of	a	temperature	rise	
will	cause	the	‘thermal	stresses’	in	the	steel	to	be	com-
pressive and those in the concrete to be tensile.
From	equation	(3.5),	the thermal stress in the steel,

 σ1  = 
E E A T

A E A E
( )

( )
1 2 1 2 2

1 1 2 2

α α
−

−
+   

= − 14 10 12 10

2 10 2 10 0.2 25
48 10

6 6

11 10

8

( )× − ×

× × × × × ×















×

− −

      = − 40 10
48 10

15

8
×

×
 = −0.833	×	107 = −8.33 ×	106

           = −8.33 MPa (3.12)
From	equation	(3.3),	the thermal stress in the concrete,

 σ2  = 
A

A
1 1

2

σ
 = − ( 8.33 10 ) 4 10

0.2

6 3− × × × −
  

               = 0.167 MPa (3.13)
From	equations	(3.10)	to	(3.13):
 σ1 = −83.3 − 8.33 = − 91.63 MPa
and σ2 = −8.3 +	0.167	= − 8.13 MPa 

P 

Layer1 

Layer2 

P 
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	 7.	 	Define	the	limit	of	proportionality.

	 8.	 	State	Hooke’s	law.

	 9.	 	What	 is	 the	 difference	 between	 a	 ductile	
and a brittle material?

10.	 	Define	stress.	What	is	the	symbol	used	for	
(a) a tensile stress (b) a shear stress?

11.	 	Strain	is	the	ratio	 ..........
.

12.	 The	ratio		 stress
strain  is called .......

13.	 	State	 the	 units	 of	 (a)	 stress	 (b)	 strain	  
(c)	Young’s	modulus	of	elasticity.

14.	 Stiffness	is	the	ratio	 .......... .

15.	 	Sketch	 on	 the	 same	 axes	 a	 typical	 load/
extension graph for a ductile and a brittle 
material.

16.	 	Define	(a)	ductility	(b)	brittleness	(c)	mal-
leability.

17.	 Define	rigidity	modulus.

18.  The new length L2 of a bar of length  
L1,	 of	 coefficient	 of	 linear	 expansion	 α,	
when subjected to a temperature rise T is: 
L2 = ...... 

19.  The thermal strain ε due to a temperature 
rise T	in	material	of	coefficient	of	linear	ex-
pansion α is given by: ε = ......

Practice Exercise 27  Multiple-choice 
questions on the 
effects of forces on 
materials 

 (Answers on page 335)

 1. The unit of strain is:
 (a)  pascals (b)  metres
 (c)  dimension-less (d)  newtons

	 2.	 The	unit	of	stiffness	is:
 (a)  newtons (b)  pascals
 (c)  newtons per metre (d)  dimension-less

 3.	 	The	unit	of	Young’s	modulus	of	elasticity	is:
 (a)  pascals (b)  metres
 (c)  dimension-less (d)  newtons

	 4.	 	A	 wire	 is	 stretched	 3	 mm	 by	 a	 force	 of	  
150	 N.	Assuming	 the	 elastic	 limit	 is	 not	  
exceeded,	 the	 force	 that	 will	 stretch	 the	
wire	5	mm	is:

	 (a)		150	N	 (b)		250	N
	 (c)		90	N		 (d)		450	N

	 5.	 	For	 the	wire	 in	 question	 4,	 the	 extension	
when	the	applied	force	is	450	N	is:	

 (a)  1 mm (b)  3 mm
	 (c)		9	mm	 (d)		12	mm

	 6.	 	Due	to	the	forces	acting,	a	horizontal	beam	
is in:

 (a)  tension (b)  compression
 (c)  shear

	 7.	 	Due	to	forces	acting,	a	pillar	supporting	a	
bridge is in:

 (a)  tension  (b)  compression
 (c)  shear

	 8.	 	Which	of	the	following	statements	is	false?
 (a)   Elasticity is the ability of a material to 

return to its original dimensions after 
deformation by a load.

	 (b)			Plasticity	is	the	ability	of	a	material	to	
retain any deformation produced in it 
by a load.

	 (c)			Ductility	is	the	ability	to	be	permanent-
ly stretched without fracturing.

 (d)   Brittleness is the lack of ductility and a 
brittle material has a long plastic stage.

 9.  A circular rod of cross-sectional area  
100	 mm2 has	 a	 tensile	 force	 of	 100	 kN	  
applied to it. The stress in the rod is:

	 (a)		1	MPa	 (b)		1	GPa
	 (c)		1	kPa	 (d)		100	MPa

10.	 	A	metal	bar	5.0	m	long	extends	by	0.05	mm	
when a tensile load is applied to it. The per-
centage strain is: 

	 (a)		0.1		 	 (b)		0.01		
	 (c)		0.001	 (d)		0.0001



The effects of forces on materials 63

Pa
rt 

Tw
o

	An	aluminium	rod	of	length	1.0	m	and	cross-sec-
tional	area	500	mm2 is used to support a load of 
5	kN	which	causes	the	rod	to	contract	by	100	μm. 
For	questions	11	to	13,	select	the	correct	answer	
from the following list:
	 (a)		100	MPa	 (b)		0.001
	 (c)		10	kPa	 (d)		100	GPa
	 (e)		0.01		 (f)		10	MPa
	 (g)		10	GPa	 (h)		0.0001		
	 (i)		10	Pa

11. The stress in the rod.

For fully worked solutions to each of the problems in Practice Exercises 21 to 27 in this chapter,  
go to the website: 

www.routledge.com/cw/bird

12.	 The	strain	in	the	rod.

13.	 Young’s	modulus	of	elasticity.

14.	 	A	compound	bar	of	length	L is subjected to 
a temperature rise of T. If α1 > α2,	the	strain	
in bar 1 will be:

 (a)  tensile  (b)  compressive 
 (c)  zero    (d)  αT

15.	 	For	Problem	14,	the	stress	in	bar	2	will	be:
 (a)  tensile (b)  compressive
 (c)  zero  (d)  αT

http://www.routledge.com/cw/bird


Tensile testing

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Chapter 4

At the end of this chapter you should be able to:

• describe a tensile test
• recognise from a tensile test the limit of proportionality, the elastic limit and the yield point
• plot a load/extension graph from given data
• calculate from a load/extension graph the modulus of elasticity, the yield stress, the ultimate tensile strength, 

percentage elongation and the percentage reduction in area
• appreciate the meaning of proof stress

4.1 The tensile test

A tensile test is one in which a force is applied to a 
specimen of a material in increments and the corre-
sponding extension of the specimen noted. The pro-
cess may be continued until the specimen breaks into 
two parts and this is called testing to destruction. The 
testing is usually carried out using a universal testing 

machine that can apply either tensile or compressive 
forces to a specimen in small, accurately measured 
steps. British Standard 18 gives the standard proce-
dure for such a test. Test specimens of a material are 
made to standard shapes and sizes and two typical test 
pieces are shown in Figure 4.1. The results of a tensile 
test may be plotted on a load/extension graph and a 
typical graph for a mild steel specimen is shown in 
Figure 4.2.

Why it is important to understand: Tensile testing
In this chapter, additional material constants are introduced to help define the properties of materials. 
In addition to this, a description is given of the standard tensile test used to obtain the strength of 
various materials, especially the strength and material stiffness of metals. This is aided by a standard 
tensile test, where the relationship of axial load on a specimen and its axial deflection are described. The 
engineer can tell a lot from the results of this experiment. For example, the relationship between load 
and deflection is very different for steel and aluminium alloy and most other materials, including copper, 
zinc, brass, titanium, and so on. By carrying out this test, the engineer can determine the required 
properties of different materials, and this method, together with its interpretation, is discussed in this 
chapter. The importance in tensile testing is to know the failure criteria of various materials, because 
different materials exhibit different properties in their strength, elasticity, etc.
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Figure 4.1

Figure 4.2

 (i) Between A and B is the region in which Hooke’s 
law applies and stress is directly proportion-
al to strain. The gradient of AB is used when 
 determining Young’s modulus of elasticity (see 
Chapter 3).

 (ii) Point B is the limit of proportionality and 
is the point at which stress is no longer 
 proportional to strain when a further load is 
applied.

 (iii) Point C is the elastic limit and a specimen 
loaded to this point will effectively return to its 
original length when the load is removed, i.e. 
there is negligible permanent extension.

 (iv) Point D is called the yield point and at this 
point there is a sudden extension to J, with no 
increase in load. The yield stress of the material 
is given by:

 yield stress = 

 load where yield begins to take place
original cross sectional area-

  The yield stress gives an indication of the duc-
tility of the material (see Chapter 3).

 (v) For mild steel, the extension up to the point J is 
some 40 times larger than the extension up to 
the point B.

 (vi) Shortly after point J, the material strain 
 hardens, where the slope of the load- extension 
curve is about 1/50th the slope of the 
curve from A to B, for materials such as mild 
steel.

 (vii) Between points D and E extension takes 
place over the whole gauge length of the 
 specimen.

 (viii) Point E gives the maximum load which can 
be applied to the specimen and is used to 
 determine the ultimate tensile strength (UTS) 
of the specimen (often just called the tensile 
strength)

 UTS = maximum load
originalcross-sectionalarea

 (ix) Between points E and F the cross-sectional 
area of the specimen decreases, usually about 
half way between the ends, and a waist or neck 
is formed before fracture. 

 Percentage reduction in area  

  = 

originalcross-sectionalarea
(finalcross-sectionalarea)

originalcross-sectionalarea

( ) −

 × 100%

  The percentage reduction in area provides 
 information about the malleability of the 
 material (see Chapter 3). The value of stress at 
point F is greater than at point E since although 
the load on the specimen is decreasing as the 
extension increases, the cross-sectional area is 
also reducing. 

 (x) At point F the specimen fractures.
 (xi) Distance GH is called the permanent elonga-

tion and
permanent elongation 

 = increase in lengthduring test todestruction
originalcross sectionalarea-

 

 × 100%

 (xii) The point K is known as the upper yield point. 
It occurs for constant load experiments, such  
as when a hydraulic tensile testing  machine 
is used. It does not occur for constant strain 
experiments, such as when a Hounsfield
 tensometer is used.
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4.2  Worked problems on  
tensile testing

Problem 1. A tensile test is carried out on a mild 
steel specimen. The results are shown in the 
following table of values:

Load (kN) 0 10 23 32
Extension (mm) 0 0.023 0.053 0.074

Plot a graph of load against extension, and from the 
graph determine (a) the load at an extension of  
0.04 mm, and (b) the extension corresponding to a 
load of 28 kN.

The load/extension graph is shown in Figure 4.3. From 
the graph:
(a)  when the extension is 0.04 mm, the load is 17.2 kN
(b) when the load is 28 kN, the extension is 0.065 mm

Figure 4.3

Problem 2. A tensile test is carried out on a mild 
steel specimen of gauge length 40 mm and cross-
sectional area 100 mm2. The results obtained for 
the specimen up to its yield point are given below:

Load (kN) 0 8 19 29 36
Extension 
(mm)

0 0.015 0.038 0.060 0.072

The maximum load carried by the specimen is 
50 kN and its length after fracture is 52 mm. 
Determine (a) the modulus of elasticity, (b) the 
ultimate tensile strength, (c) the percentage 
elongation of the mild steel.

The load/extension graph is shown in Figure 4.4.

Figure 4.4

(a)  Gradient of straight line is given by:  

BC
AC

= 25000 N
0.05 10 m3× −

 = 500 × 106 N/m

  Young’s modulus of elasticity  

= (gradient of graph)










L
A , where

  L = 40 mm (gauge length) = 0.040 m and  
area, A = 100 mm2 = 100 × 10–6 m2.

  Young’s modulus of elasticity  

= (500 × 106) 
× −

0.040
100 10 6

  = 200 × 109 Pa  

= 200 GPa
(b)  Ultimate tensile strength  

 = maximum load
originalcross-sectionalarea  

  = 50000 N
100 10 m6 2× −

 = 500 × 106 Pa = 500 MPa
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(c) Percentage elongation  

  = increasein length
original length  × 100  

  = −52 40
40

 × 100 

  = 12
40  × 100 = 30%

Problem 3. The results of a tensile test are:  
Diameter of specimen 15 mm; gauge length 40 mm; 
load at limit of proportionality 85 kN; extension at 
limit of proportionality 0.075 mm; maximum load 
120kN;finallengthatpointoffracture55mm.
Determine (a) Young’s modulus of elasticity  
(b) the ultimate tensile strength (c) the stress at   
the limit of proportionality (d) the percentage 
elongation. 

(a)  Young’s modulus of elasticity is given by:   

E = 

F
A
x
L

FL
Ax

stress
strain

= =

  where the load at the limit of proportionality,   
F = 85 kN = 85000 N,

 L = gauge length = 40 mm = 0.040 m, 
 A  = cross-sectional area  

= π π
=

d
4

(0.015)
4

2 2
 = 0.0001767 m2, and

 x = extension = 0.075 mm = 0.000075 m. 
  Hence, Young’s modulus of elasticity,  

E = =
FL
Ax

(85000)(0.040)
(0.0001767)(0.000075)

               = 256.6 × 109 Pa = 256.6 GPa

(b)  Ultimate tensile strength 

    = maximum load
originalcross-sectionalarea

120000
0.0001767

=

     = 679 × 106 Pa = 679 MPa

(c)  Stress at limit of proportionality  

    = load at limit of proportionality
cross-sectionalarea

     = 85000
0 0001767.  = 481 × 106 Pa = 481 MPa

(d)  Percentage elongation  

   37.5%

increase in length
original length

100

(55 40)mm
40mm

100 = 

= ×

=
−

×

Now try the following Practice Exercise

Practice Exercise 28  Further problems on 
tensile testing

1.  What is a tensile test? Make a sketch of a 
typical load/extension graph for a mild steel 
specimen to the point of fracture and mark 
on the sketch the following: (a) the limit of 
proportionality (b) the elastic limit (c) the 
yield point.

2.  In a tensile test on a zinc specimen of gauge 
length 100 mm and diameter 15 mm, a load of  
100 kN produced an extension of 0.666 mm. 
Determine (a) the stress induced (b) the  
strain (c) Young’s modulus of elasticity. 
 [(a) 566 MPa   (b) 0.00666   (c) 85 GPa]

3.  The results of a tensile test are: Diameter of 
specimen 20 mm, gauge length 50 mm, load 
at limit of  proportionality 80 kN, exten-
sion at limit of proportionality 0.075 mm, 
maximum load 100 kN, and final length
at point of fracture 60 mm. Determine 
(a) Young’s modulus of elasticity (b) the 
ultimate tensile strength (c) the stress at the 
limit of proportionality (d) the percentage 
 elongation.

[(a) 169.8 GPa   (b) 318.3 MPa  
  (c) 254.6 MPa  (d) 20%           ]

4.3 Further worked problems 
 on tensile testing

Problem 4. A rectangular zinc specimen is sub-
jected to a tensile test and the data from the test 
is shown below. Width of specimen 40 mm; 
breadth of specimen 2.5 mm; gauge length 
120 mm.
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Load (kN)
10 17 25 30 35 37.5 38.5 37 34 32

Extension (mm)
0.15 0.25 0.35 0.55 1.00 1.50 2.50 3.50 4.50 5.00

Fracture occurs when the extension is 5.0 mm and 
the maximum load recorded is 38.5 kN. Plot the 
load/extension graph and hence determine (a) the 
stress at the limit of proportionality (b) Young’s 
modulus of elasticity (c) the ultimate tensile 
strength (d) the percentage elongation (e) the 
stress at a strain of 0.01 (f) the extension at a stress 
of 200 MPa.

A load/extension graph is shown in Figure 4.5.

Figure 4.5

(a) The limit of proportionality occurs at point P on 
the graph, where the initial gradient of the graph 
starts to change. This point has a load value of 
26.5 kN.

 Cross-sectional area of specimen  
= 40 mm × 2.5 mm = 100 mm2 = 100 × 10–6 m2

 Stress at the limit of proportionality is given by:

   σ  = force
area

26.5 10 N
100 10 m

3

6 2
=

×

× −
  

              = 265 × 106Pa = 265 MPa
(b) Gradient of straight line portion of graph is given 

by:

   
BC
AC

25000 N
0.35 10 m3

=
× −  = 71.43 × 106N/m

 Young’s modulus of elasticity  

  = (gradient of graph)










L
A

   = ( )×
×

×

−

−
71.43 10 120 10

100 10
6

3

6

   = 85.72 × 109 Pa = 85.72 GPa
(c) Ultimate tensile strength  

  = maximum load
originalcross-sectionalarea   

  = 38.5 10 N
100 10 m

3

6 2
×

× −

   = 385 × 106 Pa = 385 MPa
(d) Percentage elongation  

   = extensionat fracture point
original length

100×   

= 5.0mm
120mm

100×  = 4.17%

(e) Strain ε = extension
original length

x
l , from which,  

extension x = εl = 0.01 × 120 
                       = 1.20 mm. 
 From the graph, the load corresponding to an  

extension of 1.20 mm is 36 kN.
 Stress at a strain of 0.01 is given by: 

  σ = force
area

36000 N
100 10 m6 2

=
× −

                    = 360 × 106 Pa = 360 MPa
(f) When the stress is 200 MPa, then 

    force = area × stress 
              = (100 × 10–6)(200 × 106) = 20 kN
 From the graph, the corresponding extension is 

0.30 mm

Problem 5. A mild steel specimen of cross- 
sectional area 250 mm2 and gauge length 100 mm 
is subjected to a tensile test and the following data 
is obtained: within the limit of proportionality, a 
load of 75 kN produced an extension of 0.143 mm, 
load at yield point = 80 kN, maximum load on 
specimen=120kN,finalcross-sectionalareaof
waist at fracture = 90 mm2, and the gauge length 
had increased to 135 mm at fracture.
Determine for the specimen: (a) Young’s modulus 
of elasticity (b) the yield stress (c) the tensile 

40 

30 
P 
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strength (d) the percentage elongation and (e) the 
percentage reduction in area.

(a)  Force F = 75 kN = 75000 N, gauge length 
L = 100 mm = 0.1 m, cross-sectional area  
A = 250 mm2 = 250 × 10–6 m2, and extension  
x = 0.143 mm = 0.143 × 10–3 m.

 Young’s modulus of elasticity,  

  E = F A
x L

FL
Ax

stress
strain

/
/

= =
 

     

(75000)(0.1)
(250 10 )(0.143 10 )6 3

=
× ×− −

      = 210 × 109 Pa = 210 GPa

(b) Yield stress  = load when yield begins to take place
originalcross-sectionalarea  

= 80000 N
250 10 m6 2× −

                = 320 × 106 Pa = 320 MPa

(c) Tensile strength maximum load
originalcross-sectionalarea

120000 N
250 10 m6 2

=

=
× −

          = 480 × 106 Pa = 480 MPa

(d) Percentage elongation 

  = increasein length during test todestruction
original length

  = −135 100
100

 × 100 = 35%

(e) Percentage reduction in area  

 = 
−
(originalcross-sectionalarea)

(finalcross-sectionalarea)
originalcross-sectionalarea × 100

 = −
× = ×

250 90
250

100 160
250

100  = 64%

Now try the following Practice Exercise

Practice Exercise 29  Further problems on 
tensile testing

1.  A tensile test is carried out on a specimen  
of mild steel of gauge length 40 mm and  
diameter 7.42 mm. The results are:

Load (kN)
0 10 17 25 30 34 37.5 38.5 36
Extension (mm)
0 0.05 0.08 0.11 0.14 0.20 0.40 0.60 0.90

 Atfracturethefinallengthof thespecimen
is 40.90 mm. Plot the load/extension graph 
and determine (a) the modulus of elasticity 
for mild steel (b) the stress at the limit 
of proportionality (c) the ultimate tensile 
strength (d) the percentage elongation.

[ (a) 210 GPa   (b) 650 MPa  
(c) 890 MPa   (d) 2.25%    ]

2.  An aluminium alloy specimen of gauge 
length 75 mm and of diameter 11.28 mm was 
subjected to a tensile test, with these results:

Load (kN)
0 2.0 6.5 11.5 13.6 16.0 18.0 19.0 20.5 19.0

Extension (mm)
0 0.012 0.039 0.069 0.080 0.107 0.133 0.158 0.225 0.310

 The specimen fractured at a load of 19.0 kN.

  Determine (a) the modulus of elasticity of 
the alloy (b) the percentage elongation.

  [(a) 125 GPa   (b) 0.413%]

3.  An aluminium test piece 10 mm in diameter 
and gauge length 50 mm gave the following 
results when tested to destruction:

  Load at yield point 4.0 kN, maximum load 
6.3 kN, extension at yield point 0.036 mm, 
diameter at fracture 7.7 mm.

  Determine (a) the yield stress (b) Young’s 
modulus of elasticity (c) the ultimate tensile 
strength (d) the percentage reduction in area.

[ (a) 50.93 MPa  (b) 70.7 GPa  (c) 80.2 MPa    (d) 40.7%     ]

4.4 Proof stress

Certain materials, such as high-tensile steel, aluminium 
alloy,titanium,andsoon,donotexhibitadefiniteyield
point in their stress-strain curves, unlike mild steel, as 
shown in Figure 4.6.
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Figure 4.6  Stress-Strain curves for high tension steels,  
aluminium alloys, etc.

In this case, the equivalent yield stresses are taken in 
the form of either 0.1% or a 0.2% proof stress.
For 0.1% proof stress, a strain of e = 0.1% = 0 1

100
.  = 

0.001, is set off on the horizontal strain axis of Figure 4.6 
and a straight line is drawn parallel to the straight part of 
the stress-strain curve from this point, near to the bottom 
of the stress-strain curve where the angle is q. The inter-
section of this broken line with the stress-strain curve 
gives the 0.1% proof stress, as shown in Figure 4.6.

For the 0.2% proof stress, a strain of ε = 0.2% = 0 2
100

.  =  

0.002, is set off on the horizontal strain axis of Figure 
4.6 and a straight line is drawn from this point at an 
angle q to the horizontal and parallel to the linear part 
of the bottom of the stress-strain curve as shown in Fig-
ure 4.6. The 0.2% proof stress is not twice the value of 
the 0.1% proof stress! It may be about 10% larger.

Now try the following Practice Exercises

Practice Exercise 30  Short-answer questions 
on tensile testing

1. What is a tensile test?

2.  Which British Standard gives the standard 
procedure for a tensile test?

3.  With reference to a load/extension graph for 
mild steel, state the meaning of (a) the limit 
of proportionality (b) the elastic limit (c) the 
yield point (d) the percentage elongation.

4. Defineultimatetensilestrength.

5. Yield stress is the ratio ......
......

6. Define‘percentagereductioninarea’.

7. Briefly explain, with a diagram, what is
meantby‘0.1%proofstress’.

Practice Exercise 31  Multiple-choice 
questions on tensile 
testing 

(Answers on page 335)

A brass specimen having a cross-sectional area 
of 100 mm2 and gauge length 100 mm is sub-
jected to a tensile test from which the following 
information is  obtained: 

Load at yield point = 45 kN, maximum load  
=52.5 kN,final cross-sectional areaofwaist at
fracture = 75 mm2, and gauge length at fracture 
= 110 mm.

For questions 1 to 4, select the correct answer 
from the following list:
(a)  600 MPa (b)  525 MPa
(c)  33.33% (d)  10%
(e)  9.09% (f)  450 MPa
(g)  25%    (h)  700 MPa

1. The yield stress.

2. The percentage elongation.

3. The percentage reduction in area.

4. The ultimate tensile strength.

References

Videos of the Tensile Test and Poisson’s Ratio experiment 
can be obtained by visiting the website below:

www.routledge.com/cw/bird

For fully worked solutions to each of the problems in Practice Exercises 28 to 31 in this chapter,  
go to the website:  

www.routledge.com/cw/bird
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Forces acting at a point

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

5.1 Scalar and vector quantities

Quantities used in engineering and science can be  
divided into two groups: 

(a)  Scalar quantities have a size (or magnitude) only 
and need no other information to specify them. 
Thus, 10 centimetres, 50 seconds, 7 litres and  
3 kilograms are all examples of scalar quantities. 

At the end of this chapter you should be able to:

• distinguish between scalar and vector quantities
•	 define	‘centre	of	gravity’	of	an	object
•	 define	‘equilibrium’	of	an	object
•	 understand	the	terms	‘coplanar’	and	‘concurrent’
• determine the resultant of two coplanar forces using (a) the triangle of forces method (b) the parallelogram of 

forces method
• calculate the resultant of two coplanar forces using (a) the cosine and sine rules (b) resolution of forces
• determine the resultant of more than two coplanar forces using (a) the polygon of forces method (b) calcula-

tion by resolution of forces
• determine unknown forces when three or more coplanar forces are in equilibrium

(b)  Vector quantities have both a size or magnitude 
and a direction, called the line of action of the  
quantity. Thus, a velocity of 50 kilometres per 
hour due east, an acceleration of 9.81 metres per 
second squared vertically downwards and a force 
of 15 newtons at an angle of 30 degrees are all 
examples of vector quantities.

Why it is important to understand: Forces acting at a point
In this chapter the fundamental quantities, scalars and vectors, which form the very basis of all 
branches of engineering, are introduced. A force is a vector quantity and, in this chapter, the resolution 
of forces is introduced. Resolving forces is very important in structures, where the principle is used to 
determine the strength of roof trusses, bridges, cranes, etc. Great lengths are gone to, to explain this 
very fundamental skill, where step-by-step methods are adopted to help the reader understand this 
very important procedure. The resolution of forces is also used in studying the motion of vehicles and 
other particles in dynamics and in the case of the navigation of ships, aircraft, etc., the vectors take 
the form of displacements, velocities and accelerations. This chapter gives a sound introduction to the 
manipulation and use of scalars and vectors, by both graphical and analytical methods. The importance 
of understanding the forces at a point is to appreciate the equilibrium of forces, whether they act on a 
structure or a machine or a mechanism.

Chapter 5
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5.2 Centre of gravity and equilibrium

The centre of gravity	of	an	object	is	a	point	where	the	
resultant gravitational force acting on the body may be 
taken	to	act.	For	objects	of	uniform	thickness	lying	in	a	
horizontal plane, the centre of gravity is vertically in line  
with	the	point	of	balance	of	the	object.	For	a	thin	uniform	
rod the point of balance and hence the centre of gravity  
is halfway along the rod as shown in Figure 5.1(a).

Figure 5.1

A	thin	flat	sheet	of	a	material	of	uniform	thickness	is	
called a lamina and the centre of gravity of a rectangu-
lar lamina lies at the point of intersection of its diago-
nals, as shown in Figure 5.1(b). The centre of gravity of 
a circular lamina is at the centre of the circle, as shown 
in Figure 5.1(c). 
An	object	is	in	equilibrium when the forces acting 

on	the	object	are	such	that	there	is	no	tendency	for	the	
object	 to	move.	The	state	of	equilibrium	of	an	object	
can be divided into three groups.

	 (i)	 If	 an	 object	 is	 in	 stable equilibrium and it is 
slightly disturbed by pushing or pulling (i.e. a 
disturbing force is applied), the centre of grav-
ity is raised and when the disturbing force is re-
moved,	the	object	returns	to	its	original	position.	
Thus a ball bearing in a hemispherical cup is in 
stable equilibrium, as shown in Figure 5.2(a).

Figure 5.2

	(ii)	 An	object	is	in	unstable equilibrium if, when a 
disturbing force is applied, the centre of gravity 
is	 lowered	and	the	object	moves	away	from	its	
original position. Thus, a ball bearing balanced 
on top of a hemispherical cup is in unstable equi-
librium, as shown in Figure 5.2(b).

	(iii)	 When	 an	 object	 in	neutral equilibrium has a 
disturbing force applied, the centre of gravity re-
mains	at	the	same	height	and	the	object	does	not	
move when the disturbing force is removed. 

	 	 Thus,	a	ball	bearing	on	a	flat	horizontal	surface	is	
in neutral equilibrium, as shown in Figure 5.2(c).

5.3 Forces

When forces are all acting in the same plane, they are 
called coplanar. When forces act at the same time and 
at the same point, they are called concurrent forces.

Force is a vector quantity and thus has both a mag-
nitude and a direction. A vector can be represented 
graphically by a line drawn to scale in the direction of 
the line of action of the force. 
To distinguish between vector and scalar quantities, 
various ways are used. 
These include: 

 (i) bold print,
 (ii) two capital letters with an arrow above them to 

denote the sense of direction, for example, 
� ���
AB  

where A is the starting point and B the end point 
of the vector,

 (iii) a line over the top of letters, for example, AB or a
 (iv) letters with an arrow above, for example, 

�
a, 
��
A

 (v) underlined letters, for example, a
 (vi) xi + jy, where i and j are axes at right-angles to 

each other; for example, 3i + 4j means 3 units in 
the i direction and 4 units in the j direction, as  
shown in Figure 5.3.

Figure 5.3
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 (vii) a column matrix 










a
b ; for example, the vector OA 

shown in Figure 5.3 could be represented by 










3
4

  Thus, in Figure 5.3,  

OA ≡OA
� ���

 ≡ OA  ≡ 3i + 4j ≡ 










3
4

  The method adopted in this text is to denote  
vector quantities in bold print.

Thus, ab in Figure 5.4 represents a force of 5 newtons 
acting in a direction due east.

Figure 5.4

5.4 The resultant of two 
 coplanar forces

For two forces acting at a point, there are three pos-
sibilities.

(a) For forces acting in the same direction and having 
the same line of action, the single force having 
the same effect as both of the forces, called the 
resultant force	or	just	the	resultant, is the arith-
metic sum of the separate forces. Forces of F1 and 
F2 acting at point P, as shown in Figure 5.5(a), 
have exactly the same effect on point P as force 
F shown in Figure 5.5(b), where F = F1 + F2 and 
acts in the same direction as F1 and F2. Thus F is 
the resultant of F1 and F2

Figure 5.5

(b) For forces acting in opposite directions along the 
same line of action, the resultant force is the arithme-
tic difference between the two forces. Forces of F1  

and F2 acting at point P as shown in Figure 5.6(a) 
have exactly the  same effect on point P as force 
F shown in Figure 5.6(b), where F = F2 – F1 and 
acts in the direction of F2, since F2 is greater than 
F1. Thus F is the resultant of F1 and F2

Figure 5.6

(c) When two forces do not have the same line of ac-
tion, the magnitude and direction of the resultant 
force may be found by a procedure called vector 
addition of forces. There are two graphical meth-
ods of performing vector addition, known as  
the triangle of forces method (see Section 5.5) 
and the parallelogram of forces method (see 
Section 5.6).

Problem 1. Determine the resultant force of two 
forces of 5 kN and 8 kN, (a) acting in the same 
direction and having the same line of action 
(b) acting in opposite directions but having the 
same line of action.

(a)  The vector diagram of the two forces acting in the 
same direction is shown in Figure 5.7(a), which 
assumes that the line of action is horizontal,  
although	 since	 it	 is	 not	 specified,	 it	 could	be	 in	
any direction. From above, the resultant force F is 
given by: F = F1 + F2, i.e. F = (5 + 8) kN = 13 kN  
in the direction of the original forces.

Figure 5.7
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(b)  The vector diagram of the two forces acting in op-
posite directions is shown in Figure 5.7(b), again 
assuming that the line of action is in a horizontal 
direction. From above, the resultant force F is 
given by: F = F2 – F1, i.e. F = (8 – 5) kN = 3 kN  
in the direction of the 8 kN force.

5.5 Triangle of forces method

A simple procedure for the triangle of forces method of 
vector addition is as follows:

 (i) Draw a vector representing one of the forces,  
using an appropriate scale and in the direction  
of  its line of action.

 (ii) From the nose of this vector and using the same 
scale, draw a vector representing the second  
force in the direction of its line of action.

 (iii) The resultant vector is represented in both mag-
nitude and direction by the vector drawn from 
the	tail	of	the	first	vector	to	the	nose	of	the	sec-
ond vector.

Problem 2. Determine the magnitude and direc-
tion of the resultant of a force of 15 N acting hori-
zontally to the right and a force of 20 N, inclined at 
an angle of 60° to the 15 N force. Use the triangle 
of forces method.

Figure 5.8

Using the procedure given above and with reference to 
Figure 5.8:

 (i)  ab is drawn 15 units long horizontally.
 (ii) From b, bc is drawn 20 units long, inclined at an 

angle of 60° to ab. (Note, in angular measure, 

an angle of 60° from ab means 60° in an anti-
clockwise direction.)

 (iii) By measurement, the resultant ac is 30.5 units 
long inclined at an angle of 35° to ab. That is, 
the resultant force is 30.5 N, inclined at an an-
gle of 35° to the 15 N force.

Problem 3. Find the magnitude and direction of 
the two forces given, using the triangle of forces 
method. 
First force: 1.5 kN acting at an angle of 30°
Second force: 3.7 kN acting at an angle of –45°

From the above procedure and with reference to  
Figure 5.9:

Figure 5.9

 (i) ab is drawn at an angle of 30° and 1.5 units in 
length.

 (ii) From b, bc is drawn at an angle of –45° and 3.7 
units in length. (Note, an angle of –45° means 
a clockwise rotation of 45° from a line drawn 
horizontally to the right.)

 (iii) By measurement, the resultant ac is 4.3 units 
long at an angle of –25°. That is, the resultant  
force is 4.3 kN at an angle of –25°

Now try the following Practice Exercise

Practice Exercise 32  Further problems on 
the triangle of forces 
method

1.  Determine the magnitude and direction of 
the resultant of the forces 1.3 kN and 2.7 kN, 
having the same line of action and acting in 
the same direction.

 [4.0 kN in the direction of the forces]

Scale 

o 5 10 15 20 N (白田e)

35・
a 

30.5N c 
20N 

60・

15 N b 
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2.  Determine the magnitude and direction of 
the resultant of the forces 470 N and 538 N 
having the same line of action but acting in 
opposite directions.

 [68 N in the direction of the 538 N force]

In questions 3 to 5, use the triangle of forces 
method to determine the magnitude and direction 
of the resultant of the forces given.

3. 13 N at 0° and 25 N at 30° [36.8 N at 20°]

4. 5 N at 60° and 8 N at 90° [12.6 N at 79°]

5. 1.3 kN at 45° and 2.8 kN at –30° 
 [3.4 kN at –8°]

5.6 The parallelogram of 
 forces method

A simple procedure for the parallelogram of forces 
method of vector addition is as follows:

 (i) Draw a vector representing one of the forces,  
using an appropriate scale and in the direction  
of  its line of action.

 (ii) From the tail of this vector and using the same 
scale draw a vector representing the second force  
in the direction of its line of action.

 (iii) Complete the parallelogram using the two vec-
tors drawn in (i) and (ii) as two sides of the paral-
lelogram.

 (iv) The resultant force is represented in both magni-
tude and direction by the vector corresponding to 
the diagonal of the parallelogram drawn from the 
tail of the vectors in (i) and (ii).

Problem 4. Use the parallelogram of forces 
method	to	find	the	magnitude	and	direction	of	the	
resultant of a force of 250 N acting at an angle  
of 135° and a force of 400 N acting at an angle  
of –120°.

From the procedure given above and with reference to 
Figure 5.10:

 (i) ab is drawn at an angle of 135° and 250 units in 
length

Figure 5.10

 (ii) ac is drawn at an angle of –120° and 400 units in 
length

 (iii) bd and cd are drawn to complete the parallelo-
gram

 (iv) ad is drawn. By measurement, ad is 413 units 
long at an angle of –156°

That is, the resultant force is 413 N at an angle of –156°

Now try the following Practice Exercise

Practice Exercise 33  Further problems on 
the parallelogram of 
forces method

In questions 1 to 5, use the parallelogram of  
forces method to determine the magnitude and 
direction of the resultant of the forces given.

1. 1.7 N at 45° and 2.4 N at –60°
 [2.6 N at –20°]

2. 9 N at 126° and 14 N at 223°
 [15.7 N at –172°]

3. 23.8 N at –50° and 14.4 N at 215°
 [26.7 N at –82°]

4. 0.7 kN at 147° and 1.3 kN at –71°
 [0.86 kN at –101°]

5. 47 N at 79° and 58 N at 247°
 [15.5 N at –152°]

S国 le

o 100 200 300 400 500 N (for皿}

b 

d 413N 

c 400N 

250 N 

135・

-nu 
令

4・1
a
祖
国



76 Mechanical Engineering Principles

Pa
rt 

Tw
o

5.7 Resultant of coplanar
 forces by calculation

An alternative to the graphical methods of determining 
the resultant of two coplanar forces is by calculation. 
This can be achieved by trigonometry using the cosine 
rule and the sine rule, as shown in Problem 5 following, 
or by resolution of forces (see Section 5.10).

Problem 5. Use the cosine and sine rules to  
determine the magnitude and direction of a force 
of 8 kN acting at an angle of 50° to the horizontal 
and a force of 5 kN acting at an angle of –30° to 
the horizontal.

The space diagram is shown in Figure 5.11(a). A sketch 
is made of the vector diagram, 0a representing the  
8 kN force in magnitude and direction and ab repre-
senting the 5 kN force in magnitude and direction. The 
resultant is given by length 0b. By the cosine rule, 

Figure 5.11

    0b2 = 0a2 + ab2 – 2(0a)(ab) cos∠0ab
      = 82 + 52 – 2(8)(5) cos 100°  
  (since ∠0ab = 180° – 50° – 30° = 100°)
      = 64 + 25 – (–13.892) = 102.892

Hence,    0b = 102 892. = 10.14 kN

By the sine rule, 
∠ °a b =
5

sin 0
10.14

sin100

from which,   sin ∠a0b = 
°5sin100

10.14 = 0.4856

Hence ∠a0b = sin–1 (0.4856) = 29.05°. Thus angle f in 
Figure 5.11(b) is 50° – 29.05° = 20.95°

Hence the resultant of the two forces is 10.14 kN 
acting at an angle of 20.95° to the horizontal

Now try the following Practice Exercise

Practice Exercise 34  Further problems 
on the resultant of 
coplanar forces by 
calculation 

1.  Forces of 7.6 kN at 32° and 11.8 kN at 143° 
act at a point. Use the cosine and sine rules 
to calculate the magnitude and direction of 
their resultant. [11.52 kN at 105°]

 In questions 2 to 5, calculate the resultant of  
the given forces by using the cosine and sine 
rules.

2. 13 N at 0° and 25 N at 30°
 [36.84 N at 19.83°]

3. 1.3 kN at 45° and 2.8 kN at –30°
 [3.38 kN at – 8.19°]

4. 9 N at 126° and 14 N at 223°
 [15.69 N at – 171.67°]

5. 0.7 kN at 147° and 1.3 kN at – 71°
 [0.86 kN at – 100.94°]

5.8 Resultant of more than 
 two coplanar forces

For the three coplanar forces F1, F2 and F3 acting at 
a point as shown in Figure 5.12, the vector diagram 
is drawn using the nose-to-tail method of Section 5.5. 
The procedure is: 

 (i) Draw 0a to scale to represent force F1 in both 
magnitude and direction (see Figure 5.13) 

Figure 5.12
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Figure 5.13

 (ii) From the nose of 0a, draw ab to represent 
force F2

 (iii) From the nose of ab, draw bc to represent 
force F3

 (iv) The resultant vector is given by length 0c in  
Figure 5.13. The direction of resultant oc is from 
where	we	started,	i.e.	point	0,	to	where	we	fin-
ished, i.e. point c. When acting by itself, the re-
sultant force, given by 0c, has the same effect 
on the point as forces F1, F2 and F3 have when 
acting together. The resulting vector diagram of 
Figure 5.13 is called the polygon of forces.

Problem 6. Determine graphically the magnitude 
and direction of the resultant of the following three 
coplanar forces, which may be considered as acting 
at a point: 
Force A, 12 N acting horizontally to the right; force B, 
7 N inclined at 60° to force A; force C, 15 N inclined
at 150° to force A.

The space diagram is shown in Figure 5.14. The vector 
diagram shown in Figure 5.15, is produced as follows: 

Figure 5.14

Figure 5.15

 (i) 0a represents the 12 N force in magnitude and 
direction

 (ii) From the nose of 0a, ab is drawn inclined at 
60° to 0a and 7 units long

 (iii) From the nose of ab, bc is drawn 15 units long 
inclined at 150° to 0a (i.e. 150° to the horizontal)

 (iv) 0c represents the resultant; by measurement, 
the resultant is 13.8 N inclined at f = 80° to the  
horizontal.

Thus the resultant of the three forces, FA, FB and FC 
is a force of 13.8 N at 80° to the horizontal.

Problem 7. The following coplanar forces are 
acting at a point, the given angles being measured
from the horizontal: 100 N at 30°, 200 N at 80°,  
40 N at –150°, 120 N at –100° and 70 N at –60°.
Determine graphically the magnitude and direction 
of	the	resultant	of	the	five	forces.

The	 five	 forces	 are	 shown	 in	 the	 space	 diagram	 of	
Figure 5.16. Since the 200 N and 120 N forces have 
the same line of action but are in opposite sense, they 
can be represented by a single force of 200 – 120, i.e.  
80 N acting at 80° to the horizontal. Similarly, the  
100 N and 40 N forces can be represented by a force 
of 100 – 40, i.e. 60 N acting at 30° to the horizontal. 
Hence the space diagram of Figure 5.16 may be rep-
resented by the space diagram of Figure 5.17. Such a 
simplification	 of	 the	 vectors	 is	 not	 essential	 but	 it	 is	
easier to construct the vector diagram from a space  
diagram	having	three	forces,	than	one	with	five.	

Figure 5.16
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Figure 5.17

The vector diagram is shown in Figure 5.18, 0a repre-
senting the 60 N force, ab representing the 80N force 
and bc the 70 N force. The resultant, 0c, is found by 
measurement to represent a force of 112 N and angle 
f is 25°. 

Scale

Figure 5.18

Thus, the five forces shown in Figure 5.16 may be 
represented by a single force of 112 N at 25° to the 
horizontal. 

Now try the following Practice Exercise 

Practice Exercise 35  Further problems on 
the resultant of more 
than two coplanar 
forces 

In questions 1 to 3, determine graphically the 
magnitude and direction of the resultant of the 
coplanar forces given which are acting at a point.

1.  Force A, 12 N acting horizontally to the 
right, force B, 20 N acting at 140° to force A, 
force C, 16 N acting 290° to force A.

 [3.1 N at –45° to force A]

2.  Force 1, 23 kN acting at 80° to the horizon-
tal, force 2, 30 kN acting at 37° to force 1, 
force 3, 15 kN acting at 70° to force 2. 

[53.5 kN at 37° to force 1  
 (i.e. 117° to the horizontal)]

3.  Force P, 50 kN acting horizontally to the 
right, force Q, 20 kN at 70° to force P, force 
R, 40 kN at 170° to force P, force S, 80 kN at 
300° to force P. [72 kN at –37° to force P]

4.  Four horizontal wires are attached to a tele-
phone pole and exert tensions of 30 N to the 
south, 20 N to the east, 50 N to the north-east 
and 40 N to the north-west. Determine the 
resultant force on the pole and its direction. 

 [43.2 N at 39° east of north]

5.9 Coplanar forces in equilibrium

When three or more coplanar forces are acting at a 
point and the vector diagram closes, there is no resul-
tant. The forces acting at the point are in equilibrium.

Problem 8. A load of 200 N is lifted by two 
ropes connected to the same point on the load, 
making angles of 40° and 35° with the vertical.  
Determine graphically the tensions in each rope 
when the system is in equilibrium.

The space diagram is shown in Figure 5.19. Since 
the system is in equilibrium, the vector diagram must 
close. The vector diagram, shown in Figure 5.20, is 
drawn as follows: 

Figure 5.19
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Figure 5.20

 (i) The load of 200 N is drawn vertically as shown 
by 0a

 (ii) The direction only of force F1 is known,  
so from point a, ad is drawn at 40° to the verti-
cal

 (iii) The direction only of force F2 is known,  
so from point 0, 0c is drawn at 35° to the 
 vertical

 (iv) Lines ad and 0c cross at point b; hence the  
vector diagram is given by triangle 0ab. By 
measurement, ab is 119 N and 0b is 133 N.

Thus the tensions in the ropes are F1 = 119 N and  
F2 = 133 N

Problem 9. Five coplanar forces are acting on a 
body and the body is in equilibrium. The forces 
are: 12 kN acting horizontally to the right, 18 kN 
acting at an angle of 75°, 7 kN acting at an angle 
of 165°, 16 kN acting from the nose of the 7 kN 
force, and 15 kN acting from the nose of the 16 kN
force. Determine the directions of the 16 kN and  
15 kN forces relative to the 12 kN force.

With reference to Figure 5.21, 0a is drawn 12 units 
long horizontally to the right. From point a, ab is drawn  
18 units long at an angle of 75°. From b, bc is drawn 
7 units long at an angle of 165°. The direction of the 
16 kN force is not known, thus arc pq is drawn with 
a compass, with centre at c, radius 16 units. Since the 
forces are at equilibrium, the polygon of forces must 

close. Using a compass with centre at 0, arc rs is drawn 
having a radius 15 units. The point where the arcs  
intersect is at d.

Figure 5.21

By measurement, angle f = 198° and a = 291°

Thus the 16 kN force acts at an angle of 198°  
(or –162°) to the 12 kN force, and the 15 kN force 
acts at an angle of 291° (or –69°) to the 12 kN force.

Now try the following Practice Exercise

Practice Exercise 36  Further problems on 
coplanar forces in 
equilibrium

1.  A load of 12.5 N is lifted by two strings con-
nected to the same point on the load, making 
angles of 22° and 31° on opposite sides of 
the vertical. Determine the tensions in the 
strings.  [5.86 N, 8.06 N]

2.  A two-legged sling and hoist chain used for 
lifting machine parts is shown in  Figure 5.22. 
Determine the forces in each leg of the sling 
if parts exerting a downward force of 15 kN 
are lifted. [9.96 kN, 7.77 kN]
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Figure 5.22 

3.  Four coplanar forces acting on a body are 
such that it is in equilibrium. The vector 
diagram for the forces is such that the 40 N 
force acts vertically upwards, the 40 N force 
acts at 65° to the 60 N force, the 100 N force 
acts from the nose of the 40 N force and the 
90 N force acts from the nose of the 100 N 
force. Determine the direction of the 100 N 
and 90 N forces relative to the 60 N force. 

[100 N force at 148° to the 60 N force,  
  90 N force at 277° to the 60 N force  ]

5.10 Resolution of forces

A vector quantity may be expressed in terms of its 
horizontal and vertical components. For example,  
a vector representing a force of 10 N at an angle of  
60° to the horizontal is shown in Figure 5.23. If the 
horizontal line 0a and the vertical line ab are construct-
ed as shown, then 0a is called the horizontal compo-
nent of the 10 N force, and ab the vertical component 
of the 10 N force. 

Figure 5.23

By trigonometry, cos 60° = 0
0
a
b , hence the horizontal 

component, 0a = 10 cos 60° 

Also, sin 60° = ab
b0 , hence the vertical component,  

ab = 10 sin 60°
This process is called finding the horizontal and ver-
tical components of a vector or the resolution of a 
vector, and can be used as an alternative to graphical 
methods for calculating the resultant of two or more 
coplanar forces acting at a point. 
For example, to calculate the resultant of a 10 N force 
acting at 60° to the horizontal and a 20 N force acting at 
–30° to the horizontal (see Figure 5.24) the procedure 
is as follows: 

Figure 5.24

 (i) Determine the horizontal and vertical compo- 
nents of the 10 N force, i.e. horizontal component,  
0a = 10 cos 60° = 5.0 N, and vertical component, 
ab = 10 sin 60° = 8.66 N

 (ii) Determine the horizontal and vertical compo-
nents of the 20 N force, i.e. horizontal compo-
nent, 0d = 20 cos(–30°) = 17.32 N, and vertical 
component, cd = 20 sin(–30°) = –10.0 N

 (iii) Determine the total horizontal component, i.e. 
   0a + 0d = 5.0 + 17.32 = 22.32 N
 (iv) Determine the total vertical component, i.e. 
   ab + cd = 8.66 + (–10.0) = –1.34 N
 (v) Sketch the total horizontal and vertical compo-

nents as shown in Figure 5.25. The resultant of  
the two components is given by length 0r and, by 
Pythagoras’	theorem,	

   0r = +22.32 1.342 2  = 22.36 N
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Figure 5.25

  and using trigonometry,   

angle f = tan–1 1 34
22 32

.
.  = 3.44°

  Hence the resultant of the 10 N and 20 N forces 
shown in Figure 5.24 is 22.36 N at an angle  
of –3.44° to the horizontal.

Problem 10. Forces of 5.0 N at 25° and 8.0 N at 
112° act at a point. By resolving these forces into 
horizontal and vertical components, determine their 
resultant.

The space diagram is shown in Figure 5.26. 

Figure 5.26

 (i) The horizontal component of the 5.0 N force, 
0a = 5.0 cos 25° = 4.532, and the vertical  
component of the 5.0 N force,   
ab = 5.0 sin 25° = 2.113

 (ii) The horizontal component of the 8.0 N force, 
0c = 8.0 cos 112° = –2.997

  The vertical component of the 8.0 N force,  
cd = 8.0 sin 112° = 7.417 

 (iii) Total horizontal component  
= 0a + 0c = 4.532 + (–2.997) = + 1.535

 (iv) Total vertical component  
= ab + cd = 2.113 + 7.417 = + 9.530

 (v) The components are shown sketched in Figure 
5.27.

Figure 5.27 

	 	 By	Pythagoras’	theorem,	r  = +1.535 9.5302 2  
= 9.653, 

  and by trigonometry, angle f  = tan–1 9 530
1 535

.

.   

= 80.85° 
Hence the resultant of the two forces shown in  
Figure 5.26 is a force of 9.653 N acting at 80.85° to 
the horizontal.

Problems 9 and 10 demonstrate the use of resolution  
of forces for calculating the resultant of two co- 
planar forces acting at a point. However, the meth-
od may be used for more than two forces acting at a  
point, as shown in Problem 11.

Problem 11. Determine by resolution of forces 
the resultant of the following three coplanar forces
acting at a point: 200 N acting at 20° to the hori-
zontal; 400 N acting at 165° to the horizontal; 
500 N acting at 250° to the horizontal.

A tabular approach using a calculator may be made as 
shown below:

 Horizontal component
Force 1   200 cos 20° =  187.94
Force 2 400 cos 165° = –386.37
Force 3 500 cos 250° = –171.01
Total horizontal component = –369.44 

  Vertical component
Force 1    200 sin 20° =   68.40
Force 2  400 sin 165° =  103.53
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Force 3  500 sin 250° = –469.85
Total vertical component = –297.92 
The total horizontal and vertical components are shown 
in Figure 5.28.

Figure 5.28

Resultant r  = +369.44 297.922 2  

= 474.60, and 

angle f = tan–1 297 92
369 44

.

.  = 38.88°,  

from which, a = 180° – 38.88° = 141.12°

Thus the resultant of the three forces given is  
474.6 N acting at an angle of –141.12° (or +218.88°) 
to the horizontal.

Problem 12. Determine by resolution the 
magnitude and direction of the following six 
concurrent coplanar forces: 150 N acting at 25° 
to the horizontal, 250 N acting at 90° to the 
horizontal, 200 N acting at 120° to the horizontal, 
300 N acting at 200° to the horizontal, 60 N acting 
at 280° to the horizontal, and 220 N acting at 320° 
to the horizontal.

A tabular approach using a calculator may be made as 
shown below:

 Horizontal components of the forces
  150 cos 25° =  135.9 
  250 cos 90° =    0 
  200 cos 120° = –100 
  300 cos 200° =  –281.9 
  60 cos 280° =   10.42 
  220 cos 320° =  168.5 
 Total horizontal component,  H =  –67.1 N 

 Vertical components of the forces
 150 sin 25° =  63.4 
 250 sin 90° =  250 
 200 sin 120° =  173.2 
 300 sin 200° = –102.6 
 60 sin 280° =  –59.1 
 220 sin 320° = –141.4 
Total vertical component, V =  183.5 N

H and V are shown plotted in Figure 5.29 and from 
Pythagoras’	theorem:

Figure 5.29 

       +R = H V2 2 2  and resultant, 

 R = +H V2 2 = − +( 67.1) (183.5)2 2 = 195.4 N

Angle q =








 =











= =

− −

−

V
H

tan tan 183.5
67.1

tan (2.7347) 69.91°

1 1

1

 

Measuring from the positive horizontal axis, angle of 
the resultant R, α = 180° – 69.91° = 110.09°

Thus the resultant of the six forces given is 195.4 N 
acting at an angle of 110.09° to the horizontal.

Now try the following Practice Exercise

Practice Exercise 37  Further problems on 
resolution of forces 

1.  Resolve a force of 23.0 N at an angle of 64° 
into its horizontal and vertical components. 

 [10.08 N, 20.67 N]

2.  Forces of 5 N at 21° and 9 N at 126° act 
at a point. By resolving these forces into 

-369.44 

e 
a 

F 

-297.92 

R v=什白州

。 α 

H=~7. 1 N 
o 



Forces acting at a point 83

Pa
rt 

Tw
o

[ (a) H = –64.02 kN  (b) V = 462.85 kN  
(c) R = 467.26 kN at 97.88° 
anticlockwise from the horizontal       ]

5.11 Summary

(a) To determine the resultant of two coplanar forces 
acting at a point, four methods are commonly used. 
They are:

 by drawing:
 (1) triangle of forces method, and
 (2)  parallelogram of forces method, and 
 by calculation:
 (3) use of cosine and sine rules, and
 (4) resolution of forces.

(b) To determine the resultant of more than two co-
planar forces acting at a point, two methods are 
commonly used. They are:

 by drawing:  
(1)  polygon of forces method, and

 by calculation: 
(2)  resolution of forces.

Now try the following Practice Exercises

Practice Exercise 38  Short-answer 
questions on forces 
acting at a point

 1.  Give one example of a scalar quantity and 
one example of a vector quantity.

 2.  Explain the difference between a scalar and 
a vector quantity.

 3.  What is meant by the centre of gravity of 
an	object?

 4.  Where is the centre of gravity of a rectan-
gular	lamina?

 5.	 What	is	meant	by	neutral	equilibrium?
 6.	 State	the	meaning	of	the	term	‘coplanar’.
 7.	 What	is	a	concurrent	force?
 8. State what is meant by a triangle of forces.
 9.  State what is meant by a parallelogram of 

forces.
10. State what is meant by a polygon of forces.

 horizontal and vertical components, deter-
mine their  resultant. [9.09 N at 93.92°]

 In questions 3 and 4, determine the magnitude 
and direction of the resultant of the coplanar 
forces given which are acting at a point, by reso-
lution of forces.

3.  Force A, 12 N acting horizontally to the 
right, force B, 20 N acting at 140° to force A, 
force C, 16 N acting 290° to force A. 

 [3.06 N at –45.40° to force A]

4.  Force 1, 23 kN acting at 80° to the horizon-
tal, force 2, 30 kN acting at 37° to force 1, 
force 3, 15 kN acting at 70° to force 2. 

[ 53.50 kN at 117.27° 
  to the horizontal      ]

5.  Determine, by resolution of forces, the re-
sultant of the following three coplanar forces 
acting at a point: 10 kN acting at 32° to the 
horizontal, 15 kN acting at 170° to the hori-
zontal, 20 kN acting at 240° to the horizontal.
 [18.82 kN at 210.03° to the horizontal]

6.  The following coplanar forces act at a point: 
force A, 15 N acting horizontally to the right, 
force B, 23 N at 81° to the horizontal, force C, 
7 N at 210° to the horizontal, force D, 9 N at  
265° to the horizontal, and force E, 28 N at 
324° to the horizontal. Determine the resultant  
of	the	five	forces	by	resolution	of	the	forces.

 [34.96 N at –10.23° to the horizontal]

7.  At a certain point, 12 different values of 
coplanar and concurrent, radially outward 
tensile	 forces	 are	 applied.	 The	 first	 force	
is applied horizontally to the right and the 
remaining 11 forces are applied at equally 
spaced intervals of 30° anticlockwise. Start-
ing	 from	 the	 first	 force	 and	 then	 30° anti-
clockwise to the second force, and so on, so 
that the 12 forces encompass a complete cir-
cle of 360°. The magnitude of the 12 forces, 
in order of sequence, are: 30 kN, 250 kN, 
200 kN, 180 kN, 160 kN, 140 kN, 120 kN, 
100 kN, 80 kN, 60 kN, 40 kN and 20 kN. 

  Determine (a) the sum of the horizontal 
components of the forces, H, (b) the sum 
of the vertical components of the forces, V,  
(c) the magnitude, R, and the direction of the 
resultant force, q.
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11.  When a vector diagram is drawn represent-
ing coplanar forces acting at a point, and 
there is no resultant, the forces are in ..........

12.  Two forces of 6 N and 9 N act horizontally 
to the right. The resultant is .... N acting .....

13.  A force of 10 N acts at an angle of 50° and 
another force of 20 N acts at an angle of 
230°. The resultant is a force ...... N acting 
at an angle of .... °.

14.	 What	is	meant	by	‘resolution	of	forces’?
15.  A coplanar force system comprises a 20 kN 

force acting horizontally to the right, 30 kN 
at 45°, 20 kN at 180° and 25 kN at 225°. 
The resultant is a force of ...... N acting at 
an angle of .... ° to the horizontal.

Practice Exercise 39  Multiple-choice 
questions on forces 
acting at a point 

(Answers on page 335)

 1.  A physical quantity which has direction as 
well as magnitude is known as a:

 (a)  force    (b)  vector
 (c)  scalar (d)  weight.
 2.  Which of the following is not a scalar 

quantity?
 (a)  velocity (b)  potential energy
 (c)  work  (d)  kinetic energy.
 3.  Which of the following is not a vector 

quantity?
 (a)  displacement
 (b)  density
 (c)  velocity
 (d)  acceleration.
	 4.	 Which	of	the	following	statements	is	false?
 (a)   Scalar quantities have size or magni-

tude only
 (b)   Vector quantities have both magnitude 

and direction
 (c)   Mass, length and time are all scalar 

quantities
 (d)   Distance, velocity and acceleration are 

all vector quantities.
	 5.	 	If	the	centre	of	gravity	of	an	object	which	

is	slightly	disturbed	is	raised	and	the	object	

returns to its original position when the dis-
turbing	force	is	removed,	the	object	is	said	
to be in

 (a)  neutral equilibrium
 (b)  stable equilibrium
 (c)  static equilibrium
 (d)  unstable equilibrium.

	 6.	 Which	of	the	following	statements	is	false?
 (a)   The centre of gravity of a lamina is at 

its point of balance.
 (b)   The centre of gravity of a circular lam-

ina is at its centre.
 (c)   The centre of gravity of a rectangular 

lamina is at the point of intersection of 
its two sides.

 (d)   The centre of gravity of a thin uniform 
rod is halfway along the rod.

 7.  The magnitude of the resultant of the  
vectors shown in Figure 5.30 is: 

 (a)  2 N  (b)  12 N
 (c)  35 N  (d)  –2 N 

Figure 5.30

 8.  The magnitude of the resultant of the vec-
tors shown in Figure 5.31 is: 

 (a)  7 N  (b)  5 N
 (c)  1 N   (d)  12 N

Figure 5.31

	 9.	 Which	of	the	following	statements	is	false?
 (a)   There is always a resultant vector required 

to close a vector diagram representing 
a system of coplanar forces acting at a 
point, which are not in equilibrium.

 (b)   A vector quantity has both magnitude 
and direction.

 (c)   A vector diagram representing a sys-
tem of coplanar forces acting at a point 
when in equilibrium does not close.

5N 

7N 

4N 

3N 
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 (d)   Concurrent forces are those which act 
at the same time at the same point.

10.	 Which	of	the	following	statements	is	false?
 (a)   The resultant of coplanar forces of 1 N, 

2 N and 3 N acting at a point can be 4 N.
 (b)   The resultant of forces of 6 N and  

3 N acting in the same line of action 
but opposite in sense is 3 N.

 (c)   The resultant of forces of 6 N and 3 N 
acting in the same sense and having the 
same line of action is 9 N.

 (d)   The resultant of coplanar forces of 4 N 
at 0°, 3 N at 90° and 8 N at 180° is 15 N.

11.  A space diagram of a force system is 
shown in Figure 5.32. Which of the vector 
diagrams in Figure 5.33 does not represent 
this	force	system?

Figure 5.32

Figure 5.33

12.  With reference to Figure 5.34, which of the 
following	statements	is	false?	

Figure 5.34

 (a)   The horizontal component of FA is  
8.66 N 

 (b)  The vertical component of FB is 10 N
 (c)  The horizontal component of FC is 0
 (d)  The vertical component of FD is 4 N

13.  The resultant of two forces of 3 N and 4 N 
can never be equal to:

 (a)  2.5 N (b)  4.5 N
 (c)  6.5 N (d)  7.5 N

14.  The magnitude of the resultant of the vec-
tors shown in Figure 5.35 is:

 (a)  5 N  (b)  13 N
 (c)  1 N  (d)  63 N

Figure 5.35

For fully worked solutions to each of the problems in Practice Exercises 32 to 39 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

F8=20 N 

FA = 10 N 

150・
30・

60・

F~=5N 
FD= 6 N -

10N 

30N 

20N 

30N 30N 
10N 

3N 

20N 
10N 20N 

(a) (b) 

10 N 3N 7N 

10 N 30N 

20N 20N 
30N 

(0) (d) 
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Simply supported beams

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Chapter 6

Why it is important to understand: Simply supported beams
This chapter is very important for the design of beams which carry loads, acting transversely to them. 
These structures are of importance in the design of buildings, bridges, cranes, ships, aircraft, automobiles, 
and so on. The chapter commences with defining the moment of a force, and then, using equilibrium 
considerations, demonstrates the principle of moments. This is a very important skill widely used in 
designing structures. Several examples are given, with increasing complexity to help the reader acquire 
these valuable skills. This chapter describes skills which are fundamental and extremely important in 
many branches of engineering. The main reason though for understanding simply supported beams is 
that such structures appear in the design of buildings, automobiles, aircraft, etc.

In general, with reference to Figure 6.1, the moment M 
of a force acting about a point P is: force × perpendicular 
distance between the line of action of the force and P,

i.e.   M = F × d 

Figure 6.1 

At the end of this chapter you should be able to:

•	 define	a	‘moment’	of	a	force	and	state	its	unit
• calculate the moment of a force from M = F × d
• understand the conditions for equilibrium of a beam
• state the principle of moments
• perform calculations involving the principle of moments
• recognise typical practical applications of simply supported beams with point loadings
• perform calculations on simply supported beams having point loads
• perform calculations on simply supported beams with couples

6.1 The moment of a force

When using a spanner to tighten a nut, a force tends 
to turn the nut in a clockwise direction. This turning  
effect of a force is called the moment of a force or, 
more	briefly,	just	a	moment. The size of the moment 
acting on the nut depends on two factors:

(a)  the size of the force acting at right angles to the 
shank of the spanner, and

(b)  the perpendicular distance between the point of 
application of the force and the centre of the nut.

Moment，M 

Force， F 

Turning悶 dius，d
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The unit of a moment is the newton metre (N  m). 
Thus, if force F in Figure 6.1 is 7 N and distance d is  
3 m, then the moment M is 7 N × 3 m, i.e. 21 N m.

Problem 1. A force of 15 N is applied to a  
spanner at an effective length of 140 mm from  
the centre of a nut. Calculate (a) the moment  
of the force applied to the nut (b) the magnitude  
of the force required to produce the same moment 
if the effective length is reduced to 100 mm.

From above, M = F × d, where M is the turning moment, 
F is the force applied at right angles to the spanner and 
d is the effective length between the force and the centre 
of the nut. Thus, with reference to Figure 6.2(a):

Figure 6.2

(a)  Turning moment,  
 M = 15 N × 140 mm = 2100 N mm 

       = 2100 N mm × 1
1000

m
mm  = 2.1 N m

(b)  Turning moment, M is 2100  N  mm and the  
effective length d becomes 100 mm (see Figure  
6.2(b)). Applying M = F × d gives:   
2100 N mm = F × 100 mm from which, 

 force, F = 2100
100

N mm
mm  = 21 N

Problem 2. A moment of 25 N m is required 
to operate a lifting jack. Determine the effective 
length of the handle of the jack if the force applied 
to it is: (a) 125 N (b) 0.4 kN

From above, moment M = F × d, where F is the force 
applied at right angles to the handle and d is the effec-
tive length of the handle. Thus: 
(a)  25 N m = 125 N × d, from which effective length,   

d = 25
125

N m
N  = 1

5 m = 1
5 × 1000 mm = 200 mm

(b)  Turning moment M is 25 N  m and the force F  
becomes 0.4 kN, i.e. 400 N. 

 Since M = F × d, then 25 N  m = 400 N × d 
 Thus,   

 effective  length, d  = 25
400

N m
N  = 1

16 m  

= 1
16 × 1000 mm = 62.5 mm

Now try the following Practice Exercise

Practice Exercise 40  Further problems on 
the moment of a force 

1.  Determine the moment of a force of 25 N 
applied to a spanner at an effective length of 
180 mm from the centre of a nut.  
 [4.5 N m]

2.  A moment of 7.5 N m is required to turn a 
wheel. If a force of 37.5 N applied to the rim 
of the wheel can just turn the wheel, calcu-
late the effective distance from the rim to the 
hub of the wheel.  [200 mm] 

3.  Calculate the force required to produce 
a moment of 27 N m on a shaft, when the 
effective distance from the centre of the  
shaft to the point of application of the force 
is 180 mm. [150 N]

6.2  Equilibrium and the  
principle of moments

If more than one force is acting on an object and the 
forces do not act at a single point, then the turning  
effect of the forces, that is, the moment of each of  
the forces, must be considered.

Figure 6.3 shows a beam with its support (known as 
its pivot or fulcrum) at P, acting vertically upwards, 
and forces F1 and F2 acting vertically downwards at 
distances a and b, respectively, from the fulcrum.

Figure 6.3

A beam is said to be in equilibrium when there is no 
tendency for it to move. There are two conditions for 
equilibrium:

 (i) The sum of the forces acting vertically downwards 
must be equal to the sum of the forces acting verti-
cally upwards, i.e. for Figure 6.3, RP = F1 + F2

 (ii) The total moment of the forces acting on a  
beam must be zero; for the total moment to be 
zero: the sum of the clockwise moments about 
any point must be equal to the sum of the  

M 
p 

140mm 

(a) 

15N 
1.1=21∞Nmm 

P 

1∞mm 

(b) 

F 

F f a 

P 

R P 

b F 2 
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anticlockwise, or counter-clockwise, moments 
about that point.

This statement is known as the principle of moments. 
Hence, taking moments about P in Figure 6.3,
 F2 × b = the clockwise moment, and
 F1 × a =  the anticlockwise, or counter- 

clockwise, moment
 Thus for equilibrium: F a F b1 2=

Problem 3. A system of forces is as shown in 
Figure 6.4. 

Figure 6.4

(a)	 	If	the	system	is	in	equilibrium	find	the	dis-
tance d.

(b)  If the point of application of the 5 N force is 
moved to point P, distance 200 mm from the 
support, and the 5 N force is replaced by an 
unknown force F,	find	the	value	of F for the 
system to be in equilibrium. 

(a) From above, the clockwise moment M1 is due to 
a force of 7 N acting at a distance d from the sup-
port; the support is called the fulcrum, 

 i.e.    M1 = 7 N × d
 The anticlockwise moment M2 is due to a force 

of 5 N acting at a distance of 140 mm from the 
fulcrum, 

 i.e.    M2 = 5 N × 140 mm
 Applying the principle of moments, for the sys-

tem to be in equilibrium about the fulcrum: 
  clockwise moment = anticlockwise moment 
 i.e.     7 N × d = 5 × 140 N mm

 Hence, distance, d = ×5 140 N mm
7 N

 = 100 mm

(b) When the 5 N force is replaced by force F at a dis-
tance of 200 mm from the fulcrum, the new value 
of the anticlockwise moment is F × 200. For the 
system to be in equilibrium: 

      clockwise moment = anticlockwise moment 
 i.e.  (7 × 100) N mm = F × 200 mm
 Hence,   

 new value of force, F = 700
200

N mm
mm = 3.5 N

Problem 4. A beam is supported on its fulcrum 
at the point A, which is at mid-span, and forces act 
as shown in Figure 6.5. Calculate (a) force F for 
the beam to be in equilibrium (b) the new position 
of the 23 N force when F is decreased to 21 N, if 
equilibrium is to be maintained. 

Figure 6.5

(a)  The clockwise moment, M1, is due to the 23 N 
force acting at a distance of 100 mm from the  
fulcrum, i.e. M1 = 23 × 100 = 2300 N mm

  There are two forces giving the anticlockwise 
moment M2. One is the force F acting at a dis-
tance of 20 mm from the fulcrum and the other a 
force of 12 N acting at a distance of 80 mm. 

 Thus,   M2 = (F × 20) + (12 × 80) N mm

  Applying the principle of moments about the ful-
crum: 

  clockwise moment = anticlockwise moments 

 i.e.     2300 = (F × 20) + (12 × 80)

 Hence F × 20 = 2300 – 960

 i.e.            force, F = 1340
20  = 67 N

(b)  The clockwise moment is now due to a force 
of 23 N acting at a distance of, say, d from the   
fulcrum. Since the value of F is decreased to  
21 N, the anticlockwise moment is   
(21 × 20) + (12 × 80) N mm. 

 Applying the principle of moments, 

             23 × d = (21 × 20) + (12 × 80)

 i.e.   distance, d  = +420 960
23

  

= 1380
23  = 60 mm

Problem 5. For the centrally supported  
uniform beam shown in Figure 6.6, determine the 
values of forces F1 and F2 when the beam is in 
equilibrium.

F 5N 
句40mm

1N 

p 

d 
200mm 

12 N F 

A 

2日mm d 

1∞mm 
80mm 

23N 
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Figure 6.6

At equilibrium: (i) R = F1 + F2 i.e. 5 = F1 + F2 (1)
and      (ii) F1 × 3 = F2 × 7  (2)
From equation (1),  F2 = 5 – F1

Substituting for F2 in equation (2) gives: 
   F1 × 3 = (5 – F1) × 7
i.e.    3F1 = 35 – 7F1
    10F1 = 35
from which,    F1 = 3.5 kN 
Since     F2 = 5 – F1, F2 = 1.5 kN
Thus at equilibrium,  
   force F1 = 3.5 kN and force F2 = 1.5 kN

Now try the following Practice Exercise

Practice Exercise 41  Further problems on 
equilibrium and the 
principle of moments

1.	 	Determine	 distance d and the force  
acting at the support A for the force system 
shown in Figure 6.7, when the system is in 
equilibrium. 

Figure 6.7

 [50 mm, 3.8 kN]

2.  If the 1 kN force shown in Figure 6.7 is  
replaced by a force F at a distance of  
250 mm to the left of RA,	find	the	value	of F 
for the system to be in equilibrium.

 [560 N] 

3.	 	Determine	 the	 values	 of	 the	 forces	 acting	  
at A and B for the force system shown in  
Figure 6.8.

Figure 6.8

 [RA = RB = 25 N] 

4.  The forces acting on a beam are as shown in 
Figure 6.9. Neglecting the mass of the beam, 
find	the	value	of	RA and distance d when the 
beam is in equilibrium. 

Figure 6.9 

 [5 N, 25 mm] 

6.3 Simply supported beams 
 having point loads

A simply supported beam is said to be one that rests on 
two knife-edge supports and is free to move horizontally.

Two typical simply supported beams having loads 
acting at given points on the beam, called point load-
ing, are shown in Figure 6.10.

Figure 6.10
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A man whose mass exerts a force F vertically down-
wards, standing on a wooden plank which is simply 
supported at its ends, may, for example, be represented 
by the beam diagram of Figure 6.10(a) if the mass of 
the plank is neglected. The forces exerted by the sup-
ports on the plank, RA and RB, act vertically upwards, 
and are called reactions.

When the forces acting are all in one plane, the  
algebraic sum of the moments can be taken about any 
point.
For the beam in Figure 6.10(a) at equilibrium:

   (i) RA + RB = F
and  (ii) taking moments about A, F × a = RB (a + b)
       (Alternatively, taking moments about C, 

RAa = RBb)

For the beam in Figure 6.10(b), at equilibrium 

   (i) RA + RB = F1 + F2 
and  (ii)  taking moments about B,  

RA (a + b) + F2c = F1b

Typical practical applications of simply supported 
beams with point loadings include bridges, beams in 
buildings, and beds of machine tools.

Problem 6. A beam is loaded as shown in Figure 
6.11. 

Figure 6.11

Determine	(a)	the	force	acting	on	the	beam	support	
at B (b) the force acting on the beam support at A, 
neglecting the mass of the beam.

A beam supported as shown in Figure 6.11 is called a 
simply supported beam.

(a)  Taking moments about point A and applying the 
principle of moments gives: 

 clockwise moments = anticlockwise moments 
  (2 × 0.2) + (7 × 0.5) + (3 × 0.8) kN m = RB × 1.0 m  

where RB is the force supporting the beam at B, as 
shown in Figure 6.11(b).

 Thus (0.4 + 3.5 + 2.4) kN m = RB × 1.0 m 

 i.e.  RB
 = 6 3

1 0
.

.
kN m

m  = 6.3 kN

(b)  For the beam to be in equilibrium, the forces  
acting upwards must be equal to the forces acting  
downwards, thus

         RA + RB = (2 + 7 + 3) kN = 12 kN
 RB = 6.3 kN,  
 thus RA   = 12 – RB

  = 12 – 6.3  
= 5.7 kN

Problem 7. For the beam shown in Figure  
6.12 calculate (a) the force acting on support A  
(b) distance d, neglecting any forces arising from 
the mass of the beam.

Figure 6.12

(a) From Section 6.2,
  (the forces acting in an upward direction) =  

(the forces acting in a downward direction)
 Hence (RA + 40) N = (10 + 15 + 30) N

   RA = 10 + 15 + 30 – 40 = 15 N

(b)  Taking moments about the left-hand end of the 
beam and applying the principle of moments  
gives:

 clockwise moments = anticlockwise moments

  (10 × 0.5) + (15 × 2.0) N m + 30 N × d  
   = (15 × 1.0) + (40 × 2.5) N m

 i.e.  35 N m + 30 N × d = 115 N m

 from which, distance, d  = 
−(115 35) N m
30 N   

= 2.67 m

2kN 7 kN 

A 

0.2m 

0.5m 

0.8m 

1.0m 

(a) 

2kN 7 kN 

R. (b) 
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R. 

10N 15N 30N 

0.5m R. B 
A ~ 40N 1.0 m.. 

2.0m 

2.5m 

d 



Simply supported beams 91

Pa
rt 

Tw
o

Problem 8. A metal bar AB is 4.0 m long and 
is simply supported at each end in a horizontal 
position. It carries loads of 2.5 kN and 5.5 kN at 
distances of 2.0 m and 3.0 m, respectively, from A.
Neglecting the mass of the beam, determine the 
reactions of the supports when the beam is in 
equilibrium.

The beam and its loads are shown in Figure 6.13. 

Figure 6.13

At equilibrium, RA + RB = 2.5 + 5.5 = 8.0 kN (1)
Taking moments about A,  
      clockwise moments = anticlockwise moments

i.e.   (2.5 × 2.0) + (5.5 × 3.0) = 4.0 RB 
or    5.0 + 16.5 = 4.0 RB

from which,  RB = 21 5
4 0

.
.  = 5.375 kN

From equation (1),   RA = 8.0 – 5.375 = 2.625 kN

Thus the reactions at the supports at equilibrium 
are 2.625 kN at A and 5.375 kN at B

Problem 9. A beam PQ is 5.0 m long and is simply 
supported at its ends in a horizontal position as shown 
in Figure 6.14. Its mass is equivalent to a force of  
400 N acting at its centre as shown. Point loads of  
12 kN and 20 kN act on the beam in the positions 
shown. When the beam is in equilibrium, determine 
(a) the reactions of the supports, RP and RQ, and  
(b) the position to which the 12 kN load must be 
moved for the force on the supports to be equal. 

Figure 6.14

(a)  At equilibrium, 
 RP + RQ = 12 + 0.4 + 20 = 32.4 kN (1)

  Taking moments about P:  
clockwise moments = anticlockwise moments

 i.e. (12 × 1.2)  + (0.4 × 2.5)  
+ (20 × 3.5) = (RQ × 5.0)

           14.4 + 1.0 + 70.0 = 5.0 RQ

 from which,             RQ = 85 4
5 0

.
.  = 17.08 kN

 From equation (1),        RP  = 32.4 – RQ  

= 32.4 – 17.08  
= 15.32 kN

(b) For the reactions of the supports to be equal,

   RP = RQ = 32 4
2
.  = 16.2 kN

  Let the 12 kN load be at a distance d metres from 
P (instead of at 1.2 m from P). Taking moments 
about point P gives: 

 (12 × d) + (0.4 × 2.5) + (20 × 3.5) = 5.0 RQ

 i.e.          12d + 1.0 + 70.0 = 5.0 × 16.2 

 and                  12d = 81.0 – 71.0

 from which,       d = 10 0
12

.  = 0.833 m

Hence the 12 kN load needs to be moved to a  
position 833 mm from P for the reactions of the  
supports to be equal (i.e. 367 mm to the left of its 
original position).

Problem 10. A uniform steel girder AB is 6.0 m 
long and has a mass equivalent to 4.0 kN acting at 
its centre. The girder rests on two supports at C and 
B as shown in Figure 6.15. A point load of 20.0 kN 
is	attached	to	the	beam	as	shown.	Determine	the	
value of the force F	that	causes	the	beam	to	just	lift	
off the support B.

Figure 6.15

2目5kN 5.5 kN 

2.0m 1.0m 
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12 kN 400 N 20 kN 
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At equilibrium, RC + RB = F + 4.0 + 20.0.

When	the	beam	is	just	lifting	off	of	the	support	B, then 
RB = 0, hence RC = (F + 24.0)kN. 
Taking moments about A:

Clockwise moments = anticlockwise moments

i.e. (4.0 × 3.0) + (5.0 × 20.0) = (RC × 2.5) + (RB × 6.0)
i.e.       12.0 + 100.0 = (F + 24.0) × 2.5 + (0) 

i.e.      112 0
2 5

.
.  = (F + 24.0)

from which,  F = 44.8 – 24.0 = 20.8 kN
i.e. the value of force F which causes the beam to 
just lift off the support B is 20.8 kN

Now try the following Practice Exercise

Practice Exercise 42  Further problems on 
simply supported 
beams having point 
loads 

1.  Calculate the force RA and distance d for the 
beam shown in Figure 6.16. The mass of the 
beam should be neglected and equilibrium 
conditions assumed.

Figure 6.16

 [2.0 kN, 24 mm] 

2.  For the force system shown in Figure 6.17, 
find	the	values	of F and d for the system to 
be in equilibrium.

Figure 6.17

 [1.0 kN, 64 mm]

3.   For the force system shown in Figure 6.18, 
determine distance d for the forces RA 
and RB to be equal, assuming equilibrium  
conditions. [80 m]

Figure 6.18 

Figure 6.19 

4.  A simply supported beam AB is loaded as 
shown	in	Figure	6.19.	Determine	the	load F 
in order that the reaction at A is zero.

 [36 kN]

5.  A uniform wooden beam, 4.8 m long, is 
supported at its left-hand end and also at  
3.2 m from the left-hand end. The mass of 
the beam is equivalent to 200 N acting verti-
cally	downwards	at	its	centre.	Determine	the	
reactions at the supports. [50 N, 150 N] 

6.  For the simply supported beam PQ shown in 
Figure 6.20, determine (a) the reaction at each 
support (b) the maximum force which can be 
applied at Q without losing equilibrium. 

Figure 6.20 
 [(a) R1 = 3 kN, R2 = 12 kN (b) 15.5 kN]

7.  A uniform beam AB is 12.0 m long and is sup-
ported at distances of 2.0 m and 9.0 m from A. 

  Loads of 60 kN, 104 kN, 50 kN and 40 kN 
act vertically downwards at A, 5.0 m from A, 
7.0 m from A and at B. Neglecting the mass 
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of the beam, determine the reactions at the 
supports. [133.7 kN, 120.3 kN]

8.  A uniform girder carrying point loads is 
shown	 in	Figure	6.21.	Determine	 the	value	
of load F which	causes	the	beam	to	just	lift	
off the support B. 

Figure 6.21

 [3.25 kN]

6.4  Simply supported beams with 
couples

The procedure adopted here is a simple extension to 
Section 6.3, but it must be remembered that the units of 
a couple are in: N m, N mm, kN m, etc., unlike that of 
a force. The method of calculating reactions on beams 
due to couples will now be explained with the aid of 
worked problems.

Problem 11.	 Determine	the	end	reactions	for	
the simply supported beam of Figure 6.22, which 
is	subjected	to	an	anticlockwise	couple	of	5	kN	m	
applied at mid-span. 

Figure 6.22

Taking moments about B: 
Now the reaction RA exerts a clockwise moment about 
B given by: RA × 3 m
Additionally, the couple of 5 kN  m is anticlockwise  
and its moment is 5 kN  m regardless of where it is 
placed.

Clockwise moments about B =  
anticlockwise moments about B

i.e.   RA × 3 m = 5 kN  m (6.1)

from which, RA = 5
3 kN

or      RA = 1.667 kN  (6.2)
Resolving forces vertically gives:
  Upward forces = downward forces
i.e.    RA + RB = 0 (6.3)
It should be noted that in equation (6.3) the 5 kN m 
couple does not appear; this is because it is a couple 
and not a force.
From equations (6.2) and (6.3), RB = –RA = –1.667 kN
i.e. RB acts in the opposite direction to RA, so that 
RB and RA also form a couple that resists the 5 kN m  
couple.

Problem 12.	 Determine	the	end	reactions	for	the	
simply supported beam of Figure 6.23, which is 
subjected	to	an	anticlockwise	couple	of	5	kN		m	at	
the point C. 

Figure 6.23

Taking moments about B gives:

       RA × 3 m = 5 kN m  (6.4)

from which,  RA = 53  kN

or RA = 1.667 kN 

Resolving forces vertically gives:

i.e.      RA + RB = 0 

from which, RB = –RA = –1.667 kN

It should be noted that the answers for the reactions 
are the same for Problems 11 and 12, thereby proving 
by induction that the position of a couple on a beam, 
simply supported at its ends, does not affect the values 
of the reactions.

Problem 13.	 Determine	the	reactions	for	the	
simply supported beam of Figure 6.24.

F 10 kN 4 kN 5 kN 
2m 4m 3m 2m 

4m 
RA RB 

5kN m 

A B 

c 
RA RB 

2m 1m 

5 kN m 

A B 
c 

RA 1.5m 1.5m RB 
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Figure 6.24

Taking moments about B gives:
 RA × 4 m + 8 kN m = 10 kN m + 6 kN m
i.e.    4 RA = 10 + 6 – 8 = 8

from which,   RA = 84  = 2 kN

Resolving forces vertically gives:
       RA + RB = 0 
from which, RB = –RA = –2 kN

Problem 14.	 Determine	the	reactions	for	the	
simply supported beam of Figure 6.25.

Figure 6.25

Taking moments about B gives:
 RA × 4 m + 8 kN m + 6 kN × 1 m = 10 kN m 
i.e.       4 RA = 10 – 8 – 6 = – 4

from which, RA = – 4
4  = –1 kN (acting downwards)

Resolving forces vertically gives:
          RA + RB + 6 = 0 
from which, RB = –RA – 6 = – (–1) – 6 
i.e.   RB = 1 – 6 = –5 kN (acting downwards)

Now try the following Practice Exercises

Practice Exercise 43  Further problems on 
simply supported 
beams with couples

For each of the following problems, determine the 
reactions acting on the simply supported beams: 

1. 

Figure 6.26 

 [RA = – 1 kN, RB = 1 kN]

2. 

Figure 6.27

 [RA = – 1 kN, RB = 1 kN]

3. 

Figure 6.28

 [RA = 1 kN, RB = – 1 kN]

4. 

Figure 6.29

 [RA = 0, RB = 0]
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5. 

Figure 6.30

 [RA = 0, RB = 0]

6. 

Figure 6.31

 [RA = 7 kN, RB = 1 kN]

7. 

Figure 6.32 

 [RA = – 333 N, RB = 333 N]

Practice Exercise 44  Short-answer 
questions on simply 
supported beams

1.  The moment of a force is the product of ....... 
and ...... 

2.  When a beam has no tendency to move it is 
in ........

3.  State the two conditions for equilibrium of a 
beam.

4. State the principle of moments.

5. What is meant by a simply supported beam?

6.  State two practical applications of simply 
supported beams.

7.  Why does a couple not have a vertical com-
ponent of force?

Practice Exercise 45  Multiple-choice 
questions on simply 
supported beams 

(Answers on page 335)

 1.  A force of 10 N is applied at right angles 
to the handle of a spanner, 0.5 m from the 
centre of a nut. The moment on the nut is:

 (a)  5 N m  (b)  2 N/m
 (c)  0.5 m/N (d)  15 N m

 2.  The distance d in Figure 6.33 when the 
beam is in equilibrium is:

 (a)  0.5 m (b)  1.0 m
 (c)  4.0 m  (d)  15 m 

Figure 6.33

 3.  With reference to Figure 6.34, the clock-
wise moment about A is:

 (a)  70 N m (b)  10 N m
 (c)  60 N m  (d)  5 × RBN m

Figure 6.34
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 4.  The force acting at B (i.e. RB) in Figure 
6.34 is: 

 (a)  16 N  (b)  20 N 
 (c)  5 N  (d)  14 N

 5.  The force acting at A (i.e. RA) in Figure 
6.34 is:

 (a)  16 N  (b)  10 N 
 (c)  15 N  (d)  14 N

 6.  Which of the following statements is false 
for the beam shown in Figure 6.35 if the 
beam is in equilibrium?

 (a)  The anticlockwise moment is 27 N
 (b)  The force F is 9 N
 (c)  The reaction at the support R is 18 N
 (d)   The beam cannot be in equilibrium for 

the given conditions

Figure 6.35

 7.  With reference to Figure 6.36, the reaction 
RA is:

 (a)  10 N  (b)  30 N
 (c)  20 N  (d)  40 N

Figure 6.36

 8.  With reference to Figure 6.36, when mo-
ments are taken about RA, the sum of the 
anticlockwise moments is: 

 (a)  25 N m (b)  20 N m
 (c)  35 N m (d)  30 N m

 9.  With reference to Figure 6.36, when mo-
ments are taken about the right-hand end, 
the sum of the clockwise moments is: 

 (a)  10 N m (b)  20 N m
 (c)  30 N m (d)  40 N m

10.  With reference to Figure 6.36, which of the 
following statements is false?

 (a)  (5 + RB) = 25 N m
 (b)  RA = RB
 (c)   (10 × 0.5) = (10 × 1) + (10 × 1.5) + RA
 (d)  RA + RB = 40 N
11.  A beam simply supported at its ends is 

subjected	 to	 two	 intermediate	 couples	
of 4 kN m clockwise and 4 kN m anti- 
clockwise. The values of the end reactions 
are: 

 (a)  4 kN  (b)  8 kN
 (c)  zero  (d)  unknown

For fully worked solutions to each of the problems in Practice Exercises 40 to 45 in this chapter,  
go to the website:  

www.routledge.com/cw/bird
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 1.  A metal bar having a cross-sectional area of  
80 mm2 has a tensile force of 20 kN applied to it. 
Determine	the	stress	in	the	bar.	 (4)

 2. (a)   A rectangular metal bar has a width of 16 mm 
and can support a maximum compressive stress 
of 15 MPa; determine the minimum breadth of 
the bar when loaded with a force of 6 kN.

 (b)   If the bar in (a) is 1.5 m long and decreases 
in length by 0.18 mm when the force is ap-
plied, determine the strain and the percentage 
strain. (7)

 3.  A wire is stretched 2.50 mm by a force of 400 N. 
Determine	 the	 force	 that	would	 stretch	 the	wire	
3.50 mm, assuming that the elastic limit is not  
exceeded. (5)

 4.  A copper tube has an internal diameter of 140 mm 
and an outside diameter of 180 mm and is used 
to support a load of 4 kN. The tube is 600 mm  
long	 before	 the	 load	 is	 applied.	 Determine,	 in	 
micrometres, by how much the tube contracts 
when loaded, taking the modulus of elasticity for 
copper as 96 GPa. (8)

 5.  The results of a tensile test are: diameter of speci-
men 21.7 mm; gauge length 60 mm; load at limit 
of proportionality 50 kN; extension at limit of pro-
portionality 0.090 mm; maximum load 100 kN; 
final	length	at	point	of	fracture	75	mm.

