


JWCL232_fm_i-xvi.qxd  1/23/10  1:18 PM  Page xvi



Applied Statistics
and Probability 
for Engineers
Fifth Edition

Douglas C. Montgomery
Arizona State University

George C. Runger
Arizona State University

John Wiley & Sons, Inc.

JWCL232_fm_i-xvi.qxd  1/21/10  7:40 PM  Page iii



To:

Meredith, Neil, Colin, and Cheryl

Rebecca, Elisa, George, and Taylor

EXECUTIVE PUBLISHER Don Fowley
ASSOCIATE PUBLISHER Daniel Sayre
ACQUISITIONS EDITOR Jennifer Welter
PRODUCTION EDITOR Trish McFadden
MARKETING MANAGER Christopher Ruel
SENIOR DESIGNER Kevin Murphy
MEDIA EDITOR Lauren Sapira
PHOTO ASSOCIATE Sheena Goldstein
EDITORIAL ASSISTANT Alexandra Spicehandler
PRODUCTION SERVICES MANAGEMENT Aptara
COVER IMAGE Norm Christiansen

This book was set in 10/12 pt. TimesNewRomanPS by Aptara and printed and bound by 
R.R. Donnelley/Willard Division. The cover was printed by Phoenix Color.

This book is printed on acid-free paper. �

Copyright © 2011 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted 
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, 
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222
Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008,
website http://www.wiley.com/go/permissions.
To order books or for customer service, please call 1-800-CALL WILEY (225-5945).

ISBN–13: 978-0-470-05304-1

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

JWCL232_fm_i-xvi.qxd  1/23/10  1:17 PM  Page iv

http://www.copyright.com
http://www.wiley.com/go/permissions


Wiley Books by These Authors 
Website: www.wiley.com/college/montgomery 

Engineering Statistics, Fourth Edition 
by Montgomery, Runger, and Hubele 
Introduction to engineering statistics, with topical coverage appropriate for a one-semester
course. A modest mathematical level, and an applied approach. 

Applied Statistics and Probability for Engineers, Fifth Edition 
by Montgomery and Runger 
Introduction to engineering statistics, with topical coverage appropriate for either a one- or
two-semester course. An applied approach to solving real-world engineering problems. 

Introduction to Statistical Quality Control, Sixth Edition 
by Douglas C. Montgomery 
For a first course in statistical quality control. A comprehensive treatment of statistical 
methodology for quality control and improvement. Some aspects of quality management are 
also included, such as the six-sigma approach. 

Design and Analysis of Experiments, Seventh Edition 
by Douglas C. Montgomery 
An introduction to design and analysis of experiments, with the modest prerequisite of a first
course in statistical methods. For senior and graduate students and for practitioners, to design
and analyze experiments for improving the quality and efficiency of working systems. 

Introduction to Linear Regression Analysis, Fourth Edition 
by Montgomery, Peck, and Vining 
A comprehensive and thoroughly up-to-date look at regression analysis, still the most widely used
technique in statistics today. 

Response Surface Methodology: Process and Product Optimization Using Designed
Experiments, Third Edition 
by Myers, Montgomery, and Anderson-Cook 
Website: www.wiley.com/college/myers 
The exploration and optimization of response surfaces, for graduate courses in experimental
design, and for applied statisticians, engineers, and chemical and physical scientists. 

Generalized Linear Models: With Applications in Engineering and the Sciences 
by Myers, Montgomery, and Vining 
Website: www.wiley.com/college/myers 
An introductory text or reference on generalized linear models (GLMs). The range of theoretical
topics and applications appeals both to students and practicing professionals. 

Introduction to Time Series Analysis and Forecasting 
by Montgomery, Jennings, and Kulahci 
Methods for modeling and analyzing time series data, to draw inferences about the data and 
generate forecasts useful to the decision maker. Minitab and SAS are used to illustrate how the
methods are implemented in practice. For advanced undergrad/first-year graduate, with a 
prerequisite of basic statistical methods. Portions of the book require calculus and matrix algebra.

JWCL232_fm_i-xvi.qxd  1/21/10  10:21 PM  Page v

http://www.wiley.com/college/montgomery
http://www.wiley.com/college/myers
http://www.wiley.com/college/myers


vi

Preface

INTENDED AUDIENCE

This is an introductory textbook for a first course in applied statistics and probability for undergraduate
students in engineering and the physical or chemical sciences. These individuals play a significant role in
designing and developing new products and manufacturing systems and processes, and they also improve
existing systems. Statistical methods are an important tool in these activities because they provide the en-
gineer with both descriptive and analytical methods for dealing with the variability in observed data.
Although many of the methods we present are fundamental to statistical analysis in other disciplines, such
as business and management, the life sciences, and the social sciences, we have elected to focus on an
engineering-oriented audience. We believe that this approach will best serve students in engineering and
the chemical/physical sciences and will allow them to concentrate on the many applications of statistics
in these disciplines. We have worked hard to ensure that our examples and exercises are engineering- and
science-based, and in almost all cases we have used examples of real data—either taken from a published
source or based on our consulting experiences.

We believe that engineers in all disciplines should take at least one course in statistics.
Unfortunately, because of other requirements, most engineers will only take one statistics course. This
book can be used for a single course, although we have provided enough material for two courses in the
hope that more students will see the important applications of statistics in their everyday work and elect
a second course. We believe that this book will also serve as a useful reference.

We have retained the relatively modest mathematical level of the first four editions. We have found
that engineering students who have completed one or two semesters of calculus should have no difficulty
reading almost all of the text. It is our intent to give the reader an understanding of the methodology and
how to apply it, not the mathematical theory. We have made many enhancements in this edition, including
reorganizing and rewriting major portions of the book and adding a number of new exercises.

ORGANIZATION OF THE BOOK

Perhaps the most common criticism of engineering statistics texts is that they are too long. Both instructors
and students complain that it is impossible to cover all of the topics in the book in one or even two terms. For
authors, this is a serious issue because there is great variety in both the content and level of these courses, and
the decisions about what material to delete without limiting the value of the text are not easy. Decisions about
which topics to include in this edition were made based on a survey of instructors.

Chapter 1 is an introduction to the field of statistics and how engineers use statistical methodology as
part of the engineering problem-solving process. This chapter also introduces the reader to some engineer-
ing applications of statistics, including building empirical models, designing engineering experiments, and
monitoring manufacturing processes. These topics are discussed in more depth in subsequent chapters.

Chapters 2, 3, 4, and 5 cover the basic concepts of probability, discrete and continuous random vari-
ables, probability distributions, expected values, joint probability distributions, and independence. We
have given a reasonably complete treatment of these topics but have avoided many of the mathematical
or more theoretical details.

Chapter 6 begins the treatment of statistical methods with random sampling; data summary and de-
scription techniques, including stem-and-leaf plots, histograms, box plots, and probability plotting; and
several types of time series plots. Chapter 7 discusses sampling distributions, the central limit theorem,
and point estimation of parameters. This chapter also introduces some of the important properties of esti-
mators, the method of maximum likelihood, the method of moments, and Bayesian estimation.

Chapter 8 discusses interval estimation for a single sample. Topics included are confidence intervals for
means, variances or standard deviations, proportions, prediction intervals, and tolerance intervals. Chapter 9
discusses hypothesis tests for a single sample. Chapter 10 presents tests and confidence intervals for two
samples. This material has been extensively rewritten and reorganized. There is detailed information and
examples of methods for determining appropriate sample sizes. We want the student to become familiar with
how these techniques are used to solve real-world engineering problems and to get some understanding of
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PREFACE vii

the concepts behind them. We give a logical, heuristic development of the procedures rather than a formal,
mathematical one. We have also included some material on nonparametric methods in these chapters.

Chapters 11 and 12 present simple and multiple linear regression including model adequacy checking and
regression model diagnostics and an introduction to logistic regression. We use matrix algebra throughout the
multiple regression material (Chapter 12) because it is the only easy way to understand the concepts presented.
Scalar arithmetic presentations of multiple regression are awkward at best, and we have found that undergrad-
uate engineers are exposed to enough matrix algebra to understand the presentation of this material.

Chapters 13 and 14 deal with single- and multifactor experiments, respectively. The notions of ran-
domization, blocking, factorial designs, interactions, graphical data analysis, and fractional factorials are
emphasized. Chapter 15 introduces statistical quality control, emphasizing the control chart and the fun-
damentals of statistical process control.

WHAT’S NEW IN THIS EDITION?

We received much feedback from users of the fourth edition of the book, and in response we have made
substantial changes in this new edition. 

• The most obvious change is that the chapter on nonparametric methods is gone. We have inte-
grated most of this material into Chapter 9 and 10 on statistical hypothesis testing, where we
think it is a much better fit if instructors elect to cover these techniques. 

• Another substantial change is the increased emphasis on the use of P-value in hypothesis test-
ing. Many sections of several chapters were rewritten to reflect this. 

• We have also rewritten and modified many portions of the book to improve the explanations and
try to make the concepts easier to understand. 

• We have added brief comments at the end of examples to emphasize the practical interpretations
of the results.

• We have also added approximately 200 new homework exercises.

FEATURED IN THIS BOOK

Learning Objectives
Learning Objectives at the start 
of each chapter guide the 
students in what they are 
expected to take away from this 
chapter and serve as a study reference.

Definitions, Key Concepts, and Equations
Throughout the text, definitions and key con-
cepts and equations are highlighted by a box
to emphasize their importance.

If X is a continuous random variable with probability density function f(x),

(4-5)E 3h1X 2 4 � �
�

��

h1x2 f 1x2 dx

Expected 
Value of a

Function of a
Continuous

Random
Variable

Suppose X is a continuous random variable with probability density function f(x).
The mean or expected value of X, denoted as or E(X), is

(4-4)

The variance of X, denoted as V(X) or is

The standard deviation of X is .� � 2�2

�2 � V1X 2 � �
�

��

1x � �22f 1x2 dx � �
�

��

x2f 1x2 dx � �2

�2,

� � E1X 2 � �
�

��

xf 1x2 dx

�

Mean 
and

Variance

4-4 MEAN AND VARIANCE OF A CONTINUOUS
RANDOM VARIABLE

The mean and variance can also be defined for a continuous random variable. Integration

replaces summation in the discrete definitions. If a probability density function is viewed as a

loading on a beam as in Fig. 4-1, the mean is the balance point.

The equivalence of the two formulas for variance can be derived from the same approach used

for discrete random variables.

EXAMPLE 4-6 Electric Current
For the copper current measurement in Example 4-1, the mean

of X is

E1X 2 � �
20

0

xf 1x2 dx � 0.05x2�2 `
20

0

� 10

The variance of X is

V1X 2 � �
20

0

1x � 1022f 1x2 dx � 0.051x � 1023�3 `
20

0

� 33.33

The expected value of a function h(X ) of a continuous random variable is also defined in a

straightforward manner.

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability density functions
2. Determine probabilities from cumulative distribution functions and cumulative distribution func-

tions from probability density functions, and the reverse
3. Calculate means and variances for continuous random variables
4. Understand the assumptions for some common continuous probability distributions
5. Select an appropriate continuous probability distribution to calculate probabilities in specific applications
6. Calculate probabilities, determine means and variances for some common continuous probability

distributions
7. Standardize normal random variables
8. Use the table for the cumulative distribution function of a standard normal distribution to calcu-

late probabilities
9. Approximate probabilities for some binomial and Poisson distributions
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viii PREFACE

9-1.6 General Procedure for Hypothesis Tests

This chapter develops hypothesis-testing procedures for many practical problems. Use of the
following sequence of steps in applying hypothesis-testing methodology is recommended.

1. Parameter of interest: From the problem context, identify the parameter of interest.

2. Null hypothesis, H0: State the null hypothesis, H0.

3. Alternative hypothesis, H1: Specify an appropriate alternative hypothesis, .

4. Test statistic: Determine an appropriate test statistic.

5. Reject H0 if: State the rejection criteria for the null hypothesis.

6. Computations: Compute any necessary sample quantities, substitute these into the
equation for the test statistic, and compute that value.

7. Draw conclusions: Decide whether or not H0 should be rejected and report that in
the problem context.

Steps 1–4 should be completed prior to examination of the sample data. This sequence of
steps will be illustrated in subsequent sections.

H1

Figures

Numerous figures throughout the text
illustrate statistical concepts in multiple
formats.

Seven-Step Procedure for Hypothesis Testing
The text introduces a sequence of seven steps in
applying hypothesis-testing methodology and
explicitly exhibits this procedure in examples.

Minitab Output
Throughout the book, we have
presented output from Minitab as 
typical examples of what can be done
with modern statistical software.

Character Stem-and-Leaf Display

Stem-and-leaf of Strength
N = 80 Leaf Unit = 1.0
1 7 6
2 8 7
3 9 7
5 10 1 5
8 11 0 5 8
11 12 0 1 3
17 13 1 3 3 4 5 5
25 14 1 2 3 5 6 8 9 9
37 15 0 0 1 3 4 4 6 7 8 8 8 8
(10) 16 0 0 0 3 3 5 7 7 8 9
33 17 0 1 1 2 4 4 5 6 6 8
23 18 0 0 1 1 3 4 6
16 19 0 3 4 6 9 9
10 20 0 1 7 8
6 21 8
5 22 1 8 9
2 23 7
1 24 5 

Figure 6-6 A stem-
and-leaf diagram from
Minitab.

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x (%) y (%)

1 0.99 90.01

2 1.02 89.05

3 1.15 91.43

4 1.29 93.74

5 1.46 96.73

6 1.36 94.45

7 0.87 87.59

8 1.23 91.77

9 1.55 99.42

10 1.40 93.65

11 1.19 93.54

12 1.15 92.52

13 0.98 90.56

14 1.01 89.54

15 1.11 89.85

16 1.20 90.39

17 1.26 93.25

18 1.32 93.41

19 1.43 94.98

20 0.95 87.33
Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.
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PREFACE ix

Exercises
Each chapter has an extensive collection
of exercises, including end-of-section
exercises that emphasize the material in
that section, supplemental exercises at
the end of the chapter that cover the
scope of chapter topics and require the
student to make a decision about the
approach they will use to solve the
problem, and mind-expanding exer-
cises that often require the student to
extend the text material somewhat or to
apply it in a novel situation.

Answers are provided to most
odd-numbered exercises in Appendix C
in the text, and the WileyPLUS online
learning environment includes for stu-
dents complete detailed solutions to
selected exercises.

5-67. Suppose that X is a random variable with probability

distribution

Find the probability distribution of Y � 2X � 1.

5-68. Let X be a binomial random variable with p � 0.25

and n � 3. Find the probability distribution of the random

variable Y � X 2.

5-69. Suppose that X is a continuous random variable with

probability distribution

fX 1x2 �
x

18
, 0 � x � 6

fX 1x2 � 1�4, x � 1, 2, 3, 4

5-73. Suppose that X has the probability distribution

Find the probability distribution of the random variable 

Y � eX.

5-74. The random variable X has the probability distri-

bution

Find the probability distribution of Y � (X � 2)2.

fX 1x2 �
x
8

, 0 � x � 4

fX 1x2 � 1, 1 � x � 2

EXERCISES FOR SECTION 5-5

(a) Find the probability distribution of the random variable

Y � 2X � 10.

(b) Find the expected value of Y.

5-70. Suppose that X has a uniform probability distribution

Show that the probability distribution of the random variable

Y � �2 ln X is chi-squared with two degrees of freedom.

5-71. A random variable X has the following probability

distribution:

(a) Find the probability distribution for Y � X 2.

(b) Find the probability distribution for Y � .

(c) Find the probability distribution for Y � ln X.

5-72. The velocity of a particle in a gas is a random variable

V with probability distribution

where b is a constant that depends on the temperature of the

gas and the mass of the particle.

(a) Find the value of the constant a.

(b) The kinetic energy of the particle is . Find the

probability distribution of W.

W � mV2�2

fV 1v2 � av2e�bv v � 0

X1�2

fX 1x2 � e�x, x � 0

fX 1x2 � 1, 0 � x � 1

8

Supplemental Exercises

5-75. Show that the following function satisfies the proper-

ties of a joint probability mass function:

x y f (x, y)

0 0 1�4

0 1 1�8

1 0 1�8

1 1 1�4

2 2 1�4

Determine the following:

(a) (b)

(c) (d)

(e) Determine E(X ), E(Y ), V(X ), and V(Y ).

(f ) Marginal probability distribution of the random vari-

able X
(g) Conditional probability distribution of Y given that X � 1

(h)

(i) Are X and Y independent? Why or why not?

( j) Calculate the correlation between X and Y.

5-76. The percentage of people given an antirheumatoid

medication who suffer severe, moderate, or minor side effects

are 10, 20, and 70%, respectively. Assume that people react

E1Y 0 X � 12

P1X � 0.5, Y 	 1.52P1X 	 1.52

P1X � 12P1X 	 0.5, Y 	 1.52

5-96. Show that if X1, X2, p , Xp are independent, 

continuous random variables, P(X1 � A1, X2 � A2, p ,
Xp � Ap) � P(X1 � A1)P(X2 � A2) p P(Xp � Ap) for any

regions A1, A2, p , Ap in the range of X1, X2, p , Xp

respectively.

5-97. Show that if X1, X2, p , Xp are independent

random variables and Y � c1X1 � c2X2 � � cpXp,

You may assume that the random variables are continuous.

5-98. Suppose that the joint probability function of

the continuous random variables X and Y is constant on

the rectangle 0 � x � a, 0 � y � b. Show that X and Y
are independent.

5-99. Suppose that the range of the continuous

variables X and Y is 0 � x � a and 0 � y � b. Also

suppose that the joint probability density function

fXY (x, y) � g (x)h( y), where g (x) is a function only of

x and h( y), is a function only of y. Show that X and Y
are independent.

5-100. This exercise extends the hypergeometric dis-

tribution to multiple variables. Consider a population

with N items of k different types. Assume there are N1

items of type 1, N2 items of type 2, ..., Nk items of type k
so that N1 � N2 � p � p, Nk � N. Suppose that a ran-

dom sample of size n is selected, without replacement,

from the population. Let X1, X2, ..., Xk denote the number

of items of each type in the sample so that X1, X2, �p �
p, Xk � n. Show that for feasible values of the parame-

ters n, x1, x2, p, xk, N1, N2, p, Nk, the probability is P (X1 �

x1, X2 � x2, p, Xk � xk) �

a
N1

x1

ba
N2

x2

b p a
Nk

xn
b

a
N

n
b

V1Y 2 � c2
1V1X12 � c2

2V1X22 � p � c2
pV1Xp2

p

MIND-EXPANDING EXERCISES

IMPORTANT TERMS AND CONCEPTS

Bivariate distribution
Bivariate normal

distribution
Conditional mean

Multinomial distribution
Reproductive property of

the normal
distribution 

Conditional variance
Contour plots
Correlation
Covariance

Joint probability density
function

Joint probability mass
function

Important Terms and Concepts
At the end of each chapter is a list of
important terms and concepts for an
easy self-check and study tool.

STUDENT RESOURCES

• Data Sets Data sets for all examples and exercises in the text. Visit the student section of the
book Web site at www.wiley.com/college/montgomery to access these materials.

• Student Solutions Manual Detailed solutions for selected problems in the book. The Student
Solutions Manual may be purchased from the Web site at www.wiley.com/college/montgomery.

Example Problems
A set of example problems provides the stu-
dent with detailed solutions and comments for
interesting, real-world situations. Brief practi-
cal interpretations have been added in this
edition.

EXAMPLE 10-1 Paint Drying Time
A product developer is interested in reducing the drying time

of a primer paint. Two formulations of the paint are tested; for-

mulation 1 is the standard chemistry, and formulation 2 has a

new drying ingredient that should reduce the drying time.

From experience, it is known that the standard deviation of

drying time is 8 minutes, and this inherent variability should

be unaffected by the addition of the new ingredient. Ten spec-

imens are painted with formulation 1, and another 10 speci-

mens are painted with formulation 2; the 20 specimens are

painted in random order. The two sample average drying times

are minutes and minutes, respectively.

What conclusions can the product developer draw about the

effectiveness of the new ingredient, using � � 0.05?

We apply the seven-step procedure to this problem as

follows:

1. Parameter of interest: The quantity of interest is the dif-

ference in mean drying times, �1 � �2, and �0 � 0.

2. Non hypothesis:

3. Alternative hypothesis: We want to reject

H0 if the new ingredient reduces mean drying time.

H˛1: �1 � �2.

H˛0: �1 � �2 � 0, or H˛0:˛ �1 � �2.

x˛2 � 112x˛1 � 121

4. Test statistic: The test statistic is

where �2
1 � �2

2 � � 64 and n1 � n2 � 10.

5. Reject H0 if: Reject H0: �1 � �2 if the P-value is less

than 0.05.

6. Computations: Since minutes and 

minutes, the test statistic is

7. Conclusion: Since z0 � 2.52, the P-value is P �
, so we reject H0 at the � � 0.05 level

Practical Interpretation: We conclude that adding the

new ingredient to the paint significantly reduces the drying

time. This is a strong conclusion.

1 � 	12.522� 0.0059

z0 �
121 � 112

B
1822

10


1822

10

� 2.52

x2 � 112x1 � 121

1822

z˛0 �
x1 � x2 � 0

B
�2

1

n1



�2
2

n2
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x PREFACE

INSTRUCTOR RESOURCES

The following resources are available only to instructors who adopt the text:

• Solutions Manual All solutions to the exercises in the text.

• Data Sets Data sets for all examples and exercises in the text.

• Image Gallery of Text Figures

• PowerPoint Lecture Slides

• Section on Logistic Regression

These instructor-only resources are password-protected. Visit the instructor section of the book Web site
at www.wiley.com/college/montgomery to register for a password to access these materials.

MINITAB

A student version of Minitab is available as an option to purchase in a set with this text. Student versions
of software often do not have all the functionality that full versions do. Consequently, student versions
may not support all the concepts presented in this text. If you would like to adopt for your course the set
of this text with the student version of Minitab, please contact your local Wiley representative at
www.wiley.com/college/rep.

Alternatively, students may find information about how to purchase the professional version of the
software for academic use at www.minitab.com. 

WileyPLUS

This online teaching and learning environment integrates the entire digital textbook with the most
effective instructor and student resources to fit every learning style.

With WileyPLUS: 

• Students achieve concept mastery in a rich, structured environment that’s available 24/7.

• Instructors personalize and manage their course more effectively with assessment, assignments,
grade tracking, and more.

WileyPLUS can complement your current textbook or replace the printed text altogether.

For Students

Personalize the learning experience
Different learning styles, different levels of proficiency, different levels of preparation—each of your stu-
dents is unique. WileyPLUS empowers them to take advantage of their individual strengths:

• Students receive timely access to resources that address their demonstrated needs, and get im-
mediate feedback and remediation when needed.

• Integrated, multi-media resources—including audio and visual exhibits, demonstration prob-
lems, and much more—provide multiple study-paths to fit each student’s learning preferences
and encourage more active learning. 

• WileyPLUS includes many opportunities for self-assessment linked to the relevant portions
of the text. Students can take control of their own learning and practice until they master the
material.

JWCL232_fm_i-xvi.qxd  1/26/10  4:35 AM  Page x

http://www.wiley.com/college/montgomery
http://www.wiley.com/college/rep
http://www.minitab.com


PREFACE xi

For Instructors

Personalize the teaching experience
WileyPLUS empowers you with the tools and resources you need to make your teaching even more
effective:

• You can customize your classroom presentation with a wealth of resources and functionality
from PowerPoint slides to a database of rich visuals. You can even add your own materials to
your WileyPLUS course.

• With WileyPLUS you can identify those students who are falling behind and intervene accord-
ingly, without having to wait for them to come to office hours. 

• WileyPLUS simplifies and automates such tasks as student performance assessment, making as-
signments, scoring student work, keeping grades, and more. 

COURSE SYLLABUS SUGGESTIONS

This is a very flexible textbook because instructors’ ideas about what should be in a first course on sta-
tistics for engineers vary widely, as do the abilities of different groups of students. Therefore, we hesitate
to give too much advice, but will explain how we use the book.

We believe that a first course in statistics for engineers should be primarily an applied statistics
course, not a probability course. In our one-semester course we cover all of Chapter 1 (in one or two
lectures); overview the material on probability, putting most of the emphasis on the normal distribution
(six to eight lectures); discuss most of Chapters 6 through 10 on confidence intervals and tests (twelve to
fourteen lectures); introduce regression models in Chapter 11 (four lectures); give an introduction to the
design of experiments from Chapters 13 and 14 (six lectures); and present the basic concepts of statisti-
cal process control, including the Shewhart control chart from Chapter 15 (four lectures). This leaves
about three to four periods for exams and review. Let us emphasize that the purpose of this course is to
introduce engineers to how statistics can be used to solve real-world engineering problems, not to weed
out the less mathematically gifted students. This course is not the “baby math-stat” course that is all too
often given to engineers.

If a second semester is available, it is possible to cover the entire book, including much of the
supplemental material, if appropriate for the audience. It would also be possible to assign and work
many of the homework problems in class to reinforce the understanding of the concepts. Obviously,
multiple regression and more design of experiments would be major topics in a second course.

USING THE COMPUTER

In practice, engineers use computers to apply statistical methods to solve problems. Therefore, we strongly
recommend that the computer be integrated into the class. Throughout the book we have presented output
from Minitab as typical examples of what can be done with modern statistical software. In teaching, we
have used other software packages, including Statgraphics, JMP, and Statistica. We did not clutter up the
book with examples from many different packages because how the instructor integrates the software into
the class is ultimately more important than which package is used. All text data are available in electronic
form on the textbook Web site. In some chapters, there are problems that we feel should be worked using
computer software. We have marked these problems with a special icon in the margin.

In our own classrooms, we use the computer in almost every lecture and demonstrate how the tech-
nique is implemented in software as soon as it is discussed in the lecture. Student versions of many sta-
tistical software packages are available at low cost, and students can either purchase their own copy or
use the products available on the PC local area networks. We have found that this greatly improves the
pace of the course and student understanding of the material.
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Users should be aware that final answers may differ slightly due to different numerical precision
and rounding protocols among softwares.
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The Role of Statistics 
in Engineering
Statistics is a science that helps us make decisions and draw conclusions in the pres-
ence of variability. For example, civil engineers working in the transportation field are
concerned about the capacity of regional highway systems. A typical problem would
involve data on the number of nonwork, home-based trips, the number of persons per
household, and the number of vehicles per household, and the objective would be to
produce a trip-generation model relating trips to the number of persons per household
and the number of vehicles per household. A statistical technique called regression
analysis can be used to construct this model. The trip-generation model is an important
tool for transportation systems planning. Regression methods are among the most
widely used statistical techniques in engineering. They are presented in Chapters 11
and 12.

Hospital emergency departments (EDs) are an important part of the health-care de-
livery system. The process by which patients arrive at the ED is highly variable and can
depend on the hour of the day and the day of the week, as well as on longer-term cycli-
cal variations. The service process is also highly variable, depending on the types of
services that the patients require, the number of patients in the ED, and how the ED is
staffed and organized. The capacity of an ED is also limited, so consequently some pa-
tients experience long waiting times. How long do patients wait, on average? This is an
important question for health-care providers. If waiting times become excessive, some
patients will leave without receiving treatment (LWOT). Patients who LWOT are a seri-
ous problem, as they do not have their medical concerns addressed and are at risk for
further problems and complications. Therefore, another important question is: What
proportion of patients LWOT from the ED? These questions can be solved by employ-
ing probability models to describe the ED, and from these models very precise esti-
mates of waiting times and the number of patients who LWOT can be obtained.
Probability models that can be used to solve these types of problems are discussed in
Chapters 2 through 5. 
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2 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Identify the role that statistics can play in the engineering problem-solving process
2. Discuss how variability affects the data collected and used for making engineering decisions
3. Explain the difference between enumerative and analytical studies
4. Discuss the different methods that engineers use to collect data
5. Identify the advantages that designed experiments have in comparison to other methods of 

collecting engineering data
6. Explain the differences between mechanistic models and empirical models
7. Discuss how probability and probability models are used in engineering and science

1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING

An engineer is someone who solves problems of interest to society by the efficient application
of scientific principles. Engineers accomplish this by either refining an existing product or
process or by designing a new product or process that meets customers’needs. The engineering,
or scientific, method is the approach to formulating and solving these problems. The steps in
the engineering method are as follows:

1. Develop a clear and concise description of the problem.

2. Identify, at least tentatively, the important factors that affect this problem or that may
play a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the
phenomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative
model or conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.

1-1 THE ENGINEERING METHOD AND
STATISTICAL THINKING

1-2 COLLECTING ENGINEERING DATA

1-2.1 Basic Principles

1-2.2 Retrospective Study

1-2.3 Observational Study

1-2.4 Designed Experiments

1-2.5 Observing Processes Over Time 

1-3 MECHANISTIC AND EMPIRICAL
MODELS

1-4 PROBABILITY AND PROBABILITY
MODELS

The concepts of probability and statistics are powerful ones and contribute extensively
to the solutions of many types of engineering problems. You will encounter many exam-
ples of these applications in this book. 
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1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING 3
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6. Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the
problem is both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

The steps in the engineering method are shown in Fig. 1-1. Many of the engineering sciences
are employed in the engineering method: the mechanical sciences (statics, dynamics), fluid
science, thermal science, electrical science, and the science of materials. Notice that the engi-
neering method features a strong interplay between the problem, the factors that may influence
its solution, a model of the phenomenon, and experimentation to verify the adequacy of the
model and the proposed solution to the problem. Steps 2–4 in Fig. 1-1 are enclosed in a box,
indicating that several cycles or iterations of these steps may be required to obtain the final
solution. Consequently, engineers must know how to efficiently plan experiments, collect data,
analyze and interpret the data, and understand how the observed data are related to the model
they have proposed for the problem under study.

The field of statistics deals with the collection, presentation, analysis, and use of data to
make decisions, solve problems, and design products and processes. In simple terms, statistics
is the science of data. Because many aspects of engineering practice involve working with
data, obviously knowledge of statistics is just as important to an engineer as the other engineering
sciences. Specifically, statistical techniques can be a powerful aid in designing new products
and systems, improving existing designs, and designing, developing, and improving production
processes.

Statistical methods are used to help us describe and understand variability. By variability,
we mean that successive observations of a system or phenomenon do not produce exactly the
same result. We all encounter variability in our everyday lives, and statistical thinking can
give us a useful way to incorporate this variability into our decision-making processes. For
example, consider the gasoline mileage performance of your car. Do you always get exactly the
same mileage performance on every tank of fuel? Of course not—in fact, sometimes the mileage
performance varies considerably. This observed variability in gasoline mileage depends on
many factors, such as the type of driving that has occurred most recently (city versus high-
way), the changes in condition of the vehicle over time (which could include factors such as
tire inflation, engine compression, or valve wear), the brand and/or octane number of the
gasoline used, or possibly even the weather conditions that have been recently experienced.
These factors represent potential sources of variability in the system. Statistics provides a
framework for describing this variability and for learning about which potential sources of
variability are the most important or which have the greatest impact on the gasoline mileage
performance.

We also encounter variability in dealing with engineering problems. For example, sup-
pose that an engineer is designing a nylon connector to be used in an automotive engine
application. The engineer is considering establishing the design specification on wall thickness
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4 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

at 3�32 inch but is somewhat uncertain about the effect of this decision on the connector pull-
off force. If the pull-off force is too low, the connector may fail when it is installed in an en-
gine. Eight prototype units are produced and their pull-off forces measured, resulting in the
following data (in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1. As we anticipated,
not all of the prototypes have the same pull-off force. We say that there is variability in the
pull-off force measurements. Because the pull-off force measurements exhibit variability, we
consider the pull-off force to be a random variable. A convenient way to think of a random
variable, say X, that represents a measurement is by using the model

(1-1)

where � is a constant and � is a random disturbance. The constant remains the same with every
measurement, but small changes in the environment, variance in test equipment, differences in
the individual parts themselves, and so forth change the value of �. If there were no distur-
bances, � would always equal zero and X would always be equal to the constant �. However,
this never happens in the real world, so the actual measurements X exhibit variability. We often
need to describe, quantify, and ultimately reduce variability.

Figure 1-2 presents a dot diagram of these data. The dot diagram is a very useful plot for
displaying a small body of data—say, up to about 20 observations. This plot allows us to see
easily two features of the data: the location, or the middle, and the scatter or variability. When
the number of observations is small, it is usually difficult to identify any specific patterns in the
variability, although the dot diagram is a convenient way to see any unusual data features.

The need for statistical thinking arises often in the solution of engineering problems.
Consider the engineer designing the connector. From testing the prototypes, he knows that the
average pull-off force is 13.0 pounds. However, he thinks that this may be too low for the
intended application, so he decides to consider an alternative design with a greater wall
thickness, 1�8 inch. Eight prototypes of this design are built, and the observed pull-off force
measurements are 12.9, 13.7, 12.8, 13.9, 14.2, 13.2, 13.5, and 13.1. The average is 13.4.
Results for both samples are plotted as dot diagrams in Fig. 1-3. This display gives the im-
pression that increasing the wall thickness has led to an increase in pull-off force. However,
there are some obvious questions to ask. For instance, how do we know that another sample
of prototypes will not give different results? Is a sample of eight prototypes adequate to give
reliable results? If we use the test results obtained so far to conclude that increasing the wall
thickness increases the strength, what risks are associated with this decision? For example,
is it possible that the apparent increase in pull-off force observed in the thicker prototypes
is only due to the inherent variability in the system and that increasing the thickness of the
part (and its cost) really has no effect on the pull-off force?

Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design
products and processes. We are familiar with this reasoning from general laws to specific
cases. But it is also important to reason from a specific set of measurements to more general
cases to answer the previous questions. This reasoning is from a sample (such as the eight
connectors) to a population (such as the connectors that will be sold to customers). The
reasoning is referred to as statistical inference. See Fig. 1-4. Historically, measurements were

X � � � �

12 1413 15

Pull-off force

Figure 1-2 Dot diagram of the pull-off force
data when wall thickness is 3/32 inch.
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Figure 1-3 Dot diagram of pull-off force for two wall
thicknesses.

JWCL232_c01_001-016.qxd  1/14/10  8:51 AM  Page 4



1-2 COLLECTING ENGINEERING DATA 5

Physical
laws

Types of
reasoning

Product
designs

Population

Statistical inference

SampleFigure 1-4 Statistical
inference is one type
of reasoning.

obtained from a sample of people and generalized to a population, and the terminology has
remained. Clearly, reasoning based on measurements from some objects to measurements on
all objects can result in errors (called sampling errors). However, if the sample is selected
properly, these risks can be quantified and an appropriate sample size can be determined.

1-2 COLLECTING ENGINEERING DATA

1-2.1 Basic Principles

In the previous section, we illustrated some simple methods for summarizing data. Sometimes
the data are all of the observations in the populations. This results in a census. However, in the
engineering environment, the data are almost always a sample that has been selected from the
population. Three basic methods of collecting data are

A retrospective study using historical data

An observational study

A designed experiment

An effective data-collection procedure can greatly simplify the analysis and lead to improved
understanding of the population or process that is being studied. We now consider some
examples of these data-collection methods.

1-2.2 Retrospective Study

Montgomery, Peck, and Vining (2006) describe an acetone-butyl alcohol distillation column
for which concentration of acetone in the distillate or output product stream is an important
variable. Factors that may affect the distillate are the reboil temperature, the condensate tem-
perature, and the reflux rate. Production personnel obtain and archive the following records:

The concentration of acetone in an hourly test sample of output product

The reboil temperature log, which is a plot of the reboil temperature over time

The condenser temperature controller log

The nominal reflux rate each hour

The reflux rate should be held constant for this process. Consequently, production personnel
change this very infrequently.

A retrospective study would use either all or a sample of the historical process data
archived over some period of time. The study objective might be to discover the relationships
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6 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

among the two temperatures and the reflux rate on the acetone concentration in the output
product stream. However, this type of study presents some problems:

1. We may not be able to see the relationship between the reflux rate and acetone con-
centration, because the reflux rate didn’t change much over the historical period.

2. The archived data on the two temperatures (which are recorded almost continuously)
do not correspond perfectly to the acetone concentration measurements (which are
made hourly). It may not be obvious how to construct an approximate correspondence.

3. Production maintains the two temperatures as closely as possible to desired targets or
set points. Because the temperatures change so little, it may be difficult to assess their
real impact on acetone concentration.

4. In the narrow ranges within which they do vary, the condensate temperature tends to
increase with the reboil temperature. Consequently, the effects of these two process
variables on acetone concentration may be difficult to separate.

As you can see, a retrospective study may involve a lot of data, but those data may contain
relatively little useful information about the problem. Furthermore, some of the relevant
data may be missing, there may be transcription or recording errors resulting in outliers
(or unusual values), or data on other important factors may not have been collected and
archived. In the distillation column, for example, the specific concentrations of butyl alcohol
and acetone in the input feed stream are a very important factor, but they are not archived
because the concentrations are too hard to obtain on a routine basis. As a result of these types
of issues, statistical analysis of historical data sometimes identifies interesting phenomena,
but solid and reliable explanations of these phenomena are often difficult to obtain.

1-2.3 Observational Study

In an observational study, the engineer observes the process or population, disturbing it as
little as possible, and records the quantities of interest. Because these studies are usually con-
ducted for a relatively short time period, sometimes variables that are not routinely measured
can be included. In the distillation column, the engineer would design a form to record the two
temperatures and the reflux rate when acetone concentration measurements are made. It may
even be possible to measure the input feed stream concentrations so that the impact of this
factor could be studied. Generally, an observational study tends to solve problems 1 and 2
above and goes a long way toward obtaining accurate and reliable data. However, observa-
tional studies may not help resolve problems 3 and 4.

1-2.4 Designed Experiments

In a designed experiment the engineer makes deliberate or purposeful changes in the control-
lable variables of the system or process, observes the resulting system output data, and then
makes an inference or decision about which variables are responsible for the observed changes
in output performance. The nylon connector example in Section 1-1 illustrates a designed
experiment; that is, a deliberate change was made in the wall thickness of the connector with
the objective of discovering whether or not a greater pull-off force could be obtained.
Experiments designed with basic principles such as randomization are needed to establish
cause-and-effect relationships. 

Much of what we know in the engineering and physical-chemical sciences is developed
through testing or experimentation. Often engineers work in problem areas in which no
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1-2 COLLECTING ENGINEERING DATA 7

Table 1-1 The Designed Experiment (Factorial Design) for the 
Distillation Column

Reboil Temp. Condensate Temp. Reflux Rate

�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1
�1 �1 �1

scientific or engineering theory is directly or completely applicable, so experimentation and
observation of the resulting data constitute the only way that the problem can be solved. Even
when there is a good underlying scientific theory that we may rely on to explain the phenom-
ena of interest, it is almost always necessary to conduct tests or experiments to confirm that the
theory is indeed operative in the situation or environment in which it is being applied.
Statistical thinking and statistical methods play an important role in planning, conducting, and
analyzing the data from engineering experiments. Designed experiments play a very important
role in engineering design and development and in the improvement of manufacturing processes.

For example, consider the problem involving the choice of wall thickness for the
nylon connector. This is a simple illustration of a designed experiment. The engineer chose two
wall thicknesses for the connector and performed a series of tests to obtain pull-off force
measurements at each wall thickness. In this simple comparative experiment, the engineer is
interested in determining if there is any difference between the 3�32- and 1�8-inch designs. An
approach that could be used in analyzing the data from this experiment is to compare the mean
pull-off force for the 3�32-inch design to the mean pull-off force for the 1�8-inch design using
statistical hypothesis testing, which is discussed in detail in Chapters 9 and 10. Generally, a
hypothesis is a statement about some aspect of the system in which we are interested. For
example, the engineer might want to know if the mean pull-off force of a 3�32-inch design
exceeds the typical maximum load expected to be encountered in this application, say, 12.75
pounds. Thus, we would be interested in testing the hypothesis that the mean strength exceeds
12.75 pounds. This is called a single-sample hypothesis-testing problem. Chapter 9 presents
techniques for this type of problem. Alternatively, the engineer might be interested in testing
the hypothesis that increasing the wall thickness from 3�32 to 1�8 inch results in an increase
in mean pull-off force. It is an example of a two-sample hypothesis-testing problem. Two-
sample hypothesis-testing problems are discussed in Chapter 10.

Designed experiments are a very powerful approach to studying complex systems, such
as the distillation column. This process has three factors—the two temperatures and the reflux
rate—and we want to investigate the effect of these three factors on output acetone concentra-
tion. A good experimental design for this problem must ensure that we can separate the effects
of all three factors on the acetone concentration. The specified values of the three factors used
in the experiment are called factor levels. Typically, we use a small number of levels for each
factor, such as two or three. For the distillation column problem, suppose we use two levels,
“high’’ and “low’’ (denoted +1 and �1, respectively), for each of the three factors. A very
reasonable experiment design strategy uses every possible combination of the factor levels to
form a basic experiment with eight different settings for the process. This type of experiment
is called a factorial experiment. Table 1-1 presents this experimental design.
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Figure 1-5 illustrates that this design forms a cube in terms of these high and low levels.
With each setting of the process conditions, we allow the column to reach equilibrium, take
a sample of the product stream, and determine the acetone concentration. We then can draw
specific inferences about the effect of these factors. Such an approach allows us to proactively
study a population or process.

An important advantage of factorial experiments is that they allow one to detect an
interaction between factors. Consider only the two temperature factors in the distillation
experiment. Suppose that the response concentration is poor when the reboil temperature is
low, regardless of the condensate temperature. That is, the condensate temperature has no
effect when the reboil temperature is low. However, when the reboil temperature is high, a
high condensate temperature generates a good response, while a low condensate tempera-
ture generates a poor response. That is, the condensate temperature changes the response
when the reboil temperature is high. The effect of condensate temperature depends on the
setting of the reboil temperature, and these two factors would interact in this case. If the four
combinations of high and low reboil and condensate temperatures were not tested, such an
interaction would not be detected. 

We can easily extend the factorial strategy to more factors. Suppose that the engineer wants
to consider a fourth factor, type of distillation column. There are two types: the standard one
and a newer design. Figure 1-6 illustrates how all four factors—reboil temperature, condensate
temperature, reflux rate, and column design—could be investigated in a factorial design. Since
all four factors are still at two levels, the experimental design can still be represented geometri-
cally as a cube (actually, it’s a hypercube). Notice that as in any factorial design, all possible
combinations of the four factors are tested. The experiment requires 16 trials. 

Generally, if there are k factors and they each have two levels, a factorial experimental
design will require 2k runs. For example, with k � 4, the 24 design in Fig. 1-6 requires 16 tests.
Clearly, as the number of factors increases, the number of trials required in a factorial experi-
ment increases rapidly; for instance, eight factors each at two levels would require 256 trials.
This quickly becomes unfeasible from the viewpoint of time and other resources. Fortunately,
when there are four to five or more factors, it is usually unnecessary to test all possible
combinations of factor levels. A fractional factorial experiment is a variation of the basic
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1-2 COLLECTING ENGINEERING DATA 9

factorial arrangement in which only a subset of the factor combinations are actually tested.
Figure 1-7 shows a fractional factorial experimental design for the four-factor version of the
distillation experiment. The circled test combinations in this figure are the only test combina-
tions that need to be run. This experimental design requires only 8 runs instead of the original
16; consequently it would be called a one-half fraction. This is an excellent experimental
design in which to study all four factors. It will provide good information about the individual
effects of the four factors and some information about how these factors interact.

Factorial and fractional factorial experiments are used extensively by engineers and scien-
tists in industrial research and development, where new technology, products, and processes are
designed and developed and where existing products and processes are improved. Since so
much engineering work involves testing and experimentation, it is essential that all engineers
understand the basic principles of planning efficient and effective experiments. We discuss
these principles in Chapter 13. Chapter 14 concentrates on the factorial and fractional factorials
that we have introduced here.

1-2.5 Observing Processes Over Time

Often data are collected over time. In this case, it is usually very helpful to plot the data versus
time in a time series plot. Phenomena that might affect the system or process often become
more visible in a time-oriented plot and the concept of stability can be better judged.

Figure 1-8 is a dot diagram of acetone concentration readings taken hourly from the
distillation column described in Section 1-2.2. The large variation displayed on the dot
diagram indicates a lot of variability in the concentration, but the chart does not help explain
the reason for the variation. The time series plot is shown in Figure 1-9. A shift in the process
mean level is visible in the plot and an estimate of the time of the shift can be obtained.

W. Edwards Deming, a very influential industrial statistician, stressed that it is important
to understand the nature of variability in processes and systems over time. He conducted an
experiment in which he attempted to drop marbles as close as possible to a target on a table.
He used a funnel mounted on a ring stand and the marbles were dropped into the funnel. See
Fig. 1-10. The funnel was aligned as closely as possible with the center of the target. He then
used two different strategies to operate the process. (1) He never moved the funnel. He just
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Target Marbles

Figure 1-10 Deming’s funnel experiment.

dropped one marble after another and recorded the distance from the target. (2) He dropped
the first marble and recorded its location relative to the target. He then moved the funnel an
equal and opposite distance in an attempt to compensate for the error. He continued to make
this type of adjustment after each marble was dropped.

After both strategies were completed, he noticed that the variability of the distance
from the target for strategy 2 was approximately 2 times larger than for strategy 1. The adjust-
ments to the funnel increased the deviations from the target. The explanation is that the error
(the deviation of the marble’s position from the target) for one marble provides no information
about the error that will occur for the next marble. Consequently, adjustments to the funnel do
not decrease future errors. Instead, they tend to move the funnel farther from the target.

This interesting experiment points out that adjustments to a process based on random dis-
turbances can actually increase the variation of the process. This is referred to as overcontrol
or tampering. Adjustments should be applied only to compensate for a nonrandom shift in the
process—then they can help. A computer simulation can be used to demonstrate the lessons of
the funnel experiment. Figure 1-11 displays a time plot of 100 measurements (denoted as y)
from a process in which only random disturbances are present. The target value for the process
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Figure 1-11 Adjust-
ments applied to
random disturbances
overcontrol the process
and increase the devia-
tions from the target.
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is 10 units. The figure displays the data with and without adjustments that are applied to the
process mean in an attempt to produce data closer to target. Each adjustment is equal and
opposite to the deviation of the previous measurement from target. For example, when the
measurement is 11 (one unit above target), the mean is reduced by one unit before the next
measurement is generated. The overcontrol has increased the deviations from the target.

Figure 1-12 displays the data without adjustment from Fig. 1-11, except that the measure-
ments after observation number 50 are increased by two units to simulate the effect of a shift
in the mean of the process. When there is a true shift in the mean of a process, an adjustment
can be useful. Figure 1-12 also displays the data obtained when one adjustment (a decrease of
two units) is applied to the mean after the shift is detected (at observation number 57). Note
that this adjustment decreases the deviations from target.

The question of when to apply adjustments (and by what amounts) begins with an under-
standing of the types of variation that affect a process. A control chart is an invaluable way
to examine the variability in time-oriented data. Figure 1-13 presents a control chart for
the concentration data from Fig. 1-9. The center line on the control chart is just the average of
the concentration measurements for the first 20 samples ( ) when the process is
stable. The upper control limit and the lower control limit are a pair of statistically derived

x � 91.5 g�l
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12 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

limits that reflect the inherent or natural variability in the process. These limits are located
three standard deviations of the concentration values above and below the center line. If the
process is operating as it should, without any external sources of variability present in the
system, the concentration measurements should fluctuate randomly around the center line, and
almost all of them should fall between the control limits.

In the control chart of Fig. 1-13, the visual frame of reference provided by the center line
and the control limits indicates that some upset or disturbance has affected the process around
sample 20 because all of the following observations are below the center line, and two of them
actually fall below the lower control limit. This is a very strong signal that corrective action is
required in this process. If we can find and eliminate the underlying cause of this upset, we can
improve process performance considerably.

Furthermore, Deming pointed out that data from a process are used for different types of
conclusions. Sometimes we collect data from a process to evaluate current production. For
example, we might sample and measure resistivity on three semiconductor wafers selected
from a lot and use this information to evaluate the lot. This is called an enumerative study.
However, in many cases we use data from current production to evaluate future production. We
apply conclusions to a conceptual, future population. Deming called this an analytic study.
Clearly this requires an assumption of a stable process, and Deming emphasized that control
charts were needed to justify this assumption. See Fig. 1-14 as an illustration.

Control charts are a very important application of statistics for monitoring, controlling,
and improving a process. The branch of statistics that makes use of control charts is called
statistical process control, or SPC. We will discuss SPC and control charts in Chapter 15.

1-3 MECHANISTIC AND EMPIRICAL MODELS

Models play an important role in the analysis of nearly all engineering problems. Much of the
formal education of engineers involves learning about the models relevant to specific fields
and the techniques for applying these models in problem formulation and solution. As a sim-
ple example, suppose we are measuring the flow of current in a thin copper wire. Our model
for this phenomenon might be Ohm’s law:

or

(1-2)I � E�R

Current � voltage�resistance

Figure 1-14
Enumerative versus
analytic study.
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1-3 MECHANISTIC AND EMPIRICAL MODELS 13

We call this type of model a mechanistic model because it is built from our underlying
knowledge of the basic physical mechanism that relates these variables. However, if we
performed this measurement process more than once, perhaps at different times, or even on
different days, the observed current could differ slightly because of small changes or varia-
tions in factors that are not completely controlled, such as changes in ambient temperature,
fluctuations in performance of the gauge, small impurities present at different locations in the
wire, and drifts in the voltage source. Consequently, a more realistic model of the observed
current might be

(1-3)

where � is a term added to the model to account for the fact that the observed values of
current flow do not perfectly conform to the mechanistic model. We can think of � as a
term that includes the effects of all of the unmodeled sources of variability that affect this
system.

Sometimes engineers work with problems for which there is no simple or well-
understood mechanistic model that explains the phenomenon. For instance, suppose we are
interested in the number average molecular weight (Mn) of a polymer. Now we know that Mn

is related to the viscosity of the material (V ), and it also depends on the amount of catalyst (C )
and the temperature (T ) in the polymerization reactor when the material is manufactured.
The relationship between Mn and these variables is

(1-4)

say, where the form of the function f is unknown. Perhaps a working model could be de-
veloped from a first-order Taylor series expansion, which would produce a model of the
form

(1-5)

where the �’s are unknown parameters. Now just as in Ohm’s law, this model will not exactly
describe the phenomenon, so we should account for the other sources of variability that may
affect the molecular weight by adding another term to the model; therefore,

(1-6)

is the model that we will use to relate molecular weight to the other three variables. This type
of model is called an empirical model; that is, it uses our engineering and scientific knowl-
edge of the phenomenon, but it is not directly developed from our theoretical or first-principles
understanding of the underlying mechanism.

To illustrate these ideas with a specific example, consider the data in Table 1-2. This table
contains data on three variables that were collected in an observational study in a semicon-
ductor manufacturing plant. In this plant, the finished semiconductor is wire-bonded to a
frame. The variables reported are pull strength (a measure of the amount of force required to
break the bond), the wire length, and the height of the die. We would like to find a model
relating pull strength to wire length and die height. Unfortunately, there is no physical mech-
anism that we can easily apply here, so it doesn’t seem likely that a mechanistic modeling
approach will be successful.

Figure 1-15 presents a three-dimensional plot of all 25 observations on pull strength, wire
length, and die height. From examination of this plot, we see that pull strength increases as

Mn � �0 � �1V � �2C � �3T � �

Mn � �0 � �1V � �2C � �3T

Mn � f 1V, C, T 2

I � E�R � �
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14 CHAPTER 1 THE ROLE OF STATISTICS IN ENGINEERING

Table 1-2 Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number y x1 x2

1 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 295
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100

10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100
25 21.15 5 400
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Figure 1-15 Three-
dimensional plot of
the wire bond pull
strength data.

both wire length and die height increase. Furthermore, it seems reasonable to think that a
model such as

would be appropriate as an empirical model for this relationship. In general, this type of
empirical model is called a regression model. In Chapters 11 and 12 we show how to build
these models and test their adequacy as approximating functions. We will use a method for

Pull strength � �0 � �11wire length2 � �21die height2 � �
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1-4 PROBABILITY AND PROBABILITY MODELS 15

estimating the parameters in regression models, called the method of least squares, that
traces its origins to work by Karl Gauss. Essentially, this method chooses the parameters in
the empirical model (the �’s) to minimize the sum of the squared distances between each
data point and the plane represented by the model equation. Applying this technique to the
data in Table 1-2 results in

(1-7)

where the “hat,” or circumflex, over pull strength indicates that this is an estimated or pre-
dicted quantity.

Figure 1-16 is a plot of the predicted values of pull strength versus wire length and die
height obtained from Equation 1-7. Notice that the predicted values lie on a plane above the
wire length–die height space. From the plot of the data in Fig. 1-15, this model does not ap-
pear unreasonable. The empirical model in Equation 1-7 could be used to predict values of
pull strength for various combinations of wire length and die height that are of interest.
Essentially, the empirical model could be used by an engineer in exactly the same way that
a mechanistic model can be used.

1-4 PROBABILITY AND PROBABILITY MODELS

In Section 1-1, it was mentioned that decisions often need to be based on measurements from
only a subset of objects selected in a sample. This process of reasoning from a sample of
objects to conclusions for a population of objects was referred to as statistical inference. A
sample of three wafers selected from a larger production lot of wafers in semiconductor man-
ufacturing was an example mentioned. To make good decisions, an analysis of how well a
sample represents a population is clearly necessary. If the lot contains defective wafers, how
well will the sample detect this? How can we quantify the criterion to “detect well”? Basically,
how can we quantify the risks of decisions based on samples? Furthermore, how should
samples be selected to provide good decisions—ones with acceptable risks? Probability
models help quantify the risks involved in statistical inference, that is, the risks involved in
decisions made every day.

More details are useful to describe the role of probability models. Suppose a production
lot contains 25 wafers. If all the wafers are defective or all are good, clearly any sample will
generate all defective or all good wafers, respectively. However, suppose only one wafer in
the lot is defective. Then a sample might or might not detect (include) the wafer. A probabil-
ity model, along with a method to select the sample, can be used to quantify the risks that the
defective wafer is or is not detected. Based on this analysis, the size of the sample might be
increased (or decreased). The risk here can be interpreted as follows. Suppose a series of lots,

Pull strength � 2.26 � 2.741wire length2 � 0.01251die height2
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each with exactly one defective wafer, are sampled. The details of the method used to select
the sample are postponed until randomness is discussed in the next chapter. Nevertheless,
assume that the same size sample (such as three wafers) is selected in the same manner from
each lot. The proportion of the lots in which the defective wafer is included in the sample or,
more specifically, the limit of this proportion as the number of lots in the series tends to infin-
ity, is interpreted as the probability that the defective wafer is detected.

A probability model is used to calculate this proportion under reasonable assumptions for
the manner in which the sample is selected. This is fortunate because we do not want to at-
tempt to sample from an infinite series of lots. Problems of this type are worked in Chapters 2
and 3. More importantly, this probability provides valuable, quantitative information regard-
ing any decision about lot quality based on the sample.

Recall from Section 1-1 that a population might be conceptual, as in an analytic study that
applies statistical inference to future production based on the data from current production.
When populations are extended in this manner, the role of statistical inference and the associ-
ated probability models becomes even more important.

In the previous example, each wafer in the sample was only classified as defective or not.
Instead, a continuous measurement might be obtained from each wafer. In Section 1-2.5, con-
centration measurements were taken at periodic intervals from a production process. Figure 1-8
shows that variability is present in the measurements, and there might be concern that the
process has moved from the target setting for concentration. Similar to the defective wafer,
one might want to quantify our ability to detect a process change based on the sample data.
Control limits were mentioned in Section 1-2.5 as decision rules for whether or not to adjust
a process. The probability that a particular process change is detected can be calculated with
a probability model for concentration measurements. Models for continuous measurements
are developed based on plausible assumptions for the data and a result known as the central
limit theorem, and the associated normal distribution is a particularly valuable probability
model for statistical inference. Of course, a check of assumptions is important. These types of
probability models are discussed in Chapter 4. The objective is still to quantify the risks in-
herent in the inference made from the sample data.

Throughout Chapters 6 through 15, decisions are based on statistical inference from sam-
ple data. Continuous probability models, specifically the normal distribution, are used exten-
sively to quantify the risks in these decisions and to evaluate ways to collect the data and how
large a sample should be selected.
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After careful study of this chapter you should be able to do the following:
1. Understand and describe sample spaces and events for random experiments with graphs, tables,
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Probability
An athletic woman in her twenties arrives at the emergency department complaining of
dizziness after running in hot weather. An electrocardiogram is used to check for a heart at-
tack and the patient generates an abnormal result. The test has a false positive rate 0.1 (the
probability of an abnormal result when the patient is normal) and a false negative rate of 0.1
(the probability of a normal result when the patient is abnormal). Furthermore, it might be
assumed that the prior probability of a heart attack for this patient is 0.001. Although the ab-
normal test is a concern, you might be surprised to learn that the probability of a heart at-
tack given the electrocardiogram result is still less than 0.01. See “Why Clinicians are
Natural Bayesians” (2005, bmj.com) for details of this example and others.

The key is to properly combine the given probabilities. Furthermore, the exact same
analysis used for this medical example can be applied to tests of engineered products.
Consequently knowledge of how to manipulate probabilities in order to assess risks and
make better decisions is important throughout scientific and engineering disciplines. In this
chapter the laws of probability are presented and used to assess risks in cases such as this
one and numerous others.
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18 CHAPTER 2 PROBABILITY

2. Interpret probabilities and use probabilities of outcomes to calculate probabilities of events in
discrete sample spaces

3. Use permutation and combinations to count the number of outcomes in both an event and the
sample space

4. Calculate the probabilities of joint events such as unions and intersections from the probabilities
of individual events

5. Interpret and calculate conditional probabilities of events
6. Determine the independence of events and use independence to calculate probabilities
7. Use Bayes’ theorem to calculate conditional probabilities
8. Understand random variables

2-1 SAMPLE SPACES AND EVENTS

2-1.1 Random Experiments

If we measure the current in a thin copper wire, we are conducting an experiment. However, day-to-
day repetitions of the measurement can differ slightly because of small variations in variables that
are not controlled in our experiment, including changes in ambient temperatures, slight variations in
gauge and small impurities in the chemical composition of the wire (if different locations are se-
lected), and current source drifts. Consequently, this experiment (as well as many we conduct) is said
to have a random component. In some cases, the random variations are small enough, relative to our
experimental goals, that they can be ignored. However, no matter how carefully our experiment is
designed and conducted, the variation is almost always present, and its magnitude can be large
enough that the important conclusions from our experiment are not obvious. In these cases, the
methods presented in this book for modeling and analyzing experimental results are quite valuable.

Our goal is to understand, quantify, and model the type of variations that we often
encounter. When we incorporate the variation into our thinking and analyses, we can make
informed judgments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other areas
of engineering and science. Figure 2-1 displays the important components. A mathematical
model (or abstraction) of the physical system is developed. It need not be a perfect abstraction.
For example, Newton’s laws are not perfect descriptions of our physical universe. Still, they are
useful models that can be studied and analyzed to approximately quantify the performance of a
wide range of engineered products. Given a mathematical abstraction that is validated with
measurements from our system, we can use the model to understand, describe, and quantify
important aspects of the physical system and predict the response of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a system,
even though the variables that we control are not purposely changed during our study.
Figure 2-2 graphically displays a model that incorporates uncontrollable inputs (noise) that

Physical system

Model

Measurements Analysis

Figure 2-2 Noise variables affect the
transformation of inputs to outputs.

Figure 2-1 Continuous iteration between model
and physical system.

Controlled
variables

Noise
variables

OutputInput System
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2-1 SAMPLE SPACES AND EVENTS 19

An experiment that can result in different outcomes, even though it is repeated in the
same manner every time, is called a random experiment.

Random
Experiment

The set of all possible outcomes of a random experiment is called the sample space
of the experiment. The sample space is denoted as S.

Sample Space 

Voltage

C
u
rr

e
n
t

Figure 2-3 A closer examination of the system
identifies deviations from the model.

0 5 10 15 20

1 2 3 4

Minutes

Call

Call duration

Time

0 5 10 15 20

1 2 3

Minutes

Call

Call duration

Time

Call 3 blocked

Figure 2-4 Variation causes disruptions in the system.

combine with the controllable inputs to produce the output of our system. Because of the
uncontrollable inputs, the same settings for the controllable inputs do not result in identical
outputs every time the system is measured.

For the example of measuring current in a copper wire, our model for the system might
simply be Ohm’s law. Because of uncontrollable inputs, variations in measurements of current
are expected. Ohm’s law might be a suitable approximation. However, if the variations are
large relative to the intended use of the device under study, we might need to extend our model
to include the variation. See Fig. 2-3.

As another example, in the design of a communication system, such as a computer or voice
communication network, the information capacity available to serve individuals using the net-
work is an important design consideration. For voice communication, sufficient external lines
need to be available to meet the requirements of a business. Assuming each line can carry only
a single conversation, how many lines should be purchased? If too few lines are purchased, calls
can be delayed or lost. The purchase of too many lines increases costs. Increasingly, design and
product development is required to meet customer requirements at a competitive cost.

In the design of the voice communication system, a model is needed for the number of calls
and the duration of calls. Even knowing that, on average, calls occur every five minutes and that
they last five minutes is not sufficient. If calls arrived precisely at five-minute intervals and lasted
for precisely five minutes, one phone line would be sufficient. However, the slightest variation in
call number or duration would result in some calls being blocked by others. See Fig. 2-4. A
system designed without considering variation will be woefully inadequate for practical use. Our
model for the number and duration of calls needs to include variation as an integral component.

2-1.2 Sample Spaces

To model and analyze a random experiment, we must understand the set of possible outcomes
from the experiment. In this introduction to probability, we make use of the basic concepts of
sets and operations on sets. It is assumed that the reader is familiar with these topics.
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A sample space is discrete if it consists of a finite or countable infinite set of outcomes.
A sample space is continuous if it contains an interval (either finite or infinite) of
real numbers.

Discrete and
Continuous

Sample Spaces

20 CHAPTER 2 PROBABILITY

It is useful to distinguish between two types of sample spaces.

EXAMPLE 2-1 Molded Plastic Part
Consider an experiment in which you select a molded plastic
part, such as a connector, and measure its thickness. The
possible values for thickness depend on the resolution of
the measuring instrument, and they also depend on upper and
lower bounds for thickness. However, it might be convenient
to define the sample space as simply the positive real line

because a negative value for thickness cannot occur.
If it is known that all connectors will be between 10 and

11 millimeters thick, the sample space could be

S � 5x 0 10 � x � 116

S � R� � 5x 0  x � 06

If the objective of the analysis is to consider only whether
a particular part is low, medium, or high for thickness, the
sample space might be taken to be the set of three outcomes:

If the objective of the analysis is to consider only whether
or not a particular part conforms to the manufacturing specifi-
cations, the sample space might be simplified to the set of two
outcomes

that indicate whether or not the part conforms.

S � 5 yes, no6

S � 5low, medium, high6

EXAMPLE 2-2 Manufacturing Specifications
If two connectors are selected and measured, the extension of
the positive real line R is to take the sample space to be the
positive quadrant of the plane:

If the objective of the analysis is to consider only whether
or not the parts conform to the manufacturing specifications,
either part may or may not conform. We abbreviate yes and no
as y and n. If the ordered pair yn indicates that the first con-
nector conforms and the second does not, the sample space
can be represented by the four outcomes:

S � 5 yy, yn, ny, nn6

S � R� � R�

If we are only interested in the number of conforming
parts in the sample, we might summarize the sample space as

As another example, consider an experiment in which
the thickness is measured until a connector fails to meet the
specifications. The sample space can be represented as

and this is an example of a discrete sample space that is count-
ably infinite.

S � 5n, yn, yyn, yyyn, yyyyn, and so forth6

S � 50, 1, 26

A sample space is often defined based on the objectives of the analysis. The following exam-
ple illustrates several alternatives.

In Example 2-1, the choice S � R� is an example of a continuous sample space, whereas
S �{yes, no} is a discrete sample space. As mentioned, the best choice of a sample space
depends on the objectives of the study. As specific questions occur later in the book, appro-
priate sample spaces are discussed.
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2-1 SAMPLE SPACES AND EVENTS 21

EXAMPLE 2-4
An automobile manufacturer provides vehicles equipped with
selected options. Each vehicle is ordered

With or without an automatic transmission

With or without air conditioning

With one of three choices of a stereo system

With one of four exterior colors

If the sample space consists of the set of all possible
vehicle types, what is the number of outcomes in the sam-
ple space? The sample space contains 48 outcomes. The
tree diagram for the different types of vehicles is displayed
in Fig. 2-6.

EXAMPLE 2-3
Each message in a digital communication system is classi-
fied as to whether it is received within the time specified by
the system design. If three messages are classified, use a
tree diagram to represent the sample space of possible out-
comes.

Each message can be received either on time or late. The
possible results for three messages can be displayed by eight
branches in the tree diagram shown in Fig. 2-5.

Practical Interpretation: A tree diagram can affectively
represent a sample space. Even if a tree becomes too large to
construct it can still conceptually clarify the sample space.

on time late

on time late

on time late on time late on time late

on time late

on time late

Message 3

Message 2

Message 1

Figure 2-5 Tree
diagram for three
messages.

Sample spaces can also be described graphically with tree diagrams. When a sample
space can be constructed in several steps or stages, we can represent each of the n1 ways of
completing the first step as a branch of a tree. Each of the ways of completing the second step
can be represented as n2 branches starting from the ends of the original branches, and so forth.

Color

Stereo

Air conditioning

Transmission  

Automatic Manual

1 2 3 1 2 3 1 2 3 1 2 3

Yes No Yes No

Figure 2-6 Tree diagram for different types of vehicles with 48 outcomes in the sample space.
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Exterior color Red White Blue Brown

RedBlackInterior color

12 × 2 = 24 12 × 4 = 48 12 × 3 = 36 12 × 1 = 12

24 + 48 + 36 + 12 = 120 vehicle types

Figure 2-7 Tree 
diagram for different
types of vehicles with
interior colors.

EXAMPLE 2-5 Automobile Configurations
Consider an extension of the automobile manufacturer ill-
ustration in the previous example in which another vehicle
option is the interior color. There are four choices of interior
color: red, black, blue, or brown. However,

With a red exterior, only a black or red interior can be
chosen.

With a white exterior, any interior color can be chosen.

With a blue exterior, only a black, red, or blue interior can
be chosen.

With a brown exterior, only a brown interior can be chosen.

In Fig. 2-6, there are 12 vehicle types with each exterior
color, but the number of interior color choices depends on the
exterior color. As shown in Fig. 2-7, the tree diagram can be
extended to show that there are 120 different vehicle types
in the sample space.

2-1.3 Events

Often we are interested in a collection of related outcomes from a random experiment.
Related outcomes can be described by subsets of the sample space and set operations can also
be applied.

An event is a subset of the sample space of a random experiment.
Event

We can also be interested in describing new events from combinations of existing events.
Because events are subsets, we can use basic set operations such as unions, intersections, and
complements to form other events of interest. Some of the basic set operations are summa-
rized below in terms of events:

The union of two events is the event that consists of all outcomes that are contained
in either of the two events. We denote the union as .

The intersection of two events is the event that consists of all outcomes that are
contained in both of the two events. We denote the intersection as .

The complement of an event in a sample space is the set of outcomes in the sample
space that are not in the event. We denote the complement of the event E as . The
notation is also used in other literature to denote the complement.EC

E�

E1 ¨ E2

E1 ´ E2

EXAMPLE 2-6
Consider the sample space S � {yy, yn, ny, nn} in Example 2-2.
Suppose that the subset of outcomes for which at least one part
conforms is denoted as E1. Then,

The event in which both parts do not conform, denoted as E2,
contains only the single outcome, E2 � {nn}. Other examples

E1 � 5 yy, yn, ny6

of events are , the null set, and E4 � S, the sample
space. If E5 � {yn, ny, nn},

Practical Interpretation: Events are used to define outcomes of
interest from a random experiment. One is often interested in
the probabilities of specified events.

E1 ´ E5 � S  E1 ¨ E5 � 5 yn, ny6  E�1 � 5nn6

E3 � �
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2-1 SAMPLE SPACES AND EVENTS 23

EXAMPLE 2-7
Measurements of the thickness of a plastic connector might be
modeled with the sample space S � R�, the set of positive real
numbers. Let

Then,

 E1 ´ E2 � 5x 0  10 	 x � 156

E1 � 5x 0  10 	 x � 126 and E2 � 5x 0  11 � x � 156

and

Also,

and

 E1� ¨ E2 � 5x 0  12 	 x � 156

E1� � 5x 0  x � 10 or 12 	 x6

 E1 ¨ E2 � 5x 0  11 � x � 126

EXAMPLE 2-8 Hospital Emergency Visits
The following table summarizes visits to emergency departments
at four hospitals in Arizona. People may leave without being seen
by a physician, and those visits are denoted as LWBS. The re-
maining visits are serviced at the emergency department, and the
visitor may or may not be admitted for a stay in the hospital.

Let A denote the event that a visit is to Hospital 1 and let B
denote the event that the result of the visit is LWBS. Calculate
the number of outcomes in A ¨ B, A�, and A ´ B.

The event consists of the 195 visits to Hospital 1
that result in LWBS. The event A� consists of the visits to
Hospitals 2, 3, and 4 and contains 6991 � 5640 � 4329 �
16,690 visits. The event consists of the visits to Hospi-
tal 1 or the visits that result in LWBS, or both, and contains
5292 � 270 � 246 � 242 � 6050 visits. Notice that the last
result can also be calculated as the number of visits in A plus
the number of visits in B minus the number of visits 
(that would otherwise be counted twice) � 5292 � 953 

195 � 6050.

Practical Interpretation: Hospitals track visits that result in
LWBS to understand resource needs and to improve patient
services.

A ¨ B

A ´ B

A ¨ B

Hospital

1 2 3 4 Total

Total 5292 6991 5640 4329 22,252
LWBS 195 270 246 242 953
Admitted 1277 1558 666 984 4485
Not admitted 3820 5163 4728 3103 16,814

Diagrams are often used to portray relationships between sets, and these diagrams are also
used to describe relationships between events. We can use Venn diagrams to represent a
sample space and events in a sample space. For example, in Fig. 2-8(a) the sample space of
the random experiment is represented as the points in the rectangle S. The events A and B are
the subsets of points in the indicated regions. Figs. 2-8(b) to 2-8(d) illustrate additional joint
events. Figure 2-9 illustrates two events with no common outcomes.

Two events, denoted as E1 and E2, such that

are said to be mutually exclusive.

E1 ¨ E2 � �

Mutually 
Exclusive

Events

Additional results involving events are summarized below. The definition of the comple-
ment of an event implies that

1E¿ 2 ¿ � E
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Figure 2-9 Mutually exclusive events.

A B

S

A B

(a)

Sample space S with events A and B

  (b)

A B

A B

(d)

A B

(c)

A ∩ B

S

(A ∩ C)'

SS

(A ∪ B) ∩ C

S

C C

Figure 2-8 Venn diagrams.

The distributive law for set operations implies that

DeMorgan’s laws imply that

Also, remember that

2-1.4 Counting Techniques

In many of the examples in Chapter 2, it is easy to determine the number of outcomes in
each event. In more complicated examples, determining the outcomes that comprise the
sample space (or an event) becomes more difficult. Instead, counts of the numbers of
outcomes in the sample space and various events are used to analyze the random experi-
ments. These methods are referred to as counting techniques. Some simple rules can be
used to simplify the calculations.

In Example 2-4, an automobile manufacturer provides vehicles equipped with selected
options. Each vehicle is ordered

With or without an automatic transmission

With or without air conditioning

With one of three choices of a stereo system

With one of four exterior colors

A ¨ B � B ¨ A  and  A ´ B � B ´ A

1A ´ B2 ¿ � A¿ ¨ B¿  and  1A ¨ B2 ¿ � A¿ ´ B¿

1A ´ B2 ¨ C � 1A ¨ C2 ´ 1B ¨ C2  and  1A ¨ B2 ´ C � 1A ´ C2 ¨ 1B ´ C2
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2-1 SAMPLE SPACES AND EVENTS 25

The tree diagram in Fig. 2-6 describes the sample space of all possible vehicle types. The size
of the sample space equals the number of branches in the last level of the tree, and this quantity
equals 2 � 2 � 3 � 4 = 48. This leads to the following useful result.

Assume an operation can be described as a sequence of k steps, and

the number of ways of completing step 1 is n1, and

the number of ways of completing step 2 is n2 for each way of completing
step 1, and

the number of ways of completing step 3 is n3 for each way of completing
step 2, and 

so forth.

The total number of ways of completing the operation is

n1 � n2 � p � nk

Multiplication
Rule (for 
counting

techniques)

The number of permutations of n different elements is where

(2-1)n! � n � 1n 
 12 � 1n 
 22 � p � 2 � 1

n!

Permutations
Another useful calculation is the number of ordered sequences of the elements of a set.
Consider a set of elements, such as S � {a, b, c}. A permutation of the elements is an ordered
sequence of the elements. For example, abc, acb, bac, bca, cab, and cba are all of the permu-
tations of the elements of S.

This result follows from the multiplication rule. A permutation can be constructed by select-
ing the element to be placed in the first position of the sequence from the n elements, then
selecting the element for the second position from the n 
 1 remaining elements, then select-
ing the element for the third position from the remaining n 
 2 elements, and so forth.
Permutations such as these are sometimes referred to as linear permutations.

In some situations, we are interested in the number of arrangements of only some of the
elements of a set. The following result also follows from the multiplication rule.

EXAMPLE 2-9
In the design of a casing for a gear housing, we can use four
different types of fasteners, three different bolt lengths, and
three different bolt locations. From the multiplication rule,
4 � 3 � 3 � 36 different designs are possible.

Practical Interpretation: The multipication rule and other
counting techniques enables one to easily determine the num-
ber of outcomes in a sample space or events and this, in turn,
allows probabilities of events to be determined.
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26 CHAPTER 2 PROBABILITY

The number of permutations of subsets of r elements selected from a set of n different
elements is

(2-2)Pr
n � n � 1n 
 12 � 1n 
 22 � p � 1n 
 r � 12 �

n!

1n 
 r2!

The number of permutations of objects of which n1 are of
one type, n2 are of a second type, , and nr are of an rth type is

(2-3)
n!

n1! n2! n3! p nr!

p
n � n1 � n2 � p �  nr

Combinations
Another counting problem of interest is the number of subsets of r elements that can be selected
from a set of n elements. Here, order is not important. These are called combinations. Every
subset of r elements can be indicated by listing the elements in the set and marking each

Permutations
of Subsets

Permutations
of Similar 

Objects

Sometimes we are interested in counting the number of ordered sequences for objects that
are not all different. The following result is a useful, general calculation.

EXAMPLE 2-10 Printed Circuit Board
A printed circuit board has eight different locations in which a
component can be placed. If four different components are to be
placed on the board, how many different designs are possible?

Each design consists of selecting a location from the
eight locations for the first component, a location from the re-
maining seven for the second component, a location from the

remaining six for the third component, and a location from the
remaining five for the fourth component. Therefore,

� 1680 different designs are possible.

P4
8 � 8 � 7 � 6 � 5 �

8!

4!

EXAMPLE 2-11 Machine Shop Schedule
Consider a machining operation in which a piece of sheet
metal needs two identical-diameter holes drilled and two
identical-size notches cut. We denote a drilling operation as d
and a notching operation as n. In determining a schedule for a
machine shop, we might be interested in the number of different
possible sequences of the four operations. The number of

possible sequences for two drilling operations and two notch-
ing operations is

The six sequences are easily summarized: ddnn, dndn, dnnd,
nddn, ndnd, nndd.

4!
2! 2!

� 6

EXAMPLE 2-12 Bar Codes
A part is labeled by printing with four thick lines, three
medium lines, and two thin lines. If each ordering of the nine
lines represents a different label, how many different labels
can be generated by using this scheme?

From Equation 2-3, the number of possible part labels is

9!

4! 3! 2!
� 1260
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2-1 SAMPLE SPACES AND EVENTS 27

Combinations

element with a “*” if it is to be included in the subset. Therefore, each permutation of r *’s and 
n 
 r blanks indicates a different subset and the numbers of these are obtained from Equation 2-3.
For example, if the set is S = {a, b, c, d}, the subset {a, c} can be indicated as

a b c d
* *

The number of combinations, subsets of size r that can be selected from a set of n
elements, is denoted as or and

(2-4)Cn
r � a

n

r
b �

n!

r!1n 
 r2!

Cn
r1nr 2

The following example uses the multiplication rule in combination with Equation 2-4 to
answer a more difficult, but common, question. In random experiments in which items are
selected from a batch, an item may or may not be replaced before the next one is selected. This
is referred to as sampling with or without replacement, respectively.

EXAMPLE 2-14 Sampling without Replacement
A bin of 50 manufactured parts contains three defective parts
and 47 nondefective parts. A sample of six parts is selected
from the 50 parts without replacement. That is, each part
can only be selected once and the sample is a subset of the
50 parts. How many different samples are there of size six that
contain exactly two defective parts?

A subset containing exactly two defective parts can be
formed by first choosing the two defective parts from the
three defective parts. Using Equation 2-4, this step can be
completed in

Then, the second step is to select the remaining four parts
from the 47 acceptable parts in the bin. The second step can be
completed in

a
47

4
b �

47!
4! 43!

� 178,365 different ways

a
3

2
b �

3!
2! 1!

� 3 different ways

Therefore, from the multiplication rule, the number of subsets
of size six that contain exactly two defective items is

As an additional computation, the total number of different
subsets of size six is found to be

When probability is discussed in this chapter, the proba-
bility of an event is determined as the ratio of the number of
outcomes in the event to the number of outcomes in the
sample space (for equally likely outcomes). Therefore, the
probability that a sample contains exactly two defective parts is

Note that this example illustrates a common distribution
studied in Chapter 3 (hypergeometric distribution).

535,095

15,890,700
� 0.034

a
50

6
b �

50!
6! 44!

� 15,890,700

3 � 178,365 � 535,095

EXAMPLE 2-13
A printed circuit board has eight different locations in which
a component can be placed. If five identical components are
to be placed on the board, how many different designs are
possible?

Each design is a subset of size five from the eight loca-
tions that are to contain the components. From Equation 2-4,
the number of possible designs is

8!

5! 3!
� 56
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EXERCISES FOR SECTION 2-1

Provide a reasonable description of the sample space for each
of the random experiments in Exercises 2-1 to 2-17. There can
be more than one acceptable interpretation of each experiment.
Describe any assumptions you make.

2-1. Each of three machined parts is classified as either
above or below the target specification for the part.

2-2. Each of four transmitted bits is classified as either in
error or not in error.

2-3. In the final inspection of electronic power supplies, 
either units pass or three types of nonconformities might occur:
functional, minor, or cosmetic. Three units are inspected.

2-4. The number of hits (views) is recorded at a high-volume
Web site in a day.

2-5. Each of 24 Web sites is classified as containing or not
containing banner ads.

2-6. An ammeter that displays three digits is used to mea-
sure current in milliamperes.

2-7. A scale that displays two decimal places is used to
measure material feeds in a chemical plant in tons.

2-8. The following two questions appear on an employee
survey questionnaire. Each answer is chosen from the five-
point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate
new ideas?

How often are my coworkers important in my overall job
performance?

2-9. The concentration of ozone to the nearest part per billion.

2-10. The time until a service transaction is requested of a
computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth
of a unit.

2-12. The voids in a ferrite slab are classified as small,
medium, or large. The number of voids in each category is
measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the
nearest millisecond.

2-14. An order for an automobile can specify either an
automatic or a standard transmission, either with or without
air-conditioning, and any one of the four colors red, blue, black,
or white. Describe the set of possible orders for this experiment.

2-15. A sampled injection-molded part could have been
produced in either one of two presses and in any one of the
eight cavities in each press.

2-16. An order for a computer system can specify memory
of 4, 8, or 12 gigabytes, and disk storage of 200, 300, or 400
gigabytes. Describe the set of possible orders.

2-17. Calls are repeatedly placed to a busy phone line until
a connection is achieved.

2-18. In a magnetic storage device, three attempts are made
to read data before an error recovery procedure that reposi-
tions the magnetic head is used. The error recovery procedure
attempts three repositionings before an “abort’’ message is
sent to the operator. Let

s denote the success of a read operation

f denote the failure of a read operation

F denote the failure of an error recovery procedure

S denote the success of an error recovery procedure

A denote an abort message sent to the operator.

Describe the sample space of this experiment with a tree
diagram.

2-19. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b) (c)
(d) (e)

2-20. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.
(a) (b)
(c) (d)
(e)

2-21. A digital scale is used that provides weights to the
nearest gram.
(a) What is the sample space for this experiment?

1A ¨ B2 ¿ ´ C
1B ´ C2 ¿1A ¨ B2 ´ C
1A ¨ B2 ´ 1A ¨ B¿ 2A¿

A B

C

1A ¨ B2 ¿ ´ C1B ´ C2 ¿
1A ¨ B2 ´ CA ¨ BA¿

A B

C
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2-26. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized below:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance, and
let B denote the event that a disk has high scratch resistance.
Determine the number of disks in and .

2-27. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish

excellent good

surface excellent 80 2

finish good 10 8

(a) Let A denote the event that a sample has excellent surface
finish, and let B denote the event that a sample has excel-
lent edge finish. Determine the number of samples in

and .
(b) Assume that each of two samples is to be classified on the

basis of surface finish, either excellent or good, and on the
basis of edge finish, either excellent or good. Use a tree
diagram to represent the possible outcomes of this
experiment.

2-28. Samples of emissions from three suppliers are classi-
fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms

yes no

1 22 8

supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
Determine the number of samples in and .

2-29. The rise time of a reactor is measured in minutes
(and fractions of minutes). Let the sample space be positive,
real numbers. Define the events A and B as follows:

and .
Describe each of the following events:
(a) (b)
(c) (d) A ´ BA ¨ B

B¿A¿

B � 5x 0  x � 52.56A � 5x 0  x � 72.56

A ´ BA¿ ¨ B, B¿,

A ´ BA¿ ¨ B, B¿,

A ´ BA ¨ B, A¿,

Let A denote the event that a weight exceeds 11 grams, let B
denote the event that a weight is less than or equal to 15 grams,
and let C denote the event that a weight is greater than or equal
to 8 grams and less than 12 grams.
Describe the following events.
(b) (c)
(d) (e)
(f) (g)
(h) (i)

2-22. In an injection-molding operation, the length and
width, denoted as X and Y, respectively, of each molded part
are evaluated. Let

A denote the event of 48 � X � 52 centimeters

B denote the event of 9 � Y � 11 centimeters

Construct a Venn diagram that includes these events. Shade
the areas that represent the following:
(a) A (b)
(c) (d)
(e) If these events were mutually exclusive, how successful

would this production operation be? Would the process pro-
duce parts with X � 50 centimeters and Y � 10 centimeters?

2-23. Four bits are transmitted over a digital communica-
tions channel. Each bit is either distorted or received without
distortion. Let Ai denote the event that the ith bit is distorted,

.
(a) Describe the sample space for this experiment.
(b) Are the Ai’s mutually exclusive? 
Describe the outcomes in each of the following events:
(c) (d)
(e) (f )

2-24. In light-dependent photosynthesis, light quality refers
to the wavelengths of light that are important. The wavelength
of a sample of photosynthetically active radiations (PAR) is
measured to the nearest nanometer. The red range is 675–700 nm
and the blue range is 450–500 nm. Let A denote the event that
PAR occurs in the red range and let B denote the event that
PAR occurs in the blue range. Describe the sample space and
indicate each of the following events:
(a) A (b) B (c) (d)

2-25. In control replication, cells are replicated over a
period of two days. Not until mitosis is completed can
freshly synthesized DNA be replicated again. Two control
mechanisms have been identified—one positive and one
negative. Suppose that a replication is observed in three
cells. Let A denote the event that all cells are identified as
positive and let B denote the event that all cells are negative.
Describe the sample space graphically and display each of
the following events:
(a) A (b) B
(c) (d) A ´ BA ¨ B

A ´ BA ¨ B

1A1 ¨ A22 ´ 1A3 ¨ A42A1 ¨ A2 ¨ A3 ¨ A4

A1¿A1

i � 1, p , 4

A ´ BA¿ ´ B
A ¨ B

A ´ 1B ¨ C2B¿ ¨ C
A ¨ B ¨ C1A ´ C2 ¿
A ´ B ´ CA¿
A ¨ BA ´ B
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2-30. A sample of two items is selected without replace-
ment from a batch. Describe the (ordered) sample space for
each of the following batches:
(a) The batch contains the items {a, b, c, d}.
(b) The batch contains the items {a, b, c, d, e, f, g}.
(c) The batch contains 4 defective items and 20 good items.
(d) The batch contains 1 defective item and 20 good items.

2-31. A sample of two printed circuit boards is selected
without replacement from a batch. Describe the (ordered) sample
space for each of the following batches:
(a) The batch contains 90 boards that are not defective, eight

boards with minor defects, and two boards with major
defects.

(b) The batch contains 90 boards that are not defective, eight
boards with minor defects, and one board with major
defects.

2-32. Counts of the Web pages provided by each of two
computer servers in a selected hour of the day are recorded.
Let A denote the event that at least 10 pages are provided by
server 1 and let B denote the event that at least 20 pages are
provided by server 2.
(a) Describe the sample space for the numbers of pages for

the two servers graphically in an plot.

Show each of the following events on the sample space graph:
(b) A (c) B
(d) (e)

2-33. The rise time of a reactor is measured in minutes (and
fractions of minutes). Let the sample space for the rise time of
each batch be positive, real numbers. Consider the rise times
of two batches. Let A denote the event that the rise time of
batch 1 is less than 72.5 minutes, and let B denote the event
that the rise time of batch 2 is greater than 52.5 minutes.

Describe the sample space for the rise time of two batches
graphically and show each of the following events on a two-
dimensional plot:
(a) A (b)
(c) (d)

2-34. A wireless garage door opener has a code determined
by the up or down setting of 12 switches. How many out-
comes are in the sample space of possible codes?

2-35. An order for a computer can specify any one of five
memory sizes, any one of three types of displays, and any one of
four sizes of a hard disk, and can either include or not include a
pen tablet. How many different systems can be ordered?

2-36. In a manufacturing operation, a part is produced by
machining, polishing, and painting. If there are three machine
tools, four polishing tools, and three painting tools, how many
different routings (consisting of machining, followed by pol-
ishing, and followed by painting) for a part are possible?

2-37. New designs for a wastewater treatment tank have
proposed three possible shapes, four possible sizes, three loca-
tions for input valves, and four locations for output valves.
How many different product designs are possible?

A ´ BA ¨ B
B¿

A ´ BA ¨ B

x 
 y

2-38. A manufacturing process consists of 10 operations
that can be completed in any order. How many different pro-
duction sequences are possible?

2-39. A manufacturing operation consists of 10 operations.
However, five machining operations must be completed before
any of the remaining five assembly operations can begin.
Within each set of five, operations can be completed in any
order. How many different production sequences are possible?

2-40. In a sheet metal operation, three notches and four
bends are required. If the operations can be done in any order,
how many different ways of completing the manufacturing are
possible?

2-41. A batch of 140 semiconductor chips is inspected by
choosing a sample of five chips. Assume 10 of the chips do not
conform to customer requirements.
(a) How many different samples are possible?
(b) How many samples of five contain exactly one noncon-

forming chip?
(c) How many samples of five contain at least one noncon-

forming chip?

2-42. In the layout of a printed circuit board for an elec-
tronic product, there are 12 different locations that can accom-
modate chips.
(a) If five different types of chips are to be placed on the

board, how many different layouts are possible?
(b) If the five chips that are placed on the board are of the

same type, how many different layouts are possible?

2-43. In the laboratory analysis of samples from a chemical
process, five samples from the process are analyzed daily. In
addition, a control sample is analyzed two times each day to
check the calibration of the laboratory instruments.
(a) How many different sequences of process and control

samples are possible each day? Assume that the five
process samples are considered identical and that the two
control samples are considered identical.

(b) How many different sequences of process and control
samples are possible if we consider the five process samples
to be different and the two control samples to be identical?

(c) For the same situation as part (b), how many sequences
are possible if the first test of each day must be a control
sample?

2-44. In the design of an electromechanical product, 12
components are to be stacked into a cylindrical casing in a
manner that minimizes the impact of shocks. One end of the
casing is designated as the bottom and the other end is the top.
(a) If all components are different, how many different de-

signs are possible?
(b) If seven components are identical to one another, but the oth-

ers are different, how many different designs are possible?
(c) If three components are of one type and identical to one

another, and four components are of another type and
identical to one another, but the others are different, how
many different designs are possible?
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2-45. Consider the design of a communication system.
(a) How many three-digit phone prefixes that are used to rep-

resent a particular geographic area (such as an area code)
can be created from the digits 0 through 9?

(b) As in part (a), how many three-digit phone prefixes are
possible that do not start with 0 or 1, but contain 0 or 1 as
the middle digit?

(c) How many three-digit phone prefixes are possible in
which no digit appears more than once in each prefix?

2-46. A byte is a sequence of eight bits and each bit is
either 0 or 1.
(a) How many different bytes are possible?
(b) If the first bit of a byte is a parity check, that is, the first

byte is determined from the other seven bits, how many
different bytes are possible?

2-47. In a chemical plant, 24 holding tanks are used for final
product storage. Four tanks are selected at random and without
replacement. Suppose that six of the tanks contain material in
which the viscosity exceeds the customer requirements.
(a) What is the probability that exactly one tank in the sample

contains high-viscosity material?
(b) What is the probability that at least one tank in the sample

contains high-viscosity material?
(c) In addition to the six tanks with high viscosity levels, four

different tanks contain material with high impurities.
What is the probability that exactly one tank in the sample
contains high-viscosity material and exactly one tank in
the sample contains material with high impurities?

2-48. Plastic parts produced by an injection-molding opera-
tion are checked for conformance to specifications. Each tool
contains 12 cavities in which parts are produced, and these
parts fall into a conveyor when the press opens. An inspector
chooses three parts from among the 12 at random. Two cavi-
ties are affected by a temperature malfunction that results in
parts that do not conform to specifications.
(a) What is the probability that the inspector finds exactly one

nonconforming part?
(b) What is the probability that the inspector finds at least one

nonconforming part?

2-49. A bin of 50 parts contains five that are defective. A
sample of two parts is selected at random, without replace-
ment. Determine the probability that both parts in the sample
are defective.

2-50. The following table summarizes 204 endothermic re-
actions involving sodium bicarbonate.

Final Temperature Heat Absorbed (cal)

Conditions Below Target Above Target

266 K 12 40

271 K 44 16

274 K 56 36

Wells

Geological Formation Group Failed Total

Gneiss 170 1685

Granite 2 28

Loch raven schist 443 3733

Mafic 14 363

Marble 29 309

Prettyboy schist 60 1403

Other schists 46 933

Serpentine 3 39

Let A denote the event that a reaction final temperature is 271 K
or less. Let B denote the event that the heat absorbed is below
target. Determine the number of reactions in each of the fol-
lowing events.
(a) (b) A� (c) (d) (e)

2-51. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. How many different designs are possible?

2-52. Consider the hospital emergency department data in
Example 2-8. Let A denote the event that a visit is to Hospital
1 and let B denote the event that a visit results in admittance to
any hospital. Determine the number of persons in each of the
following events.
(a) (b) A� (c) (d) (e)

2-53. An article in The Journal of Data Science [“A
Statistical Analysis of Well Failures in Baltimore County”
(2009, Vol. 7, pp. 111–127)] provided the following table of
well failures for different geological formation groups in
Baltimore County.

A¿ ¨ B¿A ´ B¿A ´ BA ¨ B

A¿ ¨ B¿A ´ B¿A ´ BA ¨ B

Let A denote the event that the geological formation has more
than 1000 wells and let B denote the event that a well failed.
Determine the number of wells in each of the following events.
(a) (b) A� (c) (d) (e) A¿ ¨ B¿A ´ B¿A ´ BA ¨ B

2-2 INTERPRETATIONS AND AXIOMS OF PROBABILITY

In this chapter, we introduce probability for discrete sample spaces—those with only a finite
(or countably infinite) set of outcomes. The restriction to these sample spaces enables us to
simplify the concepts and the presentation without excessive mathematics.

Probability is used to quantify the likelihood, or chance, that an outcome of a random
experiment will occur. “The chance of rain today is 30%’’ is a statement that quantifies our
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32 CHAPTER 2 PROBABILITY

Whenever a sample space consists of N possible outcomes that are equally likely, the
probability of each outcome is .1�N

feeling about the possibility of rain. The likelihood of an outcome is quantified by assigning
a number from the interval [0, 1] to the outcome (or a percentage from 0 to 100%). Higher
numbers indicate that the outcome is more likely than lower numbers. A 0 indicates an outcome
will not occur. A probability of 1 indicates an outcome will occur with certainty.

The probability of an outcome can be interpreted as our subjective probability, or
degree of belief, that the outcome will occur. Different individuals will no doubt assign dif-
ferent probabilities to the same outcomes. Another interpretation of probability is based on
the conceptual model of repeated replications of the random experiment. The probability of
an outcome is interpreted as the limiting value of the proportion of times the outcome oc-
curs in n repetitions of the random experiment as n increases beyond all bounds. For
example, if we assign probability 0.2 to the outcome that there is a corrupted pulse in a dig-
ital signal, we might interpret this assignment as implying that, if we analyze many pulses,
approximately 20% of them will be corrupted. This example provides a relative frequency
interpretation of probability. The proportion, or relative frequency, of replications of the ex-
periment that result in the outcome is 0.2. Probabilities are chosen so that the sum of the
probabilities of all outcomes in an experiment adds up to 1. This convention facilitates
the relative frequency interpretation of probability. Figure 2-10 illustrates the concept of rel-
ative frequency.

Probabilities for a random experiment are often assigned on the basis of a reasonable
model of the system under study. One approach is to base probability assignments on the
simple concept of equally likely outcomes.

For example, suppose that we will select one laser diode randomly from a batch of 100.
Randomly implies that it is reasonable to assume that each diode in the batch has an equal chance
of being selected. Because the sum of the probabilities must equal 1, the probability model for this
experiment assigns probability of 0.01 to each of the 100 outcomes. We can interpret the proba-
bility by imagining many replications of the experiment. Each time we start with all 100 diodes
and select one at random. The probability 0.01 assigned to a particular diode represents the
proportion of replicates in which a particular diode is selected. When the model of equally likely
outcomes is assumed, the probabilities are chosen to be equal.

Time

Corrupted pulse

Relative frequency of corrupted pulse =
2

10

V
o
lt

a
g
e

Figure 2-10 Relative
frequency of corrupted
pulses sent over a com-
munication channel.

Equally 
Likely 

Outcomes

It is frequently necessary to assign probabilities to events that are composed of several
outcomes from the sample space. This is straightforward for a discrete sample space.
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EXAMPLE 2-17 Contamination Particles
A visual inspection of a location on wafers from a semicon-
ductor manufacturing process resulted in the following table:

EXAMPLE 2-16
A random experiment can result in one of the outcomes {a, b, c, d}
with probabilities 0.1, 0.3, 0.5, and 0.1, respectively. Let A denote
the event {a, b}, B the event {b, c, d}, and C the event {d}.Then,

 P1C2 � 0.1

 P1B2 � 0.3 � 0.5 � 0.1 � 0.9

 P1A2 � 0.1 � 0.3 � 0.4

Also, , and . Further-
more, because . Because

Because is the null set, .P1A ¨ C2 � 0A ¨ C
A ´ B � 5a, b, c, d6, P1A ´ B2� 0.1 � 0.3 � 0.5 � 0.1 � 1.

P 1A ¨ B 2 � 0.3A ¨ B � 5b6,
P1C¿ 2 � 0.9P1A¿ 2 � 0.6, P1B¿ 2 � 0.1

EXAMPLE 2-15 Laser Diodes
Assume that 30% of the laser diodes in a batch of 100 meet the
minimum power requirements of a specific customer. If a laser
diode is selected randomly, that is, each laser diode is equally
likely to be selected, our intuitive feeling is that the probabil-
ity of meeting the customer’s requirements is 0.30.

Let E denote the subset of 30 diodes that meet the cus-
tomer’s requirements. Because E contains 30 outcomes and
each outcome has probability 0.01, we conclude that the
probability of E is 0.3. The conclusion matches our intu-
ition. Figure 2-11 illustrates this example.

E

Diodes

S

P(E) = 30(0.01) = 0.30

Figure 2-11
Probability of the
event E is the sum of
the probabilities of the
outcomes in E.

For a discrete sample space, the probability of an event E, denoted as P(E), equals the
sum of the probabilities of the outcomes in E.

Probability of
an Event

For a discrete sample space, the probability of an event can be defined by the reasoning
used in the example above.

Number of
Contamination 

Particles Proportion of Wafers

0 0.40
1 0.20
2 0.15
3 0.10
4 0.05
5 or more 0.10

detail is not needed in this case. We can consider the sample
space to consist of the six categories that summarize the number
of contamination particles on a wafer. Each category has proba-
bility equal to the proportion of wafers in the category. The event
that there is no contamination particle in the inspected location
on the wafer, denoted as E, can be considered to be comprised of
the single outcome, namely, E � {0}. Therefore,

What is the probability that a wafer contains three or
more particles in the inspected location? Let E denote the
event that a wafer contains three or more particles in the in-
spected location. Then, E consists of the three outcomes {3, 4,
5 or more}. Therefore,

Practical Interpretation: Contamination levels affect the yield of
functional devices in semiconductor manufacturing so that
probabilities such as these are regularly studied.

P1E2 � 0.10 � 0.05 � 0.10 � 0.25

P1E2 � 0.4

If one wafer is selected randomly from this process and the
location is inspected, what is the probability that it contains no
particles? If information were available for each wafer, we could
define the sample space as the set of all wafers inspected and
proceed as in the example with diodes. However, this level of
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Often more than one item is selected from a batch without replacement when production
is inspected. In this case, randomly selected implies that each possible subset of items is
equally likely.

EXAMPLE 2-18
Suppose a batch contains six parts {a, b, c, d, e, f } and two
parts are selected randomly, without replacement. Suppose
that part f is defective, but the others are good. What is the
probability that part f appears in the sample?

The sample space consists of all possible (unordered) pairs
selected without replacement. From Equation 2-4 or by enumer-

ation there are 15 outcomes. Let E denote the event that part f
is in the sample. Then E can be written as E � {{a, f }, {b, f },
{c, f }, {d, f }, {e, f }}. Because each outcome is equally likely,

.P1E2 � 5�15 � 1�3

Now that the probability of an event has been defined, we can collect the assumptions that
we have made concerning probabilities into a set of axioms that the probabilities in any ran-
dom experiment must satisfy. The axioms ensure that the probabilities assigned in an experi-
ment can be interpreted as relative frequencies and that the assignments are consistent with
our intuitive understanding of relationships between relative frequencies. For example, if
event A is contained in event B, we should have . The axioms do not determine
probabilities; the probabilities are assigned based on our knowledge of the system under
study. However, the axioms enable us to easily calculate the probabilities of some events from
knowledge of the probabilities of other events.

P1A2 	 P1B2

Probability is a number that is assigned to each member of a collection of events
from a random experiment that satisfies the following properties:

If S is the sample space and E is any event in a random experiment,

(1)

(2)

(3) For two events E1 and E2 with 

P1E1 ´ E22 � P1E12 � P1E22

E1 ¨ E2 � �

0 	 P1E2 	 1

P1S2 � 1

Axioms of
Probability

The property that is equivalent to the requirement that a relative frequency
must be between 0 and 1. The property that P(S) � 1 is a consequence of the fact that an
outcome from the sample space occurs on every trial of an experiment. Consequently, the
relative frequency of S is 1. Property 3 implies that if the events E1 and E2 have no outcomes
in common, the relative frequency of outcomes in is the sum of the relative frequen-
cies of the outcomes in E1 and E2.

These axioms imply the following results. The derivations are left as exercises at the end
of this section. Now,

and for any event E,

P1E¿ 2 � 1 
 P1E2

P1�2 � 0

E1 ´ E2

0 	 P1E2 	 1
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For example, if the probability of the event E is 0.4, our interpretation of relative
frequency implies that the probability of is 0.6. Furthermore, if the event E1 is contained
in the event E2,

P1E12 	 P1E22

E¿

2-54. Each of the possible five outcomes of a random ex-
periment is equally likely. The sample space is {a, b, c, d, e}.
Let A denote the event {a, b}, and let B denote the event
{c, d, e}. Determine the following:
(a) (b)
(c) (d)
(e)

2-55. The sample space of a random experiment is {a, b, c,
d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.
Let A denote the event {a, b, c}, and let B denote the event
{c, d, e}. Determine the following:
(a) (b)
(c) (d)
(e)

2-56. Orders for a computer are summarized by the op-
tional features that are requested as follows:

proportion of orders

no optional features 0.3

one optional feature 0.5

more than one optional feature 0.2

(a) What is the probability that an order requests at least one
optional feature?

(b) What is the probability that an order does not request
more than one optional feature?

2-57. If the last digit of a weight measurement is equally
likely to be any of the digits 0 through 9,
(a) What is the probability that the last digit is 0?
(b) What is the probability that the last digit is greater than or

equal to 5?

2-58. A part selected for testing is equally likely to have
been produced on any one of six cutting tools.
(a) What is the sample space?
(b) What is the probability that the part is from tool 1?
(c) What is the probability that the part is from tool 3 or tool 5?
(d) What is the probability that the part is not from tool 4?

2-59. An injection-molded part is equally likely to be ob-
tained from any one of the eight cavities on a mold.
(a) What is the sample space?
(b) What is the probability a part is from cavity 1 or 2?
(c) What is the probability that a part is from neither cavity 3

nor 4?

2-60. In an acid-base titration, a base or acid is gradually
added to the other until they have completely neutralized
each other. Because acids and bases are usually colorless (as
are the water and salt produced in the neutralization reac-
tion), pH is measured to monitor the reaction. Suppose that
the equivalence point is reached after approximately 100 mL
of a NaOH solution have been added (enough to react with
all the acetic acid present) but that replicates are equally
likely to indicate from 95 to 104 mL to the nearest mL.
Assume that volumes are measured to the nearest mL and
describe the sample space.
(a) What is the probability that equivalence is indicated at

100 mL?
(b) What is the probability that equivalence is indicated at

less than 100 mL?
(c) What is the probability that equivalence is indicated be-

tween 98 and 102 mL (inclusive)?

2-61. In a NiCd battery, a fully charged cell is composed 
of Nickelic Hydroxide. Nickel is an element that has multiple 
oxidation states that is usually found in the following states:

nickel charge proportions found

0 0.17

�2 0.35

�3 0.33

�4 0.15

(a) What is the probability that a cell has at least one of the
positive nickel-charged options?

(b) What is the probability that a cell is not composed of a
positive nickel charge greater than �3?

2-62. A credit card contains 16 digits between 0 and 9.
However, only 100 million numbers are valid. If a number is
entered randomly, what is the probability that it is a valid
number?

2-63. Suppose your vehicle is licensed in a state that issues
license plates that consist of three digits (between 0 and 9) fol-
lowed by three letters (between A and Z). If a license number
is selected randomly, what is the probability that yours is the
one selected?

2-64. A message can follow different paths through servers
on a network. The sender’s message can go to one of five
servers for the first step; each of them can send to five servers

P1A ¨ B2
P1A ´ B2P1A¿ 2
P1B2P1A2

P1A ¨ B2
P1A ´ B2P1A¿ 2
P1B2P1A2

EXERCISES FOR SECTION 2-2
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at the second step; each of those can send to four servers at the
third step; and then the message goes to the recipient’s server.
(a) How many paths are possible?
(b) If all paths are equally likely, what is the probability that a

message passes through the first of four servers at the
third step?

2-65. Magnesium alkyls are used as homogenous catalysts
in the production of linear low-density polyethylene (LLDPE),
which requires a finer magnesium powder to sustain a reaction.
Redox reaction experiments using four different amounts of
magnesium powder are performed. Each result may or may not
be further reduced in a second step using three different mag-
nesium powder amounts. Each of these results may or may not
be further reduced in a third step using three different amounts
of magnesium powder.
(a) How many experiments are possible?
(b) If all outcomes are equally likely, what is the probability that

the best result is obtained from an experiment that uses all
three steps?

(c) Does the result in the previous question change if five or
six or seven different amounts are used in the first step?
Explain.

2-66. Disks of polycarbonate plastic from a supplier are 
analyzed for scratch and shock resistance. The results from
100 disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. If a disk is selected at random, determine the following
probabilities:
(a) (b)
(c) (d)
(e) (f)

2-67. Samples of emissions from three suppliers are classi-
fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms

yes no

1 22 8

supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
If a sample is selected at random, determine the following
probabilities:
(a) (b)
(c) (d)
(e) (f)

2-68. An article in the Journal of Database Management
[“Experimental Study of a Self-Tuning Algorithm for DBMS
Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided the workload
used in the TPC-C OLTP (Transaction Processing Performance
Council’s Version C On-Line Transaction Processing) bench-
mark, which simulates a typical order entry application.

P1A¿ ´ B2P1A ´ B2
P1A ¨ B2P1A¿ 2
P1B2P1A2

P1A¿ ´ B2P1A ´ B2
P1A ¨ B2P1A¿ 2
P1B2P1A2

Average Frequencies and Operations in TPC-C

Transaction Frequency Selects Updates Inserts Deletes Non-Unique Selects Joins

New order 43 23 11 12 0 0 0
Payment 44 4.2 3 1 0 0.6 0
Order status 4 11.4 0 0 0 0.6 0
Delivery 5 130 120 0 10 0 0
Stock level 4 0 0 0 0 0 1 

The frequency of each type of transaction (in the second
column) can be used as the percentage of each type of trans-
action. The average number of selects operations required for
each type of transaction is shown. Let A denote the event of
transactions with an average number of selects operations of
12 or fewer. Let B denote the event of transactions with an
average number of updates operations of 12 or fewer.
Calculate the following probabilities.
(a) (b) (c)
(d) (e) P1A ´ B2P1A ¨ B¿ 2

P1A ¨ B2P1B2P1A2

2-69. Use the axioms of probability to show the following:
(a) For any event .
(b)
(c) If A is contained in B, then .

2-70. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target. 
Determine the following probabilities.
(a) P (b) P(A�) (c) P
(d) P (e) P1A¿ ¨ B¿ 21A ´ B¿ 2

1A ´ B21A ¨ B2

P1A2 	 P1B2
P1�2 � 0

E, P1E¿ 2 � 1 
 P1E2
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2-71. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. A specific design is randomly generated by the Web
server when you visit the site. If you visit the site five times, what
is the probability that you will not see the same design?

2-72. Consider the hospital emergency room data in
Example 2-8. Let A denote the event that a visit is to Hospital
4 and let B denote the event that a visit results in LWBS (at any
hospital). Determine the following probabilities.

EXAMPLE 2-19 Semiconductor Wafers
Table 2-1 lists the history of 940 wafers in a semiconductor
manufacturing process. Suppose one wafer is selected at
random. Let H denote the event that the wafer contains high
levels of contamination. Then, .

Let C denote the event that the wafer is in the center of a
sputtering tool. Then, Also, is the
probability that the wafer is from the center of the sputtering
tool and contains high levels of contamination. Therefore,

The event is the event that a wafer is from the
center of the sputtering tool or contains high levels of contam-

H ´ C

P1H ¨ C2 � 112�940

P1H ¨ C2P1C2 � 626�940.

P1H2 � 358�940

ination (or both). From the table, . An
alternative calculation of can be obtained as fol-
lows. The 112 wafers that comprise the event are 
included once in the calculation of P(H) and again in the cal-
culation of P(C). Therefore, can be found to be

Practical Interpretation: To better understand the sources of
contamination, yield from defferent locations on wafers are rou-
tinely aggregated.

 � 358�940 � 626�940 
 112�940 � 872�940

 P1H ´ C2 � P1H2 � P1C2 
 P1H ¨ C2

P1H ´ C2

H ¨ C
P1H ´ C2

P1H ´ C2 � 872�940

Table 2-1 Wafers in Semiconductor Manufacturing Classified 
by Contamination and Location

Location in Sputtering Tool

Contamination Center Edge Total

Low 514 68 582
High 112 246 358

Total 626 314

(a) P (b) P(A�) (c) P
(d) P (e) P

2-73. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than
1000 wells and let B denote the event that a well failed.
Determine the following probabilities.
(a) P (b) P(A�) (c) P
(d) P (e) P1A¿ ¨ B¿ 21A ´ B¿ 2

1A ´ B21A ¨ B2

1A¿ ¨ B¿ 21A ´ B¿ 2
1A ´ B21A ¨ B2

2-3 ADDITION RULES

Joint events are generated by applying basic set operations to individual events. Unions of
events, such as ; intersections of events, such as ; and complements of events,
such as , are commonly of interest. The probability of a joint event can often be determined
from the probabilities of the individual events that comprise it. Basic set operations are also
sometimes helpful in determining the probability of a joint event. In this section the focus is
on unions of events.

A¿
A ¨ BA ´ B

The preceding example illustrates that the probability of A or B is interpreted as 
and that the following general addition rule applies.

P1A ´ B2
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38 CHAPTER 2 PROBABILITY

EXAMPLE 2-20 Semiconductor Wafers and Location
The wafers in Example 2-19 were further classified by the
degree of contamination. Table 2-2 shows the proportion of
wafers in each category. What is the probability that a wafer
was either at the edge or that it contains four or more particles?
Let E1 denote the event that a wafer contains four or more par-
ticles, and let E2 denote the event that a wafer was at the edge.

The requested probability is . Now,
and . Also, from the table,

. Therefore, using Equation 2-1, we find that

P1E1 ´ E22 � 0.15 � 0.28 
 0.04 � 0.39

P1E1 ¨ E22 � 0.04
P1E22 � 0.28P1E12 � 0.15

P1E1 ´ E22

What is the probability that a wafer contains less than
two particles or that it is both at the edge and contains more
than four particles? Let E1 denote the event that a wafer
contains less than two particles, and let E2 denote the event
that a wafer is both at the edge and contains more than four
particles. The requested probability is . Now,

and . Also, E1 and E2 are mutually
exclusive. Consequently, there are no wafers in the intersec-
tion and . Therefore,

P1E1 ´ E22 � 0.60 � 0.03 � 0.63

P1E1 ¨ E22 � 0

P1E22 � 0.03P1E12 � 0.60
P1E1 ´ E22

(2-5)P1A ´ B2 � P1A2 � P1B2 
 P1A � B2

Probability of 
a Union

Recall that two events A and B are said to be mutually exclusive if . Then,
, and the general result for the probability of simplifies to the third

axiom of probability.
A ´ BP1A ¨ B2 � 0

A ¨ B � �

Table 2-2 Wafers Classified by Contamination and Location

Number of
Contamination

Particles Center Edge Totals

0 0.30 0.10 0.40
1 0.15 0.05 0.20
2 0.10 0.05 0.15
3 0.06 0.04 0.10
4 0.04 0.01 0.05
5 or more 0.07 0.03 0.10

Totals 0.72 0.28 1.00

If A and B are mutually exclusive events, 

(2-6)P1A ´  B2 � P1A2 � P1B2

Three or More Events
More complicated probabilities, such as , can be determined by repeated use
of Equation 2-5 and by using some basic set operations. For example,

P1A ´ B ´ C2 � P 3 1A ´ B2 ´ C 4 � P1A ´ B2 � P1C2 
 P 3 1A ´ B2 ¨ C 4

P1A ´  B ´  C2
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2-3 ADDITION RULES 39

Upon expanding by Equation 2-5 and using the distributed rule for set opera-
tions to simplify , we obtain

We have developed a formula for the probability of the union of three events. Formulas can be
developed for the probability of the union of any number of events, although the formulas
become very complex. As a summary, for the case of three events,


 P1B ¨ C2 � P1A ¨ B ¨ C2
 � P1A2 � P1B2 � P1C2 
 P1A ¨ B2 
 P1A ¨ C2


 3P1A ¨ C2 � P1B ¨ C2 
 P1A ¨ B ¨ C2 4
 � P1A2 � P1B2 
 P1A ¨ B2 � P1C2

P1A ´ B ´ C2 � P1A2 � P1B2 
 P1A ¨ B2 � P1C2 
 P 3 1A ¨ C2 ´ 1B ¨ C2 4

P 3 1A ´ B2 ¨ C 4
P1A ´ B2

(2-7)
 P1A ¨ C2 
 P1B ¨ C2 � P1A ¨ B ¨ C2
P1A ´ B ´ C2 � P1A2 � P1B2 � P1C2 
 P1A ¨ B2

Results for three or more events simplify considerably if the events are mutually exclu-
sive. In general, a collection of events, is said to be mutually exclusive if there
is no overlap among any of them. The Venn diagram for several mutually exclusive events is
shown in Fig. 2-12. By generalizing the reasoning for the union of two events, the following
result can be obtained:

E1, E2, p , Ek,

E1

E2

E3

E4

Figure 2-12 Venn
diagram of four mutu-
ally exclusive events.

A collection of events, is said to be mutually exclusive if for all pairs,

For a collection of mutually exclusive events,

(2-8)P1E1 ´ E2 ´ p ´ Ek2 � P1E12 � P1E22 � p P1Ek2

Ei ¨ Ej � �

E1, E2, p , Ek,

Mutually Exclusive
Events
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40 CHAPTER 2 PROBABILITY

2-74. If , and 
determine the following probabilities:
(a) (b) (c)
(d) (e) (f)

2-75. If A, B, and C are mutually exclusive events with
and determine the fol-

lowing probabilities:
(a) (b)
(c) (d)
(e)

2-76. In the article “ACL Reconstruction Using Bone-
Patellar Tendon-Bone Press-Fit Fixation: 10-Year Clinical
Results” in Knee Surgery, Sports Traumatology, Arthroscopy
(2005, Vol. 13, pp. 248–255), the following causes for knee
injuries were considered:

Percentage of 
Activity Knee Injuries

Contact sport 46%

Noncontact sport 44%

Activity of daily living 9%

Riding motorcycle 1%

(a) What is the probability a knee injury resulted from a sport
(contact or noncontact)?

(b) What is the probability a knee injury resulted from an ac-
tivity other than a sport?

2-77. Disks of polycarbonate plastic from a supplier are an-
alyzed for scratch and shock resistance. The results from 100
disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

(a) If a disk is selected at random, what is the probability that
its scratch resistance is high and its shock resistance is high?

(b) If a disk is selected at random, what is the probability that
its scratch resistance is high or its shock resistance is high?

P1A¿ ¨ B¿ ¨ C¿ 2
P 3 1A ´ B2 ¨ C 4P1A ¨ B2
P1A ¨ B ¨ C2P1A ´ B ´ C2

P 1C 2 � 0.4,P 1B2 � 0.3,P 1A2 � 0.2,

P1A¿ ´ B2P 3 1A ´ B2 ¿ 4P1A ¨ B¿ 2
P1A¿ ¨ B2P1A ´ B2P1A¿ 2

P 1A ¨ B2 � 0.1,P 1B2 � 0.2,P 1A2 � 0.3 (c) Consider the event that a disk has high scratch resistance
and the event that a disk has high shock resistance. Are
these two events mutually exclusive?

2-78. Strands of copper wire from a manufacturer are ana-
lyzed for strength and conductivity. The results from 100
strands are as follows:

strength

high low

high conductivity 74 8

low conductivity 15 3

(a) If a strand is randomly selected, what is the probability
that its conductivity is high and its strength is high?

(b) If a strand is randomly selected, what is the probability
that its conductivity is low or the strength is low?

(c) Consider the event that a strand has low conductivity and
the event that the strand has a low strength. Are these two
events mutually exclusive?

2-79. The analysis of shafts for a compressor is summarized
by conformance to specifications.

roundness conforms

yes no

surface finish yes 345 5

conforms no 12 8

(a) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements?

(b) What is the probability that the selected shaft conforms to
surface finish requirements or to roundness requirements?

(c) What is the probability that the selected shaft either con-
forms to surface finish requirements or does not conform
to roundness requirements?

(d) What is the probability that the selected shaft conforms to
both surface finish and roundness requirements?

2-80. Cooking oil is produced in two main varieties: mono-
and polyunsaturated. Two common sources of cooking oil are

EXERCISES FOR SECTION 2-3

EXAMPLE 2-21 pH
A simple example of mutually exclusive events will be used
quite frequently. Let X denote the pH of a sample. Consider
the event that X is greater than 6.5 but less than or equal to 7.8.
This probability is the sum of any collection of mutually ex-
clusive events with union equal to the same range for X. One
example is

� P17.5 � X 	 7.82
P17.0 � X 	 7.52P16.5 � X 	 7.82 � P16.5 � X 	 7.02 �

Another example is

The best choice depends on the particular probabilities
available.

Practical Interpretation: The partition of an event into mu-
tually exclusive subsets is widely used in later chapters to cal-
culate probabilities.

� P17.1 � X 	 7.42� P17.4 � X 	 7.82
P16.5 � X 	 7.82� P16.5 � X 	 6.62� P16.6 � X 	 7.12
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2-4 CONDITIONAL PROBABILITY 41

corn and canola. The following table shows the number of
bottles of these oils at a supermarket:

type of oil

canola corn

type of mono 7 13

unsaturation poly 93 77

(a) If a bottle of oil is selected at random, what is the proba-
bility that it belongs to the polyunsaturated category?

(b) What is the probability that the chosen bottle is monoun-
saturated canola oil?

2-81. A manufacturer of front lights for automobiles tests
lamps under a high-humidity, high-temperature environment
using intensity and useful life as the responses of interest.
The following table shows the performance of 130 lamps:

useful life

satisfactory unsatisfactory

intensity satisfactory 117 3

unsatisfactory 8 2

(a) Find the probability that a randomly selected lamp will
yield unsatisfactory results under any criteria.

(b) The customers for these lamps demand 95% satisfactory
results. Can the lamp manufacturer meet this demand?

2-82. A computer system uses passwords that are six char-
acters and each character is one of the 26 letters (a–z) or 10 in-
tegers (0–9). Uppercase letters are not used. Let A denote the
event that a password begins with a vowel (either a, e, i, o, or
u) and let B denote the event that a password ends with an even
number (either 0, 2, 4, 6, or 8). Suppose a hacker selects a
password at random. Determine the following probabilities:

(a) (b)
(c) (d)

2-83. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target. Use the addition rules to calculate the following
probabilities.

(a) (b)
(c)

2-84. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. A specific design is randomly generated by the Web
server when you visit the site. Let A denote the event that the
design color is red and let B denote the event that the font size
is not the smallest one. Use the addition rules to calculate the
following probabilities.

(a) (b)
(c)

2-85. Consider the hospital emergency room data in Example
2-8. Let A denote the event that a visit is to Hospital 4 and let B
denote the event that a visit results in LWBS (at any hospital).
Use the addition rules to calculate the following probabilities.

(a) (b)
(c)

2-86. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than
1000 wells and let B denote the event that a well failed. Use
the addition rules to calculate the following probabilities.

(a) (b)
(c) P1A¿ ´ B¿ 2

P1A ´ B¿ 2P1A ´ B2

P1A¿ ´ B¿ 2
P1A ´ B¿ 2P1A ´ B2

P1A¿ ´ B¿ 2
P1A ´ B¿ 2P1A ´ B2

P1A¿ ´ B¿ 2
P1A ´ B¿ 2P1A ´ B2

P1A ´ B2P1A ¨ B2
P1B2P1A2

2-4 CONDITIONAL PROBABILITY

Sometimes probabilities need to be reevaluated as additional information becomes available.
A useful way to incorporate additional information into a probability model is to assume that
the outcome that will be generated is a member of a given event. This event, say A, defines the
conditions that the outcome is known to satisfy. Then probabilities can be revised to include
this knowledge. The probability of an event B under the knowledge that the outcome will be
in event A is denoted as 

and this is called the conditional probability of B given A.
A digital communication channel has an error rate of one bit per every thousand trans-

mitted. Errors are rare, but when they occur, they tend to occur in bursts that affect many con-
secutive bits. If a single bit is transmitted, we might model the probability of an error as
1�1000. However, if the previous bit was in error, because of the bursts, we might believe that
the probability that the next bit is in error is greater than 1�1000.

In a thin film manufacturing process, the proportion of parts that are not acceptable is 2%.
However, the process is sensitive to contamination problems that can increase the rate of parts

P1B ƒ A2
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that are not acceptable. If we knew that during a particular shift there were problems with the
filters used to control contamination, we would assess the probability of a part being unac-
ceptable as higher than 2%.

In a manufacturing process, 10% of the parts contain visible surface flaws and 25% of the
parts with surface flaws are (functionally) defective parts. However, only 5% of parts without sur-
face flaws are defective parts. The probability of a defective part depends on our knowledge of
the presence or absence of a surface flaw. Let D denote the event that a part is defective and let F
denote the event that a part has a surface flaw. Then, we denote the probability of D given, or as-
suming, that a part has a surface flaw as . Because 25% of the parts with surface flaws are
defective, our conclusion can be stated as . Furthermore, because denotes the
event that a part does not have a surface flaw and because 5% of the parts without surface flaws
are defective, we have . These results are shown graphically in Fig. 2-13.P1D ƒ F¿ 2 � 0.05

F¿P1D ƒ F2 � 0.25
P1D ƒ F2

42 CHAPTER 2 PROBABILITY

5% defective

P(D⎪F') = 0.05

F' = parts without
       surface flaws

25%
defective

P(D⎪F) = 0.25

F = parts with
         surface flaws

Figure 2-13
Conditional probabili-
ties for parts with
surface flaws.

Table 2-3 Parts Classified

Surface Flaws

Yes (event F) No Total

Defective Yes (event D) 10 18 28
No 30 342 372
Total 40 360 400

The conditional probability of an event B given an event A, denoted as , is

(2-9)

for .P1A2 � 0

P1B ƒ A2 � P1A ¨ B2�P1A2

P1B ƒ A2
Conditional
Probability

In Example 2-22 conditional probabilities were calculated directly. These probabilities can
also be determined from the formal definition of conditional probability.

EXAMPLE 2-22
Table 2-3 provides an example of 400 parts classified by
surface flaws and as (functionally) defective. For this table the
conditional probabilities match those discussed previously in
this section. For example, of the parts with surface flaws 
(40 parts) the number of defective ones is 10. Therefore,

and of the parts without surface flaws (360 parts) the number
of defective ones is 18. Therefore,

P1D ƒ F2 � 10�40 � 0.25

Practical Interpretation: The probability of defective is five
times greater for parts with surface flaws. This calculation il-
lustrates how probabilities are adjusted for additional informa-
tion. The result also suggests that there may be a link between
surface flaws and functionally defective parts that should be
investigated.

P1D ƒ F¿ 2 � 18�360 � 0.05
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2-4 CONDITIONAL PROBABILITY 43

This definition can be understood in a special case in which all outcomes of a random exper-
iment are equally likely. If there are n total outcomes, 

Also,

Consequently,

Therefore, can be interpreted as the relative frequency of event B among the trials that
produce an outcome in event A.

P1B ƒ A2

P 1A ¨ B2�P1A2 �
number of outcomes in A ¨ B

number of outcomes in A

P 1A ¨ B2 � 1number of outcomes in A ¨ B2�n

P 1A2 � 1number of outcomes in A2�n

Surface flaw

No Yes

No Yes No Yes

Defective

360

400

40

400

342

360

18

360

30

40

10

40
Figure 2-14 Tree
diagram for parts
classified

EXAMPLE 2-23 Surface Flaws
Again consider the 400 parts in Table 2-3. From this table,

Note that in this example all four of the following probabilities
are different:

Here, P(D) and are probabilities of the same event,
but they are computed under two different states of knowledge.

P1D ƒ F2

P1D2 � 28�400  P1D ƒ F2 � 10�40

P1F2 � 40�400  P1F ƒ D2 � 10�28

P1D ƒ F2 � P1D ¨ F2�P1F2 �
10

400
^

40

400
�

10

40

Similarly, P(F) and are computed under two different
states of knowledge.

The tree diagram in Fig. 2-14 can also be used to display
conditional probabilities. The first branch is on surface flaw. Of
the 40 parts with surface flaws, 10 are functionally defective and
30 are not. Therefore,

Of the 360 parts without surface flaws, 18 are functionally de-
fective and 342 are not. Therefore,

P1D ƒ F¿ 2 � 18�360  and  P1D¿ ƒ F¿ 2 � 342�360

P1D ƒ F2 � 10�40  and  P1D¿ ƒ F2 � 30�40

P1F ƒ D2

Random Samples and Conditional Probability
Recall that to select one item randomly from a batch implies that each item is equally likely.
If more than one item is selected, randomly implies that each element of the sample space is
equally likely. For example, when sample spaces were presented earlier in this chapter, sam-
pling with and without replacement was defined and illustrated for the simple case of a batch
with three items {a, b, c}. If two items are selected randomly from this batch without replace-
ment, each of the six outcomes in the ordered sample space has prob-
ability . If the unordered sample space is used, each of the three outcomes in {{a, b}, 
{a, c}, {b, c}} has probability .1�3

1�6
5ab, ac, ba, bc, ca, cb6
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When a sample is selected randomly from a large batch, it is usually easier to avoid enu-
meration of the sample space and calculate probabilities from conditional probabilities. For
example, suppose that a batch contains 10 parts from tool 1 and 40 parts from tool 2. If two
parts are selected randomly, without replacement, what is the conditional probability that a
part from tool 2 is selected second given that a part from tool 1 is selected first? 

Although the answer can be determined from counts of outcomes, this type of question
can be answered more easily with the following result.

44 CHAPTER 2 PROBABILITY

To select randomly implies that at each step of the sample, the items that remain in
the batch are equally likely to be selected.

Random Samples

If a part from tool 1 were selected with the first pick, 49 items would remain, 9 from tool 1 and
40 from tool 2, and they would be equally likely to be picked. Therefore, the probability that
a part from tool 2 would be selected with the second pick given this first pick is

In this manner, other probabilities can also be simplified. For example, let the event E
consist of the outcomes with the first selected part from tool 1 and the second part from tool 2.
To determine the probability of E, consider each step. The probability that a part from tool 1
is selected with the first pick is . The conditional probability that a part from
tool 2 is selected with the second pick, given that a part from tool 1 is selected first, is

. Therefore,

Sometimes a partition of the question into successive picks is an easier method to solve the
problem.

P1E2 � P 1E2 0
 
E12P1E12 �

40
49

�
10
50

�
8

49

P1E2 ƒ E12 � 40�49

P1E12 � 10�50

P1E2 ƒ E12 � 40�49

EXAMPLE 2-24
A day’s production of 850 manufactured parts contains 50
parts that do not meet customer requirements. Two parts are
selected randomly without replacement from the batch. What
is the probability that the second part is defective given that
the first part is defective?

Let A denote the event that the first part selected is de-
fective, and let B denote the event that the second part

selected is defective. The probability needed can be expressed
as If the first part is defective, prior to selecting the
second part, the batch contains 849 parts, of which 49 are
defective; therefore,

P1B ƒ A2 � 49�849

P1B ƒ A2.

EXAMPLE 2-25
Continuing the previous example, if three parts are selected at
random, what is the probability that the first two are defective
and the third is not defective? This event can be described in
shorthand notation as simply P(ddn). We have

P1ddn2 �
50

850
 �  

49

849
 �  

800

848
� 0.0032

The third term is obtained as follows. After the first two
parts are selected, there are 848 remaining. Of the remain-
ing parts, 800 are not defective. In this example, it is easy to
obtain the solution with a conditional probability for each
selection.
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EXERCISES FOR SECTION 2-4

2-87. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resis-
tance. Determine the following probabilities:
(a) P(A) (b) P(B)
(c) (d)

2-88. Samples of skin experiencing desquamation are ana-
lyzed for both moisture and melanin content. The results from
100 skin samples are as follows:

melanin content

high low

moisture high 13 7

content low 48 32

Let A denote the event that a sample has low melanin content,
and let B denote the event that a sample has high moisture con-
tent. Determine the following probabilities:
(a) P(A) (b) P(B)

(c) P(A B) (d) P(B A)

2-89. The analysis of results from a leaf transmutation 
experiment (turning a leaf into a petal) is summarized by type
of transformation completed:

total textural 
transformation

yes no

total color yes 243 26
transformation no 13 18

(a) If a leaf completes the color transformation, what is the
probability that it will complete the textural transformation?

(b) If a leaf does not complete the textural transformation, what
is the probability it will complete the color transformation?

2-90. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and length measure-
ments. The results of 100 parts are summarized as follows:

length

excellent good

surface excellent 80 2

finish good 10 8

ƒƒ

P1B ƒ A2P1A ƒ B2

Let A denote the event that a sample has excellent surface
finish, and let B denote the event that a sample has excellent
length. Determine:
(a) (b)
(c) (d)
(e) If the selected part has excellent surface finish, what is the

probability that the length is excellent?
(f ) If the selected part has good length, what is the probabil-

ity that the surface finish is excellent?

2-91. The following table summarizes the analysis of samples
of galvanized steel for coating weight and surface roughness:

coating weight

high low

surface high 12 16

roughness low 88 34

(a) If the coating weight of a sample is high, what is the prob-
ability that the surface roughness is high?

(b) If the surface roughness of a sample is high, what is the
probability that the coating weight is high?

(c) If the surface roughness of a sample is low, what is the
probability that the coating weight is low?

2-92. Consider the data on wafer contamination and loca-
tion in the sputtering tool shown in Table 2-2. Assume that one
wafer is selected at random from this set. Let A denote the
event that a wafer contains four or more particles, and let B de-
note the event that a wafer is from the center of the sputtering
tool. Determine:
(a) (b)
(c) (d)
(e) (f)

2-93. The following table summarizes the number of de-
ceased beetles under autolysis (the destruction of a cell after
its death by the action of its own enzymes) and putrefaction
(decomposition of organic matter, especially protein, by
microorganisms, resulting in production of foul-smelling
matter):

autolysis

high low

putrefaction
high 14 59

low 18 9

(a) If the autolysis of a sample is high, what is the probability
that the putrefaction is low?

(b) If the putrefaction of a sample is high, what is the proba-
bility that the autolysis is high?

(c) If the putrefaction of a sample is low, what is the probability
that the autolysis is low?

P1A ´ B2P1A ¨ B2
P1B ƒ A2P1B2
P1A ƒ B2P1A2

P1B ƒ A2P1A ƒ B2
P1B2P1A2
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2-94. A maintenance firm has gathered the following infor-
mation regarding the failure mechanisms for air conditioning
systems:

evidence of gas leaks

yes no

evidence of yes 55 17

electrical failure no 32 3

The units without evidence of gas leaks or electrical failure
showed other types of failure. If this is a representative sample
of AC failure, find the probability
(a) That failure involves a gas leak
(b) That there is evidence of electrical failure given that there

was a gas leak
(c) That there is evidence of a gas leak given that there is

evidence of electrical failure

2-95. A lot of 100 semiconductor chips contains 20 that are
defective. Two are selected randomly, without replacement,
from the lot.
(a) What is the probability that the first one selected is

defective?
(b) What is the probability that the second one selected is

defective given that the first one was defective?
(c) What is the probability that both are defective?
(d) How does the answer to part (b) change if chips selected

were replaced prior to the next selection?

2-96. A batch of 500 containers for frozen orange juice con-
tains five that are defective. Two are selected, at random, with-
out replacement from the batch.
(a) What is the probability that the second one selected is

defective given that the first one was defective?
(b) What is the probability that both are defective?
(c) What is the probability that both are acceptable?

Three containers are selected, at random, without replace-
ment, from the batch.
(d) What is the probability that the third one selected is de-

fective given that the first and second ones selected were
defective?

(e) What is the probability that the third one selected is
defective given that the first one selected was defective
and the second one selected was okay?

(f ) What is the probability that all three are defective?

2-97. A batch of 350 samples of rejuvenated mitochondria
contains eight that are mutated (or defective). Two are selected,
at random, without replacement from the batch.
(a) What is the probability that the second one selected is de-

fective given that the first one was defective?
(b) What is the probability that both are defective?
(c) What is the probability that both are acceptable?

2-98. A computer system uses passwords that are exactly
seven characters and each character is one of the 26 letters

(a–z) or 10 integers (0–9). You maintain a password for this
computer system. Let A denote the subset of passwords that
begin with a vowel (either a, e, i, o, or u) and let B denote the
subset of passwords that end with an even number (either 0, 2,
4, 6, or 8).
(a) Suppose a hacker selects a password at random. What is

the probability that your password is selected?
(b) Suppose a hacker knows your password is in event A and

selects a password at random from this subset. What is the
probability that your password is selected?

(c) Suppose a hacker knows your password is in A and B and
selects a password at random from this subset. What is the
probability that your password is selected?

2-99. If , must A � B? Draw a Venn diagram to
explain your answer.

2-100. Suppose A and B are mutually exclusive events.
Construct a Venn diagram that contains the three events A, B,
and C such that and .

2-101. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target. Determine the following probabilities.

(a) (b)
(c) (d)

2-102. Consider the hospital emergency room data in
Example 2-8. Let A denote the event that a visit is to Hospital
4 and let B denote the event that a visit results in LWBS (at any
hospital). Determine the following probabilities.

(a) (b)
(c) (d)

2-103. Consider the well failure data in Exercise 2-53.
(a) What is the probability of a failure given there are more

than 1000 wells in a geological formation? 
(b) What is the probability of a failure given there are fewer

than 500 wells in a geological formation?

2-104. An article in the The Canadian Entomologist
(Harcourt et al., 1977, Vol. 109, pp. 1521–1534) studied the life
of the alfalfa weevil from eggs to adulthood. The following
table shows the number of larvae that survived at each stage of
development from eggs to adults.

Early Late Pre- Late
Eggs Larvae Larvae pupae Pupae Adults

421 412 306 45 35 31

(a) What is the probability an egg survives to an adult?
(b) What is the probability of survival to adult given survival

to the late larvae stage?
(c) What stage has the lowest probability of survival to the

next stage?

P1B ƒ A2P1A ƒ B¿ 2
P1A¿ ƒ B2P1A ƒ B2

P1B ƒ A2P1A ƒ B¿ 2
P1A¿ ƒ B2P1A ƒ B2

P1B ƒ C2 � 0P1A ƒ C2 � 1

P1A ƒ B2 � 1
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2-5 MULTIPLICATION AND TOTAL PROBABILITY RULES

The probability of the intersection of two events is often needed. The conditional probability
definition in Equation 2-9 can be rewritten to provide a formula known as the multiplication
rule for probabilities.

(2-10)P1A ¨ B2 � P1B ƒ A2P1A2 � P1A ƒ B2P1B2
Multiplication Rule

The last expression in Equation 2-10 is obtained by interchanging A and B.

A A'

B

B ∩ A
B ∩ A'

Figure 2-15 Partitioning
an event into two mutually
exclusive subsets.

E1

B ∩ E1

E2 E3
E4

B ∩ E2
B ∩ E3

B ∩ E4

B = (B ∩ E1) ∪ (B ∩ E2) ∪ (B ∩ E3) ∪ (B ∩ E4) 

Figure 2-16 Partitioning an event into
several mutually exclusive subsets.

EXAMPLE 2-26 Machining Stages
The probability that the first stage of a numerically controlled
machining operation for high-rpm pistons meets specifications
is 0.90. Failures are due to metal variations, fixture alignment,
cutting blade condition, vibration, and ambient environmental
conditions. Given that the first stage meets specifications, the
probability that a second stage of machining meets specifica-
tions is 0.95. What is the probability that both stages meet
specifications?

Let A and B denote the events that the first and second
stages meet specifications, respectively. The probability re-
quested is

Although it is also true that the in-
formation provided in the problem does not match this second
formulation. 
Practical Interpretation: The probability that both stages meet
specifications is approximately 0.85 and if additional stages
were needed to complete a piston the probability would de-
crease further. Consequently, the probability that each stage is
completed successfully needs to be large in order for a piston
to meet all specifications.

P1A ¨ B 2 � P1A ƒ B 2P1B 2,

P1A ¨ B 2 � P1B ƒ A 2P1A 2 � 0.9510.902 � 0.855

Sometimes the probability of an event is given under each of several conditions. With enough
of these conditional probabilities, the probability of the event can be recovered. For example, sup-
pose that in semiconductor manufacturing the probability is 0.10 that a chip that is subjected to
high levels of contamination during manufacturing causes a product failure. The probability is
0.005 that a chip that is not subjected to high contamination levels during manufacturing causes a
product failure. In a particular production run, 20% of the chips are subject to high levels of con-
tamination. What is the probability that a product using one of these chips fails?

Clearly, the requested probability depends on whether or not the chip was exposed to high
levels of contamination. For any event B, we can write B as the union of the part of B in A and
the part of B in . That is,

This result is shown in the Venn diagram in Fig. 2-15. Because A and are mutually exclu-
sive, and are mutually exclusive. Therefore, from the probability of the union
of mutually exclusive events in Equation 2-6 and the Multiplication Rule in Equation 2-10, the
following total probability rule is obtained.

A¿ ¨ BA ¨ B
A¿

B � 1A ¨ B2 ´ 1A¿ ¨ B2

A¿
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For any events A and B,

(2-11)P1B2 � P1B ¨ A2 � P1B ¨ A¿ 2 � P1B ƒ A2P1A2 � P1B ƒ A¿ 2P1A¿ 2

Total Probability
Rule (two events)

Assume are k mutually exclusive and exhaustive sets. Then

(2-12) � P1B ƒ E12P1E12 � P1B ƒ E22P1E22 � p � P1B ƒ Ek2P1Ek2

P1B2 � P1B ¨ E12 � P1B ¨ E22 � p � P1B ¨ Ek2

E1, E2, p , Ek

Total Probability
Rule (multiple

events)

The reasoning used to develop Equation 2-11 can be applied more generally. Because
we know equals B, and because we know 

and are mutually exclusive. In general, a collection of sets such that
is said to be exhaustive. A graphical display of partitioning an

event B among a collection of mutually exclusive and exhaustive events is shown in Fig. 2-16.
E1 ´  E2 ´ p ´ Ek � S

E1, E2, p , EkA¿ ¨ B
A ¨ BA ¨ A¿ � �1A ¨ B2 ´ 1A¿ ¨ B2A ´ A¿ � S

EXAMPLE 2-27 Semiconductor Contamination
Consider the contamination discussion at the start of this
section. The information is summarized here.

Probability of Level of Probability
Failure Contamination of Level

0.1 High 0.2

0.005 Not High 0.8

Let F denote the event that the product fails, and let H de-
note the event that the chip is exposed to high levels of

contamination. The requested probability is P(F), and the
information provided can be represented as

From Equation 2-11,

which can be interpreted as just the weighted average of the
two probabilities of failure.

P1F2 � 0.1010.202 � 0.00510.802 � 0.024

 P1H 2 � 0.20  and    P1H¿ 2 � 0.80

 P1F ƒ H 2 � 0.10  and  P1F ƒ H¿ 2 � 0.005

EXAMPLE 2-28 Semiconductor Failures
Continuing with semiconductor manufacturing, assume the
following probabilities for product failure subject to levels of
contamination in manufacturing:

Probability of Failure Level of Contamination

0.10 High

0.01 Medium

0.001 Low

In a particular production run, 20% of the chips are sub-
jected to high levels of contamination, 30% to medium levels
of contamination, and 50% to low levels of contamination.
What is the probability that a product using one of these chips
fails? Let

H denote the event that a chip is exposed to high levels of
contamination

M denote the event that a chip is exposed to medium levels
of contamination

L denote the event that a chip is exposed to low levels of
contamination

Then,

The calculations are conveniently organized with the tree
diagram in Fig. 2-17.

 � 0.1010.202 � 0.0110.302 � 0.00110.502 � 0.0235

 P1F2 � P1F ƒ H2P1H2 � P1F ƒ M2P1M2 � P1F ƒ L2P1L2
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0.10(0.20)
= 0.02

0.90(0.20)
= 0.18

0.01(0.30)
= 0.003

0.99(0.30)
= 0.297

0.001(0.50)
= 0.0005

0.999(0.50)
= 0.4995

P(Fail) = 0.02 + 0.003 + 0.0005 = 0.0235

Contamination

0.20 0.50

0.30

High Medium Low

P(Fail⎪High)
= 0.10

P(Not Fail⎪High)
= 0.90

P(Fail⎪Medium)
= 0.01

P(Not Fail⎪Medium)
= 0.99

P(Fail⎪Low)
= 0.001

P(Not Fail⎪Low)
= 0.999

Figure 2-17 Tree
diagram for 
Example 2-28.

2-105. Suppose that and 
Determine the following:
(a)
(b)

2-106. Suppose that and
What is P(A)?

2-107. The probability is 1% that an electrical connector
that is kept dry fails during the warranty period of a portable
computer. If the connector is ever wet, the probability of a fail-
ure during the warranty period is 5%. If 90% of the connectors
are kept dry and 10% are wet, what proportion of connectors
fail during the warranty period?

2-108. Suppose 2% of cotton fabric rolls and 3% of nylon
fabric rolls contain flaws. Of the rolls used by a manufacturer,
70% are cotton and 30% are nylon. What is the probability that a
randomly selected roll used by the manufacturer contains flaws?

2-109. The edge roughness of slit paper products increases
as knife blades wear. Only 1% of products slit with new blades
have rough edges, 3% of products slit with blades of average
sharpness exhibit roughness, and 5% of products slit with worn
blades exhibit roughness. If 25% of the blades in manufactur-
ing are new, 60% are of average sharpness, and 15% are worn,
what is the proportion of products that exhibit edge roughness?

2-110. In the 2004 presidential election, exit polls from the
critical state of Ohio provided the following results:

total Bush, 2004 Kerry, 2004

no college degree (62%) 50% 50%

college graduate (38%) 53% 46%

What is the probability a randomly selected respondent voted
for Bush?