	 	Determine	 (a)	 Young’s	 modulus	 of	 elasticity	 
(b) the ultimate tensile strength (c) the stress at 
the limit of proportionality (d) the percentage 
elongation. (10)

 6.  A force of 25 N acts horizontally to the right and a 
force of 15 N is inclined at an angle of 30° to the 
25	N	force.	Determine	the	magnitude	and	direc-
tion of the resultant of the two forces using (a) the 
triangle of forces method (b) the parallelogram of 
forces method and (c) by calculation. (12)

	 7.	 	Determine	graphically	 the	magnitude	and	direc-
tion of the resultant of the following three co- 
planar forces, which may be considered as acting 
at a point. 

  Force P, 15 N acting horizontally to the right 
 Force Q, 8 N inclined at 45° to force P 
 Force R, 20 N inclined at 120° to force P. (7)
	 8.	 	Determine	 by	 resolution	 of	 forces	 the	 resultant	

of the following three coplanar forces acting at 
a point: 120 N acting at 40° to the horizontal;  
250 N acting at 145° to the horizontal; 300 N  
acting at 260° to the horizontal. (8)

 9.  A moment of 18 N m is required to operate a lift-
ing	 jack.	 Determine	 the	 effective	 length	 of	 the	
handle	 of	 the	 jack	 (in	 millimetres)	 if	 the	 force	 
applied to it is (a) 90 N  (b) 0.36 kN. (6)

10.  For the centrally supported uniform beam shown 
in Figure RT3.1, determine the values of forces  
F1 and F2 when the beam is in equilibrium. (7)

Figure RT3.1

11.  For the beam shown in Figure RT3.2 calculate 
(a) the force acting on support Q, (b) distance d,  
neglecting any forces arising from the mass of the 
beam. (7)

Figure RT3.2

12.  A beam of length 3 m is simply supported at its 
ends. If a clockwise couple of 4 kN m is placed 
at a distance of 1 m from the left hand support, 
determine the end reactions. (4)

Revision Test 3  Forces, tensile testing and beams

This Revision Test covers the material contained in Chapters 3 to 6. The marks for each question are shown in 
brackets at the end of each question.

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 3,  
together with a full marking scheme, are available at the website:  

www.routledge.com/cw/bird
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Chapter 7

Why it is important to understand: Forces in structures
In this chapter it will be shown how the principles described in Chapter 5 on forces acting at a point 
can be used to determine the internal forces in the members of a truss, due to externally applied loads. 
In countries where there is a lot of rain, such structures are used to support the sloping roofs of the 
building; the externally applied loads acting on the pin-jointed trusses are usually due to snow and 
self-weight, and also due to wind. Tie bars and struts are defined, Bow’s notation is explained and 
internal forces in a truss are calculated by different methods. The importance of understanding forces 
in structures is that these appear in the design of buildings, ships, automobiles etc.

the wind loads are usually assumed to act horizontally. 
Thus, for structures such as that shown in Figure 7.1, 
where the externally applied loads are assumed to act at the 
pin-joints, the internal members of the framework resist 
the externally applied loads in tension or compression.

Figure 7.1 Pin-jointed truss

At the end of this chapter you should be able to:

• recognise a pin-jointed truss
• recognise a mechanism
• define a tie bar
• define a strut
• understand Bow’s notation
• calculate the internal forces in a truss by a graphical method
• calculate the internal forces in a truss by the ‘method of joints’
• calculate the internal forces in a truss by the ‘method of sections’

7.1 Introduction

As stated above, in this chapter it will be shown how the 
principles described in Chapter 5 can be used to deter-
mine the internal forces in the members of a truss, due 
to externally applied loads. The definition of a truss 
is that it is a frame where the joints are assumed to be 
frictionless and pin-jointed, and that all external loads 
are applied to the pin joints. In countries where there 
is a lot of rain, such structures are used to support the 
sloping roofs of the building, as shown in Figure 7.1.

The externally applied loads acting on the pin-jointed 
trusses are usually due to snow and self-weight, and also 
due to wind, as shown in Figure 7.1. In Figure 7.1, the 
snow and self-weight loads act vertically downwards and 

Loads 

Pin寸oin恒
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Members of the framework that resist the externally ap-
plied loads in tension are called ties and members of the 
framework which resist the externally applied loads in 
compression are called struts, as shown in Figure 7.2.

Figure 7.2 Ties and struts with external loads

The internal resisting forces in the ties and struts will 
act in the opposite direction to the externally applied 
loads, as shown in Figure 7.3.

Figure 7.3 Internal resisting forces in ties and struts 

The methods of analysis used in this chapter break-
down if the joints are rigid (welded), or if the loads 
are applied between the joints. In these cases, flexure  
occurs in the members of the framework, and other 
methods of analysis have to be used, as described in 
Chapters 6 and 8. It must be remembered, however, 
that even if the joints of the framework are smooth 
and pin-jointed and also if externally applied loads are 
placed at the pin-joints, members of the truss in com-
pression can fail through structural failure (see refer-
ences [1] and [2] on page 111).

It must also be remembered that the methods used 
here cannot be used to determine forces in statically 
indeterminate pin-jointed trusses, nor can they be 
used to determine forces in mechanisms. Statically  
indeterminate structures are so called because they 
cannot be analysed by the principles of statics alone. 
Typical mechanisms are shown in Figure 7.4; these are 
not classified as structures because they are not firm 
and can be moved easily under external loads. 

Figure 7.4 Mechanisms

To make the mechanism of Figure 7.4(a) into a simple 
statically determinate structure, it is necessary to add 
one diagonal member joined to a top joint and an ‘op-
posite’ bottom joint. To make the mechanism of Figure 
7.4(b) into a statically determinate structure, it is nec-
essary to add two members from the top joint to each of 

the two bottom joints near the mid-length of the bottom 
horizontal. 

Three methods of analysis will be used in this  
chapter − one graphical and two analytical methods.

7.2  Worked problems on mechanisms 
and pin-jointed trusses

Problem 1. Show how the mechanism of Figure 
7.4(a) can be made into a statically determinate  
structure.

The two solutions are shown by the broken lines of 
Figures 7.5(a) and (b), which represent the placement 
of additional members.

Figure 7.5

Problem 2. Show how the mechanism of Figure 
7.4(b) can be made into a statically determinate 
truss.

The solution is shown in Figure 7.6, where the broken 
lines represent the placement of two additional members.

Figure 7.6

Problem 3. Show how the mechanism of Figure 
7.4(a) can be made into a statically indeterminate 
truss.

The solution is shown in Figure 7.7, where the broken 
lines represent the addition of two members, which are 
not joined where they cross.

Figure 7.7
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Problem 4.  Why is the structure of Figure 7.7 
said to be statically indeterminate?

As you can only resolve vertically and horizontally at 
the joints A and B, you can only obtain four simultane-
ous equations. However, as there are five members, each 
with an unknown force, you have one unknown force 
too many. Thus, using the principles of statics alone, the 
structure cannot be satisfactorily analysed; such struc-
tures are therefore said to be statically indeterminate.

7.3 Graphical method

In this case, the method described in Chapter 5 will be 
used to analyse statically determinate plane pin-jointed 
trusses. The method will be described with the aid of 
worked examples.

Problem 5. Determine the internal forces that  
occur in the plane pin-jointed truss of Figure 7.8, 
due to the externally applied vertical load of 3 kN.

Figure 7.8

Firstly, we will fill the spaces between the forces with 
upper case letters of the alphabet, as shown in Figure 
7.8. It should be noted that the only reactions are the 
vertical reactions R1 and R2; this is because the only 
externally applied load is the vertical load of 3 kN, and 
there is no external horizontal load. The capital let-
ters A, B, C and D can be used to represent the forces  
between them, providing they are taken in a clockwise 
direction about each joint. Thus the letters AB represent 
the vertical load of 3 kN. Now as this load acts vertically 
downwards, it can be represented by a vector ab, where 
the magnitude of ab is 3 kN and it points in the direction 
from a to b. As ab is a vector, it will have a direction 
as well as a magnitude. Thus ab will point downwards 
from a to b as the 3 kN load acts downwards.
This method of representing forces is known as Bow’s 
notation.

To analyse the truss, we must first consider the joint 
ABD; this is because this joint has only two unknown 
forces, namely the internal forces in the two members 
that meet at the joint ABD. Neither joints BCD and 
CAD can be considered first, because each of these 
joints has more than two unknown forces.

Now the 3 kN load is between the spaces A and B, 
so that it can be represented by the lower case letters 
ab, point from a to b and of magnitude 3 kN, as shown 
in Figure 7.9.

Figure 7.9

Similarly, the force in the truss between the spaces B 
and D, namely the vector bd, lies at 60° to the hori-
zontal and the force in the truss between the spaces D 
and A, namely the vector da, lies at 30° to the horizon-
tal. Thus, in Figure 7.9, if the vectors bd and ad are 
drawn, they will cross at the point d, where the point d 
will obviously lie to the left of the vector ab, as shown. 
Hence, if the vector ab is drawn to scale, the magni-
tudes of the vectors bd and da can be measured from 
the scaled drawing. The direction of the force in the 
member between the spaces B and D at the joint ABD 
point upwards because the vector from b to d points 
upwards. Similarly, the direction of the force in the 
member between the spaces D and A at the joint ABD 
is also upwards because the vector from d to a points 
upwards. These directions at the joint ABD are shown 
in Figure 7.10. Now as the framework is in equilib-
rium, the internal forces in the members BD and DA, 
at the joints (2) and (1) respectively, will be equal and 
opposite to the internal forces at the joint ABD; these 
are shown in Figure 7.10.

Figure 7.10

Comparing the directions of the arrows in  
Figure 7.10 with those of Figure 7.3, it can be seen that 

a 
30・
d 

3 kN 

50" 

b 

3kN 
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the members BD and DA are in compression and are  
defined as struts. It should also be noted from Figure 
7.10, that when a member of the framework, say, BD, 
is so defined, we are referring to the top joint, because 
we must always work around a joint in a clock-
wise manner; thus the arrow at the top of BD points  
upwards, because in Figure 7.9, the vector bd points 
upwards from b to d. Similarly, if the same member is 
referred to as DB, then we are referring to the bottom 
of this member at the joint (2), because we must always 
work clockwise around a joint. Hence, at joint (2), the 
arrow points downwards, because the vector db points 
downwards from d to b in Figure 7.9.

To determine the unknown forces in the horizontal 
member between joints (1) and (2), either of these 
joints can be considered, as both joints now only have 
two unknown forces. Let us consider joint (1), i.e. joint 
ADC. Now the vector ad can be measured from Figure 
7.9 and drawn to scale in Figure 7.11.

Figure 7.11

Now the unknown force between the spaces D and C, 
namely the vector dc, is horizontal and the unknown 
force between the spaces C and A, namely the vector 
ca, is vertical, hence, by drawing to scale and direction, 
the point c can be found. This is because the point c in 
Figure 7.11 lies below the point a and to the right of d.

In Figure 7.11, the vector ca represents the magnitude 
and direction of the unknown reaction R1 and the vector 
dc represents the magnitude and direction of the force in 
the horizontal member at joint (1); these forces are shown 
in Figure 7.12, where R1 = 0.82 kN and dc = 1.25 kN.

Figure 7.12

Comparing the directions of the internal forces in the 
bottom of the horizontal member with Figure 7.3, it can 
be seen that this member is in tension and, therefore, it 
is a tie.

The reaction R2 can be determined by consider-
ing joint (2), i.e. joint BCD, as shown in Figure 7.13, 
where the vector bc represents the unknown reaction 
R2 which is measured as 2.18 kN.

Figure 7.13

The complete vector diagram for the whole frame-
work is shown in Figure 7.14, where it can be seen that  
R1 + R2 = 3 kN, as required by the laws of equilibrium. 
It can also be seen that Figure 7.14 is a combination 
of the vector diagrams of Figures 7.9, 7.11 and 7.13. 
Experience will enable this problem to be solved more 
quickly by producing the vector diagram of Figure 7.14 
directly.

Figure 7.14

The table below contains a summary of all the mea-
sured forces.

Member Force (kN)

bd      −2.6

da       −1.55

cd        1.25

R1        0.82

R2        2.18

Problem 6. Determine the internal forces in  
the members of the truss of Figure 7.15 due to the 
externally applied horizontal force of 4 kN at the 
joint ABE.

a 
30・

d c 

3kN 

A B 
-1.55 kN D -2.6 kN 

+1.25 kN 
c 

R，=回 =0.82kN R2=? 

d ，0 

b 

a 

d 0 
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Figure 7.15

In this case, the spaces between the unknown forces 
are A, B, C, D and E. It should be noted that the reac-
tion at joint (1) is vertical because the joint is on roll-
ers, and that there are two reactions at joint (2) because 
it is firmly anchored to the ground and there is also a 
horizontal force of 4 kN which must be balanced by 
the unknown horizontal reaction H2. If this unknown 
horizontal reaction did not exist, the structure would 
‘float’ into space due to the 4 kN load.

Consider joint ABE, as there are only two unknown 
forces here, namely the forces in the members BE and 
EA. Working clockwise around this joint, the vector 
diagram for this joint is shown in Figure 7.16.

Figure 7.16

Joint (2) cannot be considered next, as it has three un-
known forces, namely H2, R2 and the unknown mem-
ber force DE. Hence, joint (1) must be considered next; 
it has two unknown forces, namely R1 and the force in 
member ED. As the member AE and its direction can 
be obtained from Figure 7.16, it can be drawn to scale 
in Figure 7.17. By measurement, de = 3 kN.

Figure 7.17

As R1 is vertical, then the vector da is vertical, hence, 
the position d can be found in the vector diagram of 
Figure 7.17, where R1= da (pointing downwards).

To determine R2 and H2, joint (2) can now be con-
sidered, as shown by the vector diagram for the joint in 
Figure 7.18.

Figure 7.18

The complete diagram for the whole framework is 
shown in Figure 7.19, where it can be seen that this 
diagram is the sum of the vector diagrams of Figures 
7.16 to 7.18.

Figure 7.19

The table below contains a summary of all the mea-
sured forces

Member Force (kN)

be      −2.1

ae        3.5

de      −3.0

R1      −1.8

R2        1.8

H2        4.0

Couple and moment
Prior to solving Problem 7, it will be necessary for 
the reader to understand the nature of a couple; this is  
described in Chapter 11, page 151. 
The magnitude of a couple is called its moment; this is 
described in Chapter 6, page 86.

Problem 7. Determine the internal forces in the 
pin-jointed truss of Figure 7.20.

Figure 7.20

4 kN 
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品 Int①
E Joint② 

0・ 60・
D 

H2 
c 

c b 

R， R2 

d e 

8.C b 

e 

初・ ω 
a 4kN b 

d 
300 e 

3.5kN 

a 3kN 

4kN 5kN 

Joint什
~ 30・:30・ 30'30・Jolnt② 

2m 2m 2m 2m 

R， F見



Forces in structures 103

Pa
rt 

Tw
o

In this case, there are more than two unknowns at every 
joint; hence it will first be necessary to calculate the 
unknown reactions R1 and R2

To determine R1, take moments about joint (2):
Clockwise moments about joint (2) = counter-clockwise  
(or anticlockwise) moments about joint (2)

i.e.  R1 × 8 m = 4 kN × 6 m + 3 kN × 4 m + 5 kN × 2 m
           = 24 + 12 + 10 = 46 kN m

Therefore, R1 = 46
8
kN m
m  = 5.75 kN

Resolving forces vertically:
          Upward forces = downward forces
i.e.   R1 + R2 = 4 + 3 + 5 = 12 kN
However, R1 = 5.75 kN, from above,
hence,       5.75 kN + R2 = 12 kN
from which,         R2 = 12 − 5.75 = 6.25 kN

Placing these reactions on Figure 7.21, together with 
the spaces between the lines of action of the forces, we 
can now begin to analyse the structure.

Figure 7.21

Starting at either joint AFE or joint DEJ, where there 
are two or less unknowns, the drawing to scale of the 
vector diagram can commence. It must be remembered 
to work around each joint in turn, in a clockwise man-
ner, and only to tackle a joint when it has two or less 
unknowns. The complete vector diagram for the entire 
structure is shown in Figure 7.22.

Figure 7.22

The table below contains a summary of all the mea-
sured forces.

Member Force (kN)

af       −11.5

fe        10.0

jd      −12.5

ej        10.9

bg       −7.5

gf        −4.0

ch        −7.6

hg          4.6

jh        −5.0

R1          5.75

R2          6.25

Now try the following Practice Exercise

Practice Exercise 46  Further problems on 
a graphical method

Determine the internal forces in the following 
pin-jointed trusses using a graphical method:

1. 

Figure 7.23

[ R1 = 3.0 kN, R2 = 1.0 kN,  
1 − 2, 1.7 kN, 1 − 3, − 3.5 kN,  
2 − 3, − 2.0 kN                        ]
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2. 

Figure 7.24

[ R1 = −2.6 kN, R2 = 2.6 kN,  
H2 = 6.0 kN, 1 − 2, − 1.5 kN,  
1 − 3, 3.0 kN, 2 − 3, − 5.2 kN]

3. 

Figure 7.25

[ R1 = 5.0 kN, R2 = 1.0 kN,  
H1 = 4.0 kN, 1 − 2, 1.0 kN,  
1 − 3, −7.1 kN, 2 − 3, − 1.4 kN]

4. 

Figure 7.26

 R1 = 5.0 kN, R2 = 7.0 kN, 1 − 3, −10.0 kN,  
1 − 6, 8.7 kN, 3 − 4, −8.0 kN, 3 − 6,  
 −2.0 kN, 4 − 6, 4.0 kN, 4 − 5, −8.0 kN, 5 − 6,  
−6.0 kN, 5 − 2, −14.0 kN, 6 − 2, 12.1 kN       

7.4  Method of joints  
(a mathematical method)

In this method, all unknown internal member forces are 
initially assumed to be in tension. Next, an imaginary 
cut is made around a joint that has two or less unknown 
forces, so that a free body diagram is obtained for this 
joint. Next, by resolving forces in respective vertical 
and horizontal directions at this joint, the unknown 
forces can be calculated. To continue the analysis, 
another joint is selected with two or less unknowns and 
the process repeated, remembering that this may only 
be possible because some of the unknown member 
forces have been previously calculated. By selecting, in 
turn, other joints where there are two or less unknown 
forces, the entire framework can be analysed.
It must be remembered that if the calculated force in a 
member is negative, then that member is in compres-
sion. Vice-versa is true for a member in tension.
To demonstrate the method, some pin-jointed trusses 
will now be analysed in Problems 8 to 10.

Problem 8. Solve Problem 5, Figure 7.8 on page 
100, by the method of joints.

Firstly, assume all unknowns are in tension, as shown 
in Figure 7.27. 

Figure 7.27

Next, make imaginary cuts around the joints, as shown 
by the circles in Figure 7.27. This action will give 
us three free body diagrams. The first we consider 
is around joint (1), because this joint has only two  
unknown forces; see Figure 7.28.

Figure 7.28
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Resolving forces horizontally at joint (1):

      Forces to the left = forces to the right

i.e.    F1 cos 30° = F2 cos 60°

i.e.       0.866 F1 = 0.5 F2

from which,  F1 = 0 5
0 866

2.
.

F

i.e.  F1 = 0.577 F2 (7.1)

Resolving forces vertically at joint (1):
Upward forces = downward forces
i.e.          0 = 3 kN + F1 sin 30° + F2 sin 60°

i.e.      0 = 3 + 0.5 F1 + 0.866 F2 (7.2)
Substituting equation (7.1) into equation (7.2) gives:

     0 = 3 + 0.5 × 0.577 F2 + 0.866 F2

i.e.  − 3 = 1.1545 F2

from which, F2 = − 3
1 1545.

i.e.   F2 = −2.6 kN (compressive) (7.3)

Substituting equation (7.3) into equation (7.1) gives:

   F1 = 0.577 × (− 2.6)

i.e.   F1 = −1.5 kN (compressive)

Considering joint (2), as it now has two or less un-
known forces; see Figure 7.29.

Figure 7.29

Resolving horizontally:
      Forces to the left = forces to the right
i.e.     0 = F1 cos 30° + F3

However, F1 = −1.5 kN,

hence,    0 = −1.5 × 0.866 + F3

from which, F3 = 1.30 kN (tensile)

These results are similar to those obtained by the 
graphical method used in Problem 5; see Figure 7.12 
on page 101, and the table at the top of the next column. 

Member Force (kN)

F1    −1.5

F2    −2.6

F3      1.3

Problem 9. Solve Problem 6, Figure 7.15 on 
page 102, by the method of joints.

Firstly, we will assume that all unknown internal forces 
are in tension, as shown by Figure 7.30. 

Figure 7.30

Next, we will isolate each joint by making imagi-
nary cuts around each joint, as shown by the circles  
in Figure 7.30; this will result in three free body dia-
grams. The first free body diagram will be for joint  
(1), as this joint has two or less unknown forces; see  
Figure 7.31.

Figure 7.31

Resolving forces horizontally:

   F1 cos 30° = 4 kN + F2 cos 60°

i.e.      0.866 F1 = 4 + 0.5 F2

from which, F1 = 
F4 0.5

0.866
2+

or   F1 = 4.619 kN + 0.577 F2 (7.4)
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Resolving forces vertically:
   0 = F1 sin 30° + F2 sin 60°

i.e.   0 = 0.5 F1 + 0.866 F2          

or      − F1 = 0 866
0 5

2.
.

F

or              F1 = −1.732 F2  (7.5)

Equating equations (7.4) and (7.5) gives:

 4.619 kN + 0.577 F2 = −1.732 F2

i.e.       4.619 = −1.732 F2 − 0.577 F2

                 = −2.309 F2 

Hence  F2 = − 4 619
2 309
.
.

i.e.   F2 = −2 kN (compressive) (7.6)

Substituting equation (7.6) into equation (7.5) gives:

   F1 = −1.732 × (−2)

i.e.   F1 = 3.465 kN (7.7)

Consider next joint (2), as this joint now has two or 
less unknown forces; see Figure 7.32.

Figure 7.32

Resolving forces vertically:

  R1 + F1 sin 30° = 0
or                       R1 = −F1 sin 30°   (7.8)

Substituting equation (7.7) into equation (7.8) gives:

  R1 = −3.465 × 0.5
i.e.  R1 = −1.733 kN (acting downwards)

Resolving forces horizontally:

    0 = F1 cos 30° + F3

or  F3 = −F1 cos 30° (7.9)

Substituting equation (7.7) into equation (7.9) gives:

  F3 = −3.465 × 0.866
i.e.  F3 = −3 kN (compressive) (7.10)

Consider next joint (3); see Figure 7.33.

Figure 7.33

Resolving forces vertically:

  F2 sin 60° + R2 = 0
i.e.          R2 = −F2 sin 60° (7.11)

Substituting equation (7.6) into equation (7.11) gives:

  R2 = −(−2) × 0.866

i.e.  R2 = 1.732 kN (acting upwards)

Resolving forces horizontally:

 F3 + F2 cos 60° + H2 = 0
i.e.            H2 = − F3 − F2 × 0.5 (7.12)

Substituting equations (7.6) and (7.10) into equation 
(7.12) gives:

  H2 = −(−3) − (−2) × 0.5

i.e.  H2 = 4 kN

These calculated forces are of similar value to those 
obtained by the graphical solution for Problem 6, as 
shown in the table below. 

Member Force (kN)

F1     3.47

F2    −2.0

F3    −3.0

R1    −1.73

R2      1.73

H2     4.0

Problem 10. Solve Problem 7, Figure 7.20 on 
page 102, by the method of joints.

Firstly, assume all unknown member forces are in  
tension, as shown in Figure 7.34. 

円=3.465 kN 

30・
F3 
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F2=-2kN 

60・

F3= -3kN 
円 2

H2 
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Figure 7.34

Next, we will isolate the forces acting at each joint by 
making imaginary cuts around each of the five joints as 
shown in Figure 7.34.

As there are no joints with two or less unknown 
forces, it will be necessary to calculate the unknown 
reactions R1 and R2 prior to using the method of joints.
 Using the same method as that described for the  
solution of Problem 7, we have 

R1= 5.75 kN and R2 = 6.25 kN
Now either joint (1) or joint (2) can be considered, as 
each of these joints has two or less unknown forces. 
Consider joint (1); see Figure 7.35.

Figure 7.35

Resolving forces vertically:
  5.75 + F1 sin 30° = 0
i.e. F1 sin 30° = −5.75
or 0.5 F1 = −5.75

i.e. F1 = − 5 75
0 5
.
.

i.e.              F1 = −11.5 kN (compressive) (7.13)

Resolving forces horizontally:
   0 = F2 + F1 cos 30°

i.e.               F2 = −F1 cos 30° (7.14)

Substituting equation (7.13) into equation (7.14)  
gives:

  F2 = −F1 cos 30° = −(−11.5) × 0.866
i.e.  F2 = 9.96 kN (tensile)  

Consider joint (2); see Figure 7.36.

Figure 7.36 

Resolving forces vertically: 
  R2 + F4 sin 30° = 0

i.e.        R2 + 0.5 F4 = 0

or         F4 = − R2
0 5.  (7.15)

Since R2 = 6.25, F4 = − 6 25
0 5
.
.    

i.e.   F4 = −12.5 kN (compressive) (7.16)       

Resolving forces horizontally:
  F3 + F4 cos 30° = 0
i.e.          F3 = −F4 cos 30° (7.17)
Substituting equation (7.16) into equation (7.17) gives:

   F3 = −(−12.5) × 0.866

i.e.   F3 = 10.83 kN (tensile)  

Consider joint (3); see Figure 7.37.

Figure 7.37 

Resolving forces vertically: 

 F6 sin 30° = F1 sin 30° + F5 sin 30° + 4

i.e.         F6 = F1 + F5 + 4
sin30°

 (7.18)
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Substituting equation (7.13) into equation (7.18)  
gives:

         F6 = −11.5 + F5 + 8 (7.19)

Resolving forces horizontally:
  F1 cos 30° = F5 cos 30° + F6 cos 30°

i.e.         F1 = F5 + F6 (7.20)

Substituting equation (7.13) into equation (7.20) gives:
   − 11.5 = F5 + F6   

or         F6 = −11.5 − F5 (7.21)

Equating equations (7.19) and (7.21) gives:
  − 11.5 + F5 + 8 = −11.5 − F5

or              F5 + F5 = −11.5 + 11.5 − 8

i.e.      2 F5 = −8

from which,       F5 = − 4kN (compressive) (7.22)

Substituting equation (7.22) into equation (7.21) gives:
  F6 = −11.5 − (− 4)
i.e.  F6 = −7.5 kN (compressive) (7.23)

Consider joint (4); see Figure 7.38.

Figure 7.38

Resolving forces horizontally:
    F6 cos 30° = F8 cos 30° 

i.e.    F6 = F8

but from equation (7.23), F6 = −7.5 kN

Hence, F8 = −7.5 kN (compressive) (7.24)

Resolving forces vertically: 
  0 = 3 + F6 sin 30° + F7 + F8 sin 30°

i.e.  0 = 3 + 0.5 F6 + F7 + 0.5 F8 (7.25)

Substituting equations (7.23) and (7.24) into equation 
(7.25) gives:

     0 = 3 + 0.5 × − 7.5 + F7 + 0.5 × − 7.5

or              F7 = −3 + 0.5 × 7.5 + 0.5 × 7.5

      = −3 + 7.5

from which,    F7 = 4.5 kN (tensile) (7.26)

Consider joint (5); see Figure 7.39.

Figure 7.39

Resolving forces horizontally:

 F8 cos 30° + F9 cos 30° = F4 cos 30° 

i.e.                           F8 + F9 = F4 (7.27)
Substituting equations (7.24) and (7.16) into equation 
(7.27) gives:
    − 7.5 + F9 = −12.5
i.e.                  F9  = −12.5 + 7.5
i.e.                  F9  = − 5 kN (compressive)
The results compare favourably with those obtained by 
the graphical method used in Problem 7; see the table 
below. 

Member Force (kN)

F1      −11.5

F2         9.96

F3       10.83

F4     −12.5

F5       −4.0

F6      −7.5

F7         4.5

F8       −7.5

F9       −5.0
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Now try the following Practice Exercise

Practice Exercise 47  Further problems on 
the method of joints

Using the method of joints, determine the  
unknown forces for the following pin-jointed 
trusses:

1.  Figure 7.23 (page 103)

[ R1 = 3.0 kN, R2 = 1.0 kN, 1 − 2,  
1.73 kN, 1 − 3, −3.46 kN, 2 − 3, −2.0 kN]

2. Figure 7.24 (page 104)

[ R1 = −2.6 kN, R2 = 2.6 kN,  
H2 = 6.0 kN, 1 − 2, − 1.5 kN,  
1 − 3, 3.0 kN, 2−3, − 5.2 kN   ]

3. Figure 7.25 (page 104)

[ R1 = 5.0 kN, R2 = 1.0 kN,  
H1 = 4.0 kN, 1 − 2, 1.0 kN, 1 − 3,  
−7.07 kN, 2 − 3, − 1.41 kN          ]

4.  Figure 7.26 (page 104)

 R1 = 5.0 kN, R2 = 7.0 kN, 1 − 3,  
− 10.0 kN, 1 − 6, 8.7 kN, 3 − 4,  
− 8.0 kN, 3 − 6, − 2.0 kN, 4 − 6,  
4.0 kN, 4 − 5, − 8.0 kN, 5 − 6,  
− 6 kN, 5 − 2, −14 kN, 2 − 6, 12.1 kN

7.5  The method of sections  
(a mathematical method)

In this method, an imaginary cut is made through 
the framework and the equilibrium of this part of the 
structure is considered through a free body diagram. 
No more than three unknown forces can be determined 
through any cut section, as only three equilibrium con-
siderations can be made, namely

(a) resolve forces horizontally
(b) resolve forces vertically
(c) take moments about a convenient point.

Worked problem 11 demonstrates the method of sec-
tions.

Problem 11. Determine the unknown member 
forces F2 , F5 and F6 of the truss of Figure 7.34, 
Problem 10, page 107, by the method of sections.

Firstly, all members will be assumed to be in tension 
and an imaginary cut will be made through the frame-
work, as shown by Figure 7.40.

Figure 7.40

Taking moments about B; see Figure 7.41.

Figure 7.41

     Clockwise moments = anti-clockwise moments
Hence,  5.75 kN × 2 m = F2 × 1.155 m  
   (where 2 tan 30° = 1.155 m from Figure 7.41)

i.e.      F2 = 
×5.75 2

1.155  = 9.96 kN (tensile) (7.28)

Resolving forces vertically: 
 5.75 kN + F6 sin 30° = F5 sin 30° + 4 kN  

i.e.             F5 = F6 + 5 75
0 5
.
.  − 4

0 5.
i.e.             F5 = F6 + 3.5 (7.29)

Resolving forces horizontally: 
                       0 = F2 + F5 cos 30° + F6 cos 30°

from which, F5 cos 30° = −F2 − F6 cos 30°

and        F5 = − F
cos30

2
°

 − F6 (7.30)
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Substituting equation (7.28) into equation (7.30) gives:

                               F5 = − 9 96
0 866

.
.  − F6 

or                           F5 = −11.5 − F6 (7.31)

Equating equation (7.29) to equation (7.31) gives:

           F6 + 3.5 = −11.5 − F6 

from which,      2 F6 = −11.5 − 3.5 = −15

and       F6 = − 15
2  = −7.5 kN (compressive) (7.32) 

Substituting equation (7.32) into equation (7.31) gives:

    F5  = −11.5 − (− 7.5)  
= − 4 kN (compressive) (7.33)

i.e. F2 = 9.96 kN,  F5 = − 4 kN and F6 = −7.5 kN 
The above answers can be seen to be the same as those 
obtained in Problem 10. 

Now try the following Practice Exercises

Practice Exercise 48  Further problems 
on the method of 
sections

Determine the internal member forces of the fol-
lowing trusses, by the method of sections:

1. Figure 7.23 (page 103)

[ R1 = 3.0 kN, R2 = 1.0 kN,  
1 − 2, 1.73 kN, 1 − 3,  
− 3.46 kN, 2 − 3, − 2.0 kN]

2. Figure 7.24 (page 104)

[ R1 = −2.6 kN, R2 = 2.6 kN,  
H2 = 6 kN, 1 − 2, − 1.5 kN,  
1 − 3, 3.0 kN, 2 − 3, −5.2 kN ]

3. Figure 7.25 (page 104)

[ R1 = 5.0 kN, R2 = 1.0 kN,  
H1 = 4.0 kN, 1 − 2, 1.0 kN,  
1 − 3, −7.07 kN, 2 − 3, −1.41 kN]

4. Figure 7.26 (page 104)
 R1 = 5.0 kN, R2 = 7.0 kN, 1 − 3,  
−10.0 kN, 1 − 6, 8.7 kN, 3 − 4,  
−8.0 kN, 3 − 6, −2.0 kN, 4 − 6,  
4.0 kN, 4 − 5, −8.0 kN, 5 − 6,  
−6.0 kN, 5 − 2, −14.0 kN, 6 − 2, 12.1 kN 

Practice Exercise 49  Short-answer 
questions on  
forces in structures

1.  Where must the loads be applied on a pin-
jointed truss?

2.  If there are three unknown forces in a truss, 
how many simultaneous equations are re-
quired to determine these unknown forces?

3.  When is a truss said to be statically indeter-
minate?

4.  For a plane pin-jointed truss, what are the 
maximum number of unknowns that can ex-
ist at a joint to analyse that joint without ana-
lysing another joint before it?

Practice Exercise 50  Multiple-choice 
questions on forces in 
frameworks 

(Answers on page 335)

1. The truss of Figure 7.42 is a:
 (a)  mechanism
 (b)  statically determinate
 (c)  statically indeterminate

Figure 7.42

2. The value of F1 in Figure 7.43 is:
 (a)  1 kN  (b)  0.5 kN
 (c)  0.707 kN

Figure 7.43

F. 
F， 

句kN

F， 30・R
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3. The value of F2 in Figure 7.43 is:    
 (a)  0.707 kN (b)  0.5 kN
 (c)  0

4.   If the Young’s modulus is doubled in the 
members of a pin-jointed truss, and the ex-
ternal loads remain the same, the internal 
forces in the truss will:

 (a)  double
 (b)  halve
 (c)  stay the same

5.   If the Young’s modulus is doubled in the 
members of a pin-jointed truss, and the loads 
remain the same, the deflection of the truss 
will:

 (a)  double   (b) halve
 (c)  stay the same

6.  If the external loads in a certain truss are 
doubled, the internal forces will: 

 (a)  double   (b) halve  
 (c)  stay the same
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Chapter 8

8.1 Bending moment (M)

The units of bending moment are N mm, N m, kN m, 
etc. When a beam is subjected to the couples shown in 
Figure 8.1, the beam will suffer flexure due to the bend-
ing moment of magnitude M. 

At the end of this chapter you should be able to:

• define a rigid-jointed framework
• define bending moment
• define sagging and hogging
• define shearing force
• calculate bending moments
• calculate shearing forces 
• plot bending moment diagrams
• plot shearing force diagrams
• define the point of contraflexure

Why it is important to understand: Bending moment and shear force diagrams
The members of the structures in the previous chapter withstood the externally applied loads in either 
tension or compression; this was because they were not subjected to bending. In Practice many structures 
are subjected to bending action; such structures include beams and rigid-jointed frameworks (a rigid-jointed 
framework is one which has its joints welded or riveted or bolted together; such structures are beyond the 
scope of this text - see reference [1], on page 111). In this chapter, bending moments and shearing forces are 
defined and calculated, before the plotting of bending moment and shearing force diagrams are explained. 
Bending moments and shearing forces are of much importance in the design of buildings, bridges, ships, etc.

Figure 8.1 Bending moments

M M M M 

(a) Sagging momenl (+) (b) Hogging momenl卜}
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If the beam is in equilibrium and it is subjected to  
a clockwise couple of magnitude M on the left of the 
section, then from equilibrium considerations, the 
couple on the right of the section will be of exactly 
equal magnitude and of opposite direction to the cou-
ple on the left of the section. Thus, when calculating 
the bending moment at a particular point on a beam 
in equilibrium, we need only calculate the magnitude 
of the resultant of all the couples on one side of the 
beam under consideration. This is because as the beam 
is in equilibrium, the magnitude of the resultant of all 
the couples on the other side of the beam is exactly 
equal and opposite. The beam in Figure 8.1(a) is said 
to be sagging and the beam in Figure 8.1(b) is said to 
be hogging.
The sign convention adopted in this text is:
(a) sagging moments are said to be positive
(b) hogging moments are said to be negative

8.2 Shearing force (F)

Whereas a beam can fail due to its bending moments be-
ing excessive, it can also fail due to other forces being too 
large, namely the shearing forces; these are shown in Fig-
ure 8.2. The units of shearing force are N, kN, MN, etc.

Figure 8.2 Shearing forces

It can be seen from Figures 8.2(a) and (b) that the 
shearing forces F act in a manner similar to that ex-
erted by a pair of garden shears when they are used 
to cut a branch of a shrub or a plant through shearing 
action. This mode of failure is different to that caused 
by bending action.

In the case of the garden shears, it is necessary for the 
blades to be close together and sharp, so that they do 
not bend the branch at this point. If the garden shears 
are old and worn the branch can bend and may lie be-
tween the blades. Additionally, if the garden shears are 
not sharp, it may be more difficult to cut the branch 
because the shearing stress exerted by the blades will 
be smaller as the contact area between the blades and 
the branch will be larger.

The shearing action is illustrated by the sketch of 
Figure 8.3.

Figure 8.3 Shearing action

Once again, if the beam is in equilibrium, then the 
shearing forces either side of the point being consid-
ered will be exactly equal and opposite, as shown in 
Figures 8.2(a) and (b). The sign  convention for shear-
ing force is that it is said to be positive if the right 
hand is going down; see  Figure 8.2(a).

Thus, when calculating the shearing force at a par-
ticular point on a horizontal beam, we need to calculate 
the resultant of all the vertical forces on one side of 
the beam, as the resultant of all the vertical forces on 
the other side of the beam will be exactly equal and op-
posite. The calculation of bending moments and shear-
ing forces and the plotting of their respective diagrams 
are demonstrated in the following worked problems.

8.3  Worked problems on  
bending moment and  
shearing force diagrams

Problem 1. Calculate and sketch the bending 
moment and shearing force diagrams for the 
horizontal beam shown in Figure 8.4, which is 
simply supported at its ends.

Figure 8.4

Firstly, it will be necessary to calculate the magnitude 
of reactions RA and RB

Taking moments about B gives:
Clockwise moments about B =  
anticlockwise moments about B

F 

F F F F 

(a) Posil問 shearingfo四 (b)Negati噛 shearingfo四

C 6kN 

A B 

3m 2m 
RA R. 
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i.e.                RA × 5 m = 6 kN × 2 m = 12 kN m

from which,   RA = 12
5  = 2.4 kN

Resolving forces vertically gives:
            Upward forces = downward forces
i.e.                  RA + RB = 6 kN
i.e.                 2.4 + RB = 6
from which,           RB = 6 − 2.4 = 3.6 kN
As there is a discontinuity at point C in Figure 8.4, due 
to the concentrated load of 6 kN, it will be necessary to 
consider the length of the beam AC separately from the 
length of the beam CB. The reason for this is that the 
equations for bending moment and shearing force for 
span AC are different to the equation for the span CB; 
this is caused by the concentrated load of 6 kN.

For the present problem, to demonstrate the nature 
of bending moment and shearing force, these values 
will be calculated on both sides of the point of the beam 
under consideration. It should be noted that, normally, 
the bending moment and shearing force at any point on 
the beam are calculated only due to the resultant cou-
ples or forces, respectively, on one side of the beam.

Consider span AC:
Bending moment
Consider a section of the beam at a distance x from the 
left end A, where the value of x lies between A and C, 
as shown in Figure 8.5.

Figure 8.5

From Figure 8.5, it can be seen that the reaction RA 
causes a clockwise moment of magnitude RA × x = 2.4x 
on the left of this section and as shown in the lower 
diagram of Figure 8.5. It can also be seen from the up-
per diagram of Figure 8.5, that the force on the right of 
this section on the beam causes an anticlockwise mo-
ment equal to RB × (5 − x) or 3.6(5 − x) and a clockwise 
moment of 6 × (3 − x), resulting in an anticlockwise 
moment of:

           3.6(5 − x) − 6(3 − x) = 3.6 × 5 − 3.6x − 6 × 3 + 6x

                                           = 18 − 3.6x − 18 + 6x 
                                           = 2.4x
Thus, the left side of the beam at this section is sub-
jected to a clockwise moment of magnitude 2.4x and 
the right side of this section is subjected to an anti- 
clockwise moment of 2.4x, as shown by the lower 
diagram of Figure 8.5. As the two moments are of 
equal magnitude but of opposite direction, they cause 
the beam to be subjected to a bending moment M = 
2.4x. As this bending moment causes the beam to sag  
between A and C, the bending moment is assumed to be 
positive, or at any distance x between A and C:
 Bending moment = M = +2.4x (8.1)

Shearing force
Here again, because there is a discontinuity at C, due  
to the concentrated load of 6 kN at C, we must con-
sider a section of the beam at a distance x from the left  
end A, where x varies between A and C, as shown in 
Figure 8.6.

Figure 8.6

From Figure 8.6, it can be seen that the resultant of 
the vertical forces on the left of the section at x are  
2.4 kN acting upwards. This force causes the left  
of the section at x to slide upwards, as shown in the 
lower diagram of Figure 8.6. Similarly, if the vertical 
forces on the right of the section at x are considered,  
it can be seen that the 6 kN acts downwards and that  
RB = 3.6 kN acts upwards, giving a resultant of 2.4 kN  
acting downwards. The effect of the two shearing forc-
es acting on the left and the right of the section at x, 
causes the shearing action shown in the lower diagram 
of Figure 8.6. As this shearing action causes the right 
side of the section to glide downwards, it is said to be a 
positive shearing force.
Summarising, at any distance x between A and C:

 F = shearing force = +2.4 kN (8.2)

x 
A 

3m 
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Consider span CB:
Bending moment
At any distance x between C and B, the resultant mo-
ment caused by the forces on the left of x is given by:

   M = RA × x − 6(x − 3) = 2.4x − 6(x − 3)

                   = 2.4x − 6x + 18

i.e.          M = 18 − 3.6x (clockwise) (8.3)

The effect of this resultant moment on the left of x is 
shown in the lower diagram of Figure 8.7. 

Figure 8.7

Now from Figure 8.7, it can be seen that on the right 
side of x, there is an anticlockwise moment of:
  M = RB × (5 − x) = 3.6(5 − x) = 18 − 3.6x
i.e.  M = 18 − 3.6x (anticlockwise) (8.4)
The effect of the moment of equation (8.3) and that 
of the moment of equation (8.4), is to cause the beam 
to sag at this point as shown by the lower diagram of  
Figure 8.7, i.e. M is positive between C and B, and 

   M = +18 − 3.6x (8.5)

Shearing force
Consider a distance x between C and B, as shown in 
Figure 8.8.

Figure 8.8

From Figure 8.8, it can be seen that at x, there are 
two vertical forces to the left of this section, namely 
the 6 kN load acting downwards and the 2.4 kN load 

 acting upwards, resulting in a net value of 3.6 kN act-
ing downwards, as shown by the lower diagram of  
Figure 8.8. Similarly, by considering the vertical forc-
es acting on the beam to the right of x, it can be seen 
that there is one vertical force, namely the 3.6 kN load  
acting upwards, as shown by the lower diagram of  
Figure 8.8. Thus, as the right hand of the section is 
tending to slide upwards, the shearing force is said to 
be negative, i.e. between C and B,
   F = −3.6 kN  (8.6)
It should be noted that at C, there is a discontinuity  
in the value of the shearing force, where over an infini-
tesimal length the shearing force changes from +2.4 kN 
to − 3.6 kN, from left to right.

Bending moment and shearing force diagrams
The bending moment and shearing force diagrams are 
simply diagrams representing the variation of bending 
moment and shearing force, respectively, along the length 
of the beam. In the bending moment and shearing force 
diagrams, the values of the bending moments and shear-
ing forces are plotted vertically and the value of x is plot-
ted horizontally, where x = 0 at the left end of the beam 
and x = the whole length of the beam at its right end.

In the case of the beam of Figure 8.4, bending  
moment distribution between A and C is given by equa-
tion (8.1), i.e. M = 2.4x, where the value of x varies 
between A and C. 
At A,    x = 0,  therefore  MA = 2.4 × 0 = 0
and at C,  x = 3 m, therefore MC = 2.4 × 3 = 7.2 kN m
Additionally, as the equation M = 2.4x is a straight line, 
the bending moment distribution between A and C will 
be as shown by the left side of Figure 8.9(a).

Figure 8.9 Bending moment and shearing force diagrams
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Similarly, the expression for the variation of bending 
moment between C and B is given by equation (8.3), 
i.e. M = 18 − 3.6x, where the value of x varies between 
C and B. The equation can be seen to be a straight line 
between C and B.
At C,  x = 3 m,  
therefore MC = 18 − 3.6 × 3 = 18 − 10.8 = 7.2 kN m
At B,  x = 5 m, 
therefore MB = 18 − 3.6 × 5 = 18 − 18 = 0
Therefore, plotting of the equation M = 18 − 3.6x be-
tween C and B results in the straight line on the right of 
Figure 8.9(a), i.e. the bending moment diagram for this 
beam has now been drawn.

In the case of the beam of Figure 8.4, the shearing 
force distribution along its length from A to C is given 
by equation (8.2), i.e. F = 2.4 kN, i.e. F is constant  
between A and C. Thus the shearing force diagram  
between A and C is given by the horizontal line shown 
on the left of C in Figure 8.9(b). 

Similarly, the shearing force distribution to the  
right of C is given by equation (8.6), i.e. F = −3.6 kN, 
i.e. F is a constant between C and B, as shown by the 
horizontal line to the right of C in Figure 8.9(b). At 
the point C, the shearing force is indeterminate and 
changes from +2.4 kN to −3.6 kN over an infinitesimal 
length.

Problem 2. Determine expressions for the distri-
butions of bending moment and shearing force for 
the horizontal beam of Figure 8.10. Hence, sketch 
the bending and shearing force diagrams.

Figure 8.10

Firstly, it will be necessary to calculate the unknown 
reactions RA and RB

Taking moments about B gives:
 RA × 5 m + 10 kN × 1 m = 5 kN × 7 m + 6 kN × 3 m
i.e.    5 RA + 10 = 35 + 18
      5 RA = 35 + 18 − 10 = 43

from which,            RA = 43
5  = 8.6 kN

Resolving forces vertically gives:

                            RA + RB = 5 kN + 6 kN + 10 kN

i.e.                       8.6 + RB = 21

from which,                 RB = 21 − 8.6 = 12.4 kN
For the range C to A, see Figure 8.11.

Figure 8.11

To calculate the bending moment distribution (M), 
only the resultant of the moments to the left of the  
section at x will be considered, as the resultant of the 
moments on the right of the section of x will be exactly 
equal and opposite.

Bending moment (BM)
From Figure 8.11, at any distance x,
 M = −5 × x (hogging) = −5x (8.7)

Equation (8.7) is a straight line between C and A.
At C, x = 0, therefore MC = −5 × 0 = 0 kN m
At A, x = 2 m, therefore MA = −5 × 2 = −10 kN m

Shearing force (SF)
To calculate the shearing force distribution (F) at any 
distance x, only the resultant of the vertical forces to 
the left of x will be considered, as the resultant of the 
vertical forces to the right of x will be exactly equal 
and opposite.
From Figure 8.11, at any distance x,
   F = −5 kN (8.8)
It is negative, because as the left of the section tends to 
slide downwards, the right of the section tends to slide 
upwards. (Remember, right hand down is positive.)
For the range A to D, see Figure 8.12.

Figure 8.12
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Bending moment (BM)
At any distance x between A and D
                 M = −5 × x + RA × (x − 2)
                      = −5x + 8.6(x − 2)
                      = −5x + 8.6x − 17.2
i.e.            M =  3.6x − 17.2  

(a straight line between A and D) (8.9)
At A,  x = 2 m,  MA = 3.6 × 2 − 17.2 
                        = 7.2 − 17.2 = −10 kN m
At D, x = 4 m,  MD = 3.6 × 4 − 17.2 
                   = 14.4 − 17.2 = −2.8 kN m

Shearing force (SF)
At any distance x between A and D, (8.10)
 F = −5 kN + 8.6 kN = 3.6 kN (constant)
For the range D to B, see Figure 8.13.

Figure 8.13

Bending moment (BM)
At x,      M = −5 × x + 8.6 × (x − 2) − 6 × (x − 4)
     = −5x + 8.6x −17.2 − 6x + 24
i.e.        M =  −2.4x + 6.8  (8.11) 

(a straight line between D and B) 
At D, x  = 4 m, therefore MD  = −2.4 × 4 + 6.8
       = −9.6 + 6.8
i.e.      MD = −2.8 kN m
At B, x = 7 m, therefore MB = −2.4 × 7 + 6.8
                                             = −16.8 + 6.8
i.e.      MB = −10 kN m

Shearing force (SF)
At x,      F = −5 + 8.6 − 6 = −2.4 kN (constant) (8.12)
For the range B to E, see Figure 8.14.

Figure 8.14

Bending moment (BM)
In this case it will be convenient to consider only the 
resultant of the couples to the right of x (remember 
that only one side need be considered, and in this case, 
there is only one load to the right of x).

At x,        M = −10 × (8 − x) = −80 + 10x (8.13)

Equation (8.13) can be seen to be a straight line  
between B and E.

At B, x = 7 m, 
therefore MB = −80 + 10 × 7 = −10 kN m

At E, x = 8 m, 
therefore ME = −80 + 10 × 8 = 0 kN m

Shearing force (SF)
At x,         F = + 10 kN (constant)  (8.14)
Equation (8.14) is positive because the shearing force 
is causing the right side to slide downwards.
The bending moment and shearing force diagrams are 
plotted in Figure 8.15 with the aid of equations (8.7) 
to (8.14) and the associated calculations at C, A, D, B 
and E.

Figure 8.15

Problem 3. Determine expressions for the bend-
ing moment and shearing force distributions for the 
beam of Figure 8.16. Hence, sketch the bending 
moment and shearing force diagrams.

Figure 8.16
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Firstly, it will be necessary to calculate the reactions 
RA and RB

Taking moments about B gives:
 15 kN m + RA × 5 m + 10 kN × 1 m = 30 kN m
i.e.   5 RA = 30 − 10 − 15 = 5

from which,    RA = 5
5  = 1 kN

Resolving forces vertically gives:
                            RA + RB = 10 kN
i.e.                          1 + RB = 10
from which,                 RA = 10 − 1 = 9 kN
For the span C to A, see Figure 8.17

Figure 8.17

Bending moment (BM)
At x,       M = 15 kN m (constant) (8.15) 

Shearing force (SF)
At x = 0, F = 0 kN (8.16)
For the span A to D, see Figure 8.18.

Figure 8.18

Bending moment (BM)

At x,        M = 15 kN m + RA × (x − 2)
                         = 15 + 1(x − 2)
                         = 15 + x − 2 
i.e.             M = 13 + x (a straight line) (8.17) 
At A,  x = 2 m, 
therefore    MA = 13 + 2 = 15 kN m

At D, x = 4 m, 
therefore MD( )−

= 13 + 4 = 17 kN m

Note that MD( )−
means that M is calculated to the left of D.

Shearing force (SF)
At x,   F = 1 kN (constant) (8.18)
For the span D to B, see Figure 8.19.

Figure 8.19

Bending moment (BM)
At x,     M = 15 kN m + 1 kN m × (x − 2) − 30 kN m
                     = 15 + x − 2 − 30
i.e             M = x − 17 (a straight line) (8.19)

At D,  x = 4 m, 
therefore  M

+D( )
= 4 − 17 = −13 kN m

Note that M
+D( )

means that M is calculated just to the 
right of D.

At B, x = 7 m, 
therefore M

−B( )
 = 7 − 17 = −10 kN m

Shearing force (SF)

At x, F = −1 kN (constant) (8.20)

For the span B to E, see Figure 8.20.

Figure 8.20

In this case we will consider the right of the beam as 
there is only one force to the right of the section at x.

    M = −10 × (8 − x) = −80 + 10x (a straight line)
At  x,     F =  10 kN (positive as the right hand is going 

down, and constant).
Plotting the above equations, for the various spans,  
results in the bending moment and shearing force  
diagrams of Figure 8.21.
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Figure 8.21

Problem 4. Calculate and plot the bending 
moment and shearing force distributions for the 
cantilever of Figure 8.22.

Figure 8.22

In the cantilever of Figure 8.22, the left hand end is free 
and the right hand end is firmly fixed; the right hand 
end is called the constrained end.

Bending moment (BM)
At x in Figure 8.22,  M = −5 kN × x
i.e.       M = −5x (a straight line) (8.21)

Shearing force (SF)
At x in Figure 8.22,   F = −5 kN (a constant) (8.22)
For equations (8.21) and (8.22), it can be seen that the 
bending moment and shearing force diagrams are as 
shown in Figure 8.23.

Figure 8.23

Problem 5. Determine the bending moment and 
shearing force diagram for the cantilever shown  
in Figure 8.24, which is rigidly constrained at the 
end B.

Figure 8.24

For the span A to C, see Figure 8.25.

Figure 8.25

Bending moment (BM)
At x,        M = −5 kN × x
i.e.               M = −5x (a straight line) (8.23)

Shearing force (SF)
At x,         F = −5 kN (constant) (8.24)
For the span C to B, see Figure 8.26.

Figure 8.26

Bending moment (BM)

At x,        M = −5 kN × x − 10 kN × (x − 2)

                        = −5x − 10x + 20

i.e.               M = 20 − 15x (a straight line) (8.25)

At C, x = 2 m, therefore MC = 20 − 15 × 2

                                              = 20 − 30
i.e.                                  MC = −10 kN m

At B, x = 3 m, therefore MB = 20 − 15 × 3
                                              = 20 − 45
i.e.                                  MB = −25 kN m
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Shearing force (SF)

At x in Figure 8.26,   F = −5 kN − 10 kN

i.e.         F = −15 kN (constant) (8.26) 

From equations (8.23) to (8.26) and the associated 
calculations, the bending moment and shearing force  
diagrams can be plotted, as shown in Figure 8.27.

Figure 8.27

Problem 6. A uniform section, 6 m long, horizontal 
beam is simply supported at its ends. If this beam is 
subjected to two vertically applied downward loads, 
one of magnitude 5 kN at 2 m from the left support, 
and the other of magnitude 10 kN, 4 m from the left 
support, calculate and plot the bending moment and 
shear force diagrams.

The loaded beam is shown in Figure 8.28.

Figure 8.28

Taking moments about B:
 RA × 6 = 5 × 4 + 10 × 2

i.e.    6 RA = 40  and RA = 40
6  = 6.67 kN

   RA + RB = 5 + 10 = 15 kN
hence           RB = 15 − 6.67 = 8.33 kN

Bending moments
At  A, BM  = 0;  At C, BM  = RA × 2  = 6.67 × 2  

= 13.34 kN m
At D, BM  = RA × 4 − 5 × 2  = 6.67 × 4 − 5 × 2  

= 16.68 kN m
At B, BM = 0

Shearing force
At A, SF = + RA = 6.67 kN 
At C, SF = 6.67 − 5 = 1.67 kN
At D, SF = 6.67 − 5 − 10 = −8.33 kN 
At B, SF = −8.33 kN
The bending moment and shearing force diagram is 
shown in Figure 8.29.

Figure 8.29
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Now try the following Practice Exercise

Practice Exercise 51  Further problems 
on bending moment 
and shearing force 
diagrams

Determine expressions for the bending moment 
and shearing force distributions for each of 
the following simply supported beams; hence,  
or otherwise, plot the bending moment and  
shearing force diagrams. 

1.  

Figure 8.30

[see Figure 8.45(a) on page 125]

2. 

Figure 8.31

[see Figure 8.45(b) on page 125]

3. 

Figure 8.32

[see Figure 8.45(c) on page 125]

4. 

Figure 8.33

[see Figure 8.45(d) on page 125]

5.  

Figure 8.34

[see Figure 8.45(e) on page 126]

6. 

Figure 8.35

[see Figure 8.45(f) on page 126]

7. 

Figure 8.36

[see Figure 8.45(g) on page 126]
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8.  A horizontal beam of negligible mass is of 
length 7 m. The beam is simply supported 
at its ends and carries three vertical loads, 
pointing in a downward direction. The first 
load is of magnitude 3 kN and acts 2 m from 
the left end, the second load is of magnitude 
2 kN and acts 4 m from the left end, and 
the third load is of magnitude 4 kN and acts  
6 m from the left end. Calculate the bending 
moment and shearing force at the points of 
discontinuity, working from the left support 
to the right support.

[ Bending moments (kN m): 0, 7.14, 8.28,  
5.42, 0; Shearing forces (kN): 3.57, 3.57/ 
0.57, 0.57/−1.43, −1.43/−5.43, −5.43      

]
8.4 Uniformly distributed loads

Uniformly distributed loads (UDL) appear as snow 
loads, self-weight of the beam, uniform pressure loads, 
and so on. In all cases they are assumed to be spread 
uniformly over the length of the beam in which they 
apply. The units for a uniformly distributed load are 
N/m, kN/m, MN/m, and so on.
Worked problems 7 and 8 involve uniformly distrib-
uted loads.

Problem 7. Determine expressions for the bend-
ing moment and shearing force distributions for the 
cantilever shown in Figure 8.37, which is subjected 
to a uniformly distributed load, acting downwards, 
and spread over the entire length of the cantilever.

Figure 8.37

Bending moment (BM)

Figure 8.38

At any distance x in Figure 8.38, 

 M = −10 kN × x × x
2  (8.27)

i.e. M = −5x2 (a parabola) (8.28)
In equation (8.27), the weight of the uniformly distrib-
uted beam up to the point x is (10 × x). As the centre of 
gravity of the UDL is at a distance of x

2  from the right 

end of Figure 8.38, M = −10x × x
2  

The equation is negative because the beam is hogging.
At x = 0, M = 0

At x = 5 m, M = −10 × 5 × 5
2  = −125 kN m

Shearing force (SF)
At any distance x in Figure 8.38, the weight of the UDL 
is (10 × x) and this causes the left side to slide down, or 
alternatively the right side to slide up.

Hence, F = −10x (a straight line) (8.29)

At x = 0, F = 0

At x = 5 m, F = −10 × 5 = −50 kN

Plotting of equations (8.28) and (8.29) results in the 
distributions for the bending moment and shearing 
force diagrams shown in Figure 8.39.

Figure 8.39
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Problem 8. Determine expressions for the bend-
ing moment and shearing force diagrams for the 
simply supported beam of Figure 8.40. The beam 
is subjected to a uniformly distributed load (UDL) 
of 5 kN/m, which acts downwards, and it is spread 
over the entire length of the beam.

Figure 8.40

Firstly, it will be necessary to calculate the reactions 
RA and RB. As the beam is symmetrically loaded, it is 
evident that:
            RA = RB (8.30)
Taking moments about B gives:

Clockwise moments about B =  
anticlockwise moments about B

i.e.  RA × 6 m = 5 kN
m × 6 m × 3 m (8.31)

                              = 90 kN m

from which,     RA = 90
6  = 15 kN = RB

On the right hand side of equation (8.31), the term  
5 kN/m × 6 m is the weight of the UDL, and the length 
of 3 m is the distance of the centre of gravity of the 
UDL from B.

Bending moment (BM)
At any distance x in Figure 8.41,

Figure 8.41

  M = RA × x − 5 kN
m × x × x

2  (8.32)

i.e.  M = 15x − 2.5x2 (a parabola) (8.33)
On the right hand side of equation (8.32), the term:  
(RA × x) is the bending moment (sagging) caused by 

the reaction, and the term x x5 kN
m 2

× ×








 , which is 

hogging, is caused by the UDL, where (5 kN
m × x) is 

the weight of the UDL up to the point x, and x
2  is the 

distance of the centre of gravity of the UDL from the 
right side of Figure 8.41.
At x = 0, M = 0 
At x = 3 m, M = 15 × 3 − 2.5 × 32 = 22.5 kN m
At x = 6 m, M = 15 × 6 − 2.5 × 62 = 0  

Shearing force (SF)
At any distance x in Figure 8.41, 

  F = RA − 5 kN
m × x (8.34)

i.e.  F = 15 − 5x (a straight line) (8.35)
On the right hand side of equation (8.34), the term 

×








x5 kN

m
 is the weight of the UDL up to the point x;  

this causes a negative configuration to the shearing 
force as it is causing the left side to slide downwards.
At x = 0, F = 15 kN
At x = 3 m, F = 15 − 5 × 3 = 0
At x = 6 m, F = 15 − 5 × 6 = −15 kN
Plotting of equations (8.33) and (8.35) results in  
the bending moment and shearing force diagrams of 
Figure 8.42.

Figure 8.42         
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Now try the following Practice Exercises

Practice Exercise 52  Further problems 
on bending moment 
and shearing force 
diagrams

Determine expressions for the bending moment 
and shearing force distributions for each of the 
following simply supported beams; hence, plot 
the bending moment and shearing force diagrams.

1. Figure 8.43(a)

Figure 8.43 Simply supported beams

[see Figure 8.46(a) on page 126]

2. Figure 8.43(b)
[see Figure 8.46(b) on page 126]

  Determine expressions for the bending mo-
ment and shearing force distributions for 
each of the following cantilevers; hence, 
or otherwise, plot the bending moment and 
shearing force diagrams.

3. Figure 8.44(a)

Figure 8.44 Cantilevers

[see Figure 8.47(a) on page 126]

4. Figure 8.44(b)
[see Figure 8.47(b) on page 126]

Practice Exercise 53  Short-answer 
questions on bending 
moment and shearing 
force diagrams

1. Define a rigid-jointed framework.

2. Define bending moment.

3. Define sagging and hogging.

4.  State two practical examples of uniformly 
distributed loads.

5.  Show that the value of the maximum shear-
ing force for a beam simply supported at its 
ends, with a centrally placed load of 3 kN, is 
1.5 kN.

6.  If the beam in question 5 were of span 4 m, 
show that its maximum bending moment is  
3 kN m.

7.  Show that the values of maximum bending 
moment and shearing force for a cantilever 
of length 4 m, loaded at its free end with a 
concentrated load of 3 kN, are 12 kN m and 
3 kN.

Practice Exercise 54  Multiple-choice 
questions on bending 
moment and shearing 
force diagrams 

(Answers on page 335)

1.  A beam simply supported at its end, carries a 
centrally placed load of 4 kN. Its maximum 
shearing force is:

 (a)  4 kN    (b)  2 kN 
 (c)  8 kN    (d)  0

2.  Instead of the centrally placed load, the 
beam of question 1 has a uniformly distrib-
uted load of 1 kN/m spread over its span of 
length 4 m. Its maximum shearing force is 
now: 

 (a)  4 kN   (b)  1 kN
 (c)  2 kN    (d)  0

SkNlm 

A B 

7m 

(a) 

5kNIm 

A B 

12m 

(b) 

S kNlm 

A B 

5m 
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5kNIm 
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3.  A cantilever of length 3 m has a load of 4 kN 
placed on its free end. The magnitude of its 
maximum bending moment is:

 (a)  3 kN m   (b)  4 kN m  
 (c)  12 kN m  (d)  4/3 kN/m

4.  The magnitude of the maximum shearing 
force for the cantilever of question 3 is:

 (a)  4 kN  (b)  12 kN
 (c)  3 kN  (d)  zero

5.  A cantilever of 3  m length carries a UDL of 
2 kN/m. The magnitude of the maximum 
shearing force is: 

 (a)  3 kN    (b)  2 kN
 (c)  6 kN  (d)  zero

6.  In the cantilever of question 5, the magni-
tude of the maximum bending moment is:

 (a)  6 kN m (b)  9 kN m
 (c)  2 kN m   (d)  3 kN m

Answers to Exercise 51 (page 121)

Figure 8.45 
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Figure 8.45 (Continued)

Answers to Exercise 52 (page 124)

Figure 8.46

Figure 8.47

For fully worked solutions to each of the problems in Practice Exercises 51 to 54 in this chapter,  
go to the website:  

www.routledge.com/cw/bird
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Chapter 9

First and second  
moments of area

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

ment of mass. When dealing with an area (i.e. a lam-
ina of negligible thickness and mass) the term centre 
of  moment of area or centroid is used for the point 
where the centre of gravity of a lamina of that shape 
would lie.

9.1 Centroids

A lamina is a thin flat sheet having uniform thickness. 
The centre of gravity of a lamina is the point where 
it balances perfectly, i.e. the lamina’s centre of mo-

At the end of this chapter you should be able to:

• define a centroid
• define first moment of area
• calculate centroids using integration
• define second moment of area
• define radius of gyration
• state the parallel axis and perpendicular axis theorems
• calculate the second moment of area and radius of gyration of regular sections using a table of standard results
• calculate the second moment of area of I, T and channel bar beam sections

Why it is important to understand: First and second moment of areas
The first moment of area is usually used to find the centroid or centre of gravity of a two-dimensional 
shape or an artefact. The position of the centroid and centre of gravity is fundamental and often it is 
very important in very many branches of engineering. The second moment of area can be described as 
the geometric ability of a two-dimensional figure or lamina to resist rotation about an axis through its 
plane. It is extensively used in structures, where it measures the geometric ability of the structure to 
resist bending. Likewise in the hydrostatic stability of ships and yachts, the second moment of area of 
a yacht or a ship’s water plane is a measure of the yacht or ship to resist rotations, such as those due to 
‘heeling’ and ‘trimming’. This chapter starts by defining the first and second moments of area of two-
dimensional figures and laminas, and extends this to shapes that are useful in engineering, such as the 
shapes of the cross-sections of beams. For example, I beams, Tee beams and channel cross-sections are 
all very important in structural engineering. First and second moments of force are of much importance 
in calculating bending stresses in buildings, bridges, ships, etc.
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9.2 The first moment of area

The first moment of area is defined as the product of 
the area and the perpendicular distance of its centroid 
from a given axis in the plane of the area. In Figure 9.1, 
the first moment of area A about axis XX is given by  
(Ay) cubic units.

Figure 9.1

9.3  Centroid of area between a  
curve and the x-axis

 (i) Figure 9.2 shows an area PQRS bounded by 
the curve y = f (x), the x-axis and ordinates 
x = a and x = b. Let this area be divided into 
a large number of strips, each of width δx.  
A typical strip is shown shaded drawn at point  
(x, y) on f (x). The area of the strip is approximately 
rectangular and is given by yδx. The centroid, C, 

has coordinates x y,
2









  

Figure 9.2

 (ii) First moment of area of shaded strip about axis  
 Oy = (yδx)(x) = xyδx

  Total first moment of area PQRS about axis  

 Oy = ∑ ∫=→ =

=
δ

δ
xy x xy dxlimit

x x a

x b

a

b

0

 (iii) First moment of area of shaded strip about axis  

 Ox = (yδx)










y
2  = 1

2 y2x

  Total first moment of area PQRS about axis  

 Ox = ∑ ∫→
=

δ =

=
y y dxlimit 1

2
1
2x x a

x b

a

b

0
2 2

 (iv) Area of PQRS, A = ∫ y dx
a

b
 (see Engineering 

Mathematics, 7th Edition, page 551)

 (v) Let x  and y  be the distances of the centroid of 
area A about Oy and Ox respectively then:

  ( x )(A) = total first moment of area A about axis 

Oy = ∫ xy dx
a

b

  from which, 
∫

∫
=x

xy dy

y dy

a

b

a

b

  and ( y)(A) = total moment of area A about axis 

Ox = ∫ y dx1
2 a

b 2

  from which, 
∫

∫
=y

y dx

y dx

1
2 a

b

a

b

2

9.4  Centroid of area between a 
curve and the y-axis

If x  and y  are the distances of the centroid of area 
EFGH in Figure 9.3 from Oy and Ox respectively, then, 
by similar reasoning as above:

Figure 9.3
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from which,   
∫

∫
=x

x dy

x dy

1
2 c

d

c

d

2

and ( y)(total area) = ∑ ∫→
δ =

δ =

=

x y y xy dylimit ( )
y y c

y d

c

d

0

from which,    
∫

∫
=y

xy dy

x dy

c

d

c

d

9.5  Worked problems on centroids of  
simple shapes

Problem 1. Show, by integration, that the  
centroid of a rectangle lies at the intersection of  
the diagonals.

Let a rectangle be formed by the line y = b, the x-axis 
and ordinates x = 0 and x = L as shown in Figure 9.4. Let 
the coordinates of the centroid C of this area be (x , y ).

Figure 9.4

By integration, 
∫

∫

∫

∫
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and            
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i.e. the centroid lies at 










L b
2

,
2

 which is at the inter-

section of the diagonals.

Problem 2. Find the position of the centroid of 
the area bounded by the curve y = 3x2, the x-axis 
and the ordinates x = 0 and x = 2.

If ( x , y ) are the co-ordinates of the centroid of the  
given area then:
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Hence the centroid lies at (1.5, 3.6)

Problem 3. Determine by integration the position 
of the centroid of the area enclosed by the line  
y = 4x, the x-axis and ordinates x = 0 and x = 3.

Let the coordinates of the centroid be ( x , y ) as shown 
in Figure 9.5.

Figure 9.5
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Then  
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∫
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∫

∫
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2
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3
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0

3

0

3

2
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3

2
0

3
3

0
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Hence the centroid lies at (2, 4)
In Figure 9.5, ABD is a right-angled triangle. The cen-
troid lies 4 units from AB and 1 unit from BD showing 
that the centroid of a triangle lies at one-third of the 
perpendicular height above any side as base.

Now try the following Practice Exercise

Practice Exercise 55  Further problems on 
centroids of simple 
shapes

In Problems 1 to 5, find the position of the cen-
troids of the areas bounded by the given curves, 
the x-axis and the given ordinates.

1. y = 2x; x = 0, x = 3 [(2, 2)]

2. y = 3x + 2; x = 0, x = 4 [(2.50, 4.75)]

3. y = 5x2; x = 1, x = 4 [(3.036, 24.36)]

4. y = 2x3; x = 0, x = 2  [(1.60, 4.57)]

5. y = x(3x + 1); x = –1, x = 0
  [(–0.833, 0.633)]

9.6  Further worked problems on  
centroids of simple shapes

Problem 4. Determine the co-ordinates of  
the centroid of the area lying between the curve  
y = 5x – x2 and the x-axis.

y = 5x – x2 = x(5 – x). When y = 0, x = 0 or x = 5. Hence 
the curve cuts the x-axis at 0 and 5 as shown in Figure  
9.6. Let the co-ordinates of the centroid be ( x , y )  
then, by integration, 

Figure 9.6
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   = 

1
2

25(125)
3

6250
4

625

125
6

− +










 = 2.5

Hence the centroid of the area lies at (2.5, 2.5)
(Note from Figure 9.6 that the curve is symmetrical about 
x = 2.5 and thus x  could have been determined ‘on sight’.)

Problem 5. Locate the centroid of the area en-
closed by the curve y = 2x2, the y-axis and ordi-
nates y = 1 and y = 4, correct to 3 decimal places.

From Section 9.4, 
∫
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∫
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     = 

2
5 2

(31)

14
3 2

 = 2.657

Hence the position of the centroid is at (0.568, 2.657)

Now try the following Practice Exercise

Practice Exercise 56  Further problems on 
centroids of simple 
shapes

1.  Determine the position of the centroid of a 
sheet of metal formed by the curve y = 4x – x2  
which lies above the x-axis. [(2, 1.6)]

2.  Find the coordinates of the centroid of the 
area that lies between the curve y

x
 = x – 2 

and the x-axis. [(1, – 0.4)]

3.  Determine the coordinates of the centroid of 
the area formed between the curve y = 9 – x2 
and the x-axis. [(0, 3.6)]

4.  Determine the centroid of the area lying be-
tween y = 4x2, the y-axis and the ordinates  
y = 0 and y = 4. [(0.375, 2.40)]

5.  Find the position of the centroid of the area 
enclosed by the curve y = x5 , the x-axis 
and the ordinate x = 5. [(3.0, 1.875)]

6.  Sketch the curve y2 = 9x between the limits  
x = 0 and x = 4. Determine the position of the 
centroid of this area. [(2.4, 0)]

9.7  Second moments of area of  
regular sections

The first moment of area about a fixed axis of a lami-
na of area A, perpendicular distance y from the centroid 
of the lamina is defined as Ay cubic units.
The second moment of area of the same lamina as 
above is given by Ay2, i.e. the perpendicular distance 
from the centroid of the area to the fixed axis is squared.
Second moments of areas are usually denoted by  
I and have units of mm4, cm4, and so on.
Several areas, a1, a2, a3,.. at distances y1, y2, y3,.. from 
a fixed axis, may be replaced by a single area A, where 
A = a1 + a2 + a3 + .. at distance k from the axis, such 
that Ak2 = ∑ ay2

k is called the radius of gyration of area A about the 
given axis. Since Ak2 = ∑ ay2 = I then the radius of 

gyration, k =
I
A

The second moment of area is a quantity much used 
in the theory of bending of beams (see Chapter 10), 
in the torsion of shafts (see Chapter 12), and in calcu-
lations involving water planes and centres of pressure 
(see Chapter 23).
The procedure to determine the second moment of 
area of regular sections about a given axis is (i) to find 
the second moment of area of a typical element and (ii) 
to sum all such second moments of area by integrating 
between appropriate limits.
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For example, the second moment of area of the 
rectangle shown in Figure 9.7 about axis PP is found 
by initially considering an elemental strip of width δx, 
parallel to and distance x from axis PP. Area of shaded 
strip = bδx. Second moment of area of the shaded strip 
about PP = (x2)(bδx).
The second moment of area of the whole rectangle 
about PP is obtained by summing all such strips  

between x = 0 and x = d, i.e. ∑ δ
=

=

x b x
x

x d
2

0

 

Figure 9.7

It is a fundamental theorem of integration that  

δ →
limit
x x

∑ δ
=

=

x b x
x

x d
2

0
 = ∫ x bdx

d 2
0

Thus the second moment of area of the rectangle  

about PP = b ∫ x dx
d 2

0
 = b 









x
3

d3

0

= bd
3

3

Since the total area of the rectangle, A = db, 

then IPP = (db)
d
3

2







  = Ad

2

3

     IPP = AkPP
2  thus k PP

2  = d
3

2

i.e. the radius of gyration about axis PP, 

         kPP = 
d
3

2
 = d

3

Parallel axis theorem

In Figure 9.8, axis GG passes through the centroid C 
of area A. Axes DD and GG are in the same plane, are 
parallel to each other and distance H apart. The parallel 
axis theorem states:

IDD = IGG + AH2

Figure 9.8

Using the parallel axis theorem the second moment 
of area of a rectangle about an axis through the cen-
troid may be deter mined. In the rectangle shown in  

Figure 9.9, IPP = bd
3

3
 (from above)

Figure 9.9

From the parallel axis theorem  

    IPP = IGG + (bd)
d
2

2









i.e. bd
3

3

 
= IGG + bd

4

3
 from which,  

  IGG = bd
3

3
 – bd

4

3

 
= bd

3

12

Perpendicular axis theorem

In Figure 9.10, axes OX, OY and OZ are mutually per-
pendicular. If OX and OY lie in the plane of area A then 
the perpendicu lar axis theorem states:

IOZ = IOX + IOY 
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Table 9.1 Summary of Standard Results of the Second Moments of Areas of Regular Sections

Shape Position of axis Second moment of area, I Radius of gyration, k

 
Rectangle
length d
breadth b

 
(1) Coinciding with b

(2) Coinciding with d 

(3) Through centroid, parallel to b
 

(4) Through centroid, parallel to d

bd 3

3

db3

3
bd 3

12

db3

12

d
3

b
3
d
12

b
12

Triangle
Perpendicular 
height h
base b

 
(1) Coinciding with b

(2) Through centroid, parallel to base

(3) Through vertex, parallel to base

bh3

12

bh3

36

bh3

4

h
6
h
18
h
2

Circle
radius r
diameter d

 
(1)  Through centre perpendicular to 

plane (i.e. polar axis)

(2) Coinciding with diameter

(3) About a tangent

π r
2

4

 
or

 

π d
32

4

π r
4

4  
or

 π d
64

4

π r5
4

4  or π d5
64

4

r
2

r
2

5
2

r

Semicircle
radius r Coinciding with diameter π r

8

4 r
2

Figure 9.10

A summary of derived standard results for the second 
moment of area and radius of gyration of regular sec-
tions are listed in Table 9.1.

The second moment of area of a hollow cross- 
section, such as that of a tube, can be obtained by sub-
tracting the second moment of area of the hole about its 

centroid from the second moment of area of the outer 
circumference about its centroid. This is demonstrated 
in worked problems 10, 12 and 13 following.

Problem 6. Determine the second moment of 
area and the radius of gyration about axes AA, BB 
and CC for the rectangle shown in Figure 9.11. 

Figure 9.11

z 
y 

AraB A 

x 

d=12.0cm 
A 

C C 
b =4.0cm 

B B 
A 
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From Table 9.1, the second moment of area about  
axis AA,

        IAA = bd
3

3
 = (4.0)(12.0)

3

3
 = 2304 cm4

Radius of gyration, kAA = d
3

 = 12.0
3

 = 6.93 cm

Similarly,     IBB = db3

3
 = (12.0)(4.0)

3

3
 = 256 cm4

and         kBB = b
3

 = 4.0
3

 = 2.31 cm

The second moment of area about the centroid of a 

rectangle is bd
12

3
 when the axis through the centroid 

is parallel with the breadth b. In this case, the axis CC 
is parallel with the length d

Hence ICC = db
12

3
 = (12.0)(4.0)

12

3
 = 64 cm4

and  kCC = b
12

 = 4.0
12

 = 1.15 cm

Problem 7. Find the second moment of area  
and the radius of gyration about axis PP for the 
rectangle shown in Figure 9.12.

Figure 9.12

  IGG = dh
12

3
 where d = 40.0 mm  

and      h = 15.0 mm

Hence IGG = (40.0)(15.0)
12

3
 = 11250 mm4

From the parallel axis theorem,  
  IPP = IGG + AH2,  
where   A = 40.0 × 15.0 = 600 mm2 and

    H = 25.0 + 7.5 = 32.5 mm,  
the perpendicular distance between GG and PP.

Hence  IPP = 11250 + (600)(32.5)2 = 645000 mm4

   IPP = Ak2
PP, from which,

  kPP = I
area
PP  = 

645000
600









  = 32.79 mm

Problem 8. Determine the second moment of 
area and radius of gyration about axis QQ of the 
triangle BCD shown in Figure 9.13.

Figure 9.13

Using the parallel axis theorem: IQQ = IGG + AH2, 
where IGG is the second moment of area about the  
centroid of the triangle,

i.e.  IGG =  bh
36

3
  = 

(8.0)(12.0)
36

3
  

= 384 cm4,

A is the area of the triangle  = 1
2

bh  

= 1
2  

(8.0)(12.0)  

= 48 cm2

and H is the distance between axes GG and QQ

          = 6.0 + 1
3

(12.0)  

= 10 cm
Hence the second moment of area about axis QQ,  

      IQQ  = 384 + (48)(10)2  

= 5184 cm4

Radius of gyration, kQQ  = 
IQQ
area   = 

5184
48









   

= 10.4 cm

Problem 9. Determine the second moment of 
area and radius of gyration of the circle shown in 
Figure 9.14 about axis YY.

B 

12.0 em G G 

D C 8.0 em 6.0 em 

Q Q 

40 .0 mm 

G G 
15.0mm 

25.0 mm 

p p 
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Figure 9.14

In Figure 9.14, 

              IGG = π r
4

4
 = π

4
 (2.0)4 = 4π cm4

Using the parallel axis theorem,  
               IYY = IGG + AH2,  

where H = 3.0 + 2.0 = 5.0 cm.
Hence,               IYY  = 4π + [π(2.0)2](5.0)2  

= 4π + l00π = 104π = 327 cm4

Radius of gyration,  

 kYY = IYY
area  = 

π

π ( )















104

2.0 2 = 26  = 5.10 cm

Problem 10. Determine the second moment of 
area of an annular section, about its centroidal axis. 
The outer diameter of the annulus is D2 and its  
inner diameter is D1

Second moment of area of annulus about its centroid, 
IXX  
   =  (IXX of outer circle about its diameter)  

– (IXX of inner circle about its diameter)

   = 
π π

−
D D
64 64

2
4

1
4

 from Table 9.1

i.e.   IXX = π ( )−DD DD
6644 22

44
11

44

Problem 11. Determine the second moment 
of area and radius of gyration for the semicircle 
shown in Figure 9.15 about axis XX.

Figure 9.15

The centroid of a semicircle lies at 
π
r4

3
 from its diam-

eter (see Engineering Mathematics 7th Edition, page 
575).
Using the parallel axis theorem: IBB = IGG + AH2,
where (from Table 9.1)  

   IBB = π r
8

4
 = 

π (10.0)
8

4
 = 3927 mm4,

    A = π r
2

2
 = 

π (10.0)
2

2
 = 157.l mm2

and    H = 
π
r4

3
 = 

π
4(10.0)

3
 = 4.244 mm

Hence, 3927 = IGG + (157.1)(4.244)2

i.e.       3927 = IGG + 2830, from which,  
   IGG = 3927 – 2830 = 1097 mm4

Using the parallel axis theorem again: 

  IXX = IGG + A(15.0 + 4.244)2

i.e.  IXX  = 1097 + (157.1)(19.244)2  
= 1097 + 58179 = 59276 mm4

or 59280 mm4, correct to 4 significant figures.
Radius of gyration,  

    kXX  = I XX
area   = 











59276
157.1   

= 19.42 mm

Problem 12. Determine the polar second mo-
ment of area of an annulus about its centre. The 
outer diameter of the annulus is D2 and its inner 
diameter is D1

The polar second moment of area is denoted by J.
Hence, for the annulus, J = (J of outer circle about its 
centre) – (J of inner circle about its centre)

r ~ 2.0cm 
G 10.0 mm 

G 

G 

G 
8 8 

15.0mm 

3.0 em 
X X 

Y Y 
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     = π π
−

D D
32 32

2
4

1
4
 from Table 9.1

i.e.  J = 
π ( )−D D
32 2

4
1

4

Problem 13. Determine the polar second mo-
ment of area of the propeller shaft cross-section 
shown in Figure 9.16.

Figure 9.16

The polar second moment of area of a circle, J = π d
32

4

The polar second moment of area of the shaded area is 
given by the polar second moment of area of the 7.0 cm 
diameter circle minus the polar second moment of area 
of the 6.0 cm diameter circle.
Hence, from Problem 12, the polar second moment of 
area of the cross-section shown

  = 
π π( )− =
32

7.0 6.0
32

(1105)4 4  = 108.5 cm4

Problem 14. Determine the second moment of 
area and radius of gyration of a rectangular lamina 
of length 40 mm and width 15 mm about an axis 
through one corner, perpendicular to the plane of 
the lamina.

The lamina is shown in Figure 9.17.

Figure 9.17

From the perpendicular axis theorem: IZZ = IXX + IYY

  IXX = db3

3  = ( )( )40 15
3

3
 = 45000 mm4  

and  IYY = bd 3

3  = ( )( )15 40
3

3
 = 320000 mm4

Hence, IZZ  = 45000 + 320000  
= 365000 mm4 or 36.5 cm4

Radius of gyration, kZZ  = I ZZ
area  = 

365000
(40)(15)









   

= 24.7 mm or 2.47 cm

Problem 15. Determine correct to 3 significant 
figures, the second moment of area about axis XX 
for the composite area shown in Figure 9.18.

Figure 9.18

For the semicircle, IXX  = π r
8

4
  = π (4.0)

8

4
  

= 100.5 cm4

For the rectangle, IXX  = db3

3   = ( . )( . )6 0 8 0
3

3
  

= 1024 cm4

For the triangle, about axis TT through centroid CT , 

  ITT = bh3

36  = ( )( . )10 6 0
36

3
= 60 cm4

By the parallel axis theorem, the second moment of 
area of the triangle about axis XX

 = 60 +








 +











1
2

(10)(6.0) 8.0 1
3

(6.0)
2

= 3060 cm4

Total second moment of area about XX = 100.5 + 1024 
+ 3060 = 4184.5 = 4180 cm4, correct to 3 significant 
figures.
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Now try the following Practice Exercise

Practice Exercise 57  Further problems 
on second moment 
of areas of regular 
sections

 1.  Determine the second moment of area and 
radius of gyration for the rectangle shown 
in Figure 9.19 about (a) axis AA (b) axis 
BB, and (c) axis CC.

[ (a) 72 cm4, 1.73 cm (b) 128 cm4, 2.31 cm 
(c) 512 cm4, 4.62 cm                               ]

Figure 9.19

Figure 9.20

 2.  Determine the second moment of area and 
radius of gyration for the triangle shown in 
Figure 9.20 about (a) axis DD (b) axis EE, 
and (c) an axis through the centroid of the 
triangle parallel to axis DD.

[ (a) 729 cm4, 3.67 cm (b) 2187 cm4,  
6.36 cm (c) 243 cm4, 2.l2 cm          ]

 3.  For the circle shown in Figure 9.21, find 
the second moment of area and radius of 
gyration about (a) axis FF and (b) axis HH

Figure 9.21

[(a) 201 cm4, 2.0 cm (b) 1005 cm4, 4.47 cm]

Figure 9.22

 4.  For the semicircle shown in Figure 9.22, 
find the second moment of area and radius 
of gyration about axis JJ.

 [3927 mm4, 5.0 mm]

 5.  For each of the areas shown in Figure 9.23 
determine the second moment of area and 
radius of gyration about axis LL, by using 
the parallel axis theorem.

Figure 9.23

[ (a) 335 cm4, 4.73 cm (b) 22030 cm4, 
14.3 cm (c) 628 cm4, 7.07 cm           ]

 6.  Calculate the radius of gyration of a rectan-
gular door 2.0 m high by 1.5 m wide about 
a vertical axis through its hinge. [0.866 m]

 7.  A circular door of a boiler is hinged so that 
it turns about a tangent. If its diameter is 
1.0 m, determine its second moment of 
area and radius of gyration about the hinge.

 [0.245 m4 , 0.559 m]

 8.  A circular cover, centre 0, has a radius of 
12.0 cm. A hole of radius 4.0 cm and centre 
X, where 0X = 6.0 cm, is cut in the cover. 
Determine the second moment of area and 
the radius of gyration of the remainder 
about a diameter through 0 perpendicular 
to 0X. [14280 cm4, 5.96 cm]

 9.  For the sections shown in Figure 9.24, find 
the second moment of area and the radius 
of gyration  about axis XX.

[ (a) 12190 mm4, 10.9 mm  
(b) 549.5 cm4, 4.18 cm   ]

J J 

B C 

8.0 em 

A A 
3.0cm 

3 .. 0cm 
150m 150m 

5.0cm 
B C 

5.0 om 180m 100m 2.0 om 
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Figure 9.24

Figure 9.25

10.  Determine the second moments of areas 
about the given axes for the shapes shown 
in Figure 9.25. (In Figure 9.25(b), the cir-
cular area is removed.)

[ IAA = 4224 cm4, IBB = 6718 cm4, 
ICC = 37300 cm4                                 ]

9.8 Second moment of area for 
 ‘built-up’ sections

The cross-sections of many beams and members of  
a framework are in the forms of rolled steel joists 
(RSJ’s or I beams), tees, and channel bars, as shown in 
Figure 9.26. These shapes usually afford better bending 
resistances than solid rectangular or circular sections. 

Figure 9.26 Built-up sections

Calculation of the second moments of area and the posi-
tion of the centroidal, or neutral, axes for such sections 
are demonstrated in the following worked problems.

Problem 16. Determine the second moment of 
area about a horizontal axis passing through the 
centroid, for the I beam shown in Figure 9.27.

Figure 9.27

The centroid of this beam will lie on the horizontal axis 
NA, as shown in Figure 9.28.

Figure 9.28

The second moment of area of the I beam is given by:
 INA =  (I of rectangle abdc) – (I of rectangle efhg) 

  – (I of rectangle jkml)
Hence, from Table 9.1,

  INA = 
×

−
×

−
×0.1 0.2

12
0.04 0.16

12
0.04 0.16

12

3 3 3

     = 6.667 × 10–5 – 1.365 × 10–5 – 1.365 × 10–5

i.e. INA = 3.937 × 10–5 m4

Problem 17. Determine the second moment  
of area about a horizontal axis passing through  
the centroid, for the channel section shown in 
Figure 9.29. 

18.0mm 6.0 an 
3.0mm 2.0 an 

12.0 mm 2.5 an 3.0 an 

X 4.0mm X 2.0 em (a) RSJ (b) Tee baam (e) Channel bar 

(a) 
X 

(b) 
X 

3.0 em 

16.0em 

4.0cm 
A A 

0.1 m 
Thicknaas = O.02m 

9.0 an 

(a) 
0.2m 

B 

4.5 em 

9.0 em 

15.0 em 

a b 
C C 

10.0 an 0.1m e f J k 

(b) 
N A 

B 0.1m g h m 

e d 
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Figure 9.29

The centroid of this beam will be on the horizontal axis 
NA, as shown in Figure 9.30.

Figure 9.30

The second moment of area of the channel section is 
given by:

  INA =  (I of rectangle abdc about NA) –  
 (I of rectangle efhg about NA)

   = 
×

−
×0.1 0.2

12
0.08 0.16

12

3 3

   = 6.667 × 10–5 – 2.731 × 10–5

i.e. INA = 3.936 × 10–5 m4

Problem 18. Determine the second moment  
of area about a horizontal axis passing through the 
centroid, for the tee beam shown in Figure 9.31.

Figure 9.31 Tee beam

In this case, we will first need to find the position of 
the centroid, i.e. we need to calculate y in Figure 9.31. 
There are several methods of achieving this; the tabular 
method is as good as any since it can lead to the use of 
a spreadsheet. The method is explained below with the 
aid of Table 9.2, below.
First, we divide the tee beam into two rectangles, as 
shown in Figure 9.31.
In the first column we refer to each of the two rect-
angles, namely rectangle (1) and rectangle (2). Thus, 
the second row in Table 9.2 refers to rectangle (1) and 
the third row to rectangle (2). The fourth row refers 
to the summation of each column as appropriate. The 
second column refers to the areas of each individual 
rectangular element, a.

Thus, area of rectangle (1), a1 = 0.1 × 0.02 = 0.002 m2

and area of rectangle (2), a2 = 0.18 × 0.02 = 0.0036 m2

Hence, ∑ a  = 0.002 + 0.0036 = 0.0056 m2

The third column refers to the vertical distance of the 
centroid of each individual rectangular element from 
the base, namely XX.

Thus, y1 = 0.2 – 0.01 = 0.19 m

and  y2 = 0 18
2
.  = 0.09 m

In the fourth column, the product ay is obtained  
by multiplying the cells of column 2 with the cells of 
column 3,

Table 9.2

Column 1 2 3 4 5 6

Row 1 Section a y ay ay2 i

Row 2 (1) 0.002 0.19 3.8 × 10–4 7.22 × 10–5 6.6 × 10–8

Row 3 (2) 0.0036 0.09 3.24 × 10–4 2.916 × 10–5 9.72 × 10–6

Row 4 ∑ 0.0056 7.04 × 10–4 1.014 × 10–4 9.786 × 10–6

0.1 m O.lm 
t 

N A 

0.2m Thickness = 0.02 m 
2 

y 
0.2m Thickness = 0.02m 

X X 

0.1 m 

8 b 

0.1 m • f 

N A 

0.1 m g h 

c d 
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i.e.  a1y1 = 0.002 × 0.19 = 3.8 × 10–4m3

  a2y2 = 0.0036 × 0.09 = 3.24 × 10–4m3

and ∑ ay  = 3.8 × 10–4 + 3.24 × 10–4 = 7.04 × 10–4m3

In the fifth column, the product ay2 is obtained by mul-
tiplying the cells of column 3 by the cells of column 4, 

i.e. ∑ ay2  is part of the second moment of area of the 
tee beam about XX,

i.e.  a1y1
2 = 0.19 × 3.8 × 10–4 = 7.22 × 10–5m4

  a2y2
2 = 0.09 × 3.24 × 10–4 = 2.916 × 10–5m4

and ∑ ay2   = 7.22 × 10–5 + 2.916 × 10–5  

= 1.014 × 10–4m4

In the sixth column, the symbol i refers to the second 
moment of area of each individual rectangle about its 
own local centroid.

Now   i = bd 3

12  from Table 9.1

Hence, i1 = 
×0.1 0.02
12

3
 = 6.6 × 10–8 m4

     i2 = 
×0.02 0.18
12

3
 = 9.72 × 10–6 m4

and    ∑ i  = 6.6 × 10–8 + 9.72 × 10–6 = 9.789 × 10–6 m4

From the parallel axis theorem: IXX = ∑ i  + ∑ ay2

 
(9.1)

The cross-sectional area of the tee beam  

 = ∑ a  = 0.0056 m2 from Table 9.2.

Now the centroidal position, namely y , is given by:

 y  = 
∑

∑

ay

a
 = 

× −7.04 10
0.0056

4
 = 0.1257 m

From equation (9.1), IXX = ∑ i  + ∑ ay2

               = 9.786 × 10–6 + 1.014 × 10–4

i.e.        IXX = 1.112 × 10–4m4

From the parallel axis theorem:

   INA = IXX – ( y )2 ∑ a

     = 1.112 × 10–4 – (0.1257)2 × 0.0056
  INA = 2.27 × 10–5m4

It should be noted that the least second moment of area 
of a section is always about an axis through its centroid.

Problem 19. (a) Determine the second moment 
of area and the radius of gyration about axis XX for 
the I-section shown in Figure 9.32.

Figure 9.32

(b)  Determine the position of the centroid of the 
I-section.

(c)  Calculate the second moment of area and  
radius of gyration about an axis CC through 
the centroid of the section, parallel to axis XX.

The I-section is divided into three rectangles, D, E 
and F and their centroids denoted by CD, CE and CF  
respectively.
(a) For rectangle D:
  The second moment of area about CD (an axis 

through CD parallel to XX)

   = bd 3

12  = ( . )( . )8 0 3 0
12

3
 = 18 cm4

 Using the parallel axis theorem: IXX = 18 + AH2

 where A = (8.0)(3.0) = 24 cm2 and H = 12.5 cm
 Hence IXX = 18 + 24(12.5)2 = 3768 cm4

 For rectangle E:
  The second moment of area about CE (an axis 

through CE parallel to XX)

   = bd 3

12  = ( . )( . )3 0 7 0
12

3
 = 85.75 cm4

  Using the parallel axis theorem:  
IXX = 85.75 + (7.0)(3.0)(7.5)2 = 1267 cm4

 For rectangle F: IXX  = bd 3

3   = ( . )( . )15 0 4 0
3

3
  

= 320 cm4

s 
a.Oem 

CD 3.0 em 

3.0cm 

C 
7.0cm 

C C 
y 

C, 4.0cm 

X 15.0 em X 

S 
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  Total second moment of area for the I-section 
about axis XX,

  IXX  = 3768 + 1267 + 320  
= 5355 cm4

 Total area of I-section  
         = (8.0)(3.0) + (3.0)(7.0) + (15.0)(4.0)  

= 105 cm2

 Radius of gyration, kXX  = I XX
area   = 

5355
105









   

= 7.14 cm

(b)  The centroid of the I-section will lie on the axis 
of symmetry, shown as SS in Figure 9.32. Using a 
tabular approach:

Table 9.3

Part Area
(a cm2)

Distance of 
centroid from 
XX (i.e. y cm)

Moment 
about XX 
(i.e. ay cm3)

D 24 12.5 300

E 21  7.5 157.5

F 60  2.0 120

∑ a  = A = 105 ∑ a y = 577.5

  A y  = ∑ a y, from which,  

y   = 
∑ ay

A = 577 5
105

.  = 5.5 cm

  Thus the centroid is positioned on the axis of 
symmetry 5.5 cm from axis XX.

(c) From the parallel axis theorem: 
      IXX = ICC + AH2

 i.e.  5355 = ICC + (105)(5.5)2

            = ICC + 3176
  from which, second moment of area about axis  

CC,                ICC  = 5355 – 3176  
= 2179 cm4

 Radius of gyration, kCC  = =
I
area

2179
105

CC  

                = 4.56 cm

Now try the following Practice Exercises

Practice Exercise 58  Further problems 
on second moment 
of area of ‘built-up’ 
sections

Determine the second moments of area about a 
horizontal axis, passing through the centroids, 
for the ‘built-up’ sections shown below. All di-
mensions are in mm and all the thicknesses are 
2 mm.

1. 

Figure 9.33

 [17329 mm4]

2. 

Figure 9.34

 [37272 mm4]

3. 

Figure 9.35

 [18636 mm4]

r 

30 

40 

130 

--20--

30 
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4. 

Figure 9.36

 [10443 mm4]

5. 

Figure 9.37

 [43909 mm4]

6. 

Figure 9.38

 [8922 mm4]

7. 

Figure 9.39

 [3242 mm4]

8. 

Figure 9.40

 [24683 mm4]

Practice Exercise 59  Short-answer 
questions on first and 
second moment of 
areas

1. Define a centroid.

2. Define the first moment of area.

3. Define second moment of area.

4. Define radius of gyration.

5. State the parallel axis theorem.

6. State the perpendicular axis theorem.

Practice Exercise 60  Multiple-choice 
questions on first and 
second moment of 
areas

 (Answers on page 335)
 1.  The centroid of the area bounded by the 

curve y = 3x, the x-axis and ordinates x = 0 
and x = 3, lies at:

 (a)  (3, 2) (b)  (2, 6)
 (c)  (2, 3) (d)  (6, 2)
 2.  The second moment of area about axis GG 

of the rectangle shown in Figure 9.41 is:
 (a)  16 cm4  (b)  4 cm4 

 (c)  36 cm4  (d)  144 cm4

Figure 9.41

20 
30 

30 

20 
40 

40 

20 

30 

30 

20 
60mm 

G 

15mm 
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40 

15mm X 
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 3.  The second moment of area about axis XX 
of the rectangle shown in Figure 9.41 is:

 (a)  111 cm4  (b)  31 cm4

 (c)  63 cm4  (d)  79 cm4

 4.  The radius of gyration about axis GG of the 
rectangle shown in Figure 9.41 is:

 (a)  5.77 mm (b)  17.3 mm
 (c)  11.55 mm (d)  34.64 mm

 5.  The radius of gyration about axis XX of the 
rectangle shown in Figure 9.41 is:

 (a)  30.41 mm (b)  25.66 mm
 (c)  16.07 mm (d)  22.91 mm

 The circumference of a circle is 15.71 mm. Use 
this fact in questions 6 to 8.

 6.  The second moment of area of the circle 
about an axis coinciding with its diameter 
is:

 (a)  490.9 mm4 (b)  61.36 mm4

 (c)  30.69 mm4  (d)  981.7 mm4

 7.  The second moment of area of the circle 
about a tangent is:

 (a)  153.4 mm4 (b)  9.59 mm4

 (c)  2454 mm4 (d)  19.17 mm4

 8.  The polar second moment of area of the 
circle is:

 (a)  3.84 mm4 (b)  981.7 mm4

 (c)  61.36 mm4 (d)  30.68 mm4

 9.  The second moment of area about axis XX 
of the triangle ABC shown in Figure 9.42 
is:

 (a)  24 cm4 (b)  10.67 cm4

 (c)  310.67 cm4  (d)  324 cm4

Figure 9.42

10.  The radius of gyration about axis GG of the 
triangle shown in Figure 9.42 is:

 (a)  1.41 cm (b)  2 cm
 (c)  2.45 cm (d)  4.24 cm

For fully worked solutions to each of the problems in Practice Exercises 55 to 60 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

G 

x 

A 

c 
4.0cm 

3.0cm 

B 

6.0cm 

G 

x 

http://www.routledge.com/cw/bird


Pa
rt 

Tw
o

1. Determine the unknown internal forces in the 
pin-jointed truss of Figure RT4.1.

Figure RT4.1

 (7)

2. Determine the unknown internal forces in the 
pin-jointed truss of Figure RT4.2.

Figure RT4.2

 (12)

3. A beam of length 3 m is simply supported at its 
ends. A clockwise couple of 4 kN m is placed 

at a distance of 1 m from the left hand support.  
(a) Determine the end reactions. (b) If the beam 
now carries an additional downward load of 12 kN 
at a distance of 1 m from the right hand support, 
sketch the bending moment and shearing force di-
agrams. (9)

4. A beam of length 4 m is simply supported at its 
right extremity and at 1 m from the left extremi-
ty. If the beam is loaded with a downward load of 
2 kN at its left extremity and with another down-
ward load of 10 kN at a distance of 1 m from its 
right extremity, sketch its bending moment and 
shearing force diagrams. (7)

5. (a)   Find the second moment of area and radius  
of gyration about the axis XX for the beam  
section shown in Figure RT4.3.

Figure RT4.3 

 (b)   Determine the position of the centroid of the 
section.

 (c)   Calculate the second moment of area and  
radius of gyration about an axis through the 
centroid parallel to axis XX. (25)

Revision Test 4  Forces in structures, bending moment and shear force diagrams,  
           and  second moments of area

This Revision Test covers the material contained in Chapters 7 to 9. The marks for each question are shown in 
brackets at the end of each question.

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 4,  
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird
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Bending of beams

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Chapter 10

Why it is important to understand: Bending of beams
If a beam of symmetrical cross-section is subjected to a bending moment, then stresses due to bending  
action will occur. In pure or simple bending, the beam will bend into an arc of a circle. Due to couples, the 
upper layers of the beam will be in tension, because their lengths have been increased, and the lower lay-
ers of the beam will be in compression, because their lengths have been decreased. Somewhere in between 
these two layers lies a layer whose length has not changed, so that its stress due to bending is zero. This 
layer is called the neutral layer and its intersection with the beam’s cross-section is called the neutral axis. 
In this chapter stresses in a beam and the radius of curvature due to bending are calculated. The bend-
ing of beams is of much importance in designing buildings, bridges, ships, etc., and ensuring their safety 
under these loads.

Figure 10.1

At the end of this chapter you should be able to:

•	 define	neutral	layer
•	 define	the	neutral	axis	of	a	beam’s	cross-section

• prove that 
y

M
I

E
R

σ
= =

•	 calculate	the	stresses	in	a	beam	due	to	bending
•	 calculate	the	radius	of	curvature	of	the	neutral	layer	due	to	a	pure	bending	moment	M

10.1 Introduction

If	a	beam	of	symmetrical	cross-section	is	subjected	to	a	
bending	moment	M,	then	stresses	due	to	bending	action	
will occur. This can be illustrated by the horizontal 
beam	of	Figure	10.1,	which	is	of	uniform	cross-section.	
In	pure	or	simple	bending,	the	beam	will	bend	into	an	
arc	of	a	circle	as	shown	in	Figure	10.2.	

dX 

dX dX 
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Figure 10.2

Now	 in	Figure	10.2,	 it	 can	be	 seen	 that	 due	 to	 these	
couples M,	the	upper	layers	of	the	beam	will	be	in	ten-
sion,	 because	 their	 lengths	 have	 been	 increased,	 and	
the	 lower	 layers	of	 the	beam	will	be	 in	compression,	
because	 their	 lengths	 have	 been	 decreased.	 Some-
where in between these two layers lies a layer whose 
length	has	not	changed,	so	that	its	stress	due	to	bend-
ing	is	zero.	This	layer	is	called	the	neutral layer and 
its	intersection	with	the	beam’s	cross-section	is	called	
the neutral axis (NA). Later on in this chapter it will  
be	shown	that	the	neutral	axis	is	also	the	centroidal	axis	
described in Chapter 9.

10.2 To prove that σσ
== ==y

M
I

E
R

In	the	formula	 y
M
I

E
R

σ
= =

 σ	=		the	stress	due	to	bending	moment M occurring	at	
a distance y from	the	neutral	axis	NA,

 I	=		the	second	moment	of	area	of	the	beam’s	cross-
section about NA,

E	=		Young’s	 modulus	 of	 elasticity	 of	 the	 beam’s	 
material,	and

R =  radius of curvature of the neutral layer of the 
beam	due	to	the	bending	moment	M.

Now	the	original	length	of	the	beam	element,

  dx = Rθ	 (10.1)

At any distance y from	NA,	the	length	AB increases its 
length	to:

  CD = (R + y)θ	 (10.2)
Hence,	extension	of	AB = δ = (R + y)θ – Rθ = yθ
Now, strain ε =	extension/original	length,

i.e.     ε = θ
θ

=
y
R

y
R
		 (10.3)

However,  stress( )
strain ( )

σ
ε

 = E

or     σ = Eε		 	 (10.4)
Substituting	equation	(10.3)	into	equation	(10.4)	gives:

      σ = E y
R 		 (10.5)

or    
σ

=
y

E
R 	 (10.6)

Consider	now	the	stresses	in	the	beam’s	cross-section,	
as	shown	in	Figure	10.3.

Figure 10.3

From	Figure	10.3,	it	can	be	seen	that	the	stress	σ causes 
an	elemental	couple	δM about NA, where:

  δM = σ × (b × dy)	× y
and the total value of the couple caused by all such 
stresses
    = M = ∑δ M = ∫ σ b y dy 	 (10.7)

but	from	equation	(10.5),	σ = Ey
R

Therefore,      M = ∫
Ey
R

b y dy  = ∫
E
R

y bdy2

Now, E and R are constants, that is, they do not vary 
with y,	hence	they	can	be	removed	from	under	the	inte-
gral	sign.	Therefore,

     M = ∫
E
R

y bdy2

However, ∫ =y bdy by
3

2
3

 = I =	 the	 second	moment	

of	 area	 of	 the	 beam’s	 cross-section	 about	NA	 (from	
Table	9.1,	page	133).

Therefore, M = 
E
R
I

or              
M
I  = 

E
R 		 (10.8)

Combining	equations	(10.6)	and	(10.8)	gives:

     y
M
I

E
R

σσ
== == 		 (10.9)

R 

8 
N A 

(a) Beam (b) Cross-section 

b Tensile 

~dy 

y u 
N A 

Compressive 

(a) 8eam's cross-section (b) Stress distribution 

R R 
R R R R 
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Position of NA
From	equilibrium	considerations,	the	horizontal	force	
perpendicular	 to	 the	 beam’s	 cross-section,	 due	 to	 the	
tensile	stresses,	must	equal	the	horizontal	force	perpen-
dicular	to	the	beam’s	cross-section,	due	to	the	compres-
sive	stresses,	as	shown	in	Figure	10.4.

Figure 10.4

Hence,            ∫ σ bdy
y

0

1  = ∫ σ bdy
y

0

2

or ∫ σ bdy
y

0

1  – ∫ σ bdy
y

0

2  =	0

or      ∫− σ bdy
y

y

2

1 	=	0

But	from	equation	(10.5),		σ = E
y
R

Therefore,   ∫−
Ey
R

bdy
y

y

2

1
	=	0

Now, E and R are constants, hence

         ∫−
E
R

y bdy
y

y

2

1 	=	0

However, ∫ y bdy=	 the	 first	 moment	 of	 area	 about	
the centroid, and where this is zero, coincides with the 
centroidal	axis,	 i.e.	 the	neutral axis	 lies	on	 the	same	
axis	as	the	centroidal axis.

Moment of resistance (M)
From	 Figure	 10.4,	 it	 can	 be	 seen	 that	 the	 system	 of	
tensile	 and	compressive	 stresses	 perpendicular	 to	 the	
beam’s	cross-section,	cause	a	couple,	which	resists	the	
applied	moment	M, where

     M = ∫− σ bdy y( )
y

y

2

1

But	from	equation	(10.5),	 	σ = E y
R

Hence,  M = ∫










=

E
R

y bdy E
R

by
3

2
3

or     M = EI
R

 (as	required)

10.3  Worked problems on the  
bending of beams

Problem 1. A	solid	circular	section	bar	of	diam-
eter	20	mm,	is	subjected	to	a	pure	bending	moment	
of	0.3	kN	m.	If E =	2	×	1011N/m2,	determine	the	
resulting	radius	of	curvature	of	the	neutral	layer	of	
this	beam	and	the	maximum	bending	stress.

From	Table	9.1,	page	133,	 

   I = 
π d
64

4
=

π × 20
64

4
= 7854 mm4

Now,   M		=	0.3	kN	m	×	1000 N
kN × 1000 mm

m   

= 3 × 105N mm

and   E  =	2	×	1011 N
m2 × 1 m

mm1000 ×	1 m
mm1000   

= 2 × 105N/mm2

From	equation	(10.8),	 MI  
= ER

hence, radius of curvature,  

   R = EIM 	=	2	×	105	 N
mm2  

× 
×

7854mm
3 10 N mm

4

5

i.e.   R = 5236 mm = 5.24 m

From	equation	(10.9),	
σ
y  = MI

and              σ̂  = M y
I

ˆ

where σ̂ 	=	maximum	stress	due	to	bending

and  ŷ	=	outermost	fibre	from	NA		=	 =
d
2

20
2   

        =	10	mm
Hence, maximum bending stress, 

   σ̂  = M y
I

ˆ
 = × ×3 10 N mm 10mm

7854mm

5

4

  = 382 N/mm2 = 382 × 106N/m2 = 382 MPa

Problem 2. A	beam	of	length	3	m	is	simply	
supported	at	its	ends	and	has	a	cross-section,	as	
shown	in	Figure	10.5.	If	the	beam	is	subjected	to	a	
uniformly	distributed	load	of	2	tonnes/m,	deter-
mine	the	maximum	stress	due	to	bending	and	the	
corresponding	value	of	the	radius	of	curvature	of	
the neutral layer. 

Tensile stress 

y, 

y, 

Compressive stress 
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Figure 10.5

The	total	weight	on	the	beam	=	wL,	and	as	the	beam	is	
symmetrically	loaded,	the	values	of	the	end	reactions, 

R = wL
2 ,	as	shown	in	Figure	10.6.

Figure 10.6

Now	the	maximum	bending	moment,	M�, occurs at the 
mid-span,	where

  M�  = R × L
2  – ×

wL L
2 4  

but R = wL
2 ,

 hence M�  = wL
2  

× L
2  – ×

wL L
2 4

   = − =
−









wL wL wL
4 8

2 1
8

2 2
2

 = wL
8

2
 = 

( )×2 tonnes
m

3m

8

2

	=	2.25	tonnes	m

	 	 	=	2.25	tonnes	m	× ×
1000kg

tonne
9.81N

kg

i.e. maximum bending moment, M� = 22073 N m

Second	moment	of	area, I = 
×

−
×0.1 0.2

12
0.06 0.16

12

3 3

	 		 		=	6.667	×	10–5	–	2.048	×	10–5

i.e.             I = 4.619 × 10–5m4

The	 maximum	 stress	σ̂ 	occurs	 in	 the	 fibre	 of	 the	
beam’s	 cross-section,	 which	 is	 the	 furthest	 distance	
from	NA,	namely ŷ
By inspection,    ŷ  = 0 2

2
. 	=	0.1	m

From		 	 	σ =
y

M
I

ˆ
ˆ

  

 σ̂  = 
M y
I

ˆ
 = ×

× −

22073N m 0.1m
4.619 10 m5 4

i.e. maximum stress, σ̂   = 47.79 × 106 N/m2  
= 47.79 MPa

Problem 3.	 A	cantilever	beam,	whose	cross-section	
is	a	tube	of	diameter	0.2	m	and	wall	thickness	of	 
0.02	m,	is	subjected	to	a	point	load,	at	its	free	end,	
of	3	kN,	as	shown	in	Figure	10.7.	Determine	the	
maximum	bending	stress	in	this	cantilever.	

Figure 10.7

From	problem	10,	page	135, I = 
π ( )−D D

64
2
4

1
4

where D2 =	 the	 external	 diameter	 of	 the	 tube,	 and	 
D1	=	the	internal	diameter	of	the	tube.

Hence I = 
π ( )−0.2 0.16

64

4 4

i.e.  I = 4.637 × 10–5m4

The	maximum	bending	moment,	namely	 M� , will oc-
cur	at	the	built-in	end	of	the	beam,	i.e.	on	the	extreme	
right	of	the	beam	of	Figure	10.7.
Maximum	bending	moment,	 

 M� = W × L  =	3	kN	×	1.5	m	×	1000 N
kN   

= 4500 N m
The	maximum	stress	occurs	at	 the	outermost	fibre	of	
the	beam’s	cross-section	from	NA,	namely	at	 ŷ

By inspection, ŷ  = 0 2
2
. 	=	0.1	m

Hence,  σ̂  = 
�M y
I

ˆ
 = ×

× −

4500 N m 0.1m
4.637 10 m5 4

i.e. the maximum bending stress,  
   σ̂  = 9.70 × 106N/m2 = 9.70 MPa

Problem 4.	 A	rectangular	plank	of	wood	of	
length	2.8	m	is	floating	horizontally	in	still	water,	
as	shown	in	Figure	10.8.	If	the	cross-section	of	the	
wooden	plank	is	of	rectangular	form,	of	width 

0.2m 

R=~ 
2 

0.1 m 

L 

1l1icl<ness = 0.02 m 

w 

R= !!!:.. 
2 

3kN 

1.5m 
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B =	280	mm	and	of	thickness, D =	80	mm,	deter-
mine	the	maximum	bending	stress	in	the	plank,	
assuming	that	a	concentrated	mass	of	320	kg	is	
placed	at	its	mid	span.	Let g =	9.81	m/s2.	Neglect	
the	self-weight	of	the	plank.	

Figure 10.8

Let    m	=	mass	of	‘weight’	=	320	kg,
and   W		=	weight	of	the	mass	=	mg	 

=	320	kg	×	9.81	m/s2 = 3139.2 N
Let    w =		load	per	unit	length,	caused	by	the	water	

pressure,	acting	upwards.
Resolving vertically: upward forces = downward forces
i.e.      w� = W

i.e.   w = 
�

=
W 3139.2

2.8  = 1121.1 N/m

By	inspection,	the	maximum	bending	moment,	namely
M�,	will	occur	at	mid-span,	where

      M� = 
� � �

× × =w w
2 4 8

2

            = 
×1121.1 (2.8)
8

2
 = 1099 N m

I	 =	 second	moment	 of	 area	 of	 the	 rectangular	 cross-

section	about	its	neutral	axis	= BD3

12

i.e.         I  = ( )× × ×− −280 10 80 10

12

3 3 3

  

= 1.195 × 10–5m4

ŷ 	 =	 distance	 of	 the	 fibre	 of	 the	 rectangular	 cross- 
section	from	the	neutral	axis,	i.e.

            ŷ  = =
× −D

2
80 10

2

3
	=	40	×	10–3	m

Maximum stress  = σ̂  = 
�

=
× ×

×

−

−

My
I

ˆ 1099 40 10
1.195 10

3

5   

                    = 3.68 MPa

�

Now try the following Practice Exercises

Practice Exercise 61  Further problems on 
the bending of beams

1.	 	A	 cantilever	 of	 solid	 circular	 cross-section	
is	subjected	to	a	concentrated	load	of	30	N	  
at	its	free	end,	as	shown	in	Figure	10.9.	If	the	
diameter	of	 the	cantilever	 is	10	mm,	deter-
mine	the	maximum	stress	in	the	cantilever.	

Figure 10.9 

[367	MPa]

2.  If	the	cantilever	of	Figure	10.9	were	replaced	
with	 a	 tube	 of	 the	 same	 external	 diameter,	
but	of	wall	thickness	2	mm,	what	would	be	
the	maximum	stress	due	to	the	load	shown	in	
Figure	10.9?	 [421	MPa]

3.	 	A	 uniform	 section	 beam,	 simply	 supported	
at	its	ends,	is	subjected	to	a	centrally	placed	
concentrated	 load	 of	 5	 kN.	 The	 beam’s	
length	is	1	m	and	its	cross-section	is	a	solid	
circular one.

	 		 If	 the	 maximum	 stress	 in	 the	 beam	 is	
limited	to	30	MPa,	determine	the	minimum	
permissible	 diameter	 of	 the	 beam’s	 cross-
section.		 [75	mm]

4.	 	If	the	cross-section	of	the	beam	of	Problem	3	
were	of	rectangular	shape,	as	shown	in	Fig-
ure	10.10,	determine	 its	dimensions.	Bend-
ing	can	be	assumed	to	take	place	about	 the	
xx	axis.

Figure 10.10 

	 [79.4	mm	×	39.7	mm]

320 kg 

w 
M .. 

f = 2.8 m <Ix 

DI2 

DI2 

D x x 
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5.	 	If	 the	 cross-section	 of	 the	 beam	 of	  
Problem	3	is	a	circular	tube	of	external	diam-
eter d and	 internal	diameter	d/2,	 determine	
the value of d.	 [76.8	mm]

6.	 	A	 cantilever	 of	 length	 2	 m,	 carries	 a	 uni-
formly	distributed	load	of	30	N/m,	as	shown	
in	 Figure	 10.11.	 Determine	 the	 maximum	
stress	in	the	cantilever.	 [39.1	MPa]

Cantilever

Figure 10.11

7.	 	If	the	cantilever	of	Problem	6	were	replaced	
by	a	uniform	section	beam,	simply	supported	
at	its	ends	and	carrying	the	same	uniformly	
distributed	 load,	 determine	 the	 maximum	
stress	in	the	beam.	The	cross-section	of	 the	
beam	may	be	assumed	to	be	the	same	as	that	
of	Problem	6.	 [9.78	MPa]

8.	 	If	the	load	in	Problem	7	were	replaced	by	a	
single	concentrated	load	of	120	N,	placed	at	
a	distance	of	0.75	m	 from	 the	 left	 support,	
what	 would	 be	 the	maximum	 stress	 in	 the	
beam	due	to	this	concentrated	load?

	 [36.7	MPa]

9.	 	If	the	beam	of	Figure	10.11	were	replaced	by	
another	beam	of	the	same	length,	but	which	
had	a	cross-section	of	tee	form,	as	shown	in	
Figure	10.12,	determine	the	maximum	stress	
in	the	beam.

Figure 10.12

	 [33.9	MPa]

Practice Exercise 62  Short-answer 
questions on the 
bending of beams

1.	 Define	neutral	layer.

2.	 	Define	 the	 neutral	 axis	 of	 a	 beam’s	 cross-
section.

3.	 Give	another	name	for	the	neutral	axis.

4.	 	Write	down	 the	 relationship	between	stress	  
σ	and	bending	moment	M.

5.	 	Write	down	 the	 relationship	between	stress	  
σ and radius of curvature R.

Practice Exercise 63  Multiple-choice 
questions on the 
bending of beams

(Answers on page 335)

1.	 The	maximum	stress	due	to	bending	occurs:
	 (a)		at	the	neutral	axis
	 (b)		at	the	outermost	fibre
	 (c)			between	 the	neutral	 axis	and	 the	outer-

most	fibre.

2.	 	If	the	bending	moment	is	increased	in	a	beam,	
the radius of curvature will:

	 (a)		increase
	 (b)		decrease
	 (c)		stay	the	same.

3.	 	If	 the	 Young’s	 modulus	 is	 increased	 in	 a	
beam	in	bending,	due	to	a	constant	value	of	
M,	the	resulting	bending	stress	will:

 (a)		increase
	 (b)		decrease
	 (c)		stay	the	same.

For fully worked solutions to each of the problems in Practice Exercises 61 to 63 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

30N/m 

2m 

(a) Cantilever 

15mm 

25mm 

(b) Cross-section 
(solid) 

Thickness = 5 mm 

40mm 

http://www.routledge.com/cw/bird


Chapter 11

Torque

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Figure 11.1

The unit of torque is the newton metre, N m
When a force F newtons is applied at a radius r metres 
from the axis of, say, a nut to be turned by a spanner, 

At the end of this chapter you should be able to:
• define a couple
• define a torque and state its unit
• calculate torque given force and radius
• calculate work done, given torque and angle turned through
• calculate power, given torque and angle turned through

• appreciate kinetic energy = 
ωI
2

2

where I is the moment of inertia

• appreciate that torque T = Iα where α is the angular acceleration
• calculate torque given I and α
• calculate kinetic energy given I and ω
• understand power transmission by means of belt and pulley
• perform calculations involving torque, power and efficiency of belt drives

11.1 Couple and torque

When two equal forces act on a body as shown in  
Figure 11.1, they cause the body to rotate, and the  
system of forces is called a couple.
The turning moment of a couple is called a torque, T.
In Figure 11.1, torque = magnitude of either force × 
perpendicular distance between the forces,

i.e.  T = Fd

Why it is important to understand: Torque
This chapter commences by defining a couple and a torque. It then shows how the energy and work 
done can be calculated from these terms. It then derives the expression which relates torque to the 
product of mass moment of inertia and the angular acceleration. The expression for kinetic energy due 
to rotation is also derived. These expressions are then used for calculating the power transmitted from 
one shaft to another, via a belt. This work is very important for calculating the power transmitted in 
rotating shafts and other similar artefacts in many branches of engineering. For example, torque is 
important when designing propeller shafts for ships and automobiles, and also for helicopters, etc.

F 

F d 
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as shown in Figure 11.2, the torque T applied to the nut 
is given by:

T = Fr N m

Figure 11.2

Problem 1. Determine the torque when a pulley 
wheel of diameter 300 mm has a force of 80 N 
applied at the rim.

Torque T = Fr, where force F = 80 N 

and radius r = 
300

2
 = 150 mm = 0.15 m

Hence, torque, T = (80)(0.15) = 12 N m

Problem 2. Determine the force applied 
tangentially to a bar of a screw jack at a radius of 
800 mm, if the torque required is 600 N m.

Torque,       T = force × radius, from which

  force  = 
torque
radius

  = 
× −

600 N m
800 10 m3   

= 750 N

Problem 3. The circular hand-wheel of a valve 
of diameter 500 mm has a couple applied to it 
composed of two forces, each of 250 N. Calculate 
the torque produced by the couple.

Torque produced by couple, T = Fd, 
where force F = 250 N 
and distance between the forces, d  = 500 mm  

= 0.5 m
Hence, torque, T  = (250)(0.5)  

= 125 N m

Now try the following Practice Exercise

Practice Exercise 64  Further problems  
on torque

1.  Determine the torque developed when a 
force of 200 N is applied tangentially to a 

spanner at a distance of 350 mm from the 
centre of the nut. [70 N m]

2.  During a machining test on a lathe, the 
tangential force on the tool is 150 N. If 
the torque on the lathe spindle is 12 N m,  
determine the diameter of the work-piece. 
 [160 mm]

11.2  Work done and power  
transmitted by a constant torque

Figure 11.3(a) shows a pulley wheel of radius r metres 
attached to a shaft and a force F newtons applied to the 
rim at point P.

Figure 11.3

Figure 11.3(b) shows the pulley wheel having turned 
through an angle θ radians as a result of the force  
F being applied. The force moves through a distance s, 
where arc length s = rθ
Work done  = force × distance moved by the force  

= F × rθ = Frθ N m = Frθ J
However, Fr is the torque T, hence,

work done = Tθ joules

Average power = 
θ

=
Tworkdone

time taken time taken  for a con-
stant torque T
However, (angle θ)/(time taken) = angular velocity, ω 
rad/s
Hence,  power, P = Tω watts (11.1)

Angular velocity, ω = 2πn rad/s where n is the speed 
in rev/s
Hence,  power, P = 2πnT watts (11.2)

Sometimes power is in units of horsepower (hp), 
where 1 horsepower = 745.7 watts

i.e.      1 hp = 745.7 watts

Moment, M 
Force, F 

p 

Turning radius, , 

r 
p 

8 
r 

s 

p 

F 
(a) F (b) 

Moment, M p 
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Problem 4. A constant force of 150 N is applied 
tangentially to a wheel of diameter 140 mm. 
Determine the work done, in joules, in 12 revolutions 
of the wheel.

Torque  T = Fr, where F = 150 N  

and       radius r = 140
2

 = 70 mm = 0.070 m

Hence, torque T = (150)(0.070) = 10.5 N m

Work done = Tθ joules, where torque, T = 10.5 N m and 
angular displacement,

	 θ = 12 revolutions  = 12 × 2π rad  
= 24π rad.

Hence, work done = Tθ = (10.5)(24π) = 792 J

Problem 5. Calculate the torque developed by 
a motor whose spindle is rotating at 1000 rev/min 
and developing a power of 2.50 kW.

Power  P = 2πnT (from above), from which, torque,  

T = 
π
P

n2
 N m

where power, P = 2.50 kW = 2500 W  
and speed, n = 1000/60 rev/s

Thus, torque,    T  = π
π

π
=











=
×

×

P
n2

2500

2 1000
60

2500 60
2 1000   

        = 23.87 N m

Problem 6. An electric motor develops a power 
of 5 hp and a torque of 12.5 N m. Determine the 
speed of rotation of the motor in rev/min.

Power, P = 2πnT, from which,  

speed n = 
π
P

T2
 rev/s

where power, P = 5 hp = 5 × 745.7 = 3728.5 W  

and torque T = 12.5 N m.

Hence, speed n = 
π
3728.5

2 (12.5)  = 47.47 rev/s

The speed of rotation of the motor  = 47.47 × 60  
= 2848 rev/min

Problem 7. In a turning-tool test, the tangential 
cutting force is 50 N. If the mean diameter of the 
work-piece is 40 mm, calculate (a) the work done 
per revolution of the spindle (b) the power required 
when the spindle speed is 300 rev/min.

(a) Work done = Tθ, where T = Fr

 Force F = 50 N,  radius r =
40
2 = 20 mm = 0.02 m  

and angular displacement, θ = 1 rev = 2π rad.

 Hence, work done per revolution of spindle  
 = Frθ = (50)(0.02)(2π) = 6.28 J

(b) Power, P = 2πnT, where  
torque, T = Fr = (50)(0.02) = 1 N m  and  

speed, n = 300
60

 = 5 rev/s.

 Hence, power required, P = 2π(5)(1) = 31.42 W

Problem 8. A pulley is 600 mm in diameter and 
the difference in tensions on the two sides of the 
driving belt is 1.5 kN. If the speed of the pulley is 
500 rev/min, determine (a) the torque developed, 
and (b) the work done in 3 minutes.

(a) Torque T = Fr, where force F = 1.5 kN = 1500 N, 

and radius r = 600
2

 = 300 mm = 0.3 m.

 Hence, torque developed  = (1500)(0.3)  
= 450 N m

(b) Work done = Tθ, where torque T = 450 N m  
and angular displacement in 3 minutes  
 = (3 × 500) rev = (3 × 500 × 2π) rad.

 Hence, work done  = (450)(3 × 500 × 2π)  
= 4.24 × 106 J  
= 4.24 MJ

Problem 9. A motor connected to a shaft 
develops a torque of 5 kN m. Determine the 
number of revolutions made by the shaft if the 
work done is 9 MJ.

Work don e = Tθ, from which, angular displacement,  

 θ = work done
torque

Work done = 9 MJ = 9 × 106 J  
and  torque = 5 kN m = 5000 N m.
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Hence, angular displacement, θ  = 
×9 10

5000

6

  

= 1800 rad.

2π rad = 1 rev, hence, the number of revolutions 

made by the shaft = 
π

1800
2

 = 286.5 revs

Now try the following Practice Exercise

Practice Exercise 65  Further problems on 
work done and power 
transmitted by a 
constant torque

1.  A constant force of 4 kN is applied tangen-
tially to the rim of a pulley wheel of diam-
eter 1.8 m attached to a shaft. Determine the 
work done, in joules, in 15 revolutions of the 
pulley wheel. [339.3 kJ]

2.  A motor connected to a shaft develops a 
torque of 3.5 kN m. Determine the number 
of revolutions made by the shaft if the work 
done is 11.52 MJ. [523.8 rev]

3.  A wheel is turning with an angular velocity 
of 18 rad/s and develops a power of 810 W at 
this speed. Determine the torque developed 
by the wheel. [45 N m]

4.  Calculate the torque provided at the shaft 
of an electric motor that develops an out-
put power of 3.2 hp at 1800 rev/min. 
 [12.66 N m]

5.  Determine the angular velocity of a shaft 
when the power available is 2.75 kW and the 
torque is 200 N m. [13.75 rad/s]

6.  The drive shaft of a ship supplies a torque of 
400 kN m to its propeller at 400 rev/min.

  Determine the power delivered by the shaft.
 [16.76 MW]

7.  A motor is running at 1460 rev/min and 
produces a torque of 180 N m. Determine 
the average power developed by the motor.
 [27.52 kW]

8.  A wheel is rotating at 1720 rev/min and  
develops a power of 600 W at this speed. 
Calculate (a) the torque (b) the work done, 
in joules, in a quarter of an hour.

[(a) 3.33 N m  (b) 540 kJ]

9.  A force of 60 N is applied to a lever of a 
scew-jack at a radius of 220 mm. If the  
lever makes 25 revolutions, determine  
(a) the work done on the jack (b) the power, 
if the time taken to complete 25 revolutions 
is 40 s. [(a) 2.073 kJ  (b) 51.84 W]

11.3  Kinetic energy and  
moment of inertia

The tangential velocity v of a particle of mass m mov-
ing at an angular velocity ω rad/s at a radius r metres 
(see Figure 11.4) is given by:

v = ωr m/s

Figure 11.4

The kinetic energy of a particle of mass m is given by:

 Kinetic energy = 1
2

mv2 (from Chapter 16)

   = 1
2

m(ωr)2 = 1
2

m ω2r2 joules

The total kinetic energy of a system of masses rotating 
at different radii about a fixed axis but with the same 
angular velocity, as shown in Figure 11.5, is given by:

Figure 11.5

Total kinetic energy  =  
1
2

 m1ω
2r1

2 + 
1
2

 m2ω
2r2

2  

+ 1
2

 m3ω
2r3

2

         = (m1r1
2 + m2r2

2+ m3r3
2) ω

2

2

v = wr ntIs 

v 

OJ 

, m 

OJ " OJ 

OJ 

OJ OJ 

OJ 
OJ 

OJ 

OJ OJ 

OJ 
OJ 
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In general, this may be written as:

Total kinetic energy = (∑mr2)
ω
2

2

 = I 
ωω
2

2

where I (= ∑mr2) is called the moment of inertia of the 
system about the axis of rotation and has units of kg m2.
The moment of inertia of a system is a measure of the 
amount of work done to give the system an angular 
velocity of ω rad/s, or the amount of work that can be 
done by a system turning at ω rad/s.
From Section 11.2, work done = Tθ, and if this work 
is available to increase the kinetic energy of a rotating 
body of moment of inertia I, then:

Tθ = 
ω ω−







I

2
2
2

1
2

 where ω1and ω2are the initial and 

final angular velocities,

i.e.      Tθ = I
ω ω+









2
2 1  (ω2 – ω1)

However, 
ω ω+









2
2 1  is the mean angular velocity,  

i.e. θ
t

, where t is the time, and (ω2 – ω1) is the change 

in angular velocity, i.e. αt, where α is the angular 
acceleration.

Hence, Tθ = I
θ









t
(αt)  from which, torque T = Iα

where I is the moment of inertia in kg m2, α is the an-
gular acceleration in rad/s2 and T is the torque in N m.

Problem 10. A shaft system has a moment of inertia 
of 37.5 kg m2. Determine the torque required to give 
it an angular acceleration of 5.0 rad/s2.

Torque, T = Iα, where moment of inertia I = 37.5 kg m2 
and angular acceleration, α = 5.0 rad/s2.
Hence, torque, T = Iα = (37.5)(5.0) = 187.5 N m

Problem 11. A shaft has a moment of inertia of 
31.4 kg m2. What angular acceleration of the shaft 
would be produced by an accelerating torque of  
495 N m?

Torque, T = Iα, from which, angular acceleration,  

α = 
T
I

, where torque, T = 495 N m and moment of  

inertia I = 31.4 kg m2.

Hence, angular acceleration, α  = 495
31.4

  

= 15.76 rad/s2

Problem 12. A body of mass 100 g is fastened to 
a wheel and rotates in a circular path of 500 mm in 
diameter. Determine the increase in kinetic energy 
of the body when the speed of the wheel increases 
from 450 rev/min to 750 rev/min.

From above, kinetic energy = I 
ω
2

2

Thus, increase in kinetic energy = 
ω ω−







I

2
2
2

1
2

where moment of inertia, I = mr2,  
mass, m = 100 g = 0.1 kg and

radius, r = 500
2

 = 250 mm = 0.25 m.
Initial angular velocity, ω1  = 450 rev/min  

= 
π×450 2

60
 rad/s  

= 47.12 rad/s,
and final angular velocity, ω2  = 750 rev/min  

= 
π×750 2

60
 rad/s  

= 78.54 rad/s.

Thus, increase in kinetic energy = 
ω ω−







I

2
2
2

1
2

  

  = (mr2) ω ω−







2

2
2

1
2

  = (0.1)(0.252)
−









78.54 47.12
2

2 2

 = 12.34 J

Problem 13. A system consists of three small 
masses rotating at the same speed about the same 
fixed axis. The masses and their radii of rotation 
are: 15 g at 250 mm, 20 g at 180 mm and 30 g at 
200 mm. Determine (a) the moment of inertia of 
the system about the given axis, and (b) the kinetic 
energy in the system if the speed of rotation is  
1200 rev/min.

(a) Moment of inertia of the system, I = ∑mr2

 i.e. I =  [(15 × 10–3kg)(0.25 m)2]   
+ [(20 × 10–3kg)(0.18 m)2] 

+ [(30 × 10–3 kg)(0.20 m)2]

      = (9.375 × 10–4) + (6.48 × 10–4) + (12 × 10–4)

      = 27.855 × 10–4kg m2 = 2.7855 × 10–3kg m2

(b) Kinetic energy = I ω
2

2

, where  

moment of inertia, I = 2.7855 × 10–3kg m2
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 and angular velocity, ω   = 2πn  = 2π










1200
60

rad/s  

= 40π rad/s
 Hence, kinetic energy in the system  

   = (2.7855 × 10–3)
π( )40
2

2

 = 21.99 J

Problem 14. A shaft with its rotating parts has 
a moment of inertia of 20 kg m2. It is accelerated 
from rest by an accelerating torque of 45 N m. 
Determine the speed of the shaft in rev/min (a) after 
15 s, and (b) after the first 5 revolutions.

(a) Since torque T = Iα, then angular acceleration,  

α = =
T
I

45
20

 = 2.25 rad/s2

 The angular velocity of the shaft is initially zero, 
i.e. ω1 = 0

 From Chapter 13, page 173, the angular velocity 
after 15 s,

   ω2 = ω1 + αt = 0 + (2.25)(15) = 33.75 rad/s,

 i.e. speed of shaft after 15 s 

     = (33.75)
π











60
2

 rev/min  

= 322.3 rev/min

(b) Work done = Tθ, where torque T = 45 N m and 
angular displacement, θ = 5 revolutions = 5 × 2π 
= 10π rad.

 Hence work done = (45)(10π) = 1414 J
 This work done results in an increase in kinetic 

energy, given by I
ω
2

2

, where moment of inertia  

I = 20 kg m2 and ω = angular velocity.

 Hence,  1414 = (20) ω









2

2

 from which,  

     ω = 
×









1414 2
20

 = 11.89 rad/s

 i.e. speed of shaft after the first 5 revolutions  

 = 11.89 ×
π

60
2

 = 113.5 rev/min

Problem 15. The accelerating torque on a turbine 
rotor is 250 N m.
(a)  Determine the gain in kinetic energy of the 

rotor while it turns through 100 revolutions 

(neglecting any frictional and other resisting 
torques).

(b)  If the moment of inertia of the rotor is  
25 kg m2 and the speed at the beginning  
of the 100 revolutions is 450 rev/min,  
determine its speed at the end.

(a) The kinetic energy gained is equal to the work 
done by the accelerating torque of 250 N m over 
100 revolutions,

 i.e. gain in kinetic energy = work done 
  = Tθ = (250)(100 × 2π) = 157.08 kJ

(b) Initial kinetic energy is given by: 

 I
ω

π

=

×









2

(25) 450 2
60

2
1
2

2

 = 27.76 kJ

 The final kinetic energy is the sum of the initial 
kinetic energy and the kinetic energy gained,

 i.e. I
ω

2
2
2

  = 27.76 kJ + 157.08 kJ  
= 184.84 kJ

 Hence, 
ω

=
(25)

2
1848402

2

 from which,  

                   ω =
×









184840 2
252

 

      
= 121.6 rad/s

 Thus, speed at end of 100 revolutions  

 = 
π
×121.6 60

2
 rev/min = 1161 rev/min

Problem 16. A shaft with its associated rotating 
parts has a moment of inertia of 55.4 kg m2.  
Determine the uniform torque required to accelerate 
the shaft from rest to a speed of 1650 rev/min while 
it turns through 12 revolutions.

From above, Tθ = 
ω ω−







I

2
2
2

1
2

 

i.e.           T = 
θ

ω ω−









I
2

2
2

1
2

where angular displacement  θ  = 12 rev  = 12 × 2π  
= 24π rad,



Torque 157

Pa
rt 

Tw
o

final speed, ω2 = 1650 rev/min  = 1650
60

× 2π  

= 172.79 rad/s,
initial speed, ω1 = 0,   
and moment of inertia, I = 55.4 kg m2.
Hence, torque required,  

   T = 
θ











I ω ω−







2

2
2

1
2

  

              = 
π











−









55.4
24

172.79 0
2

2 2

 = 10.97 kN m

Now try the following Practice Exercise

Practice Exercise 66  Further problems on 
kinetic energy and 
moment of inertia

1.  A shaft system has a moment of inertia of 
51.4 kg m2. Determine the torque required to 
give it an angular acceleration of 5.3 rad/s2.
 [272.4 N m]

2.  A shaft has an angular acceleration of  
20 rad/s2 and produces an accelerating 
torque of 600 N m. Determine the moment 
of inertia of the shaft. [30 kg m2]

3.  A uniform torque of 3.2 kN m is applied to 
a shaft while it turns through 25 revolutions. 
Assuming no frictional or other resistances, 
calculate the increase in kinetic energy of 
the shaft (i.e. the work done). If the shaft is 
initially at rest and its moment of inertia is  
24.5 kg m2, determine its rotational speed, 
in rev/min, at the end of the 25 revolutions.

 [502.65 kJ, 1934 rev/min]
4.  An accelerating torque of 30 N m is applied 

to a motor, while it turns through 10 revo-
lutions. Determine the increase in kinetic  
energy. If the moment of inertia of the rotor is  
15 kg  m2 and its speed at the beginning  
of the 10 revolutions is 1200 rev/min,  
determine its speed at the end.

 [1.885 kJ, 1209.5 rev/min]
5.  A shaft with its associated rotating parts has 

a moment of inertia of 48 kg m2. Determine 
the uniform torque required to accelerate the 
shaft from rest to a speed of 1500 rev/min 
while it turns through 15 revolutions. 
 [6.283 kN m]

6.  A small body, of mass 82 g, is fastened to 
a wheel and rotates in a circular path of  
456 mm diameter. Calculate the increase in 
kinetic energy of the body when the speed 
of the wheel increases from 450 rev/min to  
950 rev/min. [16.36 J]

7.  A system consists of three small masses  
rotating at the same speed about the same fixed 
axis.The masses and their radii of rotation are:  
16 g at 256 mm, 23 g at 192 mm and 31 g at 
176 mm. Determine (a) the moment of inertia 
of the system about the given axis, and (b) the  
kinetic energy in the system if the speed of 
rotation is 1250 rev/min.

[(a) 2.857 × 10–3 kg m2 (b) 24.48 J]
8.  A shaft with its rotating parts has a moment 

of inertia of 16.42 kg m2. It is accelerated 
from rest by an accelerating torque of  
43.6 N m. Find the speed of the shaft (a) after 
15 s, and (b) after the first four revolutions. 
 [(a) 380.3 rev/min  (b) 110.3 rev/min]

9.  The driving torque on a turbine rotor is 
203 N  m, neglecting frictional and other re-
sisting torques. (a) What is the gain in kinetic 
energy of the rotor while it turns through 100 
revolutions? (b) If the moment of inertia of 
the rotor is 23.2 kg m2 and the speed at the be-
ginning of the 100 revolutions is 600 rev/min, 
what will be its speed at the end?  
 [(a) 127.55 kJ  (b) 1167 rev/min]

11.4  Power transmission and  
efficiency

A common and simple method of transmitting power 
from one shaft to another is by means of a belt passing 
over pulley wheels which are keyed to the shafts, as 
shown in Figure 11.6. Typical applications include an 
electric motor driving a lathe or a drill, and an engine 
driving a pump or generator.

Figure 11.6

Driver 
"'x pulley wheel F, Belt 

Driven 
pulley wheel 

F, 

F, 

F, 

F, 

F, 
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For a belt to transmit power between two pulleys there 
must be a difference in tensions in the belt on either 
side of the driving and driven pulleys. For the direction 
of rotation shown in Figure 11.6, F2 > F1
The torque T available at the driving wheel to do work 
is given by:

T = (F2 – F1)rx N m
and the available power P is given by:

P = Tω = (F2 – F1)rxωx watts

From Section 11.3, the linear velocity of a point on the 
driver wheel, vx = rxωx
Similarly, the linear velocity of a point on the driven 
wheel, vy = ryωy. Assuming no slipping,

vx = vy  i.e.  rxωx
 = ryωy

Hence  rx(2πnx) = ry (2πny)

from which,        
r
r
=
n
n

x

y

y

x

Percentage efficiency = 
useful work output

energyoutput × 100

or     efficiency = poweroutput
power input

× 100%

Problem 17. An electric motor has an efficiency 
of 75% when running at 1450 rev/min. Determine 
the output torque when the power input is 3.0 kW.

Efficiency = power output
power input

× 100% 

hence   75 = power output
3000

× 100

from which, power output  = 75
100  

× 3000  

= 2250 W
From Section 11.2, power output, P = 2πnT

from which, torque, T = 
π
P

n2
  

where n = (1450/60) rev/s

Hence, output torque = 
π











2250

2 1450
60

 = 14.82 N m

Problem 18. A 15 kW motor is driving a shaft at 
1150 rev/min by means of pulley wheels and a belt. 
The tensions in the belt on each side of the driver 
pulley wheel are 400 N and 50 N. The diameters of

the driver and driven pulley wheels are 500 mm and 
750 mm respectively. Determine (a) the efficiency of 
the motor (b) the speed of the driven pulley wheel.

(a) From above, power output from motor  
= (F2

 – F1)rxωx

 Force  F2 = 400 N and F1 = 50 N,  
hence  (F2 – F1) = 350 N,

 radius rx = 500
2

 = 250 mm = 0.25 m  and  

angular velocity, ωx = 
π×1150 2

60
 rad/s

 Hence power output from motor = (F2 – F1)rxωx 

 = (350)(0.25)
π×









1150 2
60

  

  = 10.54 kW

 Power input = 15 kW

 Hence, efficiency of the motor  = power output
power input  

= 10.54
15

× 100  

= 70.27%

(b) From above, =
r
r

n
n

x

y

y

x
  from which,

 speed of driven pulley wheels,  

  ny = 
n r
r
x x

y
 = 

× y
x

1150 0.25
0.750

2

 = 767 rev/min

Problem 19. A crane lifts a load of mass 5 tonne 
to a height of 25 m. If the overall efficiency of the 
crane is 65% and the input power to the hauling 
motor is 100 kW, determine how long the lifting 
operation takes.

The increase in potential energy is the work done and  
is given by mgh (see Chapter 16), where mass, m = 5 t 
= 5000 kg, g = 9.81 m/s2 and height h = 25 m.

Hence, work done  = mgh  = (5000)(9.81)(25)  
= 1.226 MJ

Input power = 100 kW = 100000 W

     Efficiency = output power
input power

× 100
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hence           65 = output power
100000

× 100

from which, output power  = 65
100

× 100000  = 65000 W  

= workdone
time taken

Thus, time taken for lifting operation  

 = =
×workdone

output power
1.226 10 J

65000 W

6
 = 18.86 s

Problem 20. The tool of a shaping machine has 
a mean cutting speed of 250 mm/s and the average 
cutting force on the tool in a certain shaping 
operation is 1.2 kN. If the power input to the motor 
driving the machine is 0.75 kW, determine the 
overall efficiency of the machine.

Velocity, v = 250 mm/s = 0.25 m/s  
and force, F = 1.2 kN = 1200 N
From Chapter 16, power output required at the cutting 
tool (i.e. power output),
     P  = force × velocity  = 1200 N × 0.25 m/s  

= 300 W
Power input = 0.75 kW = 750 W
Hence, efficiency of the machine  

         = output power
input power

× 100  

= 300
750

× 100 = 40%

Problem 21. Calculate the input power of the 
motor driving a train at a constant speed of 72 km/h 
on a level track, if the efficiency of the motor is 
80% and the resistance due to friction is 20 kN.

Force resisting motion = 20 kN = 20000 N  and 

velocity = 72 km/h = 72
3.6

 = 20 m/s

Output power from motor  
= resistive force × velocity of train (from Chapter 16)
       = 20000 × 20 = 400 kW

Efficiency = power output
power input

× 100

hence   80 = 400
power input

 × 100

from which, power input = 400 × 100
80

 = 500 kW

Now try the following Practice Exercises

Practice Exercise 67  Further problems on 
power transmission 
and efficiency

1.  A motor has an efficiency of 72% when run-
ning at 2600 rev/min. If the output torque is 
16 N m at this speed, determine the power 
supplied to the motor. [6.05 kW]

2.  The difference in tensions between the two 
sides of a belt round a driver pulley of radius 
240 mm is 200 N. If the driver pulley wheel 
is on the shaft of an electric motor running at 
700 rev/min and the power input to the mo-
tor is 5 kW, determine the efficiency of the 
motor. Determine also the diameter of the 
driven pulley wheel if its speed is to be 1200 
rev/min. [70.37%, 280 mm]

3.  A winch is driven by a 4 kW electric motor 
and is lifting a load of 400 kg to a height 
of 5.0 m. If the lifting operation takes 8.6 s, 
calculate the overall efficiency of the winch 
and motor. [57.03%]

4.  A belt and pulley system transmits a power 
of 5 kW from a driver to a driven shaft. 
The driver pulley wheel has a diameter of  
200 mm and rotates at 600 rev/min. The 
diameter of the driven wheel is 400 mm. 
Determine the speed of the driven pulley and 
the tension in the slack side of the belt when 
the tension in the tight side of the belt is  
1.2 kN. [300 rev/min, 404.2 N]

5.  The average force on the cutting tool of a lathe 
is 750 N and the cutting speed is 400 mm/s.  
Determine the power input to the motor 
 driving the lathe if the overall efficiency 
is 55%.

 [545.5 W]

6.  A ship’s anchor has a mass of 5 tonne.  
Determine the work done in raising the an-
chor from a depth of 100 m. If the hauling 
gear is driven by a motor whose output is 
80 kW and the efficiency of the haulage is 
75%, determine how long the lifting opera-
tion takes.  [4.905 MJ, 1 min 22s]
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Practice Exercise 68  Short-answer 
questions on torque

 1. In engineering, what is meant by a couple?

 2. Define torque.

 3. State the unit of torque.

 4.  State the relationship between work, torque 
T and angular displacement θ.

 5.  State the relationship between power P, 
torque T and angular velocity ω.

 6.  Complete the following:  
1 horsepower = ..... watts.

 7.  Define moment of inertia and state the 
symbol used.

 8. State the unit of moment of inertia.

 9.  State the relationship between torque, mo-
ment of inertia and angular acceleration.

10.  State one method of power transmission 
commonly used.

11. Define efficiency.

Practice Exercise 69  Multiple-choice 
questions on torque 

(Answers on page 335)

 1. The unit of torque is:
 (a)  N  (b)  Pa
 (c)  N/m  (d)  N m

 2. The unit of work is:
 (a)  N  (b)  J
 (c)  W  (d)  N/m

 3. The unit of power is:
 (a)  N  (b)  J
 (c)  W  (d)  N/m

 4. The unit of the moment of inertia is:
 (a)  kg m2 (b)  kg
 (c)  kg/m2 (d)  N m

 5.  A force of 100 N is applied to the rim of 
a pulley wheel of diameter 200 mm. The 
torque is:

 (a)  2 N m (b)  20 kN m
 (c)  10 N m (d)  20 N m

 6.  The work done on a shaft to turn it through 
5π radians is 25π J. The torque applied to 
the shaft is:

 (a)  0.2 N m (b)  125π2 N m
 (c)  30π N m (d)  5 N m

 7.  A 5 kW electric motor is turning at 50 rad/s. 
The torque developed at this speed is:

 (a)  100 N m (b)  250 N m
 (c)  0.01 N m (d)  0.1 N m

 8.  The force applied tangentially to a bar of 
a screw-jack at a radius of 500 mm, if the 
torque required is 1 kN m is:

 (a)  2 N  (b)  2 kN
 (c)  500 N (d)  0.5 N

 9.  A 10 kW motor developing a torque of 
(200/π) N m is running at a speed of:

 (a)  (π/20) rev/s (b)  50π rev/s
 (c)  25 rev/s (d)  (20/π) rev/s

10.  A shaft and its associated rotating parts has 
a moment of inertia of 50 kg m2. The angu-
lar acceleration of the shaft to produce an 
accelerating torque of 5 kN m is:

 (a)  10 rad/s2 (b)  250 rad/s2

 (c)  0.01 rad/s2 (d)  100 rad/s2

11.  A motor has an efficiency of 25%  
when running at 3000 rev/min. If the  
output torque is 10 N m, the power input is:

 (a)  4π kW (b)  0.25π kW
 (c)  15π kW (d)  75π kW

12.  In a belt-pulley wheel system, the effec-
tive tension in the belt is 500 N and the 
diameter of the driver wheel is 200 mm. If  
the power output from the driving motor  
is 5 kW, the driver pulley wheel turns at:

 (a)  50 rad/s (b)  2500 rad/s
 (c)  100 rad/s (d)  0.1 rad/s

For fully worked solutions to each of the problems in Practice Exercises 64 to 69 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 12

Twisting of shafts

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Why it is important to understand: Twisting of shafts
The torsion, or twisting, of shafts appears in a number of different branches of engineering, including  
propeller shafts for ships and aircraft, shafts driving the blades of a helicopter, shafts driving the rear 
wheels of an automobile and shafts driving food mixers, washing machines, tumble dryers, dishwash-
ers, and so on. If the shaft is overstressed due to a torque, so that the maximum shear stress in the 
shaft exceeds the yield shear stress of the shaft’s material, the shaft can fracture. This is an undesirable 
phenomenon and normally it should be designed out; hence the need for the theory contained in this 
chapter. The twisting of shafts is very important for designing the propulsion systems for ships, auto-
mobiles, helicopters, and also for food mixers, etc.

Prior to proving the above formula, the following  
assumptions are made for circular section shafts:

(a) the shaft is of circular cross-section
(b) the cross-section of the shaft is uniform along its 

entire length
(c) the shaft is straight and not bent
(d) the shaft’s material is homogeneous (i.e. uniform) 

and isotropic (i.e. exhibits properties with the 
same values when measured along different axes) 
and obeys Hooke’s law

(e) the limit of proportionality is not exceeded and 
the angles of twist due to the torque are small

(f) plane cross-sections remain plane and normal 
during twisting

(g) radial lines across the shaft’s cross-section remain 
straight and radial during twisting.

At the end of this chapter you should be able to:

• appreciate practical applications where torsion of shafts occurs

• prove that 
τ θ

= =
r

T
J

G
L

• calculate the shearing stress τ, due to a torque, T
• calculate the resulting angle of twist, θ, due to torque, T
• calculate the power that can be transmitted by a shaft

12.1 To prove that ττ θθ
r

= T
J

= G
L

In the formula 
τ θ

= =
r

T
J

G
L :

 τ = the shear stress at radius r
 T = the applied torque
 J =  polar second moment of area of the shaft 

(note that for non-circular sections, J is 
the torsional constant and not the polar 
second moment of area)

 G = rigidity or shear modulus

 θ =  angle of twist, in radians, over its  
length L
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Consider a circular section shaft, built-in at one end, 
namely A, and subjected to a torque T at the other end, 
namely B, as shown in Figure 12.1.

Figure 12.1

Let θ be the angle of twist due to this torque T, where 
the direction of T is according to the right hand screw 
rule. N.B. The direction of a couple, according to the 
right hand screw rule, is obtained by pointing the right 
hand in the direction of the double-tailed arrow and  
rotating the right hand in a clockwise direction.
From Figure 12.1, it can be seen that:  
γ = shear strain, and that
 γ L = R θ (12.1)

provided θ is small.

However, from equation (3.1), page 57, γ = 
τ
G

Hence,  τ
θ









 =

G
L R

or         
τ θ

=
R

G
L  (12.2)

From equation (12.2), it can be seen that the shear stress 
τ is dependent on the value of R and it will be a maxi-
mum on the outer surface of the shaft. On the outer sur-
face of the shaft τ will act as shown in Figure 12.2.

Figure 12.2

For any radius r,

 

τ θ
=

r
G
L  (12.3)

The shaft in Figure 12.2 is said to be in a state of pure 
shear on these planes, as these shear stresses will not be 
accompanied by direct or normal stress.
Consider an annular element of the shaft, as shown in 
Figure 12.3.

Figure 12.3

The torque T causes constant value shearing stresses on 
the thin walled annular element shown in Figure 12.4.

Figure 12.4 Annular element

The elemental torque δT due to these shearing stresses 
τ at the radius r is given by:

       δT = τ × (2πrdr)r

and the total torque T = ∑δT

or     T = ∫ τ π r dr(2 )
R 2

0
 (12.4)

However, from equation (12.3), τ = 
θG

L
r

Therefore,          T = ∫
θ

π
G
L

r r dr(2 )
R 2

0

But G, θ, L and 2π do not vary with r,

hence, T = ∫
θ

π
G
L

r dr(2 )
R 3

0

     = θ
π











G
L

r(2 )
4

R4

0

 = 
θ πG

L
R
2

4

RIgid L L 

R 

dr 

2R 9 r 
A 

T 

B 

T 
T 

T dr 

r 

T 

T 

A B 

r 

r r 

r 

r 

L 
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However, from Table 9.1, page 133, the polar second 

moment of area of a circle, J = π R
2

4
,

hence, T = 
θG

L
J

or θ
=

T
J

G
L

 (12.5)

Combining equations (12.3) and (12.5) gives:

 
τ θ

= =
r

T
J

G
L  (12.6)

For a solid section of radius R or diameter D,

 J = π R
2

4
 or  

π D
32

4
 (12.7)

For a hollow tube of circular section and of internal 
radius R1 and external radius R2

 J = 
π ( )−R R
2 2

4
1

4  (12.8)

or, in terms of external and internal diameters of D2 and 
D1 respectively (see Problem 12, Chapter 9, page 135),

 J = 
π ( )−D D
32 2

4
1

4  (12.9)

The torsional stiffness of the shaft, k, is defined by:

 k = G J
L

 (12.10)

The next section of worked problems will demonstrate 
the use of equation (12.6).

12.2  Worked problems on the  
twisting of shafts

Problem 1. An internal combustion engine of  
60 horsepower (hp) transmits power to the car 
wheels of an automobile at 300 rev/min (rpm). 
Neglecting any transmission losses, determine the 
minimum permissible diameter of the solid circular 
section steel shaft, if the maximum shear stress 
in the shaft is limited to 50 MPa. What will be 
the resulting angle of twist of the shaft, due to the 
applied torque, over a length of 2 m, given that the 
rigidity modulus, G = 70 GPa? 
(Note that 1 hp = 745.7 W).

Power = 60 hp = 60 hp × 745.7 W
hp  = 44742 W

From equations (11.1) and (11.2), page 152,
  power = Tω = 2πnT watts,  
where n is the speed in rev/s

i.e.      44742  = 2π 
rad
rev ×

300
60

rev
s × T  

= 31.42 T rad/s

from which, T = 44742
31 42

W
rad/s.

i.e. torque   T = 1424 N m   (since 1 W s = 1 N m)

From equation (12.6),         
τ

=
r

T
J

i.e.  
π

×
=

r r
50 10 N

m
1424 N m

2

6

2 4

and              
π

=
×

× ×

r
r

1424 2
50 10

4

6  m3

from which,   r3 = 
π

×

× ×

1424 2
50 106

or shaft radius,  r = 
π

×

× ×











1424 2
50 106

3  = 0.0263 m

Hence, shaft diameter, d  = 2 × r  = 2 × 0.0263  
= 0.0526 m

From equation (12.6),    
τ θ

=
r

G
L

from which, θ = 
τ

=
× ×

× ×

L
Gr

50 10 N
m

2m

70 10 N
m

0.0263m

6
2

9
2

and   θ = 0.0543 rad

      = 0.0543 rad × 
π

°360
2 rad

i.e. angle of twist, θ = 3.11°

Problem 2. If the shaft in Problem 1 were 
replaced by a hollow tube of the same external 
diameter, but of wall thickness 0.005 m, what would 
be the maximum shear stress in the shaft due to the 
same applied torque, and the resulting twist of the 
shaft? The material properties of the shaft may be 
assumed to be the same as that of Problem 1.

Internal shaft diameter, D1 = D2 – 2 × wall thickness
    = 0.0525 – 2 × 0.005
i.e.            D1 = 0.0425 m
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The polar second moment of area for a hollow tube,

 J = 
π ( )−D D
32 2

4
1
4  from Problem 12, page 135.

Hence,  J  = 
π ( )−
32

0.0525 0.04254 4   

= 4.255 × 10–7 m4

From equation (12.6), 
τ

=
r

T
J

Hence, maximum shear stress,  

 �τ  = =
×

× −

Tr
J

1424 N m 0.0525
2

m

4.255 10 m7 4
 = 87.85 MPa

From equation (12.6), 
τ θ

=
r

G
L

from which,        θ = 
τ

=
× ×

× ×

L
Gr

87.85 10 N
m

2m

70 10 N
m

0.02625m

6
2

9
2

i.e.               θ = 0.0956 rad

     = 0.0956 rad × 
π

°360
2 rad

i.e. angle of twist, θ = 5.48°

Problem 3. What would be the maximum shear 
stress and resulting angle of twist on the shaft 
of Problem 2, if the wall thickness were 10 mm, 
instead of 5 mm?

Internal shaft diameter,    D1 = D2 – 2 × wall thickness
       = 0.0525 – 2 × 10 × 10–3

i.e.                                    D1 = 0.0325 m
The polar second moment of area for a hollow tube,

J = 
π ( )−D D
32 2

4
1
4  from Problem 12, page 135.

Hence, J  = 
π ( )−
32

0.0525 0.03254 4   

= 6.36 × 10–7m4

From equation (12.6), τ
=

r
T
J

Hence, maximum shear stress,  

 �τ  = =
×

× −

Tr
J

1424 N m 0.0525
2

m

6.36 10 m7 4
 = 58.75 MPa

From equation (12.6), 
τ θ

=
r

G
L

from which,  θ = 
τ

=
× ×

× ×

L
Gr

58.75 10 N
m

2m

70 10 N
m

0.02625m

6
2

9
2

i.e.           θ = 0.06395 rad

                 = 0.06395 rad ×
π

°360
2 rad

i.e.  angle of twist, θ = 3.66°
N.B. From the calculations in Problems 1 to 3, it can be 
seen that a hollow shaft is structurally more efficient 
than a solid section shaft.

Problem 4. A shaft of uniform circular section is 
fixed at its ends and it is subjected to an intermediate 
torque T, as shown in Figure 12.5, where a > b. 
Determine the maximum resulting torque acting on 
the shaft and then draw the torque diagram.

Figure 12.5

From equilibrium considerations, (see Figure 12.5), 
clockwise torque = the sum of the anticlockwise torques
           T = T1 + T2 (12.11)
Let θC = the angle of twist at the point C.

From equation (12.6), 
θ

=
T
J

G
L

from which,          T = θG J
L

Therefore        T1 = θG J
a
C  (12.12)

and            T2 = θG J
b
C  (12.13)

Dividing equation (12.12) by equation (12.13) gives:

=
T
T

b
a

1

2

or           T1 = 
bT

a
2  (12.14)

Substituting equation (12.14) into equation (12.11) 
gives:

         T = 
bT

a
2  + T2 = +











b
a

T1 2

or        T2 = 
+











=
+









T
b
a

T
a b

a
1

 

= 
+

T a
a b( )

 (12.15)

c 
A B 

T2 
T 

a b 

T2 



Twisting of shafts 165

Pa
rt 

Tw
o

However, a + b = L

Therefore       T2 = T aL  (12.16)

Substituting equation (12.16) into equation (12.14) gives:

 T1 = 









b Ta

L
a  = bTL  (12.17)

As a > b, T2 > T1; therefore,  

maximum torque = T2 = TaL
The torque diagram is shown in Figure 12.6.

Figure 12.6 Torque diagram

Now try the following Practice Exercises

Practice Exercise 70  Further problems on 
the twisting of shafts

1.  A shaft of uniform solid circular section is 
subjected to a torque of 1500 N m. Deter-
mine the maximum shear stress in the shaft 
and its resulting angle of twist, if the shaft’s 
diameter is 0.06 m, the shaft’s length is 1.2 m, 
and the rigidity modulus, G = 77 × 109 N/m2.  
What power can this shaft transmit if it is  
rotated at 400 rev/min? 
 [35.4 MPa, 1.05°, 62.83 kW]

2.  If the shaft in Problem 1 were replaced by  
a similar hollow one of wall thickness  
10 mm, but of the same outer diameter, what 
would be the maximum shearing stress in the 
shaft and the resulting angle of twist? What 
power can this shaft transmit if it is rotated at 
500 rev/min? [44.1 MPa, 1.31°, 78.5 kW]

3.  A boat’s propeller shaft transmits 50 hp at 
100 rev/min. Neglecting transmission losses,  
determine the minimum diameter of a solid 
circular section phosphor bronze shaft, when 
the maximum permissible shear stress in 
the shaft is limited to 40 MPa. What will 
be the resulting angle of twist of this shaft, 
due to this torque, over a length of 1 m, giv-

en that the rigidity modulus, G = 40 GPa? 
 [76.8 mm, 1.49°]

4.  A shaft to the blades of a helicopter trans-
mits 1000 hp at 200 rev/min. Neglecting 
transmission losses, determine the mini-
mum external and internal diameters of the 
hollow circular section aluminium alloy 
shaft, when the maximum permissible shear 
stress in the shaft is limited to 30 MPa. It 
may be assumed that the external diameter 
of this shaft is twice its internal diameter. 
What will be the resulting angle of twist of 
this shaft over a length of 2 m, given that 
the modulus of rigidity, G = 26.9 GPa? 
 [182 mm, 91 mm, 1.5°]

5.  A solid circular section shaft of diameter d 
is subjected to a torque of 1000 N m. If the 
maximum permissible shear stress in this 
shaft is limited to 30 MPa, determine the 
minimum value of d. [55.4 mm]

6.  If the shaft in Problem 5 were to be replaced 
by a hollow shaft of external diameter d2 and 
internal diameter 0.5d2, determine the mini-
mum value for d2, the design condition being 
the same for both shafts. What percentage 
saving in weight will result by replacing the 
solid shaft by the hollow one? 
 [56.6 mm, 28.3 mm, 21.7%]

7.  An internal combustion engine of a ship is 
of power 3000 hp and it transmits its power 
through two shafts at 300 rev/min (rpm). If 
the transmission losses are 10%, determine 
the minimum possible diameters of the 
shafts, given that the maximum permissible 
shear stress in the shafts is 80 MPa. (It may 
be assumed that 1 hp = 745.7 W). 
 [d = 159 mm]

Practice Exercise 71  Short-answer 
questions on the 
twisting of shafts

1.  State three practical examples where the  
torsion of shafts appears.

2.  State the relationship between shear stress  
τ and torque T for a shaft.

Tbll 

o T 

Tbll 

-TsA.. 

o 

-TeA.. 
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3.  State the relationship between torque T and 
angle of twist θ for a shaft.

4.  State whether a solid shaft or a hollow shaft 
is structurally more efficient.

Practice Exercise 72  Multiple-choice 
questions on the 
twisting of shafts

(Answers on page 335)

1.  The maximum shear stress for a solid shaft 
occurs:

 (a)  at the outer surface
 (b)  at the centre
 (c)   in between the outer surface and the  

centre

2.  For a given shaft, if the values of torque T, 
length L and radius r are kept constant, but 
rigidity G is increased, the value of shear 
stress τ:

 (a)  increases
 (b)  stays the same
 (c)  decreases

3.  If for a certain shaft, its length is doubled, 
the angle of twist:

 (a)  doubles (b)  halves
 (c)  remains the same

4.  If a solid shaft is replaced by a hollow shaft 
of the same external diameter, its angle of 
twist:

 (a)  decreases (b)  stays the same
 (c)  increases

5.  If a shaft is fixed at its two ends and subject-
ed to an intermediate torque T at mid-length, 
the maximum resulting torque is equal to:

 (a)  T  (b)  
T
2

 (c)  zero

6.  If a hollow shaft is subjected to a torque T, 
the shear stress on the inside surface is:

 (a)  a minimum (b)  a maximum
 (c)  zero

References

[1] A link to the Twisting of Circular Section Shafts –
 www.routledge.com/cw/bird
 A video reference on YouTube which demonstrates a stan-

dard experimental test on the twisting of circular cross-
section shafts. This experiment has to be carried out to 
determine the torsional material properties of a metal or a 
similar material.

For fully worked solutions to each of the problems in Practice Exercises 70 to 72 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
http://www.routledge.com/cw/bird
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1. A beam simply supported at its ends, is of length 
1.4 m. If the beam carries a centrally-placed down-
ward concentrated load of 50 kN, determine the 
minimum permissible dimensions of the beam’s 
cross-section, given that the maximum permis-
sible stress is 40 MPa, and the beam has a solid 
circular cross-section. (6)

2. Determine the force applied tangentially to a bar 
of a screw-jack at a radius of 60 cm, if the  torque 
required is 750 N m. (3)

3. Calculate the torque developed by a motor whose 
spindle is rotating at 900 rev/min and developing a 
power of 4.20 kW. (5)

4. A motor connected to a shaft develops a torque 
of 8 kN m. Determine the number of revolutions 
made by the shaft if the work done is 7.2 MJ. (6)

5. Determine the angular acceleration of a shaft that 
has a moment of inertia of 32 kg m2 produced by 
an accelerating torque of 600 N m. (5)

6. An electric motor has an efficiency of 72% when 
running at 1400 rev/min. Determine the output  
torque when the power input is 2.50 kW. (5)

7. A solid circular section shaft is required to trans-
mit 60 hp at 1000 rpm. If the maximum permis-
sible shear stress in the shaft is 35 MPa, determine 
the minimum permissible diameter of the shaft. 
Determine the resulting angle of twist of the shaft 
per metre, assuming that the modulus of rigidity,  
G = 70 GPa and 1 hp = 745.7 W (10)

Revision Test 5 Bending of beams, torque and twisting of shafts

This Revision Test covers the material contained in Chapters 10 to 12. The marks for each question are shown in 
brackets at the end of each question.

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 5,  
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Chapter 13

Linear and angular motion

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Why it is important to understand: Linear and angular motion
This chapter commences by defining linear and angular velocity and also linear and angular acceleration. 
It then derives the well-known relationships, under uniform acceleration, for displacement, velocity and 
acceleration, in terms of time and other parameters. The chapter then uses elementary vector analysis, 
similar to that used for forces in Chapter 7, to determine relative velocities. This chapter deals with the 
basics of kinematics. A study of linear and angular motion is important for the design of moving vehicles.

The relationship between angle in radians (θ), arc 
length (s) and radius of a circle (r) is:
   s = rθ (13.1)
Since the arc length of a complete circle is 2πr and the 
angle subtended at the centre is 360°, then from equa-
tion (13.1), for a complete circle, 

 2πr = rθ    or   θ = 2π radians
Thus, 2π radians corresponds to 360° (13.2)

as stated in Chapter 1.

13.2 Linear and angular velocity

Linear velocity  v  is defined as the rate of change of 
linear displacement s with respect to time t, and for mo-
tion in a straight line:

At the end of this chapter you should be able to:

• appreciate that 2π radians corresponds to 360°
• define linear and angular velocity
• perform calculations on linear and angular velocity using ω = 2πn and v = ωr
• define linear and angular acceleration
• perform calculations on linear and angular acceleration using ω2 = ω1 + αt and a = rα
• select appropriate equations of motion when performing simple calculations
• appreciate the difference between scalar and vector quantities
• use vectors to determine relative velocities, by drawing and by calculation

13.1 The radian

The unit of angular displacement is the radi-
an, where one radian is the angle subtended at the cen-
tre of a circle by an arc equal in length to the radius, 
as shown in Figure 13.1.

Figure 13.1

r 

1 rad 

r 

r 
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 linear velocity = changeof displacement
changeof time

i.e.     v = st  (13.3)

The unit of linear velocity is metres per second (m/s).

Angular velocity
The speed of revolution of a wheel or a shaft is usually  
measured in revolutions per minute or revolutions  
per second, but these units do not form part of a 
coherent system of units. The basis used in SI units is 
the angle turned through (in radians) in one second.

Angular velocity is defined as the rate of change of 
angular displacement θ, with respect to time t, and for 
an object rotating about a fixed axis at a constant speed:

 angular velocity = angle turned through
time taken

i.e.        ω = 
θθ
t  (13.4)

The unit of angular velocity is radians per second (rad/s).
An object rotating at a constant speed of n revolutions 
per second subtends an angle of 2πn radians in one sec-
ond, that is, its angular velocity,
       ω = 2πn rad/s (13.5)
From equation (13.1), s = rθ, and from equation (13.4), 
θ = ωt, hence

    s = rωt or  
s
t  = ωr

However, from equation (13.3), v = 
s
t

hence           v = ωr   (13.6)
Equation (13.6) gives the relationship between linear 
velocity, v, and angular velocity, ω.

Problem 1. A wheel of diameter 540 mm is 
rotating at (1500/π) rev/min. Calculate the angular 
velocity of the wheel and the linear velocity of a 
point on the rim of the wheel.

From equation (13.5), angular velocity ω = 2πn, where 
n is the speed of revolution in revolutions per second, 

i.e. n = 
π

1500
60  revolutions per second.

Thus, angular velocity, ω = 2π
1500
60π









  = 50 rad/s

The linear velocity of a point on the rim, v = ωr, where 
r is the radius of the wheel, i.e.
           r = 0.54/2 or 0.27 m.
Thus, linear velocity, v = ωr = 50 × 0.27 = 13.5 m/s

Problem 2. A car is travelling at 64.8 km/h and 
has wheels of diameter 600 mm.
(a)  Find the angular velocity of the wheels in 

both rad/s and rev/min.
(b)  If the speed remains constant for 1.44 km, 

determine the number of revolutions made by 
a wheel, assuming no slipping occurs.

(a) 64.8 km/h = 64.8 km
h  

× 1000 m
km  

× 
1

3600
h
s  

        = 
64.8
3.6  m/s  

= 18 m/s 
 i.e. the linear velocity, v, is 18 m/s
 The radius of a wheel is (600/2) mm = 0.3 m
 From equation (13.6), v = ωr, hence ω = v/r

 i.e. the angular velocity, ω = 
18
0.3  = 60 rad/s

  From equation (13.5), angular velocity, ω = 2πn, 
where n is in revolutions per second. Hence

  n = ω/2π and angular speed of a wheel in revolu-
tions per minute is 60ω/2π; but ω = 60 rad/s,

  hence angular speed = 
π
×60 60

2  = 573 revolu-
tions per minute (rpm)

(b)  From equation (13.3), time taken to travel  
1.44 km at a constant speed of 18 m/s is:

   1440
18

m
m/s  = 80 s.

  Since a wheel is rotating at 573 revolutions per 
minute, then in 80/60 minutes it makes

   
×573 80

60  = 764 revolutions.

Now try the following Practice Exercise

Practice Exercise 73  Further problems on 
linear and angular 
velocity

1.  A pulley driving a belt has a diameter of  
360 mm and is turning at 2700/π revolutions 
per minute. Find the angular velocity of the 
pulley and the linear velocity of the belt  
assuming that no slip occurs.

 [ω = 90 rad/s, v = 16.2 m/s]
2.  A bicycle is travelling at 36 km/h and the  

diameter of the wheels of the bicycle is  
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500 mm. Determine the angular velocity of 
the wheels of the bicycle and the linear veloc-
ity of a point on the rim of one of the wheels. 

 [ω = 40 rad/s, v = 10 m/s]

13.3 Linear and angular acceleration

Linear acceleration, a, is defined as the rate of change 
of linear velocity with respect to time. For an object 
whose linear velocity is increasing uniformly:

linear acceleration = changeof linear velocity
time taken

i.e.     a = 
v v
t

2 1−
 (13.7)

The unit of linear acceleration is metres per second 
squared (m/s2). Rewriting equation (13.7) with v2 as 
the subject of the formula gives:

      v2 = v1 + at (13.8)

where v2 = final velocity and v1 = initial velocity.
Angular acceleration, α, is defined as the rate of 
change of angular velocity with respect to time. For an 
object whose angular velocity is increasing uniformly:

angular acceleration = changeof angular velocity
time taken

i.e.  αα
ωω ωω

=
−
t

2 1  (13.9)

The unit of angular acceleration is radians per second 
squared (rad/s2). Rewriting equation (13.9) with ω2 as 
the subject of the formula gives:

                ω2 = ω1 + αt (13.10)

where ω2 = final angular velocity and ω1 = initial  
angular velocity.

From equation (13.6), v = ωr. For motion in a  circle 
having a constant radius r, v2 = ω2 r and v1 = ω1 r, 
hence equation (13.7) can be rewritten as:

  a = 
ω ω ω ω( )−

=
−r r

t
r

t
2 1 2 1

But from equation (13.9), 
ω ω−

t
2 1  = α

Hence  a = rα  (13.11)

Problem 3. The speed of a shaft increases 
uniformly from 300 revolutions per minute to  
800 revolutions per minute in 10 s. Find the angular 
acceleration, correct to 3 significant figures.

From equation (13.9), α = t
2 1ω ω−

Initial angular velocity,  

  ω1  = 300 rev/min  = 300/60 rev/s  

= 
π×300 2

60  rad/s,

final angular velocity,  

  ω2
 = 

π×800 2
60  rad/s and time, t = 10 s.

Hence, angular acceleration,  

    α = 

π π×
−

×800 2
60

300 2
60

10  rad/s2

          = 
π×

×
500 2
60 10  = 5.24 rad/s2

Problem 4. If the diameter of the shaft in 
problem 3 is 50 mm, determine the linear 
acceleration of the shaft on its external surface, 
correct to 3 significant figures.

From equation (13.11), a = rα

The shaft radius is 
50
2 mm = 25 mm = 0.025 m, and the 

angular acceleration, α = 5.24 rad/s2,
thus the linear acceleration,  
  a = rα = 0.025 × 5.24 = 0.131 m/s2

Now try the following Practice Exercise

Practice Exercise 74  Further problems on 
linear and angular 
acceleration

1.  A flywheel rotating with an angular velocity 
of 200 rad/s is uniformly accelerated at a rate 
of 5 rad/s2 for 15 s. Find the final angular 
velocity of the flywheel both in rad/s and 
revolutions per minute.

 [275 rad/s, 8250/π rev/min]
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2.  A disc accelerates uniformly from 300 
revolutions per minute to 600 revolutions 
per minute in 25 s. Determine its angular 
acceleration and the linear acceleration of a 
point on the rim of the disc, if the radius of 
the disc is 250 mm. 
 [0.4π rad/s2, 0.1π m/s2]

13.4 Further equations of motion

From equation (13.3), s = vt, and if the linear velocity is 
changing uniformly from v1 to v2, then s = mean linear 
velocity × time

i.e.  s = v v
2

1 2++







 t  (13.12)

From equation (13.4), θ = ωt, and if the angular  
velocity is changing uniformly from ω1 to ω2 then  
θ = mean angular velocity × time

i.e.  θ = 
2

1 2ωω ωω++







 t (13.13)

Two further equations of linear motion may be derived 
from equations (13.8) and (13.11):

   s = v1t + 1
2 at2   (13.14)

and       v2
2 = v1

2 + 2as (13.15)

Two further equations of angular motion may be  
derived from equations (13.10) and (13.13):

  θ = ω1t + 1
2 αt2  (13.16)

and     ω2
2 = ω1

2
 + 2αθ  (13.17)

Table 13.1, on page 175, summarises the principal 
equations of linear and angular motion for uniform 
changes in velocities and constant accelerations and 
also gives the relationships between linear and angular 
quantities.

Problem 5. The speed of a shaft increases uni-
formly from 300 rev/min to 800 rev/min in 10 s. 
Find the number of revolutions made by the shaft 
during the 10 s it is accelerating.

From equation (13.13), angle turned through,

  θ  = 2
1 2ω ω+







 t  

= 

300 2
60

800 2
60

2

π π×
+

×















(10) rad

However, there are 2π radians in 1 revolution, hence, 
number of revolutions

  = 

300 2
60

800 2
60

2
10
2

π π

π

×
+

×























   

   = 
1
2

1100
60

10( )








   

= 
1100
12

  = 91.67 revolutions

Problem 6. The shaft of an electric motor, 
initially at rest, accelerates uniformly for 0.4 s at 
15 rad/s2. Determine the angle (in radians) turned 
through by the shaft in this time.

From equation (13.16), θ = ω1 t + 
1
2 αt2

Since the shaft is initially at rest, ω1 = 0 and  
θ = 

1
2 αt2, the angular acceleration, α = 15 rad/s2 and 

time t = 0.4 s.

Hence, angle turned through, 

  θ = 0 +
1
2 × 15 × 0.42 = 1.2 rad

Problem 7. A flywheel accelerates uniformly at 
2.05 rad/s2 until it is rotating at 1500 rev/min. If  
it completes 5 revolutions during the time it is  
accelerating, determine its initial angular velocity 
in rad/s, correct to 4 significant figures.