2-111. Computer keyboard failures are due to faulty electrical
connects (12%) or mechanical defects (88%). Mechanical
defects are related to loose keys (27%) or improper assembly
(73%). Electrical connect defects are caused by defective

P1B2 � 0.8.
P1A ƒ B2 � 0.2,   P1A ƒ B¿ 2 � 0.3,

P1A¿ ¨ B2
P1A ¨ B2

P1B2 � 0.5.P1A ƒ B2 � 0.4 wires (35%), improper connections (13%), or poorly welded
wires (52%).
(a) Find the probability that a failure is due to loose keys.
(b) Find the probability that a failure is due to improperly

connected or poorly welded wires.

2-112. Heart failures are due to either natural occurrences
(87%) or outside factors (13%). Outside factors are related to
induced substances (73%) or foreign objects (27%). Natural
occurrences are caused by arterial blockage (56%), disease
(27%), and infection (e.g., staph infection) (17%).
(a) Determine the probability that a failure is due to induced

substance.
(b) Determine the probability that a failure is due to disease

or infection.

2-113. A batch of 25 injection-molded parts contains five
that have suffered excessive shrinkage.
(a) If two parts are selected at random, and without replace-

ment, what is the probability that the second part selected
is one with excessive shrinkage?

(b) If three parts are selected at random, and without replace-
ment, what is the probability that the third part selected is
one with excessive shrinkage?

2-114. A lot of 100 semiconductor chips contains 20 that
are defective.
(a) Two are selected, at random, without replacement, from

the lot. Determine the probability that the second chip se-
lected is defective.

(b) Three are selected, at random, without replacement,
from the lot. Determine the probability that all are
defective.

2-115. An article in the British Medical Journal [“Com-
parison of Treatment of Renal Calculi by Operative Surgery,
Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 82, pp. 879–892)] provided the
following discussion of success rates in kidney stone re-
movals. Open surgery had a success rate of 78% (273/350)
while a newer method, percutaneous nephrolithotomy (PN),

EXERCISES FOR SECTION 2-5
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had a success rate of 83% (289/350). This newer method
looked better, but the results changed when stone diameter
was considered. For stones with diameters less than two cen-
timeters, 93% (81/87) of cases of open surgery were success-
ful compared with only 83% (234/270) of cases of PN. For
stones greater than or equal to two centimeters, the success
rates were 73% (192/263) and 69% (55/80) for open surgery
and PN, respectively. Open surgery is better for both stone
sizes, but less successful in total. In 1951, E. H. Simpson
pointed out this apparent contradiction (known as Simpson’s
Paradox) but the hazard still persists today. Explain how open
surgery can be better for both stone sizes but worse in total.

2-116. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target. Determine the following probabilities.
(a) (b) (c)
(d) Use the total probability rule to determine P(A)

2-117. Consider the hospital emergency room data in
Example 2-8. Let A denote the event that a visit is to Hospital
4 and let B denote the event that a visit results in LWBS (at any
hospital). Determine the following probabilities.
(a) (b) (c)
(d) Use the total probability rule to determine P(A)

P1A¿ ´ B¿ 2P1A ´ B2P1A ¨ B2

P1A¿ ´ B¿ 2P1A ´ B2P1A ¨ B2

2-118. Consider the hospital emergency room data in Example
2-8. Suppose that three visits that resulted in LWBS are selected
randomly (without replacement) for a follow-up interview.
(a) What is the probability that all three are selected from

Hospital 2?
(b) What is the probability that all three are from the same

hospital?
2-119. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than
1000 wells and let B denote the event that a well failed.
Determine the following probabilities.
(a) (b) (c)
(d) Use the total probability rule to determine P(A)

2-120. Consider the well failure data in Exercise 2-53.
Suppose that two failed wells are selected randomly (without
replacement) for a follow-up review.
(a) What is the probability that both are from the gneiss geo-

logical formation group?
(b) What is the probability that both are from the same geo-

logical formation group?

2-121. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. A specific design in randomly generated by the Web
server when you visit the site. Determine the probability that
the ad color is red and the font size is not the smallest one.

P1A¿ ´ B¿ 2P1A ´ B2P1A ¨ B2

2-6 INDEPENDENCE

In some cases, the conditional probability of might equal P(B). In this special case,
knowledge that the outcome of the experiment is in event A does not affect the probability that
the outcome is in event B.

P1B ƒ A2

EXAMPLE 2-29 Sampling with Replacement
Suppose a day’s production of 850 manufactured parts con-
tains 50 parts that do not meet customer requirements. Sup-
pose two parts are selected from the batch, but the first part is
replaced before the second part is selected. What is the proba-
bility that the second part is defective (denoted as B) given that
the first part is defective (denoted as A)? The probability
needed can be expressed as 

Because the first part is replaced prior to selecting the
second part, the batch still contains 850 parts, of which 50 are

P1B ƒ A2.

defective. Therefore, the probability of B does not depend on
whether or not the first part was defective. That is,

Also, the probability that both parts are defective is

P1A ¨ B2 � P1B 0 A2P1A2 � a
50

850
b � a

50

850
b � 0.0035

P1B ƒ A2 � 50�850

EXAMPLE 2-30 Flaws and Functions
The information in Table 2-3 related surface flaws to func-
tionally defective parts. In that case, we determined that

and Sup-
pose that the situation is different and follows Table 2-4. Then,

That is, the probability that the part is defective does not de-
pend on whether it has surface flaws. Also,

P1F ƒ D2 � 2�20 � 0.10  and  P1F2 � 40�400 � 0.10

P1D ƒ F2 � 2�40 � 0.05  and  P1D2 � 20�400 � 0.05

P1D2 � 28�400 � 0.07.P1D ƒ F2 � 10�40 � 0.25

so the probability of a surface flaw does not depend on
whether the part is defective. Furthermore, the definition of
conditional probability implies that

but in the special case of this problem,

P1F ¨ D2 � P1D2P1F2 �
2

40
 �  

2

20
�

1

200

P1F ¨ D2 � P1D ƒ F2P1F2
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Table 2-4 Parts Classified

Surface Flaws

Yes (event F) No Total

Defective Yes (event D) 2 18 20
No 38 342 380
Total 40 360 400

The preceding example illustrates the following conclusions. In the special case that
we obtain

and

These conclusions lead to an important definition.

P1A ƒ B2 �
P1A ¨ B2

P1B2
�

P1A2P1B2

P1B2
� P1A2

P1A ¨ B2 � P1B ƒ A2P1A2 � P1B2P1A2

P1B 0 A2 � P1B2,

Two events are independent if any one of the following equivalent statements is true:

(1)

(2)

(3) (2-13)P1A ¨ B2 � P1A2P1B2

P1B ƒ A2 � P1B2

P1A ƒ B2 � P1A2

Independence
(two events)

It is left as a mind-expanding exercise to show that independence implies related results
such as 

The concept of independence is an important relationship between events and is used
throughout this text. A mutually exclusive relationship between two events is based only on
the outcomes that comprise the events. However, an independence relationship depends on the
probability model used for the random experiment. Often, independence is assumed to be part
of the random experiment that describes the physical system under study.

P1A¿ ¨ B¿ 2 � P1A¿ 2P1B¿ 2

EXAMPLE 2-31 
A day’s production of 850 manufactured parts contains 50
parts that do not meet customer requirements. Two parts are
selected at random, without replacement, from the batch. Let
A denote the event that the first part is defective, and let B de-
note the event that the second part is defective.

We suspect that these two events are not independent be-
cause knowledge that the first part is defective suggests that it
is less likely that the second part selected is defective. Indeed,

Now, what is P(B)? Finding the uncondi-
tional P(B) is somewhat difficult because the possible values
of the first selection need to be considered:

P1B ƒ A2 � 49�849.

Interestingly, P(B), the unconditional probability that the
second part selected is defective, without any knowledge of
the first part, is the same as the probability that the first part
selected is defective. Yet, our goal is to assess independence.
Because does not equal P(B), the two events are not
independent, as we suspected.

P1B ƒ A2

 � 50�850

 � 149�8492 150�8502 � 150�8492 1800�8502

 P1B2 � P1B ƒ A2P1A2 � P1B ƒ A¿ 2P1A¿ 2
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This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the
random experiment.

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E1, E2 are independent if and only if for any subset of these
events 

(2-14)P1Ei1 ¨ Ei2 ¨ p ¨ Eik2 � P1Ei12 � P1Ei22 � p � P1Eik2

Ei1, Ei2, p , Eik,
, p , En

Independence
(multiple events)

EXAMPLE 2-32 Series Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let L and R denote the events that the left and right devices
operate, respectively. There is only a path if both operate. The

0.8 0.9

probability the circuit operates is

Practical Interpretation: Notice that the probability that the
circuit operates degrades to approximately 0.5 when all devices
are required to be functional. The probability each device is func-
tional needs to be large for a circuit to operate when many devices
are connected in series.

P1L and R2 � P1L ¨ R2 � P1L2P1R2 � 0.8010.902 � 0.72

EXAMPLE 2-33
Assume that the probability that a wafer contains a large par-
ticle of contamination is 0.01 and that the wafers are inde-
pendent; that is, the probability that a wafer contains a large
particle is not dependent on the characteristics of any of the
other wafers. If 15 wafers are analyzed, what is the probability
that no large particles are found?

Let Ei denote the event that the ith wafer contains no large
particles, Then, The probabilityP1Ei2 � 0.99.i � 1, 2, p , 15.

requested can be represented as From
the independence assumption and Equation 2-14,

� P1E152 � 0.9915 � 0.86
P1E1 ¨ E2 ¨  p ¨ E152 � P1E12 � P1E22 � p

P1E1 ¨ E2 ¨  
p ¨ E152.

EXAMPLE 2-34 Parallel Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

Let T and B denote the events that the top and bottom de-
vices operate, respectively. There is a path if at least one device
operates. The probability that the circuit operates is

0.95

0.95

a b

A simple formula for the solution can be derived from the
complements and From the independence assumption,

so

Practical Interpretation: Notice that the probability that the cir-
cuit operates is larger than the probability that either device is
functional. This is an advantage of a parallel architecture. A dis-
advantage is that multiple devices are needed.

P1T or B2 � 1 
 0.052 � 0.9975

P1T¿ and B¿ 2 � P1T¿ 2P1B¿ 2 � 11 
 0.9522 � 0.052

B¿.T¿

P1T or B2 � 1 
 P 3 1T or B2 ¿ 4 � 1 
 P1T¿ and B¿ 2
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EXAMPLE 2-35 Advanced Circuit
The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices
fail independently. What is the probability that the circuit 
operates?

The solution can be obtained from a partition of the
graph into three columns. Let L denote the event that there

0.9

0.9

0.95

0.95

0.9 0.99a b

is a path of functional devices only through the three units
on the left. From the independence and based upon the pre-
vious example,

Similarly, let M denote the event that there is a path of functional
devices only through the two units in the middle. Then,

The probability that there is a path of functional devices only
through the one unit on the right is simply the probability that
the device functions, namely, 0.99. Therefore, with the inde-
pendence assumption used again, the solution is

11 
 0.132 11 
 0.0522 10.992 � 0.987

P1M2 � 1 
 0.052

P1L2 � 1 
 0.13

EXERCISES FOR SECTION 2-6

2-122. If and are
the events A and B independent?

2-123. If and are
the events B and the complement of A independent?

2-124. If and A and B are mutu-
ally exclusive, are they independent?

2-125. A batch of 500 containers for frozen orange juice
contains five that are defective. Two are selected, at random,
without replacement, from the batch. Let A and B denote the
events that the first and second containers selected are defec-
tive, respectively.
(a) Are A and B independent events?
(b) If the sampling were done with replacement, would A and

B be independent?

2-126. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized as follows:

shock resistance

high low

scratch high 70 9

resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resis-
tance. Are events A and B independent?

P1A2 � 0.2, P1B2 � 0.2,

P1A2 � 0.3,P1A ƒ B2 � 0.3,  P1B2 � 0.8,

P1A2 � 0.5,P1A ƒ B2 � 0.4,  P1B2 � 0.8, 2-127. Samples of emissions from three suppliers are clas-
sified for conformance to air-quality specifications. The re-
sults from 100 samples are summarized as follows:

conforms

yes no

1 22 8

supplier 2 25 5

3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
(a) Are events A and B independent?
(b) Determine 

2-128. Redundant Array of Inexpensive Disks (RAID) is a
technology that uses multiple hard drives to increase the speed
of data transfer and provide instant data backup. Suppose that
the probability of any hard drive failing in a day is 0.001 and
the drive failures are independent.
(a) A RAID 0 scheme uses two hard drives, each containing a

mirror image of the other. What is the probability of data
loss? Assume that data loss occurs if both drives fail
within the same day.

(b) A RAID 1 scheme splits the data over two hard drives.
What is the probability of data loss? Assume that data loss
occurs if at least one drive fails within the same day.

P1B ƒ A2.
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2-129. The probability that a lab specimen contains high
levels of contamination is 0.10. Five samples are checked, and
the samples are independent.
(a) What is the probability that none contains high levels of

contamination?
(b) What is the probability that exactly one contains high

levels of contamination?
(c) What is the probability that at least one contains high

levels of contamination?

2-130. In a test of a printed circuit board using a random
test pattern, an array of 10 bits is equally likely to be 0 or 1.
Assume the bits are independent.
(a) What is the probability that all bits are 1s?
(b) What is the probability that all bits are 0s?
(c) What is the probability that exactly five bits are 1s and five

bits are 0s?

2-131. Six tissues are extracted from an ivy plant infested
by spider mites. The plant in infested in 20% of its area. Each
tissue is chosen from a randomly selected area on the ivy
plant.
(a) What is the probability that four successive samples show

the signs of infestation?
(b) What is the probability that three out of four successive

samples show the signs of infestation?

2-132. A player of a video game is confronted with a series of
four opponents and an 80% probability of defeating each oppo-
nent. Assume that the results from opponents are independent
(and that when the player is defeated by an opponent the game
ends).
(a) What is the probability that a player defeats all four oppo-

nents in a game?
(b) What is the probability that a player defeats at least two

opponents in a game?
(c) If the game is played three times, what is the probability

that the player defeats all four opponents at least once?

2-133. In an acid-base titration, a base or acid is gradually
added to the other until they have completely neutralized each
other. Since acids and bases are usually colorless (as are the
water and salt produced in the neutralization reaction), pH is
measured to monitor the reaction. Suppose that the equiva-
lence point is reached after approximately 100 mL of a NaOH
solution has been added (enough to react with all the acetic
acid present) but that replicates are equally likely to indicate
from 95 to 104 mL, measured to the nearest mL. Assume that
two technicians each conduct titrations independently.
(a) What is the probability that both technicians obtain equiv-

alence at 100 mL?
(b) What is the probability that both technicians obtain equiv-

alence between 98 and 104 mL (inclusive)?
(c) What is the probability that the average volume at equiva-

lence from the technicians is 100 mL?

2-134. A credit card contains 16 digits. It also contains a
month and year of expiration. Suppose there are one million

credit card holders with unique card numbers. A hacker ran-
domly selects a 16-digit credit card number.
(a) What is the probability that it belongs to a user?
(b) Suppose a hacker has a 25% chance of correctly guessing

the year your card expires and randomly selects one of
the 12 months. What is the probability that the hacker
correctly selects the month and year of expiration?

2-135. Eight cavities in an injection-molding tool produce
plastic connectors that fall into a common stream. A sample is
chosen every several minutes. Assume that the samples are
independent.
(a) What is the probability that five successive samples were

all produced in cavity one of the mold?
(b) What is the probability that five successive samples were

all produced in the same cavity of the mold?
(c) What is the probability that four out of five successive

samples were produced in cavity one of the mold?

2-136. The following circuit operates if and only if there is
a path of functional devices from left to right. The probability
that each device functions is as shown. Assume that the prob-
ability that a device is functional does not depend on whether
or not other devices are functional. What is the probability that
the circuit operates?

2-137. The following circuit operates if and only if there is
a path of functional devices from left to right. The probability
each device functions is as shown. Assume that the probabil-
ity that a device functions does not depend on whether or not
other devices are functional. What is the probability that the
circuit operates?

2-138. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is 271 K
or less. Let B denote the event that the heat absorbed is above
target. Are these events independent?

2-139. Consider the hospital emergency room data in
Example 2-8. Let A denote the event that a visit is to Hospital 4
and let B denote the event that a visit results in LWBS (at any
hospital). Are these events independent?

0.95

0.9

0.95

0.9

0.9

0.8

0.95

0.9

0.95

0.8

0.95

0.7
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2-140. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than
1000 wells and let B denote the event that a well failed. Are
these events independent?

2-141. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text

phrases. A specific design is randomly generated by the Web
server when you visit the site. Let A denote the event  that the
design color is red and Let B denote the event that the font size
is not the smallest one. Are A and B independent events?
Explain why or why not.

2-7 BAYES’ THEOREM

The examples in this chapter indicate that information is often presented in terms of con-
ditional probabilities. These conditional probabilities commonly provide the probability of
an event (such as failure) given a condition (such as high or low contamination). But after
a random experiment generates an outcome, we are naturally interested in the probability
that a condition was present (high contamination) given an outcome (a semiconductor fail-
ure). Thomas Bayes addressed this essential question in the 1700s and developed the fun-
damental result known as Bayes’ theorem. Do not let the simplicity of the mathematics
conceal the importance. There is extensive interest in such probabilities in modern statistical
analysis.

From the definition of conditional probability,

Now, considering the second and last terms in the expression above, we can write

P1A ¨ B2 � P1A ƒ B2P1B2 � P1B ¨ A2 � P1B ƒ A2P1A2

(2-15)P1A ƒ B2 �
P 1B ƒ A2P1A2

P1B2
 for P1B2 � 0

This is a useful result that enables us to solve for in terms of P1B ƒ A2.P1A ƒ B2

EXAMPLE 2-36
Reconsider Example 2-27. The conditional probability a high
level of contamination was present when a failure occurred is
to be determined. The information from Example 2-27 is sum-
marized here.

Probability of Level of Probability of 
Failure Contamination Level

0.1 High 0.2

0.005 Not High 0.8

The probability of is determined from

The value of P(F) in the denominator of our solution was
found from P1F ƒ H¿ 2P1H¿ 2.P1F2 � P1F ƒ H2P1H2 �

P1H ƒ F2 �
P1F ƒ H2P1H2

P1F2
�

0.1010.202

0.024
� 0.83

P1H 0 F2

In general, if P(B) in the denominator of Equation 2-15 is written using the Total
Probability Rule in Equation 2-12, we obtain the following general result, which is known as
Bayes’Theorem.
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Notice that the numerator always equals one of the terms in the sum in the denominator.

If are k mutually exclusive and exhaustive events and B is any event,

(2-16)

for P1B2 � 0

P1E1 ƒ B2 �
P1B ƒ E12P1E12

P1B ƒ E12P1E12 � P1B ƒ E22P1E22 � p � P1B ƒ Ek2P1Ek2 

E1, E2, p , Ek

Bayes’Theorem

2-142. Suppose that and

Determine 

2-143. Suppose that and

Determine P1B ƒ A2.P1B2 � 0.8.

P1A ƒ B2 � 0.4, P1A ƒ B¿ 2 � 0.2,

P1B ƒ A2.P1B2 � 0.2.

P1A ƒ B2 � 0.7, P1A2 � 0.5,

EXERCISES FOR SECTION 2-7

2-144. Software to detect fraud in consumer phone cards
tracks the number of metropolitan areas where calls originate
each day. It is found that 1% of the legitimate users originate
calls from two or more metropolitan areas in a single day.
However, 30% of fraudulent users originate calls from two or

EXAMPLE 2-37 Medical Diagnostic
Because a new medical procedure has been shown to be effec-
tive in the early detection of an illness, a medical screening of
the population is proposed. The probability that the test cor-
rectly identifies someone with the illness as positive is 0.99, and
the probability that the test correctly identifies someone without
the illness as negative is 0.95. The incidence of the illness in the
general population is 0.0001. You take the test, and the result is
positive. What is the probability that you have the illness?

Let D denote the event that you have the illness, and let S
denote the event that the test signals positive. The probability
requested can be denoted as . The probability that the
test correctly signals someone without the illness as negative
is 0.95. Consequently, the probability of a positive test without
the illness is

P1S ƒ D¿ 2 � 0.05

P1D ƒ S2

From Bayes’ Theorem,

Practical Interpretation: The probability of you having the
illness given a positive result from the test is only 0.002.
Surprisingly, even though the test is effective, in the sense that

is high and is low, because the incidence of
the illness in the general population is low, the chances are
quite small that you actually have the disease even if the test is
positive.

P1S ƒ D¿ 2P1S 0D2

 � 1�506 � 0.002

 � 0.9910.00012� 30.9910.00012 � 0.0511 
 0.00012 4

 P1D ƒ S2 � P1S ƒ D2P1D2� 3P1S ƒ D2P1D2 � P1S ƒ D¿ 2P1D¿ 2 4

EXAMPLE 2-38 Bayesian Network
Bayesian networks are used on the Web sites of high-
technology manufacturers to allow customers to quickly diag-
nose problems with products. An oversimplified example is
presented here. A printer manufacturer obtained the following
probabilities from a database of test results. Printer failures are
associated with three types of problems: hardware, software,
and other (such as connectors), with probabilities 0.1, 0.6, and
0.3, respectively. The probability of a printer failure given a
hardware problem is 0.9, given a software problem is 0.2, and
given any other type of problem is 0.5. If a customer enters the
manufacturer’s Web site to diagnose a printer failure, what is
the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software,
or other problem, respectively, and let F denote a printer fail-
ure. The most likely cause of the problem is the one that cor-
responds to the largest of In
Bayes’ Theorem the denominator is

P1H ƒ F2, P1S ƒ F2, and P1O ƒ F2.

Then,

Notice that because
one of the three types of problems is responsible for the failure.
Because is largest, the most likely cause of the problem
is in the other category. A Web site dialog to diagnose the prob-
lem quickly should start with a check into that type of problem.

Practical Interpretation: Such networks are more com-
monly used to diagnose problems in areas as diverse as
electronic products and healthcare.

P1O ƒ F 2

 P1H ƒ F 2 � P1S ƒ F 2 � P1O ƒ F 2 � 1

 P1O ƒ F2 � P1F ƒ O2P1O2�P1F2 � 0.510.32�0.36 � 0.417

 P1S ƒ F2 � P1F ƒ S2P1S2�P1F2 � 0.210.62�0.36 � 0.333

 P1H ƒ F2 � P1F ƒ H2P1H2�P1F2 � 0.910.12�0.36 � 0.250

� 0.910.12 � 0.210.62 � 0.510.32 � 0.36
P1F2 � P1F ƒ H2P1H2 � P1F ƒ S2 P1S2 � P1F ƒ O2P1O2
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more metropolitan areas in a single day. The proportion of
fraudulent users is 0.01%. If the same user originates calls
from two or more metropolitan areas in a single day, what is
the probability that the user is fraudulent?

2-145. A new process of more accurately detecting anaer-
obic respiration in cells is being tested. The new process is
important due to its high accuracy, its lack of extensive ex-
perimentation, and the fact that it could be used to identify
five different categories of organisms: obligate anaerobes,
facultative anaerobes, aerotolerant, microaerophiles, and
nanaerobes instead of using a single test for each category.
The process claims that it can identify obligate anaerobes
with 97.8% accuracy, facultative anaerobes with 98.1% ac-
curacy, aerotolerant with 95.9% accuracy, microaerophiles
with 96.5% accuracy, and nanaerobes with 99.2% accuracy.
If any category is not present, the process does not signal.
Samples are prepared for the calibration of the process 
and 31% of them contain obligate anaerobes, 27% contain
facultative anaerobes, 21% contain microaerophiles, 13% con-
tain nanaerobes, and 8% contain aerotolerant. A test sample is
selected randomly.
(a) What is the probability that the process will signal?
(b) If the test signals, what is the probability that mi-

croaerophiles are present?

2-146. In the 2004 presidential election, exit polls from
the critical state of Ohio provided the following results:

Bush Kerry

no college degree (62%) 50% 50%
college graduate (38%) 53% 46%

If a randomly selected respondent voted for Bush, what is
the probability that the person has a college degree?

2-147. Customers are used to evaluate preliminary product
designs. In the past, 95% of highly successful products
received good reviews, 60% of moderately successful products
received good reviews, and 10% of poor products received
good reviews. In addition, 40% of products have been highly
successful, 35% have been moderately successful, and 25%
have been poor products.
(a) What is the probability that a product attains a good review?
(b) If a new design attains a good review, what is the proba-

bility that it will be a highly successful product?

(c) If a product does not attain a good review, what is the
probability that it will be a highly successful product?

2-148. An inspector working for a manufacturing company
has a 99% chance of correctly identifying defective items and
a 0.5% chance of incorrectly classifying a good item as defec-
tive. The company has evidence that its line produces 0.9% of
nonconforming items.
(a) What is the probability that an item selected for inspection

is classified as defective?
(b) If an item selected at random is classified as nondefective,

what is the probability that it is indeed good?

2-149. A new analytical method to detect pollutants in wa-
ter is being tested. This new method of chemical analysis is
important because, if adopted, it could be used to detect three
different contaminants—organic pollutants, volatile solvents,
and chlorinated compounds—instead of having to use a single
test for each pollutant. The makers of the test claim that it can
detect high levels of organic pollutants with 99.7% accuracy,
volatile solvents with 99.95% accuracy, and chlorinated com-
pounds with 89.7% accuracy. If a pollutant is not present, the
test does not signal. Samples are prepared for the calibration
of the test and 60% of them are contaminated with organic
pollutants, 27% with volatile solvents, and 13% with traces of
chlorinated compounds. A test sample is selected randomly.
(a) What is the probability that the test will signal?
(b) If the test signals, what is the probability that chlori-

nated compounds are present?

2-150. Consider the endothermic reactions in Exercise 2-50.
Use Bayes’Theorem to calculate the probability that a reaction
final temperature is 271 K or less given that the heat absorbed
is above target.

2-151. Consider the hospital emergency room data in
Example 2-8. Use Bayes’Theorem to calculate the probability
that a person visits Hospital 4 given they are LWBS.

2-152. Consider the well failure data in Exercise 2-53. Use
Bayes’ Theorem to calculate the probability that a randomly
selected well is in the gneiss group given that the well is failed.

2-153. Two Web colors are used for a site advertisement. If a
site visitor arrives from an affiliate, the probabilities of the blue or
green colors are 0.8 and 0.2, respectively. If the site visitor arrives
from a search site, the blue and green colors are 0.4 and 0.6, re-
spectively. The proportions of visitors from affiliates and search
sites are 0.3 and 0.7, respectively. What is the probability that a
visitor is from a search site given that the blue ad was viewed?

2-8 RANDOM VARIABLES

We often summarize the outcome from a random experiment by a simple number. In many of
the examples of random experiments that we have considered, the sample space has been a
description of possible outcomes. In some cases, descriptions of outcomes are sufficient, but
in other cases, it is useful to associate a number with each outcome in the sample space.
Because the particular outcome of the experiment is not known in advance, the resulting
value of our variable is not known in advance. For this reason, the variable that associates a
number with the outcome of a random experiment is referred to as a random variable.
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A random variable is a function that assigns a real number to each outcome in the
sample space of a random experiment.

Random
Variable

Notation

Notation is used to distinguish between a random variable and the real number.

Sometimes a measurement (such as current in a copper wire or length of a machined part)
can assume any value in an interval of real numbers (at least theoretically). Then arbitrary pre-
cision in the measurement is possible. Of course, in practice, we might round off to the nearest
tenth or hundredth of a unit. The random variable that represents this measurement is said to
be a continuous random variable. The range of the random variable includes all values in an
interval of real numbers; that is, the range can be thought of as a continuum.

In other experiments, we might record a count such as the number of transmitted bits that
are received in error. Then the measurement is limited to integers. Or we might record that a
proportion such as 0.0042 of the 10,000 transmitted bits were received in error. Then the
measurement is fractional, but it is still limited to discrete points on the real line. Whenever
the measurement is limited to discrete points on the real line, the random variable is said to be
a discrete random variable.

A random variable is denoted by an uppercase letter such as X. After an experiment
is conducted, the measured value of the random variable is denoted by a lowercase
letter such as milliamperes.x � 70

A discrete random variable is a random variable with a finite (or countably infinite)
range.

A continuous random variable is a random variable with an interval (either finite or
infinite) of real numbers for its range.

Discrete and
Continuous

Random
Variables

In some cases, the random variable X is actually discrete but, because the range of possible
values is so large, it might be more convenient to analyze X as a continuous random variable. For
example, suppose that current measurements are read from a digital instrument that displays the
current to the nearest one-hundredth of a milliampere. Because the possible measurements are
limited, the random variable is discrete. However, it might be a more convenient, simple approx-
imation to assume that the current measurements are values of a continuous random variable.

Examples of continuous random variables:
electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:
number of scratches on a surface, proportion of defective parts among 1000
tested, number of transmitted bits received in error

Examples 
of Random

Variables
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2-154. Decide whether a discrete or continuous random
variable is the best model for each of the following 
variables:
(a) The time until a projectile returns to earth.

(b) The number of times a transistor in a computer memory
changes state in one operation.

(c) The volume of gasoline that is lost to evaporation during
the filling of a gas tank.

(d) The outside diameter of a machined shaft.
(e) The number of cracks exceeding one-half inch in 10 miles

of an interstate highway.
(f) The weight of an injection-molded plastic part.
(g) The number of molecules in a sample of gas.
(h) The concentration of output from a reactor.
(i) The current in an electronic circuit.

Supplemental Exercises

2-155. Samples of laboratory glass are in small, light pack-
aging or heavy, large packaging. Suppose that 2 and 1% of the
sample shipped in small and large packages, respectively,
break during transit. If 60% of the samples are shipped in large
packages and 40% are shipped in small packages, what pro-
portion of samples break during shipment?

2-156. A sample of three calculators is selected from a
manufacturing line, and each calculator is classified as either
defective or acceptable. Let A, B, and C denote the events
that the first, second, and third calculators, respectively, are
defective.
(a) Describe the sample space for this experiment with a tree

diagram.
Use the tree diagram to describe each of the following events:
(b) A (c) B
(d) (e)

2-157. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish

excellent good

surface excellent 80 2

finish good 10 8

Let A denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent edge
finish. If a part is selected at random, determine the following
probabilities:
(a) (b)
(c) (d)
(e) (f)

2-158. Shafts are classified in terms of the machine tool that
was used for manufacturing the shaft and conformance to surface
finish and roundness.

2-159. If A, B, and C are mutually exclusive events, is it possi-
ble for P(A) � 0.3, P(B) � 0.4, and P(C) � 0.5? Why or why not?

Tool 1 roundness conforms

yes no

surface finish yes 200 1

conforms no 4 2

Tool 2 roundness conforms

yes no

surface finish yes 145 4

conforms no 8 6

(a) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements or to
roundness requirements or is from Tool 1?

(b) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements or does
not conform to roundness requirements or is from Tool 2?

(c) If a shaft is selected at random, what is the probability that
the shaft conforms to both surface finish and roundness
requirements or the shaft is from Tool 2?

(d) If a shaft is selected at random, what is the probability that
the shaft conforms to surface finish requirements or the
shaft is from Tool 2?

2-160. The analysis of shafts for a compressor is summa-
rized by conformance to specifications:

roundness conforms

yes no

surface finish yes 345 5

conforms no 12 8

(a) If we know that a shaft conforms to roundness require-
ments, what is the probability that it conforms to surface
finish requirements?

(b) If we know that a shaft does not conform to roundness
requirements, what is the probability that it conforms to
surface finish requirements?

2-161. A researcher receives 100 containers of oxygen. Of
those containers, have oxygen that is not ionized, and the rest
are ionized. Two samples are randomly selected, without re-
placement, from the lot.
(a) What is the probability that the first one selected is not

ionized?
(b) What is the probability that the second one selected is not

ionized given that the first one was ionized?
(c) What is the probability that both are ionized?
(d) How does the answer in part (b) change if samples se-

lected were replaced prior to the next selection?P1A¿ ´ B2P1A ´ B2
P1A ¨ B2P1A¿ 2
P1B2P1A2

B ´ CA ¨ B

EXERCISES FOR SECTION 2-8

JWCL232_c02_017-065.qxd  1/7/10  9:46 AM  Page 59



60 CHAPTER 2 PROBABILITY

2-162. A lot contains 15 castings from a local supplier and
25 castings from a supplier in the next state. Two castings are
selected randomly, without replacement, from the lot of 40.
Let A be the event that the first casting selected is from the
local supplier, and let B denote the event that the second cast-
ing is selected from the local supplier. Determine:
(a) (b)
(c) (d)

Suppose three castings are selected at random, without re-
placement, from the lot of 40. In addition to the definitions of
events A and B, let C denote the event that the third casting
selected is from the local supplier. Determine:
(e)
(f)

2-163. In the manufacturing of a chemical adhesive, 3% of
all batches have raw materials from two different lots. This
occurs when holding tanks are replenished and the remaining
portion of a lot is insufficient to fill the tanks.

Only 5% of batches with material from a single lot require
reprocessing. However, the viscosity of batches consisting of
two or more lots of material is more difficult to control, and
40% of such batches require additional processing to achieve
the required viscosity.

Let A denote the event that a batch is formed from two dif-
ferent lots, and let B denote the event that a lot requires
additional processing. Determine the following probabilities:
(a) (b)
(c) (d)
(e) (f)
(g)

2-164. Incoming calls to a customer service center are classi-
fied as complaints (75% of calls) or requests for information
(25% of calls). Of the complaints, 40% deal with computer
equipment that does not respond and 57% deal with incomplete
software installation; in the remaining 3% of complaints the
user has improperly followed the installation instructions. The
requests for information are evenly divided on technical ques-
tions (50%) and requests to purchase more products (50%).
(a) What is the probability that an incoming call to the cus-

tomer service center will be from a customer who has not
followed installation instructions properly?

(b) Find the probability that an incoming call is a request for
purchasing more products.

2-165. A congested computer network has a 0.002 proba-
bility of losing a data packet and packet losses are independent
events. A lost packet must be resent.
(a) What is the probability that an e-mail message with 100

packets will need any to be resent?
(b) What is the probability that an e-mail message with 3

packets will need exactly one to be resent?
(c) If 10 e-mail messages are sent, each with 100 packets,

what is the probability that at least one message will need
some packets to be resent?

2-166. Samples of a cast aluminum part are classified on
the basis of surface finish (in microinches) and length mea-
surements. The results of 100 parts are summarized as follows:

length

excellent good

surface excellent 80 2

finish good 10 8

Let A denote the event that a sample has excellent surface fin-
ish, and let B denote the event that a sample has excellent
length. Are events A and B independent?

2-167. An optical storage device uses an error recovery pro-
cedure that requires an immediate satisfactory readback of any
written data. If the readback is not successful after three writing
operations, that sector of the disk is eliminated as unacceptable
for data storage. On an acceptable portion of the disk, the proba-
bility of a satisfactory readback is 0.98. Assume the readbacks
are independent. What is the probability that an acceptable por-
tion of the disk is eliminated as unacceptable for data storage?

2-168. Semiconductor lasers used in optical storage prod-
ucts require higher power levels for write operations than for
read operations. High-power-level operations lower the useful
life of the laser.

Lasers in products used for backup of higher-speed mag-
netic disks primarily write, and the probability that the useful
life exceeds five years is 0.95. Lasers that are in products that
are used for main storage spend approximately an equal
amount of time reading and writing, and the probability that
the useful life exceeds five years is 0.995. Now, 25% of the
products from a manufacturer are used for backup and 75% of
the products are used for main storage.

Let A denote the event that a laser’s useful life exceeds five
years, and let B denote the event that a laser is in a product that
is used for backup.

Use a tree diagram to determine the following:
(a) (b)
(c) (d)
(e) (f)
(g) What is the probability that the useful life of a laser

exceeds five years?
(h) What is the probability that a laser that failed before five

years came from a product used for backup?

2-169. Energy released from three cells breaks the molecular
bond and converts ATP (adenosine triphosphate) into ADP
(adenosine diphosphate). Storage of ATP in muscle cells (even
for an athlete) can only sustain maximal muscle power for less
than five seconds (a short dash). Three systems are used to re-
plenish ATP: phosphagen system; glycogen-lactic acid system
(anaerobic); and aerobic respiration, but the first is only useful
for less than 10 seconds, and even the second system provides
less than two minutes of ATP. An endurance athlete needs to
perform below the anaerobic threshold to sustain energy for

P1A2P1A ¨ B¿ 2
P1A ¨ B2P1A ƒ B¿ 2
P1A ƒ B2P1B2

P1B2
P1A ¨ B¿ 2P1A ¨ B2
P1B ƒ A¿ 2P1B ƒ A2
P1A¿ 2P1A2

P1A ¨ B ¨ C¿ 2
P1A ¨ B ¨ C2

P1A ´ B2P1A ¨ B2
P1B ƒ A2P1A2
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2-8 RANDOM VARIABLES 61

extended periods. A sample of 100 individuals is described by
the energy system used in exercise at different intensity levels.

primarily aerobic

period yes no

1 50 7

2 13 30

Let A denote the event that an individual is in period 2, and
let B denote the event that the energy is primarily aerobic.
Determine the number of individuals in
(a) (b) (c) 

2-170. A sample preparation for a chemical measurement
is completed correctly by 25% of the lab technicians, com-
pleted with a minor error by 70%, and completed with a major
error by 5%.
(a) If a technician is selected randomly to complete the prepa-

ration, what is the probability it is completed without error?
(b) What is the probability that it is completed with either a

minor or a major error?

2-171. In circuit testing of printed circuit boards, each
board either fails or does not fail the test. A board that fails the
test is then checked further to determine which one of five de-
fect types is the primary failure mode. Represent the sample
space for this experiment.

2-172. The data from 200 machined parts are summarized
as follows:

depth of bore

above below
edge condition target target

coarse 15 10

moderate 25 20

smooth 50 80

(a) What is the probability that a part selected has a moderate
edge condition and a below-target bore depth?

(b) What is the probability that a part selected has a moderate
edge condition or a below-target bore depth?

(c) What is the probability that a part selected does not have a
moderate edge condition or does not have a below-target
bore depth?

2-173. Computers in a shipment of 100 units contain a
portable hard drive, DVD drive, or both, according to the
following table:

portable hard drive

yes no
DVD

yes 15 80

no 4 1

Let A denote the event that a computer has a portable hard
drive and let B denote the event that a computer has a DVD
drive. If one computer is selected randomly, compute

(a) (b) (c)
(d) (e)

2-174. The probability that a customer’s order is not
shipped on time is 0.05. A particular customer places three
orders, and the orders are placed far enough apart in time that
they can be considered to be independent events.
(a) What is the probability that all are shipped on time?
(b) What is the probability that exactly one is not shipped on

time?
(c) What is the probability that two or more orders are not

shipped on time?

2-175. Let E1, E2, and E3 denote the samples that conform
to a percentage of solids specification, a molecular weight
specification, and a color specification, respectively. A total of
240 samples are classified by the E1, E2, and E3 specifications,
where yes indicates that the sample conforms.

E3 yes
E2

yes no Total

E1 yes 200 1 201

no 5 4 9

Total 205 5 210

E3 no

E2

yes no

E1 yes 20 4 24

no 6 0 6

Total 26 4 30

(a) Are E1, E2, and E3 mutually exclusive events?
(b) Are E�1, E�2, and E�3 mutually exclusive events?
(c) What is P(E�1 or E�2 or E�3)?
(d) What is the probability that a sample conforms to all three

specifications?
(e) What is the probability that a sample conforms to the E1 or

E3 specification?
(f) What is the probability that a sample conforms to the E1 or

E2 or E3 specification?

2-176. Transactions to a computer database are either new
items or changes to previous items. The addition of an item
can be completed in less than 100 milliseconds 90% of the
time, but only 20% of changes to a previous item can be com-
pleted in less than this time. If 30% of transactions are changes,
what is the probability that a transaction can be completed in
less than 100 milliseconds?

2-177. A steel plate contains 20 bolts. Assume that five bolts
are not torqued to the proper limit. Four bolts are selected at
random, without replacement, to be checked for torque.
(a) What is the probability that all four of the selected bolts

are torqued to the proper limit?
(b) What is the probability that at least one of the selected

bolts is not torqued to the proper limit?

P1A ƒ B2P1A¿ ¨ B2
P1A ´ B2P1A ¨ B2P 1A2

A ´ BB¿A¿ ¨ B
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(a) If three copies of the software are inspected, determine
the probability that exactly one of the defective copies will
be found.

(b) If three copies of the software are inspected, determine the
probability that both defective copies will be found.

(c) If 73 copies are inspected, determine the probability that
both copies will be found. Hint: Work with the copies that
remain in the lot.

2-184. A robotic insertion tool contains 10 primary compo-
nents. The probability that any component fails during the
warranty period is 0.01. Assume that the components fail
independently and that the tool fails if any component fails.
What is the probability that the tool fails during the warranty
period?

2-185. An e-mail message can travel through one of two
server routes. The probability of transmission error in each of
the servers and the proportion of messages that travel each
route are shown in the following table. Assume that the
servers are independent.

probability of error

percentage 
of messages server 1 server 2 server 3 server 4

route 1 30 0.01 0.015

route 2 70 0.02 0.003

(a) What is the probability that a message will arrive without
error?

(b) If a message arrives in error, what is the probability it was
sent through route 1?

2-186. A machine tool is idle 15% of the time. You request
immediate use of the tool on five different occasions during
the year. Assume that your requests represent independent
events.

(a) What is the probability that the tool is idle at the time of all
of your requests?

(b) What is the probability that the machine is idle at the time
of exactly four of your requests?

(c) What is the probability that the tool is idle at the time of at
least three of your requests?

2-187. A lot of 50 spacing washers contains 30 washers
that are thicker than the target dimension. Suppose that three
washers are selected at random, without replacement, from
the lot.
(a) What is the probability that all three washers are thicker

than the target?
(b) What is the probability that the third washer selected is

thicker than the target if the first two washers selected are
thinner than the target?

(c) What is the probability that the third washer selected is
thicker than the target?

2-188. Continuation of Exercise 2-187. Washers are se-
lected from the lot at random, without replacement.

2-178. The following circuit operates if and only if there is
a path of functional devices from left to right. Assume devices
fail independently and that the probability of failure of each
device is as shown. What is the probability that the circuit
operates?

2-179. The probability of getting through by telephone to
buy concert tickets is 0.92. For the same event, the probability
of accessing the vendor’s Web site is 0.95. Assume that these
two ways to buy tickets are independent. What is the proba-
bility that someone who tries to buy tickets through the
Internet and by phone will obtain tickets?

2-180. The British government has stepped up its informa-
tion campaign regarding foot-and-mouth disease by mailing
brochures to farmers around the country. It is estimated that
99% of Scottish farmers who receive the brochure possess
enough information to deal with an outbreak of the disease,
but only 90% of those without the brochure can deal with an
outbreak. After the first three months of mailing, 95% of the
farmers in Scotland received the informative brochure.
Compute the probability that a randomly selected farmer will
have enough information to deal effectively with an outbreak
of the disease.

2-181. In an automated filling operation, the probability of
an incorrect fill when the process is operated at a low speed is
0.001. When the process is operated at a high speed, the prob-
ability of an incorrect fill is 0.01. Assume that 30% of the
containers are filled when the process is operated at a high
speed and the remainder are filled when the process is
operated at a low speed.
(a) What is the probability of an incorrectly filled container?
(b) If an incorrectly filled container is found, what is the prob-

ability that it was filled during the high-speed operation?

2-182. An encryption-decryption system consists of three
elements: encode, transmit, and decode. A faulty encode
occurs in 0.5% of the messages processed, transmission errors
occur in 1% of the messages, and a decode error occurs in
0.1% of the messages. Assume the errors are independent.
(a) What is the probability of a completely defect-free

message?
(b) What is the probability of a message that has either an

encode or a decode error?

2-183. It is known that two defective copies of a commer-
cial software program were erroneously sent to a shipping lot
that now has a total of 75 copies of the program. A sample of
copies will be selected from the lot without replacement.

0.1

0.1

0.1

0.010.01
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(a) What is the minimum number of washers that need to be
selected so that the probability that all the washers are
thinner than the target is less than 0.10?

(b) What is the minimum number of washers that need to be
selected so that the probability that one or more washers
are thicker than the target is at least 0.90?

2-189. The following table lists the history of 940 orders for
features in an entry-level computer product.

extra memory

no yes

optional high- no 514 68

speed processor yes 112 246

Let A be the event that an order requests the optional high-
speed processor, and let B be the event that an order requests
extra memory. Determine the following probabilities:
(a) (b)
(c) (d)
(e) What is the probability that an order requests an optional

high-speed processor given that the order requests extra
memory?

(f) What is the probability that an order requests extra mem-
ory given that the order requests an optional high-speed
processor?

2-190. The alignment between the magnetic tape and head
in a magnetic tape storage system affects the performance of
the system. Suppose that 10% of the read operations are
degraded by skewed alignments, 5% of the read operations are
degraded by off-center alignments, and the remaining read op-
erations are properly aligned. The probability of a read error is
0.01 from a skewed alignment, 0.02 from an off-center align-
ment, and 0.001 from a proper alignment.
(a) What is the probability of a read error?
(b) If a read error occurs, what is the probability that it is due

to a skewed alignment?

2-191. The following circuit operates if and only if there is
a path of functional devices from left to right. Assume that de-
vices fail independently and that the probability of failure of
each device is as shown. What is the probability that the
circuit does not operate?

0.02

0.02

0.010.01

0.010.01

P1A¿ ¨ B¿ 2P1A¿ ´ B2
P1A ¨ B2P1A ´ B2

2-192. A company that tracks the use of its web site deter-
mined that the more pages a visitor views, the more likely the
visitor is to provide contact information. Use the following
tables to answer the questions:

Number of 
pages viewed: 1 2 3 4 or more

Percentage of
visitors: 40 30 20 10

Percentage of visitors 
in each page-view 
category that provide
contact information: 10 10 20 40

(a) What is the probability that a visitor to the Web site
provides contact information?

(b) If a visitor provides contact information, what is the
probability that the visitor viewed four or more pages?

2-193. An article in Genome Research [“An Assessment
of Gene Prediction Accuracy in Large DNA Sequences”
(2000, Vol. 10, pp. 1631–1642)], considered the accuracy of
commercial software to predict nucleotides in gene se-
quences. The following table shows the number of se-
quences for which the programs produced predictions and
the number of nucleotides correctly predicted (computed
globally from the total number of prediction successes and
failures on all sequences).

Number of
Sequences Proportion

GenScan 177 0.93

Blastx default 175 0.91

Blastx topcomboN 174 0.97

Blastx 2 stages 175 0.90

GeneWise 177 0.98

Procrustes 177 0.93

Assume the prediction successes and failures are independent
among the programs.
(a) What is the probability that all programs predict a nucleo-

tide correctly?
(b) What is the probability that all programs predict a nu-

cleotide incorrectly?
(c) What is the probability that at least one Blastx program

predicts a nucleotide correctly?

2-194. A batch contains 36 bacteria cells. Assume that 12 of
the cells are not capable of cellular replication. Six cells are
selected at random, without replacement, to be checked for
replication.
(a) What is the probability that all six cells of the selected

cells are able to replicate?
(b) What is the probability that at least one of the selected

cells is not capable of replication?
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2-195. A computer system uses passwords that are exactly
seven characters and each character is one of the 26 letters
(a–z) or 10 integers (0–9). Uppercase letters are not used.
(a) How many passwords are possible?
(b) If a password consists of exactly six letters and one num-

ber, how many passwords are possible?
(c) If a password consists of five letters followed by two num-

bers, how many passwords are possible?

2-196. Natural red hair consists of two genes. People with
red hair have two dominant genes, two regressive genes, or
one dominant and one regressive gene. A group of 1000 people
was categorized as follows:

Gene 2

Gene 1 Dominant Regressive Other

Dominant  5 25 30

Regressive 7 63 35

Other 20 15 800

Let A denote the event that a person has a dominant red hair
gene and let B denote the event that a person has a regressive
red hair gene. If a person is selected at random from this
group, compute the following.

(a) (b)
(c) (d) (e)
(f ) Probability that the selected person has red hair

2-197. Two suppliers each supplied 2000 parts and these
were evaluated for conformance to specifications. One part
type was of greater complexity than the other. The proportion
of nonconforming parts of each type are shown in the table.

Simple Complex
Supplier Component Assembly Total

1 Nonconforming 2 10 12

Total 1000 1000 2000

2 Nonconforming 4 6 10

Total 1600 400 2000

One part is selected at random from each supplier. For each
supplier, separately calculate the following probabilities:
(a) What is the probability a part conforms to specifications?
(b) What is the probability a part conforms to specifications

given it is a complex assembly?
(c) What is the probability a part conforms to specifications

given it is a simple component?
(d) Compare your answers for each supplier in part (a) to

those in parts (b) and (c) and explain any unusual results.

P1A ƒ B2P1A¿ ¨ B2P1A ´ B2
P1A ¨ B2P1A2
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2-198. Suppose documents in a lending organization
are selected randomly (without replacement) for review.
In a set of 50 documents, suppose that two actually con-
tain errors.
(a) What is the minimum sample size such that the

probability exceeds 0.90 that at least one document
in error is selected?

(b) Comment on the effectiveness of sampling inspection
to detect errors.

2-199. Suppose that a lot of washers is large enough
that it can be assumed that the sampling is done with re-
placement. Assume that 60% of the washers exceed the
target thickness.
(a) What is the minimum number of washers that need

to be selected so that the probability that none are
thicker than the target is less than 0.10?

(b) What is the minimum number of washers that need to
be selected so that the probability that one or more
washers are thicker than the target is at least 0.90?

2-200. A biotechnology manufacturing firm can pro-
duce diagnostic test kits at a cost of $20. Each kit for
which there is a demand in the week of production can be
sold for $100. However, the half-life of components in
the kit requires the kit to be scrapped if it is not sold in
the week of production. The cost of scrapping the kit is
$5. The weekly demand is summarized as follows:

weekly demand

Number of 
units 0 50 100 200

Probability of
demand 0.05 0.4 0.3 0.25

How many kits should be produced each week to maxi-
mize the mean earnings of the firm?

2-201. Assume the following characteristics of the
inspection process in Exercise 2-177. If an operator
checks a bolt, the probability that an incorrectly torqued
bolt is identified is 0.95. If a checked bolt is correctly

MIND-EXPANDING EXERCISES
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2-8 RANDOM VARIABLES 65

torqued, the operator’s conclusion is always correct.
What is the probability that at least one bolt in the sam-
ple of four is identified as being incorrectly torqued?

2-202. If the events A and B are independent, show
that and are independent.

2-203. Suppose that a table of part counts is generalized
as follows:

conforms

yes no

supplier 1 ka kb

2 a b

where a, b, and k are positive integers. Let A denote the
event that a part is from supplier 1 and let B denote the
event that a part conforms to specifications. Show that
A and B are independent events.

This exercise illustrates the result that whenever the
rows of a table (with r rows and c columns) are propor-
tional, an event defined by a row category and an event
defined by a column category are independent.

B¿A¿

MIND-EXPANDING EXERCISES 

Addition rule
Axioms of probability
Bayes’ theorem
Combination
Conditional probability
Equally likely outcomes
Event

Independence
Multiplication rule
Mutually exclusive

events
Outcome
Permutation
Probability

Random experiment
Random variables—

discrete and 
continuous

Sample spaces—discrete
and continuous

Simpson’s paradox

Total probability rule
Tree diagram
Venn diagram
With or without

replacement

IMPORTANT TERMS AND CONCEPTS
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A redundant array of independent disks (RAID) uses multiple physical disk drives as one log-
ical unit in a computer system. The array can increase performance and robustness to a disk
failure. Data copies can be written simultaneously to multiple drives (known as mirroring) to
provide immediate backup and the ability to recover from failures, but with less storage ca-
pacity than would otherwise be available. Alternatively, to increase performance, the data can
be distributed among multiple disks with only a fraction of the data on each one (known as
striping). But a failure to even a single disk can lead to loss of data. An intermediate design is
to distribute the source data along with additional data (known as parity data) across multiple
disks. With the parity data the source data can be recovered even with disk failures. In partic-
ular, a RAID 5 design uses striping and parity to be able to recover the source data if one disk
in the array fails, while a RAID 6 design allows for data recovery even if two disks fail. Disk
failures due to hardware malfunction are often assumed to be independent with constant prob-
ability. With a large number of disks in an array the risk of data loss and the appropriate array
design to meet the system performance, availability, and cost criteria are important. The num-
ber of failed drives can be modeled as a discrete random variable and the risk of data loss in a
redundant system is only one example of the use of topics in this chapter.

Thinkstock Images/Getty Images, Inc.
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3-1 DISCRETE RANDOM VARIABLES 67

Note that more than one random variable can be defined on a sample space. In Example
3-3, we might also define the random variable Y to be the number of chips from a wafer that
fail the final test.

Table 3-1 Wafer Tests

Outcome

Wafer 1 Wafer 2 Probability x

Pass Pass 0.64 2
Fail Pass 0.16 1
Pass Fail 0.16 1
Fail Fail 0.04 0

EXAMPLE 3-1 Voice Lines
A voice communication system for a business contains 48 
external lines. At a particular time, the system is observed, and
some of the lines are being used. Let the random variable X

denote the number of lines in use. Then, X can assume any of
the integer values 0 through 48. When the system is observed,
if 10 lines are in use, x = 10.

EXAMPLE 3-3
Define the random variable X to be the number of contamina-
tion particles on a wafer in semiconductor manufacturing.
Although wafers possess a number of characteristics, the ran-
dom variable X summarizes the wafer only in terms of the
number of particles.

The possible values of X are integers from zero up to
some large value that represents the maximum number of par-
ticles that can be found on one of the wafers. If this maximum
number is very large, we might simply assume that the range
of X is the set of integers from zero to infinity.

EXAMPLE 3-2
In a semiconductor manufacturing process, two wafers from a
lot are tested. Each wafer is classified as pass or fail. Assume
that the probability that a wafer passes the test is 0.8 and that
wafers are independent. The sample space for the experiment
and associated probabilities are shown in Table 3-1. For exam-
ple, because of the independence, the probability of the out-
come that the first wafer tested passes and the second wafer

tested fails, denoted as pf, is

The random variable X is defined to be equal to the number of
wafers that pass. The last column of the table shows the values
of X that are assigned to each outcome in the experiment.

P1 pf 2 � 0.810.22 � 0.16

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability mass functions and the reverse
2. Determine probabilities from cumulative distribution functions and cumulative distribution func-

tions from probability mass functions, and the reverse
3. Calculate means and variances for discrete random variables
4. Understand the assumptions for some common discrete probability distributions
5. Select an appropriate discrete probability distribution to calculate probabilities in specific applications
6. Calculate probabilities, determine means and variances for some common discrete probability

distributions

3-1 DISCRETE RANDOM VARIABLES

Many physical systems can be modeled by the same or similar random experiments and random
variables. The distribution of the random variables involved in each of these common systems
can be analyzed, and the results can be used in different applications and examples. In this chap-
ter, we present the analysis of several random experiments and discrete random variables that
frequently arise in applications. We often omit a discussion of the underlying sample space of
the random experiment and directly describe the distribution of a particular random variable.
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For each of the following exercises, determine the range
(possible values) of the random variable.

3-1. The random variable is the number of nonconforming sol-
der connections on a printed circuit board with 1000 connections.

3-2. In a voice communication system with 50 lines, the ran-
dom variable is the number of lines in use at a particular time.

3-3. An electronic scale that displays weights to the nearest
pound is used to weigh packages. The display shows only five
digits. Any weight greater than the display can indicate is
shown as 99999. The random variable is the displayed weight.

3-4. A batch of 500 machined parts contains 10 that do not
conform to customer requirements. The random variable is the
number of parts in a sample of five parts that do not conform
to customer requirements.

3-5. A batch of 500 machined parts contains 10 that do not
conform to customer requirements. Parts are selected suc-
cessively, without replacement, until a nonconforming part is
obtained. The random variable is the number of parts selected.

3-6. The random variable is the moisture content of a lot of
raw material, measured to the nearest percentage point.

EXERCISES FOR SECTION 3-1

3-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY 
MASS FUNCTIONS

Random variables are so important in random experiments that sometimes we essentially
ignore the original sample space of the experiment and focus on the probability distribution
of the random variable. For example, in Example 3-1, our analysis might focus exclusively on
the integers {0, 1, . . . , 48} in the range of X. In Example 3-2, we might summarize the ran-
dom experiment in terms of the three possible values of X, namely {0, 1, 2}. In this manner, a
random variable can simplify the description and analysis of a random experiment.

The probability distribution of a random variable X is a description of the probabilities
associated with the possible values of X. For a discrete random variable, the distribution is
often specified by just a list of the possible values along with the probability of each. In some
cases, it is convenient to express the probability in terms of a formula.

3-7. The random variable is the number of surface flaws in
a large coil of galvanized steel.

3-8. The random variable is the number of computer clock
cycles required to complete a selected arithmetic calculation.

3-9. An order for an automobile can select the base model or
add any number of 15 options. The random variable is the
number of options selected in an order.

3-10. Wood paneling can be ordered in thicknesses of 1�8,
1�4, or 3�8 inch. The random variable is the total thickness of
paneling in two orders.

3-11. A group of 10,000 people are tested for a gene
called Ifi202 that has been found to increase the risk for lupus.
The random variable is the number of people who carry the
gene.

3-12. In an acid-base titration, the milliliters of base that are
needed to reach equivalence are measured to the nearest milli-
liter between 0.1 and 0.15 liters (inclusive).

3-13. The number of mutations in a nucleotide sequence of
length 40,000 in a DNA strand after exposure to radiation is
measured. Each nucleotide may be mutated.

EXAMPLE 3-4 Digital Channel
There is a chance that a bit transmitted through a digital trans-
mission channel is received in error. Let X equal the number of
bits in error in the next four bits transmitted. The possible val-
ues for X are {0, 1, 2, 3, 4}. Based on a model for the errors that
is presented in the following section, probabilities for these val-
ues will be determined. Suppose that the probabilities are

P1X � 42� 0.0001

 P1X � 32 � 0.0036P1X � 22 � 0.0486

P1X � 12 � 0.2916 P1X � 02 � 0.6561

The probability distribution of X is specified by the possi-
ble values along with the probability of each. A graphical
description of the probability distribution of X is shown in
Fig. 3-1.

Practical Interpretation: A random experiment can often
be summarized with a random variable and its distribution.
The details of the sample space can often be omitted.

Suppose a loading on a long, thin beam places mass only at discrete points. See Fig. 3-2.
The loading can be described by a function that specifies the mass at each of the discrete
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3-14. The sample space of a random experiment is {a, b, c,
d, e, f }, and each outcome is equally likely. A random variable
is defined as follows:

outcome a b c d e f

x 0 0 1.5 1.5 2 3

EXERCISES FOR SECTION 3-2

For the bits in error in Example 3-4, 
and Check that the probabilities sum to 1.f 142 � 0.0001.0.0036,

 f 132�f 102 � 0.6561,  f 112 � 0.2916,  f 122 � 0.0486,

points. Similarly, for a discrete random variable X, its distribution can be described by a function
that specifies the probability at each of the possible discrete values for X.

For a discrete random variable X with possible values , a probability
mass function is a function such that

(1)

(2)

(3) (3-1)f 1xi2 � P1X � xi2

a
n

i�1
 f 1xi2 � 1

f 1xi2 � 0

x1, x2, p , xn

Probability
Mass Function

x0 1 2 3 4

0.2916 0.0036
0.0001

0.0486

0.6561
f (x)

Figure 3-1 Probability distribution
for bits in error.

Figure 3-2 Loadings at discrete points on a
long, thin beam.

Loading

x

Determine the probability mass function of X. Use the proba-
bility mass function to determine the following probabilities:

(a) (b)
(c) (d)
(e) P1X � 0 or X � 22

P10 � X � 22P1X � 32
P10.5 � X � 2.72P1X � 1.52

EXAMPLE 3-5 Wafer Contamination
Let the random variable X denote the number of semiconduc-
tor wafers that need to be analyzed in order to detect a large
particle of contamination. Assume that the probability that a
wafer contains a large particle is 0.01 and that the wafers are
independent. Determine the probability distribution of X.

Let p denote a wafer in which a large particle is present, and
let a denote a wafer in which it is absent. The sample space of the
experiment is infinite, and it can be represented as all possible
sequences that start with a string of a’s and end with p. That is,

Consider a few special cases. We have 
Also, using the independence assumption,

P1X � 22 � P1ap2 � 0.9910.012 � 0.0099

P1 p2 � 0.01.
P1X � 12 �

s � 5p, ap, aap, aaap, aaaap, aaaaap, and so forth6

A general formula is

for x � 1, 2, 3, . . .

Describing the probabilities associated with X in terms of this
formula is a simple method to define the distribution of X in
this example. Clearly . The fact that the sum of the
probabilities is 1 is left as an exercise. This is an example of a
geometric random variable, and details are provided later in
this chapter.

Practical Interpretation: The random experiment here has
an unbounded number of outcomes but it can still be conve-
niently modeled with a discrete random variable with a (count-
ably) infinite range.

f 1x2 � 0

1x � 12a’s

P1X � x2 � P1aa p ap2� 0.99x�1 10.012,

μ
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For Exercises 3-15 to 3-18, verify that the following functions
are probability mass functions, and determine the requested
probabilities.

3-15. x �2 �1 0 1 2

1�8 2�8 2�8 2�8 1�8

(a) (b)
(c) (d)

3-16.
(a) (b)
(c) (d)

3-17.

(a) (b)
(c) (d)

3-18.
(a) (b)
(c) (d)

3-19. An article in Knee Surgery, Sports Traumatology,
Arthroscopy [“Arthroscopic Meniscal Repair with an Absorbable
Screw: Results and Surgical Technique” (2005, Vol. 13, 
pp. 273–279)] cites a success rate of more than 90% for
meniscal tears with a rim width of less than 3 mm, but only a
67% success rate for tears of 3–6 mm. If you are unlucky
enough to suffer a meniscal tear of less than 3 mm on your left
knee and one of width 3–6 mm on your right knee, what is the
probability mass function of the number of successful surgeries?
Assume the surgeries are independent.

3-20. An optical inspection system is to distinguish
among different part types. The probability of a correct
classification of any part is 0.98. Suppose that three parts
are inspected and that the classifications are independent.
Let the random variable X denote the number of parts that
are correctly classified. Determine the probability mass
function of X.

3-21. In a semiconductor manufacturing process, three
wafers from a lot are tested. Each wafer is classified as pass or
fail. Assume that the probability that a wafer passes the test is
0.8 and that wafers are independent. Determine the probabil-
ity mass function of the number of wafers from a lot that pass
the test.

3-22. The space shuttle flight control system called PASS
(Primary Avionics Software Set) uses four independent
computers working in parallel. At each critical step, the
computers “vote” to determine the appropriate step. The
probability that a computer will ask for a roll to the left
when a roll to the right is appropriate is 0.0001. Let X de-
note the number of computers that vote for a left roll when a
right roll is appropriate. What is the probability mass func-
tion of X?

P1X � 12P1X � 22
P1X � 22P1X � 22

f 1x2 � 13�42 11�42x, x � 0, 1, 2, p
P1X � �102P12 � X � 42
P1X � 12P1X � 42

f 1x2 �
2x 	 1

25
, x � 0, 1, 2, 3, 4

P1X � 1 or X � 12P12 � X � 62
P1X � 12P1X � 12

f 1x2 � 18�72 11�22x, x � 1, 2, 3

P1X � �1 or X � 22P1�1 � X � 12
P1X � �22P1X � 22

f 1x2

3-23. A disk drive manufacturer sells storage devices with
capacities of one terabyte, 500 gigabytes, and 100 gigabytes
with probabilities 0.5, 0.3, and 0.2, respectively. The revenues
associated with the sales in that year are estimated to be $50
million, $25 million, and $10 million, respectively. Let X de-
note the revenue of storage devices during that year.
Determine the probability mass function of X.

3-24. Marketing estimates that a new instrument for the
analysis of soil samples will be very successful, moderately
successful, or unsuccessful, with probabilities 0.3, 0.6,
and 0.1, respectively. The yearly revenue associated with
a very successful, moderately successful, or unsuccessful
product is $10 million, $5 million, and $1 million, respec-
tively. Let the random variable X denote the yearly revenue
of the product. Determine the probability mass function
of X.

3-25. The distributor of a machine for cytogenics has
developed a new model. The company estimates that when it
is introduced into the market, it will be very successful with a
probability 0.6, moderately successful with a probability 0.3,
and not successful with probability 0.1. The estimated
yearly profit associated with the model being very successful
is $15 million and with it being moderately successful is 
$5 million; not successful would result in a loss of $500,000.
Let X be the yearly profit of the new model. Determine the
probability mass function of X.

3-26. An assembly consists of two mechanical components.
Suppose that the probabilities that the first and second compo-
nents meet specifications are 0.95 and 0.98. Assume that the
components are independent. Determine the probability mass
function of the number of components in the assembly that
meet specifications.

3-27. An assembly consists of three mechanical compo-
nents. Suppose that the probabilities that the first, second, and
third components meet specifications are 0.95, 0.98, and 0.99.
Assume that the components are independent. Determine the
probability mass function of the number of components in the
assembly that meet specifications.

3-28. The data from 200 endothermic reactions involving
sodium bicarbonate are summarized as follows:

Calculate the probability mass function of final temperature.

3-29. Actual lengths of stay at a hospital’s emergency de-
partment in 2009 are shown in the following table (rounded to
the nearest hour). Length of stay is the total of wait and service
times. Some longer stays are also approximated as 15 hours in
this table.

Final Temperature Number 
Conditions of Reactions

266 K 48

271 K 60

274 K 92
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3-3 CUMULATIVE DISTRIBUTION FUNCTIONS

Calculate the probability mass function of the wait time for
service.

3-30. The distribution of the time until a Web site changes is
important to Web crawlers that are used by search engines to
maintain current information about Web sites. The distribution
of the time until change (in days) of a Web site is approxi-
mated in the following table.

Days until Changes Probability

1.5 0.05

3.0 0.25

4.5 0.35

5.0 0.20

7.0 0.15

Hours Count Percent

1 19 3.80

2 51 10.20

3 86 17.20

4 102 20.40

5 87 17.40

6 62 12.40

7 40 8.00

8 18 3.60

9 14 2.80

10 11 2.20

15 10 2.00

Calculate the probability mass function of the days until
change.

3-31. The following table shows the typical depth (rounded
to the nearest foot) for non-failed  wells in geological forma-
tions in Baltimore County (The Journal of Data Science,
2009, Vol. 7, pp. 111–127).

Calculate the probability mass function of depth for non-failed
wells from the table.

Geological 
Formation Number of Non-failed 
Group Non-failed Wells Well Depth

Gneiss 1,515 255

Granite 26 218

Loch Raven Schist 3,290 317

Mafic 349 231

Marble 280 267

Prettyboy Schist 1,343 255

Other schists 887 267

Serpentine 36 217

Total 7,726 2,027

EXAMPLE 3-6 Digital Channel
In Example 3-4, we might be interested in the probability of
three or fewer bits being in error. This question can be ex-
pressed as 

The event that is the union of the events
Clearly, these

three events are mutually exclusive. Therefore,
5X � 36.5X � 06, 5X � 16, 5X � 26, and

5X � 36
P1X � 32.

This approach can also be used to determine

P1X � 32 � P1X � 32 � P1X � 22 � 0.0036

� 0.6561 	 0.2916 	 0.0486 	 0.0036 � 0.9999

P1X � 32 � P1X � 02 	 P1X �12	 P1X � 22	 P1X � 32

Example 3-6 shows that it is sometimes useful to be able to provide cumulative proba-
bilities such as and that such probabilities can be used to find the probability mass
function of a random variable. Therefore, using cumulative probabilities is an alternate
method of describing the probability distribution of a random variable.

In general, for any discrete random variable with possible values 
the events are mutually exclusive. Therefore, 

.P1X � x2 � g xi�x f 1xi2

5X � x16,  5X � x26, p ,  5X � xn6
x1, x2, p , xn,

P1X � x2
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Properties (1) and (2) of a cumulative distribution function follow from the definition.
Property (3) follows from the fact that if , the event that is contained in the
event . Like a probability mass function, a cumulative distribution function pro-
vides probabilities. Even if the random variable X can only assume integer values, the
cumulative distribution function can be defined at noninteger values. In Example 3-6,
F(1.5) � P(X � 1.5) � P{X � 0} 	 P(X � 1) � 0.6561 	 0.2916 � 0.9477. The next ex-
ample shows how the cumulative distribution function can be used to determine the probability
mass function of a discrete random variable.

5X � y6
5X � x6x � y

The cumulative distribution function of a discrete random variable X, denoted as
is

For a discrete random variable X, satisfies the following properties.

(1)

(2)

(3) (3-2)If x � y, then F1x2 � F1y2

0 � F1x2 � 1

F1x2 � P1X � x2 � g xi�x f 1xi2

F1x2

F1x2 � P1X � x2 � a
xi�x

 f  1xi2

F1x2,

Cumulative
Distribution

Function

EXAMPLE 3-7 Cumulative Distribution Function
Determine the probability mass function of X from the follow-
ing cumulative distribution function:

Figure 3-3 displays a plot of From the plot, the
only points that receive nonzero probability are �2, 0, and

F1x2.

F1x2 � μ

0 x � �2
0.2 �2 � x � 0
0.7 0 � x � 2
1 2 � x

2. The probability mass function at each point is the change
in the cumulative distribution function at the point.
Therefore,

 f 122 � 1.0 � 0.7 � 0.3

 f 102 � 0.7 � 0.2 � 0.5

 f 1�22 � 0.2 � 0 � 0.2

EXAMPLE 3-8 Sampling without Replacement
Suppose that a day’s production of 850 manufactured parts
contains 50 parts that do not conform to customer require-
ments. Two parts are selected at random, without replacement,
from the batch. Let the random variable X equal the number of
nonconforming parts in the sample. What is the cumulative
distribution function of X ?

The question can be answered by first finding the proba-
bility mass function of X.

P1X � 22 �
50

850
�

49

849
� 0.003

P1X � 12 � 2 �
800

850
�

50

849
� 0.111

P1X � 02 �
800

850
�

799

849
� 0.886

Therefore,

The cumulative distribution function for this example is
graphed in Fig. 3-4. Note that is defined for all x from

and not only for 0, 1, and 2.�
 � x � 

F1x2

F122 � P1X � 22 � 1

F112 � P1X � 12 � 0.886 	 0.111 � 0.997

F102 � P1X � 02 � 0.886
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0

0.2

2–2

0.7

1.0

x

F(x)

Figure 3-3 Cumulative distribution function for
Example 3-7.

Figure 3-4 Cumulative distribution
function for Example 3-8.

0 2

0.997
1.000

x

0.886

1

F(x)

3-32. Determine the cumulative distribution function of the
random variable in Exercise 3-14.

3-33. Determine the cumulative distribution function for
the random variable in Exercise 3-15; also determine the fol-
lowing probabilities:
(a) (b)
(c) (d)

3-34. Determine the cumulative distribution function for the
random variable in Exercise 3-16; also determine the following
probabilities:
(a) (b)
(c) (d)

3-35. Determine the cumulative distribution function for
the random variable in Exercise 3-21.

3-36. Determine the cumulative distribution function for
the random variable in Exercise 3-22.

3-37. Determine the cumulative distribution function for
the random variable in Exercise 3-23.

3-38. Determine the cumulative distribution function for
the variable in Exercise 3-24.

Verify that the following functions are cumulative distribution
functions, and determine the probability mass function and the
requested probabilities.

3-39.

(a) (b)
(c) (d)

3-40. Errors in an experimental transmission channel are
found when the transmission is checked by a certifier that de-
tects missing pulses. The number of errors found in an eight-
bit byte is a random variable with the following distribution:

F1x2 � μ

0 x � 1
0.7 1 � x � 4
0.9 4 � x � 7
1 7 � x

P1X � 22P11 � X � 22
P1X � 22P1X � 32

F1x2 � •
0 x � 1
0.5 1 � x � 3
1 3 � x

P11 � X � 22P1X � 22
P1X � 32P1X � 1.52

P1X � 02P1�1.1 � X � 12
P1X � 2.22P1X � 1.252

Determine each of the following probabilities:
(a) (b)
(c) (d)
(e)

3-41.

(a) (b)
(c) (d)
(e) (f)

3-42. The thickness of wood paneling (in inches) that a cus-
tomer orders is a random variable with the following cumula-
tive distribution function:

Determine the following probabilities:
(a) (b)
(c) (d)
(e)

3-43. Determine the cumulative distribution function for
the random variable in Exercise 3-28.

3-44. Determine the cumulative distribution function for
the random variable in Exercise 3-29.

3-45. Determine the cumulative distribution function for
the random variable in Exercise 3-30.

3-46. Determine the cumulative distribution function for
the random variable in Exercise 3-31.

P1X � 1�22
P1X � 1�42P1X � 5�162
P1X � 1�42P1X � 1�182

F1x2 � μ

0 x � 1�8
0.2 1�8 � x � 1�4
0.9 1�4 � x � 3�8
1 3�8 � x

P1�10 � X � 102P10 � X � 102
P1X � 02P140 � X � 602
P1X � 402P1X � 502

F1x2 � μ

0 x � �10
0.25 �10 � x � 30
0.75 30 � x � 50
1 50 � x

P1X � 22
P1X � 42P1X � 52
P1X � 72P1X � 42

EXERCISES FOR SECTION 3-3
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3-4 MEAN AND VARIANCE OF A DISCRETE 
RANDOM VARIABLE

Two numbers are often used to summarize a probability distribution for a random variable X.
The mean is a measure of the center or middle of the probability distribution, and the variance
is a measure of the dispersion, or variability in the distribution. These two measures do not
uniquely identify a probability distribution. That is, two different distributions can have the
same mean and variance. Still, these measures are simple, useful summaries of the probabil-
ity distribution of X.

0 8642 10

(a)

0 8642 10

(b)

Figure 3-5 A probability distribution can be viewed as a loading with the mean equal
to the balance point. Parts (a) and (b) illustrate equal means, but Part (a) illustrates a 
larger variance.

The mean or expected value of the discrete random variable X, denoted as � or
is

(3-3)

The variance of X, denoted as or is

The standard deviation of X is .� � 2�2

�2 � V1X 2 � E1X � �22 � a
x
1x � �22f 1x2 � a

x
x2f 1x2 � �2

V1X 2,�2

� � E1X 2 � a
x

xf 1x2

E1X 2,

Mean and
Variance

The mean of a discrete random variable X is a weighted average of the possible values of
X, with weights equal to the probabilities. If is the probability mass function of a loading
on a long, thin beam, is the point at which the beam balances. Consequently, 
describes the “center’’ of the distribution of X in a manner similar to the balance point of a
loading. See Fig. 3-5.

The variance of a random variable X is a measure of dispersion or scatter in the possible
values for X. The variance of X uses weight as the multiplier of each possible squared
deviation . Figure 3-5 illustrates probability distributions with equal means but dif-
ferent variances. Properties of summations and the definition of � can be used to show the
equality of the formulas for variance.

 � a
x

x2f 1x2 � 2�2 	 �2 � a
x

x2f 1x2 � �2

 V1X 2 �a
x
1x � �22f 1x2 �a

x
x2f 1x2 � 2�a

x
xf 1x2 	 �2

a
x

f 1x2

1x � �22
f 1x2

E1X 2E1X 2
f 1x2
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Either formula for can be used. Figure 3-6 illustrates that two probability distributions
can differ even though they have identical means and variances.

V1x2

0 8642 10

(a)

0 8642 10

(b)

Figure 3-6 The probability distributions illustrated in Parts (a) and (b) differ even
though they have equal means and equal variances.

EXAMPLE 3-9 Digital Channel
In Example 3-4, there is a chance that a bit transmitted through a
digital transmission channel is received in error. Let X equal the
number of bits in error in the next four bits transmitted. The pos-
sible values for X are . Based on a model for the er-
rors that is presented in the following section, probabilities for
these values will be determined. Suppose that the probabilities are

Now

Although X never assumes the value 0.4, the weighted average
of the possible values is 0.4.

To calculate a table is convenient.V1X 2,

� 0.4

	 310.00362 	 410.00012
� 010.65612 	 110.29162 	 210.04862

 � � E1X2 � 0f 102 	 1f 112 	 2f 122 	 3f 132 	 4f 142

 P1X � 12 � 0.2916  P1X � 32 � 0.0036

 P1X � 02 � 0.6561  P1X � 22 � 0.0486  P1X � 42 � 0.0001

50, 1, 2, 3, 46

The alternative formula for variance could also be used to
obtain the same result.

Practical Interpretation: The mean and variance summa-
rize the distribution of a random variable. The mean is a
weighted average of the values and the variance measures the
dispersion of the values from the mean. Different distributions
may have the same mean and variance.

V1X 2 � �2 � a
5

i�1
 f 1xi2 1xi � 0.422 � 0.36

0 �0.4 0.16 0.6561 0.104976

1 0.6 0.36 0.2916 0.104976

2 1.6 2.56 0.0486 0.124416

3 2.6 6.76 0.0036 0.024336

4 3.6 12.96 0.0001 0.001296

f 1x2 1x � 0.422f 1x21x � 0.422x � 0.4x

EXAMPLE 3-10 Marketing
Two new product designs are to be compared on the basis of
revenue potential. Marketing feels that the revenue from design
A can be predicted quite accurately to be $3 million. The rev-
enue potential of design B is more difficult to assess. Marketing
concludes that there is a probability of 0.3 that the revenue from
design B will be $7 million, but there is a 0.7 probability that the
revenue will be only $2 million. Which design do you prefer?

Let X denote the revenue from design A. Because there is
no uncertainty in the revenue from design A, we can model the
distribution of the random variable X as $3 million with prob-
ability 1. Therefore, million.

Let Y denote the revenue from design B. The expected
value of Y in millions of dollars is

E1Y 2 � $710.32 	 $210.72 � $3.5

E1X 2 � $3

Because E1Y 2 exceeds E1X 2, we might prefer design B. However,
the variability of the result from design B is larger. That is,

Because the units of the variables in this example are millions of
dollars, and because the variance of a random variable squares
the deviations from the mean, the units of are millions of
dollars squared. These units make interpretation difficult.

Because the units of standard deviation are the same as the
units of the random variable, the standard deviation is easier
to interpret. In this example, we can summarize our results as
“the average deviation of Y from its mean is $2.29 million.’’

�

�2

 � 5.25 millions of dollars squared

 �2 � 17 � 3.52210.32 	 12 � 3.52210.72
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If X is a discrete random variable with probability mass function 

(3-4)E 3h1X 2 4 � a
x

h1x 2 f 1x 2

f 1x2,
Expected Value of a

Function of a
Discrete Random

Variable

3-47. If the range of X is the set {0, 1, 2, 3, 4} and P 1X � 
x2 � 0.2, determine the mean and variance of the random
variable.

3-48. Determine the mean and variance of the random variable
in Exercise 3-14.

3-49. Determine the mean and variance of the random variable
in Exercise 3-15.

3-50. Determine the mean and variance of the random variable
in Exercise 3-16.

3-51. Determine the mean and variance of the random variable
in Exercise 3-17.

3-52. Determine the mean and variance of the random variable
in Exercise 3-18.

3-53. Determine the mean and variance of the random variable
in Exercise 3-19.

3-54. Determine the mean and variance of the random vari-
able in Exercise 3-20.

3-55. The range of the random variable X is 
where x is unknown. If each value is equally likely and the
mean of X is 6, determine x.

3-56. In a NiCd battery, a fully charged cell is composed of
nickelic hydroxide. Nickel is an element that has multiple
oxidation states. Assume the following proportions of the
states:

Nickel Charge Proportions Found

0 0.17

	2 0.35

	3 0.33

	4 0.15

30, 1, 2, 3, x 4 ,

EXERCISES FOR SECTION 3-4

EXAMPLE 3-11 Messages
The number of messages sent per hour over a computer network
has the following distribution:

x � number of messages 10 11 12 13 14 15

0.08 0.15 0.30 0.20 0.20 0.07

Determine the mean and standard deviation of the number of
messages sent per hour.

f 1x2 � � 2V1X 2 � 21.85 � 1.36

� 12.52 � 1.85
V1X 2 � 10210.082 	 11210.152 	 p 	 15210.072

E1X 2 � 1010.082 	 1110.152 	 p 	 1510.072 � 12.5

The variance of a random variable X can be considered to be the expected value of a specific
function of X, namely, . In general, the expected value of any function 
of a discrete random variable is defined in a similar manner.

h1X 2h1X 2 � 1X � �22

EXAMPLE 3-12 Digital Channel
In Example 3-9, X is the number of bits in error in the next
four bits transmitted. What is the expected value of the square
of the number of bits in error? Now, . Therefore,

	 32 
 0.0036 	 42 
 0.0001 � 0.52

E 3h1X 2 4 � 02 
 0.6561 	 12 
 0.2916 	 22 
 0.0486

h1X 2 � X 2

Practical Interpretation: The expected value of a function
of a random variable is simply a weighted average of the func-
tion evaluated at the values of the random variable.

In the previous example, the expected value of does not equal squared. However,
in the special case that for any constants a and b, This
can be shown from the properties of sums in the definition in Equation 3-4.

aE1X 2 	 b.E 3h1X 2 4 �h1X 2 � aX 	 b
E1X 2X2
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3-5 DISCRETE UNIFORM DISTRIBUTION

The simplest discrete random variable is one that assumes only a finite number of possible
values, each with equal probability. A random variable X that assumes each of the values

with equal probability is frequently of interest.1�n,x1, x2, p , xn,

A random variable X has a discrete uniform distribution if each of the n values in
its range, say, has equal probability. Then,

(3-5)f 1xi2 � 1�n

x1, x2, p , xn,

Discrete
Uniform

Distribution

(a) Determine the cumulative distribution function of nickel
charge.

(b) Determine the mean and variance of the nickel charge.

3-57. The space shuttle flight control system called PASS
(Primary Avionics Software Set) uses four independent com-
puters working in parallel. At each critical step, the comput-
ers “vote” to determine the appropriate step. The probability
that a computer will ask for a roll to the left when a roll to the
right is appropriate is 0.0001. Let X denote the number of
computers that vote for a left roll when a right roll is appro-
priate. What is the mean and variance of X ?

3-58. Trees are subjected to different levels of carbon dioxide
atmosphere with 6% of the trees in a minimal growth condition
at 350 parts per million (ppm), 10% at 450 ppm (slow growth),
47% at 550 ppm (moderate growth), and 37% at 650 ppm (rapid
growth). What are the mean and standard deviation of the car-
bon dioxide atmosphere (in ppm) for these trees in ppm?

3-59. An article in the Journal of Database Management
[“Experimental Study of a Self-Tuning Algorithm for DBMS
Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided the workload
used in the TPC-C OLTP (Transaction Processing Performance

Council’s Version C On-Line Transaction Processing) bench-
mark, which simulates a typical order entry application.

The frequency of each type of transaction (in the second col-
umn) can be used as the percentage of each type of transac-
tion. The average number of selects operations required for
each type transaction is shown.
(a) Determine the mean and standard deviation of the number

of selects operations for a transaction from the distribution
of types shown in the table.

(b) Determine the mean and standard deviation of the total
number of operations (selects, updates, . . . , and joins) for
a transaction from the distribution of types shown in the
table.

3-60. Calculate the mean and variance for the random variable
in Exercise 3-28.
3-61. Calculate the mean and variance for the random variable
in Exercise 3-29.
3-62. Calculate the mean and variance for the random variable
in Exercise 3-30.
3-63. Calculate the mean and variance for the random variable
in Exercise 3-31.

Average Frequencies and Operations in TPC-C

Non-Unique
Transaction Frequency Selects Updates Inserts Deletes Selects Joins

New Order 43 23 11 12 0 0 0

Payment 44 4.2 3 1 0 0.6 0

Order Status 4 11.4 0 0 0 0.6 0

Delivery 5 130 120 0 10 0 0

Stock Level 4 0 0 0 0 0 1
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Suppose X is a discrete uniform random variable on the consecutive integers
for The mean of X is

The variance of X is

(3-6)�2 �
1b � a 	 122 � 1

12

� � E1X2 �
b 	 a

2

a � b.a, a 	 1, a 	 2, p , b,

Suppose the range of the discrete random variable X is the consecutive integers a,
for The range of X contains b � a 	 1 values each with proba-

bility . Now,

The algebraic identity can be used to simplify the result to

. The derivation of the variance is left as an exercise.� � 1b 	 a2�2

a
b

k�a
 k �

b1b 	 12 � 1a � 12a

2

� � a
b

k�a
 k  a

1
b � a 	 1

b

1� 1b � a 	 12
a � b.a 	 1, a 	 2, p , b,

Mean and
Variance

f(x)

x0 1 2 3 4 5 6 7 8 9

0.1

Figure 3-7 Probability
mass function for a 
discrete uniform random
variable.

EXAMPLE 3-13
The first digit of a part’s serial number is equally likely to be
any one of the digits 0 through 9. If one part is selected from a
large batch and X is the first digit of the serial number, X has a
discrete uniform distribution with probability 0.1 for each

value in That is,

for each value in R. The probability mass function of X is
shown in Fig. 3-7.

f 1x2 � 0.1

R � 50, 1, 2, p , 96.

EXAMPLE 3-14 Number of Voice Lines
As in Example 3-1, let the random variable X denote the number
of the 48 voice lines that are in use at a particular time.
Assume that X is a discrete uniform random variable with a
range of 0 to 48. Then,

E1X 2 � 148 	 02�2 � 24

and

Practical Interpretation: The average number of lines in use is
24 but the dispersion (as measured by �) is large. Therefore,
at many times far more or fewer than 24 lines are in use.

� � 5 3 148 � 0 	 122 � 1 4 �1261�2 � 14.14

Equation 3-6 is more useful than it might first appear. If all the values in the range of a
random variable X are multiplied by a constant (without changing any probabilities), the mean
and standard deviation of X are multiplied by the constant. You are asked to verify this result
in an exercise. Because the variance of a random variable is the square of the standard devia-
tion, the variance of X is multiplied by the constant squared. More general results of this type
are discussed in Chapter 5.
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EXERCISES FOR SECTION 3-5

3-64. Let the random variable X have a discrete uniform
distribution on the integers . Determine the mean
and variance of X.

3-65. Let the random variable X have a discrete uniform
distribution on the integers . Determine the mean
and variance of X.

3-66. Thickness measurements of a coating process are
made to the nearest hundredth of a millimeter. The thickness
measurements are uniformly distributed with values 0.15,
0.16, 0.17, 0.18, and 0.19. Determine the mean and variance
of the coating thickness for this process.

3-67. Product codes of two, three, four, or five letters are
equally likely. What is the mean and standard deviation of the
number of letters in the codes?

3-68. The lengths of plate glass parts are measured to the
nearest tenth of a millimeter. The lengths are uniformly dis-
tributed, with values at every tenth of a millimeter starting at
590.0 and continuing through 590.9. Determine the mean and
variance of the lengths.

3-69. Assume that the wavelengths of photosynthetically
active radiations (PAR) are uniformly distributed at integer
nanometers in the red spectrum from 675 to 700 nm.
(a) What is the mean and variance of the wavelength distribu-

tion for this radiation?
(b) If the wavelengths are uniformly distributed at integer

nanometers from 75 to 100 nanometers, how does the

1 � x � 3

0 � x � 99
mean and variance of the wavelength distribution com-
pare to the previous part? Explain.

3-70. The probability of an operator entering alpha-
numeric data incorrectly into a field in a database is equally
likely. The random variable X is the number of fields on a
data entry form with an error. The data entry form has
28 fields. Is X a discrete uniform random variable? Why or
why not?

3-71. Suppose that X has a discrete uniform distribution on
the integers 0 through 9. Determine the mean, variance, and
standard deviation of the random variable Y � 5X and com-
pare to the corresponding results for X.

3-72. Show that for a discrete uniform random variable X,
if each of the values in the range of X is multiplied by the
constant c, the effect is to multiply the mean of X by c and
the variance of X by . That is, show that 
and .

3-73. The number of pages in a PDF document you create has
a discrete uniform distribution from five to nine pages (including
the end points). What are the mean and standard deviation of the
number of pages in the document?

3-74. Suppose that nine-digit Social security numbers are
assigned at random. If you randomly select a number, what is
the probability that it belongs to one of the 300 million people
in the United States?

V1cX 2 � c2V1X 2
E1cX 2 � cE1X 2c2

3-6 BINOMIAL DISTRIBUTION

Consider the following random experiments and random variables:

1. Flip a coin 10 times. Let X � number of heads obtained.

2. A worn machine tool produces 1% defective parts. Let X � number of defective parts
in the next 25 parts produced.

3. Each sample of air has a 10% chance of containing a particular rare molecule. Let
X � the number of air samples that contain the rare molecule in the next 18 samples
analyzed.

4. Of all bits transmitted through a digital transmission channel, 10% are received in
error. Let X � the number of bits in error in the next five bits transmitted.

5. A multiple-choice test contains 10 questions, each with four choices, and you guess
at each question. Let X � the number of questions answered correctly.

EXAMPLE 3-15 Proportion of Voice Lines
Let the random variable Y denote the proportion of the 48
voice lines that are in use at a particular time, and X denote the
number of lines that are in use at a particular time. Then,

. Therefore,Y � X�48

and

V1Y2 � V1X2�482 � 0.087

E1Y 2 � E1X 2�48 � 0.5
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6. In the next 20 births at a hospital, let X � the number of female births.

7. Of all patients suffering a particular illness, 35% experience improvement from a
particular medication. In the next 100 patients administered the medication, let 
X � the number of patients who experience improvement.

These examples illustrate that a general probability model that includes these experiments as
particular cases would be very useful.

Each of these random experiments can be thought of as consisting of a series of repeated,
random trials: 10 flips of the coin in experiment 1, the production of 25 parts in experiment 2,
and so forth. The random variable in each case is a count of the number of trials that meet a
specified criterion. The outcome from each trial either meets the criterion that X counts or it
does not; consequently, each trial can be summarized as resulting in either a success or a fail-
ure. For example, in the multiple-choice experiment, for each question, only the choice that is
correct is considered a success. Choosing any one of the three incorrect choices results in the
trial being summarized as a failure.

The terms success and failure are just labels. We can just as well use A and B or 0 or 1.
Unfortunately, the usual labels can sometimes be misleading. In experiment 2, because X
counts defective parts, the production of a defective part is called a success.

A trial with only two possible outcomes is used so frequently as a building block of a ran-
dom experiment that it is called a Bernoulli trial. It is usually assumed that the trials that con-
stitute the random experiment are independent. This implies that the outcome from one trial
has no effect on the outcome to be obtained from any other trial. Furthermore, it is often rea-
sonable to assume that the probability of a success in each trial is constant. In the multiple-
choice experiment, if the test taker has no knowledge of the material and just guesses at each
question, we might assume that the probability of a correct answer is for each question.1�4

Outcome x Outcome x

OOOO 0 EOOO 1

OOOE 1 EOOE 2

OOEO 1 EOEO 2

OOEE 2 EOEE 3

OEOO 1 EEOO 2

OEOE 2 EEOE 3

OEEO 2 EEEO 3

OEEE 3 EEEE 4

EXAMPLE 3-16 Digital Channel
The chance that a bit transmitted through a digital transmission
channel is received in error is 0.1. Also, assume that the trans-
mission trials are independent. Let X � the number of bits in
error in the next four bits transmitted. Determine .

Let the letter E denote a bit in error, and let the letter O
denote that the bit is okay, that is, received without error. We
can represent the outcomes of this experiment as a list of four
letters that indicate the bits that are in error and those that are
okay. For example, the outcome OEOE indicates that the second
and fourth bits are in error and the other two bits are okay. The
corresponding values for x are

P1X � 22

The event that X � 2 consists of the six outcomes:

Using the assumption that the trials are independent, the
probability of {EEOO} is

Also, any one of the six mutually exclusive outcomes for
which X � 2 has the same probability of occurring. Therefore,

In general,

(number of outcomes that result in x errors)

To complete a general probability formula, only an expres-
sion for the number of outcomes that contain x errors is
needed. An outcome that contains x errors can be constructed
by partitioning the four trials (letters) in the outcome into
two groups. One group is of size x and contains the errors,
and the other group is of size n � x and consists of the trials
that are okay. The number of ways of partitioning four objects 


 10.12x10.924�x
P1X � x2 �

P1X � 22 � 610.00812 � 0.0486

P1EEOO2 � P1E2P1E2P1O2P1O2 � 10.12210.922 � 0.0081

5EEOO, EOEO, EOOE, OEEO, OEOE, OOEE6
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A random experiment consists of n Bernoulli trials such that

(1) The trials are independent.

(2) Each trial results in only two possible outcomes, labeled as “success’’ and
“failure.’’

(3) The probability of a success in each trial, denoted as p, remains constant.

The random variable X that equals the number of trials that result in a success
has a binomial random variable with parameters and The
probability mass function of X is

(3-7)f 1x2 � a
n

x
b px11 � p2n�x  x � 0, 1, p , n

n � 1, 2, p .0 � p � 1

Binomial
Distribution

The previous example motivates the following result.

As in Example 3-16, equals the total number of different sequences of trials that 

contain x successes and n � x failures. The total number of different sequences that contain x
successes and n � x failures times the probability of each sequence equals 

The probability expression above is a very useful formula that can be applied in a num-
ber of examples. The name of the distribution is obtained from the binomial expansion. For
constants a and b, the binomial expansion is

Let p denote the probability of success on a single trial. Then, by using the binomial
expansion with a � p and b � 1 � p, we see that the sum of the probabilities for a bino-
mial random variable is 1. Furthermore, because each trial in the experiment is classified
into two outcomes, {success, failure}, the distribution is called a “bi’’-nomial. A more
general distribution, which includes the binomial as a special case, is the multinomial
distribution, and this is presented in Chapter 5.

Examples of binomial distributions are shown in Fig. 3-8. For a fixed n, the distribution
becomes more symmetric as p increases from 0 to 0.5 or decreases from 1 to 0.5. For a fixed
p, the distribution becomes more symmetric as n increases.

1a 	 b2n � a
n

k�0
a

n

k
b akbn�k

P1X � x2.

a
n

x
b

into two groups, one of which is of size x, is .

Therefore, in this example,

P1X � x2 � a
4

x
b 10.12x10.924�x

a
4

x
b �

4!
x!14 � x2!

Notice that , as found above. The

probability mass function of X was shown in Example 3-4 and
Fig. 3-1.

a
4

2
b � 4!� 32! 2! 4 � 6
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Figure 3-8 Binomial distributions for selected values of n and p.
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EXAMPLE 3-17

Several examples using the binomial coefficient follow.

� 3003

a
15

10
b � 15!� 310! 5! 4 � 115 � 14 � 13 � 12 � 112� 15 � 4 � 3 � 22

a
10

3
b � 10!� 33! 7! 4 � 110 � 9 � 82� 13 � 22 � 120

a
n

x
b

Also recall that 0! � 1.

� 3,921,225

 a
100

4
b � 100!� 34! 96! 4 � 1100 � 99 � 98 � 972� 14 � 3 � 22

EXAMPLE 3-18 Organic Pollution
Each sample of water has a 10% chance of containing a partic-
ular organic pollutant. Assume that the samples are independent
with regard to the presence of the pollutant. Find the probability
that in the next 18 samples, exactly 2 contain the pollutant.

Let X � the number of samples that contain the pollutant
in the next 18 samples analyzed. Then X is a binomial random
variable with p � 0.1 and n � 18. Therefore,

Now Therefore,

Determine the probability that at least four samples
contain the pollutant. The requested probability is

P1X � 42 � a
18

x�4
 a

18

x
b 10.12x10.9218�x

P1X � 22 � 15310.12210.9216 � 0.284

a
18

2
b � 18!� 32! 16! 4 � 181172�2 � 153.

P1X � 22 � a
18

2
b 10.12210.9216

However, it is easier to use the complementary event,

Determine the probability that 3 � X � 7. Now

Practical Interpretation: Binomial random variables are
used to model many physical systems and probabilities for all
such models can be obtained from the binomial probability
mass function.

 � 0.265

 � 0.168 	 0.070 	 0.022 	 0.005

 P13 � X � 72 � a
6

x�3
a

18

x
b 10.12x10.9218�x

 � 1 � 30.150 	 0.300 	 0.284 	 0.168 4 � 0.098

 P1X � 42 � 1 � P1X � 42 � 1 � a
3

x�0
 a

18

x
b 10.12x10.9218�x
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If X is a binomial random variable with parameters p and n,

(3-8)� � E1X 2 � np  and  �2 � V1X 2 � np 11 � p2

Mean and
Variance

A table of cumulative binomial probabilities is provided in Appendix A and this can sim-
plify some calculations. For example, the binomial distribution in Example 3-16 has p � 0.1
and n � 4. A probability such as P 1X � 22 can be calculated from the table as

and this agrees with the result obtained previously.
The mean and variance of a binomial random variable can be obtained from an analysis

of the independent trials that comprise the binomial experiment. Define new random variables

for i � 1, 2, . . . , n. Then,

Also, it is easy to derive the mean and variance of each Xi as

and

Sums of random variables are discussed in Chapter 5, and there, the intuitively reasonable
result that

is derived. Furthermore, for the independent trials of a binomial experiment it is also shown
in Chapter 5 that

Because and we obtain the solution and 
np11 � p2.V1X 2 �

E1X 2 � npV1Xi2 � p11 � p2,E1Xi2 � p

V1X 2 � V1X12 	 V1X22 	 p 	 V1Xn2

E1X2 � E1X12 	 E1X22 	 p 	 E1Xn2

V 1Xi2 � 11 � p22p 	 10 � p2211 � p2 � p 11 � p2

E1Xi2 � 1p 	 011 � p2 � p

X � X1 	 X2 	 p 	 Xn

Xi � e
1 if ith trial is a success

0 otherwise

P 1X � 22 � P 1X � 22 � P 1X � 12 � 0.9963 � 0.9477 � 0.0486

EXAMPLE 3-19
For the number of transmitted bits received in error in
Example 3-16, n � 4 and p � 0.1, so

E1X 2 � 410.12 � 0.4  and  V 1X 2 � 410.12 10.92 � 0.36

and these results match those obtained from a direct calcula-
tion in Example 3-9.
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EXERCISES FOR SECTION 3-6

3-75. For each scenario described below, state whether or not
the binomial distribution is a reasonable model for the random
variable and why. State any assumptions you make.
(a) A production process produces thousands of temperature

transducers. Let X denote the number of nonconforming
transducers in a sample of size 30 selected at random from
the process.

(b) From a batch of 50 temperature transducers, a sample of
size 30 is selected without replacement. Let X denote the
number of nonconforming transducers in the sample.

(c) Four identical electronic components are wired to a con-
troller that can switch from a failed component to one of
the remaining spares. Let X denote the number of compo-
nents that have failed after a specified period of operation.

(d) Let X denote the number of accidents that occur along
the federal highways in Arizona during a one-month
period.

(e) Let X denote the number of correct answers by a student tak-
ing a multiple-choice exam in which a student can eliminate
some of the choices as being incorrect in some questions
and all of the incorrect choices in other questions.

(f ) Defects occur randomly over the surface of a semiconduc-
tor chip. However, only 80% of defects can be found by
testing. A sample of 40 chips with one defect each is tested.
Let X denote the number of chips in which the test finds a
defect.

(g) Reconsider the situation in part (f). Now, suppose the sample
of 40 chips consists of chips with 1 and with 0 defects.

(h) A filling operation attempts to fill detergent packages to the
advertised weight. Let X denote the number of detergent
packages that are underfilled.

(i) Errors in a digital communication channel occur in bursts
that affect several consecutive bits. Let X denote the number
of bits in error in a transmission of 100,000 bits.

(j) Let X denote the number of surface flaws in a large coil of
galvanized steel.

3-76. Let X be a binomial random variable with 
and Use the binomial table in Appendix A to deter-
mine the following probabilities.
(a) (b)
(c) (d)

3-77. Let X be a binomial random variable with 
and Calculate the following probabilities from the 
binomial probability mass function and also from the binomial
table in Appendix A and compare results.
(a) (b)
(c) (d)

3-78. The random variable X has a binomial distribution
with n � 10 and p � 0.5. Determine the following proba-
bilities:
(a) (b)
(c) (d) P13 � X � 52P1X � 92

P1X � 22P1X � 52

P15 � X � 72P1X � 42
P1X � 82P1X � 22

n � 10.
p � 0.1

P16 � X � 112P1X � 62
P1X � 102P1X � 32

n � 20.
p � 0.2

3-79. The random variable X has a binomial distribution
with n � 10 and p � 0.01. Determine the following proba-
bilities.
(a) (b)
(c) (d)

3-80. The random variable X has a binomial distribution with
n � 10 and p � 0.5. Sketch the probability mass function of X.
(a) What value of X is most likely?
(b) What value(s) of X is(are) least likely?

3-81. Sketch the probability mass function of a binomial
distribution with n � 10 and p � 0.01 and comment on the
shape of the distribution.
(a) What value of X is most likely?
(b) What value of X is least likely?

3-82. Determine the cumulative distribution function of a
binomial random variable with n � 3 and p � 1�2.

3-83. Determine the cumulative distribution function of a
binomial random variable with n � 3 and p � 1�4.

3-84. An electronic product contains 40 integrated circuits.
The probability that any integrated circuit is defective is 0.01,
and the integrated circuits are independent. The product oper-
ates only if there are no defective integrated circuits. What is
the probability that the product operates?

3-85. The phone lines to an airline reservation system are
occupied 40% of the time. Assume that the events that the lines
are occupied on successive calls are independent. Assume that
10 calls are placed to the airline.
(a) What is the probability that for exactly three calls the lines

are occupied?
(b) What is the probability that for at least one call the lines

are not occupied?
(c) What is the expected number of calls in which the lines

are all occupied?

3-86. A multiple-choice test contains 25 questions, each
with four answers. Assume a student just guesses on each
question.
(a) What is the probability that the student answers more than

20 questions correctly?
(b) What is the probability the student answers less than five

questions correctly?

3-87. A particularly long traffic light on your morning com-
mute is green 20% of the time that you approach it. Assume
that each morning represents an independent trial.
(a) Over five mornings, what is the probability that the light is

green on exactly one day?
(b) Over 20 mornings, what is the probability that the light is

green on exactly four days?
(c) Over 20 mornings, what is the probability that the light is

green on more than four days?

3-88. Samples of rejuvenated mitochondria are mutated
(defective) in 1% of cases. Suppose 15 samples are studied,

P13 � X � 52P1X � 92
P1X � 22P1X � 52

JWCL232_c03_066-106.qxd  1/7/10  10:58 AM  Page 84



3-6 BINOMIAL DISTRIBUTION 85

and they can be considered to be independent for mutation.
Determine the following probabilities. The binomial table in
Appendix A can help.
(a) No samples are mutated.
(b) At most one sample is mutated.
(c) More than half the samples are mutated.

3-89. An article in Information Security Technical Report
[“Malicious Software—Past, Present and Future” (2004, Vol. 9,
pp. 6–18)] provided the following data on the top ten mali-
cious software instances for 2002. The clear leader in the num-
ber of registered incidences for the year 2002 was the Internet
worm “Klez,” and it is still one of the most widespread threats.
This virus was first detected on 26 October 2001, and it has
held the top spot among malicious software for the longest 
period in the history of virology.

Place Name % Instances

1 I-Worm.Klez 61.22%

2 I-Worm.Lentin 20.52%

3 I-Worm.Tanatos 2.09%

4 I-Worm.BadtransII 1.31%

5 Macro.Word97.Thus 1.19%

6 I-Worm.Hybris 0.60%

7 I-Worm.Bridex 0.32%

8 I-Worm.Magistr 0.30%

9 Win95.CIH 0.27%

10 I-Worm.Sircam 0.24%

The 10 most widespread malicious programs for 2002
(Source—Kaspersky Labs).

Suppose that 20 malicious software instances are reported.
Assume that the malicious sources can be assumed to be inde-
pendent.
(a) What is the probability that at least one instance is “Klez”?
(b) What is the probability that three or more instances are

“Klez”?
(c) What are the mean and standard deviation of the number

of “Klez” instances among the 20 reported?

3-90. Heart failure is due to either natural occurrences
(87%) or outside factors (13%). Outside factors are related to
induced substances or foreign objects. Natural occurrences are
caused by arterial blockage, disease, and infection. Suppose
that 20 patients will visit an emergency room with heart failure.
Assume that causes of heart failure between individuals are 
independent.
(a) What is the probability that three individuals have condi-

tions caused by outside factors?
(b) What is the probability that three or more individuals have

conditions caused by outside factors?
(c) What are the mean and standard deviation of the number

of individuals with conditions caused by outside factors?

3-91. A computer system uses passwords that are exactly
six characters and each character is one of the 26 letters (a–z)
or 10 integers (0–9). Suppose there are 10,000 users of the
system with unique passwords. A hacker randomly selects
(with replacement) one billion passwords from the potential
set, and a match to a user’s password is called a hit.
(a) What is the distribution of the number of hits?
(b) What is the probability of no hits?
(c) What are the mean and variance of the number of hits?

3-92. A statistical process control chart example. Samples
of 20 parts from a metal punching process are selected every
hour. Typically, 1% of the parts require rework. Let X denote
the number of parts in the sample of 20 that require rework. A
process problem is suspected if X exceeds its mean by more
than three standard deviations.
(a) If the percentage of parts that require rework remains at

1%, what is the probability that X exceeds its mean by
more than three standard deviations?

(b) If the rework percentage increases to 4%, what is the
probability that X exceeds 1?

(c) If the rework percentage increases to 4%, what is the
probability that X exceeds 1 in at least one of the next five
hours of samples?

3-93. Because not all airline passengers show up for their
reserved seat, an airline sells 125 tickets for a flight that holds
only 120 passengers. The probability that a passenger does not
show up is 0.10, and the passengers behave independently.
(a) What is the probability that every passenger who shows

up can take the flight?
(b) What is the probability that the flight departs with empty

seats?

3-94. This exercise illustrates that poor quality can affect
schedules and costs. A manufacturing process has 100 customer
orders to fill. Each order requires one component part that is
purchased from a supplier. However, typically, 2% of the com-
ponents are identified as defective, and the components can be
assumed to be independent.
(a) If the manufacturer stocks 100 components, what is the

probability that the 100 orders can be filled without
reordering components?

(b) If the manufacturer stocks 102 components, what is the
probability that the 100 orders can be filled without
reordering components?

(c) If the manufacturer stocks 105 components, what is the
probability that the 100 orders can be filled without
reordering components?

3-95. Consider the lengths of stay at a hospital’s emergency
department in Exercise 3-29. Assume that five persons inde-
pendently arrive for service.
(a) What is the probability that the length of stay of exactly

one person is less than or equal to 4 hours?
(b) What is the probability that exactly two people wait more

than 4 hours?
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(c) What is the probability that at least one person waits more
than 4 hours?

3-96. Consider the visits that result in leave without being
seen (LWBS) at an emergency department in Example 2-8.
Assume that four persons independently arrive for service at
Hospital 1.
(a) What is the probability that exactly one person will LWBS?
(b) What is the probability, that two or more two people will

LWBS? 
(c) What is the probability that at least one person will

LWBS?

3-97. Assume a Web site changes its content according to
the distribution in Exercise 3-30. Assume 10 changes are made
independently.
(a) What is the probability that the change is made in less than

4 days in seven of the 10 updates? 

(b) What is the probability that the change is made in less
than 4 days in two or fewer of the 10 updates?

(c) What is the probability that at least one change is made in
less than 4 days?

(d) What is the expected number of the 10 updates that occur
in less than 4 days?

3-98. Consider the endothermic reactions in Exercise 3-28.
A total of 20 independent reactions are to be conducted.
(a) What is the probability that exactly 12 reactions result in a

final temperature less than 272 K?
(b) What is the probability that at least 19 reactions result in a

final temperature less than 272 K?
(c) What is the probability that at least 18 reactions result in a

final temperature less than 272 K?
(d) What is the expected number of reactions that result in a

final temperature of less than 272 K?

3-7 GEOMETRIC AND NEGATIVE BINOMIAL DISTRIBUTIONS

Geometric Distribution
Consider a random experiment that is closely related to the one used in the definition of a
binomial distribution. Again, assume a series of Bernoulli trials (independent trials with con-
stant probability p of a success on each trial). However, instead of a fixed number of trials,
trials are conducted until a success is obtained. Let the random variable X denote the number
of trials until the first success. In Example 3-5, successive wafers are analyzed until a large
particle is detected. Then, X is the number of wafers analyzed. In the transmission of bits, X
might be the number of bits transmitted until an error occurs.

EXAMPLE 3-20 Digital Channel
The probability that a bit transmitted through a digital trans-
mission channel is received in error is 0.1. Assume the trans-
missions are independent events, and let the random variable
X denote the number of bits transmitted until the first error.

Then, P1X � 52 is the probability that the first four bits
are transmitted correctly and the fifth bit is in error. This event
can be denoted as {OOOOE}, where O denotes an okay bit.

Because the trials are independent and the probability of a
correct transmission is 0.9,

Note that there is some probability that X will equal any inte-
ger value. Also, if the first trial is a success, X � 1. Therefore,
the range of X is that is, all positive integers.51, 2, 3, p 6,

P1X � 52 � P1OOOOE2 � 0.940.1 � 0.066

In a series of Bernoulli trials (independent trials with constant probability p of a success),
let the random variable X denote the number of trials until the first success. Then X is
a geometric random variable with parameter and

(3-9)f 1x2 � 11 � p2x�1p  x � 1, 2, p

0 � p � 1

Geometric
Distribution

Examples of the probability mass functions for geometric random variables are shown in
Fig. 3-9. Note that the height of the line at x is (1 � p) times the height of the line at x � 1.
That is, the probabilities decrease in a geometric progression. The distribution acquires its
name from this result.
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Figure 3-9 Geometric
distributions for
selected values of the
parameter p.

The mean of a geometric random variable is

where q � p � 1. The right-hand side of the previous equation is recognized to be the partial
derivative with respect to q of

where the last equality is obtained from the known sum of a geometric series. Therefore,

and the mean is derived. To obtain the variance of a geometric random variable, we can first
derive E1X 22 by a similar approach. This can be obtained from partial second derivatives with
respect to q. Then the formula V 1X 2 � E1X 22 � 1EX 22 is applied. The details are a bit more
work and this is left as a mind-expanding exercise.

� �
�

�q
 c

pq

1 � q
d �

p

11 � q22
�

p

p2 �
1
p

pa



k�1
qk �

pq

1 � q

� � a



k�1
kp11 � p2k�1 � pa




k�1
kqk�1

EXAMPLE 3-21
The probability that a wafer contains a large particle of con-
tamination is 0.01. If it is assumed that the wafers are inde-
pendent, what is the probability that exactly 125 wafers need
to be analyzed before a large particle is detected?

Let X denote the number of samples analyzed until a
large particle is detected. Then X is a geometric random vari-
able with p � 0.01. The requested probability is

P1X � 1252 � 10.9921240.01 � 0.0029
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Mean and
Variance If X is a geometric random variable with parameter p,

(3-10)� � E1X 2 � 1�p  and  �2 � V1X 2 � 11 � p2�p2

Lack of Memory Property
A geometric random variable has been defined as the number of trials until the first success.
However, because the trials are independent, the count of the number of trials until the next
success can be started at any trial without changing the probability distribution of the random
variable. For example, in the transmission of bits, if 100 bits are transmitted, the probability
that the first error, after bit 100, occurs on bit 106 is the probability that the next six outcomes
are OOOOOE. This probability is , which is identical to the probability
that the initial error occurs on bit 6.

The implication of using a geometric model is that the system presumably will not wear
out. The probability of an error remains constant for all transmissions. In this sense, the geo-
metric distribution is said to lack any memory. The lack of memory property will be dis-
cussed again in the context of an exponential random variable in Chapter 4.

10.92510.12 � 0.059

EXAMPLE 3-22
Consider the transmission of bits in Example 3-20. Here, 
p � 0.1. The mean number of transmissions until the first 
error is 1�0.1 � 10. The standard deviation of the number
of transmissions before the first error is

� � 3 11 � 0.12�0.12 41�2 � 9.49

Practical Interpretation: The standard deviation here is ap-
proximately equal to the mean and this occurs when p is small.
The number of trials until the first success may be much dif-
ferent from the mean when p is small.

EXAMPLE 3-23 Lack of Memory
In Example 3-20, the probability that a bit is transmitted in error
is equal to 0.1. Suppose 50 bits have been transmitted. The mean

number of bits until the next error is 1�0.1 � 10—the same 
result as the mean number of bits until the first error.

EXAMPLE 3-24 Digital Channel
As in Example 3-20, suppose the probability that a bit trans-
mitted through a digital transmission channel is received in er-
ror is 0.1. Assume the transmissions are independent events,
and let the random variable X denote the number of bits trans-
mitted until the fourth error.

Then, X has a negative binomial distribution with r � 4.
Probabilities involving X can be found as follows. The P 1X � 102
is the probability that exactly three errors occur in the first
nine trials and then trial 10 results in the fourth error. The
probability that exactly three errors occur in the first nine trials

is determined from the binomial distribution to be

Because the trials are independent, the probability that exactly
three errors occur in the first 9 trials and trial 10 results in the
fourth error is the product of the probabilities of these two
events, namely,

a
9

3
b 10.12310.92610.12 � a

9

3
b 10.12410.926

a
9

3
b 10.12310.926

Negative Binomial Distribution
A generalization of a geometric distribution in which the random variable is the number
of Bernoulli trials required to obtain r successes results in the negative binomial distri-
bution.
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In a series of Bernoulli trials (independent trials with constant probability p of a suc-
cess), let the random variable X denote the number of trials until r successes occur.
Then X is a negative binomial random variable with parameters and
r � 1, 2, 3, p , and

(3-11)f 1x2 � a
x �  1

r �  1
b 11 � p2x�rpr  x � r, r 	 1, r 	 2, p

0 � p � 1

Negative
Binomial

Distribution

Because at least r trials are required to obtain r successes, the range of X is from r to . In the
special case that r � 1, a negative binomial random variable is a geometric random variable.
Selected negative binomial distributions are illustrated in Fig. 3-10.

The lack of memory property of a geometric random variable implies the following. Let
X denote the total number of trials required to obtain r successes. Let denote the number of
trials required to obtain the first success, let denote the number of extra trials required to
obtain the second success, let denote the number of extra trials to obtain the third success,
and so forth. Then, the total number of trials required to obtain r successes is

. Because of the lack of memory property, each of the random vari-
ables has a geometric distribution with the same value of p. Consequently, a
negative binomial random variable can be interpreted as the sum of r geometric random vari-
ables. This concept is illustrated in Fig. 3-11.

Recall that a binomial random variable is a count of the number of successes in n
Bernoulli trials. That is, the number of trials is predetermined, and the number of successes is

X1, X2, p , Xr

X � X1 	 X2 	 p 	 Xr

X3

X2

X1
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Figure 3-10 Negative
binomial distributions
for selected values of the
parameters r and p.
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If X is a negative binomial random variable with parameters p and r,

(3-12)� � E1X 2 � r�p  and  �2 � V1X 2 � r11 � p2�p2

random. A negative binomial random variable is a count of the number of trials required to
obtain r successes. That is, the number of successes is predetermined, and the number of trials
is random. In this sense, a negative binomial random variable can be considered the opposite,
or negative, of a binomial random variable.

The description of a negative binomial random variable as a sum of geometric random
variables leads to the following results for the mean and variance. Sums of random variables
are studied in Chapter 5.

Mean and
Variance

1 2 3 4 5 6 7 8 9 10 11 12

Trials

 indicates a trial that results in a "success."

X1 X2 X3

X = X1 + X2 + X3

Figure 3-11 Negative
binomial random
variable represented 
as a sum of geometric
random variables.

EXAMPLE 3-25 Web Servers
A Web site contains three identical computer servers. Only
one is used to operate the site, and the other two are spares that
can be activated in case the primary system fails. The proba-
bility of a failure in the primary computer (or any activated
spare system) from a request for service is 0.0005. Assuming
that each request represents an independent trial, what is the
mean number of requests until failure of all three servers?

Let X denote the number of requests until all three servers
fail, and let , , and denote the number of requests be-
fore a failure of the first, second, and third servers used,
respectively. Now, . Also, the requests are
assumed to comprise independent trials with constant proba-
bility of failure p � 0.0005. Furthermore, a spare server is not
affected by the number of requests before it is activated.
Therefore, X has a negative binomial distribution with 
p � 0.0005 and r � 3. Consequently,

E1X 2 � 3�0.0005 � 6000 requests

X � X1 	 X2 	 X3

X3X2X1

What is the probability that all three servers fail within five
requests? The probability is and because X denotes
the number of requests to the third failure P (X 2) � 0.
Therefore,

Practical Interpretation: Because the trials are independent the
mean number of trials to the third failure is three times as large
as the number of trials until the first failure.

 � 1.249 
 10�9

 � 1.25 
 10�10 	 3.75 
 10�10 	 7.49 
 10�10

	 a
4

2
b  0.00053 10.999522

 � 0.00053 	 a
3

2
b  0.0005310.99952

P1X � 52 � P1X � 32 	 P1X � 42 	 P1X � 52

�
P1X � 52

3-99. Suppose the random variable X has a geometric distribu-
tion with p � 0.5. Determine the following probabilities:
(a) (b)
(c) (d)
(e)

3-100. Suppose the random variable X has a geometric distri-
bution with a mean of 2.5. Determine the following probabilities:
(a) (b) P1X � 42P1X � 12

P1X � 22
P1X � 22P1X � 82
P1X � 42P1X � 12

(c) (d)
(e)

3-101. Consider a sequence of independent Bernoulli trials
with p � 0.2.
(a) What is the expected number of trials to obtain the first

success?
(b) After the eighth success occurs, what is the expected num-

ber of trials to obtain the ninth success?

P1X � 32
P1X � 32P1X � 52

EXERCISES FOR SECTION 3-7
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3-102. Suppose that X is a negative binomial random vari-
able with p � 0.2 and r � 4. Determine the following:
(a) (b)
(c) (d)
(e) The most likely value for X

3-103. The probability of a successful optical alignment in
the assembly of an optical data storage product is 0.8. Assume
the trials are independent.
(a) What is the probability that the first successful alignment

requires exactly four trials?
(b) What is the probability that the first successful alignment

requires at most four trials?
(c) What is the probability that the first successful alignment

requires at least four trials?

3-104. In a clinical study, volunteers are tested for a gene
that has been found to increase the risk for a disease. The
probability that a person carries the gene is 0.1.
(a) What is the probability four or more people will have to be

tested before two with the gene are detected?
(b) How many people are expected to be tested before two

with the gene are detected?

3-105. Assume that each of your calls to a popular radio
station has a probability of 0.02 of connecting, that is, of not
obtaining a busy signal. Assume that your calls are independent.
(a) What is the probability that your first call that connects is

your tenth call?
(b) What is the probability that it requires more than five calls

for you to connect?
(c) What is the mean number of calls needed to connect?

3-106. A player of a video game is confronted with a series
of opponents and has an 80% probability of defeating each one.
Success with any opponent is independent of previous encoun-
ters. The player continues to contest opponents until defeated.
(a) What is the probability mass function of the number of

opponents contested in a game?
(b) What is the probability that a player defeats at least two

opponents in a game?
(c) What is the expected number of opponents contested in a

game?
(d) What is the probability that a player contests four or more

opponents in a game?
(e) What is the expected number of game plays until a player

contests four or more opponents?

3-107. Heart failure is due to either natural occurrences
(87%) or outside factors (13%). Outside factors are related to
induced substances or foreign objects. Natural occurrences are
caused by arterial blockage, disease, and infection. Assume that
causes of heart failure between individuals are independent.
(a) What is the probability that the first patient with heart

failure who enters the emergency room has the condition
due to outside factors?

(b) What is the probability that the third patient with heart
failure who enters the emergency room is the first one due
to outside factors?

P1X � 212P1X � 192
P1X � 202E1X 2

(c) What is the mean number of heart failure patients with the
condition due to natural causes who enter the emergency
room before the first patient with heart failure from out-
side factors?

3-108. A computer system uses passwords constructed
from the 26 letters (a–z) or 10 integers (0–9). Suppose there
are 10,000 users of the system with unique passwords. A
hacker randomly selects (with replacement) passwords from
the potential set.
(a) Suppose there are 9900 users with unique six-character

passwords and the hacker randomly selects six-character
passwords. What is the mean and standard deviation of
the number of attempts before the hacker selects a user
password?

(b) Suppose there are 100 users with unique three-character
passwords and the hacker randomly selects three-character
passwords. What is the mean and standard deviation of
the number of attempts before the hacker selects a user
password?

(c) Comment on the security differences between six- and
three-character passwords.

3-109. A trading company has eight computers that it uses to
trade on the New York Stock Exchange (NYSE). The probabil-
ity of a computer failing in a day is 0.005, and the computers
fail independently. Computers are repaired in the evening and
each day is an independent trial.
(a) What is the probability that all eight computers fail in a day?

(b) What is the mean number of days until a specific com-
puter fails?

(c) What is the mean number of days until all eight computers
fail in the same day?

3-110. Assume that 20 parts are checked each hour and that
X denotes the number of parts in the sample of 20 that require
rework. Parts are assumed to be independent with respect to
rework.
(a) If the percentage of parts that require rework remains at

1%, what is the probability that hour 10 is the first sample
at which X exceeds 1?

(b) If the rework percentage increases to 4%, what is the prob-
ability that hour 10 is the first sample at which X exceeds 1?

(c) If the rework percentage increases to 4%, what is the
expected number of hours until X exceeds 1?

3-111. A fault-tolerant system that processes transactions
for a financial services firm uses three separate computers. If
the operating computer fails, one of the two spares can be im-
mediately switched online. After the second computer fails,
the last computer can be immediately switched online.
Assume that the probability of a failure during any transac-
tion is and that the transactions can be considered to be
independent events.
(a) What is the mean number of transactions before all com-

puters have failed?

(b) What is the variance of the number of transactions before
all computers have failed?

10�8
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(d) What is the mean number of reactions until two reactions
result in final temperatures less than 272 K?

3-115. A Web site randomly selects among 10 products to
discount each day. The color printer of interest to you is dis-
counted today.
(a) What is the expected number of days until this product is

again discounted? 
(b) What is the probability that this product is first discounted

again exactly 10 days from now? 
(c) If the product is not discounted for the next five days, what

is the probability that it is first discounted again 15 days
from now?

(d) What is the probability that this product is first discounted
again within three or fewer days?

3-116. Consider the visits that result in leave without being
seen (LWBS) at an emergency department in Example 2-8.
Assume that people independently arrive for service at Hospital l.
(a) What is the probability that the fifth visit is the first one to

LWBS?
(b) What is the probability that either the fifth or sixth visit is

the first one to LWBS?
(c) What is the probability that the first visit to LWBS is

among the first four visits?
(d) What is the expected number of visits until the third

LWBS occurs?

3-112. In the process of meiosis, a single parent diploid cell
goes through eight different phases. However, only 60% of the
processes pass the first six phases and only 40% pass all eight.
Assume the results from each phase are independent.
(a) If the probability of a successful pass of each one of the

first six phases is constant, what is the probability of a suc-
cessful pass of a single one of these phases?

(b) If the probability of a successful pass of each one of the
last two phases is constant, what is the probability of a
successful pass of a single one of these phases?

3-113. Show that the probability density function of a nega-
tive binomial random variable equals the probability density
function of a geometric random variable when r � 1. Show
that the formulas for the mean and variance of a negative
binomial random variable equal the corresponding results for
a geometric random variable when r � 1.

3-114. Consider the endothermic reactions in Exercise 3-28.
Assume independent reactions are conducted.
(a) What is the probability that the first reaction to result in a

final temperature less than 272 K is the tenth reaction?
(b) What is the mean number of reactions until the first final

temperature is less than 272 K?
(c) What is the probability that the first reaction to result in a

final temperature less than 272 K occurs within three or
fewer reactions?

3-8 HYPERGEOMETRIC DISTRIBUTION

In Example 3-8, a day’s production of 850 manufactured parts contains 50 parts that do not
conform to customer requirements. Two parts are selected at random, without replacement
from the day’s production. Let A and B denote the events that the first and second parts are
nonconforming, respectively. In Chapter 2, we found and .
Consequently, knowledge that the first part is nonconforming suggests that it is less likely that
the second part selected is nonconforming.

Let X equal the number of nonconforming parts in the sample. Then,

does not, or the first part selected does not and the second part 
selected conforms)

This experiment is fundamentally different from the examples based on the binomial dis-
tribution. In this experiment, the trials are not independent. Note that, in the unusual case that
each unit selected is replaced before the next selection, the trials are independent and there is
a constant probability of a nonconforming part on each trial. Then, the number of noncon-
forming parts in the sample is a binomial random variable.

 P1X � 22 � P1both parts do not conform2 � 150�8502 149�8492 � 0.003

 � 1800�8502 150�8492 	 150�8502 1800�8492 � 0.111

 P1X � 12 � P1first part selected conforms and the second part selected

 P1X � 02 � P1both parts conform2 � 1800�8502 1799�8492 � 0.886

P1A2 � 50�850P1B ƒ A2 � 49�849
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3-8 HYPERGEOMETRIC DISTRIBUTION 93

But as in this example, samples are often selected without replacement. Although
probabilities can be determined by the reasoning used in the example above, a general for-
mula for computing probabilities when samples are selected without replacement is quite
useful. The counting rules presented in Chapter 2 can be used to justify the formula given
below.

The expression min is used in the definition of the range of X because the maximum
number of successes that can occur in the sample is the smaller of the sample size, n,
and the number of successes available, K. Also, if at least suc-
cesses must occur in the sample. Selected hypergeometric distributions are illustrated in
Fig. 3-12.

n 	 K � Nn 	 K � N,

5K, n6

A set of N objects contains

K objects classified as successes

N � K objects classified as failures

A sample of size n objects is selected randomly (without replacement) from the N
objects, where and .

Let the random variable X denote the number of successes in the sample. Then
X is a hypergeometric random variable and

(3-13)f 1x2 �

a
K

x
b a

N � K

n � x
b

a
N

n
b

  x � max50, n 	 K � N6 to min5K, n6

n � NK � N

Hypergeometric
Distribution

0 1 2 3 4 5

0.0

0.1

0.3

0.4

0.5

f (x)

0.2

N

10

50

50

n

5

5

5
0.6

0.7
K

5

25

3

0.8

x

Figure 3-12 Hypergeometric distributions for
selected values of parameters N, K, and n.
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94 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

The mean and variance of a hypergeometric random variable can be determined from the
trials that comprise the experiment. However, the trials are not independent, and so the cal-
culations are more difficult than for a binomial distribution. The results are stated as follows.

EXAMPLE 3-26 Sampling without Replacement
The example at the start of this section can be reanalyzed by
using the general expression in the definition of a hypergeo-
metric random variable. That is,

P1X � 02 �

a
50

0
b a

800

2
b

a
850

2
b

�
319,600
360,825

� 0.886

P1X � 22 �

a
50

2
b a

800

0
b

a
850

2
b

�
1,225

360,825
� 0.003

P1X � 12 �

a
50

1
b a

800

1
b

a
850

2
b

�
40,000

360,825
� 0.111

EXAMPLE 3-27 Parts from Suppliers
A batch of parts contains 100 parts from a local supplier of
tubing and 200 parts from a supplier of tubing in the next
state. If four parts are selected randomly and without re-
placement, what is the probability they are all from the local
supplier?

Let X equal the number of parts in the sample from the
local supplier. Then, X has a hypergeometric distribution and
the requested probability is Consequently,

What is the probability that two or more parts in the sample
are from the local supplier?

P1X � 42 �

a
100

4
b a

200

0
b

a
300

4
b

� 0.0119

P1X � 42.
What is the probability that at least one part in the sample is
from the local supplier?

Practical Interpretation: Sampling without replacement is fre-
quently used for inspection and the hypergeometric distribution
simplifies the calculations.

P1X � 12 � 1 � P1X � 02 � 1 �

a
100

0
b a

200

4
b

a
300

4
b

� 0.804

 � 0.298 	 0.098 	 0.0119 � 0.408

 P1X � 22 �

a
100

2
b a

200

2
b

a
300

4
b

	

a
100

3
b a

200

1
b

a
300

4
b

	

a
100

4
b a

200

0
b

a
300

4
b

If X is a hypergeometric random variable with parameters then

(3-14)

where .p � K�N

� � E1X 2 � np  and  �2 � V1X 2 � np11 � p2   a
N � n

N � 1
b

N, K, and n,
Mean and

Variance

Here p is interpreted as the proportion of successes in the set of N objects.

EXAMPLE 3-28
In the previous example, the sample size is four. The random
variable X is the number of parts in the sample from the local
supplier. Then, . Therefore,

E1X 2 � 41100�3002 � 1.33

p � 100�300 � 1�3

and

V1X2 � 411�32 12�32 3 1300 �  42�299 4 � 0.88
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For a hypergeometric random variable, is similar to the mean of a binomial random
variable. Also, differs from the result for a binomial random variable only by the term
shown below.

V1X 2
E1X 2

The term in the variance of a hypergeometric random variable

(3-15)

is called the finite population correction factor.

N � n

N � 1

Finite
Population
Correction

Factor

0.0
0

Hypergeometric N = 50, n = 5, K = 25

Hypergeometric probability

Binomial probability

0

0.025

0.031

1

0.149

0.156

2

0.326

0.312

3

0.326

0.312

4

0.149

0.156

5

0.025

0.031

Binomial n = 5, p = 0.5

0.1

0.2

0.3

1 2 3 4 5

x

f (x)

Figure 3-13
Comparison of hyper-
geometric and binomial
distributions.

Sampling with replacement is equivalent to sampling from an infinite set because the propor-
tion of success remains constant for every trial in the experiment. As mentioned previously, if
sampling were done with replacement, X would be a binomial random variable and its vari-
ance would be np 11 � p2. Consequently, the finite population correction represents the cor-
rection to the binomial variance that results because the sampling is without replacement from
the finite set of size N.

If n is small relative to N, the correction is small and the hypergeometric distribution is
similar to the binomial. In this case, a binomial distribution can effectively approximate the
distribution of the number of units of a specified type in the sample. A case is illustrated in
Fig. 3-13.

EXAMPLE 3-29 Customer Sample
A listing of customer accounts at a large corporation contains
1000 customers. Of these, 700 have purchased at least one of
the corporation’s products in the last three months. To evaluate
a new product design, 50 customers are sampled at random
from the corporate listing. What is the probability that more
than 45 of the sampled customers have purchased from the
corporation in the last three months?

The sampling is without replacement. However, be-
cause the sample size of 50 is small relative to the number of
customer accounts, 1000, the probability of selecting a cus-
tomer who has purchased from the corporation in the last
three months remains approximately constant as the cus-
tomers are chosen.
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96 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

For example, let A denote the event that the first cus-
tomer selected has purchased from the corporation in the last
three months, and let B denote the event that the second
customer selected has purchased from the corporation in
the last three months. Then, and

. That is, the trials are approxi-
mately independent.

Let X denote the number of customers in the sample who
have purchased from the corporation in the last three months.
Then, X is a hypergeometric random variable with N �
1,000, n � 50, and K � 700. Consequently, .p � K�N � 0.7

699�999 � 0.6997P1B ƒ A2 �
P1A2 � 700�1000 � 0.7

The requested probability is . Because the sample
size is small relative to the batch size, the distribution of X can be
approximated as binomial with n � 50 and p � 0.7. Using the
binomial approximation to the distribution of X results in

The probability from the hypergeometric distribution is
0.00013, but this requires computer software. The result
agrees well with the binomial approximation.

P1X � 452 � a
50

x�46
 a

50

x
b 0.7x 11 � 0.7250�x � 0.00017

P1X � 452

3-117. Suppose X has a hypergeometric distribution with
N � 100, n � 4, and K � 20. Determine the following:
(a)
(b)
(c)
(d) Determine the mean and variance of X.

3-118. Suppose X has a hypergeometric distribution with
N � 20, n � 4, and K � 4. Determine the following:
(a)
(b)
(c)
(d) Determine the mean and variance of X.

3-119. Suppose X has a hypergeometric distribution with
N � 10, n � 3, and K � 4. Sketch the probability mass func-
tion of X. Determine the cumulative distribution function for X.

3-120. A batch contains 36 bacteria cells and 12 of the cells
are not capable of cellular replication. Suppose you examine
three bacteria cells selected at random, without replacement.
(a) What is the probability mass function of the number of

cells in the sample that can replicate?
(b) What are the mean and variance of the number of cells in

the sample that can replicate?
(c) What is the probability that at least one of the selected

cells cannot replicate?

3-121. A company employs 800 men under the age of 55.
Suppose that 30% carry a marker on the male chromosome
that indicates an increased risk for high blood pressure.
(a) If 10 men in the company are tested for the marker in this

chromosome, what is the probability that exactly one man
has the marker?

(b) If 10 men in the company are tested for the marker in this
chromosome, what is the probability that more than one
has the marker?

3-122. Printed circuit cards are placed in a functional test
after being populated with semiconductor chips. A lot contains
140 cards, and 20 are selected without replacement for func-
tional testing.
(a) If 20 cards are defective, what is the probability that at

least 1 defective card is in the sample?

P1X � 22
P1X � 42
P1X � 12

P1X � 42
P1X � 62
P1X � 12

(b) If 5 cards are defective, what is the probability that at least
one defective card appears in the sample?

3-123. The analysis of results from a leaf transmutation 
experiment (turning a leaf into a petal) is summarized by type
of transformation completed:

Total Textural 
Transformation

Yes No

Total Color Yes 243 26

Transformation No 13 18

A naturalist randomly selects three leaves from this set, without
replacement. Determine the following probabilities.
(a) Exactly one has undergone both types of transformations.
(b) At least one has undergone both transformations.
(c) Exactly one has undergone one but not both transformations.
(d) At least one has undergone at least one transformation.

3-124. A state runs a lottery in which six numbers are randomly
selected from 40, without replacement. A player chooses six
numbers before the state’s sample is selected.
(a) What is the probability that the six numbers chosen by a

player match all six numbers in the state’s sample?
(b) What is the probability that five of the six numbers chosen

by a player appear in the state’s sample?
(c) What is the probability that four of the six numbers chosen

by a player appear in the state’s sample?
(d) If a player enters one lottery each week, what is the ex-

pected number of weeks until a player matches all six
numbers in the state’s sample?

3-125. Magnetic tape is slit into half-inch widths that are
wound into cartridges. A slitter assembly contains 48 blades.
Five blades are selected at random and evaluated each day for
sharpness. If any dull blade is found, the assembly is replaced
with a newly sharpened set of blades.
(a) If 10 of the blades in an assembly are dull, what is the

probability that the assembly is replaced the first day it is
evaluated?

(b) If 10 of the blades in an assembly are dull, what is the
probability that the assembly is not replaced until the third

EXERCISES FOR SECTION 3-8
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day of evaluation? [Hint: Assume the daily decisions are
independent, and use the geometric distribution.]

(c) Suppose on the first day of evaluation, two of the blades
are dull; on the second day of evaluation, six are dull; and
on the third day of evaluation, ten are dull. What is the
probability that the assembly is not replaced until the
third day of evaluation? [Hint: Assume the daily deci-
sions are independent. However, the probability of re-
placement changes every day.]

3-126.
(a) Calculate the finite population corrections for Exercises 

3-117 and 3-118. For which exercise should the binomial
approximation to the distribution of X be better?

(b) For Exercise 3-117, calculate and 
assuming that X has a binomial distribution and compare
these results to results derived from the hypergeometric
distribution.

(c) For Exercise 3-118, calculate and 
assuming that X has a binomial distribution and compare
these results to the results derived from the hypergeometric
distribution.

P1X � 42P1X � 12

P1X � 42P1X � 12

(d) Use the binomial approximation to the hypergeometric dis-
tribution to approximate the probabilities in Exercise 3-122.
What is the finite population correction in this exercise?

3-127. Consider the visits that result in leave without being
seen (LWBS) at an emergency department in Example 2-8.
Assume that four visits that result in LWBS are to be randomly
selected (without replacement) for a follow-up interview.
(a) What is the probability that all selected visits are from

Hospital 4?
(b) What is the probability that no selected visits are from

Hospital 4?
(c) What is the probability that all selected visits are from the

same hospital?

3-128. Consider the non-failed wells in Exercises 3-31.
Assume that four wells are selected randomly (without re-
placement) for inspection.
(a) What is the probability that exactly two are selected from

the Loch Raven Schist?
(b) What is the probability that one or more is selected from

the Loch Raven Schist?
(c) What is the expected number selected from the Loch

Raven Schist?

3-9 POISSON DISTRIBUTION

A widely-used distribution emerges as the number of trials in a binomial experiment in-
creases to infinity while the mean of the distribution remains constant. Consider the following
example.

EXAMPLE 3-30
Consider the transmission of n bits over a digital communica-
tion channel. Let the random variable X equal the number of
bits in error. When the probability that a bit is in error is con-
stant and the transmissions are independent, X has a binomial
distribution. Let p denote the probability that a bit is in error.
Let . Then, and

Now, suppose that the number of bits transmitted increases
and the probability of an error decreases exactly enough that
pn remains equal to a constant. That is, n increases and p

P1X � x2 � a
n

x
b  px11 � p2n�x � a

n

x
b a

�
nb

x

a1 �
�
nb

n�x

E1x2 � pn � �� � pn

decreases accordingly, such that E1X 2 � remains constant.
Then, with some work, it can be shown that

so that

Also, because the number of bits transmitted tends to infinity,
the number of errors can equal any nonnegative integer.
Therefore, the range of X is the integers from zero to infinity.

limnS
 P1X � x2 �
e���x

x!
,  x � 0, 1, 2, p

a
n

x
b a

1
nb

x

S
1

x!
  a1 �

�
nb

�x

S 1  a1 �
�
nb

n

S e��

�

The distribution obtained as the limit in the previous example is more useful than the deri-
vation implies. The following example illustrates the broader applicability.

EXAMPLE 3-31 Wire Flaws
Flaws occur at random along the length of a thin copper wire.
Let X denote the random variable that counts the number of
flaws in a length of L millimeters of wire and suppose that the
average number of flaws in L millimeters is .�

The probability distribution of X can be found by reasoning
in a manner similar to the previous example. Partition the length
of wire into n subintervals of small length, say, 1 micrometer
each. If the subinterval chosen is small enough, the probability
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98 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Example 3-31 can be generalized to include a broad array of random experiments. The in-
terval that was partitioned was a length of wire. However, the same reasoning can be applied
to any interval, including an interval of time, an area, or a volume. For example, counts of
(1) particles of contamination in semiconductor manufacturing, (2) flaws in rolls of textiles,
(3) calls to a telephone exchange, (4) power outages, and (5) atomic particles emitted from a
specimen have all been successfully modeled by the probability mass function in the following
definition.

In general, consider an interval T of real numbers partitioned into subintervals of small
length and assume that as tends to zero,

(1) the probability of more than one event in a subinterval tends to zero,
(2) the probability of one event in a subinterval tends to 

(3) the event in each subinterval is independent of other subintervals. 

A random experiment with these properties is called a Poisson process.
These assumptions imply that the subintervals can be thought of as approximate inde-

pendent Bernoulli trials with success probability and the number of trials equal to
Here, and as tends to zero, n tends to infinity, so the similarity to the

limit in Example 3-30 appears. This leads to the following definition.
�tpn � �,n � T/�t.

p � ��t/T

��t/T,

�t�t

that more than one flaw occurs in the subinterval is negligible.
Furthermore, we can interpret the assumption that flaws occur
at random to imply that every subinterval has the same proba-
bility of containing a flaw, say, p. Finally, if we assume that the
probability that a subinterval contains a flaw is independent of
other subintervals, we can model the distribution of X as ap-
proximately a binomial random variable. Because

E1X2 � � � np

we obtain

That is, the probability that a subinterval contains a flaw is 
. With small enough subintervals, n is very large and p is

very small. Therefore, the distribution of X is obtained as in the
previous example.

��n

p � ��n

The random variable X that equals the number of events in a Poisson process is
a Poisson random variable with parameter , and the probability mass
function of X is

(3-16)f 1x2 �
e���x

x!
  x � 0, 1, 2, p

0 � �

Poisson
Distribution

The sum of the probabilities is one because

and the summation on the right-hand side of the previous equation is recognized to be Taylor’s
expansion of ex evaluated at . Therefore, the summation equals and the right-hand side
equals .e��e� � 1

e��

a



k�0

e���k

k!
� e��

a



k�0

�k

k!
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Historically, the term process has been used to suggest the observation of a system over
time. In our example with the copper wire, we showed that the Poisson distribution could also
apply to intervals such as lengths. Figure 3-14 provides graphs of selected Poisson distributions.

It is important to use consistent units in the calculation of probabilities, means, and variances
involving Poisson random variables. The following example illustrates unit conversions. For
example, if the

average number of flaws per millimeter of wire is 3.4, then the

average number of flaws in 10 millimeters of wire is 34, and the

average number of flaws in 100 millimeters of wire is 340.

If a Poisson random variable represents the number of events in some interval, the mean of the
random variable must equal the expected number of events in the same length of interval.

0
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0.6

λ
0.1

0.4

1.0

0

2 4 8 10 121 3 5 7 9 11

0.8

f(x)

0

0.2

0.6

λ

0.4

1.0

0

2
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0.8
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0.4
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5

1 3 5 7 9 11

0.8

6

x 
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6

x
(b)

f(x)

6

x
(c)

f(x)

Figure 3-14 Poisson distributions for selected values of the parameters.
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EXAMPLE 3-32 Calculations for Wire Flaws
For the case of the thin copper wire, suppose that the number
of flaws follows a Poisson distribution with a mean of 2.3
flaws per millimeter. Determine the probability of exactly
two flaws in 1 millimeter of wire.