Since the final angular velocity is 1500 rev/min,

    ω2  = 1500 rev
min ×

π
×

1min
60s

2 rad
1rev

  

= 50π rad/s
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5 revolutions = 5 rev × π2 rad
1rev

 = 10π rad

From equation (13.17), ω ω=2
2

1
2 + 2αθ

i.e.    (50π)2 = ω1
2 + (2 × 2.05 × 10π)

from which,   ω1
2 = (50π)2 – (2 × 2.05 × 10π)

        = (50π)2 – 41π = 24545

i.e.      ω1 = 24545  = 156.7 rad/s
Thus, the initial angular velocity is 156.7 rad/s,  
correct to 4 significant figures.

Now try the following Practice Exercise

Practice Exercise 75  Further problems on 
equations of motion

1.  A grinding wheel makes 300 revolu-
tions when slowing down uniformly from  
1000 rad/s to 400 rad/s. Find the time for this 
reduction in speed. [2.693 s]

2.  Find the angular retardation for the grinding 
wheel in question 1. [222.8 rad/s2]

Table 13.1

s = arc length (m) r = radius of circle (m)

t = time (s) θ = angle (rad)

v = linear velocity (m/s) ω = angular velocity (rad/s)

v1 = initial linear velocity (m/s) ω1 = initial angular velocity (rad/s)

v2 = final linear velocity (m/s) ω2 = final angular velocity (rad/s)

a = linear acceleration (m/s2) α = angular acceleration (rad/s2)

n = speed of revolution (rev/s)

Equation number Linear motion  Angular motion

(13.1)  s = rθ m

(13.2)   2π rad = 360°

(13.3) and (13.4) v = 
s
t

  ω = 
θ
t rad/s

(13.5)   ω = 2πn rad/s

(13.6)  v = ωr m/s2

(13.7) and (13.9) a = 
−v v
t

2 1   α = 
ω ω−

t
2 1

(13.8) and (13.10) v2 = (v1 + at) m/s  ω2 = (ω1 + αt) rad/s

(13.11)  a = r α m/s2

(13.12) and (13.13) s = 
v v

2
1 2+







 t  θ = 

2
1 2ω ω+







 t

(13.14) and (13.16) s = v1t + 
1
2

at2  θ = ω1 t +
1
2

αt2

(13.15) and (13.17) v v2
2

1
2= + 2as  ω ω=2

2
1
2 + 2αθ
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3.  A disc accelerates uniformly from 300 
revolutions per minute to 600 revolutions 
per minute in 25 s. Calculate the number 
of revolutions the disc makes during this 
accelerating period.  [187.5 revolutions]

4.  A pulley is accelerated uniformly from rest 
at a rate of 8 rad/s2. After 20 s the accelera-
tion stops and the pulley runs at constant 
speed for 2 min, and then the pulley comes 
uniformly to rest after a further 40 s. Calcu-
late: 

 (a)   the angular velocity after the period of 
acceleration

 (b)  the deceleration
 (c)   the total number of revolutions made by 

the pulley.
 [(a) 160 rad/s (b) 4 rad/s2 (c) 12000/π rev]

13.5 Relative velocity

Quantities used in engineering and science can be  
divided into two groups:

(a)  Scalar quantities have a size or magnitude only 
and need no other information to specify them. 
Thus 20 centimetres, 5 seconds, 3 litres and  
4 kilograms are all examples of scalar quantities.

(b)  Vector quantities have both a size (or magnitude), 
and a direction, called the line of action of  the 
quantity. Typical vector quantities include velocity, 
acceleration and force. Thus, a velocity of 30 km/h  
due west, and an acceleration of 7 m/s2 acting  
vertically downwards, are both vector  quantities.

A vector quantity is represented by a straight line  
lying along the line of action of the quantity, and having  
a length that is proportional to the size of the quantity, as  
shown in Chapter 5. Thus ab in Figure 13.2 represents 
a velocity of 20 m/s, whose line of action is due west. 

The bold letters, ab, indicate a vector quantity and the 
order of the letters indicate that the line of action is 
from a to b.

Consider two aircraft A and  B flying at a constant  
altitude, A travelling due north at 200 m/s and B trav-
elling 30° east of north, written N 30° E, at 300 m/s,  
as shown in Figure 13.3.

Figure 13.3

Relative to a fixed point 0, 0a represents the velocity 
of  A  and 0b the velocity of B. The velocity of  B 
relative to A, that is the velocity at which B seems to 
be travelling to an observer on A, is given by ab, and 
by measurement is 160 m/s in a direction E 22° N. The 
velocity of A relative to B, that is, the velocity at which 
A seems to be travelling to an observer on B, is given 
by ba and by measurement is 160 m/s in a direction  
W 22° S.

Problem 8. Two cars are travelling on horizontal 
roads in straight lines, car A at 70 km/h at N 10° E 
and car B at 50 km/h at W 60° N. Determine, by 
drawing a vector diagram to scale, the velocity of 
car A relative to car B.

With reference to Figure 13.4(a), oa represents the  
velocity of car  A  relative to a fixed point o, and ob  
represents the velocity of car  B  relative to a fixed  
point o. The velocity of car A relative to car B is given 
by ba and by measurement is 45 km/h in a direction of  
E 35° N. Figure 13.2
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Scale: velocity in mls 

22" b 

N 
ba .b 
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Figure 13.4

Problem 9. Verify the result obtained in Problem 
8 by calculation.

The triangle shown in Figure 13.4(b) is similar to the 
vector diagram shown in Figure 13.4(a). Angle BOA is 
40°. Using the cosine rule (see Chapter 1):
 BA2 = 502 + 702 – 2 × 50 × 70 × cos 40°

from which, BA = 45.14
Using the sine rule:  

  BAO
50

sin
45.14
sin 40∠

=
°

 (also from Chapter 1)

from which, sin∠BAO = 
50sin 40

45.14
°

 = 0.7120

Hence, angle BAO = 45.40°  
thus, angle ABO  = 180° – (40° + 45.40°)  

= 94.60°, 

and angle  θ = 94.60° – 60° = 34.60°

Thus, ba is 45.14 km/h in a direction E 34.60° N by 
calculation.

Problem 10. A crane is moving in a straight line 
with a constant horizontal velocity of 2 m/s. At the 
same time it is lifting a load at a vertical velocity of 
5 m/s. Calculate the velocity of the load relative to 
a fixed point on the Earth’s surface.

A vector diagram depicting the motion of the crane 
and load is shown in Figure 13.5. oa represents the 
velocity of the crane relative to a fixed point on the 
Earth’s surface and ab represents the velocity of  
the load relative to the crane. The velocity of the load 
relative to the fixed point on the Earth’s surface is ob. 
By Pythagoras’ theorem (from Chapter 1): 

Figure 13.5

      ob2 = oa2 + ab2

        = 4 + 25 = 29

Hence  ob = 29  = 5.385 m/s

Tan θ = 
5
2  = 2.5, hence, θ = tan–1 2.5 = 68.20°

i.e. the velocity of the load relative to a fixed point on 
the Earth’s surface is 5.385 m/s in a direction 68.20° 
to the motion of the crane.

Now try the following Practice Exercises

Practice Exercise 76  Further problems on 
relative velocity

1.  A car is moving along a straight horizontal 
road at 79.2 km/h and rain is falling verti-
cally downwards at 26.4 km/h. Find the  
velocity of the rain relative to the driver of 
the car. 
 [83.5 km/h at 71.6° to the vertical]

2.  Calculate the time needed to swim across 
a river 142 m wide when the swimmer can 
swim at 2 km/h in still water and the river is 
flowing at 1 km/h. At what angle to the bank 
should the swimmer swim?

 [4 min 55 s, 60°]

0204060 
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3.  A ship is heading in a direction N 60° E at a 
speed which in still water would be 20 km/h. 
It is carried off course by a current of 8 km/h 
in a direction of E 50° S. Calculate the ship’s 
actual speed and direction.

 [22.79 km/h in a direction E 9.78° N]

Practice Exercise 77  Short-answer 
questions on linear 
and angular motion

 1.  State and define the unit of angular  
displacement.

 2.  Write down the formula connecting an  
angle, arc length and the radius of a circle.

 3.  Define linear velocity and state its unit.

 4. Define angular velocity and state its unit.

 5.  Write down a formula connecting angular 
velocity and revolutions per second in  
coherent units.

 6.  State the formula connecting linear and  
angular velocity.

 7. Define linear acceleration and state its unit.

 8.  Define angular acceleration and state its 
unit.

 9.  Write down the formula connecting linear 
and angular acceleration.

10.  Define a scalar quantity and give two  
examples.

11.  Define a vector quantity and give two  
examples.

Practice Exercise 78  Multiple-choice 
questions on linear 
and angular motion

(Answers on page 335)

 1. Angular displacement is measured in:
 (a)  degrees (b)  radians
 (c)  rev/s  (d)  metres

 2. An angle of π3
4

radians is equivalent to:

 (a)  270°  (b)  67.5°
 (c) 135°   (d)  2.356°

 3. An angle of 120° is equivalent to:

 (a) π2
3

rad (b) π
3

rad

 (c) π3
4

rad (d) 1
3

rad

 4.  An angle of 2 rad at the centre of a circle 
subtends an arc length of 40 mm at the 
circumference of the circle. The radius of 
the circle is:

 (a)  40π mm  (b)  80 mm
 (c)  20 mm (d)  (40/π) mm
 5.  A point on a wheel has a constant angu-

lar velocity of 3 rad/s. The angle turned 
through in 15 seconds is:

 (a)  45 rad (b)  10π rad
 (c)  5 rad  (d)  90π rad
 6.  An angular velocity of 60 revolutions per 

minute is the same as:
 (a)  (1/2π) rad/s (b)  120π rad/s
 (c)  (30/π) rad/s (d)  2π rad/s

 7.  A wheel of radius 15 mm has an angular 
velocity of 10 rad/s. A point on the rim of 
the wheel has a linear velocity of:

 (a)  300π mm/s (b)  2/3 mm/s
 (c)  150 mm/s (d)  1.5 mm/s

 8.  The shaft of an electric motor is rotat-
ing at 20 rad/s and its speed is increased  
uniformly to 40 rad/s in 5 s. The angular 
acceleration of the shaft is:

 (a)  4000 rad/s2 (b)  4 rad/s2

 (c)  160 rad/s2  (d)  12 rad/s2

 9.  A point on a flywheel of radius 0.5 m has 
a uniform linear acceleration of 2 m/s2. Its 
angular acceleration is: 

 (a)  2.5 rad/s2  (b)  0.25 rad/s2

 (c)  1 rad/s2 (d)  4 rad/s2

Questions 10 to 13 refer to the following data.
A car accelerates uniformly from 10 m/s to  
20 m/s over a distance of 150 m. The wheels of 
the car each have a radius of 250 mm.
10.  The time the car is accelerating is:
 (a)  0.2 s  (b)  15 s
 (c)  10 s  (d)  5 s
11.  The initial angular velocity of each of the 

wheels is:
 (a)  20 rad/s (b)  40 rad/s
 (c)  2.5 rad/s  (d)  0.04 rad/s
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12.  The angular acceleration of each of the 
wheels is:

 (a)  1 rad/s2 (b)  0.25 rad/s2

 (c)  400 rad/s2 (d)  4 rad/s2

13.  The linear acceleration of a point on each 
of the wheels is:

 (a)  1 m/s2 (b)  4 m/s2

 (c)  3 m/s2 (d)  100 m/s2

For fully worked solutions to each of the problems in Practice Exercises 73 to 78 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Linear momentum  
and impulse

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Chapter 14

Why it is important to understand: Linear momentum and impulse
This chapter is of considerable importance in the study of the motion and collision of vehicles, ships, 
and so on. The chapter commences with defining momentum, impulse, together with Newton’s laws of 
motion. It then applies these laws to solving practical problems in the fields of ballistics, pile  drivers, 
etc. A study of linear and angular momentum is of importance when designing the motion and the crash 
worthiness of cars, buses, etc.

Newton’s first law of motion states:
a body continues in a state of rest or in a state of 
uniform motion in a straight line unless acted 
on by some external force

Hence the momentum of a body remains the same pro-
vided no external forces act on it
The principle of conservation of momentum for a 
closed system (i.e. one on which no external forces act) 
may be stated as:

the total linear momentum of a system is a  
constant

At the end of this chapter you should be able to:

•	 define	momentum	and	state	its	unit
•	 state	Newton’s	first	law	of	motion
• calculate momentum given mass and velocity
• state Newton’s second law of motion
•	 define	impulse	and	appreciate	when	impulsive	forces	occur
• state Newton’s third law of motion
• calculate impulse and impulsive force
• use the equation of motion v2 = u2 + 2as in calculations

14.1 Linear momentum

The momentum	of	a	body	is	defined	as	the	product	of	
its mass and its velocity, i.e.

momentum = mu

where m = mass (in kg) and u = velocity (in m/s). The 
unit of momentum is kg m/s.
Since velocity is a vector quantity, momentum is  
a vector quantity, i.e. it has both magnitude and  
direction.
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The total momentum of a system before collision in a 
given direction is equal to the total momentum of the 
system after collision in the same direction. In Figure 
14.1, masses m1 and m2 are travelling in the same direc-
tion with velocity u1 > u2. A collision will occur, and 
applying the principle of conservation of momentum: 

Figure 14.1

total momentum before impact = total momentum after 
impact
i.e. m1u1 + m2u2 = m1v1 + m2v2
where v1 and v2 are the velocities of m1 and m2 after 
impact.

Problem 1. Determine the momentum of a pile 
driver of mass 400 kg when it is moving downwards 
with a speed of 12 m/s.

Momentum  = mass × velocity = 400 kg × 12 m/s  
= 4800 kg m/s downwards

Problem 2. A cricket ball of mass 150 g has a 
momentum of 4.5 kg m/s. Determine the velocity 
of the ball in km/h.

Momentum = mass × velocity, hence  

velocity = =
× −

momentum
mass

4.5kg m/s
150 10 kg3

 = 30 m/s

30 m/s  = × ×30 m
s

3600 s
h

1km
1000m   

= 30 × 3.6 km/h  = 108 km/h  
= velocity of cricket ball.

Problem 3. Determine the momentum of a rail-
way wagon of mass 50 tonnes moving at a velocity 
of 72 km/h.

Momentum = mass × velocity
Mass = 50 t = 50000 kg (since 1 t = 1000 kg)

and  velocity  = 72 km/h  = × ×72 km
h

1h
3600s

1000 m
km

 

= 72
3 6.  m/s = 20 m/s.

Hence,    momentum  = 50000 kg × 20 m/s  
= 1000000 kg m/s = 106kg m/s

Problem 4. A wagon of mass 10 t is moving at  
a speed of 6 m/s and collides with another wagon 
of mass 15 t, which is stationary. After impact,  
the wagons are coupled together. Determine the 
common velocity of the wagons after impact.

Mass  m1 = 10 t = 10000 kg,   
   m2 = 15000 kg and velocity u1 = 6 m/s, u2 = 0

Total momentum before impact = m1u1 + m2u2

   = (10000 × 6) + (15000 × 0) = 60000 kg m/s
Let the common velocity of the wagons after impact 
be v m/s.
Since total momentum before impact = total momen-
tum after impact:
 60000 = m1v + m2v
              = v(m1 + m2) = v(25000)

Hence             v = 
60000
25000  = 2.4 m/s

i.e. the common velocity after impact is 2.4 m/s in 
the direction in which the 10 t wagon is initially 
travelling.

Problem 5. A body has a mass of 30 g and is 
moving with a velocity of 20 m/s. It collides with 
a second body which has a mass of 20 g and which 
is moving with a velocity of 15 m/s. Assuming that 
the bodies both have the same velocity after impact, 
determine this common velocity, (a) when the initial 
velocities have the same line of action and the same 
sense, and (b) when the initial velocities have the 
same line of action but are opposite in sense.

Mass  m1 = 30 g = 0.030 kg, m2 = 20 g = 0.020 kg,  
velocity u1 = 20 m/s and u2 = 15 m/s.

(a)  When the velocities have the same line of action 
and the same sense, both u1 and u2 are considered 
as positive values.

 Total momentum before impact  
 = m1u1 + m2u2  = (0.030 × 20) + (0.020 × 15)
                     = 0.60 + 0.30 = 0.90 kg m/s.
 Let the common velocity after impact be v m/s.
  Total momentum before impact = total momen-

tum after impact

Mass 
m, 

u, 
Mass 
m2 

u, 
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 i.e.  0.90 = m1v + m2v = v(m1 + m2)
     0.90 = v(0.030 + 0.020)

  from which, common velocity, v = 
0 90
0 050

.
.  = 18 m/s  

in the direction in which the bodies are initially  
travelling.

(b)  When the velocities have the same line of action 
but are opposite in sense, one is considered as  
positive and the other negative (because velocity 
is a vector quantity). Taking the direction of mass 
m1 as positive gives:   
 velocity u1 = +20 m/s and u2 = –15 m/s.

 Total momentum before impact  
 = m1u1 + m2u2 = (0.030 × 20) + (0.020 × –15)
                           = 0.60 – 0.30 = + 0.30 kg m/s
  and since it is positive this indicates a momentum 

in the same direction as that of mass m1

 If the common velocity after impact is v m/s then
  0.30 = v(m1 + m2) = v(0.050)

  from which, common velocity, v = 
0 30
0 050

.
.  = 6 m/s  

in the direction that the 30 g mass is initially 
travelling.

Problem 6. A ball of mass 50 g is moving with 
a velocity of 4 m/s when it strikes a stationary ball 
of mass 25 g. The velocity of the 50 g ball after 
impact is 2.5 m/s in the same direction as before 
impact. Determine the velocity of the 25 g ball 
after impact.

Mass m1 = 50 g = 0.050 kg, m2 = 25 g = 0.025 kg.  
Initial velocity  u1 = 4 m/s, u2 = 0;  
final	velocity	v1 = 2.5 m/s, v2 is unknown.

Total momentum before impact  
 = m1u1 + m2u2

 = (0.050 × 4) + (0.025 × 0) = 0.20 kg m/s
Total momentum after impact  
 = m1v1 + m2v2

 = (0.050 × 2.5) + (0.025 v2) = 0.125 + 0.025 v2
Total momentum before impact = total momentum  
after impact, hence
   0.20 = 0.125 + 0.025v2
from which, velocity of 25 g ball after impact, 

   v2 = 
−0.20 0.125

0.025  = 3 m/s

Problem 7. Three masses, P, Q and R lie in a 
straight line. P has a mass of 5 kg and is moving 
towards Q at 8 m/s. Q has a mass of 7 kg and a 
velocity of 4 m/s, and is moving towards R. Mass 
R is stationary. P collides with Q, and P and Q then 
collide with R. Determine the mass of R assuming 
all three masses have a common velocity of 2 m/s 
after the collision of P and Q with R.

Mass mP = 5 kg, mQ = 7 kg,  
velocity uP = 8 m/s and uQ = 4 m/s.

Total momentum before P collides with Q 
         = mPuP + mQuQ

      = (5 × 8) + (7 × 4) = 68 kg m/s.
Let P and Q have a common velocity of v1m/s after 
impact.

Total momentum after P and Q collide 
    = mPv1 + mQv1

   = v1 (mP + mQ) = 12v1

Total momentum before impact = total momentum  
after impact, i.e. 68 = 12v1, from which, common  

velocity of P and Q, v1 = =
68
12

5 2
3

 m/s.

Total momentum after P and Q collide with R =  
(mP+Q × 2) + (mR × 2) (since the common velocity after 
impact = 2 m/s) = (12 × 2) + (2 mR)
Total momentum before P and Q collide with R = total 
momentum after P and Q collide with R, i.e.

 (mP + Q × 5 2
3) = (12 × 2) + 2 mR

i.e.    12 × 5 2
3  = 24 + 2 mR

       68 – 24 = 2 mR

from which, mass of R, mR = 44
2  = 22 kg.

Now try the following Practice Exercise

Practice Exercise 79  Further problems on 
linear momentum

(Where necessary, take g as 9.81 m/s2)

 1.  Determine the momentum in a mass of  
50 kg having a velocity of 5 m/s.

 [250 kg m/s]
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 2.  A milling machine and its component have 
a combined mass of 400 kg. Determine the 
momentum of the table and component 
when the feed rate is 360 mm/min. 

 [2.4 kg m/s]
 3.  The momentum of a body is 160 kg m/s 

when the velocity is 2.5 m/s. Determine the 
mass of the body. [64 kg]

 4.  Calculate the momentum of a car of mass 
750 kg moving at a constant velocity of 
108 km/h. [22500 kg m/s]

 5.  A football of mass 200 g has a momentum 
of 5 kg m/s. What is the velocity of the ball 
in km/h. [90 km/h]

 6.  A wagon of mass 8 t is moving at a speed 
of 5 m/s and collides with another wagon 
of mass 12 t, which is stationary. After 
impact, the wagons are coupled together.  
Determine the common velocity of the 
wagons after impact. [2 m/s]

 7.  A car of mass 800 kg was stationary when 
hit head-on by a lorry of mass 2000 kg 
travelling at 15 m/s. Assuming no brakes 
are applied and the car and lorry move as 
one, determine the speed of the wreckage 
immediately after collision. [10.71 m/s]

 8.  A body has a mass of 25 g and is moving 
with a velocity of 30 m/s. It collides with a 
second body which has a mass of 15 g and 
which is moving with a velocity of 20 m/s. 
Assuming that the bodies both have the 
same speed after impact, determine their 
common velocity (a) when the speeds have 
the same line of action and the same sense, 
and (b) when the speeds have the same line 
of action but are opposite in sense.

 [(a) 26.25 m/s (b) 11.25 m/s]

 9.  A ball of mass 40 g is moving with a veloc-
ity of 5 m/s when it strikes a stationary ball 
of mass 30 g. The velocity of the 40 g ball 
after impact is 4 m/s in the same direction 
as before impact. Determine the velocity of 
the 30 g ball after impact. [1.33 m/s]

10.  Three masses, X, Y and Z, lie in a straight 
line. X has a mass of 15 kg and is mov-
ing towards Y at 20 m/s. Y has a mass of  
10 kg and a velocity of 5 m/s and is moving 

towards Z. Mass Z is stationary. X collides 
with Y, and X and Y then collide with Z. 
Determine the mass of Z assuming all three 
masses have a common velocity of 4 m/s 
after the collision of X and Y with Z.

 [62.5 kg]

14.2 Impulse and impulsive forces

Newton’s second law of motion states:

the rate of change of momentum is directly 
proportional to the applied force producing the 
change, and takes place in the direction of this 
force

In the SI system, the units are such that:

the applied force  = rate of change of momentum  

= changeof momentum
time taken  (14.1)

When a force is suddenly applied to a body due to  
either a collision with another body or being hit by an 
object such as a hammer, the time taken in equation 
(14.1)	 is	very	 small	and	difficult	 to	measure.	 In	 such	
cases, the total effect of the force is measured by the 
change of momentum it produces.

Forces that act for very short periods of time are 
called impulsive forces. The product of the impul-
sive force and the time during which it acts is called  
the impulse of the force and is equal to the change of 
momentum produced by the impulsive force, i.e.

 impulse  = applied force × time  
= change in linear momentum

Examples where impulsive forces occur include when 
a gun recoils and when a free-falling mass hits the 
ground. Solving problems associated with such occur-
rences often requires the use of the equation of motion: 
v2 = u2 + 2as, from Chapter 13.

When a pile is being hammered into the ground,  
the ground resists the movement of the pile and this 
resistance is called a resistive force.

Newton’s third law of motion may be stated as:

for every action there is an equal and opposite  
reaction

The force applied to the pile is the resistive force; the 
pile exerts an equal and opposite force on the ground.
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In practice, when impulsive forces occur, energy is not 
entirely conserved and some energy is changed into 
heat, noise, and so on.

Problem 8. The average force exerted on the 
work-piece of a press-tool operation is 150 kN,  
and the tool is in contact with the work-piece  
for 50 ms. Determine the change in momentum.

From above, change of linear momentum = applied 
force × time (= impulse).
Hence, change in momentum of work-piece  
  = 150 × 103 N × 50 × 10–3s
  = 7500 kg m/s (since 1 N = 1 kg m/s2).

Problem 9. A force of 15 N acts on a body of mass 
4 kg for 0.2 s. Determine the change in velocity.

Impulse  = applied force × time  
= change in linear momentum

i.e. 15 N × 0.2 s = mass × change in velocity
   = 4 kg × change in velocity

from which, change in velocity  

   =
×15N 0.2s

4kg   

   = 0.75 m/s (since 1 N = 1 kg m/s2).

Problem 10. A mass of 8 kg is dropped vertically 
on	to	a	fixed	horizontal	plane	and	has	an	impact	
velocity of 10 m/s. The mass rebounds with a  
velocity of 6 m/s. If the mass-plane contact time  
is 40 ms, calculate (a) the impulse, and (b) the 
average value of the impulsive force on the plane.

(a)  Impulse = change in momentum = m(u1 – v1) 
where u1 = impact velocity = 10 m/s and

    v1 = rebound velocity = –6 m/s

  (v1 is negative since it acts in the opposite direc-
tion to u1, and velocity is a vector quantity)

 Thus, impulse  = m(u1 – v1) = 8 kg (10 – –6) m/s  
= 8 × 16 = 128 kg m/s.

(b) Impulsive force  = =
× −

impulse
time

128kg m/s
40 10 s3   

                  = 3200 N or 3.2 kN

Problem 11. The hammer of a pile-driver of 
mass 1 t falls a distance of 1.5 m on to a pile. The 
blow takes place in 25 ms and the hammer does 
not rebound. Determine the average applied force 
exerted on the pile by the hammer.

Initial velocity, u = 0,  
acceleration due to gravity, g = 9.81 m/s2  
and distance, s = 1.5 m

Using the equation of motion: v2 = u2 + 2gs
gives:      v2 = 02 + 2(9.81)(1.5)

from which, impact velocity,     v  = ( )( . )( . )2 9 81 1 5  

= 5.425 m/s

Neglecting the small distance moved by the pile and 
hammer after impact,
momentum lost by hammer = the change of momentum
      = mv = 1000 kg × 5.425 m/s

Rate of change of momentum  

    = changeof momentum
changeof time  

= ×

× −

1000 5.425
25 10 3  = 217000 N

Since the impulsive force is the rate of change of  
momentum, the average force exerted on the pile is 
217 kN.

Problem 12. A mass of 40 g having a velocity of 
15 m/s collides with a rigid surface and rebounds 
with a velocity of 5 m/s. The duration of the impact 
is 0.20 ms. Determine (a) the impulse, and (b) the 
impulsive force at the surface.

Mass m = 40 g = 0.040 kg,  
initial velocity, u = 15 m/s

and final	velocity, v =  –5 m/s (negative since the 
rebound is in the opposite 
direction to velocity u)

(a)  Momentum before impact = mu  = 0.040 × 15  
= 0.6 kg m/s

  Momentum after impact = mv  = 0.040 × – 5  
= – 0.2 kg m/s

 Impulse  = change of momentum  
= 0.6 – (–0.2) = 0.8 kg m/s
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(b) Impulsive force  

    =

=
×

=
−

changeof momentum
changeof time

0.8kg m/s
0.20 10 s3

4000 N or 4 kN

Problem 13.	 A	gun	of	mass	1.5	t	fires	a	shell	of	
mass	15	kg	horizontally	with	a	velocity	of	500	m/s.	
Determine (a) the initial velocity of recoil, and  
(b) the uniform force necessary to stop the recoil  
of the gun in 200 mm.

Mass of gun, mg = 1.5 t = 1500 kg,  
mass of shell, ms = 15 kg,
and initial velocity of shell, us = 500 m/s.

(a) Momentum of shell  = msus  = 15 × 500  
= 7500 kg m/s.

  Momentum of gun = mgv = 1500v  
where v = initial velocity of recoil of the gun.

  By the principle of conservation of momentum, 
initial	momentum	=	final	momentum,	i.e.

           0 = 7500 + 1500v, from which,

  velocity v = −7500
1500

 = – 5 m/s (the negative sign 

indicating recoil velocity)
 i.e. the initial velocity of recoil = 5 m/s.
(b)  The retardation of the recoil, a, may be deter-

mined using v2 = u2 + 2as, where v,	 the	 final	 
velocity,	 is	zero,	u, the initial velocity, is 5 m/s 
and s, the distance, is 200 mm, i.e. 0.2 m.

 Rearranging v2 = u2 + 2as for a gives:  

      a  = 
−

=
−

=
−

= −

v u
s2

0 5
2(0.2)
25

0.4
62.5 m/s

2 2 2 2

2

  Force necessary to stop recoil in 200 mm  
  = mass × acceleration

   = 1500 kg × 62.5 m/s2

   = 93750 N or 93.75 kN

Problem 14. A vertical pile of mass 100 kg is 
driven 200 mm into the ground by the blow of a 1 t  
hammer which falls through 750 mm. Determine 
(a) the velocity of the hammer just before impact 
(b) the velocity immediately after impact (assuming 
the hammer does not bounce), and (c) the resistive 
force of the ground assuming it to be uniform.

(a)  For the hammer, v2 = u2 + 2gs, where v =	final	
velocity, u = initial velocity = 0, g = 9.81 m/s2  
and s = distance = 750 mm = 0.75 m

 Hence, v2 = 02 + 2(9.81)(0.75), from which,
 velocity of hammer, just before impact,  
          v = 2 9 81 0 75( . )( . )  = 3.84 m/s
(b)  Momentum of hammer just before impact  

            = mass × velocity
             = 1000 kg × 3.84 m/s = 3840 kg m/s
  Momentum of hammer and pile after impact = 

momentum of hammer before impact.
  Hence, 3840 kg m/s = (mass of hammer and pile) 

 × (velocity immediately after impact)
 i.e.   3840 = (1000 + 100)(v), from which,
 velocity immediately after impact,  

    v = 3840
1100  = 3.49 m/s

(c)  Resistive force of ground = mass × acceleration. 
The acceleration is determined using v2 = u2 + 2as 
where v =	final	velocity	=	0, u = initial velocity = 
3.49 m/s and s = distance driven in ground =  
200 mm = 0.2 m.

 Hence, 02 = (3.49)2 + 2(a)(0.2), from which,

  acceleration, a = −(3.49)
2(0.2)

2
 = –30.45 m/s2 (the  

minus sign indicates retardation, because accel-
eration is a vector quantity).

 Thus, resistive force of ground  
   = mass × acceleration
   = 1100 kg × 30.45 m/s2 = 33.5 kN

Now try the following Practice Exercises

Practice Exercise 80  Further problems 
on impulse and 
impulsive forces

(Where necessary, take g as 9.81 m/s2)

 1.  The sliding member of a machine tool has 
a mass of 200 kg. Determine the change 
in momentum when the sliding speed is  
increased from 10 mm/s to 50 mm/s. 

 [8 kg m/s]

 2.  A force of 48 N acts on a body of mass 8 kg 
for 0.25 s. Determine the change in velocity.
 [1.5 m/s]
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 3.  The speed of a car of mass 800 kg is  
increased from 54 km/h to 63 km/h in 2 s. 
Determine the average force in the direc-
tion of motion necessary to produce the 
change in speed. [1 kN]

 4.  A 10 kg mass is dropped vertically on to 
a	fixed	horizontal	plane	and	has	an	impact	
velocity of 15 m/s. The mass rebounds with 
a velocity of 5 m/s. If the contact time of 
mass and plane is 0.025 s, calculate (a) the 
impulse, and (b) the average value of the 
impulsive force on the plane.

 [(a) 200 kg m/s (b) 8 kN]

 5.  The hammer of a pile driver of mass 1.2 t 
falls 1.4 m on to a pile. The blow takes 
place in 20 ms and the hammer does not 
rebound. Determine the average applied 
force exerted on the pile by the hammer.

 [314.5 kN]

 6.  A tennis ball of mass 60 g is struck from 
rest with a racket. The contact time of 
ball on racket is 10 ms and the ball leaves  
the racket with a velocity of 25 m/s.  
Calculate (a) the impulse, and (b) the aver-
age force exerted by a racket on the ball.

 [(a) 1.5 kg m/s (b) 150 N]

 7.  In a press-tool operation, the tool is in 
contact with the work piece for 40 ms. If  
the average force exerted on the work  
piece is 90 kN, determine the change in 
momentum. [3600 kg m/s]

	 8.	 	A	gun	of	mass	1.2	t	fires	a	shell	of	mass	12	kg	 
with a velocity of 400 m/s. Determine  
(a) the initial velocity of recoil, and (b) the 
uniform force necessary to stop the recoil 
of the gun in 150 mm.

 [(a) 4 m/s (b) 64 kN]

 9.  In making a steel stamping, a mass of  
100 kg falls on to the steel through a dis-
tance of 1.5 m and is brought to rest af-
ter moving through a further distance of  
15 mm. Determine the magnitude of the re-
sisting force, assuming a uniform resistive 
force is exerted by the steel. [98.1 kN]

10.  A vertical pile of mass 150 kg is driven  
120 mm into the ground by the blow of a 1.1 t  

hammer, which falls through 800 mm. 
Assuming the hammer and pile remain in 
contact, determine (a) the velocity of the 
hammer just before impact (b) the velocity 
immediately after impact, and (c) the resis-
tive force of the ground, assuming it to be 
uniform. 

 [(a) 3.96 m/s (b) 3.48 m/s (c) 63.08 kN]

Practice Exercise 81  Short-answer 
questions on linear 
momentum and 
impulse

1.	 Define	momentum.

2.	 State	Newton’s	first	law	of	motion.

3.  State the principle of the conservation of 
momentum.

4. State Newton’s second law of motion.

5.	 Define	impulse.

6. What is meant by an impulsive force?

7. State Newton’s third law of motion.

Practice Exercise 82  Multiple-choice 
questions on linear 
momentum and 
impulse

(Answers on page 335)

 1.  A mass of 100 g has a momentum of  
100 kg m/s. The velocity of the mass is:

 (a)  10 m/s  (b)  102m/s
 (c)  10–3m/s (d)  103m/s

	 2.	 	A	 rifle	 bullet	 has	 a	 mass	 of	 50	 g.	 The	  
momentum	 when	 the	 muzzle	 velocity	 is	
108 km/h is:

 (a)  54 kg m/s  (b)  1.5 kg m/s
 (c)  15000 kg m/s (d)  21.6 kg m/s

  A body P of mass 10 kg has a velocity of  
5 m/s and the same line of action as a body 
Q of mass 2 kg and having a velocity of  
25 m/s. The bodies collide, and their veloc-
ities are the same after impact. In questions 
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3 to 6, select the correct answer from the 
following:

 (a)  25/3 m/s (b)  360 kg m/s
 (c)  0   (d) 30 m/s
 (e)  160 kg m/s (f)  100 kg m/s
 (g)  20 m/s

 3.  Determine the total momentum of the  
system before impact when P and Q have 
the same sense.

 4.  Determine the total momentum of the  
system before impact when P and Q have 
the opposite sense.

 5.  Determine the velocity of P and Q after im-
pact if their sense is the same before impact.

 6.  Determine the velocity of P and Q after  
impact if their sense is opposite before  
impact.

 7.  A force of 100 N acts on a body of mass  
10 kg for 0.1 s. The change in velocity of 
the body is:

 (a)  1 m/s  (b)  100 m/s
 (c)  0.1 m/s (d)  0.01 m/s.

  A vertical pile of mass 200 kg is driven 
100 mm into the ground by the blow of a 
1 t hammer which falls through 1.25 m. 
In questions 8 to 12, take g as 10 m/s2 and 
select the correct answer from the following: 

 (a)  25 m/s (b)  25/6 m/s
 (c)  5 kg m/s (d)  0 
 (e)  625/6 kN (f)  5000 kg m/s
 (g)  5 m/s  (h)  12 kN

 8.  Calculate the velocity of the hammer im-
mediately before impact.

 9.  Calculate the momentum of the hammer 
just before impact.

10.  Calculate the momentum of the hammer 
and pile immediately after impact assum-
ing they have the same velocity.

11.  Calculate the velocity of the hammer and 
pile immediately after impact assuming 
they have the same velocity.

12.  Calculate the resistive force of the ground, 
assuming it to be uniform.

For fully worked solutions to each of the problems in Practice Exercises 79 to 82 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Chapter 15

in newtons (N). The effects of pushing or pulling an 
object are:
 (i) to cause a change in the motion of the object, and
(ii) to cause a change in the shape of the object.

Why it is important to understand: Force, mass and acceleration
When an object is pushed or pulled, a force is applied to the object. The effects of pushing or pulling an  
object are to cause changes in the motion and shape of the object. If a change occurs in the motion 
of the object then the object accelerates. Thus, acceleration results from a force being applied to an 
object. If a force is applied to an object and it does not move, then the object changes shape. Usually 
the change in shape is so small that it cannot be detected by just watching the object. However, when 
very sensitive measuring instruments are used, very small changes in dimensions can be detected. 
A force of attraction exists between all objects. If a person is taken as one object and the Earth as a 
second object, a force of attraction exists between the person and the Earth. This force is called the 
gravitational force and is the force that gives a person a certain weight when standing on the Earth’s 
surface. It is also this force that gives freely falling objects a constant acceleration in the absence of 
other forces. This chapter defines force and acceleration, states Newton’s three laws of motion and 
defines moment of inertia, all demonstrated via practical everyday situations. The importance of this 
chapter is in understanding the dynamic behaviour of moving motor vehicles, ships, etc.

15.1 Introduction

As stated above, when an object is pushed or pulled, a 
force is applied to the object. This force is measured 

At the end of this chapter you should be able to:

• define force and state its unit
• appreciate ‘gravitational force’
• state Newton’s three laws of motion
• perform calculations involving force F = ma
• define ‘centripetal acceleration’
• perform calculations involving centripetal force = mv

r
2

• define ‘mass moment of inertia’
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If a change occurs in the motion of the object, that is, 
its velocity changes from u to v, then the object accel-
erates. Thus, it follows that acceleration results from a 
force being applied to an object. If a force is applied to 
an object and it does not move, then the object changes 
shape, that is, deformation of the object takes place. 
Usually the change in shape is so small that it cannot be 
detected by just watching the object. However, when 
very sensitive measuring instruments are used, very 
small changes in dimensions can be detected.

A force of attraction exists between all objects. The 
factors governing the size of this force F are the masses 
of the objects and the distances between their centres:

F α 
m m

d
1 2

2

Thus, if a person is taken as one object and the 
Earth as a second object, a force of attraction exists 
between the person and the Earth. This force is called 
the gravitational force, (first presented by Sir Isaac 
Newton*), and is the force that gives a person a certain 
weight when standing on the Earth’s surface. It is also 

this force that gives freely falling objects a constant 
 acceleration in the absence of other forces.

15.2 Newton’s laws of motion

To make a stationary object move or to change the direc-
tion in which the object is moving requires a force to be 
applied externally to the object. This concept is known 
as Newton’s first law of motion and may be stated as:

An object remains in a state of rest, or contin-
ues in a state of uniform motion in a straight 
line, unless it is acted on by an externally ap-
plied force

Since a force is necessary to produce a change of  
motion, an object must have some resistance to a change 
in its motion. The force necessary to give a stationary 
pram a given acceleration is far less than the force 
necessary to give a stationary car the same acceleration 
on the same surface. The resistance to a change in motion 
is called the inertia of an object and the amount of  
inertia depends on the mass of the object. Since a car 
has a much larger mass than a pram, the inertia of a car 
is much larger than that of a pram. 
Newton’s second law of motion may be stated as:

The acceleration of an object acted upon by an 
external force is proportional to the force and is 
in the same direction as the force

Thus, force α acceleration, or force = a constant ×  
acceleration, this constant of proportionality being the 
mass of the object, i.e.

force = mass × acceleration

The unit of force is the newton (N) and is defined  
in terms of mass and acceleration. One newton is  
the force required to give a mass of 1 kilogram an  
acceleration of 1 metre per second squared. Thus

F = ma
where F is the force in newtons (N), m is the mass in 
kilograms (kg) and a is the acceleration in metres per 

second squared (m/s2), i.e. 1 N = 1 2
kg m
s

It follows that 1 m/s2 = 1 N/kg. Hence a gravitational 
acceleration of 9.8 m/s2 is the same as a gravitational 
field of 9.8 N/kg. 
Newton’s third law of motion may be stated as:

For every force, there is an equal and opposite 
reacting force

*Sir Isaac Newton (25 December 1642–20 March 1727) was an 
English polymath. His single greatest work, the ‘Philosophiae 
Naturalis Principia Mathematica’ (‘Mathematical Principles of 
Natural Philosophy’), showed how a universal force, gravity, 
applied to all objects in all parts of the universe. To find out 
more go to www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Thus, an object on, say, a table, exerts a downward 
force on the table and the table exerts an equal upward 
force on the object, known as a reaction force or just 
a reaction.

Problem 1. Calculate the force needed to 
accelerate a boat of mass 20 tonne uniformly  
from rest to a speed of 21.6 km/h in 10 minutes.

The mass of the boat, m, is 20 t, that is 20000 kg.
The law of motion, v = u + at can be used to determine 
the acceleration a.
The initial velocity, u, is zero, the final velocity,

  v = 21.6 km/h  = × ×21.6 km
h

1h
3600s

1000m
1km   

= 21.6
3.6

= 6 m/s,
and      the time, t = 10 min = 600 s.
Thus, v = u + at    i.e. 6 = 0 + a × 600  

from which,  a = 
6

600  = 0.01 m/s2

From Newton’s second law, F = ma
i.e.  force = 20000 × 0.01 N = 200 N

Problem 2. The moving head of a machine tool 
requires a force of 1.2 N to bring it to rest in 0.8 s 
from a cutting speed of 30 m/min. Find the mass of 
the moving head.

From Newton’s second law, F = ma, thus m =
F
a , where 

force is given as 1.2 N. The law of motion
  v = u + at can be used to find acceleration a,  

where v = 0, u = 30 m/min = 
30
60  m/s = 0.5 m/s, 

and t = 0.8 s.
Thus, 0 = 0.5 + a × 0.8

from which, a = –
0 5
0 8
.
.  = – 0.625 m/s2 or a retardation 

of 0.625 m/s2.

Thus the mass, m = F
a

 = 
1.2

0.625  = 1.92 kg

Problem 3. A lorry of mass 1350 kg accelerates 
uniformly from 9 km/h to reach a velocity of  
45 km/h in 18 s. Determine (a) the acceleration of 
the lorry (b) the uniform force needed to accelerate 
the lorry.

(a) The law of motion v = u + at can be used to deter-
mine the acceleration, where final velocity

 v = × ×45 km
h

1h
3600s

1000m
1km  = 45

3.6
 m/s, initial 

velocity  u = 9
3.6

 m/s and time t = 18 s.

 Thus        45
3.6

 = 9
3.6

 + a × 18

 from which, a  = 
1

18
45
3.6

9
3.6

−








  = 

1
18

36
3.6









   

= 10
18

 = 5
9

 m/s2 or 0.556 m/s2

(b) From Newton’s second law of motion, 

force, F = ma = 1350 × 5
9

 = 750 N

Problem 4. Find the weight of an object of mass 
1.6 kg at a point on the Earth’s surface where the 
gravitational field is 9.81 N/kg (or 9.81 m/s2).

The weight of an object is the force acting vertically 
downwards due to the force of gravity acting on the 
object.
Thus: weight = force acting vertically downwards
              = mass × gravitational field
              = 1.6 × 9.81 = 15.696 N

Problem 5. A bucket of cement of mass 40 kg 
is tied to the end of a rope connected to a hoist. 
Calculate the tension in the rope when the bucket 
is suspended but stationary. Take the gravitational 
field, g, as 9.81 N/kg (or 9.81 m/s2).

The tension in the rope is the same as the force acting 
in the rope. The force acting vertically downwards due 
to the weight of the bucket must be equal to the force 
acting upwards in the rope, i.e. the tension.

Weight of bucket of cement, F  = mg  = 40 × 9.81  
= 392.4 N

Thus,  the tension in the rope = 392.4 N

Problem 6. The bucket of cement in Problem 5 
is now hoisted vertically upwards with a uniform 
acceleration of 0.4 m/s2. Calculate the tension in the 
rope during the period of acceleration.
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With reference to Figure 15.1, the forces acting on the 
bucket are:
 (i) a tension (or force) of T acting in the rope
(ii)  a force of mg acting vertically downwards, i.e. 

the weight of the bucket and cement

Figure 15.1

 The resultant force       F = T – mg   
 Hence,  ma = T – mg
 i.e.        40 × 0.4 = T – 40 × 9.81
 from which,   tension, T = 408.4 N
  By comparing this result with that of Problem 5, it 

can be seen that there is an increase in the tension 
in the rope when an object is accelerating upwards.

Problem 7. The bucket of cement in Problem 5 is 
now lowered vertically downwards with a uniform 
acceleration of 1.4 m/s2. Calculate the tension in the 
rope during the period of acceleration.

With reference to Figure 15.2, the forces acting on the 
bucket are:

 (i) a tension (or force) of T acting vertically upwards

Figure 15.2

(ii)  a force of mg acting vertically downwards, i.e. 
the weight of the bucket and cement

 The resultant force,    F = mg – T
 Hence,   ma = mg – T
 from which, tension,   T  = m(g – a)  

= 40(9.81 – 1.4)  
= 336.4 N

  By comparing this result with that of Problem 5, 
it can be seen that there is a decrease in the ten-
sion in the rope when an object is accelerating 
downwards.

Now try the following Practice Exercise

Practice Exercise 83  Further problems 
on Newton’s laws of 
motion

(Take g as 9.81 m/s2, and express answers to 
three significant figure accuracy)

1.  A car initially at rest, accelerates uniformly 
to a speed of 55 km/h in 14 s. Determine the 
accelerating force required if the mass of the 
car is 800 kg. [873 N]

2.  The brakes are applied on the car in question 
1 when travelling at 55 km/h and it comes to 
rest uniformly in a distance of 50 m. Calcu-
late the braking force and the time for the car 
to come to rest. [1.87 kN,  6.55 s]

3.  The tension in a rope lifting a crate ver-
tically upwards is 2.8 kN. Determine its  
acceleration if the mass of the crate is 270 kg. 
 [0.560 m/s2]

4.  A ship is travelling at 18 km/h when it stops 
its engines. It drifts for a distance of 0.6 km 
and its speed is then 14 km/h. Determine the 
value of the forces opposing the motion of 
the ship, assuming the reduction in speed is 
uniform and the mass of the ship is 2000 t.
 [16.5 kN]

5.  A cage having a mass of 2 t is being lowered 
down a mineshaft. It moves from rest with 
an acceleration of 4 m/s2, until it is travelling 
at 15 m/s. It then travels at constant speed 
for 700 m and finally comes to rest in 6 s. 
Calculate the tension in the cable supporting 
the cage during

 (a)  the initial period of acceleration
 (b)  the period of constant speed travel
 (c)  the final retardation period.
 [(a) 11.6 kN  (b) 19.6 kN  (c) 24.6 kN]

6.  A miner having a mass of 80 kg is standing 
in the cage of Problem 5. Determine the 
reaction force between the man and the floor 

Acceleration 

Weight, 
mg 

Acceleration 

T 

T 

Force due 
to acceleration 
F=ma 

F=ma 

Weight, 
mg 
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of the cage during (a) the initial period of 
acceleration (b) the period of constant speed 
travel, and (c) the final retardation period.

 [(a) 464.8 N  (b) 784.8 N  (c) 984.8 N]

7.  During an experiment, masses of 4 kg and 
5 kg are attached to a thread and the thread 
is passed over a pulley so that both masses 
hang vertically downwards and are at the 
same height. When the system is released, 
find (a) the tension in the thread, and (b) 
the acceleration of the system, assuming no 
losses in the system. 
 [(a) 43.6 N  (b) 1.09 m/s2]

15.3 Centripetal acceleration

When an object moves in a circular path at constant 
speed, its direction of motion is continually changing 
and hence its velocity (which depends on both magni-
tude and direction) is also continually changing. Since 
acceleration is the (change in velocity)/(time taken) the 
object has an acceleration.

Let the object be moving with a constant angular 
velocity of ω and a tangential velocity of magnitude 
v and let the change of velocity for a small change 
of angle of θ (= ωt) be V (see Figure 15.3(a)). Then,  
v2 – v1 = V

Figure 15.3

The vector diagram is shown in Figure 15.3(b) and 
since the magnitudes of v1 and v2 are the same, i.e. v, 
the vector diagram is also an isosceles triangle.
Bisecting the angle between v2 and v1 gives:

           sin 
2
θ  = V

v
V
v

/2
22

=

i.e.     V = 2v sin 
2
θ  (15.1)

Since      θ = ωt, then t = 
θ
ω

 (15.2)

Dividing (15.1) by (15.2) gives:

 

V
t

v v2 sin
2

sin
2

2

θ

θ
ω

ω
θ

θ
= =

For small angles, 
sin

2

2

θ

θ  is very nearly equal to unity

Therefore,  ω
V
t

v=

or,     V
t

changeof velocity
changeof time

=   

     = acceleration, a = vω

But, ω = v/r,  thus  vω = v × v
r

 = 
v
r

2
 = acceleration

That is, the acceleration a is vv
rr

22
 and is towards the 

centre of the circle of motion (along V). It is called the 
centripetal acceleration. If the mass of the rotating 
object is m, then by Newton’s second law, the centrip-

etal force is mmvv
rr

22
, and its direction is towards the cen-

tre of the circle of motion.

Problem 8. A vehicle of mass 750 kg travels round 
a bend of radius 150 m, at 50.4 km/h. Determine the 
centripetal force acting on the vehicle.

The centripetal force is given by mv
r

2
 and its direction 

is towards the centre of the circle.

  m = 750 kg,  

  v = 50.4 km/h = 50.4
3.6

 m/s = 14 m/s  

and   r = 150 m

Thus, centripetal force  = 
750 14

150

2×
  

= 980 N

Problem 9. An object is suspended by a thread 
250 mm long and both object and thread move in 
a horizontal circle with a constant angular velocity 
of 2.0 rad/s. If the tension in the thread is 12.5 N, 
determine the mass of the object.

v, 

r 

8= ",! 

r 

(a) 

v, 

-v, 

-I~ 
V 

(b) 

v, 

v, 
v, 
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3.  An object is suspended by a thread 400 mm 
long and both object and thread move in a 
horizontal circle with a constant angular 
velocity of 3.0 rad/s. If the tension in the 
thread is 36 N, determine the mass of the 
object. [10 kg]

15.4  Rotation of a rigid body  
about a fixed axis

A rigid body is said to be a body that does not change 
its shape or size during motion. Thus, any two particles 
on a rigid body will remain the same distance apart 
during motion.
Consider the rigidity of Figure 15.4, which is rotating 
about the fixed axis O.

Figure 15.4

In Figure 15.4,
    α = the constant angular acceleration

  Δm = the mass of a particle
     r = the radius of rotation of Δm
    at = the tangential acceleration of Δm
 ΔFt = the elemental force on the particle
Now,   force F = ma
or       ΔFt = Δm at

              = Δm (αr)
Multiplying both sides of the above equation by r, 
gives:

ΔFtr = Δm αr2

Since α is a constant

 
∑∑ΔFtr = α ∑∑Δmr2

Centripetal force (i.e. tension in thread)  = mv
r

2

 
= 12.5 N

The angular velocity, ω = 2.0 rad/s  
and radius,  r = 250 mm = 0.25 m.
Since linear velocity v = ωr, v = 2.0 × 0.25  
          = 0.5 m/s,  

and since F = mv
r

2
, then  m = 

Fr
v2

i.e. mass of object, m = 
12.5 0.25

0.52
×

 = 12.5 kg

Problem 10. An aircraft is turning at constant alti-
tude, the turn following the arc of a circle of radius 
1.5 km. If the maximum allowable acceleration of 
the aircraft is 2.5 g, determine the maximum speed 
of the turn in km/h. Take g as 9.8 m/s2.

The acceleration of an object turning in a circle is 
v
r

2
.  

Thus, to determine the maximum speed of turn 
v
r

2
= 2.5 g.

Hence, speed of turn, v  = 2 5. gr = 2.5 9.8 1500× ×   

                 = 36750 = 191.7 m/s 
= 191.7 × 3.6 km/h  
= 690 km/h

Now try the following Practice Exercise

Practice Exercise 84  Further problems 
on centripetal 
acceleration

1.  Calculate the centripetal force acting on 
a vehicle of mass 1 tonne when travelling 
round a bend of radius 125 m at 40 km/h. If 
this force should not exceed 750 N, deter-
mine the reduction in speed of the vehicle to 
meet this requirement. [988 N, 34.86 km/h]

2.  A speed-boat negotiates an S-bend consisting 
of two circular arcs of radii 100 m and  
150 m. If the speed of the boat is constant at  
34 km/h, determine the change in acceleration 
when leaving one arc and entering the other.
 [0.3 m/s2]

y 

"0 

r 
x o 

a 

"0 "0 
"0 "0 "0 "0 "0 
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But           ΔT = ΔFtr 
and      Δmr2 = ΔIo
Hence,           T = Ioα (15.3)

where T =  the total turning moment exerted on the 
rigid body = ∑∑ΔFtr

and Io =  the mass moment of inertia (or second 
moment) about O (in kg m2).

Equation (15.3) can be seen to be the rotational equiva-
lent of F = ma (Newton’s second law of motion).

Problem 11. Determine the angular acceleration 
that occurs when a circular disc of mass moment  
of inertia of 0.5 kg m2 is subjected to a torque of  
6 N m. Neglect friction and other losses.

From equation (15.3), torque T = Iα,

from which, angular acceleration, α = T
I

  = 6
0 5 2

N m
kg m.

 

= 12 rad/s2

15.5 Moment of inertia (I)

The moment of inertia is required for analysing  
problems involving the rotation of rigid bodies. It is 
defined as:

   I =  mk2 = mass moment of inertia (kg/m2) 
or moment of inertia,

where  m = the mass of the rigid body

  k =  its radius of gyration about the point of 
rotation (see Chapter 9).

In general,   I = ∑∑Δmr2 where the definitions of  
Figure 15.4 apply.

Some typical values of mass and the radius of  
gyration are given in Table 15.1, where
  A = cross-sectional area
  L = length
   t = disc thickness
  R = radius of the solid disc
 R1 = internal radius
 R2 = external radius
  ρ = density

Table 15.1

Component mass k2

 
Rod, about  
mid-point

Rod, about  
an end

Flat disc

Annulus

 
ρAL

ρAL

ρπR2t

ρπ(R2
2 – R1

2)t

L
12

2

L
3

2

R
2

2

R R( )
2

1
2

2
2+

Parallel axis theorem
This is of similar form to the parallel axis theorem of 
Chapter 9, where

Ixx = IG + mh2

Ixx =  the mass moment of inertia about the xx axis, 
which is parallel to an axis passing through 
the centre of gravity of the rigid body, namely 
at G

IG =  the mass moment of inertia of the rigid body 
about an axis passing through G and parallel to 
the xx axis

h =  the perpendicular distance between the above 
two parallel axes.

Problem 12. Determine the mass moment 
of inertia about its centroid for a solid uniform 
thickness disc. For the disc, its radius is 0.2 m, its 
thickness is 0.05 m, and its density is 7860 kg/m3.

From Table 15.1, for a disc,   
mass, m = ρπR2t

   = 7860 kg
m3  × π × (0.2 m)2 × 0.05 m

   = 49.386 kg
Mass moment of inertia about its centroid, 

  Io = mR
2

2
 = ×49.386 0.2

2
kg m

2
2

                 = 0.988 kg m2
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Now try the following Practice Exercises

Practice Exercise 85  Further problems on 
rotation and moment 
of inertia

1.  Calculate the mass moment of inertia of a 
thin rod, of length 0.5 m and mass 0.2 kg, 
about its centroid. [0.004167 kg m2]

2.  Calculate the mass moment of inertia of the 
thin rod of Problem 1, about an end.

 [0.01667 kg m2]
3.  Calculate the mass moment of inertia of a 

solid disc of uniform thickness about its  
centroid. The diameter of the disc is 0.3 m 
and its thickness is 0.08 m. The density of its 
material of construction is 7860 kg/m3.

 [0.50 kg m2]
4.  If a hole of diameter 0.2 m is drilled through 

the centre of the disc of Problem 3, what  
will be its mass moment of inertia about its 
centroid? [0.401 kg m2]

Practice Exercise 86  Short-answer 
questions on force, 
mass and acceleration

 1. Force is measured in ........
 2.  The two effects of pushing or pulling an 

object are ........ or ........
 3.  A gravitational force gives free-falling ob-

jects a ........ in the absence of all other forces.
 4. State Newton’s first law of motion.
 5.  Describe what is meant by the inertia of an 

object.
 6. State Newton’s second law of motion.
 7. Define the newton.
 8. State Newton’s third law of motion.
 9.  Explain why an object moving round a 

circle at a constant angular velocity has an 
acceleration.

10. Define centripetal acceleration in symbols.
11. Define centripetal force in symbols.
12. Define mass moment of inertia.
13.  A rigid body has a constant angular accel-

eration α when subjected to a torque T. The 
mass moment of inertia, Io = ......

Practice Exercise 87  Multiple-choice 
questions on force, 
mass and acceleration

(Answers on page 336)
 1. The unit of force is the:
 (a)  watt  (b)  kelvin
 (c)  newton (d)  joule

 2.  If a = acceleration and F = force, then mass 
m is given by:

 (a)  m = a – F (b)  m = F
a

 (c)  m = F – a  (d)  m = a
F

 3.  The weight of an object of mass 2 kg at a 
point on the Earth’s surface when the grav-
itational field is 10 N/kg is:

 (a)  20 N  (b)  0.2 N
 (c)  20 kg (d)  5 N

 4.  The force required to accelerate a loaded 
barrow of 80 kg mass up to 0.2 m/s2 on 
friction-less bearings is:

 (a)  400 N  (b)  3.2 N 
 (c)  0.0025 N   (d)  16 N

 5.  A bucket of cement of mass 30 kg is tied to 
the end of a rope connected to a hoist. If the 
gravitational field g = 10 N/kg, the tension 
in the rope when the bucket is suspended 
but stationary is:

 (a)  300 N (b)  3 N
 (c)  300 kg (d)  0.67 N

A man of mass 75 kg is standing in a lift of mass 
500 kg. Use this data to determine the answers to 
questions 6 to 9. Take g as 10 m/s2.

 6.  The tension in a cable when the lift is mov-
ing at a constant speed vertically upward is:

 (a)  4250 N   (b)  5750 N
 (c)  4600 N   (d)  6900 N

 7.  The tension in the cable supporting the lift 
when the lift is moving at a constant speed 
vertically downwards is:

 (a)  4250 N (b)  5750 N 
 (c)  4600 N (d)  6900 N
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 8.  The reaction force between the man and the 
floor of the lift when the lift is travelling at 
a constant speed vertically upwards is:

 (a)  750 N (b)  900 N
 (c)  600 N (d)  475 N
 9.  The reaction force between the man and the 

floor of the lift when the lift is travelling at 
a constant speed vertically downwards is:

 (a)  750 N (b)  900 N
 (c)  600 N (d)  475 N
A ball of mass 0.5 kg is tied to a thread and rotated 
at a constant angular velocity of 10 rad/s in a circle 
of radius 1 m. Use this data to determine the an-
swers to questions 10 and 11.
10. The centripetal acceleration is:

 (a)  50 m/s2 (b) 
100
2π

 m/s2

 (c)  50
2π

 m/s2 (d) 100 m/s2

11. The tension in the thread is:

 (a)  25 N    (b)  50
2π

 N

 (c)  25
2π

 N (d)  50 N

12. Which of the following statements is false?
 (a)   An externally applied force is needed to 

change the direction of a moving object.
 (b)   For every force, there is an equal and 

opposite reaction force.
 (c)   A body travelling at a constant velocity 

in a circle has no acceleration.
 (d)   Centripetal acceleration acts towards 

the centre of the circle of motion.
13.  An angular acceleration of 10 rad/s2 occurs 

when a circular disc of mass moment of 
inertia of 0.5 kg m2 is subjected to a torque. 
The value of the torque is:

 (a)  25 N m (b)  5 N m
 (c)  20 N m (d)  0.05 N m

For fully worked solutions to each of the problems in Practice Exercises 83 to 87 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 16

Work, energy and power

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

of work done is the product of the applied force and the 
distance, i.e.

work done = force × distance moved in the  
 direction of the force

At the end of this chapter you should be able to:

•	 define	work	and	state	its	unit
• perform simple calculations on work done
• appreciate that the area under a force/distance graph gives work done
• perform calculations on a force/distance graph to determine work done
•	 define	energy	and	state	its	unit
• state several forms of energy
• state the principle of conservation of energy and give examples of conversions
•	 define	and	calculate	efficiency	of	systems
•	 define	power	and	state	its	unit
• understand that power = force × velocity
•	 perform	calculations	involving	power,	work	done,	energy	and	efficiency
•	 define	potential	energy
• perform calculations involving potential energy = mgh
•	 define	kinetic	energy
• perform calculations involving kinetic energy = 12 mv2

• distinguish between elastic and inelastic collisions
• perform calculations involving kinetic energy in rotation = 12 Iω

2

Why it is important to understand: Work, energy and power
This chapter commences by defining work, power and energy. It also provides the mid-ordinate rule, 
together with an explanation on how to apply it to calculate the areas of irregular figures, such as the 
areas of ships’ water planes. It can also be used for calculating the work done in a force-displacement or 
similar relationship, which may result in the form of an irregular two-dimensional shape. This chapter 
is fundamental to the study and application of dynamics to practical problems. The importance of this 
chapter is particularly for designing motor vehicle engines.

16.1 Work

If a body moves as a result of a force being applied to 
it, the force is said to do work on the body. The amount 
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The unit of work is the joule*, J,	which	is	defined	as	
the amount of work done when a force of 1 newton acts 
for a distance of 1 m in the direction of the force. Thus, 
1 J = 1 N m
If a graph is plotted of experimental values of force 
(on the vertical axis) against distance moved (on 
the horizontal axis) a force/distance graph or work  
diagram is produced. The area under the graph  
represents the work done.

For example, a constant force of 20 N used to raise 
a load a height of 8 m may be represented on a force/
distance graph as shown in Figure 16.1. The area  

under the graph shown shaded represents the work 
done. Hence

work done = 20 N × 8 m = 160 J 
Similarly, a spring extended by 20 mm by a force of 

500 N may be represented by the work diagram shown 
in Figure 16.2, where

Figure 16.2

work done = shaded area = 1
2  × base × height

       = 1
2  × (20 × 10–3) m × 500 N = 5 J

It is shown in Chapter 15 that force = mass × accelera-
tion, and that if an object is dropped from a height it has a 
constant acceleration of around 9.81 m/s2. Thus if a mass 
of 8 kg is lifted vertically 4 m, the work done is given by:

 work done = force × distance
      = (mass × acceleration) × distance
      = (8 × 9.81) × 4 = 313.92 J
The work done by a variable force may be found by deter-
mining the area enclosed by the force/distance graph using 
an approximate method such as the mid-ordinate rule.

Figure 16.3

To determine the area ABCD of Figure 16.3 using the 
mid-ordinate rule:
 (i) Divide base AD into any number of equal inter-

vals, each of width d (the greater the number of  
intervals, the greater the precision)

 (ii) Erect ordinates in the middle of each interval 
(shown by broken lines in Figure 16.3)

 (iii) Accurately measure ordinates y1, y2, y3, etc.
 (iv) Area ABCD = d(y1 + y2 + y3 + y4 + y5 + y6)
In general, the mid-ordinate rule states:

Area = (width of interval) (sum of mid-ordinates)

Figure 16.1

*James Prescott Joule (24 December 1818–11 October 1889) 
studied the nature of heat and discovered its relationship to 
mechanical work. The SI derived unit of energy, the joule, is 
named after him. 
To	find	out	more	go	to	www.routledge.com/cw/bird
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Problem 1. Calculate the work done when a 
force of 40 N pushes an object a distance of 500 m 
in the same direction as the force.

Work done =  force × distance moved in the direction 
 of the force

       = 40 N × 500 m  
= 20000 J (since 1 J = 1 N  m)

i.e.        work done = 20 kJ

Problem 2. Calculate the work done when a 
mass is lifted vertically by a crane to a height of  
5 m, the force required to lift the mass being 98 N.

When work is done in lifting then:
 work done  = (weight of the body)  

 × (vertical distance moved)
Weight is the downward force due to the mass of an 
object. Hence
 work done = 98 N × 5 m = 490 J

Problem 3. A motor supplies a constant force of  
1 kN which is used to move a load a distance of 5 m.  
The force is then changed to a constant 500 N and 
the load is moved a further 15 m. Draw the force/
distance graph for the operation and from the graph 
determine the work done by the motor.

The force/distance graph or work diagram is shown in 
Figure 16.4. Between points A and B a constant force of 
1000 N moves the load 5 m; between points C and D a 
constant force of 500 N moves the load from 5 m to 20 m.

Figure 16.4

Total work done  = area under the force/distance graph 
= area ABFE + area CDGF

   = (1000 N × 5 m) + (500 N × 15 m)
   = 5000 J + 7500 J = 12500 J = 12.5 kJ

Problem 4. A spring, initially in a relaxed state, is 
extended by 100 mm. Determine the work done by 
using a work diagram if the spring requires a force 
of 0.6 N per mm of stretch.

Force required for a 100 mm extension = 100 mm 
× 0.6 N/mm = 60 N. Figure 16.5 shows the force/ 
extension graph or work diagram representing the  
increase in extension in proportion to the force, as the 
force is increased from 0 to 60 N. The work done is  
the area under the graph, hence

 work done  = 1
2  × base × height  

= 1
2  × 100 mm × 60 N

                = 1
2  × 100 × 10–3m × 60 N = 3 J

Figure 16.5

(Alternatively, average force during extension  

     = 
−(60 0)
2  = 30 N

and total extension = 100 mm = 0.1 m, hence
      work done  = average force × extension  

= 30 N × 0.1 m = 3 J )

Problem 5. A spring requires a force of 10 N to 
cause an extension of 50 mm. Determine the work 
done in extending the spring (a) from zero to 30 mm, 
and (b) from 30 mm to 50 mm.

Figure 16.6 shows the force/extension graph for the 
spring. 

Figure 16.6
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(a)  Work done in extending the spring from zero to 
30 mm is given by area AB0 of Figure 16.6,

 i.e. work done  = 1
2  × base × height  

= 1
2  × 30 × 10–3m × 6 N

        = 90 × 10–3J = 0.09 J

(b)  Work done in extending the spring from 30 mm to 
50 mm is given by area ABCE of Figure 16.6, i.e. 

 work done = area ABCD + area ADE

  = (20 × 10–3m × 6 N) + 1
2 (20 × 10–3m)(4 N)

  = 0.12 J + 0.04 J = 0.16 J

Problem 6. Calculate the work done when a mass 
of 20 kg is lifted vertically through a distance of  
5.0 m. Assume that the acceleration due to gravity 
is 9.81 m/s2.

The force to be overcome when lifting a mass of 20 kg 
vertically upwards is mg,
i.e.  20 × 9.81 = 196.2 N (see Chapter 15).
 Work done = force × distance = 196.2 × 5.0 = 981 J

Problem 7. Water is pumped vertically upwards 
through a distance of 50.0 m and the work done is 
294.3 kJ. Determine the number of litres of water 
pumped. (1 litre of water has a mass of 1 kg).

   Work done = force × distance

i.e.   294300 = force × 50.0

from which, force = 294300
50 0.  = 5886 N

The force to be overcome when lifting a mass m kg 
vertically upwards is mg,
i.e.  (m × 9.81) N (see Chapter 15).
Thus, 5886 = m × 9.81, from which  

mass,       m = 5886
9 81.  = 600 kg.

Since 1 litre of water has a mass of 1 kg, 600 litres of 
water are pumped.

Problem 8. The force on a cutting tool of a 
shaping machine varies over the length of cut as 
follows: 

Distance (mm)  0 20 40 60 80 100

Force (kN) 60 72 65 53 44 50

Determine the work done as the tool moves 
through a distance of 100 mm.

The force/distance graph for the given data is shown in 
Figure 16.7. The work done is given by the area under 
the graph; the area may be determined by an approxi-
mate method. Using the mid-ordinate rule, with each 
strip of width 20 mm, mid-ordinates y1, y2, y3, y4 and y5 
are erected as shown, and each is measured. 

Figure 16.7

Area under curve =  (width of each strip) (sum of 
 mid-ordinate values)

   = (20)(69 + 69.5 + 59 + 48 + 45.5)
   = (20)(291)

    = 5820 kN mm = 5820 N m  
= 5820 J

Hence the work done as the tool moves through  
100 mm is 5.82 kJ
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Now try the following Practice Exercise

Practice Exercise 88  Further problems  
on work

1.  Determine the work done when a force of  
50 N pushes an object 1.5 km in the same 
direction as the force. [75 kJ]

2.  Calculate the work done when a mass of 
weight 200 N is lifted vertically by a crane 
to a height of 100 m.  [20 kJ]

3.  A motor supplies a constant force of 2 kN to 
move a load 10 m. The force is then changed 
to a constant 1.5 kN and the load is moved a 
further 20 m. Draw the force/distance graph 
for the complete operation, and, from the 
graph, determine the total work done by the 
motor.  [50 kJ]

4.  A spring, initially relaxed, is extended  
80 mm. Draw a work diagram and hence de-
termine the work done if the spring requires 
a force of 0.5 N/mm of stretch. [1.6 J]

5.  A spring requires a force of 50 N to cause an 
extension of 100 mm. Determine the work 
done in extending the spring (a) from 0 to 
100 mm, and (b) from 40 mm to 100 mm.

 [(a) 2.5 J (b) 2.1 J]

6.  The resistance to a cutting tool varies dur-
ing  the cutting stroke of 800 mm as fol-
lows: (i) the resistance increases uniformly 
from an initial 5000 N to 10000 N as the tool 
moves 500 mm, and (ii) the resistance falls 
uniformly from 10000 N to 6000 N as the 
tool moves 300 mm. Draw the work diagram 
and calculate the work done in one cutting 
stroke. [6.15 kJ]

16.2 Energy

Energy is the capacity, or ability, to do work. The unit 
of energy is the joule, the same as for work. Energy is 
expended when work is done. There are several forms 
of energy and these include:

 (i) Mechanical energy
 (ii) Heat or thermal energy
 (iii) Electrical energy
 (iv) Chemical energy
 (v) Nuclear energy

 (vi) Light energy
 (vii) Sound energy

Energy may be converted from one form to another. 
The principle of conservation of energy states that 
the total amount of energy remains the same in such 
conversions, i.e. energy cannot be created or destroyed.
Some examples of energy conversions include:

 (i) Mechanical energy is converted to electrical 
energy by a generator

 (ii) Electrical energy is converted to mechanical 
energy by a motor

 (iii) Heat energy is converted to mechanical energy 
by a steam engine

 (iv) Mechanical energy is converted to heat energy 
by friction

 (v) Heat energy is converted to electrical energy by 
a solar cell

 (vi) Electrical energy is converted to heat energy by 
an	electric	fire

 (vii) Heat energy is converted to chemical energy by 
living plants

 (viii) Chemical energy is converted to heat energy by 
burning fuels

 (ix) Heat energy is converted to electrical energy by 
a thermocouple

 (x) Chemical energy is converted to electrical  
energy by batteries

 (xi) Electrical energy is converted to light energy by 
a light bulb

 (xii) Sound energy is converted to electrical energy 
by a microphone

 (xiii) Electrical energy is converted to chemical  
energy by electrolysis.

Efficiency	 is	defined	as	the	ratio	of	 the	useful	output	
energy	to	the	input	energy.	The	symbol	for	efficiency	is	
η (Greek letter eta). Hence

efficiency, η = 
useful output energy

input energy

Efficiency	has	no	units	and	is	often	stated	as	a	percent-
age.	A	 perfect	 machine	 would	 have	 an	 efficiency	 of	
100%.	However,	all	machines	have	an	efficiency	lower	
than this due to friction and other losses. Thus, if the 
input energy to a motor is 1000 J and the output energy 

is	800	J	then	the	efficiency	is	 800
1000  × 100% = 80%

Problem 9. A machine exerts a force of 200 N 
in lifting a mass through a height of 6 m. If 2 kJ of 
energy	are	supplied	to	it,	what	is	the	efficiency	of	
the machine?
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Work done in lifting mass = force × distance moved
    = weight of body × distance moved
     = 200 N × 6 m = 1200 J  

= useful energy output
Energy input  = 2 kJ = 2000 J

Efficiency, η  = useful output energy
input energy   

= 1200
2000  = 0.6 or 60%

Problem 10. Calculate the useful output energy 
of	an	electric	motor	which	is	70%	efficient	if	it	
uses 600 J of electrical energy.

Efficiency,	η = useful output energy
input energy

 

  thus 70
100  = output energy

600 J

from which, output energy = 70
100  × 600 = 420 J

Problem 11. 4 kJ of energy are supplied to a 
machine used for lifting a mass. The force required 
is	800	N.	If	the	machine	has	an	efficiency	of	50%,	
to what height will it lift the mass?

Efficiency, 	η = useful output energy
input energy  

i.e.  50
100  = output energy

4000 J

from which, output energy = 50
100  × 4000 = 2000 J

Work done = force × distance moved
hence 2000 J = 800 N × height

from which, height = 
2000
800

J
N  = 2.5 m

Problem 12. A hoist exerts a force of 500 N 
in raising a load through a height of 20 m. The 
efficiency	of	the	hoist	gears	is	75%	and	the	
efficiency	of	the	motor	is	80%.	Calculate	the	 
input energy to the hoist.

The hoist system is shown diagrammatically in Figure 
16.8. 

Figure 16.8

Output energy  = work done = force × distance  
 = 500 N × 20 m = 10000 J

For	the	gearing,	efficiency	=	output energy
input energy    

i.e. 
                              

75
100 = 10000

input energy

from which, the input energy to the gears  

                                           = 10000 × 100
75  = 13333 J

The input energy to the gears is the same as the output 
energy of the motor. Thus, for the motor,

efficiency	=	 output energy
input energy    

i.e.    80
100 = 13333

input energy

Hence, input energy to the hoist  = 13333 × 100
80   

= 16667 J = 16.67 kJ

Now try the following Practice Exercise

Practice Exercise 89  Further problems on 
energy

1.  A machine lifts a mass of weight 490.5 N 
through a height of 12 m when 7.85 kJ of 
energy is supplied to it. Determine the  
efficiency	of	the	machine.	 [75%]

2.  Determine the output energy of an electric 
motor	which	is	60%	efficient	if	it	uses	2	kJ	
of electrical energy. [1.2 kJ]

3.  A machine that is used for lifting a particular 
mass is supplied with 5 kJ of energy. If the 
machine	has	an	efficiency	of	65%	and	exerts	
a force of 812.5 N to what height will it lift 
the mass?   [4 m]

4.  A load is hoisted 42 m and requires a force 
of	100	N.	The	efficiency	of	the	hoist	gear	is	
60% and that of the motor is 70%. Deter-
mine the input energy to the hoist. [10 kJ]

16.3 Power

Power is a measure of the rate at which work is done or 
at which energy is converted from one form to another.

Input Output 
energy Motor Gearing energy 

80% efllcient 75% effICient 
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Power P = energy used
time taken  or P = work done

time taken

The unit of power is the watt*, W, where 1 watt is 
equal to 1 joule per second. The watt is a small unit for 
many purposes and a larger unit called the kilowatt, 
kW, is used, where 1 kW = 1000 W.
The power output of a motor, which does 120 kJ of 
work in 30 s, is thus given by

 P = 120
30

kJ
s  = 4 kW

Since work done = force × distance, then

 Power  = work done
time taken

 = ×force distance
time taken

  

= force × distance
time taken

However, distance
time taken

 = velocity

Hence,         power = force × velocity

Problem 13. The output power of a motor is  
8 kW. How much work does it do in 30 s?

Power = work done
time taken

from which, work done  = power × time = 8000 W × 30 s  
= 240000 J = 240 kJ

Problem 14. Calculate the power required to lift 
a mass through a height of 10 m in 20 s if the force 
required is 3924 N.

Work done  = force × distance moved  
= 3924 N × 10 m = 39240 J

    Power  = work done
time taken   = 39240

20
J

s   

= 1962 W or 1.962 kW

Problem 15. 10 kJ of work is done by a force in 
moving a body uniformly through 125 m in 50 s. 
Determine (a) the value of the force, and (b) the 
power.

(a) Work done = force × distance
 hence 10000 J = force × 125 m

 from which,  force = 10000
125

J
m  = 80 N

(b) Power = work done
time taken  = 10000

50
J

s  = 200 W

Problem 16. A car hauls a trailer at 90 km/h 
when exerting a steady pull of 600 N. Calculate 
(a) the work done in 30 minutes and (b) the power 
required.

(a) Work done = force × distance moved.
  The distance moved in 30 min, i.e. 1

2 h, at  
90 km/h = 45 km.

 Hence, work done  = 600 N × 45000 m  
= 27000 kJ or 27 MJ

(b) Power required  = 
work done
time taken  = 

×
×

27 10 J
30 60s

6
  

= 15000 W or 15 kW

Problem 17. To what height will a mass of 
weight 981 N be raised in 40 s by a machine using 
a power of 2 kW?

Work done = force × distance. Hence,  
work done = 981 N × height.

*James Watt (19 January 1736 – 25 August 1819) was a Scot-
tish inventor and mechanical engineer. The watt is named after 
him – the unit of power incorporated in the International Sys-
tem of Units (‘SI’).
To	find	out	more	go	to	www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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       Power = work done
time taken

, from which,   

work done = power × time taken
            = 2000 W × 40 s = 80000 J
Hence, 80000  = 981 N × height, from which,   

height = 
80000
981

J
N = 81.55 m

Problem 18. A planing machine has a cutting 
stroke of 2 m and the stroke takes 4 seconds. If  
the constant resistance to the cutting tool is 900 N,  
calculate for each cutting stroke (a) the power  
consumed at the tool point, and (b) the power input 
to	the	system	if	the	efficiency	of	the	system	is	75%.

(a)  Work done in each cutting stroke  
 = force × distance = 900 N × 2 m = 1800 J

  Power consumed at tool point  

 = 
work done
time taken  = 

1800
4

J
s  = 450 W

(b)	 Efficiency	=	 output energy
input energy  = output power

input power

  Hence, 75
100  = 450

input power  from which,  

input power = 450 × 100
75  = 600 W

Problem 19. An electric motor provides power to 
a winding machine. The input power to the motor is 
2.5	kW	and	the	overall	efficiency	is	60%.	Calculate	
(a) the output power of the machine, (b) the rate at 
which it can raise a 300 kg load vertically upwards.

(a)	 	Efficiency,	η = power output
power input   

i.e.         60
100 = power output

2500

 from which, power output  = 60
100  × 2500  

= 1500 W or 1.5 kW
(b)  Power output = force × velocity, from which,  

velocity = power output
force

  Force acting on the 300 kg load due to gravity  
 = 300 kg × 9.81 m/s2 = 2943 N

 Hence, velocity  = 1500
2943   

= 0.510 m/s or 510 mm/s

Problem 20. A lorry is travelling at a constant 
velocity of 72 km/h. The force resisting motion is 
800 N. Calculate the tractive power necessary to 
keep the lorry moving at this speed.

Power = force × velocity.
The force necessary to keep the lorry moving at con-
stant speed is equal and opposite to the force resisting 
motion, i.e. 800 N

Velocity = 72 km/h = 
×
×

72 1000
60 60 m/s = 20 m/s.

Hence, power  = 800 N × 20 m/s  
= 16000 N m/s = 16000 J/s  
= 16000 W or 16 kW

Thus the tractive power needed to keep the lorry 
moving at a constant speed of 72 km/h is 16 kW

Problem 21. The variation of tractive force with 
distance for a vehicle which is accelerating from 
rest is: 

Force (kN) 8.0 7.4 5.8 4.5 3.7 3.0

Distance (m) 0 10 20 30 40 50

Determine the average power necessary if the time 
taken to travel the 50 m from rest is 25 s.

The force/distance diagram is shown in Figure 16.9. 
The work done is determined from the area under the 
curve.	Using	the	mid-ordinate	rule	with	five	intervals	
gives: 

Figure 16.9
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 area = (width of interval)(sum of mid-ordinate)
  = (10)[y1 + y2 + y3 + y4 + y5]
  = (10)[7.8 + 6.6 + 5.1 + 4.0 + 3.3]
  = (10)[26.8] = 268 kN m
i.e. work done = 268 kJ

Average power  = work done
time taken  = 268000

25
J

s   

= 10720 W or 10.72 kW

Now try the following Practice Exercise

Practice Exercise 90  Further problems on 
power

 1.  The output power of a motor is 10 kW. 
How much work does it do in 1 minute?

 [600 kJ]

 2.  Determine the power required to lift a load 
through a height of 20 m in 12.5 s if the 
force required is 2.5 kN. [4 kW]

 3.  25 kJ of work is done by a force in moving 
an object uniformly through 50 m in 40 s.  
Calculate (a) the value of the force, and  
(b) the power.  [(a) 500 N (b) 625 W]

 4.  A car towing another at 54 km/h exerts a 
steady pull of 800 N. Determine (a) the 

work done in 1
4  hr, and (b) the power  

required. [(a) 10.8 MJ (b) 12 kW]

 5.  To what height will a mass of weight 500 N 
be raised in 20 s by a motor using 4 kW of 
power? [160 m]

 6.  The output power of a motor is 10 kW.  
Determine (a) the work done by the motor 
in 2 hours, and (b) the energy used by the 
motor	if	it	is	72%	efficient.

 [(a) 72 MJ (b) 100 MJ]

 7.  A car is travelling at a constant speed 
of 81 km/h. The frictional resistance to 
 motion is 0.60 kN. Determine the power 
required to keep the car moving at this 
speed.   [13.5 kW]

 8.  A constant force of 2.0 kN is required to 
move the table of a shaping machine when 

a cut is being made. Determine the power 
required if the stroke of 1.2 m is completed 
in 5.0 s. [480 W]

 9.  The variation of force with distance for a 
vehicle that is decelerating is as follows:

Distance  
(m)

600 500 400 300 200 100 0

Force  
(kN)

24 20 16 12 8 4 0

  If the vehicle covers the 600 m in 1.2 min-
utes,	 find	 the	 power	 needed	 to	 bring	 the	  
vehicle to rest. [100 kW]

10.  A cylindrical bar of steel is turned in a 
lathe. The tangential cutting force on the 
tool is 0.5 kN and the cutting speed is  
180 mm/s. Determine the power absorbed 
in cutting the steel.  [90 W]

16.4 Potential and kinetic energy

Mechanical engineering is concerned principally with 
two kinds of energy: potential energy and kinetic  
energy.

Potential energy is energy due to the position of  
the body. The force exerted on a mass of m kg is  
mg N (where g = 9.81 m/s2, the acceleration due to 
gravity). When the mass is lifted vertically through a 
height h m above some datum level, the work done is 
given by:

force × distance = (mg)(h) J

This work done is stored as potential energy in the 
mass.

Hence, potential energy = mgh joules

(the potential energy at the datum level being taken as 
zero).

Kinetic energy is the energy due to the motion of 
a body. Suppose a force F acts on an object of mass 
m originally at rest (i.e. u = 0) and accelerates it to a 
velocity v in a distance s:

    work done = force × distance
  = Fs = (ma)(s) (if no energy is lost)

where a is the acceleration
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Since    v2 = u2 + 2as (see Chapter 13)  

and u = 0, v2 = 2as, from which a = vs
2

2

hence,   work done = (ma)(s) = (m)










v
s2

2
(s) = 1

2 mv2

This energy is called the kinetic energy of the mass m,

i.e. kinetic energy = 1
2 mv2 joules

As stated in Section 16.2, energy may be converted 
from one form to another. The principle of conserva-
tion of energy states that the total amount of energy 
remains the same in such conversions, i.e. energy can-
not be created or destroyed.

In mechanics, the potential energy possessed by a 
body is frequently converted into kinetic energy, and 
vice versa. When a mass is falling freely, its poten-
tial energy decreases as it loses height, and its kinetic  
energy increases as its velocity increases. Ignoring air 
frictional losses, at all times:

Potential energy + kinetic energy = a constant
If friction is present, then work is done overcoming 

the resistance due to friction and this is dissipated as 
heat. Then,
Initial energy = final energy  
 + work done overcoming frictional resistance

Kinetic energy is not always conserved in collisions. 
Collisions in which kinetic energy is conserved (i.e. 
stays the same) are called elastic collisions, and those in 
which it is not conserved are termed inelastic collisions.

Problem 22. A car of mass 800 kg is climbing 
an incline at 10° to the horizontal. Determine the 
increase in potential energy of the car as it moves a 
distance of 50 m up the incline.

With reference to Figure 16.10,  

    sin 10° = =
hopposite

hypotenuse 50

from which, h = 50 sin 10° = 8.682 m

Figure 16.10

Hence, increase in potential energy = mgh 
   = 800 kg × 9.81 m/s2 × 8.682 m
   = 68140 J or 68.14 kJ

Problem 23. At the instant of striking, a hammer 
of mass 30 kg has a velocity of 15 m/s. Determine 
the kinetic energy in the hammer.

Kinetic energy = 1
2 mv2 = 1

2 (30 kg)(15 m/s)2

i.e. kinetic energy in hammer = 3375 J or 3.375 kJ

Problem 24. A lorry having a mass of 1.5 t is 
travelling along a level road at 72 km/h. When the 
brakes are applied, the speed decreases to 18 km/h. 
Determine how much the kinetic energy of the lorry 
is reduced.

Initial velocity of lorry,  

 v1 = 72 km/h = 72 km
h  × 1000 m

km  × 1
3600

h
s

          = 72
3 6.  = 20 m/s,

final	velocity	of	lorry,	 

  v2 = 18
3 6.  = 5 m/s and mass of lorry,  

   m = 1.5 t = 1500 kg

Initial kinetic energy of the lorry  = 1
2 m v1

2  

= 1
2  (1500)(20)2  

= 300 kJ

Final kinetic energy of the lorry  = 1
2 m v2

2  

= 1
2  (1500)(5)2  

= 18.75 kJ
Hence, the change in kinetic energy  = 300 – 18.75  

= 281.25 kJ
(Part of this reduction in kinetic energy is converted into 
heat energy in the brakes of the lorry and is hence dis-
sipated in overcoming frictional forces and air friction.)

Problem 25. A canister containing a meteorology 
balloon	of	mass	4	kg	is	fired	vertically	upwards	
from a gun with an initial velocity of 400 m/s. 
Neglecting the air resistance, calculate (a) its initial 
kinetic energy (b) its velocity at a height of 1 km 
(c) the maximum height reached.

(a)  Initial kinetic energy  = 1
2 mv2  

= 1
2  (4)(400)2 = 320 kJ

h 
10· 
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(b)   At a height of 1 km, potential energy  
 = mgh = 4 × 9.81 × 1000 = 39.24 kJ

 By the principle of conservation of energy:

  potential energy + kinetic energy at 1 km = initial 
kinetic energy.

 Hence 39240 + 1
2 mv2 = 320000

 from which, 1
2 (4)v2 = 320000 – 39240 = 280760

 Hence, v = 
×









2 280760
4  = 374.7 m/s

  i.e. the velocity of the canister at a height of  
1 km is 374.7 m/s

(c)  At the maximum height, the velocity of the can-
ister is zero and all the kinetic energy has been  
converted into potential energy. Hence,

    potential energy  = initial kinetic energy  
= 320000 J (from part (a))

 Then,             320000 = mgh = (4)(9.81)(h)

 from which, height h  = 320000
4 9 81( )( . )   

= 8155 m
  i.e. the maximum height reached is 8155 m or 

8.155 km

Problem 26. A pile-driver of mass 500 kg falls 
freely through a height of 1.5 m on to a pile of mass 
200 kg. Determine the velocity with which the 
driver hits the pile. If, at impact, 3 kJ of energy are 
lost due to heat and sound, the remaining energy 
being possessed by the pile and driver as they  
are driven together into the ground a distance of 
200 mm, determine (a) the common velocity  
immediately after impact (b) the average resistance 
of the ground.

The potential energy of the pile-driver is converted into 
kinetic energy.
Thus potential energy = kinetic energy, i.e.  

                mgh = 1
2 mv2

from which, velocity v  = 2gh   

= ( )( . )( . )2 9 81 1 5  = 5.42 m/s.
Hence, the pile-driver hits the pile at a velocity of 
5.42 m/s

(a)  Before impact, kinetic energy of pile driver  

 = 1
2 mv2 = 1

2 (500)(5.42)2 = 7.34 kJ

  Kinetic energy after impact = 7.34 – 3 = 4.34 kJ. 
Thus the pile-driver and pile together have a

  mass of 500 + 200 = 700 kg and possess kinetic 
energy of 4.34 kJ

 Hence, 4.34 × 103 = 1
2 mv2 = 1

2 (700)v2

 from which, velocity v  = 
× ×









2 4.34 10
700

3
  

= 3.52 m/s
  Thus, the common velocity after impact is  

3.52 m/s.
(b)  The kinetic energy after impact is absorbed in 

overcoming the resistance of the ground, in a dis-
tance of 200 mm.