Let X denote the number of flaws in 1 millimeter of wire.
Then, E1X 2 � 2.3 flaws and

Determine the probability of 10 flaws in 5 millimeters of
wire. Let X denote the number of flaws in 5 millimeters of
wire. Then, X has a Poisson distribution with

E1X 2 � 5 mm 
 2.3 flaws/mm � 11.5 flaws

P1X � 22 �
e�2.32.32

2!
� 0.265

Therefore,

Determine the probability of at least one flaw in 2 millime-
ters of wire. Let X denote the number of flaws in 2 millimeters
of wire. Then, X has a Poisson distribution with

Therefore,

Practical Interpretation: Notice that when a probability
was requested for 2 mm of wire 2 was adjusted to 4.6, the
mean number of flaws in 2 mm. With such adjustments, proba-
bilities can be calculated for intervals of any size.

�

P1X � 12 � 1 � P1X � 02 � 1 � e�4.6 � 0.9899

E1X 2 � 2 mm 
 2.3 flaws/mm � 4.6 flaws

P1X � 102 � e�11.5  11.510

10!
� 0.113

EXAMPLE 3-33 CDs
Contamination is a problem in the manufacture of optical storage
disks (CDs). The number of particles of contamination that 
occur on an optical disk has a Poisson distribution, and the aver-
age number of particles per centimeter squared of media surface
is 0.1. The area of a disk under study is 100 squared centimeters.
Find the probability that 12 particles occur in the area of a disk
under study.

Let X denote the number of particles in the area of a disk
under study. Because the mean number of particles is 0.1 par-
ticles per cm2,

Therefore,

P1X � 122 �
e�101012

12!
� 0.095

E1X 2 � 100 cm2 
 0.1 particles/cm2 � 10 particles

The probability that zero particles occur in the area of the
disk under study is

Determine the probability that 12 or fewer particles occur
in the area of the disk under study. The probability is

Because this sum is tedious to compute, many computer pro-
grams calculate cumulative Poisson probabilities. From one
such program, .P1X � 122 � 0.792

� a  
12

i�0

e�1010i

i!

P1X � 122 � P1X � 02 	 P1X � 12 	 # # # 	 P1X � 122

P1X � 02 � e�10 � 4.54 
 10�5

The mean of a Poisson random variable is

where the summation can start at because the term is zero. If a change of variable
is used, the summation on the right-hand side of the previous equation is recog-

nized to be the sum of the probabilities of a Poisson random variable and this equals one.
Therefore, the previous equation simplifies to and the mean is derived.

To obtain the variance of a Poisson random variable we can start with , and this
equals

E1X 22 � a



k�1

k2e���k

k!
� �a




k�1

ke���k�1

1k � 12!

E1X 22
� � �

j � k � 1
k � 0k � 1

� � a



k�1

ke���k

k!
� �a




k�1

e���k�1

1k � 12!
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3-129. Suppose X has a Poisson distribution with a mean
of 4. Determine the following probabilities:
(a) (b)
(c) (d)

3-130. Suppose X has a Poisson distribution with a mean
of 0.4. Determine the following probabilities:
(a) (b)
(c) (d)

3-131. Suppose that the number of customers who enter
a bank in an hour is a Poisson random variable, and suppose that

Determine the mean and variance of X.

3-132. The number of telephone calls that arrive at a phone
exchange is often modeled as a Poisson random variable.
Assume that on the average there are 10 calls per hour.
(a) What is the probability that there are exactly five calls in

one hour?
(b) What is the probability that there are three or fewer calls

in one hour?
(c) What is the probability that there are exactly 15 calls in

two hours?

(d) What is the probability that there are exactly five calls in
30 minutes?

3-133. Astronomers treat the number of stars in a given vol-
ume of space as a Poisson random variable. The density in the
Milky Way Galaxy in the vicinity of our solar system is one
star per 16 cubic light-years.
(a) What is the probability of two or more stars in 16 cubic

light-years?
(b) How many cubic light-years of space must be studied so

that the probability of one or more stars exceeds 0.95?

3-134. Data from www.centralhudsonlabs determined the
mean number of insect fragments in 225-gram chocolate
bars was 14.4, but three brands had insect contamination
more than twice the average. See the U.S. Food and Drug
Administration–Center for Food Safety and Applied Nutrition
for Defect Action Levels for food products. Assume the num-
ber of fragments (contaminants) follows a Poisson distribution.
(a) If you consume a 225-gram bar from a brand at the mean

contamination level, what is the probability of no insect
contaminants?

P1X � 02 � 0.05.

P1X � 82P1X � 42
P1X � 22P1X � 02

P1X � 82P1X � 42
P1X � 22P1X � 02

Write to obtain

The summation in the first term on the right-hand side of the previous equation is recog-
nized to be the mean of X and this equals so that the first term is . The summation in the
second term on the right-hand side is recognized to be the sum of the probabilities and this
equals one. Therefore, the previous equation simplifies to . Because the

, we have

and the variance is derived.

V1X2 � �2 	 � � �2 � �

V1X2 � E1X 22 � 1EX 22
E1X 22 � �2 	 �

�2�

E1X 22 � �a



k�1

1k � 12e���k�1

1k � 12!
	 �a




k�1

e���k�1

1k � 12!

k � 1k � 12 	 1

EXERCISES FOR SECTION 3-9

If X is a Poisson random variable with parameter , then

(3-17)� � E1X 2 � �  and  �2 � V1X 2 � �

�

Mean and
Variance

The mean and variance of a Poisson random variable are equal. For example, if particle counts
follow a Poisson distribution with a mean of 25 particles per square centimeter, the variance
is also 25 and the standard deviation of the counts is five per square centimeter. Consequently,
information on the variability is very easily obtained. Conversely, if the variance of count data
is much greater than the mean of the same data, the Poisson distribution is not a good model
for the distribution of the random variable.
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102 CHAPTER 3 DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

(b) Suppose you consume a bar that is one-fifth the size tested
(45 grams) from a brand at the mean contamination level.
What is the probability of no insect contaminants?

(c) If you consume seven 28.35-gram (one-ounce) bars this
week from a brand at the mean contamination level, what
is the probability that you consume one or more insect
fragments in more than one bar?

(d) Is the probability of contamination more than twice the
mean of 14.4 unusual, or can it be considered typical vari-
ation? Explain.

3-135. In 1898 L. J. Bortkiewicz published a book entitled
The Law of Small Numbers. He used data collected over
20 years to show that the number of soldiers killed by horse
kicks each year in each corps in the Prussian cavalry followed
a Poisson distribution with a mean of 0.61.
(a) What is the probability of more than one death in a corps

in a year?
(b) What is the probability of no deaths in a corps over five

years?
3-136. The number of flaws in bolts of cloth in textile man-
ufacturing is assumed to be Poisson distributed with a mean of
0.1 flaw per square meter.
(a) What is the probability that there are two flaws in 1 square

meter of cloth?
(b) What is the probability that there is one flaw in 10 square

meters of cloth?
(c) What is the probability that there are no flaws in 20 square

meters of cloth?
(d) What is the probability that there are at least two flaws in

10 square meters of cloth?
3-137. When a computer disk manufacturer tests a disk, it
writes to the disk and then tests it using a certifier. The certi-
fier counts the number of missing pulses or errors. The number
of errors on a test area on a disk has a Poisson distribution with
� � 0.2.
(a) What is the expected number of errors per test area?
(b) What percentage of test areas have two or fewer errors?

3-138. The number of cracks in a section of interstate highway
that are significant enough to require repair is assumed to follow
a Poisson distribution with a mean of two cracks per mile.
(a) What is the probability that there are no cracks that require

repair in 5 miles of highway?
(b) What is the probability that at least one crack requires

repair in mile of highway?
(c) If the number of cracks is related to the vehicle load on the

highway and some sections of the highway have a heavy
load of vehicles whereas other sections carry a light load,
how do you feel about the assumption of a Poisson distri-
bution for the number of cracks that require repair?

3-139. The number of surface flaws in plastic panels used
in the interior of automobiles has a Poisson distribution with
a mean of 0.05 flaw per square foot of plastic panel. Assume
an automobile interior contains 10 square feet of plastic
panel.

(a) What is the probability that there are no surface flaws in
an auto’s interior?

(b) If 10 cars are sold to a rental company, what is the proba-
bility that none of the 10 cars has any surface flaws?

(c) If 10 cars are sold to a rental company, what is the proba-
bility that at most one car has any surface flaws?

3-140. The number of failures of a testing instrument from
contamination particles on the product is a Poisson random
variable with a mean of 0.02 failure per hour.
(a) What is the probability that the instrument does not fail in

an eight-hour shift?
(b) What is the probability of at least one failure in a 24-hour

day?

3-141. The number of content changes to a Web site follows
a Poisson distribution with a mean of 0.25 per day.
(a) What is the probability of two or more changes in a day?
(b) What is the probability of no content changes in five days?
(c) What is the probability of two or fewer changes in five

days?

3-142. The number of views of a page on a Web site follows
a Poisson distribution with a mean of 1.5 per minute.
(a) What is the probability of no views in a minute?
(b) What is the probability of two or fewer views in 10 minutes?
(c) Does the answer to the previous part depend on whether

the 10-minute period is an uninterrupted interval? Explain.

Supplemental Exercises

3-143. Let the random variable X be equally likely to as-
sume any of the values , , or . Determine the mean
and variance of X.

3-144. Let X denote the number of bits received in error in
a digital communication channel, and assume that X is a binomial
random variable with p � 0.001. If 1000 bits are transmitted, 
determine the following:
(a) (b)
(c) (d) mean and variance of X

3-145. Batches that consist of 50 coil springs from a produc-
tion process are checked for conformance to customer require-
ments. The mean number of nonconforming coil springs in a
batch is five. Assume that the number of nonconforming springs
in a batch, denoted as X, is a binomial random variable.
(a) What are n and p?
(b) What is ?
(c) What is ?

3-146. An automated egg carton loader has a 1% probability
of cracking an egg, and a customer will complain if more than
one egg per dozen is cracked. Assume each egg load is an inde-
pendent event.
(a) What is the distribution of cracked eggs per dozen? Include

parameter values.
(b) What are the probability that a carton of a dozen eggs results

in a complaint?

P1X � 492
P1X � 22

P1X � 22
P1X � 12P1X � 12

3�81�41�8

1�2
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(c) What are the mean and standard deviation of the number
of cracked eggs in a carton of one dozen?

3-147. A total of 12 cells are replicated. Freshly synthesized
DNA cannot be replicated again until mitosis is completed.
Two control mechanisms have been identified—one positive
and one negative—that are used with equal probability.
Assume that each cell independently uses a control mecha-
nism. Determine the following probabilities.
(a) All cells use a positive control mechanism.
(b) Exactly half the cells use a positive control mechanism.
(c) More than four, but less than seven, cells use a positive

control mechanism.

3-148. A congested computer network has a 1% chance of
losing a data packet and packet losses are independent events.
An e-mail message requires 100 packets.
(a) What is the distribution of data packets that must be re-

sent? Include the parameter values.
(b) What is the probability that at least one packet must 

be re-sent?
(c) What is the probability that two or more packets must

be re-sent?
(d) What are the mean and standard deviation of the number

of packets that must be re-sent?
(e) If there are 10 messages and each contains 100 packets,

what is the probability that at least one message requires
that two or more packets be re-sent?

3-149. A particularly long traffic light on your morning
commute is green 20% of the time that you approach it.
Assume that each morning represents an independent trial.
(a) What is the probability that the first morning that the light

is green is the fourth morning that you approach it?
(b) What is the probability that the light is not green for 10

consecutive mornings?

3-150. The probability is 0.6 that a calibration of a trans-
ducer in an electronic instrument conforms to specifications
for the measurement system. Assume the calibration attempts
are independent. What is the probability that at most three
calibration attempts are required to meet the specifications for
the measurement system?

3-151. An electronic scale in an automated filling operation
stops the manufacturing line after three underweight packages
are detected. Suppose that the probability of an underweight
package is 0.001 and each fill is independent.
(a) What is the mean number of fills before the line is stopped?
(b) What is the standard deviation of the number of fills

before the line is stopped?

3-152. The probability that an eagle kills a jackrabbit in a
day of hunting is 10%. Assume that results are independent
between days.
(a) What is the distribution of the number of days until a suc-

cessful jackrabbit hunt?
(b) What is the probability that the eagle must wait five days

for its first successful hunt?

(c) What is the expected number of days until a successful
hunt?

(d) If the eagle can survive up to 10 days without food (it requires
a successful hunt on the tenth day), what is the probability
that the eagle is still alive 10 days from now?

3-153. Traffic flow is traditionally modeled as a Poisson dis-
tribution. A traffic engineer monitors the traffic flowing through
an intersection with an average of six cars per minute. To set the
timing of a traffic signal, the following probabilities are used.
(a) What is the probability of no cars through the intersection

within 30 seconds?
(b) What is the probability of three or more cars through the

intersection within 30 seconds?
(c) Calculate the minimum number of cars through the inter-

section so that the probability of this number or fewer cars
in 30 seconds is at least 90%.

(d) If the variance of the number of cars through the intersec-
tion per minute is 20, is the Poisson distribution appropriate?
Explain.

3-154. A shipment of chemicals arrives in 15 totes. Three of
the totes are selected at random, without replacement, for an
inspection of purity. If two of the totes do not conform to
purity requirements, what is the probability that at least one of
the nonconforming totes is selected in the sample?

3-155. The probability that your call to a service line is an-
swered in less than 30 seconds is 0.75. Assume that your calls
are independent.
(a) If you call 10 times, what is the probability that exactly

nine of your calls are answered within 30 seconds?
(b) If you call 20 times, what is the probability that at least 16

calls are answered in less than 30 seconds?
(c) If you call 20 times, what is the mean number of calls that

are answered in less than 30 seconds?

3-156. Continuation of Exercise 3-155.
(a) What is the probability that you must call four times to

obtain the first answer in less than 30 seconds?
(b) What is the mean number of calls until you are answered

in less than 30 seconds?

3-157. Continuation of Exercise 3-155.
(a) What is the probability that you must call six times in

order for two of your calls to be answered in less than 
30 seconds?

(b) What is the mean number of calls to obtain two answers in
less than 30 seconds?

3-158. The number of messages sent to a computer bulletin
board is a Poisson random variable with a mean of five mes-
sages per hour.
(a) What is the probability that five messages are received in

1 hour?
(b) What is the probability that 10 messages are received in

1.5 hours?
(c) What is the probability that less than two messages are

received in one-half hour?
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3-159. A Web site is operated by four identical computer
servers. Only one is used to operate the site; the others are
spares that can be activated in case the active server fails. The
probability that a request to the Web site generates a failure in
the active server is 0.0001. Assume that each request is an in-
dependent trial. What is the mean time until failure of all four
computers?

3-160. The number of errors in a textbook follows a
Poisson distribution with a mean of 0.01 error per page. What
is the probability that there are three or less errors in 100
pages?

3-161. The probability that an individual recovers from
an illness in a one-week time period without treatment is
0.1. Suppose that 20 independent individuals suffering
from this illness are treated with a drug and four recover in
a one-week time period. If the drug has no effect, what is
the probability that four or more people recover in a one-
week time period?

3-162. Patient response to a generic drug to control pain is
scored on a 5-point scale, where a 5 indicates complete relief.
Historically, the distribution of scores is

1 2 3 4 5
0.05 0.1 0.2 0.25 0.4

Two patients, assumed to be independent, are each scored.
(a) What is the probability mass function of the total score?
(b) What is the probability mass function of the average

score?

3-163. In a manufacturing process that laminates several
ceramic layers, 1% of the assemblies are defective. Assume
that the assemblies are independent.
(a) What is the mean number of assemblies that need to be

checked to obtain five defective assemblies?
(b) What is the standard deviation of the number of assem-

blies that need to be checked to obtain five defective
assemblies?

3-164. Continuation of Exercise 3-163. Determine the
minimum number of assemblies that need to be checked 
so that the probability of at least one defective assembly 
exceeds 0.95.

3-165. Determine the constant c so that the following
function is a probability mass function: for x �
1, 2, 3, 4.

3-166. A manufacturer of a consumer electronics product
expects 2% of units to fail during the warranty period. A
sample of 500 independent units is tracked for warranty
performance.
(a) What is the probability that none fails during the warranty

period?
(b) What is the expected number of failures during the

warranty period?

(c) What is the probability that more than two units fail
during the warranty period?

3-167. Messages that arrive at a service center for an in-
formation systems manufacturer have been classified on the
basis of the number of keywords (used to help route mes-
sages) and the type of message, either e-mail or voice. Also,
70% of the messages arrive via e-mail and the rest are voice.

number of keywords 0 1 2 3 4
e-mail 0.1 0.1 0.2 0.4 0.2
voice 0.3 0.4 0.2 0.1 0

Determine the probability mass function of the number of
keywords in a message.

3-168. The random variable X has the following probability
distribution:

x 2 3 5 8
probability 0.2 0.4 0.3 0.1

Determine the following:
(a) (b)
(c) (d)
(e)

3-169. Determine the probability mass function for the 
random variable with the following cumulative distribution
function:

3-170. Each main bearing cap in an engine contains four
bolts. The bolts are selected at random, without replacement,
from a parts bin that contains 30 bolts from one supplier and
70 bolts from another.
(a) What is the probability that a main bearing cap contains

all bolts from the same supplier?
(b) What is the probability that exactly three bolts are from

the same supplier?

3-171. Assume the number of errors along a magnetic
recording surface is a Poisson random variable with a mean of
one error every bits. A sector of data consists of 4096
eight-bit bytes.
(a) What is the probability of more than one error in a sector?
(b) What is the mean number of sectors until an error is

found?

3-172. An installation technician for a specialized commu-
nication system is dispatched to a city only when three or
more orders have been placed. Suppose orders follow a
Poisson distribution with a mean of 0.25 per week for a city
with a population of 100,000, and suppose your city contains
a population of 800,000.

105

F1x2 � μ

0            x � 2
0.2    2 � x � 5.7
0.5 5.7 � x � 6.5
0.8 6.5 � x � 8.5
1 8.5 � x

V1X2
E1X2P12.7 � X � 5.12
P1X � 2.52P1X � 32

f 1x2 � cx
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(a) What is the probability that a technician is required after a
one-week period?

(b) If you are the first one in the city to place an order, what is
the probability that you have to wait more than two weeks
from the time you place your order until a technician is
dispatched?

3-173. From 500 customers, a major appliance manufac-
turer will randomly select a sample without replacement. The
company estimates that 25% of the customers will provide
useful data. If this estimate is correct, what is the probability
mass function of the number of customers that will provide
useful data?
(a) Assume that the company samples five customers.
(b) Assume that the company samples 10 customers.

3-174. It is suspected that some of the totes containing
chemicals purchased from a supplier exceed the moisture
content target. Samples from 30 totes are to be tested for
moisture content. Assume that the totes are independent.

Determine the proportion of totes from the supplier that must
exceed the moisture content target so that the probability is
0.90 that at least one tote in the sample of 30 fails the test.

3-175. Messages arrive to a computer server according
to a Poisson distribution with a mean rate of 10 per
hour. Determine the length of an interval of time such that
the probability that no messages arrive during this interval
is 0.90.

3-176. Flaws occur in the interior of plastic used for auto-
mobiles according to a Poisson distribution with a mean of
0.02 flaw per panel.
(a) If 50 panels are inspected, what is the probability that

there are no flaws?
(b) What is the expected number of panels that need to be

inspected before a flaw is found?

(c) If 50 panels are inspected, what is the probability that the
number of panels that have one or more flaws is less than or
equal to 2?

3-177. Derive the convergence results used to obtain a
Poisson distribution as the limit of a binomial distribution.

3-178. Show that the function f 1x2 in Example 3-5
satisfies the properties of a probability mass function
by summing the infinite series.

3-179. Derive the formula for the mean and standard
deviation of a discrete uniform random variable over the
range of integers .

3-180. Derive the expression for the variance of a
geometric random variable with parameter p.

3-181. An air flight can carry 120 passengers. A pas-
senger with a reserved seat arrives for the flight with
probability 0.95 Assume the passengers behave inde-
pendently. (Computer software is expected.)

(a) What is the minimum number of seats the airline
should reserve for the probability of a full flight to
be at least 0.90?

(b) What is the maximum number of seats the airline
should reserve for the probability that more passen-
gers arrive than the flight can seat to be less than 0.10?

(c) Discuss some reasonable policies the airline could
use to reserve seats based on these probabilities.

3-182. A company performs inspection on shipments
from suppliers in order to defect nonconforming prod-
ucts. Assume a lot contains 1000 items and 1% are
nonconforming. What sample size is needed so that the

probability of choosing at least one nonconforming item
in the sample is at least 0.90? Assume the binomial
approximation to the hypergeometric distribution is
adequate.

3-183. A company performs inspection on shipments
from suppliers in order to detect nonconforming prod-
ucts. The company’s policy is to use a sample size that is
always 10% of the lot size. Comment on the effective-
ness of this policy as a general rule for all sizes of lots.

3-184. A manufacturer stocks components obtained
from a supplier. Suppose that 2% of the components are
defective and that the defective components occur inde-
pendently. How many components must the manufacturer
have in stock so that the probability that 100 orders can be
completed without reordering components is at least 0.95?

3-185. A large bakery can produce rolls in lots of 
either 0, 1000, 2000, or 3000 per day. The production
cost per item is $0.10. The demand varies randomly 
according to the following distribution:

demand for rolls 0 1000 2000 3000 
probability of demand 0.3 0.2 0.3 0.2

Every roll for which there is a demand is sold for $0.30.
Every roll for which there is no demand is sold in a sec-
ondary market for $0.05. How many rolls should the
bakery produce each day to maximize the mean profit?

a, a 	 1, p , b

MIND-EXPANDING EXERCISES
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Bernoulli trial
Binomial distribution
Cumulative probability

distribution function-
discrete random
variable

Discrete uniform distri-
bution

Expected value of a
function of a random
variable

Finite population
correction factor 

Geometric distribution 
Hypergeometric distri-

bution
Lack of memory

property-discrete
random variable

Mean-discrete random
variable

Mean-function of a
discrete random
variable

Negative binomial
distribution

Poisson distribution
Poisson process
Probability distribution-

discrete random
variable

Probability mass
function

Standard deviation-
discrete random
variable 

Variance-discrete
random variable

IMPORTANT TERMS AND CONCEPTS
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4
Continuous Random Variables 
and Probability Distributions

© Wolfgang Amri/
iStockphoto

A link between statistics and physical phenomena is provided by the kinetic theory of
gases. The physicist James Maxwell used some basic assumptions to determine the distri-
bution of molecular velocity in a gas at equilibrium. As a result of molecular collisions all
directions of rebound are equally likely. From this concept he assumed equal probabilities
for velocities in all the x, y, and z directions and also independence of these components
of velocity. This alone is sufficient to show that the probability distribution of the veloc-
ity in a particular direction x is the continuous probability distribution known as the nor-
mal distribution. This fundamental probability distribution can be derived from other di-
rections (such as the central limit theorem to be discussed in a later chapter), but the
kinetic theory may be the most parsimonious. This role for the normal distribution illustrates
one example of the importance of continuous probability distribution distributions within
science and engineering.

CHAPTER OUTLINE

4-1 CONTINUOUS RANDOM
VARIABLES

4-2 PROBABILITY DISTRIBUTIONS
AND PROBABILITY DENSITY
FUNCTIONS

4-3 CUMULATIVE DISTRIBUTION
FUNCTIONS

4-4 MEAN AND VARIANCE OF A
CONTINUOUS RANDOM
VARIABLE

4-5 CONTINUOUS UNIFORM 
DISTRIBUTION

4-6 NORMAL DISTRIBUTION
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LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Determine probabilities from probability density functions
2. Determine probabilities from cumulative distribution functions and cumulative distribution func-

tions from probability density functions, and the reverse
3. Calculate means and variances for continuous random variables
4. Understand the assumptions for some common continuous probability distributions
5. Select an appropriate continuous probability distribution to calculate probabilities in specific applications
6. Calculate probabilities, determine means and variances for some common continuous probability

distributions
7. Standardize normal random variables
8. Use the table for the cumulative distribution function of a standard normal distribution to calcu-

late probabilities
9. Approximate probabilities for some binomial and Poisson distributions

4-1 CONTINUOUS RANDOM VARIABLES

Suppose a dimensional length is measured on a manufactured part selected from a day’s
production. In practice, there can be small variations in the measurements due to many causes,
such as vibrations, temperature fluctuations, operator differences, calibrations, cutting tool
wear, bearing wear, and raw material changes. In an experiment such as this, the measurement
is naturally represented as a random variable X and it is reasonable to model the range of pos-
sible values of X with an interval of real numbers. Recall from Chapter 2 that a continuous
random variable is a random variable with an interval (either finite or infinite) of real num-
bers for its range. The model provides for any precision in length measurements.

Because the number of possible values of X is uncountably infinite, X has a distinctly dif-
ferent distribution from the discrete random variables studied previously. But as in the discrete
case, many physical systems can be modeled by the same or similar continuous random vari-
ables. These random variables are described, and example computations of probabilities,
means, and variances are provided in the remaining sections of this chapter.

4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY
DENSITY FUNCTIONS

Density functions are commonly used in engineering to describe physical systems. For exam-
ple, consider the density of a loading on a long, thin beam as shown in Fig. 4-1. For any point
x along the beam, the density can be described by a function (in grams/cm). Intervals with
large loadings correspond to large values for the function. The total loading between points a
and b is determined as the integral of the density function from a to b. This integral is the area
under the density function over this interval, and it can be loosely interpreted as the sum of all
the loadings over this interval.

4-7 NORMAL APPROXIMATION TO
THE BINOMIAL AND POISSON
DISTRIBUTIONS

4-8 EXPONENTIAL DISTRIBUTION

4-9 ERLANG AND GAMMA 
DISTRIBUTIONS

4-10 WEIBULL DISTRIBUTION

4-11 LOGNORMAL DISTRIBUTION

4-12 BETA DISTRIBUTION
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4-2 PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITY FUNCTIONS 109

For a continuous random variable X, a probability density function is a function
such that

(1)

(2)

(3) area under from a to b

for any a and b (4-1)

f 1x2P1a � X � b2 � �
b

a
 
f 1x2 dx �

�
�

��

 f 1x2 dx � 1

f 1x2 � 0

Probability
Density

Function

A probability density function provides a simple description of the probabilities asso-
ciated with a random variable. As long as f(x) is nonnegative and 

so that the probabilities are properly restricted. A probability density
function is zero for x values that cannot occur and it is assumed to be zero wherever it is not
specifically defined.

A histogram is an approximation to a probability density function. See Fig. 4-3. For each
interval of the histogram, the area of the bar equals the relative frequency (proportion) of the
measurements in the interval. The relative frequency is an estimate of the probability that a
measurement falls in the interval. Similarly, the area under f(x) over any interval equals the
true probability that a measurement falls in the interval.

The important point is that f(x) is used to calculate an area that represents the probabil-
ity that X assumes a value in [a, b]. For the current measurement example, the probability that
X results in [14 mA, 15 mA] is the integral of the probability density function of X over this in-
terval. The probability that X results in [14.5 mA, 14.6 mA] is the integral of the same function,
f(x), over the smaller interval. By appropriate choice of the shape of f(x), we can represent the

0 � P1a � X � b2 � 1
��

��   
f 1x2 dx � 1,

Figure 4-3
Histogram approxi-
mates a probability
density function.  x

f (x)

Similarly, a probability density function f(x) can be used to describe the probability dis-
tribution of a continuous random variable X. If an interval is likely to contain a value for X,
its probability is large and it corresponds to large values for f(x). The probability that X is
between a and b is determined as the integral of f(x) from a to b. See Fig. 4-2.

L
o
a
d
in

g

x

P(a < X < b)

a b x

f (x)

Figure 4-1 Density function of a
loading on a long, thin beam.

Figure 4-2 Probability determined from the area
under f(x).
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110 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

probabilities associated with any continuous random variable X. The shape of f(x) determines
how the probability that X assumes a value in [14.5 mA, 14.6 mA] compares to the probabil-
ity of any other interval of equal or different length.

For the density function of a loading on a long, thin beam, because every point has zero width,
the loading at any point is zero. Similarly, for a continuous random variable X and any value x,

Based on this result, it might appear that our model of a continuous random variable is use-
less. However, in practice, when a particular current measurement is observed, such as 14.47
milliamperes, this result can be interpreted as the rounded value of a current measurement that
is actually in a range such as Therefore, the probability that the rounded
value 14.47 is observed as the value for X is the probability that X assumes a value in the inter-
val [14.465, 14.475], which is not zero. Similarly, because each point has zero probability, one
need not distinguish between inequalities such as � or � for continuous random variables.

14.465 � x � 14.475.

 P1X � x2 � 0

If X is a continuous random variable, for any and 

(4-2)P1x1 � X � x22 � P1x1 � X � x22 � P1x1 � X � x22 � P1x1 � X � x22

x2,x1

Figure 4-4 Probability density
function for Example 4-1.

0 10 20 x

0.05

f (x)

Figure 4-5 Probability density function for
Example 4-2.

12.5

f (x)

x12.6

EXAMPLE 4-2 Hole Diameter
Let the continuous random variable X denote the diameter of a
hole drilled in a sheet metal component. The target diameter is
12.5 millimeters. Most random disturbances to the process
result in larger diameters. Historical data show that the distri-
bution of X can be modeled by a probability density function

If a part with a diameter larger than 12.60 millimeters is
scrapped, what proportion of parts is scrapped? The density

f 1x2 � 20e�201x�12.52,  x � 12.5.

function and the requested probability are shown in Fig. 4-5. 
A part is scrapped if Now,

� �e�201x�12.52 `
�

12.6
� 0.135

P1X � 12.602 � �
�

12.6
 
f 1x2 dx � �

�

12.6
 

20e�201x�12.52 dx

X � 12.60.

EXAMPLE 4-1 Electric Current
Let the continuous random variable X denote the current meas-
ured in a thin copper wire in milliamperes. Assume that the range
of X is [0, 20 mA], and assume that the probability density func-
tion of X is for What is the probabil-
ity that a current measurement is less than 10 milliamperes?

The probability density function is shown in Fig. 4-4. It is
assumed that wherever it is not specifically defined.
The probability requested is indicated by the shaded area in
Fig. 4-4.

f 1x2 � 0

0 � x � 20.f 1x2 � 0.05

As another example,

P 15 � X � 202 � �
20

5
 
f 1x2 dx � 0.75

P1X � 102 � �
10

0
 
f 1x2 dx � �  

10

0

0.05 dx � 0.5
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4-3 CUMULATIVE DISTRIBUTION FUNCTIONS 111

4-1. Suppose that for Determine the 
following:
(a) (b)
(c) (d)
(e)
(f) Determine x such that 
(g) Determine x such that 

4-2. Suppose that 
Determine the following:
(a) (b)
(c) (d)
(e) Determine x such that 

4-3. Suppose that 
Determine the following:
(a) (b)
(c) (d)
(e) Determine x such that 

4-4. The diameter of a particle of contamination (in mi-
crometers) is modeled with the probability density function

for Determine the following:
(a) (b)
(c) (d)
(e) Determine x such that 

4-5. Suppose that for Determine the
following probabilities:
(a) (b)
(c) (d)
(e)

4-6. Suppose that Determine the
following:
(a) (b)
(c) (d)
(e) Determine x such that P(X � x) � 0.90.

4-7. Suppose that for Determine
the following:
(a) (b)
(c) (d) P1X � �22P1�0.5 � X � 0.52

P10.5 � X 2P10 � X 2

�1 � x � 1.f 1x2 � 1.5x2

P18 � X � 122P15 � X 2
P12 � X � 52P11 � X 2

f 1x2 � e�1x�42 for 4 � x.

P1X � 3.5 or X � 4.52
P1X � 4.52P14 � X � 52
P1X � 3.52P1X � 42

3 � x � 5.f 1x2 � x	8
P1X � x2 � 0.95.

P1X � 4 or X � 82P14 � X � 82
P1X � 52P1X � 22

x � 1.f 1x2 � 2/x3

P1X � x2 � 0.95.
P1X � �
/42P1�
/4 � X � 
/42
P1X � �
/42P1X � 02

f 1x2 � 0.5 cos x for �
/2 � x � 
/2.

P1X � x2 � 0.95.
P1X � 62P12 � X � 42
P1X � 92P1X � 22

f 1x2 � 318x � x22/256 for 0 � x � 8.

P1X � x2 � 0.10.
P1x � X 2 � 0.10.

P13 � X 2
P1X � 42P1X � 32
P11 � X � 2.52P11 � X 2

0 � x.f 1x2 � e�x (e)
(f) Determine x such that 

4-8. The probability density function of the time to failure
of an electronic component in a copier (in hours) is f(x) � 

for Determine the probability that
(a) A component lasts more than 3000 hours before failure.
(b) A component fails in the interval from 1000 to 2000

hours.
(c) A component fails before 1000 hours.
(d) Determine the number of hours at which 10% of all com-

ponents have failed.

4-9. The probability density function of the net weight in
pounds of a packaged chemical herbicide is for

pounds.
(a) Determine the probability that a package weighs more

than 50 pounds.
(b) How much chemical is contained in 90% of all packages?

4-10. The probability density function of the length of a cut-
ting blade is for millimeters.
Determine the following:
(a)
(b)
(c) If the specifications for this process are from 74.7

to 75.3 millimeters, what proportion of blades meets
specifications?

4-11. The probability density function of the length of a
metal rod is for 2.3 � x � 2.8 meters.
(a) If the specifications for this process are from 2.25 to 2.75

meters, what proportion of rods fail to meet the specifica-
tions?

(b) Assume that the probability density function is 
for an interval of length 0.5 meters. Over what value
should the density be centered to achieve the greatest pro-
portion of bars within specifications?

4-12. If X is a continuous random variable, argue that P(x1 �
X � x2) � P(x1 � X � x2) � P(x1 � X � x2) � P(x1 � X � x2).

f 1x2 � 2

f 1x2 � 2

P1X � 74.8 or X � 75.22
P1X � 74.82

74.6 � x � 75.4f 1x2 � 1.25

49.75 � x � 50.25
f 1x2 � 2.0

x � 0.e�x	1000	1000

P1x � X 2 � 0.05.
P1X � 0 or X � �0.52

EXERCISES FOR SECTION 4-2

4-3 CUMULATIVE DISTRIBUTION FUNCTIONS

An alternative method to describe the distribution of a discrete random variable can also be
used for continuous random variables.

What proportion of parts is between 12.5 and 12.6 mil-
limeters? Now,

� 0.865

P112.5 � X � 12.62 � �
12.6

12.5
 
f 1x2 dx � �e�201x�12.52 `

12.6

12.5

Because the total area under f(x) equals 1, we can also calcu-
late 

Practical Interpretation: Because 0.135 is the proportion of
parts with diameters greater than 12.60 mm a large proportion of
parts are scrapped. Process improvements are needed to increase
the proportion of parts with dimensions near 12.50 mm.

0.865.
1 � P1X � 12.62 � 1 � 0.135 �P112.5 � X � 12.62 �
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112 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Extending the definition of f(x) to the entire real line enables us to define the cumulative dis-
tribution function for all real numbers. The following example illustrates the definition.

EXAMPLE 4-4 Hole Diameter
For the drilling operation in Example 4-2, F(x) consists of two
expressions.

for

and for ,

 � 1 � e�201x�12.52

 F1x2 � �
x

12.5

20e�201u�12.52  du

12.5 � x

x � 12.5F1x2 � 0

Therefore,

Figure 4-7 displays a graph of F(x).
Practical Interpretation: The cumulative distribution

function enables one to easily calculate the probability a di-
ameter in less than a value (such as 12.60 mm). Therefore, the
probability of a scrapped part can be easily determined.

F1x2 � e
0 x � 12.5

1 � e�201x�12.52 12.5 � x

EXAMPLE 4-3 Electric Current
For the copper current measurement in Example 4-1, the
cumulative distribution function of the random variable X con-
sists of three expressions. If Therefore,

and

F1x2 � �
x

0
 
f 1u2 du � 0.05x, for 0 � x � 20

F1x2 � 0, for x � 0

x � 0,  f 1x2 � 0.

Finally,

Therefore,

The plot of F(x) is shown in Fig. 4-6.

F1x2 � •

0 x � 0

0.05x 0 � x � 20

1 20 � x

F1x2 � �
x

0
 
f 1u2 du � 1, for 20 � x

Notice that in the definition of F(x), any can be changed to and vice versa. That is,
F(x) can be defined as either 0.05x or 0 at the end-point and F(x) can be defined as
either 0.05x or 1 at the end-point In other words, F(x) is a continuous function. For a
discrete random variable, F(x) is not a continuous function. Sometimes, a continuous random
variable is defined as one that has a continuous cumulative distribution function.

x � 20.
x � 0,

��

The probability density function of a continuous random variable can be determined from
the cumulative distribution function by differentiating. Recall that the fundamental theorem of
calculus states that 

d

dx
 �

x

��

f 1u2 du � f 1x2

The cumulative distribution function of a continuous random variable X is

(4-3)

for �� � x � �.

F1x2 � P1X � x2 � �
x

��
 
f 1u2 du

Cumulative
Distribution

Function
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4-3 CUMULATIVE DISTRIBUTION FUNCTIONS 113

Then, given F(x),

as long as the derivative exists.

f 1x2 �
dF1x2

dx

EXAMPLE 4-5 Reaction Time
The time until a chemical reaction is complete (in millisec-
onds) is approximated by the cumulative distribution function

Determine the probability density function of X. What propor-
tion of reactions is complete within 200 milliseconds? Using

F1x2 � e
0 x � 0

1 � e�0.01x 0 � x

the result that the probability density function is the deriva-
tive of F(x), we obtain

The probability that a reaction completes within 200 milli-
seconds is

P1X � 2002 � F12002 � 1 � e�2 � 0.8647.

f 1x2 � e
0 x � 0

0.01e�0.01x 0 � x

EXERCISES FOR SECTION 4-3

4-13. Suppose the cumulative distribution function of the
random variable X is

Determine the following:
(a) (b)
(c) (d)

4-14. Suppose the cumulative distribution function of the
random variable X is

Determine the following:
(a) (b)
(c) (d)

4-15. Determine the cumulative distribution function for
the distribution in Exercise 4-1.

4-16. Determine the cumulative distribution function for
the distribution in Exercise 4-2.

P1�1 � X � 12P1X � �22
P1X � �1.52P1X � 1.82

F1x2 � •

0 x � �2

0.25x � 0.5 �2 � x � 2

1 2 � x

P1X � 62P1X � �22
P1X � 1.52P1X � 2.82

F1x2 � •

0 x � 0

0.2x 0 � x � 5

1 5 � x

4-17. Determine the cumulative distribution function for
the distribution in Exercise 4-3.

4-18. Determine the cumulative distribution function for
the distribution in Exercise 4-4.

4-19. Determine the cumulative distribution function for
the distribution in Exercise 4-5.

4-20. Determine the cumulative distribution function for
the distribution in Exercise 4-8. Use the cumulative distribu-
tion function to determine the probability that a component
lasts more than 3000 hours before failure.

4-21. Determine the cumulative distribution function for
the distribution in Exercise 4-11. Use the cumulative distribu-
tion function to determine the probability that a length
exceeds 2.7 meters. 

4-22. The probability density function of the time customers
arrive at a terminal (in minutes after 8:00 A.M.) is 

for 0 � x. Determine the probability that 
(a) The first customer arrives by 9:00 A.M.
(b) The first customer arrives between 8:15 A.M. and 8:30 A.M.
(c) Two or more customers arrive before 8:40 A.M. among five

who arrive at the terminal. Assume cus tomer arrivals are
independent.

(d) Determine the cumulative distribution function and use
the cumulative distribution function to determine the

e�x	10	10
f 1x2 �

Figure 4-6 Cumulative distribution
function for Example 4-3.

20

1

x0

F(x)

Figure 4-7 Cumulative distribution
function for Example 4-4.

12.5

1

x0

F(x)
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114 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Suppose X is a continuous random variable with probability density function f(x).
The mean or expected value of X, denoted as or E(X), is

(4-4)

The variance of X, denoted as V(X) or is

The standard deviation of X is .� � 2�2

�2 � V1X 2 � �
�

��

 1x � 
22f 1x2 dx � �
�

��

 x2f 1x2 dx � 
2

�2,


 � E1X 2 � �
�

��

 xf 1x2 dx




Mean 
and

Variance

4-4 MEAN AND VARIANCE OF A CONTINUOUS
RANDOM VARIABLE

The mean and variance can also be defined for a continuous random variable. Integration
replaces summation in the discrete definitions. If a probability density function is viewed as a
loading on a beam as in Fig. 4-1, the mean is the balance point.

The equivalence of the two formulas for variance can be derived from the same approach used
for discrete random variables.

EXAMPLE 4-6 Electric Current
For the copper current measurement in Example 4-1, the mean
of X is

E1X 2 � �
20

0

 xf 1x2 dx � 0.05x2	2 `
20

0
� 10

The variance of X is

V1X 2 � �
20

0

 1x � 1022f 1x2 dx � 0.051x � 1023	3 `
20

0
� 33.33

The expected value of a function h(X ) of a continuous random variable is also defined in a
straightforward manner.

probability that the first customer arrives between
8:15 A.M. and 8:30 A.M.

4-23. The gap width is an important property of a magnetic
recording head. In coded units, if the width is a continuous
random variable over the range from 0 � x � 2 with f(x) � 0.5x,
determine the cumulative distribution function of the gap
width.

Determine the probability density function for each of the fol-
lowing cumulative distribution functions.

4-24. F1x2 � 1 � e�2x  x � 0

4-25.

4-26.

F1x2 � μ

0 x � �2

0.25x � 0.5 �2 � x � 1

0.5x � 0.25 1 � x � 1.5

1 1.5 � x

F1x2 � μ

0 x � 0

0.2x 0 � x � 4

0.04x � 0.64 4 � x � 9

1 9 � x
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4-4 MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE 115

EXAMPLE 4-8 Hole Diameter
For the drilling operation in Example 4-2, the mean of X is

Integration by parts can be used to show that

� 12.55

E1X 2 � �xe�201x�12.52 �
e�201x�12.52

20
 `

�

12.5
� 12.5 � 0.05

E1X 2 � �
�

12.5

 xf 1x2 dx � �
�

12.5

 x 20e�201x�12.52 dx

The variance of X is

Although more difficult, integration by parts can be used two
times to show that V(X) � 0.0025 and � � 0.05.

Practical Interpretation: The scrap limit at 12.60 mm is
only one standard deviation greater than the mean. This is gen-
erally a warning that the scraps may be unacceptably high.

V1X 2 � �
�

12.5

 1x � 12.5522f 1x2 dx

EXAMPLE 4-7
In Example 4-1, X is the current measured in milliamperes.
What is the expected value of the squared current? Now,

Therefore,

� 133.33

E 3h1X 2 4 � �
�

��

 x2f 1x2 dx � �
20

0

 0.05x2 dx � 0.05 
x3

3
 `

20

0

h1X 2 � X 2.

In the previous example, the expected value of X 2 does not equal
E(X) squared. However, in the special case that 
for any constants a and b, This can be
shown from the properties of integrals.

E 3h1X 2 4 � aE1X 2 � b.
h1X 2 � aX � b

EXERCISES FOR SECTION 4-4

4-27. Suppose for Determine the
mean and variance of X.
4-28. Suppose for Determine
the mean and variance of X.
4-29. Suppose for Determine
the mean and variance of X.
4-30. Suppose that for Determine
the mean and variance of x.
4-31. Determine the mean and variance of the random vari-
able in Exercise 4-2.
4-32. Determine the mean and variance of the random vari-
able in Exercise 4-1.
4-33. Suppose that contamination particle size (in microm-
eters) can be modeled as for Determine
the mean of X.
4-34. Suppose the probability density function of the length
of computer cables is f(x) � 0.1 from 1200 to 1210 millimeters.
(a) Determine the mean and standard deviation of the cable

length.
(b) If the length specifications are 1195 � x � 1205 millimeters,

what proportion of cables are within specifications?

1 � x.f 1x2 � 2x�3

3 � x � 5.f 1x2 � x	8

�1 � x � 1.f 1x2 � 1.5x2

0 � x � 4.f 1x2 � 0.125x

0 � x � 4.f 1x2 � 0.25 4-35. The thickness of a conductive coating in micrometers
has a density function of 600x�2 for 100 
m � x � 120 
m.
(a) Determine the mean and variance of the coating thickness.
(b) If the coating costs $0.50 per micrometer of thickness on

each part, what is the average cost of the coating per part?

4-36. The probability density function of the weight of
packages delivered by a post office is for 
1 � x � 70 pounds.
(a) Determine the mean and variance of weight.
(b) If the shipping cost is $2.50 per pound, what is the aver-

age shipping cost of a package?
(c) Determine the probability that the weight of a package

exceeds 50 pounds.

4-37. Integration by parts is required. The probability den-
sity function for the diameter of a drilled hole in millimeters is

for mm. Although the target diameter is 
5 millimeters, vibrations, tool wear, and other nuisances pro-
duce diameters larger than 5 millimeters.
(a) Determine the mean and variance of the diameter of the holes.
(b) Determine the probability that a diameter exceeds 5.1

millimeters.

x � 510e�101x�52

f 1x2 � 70	 169x22

If X is a continuous random variable with probability density function f(x),

(4-5)E 3h1X 2 4 � �
�

��

 h1x2  f 1x2 dx

Expected 
Value of a

Function of a
Continuous

Random
Variable
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4-5 CONTINUOUS UNIFORM DISTRIBUTION

The simplest continuous distribution is analogous to its discrete counterpart.

116 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

A continuous random variable X with probability density function

(4-6)

is a continuous uniform random variable.

f 1x2 � 1	 1b � a2,  a � x � b

Continuous
Uniform

Distribution

The probability density function of a continuous uniform random variable is shown in Fig. 4-8.
The mean of the continuous uniform random variable X is

The variance of X is

These results are summarized as follows.

V1X 2 � �  

b

a

ax � a
a � b

2
bb

2

b � a
 dx �

ax �
a � b

2
b

3

31b � a2
 
†

b

a
�
1b � a22

12

E1X 2 � �  

b

a

x

b � a
 dx �

0.5x2

b � a
 `

b

a
�
1a � b2

2

If X is a continuous uniform random variable over a � x � b,

(4-7)
 � E1X 2 �
1a � b2

2
 and �2 � V1X 2 �

1b � a22

12

Mean and
Variance

EXAMPLE 4-9 Uniform Current
Let the continuous random variable X denote the current
measured in a thin copper wire in milliamperes. Assume that
the range of X is [0, 20 mA], and assume that the probability
density function of X is 

What is the probability that a measurement of current is
between 5 and 10 milliamperes? The requested probability is
shown as the shaded area in Fig. 4-9.

 � 510.052 � 0.25

 P15 � X � 102 � �
10

5
 
f 1x2 dx

f 1x2 � 0.05, 0 � x � 20.

The mean and variance formulas can be applied with 

and Therefore,

Consequently, the standard deviation of X is 5.77 mA.

E1X 2 � 10 mA and V1X 2 � 202	12 � 33.33 mA2

b � 20.

a � 0
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4-5 CONTINUOUS UNIFORM DISTRIBUTION 117

The cumulative distribution function of a continuous uniform random variable is ob-
tained by integration. If 

Therefore, the complete description of the cumulative distribution function of a continuous
uniform random variable is

An example of F(x) for a continuous uniform random variable is shown in Fig. 4-6.

F1x2 � •

0 x � a

1x � a2	 1b � a2 a � x � b

1 b � x

F1x2 � �
x

a

1	 1b � a2  du � x	 1b � a2 � a	 1b � a2

a � x � b,

EXERCISES FOR SECTION 4-5

4-38. Suppose X has a continuous uniform distribution over
the interval [1.5, 5.5].
(a) Determine the mean, variance, and standard deviation of X.
(b) What is ?
(c) Determine the cumulative distribution function.

4-39. Suppose X has a continuous uniform distribution over
the interval 
(a) Determine the mean, variance, and standard deviation 

of X.
(b) Determine the value for x such that P(�x � X � x) � 0.90.
(c) Determine the cumulative distribution function.

4-40. The net weight in pounds of a packaged chemical
herbicide is uniform for pounds.
(a) Determine the mean and variance of the weight of packages.
(b) Determine the cumulative distribution function of the

weight of packages.
(c) Determine 

4-41. The thickness of a flange on an aircraft component is
uniformly distributed between 0.95 and 1.05 millimeters.
(a) Determine the cumulative distribution function of flange

thickness.
(b) Determine the proportion of flanges that exceeds 1.02

millimeters.
(c) What thickness is exceeded by 90% of the flanges?
(d) Determine the mean and variance of flange thickness.

P1X � 50.12.

49.75 � x � 50.25

3�1, 1 4 .

P1X � 2.52

4-42. Suppose the time it takes a data collection operator to
fill out an electronic form for a database is uniformly between
1.5 and 2.2 minutes.
(a) What is the mean and variance of the time it takes an op-

erator to fill out the form?
(b) What is the probability that it will take less than two min-

utes to fill out the form?
(c) Determine the cumulative distribution function of the time

it takes to fill out the form.

4-43. The thickness of photoresist applied to wafers in
semiconductor manufacturing at a particular location on the
wafer is uniformly distributed between 0.2050 and 0.2150
micrometers.
(a) Determine the cumulative distribution function of pho-

toresist thickness.
(b) Determine the proportion of wafers that exceeds 0.2125

micrometers in photoresist thickness.
(c) What thickness is exceeded by 10% of the wafers?
(d) Determine the mean and variance of photoresist thickness.

4-44. An adult can lose or gain two pounds of water in the
course of a day. Assume that the changes in water weight are
uniformly distributed between minus two and plus two pounds in
a day. What is the standard deviation of your weight over a day?

4-45. A show is scheduled to start at 9:00 A.M., 9:30 A.M.,
and 10:00 A.M. Once the show starts, the gate will be closed.

Figure 4-8 Continuous uniform
probability density function.

a

1

b – a

x

f(x)

b

Figure 4-9 Probability for Example 4-9.

x

f(x)

0 5 10 15 20

0.05
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118 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

4-6 NORMAL DISTRIBUTION

Undoubtedly, the most widely used model for the distribution of a random variable is a
normal distribution. Whenever a random experiment is replicated, the random variable that
equals the average (or total) result over the replicates tends to have a normal distribution as
the number of replicates becomes large. De Moivre presented this fundamental result, known
as the central limit theorem, in 1733. Unfortunately, his work was lost for some time, and
Gauss independently developed a normal distribution nearly 100 years later. Although De
Moivre was later credited with the derivation, a normal distribution is also referred to as a
Gaussian distribution.

When do we average (or total) results? Almost always. For example, an automotive engi-
neer may plan a study to average pull-off force measurements from several connectors. If we
assume that each measurement results from a replicate of a random experiment, the normal
distribution can be used to make approximate conclusions about this average. These conclu-
sions are the primary topics in the subsequent chapters of this book.

Furthermore, sometimes the central limit theorem is less obvious. For example, assume
that the deviation (or error) in the length of a machined part is the sum of a large number of
infinitesimal effects, such as temperature and humidity drifts, vibrations, cutting angle
variations, cutting tool wear, bearing wear, rotational speed variations, mounting and fixture
variations, variations in numerous raw material characteristics, and variation in levels of
contamination. If the component errors are independent and equally likely to be positive or
negative, the total error can be shown to have an approximate normal distribution.
Furthermore, the normal distribution arises in the study of numerous basic physical phenomena.
For example, the physicist Maxwell developed a normal distribution from simple assumptions
regarding the velocities of molecules.

The theoretical basis of a normal distribution is mentioned to justify the somewhat com-
plex form of the probability density function. Our objective now is to calculate probabilities
for a normal random variable. The central limit theorem will be stated more carefully later.

A visitor will arrive at the gate at a time uniformly distributed
between 8:30 A.M. and 10:00 A.M. Determine
(a) The cumulative distribution function of the time (in minutes)

between arrival and 8:30 A.M.
(b) The mean and variance of the distribution in the previous

part.
(c) The probability that a visitor waits less than 10 minutes

for a show.
(d) The probability that a visitor waits more than 20 minutes

for a show.

4-46. The volume of a shampoo filled into a container is uni-
formly distributed between 374 and 380 milliliters.
(a) What are the mean and standard deviation of the volume

of shampoo?
(b) What is the probability that the container is filled with less

than the advertised target of 375 milliliters?
(c) What is the volume of shampoo that is exceeded by 95%

of the containers?
(d) Every milliliter of shampoo costs the producer $0.002.

Any more shampoo in the container than 375 milliliters is
an extra cost to the producer. What is the mean extra cost?

4-47. An e-mail message will arrive at a time uniformly
distributed between 9:00 A.M. and 11:00 A.M. You check e-mail
at 9:15 A.M. and every 30 minutes afterward.
(a) What is the standard deviation of arrival time (in minutes)?
(b) What is the probability that the message arrives less than

10 minutes before you view it?
(c) What is the probability that the message arrives more than

15 minutes before you view it?

4-48. Measurement error that is continuous and uniformly
distributed from �3 to �3 millivolts is added to the true voltage
of a circuit. Then the measurement is rounded to the nearest mil-
livolt so that it becomes discrete. Suppose that the true voltage
is 250 millivolts.
(a) What is the probability mass function of the measured

voltage?
(b) What is the mean and variance of the measured voltage?
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Figure 4-10 Normal probability density functions for
selected values of the parameters and �2.


A random variable X with probability density function

(4-8)

is a normal random variable with parameters 
, where and � � 0.
Also,

(4-9)

and the notation is used to denote the distribution.N1
, �22

E1X 2 � 
 and V1X2 � �2

�� � 
 � �,

f 1x2 �
1

12
�
 e

�1x�
22

2�2   
�� � x � �

Normal
Distribution

� = 5 x� = 15

σ2 = 1

σ2 = 4

σ2 = 1
f (x)

Random variables with different means and variances can be modeled by normal proba-
bility density functions with appropriate choices of the center and width of the curve. The
value of determines the center of the probability density function and the value of

determines the width. Figure 4-10 illustrates several normal probability density
functions with selected values of 
 and �2. Each has the characteristic symmetric bell-shaped
curve, but the centers and dispersions differ. The following definition provides the formula for
normal probability density functions.

V1X 2 � �2
E1X 2 � 


EXAMPLE 4-10
Assume that the current measurements in a strip of wire fol-
low a normal distribution with a mean of 10 milliamperes and
a variance of 4 (milliamperes)2. What is the probability that a
measurement exceeds 13 milliamperes?

Let X denote the current in milliamperes. The requested
probability can be represented as This probabilityP1X � 132.

is shown as the shaded area under the normal probability
density function in Fig. 4-11. Unfortunately, there is no
closed-form expression for the integral of a normal probabil-
ity density function, and probabilities based on the normal dis-
tribution are typically found numerically or from a table (that
we will later introduce).

Some useful results concerning a normal distribution are summarized below and in
Fig. 4-12. For any normal random variable,

Also, from the symmetry of Because f(x) is positive for
all x, this model assigns some probability to each interval of the real line. However, the

f 1x2, P1X � 
2 � P1X � 
2 � 0.5.

 P1
 � 3� � X � 
 � 3�2 � 0.9973
 P1
 � 2� � X � 
 � 2�2 � 0.9545

 P1
 � � � X � 
 � �2 � 0.6827

The mean and variance of X are shown to equal 
 and respectively, in an exercise at the
end of chapter 5.

�2,
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probability density function decreases as x moves farther from 
. Consequently, the probability
that a measurement falls far from 
 is small, and at some distance from 
 the probability of an
interval can be approximated as zero.

The area under a normal probability density function beyond 3� from the mean is quite
small. This fact is convenient for quick, rough sketches of a normal probability density function.
The sketches help us determine probabilities. Because more than 0.9973 of the probability of a
normal distribution is within the interval , 6� is often referred to as
the width of a normal distribution. Advanced integration methods can be used to show that the
area under the normal probability density function from is 1.�� � x � �

1
 � 3�, 
 � 3�2

Figure 4-11 Probability that X � 13 for a normal
random variable with and �2 � 4.
 � 10

10 x13

f (x)

Figure 4-12 Probabilities associated with a normal
distribution.

– 3 x
 � – 2μ � – 
 � 
 +
 � + 2
 � + 3
 �

68%

95%

99.7%

f (x)

A normal random variable with 


 � 0 and �2 � 1

is called a standard normal random variable and is denoted as Z. The cumulative
distribution function of a standard normal random variable is denoted as

�1z2 � P1Z � z2

Standard 
Normal 

Random 
Variable

EXAMPLE 4-11 Standard Normal Distribution
Assume Z is a standard normal random variable. Appendix
Table III provides probabilities of the form 
The use of Table III to find is illustrated in Fig. 4-13.
Read down the z column to the row that equals 1.5. The prob-
ability is read from the adjacent column, labeled 0.00, to be
0.93319.

P1Z � 1.52
�1z2 � P1Z �  z2.

The column headings refer to the hundredths digit of the
value of z in For example, is found by
reading down the z column to the row 1.5 and then selecting
the probability from the column labeled 0.03 to be 0.93699.

P1Z � 1.532P1Z � z2.

Appendix Table III provides cumulative probabilities for a standard normal random vari-
able. Cumulative distribution functions for normal random variables are also widely available
in computer packages. They can be used in the same manner as Appendix Table III to obtain
probabilities for these random variables. The use of Table III is illustrated by the following
example.
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Probabilities that are not of the form P(Z � z) are found by using the basic rules of prob-
ability and the symmetry of the normal distribution along with Appendix Table III. The fol-
lowing examples illustrate the method.

Figure 4-14 Graphical displays for standard normal distributions.

Figure 4-13 Standard
normal probability den-
sity function. z0

= shaded area
P(Z ≤ 1.5) = Φ (1.5)

1.5

0.00 0.01 0.02

0

1.5

z

0.93319

. 
. 

.

. 
. 

.

0.93448 0.93574

0.50000 0.50399 0.50398

0.03

0.93699

0.51197

EXAMPLE 4-12
The following calculations are shown pictorially in Fig. 4-14.
In practice, a probability is often rounded to one or two signif-
icant digits.

(1)

(2)

(3)

(4) . This probability can be found
from the difference of two areas, 

. Now,P1Z � �1.252
P1Z � 0.372 �

P1�1.25 � Z � 0.372

P1Z � �1.372 � P1Z � 1.372 � 0.91465

P1Z � �0.862 � 0.19490.

� 0.10384
P1Z � 1.262 � 1 �  P1Z � 1.262 � 1 � 0.89616

and

Therefore,

(5) cannot be found exactly from Appendix
Table III. However, the last entry in the table can be used
to find that . Because

is nearly
zero.

P1Z � �4.62P1Z � �4.62 � P1Z � �3.992,
P1Z � �3.992 �  0.00003

P1Z � �4.62

 � 0.53866
 P 1�1.25 � Z � 0.372 � 0.64431 � 0.10565

P1Z � �1.252 � 0.10565

P1Z � 0.372 � 0.64431

(1) (5)

0 –3.99

(2)

0 0

(3) (7)

0 0 0

0 0 0

1.26 0 1.26

–0.86

0.05

z ≅ 1.65

z ≅ 2.58

0.0050.005

– z

0.99

–1.37

=

1.37

=

0.37–1.25 –1.250.37

–

= –

(4)

–4.6 0

(6)

1
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If X is a normal random variable with E(X ) � 
 and V(X ) � �2, the random variable

(4-10)

is a normal random variable with E(Z) � 0 and V(Z) � 1. That is, Z is a standard
normal random variable.

Z �
X � 


�

Standardizing a
Normal 

Random 
Variable

EXAMPLE 4-13 Normally Distributed Current
Suppose the current measurements in a strip of wire are as-
sumed to follow a normal distribution with a mean of 10 mil-
liamperes and a variance of 4 (milliamperes)2. What is the
probability that a measurement will exceed 13 milliamperes?

Let X denote the current in milliamperes. The requested
probability can be represented as P(X � 13). Let Z � (X �
10)�2. The relationship between the several values of X and the
transformed values of Z are shown in Fig. 4-15. We note that X �
13 corresponds to Z � 1.5. Therefore, from Appendix Table III,

� 0.06681
P1X � 132 � P1Z � 1.52 � 1 � P1Z � 1.52 � 1 � 0.93319

Rather than using Fig. 4-15, the probability can be found from
the inequality That is,

Practical Interpretation: Probabilities for any normal random
variable can be computed with a simple transform to a stan-
dard normal random variable. 

� 0.06681

P1X � 132 � P  a
1X � 102

2
�
113 � 102

2
b � P1Z � 1.52

X � 13.

(6) Find the value z such that This proba-
bility expression can be written as .
Now, Table III is used in reverse. We search through the
probabilities to find the value that corresponds to 0.95.
The solution is illustrated in Fig. 4-14. We do not find
0.95 exactly; the nearest value is 0.95053, corresponding
to z = 1.65.

P1Z � z2 � 0.95
P1Z � z2 � 0.05. (7) Find the value of z such that .

Because of the symmetry of the normal distribution, if
the area of the shaded region in Fig. 4-14(7) is to equal
0.99, the area in each tail of the distribution must equal
0.005. Therefore, the value for z corresponds to a proba-
bility of 0.995 in Table III. The nearest probability in
Table III is 0.99506, when z = 2.58.

P1�z � Z � z2 � 0.99

The preceding examples show how to calculate probabilities for standard normal
random variables. To use the same approach for an arbitrary normal random variable would
require a separate table for every possible pair of values for 
 and �. Fortunately, all normal
probability distributions are related algebraically, and Appendix Table III can be used to find
the probabilities associated with an arbitrary normal random variable by first using a simple
transformation.

Creating a new random variable by this transformation is referred to as standardizing.
The random variable Z represents the distance of X from its mean in terms of standard
deviations. It is the key step to calculating a probability for an arbitrary normal random
variable.

In the preceding example, the value 13 is transformed to 1.5 by standardizing, and 1.5 is
often referred to as the z-value associated with a probability. The following summarizes the
calculation of probabilities derived from normal random variables.
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Suppose X is a normal random variable with mean 
 and variance �2. Then,

(4-11)

where Z is a standard normal random variable, and is the z-value

obtained by standardizing X. The probability is obtained by using Appendix Table III
with .z � 1x � 
2	�

z �
1x � 
2

�

P 1X � x2 � P  a
X � 


� �
x � 


� b � P1Z � z2

Standardizing
to Calculate 

a Probability

EXAMPLE 4-14 Normally Distributed Current
Continuing the previous example, what is the probability that
a current measurement is between 9 and 11 milliamperes?
From Fig. 4-15, or by proceeding algebraically, we have

Determine the value for which the probability that a cur-
rent measurement is below this value is 0.98. The requested
value is shown graphically in Fig. 4-16. We need the value of
x such that P(X � x) � 0.98. By standardizing, this probabil-
ity expression can be written as

� 0.69146 � 0.30854 � 0.38292

� P1Z � �0.52
� P1�0.5 � Z � 0.52 � P1Z � 0.52

� 111 � 102	22
 P19 � X � 112 � P1 19 � 102	2 � 1X � 102	2

Appendix Table III is used to find the z-value such that P(Z � z) �
0.98. The nearest probability from Table III results in

Therefore, (x � 10)�2 � 2.05, and the standardizing transfor-
mation is used in reverse to solve for x. The result is

x � 212.052 � 10 � 14.1 milliamperes

P1Z � 2.052 � 0.97982

� 0.98

� P1Z � 1x � 102	22
P1X � x2 � P1 1X � 102	2 � 1x � 102	22

Figure 4-15 Standardizing a normal random variable.

4 x7 9 10 13 16

–3 z–1.5 –0.5 0 1.5 3

11

0.5

0 1.5

Distribution of Z =
X – μ

σ

Distribution of X

10 13 x

z

Figure 4-16 Deter-
mining the value of x
to meet a specified
probability. 10 x

z = = 2.05
x – 10

2

0.98
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EXAMPLE 4-16 Shaft Diameter
The diameter of a shaft in an optical storage drive is normally
distributed with mean 0.2508 inch and standard deviation
0.0005 inch. The specifications on the shaft are 0.2500 �
0.0015 inch. What proportion of shafts conforms to specifi-
cations?

Let X denote the shaft diameter in inches. The requested
probability is shown in Fig. 4-18 and

� 0.91924 � 0.0000 � 0.91924

� P1Z � �4.62
� P1�4.6 � Z � 1.42 � P1Z � 1.42

� P  a
0.2485 � 0.2508

0.0005
� Z �

0.2515 � 0.2508

0.0005
b

 P10.2485 � X � 0.25152

Most of the nonconforming shafts are too large, because the
process mean is located very near to the upper specification
limit. If the process is centered so that the process mean is
equal to the target value of 0.2500,

Practical Interpretation: By recentering the process, the yield
is increased to approximately 99.73%.

� 0.9973

� 0.99865 � 0.00135

� P1Z � 32 � P1Z � �32

� P1�3 � Z � 32

� P  a
0.2485 � 0.2500

0.0005
� Z �

0.2515 � 0.2500

0.0005
b

 P10.2485 � X � 0.25152

EXAMPLE 4-15 Signal Detection
Assume that in the detection of a digital signal the background
noise follows a normal distribution with a mean of 0 volt and
standard deviation of 0.45 volt. The system assumes a digital
1 has been transmitted when the voltage exceeds 0.9. What is
the probability of detecting a digital 1 when none was sent?

Let the random variable N denote the voltage of noise.
The requested probability is

This probability can be described as the probability of a false
detection.

Determine symmetric bounds about 0 that include 99%  of
all noise readings. The question requires us to find x such  that

. A graph is shown in Fig. 4-17. Now,

From Appendix Table III,

P 1�2.58 � Z � 2.582 � 0.99

� P1�x	0.45 � Z � x	0.452 � 0.99

 P1�x � N � x2 � P1�x	0.45 � N	0.45 � x	0.452

P1�x � N � x2 � 0.99

� 1 � 0.97725 � 0.02275

P1N � 0.92 � P  a
N

0.45
�

0.9

0.45
b � P1Z � 22

Therefore,

and

Suppose that when a digital 1 signal is transmitted, the
mean of the noise distribution shifts to 1.8 volts. What is the
probability that a digital 1 is not detected? Let the random vari-
able S denote the voltage when a digital 1 is transmitted. Then,

This probability can be interpreted as the probability of a
missed signal.

Practical Interpretation: Probability calculations such as
these can be used to quantify the rates of missed signals or
false signals and to select a threshold to distinguish a zero
and a one bit.

� P1Z � �22 � 0.02275

P1S � 0.92 � P  a
S � 1.8

0.45
�

0.9 � 1.8

0.45
b

x � 2.5810.452 � 1.16

x	0.45 � 2.58

Figure 4-17 Deter-
mining the value of x
to meet a specified
probability.

Standardized distribution of
N

0.45

z– z 0 0 x– x

Distribution of N
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Figure 4-18
Distribution for
Example 4-16.

0.2515

f (x)

0.2508

0.25

0.2485 x

Specifications

EXERCISES FOR SECTION 4-6

4-49. Use Appendix Table III to determine the following
probabilities for the standard normal random variable Z:
(a) P(Z � 1.32) (b) P(Z � 3.0)
(c) P(Z � 1.45) (d) P(Z � �2.15)
(e) P(�2.34 � Z � 1.76)

4-50. Use Appendix Table III to determine the following
probabilities for the standard normal random variable Z:
(a) P(�1 � Z � 1) (b) P(�2 � Z � 2)
(c) P(�3 � Z � 3) (d) P(Z � 3)
(e) P(0 � Z � 1)

4-51. Assume Z has a standard normal distribution. Use
Appendix Table III to determine the value for z that solves
each of the following:
(a) P( Z � z) � 0.9 (b) P(Z � z) � 0.5
(c) P( Z � z) � 0.1 (d) P(Z � z) � 0.9
(e) P(�1.24 � Z � z) � 0.8

4-52. Assume Z has a standard normal distribution. Use
Appendix Table III to determine the value for z that solves
each of the following:
(a) P(�z � Z � z) � 0.95 (b) P(�z � Z � z) � 0.99
(c) P(�z � Z � z) � 0.68 (d) P(�z � Z � z) � 0.9973

4-53. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the following:
(a) P(X � 13) (b) P(X � 9)
(c) P(6 � X � 14) (d) P(2 � X � 4)
(e) P(�2 � X � 8)

4-54. Assume X is normally distributed with a mean of 10
and a standard deviation of 2. Determine the value for x that
solves each of the following:
(a) P(X � x) � 0.5
(b) P(X � x) � 0.95
(c) P(x � X � 10) � 0.2
(d) P(�x � X � 10 � x) � 0.95
(e) P(�x � X � 10 � x) � 0.99

4-55. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the following:
(a) P(X � 11) (b) P(X � 0)
(c) P(3 � X � 7) (d) P(�2 � X � 9)
(e) P(2 � X � 8)

4-56. Assume X is normally distributed with a mean of 5
and a standard deviation of 4. Determine the value for x that
solves each of the following:

(a) P(X � x) � 0.5 (b) P(X � x) � 0.95
(c) P(x � X � 9) � 0.2 (d) P(3 � X � x) � 0.95
(e) P(�x � X � 5 � x) � 0.99

4-57. The compressive strength of samples of cement can
be modeled by a normal distribution with a mean of 6000
kilograms per square centimeter and a standard deviation of
100 kilograms per square centimeter.
(a) What is the probability that a sample’s strength is less than

6250 Kg/cm2?
(b) What is the probability that a sample’s strength is between

5800 and 5900 Kg/cm2?
(c) What strength is exceeded by 95% of the samples?

4-58. The time until recharge for a battery in a laptop com-
puter under common conditions is normally distributed with a
mean of 260 minutes and a standard deviation of 50 minutes.
(a) What is the probability that a battery lasts more than four

hours?
(b) What are the quartiles (the 25% and 75% values) of bat-

tery life?
(c) What value of life in minutes is exceeded with 95%

probability?

4-59. An article in Knee Surgery Sports Traumatol Arthrosc
[“Effect of Provider Volume on Resource Utilization for
Surgical Procedures” (2005, Vol. 13, pp. 273–279)] showed a
mean time of 129 minutes and a standard deviation of 14 min-
utes for ACL reconstruction surgery at high-volume hospitals
(with more than 300 such surgeries per year).
(a) What is the probability that your ACL surgery at a high-

volume hospital requires a time more than two standard
deviations above the mean?

(b) What is the probability that your ACL surgery at a high-
volume hospital is completed in less than 100 minutes?

(c) The probability of a completed ACL surgery at a high-
volume hospital is equal to 95% at what time?

(d) If your surgery requires 199 minutes, what do you conclude
about the volume of such surgeries at your hospital? Explain.

4-60. Cholesterol is a fatty substance that is an important part
of the outer lining (membrane) of cells in the body of animals.
Its normal range for an adult is 120–240 mg/dl. The Food and
Nutrition Institute of the Philippines found that the total choles-
terol level for Filipino adults has a mean of 159.2 mg/dl and
84.1% of adults have a cholesterol level below 200 mg/dl
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(http://www.fnri.dost.gov.ph/). Suppose that the total choles-
terol level is normally distributed.
(a) Determine the standard deviation of this distribution.
(b) What are the quartiles (the 25% and 75% values) of this

distribution?
(c) What is the value of the cholesterol level that exceeds 90%

of the population?
(d) An adult is at moderate risk if cholesterol level is more

than one but less than two standard deviations above the
mean. What percentage of the population is at moderate
risk according to this criterion?

(e) An adult is thought to be at high risk if his cholesterol
level is more than two standard deviations above the mean.
What percentage of the population is at high risk?

(f) An adult has low risk if cholesterol level is one standard
deviation or more below the mean. What percentage of the
population is at low risk?

4-61. The line width for semiconductor manufacturing is
assumed to be normally distributed with a mean of 0.5 micro-
meter and a standard deviation of 0.05 micrometer.
(a) What is the probability that a line width is greater than

0.62 micrometer?
(b) What is the probability that a line width is between 0.47

and 0.63 micrometer?
(c) The line width of 90% of samples is below what value?
4-62. The fill volume of an automated filling machine used
for filling cans of carbonated beverage is normally distributed
with a mean of 12.4 fluid ounces and a standard deviation of
0.1 fluid ounce.
(a) What is the probability that a fill volume is less than 12 fluid

ounces?
(b) If all cans less than 12.1 or greater than 12.6 ounces are

scrapped, what proportion of cans is scrapped?
(c) Determine specifications that are symmetric about the

mean that include 99% of all cans.
4-63. In the previous exercise, suppose that the mean of the
filling operation can be adjusted easily, but the standard devi-
ation remains at 0.1 ounce.
(a) At what value should the mean be set so that 99.9% of all

cans exceed 12 ounces?
(b) At what value should the mean be set so that 99.9% of all

cans exceed 12 ounces if the standard deviation can be re-
duced to 0.05 fluid ounce?

4-64. The reaction time of a driver to visual stimulus is nor-
mally distributed with a mean of 0.4 seconds and a standard
deviation of 0.05 seconds.
(a) What is the probability that a reaction requires more than

0.5 seconds?
(b) What is the probability that a reaction requires between

0.4 and 0.5 seconds?
(c) What is the reaction time that is exceeded 90% of the time?
4-65. The speed of a file transfer from a server on campus
to a personal computer at a student’s home on a weekday
evening is normally distributed with a mean of 60 kilobits per
second and a standard deviation of 4 kilobits per second.

(a) What is the probability that the file will transfer at a speed
of 70 kilobits per second or more?

(b) What is the probability that the file will transfer at a speed
of less than 58 kilobits per second?

(c) If the file is 1 megabyte, what is the average time it will
take to transfer the file? (Assume eight bits per byte.)

4-66. The average height of a woman aged 20–74 years is 64
inches in 2002, with an increase of approximately one inch from
1960 (http://usgovinfo.about.com/od/healthcare). Suppose the
height of a woman is normally distributed with a standard de-
viation of 2 inches.
(a) What is the probability that a randomly selected woman in

this population is between 58 inches and 70 inches?
(b) What are the quartiles of this distribution?
(c) Determine the height that is symmetric about the mean

that includes 90% of this population.
(d) What is the probability that five women selected at ran-

dom from this population all exceed 68 inches?

4-67. In an accelerator center, an experiment needs a 1.41-cm-
thick aluminum cylinder (http://puhep1.princeton.edu/mumu/
target/Solenoid_Coil.pdf ). Suppose that the thickness of a
cylinder has a normal distribution with a mean of 1.41 cm and
a standard deviation of 0.01 cm.
(a) What is the probability that a thickness is greater than

1.42 cm?
(b) What thickness is exceeded by 95% of the samples?
(c) If the specifications require that the thickness is between

1.39 cm and 1.43 cm, what proportion of the samples meet
specifications?

4-68. The demand for water use in Phoenix in 2003 hit a
high of about 442 million gallons per day on June 27, 2003
(http://phoenix.gov/WATER/wtrfacts.html). Water use in the
summer is normally distributed with a mean of 310 million
gallons per day and a standard deviation of 45 million gallons
per day. City reservoirs have a combined storage capacity of
nearly 350 million gallons.
(a) What is the probability that a day requires more water than

is stored in city reservoirs?
(b) What reservoir capacity is needed so that the probability

that it is exceeded is 1%?
(c) What amount of water use is exceeded with 95% proba-

bility?
(d) Water is provided to approximately 1.4 million people.

What is the mean daily consumption per person at which
the probability that the demand exceeds the current reser-
voir capacity is 1%? Assume that the standard deviation of
demand remains the same.

4-69. The life of a semiconductor laser at a constant power
is normally distributed with a mean of 7000 hours and a stan-
dard deviation of 600 hours.
(a) What is the probability that a laser fails before 5000 hours?
(b) What is the life in hours that 95% of the lasers exceed?
(c) If three lasers are used in a product and they are assumed

to fail independently, what is the probability that all three
are still operating after 7000 hours?
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4-70. The diameter of the dot produced by a printer is nor-
mally distributed with a mean diameter of 0.002 inch and a
standard deviation of 0.0004 inch.
(a) What is the probability that the diameter of a dot exceeds

0.0026 inch?
(b) What is the probability that a diameter is between 0.0014

and 0.0026 inch?
(c) What standard deviation of diameters is needed so that the

probability in part (b) is 0.995?

4-71. The weight of a sophisticated running shoe is nor-
mally distributed with a mean of 12 ounces and a standard
deviation of 0.5 ounce.
(a) What is the probability that a shoe weighs more than 13

ounces?
(b) What must the standard deviation of weight be in order for

the company to state that 99.9% of its shoes are less than
13 ounces?

(c) If the standard deviation remains at 0.5 ounce, what must
the mean weight be in order for the company to state that
99.9% of its shoes are less than 13 ounces?

4-72. Measurement error that is normally distributed with a
mean of zero and a standard deviation of 0.5 gram is added to
the true weight of a sample. Then the measurement is rounded
to the nearest gram. Suppose that the true weight of a sample
is 165.5 grams.
(a) What is the probability that the rounded result is 167 grams?
(b) What is the probability that the rounded result is 167

grams or greater?
4-73. Assume that a random variable is normally distributed
with a mean of 24 and a standard deviation of 2. Consider an
interval of length one unit that starts at the value a so that the
interval is [a, a � 1]. For what value of a is the probability of
the interval greatest? Does the standard deviation affect that
choice of interval?

4-74. A study by Bechtel, et al., 2009, in the Archives of
Environmental & Occupational Health considered polycyclic
aromatic hydrocarbons and immune system function in beef
cattle. Some cattle were near major oil- and gas-producing areas

of western Canada. The mean monthly exposure to PM1.0 (par-
ticulate matter that is � 1 
m in diameter) was approximately
7.1 
g/m3 with standard deviation 1.5. Assume the monthly
exposure is normally distributed.

(a) What is the probability of a monthly exposure greater than
9 
g/m3?

(b) What is the probability of a monthly exposure between 3
and 8 
g/m3?

(c) What is the monthly exposure level that is exceeded with
probability 0.05?

(d) What value of mean monthly exposure is needed so that
the probability of a monthly exposure greater than 9

g/m3 is 0.01?

4-75. An article under review for Air Quality, Atmosphere &
Health titled “Linking Particulate Matter (PM10) and
Childhood Asthma in Central Phoenix” used PM10 (particu-
late matter � 10 
m in diameter) air quality data measured
hourly from sensors in Phoenix, Arizona. The 24-hour (daily)
mean PM10 for a centrally located sensor was 50.9 
g/m3

with a standard deviation of 25.0. Assume that the daily mean
of PM10 is normally distributed.
(a) What is the probability of a daily mean of PM10 greater

than 100 
g/m3?
(b) What is the probability of a daily mean of PM10 less than

25 
g/m3?
(c) What daily mean of PM10 value is exceeded with proba-

bility 5%?

4-76. The length of stay at a specific emergency department
in Phoenix, Arizona, in 2009 had a mean of 4.6 hours with a
standard deviation of 2.9. Assume that the length of stay is
normally distributed.
(a) What is the probability of a length of stay greater than 

10 hours?
(b) What length of stay is exceeded by 25% of the visits?
(c) From the normally distributed model, what is the proba-

bility of a length of stay less than zero hours? Comment on
the normally distributed assumption in this example.

4-7 NORMAL APPROXIMATION TO THE BINOMIAL
AND POISSON DISTRIBUTIONS

We began our section on the normal distribution with the central limit theorem and the normal
distribution as an approximation to a random variable with a large number of trials.
Consequently, it should not be a surprise to learn that the normal distribution can be used to
approximate binomial probabilities for cases in which n is large. The following example
illustrates that for many physical systems the binomial model is appropriate with an extremely
large value for n. In these cases, it is difficult to calculate probabilities by using the binomial
distribution. Fortunately, the normal approximation is most effective in these cases. An
illustration is provided in Fig. 4-19. The area of each bar equals the binomial probability of x.
Notice that the area of bars can be approximated by areas under the normal density function.

From Fig. 4-19 it can be seen that a probability such as is better approxi-
mated by the area under the normal curve from 2.5 to 7.5. This observation provides a method

P13 � X � 72
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Figure 4-19 Normal
approximation to the
binomial distribution.
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to approximate binomial probabilities. Because a continuous normal distribution is used to
approximate a discrete binomial distribution, the modification is referred to as a continuity
correction.

EXAMPLE 4-17
In a digital communication channel, assume that the number
of bits received in error can be modeled by a binomial random
variable, and assume that the probability that a bit is received
in error is . If 16 million bits are transmitted, what is
the probability that 150 or fewer errors occur?

Let the random variable X denote the number of errors.
Then X is a binomial random variable and

1 � 10�5 Practical Interpretation: Clearly this probability is
difficult to compute. Fortunately, the normal distribution
can be used to provide an excellent approximation in this
example.

P1X � 1502 � a
150

x�0
a

16,000,000

x
b 110�52x11 �10�5216,000,000�x

If X is a binomial random variable with parameters n and p,

(4-12)

is approximately a standard normal random variable. To approximate a binomial
probability with a normal distribution, a continuity correction is applied as follows:

and

The approximation is good for np � 5 and n11 � p2 � 5.

P1x � X 2 � P1x � 0.5 � X 2 � P a
x � 0.5 � np

2np11 � p2
� Zb

P1X � x2 � P1X � x � 0.52 � P aZ �
x � 0.5 � np

1np11 � p2
 b

Z �
X � np

1np11 � p2

Normal
Approximation 
to the Binomial

Distribution
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EXAMPLE 4-18
The digital communication problem in the previous example
is solved as follows:

� P1Z � �0.752 � 0.227

� P a
X � 160

216011 � 10�52
�

150.5 � 160

216011 � 10�52
b

P1X � 1502 � P1X � 150.52

Because and n(1 � p) is
much larger, the approximation is expected to work well in
this case.

Practical Interpretation: Binomial probabilities that are
difficult to compute exactly can be approximated with easy to
compute probabilities based on the normal distribution.

np � 116 � 1062 11 � 10�52 � 160

EXAMPLE 4-19 Normal Approximation to Binomial
Again consider the transmission of bits in Example 4-18. To
judge how well the normal approximation works, assume only
n � 50 bits are to be transmitted and that the probability of an
error is p � 0.1. The exact probability that 2 or less errors
occur is

Based on the normal approximation,

As another example, and this is better
approximated as

P18 � X 2 � P19 � X 2

� P1Z � �1.182 � 0.119

P1X � 22 � P  a
X � 5

15010.12 10.92
�

2.5 � 5

15010.12 10.92
b

� a
50
2 b 0.1210.9482 � 0.112

P1X � 22 � a
50
0
b  0.950 � a

50
1
b  0.110.9492

We can even approximate as

and this compares well with the exact answer of 0.1849.
Practical Interpretation: Even for a sample as small as

50 bits, the normal approximation is reasonable, when p � 0.1.

� P 14.5 � X � 5.52

� P 1�0.24 � Z � 0.242 � 0.19

� P a
4.5 � 5

2.12
� Z �

5.5 � 5

2.12
b

P 15 � X � 52 � P14.5 � X � 5.52

P1X � 52 � P15 � X � 52

� P11.65 � Z 2 � 0.05

P 19 � X 2 � P 18.5 � X 2 � P a
8.5 � 5

2.12
� Zb

The correction factor is used to improve the approximation. However, if np or n(1 � p) is
small, the binomial distribution is quite skewed and the symmetric normal distribution is not
a good approximation. Two cases are illustrated in Fig. 4-20.

Recall that the binomial distribution is a satisfactory approximation to the hypergeomet-
ric distribution when n, the sample size, is small relative to N, the size of the population from
which the sample is selected. A rule of thumb is that the binomial approximation is effective
if . Recall that for a hypergeometric distribution, p is defined as That
is, p is interpreted as the number of successes in the population. Therefore, the normal
distribution can provide an effective approximation of hypergeometric probabilities when n�N �
0.1, np � 5, and n(1 � p) � 5. Figure 4-21 provides a summary of these guidelines.

p � K	N.n	N � 0.1

Recall that for a binomial variable X, E(X ) � np and V(X ) � np(1 � p). Consequently, the
expression in Equation 4-12 is nothing more than the formula for standardizing the random
variable X. Probabilities involving X can be approximated by using a standard normal
distribution. The approximation is good when n is large relative to p.

A way to remember the approximation is to write the probability in terms of or and
then add or subtract the 0.5 correction factor to make the probability greater.

��
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Recall that the Poisson distribution was developed as the limit of a binomial distribution as
the number of trials increased to infinity. Consequently, it should not be surprising to find that the
normal distribution can also be used to approximate probabilities of a Poisson random variable.

Figure 4-20 Binomial
distribution is not symm-
etrical if p is near 0 or 1. 0 1 2 3 4 5 6 7 8 9 10

0.0
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0.3

0.4

x

f(x)
0.2

n p
10 0.1
10 0.9

hypergometric � binomial � normal 
distribution distribution distributionnp � 5n

N
� 0.1

Figure 4-21 Conditions for approximating hypergeometric and binomial probabilities.

n11 � p2 � 5

If X is a Poisson random variable with and 

(4-13)

is approximately a standard normal random variable. The same continuity correction
used for the binomial distribution can also be applied. The approximation is good for

� � 5

Z �
X � �

2�

V1X 2 � �,E1X 2 � �

Normal
Approximation 

to the Poisson
Distribution

EXAMPLE 4-20 Normal Approximation to Poisson
Assume that the number of asbestos particles in a squared
meter of dust on a surface follows a Poisson distribution with
a mean of 1000. If a squared meter of dust is analyzed, what is
the probability that 950 or fewer particles are found?

This probability can be expressed exactly as

The computational difficulty is clear. The probability can be
approximated as

P1X � 9502 � a
950

x�0

e�1000 1000x

x!

Practical Interpretation: Poisson probabilities that are difficult
to compute exactly can be approximated with easy to compute
probabilities based on the normal distribution.

� P1Z � �1.572� 0.058

P1X � 9502 � P1X � 950.52 � P  aZ �
950.5 � 1000

11000
b
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4-77. Suppose that X is a binomial random variable with
and 

(a) Approximate the probability that X is less than or equal
to 70.

(b) Approximate the probability that X is greater than 70 and
less than 90.

(c) Approximate the probability that X � 80.

4-78. Suppose that X is a Poisson random variable with
� � 6.
(a) Compute the exact probability that X is less than 4.
(b) Approximate the probability that X is less than 4 and com-

pare to the result in part (a).
(c) Approximate the probability that .

4-79. Suppose that X has a Poisson distribution with a mean
of 64. Approximate the following probabilities:
(a)
(b)
(c)

4-80. The manufacturing of semiconductor chips produces
2% defective chips. Assume the chips are independent and
that a lot contains 1000 chips.
(a) Approximate the probability that more than 25 chips are

defective.
(b) Approximate the probability that between 20 and 30 chips

are defective.

4-81. There were 49.7 million people with some type of
long-lasting condition or disability living in the United
States in 2000. This represented 19.3 percent of the majority
of civilians aged five and over (http://factfinder. census.gov).
A sample of 1000 persons is selected at random.
(a) Approximate the probability that more than 200 persons

in the sample have a disability.
(b) Approximate the probability that between 180 and 300

people in the sample have a disability.

4-82. Phoenix water is provided to approximately 1.4 million
people, who are served through more than 362,000 accounts
(http://phoenix.gov/WATER/wtrfacts.html). All accounts are
metered and billed monthly. The probability that an account
has an error in a month is 0.001, and accounts can be assumed
to be independent.
(a) What is the mean and standard deviation of the number of

account errors each month?
(b) Approximate the probability of fewer than 350 errors in a

month.
(c) Approximate a value so that the probability that the num-

ber of errors exceeds this value is 0.05.
(d) Approximate the probability of more than 400 errors per

month in the next two months. Assume that results be-
tween months are independent.

4-83. An electronic office product contains 5000 electronic
components. Assume that the probability that each
component operates without failure during the useful life of

P160 � X � 682
P1X � 642
P1X � 722

8 � X � 12

p � 0.4.n � 200
the product is 0.999, and assume that the components fail
independently. Approximate the probability that 10 or more
of the original 5000 components fail during the useful life of
the product.

4-84. A corporate Web site contains errors on 50 of 1000
pages. If 100 pages are sampled randomly, without replace-
ment, approximate the probability that at least 1 of the pages
in error is in the sample.

4-85. Suppose that the number of asbestos particles in a
sample of 1 squared centimeter of dust is a Poisson random
variable with a mean of 1000. What is the probability that 10
squared centimeters of dust contains more than 10,000
particles?

4-86. A high-volume printer produces minor print-quality
errors on a test pattern of 1000 pages of text according to a
Poisson distribution with a mean of 0.4 per page.
(a) Why are the numbers of errors on each page independent

random variables?
(b) What is the mean number of pages with errors (one or more)?
(c) Approximate the probability that more than 350 pages

contain errors (one or more).

4-87. Hits to a high-volume Web site are assumed to follow
a Poisson distribution with a mean of 10,000 per day.
Approximate each of the following:
(a) The probability of more than 20,000 hits in a day
(b) The probability of less than 9900 hits in a day
(c) The value such that the probability that the number of hits

in a day exceeds the value is 0.01
(d) Approximate the expected number of days in a year (365

days) that exceed 10,200 hits.
(e) Approximate the probability that over a year (365 days)

more than 15 days each have more than 10,200 hits.

4-88. An acticle in Biometrics [“Integrative Analysis 
of Transcriptomic and Proteomic Data of Desulfovibrio
vulgaris: A Nonlinear Model to Predict Abundance of
Undetected Proteins” (2009)] found that protein abundance
from an operon (a set of biologically related genes) was less
dispersed than from randomly selected genes. In the research,
1000 sets of genes were randomly constructed and 75% of
these sets were more disperse than a specific opteron. If the
probability that a random set is more disperse than this
opteron is truly 0.5, approximate the probability that 750 or
more random sets exceed the opteron. From this result, what
do you conclude about the dispersion in the opteron versus
random genes?

4-89. An article under review for Air Quality, Atmosphere 
& Health titled “Linking Particulate Matter (PM10) and
Childhood Asthma in Central Phoenix” linked air quality to
childhood asthma incidents. The study region in central
Phoenix, Arizona, recorded 10,500 asthma incidents in chil-
dren in a 21-month period. Assume that the number of asthma
incidents follows a Poisson distribution.

EXERCISES FOR SECTION 4-7
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4-8 EXPONENTIAL DISTRIBUTION

The discussion of the Poisson distribution defined a random variable to be the number of
flaws along a length of copper wire. The distance between flaws is another random variable
that is often of interest. Let the random variable X denote the length from any starting point on
the wire until a flaw is detected. As you might expect, the distribution of X can be obtained
from knowledge of the distribution of the number of flaws. The key to the relationship is the
following concept. The distance to the first flaw exceeds 3 millimeters if and only if there are
no flaws within a length of 3 millimeters—simple, but sufficient for an analysis of the distri-
bution of X.

In general, let the random variable N denote the number of flaws in x millimeters of wire.
If the mean number of flaws is per millimeter, N has a Poisson distribution with mean .
We assume that the wire is longer than the value of x. Now,

Therefore,

is the cumulative distribution function of X. By differentiating F(x), the probability density
function of X is calculated to be

The derivation of the distribution of X depends only on the assumption that the flaws in
the wire follow a Poisson process. Also, the starting point for measuring X doesn’t matter
because the probability of the number of flaws in an interval of a Poisson process depends
only on the length of the interval, not on the location. For any Poisson process, the following
general result applies.

f 1x2 � �e��x, x � 0

F1x2 � P1X � x2 � 1 � e��x,  x � 0

P1X � x2 � P1N � 02 �
e��x1�x20

0!
� e��x

�x�

(a) Approximate the probability of more than 550 asthma
incidents in a month.

(b) Approximate the probability of 450 to 550 asthma inci-
dents in a month.

(c) Approximate the number of asthma incidents exceeded
with probability 5%.

(d) If the number of asthma incidents were greater during the
winter than the summer, what would this imply about the
Poisson distribution assumption?.

The random variable X that equals the distance between successive events of a Poisson
process with mean number of events per unit interval is an exponential
random variable with parameter The probability density function of X is

(4-14)f 1x2 � �e��x for 0 � x � �

�.
� � 0

Exponential
Distribution
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The exponential distribution obtains its name from the exponential function in the proba-
bility density function. Plots of the exponential distribution for selected values of are shown
in Fig. 4-22. For any value of , the exponential distribution is quite skewed. The following
results are easily obtained and are left as an exercise.

�
�

Mean and
Variance If the random variable X has an exponential distribution with parameter ,

(4-15)
 � E1X 2 �
1
�
 and �2 � V1X 2 �

1

�2

�

It is important to use consistent units in the calculation of probabilities, means, and variances
involving exponential random variables. The following example illustrates unit conversions.

0
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Figure 4-22
Probability density
function of exponential
random variables for
selected values of .�

EXAMPLE 4-21 Computer Usage
In a large corporate computer network, user log-ons to the
system can be modeled as a Poisson process with a mean of 
25 log-ons per hour. What is the probability that there are no
log-ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the interval
until the first log-on. Then, X has an exponential distribution
with log-ons per hour. We are interested in the proba-
bility that X exceeds 6 minutes. Because is given in log-ons
per hour, we express all time units in hours. That is, 6 minutes �
0.1 hour. The probability requested is shown as the shaded area
under the probability density function in Fig. 4-23. Therefore,

�
� � 25

Also, the cumulative distribution function can be used to obtain
the same result as follows:

An identical answer is obtained by expressing the mean
number of log-ons as 0.417 log-ons per minute and computing

P1X � 0.12 � 1 � F10.12 � e�2510.12

P1X � 0.12 � �  

�

0.1

25e�25x dx � e�2510.12 � 0.082
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0.1 x

f (x)

Figure 4-23
Probability for the
exponential distribu-
tion in Example 4-21.

the probability that the time until the next log-on exceeds 
6 minutes. Try it.

What is the probability that the time until the next log-on
is between 2 and 3 minutes? Upon converting all units to
hours,

An alternative solution is

Determine the interval of time such that the probability
that no log-on occurs in the interval is 0.90. The question asks
for the length of time x such that . Now,P1X � x2 � 0.90

P10.033 � X � 0.052 � F10.052 � F10.0332 � 0.152

� �e�25x `
0.05

0.033
� 0.152

P10.033 � X � 0.052 � �
0.05

0.033
 
25e�25x dx

Take the (natural) log of both sides to obtain 
. Therefore,

Furthermore, the mean time until the next log-on is

The standard deviation of the time until the next log-on is

Practical Interpretation: Probabilities for exponential
random variables are widely used by organization to evaluate
resources and staffing levels to meet customer service needs.

� � 1	25 hours � 2.4 minutes


 � 1	25 � 0.04 hour � 2.4 minutes

x � 0.00421 hour � 0.25 minute

�0.1054
�25x � ln10.902 �

P1X � x2 � e�25x � 0.90

In the previous example, the probability that there are no log-ons in a 6-minute interval is
0.082 regardless of the starting time of the interval. A Poisson process assumes that events oc-
cur uniformly throughout the interval of observation; that is, there is no clustering of events.
If the log-ons are well modeled by a Poisson process, the probability that the first log-on after
noon occurs after 12:06 P.M. is the same as the probability that the first log-on after 3:00 P.M.
occurs after 3:06 P.M. And if someone logs on at 2:22 P.M., the probability that the next log-on
occurs after 2:28 P.M. is still 0.082.

Our starting point for observing the system does not matter. However, if there are high-
use periods during the day, such as right after 8:00 A.M., followed by a period of low use, a
Poisson process is not an appropriate model for log-ons and the distribution is not appropriate
for computing probabilities. It might be reasonable to model each of the high- and low-use
periods by a separate Poisson process, employing a larger value for during the high-use peri-
ods and a smaller value otherwise. Then, an exponential distribution with the corresponding
value of can be used to calculate log-on probabilities for the high- and low-use periods.

Lack of Memory Property
An even more interesting property of an exponential random variable is concerned with con-
ditional probabilities.

�

�
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Example 4-22 illustrates the lack of memory property of an exponential random vari-
able, and a general statement of the property follows. In fact, the exponential distribution is the
only continuous distribution with this property.

Figure 4-24 graphically illustrates the lack of memory property. The area of region A divided
by the total area under the probability density function equals

. The area of region C divided by the area equals The
lack of memory property implies that the proportion of the total area that is in A equals the
proportion of the area in C and D that is in C. The mathematical verification of the lack of
memory property is left as a mind-expanding exercise.

The lack of memory property is not that surprising when you consider the development
of a Poisson process. In that development, we assumed that an interval could be partitioned
into small intervals that were independent. These subintervals are similar to independent
Bernoulli trials that comprise a binomial experiment; knowledge of previous results does not

P1X � t1 � t2 0  X � t12.C � DP1X � t22
1A � B � C � D � 12

EXAMPLE 4-22 Lack of Memory Property
Let X denote the time between detections of a particle with a
Geiger counter and assume that X has an exponential distribu-
tion with minutes. The probability that we detect
a particle within 30 seconds of starting the counter is

In this calculation, all units are converted to minutes. Now, sup-
pose we turn on the Geiger counter and wait 3 minutes without
detecting a particle. What is the probability that a particle is de-
tected in the next 30 seconds?

Because we have already been waiting for 3 minutes, we
feel that we are “due.’’ That is, the probability of a detection
in the next 30 seconds should be greater than 0.3. However,
for an exponential distribution, this is not true. The requested
probability can be expressed as the conditional probability
that From the definition of conditional
probability,

P1X � 3.5 ƒ X � 32.

P1X � 0.5 minute2 � F10.52 � 1 � e�0.5	1.4 � 0.30

E 1X 2 � 1.4 where

and

Therefore,

Practical Interpretation: After waiting for 3 minutes without a
detection, the probability of a detection in the next 30 seconds
is the same as the probability of a detection in the 30 seconds
immediately after starting the counter. The fact that you have
waited 3 minutes without a detection does not change the
probability of a detection in the next 30 seconds.

P1X � 3.5 ƒ X � 32 � 0.035	0.117 � 0.30

P1X � 32 � 1 � F132 � e�3/1.4 � 0.117

� 31 � e�3.5	1.4 4 � 31 � e�3	1.4 4 � 0.035
P13 � X � 3.52 � F13.52 � F132

P1X � 3.5 ƒ X � 32 � P13 � X � 3.52	P1X � 32

For an exponential random variable X,

(4-16)P1X � t1 � t2 0 X � t12 � P1X � t22

Lack of
Memory
Property

Figure 4-24 Lack of
memory property of
an exponential
distribution. t2 x

C D
B

A

t1 t1 + t2

f (x)
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136 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

EXERCISES FOR SECTION 4-8

4-90. Suppose X has an exponential distribution with � � 2.
Determine the following:
(a) (b)
(c) (d)

(e) Find the value of x such that 

4-91. Suppose X has an exponential distribution with mean
equal to 10. Determine the following:
(a) (b)
(c)

(d) Find the value of x such that 

4-92. Suppose X has an exponential distribution with a
mean of 10. Determine the following:
(a)
(b)
(c) Compare the results in parts (a) and (b) and comment on

the role of the lack of memory property.

4-93. Suppose the counts recorded by a Geiger counter follow
a Poisson process with an average of two counts per minute.
(a) What is the probability that there are no counts in a 

30-second interval?
(b) What is the probability that the first count occurs in less

than 10 seconds?
(c) What is the probability that the first count occurs between

1 and 2 minutes after start-up?

4-94. Suppose that the log-ons to a computer network fol-
low a Poisson process with an average of 3 counts per minute.
(a) What is the mean time between counts?
(b) What is the standard deviation of the time between counts?
(c) Determine x such that the probability that at least one

count occurs before time x minutes is 0.95.

4-95. The time between calls to a plumbing supply business
is exponentially distributed with a mean time between calls of
15 minutes.

P 1X � 15 0 X � 102
P 1X � 52

P1X � x2 � 0.95.

P1X � 302
P1X � 202P1X � 102

P1X � x2 � 0.05.

P11 � X � 22P1X � 12
P1X � 22P1X � 02

(a) What is the probability that there are no calls within a 
30-minute interval?

(b) What is the probability that at least one call arrives within
a 10-minute interval?

(c) What is the probability that the first call arrives within 5
and 10 minutes after opening?

(d) Determine the length of an interval of time such that the
probability of at least one call in the interval is 0.90.

4-96. The life of automobile voltage regulators has an expo-
nential distribution with a mean life of six years. You purchase
an automobile that is six years old, with a working voltage
regulator, and plan to own it for six years.
(a) What is the probability that the voltage regulator fails

during your ownership?
(b) If your regulator fails after you own the automobile three

years and it is replaced, what is the mean time until the
next failure?

4-97. Suppose that the time to failure (in hours) of fans in a
personal computer can be modeled by an exponential distribu-
tion with 
(a) What proportion of the fans will last at least 10,000 hours?
(b) What proportion of the fans will last at most 7000 hours?

4-98. The time between the arrival of electronic messages 
at your computer is exponentially distributed with a mean of
two hours.
(a) What is the probability that you do not receive a message

during a two-hour period?
(b) If you have not had a message in the last four hours, what

is the probability that you do not receive a message in the
next two hours?

(c) What is the expected time between your fifth and sixth
messages?

4-99. The time between arrivals of taxis at a busy intersec-
tion is exponentially distributed with a mean of 10 minutes.

� � 0.0003.

affect the probabilities of events in future subintervals. An exponential random variable is the
continuous analog of a geometric random variable, and they share a similar lack of memory
property.

The exponential distribution is often used in reliability studies as the model for the time
until failure of a device. For example, the lifetime of a semiconductor chip might be modeled as
an exponential random variable with a mean of 40,000 hours. The lack of memory property of
the exponential distribution implies that the device does not wear out. That is, regardless of how
long the device has been operating, the probability of a failure in the next 1000 hours is the
same as the probability of a failure in the first 1000 hours of operation. The lifetime L of a de-
vice with failures caused by random shocks might be appropriately modeled as an exponential
random variable. However, the lifetime L of a device that suffers slow mechanical wear, such as
bearing wear, is better modeled by a distribution such that increases with
t. Distributions such as the Weibull distribution are often used, in practice, to model the failure
time of this type of device. The Weibull distribution is presented in a later section.

P1L � t � �t 0 L � t2
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4-8 EXPONENTIAL DISTRIBUTION 137

(a) What is the probability that you wait longer than one hour
for a taxi?

(b) Suppose you have already been waiting for one hour for a
taxi. What is the probability that one arrives within the
next 10 minutes?

(c) Determine x such that the probability that you wait more
than x minutes is 0.10.

(d) Determine x such that the probability that you wait less
than x minutes is 0.90.

(e) Determine x such that the probability that you wait less
than x minutes is 0.50.

4-100. The number of stork sightings on a route in South
Carolina follows a Poisson process with a mean of 2.3 per
year.
(a) What is the mean time between sightings?
(b) What is the probability that there are no sightings within

three months (0.25 years)?
(c) What is the probability that the time until the first sighting

exceeds six months?
(d) What is the probability of no sighting within three years?

4-101. According to results from the analysis of chocolate
bars in Chapter 3, the mean number of insect fragments was
14.4 in 225 grams. Assume the number of fragments follows a
Poisson distribution.
(a) What is the mean number of grams of chocolate until a

fragment is detected?
(b) What is the probability that there are no fragments in a

28.35-gram (one-ounce) chocolate bar?
(c) Suppose you consume seven one-ounce (28.35-gram) bars

this week. What is the probability of no insect fragments?

4-102. The distance between major cracks in a highway fol-
lows an exponential distribution with a mean of 5 miles.
(a) What is the probability that there are no major cracks in a

10-mile stretch of the highway?
(b) What is the probability that there are two major cracks in

a 10-mile stretch of the highway?
(c) What is the standard deviation of the distance between

major cracks?
(d) What is the probability that the first major crack occurs

between 12 and 15 miles of the start of inspection?
(e) What is the probability that there are no major cracks in

two separate 5-mile stretches of the highway?
(f ) Given that there are no cracks in the first 5 miles in-

spected, what is the probability that there are no major
cracks in the next 10 miles inspected?

4-103. The lifetime of a mechanical assembly in a vibration
test is exponentially distributed with a mean of 400 hours.
(a) What is the probability that an assembly on test fails in

less than 100 hours?
(b) What is the probability that an assembly operates for more

than 500 hours before failure?
(c) If an assembly has been on test for 400 hours without a fail-

ure, what is the probability of a failure in the next 100 hours?

(d) If 10 assemblies are tested, what is the probability that 
at least one fails in less than 100 hours? Assume that the
assemblies fail independently.

(e) If 10 assemblies are tested, what is the probability that all
have failed by 800 hours? Assume the assemblies fail
independently.

4-104. The time between arrivals of small aircraft at a
county airport is exponentially distributed with a mean of one
hour. 
(a) What is the probability that more than three aircraft arrive

within an hour?
(b) If 30 separate one-hour intervals are chosen, what is the

probability that no interval contains more than three 
arrivals?

(c) Determine the length of an interval of time (in hours) such
that the probability that no arrivals occur during the inter-
val is 0.10.

4-105. The time between calls to a corporate office is expo-
nentially distributed with a mean of 10 minutes.
(a) What is the probability that there are more than three calls

in one-half hour?
(b) What is the probability that there are no calls within one-

half hour?
(c) Determine x such that the probability that there are no

calls within x hours is 0.01.

(d) What is the probability that there are no calls within a two-
hour interval?

(e) If four nonoverlapping one-half-hour intervals are
selected, what is the probability that none of these intervals
contains any call?

(f ) Explain the relationship between the results in part (a) and (b).

4-106. Assume that the flaws along a magnetic tape follow
a Poisson distribution with a mean of 0.2 flaw per meter. Let 
X denote the distance between two successive flaws.
(a) What is the mean of X ?
(b) What is the probability that there are no flaws in 10 con-

secutive meters of tape?
(c) Does your answer to part (b) change if the 10 meters are

not consecutive?
(d) How many meters of tape need to be inspected so that the

probability that at least one flaw is found is 90%?
(e) What is the probability that the first time the distance

between two flaws exceeds 8 meters is at the f ifth
flaw?

(f ) What is the mean number of flaws before a distance
between two flaws exceeds 8 meters?

4-107. If the random variable X has an exponential distribu-
tion with mean , determine the following:
(a) (b)

(c)
(d) How do the results depend on ?

4-108. Derive the formula for the mean and variance of an
exponential random variable.

�
P1X � 3�2

P1X � 2�2P1X � �2
�
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4-9 ERLANG AND GAMMA DISTRIBUTIONS

An exponential random variable describes the length until the first count is obtained in a
Poisson process. A generalization of the exponential distribution is the length until r counts
occur in a Poisson process. Consider the following example.

EXAMPLE 4-23 Processor Failure
The failures of the central processor units of large computer
systems are often modeled as a Poisson process. Typically,
failures are not caused by components wearing out, but by
more random failures of the large number of semiconductor
circuits in the units. Assume that the units that fail are imme-
diately repaired, and assume that the mean number of failures
per hour is 0.0001. Let X denote the time until four failures
occur in a system. Determine the probability that X exceeds
40,000 hours.

Let the random variable N denote the number of failures
in 40,000 hours of operation. The time until four failures occur

exceeds 40,000 hours if and only if the number of failures in
40,000 hours is three or less. Therefore, 

The assumption that the failures follow a Poisson process im-
plies that N has a Poisson distribution with

Therefore,

P1X � 40,0002 � P1N � 32 � a
3

k�0

e�44k

k!
� 0.433

E1N 2 � 40,00010.00012 � 4 failures per 40,000 hours

P1X � 40,0002 � P1N � 32

4-109. Web crawlers need to estimate the frequency of
changes to Web sites to maintain a current index for Web
searches. Assume that the changes to a Web site follow a Poisson
process with a mean of 3.5 days.
(a) What is the probability that the next change occurs in less

than two days?
(b) What is the probability that the next change occurs in

greater than seven days?
(c) What is the time of the next change that is exceeded with

probability 90%?

(d) What is the probability that the next change occurs in less
than 10 days, given that it has not yet occurred after three
days?

4-110. The length of stay at a specific emergency depart-
ment in Phoenix, Arizona, had a mean of 4.6 hours. Assume
that the length of stay is exponentially distributed.
(a) What is the standard deviation of the length of stay?
(b) What is the probability of a length of stay greater than 

10 hours?
(c) What length of stay is exceeded by 25% of the visits?

The previous example can be generalized to show that if X is the time until the rth event in a
Poisson process, then 

Because the probability density function of X equals the negative of
the derivative of the right-hand side of the previous equation. After extensive algebraic sim-
plification, the probability density function of X can be shown to equal

for and , 2, . . . .

This probability density function defines an Erlang distribution. Clearly, an Erlang random
variable with is an exponential random variable.

It is convenient to generalize the Erlang distribution to allow r to assume any nonnegative
value. Then the Erlang and some other common distributions become special cases of this
generalized distribution. To accomplish this step, the factorial function ( )! has to be gen-
eralized to apply to any nonnegative value of r, but the generalized function should still equal
()! when r is a positive integer.

r � 1

r � 1

r � 1x � 0f 1x2 �
�rx r�1e��x

1r � 12!

P1X � x2 � 1 � F1x2,

P1X � x2 � a
r�1

k�0
 
e��x1�x2k

k!
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4-9 ERLANG AND GAMMA DISTRIBUTIONS 139

It can be shown that the integral in the definition of is finite. Furthermore, by using integra-
tion by parts it can be shown that

This result is left as an exercise. Therefore, if r is a positive integer (as in the Erlang distribution),

Also, and it can be shown that . The gamma function can be
interpreted as a generalization to noninteger values of r of the term that is used in the Erlang
probability density function. Now the Erlang distribution can be generalized.

�11	22 � 
1	2�112 � 0! � 1

�1r2 � 1r � 12!

�1r2 � 1r � 12�1r � 12

�1r2

The random variable X with probability density function

(4-18)

has a gamma random variable with parameters . If r is an integer,
X has an Erlang distribution.

� � 0 and r � 0

f 1x2 �
�rx r�1e 

��x

�1r2
, for x � 0

Gamma
Distribution

The parameters and r are often called the scale and shape parameters, respectively.
However, one should check the definitions used in software packages. For example, Minitab
defines the scale parameter as . Sketches of the gamma distribution for several values of 
and r are shown in Fig. 4-25. Many different shapes can be generated from changes to the

�1	�

�

Figure 4-25 Gamma
probability density
functions for selected
values of and r.�
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The gamma function is

(4-17)�1r2 � �
�

0
 
xr�1e�x dx, for r � 0

Gamma
Function
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140 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

parameters. Also, the change of variable and the definition of the gamma function can
be used to show that the density integrates to one.

Recall that for an exponential distribution with parameter , the mean and variance are
and , respectively. An Erlang random variable is the time until the rth event in a

Poisson process and the time between events are independent. Therefore, it is plausible that the
mean and variance of a gamma random variable multiply the exponential results by r. This
motivates the following conclusions. Repeated integration by parts can be used to derive these,
but the details are lengthy and omitted.

1	�21	�
�

u � �x

Mean and
Variance If X is a gamma random variable with parameters and r,

(4-19)
 � E1X 2 � r	� and �2 � V1X 2 � r	�2

�

EXAMPLE 4-24
The time to prepare a micro-array slide for high-throughput ge-
nomics is a Poisson process with a mean of two hours per slide.
What is the probability that 10 slides require more than 25 hours
to prepare?

Let X denote the time to prepare 10 slides. Because of the as-
sumption of a Poisson process, X has a gamma distribution with

and the requested probability is 
The probability can be obtained from software that provides
cumulative Poisson probabilities or gamma probabilities. For
the cumulative Poisson probabilities we use the method in
Example 4-23 to obtain

In Minitab we set the mean � 12.5 and the input � 9 to obtain

As a check, we use the gamma cumulative probability
function in Minitab. Set the shape parameter to 10, the scale
parameter to 2 because Minitab uses the inverse of our defini-
tion, and the input to 25. The probability computed is

, and when this is subtracted from one
we match with the previous result that P1X � 252 � 0.2014.
P1X � 252 � 0.7986

P1X � 252 � 0.2014.

P1X � 252 � a
9

k�0
 
e�12.5112.52k

k!

P1X � 252.� � 1	2, r � 10,

What are the mean and standard deviation of the time to
prepare 10 slides? The mean time is

The variance of time is

so that the standard deviation is .
The slides will be completed by what length of time with

probability equal to 0.95? The question asks for x such that

where X is gamma with and In Minitab, we
use the gamma inverse cumulative probability function and set
the shape parameter to 10, the scale parameter to 2 because
Minitab uses the inverse of our definition, and the probability
to 0.95. The solution computed is

Practical Interpretation: Based on this result a schedule that al-
lows 31.41 hours to prepare 10 slides should be met on 95%
of occasions.

P1X � 31.412 � 0.95

r � 10.� � 0.5

P1X � x2 � 0.95

401	2 � 6.32 hours

V1X 2 � r	�2 � 10	0.52 � 40

E1X 2 � r	� � 10	0.5 � 20

4-113. Calls to a telephone system follow a Poisson distri-
bution with a mean of five calls per minute.
(a) What is the name applied to the distribution and parame-

ter values of the time until the tenth call?
(b) What is the mean time until the tenth call?
(c) What is the mean time between the ninth and tenth

calls?

EXERCISES FOR SECTION 4-9

4-111. Use the properties of the gamma function to evaluate
the following:
(a) (b)
(c)

4-112. Given the probability density function 
determine the mean and variance of the

distribution.
0.013x2e�0.01x	�132,

f 1x2 �

�19	22
�15	22�162

Furthermore, the chi-squared distribution is a special case of the gamma distribution in
which and r equals one of the values 1�2, 1, 3�2, 2, . . . . This distribution is used
extensively in interval estimation and tests of hypotheses that are discussed in subsequent
chapters. The chi-squared distribution is discussed in Chapter 7.

� � 1	2
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4-10 WEIBULL DISTRIBUTION 141

(d) What is the probability that exactly four calls occur within
one minute?

(e) If 10 separate 1-minute intervals are chosen, what is the
probability that all intervals contain more than two calls?

4-114. Raw materials are studied for contamination.
Suppose that the number of particles of contamination per
pound of material is a Poisson random variable with a mean of
0.01 particle per pound.
(a) What is the expected number of pounds of material

required to obtain 15 particles of contamination?
(b) What is the standard deviation of the pounds of materials

required to obtain 15 particles of contamination?

4-115. The time between failures of a laser in a cytogenics ma-
chine is exponentially distributed with a mean of 25,000 hours.
(a) What is the expected time until the second failure? 
(b) What is the probability that the time until the third failure

exceeds 50,000 hours?

4-116. In a data communication system, several messages
that arrive at a node are bundled into a packet before they are
transmitted over the network. Assume the messages arrive at
the node according to a Poisson process with mes-
sages per minute. Five messages are used to form a packet.
(a) What is the mean time until a packet is formed, that is,

until five messages have arrived at the node?
(b) What is the standard deviation of the time until a packet is

formed?
(c) What is the probability that a packet is formed in less than

10 seconds?
(d) What is the probability that a packet is formed in less than

5 seconds?

4-117. Errors caused by contamination on optical disks
occur at the rate of one error every bits. Assume the errors
follow a Poisson distribution.
(a) What is the mean number of bits until five errors occur?
(b) What is the standard deviation of the number of bits until

five errors occur?

105

� � 30

(c) The error-correcting code might be ineffective if there are
three or more errors within bits. What is the probabil-
ity of this event?

4-118. Calls to the help line of a large computer distributor
follow a Poisson distribution with a mean of 20 calls per minute.
(a) What is the mean time until the one-hundredth call?
(b) What is the mean time between call numbers 50 and 80?
(c) What is the probability that three or more calls occur

within 15 seconds?

4-119. The time between arrivals of customers at an auto-
matic teller machine is an exponential random variable with a
mean of 5 minutes.
(a) What is the probability that more than three customers

arrive in 10 minutes?
(b) What is the probability that the time until the fifth cus-

tomer arrives is less than 15 minutes?

4-120. Use integration by parts to show that 

4-121. Show that the gamma density function in-
tegrates to 1.

4-122. Use the result for the gamma distribution to determine
the mean and variance of a chi-square distribution with r � 7�2.

4-123. Patients arrive at an emergency department accord-
ing to a Poisson process with a mean of 6.5 per hour.
(a) What is the mean time until the tenth arrival?
(b) What is the probability that more than 20 minutes is re-

quired for the third arrival?

4-124. The total service time of a multistep manufacturing
operation has a gamma distribution with mean 18 minutes and
standard deviation 6.
(a) Determine the parameters � and r of the distribution.
(b) Assume each step has the same distribution for service

time. What distribution for each step and how many steps
produce this gamma distribution of total service time?

f 1x, �, r2

�1r � 12.
�1r2 �  1r � 12

105

4-10 WEIBULL DISTRIBUTION

As mentioned previously, the Weibull distribution is often used to model the time until failure
of many different physical systems. The parameters in the distribution provide a great deal of
flexibility to model systems in which the number of failures increases with time (bearing
wear), decreases with time (some semiconductors), or remains constant with time (failures
caused by external shocks to the system).

The random variable X with probability density function

(4-20)

is a Weibull random variable with scale parameter and shape parameter � � 0.� � 0

f 1x2 �
�

�
 a

x

�
b

��1

 exp c�a
x

�
b

�

d ,  for x � 0

Weibull
Distribution
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The flexibility of the Weibull distribution is illustrated by the graphs of selected probability
density functions in Fig. 4-26. By inspecting the probability density function, it is seen that
when , the Weibull distribution is identical to the exponential distribution. Also, the
Raleigh distribution is a special case when the shape parameter is 2.

The cumulative distribution function is often used to compute probabilities. The follow-
ing result can be obtained.

� � 1

Cumulative
Distribution

Function
If X has a Weibull distribution with parameters and , then the cumulative distri-
bution function of X is

(4-21)F1x2 � 1 � e
�a

x

�
b

�

��

Figure 4-26 Weibull probability density functions
for selected values of and .��

0

0.0

–0.5

0.5

1.0

1.5

2.0

3.0

2.5

1 2 3 4 8
x

f (x)

5 6 7

1
1

4.5

0.5
1

6.2
1 2

βδ

Also, the following result can be obtained.

If X has a Weibull distribution with parameters and ,

(4-21)


 � E1X 2 � ��  a1 �
1
�
b and �2 � V 1X 2 � �2� 

 

 a1 �
2
�
b � �2 c� 

 a1 �
1
�
b d

2

��

Mean and
Variance
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4-125. Suppose that X has a Weibull distribution with
and hours. Determine the mean and vari-

ance of X.

4-126. Suppose that X has a Weibull distribution with
and hours. Determine the following:

(a) (b)

4-127. If X is a Weibull random variable with � � 1 and 
� � 1000, what is another name for the distribution of X and
what is the mean of X ?

4-128. Assume that the life of a roller bearing follows a
Weibull distribution with parameters and 
hours.
(a) Determine the probability that a bearing lasts at least 8000

hours.
(b) Determine the mean time until failure of a bearing.
(c) If 10 bearings are in use and failures occur independently,

what is the probability that all 10 bearings last at least
8000 hours?

4-129. The life (in hours) of a computer processing unit
(CPU) is modeled by a Weibull distribution with parameters

and hours.
(a) Determine the mean life of the CPU.
(b) Determine the variance of the life of the CPU.
(c) What is the probability that the CPU fails before 500 hours?

4-130. Assume the life of a packaged magnetic disk exposed
to corrosive gases has a Weibull distribution with and
the mean life is 600 hours.
(a) Determine the probability that a packaged disk lasts at

least 500 hours.
(b) Determine the probability that a packaged disk fails be-

fore 400 hours.

4-131. The life (in hours) of a magnetic resonance imaging
machine (MRI) is modeled by a Weibull distribution with pa-
rameters and hours.
(a) Determine the mean life of the MRI.
(b) Determine the variance of the life of the MRI.
(c) What is the probability that the MRI fails before 250 hours?

4-132. An article in the Journal of the Indian Geophysical
Union titled “Weibull and Gamma Distributions for Wave

� � 500� � 2

� � 0.5

� � 900� � 3

� � 10,000� � 2

P1X � 50002P1X � 10,0002
� � 100� � 0.2

� � 100� � 0.2
Parameter Predictions” (2005, Vol. 9, pp. 55–64) used the
Weibull distribution to model ocean wave heights. Assume that
the mean wave height at the observation station is 2.5 m and the
shape parameter equals 2. Determine the standard deviation of
wave height.

4-133. An article in the Journal of Geophysical Research
[“Spatial and Temporal Distributions of U.S. of Winds and
Wind Power at 80 m Derived from Measurements,” (2003, 
vol. 108, pp. 10–1: 10–20)] considered wind speed at stations
throughout the U.S. A Weibull distribution can be used to
model the distribution of wind speeds at a given location.
Every location is characterized by a particular shape and
scale parameter. For a station at Amarillo, Texas, the mean
wind speed at 80 m (the hub height of large wind turbines) in
2000 was 10.3 m/s with a standard deviation of 4.9 m/s.
Determine the shape and scale parameters of a Weibull distri-
bution with these properties.

4-134. Suppose that X has a Weibull distribution with � � 2
and � � 8.6. Determine the following:
(a) P(X � 10) (b) P(X � 9)
(c) P(8 � X � 11) 
(d) value for x such that P(X � x) � 0.9

4-135. Suppose the lifetime of a component (in hours) is
modeled with a Weibull distribution with � � 2 and � � 4000.
Determine the following:
(a) P(X � 3000) (b) P(X � 6000 | X � 3000)
(c) Comment on the probabilities in the previous parts com-

pared to the results for an exponential distribution.

4-136. Suppose the lifetime of a component (in hours) is
modeled with a Weibull distribution with � � 0.5 and � =
4000. Determine the following:
(a) P(X � 3000) (b) P(X � 6000 | X � 3000)
(c) Comment on the probabilities in the previous parts com-

pared to the results for an exponential distribution.
(d) Comment on the role of the parameter � in a lifetime

model with the Weibull distribution.

4-137. Suppose X has a Weibull distribution with � � 2 and
� � 2000.

EXERCISES FOR SECTION 4-10

EXAMPLE 4-25 Bearing Wear
The time to failure (in hours) of a bearing in a mechanical
shaft is satisfactorily modeled as a Weibull random variable
with Determine the mean time
until failure.

From the expression for the mean,

� 5000 � 0.51
! � 4431.1 hours
E1X 2 � 5000� 31 � 11	22 4 � 5000� 31.5 4

� � 1	2 and � � 5000 hours.

Determine the probability that a bearing lasts at least 6000
hours. Now, 

Practical Interpretation: Consequently, only 23.7% of all bear-
ings last at least 6000 hours.

� e�1.44 � 0.237

P1X � 60002 � 1 � F160002 � exp c� a
6000

5000
b

2

d
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144 CHAPTER 4 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

(a) Determine P(X � 3500).
(b) Determine P(X � 3500) for an exponential random vari-

able with the same mean as the Weibull distribution.

(c) Suppose X represent the lifetime of a component in hours.
Comment on the probability that the lifetime exceeds 3500
hours under the Weibull and exponential distributions.

4-11 LOGNORMAL DISTRIBUTION

Variables in a system sometimes follow an exponential relationship as . If the
exponent is a random variable is a random variable with a distribution
of interest. An important special case occurs when W has a normal distribution. In that
case, the distribution of X is called a lognormal distribution. The name follows from the
transformation ln . That is, the natural logarithm of X is normally distributed.

Probabilities for X are obtained from the transformation to W, but the range of X is .
Suppose that W is normally distributed with mean and variance ; then the cumulative dis-
tribution function for X is

for , where Z is a standard normal random variable. Therefore, Appendix Table III can
be used to determine the probability. Also, 

The probability density function of X can be obtained from the derivative of F(x). This
derivative is applied to the last term in the expression for F(x), the integral of the standard
normal density function. Furthermore, from the probability density function, the mean and
variance of X can be derived. The details are omitted, but a summary of results follows.

F1x2 � 0 for x � 0.
x � 0

� P cZ �
ln 1x2 � �

� d � � c
ln 1x2 � �

� d

F1x2 � P 3X � x 4 � P 3exp1W 2 � x 4 � P 3W � ln 1x2 4

�2�
10, �2

1X 2 � W

W, then X � exp 1W 2
x � exp1w2

Let W have a normal distribution with mean and variance ; then is
a lognormal random variable with probability density function

The mean and variance of X are

(4-22)E1X 2 � e���2	2  and  V1X 2 � e2���2

 1e�2

� 12

f 1x2 �
1

x� 12

 exp c�

1ln x � �22

2�2 d  0 � x � �

X � exp1W2�2�

Lognormal
Distribution

The parameters of a lognormal distribution are and , but care is needed to interpret that
these are the mean and variance of the normal random variable W. The mean and variance of
X are the functions of these parameters shown in (4-22). Figure 4-27 illustrates lognormal dis-
tributions for selected values of the parameters.

The lifetime of a product that degrades over time is often modeled by a lognormal ran-
dom variable. For example, this is a common distribution for the lifetime of a semiconductor
laser. A Weibull distribution can also be used in this type of application, and with an appro-
priate choice for parameters, it can approximate a selected lognormal distribution. However,
a lognormal distribution is derived from a simple exponential function of a normal random
variable, so it is easy to understand and easy to evaluate probabilities.

�2�
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Figure 4-27 Lognormal probability density functions with
for selected values of .�2� � 0

EXAMPLE 4-26 Semiconductor Laser
The lifetime of a semiconductor laser has a lognormal distri-
bution with hours and hours. What is the
probability that the lifetime exceeds 10,000 hours?

From the cumulative distribution function for X,

What lifetime is exceeded by 99% of lasers? The question is to
determine x such that Therefore, 

� 1 � � a
ln 1x2 � 10

1.5
b � 0.99

P1X � x2 � P 3exp 1W 2 � x 4 � P 3W � ln 1x2 4

P1X � x2 � 0.99.

� 1 � 0.30 � 0.70

� 1 � �  a
ln 110,0002 � 10

1.5
b � 1 � � 1�0.522

� 1 � P 3W � ln 110,0002 4
P1X � 10,0002 � 1 � P 3exp 1W 2 � 10,000 4

� � 1.5� � 10
From Appendix Table III, when .
Therefore, 

Determine the mean and standard deviation of lifetime. Now,

so the standard deviation of X is 197,661.5 hours. 
Practical Interpretation: The standard deviation of a log-

normal random variable can be large relative to the mean.

� 39,070,059,886.6

V1X 2 � e2���2

1e�2

� 12 � exp 120 � 2.252 3exp 12.252 � 1 4

E1X 2 � e���2	2 � exp 110 � 1.1252 � 67,846.3

ln 1x2� 10

1.5
� �2.33 and x � exp 16.5052 � 668.48 hours

z � �2.33 1 � �1z2 � 0.99

4-138. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-139. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-140. Suppose that X has a lognormal distribution with
parameters and . Determine the following:�2 � 4� � 2

P1X � x2 � 0.1
P1500 � X � 10002

�2 � 9� � �2

P1X � x2 � 0.95
P1X � 13,3002

�2 � 9� � 5
(a)
(b) The conditional probability that given that

(c) What does the difference between the probabilities in
parts (a) and (b) imply about lifetimes of lognormal ran-
dom variables?

4-141. The length of time (in seconds) that a user views a
page on a Web site before moving to another page is a lognor-
mal random variable with parameters and .
(a) What is the probability that a page is viewed for more than

10 seconds?

�2 � 1� � 0.5

X � 1000
X � 1500

P1X � 5002

EXERCISES FOR SECTION 4-11
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(b) By what length of time have 50% of the users moved to
another page?

(c) What is the mean and standard deviation of the time until
a user moves from the page?

4-142. Suppose that X has a lognormal distribution and that
the mean and variance of X are 100 and 85,000, respectively.
Determine the parameters and of the lognormal distribu-
tion. (Hint: define and and write two
equations in terms of x and y.)

4-143. The lifetime of a semiconductor laser has a lognor-
mal distribution, and it is known that the mean and standard
deviation of lifetime are 10,000 and 20,000, respectively.
(a) Calculate the parameters of the lognormal distribution.
(b) Determine the probability that a lifetime exceeds 10,000

hours.
(c) Determine the lifetime that is exceeded by 90% of lasers.

4-144. An article in Health and Population: Perspectives and
Issues (2000, Vol. 23, pp. 28–36) used the lognormal distribution
to model blood pressure in humans. The mean systolic blood

y � exp 1�22x � exp 1�2
�2�

pressure (SBP) in males age 17 was 120.87 mm Hg. If the co-
efficient of variation (100% � standard deviation/mean) is 9%,
what are the parameter values of the lognormal distribution?

4-145. Derive the probability density function of a lognor-
mal random variable from the derivative of the cumulative
distribution function.

4-146. Suppose X has a lognormal distribution with param-
eters � � 10 and �2 � 16. Determine the following:
(a)
(b)
(c) value exceeded with probability 0.7

4-147. Suppose the length of stay (in hours) at an emergency
department is modeled with a lognormal random variable X
with � � 1.5 and � � 0.4. Determine the following:
(a) mean and variance
(b)
(c) Comment on the difference between the probability 

calculated from this lognormal distribution and a normal
distribution with the same mean and variance.

P1X � 02
P1X � 82

P1X � 15002
P1X � 20002

4-12 BETA DISTRIBUTION

A continuous distribution that is flexble, but bounded over a finite range, is useful for prob-
ability models. The proportion of solar radiation absorbed by a material or the proportion
(of the maximum time) required to complete a task in a project are examples of continuous
random variables over the interval [0, 1].

The random variable X with probability density function

is a beta random variable with parameters � � 0 and � � 0.

f 1x2 �
≠ 1� � �2

≠ 1�2 ≠ 1�2
 x��111 � x2��1, for x � 30, 1 4

The shap parameters � and � allow the probability density function to assume many dif-
ferent shapes. Figure 4-28 provides some examples. If � � � the distribution is symmetric
about x � 0.5, and if � � � � 1 the beta distribution equals a continuous uniform distri-
bution. The figure illustrates that other parameter choices generate nonsymmetric distribu-
tions.

In general, there is a not a closed-form expression for the cumulative distribution func-
tion, and probabilities for beta random variables need to be computed numerically. The
exercises provide some special cases where the probability density function is more easily
handled.
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EXAMPLE 4-27
Consider the completion time of a large commercial develop-
ment. The proportion of the maximum allowed time to com-
plete a task is modeled as a beta random variable with � � 2.5
and � � 1. What is the probability that the proportion of the
maximum time exceeds 0.7?

Suppose X denotes the proportion of the maximum time
required to complete the task. The probability is

� 1 � 0.72.5 � 0.59

� 
2.511.52 10.521


11.52 10.521


1

2.5
 x 2.5 `

1

0.7

� �
1

0.7

≠ 13.52

�12.52 �112
 x1.5

P1X � 0.72� �
1

0.7

≠ 1� � �2

�1�2 �1�2
 x��111� x2��1

EXAMPLE 4-28
Consider the proportion of time required to complete the task
described in the previous example. Calculate the mean and
variance of this random variable.

From the expression for the mean and variance,


 �
2.5

2.5 � 1
� 0.71 �2 �

2.5

3.5214.52
� 0.045

If X has a beta distribution with parameters � and �,


 � E1X 2 �
�

� � �
 �2 � V1X 2 �

��

1� � �221� � � � 12

3.0

2.5

2.0

1.5

1.0

0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a = 0.5, b = 0.5

a = 5, b = 1

a = 1, b = 3

a = 2, b = 2

a = 2, b = 5

Figure 4-28 Beta
probability density
functions for selected
values of the parame-
ters � and �.

If � � 1 and � � 1, the mode (peak of the density) is in the interior of [0, 1] and equals

This expression is useful to relate the peak of the density to the parameters. For the distribu-
tion used previously for the proportion of time required to complete a task, � � 2.5 and � � 1
and the mode of this distribution is (2.5 � 1)/(3.5 �2) � 1. Also, although a beta random vari-
able X is defined over the interval [0, 1], a random variable W defined over the finite interval
[a, b] can be constructed from W � a + (b � a)X. 

mode �
� � 1

� � � � 2
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4-148. Suppose X has a beta distribution with parameters 
� � 2.5 and � � 2.5. Sketch an approximate graph of the
probability density function. Is the density symmetric?

4-149. Suppose x has a beta distribution with parameters 
� � 2.5 and � � 1. Determine the following:
(a) P(X � 0.25) (b) P(0.25 � X � 0.75)
(c) mean and variance

4-150. Suppose X has a beta distribution with parameters 
� = 1 and � = 4.2. Determine the following:
(a) P(X � 0.25) (b) P(0.5 � X )
(c) mean and variance

4-151. A European standard value for a low-emission
window glazing uses 0.59 as the proportion of solar energy
that enters a room. Suppose that the distribution of the pro-
portion of solar energy that enters a room is a beta random
variable.
(a) Calculate the mode, mean, and variance of the distribution

for � � 3 and � � 1.4.
(b) Calculate the mode, mean, and variance of the distribution

for � � 10 and � � 6.25.
(c) Comment on the difference in dispersion in the distribu-

tions from the previous parts.

4-152. The length of stay at an emergency department is the
sum of the waiting and service times. Let X denote the propor-
tion of time spent waiting and assume a beta distribution with
� � 10 and � � 1. Determine the following: 
(a) P(X � 0.9) 
(b) P(X � 0.5) 
(c) mean and variance

4-153. The maximum time to complete a task in a project is
2.5 days. Suppose that the completion time as a proportion of
this maximum is a beta random variable with � � 2 and � �
3. What is the probability that the task requires more than two
days to complete?

Supplemental Exercises

4-154. The probability density function of the time it takes
a hematology cell counter to complete a test on a blood sample
is seconds.
(a) What percentage of tests require more than 70 seconds to

complete?
(b) What percentage of tests require less than one minute to

complete?
(c) Determine the mean and variance of the time to complete

a test on a sample. 

4-155. The tensile strength of paper is modeled by a normal
distribution with a mean of 35 pounds per square inch and a
standard deviation of 2 pounds per square inch.
(a) What is the probability that the strength of a sample is less

than 40 lb/in2?

f 1x2 � 0.04 for 50 � x � 75

(b) If the specifications require the tensile strength to exceed
30 lb/in2, what proportion of the samples is scrapped?

4-156. The time it takes a cell to divide (called mitosis) is
normally distributed with an average time of one hour and a
standard deviation of 5 minutes.
(a) What is the probability that a cell divides in less than

45 minutes?
(b) What is the probability that it takes a cell more than

65 minutes to divide?
(c) By what time have approximately 99% of all cells com-

pleted mitosis?

4-157. The length of an injection-molded plastic case
that holds magnetic tape is normally distributed with a length of
90.2 millimeters and a standard deviation of 0.1 millimeter.
(a) What is the probability that a part is longer than 90.3 mil-

limeters or shorter than 89.7 millimeters?
(b) What should the process mean be set at to obtain the great-

est number of parts between 89.7 and 90.3 millimeters?
(c) If parts that are not between 89.7 and 90.3 millimeters are

scrapped, what is the yield for the process mean that you
selected in part (b)?

Assume that the process is centered so that the mean is 90 mil-
limeters and the standard deviation is 0.1 millimeter. Suppose that
10 cases are measured, and they are assumed to be independent.
(d) What is the probability that all 10 cases are between 89.7

and 90.3 millimeters?
(e) What is the expected number of the 10 cases that are be-

tween 89.7 and 90.3 millimeters?

4-158. The sick-leave time of employees in a firm in a
month is normally distributed with a mean of 100 hours and a
standard deviation of 20 hours.
(a) What is the probability that the sick-leave time for next

month will be between 50 and 80 hours?
(b) How much time should be budgeted for sick leave if the

budgeted amount should be exceeded with a probability
of only 10%?

4-159. The percentage of people exposed to a bacteria who
become ill is 20%. Assume that people are independent. Assume
that 1000 people are exposed to the bacteria. Approximate each
of the following:
(a) The probability that more than 225 become ill
(b) The probability that between 175 and 225 become ill
(c) The value such that the probability that the number of

people who become ill exceeds the value is 0.01

4-160. The time to failure (in hours) for a laser in a cytom-
etry machine is modeled by an exponential distribution with

(a) What is the probability that the laser will last at least
20,000 hours?

(b) What is the probability that the laser will last at most
30,000 hours?

(c) What is the probability that the laser will last between
20,000 and 30,000 hours?

� � 0.00004.

EXERCISES FOR SECTION 4-12
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4-161. When a bus service reduces fares, a particular trip
from New York City to Albany, New York, is very popular.
A small bus can carry four passengers. The time between calls
for tickets is exponentially distributed with a mean of 30 min-
utes. Assume that each call orders one ticket. What is the prob-
ability that the bus is filled in less than three hours from the
time of the fare reduction?

4-162. The time between process problems in a manufac-
turing line is exponentially distributed with a mean of 30 days.
(a) What is the expected time until the fourth problem?
(b) What is the probability that the time until the fourth prob-

lem exceeds 120 days?

4-163. The life of a recirculating pump follows a Weibull
distribution with parameters and hours.
(a) Determine the mean life of a pump.
(b) Determine the variance of the life of a pump.
(c) What is the probability that a pump will last longer than its

mean?

4-164. The size of silver particles in a photographic emul-
sion is known to have a log normal distribution with a mean of
0.001 mm and a standard deviation of 0.002 mm. 
(a) Determine the parameter values for the lognormal distri-

bution.
(b) What is the probability of a particle size greater than

0.005 mm?

4-165. Suppose that for 
Determine the following:
(a)
(b)

(c)

(d) Determine the cumulative distribution function of the
random variable.

(e) Determine the mean and variance of the random variable.

4-166. The time between calls is exponentially distributed
with a mean time between calls of 10 minutes.
(a) What is the probability that the time until the first call is

less than 5 minutes?
(b) What is the probability that the time until the first call is

between 5 and 15 minutes?
(c) Determine the length of an interval of time such that the

probability of at least one call in the interval is 0.90.
(d) If there has not been a call in 10 minutes, what is the

probability that the time until the next call is less than 
5 minutes?

(e) What is the probability that there are no calls in the inter-
vals from 10:00 to 10:05, from 11:30 to 11:35, and from
2:00 to 2:05?

(f) What is the probability that the time until the third call is
greater than 30 minutes?

(g) What is the mean time until the fifth call?

4-167. The CPU of a personal computer has a lifetime that
is exponentially distributed with a mean lifetime of six years.
You have owned this CPU for three years. 

P12.5 � X � 3.52

P1X � 32
P1X � 2.52

2 � x � 4.f 1x2 � 0.5x � 1

� � 700� � 2

(a) What is the probability that the CPU fails in the next three
years?

(b) Assume that your corporation has owned 10 CPUs for
three years, and assume that the CPUs fail independently.
What is the probability that at least one fails within the
next three years?

4-168. Suppose that X has a lognormal distribution with
parameters and . Determine the following:
(a)
(b) The value for x such that 
(c) The mean and variance of X

4-169. Suppose that X has a lognormal distribution and that
the mean and variance of X are 50 and 4000, respectively.
Determine the following:
(a) The parameters and of the lognormal distribution
(b) The probability that X is less than 150

4-170. Asbestos fibers in a dust sample are identified by an
electron microscope after sample preparation. Suppose that
the number of fibers is a Poisson random variable and the
mean number of fibers per square centimeter of surface dust is
100. A sample of 800 square centimeters of dust is analyzed.
Assume a particular grid cell under the microscope represents
1/160,000 of the sample.
(a) What is the probability that at least one fiber is visible in

the grid cell?
(b) What is the mean of the number of grid cells that need to

be viewed to observe 10 that contain fibers?
(c) What is the standard deviation of the number of grid cells

that need to be viewed to observe 10 that contain fibers?

4-171. Without an automated irrigation system, the height
of plants two weeks after germination is normally distributed
with a mean of 2.5 centimeters and a standard deviation of 
0.5 centimeter.
(a) What is the probability that a plant’s height is greater than

2.25 centimeters?
(b) What is the probability that a plant’s height is between 2.0

and 3.0 centimeters?
(c) What height is exceeded by 90% of the plants?

4-172. Continuation of Exercise 4-171. With an automated
irrigation system, a plant grows to a height of 3.5 centimeters
two weeks after germination.
(a) What is the probability of obtaining a plant of this

height or greater from the distribution of heights in
Exercise 4-165.

(b) Do you think the automated irrigation system increases
the plant height at two weeks after germination?

4-173. The thickness of a laminated covering for a wood
surface is normally distributed with a mean of 5 millimeters
and a standard deviation of 0.2 millimeter.
(a) What is the probability that a covering thickness is greater

than 5.5 millimeters?
(b) If the specifications require the thickness to be between

4.5 and 5.5 millimeters, what proportion of coverings do
not meet specifications?

�2�

P1X � x2 � 0.05
P110 � X � 502

�2 � 4� � 0

JWCL232_c04_107-151.qxd  1/7/10  12:26 PM  Page 149



(c) The covering thickness of 95% of samples is below what
value?

4-174. The diameter of the dot produced by a printer is
normally distributed with a mean diameter of 0.002 inch.
Suppose that the specifications require the dot diameter to be
between 0.0014 and 0.0026 inch. If the probability that a dot
meets specifications is to be 0.9973, what standard deviation
is needed?

4-175. Continuation of Exercise 4-174. Assume that the
standard deviation of the size of a dot is 0.0004 inch. If the
probability that a dot meets specifications is to be 0.9973,
what specifications are needed? Assume that the specifications
are to be chosen symmetrically around the mean of 0.002.

4-176. The life of a semiconductor laser at a constant power
is normally distributed with a mean of 7000 hours and a stan-
dard deviation of 600 hours.
(a) What is the probability that a laser fails before 5800 hours?
(b) What is the life in hours that 90% of the lasers exceed?
(c) What should the mean life equal in order for 99% of the

lasers to exceed 10,000 hours before failure?
(d) A product contains three lasers, and the product fails if

any of the lasers fails. Assume the lasers fail indepen-
dently. What should the mean life equal in order for 99%
of the products to exceed 10,000 hours before failure?

4-177. Continuation of Exercise 4-176. Rework parts (a)
and (b). Assume that the lifetime is an exponential random
variable with the same mean.

4-178. Continuation of Exercise 4-176. Rework parts (a)
and (b). Assume that the lifetime is a lognormal random vari-
able with the same mean and standard deviation.

4-179. A square inch of carpeting contains 50 carpet fibers.
The probability of a damaged fiber is 0.0001. Assume the
damaged fibers occur independently.
(a) Approximate the probability of one or more damaged

fibers in 1  square yard of carpeting.
(b) Approximate the probability of four or more damaged

fibers in 1 square yard of carpeting.

4-180. An airline makes 200 reservations for a flight who
holds 185 passengers. The probability that a passenger arrives
for the flight is 0.9 and the passengers are assumed to be inde-
pendent.
(a) Approximate the probability that all the passengers who

arrive can be seated.
(b) Approximate the probability that there are empty seats.
(c) Approximate the number of reservations that the airline

should make so that the probability that everyone who
arrives can be seated is 0.95. [Hint: Successively try
values for the number of reservations.]
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4-181. The steps in this exercise lead to the probabil-
ity density function of an Erlang random variable X with
parameters and 
and 
(a) Use the Poisson distribution to express .
(b) Use the result from part (a) to determine the cumu-

lative distribution function of X.
(c) Differentiate the cumulative distribution function in

part (b) and simplify to obtain the probability den-
sity function of X.

4-182. A bearing assembly contains 10 bearings. The
bearing diameters are assumed to be independent and
normally distributed with a mean of 1.5 millimeters and
a standard deviation of 0.025 millimeter. What is the
probability that the maximum diameter bearing in the
assembly exceeds 1.6 millimeters?

4-183. Let the random variable X denote a measure-
ment from a manufactured product. Suppose the target
value for the measurement is m. For example, X could
denote a dimensional length, and the target might be 10
millimeters. The quality loss of the process producing

the product is defined to be the expected value of
, where k is a constant that relates a devia-

tion from target to a loss measured in dollars.
(a) Suppose X is a continuous random variable with

and . What is the quality loss
of the process?

(b) Suppose X is a continuous random variable with
and . What is the quality loss

of the process?

4-184. The lifetime of an electronic amplifier is
modeled as an exponential random variable. If 10% of
the amplifiers have a mean of 20,000 hours and the re-
maining amplifiers have a mean of 50,000 hours, what
proportion of the amplifiers fail before 60,000 hours?

4-185. Lack of Memory Property. Show that for
an exponential random variable X, 

.

4-186. A process is said to be of six-sigma quality if
the process mean is at least six standard deviations from
the nearest specification. Assume a normally distributed
measurement.

X � t12 � P1X � t22
P1X � t1 � t2 0

V1X 2 � �2E1X 2 � 


V1X 2 � �2E1X 2 � m

$k1X � m22

P1X � x2
r � 1, 2, p .

r, f 1x2 � �rxr�1e��x	 1r � 12!, x � 0,�

MIND-EXPANDING EXERCISES
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(a) If a process mean is centered between upper and
lower specifications at a distance of six standard
deviations from each, what is the probability that a
product does not meet specifications? Using the
result that 0.000001 equals one part per million,
express the answer in parts per million.

(b) Because it is difficult to maintain a process mean
centered between the specifications, the probability
of a product not meeting specifications is often cal-
culated after assuming the process shifts. If the

process mean positioned as in part (a) shifts upward
by 1.5 standard deviations, what is the probability
that a product does not meet specifications? Express
the answer in parts per million.

(c) Rework part (a). Assume that the process mean is
at a distance of three standard deviations.

(d) Rework part (b). Assume that the process mean is at
a distance of three standard deviations and then
shifts upward by 1.5 standard deviations.

(e) Compare the results in parts (b) and (d) and comment.

MIND-EXPANDING EXERCISES

Beta distribution
Chi-squared 

distribution
Continuity correction
Continuous uniform

distribution
Cumulative probability

distribution function-
continuous random
variable

Erlang distribution

Exponential distribution
Gamma distribution
Lack of memory 

property-continuous
random variable

Lognormal distribution
Mean-continuous

random variable
Mean-function of a

continuous random
variable

Normal approximation to
binomial and Poisson
probabilities

Normal distribution
Probability density

function
Probability distribution-

continuous random
variable

Standard deviation-
continuous random
variable

Standardizing
Standard normal

distribution
Variance-continuous 

random variable
Weibull distribution

IMPORTANT TERMS AND CONCEPTS

4-12 BETA DISTRIBUTION 151
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5
Air quality monitoring stations are maintained throughout Maricopa County, Arizona and
the Phoenix metropolitan area. Measurements for particulate matter and ozone are meas-
ured hourly. Particulate matter (known as PM10) is a measure (in �g/m3 ) of solid and liq-
uid particles in the air with diameters less than 10 micrometers. Ozone is a colorless gas
with molecules comprised of three oxygen atoms that make it very reactive. Ozone is
formed in a complex reaction from heat, sunlight, and other pollutants, especially volatile
organic compounds. The U.S. Environmental Protection Agency sets limits for both PM10
and ozone. For example, the limit for ozone is 0.075 ppm. The probability a day in Phoenix
exceeds the limits for PM10 and ozone is important for compliance and remedial actions
with the county and city. But this might be more involved that the product of the probabili-
ties for each pollutant separately. It might be that days with high PM10 measurements also
tend to have ozone values. That is, the measurements might not be independent and it is the
joint relationship between these measurements that becomes important. The study of prob-
ability distributions for more than one random variable is the focus of this chapter and the
air quality data is just one illustration of the ubiquitous need to study variables jointly.

iStockphoto

Joint Probability Distributions
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5-1 TWO OR MORE RANDOM VARIABLES 153

LEARNING OBJECTIVES 

After careful study of this chapter you should be able to do the following:
1. Use joint probability mass functions and joint probability density functions to calculate probabilities
2. Calculate marginal and conditional probability distributions from joint probability distributions
3. Interpret and calculate covariances and correlations between random variables
4. Use the multinomial distribution to determine probabilities
5. Understand properties of a bivariate normal distribution and be able to draw contour plots for the

probability density function
6. Calculate means and variances for linear combinations of random variables and calculate proba-

bilities for linear combinations of normally distributed random variables
7. Determine the distribution of a general function of a random variable

EXAMPLE 5-1 Signal Bars
Calls are made to check the airline schedule at your departure
city. You monitor the number of bars of signal strength on your
cell phone and the number of times you have to state the name
of your departure city before the voice system recognizes the
name.

In the first four bits transmitted, let

X denote the number of bars of signal strength 
on your cell phone 

Y denote the number of times you need to state 
your departure city

In Chapters 3 and 4 we studied probability distributions for a single random variable. However,
it is often useful to have more than one random variable defined in a random experiment. For
example, in the classification of transmitted and received signals, each signal can be classified
as high, medium, or low quality. We might define the random variable X to be the number of
high-quality signals received and the random variable Y to be the number of low-quality signals
received. In another example, the continuous random variable X can denote the length of one
dimension of an injection-molded part, and the continuous random variable Y might denote the
length of another dimension. We might be interested in probabilities that can be expressed in
terms of both X and Y. For example, if the specifications for X and Y are 12.95 to 3.052 and 17.60
to 7.802 millimeters, respectively, we might be interested in the probability that a part satisfies
both specifications; that is, P 12.95 � X � 3.05 and 7.60 � Y � 7.802.

Because the two random variables are measurements from the same part, small disturbances
in the injection-molding process, such as pressure and temperature variations, might be more
likely to generate values for X and Y in specific regions of two-dimensional space. For example,
a small pressure increase might generate parts such that both X and Y are greater than their
respective targets, and a small pressure decrease might generate parts such that X and Y are both
less than their respective targets. Therefore, based on pressure variations, we expect that the
probability of a part with X much greater than its target and Y much less than its target is small.

In general, if X and Y are two random variables, the probability distribution that defines
their simultaneous behavior is called a joint probability distribution. In this chapter, we
investigate some important properties of these joint distributions.

5-1 TWO OR MORE RANDOM VARIABLES

5-1.1 Joint Probability Distributions

For simplicity, we begin by considering random experiments in which only two random vari-
ables are studied. In later sections, we generalize the presentation to the joint probability
distribution of more than two random variables.
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If X and Y are discrete random variables, the joint probability distribution of X and Y is a
description of the set of points 1x, y2 in the range of 1X, Y 2 along with the probability of each
point. The joint probability distribution of two random variables is sometimes referred to as
the bivariate probability distribution or bivariate distribution of the random variables.
One way to describe the joint probability distribution of two discrete random variables is
through a joint probability mass function. Also, P 1X � x and Y � y2 is usually written as
P 1X � x, Y � y2.

154 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

The joint probability mass function of the discrete random variables X and Y,
denoted as fXY 1x, y2, satisfies

(1)

(2)

(3) (5-1)fXY 1x, y2 � P1X � x, Y � y2

a
x

 a
y

 fXY 1x, y2 � 1

fXY 
1x, y2 � 0

Joint
Probability

Mass Function

x = number of bars of signal strength
y = number of times
city name is stated

1
2
3
4 0.1 0.05

0.05

0.2
0.25

2 3

0.1
0.03
0.02

0.15

1

0.02
0.02
0.01

Figure 5-1 Joint
probability distribution
of X and Y in Example
5-1.

By specifying the probability of each of the points in Fig. 5-1,
we specify the joint probability distribution of X and Y.
Similarly to an individual random variable, we define the

range of the random variables 1X, Y 2 to be the set of points
1x, y2 in two-dimensional space for which the probability that
X � x and Y � y is positive.

Just as the probability mass function of a single random variable X is assumed to be zero at all
values outside the range of X, so the joint probability mass function of X and Y is assumed to
be zero at values for which a probability is not specified.

The joint probability distribution of two continuous random variables X and Y can be
specified by providing a method for calculating the probability that X and Y assume a value in
any region R of two-dimensional space. Analogous to the probability density function of a
single continuous random variable, a joint probability density function can be defined over
two-dimensional space. The double integral of over a region R provides the proba-
bility that assumes a value in R. This integral can be interpreted as the volume under the
surface over the region R.

A joint probability density function for X and Y is shown in Fig. 5-2. The probability
that assumes a value in the region R equals the volume of the shaded region in 
Fig. 5-2. In this manner, a joint probability density function is used to determine probabil-
ities for X and Y.

1X, Y 2

fXY 1x, y2
1X, Y 2

fXY 
1x, y2
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5-1 TWO OR MORE RANDOM VARIABLES 155

Figure 5-2 Joint probability density function for
random variables X and Y. Probability that (X, Y ) is
in the region R is determined by the volume of
fXY (x, y) over the region R.

fXY (x, y)

x

y

R

fXY(x, y)

y
x

3.0

2.95

3.05
7.70

7.80

7.60

Figure 5-3 Joint probability density function for the lengths
of different dimensions of an injection-molded part.

Typically, is defined over all of two-dimensional space by assuming that
for all points for which is not specified.

At the start of this chapter, the lengths of different dimensions of an injection-molded part
were presented as an example of two random variables. Each length might be modeled by a
normal distribution. However, because the measurements are from the same part, the random
variables are typically not independent. A probability distribution for two normal random vari-
ables that are not independent is important in many applications and it is presented later in this
chapter. If the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respec-
tively, we might be interested in the probability that a part satisfies both specifications; that is,

Suppose that is shown in Fig. 5-3. The re-
quired probability is the volume of within the specifications. Often a probability such
as this must be determined from a numerical integration.

fXY 1x, y2
fXY 1x, y2P12.95 � X � 3.05, 7.60 � Y � 7.802.

fXY 1x, y2fXY 1x, y2 � 0
fXY 1x, y2

EXAMPLE 5-2 Server Access Time
Let the random variable X denote the time until a computer
server connects to your machine (in milliseconds), and let Y
denote the time until the server authorizes you as a valid user
(in milliseconds). Each of these random variables measures

the wait from a common starting time and X � Y. Assume that
the joint probability density function for X and Y is

for x � yfXY 
1x, y2 � 6 � 10�6 exp1�0.001x � 0.002y2

A joint probability density function for the continuous random variables X and Y,
denoted as satisfies the following properties:

(1)

(2)

(3) For any region R of two-dimensional space,

(5-2)P1 1X, Y 2 � R2 � ��
R

  
fXY 1x, y2 dx dy

�
�

��

 �
�

��

 fXY 1x, y2 dx dy � 1

fXY 1x, y2 � 0 for all x, y

fXY 1x, y2,

Joint
Probability

Density
Function
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156 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

Reasonable assumptions can be used to develop such a distri-
bution, but for now, our focus is only on the joint probability
density function.

The region with nonzero probability is shaded in 
Fig. 5-4. The property that this joint probability density function
integrates to 1 can be verified by the integral of fXY (x, y) over
this region as follows:

� 0.003 a
1

0.003
b � 1

� 0.003 ° �
�

0

e�0.003x dx¢

� 6 � 10�6�
�

0

°
e�0.002x

0.002
¢  e�0.001x dx

� 6 � 10�6�
�

0

° �
�

x

e�0.002y dy¢  e�0.001x dx

 �
�

��

 �
�

��

fXY 1x, y2 dy dx � �
�

0

° �
�

x

6 � 10�6e�0.001x�0.002y dy¢  dx

y

x0

y

x0
0

2000

1000

Figure 5-4 The joint probabil-
ity density function of X and Y is
nonzero over the shaded region.

Figure 5-5 Region of integration 
for the probability that X � 1000 
and Y � 2000 is darkly shaded.

The probability that is deter-
mined as the integral over the darkly shaded region in 
Fig. 5-5.

Practical Interpretation: A joint probability density func-
tion enables probabilities for two (or more) random variables
to be calculated as in these examples.

� 0.003 1316.738 � 11.5782 � 0.915

� 0.003 c a
1 � e�3

0.003
b � e�4 a

1 � e�1

0.001
b d

� 0.003 �
1000

0

e�0.003x � e�4 e�0.001x dx

� 6 � 10�6 �
1000

0

a
e�0.002x � e�4

0.002
b e�0.001x dx

� 6 � 10�6 �
1000

0

° �
2000

x
 
e�0.002y dy¢  e�0.001x dx

P1X 	 1000, Y 	 20002 � �
1000

 

0

�
2000

x

fXY 1x, y2 dy dx

X � 1000 and Y � 2000

5-1.2 Marginal Probability Distributions

If more than one random variable is defined in a random experiment, it is important to distin-
guish between the joint probability distribution of X and Y and the probability distribution of
each variable individually. The individual probability distribution of a random variable is
referred to as its marginal probability distribution.

In general, the marginal probability distribution of X can be determined from the joint
probability distribution of X and other random variables. For example, consider discrete
random variables X and Y. To determine P(X � x), we sum P(X � x, Y � y) over all points in
the range of (X, Y ) for which X � x. Subscripts on the probability mass functions distinguish
between the random variables. 
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x = number of bars of signal strength

Marginal probability distribution of X

Marginal
probability
distribution of Y

y = number of times
city name is stated

1
2
3
4

1 2

0.15 0.1
0.02
0.02
0.01

0.1
0.03
0.02

0.25

3

0.05
0.05
0.2
0.25

0.3
0.17
0.25
0.28

0.550.2

Figure 5-6 Marginal
probability distribu-
tions of X and Y from
Fig. 5-1.

If the joint probability density function of random variables X and Y is fXY (x, y), the
marginal probability density functions of X and Y are

(5-3)

where the first integral is over all points in the range of (X, Y ) for which X � x and
the second integral is over all points in the range of (X, Y ) for which Y � y.

fX 1x2 � �  

y

fXY 1x, y2 dy and fY 1 y2 � �  

x

fXY 
1x, y2 dx

Marginal
Probability

Density
Function

EXAMPLE 5-3 Marginal Distribution
The joint probability distribution of X and Y in Fig. 5-1 can be
used to find the marginal probability distribution of X. For
example,

� 0.25 
 0.2 
 0.05 
 0.05 � 0.55


 P1X � 3, Y � 32 
 P1X � 3, Y � 42

fX132 � P1X � 32� P1X � 3, Y � 12 
 P1X � 3, Y � 22

The marginal probability distribution for X is found by
summing the probabilities in each column, whereas the
marginal probability distribution for Y is found by sum-
ming the probabilities in each row. The results are shown in
Fig. 5-6.

For continuous random variables, an analogous approach is used to determine marginal
probability distributions. In the continuous case, an integral replaces the sum.

A probability for only one random variable, say, for example, can be
found from the marginal probability distribution of X or from the integral of the joint prob-
ability distribution of X and Y as 

P1a � X � b2 � �
b

a

fX 1x2dx � �
b

a
 
c �

�

��

f 1x, y2dy ddx � �
b

a
�

�

��

f 1x, y2dydx

P 1a � X � b2,

EXAMPLE 5-4 Server Access Time
For the random variables that denote times in Example 5-2,
calculate the probability that Y exceeds 2000 milliseconds.

This probability is determined as the integral of fXY (x, y)
over the darkly shaded region in Fig. 5-7. The region is parti-
tioned into two parts and different limits of integration are
determined for each part. 
 �

�

2000

° �
�

x

6 � 10�6e�0.001x�0.002y dy¢  dx

 P 1Y � 20002 � �
2000

0

° �
�

2000

6 � 10�6e�0.001x�0.002y dy¢  dx
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158 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

The first integral is

The second integral is

Therefore,

P 1Y � 20002 � 0.0475 
 0.0025 � 0.05

�
6 � 10�6

0.002
 a

e�6

0.003
b � 0.0025

�
6 � 10�6

0.002
  �

�

2000

e�0.003x dx

 6 � 10�6 �
�

2000

°
e�0.002y

�0.002
`
�

x
¢   e�0.001x dx

� 0.0475

�
6 � 10�6

0.002
 e�4 a

1 � e�2

0.001
b

�
6 � 10�6

0.002
  e�4 �

2000

0

e�0.001x dx

 6 � 10�6 �
2000

0

°
e�0.002y

�0.002
`
�

2000
¢   e�0.001x dx

Alternatively, the probability can be calculated from the mar-
ginal probability distribution of Y as follows. For ,

We have obtained the marginal probability density function 
of Y. Now,

� 6 � 10�3
 c

e�4

0.002
�

e�6

0.003
d � 0.05

� 6 � 10�3
 c a

e�0.002y

�0.002
`
�

2000
b � a

e�0.003y

�0.003
`
�

2000
b d

 P1Y � 20002 � 6 � 10�3 �
�

2000

e�0.002y 11 � e�0.001y 2 dy

� 6 � 10�3
 e�0.002y 11 � e�0.001y2 for y � 0

� 6 � 10�6e�0.002y
  a

1 � e�0.001y

0.001
b

 � 6 � 10�6e�0.002y
  a

e�0.001x

�0.001
`
y

0
b

� 6 � 10�6e�0.002y �  

y

0

e�0.001x dx

 fY 1 y2 � �
y

0
 

6 � 10�6e�0.001x�0.002y
 

 dx

y � 0

Figure 5-7 Region 
of integration for the
probability that

is darkly
shaded and it is parti-
tioned into two regions
with x � 2000 and 
x � 2000.

Y 	 2000

y

x0
0

2000

2000

Also, E1X 2 and V 1X 2 can be obtained by first calculating the marginal probability distri-
bution of X and then determining E1X 2 and V 1X 2 by the usual method. In Fig. 5-6, the marginal
probability distribution of X is used to obtain the mean as

5-1.3 Conditional Probability Distributions

When two random variables are defined in a random experiment, knowledge of one can change
the probabilities that we associate with the values of the other. Recall that in Example 5-1, X
denotes the number of bars of service and Y denotes the number of times you need to state

E1X 2 � 110.22 
 210.252 
 310.552 � 2.35
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5-1 TWO OR MORE RANDOM VARIABLES 159

Given continuous random variables X and Y with joint probability density function
fXY (x, y), the conditional probability density function of Y given X � x is

(5-4)fY |x 1 y2 �
fXY 1x, y2

fX 1x2
  for  fX 1x2 � 0

Conditional
Probability

Density
Function

Example 5-5 illustrates that the conditional probabilities for Y given that X � x can be
thought of as a new probability distribution. The following definition applies these concepts to
continuous random variables.

Because the conditional probability density function is a probability density
function for all y in Rx, the following properties are satisfied:

(1)

(2)

(3)

(5-5)

P 1Y � B 0 X � x2 � �
B

 
fY  0 x 
1 y2 dy for any set B in the range of Y

�  fY 0 x 1 y2  dy � 1

fY 0 x1 y2 � 0

fY | x1 y2

the name of the departure city. One expects the probability to be greater at bars
than at bar. From the notation for conditional probability in Chapter 2, we can write
such conditional probabilities as and Consequently, the ran-
dom variables X and Y are expected to be dependent. Knowledge of the value obtained for X
changes the probabilities associated with the values of Y.

Recall that the definition of conditional probability for events A and B is �
. This definition can be applied with the event A defined to be X � x and event

B defined to be Y � y.
P1A ¨ B2�P1A2

P1B ƒ A2

P 1Y � 1|X � 12.P 1Y � 1|X � 32
X � 1

X � 3Y � 1

EXAMPLE 5-5 Signal Bars
For Example 5-1, X and Y denote the number of bars of signal
strength and times you need to state your departure city re-
ceived, respectively. Then,

The probability that Y � 2 given that X � 3 is

� fXY 13, 12�fX 132 � 0.25�0.55 � 0.454

 P1Y � 1 ƒ X � 32 � P1X � 3, Y � 12�P1X � 32
Additional Conclusion: Further work shows that P 1Y � 3� X �
32� 0.091 and P 1Y � 4 � X � 32� 0.091. Note that P 1Y � 1� X
� 32 � P 1Y � 2 � X � 32 � P 1Y � 3� X � 32 � P 1Y � 4 � X �
32� 1. This set of probabilities defines the conditional proba-
bility distribution of Y given that X � 3.

� fXY 13, 22�fX 132 � 0.2�0.55 � 0.364

P1Y � 2 ƒ X � 32 � P1X � 3, Y � 22�P1X � 32

The conditional probability density function provides the conditional probabilities for the
values of Y given that X � x.
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160 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

EXAMPLE 5-6 Conditional Probability
For the random variables that denote times in Example 5-2,
determine the conditional probability density function for Y
given that X � x.

First the marginal density function of x is determined.
For ,

This is an exponential distribution with 
 � 0.003. Now, for
the conditional probability density function is

 � 0.002e0.002x�0.002y for 0 � x and x � y

 fY |x 1 y2 � fXY 1x, y2�fx 1x2 �
6 � 10�6e�0.001x�0.002y

0.003e�0.003x

0 � x and x � y

 � 0.003e�0.003x  for  x � 0

 � 6 � 10�6e�0.001x
  

 a
e�0.002x

0.002
b

 � 6 � 10�6e�0.001x
 

  a
e�0.002y

�0.002
`
�

x
b

 fX 1x2 � �
�

x

6 � 10�6e�0.001x�0.002y
 dy

x � 0

Figure 5-9
Conditional probabil-
ity distributions of  Y
given X � x, 
in Example 5-7.

fY ƒ x 1 y2

y

x0
0

1500

1500

The conditional probability density function of Y, given that
X � 1500, is nonzero on the solid line in Fig. 5-8.

Determine the probability that Y exceeds 2000, given
that x � 1500. That is, determine 
The conditional probability density function is integrated as
follows:

 � 0.002e3
  a

e�4

0.002
b � 0.368

 � 0.002e3 a
e�0.002y

�0.002
`
�

2000
b

 � �
�

2000

0.002e0.002115002�0.002y dy

 P 1Y � 2000|X � 15002 � �
�

2000

fY  |15001 y2 dy

P 1Y � 2000 0  X � 15002.

EXAMPLE 5-7
For the joint probability distribution in Fig. 5-1, is
found by dividing each fXY 1x, y2 by fX 1x2. Here, fX 1x2 is simply
the sum of the probabilities in each column of Fig. 5-1. The
function is shown in Fig. 5-9. In Fig. 5-9, each column
sums to one because it is a probability distribution.

fY ƒ x 1 y2

fY ƒ x 1 y2 Properties of random variables can be extended to a
conditional probability distribution of Y given X � x. The
usual formulas for mean and variance can be applied to a
conditional probability density or mass function.

Figure 5-8 The 
conditional probability
density function for Y,
given that x � 1500, is
nonzero over the solid
line.

x = number of bars of signal strength
y = number of times
city name is stated

1
2
3
4

1 

0.750
0.100
0.100
0.050

2

0.400
0.400
0.120
0.080

3

0.091
0.091
0.364
0.454

It is important to state the region in which a joint, marginal, or conditional probability
density function is not zero. The following example illustrates this.
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EXAMPLE 5-8 Conditional Mean and Variance
For the random variables that denote times in Example 5-2,
determine the conditional mean for Y given that x � 1500.

The conditional probability density function for Y was
determined in Example 5-6. Because fY �1500(y) is nonzero for
y � 1500,

 � 0.002e3 �
�

1500

ye�0.002y dy

 E1Y � X � 15002 � �
�

1500

y 10.002e0.002115002�0.002y2 dy

Integrate by parts as follows:

With the constant 0.002e3 reapplied,

Practical Interpretation: If the connect time is 1500 ms then
the expected time to be authorized is 2000 ms.

E1Y 0X � 15002 � 2000

�
1500

0.002
 e�3 


e�3

10.0022 10.0022
�

e�3

0.002
 120002

�
1500

0.002
 e�3 � a

e�0.002y

1�0.0022 1�0.0022
`
�

1500
b

 �
�

1500

ye�0.002y
 dy � y 

e�0.002y

�0.002
`
�

1500
�  �

�

1500

a
e�0.002y

�0.002
b dy

For the discrete random variables in Example 5-1, the condi-
tional mean of Y given X � 1 is obtained from the conditional
distribution in Fig. 5-9:

 � 3.55

 � 110.052 
 210.12 
 310.12 
 410.752

 E1Y 0 12 � �Y ƒ 1

EXAMPLE 5-9
The conditional mean is interpreted as the expected number of
times the city name is stated given that one bar of signal is
present. The conditional variance of Y given X � 1 is

 
 13 � 3.5522 0.1 
 14 � 3.5522 0.75 � 0.748
 V1Y |12 � 11 � 3.5522 0.05 
 12 � 3.5522 0.1

The conditional mean of Y given X � x, denoted as 

(5-6)

and the conditional variance of Y given X � x, denoted as is

V1Y 0  x2 � �
y

1 y � �Y  | x2
2 fY  | x 1 y2 � �

y

y2 fY  | x 1 y2 � �2
Y |x

V 1Y 0  x2 or �2
Y 0 x,

E1Y  | x2 � �
y

 y fY |x 1 y2

E1Y 0 x2 or �Y 0  x, is
Conditional

Mean and
Variance

5-1.4 Independence

In some random experiments, knowledge of the values of X does not change any of the prob-
abilities associated with the values for Y.

EXAMPLE 5-10 Independent Random Variables
In a plastic molding operation, each part is classified as to
whether it conforms to color and length specifications. Define
the random variable X and Y as

 Y � e
1 if the part conforms to length specifications

0 otherwise

 X � e
1 if the part conforms to color specifications

0 otherwise

Assume the joint probability distribution of X and Y is
defined by fXY 1x, y2 in Fig. 5-10(a). The marginal probabil-
ity distributions of X and Y are also shown in Fig. 5-10(a).
Note that fXY 1x, y2 � fX 1x2 fY 1y2. The conditional probabil-
ity mass function is shown in Fig. 5-10(b). Notice
that for any x, fY � x 1y2 � fY 1y2. That is, knowledge of whether
or not the part meets color specifications does not change the
probability that it meets length specifications.

fY ƒ x 
1 y2

JWCL232_c05_152-190.qxd  1/7/10  2:31 PM  Page 161



162 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

By analogy with independent events, we define two random variables to be independent
whenever fXY 1x, y2 � fX 1x2 fY 1y2 for all x and y. Notice that independence implies that 
fXY 1x, y2 � fX 1x2 fY 1y2 for all x and y. If we find one pair of x and y in which the equality fails,
X and Y are not independent. If two random variables are independent, then for fX 1x2 > 0,

With similar calculations, the following equivalent statements can be shown.

fY ƒ x1 y2 �
fXY 
1x, y2

fX 
1x2

�
fX 
1x2 fY 

1 y2

fX 
1x2

� fY 
1 y2

x

y

0.0198

0.9702

10
0

1

0.0002

0.0098

(a)

0.02

0.98

0.990.01

x

y

0.02

0.98

10
0

1

0.02

0.98

(b)

fX (x) =

fY (y) =
Figure 5-10 (a) Joint
and marginal probabil-
ity distributions of X
and Y in Example 
5-10. (b) Conditional
probability distribution
of  Y given X � x in
Example 5-10.

Rectangular Range for (X, Y)
If the set of points in two-dimensional space that receive positive probability under 
fXY 1x, y2 does not form a rectangle, X and Y are not independent because knowledge of X
can restrict the range of values of Y that receive positive probability. If the set of points in
two-dimensional space that receives positive probability under fXY 1x, y2 forms a rectangle,
independence is possible but not demonstrated. One of the conditions in Equation 5-6 must
still be verified.

The variables in Example 5-2 are not independent. This can be quickly determined be-
cause the range of (X, Y ) shown in Fig. 5-4 is not rectangular. Consequently, knowledge of X
changes the interval of values for Y with non-zero probability.

EXAMPLE 5-11 Independent Random Variables
Suppose that Example 5-2 is modified so that the joint prob-
ability density function of X and Y is fXY 1x, y2 � 2 �
10�6exp(�0.001x�0.002y) for and . Show that X
and Y are independent and determine 

The marginal probability density function of X is
P1X � 1000, Y � 10002.

y � 0x � 0

� 0.001 e�0.001x for x � 0

fX 
 1x2 � �

�

0

 2 � 10�6
 e�0.001x�0.002y dy

For random variables X and Y, if any one of the following properties is true, the 
others are also true, and X and Y are independent.

(1)

(2)

(3)

(4) for any sets A and B in the range
of X and Y, respectively. (5-7)
P1X � A, Y � B2 � P1X � A2  P1Y � B2

f X ƒ y 
 1x2 � fX 

 
1x2 for all x and y with fY 1 y2 � 0

f Y ƒ x 
1 y2 � fY 1 y2 for all x and y with f

 
 X 1x2 � 0

fXY 1x, y2 � fX 
1x2 fY 1 y2 for all x and y

Independence
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5-1 TWO OR MORE RANDOM VARIABLES 163

The marginal probability density function of Y is

Therefore, fXY (x, y) � fX(x) fY ( y) for all x and y, and X and Y
are independent.

� 0.002 e�0.002y for y � 0

fY 1 y2 � �
�

0

 2 � 10�6
 e�0.001x�0.002y dx

To determine the probability requested, property (4) of
Equation 5-7 and the fact that each random variable has an
exponential distribution can be applied.

 � e�1
 11 � e�22 � 0.318

 P1X � 1000, Y � 10002 � P1X � 10002P1Y � 10002

A joint probability density function for the continuous random variables 
denoted as satisfies the following properties:

(1)

(2)

(3) For any region B of p-dimensional space,

(5-8)

P 3 1X1, X2, p , Xp2 � B 4 � � �
B

p �  fX1 X2 
p  Xp

 1x1, x2, p , xp2 dx1 dx2 p dxp

�
�

��

�
�

��

p �
�

��
 
fX1 X2 p

 
Xp

 1x1, x2, p , xp2 dx1 dx2 p dxp � 1

fX1 X2 p
 
Xp

 1x1, x2, p , xp2 � 0

fX1 X2 p
 
Xp

 1x1, x2, p , xp2,X3, p , Xp,
X1, X2,

Joint
Probability

Density
Function

EXAMPLE 5-12 Machined Dimensions
Let the random variables X and Y denote the lengths of two di-
mensions of a machined part, respectively. Assume that X and
Y are independent random variables, and further assume that
the distribution of X is normal with mean 10.5 millimeters and
variance 0.0025 (millimeter)2 and that the distribution of 
Y is normal with mean 3.2 millimeters and variance 0.0036
(millimeter)2. Determine the probability that 10.4 � X �
10.6 and 3.15 � Y � 3.25.

Because X and Y are independent,

P110.4 � X � 10.6, 3.15 � Y � 3.252

where Z denotes a standard normal random variable.
Practical Interpretation: If random variables are inde-

pendent probabilities for multiple variables are often much
easier to compute.

 � P1�2 � Z � 22P1�0.833 � Z � 0.8332 � 0.568

�  P  a
3.15 � 3.2

0.06
� Z �

3.25 � 3.2

0.06
b

 � P  a
10.4 � 10.5

0.05
� Z �

10.6 � 10.5

0.05
b 

� P110.4 � X � 10.62P13.15 � Y � 3.252

5-1.5 More Than Two Random Variables

More than two random variables can be defined in a random experiment.

Often, based on knowledge of the system under study, random variables are assumed to
be independent. Then, probabilities involving both variables can be determined from the mar-
ginal probability distributions. For example, the time to complete a computer search should be
independent of an adult’s height.

EXAMPLE 5-13 Machined Dimensions
Many dimensions of a machined part are routinely measured
during production. Let the random variables, X1, X2, X3, and X4

denote the lengths of four dimensions of a part. Then, at least
four random variables are of interest in this study.

The joint probability distribution of random variables can be specified
by providing a method of calculating the probability that assume a value in
a region R of p-dimensional space. A joint probability density function
is used to determine the probability that assume a value in a region R by
the multiple integral of over the region R.fX1 X2p

 
Xp 

1x1, x2, p , xp2
1X1, X2, X3, p , Xp2

fX1 X2 p Xp
 1x1, x2, p , xp2

X1, X2, X3, p , Xp

X1, X2, X3, p , Xp
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Typically, is defined over all of p-dimensional space by assuming that
for all points for which is not specified.fX1 X2p

 
Xp

 1x1, x2, p , xp2fX1 X2p
 
Xp

 1x1, x2, p , xp2 � 0
fX1 X2p

 
Xp

 1x1, x2, p , xp2

EXAMPLE 5-14 Component Lifetimes
P(X1 � 1000, X2 � 1000, X3 � 1000, X4 � 1000), which
equals the multiple integral of over the

region x1 � 1000, x2 � 1000, x3 � 1000, x4 � 1000. The joint
probability density function can be written as a product of
exponential functions, and each integral is the simple integral
of an exponential function. Therefore,

� e�1�2�1.5�3 � 0.00055
P1X1 � 1000, X2 � 1000, X3 � 1000, X4 � 10002

fX1 X2 X3 X4 
1x1, x2, x3, x42

In an electronic assembly, let the random variables
denote the lifetimes of four components in

hours. Suppose that the joint probability density function of
these variables is

What is the probability that the device operates for more than
1000 hours without any failures? The requested probability is

for x1 � 0, x2 � 0, x3 � 0, x4 � 0

� 9 � 10�12e�0.001x1�0.002x2�0.0015x3�0.003x4

fX1X2X3X4 

1x1, x2, x3, x42

X1, X2, X3, X4

If the joint probability density function of continuous random variables 
is the marginal probability density function of is

(5-9)

where the integral is over all points in the range of for which Xi � xi.X1, X2, p , Xp

fXi
1xi2 � � � p �  fX1 X2p Xp 

1x1, x2, p , xp2 dx1 dx2 p dxi�1 dxi
1 p dxp

XifX1X2 p Xp 

1x1, x2, p , xp2  ,
X2, p , XpX1,

Marginal
Probability

Density
Function

by property (2) of Equation 5-8. Therefore,  (R). Furthermore, by property (3) of Equation 5-8,

When the joint probability density function is constant, the probability that the random vari-
ables assume a value in the region B is just the ratio of the volume of the region to the
volume of the region R for which the probability is positive.

B ¨ R

 �
volume 1B ¨ R2

volume 1R2

 � � �
B

p � fX1 X2 p  Xp 

1x1, x2, p , xp2 dx1 dx2 p dxp � c � volume 1B ¨ R2

P 3 1X1, X2, p , Xp2 � B 4

�
�

��

 �
�

��

p �
�

��

 fX1 X2 p  Xp 

1x1, x2, p , xp2 dx1 dx2 p dxp � c � 1volume of region R2 � 1

EXAMPLE 5-15 Probability as a Ratio of Volumes
Suppose the joint probability density function of the con-
tinuous random variables X and Y is constant over the re-
gion Determine the probability that
X2 
 Y2 	 1.

x2 
 y2 	 4.

The region that receives positive probability is a circle of
radius 2. Therefore, the area of this region is 4�. The area of
the region is �. Consequently, the requested
probability is �� 14�2 � 1�4.

x2 
 y2 	 1

Suppose that the joint probability density function of several continuous random
variables is a constant, say, c over a region R (and zero elsewhere). In this special case,
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and (5-10)

V1Xi2 � �
�

��
 

 �
�

��

p �
�

��

 1xi � �Xi
22 fX1 X2 p

 
Xp

 1x1, x2, p , xp2 dx1 dx2 p dxp

E1Xi2 � �
�

��

 �
�

��

p �
�

��

xi  fX1 X2p
 
Xp
1x1, x2, p , xp2 dx1 dx2 p dxp

Mean and
Variance from

Joint Distribution

As for two random variables, a probability involving only one random variable, say, for
example, can be determined from the marginal probability distribution of 
or from the joint probability distribution of That is,

Furthermore, and for can be determined from the marginal
probability distribution of or from the joint probability distribution of as
follows.

X1, X2, p , XpXi

i � 1, 2, p , p,V1Xi2,E1Xi2

�� � Xi
1 � �, p , �� � Xp � �2

 P1a � Xi � b2 � P1�� � X1 � �, p , �� � Xi�1 � �, a � Xi � b,

X1, X2, p , Xp.
XiP1a � Xi �  b2,

If the joint probability density function of continuous random variables X1, X2, , Xp

is the probability density function of X1, X2, , Xk, k � p, is

(5-11)

where the integral is over all points in the range of for which
X1 � x1, X2 � x2, p , Xk � xk.

X1, X2, p , Xp

� � �p � fX1 X2 p Xp
 1x1, x2, p , xp2 dxk
1 dxk
2 p dxp

fX1 X2p Xk
 1x1, x2, p , xk2

pfX1 X2p Xp
 1x1, x2, p , xp2,

p
Distribution 

of a Subset of
Random Variables

EXAMPLE 5-16
Points that have positive probability in the joint probability
distribution of three random variables X1, X2, X3 are shown
in Fig. 5-11. The range is the nonnegative integers with x1 

x2 
 x3 � 3. The marginal probability distribution of X2 is
found as follows.


 fX1X2X3
 11, 0, 22 
 fX1X2X3

 12, 0, 12

 P 1X2 � 02 � fX1X2X3
 13, 0, 02 
 fX1X2X3

 10, 0, 32

 P 1X2 � 32 � fX1X2X3
 10, 3, 02

 P 1X2 � 22 � fX1X2X3
 11, 2, 02 
 fX1X2X3

 10, 2, 12


 fX1X2X3
 11, 1, 12

 P 1X2 � 12 � fX1X2X3
 12, 1, 02 
 fX1X2X3

 10, 1, 22

With several random variables, we might be interested in the probability distribution of some
subset of the collection of variables. The probability distribution of k � p can
be obtained from the joint probability distribution of as follows.X1, X2, p , Xp

X1, X2, p , Xk,
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166 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

Random variables are independent if and only if

(5-12)fX1 X2 p
 
Xp
1x1, x2 p , xp2 � fX1

1x12  fX2
1x22 p fXp

1xp2 for all x1, x2, p , xp

X1, X2, p , Xp

Independence

Similar to the result for only two random variables, independence implies that Equation 5-12
holds for all If we find one point for which the equality fails, are
not independent. It is left as an exercise to show that if are independent, 

for any regions in the range of respectively.X1, X2, p , Xp,A1, A2, p , Ap

P1X1 � A1, X2 � A2, p , Xp � Ap2 � P1X1 � A12P1X2 � A22 p P1Xp � Ap2

X1, X2, p , Xp

X1, X2, p , Xpx1, x2, p , xp.

EXAMPLE 5-17
In Chapter 3, we showed that a negative binomial random vari-
able with parameters p and r can be represented as a sum of r
geometric random variables Each geometric
random variable represents the additional trials required to

X1, X2, p , Xr.

obtain the next success. Because the trials in a binomial
experiment are independent, are independent
random variables.

X1, X2, p , Xr

EXAMPLE 5-18 Layer Thickness
Suppose and represent the thickness in micrometers
of a substrate, an active layer, and a coating layer of a chemical
product. Assume that and are independent and nor-
mally distributed with 

and respectively. The specifica-
tions for the thickness of the substrate, active layer, and coat-
ing layer are and

respectively. What proportion of chemical prod-
ucts meets all thickness specifications? Which one of the three
thicknesses has the least probability of meeting specifications?

75 � x3 � 85,
950 � x2 � 1050,9200 � x1 � 10,800,

�3 � 4,�1 � 250, �2 � 20,
�3 � 80,�1 � 10000, �2 � 1000,

X3X1, X2,

X3X1, X2, The requested probability is 
Because the random vari-

ables are independent,

After standardizing, the above equals

P1�3.2 � Z � 3.22P1�2.5 � Z � 2.52P1�1.25 � Z � 1.252

� 10502P175 � X3 � 852

 � P19200 � X1 � 10,8002P1950 � X2

P19200 � X1 � 10,800, 950 � X2 � 1050, 75 � X3 � 852

950 � X2 � 1050, 75 � X3 � 85.
P19200 � X1 � 10,800,

Conditional Probability Distribution
Conditional probability distributions can be developed for multiple random variables by an
extension of the ideas used for two random variables.

for 

The concept of independence can be extended to multiple random variables.

fX4 X5
 1x4, x52 � 0.

fX1X2 X3| x4 x5
1x1, x2, x32 �

fX1 X2 X3 X4 X5
1x1, x2, x3, x4, x52

fX4 X5
1x4, x52

1
0

0 2 3 x1

1

2

3

x3

x2

2

3

1Figure 5-11 Joint
probability distribution
of X1, X2, and X3.
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EXERCISES FOR SECTION 5-1

5-1. Show that the following function satisfies the proper-
ties of a joint probability mass function.

x y fXY 1x, y2

1 1 1�4

1.5 2 1�8

1.5 3 1�4

2.5 4 1�4

3 5 1�8

Determine the following:
(a)
(b)
(c)
(d)
(e) ,
(f ) Marginal probability distribution of the random vari-

able X
(g) Conditional probability distribution of Y given that X � 1.5
(h) Conditional probability distribution of X given that Y � 2
(i)
( j) Are X and Y independent?

5-2. Determine the value of c that makes the function
a joint probability mass function over the

nine points with x � 1, 2, 3 and y � 1, 2, 3.

Determine the following:
(a) (b)
(c) (d)
(e) and 
(f ) Marginal probability distribution of the random variable X
(g) Conditional probability distribution of Y given that X � 1
(h) Conditional probability distribution of X given that Y � 2
(i)
( j) Are X and Y independent?

5-3. Show that the following function satisfies the proper-
ties of a joint probability mass function.

x y fXY 1x, y2

�1 �2 1�8

�0.5 �1 1�4

0.5 1 1�2

1 2 1�8

E1Y 0 X � 12

V1Y 2V1X 2,E1Y 2,E1X 2,
P1X � 2, Y � 22P1Y � 22
P1X � 12P1X � 1, Y � 42

f 1x, y2 � c 1x 
 y2

E1Y 0 X � 1.52

E1Y 2, V1X 2, and V 1Y 2.E1X 2
P1X � 1.8, Y � 4.72
P1Y � 32
P1X � 2.52
P1X � 2.5, Y � 32

Determine the following:
(a)
(b)
(c)
(d)
(e) E1X 2, E1Y 2, and 
(f ) Marginal probability distribution of the random vari-

able X
(g) Conditional probability distribution of Y given that

X � 1
(h) Conditional probability distribution of X given that

Y � 1
(i)
( j) Are X and Y independent?

5-4. Four electronic printers are selected from a large lot
of damaged printers. Each printer is inspected and classified
as containing either a major or a minor defect. Let the random
variables X and Y denote the number of printers with major
and minor defects, respectively. Determine the range of the
joint probability distribution of X and Y.

5-5. In the transmission of digital information, the probability
that a bit has high, moderate, and low distortion is 0.01, 0.04, and
0.95, respectively. Suppose that three bits are transmitted and
that the amount of distortion of each bit is assumed to be
independent. Let X and Y denote the number of bits with high
and moderate distortion out of the three, respectively. Determine:
(a) (b)
(c) (d)
(e) (f) Are X and Y independent?

5-6. A small-business Web site contains 100 pages and
60%, 30%, and 10% of the pages contain low, moderate, and
high graphic content, respectively. A sample of four pages is
selected without replacement, and X and Y denote the number
of pages with moderate and high graphics output in the
sample. Determine:
(a) (b)
(c) (d)
(e) (f)
(g) Are X and Y independent?

5-7. A manufacturing company employs two devices to
inspect output for quality control purposes. The first device
is able to accurately detect 99.3% of the defective items it
receives, whereas the second is able to do so in 99.7% of the
cases. Assume that four defective items are produced and
sent out for inspection. Let X and Y denote the number of
items that will be identified as defective by inspecting

V1Y 0 X � 32E1Y 0 X � 32
fY ƒ 3 1 y2E1X 2
fX 1x2fXY 1x, y2

E1Y ƒ X � 12
fY ƒ 11 y2E1X 2
fX 1x2fXY 1x, y2

E 1X 0 y � 12

V1Y 2V1X 2,
P1X � 0.25, Y � 4.52
P1Y � 1.52
P1X � 0.52
P1X � 0.5, Y � 1.52

where Z is a standard normal random variable. From the table
of the standard normal distribution, the above equals

10.998622 10.987582 10.788702 � 0.7778

The thickness of the coating layer has the least probability of
meeting specifications. Consequently, a priority should be to
reduce variability in this part of the process.
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168 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

devices 1 and 2, respectively. Assume the devices are inde-
pendent. Determine:
(a) (b)
(c) (d)
(e) (f)
(g) Are X and Y independent?

5-8. Suppose the random variables X, Y, and Z have the
following joint probability distribution.

x y z f 1x, y, z2

1 1 1 0.05

1 1 2 0.10

1 2 1 0.15

1 2 2 0.20

2 1 1 0.20

2 1 2 0.15

2 2 1 0.10

2 2 2 0.05

Determine the following:
(a) (b)
(c) (d) P 1X � 1 or Z � 22P 1Z � 1.52

P 1X � 1, Y � 22P 1X � 22

V1Y ƒ X � 22E1Y ƒ X � 22
fY ƒ 2 1 y2E1X 2

fX 1x2fXY 1x, y 2

5-10. An article in the Journal of Database Manage-
ment [“Experimental Study of a Self-Tuning Algorithm for
DBMS Buffer Pools” (2005, Vol. 16, pp. 1–20)] provided
the workload used in the TPC-C OLTP (Transaction
Processing Performance Council’s Version C On-Line
Transaction Processing) benchmark, which simulates a typ-
ical order entry application. See the table below. The fre-
quency of each type of transaction (in the second column)
can be used as the percentage of each type of transaction.
Let X and Y denote the average number of selects and
updates operations, respectively, required for each type
transaction. Determine the following:
(a)
(b)
(c) Conditional probability mass function of X given 
(d)
(e)

5-11. For the Transaction Processing Performance
Council’s benchmark in Exercise 5-10, let X, Y, and Z denote
the average number of selects, updates, and inserts opera-
tions required for each type of transaction, respectively.
Calculate the following:
(a)
(b) Conditional probability mass function for X and Y given

Z � 0
(c)
(d)

5-12. In the transmission of digital information, the
probability that a bit has high, moderate, or low distortion is
0.01, 0.04, and 0.95, respectively. Suppose that three bits are
transmitted and that the amount of distortion of each bit is as-
sumed to be independent. Let X and Y denote the number of
bits with high and moderate distortion out of the three trans-
mitted, respectively. Determine the following:
(a) The probability that two bits have high distortion and one

has moderate distortion
(b) The probability that all three bits have low distortion
(c) The probability distribution, mean, and variance of X
(d) The conditional probability distribution, conditional mean,

and conditional variance of X given that Y � 2

E1X ƒ Y � 0, Z � 02
P 1X � 6, Y � 6 ƒ Z � 02

fXYZ 1x, y,z2

E1X ƒ Y � 02
P1X � 6 ƒ Y � 02

Y � 0
E1X2
P1X � 52

Average Frequencies and Operations in TPC-C

Non-Unique
Transaction Frequency Selects Updates Inserts Deletes Selects Joins

New Order 43 23 11 12 0 0 0

Payment 44 4.2 3 1 0 0.6 0

Order Status 4 11.4 0 0 0 0.6 0

Delivery 5 130 120 0 10 0 0

Stock Level 4 0 0 0 0 0 1 

(e) (f ) P 1X � 1 ƒ Y � 12E 1X 2
(g) (h) P 1X � 1 ƒ Y � 1,  Z � 22P 1X � 1, Y � 1 ƒ Z � 22
(i) Conditional probability distribution of X given that Y � 1

and Z � 2

5-9. An engineering statistics class has 40 students and
60% are electrical engineering majors, 10% are industrial
engineering majors, and 30% are mechanical engineering
majors. A sample of four students is selected randomly, with-
out replacement, for a project team. Let X and Y denote the
number of industrial engineering and mechanical engineering
majors, respectively. Determine the following:
(a) (b)
(c) (d)
(e) (f )
(g) Are X and Y independent?

V1Y ƒ X � 32E1Y ƒ X � 32
fY ƒ 3 1y2E1X 2
fX 1x2fXY 1x, y 2
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5-13. Determine the value of c such that the function
f (x, y) � cxy for 0 � x � 3 and 0 � y � 3 satisfies the
properties of a joint probability density function.

Determine the following:
(a) (b)
(c) (d)
(e) (f )
(g) Marginal probability distribution of the random variable X
(h) Conditional probability distribution of Y given that X � 1.5
(i) ( j)
(k) Conditional probability distribution of X given that Y 5 2

5-14. Determine the value of c that makes the function 
f(x, y) � c(x 
 y) a joint probability density function over the
range 0 � x � 3 and x � y � x 
 2.

Determine the following:
(a) (b)
(c) (d)
(e) (f )
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y given that X � 1
(i)
( j)
(k) Conditional probability distribution of X given that Y 5 2

5-15. Determine the value of c that makes the function 
f 1x, y2 � cxy a joint probability density function over the range
0 � x � 3 and 0 � y � x.

Determine the following:
(a) (b)
(c) (d)
(e) E X (f ) E Y
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y given X � 1
(i)
( j)
(k) Conditional probability distribution of X given Y 5 2

5-16. Determine the value of c that makes the function
a joint probability density function over the

range 0 � x and 0 � y � x.

Determine the following:
(a) (b)
(c) (d)
(e) E(X) (f) E(Y)
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y given X � 1
(i)
( j) Conditional probability distribution of X given Y � 2

5-17. Determine the value of c that makes the function
a joint probability density function over

the range 0 � x and x � y.

Determine the following:
(a) (b) P11 � X � 22P1X � 1, Y � 22

f 1x, y2 � ce�2x�3y

E1Y ƒ X � 12

P1X � 2, Y � 22P1Y � 32
P11 � X � 22P1X � 1, Y � 22

f 1x, y2 � ce�2x�3y

P1Y � 2 ƒ X � 12
E1Y ƒ X � 12

2121
P1X � 2, Y � 22P1Y � 12
P11 � X � 22P1X � 1, Y � 22

P1Y � 2 ƒ X � 12
E1Y ƒ X � 12

V1X 2E1X 2
P1X � 2, Y � 22P1Y � 12
P11 � X � 22P1X � 1, Y � 22

P1Y � 2 ƒ X � 1.52E1Y ƒ X 2 � 1.52

P1X � 0, Y � 42E1X 2
P1X � 1.8, 1 � Y � 2.52P11 � Y � 2.52
P1X � 2.52P1X � 2, Y � 32

(c) (d)
(e) (f)
(g) Marginal probability distribution of X
(h) Conditional probability distribution of Y given X � 1
(i)

( j)
(k) Conditional probability distribution of X given Y � 2

5-18. The conditional probability distribution of Y given
X � x is for y � 0, and the marginal
probability distribution of X is a continuous uniform distribu-
tion over 0 to 10.
(a) Graph for y � 0 for several values of x.

Determine:
(b) (c)
(d) (e)
(f )

5-19. Two methods of measuring surface smoothness are
used to evaluate a paper product. The measurements are
recorded as deviations from the nominal surface smoothness
in coded units. The joint probability distribution of the
two measurements is a uniform distribution over the re-
gion 0 � x � 4, 0 � y, and x � 1 � y � x 
 1. That is,
fXY (x, y) � c for x and y in the region. Determine the value for
c such that fXY (x, y) is a joint probability density function.

Determine the following:
(a) (b)
(c) (d)
(e) Marginal probability distribution of X
(f ) Conditional probability distribution of Y given X � 1
(g) (h)

5-20. The time between surface finish problems in a galva-
nizing process is exponentially distributed with a mean of
40 hours. A single plant operates three galvanizing lines that
are assumed to operate independently.
(a) What is the probability that none of the lines experiences

a surface finish problem in 40 hours of operation?
(b) What is the probability that all three lines experience a

surface finish problem between 20 and 40 hours of operation?
(c) Why is the joint probability density function not needed to

answer the previous questions?

5-21. A popular clothing manufacturer receives Internet
orders via two different routing systems. The time between
orders for each routing system in a typical day is known to be
exponentially distributed with a mean of 3.2 minutes. Both
systems operate independently.
(a) What is the probability that no orders will be received in a

5-minute period? In a 10-minute period?
(b) What is the probability that both systems receive two

orders between 10 and 15 minutes after the site is
officially open for business?

(c) Why is the joint probability distribution not needed to
answer the previous questions?

P1Y � 0.5 ƒ X � 12E1Y ƒ X � 12

E1Y 2E1X 2
P1X � 0.52P1X � 0.5, Y � 0.52

fY 1 y2
fXY 1x, y2E1Y ƒ X � x2
E1Y ƒ X � 22P1Y � 2 ƒ X � 22

fY ƒ  X 1 y2 � xe�xy

fY ƒ  x 1 y2 � xe�xy

P1Y � 2 ƒ X � 12

E1Y ƒ X � 12

E1Y 2E1X 2
P1X � 2, Y � 22P1Y � 32
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170 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

5-22. The blade and the bearings are important parts of a
lathe. The lathe can operate only when both of them work
properly. The lifetime of the blade is exponentially distributed
with the mean three years; the lifetime of the bearings is also
exponentially distributed with the mean four years. Assume
each lifetime is independent.
(a) What is the probability that the lathe will operate at least

five years?
(b) The lifetime of the lathe exceeds what time with 95%

probability?

5-23. Suppose the random variables X, Y, and Z have the joint
probability density function for 0 � x � 1,
0 � y � 1, and 0 � z � 1. Determine the following:
(a) (b)
(c) (d)
(e) E1X 2 (f )
(g)
(h) Conditional probability distribution of X given that Y �

0.5 and Z � 0.8
(i)

5-24. Suppose the random variables X, Y, and Z have
the joint probability density function fXYZ (x, y, z) � c over
the cylinder x2 
 y2 � 4 and 0 � z � 4. Determine the
constant c so that fXYZ (x, y, z) is a probability density function.

Determine the following:
(a) (b)
(c) (d)
(e)
(f) Conditional probability distribution of Z given that 

X � 1 and Y � 1.

5-25. Determine the value of c that makes fXYZ(x, y, z) � c
a joint probability density function over the region x � 0,
y � 0, z � 0, and x 
 y 
 z � 1.

Determine the following:
(a)
(b)
(c) P1X � 0.52

P1X � 0.5, Y � 0.52
P1X � 0.5, Y � 0.5, Z � 0.52

P1X 2 
 Y 2 � 1 ƒ Z � 12
P1X � 1 ƒ Y � 12E1X 2
P1Z � 22P1X 2 
 Y 2 � 22

P1X � 0.5 ƒ Y � 0.5, Z � 0.82

P1X � 0.5, Y � 0.5 ƒ Z � 0.82
P1X � 0.5 ƒ Y � 0.52
P1X � 0.5 or Z � 22P1Z � 22
P1X � 0.5, Y � 0.52P1X � 0.52

f 1x, y, z2 � 8xyz

(d)
(e) Marginal distribution of X
(f ) Joint distribution of X and Y
(g) Conditional probability distribution of X given that Y �

0.5 and Z � 0.5
(h) Conditional probability distribution of X given that

Y � 0.5

5-26. The yield in pounds from a day’s production is
normally distributed with a mean of 1500 pounds and standard
deviation of 100 pounds. Assume that the yields on different
days are independent random variables.
(a) What is the probability that the production yield exceeds

1400 pounds on each of five days next week?
(b) What is the probability that the production yield exceeds

1400 pounds on at least four of the five days next week?

5-27. The weights of adobe bricks used for construction are
normally distributed with a mean of 3 pounds and a standard 
deviation of 0.25 pound. Assume that the weights of the bricks are
independent and that a random sample of 20 bricks is selected.
(a) What is the probability that all the bricks in the sample

exceed 2.75 pounds?
(b) What is the probability that the heaviest brick in the

sample exceeds 3.75 pounds?

5-28. A manufacturer of electroluminescent lamps knows
that the amount of luminescent ink deposited on one of
its products is normally distributed with a mean of 1.2 grams
and a standard deviation of 0.03 gram. Any lamp with less than
1.14 grams of luminescent ink will fail to meet customers’
specifications. A random sample of 25 lamps is collected and
the mass of luminescent ink on each is measured.
(a) What is the probability that at least one lamp fails to meet

specifications?
(b) What is the probability that five lamps or fewer fail to

meet specifications?
(c) What is the probability that all lamps conform to

specifications?
(d) Why is the joint probability distribution of the 25 lamps

not needed to answer the previous questions?

E1X 2

5-2 COVARIANCE AND CORRELATION

When two or more random variables are defined on a probability space, it is useful to
describe how they vary together; that is, it is useful to measure the relationship between the
variables. A common measure of the relationship between two random variables is the
covariance. To define the covariance, we need to describe the expected value of a function of
two random variables h(X, Y ). The definition simply extends the one for a function of a single
random variable.
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5-2 COVARIANCE AND CORRELATION 171

That is, E[h(X, Y )] can be thought of as the weighted average of h(x, y) for each point in the
range of (X,Y ). The value of E[h(X,Y )] represents the average value of h(X,Y ) that is expected
in a long sequence of repeated trials of the random experiment.

(5-13)E 3h1X, Y 2 4 � μ
b  h1x, y2   fXY 1x, y2 X, Y discrete

�� h1x, y2   fXY 
1x, y2  dx dy X, Y continuous

Expected Value of
a Function of Two
Random Variables

EXAMPLE 5-19 Expected Value of a Function of Two Random Variables
For the joint probability distribution of the two random
variables in Fig. 5-12, calculate 

The result is obtained by multiplying x � �X times y � �Y,
times fXY(x, y) for each point in the range of (X, Y ). First, �X and
�Y are determined from the marginal distributions for X and Y:

and 

� 0.4 
 3 � 0.3 � 2.0

 �Y � 1 � 0.3 
 2
 �X � 1 � 0.3 
 3 � 0.7 � 2.4

1Y � �Y2 4 .E 3 1X � �X2
Therefore,

 
 13 � 2.42 13 � 2.02 � 0.3 � 0.2

 
 13 � 2.42 12 � 2.02 � 0.2

 
 13 � 2.42 11 � 2.02 � 0.2

 
 11 � 2.42 12 � 2.02 � 0.2

 E 3 1X � �X2 1Y � �Y2 4 � 11 � 2.42 11 � 2.02 � 0.1

The covariance is defined for both continuous and discrete random variables by the same
formula.

If the points in the joint probability distribution of X and Y that receive positive
probability tend to fall along a line of positive (or negative) slope, �XY is positive (or negative).
If the points tend to fall along a line of positive slope, X tends to be greater than �X when Y is
greater than �Y. Therefore, the product of the two terms x � �X and y � �Y tends to be positive.
However, if the points tend to fall along a line of negative slope, x � �X tends to be positive
when y � �Y is negative, and vice versa. Therefore, the product of x � �X and y � �Y tends
to be negative. In this sense, the covariance between X and Y describes the variation between
the two random variables. Figure 5-13 shows examples of pairs of random variables with
positive, negative, and zero covariance.

Covariance is a measure of linear relationship between the random variables. If the re-
lationship between the random variables is nonlinear, the covariance might not be sensitive to
the relationship. This is illustrated in Fig. 5-13(d). The only points with nonzero probability
are the points on the circle. There is an identifiable relationship between the variables. Still,
the covariance is zero.

The covariance between the random variables X and Y, denoted as cov(X, Y ) or is

(5-14)�XY � E 3 1X � �X2 1Y � �Y2 4 � E1XY 2 � �X�Y

�XY,
Covariance
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172 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

The equality of the two expressions for covariance in Equation 5-14 is shown for
continuous random variables as follows. By writing the expectations as integrals,

Now

Therefore,

 � �
�

��

 �
�

��

 xyfXY 1x, y2 dx dy � �X�Y � E1XY 2 � �X 
�Y

E 3 1X � �X2 1Y � �Y2 4 � �
�

��

 �
�

��

 xyfXY 1x, y2 dx dy � �X�Y � �X�Y 
 �X�Y

�
�

��

 �
�

��

 �X y  fXY 1x, y2 dx dy � �X £ �
�

��

 �
�

��

 yfXY 1x, y2 dx dy § � �X�Y

 � �
�

��

  �
�

��

 3xy � �X 
y � x�Y 
 �X�Y 4    fXY 1x, y2 dx dy

E 3 1Y � �Y2 1X � �X2 4 � �
�

��

 �
�

��

 1x � �X2 1 y � �Y2  fXY 1x, y2 dx dy

x

y

x

y

x

y

x

y

(a) Positive covariance (b) Zero covariance

(c) Negative covariance (d) Zero covariance

All points are of
equal probability

Figure 5-13 Joint probability distributions and the sign of covariance between X and Y.Figure 5-12 Joint distribution
of X and Y for Example 5-19.
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EXAMPLE 5-20
In Example 5-1, the random variables X and Y are the number
of signal bars and the number of times you need to state your
departure city, respectively. Is the covariance between X and Y
positive or negative?

As the signal bars increase, the number of times you
need to state your name decreases. Therefore, X and Y have a
negative covariance. This can be verified from the joint prob-
ability distribution in Fig. 5-1.

There is another measure of the relationship between two random variables that is often
easier to interpret than the covariance.

The correlation between random variables X and Y, denoted as is

(5-15)�XY �
cov 1X, Y 2

1V1X 2  V1Y 2
�

�XY

�X 
�Y

�XY,
Correlation

Because �X � 0 and �Y � 0, if the covariance between X and Y is positive, negative, or zero,
the correlation between X and Y is positive, negative, or zero, respectively. The following
result can be shown.

The correlation just scales the covariance by the product of the standard deviation of each vari-
able. Consequently, the correlation is a dimensionless quantity that can be used to compare the
linear relationships between pairs of variables in different units.

If the points in the joint probability distribution of X and Y that receive positive 

For any two random variables X and Y,

(5-16)�1 	 �XY 	 
1

EXAMPLE 5-21 Covariance
For the discrete random variables X and Y with the joint
distribution shown in Fig. 5-14, determine �XY and �XY.

The calculations for E(XY ), E(X ), and V(X ) are as
follows.


 12 � 1.822 � 0.2 
 13 � 1.822 � 0.4 � 1.36

 V1X 2 � 10 � 1.822 � 0.2 
 11 � 1.822 � 0.2

 E1X 2 � 0 � 0.2 
 1 � 0.2 
 2 � 0.2 
 3 � 0.4 � 1.8


 2 � 2 � 0.1 
 3 � 3 � 0.4 � 4.5
 2 �1 � 0.1

 E1XY 2 � 0 � 0 � 0.2 
 1 � 1 � 0.1 
 1 � 2 � 0.1

Because the marginal probability distribution of Y is the same
as for X, E(Y) � 1.8 and V(Y ) � 1.36. Consequently,

Furthermore,

�XY �
�XY

�X�Y
�

1.26

111.362 111.362
� 0.926

�XY � E1XY 2 � E1X 2E1Y 2 � 4.5 � 11.82 11.82 � 1.26

probability tend to fall along a line of positive (or negative) slope, is near 
1 (or �1). If�XY
equals 
1 or �1, it can be shown that the points in the joint probability distribution that

receive positive probability fall exactly along a straight line. Two random variables with
nonzero correlation are said to be correlated. Similar to covariance, the correlation is a meas-
ure of the linear relationship between random variables.

�XY
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174 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

EXAMPLE 5-22 Correlation
Suppose that the random variable X has the following distribu-
tion: P(X � 1) � 0.2, P(X � 2) � 0.6, P(X � 3) � 0.2. Let
Y � 2X 
 5. That is, P(Y � 7) � 0.2, P(Y � 9) � 0.6, P(Y � 11)
� 0.2. Determine the correlation between X and Y. Refer to
Fig. 5-15.

Because X and Y are linearly related, � � 1. This can be
verified by direct calculations: Try it.

EXAMPLE 5-23 Independence Implies Zero Covariance
For the two random variables in Fig. 5-16, show that �XY � 0.

The two random variables in this example are continuous
random variables. In this case E(XY ) is defined as the double
integral over the range of (X, Y ). That is,

Also,

E1X 2 � �
4

0

�
2

0

 x fXY 1x, y2  dx dy �
1

16
 �

4

0

 y £ �
2

0

 x2
 dx §  dy

�
1

16
 �

4

0

 y2
 38�3 4  dy �

1

6
 £ y3�3 `

4

0
§ �

1

6
 364�3 4 � 32�9

�
1

16
 �

4

0

 y2
 £ x3�3 `

2

0
§

E1XY 2 � �
4

0

�
2

0

 xy fXY 1x, y2  dx dy �
1

16
 �

4

0

 £ �
2

0

 x2y2
 dx §  dy

�
2

16
 £ y3�3 `

4

0
§ �

1

8
 364�3 4 � 8�3

�
1

16
 �

4

0

 y2
 £ x2�2 `

2

0
§  dy

E1Y 2 � �
4

0

�
2

0

 y fXY 1x, y2  dx dy �
1

16
 �

4

0

 y2
 £ �

2

0

 x dx §  dy

�
1

16
 £ y2�2 `

4

0
§  38�3 4 �

1

6
 316�2 4 � 4�3

�
1

16
 �

4

0

 y £ x3�3 `
2

0
§  dy

For independent random variables, we do not expect any relationship in their joint prob-
ability distribution. The following result is left as an exercise.

If X and Y are independent random variables,

(5-17)�XY � �XY � 0

Figure 5-14 Joint distribution
for Example 5-20.

Figure 5-15 Joint distribution
for Example 5-21.
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5-2 COVARIANCE AND CORRELATION 175

However, if the correlation between two random variables is zero, we cannot immediately con-
clude that the random variables are independent. Figure 5-13(d) provides an example.

Thus,

E1XY 2 � E1X 2E1Y 2 � 32�9 � 14�32 18�32 � 0

It can be shown that these two random variables are in-
dependent. You can check that fXY (x, y) � fX (x) fY ( y) for all
x and y.

Figure 5-16 Random
variables with zero
covariance from
Example 5-22. 1

1

2

3

y

2

x

4

0

fXY(x,y) =      xy1
16

5-29. Determine the covariance and correlation for the
following joint probability distribution:

x 1 1 2 4
y 3 4 5 6
fXY (x, y) 1�8 1�4 1�2 1�8

5-30. Determine the covariance and correlation for the
following joint probability distribution:

x �1 �0.5 0.5 1
y �2 �1 1 2
fXY (x, y)

5-31. Determine the value for c and the covariance and
correlation for the joint probability mass function fXY (x, y) �
c (x 
 y) for x � 1, 2, 3 and y � 1, 2, 3.

5-32. Determine the covariance and correlation for the joint
probability distribution shown in Fig. 5-10(a) and described in
Example 5-10.

5-33. Determine the covariance and correlation for X1 and
X2 in the joint distribution of the multinomial random vari-
ables X1, X2, and X3 with p1 � p2 � p3 � 1�3 and n � 3. What
can you conclude about the sign of the correlation between
two random variables in a multinomial distribution?

5-34. For the Transaction Processing Performance Council’s
benchmark in Exercise 5-10, let X,Y, and Z denote the average
number of selects, updates, and inserts operations required for
each type transaction, respectively. Calculate the following:
(a) Covariance between X and Y

1�81�21�41�8

EXERCISES FOR SECTION 5-2

(b) Correlation between X and Y
(c) Covariance between X and Z
(d) Correlation between X and Z

5-35. Determine the value for c and the covariance and cor-
relation for the joint probability density function fXY (x, y) �
cxy over the range 0 � x � 3 and 0 � y � x.

5-36. Determine the value for c and the covariance and cor-
relation for the joint probability density function fXY (x, y) � c
over the range 0 � x � 5, 0 � y, and x � 1 � y � x 
 1.

5-37. Determine the covariance and correlation for the joint
probability density function over the range
0 � x and 0 � y.

5-38. Determine the covariance and correlation for the joint
probability density function fXY (x, y) � 6 � 10�6e�0.001x�0.002y

over the range 0 � x and x � y from Example 5-2.

5-39. The joint probability distribution is

x �1 0 1
y �1 1 0
fXY (x, y)

Show that the correlation between X and Y is zero, but X and Y
are not independent.

5-40. Suppose X and Y are independent continuous random
variables. Show that �XY � 0.

5-41. Suppose that the correlation between X and Y is �. For
constants a, b, c, and d, what is the correlation between the
random variables U � aX 
 b and V � cY 
 d ?

1�41�41�41�4
0

0

fXY 
 1x, y2 � e�x�y
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176 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

5-3 COMMON JOINT DISTRIBUTIONS

5-3.1 Multinomial Probability Distribution

A joint probability distribution for multiple discrete random variables that is quite useful is an
extension of the binomial. The random experiment that generates the probability distribution
consists of a series of independent trials. However, the results from each trial can be catego-
rized into one of k classes.

EXAMPLE 5-24 Digital Channel
We might be interested in a probability such as the following.
Of the 20 bits received, what is the probability that 14 are ex-
cellent, 3 are good, 2 are fair, and 1 is poor? Assume that the
classifications of individual bits are independent events and
that the probabilities of E, G, F, and P are 0.6, 0.3, 0.08, and
0.02, respectively. One sequence of 20 bits that produces the
specified numbers of bits in each class can be represented as

Using independence, we find that the probability of this se-
quence is

� 2.708 � 10�9
P1EEEEEEEEEEEEEEGGGFFP2 � 0.6140.330.0820.021

EEEEEEEEEEEEEEGGGFFP

Clearly, all sequences that consist of the same numbers of
E’s, G’s, F’s, and P’s have the same probability. Consequently,
the requested probability can be found by multiplying 2.708 �
10�9 by the number of sequences with 14 E’s, three G’s, two
F’s, and one P. The number of sequences is found from
Chapter 2 to be

Therefore, the requested probability is

� 232560012.708 � 10�92 � 0.0063
P114E

,
s, three G

,
s, two F

,
s, and one P2

20!
14!3!2!1!

� 2325600

Multinomial
Distribution Suppose a random experiment consists of a series of n trials. Assume that

(1) The result of each trial is classified into one of k classes.

(2) The probability of a trial generating a result in class 1, class 2, , class k
is constant over the trials and equal to p1, p2, , pk, respectively.

(3) The trials are independent.

The random variables X1, X2, , Xk that denote the number of trials that result in
class 1, class 2, , class k, respectively, have a multinomial distribution and the
joint probability mass function is

(5-18)

for and .p1 
 p2 
 p 
 pk � 1x1 
 x2 
 p 
 xk � n

P1X1 � x1, X2 � x2, p , Xk � xk2 �
n!

x1!x2 ! 
p xk!

  px1
1  px2

2 p pxk
k

p
p

p
p

Example 5-24 leads to the following generalization of a binomial experiment and a bino-
mial distribution.

The multinomial distribution is considered a multivariable extension of the binomial distribution.

EXAMPLE 5-25 Digital Channel
In Example 5-9, let the random variables X1, X2, X3, and X4 de-
note the number of bits that are E, G, F, and P, respectively, in
a transmission of 20 bits. The probability that 12 of the bits
received are E, 6 are G, 2 are F, and 0 are P is

�
20!

12!6!2!0!
  0.6120.360.0820.020 � 0.0358

P1X1 � 12, X2 � 6, X3 � 2, X4 � 02

JWCL232_c05_152-190.qxd  1/7/10  2:33 PM  Page 176



5-3 COMMON JOINT DISTRIBUTIONS 177

Each trial in a multinomial random experiment can be regarded as either generating or not
generating a result in class i, for each i � 1, 2, . . . , k. Because the random variable Xi is the
number of trials that result in class i, Xi has a binomial distribution.

Mean and
Variance If X1, X2, . . . , Xk have a multinomial distribution, the marginal probability distribu-

tion of Xi is binomial with

(5-19)E1Xi2 � npi and V 1Xi2 � npi 11 � pi2

EXAMPLE 5-26 Marginal Probability Distributions
In Example 5-25 the marginal probability distribution of X2 is
binomial with n � 20 and p � 0.3. Furthermore, the joint mar-
ginal probability distribution of X2 and X3 is found as follows.
The P(X2 � x2, X3 � x3) is the probability that exactly x2 trials re-
sult in G and that x3 result in F. The remaining n � x2 � x3 trials
must result in either E or P. Consequently, we can consider each
trial in the experiment to result in one of three classes, {G}, {F},
or {E, P}, with probabilities 0.3, 0.08, and 0.6 
 0.02 � 0.62,
respectively. With these new classes, we can consider the trials

to comprise a new multinomial experiment. Therefore,

The joint probability distribution of other sets of variables can
be found similarly.

�
n!

x2!x3! 1n � x2 � x32!
  10.32x210.082x310.622n�x2�x3

 fX2 X3
 1x2, x32 � P1X2 � x2, X3 � x32

5-3.2 Bivariate Normal Distribution

An extension of a normal distribution to two random variables is an important bivariate prob-
ability distribution.

EXAMPLE 5-27 Bivariate Normal Distribution
At the start of this chapter, the length of different dimensions
of an injection-molded part was presented as an example of
two random variables. Each length might be modeled by a nor-
mal distribution. However, because the measurements are
from the same part, the random variables are typically not
independent. A probability distribution for two normal ran-

dom variables that are not independent is important in many
applications. As stated at the start of the chapter, if the specifi-
cations for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millime-
ters, respectively, we might be interested in the probability that
a part satisfies both specifications; that is, P(2.95 � X �
3.05, 7.60 � Y � 7.80).

The probability density function of a bivariate normal distribution is 

(5-20)

for and , with parameters �X � 0, �Y � 0, �� � �X � �,
�� � �Y � �, and �1 � � � 1.

�� � y � ��� � x � �

�  
2�1x � �X 2 1 y � �Y2

�X �Y


1 y � �Y2

2

�2
Y

d f

fXY 
1x, y; �X, �Y, �X, �Y, �2 �

1

2��X 
�Y21 � �2

  exp  e
�1

211 � �22
c
1x � �X2

2

�2
X

Bivariate Normal
Probability

Density Function
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178 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

The result that fXY (x, y; �X, �Y, �X, �Y, �) integrates to 1 is left as an exercise. Also, the bivari-
ate normal probability density function is positive over the entire plane of real numbers.

Two examples of bivariate normal distributions are illustrated in Fig. 5-17 along with
corresponding contour plots. Each curve on the contour plots is a set of points for which the
probability density function is constant. As seen in the contour plots, the bivariate normal
probability density function is constant on ellipses in the (x, y) plane. (We can consider a circle
to be a special case of an ellipse.) The center of each ellipse is at the point (�X, �Y). If � � 0
(� � 0), the major axis of each ellipse has positive (negative) slope, respectively. If � � 0, the
major axis of the ellipse is aligned with either the x or y coordinate axis.

EXAMPLE 5-28
The joint probability density function 

is a special case of a bivariate normal 

distribution with �X � 1, �Y � 1, �X � 0, �Y � 0, and � � 0.

1

12�
 e�0.51x2
y22

fXY 1x, y2 � This probability density function is illustrated in Fig. 5-18.
Notice that the contour plot consists of concentric circles
about the origin.

Figure 5-17 Examples of bivariate normal distributions.

x

y
fXY(x, y)

fXY(x, y)

y

x

0
x

y

y
x

�X �X �X�X
�Y

�Y �Y

�Y

fXY(x, y)

Figure 5-18 Bivariate normal probability density
function with �X � 1, �Y � 1, � � 0, �X � 0, and 
�Y � 0.

0

0

x

y
fXY(x, y)

x
0

y

0

x

z
y

Figure 5-19 Marginal probability
density functions of a bivariate
normal distribution.

The following results can be shown for a bivariate normal distribution. The details are left
as an exercise.

If X and Y have a bivariate normal distribution with joint probability density fXY (x, y;
�X, �Y, �X, �Y, �), the marginal probability distributions of X and Y are normal
with means �X and �Y and standard deviations �X and �Y, respectively. (5-21)

Marginal
Distributions of

Bivariate Normal
Random Variables

Figure 5-19 illustrates that the marginal probability distributions of X and Y are normal. 
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5-3 COMMON JOINT DISTRIBUTIONS 179

If X and Y have a bivariate normal distribution with joint probability density
the conditional probability distribution of Y given 

is normal with mean

and variance

�2
Y 0  x � �2

Y 11 � �22

�Y �x � �Y � �X�
�Y
�X



�Y
�X

�x

X � x
fXY 1x, y; �X, �Y, �X, �Y, �2,

Conditional
Distribution of

Bivariate Normal
Random Variables

Correlation of
Bivariate Normal

Random Variables
If X and Y have a bivariate normal distribution with joint probability density function
fXY (x, y; �X, �Y, �X, �Y, �), the correlation between X and Y is �. (5-22)

Furthermore, as the notation suggests, � represents the correlation between X and Y. The
following result is left as an exercise.

The contour plots in Fig. 5-17 illustrate that as � moves from zero (left graph) to 0.9 (right
graph), the ellipses narrow around the major axis. The probability is more concentrated about
a line in the (x, y) plane and graphically displays greater correlation between the variables. If
� � �1 or 
1, all the probability is concentrated on a line in the (x, y) plane. That is, the
probability that X and Y assume a value that is not on the line is zero. In this case, the bivari-
ate normal probability density is not defined.

In general, zero correlation does not imply independence. But in the special case that X
and Y have a bivariate normal distribution, if � � 0, X and Y are independent. The details are
left as an exercise.

If X and Y have a bivariate normal distribution with � � 0, X and Y are independent.
(5-23)

For Bivariate 
Normal Random

Variables Zero 
Correlation Implies

Independence

An important use of the bivariate normal distribution is to calculate probabilities involving
two correlated normal random variables.

EXAMPLE 5-29 Injection-Molded Part
Suppose that the X and Y dimensions of an injection-molded
part have a bivariate normal distribution with �X � 0.04, 
�Y � 0.08, �X � 3.00, �Y � 7.70, and � � 0.8. Then, the
probability that a part satisfies both specifications is

P12.95 � X � 3.05, 7.60 � Y � 7.802

This probability can be obtained by integrating  fXY(x, y; �X, �Y,
�X �Y, �) over the region 2.95 � x � 3.05 and 7.60 � y �
7.80, as shown in Fig. 5-3. Unfortunately, there is often no
closed-form solution to probabilities involving bivariate nor-
mal distributions. In this case, the integration must be done
numerically.
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180 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

5-42. Test results from an electronic circuit board indicate
that 50% of board failures are caused by assembly defects,
30% are due to electrical components, and 20% are due to me-
chanical defects. Suppose that 10 boards fail independently.
Let the random variables X, Y, and Z denote the number of
assembly, electrical, and mechanical defects among the 
10 boards.

Calculate the following:
(a) P(X � 5, Y � 3, Z � 2)
(b) P(X � 8)
(c) P(X � 8 | Y � 1)
(d) P(X 8 | Y � 1)
(e) P(X � 7, Y � 1 | Z � 2)

5-43. Based on the number of voids, a ferrite slab is classi-
fied as either high, medium, or low. Historically, 5% of the
slabs are classified as high, 85% as medium, and 10% as low.
A sample of 20 slabs is selected for testing. Let X, Y, and Z
denote the number of slabs that are independently classified as
high, medium, and low, respectively.
(a) What are the name and the values of the parameters of the

joint probability distribution of X, Y, and Z?
(b) What is the range of the joint probability distribution of

X, Y, Z?
(c) What are the name and the values of the parameters of the

marginal probability distribution of X?
(d) Determine and .

Determine the following:
(e)
(f )
(g) (h)
(i) ( j)
(k)

5-44. A Web site uses ads to route visitors to one of four land-
ing pages. The probabilities for each landing page are equal.
Consider 20 independent visitors and let the random variables W,
X, Y, and Z denote the number of visitors routed to each page.

Calculate the following:
(a) P(W � 5, X � 5, Y � 5, Z � 5)
(b) P(W � 5, X � 5, Y � 5)
(c) P(W � 7, X � 7, Y � 6 | Z � 3)
(d) P(W � 7, X � 7, Y � 3 | Z � 3)
(e) P(W � 2)
(f) E(W)
(g) P(W � 5, X � 5)
(h) P(W � 5 | X � 5)

5-45. Four electronic ovens that were dropped during ship-
ment are inspected and classified as containing either a major, a
minor, or no defect. In the past, 60% of dropped ovens had a ma-
jor defect, 30% had a minor defect, and 10% had no defect.
Assume that the defects on the four ovens occur independently.
(a) Is the probability distribution of the count of ovens in each

category multinomial? Why or why not?

E 1X 0Y � 172
P 1X � 2 ƒ Y � 172P 1X � 2, Z � 3 ƒ Y � 172
E 1Y 2P 1X � 12

P 1X � 1, Y � 17, Z � 32
P 1X � 1, Y � 17, Z � 32

V 1X 2E1X 2

�

EXERCISES FOR SECTION 5-3

(b) What is the probability that, of the four dropped ovens, two
have a major defect and two have a minor defect?

(c) What is the probability that no oven has a defect?

Determine the following:
(d) The joint probability mass function of the number of ovens

with a major defect and the number with a minor defect
(e) The expected number of ovens with a major defect
(f ) The expected number of ovens with a minor defect
(g) The conditional probability that two ovens have major

defects given that two ovens have minor defects
(h) The conditional probability that three ovens have major

defects given that two ovens have minor defects
(i) The conditional probability distribution of the number of

ovens with major defects given that two ovens have minor
defects

( j) The conditional mean of the number of ovens with major
defects given that two ovens have minor defects.

5-46. Let X and Y represent concentration and viscosity of a
chemical product. Suppose X and Y have a bivariate normal
distribution with �X � 4, �Y � 1, �X � 2, and �Y � 1. Draw
a rough contour plot of the joint probability density function
for each of the following values of �:
(a) � � 0 (b) � � 0.8
(c) � � �0.8

5-47. Suppose X and Y have a bivariate normal distribution
with �X � 0.04, �Y � 0.08, �X � 3.00, �Y � 7.70, and � � 0.

Determine the following:
(a)
(b)
(c)

5-48. In an acid-base titration, a base or acid is gradually
added to the other until they have completely neutralized
each other. Let X and Y denote the milliliters of acid and base
needed for equivalence, respectively. Assume X and Y have a
bivariate normal distribution with , ,

, , and .

Determine the following:
(a) Covariance between X and Y
(b) Marginal probability distribution of X
(c)
(d) Conditional probability distribution of X given that

(e)

5-49. In the manufacture of electroluminescent lamps,
several different layers of ink are deposited onto a plastic
substrate. The thickness of these layers is critical if specifi-
cations regarding the final color and intensity of light are to
be met. Let X and Y denote the thickness of two different
layers of ink. It is known that X is normally distributed with
a mean of 0.1 millimeter and a standard deviation of
0.00031 millimeter, and Y is normally distributed with a

P1X 	 116 0 Y � 1022
Y � 102

P1X 	 1162

� � 0.6�Y � 100 mL�X � 120 mL
�Y � 2 mL�X � 5 mL

P12.95 	 X 	 3.05, 7.60 	 Y 	 7.802
P17.60 	 Y 	 7.802
P12.95 	 X 	 3.052
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mean of 0.23 millimeter and a standard deviation of 0.00017
millimeter. The value of � for these variables is equal to
zero. Specifications call for a lamp to have a thickness of the
ink corresponding to X in the range of 0.099535 to 0.100465
millimeter and Y in the range of 0.22966 to 0.23034 mil-
limeter. What is the probability that a randomly selected
lamp will conform to specifications?

5-50. Suppose that X and Y have a bivariate normal distri-
bution with joint probability density function fXY (x, y; �X, �Y,
�X, �Y, �).
(a) Show that the conditional distribution of Y, given that

X � x, is normal.
(b) Determine .
(c) Determine .V1Y 0X � x2

E1Y 0X � x2

5-4 LINEAR FUNCTIONS OF RANDOM VARIABLES 181

5-51. If X and Y have a bivariate normal distribution with
� � 0, show that X and Y are independent.

5-52. Show that the probability density function fXY (x, y;
�X, �Y, �X, �Y, �) of a bivariate normal distribution integrates
to one. [Hint: Complete the square in the exponent and use the
fact that the integral of a normal probability density function
for a single variable is 1.]

5-53. If X and Y have a bivariate normal distribution with
joint probability density fXY (x, y; �X, �Y, �X, �Y, �), show that
the marginal probability distribution of X is normal with mean
�X and standard deviation �X. [Hint: Complete the square in
the exponent and use the fact that the integral of a normal
probability density function for a single variable is 1.]

5-4 LINEAR FUNCTIONS OF RANDOM VARIABLES

A random variable is sometimes defined as a function of one or more random variables. In
this section, results for linear functions are highlighted because of their importance in the
remainder of the book. For example, if the random variables X1 and X2 denote the length
and width, respectively, of a manufactured part, Y � 2X1 
 2X2 is a random variable that
represents the perimeter of the part. As another example, recall that the negative binomial
random variable was represented as the sum of several geometric random variables.

In this section, we develop results for random variables that are linear combinations of
random variables.

Given random variables X1, X2, , Xp and constants c1, c2, , cp,

(5-24)

is a linear combination of  X1, X2, p , Xp.

Y � c1X1 
 c2X2 
 p 
 cp Xp

pp
Linear

Combination

Now, E(Y ) can be found from the joint probability distribution of X1, X2, , Xp as follows.
Assume X1, X2, , Xp are continuous random variables. An analogous calculation can be used
for discrete random variables.

 
 cp �
�

��
 

 �
�

��

p �
�

��

 xp fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp


 c2 �
�

��

 �
�

��

p �
�

��

 x2 fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp 
 , p ,

 � c1 �
�

��
 

 �
�

��

p �
�

��

 x1  fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp

E1Y 2 � �
�

��
 

 �
�

��

p �
�

��

 1c1x1 
 c2x2 
 p 
 cp xp2  fX1 X2 p  Xp
 1x1, x2, p , xp2 dx1 dx2 p dxp

p
p
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182 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

By using Equation 5-10 for each of the terms in this expression, we obtain the following.

If 

(5-25)E1Y 2 � c1E 1X12 
 c2E 1X22 
 p 
 cp E 1Xp2

Y � c1 
X1 
 c2 

X2 
 p 
 cp 
Xp,

Mean of a 
Linear Function

Furthermore, it is left as an exercise to show the following.

If X1, X2, , Xp are random variables, and then in
general,

(5-26)

If X1, X2, , Xp are independent,

(5-27)V1Y 2 � c2
1V1X12 
 c2

2V1X22 
 p 
 c2
pV1Xp2

p

V1Y 2 � c2
1V1X12 
 c2

2V1X22 
 p 
 c2
pV1Xp2 
 2 a

i� j
 a  cicj  cov1Xi, Xj2

Y � c1X1 
 c2X2 
 p 
 cp Xp,p
Variance of a

Linear Function

Note that the result for the variance in Equation 5-27 requires the random variables to be
independent. To see why the independence is important, consider the following simple exam-
ple. Let X1 denote any random variable and define X2 � �X1. Clearly, X1 and X2 are not inde-
pendent. In fact, �XY � �1. Now, Y � X1 
 X2 is 0 with probability 1. Therefore, V(Y ) � 0,
regardless of the variances of X1 and X2.

EXAMPLE 5-30 Negative Binomial Distribution
In Chapter 3, we found that if Y is a negative binomial random
variable with parameters p and r, 
where each Xi is a geometric random variable with parameter

Y � X1 
 X2 
 p 
 Xr,
p, and they are independent. Therefore, and

. From Equation 5-25, , and
from Equation 5-27, .V 1Y 2 � r11 � p2�p2

E1Y 2 � r�pV1Xi2 � 11 � p2�p2
E1Xi2 � 1�p

An approach similar to the one applied in the above example can be used to verify the
formulas for the mean and variance of an Erlang random variable in Chapter 4. An important
use of Equation 5-27 is in error propagation and this is presented in the following example.

EXAMPLE 5-31 Error Propagation
A semiconductor product consists of three layers. If the vari-
ances in thickness of the first, second, and third layers are 25,
40, and 30 nanometers squared, what is the variance of the
thickness of the final product? 

Let X1, X2, X3, and X be random variables that denote the
thickness of the respective layers, and the final product. Then,

X � X1 
 X2 
 X3

The variance of X is obtained from Equaion 5-27:

Consequently, the standard deviation of thickness of the final
product is 951/2 = 9.75 nm and this shows how the variation in
each layer is propagated to the final product.

 � 25 
 40 
 30 � 95 nm2
 V1X 2 � V1X12 
 V1X22 
 V1X32

The particular linear function that represents the average of p random variables, with
identical means and variances, is used quite often in subsequent chapters. We highlight the
results for this special case.
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The conclusion for is obtained as follows. Using Equation 5-27, with and
V(Xi) � �2, yields

p terms

Another useful result concerning linear functions of random variables is a reproductive
property that holds for independent, normal random variables.

V1X 2 � 11�p22�2 
 p 
 11�p22�2 � �2�p

ci � 1�pV1X 2

If with E(Xi) � � for i � 1, 2, , p,

(5-28a)

If X1, X2, , Xp are also independent with V(Xi) � �2 for i � 1, 2, , p,

(5-28b)V1X 2 �
�2

p

pp

E1X 2 � �

pX � 1X1 
 X2 
 p 
 Xp2�p
Mean and

Variance of 
an Average

If X1, X2, , Xp are independent, normal random variables with E(Xi) � �i and
, for i � 1, 2, , p,

is a normal random variable with

and

(5-29)V1Y 2 � c2
1�

2
1 
 c2

2�
2
2 
 p 
 c2

p�
2
p

E1Y 2 � c1�1 
 c2�2 
 p 
 cp�p

Y � c1X1 
 c2X2 
 p 
 cp Xp

pV1Xi2 � �2
i

p
Reproductive

Property of 
the Normal

Distribution

The mean and variance of Y follow from Equations 5-25 and 5-27. The fact that Y has a nor-
mal distribution can be obtained from supplemental material on moment-generating functions
on the Web site for the book.

EXAMPLE 5-32 Linear Function of Independent Normal Random Variables
Let the random variables X1 and X2 denote the length and
width, respectively, of a manufactured part. Assume that X1 is
normal with E(X1) � 2 centimeters and standard deviation
0.1 centimeter, and that X2 is normal with E(X2) � 5 centime-
ters and standard deviation 0.2 centimeter. Also, assume that
X1 and X2 are independent. Determine the probability that the
perimeter exceeds 14.5 centimeters.

Then, Y � 2X1 
 2X2 is a normal random variable that
represents the perimeter of the part. We obtain E(Y ) � 14

centimeters and the variance of Y is

Now,

 � P1Z � 1.122 � 0.13
P1Y � 14.52 � P 3 1Y � �Y2��Y � 114.5 � 142�10.2 4

V1Y 2 � 4 � 0.12 
 4 � 0.22 � 0.2

μ
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EXERCISES FOR SECTION 5-4

EXAMPLE 5-33 Beverage Volume
Soft-drink cans are filled by an automated filling machine. The
mean fill volume is 12.1 fluid ounces, and the standard devia-
tion is 0.1 fluid ounce. Assume that the fill volumes of the cans
are independent, normal random variables. What is the proba-
bility that the average volume of 10 cans selected from this
process is less than 12 fluid ounces?

Let X1, X2, , X10 denote the fill volumes of the 10 cans.
The average fill volume (denoted as ) is a normal random
variable with

X
p

Consequently,

 � P1Z � �3.162 � 0.00079

P1X � 122 � P c
X � �X

�X
�

12 � 12.1

10.001
d

E1X 2 � 12.1 and V1X 2 �
0.12

10
 � 0.001

5-54. X and Y are independent, normal random variables with
E(X ) � 0, V(X ) � 4, E(Y ) � 10, and V(Y ) � 9.

Determine the following:
(a) (b)
(c) (d)

5-55. X and Y are independent, normal random variables
with 

Determine the following:
(a) (b)
(c) (d)

5-56. Suppose that the random variable X represents the
length of a punched part in centimeters. Let Y be the length
of the part in millimeters. If E(X ) � 5 and V(X ) � 0.25, what
are the mean and variance of Y?

5-57. A plastic casing for a magnetic disk is composed of
two halves. The thickness of each half is normally distributed
with a mean of 2 millimeters and a standard deviation of
0.1 millimeter and the halves are independent.
(a) Determine the mean and standard deviation of the total

thickness of the two halves.
(b) What is the probability that the total thickness exceeds

4.3 millimeters?

5-58. Making handcrafted pottery generally takes two 
major steps: wheel throwing and firing. The time of wheel
throwing and the time of firing are normally distributed 
random variables with means of 40 min and 60 min and stan-
dard deviations of 2 min and 3 min, respectively.
(a) What is the probability that a piece of pottery will be fin-

ished within 95 min?
(b) What is the probability that it will take longer than 110 min?

5-59. In the manufacture of electroluminescent lamps, sev-
eral different layers of ink are deposited onto a plastic sub-
strate. The thickness of these layers is critical if specifications
regarding the final color and intensity of light are to be met.
Let X and Y denote the thickness of two different layers of ink.
It is known that X is normally distributed with a mean of 0.1
millimeter and a standard deviation of 0.00031 millimeter and
Y is also normally distributed with a mean of 0.23 millimeter
and a standard deviation of 0.00017 millimeter. Assume that
these variables are independent.

P13X 
 2Y � 282P13X 
 2Y � 182
V13X 
 2Y 2E13X 
 2Y 2

E1X 2 � 2, V1X 2 � 5, E1Y 2 � 6, and V1Y 2 � 8.

P12 X 
 3Y � 402P12X 
 3Y � 302
V12X 
 3Y 2E12X 
 3Y 2

(a) If a particular lamp is made up of these two inks only,
what is the probability that the total ink thickness is less
than 0.2337 millimeter?

(b) A lamp with a total ink thickness exceeding 0.2405 mil-
limeter lacks the uniformity of color demanded by the
customer. Find the probability that a randomly selected
lamp fails to meet customer specifications.

5-60. The width of a casing for a door is normally distrib-
uted with a mean of 24 inches and a standard deviation of
1�8 inch. The width of a door is normally distributed with a
mean of 23-7�8 inches and a standard deviation of 1�16 inch.
Assume independence.
(a) Determine the mean and standard deviation of the differ-

ence between the width of the casing and the width of the
door.

(b) What is the probability that the width of the casing minus
the width of the door exceeds 1�4 inch?

(c) What is the probability that the door does not fit in the
casing?

5-61. An article in Knee Surgery Sports Traumatology,
Arthroscopy [“Effect of Provider Volume on Resource
Utilization for Surgical Procedures” (2005, Vol. 13, pp.
273–279)] showed a mean time of 129 minutes and a standard
deviation of 14 minutes for ACL reconstruction surgery for
high-volume hospitals (with more than 300 such surgeries per
year). If a high-volume hospital needs to schedule 10 surger-
ies, what are the mean and variance of the total time to com-
plete these surgeries? Assume the times of the surgeries are in-
dependent and normally distributed.

5-62. Soft-drink cans are filled by an automated filling
machine and the standard deviation is 0.5 fluid ounce. Assume
that the fill volumes of the cans are independent, normal
random variables.
(a) What is the standard deviation of the average fill volume

of 100 cans?
(b) If the mean fill volume is 12.1 ounces, what is the proba-

bility that the average fill volume of the 100 cans is below
12 fluid ounces?

(c) What should the mean fill volume equal so that the proba-
bility that the average of 100 cans is below 12 fluid ounces
is 0.005?
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(d) If the mean fill volume is 12.1 fluid ounces, what should
the standard deviation of fill volume equal so that the
probability that the average of 100 cans is below 12 fluid
ounces is 0.005?

(e) Determine the number of cans that need to be measured
such that the probability that the average fill volume is
less than 12 fluid ounces is 0.01.

5-63. The photoresist thickness in semiconductor manufac-
turing has a mean of 10 micrometers and a standard deviation of
1 micrometer. Assume that the thickness is normally distributed
and that the thicknesses of different wafers are independent.
(a) Determine the probability that the average thickness of 10

wafers is either greater than 11 or less than 9 micrometers.
(b) Determine the number of wafers that need to be measured

such that the probability that the average thickness ex-
ceeds 11 micrometers is 0.01.

(c) If the mean thickness is 10 micrometers, what should the
standard deviation of thickness equal so that the probability
that the average of 10 wafers is either greater than 11
or less than 9 micrometers is 0.001?

5-64. Assume that the weights of individuals are indepen-
dent and normally distributed with a mean of 160 pounds and a
standard deviation of 30 pounds. Suppose that 25 people
squeeze into an elevator that is designed to hold 4300 pounds.
(a) What is the probability that the load (total weight) exceeds

the design limit?
(b) What design limit is exceeded by 25 occupants with prob-

ability 0.0001?

5-65. Weights of parts are normally distributed with variance
. Measurement error is normally distributed with mean zero

and variance 0.5 , independent of the part weights, and adds to
the part weight. Upper and lower specifications are centered at
3 about the process mean.�

�2
�2
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(a) Without measurement error, what is the probability that a
part exceeds the specifications?

(b) With measurement error, what is the probability that a part
is measured as beyond specifications? Does this imply it is
truly beyond specifications?

(c) What is the probability that a part is measured beyond
specifications if the true weight of the part is one below
the upper specification limit?

5-66. A U-shaped component is to be formed from the three
parts A, B, and C. The picture is shown in Fig. 5-20. The length
of A is normally distributed with a mean of 10 millimeters and
a standard deviation of 0.1 millimeter. The thickness of parts B
and C is normally distributed with a mean of 2 millimeters and
a standard deviation of 0.05 millimeter. Assume all dimensions
are independent.

�

(a) Determine the mean and standard deviation of the length
of the gap D.

(b) What is the probability that the gap D is less than 5.9 mil-
limeters?

5-5 GENERAL FUNCTIONS OF RANDOM VARIABLES

In many situations in statistics, it is necessary to derive the probability distribution of a func-
tion of one or more random variables. In this section, we present some results that are helpful
in solving this problem.

Suppose that X is a discrete random variable with probability distribution fX(x). Let Y �
h(X ) be a function of X that defines a one-to-one transformation between the values of X and
Y, and we wish to find the probability distribution of Y. By a one-to-one transformation, we
mean that each value x is related to one and only one value of y � h(x) and that each value of
y is related to one and only one value of x, say, x � u( y), where u( y) is found by solving y �
h(x) for x in terms of y.

Now, the random variable Y takes on the value y when X takes on the value u( y).
Therefore, the probability distribution of Y is

We may state this result as follows.

fY 
1 y2 � P1Y � y2 � P 3X � u1 y2 4 � fX 

3u1 y2 4

CB

B C

A

A

D

Figure 5-20 Figure for the
U-shaped component.
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186 CHAPTER 5 JOINT PROBABILITY DISTRIBUTIONS

We now consider the situation where the random variables are continuous. Let Y � h(X ),
with X continuous and the transformation one to one.

Suppose that X is a discrete random variable with probability distribution fX(x). Let
Y � h(X ) define a one-to-one transformation between the values of X and Y so that
the equation y � h(x) can be solved uniquely for x in terms of y. Let this solution be
x � u( y). Then the probability mass function of the random variable Y is

(5-30)fY 
1 y2 � fX 

3u1 y2 4

General 
Function of 

a Discrete
Random Variable

EXAMPLE 5-34 Function of a Discrete Random Variable
Let X be a geometric random variable with probability distri-
bution

Find the probability distribution of Y � X 2.

fX 1x2 � p 11 � p2 x�1,  x � 1, 2, p

Since X � 0, the transformation is one to one; that is, y �
x2 and Therefore, Equation 5-30 indicates that the
distribution of the random variable Y is

fY 1 y2 � f 11y2 � p 11 � p21y�1,  y � 1, 4, 9, 16, p

x � 1y.

General 
Function of 

a Continuous
Random Variable

Suppose that X is a continuous random variable with probability distribution fX(x).
The function Y � h(X ) is a one-to-one transformation between the values of Y and X
so that the equation y � h(x) can be uniquely solved for x in terms of y. Let this
solution be x � u( y). The probability distribution of Y is

(5-31)

where ( y) is called the Jacobian of the transformation and the absolute value
of J is used.

J � u¿

fY 1 y2 � fX 3u1 y2 4 0 J 0

Equation 5-31 is shown as follows. Let the function y � h(x) be an increasing function of x. Now,

If we change the variable of integration from x to y by using x � u( y), we obtain dx � u�( y) dy
and then

Since the integral gives the probability that Y 	 a for all values of a contained in the feasible
set of values for y, must be the probability density of Y. Therefore, the proba-
bility distribution of Y is

If the function y � h(x) is a decreasing function of x, a similar argument holds.

fY 
1 y2 � fX 

3u 1 y2 4u¿ 1 y2 � fX 3u1 y2 4J

fX 
3u1 y2 4u¿ 1 y2

P1Y 	 a2 � �
a

��

 fX 
3u1 y2 4u¿1 y2 dy

 � �
u 1a2

��

 fX 
1x2 dx

 P1Y 	 a2 � P 3X 	 u1a2 4
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5-67. Suppose that X is a random variable with probability
distribution

Find the probability distribution of Y � 2X 
 1.

5-68. Let X be a binomial random variable with p � 0.25
and n � 3. Find the probability distribution of the random
variable Y � X 2.

5-69. Suppose that X is a continuous random variable with
probability distribution

(a) Find the probability distribution of the random variable
Y � 2X 
 10.

(b) Find the expected value of Y.

5-70. Suppose that X has a uniform probability distribution

Show that the probability distribution of the random variable
Y � �2 ln X is chi-squared with two degrees of freedom.

5-71. A random variable X has the following probability
distribution:

(a) Find the probability distribution for Y � X 2.
(b) Find the probability distribution for Y � .
(c) Find the probability distribution for Y � ln X.

5-72. The velocity of a particle in a gas is a random variable
V with probability distribution

where b is a constant that depends on the temperature of the
gas and the mass of the particle.
(a) Find the value of the constant a.
(b) The kinetic energy of the particle is . Find the

probability distribution of W.
W � mV 

2�2

fV 1v2 � av2e�bv  v � 0

X 
1�2

fX 1x2 � e�x,  x � 0

fX 1x2 � 1,  0 	 x 	 1

fX 1x2 �
x

18
,  0 	 x 	 6

fX 1x2 � 1�4,  x � 1, 2, 3, 4

EXAMPLE 5-35 Function of a Continuous Random Variable
Let X be a continuous random variable with probability distri-
bution

Find the probability distribution of Y � h(X ) � 2X 
 4.
Note that y � h(x) � 2x 
 4 is an increasing function of

x. The inverse solution is x � u( y) � ( y � 4)�2, and from this

fX 
1x2 �

x

8
, 0 	 x � 4

we find the Jacobian to be  J � u� 1y2� dx/dy � 1/2. Therefore,
from Equation 5-31, the probability distribution of Y is

fY 1 y2 �
1 y � 42�2

8
 a

1

2
b �

y � 4

32
,  4 	 y 	 12

5-73. Suppose that X has the probability distribution

Find the probability distribution of the random variable 
Y � eX.

5-74. The random variable X has the probability distri-
bution

Find the probability distribution of Y � (X � 2)2.

Supplemental Exercises

5-75. Show that the following function satisfies the proper-
ties of a joint probability mass function:

x y f (x, y)

0 0 1�4

0 1 1�8

1 0 1�8

1 1 1�4

2 2 1�4

Determine the following:
(a) (b)
(c) (d)
(e) Determine E(X ), E(Y ), V(X ), and V(Y ).
(f ) Marginal probability distribution of the random vari-

able X
(g) Conditional probability distribution of Y given that X � 1
(h)
(i) Are X and Y independent? Why or why not?
( j) Calculate the correlation between X and Y.

5-76. The percentage of people given an antirheumatoid
medication who suffer severe, moderate, or minor side effects
are 10, 20, and 70%, respectively. Assume that people react

E1Y 0  X � 12

P1X � 0.5, Y � 1.52P1X � 1.52
P1X 	 12P1X � 0.5, Y � 1.52

fX 1x2 �
x
8 ,  0 	 x 	 4

fX 1x2 � 1,  1 	 x 	 2

EXERCISES FOR SECTION 5-5
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independently and that 20 people are given the medication.
Determine the following:
(a) The probability that 2, 4, and 14 people will suffer severe,

moderate, or minor side effects, respectively
(b) The probability that no one will suffer severe side effects
(c) The mean and variance of the number of people who will

suffer severe side effects
(d) What is the conditional probability distribution of the

number of people who suffer severe side effects given that
19 suffer minor side effects?

(e) What is the conditional mean of the number of people who
suffer severe side effects given that 19 suffer minor side
effects?

5-77. The backoff torque required to remove bolts in a steel
plate is rated as high, moderate, or low. Historically, the prob-
ability of a high, moderate, or low rating is 0.6, 0.3, or 0.1,
respectively. Suppose that 20 bolts are evaluated and that the
torque ratings are independent.
(a) What is the probability that 12, 6, and 2 bolts are rated as

high, moderate, and low, respectively?
(b) What is the marginal distribution of the number of bolts

rated low?
(c) What is the expected number of bolts rated low?
(d) What is the probability that the number of bolts rated low

is greater than two?
(e) What is the conditional distribution of the number of bolts

rated low given that 16 bolts are rated high?
(f ) What is the conditional expected number of bolts rated

low given that 16 bolts are rated high?
(g) Are the numbers of bolts rated high and low independent

random variables?

5-78. To evaluate the technical support from a computer
manufacturer, the number of rings before a call is answered by
a service representative is tracked. Historically, 70% of the
calls are answered in two rings or less, 25% are answered in
three or four rings, and the remaining calls require five rings
or more. Suppose you call this manufacturer 10 times and
assume that the calls are independent.
(a) What is the probability that eight calls are answered in two

rings or less, one call is answered in three or four rings,
and one call requires five rings or more?

(b) What is the probability that all 10 calls are answered in
four rings or less?

(c) What is the expected number of calls answered in four
rings or less?

(d) What is the conditional distribution of the number of calls
requiring five rings or more given that eight calls are
answered in two rings or less?

(e) What is the conditional expected number of calls requir-
ing five rings or more given that eight calls are answered in
two rings or less?

(f ) Are the number of calls answered in two rings or less and
the number of calls requiring five rings or more independ-
ent random variables?

5-79. Determine the value of c such that the function 
f (x, y) � cx2y for 0 � x � 3 and 0 � y � 2 satisfies the
properties of a joint probability density function.

Determine the following:
(a) (b)
(c) (d)
(e) (f )
(g) Marginal probability distribution of the random variable X
(h) Conditional probability distribution of Y given that X � 1
(i) Conditional probability distribution of X given that Y � 1

5-80. The joint distribution of the continuous random vari-
ables X, Y, and Z is constant over the region 

Determine the following:
(a)
(b)
(c) Joint conditional probability density function of X and Y

given that Z � 1
(d) Marginal probability density function of X
(e) Conditional mean of Z given that X � 0 and Y � 0
(f ) Conditional mean of Z given that X � x and Y � y

5-81. Suppose that X and Y are independent, continuous
uniform random variables for 0 � x � 1 and 0 � y � 1. Use
the joint probability density function to determine the proba-
bility that 

5-82. The lifetimes of six major components in a copier are
independent exponential random variables with means of 8000,
10,000, 10,000, 20,000, 20,000, and 25,000 hours, respectively.
(a) What is the probability that the lifetimes of all the compo-

nents exceed 5000 hours?
(b) What is the probability that at least one component life-

time exceeds 25,000 hours?

5-83. Contamination problems in semiconductor manufac-
turing can result in a functional defect, a minor defect, or no
defect in the final product. Suppose that 20, 50, and 30% of the
contamination problems result in functional, minor, and no de-
fects, respectively. Assume that the defects of 10 contamina-
tion problems are independent.
(a) What is the probability that the 10 contamination problems

result in two functional defects and five minor defects?
(b) What is the distribution of the number of contamination

problems that result in no defects?
(c) What is the expected number of contamination problems

that result in no defects?

5-84. The weight of adobe bricks for construction is
normally distributed with a mean of 3 pounds and a standard
deviation of 0.25 pound. Assume that the weights of the bricks
are independent and that a random sample of 25 bricks is
chosen.
(a) What is the probability that the mean weight of the sample

is less than 2.95 pounds?
(b) What value will the mean weight exceed with probability

0.99?

0 X � Y 0 � 0.5.

P1X2 
 Y 2 	 0.5, Z � 22
P1X 2 
 Y 2 	 0.52

 0 � z � 4.
x2 
 y2 	 1,

E1Y 2E1X 2
P1X � 2, 1 � Y � 1.52P11 � Y � 2.52
P1X � 2.52P1X � 1, Y � 12
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5-85. The length and width of panels used for interior doors
(in inches) are denoted as X and Y, respectively. Suppose that X
and Y are independent, continuous uniform random variables
for 17.75 � x � 18.25 and 4.75 � y � 5.25, respectively.
(a) By integrating the joint probability density function over

the appropriate region, determine the probability that the
area of a panel exceeds 90 square inches.

(b) What is the probability that the perimeter of a panel
exceeds 46 inches?

5-86. The weight of a small candy is normally distributed
with a mean of 0.1 ounce and a standard deviation of 0.01
ounce. Suppose that 16 candies are placed in a package and
that the weights are independent.
(a) What are the mean and variance of package net weight?
(b) What is the probability that the net weight of a package is

less than 1.6 ounces?
(c) If 17 candies are placed in each package, what is the

probability that the net weight of a package is less than
1.6 ounces?

5-87. The time for an automated system in a warehouse to
locate a part is normally distributed with a mean of 45 seconds
and a standard deviation of 30 seconds. Suppose that inde-
pendent requests are made for 10 parts.
(a) What is the probability that the average time to locate 10

parts exceeds 60 seconds?
(b) What is the probability that the total time to locate 10

parts exceeds 600 seconds?

5-88. A mechanical assembly used in an automobile engine
contains four major components. The weights of the
components are independent and normally distributed with
the following means and standard deviations (in ounces):

Standard
Component Mean Deviation

Left case 4 0.4

Right case 5.5 0.5

Bearing assembly 10 0.2

Bolt assembly 8 0.5

(a) What is the probability that the weight of an assembly
exceeds 29.5 ounces?

(b) What is the probability that the mean weight of eight
independent assemblies exceeds 29 ounces?

5-89. Suppose X and Y have a bivariate normal distribution
with , , , , and .
Draw a rough contour plot of the joint probability density
function.

5-90. If 

� 1.61x � 12 1 y � 22 
 1y � 222 4 f

fXY 
1x, y2 �

1

1.2�
 exp e

�1

0.72
  3 1x � 122

� � �0.2�Y � 4�X � 4�Y � 1�X � 4

determine E(X ), E(Y ), V(X ), V(Y ), and � by reorganizing the
parameters in the joint probability density function.

5-91. The permeability of a membrane used as a moisture
barrier in a biological application depends on the thickness of
two integrated layers. The layers are normally distributed with
means of 0.5 and 1 millimeters, respectively. The standard
deviations of layer thickness are 0.1 and 0.2 millimeters,
respectively. The correlation between layers is 0.7.
(a) Determine the mean and variance of the total thickness of

the two layers.
(b) What is the probability that the total thickness is less than

1 millimeter?
(c) Let X1 and X2 denote the thickness of layers 1 and 2, re-

spectively. A measure of performance of the membrane is
a function 2X1 
 3X2 of the thickness. Determine the
mean and variance of this performance measure.

5-92. The permeability of a membrane used as a moisture
barrier in a biological application depends on the thickness of
three integrated layers. Layers 1, 2, and 3 are normally dis-
tributed with means of 0.5, 1, and 1.5 millimeters, respec-
tively. The standard deviations of layer thickness are 0.1, 0.2,
and 0.3, respectively. Also, the correlation between layers 1
and 2 is 0.7, between layers 2 and 3 is 0.5, and between layers
1 and 3 is 0.3.
(a) Determine the mean and variance of the total thickness of

the three layers.
(b) What is the probability that the total thickness is less than

1.5 millimeters?

5-93. A small company is to decide what investments to use
for cash generated from operations. Each investment has a
mean and standard deviation associated with the percentage
gain. The first security has a mean percentage gain of 5% with
a standard deviation of 2%, and the second security provides
the same mean of 5% with a standard deviation of 4%. The
securities have a correlation of �0.5, so there is a negative
correlation between the percentage returns. If the company
invests two million dollars with half in each security, what are
the mean and standard deviation of the percentage return?
Compare the standard deviation of this strategy to one that
invests the two million dollars into the first security only.

5-94. An order of 15 printers contains four with a
graphics-enhancement feature, five with extra memory, and
six with both features. Four printers are selected at random,
without replacement, from this set. Let the random variables
X, Y, and Z denote the number of printers in the sample with
graphics enhancement only, extra memory only, and both,
respectively.
(a) Describe the range of the joint probability distribution of

X, Y, and Z.
(b) Is the probability distribution of X, Y, and Z multinomial?

Why or why not?
(c) Determine the conditional probability distribution of X

given that Y � 2.
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Determine the following:
(d) (e)
(f ) and 
(g) (h)
(i) Conditional probability distribution of X given that Y � 0

and Z � 3.
5-95. A marketing company performed a risk analysis for a
manufacturer of synthetic fibers and concluded that new com-
petitors present no risk 13% of the time (due mostly to the
diversity of fibers manufactured), moderate risk 72% of the
time (some overlapping of products), and very high risk (com-
petitor manufactures the exact same products) 15% of the
time. It is known that 12 international companies are planning

P1X � 2 ƒ Y � 22P1X � 1, Y � 2 ƒ Z � 12
V1X 2E1X 2

P1X � 1, Y � 12P1X � 1, Y � 2, Z � 12
to open new facilities for the manufacture of synthetic fibers
within the next three years. Assume the companies are inde-
pendent. Let X, Y, and Z denote the number of new competi-
tors that will pose no, moderate, and very high risk for the
interested company, respectively.
(a) What is the range of the joint probability distribution of

X, Y, and Z?

Determine the following:
(b) P 1X � 1, Y � 3, Z � 12
(c) P1Z 	 22

5-96. Show that if X1, X2, p , Xp are independent, 
continuous random variables, P(X1 � A1, X2 � A2, p ,
Xp � Ap) � P(X1 � A1)P(X2 � A2) p P(Xp � Ap) for any
regions A1, A2, p , Ap in the range of X1, X2, p , Xp

respectively.

5-97. Show that if X1, X2, p , Xp are independent
random variables and Y � c1X1 
 c2X2 
 
 cpXp,

You may assume that the random variables are continuous.

5-98. Suppose that the joint probability function of
the continuous random variables X and Y is constant on
the rectangle 0 � x � a, 0 � y � b. Show that X and Y
are independent.

5-99. Suppose that the range of the continuous
variables X and Y is 0 � x � a and 0 � y � b. Also
suppose that the joint probability density function
fXY (x, y) � g (x)h( y), where g (x) is a function only of

x and h( y), is a function only of y. Show that X and Y
are independent.

5-100. This exercise extends the hypergeometric dis-
tribution to multiple variables. Consider a population
with N items of k different types. Assume there are N1

items of type 1, N2 items of type 2, ..., Nk items of type k
so that N1 
 N2 
 p 
 p, Nk � N. Suppose that a ran-
dom sample of size n is selected, without replacement,
from the population. Let X1, X2, ..., Xk denote the number
of items of each type in the sample so that X1 
 X2, 
p

 p
 Xk � n. Show that for feasible values of n, x1, 
x2, p, xk, N1, N2, p, Nk, the probability is 

P (X1 � x1, X2 � x2, p, Xk � xk) �

a
N1

x1
ba

N2

x2
b p a

Nk

xn
b

a
N

n
b

V1Y 2 � c2
1V1X12 
 c2

2V1X22 
 p 
 c2
pV1Xp2

p

MIND-EXPANDING EXERCISES

IMPORTANT TERMS AND CONCEPTS

Bivariate distribution
Bivariate normal

distribution
Conditional mean
Conditional probability

density function
Conditional probability

mass function

Multinomial distribution
Reproductive property of

the normal
distribution 

Conditional variance
Contour plots
Correlation
Covariance
Error propagation
General functions of

random variables
Independence

Joint probability density
function

Joint probability mass
function

Linear functions of
random variables

Marginal probability 
distribution

(d) (e) P 1Z 	 1 ƒ X � 102P 1Z � 2 ƒ Y � 1, X � 102
(f ) (g) E 1Z ƒ X � 102P 1Y 	 1, Z 	 1 ƒ X � 102
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CHAPTER OUTLINE

6-1 NUMERICAL SUMMARIES OF DATA

6-2 STEM-AND-LEAF DIAGRAMS

6-3 FREQUENCY DISTRIBUTIONS 
AND HISTOGRAMS

6-4 BOX PLOTS

6-5 TIME SEQUENCE PLOTS

6-6 PROBABILITY PLOTS

6
Descriptive Statistics

Statistics is the science of data. An important aspect of dealing with data is organizing and
summarizing the data in ways that facilitate its interpretation and subsequent analysis.
This aspect of statistics is called descriptive statistics, and is the subject of this chapter.
For example, in Chapter 1 we presented eight observations made on the pull-off force of
prototype automobile engine connectors. The observations (in pounds) were 12.6, 12.9,
13.4, 12.3, 13.6, 13.5, 12.6, and 13.1. There is obvious variability in the pull-off force val-
ues. How should we summarize the information in these data? This is the general question
that we consider. Data summary methods should highlight the important features of the
data, such as the middle or central tendency and the variability, because these character-
istics are most often important for engineering decision making. We will see that there are
both numerical methods for summarizing data and a number of powerful graphical tech-
niques. The graphical techniques are particularly important. Any good statistical analysis
of data should always begin with plotting the data.

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Compute and interpret the sample mean, sample variance, sample standard deviation, sample median,

and sample range
2. Explain the concepts of sample mean, sample variance, population mean, and population variance

Mechanic working on engine
Jim Jurica/iStockphoto
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192 CHAPTER 6 DESCRIPTIVE STATISTICS

3. Construct and interpret visual data displays, including the stem-and-leaf display, the histogram,
and the box plot 

4. Explain the concept of random sampling 
5. Construct and interpret normal probability plots 
6. Explain how to use box plots and other data displays to visually compare two or more samples

of data 
7. Know how to use simple time series plots to visually display the important features of time-

oriented data

6-1 NUMERICAL SUMMARIES OF DATA

Well-constructed data summaries and displays are essential to good statistical thinking, be-
cause they can focus the engineer on important features of the data or provide insight about
the type of model that should be used in solving the problem. The computer has become an
important tool in the presentation and analysis of data. While many statistical techniques re-
quire only a hand-held calculator, much time and effort may be required by this approach, and
a computer will perform the tasks much more efficiently.

Most statistical analysis is done using a prewritten library of statistical programs. The
user enters the data and then selects the types of analysis and output displays that are of
interest. Statistical software packages are available for both mainframe machines and
personal computers. We will present examples of output from Minitab (one of the most
widely used PC packages) throughout the book. We will not discuss the hands-on use of
Minitab for entering and editing data or using commands. This information is found in the
software documentation. 

We often find it useful to describe data features numerically. For example, we can char-
acterize the location or central tendency in the data by the ordinary arithmetic average or
mean. Because we almost always think of our data as a sample, we will refer to the arithmetic
mean as the sample mean.

If the n observations in a sample are denoted by the sample mean is

(6-1)x �
x1 � x2 � p � xn

n �
a

n

i�1
xi

n

x1, x2, p , xn,
Sample Mean

EXAMPLE 6-1 Sample Mean
Let’s consider the eight observations on pull-off force col-
lected from the prototype engine connectors from Chapter 1.
The eight observations are x1 � 12.6, x2 � 12.9, x3 � 13.4,
x4 � 12.3, x5 � 13.6, x6 � 13.5, x7 � 12.6, and x8 � 13.1. The
sample mean is

 �
104

8
� 13.0 pounds

x �
x1 � x2 � p � xn

n �
a

8

i�1
xi

8
�

12.6 �12.9 � p �13.1

8

A physical interpretation of the sample mean as a measure of
location is shown in the dot diagram of the pull-off force data.
See Fig. 6-1. Notice that the sample mean can be
thought of as a “balance point.” That is, if each observation
represents 1 pound of mass placed at the point on the x-axis, a
fulcrum located at would exactly balance this system of
weights.

x

x � 13.0
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6-1 NUMERICAL SUMMARIES OF DATA 193

If is a sample of n observations, the sample variance is

(6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

s2 �
a

n

i�1
1xi � x22

n � 1

x1, x2, p , xn

Sample
Variance

The sample mean is the average value of all the observations in the data set. Usually,
these data are a sample of observations that have been selected from some larger population
of observations. Here the population might consist of all the connectors that will be manufac-
tured and sold to customers. Recall that this type of population is called a conceptual or
hypothetical population, because it does not physically exist. Sometimes there is an actual
physical population, such as a lot of silicon wafers produced in a semiconductor factory. 

In previous chapters we have introduced the mean of a probability distribution, denoted 
If we think of a probability distribution as a model for the population, one way to think of the
mean is as the average of all the measurements in the population. For a finite population with N
equally likely values, the probability mass function is and the mean is

(6-2)

The sample mean, , is a reasonable estimate of the population mean, �. Therefore, the engi-
neer designing the connector using a 3�32-inch wall thickness would conclude, on the basis
of the data, that an estimate of the mean pull-off force is 13.0 pounds.

Although the sample mean is useful, it does not convey all of the information about a
sample of data. The variability or scatter in the data may be described by the sample variance
or the sample standard deviation.

x

� � a
N

i�1
xi f 1xi2 �

a
N

i�1
xi

N

f 1xi2 � 1�N

�.

The units of measurement for the sample variance are the square of the original units of
the variable. Thus, if x is measured in pounds, the units for the sample variance are (pounds)2.
The standard deviation has the desirable property of measuring variability in the original units
of the variable of interest, x.

How Does the Sample Variance Measure Variability?
To see how the sample variance measures dispersion or variability, refer to Fig. 6-2, which
shows the deviations for the connector pull-off force data. The greater the amount of
variability in the pull-off force data, the larger in absolute magnitude some of the deviations

will be. Since the deviations always sum to zero, we must use a measure of vari-
ability that changes the negative deviations to nonnegative quantities. Squaring the deviations
is the approach used in the sample variance. Consequently, if is small, there is relatively
little variability in the data, but if is large, the variability is relatively large.s2

s2

xi � xxi � x

xi � x

Figure 6-1 The 
sample mean as a
balance point for a
system of weights.

x = 13

12 14 15

Pull-off force
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194 CHAPTER 6 DESCRIPTIVE STATISTICS

Computation of s2

The computation of requires calculation of , n subtractions, and n squaring and adding oper-
ations. If the original observations or the deviations are not integers, the deviations 
may be tedious to work with, and several decimals may have to be carried to ensure numerical
accuracy. A more efficient computational formula for the sample variance is obtained as follows:

and since this last equation reduces to

(6-4)s2 �
a

n

i�1
x2

i �

aa
n

i�1
xib

2

n

n � 1

x � 11�n2 g
n
i�1  xi,

s2 �
a

n

i�1
1xi � x22

n � 1
�
a

n

i�1
1x2

i � x2 � 2xxi2

n � 1
�
a

n

i�1
x2

i � nx2 � 2xa
n

i�1
xi

n � 1

xi � xxi � x
xs2

x5x4

x7

x

x6

x1 x3

x2 x8

12 13 14 15

Figure 6-2 How the
sample variance meas-
ures variability through
the deviations .xi � x

EXAMPLE 6-2 Sample Variance
Table 6-1 displays the quantities needed for calculating the
sample variance and sample standard deviation for the pull-off
force data. These data are plotted in Fig. 6-2. The numerator of

is

a
8

i�1
1xi � x22 � 1.60

s2

so the sample variance is

and the sample standard deviation is

s � 10.2286 � 0.48 pounds

s2 �
1.60

8 � 1
�

1.60

7
� 0.2286 1pounds22

Table 6-1 Calculation of Terms for the Sample Variance and Sample
Standard Deviation

i

1 12.6 �0.4 0.16
2 12.9 �0.1 0.01
3 13.4 0.4 0.16
4 12.3 �0.7 0.49
5 13.6 0.6 0.36
6 13.5 0.5 0.25
7 12.6 �0.4 0.16
8 13.1 0.1 0.01

104.0 0.0 1.60

1xi � x22xi � xxi
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6-1 NUMERICAL SUMMARIES OF DATA 195

Note that Equation 6-4 requires squaring each individual then squaring the sum of the 
subtracting from and finally dividing by n � 1. Sometimes this is called the
shortcut method for calculating (or s).s2

g  x2
i ,1 g  xi2

2�n
xi,xi,

Analogous to the sample variance , the variability in the population is defined by the
population variance (�2). As in earlier chapters, the positive square root of , or , will
denote the population standard deviation. When the population is finite and consists of N
equally likely values, we may define the population variance as

(6-5)

We observed previously that the sample mean could be used as an estimate of the population
mean. Similarly, the sample variance is an estimate of the population variance. In Chapter 7,
we will discuss estimation of parameters more formally.

Note that the divisor for the sample variance is the sample size minus one while
for the population variance it is the population size N. If we knew the true value of the popu-
lation mean �, we could find the sample variance as the average squared deviation of the sam-
ple observations about �. In practice, the value of � is almost never known, and so the sum of
the squared deviations about the sample average must be used instead. However, the obser-
vations tend to be closer to their average, , than to the population mean, Therefore, to
compensate for this we use n � 1 as the divisor rather than n. If we used n as the divisor in the
sample variance, we would obtain a measure of variability that is, on the average, consistently
smaller than the true population variance .

Another way to think about this is to consider the sample variance as being based on
degrees of freedom. The term degrees of freedom results from the fact that the n devi-

ations always sum to zero, and so specifying the values of any
of these quantities automatically determines the remaining one. This was illustrated in

Table 6-1. Thus, only of the n deviations, are freely determined.
In addition to the sample variance and sample standard deviation, the sample range, or

the difference between the largest and smallest observations, is a useful measure of variabil-
ity. The sample range is defined as follows.

xi � x,n � 1
n � 1

x1 � x, x2 � x, p , xn � x
n � 1

s2
�2

�.xxi

x

1n � 12,

�2 �
a
N

i�1
1xi � �22

N

��2
s2

If the n observations in a sample are denoted by the sample range is

(6-6)r � max1xi2 � min1xi2

x1, x2, p , xn,
Sample Range

EXAMPLE 6-3
We will calculate the sample variance and standard deviation
using the shortcut method, Equation 6-4. The formula gives

� 0.2286 1pounds22

s2 �
a

n

i�1
x2

i �

aa
n

i�1
xib

2

n

n � 1
�

1353.6 �
110422

8

7
�

1.60

7

and

These results agree exactly with those obtained previously.

s � 10.2286 � 0.48 pounds
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For the pull-off force data, the sample range is Generally, as the vari-
ability in sample data increases, the sample range increases.

The sample range is easy to calculate, but it ignores all of the information in the sample
data between the largest and smallest values. For example, the two samples 1, 3, 5, 8, and 9
and 1, 5, 5, 5, and 9 both have the same range (r � 8). However, the standard deviation of the
first sample is while the standard deviation of the second sample is The
variability is actually less in the second sample.

Sometimes, when the sample size is small, say the information loss associ-
ated with the range is not too serious. For example, the range is used widely in statistical qual-
ity control where sample sizes of 4 or 5 are fairly common. We will discuss some of these
applications in Chapter 15.

In most statistics problems, we work with a sample of observations selected from the pop-
ulation that we are interested in studying. Figure 6-3 illustrates the relationship between the
population and the sample.

n � 8 or 10,

s2 � 2.83.s1 � 3.35,

r � 13.6 � 12.3 � 1.3.

196 CHAPTER 6 DESCRIPTIVE STATISTICS

EXERCISES FOR SECTIONS 6-1

6-1. Will the sample mean always correspond to one of the
observations in the sample?

6-2. Will exactly half of the observations in a sample fall be-
low the mean?

6-3. Will the sample mean always be the most frequently oc-
curring data value in the sample?

6-4. For any set of data values, is it possible for the sample
standard deviation to be larger than the sample mean? Give an
example.

6-5. Can the sample standard deviation be equal to zero?
Give an example.

6-6. Suppose that you add 10 to all of the observations in a
sample. How does this change the sample mean? How does it
change the sample standard deviation?

6-7. Eight measurements were made on the inside diameter
of forged piston rings used in an automobile engine. The data

(in millimeters) are 74.001, 74.003, 74.015, 74.000, 74.005,
74.002, 74.005, and 74.004. Calculate the sample mean and
sample standard deviation, construct a dot diagram, and com-
ment on the data.

6-8. In Applied Life Data Analysis (Wiley, 1982), Wayne
Nelson presents the breakdown time of an insulating fluid 
between electrodes at 34 kV. The times, in minutes, are as 
follows: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85,
6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71,
and 72.89. Calculate the sample mean and sample standard
deviation.

6-9. The January 1990 issue of Arizona Trend contains a
supplement describing the 12 “best” golf courses in the state.
The yardages (lengths) of these courses are as follows: 6981,
7099, 6930, 6992, 7518, 7100, 6935, 7518, 7013, 6800, 7041,
and 6890. Calculate the sample mean and sample standard de-
viation. Construct a dot diagram of the data.

μ

Population

Sample (x1, x2, x3,…, xn)

Histogram

x x
s

x, sample average
s, sample standard

deviation

σ

Figure 6-3 Relation-
ship between a popula-
tion and a sample.
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6-2 STEM-AND-LEAF DIAGRAMS 197

6-10. An article in the Journal of Structural Engineering (Vol.
115, 1989) describes an experiment to test the yield strength of
circular tubes with caps welded to the ends. The first yields (in
kN) are 96, 96, 102, 102, 102, 104, 104, 108, 126, 126, 128, 128,
140, 156, 160, 160, 164, and 170. Calculate the sample mean and
sample standard deviation. Construct a dot diagram of the data.

6-11. An article in Human Factors (June 1989) presented
data on visual accommodation (a function of eye movement)
when recognizing a speckle pattern on a high-resolution CRT
screen. The data are as follows: 36.45, 67.90, 38.77, 42.18,
26.72, 50.77, 39.30, and 49.71. Calculate the sample mean and
sample standard deviation. Construct a dot diagram of the data.

6-12. The following data are direct solar intensity measure-
ments (watts/m2) on different days at a location in southern Spain:
562, 869, 708, 775, 775, 704, 809, 856, 655, 806, 878, 909, 918,
558, 768, 870, 918, 940, 946, 661, 820, 898, 935, 952, 957, 693,
835, 905, 939, 955, 960, 498, 653, 730, and 753. Calculate the
sample mean and sample standard deviation. Prepare a dot dia-
gram of these data. Indicate where the sample mean falls on this
diagram. Give a practical interpretation of the sample mean.

6-13. The April 22, 1991, issue of Aviation Week and Space
Technology reported that during Operation Desert Storm, U.S.
Air Force F-117A pilots flew 1270 combat sorties for a total of
6905 hours. What is the mean duration of an F-117A mission
during this operation? Why is the parameter you have calcu-
lated a population mean?

6-14. Preventing fatigue crack propagation in aircraft struc-
tures is an important element of aircraft safety. An engineering
study to investigate fatigue crack in n � 9 cyclically loaded
wing boxes reported the following crack lengths (in mm):
2.13, 2.96, 3.02, 1.82, 1.15, 1.37, 2.04, 2.47, 2.60. Calculate
the sample mean and sample standard deviation. Prepare a dot
diagram of the data.
6-15. An article in the Journal of Physiology [“Response of
Rat Muscle to Acute Resistance Exercise Defined by
Transcriptional and Translational Profiling” (2002, Vol. 545,
pp. 27–41)] studied gene expression as a function of resist-
ance exercise. Expression data (measures of gene activity)
from one gene are shown in the following table. One group of
rats was exercised for six hours while the other received no ex-
ercise. Compute the sample mean and standard deviation of
the exercise and no-exercise groups separately. Construct a dot
diagram for the exercise and no-exercise groups separately.
Comment on any differences between the groups.

6 Hours 6 Hours
of Exercise of Exercise No Exercise No Exercise

425.313 208.475 485.396 406.921

223.306 286.484 159.471 335.209

388.793 244.242 478.314

139.262 408.099 245.782
212.565 157.743 236.212

324.024 436.37 252.773

6-16. Exercise 6-11 describes data from an article in Human
Factors on visual accommodation from an experiment involv-
ing a high-resolution CRT screen.

Data from a second experiment using a low-resolution screen
were also reported in the article. They are 8.85, 35.80, 26.53,
64.63, 9.00, 15.38, 8.14, and 8.24. Prepare a dot diagram for this
second sample and compare it to the one for the first sample.
What can you conclude about CRT resolution in this situation?

6-17. The pH of a solution is measured eight times by one op-
erator using the same instrument. She obtains the following
data: 7.15, 7.20, 7.18, 7.19, 7.21, 7.20, 7.16, and 7.18. Calculate
the sample mean and sample standard deviation. Comment on
potential major sources of variability in this experiment.

6-18. An article in the Journal of Aircraft (1988) described
the computation of drag coefficients for the NASA 0012 
airfoil. Different computational algorithms were used at

with the following results (drag coefficients are in
units of drag counts; that is, one count is equivalent to a drag
coefficient of 0.0001): 79, 100, 74, 83, 81, 85, 82, 80, and 84.
Compute the sample mean, sample variance, and sample stan-
dard deviation, and construct a dot diagram.

6-19. The following data are the joint temperatures of the
O-rings (°F) for each test firing or actual launch of the space
shuttle rocket motor (from Presidential Commission on the
Space Shuttle Challenger Accident, Vol. 1, pp. 129–131):
84, 49, 61, 40, 83, 67, 45, 66, 70, 69, 80, 58, 68, 60, 67, 72,
73, 70, 57, 63, 70, 78, 52, 67, 53, 67, 75, 61, 70, 81, 76, 79,
75, 76, 58, 31.
(a) Compute the sample mean and sample standard deviation

and construct a dot diagram of the temperature data.
(b) Set aside the smallest observation and recompute

the quantities in part (a). Comment on your findings. How
“different” are the other temperatures from this last value?

131	F2

M
 � 0.7

6-2 STEM-AND-LEAF DIAGRAMS

The dot diagram is a useful data display for small samples, up to (say) about 20 observations.
However, when the number of observations is moderately large, other graphical displays may
be more useful.

For example, consider the data in Table 6-2. These data are the compressive strengths in
pounds per square inch (psi) of 80 specimens of a new aluminum-lithium alloy undergoing
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198 CHAPTER 6 DESCRIPTIVE STATISTICS

Table 6-2 Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens

105 221 183 186 121 181 180 143
97 154 153 174 120 168 167 141

245 228 174 199 181 158 176 110
163 131 154 115 160 208 158 133
207 180 190 193 194 133 156 123
134 178 76 167 184 135 229 146
218 157 101 171 165 172 158 169
199 151 142 163 145 171 148 158
160 175 149 87 160 237 150 135
196 201 200 176 150 170 118 149

evaluation as a possible material for aircraft structural elements. The data were recorded in the
order of testing, and in this format they do not convey much information about compressive
strength. Questions such as “What percent of the specimens fail below 120 psi?” are not easy to
answer. Because there are many observations, constructing a dot diagram of these data would
be relatively inefficient; more effective displays are available for large data sets.

A stem-and-leaf diagram is a good way to obtain an informative visual display of a data
set where each number xi consists of at least two digits. To construct a stem-
and-leaf diagram, use the following steps.

x1, x2, p , xn,

(1) Divide each number xi into two parts: a stem, consisting of one or more of the
leading digits, and a leaf, consisting of the remaining digit.

(2) List the stem values in a vertical column.

(3) Record the leaf for each observation beside its stem.

(4) Write the units for stems and leaves on the display.

Steps to Construct a
Stem-and-Leaf

Diagram

In some data sets, it may be desirable to provide more classes or stems. One way to do this
would be to modify the original stems as follows: Divide stem 5 (say) into two new stems, 5L
and 5U. Stem 5L has leaves 0, 1, 2, 3, and 4, and stem 5U has leaves 5, 6, 7, 8, and 9. This will
double the number of original stems. We could increase the number of original stems by four

To illustrate, if the data consist of percent defective information between 0 and 100 on
lots of semiconductor wafers, we can divide the value 76 into the stem 7 and the leaf 6. In gen-
eral, we should choose relatively few stems in comparison with the number of observations.
It is usually best to choose between 5 and 20 stems.

EXAMPLE 6-4 Alloy Strength
To illustrate the construction of a stem-and-leaf diagram,
consider the alloy compressive strength data in Table 6-2.
We will select as stem values the numbers 
The resulting stem-and-leaf diagram is presented in Fig. 6-4.
The last column in the diagram is a frequency count of the
number of leaves associated with each stem. Inspection of
this display immediately reveals that most of the compressive

7, 8, 9, p , 24.

strengths lie between 110 and 200 psi and that a central
value is somewhere between 150 and 160 psi. Furthermore,
the strengths are distributed approximately symmetrically
about the central value. The stem-and-leaf diagram enables
us to determine quickly some important features of the data
that were not immediately obvious in the original display in
Table 6-2.

JWCL232_c06_191-222.qxd  1/14/10  5:55 PM  Page 198



6-2 STEM-AND-LEAF DIAGRAMS 199

Stem : Tens and hundreds digits (psi); Leaf: Ones digits (psi)

by defining five new stems: 5z with leaves 0 and 1, 5t (for twos and three) with leaves 2 and 3,
5f (for fours and fives) with leaves 4 and 5, 5s (for six and seven) with leaves 6 and 7, and 5e
with leaves 8 and 9.

Figure 6-6 shows a stem-and-leaf display of the compressive strength data in Table 6-2
produced by Minitab. The software uses the same stems as in Fig. 6-4. Note also that the
computer orders the leaves from smallest to largest on each stem. This form of the plot is
usually called an ordered stem-and-leaf diagram. This is not usually done when the plot is
constructed manually because it can be time-consuming. The computer adds a column to the
left of the stems that provides a count of the observations at and above each stem in the up-
per half of the display and a count of the observations at and below each stem in the lower
half of the display. At the middle stem of 16, the column indicates the number of observa-
tions at this stem.

The ordered stem-and-leaf display makes it relatively easy to find data features such as
percentiles, quartiles, and the median. The sample median is a measure of central tendency
that divides the data into two equal parts, half below the median and half above. If the num-
ber of observations is even, the median is halfway between the two central values. From
Fig. 6-6 we find the 40th and 41st values of strength as 160 and 163, so the median is

If the number of observations is odd, the median is the central value.
The sample mode is the most frequently occurring data value. Figure 6-6 indicates that the mode
1160 � 1632�2 � 161.5.

EXAMPLE 6-5 Chemical Yield
Figure 6-5 illustrates the stem-and-leaf diagram for 25 obser-
vations on batch yields from a chemical process. In Fig. 6-5(a)
we have used 6, 7, 8, and 9 as the stems. This results in too few
stems, and the stem-and-leaf diagram does not provide much
information about the data. In Fig. 6-5(b) we have divided

each stem into two parts, resulting in a display that more
adequately displays the data. Figure 6-5(c) illustrates a stem-
and-leaf display with each stem divided into five parts. There
are too many stems in this plot, resulting in a display that does
not tell us much about the shape of the data.

Stem Leaf Frequency

7 6 1
8 7 1
9 7 1

10 5 1 2
11 5 8 0 3
12 1 0 3 3
13 4 1 3 5 3 5 6
14 2 9 5 8 3 1 6 9 8
15 4 7 1 3 4 0 8 8 6 8 0 8 12
16 3 0 7 3 0 5 0 8 7 9 10
17 8 5 4 4 1 6 2 1 0 6 10
18 0 3 6 1 4 1 0 7
19 9 6 0 9 3 4 6
20 7 1 0 8 4
21 8 1
22 1 8 9 3
23 7 1
24 5 1

Figure 6-4 Stem-
and-leaf diagram for
the compressive
strength data in Table
6-2.
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is 158; this value occurs four times, and no other value occurs as frequently in the sample. If
there were more than one value that occurred four times, the data would have multiple modes.

We can also divide data into more than two parts. When an ordered set of data is divided
into four equal parts, the division points are called quartiles. The first or lower quartile, q1,
is a value that has approximately 25% of the observations below it and approximately 75%

Character Stem-and-Leaf Display

Stem-and-leaf of Strength
N = 80 Leaf Unit = 1.0
1 7 6
2 8 7
3 9 7
5 10 1 5
8 11 0 5 8
11 12 0 1 3
17 13 1 3 3 4 5 5
25 14 1 2 3 5 6 8 9 9
37 15 0 0 1 3 4 4 6 7 8 8 8 8
(10) 16 0 0 0 3 3 5 7 7 8 9
33 17 0 1 1 2 4 4 5 6 6 8
23 18 0 0 1 1 3 4 6
16 19 0 3 4 6 9 9
10 20 0 1 7 8
6 21 8
5 22 1 8 9
2 23 7
1 24 5 

Figure 6-6 A stem-
and-leaf diagram from
Minitab.