 Kinetic energy  = work done  
= resistance × distance

 i.e.   4.34 × 103 = resistance × 0.200

 from which, resistance = 
×4.34 10

0.200

3
 = 21700 N

  Hence, the average resistance of the ground is 
21.7 kN

Problem 27. A car of mass 600 kg reduces speed 
from 90 km/h to 54 km/h in 15 s. Determine the 
braking power required to give this change of 
speed.

Change in kinetic energy of car = 1
2 m v1

2 – 1
2 m v2

2

where m = mass of car = 600 kg,

  v1  = initial velocity  = 90 km/h  

= 90
3 6.  m/s = 25 m/s, 

and  v2		=	final	velocity		=	54	km/h	 

= 54
3 6.  m/s = 15 m/s.

Hence, change in kinetic energy  = 1
2 m(v1

2
 – v2

2)  

= 1
2 (600)(252 – 152) 

= 120000 J
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Braking power =

= = 8000 W or 8 kW

change in energy
time taken

120000J
15s

 

Now try the following Practice Exercise

Practice Exercise 91  Further problems on 
potential and kinetic 
energy

(Assume the acceleration due to gravity,  
g = 9.81 m/s2)

1.  An object of mass 400 g is thrown verti-
cally upwards and its maximum increase 
in potential energy is 32.6 J. Determine  
the maximum height reached, neglecting air 
resistance. [8.31 m]

2.  A ball bearing of mass 100 g rolls down from 
the top of a chute of length 400 m inclined at 
an angle of 30° to the horizontal. Determine 
the decrease in potential energy of the ball 
bearing as it reaches the bottom of the chute.

 [196.2 J]

3.  A vehicle of mass 800 kg is travelling at  
54 km/h when its brakes are applied. Find 
the kinetic energy lost when the car comes to 
rest. [90 kJ]

4.  A body of mass 15 kg has its speed reduced 
from 30 km/h to 18 km/h in 4.0 s. Calculate 
the power required to effect this change of 
speed. [83.33 W]

5.  Supplies of mass 300 kg are dropped from 
a	 helicopter	 flying	 at	 an	 altitude	 of	 60	 m.	
Determine the potential energy of the sup-
plies relative to the ground at the instant of 
release, and its kinetic energy as it strikes the 
ground. [176.6 kJ, 176.6 kJ]

6.	 	A	 shell	 of	 mass	 10	 kg	 is	 fired	 vertically	
upwards with an initial velocity of 200 m/s. 
Determine its initial kinetic energy and the 
maximum height reached, correct to the 
nearest metre, neglecting air resistance. 

 [200 kJ, 2039 m]

7.  The potential energy of a mass is increased 
by 20.0 kJ when it is lifted vertically through 
a height of 25.0 m. It is now released and 

allowed to fall freely. Neglecting air resis-
tance,	find	its	kinetic	energy	and	its	velocity	
after it has fallen 10.0 m. [8 kJ, 14.0 m/s]

8.  A pile-driver of mass 400 kg falls freely 
through a height of 1.2 m on to a pile of mass 
150 kg. Determine the velocity with which 
the driver hits the pile. If, at impact, 2.5 kJ of 
energy are lost due to heat and sound, the re-
maining energy being possessed by the pile 
and driver as they are driven together into 
the ground a distance of 150 mm, determine 
(a) the common velocity after impact (b) the 
average resistance of the ground. 

 [4.85 m/s (a) 2.83 m/s (b) 14.70 kN]

16.5 Kinetic energy of rotation

When linear motion takes place,  

kinetic energy =∑ m v
2

2

but when rotational motion takes place,  

kinetic energy = ∑ ωm r1
2

( )2

Since ω is a constant, kinetic energy = ω ∑ mr1
2

2 2

But                 ∑ mr 2  = I

Therefore, kinetic energy  (in rotation)  

                   = ωI1
2

2 joules
where    I =  the mass moment of inertia about the 

point of rotation
and  ω = angular velocity.

Problem 28. Calculate the kinetic energy of a solid 
flat	disc	of	diameter	0.5	m	and	of	a	uniform	thickness	
of 0.1 m, rotating about its centre at 40 rpm. Take the 
density of the material as 7860 kg/m3.

Angular velocity, ω  = 2π rad
rev

 × 40 rev
min  × 1

60
min

s   

= 4.189 rad/s

From Table 15.1, page 194,  

 I = ρ × πR2 × t × R2

2

Δ

Δ

Δ

Δ
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   = 7860 kg
m3 × π × 0.252 m2 × 0.1 m × 0 25

2
2 2. m

i.e.    I = 4.823 kg m2

Hence,  
kinetic energy ω=

= × ×

I

42.32 J

1
2
1
2

4.823kg m (4.189) 1
s

= 

2

2 2
2

Now try the following Practice Exercises

Practice Exercise 92  Further problems 
on kinetic energy of 
rotation

1.	 	Calculate	 the	 kinetic	 energy	 of	 a	 solid	 flat	
disc of diameter 0.6 m and of uniform thick-
ness of 0.1 m rotating about its centre at  
50 rpm. Take the density of the disc material 
as 7860 kg/m3. [137.1 J]

2.  If the disc of Problem 1 had a hole in its 
centre of 0.2 m diameter, what would be its 
kinetic energy? [135.4 J]

3.  If an annulus of external diameter 0.4 m and 
internal diameter 0.2 m were rotated about 
its centre at 100 rpm, what would be its  
kinetic energy? Assume the uniform 
thickness of the annulus is 0.08 m and the 
density of the material is 7860 kg/m3.

 [81.2 J]

Practice Exercise 93  Short-answer 
questions on work, 
energy and power

 1.	 	Define	work	in	terms	of	force	applied	and	
distance moved. 

 2.	 Define	energy,	and	state	its	unit.

 3.	 Define	the	joule.

 4.  The area under a force/distance graph rep-
resents ........

 5.	 Name	five	forms	of	energy.

 6.  State the principle of conservation of energy.

 7.  Give two examples of conversion of heat 
energy to other forms of energy.

 8.  Give two examples of conversion of  
electrical energy to other forms of energy.

 9.  Give two examples of conversion of  
chemical energy to other forms of energy.

10.  Give two examples of conversion of 
mechanical energy to other forms of energy.

11.  (a)			Define	 efficiency	 in	 terms	 of	 energy	  
input and energy output.

	 (b)		State	the	symbol	used	for	efficiency.

12.	 Define	power	and	state	its	unit.

13.	 Define	potential	energy.

14.  The change in potential energy of a body of 
mass m kg when lifted vertically upwards 
to a height h m is given by ........

15. What is kinetic energy?

16.  The kinetic energy of a body of mass m kg 
and moving at a velocity of v m/s is given 
by ........

17.  State the principle of conservation of energy.

18.  Distinguish between elastic and inelastic 
collisions.

19.  The kinetic energy of rotation of a body of 
moment of inertia I kg m2 and moving at an 
angular velocity of ω rad/s is given by .......

Practice Exercise 94  Multiple-choice 
questions on work, 
energy and power

(Answers on page 336)

 1. State which of the following is incorrect:
 (a)  1 W = 1 J/s 
 (b)  1 J = 1 N/m

 (c)  η = output energy
input energy

 (d)  energy = power × time

 2.  An object is lifted 2000 mm by a crane. If the 
force required is 100 N, the work done is:

 (a)  1
20  N m (b)  200 kN m

 (c)  200 N m (d)  20 J

	 3.	 	A	motor	 having	 an	 efficiency	 of	 0.8	 uses	
800 J of electrical energy. The output  
energy of the motor is: 
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 (a)  800 J (b)  1000 J
 (c)  640 J (d)  6.4 J

 4.  6 kJ of work is done by a force in mov-
ing an object uniformly through 120 m  
in 1 minute. The force applied is:

 (a)  50 N  (b)  20 N
 (c)  720 N  (d)  12 N

 5.  For the object in question 4, the power  
developed is:

 (a)  6 kW (b)  12 kW
 (c)  5/6 W (d)  0.1 kW

6.  Which of the following statements is false?
 (a)   The unit of energy and work is the same.
 (b)   The area under a force/distance graph 

gives the work done.
 (c)   Electrical energy is converted to me-

chanical energy by a generator.
	 (d)			Efficiency	is	the	ratio	of	the	useful	out-

put energy to the input energy.

 7.  A machine using a power of 1 kW requires 
a force of 100 N to raise a mass in 10 s. The 
height the mass is raised in this time is:

 (a)  100 m (b)  1 km
 (c)  10 m  (d)  1 m

 8.  A force/extension graph for a spring is 
shown in Figure 16.11. Which of the 
following statements is false? 

Figure 16.11

  The work done in extending the spring:
 (a)  from 0 to 100 mm is 5 J
 (b)  from 0 to 50 mm is 1.25 J
 (c)  from 20 mm to 60 mm is 1.6 J
 (d)  from 60 mm to 100 mm is 3.75 J

 9.  A vehicle of mass 1 tonne climbs an 
incline of 30° to the horizontal. Taking the 
acceleration due to gravity as 10 m/s2, the  

increase in potential energy of the vehicle 
as it moves a distance of 200  m up the 
incline is:

 (a)  1 kJ  (b)  2 MJ 
 (c)  1 MJ  (d)  2 kJ

10.	 	A	bullet	of	mass	100	g	is	fired	from	a	gun	
with an initial velocity of 360 km/h. Ne-
glecting air resistance, the initial kinetic 
energy possessed by the bullet is:

 (a)  6.48 kJ (b)  500 J
 (c)  500 kJ (d)  6.48 MJ

11.  A small motor requires 50  W of electrical 
power in order to produce 40  W of 
mechanical	 energy	 output.	 The	 efficiency	
of the motor is:

 (a)  10%  (b)  80%
 (c)  40%  (d)  90%

12.  A load is lifted 4000 mm by a crane. If the 
force required to lift the mass is 100 N, the 
work done is:

 (a)  400 J  (b)  40 N m
 (c)  25 J  (d)  400 kJ

13.  A machine exerts a force of 100 N in lift-
ing a mass through a height of 5 m. If 1 kJ 
of	energy	is	supplied,	the	efficiency	of	the	
machine is:

 (a)  10%  (b)  20%
 (c)  100% (d)  50%

14.  At the instant of striking an object, a ham-
mer of mass 40 kg has a velocity of 10 m/s.  
The kinetic energy in the hammer is:

 (a)  2 kJ  (b)  1 kJ
 (c)  400 J (d)  8 kJ

15.	 	A	 machine	 which	 has	 an	 efficiency	 of	  
80% raises a load of 50 N through a verti-
cal height of 10 m. The work input to the 
machine is:

 (a)  400 J (b)  500 J
 (c)  800 J (d)  625 J

16.  The formula for kinetic energy due to rota-
tion is:

 (a)  mv2  (b)  mgh

 (c)  I
ω
2

2
 (d)  ω2r

For fully worked solutions to each of the problems in Practice Exercises 88 to 94 in this chapter,  
go to the website:  

www.routledge.com/cw/bird
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Assume, where necessary, that the acceleration due to 
gravity, g = 9.81 m/s2

 1. A train is travelling at 90 km/h and has wheels of 
diameter 1600 mm.

 (a)   Find the angular velocity of the wheels in 
both rad/s and rev/min.

 (b)   If the speed remains constant for 2 km, de-
termine the number of revolutions made by a  
wheel, assuming no slipping occurs. (7)

 2. The speed of a shaft increases uniformly from 
200 revolutions per minute to 700 revolutions per  
minute in 12 s. Find the angular acceleration, cor-
rect	to	3	significant	figures.	 (5)

 3. The shaft of an electric motor, initially at rest,  
accelerates uniformly for 0.3 s at 20 rad/s2.  
Determine the angle (in radians) turned through  
by the shaft in this time. (4)

 4. Determine the momentum of a lorry of mass 10 
tonnes moving at a velocity of 81 km/h. (4)

 5. A ball of mass 50 g is moving with a velocity of 
4 m/s when it strikes a stationary ball of mass  
25 g. The velocity of the 50 g ball after impact 
is 2.5 m/s in the same direction as before im-
pact. Determine the velocity of the 25 g ball after  
impact. (7)

 6.  A force of 24 N acts on a body of mass 6 kg for 
150 ms. Determine the change in velocity. (4)

 7. The hammer of a pile-driver of mass 800 kg falls 
a distance of 1.0 m on to a pile. The blow takes  
place in 20 ms and the hammer does not rebound. 
Determine (a) the velocity of impact (b) the  
momentum lost by the hammer (c) the average 
applied force exerted on the pile by the hammer.
 (8)

 8. Determine the mass of the moving head of a 
machine tool if it requires a force of 1.5 N to 

bring it to rest in 0.75 s from a cutting speed of  
25 m/min. (5)

 9. Find the weight of an object of mass 2.5 kg at 
a point on the Earth’s surface where the gravita-
tional	field	is	9.8	N/kg.	 (4)

10. A van of mass 1200 kg travels round a bend of  
radius 120 m, at 54 km/h. Determine the centrip-
etal force acting on the vehicle. (4)

11. A spring, initially in a relaxed state, is extended 
by 80 mm. Determine the work done by using 
a work diagram if the spring requires a force of  
0.7 N per mm of stretch. (4)

12. Water is pumped vertically upwards through a 
distance of 40.0 m and the work done is 176.58 kJ.  
Determine the number of litres of water pumped. 
(1 litre of water has a mass of 1 kg.) (4)

13. 3 kJ of energy are supplied to a machine used for 
lifting a mass. The force required is 1 kN. If the 
machine	has	an	efficiency	of	60%,	to	what	height	
will it lift the mass? (4)

14. When exerting a steady pull of 450 N, a lorry 
travels at 80 km/h. Calculate (a) the work done in  
15 minutes and (b) the power required. (4)

15. An electric motor provides power to a winding 
machine. The input power to the motor is 4.0 kW  
and	 the	 overall	 efficiency	 is	 75%.	 Calculate	 
(a) the output power of the machine (b) the rate 
at which it can raise a 509.7 kg load vertically 
upwards. (4)

16. A tank of mass 4800 kg is climbing an incline at 
12° to the horizontal. Determine the increase in 
potential energy of the tank as it moves a distance 
of 40 m up the incline. (4)

17. A car of mass 500 kg reduces speed from  
108 km/h to 36 km/h in 20 s. Determine the brak-
ing  power required to give this change of speed.
 (4)

Revision Test 6 Linear and angular motion, momentum and impulse, force, mass and 
           acceleration, work, energy and power

This Revision Test covers the material contained in Chapters 13 to 16. The marks for each question are shown in 
brackets at the end of each question.

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 6,  
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 17

Friction

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

17.1 Introduction to friction

When an object, such as a block of wood, is placed 
on a floor and sufficient force is applied to the block, 
the force being parallel to the floor, the block slides 
across the floor. When the force is removed, motion of 
the block stops; thus there is a force which resists slid-
ing. This force is called dynamic or sliding friction. A 
force may be applied to the block, which is insufficient 
to move it. In this case, the force resisting motion is 
called the static friction or stiction. Thus there are two  
categories into which a frictional force may be split:

Why it is important to understand: Friction
When a block is placed on a flat surface and sufficient force is applied to the block, the force being parallel 
to the surface, the block slides across the surface. When the force is removed, motion of the block stops; 
thus there is a force which resists sliding. In this chapter, both dynamic and static frictions are explained, 
together with the factors that affect the size and direction of frictional forces. A low coefficient of friction 
is desirable in bearings, pistons moving within cylinders and on ski runs; however, for a force being 
transmitted by belt drives and braking systems, a high value of coefficient is necessary. Advantages 
and disadvantages of frictional forces are discussed and calculations are performed on friction on an 
inclined plane and screw jack efficiency. Knowledge of friction is of importance for the static and dynamic 
behaviour of stationary and moving bodies.

 (i)  dynamic or sliding friction force which occurs 
when motion is taking place, and

 (ii)  static friction force which occurs before motion 
takes place. 

There are three factors that affect the size and direction 
of frictional forces.
 (i)  The size of the frictional force depends on the 

type of surface (a block of wood slides more eas-
ily on a polished metal surface than on a rough 
concrete surface).

 (ii)  The size of the frictional force depends on the 
size of the force acting at right angles to the 

At the end of this chapter you should be able to:

• understand dynamic or sliding friction
• appreciate factors which affect the size and direction of frictional forces
• define coefficient of friction, μ
• perform calculations involving F = μN
• state practical applications of friction
• state advantages and disadvantages of frictional forces
• understand friction on an inclined plane
• perform calculations on friction on an inclined plane
• calculate the efficiency of a screw jack

Chapter 17
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 surfaces in contact, called the normal force; 
thus, if the weight of a block of wood is doubled, 
the frictional force is doubled when it is sliding 
on the same surface.

 (iii)  The direction of the frictional force is always op-
posite to the direction of motion. Thus the frictional 
force opposes motion, as shown in Figure 17.1.

Figure 17.1

17.2 Coefficient of friction

The coefficient of friction, µ, is a measure of the 
amount of friction existing between two surfaces. A 
low value of coefficient of friction indicates that the 
force required for sliding to occur is less than the 
force required when the coefficient of friction is high.  
The value of the coefficient of friction is

given by: μ = frictional force ( )
normal force ( )

F
N

Transposing gives: frictional force = μ × normal force 

i.e.                        F = µN

Figure 17.2

The direction of the forces given in this equation is as 
shown in Figure 17.2. 
The coefficient of friction is the ratio of a force to a 
force, and hence has no units. Typical values for the 
coefficient of friction when sliding is occurring, i.e. the 
dynamic coefficient of friction, are:
 For polished oiled metal surfaces less than 0.1
 For glass on glass     0.4
 For rubber on tarmac     close to 1.0

The coefficient of friction (μ) for dynamic friction  
is, in general, a little less than that for static friction. 
However, for dynamic friction, μ increases with speed; 
additionally, it is dependent on the area of the surface 
in contact.

Problem 1. A block of steel requires a force of 
10.4 N applied parallel to a steel plate to keep it 
moving with constant velocity across the plate. If 
the normal force between  the block and the plate is 
40 N, determine the dynamic coefficient of friction.

As the block is moving at constant velocity, the force 
applied must be that required to overcome frictional 
forces, i.e. frictional force, F = 10.4 N;
the normal force is 40 N, and since F = μN,

         μ  = F
N   = 

10.4
40   

= 0.26
i.e. the dynamic coefficient of friction is 0.26

Problem 2. The surface between the steel block 
and plate of Problem 1 is now lubricated and the 
dynamic coefficient of friction falls to 0.12. Find 
the new value of force required to push the block at 
a constant speed.

The normal force depends on the weight of the block 
and remains unaltered at 40 N. The new value of the 
dynamic coefficient of friction is 0.12 and since the 
frictional force F = μN,

F = 0.12 × 40 = 4.8 N

The block is sliding at constant speed, thus the force 
required to overcome the frictional force is also 4.8 N, 
i.e. the required applied force is 4.8 N

Problem 3. The material of a brake is being 
tested and it is found that the dynamic coefficient 
of friction between the material and steel is 0.91. 
Calculate the normal force when the frictional 
force is 0.728 kN.

The dynamic coefficient of friction, μ = 0.91 and the 
frictional force, F = 0.728 kN = 728 N
Since    F = μN,

then normal force, N = 
µ
F

 = 
728
0.91  = 800 N

i.e.                      the normal force is 800 N

Frictional force 

Frictional 
force, F="N 

Motion 

Block 

Surface 
Motion 

Pulling force 

Block Pushing force 
Frictional force 

Surface 

Nannal 
force, N 

Applied 
Force, P 
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Now try the following Practice Exercise

Practice Exercise 95  Further problems 
on the coefficient of 
friction

1.  The coefficient of friction of a brake pad 
and a steel disc is 0.82. Determine the nor-
mal force between the pad and the disc if the 
frictional force required is 1025 N.

 [1250 N]

2.  A force of 0.12 kN is needed to push a bale 
of cloth along a chute at a constant speed. 
If the normal force between the bale and 
the chute is 500 N, determine the dynamic  
coefficient of  friction. [0.24]

3.  The normal force between a belt and its driver  
wheel is 750 N. If the static coefficient of 
friction is 0.9 and the dynamic coefficient of 
friction is 0.87, calculate 

(a)   the maximum force which can be trans-
mitted, and 

(b)   the maximum force which can be trans-
mitted when the belt is running at a con-
stant speed. [(a) 675 N   (b) 652.5 N]

17.3 Applications of friction

In some applications, a low coefficient of friction is de-
sirable, for example, in bearings, pistons moving within 
cylinders, on ski runs, and so on. However, for such ap-
plications as force being transmitted by belt drives and 
braking systems, a high value of coefficient is necessary.

Problem 4. State three advantages, and three 
disadvantages of frictional forces.

Instances where frictional forces are an advantage  
include:

  (i)  Almost all fastening devices rely on frictional 
forces to keep them in place once secured, exam-
ples being screws, nails, nuts, clips and clamps.

 (ii)  Satisfactory operation of brakes and clutches 
rely on frictional forces being present.

(iii)  In the absence of frictional forces, most accelera-
tions along a horizontal surface are impossible; for 
example, a person’s shoes just slip when walking 

is attempted and the tyres of a car just rotate with 
no forward motion of the car being experienced.

Disadvantages of frictional forces include:

  (i)  Energy is wasted in the bearings associated with 
shafts, axles and gears due to heat being generated.

 (ii)  Wear is caused by friction, for example, in shoes, 
brake lining materials and bearings.

(iii)  Energy is wasted when motion through air oc-
curs (it is much easier to cycle with the wind 
rather than against it).

Problem 5. Discuss briefly two design implica-
tions that arise due to frictional forces and how 
lubrication may or may not help.

 (i)  Bearings are made of an alloy called white metal, 
which has a relatively low melting point. When 
the rotating shaft rubs on the white metal bearing, 
heat is generated by friction, often in one spot 
and the white metal may melt in this area, ren-
dering the bearing useless. Adequate lubrication 
(oil or grease) separates the shaft from the white 
metal, keeps the coefficient of friction small and 
prevents damage to the bearing. For very large 
bearings, oil is pumped under pressure into the 
bearing and the oil is used to remove the heat gen-
erated, often passing through oil coolers before 
being re-circulated. Designers should ensure that 
the heat generated by friction can be dissipated.

(ii)  Wheels driving belts, to transmit force from one 
place to another, are used in many workshops. 
The coefficient of friction between the wheel and 
the belt must be high, and it may be increased 
by dressing the belt with a tar-like substance. 
Since frictional force is proportional to the nor-
mal force, a slipping belt is made more efficient 
by tightening it, thus increasing the normal and 
hence the frictional force. Designers should  
incorporate some belt tension mechanism into the 
design of such a system.

Problem 6. Explain what is meant by the terms 
(a) the limiting or static coefficient of friction, and 
(b) the sliding or dynamic coefficient of friction.

(a)  When an object is placed on a surface and a force 
is applied to it in a direction parallel to the sur-
face, if no movement takes place, then the applied 
force is balanced exactly by the frictional force. 
As the size of the applied force is increased, a 
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value is reached such that the object is just on 
the point of moving. The limiting or static 
 coefficient of friction is given by the ratio of this 
applied force to the normal force, where the nor-
mal force is the force acting at right angles to the 
surfaces in contact.

(b)  Once the applied force is sufficient to overcome 
the stiction or static friction, its value can be  
reduced slightly and the object moves across the 
surface. A particular value of the applied force 
is then sufficient to keep the object moving at a 
constant velocity. The sliding or dynamic coef-
ficient of friction is the ratio of the applied force, 
to maintain constant velocity, to the normal force.

17.4 Friction on an inclined plane

Angle of repose
Consider a mass m lying on an inclined plane, as shown 
in Figure 17.3. If the direction of motion of this mass is 
down the plane, then the frictional force F will act up the 
plane, as shown in Figure 17.3, where F = μ mg cos  θ.

Figure 17.3

Now the weight of the mass is mg and this will cause 
two other forces to act on the mass, namely N, and 
the component of the weight down the plane, namely  
mg sin θ, as shown by the vector diagram of Figure 17.4.

Figure 17.4 Components of mg

It should be noted that N acts normal to the surface.
Resolving forces parallel to the plane gives:
 Forces up the plane = forces down the plane
i.e.                  F = mg sin θ (17.1)
Resolving force perpendicular to the plane gives:

   Forces ‘up’ = forces ‘down’

i.e.    N = mg cos θ (17.2)

Dividing equation (17.1) by (17.2) gives:

   
θ
θ

θ
θ

θ= = =
F
N

mg
mg

sin
cos

sin
cos

tan

But             µ=
F
N , hence, tan θ = µ

where μ = the coefficient of friction, and θ = the angle 
of repose.

If θ is gradually increased until the body starts mo-
tion down the plane, then this value of θ is called the 
limiting angle of repose. A laboratory experiment 
based on the theory is a useful method of obtaining the 
maximum value of μ for static friction.

17.5  Motion up a plane with the pulling 
force P parallel to the plane

In this case the frictional force F acts down the plane, 
opposite to the direction of motion of the body, as 
shown in Figure 17.5.

Figure 17.5

The components of the weight mg will be the same as 
that shown in Figure 17.4.
Resolving forces parallel to the plane gives:
  P = mg sin θ + F (17.3)
Resolving forces perpendicular to the plane gives:

  N = mg cos θ (17.4)
For limiting friction,
  F = μN (17.5)

8 

8 

8 N 

mg 

8 

W=mg 

mgcos8 

mgsin6 

F 

p 
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N 
mg 
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From equations (17.3) to (17.5), solutions of problems 
in this category that involve limiting friction can be 
solved.

Problem 7. Determine the value of the force P, 
which will just move the body of mass of 25 kg up 
the plane shown in Figure 17.6. It may be assumed 
that the coefficient of limiting friction, μ = 0.3 and 
g = 9.81 m/s2. 

Figure 17.6

From equation (17.4), N = mg cos θ = 25 × 9.81 × cos 15°

          = 245.3 × 0.966 = 236.9 N
From equation (17.5), F  = μN = 0.3 × 236.9  

= 71.1 N
From equation (17.3), P  = mg sin θ + F  

= 25 × 9.81 × sin 15° + 71.1
             = 63.48 + 71.1
i.e.             force, P = 134.6 N (17.6)

17.6  Motion down a plane with the 
pulling force P parallel to the 

    plane

In this case, the frictional force F acts up the plane,  
opposite to the direction of motion of the plane, as 
shown in Figure 17.7.

Figure 17.7

The components of the weight mg are shown in Fig-
ure 17.4, where it can be seen that the normal reaction,  

N = mg cos θ, and the component of weight parallel to 
and down the plane = mg sin θ
Resolving forces perpendicular to the plane gives:

  N = mg cos θ (17.7)

Resolving forces parallel to the plane gives:

  P + mg sin θ = F (17.8) 

When the friction is limiting,

  F = μN (17.9)

From equations (17.7) to (17.9), problems arising in 
this category can be solved.

Problem 8. If the mass of Problem 7 were 
subjected to the force P, which acts parallel to  
and down the plane, as shown in Figure 17.7,  
determine the value of P to just move the body.

From equation (17.7), 

N = mg cos θ = 25 × 9.81 cos 15°= 236.9 N

From equation (17.9),  F = μN = 0.3 × 236.9 = 71.1 N

From equation (17.8), P + mg sin θ = F

i.e.                               P + 25 × 9.81 sin 15° = 71.1

i.e.                               P + 63.5 = 71.1
from which, force, 
             P = 71.1 – 63.5 =  7.6 N (17.10)

From equations (17.6) and (17.10), it can be seen that 
the force required to move a body down the plane is so 
much smaller than to move the body up the plane.

17.7  Motion up a plane due to a  
horizontal force P

This motion, together with the primary forces, is shown 
in Figure 17.8. 

Figure 17.8
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Figure 17.9

In this, the components of mg are as shown in Figure 
17.4, and the components of the horizontal force P are 
shown by the vector diagram of Figure 17.9.
Resolving perpendicular to the plane gives:

 Forces ‘up’ = forces ‘down’

i.e.                N = mg cos θ + P sin θ  (17.11)

Resolving parallel to the plane gives:

        P cos θ = F + mg sin θ (17.12)

and                 F = μN (17.13)

From equations (17.11) to (17.13), problems arising in 
this category can be solved.

Problem 9. If the mass of Problem 7 were 
subjected to a horizontal force P, as shown in  
Figure 17.8, determine the value of P that will  
just cause motion up the plane.

Substituting equation (17.13) into equation (17.12) 
gives:
  P cos θ = μN + mg sin θ
or         μN = P cos θ – mg sin θ   

i.e.           N = 
θ

µ
θ

µ
−

P mgcos sin
 (17.14)

Equating equation (17.11) and equation (17.14) gives:

       mg cos θ + P sin θ = 
θ

µ
θ

µ
−

P mgcos sin
  

i.e. 25 × 9.81 cos 15° + P sin 15°

            = 
°

−
× °P cos15

0.3
25 9.81sin15

0.3

245.3 × 0.966 + P × 0.259 = 
×

−
×P 0.966

0.3
245.3 0.259

0.3   

i.e.      237 + 0.259 P = 3.22 P – 211.8
         237 + 211.8 = 3.22 P – 0.259 P

from which,        448.8 = 2.961 P

and           force P = 
448.8
2.961  = 151.6 N

Problem 10. If the mass of Problem 9 were  
subjected to a horizontal force P, acting down  
the plane, as shown in Figure 17.10, determine  
the value of P which will just cause motion  
down the plane.

Figure 17.10

The components for mg are shown by the phasor  
diagram of Figure 17.4, and the components for P are 
shown by the vector diagram of Figure 17.11.

Figure 17.11

Resolving forces down the plane gives:
 P cos θ + m g sin θ = F (17.15)
Resolving forces perpendicular to the plane gives:
    Forces up = forces down
 N + P sin θ = mg cos θ (17.16)
and                 F = μN (17.17)
Substituting equation (17.17) into equation (17.15) 
gives:
  P cos θ + mg sin θ = μN

from which,        N = 
θ

µ
θ

µ
+

P mgcos sin
 (17.18)

From equation (17.16), N = mg cos θ – P sin θ (17.19) 
Equating equations (17.18) and (17.19) gives:

            

θ
µ

θ
µ

+
P mgcos sin

 = mg cos θ – P sin θ
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i.e. °
+

× °P cos15
0.3

25 9.81sin15
0.3

  

 = 25 × 9.81 cos 15° – P sin 15°
         3.22 P + 211.6  = 236.9 – 0.259 P
        P(3.22 + 0.259) = 236.9 – 211.6
       3.479 P = 25.3

from which,  force P = 
25.3

3.479  = 7.27 N

Problem 11. If in Problem 9, the contact surfaces 
were greased, so that the value of μ decreased and 
P = 50 N, determine the value of μ which will just 
cause motion down the plane.

The primary forces for this problem are shown in  
Figure 17.12, where it can be seen that F is opposite to 
the direction of motion.

Figure 17.12

Resolving forces perpendicular to the plane gives:
  Forces ‘up’ = forces ‘down’
                 N = mg cos θ + P sin θ (17.20)
Resolving forces parallel to the plane gives:
      mg sin θ = F + P cos θ (17.21)
and                  F = μN (17.22)
Substituting equation (17.22) into equation (17.21) 
gives:
      mg sin θ = μN + P cos θ (17.23)
Substituting equation (17.20) into equation (17.23) 
gives:
      mg sin θ = μ(mg cos θ + P sin θ) + P cos θ  

i.e. 25 × 9.81 sin 15° = μ(25 × 9.81 cos 15° +  
 50 sin 15°) + 50 cos 15°  
Hence                           63.48 = μ(236.89 + 12.94) + 48.3
                        63.48 – 48.3 = μ × 249.83  

from which,                      μ = 
15.18
249.83  = 0.061 

Now try the following Practice Exercise

Practice Exercise 96  Further problems on 
friction on an inclined 
plane

(Where necessary, take g = 9.81 m/s2)

 1.  A mass of 40 kg rests on a flat horizontal 
surface as shown in Figure 17.13. If the 
coefficient of friction μ = 0.2, determine 
the minimum value of a horizontal force   
P which will just cause it to move.

[78.48 N]

Figure 17.13

 2.  If the mass of Problem 1 were equal to  
50 kg, what will be the value of P?

[98.1 N]

 3.  An experiment is required to obtain the 
static value of μ; this is achieved by in-
creasing the value of θ until the mass just 
moves down the plane, as shown in Figure 
17.14. If the experimentally obtained value 
for θ was 22.5°, what is the value of μ?

 [μ = 0.414]

Figure 17.14

 4.  If in Problem 3, μ was 0.6, what would be 
the experimental value of θ? [θ = 30.96°]

 5.  For a mass of 50 kg just moving up an  
inclined plane, as shown in Figure 17.5, 
what would be the value of P, given that  
θ = 20° and μ = 0.4? [P = 352.1 N]

Motion 

P 

mg 

P=50N 

9 
mg N 

F 

N 

6 
mg 
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 6.  For a mass of 50 kg, just moving down an 
inclined plane, as shown in Figure 17.7, 
what would be the value of P, given that  
θ = 20° and μ = 0.4? [P = 16.6 N]

 7.  If in Problem 5, θ = 10° and μ = 0.5, what 
would be the value of P? [P = 326.7 N]

 8.  If in Problem 6, θ = 10° and μ = 0.5, what 
would be the value of P? [P = 156.3 N]

 9.  Determine  P  for Problem 5, if it were  
acting in the direction shown in Figure 
17.8.  [P = 438.6 N]

10.  Determine P for Problem 6, if it were act-
ing in the direction shown in Figure 17.10.

 [P = 15.43 N]

11.  Determine the value for θ which will 
just cause motion down the plane, when   
P = 250 N and acts in the direction shown 
in Figure 17.12. It should be noted that  
in this problem, motion is down the plane, 
μ = 0.5 and m = 50 kg.

 [θ = 53.58°]

12.  If in Problem 11, θ = 30°, determine the 
value of μ. [μ = 0.052]

17.8 The efficiency of a screw jack

Screw jacks (see Section 20.4, page 243) are often used 
to lift weights; one of their most common uses are to 
raise cars, so that their wheels can be changed. The the-
ory described in Section 17.7 can be used to analyse 
screw jacks.

Consider the thread of the square-threaded screw 
jack shown in Figure 17.15.

Figure 17.15

Let p be the pitch of the thread, i.e. the axial distance 
that the weight W is lifted or lowered when the screw is 
turned through one complete revolution.

From Figure 17.15, the motion of the screw in lifting 
the weight can be regarded as pulling the weight by a 
horizontal force P, up an incline θ, where 

 tan θ = 
π
p
d   as shown in Figure 17.15, 

and                 d = 
+D D( )
2

1 2

If μ is the coefficient of friction up the slope, then let 
tan λ = μ
Referring now to Figure 17.16, the screw jack can be 
analysed.

Figure 17.16

Resolving normal to the plane gives:

 N = W cos θ + P sin θ (17.24)

Resolving parallel to the plane gives:

  P cos θ = F + W sin θ (17.25)

and           F = μN (17.26)

Substituting equation (17.26) into equation (17.25) 
gives:

  P cos θ = μN + W sin θ (17.27) 

Substituting equation (17.24) into equation (17.27) 
gives:

P cos θ = μ(W cos θ + P sin θ) + W sin θ   

Dividing each term by cos θ and remembering that 
θ
θ

sin
cos  = tan θ gives:

P = μ(W + P tan θ) + W tan θ    

Rearranging gives:

 P(1 – μ tan θ) = W(μ + tan θ)  

0， 
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from which,   P = 
µ θ

µ θ
λ θ

λ θ
+

−
=

+
−

W W( tan )
(1 tan )

(tan tan )
(1 tan tan )

since μ = tan λ 

However, from compound angle formulae (see refer-
ence [1] on page 222), 

tan(λ + θ) = 
λ θ

λ θ
+

−
(tan tan )

(1 tan tan )    

Hence,        P = W tan(θ + λ) (17.28) 

However, from Figure 17.15,  

     tan θ = 
π
p
d  and tan λ = μ

hence P = 
λ θ

λ θ

µ
π

µ
π

( )+

−
=

+







−







W W p
d

p
d

tan tan
1 tan tan

1
 (17.29)

Multiplying top and bottom of equation (17.29) by  
πd gives:

      P = 
µπ

π µ
+

−
W d p

d p
( )

( )  (17.30)

The useful work done in lifting the weight W a  
distance of p = Wp (17.31)

From Figure 17.15, the actual work done = P × πd

    = 
µπ

π µ
+

−
W d p

d p
( )

( ) × πd  (17.32)

Efficiency η = useful work done
actual work done

 which is usually 

expressed as a percentage

i.e.  η = µπ π
π µ

+ ×
−

Wp
W d p d

d p
( )

( )

 = 
π µ

µπ π
−

+ ×
p d p

d p d
( )

( )

Dividing throughout by πd gives:

   

η

µ
π

µπ
λ θ

π µ
π

λ θ
π λ θ

=

−







+
=

−

+







=
−

+

p p
d

d p
p

d p
d

p
d

1

( )
(1 tan tan )

(1 tan tan )
(tan tan )

However, tan(λ + θ) = 
λ θ

λ θ
+

−
tan tan

(1 tan tan )  from com-

pound angle formulae (see reference [1], page 222)

Hence, η = 
π λ θ+
p
d

1
tan( )

but   
π
p
d  = tan θ

hence,   efficiency, η = 
θ

λ θ+
tan

tan( )  (17.33)

From equations (17.31) and (17.32), 
the work lost in friction  

 = 
µµππ

ππ µµ
+

−
W d p
d p

( )
( )  × πd – Wp (17.34)  

Problem 12. The coefficient of friction on the 
sliding surface of a screw jack is 0.2. If the pitch 
equals 1 cm, and D1 = 4 cm and D2 = 5 cm, calcu-
late the efficiency of the screw jack.

Working in millimetres, d = 
D D( + )

2
= (40 + 50)

2
1 2  

                                      = 45 mm,
                                       p = 1 cm = 10 mm,

        tan θ = 
π π

=
×

p
d

10
45  = 0.0707,

from which,           θ = tan–1 (0.0707) = 4.05° 
and       tan λ = μ = 0.2,
from which,           λ = tan–1 (0.2) = 11.31°

From equation (17.33),

efficiency η = 
θ

λ θ+
tan

tan( )

       = 
+ °

=
0.0707

tan(11.31 4.05)
0.0707
0.2747

                                          = 0.257
i.e.   η = 25.7%

Now try the following Practice Exercises

Practice Exercise 97  Further problem on 
the efficiency of a 
screw jack

1.  The coefficient of friction on the sliding sur-
face of a screw jack whose thread is similar 
to Figure 17.15, is 0.24. If the pitch equals 
12 mm, and D1 = 42 mm and D2 = 56 mm, 
calculate the efficiency of the screw jack.

 [24.06%]
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Practice Exercise 98  Short-answer 
questions on friction

 1.  The ........ of frictional force depends on the 
........ of surfaces in contact.

 2.  The ........ of frictional force depends on the 
size of the ........ to the surfaces in contact.

 3.  The ......... of frictional force is always 
........ to the direction of motion.

 4.  The coefficient of friction between surfaces 
should be a ........ value for materials con-
cerned with bearings.

 5.  The coefficient of friction should have a 
........ value for materials concerned with 
braking systems.

 6.  The coefficient of dynamic or sliding fric-
tion is given by .....

.....
 7.  The coefficient of static or limiting friction 

is given by .....
.....

 when ....... is just about to 
take place.

 8.  Lubricating surfaces in contact result in a 
....... of the coefficient of friction.

 9.  Briefly discuss the factors affecting the size 
and direction of frictional forces.

10.  Name three practical applications where a 
low value of coefficient of friction is desir-
able and state briefly how this is achieved 
in each case.

11.  Name three practical applications where 
a high value of coefficient of friction is  
required when transmitting forces and  
discuss how this is achieved.

12.  For an object on a surface, two differ-
ent values of coefficient of friction are  
possible. Give the names of these two  
coefficients of friction and state how their  
values may be obtained.

13.  State the formula for the angle of repose.

14.  What theory can be used for calculating the 
efficiency of a screw jack.

Practice Exercise 99  Multiple-choice 
questions on friction 

(Answers on page 336)

 1.  A block of metal requires a frictional force 
F to keep it moving with constant velocity 
across a surface. If the coefficient of friction 
is μ, then the normal force N is given by:

 (a)  
µ
F  (b)  μF

 (c)  F
N

 (d)  F

 2.  The unit of the linear coefficient of friction 
is:

 (a)  newtons
 (b)  radians
 (c)  dimensionless
 (d)  newtons/metre

Questions 3 to 7 refer to the statements given 
below. Select the statement required from each 
group given.

(a)  The coefficient of friction depends on the 
type of surfaces in contact.

(b)  The coefficient of friction depends on the 
force acting at right angles to the surfaces 
in contact.

(c)  The coefficient of friction depends on the 
area of the surfaces in contact.

(d)  Frictional force acts in the opposite direc-
tion to the direction of motion.

(e)  Frictional force acts in the direction of  
motion.

(f)  A low value of coefficient of friction is  
required between the belt and the wheel in 
a belt drive system.

(g)  A low value of coefficient of friction is  
required for the materials of a bearing.

(h)  The dynamic coefficient of friction is  
given by (normal force)/(frictional force)  
at constant speed.

(i)  The coefficient of static friction is given  
by (applied force)/(frictional force) as slid-
ing is just about to start.

(j)  Lubrication results in a reduction in the  
coefficient of friction.

 3.  Which statement is false from (a), (b), (f) 
and (i)?



222 Mechanical Engineering Principles

Pa
rt 

Th
re

e

 4.  Which statement is false from (b), (e), (g) 
and (j)?

 5.  Which statement is true from (c), (f), (h) 
and (i)?

 6.  Which statement is false from (b), (c), (e) 
and (j)?

 7.  Which statement is false from (a), (d), (g) 
and (h)?

 8.  The normal force between two surfaces  
is 100 N and the dynamic coefficient of 
friction is 0.4

  The force required to maintain a constant 
speed of sliding is: 

 (a)  100.4 N  (b)  40 N
 (c)  99.6 N  (d)  250 N

 9.  The normal force between two surfaces is 
50 N and the force required to maintain 
a constant speed of sliding is 25 N. The  
dynamic coefficient of friction is:

 (a)  25 (b)  2
 (c)  75 (d)  0.5

10.  The maximum force, which can be applied 
to an object without sliding occurring, is 
60 N, and the static coefficient of friction 
is 0.3. The normal force between the two 
surfaces is:

 (a)  200 N (b)  18 N
 (c)  60.3 N (d)  59.7 N

11. The formula for the angle of repose is:
 (a)  F = μN (b)  tan θ = μ

 (c)  μ = 
F
N  (d)  tan θ = 

θ
θ

sin
cos

Reference

[1] BIRD, J. O. Engineering Mathematics 7th Edition, chap-
ter 27, Taylor and Francis Publishers, 2014.

For fully worked solutions to each of the problems in Practice Exercises 95 to 99 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 18

Motion in a circle

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Why it is important to understand: Motion in a circle
In this chapter, uniform circular motion of particles is considered, and it is assumed that objects such as 
railway trains and motorcars behave as particles. When a railway train goes round a bend, its wheels 
will have to produce a centripetal acceleration towards the centre of the turning circle. This in turn will 
cause the railway tracks to experience a centrifugal thrust, which will tend to cause the track to move 
outwards. To avoid this unwanted outward thrust on the outer rail, it will be necessary to incline the 
railway tracks. Although problems involving the motion in a circle are dynamic ones, they can be reduced 
to static problems through D’Alembert’s principle. If a motorcar travels around a bend, its tyres will have 
to exert centripetal forces to achieve this; this is achieved by the transverse frictional forces acting on the 
tyres. Problems involving locomotives and cars travelling around bends, a conical pendulum and motion in 
a vertical circle are solved in this chapter, and the centrifugal clutch is explained. This chapter is therefore 
of importance in the study of the behaviour of structures and bodies undergoing circular motion.

it will be necessary to incline the railway tracks in the 
manner shown in Figure 18.1.

Figure 18.1

At the end of this chapter you should be able to:

• understand centripetal force
• understand D’Alembert’s principle
• understand centrifugal force
• solve problems involving locomotives and cars travelling around bends
• solve problems involving a conical pendulum
• solve problems involving the motion in a vertical circle
• understand the centrifugal clutch

18.1 Introduction

In this chapter we will restrict ourselves to the uni-
form circular motion of particles. We will assume that  
objects such as railway trains and motorcars behave as 
particles, i.e. rigid body motion is neglected. When a 
railway train goes round a bend, its wheels will have 
to produce a centripetal acceleration towards the centre 
of the turning circle. This in turn will cause the railway 
tracks to experience a centrifugal thrust (see below), 
which will tend to cause the track to move outwards. 
To avoid this unwanted outward thrust on the outer rail, 

9 

Railway tracks 

9 



224 Mechanical Engineering Principles

Pa
rt 

Th
re

e

From Section 15.3, it can be seen that when a particle 
moves in a circular path at a constant speed v, its cen-
tripetal acceleration,

a = 2 v sin
θ
2  × 1

t

When θ is small, θ ≈ sin θ,

hence   a = 2 v 
θ
2  × 1

t  = v 
θ
t

However,  ω = uniform angular velocity = 
θ
t

Therefore  a = v ω

If r = the radius of the turning circle, then 
   v = ω r

and   a = ω2r = v
r
2

Now        force = mass × acceleration

Hence, centripetal force = m ω2r = mvr
2

 (18.1)

D’Alembert’s principle
Although problems involving the motion in a circle are 
dynamic ones, they can be reduced to static problems 
through D’Alembert’s principle. In this principle, 
the centripetal force is replaced by an imaginary 
centrifugal force which acts equal and opposite to the 
centripetal force. By using this principle, the dynamic 
problem is reduced to a static one.

If a motorcar travels around a bend, its tyres will 
have to exert centripetal forces to achieve this. This is 
achieved by the transverse frictional forces acting on 
the tyres, as shown in Figure 18.2.

Figure 18.2

In Figure 18.2, the following notation is used:

CG =  centre of gravity of 
the car,

   m =  mass of car,
 R1 =  vertical reaction of 

‘inner’ wheel,
  F1 =  frictional force on 

‘inner’ wheel,
   h =  vertical distance 

of the centre of 
gravity of the car 
from the ground,

   L =  distance between 
the centre of the 
tyres,

   μ =  coefficient of 
friction,

 CF  = centrifugal force  

= mv
r

2
,

   g =  acceleration due to 
gravity,

 R2 =  vertical reaction of 
‘outer’ wheel,

 F2 =  frictional force on 
‘outer’ wheel,

    r =  radius of the 
turning circle. 

Problem 1. Determine expressions for the 
frictional forces F1 and F2 of Figure 18.2. Hence 
determine the thrust on each tyre.   

Resolving forces horizontally gives:

 F1 + F2 = centrifugal force = CF = mv
r

2
  (18.2)

Resolving forces vertically gives:
                               R1 + R2 = mg (18.3)
Taking moments about the ‘outer’ wheel gives:

            CF × h + R1 × L = mg L
2

i.e.           mv
r

2
h + R1L = mg L

2

or                           R1L = mg L
2  – mv

r
2

h

Hence,                    R1L = m
gL v h

r2

2
−











from which,               R1= m
L

gL v h
r2

2
−









  (18.4)

Also,                         F1 = μ R1  and   F2 = μ R2 (18.5)

Substituting equation (18.4) into equation (18.3) gives:

   m
L

gL v h
r2

2
−









  + R2 = mg

Therefore,                 R2 = mg – m
L

gL v h
r2

2
−











CG 
Cf 

r 
0 

h 
mg 

Fi F, 
l 

R2 R, 
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                                       = mg – mg
2  + m

L
v h

r
2

i.e.                            R2 = m
L

gL v h
r2

2
+









  (18.6)

From equations (18.4) to (18.6):

                                   F1= μ m
L

gL v h
r2

2
−









  (18.7)

and                             F2= μ m
L

gL v h
r2

2
+









  (18.8)

To calculate the thrust on each tyre:
From Pythagoras’ theorem (see Chapter 1), 

                        T1= F R1
2

1
2+  = µ +R R2

1
2

1
2

i.e.                 T1 = R1 × µµ++1 2  (see Figure 18.3(a))

Figure 18.3

Let α1 = angle of thrust,

i.e.                    α1= tan
F
R

1 1

1









−  = tan–1μ

From Figure 18.3(b),T2 

µµ

µ

×× ++

= +

= +

= R

F R

R R

1 2

2
2

2
2

2
2
2

2
2

2

         α2 = tan
F
R

1 2

2









−  = tan–1μ

18.2 Motion on a curved banked track

Problem 2. A railway train is required to travel 
around a bend of radius r at a uniform speed of v. 
Determine the amount that the ‘outer’ rail is to be 
elevated to avoid an outward centrifugal thrust in 
these rails, as shown in Figure 18.4.

mg

Figure 18.4

To balance the centrifugal force:

  θ( )+ = =R R CF mv
r

sin1 2

2

from which,    sin θ = +
mv

r R R( )

2

1 2

Let R = R1 + R2

Then      sin θ = mv
r R

2
 (18.9)

Resolving forces vertically gives:
               R cos θ = mg

from which,         R = 
θ

mg
cos  (18.10)

Substituting equation (18.10) into equation (18.9) 
gives:

      sin θ = θ
mv
r mg

cos
2

Hence    tan θ = v
r g

2
 (since θ

θ
θ=

sin
cos

tan )

Thus, the amount that the outer rail has to be elevated 
to avoid an outward centrifugal thrust on these  
rails,

	 	 	 								θ = tan
v
rg

1
2









−  (18.11)

Problem 3. A locomotive travels around a curve 
of 700 m radius. If the horizontal thrust on the outer 
rail is 1/40th of the locomotive’s weight, determine 
the speed of the locomotive (in km/h). The surface 
that the rails are on may be assumed to be horizon-
tal and the horizontal force on the inner rail may be 
assumed to be zero. Take g as 9.81 m/s2.

R, 
r CG CF 

0 
mg Outer 

rail 
h 

R, 

8 

R2 

a, 
T2 

T, R, 

a2 

a, 

F, F2 
(a) (b) 

h 
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Centrifugal force on outer rail = mg
40

Hence,            mv
r

2

 
= mg

40    

from which,                        v2  = gr
40  = 

9.81 700
40
×

  

= 171.675 m2/s2

i.e.                                                v = 171 675. = 13.10 m/s
                                                 = (13.10 × 3.6) km/h
i.e. the speed of the locomotive, v = 47.17 km/h

Problem 4. What angle of banking of the rails is 
required for Problem 3 above, for the outer rail to 
have a zero value of thrust? Assume the speed of 
the locomotive is 40 km/h.

From Problem 2, angle of banking, θ = v
rg

tan 1
2









−

  v  = 40 km/h  

= × ×40 km
h

1h
3600s

1000 m
1km   

= 40
3 6.  = 11.11 m/s

Hence,  θ  = tan 11.11 m /s
700m 9.81m/s

1
2 2 2

2×











−   

= tan (0.01798)1−

i.e. angle of banking, θ = 1.03°

Now try the following Practice Exercise    

Practice Exercise 100  Further problems on 
motion in a circle

(Where needed, take g = 9.81 m/s2)

1.  A locomotive travels around a curve of  
500 m radius. If the horizontal thrust on the 

outer rail is 1
50  of the locomotive weight, 

determine the speed of the locomotive. The 
surface that the rails are on may be assumed 
to be horizontal and the horizontal force on 
the inner rail may be assumed to be zero. 
  [35.64 km/h]

2.  If the horizontal thrust on the outer rail 
of Problem 1 is 1

100  of the locomotive’s 

weight, determine its speed. 
 [25.2 km/h]

3.  What angle of banking of the rails of Prob-
lem 1 is required for the outer rail to have 
a zero value of outward thrust? Assume the 
speed of the locomotive is 15 km/h. 
 [0.203°]

4.  What angle of banking of the rails is required 
for Problem 3, if the speed of the locomotive 
is 30 km/h ? [0.811°]

18.3 Conical pendulum

If a mass m were rotated at a constant angular velocity, 
ω, in a horizontal circle of radius r, by a mass-less taut 
string of length L, its motion will be in the form of a 
cone, as shown in Figure 18.5.

Figure 18.5 Conical pendulum

Let  r = radius of horizontal turning circle, 
  L = length of string,  
  h = OC,
 ω = constant angular velocity about C, 
 m = mass of particle P, 
  T = tension in string, 
and  θ = cone angle

Problem 5. Determine an expression for the 
cone angle θ and the tension in the string T, for the 
conical pendulum of Figure 18.5. Determine also an 
expression for ω.

o 

6 

T 

L 

h 

T 

C 
r p 

CF 

mg 
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Resolving forces horizontally gives:
           Centrifugal force = CF = T sin θ
i.e.   m ω2r = T sin θ

from which,        T = 
ω

θ
m r
sin

2
 (18.12)

Resolving forces vertically gives:
                          T cos θ = mg

from which,                T = 
θ

mg
cos  (18.13)

Equating equations (18.12) and (18.13) gives:

                                 
ω

θ
m r
sin

2
 = 

θ
mg

cos

Rearranging gives:  ω θ
θ

=
m r

mg
sin
cos

2

i.e.                                tan θ = 
ω r

g

2

Hence, the cone angle,       θ = tan
r
g

1
2ωω









−−  (18.14)

From Figure 18.5,                  sin θ = r
L  (18.15)

Hence, from equation (18.12),   T = 
ωm r
r
L

2

i.e.    the tension in the string, T = m ω2L (18.16)

From equation (18.14),        
ω r

g

2
 = tan θ

But, from Figure 18.5,          tan θ = r
h

Hence,                                 ω r
g

2
 = r

h

and                                          ω2 = g
h

Thus, angular velocity about C, ω = g
h  (18.17)

Problem 6. A conical pendulum rotates about a 
horizontal circle at 90 rpm. If the speed of rotation 
of the mass increases by 10%, how much does  
the mass of the pendulum rise (in mm)? Take g  
as 9.81 m/s2.

Angular velocity,           ω  = 
π π

=
×n2

60
2 90

60   

             = 9.425 rad/s

From equation (18.17), ω = g
h     

or                ω2 = g
h

from which, height,   h  = 
ω

g
2  = 9 81

9 4252
.

.
  

= 0.11044 m (see Figure 18.5)
When the speed of rotation rises by 10%,  
           n2 = 90 × 1.1 = 99 rpm

Hence,          ω2  = π π
=

×n2
60

2 99
60

2   

               = 10.367 rad/s

From equation (18.17), ω2= g
h2

 

or            ω2
2 = g

h2

Hence,                       h2 = 
ω

g

2
2

 = 
9 81

10 3672
.

.
i.e. the new value of height, h2= 0.09127 m
Rise in height of the pendulum mass = ‘old’ h – ‘new’ h
    = h – h2 = 0.11044 – 0.09127
    = 0.01917 m = 19.17 mm

Problem 7. A conical pendulum rotates at a hori-
zontal angular velocity of 5 rad/s. If the length of 
the string is 2 m and the pendulum mass is 0.3 kg, 
determine the tension in the string. Determine also 
the radius of the turning circle. Take g as 9.81 m/s2.

Angular velocity, ω = 5 rad/s
From equation (18.16), tension in the string,  
    T = m ω2L 
       = 0.3 kg × (5 rad/s)2 × 2 m
i.e.    T = 15 kg m/s2

However, 1 kg m/s2 = 1 N, hence, 
tension in the string, T = 15 N

From equation (18.13),  T = θ
mg

cos

from which,     cos θ  = mg
T   

= ×0.3kg 9.81m/s
15N

2

 
= 0.1962

Hence, the cone angle, θ  = cos–1(0.1962)  
= 78.685°

From equation (18.15),   sin θ = r
L

from which, radius of turning circle, 
    r = L sin θ = 2 m × sin 78.685°
                      = 1.961 m    
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Now try the following Practice Exercise    

Practice Exercise 101  Further problems on 
the conical pendulum

1.  A conical pendulum rotates about a 
horizontal circle at 100 rpm. If the speed of 
rotation of the mass increases by 5%, how 
much does the mass of the pendulum rise? 
 [8.32 mm]

2.  If the speed of rotation of the mass of Prob-
lem 1 decreases by 5%, how much does the 
mass fall? [9.66 mm]

3.  A conical pendulum rotates at a horizontal 
angular velocity of 2 rad/s. If the length of 
the string is 3 m and the pendulum mass is 
0.25 kg, determine the tension in the string. 
Determine also the radius of the turning  
circle. [3 N, 1.728 m]

18.4 Motion in a vertical circle

This problem is best solved by energy considerations.
Consider a particle P rotating in a vertical circle  
of radius r, about a point O, as shown in Figure 18.6. 
Neglect losses due to friction.

Figure 18.6 Motion in vertical circle

Let  T = tension in a mass-less string, 
r = radius of turning circle,

and m = mass of particle.

Problem 8. Determine the minimum tangential 
velocity at A, namely, vA, which will just keep the 
string taut at the point B for the particle moving in 
the vertical circle of Figure 18.6.

At the point B the potential energy = mg × 2r (18.18)

and the kinetic energy = mvB
2

2
 (18.19)

At the point A, the kinetic energy (KE) = mvA
2

2  (18.20)

and the potential energy (PE) = 0
As there are no energy losses, KE at A = (KE + PE) at B
Hence, from equations (18.18) to (18.20): 

             mvA
2

2  = mg × 2r + mvB
2

2   

or                vA
2

2  = vB
2

2  + 2gr

from which, v vA B
2 2=  + 4gr (18.21) 

At B, T = 0; this is because B is the highest point in the 
circle, where it can readily be observed that T will be 
a minimum
Thus,             weight = centrifugal force at B,

or     mg = mv
r

B
2

from which, vB
2  = gr (18.22) 

Substituting equation (18.22) into equation (18.21) 
gives:

    vA
2  = gr + 4gr = 5gr

Hence, the minimum tangential velocity at A, 
                  v gr5A ==  (18.23)   

Problem 9. A mass of 0.1 kg is being rotated 
in a vertical circle of radius 0.6 m. If the mass is 
attached to a mass-less string and the motion is  
such that the string is just taut when the mass is at 
the top of the circle, what is the tension in the string 
when it is horizontal? Neglect losses and take g  
as 9.81 m/s2.

P 

8 

mg 

r 

T 

B 

o 
T 8 

c 

A 
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At the top of the circle, potential energy =  
    PE = 2 mgr   

and      KE = mvT
2

2   

where     vT = velocity at the top
When the string is horizontal,  
      PE = mgr

and kinetic energy, KE = 
mv

2
1

2
 

where       v1 = velocity of mass at this point.
From the conservation of energy, 
(PE + KE) at the top = (PE + KE ) when the string is 
horizontal

i.e.   2 mgr = mgr + mv1
2

2  – mvT
2

2

or  mv1
2

2  = 2 mgr – mgr + mvT
2

2  

i.e.     v1
2

2  = gr + vT
2

2

but     CF at top = mv
r
T

2
 = mg    or    vT

2  = gr

Hence,    v1
2

2  = gr + gr
2  = 3

2
gr

i.e.      v1
2  = 3gr

and         v gr3 3 9.81 0.61 = = × × = 4.202 m/s

Resolving forces horizontally,
   Centrifugal force = T = tension in the string

Therefore,                    T = =
×mv

r
0.1kg (4.202) m /s

0.6 m
1
2 2 2 2

i.e. the tension in the string, T = 2.943 N

Problem 10. What is the tension in the string for 
Problem 9 when the mass is at the bottom of the 
circle?

From equation (18.23), the velocity at the bottom of the 

circle = v = 5gr

i.e.     v = 5 9.81 0.6× ×  = 5.4249 m/s.
Resolving forces vertically,
 T  = tension in the string  

= centrifugal force + the weight of the mass

i.e. T = 
mv

r

2
 + mg = m

v
r

g
2

+










     = 0.1 ×
5.4249

0.6
9.81

2
+









  

     = 0.1 × (49.05 + 9.81)  

= 0.1 × 58.86 N
i.e. tension in the string, T = 5.886 N

Problem 11. If the mass of Problem 9 were to 
rise, so that the string is at 45° to the vertical axis 
and below the halfway mark, what would be the 
tension in the string?

At 45°,  PE = mgr
2   

and    KE = mv2
2

2   

where v2 = velocity of the mass at this stage.
From the conservation of energy, (PE + KE) at the top 
= (PE + KE) at this stage

Therefore, 2 mgr = mgr
2  + mv

r
2

2
 – mvT

2

2

From Problem 9,     vT
2 = gr

or     v2
2

2   = r r r2
2 2

− +








 g  

= 2gr

from which,    v2
2  = 4gr 

and          v2  =

= × ×

gr4

4 9.81 0.6

  

 = 4.852 m/s
Resolving forces in a direction along the string,
     T =  tension in the string = centrifugal  

force + component of weight at 45° to  
the vertical

i.e.    T = mv
r
2

2
 + mg cos 45°

   = 
0.1 (4.2852)

0.6

2×
 + 0.1 × 9.81 × 0.7071

   = 3.924 N + 0.6937 N
i.e. the tension in the string, T = 4.618 N
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Now try the following Practice Exercise    

Practice Exercise 102  Further problems on 
motion in a vertical 
circle

1.  A uniform disc of diameter 0.1 m rotates 
about a vertical plane at 200 rpm. The disc 
has a mass of 1.5 kg attached at a point on 
its rim and another mass of 2.5 kg at another 
point on its rim, where the angle between the 
two masses is 90° clockwise. Determine the 
magnitude of the resultant centrifugal force 
that acts on the axis of the disc, and its posi-
tion with respect to the 1.5 kg mass. 
 [63.94 N at 59° clockwise]

2.  If a mass of 4 kg is placed on some posi-
tion on the disc in Problem 1, determine the 
position where this mass must be placed to 
nullify the unbalanced centrifugal force.

[ At a radius of 36.44 mm,  
121° anti-clockwise to 1.5 kg mass]

3.  A stone of mass 0.1 kg is whirled in a verti-
cal circle of 1 m radius by a mass-less string, 
so that the string just remains taut. Deter-
mine the velocity and tension in the string at 
(a) the top of the circle (b) the bottom of the 
circle (c) midway between (a) and (b).

[ (a) 3.132 m/s, 0 N   (b) 7 m/s, 5.88 N 
(c) 5.42 m/s, 2.94 N                            ]

18.5 Centrifugal clutch

A clutch is an engineering device used for transferring 
motion from an engine to a gearbox or other machin-
ery. The main purpose of the clutch is to transfer the 
motion in a smooth and orderly manner, so that the 
gears and wheels (in the case of the motor car) will  
accelerate smoothly and not in a jerky manner.

The centrifugal clutch works on the principle that 
the rotating driving shaft will cause the centrifugal 
weights, shown in Figure 18.7, to move radially out-
wards with increasing speed of rotation of the driving 
shaft. These centrifugal weights will be restrained by 
the restraining springs shown, but when the speed of 
the driving shaft reaches the required value, the clutch 
material will engage with the driven shaft, through fric-
tion, and cause the driven shaft to rotate. The driven 

shaft will thus reach a high speed of rotation quite 
smoothly in the required time.
Centrifugal clutches are popular when it is required to 
exert a high starting torque quickly and smoothly.
A suitable clutch material is asbestos, but it is likely 
that asbestos will be replaced by more modern materi-
als for health and safety reasons.

Now try the following Practice Exercises    

Practice Exercise 103  Short-answer 
problems on motion 
in a circle

1.  The centrifugal force of a mass m moving at 
velocity v at a radius r is given by: ........ 

2.  What is the potential energy at the top of a 
circle for the motion in a vertical circle?

3.  What is the potential energy at the bottom of 
a circle for the motion in a vertical circle?

4.  What is the potential energy at the ‘middle’ 
of a circle for the motion in a vertical circle?        

Exercise 104  Multiple-choice problems on 
motion in a circle 

(Answers on page 336)

1.  To decrease the horizontal thrust on the outer 
rail of a train going round a bend, the outer 
rail should be:

 (a)  lowered  
 (b)  raised
 (c)  kept at the same level as the inner rail 
 (d)  made bigger

Figure 18.7

Restraining 
springs 

Driven 
shaft 

Centrifugal 
weight 

Clutch 
material 

Drtving 
shaft 

Axis 

Axis 
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2.  If the speed of rotation of a conical pendu-
lum is increased, the height of the pendulum 
mass will: 

 (a)  fall
 (b)  become zero
 (c)  stay the same
 (d)  rise

3.  The minimum tension on the top of a vertical 
circle, for satisfactory motion in a circle is:  

 (a)  zero     (b)  mg

 (c)  mv
r

2
   (d)  negative

4.  If v is the velocity at the ‘middle’ for the  
motion in a vertical circle, the tension is: 

 (a)  zero  (b)  
mv

r

2

 (c)  mg  (d)  negative

5.  If the tension in the string is zero at the  
top of a circle for the motion in a vertical  
circle, the velocity at the bottom of the  
circle is:

 (a)  zero  (b) 5gr
 (c)  gr    (d) 3gr

For fully worked solutions to each of the problems in Practice Exercises 100 to 104 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Simple harmonic motion

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Chapter 19

Why it is important to understand: Simple harmonic motion
Simple harmonic motion is of importance in a number of branches of engineering and physics, includ-
ing structural and machine vibrations, alternating electrical currents, sound waves, light waves, tidal 
motion, and so on. This chapter explains simple harmonic motion, determines natural frequencies for 
spring-mass systems, calculates periodic times and explains simple and compound pendulums. SHM 
is of particular importance in electrical engineering and in the vibration and periodic oscillations of 
structures and bodies.

 f = T
1

2
ω
π

=  (19.2)

To determine whether or not SHM is taking place, we 
will consider motion of A in the direction yy. Now  
yC = OA sin ωt,

At the end of this chapter you should be able to:

• understand simple harmonic motion
• determine natural frequencies for simple spring-mass systems
• calculate periodic times
• understand the motion of a simple pendulum
• understand the motion of a compound pendulum

19.1  Introduction to simple harmonic 
motion (SHM)

A particle is said to be under SHM if its acceleration 
along a line is directly proportional to its displacement 
along that line, from a fixed point on that line.
Consider the motion of a particle A, rotating in a  
circle with a constant angular velocity ω, as shown in 
Figure 19.1.
Consider now the vertical displacement of A from xx, 
as shown by the distance yC . If P is rotating at a con-
stant angular velocity ω then the periodic time T to 
travel an angular distance of 2π, is given by:

 T = 2π
ω

 (19.1)

Let f = frequency of motion C (in hertz), where

Figure 19.1
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i.e. yC = r sin ωt (19.3)
where t = time in seconds.
Plotting of equation (19.3) against t results in  
the sinusoidal variation for displacement, as shown in 
Figure 19.1(b).
From Chapter 13, vA = ωr, which is the tangential ve-
locity of the particle A.
From the velocity vector diagram, at the point A on the 
circle of Figure 19.1(a),
 vC = vA cos θ = vA cos ωt (19.4)

Plotting of equation (19.4) against t results in the  
sinusoidal variation for the velocity vC , as shown in 
Figure 19.1(b).

The centripetal acceleration of A 
       = aA = ω2r
Now  aC = – aA sin θ
Therefore, aC = – ω2r sin ωt� (19.5)

Plotting of equation (19.5) against t results in the sinu-
soidal variation for the acceleration at C, aC , as shown 
in Figure 19.1 (b).
Substituting equation (19.3) into equation (19.5) gives:
 aC = – ω2yC (19.6)
Equation (19.6) shows that the acceleration along 
the line yy is directly proportional to the displace-
ment along this line, therefore the point C is moving  
with SHM.

Now T = 2π
ω

, but from equation (19.6), 

 aC = ω2y,  i.e.  
a
y

2ω =

Therefore, T = 
a
y

2π    or   T = 2
y
a

π

i.e.   T = 2 π
dispacement
acceleration

In general, from equation (19.6), 

 a + ω2y = 0 (19.7)

19.2 The spring-mass system

(a) Vibrating horizontally
Consider a mass m resting on a smooth surface and at-
tached to a spring of stiffness k, as shown in Figure 19.2.

Figure 19.2

If the mass is given a small displacement x, the spring 
will exert a resisting force of kx, i.e. F = – kx
But,             F = ma
hence,           ma = – kx
or  ma + kx = 0

or  a + k
m

x = 0 (19.8)

Equation (19.8) shows that this mass is oscillating (or vi-
brating) in SHM, or according to equation (19.7). Com-
paring equation (19.7) with equation (19.8) we see that

  
k
m

2ω =

from which, 
k
m

ω =

Now  T = 2π
ω

 = 2 m
k

π

and f = frequency of oscillation or vibration 

i.e. f = 
k
m2

1
2

ω
π π

=  (19.9)

(b) Vibrating vertically
Consider a mass m, supported by a vertical spring 
of stiffness k, as shown in Figure 19.3. In this equi-
librium position, the mass has an initial downward  
static deflection of yo. If the mass is given an additional 
downward displacement of y and then released, it will  
vibrate vertically.

Figure 19.3

M 

x 

YO 

y 
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The force exerted by the spring = – k( yo + y)
Therefore, F  = accelerating force – resisting force  

= ma 
or     F = mg – k(yo + y) = ma
i.e.         F = mg – kyo – ky = ma
But,     kyo = mg, 
hence F = mg – mg – ky = ma
Thus,   ma + ky = 0

or  a + k
m

y = 0  

i.e. SHM takes place, then 
k
m

ω =  and T = 2π
ω

 

i.e. periodic time,  T = 2 m
k

π  (19.10)

and frequency,  f = 
k
m2

1
2

ω
π π

=  (19.11)

as before (from equation (19.9)).

Comparing equations (19.9) and (19.11), it can be seen 
that there is no difference in whether the spring is hori-
zontal or vertical.

Problem 1. A mass of 1.5 kg is attached to a 
vertical spring, as shown in Figure 19.4. When the 
mass is displaced downwards a distance of 55 mm 
from its position of rest, it is observed to oscillate 
60 times in 72 seconds. Determine (a) periodic  
time (b) the stiffness of the spring (c) the time taken 
to travel upwards a distance of 25 mm for the first 
time (d) the velocity at this point.

Figure 19.4

(a)  Periodic time, T = 72seconds
60oscillations  = 1.2 seconds

(b) From equation (19.10),   T = 2 m
k

π  

 i.e.      1.2 = 2
k

1.5
π    

 Hence,                        1.2
k

(2 ) 1.52 2π= ×

 from which,                     k = (2 ) 1.5
1.2

2
2

π ×  

 i.e. stiffness of spring, k = 41.1 N/m  

(c)  From Figure 19.4, cos θ = 
r

r
25( )−

 

or     cos θ = 
(55 25)

55
−

 = 0.545

 from which, θ = cos 0.5451−  = 56.94°

 Now, ω = T
2 2

1.2
π π

= = 5.236 rad/s

  But θ = ωt, hence, time t taken to travel upwards 
a distance of 25 mm, is given by:

  t = 
θ
ω

π
=

°
×

°
56.94

5.236 rad
s

2 rad
360  = 0.19 s

(d) Velocity at C in Figure 19.4,  
  vC = vA sin θ
       = ωr sin θ

       = 5.236 × × °
rad
s

55
1000

m sin56.94

       = 0.288 × 0.838 m/s
 i.e. vC = 0.241 m/s after 25 mm of travel

Now try the following Practice Exercise

Practice Exercise 105  Further problems 
on simple harmonic 
motion

1.  A particle oscillates 50 times in 22 s. Deter-
mine the frequency and periodic time.

 [f = 2.27 Hz, T = 0.44 s]

2.  A yacht floats at a depth of 2.2 m. On a par-
ticular day, at a time of 09.30 h, the depth at 
low tide is 1.8 m and at a time of 17.30 h, the 
depth of water at high tide is 3.4 m. Deter-
mine the earliest  time of day that the yacht 
is refloated. [12 h, 10 min, 1 s]

3.  A mass of 2 kg is attached to a vertical 
spring. The initial state displacement of this 
mass is 74 mm. The mass is displaced down-
wards and then released. Determine (a) the 
stiffness of the spring, and (b) the frequency 
of oscillation of the mass.

[(a) 265.1 N/m  (b) 1.83 Hz]

Static 0 

9 v. 
30mm vc,sc vAsin8 r=55m 

C 
VA cos 8 

25mm· 
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4.  A particle of mass 4 kg rests on a smooth 
horizontal surface and is attached to a hori-
zontal spring. The mass is then displaced 
horizontally outwards from the spring a dis-
tance of 26 mm and then released to vibrate. 
If the periodic time is 0.75 s, determine  
(a) the frequency f (b) the force required to 
give the mass the displacement of 26 mm, 
(c) the time taken to move horizontally  
inwards for the first 12 mm.

[(a) 1.33 Hz   (b) 7.30 N   (c) 0.12 s]

5.  A mass of 3 kg rests on a smooth horizontal 
surface, as shown in Figure 19.5. If the stiff-
ness of each spring is 1 kN/m, determine the 
frequency of vibration of the mass. It may 
be assumed that, initially, the springs are  
un-stretched.

Figure 19.5

[4.11 Hz]

6.  A helical spring has a mass of 10 kg attached 
to its top. If the mass vibrates vertically  
with a frequency of 1.5 Hz, determine the 
stiffness of the spring. [888.3 N/m]

19.3 The simple pendulum

A simple pendulum consists of a particle of mass m 
attached to a mass-less string of length L, as shown in 
Figure 19.6.

mg

Figure 19.6

From Section 15.4, page 193,  
  T = Ioα   = – restoring couple
                   = – mg (L sin θ )

But, Io = mL2 = mass moment of inertia about the point 
of rotation

hence,  mL2 α  + mgL sin θ = 0

For small deflections, sin θ = θ

Hence,           L2 α  + gLθ = 0

or                α + 
g
L
θ

 = 0

But    α + ω2θ = 0 (from equation 19.7)

Therefore,         
g
L

2ω =

and             ω = g
L

 (19.12)

Now    T = 
L
g

2 2π
ω

π=  (19.13)

and      f = 
ππ

==
T

g
L1

2  (19.14)

Problem 2. If the simple pendulum of Figure 
19.6 were of length 2 m, determine its frequency of 
vibration. Take g = 9.81 m/s2.

From equation (19.14), frequency, f  = 

g
L

2

9.81
2

2π π
=  

= 0.352 Hz

Problem 3. In order to determine the value of g  
at a certain point on the Earth’s surface, a simple 
pendulum is used. If the pendulum is of length 3 m 
and its frequency of oscillation is 0.2875 Hz,  
determine the value of g.

From equation (19.14), frequency, f = 

g
L

2π

i.e.       0.2875 = 
g
3

2π

x 

9 P L 

P 

mg 
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and               (0.2875)
g(2 )
3

2 2π× =

                                         3.263 = 
g
3

from which, acceleration due to gravity, g  = 3 × 3.263 
= 9.789 m/s

19.4 The compound pendulum

Consider the compound pendulum of Figure 19.7, 
which oscillates about the point O. The point G in 
Figure 19.7 is the position of the pendulum’s centre of 
gravity.

mg

Figure 19.7

Let Io = mass moment of inertia about O

Now  T = Ioα = – restoring couple
             = – mgh sin θ

From the parallel axis theorem,

   IG = Io – mh2 = mk G
2

or    Io = mk G
2  + mh2

where IG = mass moment of inertia about G,

         k G
2 = radius of gyration about G

Now    T = Ioα 
or – mgh sin θ = Ioα 

but       Io = mkG
2  + mh2

Therefore, mk mhG
2 2 α( )+  = – mgh sin θ

but for small displacements, sin θ = θ

Hence,     m k hG
2 2 α( )+  = – mgh θ

i.e.       k hG
2 2 α( )+  + ghθ = 0

or           α + 
gh

k hG
2 2

θ
( )+

 = 0

However,             α + ω2θ = 0

but this motion is simple harmonic motion (see equa-
tion (19.7))

Therefore,          ω2 = 
gh

k hG
2 2( )+

and  ω = 
gh

k h( )G
2 2+

 (19.15)

   T = 
k h

gh
2 2 ( )G

2 2π
ω

π=
+

 (19.16)

and   f = T
gh

k h
1 1

2 ( )G
2 2π

=
+

  (19.17)

Problem 4. It is required to determine the mass 
moment of inertia about G of a metal ring, which 
has a complex cross-sectional area. To achieve 
this, the metal ring is oscillated about a knife edge, 
as shown in Figure 19.8, where the frequency of 
oscillation was found to be 1.26 Hz. If the mass  
of the ring is 10.5 kg, determine the mass moment 
of inertia about the centre of gravity, IG. Take  
g = 9.81 m/s2.

Figure 19.8
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y 
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9 

hsin 9 
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By inspection of Figure 19.8, h = 75 mm = 0.075 m.

Now frequency, f = 
π +

gh
k h

1
2 ( )G

2 2  

i.e.           1.26 = 
π

×

+k
1

2
9.81 0.075

( 0.075 )G
2 2

i.e.     
π ( )( ) = ×

×

+k
1.26 1

(2 )
9.81 0.075

0.075G

2
2 2 2

from which, k 0.005625 0.73575
1.5876 (2 )G

2
2π

( )+ =
×

  

            = 0.011739
               kG

2
 = 0.011739 – 0.005625  
= 0.006114

from which, kG = 0 006114.  = 0.0782
The mass moment of inertia about the centre of gravity, 
       IG = m kG

2 = 10.5 kg × 0.006114 m2

i.e.  IG = 0.0642 kg m2

19.5 Torsional vibrations

From equation (19.7), it can be seen that for SHM in a 
linear direction,

a + ω2y = 0

For SHM in a rotational direction,

      αr + ω2y = 0

or α + ω2 y
r









  = 0

or        α + ω2θ = 0 (see equation (19.7))

i.e      θ
••

 + ω2θ = 0 (19.18)

where θ = y
r  = angular displacement, and 

         θ
••

 = α = angular acceleration

Now try the following Practice Exercises

Practice Exercise 106  Further problems on 
pendulums

1.  Determine the period of oscillation of a  
pendulum of length 2 m if g = 9.81 m/s2.

[0.3525 Hz]

2.  What will be the period of oscillation if  
g = 9.78 m/s2 for the pendulum of Problem 1?

[0.3519 Hz]

3.  What will be the period of oscillation if  
g = 9.832 m/s2 for the pendulum of Problem 1?

[0.3529 Hz]

4.  What will be the value of the mass moment 
of inertia through the centre of gravity, IG, 
for the compound pendulum of worked 
problem 4 on page 236, if the inner diameter 
of the disc of Figure 19.8 were 100 mm?

[0.0559 kg m2]

Practice Exercise 107  Short-answer 
questions on simple 
harmonic motion

1.  State the relationship between the displace-
ment (y) of a mass and its acceleration  
(a) for SHM to take place.

2.  State the relationship between frequency f 
and periodic time T when SHM takes place.

3.  State the formula for the frequency of oscil-
lation for a simple pendulum.

4.  State a simple method of increasing the 
period of oscillation of the pendulum of a 
‘grandfather’ clock.

Practice Exercise 108  Multiple-choice 
questions on simple 
harmonic motion 

(Answers on page 336)

1.  Tidal motion is normally related to which 
mathematical function?

 (a)  tangent    (b)  sine
 (c)  square root (d)  straight line

2.   If the mass of a simple pendulum is doubled, 
its period of oscillation:

 (a)  increases (b)  decreases
 (c)  stays the same (d)  doubles

3.  A pendulum has a certain frequency of  
oscillation in London. Assuming that tem-
perature remains the same, the frequency of 
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oscillation of the pendulum if it is measured 
on the equator: 

 (a)  increases
 (b)  decreases
 (c)  remains the same
 (d)  doubles

4.  The period of oscillation of a simple pendu-
lum of length 9.81 m, given g = 9.81 m/s2 is: 

 (a)  6.28 Hz
 (b)  0.455 Hz
 (c)  17.96 Hz
 (d)  0.056 Hz

For fully worked solutions to each of the problems in Practice Exercises 105 to 108 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 20

Simple machines

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Why it is important to understand: Simple machines
This chapter commences by defining load, effort, mechanical advantage, velocity ratio and efficiency, 
where efficiency is then defined in terms of mechanical advantage and velocity ratio. These terms, together 
with other terms defined in earlier chapters, are applied to simple and quite complex pulley systems, 
screw-jacks, gear trains and levers. This chapter is fundamental to the study of the behaviour of machines 
and is thus important in studying the fundamental concepts of machine motion and their behaviour. 

Since both load and effort are measured in newtons, 
force ratio is a ratio of the same units and thus is a 
dimension-less quantity.
The movement ratio or velocity ratio is defined as the 
ratio of the distance moved by the effort to the distance 
moved by the load, i.e.

Movement ratio  = distance moved by the effort
distance moved by the load   

= velocity ratio (20.2)
Since the numerator and denominator are both mea-
sured in metres, movement ratio is a ratio of the same 
units and thus is a dimension-less quantity.
The efficiency of a simple machine is defined as the 
ratio of the force ratio to the movement ratio, i.e. 

Efficiency 
force ratio

movement ratio
mechanical advantage

velocity ratio

=

=

 

At the end of this chapter you should be able to:

• define a simple machine
• define force ratio, movement ratio, efficiency and limiting efficiency
• understand and perform calculations with pulley systems
• understand and perform calculations with a simple screw-jack
• understand and perform calculations with gear trains
• understand and perform calculations with levers

20.1 Machines

A machine is a device that can change the magnitude 
or line of action, or both magnitude and line of action 
of a force. A simple machine usually amplifies an input 
force, called the effort, to give a larger output force, 
called the load. Some typical examples of simple 
machines include pulley systems, screw-jacks, gear 
systems and lever systems.

20.2  Force ratio, movement  
ratio and efficiency

The force ratio or mechanical advantage is defined 
as the ratio of load to effort, i.e.

Force ratio = load
effort = mechanical advantage (20.1)
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Since the numerator and denominator are both 
dimension-less quantities, efficiency is a dimension-less 
quantity. It is usually expressed as a percentage, thus:

  Efficiency = 
force ratio

movement ratio
100%××  (20.3)

Due to the effects of friction and inertia associated 
with the movement of any object, some of the input 
energy to a machine is converted into heat and losses 
occur. Since losses occur, the energy output of a ma-
chine is less than the energy input, thus the mechanical 
efficiency of any machine cannot reach 100%.

For simple machines, the relationship between effort 
and load is of the form: Fe = aFl + b, where Fe is the 
effort, Fl is the load and a and b are constants. From 
equation (20.1), 

force ratio = = =
+

F
F

F
aF b

load
effort

l

e

l

l
 

Dividing both numerator and denominator by Fl gives:
F

aF b a b
F

1l

l

l

+
=

+

When the load is large, Fl is large and bFl
 is small com-

pared with a. The force ratio then becomes approximate-

ly equal to 1
a  and is called the limiting force ratio, i.e. 

limiting ratio = 1
a

The limiting efficiency of a simple machine is defined 
as the ratio of the limiting force ratio to the movement 
ratio, i.e.

Limiting efficiency = a
1

movement ratio
100%

××
××  

where a is the constant for the law of the machine:  

  Fe = aFl + b
Due to friction and inertia, the limiting efficiency of 
simple machines is usually well below 100%.

Problem 1. A simple machine raises a load of 
160 kg through a distance of 1.6 m. The effort applied 
to the machine is 200 N and moves through a distance 
of 16 m. Taking g as 9.8 m/s2, determine the force 
ratio, movement ratio and efficiency of the machine.

From equation (20.1),  

force ratio 
load
effort

160kg
200N

160 9.81N
200N

= = =
×

  

                                                  = 7.84

From equation (20.2),  

  movement ratio 

10

distance moved by the effort
distance moved by the load
16 m
1.6 m

=

= =

From equation (20.3),  

    efficiency  = force ratio
movement ratio

100%×
 

= 
7.84
10

× 100  

= 78.4%

Problem 2. For the simple machine of Problem 
1, determine: (a) the distance moved by the effort 
to move the load through a distance of 0.9 m  
(b) the effort which would be required to raise a 
load of 200 kg, assuming the same efficiency  
(c) the efficiency if, due to lubrication, the effort  
to raise the 160 kg load is reduced to 180 N.

(a)  Since the movement ratio is 10, then from equa-
tion (20.2),

  distance moved by the effort  
  = 10 × distance moved by the load

   = 10 × 0.9 = 9 m
(b)  Since the force ratio is 7.84, then from equation 

(20.1),

        effort  = load
7 84.   = 

200 9.8
7.84

×
  

= 250 N
(c)  The new force ratio is given by  

    load
effort

 = 
160 9.8

180
×

 = 8.711

  Hence, the new efficiency after lubrication  

  = 
8.711

10
×  100 = 87.11%

Problem 3. In a test on a simple machine, the  
effort/load graph was a straight line of the form  
Fe = aFl + b. Two values lying on the graph  
were at Fe = 10 N, Fl = 30 N, and at Fe = 74 N,  
Fl = 350 N. The movement ratio of the machine 
was 17. Determine: (a) the limiting force ratio  
(b) the limiting efficiency of the machine.

(a)  The equation Fe = aFl + b is of the form y = mx + c,  
where m is the gradient of the graph. The slope 
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of the line passing through points (xl, yl) and  
(x2, y2) of the graph y = mx + c is given by:

             m = 
y y
x x

2 1

2 1

−
−

  Thus for  Fe = aFl + b, the slope a is given by:  

  a  = 
74 10

350 30
−
−

  

= 64
320  = 0.2

 The limiting force ratio is 1
a = 1

0 2.  = 5

(b)  The limiting efficiency  

  = a
1

movement ratio
100

×
×

 

  
= 

1
0.2 17

100
×

×  = 29.4%

Now try the following Practice Exercise

Practice Exercise 109  Further problems on 
force ratio, movement 
ratio and efficiency

1.  A simple machine raises a load of 825 N  
through a distance of 0.3 m. The effort is  
250 N and moves through a distance of  
3.3 m. Determine: (a) the force ratio (b) the 
movement ratio (c) the efficiency of the ma-
chine at this load. [(a) 3.3 (b) 11 (c) 30%]

2.  The efficiency of a simple machine is 50%. 
If a load of 1.2 kN is raised by an effort of 
300 N, determine the movement ratio. [8]

3.  An effort of 10 N applied to a simple ma-
chine moves a load of 40 N through a dis-
tance of 100 mm, the efficiency at this load 
being 80%. Calculate: (a) the movement  
ratio (b) the distance moved by the effort. 

 [(a) 5 (b) 500 mm]

4.  The effort required to raise a load using a 
simple machine, for various values of load is 
as shown:

Load Fl (N ) 2050 4120 7410 8240 10300

Effort Fe (N) 252 340 465 505 580

  If the movement ratio for the machine is  
30, determine (a) the law of the machine  

(b) the limiting force ratio (c) the limiting  
efficiency.

 [(a) Fe = 0.04 Fl + 170 (b) 25 (c) 83.3%]

5.  For the data given in question 4, determine 
the values of force ratio and efficiency for 
each value of the load. Hence plot graphs 
of effort, force ratio and efficiency to a base 
of load. From the graphs, determine the  
effort required to raise a load of 6 kN and  
the efficiency at this load. [410 N, 48%]

20.3 Pulleys

A pulley system is a simple machine. A single-pulley 
system, shown in Figure 20.1(a), changes the line  
of action of the effort, but does not change the mag-
nitude of the force. A two-pulley system, shown in  
Figure 20.1(b), changes both the line of action and the 
magnitude of the force. 

Figure 20.1

Load 

(a) 

(i) (ii) 

Load 

(b) 

Effort 

Eflorl 
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Figure 20.1 (Continued)

Theoretically, each of the ropes marked (i) and (ii) share 
the load equally, thus the theoretical effort is only half 
of the load, i.e. the theoretical force ratio is 2. In prac-
tice the actual force ratio is less than 2 due to losses.  
A three-pulley system is shown in Figure 20.1(c). Each 
of the ropes marked (i), (ii) and (iii) carry one-third of 
the load, thus the theoretical force ratio is 3. In general, 
for a multiple pulley system having a total of n pulleys, 
the theoretical force ratio is n. Since the theoretical  
efficiency of a pulley system (neglecting losses) is  
100 and since from equation (20.3),

efficiency = 
force ratio

movement ratio
100%×

it follows that when the force ratio is n,

100 = 
n

movement ratio
100%×  

that is, the movement ratio is also n.

Problem 4. A load of 80 kg is lifted by a three-
pulley system similar to that shown in Figure 
20.1(c) and the applied effort is 392 N. Calculate 
(a) the force ratio (b) the movement ratio (c) the 
efficiency of the system. Take g to be 9.8 m/s2.