Stem Leaf

6 1 3 4 5 5 6
7 0 1 1 3 5 7 8 8 9
8 1 3 4 4 7 8 8
9 2 3 5

(a)

Stem Leaf

6z 1
6t 3
6f 4 5 5
6s 6
6e
7z 0 1 1
7t 3
7f 5
7s 7
7e 8 8 9
8z 1
8t 3
8f 4 4
8s 7
8e 8 8
9z
9t 2 3
9f 5
9s
9e

(c)

Stem Leaf

6L 1 3 4
6U 5 5 6
7L 0 1 1 3
7U 5 7 8 8 9
8L 1 3 4 4
8U 7 8 8
9L 2 3
9U 5

(b)

Figure 6-5 Stem-
and-leaf displays for
Example 6-5. Stem:
Tens digits. Leaf: 
Ones digits.
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EXERCISES FOR SECTION 6-2

6-20. When will the median of a sample be equal to the
sample mean?

6-21. When will the median of a sample be equal to the
mode?

6-22. An article in Technometrics (Vol. 19, 1977, p. 425)
presented the following data on the motor fuel octane ratings
of several blends of gasoline: 

Construct a stem-and-leaf display for these data. Calculate the
median and quartiles of these data. Does it appear likely that a
coupon will “survive” beyond 2000 cycles? Justify your answer.

88.5
94.7
84.3
90.1
89.0
89.8
91.6
90.3
90.0
91.5
89.9

98.8
88.3
90.4
91.2
90.6
92.2
87.7
91.1
86.7
93.4
96.1

89.6
90.4
91.6
90.7
88.6
88.3
94.2
85.3
90.1
89.3
91.1

92.2
83.4
91.0
88.2
88.5
93.3
87.4
91.1
90.5

100.3
87.6

92.7
87.9
93.0
94.4
90.4
91.2
86.7
94.2
90.8
90.1
91.8

88.4
92.6
93.7
96.5
84.3
93.2
88.6
88.7
92.7
89.3
91.0

87.5
87.8
88.3
89.2
92.3
88.9
89.8
92.7
93.3
86.7
91.0

90.9
89.9
91.8
89.7
92.2

6-23. The following data are the numbers of cycles to fail-
ure of aluminum test coupons subjected to repeated alternat-
ing stress at 21,000 psi, 18 cycles per second.

Table 6-3 Summary Statistics for the Compressive Strength Data from Minitab

Variable N Mean Median StDev SE Mean
80 162.66 161.50 33.77 3.78

Min Max Q1 Q3
76.00 245.00 143.50 181.00

Construct a stem-and-leaf display for these data. Calculate the
median and quartiles of these data.

of the observations above. The second quartile, q2, has approximately 50% of the observa-
tions below its value. The second quartile is exactly equal to the median. The third or upper
quartile, q3, has approximately 75% of the observations below its value. As in the case of
the median, the quartiles may not be unique. The compressive strength data in Fig. 6-6 con-
tain observations. Minitab software calculates the first and third quartiles as the

and ordered observations and interpolates as needed, for example,
and Therefore, Minitab interpolates between the

20th and 21st ordered observation to obtain and between the 60th and 61st 
observation to obtain In general, the 100kth percentile is a data value such that
approximately of the observations are at or below this value and approximately

of them are above it. Finally, we may use the interquartile range, defined as
as a measure of variability. The interquartile range is less sensitive to the 

extreme values in the sample than is the ordinary sample range.
Many statistics software packages provide data summaries that include these quantities.

The output obtained for the compressive strength data in Table 6-2 from Minitab is shown in
Table 6-3.

IQR � q3 � q1,
10011 � k2%

100k%
q3 � 181.00.

q1 � 143.50
3180 � 12�4 � 60.75.180 � 12�4 � 20.25

31n � 12�41n � 12�4
n � 80

1115
1310
1540
1502
1258
1315
1085
798

1020

865
2130
1421
1109
1481
1567
1883
1203
1270

1015
845

1674
1016
1102
1605
706

2215
785

885
1223
375

2265
1910
1018
1452
1890
2100

1594
2023
1315
1269
1260
1888
1782
1522
1792

1000
1820
1940
1120
910

1730
1102
1578
758

1416
1560
1055
1764
1330
1608
1535
1781
1750

1501
1238
990

1468
1512
1750
1642

6-24. The percentage of cotton in material used to manu-
facture men’s shirts follows. Construct a stem-and-leaf dis-
play for the data. Calculate the median and quartiles of
these data.
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6-25. The following data represent the yield on 90 consecu-
tive batches of ceramic substrate to which a metal coating has
been applied by a vapor-deposition process. Construct a stem-
and-leaf display for these data. Calculate the median and quar-
tiles of these data.

Indonesia 101.80
Japan 946.27
Korea, North 17.43
Korea, South 303.33
Laos 3.30
Malaysia 73.63
Mongolia 2.91
Nepal 2.30
New Zealand 37.03
Pakistan 71.54
Philippines 44.48
Singapore 30.89
Sri Lanka 6.80
Taiwan 154.34
Thailand 107.34
Vietnam 36.92

Total 4393.8

6-30. The female students in an undergraduate engineer-
ing core course at ASU self-reported their heights to the
nearest inch. The data are below. Construct a stem-and-leaf
diagram for the height data and comment on any important
features that you notice. Calculate the sample mean, the
sample standard deviation, and the sample median of
height.

62 64 66 67 65 68 61 65 67 65 64 63 67
68 64 66 68 69 65 67 62 66 68 67 66 65
69 65 70 65 67 68 65 63 64 67 67

6-31. The shear strengths of 100 spot welds in a titanium
alloy follow. Construct a stem-and-leaf diagram for the weld
strength data and comment on any important features that you
notice. What is the 95th percentile of strength?

34.2
33.1
34.5
35.6
36.3
35.1
34.7
33.6

37.8
36.6
35.4
34.6
33.8
37.1
34.0
34.1

33.6
34.7
35.0
35.4
36.2
36.8
35.1
35.3

32.6
33.1
34.6
35.9
34.7
33.6
32.9
33.5

33.8
34.2
33.4
34.7
34.6
35.2
35.0
34.9

35.8
37.6
37.3
34.6
35.5
32.8
32.1
34.5

34.7
33.6
32.5
34.1
35.1
36.8
37.9
36.4

34.6
33.6
34.1
34.7
35.7
36.8
34.3
32.7

94.1
93.2
90.6
91.4
88.2
86.1
95.1
90.0
92.4
87.3
86.6
91.2

86.1
90.4
89.1
87.3
84.1
90.1
95.2
86.1
94.3
93.2
86.7
83.0

95.3
94.1
97.8
93.1
86.4
87.6
94.1
92.1
96.4
88.2
86.4
85.0

84.9
78.3
89.6
90.3
93.1
94.6
96.3
94.7
91.1
92.4
90.6
89.1

88.8
86.4
85.1
84.0
93.7
87.7
90.6
89.4
88.6
84.1
82.6
83.1

84.6
83.6
85.4
89.7
87.6
85.1
89.6
90.0
90.1
94.3
97.3
96.8

94.4
96.1
98.0
85.4
86.6
91.7
87.5
84.2
85.1
90.5
95.6
88.3

84.1
83.7
82.9
87.3
86.4
84.5

6-26. Calculate the sample median, mode, and mean of the
data in Exercise 6-22. Explain how these three measures of
location describe different features of the data.

6-27. Calculate the sample median, mode, and mean of the
data in Exercise 6-23. Explain how these three measures of
location describe different features in the data.

6-28. Calculate the sample median, mode, and mean for the
data in Exercise 6-24. Explain how these three measures of
location describe different features of the data.

6-29. The net energy consumption (in billions of kilowatt-
hours) for countries in Asia in 2003 was as follows (source: U.S.
Department of Energy Web site, http://www.eia.doe.gov/emeu).
Construct a stem-and-leaf diagram for these data and comment
on any important features that you notice. Compute the sample
mean, sample standard deviation, and sample median.

Billions of Kilowatt-Hours
Afghanistan 1.04
Australia 200.66
Bangladesh 16.20
Burma 6.88
China 1671.23
Hong Kong 38.43
India 519.04

5408 5431 5475 5442 5376 5388 5459 5422 5416 5435
5420 5429 5401 5446 5487 5416 5382 5357 5388 5457
5407 5469 5416 5377 5454 5375 5409 5459 5445 5429
5463 5408 5481 5453 5422 5354 5421 5406 5444 5466
5399 5391 5477 5447 5329 5473 5423 5441 5412 5384
5445 5436 5454 5453 5428 5418 5465 5427 5421 5396
5381 5425 5388 5388 5378 5481 5387 5440 5482 5406
5401 5411 5399 5431 5440 5413 5406 5342 5452 5420
5458 5485 5431 5416 5431 5390 5399 5435 5387 5462
5383 5401 5407 5385 5440 5422 5448 5366 5430 5418

6-32. An important quality characteristic of water is the con-
centration of suspended solid material. Following are 60 mea-
surements on suspended solids from a certain lake. Construct a
stem-and-leaf diagram for these data and comment on any im-
portant features that you notice. Compute the sample mean, the
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680 669 719 699 670 710 722 663 658 634 720 690
677 669 700 718 690 681 702 696 692 690 694 660
649 675 701 721 683 735 688 763 672 698 659 704
681 679 691 683 705 746 706 649 668 672 690 724
652 720 660 695 701 724 668 698 668 660 680 739
717 727 653 637 660 693 679 682 724 642 704 695
704 652 664 702 661 720 695 670 656 718 660 648
683 723 710 680 684 705 681 748 697 703 660 722
662 644 683 695 678 674 656 667 683 691 680 685
681 715 665 676 665 675 655 659 720 675 697 663

sample standard deviation, and the sample median. What is the
90th percentile of concentration?

6-34. A semiconductor manufacturer produces devices used
as central processing units in personal computers. The speed
of the devices (in megahertz) is important because it deter-
mines the price that the manufacturer can charge for the
devices. The following table contains measurements on 120
devices. Construct a stem-and-leaf diagram for these data and
comment on any important features that you notice. Compute
the sample mean, the sample standard deviation, and the sam-
ple median. What percentage of the devices has a speed ex-
ceeding 700 megahertz?

6-35. A group of wine enthusiasts taste-tested a pinot noir
wine from Oregon. The evaluation was to grade the wine on a 
0-to-100-point scale. The results follow. Construct a stem-and-leaf
diagram for these data and comment on any important features
that you notice. Compute the sample mean, the sample standard
deviation, and the sample median. A wine rated above 90 is con-
sidered truly exceptional. What proportion of the taste-tasters
considered this particular pinot noir truly exceptional?

94 90 92 91 91 86 89 91 91 90
90 93 87 90 91 92 89 86 89 90
88 95 91 88 89 92 87 89 95 92
85 91 85 89 88 84 85 90 90 83

6-36. In their book Introduction to Linear Regression
Analysis (4th edition, Wiley, 2006), Montgomery, Peck, and
Vining presented measurements on NbOCl3 concentration from
a tube-flow reactor experiment. The data, in gram-mole per
liter � 10�3, are as follows. Construct a stem-and-leaf dia-
gram for these data and comment on any important features
that you notice. Compute the sample mean, the sample stan-
dard deviation, and the sample median.

450 450 473 507 457 452 453 1215 1256
1145 1085 1066 1111 1364 1254 1396 1575 1617
1733 2753 3186 3227 3469 1911 2588 2635 2725

6-37. In Exercise 6-30, we presented height data that was
self-reported by female undergraduate engineering students in
a core course at ASU. In the same class, the male students self-
reported their heights as follows. Construct a comparative
stem-and-leaf diagram by listing the stems in the center of the
display and then placing the female leaves on the left and the
male leaves on the right. Comment on any important features
that you notice in this display.

69 67 69 70 65 68 69 70 71 69 66 67 69 75 68 67 68
69 70 71 72 68 69 69 70 71 68 72 69 69 68 69 73 70
73 68 69 71 67 68 65 68 68 69 70 74 71 69 70 69

42.4 65.7 29.8 58.7 52.1 55.8 57.0 68.7 67.3 67.3
54.3 54.0 73.1 81.3 59.9 56.9 62.2 69.9 66.9 59.0
56.3 43.3 57.4 45.3 80.1 49.7 42.8 42.4 59.6 65.8
61.4 64.0 64.2 72.6 72.5 46.1 53.1 56.1 67.2 70.7
42.6 77.4 54.7 57.1 77.3 39.3 76.4 59.3 51.1 73.8
61.4 73.1 77.3 48.5 89.8 50.7 52.0 59.6 66.1 31.6

261.3
258.1
254.2
257.7
237.9
255.8
241.4
244.3
241.2
254.4
256.8
255.3
255.0

259.4
270.5
270.7
272.6
274.0
260.7
260.6
272.2
251.1
232.1
273.0
266.6
273.2

265.7
255.1
233.7
253.7
264.5
245.5
280.3
248.3
267.0
271.5
240.8
250.2
251.4

270.6
268.9
263.5
262.2
244.8
279.6
272.7
278.7
273.4
242.9
276.6
255.8
276.1

274.2
267.4
244.5
252.0
264.0
237.8
261.0
236.0
247.7
273.6
264.5
285.3
277.8

261.4
253.6
251.8
280.3
268.3
278.5
260.0
271.2
254.8
256.1
264.5
255.4
266.8

254.5
234.3
259.5
274.9
272.1
273.3
279.3
279.8
272.8
251.6
226.8
240.5
268.5

283.7
263.2
257.5
233.7
260.2
263.7
252.1
245.6
270.5

6-33. The United States Golf Association tests golf balls to
ensure that they conform to the rules of golf. Balls are tested
for weight, diameter, roundness, and overall distance. The
overall distance test is conducted by hitting balls with a driver
swung by a mechanical device nicknamed “Iron Byron” after
the legendary great Byron Nelson, whose swing the machine
is said to emulate. Following are 100 distances (in yards)
achieved by a particular brand of golf ball in the overall dis-
tance test. Construct a stem-and-leaf diagram for these data
and comment on any important features that you notice.
Compute the sample mean, sample standard deviation, and
the sample median. What is the 90th percentile of distances?

6-3 FREQUENCY DISTRIBUTIONS AND HISTOGRAMS

A frequency distribution is a more compact summary of data than a stem-and-leaf dia-
gram. To construct a frequency distribution, we must divide the range of the data into inter-
vals, which are usually called class intervals, cells, or bins. If possible, the bins should be
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Table 6-4 Frequency Distribution for the Compressive Strength Data in Table 6-2

Class 70 � x � 90 90 � x � 110 110 � x � 130 130 � x � 150 150 � x � 170 170 � x � 190 190 � x � 210 210 � x � 230 230 � x � 250

Frequency 2 3 6 14 22 17 10 4 2

Relative 

frequency 0.0250 0.0375 0.0750 0.1750 0.2750 0.2125 0.1250 0.0500 0.0250

Cumulative

relative 

frequency 0.0250 0.0625 0.1375 0.3125 0.5875 0.8000 0.9250 0.9750 1.0000

(1) Label the bin (class interval) boundaries on a horizontal scale.
(2) Mark and label the vertical scale with the frequencies or the relative

frequencies.
(3) Above each bin, draw a rectangle where height is equal to the frequency 

(or relative frequency) corresponding to that bin.

Constructing a
Histogram (Equal

Bin Widths)

of equal width in order to enhance the visual information in the frequency distribution.
Some judgment must be used in selecting the number of bins so that a reasonable display
can be developed. The number of bins depends on the number of observations and the
amount of scatter or dispersion in the data. A frequency distribution that uses either too few
or too many bins will not be informative. We usually find that between 5 and 20 bins is sat-
isfactory in most cases and that the number of bins should increase with n. There are several
sets of rules that can be used to determine the member of bins in a histogram. However,
choosing the number of bins approximately equal to the square root of the number of ob-
servations often works well in practice.

A frequency distribution for the comprehensive strength data in Table 6-2 is shown in
Table 6-4. Since the data set contains 80 observations, and since , we suspect that
about eight to nine bins will provide a satisfactory frequency distribution. The largest and
smallest data values are 245 and 76, respectively, so the bins must cover a range of at least
245 � 76 � 169 units on the psi scale. If we want the lower limit for the first bin to begin
slightly below the smallest data value and the upper limit for the last bin to be slightly above
the largest data value, we might start the frequency distribution at 70 and end it at 250. This is 
an interval or range of 180 psi units. Nine bins, each of width 20 psi, give a reasonable
frequency distribution, so the frequency distribution in Table 6-4 is based on nine bins.

The second row of Table 6-4 contains a relative frequency distribution. The relative
frequencies are found by dividing the observed frequency in each bin by the total number of
observations. The last row of Table 6-4 expresses the relative frequencies on a cumulative ba-
sis. Frequency distributions are often easier to interpret than tables of data. For example, from
Table 6-4 it is very easy to see that most of the specimens have compressive strengths between
130 and 190 psi and that 97.5 percent of the specimens fail below 230 psi.

The histogram is a visual display of the frequency distribution. The steps for construct-
ing a histogram follow.

180 � 9

Figure 6-7 is the histogram for the compression strength data. The histogram, like the stem-
and-leaf diagram, provides a visual impression of the shape of the distribution of the meas-
urements and information about the central tendency and scatter or dispersion in the data.
Notice the symmetric, bell-shaped distribution of the strength measurements in Fig. 6-7. This
display often gives insight about possible choices of probability distributions to use as a model
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Figure 6-9 A histogram of the compressive strength
data from Minitab with nine bins.

for the population. For example, here we would likely conclude that the normal distribution is
a reasonable model for the population of compression strength measurements.

Sometimes a histogram with unequal bin widths will be employed. For example, if the
data have several extreme observations or outliers, using a few equal-width bins will result
in nearly all observations falling in just a few of the bins. Using many equal-width bins will
result in many bins with zero frequency. A better choice is to use shorter intervals in the region
where most of the data falls and a few wide intervals near the extreme observations. When the
bins are of unequal width, the rectangle’s area (not its height) should be proportional to the
bin frequency. This implies that the rectangle height should be 

In passing from either the original data or stem-and-leaf diagram to a frequency distribu-
tion or histogram, we have lost some information because we no longer have the individual ob-
servations. However, this information loss is often small compared with the conciseness
and ease of interpretation gained in using the frequency distribution and histogram.

Figure 6-8 shows a histogram of the compressive strength data from Minitab with 17 bins.
We have noted that histograms may be relatively sensitive to the number of bins and their
width. For small data sets, histograms may change dramatically in appearance if the number
and/or width of the bins changes. Histograms are more stable for larger data sets, preferably of
size 75 to 100 or more. Figure 6-9 shows the Minitab histogram for the compressive strength

Rectangle height �
bin frequency

bin width

Figure 6-8 A histogram of the compressive strength
data from Minitab with 17 bins.
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Figure 6-7 Histogram
of compressive strength
for 80 aluminum-
lithium alloy
specimens.
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Figure 6-10 A
cumulative distribution
plot of the compressive
strength data from
Minitab.
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data with nine bins. This used Minitab’s default setting and the result is similar to the original
histogram shown in Fig. 6-7. Since the number of observations is moderately large (n � 80),
the choice of the number of bins is not especially important, and both Figs. 6-8 and 6-9 con-
vey similar information.

Figure 6-10 shows a variation of the histogram available in Minitab, the cumulative fre-
quency plot. In this plot, the height of each bar is the total number of observations that are less
than or equal to the upper limit of the bin. Cumulative distributions are also useful in data in-
terpretation; for example, we can read directly from Fig. 6-10 that there are approximately 70
observations less than or equal to 200 psi.

When the sample size is large, the histogram can provide a reasonably reliable indicator
of the general shape of the distribution or population of measurements from which the sample
was drawn. Figure 6-11 presents three cases. The median is denoted as . Generally, if the data
are symmetric, as in Fig. 6-11(b), the mean and median coincide. If, in addition, the data have
only one mode (we say the data are unimodal), the mean, median, and mode all coincide. If the
data are skewed (asymmetric, with a long tail to one side), as in Fig. 6-11(a) and (c), the mean,
median, and mode do not coincide. Usually, we find that if the
distribution is skewed to the right, whereas if the distribution is
skewed to the left.

Frequency distributions and histograms can also be used with qualitative or categorical
data. In some applications there will be a natural ordering of the categories (such as freshman,
sophomore, junior, and senior), whereas in others the order of the categories will be arbitrary
(such as male and female). When using categorical data, the bins should have equal width.

mode 
 median 
 mean
mode � median � mean

x~

EXAMPLE 6-6
Figure 6-12 on the next page presents the production of trans-
port aircraft by the Boeing Company in 1985. Notice that the

737 was the most popular model, followed by the 757, 747,
767, and 707.

x x

Negative or left skew
(a)

Symmetric
(b)

Positive or right skew
(c)

�

x�
x�x xFigure 6-11

Histograms for sym-
metric and skewed
distributions.
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A chart of occurrences by category (in which the categories are ordered by the number of
occurrences) is sometimes referred to as a Pareto chart. An exercise asks you to construct
such a chart.

In this section we have concentrated on descriptive methods for the situation in which each
observation in a data set is a single number or belongs to one category. In many cases, we work
with data in which each observation consists of several measurements. For example, in a gaso-
line mileage study, each observation might consist of a measurement of miles per gallon, the size
of the engine in the vehicle, engine horsepower, vehicle weight, and vehicle length. This is an ex-
ample of multivariate data. In later chapters, we will discuss analyzing this type of data.

6-38. Construct a frequency distribution and histogram for
the motor fuel octane data from Exercise 6-22. Use eight bins.

6-39. Construct a frequency distribution and histogram us-
ing the failure data from Exercise 6-23.

6-40. Construct a frequency distribution and histogram for
the cotton content data in Exercise 6-24.

6-41. Construct a frequency distribution and histogram for
the yield data in Exercise 6-25.

6-42. Construct frequency distributions and histograms
with 8 bins and 16 bins for the motor fuel octane data in
Exercise 6-22. Compare the histograms. Do both histograms
display similar information?

6-43. Construct histograms with 8 and 16 bins for the
data in Exercise 6-23. Compare the histograms. Do both his-
tograms display similar information?

6-44. Construct histograms with 8 and 16 bins for the data
in Exercise 6-24. Compare the histograms. Do both his-
tograms display similar information?

6-45. Construct a histogram for the energy consumption
data in Exercise 6-29.

6-46. Construct a histogram for the female student height
data in Exercise 6-30.

6-47. Construct a histogram for the spot weld shear strength
data in Exercise 6-31. Comment on the shape of the his-
togram. Does it convey the same information as the stem-and-
leaf display?

6-48. Construct a histogram for the water quality data in
Exercise 6-32. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?

6-49. Construct a histogram for the overall golf distance data
in Exercise 6-33. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?

6-50. Construct a histogram for the semiconductor speed data
in Exercise 6-34. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?

6-51. Construct a histogram for the pinot noir wine rating data
in Exercise 6-35. Comment on the shape of the histogram. Does
it convey the same information as the stem-and-leaf display?

6-52. The Pareto Chart. An important variation of a his-
togram for categorical data is the Pareto chart. This chart is
widely used in quality improvement efforts, and the categories
usually represent different types of defects, failure modes, or
product/process problems. The categories are ordered so that
the category with the largest frequency is on the left, followed
by the category with the second largest frequency, and so forth.
These charts are named after the Italian economist V. Pareto,
and they usually exhibit “Pareto’s law”; that is, most of the
defects can be accounted for by only a few categories. Suppose
that the following information on structural defects in automo-
bile doors is obtained: dents, 4; pits, 4; parts assembled out of
sequence, 6; parts undertrimmed, 21; missing holes/slots, 8;
parts not lubricated, 5; parts out of contour, 30; and parts not
deburred, 3. Construct and interpret a Pareto chart.

EXERCISES FOR SECTION 6-3

Figure 6-12
Airplane production in
1985. (Source: Boeing
Company.)
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Whisker extends to
smallest data point within
1.5 interquartile ranges from 
first quartile

First quartile Second quartile Third quartile

Whisker extends to
largest data point within
1.5 interquartile ranges 
from third quartile

IIQR1.5 IIQR 1.5 IIQR 1.5 IIQR 1.5 IIQR

Outliers Outliers Extreme outlier
Figure 6-13 Descrip-
tion of a box plot.

6-4 BOX PLOTS

The stem-and-leaf display and the histogram provide general visual impressions about a data
set, while numerical quantities such as or s provide information about only one feature of
the data. The box plot is a graphical display that simultaneously describes several important
features of a data set, such as center, spread, departure from symmetry, and identification of
unusual observations or outliers.

A box plot displays the three quartiles, the minimum, and the maximum of the data on a rec-
tangular box, aligned either horizontally or vertically. The box encloses the interquartile range with
the left (or lower) edge at the first quartile, q1, and the right (or upper) edge at the third quartile, q3.
A line is drawn through the box at the second quartile (which is the 50th percentile or the median),

A line, or whisker, extends from each end of the box. The lower whisker is a line from the
first quartile to the smallest data point within 1.5 interquartile ranges from the first quartile. The
upper whisker is a line from the third quartile to the largest data point within 1.5 interquartile
ranges from the third quartile. Data farther from the box than the whiskers are plotted as individ-
ual points. A point beyond a whisker, but less than three interquartile ranges from the box edge, is
called an outlier. A point more than three interquartile ranges from the box edge is called an
extreme outlier. See Fig. 6-13. Occasionally, different symbols, such as open and filled circles, are
used to identify the two types of outliers. Sometimes box plots are called box-and-whisker plots.

Figure 6-14 presents the box plot from Minitab for the alloy compressive strength data
shown in Table 6-2. This box plot indicates that the distribution of compressive strengths is
fairly symmetric around the central value, because the left and right whiskers and the lengths
of the left and right boxes around the median are about the same. There are also two mild out-
liers at lower strength and one at higher strength. The upper whisker extends to observation
237 because it is the greatest observation below the limit for upper outliers. This limit is

The lower whisker extends to observation 97q3 � 1.5IQR � 181 � 1.51181 � 143.52 � 237.25.
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Figure 6-14 Box
plot for compressive
strength data in 
Table 6-2.
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6-53. The “cold start ignition time” of an automobile engine
is being investigated by a gasoline manufacturer. The follow-
ing times (in seconds) were obtained for a test vehicle: 1.75,
1.92, 2.62, 2.35, 3.09, 3.15, 2.53, 1.91.
(a) Calculate the sample mean, sample variance, and sample

standard deviation.
(b) Construct a box plot of the data.

6-54. An article in Transactions of the Institution of
Chemical Engineers (Vol. 34, 1956, pp. 280–293) reported
data from an experiment investigating the effect of several
process variables on the vapor phase oxidation of naphtha-
lene. A sample of the percentage mole conversion of naphtha-
lene to maleic anhydride follows: 4.2, 4.7, 4.7, 5.0, 3.8, 3.6,
3.0, 5.1, 3.1, 3.8, 4.8, 4.0, 5.2, 4.3, 2.8, 2.0, 2.8, 3.3, 4.8, 5.0.
(a) Calculate the sample mean, sample variance, and sample

standard deviation.
(b) Construct a box plot of the data.

6-55. The nine measurements that follow are furnace tem-
peratures recorded on successive batches in a semiconductor
manufacturing process (units are ): 953, 950, 948, 955, 951,
949, 957, 954, 955.
(a) Calculate the sample mean, sample variance, and standard

deviation.
(b) Find the median. How much could the largest temperature

measurement increase without changing the median value?
(c) Construct a box plot of the data.

	F

6-56. Exercise 6-18 presents drag coefficients for the
NASA 0012 airfoil. You were asked to calculate the sample
mean, sample variance, and sample standard deviation of
those coefficients.
(a) Find the median and the upper and lower quartiles of the

drag coefficients.
(b) Construct a box plot of the data.
(c) Set aside the largest observation (100) and rework parts

(a) and (b). Comment on your findings.

6-57. Exercise 6-19 presented the joint temperatures of
the O-rings (°F) for each test firing or actual launch of the
space shuttle rocket motor. In that exercise you were asked
to find the sample mean and sample standard deviation of
temperature.
(a) Find the median and the upper and lower quartiles of 

temperature.
(b) Set aside the smallest observation ( and recompute 

the quantities in part (a). Comment on your findings. How
“different” are the other temperatures from this smallest
value?

(c) Construct a box plot of the data and comment on the pos-
sible presence of outliers.

6-58. Reconsider the motor fuel octane rating data in
Exercise 6-20. Construct a box plot of the data and write an
interpretation of the plot. How does the box plot compare in in-
terpretive value to the original stem-and-leaf diagram?

31	F2

EXERCISES FOR SECTION 6-4

because it is the smallest observation above the limit for lower outliers. This limit is
.

Box plots are very useful in graphical comparisons among data sets, because they have
high visual impact and are easy to understand. For example, Fig. 6-15 shows the comparative
box plots for a manufacturing quality index on semiconductor devices at three manufacturing
plants. Inspection of this display reveals that there is too much variability at plant 2 and that
plants 2 and 3 need to raise their quality index performance.

q1 � 1.5IQR � 143.5 � 1.51181 � 143.52 � 87.25

Figure 6-15
Comparative box
plots of a quality in-
dex at three plants.
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6-59. Reconsider the energy consumption data in Exercise
6-29. Construct a box plot of the data and write an interpreta-
tion of the plot. How does the box plot compare in interpretive
value to the original stem-and-leaf diagram?

6-60. Reconsider the water quality data in Exercise 6-32.
Construct a box plot of the concentrations and write an interpre-
tation of the plot. How does the box plot compare in interpretive
value to the original stem-and-leaf diagram?

6-61. Reconsider the weld strength data in Exercise 6-31.
Construct a box plot of the data and write an interpretation of
the plot. How does the box plot compare in interpretive value
to the original stem-and-leaf diagram?

6-62. Reconsider the semiconductor speed data in Exercise 
6-34. Construct a box plot of the data and write an interpretation
of the plot. How does the box plot compare in interpretive value
to the original stem-and-leaf diagram?

6-63. Use the data on heights of female and male engineer-
ing students from Exercises 6-30 and 6-37 to construct
comparative box plots. Write an interpretation of the informa-
tion that you see in these plots.

6-64. In Exercise 6-53, data were presented on the cold start
ignition time of a particular gasoline used in a test vehicle. A
second formulation of the gasoline was tested in the same ve-
hicle, with the following times (in seconds): 1.83, 1.99, 3.13,
3.29, 2.65, 2.87, 3.40, 2.46, 1.89, and 3.35. Use these new data
along with the cold start times reported in Exercise 6-53 to
construct comparative box plots. Write an interpretation of the
information that you see in these plots.

6-65. An article in Nature Genetics [“Treatment-specific
Changes in Gene Expression Discriminate in Vivo Drug
Response In Human Leukemia Cells” (2003, Vol. 34(1),
pp. 85–90)] studied gene expression as a function of treatments

210 CHAPTER 6 DESCRIPTIVE STATISTICS

for leukemia. One group received a high dose of the drug while
the control group received no treatment. Expression data (mea-
sures of gene activity) from one gene are shown in the follow-
ing table. Construct a box plot for each group of patients. Write
an interpretation to compare the information in these plots.

Gene Expression

High Dose Control Control Control

16.1 297.1 820.1 166.5
134.9 491.8 82.5 2258.4
52.7 1332.9 713.9 497.5
14.4 1172 785.6 263.4

124.3 1482.7 114 252.3
99 335.4 31.9 351.4
24.3 528.9 86.3 678.9
16.3 24.1 646.6 3010.2
15.2 545.2 169.9 67.1
47.7 92.9 20.2 318.2
12.9 337.1 280.2 2476.4
72.7 102.3 194.2 181.4

126.7 255.1 408.4 2081.5
46.4 100.5 155.5 424.3
60.3 159.9 864.6 188.1
23.5 168 355.4 563
43.6 95.2 634 149.1
79.4 132.5 2029.9 2122.9
38 442.6 362.1 1295.9
58.2 15.8
26.5 175.6
25.1 131.1

6-5 TIME SEQUENCE PLOTS

The graphical displays that we have considered thus far such as histograms, stem-and-leaf
plots, and box plots are very useful visual methods for showing the variability in data.
However, we noted in Chapter 1 that time is an important factor that contributes to variability
in data, and those graphical methods do not take this into account. A time series or time se-
quence is a data set in which the observations are recorded in the order in which they occur.
A time series plot is a graph in which the vertical axis denotes the observed value of the vari-
able (say, x) and the horizontal axis denotes the time (which could be minutes, days, years, etc.).
When measurements are plotted as a time series, we often see trends, cycles, or other broad
features of the data that could not be seen otherwise.

For example, consider Fig. 6-16(a), which presents a time series plot of the annual sales
of a company for the last 10 years. The general impression from this display is that sales show
an upward trend. There is some variability about this trend, with some years’ sales increasing
over those of the last year and some years’ sales decreasing. Figure 6-16(b) shows the last
three years of sales reported by quarter. This plot clearly shows that the annual sales in this
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6-5 TIME SEQUENCE PLOTS 211

Figure 6-17 A digidot plot of the compressive strength data in Table 6-2.
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Figure 6-16 Company sales by year (a) and by quarter (b).

business exhibit a cyclic variability by quarter, with the first- and second-quarter sales being
generally greater than sales during the third and fourth quarters.

Sometimes it can be very helpful to combine a time series plot with some of the other
graphical displays that we have considered previously. J. Stuart Hunter (The American
Statistician, Vol. 42, 1988, p. 54) has suggested combining the stem-and-leaf plot with a time
series plot to form a digidot plot.

Figure 6-17 shows a digidot plot for the observations on compressive strength from
Table 6-2, assuming that these observations are recorded in the order in which they
occurred. This plot effectively displays the overall variability in the compressive strength
data and simultaneously shows the variability in these measurements over time. The general
impression is that compressive strength varies around the mean value of 162.66, and there
is no strong obvious pattern in this variability over time.
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6-66. The following data are the viscosity measurements
for a chemical product observed hourly (read down, then left
to right). Construct and interpret either a digidot plot or a sep-
arate stem-and-leaf and time series plot of these data.
Specifications on product viscosity are at 48 � 2. What con-
clusions can you make about process performance?

Figure 6-18 A digi-
dot plot of chemical
process concentration
readings, observed
hourly.
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6-68. In their book Time Series Analysis, Forecasting, and
Control (Prentice Hall, 1994), G. E. P. Box, G. M. Jenkins,
and G. C. Reinsel present chemical process concentration
readings made every two hours. Some of these data follow
(read down, then left to right).

17.0 16.7 17.1 17.5 17.6
16.6 17.4 17.4 18.1 17.5
16.3 17.2 17.4 17.5 16.5
16.1 17.4 17.5 17.4 17.8
17.1 17.4 17.4 17.4 17.3
16.9 17.0 17.6 17.1 17.3
16.8 17.3 17.4 17.6 17.1
17.4 17.2 17.3 17.7 17.4
17.1 17.4 17.0 17.4 16.9
17.0 16.8 17.8 17.8 17.3

Construct and interpret either a digidot plot or a stem-and-
leaf plot of these data. 

6-69. The 100 annual Wolfer sunspot numbers from 1770
to 1869 follow. (For an interesting analysis and interpreta-
tion of these numbers, see the book by Box, Jenkins, and
Reinsel referenced in Exercise 6-68. Their analysis requires
some advanced knowledge of statistics and statistical model
building.) Read down, then left to right. The 1869 result is
74. Construct and interpret either a digidot plot or a stem-
and-leaf and time series plot of these data.

47.9
47.9
48.6
48.0
48.4
48.1
48.0

48.6
48.8
48.1
48.3
47.2
48.9
48.6

48.0
47.5
48.6
48.0
47.9
48.3
48.5

48.1
48.0
48.3
43.2
43.0
43.5
43.1

43.0
42.9
43.6
43.3
43.0
42.8
43.1

43.2
43.6
43.2
43.5
43.0

6-67. The pull-off force for a connector is measured in a
laboratory test. Data for 40 test specimens follow (read
down, then left to right). Construct and interpret either a
digidot plot or a separate stem-and-leaf and time series plot
of the data.

241
258
237
210
194
225
248

203
195
249
220
194
245
209

201
195
255
245
235
220
249

251
238
210
198
199
183
213

236
245
209
212
185
187
218

190
175
178
175
190

The digidot plot in Fig. 6-18 tells a different story. This plot summarizes 30 observations on
concentration of the output product from a chemical process, where the observations are recorded
at one-hour time intervals. This plot indicates that during the first 20 hours of operation this
process produced concentrations generally above 85 grams per liter, but that following sample 20,
something may have occurred in the process that resulted in lower concentrations. If this variabil-
ity in output product concentration can be reduced, operation of this process can be improved.
Notice that this apparent change in the process output is not seen in the  stem-and-leaf portion of
the digidot plot. The stem-and-leaf plot compresses the time dimension out of the data. This illus-
trates why it is always important to construct a time series plot for time-oriented data. 
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6-70. In their book Introduction to Time Series Analysis
and Forecasting, (Wiley, 2008), Montgomery, Jennings, and
Kolahci presented the data in Table 6-5, which are the monthly
total passenger airline miles flown in the United Kingdom
from 1964 to 1970 (in millions of miles). Comment on any
features of the data that are apparent. Construct and interpret
either a digidot plot or a separate stem-and-leaf and time series
plot of these data.

6-71. The following table shows the number of earthquakes
per year of magnitude 7.0 and greater since 1900 (source:
Earthquake Data Base System of the U.S. Geological Survey,
National Earthquake Information Center, Golden, Colorado).

1900 13 1904 16 1908 18 1912 22
1901 14 1905 26 1909 32 1913 23
1902 8 1906 32 1910 36 1914 22
1903 10 1907 27 1911 24 1915 18

101
82
66
35

31
7

20
92

154
125
85
68

38
23
10
24

83
132
131
118

90
67
60
47

41
21
16
6
4
7

14
34
45
43
48
42
28

10
8
2
0
1
5

12
14
35
46
41
30
24

16
7
4
2
8

17
36
50
62
67
71
48
28

8
13
57

122
138
103
86
63
37
24
11
15
40

62
98

124
96
66
64
54
39
21
7
4

23
55

94
96
77
59
44
47
30
16
7

37
74

Table 6-5 United Kingdom Passenger Airline Miles Flown

Month 1964 1965 1966 1967 1968 1969 1970

Jan. 7.269 8.350 8.186 8.334 8.639 9.491 10.840
Feb. 6.775 7.829 7.444 7.899 8.772 8.919 10.436
Mar. 7.819 8.829 8.484 9.994 10.894 11.607 13.589
Apr. 8.371 9.948 9.864 10.078 10.455 8.852 13.402
May 9.069 10.638 10.252 10.801 11.179 12.537 13.103
June 10.248 11.253 12.282 12.953 10.588 14.759 14.933
July 11.030 11.424 11.637 12.222 10.794 13.667 14.147
Aug. 10.882 11.391 11.577 12.246 12.770 13.731 14.057
Sept. 10.333 10.665 12.417 13.281 13.812 15.110 16.234
Oct. 9.109 9.396 9.637 10.366 10.857 12.185 12.389
Nov. 7.685 7.775 8.094 8.730 9.290 10.645 11.594
Dec. 7.682 7.933 9.280 9.614 10.925 12.161 12.772

1916 25 1942 27 1968 30 1994 13
1917 21 1943 41 1969 27 1995 20
1918 21 1944 31 1970 29 1996 15
1919 14 1945 27 1971 23 1997 16
1920 8 1946 35 1972 20 1998 12
1921 11 1947 26 1973 16 1999 18
1922 14 1948 28 1974 21 2000 15
1923 23 1949 36 1975 21 2001 16
1924 18 1950 39 1976 25 2002 13
1925 17 1951 21 1977 16 2003 15
1926 19 1952 17 1978 18 2004 16
1927 20 1953 22 1979 15 2005 11
1928 22 1954 17 1980 18 2006 11
1929 19 1955 19 1981 14 2007 18
1930 13 1956 15 1982 10 2008 12
1931 26 1957 34 1983 15 2009 15
1932 13 1958 10 1984 8
1933 14 1959 15 1985 15
1934 22 1960 22 1986 6
1935 24 1961 18 1987 11
1936 21 1962 15 1988 8
1937 22 1963 20 1989 7
1938 26 1964 15 1990 18
1939 21 1965 22 1991 16
1940 23 1966 19 1992 13
1941 24 1967 16 1993 12

Construct and interpret either a digidot plot or a separate stem-
and-leaf and time series plot of these data.

6-72. The following table shows U.S. petroleum imports,
imports as a percentage of total, and Persian Gulf imports as a
percentage of all imports by year since 1973 (source: U.S.
Department of Energy Web site, http://www.eia.doe.gov/).
Construct and interpret either a digidot plot or a separate stem-
and-leaf and time series plot for each column of data.
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Total Petroleum Petroleum Imports
Petroleum Imports Imports as Percent from Persian Gulf
(thousand barrels of Petroleum as Percent of Total  

Year per day) Products Supplied Petroleum Imports

1973 6256 36.1 13.5
1974 6112 36.7 17.0
1975 6055 37.1 19.2
1976 7313 41.8 25.1
1977 8807 47.7 27.8
1978 8363 44.3 26.5
1979 8456 45.6 24.4
1980 6909 40.5 21.9
1981 5996 37.3 20.3
1982 5113 33.4 13.6
1983 5051 33.1 8.7
1984 5437 34.5 9.3
1985 5067 32.2 6.1
1986 6224 38.2 14.6
1987 6678 40.0 16.1
1988 7402 42.8 20.8
1989 8061 46.5 23.0
1990 8018 47.1 24.5
1991 7627 45.6 24.1
1992 7888 46.3 22.5
1993 8620 50.0 20.6
1994 8996 50.7 19.2
1995 8835 49.8 17.8
1996 9478 51.7 16.9
1997 10,162 54.5 17.2
1998 10,708 56.6 19.9
1999 10,852 55.5 22.7
2000 11,459 58.1 21.7
2001 11,871 60.4 23.2
2002 11,530 58.3 19.6
2003 12,264 61.2 20.3
2004 13,145 63.4 18.9
2005 13,714 65.9 17.0
2006 13,707 66.3 16.1
2007 13,468 65.1 16.1
2008 12,915 66.2 18.4

6-6 PROBABILITY PLOTS

How do we know if a particular probability distribution is a reasonable model for data?
Sometimes this is an important question, because many of the statistical techniques presented
in subsequent chapters are based on an assumption that the population distribution is of a spe-
cific type. Thus, we can think of determining whether data come from a specific probability
distribution as verifying assumptions. In other cases, the form of the distribution can give
insight into the underlying physical mechanism generating the data. For example, in reliability
engineering, verifying that time-to-failure data come from an exponential distribution identifies
the failure mechanism in the sense that the failure rate is constant with respect to time.

JWCL232_c06_191-222.qxd  1/15/10  1:16 AM  Page 214



6-6 PROBABILITY PLOTS 215

Some of the visual displays we have used earlier, such as the histogram, can provide
insight about the form of the underlying distribution. However, histograms are usually not
really reliable indicators of the distribution form unless the sample size is very large. A
probability plot is a graphical method for determining whether sample data conform to a
hypothesized distribution based on a subjective visual examination of the data. The general
procedure is very simple and can be performed quickly. It is also more reliable than the his-
togram for small- to moderate-size samples. Probability plotting typically uses special axes
that have been scaled for the hypothesized distribution. Software is widely available for the
normal, lognormal, Weibull, and various chi-square and gamma distributions. We focus pri-
marily on normal probability plots because many statistical techniques are appropriate only
when the population is (at least approximately) normal.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample is arranged as where 

is the smallest observation, x(2) is the second-smallest observation, and so forth, with x(n)

the largest. The ordered observations x( j) are then plotted against their observed cumulative
frequency ( j � 0.5)�n on the appropriate probability paper. If the hypothesized distribution
adequately describes the data, the plotted points will fall approximately along a straight line;
if the plotted points deviate significantly from a straight line, the hypothesized model is not ap-
propriate. Usually, the determination of whether or not the data plot as a straight line is sub-
jective. The procedure is illustrated in the following example.

x112

x112, x122, p , x1n2,x1, x2, p , xn

Table 6-6 Calculation for Constructing a Normal 
Probability Plot

j zj

1 176 0.05 �1.64
2 183 0.15 �1.04
3 185 0.25 �0.67
4 190 0.35 �0.39
5 191 0.45 �0.13
6 192 0.55 0.13
7 201 0.65 0.39
8 205 0.75 0.67
9 214 0.85 1.04

10 220 0.95 1.64

1 j � 0.52�10x1 j 2
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Figure 6-19 Normal probability plot for battery life.

EXAMPLE 6-7 Battery Life
Ten observations on the effective service life in minutes of
batteries used in a portable personal computer are as follows:
176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a nor-
mal distribution. To use probability plotting to investigate this
hypothesis, first arrange the observations in ascending order
and calculate their cumulative frequencies as
shown in Table 6-6.

The pairs of values and are now plotted
on normal probability axes. This plot is shown in Fig. 6-19.

1 j � 0.52�10x1 j 2

1 j � 0.52�10

Most normal probability plots have on the left
vertical scale and (sometimes) on the
right vertical scale, with the variable value plotted on the hori-
zontal scale. A straight line, chosen subjectively, has been
drawn through the plotted points. In drawing the straight line,
you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to
draw the line approximately between the 25th and 75th per-
centile points. This is how the line in Fig. 6-19 was determined.
In assessing the “closeness” of the points to the straight line,

100 31 � 1 j � 0.52�n 4
1001 j � 0.52�n
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A normal probability plot can also be constructed on ordinary axes by plotting the stan-
dardized normal scores zj against x( j), where the standardized normal scores satisfy

For example, if implies that To illustrate,
consider the data from Example 6-4. In the last column of Table 6-6 we show the standardized
normal scores. Figure 6-20 presents the plot of versus This normal probability plot is
equivalent to the one in Fig. 6-19.

We have constructed our probability plots with the probability scale (or the z-scale) on the
vertical axis. Some computer packages “flip” the axis and put the probability scale on the hor-
izontal axis.

The normal probability plot can be useful in identifying distributions that are symmetric
but that have tails that are “heavier” or “lighter” than the normal. They can also be useful in
identifying skewed distributions. When a sample is selected from a light-tailed distribution
(such as the uniform distribution), the smallest and largest observations will not be as extreme
as would be expected in a sample from a normal distribution. Thus, if we consider the straight
line drawn through the observations at the center of the normal probability plot, observations
on the left side will tend to fall below the line, whereas observations on the right side will tend
to fall above the line. This will produce an S-shaped normal probability plot such as shown in
Fig. 6-21(a). A heavy-tailed distribution will result in data that also produce an S-shaped nor-
mal probability plot, but now the observations on the left will be above the straight line and the
observations on the right will lie below the line. See Fig. 6-19(b). A positively skewed distri-
bution will tend to produce a pattern such as shown in Fig. 6-19(c), where points on both ends
of the plot tend to fall below the line, giving a curved shape to the plot. This occurs because
both the smallest and the largest observations from this type of distribution are larger than
expected in a sample from a normal distribution.

Even when the underlying population is exactly normal, the sample data will not plot
exactly on a straight line. Some judgment and experience are required to evaluate the plot.
Generally, if the sample size is n � 30, there can be a lot of deviation from linearity in normal

x1 j2.zj

zj � �1.64.1 j � 0.52�n � 0.05, �1zj2 � 0.05

j � 0.5
n � P1Z � zj2 � �1zj2

180
–3.30

0

1.65

3.30

–1.65

190 200 210 220170

x( j )

zj

Figure 6-20 Normal
probability plot
obtained from
standardized normal
scores.

imagine a “fat pencil” lying along the line. If all the points are
covered by this imaginary pencil, a normal distribution ade-
quately describes the data. Since the points in Fig. 6-19 would

pass the “fat pencil” test, we conclude that the normal distri-
bution is an appropriate model.
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(a)

–3.30
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(b) (c)

Figure 6-21 Normal probability plots indicating a nonnormal distribution. (a) Light-tailed distribution. (b) Heavy-tailed
distribution. (c) A distribution with positive (or right) skew.

plots, so in these cases only a very severe departure from linearity should be interpreted as a
strong indication of nonnormality. As n increases, the linear pattern will tend to become
stronger, and the normal probability plot will be easier to interpret and more reliable as an
indicator of the form of the distribution.

EXERCISES FOR SECTION 6-6

6-73. Construct a normal probability plot of the piston ring
diameter data in Exercise 6-7. Does it seem reasonable to
assume that piston ring diameter is normally distributed?

6-74. Construct a normal probability plot of the insulating
fluid breakdown time data in Exercise 6-8. Does it seem
reasonable to assume that breakdown time is normally
distributed?

6-75. Construct a normal probability plot of the visual
accommodation data in Exercise 6-11. Does it seem reasonable
to assume that visual accommodation is normally distributed?

6-76. Construct a normal probability plot of the solar inten-
sity data in Exercise 6-12. Does it seem reasonable to assume
that solar intensity is normally distributed?

6-77. Construct a normal probability plot of the O-ring joint
temperature data in Exercise 6-19. Does it seem reasonable to
assume that O-ring joint temperature is normally distributed?
Discuss any interesting features that you see on the plot.

6-78. Construct a normal probability plot of the octane rat-
ing data in Exercise 6-22. Does it seem reasonable to assume
that octane rating is normally distributed?

6-79. Construct a normal probability plot of the cycles to
failure data in Exercise 6-23. Does it seem reasonable to as-
sume that cycles to failure is normally distributed?

6-80. Construct a normal probability plot of the sus-
pended solids concentration data in Exercise 6-32. Does it
seem reasonable to assume that the concentration of
suspended solids in water from this particular lake is
normally distributed?

6-81. Construct two normal probability plots for the
height data in Exercises 6-30 and 6-37. Plot the data for
female and male students on the same axes. Does height
seem to be normally distributed for either group of students?
If both populations have the same variance, the two normal
probability plots should have identical slopes. What conclu-
sions would you draw about the heights of the two groups of
students from visual examination of the normal probability
plots?

6-82. It is possible to obtain a “quick and dirty” estimate of
the mean of a normal distribution from the fiftieth percentile
value on a normal probability plot. Provide an argument why
this is so. It is also possible to obtain an estimate of the stan-
dard deviation of a normal distribution by subtracting the
eighty-fourth percentile value from the fiftieth percentile
value. Provide an argument why this is so.

Supplemental Exercises

6-83. The National Oceanic and Atmospheric Admin-
istration provided the monthly absolute estimates of global
(land and ocean combined) temperature index (degrees C)
from 2000. Read January to December from left to right
(source: http://www.ncdc.noaa.gov/oa/climate/research/anom-
alies/anomalies.html). Construct and interpret either a digidot
plot or a separate stem-and-leaf and time series plot of these
data.
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6-84. The concentration of a solution is measured six times by
one operator using the same instrument. She obtains the follow-
ing data: 63.2, 67.1, 65.8, 64.0, 65.1, and 65.3 (grams per liter).
(a) Calculate the sample mean. Suppose that the desirable value

for this solution has been specified to be 65.0 grams per
liter. Do you think that the sample mean value computed
here is close enough to the target value to accept the solution
as conforming to target? Explain your reasoning.

(b) Calculate the sample variance and sample standard
deviation.

(c) Suppose that in measuring the concentration, the operator
must set up an apparatus and use a reagent material. What
do you think the major sources of variability are in this ex-
periment? Why is it desirable to have a small variance of
these measurements?

6-85. The table below shows unemployment data for the
U.S. that are seasonally adjusted. Construct a time series plot
of these data and comment on any features (source: U.S.
Bureau of Labor Web site, http://data.bls.gov).

6-86. A sample of six resistors yielded the following resis-
tances (ohms): 
and x6 � 43.

x1 � 45, x2 � 38, x3 � 47, x4 � 41, x5 � 35,

(a) Compute the sample variance and sample standard
deviation.

(b) Subtract 35 from each of the original resistance measure-
ments and compute and s. Compare your results with
those obtained in part (a) and explain your findings.

(c) If the resistances were 450, 380, 470, 410, 350, and 430
ohms, could you use the results of previous parts of this
problem to find s2 and s?

6-87. Consider the following two samples:

Sample 1: 10, 9, 8, 7, 8, 6, 10, 6

Sample 2: 10, 6, 10, 6, 8, 10, 8, 6

(a) Calculate the sample range for both samples. Would you con-
clude that both samples exhibit the same variability? Explain.

(b) Calculate the sample standard deviations for both samples.
Do these quantities indicate that both samples have the
same variability? Explain.

(c) Write a short statement contrasting the sample range versus
the sample standard deviation as a measure of variability.

6-88. An article in Quality Engineering (Vol. 4, 1992, pp.
487–495) presents viscosity data from a batch chemical
process. A sample of these data follows on p. 219:

s2

Global Monthly Temperature

Year 1 2 3 4 5 6 7 8 9 10 11 12

2000 12.3 12.6 13.2 14.3 15.3 15.9 16.2 16.0 15.4 14.3 13.1 12.5

2001 12.4 12.5 13.3 14.2 15.4 16.0 16.3 16.2 15.5 14.5 13.5 12.7

2002 12.7 12.9 13.4 14.2 15.3 16.1 16.4 16.1 15.5 14.5 13.5 12.6

2003 12.6 12.6 13.2 14.2 15.4 16.0 16.3 16.2 15.6 14.7 13.4 12.9

2004 12.6 12.8 13.3 14.3 15.2 16.0 16.3 16.1 15.5 14.6 13.6 12.7

2005 12.6 12.5 13.4 14.4 15.4 16.2 16.4 16.2 15.7 14.6 13.6 12.8

2006 12.4 12.6 13.2 14.2 15.3 16.1 16.4 16.2 15.6 14.6 13.5 12.9

2007 12.8 12.7 13.3 14.4 15.3 16.0 16.3 16.1 15.5 14.5 13.4 12.6

2008 12.2 12.4 13.4 14.1 15.2 16.0 16.3 16.1 15.5 14.6 13.5 12.7

2009 12.5 12.6 13.2 14.3 15.3 16.1 16.4 16.2 15.6

Unemployment Percentage

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1999 4.3 4.4 4.2 4.3 4.2 4.3 4.3 4.2 4.2 4.1 4.1 4.0

2000 4.0 4.1 4.0 3.8 4.0 4.0 4.0 4.1 3.9 3.9 3.9 3.9

2001 4.2 4.2 4.3 4.4 4.3 4.5 4.6 4.9 5.0 5.3 5.5 5.7

2002 5.7 5.7 5.7 5.9 5.8 5.8 5.8 5.7 5.7 5.7 5.9 6.0

2003 5.8 5.9 5.9 6.0 6.1 6.3 6.2 6.1 6.1 6.0 5.8 5.7

2004 5.7 5.6 5.8 5.6 5.6 5.6 5.5 5.4 5.4 5.5 5.4 5.4

2005 5.2 5.4 5.2 5.2 5.1 5.1 5.0 4.9 5.0 5.0 5.0 4.8

2006 4.7 4.8 4.7 4.7 4.7 4.6 4.7 4.7 4.5 4.4 4.5 4.4

2007 4.6 4.5 4.4 4.5 4.5 4.6 4.7 4.7 4.7 4.8 4.7 4.9

2008 4.9 4.8 5.1 5.0 5.5 5.6 5.8 6.2 6.2 6.6 6.8 7.2

2009 7.6 8.1 8.5 8.9 9.4 9.5 9.4 9.7 9.8
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(a) Reading down and left to right, draw a time series plot of
all the data and comment on any features of the data that
are revealed by this plot.

(b) Consider the notion that the first 40 observations were
generated from a specific process, whereas the last 40
observations were generated from a different process.
Does the plot indicate that the two processes generate
similar results?

(c) Compute the sample mean and sample variance of the first
40 observations; then compute these values for the second
40 observations. Do these quantities indicate that both
processes yield the same mean level? The same variabil-
ity? Explain.

6-89. The total net electricity consumption of the U.S. by
year from 1980 to 2007 (in billion kilowatt-hours) follows.
Net consumption excludes the energy consumed by the gener-
ating units. Read left to right.

1980 2094.4 1981 2147.1 1982 2086.4 1983 2151.0
1984 2285.8 1985 2324.0 1986 2368.8 1987 2457.3
1988 2578.1 1989 2755.6 1990 2837.1 1991 2886.1
1992 2897.2 1993 3000.7 1994 3080.9 1995 3164.0
1996 3253.8 1997 3301.8 1998 3425.1 1999 3483.7
2000 3592.4 2001 3557.1 2002 3631.7 2003 3662.0
2004 3715.9 2005 3811.0 2006 3816.8 2007 3891.7

(source: U.S. Department of Energy Web site, http://www.eia.doe.
gov/emeu/international/contents.html#InternationalElectricity)

Construct a time series plot of these data. Construct and inter-
pret a stem-and-leaf display of these data.

6-90. Reconsider the data from Exercise 6-88. Prepare
comparative box plots for two groups of observations: the
first 40 and the last 40. Comment on the information in the
box plots.

6-91. The data shown in Table 6-7 are monthly champagne
sales in France (1962–1969) in thousands of bottles.
(a) Construct a time series plot of the data and comment on

any features of the data that are revealed by this plot. 
(b) Speculate on how you would use a graphical procedure to

forecast monthly champagne sales for the year 1970.

6-92. The following data are the temperatures of effluent at
discharge from a sewage treatment facility on consecutive
days:

43 47 51 48 52 50 46 49
45 52 46 51 44 49 46 51
49 45 44 50 48 50 49 50

(a) Calculate the sample mean, sample median, sample vari-
ance, and sample standard deviation.

(b) Construct a box plot of the data and comment on the in-
formation in this display.

6-93. A manufacturer of coil springs is interested in imple-
menting a quality control system to monitor his production
process. As part of this quality system, it is decided to record
the number of nonconforming coil springs in each production
batch of size 50. During 40 days of production, 40 batches of
data were collected as follows:

Read data across.
9 12 6 9 7 14 12 4 6 7
8 5 9 7 8 11 3 6 7 7

11 4 4 8 7 5 6 4 5 8
19 19 18 12 11 17 15 17 13 13

(a) Construct a stem-and-leaf plot of the data.
(b) Find the sample average and standard deviation.

Table 6-7 Champagne Sales in France

Month 1962 1963 1964 1965 1966 1967 1968 1969

Jan. 2.851 2.541 3.113 5.375 3.633 4.016 2.639 3.934
Feb. 2.672 2.475 3.006 3.088 4.292 3.957 2.899 3.162
Mar. 2.755 3.031 4.047 3.718 4.154 4.510 3.370 4.286
Apr. 2.721 3.266 3.523 4.514 4.121 4.276 3.740 4.676
May 2.946 3.776 3.937 4.520 4.647 4.968 2.927 5.010
June 3.036 3.230 3.986 4.539 4.753 4.677 3.986 4.874
July 2.282 3.028 3.260 3.663 3.965 3.523 4.217 4.633
Aug. 2.212 1.759 1.573 1.643 1.723 1.821 1.738 1.659
Sept. 2.922 3.595 3.528 4.739 5.048 5.222 5.221 5.591
Oct. 4.301 4.474 5.211 5.428 6.922 6.873 6.424 6.981
Nov. 5.764 6.838 7.614 8.314 9.858 10.803 9.842 9.851
Dec. 7.132 8.357 9.254 10.651 11.331 13.916 13.076 12.670

13.3
14.5
15.3
15.3
14.3
14.8
15.2
14.5
14.6
14.1

14.3
16.1
13.1
15.5
12.6
14.6
14.3
15.4
15.2
16.8

14.9
13.7
15.2
14.5
15.3
15.6
15.8
13.3
14.1
15.4

15.2
15.2
15.9
16.5
14.8
15.1
17.0
14.9
14.8
14.0

15.8
13.7
15.1
13.4
14.1
14.8
14.3
14.3
16.4
16.9

14.2
16.9
14.9
15.2
14.4
15.2
14.6
16.4
14.2
15.7

16.0
14.9
13.6
15.3
14.3
15.6
16.1
13.9
15.2
14.4

14.0
14.4
13.7
13.8
15.6
14.5
12.8
16.1
16.6
15.6
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5.50
5.55
5.57
5.34
5.42

5.30
5.61
5.36
5.53
5.79

5.47
5.75
4.88
5.29
5.62

5.10
5.63
5.86
4.07
5.58

5.29
5.27
5.34
5.85
5.26

5.65
5.44
5.39
5.46

880
880
880
910

880
850
860
870

720
840
720
840

620
850
860
840

970
840
950
840

890
910
810
920

810
890
820
860

800
880
770
720

760
840
740
850

750
850
760
780

890
870
840
870

780
810
810
740

760
810
810
940

790
950
810
800

820
810
850
870

The currently accepted true velocity of light in a vacuum is
299,792.5 kilometers per second. Stigler (1977, The Annals of
Statistics) reported that the “true” value for comparison to
these measurements is 734.5. Construct comparative box plots
of these measurements. Does it seem that all five trials are
consistent with respect to the variability of the measurements?
Are all five trials centered on the same value? How does each
group of trials compare to the true value? Could there have
been “startup” effects in the experiment that Michelson
performed? Could there have been bias in the measuring
instrument?

6-102. In 1789, Henry Cavendish estimated the density of
the earth by using a torsion balance. His 29 measurements
follow, expressed as a multiple of the density of water.

(c) Construct a time series plot of the data. Is there evidence that
there was an increase or decrease in the average number of
nonconforming springs made during the 40 days? Explain.

6-94. A communication channel is being monitored by
recording the number of errors in a string of 1000 bits. Data
for 20 of these strings follow:

Read data across.
3 1 0 1 3 2 4 1 3 1
1 1 2 3 3 2 0 2 0 1 

(a) Construct a stem-and-leaf plot of the data.
(b) Find the sample average and standard deviation.
(c) Construct a time series plot of the data. Is there evidence

that there was an increase or decrease in the number of
errors in a string? Explain.

6-95. Reconsider the golf course yardage data in Exercise
6-9. Construct a box plot of the yardages and write an inter-
pretation of the plot.

6-96. Reconsider the data in Exercise 6-88. Construct nor-
mal probability plots for two groups of the data: the first 40
and the last 40 observations. Construct both plots on the same
axes. What tentative conclusions can you draw?

6-97. Construct a normal probability plot of the effluent dis-
charge temperature data from Exercise 6-92. Based on the
plot, what tentative conclusions can you draw?

6-98. Construct normal probability plots of the cold start
ignition time data presented in Exercises 6-53 and 6-64.
Construct a separate plot for each gasoline formulation, but
arrange the plots on the same axes. What tentative conclusions
can you draw?

6-99. Reconsider the golf ball overall distance data in
Exercise 6-33. Construct a box plot of the yardage distance and
write an interpretation of the plot. How does the box plot com-
pare in interpretive value to the original stem-and-leaf diagram?

6-100. Transformations. In some data sets, a transformation
by some mathematical function applied to the original data,
such as or log y, can result in data that are simpler to work
with statistically than the original data. To illustrate the effect
of a transformation, consider the following data, which repre-
sent cycles to failure for a yarn product: 675, 3650, 175, 1150,
290, 2000, 100, 375.
(a) Construct a normal probability plot and comment on the

shape of the data distribution.
(b) Transform the data using logarithms; that is, let y* (new

value) = log y (old value). Construct a normal probability
plot of the transformed data and comment on the effect of
the transformation.

6-101. In 1879, A. A. Michelson made 100 determinations
of the velocity of light in air using a modification of a method
proposed by the French physicist Foucault. He made the
measurements in five trials of 20 measurements each. The ob-
servations (in kilometers per second) follow. Each value has
299,000 subtracted from it.

1y

850
1000

740
980

900
930

1070
650

930
760
850
810

950
1000
980

1000

980
960
880
960

960
830
940
790

960
810
940
880

880
880
800
830

850
800
880
790

900
760
840
800

Trial 2

Trial 4

Trial 5

Trial 3

Trial 1

(a) Calculate the sample mean, sample standard deviation,
and median of the Cavendish density data.
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MIND-EXPANDING EXERCISES

6-105. Consider the airfoil data in Exercise 6-18.
Subtract 30 from each value and then multiply the re-
sulting quantities by 10. Now compute s2 for the new
data. How is this quantity related to s2 for the original
data? Explain why.

6-106. Consider the quantity . For
what value of a is this quantity minimized?

6-107. Using the results of Exercise 6-106, which
of the two quantities and

will be smaller, provided that ?

6-108. Coding the Data. Let i �
1, 2, . . . , n, where a and b are nonzero constants. Find the
relationship between and , and between  and 

6-109. A sample of temperature measurements in a
furnace yielded a sample average ( ) of 835.00 and a
sample standard deviation of 10.5. Using the results
from Exercise 6-108, what are the sample average and
sample standard deviations expressed in ?

6-110. Consider the sample with
sample mean and sample standard deviation s. Let

What are the values of
the sample mean and sample standard deviation of
the ?

6-111. An experiment to investigate the survival time
in hours of an electronic component consists of placing
the parts in a test cell and running them for 100 hours
under elevated temperature conditions. (This is called an
“accelerated” life test.) Eight components were tested
with the following resulting failure times:

75, 63, 100�, 36, 51, 45, 80, 90

The observation 100� indicates that the unit still func-
tioned at 100 hours. Is there any meaningful measure of
location that can be calculated for these data? What is its
numerical value?

6-112. Suppose that we have a sample x1, x2, p , xn

and we have calculated and for the  sample. Now
an (n � 1)st observation becomes available. Let 
and be the sample mean and sample variance for
the sample using all n � 1 observations.
(a) Show how can be computed using and xn�1.

(b) Show that

(c) Use the results of parts (a) and (b) to calculate the new
sample average and standard deviation for the data of
Exercise 6-30, when the new observation is .x38 � 64

ns2
n�1 � 1n � 12s2

n �
n1xn�1 � xn2

2

n � 1

xnxn�1

s2
n�1

xn�1

s2
nxn

zi

zi � 1xi � x� 2�s, i � 1, 2, . . . , n.
x

x1, x2, . . . , xn

	C

	F

sy.sxyx

yi � a � bxi,
x � �g n

i�1 1xi � �22
g n

i�1 1xi � x22

g n
i�1 1xi � a22

(b) Construct a normal probability plot of the data. Comment on
the plot. Does there seem to be a “low” outlier in the data?

(c) Would the sample median be a better estimate of the
density of the earth than the sample mean? Why?

6-103. In their book Introduction to Time Series Analysis
and Forecasting (Wiley, 2008), Montgomery, Jennings, and
Kulahci presented the data on the drowning rate for children
between one and four years old per 100,000 of population in
Arizona from 1970 to 2004. The data are: 19.9, 16.1, 19.5,
19.8, 21.3, 15.0, 15.5, 16.4, 18.2, 15.3, 15.6, 19.5, 14.0, 13.1,
10.5, 11.5, 12.9, 8.4, 9.2, 11.9, 5.8, 8.5, 7.1, 7.9, 8.0, 9.9, 8.5,
9.1, 9.7, 6.2, 7.2, 8.7, 5.8, 5.7, and 5.2.
(a) Perform an appropriate graphical analysis of the data.
(b) Calculate and interpret the appropriate numerical sum-

maries.
(c) Notice that the rate appears to decrease dramatically start-

ing about 1990. Discuss some potential reasons why this
could have happened.

(d) If there has been a real change in the drowning rate begin-
ning about 1990, what impact does this have on the sum-
mary statistics that you calculated in part (b)?

6-104. Patients arriving at a hospital emergency department
present a variety of symptoms and complaints. The following

data were collected during one weekend night shift (11:00 P.M.
to 7:00 A.M.):

Chest pain 8
Difficulty breathing 7
Numbness in extremities 3
Broken bones 11
Abrasions 16
Cuts 21
Stab wounds 9
Gunshot wounds 4
Blunt force trauma 10
Fainting, loss of consciousness 5
Other 9

(a) Calculate numerical summaries of these data. What prac-
tical interpretation can you give to these summaries?

(b) Suppose that you knew that a certain fraction of these 
patients leave without treatment (LWOT). This is an im-
portant problem, because these patients may be seriously
ill or injured. Discuss what additional data you would re-
quire to begin a study into the reasons why patients
LWOT.

JWCL232_c06_191-222.qxd  1/14/10  5:56 PM  Page 221



222 CHAPTER 6 DESCRIPTIVE STATISTICS

MIND-EXPANDING EXERCISES

6-113. Trimmed Mean. Suppose that the data are
arranged in increasing order, T% of the observations
are removed from each end, and the sample mean of
the remaining numbers is calculated. The resulting
quantity is called a trimmed mean. The trimmed mean
generally lies between the sample mean and the
sample median . Why? The trimmed mean with a
moderate trimming percentage (5% to 20%) is a rea-
sonably good estimate of the middle or center. It is not
as sensitive to outliers as the mean but more sensitive
than the median.

(a) Calculate the 10% trimmed mean for the yield data
in Exercise 6-25.

(b) Calculate the 20% trimmed mean for the yield data
in Exercise 6-25 and compare it with the quantity
found in part (a).

(c) Compare the values calculated in parts (a) and (b)
with the sample mean and median for the yield data.
Is there much difference in these quantities? Why?

6-114. Trimmed Mean. Suppose that the sample size n
is such that the quantity nT�100 is not an integer. Develop
a procedure for obtaining a trimmed mean in this case.

x
x

IMPORTANT TERMS AND CONCEPTS

Box plot
Frequency distribution

and histogram
Median, quartiles, and

percentiles
Multivariable data

Normal probability plot
Pareto chart 
Population mean
Population standard

deviation
Population variance

Probability plot
Relative frequency

distribution
Sample mean
Sample standard

deviation

Sample variance
Stem-and-leaf diagram
Time series plots 
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7
Sampling Distributions and 
Point Estimation of Parameters
INTRODUCTION

Statistical methods are used to make decisions and draw conclusions about populations.
This aspect of statistics is generally called statistical inference. These techniques utilize
the information in a sample in drawing conclusions. This chapter begins our study of the
statistical methods used in decision making.

Statistical inference may be divided into two major areas: parameter estimation and
hypothesis testing. As an example of a parameter estimation problem, suppose that an
engineer is analyzing the tensile strength of a component used in an automobile chassis.
Variability is naturally present between the individual components because of differences
in raw material batches, manufacturing processes, and measurement procedures (for
example), so the engineer wants to estimate the mean strength of the population of compo-
nents. In practice, the engineer will use sample data to compute a number that is in some
sense a reasonable value (a good guess) of the true population mean. This number is
called a point estimate. We will see that there are procedures for developing point esti-
mates of parameters that have good statistical properties. We will also be able to establish
the precision of the point estimate.

Now let's consider a different type of question. Suppose that two different reaction tem-
peratures t1 and t2 can be used in a chemical process. The engineer conjectures that t1 will
result in higher yields than t2. Statistical hypothesis testing is the framework for solving
problems of this type. In this example, the engineer would be interested in formulating
hypotheses that allow him or her to demonstrate that the mean yield using t1 is higher than
the mean yield using t2. Notice that there is no emphasis on estimating yields; instead, the
focus is on drawing conclusions about a hypothesis that is relevant to the engineering decision.

This chapter and Chapter 8 discuss parameter estimation. Chapters 9 and 10 focus on
hypothesis testing.

Refinery in Europoort, Rotterdam, Holland
iStockphoto

JWCL232_c07_223-250.qxd  1/11/10  7:52 PM  Page 223
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CHAPTER OUTLINE

7-1 POINT ESTIMATION

7-2 SAMPLING DISTRIBUTIONS 
AND THE CENTRAL LIMIT 
THEOREM

7-3 GENERAL CONCEPTS OF POINT
ESTIMATION

7-3.1 Unbiased Estimators

7-3.2 Variance of a Point Estimator

7-3.3 Standard Error: Reporting a 
Point Estimate

7-3.4 Mean Squared Error of an Estimator

7-4 METHODS OF POINT ESTIMATION

7-4.1 Method of Moments

7-4.2 Method of Maximum Likelihood

7-4.3 Bayesian Estimation of Parameters

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Explain the general concepts of estimating the parameters of a population or a probability

distribution

2. Explain the important role of the normal distribution as a sampling distribution

3. Understand the central limit theorem

4. Explain important properties of point estimators, including bias, variance, and mean square error

5. Know how to construct point estimators using the method of moments and the method of maximum
likelihood

6. Know how to compute and explain the precision with which a parameter is estimated

7. Know how to construct a point estimator using the Bayesian approach

7-1 POINT ESTIMATION

Statistical inference is always focused on drawing conclusions about one or more parameters
of a population. An important part of this process is obtaining estimates of the parameters.
Suppose that we want to obtain a point estimate (a reasonable value) of a population param-
eter. We know that before the data are collected, the observations are considered to be random
variables, say, Therefore, any function of the observation, or any statistic, is
also a random variable. For example, the sample mean and the sample variance are sta-
tistics and they are also random variables.

Since a statistic is a random variable, it has a probability distribution. We call the proba-
bility distribution of a statistic a sampling distribution. The notion of a sampling distribution
is very important and will be discussed and illustrated later in the chapter.

When discussing inference problems, it is convenient to have a general symbol to represent
the parameter of interest. We will use the Greek symbol � (theta) to represent the parameter. The
symbol can represent the mean �, the variance , or any parameter of interest to us. The
objective of point estimation is to select a single number, based on sample data, that is the most
plausible value for . A numerical value of a sample statistic will be used as the point estimate.

In general, if X is a random variable with probability distribution , characterized by
the unknown parameter , and if is a random sample of size n from X, the
statistic is called a point estimator of . Note that is a random vari-
able because it is a function of random variables. After the sample has been selected, takes
on a particular numerical value called the point estimate of .��̂

�̂
�̂��̂ � h1X1, X2, p , Xn2

X1, X2, p , Xn�
f 1x2

�

�2�

S2X
X1, X2, p , Xn.
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7-2 SAMPLING DISTRIBUTIONS AND THE CENTRAL LIMIT THEOREM 225

A point estimate of some population parameter is a single numerical value of a
statistic . The statistic is called the point estimator.�̂�̂

�̂�

Point 
Estimator

As an example, suppose that the random variable X is normally distributed with an un-
known mean . The sample mean is a point estimator of the unknown population mean .
That is, . After the sample has been selected, the numerical value is the point estimate
of . Thus, if , and , the point estimate of is

Similarly, if the population variance is also unknown, a point estimator for is the sample
variance , and the numerical value calculated from the sample data is called the
point estimate of .

Estimation problems occur frequently in engineering. We often need to estimate

The mean � of a single population

The variance �2 (or standard deviation �) of a single population

The proportion p of items in a population that belong to a class of interest

The difference in means of two populations, 

The difference in two population proportions, 

Reasonable point estimates of these parameters are as follows:

For �, the estimate is the sample mean.

For �2, the estimate is , the sample variance.

For p, the estimate is , the sample proportion, where x is the number of items
in a random sample of size n that belong to the class of interest.

For , the estimate is , the difference between the sample
means of two independent random samples.

For , the estimate is , the difference between two sample proportions
computed from two independent random samples.

We may have several different choices for the point estimator of a parameter. For example, if
we wish to estimate the mean of a population, we might consider the sample mean, the sample me-
dian, or perhaps the average of the smallest and largest observations in the sample as point esti-
mators. In order to decide which point estimator of a particular parameter is the best one to use,
we need to examine their statistical properties and develop some criteria for comparing estimators.

7-2 SAMPLING DISTRIBUTIONS AND THE CENTRAL 
LIMIT THEOREM

Statistical inference is concerned with making decisions about a population based on the
information contained in a random sample from that population. For instance, we may be
interested in the mean fill volume of a can of soft drink. The mean fill volume in the
population is required to be 300 milliliters. An engineer takes a random sample of 25 cans
and computes the sample average fill volume to be milliliters. The engineer will
probably decide that the population mean is milliliters, even though the sample mean� � 300

x � 298

p̂1 � p̂2p1 � p2

�̂1 � �̂2 � x1 � x2�1 � �2

p̂ � x�n
�̂2 � s2

�̂ � x,

p1 � p2

�1 � �2

�2
s2 � 6.9S2

�2�2

x �
25 	 30 	 29 	 31

4
� 28.75

�x4 � 31x1 � 25, x2 � 30, x3 � 29�
x�̂ � X

��

JWCL232_c07_223-250.qxd  1/11/10  7:52 PM  Page 225



226 CHAPTER 7 SAMPLING DISTRIBUTIONS AND POINT ESTIMATION OF PARAMETERS

was 298 milliliters because he or she knows that the sample mean is a reasonable estimate of
� and that a sample mean of 298 milliliters is very likely to occur, even if the true population
mean is � � 300 milliliters. In fact, if the true mean is 300 milliliters, tests of 25 cans made
repeatedly, perhaps every five minutes, would produce values of that vary both above and
below � � 300 milliliters.

The link between the probability models in the earlier chapters and the data is made as fol-
lows. Each numerical value in the data is the observed value of a random variable. Furthermore,
the random variables are usually assumed to be independent and identically distributed. These
random variables are known as a random sample.

x

The random variables X1, X2, . . . , Xn are a random sample of size n if (a) the Xi’s are
independent random variables, and (b) every Xi has the same probability distribution.

Random
Sample

A statistic is any function of the observations in a random sample.
Statistic

The observed data are also referred to as a random sample, but the use of the same phrase
should not cause any confusion.

The assumption of a random sample is extremely important. If the sample isn’t random
and is based on judgment or flawed in some other way, then statistical methods will not work
properly and will lead to incorrect decisions.

The primary purpose in taking a random sample is to obtain information about the unknown
population parameters. Suppose, for example, that we wish to reach a conclusion about the pro-
portion of people in the United States who prefer a particular brand of soft drink. Let p represent
the unknown value of this proportion. It is impractical to question every individual in the popu-
lation to determine the true value of p. In order to make an inference regarding the true propor-
tion p, a more reasonable procedure would be to select a random sample (of an appropriate size)
and use the observed proportion of people in this sample favoring the brand of soft drink.

The sample proportion, , is computed by dividing the number of individuals in the sample
who prefer the brand of soft drink by the total sample size n. Thus, is a function of the
observed values in the random sample. Since many random samples are possible from a popu-
lation, the value of will vary from sample to sample. That is, is a random variable. Such a
random variable is called a statistic.

p̂p̂

p̂
p̂

p̂

We have encountered statistics before. For example, if X, X2, . . . , Xn is a random sample of
size n, the sample mean , the sample variance S 2, and the sample standard deviation S
are statistics. Since a statistic is a random variable, it has a probability distribution.

X

The probability distribution of a statistic is called a sampling distribution.
Sampling

Distribution

For example, the probability distribution of is called the sampling distribution of the
mean. The sampling distribution of a statistic depends on the distribution of the population,
the size of the sample, and the method of sample selection. We now present perhaps the most
important sampling distribution. Other sampling distributions and their applications will be
illustrated extensively in the following two chapters.

X
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Consider determining the sampling distribution of the sample mean . Suppose that a ran-
dom sample of size n is taken from a normal population with mean � and variance �2. Now
each observation in this sample, say, X1, X2, , Xn, is a normally and independently distributed
random variable with mean � and variance �2. Then, because linear functions of independent,
normally distributed random variables are also normally distributed (Chapter 5), we conclude
that the sample mean

has a normal distribution with mean

and variance

If we are sampling from a population that has an unknown probability distribution, the
sampling distribution of the sample mean will still be approximately normal with mean � and
variance , if the sample size n is large. This is one of the most useful theorems in statis-
tics, called the central limit theorem. The statement is as follows:

�2�n

�
X 
2 �

�2 	 �2 	 p 	 �2

n2 �
�2

n

�X �
� 	 � 	 p 	 �

n � �

X �
X1 	 X2 	 p 	 Xn

n

p

X

If X1, X2, , Xn is a random sample of size n taken from a population (either finite
or infinite) with mean � and finite variance �2, and if is the sample mean, the
limiting form of the distribution of

(7-1)

as , is the standard normal distribution.n S 


Z �
X � �

��1n

X
p

Central Limit
Theorem

The normal approximation for depends on the sample size n. Figure 7-1(a) shows the
distribution obtained for throws of a single, six-sided true die. The probabilities are equal
(1�6) for all the values obtained, 1, 2, 3, 4, 5, or 6. Figure 7-1(b) shows the distribution of the
average score obtained when tossing two dice, and Fig. 7-1(c), 7-1(d), and 7-1(e) show the
distributions of average scores obtained when tossing three, five, and ten dice, respectively.
Notice that, while the population (one die) is relatively far from normal, the distribution of
averages is approximated reasonably well by the normal distribution for sample sizes as small
as five. (The dice throw distributions are discrete, however, while the normal is continuous.)
Although the central limit theorem will work well for small samples (n � 4, 5) in most cases,
particularly where the population is continuous, unimodal, and symmetric, larger samples will
be required in other situations, depending on the shape of the population. In many cases of
practical interest, if n � 30, the normal approximation will be satisfactory regardless of the
shape of the population. If n � 30, the central limit theorem will work if the distribution of the
population is not severely nonnormal.

X
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228 CHAPTER 7 SAMPLING DISTRIBUTIONS AND POINT ESTIMATION OF PARAMETERS

x1 2 3 4 5 6

(a) One die

x1 2 3 4 5 6

(b) Two dice

x1 2 3 4 5 6

(c) Three dice

x1 2 3 4 5 6

(d) Five dice

x1 2 3 4 5 6

(e) Ten dice

Figure 7-1
Distributions of average
scores from throwing
dice. [Adapted with
permission from Box,
Hunter, and Hunter
(1978).]

EXAMPLE 7-1 Resistors
An electronics company manufactures resistors that have a
mean resistance of 100 ohms and a standard deviation of
10 ohms. The distribution of resistance is normal. Find the
probability that a random sample of n � 25 resistors will have
an average resistance less than 95 ohms.

Note that the sampling distribution of is normal, with
mean and a standard deviation of

Therefore, the desired probability corresponds to the shaded
area in Fig. 7-2. Standardizing the point in Fig. 7-2,
we find that

X � 95

�X �
�

1n
�

10

125
� 2

�X � 100 ohms
X

and therefore,

Practical Conclusion: This example show that if the dis-
tribution of resistance is normal with mean 100 ohms and
standard deviation of 10 ohms, then finding that a random
sample of resistors with a sample mean smaller than 95 ohms
is a rare event. If this actually happen, it caste doubt as to
whether the true mean is really 100 ohms or if the true stan-
dard deviation is really 10 ohms.

 � 0.0062
P 1X � 952 � P1Z � �2.52

z �
95 � 100

2
� �2.5

The following example makes use of the central limit theorem.

EXAMPLE 7-2 Central Limit Theorem
Suppose that a random variable X has a continuous uniform
distribution

Find the distribution of the sample mean of a random sample
of size n � 40.

f  1x2 � e
1�2, 4 � x � 6

0, otherwise

The mean and variance of X are � � 5 and
. The central limit theorem indicates

that the distribution of is approximately normal with mean
and variance . The

distributions of X and are shown in Fig. 7-3.X
�2�n � 1� 331402 4 � 1�120� 2

X ��X � 5
X

�2 � 16 � 422�12 � 1�3

Now consider the case in which we have two independent populations. Let the first pop-
ulation have mean �1 and variance and the second population have mean �2 and variance

. Suppose that both populations are normally distributed. Then, using the fact that linear�2
2

�2
1
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x10095

X = 2σ

Figure 7-3 The distributions of X and 
for Example 7-2.

XFigure 7-2 Probability for Example 7-1.

x5 64

X = 1/120σ

x54 6

2

If we have two independent populations with means and and variances and
, and if and are the sample means of two independent random samples of

sizes n1 and n2 from these populations, then the sampling distribution of

(7-4)

is approximately standard normal, if the conditions of the central limit theorem
apply. If the two populations are normal, the sampling distribution of Z is exactly
standard normal.

Z �
X1 � X2 � 1�1 � �22

2�2
1�n1 	 �2

2�n2

X2X1�2
2

�2
1�2�1

Approximate
Sampling

Distribution of
a Difference in
Sample Means

combinations of independent normal random variables follow a normal distribution (see
Chapter 5), we can say that the sampling distribution of is normal with mean

(7-2)

and variance

(7-3)

If the two populations are not normally distributed and if both sample sizes n1 and n2 are
greater than 30, we may use the central limit theorem and assume that and follow
approximately independent normal distributions. Therefore, the sampling distribution of

is approximately normal with mean and variance given by Equations 7-2 and 7-3,
respectively. If either n1 or n2 is less than 30, the sampling distribution of will still be
approximately normal with mean and variance given by Equations 7-2 and 7-3, provided that
the population from which the small sample is taken is not dramatically different from the
normal. We may summarize this with the following definition.

X1 � X2

X1 � X2

X2X1

 �
2
X1�X2

� �
2
X1

	 �
2
X2

�
�2

1

n1
	

�2
2

n2

�X1�X2
� �X1

� �X2
� �1 � �2

X1 � X2

EXAMPLE 7-3 Aircraft Engine Life
The effective life of a component used in a jet-turbine aircraft
engine is a random variable with mean 5000 hours and stan-
dard deviation 40 hours. The distribution of effective life is
fairly close to a normal distribution. The engine manufacturer

introduces an improvement into the manufacturing process
for this component that increases the mean life to 5050 hours
and decreases the standard deviation to 30 hours. Suppose
that a random sample of n1 � 16 components is selected from

JWCL232_c07_223-250.qxd  1/11/10  7:52 PM  Page 229
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x2 – x1
1007550250

Figure 7-4 The 
sampling distribution
of in 
Example 7-3.

X2 � X1

7-1. Consider the hospital emergency room data from
Exercise 6-104. Estimate the proportion of patients who arrive
at this emergency department experiencing chest pain.

7-2. Consider the compressive strength data in Table 6-2.
What proportion of the specimens exhibit compressive
strength of at least 200 psi?

7-3. PVC pipe is manufactured with a mean diameter of
1.01 inch and a standard deviation of 0.003 inch. Find the
probability that a random sample of n � 9 sections of pipe
will have a sample mean diameter greater than 1.009 inch and
less than 1.012 inch.

7-4. Suppose that samples of size n � 25 are selected at
random from a normal population with mean 100 and standard
deviation 10. What is the probability that the sample mean falls
in the interval from

7-5. A synthetic fiber used in manufacturing carpet has ten-
sile strength that is normally distributed with mean 75.5 psi
and standard deviation 3.5 psi. Find the probability that a ran-
dom sample of n � 6 fiber specimens will have sample mean
tensile strength that exceeds 75.75 psi.

7-6. Consider the synthetic fiber in the previous exercise.
How is the standard deviation of the sample mean changed
when the sample size is increased from n � 6 to n � 49?

7-7. The compressive strength of concrete is normally
distributed with � � 2500 psi and � � 50 psi. Find the prob-
ability that a random sample of n � 5 specimens will have a

�X � 1.8�
 X  to �X 	 1.0�

 X ?

sample mean diameter that falls in the interval from 2499 psi
to 2510 psi.

7-8. Consider the concrete specimens in the previous
exercise. What is the standard error of the sample mean?

7-9. A normal population has mean 100 and variance 25.
How large must the random sample be if we want the standard
error of the sample average to be 1.5?

7-10. Suppose that the random variable X has the continu-
ous uniform distribution

Suppose that a random sample of n � 12 observations is
selected from this distribution. What is the approximate
probability distribution of Find the mean and vari-
ance of this quantity.

7-11. Suppose that X has a discrete uniform distribution

A random sample of n � 36 is selected from this population.
Find the probability that the sample mean is greater than 2.1
but less than 2.5, assuming that the sample mean would be
measured to the nearest tenth.

f 1x2 � e
1�3, x � 1, 2, 3

0, otherwise

X � 6?

f  1x2 � e
1, 0 
 x 
 1

0, otherwise

the “old” process and a random sample of n2 � 25 components
is selected from the “improved” process. What is the probabil-
ity that the difference in the two sample means is at
least 25 hours? Assume that the old and improved processes
can be regarded as independent populations.

To solve this problem, we first note that the distribution of
is normal with mean hours and standard devia-

tion hours, and the distribution of
is normal with mean hours and standard devia-

tion hours. Now the distribution of
is normal with mean � 50

hours and variance � 136
hours2. This sampling distribution is shown in Fig. 7-4. The
probability that is the shaded portion of the
normal distribution in this figure.

X2 � X1 � 25

1622 	 11022�2
2�n2 	 �2

1�n1 �
�2 � �1 � 5050 � 5000X2 � X1

�2�1n2 � 30�125 � 6
�2 � 5050X2

�1�1n1 � 40�116 � 10
�1 � 5000X1

X2 � X1

Corresponding to the value in Fig. 7-4, we
find that

and consequently,

Therefore, there is a high probability (0.9838) that the differ-
ence in sample means between the new and the old process
will be at least 25 hours if the sample sizes are n1 � 16 and
n2 � 25.

 � 0.9838

 P1X2 � X1 � 252 � P 1Z � �2.142

z �
25 � 50

2136
� �2.14

x2 � x1 � 25

EXERCISES FOR SECTION 7-2
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7-3 GENERAL CONCEPTS OF POINT ESTIMATION 231

7-12. The amount of time that a customer spends waiting
at an airport check-in counter is a random variable with mean
8.2 minutes and standard deviation 1.5 minutes. Suppose that
a random sample of n � 49 customers is observed. Find the
probability that the average time waiting in line for these
customers is
(a) Less than 10 minutes
(b) Between 5 and 10 minutes
(c) Less than 6 minutes

7-13. A random sample of size n1 � 16 is selected from a
normal population with a mean of 75 and a standard deviation
of 8. A second random sample of size n2 � 9 is taken from
another normal population with mean 70 and standard devia-
tion 12. Let and be the two sample means. Find:
(a) The probability that exceeds 4
(b) The probability that 3.5 
 X1 � X2 
 5.5

X1 � X2

X2X1

7-14. A consumer electronics company is comparing the
brightness of two different types of picture tubes for use in its
television sets. Tube type A has mean brightness of 100 and
standard deviation of 16, while tube type B has unknown
mean brightness, but the standard deviation is assumed to be
identical to that for type A. A random sample of n � 25 tubes
of each type is selected, and is computed. If 
equals or exceeds , the manufacturer would like to adopt
type B for use. The observed difference is 
What decision would you make, and why?

7-15. The elasticity of a polymer is affected by the concen-
tration of a reactant. When low concentration is used, the true
mean elasticity is 55, and when high concentration is used the
mean elasticity is 60. The standard deviation of elasticity is 4,
regardless of concentration. If two random samples of size 16
are taken, find the probability that Xhigh � Xlow � 2.

xB � xA � 3.5.
�A

�BXB � XA

7-3 GENERAL CONCEPTS OF POINT ESTIMATION

7-3.1 Unbiased Estimators

An estimator should be “close” in some sense to the true value of the unknown parameter.
Formally, we say that is an unbiased estimator of � if the expected value of is equal to �.
This is equivalent to saying that the mean of the probability distribution of (or the mean of
the sampling distribution of ) is equal to �.�̂

�̂
�̂�̂

The point estimator is an unbiased estimator for the parameter � if

(7-5)

If the estimator is not unbiased, then the difference

(7-6)

is called the bias of the estimator .�̂

E1�̂2 � �

E1�̂2 � �

�̂

Bias of 
an Estimator

When an estimator is unbiased, the bias is zero; that is, E1�̂2 � � � 0.

EXAMPLE 7-4 Sample Mean and Variance Are Unbiased
Suppose that X is a random variable with mean and variance

. Let be a random sample of size n from the
population represented by X. Show that the sample mean 
and sample variance are unbiased estimators of � and ,
respectively.

�2S2
X

X1, X2, p , Xn�2
� First consider the sample mean. In Section 5.5 in Chapter 5,

we showed that Therefore, the sample mean is an
unbiased estimator of the population mean .�

XE1X 2 � �.
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Although is unbiased for , S is a biased estimator of . For large samples, the bias is very
small. However, there are good reasons for using S as an estimator of in samples from  nor-
mal distributions, as we will see in the next three chapters when we discuss confidence
intervals and hypothesis testing.

Sometimes there are several unbiased estimators of the sample population parameter. For
example, suppose we take a random sample of size n � 10 from a normal population and
obtain the data x1 � 12.8, x2 � 9.4, x3 � 8.7, x4 � 11.6, x5 � 13.1, x6 � 9.8, x7 � 14.1,
x8 � 8.5, x9 � 12.1, x10 � 10.3. Now the sample mean is

the sample median is

and a 10% trimmed mean (obtained by discarding the smallest and largest 10% of the sample
before averaging) is

We can show that all of these are unbiased estimates of �. Since there is not a unique unbiased
estimator, we cannot rely on the property of unbiasedness alone to select our estimator. We
need a method to select among unbiased estimators. We suggest a method in the following
section.

 xtr1102 �
8.7 	 9.4 	 9.8 	 10.3 	 11.6 	 12.1 	 12.8 	 13.1

8
� 10.98

x~ �
10.3 	 11.6

2
� 10.95

x �
12.8 	 9.4 	 8.7 	 11.6 	 13.1 	 9.8 	 14.1 	 8.5 	 12.1 	 10.3

10
� 11.04

�

��2S2
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7-3.2 Variance of a Point Estimator

Suppose that and are unbiased estimators of . This indicates that the distribution of
each estimator is centered at the true value of . However, the variance of these distributions
may be different. Figure 7-5 illustrates the situation. Since has a smaller variance than 
the estimator is more likely to produce an estimate close to the true value . A logical prin-
ciple of estimation, when selecting among several estimators, is to choose the estimator that
has minimum variance.

��̂1

�̂2,�̂1

�
��̂2�̂1

Now consider the sample variance. We have

 �
1

n � 1
  c a

n

i�1
 E 1X 2

i 2 � nE1X 22 d

 �
1

n � 1
  E  aa

n

i�1
 X 2

i � nX 2b

 �
1

n � 1
 E a

n

i�1
 1X 2

i 	 X 2 � 2X Xi2

 E1S22 � E  £
a

n

i�1
 1Xi � X 22

n � 1
§ �

1

n � 1
  E a

n

i�1
 1Xi � X 22

The last equality follows the equation for the mean of a linear
function in Chapter 5. However, since and

we have

Therefore, the sample variance is an unbiased estimator of
the population variance �2.

S2

 �
1

n � 1
  1n�2 	 n�2 � n�2 � �22 � � 2

E1S22 �
1

n � 1
  c a

n

i�1
 1�2 	 �22 � n1�2 	 �2�n2 d

E1X 22 � �2 	 �2�n,
E1X2

i 2 � �2 	 �2
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If we consider all unbiased estimators of �, the one with the smallest variance is
called the minimum variance unbiased estimator (MVUE).

Minimum
Variance
Unbiased

Estimator

θ

Distribution of    1Θ^

Distribution of    2Θ^
Figure 7-5 The
sampling distributions
of two unbiased estima-
tors and .�̂2�̂1

In a sense, the MVUE is most likely among all unbiased estimators to produce an estimate 
that is close to the true value of . It has been possible to develop methodology to identify the
MVUE in many practical situations. While this methodology is beyond the scope of this book,
we give one very important result concerning the normal distribution.

�
�̂

If is a random sample of size n from a normal distribution with mean
and variance , the sample mean is the MVUE for .�X�2�
X1, X2, p , Xn

In situations in which we do not know whether an MVUE exists, we could still use a mini-
mum variance principle to choose among competing estimators. Suppose, for example, we
wish to estimate the mean of a population (not necessarily a normal population). We have a
random sample of n observations and we wish to compare two possible esti-
mators for : the sample mean and a single observation from the sample, say, . Note that
both and Xi are unbiased estimators of ; for the sample mean, we have 
from Chapter 5 and the variance of any observation is . Since for
sample sizes we would conclude that the sample mean is a better estimator of than
a single observation .

7-3.3 Standard Error: Reporting a Point Estimate

When the numerical value or point estimate of a parameter is reported, it is usually desirable
to give some idea of the precision of estimation. The measure of precision usually employed
is the standard error of the estimator that has been used.

Xi

�n � 2,
V1X 2 � V1Xi2V1Xi2 � �2

V1X 2 � �2�n�X
XiX�

X1, X2, p , Xn

The standard error of an estimator is its standard deviation, given by
. If the standard error involves unknown parameters that can be esti-

mated, substitution of those values into produces an estimated standard error,
denoted by .�̂

�̂

��̂

��̂ � 2V1�̂2
�̂

Standard 
Error of an

Estimator

JWCL232_c07_223-250.qxd  1/11/10  7:52 PM  Page 233



7-3.4 Mean Squared Error of an Estimator

Sometimes it is necessary to use a biased estimator. In such cases, the mean squared error of
the estimator can be important. The mean squared error of an estimator is the expected
squared difference between and �.�̂

�̂

Sometimes the estimated standard error is denoted by or .
Suppose we are sampling from a normal distribution with mean and variance .

Now the distribution of is normal with mean and variance , so the standard error
of is

If we did not know � but substituted the sample standard deviation S into the above equation,
the estimated standard error of would be

When the estimator follows a normal distribution, as in the above situation, we can be rea-
sonably confident that the true value of the parameter lies within two standard errors of the
estimate. Since many point estimators are normally distributed (or approximately so) for large
n, this is a very useful result. Even in cases in which the point estimator is not normally
distributed, we can state that so long as the estimator is unbiased, the estimate of the parameter
will deviate from the true value by as much as four standard errors at most 6 percent of the time.
Thus a very conservative statement is that the true value of the parameter differs from the point
estimate by at most four standard errors. See Chebyshev’s inequality in the supplemental mate-
rial on the Web site.

�̂X �
S

1n
 

X

�X �
�

1n

X
�2�n�X

�2�
se1�̂2s�̂
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The mean squared error of an estimator of the parameter � is defined as

(7-7)MSE1�̂2 � E1�̂ � �22

�̂

Mean Squared
Error of 

an Estimator

EXAMPLE 7-5 Thermal Conductivity
An article in the Journal of Heat Transfer (Trans. ASME, Sec. C,
96, 1974, p. 59) described a new method of measuring the
thermal conductivity of Armco iron. Using a temperature of
100	F and a power input of 550 watts, the following 10
measurements of thermal conductivity (in Btu/hr-ft-	F) were
obtained:

A point estimate of the mean thermal conductivity at 
and 550 watts is the sample mean or

x � 41.924 Btu/hr-ft-	F

100	F

41.60, 41.48, 42.34, 41.95, 41.86,

42.18, 41.72, 42.26, 41.81, 42.04

The standard error of the sample mean is , and
since is unknown, we may replace it by the sample standard
deviation to obtain the estimated standard error of

as

Practical Interpretation: Notice that the standard error is about
0.2 percent of the sample mean, implying that we have obtained
a relatively precise point estimate of thermal conductivity. If we
can assume that thermal conductivity is normally distributed,
2 times the standard error is � 0.1796, and
we are highly confident that the true mean thermal conductiv-
ity is within the interval , or between 41.744
and 42.104.

41.924 
 0.1796

2�̂ X � 210.08982

�̂X �
s

1n
�

0.284

110
� 0.0898

X
s � 0.284

�
�X � ��1n
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7-3 GENERAL CONCEPTS OF POINT ESTIMATION 235

The mean squared error can be rewritten as follows:

That is, the mean squared error of is equal to the variance of the estimator plus the squared
bias. If is an unbiased estimator of , the mean squared error of is equal to the variance
of .

The mean squared error is an important criterion for comparing two estimators. Let
and be two estimators of the parameter , and let MSE ( ) and MSE ( ) be the

mean squared errors of and . Then the relative efficiency of to is defined as

(7-8)

If this relative efficiency is less than 1, we would conclude that is a more efficient estima-
tor of than , in the sense that it has a smaller mean squared error.

Sometimes we find that biased estimators are preferable to unbiased estimators because
they have smaller mean squared error. That is, we may be able to reduce the variance of the
estimator considerably by introducing a relatively small amount of bias. As long as the reduc-
tion in variance is greater than the squared bias, an improved estimator from a mean squared
error viewpoint will result. For example, Fig. 7-6 shows the probability distribution of a biased
estimator that has a smaller variance than the unbiased estimator . An estimate based on

would more likely be close to the true value of than would an estimate based on .
Linear regression analysis (Chapters 11 and 12) is an example of an application area in which
biased estimators are occasionally used.

An estimator that has a mean squared error that is less than or equal to the mean
squared error of any other estimator, for all values of the parameter , is called an optimal
estimator of . Optimal estimators rarely exist.�

�
�̂

�̂2��̂1

�̂2�̂1

�̂2�

�̂1

MSE1�̂12

MSE1�̂22

�̂1�̂2�̂2�̂1

�̂2�̂1��̂2�̂1

�̂
�̂��̂

�̂

 � V 1�̂2 	 1bias22
 MSE1�̂2 � E 3�̂ � E1�̂2 42 	 3� � E1�̂2 42

EXERCISES FOR SECTION 7-3

7-16. A computer software package was used to calculate
some numerical summaries of a sample of data. The results are
displayed here:

Variable N Mean SE Mean StDev Variance

x 20 50.184 ? 1.816 ?

(a) Fill in the missing quantities.
(b) What is the estimate of the mean of the population from

which this sample was drawn?

7-17. A computer software package was used to calculate
some numerical summaries of a sample of data. The results are
displayed here:

SE Sum of
Variable N Mean Mean StDev Variance Sum Squares

x ? ? 2.05 10.25 ? 3761.70 ?

(a) Fill in the missing quantities.
(b) What is the estimate of the mean of the population from

which this sample was drawn?

θ

Distribution of    1Θ^

Distribution of    2Θ

Θ

^

E(   1)
^

Figure 7-6 A biased
estimator that has
smaller variance than
the unbiased estimator

.�̂2

�̂1
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236 CHAPTER 7 SAMPLING DISTRIBUTIONS AND POINT ESTIMATION OF PARAMETERS

7-18. Let X1 and X2 be independent random variables with
mean � and variance �2. Suppose that we have two estimators
of �:

and

(a) Are both estimators unbiased estimators of �?
(b) What is the variance of each estimator?

7-19. Suppose that we have a random sample X1, X2, . . . , Xn

from a population that is N(�, �2). We plan to use
to estimate �2. Compute the bias in 

as an estimator of �2 as a function of the constant c.

7-20. Suppose we have a random sample of size 2n from a
population denoted by X, and and . Let

be two estimators of �. Which is the better estimator of �?
Explain your choice.

7-21. Let denote a random sample from a
population having mean and variance . Consider the
following estimators of :

(a) Is either estimator unbiased?
(b) Which estimator is best? In what sense is it best?

Calculate the relative efficiency of the two estimators.

7-22. Suppose that and are unbiased estimators of the
parameter . We know that and .
Which estimator is best and in what sense is it best? Calculate
the relative efficiency of the two estimators.

7-23. Suppose that and are estimators of the parame-
ter . We know that 

. Which estimator is best? In what sense is it best?

7-24. Suppose that , , and are estimators of �. We
know that 

, and . Compare these three
estimators. Which do you prefer? Why?

7-25. Let three random samples of sizes n1 � 20, n2 � 10,
and n3 � 8 be taken from a population with mean � and
variance �2. Let , , and be the sample variances.
Show that is an unbiased
estimator of .�2

S2 � 120S2
1 	 10S2

2 	 8S2
32�38

S2
3S2

2S2
1

E1�̂3 � �22 � 6V 1�̂22 � 10
E1�̂12 � E1�̂22 � �, E 1�̂32 � �, V 1�̂12 � 12,

�̂3�̂2�̂1

V 1�̂22 � 4
E1�̂12 � �, E1�̂22 � ��2, V 1�̂12 � 10,�

�̂2�̂1

V1�̂22 � 4V1�̂12 � 10�
�̂2�̂1

 �̂2 �
2X1 � X6 	 X4

2

 �̂1 �
X1 	 X2 	 p 	 X7

7

�
�2�

X1, X2, p , X7

X1 �
1

2n
  a

2n

i�1
 Xi and X2 �

1
n   a

n

i�1
 Xi

V1X 2 � �2E1X 2 � �

�̂�̂ � g n
i�11Xi � X 22�c

�̂2 �
X1 	 3X2

4

�̂1 �
X1 	 X2

2

7-26. (a) Show that is a biased estima-
tor of .

(b) Find the amount of bias in the estimator.
(c) What happens to the bias as the sample size n increases?

7-27. Let be a random sample of size n from
a population with mean and variance .
(a) Show that is a biased estimator for .
(b) Find the amount of bias in this estimator.
(c) What happens to the bias as the sample size n increases?

7-28. Data on pull-off force (pounds) for connectors used in
an automobile engine application are as follows: 79.3, 75.1,
78.2, 74.1, 73.9, 75.0, 77.6, 77.3, 73.8, 74.6, 75.5, 74.0, 74.7,
75.9, 72.9, 73.8, 74.2, 78.1, 75.4, 76.3, 75.3, 76.2, 74.9, 78.0,
75.1, 76.8.
(a) Calculate a point estimate of the mean pull-off force of all

connectors in the population. State which estimator you
used and why.

(b) Calculate a point estimate of the pull-off force value that
separates the weakest 50% of the connectors in the popu-
lation from the strongest 50%.

(c) Calculate point estimates of the population variance and
the population standard deviation.

(d) Calculate the standard error of the point estimate found in
part (a). Provide an interpretation of the standard error.

(e) Calculate a point estimate of the proportion of all con-
nectors in the population whose pull-off force is less than
73 pounds.

7-29. Data on oxide thickness of semiconductors are as
follows: 425, 431, 416, 419, 421, 436, 418, 410, 431, 433, 423,
426, 410, 435, 436, 428, 411, 426, 409, 437, 422, 428, 413, 416.
(a) Calculate a point estimate of the mean oxide thickness for

all wafers in the population.
(b) Calculate a point estimate of the standard deviation of

oxide thickness for all wafers in the population.
(c) Calculate the standard error of the point estimate from

part (a).
(d) Calculate a point estimate of the median oxide thickness

for all wafers in the population.
(e) Calculate a point estimate of the proportion of wafers in

the population that have oxide thickness greater than 430
angstroms.

7-30. Suppose that X is the number of observed “successes”
in a sample of n observations, where p is the probability of
success on each observation.
(a) Show that is an unbiased estimator of p.
(b) Show that the standard error of is 

How would you estimate the standard error?

7-31. 1 and are the sample mean and sample variance
from a population with mean and variance Similarly, 2

and are the sample mean and sample variance from a sec-
ond independent population with mean and variance .
The sample sizes are and , respectively.

(a) Show that 1 � 2 is an unbiased estimator of .�1 � �2XX

n2n1

�2
2�2

S 2
2

X�2
1.�1

S 2
1X

1p11 � p2�n.P̂
P̂ � X�n

�2X 2
�2�

X1, X2, p , Xn

�2
g

n
i�1 1Xi � X 22�n
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(b) Find the standard error of . How could you
estimate the standard error?

(c) Suppose that both populations have the same variance; that
is, . Show that

is an unbiased estimator of 

7-32. Two different plasma etchers in a semiconductor fac-
tory have the same mean etch rate . However, machine 1 is
newer than machine 2 and consequently has smaller variabil-
ity in etch rate. We know that the variance of etch rate for
machine 1 is and for machine 2 it is . Suppose that
we have independent observations on etch rate from
machine 1 and independent observations on etch rate from
machine 2.
(a) Show that �̂ � � 1 	 11 � �2 2 is an unbiased estima-

tor of � for any value of � between 0 and 1.
(b) Find the standard error of the point estimate of in part (a).�

XX

n2

n1

�2
2 � a�2

1�2
1

�

�2.

S 2
p �
1n1 � 12  S2

1 	 1n2 � 12  S 2
2

n1 	 n2 � 2

� 2
1 � � 2

2 � �2

X1 � X2 (c) What value of would minimize the standard error of
the point estimate of ?

(d) Suppose that and . What value of � would
you select to minimize the standard error of the point esti-
mate of ? How “bad” would it be to arbitrarily choose

in this case?

7-33. Of randomly selected engineering students at ASU,
owned an HP calculator, and of randomly selected

engineering students at Virginia Tech, owned an HP calcu-
lator. Let p1 and p2 be the probability that randomly selected
ASU and Virginia. Tech engineering students, respectively,
own HP calculators.
(a) Show that an unbiased estimate for is 1X1�n12 �
1X2�n22.

(b) What is the standard error of the point estimate in part (a)?
(c) How would you compute an estimate of the standard error

found in part (b)?
(d) Suppose that n1 � 200, X1 � 150, n2 � 250, and X2 � 185.

Use the results of part (a) to compute an estimate of p1 � p2.
(e) Use the results in parts (b) through (d) to compute an

estimate of the standard error of the estimate.

p1 � p2

X2

n2X1

n1

� � 0.5
�

n1 � 2n2a � 4
�

�
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7-4 METHODS OF POINT ESTIMATION

The definitions of unbiasedness and other properties of estimators do not provide any guid-
ance about how good estimators can be obtained. In this section, we discuss methods for
obtaining point estimators: the method of moments and the method of maximum likelihood.
We also briefly discuss a Bayesian approach to parameter estimation. Maximum likelihood
estimates are generally preferable to moment estimators because they have better efficiency
properties. However, moment estimators are sometimes easier to compute. Both methods can
produce unbiased point estimators.

7-4.1 Method of Moments

The general idea behind the method of moments is to equate population moments, which are
defined in terms of expected values, to the corresponding sample moments. The population
moments will be functions of the unknown parameters. Then these equations are solved to
yield estimators of the unknown parameters.

Let be a random sample from the probability distribution f (x), where
f (x) can be a discrete probability mass function or a continuous probability density
function. The k th population moment (or distribution moment) is E(Xk ), k �
1, 2, . The corresponding k th sample moment is 11�n2 g

n
i�1 X

k
i , k � 1, 2, p .p

X1, X2, p , Xn

Moments
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To illustrate, the first population moment is E1X 2 � �, and the first sample moment is
. Thus by equating the population and sample moments, we find that 

. That is, the sample mean is the moment estimator of the population mean. In the
general case, the population moments will be functions of the unknown parameters of the
distribution, say, �1, �2, p , �m.

�̂ � X
11�n2 g

n
i�1 Xi � X
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Let be a random sample from either a probability mass function or a
probability density function with m unknown parameters The
moment estimators are found by equating the first m population
moments to the first m sample moments and solving the resulting equations for the
unknown parameters.

�̂1, �̂2, p , �̂m

�1, �2, p , �m.
X1, X2, p , Xn

Moment
Estimators

EXAMPLE 7-8 Gamma Distribution Moment Estimators
Suppose that X1, X2, , Xn is a random sample from a gamma
distribution with parameters r and �. For the gamma distribution,

and The moment estima-
tors are found by solving

The resulting estimators are

r̂ �
X 2

11�n2a
n

i�1
X2

i � X 2

  �̂ �
X

11�n2a
n

i�1
X2

i � X 2

r�� � X, r 1r 	 12��2 �
1
n a

n

i�1
 X

2
i  

E1X22 � r 1r 	 12 ��2.E1X 2 � r��

p To illustrate, consider the time to failure data introduced fol-
lowing Example 7-6. For these data, and

, so the moment estimates are

Interpretation: When r � 1, the gamma reduces to the expo-
nential distribution. Because slightly exceeds unity, it is
quite possible that either the gamma or the exponential distri-
bution would provide a reasonable model for the data.

r̂

�̂ �
21.65

11�82  6645.43 � 121.6522
� 0.0598

r̂ �
121.6522

11�82  6645.43 � 121.6522
� 1.29,

g 8
i�1x

2
i � 6639.40

x � 21.65

EXAMPLE 7-7 Normal Distribution Moment Estimators
Suppose that X1, X2, , Xn is a random sample from a normal
distribution with parameters � and �2. For the normal distribu-
tion, E1X 2� � and E1X2 2� �2 	 �2. Equating E1X 2 to and
E1X22 to gives

� � X,  �2 	 �2 �
1
n a

n

i�1
 X2

i

1
n g

n
i�1 X

2
i

X

p Solving these equations gives the moment estimators

Practical Conclusion: Notice that the moment estimator of
�2 is not an unbiased estimator.

�̂ � X,  �̂2 �
a

n

i�1
 X2

i � n a
1
n a

n

i�1
 Xib

2

n �
a

n

i�1
 1Xi � X 22

n

EXAMPLE 7-6 Exponential Distribution Moment Estimator
Suppose that is a random sample from an expo-
nential distribution with parameter . Now there is only one
parameter to estimate, so we must equate E1X 2 to . For theX

�
X1, X2, p , Xn exponential, Therefore results in

so is the moment estimator of .��̂ � 1�X1�� � X,
E1X 2 � XE1X 2 � 1��.

As an example, suppose that the time to failure of an electronic module used in an automobile
engine controller is tested at an elevated temperature to accelerate the failure mechanism.
The time to failure is exponentially distributed. Eight units are randomly selected and
tested, resulting in the following failure time (in hours): x1 � 11.96, x2 � 5.03, x3 � 67.40,
x4 � 16.07, x5 � 31.50, x6 � 7.73, x7 � 11.10, and x8 � 22.38. Because , the
moment estimate of is �̂ � 1�  x � 1�21.65 � 0.0462.�

x� � 21.65
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7-4.2 Method of Maximum Likelihood

One of the best methods of obtaining a point estimator of a parameter is the method of maxi-
mum likelihood. This technique was developed in the 1920s by a famous British statistician,
Sir R. A. Fisher. As the name implies, the estimator will be the value of the parameter that
maximizes the likelihood function.

Suppose that X is a random variable with probability distribution f (x; ), where is
a single unknown parameter. Let x1, x2, , xn be the observed values in a random
sample of size n. Then the likelihood function of the sample is

(7-9)

Note that the likelihood function is now a function of only the unknown parameter 
The maximum likelihood estimator (MLE) of is the value of that maximizes
the likelihood function L( ).�

��
�.

L1�2 � f 1x1; �2 � f 1x2; �2 � p � f 1xn; �2

p
��

Maximum
Likelihood
Estimator

In the case of a discrete random variable, the interpretation of the likelihood function is
simple. The likelihood function of the sample L( ) is just the probability

That is, L( ) is just the probability of obtaining the sample values x1, x2, , xn.  Therefore, in
the discrete case, the maximum likelihood estimator is an estimator that maximizes the prob-
ability of occurrence of the sample values.

p�

P 1X1 � x1, X2 � x2, p , Xn � xn2

�

EXAMPLE 7-9 Bernoulli Distribution MLE
Let X be a Bernoulli random variable. The probability mass
function is

where p is the parameter to be estimated. The likelihood func-
tion of a random sample of size n is

We observe that if maximizes L( p), also maximizes 
ln L( p). Therefore,

p̂p̂

 � q
n

i�1
 pxi 11 � p21�xi � pa

n

i�1
xi 11 � p2

n�a
n

i�1
xi

 L 1 p2 � px1 11 � p21�x1 px2 11 � p21�x2  p pxn 11 � p21�xn

f 1x; p2 � e
px 11 � p21�x, x � 0, 1

0, otherwise
Now,

Equating this to zero and solving for p yields 
Therefore, the maximum likelihood estimator of p is

P̂ �
1
n a

n

i�1
 Xi

p̂ � 11�n2 g
n
i�1 xi.

d ln L1  p2

dp
�
a

n

i�1
 xi

p �

an � a
n

i�1
 xib

1 � p

ln L1  p2 � aa
n

i�1
 xib ln p 	 an � a

n

i�1
 xib ln 11 � p2

Suppose that this estimator was applied to the following situation: n items are selected
at random from a production line, and each item is judged as either defective (in which case
we set xi � 1) or nondefective (in which case we set xi � 0). Then is the number of
defective units in the sample, and is the sample proportion defective. The parameter p is
the population proportion defective, and it seems intuitively quite reasonable to use as an
estimate of p.

p̂
p̂

g n
i�1 xi
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240 CHAPTER 7 SAMPLING DISTRIBUTIONS AND POINT ESTIMATION OF PARAMETERS

Although the interpretation of the likelihood function given above is confined to the dis-
crete random variable case, the method of maximum likelihood can easily be extended to a
continuous distribution. We now give two examples of maximum likelihood estimation for
continuous distributions.

EXAMPLE 7-11 Exponential Distribution MLE
Let X be exponentially distributed with parameter �. The like-
lihood function of a random sample of size n, say, X1, X2, ,
Xn, is

The log likelihood is

ln L1�2 � n ln � � � a
n

i�1
 xi

L1�2 � q
n

i�1
 �e��xi � �n

 e�� a
n

i�1
 xi

p
Now,

and upon equating this last result to zero we obtain

Conclusion: Thus, the maximum likelihood estimator of � is
the reciprocal of the sample mean. Notice that this is the same
as the moment estimator.

�̂ � n�a
n

i�1
 Xi � 1� X

d ln L1�2

d�
�

n

�
� a

n

i�1
 xi

EXAMPLE 7-10 Normal Distribution MLE
Let X be normally distributed with unknown and known
variance . The likelihood function of a random sample of
size n, say X1, X2, , Xn, is

Now,

ln L1�2 � �1n�22 ln12��22 � 12�22�1 a
n

i�1
 1xi � �22

L1�2 � q
n

i�1
 

1

�12�
  e�1xi��22�12�22 �

1

12��22n�2   e
�1

2�2 
 a
n

i�1
 1xi��22

p
�2

� and

Equating this last result to zero and solving for � yields

Conclusion: The sample mean is the maximum likelihood esti-
mator of �. Notice that this is identical to the moment estimator.

�̂ �
a

n

i�1
 Xi

n � X

d ln L1�2

d�
� 1�22�1 a

n

i�1
 1xi � �2

It is easy to illustrate graphically just how the method of maximum likelihood works.
Figure 7-7(a) plots the log of the likelihood function for the exponential parameter from
Example 7-11, using the n � 8 observations on failure time given following Example 7-6. It
is common for the log likelihood function to be negative. We found that the estimate of � was

. From Example 7-11, we know that this is a maximum likelihood estimate. Figure
7-7(a) shows clearly that the log likelihood function is maximized at a value of that is ap-
proximately equal to 0.0462. Notice that the log likelihood function is relatively flat in the re-
gion of the maximum. This implies that the parameter is not estimated very precisely. If the
parameter were estimated precisely, the log likelihood function would be very peaked at the
maximum value. The sample size here is relatively small, and this has led to the imprecision
in estimation. This is illustrated in Fig. 7-7(b) where we have plotted the difference in log like-
lihoods for the maximum value, assuming that the sample sizes were n � 8, 20, and 40 but
that the sample average time to failure remained constant at . Notice how much
steeper the log likelihood is for n � 20 in comparison to n � 8, and for n � 40 in comparison
to both smaller sample sizes.

The method of maximum likelihood can be used in situations where there are several un-
known parameters, say, 	1, 	2, , 	k to estimate. In such cases, the likelihood function is a func-
tion of the k unknown parameters 	1, 	2, , 	k, and the maximum likelihood estimators 5
̂i6p

p

x � 21.65

�

�̂ � 0.0462
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Figure 7-7 Log likelihood for the exponential distribution, using the failure time data. (a) Log likelihood with n � 8 (original
data). (b) Log likelihood if n � 8, 20, and 40.

EXAMPLE 7-12 Normal Distribution MLEs for � and �2

Let X be normally distributed with mean � and variance � 2,
where both � and � 2 are unknown. The likelihood function for
a random sample of size n is

and

ln L1�, �22 � �
n

2
  ln12��22 �

1

2�2 a
n

i�1
 1xi � �22

 �
1

12��22n�2
  e 

�1

2�2   a
n

i�1
 1xi��22

 L1�, �22 � q
n

i�1
 

1

�12�
  e�1xi��22�12�22

Now,

The solutions to the above equations yield the maximum
likelihood estimators

Conclusion: Once again, the maximum likelihood estimators
are equal to the moment estimators.

�̂ � X  �̂2 �
1
n a

n

i�1
 1Xi � X 22

 � ln L1�, �22

�1�22
� �

n

2�2 	
1

2�4 a
n

i�1
 1xi � �22 � 0

� ln L1�, �22

��
�

1

�2 a
n

i�1
 1xi � �2 � 0

would be found by equating the k partial derivatives to
zero and solving the resulting system of equations.

i � 1, 2, p , k�L1�1, �2, p , �k2���i,

Properties of the Maximum Likelihood Estimator
The method of maximum likelihood is often the estimation method that mathematical statisti-
cians prefer, because it produces estimators with good statistical properties. We summarize
these properties as follows.

Under very general and not restrictive conditions, when the sample size n is large and
if is the maximum likelihood estimator of the parameter �,

(1) is an approximately unbiased estimator for ,

(2) the variance of is nearly as small as the variance that could be obtained
with any other estimator, and

(3) has an approximate normal distribution.�̂

�̂

� 3E1�̂2 � � 4�̂

�̂

Properties of 
a Maximum

Likelihood
Estimator
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242 CHAPTER 7 SAMPLING DISTRIBUTIONS AND POINT ESTIMATION OF PARAMETERS

Properties 1 and 2 essentially state that the maximum likelihood estimator is approxi-
mately an MVUE. This is a very desirable result and, coupled with the fact that it is fairly easy
to obtain in many situations and has an asymptotic normal distribution (the “asymptotic”
means “when n is large”), explains why the maximum likelihood estimation technique is
widely used. To use maximum likelihood estimation, remember that the distribution of the
population must be either known or assumed.

To illustrate the “large-sample” or asymptotic nature of the above properties, consider the
maximum likelihood estimator for �2, the variance of the normal distribution, in Example 7-12.
It is easy to show that

The bias is

Because the bias is negative, tends to underestimate the true variance . Note that the bias
approaches zero as n increases. Therefore, is an asymptotically unbiased estimator for .

We now give another very important and useful property of maximum likelihood
estimators.

�2�̂2
�2�̂2

E1�̂22 � �2 �
n � 1

n  �2 � �2 �
��2

n

E1�̂22 �
n � 1

n  �2

Let be the maximum likelihood estimators of the parameters ,
, , . Then the maximum likelihood estimator of any function h( , , , )

of these parameters is the same function of the estimators
.�̂1, �̂2, p , �̂k

h1�̂1, �̂2, p , �̂k2
�kp�2�1�kp�2

�1�̂1, �̂2, p , �̂k

Invariance
Property

EXAMPLE 7-14 Uniform Distribution MLE
Let X be uniformly distributed on the interval 0 to a. Since the
density function is for 0 � x � a and zero other-
wise, the likelihood function of a random sample of size n is

for

0 � x1 � a, 0 � x2 � a, , 0 � xn � ap

L1a2 � q
n

i�1
 
1
a �

1

an

f  1x2 � 1�a
Note that the slope of this function is not zero anywhere. That
is, as long as max(xi) � a, the likelihood is , which is pos-
itive, but when a max(xi), the likelihood goes to zero, as
illustrated in Fig. 7-8. Therefore, calculus methods cannot be
used directly because the maximum value of the likelihood
function occurs at a point of discontinuity. However, since

is less than zero for all values of a 	 0,
a�n is a decreasing function of a. This implies that the maximum
of the likelihood function L(a) occurs at the lower boundary

d�da 1a�n2 � �n�a 
n
1

�
1�an

EXAMPLE 7-13
In the normal distribution case, the maximum likelihood esti-
mators of � and �2 were and .
To obtain the maximum likelihood estimator of the function

, substitute the estimators and into
the function h, which yields

�̂2�̂2�2 � �h1�, �22 �

�̂2 � g n
i�1 1Xi � X 22�n�̂ � X

Conclusion: The maximum likelihood estimator of the standard
deviation � is not the sample standard deviation S.

�̂ � 2�̂2 � c
1
n a

n

i�1
 1Xi � X 22 d

1� 2

Complications in Using Maximum Likelihood Estimation
While the method of maximum likelihood is an excellent technique, sometimes complications
arise in its use. For example, it is not always easy to maximize the likelihood function because
the equation(s) obtained from may be difficult to solve. Furthermore, it may
not always be possible to use calculus methods directly to determine the maximum of .
These points are illustrated in the following two examples.

L1�2
dL 1�2�d� � 0
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EXAMPLE 7-15 Gamma Distribution MLE
Let X1, X2, , Xn be a random sample from the gamma distri-
bution. The log of the likelihood function is

The derivatives of the log likelihood are

 � ln L1r, �2

��
�

nr

�
� a

n

i�1
 xi

 � ln L1r, �2

�r
� n ln 1�2 	 a

n

i�1
 ln 1xi2 � n 

�¿  1r2

� 1r2

� n ln 3� 1r2 4 � � a
n

i�1
 xi

 � nr ln 1�2 	 1r � 12 a
n

i�1
 ln 1xi2

 ln L1r, �2 � ln  aq
n

i�1
 
�r x r�1

i  e��xi

� 1r2
b

p When the derivatives are equated to zero, we obtain the equa-
tions that must be solved to find the maximum likelihood esti-
mators of r and �:

There is no closed form solution to these equations.
Figure 7-9 shows a graph of the log likelihood for the

gamma distribution using the n � 8 observations on failure
time introduced previously. Figure 7-9(a) shows the log likeli-
hood surface as a function of r and �, and Figure 7-9(b) is a
contour plot. These plots reveal that the log likelihood is
maximized at approximately and . Many
statistics computer programs use numerical techniques to
solve for the maximum likelihood estimates when no simple
solution exists.

�̂ � 0.08r̂ � 1.75

 n ln 1�̂2 	 a
n

i�1
 ln 1xi2 � n 

�¿  1r̂2

� 1r̂2

�̂ �
r̂

x

point. The figure clearly shows that we could maximize L(a) by
setting equal to the smallest value that it could logically take
on, which is max(xi). Clearly, a cannot be smaller than the

â
largest sample observation, so setting equal to the largest
sample value is reasonable.

â

Max (xi )0

L(a)

a

Figure 7-8 The like-
lihood function for the
uniform distribution in
Example 7-14.
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Figure 7-9 Log likelihood for the gamma distribution using the failure time data. (a) Log likelihood surface. (b) Contour plot.
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244 CHAPTER 7 SAMPLING DISTRIBUTIONS AND POINT ESTIMATION OF PARAMETERS

7-4.3 Bayesian Estimation of Parameters

This book uses methods of statistical inference based on the information in the sample data.
In effect, these methods interpret probabilities as relative frequencies. Sometimes we call
probabilities that are interpreted in this manner objective probabilities. There is another
approach to statistical inference, called the Bayesian approach, that combines sample infor-
mation with other information that may be available prior to collecting the sample. In this sec-
tion we briefly illustrate how this approach may be used in parameter estimation.

Suppose that the random variable X has a probability distribution that is a function of one
parameter . We will write this probability distribution as This notation implies that
the exact form of the distribution of X is conditional on the value assigned to . The classical ap-
proach to estimation would consist of taking a random sample of size n from this distribution
and then substituting the sample values xi into the estimator for . This estimator could have
been developed using the maximum likelihood approach, for example.

Suppose that we have some additional information about � and that we can summarize
that information in the form of a probability distribution for �, say, f (�). This probability dis-
tribution is often called the prior distribution for �, and suppose that the mean of the prior is
�0 and the variance is . This is a very novel concept insofar as the rest of this book is con-
cerned because we are now viewing the parameter as a random variable. The probabilities
associated with the prior distribution are often called subjective probabilities, in that they
usually reflect the analyst’s degree of belief regarding the true value of �. The Bayesian
approach to estimation uses the prior distribution for �, f (�), and the joint probability distri-
bution of the sample, say, to find a posterior distribution for , say,

This posterior distribution contains information from both the sample and
the prior distribution for . In a sense, it expresses our degree of belief regarding the true value
of after observing the sample data. It is easy conceptually to find the posterior distribution.
The joint probability distribution of the sample X1, X2, p , Xn and the parameter (remember
that � is a random variable) is 

and the marginal distribution of X1, X2, p , Xn is

Therefore, the desired distribution is 

We define the Bayes estimator of � as the value that corresponds to the mean of the poste-
rior distribution 

Sometimes, the mean of the posterior distribution of can be determined easily. As a
function of , is a probability density function and are just constants.x1, p , xnf  1� 0  x1, p , xn2�

�
f  1� 0  x1, x2, p , xn2.

�
�

f 1� 0  x1, x2, p , xn2 �
f 1x1, x2, p , xn, �2

f 1x1, x2, p , xn2

f  1x1, x2, p , xn2 � μ
a

�
 f 1x1, x2, p , xn, �2, � discrete

�



�

 
f 1x1, x2, p , xn, �2 d�, � continuous

f 1x1, x2, p , xn, �2 � f 1x1, x2, p , xn 
0

 
�2 f 1�2

�
�

�
f 1� 0  x1, x2, p , xn2.

�f  1x1, x2, p , xn  0  �2,

�
�2

0

�

�
f 1x 0 �2.�
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Because enters into only through if as a
function of is recognized as a well-known probability function, the posterior mean of can
be deduced from the well-known distribution without integration or even calculation of
f 1x1, p , xn2.

��
f 1x1, p , xn, �2,f 1x1, p , xn, �2f 1� 0 x1, p , xn2�

EXAMPLE 7-16 Bayes Estimator for the Mean of a Normal Distribution
Let X1, X2 Xn be a random sample from the normal distri-
bution with mean � and variance �2, where � is unknown and
�2 is known. Assume that the prior distribution for � is normal
with mean �0 and variance ; that is,

The joint probability distribution of the sample is

Thus, the joint probability distribution of the sample and � is

Upon completing the square in the exponent,

where hi(x1, p , xn, �
2, �0, ) is a function of the observed

values and the parameters , , and .�2
0�0�2

�2
0

� h21x1, p , xn, �
2, �0, �

2
02

f 1x1, x2, p , xn, �2 � e
� 11�22 a

1

�0
2

  	  

1

�2�n
b  c�2�a

1�2�n2�0

�2
0	�2�n

 	  

x�2
0

�2
0	�2�n

bd

2

� e
� 11�22 ca

1

�0
2

  	  

1

�2�n
b �2�2 a

�0

�0
2

 	  

x

�2�n
b �d h11x1, p , xn, �

2, �0, �
2
02

� e�11�22 311��2
0	n��22�2� 12�0��2

0	2a  xi��22�	a  x2
i ��2	�2

0 ��2
04

 f 1x1, x2, p , xn, �2 �
1

12��22n�212��0

 �
1

12��22n�2 e�11�2�22 1ax2
i �2�a xi	n�22

 f 1x1, x2, p , xn 
0  �2 �

1

12��22n�2 e�11�2�22 a
n

i�1
1xi��22

f  1�2 �
1

12��0
 e� 1���02

2�12�2
02 �

1

12��2
0
 e�1�2�2�0�	�2

02�12�2
02

�2
0

, p , Now, because f (x1, p , xn) does not depend on ,

This is recognized as a normal probability density function
with posterior mean

and posterior variance

Consequently, the Bayes estimate of � is a weighted average
of �0 and . For purposes of comparison, note that the maxi-
mum likelihood estimate of � is .

To illustrate, suppose that we have a sample of size n �
10 from a normal distribution with unknown mean � and
variance �2 � 4. Assume that the prior distribution for � is
normal with mean �0 � 0 and variance . If the sample
mean is 0.75, the Bayes estimate of � is

Conclusion: Note that the maximum likelihood estimate of �
is . The Bayes estimate is between the maximum like-
lihood estimate and the prior mean.

x � 0.75

14�1020 	 110.752

1 	 14�102
�

0.75

1.4
� 0.536

�2
0 � 1

�̂ � x
x

a
1

�2
0

	
1

�2�n
b

�1

�
�2

0 1�2�n2
�2

0 	 �2�n

1�2�n2�0 	 �2
0 x

�2
0 	 �2�n

� h31x1, p , xn, �
2, �0, �

2
02

f 1� 0  x1, p , xn2 � e
� 11�22  a

1

�0
2

 	  

1

�2�n
b  c�2 �  a

1�2�n2�0	�2
0 x

 

�2
0 	�2�n

bd

�

There is a relationship between the Bayes estimator for a parameter and the maximum
likelihood estimator of the same parameter. For large sample sizes, the two are nearly
equivalent. In general, the difference between the two estimators is small compared to

In practical problems, a moderate sample size will produce approximately the same
estimate by either the Bayes or maximum likelihood method, if the sample results are con-
sistent with the assumed prior information. If the sample results are inconsistent with the
prior assumptions, the Bayes estimate may differ considerably from the maximum likeli-
hood estimate. In these circumstances, if the sample results are accepted as being correct,
the prior information must be incorrect. The maximum likelihood estimate would then be
the better estimate to use.

If the sample results are very different from the prior information, the Bayes estimator
will always tend to produce an estimate that is between the maximum likelihood estimate and
the prior assumptions. If there is more inconsistency between the prior information and the
sample, there will be more difference between the two estimates.

1�1n.
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7-34. Let X be a geometric random variable with parameter
p. Find the maximum likelihood estimator of p, based on a
random sample of size n.

7-35. Consider the Poisson distribution with parameter 
Find the maximum likelihood estimator of , based on a
random sample of size n.

7-36. Let X be a random variable with the following proba-
bility distribution:

Find the maximum likelihood estimator of �, based on a random
sample of size n.

7-37. Consider the shifted exponential distribution

When � 0, this density reduces to the usual exponential
distribution. When , there is only positive probability to
the right of �.
(a) Find the maximum likelihood estimator of and , based

on a random sample of size n.
(b) Describe a practical situation in which one would suspect

that the shifted exponential distribution is a plausible
model.

7-38. Consider the probability density function

Find the maximum likelihood estimator for �.

7-39. Let X1, X2, , Xn be uniformly distributed on the in-
terval 0 to a. Show that the moment estimator of a is 
Is this an unbiased estimator? Discuss the reasonableness of
this estimator.

7-40. Consider the probability density function

(a) Find the value of the constant c.
(b) What is the moment estimator for �?
(c) Show that is an unbiased estimator for .
(d) Find the maximum likelihood estimator for .

7-41. The Rayleigh distribution has probability density
function

f  1x2 �
x

�
  e�x2�2�,  x � 0,  0 � � � 


�
��̂ � 3X

f  1x2 � c 11 	 �x2, �1 
 x 
 1

â � 2X.
p

f  1x2 �
1

�2  
 xe�x��,  0 
 x � 
, 0 � � � 


��

� � 0
�

f  1x2 � �e��1x��2,  x � �

f  1x2 � e
1� 	 12  x�, 0 
 x 
 1

    0 , otherwise

�
�.

(a) It can be shown that Use this information to
construct an unbiased estimator for .

(b) Find the maximum likelihood estimator of . Compare
your answer to part (a).

(c) Use the invariance property of the maximum likelihood
estimator to find the maximum likelihood estimator of the
median of the Raleigh distribution.

7-42. Let X1, X2, , Xn be uniformly distributed on the
interval 0 to a. Recall that the maximum likelihood estimator
of a is .
(a) Argue intuitively why cannot be an unbiased estimator

for a.
(b) Suppose that . Is it reasonable that 

consistently underestimates a? Show that the bias in the
estimator approaches zero as n gets large.

(c) Propose an unbiased estimator for a.
(d) Let Y � max(Xi ). Use the fact that if and only

if each to derive the cumulative distribution
function of Y. Then show that the probability density func-
tion of Y is

Use this result to show that the maximum likelihood esti-
mator for a is biased.

(e) We have two unbiased estimators for a: the moment
estimator and ,
where max(Xi ) is the largest observation in a random
sample of size n. It can be shown that 
and that . Show that if n 1, 
is a better estimator than . In what sense is it a better
estimator of a?

7-43. Consider the Weibull distribution

(a) Find the likelihood function based on a random sample of
size n. Find the log likelihood.

(b) Show that the log likelihood is maximized by solving the
equations

 � � ≥
a

n

i�1
xi

� ln1xi2

a
n

i�1
xi

�

�
a

n

i�1
ln1xi2

n ¥

�1

f 1x2 � •

�

�
 a

x

�
b

��1

e
�a

x
�
b

�

, 0 � x

   0 , otherwise

â
â2�V 1â22 � a2� 3n1n 	 22 4

V1â12 � a2� 13n2

â2 � 3 1n 	 12�n 4  max1Xi2â1 � 2X

f  1 y2 � •

ny 
n�1

an , 0 
 y 
 a

0    , otherwise

Xi 
 y
Y 
 y

âE1â2 � na� 1n 	 12

â
â � max 1Xi2

p

�
�

E1X 
22 � 2�.

EXERCISES FOR SECTION 7-4
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(c) What complications are involved in solving the two equa-
tions in part (b)?

7-44. Reconsider the oxide thickness data in Exercise 7-29
and suppose that it is reasonable to assume that oxide thick-
ness is normally distributed.
(a) Compute the maximum likelihood estimates of � and �2.
(b) Graph the likelihood function in the vicinity of and ,

the maximum likelihood estimates, and comment on its
shape.

(c) Suppose that the sample size was larger (n � 40) but the
maximum likelihood estimates were numerically equal to
the values obtained in part (a). Graph the likelihood func-
tion for n � 40, compare it to the one from part (b), and
comment on the effect of the larger sample size.

7-45. Suppose that X is a normal random variable with un-
known mean � and known variance �2. The prior distribution
for � is a normal distribution with mean �0 and variance .
Show that the Bayes estimator for � becomes the maximum
likelihood estimator when the sample size n is large.

7-46. Suppose that X is a normal random variable with un-
known mean � and known variance �2. The prior distribution
for � is a uniform distribution defined over the interval [a, b].
(a) Find the posterior distribution for �.
(b) Find the Bayes estimator for �.

7-47. Suppose that X is a Poisson random variable with pa-
rameter �. Let the prior distribution for � be a gamma distri-
bution with parameters m 	 1 and .
(a) Find the posterior distribution for .
(b) Find the Bayes estimator for .

7-48. Suppose that X is a normal random variable with
unknown mean and known variance �2 � 9. The prior distri-
bution for � is normal with �0 � 4 and � 1. A random
sample of n � 25 observations is taken, and the sample mean
is 
(a) Find the Bayes estimate of �.
(b) Compare the Bayes estimate with the maximum likeli-

hood estimate.

7-49. The weight of boxes of candy is a normal random
variable with mean � and variance pound. The prior dis-
tribution for � is normal, with mean 5.03 pound and variance

pound. A random sample of 10 boxes gives a sample
mean of pounds.
(a) Find the Bayes estimate of �.
(b) Compare the Bayes estimate with the maximum likeli-

hood estimate.

7-50. The time between failures of a machine has an expo-
nential distribution with parameter �. Suppose that the prior
distribution for � is exponential with mean 100 hours. Two

x � 5.05
1�25

1�10

x � 4.85.

�2
0

�
�

1m 	 12��0

�2
0

�̂2�̂

 � �
£
a

n

i�1
x�

i

n
§

1�� machines are observed, and the average time between failures
is hours.
(a) Find the Bayes estimate for �.
(b) What proportion of the machines do you think will fail

before 1000 hours?

Supplemental Exercises

7-51. Transistors have a life that is exponentially distributed
with parameter �. A random sample of n transistors is taken.
What is the joint probability density function of the sample?

7-52. Suppose that a random variable is normally distrib-
uted with mean � and variance �2, and we draw a random
sample of five observations from this distribution. What is the
joint probability density function of the sample?

7-53. Suppose that X is uniformly distributed on the interval
from 0 to 1. Consider a random sample of size 4 from X. What
is the joint probability density function of the sample?

7-54. A procurement specialist has purchased 25 resistors
from vendor 1 and 30 resistors from vendor 2. Let X1,1,
X1,2, , X1,25 represent the vendor 1 observed resistances,
which are assumed to be normally and independently distrib-
uted with mean 100 ohms and standard deviation 1.5 ohms.
Similarly, let X2,1, X2,2, , X2,30 represent the vendor 2 ob-
served resistances, which are assumed to be normally and in-
dependently distributed with mean 105 ohms and standard
deviation of 2.0 ohms. What is the sampling distribution of

? What is the standard error of ?

7-55. A random sample of 36 observations has been drawn
from a normal distribution with mean 50 and standard deviation
12. Find the probability that the sample mean is in the interval

. Is the assumption of normality important? Why?

7-56. A random sample of n � 9 structural elements is
tested for compressive strength. We know that the true mean
compressive strength � � 5500 psi and the standard deviation
is � � 100 psi. Find the probability that the sample mean
compressive strength exceeds 4985 psi.

7-57. A normal population has a known mean 50 and
known variance �2 � 2. A random sample of n � 16 is se-
lected from this population, and the sample mean is 
How unusual is this result?

7-58. A random sample of size n � 16 is taken from a nor-
mal population with � � 40 and �2 � 5. Find the probability
that the sample mean is less than or equal to 37.

7-59. A manufacturer of semiconductor devices takes a
random sample of 100 chips and tests them, classifying each
chip as defective or nondefective. Let Xi � 0 if the chip is
nondefective and Xi � 1 if the chip is defective. The sample
fraction defective is

What is the sampling distribution of the random variable ?P̂

P̂ �
X1 	 X2 	 p 	 X100

100

x � 52.

47 
 X 
 53

X1 � X2X1 � X2

p

p

x � 1125
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248 CHAPTER 7 SAMPLING DISTRIBUTIONS AND POINT ESTIMATION OF PARAMETERS

7-60. Let X be a random variable with mean � and variance
�2. Given two independent random samples of sizes n1 and n2,
with sample means and , show that

is an unbiased estimator for . If and are independent,
find the value of a that minimizes the standard error of .

7-61. A random variable x has probability density function

Find the maximum likelihood estimator for �.

7-62. Let 
Show that is the maximum likelihood 
estimator for .

7-63. Let 0 1, and 0
Show that is the maximum likelihood
estimator for and that is an unbiased estimator for �.�̂�

�̂ � �11�n2 g
n
i�1 ln1Xi2

	.
�

x
f  1x2 � 11��2x 
11��2��,

�
�̂ � �n� 1ln wn

i�1 Xi2
f  1x2 � �x��1, 0 
 � 
 	, and 0 
 x 
 1.

f  1x2 �
1

2�3 x2e�x��,  0 
 x 
 	, 0 
 � 
 	

X
X2X1�

X � aX1 � 11 � a2X2, 0 
 a 
 1

X2X1

7-64. You plan to use a rod to lay out a square, each side of
which is the length of the rod. The length of the rod is �, which
is unknown. You are interested in estimating the area of the
square, which is �2. Because is unknown, you measure it n
times, obtaining observations X1, X2, , Xn. Suppose that
each measurement is unbiased for with variance �2.

(a) Show that is a biased estimate of the area of the square.
(b) Suggest an estimator that is unbiased.

7-65. An electric utility has placed special meters on 10
houses in a subdivision that measures the energy consumed
(demand) at each hour of the day. They are interested in the en-
ergy demand at one specific hour, the hour at which the system
experiences the peak consumption. The data from these 10 me-
ters are as follows (in KW): 23.1, 15.6, 17.4, 20.1, 19.8, 26.4,
25.1, 20.5, 21.9, and 28.7. If is the true mean peak demand
for the ten houses in this group of houses having the special
meters, estimate . Now suppose that the utility wants to esti-
mate the demand at the peak hour for all 5,000 houses in this
subdivision. Let � be this quantity. Estimate � using the data
given above. Estimate the proportion of houses in the subdivi-
sion that demand at least 20KW at the hour of system peak.

�

�

X2

�
p

�

MIND-EXPANDING EXERCISES

7-66. A lot consists of N transistors, and of these, M
(M � N) are defective. We randomly select two transis-
tors without replacement from this lot and determine
whether they are defective or nondefective. The
random variable

Determine the joint probability function for X1 and X2.
What are the marginal probability functions for X1 and
X2? Are X1 and X2 independent random variables?

7-67. When the sample standard deviation is based on a
random sample of size n from a normal population, it can
be shown that S is a biased estimator for �. Specifically,

(a) Use this result to obtain an unbiased estimator for �
of the form cnS, when the constant cn depends on the
sample size n.

(b) Find the value of cn for and .
Generally, how well does S perform as an estimator
of for large n with respect to bias?

7-68. A collection of n randomly selected parts is
measured twice by an operator using a gauge. Let Xi and
Yi denote the measured values for the ith part. Assume
that these two random variables are independent and
normally distributed and that both have true mean �i and
variance �2.
(a) Show that the maximum likelihood estimator of �2

is .
(b) Show that is a biased estimator for . What

happens to the bias as n becomes large?
(c) Find an unbiased estimator for �2.

7-69. Consistent Estimator. Another way to measure
the closeness of an estimator to the parameter is in
terms of consistency. If is an estimator of based on a
random sample of n observations, is consistent for if

Thus, consistency is a large-sample property, describing
the limiting behavior of as n tends to infinity. It is
usually difficult to prove consistency using the above


̂n

lim
nS	

 P 1 0
̂n � � 0 
 �2 � 1

�
̂n

�
̂n

�
̂

�̂2�̂2
�̂2 � 11�4n2 g n

i�1 1Xi � Yi2
2

�

n � 25n � 10

E1S 2 � �12� 1n � 12 �1n�22� � 3 1n � 12�2 4

Xi � μ

1, if the ith transistor
is nondefective

0, if the ith transistor
is defective

 i � 1, 2

JWCL232_c07_223-250.qxd  1/11/10  10:11 PM  Page 248
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MIND-EXPANDING EXERCISES

definition, although it can be done from other ap-
proaches. To illustrate, show that is a consistent esti-
mator of � (when ) by using Chebyshev’s
inequality from the supplemental material on the Web.

7-70. Order Statistics. Let X1, X2, , Xn be a random
sample of size n from X, a random variable having distri-
bution function F(x). Rank the elements in order of in-
creasing numerical magnitude, resulting in X(1), X(2), ,
X(n), where X(1) is the smallest sample element (X(1) �
min{X1, X2, , Xn}) and X(n) is the largest sample ele-
ment (X(n) � max{X1, X2, , Xn}). X(i) is called the ith
order statistic. Often the distribution of some of the order
statistics is of interest, particularly the minimum and
maximum sample values X(1) and X(n), respectively.
(a) Prove that the cumulative distribution functions of

these two order statistics, denoted respectively by
and , are

(b) Prove that if X is continuous with probability den-
sity function f (x), the probability distributions of
X(1) and X(n) are

(c) Let X1, X2, , Xn be a random sample of a Bernoulli
random variable with parameter p. Show that

(d) Let X1, X2, , Xn be a random sample of a normal
random variable with mean � and variance �2. Derive
the probability density functions of X(1) and X(n).

(e) Let X1, X2, , Xn be a random sample of an expo-
nential random variable of parameter �. Derive the
cumulative distribution functions and probability
density functions for X(1) and X(n).

7-71. Let X1, X2, , Xn be a random sample of a
continuous random variable with cumulative distribu-
tion function F(x). Find

and

7-72. Let X be a random variable with mean � and
variance �2, and let X1, X2, , Xn be a random sample
of size n from X. Show that the statistic 

is an unbiased estimator for �2 for an ap-
propriate choice for the constant k. Find this value for k.

7-73. When the population has a normal distribution,
the estimator

is sometimes used to estimate the population standard
deviation. This estimator is more robust to outliers than the
usual sample standard deviation and usually does not dif-
fer much from S when there are no unusual observations.
(a) Calculate and S for the data 10, 12, 9, 14, 18, 15,

and 16.
(b) Replace the first observation in the sample (10) with

50 and recalculate both S and .

7-74. Censored Data. A common problem in indus-
try is life testing of components and systems. In this
problem, we will assume that lifetime has an exponen-
tial distribution with parameter , so is
an unbiased estimate of . When n components are tested
until failure and the data X1, X2, , Xn represent actual
lifetimes, we have a complete sample, and is indeed an
unbiased estimator of �. However, in many situations, the
components are only left under test until r � n failures
have occurred. Let Y1 be the time of the first failure, Y2

be the time of the second failure, , and Yr be the
time of the last failure. This type of test results in censored
data. There are n � r units still running when the test
is terminated. The total accumulated test time at
termination is

(a) Show that is an unbiased estimator for �.
[Hint: You will need to use the memoryless property
of the exponential distribution and the results of
Exercise 7-70 for the distribution of the minimum of
a sample from an exponential distribution with
parameter �.]

(b) It can be shown that How does
this compare to in the uncensored experiment?V1X 2

V1Tr�r2 � 1� 1�2r2.

�̂ � Tr�r

Tr � a
r

i�1
 Yi 	 1n � r2Yr

p

X
p

�
�̂ � 1��̂ � X�

�̂

�̂

p, 0 Xn � X 0 2�0.6745

�̂ � median 1 0 X1 � X 0 , 0 X2 � X 0 ,

1Xi	1 � Xi2
2

V � kg n�1
i�1

p

E 3F 1X 1122 4

E 3F 1X 1n22 4

p

p

p

 P1X112 � 02 � 1 � pn

 P1X1n2 � 12 � 1 � 11 � p2n

p

 fX1n2 1t2 � n 3F1t2 4n�1f  1t2

 fX11 2
1t2 � n 31 � F1t2 4n�1f  1t2

 FX1n2 1t2 � 3F1t2 4n
 FX112 1t2 � 1 � 31 � F1t2 4n

FX1n2 1t2FX112 1t2

p
p

p

p

�2 � 

X
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Bayes estimator
Bias in parameter 

estimation
Central limit theorem
Estimator versus 

estimate
Likelihood function
Maximum likelihood

estimator

Mean square error of an
estimator

Minimum variance 
unbiased estimator

Moment estimator
Normal distribution 

as the sampling
distribution of a
sample mean

Normal distribution as
the sampling distribu-
tion of the difference
in two sample means

Parameter estimation
Point estimator
Population or distribu-

tion moments
Posterior distribution

Prior distribution
Sample moments
Sampling distribution
Standard error and 

estimated standard
error of an estimator

Statistic
Statistical inference
Unbiased estimator

IMPORTANT TERMS AND CONCEPTS
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Statistical Intervals for 
a Single Sample

INTRODUCTION

Engineers are often involved in estimating parameters. For example, there is an ASTM
Standard E23 that defines a technique called the Charpy V-notch method for notched
bar impact testing of metallic materials. The impact energy is often used to determine
if the material experiences a ductile-to-brittle transition as the temperature decreases.
Suppose that you have tested a sample of 10 specimens of a particular material with
this procedure. You know that you can use the sample average to estimate the true
mean impact energy �. However, we also know that the true mean impact energy is un-
likely to be exactly equal to your estimate. Reporting the results of your test as a single
number is unappealing, because there is nothing inherent in that provides any infor-
mation about how close it is to �. Your estimate could be very close, or it could be con-
siderably far from the true mean. A way to avoid this is to report the estimate in terms
of a range of plausible values called a confidence interval. A confidence interval al-
ways specifies a confidence level, usually 90%, 95%, or 99%, which is a measure of
the reliability of the procedure. So if a 95% confidence interval on the impact energy
based on the data from your 10 specimens has a lower limit of 63.84J and an upper
limit of 65.08J, then we can say that at the 95% level of confidence any value of mean
impact energy between 63.84 J and 65.08 J is a plausible value. By reliability, we mean
that if we repeated this experiment over and over again, 95% of all samples would pro-
duce a confidence interval that contains the true mean impact energy, and only 5% of
the time would the interval be in error. In this chapter you will learn how to construct
confidence intervals and other useful types of statistical intervals for many important
types of problem situations.

X

X

251
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252 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Construct confidence intervals on the mean of a normal distribution, using either the normal

distribution or the t distribution method
2. Construct confidence intervals on the variance and standard deviation of a normal distribution
3. Construct confidence intervals on a population proportion
4. Use a general method for constructing an approximate confidence interval on a parameter
5. Construct prediction intervals for a future observation
6. Construct a tolerance interval for a normal population
7. Explain the three types of interval estimates: confidence intervals, prediction intervals, and

tolerance intervals

In the previous chapter we illustrated how a point estimate of a parameter can be estimated
from sample data. However, it is important to understand how good is the estimate obtained.
For example, suppose that we estimate the mean viscosity of a chemical product to be

Now because of sampling variability, it is almost never the case that the true
mean � is exactly equal to the estimate . The point estimate says nothing about how close 
is to �. Is the process mean likely to be between 900 and 1100? Or is it likely to be between
990 and 1010? The answer to these questions affects our decisions regarding this process.
Bounds that represent an interval of plausible values for a parameter are an example of an in-
terval estimate. Surprisingly, it is easy to determine such intervals in many cases, and the same
data that provided the point estimate are typically used.

An interval estimate for a population parameter is called a confidence interval.
Information about the precision of estimation is conveyed by the length of the interval. A short
interval implies precise estimation. We cannot be certain that the interval contains the true,
unknown population parameter—we only use a sample from the full population to compute

�̂x
�̂ � x � 1000.

CHAPTER OUTLINE

8-1 CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE KNOWN

8-1.1 Development of the Confidence
Interval and Its Basic Properties

8-1.2 Choice of Sample Size

8-1.3 One-Sided Confidence Bounds

8-1.4 General Method to Derive a
Confidence Interval

8-1.5 Large-Sample Confidence 
Interval for �

8-2 CONFIDENCE INTERVAL ON THE
MEAN OF A NORMAL DISTRIBU-
TION, VARIANCE UNKNOWN

8-2.1 t Distribution

8-2.2 t Confidence Interval on �

8-3 CONFIDENCE INTERVAL ON THE
VARIANCE AND STANDARD
DEVIATION OF A NORMAL 
DISTRIBUTION

8-4 LARGE-SAMPLE CONFIDENCE
INTERVAL FOR A POPULATION
PROPORTION

8-5 GUIDELINES FOR CONSTRUCT-
ING CONFIDENCE INTERVALS

8-6 TOLERANCE AND PREDICTION
INTERVALS

8-6.1 Prediction Interval for a Future
Observation

8-6.2 Tolerance Interval for a Normal
Distribution
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8-1 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE KNOWN 253

the point estimate and the interval. However, the confidence interval is constructed so that we
have high confidence that it does contain the unknown population parameter. Confidence in-
tervals are widely used in engineering and the sciences.

A tolerance interval is another important type of interval estimate. For example, the
chemical product viscosity data might be assumed to be normally distributed. We might like
to calculate limits that bound 95% of the viscosity values. For a normal distribution, we know
that 95% of the distribution is in the interval

However, this is not a useful tolerance interval because the parameters � and � are unknown.
Point estimates such as and s can be used in the above equation for � and �. However, we
need to account for the potential error in each point estimate to form a tolerance interval for
the distribution. The result is an interval of the form

where k is an appropriate constant (that is larger than 1.96 to account for the estimation
error). As in the case of  a confidence interval, it is not certain that the tolerance interval
bounds 95% of the distribution, but the interval is constructed so that we have high confi-
dence that it does. Tolerance intervals are widely used and, as we will subsequently see, they
are easy to calculate for normal distributions.

Confidence and tolerance intervals bound unknown elements of a distribution. In this
chapter you will learn to appreciate the value of these intervals. A prediction interval pro-
vides bounds on one (or more) future observations from the population. For example, a
prediction interval could be used to bound a single, new measurement of viscosity—another
useful interval. With a large sample size, the prediction interval for normally distributed data
tends to the tolerance interval, but for more modest sample sizes the prediction and tolerance
intervals are different.

Keep the purpose of the three types of interval estimates clear:

A confidence interval bounds population or distribution parameters (such as the mean
viscosity).

A tolerance interval bounds a selected proportion of a distribution.

A prediction interval bounds future observations from the population or distribution.

8-1 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE KNOWN

The basic ideas of a confidence interval (CI) are most easily understood by initially consider-
ing a simple situation. Suppose that we have a normal population with unknown mean � and
known variance �2. This is a somewhat unrealistic scenario because typically both the mean
and variance are unknown. However, in subsequent sections we will present confidence inter-
vals for more general situations.

8-1.1 Development of the Confidence Interval and Its Basic Properties

Suppose that X1, X2, , Xn is a random sample from a normal distribution with unknown
mean � and known variance �2. From the results of Chapter 5 we know that the sample mean

p

x � ks, x � ks

x

� � 1.96�, � � 1.96�
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254 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

is normally distributed with mean � and variance . We may standardize by sub-
tracting the mean and dividing by the standard deviation, which results in the variable

(8-1)

The random variable Z has a standard normal distribution.
A confidence interval estimate for � is an interval of the form l � � � u, where the end-

points l and u are computed from the sample data. Because different samples will produce
different values of l and u, these end-points are values of random variables L and U, respec-
tively. Suppose that we can determine values of L and U such that the following probability
statement is true:

(8-2)

where 0 � � � 1. There is a probability of 1 � � of selecting a sample for which the CI will
contain the true value of �. Once we have selected the sample, so that X1 � x1, X2 � x2, ,
Xn � xn, and computed l and u, the resulting confidence interval for � is

(8-3)

The end-points or bounds l and u are called the lower- and upper-confidence limits, respec-
tively, and 1 � � is called the confidence coefficient.

In our problem situation, because has a standard normal distribu-
tion, we may write

Now manipulate the quantities inside the brackets by (1) multiplying through by , (2)
subtracting from each term, and (3) multiplying through by �1. This results in

(8-4)

From consideration of Equation 8-4, the lower and upper limits of the inequalities in Equation
8-4 are the lower- and upper-confidence limits L and U, respectively. This leads to the fol-
lowing definition.

P eX � z�	2 
�

1n
� � � X � z�	2 

�

1n
f � 1 � �

X
�	1n

P e�z�	2 �
X � �

�	1n
� z�	2 f � 1 � �

Z � 1X � �2	 1�	1n2

l � � � u

p

P 5L � � � U6 � 1 � �

Z �
X � �

�	1n

X�2	nX

If is the sample mean of a random sample of size n from a normal population with
known variance �2, a 100(1 � �)% CI on � is given by

(8-5)

where is the upper percentage point of the standard normal distribution.100�	2z�	2

x � z�	2 �	1n � � � x � z�	2 �	1n

x
Confidence

Interval on the
Mean, Variance

Known

JWCL232_c08_251-282.qxd  1/11/10  3:40 PM  Page 254



8-1 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE KNOWN 255

Interpreting a Confidence Interval
How does one interpret a confidence interval? In the impact energy estimation problem in
Example 8-1, the 95% CI is 63.84 65.08, so it is tempting to conclude that � is within
this interval with probability 0.95. However, with a little reflection, it’s easy to see that this
cannot be correct; the true value of � is unknown and the statement 63.84 65.08 is ei-
ther correct (true with probability 1) or incorrect (false with probability 1). The correct
interpretation lies in the realization that a CI is a random interval because in the probability
statement defining the end-points of the interval (Equation 8-2), L and U are random variables.
Consequently, the correct interpretation of a 100(1 � �)% CI depends on the relative fre-
quency view of probability. Specifically, if an infinite number of random samples are collected
and a 100(1 � �)% confidence interval for � is computed from each sample, 100(1 � �)% of
these intervals will contain the true value of �.

The situation is illustrated in Fig. 8-1, which shows several 100(1 � �)% confidence
intervals for the mean � of a normal distribution. The dots at the center of the intervals indicate
the point estimate of � (that is, ). Notice that one of the intervals fails to contain the true value of
�. If this were a 95% confidence interval, in the long run only 5% of the intervals would fail to
contain �.

Now in practice, we obtain only one random sample and calculate one confidence
interval. Since this interval either will or will not contain the true value of �, it is not reason-
able to attach a probability level to this specific event. The appropriate statement is that the ob-
served interval [l, u] brackets the true value of � with confidence 100(1 � �). This statement
has a frequency interpretation; that is, we don’t know if the statement is true for this specific
sample, but the method used to obtain the interval [l, u] yields correct statements 100(1 � �)%
of the time.

x

� � �

� � �

EXAMPLE 8-1 Metallic Material Transition
ASTM Standard E23 defines standard test methods for
notched bar impact testing of metallic materials. The Charpy
V-notch (CVN) technique measures impact energy and is of-
ten used to determine whether or not a material experiences a
ductile-to-brittle transition with decreasing temperature. Ten
measurements of impact energy (J ) on specimens of A238
steel cut at 60ºC are as follows: 64.1, 64.7, 64.5, 64.6, 64.5,
64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact energy is
normally distributed with � � 1J. We want to find a 95% CI
for �, the mean impact energy. The required quantities are 
z��2 � z0.025 � 1.96, n � 10, � � 1, and � 64.46. The resultingx

95% CI is found from Equation 8-5 as follows:

Practical Interpretation: Based on the sample data, a range of
highly plausible values for mean impact energy for A238 steel
at 60°C is 63.84J � � � 65.08J.

 63.84 � � � 65.08

 64.46 � 1.96  

1

110
� � � 64.46 � 1.96  

1

110

 x � z�	2 
�

1n
� � � x � z�	2 

�

1n

Interval number

μ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 8-1 Repeated
construction of a con-
fidence interval for �.
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Confidence Level and Precision of Estimation
Notice in Example 8-1 that our choice of the 95% level of confidence was essentially arbi-
trary. What would have happened if we had chosen a higher level of confidence, say, 99%? In fact,
doesn’t it seem reasonable that we would want the higher level of confidence? At � � 0.01, we
find z��2 � z0.01�2 � z0.005 � 2.58, while for � � 0.05, z0.025 � 1.96. Thus, the length of the 95%
confidence interval is

whereas the length of the 99% CI is

Thus, the 99% CI is longer than the 95% CI. This is why we have a higher level of confidence
in the 99% confidence interval. Generally, for a fixed sample size n and standard deviation �,
the higher the confidence level, the longer the resulting CI.

The length of a confidence interval is a measure of the precision of estimation. From the
preceeding discussion, we see that precision is inversely related to the confidence level. It is
desirable to obtain a confidence interval that is short enough for decision-making purposes
and that also has adequate confidence. One way to achieve this is by choosing the sample size
n to be large enough to give a CI of specified length or precision with prescribed confidence.

8-1.2 Choice of Sample Size

The precision of the confidence interval in Equation 8-5 is This means that in
using to estimate �, the error is less than or equal to with
confidence 100(1 � �). This is shown graphically in Fig. 8-2. In situations  where the sam-
ple size can be controlled, we can choose n so that we are 100(1 � �) percent confident that
the error in estimating � is less than a specified bound on the error E. The appropriate
sample size is found by choosing n such that Solving this equation gives the
following formula for n.

z�	2�	1n � E.

z�	2�	1nE � 0 x � � 0x
2z�	 2�	1n.

212.58�	1n 2 � 5.16�	1n

211.96�	1n 2 � 3.92�	1n

If is used as an estimate of �, we can be 100(1 � �)% confident that the error
will not exceed a specified amount E when the sample size is

(8-6)n � a
z�	2�

E
b

2

0 x � � 0
x

Sample Size for
Specified Error

on the Mean,
Variance Known

x μ

E = error = ⎮x –  ⎮μ

u = x + z  /2 / nα σl = x – z  /2 / nα σ
Figure 8-2 Error in
estimating � with .x

If the right-hand side of Equation 8-6 is not an integer, it must be rounded up. This will ensure
that the level of confidence does not fall below 100(1 � �)%. Notice that 2E is the length of
the resulting confidence interval.
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Notice the general relationship between sample size, desired length of the confidence
interval 2E, confidence level 100(1 � �), and standard deviation �:

As the desired length of the interval 2E decreases, the required sample size n increases
for a fixed value of � and specified confidence.

As � increases, the required sample size n increases for a fixed desired length 2E and
specified confidence.

As the level of confidence increases, the required sample size n increases for fixed
desired length 2E and standard deviation �.

8-1.3 One-Sided Confidence Bounds

The confidence interval in Equation 8-5 gives both a lower confidence bound and an upper
confidence bound for �. Thus, it provides a two-sided CI. It is also possible to obtain one-sided
confidence bounds for � by setting either and replacing by z�.z�	2l � �
 or u � 


EXAMPLE 8-2 Metallic Material Transition
To illustrate the use of this procedure, consider the CVN test
described in Example 8-1, and suppose that we wanted to de-
termine how many specimens must be tested to ensure that the
95% CI on � for A238 steel cut at 60°C has a length of at most
1.0J. Since the bound on error in estimation E is one-half of
the length of the CI, to determine n we use Equation 8-6 with

E � 0.5, � � 1, and The required sample size is 16,

and because n must be an integer, the required sample size is 
n � 16.

n � a
z�	2 

�

E
b

2

� c
11.9621

0.5
d

2

� 15.37

z�	2 � 1.96.

A 100(1 � �)% upper-confidence bound for � is

(8-7)

and a 100(1 � �)% lower-confidence bound for � is

(8-8)x � z� �	1n � l � �

� � u � x � z��	1n

One-Sided
Confidence

Bounds on the
Mean, Variance

Known

EXAMPLE 8-3 One-Sided Confidence Bound
The same data for impact testing from Example 8-1 are used
to construct a lower, one-sided 95% confidence interval for
the mean impact energy. Recall that , and
n � 10. The interval is

 63.94 � �

 64.46 � 1.64  

1

110
� �

 x � z�

�

1n
� �

x � 64.46, � � 1J

Practical Interpretation: The lower limit for the two-sided in-
terval in Example 8-1 was 63.84. Because , the lower
limit of a one-sided interval is always greater than the lower
limit of a two-sided interval of equal confidence. The one-
sided interval does not bound � from above so that it still
achieves 95% confidence with a slightly greater lower limit. If
our interest is only in the lower limit for �, then the one-sided
interval is preferred because it provides equal confidence with
a greater lower limit. Similarly, a one-sided upper limit is
always less than a two-sided upper limit of equal confidence.

z� �  z�/2
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8-1.4 General Method to Derive a Confidence Interval

It is easy to give a general method for finding a confidence interval for an unknown
parameter �. Let X1, X2, p , Xn be a random sample of n observations. Suppose we can find a
statistic g (X1, X2, p , Xn; �) with the following properties:

1. g (X1, X2, p , Xn; �) depends on both the sample and �.

2. The probability distribution of g(X1, X2, p , Xn; �) does not depend on � or any other
unknown parameter.

In the case considered in this section, the parameter � � �. The random variable g (X1, X2, p ,
Xn; �) � and satisfies both conditions above; it depends on the sample and
on �, and it has a standard normal distribution since � is known. Now one must find constants
CL and CU so that

(8-9)

Because of property 2, CL and CU do not depend on �. In our example, 
and Finally, you must manipulate the inequalities in the probability statement so that

(8-10)

This gives L1X1, X2, , Xn2 and U1X1, X2, p , Xn2 as the lower and upper confidence limits
defining the 100 11 � �2% confidence interval for �. The quantity g 1X1, X2, p , Xn; �2 is often
called a “pivotal quantity’’ because we pivot on this quantity in Equation 8-9 to produce
Equation 8-10. In our example, we manipulated the pivotal quantity to
obtain 

8-1.5 Large-Sample Confidence Interval for �

We have assumed that the population distribution is normal with unknown mean and known stan-
dard deviation �. We now present a large-sample CI for � that does not require these assumptions.
Let X1, X2, p , Xn be a random sample from a population with unknown mean � and variance .
Now if the sample size n is large, the central limit theorem implies that has approximately a nor-
mal distribution with mean � and variance �2�n. Therefore, has approxi-
mately a standard normal distribution. This ratio could be used as a pivotal quantity and manipu-
lated as in Section 8-1.1 to produce an approximate CI for �. However, the standard deviation � is
unknown. It turns out that when n is large, replacing � by the sample standard deviation S has lit-
tle effect on the distribution of Z. This leads to the following useful result.

Z � 1X � �2	 1�	1n2
X

�2

L 1X1, X2, p , Xn2 � X � z�	2 �	1n and U 1X1, X2, p , Xn2 � X � z�	2 �	1n.
1X � �2	 1�	1n2

p

P 3L1X1, X2, p , Xn2 � � � U1X1, X2, p , Xn2 4 � 1 � �

CU � z�	2.
CL � �z�	2

P 3CL � g 1X1, X2, p , Xn; �2 � CU 4 � 1 � �

1X � �2	 1�	1n2

When n is large, the quantity

has an approximate standard normal distribution. Consequently,

(8-11)

is a large sample confidence interval for �, with confidence level of approximately
10011 � �2%.

x � z�	2 
s

1n
� � � x � z�	2 

s

1n

X � �

S	1n

Large-Sample
Confidence
Interval on 

the Mean
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Equation 8-11 holds regardless of the shape of the population distribution. Generally n should
be at least 40 to use this result reliably. The central limit theorem generally holds for n 
 30,
but the larger sample size is recommended here because replacing � by S in Z results in addi-
tional variability.

EXAMPLE 8-4 Mercury Contamination
An article in the 1993 volume of the Transactions of the
American Fisheries Society reports the results of a study to in-
vestigate the mercury contamination in largemouth bass. A

sample of fish was selected from 53 Florida lakes, and mer-
cury concentration in the muscle tissue, was measured (ppm).
The mercury concentration values are 

1.230
1.330
0.040
0.044
1.200
0.270

0.490
0.190
0.830
0.810
0.710
0.500

0.490
1.160
0.050
0.150
0.190
0.770

1.080
0.980
0.630
0.560
0.410
0.730

0.590
0.340
0.340
0.840
0.500
0.340

0.280
0.340
0.750
0.870
0.560
0.170

0.180
0.190
0.040
0.490
1.100
0.160

0.100
0.210
0.860
0.520
0.650
0.270

0.940
0.400
0.430
0.250
0.270 

The summary statistics from Minitab are displayed below:

Figure 8-3(a) and (b) presents the histogram and normal prob-
ability plot of the mercury concentration data. Both plots indi-
cate that the distribution of mercury concentration is not nor-
mal and is positively skewed. We want to find an approximate
95% CI on �. Because n � 40, the assumption of normality is
not necessary to use Equation 8-11. The required quantities
are n � 53, , and The
approximate 95% CI on � is

z0.025 � 1.96.x � 0.5250, s � 0.3486 Practical Interpretation: This interval is fairly wide because
there is a lot of variability in the mercury concentration meas-
urements. A larger sample size would have produced a shorter
interval.

 0.4311 � � � 0.6189

 0.5250 � 1.96 
0.3486

253
� � � 0.5250 � 1.96 

0.3486

253

 x � z0.025 
s

1n
� � � x � z0.025 

s

1n

Descriptive Statistics: Concentration 

Variable N Mean Median TrMean StDev SE Mean
Concentration 53 0.5250 0.4900 0.5094 0.3486 0.0479
Variable Minimum Maximum Q1 Q3
Concentration 0.0400 1.3300 0.2300 0.7900
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Figure 8-3 Mercury concentration in largemouth bass. (a) Histogram. (b) Normal probability plot.
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Large-Sample Confidence Interval for a Parameter
The large-sample confidence interval for � in Equation 8-11 is a special case of a more general
result. Suppose that � is a parameter of a probability distribution, and let be an estimator of
�. If (1) has an approximate normal distribution, (2) is approximately unbiased for �, and 
(3) has standard deviation that can be estimated from the sample data, then the quantity 
( � �) has an approximate standard normal distribution. Then a large-sample approximate
CI for � is given by

���̂�̂

��̂

�̂

�̂

(8-12)�̂ � z��2 ��̂ 	 � 	 �̂ 
 z��2 ��̂

Large-Sample
Approximate

Confidence
Interval

Maximum likelihood estimators usually satisfy the three conditions listed above, so Equation
8-12 is often used when is the maximum likelihood estimator of �. Finally, note that
Equation 8-12 can be used even when is a function of other unknown parameters (or of �).
Essentially, all one does is to use the sample data to compute estimates of the unknown
parameters and substitute those estimates into the expression for .��̂

��̂

�̂

8-1. For a normal population with known variance �2,
answer the following questions:
(a) What is the confidence level for the interval

?
(b) What is the confidence level for the interval

?
(c) What is the confidence level for the interval 

?

8-2. For a normal population with known variance �2:
(a) What value of in Equation 8-5 gives 98% confidence?
(b) What value of in Equation 8-5 gives 80% confidence?
(c) What value of in Equation 8-5 gives 75% confidence?

8-3. Consider the one-sided confidence interval expressions
for a mean of a normal population.
(a) What value of z� would result in a 90% CI?
(b) What value of z� would result in a 95% CI?
(c) What value of z� would result in a 99% CI?

8-4. A confidence interval estimate is desired for the gain in
a circuit on a semiconductor device. Assume that gain is nor-
mally distributed with standard deviation � � 20.
(a) Find a 95% CI for � when n � 10 and 
(b) Find a 95% CI for � when n � 25 and 
(c) Find a 99% CI for � when n � 10 and 
(d) Find a 99% CI for � when n � 25 and 
(e) How does the length of the CIs computed above change

with the changes in sample size and confidence level?

8-5. A random sample has been taken from a normal distri-
bution and the following confidence intervals constructed us-
ing the same data: (38.02, 61.98) and (39.95, 60.05)
(a) What is the value of the sample mean?

x � 1000.
x � 1000.
x � 1000.
x � 1000.

z��2

z��2

z��2

	 � 	 x 
 1.85��1n
x � 1.85��1n

	 � 	 x 
 2.49��1n
x � 2.49��1n

	 � 	 x 
 2.14��1n
x � 2.14��1n

(b) One of these intervals is a 95% CI and the other is a 90%
CI. Which one is the 95% CI and why?

8-6. A random sample has been taken from a normal distri-
bution and the following confidence intervals constructed us-
ing the same data: (37.53, 49.87) and (35.59, 51.81)
(a) What is the value of the sample mean?
(b) One of these intervals is a 99% CI and the other is a 95%

CI. Which one is the 95% CI and why?

8-7. Consider the gain estimation problem in Exercise 8-4. 
(a) How large must n be if the length of the 95% CI is to be 40?
(b) How large must n be if the length of the 99% CI is to 

be 40?

8-8. Following are two confidence interval estimates of the
mean � of the cycles to failure of an automotive door latch
mechanism (the test was conducted at an elevated stress level
to accelerate the failure).

(a) What is the value of the sample mean cycles to failure?
(b) The confidence level for one of these CIs is 95% and the

confidence level for the other is 99%. Both CIs are calcu-
lated from the same sample data. Which is the 95% CI?
Explain why.

8-9. Suppose that n � 100 random samples of water from a
freshwater lake were taken and the calcium concentration
(milligrams per liter) measured. A 95% CI on the mean cal-
cium concentration is 0.49 	 � 	 0.82.
(a) Would a 99% CI calculated from the same sample data be

longer or shorter?

3124.9 	 � 	 3215.7  3110.5 	 � 	 3230.1

EXERCISES FOR SECTION 8-1
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(b) Consider the following statement: There is a 95% chance
that � is between 0.49 and 0.82. Is this statement correct?
Explain your answer.

(c) Consider the following statement: If n � 100 random
samples of water from the lake were taken and the 95% CI
on � computed, and this process were repeated 1000
times, 950 of the CIs would contain the true value of �. Is
this statement correct? Explain your answer.

8-10. Past experience has indicated that the breaking
strength of yarn used in manufacturing drapery material is
normally distributed and that � � 2 psi. A random sample of
nine specimens is tested, and the average breaking strength is
found to be 98 psi. Find a 95% two-sided confidence interval
on the true mean breaking strength.

8-11. The yield of a chemical process is being studied. From
previous experience, yield is known to be normally distributed
and � � 3. The past five days of plant operation have resulted in
the following percent yields: 91.6, 88.75, 90.8, 89.95, and 91.3.
Find a 95% two-sided confidence interval on the true mean yield.

8-12. The diameter of holes for a cable harness is known to
have a normal distribution with � � 0.01 inch. A random sample
of size 10 yields an average diameter of 1.5045 inch. Find a 99%
two-sided confidence interval on the mean hole diameter.

8-13. A manufacturer produces piston rings for an auto-
mobile engine. It is known that ring diameter is normally dis-
tributed with � � 0.001 millimeters. A random sample of 15
rings has a mean diameter of millimeters.
(a) Construct a 99% two-sided confidence interval on the

mean piston ring diameter.
(b) Construct a 99% lower-confidence bound on the mean

piston ring diameter. Compare the lower bound of this
confidence interval with the one in part (a).

8-14. The life in hours of a 75-watt light bulb is known to be
normally distributed with � � 25 hours. A random sample of
20 bulbs has a mean life of hours.
(a) Construct a 95% two-sided confidence interval on the

mean life.
(b) Construct a 95% lower-confidence bound on the mean life.

Compare the lower bound of this confidence interval with
the one in part (a).

8-15. A civil engineer is analyzing the compressive strength
of concrete. Compressive strength is normally distributed with
�2 � 1000(psi)2. A random sample of 12 specimens has a
mean compressive strength of psi.x � 3250

x � 1014

x � 74.036

(a) Construct a 95% two-sided confidence interval on mean
compressive strength.

(b) Construct a 99% two-sided confidence interval on mean
compressive strength. Compare the width of this confi-
dence interval with the width of the one found in part (a).

8-16. Suppose that in Exercise 8-14 we wanted the error in
estimating the mean life from the two-sided confidence inter-
val to be five hours at 95% confidence. What sample size
should be used?

8-17. Suppose that in Exercise 8-14 we wanted the total
width of the two-sided confidence interval on mean life to be
six hours at 95% confidence. What sample size should be used?

8-18. Suppose that in Exercise 8-15 it is desired to estimate
the compressive strength with an error that is less than 15 psi
at 99% confidence. What sample size is required?

8-19. By how much must the sample size n be increased if
the length of the CI on � in Equation 8-5 is to be halved?

8-20. If the sample size n is doubled, by how much is the
length of the CI on � in Equation 8-5 reduced? What happens
to the length of the interval if the sample size is increased by a
factor of four?

8-21. An article in the Journal of Agricultural Science [“The
Use of Residual Maximum Likelihood to Model Grain Quality
Characteristics of Wheat with Variety, Climatic and Nitrogen
Fertilizer Effects” (1997, Vol. 128, pp. 135–142)] investigated
means of wheat grain crude protein content (CP) and Hagberg
falling number (HFN) surveyed in the UK. The analysis used a
variety of nitrogen fertilizer applications (kg N/ha), tempera-
ture (ºC), and total monthly rainfall (mm). The data shown be-
low describe temperatures for wheat grown at Harper Adams
Agricultural College between 1982 and 1993. The tempera-
tures measured in June were obtained as follows:

15.2 14.2 14.0 12.2 14.4 12.5
14.3 14.2 13.5 11.8 15.2

Assume that the standard deviation is known to be � � 0.5.
(a) Construct a 99% two-sided confidence interval on the

mean temperature.
(b) Construct a 95% lower-confidence bound on the mean

temperature.
(c) Suppose that we wanted to be 95% confident that the error

in estimating the mean temperature is less than 2 degrees
Celsius. What sample size should be used?

(d) Suppose that we wanted the total width of the two-sided con-
fidence interval on mean temperature to be 1.5 degrees
Celsius at 95% confidence. What sample size should be used?

8-2 CONFIDENCE INTERVAL ON THE MEAN OF A NORMAL
DISTRIBUTION, VARIANCE UNKNOWN

When we are constructing confidence intervals on the mean � of a normal population when
�2 is known, we can use the procedure in Section 8-1.1. This CI is also approximately valid
(because of the central limit theorem) regardless of whether or not the underlying population
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Let X1, X2, p , Xn be a random sample from a normal distribution with unknown
mean � and unknown variance �2. The random variable

(8-13)

has a t distribution with n � 1 degrees of freedom.

T �
X � �

S	1n

t Distribution

is normal, so long as n is reasonably large (n 
 40, say). As noted in Section 8-1.5, we can
even handle the case of unknown variance for the large-sample-size situation. However, when
the sample is small and �2 is unknown, we must make an assumption about the form of the un-
derlying distribution to obtain a valid CI procedure. A reasonable assumption in many cases is
that the underlying distribution is normal.

Many populations encountered in practice are well approximated by the normal distribu-
tion, so this assumption will lead to confidence interval procedures of wide applicability. In
fact, moderate departure from normality will have little effect on validity. When the assump-
tion is unreasonable, an alternative is to use nonparametric statistical procedures that are valid
for any underlying distribution.

Suppose that the population of interest has a normal distribution with unknown mean �
and unknown variance �2. Assume that a random sample of size n, say, X1, X2, p , Xn, is avail-
able, and let and S2 be the sample mean and variance, respectively.

We wish to construct a two-sided CI on �. If the variance �2 is known, we know that
has a standard normal distribution. When �2 is unknown, a logical pro-

cedure is to replace � with the sample standard deviation S. The random variable Z now
becomes . A logical question is, what effect does replacing � by S have on
the distribution of the random variable T ? If n is large, the answer to this question is “very little,”
and we can proceed to use the confidence interval based on the normal distribution from
Section 8-1.5. However, n is usually small in most engineering problems, and in this situation
a different distribution must be employed to construct the CI.

8-2.1 t Distribution

T � 1X � �2	 1S	1n2

Z � 1X � �2	 1�	1n2

X

The t probability density function is

(8-14)

where k is the number of degrees of freedom. The mean and variance of the t distribution are
zero and k�(k � 2) (for k � 2), respectively.

Several t distributions are shown in Fig. 8-4. The general appearance of the t distribution is
similar to the standard normal distribution in that both distributions are symmetric and
unimodal, and the maximum ordinate value is reached when the mean � � 0. However, the t
distribution has heavier tails than the normal; that is, it has more probability in the tails than the
normal distribution. As the number of degrees of freedom , the limiting form of the t dis-
tribution is the standard normal distribution. Generally, the number of degrees of freedom for t
is the number of degrees of freedom associated with the estimated standard deviation.

Appendix Table V provides percentage points of the t distribution. We will let t�,k be the
value of the random variable T with k degrees of freedom above which we find an area

k S 


f 1x2 �
� 3 1k � 12	2 4

2�k�1k	22
�

1

3 1x2	k2 � 1 4 1k�12	2 �
 � x � 
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t0kα,t kα,t1 – kα, – t=

αα

Figure 8-4 Probability density functions of several t
distributions.

Figure 8-5 Percentage points of the t
distribution.

0

k = ∞ [N (0, 1)]

x

k = 10

k = 1

(or probability) �. Thus, t�,k is an upper-tail 100� percentage point of the t distribution with k
degrees of freedom. This percentage point is shown in Fig. 8-5. In the Appendix Table V the
� values are the column headings, and the degrees of freedom are listed in the left column. To
illustrate the use of the table, note that the t-value with 10 degrees of freedom having an area
of 0.05 to the right is t0.05,10 � 1.812. That is,

Since the t distribution is symmetric about zero, we have t1��,n � �t�,n; that is, the t-value hav-
ing an area of 1 � � to the right (and therefore an area of � to the left) is equal to the nega-
tive of the t-value that has area � in the right tail of the distribution. Therefore, t0.95,10 �
�t0.05,10 � �1.812. Finally, because is the standard normal distribution, the familiar z�

values appear in the last row of Appendix Table V.

8-2.2 t Confidence Interval on �

It is easy to find a 100(1 � �) percent confidence interval on the mean of a normal distribu-
tion with unknown variance by proceeding essentially as we did in Section 8-1.1. We know
that the distribution of is t with n � 1 degrees of freedom. Letting

be the upper 100��2 percentage point of the t distribution with n � 1 degrees of
freedom, we may write

or

Rearranging this last equation yields

(8-15)

This leads to the following definition of the 100(1 � �)% two-sided confidence inter-
val on �.

P 1X � t�	2,n�1 
S	1n � � � X � t�	2,n�1 

S	1n2 � 1 � �

P  a�t�	2,n�1 �
X � �

S	1n
� t�	2,n�1b � 1 � �

P 1�t�	2,n�1 � T � t�	2,n�12 � 1 � �

t�	2,n�1

T � 1X � �2	 1S	1n2

t�,


P1T10 � t0.05,102 � P1T10 � 1.8122 � 0.05
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264 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

If and s are the mean and standard deviation of a random sample from a normal
distribution with unknown variance �2, a 100(1 � �)% confidence interval on � is
given by

(8-16)

where is the upper 100��2 percentage point of the t distribution with n � 1
degrees of freedom.

t�	2,n�1

x � t�	2,n�1s	1n � � � x � t�	2,n�1s	1n

x
Confidence

Interval on the
Mean, Variance
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Figure 8-7 Normal probability
plot of the load at failure data from
Example 8-5.
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Figure 8-6 Box and whisker plot for the
load at failure data in Example 8-5.

One-sided confidence bounds on the mean of a normal distribution are also of interest
and are easy to find. Simply use only the appropriate lower or upper confidence limit from
Equation 8-16 and replace t�	2,n�1 by t�,n�1.

EXAMPLE 8-5 Alloy Adhesion
An article in the journal Materials Engineering (1989, Vol. II,
No. 4, pp. 275–281) describes the results of tensile adhesion
tests on 22 U-700 alloy specimens. The load at specimen
failure is as follows (in megapascals):

19.8 10.1 14.9 7.5 15.4 15.4
15.4 18.5 7.9 12.7 11.9 11.4
11.4 14.1 17.6 16.7 15.8
19.5 8.8 13.6 11.9 11.4

The sample mean is � 13.71, and the sample standard devi-
ation is s � 3.55. Figures 8-6 and 8-7 show a box plot and
a normal probability plot of the tensile adhesion test data, 
respectively. These displays provide good support for the 

x

assumption that the population is normally distributed. We want
to find a 95% CI on �. Since n � 22, we have n � 1 � 21 de-
grees of freedom for t, so t0.025,21 � 2.080. The resulting CI is

Practical Interpretation: The CI is fairly wide because there is a
lot of variability in the tensile adhesion test measurements. A
larger sample size would have led to a shorter interval.

12.14 � � � 15.28

13.71 � 1.57 � � � 13.71 � 1.57

�  2.08013.552	12213.71 � 2.08013.552	122 � � � 13.71

 x � t�	2,n�1s	1n � � � x � t�	2,n�1s	1n

It is not as easy to select a sample size n to obtain a specified length (or precision of estima-
tion) for this CI as it was in the known-� case, because the length of the interval involves s (which
is unknown before the data are collected), n, and . Note that the t-percentile depends on the
sample size n. Consequently, an appropriate n can only be obtained through trial and error. The re-
sults of this will, of course, also depend on the reliability of our prior “guess” for �.

t�	2,n�1
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EXERCISES FOR SECTION 8-2

8-22. Find the values of the following percentiles: t0.025,15,
t0.05,10, t0.10,20, t0.005,25, and t0.001,30.

8-23. Determine the t-percentile that is required to construct
each of the following two-sided confidence intervals:
(a) Confidence level � 95%, degrees of freedom � 12
(b) Confidence level � 95%, degrees of freedom � 24
(c) Confidence level � 99%, degrees of freedom � 13
(d) Confidence level � 99.9%, degrees of freedom � 15

8-24. Determine the t-percentile that is required to construct
each of the following one-sided confidence intervals:
(a) Confidence level � 95%, degrees of freedom � 14
(b) Confidence level � 99%, degrees of freedom � 19
(c) Confidence level � 99.9%, degrees of freedom � 24

8-25. A random sample has been taken from a normal dis-
tribution. Output from a software package is given below:

Variable N Mean SE Mean StDev Variance Sum
x 10 ? 0.507 1.605 ? 251.848

(a) Fill in the missing quantities.
(b) Find a 95% CI on the population mean.

8-26. A random sample has been taken from a normal dis-
tribution. Output from a software package is given below:

Variable N Mean SE Mean StDev Variance Sum
x ? ? 1.58 6.11 ? 751.40

(a) Fill in the missing quantities.
(b) Find a 95% CI on the population mean.

8-27. A research engineer for a tire manufacturer is investi-
gating tire life for a new rubber compound and has built 16 tires
and tested them to end-of-life in a road test. The sample mean
and standard deviation are 60,139.7 and 3645.94 kilometers.
Find a 95% confidence interval on mean tire life.

8-28. An Izod impact test was performed on 20 specimens of
PVC pipe. The sample mean is � 1.25 and the sample stan-
dard deviation is s � 0.25. Find a 99% lower confidence
bound on Izod impact strength.

8-29. A postmix beverage machine is adjusted to release a
certain amount of syrup into a chamber where it is mixed with
carbonated water. A random sample of 25 beverages was
found to have a mean syrup content of fluid ounce
and a standard deviation of s � 0.015 fluid ounce. Find a 95%
CI on the mean volume of syrup dispensed.

8-30. An article in Medicine and Science in Sports and
Exercise [“Maximal Leg-Strength Training Improves Cycling
Economy in Previously Untrained Men” (2005, Vol. 37,
pp. 131–136)] studied cycling performance before and after
eight weeks of leg-strength training. Seven previously untrained
males performed leg-strength training three days per week for
eight weeks (with four sets of five replications at 85% of one
repetition maximum). Peak power during incremental cycling

x � 1.10

x

increased to a mean of 315 watts with a standard deviation of
16 watts. Construct a 95% confidence interval for the mean
peak power after training.

8-31. An article in Obesity Research [“Impaired Pressure
Natriuresis in Obese Youths” (2003, Vol. 11, pp. 745–751)] de-
scribed a study in which all meals were provided for 14 lean boys
for three days followed by one stress (with a video-game task).
The average systolic blood pressure (SBP) during the test was
118.3 mm HG with a standard deviation of 9.9 mm HG. Construct
a 99% one-sided upper confidence interval for mean SBP.

8-32. An article in the Journal of Composite Materials
(December 1989, Vol. 23, p. 1200) describes the effect of delam-
ination on the natural frequency of beams made from composite
laminates. Five such delaminated beams were subjected to
loads, and the resulting frequencies were as follows (in hertz):

230.66, 233.05, 232.58, 229.48, 232.58

Check the assumption of normality in the population. Calculate
a 90% two-sided confidence interval on mean natural frequency.

8-33. The Bureau of Meteorology of the Australian
Government provided the mean annual rainfall (in milli-
meters) in Australia 1983–2002 as follows (http://www.bom.gov.
au/climate/change/rain03.txt):

499.2, 555.2, 398.8, 391.9, 453.4, 459.8, 483.7, 417.6, 469.2,
452.4, 499.3, 340.6, 522.8, 469.9, 527.2, 565.5, 584.1, 727.3,
558.6, 338.6

Check the assumption of normality in the population. Construct
a 95% confidence interval for the mean annual rainfall.

8-34. The solar energy consumed (in trillion BTU) in the
U.S. by year from 1989 to 2004 (source: U.S. Department of
Energy Web site, http://www.eia.doe.gov/emeu) is shown in
the table below. Read down, then right for year.

55.291
59.718
62.688
63.886

66.458
68.548
69.857
70.833

70.237
69.787
68.793
66.388

65.454
64.391
63.62
63.287

Check the assumption of normality in the population. Construct
a 95% confidence interval for the mean solar energy consumed.

8-35. The brightness of a television picture tube can be eval-
uated by measuring the amount of current required to achieve a
particular brightness level. A sample of 10 tubes results in

and s � 15.7. Find (in microamps) a 99% confi-
dence interval on mean current required. State any necessary
assumptions about the underlying distribution of the data.

8-36. A particular brand of diet margarine was analyzed to
determine the level of polyunsaturated fatty acid (in percent-
ages). A sample of six packages resulted in the following data:
16.8, 17.2, 17.4, 16.9, 16.5, 17.1.
(a) Check the assumption that the level of polyunsaturated

fatty acid is normally distributed.

x � 317.2
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(b) Calculate a 99% confidence interval on the mean �.
Provide a practical interpretation of this interval.

(c) Calculate a 99% lower confidence bound on the mean.
Compare this bound with the lower bound of the two-sided
confidence interval and discuss why they are different.

8-37. The compressive strength of concrete is being tested
by a civil engineer. He tests 12 specimens and obtains the
following data.

2216 2237 2249 2204
2225 2301 2281 2263
2318 2255 2275 2295

(a) Check the assumption that compressive strength is normally
distributed. Include a graphical display in your answer.

(b) Construct a 95% two-sided confidence interval on the
mean strength.

(c) Construct a 95% lower confidence bound on the mean
strength. Compare this bound with the lower bound of the
two-sided confidence interval and discuss why they are
different.

8-38. A machine produces metal rods used in an automobile
suspension system. A random sample of 15 rods is selected,
and the diameter is measured. The resulting data (in millime-
ters) are as follows:

8.24 8.25 8.20 8.23 8.24
8.21 8.26 8.26 8.20 8.25
8.23 8.23 8.19 8.28 8.24

(a) Check the assumption of normality for rod diameter.
(b) Calculate a 95% two-sided confidence interval on mean

rod diameter.
(c) Calculate a 95% upper confidence bound on the mean.

Compare this bound with the upper bound of the two-sided
confidence interval and discuss why they are different.

8-39. An article in Computers & Electrical Engineering
[“Parallel Simulation of Cellular Neural Networks” (1996, Vol. 22,
pp. 61–84)] considered the speed-up of cellular neural networks
(CNN) for a parallel general-purpose computing architecture
based on six transputers in different areas. The data follow:

3.775302 3.350679 4.217981 4.030324 4.639692
4.139665 4.395575 4.824257 4.268119 4.584193
4.930027 4.315973 4.600101

(a) Is there evidence to support the assumption that speed-up
of CNN is normally distributed? Include a graphical dis-
play in your answer.

(b) Construct a 95% two-sided confidence interval on the
mean speed-up.

(c) Construct a 95% lower confidence bound on the mean
speed-up.

8-40. The wall thickness of 25 glass 2-liter bottles was mea-
sured by a quality-control engineer. The sample mean was

millimeters, and the sample standard deviation was
s � 0.08 millimeter. Find a 95% lower confidence bound for
mean wall thickness. Interpret the interval you have obtained.
8-41. An article in Nuclear Engineering International
(February 1988, p. 33) describes several characteristics of fuel
rods used in a reactor owned by an electric utility in Norway.
Measurements on the percentage of enrichment of 12 rods
were reported as follows:

2.94 3.00 2.90 2.75 3.00 2.95
2.90 2.75 2.95 2.82 2.81 3.05

(a) Use a normal probability plot to check the normality as-
sumption.

(b) Find a 99% two-sided confidence interval on the mean per-
centage of enrichment. Are you comfortable with the state-
ment that the mean percentage of enrichment is 2.95%?
Why?

x � 4.05

8-3 CONFIDENCE INTERVAL ON THE VARIANCE AND
STANDARD DEVIATION OF A NORMAL DISTRIBUTION

Sometimes confidence intervals on the population variance or standard deviation are needed.
When the population is modeled by a normal distribution, the tests and intervals described in
this section are applicable. The following result provides the basis of constructing these con-
fidence intervals.

Let X1, X2, p , Xn be a random sample from a normal distribution with mean � and
variance �2,  and let S2 be the sample variance. Then the random variable

(8-17)

has a chi-square (�2) distribution with n � 1 degrees of freedom.

X2 �
1n � 12 S2

�2

�2
Distribution
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Figure 8-8 Proba-
bility density functions
of several �2 distribu-
tions.

(a)

k    α,

α

�20

f (x) f (x)

x

(b)

�20

0.05 0.05

0.95, 10

= 3.94

�2
0.05, 10

= 18.31

Figure 8-9 Percentage point of the �2 distribution. (a) The percentage point �2
�,k. (b) The upper

percentage point �2
0.05,10 � 18.31 and the lower percentage point �2

0.95,10 � 3.94.

The probability density function of a �2 random variable is

(8-18)

where k is the number of degrees of freedom. The mean and variance of the �2 distribution are
k and 2k, respectively. Several chi-square distributions are shown in Fig. 8-8. Note that the 
chi-square random variable is nonnegative and that the probability distribution is skewed to
the right. However, as k increases, the distribution becomes more symmetric. As the
limiting form of the chi-square distribution is the normal distribution.

The percentage points of the �2 distribution are given in Table IV of the Appendix.
Define as the percentage point or value of the chi-square random variable with k degrees
of freedom such that the probability that X 2 exceeds this value is �. That is,

This probability is shown as the shaded area in Fig. 8-9(a). To illustrate the use of Table IV,
note that the areas � are the column headings and the degrees of freedom k are given in the left
column. Therefore, the value with 10 degrees of freedom having an area (probability) of 0.05

P 1X2 � �2
�,k2 � �




�2
�,k

 f 1u2 du � �

�2
�,k

k S 
,

f 1x2 �
1

2k	2 �1k	22
 x1k	22�1e�x	2  x � 0
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to the right is This value is often called an upper 5% point of chi-square with
10 degrees of freedom. We may write this as a probability statement as follows:

Conversely, a lower 5% point of chi-square with 10 degrees of freedom would be �2
0.95,10 �

3.94 (from Appendix A). Both of these percentage points are shown in Figure 8-9(b).
The construction of the 100(1 � �)% CI for �2 is straightforward. Because

is chi-square with n � 1 degrees of freedom, we may write

so that

This last equation can be rearranged as

This leads to the following definition of the confidence interval for �2.

P  a
1n � 12S2

�2
�	2,n�1

� �2 �
1n � 12S 

2

�2
1��	2,n�1

b � 1 � �

P  a�2
1��	2,n�1 �

1n � 12S 
2

�2 � �2
�	2,n�1b � 1 � �

P 1�2
1��	2,n�1 � X2 � �2

�	2,n�12 � 1 � �

X 
2 �
1n � 12S 

2

�2

P1X 
2 � �2

0.05,102 � P1X 
2 � 18.312 � 0.05

�2
0.05,10 � 18.31.

If s2 is the sample variance from a random sample of n observations from a normal dis-
tribution with unknown variance �2, then a 100(1 � �)% confidence interval on �2 is

(8-19)

where and are the upper and lower 100��2 percentage points of 
the chi-square distribution with n � 1 degrees of freedom, respectively. A confidence
interval for � has lower and upper limits that are the square roots of the correspond-
ing limits in Equation 8-19.

�2
1��	2,n�1�2

�	2,n�1

1n � 12s2

�2
�	2,n�1

� �2 �
1n � 12s2

�2
1��	2,n�1

Confidence
Interval on 

the Variance

One-Sided
Confidence
Bounds on 

the Variance

It is also possible to find a 10011 � �2% lower confidence bound or upper confidence bound on �2.

The 100(1 � �)% lower and upper confidence bounds on �2 are

(8-20)

respectively.

1n � 12s 
2

�2
�,n�1

� �2  and  �2 �
1n � 12s2

�2
1��,n�1
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EXAMPLE 8-6 Detergent Filling
An automatic filling machine is used to fill bottles with liquid
detergent. A random sample of 20 bottles results in a sample
variance of fill volume of s2 � 0.0153 (fluid ounce)2. If the
variance of fill volume is too large, an unacceptable proportion
of bottles will be under- or overfilled. We will assume that the
fill volume is approximately normally distributed. A 95% up-
per confidence bound is found from Equation 8-26 as follows:

or

�2 �
11920.0153

10.117
� 0.0287 1fluid ounce22

�2 �
1n � 12s2

�2
0.95,˛19

This last expression may be converted into a confidence inter-
val on the standard deviation � by taking the square root of
both sides, resulting in

Practical Interpretation: Therefore, at the 95% level of confi-
dence, the data indicate that the process standard deviation
could be as large as 0.17 fluid ounce. The process engineer or
manager now needs to determine if a standard deviation this
large could lead to an operational problem with under-or over
filled bottles. 

� � 0.17

EXERCISES FOR SECTION 8-3

8-42. Determine the values of the following percentiles:
�2

0.05,10, �
2
0.025,15, �

2
0.01,12, �

2
0.95,20, �

2
0.99,18, �

2
0.995,16, and �2

0.005,25.

8-43. Determine the �2 percentile that is required to
construct each of the following CIs:
(a) Confidence level � 95%, degrees of freedom � 24,

one-sided (upper)
(b) Confidence level � 99%, degrees of freedom � 9, one-

sided (lower)
(c) Confidence level � 90%, degrees of freedom � 19, two-

sided.

8-44. A rivet is to be inserted into a hole. A random sample
of n � 15 parts is selected, and the hole diameter is measured.
The sample standard deviation of the hole diameter measure-
ments is s � 0.008 millimeters. Construct a 99% lower confi-
dence bound for �2.

8-45. Consider the situation in Exercise 8-44. Find a 99%
lower confidence bound on the standard deviation.

8-46. The sugar content of the syrup in canned peaches is
normally distributed. A random sample of n � 10 cans yields
a sample standard deviation of s � 4.8 milligrams. Calculate
a 95% two-sided confidence interval for �.

8-47. The percentage of titanium in an alloy used in aero-
space castings is measured in 51 randomly selected parts. The
sample standard deviation is s � 0.37. Construct a 95% two-
sided confidence interval for �.

8-48. An article in Medicine and Science in Sports and
Exercise [“Electrostimulation Training Effects on the Physical
Performance of Ice Hockey Players” (2005, Vol. 37, pp.
455–460)] considered the use of electromyostimulation
(EMS) as a method to train healthy skeletal muscle. EMS ses-
sions consisted of 30 contractions (4-second duration, 85 Hz)
and were carried out three times per week for three weeks on
17 ice hockey players. The 10-meter skating performance test
showed a standard deviation of 0.09 seconds. Construct a 95%

confidence interval of the standard deviation of the skating
performance test.

8-49. An article in Urban Ecosystems, “Urbanization and
Warming of Phoenix (Arizona, USA): Impacts, Feedbacks and
Mitigation” (2002, Vol. 6, pp. 183–203), mentions that Phoenix
is ideal to study the effects of an urban heat island because it has
grown from a population of 300,000 to approximately 3 million
over the last 50 years and this is a period with a continuous, de-
tailed climate record. The 50-year averages of the mean annual
temperatures at eight sites in Phoenix are shown below. Check
the assumption of normality in the population with a probabil-
ity plot. Construct a 95% confidence interval for the standard
deviation over the sites of the mean annual temperatures.

Average Mean 
Site Temperature (°C)
Sky Harbor Airport 23.3
Phoenix Greenway 21.7
Phoenix Encanto 21.6
Waddell 21.7
Litchfield 21.3
Laveen 20.7
Maricopa 20.9
Harlquahala 20.1

8-50. An article in Cancer Research [“Analyses of Litter-
Matched Time-to-Response Data, with Modifications for
Recovery of Interlitter Information” (1977, Vol. 37, pp.
3863–3868)] tested the tumorigenesis of a drug. Rats were
randomly selected from litters and given the drug. The times
of tumor appearance were recorded as follows:

101, 104, 104, 77, 89, 88, 104, 96, 82, 70, 89, 91, 39, 103, 93,
85, 104, 104, 81, 67, 104, 104, 104, 87, 104, 89, 78, 104, 86,
76, 103, 102, 80, 45, 94, 104, 104, 76, 80, 72, 73
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8-4 LARGE-SAMPLE CONFIDENCE INTERVAL FOR 
A POPULATION PROPORTION

It is often necessary to construct confidence intervals on a population proportion. For exam-
ple, suppose that a random sample of size n has been taken from a large (possibly infinite)
population and that X (� n) observations in this sample belong to a class of interest. Then

is a point estimator of the proportion of the population p that belongs to this class.
Note that n and p are the parameters of a binomial distribution. Furthermore, from Chapter 4
we know that the sampling distribution of is approximately normal with mean p and vari-
ance if p is not too close to either 0 or 1 and if n is relatively large. Typically, to
apply this approximation we require that np and n(1 � p) be greater than or equal to 5. We
will make use of the normal approximation in this section.

p 11 � p2	n,
P̂

P̂ � X	n

Calculate a 95% confidence interval on the standard deviation
of time until a tumor appearance. Check the assumption of
normality of the population and comment on the assumptions
for the confidence interval.

8-51. An article in Technometrics (1999, Vol. 41, pp. 202–211)
studied the capability of a gauge by measuring the weight of pa-
per. The data for repeated measurements of one sheet of paper are
in the following table. Construct a 95% one-sided upper confi-
dence interval for the standard deviation of these measurements.
Check the assumption of normality of the data and comment on
the assumptions for the confidence interval.

Observations
3.481 3.448 3.485 3.475 3.472
3.477 3.472 3.464 3.472 3.470
3.470 3.470 3.477 3.473 3.474

If n is large, the distribution of

is approximately standard normal.

Z �
X � np

1np 11 � p2
�

P̂ � p

B

p 11 � p2
n

Normal
Approximation
for a Binomial

Proportion
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8-52. An article in the Australian Journal of Agricultural
Research [“Non-Starch Polysaccharides and Broiler
Performance on Diets Containing Soyabean Meal as the
Sole Protein Concentrate” (1993, Vol. 44, No. 8, pp.
1483–1499)] determined that the essential amino acid
(Lysine) composition level of soybean meals is as shown 
below (g/kg):

22.2 24.7 20.9 26.0 27.0
24.8 26.5 23.8 25.6 23.9

(a) Construct a 99% two-sided confidence interval for .
(b) Calculate a 99% lower confidence bound for .
(c) Calculate a 90% lower confidence bound for .
(d) Compare the intervals that you have computed.

�
�2

�2

To construct the confidence interval on p, note that

so 

P °�z�	2 �
P̂ � p

B

p11 � p2
n

� z�	2¢ � 1 � �

P 1�z�	2 � Z � z�	22 � 1 � �
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This may be rearranged as

(8-21)

The quantity in Equation 8-21 is called the standard error of the point estima-
tor This was discussed in Chapter 7. Unfortunately, the upper and lower limits of the confi-
dence interval obtained from Equation 8-21 contain the unknown parameter p. However, as
suggested at the end of Section 8-1.5, a satisfactory solution is to replace p by in the stan-
dard error, which results in

(8-22)

This leads to the approximate 10011 � �2% confidence interval on p.

P qP̂ � z��2 ˛

B

P̂11 � P̂2
n � p � P̂ � z��2  

B

P̂11 � P̂2
n

r � 1 � �

P̂

P̂.
1p11 � p2�n

P q  P̂ � z��2 B

p 11 � p2
n � p � P̂ � z��2 

B

p 11 � p2
n

r � 1 � �

EXAMPLE 8-7 Crankshaft Bearings
In a random sample of 85 automobile engine crankshaft bear-
ings, 10 have a surface finish that is rougher than the specifi-
cations allow. Therefore, a point estimate of the proportion of
bearings in the population that exceeds the roughness specifi-
cation is A 95% two-sided confi-
dence interval for p is computed from Equation 8-23 as

or

0.12 � 1.96  

B

0.1210.882

85
� p � 0.12 � 1.96  

B

0.1210.882

85

p̂ � z0.025 
 

B

p̂11 � p̂2
n � p � p̂ � z0.025  

˛

B

p̂ 11 � p̂2
n

p̂ � x�n � 10�85 � 0.12.

which simplifies to

Practical Interpretation: This is a wide CI. While the sample
size does not appear to be small (n � 85), the value of is
fairly small, which leads to a large standard error for con-
tributing to the wide CI.

p̂
p̂

0.05 � p � 0.19

If is the proportion of observations in a random sample of size n that belongs to a
class of interest, an approximate 100(1 � �)% confidence interval on the proportion
p of the population that belongs to this class is

(8-23)

where is the upper ��2 percentage point of the standard normal distribution.z��2

p̂ � z��2 

B

p̂ 11 � p̂2
n � p � p̂ � z��2 

˛

B

p̂ 11 � p̂2
n

p̂
Approximate

Confidence
Interval on 
a Binomial
Proportion

This procedure depends on the adequacy of the normal approximation to the binomial.
To be reasonably conservative, this requires that np and n(1 � p) be greater than or equal
to 5. In situations where this approximation is inappropriate, particularly in cases where n
is small, other methods must be used. Tables of the binomial distribution could be used to
obtain a confidence interval for p. However, we could also use numerical methods based on
the binomial probability mass function that are implemented in computer programs.
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Choice of Sample Size
Since is the point estimator of p, we can define the error in estimating p by as

Note that we are approximately 10011 � �2% confident that this error is less
than For instance, in Example 8-7, we are 95% confident that the sample
proportion differs from the true proportion p by an amount not exceeding 0.07.

In situations where the sample size can be selected, we may choose n to be 10011 � �2%
confident that the error is less than some specified value E. If we set 
and solve for n, the appropriate sample size is

E � z�	2˛1p11 � p2	n

p̂ � 0.12
z�	2˛1p11 � p2	n.

E � 0 p � P̂ 0.
P̂P̂

272 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

Sample Size 
for a Specified

Error on 
a Binomial
Proportion

(8-24)n � a
z�	2

E
b

2

˛

 p11 � p2

An estimate of p is required to use Equation 8-24. If an estimate from a previous sample
is available, it can be substituted for p in Equation 8-24, or perhaps a subjective estimate can be
made. If these alternatives are unsatisfactory, a preliminary sample can be taken, computed,
and then Equation 8-24 used to determine how many additional observations are required to es-
timate p with the desired accuracy. Another approach to choosing n uses the fact that the sam-
ple size from Equation 8-24 will always be a maximum for p � 0.5 [that is, p(1 � p) � 0.25
with equality for p � 0.5], and this can be used to obtain an upper bound on n. In other words,
we are at least 10011 � �2% confident that the error in estimating p by is less than E if the
sample size is

p̂

p̂

p̂

(8-25)n � a
z�	2

E
b

2 

10.252

EXAMPLE 8-8 Crankshaft Bearings
Consider the situation in Example 8-7. How large a sample is
required if we want to be 95% confident that the error in using

to estimate p is less than 0.05? Using � 0.12 as an initial
estimate of p, we find from Equation 8-24 that the required
sample size is

If we wanted to be at least 95% confident that our estimate 
of the true proportion p was within 0.05 regardless of the value

p̂

n � a
z0.025

E
b

2

 p̂ 11 � p̂2 � a
1.96

0.05
b

2

 0.1210.882 � 163

p̂p̂

of p, we would use Equation 8-25 to find the sample size

Practical Interpretation: Notice that if we have information
concerning the value of p, either from a preliminary sample
or from past experience, we could use a smaller sample
while maintaining both the desired precision of estimation
and the level of confidence.

n � a
z0.025

E
b

2

 10.252 � a
1.96

0.05
b

2

 10.252 � 385

One-Sided Confidence Bounds
We may find approximate one-sided confidence bounds on p by a simple modification of
Equation 8-23.
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The approximate 100(1 � �)% lower and upper confidence bounds are

(8-26)

respectively.

p̂ � z� 
B

p̂ 11 � p̂2
n � p  and  p � p̂ � z� 

B

p̂ 11 � p̂2
n

Approximate One-
Sided Confidence

Bounds on a
Binomial Proportion

EXERCISES FOR SECTION 8-4

8-53. The fraction of defective integrated circuits produced
in a photolithography process is being studied. A random sam-
ple of 300 circuits is tested, revealing 13 defectives.
(a) Calculate a 95% two-sided CI on the fraction of defective

circuits produced by this particular tool.
(b) Calculate a 95% upper confidence bound on the fraction

of defective circuits.

8-54. An article in Knee Surgery, Sports Traumatology,
Arthroscopy [“Arthroscopic Meniscal Repair with an
Absorbable Screw: Results and Surgical Technique” (2005, Vol.
13, pp. 273–279)] showed that only 25 out of 37 tears (67.6%)
located between 3 and 6 mm from the meniscus rim were healed.
(a) Calculate a two-sided 95% confidence interval on the

proportion of such tears that will heal.
(b) Calculate a 95% lower confidence bound on the propor-

tion of such tears that will heal.

8-55. The 2004 presidential election exit polls from the crit-
ical state of Ohio provided the following results. There were
2020 respondents in the exit polls and 768 were college grad-
uates. Of the college graduates, 412 voted for George Bush.
(a) Calculate a 95% confidence interval for the proportion of

college graduates in Ohio who voted for George Bush.
(b) Calculate a 95% lower confidence bound for the proportion

of college graduates in Ohio who voted for George Bush.

8-56. Of 1000 randomly selected cases of lung cancer, 823
resulted in death within 10 years.
(a) Calculate a 95% two-sided confidence interval on the

death rate from lung cancer.
(b) Using the point estimate of p obtained from the prelimi-

nary sample, what sample size is needed to be 95% confi-
dent that the error in estimating the true value of p is less
than 0.03?

(c) How large must the sample be if we wish to be at least
95% confident that the error in estimating p is less than
0.03, regardless of the true value of p?

8-57. An article in the Journal of the American Statistical
Association (1990, Vol. 85, pp. 972–985) measured the weight

of 30 rats under experiment controls. Suppose that there are 12
underweight rats.
(a) Calculate a 95% two-sided confidence interval on the true

proportion of rats that would show underweight from the
experiment.

(b) Using the point estimate of p obtained from the prelimi-
nary sample, what sample size is needed to be 95% confi-
dent that the error in estimating the true value of p is less
than 0.02?

(c) How large must the sample be if we wish to be at least
95% confident that the error in estimating p is less than
0.02, regardless of the true value of p?

8-58. A random sample of 50 suspension helmets used by
motorcycle riders and automobile race-car drivers was sub-
jected to an impact test, and on 18 of these helmets some dam-
age was observed.
(a) Find a 95% two-sided confidence interval on the true pro-

portion of helmets of this type that would show damage
from this test.

(b) Using the point estimate of p obtained from the prelimi-
nary sample of 50 helmets, how many helmets must be
tested to be 95% confident that the error in estimating the
true value of p is less than 0.02?

(c) How large must the sample be if we wish to be at least
95% confident that the error in estimating p is less than
0.02, regardless of the true value of p?

8-59. The Arizona Department of Transportation
wishes to survey state residents to determine what propor-
tion of the population would like to increase statewide
highway speed limits to 75 mph from 65 mph. How many
residents do they need to survey if they want to be at least
99% confident that the sample proportion is within 0.05 of
the true proportion?

8-60. A study is to be conducted of the percentage of home-
owners who own at least two television sets. How large a
sample is required if we wish to be 99% confident that the
error in estimating this quantity is less than 0.017?

8-5 GUIDELINES FOR CONSTRUCTING CONFIDENCE INTERVALS

The most difficult step in constructing a confidence interval is often the match of the appro-
priate calculation to the objective of the study. Common cases are listed in Table 8-1 along with
the reference to the section that covers the appropriate calculation for a confidence interval test.
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274 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

Table 8-1 provides a simple road map to help select the appropriate analysis. Two primary
comments can help identify the analysis:

1. Determine the parameter (and the distribution of the data) that will be bounded by the
confidence interval or tested by the hypothesis.

2. Check if other parameters are known or need to be estimated.

In Chapter 9, we will study a procedure closely related to confidence intervals called
hypothesis testing. Table 8-1 can be used for those procedures also. This road map will be
extended to more cases in Chapter 10.

8-6 TOLERANCE AND PREDICTION INTERVALS

8-6.1 Prediction Interval for a Future Observation

In some problem situations, we may be interested in predicting a future observation of a
variable. This is a different problem than estimating the mean of that variable, so a confidence
interval is not appropriate. In this section we show how to obtain a 100(1 � �)% prediction
interval on a future value of a normal random variable.

Suppose that X1, X2, p , Xn is a random sample from a normal population. We wish to
predict the value Xn�1, a single future observation. A point prediction of Xn�1 is the sam-
ple mean. The prediction error is The expected value of the prediction error is

and the variance of the prediction error is

V 1Xn�1 � X 2 � �2 �
�2

n � �2
 a1 �

1
nb

E 1Xn�1 � X 2 � � � � � 0

Xn�1 � X.
X,

Table 8-1 The Roadmap for Constracting Confidence Intervals and Performing Hypothesis Tests,
One-Sample Case

Parameter to Be
Bounded by the
Confidence Interval
or Tested with a
Hypothesis?

Mean of normal
distribution
Mean of arbitrary
distribution with
large sample size

Mean of normal
distribution

Variance (or stan-
dard deviation) of
normal distribution
Population
Proportion

Symbol

p

�2

�

�

�

Other Parameters?

Standard deviation
known

Sample size large
enough that central
limit theorem
applies and is
essentially known
Standard deviation

unknown and
estimated
Mean unknown
and estimated

None

�

�

�

�

Confidence
Interval
Section

8-1

8-1.5

8-2

8-3

8-4

Hypothesis
Test

Section

9-2

9-2.5

9-3

9-4

9-5

Comments

Large sample
size is often
taken to be 
n 40
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8-6 TOLERANCE AND PREDICTION INTERVALS 275

because the future observation Xn�1 is independent of the mean of the current sample . The
prediction error Xn�1 � is normally distributed. Therefore, 

has a standard normal distribution. Replacing � with S results in 

which has a t distribution with n � 1 degrees of freedom. Manipulating T as we have done
previously in the development of a CI leads to a prediction interval on the future observa-
tion Xn�1.

T �
Xn�1 � X

S 

B
1 �

1
n

Z �
Xn�1 � X

�
B

1 �
1
n

X
X

A 100(1 � �)% prediction interval (PI) on a single future observation from a
normal distribution is given by

(8-27)x � t�	2,n�1 s 
B

1 �
1
n � Xn�1 �  x � t�	2,n�1 s 

B
1 �

1
n

Prediction
Interval

The prediction interval for Xn�1 will always be longer than the confidence interval for �
because there is more variability associated with the prediction error than with the error of es-
timation. This is easy to see because the prediction error is the difference between two random
variables (Xn�1 � ), and the estimation error in the CI is the difference between one random
variable and a constant ( � �). As n gets larger ( ), the length of the CI decreases to
zero, essentially becoming the single value �, but the length of the PI approaches 2z��2�. So
as n increases, the uncertainty in estimating � goes to zero, although there will always be un-
certainty about the future value Xn�1 even when there is no need to estimate any of the distri-
bution parameters.

n S 
X
X

EXAMPLE 8-9 Alloy Adhesion
Reconsider the tensile adhesion tests on specimens of 
U-700 alloy described in Example 8-5. The load at failure
for n � 22 specimens was observed, and we found that �
13.71 and s � 3.55. The 95% confidence interval on � was
12.14 � � � 15.28. We plan to test a twenty-third speci-
men. A 95% prediction interval on the load at failure for this
specimen is 

x � t�	2, n�1 s 
B

1 �
1
n � Xn�1 � x � t�	2,n�1 s 

B
1 �

1
n

x

Practical Interpretation: Notice that the prediction interval is
considerably longer than the CI. This is because the CI an
estimate of a parameter, while the PI is an interval estimate of
a single future observation.

6.16 � X23 � 21.26

 � 12.08023.55  

B
1 �

1

22

 13.71 � 12.08023.55  

B
1 �

1

22
� X23 � 13.71
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276 CHAPTER 8 STATISTICAL INTERVALS FOR A SINGLE SAMPLE

8-6.2 Tolerance Interval for a Normal Distribution

Consider a population of semiconductor processors. Suppose that the speed of these processors
has a normal distribution with mean � � 600 megahertz and standard deviation � � 30 mega-
hertz. Then the interval from 600 � 1.96(30) � 541.2 to 600 � 1.96(30) � 658.8 megahertz
captures the speed of 95% of the processors in this population because the interval from
�1.96 to 1.96 captures 95% of the area under the standard normal curve. The interval from
� � z��2� to � � z��2� is called a tolerance interval.

If � and � are unknown, we can use the data from a random sample of size n to compute
and s, and then form the interval . However, because of sampling

variability in and s, it is likely that this interval will contain less than 95% of the values in
the population. The solution to this problem is to replace 1.96 by some value that will make
the proportion of the distribution contained in the interval 95% with some level of confidence.
Fortunately, it is easy to do this.

x
1x � 1.96 s, x � 1.96 s2x

A tolerance interval for capturing at least �% of the values in a normal distribution
with confidence level 100(1 � �)% is

where k is a tolerance interval factor found in Appendix Table XII. Values are given
for � � 90%, 95%, and 99% and for 90%, 95%, and 99% confidence.

x � ks,  x � ks

Tolerance
Interval

EXAMPLE 8-10 Alloy Adhesion
Let’s reconsider the tensile adhesion tests originally described
in Example 8-5. The load at failure for n � 22 specimens was
observed, and we found that � 13.71 and s � 3.55. We want
to find a tolerance interval for the load at failure that includes
90% of the values in the population with 95% confidence.
From Appendix Table XII, the tolerance factor k for n � 22, 
� � 0.90, and 95% confidence is k � 2.264. The desired tol-
erance interval is

x
or

which reduces to (5.67, 21.74). 
Practical Interpretation: We can be 95% confident that at least
90% of the values of load at failure for this particular alloy lie
between 5.67 and 21.74 megapascals.

� 12.26423.55 4313.71 � 12.26423.55, 13.71

1x � ks, x � ks2

One-sided tolerance bounds can also be computed. The tolerance factors for these bounds are
also given in Appendix Table XII.

From Appendix Table XII, we note that as , the value of k goes to the z-value associated
with the desired level of containment for the normal distribution. For example, if we want
90% of the population to fall in the two-sided tolerance interval, k approaches z0.05 � 1.645 as

. Note that as , a 100(1 � �)% prediction interval on a future value approaches an S 
n S 


n S 


8-61. Consider the tire-testing data described in Exercise
8-27. Compute a 95% prediction interval on the life of the next
tire of this type tested under conditions that are similar to
those employed in the original test. Compare the length of the

prediction interval with the length of the 95% CI on the
population mean.

8-62. Consider the Izod impact test described in Exercise 8-28.
Compute a 99% prediction interval on the impact strength of

EXERCISES FOR SECTION 8-6

tolerance interval that contains 100(1 � �)% of the distribution.

JWCL232_c08_251-282.qxd  1/11/10  3:41 PM  Page 276



8-6 TOLERANCE AND PREDICTION INTERVALS 277

the next specimen of PVC pipe tested. Compare the length of
the prediction interval with the length of the 99% CI on the
population mean.

8-63. Consider the syrup-dispensing measurements de-
scribed in Exercise 8-29. Compute a 95% prediction interval
on the syrup volume in the next beverage dispensed. Compare
the length of the prediction interval with the length of the 95%
CI on the population mean.

8-64. Consider the natural frequency of beams described
in Exercise 8-32. Compute a 90% prediction interval on the
diameter of the natural frequency of the next beam of this
type that will be tested. Compare the length of the prediction
interval with the length of the 90% CI on the population
mean.

8-65. Consider the rainfall in Exercise 8-33. Compute a
95% prediction interval on the rainfall for the next year.
Compare the length of the prediction interval with the length
of the 95% CI on the population mean.

8-66. Consider the margarine test described in Exercise 8-36.
Compute a 99% prediction interval on the polyunsaturated
fatty acid in the next package of margarine that is tested.
Compare the length of the prediction interval with the length
of the 99% CI on the population mean.

8-67. Consider the television tube brightness test described
in Exercise 8-35. Compute a 99% prediction interval on the
brightness of the next tube tested. Compare the length of the
prediction interval with the length of the 99% CI on the popu-
lation mean.

8-68. Consider the suspension rod diameter measurements
described in Exercise 8-38. Compute a 95% prediction inter-
val on the diameter of the next rod tested. Compare the length
of the prediction interval with the length of the 95% CI on the
population mean.

8-69. Consider the test on the compressive strength of con-
crete described in Exercise 8-37. Compute a 90% prediction
interval on the next specimen of concrete tested.

8-70. Consider the bottle-wall thickness measurements
described in Exercise 8-40. Compute a 90% prediction interval
on the wall thickness of the next bottle tested.

8-71. Consider the fuel rod enrichment data described
in Exercise 8-41. Compute a 90% prediction interval on the
enrichment of the next rod tested. Compare the length of
the prediction interval with the length of the 99% CI on the
population mean.

8-72. How would you obtain a one-sided prediction bound
on a future observation? Apply this procedure to obtain a 95%
one-sided prediction bound on the wall thickness of the next
bottle for the situation described in Exercise 8-40.

8-73. Consider the tire-testing data in Exercise 8-27.
Compute a 95% tolerance interval on the life of the tires that
has confidence level 95%. Compare the length of the toler-
ance interval with the length of the 95% CI on the population

mean. Which interval is shorter? Discuss the difference in
interpretation of these two intervals.

8-74. Consider the Izod impact test described in Exercise 
8-28. Compute a 99% tolerance interval on the impact
strength of PVC pipe that has confidence level 90%. Compare
the length of the tolerance interval with the length of the 99%
CI on the population mean. Which interval is shorter? Discuss
the difference in interpretation of these two intervals.

8-75. Consider the syrup-volume data in Exercise 8-29.
Compute a 95% tolerance interval on the syrup volume that
has confidence level 90%. Compare the length of the tolerance
interval with the length of the 95% CI on the population mean.

8-76. Consider the margarine test described in Exercise 8-36.
Compute a 99% tolerance interval on the polyunsaturated
fatty acid in this particular type of margarine that has confi-
dence level 95%. Compare the length of the tolerance inter-
val with the length of the 99% CI on the population mean.
Which interval is shorter? Discuss the difference in inter-
pretation of these two intervals.

8-77. Consider the rainfall data in Exercise 8-33. Compute a
95% tolerance interval that has confidence level 95%. Compare
the length of the tolerance interval with the length of the 95% CI
on the population mean. Discuss the difference in interpretation
of these two intervals.

8-78. Consider the suspension rod diameter data in Exercise
8-38. Compute a 95% tolerance interval on the diameter of the
rods described that has 90% confidence. Compare the length
of the tolerance interval with the length of the 95% CI on the
population mean. Which interval is shorter? Discuss the dif-
ference in interpretation of these two intervals.

8-79. Consider the television tube brightness data in
Exercise 8-35. Compute a 99% tolerance interval on the
brightness of the television tubes that has confidence level
95%. Compare the length of the tolerance interval with the
length of the 99% CI on the population mean. Which interval
is shorter? Discuss the difference in interpretation of these two
intervals.

8-80. Consider the strength-of-concrete data in Exercise
8-37. Compute a 90% tolerance interval on the compressive
strength of the concrete that has 90% confidence.

8-81. Consider the fuel rod enrichment data described in
Exercise 8-41. Compute a 99% tolerance interval on rod
enrichment that has confidence level 95%. Compare the
length of the tolerance interval with the length of the 95% CI
on the population mean. 

8-82. Consider the bottle-wall thickness measurements
described in Exercise 8-40.
(a) Compute a 90% tolerance interval on bottle-wall thick-

ness that has confidence level 90%.
(b) Compute a 90% lower tolerance bound on bottle-wall

thickness that has confidence level 90%. Why would a
lower tolerance bound likely be of interest here?
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Supplemental Exercises

8-83. Consider the confidence interval for � with known
standard deviation �:

where �1 � �2 � �. Let � � 0.05 and find the interval for
�1 � �2 � ��2 � 0.025. Now find the interval for the case
�1 � 0.01 and �2 � 0.04. Which interval is shorter? Is there
any advantage to a “symmetric” confidence interval?

8-84. A normal population has a known mean of 50 and
unknown variance.
(a) A random sample of n � 16 is selected from this popula-

tion, and the sample results are � 52 and s � 8. How
unusual are these results? That is, what is the probability
of observing a sample average as large as 52 (or larger) if
the known, underlying mean is actually 50?

(b) A random sample of n � 30 is selected from this popula-
tion, and the sample results are � 52 and s � 8. How
unusual are these results?

(c) A random sample of n � 100 is selected from this popula-
tion, and the sample results are � 52 and s � 8. How
unusual are these results?

(d) Compare your answers to parts (a)–(c) and explain why
they are the same or different.

8-85. A normal population has known mean � � 50 and
variance �2 � 5. What is the approximate probability that the
sample variance is greater than or equal to 7.44? less than or
equal to 2.56? For a random sample of size
(a) n � 16
(b) n � 30
(c) n � 71
(d) Compare your answers to parts (a)–(c) for the approxi-

mate probability that the sample variance is greater than
or equal to 7.44. Explain why this tail probability is
increasing or decreasing with increased sample size.

(e) Compare your answers to parts (a)–(c) for the approxi-
mate probability that the sample variance is less than or
equal to 2.56. Explain why this tail probability is increas-
ing or decreasing with increased sample size.

8-86. An article in the Journal of Sports Science (1987, Vol.
5, pp. 261–271) presents the results of an investigation of the
hemoglobin level of Canadian Olympic ice hockey players.
The data reported are as follows (in g/dl):

15.3 16.0 14.4 16.2 16.2

14.9 15.7 15.3 14.6 15.7

16.0 15.0 15.7 16.2 14.7

14.8 14.6 15.6 14.5 15.2

(a) Given the following probability plot of the data, what is a log-
ical assumption about the underlying distribution of the data?

(b) Explain why this check of the distribution underlying the
sample data is important if we want to construct a confi-
dence interval on the mean.

(c) Based on this sample data, a 95% confidence interval for
the mean is (15.04, 15.62). Is it reasonable to infer that the
true mean could be 14.5? Explain your answer.

(d) Explain why this check of the distribution underlying the
sample data is important if we want to construct a confi-
dence interval on the variance.

(e) Based on these sample data, a 95% confidence interval
for the variance is (0.22, 0.82). Is it reasonable to infer
that the true variance could be 0.35? Explain your
answer.

(f ) Is it reasonable to use these confidence intervals to draw
an inference about the mean and variance of hemoglobin
levels

(i) of Canadian doctors? Explain your answer.
(ii) of Canadian children ages 6–12? Explain your answer.

8-87. The article “Mix Design for Optimal Strength
Development of Fly Ash Concrete” (Cement and Concrete
Research, 1989, Vol. 19, No. 4, pp. 634–640) investigates the
compressive strength of concrete when mixed with fly ash (a
mixture of silica, alumina, iron, magnesium oxide, and other
ingredients). The compressive strength for nine samples in
dry conditions on the twenty-eighth day are as follows (in
megapascals):

40.2 30.4 28.9 30.5 22.4

25.8 18.4 14.2 15.3

(a) Given the following probability plot of the data, what is a
logical assumption about the underlying distribution of
the data?
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(b) Find a 99% lower one-sided confidence interval on mean
compressive strength. Provide a practical interpretation of
this interval.

(c) Find a 98% two-sided confidence interval on mean com-
pressive strength. Provide a practical interpretation of this
interval and explain why the lower end-point of the inter-
val is or is not the same as in part (b).

(d) Find a 99% upper one-sided confidence interval on the
variance of compressive strength. Provide a practical in-
terpretation of this interval.

(e) Find a 98% two-sided confidence interval on the variance
of compression strength. Provide a practical interpretation
of this interval and explain why the upper end-point of the
interval is or is not the same as in part (d).

(f ) Suppose that it was discovered that the largest observation
40.2 was misrecorded and should actually be 20.4. Now
the sample mean � 23 and the sample variance s2 �
39.8. Use these new values and repeat parts (c) and (e).
Compare the original computed intervals and the newly
computed intervals with the corrected observation value.
How does this mistake affect the values of the sample
mean, sample variance, and the width of the two-sided
confidence intervals?

(g) Suppose, instead, that it was discovered that the largest
observation 40.2 is correct, but that the observation 25.8
is incorrect and should actually be 24.8. Now the sample
mean � 25 and the standard deviation s � 8.41. Use
these new values and repeat parts (c) and (e). Compare
the original computed intervals and the newly computed
intervals with the corrected observation value. How does
this mistake affect the values of the sample mean, the
sample variance, and the width of the two-sided confi-
dence intervals?

(h) Use the results from parts (f ) and (g) to explain the effect
of mistakenly recorded values on sample estimates.
Comment on the effect when the mistaken values are near
the sample mean and when they are not.

8-88. An operating system for a personal computer has been
studied extensively, and it is known that the standard deviation
of the response time following a particular command is � � 8
milliseconds. A new version of the operating system is
installed, and we wish to estimate the mean response time for
the new system to ensure that a 95% confidence interval for �
has a length of at most 5 milliseconds.
(a) If we can assume that response time is normally distributed

and that � � 8 for the new system, what sample size would
you recommend?

(b) Suppose that we are told by the vendor that the standard
deviation of the response time of the new system is smaller,
say, � � 6; give the sample size that you recommend and
comment on the effect the smaller standard deviation has on
this calculation.

8-89. Consider the hemoglobin data in Exercise 8-86. Find
the following:
(a) An interval that contains 95% of the hemoglobin values

with 90% confidence.
(b) An interval that contains 99% of the hemoglobin values

with 90% confidence.

8-90. Consider the compressive strength of concrete data
from Exercise 8-87. Find a 95% prediction interval on the
next sample that will be tested.

8-91. The maker of a shampoo knows that customers like
this product to have a lot of foam. Ten sample bottles of the
product are selected at random and the foam heights observed
are as follows (in millimeters): 210, 215, 194, 195, 211, 201,
198, 204, 208, and 196.
(a) Is there evidence to support the assumption that foam

height is normally distributed?
(b) Find a 95% CI on the mean foam height.
(c) Find a 95% prediction interval on the next bottle of sham-

poo that will be tested.
(d) Find an interval that contains 95% of the shampoo foam

heights with 99% confidence.
(e) Explain the difference in the intervals computed in parts

(b), (c), and (d).

8-92. During the 1999 and 2000 baseball seasons, there was
much speculation that the unusually large number of home
runs that were hit was due at least in part to a livelier ball. One
way to test the “liveliness” of a baseball is to launch the ball at
a vertical surface with a known velocity VL and measure the
ratio of the outgoing velocity VO of the ball to VL. The ratio
R � VO�VL is called the coefficient of restitution. Following
are measurements of the coefficient of restitution for 40
randomly selected baseballs. The balls were thrown from a
pitching machine at an oak surface.
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0.6248
0.6520
0.6226
0.6230

0.6237
0.6368
0.6280
0.6131

0.6118
0.6220
0.6096
0.6223

0.6159
0.6151
0.6300
0.6297

0.6298
0.6121
0.6107
0.6435

0.6192
0.6548
0.6392
0.5978

0.6351
0.6128
0.6134

0.6275
0.6403
0.6310

0.6261
0.6521
0.6065

0.6262
0.6049
0.6214

0.6262
0.6170
0.6141

0.6314

(a) Is there evidence to support the assumption that the coef-
ficient of restitution is normally distributed?

(b) Find a 99% CI on the mean coefficient of restitution.
(c) Find a 99% prediction interval on the coefficient of resti-

tution for the next baseball that will be tested.
(d) Find an interval that will contain 99% of the values of the

coefficient of restitution with 95% confidence.
(e) Explain the difference in the three intervals computed in

parts (b), (c), and (d).

8-93. Consider the baseball coefficient of restitution data in
Exercise 8-92. Suppose that any baseball that has a coefficient
of restitution that exceeds 0.635 is considered too lively.
Based on the available data, what proportion of the baseballs
in the sampled population are too lively? Find a 95% lower
confidence bound on this proportion.

8-94. An article in the ASCE Journal of Energy Engineering
[“Overview of Reservoir Release Improvements at 20 TVA
Dams” (Vol. 125, April 1999, pp. 1–17)] presents data on
dissolved oxygen concentrations in streams below 20 dams in
the Tennessee Valley Authority system. The observations are (in
milligrams per liter): 5.0, 3.4, 3.9, 1.3, 0.2, 0.9, 2.7, 3.7, 3.8, 4.1,
1.0, 1.0, 0.8, 0.4, 3.8, 4.5, 5.3, 6.1, 6.9, and 6.5.
(a) Is there evidence to support the assumption that the

dissolved oxygen concentration is normally distributed?
(b) Find a 95% CI on the mean dissolved oxygen concentration.
(c) Find a 95% prediction interval on the dissolved oxygen con-

centration for the next stream in the system that will be tested.
(d) Find an interval that will contain 95% of the values of the

dissolved oxygen concentration with 99% confidence.
(e) Explain the difference in the three intervals computed in

parts (b), (c), and (d).

8-95. The tar content in 30 samples of cigar tobacco follows:

(a) Is there evidence to support the assumption that the tar
content is normally distributed?

(b) Find a 99% CI on the mean tar content.
(c) Find a 99% prediction interval on the tar content for the

next observation that will be taken on this particular type
of tobacco.

1.542
1.622
1.440
1.459
1.598

1.585
1.466
1.608
1.533
1.498

1.532
1.546
1.520
1.532
1.600

1.466
1.494
1.478
1.523
1.504

1.499
1.548
1.542
1.397
1.545

1.611
1.626
1.511
1.487
1.558

(d) Find an interval that will contain 99% of the values of the
tar content with 95% confidence.

(e) Explain the difference in the three intervals computed in
parts (b), (c), and (d).

8-96. A manufacturer of electronic calculators takes a
random sample of 1200 calculators and finds that there are
eight defective units.
(a) Construct a 95% confidence interval on the population

proportion.
(b) Is there evidence to support a claim that the fraction of

defective units produced is 1% or less?

8-97. An article in The Engineer (“Redesign for Suspect
Wiring,” June 1990) reported the results of an investigation
into wiring errors on commercial transport aircraft that may
produce faulty information to the flight crew. Such a wiring
error may have been responsible for the crash of a British
Midland Airways aircraft in January 1989 by causing the pilot
to shut down the wrong engine. Of 1600 randomly selected
aircraft, eight were found to have wiring errors that could
display incorrect information to the flight crew.
(a) Find a 99% confidence interval on the proportion of air-

craft that have such wiring errors.
(b) Suppose we use the information in this example to

provide a preliminary estimate of p. How large a sample
would be required to produce an estimate of p that we are
99% confident differs from the true value by at most 0.008?

(c) Suppose we did not have a preliminary estimate of p. How
large a sample would be required if we wanted to be at
least 99% confident that the sample proportion differs
from the true proportion by at most 0.008 regardless of the
true value of p?

(d) Comment on the usefulness of preliminary information in
computing the needed sample size.

8-98. An article in Engineering Horizons (Spring 1990,
p. 26) reported that 117 of 484 new engineering graduates were
planning to continue studying for an advanced degree.
Consider this as a random sample of the 1990 graduating class.
(a) Find a 90% confidence interval on the proportion of such

graduates planning to continue their education.
(b) Find a 95% confidence interval on the proportion of such

graduates planning to continue their education.
(c) Compare your answers to parts (a) and (b) and explain

why they are the same or different.
(d) Could you use either of these confidence intervals to

determine whether the proportion is actually 0.25?
Explain your answer. Hint: Use the normal approximation
to the binomial.

8-99. An article in the Journal of Applied Physiology
[“Humidity Does Not Affect Central Nervous System Oxygen
Toxicity” (2001, Vol. 91, pp. 1327–1333)] reported that central
nervous system (CNS) oxygen toxicity can appear in humans
on exposure to oxygen pressures >180 kPa. CNS oxygen toxi-
city can occur as convulsions (similar to epileptic seizures,
grand mal) and loss of consciousness without any warning
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MIND-EXPANDING EXERCISES

8-101. An electrical component has a time-to-failure
(or lifetime) distribution that is exponential with param-
eter �, so the mean lifetime is � � 1��. Suppose that a
sample of n of these components is put on test, and let
Xi be the observed lifetime of component i. The test con-
tinues only until the rth unit fails, where r � n. This re-
sults in a censored life test. Let X1 denote the time at
which the first failure occurred, X2 denote the time at
which the second failure occurred, and so on. Then the
total lifetime that has been accumulated at test termina-
tion is

We have previously shown in Exercise 7-74 that Tr�r is
an unbiased estimator for �.
(a) It can be shown that 2�Tr has a chi-square distribution

with 2r degrees of freedom. Use this fact to develop a

100(1 � �)% confidence interval for mean lifetime
� � 1��.

(b) Suppose 20 units were put on test, and the test
terminated after 10 failures occurred. The failure
times (in hours) are 15, 18, 19, 20, 21, 21, 22, 27,
28, and 29. Find a 95% confidence interval on mean
lifetime.

8-102. Consider a two-sided confidence interval for
the mean � when � is known:

where �1 � �2 � �. If �1 � �2 � ��2, we have the usual
100(1 � �)% confidence interval for �. In the above,
when , the interval is not symmetric about �.
The length of the interval is 
Prove that the length of the interval L is minimized when

L � �1z�1
� z�2

2	1n.
�1 � �2

x � z�1
 �	1n � � � x � z�2

 �	1n

Tr � a
r

i�1
 Xi � 1n � r2  Xr

symptoms. CNS oxygen toxicity is a risk encountered in sev-
eral fields of human activity, such as combat diving with
closed-circuit breathing apparatus and diving with mixtures of
nitrogen and oxygen (nitrox) or nitrogen, oxygen, and helium
(trimix) in sport and professional diving to depths >30 m. The
risk of oxygen toxicity is always considered when deep diving
is planned. The data shown below demonstrate shortened
latencies in a dry atmosphere (<10% humidity) in 11 rats at O2

of 507 kPa. The data collected are as follows:

22 26 19 27 37 27
14 19 23 18 18

(a) Given the above probability plot of the data, what is a logical
assumption about the underlying distribution of the data?

(b) Explain why this check of the distribution underlying the
sample data is important if we want to construct a confi-
dence interval on the mean.

(c) Find the 95% confidence interval for the mean.
(d) Explain why this check of the distribution underlying the

sample data is important if we want to construct a confi-
dence interval on the variance.

(e) Find the 95% confidence interval for the variance.

8-100. An article in the Journal of Human Nutrition and
Dietetics [“The Validation of Energy and Protein Intakes by
Doubly Labeled Water and 24-Hour Urinary Nitrogen
Excretion in Post-Obese Subjects” (1995, Vol. 8, pp. 51–64)]
showed the energy intake expressed as a basal metabolic rate,
BMR (MJ).

5.40 5.67 5.79 6.85 6.92
5.70 6.08 5.48 5.44 5.51

(a) Use a normal probability plot to check the normality
assumption.

(b) Find a 99% two-sided confidence interval on the mean
BMR.
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�1 � �2 � ��2. Hint: Remember that ,
so and the relationship between the
derivative of a function y � f (x) and the inverse

is 

8-103. It is possible to construct a nonparametric tol-
erance interval that is based on the extreme values in a
random sample of size n from any continuous population.
If p is the minimum proportion of the population con-
tained between the smallest and largest sample observa-
tions with confidence 1 � �, it can be shown that

and n is approximately

(a) In order to be 95% confident that at least 90% of the
population will be included between the extreme val-
ues of the sample, what sample size will be required?

(b) A random sample of 10 transistors gave the follow-
ing measurements on saturation current (in mil-
liamps): 10.25, 10.41, 10.30, 10.26, 10.19, 10.37,
10.29, 10.34, 10.23, 10.38. Find the limits that con-
tain a proportion p of the saturation current meas-
urements at 95% confidence. What is the proportion
p contained by these limits?

n �
1
2

� a
1 � p

1 � p
b a

�2
�,4

4
b

npn�1 � 1n � 12pn � �

� 1	 3 1d	dx2 f  1x2 4 .1d	dy2  f 
�11  y2x � f 

�11  y2

��111 � �2 � z�,
�1za2 � 1 � � 8-104. Suppose that X1, X2, . . . , Xn is a random

sample from a continuous probability distribution with
median 
(a) Show that

Hint: The complement of the event 
� is but
max if and only if for all i .

(b) Write down a 100(1 � �)% confidence interval for
the median , where

8-105. Students in the industrial statistics lab at ASU
calculate a lot of confidence intervals on �. Suppose all
these CIs are independent of each other. Consider the
next one thousand 95% confidence intervals that will be
calculated. How many of these CIs do you expect to
capture the true value of �? What is the probability that
between 930 and 970 of these intervals contain the true
value of �?

� � a
1

2
b

n�1

�~

4Xi � �~1Xi2 � �~
3max 1Xi2 � �~ 4  ´  3min 1Xi2 � �~ 4 ,max 1Xi2 4

3min 1Xi2 � �~

� 1 � a
1
2
b

n�1

P 5min 1Xi2 � �~ � max 1Xi2 6

�~ .

Chi-squared 
distribution

Confidence coefficient
Confidence interval
Confidence interval 

for a population 
proportion

Confidence interval for
the variance of a 
normal distribution

Confidence intervals 
for the mean of a 
normal distribution

Confidence level

Error in estimation
Large sample confidence

interval
One-sided confidence

bounds
Precision of parameter

estimation

Prediction interval
Tolerance interval
Two-sided confidence

interval 
t distribution

IMPORTANT TERMS AND CONCEPTS

MIND-EXPANDING EXERCISES
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CHAPTER OUTLINE

9-1 HYPOTHESIS TESTING

9-1.1 Statistical Hypotheses

9-1.2 Tests of Statistical 
Hypotheses

9-1.3 One-Sided and Two-Sided
Hypotheses

9-1.4 P-Values in Hypothesis Tests

9-1.5 Connection between 
Hypothesis Tests and 
Confidence Intervals

9-1.6 General Procedure for
Hypothesis Tests

9
INTRODUCTION

In the previous two chapters we showed how a parameter of a population can be estimated
from sample data, using either a point estimate (Chapter 7) or an interval of likely values
called a confidence interval (Chapter 8). In many situations a different type of problem is
of interest; there are two competing claims about the value of a parameter, and the engi-
neer must determine which claim is correct. For example, suppose that an engineer is
designing an air crew escape system that consists of an ejection seat and a rocket motor
that powers the seat. The rocket motor contains a propellant, and in order for the ejection
seat to function properly, the propellant should have a mean burning rate of 50 cm/sec. If
the burning rate is too low, the ejection seat may not function properly, leading to an
unsafe ejection and possible injury of the pilot. Higher burning rates may imply instabil-
ity in the propellant or an ejection seat that is too powerful, again leading to possible
pilot injury. So the practical engineering question that must be answered is: Does the
mean burning rate of the propellant equal 50 cm/sec, or is it some other value (either
higher or lower)? This type of question can be answered using a statistical technique
called hypothesis testing. This chapter focuses on the basic principles of hypothesis
testing and provides techniques for solving the most common types of hypothesis testing
problems involving a single sample of data.

Image from
Wikipedia:

http://commons.
wikimedia.org/

wiki/File:Crash.
arp.600pix.jpg

Tests of Hypotheses for a Single Sample
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284 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Structure engineering decision-making problems as hypothesis tests
2. Test hypotheses on the mean of a normal distribution using either a Z-test or a t-test procedure
3. Test hypotheses on the variance or standard deviation of a normal distribution
4. Test hypotheses on a population proportion
5. Use the P-value approach for making decisions in hypotheses tests
6. Compute power and type II error probability, and make sample size selection decisions for tests

on means, variances, and proportions
7. Explain and use the relationship between confidence intervals and hypothesis tests
8. Use the chi-square goodness of fit test to check distributional assumptions
9. Use contingency table tests

9-1 HYPOTHESIS TESTING

9-1.1 Statistical Hypotheses

In the previous chapter we illustrated how to construct a confidence interval estimate of a
parameter from sample data. However, many problems in engineering require that we decide
which of two competing claim or statements about some parameter is true. The statements are
called hypotheses, and the decision-making procedure is called hypothesis testing. This is
one of the most useful aspects of statistical inference, since many types of decision-making
problems, tests, or experiments in the engineering world can be formulated as hypothesis-
testing problems. Furthermore, as we will see, there is a very close connection between
hypothesis testing and confidence intervals.

9-2 TESTS ON THE MEAN OF A
NORMAL DISTRIBUTION,
VARIANCE KNOWN

9-2.1 Hypothesis Tests on the Mean

9-2.2 Type II Error and Choice of
Sample Size

9-2.3 Large-Sample Test

9-3 TESTS ON THE MEAN OF A
NORMAL DISTRIBUTION,
VARIANCE UNKNOWN

9-3.1 Hypothesis Tests on the Mean

9-3.2 Type II Error and Choice of 
Sample Size

9-4 TESTS ON THE VARIANCE AND
STANDARD DEVIATION OF A
NORMAL DISTRIBUTION

9-4.1 Hypothesis Tests on the 
Variance 

9-4.2 Type II Error and Choice of
Sample Size

9-5 TESTS ON A POPULATION
PROPORTION

9-5.1 Large-Sample Tests on a 
Proportion

9-5.2 Type II Error and Choice 
of Sample Size

9-6 SUMMARY TABLE OF INFERENCE
PROCEDURES FOR A SINGLE
SAMPLE

9-7 TESTING FOR GOODNESS OF FIT

9-8 CONTINGENCY TABLE TESTS

9-9 NONPARAMETRIC PROCEDURES

9-9.1 The Sign Test

9-9.2 The Wilcoxon Signed-Rank Test

9-9.3 Comparison to the t-test

JWCL232_c09_283-350.qxd  1/14/10  8:21 PM  Page 284



9-1 HYPOTHESIS TESTING 285

Statistical hypothesis testing and confidence interval estimation of parameters are the
fundamental methods used at the data analysis stage of a comparative experiment, in which
the engineer is interested, for example, in comparing the mean of a population to a specified
value. These simple comparative experiments are frequently encountered in practice and
provide a good foundation for the more complex experimental design problems that we will
discuss in Chapters 13 and 14. In this chapter we discuss comparative experiments involving
a single population, and our focus is on testing hypotheses concerning the parameters of the
population.

We now give a formal definition of a statistical hypothesis.

A statistical hypothesis is a statement about the parameters of one or more populations.
Statistical

Hypothesis

Since we use probability distributions to represent populations, a statistical hypothesis
may also be thought of as a statement about the probability distribution of a random variable.
The hypothesis will usually involve one or more parameters of this distribution.

For example, consider the aircrew escape system described in the introduction. Suppose
that we are interested in the burning rate of the solid propellant. Now, burning rate is a random
variable that can be described by a probability distribution. Suppose that our interest focuses
on the mean burning rate (a parameter of this distribution). Specifically, we are interested in
deciding whether or not the mean burning rate is 50 centimeters per second. We may express
this formally as

(9-1)

The statement centimeters per second in Equation 9-1 is called the null
hypothesis, and the statement centimeters per second is called the alternative
hypothesis. Since the alternative hypothesis specifies values of that could be either greater
or less than 50 centimeters per second, it is called a two-sided alternative hypothesis. In some
situations, we may wish to formulate a one-sided alternative hypothesis, as in

or (9-2)

It is important to remember that hypotheses are always statements about the population or
distribution under study, not statements about the sample. The value of the population param-
eter specified in the null hypothesis (50 centimeters per second in the above example) is usu-
ally determined in one of three ways. First, it may result from past experience or knowledge
of the process, or even from previous tests or experiments. The objective of hypothesis testing,
then, is usually to determine whether the parameter value has changed. Second, this value may
be determined from some theory or model regarding the process under study. Here the objec-
tive of hypothesis testing is to verify the theory or model. A third situation arises when the
value of the population parameter results from external considerations, such as design or en-
gineering specifications, or from contractual obligations. In this situation, the usual objective
of hypothesis testing is conformance testing.

H1: � � 50 centimeters per second  H1: � � 50 centimeters per second

H0: � � 50 centimeters per second  H0: � � 50 centimeters per second

�
H1: � � 50

H0: � � 50

 H1: � � 50 centimeters per second

 H0: � � 50 centimeters per second
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286 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

A procedure leading to a decision about a particular hypothesis is called a test of a
hypothesis. Hypothesis-testing procedures rely on using the information in a random sample
from the population of interest. If this information is consistent with the hypothesis, we will not
reject the hypothesis; however, if this information is inconsistent with the hypothesis, we will
conclude that the hypothesis is false. We emphasize that the truth or falsity of a particular hy-
pothesis can never be known with certainty, unless we can examine the entire population. This
is usually impossible in most practical situations. Therefore, a hypothesis-testing procedure
should be developed with the probability of reaching a wrong conclusion in mind. In our treat-
ment of hypothesis testing, the null hypothesis will always be stated so that it specifies an exact
value of the parameter (as in the statement in Equation
9-1). Testing the hypothesis involves taking a random sample, computing a test statistic from
the sample data, and then using the test statistic to make a decision about the null hypothesis.

9-1.2 Tests of Statistical Hypotheses

To illustrate the general concepts, consider the propellant burning rate problem introduced
earlier. The null hypothesis is that the mean burning rate is 50 centimeters per second, and the
alternate is that it is not equal to 50 centimeters per second. That is, we wish to test

Suppose that a sample of specimens is tested and that the sample mean burning
rate is observed. The sample mean is an estimate of the true population mean . A value of
the sample mean that falls close to the hypothesized value of centimeters per second
does not conflict with the null hypothesis that the true mean is really 50 centimeters per
second. On the other hand, a sample mean that is considerably different from 50 centimeters
per second is evidence in support of the alternative hypothesis . Thus, the sample mean is
the test statistic in this case.

The sample mean can take on many different values. Suppose that if we
will not reject the null hypothesis , and if either or , we will
reject the null hypothesis in favor of the alternative hypothesis . This is illustrated
in Fig. 9-1. The values of that are less than 48.5 and greater than 51.5 constitute the critical
region for the test, while all values that are in the interval form a region for
which we will fail to reject the null hypothesis. By convention, this is usually called the
acceptance region. The boundaries between the critical regions and the acceptance region are
called the critical values. In our example the critical values are 48.5 and 51.5. It is customary
to state conclusions relative to the null hypothesis H0. Therefore, we reject H0 in favor of 
if the test statistic falls in the critical region, and fail to reject H0 otherwise.

H1

48.5 � x � 51.5
x

H1: � � 50
x � 51.5x � 48.5H0: � � 50

48.5 � x � 51.5,

H1

�
� � 50x

�x
n � 10

H1: � � 50 centimeters per second

H0: � � 50 centimeters per second

H0: � � 50 centimeters per second

50 51.548.5

Reject H0

μ ≠ 50 cm/s

Fail to Reject H0

μ = 50 cm/s

Reject H0

μ ≠ 50 cm/s

x

Figure 9-1 Decision criteria for testing H0: � �
50 centimeters per second versus H1: � � 50 centime-
ters per second.
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9-1 HYPOTHESIS TESTING 287

Failing to reject the null hypothesis when it is false is defined as a type II error.
Type II Error

� � P(type I error) � P(reject H0 when H0 is true) (9-3)
Probability of
Type I Error

This decision procedure can lead to either of two wrong conclusions. For example, the
true mean burning rate of the propellant could be equal to 50 centimeters per second.
However, for the randomly selected propellant specimens that are tested, we could observe a
value of the test statistic that falls into the critical region. We would then reject the null
hypothesis H0 in favor of the alternate when, in fact, H0 is really true. This type of wrong
conclusion is called a type I error.

H1

x

Rejecting the null hypothesis H0 when it is true is defined as a type I error.
Type I Error

Now suppose that the true mean burning rate is different from 50 centimeters per second, yet
the sample mean falls in the acceptance region. In this case we would fail to reject H0 when
it is false. This type of wrong conclusion is called a type II error.

x

Thus, in testing any statistical hypothesis, four different situations determine whether the final
decision is correct or in error. These situations are presented in Table 9-1.

Because our decision is based on random variables, probabilities can be associated with
the type I and type II errors in Table 9-1. The probability of making a type I error is denoted
by the Greek letter �.

Sometimes the type I error probability is called the significance level, or the �-error, or the
size of the test. In the propellant burning rate example, a type I error will occur when either

or when the true mean burning rate really is centimeters per sec-
ond. Suppose that the standard deviation of burning rate is centimeters per second
and that the burning rate has a distribution for which the conditions of the central limit theo-
rem apply, so the distribution of the sample mean is approximately normal with mean 
and standard deviation . The probability of making a type I error
(or the significance level of our test) is equal to the sum of the areas that have been shaded in
the tails of the normal distribution in Fig. 9-2. We may find this probability as

� � P1X � 48.5 when � � 502 	 P1X � 51.5 when � � 502


�1n � 2.5�110 � 0.79
� � 50


 � 2.5
� � 50x � 48.5x � 51.5

Table 9-1 Decisions in Hypothesis Testing

Decision H0 Is True H0 Is False

Fail to reject H0 no error type II error
Reject H0 type I error no error

α /2 = 0.0287 α /2 = 0.0287

48.5 51.5= 50μ X

Figure 9-2 The critical region for H0: � � 50
versus H1: � � 50 and n � 10.
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288 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

The z-values that correspond to the critical values 48.5 and 51.5 are

Therefore,

This is the type I error probability. This implies that 5.74% of all random samples would lead
to rejection of the hypothesis when the true mean burning
rate is really 50 centimeters per second.

From inspection of Fig. 9-2, notice that we can reduce by widening the acceptance
region. For example, if we make the critical values 48 and 52, the value of is

We could also reduce � by increasing the sample size. If �

0.625, and using the original critical region from Fig. 9-1, we find

Therefore,

In evaluating a hypothesis-testing procedure, it is also important to examine the proba-
bility of a type II error, which we will denote by �. That is,

� � P1Z � 
2.402 	 P1Z � 2.402 � 0.0082 	 0.0082 � 0.0164

z1 �
48.5 
 50

0.625
� 
2.40  and  z2 �

51.5 
 50
0.625

� 2.40

n � 16, 
�1n � 2.5�116

 � 0.0057 	 0.0057 � 0.0114

 � � P  aZ �
48 
 50

0.79
b 	 P   aZ �

52 
 50
0.79

b � P 1Z � 
2.532 	 P 1Z � 2.532

�
�

H0: � � 50 centimeters per second

� � P1Z � 
1.902 	 P1Z � 1.902 � 0.0287 	 0.0287 � 0.0574

z1 �
48.5 
 50

0.79
� 
1.90  and  z2 �

51.5 
 50
0.79

� 1.90

Computing the 
Type I Error

Probability 

The Impact of 
Sample Size

� � P(type II error) � P(fail to reject H0 when H0 is false) (9-4)
Probability of
Type II Error

To calculate � (sometimes called the �-error), we must have a specific alternative hypothe-
sis; that is, we must have a particular value of �. For example, suppose that it is important to
reject the null hypothesis H0: � � 50 whenever the mean burning rate � is greater than 52
centimeters per second or less than 48 centimeters per second. We could calculate the proba-
bility of a type II error � for the values � � 52 and � � 48 and use this result to tell us some-
thing about how the test procedure would perform. Specifically, how will the test procedure
work if we wish to detect, that is, reject H0, for a mean value of � � 52 or � � 48? Because
of symmetry, it is necessary only to evaluate one of the two cases—say, find the probability of
accepting the null hypothesis H0: � � 50 centimeters per second when the true mean is � �
52 centimeters per second.
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9-1 HYPOTHESIS TESTING 289

Figure 9-3 will help us calculate the probability of type II error �. The normal distribution
on the left in Fig. 9-3 is the distribution of the test statistic when the null hypothesis 
H0: � � 50 is true (this is what is meant by the expression “under H0: � � 50”), and the nor-
mal distribution on the right is the distribution of when the alternative hypothesis is true and
the value of the mean is 52 (or “under H1: � � 52”). Now a type II error will be committed if
the sample mean falls between 48.5 and 51.5 (the critical region boundaries) when � � 52.
As seen in Fig. 9-3, this is just the probability that when the true mean is 
� � 52, or the shaded area under the normal distribution centered at � � 52. Therefore,
referring to Fig. 9-3, we find that

The z-values corresponding to 48.5 and 51.5 when � � 52 are

Therefore,

Thus, if we are testing H0: � � 50 against H1: � � 50 with n � 10, and the true value of the
mean is � � 52, the probability that we will fail to reject the false null hypothesis is 0.2643. By
symmetry, if the true value of the mean is � � 48, the value of � will also be 0.2643.

The probability of making a type II error � increases rapidly as the true value of 
approaches the hypothesized value. For example, see Fig. 9-4, where the true value of the
mean is � � 50.5 and the hypothesized value is H0: � � 50. The true value of � is very close
to 50, and the value for � is

� � P 148.5 � X � 51.5 when � � 50.52

�

 � 0.2643 
 0.0000 � 0.2643
 � � P 1
4.43 � Z � 
0.632 � P 1Z � 
0.632 
 P 1Z � 
4.432

z1 �
48.5 
 52

0.79
� 
4.43  and  z2 �

51.5 
 52
0.79

� 
0.63

� � P 148.5 � X � 51.5 when � � 522

48.5 � X � 51.5
X

X

X
Computing the 

Probability of 
Type II Error

Figure 9-3 The probability of type II error
when � � 52 and n � 10.
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Figure 9-4 The probability of type II error
when � � 50.5 and n � 10.
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Figure 9-5 The
probability of type II
error when 
and n � 16.

� � 52

As shown in Fig. 9-4, the z-values corresponding to 48.5 and 51.5 when � � 50.5 are

Therefore,

Thus, the type II error probability is much higher for the case where the true mean is 50.5
centimeters per second than for the case where the mean is 52 centimeters per second. Of
course, in many practical situations we would not be as concerned with making a type II error if
the mean were “close” to the hypothesized value. We would be much more interested in
detecting large differences between the true mean and the value specified in the null hypothesis.

The type II error probability also depends on the sample size n. Suppose that the null
hypothesis is centimeters per second and that the true value of the mean is

If the sample size is increased from to , the situation of Fig. 9-5 results.
The normal distribution on the left is the distribution of when the mean , and the
normal distribution on the right is the distribution of when . As shown in Fig. 9-5,
the type II error probability is

When , the standard deviation of is , and the z-values
corresponding to 48.5 and 51.5 when are

Therefore,

� 0.2119 
 0.0000 � 0.2119
� � P1
5.60 � Z � 
0.802 � P1Z � 
0.802 
 P1Z � 
5.602

z1 �
48.5 
 52

0.625
� 
5.60 and z2 �

51.5 
 52
0.625

� 
0.80

� � 52

�1n � 2.5�116 � 0.625Xn � 16

� � P 148.5 � X � 51.5 when � � 522

� � 52X
� � 50X

n � 16n � 10� � 52.
H0: � � 50

� 0.8980 
 0.0057 � 0.8923

� � P1
2.53 � Z � 1.272 � P1Z � 1.272 
 P1Z � 
2.532

z1 �
48.5 
 50.5

0.79
� 
2.53  and  z2 �

51.5 
 50.5
0.79

� 1.27

Effect of Sample
Size on �
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Acceptance Sample
Region Size � � at � � 52 � at � � 50.5

10 0.0576 0.2643 0.8923

10 0.0114 0.5000 0.9705

16 0.0576 0.0966 0.8606

16 0.0114 0.2515 0.957848.42 � x � 51.58

48.81 � x � 51.19

48 � x � 52

48.5 � x � 51.5

The results in boxes were not calculated in the text but can easily be verified by the
reader. This display and the discussion above reveal four important points:

1. The size of the critical region, and consequently the probability of a type I error ,
can always be reduced by appropriate selection of the critical values.

2. Type I and type II errors are related. A decrease in the probability of one type of error
always results in an increase in the probability of the other, provided that the sample
size n does not change.

3. An increase in sample size reduces �, provided that is held constant.

4. When the null hypothesis is false, � increases as the true value of the parameter
approaches the value hypothesized in the null hypothesis. The value of � decreases
as the difference between the true mean and the hypothesized value increases.

Generally, the analyst controls the type I error probability � when he or she selects the
critical values. Thus, it is usually easy for the analyst to set the type I error probability at
(or near) any desired value. Since the analyst can directly control the probability of
wrongly rejecting H0, we always think of rejection of the null hypothesis H0 as a strong
conclusion.

Because we can control the probability of making a type I error (or significance level), a
logical question is what value should be used. The type I error probability is a measure of risk,
specifically, the risk of concluding that the null hypothesis is false when it really isn’t. So, the
value of � should be chosen to reflect the consequences (economic, social, etc.) of incorrectly
rejecting the null hypothesis. Smaller values of � would reflect more serious consequences
and larger values of � would be consistent with less severe consequences. This is often hard to
do, and what has evolved in much of scientific and engineering practice is to use the value
� � 0.05 in most situations, unless there is information available that indicates that this is an
inappropriate choice. In the rocket propellant problem with , this would correspond to
critical values of 48.45 and 51.55.

n � 10

�

�

Recall that when and , we found that ; therefore, increasing the
sample size results in a decrease in the probability of type II error.

The results from this section and a few other similar calculations are summarized in the
following table. The critical values are adjusted to maintain equal � for n � 10 and n � 16.
This type of calculation is discussed later in the chapter.

� � 0.2643� � 52n � 10

A widely used procedure in hypothesis testing is to use a type 1 error or significance
level of � � 0.05. This value has evolved through experience, and may not be appro-
priate for all situations.
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292 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

On the other hand, the probability of type II error � is not a constant, but depends on
the true value of the parameter. It also depends on the sample size that we have selected.
Because the type II error probability � is a function of both the sample size and the extent to
which the null hypothesis H0 is false, it is customary to think of the decision to accept H0 as a
weak conclusion, unless we know that � is acceptably small. Therefore, rather than saying we
“accept H0,” we prefer the terminology “fail to reject H0.” Failing to reject H0 implies that we
have not found sufficient evidence to reject H0, that is, to make a strong statement. Failing to
reject H0 does not necessarily mean that there is a high probability that H0 is true. It may
simply mean that more data are required to reach a strong conclusion. This can have impor-
tant implications for the formulation of hypotheses.

There is a useful analog between hypothesis testing and a jury trial. In a trial the defend-
ant is assumed innocent (this is like assuming the null hypothesis to be true). If strong evi-
dence is found to the contrary, the defendant is declared to be guilty (we reject the null hy-
pothesis). If there is insufficiant evidence the defendant is declared to be not guilty. This is
not the same as proving the defendant innocent and so, like failing to reject the null hypoth-
esis, it is a weak conclusion.

An important concept that we will make use of is the power of a statistical test.

The power is computed as , and power can be interpreted as the probability of
correctly rejecting a false null hypothesis. We often compare statistical tests by comparing
their power properties. For example, consider the propellant burning rate problem when we
are testing centimeters per second against centimeters per second.
Suppose that the true value of the mean is . When n � 10, we found that 
so the power of this test is when .

Power is a very descriptive and concise measure of the sensitivity of a statistical test,
where by sensitivity we mean the ability of the test to detect differences. In this case, the
sensitivity of the test for detecting the difference between a mean burning rate of 50 centime-
ters per second and 52 centimeters per second is 0.7357. That is, if the true mean is really 
52 centimeters per second, this test will correctly reject and “detect” this differ-
ence 73.57% of the time. If this value of power is judged to be too low, the analyst can increase
either � or the sample size n.

9-1.3 One-Sided and Two-Sided Hypotheses

In constructing hypotheses, we will always state the null hypothesis as an equality so that the
probability of type I error � can be controlled at a specific value. The alternative hypothesis
might be either one-sided or two-sided, depending on the conclusion to be drawn if H0 is
rejected. If the objective is to make a claim involving statements such as greater than, less
than, superior to, exceeds, at least, and so forth, a one-sided alternative is appropriate. If no
direction is implied by the claim, or if the claim “not equal to” is to be made, a two-sided
alternative should be used.

H0: � � 50

� � 521 � � � 1 � 0.2643 � 0.7357
� � 0.2643,� � 52

H1: � � 50H0: � � 50

1 � �

The power of a statistical test is the probability of rejecting the null hypothesis H0

when the alternative hypothesis is true.

Power

Strong versus
Weak

Conclusions
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9-1 HYPOTHESIS TESTING 293

In some real-world problems where one-sided test procedures are indicated, it is
occasionally difficult to choose an appropriate formulation of the alternative hypothesis.
For example, suppose that a soft-drink beverage bottler purchases 10-ounce bottles from a
glass company. The bottler wants to be sure that the bottles meet the specification on mean
internal pressure or bursting strength, which for 10-ounce bottles is a minimum strength
of 200 psi. The bottler has decided to formulate the decision procedure for a specific lot
of bottles as a hypothesis testing problem. There are two possible formulations for this
problem, either

(9-5)

or

(9-6)

Consider the formulation in Equation 9-5. If the null hypothesis is rejected, the bottles will be
judged satisfactory; if H0 is not rejected, the implication is that the bottles do not conform to
specifications and should not be used. Because rejecting H0 is a strong conclusion, this for-
mulation forces the bottle manufacturer to “demonstrate” that the mean bursting strength of
the bottles exceeds the specification. Now consider the formulation in Equation 9-6. In this
situation, the bottles will be judged satisfactory unless H0 is rejected. That is, we conclude that
the bottles are satisfactory unless there is strong evidence to the contrary.

Which formulation is correct, the one of Equation 9-5 or Equation 9-6? The answer is that
it depends on the objective of the analysis. For Equation 9-5, there is some probability that H0

will not be rejected (i.e., we would decide that the bottles are not satisfactory), even though the
true mean is slightly greater than 200 psi. This formulation implies that we want the bottle
manufacturer to demonstrate that the product meets or exceeds our specifications. Such a for-
mulation could be appropriate if the manufacturer has experienced difficulty in meeting spec-
ifications in the past or if product safety considerations force us to hold tightly to the 200-psi
specification. On the other hand, for the formulation of Equation 9-6 there is some probability
that H0 will be accepted and the bottles judged satisfactory, even though the true mean is
slightly less than 200 psi. We would conclude that the bottles are unsatisfactory only when
there is strong evidence that the mean does not exceed 200 psi, that is, when psi
is rejected. This formulation assumes that we are relatively happy with the bottle manufac-
turer’s past performance and that small deviations from the specification of psi are
not harmful.

� � 200

H0: � � 200

H1: � � 200 psi

H0: � � 200 psi

H1: � � 200 psi

H0: � � 200 psi

EXAMPLE 9-1 Propellant Burning Rate 
Consider the propellant burning rate problem. Suppose that if
the burning rate is less than 50 centimeters per second, we
wish to show this with a strong conclusion. The hypotheses
should be stated as

Here the critical region lies in the lower tail of the distribution
of . Since the rejection of H0 is always a strong conclusion,X

H1: � � 50 centimeters per second

H0: � � 50 centimeters per second

this statement of the hypotheses will produce the desired out-
come if H0 is rejected. Notice that, although the null hypothe-
sis is stated with an equals sign, it is understood to include any
value of not specified by the alternative hypothesis.
Therefore, failing to reject H0 does not mean that cen-
timeters per second exactly, but only that we do not have
strong evidence in support of .H1

� � 50
�

Formulating
One-Sided
Hypothesis
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9-1.4 P-Values in Hypothesis Tests

One way to report the results of a hypothesis test is to state that the null hypothesis was or was
not rejected at a specified �-value or level of significance. This is called fixed significance
level testing.

The fixed significance level approach to hypothesis testing is very nice because it leads
directly to the concepts of type II error and power, which are of considerable value in deter-
mining the appropriate sample sizes to use in hypothesis testing. But the fixed significance
level approach does have some disadvantages.

For example, in the propellant problem above, we can say that H0: � � 50 was rejected at
the 0.05 level of significance. This statement of conclusions may be often inadequate because
it gives the decision maker no idea about whether the computed value of the test statistic was
just barely in the rejection region or whether it was very far into this region. Furthermore, stat-
ing the results this way imposes the predefined level of significance on other users of the in-
formation. This approach may be unsatisfactory because some decision makers might be un-
comfortable with the risks implied by � � 0.05.

To avoid these difficulties, the P-value approach has been adopted widely in practice.
The P-value is the probability that the test statistic will take on a value that is at least as
extreme as the observed value of the statistic when the null hypothesis H0 is true. Thus, a 
P-value conveys much information about the weight of evidence against H0, and so a decision
maker can draw a conclusion at any specified level of significance. We now give a formal def-
inition of a P-value.

In formulating one-sided alternative hypotheses, we should remember that rejecting
H0 is always a strong conclusion. Consequently, we should put the statement about
which it is important to make a strong conclusion in the alternative hypothesis. In
real-world problems, this will often depend on our point of view and experience with
the situation.

The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H0 with the given data.

P-Value

It is customary to call the test statistic (and the data) significant when the null hypothesis
H0 is rejected; therefore, we may think of the P-value as the smallest level � at which the data
are significant. In other words, the P-value is the observed significance level. Once the
P-value is known, the decision maker can determine how significant the data are without the
data analyst formally imposing a preselected level of significance.

Consider the two-sided hypothesis test for burning rate

with n � 16 and 
 � 2.5. Suppose that the observed sample mean is centimeters
per second. Figure 9-6 shows a critical region for this test with the value of and the
symmetric value 48.7. The P-value of the test is the probability above 51.3 plus the

x � 51.3
x � 51.3

H0: � � 50 H1: � � 50
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Figure 9-6 P-value
is the area of the
shaded region when
x � 51.3.

probability below 48.7. The P-value is easy to compute after the test statistic is observed. In
this example,

The P-value tells us that if the null hypothesis H0 � 50 is true, the probability of obtain-
ing a random sample whose mean is at least as far from 50 as 51.3 (or 48.7) is 0.038.
Therefore, an observed sample mean of 51.3 is a fairly rare event if the null hypothesis H0 �
50 is really true. Compared to the “standard” level of significance 0.05, our observed P-value
is smaller, so if we were using a fixed significance level of 0.05, the null hypothesis would be
rejected. In fact, the null hypothesis H0 � 50 would be rejected at any level of significance
greater than or equal to 0.038. This illustrates the boxed definition above; the P-value is the
smallest level of significance that would lead to rejection of H0 � 50.

Operationally, once a P-value is computed, we typically compare it to a predefined sig-
nificance level to make a decision. Often this predefined significance level is 0.05. However,
in presenting results and conclusions, it is standard practice to report the observed P-value
along with the decision that is made regarding the null hypothesis. 

Clearly, the P-value provides a measure of the credibility of the null hypothesis. Specifically,
it is the risk that you have made an incorrect decision if you reject the null hypothesis H0. The 
P-value is not the probability that the null hypothesis is false, nor is 1 
 P the probability that
the null hypothesis is true. The null hypothesis is either true or false (there is no probability as-
sociated with this), and so the proper interpretation of the P-value is in terms of the risk of
wrongly rejecting the null hypothesis H0.

It is not always easy to compute the exact P-value for a statistical test. However, most
modern statistics software packages report the results of hypothesis testing problems in terms
of P-values. We will use the P-value approach extensively.

9-1.5 Connection between Hypothesis Tests and Confidence Intervals

There is a close relationship between the test of a hypothesis about any parameter, say �, and
the confidence interval for �. If [l, u] is a % confidence interval for the parameter
�, the test of size of the hypothesis

H1: � � �0

H0: � � �0

�
10011 
 �2

 � 1 
 0.962 � 0.038
 � 1 
 P1
2.08 � Z � 2.082

 � 1 
 P a
48.7 
 50

2.5�116
� Z �

51.3 
 50

2.5�116
b

 P-value � 1 
 P148.7 � X � 51.32
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will lead to rejection of H0 if and only if �0 is not in the % CI [l, u]. As an illus-
tration, consider the escape system propellant problem with , 
 � 2.5, and n � 16.
The null hypothesis H0: � � 50 was rejected, using . The 95% two-sided CI
on � can be calculated using Equation 8-7. This CI is 

Because the value �0 � 50 is not included in this interval, the null
hypothesis H0: � � 50 is rejected.

Although hypothesis tests and CIs are equivalent procedures insofar as decision mak-
ing or inference about � is concerned, each provides somewhat different insights. For
instance, the confidence interval provides a range of likely values for � at a stated confi-
dence level, whereas hypothesis testing is an easy framework for displaying the risk levels
such as the P-value associated with a specific decision. We will continue to illustrate the
connection between the two procedures throughout the text.

9-1.6 General Procedure for Hypothesis Tests

This chapter develops hypothesis-testing procedures for many practical problems. Use of the
following sequence of steps in applying hypothesis-testing methodology is recommended.

1. Parameter of interest: From the problem context, identify the parameter of interest.

2. Null hypothesis, H0: State the null hypothesis, H0.

3. Alternative hypothesis, H1: Specify an appropriate alternative hypothesis, .

4. Test statistic: Determine an appropriate test statistic.

5. Reject H0 if: State the rejection criteria for the null hypothesis.

6. Computations: Compute any necessary sample quantities, substitute these into the
equation for the test statistic, and compute that value.

7. Draw conclusions: Decide whether or not H0 should be rejected and report that in
the problem context.

Steps 1–4 should be completed prior to examination of the sample data. This sequence of
steps will be illustrated in subsequent sections.

In practice, such a formal and (seemingly) rigid procedure is not always necessary.
Generally, once the experimenter (or decision maker) has decided on the question of interest
and has determined the design of the experiment (that is, how the data are to be collected,
how the measurements are to be made, and how many observations are required), only three
steps are really required:

1. Specify the test statistic to be used (such as Z0).

2. Specify the location of the critical region (two-tailed, upper-tailed, or lower-tailed).

3. Specify the criteria for rejection (typically, the value of �, or the P-value at which
rejection should occur).

These steps are often completed almost simultaneously in solving real-world problems,
although we emphasize that it is important to think carefully about each step. That is why we
present and use the eight-step process; it seems to reinforce the essentials of the correct
approach. While you may not use it every time in solving real problems, it is a helpful frame-
work when you are first learning about hypothesis testing.

Statistical versus Practical Significance
We noted previously that reporting the results of a hypothesis test in terms of a P-value is very
useful because it conveys more information than just the simple statement “reject H0” or “fail

H1

50.075 � � � 52.525.
51.3 � 1.9612.5�116 2 and this is

� �  0.05
x � 51.3

100 11 
 �2
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to reject H0.” That is, rejection of H0 at the 0.05 level of significance is much more meaning-
ful if the value of the test statistic is well into the critical region, greatly exceeding the 5% crit-
ical value, than if it barely exceeds that value.

Even a very small P-value can be difficult to interpret from a practical viewpoint when
we are making decisions because, while a small P-value indicates statistical significance in
the sense that H0 should be rejected in favor of H1, the actual departure from H0 that has been
detected may have little (if any) practical significance (engineers like to say “engineering
significance”). This is particularly true when the sample size n is large.

For example, consider the propellant burning rate problem of Example 9-1 where we are
testing H0: � � 50 centimeters per second versus H1: � � 50 centimeters per second with 

 � 2.5. If we suppose that the mean rate is really 50.5 centimeters per second, this is not a se-
rious departure from H0: � � 50 centimeters per second in the sense that if the mean really is
50.5 centimeters per second there is no practical observable effect on the performance of the
air crew escape system. In other words, concluding that � � 50 centimeters per second when
it is really 50.5 centimeters per second is an inexpensive error and has no practical signifi-
cance. For a reasonably large sample size, a true value of � � 50.5 will lead to a sample that
is close to 50.5 centimeters per second, and we would not want this value of from the sam-
ple to result in rejection of H0. The following display shows the P-value for testing H0: � � 50
when we observe centimeters per second and the power of the test at � � 0.05 when
the true mean is 50.5 for various sample sizes n:

x � 50.5

x
x

9-1 HYPOTHESIS TESTING 297

Sample Size P-value Power (at � � 0.05)
n When When True � � 50.5

10 0.527 0.097
25 0.317 0.170
50 0.157 0.293

100 0.046 0.516
400 6.3 � 10
5 0.979

1000 2.5 � 10
10 1.000

x � 50.5

Be careful when interpreting the results from hypothesis testing when the sample size
is large, because any small departure from the hypothesized value �0 will probably be
detected, even when the difference is of little or no practical significance.

EXERCISES FOR SECTION 9-1

9-1. In each of the following situations, state whether it is a
correctly stated hypothesis testing problem and why.
(a)
(b) H0: 
 � 10, H1: 
 � 10

H0: � � 25, H1: � � 25

(c)
(d)
(e) H0: s � 30, H1: s � 30

H0: p � 0.1, H1: p � 0.5

H0: x � 50, H1: x � 50

The P-value column in this display indicates that for large sample sizes, the observed
sample value of would strongly suggest that H0: � � 50 should be rejected, even
though the observed sample results imply that from a practical viewpoint the true mean does
not differ much at all from the hypothesized value �0 � 50. The power column indicates that
if we test a hypothesis at a fixed significance level �, and even if there is little practical differ-
ence between the true mean and the hypothesized value, a large sample size will almost
always lead to rejection of H0. The moral of this demonstration is clear:

x � 50.5
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9-2. A semiconductor manufacturer collects data from a
new tool and conducts a hypothesis test with the null hypothe-
sis that a critical dimension mean width equals 100 nm. The
conclusion is to not reject the null hypothesis. Does this result
provide strong evidence that the critical dimension mean
equals 100 nm? Explain.

9-3. The standard deviation of critical dimension thickness
in semiconductor manufacturing is 
 � 20 nm.
(a) State the null and alternative hypotheses used to demon-

strate that the standard deviation is reduced.
(b) Assume that the previous test does not reject the null

hypothesis. Does this result provide strong evidence that
the standard deviation has not been reduced? Explain.

9-4. The mean pull-off force of a connector depends on cure
time.
(a) State the null and alternative hypotheses used to demon-

strate that the pull-off force is below 25 newtons.
(b) Assume that the previous test does not reject the null hypoth-

esis. Does this result provide strong evidence that the pull-off
force is greater than or equal to 25 newtons? Explain.

9-5. A textile fiber manufacturer is investigating a new drap-
ery yarn, which the company claims has a mean thread elonga-
tion of 12 kilograms with a standard deviation of 0.5 kilo-
grams. The company wishes to test the hypothesis 
against using a random sample of four specimens.
(a) What is the type I error probability if the critical region is

defined as kilograms? 
(b) Find � for the case where the true mean elongation is

11.25 kilograms.
(c) Find � for the case where the true mean is 11.5 kilograms.

9-6. Repeat Exercise 9-5 using a sample size of n = 16 and
the same critical region.

9-7. In Exercise 9-5, find the boundary of the critical region
if the type I error probability is
(a) � � 0.01 and n � 4 (c) � � 0.01 and n � 16
(b) � � 0.05 and n � 4 (d) � � 0.05 and n � 16

9-8. In Exercise 9-5, calculate the probability of a type II
error if the true mean elongation is 11.5 kilograms and
(a) � � 0.05 and n � 4
(b) � � 0.05 and n � 16
(c) Compare the values of � calculated in the previous parts.

What conclusion can you draw?

9-9. In Exercise 9-5, calculate the P-value if the observed
statistic is
(a) = 11.25 (b) = 11.0 (c) = 11.75

9-10. The heat evolved in calories per gram of a cement
mixture is approximately normally distributed. The mean is
thought to be 100 and the standard deviation is 2. We wish to
test versus with a sample of n = 9
specimens.
(a) If the acceptance region is defined as ,

find the type I error probability �.
(b) Find � for the case where the true mean heat evolved is 103.

98.5 � x � 101.5

H1: � � 100H0: � � 100

xxx

x � 11.5

H1: � � 12,
H0: � � 12

(c) Find � for the case where the true mean heat evolved is
105. This value of � is smaller than the one found in part
(b) above. Why?

9-11. Repeat Exercise 9-10 using a sample size of 
and the same acceptance region.

9-12. In Exercise 9-10, find the boundary of the critical
region if the type I error probability is
(a) � � 0.01 and n � 9 (c) � � 0.01 and n � 5
(b) � � 0.05 and n � 9 (d) � � 0.05 and n � 5

9-13. In Exercise 9-10, calculate the probability of a type II
error if the true mean heat evolved is 103 and
(a) � � 0.05 and n � 9
(b) � � 0.05 and n � 5
(c) Compare the values of � calculated in the previous parts.

What conclusion can you draw?

9-14. In Exercise 9-10, calculate the P-value if the observed
statistic is
(a) = 98 (b) = 101 (c) = 102

9-15. A consumer products company is formulating a new
shampoo and is interested in foam height (in millimeters).
Foam height is approximately normally distributed and has a
standard deviation of 20 millimeters. The company wishes to
test millimeters versus millime-
ters, using the results of samples.
(a) Find the type I error probability if the critical region is

.
(b) What is the probability of type II error if the true mean

foam height is 185 millimeters?
(c) Find � for the true mean of 195 millimeters.

9-16. Repeat Exercise 9-15 assuming that the sample size is
n � 16 and the boundary of the critical region is the same.

9-17. In Exercise 9-15, find the boundary of the critical
region if the type I error probability is
(a) � � 0.01 and n � 10 (c) � � 0.01 and n � 16
(b) � � 0.05 and n � 10 (d) � � 0.05 and n � 16

9-18. In Exercise 9-15, calculate the probability of a type II
error if the true mean foam height is 185 millimeters and
(a) � � 0.05 and n � 10
(b) � � 0.05 and n � 16
(c) Compare the values of � calculated in the previous parts.

What conclusion can you draw?

9-19. In Exercise 9-15, calculate the P-value if the observed
statistic is
(a) = 180 (b) = 190 (c) = 170

9-20. A manufacturer is interested in the output voltage of a
power supply used in a PC. Output voltage is assumed to be
normally distributed, with standard deviation 0.25 volt, and
the manufacturer wishes to test H0:� � 5 volts against 
H1: volts, using n � 8 units.
(a) The acceptance region is Find the value

of .
(b) Find the power of the test for detecting a true mean output

voltage of 5.1 volts.