(a)  From equation (20.1), the force ratio is given by 
load

effort

  The load is 80 kg, i.e. (80 × 9.8) N, hence,  

force ratio = 
80 9.8

392
×

 = 2

(b)  From above, for a system having n pulleys, the 
movement ratio is n. Thus, for a three-pulley sys-
tem, the movement ratio is 3

(c) From equation (20.3),  

 efficiency  = 
force ratio

movement ratio
100%×   

= 
2
3

× 100 = 66.67%

Problem 5. A pulley system consists of 
two blocks, each containing three pulleys and 
connected as shown in Figure 20.2. An effort 
of 400 N is required to raise a load of 1500 N. 
Determine (a) the force ratio (b) the movement 
ratio (c) the efficiency of the pulley system. 

Figure 20.2

(a) From equation (20.1),  

 force ratio = load
effort  = 1500

400  = 3.75

(b)  An n-pulley system has a movement ratio of n, 
hence this 6-pulley system has a movement ratio  
of 6

(c) From equation (20.3),  

 efficiency  = 
force ratio

movement ratio
100%×   

= 
3.75

6
× 100 = 62.5%

Now try the following Practice Exercise

Practice Exercise 110  Further problems on 
pulleys

1.  A pulley system consists of four pulleys in 
an upper block and three pulleys in a lower 

Effort 

(i) 

(III) (ii) 

Load 

(e) 
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block. Make a sketch of this arrangement 
showing how a movement ratio of 7 may be 
obtained. If the force ratio is 4.2, what is the 
efficiency of the pulley?  [60%]

2.  A three-pulley lifting system is used to raise a 
load of 4.5 kN. Determine the effort required 
to raise this load when losses are neglected. If 
the actual effort required is 1.6 kN, determine 
the efficiency of the pulley system at this load.
 [1.5 kN, 93.75%]

20.4 The screw-jack

A simple screw-jack is shown in Figure 20.3 and is a 
simple machine since it changes both the magnitude 
and the line of action of a force (see also Section 17.8). 

Figure 20.3

The screw of the table of the jack is located in a fixed 
nut in the body of the jack. As the table is rotated by 
means of a bar, it raises or lowers a load placed on the 
table. For a single-start thread, as shown, for one com-
plete revolution of the table, the effort moves through 
a distance 2πr, and the load moves through a distance 
equal to the lead of the screw, say, L.

 Movement ratio = r
L

2ππ  (20.4)

For the efficiency of a screw-jack, see Section 17.8, 
page 219.

Problem 6. A screw-jack is being used to support 
the axle of a car, the load on it being 2.4 kN. The 
screw jack has an effort of effective radius 200 mm 
and a single-start square thread, having a lead of  
5 mm. Determine the efficiency of the jack if an  
effort of 60 N is required to raise the car axle.

From equation (20.3),  

    efficiency = 
force ratio

movement ratio
100%×  

where force ratio = 
load
effort

2400 N
60 N

=  = 40

From equation (20.4),  

   movement ratio = 
r

L
2 2 (200)mm

5mm
π π

=  = 251.3

Hence, efficiency  = 
force ratio

movement ratio
100%×   

= 
40

251.3  
× 100 = 15.9%

Now try the following Practice Exercise

Practice Exercise 111  Further problems on 
the screw-jack

1.  Sketch a simple screw-jack. The single-start 
screw of such a jack has a lead of 6 mm and 
the effective length of the operating bar from 
the centre of the screw is 300 mm. Calcu-
late the load which can be raised by an effort  
of 150 N if the efficiency at this load is 20%.

 [9.425 kN]

2.  A load of 1.7 kN is lifted by a screw-jack 
having a single-start screw of lead 5 mm. 
The effort is applied at the end of an arm of 
effective length 320 mm from the centre of 
the screw. Calculate the effort required if the 
efficiency at this load is 25%. [16.91 N]

20.5 Gear trains

A simple gear train is used to transmit rotary motion 
and can change both the magnitude and the line of  
action of a force, hence it is a simple machine. The gear 
train shown in Figure 20.4 consists of spur gears and 
has an effort applied to one gear, called the driver, and 
a load applied to the other gear, called the follower. 

In such a system, the teeth on the wheels are so 
spaced that they exactly fill the circumference with a 
whole number of identical teeth, and the teeth on the 
driver and follower mesh without interference. Under 
these conditions, the number of teeth on the driver and 

Screw 
lead 

L 

Table 

Load 

Effective radius 
r 

Ber 

Body 
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follower are in direct proportion to the circumference 
of these wheels, i.e.

 

number of teeth on driver
number of teeth on follower

circumference of driver
circumference of follower

=

 (20.5)

If there are, say, 40 teeth on the driver and 20 teeth on 
the follower then the follower makes two revolutions 
for each revolution of the driver. In general:

number of revolutions made by driver
number of revolutions made by the follower

number of teeth on follower
number of teeth on driver

=

 (20.6)

It follows from equation (20.6) that the speeds of the 
wheels in a gear train are inversely proportional to the 
number of teeth. The ratio of the speed of the driver 
wheel to that of the follower is the movement ratio, i.e.

 Movement ratio 
speed of driver

speed of follower
teeth on follower
teeth on driver

= =  

 (20.7)

When the same direction of rotation is required on both 
the driver and the follower an idler wheel is used as 
shown in Figure 20.5.

Figure 20.5

Let the driver, idler, and follower be A, B and C,  
respectively, and let N be the speed of rotation and T be 
the number of teeth. Then from equation (20.7),

  
N
N

T
T

B

A

A

B
=  or N N T

TA B
B

A
=  and 

N
N

T
T

C

B

B

C
=  or N N T

TC B
B

C
=

Thus,      
A
C

N
N

N T
T

N T
T

T
T

T
T

T
T

speed of 
speed of 

A

C

B
B

A

B
B

C

B

A

C

B

C

A

= =

= × =

 

This shows that the movement ratio is independent 
of the idler, only the direction of the follower is being  
altered.

A compound gear train is shown in Figure 20.6, in 
which gear wheels B and C are fixed to the same shaft 
and hence NB = NC 

Figure 20.6

From equation (20.7), N
N

T
T

A

B

B

A
=  i.e. N N T

TB A
A

B
= ×  

Also,   
N
N

T
T

D

C

C

D
=  i.e. N N T

TD C
C

D
= ×  

But NB = NC and      N N T
TD B

C

D
= ×   

therefore,       N N T
T

T
TD A

A

B

C

D
= × ×  (20.8)

For compound gear trains having, say, P gear wheels,

   N N T
T

T
T

T
T

T
T

......P A
A

B

C

D

E

F

O

P
= × × × ×  

from which,

movement ratio = 
N
N

T
T

T
T

T
T

......A

P

B

A

D

C

P

O
== ×× ××

Figure 20.4

Driver Follower 

Driver (A) Idler (B) Follower (e) 

A C 

.B 

D 
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Problem 7. A driver gear on a shaft of a motor 
has 35 teeth and meshes with a follower having 
98 teeth. If the speed of the motor is 1400 revolu-
tions per minute, find the speed of rotation of the 
follower.

From equation (20.7),

  
speed of driver

speed of follower
teeth on follower
teeth on driver

=  

i.e. 
1400

speed of follower  = 98
35

Hence, speed of follower = 
1400 35

98
×

 = 500 rev/min

Problem 8. A compound gear train similar to 
that shown in Figure 20.6 consists of a driver gear 
A, having 40 teeth, engaging with gear B, having 
160 teeth. Attached to the same shaft as B, gear C 
has 48 teeth and meshes with gear D on the output 
shaft, having 96 teeth. Determine (a) the move-
ment ratio of this gear system and (b) the efficiency 
when the force ratio is 6.

(a)  From equation (20.8), the speed of D 

 = A T
T

T
T

speed of A

B

C

D
× ×

  From equation (20.7), movement ratio  

= 
A
D

T
T

T
T

speed of
speed of

B

A

D

C
= ×  = 

160
40

96
48

×  = 8

(b)  The efficiency of any simple machine  

                               = force ratio
movement ratio

100%×

 Thus,     efficiency = 6
8  × 100 = 75%

Now try the following Practice Exercise

Practice Exercise 112  Further problems on 
gear trains 

1.  The driver gear of a gear system has 28 teeth 
and meshes with a follower gear having 168 
teeth. Determine the movement ratio and the 
speed of the follower when the driver gear 
rotates at 60 revolutions per second.

 [6, 10 rev/s]

2.  A compound gear train has a 30-tooth driver 
gear A, meshing with a 90-tooth follower 
gear B. Mounted on the same shaft as B and 
attached to it is a gear C with 60 teeth, mesh-
ing with a gear D on the output shaft having 
120 teeth. Calculate the movement and force 
ratios if the overall efficiency of the gears is 
72%.  [6, 4.32] 

3.  A compound gear train is as shown in Figure 
20.6. The movement ratio is 6 and the num-
bers of teeth on gears A, C and D are 25, 100 
and 60, respectively. Determine the number 
of teeth on gear B and the force ratio when 
the efficiency is 60%. [250, 3.6]

20.6 Levers

A lever can alter both the magnitude and the line of ac-
tion of a force and is thus classed as a simple machine. 
There are three types or orders of levers, as shown in 
Figure 20.7. 

Figure 20.7

Load 
F, 

a b 
Effort 
F. 

(al Fulcrum 

(b) Fulcrum 

(c) Fulcrum 

Effort 
Load F. 
F, 

Effort 
F. Load 

F, 
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A lever of the first order has the fulcrum placed 
between the effort and the load, as shown in Figure 
20.7(a).

A lever of the second order has the load placed be-
tween the effort and the fulcrum, as shown in Figure 
20.7(b).

A lever of the third order has the effort applied 
between the load and the fulcrum, as shown in Figure 
20.7(c).

Problems on levers can largely be solved by apply-
ing the principle of moments (see Chapter 6). Thus for 
the lever shown in Figure 20.7(a), when the lever is in 
equilibrium, 
  anticlockwise moment = clockwise moment
i.e.           a × Fl = b × Fe

Thus, force ratio F
F

b
a

distance of effort from fulcrum
distance of load from fulcrum

l

e
== ==

==

 

Problem 9. The load on a first-order lever, 
similar to that shown in Figure 20.7(a), is 1.2 kN. 
Determine the effort, the force ratio and the move-
ment ratio when the distance between the fulcrum 
and the load is 0.5 m and the distance between the 
fulcrum and effort is 1.5 m. Assume the lever is 
100% efficient.

Applying the principle of moments, for equilibrium:
  anticlockwise moment = clockwise moment
i.e.   1200 N × 0.5 m = effort × 1.5 m

Hence,   effort = 
1200 0.5

1.5
×

 = 400 N

     force ratio = FF
l

e
 = 1200

400  = 3

Alternatively, force ratio = b
a  = 1 5

0 5
.
.  = 3

This result shows that to lift a load of, say, 300 N, an 
effort of 100 N is required.
Since, from equation (20.3),  

    efficiency = force ratio
movement ratio

100%×  

then, movement ratio  = 
force ratio
efficiency

100%×   

= 3
100  × 100 = 3

This result shows that to raise the load by, say, 100 mm, 
the effort has to move 300 mm.

Problem 10. A second-order lever, AB, is in a 
horizontal position. The fulcrum is at point C. An 
effort of 60 N applied at B just moves a load at 
point D, when BD is 0.75 m and BC is 1.25 m.  
Calculate the load and the force ratio of the lever.

A second-order lever system is shown in Figure 
20.7(b). Taking moments about the fulcrum as the load 
is just moving, gives:

  anticlockwise moment = clockwise moment

i.e.     60 N × 1.25 m = load × 0.75 m

Thus,      load = 
60 1.25

0.75
×

 = 100 N

From equation (20.1),  

  force ratio  = load
effort  = 100

60  = 1.67

Alternatively,  

 force ratio  = distance of effort from fulcrum
distance of load from fulcruum

  

= 1 25
0 75
.
.  = 1.67

Now try the following Practice Exercises

Practice Exercise 113  Further problems  
on levers

1.  In a second-order lever system, the force  
ratio is 2.5. If the load is at a distance of  
0.5 m from the fulcrum, find the distance  
that the effort acts from the fulcrum if  
losses are negligible. [1.25 m] 

2.  A lever AB is 2 m long and the fulcrum is at 
a point 0.5 m from B. Find the effort to be 
applied at A to raise a load of 0.75 kN at B 
when losses are negligible. [250 N]

3.  The load on a third-order lever system is at a 
distance of 750 mm from the fulcrum and the 
effort required to just move the load is 1 kN 
when applied at a distance of 250 mm from 
the fulcrum. Determine the value of the load 
and the force ratio if losses are negligible.

 [333.3 N, 1/3]
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Practice Exercise 114  Short-answer 
questions on simple 
machines

 1. State what is meant by a simple machine.
 2. Define force ratio.
 3. Define movement ratio.
 4.  Define the efficiency of a simple machine 

in terms of the force and movement ratios.
 5.  State briefly why the efficiency of a simple 

machine cannot reach 100%.
 6.  With reference to the law of a simple ma-

chine, state briefly what is meant by the 
term ‘limiting force ratio’.

 7. Define limiting efficiency.
 8.  Explain why a four-pulley system has a 

force ratio of 4, when losses are ignored.
 9.  Give the movement ratio for a screw-jack 

in terms of the effective radius of the effort 
and the screw lead.

10. Explain the action of an idler gear.
11.  Define the movement ratio for a two-gear 

system in terms of the teeth on the wheels.
12.  Show that the action of an idler wheel  

does not affect the movement ratio of a 
gear system.

13.  State the relationship between the speed of 
the first gear and the speed of the last gear 
in a compound train of four gears, in terms 
of the teeth on the wheels.

14.  Define the force ratio of a first-order lever 
system in terms of the distances of the load 
and effort from the fulcrum.

15.  Use sketches to show what is meant by:  
(a) a first-order (b) a second-order (c) a 
third-order lever system. Give one practi-
cal use for each type of lever.

Practice Exercise 115  Multiple-choice 
questions on simple 
machines 

(Answers on page 336)

A simple machine requires an effort of 250 N 
moving through 10 m to raise a load of 1000 N 

through 2 m. Use this data to find the correct an-
swers to questions 1 to 3, selecting these answers 
from: 
(a)  0.25  (b)  4
(c)  80%  (d)  20%
(e)  100   (f)  5
(g)  100%  (h)  0.2
 (i)   25%

 1. Find the force ratio.

 2. Find the movement ratio.

 3. Find the efficiency.

  The law of a machine is of the form  
Fe = aFl + b. An effort of 12 N is required to 
raise a load of 40 N and an effort of 6 N is 
required to raise a load of 16 N. The move-
ment ratio of the machine is 5. Use this data 
to find the correct answers to questions 4 to 
6, selecting these answers from:

 (a)  80%  (b)  4 
 (c)  2.8  (d)  0.25

 (e)  1
2 8.   (f)  25%

 (g)  100% (h)  2
  (i)  25%
 4. Determine the constant ‘a’.
 5. Find the limiting force ratio.
 6. Find the limiting efficiency.

 7. Which of the following statements is false?
 (a)   A single-pulley system changes the 

line of action of the force but does not 
change the magnitude of the force, 
when losses are neglected.

 (b)   In a two-pulley system, the force ratio 

is 1
2  when losses are neglected.

 (c)   In a two-pulley system, the movement 
ratio is 2.

 (d)   The efficiency of a two-pulley system 
is 100% when losses are neglected.

 8.  Which of the following statements con-
cerning a screw-jack is false?

 (a)   A screw-jack changes both the line of 
action and the magnitude of the force.

 (b)   For a single-start thread, the distance 
moved in 5 revolutions of the table is  
5�, where � is the lead of the screw.
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 (c)   The distance moved by the effort is 
2πr, where r is the effective radius of 
the effort.

 (d)  The movement ratio is given by 
�
r2

5
π

 9.  In a simple gear train, a follower has 
50 teeth and the driver has 30 teeth. The 
movement ratio is:

 (a)  0.6  (b)  20
 (c)  1.67  (d) 80

10.  Which of the following statements is  
true?

 (a)   An idler wheel between a driver and a 
follower is used to make the direction 
of the follower opposite to that of the 
driver.

 (b)   An idler wheel is used to change the 
movement ratio.

 (c)   An idler wheel is used to change the 
force ratio.

 (d)   An idler wheel is used to make the  
direction of the follower the same as 
that of the driver.

11.  Which of the following statements is false?
 (a)   In a first-order lever, the fulcrum is  

between the load and the effort.
 (b)   In a second-order lever, the load is  

between the effort and the fulcrum.
 (c)   In a third-order lever, the effort is ap-

plied between the load and the fulcrum.
 (d)   The force ratio for a first-order lever 

system is given by:

     distance of load from fulcrum
distance of effort from fulcruum

12.  In a second-order lever system, the load  
is 200 mm from the fulcrum and the effort 
is 500 mm from the fulcrum. If losses are 
neglected, an effort of 100 N will raise a 
load of:

 (a)  100 N  (b)  250 N 
 (c)  400 N  (d)  40 N

For fully worked solutions to each of the problems in Practice Exercises 109 to 115 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Assume, where necessary, that the acceleration due to 
gravity, g = 9.81 m/s2

 1. The material of a brake is being tested and it is 
found that the dynamic coefficient of friction 
between the material and steel is 0.90. Calcu-
late the normal force when the frictional force is  
0.630 kN. (4)

 2.  A mass of 10 kg rests on a plane, which is in-
clined at 30° to the horizontal. The coefficient of 
friction between the mass and the plane is 0.6. 
Determine the magnitude of a force, applied par-
allel to and up the plane, which will just move the 
mass up the plane. (10)

 3. If in Problem 2, the force required to just move 
the mass up the plane, is applied horizontally, 
what will be the minimum value of this force?
 (10)

 4. A train travels around a curve of radius 400 m. 
If the horizontal thrust on the outer rail is to be 
1/30th the weight of the train, what is the velocity 
of the train (in km/h)? It may be assumed that the 
inner and outer rail rails are on the same level and 
that the inner rail takes no horizontal thrust. (6)

 5. A conical pendulum of length 2.5 m rotates in a 
horizontal circle of diameter 0.6 m. Determine its 
angular velocity. (6)

 6. Determine the time of oscillation for a simple 
pendulum of length 1.5 m. (6)

 7. A simple machine raises a load of 120 kg through 
a distance of 1.2 m. The effort applied to the ma-
chine is 150 N and moves through a distance of 
12 m. Taking g as 10 m/s2, determine the force 
ratio, movement ratio and efficiency of the  
machine. (6)

 8. A load of 30 kg is lifted by a three-pulley system 
and the applied effort is 140 N. Calculate, taking 
g to be 9.8 m/s2, (a) the force ratio (b) the move-
ment ratio (c) the efficiency of the system. (5)

 9. A screw-jack is being used to support the axle of a 
lorry, the load on it being 5.6 kN. The screw jack 
has an effort of effective radius 318.3 mm and a 
single-start square thread, having a lead of 5 mm. 
Determine the efficiency of the jack if an effort of 
70 N is required to raise the car axle. (6)

10. A driver gear on a shaft of a motor has 32 teeth 
and meshes with a follower having 96 teeth. If 
the speed of the motor is 1410 revolutions per 
minute, find the speed of rotation of the follower.
 (4)

11. The load on a first-order lever is 1.5 kN. Deter-
mine the effort, the force ratio and the movement 
ratio when the distance between the fulcrum and 
the load is 0.4 m and the distance between the 
fulcrum and effort is 1.6 m. Assume the lever is 
100% efficient. (7)

Revision Test 7 Friction, motion in a circle, simple harmonic motion and simple machines

This Revision Test covers the material contained in Chapters 17 to 20. The marks for each question are shown in 
brackets at the end of each question.

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 7,  
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Chapter 21

Heat energy and transfer

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

substance. Heat and temperature are thus not the same 
thing. For example, twice the heat energy is needed to 
boil a full container of water than half a container – that 
is, different amounts of heat energy are needed to cause 

21.1 Introduction

Heat is a form of energy and is measured in joules.
Temperature is the degree of hotness or coldness of a 

Why it is important to understand: Heat energy and transfer
This chapter defines sensible and latent heat and provides the appropriate formulae to calculate the 
amount of energy required to convert a solid to a gas and vice-versa, and also for other combinations 
of solids, liquids and gases. This information is often required by engineers if they are required to 
design an artefact (say) to convert ice to steam via the state of liquid water.  An example of a household 
requirement of when this type of calculation is required is that of the simple domestic kettle. When the 
designer is required to design a domestic electric kettle, it is important that the design is such that the 
powering arrangement is (just) enough to boil the required amount of water in a reasonable time. If the 
powering were too low, you may have great difficulty in boiling the water when the kettle is full.  Similar 
calculations are required for large water containers, which are required to boil large quantities of water 
for other uses, including for kitchens in schools, to make tea/coffee, etc., and for large hotels, which 
have many uses for hot water.  The chapter also describes the three main methods of heat transfer, 
namely conduction, convection and radiation, together with their uses. All of this is fundamental in the 
design of heat engines, compressors, refrigerators, etc.

At the end of this chapter you should be able to:

• distinguish between heat and temperature
• appreciate that temperature is measured on the Celsius or the thermodynamic scale
• convert temperatures from Celsius into kelvin and vice versa
• recognise several temperature measuring devices
• define specific heat capacity, c and recognise typical values
• calculate the quantity of heat energy Q using Q = mc(t2 – t1)
• understand change of state from solid to liquid to gas, and vice versa
• distinguish between sensible and latent heat
• define specific latent heat of fusion
• define specific latent heat of vaporisation
• recognise typical values of latent heats of fusion and vaporisation
• calculate quantity of heat Q using Q = mL
• describe the principle of operation of a simple refrigerator
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*Anders Celsius (27 November 1701–25 April 1744) was a 
Swedish astronomer that went on to propose the Celsius tem-
perature scale, which takes his name, in 1742. To find out more 
go to www.routledge.com/cw/bird
*William Thomson, 1st Baron Kelvin (26 June 1824–17  
December 1907) was a mathematical physicist and engineer. 
Knighted by Queen Victoria for his work on the transatlantic 
telegraph project, Kelvin also had extensive maritime interests 
and was most noted for his work on the mariner’s compass. To 
find out more go to www.routledge.com/cw/bird

an equal rise in the temperature of different amounts of 
the same substance.

Temperature is measured either (i) on the Celsius* 
(°C) scale (formerly Centigrade), where the tem-
perature at which ice melts, i.e. the freezing point of  
water, is taken as 0°C and the point at which water boils  
under normal atmospheric pressure is taken as 100°C, 
or (ii) on the thermodynamic scale, in which the unit 
of temperature is the kelvin* (K). The Kelvin scale 

uses the same temperature interval as the Celsius scale 
but as its zero takes the ‘absolute zero of temperature’ 
which is at about – 273°C. Hence,
 kelvin temperature = degree Celsius + 273
i.e.            K = (°C) + 273

Thus, for example, 0°C = 273 K, 25°C = 298 K and 
100°C = 373 K

Problem 1. Convert the following temperatures 
into the Kelvin scale:  
(a)  37°C (b)  – 28°C

From above, kelvin temperature = degree Celsius + 273
(a) 37°C corresponds to a kelvin temperature of 

 37 + 273, i.e. 310 K
(b) –28°C corresponds to a kelvin temperature of  

–28 + 273, i.e. 245 K

Problem 2. Convert the following temperatures 
into the Celsius scale:
(a)  365 K (b)  213 K

From above, K = (°C) + 273
Hence, degree Celsius = kelvin temperature –273
(a) 365 K corresponds to 365 – 273, i.e. 92°C
(b) 213 K corresponds to 213 – 273, i.e. – 60°C

Now try the following Practice Exercise

Practice Exercise 116  Further problems on 
temperature scales 

1.  Convert the following temperatures into the 
Kelvin scale:

 (a) 51°C  (b)  –78°C
 (c) 183°C
 [(a) 324 K   (b) 195 K   (c) 456 K]

2.  Convert the following temperatures into the 
Celsius scale:

 (a)  307 K  (b)  237 K
 (c)  415 K
 [(a) 34°C   (b) –36°C   (c) 142°C] 

21.2  The measurement of  
temperature

A thermometer is an instrument that measures 
temperature. Any substance that possesses one or more 

http://www.routledge.com/cw/bird
http://www.routledge.com/cw/bird
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properties that vary with temperature can be used to 
measure temperature. These properties include changes in 
length, area or volume, electrical resistance or in colour. 
Examples of temperature measuring devices include:

 (i) liquid-in-glass thermometer, which uses the 
expansion of a liquid with increase in tempera-
ture as its principle of operation,

 (ii) thermocouples, which use the e.m.f. set up, 
when the junction of two dissimilar metals is 
heated,

 (iii) resistance thermometer, which uses the change 
in electrical resistance caused by temperature 
change, and

 (iv) pyrometers, which are devices for measuring 
very high temperatures, using the principle that 
all substances emit radiant energy when hot, the 
rate of emission depending on their temperature.

Each of these temperature measuring devices, together 
with others, are described in Chapter 26, page 312.

21.3 Specific heat capacity

The specific heat capacity of a substance is the quan-
tity of heat energy required to raise the temperature of 
1 kg of the substance by 1°C. The symbol used for spe-
cific heat capacity is c and the units are J/(kg °C) or  
J/(kg K). (Note that these units may also be written as  
J kg–1 °C–1 or J kg–1 K–1.)
Some typical values of specific heat capacity for the 
range of temperature 0°C to 100°C include:

Water 4190 J/(kg °C)

Ice 2100 J/(kg °C)

Aluminium 950 J/(kg °C)

Copper 390 J/(kg °C)

Iron 500 J/(kg °C)

Lead 130 J/(kg °C)

Hence to raise the temperature of 1 kg of iron by 1°C 
requires 500 J of energy, to raise the temperature of  
5 kg of iron by 1°C requires (500 × 5) J of energy, and 
to raise the temperature of 5 kg of iron by 40°C re-
quires (500 × 5 × 40) J of energy, i.e. 100 kJ.

In general, the quantity of heat energy, Q, required 
to raise a mass m kg of a substance with a specific heat 
capacity of c J/(kg °C), from temperature t1 °C to t2 °C 
is given by:

Q = mc(t2 – t1) joules

Problem 3. Calculate the quantity of heat 
required to raise the temperature of 5 kg of water 
from 0°C to 100°C. Assume the specific heat ca-
pacity of water is 4200 J/(kg °C).

Quantity of heat energy, 
  Q = mc(t2 – t1)
  = 5 kg × 4200 J/(kg °C) × (100 – 0)°C
  = 5 × 4200 × 100  
  = 2100000 J  or  2100 kJ  or  2.1 MJ

Problem 4. A block of cast iron having a mass of 
10 kg cools from a temperature of 150°C to 50°C. 
How much energy is lost by the cast iron?  Assume 
the specific heat capacity of iron is 500 J/(kg °C).

Quantity of heat energy,  
   Q = mc(t2 – t1)
   = 10 kg × 500 J/(kg °C) × (50 – 150)°C
  = 10 × 500 × (–100)
       = – 500000 J or – 500 kJ or – 0.5 MJ
(Note that the minus sign indicates that heat is given 
out or lost.)

Problem 5. Some lead having a specific heat 
capacity of 130 J/(kg °C) is heated from 27°C to 
its melting point at 327°C. If the quantity of heat 
required is 780 kJ, determine the mass of the lead.

Quantity of heat, Q = mc(t2 – t1), hence, 

      780 × 103 J = m × 130 J/(kg °C) × (327 – 27)°C 

i.e.            780000 = m × 130 × 300

from which, mass, m = 
×

780000
130 300

kg = 20 kg

Problem 6. 273 kJ of heat energy are required to 
raise the temperature of 10 kg of copper from 15°C 
to 85°C. Determine the specific heat capacity of 
copper.

Quantity of heat, Q = mc(t2 – t1), hence:

     273 × 103 J = 10 kg × c × (85 – 15)°C
where c is the specific heat capacity, 

i.e.           273000 = 10 × c × 70

from which, specific heat capacity, c  = 
×

273000
10 70

  

= 390 J/(kg °C)
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Problem 7. 5.7 MJ of heat energy are supplied to 
30 kg of aluminium that is initially at a temperature 
of 20°C. If the specific heat capacity of aluminium 
is 950 J/(kg°C), determine its final temperature.

Quantity of heat,  
           Q = mc(t2 – t1), hence, 
 5.7 × 106 J = 30 kg × 950 J/(kg °C) × (t2 – 20)°C 

from which, (t2 – 20) = 
×
×

5.7 10
30 950

6
 = 200

Hence, the final temperature, t2  = 200 + 20  
= 220°C

Problem 8. A copper container of mass 500 g 
contains 1 litre of water at 293 K. Calculate the 
quantity of heat required to raise the temperature of 
the water and container to boiling point, assuming 
there are no heat losses. Assume that the specific 
heat capacity of copper is 390 J/(kg K), the specific 
heat capacity of water is 4.2 kJ/(kg K) and 1 litre of 
water has a mass of 1 kg.

Heat is required to raise the temperature of the water, 
and also to raise the temperature of the copper container.
For the water: m = 1 kg, t1 = 293 K,
              t2 = 373 K (i.e. boiling point) and
               c = 4.2 kJ/(kg K)
Quantity of heat required for the water is given by:

     Qw = mc(t2 – t1) = (1 kg)








4.2 kJ

kg K (373 – 293) K

                        = 4.2 × 80 kJ
i.e. Qw = 336 kJ
For the copper container: m = 500 g = 0.5 kg,
      t1 = 293 K,
      t2 = 373 K  and   
        c = 390 J/(kg K)
          = 0.39 kJ/(kg K)
Quantity of heat required for the copper container is 
given by:

 QC = mc(t2 – t1) = (0.5 kg)(0.39 kJ/(kg K)(80 K)

i.e. QC = 15.6 kJ

Total quantity of heat required, Q  = Qw + QC  
= 336 + 15.6  
= 351.6 kJ

Now try the following Practice Exercise

Practice Exercise 117  Further problems 
on specific heat 
capacity 

1.  Determine the quantity of heat energy  
(in megajoules) required to raise the tem-
perature of 10 kg of water from 0°C to 50°C.  
Assume the specific heat capacity of water  
is 4200 J/(kg °C). [2.1 MJ]

2.  Some copper, having a mass of 20 kg,  
cools from a temperature of 120°C to 70°C. 
If the specific heat capacity of copper is  
390 J/(kg °C), how much heat energy is lost 
by the copper ? [390 kJ]

3.  A block of aluminium having a specific 
heat capacity of 950 J/(kg °C) is heated 
from 60°C to its melting point at 660°C. If  
the quantity of heat required is 2.85 MJ, de-
termine the mass of the aluminium block. 

 [5 kg]  

4.  20.8 kJ of heat energy is required to raise 
the temperature of 2 kg of lead from 16°C to 
96°C. Determine the specific heat capacity 
of lead. [130 J/(kg °C)]

5.  250 kJ of heat energy is supplied to 10 kg 
of iron which is initially at a temperature of 
15°C. If the specific heat capacity of iron is 
500 J/(kg °C) determine its final tempera-
ture. [65°C]

21.4 Change of state

A material may exist in any one of three states – solid, 
liquid or gas. If heat is supplied at a constant rate to 
some ice initially at, say, –30°C, its temperature rises 
as shown in Figure 21.1. Initially the temperature in-
creases from –30°C to 0°C as shown by the line AB. It 
then remains constant at 0°C for the time BC required 
for the ice to melt into water.

When melting commences the energy gained by 
continual heating is offset by the energy required for 
the change of state and the temperature remains con-
stant even though heating is continued. When the ice 
is completely melted to water, continual heating raises 
the temperature to 100°C, as shown by CD in Figure 
21.1. The water then begins to boil and the temperature 
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again remains constant at 100°C, shown as DE, until all 
the water has vaporised.

Continual heating raises the temperature of the 
steam as shown by EF in the region where the steam is 
termed superheated.

Changes of state from solid to liquid or liquid to gas 
occur without change of temperature and such changes 
are reversible processes. When heat energy flows to or 
from a substance and causes a change of temperature, 
such as between A and B, between C and D and be-
tween E and F in Figure 21.1, it is called sensible heat 
(since it can be ‘sensed’ by a thermometer).

Heat energy which flows to or from a substance 
while the temperature remains constant, such as be-
tween B and C and between D and E in Figure 21.1, is 
called latent heat (latent means concealed or hidden).

Problem 9. Steam initially at a temperature of 
130°C is cooled to a temperature of 20°C below 
the freezing point of water, the loss of heat energy 
being at a constant rate. Make a sketch, and briefly 
explain, the expected temperature/time graph rep-
resenting this change.

A temperature/time graph representing the change 
is shown in Figure 21.2. Initially steam cools until it 
reaches the boiling point of water at 100°C. Tempera-
ture then remains constant, i.e. between A and B, even 
though it is still giving off heat (i.e. latent heat). When 
all the steam at 100°C has changed to water at 100°C 
it starts to cool again until it reaches the freezing point 
of water at 0°C. From C to D the temperature again 
remains constant (i.e. latent heat), until all the water 
is converted to ice. The temperature of the ice then  
decreases as shown.

Figure 21.2

Now try the following Practice Exercise

Practice Exercise 118  A further problem 
on change of state 

1.  Some ice, initially at – 40°C, has heat sup-
plied to it at a constant rate until it becomes 
superheated steam at 150°C. Sketch a typi-
cal temperature/time graph expected and use 
it to explain the difference between sensible 
and latent heat.

 [Similar to Figure 21.1]

21.5  Latent heats of fusion and  
vaporisation

The specific latent heat of fusion is the heat required 
to change 1 kg of a substance from the solid state to 
the liquid state (or vice versa) at constant temperature.
The specific latent heat of vaporisation is the heat re-
quired to change 1 kg of a substance from a liquid to a 
gaseous state (or vice versa) at constant temperature. 
The units of the specific latent heats of fusion and  
vaporisation are J/kg, or more often kJ/kg, and some 
typical values are shown in Table 21.1 on page 258.
The quantity of heat Q supplied or given out during a 
change of state is given by:

Q = mL

where m is the mass in kilograms and L is the specific 
latent heat. 

Figure 21.1
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Thus, for example, the heat required to convert 10 kg 
of ice at 0°C to water at 0°C is given by 

10 kg × 335 kJ/kg = 3350 kJ or 3.35 MJ

Besides changing temperature, the effects of supplying 
heat to a material can involve changes in dimensions, 
as well as in colour, state and electrical resistance. 
Most substances expand when heated and contract 
when cooled, and there are many practical applications 
and design implications of thermal movement (see 
Chapter 22).

Problem 10. How much heat is needed to melt 
completely 12 kg of ice at 0°C ? Assume the latent 
heat of fusion of ice is 335 kJ/kg.

Quantity of heat required,  Q = mL = 12 kg × 335 kJ/kg

        = 4020 kJ   or   4.02 MJ

Problem 11. Calculate the heat required to con-
vert 5 kg of water at 100°C to superheated steam 
at 100°C. Assume the latent heat of vaporisation of 
water is 2260 kJ/kg.

Quantity of heat required, Q = mL = 5 kg × 2260 kJ/kg
       = 11300 kJ   or  11.3 MJ

Problem 12. Determine the heat energy needed 
to convert 5 kg of ice initially at – 20°C completely 
to water at 0°C. Assume the specific heat capacity

of ice is 2100 J/(kg °C) and the specific latent heat 
of fusion of ice is 335 kJ/kg.

Quantity of heat energy needed, Q = sensible heat + 
 latent heat. 

The quantity of heat needed to raise the temperature of 
ice from –20°C to 0°C, i.e. sensible heat, 

  Q1 = mc(t2 – t1) 

        = 5 kg × 2100 J/(kg°C) × (0 – – 20)°C
      = (5 × 2100 × 20) J = 210 kJ

The quantity of heat needed to melt 5 kg of ice at 0°C, 

i.e. the latent heat, Q2 = mL 
             = 5 kg × 335 kJ/kg
             = 1675 kJ

Total heat energy needed, Q = Q1 + Q2 
          = 210 + 1675 = 1885 kJ

Problem 13. Calculate the heat energy required 
to convert completely 10 kg of water at 50°C into 
steam at 100°C, given that the specific heat capac-
ity of water is 4200 J/(kg °C) and the specific latent 
heat of vaporisation of water is 2260 kJ/kg.

Quantity of heat required = sensible heat + latent heat.

Sensible heat,  
  Q1 = mc(t2 – t1) 

       = 10 kg × 4200 J/(kg °C) × (100 – 50)°C

        = 2100 kJ

Latent heat, Q2 = mL = 10 kg × 2260 kJ/kg 

         = 22600 kJ

Total heat energy required, Q = Q1 + Q2 

         = (2100 + 22600) kJ

         = 24700 kJ  or  24.70 MJ

Problem 14. Determine the amount of heat 
energy needed to change 400 g of ice, initially at 
–20°C, into steam at 120°C. Assume the following: 
latent heat of fusion of ice = 335 kJ/kg, latent heat 
of vaporisation of water = 2260 kJ/kg, specific 
heat capacity of ice = 2.14 kJ/(kg °C), specific heat 
capacity of water = 4.2 kJ/(kg °C) and specific heat 
capacity of steam = 2.01 kJ/(kg °C).

Table 21.1

Latent heat  
of fusion   
(kJ/kg)

Melting  
point (°C)

Mercury
Lead
Silver 
Ice
Aluminium

11.8
   22
 100
 335
 387

– 39
 327
 957
     0
 660

Latent heat of 
vaporisation  
(kJ/kg)                       

Boiling  
point (°C)

Oxygen
Mercury
Ethyl alcohol
Water

  214
  286
  857
2257

– 183
   357
     79
   100
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The energy needed is determined in five stages:

 (i)  Heat energy needed to change the temperature of 
ice from – 20°C to 0°C is given by:

  Q1 = mc(t2 – t1) 
        = 0.4 kg × 2.14 kJ/(kg °C) × (0 – – 20)°C 
        = 17.12 kJ
 (ii)  Latent heat needed to change ice at 0°C into  

water at 0°C is given by:
  Q2 = mLf = 0.4 kg × 335 kJ/kg = 134 kJ
 (iii) Heat energy needed to change the temperature 

of water from 0°C (i.e. melting point) to 100°C  
(i.e. boiling point) is given by:

  Q3 = mc(t2 – t1) 
        = 0.4 kg × 4.2 kJ/(kg °C) × 100°C 
        = 168 kJ
 (iv)  Latent heat needed to change water at 100°C into 

steam at 100°C is given by:
  Q4 = mLv = 0.4 kg × 2260 kJ/kg = 904 kJ
  (v)  Heat energy needed to change steam at 100°C 

into steam at 120°C is given by:
  Q5 = mc(t1 – t2) 
        = 0.4 kg × 2.01 kJ/(kg °C) × 20°C 
        = 16.08 kJ
  Total heat energy needed,  

 Q = Q1 + Q2 + Q3 + Q4 + Q5

       = 17.12 + 134 + 168 + 904 + 16.08
       = 1239.2 kJ

Now try the following Practice Exercise

Practice Exercise 119  Further problems 
on the latent heats 
of fusion and 
vaporisation

1.  How much heat is needed to melt completely  
25 kg of ice at 0°C. Assume the specific  
latent heat of fusion of ice is 335 kJ/kg. 

 [8.375 MJ]

2.  Determine the heat energy required to change 
8 kg of water at 100°C to superheated steam 
at 100°C. Assume the specific latent heat of 
vaporisation of water is 2260 kJ/kg.

 [18.08 MJ]

3.  Calculate the heat energy required to convert 
10 kg of ice initially at – 30°C completely 
into water at 0°C. Assume the specific heat 
capacity of ice is 2.1 kJ/(kg °C) and the spe-
cific latent heat of fusion of ice is 335 kJ/kg.

 [3.98 MJ] 

4.  Determine the heat energy needed to convert 
completely 5 kg of water at 60°C to steam  
at 100°C, given that the specific heat ca-
pacity of water is 4.2 kJ/(kg °C) and the  
specific latent heat of vaporisation of water is  
2260 kJ/kg. [12.14 MJ]

21.6 A simple refrigerator

The boiling point of most liquids may be lowered if  
the pressure is lowered. In a simple refrigerator a  
working fluid, such as ammonia or freon, has the  
pressure acting on it reduced. The resulting lower-
ing of the boiling point causes the liquid to vaporise. 
In vaporising, the liquid takes in the necessary latent  
heat from its surroundings, i.e. the freezer, which  
thus becomes cooled. The vapour is immediately re-
moved by a pump to a condenser that is outside of the 
cabinet, where it is compressed and changed back into 
a liquid, giving out latent heat. The cycle is repeated 
when the liquid is pumped back to the freezer to be 
vaporised.

21.7  Conduction, convection  
and radiation

Heat may be transferred from a hot body to a  
cooler body by one or more of three methods, these 
being: (a) by conduction (b) by convection or (c) by 
radiation.

Conduction
Conduction is the transfer of heat energy from one 
part of a body to another (or from one body to another) 
without the particles of the body moving.

Conduction is associated with solids. For example, 
if one end of a metal bar is heated, the other end will 
become hot by conduction. Metals and metallic alloys 
are good conductors of heat, whereas air, wood, plastic, 
cork, glass and gases are examples of poor conductors 
(i.e. they are heat insulators).
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Practical applications of conduction include:

 (i) A domestic saucepan or dish conducts heat from 
the source to the contents. Also, since wood and 
plastic are poor conductors of heat they are used 
for saucepan handles.

 (ii) The metal of a radiator of a central heating sys-
tem conducts heat from the hot water inside to 
the air outside.

Convection
Convection is the transfer of heat energy through a 
substance by the actual movement of the substance it-
self. Convection occurs in liquids and gases, but not 
in solids. When heated, a liquid or gas becomes less 
dense. It then rises and is replaced by a colder liquid 
or gas and the process repeats. For example, electric 
kettles and central heating radiators always heat up at 
the top first.

Examples of convection are:

 (i) Natural circulation hot water heating systems 
depend on the hot water rising by convection to 
the top of the house and then falling back to the 
bottom of the house as it cools, releasing the heat 
energy to warm the house as it does so.

 (ii) Convection currents cause air to move and there-
fore affect climate.

 (iii) When a radiator heats the air around it, the hot 
air rises by convection and cold air moves in to 
take its place.

 (iv) A cooling system in a car radiator relies on con-
vection.

 (v) Large electrical transformers dissipate waste 
heat to an oil tank. The heated oil rises by con-
vection to the top, then sinks through cooling 
fins, losing heat as it does so.

 (vi) In a refrigerator, the cooling unit is situated near 
the top. The air surrounding the cold pipes be-
come heavier as it contracts and sinks towards 
the bottom. Warmer, less dense air is pushed  
upwards and in turn is cooled. A cold convection 
current is thus created.

Radiation
Radiation is the transfer of heat energy from a hot 
body to a cooler one by electromagnetic waves. Heat 
radiation is similar in character to light waves – it  
travels at the same speed and can pass through a  
vacuum – except that the frequency of the waves is  
different. Waves are emitted by a hot body, are trans-
mitted through space (even a vacuum) and are not  
detected until they fall on to another body. Radiation  

is reflected from shining, polished surfaces but ab-
sorbed by dull, black surfaces.

Practical applications of radiation include:

 (i) heat from the sun reaching earth
 (ii) heat felt by a flame
 (iii) cooker grills
 (iv) industrial furnaces
 (v) infra-red space heaters.

21.8 Vacuum flask

A cross-section of a typical vacuum flask is shown in 
Figure 21.3 and is seen to be a double-walled bottle 
with a vacuum space between them, the whole sup-
ported in a protective outer case.

Figure 21.3

Very little heat can be transferred by conduction be-
cause of the vacuum space and the cork stopper (cork is 
a bad conductor of heat). Also, because of the vacuum 
space, no convection is possible. Radiation is mini-
mised by silvering the two glass surfaces (radiation is 
reflected off shining surfaces).

Thus a vacuum flask is an example of prevention of 
all three types of heat transfer and is therefore able to 
keep hot liquids hot and cold liquids cold.

21.9  Use of insulation in  
conserving fuel

Fuel used for heating a building is becoming increas-
ingly expensive. By the careful use of insulation, heat 
can be retained in a building for longer periods and the 
cost of heating thus minimised.
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 (i) Since convection causes hot air to rise it is im-
portant to insulate the roof space, which is prob-
ably the greatest source of heat loss in the home. 
This can be achieved by laying fibre-glass be-
tween the wooden joists in the roof space.

 (ii) Glass is a poor conductor of heat. However, 
large losses can occur through thin panes of glass 
and such losses can be reduced by using double-
glazing. Two sheets of glass, separated by air, 
are used. Air is a very good insulator but the air 
space must not be too large otherwise convec-
tion currents can occur which would carry heat 
across the space.

 (iii) Hot water tanks should be lagged to prevent con-
duction and convection of heat to the surround-
ing air.

 (iv) Brick, concrete, plaster and wood are all poor 
conductors of heat. A house is made from two 
walls with an air gap between them. Air is a 
poor conductor and trapped air minimises losses 
through the wall. Heat losses through the walls 
can be prevented almost completely by using 
cavity wall insulation, i.e. plastic-foam.

Besides changing temperature, the effects of supplying 
heat to a material can involve changes in dimensions, as 
well as in colour, state and electrical resistance.

Most substances expand when heated and contract 
when cooled, and there are many practical applications 
and design implications of thermal movement as ex-
plained in Chapter 22 following.

Now try the following Practice Exercises

Practice Exercise 120  Short-answer 
questions on  
heat energy

 1.  Differentiate between temperature and 
heat.

 2.  Name two scales on which temperature is 
measured.

 3.  Name any four temperature measuring  
devices.

 4.  Define specific heat capacity and name its 
unit.

 5.  Differentiate between sensible and latent 
heat.

 6.  The quantity of heat, Q, required to raise a 
mass m kg from temperature t1° C to t2 °C, 
the specific heat capacity being c, is given 
by Q = ...... 

 7.  What is meant by the specific latent heat of 
fusion?

 8.  Define the specific latent heat of vaporisa-
tion.

 9.  Explain briefly the principle of operation of 
a simple refrigerator.

10. State three methods of heat transfer.

11.  Define conduction and state two practical 
examples of heat transfer by this method.

12.  Define convection and give three examples 
of heat transfer by this method.

13.  What is meant by radiation? Give three 
uses.

14.  How can insulation conserve fuel in a typi-
cal house?

Practice Exercise 121  Multiple-choice 
questions on heat 
energy 

(Answers on page 336)

 1. Heat energy is measured in:
 (a)  kelvin  (b)  watts
 (c)  kilograms (d)  joules

 2.  A change of temperature of 20°C is equiva-
lent to a change in thermodynamic temper-
ature of: 

 (a)  293 K (b)  20 K
 (c)  80 K  (d)  120 K

 3. A temperature of 20°C is equivalent to:
 (a)  293 K (b)  20 K
 (c)  80 K (d)  120 K

 4. The unit of specific heat capacity is:
 (a)  joules per kilogram
 (b)  joules
 (c)  joules per kilogram kelvin
 (d)  cubic metres

 5.  The quantity of heat required to raise 
the temperature of 500 g of iron by 2°C, 
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given that the specific heat capacity is  
500 J/(kg °C), is:

 (a)  500 kJ (b)  0.5 kJ
 (c)  2 J (d)  250 kJ

 6.  The heat energy required to change 1 kg of 
a substance from a liquid to a gaseous state 
at the same temperature is called:

 (a)  specific heat capacity
 (b)  specific latent heat of vaporisation
 (c)  sensible heat
 (d)  specific latent heat of fusion

 7. The temperature of pure melting ice is:
 (a)  373 K (b)  273 K
 (c)  100 K (d)  0 K

 8.  1.95 kJ of heat is required to raise the tem-
perature of 500 g of lead from 15°C to its 
final temperature. Taking the specific heat 
capacity of lead to be 130 J/(kg °C), the  
final temperature is:

 (a)  45°C (b)  37.5°C
 (c)  30°C (d)  22.5°C

 9.  Which of the following temperature is ab-
solute zero ? 

 (a)  0°C (b)  – 173°C
 (c)  – 273°C (d)  – 373°C

10.  When two wires of different metals are 
twisted together and heat applied to the 
junction, an e.m.f. is produced. This effect 
is used in a thermocouple to measure:

 (a)  e.m.f. (b)  temperature
 (c)  expansion (d)  heat

11. Which of the following statements is false?
 (a)  – 30°C is equivalent to 243 K.
 (b)   Convection only occurs in liquids and 

gases.
 (c)   Conduction and convection cannot  

occur in a vacuum.
 (d)   Radiation is absorbed by a silver  

surface.

12.  The transfer of heat through a substance by 
the actual movement of the particles of the 
substance is called:

 (a)  conduction
 (b)  radiation
 (c)  convection
 (d)  specific heat capacity

13.  Which of the following statements is  
true?

 (a)   Heat is the degree of hotness or cold-
ness of a body.

 (b)   Heat energy that flows to or from a sub-
stance while the temperature remains 
constant is called sensible heat.

 (c)   The unit of specific latent heat of fusion 
is J/(kg K).

 (d)   A cooker-grill is a practical application 
of radiation.

For fully worked solutions to each of the problems in Practice Exercises 116 to 121 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 22

Thermal expansion

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Conversely, if heat energy is removed from a material 
(i.e. the material is cooled) contraction occurs in all 
directions. The effects of expansion and contraction each 
depend on the change of temperature of the material.

Why it is important to understand: Thermal expansion
Thermal expansion and contraction are very important features in engineering science. For example, if the 
metal railway lines of a railway track are heated or cooled due to weather conditions or time of day, their 
lengths can increase or decrease accordingly. If the metal lines are heated due to the weather effects, then 
the railway lines will attempt to expand, and depending on their construction, they can buckle, rendering 
the track useless for transporting trains. In countries with large temperature variations, this effect can be 
much worse, and the engineer may have to choose a superior metal to withstand these changes. The effect 
of metals expanding and contracting due to the rise and fall of temperatures, accordingly, can also be put 
to good use. A classic example of this is the simple humble domestic thermostat, which when the water gets 
too hot, will cause the metal thermostat to expand and switch off the electric heater; conversely, when the 
water becomes too cool, the metal thermostat shrinks, causing the electric heater to switch on again. All 
sorts of materials, besides metals, are affected by thermal expansion and contraction. The chapter also 
defines the coefficients of linear, superficial and cubic expansion. Thermal expansion is of importance in 
the design and construction of structures, switches and other bodies.

22.1 Introduction

When heat is applied to most materials, expansion 
occurs in all directions (see Section 3.12, page 58). 

At the end of this chapter you should be able to:

• appreciate that expansion and contraction occurs with change of temperature
• describe practical applications where expansion and contraction must be allowed for
• understand the expansion and contraction of water
• define the coefficient of linear expansion α
• recognise typical values for the coefficient of linear expansion
• calculate the new length L2, after expansion or contraction, using L2 = L1 [1 + α(t2 – t1)]
• define the coefficient of superficial expansion β
• calculate the new surface area A2, after expansion or contraction, using A2 = A1 [1 + β(t2 – t1)]
• appreciate that β ≈ 2α
• define the coefficient of cubic expansion γ
• recognise typical values for the coefficient of cubic expansion
• appreciate that γ ≈ 3α
• calculate the new volume V2, after expansion or contraction, using V2 = V1 [1 + γ(t2 – t1)]
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22.2  Practical applications of thermal 
expansion

Some practical applications where expansion and con-
traction of solid materials must be allowed for include:

 (i) Overhead electrical transmission lines are hung 
so that they are slack in summer, otherwise their 
contraction in winter may snap the conductors or 
bring down pylons.

 (ii) Gaps need to be left in lengths of railway lines 
to prevent buckling in hot weather (except where 
these are continuously welded).

 (iii) Ends of large bridges are often supported on roll-
ers to allow them to expand and contract freely.

 (iv) Fitting a metal collar to a shaft or a steel tyre to a 
wheel is often achieved by first heating the collar 
or tyre so that they expand, fitting them in posi-
tion, and then cooling them so that the contrac-
tion holds them firmly in place; this is known as 
a ‘shrink-fit’. By a similar method hot rivets are 
used for joining metal sheets.

 (v) The amount of expansion varies with different 
materials. Figure 22.1(a) shows a bimetallic strip 
at room temperature (i.e. two different strips 
of metal riveted together – see Section 3.12,  
page 58). When heated, brass expands more 
than steel, and since the two metals are riveted 
together the bimetallic strip is forced into an arc 
as shown in Figure 22.1(b). Such a movement 
can be arranged to make or break an electric 
circuit and bimetallic strips are used, in par-
ticular, in thermostats (which are temperature- 
operated switches) used to control central heating  
systems, cookers, refrigerators, toasters, irons, 
hot-water and alarm systems.

Figure 22.1

 (vi) Motor engines use the rapid expansion of heated 
gases to force a piston to move.

 (vii) Designers must predict, and allow for, the ex-
pansion of steel pipes in a steam-raising plant 
so as to avoid damage and consequent danger to 
health.

22.3  Expansion and contraction  
of water

Water is a liquid that at low temperature displays an un-
usual effect. If cooled, contraction occurs until, at about 
4°C, the volume is at a minimum. As the temperature 
is further decreased from 4°C to 0°C expansion occurs, 
i.e. the volume increases. (For cold, deep fresh water, 
the temperature at the bottom is more likely to be about 
4°C, somewhat warmer than less deep water.) When ice 
is formed, considerable expansion occurs and it is this 
expansion that often causes frozen water pipes to burst.

A practical application of the expansion of a liquid is 
with thermometers, where the expansion of a liquid, such 
as mercury or alcohol, is used to measure temperature.

22.4 Coefficient of linear expansion

The amount by which unit length of a material expands 
when the temperature is raised one degree is called the 
coefficient of linear expansion of the material and is rep-
resented by α (Greek alpha) – see Section 3.12, page 58.

The units of the coefficient of linear expansion are  
m/(mK), although it is usually quoted as just K or K–1. For 
example, copper has a coefficient of linear expansion value 
of 17 × 10–6 K–1, which means that a 1 m long bar of cop-
per expands by 0.000017 m if its temperature is increased 
by 1 K (or 1°C). If a 6 m long bar of copper is subjected 
to a temperature rise of 25 K then the bar will expand by 
(6 × 0.000017 × 25) m, i.e. 0.00255 m or 2.55 mm. (Since 
the Kelvin scale uses the same temperature interval as the 
Celsius scale, a change of temperature of, say, 50°C, is the 
same as a change of temperature of 50 K.)

If a material, initially of length L1 and at a tempera-
ture of t1 and having a coefficient of linear expansion  
α, has its temperature increased to t2, then the new 
length L2 of the material is given by:
 New length = original length + expansion
i.e.   L2 = L1 + L1 α(t2 – t1)
i.e.   L2 = L1 [1 + α(t2 – t1)] (22.1)
Some typical values for the coefficient of linear expan-
sion include: 

Aluminium 23 × 10–6 K–1 Brass 18 × 10–6 K–1

Concrete 12 × 10–6 K–1 Copper 17 × 10–6 K–1

Gold 14 × 10–6 K–1 Invar 
(nickel-
steel 
alloy)

0.9 × 10–6 K–1

Brass Steel 

'(a) (b) 
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Iron 11 – 12 ×  
 10–6 K–1

Nylon 100 × 10–6 K–1

Steel 15 – 16 ×  
 10–6 K–1

Tungsten 4.5 × 10–6 K–1

Zinc 31 × 10–6 K–1

Problem 1. The length of an iron steam pipe is 
20.0 m at a temperature of 18°C. Determine the 
length of the pipe under working conditions when 
the temperature is 300°C. Assume the coefficient of 
linear expansion of iron is 12 × 10–6 K–1. 

Length  L1 = 20.0 m,  temperature t1 = 18°C,  
 t2 = 300°C and α = 12 × 10–6 K–1 

Length of pipe at 300°C is given by:
 L2 = L1 [1 + α(t2 – t1)] 
      = 20.0[1 + (12 × 10–6)(300 – 18)]
      = 20.0[1 + 0.003384] 
      = 20.0[1.003384] = 20.06768 m
i.e. an increase in length of 0.06768 m or 67.68 mm.
In practice, allowances are made for such expansions. 
U-shaped expansion joints are connected into pipelines 
carrying hot fluids to allow some ‘give’ to take up the 
expansion.

Problem 2. An electrical overhead transmission 
line has a length of 80.0 m between its supports 
at 15°C. Its length increases by 92 mm at 65°C. 
Determine the coefficient of linear expansion of the 
material of the line.

Length L1 = 80.0 m, L2 = 80.0 m + 92 mm  
            = 80.092 m,  
temperature t1 = 15°C and temperature t2 = 65°C 

 Length      L2 = L1 [1 + α(t2 – t1)]
i.e.     80.092 = 80.0[1 + α(65 – 15)]
     80.092 = 80.0 + (80.0)(α)(50)
i.e. 80.092 – 80.0 = (80.0)(α)(50)
Hence, the coefficient of linear expansion,

                             α = 
0.092

(80.0)(50)  = 0.000023

i.e. α = 23 × 10–6 K–1 (which is aluminium – see above)

Problem 3. A measuring tape made of copper  
measures 5.0 m at a temperature of 288 K. 

Calculate the percentage error in measurement 
when the temperature has increased to 313 K.  
Take the coefficient of linear expansion of copper  
as 17 × 10–6 K–1. 

Length  L1 = 5.0 m,  temperature t1 = 288 K,  
 t2 = 313 K  and  α = 17 × 10–6 K–1 

Length at 313 K is given by:
Length          L2 = L1 [1 + α(t2 – t1)] 
              = 5.0[1 + (17 × 10–6)(313 – 288)]
              = 5.0[1 + (17 × 10–6)(25)] 
              = 5.0[1 + 0.000425]
              = 5.0[1.000425] = 5.002125 m
i.e. the length of the tape has increased by 0.002125 m

  Percentage error in measurement at 313 K 

        = 
increase in length

original length × 100%

      = 
0.002125

5.0 × 100 = 0.0425%

Problem 4. The copper tubes in a boiler are 4.20 m 
long at a temperature of 20°C. Determine the 
length of the tubes (a) when surrounded only by 
feed water at 10°C (b) when the boiler is operating 
and the mean temperature of the tubes is 320°C. 
Assume the coefficient of linear expansion of  
copper to be 17 × 10–6 K–1.

(a)  Initial length, L1 = 4.20 m,  initial temperature,  
t1 = 20°C, final temperature, t2 = 10°C and  
α = 17 × 10–6 K–1 

 Final length at 10°C is given by:

  L2 = L1 [1 + α(t2 – t1)] 

       = 4.20[1 + (17 × 10–6)(10 – 20)]
       = 4.20[1 – 0.00017] = 4.1993 m
  i.e. the tube contracts by 0.7 mm when the 

temperature decreases from 20°C to 10°C

(b)  Length, L1 = 4.20 m, t1 = 20°C, t2 = 320°C and  
α = 17 × 10–6 K–1  

 Final length at 320°C is given by:
   L2 = L1 [1 + α(t2 – t1)] 

       = 4.20[1 + (17 × 10–6)(320 – 20)]
         = 4.20[1 + 0.0051] = 4.2214 m
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  i.e. the tube extends by 21.4 mm when the  
temperature rises from 20°C to 320°C

Now try the following Practice Exercise

Practice Exercise 122  Further problems 
on the coefficient of 
linear expansion

1.  A length of lead piping is 50.0 m long at a 
temperature of 16°C. When hot water flows 
through it the temperature of the pipe rises to 
80°C. Determine the length of the hot pipe if 
the coefficient of linear expansion of lead is 
29 × 10–6 K–1. [50.0928 m] 

2.  A rod of metal is measured at 285 K and is 
3.521 m long. At 373 K the rod is 3.523 m 
long. Determine the value of the coefficient 
of linear expansion for the metal.

 [6.45 × 10–6 K–1]

3.  A copper overhead transmission line has 
a length of 40.0 m between its supports at 
20°C. Determine the increase in length at 
50°C if the coefficient of linear expansion of 
copper is 17 × 10–6 K–1. [20.4 mm]

4.  A brass measuring tape measures 2.10 m at a 
temperature of 15°C. Determine

 (a)   the increase in length when the tempera-
ture has increased to 40°C 

 (b)   the percentage error in measurement at 
40°C. Assume the coefficient of linear 
expansion of brass to be 18 × 10–6 K–1.

 [(a) 0.945 mm  (b) 0.045%]

5.  A pendulum of a ‘grandfather’ clock is  
2.0 m long and made of steel. Determine 
the change in length of the pendulum if  
the temperature rises by 15 K. Assume the 
coefficient of linear expansion of steel to be 
15 × 10–6 K–1. [0.45 mm]

6.  A temperature control system is operated by 
the expansion of a zinc rod which is 200 mm 
long at 15°C. If the system is set so that the 
source of heat supply is cut off when the rod 
has expanded by 0.20 mm, determine the 
temperature to which the system is limited. 
Assume the coefficient of linear expansion 
of zinc to be 31 × 10–6 K–1. [47.26°C]

7.  A length of steel railway line is 30.0 m 
long when the temperature is 288 K. Deter-
mine the increase in length of the line when  
the temperature is raised to 303 K. Assume  
the coefficient of linear expansion of steel to 
be 15 × 10–6 K–1. [6.75 mm] 

8.  A brass shaft is 15.02 mm in diameter and 
has to be inserted in a hole of diameter  
15.0 mm. Determine by how much the shaft 
must be cooled to make this possible, with-
out using force. Take the coefficient of linear 
expansion of brass as 18 × 10–6 K–1. [74 K]

22.5  Coefficient of superficial  
expansion

The amount by which unit area of a material increases 
when the temperature is raised by one degree is called 
the coefficient of superficial (i.e. area) expansion and 
is represented by β (Greek beta).

If a material having an initial surface area A1 at 
temperature t1 and having a coefficient of superficial  
expansion β, has its temperature increased to t2, then 
the new surface area A2 of the material is given by: 

       New surface area =  original surface area + increase 
 in area

i.e.    A2 = A1 + A1 β(t2 – t1)

i.e.    A2 = A1 [1 + β(t2 – t1)] (22.2)

It is shown in Problem 5 below that the coefficient of 
superficial expansion is twice the coefficient of linear 
expansion, i.e. β = 2α, to a very close approximation.

Problem 5. Show that for a rectangular area of 
material having dimensions L by b, the coefficient 
of superficial expansion β ≈ 2α, where α is the 
coefficient of linear expansion.

Initial area, A1 = Lb. For a temperature rise of 1 K, 
side L will expand to (L + Lα) and side b will expand 
to (b + bα). Hence the new area of the rectangle, A2, is 
given by:
   A2 = (L + Lα)(b + bα) 
  = L(1 + α)b(1 + α) = Lb(1 + α)2

  = Lb(1 + 2α + α2)  ≈  Lb(1 + 2α)
since α2 is very small (see typical values in Section 22.4) 
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Hence, A2 ≈ A1 (1 + 2α) 

For a temperature rise of (t2 – t1) K

  A2 ≈ A1 [1 + 2α(t2 – t1)]

Thus, from equation (22.2), β ≈ 2α

22.6 Coefficient of cubic expansion

The amount by which unit volume of a material  
increases for a one degree rise of temperature is called 
the coefficient of cubic (or volumetric) expansion 
and is represented by γ (Greek gamma).

If a material having an initial volume V1 at tem-
perature t1 and having a coefficient of cubic expansion  
γ, has its temperature raised to t2, then the new volume 
V2 of the material is given by:

  New volume = initial volume + increase in volume

i.e.               V2 = V1 + V1 γ(t2 – t1)

i.e.               V2 = V1 [1 + γ(t2 – t1)] (22.3)

It is shown in Problem 6 below that the coefficient of 
cubic expansion is three times the coefficient of linear 
expansion, i.e. γ = 3α, to a very close approximation. 
A liquid has no definite shape and only its cubic or 
volumetric expansion need be considered. Thus with 
expansions in liquids, equation (22.3) is used.

Problem 6. Show that for a rectangular block  
of material having dimensions L, b and h, the  
coefficient of cubic expansion γ ≈ 3α, where α  
is the coefficient of linear expansion.

Initial volume, V1 = Lbh. For a temperature rise of 1 K, 
side L expands to (L + Lα), side b expands to (b + bα) 
and side h expands to (h + hα) 
Hence the new volume of the block V2 is given by:
 V2 = (L + Lα)(b + bα)(h + hα) 

     = L(1 + α)b(1 + α)h(1 + α)

     = Lbh(1 + α)3 = Lbh(1 + 3α + 3α2 + α3)
     ≈  Lbh(1 + 3α)
 since terms in α2 and α3 are very small 

Hence, V2 ≈ V1 (1 + 3α) 

For a temperature rise of (t2 – t1) K,
  V2 ≈ V1 [1 + 3α(t2 – t1)]
Thus, from equation (22.3), γ ≈ 3α

Some typical values for the coefficient of cubic expan-
sion measured at 20°C (i.e. 293 K) include:

Ethyl  
alcohol

1.1 × 10–3 K–1 Mercury 1.82 × 10–4 K–1

Paraffin  
oil

9 × 10–2 K–1 Water 2.1 × 10–4 K–1

The coefficient of cubic expansion γ is only constant 
over a limited range of temperature.

Problem 7. A brass sphere has a diameter of 
50 mm at a temperature of 289 K. If the temperature 
of the sphere is raised to 789 K, determine the 
increase in (a) the diameter (b) the surface area  
(c) the volume of the sphere. Assume the coefficient 
of linear expansion for brass is 18 × 10–6 K–1.

(a)  Initial diameter, L1 = 50 mm, initial temperature, 
t1 = 289 K,  final temperature, t2 = 789 K and  
α = 18 × 10–6 K–1. 

 New diameter at 789 K is given by:
   L2 = L1 [1 + α(t2 – t1)] from equation (22.1) 
 i.e.  L2 = 50[1 + (18 × 10–6)(789 – 289)] 
           = 50[1 + 0.009] = 50.45 mm
 Hence the increase in the diameter is 0.45 mm
(b)  Initial surface area of sphere,  

A1 = 4πr2 = 4π










50
2

2
= 2500π mm2

 New surface area at 789 K is given by:
        A2 = A1 [1 + β(t2 – t1)] from equation (22.2)
 i.e.  A2 = A1 [1 + 2α(t2 – t1)]
  since β = 2α, to a very close approximation 
 Thus   A2 = 2500π[1 + 2(18 × 10–6)(500)]
           = 2500π[1 + 0.018]
           = 2500π + 2500π(0.018)
  Hence increase in surface area  = 2500π(0.018) 

= 141.4 mm2

(c)  Initial volume of sphere, V1  = 
4
3 πr

3  

= 
4
3 π











50
2

3

 mm3

 New volume at 789 K is given by:
   V2 = V1 [1 + γ(t2 – t1)] from equation (22.3) 
 i.e.  V2 = V1 [1 + 3α(t2 – t1)]
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 since γ = 3α, to a very close approximation 

 Thus V2 = 4
3
π(25)3 [1 + 3(18 × 10–6)(500)] 

           = 4
3
π(25)3 [1 + 0.027]

           = 4
3
π(25)3 + 4

3
π(25)3 (0.027)

  Hence, the increase in volume  = 4
3
π(25)3 (0.027) 

= 1767 mm3

Problem 8. Mercury contained in a thermometer 
has a volume of 476 mm3 at 15°C. Determine the 
temperature at which the volume of mercury is  
478 mm3, assuming the coefficient of cubic 
expansion for mercury to be 1.8 × 10–4 K–1.

Initial volume, V1 = 476 mm3, final volume,  
V2 = 478 mm3, initial temperature, t1 = 15°C and  
γ = 1.8 × 10–4 K–1

Final volume,         V2 = V1 [1 + γ(t2 – t1)]

  from equation (22.3) 

i.e.                   V2 = V1 + V1 γ(t2 – t1) 

from which, (t2 – t1) = γ
−V V

V
2 1

1

            = 
−

× −

478 476
(476)(1.8 10 )4   

= 23.34°C

Hence, t2 = 23.34 + t1 = 23.34 + 15 = 38.34°C 

Hence, the temperature at which the volume of  
mercury is 478 mm3 is 38.34°C

Problem 9. A rectangular glass block has a length 
of 100 mm, width 50 mm and depth 20 mm at 
293 K. When heated to 353 K its length increases 
by 0.054 mm. What is the coefficient of linear 
expansion of the glass? Find also (a) the increase 
in surface area (b) the change in volume resulting 
from the change of length.

Final length, L2 = L1 [1 + α(t2 – t1)]
 from equation (22.1), 
hence increase in length is given by:  
      L2 – L1 = L1 α(t2 – t1)

Hence   0.054 = (100)(α)(353 – 293) 

from which, the coefficient of linear expansion is 
given by:
           α = 

0.054
(100)(60)  = 9 × 10–6 K–1

(a) Initial surface area of glass, 
 A1 = (2 × 100 × 50) + (2 × 50 × 20) 
     + (2 × 100 × 20) 
       = 10000 + 2000 + 4000 = 16000 mm2

 Final surface area of glass (from equation (22.2)), 
 A2 = A1 [1 + β(t2 – t1)] = A1 [1 + 2α(t2 – t1)]
  since β = 2α to a very close approximation 
 Hence, increase in surface area 
        = A1 (2α)(t2 – t1)  = (16000)(2 × 9 × 10–6)(60)  

= 17.28 mm2

(b)  Initial volume of glass, V1  = 100 × 50 × 20  
= 100000 mm3

 Final volume of glass (from equation (22.3)),  
   V2 = V1 [1 + γ(t2 – t1)] 
        = V1 [1 + 3α(t2 – t1)]
  since γ = 3α to a very close approximation 
 Hence, increase in volume of glass 
        = V1 (3α)(t2 – t1)
        = (100000)(3 × 9 × 10–6)(60) = 162 mm3

Now try the following Practice Exercises

Practice Exercise 123  Further problems on 
the coefficients of 
superficial and cubic 
expansion 

1.  A silver plate has an area of 800 mm2 at 
15°C. Determine the increase in the area 
of the plate when the temperature is raised 
to 100°C. Assume the coefficient of linear  
expansion of silver to be 19 × 10–6 K–1.

 [2.584 mm2]

2.  At 283 K a thermometer contains 440 mm3 
of alcohol. Determine the temperature at 
which the volume is 480 mm3 assuming 
that the coefficient of cubic expansion of the  
alcohol is 12 × 10–4 K–1. [358.8 K]

3.  A zinc sphere has a radius of 30.0 mm at a 
temperature of 20°C. If the temperature of 
the sphere is raised to 420°C, determine the 
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increase in: (a) the radius, (b) the surface 
area, (c) the volume of the sphere. Assume 
the coefficient of linear expansion for zinc to 
be 31 × 10–6 K–1.

 [(a) 0.372 mm  (b) 280.5 mm2  (c) 4207 mm3]

4.  A block of cast iron has dimensions of 50 mm  
by 30 mm by 10 mm at 15°C. Determine the 
increase in volume when the temperature of 
the block is raised to 75°C. Assume the coef-
ficient of linear expansion of cast iron to be 
11 × 10–6 K–1. [29.7 mm3]

5.  Two litres of water, initially at 20°C, is 
heated to 40°C. Determine the volume of 
water at 40°C if the coefficient of volumet-
ric expansion of water within this range is  
30 × 10–5 K–1. [2.012 litres]

6.  Determine the increase in volume, in litres, 
of 3 m3 of water when heated from 293 K to 
boiling point if the coefficient of cubic ex-
pansion is 2.1 × 10–4 K–1 (1 litre ≈ 10–3 m3).
 [50.4 litres]

7.  Determine the reduction in volume when the 
temperature of 0.5 litre of ethyl alcohol is 
reduced from 40°C to –15°C. Take the coef-
ficient of cubic expansion for ethyl alcohol 
as 1.1 × 10–3 K–1. [0.03025 litres] 

Practice Exercise 124  Short-answer 
questions on 
thermal expansion

 1.  When heat is applied to most solids and  
liquids ........ occurs.

 2.  When solids and liquids are cooled they 
usually ........ 

 3.  State three practical applications where the 
expansion of metals must be allowed for.

 4.  State a practical disadvantage where the 
expansion of metals occurs.

 5.  State one practical advantage of the expan-
sion of liquids.

 6.  What is meant by the ‘coefficient of expan-
sion’?

 7.  State the symbol and the unit used for the 
coefficient of linear expansion.

 8.  Define the ‘coefficient of superficial expan-
sion’ and state its symbol.

 9.  Describe how water displays an unexpect-
ed effect between 0°C and 4°C.

10.  Define the ‘coefficient of cubic expansion’ 
and state its symbol.

Practice Exercise 125  Multiple-choice 
questions on 
thermal expansion 

(Answers on page 336)

 1.  When the temperature of a rod of copper is 
increased, its length:

 (a)  stays the same (b)  increases
 (c)  decreases

 2.  The amount by which unit length of a ma- 
terial increases when the temperature is  
raised one degree is called the coefficient of:

 (a)  cubic expansion
 (b)  superficial expansion
 (c)  linear expansion

 3.  The symbol used for volumetric expansion 
is: 

 (a)  γ (b)  β
 (c)  L (d)  α

 4.  A material of length L1 at temperature θ1 K 
is subjected to a temperature rise of θ K. The 
coefficient of linear expansion of the ma-
terial is α K–1. The material expands by:

 (a)  L2 (1 + αθ)
 (b)  L1 α(θ – θ1)
 (c)  L1 [1 + α(θ – θ1)]
 (d)  L1 αθ

 5.  Some iron has a coefficient of linear expan-
sion of 12 × 10–6 K–1. A 100 mm length 
of iron piping is heated through 20 K. The 
pipe extends by:

 (a)  0.24 mm (b)  0.024 mm
 (c)  2.4 mm (d)  0.0024 mm

 6.  If the coefficient of linear expansion is A, 
the coefficient of superficial expansion is B 
and the coefficient of cubic expansion is C, 
which of the following is false?
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 (a)  C = 3A (b)  A = B/2
 (c)  B = 3

2
C (d)  A = C/3

 7.  The length of a 100 mm bar of metal in-
creases by 0.3 mm when subjected to a 
temperature rise of 100 K. The coefficient 
of linear expansion of the metal is: 

 (a)  3 × 10–3 K–1 (b)  3 × 10–4 K–1

 (c)  3 × 10–5 K–1 (d)  3 × 10–6 K–1

 8.  A liquid has a volume V1 at temperature θ1. 
The temperature is increased to θ2. If γ is 
the coefficient of cubic expansion, the in-
crease in volume is given by:

 (a)  V1 γ(θ2 – θ1)
 (b)  V1 γ θ2
 (c)  V1 + V1 γ θ2
 (d)  V1 [1 + γ(θ2 – θ1)]

 9. Which of the following statements is false?
 (a)   Gaps need to be left in lengths of rail-

way lines to prevent buckling in hot 
weather.

 (b)   Bimetallic strips are used in thermo-
stats, a thermostat being a temperature-
operated switch.

 (c)   As the temperature of water is de-
creased from 4°C to 0°C contraction 
occurs.

 (d)   A change of temperature of 15°C is 
equivalent to a change of temperature 
of 15 K.

10.  The volume of a rectangular block of iron 
at a temperature t1 is V1. The temperature is 
raised to t2 and the volume increases to V2. 
If the coefficient of linear expansion of iron 
is α, then volume V1 is given by:

 (a)  V2 [1 + α(t2 – t1)]

 (b)  α ( )+ −

V
t t1 3
2

2 1

 (c)  3V2 α(t2 – t1)

 (d)  
α ( )+ −t t

V
1 2 1

2

For fully worked solutions to each of the problems in Practice Exercises 122 to 125 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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1. A block of aluminium having a mass of 20 kg 
cools from a temperature of 250°C to 80°C. 
How much energy is lost by the aluminium?  
Assume the specific heat capacity of aluminium is  
950 J/(kg °C). (5)

2. Calculate the heat energy required to convert 
completely 12 kg of water at 30°C to superheated 
steam at 100°C. Assume that the specific heat  
capacity of water is 4200 J/(kg °C), and the  
specific latent heat of vaporisation of water is 
2260 kJ/(kg °C). (7)

Revision Test 8  Heat energy and transfer, and thermal expansion

This Revision Test covers the material contained in Chapters 21 and 22. The marks for each question are shown in 
brackets at the end of each question.

3. A copper overhead transmission line has a length 
of 60 m between its supports at 15°C. Calculate 
its length at 40°C, if the coefficient of linear  
expansion of copper is 17 × 10–6 K–1. (6)

4. A gold sphere has a diameter of 40 mm at a tem-
perature of 285 K. If the temperature of the sphere 
is raised to 785 K, determine the increase in  
(a) the diameter (b) the surface area (c) the vol-
ume of the sphere. Assume the coefficient of  
linear expansion for gold is 14 × 10–6 K–1. (12)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 8,  
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Hydrostatics

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Chapter 23

Why it is important to understand: Hydrostatics
This chapter describes fluid pressure, together with buoyancy and hydrostatic stability. The chapter also 
defines Archimedes’ principle, which is used to determine the buoyancy of boats, yachts, ships, etc. The chapter 
also describes metacentric height, which is used to determine the hydrostatic stability of the aforementioned 
vessels, and the explanation of this topic is aided with a number of simple worked examples. The chapters also 
describe gauges used in fluid mechanics, such as barometers, manometers, and the Bourdon pressure and 
vacuum gauges. These gauges are used to determine the properties and behaviour of fluids when they are met 
in practice. Calculations are given of simple floating structures and reference is made to the mid-ordinate rule, 
described earlier in Chapter 16, which can be used for determining the areas and volumes of complex shapes, 
such as those often met in naval architecture and civil engineering and many other branches of engineering.  
A knowledge of hydrostatics is of importance in boats, ships and other floating bodies and structures.

23.1 Pressure

The pressure acting on a surface is defined as the per-
pendicular force per unit area of surface. The unit of 
pressure is the pascal*, Pa, where 1 pascal is equal to  
1 newton per square metre. Thus pressure,

p = FA  pascals

At the end of this chapter you should be able to:

• define pressure and state its unit
• understand pressure in fluids
• distinguish between atmospheric, absolute and gauge pressures
• state and apply Archimedes’ principle
• describe the construction and principle of operation of different types of barometer
• describe the construction and principle of operation of different types of manometer
• describe the construction and principle of operation of the Bourdon pressure gauge
• describe the construction and principle of operation of different types of vacuum gauge
• calculate hydrostatic pressure on submerged surfaces
• understand hydrostatic thrust on curved surfaces
• define buoyancy
• appreciate and perform calculations on the stability of floating bodies

where F is the force in newtons acting at right angles to 
a surface of area A square metres.

When a force of 20 N acts uniformly over, and per-
pendicular to, an area of 4 m2, then the pressure on the 
area, p, is given by:

p = 20
4 2

N
m

 = 5 Pa
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It should be noted that for irregular shaped flat sur-
faces, such as the water planes of ships, their areas can 
be calculated using the mid-ordinate rule, described in 
Chapter 16.

Problem 1. A table loaded with books has a force 
of 250 N acting in each of its legs. If the contact 
area between each leg and the floor is 50 mm2, find 
the pressure each leg exerts on the floor.

From above, pressure p = force
area  

Hence,                        p = =
× −

250 N
50 mm

250 N
50 10 m2 6 2

                                             = 5 × 106 N/m2 
                                         = 5 MPa
That is, the pressure exerted by each leg on the floor 
is 5 MPa

Problem 2. Calculate the force exerted by the atmo-
sphere on a pool of water that is 30 m long by 10 m 
wide, when the atmospheric pressure is 100 kPa.

From above, pressure = force
area

   
hence, force = pressure × area. 
The area of the pool is 30 m × 10 m = 300 m2

Thus, force on pool, F = pressure × area
                             = 100 kPa × 300 m2 and 
since 1 Pa = 1 N/m2,

      F = (100 × 103) N
m2  × 300 m2 

         = 3 × 107 N = 30 × 106 N 
           = 30 MN
That is, the force on the pool of water is 30 MN

Problem 3. A circular piston exerts a pressure 
of 80 kPa on a fluid, when the force applied to the 
piston is 0.2 kN. Find the diameter of the piston.

From above, pressure = force
area

hence,              area = force
pressure

Force in newtons = 0.2 kN
                    = ×0.2 10 N3  = 200 N, and

pressure in pascals = 80 kPa = 80000 Pa 
                        = 80000 N/m2. 

Hence, area = =
force

pressure
200 N

80000 N/m2

                                  = 0.0025 m2

Since the piston is circular, its area is given by πd2/4, 
where d is the diameter of the piston. 

Hence,              area = 
π d

4

2
 = 0.0025

from which,   d 2 = 0.0025 × 
π
4  = 0.003183

i.e.       d = 0.003183  = 0.0564 m 
                                 = 56.4 mm
Hence, the diameter of the piston is 56.4 mm

Now try the following Practice Exercise

Practice Exercise 126  Further problems on 
pressure

1.  A force of 280 N is applied to a piston of 
a hydraulic system of cross-sectional area 

*Blaise Pascal (19 June 1623–19 August 1662) was a French 
polymath. A child prodigy, he wrote a significant treatise on the 
subject of projective geometry at the age of sixteen, and later 
corresponded with Pierre de Fermat on probability theory, strongly 
influencing the development of modern economics and social 
science.  To find out more go to www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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0.010 m2. Determine the pressure produced 
by the piston in the hydraulic fluid.

 [28 kPa]

2.  Find the force on the piston of question 1 to 
produce a pressure of 450 kPa. [4.5 kN]

3.   If the area of the piston in question 1 is 
halved and the force applied is 280 N, deter-
mine the new pressure in the hydraulic fluid.
 [56 kPa]

23.2 Fluid pressure

A fluid is either a liquid or a gas and there are four basic 
factors governing the pressure within fluids.

Figure 23.1

(a) The pressure at a given depth in a fluid is equal in 
all directions; see Figure 23.1(a).

(b) The pressure at a given depth in a fluid is inde-
pendent of the shape of the container in which the 
fluid is held. In Figure 23.1(b), the pressure at X is 
the same as the pressure at Y.

(c) Pressure acts at right angles to the surface contain-
ing the fluid. In Figure 23.1(c), the pressures at 
points A to F all act at right angles to the container.

(d) When a pressure is applied to a fluid, this pressure 
is transmitted equally in all directions. In Fig-
ure 23.1(d), if the mass of the fluid is neglected, 
the pressures at points A to D are all the same.

The pressure, p, at any point in a fluid depends on three 
factors:
(a) the density of the fluid, ρ, in kg/m3

(b) the gravitational acceleration, g, taken as approxi-
mately 9.8 m/s2 (or the gravitational field force   
in N/kg), and

(c) the height of fluid vertically above the point, h 
metres. 

The relationship connecting these quantities is:
p = ρgh pascals

When the container shown in Figure 23.2 is filled with 
water of density 1000 kg/m3, the pressure due to the 
water at a depth of 0.03 m below the surface is given by:

p = ρgh = (1000 × 9.8 × 0.03)Pa = 294 Pa

Figure 23.2

In the case of the Mariana Trench, which is situated in 
the Pacific ocean, near Guam, the hydrostatic pressure 
is about 115.2 MPa or 1152 bar, where 1 bar = 105 Pa 
and the density of sea water being 1020 kg/m3.

Problem 4. A tank contains water to a depth of 
600 mm. Calculate the water pressure (a) at a depth 
of 350 mm, and (b) at the base of the tank. Take the 
density of water as 1000 kg/m3 and the gravita-
tional acceleration as 9.8 m/s2.

From above, pressure p at any point in a fluid is given 
by p = ρgh pascals, where ρ is the density in kg/m3, g is 
the gravitational acceleration in m/s2 and h is the height 
of fluid vertically above the point in metres.
(a) At a depth of 350 mm = 0.35 m,
 p = ρgh = 1000 × 9.8 × 0.35 
              = 3430 Pa = 3.43 kPa
(b)  At the base of the tank, the vertical height of the 

water is 600 mm = 0.6 m. 
 Hence, p = 1000 × 9.8 × 0.6 
      = 5880 Pa = 5.88 kPa

Problem 5. A storage tank contains petrol to a 
height of 4.7 m. If the pressure at the base of the 
tank is 32.2 kPa, determine the density of the pet-
rol. Take the gravitational field force as 9.8 m/s2.

From above, pressure p = ρgh pascals, where ρ is the 
density in kg/m3, g is the gravitational acceleration in 
m/s2 and h is the vertical height of the petrol in metres. 

Transposing gives:   ρ = 
p

g h
Pressure p is 32.2 kPa = 32200 Pa

hence,          density, ρ = 
×

32200
9.8 4.7

 = 699 kg/m3

That is, the density of the petrol is 699 kg/m3.

0.03 m 

F 

P 
Y A F 

P ,pp B E 
C A C 

D B 
(a) (b) (c) (d) 
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Problem 6. A vertical tube is partly filled with 
mercury of density 13600 kg/m3. Find the height, 
in millimetres, of the column of mercury, when the 
pressure at the base of the tube is 101 kPa. Take the 
gravitational field force as 9.8 m/s2.

From above, pressure p = ρgh, hence vertical height h 
is given by:

   h = 
ρ
p
g

Pressure p = 101 kPa = 101000 Pa,

thus,       h = 
×

101000
13600 9.8  = 0.758 m

That is, the height of the column of mercury is 758 mm

Now try the following Practice Exercise

Practice Exercise 127  Further problems on 
fluid pressure

(Take the gravitational acceleration as 9.8 m/s2)

1.  Determine the pressure acting at the base of 
a dam, when the surface of the water is 35 m 
above base level. Take the density of water 
as 1000 kg/m3. [343 kPa]

2.  An uncorked bottle is full of sea water of 
density 1030 kg/m3. Calculate, correct to  
3 significant figures, the pressures on the 
side wall of the bottle at depths of (a) 30 mm, 
and (b) 70 mm below the top of the bottle.

 [(a) 303 Pa  (b) 707 Pa]

3.  A U-tube manometer is used to determine 
the pressure at a depth of 500 mm below 
the free surface of a fluid. If the pressure 
at this depth is 6.86 kPa, calculate the den-
sity of the liquid used in the manometer.
 [1400 kg/m3]

4.  A submarine pressure hull in the form of a 
circular cylinder is of external diameter 10 m 
and length 200 m. It dives to the bottom of 
the Mariana Trench which is 11.52 km deep. 
What will be the mass of water acting on the 
submarine’s circular surface in terms of the 

number of London double-decker buses, giv-
en that the mass of a London double-decker 
bus is 7 tonnes. Assume that the density of 
water, ρ = 1020 kg/m3 and gravitational ac-
celeration, g = 9.81 m/s2. [10.55 million]

23.3 Atmospheric pressure

The air above the Earth’s surface is a fluid, having a 
density, ρ, which varies from approximately 1.225 kg/m3  
at sea level to zero in outer space. Since p = ρgh, where 
height h is several thousands of metres, the air exerts 
a pressure on all points on the Earth’s surface. This 
pressure, called atmospheric pressure, has a value of 
approximately 100 kilopascals (or 1 bar). Two terms 
are commonly used when measuring pressures:
(a) absolute pressure, meaning the pressure above 

that of an absolute vacuum (i.e. zero pressure), and
(b) gauge pressure, meaning the pressure above that 

normally present due to the atmosphere. 
Thus, absolute pressure = atmospheric pressure +  
 gauge pressure.
Thus, a gauge pressure of 50 kPa is equivalent to an 
absolute pressure of (100 + 50) kPa, i.e. 150 kPa, since 
the atmospheric pressure is approximately 100 kPa.

Problem 7. Calculate the absolute pressure at a 
point on a submarine, at a depth of 30 m below the
surface of the sea, when the atmospheric pressure  
is 101 kPa. Take the density of sea water as  
1030 kg/m3 and the gravitational acceleration as  
9.8 m/s2.

From Section 23.2, the pressure due to the sea, that is, 
the gauge pressure (pg) is given by:  
 pg = ρgh pascals 
i.e. pg = 1030 × 9.8 × 30 = 302820 Pa = 302.82 kPa
From above, absolute pressure 
      = atmospheric pressure + gauge pressure
      = (101 + 302.82) kPa = 403.82 kPa
That is, the absolute pressure at a depth of 30 m is 
403.82 kPa
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Now try the following Practice Exercise

Practice Exercise 128  Further problems 
on atmospheric 
pressure

Take the gravitational acceleration as 9.8 m/s2, 
the density of water as 1000 kg/m3, and the den-
sity of mercury as 13600 kg/m3.

1.  The height of a column of mercury in a  
barometer is 750 mm. Determine the at-
mospheric pressure, correct to 3 significant  
figures. [100 kPa]

2.  A U-tube manometer containing mercury 
gives a height reading of 250 mm of mer-
cury when connected to a gas cylinder. If 
the barometer reading at the same time is  
756 mm of mercury, calculate the absolute 
pressure of the gas in the cylinder, correct to 
3 significant figures. [134 kPa]

3.  A water manometer connected to a condens-
er shows that the pressure in the condenser 
is 350 mm below atmospheric pressure. If 
the barometer is reading 760 mm of mer-
cury, determine the absolute pressure in the 
condenser, correct to 3 significant figures. 
 [97.9 kPa]

4.  A Bourdon pressure gauge shows a pressure 
of 1.151 MPa. If the absolute pressure is 
1.25 MPa, find the atmospheric pressure in 
millimetres of mercury. [743 mm]

23.4 Archimedes’ principle

Archimedes’ principle* states that:

If a solid body floats, or is submerged, in a liquid, 
the liquid exerts an upthrust on the body equal to the 
gravitational force on the liquid displaced by the body.