�
4.85 � x � 5.15.

� � 5

xxx

x � 185
�

n � 10
H1: � � 175H0: � � 175

xxx

n � 5
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9-2 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE KNOWN

In this section, we consider hypothesis testing about the mean � of a single normal population
where the variance of the population 
2 is known. We will assume that a random sample X1,
X2, p , Xn has been taken from the population. Based on our previous discussion, the sample
mean is an unbiased point estimator of � with variance .

9-2.1 Hypothesis Tests on the Mean

Suppose that we wish to test the hypotheses

(9-7)

where �0 is a specified constant. We have a random sample X1, X2, p , Xn from a normal pop-
ulation. Since has a normal distribution (i.e., the sampling distribution of is normal)XX

H1: � � �0

H0: � � �0


2�nX

9-21. Rework Exercise 9-20 when the sample size is 16 and
the boundaries of the acceptance region do not change. What
impact does the change in sample size have on the results of
parts (a) and (b)?

9-22. In Exercise 9-20, find the boundary of the critical re-
gion if the type I error probability is
(a) � � 0.01 and n � 8 (c) � � 0.01 and n � 16
(b) � � 0.05 and n � 8 (d) � � 0.05 and n � 16

9-23. In Exercise 9-20, calculate the P-value if the observed
statistic is
(a) = 5.2 (b) = 4.7 (c) = 5.1

9-24. In Exercise 9-20, calculate the probability of a type II
error if the true mean output is 5.05 volts and
(a) � � 0.05 and n � 10
(b) � � 0.05 and n � 16
(c) Compare the values of � calculated in the previous parts.

What conclusion can you draw?

9-25. The proportion of adults living in Tempe, Arizona,
who are college graduates is estimated to be p � 0.4. To test
this hypothesis, a random sample of 15 Tempe adults is
selected. If the number of college graduates is between 4 and 8,
the hypothesis will be accepted; otherwise, we will conclude
that .
(a) Find the type I error probability for this procedure, assum-

ing that p � 0.4.
(b) Find the probability of committing a type II error if the

true proportion is really p � 0.2.

9-26. The proportion of residents in Phoenix favoring the
building of toll roads to complete the freeway system is
believed to be p � 0.3. If a random sample of 10 residents

p � 0.4

xxx

shows that 1 or fewer favor this proposal, we will conclude
that p � 0.3.
(a) Find the probability of type I error if the true proportion is

p � 0.3.
(b) Find the probability of committing a type II error with this

procedure if p � 0.2.
(c) What is the power of this procedure if the true proportion

is p � 0.2?

9-27. A random sample of 500 registered voters in Phoenix
is asked if they favor the use of oxygenated fuels year-round
to reduce air pollution. If more than 400 voters respond posi-
tively, we will conclude that more than 60% of the voters favor
the use of these fuels.
(a) Find the probability of type I error if exactly 60% of the

voters favor the use of these fuels.
(b) What is the type II error probability � if 75% of the voters

favor this action?
Hint: use the normal approximation to the binomial.

9-28. If we plot the probability of accepting H0:� � �0

versus various values of � and connect the points with a
smooth curve, we obtain the operating characteristic curve
(or the OC curve) of the test procedure. These curves are used
extensively in industrial applications of hypothesis testing to
display the sensitivity and relative performance of the test.
When the true mean is really equal to �0, the probability of
accepting H0 is 1 
 �. 

(a) Construct an OC curve for Exercise 9-15, using values
of the true mean � of 178, 181, 184, 187, 190, 193, 196,
and 199.

(b) Convert the OC curve into a plot of the power function of
the test.
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(9-8)
Z0 �

X 
 �0


�1n

Test Statistic

with mean �0 and standard deviation if the null hypothesis is true, we could calculate a
P-value or construct a critical region based on the computed value of the sample mean , as
in Section 9-1.2.

It is usually more convenient to standardize the sample mean and use a test statistic
based on the standard normal distribution. That is, the test procedure for H0: � � �0 uses the
test statistic:

X

�1n

If the null hypothesis H0: � � �0 is true, , and it follows that the distribution of Z0

is the standard normal distribution [denoted N(0, 1)].
The hypothesis testing procedure is as follows. Take a random sample of size n and com-

pute the value of the sample mean . To test the null hypothesis using the P-value approach,
we would find the probability of observing a value of the sample mean that is at least as ex-
treme as , given that the null hypothesis is true. The standard normal z-value that corresponds
to is found from the test statistic in Equation 9-8:

In terms of the standard normal cumulative distribution function (cdf ), the probability we are
seeking is . The reason that the argument of the standard normal cdf is |z0| is that the
value of z0 could be either positive or negative, depending on the observed sample mean.
Because this is a two-tailed test, this is only one-half of the P-value. Therefore, for the two-
sided alternative hypothesis, the P-value is

(9-9)

This is illustrated in Fig. 9-7(a)
Now let’s consider the one-sided alternatives. Suppose that we are testing

(9-10)

Once again, suppose that we have a random sample of size n and that the sample mean is .
We compute the test statistic from Equation 9-8 and obtain z0. Because the test is an upper-tailed
test, only values of that are greater than �0 are consistent with the alternative hypothesis.x

x

H1: � � �0

H0: � � �0

P � 2 31 
 �1�z0�2 4

1 
 �1|z0|2

z0 �
x 
 �0


/2n

x
x

x

E1X2 � �0

Figure 9-7 The P-value for a z-test. (a) The two-sided alternative H1 : � � �0. (b) The one-sided alternative H1: � � �0.
(c) The one-sided alternative H1 : � � �0.

(a)

0

N(0,1)

–z0 –z0z0 z0 z0

(c)

0

N(0,1)

(b)

0

N(0,1)

P-value = 2[1 – Φ(|z0|)]

Two-tailed test Upper-tailed test Lower-tailed test

P-value = 1 – Φ(z0) P-value = Φ(z0)
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Therefore, the P-value would be the probability that the standard normal random variable is
greater than the value of the test statistic z0. This P-value is computed as

(9-11)

This P-value is shown in Fig. 9-7(b)
The lower-tailed test involves the hypotheses

(9-12)

Suppose that we have a random sample of size n and that the sample mean is . We compute
the test statistic from equation 9-8 and obtain z0. Because the test is a lower-tailed test, only
values of that are less than �0 are consistent with the alternative hypothesis. Therefore, the
P-value would be the probability that the standard normal random variable is less than the
value of the test statistic z0. This P-value is computed as

(9-13)

and shown in Fig. 9-7(c)
The reference distribution for this test is the standard normal distribution. The test is

usually called a z-test.
We can also use the fixed significance level approach with the z-test. All we have to do is

determine where to place the critical regions for the two-sided and one-sided alternative hy-
potheses. First consider the two-sided alternative in Equation 9-10. Now if H0: � � �0 is true,
the probability is 1 
 � that the test statistic Z0 falls between and , where , is the
100� 2 percentage point of the standard normal distribution. The regions associated with 
and are illustrated in Fig. 9-8(a). Note that the probability is � that the test statistic Z0 will
fall in the region Z0 � or Z0 � when H0: � � �0 is true. Clearly, a sample producing
a value of the test statistic that falls in the tails of the distribution of Z0 would be unusual if H0:
� � �0 is true; therefore, it is an indication that H0 is false. Thus, we should reject H0 if either

(9-14)

or

(9-15)

and we should fail to reject H0 if

(9-16)
z��2 � z0 � z��2

z0 � 
z��2

z0 � z��2


z��2z�� 2


z�� 2

z�� 2�
z��2z��2
z��2

P � �1z02

x

x

H1: � � �0

H0: � � �0

P � 1 
 �1z02

Figure 9-8 The distribution of Z0 when H0: � � �0 is true, with critical region for (a) the two-sided alternative H1 : � � �0.
(b) The one-sided alternative H1: � � �0. (c) the one-sided alternative H1 : � � �0.

(a)

0

N(0,1)

   z   /2α  –z   /2α  Z0

   /2α     /2α  Acceptance
region

Critical region

(c)

0

N(0,1)

–z   α Z0

α Acceptance
region

(b)

0

N(0,1)

   z   α  

α

Critical region

Acceptance
region

Critical region

Two-tailed test Upper-tailed test Lower-tailed test
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Equations 9-14 and 9-15 define the critical region or rejection region for the test. The type I
error probability for this test procedure is �.

We may also develop fixed significance level testing procedures for the one-sided alter-
natives. Consider the upper-tailed case in Equation 9-10.

In defining the critical region for this test, we observe that a negative value of the test
statistic Z0 would never lead us to conclude that H0: � � �0 is false. Therefore, we would
place the critical region in the upper tail of the standard normal distribution and reject H0

if the computed value z0 is too large. Refer to Fig. 9-8(b). That is, we would reject H0 if

(9-17)

Similarly, to test the lower-tailed case in Equation 9-12, we would calculate the test sta-
tistic Z0 and reject H0 if the value of Z0 is too small. That is, the critical region is in the lower
tail of the standard normal distribution as in Fig. 9-8(c), and we reject H0 if

(9-18)z0 � �z�

z0 � z�

It is easier to understand the critical region and the test procedure, in general, when the test
statistic is Z0 rather than . However, the same critical region can always be written in terms of
the computed value of the sample mean . A procedure identical to the fixed significance level
test above is as follows:

where

a � �0 � z�	2
	1n and b � �0 � z�	2
	1n

Reject H0: � � �0 if either x � a or x � b

x
X

Testing Hypotheses on the Mean, Variance Known (Z-Tests)

Null hypothesis: H0: � � �0

Test statistic:

Rejection Criterion 
Alternative Hypotheses P-Value for Fixed-Level Tests

Probability above |z0| and 
probability below �|z0|,

Probability above z0,

Probability below z0,

The P-values and critical regions for these situations are shown in Figs. 9-7 and 9-8.

P � �1z02

z0 � �z�H1: � � �0

P � 1 � �1z02

z0 � z�H1: � � �0

P � 2 31 � �1|z0|2 4

z0 � z�	2 or z0 � �z�	2H1: � � �0

Z0 �
X � �0


	1n

Summary of
Tests on the

Mean, Variance
Known
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9-2.2 Type II Error and Choice of Sample Size

In testing hypotheses, the analyst directly selects the type I error probability. However, the
probability of type II error � depends on the choice of sample size. In this section, we will
show how to calculate the probability of type II error �. We will also show how to select the
sample size to obtain a specified value of �.

Finding the Probability of Type II Error �
Consider the two-sided hypotheses

Suppose that the null hypothesis is false and that the true value of the mean is ,
say, where . The test statistic Z0 is

Therefore, the distribution of Z0 when H1 is true is

(9-19)

The distribution of the test statistic Z0 under both the null hypothesis H0 and the alternate
hypothesis H1 is shown in Fig. 9-9. From examining this figure, we note that if H1 is true, a
type II error will be made only if where . That is, the
probability of the type II error � is the probability that Z0 falls between and given
that H1 is true. This probability is shown as the shaded portion of Fig. 9-9. Expressed mathe-
matically, this probability is

z��2
z��2

Z0 � N1�1n�
, 12
z��2 � Z0 � z��2

Z0 � N  a
�1n


 , 1b

Z0 �
X 
 �0


�1n
�

X 
 1�0 	 �2


�1n
	

�1n



� � 0
� � �0 	 �

H1: � � �0

H0: � � �0

EXAMPLE 9-2 Propellant Burning Rate 
Air crew escape systems are powered by a solid propellant. The
burning rate of this propellant is an important product charac-
teristic. Specifications require that the mean burning rate must
be 50 centimeters per second. We know that the standard devi-
ation of burning rate is 
 � 2 centimeters per second. The ex-
perimenter decides to specify a type I error probability or
significance level of � � 0.05 and selects a random sample 
of n � 25 and obtains a sample average burning rate of

centimeters per second. What conclusions should be
drawn?

We may solve this problem by following the seven-step
procedure outlined in Section 9-1.6. This results in

1. Parameter of interest: The parameter of interest 
is �, the mean burning rate.

2. Null hypothesis, H0: H0: � � 50 centimeters per
second

3. Alternative hypothesis, H1: H1: � � 50 centime-
ters per second

x � 51.3

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is less than
0.05. To use a fixed significance level test, the
boundaries of the critical region would be z0.025 �
1.96 and 
z0.025 � 
1.96.

6. Computations: Since and 
 � 2,

7. Conclusion: Since z0 � 3.25 the p-value is

we reject H0: � � 50 at the 0.05 level of significance.
Practical Interpretation: We conclude that the mean burn-

ing rate differs from 50 centimeters per second, based on a sam-
ple of 25 measurements. In fact, there is strong evidence that the
mean burning rate exceeds 50 centimeters per second.

P-value � 2 31 
 �13.252 4 � 0.0012

z0 �
51.3 
 50

2�125
� 3.25

x � 51.3

z0 �
x 
 �0


�1n

JWCL232_c09_283-350.qxd  1/14/10  3:07 PM  Page 303



304 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

where denotes the probability to the left of z in the standard normal distribution. Note
that Equation 9-20 was obtained by evaluating the probability that Z0 falls in the interval

when H1 is true. Furthermore, note that Equation 9-20 also holds if , due
to the symmetry of the normal distribution. It is also possible to derive an equation similar to
Equation 9-20 for a one-sided alternative hypothesis.

Sample Size Formulas
One may easily obtain formulas that determine the appropriate sample size to obtain a partic-
ular value of � for a given � and �. For the two-sided alternative hypothesis, we know from
Equation 9-20 that

or, if  � � 0,

(9-21)

since when � is positive. Let z� be the 100� upper percentile of the
standard normal distribution. Then, . From Equation 9-21,

or


z� � z��2 

�1n




� � �1
z�2
�1
z��2 
 �1n�
2 � 0

� � �  az��2 

�1n


 b

� � �  az��2 

�1n


 b 
 �  a
z��2 

�1n


 b

� � 03
z��2,  z��2 4

�1z2

Under H
0
:    =   

0
μ μ Under H

1
:    ≠    

0
μ μ

N(0,1)

–z   /2α 0 z   /2α     √nδ
σ

   √nδ
σ , 1N ( (

β

Z0

Figure 9-9 The
distribution of Z0

under H0 and H1.

(9-20)� � �  az��2 

�1n


 b 
 �  a
z��2 

�1n


 b

Probability of a
Type II Error for
a Two-Sided Test

on the Mean,
Variance Known

Sample Size for 
a Two-Sided 

Test on the Mean,
Variance Known

where (9-22)� � � 
 �0n �
1z��2 	 z�2

2 
2

�2
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where (9-23)� � � 
 �0n �
1z� 	 z�2

2 
2

�2

Using Operating Characteristic Curves
When performing sample size or type II error calculations, it is sometimes more conven-
ient to use the operating characteristic (OC) curves in Appendix Charts VIa and VIb.
These curves plot � as calculated from Equation 9-20 against a parameter d for various
sample sizes n. Curves are provided for both � � 0.05 and � � 0.01. The parameter d is
defined as

(9-24)

so one set of operating characteristic curves can be used for all problems regardless of the
values of �0 and 
. From examining the operating characteristic curves or from Equation 9-20
and Fig. 9-9, we note that

1. The further the true value of the mean � is from �0, the smaller the probability of
type II error � for a given n and �. That is, we see that for a specified sample size and
�, large differences in the mean are easier to detect than small ones.

d �
0� 
 �0 0


 �
0� 0



Sample Size for 
a One-Sided Test

on the Mean,
Variance Known

If n is not an integer, the convention is to round the sample size up to the next integer. This
approximation is good when is small compared to �. For either of the
one-sided alternative hypotheses, the sample size required to produce a specified type II error
with probability � given � and � is

�1
z��2 
 �1n�
2

EXAMPLE 9-3 Propellant Burning Rate Type II Error
Consider the rocket propellant problem of Example 9-2.
Suppose that the true burning rate is 49 centimeters per sec-
ond. What is for the two-sided test with , ,
and ?

Here and From Equation 9-20,

The probability is about 0.3 that this difference from 50 cen-
timeters per second will not be detected. That is, the proba-
bility is about 0.3 that the test will fail to reject the null hy-
pothesis when the true burning rate is 49 centimeters per
second.

Practical Interpretation: A sample size of n � 25 results in
reasonable, but not great power � 1 
 p � 1 
 0.3 � 0.70.

� � 1
0.542 
 � 1
4.462 � 0.295

� � � a1.96 

125


 b 
 � a
1.96 

125


 b

z��2 � 1.96.� � 1
n � 25


 � 2� � 0.05�

Suppose that the analyst wishes to design the test so that
if the true mean burning rate differs from 50 centimeters per
second by as much as 1 centimeter per second, the test will de-
tect this (i.e., reject H0: � � 50) with a high probability, say,
0.90. Now, we note that 
 � 2, � � 51 
 50 � 1, � � 0.05, and
� � 0.10. Since and 
the sample size required to detect this departure from H0: � � 50
is found by Equation 9-22 as

The approximation is good here, since 
� which is small

relative to �.
Practical Interpretation: To achieve a much higher power

of 0.90 you will need a considerably large sample size, n � 42
instead of n � 25.

�1
5.202 � 0,� � 1
1.96 
 112142�22
� 1
z��2 
 �1n�
2

n �
1z��2 	 z�2

2 
2

�2 �
11.96 	 1.2822 22

1122
� 42

z� � z0.10 � 1.28,z��2 � z0.025 � 1.96
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306 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

In general, the operating characteristic curves involve three parameters: �, d, and n.
Given any two of these parameters, the value of the third can be determined. There are two
typical applications of these curves:

1. For a given n and d, find � (as illustrated in Example 9-4). This kind of problem is
often encountered when the analyst is concerned about the sensitivity of an exper-
iment already performed, or when sample size is restricted by economic or other
factors.

2. For a given � and d, find n. This was illustrated in Example 9-5. This kind of problem
is usually encountered when the analyst has the opportunity to select the sample size
at the outset of the experiment.

Operating characteristic curves are given in Appendix Charts VIIc and VIId for the one-
sided alternatives. If the alternative hypothesis is either H1: � � �0 or H1: � � �0, the abscissa
scale on these charts is

(9-25)

Using the Computer
Many statistics software packages will calculate sample sizes and type II error probabili-
ties. To illustrate, here are some computations from Minitab for the propellant burning rate
problem:

d �
0� 
 �0 0




EXAMPLE 9-4 Propellant Burning Rate Type II Error from OC Curve
Consider the propellant problem in Example 9-2. Suppose that
the analyst is concerned about the probability of type II error
if the true mean burning rate is � � 51 centimeters per sec-
ond. We may use the operating characteristic curves to find �.
Note that � � 51 
 50 � 1, n � 25, 
 � 2, and � � 0.05.
Then, using Equation 9-24 gives

d �
0� 
 �0 0


 �
0� 0


 �
1

2

and from Appendix Chart VIIa, with n � 25, we find that � �
0.30. That is, if the true mean burning rate is � � 51 centime-
ters per second, there is approximately a 30% chance that this
will not be detected by the test with n � 25.

EXAMPLE 9-5 Propellant Burning Rate Sample Size from OC Curve
Once again, consider the propellant problem in Example 9-2.
Suppose that the analyst would like to design the test so that if
the true mean burning rate differs from 50 centimeters per sec-
ond by as much as 1 centimeter per second, the test will detect
this (i.e., reject H0: � � 50) with a high probability, say, 0.90.
This is exactly the same requirement as in Example 9-3, where

we used Equation 9-22 to find the required sample size to be 
n � 42. The operating characteristic curves can also be used to
find the sample size for this test. Since 

and � � 0.10, we find from Appendix Chart VIIa that
the required sample size is approximately n � 40. This closely
agrees with the sample size calculated from Equation 9-22.

� � 0.05,
d � |� 
 �0|/
 � 1/2,

Use of OC
Curves

2. For a given � and �, the probability of type II error � decreases as n increases. That
is, to detect a specified difference � in the mean, we may make the test more power-
ful by increasing the sample size.
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Minitab Computations

Power and Sample Size

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null + difference
Alpha � 0.05 Sigma � 2

Sample Target Actual
Difference Size Power Power

1 43 0.9000 0.9064

Power and Sample Size

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null 	 difference
Alpha � 0.05 Sigma � 2

Sample Target Actual
Difference Size Power Power

1 28 0.7500 0.7536

Power and Sample Size

1-Sample Z Test
Testing mean � null (versus not � null)
Calculating power for mean � null 	 difference
Alpha � 0.05 Sigma � 2

Sample
Difference Size Power

1 25 0.7054

In the first part of the boxed display, we asked Minitab to work Example 9-3, that is, to find
the sample size n that would allow detection of a difference from �0 � 50 of 1 centimeter per
second with power of 0.9 and � � 0.05. The answer, n � 43, agrees closely with the calcu-
lated value from Equation 9-22 in Example 9-3, which was n � 42. The difference is due to
Minitab using a value of z� that has more than two decimal places. The second part of the com-
puter output relaxes the power requirement to 0.75. Note that the effect is to reduce the
required sample size to n � 28. The third part of the output is the solution to Example 9-4,
where we wish to determine the type II error probability of (�) or the power � 1 
 � for the
sample size n � 25. Note that Minitab computes the power to be 0.7054, which agrees closely
with the answer obtained from the OC curve in Example 9-4. Generally, however, the com-
puter calculations will be more accurate than visually reading values from an OC curve. 

9-2.3 Large-Sample Test

We have developed the test procedure for the null hypothesis H0: � � �0 assuming that the
population is normally distributed and that 
2 is known. In many if not most practical
situations, 
2 will be unknown. Furthermore, we may not be certain that the population is well
modeled by a normal distribution. In these situations, if n is large (say, n � 40) the sample
standard deviation s can be substituted for 
 in the test procedures with little effect. Thus,
while we have given a test for the mean of a normal distribution with known 
2, it can be easily
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308 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

9-29. State the null and alternative hypothesis in each case.
(a) A hypothesis test will be used to potentially provide evi-

dence that the population mean is greater than 10.
(b) A hypothesis test will be used to potentially provide evi-

dence that the population mean is not equal to 7.
(c) A hypothesis test will be used to potentially provide evi-

dence that the population mean is less than 5.

9-30. A hypothesis will be used to test that a population mean
equals 7 against the alternative that the population mean does
not equal 7 with known variance . What are the critical values
for the test statistic Z0 for the following significance levels?
(a) 0.01 (b) 0.05 (c) 0.10

9-31. A hypothesis will be used to test that a population
mean equals 10 against the alternative that the population mean
is greater than 10 with known variance . What is the critical
value for the test statistic Z0 for the following significance levels?
(a) 0.01 (b) 0.05 (c) 0.10

9-32. A hypothesis will be used to test that a population
mean equals 5 against the alternative that the population mean
is less than 5 with known variance . What is the critical value
for the test statistic Z0 for the following significance levels?
(a) 0.01 (b) 0.05 (c) 0.10

9-33. For the hypothesis test against 
and variance known, calculate the P-value for each of the
following test statistics.
(a) (b) (c)

9-34. For the hypothesis test H0: against 
and variance known, calculate the P-value for each of the
following test statistics.
(a) (b) (c)

9-35. For the hypothesis test H0: against 
and variance known, calculate the P-value for each of the
following test statistics.
(a) (b) (c)

9-36. Output from a software package is given below:

One-Sample Z:

Test of mu � 35 � vs not � 35
The assumed standard deviation � 1.8

Variable N Mean StDev SE Mean Z P
x 25 35.710 1.475 ? ? ?

(a) Fill in the missing items. What conclusions would you draw?
(b) Is this a one-sided or a two-sided test?

z0 � 0.4z0 � �1.84z0 � 2.05

H1: � � 5� � 5

z0 � 0.4z0 � �1.84z0 � 2.05

H1: � � 10� � 10

z0 � 0.4z0 � �1.84z0 � 2.05

H1: � � 7H0: � � 7

�

�

�

(c) Use the normal table and the above data to construct a
95% two-sided CI on the mean.

(d) What would the P-value be if the alternative hypothesis is
H1: � > 35?

9-37. Output from a software package is given below:

One-Sample Z:

Test of mu � 20 vs > 20
The assumed standard deviation � 0.75

Variable N Mean StDev SE Mean Z P

x 10 19.889 ? 0.237 ? ?

(a) Fill in the missing items. What conclusions would you
draw?

(b) Is this a one-sided or a two-sided test?
(c) Use the normal table and the above data to construct a

95% two-sided CI on the mean.
(d) What would the P-value be if the alternative hypothesis is

?

9-38. Output from a software package is given below:

One-Sample Z:

Test of mu � 14.5 vs > 14.5
The assumed standard deviation � 1.1

Variable N Mean StDev SE Mean Z P
x 16 15.016 1.015 ? ? ?

(a) Fill in the missing items. What conclusions would you draw?
(b) Is this a one-sided or a two-sided test?
(c) Use the normal table and the above data to construct a

95% lower bound on the mean.
(d) What would the P-value be if the alternative hypothesis is

?

9-39. Output from a software package is given below:

One-Sample Z:

Test of mu � 99 vs > 99
The assumed standard deviation � 2.5

Variable N Mean StDev SE Mean Z P
x 12 100.039 2.365 ? 1.44 0.075

(a) Fill in the missing items. What conclusions would you draw?
(b) Is this a one-sided or a two-sided test?

H1: � � 14.5

H1: � � 20

converted into a large-sample test procedure for unknown �2 that is valid regardless of the
form of the distribution of the population. This large-sample test relies on the central limit the-
orem just as the large-sample confidence interval on � that was presented in the previous
chapter did. Exact treatment of the case where the population is normal, �2 is unknown, and n
is small involves use of the t distribution and will be deferred until Section 9-3.

EXERCISES FOR SECTION 9-2
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tensile strength is approximately normally distributed with 
� � 60 psi. A random sample of 12 specimens has a mean
tensile strength of psi.
(a) Test the hypothesis that mean strength is 3500 psi. Use

� � 0.01.
(b) What is the smallest level of significance at which you

would be willing to reject the null hypothesis?
(c) What is the �-error for the test in part (a) if the true mean

is 3470?
(d) Suppose that we wanted to reject the null hypothesis with

probability at least 0.8 if mean strength � � 3500. What
sample size should be used? 

(e) Explain how you could answer the question in part (a) with
a two-sided confidence interval on mean tensile strength.

9-45. Supercavitation is a propulsion technology for undersea
vehicles that can greatly increase their speed. It occurs above ap-
proximately 50 meters per second, when pressure drops suffi-
ciently to allow the water to dissociate into water vapor, forming
a gas bubble behind the vehicle. When the gas bubble completely
encloses the vehicle, supercavitation is said to occur. Eight tests
were conducted on a scale model of an undersea vehicle in a tow-
ing basin with the average observed speed meters per
second. Assume that speed is normally distributed with known
standard deviation � � 4 meters per second.
(a) Test the hypothesis H0: � � 100 versus H1: � � 100 using

� � 0.05.
(b) What is the P-value for the test in part (a)?
(c) Compute the power of the test if the true mean speed is as

low as 95 meters per second.
(d) What sample size would be required to detect a true mean

speed as low as 95 meters per second if we wanted the
power of the test to be at least 0.85?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
speed.

9-46. A bearing used in an automotive application is sup-
posed to have a nominal inside diameter of 1.5 inches. A ran-
dom sample of 25 bearings is selected and the average inside
diameter of these bearings is 1.4975 inches. Bearing diameter
is known to be normally distributed with standard deviation
� � 0.01 inch.
(a) Test the hypothesis H0: � � 1.5 versus H1: � � 1.5 using

� � 0.01.
(b) What is the P-value for the test in part (a)?
(c) Compute the power of the test if the true mean diameter is

1.495 inches.
(d) What sample size would be required to detect a true mean

diameter as low as 1.495 inches if we wanted the power of
the test to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
diameter.

9-47. Medical researchers have developed a new artificial
heart constructed primarily of titanium and plastic. The heart

x � 102.2

x � 3450
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(c) If the hypothesis had been H0: � � 98 versus H1: � > 98,
would you reject the null hypothesis at the 0.05 level of
significance? Can you answer this without referring to the
normal table?

(d) Use the normal table and the above data to construct a
95% lower bound on the mean.

(e) What would the P-value be if the alternative hypothesis is
?

9-40. The mean water temperature downstream from a
power plant cooling tower discharge pipe should be no more
than 100°F. Past experience has indicated that the standard
deviation of temperature is 2°F. The water temperature is
measured on nine randomly chosen days, and the average
temperature is found to be 98°F.
(a) Is there evidence that the water temperature is acceptable

at � � 0.05?
(b) What is the P-value for this test?
(c) What is the probability of accepting the null hypothesis

at � � 0.05 if the water has a true mean temperature of
104°F?

9-41. A manufacturer produces crankshafts for an automo-
bile engine. The wear of the crankshaft after 100,000 miles
(0.0001 inch) is of interest because it is likely to have an
impact on warranty claims. A random sample of n � 15 shafts
is tested and � 2.78. It is known that � � 0.9 and that wear
is normally distributed.
(a) Test H0: � � 3 versus using � � 0.05.
(b) What is the power of this test if � � 3.25?
(c) What sample size would be required to detect a true mean

of 3.75 if we wanted the power to be at least 0.9?

9-42. A melting point test of n � 10 samples of a binder
used in manufacturing a rocket propellant resulted in

Assume that the melting point is normally dis-
tributed with . 
(a) Test H0: � � 155 versus H1: � � 155 using � � 0.01.
(b) What is the P-value for this test?
(c) What is the �-error if the true mean is � � 150?
(d) What value of n would be required if we want � � 0.1

when � � 150? Assume that � � 0.01.

9-43. The life in hours of a battery is known to be approxi-
mately normally distributed, with standard deviation � � 1.25
hours. A random sample of 10 batteries has a mean life of

hours.
(a) Is there evidence to support the claim that battery life

exceeds 40 hours? Use � � 0.05.
(b) What is the P-value for the test in part (a)?
(c) What is the �-error for the test in part (a) if the true mean

life is 42 hours?
(d) What sample size would be required to ensure that � does

not exceed 0.10 if the true mean life is 44 hours?
(e) Explain how you could answer the question in part (a) 

by calculating an appropriate confidence bound on life.
9-44. An engineer who is studying the tensile strength of a
steel alloy intended for use in golf club shafts knows that 

x � 40.5

� � 1.5	 F
x � 154.2	 F.

H1: � Z 3

x

H1: � � 99
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310 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

will last and operate almost indefinitely once it is implanted in
the patient’s body, but the battery pack needs to be recharged
about every four hours. A random sample of 50 battery packs
is selected and subjected to a life test. The average life of these
batteries is 4.05 hours. Assume that battery life is normally
distributed with standard deviation 
 � 0.2 hour.
(a) Is there evidence to support the claim that mean battery

life exceeds 4 hours? Use � � 0.05.
(b) What is the P-value for the test in part (a)?

If the null hypothesis is true, T0 has a t distribution with n 
 1 degrees of freedom. When we
know the distribution of the test statistic when H0 is true (this is often called the reference
distribution or the null distribution), we can calculate the P-value from this distribution, or,
if we use a fixed significance level approach, we can locate the critical region to control the type
I error probability at the desired level.

To test H0: � � �0 against the two-sided alternative , the value of the test statis-
tic t0 in Equation 9-26 is calculated, and the P-value is found from the t distribution with 
degrees of freedom. Because the test is two-tailed, the P-value is the sum of the probabilities in

n 
 1
H1 :� � �0

(c) Compute the power of the test if the true mean battery life
is 4.5 hours.

(d) What sample size would be required to detect a true mean
battery life of 4.5 hours if we wanted the power of the test
to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
life.

9-3 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION,
VARIANCE UNKNOWN

9-3.1 Hypothesis Tests on the Mean

We now consider the case of hypothesis testing on the mean of a population with unknown
variance 
2. The situation is analogous to Section 8-2, where we considered a confidence
interval on the mean for the same situation. As in that section, the validity of the test proce-
dure we will describe rests on the assumption that the population distribution is at least
approximately normal. The important result upon which the test procedure relies is that if
X1, X2, p , Xn is a random sample from a normal distribution with mean � and variance 
2, the
random variable

has a t distribution with n 
 1 degrees of freedom. Recall that we used this result in Section
8-2 to devise the t-confidence interval for �. Now consider testing the hypotheses

We will use the test statistic:

H1: � � �0

H0: � � �0

T �
X 
 �

S�1n

(9-26)T0 �
X 
 �0

S�1n

Test Statistic
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the two tails of the t distribution. Refer to Fig. 9-10(a). The P-value is the probability above |t0|
plus the probability below �|t0|. Because the t distribution is symmetric around zero, a simple way
to write this is 

(9-27)

A small P-value is evidence against H0, so if P is of sufficiently small value (typically � 0.05),
reject the null hypothesis.

For the one-sided alternative hypotheses

(9-28)

we calculate the test statistic t0 from Equation 9-26 and calculate the P-value as

(9-29)

For the other one-sided alternative

(9-30)

we calculate the P-value as

(9-31)

Figure 9-10(b) and (c) show how these P-values are calculated.
Statistics software packages calculate and display P-values. However, in working problems

by hand, it is useful to be able to find the P-value for a t-test. Because the t-table in Appendix A
Table II contains only 10 critical values for each t distribution, determining the exact P-value
from this table is usually impossible. Fortunately, it’s easy to find lower and upper bounds on the
P-value by using this table.

To illustrate, suppose that we are conducting an upper-tailed t-test (so H1: � > �0) with
14 degrees of freedom. The relevant critical values from Appendix A Table II are as fol-
lows:

Critical Value: 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

Tail Area: 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

After calculating the test statistic, we find that t0 � 2.8. Now, t0 � 2.8 is between two tabulated
values, 2.624 and 2.977. Therefore, the P-value must be between 0.01 and 0.005. Refer to
Fig. 9-11. These are effectively the upper and lower bounds on the P-value.

This illustrates the procedure for an upper-tailed test. If the test is lower-tailed, just change
the sign on the lower and upper bounds for t0 and proceed as above. Remember that for a 

P � P1Tn�1 � t02

H1: � � �0

H0: � � �0

P � P1Tn�1 � t02

H1: � � �0

H0: � � �0

P � 2P1Tn�1 � �t0�2

9-3 TESTS ON THE MEAN OF A NORMAL DISTRIBUTION, VARIANCE UNKNOWN 311

Figure 9-10 Calculating the P-value for a t-test: (a) (b) (c) H1: � � �0.H1: � � �0;H1: � Z �0:

(a)

0–t0 t0t0 t0

(c)

0

(b)

0

P-value =
probability in

both tails

Two-tailed test One-tailed test One-tailed test

P-value

tn – 1 tn – 1 tn – 1
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two-tailed test, the level of significance associated with a particular critical value is twice the cor-
responding tail area in the column heading. This consideration must be taken into account when
we compute the bound on the P-value. For example, suppose that t0 � 2.8 for a two-tailed al-
ternative based on 14 degrees of freedom. The value of the test statistic t0 � 2.624 (correspond-
ing to � � 2 � 0.01 � 0.02) and t0 � 2.977 (corresponding to � � 2 � 0.005 � 0.01), so the
lower and upper bounds on the P-value would be 0.01 � P � 0.02 for this case.

Some statistics software packages can help you calculate P-values. For example, Minitab
has the capability to find cumulative probabilities from many standard probability distributions,
including the t distribution. Simply enter the value of the test statistic t0 along with the appro-
priate number of degrees of freedom. Minitab will display the probability P(T� � t0) where � is
the degrees of freedom for the test statistic t0. From the cumulative probability, the P-value can
be determined.

The single-sample t-test we have just described can also be conducted using the fixed sig-
nificance level approach. Consider the two-sided alternative hypothesis. The null hypothesis
would be rejected if the value of the test statistic t0 falls in the critical region defined by the
lower and upper �/2 percentage points of the t distribution with n 	 1 degrees of freedom. That
is, reject H0 if

For the one-tailed tests, the location of the critical region is determined by the direction that the
inequality in the alternative hypothesis “points.” So if the alternative is H1: 
 � 
0, reject H0 if

and if the alternative is H1: 
 � 
0, reject H0 if

Figure 9-12 shows the locations of these critical regions.

t0 � 	t�,n	1

t0 � t�,n	1

t0 � t�/2,n	1 or t0 � 	t�/2,n	1

Figure 9-11 P-value for
t0 � 2.8; an upper-tailed
test is shown to be between
0.005 and 0.01.

0

t distribution
with 14 degrees
of freedom

t0 = 2.8

2.624

2.977

P(T14 > 2.624) = 0.01 

P(T14 > 2.977) = 0.005 

Figure 9-12 The distribution of T0 when H0: 
 � 
0 is true, with critical region for (a) (b) 
and (c) H1: 
 � 
0.

H1: 
 � 
0,H1: 
 Z 
0,

(a)

0

tn – 1

–t   /2, n – 1α  –t   , n – 1α  T0t   /2, n – 1α  t   , n – 1α  

   /2α     /2α  

(c)

0

α  

(b)

0

α  

tn – 1 tn – 1
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Testing Hypotheses on the Mean of a Normal Distribution, Variance Unknown

Null hypothesis: H0: � � �0

Test statistic:

Rejection Criterion
Alternative Hypotheses P-Value for Fixed-Level Tests

Probability above |t0| and
probability below �|t0|

Probability above t0

Probability below t0

The calculations of the P-values and the locations of the critical regions for these
situations are shown in Figs. 9-10 and 9-12, respectively.

t0 � �t�,n�1H1: � � �0

t0 � t�,n�1H1: � � �0

t0 � t�/2,n�1 or t0 � �t�/2,n�1H1: � Z �0

T0 �
X � �0

S�1n

Summary for
the One-

Sample t-Test

EXAMPLE 9-6 Golf Club Design
The increased availability of light materials with high
strength has revolutionized the design and manufacture of
golf clubs, particularly drivers. Clubs with hollow heads and
very thin faces can result in much longer tee shots, especially
for players of modest skills. This is due partly to the “spring-
like effect” that the thin face imparts to the ball. Firing a golf
ball at the head of the club and measuring the ratio of the out-
going velocity of the ball to the incoming velocity can quan-
tify this spring-like effect. The ratio of velocities is called the
coefficient of restitution of the club. An experiment was per-
formed in which 15 drivers produced by a particular club
maker were selected at random and their coefficients of resti-
tution measured. In the experiment the golf balls were
fired from an air cannon so that the incoming velocity and
spin rate of the ball could be precisely controlled. It is of in-
terest to determine if there is evidence (with � � 0.05) to sup-
port a claim that the mean coefficient of restitution exceeds
0.82. The observations follow:

0.8411 0.8191 0.8182 0.8125 0.8750
0.8580 0.8532 0.8483 0.8276 0.7983
0.8042 0.8730 0.8282 0.8359 0.8660

The sample mean and sample standard deviation are
and s � 0.02456. The normal probability plot of

the data in Fig. 9-13 supports the assumption that the coeffi-
cient of restitution is normally distributed. Since the objective
of the experimenter is to demonstrate that the mean coefficient
of restitution exceeds 0.82, a one-sided alternative hypothesis
is appropriate.

x � 0.83725

The solution using the seven-step procedure for hypothe-
sis testing is as follows:

1. Parameter of interest: The parameter of interest is
the mean coefficient of restitution, �.

2. Null hypothesis: H0: � � 0.82

3. Alternative hypothesis: . We want to
reject H0 if the mean coefficient of restitution exceeds
0.82.

4. Test Statistic: The test statistic is

5. Reject H0 if : Reject H0 if  the P-value is less than
0.05.

6. Computations: Since � 0.83725, s � 0.02456, 
�0 � 0.82, and n � 15, we have

7. Conclusions: From Appendix A Table II we find, for a
t distribution with 14 degrees of freedom, that t0 � 2.72
falls between two values: 2.624, for which � � 0.01,
and 2.977, for which � � 0.005. Because this is a
one-tailed test, we know that the P-value is between
those two values, that is, 0.005 � P � 0.01.
Therefore, since P � 0.05, we reject H0 and conclude
that the mean coefficient of restitution exceeds 0.82.
To use Minitab to compute the P-value, use the Calc

t0 �
0.83725 � 0.82

0.02456�115
� 2.72

x

t0 �
x � �0

s�1n

H1: � � 0.82
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menu and select the probability distribution option.
Then, for the t distribution, enter 14 degrees of free-
dom and the value of the test statistic t0 � 2.72 as the
input constant. Minitab returns the probability P (T14

Figure 9-13. Normal probability plot of the coefficient of 
restitution data from Example 9-6.
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Coefficient of restitution

Minitab Computations

One-Sample T: COR

Test of mu � 0.82 vs mu � 0.82

Variable N Mean StDev SE Mean
COR 15 0.83725 0.02456 0.00634

Variable 95.0% Lower Bound T P
COR 0.82608 2.72 0.008 

Notice that Minitab computes both the test statistic T0 and a 95% lower confidence bound for
the coefficient of restitution. The reported P-value is 0.008. Because the 95% lower confidence
bound exceeds 0.82, we would reject the hypothesis that H0: � � 0.82 and conclude that the
alternative hypothesis is true.

9-3.2 Type II Error and Choice of Sample Size

The type II error probability for the t-test depends on the distribution of the test statistic in
Equation 9-26 when the null hypothesis H0: � � �0 is false. When the true value of the mean
is � � �0 � �, the distribution for T0 is called the noncentral t distribution with n � 1

H1: � � 0.82

� 2.72) � 0.991703. The P-value is P(T14 2.72) or P � 1 �
P(T14 � 2.72) � 1 � 0.991703 � 0.008297.

Practical Interpretation: There is strong evidence to con-
clude that the mean coefficient of restitution exceeds 0.82.

Minitab will conduct the one-sample t-test. The output from this software package is in the
following display:
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degrees of freedom and noncentrality parameter . Note that if � � 0, the noncentral t
distribution reduces to the usual central t distribution. Therefore, the type II error of the two-
sided alternative (for example) would be

where denotes the noncentral t random variable. Finding the type II error probability �
for the t-test involves finding the probability contained between two points of the noncentral
t distribution. Because the noncentral t-random variable has a messy density function, this
integration must be done numerically.

Fortunately, this ugly task has already been done, and the results are summarized in a se-
ries of O.C. curves in Appendix Charts VIIe, VIIf, VIIg, and VIIh that plot � for the t-test
against a parameter d for various sample sizes n. Curves are provided for two-sided alterna-
tives on Charts VIIe and VIIf. The abscissa scale factor d on these charts is defined as

(9-32)

For the one-sided alternative or , we use charts VIG and VIH with

(9-33)

We note that d depends on the unknown parameter 
2. We can avoid this difficulty in
several ways. In some cases, we may use the results of a previous experiment or prior
information to make a rough initial estimate of 
2. If we are interested in evaluating test per-
formance after the data have been collected, we could use the sample variance s2 to estimate

2. If there is no previous experience on which to draw in estimating 
2, we then define the
difference in the mean d that we wish to detect relative to 
. For example, if we wish to
detect a small difference in the mean, we might use a value of (for example),
whereas if we are interested in detecting only moderately large differences in the mean, we
might select (for example). That is, it is the value of the ratio that is
important in determining sample size, and if it is possible to specify the relative size of the
difference in means that we are interested in detecting, then a proper value of d can usually
be selected.

0� 0 �
d � 0� 0 �
 � 2

d � 0� 0 �
 � 1

d �
0� 
 �0 0


 �
0� 0



� � �0� � �0

d �
0� 
 �0 0


 �
0� 0



T ¿0

 � P5
t��2,n
1 � T ¿0 � t��2,n
16

 � � P5
t��2,n
1 � T0 � t��2,n
1 0  � � 06

�1n�


EXAMPLE 9-7 Golf Club Design Sample Size
Consider the golf club testing problem from Example 9-6. If
the mean coefficient of restitution exceeds 0.82 by as much as
0.02, is the sample size n � 15 adequate to ensure that H0:
� � 0.82 will be rejected with probability at least 0.8?

To solve this problem, we will use the sample standard
deviation s � 0.02456 to estimate 
. Then 

. By referring to the operating charac-0.02�0.02456 � 0.81
d � 0� 0 �
 �

teristic curves in Appendix Chart VIIg (for � � 0.05) with
d � 0.81 and n � 15, we find that � � 0.10, approximately.
Thus, the probability of rejecting H0: � � 0.82 if the true
mean exceeds this by 0.02 is approximately 1 
 � � 1 

0.10 � 0.90, and we conclude that a sample size of n � 15 is
adequate to provide the desired sensitivity.

Minitab will also perform power and sample size computations for the one-sample t-test.
Below are several calculations based on the golf club testing problem:
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Minitab Computations

Power and Sample Size

1-Sample t Test
Testing mean � null (versus � null)
Calculating power for mean � null 	 difference
Alpha � 0.05 Sigma � 0.02456

Sample
Difference Size Power

0.02 15 0.9117

Power and Sample Size

1-Sample t Test
Testing mean � null (versus � null)
Calculating power for mean � null 	 difference
Alpha � 0.05 Sigma � 0.02456

Sample
Difference Size Power

0.01 15 0.4425

Power and Sample Size

1-Sample t Test
Testing mean � null (versus � null)
Calculating power for mean � null 	 difference
Alpha � 0.05 Sigma � 0.02456

Sample Target Actual
Difference Size Power Power

0.01 39 0.8000 0.8029

In the first portion of the computer output, Minitab reproduces the solution to Example 9-7,
verifying that a sample size of n � 15 is adequate to give power of at least 0.8 if the mean co-
efficient of restitution exceeds 0.82 by at least 0.02. In the middle section of the output, we
used Minitab to compute the power to detect a difference between � and of
0.01. Notice that with n � 15, the power drops considerably to 0.4425. The final portion of
the output is the sample size required for a power of at least 0.8 if the difference between
� and �0 of interest is actually 0.01. A much larger n is required to detect this smaller
difference.

�0 � 0.82

EXERCISES FOR SECTION 9-3

9-48. A hypothesis will be used to test that a population
mean equals 7 against the alternative that the population mean
does not equal 7 with unknown variance . What are the criti-
cal values for the test statistic T0 for the following significance
levels and sample sizes?
(a) and 
(b) and 
(c) and n � 15� � 0.10

n � 12� � 0.05
n � 20� � 0.01




9-49. A hypothesis will be used to test that a population
mean equals 10 against the alternative that the population
mean is greater than 10 with known variance . What is the
critical value for the test statistic Z0 for the following signifi-
cance levels?
(a) and 
(b) and 
(c) and n � 15� � 0.10

n � 12� � 0.05
n � 20� � 0.01
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9-50. A hypothesis will be used to test that a population
mean equals 5 against the alternative that the population
mean is less than 5 with known variance . What is the criti-
cal value for the test statistic Z0 for the following signifi-
cance levels?
(a) and 
(b) and 
(c) and 

9-51. For the hypothesis test H0: against H1: 
with variance unknown and , approximate the P-value
for each of the following test statistics.
(a) (b) (c)

9-52. For the hypothesis test H0: against H1: 
with variance unknown and , approximate the P-value
for each of the following test statistics.
(a) (b) (c)

9-53. For the hypothesis test H0: against H1: 
with variance unknown and , approximate the P-value
for each of the following test statistics.
(a) (b) (c)

9-54. Consider the computer output below.

One-Sample T:

Test of mu � 91 vs � 91

95% Lower
Variable N Mean StDev SE Mean Bound T P

x 20 92.379 0.717 ? ? ? ?

(a) Fill in the missing values. You may calculate bounds on
the P-value. What conclusions would you draw?

(b) Is this a one-sided or a two-sided test?
(c) If the hypothesis had been H0: � � 90 versus H1: � > 90,

would your conclusions change?

9-55. Consider the computer output below.

One-Sample T:

Test of mu � 12 vs not � 12

Variable N Mean StDev SE Mean T P

x 10 12.564 ? 0.296 ? ?

(a) How many degrees of freedom are there on the t-test
statistic?

(b) Fill in the missing values. You may calculate bounds on
the P-value. What conclusions would you draw?

(c) Is this a one-sided or a two-sided test?
(d) Construct a 95% two-sided CI on the mean.
(e) If the hypothesis had been H0: � � 12 versus H1: � � 12,

would your conclusions change?
(f) If the hypothesis had been H0: � � 11.5, versus

, would your conclusions change? Answer
this question by using the CI computed in part (d).
H1: � � 11.5

t0 � 0.4t0 � 
1.84t0 � 2.05

n � 12
� � 5� � 5

t0 � 0.4t0 � 
1.84t0 � 2.05

n � 15
� � 10� � 10

t0 � 0.4t0 � 
1.84t0 � 2.05

n � 20
� � 7� � 7

n � 15� � 0.10
n � 12� � 0.05
n � 20� � 0.01




9-56. Consider the computer output below.

One-Sample T:

Test of mu � 34 vs not � 34

Variable N Mean StDev SE Mean 95% CI T P

x 16 35.274 1.783 ? (34.324, 36.224) ? 0.012

(a) How many degrees of freedom are there on the t-test statistic?
(b) Fill in the missing quantities.
(c) At what level of significance can the null hypothesis be

rejected?
(d) If the hypothesis had been H0: � � 34 versus H1: � � 34,

would the P-value have been larger or smaller?
(e) If the hypothesis had been H0: � � 34.5 versus

, would you have rejected the null hypothesis
at the 0.05 level?

9-57. An article in Growth: A Journal Devoted to Problems
of Normal and Abnormal Growth [“Comparison of Measured
and Estimated Fat-Free Weight, Fat, Potassium and Nitrogen
of Growing Guinea Pigs” (Vol. 46, No. 4, 1982, pp. 306–321)]
reported the results of a study that measured the body weight
(in grams) for guinea pigs at birth.

421.0 452.6 456.1 494.6 373.8

90.5 110.7 96.4 81.7 102.4

241.0 296.0 317.0 290.9 256.5

447.8 687.6 705.7 879.0 88.8

296.0 273.0 268.0 227.5 279.3

258.5 296.0

(a) Test the hypothesis that mean body weight is 300 grams.
Use � � 0.05.

(b) What is the smallest level of significance at which you
would be willing to reject the null hypothesis?

(c) Explain how you could answer the question in part (a) with
a two-sided confidence interval on mean body weight.

9-58. An article in the ASCE Journal of Energy
Engineering (1999, Vol. 125, pp. 59–75) describes a study
of the thermal inertia properties of autoclaved aerated con-
crete used as a building material. Five samples of the mate-
rial were tested in a structure, and the average interior tem-
peratures (°C) reported were as follows: 23.01, 22.22,
22.04, 22.62, and 22.59.
(a) Test the hypotheses H0: � � 22.5 versus H1: � � 22.5, 

using � � 0.05. Find the P-value.
(b) Check the assumption that interior temperature is nor-

mally distributed.
(c) Compute the power of the test if the true mean interior

temperature is as high as 22.75.
(d) What sample size would be required to detect a true mean

interior temperature as high as 22.75 if we wanted the
power of the test to be at least 0.9?

H1: � � 34.5
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(e) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
interior temperature.

9-59. A 1992 article in the Journal of the American Medical
Association (“A Critical Appraisal of 98.6 Degrees F, the Upper
Limit of the Normal Body Temperature, and Other Legacies of
Carl Reinhold August Wunderlich”) reported body temperature,
gender, and heart rate for a number of subjects. The body tem-
peratures for 25 female subjects follow: 97.8, 97.2, 97.4, 97.6,
97.8, 97.9, 98.0, 98.0, 98.0, 98.1, 98.2, 98.3, 98.3, 98.4, 98.4,
98.4, 98.5, 98.6, 98.6, 98.7, 98.8, 98.8, 98.9, 98.9, and 99.0.
(a) Test the hypothesis H0: � � 98.6 versus ,

using � � 0.05. Find the P-value.
(b) Check the assumption that female body temperature is

normally distributed.
(c) Compute the power of the test if the true mean female

body temperature is as low as 98.0.
(d) What sample size would be required to detect a true mean

female body temperature as low as 98.2 if we wanted the
power of the test to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
female body temperature.

9-60. Cloud seeding has been studied for many decades as
a weather modification procedure (for an interesting study of
this subject, see the article in Technometrics, “A Bayesian
Analysis of a Multiplicative Treatment Effect in Weather
Modification,” Vol. 17, pp. 161–166). The rainfall in acre-feet
from 20 clouds that were selected at random and seeded with
silver nitrate follows: 18.0, 30.7, 19.8, 27.1, 22.3, 18.8, 31.8,
23.4, 21.2, 27.9, 31.9, 27.1, 25.0, 24.7, 26.9, 21.8, 29.2, 34.8,
26.7, and 31.6.
(a) Can you support a claim that mean rainfall from seeded

clouds exceeds 25 acre-feet? Use � � 0.01. Find the P-value.
(b) Check that rainfall is normally distributed.
(c) Compute the power of the test if the true mean rainfall is

27 acre-feet.
(d) What sample size would be required to detect a true mean

rainfall of 27.5 acre-feet if we wanted the power of the test
to be at least 0.9?

(e) Explain how the question in part (a) could be answered by
constructing a one-sided confidence bound on the mean
diameter.

9-61. The sodium content of twenty 300-gram boxes of
organic cornflakes was determined. The data (in milligrams) are
as follows: 131.15, 130.69, 130.91, 129.54, 129.64, 128.77,
130.72, 128.33, 128.24, 129.65, 130.14, 129.29, 128.71, 129.00,
129.39, 130.42, 129.53, 130.12, 129.78, 130.92.
(a) Can you support a claim that mean sodium content of this

brand of cornflakes differs from 130 milligrams? Use 
� � 0.05. Find the P-value.

(b) Check that sodium content is normally distributed.
(c) Compute the power of the test if the true mean sodium

content is 130.5 milligrams.

H1: � � 98.6

(d) What sample size would be required to detect a true mean
sodium content of 130.1 milligrams if we wanted the
power of the test to be at least 0.75?

(e) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
sodium content.

9-62. Consider the baseball coefficient of restitution data
first presented in Exercise 8-92.
(a) Do the data support the claim that the mean coefficient of

restitution of baseballs exceeds 0.635? Use � � 0.05. Find
the P-value.

(b) Check the normality assumption.
(c) Compute the power of the test if the true mean coefficient

of restitution is as high as 0.64.
(d) What sample size would be required to detect a true mean

coefficient of restitution as high as 0.64 if we wanted the
power of the test to be at least 0.75?

(e) Explain how the question in part (a) could be answered
with a confidence interval.

9-63. Consider the dissolved oxygen concentration at TVA
dams first presented in Exercise 8-94.
(a) Test the hypothesis H0: � � 4 versus . Use

� � 0.01. Find the P-value.
(b) Check the normality assumption.
(c) Compute the power of the test if the true mean dissolved

oxygen concentration is as low as 3.
(d) What sample size would be required to detect a true mean

dissolved oxygen concentration as low as 2.5 if we
wanted the power of the test to be at least 0.9?

(e) Explain how the question in part (a) could be answered
with a confidence interval.

9-64. Reconsider the data from Medicine and Science in
Sports and Exercise described in Exercise 8-30. The sample
size was seven and the sample mean and sample standard
deviation were 315 watts and 16 watts, respectively.
(a) Is there evidence that leg strength exceeds 300 watts at

significance level 0.05? Find the P-value.
(b) Compute the power of the test if the true strength is 

305 watts.
(c) What sample size would be required to detect a true mean

of 305 watts if the power of the test should be at least 0.90?
(d) Explain how the question in part (a) could be answered

with a confidence interval.

9-65. Reconsider the tire testing experiment described in
Exercise 8-27.
(a) The engineer would like to demonstrate that the mean life

of this new tire is in excess of 60,000 kilometers. Formu-
late and test appropriate hypotheses, and draw conclu-
sions using � � 0.05.

(b) Suppose that if the mean life is as long as 61,000 kilome-
ters, the engineer would like to detect this difference with
probability at least 0.90. Was the sample size n � 16 used
in part (a) adequate?

H1: � � 4
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9-66. Reconsider the Izod impact test on PVC pipe described
in Exercise 8-28. Suppose that you want to use the data from
this experiment to support a claim that the mean impact strength
exceeds the ASTM standard (one foot-pound per inch).
Formulate and test the appropriate hypotheses using � � 0.05.

9-67. Reconsider the television tube brightness experiment
in Exercise 8-35. Suppose that the design engineer claims that
this tube will require at least 300 microamps of current to pro-
duce the desired brightness level. Formulate and test an appro-
priate hypothesis to confirm this claim using � � 0.05. Find the
P-value for this test. State any necessary assumptions about the
underlying distribution of the data.

9-68. Exercise 6-30 gave data on the heights of female
engineering students at ASU.
(a) Can you support a claim that the mean height of female

engineering students at ASU is at least 65 inches? Use 
� � 0.05. Find the P-value.

(b) Check the normality assumption.
(c) Compute the power of the test if the true mean height is

62 inches.
(d) What sample size would be required to detect a true mean

height of 64 inches if we wanted the power of the test to be
at least 0.8?
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9-4 TESTS ON THE VARIANCE AND STANDARD DEVIATION OF
A NORMAL DISTRIBUTION

Sometimes hypothesis tests on the population variance or standard deviation are needed.
When the population is modeled by a normal distribution, the tests and intervals described in
this section are applicable.

9-4.1 Hypothesis Tests on the Variance

Suppose that we wish to test the hypothesis that the variance of a normal population 
2 equals
a specified value, say or equivalently, that the standard deviation 
 is equal to 
0. Let X1,
X2, p , Xn be a random sample of n observations from this population. To test

(9-34)

we will use the test statistic:

H1: 

2 � 
2

0

H0: 

2 � 
2

0


2
0,

9-69. Exercise 6-33 describes testing golf balls for an over-
all distance standard.
(a) Can you support a claim that mean distance achieved by

this particular golf ball exceeds 280 yards? Use � � 0.05.
Find the P-value.

(b) Check the normality assumption.
(c) Compute the power of the test if the true mean distance is

290 yards.
(d) What sample size would be required to detect a true mean

distance of 290 yards if we wanted the power of the test to
be at least 0.8?

9-70. Exercise 6-32 presented data on the concentration of
suspended solids in lake water.
(a) Test the hypothesis H0: � � 55 versus ; use

� � 0.05. Find the P-value.
(b) Check the normality assumption.
(c) Compute the power of the test if the true mean concentra-

tion is as low as 50.
(d) What sample size would be required to detect a true mean

concentration as low as 50 if we wanted the power of the
test to be at least 0.9?

H1: � � 55

(9-35)X2
0 �
1n 
 12S2


2
0

Test Statistic
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follows the chi-square distribution with n 
 1 degrees of freedom. This is the reference
distribution for this test procedure. To perform a fixed significance level test, we would take a
random sample from the population of interest, calculate , the value of the test statistic 
and the null hypothesis would be rejected if

where and are the upper and lower 100��2 percentage points of the chi-
square distribution with n 
 1 degrees of freedom, respectively. Figure 9-14(a) shows the
critical region.

The same test statistic is used for one-sided alternative hypotheses. For the one-sided
hypotheses

(9-33)

we would reject H0 if whereas for the other one-sided hypotheses

(9-34)

we would reject H0 if The one-sided critical regions are shown in Fig. 
9-14(b) and (c).

�2
0 � �2

1
�,n
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Figure 9-14 Reference distribution for the test of with critical region values for (a) ,
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Distribution

If the null hypothesis is true, the test statistic defined in Equation 9-35�0
2H0: 


2 � 
0
2
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EXAMPLE 9-8 Automated Filling 
An automated filling machine is used to fill bottles with liquid
detergent. A random sample of 20 bottles results in a sample
variance of fill volume of s2 � 0.0153 (fluid ounces)2. If the
variance of fill volume exceeds 0.01 (fluid ounces)2, an unac-
ceptable proportion of bottles will be underfilled or overfilled.
Is there evidence in the sample data to suggest that the man-
ufacturer has a problem with underfilled or overfilled bottles?
Use � � 0.05, and assume that fill volume has a normal dis-
tribution.

Using the seven-step procedure results in the following:

1. Parameter of Interest: The parameter of interest is
the population variance 
2.

2. Null hypothesis: H0: 

2 � 0.01

3. Alternative hypothesis: H1: 

2 � 0.01

4. Test statistic: The test statistic is

5. Reject H0: Use � � 0.05, and reject H0 if

6. Computations:

7. Conclusions: Since 
we conclude that there is no strong evidence that the
variance of fill volume exceeds 0.01 (fluid ounces)2. So
there is no strong evidence of a problem with incor-
rectly filled bottles.

�2
0 � 29.07 � �2

0.05,19 � 30.14,

�2
0 �

1910.01532

0.01
� 29.07

�2
0 � �2

0.05,19 � 30.14.

�2
0 �
1n 
 12s2


2
0

Test and CI for One Variance

Method

Null hypothesis Sigma-squared � 0.01
Alternative hypothesis Sigma-squared > 0.01

Statistics

N StDev Variance
20 0.124 0.0153

95% One-Sided Confidence Intervals
Lower Bound Lower Bound

Method for StDev for Variance
Standard 0.098 0.0096

Tests

Method Chi-Square DF P-Value
Standard 29.07 19 0.065

The standard method that is referred to is the method described in this section. Minitab
also has an adjusted method that can be employed with continuous nonnormal distributions.

We can also use the P-value approach. Using Appendix Table III, it is easy to place bounds on
the P-value of a chi-square test. From inspection of the table, we find that and

Since we conclude that the P-value for the test in
Example 9-8 is in the interval The actual P-value can be computed
from Minitab. For 19 degrees of freedom, Minitab calculates the cumulative chi-square proba-
bility that is less than or equal to the value of the test statistic as 0.935108 (use the cumulative
distribution function in the Calc menu). This is the probability to the left of (or below) 29.07,
and the P-value is the probability above or beyond 29.07, or P � 1 
 0.935108 � 0.064892.

The P-value for a lower-tail test would be found as the area (probability) in the lower tail
of the chi-square distribution to the left of (or below) the computed value of the test statistic

. For the two-sided alternative, find the tail area associated with the computed value of the
test statistic and double it to obtain the P-value.

Minitab will perform the test on a variance of a normal distribution described in this sec-
tion. The output for Example 9-8 is as follows:

�2
0

0.05 � P-value � 0.10.
27.20 � 29.07 � 30.14,�2

0.05,19 � 30.14.
�2

0.10,19 � 27.20
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9-4.2 Type II Error and Choice of Sample Size

Operating characteristic curves for the chi-square tests in Section 9-4.1 are provided in
Appendix Charts VIi through VIn for � � 0.05 and � � 0.01. For the two-sided alternative
hypothesis of Equation 9-34, Charts VIIi and VIIj plot � against an abscissa parameter

(9-38)

for various sample sizes n, where 
 denotes the true value of the standard deviation. Charts
VIk and VIl are for the one-sided alternative while Charts VIIm and VIIn are for
the other one-sided alternative In using these charts, we think of 
 as the value
of the standard deviation that we want to detect.

These curves can be used to evaluate the �-error (or power) associated with a particu-
lar test. Alternatively, they can be used to design a test—that is, to determine what sample
size is necessary to detect a particular value of 
 that differs from the hypothesized
value 
0.

H1: 

2 � 
2

0.
H1: 


2 � 
2
0,

� �



0

EXAMPLE 9-9 Automated Filling Sample Size
Consider the bottle-filling problem from Example 9-8. If the
variance of the filling process exceeds 0.01 (fluid ounces)2, too
many bottles will be underfilled. Thus, the hypothesized value
of the standard deviation is 
0 � 0.10. Suppose that if the true
standard deviation of the filling process exceeds this value by
25%, we would like to detect this with probability at least 0.8.
Is the sample size of n � 20 adequate?

To solve this problem, note that we require

� �



0

�
0.125

0.10
� 1.25

This is the abscissa parameter for Chart VIIk. From this chart,
with n � 20 and � � 1.25, we find that � � 0.6. Therefore,
there is only about a 40% chance that the null hypothesis will
be rejected if the true standard deviation is really as large as 

� 0.125 fluid ounce.

To reduce the �-error, a larger sample size must be used.
From the operating characteristic curve with � � 0.20 and �
� 1.25, we find that n � 75, approximately. Thus, if we want
the test to perform as required above, the sample size must be
at least 75 bottles.

EXERCISES FOR SECTION 9-4

9-71. Consider the test of 
What are the critical values for the test statistic for the
following significance levels and sample sizes?
(a)
(b)
(c)

9-72. Consider the test of 
What are the critical values for the test statistic for the
following significance levels and sample sizes?
(a) and 
(b) and 
(c) and n � 15� � 0.10

n � 12� � 0.05
n � 20� � 0.01

X0
2

H0: 

2 � 10 against H1: 


2 � 10.

� � 0.10 and n � 15
� � 0.05 and n � 12
� � 0.01 and n � 20

X2
0

H0: 

2 � 7 against H1: 


2 � 7. 9-73. Consider the test of 
What are the critical values for the test statistic for the
following significance levels and sample sizes?
(a) and 
(b) and 
(c) and 

9-74. Consider the hypothesis test of 
Approximate the P-value for each of the following

test statistics.
(a) and (b) and 
(c) and n � 15x0

2 � 23.0
n � 12x0

2 � 15.2n � 20x0
2 � 25.2

H1: 

2 � 7.

H0: 

2 � 7 against 

n � 15� � 0.10
n � 12� � 0.05
n � 20� � 0.01

X0
2

H0: 

2 � 5 against H1: 


2 � 5.
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9-75. Consider the test of 
Approximate the P-value for each of the following test statistics.
(a) and 
(b) and 
(c) and 

9-76. Consider the hypothesis test of 
Approximate the P-value for each of the follow-

ing test statistics.
(a) and 
(b) and 
(c) and 

9-77. The data from Medicine and Science in Sports and
Exercise described in Exercise 8-48 considered ice hockey
player performance after electrostimulation training. In
summary, there were 17 players and the sample standard devi-
ation of performance was 0.09 seconds.
(a) Is there strong evidence to conclude that the standard devi-

ation of performance time exceeds the historical value of
0.75 seconds? Use . Find the P-value for this test.

(b) Discuss how part (a) could be answered by constructing a
95% one-sided confidence interval for .

9-78. The data from Technometrics described in Exercise
8-51 considered the variability in repeated measurements of
the weight of a sheet of paper. In summary, the sample stan-
dard deviation from 15 measurements was 0.0083 grams.
(a) Does the measurement standard deviation differ from 0.01

grams at ? Find the P-value for this test.
(b) Discuss how part (a) could be answered by constructing a

confidence interval for .

9-79. Reconsider the percentage of titanium in an alloy used
in aerospace castings from Exercise 8-47. Recall that s � 0.37
and n � 51.
(a) Test the hypothesis H0: 
 � 0.25 versus H1: 
 � 0.25

using � � 0.05. State any necessary assumptions about
the underlying distribution of the data. Find the P-value.

(b) Explain how you could answer the question in part (a) by
constructing a 95% two-sided confidence interval for 
.

9-80. Data from an Izod impact test was described in
Exercise 8-28. The sample standard deviation was 0.25 and
n � 20 specimens were tested.
(a) Test the hypothesis that 
 � 0.10 against an alternative

specifying that 
 � 0.10, using � � 0.01, and draw a




� � 0.05




� � 0.05

n � 15x0
2 � 4.2

n � 12x0
2 � 15.2

n � 20x0
2 � 25.2

H1: 

2 � 10.

H0: 

2 � 10 against

n � 15x2
0 � 4.2

n � 12x0
2 � 15.2

n � 20x0
2 � 25.2

H0: 

2 � 5 against H1: 


2 � 5. conclusion. State any necessary assumptions about the
underlying distribution of the data.

(b) What is the P-value for this test?
(c) Could the question in part (a) have been answered by

constructing a 99% two-sided confidence interval for 
2?

9-81. Data for tire life was described in Exercise 8-27. The
sample standard deviation was 3645.94 kilometers and n � 16.
(a) Can you conclude, using � � 0.05, that the standard devia-

tion of tire life is less than 4000 kilometers? State any nec-
essary assumptions about the underlying distribution of the
data. Find the P-value for this test.

(b) Explain how you could answer the question in part (a) by
constructing a 95% one-sided confidence interval for 
.

9-82. If the standard deviation of hole diameter exceeds
0.01 millimeters, there is an unacceptably high probability that
the rivet will not fit. Suppose that n � 15 and s � 0.008 mil-
limeter.
(a) Is there strong evidence to indicate that the standard devi-

ation of hole diameter exceeds 0.01 millimeter? Use � �
0.01. State any necessary assumptions about the underly-
ing distribution of the data. Find the P-value for this test. 

(b) Suppose that the actual standard deviation of hole diame-
ter exceeds the hypothesized value by 50%. What is the
probability that this difference will be detected by the test
described in part (a)?

(c) If 
 is really as large as 0.0125 millimeters, what sample size
will be required to detect this with power of at least 0.8?

9-83. Recall the sugar content of the syrup in canned
peaches from Exercise 8-46. Suppose that the variance is
thought to be 
2 � 18 (milligrams)2. Recall that a random
sample of n � 10 cans yields a sample standard deviation of
s � 4.8 milligrams.
(a) Test the hypothesis H0: 


2 � 18 versus H1: 

2 � 18 using

� � 0.05. Find the P-value for this test.
(b) Suppose that the actual standard deviation is twice as

large as the hypothesized value. What is the probability
that this difference will be detected by the test described in
part (a)?

(c) Suppose that the true variance is 
2 � 40. How large a
sample would be required to detect this difference with
probability at least 0.90?

9-5 TESTS ON A POPULATION PROPORTION

It is often necessary to test hypotheses on a population proportion. For example, suppose that
a random sample of size n has been taken from a large (possibly infinite) population and that
X(� n) observations in this sample belong to a class of interest. Then is a point
estimator of the proportion of the population p that belongs to this class. Note that n and p are
the parameters of a binomial distribution. Furthermore, from Chapter 7 we know that the
sampling distribution of is approximately normal with mean p and variance p(1 
 p)�n, ifP̂

P̂ � X�n
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p is not too close to either 0 or 1 and if n is relatively large. Typically, to apply this approxi-
mation we require that np and n(1 � p) be greater than or equal to 5. We will give a large-
sample test that makes use of the normal approximation to the binomial distribution.

9-5.1 Large-Sample Tests on a Proportion

In many engineering problems, we are concerned with a random variable that follows the
binomial distribution. For example, consider a production process that manufactures items
that are classified as either acceptable or defective. It is usually reasonable to model the
occurrence of defectives with the binomial distribution, where the binomial parameter p rep-
resents the proportion of defective items produced. Consequently, many engineering decision
problems involve hypothesis testing about p.

We will consider testing

(9-39)

An approximate test based on the normal approximation to the binomial will be given. As
noted above, this approximate procedure will be valid as long as p is not extremely close to
zero or one, and if the sample size is relatively large. Let X be the number of observations in
a random sample of size n that belongs to the class associated with p. Then, if the null
hypothesis H0: p � p0 is true, we have X � N[np0, np0(1 � p0)], approximately. To test
H0: p � p0, calculate the test statistic

H1: p � p0

H0: p � p0

(9-40)
Z0 �

X � np0

1np011 � p02

Test Statistic

and determine the P-value. Because the test statistic follows a standard normal distribution if
H0 is true, the P-value is calculated exactly like the P-value for the z-tests in Section 9-2. So
for the two-sided alternative hypothesis, the P-value is the sum of the probability in the stan-
dard normal distribution above |z0| and the probability below the negative value �|z0|, or

For the one-sided alternative hypothesis H0: p > p0, the P-value is the probability above z0, or

and for the one-sided alternative hypothesis H0: p < p0, the P-value is the probability below z0,
or

We can also perform a fixed-significance-level test. For the two-sided alternative hypothesis,
we would reject if

Critical regions for the one-sided alternative hypotheses would be constructed in the usual
manner.

z0 � z�/2 or z0 � �z�/2

H0: p � p0

P � �1z02

P � 1 � �1z02

P � 2 31 � �1|z0|2 4
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Testing Hypotheses on a Binomial Proportion

Null hypotheses: H0: p � p0

Test statistic:

Rejection Criterion
Alternative Hypotheses P-Value for Fixed-Level Tests

Probability above |z0| and z0 > z�/2 or z0 < �z�/2

probability below �|z0|

H1: p > p0 Probability above z0, z0 > z�

H1: p < p0 Probability below z0, z0 < � z�

P � �1z02

P � 1 � �1z02

P � 2 31 � �1z02

H1: p � p0

Z0 �
X � np0

2np011 � p02

Summary of
Approximate

Tests on a
Binomial

Proportion

EXAMPLE 9-10 Automobile Engine Controller
A semiconductor manufacturer produces controllers used in
automobile engine applications. The customer requires that the
process fallout or fraction defective at a critical manufacturing
step not exceed 0.05 and that the manufacturer demonstrate
process capability at this level of quality using � � 0.05. The
semiconductor manufacturer takes a random sample of 200
devices and finds that four of them are defective. Can the man-
ufacturer demonstrate process capability for the customer?

We may solve this problem using the seven-step hypoth-
esis-testing procedure as follows:

1. Parameter of Interest: The parameter of interest is
the process fraction defective p.

2. Null hypothesis: H0: p � 0.05

3. Alternative hypothesis: H1: p � 0.05
This formulation of the problem will allow the man-
ufacturer to make a strong claim about process capa
bility if the null hypothesis H0: p � 0.05 is rejected.

4. The test statistic is (from Equation 9-40)

where x � 4, n � 200, and p0 � 0.05.

5. Reject H0 if: Reject H0: p � 0.05 if the p-value is
less than 0.05.

6. Computations: The test statistic is

7. Conclusions: Since z0 � �1.95, the P-value is 
(�1.95) � 0.0256, so we reject H0 and conclude

that the process fraction defective p is less than 0.05. 

Practical Interpretation: We conclude that the process is
capable.

�

z0 �
4 � 20010.052

120010.052 10.952
� �1.95

z0 �
x � np0

1np011 � p02

Another form of the test statistic Z0 in Equation 9-40 is occasionally encountered. Note
that if X is the number of observations in a random sample of size n that belongs to a class of
interest, then is the sample proportion that belongs to that class. Now divide both
numerator and denominator of Z0 in Equation 9-40 by n, giving

or

(9-41)Z0 �
P̂ � p0

1p011 � p02�n

Z0 �
X�n � p0

1p011 � p02�n

P̂ � X�n
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The P-value is the same as that reported for the normal approximation, because the sample
size is fairly large. Notice that the CI is different from the one found using the normal ap-
proximation.

9-5.2 Type II Error and Choice of Sample Size

It is possible to obtain closed-form equations for the approximate �-error for the tests in
Section 9-5.1. Suppose that p is the true value of the population proportion. The approximate
�-error for the two-sided alternative H1: p � p0 is

(9-42)

If the alternative is H1: p � p0,

(9-43)� � 1 
 � a
p0 
 p 
 z�1p011 
 p02�n

1p11 
 p2�n
b

� � � a
p0 
 p 	 z��21p011 
 p02�n

1p11 
 p2�n
b 
 � a

p0 
 p 
 z��21p011 
 p02�n
1p11 
 p2�n

b

This presents the test statistic in terms of the sample proportion instead of the number of items
X in the sample that belongs to the class of interest. 

Minitab can be used to perform the test on a binomial proportion. The following Minitab
output shows the results for Example 9-10.

Test and CI for One Proportion

Test of p � 0.05 vs p � 0.05

Sample X N Sample p 95% Upper Bound Z-Value P-Value

1 4 200 0.020000 0.036283 
1.95 0.026

* Note * The normal approximation may be inaccurate for small samples.

Test of p � 0.05 vs p � 0.05

Sample X N Sample p 95% Upper Bound Exact P-Value

1 4 200 0.020000 0.045180 0.026

This output also shows a 95% one-sided upper-confidence bound on P. In Section 8-4 we
showed how CIs on a binomial proportion are computed. This Minitab display shows the re-
sult of using the normal approximation for tests and CIs. When the sample size is small, this
may be inappropriate.

Small Sample Tests on a Binomial Proportion
Tests on a proportion when the sample size n is small are based on the binomial distribution, not
the normal approximation to the binomial. To illustrate, suppose we wish to test H0: p < p0. Let
X be the number of successes in the sample. The P-value for this test would be found from the
lower tail of a binomial distribution with parameters n and p0. Specifically, the P-value would be
the probability that a binomial random variable with parameters n and p0 is less than or equal to X.
P-values for the upper-tail one-sided test and the two-sided alternative are computed similarly.

Minitab will calculate the exact P-value for a binomial test. The output below contains the
exact P-value results for Example 9-10.
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whereas if the alternative is H1: p � p0,

(9-44)

These equations can be solved to find the approximate sample size n that gives a test of level
� that has a specified � risk. The sample size equations are

� � � a
p0 
 p 	 z�1p011 
 p02�n

1p11 
 p2�n
b

(9-45)n � c
z��21p011 
 p02 	 z�1p11 
 p2

p 
 p0
d

2

(9-46)n � c
z�1p011 
 p02 	 z�1p11 
 p2

p 
 p0
d

2

Approximate
Sample Size for

a Two-Sided Test
on a Binomial

Proportion

Approximate
Sample Size for

a One-Sided Test
on a Binomial

Proportion

for a one-sided alternative.

for a two-sided alternative and

EXAMPLE 9-11 Automobile Engine Controller Type II Error
Consider the semiconductor manufacturer from Example 
9-10. Suppose that its process fallout is really p � 0.03. What
is the �-error for a test of process capability that uses n � 200
and � � 0.05?

The �-error can be computed using Equation 9-43 as
follows:

Thus, the probability is about 0.7 that the semiconductor
manufacturer will fail to conclude that the process is capable
if the true process fraction defective is p � 0.03 (3%). That is,
the power of the test against this particular alternative is only
about 0.3. This appears to be a large �-error (or small power),
but the difference between p � 0.05 and p � 0.03 is fairly
small, and the sample size n � 200 is not particularly large.

 � 1 
 �1
0.442 � 0.67

 � � 1 
 � c
0.05 
 0.03 
 11.645210.0510.952�200

10.0311 
 0.032�200
d

Suppose that the semiconductor manufacturer was will-
ing to accept a �-error as large as 0.10 if the true value of the
process fraction defective was p � 0.03. If the manufacturer
continues to use � � 0.05, what sample size would be re-
quired?

The required sample size can be computed from Equation
9-46 as follows:

where we have used p � 0.03 in Equation 9-46.

Conclusion: Note that n � 832 is a very large sample
size. However, we are trying to detect a fairly small deviation
from the null value p0 � 0.05.

 � 832

 n � c
1.64510.0510.952 	 1.2810.0310.972

0.03 
 0.05
d

2

Minitab will also perform power and sample size calculations for the one-sample Z-test on a
proportion. Output from Minitab for the engine controllers tested in Example 9-10 follows.
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Power and Sample Size

Test for One Proportion
Testing proportion � 0.05 (versus � 0.05)
Alpha � 0.05

Alternative Sample
Proportion Size Power
3.00E-02 200 0.3287

Power and Sample Size

Test for One Proportion
Testing proportion � 0.05 (versus � 0.05)
Alpha � 0.05

Alternative Sample Target Actual
Proportion Size Power Power
3.00E-02 833 0.9000 0.9001

Power and Sample Size

Test for One Proportion
Testing proportion � 0.05 (versus � 0.05)
Alpha � 0.05

Alternative Sample Target Actual
Proportion Size Power Power
3.00E-02 561 0.7500 0.7503

The first part of the output shows the power calculation based on the situation described in
Example 9-11, where the true proportion is really 0.03. The power calculation from Minitab
agrees with the results from Equation 9-43 in Example 9-11. The second part of the output
computes the sample size necessary for a power of 0.9 (� � 0.1) if p � 0.03. Again, the
results agree closely with those obtained from Equation 9-46. The final portion of the display
shows the sample size that would be required if p � 0.03 and the power requirement is
relaxed to 0.75. Notice that the sample size of n � 561 is still quite large because the differ-
ence between p � 0.05 and p � 0.03 is fairly small.

EXERCISES FOR SECTION 9-5

9-84. Consider the computer output below.

Test and Cl for One Proportion
Test of p � 0.4 vs p not � 0.4
X N Sample p 95% CI Z-Value P-Value

98 275 ? (0.299759, 0.412968) ? ?

Using the normal approximation.
(a) Is this a one-sided or a two-sided test?
(b) Complete the missing items.
(c) The normal approximation was used in the problem. Was

that appropriate?

9-85. Consider the computer output below.

Test and Cl for One Proportion
Test of p � 0.6 vs p < 0.6
X N Sample p 95% Upper Bound Z-Value P-Value

287 500 ? ? ? ?

(a) Is this a one-sided or a two-sided test?
(b) Is this a test based on the normal approximation? Is that

appropriate?
(c) Complete the missing items.
(d) Suppose that the alternative hypothesis was two-sided.

What is the P-value for this situation?
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9-86. Suppose that 1000 customers are surveyed and 850
are satisfied or very satisfied with a corporation’s products and
services.
(a) Test the hypothesis against at

. Find the P-value.
(b) Explain how the question in part (a) could be answered by

constructing a 95% two-sided confidence interval for p.

9-87. Suppose that 500 parts are tested in manufacturing
and 10 are rejected.
(a) Test the hypothesis against at

. Find the P-value.
(b) Explain how the question in part (a) could be answered by

constructing a 95% one-sided confidence interval for p.

9-88. A random sample of 300 circuits generated 13
defectives.
(a) Use the data to test H0: p � 0.05 versus H1: p � 0.05. Use

� � 0.05. Find the P-value for the test.
(b) Explain how the question in part (a) could be answered

with a confidence interval.

9-89. An article in the British Medical Journal
[“Comparison of Treatment of Renal Calculi by Operative
Surgery, Percutaneous Nephrolithotomy, and Extra-Corporeal
Shock Wave Lithotrips,” (1986, Vol. 292, pp. 879–882)] found
that percutaneous nephrolithotomy (PN) had a success rate in
removing kidney stones of 289 out of 350 patients. The tradi-
tional method was 78% effective.
(a) Is there evidence that the success rate for PN is greater

than the historical success rate? Find the P-value.
(b) Explain how the question in part (a) could be answered

with a confidence interval.

9-90. A manufacturer of interocular lenses is qualifying a
new grinding machine and will qualify the machine if there is
evidence that the percentage of polished lenses that contain
surface defects does not exceed 2%. A random sample of 250
lenses contains six defective lenses.
(a) Formulate and test an appropriate set of hypotheses to de-

termine if the machine can be qualified. Use � � 0.05.
Find the P-value.

(b) Explain how the question in part (a) could be answered
with a confidence interval.

9-91. A researcher claims that at least 10% of all football
helmets have manufacturing flaws that could potentially cause
injury to the wearer. A sample of 200 helmets revealed that 16
helmets contained such defects.

� � 0.05
H1: p � 0.03H0: p � 0.03

� � 0.05
H1: p � 0.9H0: p � 0.9

(a) Does this finding support the researcher’s claim? Use 
� � 0.01. Find the P-value.

(b) Explain how the question in part (a) could be answered
with a confidence interval.

9-92. An article in Fortune (September 21, 1992) claimed
that nearly one-half of all engineers continue academic studies
beyond the B.S. degree, ultimately receiving either an M.S. or
a Ph.D. degree. Data from an article in Engineering Horizons
(Spring 1990) indicated that 117 of 484 new engineering
graduates were planning graduate study.
(a) Are the data from Engineering Horizons consistent with

the claim reported by Fortune? Use � � 0.05 in reaching
your conclusions. Find the P-value for this test.

(b) Discuss how you could have answered the question in part
(a) by constructing a two-sided confidence interval on p.

9-93. The advertised claim for batteries for cell phones is
set at 48 operating hours, with proper charging procedures. A
study of 5000 batteries is carried out and 15 stop operating
prior to 48 hours. Do these experimental results support the
claim that less than 0.2 percent of the company’s batteries
will fail during the advertised time period, with proper
charging procedures? Use a hypothesis-testing procedure
with � � 0.01.

9-94. A random sample of 500 registered voters in Phoenix
is asked if they favor the use of oxygenated fuels year-round
to reduce air pollution. If more than 315 voters respond posi-
tively, we will conclude that at least 60% of the voters favor
the use of these fuels.
(a) Find the probability of type I error if exactly 60% of the

voters favor the use of these fuels.
(b) What is the type II error probability � if 75% of the voters

favor this action?

9-95. In a random sample of 85 automobile engine crank-
shaft bearings, 10 have a surface finish roughness that exceeds
the specifications. Does this data present strong evidence that
the proportion of crankshaft bearings exhibiting excess
surface roughness exceeds 0.10?
(a) State and test the appropriate hypotheses using � � 0.05.
(b) If it is really the situation that p � 0.15, how likely is it

that the test procedure in part (a) will not reject the null
hypothesis?

(c) If p � 0.15, how large would the sample size have to be
for us to have a probability of correctly rejecting the null
hypothesis of 0.9?

9-6 SUMMARY TABLE OF INFERENCE PROCEDURES 
FOR A SINGLE SAMPLE

The table in the end papers of this book (inside back cover) presents a summary of all the
single-sample inference procedures from Chapters 8 and 9. The table contains the null
hypothesis statement, the test statistic, the various alternative hypotheses and the criteria
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330 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

9-7 TESTING FOR GOODNESS OF FIT

The hypothesis-testing procedures that we have discussed in previous sections are designed
for problems in which the population or probability distribution is known and the hypotheses
involve the parameters of the distribution. Another kind of hypothesis is often encountered:
We do not know the underlying distribution of the population, and we wish to test the hypoth-
esis that a particular distribution will be satisfactory as a population model. For example, we
might wish to test the hypothesis that the population is normal.

We have previously discussed a very useful graphical technique for this problem called
probability plotting and illustrated how it was applied in the case of a normal distribution. In
this section, we describe a formal goodness-of-fit test procedure based on the chi-square
distribution.

The test procedure requires a random sample of size n from the population whose proba-
bility distribution is unknown. These n observations are arranged in a frequency histogram,
having k bins or class intervals. Let Oi be the observed frequency in the ith class interval. From
the hypothesized probability distribution, we compute the expected frequency in the ith class
interval, denoted Ei. The test statistic is

It can be shown that, if the population follows the hypothesized distribution, has, approx-
imately, a chi-square distribution with k � p � 1 degrees of freedom, where p represents the
number of parameters of the hypothesized distribution estimated by sample statistics. This
approximation improves as n increases. We should reject the null hypothesis that the popula-
tion is the hypothesized distribution if the test statistic is too large. Therefore, the P-value
would be the probability under the chi-square distribution with k � p � 1 degrees of freedom
above the computed value of the test statistic or . For a fixed-level test,
we would reject the hypothesis that the distribution of the population is the hypothesized dis-
tribution if the calculated value of the test statistic 

One point to be noted in the application of this test procedure concerns the magnitude of
the expected frequencies. If these expected frequencies are too small, the test statistic will
not reflect the departure of observed from expected, but only the small magnitude of the
expected frequencies. There is no general agreement regarding the minimum value of expected
frequencies, but values of 3, 4, and 5 are widely used as minimal. Some writers suggest that an
expected frequency could be as small as 1 or 2, so long as most of them exceed 5. Should an
expected frequency be too small, it can be combined with the expected frequency in an adjacent
class interval. The corresponding observed frequencies would then also be combined, and k
would be reduced by 1. Class intervals are not required to be of equal width.

We now give two examples of the test procedure.

X0
2

�2
0 � �2

�,k�p�1.

P � P1�2
k�p�1 � �0

22�0
2

X2
0

(9-47)X 2
0 �a

k

i�1

1Oi � Ei2
2

Ei

Goodness of Fit
Test Statistic

for rejecting H0, and the formulas for constructing the 100(1 � �)% two-sided confidence
interval. It would also be helpful to refer to the roadmap table in Chapter 8 that provides
guidance to match the problem type to the information inside the back cover.
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9-7 TESTING FOR GOODNESS OF FIT 331

The mean of the assumed Poisson distribution in this ex-
ample is unknown and must be estimated from the sample
data. The estimate of the mean number of defects per board is
the sample average, that is, (32�0 	 15�1 	 9�2 	 4�3)�60 �
0.75. From the Poisson distribution with parameter 0.75, we
may compute pi, the theoretical, hypothesized probability as-
sociated with the ith class interval. Since each class interval
corresponds to a particular number of defects, we may find the
pi as follows:

The expected frequencies are computed by multiplying the
sample size n � 60 times the probabilities pi. That is, Ei �
npi. The expected frequencies follow:

 p4 � P1X � 32 � 1 
 1 p1 	 p2 	 p32 � 0.041

 p3 � P1X � 22 �
e
0.7510.7522

2!
� 0.133

 p2 � P1X � 12 �
e
0.7510.7521

1!
� 0.354

 p1 � P1X � 02 �
e
0.7510.7520

0!
� 0.472

The chi-square test statistic in Equation 9-47 will have k 

p 
 1 � 3 
 1 
 1 � 1 degree of freedom, because the
mean of the Poisson distribution was estimated from the data.

The seven-step hypothesis-testing procedure may now be
applied, using � � 0.05, as follows:

1. Parameter of interest: The variable of interest is
the form of the distribution of defects in printed
circuit boards.

2. Null hypothesis: H0: The form of the distribution of
defects is Poisson.

3. Alternative hypothesis: H1: The form of the distri-
bution of defects is not Poisson.

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is less than
0.05.

6. Computations:

7. Conclusions: We find from Appendix Table III that
and Because 

lies between these values, we conclude that the P-value
is between 0.05 and 0.10. Therefore, since the P-value
exceeds 0.05 we are unable to reject the null hypothesis
that the distribution of defects in printed circuit boards
is Poisson. The exact P-value computed from Minitab
is 0.0864.

�0
2 � 2.94�0.05,1

2 � 3.84.�0.10,1
2 � 2.71

 	
113 
 10.4422

10.44
� 2.94

 �2
0 �
132 
 28.3222

28.32
	
115 
 21.2422

21.24

�2
0 �a

k

i�1

1oi 
 Ei2
2

Ei

Number of Observed
Defects Frequency

0 32
1 15
2 9
3 4

Number of Expected
Defects Probability Frequency

0 0.472 28.32
1 0.354 21.24
2 0.133 7.98
3 (or more) 0.041 2.46

Number of Observed Expected
Defects Frequency Frequency

0 32 28.32
1 15 21.24
2 (or more) 13 10.44

EXAMPLE 9-13 Power Supply Distribution
Continuous Distribution
A manufacturing engineer is testing a power supply used in a
notebook computer and, using � � 0.05, wishes to determine
whether output voltage is adequately described by a normal

distribution. Sample estimates of the mean and standard devia-
tion of V and s � 0.08 V are obtained from a random
sample of n � 100 units.

x � 5.04

EXAMPLE 9-12 Printed Circuit Board Defects
Poisson Distribution
The number of defects in printed circuit boards is hypothe-
sized to follow a Poisson distribution. A random sample of 
n � 60 printed boards has been collected, and the following
number of defects observed.

Since the expected frequency in the last cell is less than 3, we
combine the last two cells:
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332 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

EXERCISES FOR SECTION 9-7

9-96. Consider the following frequency table of observa-
tions on the random variable X.

Values 0 1 2 3 4
Observed Frequency 24 30 31 11 4

(a) Based on these 100 observations, is a Poisson distribution
with a mean of 1.2 an appropriate model? Perform a
goodness-of-fit procedure with � � 0.05.

(b) Calculate the P-value for this test.

9-97. Let X denote the number of flaws observed on a
large coil of galvanized steel. Seventy-five coils are in-

spected and the following data were observed for the values
of X:

Values 1 2 3 4 5 6 7 8

Observed
Frequency 1 11 8 13 11 12 10 9

(a) Does the assumption of the Poisson distribution seem
appropriate as a probability model for these data? Use
� � 0.01.

(b) Calculate the P-value for this test.

The boundary of the first class interval is .
The second class interval is and so3x � 1.15s, x � 0.675s2

x � 1.15s � 4.948

forth. We may apply the seven-step hypothesis-testing proce-
dure to this problem.

1. Parameter of Interest: The variable of interest is
the form of the distribution of power supply voltage.

2. Null hypothesis: H0: The form of the distribution is
normal.

3. Alternative hypothesis: H1: The form of the distri-
bution is nonnormal.

4. Test statistic: The test statistic is

5. Reject H0 if: Since two parameters in the normal
distribution have been estimated, the chi-square sta-
tistic above will have k � p � 1 � 8 � 2 � 1 � 5
degrees of freedom. We will use a fixed significance
level test with Therefore, we will reject
H0 if �2

0 � �2
0.05,5 � 11.07.

6. Computations:

7. Conclusions: Since �2
0 � 0.64 � �2

0.05,5 � 11.07,
we are unable to reject H0, and there is no strong
evidence to indicate that output voltage is not normally
distributed. The P-value for the chi-square statistic
�2

0 � 0.64 is P � 0.9861.

 � 0.64

 �
112 � 12.522

12.5
�
114 � 12.522

12.5
� p �

114 � 12.522

12.5

 �2
0 � a

8

i�1

1oi � Ei2
2

Ei

� � 0.05.

�2
0 � a

k

i�1

1oi � Ei2
2

Ei

A common practice in constructing the class intervals for
the frequency distribution used in the chi-square goodness-of-
fit test is to choose the cell boundaries so that the expected
frequencies Ei � npi are equal for all cells. To use this method,
we want to choose the cell boundaries a0, a1, p , ak for the
k cells so that all the probabilities

are equal. Suppose we decide to use k � 8 cells. For the stan-
dard normal distribution, the intervals that divide the scale into
eight equally likely segments are [0, 0.32), [0.32, 0.675), [0.675,
1.15), [1.15, 	), and their four “mirror image” intervals on the
other side of zero. For each interval pi � 1�8 � 0.125, so the
expected cell frequencies are Ei � npi� 100(0.125) � 12.5.
The complete table of observed and expected frequencies is
as follows:

pi � P1ai�1 
 X 
 ai2 � �
ai

ai�1

 f  1x2 dx

Class Observed Expected
Interval Frequency oi Frequency Ei

x � 4.948 12 12.5
4.948 
 x � 4.986 14 12.5
4.986 
 x � 5.014 12 12.5
5.014 
 x � 5.040 13 12.5
5.040 
 x � 5.066 12 12.5
5.066 
 x � 5.094 11 12.5
5.094 
 x � 5.132 12 12.5
5.132 
 x 14 12.5

Totals 100 100
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9-8 CONTINGENCY TABLE TESTS 333

9-98. The number of calls arriving at a switchboard
from noon to 1:00 P.M. during the business days Monday
through Friday is monitored for six weeks (i.e., 30 days). Let X
be defined as the number of calls during that one-hour period.
The relative frequency of calls was recorded and reported as

Value 5 6 8 9 10

Relative
Frequency 0.067 0.067 0.100 0.133 0.200

Value 11 12 13 14 15

Relative
Frequency 0.133 0.133 0.067 0.033 0.067

(a) Does the assumption of a Poisson distribution seem
appropriate as a probability model for this data? Use � �
0.05.

(b) Calculate the P-value for this test.

9-99. Consider the following frequency table of observa-
tions on the random variable X:

Values 0 1 2 3 4
Frequency 4 21 10 13 2

(a) Based on these 50 observations, is a binomial distribution
with n � 6 and p � 0.25 an appropriate model? Perform
a goodness-of-fit procedure with � � 0.05.

(b) Calculate the P-value for this test.

9-100. Define X as the number of underfilled bottles from a
filling operation in a carton of 24 bottles. Seventy-five cartons
are inspected and the following observations on X are recorded:

Values 0 1 2 3
Frequency 39 23 12 1

(a) Based on these 75 observations, is a binomial distribution
an appropriate model? Perform a goodness-of-fit proce-
dure with � � 0.05.

(b) Calculate the P-value for this test.

9-102. Reconsider Exercise 6-71. The data were the number
of earthquakes per year of magnitude 7.0 and greater since
1900.
(a) Use computer software to summarize these data into a fre-

quency distribution. Test the hypothesis that the number of
earthquakes of magnitude 7.0 or greater each year follows
a Poisson distribution at .

(b) Calculate the P-value for the test.
� � 0.05

Vehicles Vehicles
per Observed per Observed

Minute Frequency Minute Frequency

40 14 53 102
41 24 54 96
42 57 55 90
43 111 56 81
44 194 57 73
45 256 58 64
46 296 59 61
47 378 60 59
48 250 61 50
49 185 62 42
50 171 63 29
51 150 64 18
52 110 65 15

9-101. The number of cars passing eastbound through the in-
tersection of Mill and University Avenues has been tabulated by
a group of civil engineering students. They have obtained the
data in the adjacent table:
(a) Does the assumption of a Poisson distribution seem ap-

propriate as a probability model for this process? Use
� � 0.05.

(b) Calculate the P-value for this test.

9-8 CONTINGENCY TABLE TESTS

Many times, the n elements of a sample from a population may be classified according to two
different criteria. It is then of interest to know whether the two methods of classification are
statistically independent; for example, we may consider the population of graduating
engineers, and we may wish to determine whether starting salary is independent of academic
disciplines. Assume that the first method of classification has r levels and that the second
method has c levels. We will let Oij be the observed frequency for level i of the first classifica-
tion method and level j on the second classification method. The data would, in general, appear
as shown in Table 9-2. Such a table is usually called an r � c contingency table.
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334 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

EXAMPLE 9-14 Health Insurance Plan Preference
A company has to choose among three health insurance plans.
Management wishes to know whether the preference for plans
is independent of job classification and wants to use � � 0.05.

The opinions of a random sample of 500 employees are shown
in Table 9-3.

We are interested in testing the hypothesis that the row-and-column methods of classifi-
cation are independent. If we reject this hypothesis, we conclude there is some interaction be-
tween the two criteria of classification. The exact test procedures are difficult to obtain, but an
approximate test statistic is valid for large n. Let pij be the probability that a randomly selected
element falls in the ijth cell, given that the two classifications are independent. Then pij � uivj,
where ui is the probability that a randomly selected element falls in row class i and vj is the
probability that a randomly selected element falls in column class j. Now, assuming inde-
pendence, the estimators of ui and vj are

(9-48)

Therefore, the expected frequency of each cell is

(9-49)

Then, for large n, the statistic

(9-50)

has an approximate chi-square distribution with (r � 1)(c � 1) degrees of freedom if the null
hypothesis is true. We should reject the null hypothesis if the value of the test statistic is too
large. The P-value would be calculated as the probability beyond on the distri-
bution, or For a fixed-level test, we would reject the hypothesis of in-
dependence if the observed value of the test statistic �2

0 exceeded �2
�,(r�1)(c�1).

P � p1�1r�121c�12
2 � �0

22.
�1r�121c�12

2�0
2

�0
2

�2
0 � a

r

i�1
a

c

j�1

1Oij � Eij2
2

Eij

Eij � nûiv̂j �
1
na

c

j�1
Oija

r

i�1
Oij

 vjˆ �
1
n  a

r

i�1
Oij

 uiˆ �
1
n a

c

j�1
Oij

Table 9-2 An r � c Contingency Table

Columns

1 2 p c

1 O11 O12 p O1c

Rows
2 O21 O22 p O2c

r Or1 Or2 p Orc

ooooo
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9-8 CONTINGENCY TABLE TESTS 335

Table 9-3 Observed Data for Example 9-14

Health Insurance Plan

Job Classification 1 2 3 Totals

Salaried workers 160 140 40 340
Hourly workers 40 60 60 160

Totals 200 200 100 500

To find the expected frequencies, we must first compute
� (340�500) � 0.68, � (160�500) � 0.32, �

(200�500) � 0.40, � (200�500) � 0.40, and �
(100�500) � 0.20. The expected frequencies may now be
computed from Equation 9-49. For example, the expected
number of salaried workers favoring health insurance plan 1 is

The expected frequencies are shown in Table 9-4.
The seven-step hypothesis-testing procedure may now be

applied to this problem.

1. Parameter of Interest: The variable of interest is
employee preference among health insurance plans.

2. Null hypothesis: H0: Preference is independent of
salaried versus hourly job classification.

3. Alternative hypothesis: H1: Preference is not inde-
pendent of salaried versus hourly job classification.

4. Test statistic: The test statistic is

5. Reject H0 if: We will use a fixed-significance level test
with Therefore, since r � 2 and c � 3, the� � 0.05.

�2
0 � a

r

i�1
a

c

j�1

1oij � Eij2
2

Eij

E11 � nû1v̂1 � 50010.682 10.402 � 136

v̂3v̂2

v̂1û2û1

degrees of freedom for chi-square are (r � 1)(c � 1)
� (1)(2) � 2, and we would reject H0 if �2

0 � �2
0.05,2

� 5.99.

6. Computations:

7. Conclusions: Since ,
we reject the hypothesis of independence and con-
clude that the preference for health insurance plans
is not independent of job classification. The P-value
for is . (This value
was computed from computer software.) Further
analysis would be necessary to explore the nature of
the association between these factors. It might be
helpful to examine the table of observed minus ex-
pected frequencies.

P � 1.671 � 10�11�2
0 � 49.63

�2
0 � 49.63 � �2

0.05,2 � 5.99

� 49.63

 �
140 � 6422

64
�
160 � 6422

64
�
160 � 3222

32

 �
1160 � 13622

136
�
1140 � 13622

136
�
140 � 6822

68

 �2
0 � a

2

i�1
a

3

j�1

1oij � Eij2
2

Eij

Using the two-way contingency table to test independence between two variables of
classification in a sample from a single population of interest is only one application of con-
tingency table methods. Another common situation occurs when there are r populations of
interest and each population is divided into the same c categories. A sample is then taken from
the ith population, and the counts are entered in the appropriate columns of the ith row. In this
situation we want to investigate whether or not the proportions in the c categories are the same
for all populations. The null hypothesis in this problem states that the populations are homo-
geneous with respect to the categories. For example, when there are only two categories, such
as success and failure, defective and nondefective, and so on, the test for homogeneity is really
a test of the equality of r binomial parameters. Calculation of expected frequencies, determi-
nation of degrees of freedom, and computation of the chi-square statistic for the test for ho-
mogeneity are identical to the test for independence.

Table 9-4 Expected Frequencies for Example 9-14

Health Insurance Plan

Job Classification 1 2 3 Totals

Salaried workers 136 136 68 340
Hourly workers 64 64 32 160

Totals 200 200 100 500
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EXERCISES FOR SECTION 9-8

9-103. A company operates four machines in three shifts
each day. From production records, the following data on the
number of breakdowns are collected:

Machines

Shift A B C D

1 41 20 12 16
2 31 11 9 14
3 15 17 16 10

Test the hypothesis (using � � 0.05) that breakdowns are
independent of the shift. Find the P-value for this test.

9-104. Patients in a hospital are classified as surgical or
medical. A record is kept of the number of times patients re-
quire nursing service during the night and whether or not these
patients are on Medicare. The data are presented here:

Operation Research Grade

Statistics Grade A B C Other

A 25 6 17 13
B 17 16 15 6
C 18 4 18 10

Other 10 8 11 20

Lateral Deflection

Range (yards) Left Normal Right

0–1,999 6 14 8
2,000–5,999 9 11 4
6,000–11,999 8 17 6

Failure Type

Mounting Position A B C D

1 22 46 18 9
2 4 17 6 12

Patient Category

Medicare Surgical Medical

Yes 46 52
No 36 43

Test the hypothesis (using � � 0.01) that calls by surgical-
medical patients are independent of whether the patients are
receiving Medicare. Find the P-value for this test.

9-105. Grades in a statistics course and an operations
research course taken simultaneously were as follows for a
group of students.

Are the grades in statistics and operations research related?
Use � � 0.01 in reaching your conclusion. What is the 
P-value for this test?

9-106. An experiment with artillery shells yields the fol-
lowing data on the characteristics of lateral deflections and
ranges. Would you conclude that deflection and range are in-
dependent? Use � � 0.05. What is the P-value for this test?

9-107. A study is being made of the failures of an elec-
tronic component. There are four types of failures possible and
two mounting positions for the device. The following data
have been taken:

Would you conclude that the type of failure is independent of the
mounting position? Use � � 0.01. Find the P-value for this test.

9-108. A random sample of students is asked their opinions on
a proposed core curriculum change. The results are as follows.

Test the hypothesis that opinion on the change is independent of
class standing. Use � � 0.05. What is the P-value for this test?

9-109. An article in the British Medical Journal
[“Comparison of Treatment of Renal Calculi by Operative Sur-
gery, Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, Vol. 292, pp. 879–882)] found that
percutaneous nephrolithotomy (PN) had a success rate in
removing kidney stones of 289 out of 350 (83%) patients.
However, when the stone diameter was considered, the results
looked different. For stones of 87% (234�270) of cases
were successful. For stones of a success rate of 69%
(55�80) was observed for PN.
(a) Are the successes and size of stones independent? Use

.
(b) Find the P-value for this test.

� � 0.05

�2 cm,
�2 cm,

Opinion

Class Favoring Opposing

Freshman 120 80
Sophomore 70 130
Junior 60 70
Senior 40 60
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9-9 NONPARAMETRIC PROCEDURES

Most of the hypothesis-testing and confidence interval procedures discussed previously are
based on the assumption that we are working with random samples from normal populations.
Traditionally, we have called these procedures parametric methods because they are based on
a particular parametric family of distributions—in this case, the normal. Alternately, sometimes
we say that these procedures are not distribution-free because they depend on the assumption
of normality. Fortunately, most of these procedures are relatively insensitive to moderate de-
partures from normality. In general, the t- and F-tests and the t-confidence intervals will have ac-
tual levels of significance or confidence levels that differ from the nominal or advertised levels
chosen by the experimenter, although the difference between the actual and advertised levels is
usually fairly small when the underlying population is not too different from the normal.

In this section we describe procedures called nonparametric and distribution-free meth-
ods, and we usually make no assumptions about the distribution of the underlying population
other than that it is continuous. These procedures have actual level of significance � or confi-
dence level 100(1 � �) % for many different types of distributions. These procedures have
some appeal. One of their advantages is that the data need not be quantitative but can be cate-
gorical (such as yes or no, defective or nondefective) or rank data. Another advantage is that
nonparametric procedures are usually very quick and easy to perform.

The procedures described in this chapter are alternatives to the parametric t- and F-procedures
described earlier. Consequently, it is important to compare the performance of both parametric and
nonparametric methods under the assumptions of both normal and nonnormal populations. In
general, nonparametric procedures do not utilize all the information provided by the sample.
As a result, a nonparametric procedure will be less efficient than the corresponding paramet-
ric procedure when the underlying population is normal. This loss of efficiency is reflected by
a requirement of a larger sample size for the nonparametric procedure than would be required
by the parametric procedure in order to achieve the same power. On the other hand, this loss of
efficiency is usually not large, and often the difference in sample size is very small. When the
underlying distributions are not close to normal, nonparametric methods may have much to of-
fer. They often provide improvement over the normal-theory parametric methods. Generally,
if both parametric and nonparametric methods are applicable to a particular problem, we
should use the more efficient parametric procedure.

Another approach that can be used is to transform the original data, say, by taking loga-
rithms, square roots, or a reciprocal, and then analyze the transformed data using a parametric
technique. A normal probability plot often works well to see if the transformation has been
successful. When this approach is successful, it is usually preferable to using a nonparametric
technique. However, sometimes transformations are not satisfactory. That is, no transforma-
tion makes the sample observations look very close to a sample from a normal distribution.
One situation where this happens is when the data are in the form of ranks. These situations
frequently occur in practice. For instance, a panel of judges may be used to evaluate 10 differ-
ent formulations of a soft-drink beverage for overall quality, with the “best” formulation as-
signed rank 1, the “next-best” formulation assigned rank 2, and so forth. It is unlikely that rank
data satisfy the normality assumption. Transformations may not prove satisfactory either.
Many nonparametric methods involve the analysis of ranks and consequently are directly
suited to this type of problem.

9-9.1 The Sign Test

The sign test is used to test hypotheses about the median of � continuous distribution. The
median of a distribution is a value of the random variable X such that the probability is 0.5 that

�~
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338 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

an observed value of X is less than or equal to the median, and the probability is 0.5 that an ob-
served value of X is greater than or equal to the median. That is, 

Since the normal distribution is symmetric, the mean of a normal distribution equals the
median. Therefore, the sign test can be used to test hypotheses about the mean of a normal dis-
tribution. This is the same problem for which we previously used the t-test. We will briefly dis-
cuss the relative merits of the two procedures in Section 9-9.3 Note that, although the t-test
was designed for samples from a normal distribution, the sign test is appropriate for samples
from any continuous distribution. Thus, the sign test is a nonparametric procedure. 

Suppose that the hypotheses are

(9-51)

The test procedure is easy to describe. Suppose that X1, X2, . . . , Xn is a random sample from the
population of interest. Form the differences

(9-52)

Now if the null hypothesis is true, any difference is equally likely to
be positive or negative. An appropriate test statistic is the number of these differences that are
positive, say, R+. Therefore, to test the null hypothesis we are really testing that the number of
plus signs is a value of a binomial random variable that has the parameter p = 1/2. A P-value
for the observed number of plus signs r+ can be calculated directly from the binomial distri-
bution. For instance, in testing the hypotheses in Equation 9-51, we will reject H0 in favor of
H1 only if the proportion of plus signs is sufficiently less than 1/2 (or equivalently, whenever
the observed number of plus signs r+ is too small). Thus, if the computed P-value

is less than or equal to some preselected significance level �, we will reject H0 and conclude
H1 is true.

To test the other one-sided hypotheses

(9-53)

we will reject H0 in favor of H1 only if the observed number of plus signs, say, r+, is large or,
equivalently, whenever the observed fraction of plus signs is significantly greater than 1/2.
Thus, if the computed P-value

is less than �, we will reject H0 and conclude that H1 is true.
The two-sided alternative may also be tested. If the hypotheses are

(9-54)

we should reject if the proportion of plus signs is significantly different from
(either less than or greater than) 1/2. This is equivalent to the observed number of plus signs r+

H0: �~ � �~0

H1: �~ � �~0

H0: �~ � �~0

P � P aR	 � r	 when p �
1

2
b

H1: �~ � �~0

H0: �~ � �~0

P � P aR	 � r	 when p �
1

2
b

Xi 
 �~0H0: �~ � �~0

Xi 
 �~0,  i � 1, 2, . . . , n

H1: �~ � �~0

H0: �~ � �~0

P1X � �~ 2 � P1X � �~ 2 � 0.5
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being either sufficiently large or sufficiently small. Thus, if the P-value is

and if r+ � n/2, the P-value is

If the P-value is less than some preselected level �, we will reject H0 and conclude that H1 is true.

P � 2PaR� � r� when p �
1

2
b

P � 2PaR� � r� when p �
1

2
b

r� � n/2,
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EXAMPLE 9-15 Propellant Shear Strength Sign Test
Montgomery, Peck, and Vining (2006) report on a study in
which a rocket motor is formed by binding an igniter propel-
lant and a sustainer propellant together inside a metal housing.
The shear strength of the bond between the two propellant
types is an important characteristic. The results of testing 20
randomly selected motors are shown in Table 9-5. We would
like to test the hypothesis that the median shear strength is
2000 psi, using � � 0.05.

This problem can be solved using the eight-step hypothesis-
testing procedure:

1. Parameter of Interest: The parameter of interest is
the median of the distribution of propellant shear
strength.

2. Null hypothesis:

3. Alternative hypothesis:

4. Test statistic: The test statistic is the observed num-
ber of plus differences in Table 9-5, or r� � 14.

5. Reject H0 if: We will reject H0 if the P-value corre-
sponding to r� � 14 is less than or equal to
� � 0.05.

H1: 	� 
 2000 psi

H0: 	� � 2000 psi

Table 9-5 Propellant Shear Strength Data

Observation Shear Strength Differences
i xi xi � 2000 Sign

1 2158.70 �158.70 �

2 1678.15 �321.85 �

3 2316.00 �316.00 �

4 2061.30 �61.30 �

5 2207.50 �207.50 �

6 1708.30 �291.70 �

7 1784.70 �215.30 �

8 2575.10 �575.10 �

9 2357.90 �357.90 �

10 2256.70 �256.70 �

11 2165.20 �165.20 �

12 2399.55 �399.55 �

13 1779.80 �220.20 �

14 2336.75 �336.75 �

15 1765.30 �234.70 �

16 2053.50 �53.50 �

17 2414.40 �414.40 �

18 2200.50 �200.50 �

19 2654.20 �654.20 �

20 1753.70 �246.30 �
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6. Computations: Since r	 � 14 is greater than
n�2 � 20�2 � 10, we calculate the P-value from

 � 0.1153

 � 2 a
20

r�14
 
a

20

r
b 10.52r 10.5220
r

P � 2P  aR	 � 14 when p �
1

2
b

7. Conclusions: Since P � 0.1153 is not less than � � 0.05,
we cannot reject the null hypothesis that the median shear
strength is 2000 psi. Another way to say this is that the ob-
served number of plus signs r	 � 14 was not large or small
enough to indicate that median shear strength is different
from 2000 psi at the � � 0.05 level of significance.

It is also possible to construct a table of critical values for the sign test. This table is shown as
Appendix Table VIII. The use of this table for the two-sided alternative hypothesis in Equation
9-54 is simple. As before, let R	 denote the number of the differences ( ) that are positive
and let R
 denote the number of these differences that are negative. Let R � min 
(R	, R
). Appendix Table VIII presents critical values r*� for the sign test that ensure that P (type
I error) � P (reject H0 when H0 is true) � � for � � 0.01, � � 0.05 and � � 0.10. If the
observed value of the test statistic r � r*�, the null hypothesis should be rejected.

To illustrate how this table is used, refer to the data in Table 9-5 that were used in Example
9-15. Now r	 � 14 and r
 � 6; therefore, r � min (14, 6) � 6. From Appendix Table VIII
with n � 20 and � � 0.05, we find that r*0.05 � 5. Since r � 6 is not less than or equal to the
critical value r*0.05 � 5, we cannot reject the null hypothesis that the median shear strength is
2000 psi.

We can also use Appendix Table VIII for the sign test when a one-sided alternative
hypothesis is appropriate. If the alternative is reject if r
 � r*�;
if the alternative is reject if r	 � r*�. The level of significance of a
one-sided test is one-half the value for a two-sided test. Appendix Table VIII shows the one-
sided significance levels in the column headings immediately below the two-sided levels.

Finally, note that when a test statistic has a discrete distribution such as R does in the sign
test, it may be impossible to choose a critical value r*� that has a level of significance exactly
equal to �. The approach used in Appendix Table VIII is to choose r*� to yield an � that is as
close to the advertised significance level � as possible.

Ties in the Sign Test
Since the underlying population is assumed to be continuous, there is a zero probability that
we will find a “tie”—that is, a value of Xi exactly equal to . However, this may sometimes
happen in practice because of the way the data are collected. When ties occur, they should be
set aside and the sign test applied to the remaining data.

The Normal Approximation
When p � 0.5, the binomial distribution is well approximated by a normal distribution when
n is at least 10. Thus, since the mean of the binomial is np and the variance is np(1 
 p), the
distribution of R	 is approximately normal with mean 0.5n and variance 0.25n whenever n is
moderately large. Therefore, in these cases the null hypothesis can be tested using
the statistic

H0: �� � ��0

�0
�

H0: �� � ��0H1: �� � ��0,
H0: �� � ��0H1: �� � ��0,

H0: �� � ��0

Xi 
 ��0

(9-55)Z0 �
R	 
 0.5n

0.51n

Normal
Approximation

for Sign Test 
Statistic
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A P-value approach could be used for decision making. The fixed significance level approach
could also be used.

The two-sided alternative would be rejected if the observed value of the test statistic
, and the critical regions of the one-sided alternative would be chosen to reflect the

sense of the alternative. (If the alternative is , reject H0 if z0 � z�, for example.)

Type II Error for the Sign Test
The sign test will control the probability of type I error at an advertised level � for testing the
null hypothesis for any continuous distribution. As with any hypothesis-testing
procedure, it is important to investigate the probability of a type II error, �. The test should be
able to effectively detect departures from the null hypothesis, and a good measure of this
effectiveness is the value of � for departures that are important. A small value of � implies an
effective test procedure.

In determining �, it is important to realize not only that a particular value of , say, ,
must be used but also that the form of the underlying distribution will affect the calculations. To
illustrate, suppose that the underlying distribution is normal with 
 � 1 and we are testing the
hypothesis versus . (Since in the normal distribution, this is equiv-
alent to testing that the mean equals 2.) Suppose that it is important to detect a departure from

to . The situation is illustrated graphically in Fig. 9-15(a). When the alternative
hypothesis is true (H1: ), the probability that the random variable X is less than or equal to the
value 2 is

Suppose we have taken a random sample of size 12. At the � � 0.05 level, Appendix Table VIII
indicates that we would reject if r
 � r*0.05 � 2. Therefore, � is the probability that
we do not reject when in fact , or

If the distribution of X had been exponential rather than normal, the situation would be as
shown in Fig. 9-15(b), and the probability that the random variable X is less than or equal
to the value x � 2 when (note that when the median of an exponential distribution
is 3, the mean is 4.33) is

In this case,

Thus, � for the sign test depends not only on the alternative value of but also on the area
to the right of the value specified in the null hypothesis under the population probability

��

� � 1 
 a
2

x�0
 a

12

x
b 10.36992x10.6301212
x � 0.8794

P1X � 22 � �
2

0

1

4.33
  e


1
4.33x dx � 0.3699

�� � 3

� � 1 
 a
2

x�0
 
a

12

x
b 10.15872x10.8413212
x � 0.2944

�� � 3H0: �� � 2
H0: �� � 2

P1X � 22 � P1Z � 
12 � �1
12 � 0.1587

�� � 3
�� � 3�� � 2

�� � �H1: �� � 2H0: �� � 2

��0 	 ���

H0: �� � ��

H1: �� � ��0

0 z0 0 � z��2
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342 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

distribution. This area is highly dependent on the shape of that particular probability
distribution. In  this example, � is large so the ability of the test to detect this departure from
the null hypothesis with the current sample size is poor.

9-9.2 The Wilcoxon Signed-Rank Test

The sign makes use only of the plus and minus signs of the differences between the observa-
tions and the median (or the plus and minus signs of the differences between the observa-
tions in the paired case). It does not take into account the size or magnitude of these differ-
ences. Frank Wilcoxon devised a test procedure that uses both direction (sign) and magnitude.
This procedure, now called the Wilcoxon signed-rank test, is discussed and illustrated in this
section.

The Wilcoxon signed-rank test applies to the case of symmetric continuous distribu-
tions. Under these assumptions, the mean equals the median, and we can use this procedure to
test the null hypothesis � � �0.

The Test Procedure
We are interested in testing H0: � � �0 against the usual alternatives. Assume that X1, 
X2, . . . , Xn is a random sample from a continuous and symmetric distribution with mean (and
median) �. Compute the differences Xi 
 �0, i � 1, 2, . . . , n. Rank the absolute differences

in ascending order, and then give the ranks the signs of their
corresponding differences. Let W	 be the sum of the positive ranks and W
 be the absolute
0  Xi 
 �0 0  , i � 1, 2, . . . , n

��0

x6543210–1

= 1σ

0.1587

x543210–1

= 1σ

Under H1 : μ = 3
∼

Under H0 : μ = 2
∼

(a)

μ = 2
∼ μ = 2.89

Under H0 : μ = 2
∼

2 μ = 4.33

Under H1 : μ = 3
∼

(b)

0.3699

xx

Figure 9-15 Calculation of � for the sign test. (a) Normal distributions. (b) Exponential 
distributions.
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value of the sum of the negative ranks, and let W � min(W�, W). Appendix Table IX contains
critical values of W, say, w*�. If the alternative hypothesis is , then if the ob-
served value of the statistic w � w*�, the null hypothesis H0: � � �0 is rejected. Appendix
Table IX provides significance levels of � � 0.10, � � 0.05, � � 0.02, � � 0.01 for the
two-sided test.

For one-sided tests, if the alternative is H1: � � �0, reject H0: � � �0 if w� � w*�; and if
the alternative is H1: � 	 �0, reject H0: � � �0 if w� � w*�. The significance levels for one-
sided tests provided in Appendix Table IX are � � 0.05, 0.025, 0.01, and 0.005.

H1: � 
 �0
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EXAMPLE 9-16 Propellant Shear Strength Wilcoxon Signed-Rank Test
We will illustrate the Wilcoxon signed-rank test by applying it
to the propellant shear strength data from Table 9-5. Assume
that the underlying distribution is a continuous symmetric dis-
tribution. The seven-step procedure is applied as follows:

1. Parameter of Interest: The parameter of interest is
the mean (or median) of the distribution of propel-
lant shear strength.

2. Null hypothesis: H0: � � 2000 psi

3. Alternative hypothesis: H1: � � 2000 psi

4. Test statistic: The test statistic is

5. Reject H0 if: We will reject H0 if w � w*0.05 � 52
from Appendix Table IX.

6. Computations: The signed ranks from Table 9-5
are shown in the following display:

w � min1w�, w�2

The sum of the positive ranks is w� � (1 � 2 � 3 � 4
� 5 � 6 � 11 � 13 � 15 � 16 � 17 � 18 � 19 �
20) � 150, and the sum of the absolute values of the neg-
ative ranks is w� � (7 � 8 � 9 � 10 � 12 � 14) �
60. Therefore,

7. Conclusions: Since w � 60 is not less than or equal
to the critical value w0.05 � 52, we cannot reject the
null hypothesis that the mean (or median, since the
population is assumed to be symmetric) shear
strength is 2000 psi.

w � min1150, 602 � 60

Difference
Observation xi � 2000 Signed Rank

16 �53.50 �1

4 �61.30 �2

1 �158.70 �3

11 �165.20 �4

18 �200.50 �5

5 �207.50 �6

7 �215.30 �7

13 �220.20 �8

Ties in the Wilcoxon Signed-Rank Test
Because the underlying population is continuous, ties are theoretically impossible, although
they will sometimes occur in practice. If several observations have the same absolute magni-
tude, they are assigned the average of the ranks that they would receive if they differed slightly
from one another.

15 �234.70 �9

20 �246.30 �10

10 �256.70 �11

6 �291.70 �12

3 �316.00 �13

2 �321.85 �14

14 �336.75 �15

9 �357.90 �16

12 �399.55 �17

17 �414.40 �18

8 �575.10 �19

19 �654.20 �20

continued
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344 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE

Large Sample Approximation
If the sample size is moderately large, say, n � 20, it can be shown that W	 (or W
) has
approximately a normal distribution with mean

and variance

Therefore, a test of H0: � � �0 can be based on the statistic:


2
w	 �

n1n 	 12 12n 	 12

24

�w	 �
n1n 	 12

4

(9-56)Z0 �
W	 
 n1n 	 12/4

1n1n 	 12 12n 	 12/24

Normal
Approximation

for Wilcoxon
Signed-Rank 

Statistic

An appropriate critical region for either the two-sided or one-sided alternative hypotheses can
be chosen from a table of the standard normal distribution.

9-9.3 Comparison to the t-Test

If the underlying population is normal, either the sign test or the t-test could be used to test
a hypothesis about the population median. The t-test is known to have the smallest value of
� possible among all tests that have significance level � for the one-sided alternative and for
tests with symmetric critical regions for the two-sided alternative, so it is superior to the
sign test in the normal distribution case. When the population distribution is symmetric and
nonnormal (but with finite mean), the t-test will have a smaller � (or a higher power) than
the sign test, unless the distribution has very heavy tails compared with the normal. Thus,
the sign test is usually considered a test procedure for the median rather than as a serious
competitor for the t-test. The Wilcoxon signed-rank test is preferable to the sign test and
compares well with the t-test for symmetric distributions. It can be useful in situations
where a transformation on the observations does not produce a distribution that is reason-
ably close to the normal.

EXERCISES FOR SECTION 9-9

9-110. Ten samples were taken from a plating bath used in
an electronics manufacturing process, and the bath pH was de-
termined. The sample pH values are 7.91, 7.85, 6.82, 8.01,
7.46, 6.95, 7.05, 7.35, 7.25, and 7.42. Manufacturing engi-
neering believes that pH has a median value of 7.0.

(a) Do the sample data indicate that this statement is correct?
Use the sign test with � � 0.05 to investigate this hypoth-
esis. Find the P-value for this test.

(b) Use the normal approximation for the sign test to test
versus . What is the P-value for

this test?
H1: �~ � 7.0H0: �~ � 7.0
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9-111. The titanium content in an aircraft-grade alloy is an
important determinant of strength. A sample of 20 test
coupons reveals the following titanium content (in percent):

8.32, 8.05, 8.93, 8.65, 8.25, 8.46, 8.52, 8.35, 8.36, 8.41, 8.42,
8.30, 8.71, 8.75, 8.60, 8.83, 8.50, 8.38, 8.29, 8.46

The median titanium content should be 8.5%.

(a) Use the sign test with � � 0.05 to investigate this hypoth-
esis. Find the P-value for this test.

(b) Use the normal approximation for the sign test to test
versus , with � � 0.05. What is

the P-value for this test?

9-112. The impurity level (in ppm) is routinely measured in
an intermediate chemical product. The following data were
observed in a recent test:

2.4, 2.5, 1.7, 1.6, 1.9, 2.6, 1.3, 1.9, 2.0, 2.5, 2.6, 2.3, 2.0, 1.8,
1.3, 1.7, 2.0, 1.9, 2.3, 1.9, 2.4, 1.6

Can you claim that the median impurity level is less than 
2.5 ppm?
(a) State and test the appropriate hypothesis using the sign

test with � � 0.05. What is the P-value for this test?
(b) Use the normal approximation for the sign test to test

versus . What is the P-value for
this test?

9-113. Consider the margarine fat content data in Exercise
8-36. Use the sign test to test versus

with � � 0.05.

(a) Find the P-value for the test statistic and use this quantity
to make your decision.

(b) Use the normal approximation to test the same hypothesis
that you formulated in part (a). What is the P-value for
this test?

9-114. Consider the compressive strength data in
Exercise 8-37.
(a) Use the sign test to investigate the claim that the median

strength is at least 2250 psi. Use � � 0.05.
(b) Use the normal approximation to test the same hypothesis

that you formulated in part (a). What is the P-value for
this test?

9-115. The diameter of a ball bearing was measured by an
inspector using a new type of caliper. The results were as fol-
lows (in mm): 0.265, 0.263, 0.266, 0.267, 0.267, 0.265, 0.267,

0.267, 0.265, 0.268, 0.268, and 0.263.

(a) Use the Wilcoxon signed-rank test to evaluate the claim
that the mean ball diameter is 0.265 mm. Use � � 0.05.

(b) Use the normal approximation for the test. With � � 0.05,
what conclusions can you draw?

9-116. A new type of tip can be used in a Rockwell hard-
ness tester. Eight coupons from test ingots of a nickel-based
alloy are selected, and each coupon is tested using the new tip.

H1: �~ � 17.0
H0:� ~ � 17.0

H1: �~ � 2.5H0: �~ � 2.5

H1: �~ � 8.5H0: �~ � 8.5
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The Rockwell C-scale hardness readings are 63, 65, 58, 60,
55, 57, 53, and 59. Do the results support the claim that the
mean hardness exceeds 60 at a 0.05 level?

9-117. A primer paint can be used on aluminum panels. The
drying time of the primer is an important consideration in the
manufacturing process. Twenty panels are selected and the dry-
ing times are as follows: 1.6, 1.3, 1.5, 1.6, 1.7, 1.9, 1.8, 1.6, 1.4,
1.8, 1.9, 1.8, 1.7, 1.5, 1.6, 1.4, 1.3, 1.6, 1.5, and 1.8. Is there ev-
idence that the mean drying time of the primer exceeds 1.5 hr?

Supplemental Exercises

9-118. Consider the computer output below.

One-Sample Z:

Test of mu � 26 vs � 26
The assumed standard deviation � 1.5

Variable N Mean StDev SE Mean Z P

X ? 26.541 2.032 0.401 ? ?

(a) Fill in the missing information.
(b) Is this a one-sided or a two-sided test?
(c) What are your conclusions if � � 0.05?
(d) Find a 95% two-sided CI on the mean.

9-119. Consider the computer output below.

One-Sample T:

Test of mu � 100 vs not � 100

Variable N Mean StDev SE Mean 95% CI T P

X 16 98.33 4.61 ? (?, ?) ? ?

(a) How many degrees of freedom are there on the t-statistic?
(b) Fill in the missing information. You may use bounds on

the P-value.
(c) What are your conclusions if � � 0.05?
(d) What are your conclusions if the hypothesis is H0: � �

100 versus H0: � > 100?

9-120. Consider the computer output below.

One-Sample T:

Test of mu � 85 vs � 85

Variable N Mean StDev SE Mean T P

X 25 84.331 ? 0.631 ? ?

(a) How many degrees of freedom are there on the t-statistic?
(b) Fill in the missing information. You may use bounds on

the P-value.
(c) What are your conclusions if � � 0.05?
(d) Find a 95% upper-confidence bound on the mean.
(e) What are your conclusions if the hypothesis is H0: � �

100 versus H0: � � 100?

9-121. An article in Transfusion Science [“Early Total
White Blood Cell Recovery Is a Predictor of Low Number of
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Apheresis and Good CD34� Cell Yield” (Vol. 23, 2000, 
pp. 91–100)] studied the white blood cell recovery of patients
with haematological malignancies after a new chemotherapy
treatment. Data (in days) on white blood cell recovery (WBC)
for 19 patients consistent with summary data reported in the
paper follow: 18, 16, 13, 16, 15, 12, 9, 14, 12, 8, 16, 12, 10, 8,
14, 9, 5, 18, and 12.
(a) Is there sufficient evidence to support a claim that the

mean WBC recovery exceeds 12 days?
(b) Find a 95% two-sided CI on the mean WBC recovery.

9-122. An article in Fire Technology [“An Experimental
Examination of Dead Air Space for Smoke Alarms” (Vol. 45,
2009, pp. 97–115)] studied the performance of smoke detec-
tors installed not less than 100 mm from any adjoining wall if
mounted on a flat ceiling, and not closer than 100 mm and not
farther than 300 mm from the adjoining ceiling surface if
mounted on walls. The purpose of this rule is to avoid installa-
tion of smoke alarms in the “dead air space,” where it is
assumed to be difficult for smoke to reach. A number of inter-
esting experiments were described in the paper. Results on the
time to signal (in seconds) for one such experiment with pine
stick fuel in an open bedroom using photoelectric smoke
alarms are as follows: 220, 225, 297, 315, 282, and 313.
(a) Is there sufficient evidence to support a claim that the

mean time to signal is less than 300 seconds?
(b) Is there practical concern about the assumption of a nor-

mal distribution as a model for the time-to-signal data?
(c) Find a 95% two-sided CI on the mean time to signal.

9-123. Suppose we wish to test the hypothesis H0: � � 85
versus the alternative H1: � � 85 where � � 16. Suppose that
the true mean is � � 86 and that in the practical context of the
problem this is not a departure from �0 � 85 that has practical
significance.
(a) For a test with � � 0.01, compute � for the sample sizes 

n � 25, 100, 400, and 2500 assuming that � � 86.
(b) Suppose the sample average is . Find the P-value

for the test statistic for the different sample sizes speci-
fied in part (a). Would the data be statistically significant
at � � 0.01?

(c) Comment on the use of a large sample size in this problem.

9-124. A manufacturer of semiconductor devices takes a
random sample of size n of chips and tests them, classifying
each chip as defective or nondefective. Let Xi � 0 if the chip
is nondefective and Xi � 1 if the chip is defective. The sample
fraction defective is

What are the sampling distribution, the sample mean, and
sample variance estimates of p̂ when
(a) The sample size is n � 50?
(b) The sample size is n � 80?
(c) The sample size is n � 100?

p̂ �
X1 � X2 � p � Xn

n

x � 86

(d) Compare your answers to parts (a)–(c) and comment on
the effect of sample size on the variance of the sampling
distribution.

9-125. Consider the situation of Exercise 9-124. After col-
lecting a sample, we are interested in testing H0: p � 0.10 versus

with � � 0.05. For each of the following situa-
tions, compute the p-value for this test:
(a) n � 50, p̂ � 0.095
(b) n � 100, p̂ � 0.095
(c) n � 500, p̂ � 0.095
(d) n � 1000, p̂ � 0.095
(e) Comment on the effect of sample size on the observed 

P-value of the test.

9-126. An inspector of flow metering devices used to admin-
ister fluid intravenously will perform a hypothesis test to
determine whether the mean flow rate is different from the flow
rate setting of 200 milliliters per hour. Based on prior
information, the standard deviation of the flow rate is assumed
to be known and equal to 12 milliliters per hour. For each of the
following sample sizes, and a fixed � � 0.05, find the probabil-
ity of a type II error if the true mean is 205 milliliters per hour.
(a) n � 20
(b) n � 50
(c) n � 100
(d) Does the probability of a type II error increase or decrease

as the sample size increases? Explain your answer.

9-127. Suppose that in Exercise 9-126, the experimenter
had believed that � � 14. For each of the following sample
sizes, and a fixed � � 0.05, find the probability of a type II
error if the true mean is 205 milliliters per hour. 
(a) n � 20
(b) n � 50
(c) n � 100
(d) Comparing your answers to those in Exercise 9-126, does

the probability of a type II error increase or decrease with
the increase in standard deviation? Explain your answer.

9-128. The marketers of shampoo products know that cus-
tomers like their product to have a lot of foam. A manufacturer
of shampoo claims that the foam height of his product exceeds
200 millimeters. It is known from prior experience that the
standard deviation of foam height is 8 millimeters. For each of
the following sample sizes, and a fixed � � 0.05, find the
power of the test if the true mean is 204 millimeters.
(a) n � 20
(b) n � 50
(c) n � 100
(d) Does the power of the test increase or decrease as the sam-

ple size increases? Explain your answer.

9-129. Suppose we are testing H0: p � 0.5 versus H0: p 	 0.5.
Suppose that p is the true value of the population proportion.
(a) Using � � 0.05, find the power of the test for n � 100,

150, and 300 assuming that p � 0.6. Comment on the
effect of sample size on the power of the test.

H1: p 	 0.10
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(b) Using � � 0.01, find the power of the test for n � 100,
150, and 300 assuming that p � 0.6. Compare your an-
swers to those from part (a) and comment on the effect of
� on the power of the test for different sample sizes.

(c) Using � � 0.05, find the power of the test for n � 100, as-
suming p � 0.08. Compare your answer to part (a) and
comment on the effect of the true value of p on the power
of the test for the same sample size and � level.

(d) Using � � 0.01, what sample size is required if p � 0.6
and we want � � 0.05? What sample is required if p � 0.8
and we want � � 0.05? Compare the two sample sizes and
comment on the effect of the true value of p on sample
size required when � is held approximately constant.

9-130. The cooling system in a nuclear submarine consists
of an assembly of welded pipes through which a coolant is cir-
culated. Specifications require that weld strength must meet or
exceed 150 psi.
(a) Suppose that the design engineers decide to test the

hypothesis H0: � � 150 versus H1: � � 150. Explain
why this choice of alternative hypothesis is better than 
H1: � � 150.

(b) A random sample of 20 welds results in psi and
s � 11.3 psi. What conclusions can you draw about the
hypothesis in part (a)? State any necessary assumptions
about the underlying distribution of the data.

9-131. The mean pull-off force of an adhesive used in man-
ufacturing a connector for an automotive engine application
should be at least 75 pounds. This adhesive will be used unless
there is strong evidence that the pull-off force does not meet
this requirement. A test of an appropriate hypothesis is to be
conducted with sample size n � 10 and � � 0.05. Assume that
the pull-off force is normally distributed, and 
 is not known.
(a) If the true standard deviation is 
 � 1, what is the risk that

the adhesive will be judged acceptable when the true mean
pull-off force is only 73 pounds? Only 72 pounds?

(b) What sample size is required to give a 90% chance of
detecting that the true mean is only 72 pounds when 
 � 1?

(c) Rework parts (a) and (b) assuming that 
 � 2. How much
impact does increasing the value of 
 have on the answers
you obtain?

9-132. A manufacturer of precision measuring instruments
claims that the standard deviation in the use of the instruments
is at most 0.00002 millimeter. An analyst, who is unaware of
the claim, uses the instrument eight times and obtains a sam-
ple standard deviation of 0.00001 millimeter.
(a) Confirm using a test procedure and an � level of 0.01 that

there is insufficient evidence to support the claim that the
standard deviation of the instruments is at most 0.00002.
State any necessary assumptions about the underlying
distribution of the data.

(b) Explain why the sample standard deviation, s � 0.00001,
is less than 0.00002, yet the statistical test procedure
results do not support the claim.

x � 153.7

9-133. A biotechnology company produces a therapeutic
drug whose concentration has a standard deviation of 4 grams
per liter. A new method of producing this drug has been pro-
posed, although some additional cost is involved. Management
will authorize a change in production technique only if the
standard deviation of the concentration in the new process is
less than 4 grams per liter. The researchers chose n � 10 and
obtained the following data in grams per liter. Perform the nec-
essary analysis to determine whether a change in production
technique should be implemented.

16.628 16.630
16.622 16.631
16.627 16.624
16.623 16.622
16.618 16.626

9-134. Consider the 40 observations collected on the num-
ber of nonconforming coil springs in production batches of
size 50 given in Exercise 6-93.
(a) Based on the description of the random variable and these

40 observations, is a binomial distribution an appropriate
model? Perform a goodness of fit procedure with � � 0.05.

(b) Calculate the P-value for this test.

9-135. Consider the 20 observations collected on the num-
ber of errors in a string of 1000 bits of a communication chan-
nel given in Exercise 6-94.
(a) Based on the description of the random variable and these

20 observations, is a binomial distribution an appropriate
model? Perform a goodness of fit procedure with � � 0.05.

(b) Calculate the P-value for this test.

9-136. Consider the spot weld shear strength data in Exercise
6-31. Does the normal distribution seem to be a reasonable
model for these data? Perform an appropriate goodness of fit
test to answer this question.

9-137. Consider the water quality data in Exercise 6-32.
(a) Do these data support the claim that mean concentration

of suspended solids does not exceed 50 parts per million?
Use � � 0.05.

(b) What is the P-value for the test in part (a)?
(c) Does the normal distribution seem to be a reasonable

model for these data? Perform an appropriate goodness of
fit test to answer this question.

9-138. Consider the golf ball overall distance data in
Exercise 6-33.
(a) Do these data support the claim that the mean overall dis-

tance for this brand of ball does not exceed 270 yards?
Use � � 0.05.

(b) What is the P-value for the test in part (a)?
(c) Do these data appear to be well modeled by a normal dis-

tribution? Use a formal goodness of fit test in answering
this question.
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9-139. Consider the baseball coefficient of restitution data
in Exercise 8-92. If the mean coefficient of restitution exceeds
0.635, the population of balls from which the sample has been
taken will be too “lively” and considered unacceptable for play.
(a) Formulate an appropriate hypothesis testing procedure to

answer this question.
(b) Test these hypotheses and draw conclusions, using

� � 0.01.
(c) Find the P-value for this test.
(d) In Exercise 8-92(b), you found a 99% confidence interval

on the mean coefficient of restitution. Does this interval,
or a one-sided CI, provide additional useful information to
the decision maker? Explain why or why not.

9-140. Consider the dissolved oxygen data in Exercise
8-94. Water quality engineers are interested in knowing
whether these data support a claim that mean dissolved oxy-
gen concentration is 2.5 milligrams per liter.
(a) Formulate an appropriate hypothesis testing procedure to

investigate this claim.
(b) Test these hypotheses and draw conclusions, using � � 0.05.
(c) Find the P-value for this test.
(d) In Exercise 8-94(b) you found a 95% CI on the mean dis-

solved oxygen concentration. Does this interval provide
useful additional information beyond that of the hypothe-
sis testing results? Explain your answer.

9-141. An article in Food Testing and Analysis [“Improving
Reproducibility of Refractometry Measurements of Fruit
Juices” (1999, Vol. 4, No. 4, pp. 13–17)] measured the sugar
concentration (Brix) in clear apple juice. All readings were
taken at :

11.48 11.45 11.48 11.47 11.48
11.50 11.42 11.49 11.45 11.44

11.45 11.47 11.46 11.47 11.43
11.50 11.49 11.45 11.46 11.47

(a) Test the hypothesis versus 
using . Find the P-value.

(b) Compute the power of the test if the true mean is 11.4.
(c) What sample size would be required to detect a true mean

sugar concentration of 11.45 if we wanted the power of the
test to be at least 0.9?

(d) Explain how the question in part (a) could be answered by
constructing a two-sided confidence interval on the mean
sugar concentration.

(e) Is there evidence to support the assumption that the sugar
concentration is normally distributed?

9-142. Consider the computer output below

Test and Cl for One Proportion

Test of p � 0.25 vs p � 0.25

X N Sample p Bound Z-Value P-Value

53 225 0.235556 0.282088 ? ?

� � 0.05
H1: � � 11.5H0: � � 11.5

20�C

Using the normal approximation.
(a) Fill in the missing information.
(b) What are your conclusions if � � 0.05?
(c) The normal approximation to the binomial was used here.

Was that appropriate?
(d) Find a 95% upper-confidence bound on the true proportion.
(e) What are the P-value and your conclusions if the alterna-

tive hypothesis is ?

9-143. An article in Food Chemistry [“A Study of Factors
Affecting Extraction of Peanut (Arachis Hypgaea L.) Solids
with Water” (1991, Vol. 42, No. 2, pp. 153–165)] found the
percent protein extracted from peanut milk as follows:

78.3 77.1 71.3 84.5 87.8 75.7 64.8 72.5
78.2 91.2 86.2 80.9 82.1 89.3 89.4 81.6

(a) Can you support a claim that mean percent protein ex-
tracted exceeds 80 percent? Use .

(b) Is there evidence that percent protein extracted is nor-
mally distributed?

(c) What is the P-value of the test statistic computed in part (a)?

9-144. An article in Biological Trace Element Research
[“Interaction of Dietary Calcium, Manganese, and Manganese
Source (Mn Oxide or Mn Methionine Complex) or Chick
Performance and Manganese Utilization” (1991, Vol. 29,
No. 3, pp. 217–228)] showed the following results of tissue
assay for liver manganese (ppm) in chicks fed high-Ca diets.