In other words, if a solid body is immersed in a liquid, 
the apparent loss of weight is equal to the weight of 
liquid displaced.

If V is the volume of the body below the surface  
of the liquid, then the apparent loss of weight W is 
given by:

W = Vω = Vρg
where ω is the specific weight (i.e. weight per unit  
volume) and ρ is the density.

If a body floats on the surface of a liquid all of its 
weight appears to have been lost. The weight of liquid 
displaced is equal to the weight of the floating body.

Problem 8. A body weighs 2.760 N in air and 
1.925 N when completely immersed in water of 
density 1000 kg/m3. Calculate (a) the volume of 
the body (b) the density of the body and (c) the 
relative density of the body. Take the gravitational 
acceleration as 9.81 m/s2.

(a)  The apparent loss of weight is 2.760 N – 1.925 N 
= 0.835 N. This is the weight of water displaced, 
i.e. Vρg, where V is the volume of the body and  
ρ  is the density of water, 

 i.e. 0.835 N = V × 1000 kg/m3 × 9.81 m/s2 
      = V × 9.81 kN/m3

 Hence,        V = 
×

0.835
9.81 10

m
3

3

      = 8.512 × 10–5 m3

      = 8.512 × 104 mm3

(b) The density of the body 

                 
= =

×

=
× × −

g V
mass

volume
weight

2.760 N
9.81m/s 8.512 10 m2 5 3

    =
×

2.760
9.81

kg 10

8.512m

5

3
= 3305 kg/m3 

                                = 3.305 tonne/m3

(c) Relative density = 
density

densityof water  

*Archimedes of Syracuse (c. 287 BC–c. 212 BC) was a Greek 
mathematician, physicist, engineer, inventor and astronomer, 
credited with designing innovative machines, including siege 
engines.  To find out more go to www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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 Hence, the relative density of the body 

          = 
3305
1000

kg/m
kg/m

3

3  = 3.305

Problem 9. A rectangular watertight box is  
560 mm long, 420 mm wide and 210 mm deep.  
It weighs 223 N. (a) If it floats with its sides and 
ends vertical in water of density 1030 kg/m3, what 
depth of the box will be submerged? (b) If the box 
is held completely submerged in water of density 
1030 kg/m3, by a vertical chain attached to the un-
derside of the box, what is the force in the chain?

(a)  The apparent weight of a floating body is zero. 
That is, the weight of the body is equal to the 
weight of liquid displaced. This is given by:

Vρg 
  where V is the volume of liquid displaced, and ρ 

is the density of the liquid. 
 Here, 223 N = V × 1030 kg/m3 × 9.81 m/s2

                         = V × 10.104 kN/m3

 Hence,      V = 
223

10 104 3
N

kN/m.
       = 22.07 × 10–3m3

  This volume is also given by Lbd, where  
L = length of box, b = breadth of box, and  
d = depth of box submerged, 

 i.e. 22.07 × 10–3 m3 = L × b × d 
      = 0.56 m × 0.42 m × d

 Hence, depth submerged, d = ×
×

−22.07 10
0.56 0.42

3

            = 0.09384 m = 93.84 mm
(b)  The volume of water displaced is the total vol-

ume of the box. The upthrust or buoyancy of the 
water, i.e. the ‘apparent loss of weight’, is greater 
than the weight of the box. The force in the chain  
accounts for the difference.

  Volume of water displaced, 
  V = 0.56 m × 0.42 m × 0.21 m
           = 4.9392 × 10–2 m3

  Weight of water displaced  
= Vρg = 4.9392 × 10–2 m3 × 1030 kg/m3 × 9.81 m/s2

      = 499.1 N 
  The force in the chain  

= weight of water displaced – weight of box 
 = 499.1 N – 223 N = 276.1 N

Now try the following Practice Exercise

Practice Exercise 129  Further problems 
on Archimedes’ 
principle

Take the gravitational acceleration as 9.8 m/s2, 
the density of water as 1000 kg/m3 and the den-
sity of mercury as 13600 kg/m3.

1.  A body of volume 0.124 m3 is completely 
immersed in water of density 1000 kg/m3. 
What is the apparent loss of weight of the 
body? [1.215 kN]

2.  A body of weight 27.4 N and volume  
1240 cm2 is completely immersed in water 
of specific weight 9.81 kN/m3. What is its 
apparent weight? [15.25 N]

3.  A body weighs 512.6 N in air and 256.8 N 
when completely immersed in oil of density 
810 kg/m3. What is the volume of the body?
 [0.03222 m3]

4.  A body weighs 243 N in air and 125 N when 
completely immersed in water. What will it 
weigh when completely immersed in oil of 
relative density 0.8? [148.6 N]

5.  A watertight rectangular box, 1.2 m long and 
0.75 m wide, floats with its sides and ends 
vertical in water of density 1000 kg/m3. If 
the depth of the box in the water is 280 mm, 
what is its weight? [2.47 kN]

6.  A body weighs 18 N in air and 13.7 N when 
completely immersed in water of density 
1000 kg/m3. What is the density and relative 
density of the body?

 [4.186 tonne/m3, 4.186]

7.  A watertight rectangular box is 660 mm long 
and 320 mm wide. Its weight is 336 N. If it 
floats with its sides and ends vertical in water 
of density 1020 kg/m3, what will be its depth 
in the water? [159 mm]

8.  A watertight drum has a volume of 0.165 m3  
and a weight of 115 N. It is completely  
submerged in water of density 1030 kg/m3, 
held in position by a single vertical chain  
attached to the underside of the drum. What 
is the force in the chain? [1.551 kN]
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23.5 Measurement of pressure

As stated earlier, pressure is the force exerted by a fluid 
per unit area. A fluid (i.e. liquid, vapour or gas) has a 
negligible resistance to a shear force, so that the force 
it exerts always acts at right angles to its containing 
surface.
The SI unit of pressure is the pascal, Pa, which is unit 
force per unit area, i.e. 1 Pa = 1 N/m2

The pascal is a very small unit and a commonly used 
larger unit is the bar, where 1 bar = 105Pa

Atmospheric pressure is due to the mass of the air 
above the Earth’s surface being attracted by Earth’s 
gravity. Atmospheric pressure changes continuously.  
A standard value of atmospheric pressure, called 
‘standard atmospheric pressure’, is often used, having 
a value of 101325 Pa or 1.01325 bars or 1013.25 milli-
bars. This latter unit, the millibar, is usually used in the 
measurement of meteorological pressures. (Note that 
when atmospheric pressure varies from 101325 Pa it is 
no longer standard.)

Pressure indicating instruments are made in a wide 
variety of forms because of their many different  
applications. Apart from the obvious criteria such  
as pressure range, accuracy and response, many mea-
surements also require special attention to material, 
sealing and temperature effects. The fluid whose pres-
sure is being measured may be corrosive or may be at 
high temperatures. Pressure indicating devices used in 
science and industry include:

 (i) barometers (see Section 23.6),
 (ii) manometers (see Section 23.8),
 (iii) Bourdon pressure gauge (see Section 23.9), and
 (iv) McLeod and Pirani gauges (see Section 23.10).

23.6 Barometers

Introduction

A barometer is an instrument for measuring atmo-
spheric pressure. It is affected by seasonal changes of 
temperature. Barometers are therefore also used for the 
measurement of altitude and also as one of the aids in 
weather forecasting. The value of atmospheric pres-
sure will thus vary with climatic conditions, although 
not usually by more than about 10% of standard atmo-
spheric pressure.

Construction and principle of operation

A simple barometer consists of a glass tube, just less 
than 1 m in length, sealed at one end, filled with mer-
cury and then inverted into a trough containing more 
mercury. Care must be taken to ensure that no air enters 
the tube during this latter process. Such a barometer 
is shown in Figure 23.3(a) and it is seen that the level 
of the mercury column falls, leaving an empty space, 
called a vacuum. Atmospheric pressure acts on the 
surface of the mercury in the trough as shown and this 
pressure is equal to the pressure at the base of the col-
umn of mercury in the inverted tube, i.e. the pressure of 
the atmosphere is supporting the column of mercury. 
If the atmospheric pressure falls the barometer height 
h decreases. Similarly, if the atmospheric pressure 
rises, then h increases. Thus atmospheric pressure can  
be measured in terms of the height of the mercury  
column. It may be shown that for mercury the height 
h is 760 mm at standard atmospheric pressure, i.e. 

Figure 23.3
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a vertical column of mercury 760 mm high exerts a 
pressure equal to the standard value of atmospheric 
pressure.
There are thus several ways in which atmospheric pres-
sure can be expressed: 

Standard atmospheric pressure 

  = 101325 Pa  or  101.325 kPa

                             = 101325 N/m2 or  101.325 kN/m2

                             = 1.01325 bars  or  1013.25 mbars

                             = 760 mm of mercury

Another arrangement of a typical barometer is shown 
in Figure 23.3(b) where a U-tube is used instead  
of an inverted tube and trough, the principle being 
similar.

If, instead of mercury, water was used as the liquid 
in a barometer, then the barometric height h at standard 
atmospheric pressure would be 13.6 times more than 
for mercury, i.e. about 10.4 m high, which is not very 
practicable. This is because the relative density of mer-
cury is 13.6.

Types of barometer

The Fortin* barometer is an example of a mercury 
barometer that enables barometric heights to be mea-
sured to a high degree of accuracy (in the order of one-
tenth of a millimetre or less). Its construction is merely 
a more sophisticated arrangement of the inverted tube 
and trough shown in Figure 23.3(a), with the addition 
of a vernier scale to measure the barometric height with 
great accuracy. A disadvantage of this type of barom-
eter is that it is not portable.

A Fortin barometer is shown in Figure 23.4. 
Mercury is contained in a leather bag at the base of the 
mercury reservoir, and height, H, of the mercury in the 
reservoir can be adjusted using the screw at the base of 
the barometer to depress or release the leather bag. To 
measure the atmospheric pressure the screw is adjusted 
until the pointer at H is just touching the surface of 
the mercury and the height of the mercury column is  
then read using the main and vernier scales. The 
measurement of atmospheric pressure using a Fortin  
barometer is achieved much more accurately than by 
using a simple barometer.

A portable type often used is the aneroid barometer. Such 
a barometer consists basically of a circular, hollow, sealed 
vessel, S, usually made from thin flexible metal. The air 
pressure in the vessel is reduced to nearly zero before 
sealing, so that a change in atmospheric pressure will 
cause the shape of the vessel to expand or contract. These 
small changes can be magnified by means of a lever and 
be made to move a pointer over a calibrated scale. Figure 
23.5 shows a typical arrangement of an aneroid barometer. 
The scale is usually circular and calibrated in millimetres 
of mercury. These instruments require frequent calibration.

Figure 23.5 

*Jean Nicolas Fortin (1750–1831) was a French maker of  
scientific instruments and is chiefly remembered for his design 
of the barometer.  To find out more go to www.routledge.com/
cw/bird

Figure 23.4
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23.7 Absolute and gauge pressure

A barometer measures the true or absolute pressure 
of the atmosphere. The term absolute pressure means 
the pressure above that of an absolute vacuum (which 
is zero pressure), as stated earlier. In Figure 23.6 a 
pressure scale is shown with the line AB represent-
ing absolute zero pressure (i.e. a vacuum) and line CD 
 representing atmospheric pressure. With most practical 
pressure-measuring instruments the part of the instru-
ment that is subjected to the pressure being measured is 
also subjected to atmospheric pressure. Thus practical 
instruments actually determine the difference between 
the pressure being measured and atmospheric pres-
sure. The pressure that the instrument is measuring is 
then termed the gauge pressure. In Figure 23.6, the line 
EF represents an absolute pressure which has a value 
greater than atmospheric pressure, i.e. the ‘gauge’ pres-
sure is positive.

Figure 23.6

Thus, absolute pressure = gauge pressure +  
 atmospheric pressure.
Hence a gauge pressure of, say, 60 kPa recorded on an 
indicating instrument when the atmospheric pressure 
is 101 kPa is equivalent to an absolute pressure of  
60 kPa + 101 kPa, or 161 kPa.

Pressure-measuring indicating instruments are re-
ferred to generally as pressure gauges (which acts as a 
reminder that they measure ‘gauge’ pressure).

It is possible, of course, for the pressure indicated on 
a pressure gauge to be below atmospheric pressure, i.e. 
the gauge pressure is negative. Such a gauge pressure 
is often referred to as a vacuum, even though it does 
not necessarily represent a complete vacuum at abso-
lute zero pressure. Such a pressure is shown by the line 
GH in Figure 23.6. An indicating instrument used for 
measuring such pressures is called a vacuum gauge.

A vacuum gauge indication of, say, 0.4 bar, means 
that the pressure is 0.4 bar less than atmospheric pres-
sure. If atmospheric pressure is 1 bar, then the absolute 
pressure is 1 – 0.4 or 0.6 bar.

23.8 The manometer

A manometer is a device for measuring or comparing 
fluid pressures, and is the simplest method of indicat-
ing such pressures.

U-tube manometer

A U-tube manometer consists of a glass tube bent into 
a U shape and containing a liquid such as mercury. 
A U-tube manometer is shown in Figure 23.7(a). If 
limb A is connected to a container of gas whose pres-
sure is above atmospheric, then the pressure of the gas 
will cause the levels of mercury to move as shown in 
Figure 23.7(b), such that the difference in height is 
h1. The measuring scale can be calibrated to give the 
gauge pressure of the gas as h1 mm of mercury.

Figure 23.7
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If limb A is connected to a container of gas whose 
pressure is below atmospheric then the levels of mer-
cury will move as shown in Figure 23.7(c), such that 
their pressure difference is h2 mm of mercury.

It is also possible merely to compare two pres-
sures, say, PA and PB, using a U-tube manometer. 
Figure 23.7(d) shows such an arrangement with  
(PB – PA) equivalent to h mm of mercury. One appli-
cation of this differential pressure-measuring device 
is in determining the velocity of fluid flow in pipes  
(see Chapter 24).
For the measurement of lower pressures, water  
or paraffin may be used instead of mercury in the  
U-tube to give larger values of h and thus greater  
sensitivity.

Inclined manometers

For the measurement of very low pressures, greater 
sensitivity is achieved by using an inclined manom-
eter, a typical arrangement of which is shown in Fig-
ure 23.8. With the inclined manometer the liquid used 
is water and the scale attached to the inclined tube is 
calibrated in terms of the vertical height h. Thus when 
a vessel containing gas under pressure is connected 
to the reservoir, movement of the liquid levels of the 
manometer occurs. Since small-bore tubing is used the 
movement of the liquid in the reservoir is very small 
compared with the movement in the inclined tube and 
is thus neglected. Hence the scale on the manometer is 
usually used in the range 0.2 mbar to 2 mbar.

Figure 23.8

The pressure of a gas that a manometer is capable 
of measuring is naturally limited by the length of  
tube used. Most manometer tubes are less than 2 m  
in length and this restricts measurement to a maxi- 
mum pressure of about 2.5 bar (or 250 kPa) when  
mercury is used.

23.9 The Bourdon pressure gauge

Pressures many times greater than atmospheric can 
be measured by the Bourdon pressure gauge, which 
is the most extensively used of all pressure-indicating 
instruments. It is a robust instrument. Its main 
component is a piece of metal tube (called the Bourdon 
tube), usually made of phosphor bronze or alloy steel, 
of oval or elliptical cross-section, sealed at one end and 
bent into an arc. In some forms the tube is bent into a 
spiral for greater sensitivity. A typical arrangement is 
shown in Figure 23.9(a). One end, E, of the Bourdon 
tube is fixed and the fluid whose pressure is to be 
measured is connected to this end. The pressure acts 
at right angles to the metal tube wall as shown in the 
cross-section of the tube in Figure 23.9(b). Because of 
its elliptical shape it is clear that the sum of the pressure 
components, i.e. the total force acting on the sides A and 
C, exceeds the sum of the pressure components acting 
on ends B and D. The result is that sides A and C tend 
to move outwards and B and D inwards tending to form 

Figure 23.9
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a circular cross-section. As the pressure in the tube is 
increased the tube tends to uncurl, or if the pressure 
is reduced the tube curls up further. The movement 
of the free end of the tube is, for practical purposes, 
proportional to the pressure applied to the tube, this 
pressure, of course, being the gauge pressure (i.e. the 
difference between atmospheric pressure acting on the 
outside of the tube and the applied pressure acting on 
the inside of the tube). By using a link, a pivot and 
a toothed segment as shown in Figure 23.9(a), the 
movement can be converted into the rotation of a 
pointer over a graduated calibrated scale.

The Bourdon tube pressure gauge is capable of  
measuring high pressures up to 104 bar (i.e. 7600 m of 
mercury) with the addition of special safety features.

A pressure gauge must be calibrated, and this is done 
either by a manometer, for low pressures, or by a piece 
of equipment called a ‘dead weight tester’. This tester 
consists of a piston operating in an oil-filled cylinder 
of known bore, and carrying accurately known weights 
as shown in Figure 23.10. The gauge under test is at-
tached to the tester and a screwed piston or ram applies 
the required pressure, until the weights are just lifted. 
While the gauge is being read, the weights are turned to 
reduce friction effects.

Figure 23.10

23.10 Vacuum gauges

Vacuum gauges are instruments for giving a visual in-
dication, by means of a pointer, of the amount by which 
the pressure of a fluid applied to the gauge is less than 
the pressure of the surrounding atmosphere. Two ex-
amples of vacuum gauges are the McLeod gauge and 
the Pirani gauge.

McLeod gauge

The McLeod* gauge is normally regarded as a 
standard and is used to calibrate other forms of vacuum 

gauges. The basic principle of this gauge is that it 
takes a known volume of gas at a pressure so low that 
it cannot be measured, then compresses the gas in a 
known ratio until the pressure becomes large enough to 
be measured by an ordinary manometer. This device is 
used to measure low pressures, often in the range 10–6 to  
1.0 mm of mercury. A disadvantage of the McLeod 
gauge is that it does not give a continuous reading 
of pressure and is not suitable for registering rapid 
variations in pressure.

Pirani gauge

The Pirani* gauge measures the resistance and thus 
the temperature of a wire through which current is 
flowing. The thermal conductivity decreases with the 
pressure in the range 10–1 to 10–4 mm of mercury so 
that the increase in resistance can be used to measure 
pressure in this region. The Pirani gauge is calibrated 
by comparison with a McLeod gauge.

23.11  Hydrostatic pressure on  
submerged surfaces

From Section 23.2, it can be seen that hydrostatic pres-
sure increases with depth according to the formula:

p = ρgh

Problem 10. The deepest part of the ocean is the 
Mariana Trench, where its depth is approximately 
11.52 km (7.16 miles). What is the gauge pressure 
at this depth, assuming that ρ = 1020 kg/m3 and  
g = 9.81 m/s2?

Gauge pressure, p = ρgh

    = 1020 kg
m3  × 9.81 m

s2
 × 11.52 × 103m

    = 11.527 × 107 N/m2 ×
1

105 2
bar
N/m

i.e.    pressure, p = 1152.7 bar

*Herbert McLeod (February 1841–October 1923) was a Brit-
ish chemist, noted for the invention of the McLeod gauge and 
for the invention of the sunshine recorder. To find out more go 
to www.routledge.com/cw/bird

*Marcello Stefano Pirani (1 July 1880–11 January 1968) was 
a German physicist known for his invention of the Pirani vacu-
um gauge. To find out more go to www.routledge.com/cw/bird
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Note that from the above calculation, it can be seen that 
a gauge pressure of 1 bar is approximately equivalent 
to a depth of 10 m.

Problem 11. Determine an expression for the 
thrust acting on a submerged plane surface, which 
is inclined to the horizontal by an angle θ, as 
shown in Figure 23.11.

Figure 23.11

From Figure 23.11, δF = elemental thrust on dA
           = ρgh × dA
But h = y sin θ
Hence,     δF = ρgy sin θ dA

Total thrust on plane surface = F = ∫  dF = ∫  ρgy sin θ dA

or       F = ρg sin θ ∫ y dA
However, ∫ y dA  = A h

_
  where A = area of the surface,

and h
_

 = distance of the centroid of the plane from the 
free surface.

Problem 12. Determine an expression for the  
position of the centre of pressure of the plane  
surface P(x′, y′) of Figure 23.11; this is also  
the position of the centre of thrust.

Taking moments about O gives:

            F y′ = ∫ ×ρ θgy dA ysin

However,        F = ρg sin θ ∫ y dA

Hence,    y′ = 
∫

∫
∫
∫

ρ θ

ρ θ

ρ θ

ρ θ
=

gy dA

g y dA

g y dA

g y dA

sin

sin

sin

sin

2 2

                   = 
( )Ak

A y
Ox

2

_

where                 ( )Ak
Ox

2

                =  the second moment of area  
about Ox

           k = the radius of gyration from O.

Now try the following Practice Exercise

Practice Exercise 130  Further problems on 
hydrostatic pressure 
on submerged 
surfaces

(Take g = 9.81 m/s2)

1.  Determine the gauge pressure acting on the 
surface of a submarine that dives to a depth 
of 500 m. Take water density as 1020 kg/m3.
 [50.03 bar]

2.  Solve Problem 1, when the submarine dives 
to a depth of 780 m. [78.05 bar]

3.  If the gauge pressure measured on the sur-
face of the submarine of Problem 1 were  
92 bar, at what depth has the submarine 
dived to? [919.4 m]

4.  A tank has a flat rectangular end, which is of 
size 4 m depth by 3 m width. If the tank is 
filled with water to its brim and the flat end is 
vertical, determine the position of its centre 
of pressure and the thrust on this end. Take 
water density as 1000 kg/m3.

 [2.667 m ; 0.235 MN]

5.  If another vertical flat rectangular end of the 
tank of Problem 4 is of size 6 m depth by  
4 m width, determine the position of its cen-
tre of pressure and the thrust on this end. The 
depth of water at this end may be assumed to 
be 6 m. [4 m ; 0.706 MN]

6.  A tank has a flat rectangular end, which is 
inclined to the horizontal surface, so that  
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θ = 30°, where θ is as defined in Figure 
23.11, page 283. If this end is of size 6 m 
height and 4 m width, determine the position 
of its centre of pressure from the top and the 
thrust on this end. The tank may be assumed 
to be just full. 
 [2 m ; 0.235 MN] 

23.12  Hydrostatic thrust on  
curved surfaces

As hydrostatic pressure acts perpendicularly to a sur-
face, the integration of δF over the surface can be 
complicated. One method of determining the thrust on 
a curved surface is to project its area on flat vertical  
and horizontal surfaces, as shown by AB and DE,  
respectively, in Figure 23.12.

Figure 23.12

From equilibrium considerations, F = Fx and W = Fy 
and these thrusts must act through the centre of pres-
sures of the respective vertical and horizontal planes. 
The resultant thrust can be obtained by adding Fx and 
FY vectorially, where W = weight of the fluid enclosed 
by the curved surface and the vertical projection lines 
to the free surface, and G = centre of gravity of W.

23.13 Buoyancy

The upward force exerted by the fluid on a body that 
is wholly or partially immersed in it is called the buoy-
ancy of the body.

23.14 The stability of floating bodies

For most ships and boats the centre of buoyancy (B) of 
the vessel is usually below the vessels’ centre of grav-
ity (G), as shown in Figure 23.13(a). When this vessel 
is subjected to a small angle of keel (θ), as shown in 
Figure 23.13(b), the centre of buoyancy moves to the 
position B′, 

where BM = the centre of curvature of the centre of 

buoyancy = I
V

, (given without proof)

     GM = the metacentric height,

Figure 23.13

M = the position of the metacentre,

  I =  the second moment of area of the water plane 
about its centreline, and

 V = displaced volume of the vessel.

The metacentric height GM can be found by a simple 
inclining experiment, where a weight P is moved trans-
versely a distance x, as shown in Figure 23.14.

Figure 23.14
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Therefore,          GM = Px
W

cot θ (23.1)

 where W = the weight of the vessel,  

and cot θ = 
θ

1
tan

Problem 13. A naval architect has carried out 
hydrostatic calculations on a yacht, where he has 
found the following:

 M = mass of yacht = 100 tonnes,
 KB =  vertical distance of the centre of buoyancy 

(B) above the keel (K) = 1.2 m (see Figure 
23.15),

BM =  distance of the metacentre (M) above the 
centre of buoyancy = 2.4 m.

Figure 23.15

He then carries out an inclining experiment, where 
he moves a mass of 50 kg through a transverse 
distance of 10 m across the yacht’s deck. In doing 
this, he finds that the resulting angle of keel, θ = 1°. 
What is the metacentric height (GM) and the posi-
tion of the centre of gravity of the yacht above the 
keel, namely KG? Assume g = 9.81 m/s2.

  P = 50 kg × 9.81 = 490.5 N,

 W = 100 tonnes × 1000 ×
kg

tonne
9.81 m

s2
= 981 kN,

   x = 10 m, 
   θ = 1° from which,  

    tan θ = 0.017455 and cot θ = 
θ

1
tan = 57.29

From equation (23.1),   GM = Px
W

cot θ
 

         = 
× ×

×

490.5N 10m 57.29
981 10 N3

i.e. metacentric height, GM = 0.286 m

Now KM = KB + BM = 1.2 m + 2.4 m = 3.6 m

   KG = KM – GM = 3.6 – 0.286 = 3.314 m

i.e. centre of gravity above the keel, KG = 3.314 m, 
(where ‘K’ is a point on the keel).

Problem 14. A barge of length 30 m and width  
8 m floats on an even keel at a depth of 3 m. What is 
the value of its buoyancy? Take density of water, ρ, 
as 1000 kg/m3 and g as 9.81 m/s2.

The displaced volume of the barge,  
V = 30 m × 8 m × 3 m = 720 m3.
From Section 23.4,  
buoyancy = Vρg = 720 m3 × 1000 kg

m3  × 9.81 m
s2

                       = 7.063 MN

Problem 15. If the vertical centre of gravity of 
the barge in Problem 14 is 2 m above the keel, (i.e. 
KG = 2 m), what is the metacentric height of the 
barge?

Now KB = the distance of the centre of buoyancy of the 

barge from the keel = 3
2
m  i.e. KB = 1.5 m.

From page 284, BM = I
V

 and for a rectangle, I = 
Lb
12

3
 

from Table 9.1, page 133, where L = length of the wa-
terplane = 30 m, and   
b = width of the waterplane = 8 m.

Hence, moment of inertia, I = 
×30 8

12

3
 = 1280 m4

From Problem 14, volume, V = 720 m3,

hence, BM = =
I
V

1280
720

 = 1.778 m

Now, KM = KB + BM = 1.5 m + 1.778 m = 3.278 m
i.e. the metacentre above the keel, KM = 3.278 m.
Since   KG = 2 m (given), then 
  GM = KM – KG = 3.278 – 2 = 1.278 m,
i.e. the metacentric height of the barge, GM = 1.278 m

Problem 16. A circular cylindrical steel buoy, 
made from 10 mm thick steel plate, is of a hollow 
box-like disc shape, as shown in Figure 23.16. It is 
sealed off at its top and bottom by circular plates so 
that it is watertight. (a) If the external diameter of 
the buoy, D, is 1 m and its height, h, is 0.5 m, deter-
mine its weight, W, given that the density of steel, 

M 
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B 

K 
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ρS = 7860 kg/m3. (b) At what depth, H, will the buoy 
float if the density of water, ρW = 1020 kg/m3?  
(c) What is its GM ?  Take g to be 9.81 m/s2.

Figure 23.16 Circular cylindrical buoy

(a)  Weight of two end plates,  
W1 = π ρ× × × ×R t g 2S

2
 where radius R = D/2

  = π × × × × ×−(0.5) (10 10 ) 7860 9.81 22 3

  = 1211.2 N
 Weight of circular cylinder,  
 W2 = π ρ× × ×R t h g2 Smean    

       π ( )= × − × × ×

× × × =

− −2 0.5 5 10 (10 10 )

0.5 7860 9.81 1199 N

3 3
  

 Total weight of buoy, W  = W1 + W2  
= 1211 + 1199 = 2410 N

(b)  Buoyancy, B = W = 2410 N = weight of water 
displaced (1)

 Let H = draught of water of the buoy, so that:

 B = π ρ× ×R H 9.81W
2  

     = π × × ×H(0.5) 1020 9.812  = 7858.9 H (2)
 Equating (1) and (2) gives: 7858.9 H = 2410

 from which, depth, H = 2410
7858 9.  = 0.307 m

(c) KB = =
H
2

0.307
2  = 0.1533 m

 BM 
π

π
= = ×

= =
×

=

I
V

R
R H

R
H

4
1

4
0.5

4 0.307
0.204 m

4

2

2 2

 

 KM  = KB + BM = 0.153 + 0.204 

                   = 0.357 m

 GM = KM – KG = 0.357 – 0 5
2
.

 Hence, GM = 0.107 m

Problem 17. A submarine pressure hull is in  
the form of a watertight circular cylindrical shell, 
of length 80 m, blocked off by flat ends, and of  
external diameter 10 m, and it descends to the 
bottom of the Mariana Trench, which is 11.52 km 
deep. What will be the hydrostatic pressure acting 
on it? If a double-decker London bus is of mass 
7 tonnes what will be the equivalent number of 
double-decker London buses acting on this hull? 
Density of water, ρW = 1020 kg/m3. Take g to be 
9.81 m/s2.

Hydrostatic pressure,  
 p = ρgh = 1020 × 9.81 × 11520 

               = 115.27 MPa = ×115.27 10
10 Pa/bar

6

5
  

          = 1152.7 bar ≡ 1152.7 atmosphere
(since 105 pascals = 1 bar ≡ 14.5 psi)
Let A = area of the external surface of the pressure hull 
assuming flat ends = π π× +R RL2 22

where R = external cylinder radius = =
10
2

5 m and  
L = length between its ends = 80 m
Hence, area A = π π× + × ×(5) 2 2 5 802

                         = 157.1 + 2513.3 = 2670.4 m2

Total hydrostatic head on the submarine hull  
= p × A = 115.27 × 106 × 2670.4 = 307817 MN

Hence, W = 307817 MN × ×
10 N
MN

kg
9.81N

6

                  = × ×3.1378 10 kg tonne
1000kg

10   

= 31.378 × 106 tonnes
Number of double-decker London buses,  

   N = 
×31.378 10

7

6
 = 4.48 × 106

Thus, N = 4.48 million equivalent weight of double-
decker London buses
Because of the huge heads suffered by submarine pres-
sure hulls, they are one of the most difficult structures 
to design (see [1], page 289).

circular plate 

D= 1m 

h=O.5 m 
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Now try the following Practice Exercises

Practice Exercise 131  Further problems on 
hydrostatics

(In the following problems, where necessary, take  
g = 9.81 m/s2 and density of water ρ = 1020 kg/m3)

1.  A ship is of mass 10000 kg. If the ship floats 
in the water, what is the value of its buoy-
ancy? [98.1 kN]

2.  A submarine may be assumed to be in the 
form of a circular cylinder of 10 m external 
diameter and of length 100 m. If the sub- 
marine floats just below the surface of the 
water, what is the value of its buoyancy?

 [78.59 MN]

3.  A barge of length 20 m and of width 5 m 
floats on an even keel at a depth of 2 m. What 
is the value of its buoyancy? [2 MN]

4.  An inclining experiment is carried out on the 
barge of Problem 3 where a mass of 20 kg is 
moved transversely across the deck by a dis-
tance of 2.2 m. The resulting angle of keel is 
0.8°. Determine the metacentric height, GM.

 [0.0155 m]

5.  Determine the value of the radius of curva-
ture of the centre of buoyancy, namely, BM, 
for the barge of Problems 3 and 4, and hence 
the position of the centre of gravity above 
the keel, KG.  
 [BM = 1.0417 m, KG = 2.026 m]

6.  If the submarine of Problem 2 floats so  
that its top is 2 m above the water, determine 
the centre of curvature of the centre of buoy-
ancy, BM. [0.633 m]

Practice Exercise 132  Short-answer 
questions on 
hydrostatics

 1. Define pressure.

 2. State the unit of pressure.

 3. Define a fluid.

 4.  State the four basic factors governing the 
pressure in fluids.

 5.  Write down a formula for determining the 

pressure at any point in a fluid in symbols, 
defining each of the symbols and giving 
their units.

 6. What is meant by atmospheric pressure?

 7.  State the approximate value of atmospheric 
pressure.

 8. State what is meant by gauge pressure.

 9. State what is meant by absolute pressure.

10.  State the relationship between absolute, 
gauge and atmospheric pressures.

11. State Archimedes’ principle.

12. Name four pressure measuring devices.

13.  Standard atmospheric pressure is 101325 Pa.  
State this pressure in millibars.

14. Briefly describe how a barometer operates.

15.  State the advantage of a Fortin barometer 
over a simple barometer.

16.  What is the main disadvantage of a Fortin 
barometer?

17. Briefly describe an aneroid barometer.

18. What is a vacuum gauge?

19.  Briefly describe the principle of operation 
of a U-tube manometer.

20.  When would an inclined manometer be 
used in preference to a U-tube manometer?

21.  Briefly describe the principle of operation 
of a Bourdon pressure gauge.

22. What is a ‘dead weight tester’?

23. What is a Pirani gauge?

24. What is a McLeod gauge used for?

25. What is buoyancy?

26. What does the abbreviation BM mean?

27. What does the abbreviation GM mean?

28.  Define BM in terms of the second moment 
of area I of the water plane, and the dis-
placed volume V of a vessel.

29.  What is the primary purpose of a ship’s in-
clining experiment?
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Practice Exercise 133  Multiple-choice 
questions on 
hydrostatics 

(Answers on page 336)

 1.  A force of 50 N acts uniformly over and  
at right angles to a surface. When the area 
of the surface is 5 m2, the pressure on the 
area is:

 (a)  250 Pa   (b)  10 Pa  
 (c)  45 Pa   (d)  55 Pa

 2.  Which of the following statements is false? 
The pressure at a given depth in a fluid  

 (a)  is equal in all directions
  (b)   is independent of the shape of the con-

tainer
 (c)   acts at right angles to the surface con-

taining the fluid
 (d)  depends on the area of the surface

 3.  A container holds water of density  
1000 kg/m3. Taking the gravitational 
acceleration as 10 m/s2, the pressure at a 
depth of 100 mm is:

 (a)  1 kPa   (b)  1 MPa  
 (c)  100 Pa   (d)  1 Pa

 4.  If the water in question 3 is now replaced 
by a fluid having a density of 2000 kg/m3, 
the  pressure at a depth of 100 mm is:

 (a)  2 kPa   (b)  500 kPa  
 (c)  200 Pa   (d)  0.5 Pa

 5.  The gauge pressure of fluid in a pipe is  
70 kPa and the atmospheric pressure is  
100 kPa. The absolute pressure of the fluid 
in the pipe is:

 (a)  7 MPa   (b)  30 kPa  
 (c)  170 kPa   (d)  10/7 kPa

 6.  A U-tube manometer contains mercury 
of density 13600 kg/m3. When the differ-
ence in the height of the mercury levels is  
100 mm and taking the gravitational accel-
eration as 10 m/s2, the gauge pressure is:

 (a)  13.6 Pa   (b)  13.6 MPa  
 (c)  13 710 Pa   (d)  13.6 kPa

 7.  The mercury in the U-tube of question 6  
is to be replaced by water of density  
1000 kg/m3. The height of the tube to con-

tain the water for the same gauge pressure 
is:  

 (a)  (1/13.6) of the original height
 (b)  13.6 times the original height
 (c)  13.6 m more than the original height 
 (d)  13.6 m less than the original height

 8.  Which of the following devices does not 
measure pressure?

 (a)  barometer    (b)  McLeod gauge  
 (c)  thermocouple (d)  manometer

 9.  A pressure of 10 kPa is equivalent to:
 (a)  10 millibars   (b)  1 bar  
 (c)  0.1 bar   (d)  0.1 millibars

10.  A pressure of 1000 mbars is equivalent to:  
 (a)  0.1 kN/m2  (b)  10 kPa  
 (c)  1000 Pa   (d)  100 kN/m2

11. Which of the following statements is false?
 (a)   Barometers may be used for the mea-

surement of altitude.
 (b)   Standard atmospheric pressure is the 

pressure due to the mass of the air 
above the ground.

 (c)   The maximum pressure that a mercury 
manometer, using a 1 m length of  glass 
tubing, is capable of measuring is in 
the order of 130 kPa.

 (d)   An inclined manometer is designed to 
measure higher values of pressure than 
the U-tube manometer.

In questions 12 and 13 assume that atmospheric 
pressure is 1 bar.

12.   A Bourdon pressure gauge indicates a pres-
sure of 3 bars. The absolute pressure of the 
system being measured is:

 (a)  1 bar   (b)  2 bars  
 (c)  3 bars   (d)  4 bars

13.   In question 12, the gauge pressure is:
 (a) 1 bar   (b)  2 bars  
 (c) 3 bars   (d)  4 bars

In questions 14 to 18 select the most suitable 
 pressure-indicating device from the following list:

(a)  Mercury filled U-tube manometer
(b)  Bourdon gauge
(c)  McLeod gauge
(d)  aneroid barometer
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(e)  Pirani gauge
(f)  Fortin barometer
(g)  water-filled inclined barometer

14.  A robust device to measure high pressures 
in the range 0 – 30 MPa.

15. Calibration of a Pirani gauge.
16.  Measurement of gas pressures comparable 

with atmospheric pressure.
17.  To measure pressures of the order of 1 MPa.
18.  Measurement of atmospheric pressure to a 

high degree of accuracy.
19.  Figure 23.7(b), on page 280, shows a  

U-tube manometer connected to a gas 
under pressure. If atmospheric pressure is  
76 cm of mercury and h1 is measured in 
centimetres then the gauge pressure (in cm 
of mercury) of the gas is: 

 (a)  h1    (b)  h1 + 76   
 (c)  h1 – 76    (d)  76 – h1

20.  In question 19 the absolute pressure of the 
gas (in cm of mercury) is:

 (a)  h1    (b)  h1 + 76   

 (c)  h1 – 76    (d)  76 – h1

21.  Which of the following statements  
is true?

 (a)   Atmospheric pressure of 101.325 kN/m2 
is equivalent to 101.325 millibars.

 (b)   An aneroid barometer is used as a stan-
dard for calibration purposes.

 (c)   In engineering, ‘pressure’ is the force 
per unit area exerted by fluids.

 (d)   Water is normally used in a barometer 
to measure atmospheric pressure.

22.  Which of the following statements is true 
for a ship floating in equilibrium?

 (a)  The weight is larger than the buoyancy.  
 (b)   The weight is smaller than the buoy-

ancy.
 (c)  The weight is equal to the buoyancy.
 (d)   The weight is independent of the buoy-

ancy.

23.  For a ship to be initially stable, the meta-
centric height must be:

 (a)  positive  
 (b)  negative  
 (c)  zero  
 (d)  equal to the buoyancy

24.  For a ship to be stable, it is helpful if KG is: 
 (a)  negative  (b)  large 
 (c)  small  (d)  equal to KM
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Chapter 24

Why it is important to understand: Fluid flow
The measurement of fluid flow is of great importance in many industrial processes, some examples 
including air flow in the ventilating ducts of a coal mine, the flow rate of water in a condenser at a power 
station, the flow rate of liquids in chemical processes, the control and monitoring of the fuel, lubricating 
and cooling fluids of ships and aircraft engines, and so on. Fluid flow is one of the most difficult of 
industrial measurements to carry out, since flow behaviour depends on a great many variables concerning 
the physical properties of a fluid. There are available a large number of fluid flow measuring instruments 
generally called flowmeters, which can measure the flow rate of liquids (in m3/s) or the mass flow rate of 
gaseous fluids (in kg/s). The two main categories of flowmeters are differential pressure flowmeters and 
mechanical flowmeters. This chapter also contains calculations on Bernoulli’s equation and the impact of 
a jet on a stationary plate.

24.1 Differential pressure flowmeters

When certain flowmeters are installed in pipelines they 
often cause an obstruction to the fluid flowing in the  
pipe by reducing the cross-sectional area of the pipeline. 
This causes a change in the velocity of the fluid, with a 
related change in pressure. Figure 24.1 shows a section 
through a pipeline into which a flowmeter has been 
inserted. The flow rate of the fluid may be determined 

At the end of this chapter you should be able to:

• appreciate the importance of measurement of fluid flow
• describe the construction, principle of operation, advantages and disadvantages, and practical applications 

of orifice plates, Venturi tubes, flow nozzles and Pitot-static tube and describe the principle of operation of 
deflecting vane and turbine type flowmeters

• describe the construction, principle of operation, advantages and disadvantages, and practical applications of 
float and tapered tube flowmeters, electromagnetic flowmeters, and hot-wire anemometer

• select the most appropriate flowmeter for a particular application
• state the continuity equation (i.e. the principle of conservation of mass)
• state and perform calculations on Bernoulli’s equation
• state and perform calculations on the impact of a jet on a stationary plate

from a measurement of the difference between the 
pressures on the walls of the pipe at specified distances 
upstream and downstream of the flowmeter. Such 
devices are known as differential pressure flowmeters.

The pressure difference in Figure 24.1 is measured 
using a manometer connected to appropriate pressure 
tapping points. The pressure is seen to be greater up-
stream of the flowmeter than downstream, the pressure 
difference being shown as h.
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Figure 24.1

Calibration of the manometer depends on the shape of 
the obstruction, the positions of the pressure tapping 
points and the physical properties of the fluid.

In industrial applications the pressure difference is 
detected by a differential pressure cell, the output from 
which is either an amplified pressure signal or an elec-
trical signal.
Examples of differential pressure flowmeters com- 
monly used include:

(a) Orifice plate (see Section 24.2)
(b) Venturi tube (see Section 24.3)
(c) Flow nozzles (see Section 24.4)
(d) Pitot-static tube (see Section 24.5)

British Standard reference BS 1042: Part 1: 1964 and 
Part 2A: 1973 ‘Methods for the measurement of fluid 
flow in pipes’ gives specifications for measurement, 
manufacture, tolerances, accuracy, sizes, choice, and 
so on, of differential flowmeters.

24.2 Orifice plate

Construction
An orifice plate consists of a circular, thin, flat plate with 
a hole (or orifice) machined through its centre to fine 
limits of accuracy. The orifice has a diameter less than 
the pipeline into which the plate is installed and a typi-
cal section of an installation is shown in Figure 24.2(a). 
Orifice plates are manufactured in stainless steel, monel 
metal, polyester glass fibre, and for large pipes, such as 
sewers or hot gas mains, in brick and concrete. 

Principles of operation 
When a fluid moves through a restriction in a pipe, the 
fluid accelerates and a reduction in pressure occurs, the 
magnitude of which is related to the flow rate of the 
fluid. The variation of pressure near an orifice plate is 
shown in Figure 24.2(b). The position of minimum pres-
sure is located downstream from the orifice plate where 

the flow stream is narrowest. This point of minimum 
cross-sectional area of the jet is called the ‘vena con-
tracta’. Beyond this point the pressure rises but does not 
return to the original upstream value and there is a per-
manent pressure loss. This loss depends on the size and 
type of orifice plate, the positions of the upstream and 
downstream pressure tappings and the change in fluid 
velocity between the pressure tappings that depends on 
the flow rate and the dimensions of the orifice plate.

In Figure 24.2(a) corner pressure tappings are shown 
at A and B. Alternatively, with an orifice plate insert-
ed into a pipeline of diameter d, pressure tappings 
are often located at distances of d and d/2 from the  
plate respectively upstream and downstream. At  
distance d upstream the flow pattern is not influenced 
by the presence of the orifice plate, and distance d/2 
coincides with the vena contracta.

Advantages of orifice plates
 (i) They are relatively inexpensive.
(ii) They are usually thin enough to fit between an 

existing pair of pipe flanges.

Disadvantages of orifice plates
 (i) The sharpness of the edge of the orifice can be-

come worn with use, causing calibration errors.
 (ii) The possible build-up of matter against the plate.
 (iii) A considerable loss in the pumping efficiency 

due to the pressure loss downstream of the plate.

Applications
Orifice plates are usually used in medium and large 
pipes and are best suited to the indication and control 
of essentially constant flow rates. Several applications 
are found in the general process industries.

Figure 24.2

Flowmeter causing obstruction in fluid flow 
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24.3 Venturi tube

Construction
The Venturi tube or venturimeter is an instrument 
for measuring with accuracy the flow rate of fluids 
in pipes. A typical arrangement of a section through 
such a device is shown in Figure 24.3, and consists 
of a short converging conical tube called the inlet or  
upstream cone, leading to a cylindrical portion called  
the throat. A diverging section called the outlet or recov-
ery cone follows this. The entrance and exit diameter is 
the same as that of the pipeline into which it is installed.  
Angle β is usually a maximum of 21°, giving a taper of 
β/2 of 10.5°. The length of the throat is made equal to 
the diameter of the throat. Angle α is about 5° to 7° to  
ensure a minimum loss of energy but where this is  
unimportant α can be as large as 14° to 15°. 

Figure 24.3

Pressure tappings are made at the entry (at A) and at 
the throat (at B) and the pressure difference h which 
is measured using a manometer, a differential pressure 
cell or similar gauge, is dependent on the flow rate 
through the meter. Usually pressure chambers are fitted 
around the entrance pipe and the throat circumference 
with a series of tapping holes made in the chamber to 
which the manometer is connected. This ensures that 
an average pressure is recorded. The loss of energy due 
to turbulence that occurs just downstream with an ori-
fice plate is largely avoided in the venturimeter due to 
the gradual divergence beyond the throat.

Venturimeters are usually made a permanent instal-
lation in a pipeline and are manufactured usually from 
stainless steel, cast iron, monel metal or polyester glass 
fibre.

Advantages of venturimeters
 (i) High accuracy results are possible.

 (ii) There is a low pressure loss in the tube (typically 
only 2% to 3% in a well proportioned tube).

 (iii) Venturimeters are unlikely to trap any matter 
from the fluid being metered.

Disadvantages of venturimeters
 (i) High manufacturing costs.
(ii) The installation tends to be rather long (typically 

120 mm for a pipe of internal diameter 50 mm).

24.4 Flow nozzle

The flow nozzle lies between an orifice plate and the 
venturimeter both in performance and cost. A typi-
cal section through a flow nozzle is shown in Figure 
24.4, where pressure tappings are located immediately  
adjacent to the upstream and downstream faces of the 
nozzle (i.e. at points A and B). The fluid flow does 
not contract any further as it leaves the nozzle and 
the pressure loss created is considerably less than that  
occurring with orifice plates. Flow nozzles are suitable 
for use with high velocity flows for they do not suffer 
the wear that occurs in orifice plate edges during such 
flows. 

Figure 24.4

24.5 Pitot-static tube

A Pitot-static tube is a device for measuring the ve-
locity of moving fluids or of the velocity of bodies 
moving through fluids. It consists of one tube, called 
the Pitot* tube, with an open end facing the direction 
of the fluid motion, shown as pipe R in Figure 24.5, 
and a second tube, called the piezometer tube, with 
the opening at 90° to the fluid flow, shown as T in  
Figure 24.5. Pressure recorded by a pressure gauge 
moving with the flow, i.e. static or stationary rela-
tive to the fluid, is called free stream pressure and 
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Figure 24.5

 connecting a pressure gauge to a small hole in the 
wall of a pipe, such as point T in Figure 24.5, is the 
easiest method of recording this pressure. The differ-
ence in pressure (pR – pT), shown as h in the manome-
ter of Figure 24.5, is an indication of the speed of the 
fluid in the pipe. 

Figure 24.6 shows a practical Pitot-static tube con-
sisting of a pair of concentric tubes. The centre tube 
is the impact probe that has an open end which faces 
‘head-on’ into the flow. The outer tube has a series of 
holes around its circumference located at right angles 
to the flow, as shown by A and B in Figure 24.6. The 
manometer, showing a pressure difference of h, may be 
calibrated to indicate the velocity of flow directly. 

Figure 24.6

Applications
A Pitot-static tube may be used for both turbulent 
and non-turbulent flow. The tubes can be made very 
small compared with the size of the pipeline and the 
monitoring of flow velocity at particular points in the 

cross-section of a duct can be achieved. The device is 
generally unsuitable for routine measurements and in 
industry is often used for making preliminary tests of 
flow rate in order to specify permanent flow measuring 
equipment for a pipeline. The main use of Pitot tubes is 
to measure the velocity of solid bodies moving through 
fluids, such as the velocity of ships. In these cases, the 
tube is connected to a Bourdon pressure gauge that can 
be calibrated to read velocity directly. A development 
of the Pitot tube, a pitometer, tests the flow of water in 
water mains and detects leakages.

Advantages of Pitot-static tubes
 (i) They are inexpensive devices.
 (ii) They are easy to install.
 (iii) They produce only a small pressure loss in the 

tube.
 (iv) They do not interrupt the flow.

Disadvantages of Pitot-static tubes
 (i) Due to the small pressure difference, they are 

only suitable for high velocity fluids.
 (ii) They can measure the flow rate only at a particu-

lar position in the cross-section of the pipe.
 (iii) They easily become blocked when used with  

fluids carrying particles.

24.6 Mechanical flowmeters

With mechanical flowmeters, a sensing element situat-
ed in a pipeline is displaced by the fluid flowing past it. 
Examples of mechanical flowmeters commonly used 
include:

(a) Deflecting vane flowmeter (see Section 24.7)
(b) Turbine type meters (see Section 24.8)

24.7 Deflecting vane flowmeter

The deflecting vane flowmeter consists basically of 
a pivoted vane suspended in the fluid flow stream as 
shown in Figure 24.7.

Figure 24.7

*Henri Pitot (3 May 1695–27 December 1771) was a French 
hydraulic engineer and the inventor of the pitot tube. To find out 
more go to www.routledge.com/cw/bird
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When a jet of fluid impinges on the vane it deflects 
from its normal position by an amount proportional  
to the flow rate. The movement of the vane is indi-
cated on a scale that may be calibrated in flow units.  
This type of meter is normally used for measuring  
liquid flow rates in open channels or for measuring  
the velocity of air in ventilation ducts. The main dis- 
advantages of this device are that it restricts the  
flow rate and it needs to be recalibrated for fluids of 
differing densities.

24.8 Turbine type meters

Turbine type flowmeters are those that use some  
form of multi-vane rotor and are driven by the fluid 
being investigated. Three such devices are the cup  
anemometer, the rotary vane positive displacement  
meter and the turbine flowmeter.

(a) Cup anemometer. An anemometer is an 
instrument that measures the velocity of moving 
gases  and is most often used for the measurement 
of wind speed. The cup anemometer has three or  
four cups of hemispherical shape mounted at the 
end of arms radiating horizontally from a fixed  
point. The cup system spins round the vertical 
axis with a speed approximately proportional 
to  the velocity of the wind. With the aid of a  
mechanical and/or electrical counter the wind 
speed  can be determined and the device is easily 
adapted for automatic recording. 

(b) Rotary vane positive displacement meters 
measure the flow rate by indicating the quantity 
of liquid flowing through the meter in a given 
time. A typical such device is shown in section in 
Figure 24.8 and consists of a cylindrical chamber 
into which is placed a rotor containing a number 
of vanes (six in this case). Liquid entering the 
chamber turns the rotor and a known amount of 
liquid is trapped and carried round to the outlet. 
If x is the volume displaced by one blade then 
for each revolution of the rotor in Figure 24.8 the  
total volume displaced is 6x. The rotor shaft may 
be coupled to a mechanical counter and electri-
cal devices which may be calibrated to give flow 
volume. This type of meter in its various forms 
is used widely for the measurement of domestic 
and industrial water consumption, for the accu-
rate measurement of petrol in petrol pumps and 
for the consumption and batch control measure-
ments in the general process and food industries 

for measuring flows as varied as solvents, tar and 
molasses (i.e. thickish treacle). 

Figure 24.8

(c) A turbine flowmeter contains in its construc-
tion a rotor to which blades are attached which 
spin at a velocity proportional to the veloc-
ity of the fluid which flows through the meter. A  
typical section through such a meter is shown in 
Figure 24.9. The number of revolutions made by  
the turbine blades may be determined by a  
mechanical or electrical device enabling the flow 
rate or total flow to be determined. Advantages 
of turbine flowmeters include a compact durable 
form, high accuracy, wide temperature and pres-
sure capability and good response characteristics. 
Applications include the volumetric measurement 
of both crude and refined petroleum products in 
pipelines up to 600 mm bore, and in the water, 
power, aerospace, process and food industries, 
and with modification may be used for natural, 
industrial and liquid gas measurements. Turbine 
flowmeters require periodic inspection and clean-
ing of the working  parts. 

Figure 24.9

24.9 Float and tapered-tube meter

Principle of operation
With orifice plates and venturimeters the area of the 
opening in the obstruction is fixed and any change 
in the flow rate produces a corresponding change in 
pressure. With the float and tapered-tube meter the 
area of the restriction may be varied so as to maintain 
a steady pressure differential. A typical meter of this 
type is shown diagrammatically in Figure 24.10 where 
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a  vertical tapered tube contains a ‘float’ that has a den-
sity greater than the fluid. 

The float in the tapered tube produces a restriction 
to the fluid flow. The fluid can only pass in the annular 
area between the float and the walls of the tube. This 
reduction in area produces an increase in velocity and 
hence a pressure difference, which causes the float to 
rise. The greater the flow rate, the greater is the rise in 
the float position, and vice versa. The position of the 
float is a measure of the flow rate of the fluid and this 
is shown on a vertical scale engraved on a transpar-
ent tube of plastic or glass. For air, a small sphere is 
used for the float but for liquids there is a tendency 
to instability and the float is then designed with vanes 
that cause it to spin and thus stabilise itself as the  
liquid flows past. Such meters are often called  
‘rotameters’. Calibration of float and tapered tube 
flowmeters can be achieved using a Pitot-static tube or, 
more often, by using a weighing meter in an instrument 
repair workshop.

Advantages of float and tapered-tube flowmeters
 (i) They have a very simple design.
 (ii) They can be made direct reading.
 (iii) They can measure very low flow rates.

Disadvantages of float and tapered-tube flowmeters
 (i) They are prone to errors, such as those caused by 

temperature fluctuations.
 (ii) They can only be installed vertically in a pipeline.

 (iii) They cannot be used with liquids containing 
large amounts of solids in suspension.

 (iv) They need to be recalibrated for fluids of differ-
ent densities. 

Practical applications of float and tapered-tube   
meters are found in the medical field, in instrument 
purging, in mechanical engineering test rigs and in 
simple process applications, in particular for very low 
flow rates. Many corrosive fluids can be handled with 
this device without complications.

24.10 Electromagnetic flowmeter

The flow rate of fluids that conduct electricity, such 
as water or molten metal, can be measured using  
an electromagnetic flowmeter whose principle of 
operation is based on the laws of electromagnetic 
induction. When a conductor of length L moves at  
right angles to a magnetic field of density B at a velocity 
v, an induced e.m.f. e is generated, given by: e = BLv.

With the electromagnetic flowmeter arrangement 
shown in Figure 24.11, the fluid is the conductor and 
the e.m.f. is detected by two electrodes placed across 
the diameter of the non-magnetic tube. 

Rearranging   e = BLv gives:  

velocity, v = 
e
BL  

Figure 24.11

Thus with B and L known, when e is measured, the 
velocity of the fluid can be calculated.

Main advantages of electromagnetic flowmeters
 (i) Unlike other methods, there is nothing directly 

to impede the fluid flow.

Figure 24.10
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 (ii) There is a linear relationship between the fluid 
flow and the induced e.m.f. 

 (iii) Flow can be metered in either direction by using 
a centre-zero measuring instrument.

Applications of electromagnetic flowmeters are found 
in the measurement of speeds of slurries, pastes and 
viscous liquids, and they are also widely used in the 
water production, supply and treatment industry.

24.11 Hot-wire anemometer

A simple hot-wire anemometer consists of a small piece 
of wire which is heated by an electric current and po-
sitioned in the air or gas stream whose velocity is to be 
measured. The stream passing the wire cools it, the rate 
of cooling being dependent on the flow velocity. In prac-
tice there are various ways in which this is achieved:

 (i) If a constant current is passed through the wire, 
variation in flow results in a change of tempera-
ture of the wire and hence a change in resistance 
which may be measured by a Wheatstone bridge 
arrangement. The change in resistance may be 
related to fluid flow.

 (ii) If the wire’s resistance, and hence temperature, 
is kept constant, a change in fluid flow results in  
a corresponding change in current which can be 
calibrated as an indication of the flow rate.

(iii) A thermocouple may be incorporated in the as-
sembly, monitoring the hot wire and recording 
the temperature which is an indication of the air 
or gas velocity.

Advantages of the hot-wire anemometer
(a) Its size is small.
(b) It has great sensitivity.

24.12 Choice of flowmeter

Problem 1. Choose the most appropriate  
fluid flow measuring device for the following 
circumstances:
(a)  The most accurate, permanent installation for 

measuring liquid flow rate.
(b)  To determine the velocity of low-speed 

aircraft and ships.
(c)  Accurate continuous volumetric measurement 

of crude petroleum products in a duct of  
500 mm bore.

(d)  To give a reasonable indication of the mean 
flow velocity, while maintaining a steady 
pressure difference on a hydraulic test rig.

(e)  For an essentially constant flow rate with 
reasonable accuracy in a large bore pipe, with 
a cheap and simple installation.

(a) Venturimeter
(b) Pitot-static tube

(c) Turbine flowmeter

(d) Float and tapered-tube flowmeter

(e) Orifice plate.

Now try the following Practice Exercise

Practice Exercise 134  Further problems on 
the measurement of 
fluid flow

For the flow measurement devices listed 1 to 5, 
(a) describe briefly their construction (b) state 
their principle of operation (c) state their char-
acteristics and limitations (d) state typical practi-
cal applications (e) discuss their advantages and 
disadvantages.

1. Orifice plate

2. Venturimeter

3. Pitot-static tube

4. Float and tapered-tube meter

5. Turbine flowmeter.

24.13 Equation of continuity

The calibrations of many of the flowmeters described 
earlier are based on the equation of continuity and  
Bernoulli’s equation.

The equation of continuity states that for the steady 
flow of a fluid through a pipe of varying cross-section 
the rate of mass entering the pipe must be equal to the 
rate of mass leaving the pipe; this is really a statement 
of the principle of conservation of mass. Thus, for an 
incompressible fluid:

=a v a v1 1 2 2
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where a1 = cross-sectional area at section 1,  
a2 = cross-sectional area at section 2, v1 = velocity of 
fluid at section 1, and v2 = velocity of fluid at section 2

24.14 Bernoulli’s equation

Bernoulli’s equation* states that for a fluid flowing 
through a pipe from section 1 to section 2:

ρρ ρρ
+ + = + + +

P v gz P v g z h
2 2

( )f1 1
2

1
2 2

2

2

where ρ = density of the fluid, 
 P1 = pressure at section 1, 
 P2 = pressure at section 2,

 v1 = velocity at section 1, 
  v2 = velocity at section 2, 
  z1 = ‘height’ of pipe at section 1,
  z2 = ‘height’ of pipe at section 2, 
  hf =  friction losses (in m) due to the fluid flowing 

from section 1 to section 2,
and   g = 9.81 m/s2 (assumed).

Problem 2. A storage tank contains oil whose 
free surface is 5 m above an outlet pipe, as shown 
in Figure 24.12. Determine the mass rate of flow at 
the exit of the outlet pipe, assuming that (a) losses 
at the pipe entry = 0.4 v2, and (b) losses at the valve 
= 0.25 v2. 
Pipe diameter = 0.04 m, density of oil, ρ = 770 kg/m3. 

Figure 24.12

Let v2 = velocity of oil through the outlet pipe.
From Bernoulli’s equation: 

 

ρ

ρ

+ +

= + + + +

P v gz

P v gz v v

2

2
0.4 0.25

1 1
2

1

2 2
2

2 2
2

2
2

i.e.    0 + 0 + g(5 m) = 0 + 
v
2
2
2

 + 0 + 0.65 v2
2

(where in the above, the following assumptions have 
been made: P1 = P2 = atmospheric pressure, and v1 is 
negligible)

Hence,     5 m × 9.81 m
s2  = (0.5 + 0.65)v2

2

Rearranging gives:   1.15 v2
2 = 49.05 m

s

2

2

Hence,    v2
2 = 49.05

1.15

*Daniel Bernoulli (8 February 1700–17 March 1782) was a 
Swiss mathematician and physicist who is most remembered 
for his work in fluid mechanics and his pioneering work in 
probability and statistics. 
To find out more go to www.routledge.com/cw/bird
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from which,   v2 = 49.05
1.15

 = 6.531 m/s

Cross-sectional area of pipe  = a2 =
π π

=
×d

4
0.04
4

2
2 2

 
  = 0.001257 m2

Mass rate of flow through the outlet pipe 

 = ρ a2v2 = 770 kg
m3  × 1.257 × 10–3m2 × 6.531 m

s
               = 6.321 kg/s

Flow through an orifice
Consider the flow of a liquid through a small orifice, 
as shown in Figures 24.13(a) and (b), where it can be 
seen that the vena contracta (VC) lies just to the right 
of the orifice. The cross-sectional area of the fluid is the 
smallest here and its decrease in area from the orifice is 
measured by the coefficient of contraction (Cc).

Figure 24.13

Due to friction losses there will be a loss in velocity  
at the orifice; this is measured by the coefficient of  
velocity, namely Cv, so that:

Cd = Cv × Cc = the coefficient of discharge.

Let a = area of orifice. 
Due to the vena contracta the equivalent cross- 
sectional area = Cca
Now the theoretical velocity at section 2 = v2 = gh2   
but due to friction losses,  v2 = Cv gh2  

and due to contraction, v2 = CcCv gh2

Hence             discharge = Cca × Cv gh2  

But               Cd = CvCc 

Therefore,        discharge = Cd × a 2gh  

Now try the following Practice Exercise

Practice Exercise 135  Further problems on 
fluid flow

1.  If in the storage tank of worked Problem 2 on 
page 297, Figure 24.12, z1 = 8 m, determine 
the mass rate of flow from the outlet pipe. 

 [7.995 kg/s]

2.  If in the storage tank of worked Problem 2, 
page 297, Figure 24.12, z1 = 10 m, determine 
the mass rate of flow from the outlet pipe. 
 [8.939 kg/s]

3.  If in Figure 24.13, h = 6 m, Cc = 0.8,  
Cv = 0.7, determine the values of Cd and  
actual v2.  [Cd = 0.56, v2 = 6.08 m/s] 

4.  If in Figure 24.13, h = 10 m, Cc = 0.75,  
Cv = 0.65, and the cross-sectional area is  
1.5 × 10–3m2, determine the discharge and 
the actual velocity v2. 
 [Cd = 0.488, 6.84 m/s, 7.90 kg/s]

24.15  Impact of a jet on a  
stationary plate

The impact of a jet on a plate is of importance in a 
number of engineering problems, including the deter-
mination of pressures on buildings subjected to gusts 
of wind.

Consider the jet of fluid acting on the flat plate of 
Figure 24.14, where it can be seen that the velocity of 
the fluid is turned through 90°, or change of velocity = v. 

Figure 24.14
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Now, momentum = mv and as v is constant, the change 

of momentum = dm
dt

 × v

However, dm
dt

 = mass rate of flow = ρav

Therefore, change of momentum = ρav × v = ρav2 but 
from Newton’s second law of motion (see pages 183 
and 189),

 F = rate of change of momentum

i.e. F = ρav2

where F = resulting normal force on the flat plate.

  Pressure = =
force
area  ρav

a

2
 = ρv2

For wide surfaces, such as garden fences, the pressure 
can be calculated by the above formula, but for tall 
buildings and trees, civil engineers normally assume 
that:

Pressure p = 0.5 ρv2

This is because the flow of fluid is similar to the plan 
view shown in Figure 24.15, where the change of mo-
mentum is much less.

Figure 24.15

Problem 3. Determine the wind pressure on a 
slim, tall building due to a gale of 100 km/h. Take 
density of air, ρ = 1.2 kg/m3.

For a tall building, pressure p = 0.5 ρv2

Velocity, v = 100 × ×
km
h

1000m
km

1h
3600s  = 27.78 m/s

Hence,  

wind pressure,  p = 0.5 × 1.2 kg
m3  × 









27.78 m

s

2

                = 462.96 N/m2 = 0.00463 bar.

Problem 4. What would be the wind pressure of 
Problem 3, if the gale were acting on a very wide 
and flat surface?

For a very wide surface, 

pressure, p = ρv2 = 1.2 ×










kg
m

27.78 m
s3

2

           = 926.1 N/m2 = 0.00926 bar

(or less than 1/100th of atmospheric pressure!)

Now try the following Practice Exercises

Practice Exercise 136  Further problems on 
the impact of jets on 
flat surfaces

1.  A hurricane of velocity 220 km/h blows 
perpendicularly on to a very wide flat surface. 
Determine the wind pressure that acts on 
this surface due to this hurricane, when the 
density of air, ρ = 1.2 kg/m3. [0.0448 bar]

2.  What is the wind pressure for Problem 1 on 
a slim, tall building? [0.0224 bar]

3.  A tornado with a velocity of 320 km/h blows 
perpendicularly on to a very wide surface. 
Determine the wind pressure that acts on this 
surface due to this tornado, when the density 
of air, ρ = 1.23 kg/m3. [0.0972 bar]

4.  What is the wind pressure for Problem 3 on 
a slim, tall building? [0.0486 bar]

5.  If atmospheric pressure were 1.014 bar, what 
fraction of atmospheric pressure would be 
the wind pressure calculated in Problem 4?

 [0.0479 ≈
1
21]

Practice Exercise 137  Short-answer 
questions on the 
measurement of 
fluid flow

In the flowmeters listed 1 to 10, state typical 
practical applications of each.

 1. Orifice plate.

 2. Venturimeter.

 3. Float and tapered-tube meter. 

 4. Electromagnetic flowmeter.

 5. Pitot-static tube.

v, v, 
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 6. Hot-wire anemometer.

 7. Turbine flowmeter.

 8. Deflecting vane flowmeter.

 9. Flow nozzles.

10. Rotary vane positive displacement meter.

11.  Write down the relationship between the 
coefficients Cc, Cv and Cd

12.  Write down the formula for the pressure 
due to a wind acting perpendicularly on a 
tall slender building.

Practice Exercise 138  Multiple-choice 
questions on the 
measurement of 
fluid flow

(Answers on page 336)

 1. The term ‘flow rate’ usually refers to:
 (a)  mass flow rate
 (b)  velocity of flow
 (c)  volumetric flow rate

 2.  The most suitable method for measuring the 
velocity of high-speed gas flow in a duct is: 

 (a)  venturimeter
 (b)  orifice plate
 (c)  Pitot-static tube
 (d)  float and tapered-tube meter

 3.  Which of the following statements is false? 
When a fluid moves through a restriction in 
a pipe, the fluid

 (a)  accelerates and the pressure increases
 (b)  decelerates and the pressure decreases
 (c)  decelerates and the pressure increases
 (d)  accelerates and the pressure decreases

 4.  With an orifice plate in a pipeline the vena 
contracta is situated:

 (a)   downstream at the position of mini-
mum cross-sectional area of flow

 (b)   upstream at the position of minimum 
cross-sectional area of flow

 (c)   downstream at the position of maxi-
mum cross-sectional area of flow

 (d)   upstream at the position of maximum 
cross-sectional area of flow

In questions 5 to 14, select the most appropriate 
device for the particular requirements from the 
following list:
 (a)  orifice plate 
(b)  turbine flowmeter
 (c)  flow nozzle 
(d)  pitometer 
(e)  venturimeter
(f)  cup anemometer 
(g)  electromagnetic flowmeter  
(h)  pitot-static tube 
 (i)  float and tapered-tube meter  
 (j)  hot-wire anemometer 
(k)  deflecting vane flowmeter.

 5.  Easy to install, reasonably inexpensive, for 
high-velocity flows.

 6.  To measure the flow rate of gas, incorporat-
ing a Wheatstone bridge circuit.

 7.  Very low flow rate of corrosive liquid in a 
chemical process.

 8.  To detect leakages from water mains.

 9.  To determine the flow rate of liquid metals 
without impeding its flow.

10. To measure the velocity of wind.

11.  Constant flow rate, large bore pipe, in the 
general process industry.

12.  To make a preliminary test of flow rate in 
order to specify permanent flow measuring 
equipment.

13.  To determine the flow rate of fluid very ac-
curately with low pressure loss.

14.  To measure the flow rate of air in a ventilat-
ing duct.

15.  For a certain wind velocity, what fraction 
of the pressure would act on a tall slender 
building in comparison with a very wide 
surface?

 (a)  0.01  (b)  0
 (c)  0.5   (d)  0.99

16.  For a wind speed of 190 km/h, what frac-
tion (approximate) of atmospheric pressure 
will this be, when blowing perpendicularly 
to a very wide surface?

 (a)  2.5  (b)  0.5
 (c)  1/30   (d)  0

For fully worked solutions to each of the problems in Practice Exercises 134 to 138 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird


Chapter 25

Ideal gas laws

Mechanical Engineering Principles, Bird and Ross, ISBN 9780415517850

Why it is important to understand: Ideal gas laws
The relationships that exist between pressure, volume and temperature in a gas are given in a set of laws 
called the gas laws, the most fundamental being those of Boyle’s, Charles’, and the pressure law, together 
with Dalton’s law of partial pressures and the characteristic gas equation. These laws are used for all 
sorts of practical applications, including for designing pressure vessels, in the form of circular cylinders 
and spheres, which are used for storing and transporting gases. Another example of this is the pressure 
in car tyres, which can increase due to a temperature increase, and can decrease due to a temperature 
decrease. Other examples are large and medium size gas storage cylinders and domestic spray cans, 
which can explode if they are heated. In the case of domestic spray cans, these can explode dangerously 
in a domestic situation if they are left on a window sill where the sunshine acting on them causes them 
to heat up, or if they are thrown on to a fire. In these cases, the consequence can be disastrous, so don’t 
throw your ‘full’ spray can on to a fire; you may very sadly and deeply regret it!  Another example of a gas 
storage vessel is that used by your ‘local’ gas companies, which supply natural gas (methane) to domestic 
properties, businesses, etc.

25.1 Boyle’s law

Boyle’s law* states:

the volume V of a fixed mass of gas is inversely 
proportional to its absolute pressure p at con-
stant temperature

At the end of this chapter you should be able to:

• state and perform calculations involving Boyle’s law
• understand the term isothermal
• state and perform calculations involving Charles’ law
• understand the term isobaric
• state and perform calculations involving the pressure law
• state and perform calculations on Dalton’s law of partial pressures
• state and perform calculations on the characteristic gas equation
• understand the term STP

i.e.    p ∝ 
V
1  

or    p = k
V

    

or    pV = k   at constant temperature, where 
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  p = absolute pressure in pascals (Pa),  
V = volume in m3, and k = a constant.

Changes that occur at constant temperature are called 
isothermal changes. When a fixed mass of gas at con-
stant temperature changes from pressure p1 and vol-
ume V1 to pressure p2 and volume V1 then:

=p V p V1 1 2 2

Problem 1. A gas occupies a volume of 0.10 m3 
at a pressure of 1.8 MPa. Determine (a) the pressure 
if the volume is changed to 0.06 m3 at constant 
temperature, and (b) the volume if the pressure is 
changed to 2.4 MPa at constant temperature. 

(a)  Since the change occurs at constant temperature 
(i.e. an isothermal change), Boyle’s law applies, 

 i.e.  p1V1 = p2V2     
 where p1 = 1.8 MPa,  V1 = 0.10 m3 and  

V2 = 0.06 m3.
 Hence, (1.8)(0.10) = p2(0.06) 

 from which, pressure p2 = ×1.8 0.10
0.06

 = 3 MPa

(b)  p1V1 = p2V2  where p1 = 1.8 MPa, V1 = 0.10 m3 
and p2 = 2.4 MPa. 

 Hence,       (1.8)(0.10) = (2.4)V2 

 from which, volume V2 = ×1.8 0.10
2.4

= 0.075 m3

Problem 2. In an isothermal process, a mass of 
gas has its volume reduced from 3200 mm3 to  
2000 mm3. If the initial pressure of the gas is  
110 kPa, determine the final pressure.

Since the process is isothermal, it takes place at con-
stant temperature and hence Boyle’s law applies, i.e. 
p1V1 = p2V2, where p2 = 110 kPa, V1 = 3200 mm3 and 
V2 = 2000 mm3. 
Hence, (110)(3200) = p2(2000) 

from which, final pressure, p2  = 
×110 3200

2000   

= 176 kPa

Problem 3. Some gas occupies a volume of 
1.5 m3 in a cylinder at a pressure of 250 kPa. A 
piston, sliding in the cylinder, compresses the gas 
isothermally until the volume is 0.5 m3. If the area 
of the piston is 300 cm2, calculate the force on the 
piston when the gas is compressed.

An isothermal process means constant temperature and 
thus Boyle’s law applies, i.e. p1V1 = p2V2

where V1 = 1.5 m3, V2 = 0.5 m3 and p1= 250 kPa. 
Hence,         (250)(1.5) = p2(0.5) 

from which,      pressure, p2  = 
×250 1.5

0.5   

= 750 kPa

Pressure = force
area , from which, force = pressure × area. 

Hence, force on the piston 
   = (750 × 103 Pa)(300 × 10–4 m2)  
  = 22.5 kN

Problem 4. The gas in a syringe has a pressure of 
600 mm of mercury (Hg) and a volume of quantity 
20 mL. If the syringe is compressed to a volume 
of 3 mL, what will be the pressure of the gas, 
assuming that its temperature does not change?

Since p1V1 = p2V2

*Robert Boyle (25 January 1627–31 December 1691) is 
regarded as the first modern chemist and is best known for 
Boyle’s law.
To find out more go to www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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then         (600 mm Hg)(20 mL) = (  p2 )(3 mL)
from which, new pressure, 

p2 = 
×600mm Hg 20mL

3mL  = 4000 mm of mercury

Now try the following Practice Exercise

Practice Exercise 139  Further problems on 
Boyle’s law

1.  The pressure of a mass of gas is increased 
from 150 kPa to 750 kPa at constant tem-
perature. Determine the final volume of the 
gas, if its initial volume is 1.5 m3. [0.3 m3]

2.  In an isothermal process, a mass of gas has 
its volume reduced from 50 cm3 to 32 cm3. 
If the initial pressure of the gas is 80 kPa, 
determine its final pressure. [125 kPa]

3.  The piston of an air compressor compresses 
air to 1

4
 of its original volume during its 

stroke. Determine the final pressure of the air 
if the original pressure is 100 kPa, assuming 
an isothermal change. [400 kPa]

4.  A quantity of gas in a cylinder occupies a 
volume of 2 m3 at a pressure of 300 kPa. A 
piston slides in the cylinder and compresses 
the gas, according to Boyle’s law, until the 
volume is 0.5 m3. If the area of the piston 
is 0.02 m2, calculate the force on the piston 
when the gas is compressed. [24 kN]

5.  The gas in a simple pump has a pressure of 
400 mm of mercury (Hg) and a volume of 
10 mL. If  the pump is compressed to a vol-
ume of 2 mL, calculate the pressure of the 
gas, assuming that its temperature does not 
change.

 [2000 mm of mercury]

25.2 Charles’ law

Charles’ law* states:

for a given mass of gas at constant pressure, the 
volume V is directly proportional to its thermo-
dynamic temperature T

i.e. V ∝ T 

or   V = kT 

or V
T  = k at constant pressure, where 

   T =  thermodynamic temperature in  
kelvin (K).

A process that takes place at constant pressure is called 
an isobaric process.
The relationship between the Celsius scale of tem-
perature and the thermodynamic or absolute scale is 
given by:

 kelvin = degrees Celsius + 273 
i.e.        K = °C + 273 

or           °C = K – 273 (as stated in Chapter 21).

If a given mass of gas at a constant pressure occupies 
a volume V1 at a temperature T1 and a volume V2 at 
temperature T2, then

==
V
T

V
T

1

1

2

2

Problem 5. A gas occupies a volume of  
1.2 litres at 20°C. Determine the volume it  
occupies at 130°C if the pressure is kept constant.

Since the change occurs at constant pressure (i.e. an 
isobaric process), Charles’ law applies, 

i.e.   =
V
T

V
T

1

1

2

2

*Jacques Alexandre César Charles (12 November 1767–7 
April 1823) was a French inventor, scientist, mathematician 
and balloonist. With his brother, Charles launched the world’s 
first hydrogen filled balloon and is also well known for Charles’ 
law, which describes how gases expand when heated. To find 
out more go to www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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where V1 = 1.2 litre, T1 = 20°C = (20 + 273)K = 293 K 

and T2 = (130 + 273)K = 403 K. 

Hence,           =
V1.2

293 403
2

from which, volume at 130°C, V2  = (1.2)(403)
293

  

= 1.65 litres

Problem 6. Gas at a temperature of 150°C has  
its volume reduced by one-third in an isobaric  
process. Calculate the final temperature of the gas.

Since the process is isobaric it takes place at constant 
pressure and hence Charles’ law applies, 

i.e.   =
V
T

V
T

1

1

2

2

where     T1 = (150 + 273)K = 423 K  

and      V2 = 2
3

V1 

Hence =
V V

T423

2
31 1

2
 

from which, final temperature,  

      T2 = 
2
3

(423) (423) = 282 K 

or  (282 – 273)°C   i.e.  9°C

Problem 7. A balloon is under a constant internal 
pressure. If its volume is 15 litres at a temperature 
of 35ºC, what will be its volume at a temperature 
of 10ºC.

Since   =
V
T

V
T

1

1

2

2

where     T1 = (35 + 273)K = 308 K 
and      T2 = (10 + 273)K = 283 K 

Hence, =
V15litres

308K 283K
2  

and    new volume, V2 = 

×15litres 283K
308K

 = 13.8 litres

Now try the following Practice Exercise

Practice Exercise 140  Further problems on 
Charles’ law

1.  Some gas initially at 16°C is heated to 96°C 
at constant pressure. If the initial volume of 
the gas is 0.8 m3, determine the final volume 
of the gas. [1.02 m3]

2.  A gas is contained in a vessel of volume  
0.02 m3 at a pressure of 300 kPa and a tem-
perature of 15°C. The gas is passed into a 
vessel of volume 0.015 m3. Determine to 
what temperature the gas must be cooled for 
the pressure to remain the same. [–57°C]

3.  In an isobaric process gas at a temperature 
of 120°C has its volume reduced by a sixth. 
Determine the final temperature of the gas.
 [54.5°C]

4.  The volume of a balloon is 30 litres at a tem-
perature of 27ºC. If the balloon is under a 
constant internal pressure, calculate its vol-
ume at a temperature of 12ºC.  [28.5 litres]

25.3 The pressure or Gay-Lussac’s law 

The pressure or Gay-Lussac’s law states:

the pressure p of a fixed mass of gas is directly 
proportional to its thermodynamic temperature 
T at constant volume.

i.e. p ∝ T or p = kT or   pT  = k

When a fixed mass of gas at constant volume changes 
from pressure p1 and temperature T1, to pressure p2 and 
temperature T2 then:

==
p
T

p
T

1

1

2

2

Problem 8. Gas initially at a temperature of 17°C 
and pressure 150 kPa is heated at constant volume 
until its temperature is 124°C. Determine the final 
pressure of the gas, assuming no loss of gas.

Since the gas is at constant volume, the pressure law 

applies,  i.e. =
p
T

p
T

1

1

2

2
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where T1= (17 + 273)K = 290 K,  
  T2 = (124 + 273)K = 397 K 
and    p1 = 150 kPa

Hence =
p150

290 397
2   from which,   

final pressure, p2  = (150)(397)
290

  

= 205.3 kPa

Problem 9. A rigid pressure vessel is subjected to 
a gas pressure of 10 atmospheres at a temperature of 
20ºC. The pressure vessel can withstand a maximum 
pressure of 30 atmospheres. What gas temperature 
increase will this vessel withstand?  
(Note that 1 atmosphere of pressure means 
1.01325 bar or 1.01325 × 105 Pa or 14.5 psi)

Since   =
p
T

p
T

1

1

2

2

where T1= (20 + 273)K = 293 K, 

then  =
T

10 atmospheres
293K

30 atmospheres

2

from which, new temperature, 

T2 = ×30 atmospheres 293K
10 atmospheres

 = 879 K or (879 – 273)ºC

 = 606ºC
Hence, temperature rise = (879 – 293)K = 586 K
or temperature rise = (606 – 20)ºC = 586ºC
Note that a temperature change of 586 K is equal to a 
temperature change of 586ºC

Now try the following Practice Exercise

Practice Exercise 141  Further problems 
on the pressure law

1.  Gas, initially at a temperature of 27°C and 
pressure 100 kPa, is heated at constant  
volume until its temperature is 150°C. As-
suming no loss of gas, determine the final 
pressure of the gas. [141 kPa]

2.  A pressure vessel is subjected to a gas pressure 
of 8 atmospheres at a temperature of 15ºC. The 
vessel can withstand a maximum pressure of 
28 atmospheres. Calculate the gas temperature 
increase the vessel can withstand. [720ºC]

25.4 Dalton’s law of partial pressure

Dalton’s law* of partial pressure states:

the total pressure of a mixture of gases 
occupying a given volume is equal to the sum of 
the pressures of each gas, considered separately, 
at constant temperature.

The pressure of each constituent gas when occupying 
a fixed volume alone is known as the partial pressure 
of that gas.

An ideal gas is one that completely obeys the gas 
laws given in Sections 25.1 to 25.4. In practice no gas 
is an ideal gas, although air is very close to being one. 
For calculation purposes the difference between an 
ideal and an actual gas is very small.

Problem 10. A gas R in a container exerts a 
pressure of 200 kPa at a temperature of 18°C. 
Gas Q is added to the container and the pressure 
increases to 320 kPa at the same temperature. 
Determine the pressure that gas Q alone exerts at 
the same temperature.

*John Dalton (6 September 1766–27 July 1844) is best known 
for his pioneering work in the development of modern atomic 
theory and his research into colour blindness. To find out more 
go to www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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25.6  Worked problems on the  
characteristic gas equation

Problem 11. A gas occupies a volume of 2.0 m3 
when at a pressure of 100 kPa and a temperature of 
120°C. Determine the volume of the gas at 15°C if 
the pressure is increased to 250 kPa.

Using the combined gas law: =
p V
T

p V
T

1 1

1

2 2

2

where  V1 = 2.0 m3, p1 = 100 kPa, p2 = 250 kPa,  
T1 = (120 + 273)K = 393 K  and  

  T2 = (15 + 273) K = 288 K, gives: 

             =
V(100)(2.0)

393
(250)

288
2

from which, volume at 15°C,  

                V2 = (100)(2.0)(288)
(393)(250)

 = 0.586 m3

Problem 12. 20000 mm3 of air initially at a 
pressure of 600 kPa and temperature 180°C is 
expanded to a volume of 70000 mm3 at a pressure 
of 120 kPa. Determine the final temperature of the 
air, assuming no losses during the process.

Using the combined gas law: =
p V
T

p V
T

1 1

1

2 2

2

where V1 = 20000 mm3,  
  V2 = 70000 mm3, p1 = 600 kPa,  
  p2 = 120 kPa, and 

  T1 = (180 + 273) K = 453 K 

Hence             =
T

(600)(20000)
453

(120)(70000)

2
from which, final temperature,  

 T2 = (120)(70000)(453)
(600)(20000)

 = 317 K   or   44°C

Problem 13. Some air at a temperature of 40°C 
and pressure 4 bar occupies a volume of 0.05 m3.  
Determine the mass of the air assuming the  
characteristic gas constant for air to be 287 J/(kg K).

From above,      pV = mRT, 
where          p = 4 bar = 4 × 105 Pa  
       (since 1 bar = 105 Pa – see Chapter 23), 

Initial pressure, pR = 200 kPa, and the pressure of gases 
R and Q together, p = pR + pQ = 320 kPa
By Dalton’s law of partial pressure, the pressure of 
gas Q alone is 

  pQ  = p – pR = 320 – 200 = 120 kPa.

Now try the following Practice Exercise

Practice Exercise 142  A further problem 
on Dalton’s law of 
partial pressure

1.  A gas A in a container exerts a pressure of 
120 kPa at a temperature of 20°C. Gas B is 
added to the container and the pressure in-
creases to 300 kPa at the same temperature.  
Determine the pressure that gas B alone  
exerts at the same temperature. [180 kPa]

25.5 Characteristic gas equation

Frequently, when a gas is undergoing some change, the 
pressure, temperature and volume all vary simultane-
ously. Provided there is no change in the mass of a gas, 
the above gas laws can be combined, giving

==
p V
T

p V
T

1 1

1

2 2

2
 = k  where k is a constant.

For an ideal gas, constant k = mR, where m is the  
mass of the gas in kg, and R is the characteristic gas 

constant, i.e. 
pV
T  = mR

or            pV = mRT

This is called the characteristic gas equation. In this 
equation, p = absolute pressure in pascals, 

 V = volume in m3, m = mass in kg,  
 R = characteristic gas constant in J/(kg K), 
and  T = thermodynamic temperature in kelvin.

Some typical values of the characteristic gas constant 
R include: 
air, 287 J/(kg K), hydrogen 4160 J/(kg K), oxygen 
260 J/(kg K) and carbon dioxide 184 J/(kg K).

Standard temperature and pressure (i.e. STP)  
refers to a temperature of 0°C, i.e. 273 K, and normal 
atmospheric pressure of 101.325 kPa.
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         V = 0.05 m3,  
          T = (40 + 273) K = 313 K, 
and          R = 287 J/(kg K). 

Hence (4 × 105)(0.05) = m(287)(313) 

from which, mass of air, m  = ×(4 10 )(0.05)
(287)(313)

5
  

= 0.223 kg   or   223 g

Problem 14. A cylinder of helium has a volume 
of 600 cm3. The cylinder contains 200 g of helium 
at a temperature of 25°C. Determine the pressure 
of the helium if the characteristic gas constant for 
helium is 2080 J/(kg K).

From the characteristic gas equation, pV = mRT, 

 V = 600 cm3 = 600 × 10–6 m3, m = 200 g = 0.2 kg,  
 T = (25 + 273) K = 298 K and R = 2080 J/(kg K)

Hence  (p)(600 × 10–6) = (0.2)(2080)(298) 

from which, pressure, p  = 
× −

(0.2)(2080)(298)
(600 10 )6

  

= 206613333 Pa  
= 206.6 MPa

Problem 15. A spherical vessel has a diameter of 
1.2 m and contains oxygen at a pressure of 2 bar 
and a temperature of –20°C. Determine the mass 
of oxygen in the vessel. Take the characteristic gas 
constant for oxygen to be 0.260 kJ/(kg K).

From the characteristic gas equation, pV = mRT,  
   V = volume of spherical vessel  

  = π π=








r4

3
4
3

1.2
2

3
3

= 0.905 m3,  

    p = 2 bar = 2 × 105 Pa, 
  T = (–20 + 273) K = 253 K 
and    R = 0.260 kJ/(kg K) = 260 J/(kg K) 

Hence, (2 × 105)(0.905) = m(260)(253) 

from which, mass of oxygen, m  = ×(2 10 )(0.905)
(260)(253)

5
  

= 2.75 kg

Problem 16. Determine the characteristic gas con-
stant of a gas which has a specific volume of 0.5 m3/
kg at a temperature of 20°C and pressure 150 kPa.

From the characteristic gas equation, pV = mRT 

from which,  R = 
pV
mT  where p = 150 × 103 Pa,  

T = (20 + 273) K = 293 K  and  

specific volume, V/m = 0.5 m3/kg. 
Hence the characteristic gas constant,  

  R = ( )

















 =

×









p
T

V
m

150 10
293

0.5
3

 

                           = 256 J/(kg K)

Now try the following Practice Exercise

Practice Exercise 143  Further problems 
on the characteristic 
gas equation

1.  A gas occupies a volume of 1.20 m3 when 
at a pressure of 120 kPa and a temperature 
of 90°C. Determine the volume of the gas at 
20°C if the pressure is increased to 320 kPa.

 [0.363 m3]

2.  A given mass of air occupies a volume of  
0.5 m3 at a pressure of 500 kPa and a tem-
perature of 20°C. Find the volume of the air 
at STP. [2.30 m3]

3.  A balloon is under an internal pressure of 
110 kPa with a volume of 16 litres at a tem-
perature of 22ºC. If the balloon’s internal 
pressure decreases to 50 kPa, what will be its 
volume if the temperature decreases to 12ºC.
 [34.0 litres]

4.  A spherical vessel has a diameter of  
2.0 m and contains hydrogen at a pressure of  
300 kPa and a temperature of –30°C. De-
termine the mass of hydrogen in the vessel. 
Assume the characteristic gas constant R for 
hydrogen is 4160 J/(kg K). [1.24 kg]

5.  A cylinder 200 mm in diameter and  
1.5 m long contains oxygen at a pressure of  
2 MPa and a temperature of 20°C. Determine 
the mass of oxygen in the cylinder. Assume  
the characteristic gas constant for oxygen is 
260 J/(kg K). [1.24 kg]

6.  A gas is pumped into an empty cylinder of 
volume 0.1 m3 until the pressure is 5 MPa. 
The temperature of the gas is 40°C. If the 



308 Mechanical Engineering Principles

Pa
rt 

Fo
ur

cylinder mass increases by 5.32 kg when the 
gas has been added, determine the value of 
the characteristic gas constant. 
 [300 J/(kg K)]

7.  The mass of a gas is 1.2 kg and it occupies 
a volume of 13.45 m3 at STP. Determine its 
characteristic gas constant.

 [4160 J/(kg K)]
8.  30 cm3 of air initially at a pressure of  

500 kPa and temperature 150°C is expand-
ed to a volume of 100 cm3 at a pressure of  
200 kPa. Determine the final temperature 
of the air, assuming no losses during the  
process.  [291°C]

9.  A quantity of gas in a cylinder occupies a 
volume of 0.05 m3 at a pressure of 400 kPa 
and a temperature of 27°C. It is compressed 
according to Boyle’s law until its pressure 
is 1 MPa, and then expanded according to 
Charles' law until its volume is 0.03 m3. 
Determine the final temperature of the gas. 
 [177°C]

10.  Some air at a temperature of 35°C and pres-
sure 2 bar occupies a volume of 0.08 m3. 
Determine the mass of the air assuming 
the characteristic gas constant for air to be  
287 J/(kg K). (1 bar = 105Pa) [0.181 kg]

11.  Determine the characteristic gas constant 
R of a gas that has a specific volume of  
0.267 m3/kg at a temperature of 17°C and 
pressure 200 kPa. [184 J/(kg K)]

25.7  Further worked problems on the 
characteristic gas equation

Problem 17. A vessel has a volume of 0.80 m3 
and contains a mixture of helium and hydrogen at 
a pressure of 450 kPa and a temperature of 17°C. 
If the mass of helium present is 0.40 kg determine 
(a) the partial pressure of each gas, and (b) the mass 
of hydrogen present. Assume the characteristic gas 
constant for helium to be 2080 J/(kg K) and for 
hydrogen 4160 J/(kg K).

(a)  V = 0.80 m3, p = 450 kPa, T = (17 + 273)K =  
290 K, mHe = 0.40 kg, RHe = 2080 J/(kg K). 

  If pHe is the partial pressure of the helium, then 
using the characteristic gas equation, 

       pHeV = mHeRHeT gives: 
(pHe)(0.80) = (0.40)(2080)(290) 

  from which, the partial pressure of the helium, 

  pHe = (0.40)(2080)(290)
(0.80)

 = 301.6 kPa

  By Dalton’s law of partial pressure the total pres-
sure p is given by the sum of the partial pressures, 
i.e. p = pH + pHe, from which,

  the partial pressure of the hydrogen,  
 pH = p – pHe = 450 – 301.6 = 148.4 kPa

(b)  From the characteristic gas equation, 
 pHV = mH  RHT
 Hence, (148.4 × 103)(0.8) = mH (4160)(290) 
  from which, mass of hydrogen,  

mH = 
×(148.4 10 )(0.8)

(4160)(290)

3
 = 0.098 kg   or   98 g

Problem 18. A compressed air cylinder has a 
volume of 1.2 m3 and contains air at a pressure of   
1 MPa and a temperature of 25°C. Air is released 
from the cylinder until the pressure falls to 300 kPa 
and the temperature is 15°C. Determine (a) the mass 
of air released from the container, and (b) the volume 
it would occupy at STP. Assume the characteristic 
gas constant for air to be 287 J/(kg K).

 V1 = 1.2 m3 (= V2), p1 = 1 MPa = 106 Pa, 
  T1 = (25 + 273)K = 298 K, 

  T2 = (15 + 273)K = 288 K,  
  p2 = 300 kPa = 300 × 103 Pa  
and    R = 287 J/(kg K)
(a)  Using the characteristic gas equation,  

p1V1 = m1RT1, to find the initial mass of air  
in the cylinder gives:

                 (106)(1.2) = m1(287)(298)

 from which,   mass m1 = (10 )(1.2)
(287)(298)

6
 = 14.03 kg

  Similarly, using  p2V2= m2RT2 to find the final 
mass of air in the cylinder gives:

       (300 × 103)(1.2) = m2(287)(288)
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 from which, mass m2 =
×(300 10 )(1.2)

(287)(288)

3
= 4.36 kg

  Mass of air released from cylinder  
 = m1 – m2 = 14.03 – 4.36 = 9.67 kg.

(b) At STP, T = 273 K and p = 101.325 kPa. 
 Using the characteristic gas equation pV = mRT

 volume, V = =
mRT

p
(9.67)(287)(273)

101325 = 7.48 m3

Problem 19. A vessel X contains gas at a  
pressure of 750 kPa at a temperature of 27°C. It  
is connected via a valve to vessel Y that is filled
with a similar gas at a pressure of 1.2 MPa and a 
temperature of 27°C. The volume of vessel X is  
2.0 m3 and that of vessel Y is 3.0 m3. Determine 
the final pressure at 27°C when the valve is opened 
and the gases are allowed to mix. Assume R for the 
gas to be 300 J/(kg K).

For vessel X:

 pX = 750 × 103 Pa, TX = (27 + 273)K = 300 K,  
 VX = 2.0 m3 and  R = 300 J/(kg K)
From the characteristic gas equation, pXVX = mXRTX

Hence  (750 × 103)(2.0) = mX (300)(300)
from which,  mass of gas in vessel X,  

mX = 
×(750 10 )(2.0)

(300)(300)

3
 = 16.67 kg.

For vessel Y:

 pY = 1.2 × 106 Pa, TY = (27 + 273)K = 300 K,  
 VY = 3.0 m3 and R = 300 J/(kg K)

From the characteristic gas equation,   pYVY = mYRTY

Hence  (1.2 × 106)(3.0) = mY (300)(300)
from which,  mass of gas in vessel Y, 

mY = 
×(1.2 10 )(3.0)

(300)(300)

6

 = 40 kg

When the valve is opened, mass of mixture,  
 m = mX + mY = 16.67 + 40 = 56.67 kg. 
Total volume,  V = VX + VY = 2.0 + 3.0 = 5.0 m3,  

R = 300 J/(kg K), T = 300 K.
From the characteristic gas equation, pV = mRT
          p(5.0) = (56.67)(300)(300)

from which, final pressure,  

                 p = 
(56.67)(300)(300)

5.0  = 1.02 MPa

Now try the following Practice Exercises

Practice Exercise 144  Further questions 
on ideal gas laws

1.  A vessel P contains gas at a pressure of 
800 kPa at a temperature of 25°C. It is con-
nected via a valve to vessel Q that is filled 
with similar gas at a pressure of 1.5 MPa 
and a temperature of 25°C. The volume of 
vessel P is 1.5 m3 and that of vessel R is 
2.5 m3. Determine the final pressure at 25°C 
when the valve is opened and the gases are 
allowed to mix. Assume R for the gas to be  
297 J/(kg K). [1.24 MPa]

2.  A vessel contains 4 kg of air at a pressure 
of 600 kPa and a temperature of 40°C. The 
vessel is connected to another by a short pipe 
and the air exhausts into it. The final pres-
sure in both vessels is 250 kPa and the tem-
perature in both is 15°C. If the pressure in 
the second vessel before the air entered was 
zero, determine the volume of each vessel. 
Assume R for air is 287 J/(kg K).

[0.60 m3, 0.72 m3]

3.  A vessel has a volume of 0.75 m3 and con-
tains a mixture of air and carbon dioxide at 
a pressure of 200 kPa and a temperature of 
27°C. If the mass of air present is 0.5 kg 
determine (a) the partial pressure of each 
gas and (b) the mass of carbon dioxide. As-
sume the characteristic gas constant for air 
to be 287 J/(kg K) and for carbon dioxide  
184 J/(kg K).

[(a) 57.4 kPa, 142.6 kPa   (b) 1.94 kg]

4.  A mass of gas occupies a volume of 0.02 m3 
when its pressure is 150 kPa and its tempera-
ture is 17°C. If the gas is compressed until 
its pressure is 500 kPa and its temperature 
is 57°C, determine (a) the volume it will oc-
cupy and (b) its mass, if the characteristic 
gas constant for the gas is 205 J/(kg K). 

[(a) 0.0068 m3  (b) 0.050 kg]
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 2.  A gas occupies a volume of 4 m3 at a pres-
sure of 400 kPa. At constant temperature, 
the pressure is increased to 500 kPa. The 
new volume occupied by the gas is: 

 (a)  5 m3     (b)  0.3 m3

 (c)  0.2 m3 (d)  3.2 m3

 3.  A gas at a temperature of 27°C occupies a 
volume of 5 m3. The volume of the same 
mass of gas at the same pressure but at a 
temperature of 57°C is:

 (a)  10.56 m3  (b)  5.50 m3

 (c)  4.55 m3 (d) 2.37 m3

 4.  Which of the following statements is  
false?

 (a)   An ideal gas is one that completely 
obeys the gas laws.

 (b)   Isothermal changes are those that occur 
at constant volume.

 (c)   The volume of a gas increases when  
the temperature increases at constant 
pressure.

 (d)   Changes that occur at constant pressure 
are called isobaric changes.

 A gas has a volume of 0.4 m3 when its pressure 
is 250 kPa and its temperature is 400 K. Use this 
data in questions 5 and 6.

 5.  The temperature when the pressure is  
increased to 400 kPa and the volume is in-
creased to 0.8 m3 is:

 (a)  400 K    (b)  80 K   
 (c)  1280 K    (d)  320 K

 6.  The pressure when the temperature is  
raised to 600 K and the volume is reduced 
to 0.2 m3 is: 

 (a)  187.5 kPa (b)  250 kPa
 (c)  333.3 kPa    (d)  750 kPa

 7.  A gas has a volume of 3 m3 at a temperature 
of 546 K and a pressure of 101.325 kPa.  
The volume it occupies at STP is:

 (a)  3 m3       (b)  1.5 m3

 (c)  6 m3

 8. Which of the following statements is false?
 (a)   A characteristic gas constant has units 

of J/(kg K).
 (b)   STP conditions are 273 K and  

101.325 kPa.

5.  A compressed air cylinder has a volume 
of 0.6 m3 and contains air at a pressure of  
1.2 MPa absolute and a temperature of 37°C. 
After use the pressure is 800 kPa absolute 
and the temperature is 17°C. Calculate  
(a) the mass of air removed from the cylinder, 
and (b) the volume the mass of air removed 
would occupy at STP conditions. Take R for 
air as 287 J/(kg K) and atmospheric pressure 
as 100 kPa. 
 [(a) 2.33 kg (b) 1.83 m3]

Practice Exercise 145  Short-answer 
questions on ideal 
gas laws

1. State Boyle’s law.

2. State Charles’ law.

3. State the Pressure law.

4. State Dalton’s law of partial pressures.

5.  State the relationship between the Celsius  
and the thermodynamic scale of temperature.

6.  What is (a) an isothermal change, and (b) an 
isobaric change?

7. Define an ideal gas.

8. State the characteristic gas equation.

9. What is meant by STP?

Practice Exercise 146  Multiple-choice 
questions on ideal 
gas laws

 (Answers on page 336)

 1.  Which of the following statements is  
false?

 (a)   At constant temperature, Charles’ law 
applies.

 (b)   The pressure of a given mass of gas 
decreases as the volume is increased at 
constant temperature.

 (c)   Isobaric changes are those which occur 
at constant pressure.

 (d)   Boyle’s law applies at constant tem-
perature.
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 (c)  All gases are ideal gases.
 (d)   An ideal gas is one that obeys the gas 

laws.

A mass of 5 kg of air is pumped into a con-
tainer of volume 2.87 m3. The characteristic gas  
constant for air is 287 J/(kg K). Use this data in 
questions 9 and 10.

 9.  The pressure when the temperature is 27°C is:
 (a)  1.6 kPa (b)  6 kPa
 (c)  150 kPa    (d)  15 kPa

10.  The temperature when the pressure is  
200 kPa is:

 (a)  400°C    (b) 127°C
 (c) 127 K    (d) 283 K

For fully worked solutions to each of the problems in Practice Exercises 139 to 146 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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of temperature
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Chapter 26

Why it is important to understand: The measurement of temperature
A change in temperature of a substance can often result in a change in one or more of its physical 
properties. Thus, although temperature cannot be measured directly, its effects can be measured. Some 
properties of substances used to determine changes in temperature include changes in dimensions, 
electrical resistance, state, type and volume of radiation and colour.

Temperature measuring devices available are many and varied. Those described in this chapter are 
those most often used in science and industry. The measurement of temperature is important in medi-
cines and very many branches of science and engineering.

26.1 Liquid-in-glass thermometer

A liquid-in-glass thermometer uses the expansion of 
a liquid with increase in temperature as its principle of 
operation.

At the end of this chapter you should be able to:

• describe the construction, principle of operation and practical applications of the following temperature  
measuring devices:

 (a)  liquid-in-glass thermometer (including advantages of mercury, and sources of  error)
 (b)  thermocouples (including advantages and sources of error)
 (c)  resistance thermometer (including limitations and advantages of platinum coil)
 (d)  thermistors
 (e)  pyrometers (total radiation and optical types, including advantages and disadvantages)
• describe the principle of operation of
 (a) temperature indicating paints and crayons
 (b) bimetallic thermometers
 (c) mercury-in-steel thermometer
 (d) gas thermometer
• select the appropriate temperature measuring device for a particular application.

Construction
A typical liquid-in-glass thermometer is shown in Fig-
ure 26.1 and consists of a sealed stem of uniform small-
bore tubing, called a capillary tube, made of glass, with 
a cylindrical glass bulb formed at one end. The bulb 
and part of the stem are filled with a liquid such as mer-
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cury or alcohol and the remaining part of the tube is 
evacuated. A temperature scale is formed by etching 
graduations on the stem. A safety reservoir is usually 
provided, into which the liquid can expand without 
bursting the glass if the temperature is raised beyond 
the upper limit of the scale.

Figure 26.1

Principle of operation
The operation of a liquid-in-glass thermometer depends 
on the liquid expanding with increase in temperature 
and contracting with decrease in temperature. The 
position of the end of the column of liquid in the tube 
is a measure of the temperature of the liquid in the  
bulb – shown as 15°C in Figure 26.1, which is about 
room temperature. Two fixed points are needed to 
calibrate the thermometer, with the interval between 
these points being divided into ‘degrees’. In the first 
thermometer, made by Celsius, the fixed points chosen 
were the temperature of melting ice (0°C) and that of 
boiling water at standard atmospheric pressure (100°C), 
in each case the blank stem being marked at the liquid 
level. The distance between these two points, called the 
fundamental interval, was divided into 100 equal parts, 
each equivalent to 1°C, thus forming the scale.

The clinical thermometer, with a limited scale 
around body temperature, the maximum and/or 
minimum thermometer, recording the maximum 
day temperature and minimum night temperature, and 
the Beckman thermometer*, which is used only in  
accurate measurement of temperature change, and has 
no fixed points, are particular types of liquid-in-glass  
thermometer which all operate on the same principle.

Advantages
The liquid-in-glass thermometer is simple in construc-
tion, relatively inexpensive, easy to use and portable, 
and is the most widely used method of temperature 
measurement having industrial, chemical, clinical and 
meteorological applications.

Disadvantages
Liquid-in-glass thermometers tend to be fragile and 
hence easily broken, can only be used where the liquid 
column is visible, cannot be used for surface tempera-
ture measurements, cannot be read from a distance and 
are unsuitable for high temperature measurements.

Advantages of mercury
The use of mercury in a thermometer has many advan-
tages, for mercury:

 (i) is clearly visible,
 (ii) has a fairly uniform rate of expansion,
 (iii) is readily obtainable in the pure state,
 (iv) does not ‘wet’ the glass,
 (v) is a good conductor of heat.

Mercury has a freezing point of –39°C and cannot 
be used in a thermometer below this temperature. Its 
boiling point is 357°C but before this temperature is 
reached some distillation of the mercury occurs if the 
space above the mercury is a vacuum. To prevent this, 
and to extend the upper temperature limits to over 
500°C, an inert gas such as nitrogen under pressure is 
used to fill the remainder of the capillary tube. Alcohol, 
often dyed red to be seen in the capillary tube, is con-
siderably cheaper than mercury and has a freezing point 
of –113°C, which is considerably lower than for mer-
cury. However it has a low boiling point at about 79°C.

*Ernst Otto Beckmann (4 July 1843–12 July 1923) was a 
German chemist best known for his invention of the Beckmann 
differential thermometer and for his discovery of the Beckmann 
rearrangement.
To find out more go to www.routledge.com/cw/bird
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Errors
Typical errors in liquid-in-glass thermometers may oc-
cur due to:

 (i) the slow cooling rate of glass
 (ii) incorrect positioning of the thermometer
 (iii) a delay in the thermometer becoming steady (i.e. 

slow response time)
 (iv) non-uniformity of the bore of the capillary tube, 

which means that equal intervals marked on the 
stem do not correspond to equal temperature 
 intervals.

26.2 Thermocouples

Thermocouples use the e.m.f. set up when the junction 
of two dissimilar metals is heated.

Principle of operation
At the junction between two different metals, say, cop-
per and constantan, there exists a difference in electri-
cal potential, which varies with the temperature of the 
junction. This is known as the ‘thermo-electric effect’. If 
the circuit is completed with a second junction at a dif-
ferent temperature, a current will flow round the circuit. 
This principle is used in the thermocouple. Two different 
metal conductors having their ends twisted together are 
shown in Figure 26.2. If the two junctions are at different 
temperatures, a current I flows round the circuit.

Figure 26.2

The deflection on the galvanometer G depends on the 
difference in temperature between junctions X and Y 
and is caused by the difference between voltages Vx 
and Vy. The higher temperature junction is usually 
called the ‘hot junction’ and the lower temperature 
junction the ‘cold junction’. If the cold junction is kept 
at a constant known temperature, the galvanometer 
can be calibrated to indicate the temperature of the hot 
junction directly. The cold junction is then known as 
the reference junction.

In many instrumentation situations, the measur-
ing instrument needs to be located far from the point 
at which the measurements are to be made. Extension 
leads are then used, usually made of the same material 
as the thermocouple but of smaller gauge. The refer-
ence junction is then effectively moved to their ends. 
The thermocouple is used by positioning the hot junc-
tion where the temperature is required. The meter will 
indicate the temperature of the hot junction only if the 
reference junction is at 0°C for:

(temperature of hot junction) = (temperature of the 
 cold junction) + (temperature difference)

In a laboratory the reference junction is often placed 
in melting ice, but in industry it is often positioned in 
a thermostatically controlled oven or buried under-
ground where the temperature is constant.

Construction
Thermocouple junctions are made by twisting together 
the ends of two wires of dissimilar metals before 
welding them. The construction of a typical copper-
constantan thermocouple for industrial use is shown 
in Figure 26.3. Apart from the actual junction the 
two conductors used must be insulated electrically 
from each other with appropriate insulation and is 
shown in Figure 26.3 as twin-holed tubing. The wires 
and insulation are usually inserted into a sheath for 
protection from environments in which they might be 
damaged or corroded. 

Figure 26.3
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Applications
A copper-constantan thermocouple can measure tem-
perature from –250°C up to about 400°C, and is used 
typically with boiler flue gases, food processing and 
with sub-zero temperature measurement. An iron- 
constantan thermocouple can measure temperature 
from –200°C to about 850°C, and is used typically in 
paper and pulp mills, re-heat and annealing furnaces 
and in chemical reactors. A chromel-alumel thermo-
couple can measure temperatures from –200°C to 
about 1100°C and is used typically with blast furnace 
gases, brick kilns and in glass manufacture.

For the measurement of temperatures above 1100°C 
radiation pyrometers are normally used. However, 
thermocouples are available made of platinum-
platinum/rhodium, capable of measuring temperatures 
up to 1400°C, or tungsten-molybdenum which can 
measure up to 2600°C.

Advantages
A thermocouple:

 (i) has a very simple, relatively inexpensive con-
struction

 (ii) can be made very small and compact
 (iii) is robust
 (iv) is easily replaced if damaged
 (v) has a small response time
 (vi) can be used at a distance from the actual mea-

suring instrument and is thus ideal for use with 
automatic and remote-control systems.

Sources of error
Sources of error in the thermocouple, which are dif-
ficult to overcome, include:

 (i) voltage drops in leads and junctions
 (ii) possible variations in the temperature of the cold 

junction
(iii) stray thermoelectric effects, which are caused 

by the addition of  further metals into the ‘ideal’ 
two-metal thermocouple circuit. 

Additional leads are frequently necessary for extension 
leads or voltmeter terminal connections.

A thermocouple may be used with a battery- or 
mains-operated electronic thermometer instead of a 
millivoltmeter. These devices amplify the small e.m.f.s 
from the thermocouple before feeding them to a multi-
range voltmeter calibrated directly with temperature 
scales. These devices have great accuracy and are 
 almost unaffected by voltage drops in the leads and 
junctions.

Problem 1. A chromel-alumel thermocouple 
generates an e.m.f. of 5 mV. Determine the tem-
perature of the hot junction if the cold junction is 
at a temperature of 15°C and the sensitivity of the 
thermocouple is 0.04 mV/°C.

Temperature difference for 5 mV = 
5mV

0.04mV/°C 

                = 125°C.
Temperature at hot junction = temperature of cold 
junction + temperature difference

= 15°C + 125°C = 140°C

Now try the following Practice Exercise

Practice Exercise 147  Further problem on 
the thermocouple

1.  A platinum–platinum/rhodium thermocouple 
generates an e.m.f. of 7.5 mV. If the cold 
junction is at a temperature of 20°C, deter- 
mine the temperature of the hot junction. 
Assume the sensitivity of the thermocouple 
to be 6 μV/°C. [1270°C] 

26.3 Resistance thermometers

Resistance thermometers use the change in electrical 
resistance caused by temperature change.

Construction
Resistance thermometers are made in a variety of sizes, 
shapes and forms depending on the application for which 
they are designed. A typical resistance thermometer 
is shown diagrammatically in Figure 26.4. The most 
common metal used for the coil in such thermometers is 
platinum even though its sensitivity is not as high as other 
metals such as copper and nickel. However, platinum is 
a very stable metal and provides reproducible results 
in a resistance thermometer. A platinum resistance 
thermometer is often used as a calibrating device. Since 
platinum is expensive, connecting leads of another 
metal, usually copper, are used with the thermometer to 
connect it to a measuring circuit.

The platinum and the connecting leads are shown 
joined at A and B in Figure 26.4, although some-
times this junction may be made outside of the sheath. 
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 However, these leads often come into close contact 
with the heat source which can introduce errors into 
the measurements. These may be eliminated by includ-
ing a pair of identical leads, called dummy leads, which 
experience the same temperature change as the exten-
sion leads.

Principle of operation
With most metals a rise in temperature causes an  
increase in electrical resistance, and since resistance 
can be measured accurately this property can be used 
to measure temperature. If the resistance of a length of 
wire at 0°C is R0, and its resistance at θ°C is Rθ, then 
Rθ = R0 (1 + αθ), where α is the temperature coefficient 
of resistance of the material.

Rearranging gives: temperature, θ = 
R R

R
0

0αα
−−θθ

Values of R0 and α may be determined experimental-
ly or obtained from existing data. Thus, if Rθ can be 
measured, temperature θ can be calculated. This is the 
principle of operation of a resistance thermometer. Al-
though a sensitive ohmmeter can be used to measure 
Rθ, for more accurate determinations a Wheatstone 
bridge circuit is used as shown in Figure 26.5. This 
circuit compares an unknown resistance Rθ with others 
of known values, R1 and R2 being fixed values and R3 
being variable. Galvanometer G is a sensitive centre-
zero microammeter. R3 is varied until zero deflection 
is obtained on the galvanometer, i.e. no current flows 
through G and the bridge is said to be ‘balanced’.

At balance: R2 Rθ = R1 R3

from which,        Rθ = 
R R

R
1 3

2

and if R1 and R2 are of equal value, then Rθ = R3

Figure 26.5

A resistance thermometer may be connected between 
points A and B in Figure 26.5 and its resistance Rθ at 
any temperature θ accurately measured. Dummy leads 
included in arm BC help to eliminate errors caused by 
the extension leads which are normally necessary in 
such a thermometer.

Limitations
Resistance thermometers using a nickel coil are used 
mainly in the range –100°C to 300°C, whereas plati-
num resistance thermometers are capable of measuring 
with greater accuracy temperatures in the range –200°C 
to about 800°C. This upper range may be extended to 
about 1500°C if high melting point materials are used 
for the sheath and coil construction.

Advantages and disadvantages of a platinum coil
Platinum is commonly used in resistance thermom-
eters since it is chemically inert, i.e. un-reactive, re-
sists corrosion and oxidation and has a high melting 
point of 1769°C. A disadvantage of platinum is its slow  
response to temperature variation.

Figure 26.4
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Applications
Platinum resistance thermometers may be used as 
calibrating devices or in applications such as heat-
treating and annealing processes and can be adapted 
easily for use with automatic recording or control 
systems. Resistance thermometers tend to be fragile and 
easily damaged especially when subjected to excessive  
vibration or shock.

Problem 2. A platinum resistance thermometer 
has a resistance of 25 Ω at 0°C. When measuring 
the temperature of an annealing process a 
resistance value of 60 Ω is recorded. To what 
temperature does this correspond?  Take the 
temperature coefficient of resistance of platinum as 
0.0038/°C

 Rθ = R0 (1 + αθ), where R0 = 25 Ω, 
 Rθ = 60 Ω and α = 0.0038/°C. 

Rearranging gives: temperature, θ = 
R R

R
0

0α
−θ  

    = 
60 25

(0.0038)(25)
−

 = 368.4°C

Now try the following Practice Exercise

Exercise 148  Further problem on the 
resistance thermometer 

1.  A platinum resistance thermometer has a 
resistance of 100 Ω at 0°C. When measur-
ing the temperature of a heat process a re-
sistance value of 177 Ω is measured using a 
Wheatstone bridge. Given that the tempera-
ture coefficient of resistance of platinum is 
0.0038/°C, determine the temperature of the 
heat process, correct to the nearest degree.
 [203°C]

26.4 Thermistors

A thermistor is a semi-conducting material – such 
as mixtures of oxides of copper, manganese, cobalt,  
etc. – in the form of a fused bead connected to two 
leads. As its temperature is increased its resistance rap-
idly decreases. Typical resistance/temperature curves 
for a thermistor and common metals are shown in  

Figure 26.6. The resistance of a typical thermistor can 
vary from 400 Ω at 0°C to 100 Ω at 140°C.

Figure 26.6

Advantages
The main advantages of a thermistor are its high sen-
sitivity and small size. It provides an inexpensive 
method of measuring and detecting small changes in 
temperature.

26.5 Pyrometers

A pyrometer is a device for measuring very high tem-
peratures and uses the principle that all substances emit 
radiant energy when hot, the rate of emission depend-
ing on their temperature. The measurement of thermal 
radiation is therefore a convenient method of determin-
ing the temperature of hot sources and is particularly 
useful in industrial processes. There are two main types 
of pyrometer, namely the total radiation pyrometer and 
the optical pyrometer.

Pyrometers are very convenient instruments since 
they can be used at a safe and comfortable distance 
from the hot source. Thus applications of pyrometers 
are found in measuring the temperature of molten  
metals, the interiors of furnaces or the interiors of  
volcanoes. Total radiation pyrometers can also be  
used in conjunction with devices which record and 
control temperature continuously.

Total radiation pyrometer
A typical arrangement of a total radiation pyrometer is 
shown in Figure 26.7. Radiant energy from a hot source, 
such as a furnace, is focused on to the hot junction of 
a thermocouple after reflection from a concave mirror. 
The temperature rise recorded by the thermocouple 
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 depends on the amount of radiant energy received, which  
in turn depends on the temperature of the hot source. 
The galvanometer G shown connected to the thermo-
couple records the current which results from the e.m.f. 
developed and may be calibrated to give a direct reading 
of the temperature of the hot source. The thermocouple 
is protected from direct radiation by a shield as shown 
and the hot source may be viewed through the sighting 
telescope. For greater sensitivity, a thermopile may be 
used, a thermopile being a number of thermocouples 
connected in series. Total radiation pyrometers are used 
to measure temperature in the range 700°C to 2000°C.

Optical pyrometers
When the temperature of an object is raised sufficient-
ly, two visual effects occur; the object appears brighter  
and there is a change in colour of the light emitted. 
These effects are used in the optical pyrometer where 
a comparison or matching is made between the bright-
ness of the glowing hot source and the light from a fila-
ment of known temperature.

The most frequently used optical pyrometer is the dis-
appearing filament pyrometer and a typical arrangement 

is shown in Figure 26.8. A filament lamp is built into a 
telescope arrangement which receives radiation from a 
hot source, an image of which is seen through an eye-
piece. A red filter is incorporated as a protection to the eye.

The current flowing through the lamp is controlled 
by a variable resistor. As the current is increased, the 
temperature of the filament increases and its colour 
changes. When viewed through the eyepiece the 
filament of the lamp appears superimposed on the image 
of the radiant energy from the hot source. The current 
is varied until the filament glows as brightly as the 
background. It will then merge into the background and 
seem to disappear. The current required to achieve this 
is a measure of the temperature of the hot source and 
the ammeter can be calibrated to read the temperature 
directly. Optical pyrometers may be used to measure 
temperatures up to, and even in excess of, 3000°C.

Advantages of pyrometers
 (i) There is no practical limit to the temperature that 

a pyrometer can measure.
 (ii) A pyrometer need not be brought directly into 

the hot zone and so is free from the effects of 

Figure 26.7 

Figure 26.8
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heat and chemical attack that can often cause 
other measuring devices to deteriorate in use.

(iii) Very fast rates of change of temperature can be 
followed by a pyrometer.

 (iv) The temperature of moving bodies can be mea-
sured.

 (v) The lens system makes the pyrometer virtually 
independent of its distance from the source.

Disadvantages of pyrometers
 (i) A pyrometer is often more expensive than other 

temperature measuring devices.
 (ii) A direct view of the heat process is necessary.
(iii) Manual adjustment is necessary.
 (iv) A reasonable amount of skill and care is required 

in calibrating and using a pyrometer. For each 
new measuring situation the pyrometer must be 
re-calibrated.

 (v) The temperature of the surroundings may affect 
the reading of the pyrometer and such errors are 
difficult to eliminate.

26.6  Temperature indicating  
paints and crayons

Temperature indicating paints contain substances  
which change their colour when heated to certain 
temperatures. This change is usually due to chemi-
cal decomposition, such as loss of water, in which the 
change in colour of the paint after having reached the 
particular temperature will be a permanent one. How-
ever, in some types the original colour returns after 
cooling. Temperature indicating paints are used where 
the temperature of inaccessible parts of apparatus and 
machines is required. They are particularly useful in 
heat-treatment processes where the temperature of 
the component needs to be known before a quenching 
operation. There are several such paints available and 
most have only a small temperature range so that dif-
ferent paints have to be used for different temperatures. 
The usual range of temperatures covered by these 
paints is from about 30°C to 700°C.

Temperature sensitive crayons consist of fusible 
solids compressed into the form of a stick. The melt-
ing point of such crayons is used to determine when a 
given temperature has been reached. The crayons are 
simple to use but indicate a single temperature only, 
i.e. its melting point temperature. There are over 100 
different crayons available, each covering a particular 
range of temperature. Crayons are available for tem-
peratures within the range of 50°C to 1400°C. Such 

crayons are used in metallurgical applications such as 
preheating before welding, hardening, annealing or 
tempering, or in monitoring the temperature of critical 
parts of machines or for checking mould temperatures 
in the rubber and plastics industries.

26.7 Bimetallic thermometers

Bimetallic thermometers depend on the expansion 
of metal strips which operate an indicating pointer. 
Two thin metal strips of differing thermal expansion 
are welded or riveted together and the curvature of the 
bimetallic strip changes with temperature change. For 
greater sensitivity the strips may be coiled into a flat 
spiral or helix, one end being fixed and the other being 
made to rotate a pointer over a scale. Bimetallic ther-
mometers are useful for alarm and over-temperature 
applications where extreme accuracy is not essential. 
If the whole is placed in a sheath, protection from cor-
rosive environments is achieved but with a reduction 
in response characteristics. The normal upper limit of 
temperature measurement by this thermometer is about 
200°C, although with special metals the range can be 
extended to about 400°C.

26.8 Mercury-in-steel thermometer

The mercury-in-steel thermometer is an extension 
of the principle of the mercury-in-glass thermome-
ter. Mercury in a steel bulb expands via a small bore 
capillary tube into a pressure indicating device, say a 
Bourdon gauge, the position of the pointer indicating 
the amount of expansion and thus the temperature. The 
advantages of this instrument are that it is robust and, 
by increasing the length of the capillary tube, the gauge 
can be placed some distance from the bulb and can thus 
be used to monitor temperatures in positions which are 
inaccessible to the liquid-in-glass thermometer. Such 
thermometers may be used to measure temperatures up 
to 600°C.

26.9 Gas thermometers

The gas thermometer consists of a flexible U-tube of 
mercury connected by a capillary tube to a vessel con-
taining gas. The change in the volume of a fixed mass 
of gas at constant pressure, or the change in pressure of 
a fixed mass of gas at constant volume, may be used to 
measure temperature. This thermometer is cumbersome 
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and rarely used to measure temperature directly, but it 
is often used as a standard with which to calibrate other 
types of thermometer. With pure hydrogen the range 
of the instrument extends from –240°C to 1500°C and 
measurements can be made with extreme accuracy.

26.10 Choice of measuring devices

Problem 3. State which device would be most 
suitable to measure the following:

(a) metal in a furnace, in the range 50°C to 1600°C
(b) the air in an office in the range 0°C to 40°C
(c) boiler flue gas in the range 15°C to 300°C
(d)  a metal surface, where a visual indication is 

required when it reaches 425°C
(e)  materials in a high-temperature furnace in the 

range 2000°C to 2800°C
(f)  to calibrate a thermocouple in the range 

–100°C to 500°C
(g) brick in a kiln up to 900°C
(h)  an inexpensive method for food processing 

applications in the range –25°C to –75°C.

(a) Radiation pyrometer
(b) Mercury-in-glass thermometer
(c) Copper-constantan thermocouple
(d) Temperature sensitive crayon
(e) Optical pyrometer
(f)  Platinum resistance thermometer or gas ther-

mometer
(g) Chromel-alumel thermocouple
(h) Alcohol-in-glass thermometer.

Now try the following Practice Exercises

Practice Exercise 149  Short-answer 
questions on the 
measurement of 
temperature

For each of the temperature measuring devices 
listed in 1 to 10, state very briefly its principle of 
operation and the range of temperatures that it is 
capable of measuring.

 1. Mercury-in-glass thermometer.

 2. Alcohol-in-glass thermometer.

 3. Thermocouple.

 4. Platinum resistance thermometer.

 5. Total radiation pyrometer.

 6. Optical pyrometer.

 7. Temperature sensitive crayons.

 8. Bimetallic thermometer.

 9. Mercury-in-steel thermometer.

10. Gas thermometer.

Practice Exercise 150  Multiple-choice 
questions on the 
measurement of 
temperature

 (Answers on page 336)

 1.  The most suitable device for measuring 
very small temperature changes is a   

 (a)  thermopile (b)  thermocouple
 (c)  thermistor

 2.  When two wires of different metals are 
twisted together and heat applied to the 
junction, an e.m.f. is produced. This effect 
is used in a thermocouple to measure:  

 (a)  e.m.f. (b)  temperature
 (c)  expansion (d)  heat

 3.  A cold junction of a thermocouple is at 
room temperature of 15°C. A voltmeter 
connected to the thermocouple circuit  
indicates 10 mV. If the  voltmeter is cali-
brated as 20°C/mV, the temperature of  
the hot source is:

 (a)  185°C (b)  200°C
 (c)  35°C (d)  215°C

 4.  The e.m.f. generated by a copper- 
constantan thermometer is 15 mV. If the 
cold junction is at a temperature of 20°C, 
the temperature of the hot junction when  
the sensitivity of the thermocouple is  
0.03 mV/°C is:
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 (a)  480°C (b)  520°C
 (c)  20.45°C (d)  500°C

 In questions 5 to 12, select the most appropriate 
temperature measuring device from this list.
(a) copper-constantan thermocouple
(b) thermistor
(c) mercury-in-glass thermometer
(d) total radiation pyrometer
(e) platinum resistance thermometer
(f) gas thermometer
(g) temperature sensitive crayon
(h) alcohol-in-glass thermometer
(i) bimetallic thermometer
(j) mercury-in-steel thermometer
(k) optical pyrometer.

 5. Over-temperature alarm at about 180°C.

 6.  Food processing plant in the range –250°C 
to +250°C.

 7.  Automatic recording system for a 
heat  treating process in the range 90°C to 
250°C.

 8.  Surface of molten metals in the range 
1000°C to 1800°C.

 9.  To calibrate accurately a mercury-in-glass 
thermometer.

10.  Furnace up to 3000°C.

11.  Inexpensive method of measuring very 
small changes in temperature.

12.  Metal surface where a visual indication 
is required when the temperature reaches 
520°C.

For fully worked solutions to each of the problems in Practice Exercises 147 to 150 in this chapter,  
go to the website:  

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Revision Test 9 Hydrostatics, fluid flow, gas laws and temperature measurement

This Revision Test covers the material contained in Chapters 23 to 26. The marks for each question are shown in 
brackets at the end of each question. 
When required take the density of water to be 1000 kg/m3 and gravitational acceleration as 9.81 m/s2.

 1. A circular piston exerts a pressure of 150 kPa 
on a fluid when the force applied to the piston is  
0.5 kN. Calculate the diameter of the piston,  
correct to the nearest millimetre. (6)

 2. A tank contains water to a depth of 500 mm.  
Determine the water pressure

 (a)  at a depth of 300 mm, and

 (b)  at the base of the tank. (6)

 3. When the atmospheric pressure is 101 kPa, 
calculate the absolute pressure, to the nearest  
kilopascal, at a point on a submarine which is  
50 m below the sea water surface. Assume that 
the  density of sea water is 1030 kg/m3. (5)

 4. A body weighs 2.85 N in air and 2.35 N when 
completely immersed in water. Determine

 (a)  the volume of the body

 (b)  the density of the body, and

 (c)  the relative density of the body. (9)

 5. A submarine dives to a depth of 700 m. What is 
the gauge pressure on its surface if the density of 
seawater is 1020 kg/m3 and g = 9.81 m/s2. (5)

 6. State the most appropriate fluid flow measuring 
device for the following applications:

 (a)   A high accuracy, permanent installation, in an 
oil pipeline.

 (b)   For high velocity chemical flow, which does 
not suffer wear.

 (c)   To detect leakage in water mains.

 (d)   To measure petrol in petrol pumps.

 (e)  To measure the speed of a viscous liquid. 
 (5)

 7. A storage tank contains water to a depth of 7 m 
above an outlet pipe, as shown in Figure 24.12 
on page 297. The system is in equilibrium until 
a valve in the outlet pipe is opened. Determine 
the initial mass rate of flow at the exit of the out-
let pipe, assuming that losses at the pipe entry  
= 0.3 v2, and losses at the valve = 0.2 v2. The pipe 
diameter is 0.05 m and the water density, ρ, is 
1000 kg/m3. (15)

 8. Determine the wind pressure acting on a slender 
building due to a gale of 150 km/h that acts per-
pendicularly to the building. Take the density of 
air as 1.23 kg/m3. (5)

 9. Some gas occupies a volume of 2.0 m3 in a cylin-
der at a pressure of 200 kPa. A piston, sliding in 
the cylinder, compresses the gas isothermally un-
til the volume is 0.80 m3. If the area of the piston 
is 240 cm2, calculate the force on the piston when 
the gas is compressed. (5)

10. Gas at a temperature of 180°C has its volume  
reduced by a quarter in an isobaric process.  
Determine the final temperature of the gas. (5)

11. Some air at a pressure of 3 bar and at a tempera-
ture of 60°C occupies a volume of 0.08 m3. Cal-
culate the mass of the air, correct to the nearest 
gram, assuming the characteristic gas constant for 
air is 287 J/(kg K). (5)

12. A compressed air cylinder has a volume of  
1.0 m3 and contains air at a temperature of 24°C 
and a pressure of 1.2 MPa. Air is released from 
the cylinder until the pressure falls to 400 kPa and 
the temperature is 18°C. Calculate

 (a)   the mass of air released from the container, and

 (b)   the volume it would occupy at STP.  
Assume the characteristic gas constant for  
air to be 287 J/(kg K). (10)

13. A platinum resistance thermometer has a resistance 
of 24 W at 0°C. When measuring the temperature 
of an annealing process a resistance value of  
68 W is recorded. To what temperature does this 
correspond? Take the temperature coefficient of 
resistance of platinum as 0.0038/°C (5)

14. State which device would be most suitable to 
measure the following:

 (a)   materials in a high-temperature furnace in the 
range 1800°C to 3000°C

 (b)  the air in a factory in the range 0°C to 35°C

 (c)   an inexpensive method for food processing 
applications in the range –20°C to –80°C

 (d)  boiler flue gas in the range 15°C to 250°C. 
 (4)

For lecturers/instructors/teachers, fully worked solutions to each of the problems in Revision Test 9,  
together with a full marking scheme, are available at the website:

www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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A List of formulae for mechanical engineering principles

Formula Formula symbols Units

Stress = applied force
cross-sectionalarea

σ = F
A

      Pa

Strain = change in length
original length

   e = x
L

     

Young’s modulus of elasticity = 
stress
strain  E = 

σ
ε

 
Pa

Stiffness = 
force

extension   k = 
δ
F      

 
N/m

Modulus of rigidity = 
shear stress
shear strain     G = 

τ
γ

 Pa

Thermal strain =  coefficient of linear expansion  
 × temperature rise

e = αT

Thermal stress in compound bar σ
α α

=
−

+
E E A T

A E A E
( )

( )1
1 2 1 2 2

1 1 2 2
Pa

Ultimate tensile strength = 
maximum load

original cross-sectional area  
 
Pa

Moment = force × perpendicular distance M = Fd N m

=

=
,

stress
distance from neutral axis

bending moment
second moment of area
Young s modulus
radius of curvature

σ
= =

y
M
I

E
R  

 
N/m3

Torque = force × perpendicular distance T = Fd N m

Power = torque × angular velocity P = Tω = 2πnT W

Horsepower 1 hp = 745.7 W

Torque = moment of inertia × angular acceleration T = Ia N m

=

=

shear stress
radius

torque
polar second moment of area

(rigidity)(angle of twist)
length

τ θ
= =

r
T
J

G
L

 
N/m3

Average velocity = 
distance travelled

time taken               v = 
s
t             

 
m/s
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Formula Formula symbols Units

Acceleration = change in velocity
time taken

a = −v u
t

 
 
m/s2

Linear velocity  v = wr    m/s

Angular velocity w = θ
t

 = 2pn rad/s

Linear acceleration   a = ra     m/s2

 
 
Relationships between initial velocity u, final velocity v, 
displacement s, time t and constant acceleration a

= +

= +

= +













v v at

s ut at

v u as

1
2

2

2 1

2

2 2

m/s

m

(m/s)2

 

Relationships between initial angular velocity w1, final 
angular  velocity w2, angle q, time t and angular accel-
eration a

ω ω α

θ ω α

ω ω αθ

= +

= +

= +













t

t t1
2

2

2 1

1
2

2
2

1
2

rad/s

rad

(rad/s)2

Momentum = mass × velocity   kg m/s

Impulse = applied force × time = change in momentum kg m/s

Force = mass × acceleration F = ma    N

Weight = mass × gravitational field W = mg   N

Centripetal acceleration a = 
v
r

2
m/s2

Centripetal force  F = mv
r

2
N

Density = 
mass

volume      r = m
V

kg/m3

Work done = force × distance moved W = Fs J

Efficiency = useful output energy
input energy

 

Power = 
energy used (or work done)

time taken  = force × velocity   P = 
E
t  = Fv

  
W

Potential energy = weight × change in height  

kinetic energy = 1
2

 × mass × (speed)2

Ep
 = mgh

Ek = 
1
2 mv2

 
J 

J
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Formula Formula symbols Units

kinetic energy of rotation 

= 1
2

 × moment of inertia × (angular velocity)2 

Ek
 = 

1
2 Iw2    J

Frictional force = coefficient of friction × normal force  F = mN   N

Angle of repose, q, on an inclined plane     tan q = m  

Efficiency of screw jack   h = 
θ

λ θ+
tan

tan( )  

SHM   periodic time T = 2 π
displacement
acceleration

 

                                  T = 2 π
mass

stiffness
 

T = 2 π
y
a

T = 2 π
m
k

 
s 
 
 
s

              
simple pendulum T = π

L
g

2
 

s

           compound pendulum   T = π
+k h
gh

2 ( )G
2 2

 
 
s

Force ratio = 
load
effort

Movement ratio = distance moved by effort
distance moved by load

Efficiency = 
force ratio

movement ratio

Kelvin temperature = degrees Celsius + 273

Quantity of heat energy =  mass × specific heat capacity 

 
× change in temperature

Q = mc(t2 – t1) J

New length = original length + expansion L2 = L1 [1 + a(t2 – t1)] m

New surface area =  original surface  
area + increase in area   

A2 = A1 [1 + b(t2 – t1)]
m2

New volume = original volume + increase in volume V2 = V1 [1 + g(t2 – t1)] m3

Pressure = 
force
area

              = density × gravitational acceleration × height   

p = F
A

 
p = rgh 
1 bar = 105 Pa

 
Pa

Absolute pressure =  gauge pressure + atmospheric  
 pressure
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Formula Formula symbols Units
 

Metacentric height, GM   GM = Px
W

cot q m

Bernoulli’s equation 
ρ

ρ

+ +

= + + +

P v gz

P v g z h

2

2
( )f

1 1
2

1

2 2
2

2

Coefficient of discharge  Cd = Cv × Cc

Characteristic gas equation          
= =

p V
T

p V
T

k1 1

1

2 2

2  
pV = mRT

Circular segment

In Figure F1, shaded area = α α( )−
R
2

sin
2

Figure F1

R 

a 
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Summary of standard results of the second moments of areas of regular sections

Shape Position of axis Second moment of area, I Radius of gyration, k

Rectangle
length d
breadth b

(1) Coinciding with b

(2) Coinciding with d       
    

(3) Through centroid, parallel to b

(4) Through centroid, parallel to d

 
bd

3

3

db
3

3

bd
12

3

db
12

3

 d
3

b
3
d
12
b
12

Triangle

Perpendicular
height h
base b

(1) Coinciding with b  
 
(2) Through centroid, parallel to base  
   

(3) Through vertex, parallel to base    

bh
12

3

bh
36

3

bh
4

3

h
6
h
18
h
2

Circle

radius r
diameter d

(1)  Through centre perpendicular to 
plane (i.e. polar axis)    

(2) Coinciding with diameter 

(3) About a tangent               

π r
2

4

 
or

 
π d
32

4

π r
4

4
 or

 
π d
64

4

π r5
4

4

 
or

 
π d5
64

4

r
2

r
2

5
2

r

Semicircle

radius r Coinciding with diameter π r
8

4 r
2

For a copy of the List of formulae, go to the website: 
www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Metric to Imperial conversions and vice versa

Metric US or Imperial

1 millimetre, mm 0.03937 inch

1 centimetre, cm = 10 mm 0.3937 inch

1 metre, m = 100 cm 1.0936 yard

1 kilometre, km = 1000 m 0.6214 mile

US or Imperial Metric

1 inch, in 2.54 cm

1 foot, ft  = 12 in 0.3048 m

1 yard, yd  = 3 ft 0.9144 m

1 mile = 1760 yd 1.6093 km

1 nautical mile = 2025.4 yd 1.852 km

Metric US or Imperial

1 cm2 = 100 mm2 0.1550 in2

1 m2 = 10,000 cm2 1.1960 yd2

1 hectare, ha = 10,000 m2 2.4711 acres

1 km2 = 100 ha 0.3861 mile2

US or Imperial Metric

1 in2 6.4516 cm2

1 ft2 = 144 in2 0.0929 m2

1 yd2 = 9 ft2 0.8361 m2

1 acre = 4840 yd2 4046.9 m2

1 mile2 = 640 acre 2.59 km2

Metric US or Imperial

1 cm3 0.0610 in3

1 dm3 = 1000 cm3 0.0353 ft3

1 m3 = 1000 dm3 1.3080 yd3

1 litre = 1 dm3 = 1000 cm3 2.113 fluid pt 
 = 1.7598 pt

US or Imperial Metric

1 in3 16.387 cm3

1 ft3 0.02832 m3

1 US fl oz = 1.0408 UK fl oz 0.0296 litre

1 US pint (16 f l oz) = 0.8327 UK pt 0.4732 litre

1 US gal (231 in3) = 0.8327 UK gal 3.7854 litre

Metric US or Imperial

 1 g = 1000 mg 0.0353 oz

 1 kg = 1000 g 2.2046 lb

 1 tonne, t, = 1000 kg 1.1023 short ton

 1 tonne, t, = 1000 kg 0.9842 long ton

US or Imperial Metric

1 oz = 437.5 grain 28.35 g 

1 lb = 16 oz 0.4536 kg

1 stone = 14 lb 6.3503 kg

1 hundredweight, cwt = 112 lb 50.802 kg

1 short ton 0.9072 tonne
1 long ton 1.0160 tonne
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Greek alphabet

Letter Upper Case Lower Case

Alpha A a

Beta B b

Gamma G g

Delta D d

Epsilon E e

Zeta Z z

Eta H h

Theta Q q

Iota I i

Kappa K k

Lambda L l

Mu M m

Nu N n

Xi X x

Omicron O o

Pi P p

Rho R r

Sigma S s

Tau T t

Upsilon U u

Phi F f

Chi C c

Psi Y y

Omega W w

For a copy of Greek Alphabet, go to the website: 
www.routledge.com/cw/bird

http://www.routledge.com/cw/bird
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Glossary of terms

Acceleration: The amount by which the velocity of an object 
increases in a certain time.

Acceleration of free fall: The acceleration experienced by 
bodies falling freely in the Earth’s gravitational field. 
It varies from place to place around the globe, but is 
 assigned a standard value of 9.80665m/s2, called ‘g’. 
 Ignoring air resistance, the acceleration does not vary 
with the size or shape of the falling body. The value of 
‘g’ on the equator ≈ 9.78 m/s2 is less than its value at the 
poles, where g  ≈ 9.83 m/s2.

Anemometer: An instrument for measuring wind speed. 
It consists of three cups affixed to an upright length of 
 metal, which in turn drives a mechanism that adjusts a 
dial. The cups are blown round by the wind, and the speed 
of the wind can be read from the dial.

Angular acceleration: The rate of change of angular  
velocity.

Angular momentum: The product of the moment of inertia 
I and the angular velocity ω of an object.

Angular velocity: The rate of change of an object’s angular 
position relative to a fixed point.

Archimedes’ principle: A body immersed in a fluid is 
pushed up by a force equal to the weight of the displaced 
fluid. 

Atmospheric pressure: The downward force exerted by the 
atmosphere because of its weight, (gravitational attrac-
tion to the Earth), measured by barometers, and usually 
expressed in units of millibars. Standard atmospheric 
pressure at sea level is 1013.25 mb.

Bar: Unit of pressure – the pressure created by a column 
of mercury 75.006 cm high at 0ºC, or about 33.45 feet of 
water at 4ºC. It is equal to 105 pascal. Standard atmospheric 
pressure (at sea level) is 1.01325 bar, or 1013.25 mb.

Barometer: An instrument for measuring atmospheric pres-
sure. There are two main types – the mercury barometer, 
and the aneroid barometer.

Bernoulli’s law: For a steadily flowing fluid (liquid or gas), 
the sum of the pressure, kinetic energy per unit volume 
and potential energy per unit volume is constant at any 
point in the fluid. Using this relationship, it is possible to 
measure the velocity of a fluid by measuring its pressure 
at two points, as with a manometer or Pitot tube.

Boyle’s law: The volume of a gas at constant temperature is 
inversely proportional to the pressure. This means that as 
pressure increases, the volume of a gas decreases.

Buoyancy: The upward pressure exerted on an object by the 
fluid in which it is immersed. The object is subjected to 

pressure from all sides, but the pressure on its lower part 
is greater because of the increasing depth of the fluid. The 
result of all these pressures is a force acting upwards that 
is equal to the weight of the fluid displaced.

Calorie: A unit of heat. A calorie is the amount of heat 
required to raise 1 g of water by 1ºC between the tem-
peratures of 14.5ºC and 15.5ºC. The SI system uses the 
joule (1 calorie = 4.184 joules) instead of the calorie. 
1000 gram calories = 3.968 Btu (British thermal unit). 
1 J = 1 N m.

Celsius: The temperature scale based on the freezing point 
of water (0ºC) and the boiling point of water (100ºC). The 
interval between these points is divided into 100 degrees. 
The scale was devised by Anders Celsius.

Centre of gravity: Point at which the weight of a body can 
be considered to be concentrated and around which its 
weight is evenly balanced. In a uniform gravitational 
field, the centre of gravity is the same as  the centre of 
mass.

Centripetal force: In circular or curved motion, the force 
acting on an object that keeps it moving in a circular path. 
For example, if an object attached to a rope is swung in 
a circular motion above a person’s head, the centripetal 
force acting on the object is the tension in the rope. Simi-
larly, the centripetal force acting on the Earth as it orbits 
the sun is gravity. In accordance with Newton’s laws, the 
reaction to this can be regarded as a centrifugal force, 
equal in magnitude and opposite in direction.

Change of state: The change that takes place when matter 
turns from one physical phase (gas, liquid or solid) into 
another.

Charles’ law: The volume of a gas at constant pressure is 
directly proportional to its absolute temperature.

Coefficient of cubic expansion: The fractional increase in 
volume per unit temperature rise.

Coefficient of friction: The number characterising the 
force necessary to slide or roll one material along 
the surface of another. If an object has a weight N and 
the coefficient of friction is µ, then the force F necessary 
to move it without acceleration along a level surface is 
F = µN. The coefficient of static friction determines the 
force necessary to initiate movement; the coefficient of 
kinetic friction determines the force necessary to main-
tain movement. Kinetic friction is usually smaller than 
static friction.

Coefficient of linear expansion: The fractional increase in 
length per unit temperature rise.
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Coefficient of superficial expansion: The fractional  increase 
in area per unit temperature rise.

Conduction, thermal: The transfer of heat from a hot region 
of a body to a cold region.

Conservation of energy, law of: States that energy cannot 
be created or destroyed.

Convection: The transfer of heat by flow of currents within 
fluids due to kinetic theory.

Couple: Two equal and opposite parallel forces, which do 
not act in the same line. The forces produce a turning 
effect or torque.

Dalton’s law: The pressure exerted by each gas in a mixture 
of gases does not depend on the pressures of the other 
gases, provided no chemical reaction occurs. The total 
pressure of such a mixture is therefore the sum of the par-
tial pressures exerted by each gas (as if it were alone in the 
same volume as the mixture occupies).

Density: The ratio of mass to volume for a given substance 
expressed in SI units as kilograms per cubic metre. The 
symbol for density is ρ (Greek rho).

Ductility: Ability of metals and some other materials to be 
stretched without being weakened.

Dynamics: The branch of mechanics that deals with 
objects in motion. Its two main branches are kinemat-
ics, which studies motion without regards to its cause, 
and kinetics, which also takes into account forces that 
cause motion.

Efficiency: The work a machine does (output) divided by the 
amount of work put in (input), usually expressed as a per-
centage. For simple machines, efficiency can be defined 
as the force ratio (mechanical advantage) divided by the 
distance ratio (velocity ratio).

Elasticity: Capability of a material to recover its size and 
shape after deformation by stress. When an external force 
(stress) is applied, the material develops strain (a change 
in dimension). If a material passes its elastic limit, it will 
not return to its original shape.

Energy: The capacity for doing work; it is measured in joules.
Equilibrium: A stable state in which forces acting on a par-

ticle or object negate each other, resulting in no net force.
Expansion: A change in the size of an object with change 

in temperature. Most substances expand on heating, 
although there are exceptions – water expands when it 
cools from 4ºC to its freezing point at 0ºC.

Fahrenheit: The temperature scale based on the freez-
ing point of water (32ºF) and the boiling point of water 
(212ºF). The interval between these points is divided into 
180 equal parts. Although replaced by the Celsius scale, 
the Fahrenheit scale is still sometimes used for non- 
scientific measurements.

Fluid: Any substance that is able to flow. Of the three com-
mon states of matter, gas and liquid are considered fluid, 
while any solid is not.

Force: A push, a pull or a turn. A force acting on an  
object may (i) balance an equal but opposite force 
or a combination of forces to maintain the object in  

equilibrium (so that it does not move), (2) change the state 
of motion of the object (in magnitude or direction), or (3) 
change the shape or state of the object. The unit of force 
is the newton.

Force ratio: The factor by which a simple machine multi-
plies an applied force. It is the ratio of the load (output 
force) to the effort (input force).

Free fall: The state of motion of an unsupported body in a 
gravitational field.

Freezing point: The temperature at which a substance 
changes phase (or state) from liquid to solid. The freezing 
point for most substances increases as pressure increases. 
The reverse process, from solid to liquid, is melting; melt-
ing point is the same as freezing point.

Friction: The resistance encountered when surfaces in con-
tact slide or roll against each other, or when a fluid (liq-
uid or gas) flows along a surface. Friction is directly pro-
portional to the force pressing the surfaces together and 
the surface roughness. Before the movement begins, it is 
opposed by static friction up to a maximum ‘limiting fric-
tion’ and then slipping occurs.

Fulcrum: Point about which a lever pivots.
Gear wheel: Is usually toothed, attached to a rotating shaft. 

The teeth of one gear engage those of another to transmit 
and modify rotary motion and torque. The smaller mem-
ber of a pair of gears is called a pinion. If the pinion is 
on the driving shaft, speed is reduced and turning force 
increased. If the larger gear is on the driving shaft, speed 
is increased and turning force reduced. A screw-type driv-
ing gear, called a worm, gives the driven gear a greatly 
reduced speed.

Gravity: The gravitational force of attraction at the surface 
of a planet or other celestial body. The Earth’s gravity pro-
duces an acceleration of around 9.8 m / s2 for any unsup-
ported body.

Heat: A form of energy associated with the constant vibra-
tion of atoms and molecules. 

Hooke’s law: Within the limit of proportionality, the exten-
sion of a material is proportional to the applied force. 
Approximately, it is the relationship between stress and 
strain in an elastic material when it is stretched. The law 
states that the stress (force per unit area) is proportional to 
the strain (a change in dimensions). The law, which holds 
only approximately and over a limited range, was discov-
ered in 1676 by Robert Hooke.

Horsepower: Unit indicating the rate at which work is done. 
The electrical equivalent of one horsepower is 746 watts.

Hydraulics: The physical science and technology of the 
behaviour of fluids in both static and dynamic states. It 
deals with practical applications of fluid in motion and 
devices for its utilisation and control.

Hydrostatics: The branch of mechanics that deals with 
liquids at rest. Its practical applications are mainly in 
water engineering and in the design of such equipment 
as hydraulic presses, rams, lifts and vehicle braking and 
control systems.



332 Mechanical Engineering Principles

Pa
rt 

Fo
ur

Ideal gas laws: The law relating pressure, temperature and 
volume of an ideal (perfect) gas pV = mRT, where R is the 
gas constant. The law implies that at constant tempera-
ture T, the product of pressure p and volume V is constant 
(Boyle’s law), and at constant pressure, the volume is pro-
portional to the temperature (Charles’ law).

Imperial system: The units of measurement developed in 
the UK. Formerly known as the fps system, which is 
an abbreviation for the ‘foot-pound-second system’ of 
units.

Inertia: The property possessed by all matter that is a mea-
sure of the way an object resists changes to its state of 
motion.

Joule: The SI unit of energy. One joule is the work done by 
a force of one newton acting over a distance of one metre. 
The symbol is J, where 1 J = 1 N m.

Kelvin: The SI unit of temperature. The Kelvin temperature 
scale has a zero point at absolute zero and degree intervals 
(kelvins) the same size as degrees Celsius. The freezing 
point of water occurs at 273K (0ºC) and the boiling point 
at 373 K (100ºC).

Kinetic energy: Energy that an object possesses because it 
is in motion. It is the energy given to an object to set it 
in motion. On impact, it is converted into other forms of 
energy such as strain, heat, sound and light.

Latent heat: The heat absorbed or given out by a sub-
stance as it changes its phase (of matter) at constant 
 temperature – from a solid to a liquid state or from a 
liquid to a gas.

Latent heat of fusion: The heat necessary to transform ice 
into water at constant temperature.

Latent heat of vaporisation: The heat necessary to trans-
form water into steam at constant temperature.

Lever: A simple machine used to multiply the force applied 
to an object, usually to raise a heavy load. A lever consists 
of a rod and a point (fulcrum) about which the rod pivots. 
In a crowbar, for example, the applied force (effort) and 
the object to be moved (load) are on opposite sides of the 
fulcrum, with the point of application of the effort farther 
from it. The lever multiplies the force applied by the ratio 
of the two distances.

Machine: A device that modifies or transmits a force in order 
to do useful work. In a simple machine, a force (effort) 
opposes a larger force (load). The ratio of the load (out-
put force) to the effort (input force) is the machine’s force 
ratio, formerly called mechanical advantage. The ratio 
of the distance moved by the load to the distance moved 
by the effort is the distance or movement ratio, formerly 
known as the velocity ratio. The ratio of the work done 
by the machine to that put into it is the efficiency, usually 
expressed as a percentage.

Malleability: Property of materials (or other substances) 
that can be permanently shaped by hammering or rolling 
without breaking. In some cases, it is increased by raising 
temperature.

Manometer: A device for measuring pressure.

Mechanical advantage: The factor by which a simple 
machine multiplies an applied force. It is the ratio of the 
load (output force) to the effort (input force).

Mechanics: The branch of physics concerned with the 
 behaviour of matter under the influence of forces. It may 
be divided into solid mechanics and fluid mechanics. 
 Another classification is as statics, the study of matter at 
rest, and dynamics, the study of matter in motion.

Metric system: The decimal system of weights and mea-
sures based on a unit of length called the metre and a unit 
of mass called the kilogram. Devised by the French in 
1791, the metric system is used internationally (SI units) 
and has been adopted for general use by most Western 
countries, although the imperial system is still commonly 
used in the USA and for certain measurements in Britain.

Moment of inertia: For a rotating object, is the sum of the 
products formed by multiplying the elements of mass of 
the rotating object by the squares of their distances from 
the axis of the rotation. Finding this distribution of mass 
is important when determining the force needed to make 
the object rotate.

Momentum: The product of the mass and linear velocity 
of an object. One of the fundamental laws of physics is 
the principle that the total momentum of any system of 
objects is conserved (remains constant) at all times, even 
during and after collisions.

Motion, laws of: Three laws proposed by Isaac Newton 
which form the basis of the classical study of motion and 
force. According to the first law, a body resists changes 
in its state of motion – a body at rest tends to remain at 
rest  unless acted upon by an external force, and a body 
in  motion tends to remain in motion at the same veloc-
ity unless acted on by an external force. This property is 
known as inertia. The second law states that the change in 
velocity of a body as a result of a force is directly propor-
tional to the force and inversely proportional to the mass 
of the body. According to the third law, to every action 
there is an equal and opposite reaction.

Nautical mile: The unit used to measure distances at sea. It 
is defined as the length of one minute of arc of the Earth’s 
circumference. The international nautical mile is equal to 
1852 m (6076.04 feet), but in the UK it is defined as 6080 
feet (1853.18 m). A speed of one nautical mile per hour is 
called a knot, a term used both at sea and in flying.

Newton: The SI unit of force with the symbol N. One newton 
is the force that gives a mass of one kilogram an accelera-
tion of one metre per second per second. One kilogram 
weighs 9.807 N.

Parallelogram of vectors: A method of calculating the sum 
of two vector quantities. The direction and size of the vec-
tors is determined by trigonometry or scale drawing. The 
vectors are represented by two adjacent sides of a paral-
lelogram and the sum is the diagonal through their point 
of intersection.

Pascal: The SI unit of pressure with the symbol Pa. It is equal 
to a pressure of 1 newton per square metre.
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Pitot tube: A device for measuring the rate of flow of a fluid, 
either liquid or gas. For liquids, the device used is gener-
ally a manometer, with an open end facing upstream and 
the other open end out of the stream. The different pres-
sures at the two ends cause a liquid to shift position within 
the two arms of the tube. For gases, a Pitot tube is gener-
ally L-shaped, with one end open and pointing towards 
the flow of gas and the other end connected to a pressure-
measuring device. This type of Pitot tube is commonly 
used as an air-speed indicator in aircraft.

Potential energy: Is an object’s ability to do work because of 
a change in the object’s position or shape.

Power: The rate of doing work or of producing or con-
suming energy. The unit of power is the watt, W, where  
1 W = 1 N m/s.

Pressure: The force on an object’s surface divided by the 
area of the surface. The SI unit is the pascal (symbol Pa), 
which is 1 newton per square metre. In meteorology, the 
millibar, which equals 100 pascals, is commonly used. 
1 bar = 105Pa = 14.5 psi.

Principle of moments: A law that states that the moments of 
two bodies balanced about a central pivot or fulcrum are 
equal (the moment of a body being the product of its mass 
and its distance from the pivot). 

Pulley: A simple machine used to multiply force or to change 
the direction of its application. A simple pulley consists of 
a wheel, often with a groove, attached to a fixed structure. 
Compound pulleys consist of two or more such wheels, 
some movable, that allow a person to raise objects much 
heavier than he or she could lift unaided.

Pyrometer: A thermometer for use at extremely high 
 temperatures, well above the ranges of ordinary thermom-
eters. 

Radian: The angle formed by the intersection of two radii 
at the centre of a circle, when the length of the arc cut 
off by the radii is equal to one radius in length. Thus, the 
radian is a unit of angle equal to 57.296º, and there are 2π 
radians in 360º.

Radiation: The transmission of energy by subatomic par-
ticles of electromagnetic waves.

Refrigeration: The process by which the temperature in a 
refrigerator is lowered. In a domestic refrigerator, a refrig-
erant gas, such as ammonia or chlorofluorocarbon (CFC) 
is alternately compressed and expanded. The gas is first 
compressed by a pump, causing it to warm up. It is then 
cooled in a condenser where it liquefies. It is then passed 
into an evaporator where it expands and boils, absorbing 
heat from its surroundings and thus cooling the refrigera-
tor. It is then passed through the pump again to be com-
pressed.

Relative density: The ratio of the density of one substance 
to that of a reference substance (usually water) at the 
same temperature and pressure. Formerly called specific 
 capacity.

Scalar: A quantity that only has magnitude; mass, energy 
and speed are examples of scalars.

Screw: A variant of a simple machine, the inclined plane. It is 
an inclined plane cut around a cone, usually of metal, in a 
helical spiral. When force is exerted radially on the screw, 
for example by a screwdriver or the lever of a screw-jack, 
the screw advances to an extent determined by its pitch 
(the distance between crests of its thread).

Shearing force: The force tending to cause deformation of a 
material by slipping along a plane parallel to the imposed 
stress.

SI units: The Systeme International d’Unites – the interna-
tionally agreed system of units, derived from the MKS 
system (metre, kilogram and second). The seven basic 
units are: the metre (m), kilogram (kg), second (s), ampere 
(A), kelvin (K), mole (mol), and candela (cd).

Simple harmonic motion (SHM): A periodic motion such 
as that of a pendulum, atomic vibrations, or an oscillat-
ing electric circuit. A body has simple harmonic motion 
when it oscillates along a line, moving an equal distance 
on either side of a central point and accelerating towards 
that point with a speed proportional to its distance from it.

Specific heat capacity: The heat necessary to raise the tem-
perature of 1 kg of a substance by 1 K. It is measured in 
J/(kg K). 

Statics: The study of matter at rest. In statics, the forces 
on an object are balanced and the object is said to be in 
equilibrium; static equilibrium may be stable, unstable 
or neutral.

STP: An abbreviation of standard temperature and pressure.
Strain: Change in dimensions of an object subjected to stress. 

Linear strain is the ratio of the change in length of a bar to 
its original length. Shearing strain describes the change in 
shape of an object whose opposite faces are pushed in dif-
ferent directions. Hooke’s law for elastic materials states 
that strain is approximately proportional to stress up to the 
material’s limit of proportionality.

Stress: Force per unit area applied to an object. Tensile stress 
stretches an object, compressive stress squeezes it, and 
shearing stress deforms it sideways. In a fluid, no shear-
ing stress is possible because the fluid slips sideways, so 
all fluid stresses are pressures.

Temperature: A measure of the hotness or coldness of an 
object.

Tensile strength: The resistance that a material offers to 
tensile stress. It is defined as the smallest tensile stress 
required to break the body.

Thermistor: A type of semiconductor whose resistance 
sharply decreases with increasing temperature. At 20ºC 
the resistance may be of the order of a thousand ohms and 
at 100ºC it may be only ten ohms. Thermistors are used to 
measure temperature and to compensate for temperature 
changes in other parts of the circuit.

Thermocouple: A thermometer made from two wires of 
different metals joined at one end, with the other two 
ends maintained at constant temperature. The junction 
between the wires is placed in the substance whose tem-
perature is to be measured. An e.m.f. is generated which 
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can be measured and which is, in turn, a measure of tem-
perature.

Thermopile: A device used to measure radiant heat, consist-
ing of several thermocouples connected together in series. 
Alternate junctions are blackened for absorbing radiant 
heat, the other junctions are shielded from the radia-
tion. The e.m.f. generated by the temperature difference 
between the junctions can be measured. From this, the 
temperature of the blackened junctions can be calculated, 
and thus the intensity of the radiation measured.

Torque: Turning effect of a force. An example is a turbine 
that produces a torque on its rotating shaft to turn a gen-
erator. The unit of measurement is newton metre (N m).

Torsion: Is the strain in material that is subjected to a twist-
ing force. In a rod or shaft, such as an engine drive shaft, 
the torsion angle of twist is inversely proportional to the 
fourth power of the rod diameter multiplied by the shear 
modulus (a constant) of the material. Torsion bars are 
used in the spring mechanism of some car suspensions.

Triangle of vectors: A triangle, the sides of which repre-
sent the magnitude and direction of three vectors about 
a point that are in the same plane and are in equilibrium. 
A triangle of vectors is often used to represent forces or 
velocities. If the magnitude and direction of two forces 
are known, then two sides of the triangle can be drawn. 
Using scale drawing or trigonometry, the magnitude and 
direction of the third force can be calculated.

Truss: A structural member made up of straight pieces of 
metal or timber formed into a series of triangles lying in 
a vertical plane. The triangles resist distortion through 
stress, making the truss capable of sustaining great loads 
over long spans. The joints of a truss are assumed to be 
frictionless, pin-jointed.

Vacuum flask: A container for keeping things (usually 
 liquids) hot or cold. A vacuum flask is made with double 
silvered glass walls separated by a near vacuum. The vac-
uum prevents heat transfer by conduction and convection, 
and the silvering on the glass minimises heat transfer by 
radiation. 

Vaporisation: The conversion of a liquid or solid into its 
vapour, such as water into steam. 

Vector: A quantity that has both magnitude (size) and direc-
tion; velocity, acceleration and force are examples of vec-
tors.

Velocity: The rate of motion of a body in a certain direction.
Velocity ratio: In a simple machine, is the distance moved by 

the point of application of the effort (input force) divided 
by the distance moved by the point of application of the 
load (output force).

Venturi tube: A mechanism for mixing a fine spray of liquid 
with a gas for measuring fluid flow.

Watt: The SI unit of power. A machine consuming one joule 
of energy per second has a power output of one watt.  
1 W = 1 J/s = 1 N m/s. One horsepower corresponds to 
746 watts. 

Weight: The force of attraction on a body due to gravity. 
A body’s weight is the product of its mass and the gravita-
tional field strength at that point. Mass remains constant, 
but weight depends on the object’s position on the Earth’s 
surface, decreasing with increasing altitude.

Work: The energy transferred in moving the point of appli-
cation of a force. It equals the magnitude of the force mul-
tiplied by the distance moved in the direction of the force.

Young’s modulus: Ratio of the stress exerted on a body to 
the longitudinal strain produced.
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Answers to multiple-choice questions

Chapter 1 
(Exercise 10, Page 16)

 1. (b) 2. (d) 3. (a) 4. (d) 5. (a)
 6. (b) 7. (c) 8. (a) 9. (b) 10. (c)
 11. (b) 12. (d) 13. (a) 14. (c) 15. (a)
 16. (c) 17. (d) 18. (b) 19. (a) 20. (c)

Chapter 2 
(Exercise 20, Page 41)

 1. (b) 2. (d) 3. (d) 4. (a) 5. (b)
 6. (d) 7. (a) 8. (a) 9. (d) 10. (c)
 11. (b) 12. (d) 13. (c) 14. (a) 15. (b)
 16. (c) 17. (c) 18. (a) 19. (c) 20. (b)

Chapter 3 
(Exercise 27, Page 62)

 1. (c) 2. (c) 3. (a) 4. (b) 5. (c)
 6. (c) 7. (b) 8. (d) 9. (b) 10. (c)
 11. (f) 12. (h) 13. (d) 14. (b) 15. (a)

Chapter 4 
(Exercise 31, Page 70)

 1. (f) 2. (d) 3. (g) 4. (b)

Chapter 5 
(Exercise 39, Page 84)

 1. (b) 2. (a) 3. (b) 4. (d) 5. (b)
 6. (c) 7. (b) 8. (b) 9. (c) 10. (d)
 11. (c) 12. (d) 13. (d) 14. (a)

Chapter 6 
(Exercise 45, Page 95)

 1. (a) 2. (c) 3. (a) 4. (d) 5. (a)
 6. (d) 7. (c) 8. (a) 9. (d) 10. (c)
 11. (c)

Chapter 7 
(Exercise 50, Page 110)

 1. (b) 2. (a) 3. (c) 4. (c) 5. (b)
 6. (a)

Chapter 8 
(Exercise 54, Page 124)

 1. (b) 2. (c) 3. (c) 4. (a) 5. (c)
 6. (b)

Chapter 9 
(Exercise 60, Page 142)

 1. (c) 2. (b) 3. (d) 4. (a) 5. (b)
 6. (c) 7. (a) 8. (c) 9. (d) 10. (a) 

Chapter 10 
(Exercise 63, Page 150)

 1. (b) 2. (b) 3. (c)

Chapter 11 
(Exercise 69, Page 160)

 1. (d) 2. (b) 3. (c) 4. (a) 5. (c)
 6. (d) 7. (a) 8. (b) 9. (c) 10. (d)
 11. (a) 12. (c)

Chapter 12 
(Exercise 72, Page 166)

 1. (a) 2. (b) 3. (a) 4. (c) 5. (b)
 6. (a) 

Chapter 13 
(Exercise 78, Page 178)

 1. (b) 2. (c) 3. (a) 4. (c) 5. (a)
 6. (d) 7. (c) 8. (b) 9. (d) 10. (c)
 11. (b) 12. (d) 13. (a)

Chapter 14 
(Exercise 82, Page 186)

 1. (d) 2. (b) 3. (f) 4. (c) 5. (a)
 6. (c) 7. (a) 8. (g) 9. (f) 10. (f)
 11. (b) 12. (e)
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Chapter 15 
(Exercise 87, Page 195)

 1. (c) 2. (b) 3. (a) 4. (d) 5. (a)
 6. (b) 7. (b) 8. (a) 9. (a) 10. (d)
 11. (d) 12. (c) 13. (b)

Chapter 16 
(Exercise 94, Page 209)

 1. (b) 2. (c) 3. (c) 4. (a) 5. (d)
 6. (c) 7. (a) 8. (d) 9. (c) 10. (b)
 11. (b) 12. (a) 13. (d) 14. (a) 15. (d)
 16. (c)

Chapter 17 
(Exercise 99, Page 221)

 1. (c) 2. (c) 3. (f) 4. (e) 5. (i)
 6. (c) 7. (h) 8. (b) 9. (d) 10. (a)
 11. (b)

Chapter 18 
(Exercise 104, Page 230)

 1. (b) 2. (d) 3. (a) 4. (b) 5. (b)

Chapter 19 
(Exercise 108, Page 237)

 1. (b) 2. (c) 3. (b) 4. (a)

Chapter 20 
(Exercise 115, Page 247)

 1. (b) 2. (f) 3. (c) 4. (d) 5. (b)
 6. (a) 7. (b) 8. (d) 9. (c) 10. (d)
 11. (d) 12. (b)

Chapter 21 
(Exercise 121, Page 261)

 1. (d) 2. (b) 3. (a) 4. (c) 5. (b)

 6. (b) 7. (b) 8. (a) 9. (c) 10. (b)
 11. (d) 12. (c) 13. (d) 

Chapter 22 
(Exercise 125, Page 269)

 1. (b) 2. (c) 3. (a) 4. (d) 5. (b)
 6. (c) 7. (c) 8. (a) 9. (c) 10. (b)

Chapter 23 
(Exercise 133, Page 288)

 1. (b) 2. (d) 3. (a) 4. (a) 5. (c)
 6. (d) 7. (b) 8. (c) 9. (c) 10. (d)
 11. (d) 12. (d) 13. (c) 14. (b) 15. (c)
 16. (a) 17. (b) 18. (f) 19. (a) 20. (b)
 21. (c) 22. (c) 23. (a) 24. (c)

Chapter 24 
(Exercise 138, Page 300)

 1. (c) 2. (c) 3. (d) 4. (a) 5. (c)
 6. (j) 7. (i) 8. (d) 9. (g) 10. (f)
 11. (a) 12. (h) 13. (e) 14. (k) 15. (c)
 16. (c)

Chapter 25 
(Exercise 146, Page 310)

 1. (a) 2. (d) 3. (b) 4. (b) 5. (c)
 6. (d) 7. (b) 8. (c) 9. (c) 10. (b)

Chapter 26 
(Exercise 150, Page 320)

 1. (c) 2. (b) 3. (d) 4. (b) 5. (i)
 6. (a) 7. (e) 8. (d) 9.  (e or f) 10. (k)
 11. (b) 12. (g)
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Index

Absolute pressure, 275, 280
Acceleration, centripetal, 192

linear and angular, 173
Aneroid barometer, 279
Angle, measurement of, 4

of repose, 215
of twist, 161

Angular acceleration, 173
motion, 171
velocity, 171
Annulus, 135

Applications of friction, 214
thermal expansion, 264

Archimedes’ principle, 276
Atmospheric pressure, 275, 280

Bar, 278
Barometer, 278
Beckman thermometer, 313
Belt, 157
Bending moment, 112, 122
diagram, 113, 122
Bending of beams, 145
Bernoulli’s equation, 297
Bimetallic thermometer, 319
Bourdon pressure gauge, 281
Bow’s notation, 100
Boyle’s law, 301
Brackets, 8
Brittleness, 57
Built-up sections, 138
Buoyancy, 284

Calculator, 9
Calculus, 34
Cartesian axes, 28
Celsius scale, 254
Centre of gravity, 72, 127
Centrifugal clutch, 230

force, 224
Centripetal acceleration, 192

force, 192
Centroidal axis, 148
Centroids, 127, 128
Change of state, 256

temperature, 263
Channel bar, 138

Characteristic equation, 306
gas constant, 306

Charles’ law, 303
Clinical thermometer, 313
Clutch, 230
Coefficient of cubic expansion, 267

discharge, 298
friction, 213
linear expansion, 264
superficial expansion, 266

Compatibility, 58
Compound bars, 58

gear train, 244
pendulum, 236

Compression, 48
Compressive force, 48
Concurrent forces, 72
Conduction, 259
Conical pendulum, 226
Contraction, 263
Convection, 259
Co-ordinates, 28
Coplanar forces, 72

in equilibrium, 78
resultant of, 73

Cosine, 5
rule, 7, 76

Couple, 102, 151
Couples, 92
Cross product, 40
Cubic expansion, coefficient of, 267
Cup anemometers, 294

D’Alembert’s principle, 224
Dalton’s law of partial pressure, 305
Dead weight tester, 282
Definite integrals, 38
Deflecting vane flowmeter, 293
Degrees, 4
Denominator, 8
Derived units, 22
Determinants, 39
Differential calculus, 34

pressure flowmeters, 290
Differentiation, 34

of common functions, 34
Dot product, 40
Ductility, 57

Dynamic friction, 212
coefficient of, 214, 215

Effects of forces on materials, 47
Efficiency, 157, 201

of a screw jack, 219
of a simple machine, 239

Effort, 239
Elastic collisions, 206

limit, 52, 65
Elasticity, 52
Electromagnetic flowmeter, 295
Energy, 201

kinetic, 205
potential, 205

Engineering notation, 23
Equation of a straight line graph, 31

continuity, 296
Equations of motion, 174, 175
Equilibrium, 58, 72, 78, 87
Expansion, 263

and contraction of water, 264
Extrapolation, 29

First moment of area, 127, 128, 131
Float and tapered tube meter, 294
Flowmeters, 290

electromagnetic, 295
mechanical, 293

Flow nozzle, 292
Flow through an orifice, 298
Fluid flow, 290

pressure, 274
Follower, 243
Force, 48, 188

centrifugal, 224
centripetal, 192
gravitational, 189
ratio, 239

Forces, 72
acting at a point, 71
in structures, 98
graphical method, 100
method of joints, 104
method of sections, 109

Formulae, list of, 323-327
Fortin barometer, 279
Fractions, 8
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Friction, 212
applications of, 214
coefficient of, 213
on an inclined plane, 215

Fulcrum, 87

Gas laws, 301
thermometers, 319 

Gauge pressure, 275, 280
Gay-Lussac’s law, 304
Gear trains, 243, 244
Glossary of terms, 330-334
Gradient of straight line, 30
Graph, 28
Gravitational force, 189
Greek alphabet, 329

Heat, 253
Hogging, 113
Hooke’s law, 53
Horizontal component, 80
Horsepower, 152
Hot-wire anemometer, 296
Hydrostatic pressure, 282

thrust on curved surface, 284
Hydrostatics, 272

I beam, 138
Ideal gas, 305

laws, 301
Idler wheel, 244

i, j, k unit vector, 39
Impact of a jet, 298
Imperial to metric conversions, 24, 328
Improper fraction, 8
Impulse, 183
Impulsive forces, 183
Inclined plane, friction on, 215

manometer, 281
Indices, laws of, 12
Inelastic collisions, 206
Inertia, 189

moment of, 194
Insulation, use of conserving fuel, 260
Integral calculus, 34
Integral, definite, 38
Integration, 34, 36
Interpolation, 29
Isobaric process, 303
Isothermal change, 302

Joule, 198

Kelvin, 254
Kinetic energy, 154, 205

of rotation, 208

Lamina, 72, 127
Latent heat, 257

of fusion, 257
of vaporisation, 257

Law of machine, 240
Laws of indices, 12
Levers, 245
Limiting angle of repose, 215

coefficient of friction, 214, 215
efficiency, 240
force ratio, 240

Limit of proportionality, 52, 65
Linear and angular acceleration, 173
Linear expansion, 264

momentum, 180
motion, 171
velocity, 171

Linear expansion, coefficient of,  
264

Liquid-in-glass thermometer, 255, 
312

Load, 239

Machines, 239
Malleability, 57
Manometer, 280
Mariana Trench, 274
Mathematics revision, 3-42
Maximum/minimum thermometers, 

313
McLeod gauge, 282
Measurement of angles, 4

pressure, 278
temperature, 254, 312

Mechanical advantage, 239
flowmeters, 293

Mechanisms, 99
Mercury-in-steel thermometer, 319
Mercury thermometers, 313
Metacentric height, 284
Method of joints, 104

sections, 109
Metric to imperial conversions, 24, 

328
Mid-ordinate rule, 198
Mixed numbers, 9
Modulus of elasticity, 56

rigidity, 57
Moment, 40, 86, 102

of a force, 86
of inertia, 154, 194
of resistance, 147

Moments, principle of, 87
Momentum, 180
Motion down a plane, 216

equations of, 174

in a circle, 223
in a vertical circle, 228
on a curved banked track, 225
up a plane, 216

Movement ratio, 239, 243

Neck, 65
Neutral axis, 146, 147

layer, 146
Newton, 22, 48, 188, 189
Newton metre, 87, 151
Newton’s laws of motion, 180, 183, 

189
Normal force, 213
Numerator, 8

Optical pyrometer, 318
Orifice plate, 291
Origin, 28

Parallel axis theorem, 132, 194
Parallelogram of forces, 75
Partial pressure, 305
Pascal, 49, 272, 278
Pendulum, compound, 236

conical, 226
simple, 235

Percentages, 10
Permanent elongation, 65
Perpendicular axis theorem, 132
Pirani gauge, 282
Pitometer, 293
Pitot-static tube, 293
Pivot, 87
Plasticity, 52
Platinum coil, 316
Point loading, 89
Polar second moment of area, 161
Polygon of forces, 77
Potential energy, 205
Power, 152, 202

transmission, 157
Practical applications of thermal 

expansion, 264
straight line graphs, 32

Prefixes, engineering, 22
Pressure, 272

absolute, 275, 280
atmospheric, 275, 280
fluid, 274
gauge, 275, 280 
gauges, 280
hydrostatic, 282
law, 304
measurement of, 278
partial, 305
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Principle of conservation of energy, 
180, 201, 206

mass, 296
moments, 87
momentum, 180

Proof stress, 69
Proper fraction, 8
Pulleys, 241
Pyrometers, 255, 317
Pythagoras’ theorem, 6

Radian, 4, 171
Radiation, 259
Radius of curvature, 146

gyration, 131
Reaction, 190
Reactions, 90
Rectangular axes, 28
Refrigerator, 259
Relative velocity, 176
Resistance thermometers, 255, 315
Resolution of forces, 76, 80
Resultant, 73
Resultant of coplanar forces, 73, 76

by calculation, 76
by vector addition, 73, 76

Rigidity modulus, 161
Rotameters, 295
Rotary vane positive displacement 

meters, 294
Rotation of a rigid body, 193
RSJ, 138

Sagging, 113
Scalar product, 40

quantity, 71, 176
Screw jack, 219, 243

efficiency of, 219
Second moments of area, 131, 146

for built-up sections, 138
table of, 133

Sensible heat, 257
Standard derivatives, 34

integrals, 36
Shear, 48

force, 48
modulus, 161
stress, 161

Shearing force, 113, 122
diagram, 113, 122

Simple harmonic motion (SHM), 
232

machines, 239
pendulum, 235
refrigerator, 259

Simply supported beam, 87
having point loads, 89
practical applications, 90
with couples, 93

Simultaneous equations, 14
Sine, 5

rule, 7, 76
SI units, 21
Sliding friction, 212, 215

coefficient of, 214
Specific heat capacity, 255
Spring-mass system, 233
Spur gears, 243
Stability of floating bodies, 284
Standard integrals, 36

temperature and pressure (STP), 
306

Statically indeterminate trusses,  
99

Static friction, 213, 215
coefficient of, 214, 215

Stiction, 213
Stiffness, 53
Straight line graphs, 28
Strain, 50

thermal, 28
Stress, 49, 146

proof, 69
Strut, 99
Superficial expansion, coefficient of, 

266

Tangent, 5
Tee bar, 138
Temperature, 27, 253

indicating paints, 319
measurement of, 312
sensitive crayons, 319

Tensile force, 48
test, 64

Tension, 48
Testing to destruction, 64
Theorem of Pythagoras, 6
Thermal expansion, 263

practical applications, 264

Thermal strain, 57
Thermistors, 317
Thermocouples, 255, 314
Thermodynamic scale, 254
Thermometer, 254
Tie, 99
Torsional vibrations, 237
Torsion of shafts, 161
Torque, 151, 161
Total radiation pyrometer, 317
Triangle calculations, 5

of forces, 74
Truss, 98
Turbine flowmeter, 294

-type meters, 294
Twisting of shafts, 161

Ultimate tensile strength (UTS), 65
Uniformly distributed loads (UDL), 

122
Units, SI, 21
Upper yield point, 65
U-tube manometer, 280

Vacuum flask, 260
gauge, 282

Vector addition, 73
analysis, 39
product, 40
quantity, 71, 176

Velocity, linear and angular, 171
Velocity ratio, 239
Velocity, relative, 176
Venturi tube, 292
Vertical-axis intercept, 29
Vertical component, 80

Waist, 65
Water, expansion and contraction, 264
Watt, 203
Wheatstone bridge circuit, 316
Work, 197

done, 40, 152, 197

y-axis intercept, 31
Yield point, 65

stress, 65
Young’s modulus of elasticity, 33, 

53, 146
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