6.02 6.08 7.11 5.73 5.32 7.10
5.29 5.84 6.03 5.99 4.53 6.81

(a) Test the hypothesis versus 
using .

(b) What is the P-value for this test?
(c) Discuss how part (a) could be answered by constructing a

99% two-sided confidence interval for .

9-145. An article in Experimental Brain Research
[“Synapses in the Granule Cell Layer of the Rat Dentate
Gyrus: Serial-Sectionin Study” (1996, Vol. 112, No. 2, pp.
237–243)] showed the ratio between the numbers of sym-
metrical and total synapses on somata and azon initial
segments of reconstructed granule cells in the dentate gyrus
of a 12-week-old rat:

0.65 0.90 0.78 0.94 0.40 0.94
0.91 0.86 0.53 0.84 0.42 0.50
0.50 0.68 1.00 0.57 1.00 1.00

0.84 0.9 0.91 0.92 0.96
0.96 0.56 0.67 0.96 0.52
0.89 0.60 0.54

(a) Use the data to test versus 
using .

(b) Find the P-value for the test.
� � 0.05

H1: �
2 � 0.02H0: �

2 � 0.02

�

� � 0.01
H1: �

2 � 0.6H0: �
2 � 0.6

� � 0.05

H1: p � 0.25
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MIND-EXPANDING EXERCISES

9-149. Suppose that we wish to test H0: � � �0 versus
, where the population is normal with known


. Let , and define the critical region so that
we will reject H0 if or if where z0 is
the value of the usual test statistic for these hypotheses.
(a) Show that the probability of type I error for this test

is �.
(b) Suppose that the true mean is . Derive

an expression for � for the above test.

9-150. Derive an expression for � for the test on the
variance of a normal distribution. Assume that the two-
sided alternative is specified.

9-151. When X1, X2, p , Xn are independent Poisson
random variables, each with parameter �, and n is large,
the sample mean has an approximate normal distribu-
tion with mean � and variance . Therefore,

has approximately a standard normal distribution. Thus
we can test H0: � � �0 by replacing � in Z by �0. When Xi

are Poisson variables, this test is preferable to the large-
sample test of Section 9-2.3, which would use in
the denominator, because it is designed just for the

S�1n

Z �
X 
 �

1��n

��n
X

�1 � �0 	 �

z0 � 
z�
�,z0 � z�

0 � � � �
H1: � � �0

Poisson distribution. Suppose that the number of open cir-
cuits on a semiconductor wafer has a Poisson distribution.
Test data for 500 wafers indicate a total of 1038 opens.
Using � � 0.05, does this suggest that the mean number
of open circuits per wafer exceeds 2.0?

9-152. When X1, X2, p , Xn is a random sample from
a normal distribution and n is large, the sample stan-
dard deviation has approximately a normal distribu-
tion with mean 
 and variance . Therefore, a
large-sample test for H0: 
 � 
0 can be based on the
statistic

(a) Use this result to test H0: 
 � 10 versus H1: 
 � 10
for the golf ball overall distance data in Exercise
6-33.

(b) Find an approximately unbiased estimator of the 95
percentile � � � 	 1.645
. From the fact that 
and S are independent random variables, find the
standard error of the estimator of �. How would you
estimate the standard error?

(c) Consider the golf ball overall distance data in
Exercise 6-33. We wish to investigate a claim that

X

Z �
S 
 
0

2
2
0� 12n2


2� 12n2

9-146. An article in the Journal of Electronic Material
[“Progress in CdZnTe Substrate Producibility and Critical
Drive of IRFPA Yield Originating with CdZnTe Substrates”
(1998, Vol. 27, No. 6, pp. 564–572)] improved the quality of
CdZnTe substrates used to produce the HgCdTe infrared focal
plane arrays (IRFPAs), also defined as sensor chip assemblies
(SCAs). The cut-on wavelength on 11 wafers was mea-
sured and is shown below:

6.06 6.16 6.57 6.67 6.98 6.17 6.17 6.93 6.73 6.87 6.76

(a) Is there evidence that the mean of cut-on wave length is
not ?

(b) What is the P-value for this test?
(c) What sample size would be required to detect a true mean

cut-on wavelength of with probability 95%?
(d) What is the type II error probability if the true mean

cut-on wavelength is ?6.95 �m

6.25 �m

6.50 �m

1�m2

9-147. Consider the fatty acid measurements for the diet
margarine described in Exercise 8-36.
(a) For the sample size n � 6, using a two-sided alternative

hypothesis and � � 0.01, test H0: 

2 � 1.0.

(b) Suppose that instead of n � 6, the sample size was n � 51.
Repeat the analysis performed in part (a) using n � 51.

(c) Compare your answers and comment on how sample size
affects your conclusions drawn in parts (a) and (b).

9-148. Consider the television picture tube brightness ex-
periment described in Exercise 8-35.
(a) For the sample size n � 10, do the data support the

claim that the standard deviation of current is less than
20 microamps?

(b) Suppose that instead of n � 10, the sample size was 51.
Repeat the analysis performed in part (a) using n � 51.

(c) Compare your answers and comment on how sample size
affects your conclusions drawn in parts (a) and (b).
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the 95 percentile of overall distance does not exceed
285 yards. Construct a test statistic that can be used
for testing the appropriate hypotheses. Apply this
procedure to the data from Exercise 6-33. What are
your conclusions?

9-153. Let X1, X2, p , Xn be a sample from an exponen-
tial distribution with parameter �. It can be shown that

has a chi-square distribution with 2n degrees
of freedom. Use this fact to devise a test statistic and
critical region for H0: � � �0 versus the three usual
alternatives.

2� �n
i�1 Xi

MIND-EXPANDING EXERCISES

IMPORTANT TERMS AND CONCEPTS

� and �
Connection between

hypothesis tests and
confidence intervals

Critical region for a test
statistic

Goodness of fit test
Homogeneity test
Hypothesis test
Inference
Independence test

Nonparametric or 
distribution free
methods

Normal approximation
to nonparametric
tests

Null distribution
Null hypothesis
One- and two-sided

alternative hypotheses

Operating characteristic
(OC) curves

Power of a test
P-value
Ranks
Reference distribution

for a test statistic
Sample size determina-

tion for hypothesis
tests

Significance level of 
a test

Sign test
Statistical hypotheses
Statistical versus practi-

cal significance
Test statistic
Type I and type II errors
Wilcoxon signed-rank

test
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10
Statistical Inference for Two Samples
The safety of drinking water is a serious public health issue. An article appeared in the Arizona
Republic on May 27, 2001, that reported on arsenic contamination in the water sampled from
10 communities in the metropolitan Phoenix area and 10 communities from rural Arizona.
The data showed dramatic differences in the arsenic concentration, ranging from 3 parts
per billion (ppb) to 48 ppb. There are some important questions suggested by this article. Is
there a real difference between the arsenic concentrations in the Phoenix area and in the rural
communities in Arizona? How large is this difference? Is it large enough to require action
on the part of the public health service and other state agencies to correct the problem? Are the
levels of reported arsenic concentration large enough to constitute a public health risk?

Some of these questions can be answered by statistical methods. If we think of the met-
ropolitan Phoenix communities as one population and the rural Arizona communities as a
second population, we could determine whether there is a statistically significant differ-
ence in the mean arsenic concentration between the two populations by testing the hypoth-
esis that the two means, say, �1 and �2, are different. This is a relatively simple extension
to two samples of the one-sample hypothesis testing procedures of Chapter 9. We could
also use a confidence interval to estimate the difference in the two means, say, �1 � �2.

The arsenic concentration problem is very typical of many problems in engineering
and science that involve statistics. Some of the questions can be answered by the applica-
tion of appropriate statistical tools, while other questions require using engineering or
scientific knowledge and expertise to answer satisfactorily.

© Robert Dant/iStockphoto

CHAPTER OUTLINE

10-1 INFERENCE ON THE DIFFERENCE
IN MEANS OF TWO NORMAL
DISTRIBUTIONS, VARIANCES
KNOWN

10-1.1 Hypothesis Tests on the 
Difference in Means, 
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10-1.2 Type II Error and Choice of
Sample Size

10-1.3 Confidence Interval on the
Difference in Means, 
Variances Known
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LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Structure comparative experiments involving two samples as hypothesis tests
2. Test hypotheses and construct confidence intervals on the difference in means of two normal

distributions
3. Test hypotheses and construct confidence intervals on the ratio of the variances or standard

deviations of two normal distributions
4. Test hypotheses and construct confidence intervals on the difference in two population proportions
5. Use the P-value approach for making decisions in hypotheses tests
6. Compute power, type II error probability, and make sample size decisions for two-sample tests on

means, variances, and proportions
7. Explain and use the relationship between confidence intervals and hypothesis tests

10-1 INFERENCE ON THE DIFFERENCE IN MEANS OF TWO
NORMAL DISTRIBUTIONS, VARIANCES KNOWN

The previous two chapters presented hypothesis tests and confidence intervals for a single
population parameter (the mean �, the variance �2, or a proportion p). This chapter extends
those results to the case of two independent populations.

The general situation is shown in Fig. 10-1. Population 1 has mean and variance ,
while population 2 has mean and variance . Inferences will be based on two random
samples of sizes n1 and n2, respectively. That is, X11, X12, p, is a random sample of n1

observations from population 1, and X21, X22, p, is a random sample of n2 observa-
tions from population 2. Most of the practical applications of the procedures in this chapter

X2n2

X1n1

� 
2
2�2

� 
2
1�1

10-2 INFERENCE ON THE DIFFERENCE
IN MEANS OF TWO NORMAL 
DISTRIBUTIONS, VARIANCES
UNKNOWN

10-2.1 Hypothesis Tests on the
Difference in Means, Variances
Unknown

10-2.2 Type II Error and Choice of
Sample Size

10-2.3 Confidence Interval on the
Difference in Means, Variances
Unknown

10-3 A NONPARAMETRIC TEST ON
THE DIFFERENCE IN TWO MEANS

10-3.1 Description of the Wilcoxon
Rank-Sum Test

10-3.2 Large-Sample Approximation

10-3.3 Comparison to the t-Test

10-4 PAIRED t-TEST

10-5 INFERENCE ON THE VARIANCES
OF TWO NORMAL DISTRIBUTIONS

10-5.1 F Distribution

10-5.2 Hypothesis Tests on the Ratio
of Two Variances

10-5.3 Type II Error and Choice of
Sample Size

10-5.4 Confidence Interval on the 
Ratio of Two Variances

10-6 INFERENCE ON TWO 
POPULATION PROPORTIONS

10-6.1 Large-Sample Tests on the
Difference in Population
Proportions

10-6.2 Type II Error and Choice of
Sample Size

10-6.3 Confidence Interval on the
Difference in Population
Proportions

10-7 SUMMARY TABLE AND ROADMAP
FOR INFERENCE PROCEDURES
FOR TWO SAMPLES
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1. X11, X12, p , is a random sample from population 1.

2. X21, X22, p , is a random sample from population 2.

3. The two populations represented by X1 and X2 are independent.

4. Both populations are normal.

X2n2

X1n1

Assumptions
for 

Two-Sample
Inference

Figure 10-1 Two 
independent popula-
tions.

�1 �2

Population 1 Population 2

Sample 1:
x11, x12,…, x1n1

 
Sample 2:

x21, x22,…, x2n2
 

�1 �2
2 2

arise in the context of simple comparative experiments in which the objective is to study
the difference in the parameters of the two populations.

Engineers and scientists are often interested in comparing two different conditions to de-
termine whether either condition produces a significant effect on the response that is observed.
These conditions are sometimes called treatments. Example 10-1 illustrates such an experi-
ment; the two different treatments are two paint formulations, and the response is the dry-
ing time. The purpose of the study is to determine whether the new formulation results in a
significant effect—reducing drying time. In this situation, the product developer (the experi-
menter) randomly assigned 10 test specimens to one formulation and 10 test specimens to the
other formulation. Then the paints were applied to the test specimens in random order until all
20 specimens were painted. This is an example of a completely randomized experiment.

When statistical significance is observed in a randomized experiment, the experimenter can
be confident in the conclusion that it was the difference in treatments that resulted in the differ-
ence in response. That is, we can be confident that a cause-and-effect relationship has been found.

Sometimes the objects to be used in the comparison are not assigned at random to the
treatments. For example, the September 1992 issue of Circulation (a medical journal
published by the American Heart Association) reports a study linking high iron levels in the
body with increased risk of heart attack. The study, done in Finland, tracked 1931 men for five
years and showed a statistically significant effect of increasing iron levels on the incidence of
heart attacks. In this study, the comparison was not performed by randomly selecting a sample
of men and then assigning some to a “low iron level” treatment and the others to a “high iron
level” treatment. The researchers just tracked the subjects over time. Recall from Chapter 1
that this type of study is called an observational study.

It is difficult to identify causality in observational studies, because the observed statisti-
cally significant difference in response between the two groups may be due to some other
underlying factor (or group of factors) that was not equalized by randomization and not due to
the treatments. For example, the difference in heart attack risk could be attributable to the dif-
ference in iron levels, or to other underlying factors that form a reasonable explanation for the
observed results—such as cholesterol levels or hypertension.

In this section we consider statistical inferences on the difference in means of
two normal distributions, where the variances and are known. The assumptions for this
section are summarized as follows.

� 
2
2� 

2
1

�1 � �2
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354 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

This result will be used to form tests of hypotheses and confidence intervals on 
Essentially, we may think of as a parameter , and its estimator is 
with variance If is the null hypothesis value specified for , the test 
statistic will be Notice how similar this is to the test statistic for a single mean
used in Equation 9-8 of Chapter 9.

10-1.1 Hypothesis Tests on the Difference in Means, Variances Known

We now consider hypothesis testing on the difference in the means �1 � �2 of two normal
populations. Suppose that we are interested in testing that the difference in means �1 � �2

is equal to a specified value �0. Thus, the null hypothesis will be stated as H0: �1 � �2 �
�0. Obviously, in many cases, we will specify �0 � 0 so that we are testing the equality of
two means (i.e., H0: �1 � �2). The appropriate test statistic would be found by replacing
�1 � �2 in Equation 10-1 by �0, and this test statistic would have a standard normal distribu-
tion under H0. That is, the standard normal distribution is the reference distribution for the
test statistic. Suppose that the alternative hypothesis is H1: �1 � �2 � �0. Now, a sample
value of that is considerably different from is evidence that H1 is true. Because
Z0 has the N(0, 1) distribution when H0 is true, we would calculate the P-value as the sum of
the probabilities beyond the test statistic value z0 and �z0 in the standard normal distribu-
tion. That is, . This is exactly what we did in the one-sample z-test of
Section 4-4.1. If we wanted to perform a fixed-significance-level test, we would take 
and as the boundaries of the critical region just as we did in the single-sample z-test. This
would give a test with level of significance . P-values or critical regions for the one-sided�

z�/2

�z�/2

P � 2 31 � �1 0 z0 0 24

�0x1 � x2

1	̂ � 
02��	̂ .


0�

2
	̂ � �2

1�n1 � �2
2 �n2.

	̂ � X1 � X2
�1 � �2

�1 � �2.

A logical point estimator of is the difference in sample means Based
on the properties of expected values,

and the variance of is

Based on the assumptions and the preceding results, we may state the following.

V1X1 � X22 � V1X12 � V1X22 �
�2

1

n1
�

�2
2

n2

X1 � X2

E1X1 � X22 � E1X12 � E1X22 � �1 � �2

X1 � X2.�1 � �2

The quantity

(10-1)

has a N(0, 1) distribution.

Z �
X1 � X2 � 1�1 � �22

B

�2
1

n1
�

�2
2

n2
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alternatives would be determined similarly. Formally, we summarize these results in the fol-
lowing display.

Tests on the
Difference 
in Means,
Variances

Known

EXAMPLE 10-1 Paint Drying Time
A product developer is interested in reducing the drying time
of a primer paint. Two formulations of the paint are tested; for-
mulation 1 is the standard chemistry, and formulation 2 has a
new drying ingredient that should reduce the drying time.
From experience, it is known that the standard deviation of
drying time is 8 minutes, and this inherent variability should
be unaffected by the addition of the new ingredient. Ten spec-
imens are painted with formulation 1, and another 10 speci-
mens are painted with formulation 2; the 20 specimens are
painted in random order. The two sample average drying times
are minutes and minutes, respectively.
What conclusions can the product developer draw about the
effectiveness of the new ingredient, using � � 0.05?

We apply the seven-step procedure to this problem as
follows:

1. Parameter of interest: The quantity of interest is the dif-
ference in mean drying times, �1 � �2, and �0 � 0.

2. Non hypothesis:

3. Alternative hypothesis: We want to reject
H0 if the new ingredient reduces mean drying time.

H˛1: �1 � �2.

H˛0: �1 � �2 � 0, or H˛0:˛  �1 � �2.

x˛2 � 112x˛1 � 121

4. Test statistic: The test statistic is

where �2
1 � �2

2 � � 64 and n1 � n2 � 10.

5. Reject H0 if: Reject H0: �1 � �2 if the P-value is less
than 0.05.

6. Computations: Since minutes and 
minutes, the test statistic is

7. Conclusion: Since z0 � 2.52, the P-value is P �
, so we reject H0 at the � � 0.05 level

Practical Interpretation: We conclude that adding the
new ingredient to the paint significantly reduces the drying
time. This is a strong conclusion.

1 � 	12.522� 0.0059

z0 �
121 � 112

B

1822

10


1822

10

� 2.52

x2 � 112x1 � 121

1822

z˛0 �
x1 � x2 � 0

B
�2

1

n1



�2
2

n2

When the population variances are unknown, the sample variances and can be substituted
into the test statistic Equation 10-2 to produce a large-sample test for the difference in means.
This procedure will also work well when the populations are not necessarily normally distrib-
uted. However, both n1 and n2 should exceed 40 for this large-sample test to be valid.

s2
2s2

1

Null hypothesis:

Test statistic: (10-2)

Rejection Criterion For
Alternative Hypotheses P-Value for Fixed-Level Tests

Probability above |z0| and 
probability below �|z0|,

Probability above z0,

Probability below z0,
P � 	1z02

z0 � �z�H˛1: �1 � �2 � �0

P � 1 � 	1z02

z0 � z�H˛1: �1 � �2 � �0

P � 2 31 � 	1|z0|2 4

z0 � z��2 or z0 � �z��2H˛1: �1 � �2 
 �0

Z0 �
X1 � X2 � �0

B

�2
1

n1



�2
2

n2

H0: �1 � �2 � �0
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10-1.2 Type II Error and Choice of Sample Size

Use of Operating Characteristic Curves
The operating characteristic curves (OC) in Appendix Charts VIIa, VIIb, VIIc, and VIId may
be used to evaluate the type II error probability for the hypotheses in the display (10-2). These
curves are also useful in determining sample size. Curves are provided for � � 0.05 and � �
0.01. For the two-sided alternative hypothesis, the abscissa scale of the operating characteris-
tic curve in charts VIIa and VIIb is d, where

(10-3)

and one must choose equal sample sizes, say, n � n1 � n2. The one-sided alternative hypothe-
ses require the use of Charts VIIc and VIId. For the one-sided alternatives H1: �1 � �2 
 �0 or
H1: �1 � �2 � �0, the abscissa scale is also given by

It is not unusual to encounter problems where the costs of collecting data differ substantially
between the two populations, or where one population variance is much greater than the other.
In those cases, we often use unequal sample sizes. If n1 � n2, the operating characteristic curves
may be entered with an equivalent value of n computed from

(10-4)

If n1 � n2, and their values are fixed in advance, Equation 10-4 is used directly to calculate n,
and the operating characteristic curves are entered with a specified d to obtain �. If we are
given d and it is necessary to determine n1 and n2 to obtain a specified �, say, �*, we guess at
trial values of n1 and n2, calculate n in Equation 10-4, and enter the curves with the specified
value of d to find �. If � � �*, the trial values of n1 and n2 are satisfactory. If � � �*,
adjustments to n1 and n2 are made and the process is repeated.

n �
�2

1 � �2
2

�2
1�n1 � �2

2�n2

d �
ƒ �1 � �2 � �0 ƒ
2�1

2 � �2
2

�
ƒ � � �0 ƒ
2�1

2 � �2
2

d �
ƒ �1 � �2 � �0 ƒ

2�2
1 � �2

2

�
ƒ � � �0 ƒ
2�2

1 � �2
2

EXAMPLE 10-2 Paint Drying Time, Sample Size from OC Curves
Consider the paint drying time experiment from Example 10-1.
If the true difference in mean drying times is as much as 10 min-
utes, find the sample sizes required to detect this difference
with probability at least 0.90.

The appropriate value of the abscissa parameter is (since
�0 � 0, and � � 10)

and since the detection probability or power of the test must be
at least 0.9, with � � 0.05, we find from Appendix Chart VIIc
that n � n1 � n2 11.�

d �
ƒ �1 � �2 ƒ
2�2

1 � �2
2

�
10

282 � 82
� 0.88

Sample Size Formulas
It is also possible to obtain formulas for calculating the sample sizes directly. Suppose
that the null hypothesis H0: �1 � �2 � �0 is false and that the true difference in means is
�1 � �2 � �, where � 
 �0. One may find formulas for the sample size required to obtain
a specific value of the type II error probability � for a given difference in means � and level
of significance �.
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For a one-sided alternative hypothesis with significance level �, the sample size
n1 � n2 � n required to detect a true difference in means of �(��0) with power
at least 1 � � is

(10-6)n �
1z� � z�2

21�2
1 � �2

22

1� � �02
2

Sample Size for
a One-Sided

Test on the
Difference in

Means with 
n1 � n2,

Variances
Known 

For the two-sided alternative hypothesis with significance level �, the sample size
n1 � n2 � n required to detect a true difference in means of � with power at least
1 � � is

(10-5)n �
1z��2 � z�2

21�2
1 � �2

22

1� � �02
2

Sample Size for
a Two-Sided

Test on the
Difference in

Means with 
n1 � n2,

Variances
Known 

For example, we first write the expression for the -error for the two-sided alternative,
which is

The derivation for sample size closely follows the single-sample case in Section 9-2.2. 

� � � ± z��2 �
� � �0

B

�2
1

n1
�

�2
2

n2

≤ � �  ±�z��2 �
� � �0

B

�2
1

n1
�

�2
2

n2

≤

�

This approximation is valid when is small compared to �.�1�z��2 � 1� � �021n�1�2
1 � �2

22

where � is the true difference in means of interest. Then by following a procedure similar
to that used to obtain Equation 9-17, the expression for � can be obtained for the case
where n � n1 � n2.

EXAMPLE 10-3 Paint Drying Time Sample Size
To illustrate the use of these sample size equations, consider
the situation described in Example 10-1, and suppose that if
the true difference in drying times is as much as 10 minutes,
we want to detect this with probability at least 0.90. Under the
null hypothesis, �0 � 0. We have a one-sided alternative hy-
pothesis with � � 10, � � 0.05 (so z� � z0.05 � 1.645), and
since the power is 0.9, � � 0.10 (so z� � z0.10 � 1.28).
Therefore, we may find the required sample size from
Equation 10-6 as follows:

This is exactly the same as the result obtained from using the
OC curves.

 �
11.645 � 1.2822 3 1822 � 1822 4

110 � 022
� 11

 n �
1z� � z�2

21�2
1 � �2

22

1� � �02
2

10-1.3 Confidence Interval on the Difference in Means, 
Variances Known   

The 100(1 � �)% confidence interval on the difference in two means �1 � �2 when the vari-
ances are known can be found directly from results given previously in this section. Recall
that X11, X12, p , is a random sample of n1 observations from the first population and X21,X1n1
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358 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

X22, p , is a random sample of n2 observations from the second population. The difference
in sample means is a point estimator of , and

has a standard normal distribution if the two populations are normal or is approximately stan-
dard normal if the conditions of the central limit theorem apply, respectively. This implies that

, or

This can be rearranged as

Therefore, the 100(1 � �)% confidence interval for �1 � �2 is defined as follows.

P aX1 � X2 � z��2B

�2
1

n1
�

�2
2

n2
� �1 � �2 � X1 � X2 � z��2B

�2
1

n1
�

�2
2

n2
b � 1 � �

P ≥�z��2 �
X1 � X2 � 1�1 � �22

B

�2
1

n1
�

�2
2

n2

� z��2 ¥ � 1 � �

P1�z��2 � Z � z��22 � 1 � �

Z �
X1 � X2 � 1�1 � �22

B

�2
1

n1
�

�2
2

n2

�1 � �2X1 � X2

X2n2

If and are the means of independent random samples of sizes n1 and n2 from
two independent normal populations with known variances and , respectively,
a 100(1 � �)% confidence interval for �1 � �2 is

(10-7)

where z��2 is the upper ��2 percentage point of the standard normal distribution.

x1 � x2 � z��2B

�2
1

n1
�

�2
2

n2
� �1 � �2 � x1 � x2 � z��2B

�2
1

n1
�

�2
2

n2

�2
2�1

2
x2x1

Confidence
Interval on the

Difference 
in Means,
Variances

Known

The confidence level 1 � � is exact when the populations are normal. For nonnormal popu-
lations, the confidence level is approximately valid for large sample sizes.

EXAMPLE 10-4 Aluminum Tensile Strength
Tensile strength tests were performed on two different grades
of aluminum spars used in manufacturing the wing of a com-
mercial transport aircraft. From past experience with the spar
manufacturing process and the testing procedure, the standard
deviations of tensile strengths are assumed to be known. The
data obtained are as follows: , , ,

, , and . If and denote the
true mean tensile strengths for the two grades of spars, we may
find a 90% confidence interval on the difference in mean
strength �1 � �2 as follows:

�2�1�2 � 1.5x2 � 74.5n2 � 12
�1 � 1x1 � 87.6n1 � 10

� 87.6 � 74.5 � 1.645 
B

1122

10
�
11.522

12

87.6 � 74.5 � 1.645 ˛

B

1122

10
�
11.522

12
� �1 � �2

� x1 � x2 � z��2 ˛

B

�2
1

n1
�

�2
2

n2

x1 � x2 � z��2 ˛

B

�2
1

n1
�

�2
2

n2
 � �1 � �2
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(10-10)x1 � x2 � z� 
B

�2
1

n1
�

�2
2

n2
� �1 � �2

EXERCISES FOR SECTION 10-1

10-1. Consider the hypothesis test against
with known variances and 

Suppose that sample sizes and and that
and . Use .

(a) Test the hypothesis and find the P-value.
(b) Explain how the test could be conducted with a confi-

dence interval.
(c) What is the power of the test in part (a) for a true differ-

ence in means of 3?
(d) Assuming equal sample sizes, what sample size should be

used to obtain if the true difference in means is 3?
Assume that .� � 0.05

� � 0.05

� � 0.05x2 � 7.8x1 � 4.7
n2 � 15n1 � 10

�2 � 5.�1 � 10H1 : �1 � �2

H0 : �1 � �2 10-2. Consider the hypothesis test against
with known variances and 

Suppose that sample sizes and and that
and . Use .

(a) Test the hypothesis and find the P-value.
(b) Explain how the test could be conducted with a confi-

dence interval.
(c) What is the power of the test in part (a) if is 4 units less

than ?
(d) Assuming equal sample sizes, what sample size should be

used to obtain if is 4 units less than ?
Assume that .� � 0.05

�2�1� � 0.05

�2

�1

� � 0.05x2 � 19.7x1 � 14.2
n2 � 15n1 � 10

�2 � 5.�1 � 10H1 : �1 � �2

H0 : �1 � �2

(10-8)n � a
z��2

E
b

2

 1�2
1 � �2

22

Choice of Sample Size
If the standard deviations �1 and �2 are known (at least approximately) and the two sample
sizes n1 and n2 are equal (n1 � n2 � n, say), we can determine the sample size required so that
the error in estimating �1 � �2 by will be less than E at 100(1 � �)% confidence. The
required sample size from each population is

x1 � x2

(10-9)�1 � �2 � x1 � x2 � z�  

B

�2
1

n1
�

�2
2

n2

Remember to round up if n is not an integer. This will ensure that the level of confidence does
not drop below 100(1 � �)%.

One-Sided Confidence Bounds
One-sided confidence bounds on �1 � �2 may also be obtained. A 100(1 � �)% upper-
confidence bound on �1 � �2 is

Sample Size for a
Confidence Interval
on the Difference in

Means, Variances
Known

One-Sided
Upper

Confidence
Bound

One-Sided
Lower

Confidence
Bound

Therefore, the 90% confidence interval on the difference in
mean tensile strength (in kilograms per square millimeter)
is

(in kilograms per square
millimeter)

12.22 � �1 � �2 � 13.98

Practical Interpretation: Notice that the confidence inter-
val does not include zero, implying that the mean strength of
aluminum grade 1 (�1) exceeds the mean strength of
aluminum grade 2 (�2). In fact, we can state that we are 90%
confident that the mean tensile strength of aluminum grade 1
exceeds that of aluminum grade 2 by between 12.22 and 13.98
kilograms per square millimeter.

and a 100(1 � �)% lower-confidence bound is
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10-3. Consider the hypothesis test against
with known variances and 

Suppose that sample sizes and and that
and . Use .

(a) Test the hypothesis and find the P-value.
(b) Explain how the test could be conducted with a confi-

dence interval.
(c) What is the power of the test in part (a) if is 2 units

greater than ?
(d) Assuming equal sample sizes, what sample size should be

used to obtain if is 2 units greater than ?
Assume that .

10-4. Two machines are used for filling plastic bottles with
a net volume of 16.0 ounces. The fill volume can be assumed
normal, with standard deviation �1 � 0.020 and �2 � 0.025
ounces. A member of the quality engineering staff suspects
that both machines fill to the same mean net volume, whether
or not this volume is 16.0 ounces. A random sample of 10 bot-
tles is taken from the output of each machine.

Machine 1 Machine 2

16.03 16.01 16.02 16.03

16.04 15.96 15.97 16.04

16.05 15.98 15.96 16.02

16.05 16.02 16.01 16.01

16.02 15.99 15.99 16.00

(a) Do you think the engineer is correct? Use � � 0.05. What
is the P-value for this test?

(b) Calculate a 95% confidence interval on the difference in
means. Provide a practical interpretation of this interval.

(c) What is the power of the test in part (a) for a true differ-
ence in means of 0.04?

(d) Assuming equal sample sizes, what sample size should be
used to assure that � � 0.05 if the true difference in
means is 0.04? Assume that � � 0.05.

10-5. Two types of plastic are suitable for use by an elec-
tronics component manufacturer. The breaking strength of this
plastic is important. It is known that �1 � �2 � 1.0 psi. From
a random sample of size n1 � 10 and n2 � 12, we obtain

and . The company will not adopt plas-
tic 1 unless its mean breaking strength exceeds that of plastic
2 by at least 10 psi.
(a) Based on the sample information, should it use plastic 1?

Use � � 0.05 in reaching a decision. Find the P-value.
(b) Calculate a 95% confidence interval on the difference in

means. Suppose that the true difference in means is really
12 psi.

(c) Find the power of the test assuming that � � 0.05.
(d) If it is really important to detect a difference of 12 psi, are

the sample sizes employed in part (a) adequate, in your
opinion?

x2 � 155.0x1 � 162.5

� � 0.05
�2�1� � 0.05

�2

�1

� � 0.01x2 � 21.3x1 � 24.5
n2 � 15n1 � 10

�2 � 5.�1 � 10H1 : �1 
 �2

H0 : �1 � �2 10-6. The burning rates of two different solid-fuel propel-
lants used in aircrew escape systems are being studied. It is
known that both propellants have approximately the same
standard deviation of burning rate; that is �1 � �2 � 3
centimeters per second. Two random samples of n1 � 20 and
n2 � 20 specimens are tested; the sample mean burning rates
are � 18 centimeters per second and � 24 centimeters
per second.
(a) Test the hypothesis that both propellants have the same

mean burning rate. Use � � 0.05. What is the P-value?
(b) Construct a 95% confidence interval on the difference in

means �1 � �2. What is the practical meaning of this
interval?

(c) What is the �-error of the test in part (a) if the true differ-
ence in mean burning rate is 2.5 centimeters per second?

(d) Assuming equal sample sizes, what sample size is needed to
obtain power of 0.9 at a true difference in means of 14 cm/s?

10-7. Two different formulations of an oxygenated motor
fuel are being tested to study their road octane numbers. The
variance of road octane number for formulation 1 is �
1.5, and for formulation 2 it is �2

2 � 1.2. Two random sam-
ples of size n1 � 15 and n2 � 20 are tested, and the mean road
octane numbers observed are � 89.6 and � 92.5.
Assume normality.
(a) If formulation 2 produces a higher road octane number

than formulation 1, the manufacturer would like to detect
it. Formulate and test an appropriate hypothesis, using 
� � 0.05. What is the P-value?

(b) Explain how the question in part (a) could be answered
with a 95% confidence interval on the difference in mean
road octane number.

(c) What sample size would be required in each population
if we wanted to be 95% confident that the error in esti-
mating the difference in mean road octane number is less
than 1?

10-8. A polymer is manufactured in a batch chemical
process. Viscosity measurements are normally made on each
batch, and long experience with the process has indicated that
the variability in the process is fairly stable with � � 20.
Fifteen batch viscosity measurements are given as follows:

724, 718, 776, 760, 745, 759, 795, 756, 742, 740, 761, 749,
739, 747, 742

A process change is made which involves switching the type
of catalyst used in the process. Following the process change,
eight batch viscosity measurements are taken: 

735, 775, 729, 755, 783, 760, 738, 780 

Assume that process variability is unaffected by the catalyst
change. If the difference in mean batch viscosity is 10 or less,
the manufacturer would like to detect it with a high probability.
(a) Formulate and test an appropriate hypothesis using � �

0.10. What are your conclusions? Find the P-value.

x2x1

�2
1

x2x1
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10-2 INFERENCE ON THE DIFFERENCE IN MEANS OF TWO
NORMAL DISTRIBUTIONS, VARIANCES UNKNOWN

We now extend the results of the previous section to the difference in means of the two dis-
tributions in Fig. 10-1 when the variances of both distributions and are unknown. If the
sample sizes n1 and n2 exceed 40, the normal distribution procedures in Section 10-1 could be
used. However, when small samples are taken, we will assume that the populations are normally
distributed and base our hypotheses tests and confidence intervals on the t distribution. This
nicely parallels the case of inference on the mean of a single sample with unknown variance.

10-2.1 Hypotheses Tests on the Difference in Means, Variances Unknown

We now consider tests of hypotheses on the difference in means �1 � �2 of two normal
distributions where the variances and are unknown. A t-statistic will be used to test these
hypotheses. As noted above and in Section 9-3, the normality assumption is required to
develop the test procedure, but moderate departures from normality do not adversely affect
the procedure. Two different situations must be treated. In the first case, we assume that the
variances of the two normal distributions are unknown but equal; that is, � � �2. In the
second, we assume that and are unknown and not necessarily equal.

Case 1: �1
2 � �2

2 � �2

Suppose we have two independent normal populations with unknown means �1 and �2, and
unknown but equal variances, � � �2. We wish to test

(10-11)

Let X11, X12, p , be a random sample of n1 observations from the first population and
X21, X22, p , be a random sample of n2 observations from the second population. 
Let , , S2

1, and S2
2 be the sample means and sample variances, respectively. Now the ex-

pected value of the difference in sample means is so
is an unbiased estimator of the difference in means. The variance of is

V1X1 � X22 �
�2

n1
�

�2

n2
� �2 a

1
n1

�
1
n2
b

X1 � X2X1 � X2

E1X1 � X22 � �1 � �2,X1 � X2

X2X1

X2n2

X1n1

H1 
: �1 � �2 � �0

H0 
: �1 � �2 � �0

�2
2�2

1

�2
2�2

1

�2
2�2

1

�2
2�2

1

�2
2�2

1

(b) Find a 90% confidence interval on the difference in mean
batch viscosity resulting from the process change.

(c) Compare the results of parts (a) and (b) and discuss your
findings.

10-9. The concentration of active ingredient in a liquid
laundry detergent is thought to be affected by the type of
catalyst used in the process. The standard deviation of active
concentration is known to be 3 grams per liter, regardless of
the catalyst type. Ten observations on concentration are taken
with each catalyst, and the data follow:

Catalyst 1: 57.9, 66.2, 65.4, 65.4, 65.2, 62.6, 67.6, 63.7,
67.2, 71.0

Catalyst 2: 66.4, 71.7, 70.3, 69.3, 64.8, 69.6, 68.6, 69.4, 65.3,
68.8

(a) Find a 95% confidence interval on the difference in mean
active concentrations for the two catalysts. Find the
P-value.

(b) Is there any evidence to indicate that the mean active con-
centrations depend on the choice of catalyst? Base your
answer on the results of part (a).

(c) Suppose that the true mean difference in active concentra-
tion is 5 grams per liter. What is the power of the test to
detect this difference if � � 0.05?

(d) If this difference of 5 grams per liter is really important,
do you consider the sample sizes used by the experimenter
to be adequate? Does the assumption of normality seem
reasonable for both samples?
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It seems reasonable to combine the two sample variances and to form an estimator
of �2. The pooled estimator of �2 is defined as follows.

S2
2S2

1

The pooled estimator of �2, denoted by S2
p, is defined by

(10-12)Sp
2 �
1n1 � 12S2

1 � 1n2 � 12S2
2

n1 � n2 � 2

It is easy to see that the pooled estimator can be written as

where 0 � w � 1. Thus Sp
2 is a weighted average of the two sample variances S1

2 and S2
2,

where the weights w and 1 � w depend on the two sample sizes n1 and n2. Obviously, if n1 �
n2 � n, w � 0.5 and Sp

2 is just the arithmetic average of S1
2 and S2

2. If n1 � 10 and n2 � 20
(say), w � 0.32 and 1 � w � 0.68. The first sample contributes n1 � 1 degrees of freedom
to Sp

2 and the second sample contributes n2 � 1 degrees of freedom. Therefore, Sp
2 has 

n1 � n2 � 2 degrees of freedom.
Now we know that

has a N(0, 1) distribution. Replacing � by Sp gives the following.

Z �
X1 � X2 � 1�1 � �22

�
B

1
n1

�
1
n2

S2
p �

n1 � 1

n1 � n2 � 2
S2

1 �
n2 � 1

n1 � n2 � 2
S2

2 � wS2
1 � 11 � w2S2

2

S2
p

Pooled
Estimator of

Variance

Given the assumptions of this section, the quantity

(10-13)

has a t distribution with n1 � n2 � 2 degrees of freedom.

T �
X1 � X2 � 1�1 � �22

Sp  

B

1
n1

�
1
n2

The use of this information to test the hypotheses in Equation 10-11 is now straightfor-
ward: Simply replace by and the resulting test statistic has a t distribution with

degrees of freedom under H0: Therefore, the reference distribu-
tion for the test statistic is the t distribution with degrees of freedom. The calcula-
tion of P-values and the location of the critical region for fixed-significance-level testing for both
two- and one-sided alternatives parallels those in the one-sample case. Because a pooled esti-
mate of variance is used, the procedure is often called the pooled t-test.

n1 � n2 � 2
�1 � �2 � �0.n1 � n2 � 2

�0,�1 � �2
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Table 10-1 Catalyst Yield Data, Example 10-5

Observation
Number Catalyst 1 Catalyst 2

1 91.50 89.19
2 94.18 90.95
3 92.18 90.46
4 95.39 93.21
5 91.79 97.19
6 89.07 97.04
7 94.72 91.07
8 89.21 92.75

92.255 92.733
s2 � 2.98s1 � 2.39

x2 �x1 �

Null hypothesis: H0: �1 � �2 �

Test statistic: (10-14)

Rejection Criterion
Alternative Hypothesis P-Value for Fixed-Level Tests

Probability above |t0| and
probability below 

Probability above t0

Probability below t0 t0 � �t�,n1�n2�2H1: �1 � �2 � �0

t0 
 t�,n1�n2�2H1: �1 � �2 
 �0

t0 � �t��2,n1�n2�2�|t0|
t0 
 t��2,n1�n2�2 orH1: �1 � �2 � �0

T0 �
X1 � X2 � �0

Sp 

B

1
n1

�
1
n2

�0

Tests on the
Difference in

Means of Two
Normal

Distributions,
Variances

Unknown and
Equal*

EXAMPLE 10-5 Yield from a Catalyst
Two catalysts are being analyzed to determine how they affect
the mean yield of a chemical process. Specifically, catalyst 1 is
currently in use, but catalyst 2 is acceptable. Since catalyst 2 is
cheaper, it should be adopted, providing it does not change the
process yield. A test is run in the pilot plant and results in the
data shown in Table 10-1. Is there any difference between the
mean yields? Use � � 0.05, and assume equal variances.

The solution using the seven-step hypothesis-testing pro-
cedure is as follows:

1. Parameter of interest: The parameters of interest are
�1 and �2, the mean process yield using catalysts 1 and 2,
respectively, and we want to know if �1 � �2 � 0.

2. Null hypothesis: H0: �1 � �2 � 0, or H0: �1 � �2

3. Alternative hypothesis: H1: �1 �2�

4. Test statistic: The test statistic is

5. Reject H0 if: Reject H0 if the P-value is less than 0.05.

6. Computations: From Table 10-1 we have ,
, , , , and .

Therefore

 sp � 27.30 � 2.70

 s2
p �
1n1 � 12s2

1 � 1n2 � 12s2
2

n1 � n2 � 2
�
172 12.3922 � 712.9822

8 � 8 � 2
� 7.30

n2 � 8s2 � 2.98x2 � 92.733n1 � 8s1 � 2.39
x1 � 92.255

t0 �
x1 � x2 � 0

sp 

B

1
n1

�
1
n2

*While we have given the development of this procedure for the case where the sample sizes could be different, there
is an advantage to using equal sample sizes n1 � n2 � n. When the sample sizes are the same from both populations,
the t-test is more robust to the assumption of equal variances.
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Minitab Computations

Two-Sample T-Test and CI: Cat 1, Cat 2

Two-sample T for Cat 1 vs Cat 2

N Mean StDev SE Mean
Cat 1 8 92.26 2.39 0.84
Cat 2 8 92.73 2.99 1.1

Difference � mu Cat 1 � mu Cat 2
Estimate for difference: �0.48
95% CI for difference: (�3.37, 2.42)
T-Test of difference � 0 (vs not � ): T-Value � �0.35 P-Value � 0.730 DF � 14
Both use Pooled StDev � 2.70

Notice that the numerical results are essentially the same as the manual computations in
Example 10-5. The P-value is reported as P � 0.73. The two-sided CI on �1 � �2 is also
reported. We will give the computing formula for the CI in Section 10-2.3. Figure 10-2 shows
the normal probability plot of the two samples of yield data and comparative box plots. The
normal probability plots indicate that there is no problem with the normality assumption.

The Minitab two-sample t-test and confidence interval procedure for Example 10-5
follows:

and

7. Conclusions: Since �2.145, from Appendix Table V we
find that t0.40,14 � 0.258 and t0.25,14 � 0.692. Therefore,

t0 �
x1 � x2

2.70˛

B

1
n1

�
1
n2

�
92.255 � 92.733

2.70
B

1

8
�

1

8

� �0.35

since 0.258 � 0.35 � 0.692, we conclude that lower and
upper bounds on the P-value are 0.50 � P � 0.80.
Therefore, since the P-value exceeds � � 0.05, the null
hypothesis cannot be rejected.

Practical Interpretation: At the 0.05 level of significance,
we do not have strong evidence to conclude that catalyst 2 re-
sults in a mean yield that differs from the mean yield when
catalyst 1 is used.

1

88

5

10

20

30
40
50
60
70

80

90

95

99

P
e
rc

e
n
ta

g
e

93 98

Cat 1

Cat 2

Yield data

(a) (b)

1

90

92

94

96

98

88
2

Y
ie

ld

Catalyst type

Figure 10-2 Normal probability plot and comparative box plot for the catalyst yield data in Example 10-5. 
(a) Normal probability plot, (b) Box plots.
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If is true, the statistic

(10-15)

is distributed approximately as t with degrees of freedom given by

(10-16)

If v is not an integer, round down to the nearest integer.

v �

a
s1

2

n1
�

s2
2

n2
b

2

1s1
2�n12

2

n1 � 1
�
1s2

2�n22
2

n2 � 1

T 
*
0 �

X1 � X2 � �0

B

S1
2

n1
�

S2
2

n2

H0: �1 � �2 � �0

Furthermore, both straight lines have similar slopes, providing some verification of the
assumption of equal variances. The comparative box plots indicate that there is no obvious
difference in the two catalysts, although catalyst 2 has slightly greater sample variability.

Case 2: �2
1 � �2

2

In some situations, we cannot reasonably assume that the unknown variances �2
1 and �2

2 are
equal. There is not an exact t-statistic available for testing H0: �1 � �2 � �0 in this case.
However, an approximate result can be applied.

Therefore, if �2
1 � �2

2, the hypotheses on differences in the means of two normal distributions are
tested as in the equal variances case, except that T*

0 is used as the test statistic and n1 � n2 � 2 is
replaced by v in determining the degrees of freedom for the test.

Case 2: Test
Statistic for the

Difference in
Means, Variances

Unknown and
Not Assumed

Equal

EXAMPLE 10-6 Arsenic in Drinking Water
Arsenic concentration in public drinking water supplies is a
potential health risk. An article in the Arizona Republic
(May 27, 2001) reported drinking water arsenic concentra-
tions in parts per billion (ppb) for 10 metropolitan Phoenix
communities and 10 communities in rural Arizona. The data
follow:

Metro Phoenix Rural Arizona 

Phoenix, 3 Rimrock, 48
Chandler, 7 Goodyear, 44
Gilbert, 25 New River, 40
Glendale, 10 Apache Junction, 38
Mesa, 15 Buckeye, 33
Paradise Valley, 6 Nogales, 21
Peoria, 12 Black Canyon City, 20
Scottsdale, 25 Sedona, 12
Tempe, 15 Payson, 1
Sun City, 7 Casa Grande, 18

1x2 � 27.5, s2 � 15.321x1 � 12.5, s1 � 7.632

We wish to determine if there is any difference in mean ar-
senic concentrations between metropolitan Phoenix commu-
nities and communities in rural Arizona. Figure 10-3 shows a
normal probability plot for the two samples of arsenic concen-
tration. The assumption of normality appears quite reasonable,
but since the slopes of the two straight lines are very different,
it is unlikely that the population variances are the same.

Applying the seven-step procedure gives the following:

1. Parameter of interest: The parameters of interest are the
mean arsenic concentrations for the two geographic
regions, say, �1 and �2, and we are interested in deter-
mining whether �1 � �2 � 0.

2. Non hypothesis: H0: �1 � �2 � 0, or H0: �1 � �2

3. Alternative hypothesis: H1: �1 � �2

4. Test statistic: The test statistic is

t*0 �
x1 � x2 � 0

B

s2
1

n1
�

s2
2

n2
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Figure 10-3 Normal
probability plot of the 
arsenic concentration
data from Example
10-6.

5. The degrees of freedom on are found from Equation
10-16 as

Therefore, using � � 0.05 and a fixed-significance-level
test, we would reject H0: �1 � �2 if 
 t0.025,13 � 2.160
or if � �t0.025,13 � �2.160.t*0

t*0

 �

c
17.6322

10
�
115.322

10
d

2

3 17.6322�10 42

9
�
3 115.322�10 42

9

� 13.2 � 13

 v �

a
s1

2

n1
�

s2
2

n2
b

2

1s1
2�n12

2

n1 � 1
�
1s2

2�n22
2

n2 � 1

t*0 6. Computations: Using the sample data we find

7. Conclusions: Because � �2.77 � t0.025,13 � �2.160,
we reject the null hypothesis. 

Practical Interpretation:  There is strong evidence to con-
clude that mean arsenic concentration in the drinking water in
rural Arizona is different from the mean arsenic concentration
in metropolitan Phoenix drinking water. Furthermore, the mean
arsenic concentration is higher in rural Arizona communities.
The P-value for this test is approximately P � 0.016.

t*0

t*0 �
x1 � x2

B

s2
1

n1
�

s2
2

n2

�
12.5 � 27.5

B

17.6322

10
�
115.322

10

� �2.77

The Minitab output for this example follows:

Minitab Computations

Two-Sample T-Test and CI: PHX, RuralAZ

Two-sample T for PHX vs RuralAZ

N Mean StDev SE Mean
PHX 10 12.50 7.63 2.4
RuralAZ 10 27.5 15.3 4.9

Difference � mu PHX � mu RuralAZ
Estimate for difference: �15.00
95% CI for difference: (�26.71, �3.29)
T-Test of difference � 0 (vs not � ): T-Value � �2.77 P-Value � 0.016 DF � 13
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Minitab Computations

Power and Sample Size

2-Sample t Test
Testing mean 1 � mean 2 (versus not �)
Calculating power for mean 1 � mean 2 � difference
Alpha � 0.05 Sigma � 2.7

Sample Target Actual
Difference Size Power Power

4 10 0.8500 0.8793 

The numerical results from Minitab exactly match the calculations from Example 10-6. Note
that a two-sided 95% CI on �1 � �2 is also reported. We will discuss its computation in
Section 10-2.3; however, note that the interval does not include zero. Indeed, the upper 95%
of confidence limit is �3.29 ppb, well below zero, and the mean observed difference is

.

10-2.2 Type II Error and Choice of Sample Size

The operating characteristic curves in Appendix Charts VIIe, VIIf, VIIg, and VIIh are used to
evaluate the type II error for the case where �2

1 � �2
2 � �2. Unfortunately, when �2

1 � �2
2, the

distribution of is unknown if the null hypothesis is false, and no operating characteristic
curves are available for this case.

For the two-sided alternative H1: �1 � �2 � � � �0, when �2
1 � �2

2 � �2 and n1 � n2 �
n, Charts VIIe and VIIf are used with

(10-17)

where � is the true difference in means that is of interest. To use these curves, they must be
entered with the sample size . For the one-sided alternative hypothesis, we use
Charts VIIg and VIIh and define d and as in Equation 10-17. It is noted that the parameter d
is a function of �, which is unknown. As in the single-sample t-test, we may have to rely on a
prior estimate of � or use a subjective estimate. Alternatively, we could define the differences
in the mean that we wish to detect relative to �.

�
n* � 2n � 1

d �
ƒ � � �0 ƒ

2�

T*
0

x1 � x2 � 12.5 � 27.5 � �15 ppb

EXAMPLE 10-7 Yield from Catalyst Sample Size
Consider the catalyst experiment in Example 10-5. Suppose
that, if catalyst 2 produces a mean yield that differs from the
mean yield of catalyst 1 by 4.0%, we would like to reject
the null hypothesis with probability at least 0.85. What
sample size is required?

Using sp � 2.70 as a rough estimate of the common stan-
dard deviation �, we have d � ƒ � ƒ �2� � ƒ 4.0 ƒ � 3 122 12.702 4 �

0.74. From Appendix Chart VIIe with and ,
we find n* , approximately. Therefore, since n*

and we would use sample sizes of n1 � n2 � n � 11.

n �
n* � 1

2
�

20 � 1

2
� 10.5 � 111say2

� 2n � 1,� 20
� � 0.15d � 0.74

Minitab will also perform power and sample size calculations for the two-sample t-test (equal
variances). The output from Example 10-7 is as follows:

The results agree fairly closely with the results obtained from the O.C. curve.
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10-2.3 Confidence Interval on the Difference in Means, 
Variances Unknown

Case 1: �2
1 � �2

2 � �2

To develop the confidence interval for the difference in means �1 � �2 when both variances
are equal, note that the distribution of the statistic

(10-18)

is the t distribution with degrees of freedom. Therefore 
Now substituting Equation 10-18 for T and manipulating the quan-

tities inside the probability statement will lead to the % confidence interval on
.�1 � �2

10011 � �2
t��2,n1�n2�22 � 1 � �.

P1�t��2,n1�n2�2 � T �n1 � n2 � 2

T �
X1 � X2 � 1�1 � �22

Sp 
B

1
n1

�
1
n2

If , s2
1, and s2

2 are the sample means and variances of two random samples of
sizes n1 and n2, respectively, from two independent normal populations with un-
known but equal variances, then a 100(1 � �)% confidence interval on the differ-
ence in means �1 � �2 is

(10-19)

where is the pooled estimate 
of the common population standard deviation, and is the upper 
percentage point of the t distribution with degrees of freedom.n1 � n2 � 2

��2t��2, n1�n2�2

sp � 2 3 1n1 � 12  s2
1 � 1n2 � 12  s2

2 4 � 1n1 � n2 � 22

� �1 � �2 � x1 � x2 � t��2, n1�n2�2˛ sp 
B

1
n1

�
1
n2

x1 � x2 � t��2, n1�n2�2˛ sp 
 
B

1
n1

�
1
n2

x1, x2

Case 1:
Confidence

Interval on the
Difference in

Means,
Variances

Unknowns and
Equal

EXAMPLE 10-8 Cement Hydration
An article in the journal Hazardous Waste and Hazardous
Materials (Vol. 6, 1989) reported the results of an analysis of
the weight of calcium in standard cement and cement doped
with lead. Reduced levels of calcium would indicate that the
hydration mechanism in the cement is blocked and would al-
low water to attack various locations in the cement struc-
ture. Ten samples of standard cement had an average weight
percent calcium of with a sample standard devia-
tion of , while 15 samples of the lead-doped cement
had an average weight percent calcium of with a
sample standard deviation of s2 � 4.0.

We will assume that weight percent calcium is normally
distributed and find a 95% confidence interval on the difference

x2 � 87.0,
s1 � 5.0

x1 � 90.0,

in means, , for the two types of cement. Furthermore,
we will assume that both normal populations have the same
standard deviation.

The pooled estimate of the common standard deviation
is found using Equation 10-12 as follows:

 � 19.52

 �
915.022 � 1414.022

10 � 15 � 2

 s2
p �
1n1 � 12  s2

1 � 1n2 � 12  s2
2

n1 � n2 � 2

�1 � �2
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EXERCISES FOR SECTION 10-2

10-10. Consider the computer output below.

Two-Sample T-Test and CI

Sample N Mean StDev SE Mean
1 12 10.94 1.26 0.36
2 16 12.15 1.99 0.50

Difference � mu (1) � mu (2)
Estimate for difference: �1.210
95% CI for difference: (�2.560, 0.140)
T-Test of difference � 0 (vs not �) : T-Value
� ? P-Value � ? DF � ?
Both use Pooled StDev � ?

(a) Fill in the missing values. Is this a one-sided or a two-sided
test? Use lower and upper bounds for the P-value.

(b) What are your conclusions if � � 0.05? What if � � 0.01?

(c) This test was done assuming that the two population vari-
ances were equal. Does this seem reasonable?

(d) Suppose that the hypothesis had been H0: �1 � �2 versus
H0: �1 � �2. What would your conclusions be if � � 0.05?

10-11. Consider the computer output below.

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
1 15 54.73 2.13 0.55
2 20 58.64 5.28 1.2

Difference � mu (1) � mu (2)
Estimate for difference: �3.91
95% upper bound for difference: ?
T-Test of difference � 0(vs <): T-Value �

�3.00 P-Value � ? DF � ?

If and s2
2 are the means and variances of two random samples of sizes n1 and

n2, respectively, from two independent normal populations with unknown and unequal
variances, an approximate 100(1 � �)% confidence interval on the difference in
means �1 � �2 is

(10-20)

where v is given by Equation 10-16 and is the upper percentage point of the
t distribution with v degrees of freedom.

��2t��2,˛�

x1 � x2 � t��2, � 
˛

B

s2
1

n1
�

s2
2

n2
� �1 � �2 � x1 � x2 � t��2, � 

˛

B

s2
1

n1
�

s2
2

n2

x1, ˛x2, s
2
1,

Case 2:
Approximate

Confidence
Interval on the

Difference in
Means,

Variances
Unknown Are
Not Assumed

Equal

Therefore, the pooled standard deviation estimate is
The 95% confidence interval is found

using Equation 10-19:

or upon substituting the sample values and using t0.025,23 � 2.069,

� 90.0 � 87.0 � 2.06914.42  
B

1

10
�

1

15

90.0 � 87.0 � 2.06914.42  
B

1

10
�

1

15
� �1 � �2

� x1 � x2 � t0.025,23 sp 

B

1
n1

�
1
n2

x1 � x2 � t0.025,23 sp 

B

1
n1

�
1
n2

� �1 � �2

sp � 119.52 � 4.4.
which reduces to

Practical Interpretation: Notice that the 95% confidence
interval includes zero; therefore, at this level of confidence we
cannot conclude that there is a difference in the means. Put
another way, there is no evidence that doping the cement with
lead affected the mean weight percent of calcium; therefore,
we cannot claim that the presence of lead affects this aspect of
the hydration mechanism at the 95% level of confidence.

�0.72 � �1 � �2 � 6.72

Case 2: �2
1 � �2

2

In many situations it is not reasonable to assume that �2
1 � �2

2. When this assumption is
unwarranted, we may still find a 100(1 � �)% confidence interval on �1 � �2 using the fact
that is distributed approximately as t with
degrees of freedom v given by Equation 10-16. The CI expression follows.

T* � 3X1 � X2 � 1�1 � �22 4 � ˛2S2
1�n1 � S2

2�n2
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Use in arriving at this conclusion. Find the 
P-value.

(b) Construct a 95% confidence interval for the difference in
mean rod diameter. Interpret this interval.

10-16. An article in Fire Technology investigated two dif-
ferent foam expanding agents that can be used in the nozzles
of fire-fighting spray equipment. A random sample of five ob-
servations with an aqueous film-forming foam (AFFF) had a
sample mean of 4.7 and a standard deviation of 0.6. A random
sample of five observations with alcohol-type concentrates
(ATC) had a sample mean of 6.9 and a standard deviation 0.8.
(a) Can you draw any conclusions about differences in mean

foam expansion? Assume that both populations are well
represented by normal distributions with the same stan-
dard deviations.

(b) Find a 95% confidence interval on the difference in mean
foam expansion of these two agents.

10-17. Two catalysts may be used in a batch chemical
process. Twelve batches were prepared using catalyst 1, resulting
in an average yield of 86 and a sample standard deviation of 3.
Fifteen batches were prepared using catalyst 2, and they
resulted in an average yield of 89 with a standard deviation
of 2. Assume that yield measurements are approximately
normally distributed with the same standard deviation.
(a) Is there evidence to support a claim that catalyst 2 pro-

duces a higher mean yield than catalyst 1? Use � � 0.01.
(b) Find a 99% confidence interval on the difference in mean

yields that can be used to test the claim in part (a).

10-18. The deflection temperature under load for two dif-
ferent types of plastic pipe is being investigated. Two random
samples of 15 pipe specimens are tested, and the deflection
temperatures observed are as follows (in �F):

Type 1: 206, 188, 205, 187, 194, 193, 207, 185, 189, 213,
192, 210, 194, 178, 205

Type 2: 177, 197, 206, 201, 180, 176, 185, 200, 197, 192,
198, 188, 189, 203, 192

(a) Construct box plots and normal probability plots for the
two samples. Do these plots provide support of the assump-
tions of normality and equal variances? Write a practical
interpretation for these plots.

(b) Do the data support the claim that the deflection tempera-
ture under load for type 1 pipe exceeds that of type 2? In
reaching your conclusions, use � � 0.05. Calculate a
P-value.

(c) If the mean deflection temperature for type 1 pipe exceeds
that of type 2 by as much as 5�F, it is important to detect this
difference with probability at least 0.90. Is the choice of 
n1 � n2 � 15 adequate? Use � � 0.05.

10-19. In semiconductor manufacturing, wet chemical etch-
ing is often used to remove silicon from the backs of wafers
prior to metallization. The etch rate is an important characteris-
tic in this process and known to follow a normal distribution.
Two different etching solutions have been compared, using two

� � 0.05(a) Fill in the missing values. Is this a one-sided or a two-sided
test? Use lower and upper bounds for the P-value.

(b) What are your conclusions if � � 0.05? What if � � 0.01?
(c) This test was done assuming that the two population vari-

ances were different. Does this seem reasonable?
(d) Suppose that the hypotheses had been H0: �1 � �2 versus

. What would your conclusions be if � � 0.05?

10-12. Consider the hypothesis test against
Suppose that sample sizes are and

that and , and that and
. Assume that and that the data are drawn

from normal distributions. Use .
(a) Test the hypothesis and find the P-value.
(b) Explain how the test could be conducted with a confi-

dence interval.
(c) What is the power of the test in part (a) for a true differ-

ence in means of 3?
(d) Assuming equal sample sizes, what sample size should 

be used to obtain if the true difference in means
is ? Assume that .

10-13. Consider the hypothesis test against
Suppose that sample sizes and 

that and , and that and 
Assume that and that the data are drawn from normal
distributions. Use .
(a) Test the hypothesis and find the P-value.
(b) Explain how the test could be conducted with a confi-

dence interval.
(c) What is the power of the test in part (a) if is 3 units less

than ?
(d) Assuming equal sample sizes, what sample size should be

used to obtain if is 2.5 units less than ?
Assume that .

10-14. Consider the hypothesis test against
Suppose that sample sizes and 

that and , and that and 
Assume that and that the data are drawn from normal
distributions. Use .
(a) Test the hypothesis and find the P-value.
(b) Explain how the test could be conducted with a confi-

dence interval.
(c) What is the power of the test in part (a) if is 3 units

greater than ?
(d) Assuming equal sample sizes, what sample size should be

used to obtain if is 3 units greater than ?
Assume that .

10-15. The diameter of steel rods manufactured on two dif-
ferent extrusion machines is being investigated. Two random
samples of sizes n1 � 15 and n2 � 17 are selected, and the
sample means and sample variances are , ,

, and , respectively. Assume that 
and that the data are drawn from a normal distribution.
(a) Is there evidence to support the claim that the two ma-

chines produce rods with different mean diameters? 

�2
1 � �2

2s2
2 � 0.40x2 � 8.68

s2
1 � 0.35x1 � 8.73

� � 0.05
�2�1� � 0.05

�2

�1

� � 0.05
�2

1 � �2
2

s2
2 � 9.s2

1 � 4x2 � 5.6x1 � 7.8
n2 � 10,n1 � 10H1 : �1 
 �2.

H0 : �1 � �2

� � 0.05
�2�1� � 0.05

�2

�1

� � 0.05
�2

1 � �2
2

s2
2 � 6.25.s2

1 � 4x2 � 7.8x1 � 6.2
n2 � 15,n1 � 15H1 : �1 � �2.

H0 : �1 � �2

� � 0.05�2
� � 0.05

� � 0.05
�2

1 � �2
2s2

2 � 6.25
s2

1 � 4x2 � 7.8x1 � 4.7n2 � 15,
n1 � 15H1 : �1 � �2.

H0 : �1 � �2

H0: �1 � �2
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10-22. A photoconductor film is manufactured at a nominal
thickness of 25 mils. The product engineer wishes to increase
the mean speed of the film, and believes that this can be
achieved by reducing the thickness of the film to 20 mils.
Eight samples of each film thickness are manufactured in a pi-
lot production process, and the film speed (in microjoules per
square inch) is measured. For the 25-mil film the sample data
result is and , while for the 20-mil film
the data yield and . Note that an increase
in film speed would lower the value of the observation in 
microjoules per square inch.
(a) Do the data support the claim that reducing the film thick-

ness increases the mean speed of the film? Use � � 0.10
and assume that the two population variances are equal
and the underlying population of film speed is normally
distributed. What is the P-value for this test?

(b) Find a 95% confidence interval on the difference in the
two means that can be used to test the claim in part (a).

10-23. Two companies manufacture a rubber material in-
tended for use in an automotive application. The part will be
subjected to abrasive wear in the field application, so we decide
to compare the material produced by each company in a test.
Twenty-five samples of material from each company are tested
in an abrasion test, and the amount of wear after 1000 cycles is
observed. For company 1, the sample mean and standard de-
viation of wear are milligrams/1000 cycles and

milligrams/1000 cycles, while for company 2 we obtain
milligrams/1000 cycles and milligrams/1000

cycles.
(a) Do the data support the claim that the two companies pro-

duce material with different mean wear? Use � � 0.05,
and assume each population is normally distributed but
that their variances are not equal. What is the P-value for
this test?

(b) Do the data support a claim that the material from com-
pany 1 has higher mean wear than the material from com-
pany 2? Use the same assumptions as in part (a).

(c) Construct confidence intervals that will address the ques-
tions in parts (a) and (b) above.

10-24. The thickness of a plastic film (in mils) on a sub-
strate material is thought to be influenced by the temperature
at which the coating is applied. A completely randomized
experiment is carried out. Eleven substrates are coated at
125�F, resulting in a sample mean coating thickness of

and a sample standard deviation of .
Another 13 substrates are coated at , for which 
and are observed. It was originally suspected that
raising the process temperature would reduce mean coating
thickness.
(a) Do the data support this claim? Use � � 0.01 and assume

that the two population standard deviations are not equal.
Calculate an approximate P-value for this test.

(b) How could you have answered the question posed regard-
ing the effect of temperature on coating thickness by using
a confidence interval? Explain your answer.

s2 � 20.1
x2 � 99.7150�F
s1 � 10.2x1 � 103.5

s2 � 8x2 � 15
s1 � 2

x1 � 20

s2 � 0.09x2 � 1.06
s1 � 0.11x1 � 1.15

random samples of 10 wafers for each solution. The observed
etch rates are as follows (in mils per minute):

Solution 1 Solution 2
9.9 10.6 10.2 10.0

9.4 10.3 10.6 10.2

9.3 10.0 10.7 10.7

9.6 10.3 10.4 10.4

10.2 10.1 10.5 10.3

(a) Construct normal probability plots for the two samples.
Do these plots provide support for the assumptions of nor-
mality and equal variances? Write a practical interpreta-
tion for these plots.

(b) Do the data support the claim that the mean etch rate is the
same for both solutions? In reaching your conclusions, use
� � 0.05 and assume that both population variances are
equal. Calculate a P-value.

(c) Find a 95% confidence interval on the difference in mean
etch rates.

10-20. Two suppliers manufacture a plastic gear used in a
laser printer. The impact strength of these gears measured in
foot-pounds is an important characteristic. A random sample
of 10 gears from supplier 1 results in and s1 � 12,
while another random sample of 16 gears from the second
supplier results in and s2 � 22.
(a) Is there evidence to support the claim that supplier 2 

provides gears with higher mean impact strength? Use 
� � 0.05, and assume that both populations are normally
distributed but the variances are not equal. What is the 
P-value for this test?

(b) Do the data support the claim that the mean impact
strength of gears from supplier 2 is at least 25 foot-pounds
higher than that of supplier 1? Make the same assump-
tions as in part (a).

(c) Construct a confidence interval estimate for the difference
in mean impact strength, and explain how this interval could
be used to answer the question posed regarding supplier-
to-supplier differences.

10-21. The melting points of two alloys used in formulating
solder were investigated by melting 21 samples of each mate-
rial. The sample mean and standard deviation for alloy 1 was

and , while for alloy 2 they were
and .

(a) Do the sample data support the claim that both alloys have
the same melting point? Use � � 0.05 and assume that
both populations are normally distributed and have the
same standard deviation. Find the P-value for the test.

(b) Suppose that the true mean difference in melting points 
is 3�F. How large a sample would be required to detect this
difference using an � � 0.05 level test with probability at
least 0.9? Use �1 � �2 � 4 as an initial estimate of the
common standard deviation.

s2 � 3�Fx2 � 426�F
s1 � 4�Fx1 � 420�F

x2 � 321

x1 � 290
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10-25. An article in Electronic Components and Technology
Conference (2001, Vol. 52, pp. 1167–1171) compared single
versus dual spindle saw processes for copper metallized
wafers. A total of 15 devices of each type were measured for the
width of the backside chipouts, 
and .
(a) Do the sample data support the claim that both processes

have the same chip outputs? Use and assume
that both populations are normally distributed and have
the same variance. Find the P-value for the test.

(b) Construct a 95% two-sided confidence interval on the
mean difference in spindle saw process. Compare this 
interval to the results in part (a).

(c) If the -error of the test when the true difference in chip
outputs is 15 should not exceed 0.1, what sample sizes
must be used? Use .

10-26. An article in IEEE International Symposium on
Electromagnetic Compatibility (2002, Vol. 2, pp. 667–670)
quantified the absorption of electromagnetic energy and the
resulting thermal effect from cellular phones. The experi-
mental results were obtained from in vivo experiments con-
ducted on rats. The arterial blood pressure values (mmHg)
for the control group (8 rats) during the experiment are

, and for the test group (9 rats) are ,
.

(a) Is there evidence to support the claim that the test group
has higher mean blood pressure? Use , and as-
sume that both populations are normally distributed but
the variances are not equal. What is the P-value for this
test?

(b) Calculate a confidence interval to answer the question in
part (a).

(c) Do the data support the claim that the mean blood pressure
from the test group is at least 15 mmHg higher than the
control group? Make the same assumptions as in part (a).

(d) Explain how the question in part (c) could be answered
with a confidence interval.

10-27. An article in Radio Engineering and Electronic
Physics (1984, Vol. 29, No. 3, pp. 63–66) investigated the 
behavior of a stochastic generator in the presence of external
noise. The number of periods was measured in a sample of 100
trains for each of two different levels of noise voltage, 100 and
150 mV. For 100 mV, the mean number of periods in a train
was 7.9 with . For 150 mV, the mean was 6.9 with

.
(a) It was originally suspected that raising noise voltage

would reduce mean number of periods. Do the data sup-
port this claim? Use and assume that each pop-
ulation is normally distributed and the two population
variances are equal. What is the P-value for this test?

(b) Calculate a confidence interval to answer the question
in part (a).

10-28. An article in Technometrics (1999, Vol. 41, pp.
202–211) studied the capability of a gauge by measuring

the weights of two sheets of paper. The data are shown
below.

Paper Observations

1 3.481 3.448 3.485 3.475 3.472

3.477 3.472 3.464 3.472 3.470

3.470 3.470 3.477 3.473 3.474

2 3.258 3.254 3.256 3.249 3.241

3.254 3.247 3.257 3.239 3.250

3.258 3.239 3.245 3.240 3.254

(a) Check the assumption that the data from each sheet are
from normal distributions.

(b) Test the hypothesis that the mean weight of the two sheets
are equal against the alternative that they are not (and
assume equal variances). Use and assume equal
variances. Find the P-value.

(c) Repeat the previous test with 
(d) Compare your answers for parts (b) and (c) and explain

why they are the same or different.
(e) Explain how the questions in parts (b) and (c) could be an-

swered with confidence intervals.

10-29. The overall distance traveled by a golf ball is tested
by hitting the ball with Iron Byron, a mechanical golfer with a
swing that is said to emulate the legendary champion, Byron
Nelson. Ten randomly selected balls of two different brands
are tested and the overall distance measured. The data follow:

Brand 1: 275, 286, 287, 271, 283, 271, 279, 275, 263, 267

Brand 2: 258, 244, 260, 265, 273, 281, 271, 270, 263, 268

(a) Is there evidence that overall distance is approximately
normally distributed? Is an assumption of equal variances
justified?

(b) Test the hypothesis that both brands of ball have equal
mean overall distance. Use � � 0.05. What is the P-value?

(c) Construct a 95% two-sided CI on the mean difference in
overall distance between the two brands of golf balls.

(d) What is the power of the statistical test in part (b) to detect
a true difference in mean overall distance of 5 yards?

(e) What sample size would be required to detect a true dif-
ference in mean overall distance of 3 yards with power of
approximately 0.75?

10-30. The “spring-like effect” in a golf club could be de-
termined by measuring the coefficient of restitution (the ratio
of the outbound velocity to the inbound velocity of a golf ball
fired at the clubhead). Twelve randomly selected drivers pro-
duced by two clubmakers are tested and the coefficient of
restitution measured. The data follow:

Club 1: 0.8406, 0.8104, 0.8234, 0.8198, 0.8235, 0.8562,
0.8123, 0.7976, 0.8184, 0.8265, 0.7773, 0.7871

� � 0.10.

� � 0.05

� � 0.01

s � 2.4
s � 2.6

� � 0.05

s2 � 10
x2 � 115s1 � 5x1 � 90

� � 0.05

�

� � 0.05

sdouble � 8.612xdouble � 45.278,
ssingle � 7.895xsingle � 66.385,
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10-3 A NONPARAMETRIC TEST FOR THE DIFFERENCE 
IN TWO MEANS

Suppose that we have two independent continuous populations X1 and X2 with means �1 and
�2, but we are unwilling to assume that they are (approximately) normal. However, we can as-
sume that the distributions of X1 and X2 are continuous and have the same shape and spread,
and differ only (possibly) in their locations. The Wilcoxon rank-sum test can be used to test
the hypothesis H0: �1 � �2. This procedure is sometimes called the Mann-Whitney test, al-
though the Mann-Whitney test statistic is usually expressed in a different form.

10-3.1 Description of the Wilcoxon Rank-Sum Test

Let X11, X12, . . . , and X21, X22, . . . , be two independent random samples of sizes n1 �
n2 from the continuous populations X1 and X2 described earlier. We wish to test the hypotheses

The test procedure is as follows. Arrange all n1 � n2 observations in ascending order of
magnitude and assign ranks to them. If two or more observations are tied (identical), use the
mean of the ranks that would have been assigned if the observations differed.

Let W1 be the sum of the ranks in the smaller sample (1), and define W2 to be the sum of
the ranks in the other sample. Then,

(10-21)

Now if the sample means do not differ, we will expect the sum of the ranks to be nearly equal
for both samples after adjusting for the difference in sample size. Consequently, if the sums of
the ranks differ greatly, we will conclude that the means are not equal.

Appendix Table X contains the critical value of the rank sums for � � 0.05 and � � 0.01
assuming the two-sided alternative above. Refer to Appendix Table X with the appropriate
sample sizes n1 and n2, and the critical value w� can be obtained. The null H0: �1 � �2 is
rejected in favor of H1: �1 � �2 if either of the observed values w1 or w2 is less than or equal
to the tabulated critical value w�.

The procedure can also be used for one-sided alternatives. If the alternative is H1: �1 �
�2, reject H0 if w1 � w�; for H1: �1 
 �2, reject H0 if w2 � w�. For these one-sided tests, the
tabulated critical values w� correspond to levels of significance of � � 0.025 and � � 0.005.

W2 �
1n1 � n22 1n1 � n2 � 12

2
� W1

H1: �1 � �2

H0: �1 � �2

X2n2
X1n1
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Club 2: 0.8305, 0.7905, 0.8352, 0.8380, 0.8145, 0.8465,
0.8244, 0.8014, 0.8309, 0.8405, 0.8256, 0.8476

(a) Is there evidence that coefficient of restitution is approxi-
mately normally distributed? Is an assumption of equal
variances justified?

(b) Test the hypothesis that both brands of clubs have equal
mean coefficient of restitution. Use � � 0.05. What is the
P-value of the test?

(c) Construct a 95% two-sided CI on the mean difference in
coefficient of restitution between the two brands of golf
clubs.

(d) What is the power of the statistical test in part (b) to detect
a true difference in mean coefficient of restitution of 0.2?

(e) What sample size would be required to detect a true dif-
ference in mean coefficient of restitution of 0.1 with
power of approximately 0.8?
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EXAMPLE 10-9 Axial Stress
The mean axial stress in tensile members used in an aircraft
structure is being studied. Two alloys are being investigated.
Alloy 1 is a traditional material, and alloy 2 is a new aluminum-
lithium alloy that is much lighter than the standard material.
Ten specimens of each alloy type are tested, and the axial stress
is measured. The sample data are assembled in Table 10-2.
Using � = 0.05, we wish to test the hypothesis that the means
of the two stress distributions are identical.

We will apply the seven-step hypothesis-testing proce-
dure to this problem:

1. Parameter of interest: The parameters of interest are the
means of the two distributions of axial stress.

2. Null hypothesis: H0: �1 � �2

3. Alternative hypothesis: H1: �1 � �2

4. Test statistic: We will use the Wilcoxon rank-sum test
statistic in Equation 10-21.

5. Reject H0 if: Since � � 0.05 and n1 � n2 � 10, Appendix
Table X gives the critical value as w0.05 � 78. If either w1

or w2 is less than or equal to w0.05 � 78, we will reject H0:
�1 � �2.

6. Computations: The data from Table 10-2 are analyzed in
ascending order and ranked as follows:

w2 �
1n1 � n22 1n1 � n2 � 12

2
� w1

Table 10-2 Axial Stress for Two Aluminum-Lithium Alloys

Alloy 1 Alloy 2

3238 psi 3254 psi 3261 psi 3248 psi
3195 3229 3187 3215
3246 3225 3209 3226
3190 3217 3212 3240
3204 3241 3258 3234

Alloy Number Axial Stress Rank

2 3187 psi 1
1 3190 2
1 3195 3
1 3204 4
2 3209 5
2 3212 6
2 3215 7
1 3217 8
1 3225 9
2 3226 10
1 3229 11
2 3234 12
1 3238 13
2 3240 14
1 3241 15
1 3246 16
2 3248 17
1 3254 18
2 3258 19
2 3261 20

The sum of the ranks for alloy 1 is

and for alloy 2

7. Conclusions: Since neither w1 nor w2 is less than or equal
to w0.05 � 78, we cannot reject the null hypothesis that
both alloys exhibit the same mean axial stress.

Practical Interpretation: The data do not demonstrate that
there is a superior alloy for this particular application.

 �
110 � 102 110 � 10 � 12

2
� 99 � 111

 w2 �
1n1 � n22 1n1 � n2 � 12

2
� w1

w1 � 2 � 3 � 4 � 8 � 9 � 11 � 13 � 15 � 16 � 18 � 99

10-3.2 Large-Sample Approximation

When both n1 and n2 are moderately large, say, greater than 8, the distribution of w1 can be
well approximated by the normal distribution with mean

and variance

�2
W1

�
n1n21n1 � n2 � 12

12

�W1
�

n11n1 � n2 � 12

2
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Therefore, for n1 and n2 
 8, we could use

10-3 A NONPARAMETRIC TEST FOR THE DIFFERENCE IN TWO MEANS 375

(10-22)Z0 �
W1 � �W1

�W1

Normal
Approximation

for Wilcoxon
Rank-Sum

Test Statistic 

as a statistic, and the appropriate critical region is , 
depending on whether the test is a two-tailed, upper-tail, or lower-tail test.

10-3.3 Comparison to the t-Test

In Chapter 9 we discussed the comparison of the t-test with the Wilcoxon signed-rank test. The
results for the two-sample problem are similar to the one-sample case. That is, when the nor-
mality assumption is correct, the Wilcoxon rank-sum test is approximately 95% as efficient as
the t-test in large samples. On the other hand, regardless of the form of the distributions, the
Wilcoxon rank-sum test will always be at least 86% as efficient. The efficiency of the
Wilcoxon test relative to the t-test is usually high if the underlying distribution has heavier tails
than the normal, because the behavior of the t-test is very dependent on the sample mean,
which is quite unstable in heavy-tailed distributions.

0 z0 0 
 z�/2, z0 
 z�, or z0 � �z�

10-31. An electrical engineer must design a circuit to deliver
the maximum amount of current to a display tube to achieve suf-
ficient image brightness. Within her allowable design constraints,
she has developed two candidate circuits and tests prototypes of
each. The resulting data (in microamperes) are as follows:

Circuit 1: 251, 255, 258, 257, 250, 251, 254, 250, 248

Circuit 2: 250, 253, 249, 256, 259, 252, 260, 251

(a) Use the Wilcoxon rank-sum test to test H0: �1 � �2 against
the alternative H1: �1 > �2. Use � � 0.025.

(b) Use the normal approximation for the Wilcoxon rank-sum
test. Assume that � � 0.05. Find the approximate P-value
for this test statistic.

10-32. One of the authors travels regularly to Seattle,
Washington. He uses either Delta or Alaska. Flight delays are
sometimes unavoidable, but he would be willing to give most
of his business to the airline with the best on-time arrival
record. The number of minutes that his flight arrived late for
the last six trips on each airline follows. Is there evidence that
either airline has superior on-time arrival performance? Use 
� � 0.01 and the Wilcoxon rank-sum test.

Delta: 13, 10, 1, �4, 0, 9 (minutes late)

Alaska: 15, 8, 3, �1, �2, 4 (minutes late)

10-33. The manufacturer of a hot tub is interested in testing
two different heating elements for his product. The element that
produces the maximum heat gain after 15 minutes would be
preferable. He obtains 10 samples of each heating unit and tests
each one. The heat gain after 15 minutes (in �F) follows.

Unit 1: 25, 27, 29, 31, 30, 26, 24, 32, 33, 38

Unit 2: 31, 33, 32, 35, 34, 29, 38, 35, 37, 30

(a) Is there any reason to suspect that one unit is superior to
the other? Use � � 0.05 and the Wilcoxon rank-sum test.

(b) Use the normal approximation for the Wilcoxon rank-sum
test. Assume that � � 0.05. What is the approximate
P-value for this test statistic?

10-34. Consider the chemical etch rate data in Exercise 10-19.
(a) Use the Wilcoxon rank-sum test to investigate the claim

that the mean etch rate is the same for both solutions. If
� � 0.05, what are your conclusions?

(b) Use the normal approximation for the Wilcoxon rank-sum
test. Assume that � � 0.05. Find the approximate P-value
for this test.

10-35. Consider the pipe deflection data in Exercise 10-18.
(a) Use the Wilcoxon rank-sum test for the pipe deflection

temperature experiment. If � � 0.05, what are your con-
clusions?

(b) Use the normal approximation for the Wilcoxon rank-sum
test. Assume that � � 0.05. Find the approximate P-value
for this test.

10-36. Consider the distance traveled by a golf ball in
Exercise 10-29.
(a) Use the Wilcoxon rank-sum test to investigate if the

means differ. Use � � 0.05.
(b) Use the normal approximation for the Wilcoxon rank-sum

test with � � 0.05. Find the approximate P-value for this test.

EXERCISES FOR SECTION 10-3
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10-4 PAIRED t-TEST

A special case of the two-sample t-tests of Section 10-2 occurs when the observations 
on the two populations of interest are collected in pairs. Each pair of observations, say
(X1j, X2j), is taken under homogeneous conditions, but these conditions may change from one
pair to another. For example, suppose that we are interested in comparing two different types
of tips for a hardness-testing machine. This machine presses the tip into a metal specimen with
a known force. By measuring the depth of the depression caused by the tip, the hardness of the
specimen can be determined. If several specimens were selected at random, half tested with tip
1, half tested with tip 2, and the pooled or independent t-test in Section 10-2 was applied, the
results of the test could be erroneous. The metal specimens could have been cut from bar stock
that was produced in different heats, or they might not be homogeneous in some other way that
might affect hardness. Then the observed difference between mean hardness readings for the
two tip types also includes hardness differences between specimens.

A more powerful experimental procedure is to collect the data in pairs—that is, to make
two hardness readings on each specimen, one with each tip. The test procedure would then
consist of analyzing the differences between hardness readings on each specimen. If there is
no difference between tips, the mean of the differences should be zero. This test procedure is
called the paired t-test.

Let (X11, X21), (X12, X22), p , (X1n, X2n) be a set of n paired observations where we assume
that the mean and variance of the population represented by X1 are �1 and �2

1, and the mean
and variance of the population represented by X2 are �2 and �2

2. Define the differences be-
tween each pair of observations as Dj � X1j � X2j, j � 1, 2, p , n. The Dj’s are assumed to be
normally distributed with mean

and variance �2
D, so testing hypotheses about the difference between �1 and �2 can be

accomplished by performing a one-sample t-test on �D. Specifically, testing H0: �1 � �2 � �0

against H1: �1 � �2 �0 is equivalent to testing

(10-23)

The test statistic and decision procedure are given below.

H1: �D � �0

H0: �D � �0

�

�D � E1X1 � X22 � E1X12 � E1X22 � �1 � �2

Null hypothesis: H0: �D � �0

Test statistic: (10-24)

Rejection Region
Alternative Hypothesis P-Value for Fixed-Level Tests

Probability above |t0| and
probability below 

Probability above t0

Probability below t0 t0 � �t	, n�1H1: �D � �0

t0 
 t	, n�1H1: �D 
 �0

�|t0|
t0 
 t	�2, n�1 or t0 � �t	�2, n�1H1: �D � �0

T0 �
D � �0

SD�1n

Paired t-Test
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In Equation 10-24, is the sample average of the n differences D1, D2, p , Dn, and SD is the
sample standard deviation of these differences.

D
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EXAMPLE 10-10 Shear Strength of Steel Girders
An article in the Journal of Strain Analysis (Vol. 18, No. 2 1983)
reports a comparison of several methods for predicting the
shear strength for steel plate girders. Data for two of these
methods, the Karlsruhe and Lehigh procedures, when applied
to nine specific girders, are shown in Table 10-3. We wish to
determine whether there is any difference (on the average)
between the two methods.

The seven-step procedure is applied as follows:

1. Parameter of Interest: The parameter of interest is the
difference in mean shear strength between the two
methods—say, �D � �1 � �2 � 0.

2. Null hypothesis:

3. Alternative hypothesis:

4. Test statistic: The test statistic is

t0 �
d

sd�1n

H1: �D � 0

H0: �D � 0

5. Reject H0 if: Reject H0 if the P-value is �0.05.

6. Computations: The sample average and standard devia-
tion of the differences dj are � 0.2769 and sd � 0.1350,
and so the test statistic is

7. Conclusions: Because t0.0005.8 � 5.041 and the value of
the test statistic t0 � 6.15 exceeds this value, the P-value is
less than 2(0.0005) � 0.001. Therefore, we conclude that
the strength prediction methods yield different results.

Practical Interpretation: Specifically, the data indicate
that the Karlsruhe method produces, on the average, higher
strength predictions than does the Lehigh method. This is a
strong conclusion.

t0 �
d

sd�1n
�

0.2769

0.1350�19
� 6.15

d

Minitab can perform the paired t-test. The Minitab output for Example 10-10 is shown
below:

Paired T for Karlsruhe–Lehigh

N Mean StDev SE Mean
Karlsruhe 9 1.34011 0.14603 0.04868
Lehigh 9 1.06322 0.05041 0.01680
Difference 9 0.276889 0.135027 0.045009

95% CI for mean difference: (0.173098, 0.380680)
T-Test of mean difference � 0 (vs not � 0): T-Value � 6.15, P-Value � 0.000

Table 10-3 Strength Predictions for Nine Steel Plate Girders 
(Predicted Load/Observed Load)

Girder Karlsruhe Method Lehigh Method Difference dj

S1�1 1.186 1.061 0.125
S2�1 1.151 0.992 0.159
S3�1 1.322 1.063 0.259
S4�1 1.339 1.062 0.277
S5�1 1.200 1.065 0.135
S2�1 1.402 1.178 0.224
S2�2 1.365 1.037 0.328
S2�3 1.537 1.086 0.451
S2�4 1.559 1.052 0.507
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The results essentially agree with the manual calculations. In addition to the hypothesis test re-
sults. Minitab reports a two-sided CI on the difference in means. This Cl was found by con-
structing a single-sample CI on �D. We will give the details later.

Paired Versus Unpaired Comparisons
In performing a comparative experiment, the investigator can sometimes choose between the
paired experiment and the two-sample (or unpaired) experiment. If n measurements are to be
made on each population, the two-sample t-statistic is

which would be compared to t2n�2, and of course, the paired t-statistic is

which is compared to tn�1. Notice that since

the numerators of both statistics are identical. However, the denominator of the two-sample 
t-test is based on the assumption that X1 and X2 are independent. In many paired experiments,
a strong positive correlation � exists between X1 and X2. Then it can be shown that

assuming that both populations X1 and X2 have identical variances �2. Furthermore, S2
D�n

estimates the variance of . Whenever there is positive correlation within the pairs, the de-
nominator for the paired t-test will be smaller than the denominator of the two-sample t-test.
This can cause the two-sample t-test to considerably understate the significance of the data if
it is incorrectly applied to paired samples.

Although pairing will often lead to a smaller value of the variance of , it does
have a disadvantage—namely, the paired t-test leads to a loss of degrees of freedom in
comparison to the two-sample t-test. Generally, we know that increasing the degrees of free-
dom of a test increases the power against any fixed alternative values of the parameter.

So how do we decide to conduct the experiment? Should we pair the observations or not?
Although there is no general answer to this question, we can give some guidelines based on
the above discussion.

1. If the experimental units are relatively homogeneous (small �) and the correlation
within pairs is small, the gain in precision attributable to pairing will be offset by the
loss of degrees of freedom, so an independent-sample experiment should be used.

n � 1
X1 � X2

D

  �
2�211 � �2

n

  � V1X12 � V1X22 � 2 cov 1X1, X22
 V 1D2 � V1X1 � X2 � �02

D � a
n

j�1
 
Dj

n � a
n

j�1
 
1X1j � X2j2

n � a
n

j�1
 
X1j

n � a
n

j�1
 
X2j

n � X1 � X2

T0 �
D � �0

SD�1n

T0 �
X1 � X2 � �0

Sp 

B

1
n �

1
n
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10-4 PAIRED t-TEST 379

2. If the experimental units are relatively heterogeneous (large ) and there is large pos-
itive correlation within pairs, the paired experiment should be used. Typically, this
case occurs when the experimental units are the same for both treatments; as in
Example 10-10, the same girders were used to test the two methods.

Implementing the rules still requires judgment, because � and � are never known precisely.
Furthermore, if the number of degrees of freedom is large (say, 40 or 50), the loss of n � 1 of
them for pairing may not be serious. However, if the number of degrees of freedom is small
(say, 10 or 20), losing half of them is potentially serious if not compensated for by increased
precision from pairing.

Confidence Interval for �D

To construct the confidence interval for �D � �1 � �2, note that

follows a t distribution with n � 1 degrees of freedom. Then, since P(�t��2,n�1 � T �
t��2,n�1) � 1 � �, we can substitute for T in the above expression and perform the necessary
steps to isolate �D � �1 � �2 between the inequalities. This leads to the following 100(1 � �)%
confidence interval on �1 � �2.

T �
D � �D

SD�1n

�

If d
�

and sD are the sample mean and standard deviation of the difference of n random
pairs of normally distributed measurements, a 100(1 � �)% confidence interval on
the difference in means �D � �1 � �2 is

(10-25)

where t�/2,n�1 is the upper ��2% point of the t distribution with n � 1 degrees of
freedom.

d � t��2, n�1 sD�1n � �D � d � t��2, n�1 sD�1n

Confidence
Interval for �D

from Paired
Samples

This confidence interval is also valid for the case where �2
1 � �2

2, because s2
D estimates 

�2
D � V(X1 � X2). Also, for large samples (say, n � 30 pairs), the explicit assumption of nor-

mality is unnecessary because of the central limit theorem.

EXAMPLE 10-11 Parallel Park Cars
The journal Human Factors (1962, pp. 375–380) reported a
study in which n � 14 subjects were asked to parallel park
two cars having very different wheel bases and turning radii.
The time in seconds for each subject was recorded and is
given in Table 10-4. From the column of observed differences
we calculate and sD � 12.68. The 90% confidence
interval for �D � �1 � �2 is found from Equation 10-25 as
follows:

d � 1.21

Notice that the confidence interval on �D includes zero. This im-
plies that, at the 90% level of confidence, the data do not support
the claim that the two cars have different mean parking times �1

and �2. That is, the value �D � �1 � �2 � 0 is not inconsistent
with the observed data.

�4.79 � �D � 7.21
1.21 � 1.771112.682�114 � �D � 1.21 � 1.771112.682�114

d � t0.05,13 
sD�1n � �D � d � t0.05,13 

sD�1n

JWCL232_c10_351-400.qxd  1/15/10  2:14 PM  Page 379
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Nonparametric Approach to Paired Comparisons
Both the sign test and the Wilcoxon signed-rank test discussed in Section 9-9 can be applied
to paired observations. In the case of the sign test, the null hypothesis is that the median of the
differences is equal to zero (that is, ). The Wilcoxon signed-rank test is for the null
hypothesis that the mean of the differences is equal to zero. The procedures are applied to the
observed differences as described in Sections 9-9.1 and 9-9.2.

H0: �~D � 0

Table 10-4 Time in Seconds to Parallel Park Two 
Automobiles

Automobile Difference

Subject 11x1j2 21x2j2 1dj2

1 37.0 17.8 19.2
2 25.8 20.2 5.6
3 16.2 16.8 �0.6
4 24.2 41.4 �17.2
5 22.0 21.4 0.6
6 33.4 38.4 �5.0
7 23.8 16.8 7.0
8 58.2 32.2 26.0
9 33.6 27.8 5.8

10 24.4 23.2 1.2
11 23.4 29.6 �6.2
12 21.2 20.6 0.6
13 36.2 32.2 4.0
14 29.8 53.8 �24.0

Car Brand 1 Brand 2

1 36,925 34,318

2 45,300 42,280

3 36,240 35,500

4 32,100 31,950

5 37,210 38,015

6 48,360 47,800

7 38,200 37,810

8 33,500 33,215

at random to the two rear wheels of eight cars and runs the 
cars until the tires wear out. The data (in kilometers) follow.
Find a 99% confidence interval on the difference in mean life.
Which brand would you prefer, based on this calculation?

10-37. Consider the shear strength experiment described in
Example 10-10.
(a) Construct a 95% confidence interval on the difference in

mean shear strength for the two methods. Is the result you
obtained consistent with the findings in Example 10-10?
Explain why.

(b) Do each of the individual shear strengths have to be 
normally distributed for the paired t-test to be appropriate,
or is it only the difference in shear strengths that must 
be normal? Use a normal probability plot to investigate
the normality assumption.

10-38. Consider the parking data in Example 10-11.
(a) Use the paired t-test to investigate the claim that the two

types of cars have different levels of difficulty to parallel
park. Use � � 0.10.

(b) Compare your results with the confidence interval con-
structed in Example 10-11 and comment on why they are
the same or different.

(c) Investigate the assumption that the differences in parking
times are normally distributed.

10-39. The manager of a fleet of automobiles is testing 
two brands of radial tires. He assigns one tire of each brand 

EXERCISES FOR SECTION 10-4

10-40. A computer scientist is investigating the usefulness 
of two different design languages in improving programm-
ing tasks. Twelve expert programmers, familiar with both 
languages, are asked to code a standard function in both lan-
guages, and the time (in minutes) is recorded. The data follow:
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Blood Cholesterol Level

Subject Before After

1 265 229
2 240 231
3 258 227
4 295 240
5 251 238
6 245 241
7 287 234
8 314 256
9 260 247

10 279 239
11 283 246
12 240 218
13 238 219
14 225 226
15 247 233

Time

Design Design
Language Language

Programmer 1 2

1 17 18
2 16 14
3 21 19
4 14 11
5 18 23
6 24 21
7 16 10
8 14 13
9 21 19

10 23 24
11 13 15
12 18 20

(a) Is the assumption that the difference in coding time is nor-
mally distributed reasonable?

(b) Find a 95% confidence interval on the difference in mean
coding times. Is there any indication that one design lan-
guage is preferable?

10-41. Fifteen adult males between the ages of 35 and 50
participated in a study to evaluate the effect of diet and exercise
on blood cholesterol levels. The total cholesterol was meas-
ured in each subject initially and then three months after
participating in an aerobic exercise program and switching
to a low-fat diet. The data are shown in the accompanying
table

(a) Do the data support the claim that low-fat diet and aerobic
exercise are of value in producing a mean reduction in
blood cholesterol levels? Use � � 0.05. Find the P-value.

(b) Calculate a one-sided confidence limit that can be used
to answer the question in part (a).

10-42. An article in the Journal of Aircraft (Vol. 23, 1986,
pp. 859–864) described a new equivalent plate analysis
method formulation that is capable of modeling aircraft struc-
tures such as cranked wing boxes, and that produces results
similar to the more computationally intensive finite element
analysis method. Natural vibration frequencies for the cranked
wing box structure are calculated using both methods, and
results for the first seven natural frequencies follow:

Finite Equivalent
Element Plate,

Freq. Cycle/s Cycle/s

1 14.58 14.76
2 48.52 49.10
3 97.22 99.99
4 113.99 117.53
5 174.73 181.22
6 212.72 220.14
7 277.38 294.80

(a) Do the data suggest that the two methods provide the same
mean value for natural vibration frequency? Use � � 0.05.
Find the P-value.

(b) Find a 95% confidence interval on the mean difference
between the two methods.

10-43. Ten individuals have participated in a diet-modification
program to stimulate weight loss. Their weight both before and
after participation in the program is shown in the following list.

Subject Before After

1 195 187
2 213 195
3 247 221
4 201 190
5 187 175
6 210 197
7 215 199
8 246 221
9 294 278

10 310 285

(a) Is there evidence to support the claim that this particular
diet-modification program is effective in producing a
mean weight reduction? Use � � 0.05.

(b) Is there evidence to support the claim that this particular
diet-modification program will result in a mean weight
loss of at least 10 pounds? Use � � 0.05.
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(c) Suppose that, if the diet-modification program results in
mean weight loss of at least 10 pounds, it is important to
detect this with probability of at least 0.90. Was the use of
10 subjects an adequate sample size? If not, how many
subjects should have been used?

10-44. Two different analytical tests can be used to deter-
mine the impurity level in steel alloys. Eight specimens
are tested using both procedures, and the results are shown in
the following tabulation.

(a) Is the assumption that the difference in score is nor-
mally distributed reasonable? Show results to support
your answer.

(b) Find a 95% confidence interval on the difference in mean
score. Is there any evidence that mean score depends on
birth order?

(c) It is important to detect a mean difference in score of one
point, with a probability of at least 0.90. Was the use of 10
pairs an adequate sample size? If not, how many pairs
should have been used?

10-46. In Biometrics (1990, Vol. 46, pp. 673–87), the au-
thors analyzed the circumference of five orange trees (labeled
as A–E) measured on seven occasions (xi).

Specimen Test 1 Test 2

1 1.2 1.4
2 1.3 1.7
3 1.5 1.5
4 1.4 1.3
5 1.7 2.0
6 1.8 2.1
7 1.4 1.7
8 1.3 1.6

(a) Is there sufficient evidence to conclude that tests differ in
the mean impurity level, using � � 0.01?

(b) Is there evidence to support the claim that Test 1 generates a
mean difference 0.1 units lower than Test 2? Use .

(c) If the mean from Test 1 is 0.1 less than the mean from 
Test 2, it is important to detect this with probability at least
0.90. Was the use of eight alloys an adequate sample size?
If not, how many alloys should have been used?

10-45. An article in Neurology (1998, Vol. 50, pp. 1246–1252)
discussed that monozygotic twins share numerous physical, psy-
chological, and pathological traits. The investigators measured an
intelligence score of 10 pairs of twins, and the data are as follows:

� � 0.05

Pair Birth Order: 1 Birth Order: 2

1 6.08 5.73
2 6.22 5.80
3 7.99 8.42
4 7.44 6.84
5 6.48 6.43
6 7.99 8.76
7 6.32 6.32
8 7.60 7.62
9 6.03 6.59

10 7.52 7.67

Tree x1 x2 x3 x4 x5 x6 x7

A 30 58 87 115 120 142 145

B 33 69 111 156 172 203 203

C 30 51 75 108 115 139 140

D 32 62 112 167 179 209 214

E 30 49 81 125 142 174 177

(a) Compare the mean increase in circumference in periods
1 to 2 to the mean increase in periods 2 to 3. The increase
is the difference in circumference in the two periods. Are
these means significantly different at ?

(b) Is there evidence that the mean increase in period 1 to 
period 2 is greater than the mean increase in period 6 to
period 7 at ?

(c) Are the assumptions of the test in part (a) violated because
the same data (period 2 circumference) is used to calculate
both mean increases?

10-47. Use the sign test on the blood cholesterol data in
Exercise 10-41. Is there evidence that diet and exercise reduce
the median cholesterol level?

10-48. Repeat Exercise 10-47 using the Wilcoxon signed-
rank test. State carefully what hypothesis is being tested and
how it differs from the one tested in Exercise 10-47. 

� � 0.05

� � 0.10

10-5 INFERENCE ON THE VARIANCES OF TWO 
NORMAL DISTRIBUTIONS

We now introduce tests and confidence intervals for the two population variances shown in
Fig. 10-1. We will assume that both populations are normal. Both the hypothesis-testing and
confidence interval procedures are relatively sensitive to the normality assumption.
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10-5.1 F Distribution

Suppose that two independent normal populations are of interest, where the population means
and variances, say, �1, �

2
1, �2, and �2

2, are unknown. We wish to test hypotheses about the
equality of the two variances, say, H0: �

2
1 � �2

2. Assume that two random samples of size n1

from population 1 and of size n2 from population 2 are available, and let S 2
1 and S 2

2 be the sam-
ple variances. We wish to test the hypotheses

(10-26)

The development of a test procedure for these hypotheses requires a new probability
distribution, the F distribution. The random variable F is defined to be the ratio of two
independent chi-square random variables, each divided by its number of degrees of free-
dom. That is,

(10-27)

where W and Y are independent chi-square random variables with u and v degrees of freedom,
respectively. We now formally state the sampling distribution of F.

F �
W�u
Y�v

H1: �
2
1 � �2

2

H0: �
2
1 � �2

2
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Let W and Y be independent chi-square random variables with u and v degrees of
freedom, respectively. Then the ratio

(10-28)

has the probability density function

(10-29)

and is said to follow the F distribution with u degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as Fu,v.

f 1x2 �

�  a
u � v

2
b a

u
vb

u�2
 x 1u�22�1

� a
u

2
b � a

v

2
b c  a

u
vb x � 1 d

1u�v2�2,  0 � x � �

F �
W�u
Y�v

F Distribution

The mean and variance of the F distribution are � � v�(v � 2) for v 
 2, and

Two F distributions are shown in Fig. 10-4. The F random variable is nonnegative, and the
distribution is skewed to the right. The F distribution looks very similar to the chi-square dis-
tribution; however, the two parameters u and v provide extra flexibility regarding shape.

�2 �
2v21u � v � 22

u1v � 2221v � 42
,  v 
 4
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The percentage points of the F distribution are given in Table VI of the Appendix. Let
f�,u,v be the percentage point of the F distribution, with numerator degrees of freedom u and
denominator degrees of freedom v such that the probability that the random variable F
exceeds this value is

This is illustrated in Fig. 10-5. For example, if u � 5 and v � 10, we find from Table V of the
Appendix that

That is, the upper 5 percentage point of F5,10 is f0.05,5,10 � 3.33.
Table V contains only upper-tail percentage points (for selected values of f�,u,v for � � 0.25)

of the F distribution. The lower-tail percentage points f1��,u,v can be found as follows.

P1F 
 f0.05,5,102 � P1F5,10 
 3.332 � 0.05

P1F 
 f�, u, v2 � �
�

f�,u,v

  f 1x2  dx � �

0 2 4 6 8 10 x

u = 5, v = 15

f (x)

u = 5, v = 5

Figure 10-4 Probability density functions of
two F distributions.

Figure 10-5 Upper and lower percentage
points of the F distribution.

x

α α

f1 – α, , f α, ,u v u v

f (x)

(10-30)f1��,u,v �
1

f�,v,u

For example, to find the lower-tail percentage point f0.95,5,10, note that

10-5.2 Hypothesis Tests on the Ratio of Two Variances

A hypothesis-testing procedure for the equality of two variances is based on the following
result.

f0.95, 5,10 �
1

f0.05,10, 5
�

1
4.74

� 0.211
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Let X11, X12, p , X1n1
be a random sample from a normal population with mean �1 and

variance �2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean �2 and variance �2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 � 1 numerator degrees of freedom and n2 � 1 denom-
inator degrees of freedom.

F �
S2

1��2
1

S2
2��2

2

S2
2S2

1

Distribution 
of the Ratio 

of Sample
Variances from

Two Normal
Distributions

This result is based on the fact that (n1 � 1)S 2
1/�

2
1 is a chi-square random variable with n1 � 1

degrees of freedom, that (n2 � 1)S 2
2��2

2 is a chi-square random variable with n2 � 1 degrees
of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: �

2
1 � �2

2 the ratio has an distribution. This is the basis of
the following test procedure.

Fn1�1,n2�1F0 � S2
1�S 

2
2

Null hypothesis: 

Test statistic: (10-31)

Alternative Hypotheses Rejection Criterion

f0 � f1��, n1�1,n2�1H1: �
2
1 � �2

2

f0 
 f�,n1�1,n2�1H1: �
2
1 
 �2

2

f0 
 f��2,n1�1,n2�1 or f0 � f1���2,n1�1,n2�1H1: �
2
1 � �2

2

F0 �
S2

1

S2
2

H0: �
2
1 � �2

2

Tests on the
Ratio of

Variances from
Two Normal

Distributions

The critical regions for these fixed-significance-level tests are shown in Figure 10-6.

(a)

/2, n – 1    α

α

�2

n – 1�2

/2, n – 1    α�20

f (x)

x
1 –

/2
α /2

(b)

, n – 1    α�2

n – 1�2

0

f (x)

x

(c)

n – 1�2

, n – 1    α�20

f (x)

x
1 –

α
α

Figure 10-6 The F distribution for the test of with critical region values for (a) , (b) ,
and (c) .H1: �

2
1 � �2

2
H1: �

2
1 
 �2

2H1: �
2
1 � �2

2H0: �
2
1 � �2

2

EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 �
1.96 angstroms and s2 � 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with � � 0.05.
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness �2

1 and �2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:

3. Alternative hypothesis:

4. Test statistic: The test statistic is given by equation 10-31:

6. Reject H0 if : Because n1 � n2 � 16 and � � 0.05, we
will reject or ifH0: �

2
1 � �2

2 if f0 
 f0.025,15,15 � 2.86

f0 �
s2

1

s2
2

H1: �
2
1 � �2

2

H0: �
2
1 � �2

2

. Refer to
Figure 10-6(a).

7. Computations: Because s2
1 � (1.96)2 � 3.84 and s2

2 �
(2.13)2 � 4.54, the test statistic is

8. Conclusions: Because f0.975,15,15 � 0.35 � 0.85 �
f0.025,15,15 � 2.86, we cannot reject the null hypothesis H0:
�2

1 � �2
2 at the 0.05 level of significance. 

Practical Interpretation: There is no strong evidence to
indicate that either gas results in a smaller variance of oxide
thickness.

f0 �
s2

1

s2
2

�
3.84

4.54
� 0.85

f0 � f0.975,15,15 � 1�f0.025,15,15 � 1�2.86 � 0.35

P-Values for the F-Test
The P-value approach can also be used with F-tests. To show how to do this, consider the
upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 � 1 and n2 � 1 degrees of freedom that lies beyond the computed value of the test statistic
f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For
example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 � 3.05. From Appendix A Table IV we find that f0.05,9,14 � 2.65 and f0.025,9,14 � 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 � P � 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 � 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 � 1/ f0.25,15,15 � 1/1.43 � 0.70 and since 0.70 � 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 � 0.85 is greater than 2(0.25) � 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 � 0.85) � 0.3785 and 2(0.3785) � 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic � 0.85, P-value � 0.750

Finding the 
P-Value for 

Example 10-12
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EXAMPLE 10-13 Semiconductor Etch Variability Sample Size
For the semiconductor wafer oxide etching problem in
Example 10-12, suppose that one gas resulted in a standard
deviation of oxide thickness that is half the standard deviation
of oxide thickness of the other gas. If we wish to detect such a
situation with probability at least 0.80, is the sample size n1 �
n2 � 20 adequate?

Note that if one standard deviation is half the other,

By referring to Appendix Chart VIIo with n1 � n2 � n � 20
and � � 2, we find that Therefore, if � � 0.20, the
power of the test (which is the probability that the difference in
standard deviations will be detected by the test) is 0.80, and we
conclude that the sample sizes n1 � n2 � 20 are adequate.

� � 0.20.

� �
�1

�2
� 2

Minitab also gives confidence intervals on the individual variances. These are the confidence
intervals originally given in Equation 8-19, except that a Bonferroni “adjustment” has been
applied to make the confidence level for both intervals simultaneously at least equal to 95%.
This consists of using �/2 � 0.05/2 � 0.025 to construct the individual intervals. That is, each
individual confidence interval is a 97.5% CI. In Section 10-5.4, we will show how to construct
a CI on the ratio of the two variances.

10-5.3 Type II Error and Choice of Sample Size

Appendix Charts VIIo, VIIp, VIIq, and VIIr provide operating characteristic curves for the 
F-test given in Section 10-5.1 for � � 0.05 and � � 0.01, assuming that n1 � n2 � n. Charts
VIIo and VIIp are used with the two-sided alternate hypothesis. They plot � against the 
abscissa parameter

(10-32)

for various n1 � n2 � n. Charts VIIq and VIIr are used for the one-sided alternative hypotheses.

� �
�1

�2

10-5.4 Confidence Interval on the Ratio of Two Variances

To find the confidence interval on recall that the sampling distribution of

is an F with n2 � 1 and n1 � 1 degrees of freedom. Therefore, �

Substitution for F and manipulation of the inequalities will lead to
the % confidence interval for �2

1��2
2.10011 � �2

f��2,n2�1, n1�12 � 1 � �.
P1  f1���2, n2�1, n1�1 � F

F �
S2

2��2
2

S2
1��2

1

�2
1��2

2,

If and are the sample variances of random samples of sizes n1 and n2, respec-
tively, from two independent normal populations with unknown variances and 
then a 100(1 � �)% confidence interval on the ratio is 

(10-33)

where and are the upper and lower ��2 percentage
points of the F distribution with numerator and denominator degrees
of freedom, respectively. A confidence interval on the ratio of the standard deviations
can be obtained by taking square roots in Equation 10-33.

n1 � 1n2 � 1
f1���2,n2�1,n1�1f��2,n2�1,n1�1

s2
1

s2
2
  f1���2,n2�1,n1�1 �

�2
1

�2
2

�
s2

1

s2
2
  f��2,n2�1,n1�1

�2
1��2

2
�2

2,�2
1

s2
2s2

1

Confidence
Interval on 

the Ratio of
Variances from

Two Normal
Distributions
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EXAMPLE 10-14 Surface Finish for Titanium Alloy
A company manufactures impellers for use in jet-turbine
engines. One of the operations involves grinding a particular
surface finish on a titanium alloy component. Two different
grinding processes can be used, and both processes can produce
parts at identical mean surface roughness. The manufacturing
engineer would like to select the process having the least vari-
ability in surface roughness. A random sample of n1 � 11 parts
from the first process results in a sample standard deviation
s1 � 5.1 microinches, and a random sample of n2 � 16 parts
from the second process results in a sample standard deviation of
s2 � 4.7 microinches. We will find a 90% confidence interval on
the ratio of the two standard deviations, 

Assuming that the two processes are independent and
that surface roughness is normally distributed, we can use
Equation 10-33 as follows:

s2
1

s2
2
  f0.95,15,10 �

�2
1

�2
2

�
s2

1

s2
2
  f0.05,15,10

�1��2.

or upon completing the implied calculations and taking square
roots,

Notice that we have used Equation 10-30 to find f0.95,15,10 �
1�f0.05,10,15 � 1�2.54 � 0.39.

Practical Interpretation: Since this confidence interval in-
cludes unity, we cannot claim that the standard deviations of
surface roughness for the two processes are different at the
90% level of confidence.

0.678 �
�1

�2
� 1.832

 
15.122

14.722
 0.39 �

�2
1

�2
2

�
15.122

14.722
 2.85

10-49. For an F distribution, find the following:
(a) f0.25,5,10 (b) f0.10,24,9

(c) f0.05,8,15 (d) f0.75,5,10

(e) f0.90,24,9 (f ) f0.95,8,15

10-50. For an F distribution, find the following:
(a) f0.25,7,15 (b) f0.10,10,12

(c) f0.01,20,10 (d) f0.75,7,15

(e) f0.90,10,12 (f ) f0.99,20,10

10-51. Consider the hypothesis test H0 :�2
1 � �2

2 against
H1 :�2

1 � �2
2. Suppose that the sample sizes are and

, and that and . Use . Test
the hypothesis and explain how the test could be conducted
with a confidence interval on  �1��2.

10-52. Consider the hypothesis test H0 :�2
1 � �2

2 against
H0 :�2

1 
 �2
2. Suppose that the sample sizes are and

, and that and . Use . Test the
hypothesis and explain how the test could be conducted with a
confidence interval on �1��2.

10-53. Consider the hypothesis test H0 :�2
1 � �2

2 against
H1 :�2

1 �2
2. Suppose that the sample sizes are and

, and the sample variances are and .
Use .
(a) Test the hypothesis and explain how the test could be con-

ducted with a confidence interval on �1��2.
(b) What is the power of the test in part (a) if is twice as

large as ?
(c) Assuming equal sample sizes, what sample size should be

used to obtain if the is half of ?

10-54. Two chemical companies can supply a raw material.
The concentration of a particular element in this material is

�1�2� � 0.05

�2

�1

� � 0.05
s2

2 � 1.9s2
1 � 2.3n2 � 15

n1 � 15�

� � 0.01s2
2 � 2.3s2

1 � 4.5n2 � 8
n1 � 20

� � 0.05s2
2 � 28.8s2

1 � 23.2n2 � 10
n1 � 5

important. The mean concentration for both suppliers is the
same, but we suspect that the variability in concentration may
differ between the two companies. The standard deviation of
concentration in a random sample of n1 � 10 batches pro-
duced by company 1 is s1 � 4.7 grams per liter, while for com-
pany 2, a random sample of n2 � 16 batches yields s2 � 5.8
grams per liter. Is there sufficient evidence to conclude that the
two population variances differ? Use � � 0.05.

10-55. A study was performed to determine whether men
and women differ in their repeatability in assembling compo-
nents on printed circuit boards. Random samples of 25 men
and 21 women were selected, and each subject assembled the
units. The two sample standard deviations of assembly time
were smen � 0.98 minutes and swomen � 1.02 minutes. 
(a) Is there evidence to support the claim that men and women

differ in repeatability for this assembly task? Use � �
0.02 and state any necessary assumptions about the under-
lying distribution of the data.

(b) Find a 98% confidence interval on the ratio of the two
variances. Provide an interpretation of the interval.

10-56. Consider the foam data in Exercise 10-16. Construct
the following:
(a) A 90% two-sided confidence interval on �2

1��2
2.

(b) A 95% two-sided confidence interval on �2
1��2

2. Comment
on the comparison of the width of this interval with the
width of the interval in part (a).

(c) A 90% lower-confidence bound on �1��2.

10-57. Consider the diameter data in Exercise 10-15. Con-
struct the following:
(a) A 90% two-sided confidence interval on �1��2.

EXERCISES FOR SECTION 10-5
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(b) A 95% two-sided confidence interval on . Comment
on the comparison of the width of this interval with the
width of the interval in part (a).

(c) A 90% lower-confidence bound on �1��2.

10-58. Consider the gear impact strength data in Exercise 
10-20. Is there sufficient evidence to conclude that the variance
of impact strength is different for the two suppliers? Use � �
0.05.

10-59. Consider the melting-point data in Exercise 10-21.
Do the sample data support a claim that both alloys have the
same variance of melting point? Use � � 0.05 in reaching
your conclusion.

10-60. Exercise 10-24 presented measurements of plastic
coating thickness at two different application temperatures.
Test H0: �

2
1 � �2

2 against using � � 0.01.

10-61. Reconsider the overall distance data for golf balls
in Exercise 10-29. Is there evidence to support the claim
that the standard deviation of overall distance is the same
for both brands of balls (use � � 0.05)? Explain how this
question can be answered with a 95% confidence interval on

.�1��2

H1: �
2
1 � �2

2

�1��2 10-62. Reconsider the coefficient of restitution data in
Exercise 10-30. Do the data suggest that the standard deviation is
the same for both brands of drivers (use � � 0.05)? Explain how
to answer this question with a confidence interval on .

10-63. Consider the weight of paper data from Technometrics
in Exercise 10-28. Is there evidence that the variance of the
weight measurement differs between the sheets of paper? Use

. Explain how this test can be conducted with a con-
fidence interval.

10-64. Consider the film speed data in Exercise 10-22. 
(a) Test H0: �

2
1 � �2

2 versus using � � 0.02.
(b) Suppose that one population standard deviation is 50%

larger than the other. Is the sample size n1 � n2 � 8 ade-
quate to detect this difference with high probability? 
Use � � 0.01 in answering this question.

10-65. Consider the etch rate data in Exercise 10-19. 
(a) Test the hypothesis H0: �2

1 � �2
2 against H1: �2

1 �2
2

using � � 0.05, and draw conclusions.
(b) Suppose that if one population variance is twice as large

as the other, we want to detect this with probability at least
0.90 (using � � 0.05). Are the sample sizes n1 � n2 � 10
adequate?

�

H1: �
2
1 � �2

2

� � 0.05

�1��2

10-6 INFERENCE ON TWO POPULATION PROPORTIONS

We now consider the case where there are two binomial parameters of interest, say, p1 and p2,
and we wish to draw inferences about these proportions. We will present large-sample
hypothesis testing and confidence interval procedures based on the normal approximation to
the binomial.

10-6.1 Large-Sample Tests on the Difference 
in Population Proportions

Suppose that two independent random samples of sizes n1 and n2 are taken from two pop-
ulations, and let X1 and X2 represent the number of observations that belong to the class of in-
terest in samples 1 and 2, respectively. Furthermore, suppose that the normal approximation
to the binomial is applied to each population, so the estimators of the population proportions

and have approximate normal distributions. We are interested in
testing the hypotheses

The statistic

H1: p1 � p2

H0: p1 � p2

P2 � X2�n2P1 � X1�n1

(10-34)Z �
P̂1 � P̂2 � 1 p1 � p22

B

p111 � p12
n1

�
p211 � p22

n2

Test Statistic
for the

Difference of
Two Population

Proportions
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is distributed approximately as standard normal and is the basis of a test for .
Specifically, if the null hypothesis is true, using the fact that , the
random variable

is distributed approximately N(0, 1). A pooled estimator of the common parameter p is

The test statistic for H0: p1 � p2 is then

This leads to the test procedures described below.

Z0 �
P̂1 � P̂2

B
P̂11 � P̂2

 
a

1
n1

�
1
n2
b

P̂ �
X1 � X2

n1 � n2

Z �
P̂1 � P̂2

B
p11 � p2  a

1
n1

�
1
n2
b

p1 � p2 � pH0: p1 � p2

H0: p1 � p2

390 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

EXAMPLE 10-15 St. John’s Wort
Extracts of St. John’s Wort are widely used to treat depression.
An article in the April 18, 2001, issue of the Journal of the
American Medical Association (“Effectiveness of St. John’s
Wort on Major Depression: A Randomized Controlled Trial”)
compared the efficacy of a standard extract of St. John’s Wort
with a placebo in 200 outpatients diagnosed with major depres-
sion. Patients were randomly assigned to two groups; one group
received the St. John’s Wort, and the other received the placebo.
After eight weeks, 19 of the placebo-treated patients showed
improvement, whereas 27 of those treated with St. John’s Wort

improved. Is there any reason to believe that St. John’s Wort is
effective in treating major depression? Use � � 0.05.

The seven-step hypothesis testing procedure leads to the
following results:

1. Parameter of interest: The parameters of interest are p1

and p2, the proportion of patients who improve following
treatment with St. John’s Wort ( p1) or the placebo ( p2).

2. Null hypothesis: H0: p1 � p2

3. Alternative hypothesis: H1: p1 � p2

Null hypothesis: H0: p1 � p2

Test statistic: (10-35)

Rejection Criterion
Alternative Hypothesis P-Value for Fixed-Level Tests

Probability above z0 and 

probability below � z0 .

H1: p1 � p2 Probability above z0. z0 � z�

H1: p1 � p2 Probability below z0. z0 � �z�

P � 	1z02

P � 1 � 	1z02

P � 2 31 � 	1 0 z0 0 2 4

||

z0 � z�
2 or z0 � �z�
2||H1: p1 � p2

Z0 �
P̂1 � P̂2

B
P̂11 � P̂2

 
a

1
n1

�
1
n2
b

Approximate
Tests on the

Difference of
Two Population

Proportions
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The following box shows the Minitab two-sample hypothesis test and CI procedure for
proportions. Notice that the 95% CI on p1 � p2 includes zero. The equation for constructing
the CI will be given in Section 10-6.3.

10-6 INFERENCE ON TWO POPULATION PROPORTIONS 391

4. Test statistic: The test statistic is

where 
100, and

5. Reject H0 if: Reject H0: p1 � p2 if the P-value is less
than 0.05.

p̂ �
x1 � x2

n1 � n2
�

19 � 27

100 � 100
� 0.23

p̂1 � 27�100 � 0.27, p̂2 � 19�100 � 0.19, n1 � n2 �

z0 �
p̂1 � p̂2

B
p̂11 � p̂2

  
a

1
n1

�
1
n2
b

6. Computations: The value of the test statistic is

7. Conclusions: Since z0 � 1.34, the P-value is P �

, so, we cannot reject the null
hypothesis.

Practical Interpretation: There is insufficient evidence to
support the claim that St. John’s Wort is effective in treating
major depression.

2 31 � �11.342 4 � 0.18

z0 �
0.27 � 0.19

B
0.2310.772  a

1

100
�

1

100
b

� 1.34

Minitab Computations

Test and CI for Two Proportions

Sample X N Sample p
1 27 100 0.270000
2 19 100 0.190000

Estimate for p(1) � p(2): 0.08
95% CI for p(1) � p(2): (�0.0361186, 0.196119)
Test for p(1) � p(2) � 0 (vs not � 0): Z � 1.35 P-Value � 0.177

10-6.2 Type II Error and Choice of Sample Size

The computation of the �-error for the large-sample test of H0: p1 � p2 is somewhat more
involved than in the single-sample case. The problem is that the denominator of the test
statistic Z0 is an estimate of the standard deviation of under the assumption that 

. When H0: is false, the standard deviation of is

(10-36)�P̂1�P̂2
�
B

p111 � p12
n1

�
p211 � p22

n2

P̂1 � P̂2p1 � p2p1 � p2 � p
P̂1 � P̂2

If the alternative hypothesis is two sided, the �-error is

(10-37)� � c
�z��22pq 11�n1 � 1�n22 � 1p1 � p22

�P̂1�P̂2

d

� � � c
z��22pq 11�n1 � 1�n22 � 1p1 � p22

�P̂1�P̂2

d

Approximate
Type II Error

for a Two-Sided
Test on the

Difference of
Two Population

Proportions
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where

and is given by Equation 10-36.�P̂1�P̂2

p �  

n1p1 � n2 p2

n1 � n2
  and  q �

n111 � p12 � n211 � p22

n1 � n2
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If the alternative hypothesis is H1: p1 
 p2,

(10-38)

and if the alternative hypothesis is H1: p1 � p2,

(10-39)� � 1 � � c
�z�2pq 11�n1 � 1�n22 � 1p1 � p22

�P̂1�P̂2

d

� � � c
z�2pq 11�n1 � 1�n22 � 1 p1 � p22

�P̂1�P̂2

d

Approximate
Type II Error

for a One-Sided
Test on the

Difference of
Two Population

Proportions

For a specified pair of values p1 and p2, we can find the sample sizes n1 � n2 � n required to
give the test of size � that has specified type II error �.

For the two-sided alternative, the common sample size is

(10-40)

where q1 � 1 � p1 and q2 � 1 � p2.

n �
3z��211 p1 � p22 1q1 � q22�2 � z�1p1q1 � p2q2 4

2

1 p1 � p22
2

Approximate
Sample Size 

for a Two-Sided
Test on the

Difference in
Population

Proportions

For a one-sided alternative, replace in Equation 10-40 by z�.

10-6.3 Confidence Interval on the Difference in Population Proportions

The confidence interval for p1 � p2 can be found directly, since we know that

is a standard normal random variable. Thus P(�z��2 � Z � z��2) � 1 � �, so we can substi-
tute for Z in this last expression and use an approach similar to the one employed previously
to find an approximate 100(1 � �)% two-sided confidence interval for p1 � p2.

Z �
P̂1 � P̂2 � 1 p1 � p22

B

p111 � p12
n1

�
p211 � p22

n2

z��2
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If and are the sample proportions of observations in two independent random
samples of sizes n1 and n2 that belong to a class of interest, an approximate two-
sided 100(1 � �)% confidence interval on the difference in the true proportions
p1 � p2 is

(10-41)

where z��2 is the upper ��2 percentage point of the standard normal distribution.

� p1 � p2 � p̂1 � p̂2 � z��2B

p̂111 � p̂12
n1

�
p̂211 � p̂22

n2

p̂1 � p̂2 � z��2B

p̂111 � p̂12
n1

�
p̂211 � p̂22

n2

p̂2p̂1

Approximate
Confidence

Interval on the
Difference in

Population
Proportions

EXAMPLE 10-16 Defective Bearings
Consider the process of manufacturing crankshaft bearings
described in Example 8-7. Suppose that a modification is
made in the surface finishing process and that, subsequently, a
second random sample of 85 bearings is obtained. The number
of defective bearings in this second sample is 8. Therefore,
since n1 � 85, n2 � 85, and we
can obtain an approximate 95% confidence interval on the
difference in the proportion of defective bearings produced
under the two processes from Equation 10-41 as follows:

� p1 � p2 � p̂1 � p̂2 � z0.025 B

p̂111 � p̂12

n1
�

p̂211 � p̂22

n2

p̂1 � p̂2 � z0.025 B

p̂111 � p̂12

n1
�

p̂211 � p̂22

n2

p̂2 � 8�85 � 0.09,p̂1 � 0.12,

or

This simplifies to

Practical Interpretation: This confidence interval includes
zero, so, based on the sample data, it seems unlikely that the
changes made in the surface finish process have reduced the pro-
portion of defective crankshaft bearings being produced.

�0.06 � p1 � p2 � 0.12

� p1 � p2 � 0.12 � 0.09 � 1.96 
B

0.1210.882

85
�

0.0910.912

85

0.12 � 0.09 � 1.96 
B

0.1210.882

85
�

0.0910.912

85

10-66. Consider the computer output below.

Test and Cl for Two Proportions

Sample X N Sample p
1 54 250 0.216000
2 60 290 0.206897

Difference � p (1) � p (2)
Estimate for difference: 0.00910345
95% CI for difference: (�0.0600031,
0.0782100)
Test for difference � 0 (vs not � 0): 
Z � ? P-Value � ?

(a) Is this a one-sided or a two-sided test?
(b) Fill in the missing values.
(c) Can the null hypothesis be rejected?
(d) Construct an approximate 90% CI for the difference in the

two proportions.

10-67. Consider the computer output below.

Test and CI for Two Proportions

Sample X N Sample p
1 188 250 0.752000
2 245 350 0.700000

Difference � p (1) � p (2)
Estimate for difference: 0.052
95% lower bound for difference: ?
Test for difference � 0 (vs 
 0) : 
Z � ? P-Value � ?

(a) Is this a one-sided or a two-sided test?
(b) Fill in the missing values
(c) Can the null hypothesis be rejected if � � 0.10? What if

� � 0.05?

EXERCISES FOR SECTION 10-6
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10-68. An article in Knee Surgery, Sports Traumatology,
Arthroscopy (2005, Vol. 13, pp. 273–279), considered arthro-
scopic meniscal repair with an absorbable screw. Results
showed that for tears greater than 25 millimeters, 14 of 18
(78%) repairs were successful while for shorter tears, 22 of 30
(73%) repairs were successful.
(a) Is there evidence that the success rate is greater for longer

tears? Use . What is the P-value?
(b) Calculate a one-sided 95% confidence bound on the dif-

ference in proportions that can be used to answer the 
question in part (a).

10-69. In the 2004 presidential election, exit polls from the
critical state of Ohio provided the following results: For re-
spondents with college degrees, 53% voted for Bush and 46%
voted for Kerry. There were 2020 respondents.
(a) Is there a significant difference in these proportions? Use

. What is the P-value?
(b) Calculate a 95% confidence interval for the difference in

the two proportions and comment on the use of this inter-
val to answer the question in part (a).

10-70. Two different types of injection-molding machines
are used to form plastic parts. A part is considered defective if
it has excessive shrinkage or is discolored. Two random sam-
ples, each of size 300, are selected, and 15 defective parts are
found in the sample from machine 1 while 8 defective parts
are found in the sample from machine 2.
(a) Is it reasonable to conclude that both machines produce

the same fraction of defective parts, using ? Find
the P-value for this test.

(b) Construct a 95% confidence interval on the difference in
the two fractions defective.

(c) Suppose that and . With the sample
sizes given here, what is the power of the test for this two-
sided alternate?

p2 � 0.01p1 � 0.05

� � 0.05

� � 0.05

� � 0.05

(d) Suppose that and . Determine the
sample size needed to detect this difference with a proba-
bility of at least 0.9.

(e) Suppose that and . With the sample
sizes given here, what is the power of the test for this two-
sided alternate?

(f ) Suppose that and . Determine the
sample size needed to detect this difference with a proba-
bility of at least 0.9.

10-71. Two different types of polishing solutions are being
evaluated for possible use in a tumble-polish operation for
manufacturing interocular lenses used in the human eye fol-
lowing cataract surgery. Three hundred lenses were tumble
polished using the first polishing solution, and of this number
253 had no polishing-induced defects. Another 300 lenses
were tumble-polished using the second polishing solution, and
196 lenses were satisfactory upon completion.
(a) Is there any reason to believe that the two polishing solutions

differ? Use . What is the P-value for this test?
(b) Discuss how this question could be answered with a 

confidence interval on .

10-72. A random sample of 500 adult residents of
Maricopa County found that 385 were in favor of increasing
the highway speed limit to 75 mph, while another sample of
400 adult residents of Pima County found that 267 were in 
favor of the increased speed limit.
(a) Do these data indicate that there is a difference in the sup-

port for increasing the speed limit between the residents
of the two counties? Use . What is the P-value
for this test?

(b) Construct a 95% confidence interval on the difference in
the two proportions. Provide a practical interpretation of
this interval.

� � 0.05

p1 � p2

� � 0.01

p2 � 0.02p1 � 0.05

p2 � 0.02p1 � 0.05

p2 � 0.01p1 � 0.05

10-7 SUMMARY TABLE AND ROADMAP FOR INFERENCE
PROCEDURES FOR TWO SAMPLES

The table in the end papers of the book summarizes all of the two-sample parametric inference
procedures given in this chapter. The table contains the null hypothesis statements, the test sta-
tistics, the criteria for rejection of the various alternative hypotheses, and the formulas for con-
structing the 100(1 � �)% confidence intervals.

The roadmap to select the appropriate parametric confidence interval formula or hypoth-
esis test method for one-sample problems was presented in Table 8-1. In Table 10-5, we extend
the road map to two-sample problems. The primary comments stated previously also apply
here (except we usually apply conclusions to a function of the parameters from each sample,
such as the difference in means):

1. Determine the function of the parameters (and the distribution of the data) that is to
be bounded by the confidence interval or tested by the hypothesis.

2. Check if other parameters are known or need to be estimated (and if any assumptions
are made).
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Table 10-5 Roadmap to Construct Confidence Intervals and Hypothesis Tests, Two-Sample Case

Function of the
Parameters to be
Bounded by the
Confidence Interval 
or Tested with a
Hypothesis

Difference in means
from two normal 
distributions

Difference in means
from two arbitrary 
distributions with large
sample sizes

Difference in means
from two normal 
distributions

Difference in means
from two symmetric 
distributions

Difference in means
from two normal 
distributions

Difference in means
from two normal 
distributions in a paired
analysis

Ratio of variances of two
normal distributions

Difference in two 
population proportions

Symbol

p1�p2

�1
2/�2

2

�D ��1��2

�1��2

�1��2

�1��2

�1��2

�1��2

Other Parameters?

Standard deviations 
and known

Sample sizes large
enough that and 
are essentially known

Standard deviations 
and are unknown,
and assumed equal

Standard deviations 
and are 

unknown, and NOT
assumed equal

Standard deviation 
of differences are
unknown

Means and 
unknown and 
estimated

None

�2�1

�2�1

�2

�1

�2�1

�2�1

Confidence
Interval
Section

10-1.3

10-1.3

10-2.3

10-2.3

10-4

10-5.4

10-6.3

Hypothesis
Test

Section

10-1.1

10-1.1

10-2.1

10-3

10-2.1

10-4

10-5.2

10-6.1

Comments

Large sample size is
often taken to be 
and 

Case 

The Wilcoxon 
rank-sum test is a
nonparametric 
procedure

Case 

Paired analysis 
calculates differences
and uses a one-sample
method for inference
on the mean difference

Normal approximation
to the binomial 
distribution used 
for the tests and 
confidence intervals

2: �1 � �2

1: �1 � �2

n2 � 40
n1

Supplemental Exercises

10-73. Consider the computer output below.

Two-Sample T-Test and Cl

Sample N Mean StDev SE Mean
1 20 11.87 2.23 ?
2 20 12.73 3.19 0.71

Difference � mu (1) � mu (2)
Estimate for difference: �0.860
95% CI for difference: (?, ?)
T-Test of difference � 0(vs not �) : 
T-Value � ? P-Value � ? DF � ?
Both use Pooled StDev � ?

(a) Fill in the missing values. You may use bounds for the P-value.
(b) Is this a two-sided test or a one-sided test?
(c) What are your conclusions if � � 0.05? What if � � 0.10?

10-74. Consider the computer output below.

Two-Sample T-Test CI

Sample N Mean StDev SE Mean
1 16 22.45 2.98 0.75
2 25 24.61 5.36 1.1

Difference � mu (1) � mu (2)
Estimate for difference: �2.16
T-Test of difference � 0 (vs �): 
T-Value � �1.65 P-Value � ? DF � ?
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(a) Is this a one-sided or a two-sided test?
(b) Fill in the missing values. You may use bounds for the

P-value.
(c) What are your conclusions if � � 0.05? What if � � 0.10?
(d) Find a 95% upper-confidence bound on the difference in

the two means.

10-75. An article in the Journal of Materials Engineering
(1989, Vol. 11, No. 4, pp. 275–282) reported the results of an
experiment to determine failure mechanisms for plasma-
sprayed thermal barrier coatings. The failure stress for one
particular coating (NiCrAlZr) under two different test condi-
tions is as follows:

Failure stress 1� 106 Pa2 after nine 1-hour cycles: 19.8,
18.5, 17.6, 16.7, 16.7, 14.8, 15.4, 14.1, 13.6

Failure stress 1� 106 Pa2 after six 1-hour cycles: 14.9,
12.7, 11.9, 11.4, 10.1, 7.9

(a) What assumptions are needed to construct confidence in-
tervals for the difference in mean failure stress under the
two different test conditions? Use normal probability plots
of the data to check these assumptions.

(b) Find a 99% confidence interval on the difference in mean
failure stress under the two different test conditions.

(c) Using the confidence interval constructed in part (b), does
the evidence support the claim that the first test conditions
yield higher results, on the average, than the second?
Explain your answer.

(d) Construct a 95% confidence interval on the ratio of the
variances, , of failure stress under the two different
test conditions.

(e) Use your answer in part (b) to determine whether there is
a significant difference in variances of the two different
test conditions. Explain your answer.

10-76. A procurement specialist has purchased 25 resistors
from vendor 1 and 35 resistors from vendor 2. Each resistor’s
resistance is measured with the following results:

Vendor 1

96.8 100.0 100.3 98.5 98.3 98.2

99.6 99.4 99.9 101.1 103.7 97.7

99.7 101.1 97.7 98.6 101.9 101.0

99.4 99.8 99.1 99.6 101.2 98.2

98.6

Vendor 2

106.8 106.8 104.7 104.7 108.0 102.2

103.2 103.7 106.8 105.1 104.0 106.2

102.6 100.3 104.0 107.0 104.3 105.8

104.0 106.3 102.2 102.8 104.2 103.4

104.6 103.5 106.3 109.2 107.2 105.4

106.4 106.8 104.1 107.1 107.7

�1
2/�2

2

(a) What distributional assumption is needed to test the claim
that the variance of resistance of product from vendor 1 is
not significantly different from the variance of resistance
of product from vendor 2? Perform a graphical procedure
to check this assumption.

(b) Perform an appropriate statistical hypothesis-testing pro-
cedure to determine whether the procurement specialist
can claim that the variance of resistance of product from
vendor 1 is significantly different from the variance of 
resistance of product from vendor 2.

10-77. A liquid dietary product implies in its advertising
that use of the product for one month results in an average
weight loss of at least 3 pounds. Eight subjects use the product
for one month, and the resulting weight loss data are reported
below. Use hypothesis-testing procedures to answer the fol-
lowing questions.

Initial Final
Subject Weight (lb) Weight (lb)

1 165 161

2 201 195

3 195 192

4 198 193

5 155 150

6 143 141

7 150 146

8 187 183

(a) Do the data support the claim of the producer of the dietary
product with the probability of a type I error set to 0.05?

(b) Do the data support the claim of the producer of the dietary
product with the probability of a type I error set to 0.01?

(c) In an effort to improve sales, the producer is considering
changing its claim from “at least 3 pounds” to “at least 5
pounds.” Repeat parts (a) and (b) to test this new claim.

10-78. The breaking strength of yarn supplied by two man-
ufacturers is being investigated. We know from experience
with the manufacturers’ processes that �1 � 5 psi and �2 �
4 psi. A random sample of 20 test specimens from each manu-
facturer results in psi and psi, respectively.
(a) Using a 90% confidence interval on the difference in

mean breaking strength, comment on whether or not there
is evidence to support the claim that manufacturer 2 
produces yarn with higher mean breaking strength.

(b) Using a 98% confidence interval on the difference in
mean breaking strength, comment on whether or not there
is evidence to support the claim that manufacturer 2 
produces yarn with higher mean breaking strength.

(c) Comment on why the results from parts (a) and (b) are dif-
ferent or the same. Which would you choose to make your
decision and why?

x2 � 91x1 � 88
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10-79. The Salk polio vaccine experiment in 1954 focused
on the effectiveness of the vaccine in combating paralytic
polio. Because it was felt that without a control group of
children there would be no sound basis for evaluating the
efficacy of the Salk vaccine, the vaccine was administered to
one group, and a placebo (visually identical to the vaccine
but known to have no effect) was administered to a second
group. For ethical reasons, and because it was suspected that
knowledge of vaccine administration would affect subse-
quent diagnoses, the experiment was conducted in a double-
blind fashion. That is, neither the subjects nor the administrators
knew who received the vaccine and who received the placebo.
The actual data for this experiment are as follows:

Placebo group: n � 201,299: 110 cases of polio observed

Vaccine group: n � 200,745: 33 cases of polio observed

(a) Use a hypothesis-testing procedure to determine if the
proportion of children in the two groups who contracted
paralytic polio is statistically different. Use a probability
of a type I error equal to 0.05.

(b) Repeat part (a) using a probability of a type I error equal
to 0.01.

(c) Compare your conclusions from parts (a) and (b) and 
explain why they are the same or different.

10-80. Consider Supplemental Exercise 10-78. Suppose that
prior to collecting the data, you decide that you want the error in
estimating �1 � �2 by to be less than 1.5 psi. Specify
the sample size for the following percentage confidence:
(a) 90%
(b) 98%
(c) Comment on the effect of increasing the percentage confi-

dence on the sample size needed.
(d) Repeat parts (a)–(c) with an error of less than 0.75 psi

instead of 1.5 psi.
(e) Comment on the effect of decreasing the error on the 

sample size needed.

10-81. A random sample of 1500 residential telephones in
Phoenix in 1990 found that 387 of the numbers were unlisted.
A random sample in the same year of 1200 telephones in
Scottsdale found that 310 were unlisted.
(a) Find a 95% confidence interval on the difference in the

two proportions and use this confidence interval to deter-
mine if there is a statistically significant difference in
proportions of unlisted numbers between the two cities.

(b) Find a 90% confidence interval on the difference in the
two proportions and use this confidence interval to deter-
mine if there is a statistically significant difference in pro-
portions of unlisted numbers between the two cities.

(c) Suppose that all the numbers in the problem description
were doubled. That is, 774 residents out of 3000 sampled
in Phoenix and 620 residents out of 2400 in Scottsdale had
unlisted phone numbers. Repeat parts (a) and (b) and com-
ment on the effect of increasing the sample size without
changing the proportions on your results.

x1 � x2

10-82. In a random sample of 200 Phoenix residents who
drive a domestic car, 165 reported wearing their seat belt regu-
larly, while another sample of 250 Phoenix residents who drive
a foreign car revealed 198 who regularly wore their seat belt.
(a) Perform a hypothesis-testing procedure to determine if

there is a statistically significant difference in seat belt us-
age between domestic and foreign car drivers. Set your
probability of a type I error to 0.05.

(b) Perform a hypothesis-testing procedure to determine if
there is a statistically significant difference in seat belt
usage between domestic and foreign car drivers. Set your
probability of a type I error to 0.1.

(c) Compare your answers for parts (a) and (b) and explain
why they are the same or different.

(d) Suppose that all the numbers in the problem description
were doubled. That is, in a random sample of 400 Phoenix
residents who drive a domestic car, 330 reported wearing
their seat belt regularly, while another sample of 500
Phoenix residents who drive a foreign car revealed 396
who regularly wore their seat belt. Repeat parts (a) and (b)
and comment on the effect of increasing the sample size
without changing the proportions on your results.

10-83. Consider the previous exercise, which summarized
data collected from drivers about their seat belt usage.
(a) Do you think there is a reason not to believe these data?

Explain your answer.
(b) Is it reasonable to use the hypothesis-testing results from

the previous problem to draw an inference about the dif-
ference in proportion of seat belt usage
(i) of the spouses of these drivers of domestic and foreign

cars? Explain your answer.
(ii) of the children of these drivers of domestic and foreign

cars? Explain your answer.
(iii) of all drivers of domestic and foreign cars? Explain

your answer.
(iv) of all drivers of domestic and foreign trucks? Explain

your answer.

10-84. A manufacturer of a new pain relief tablet would
like to demonstrate that its product works twice as fast as the
competitor’s product. Specifically, the manufacturer would
like to test

where �1 is the mean absorption time of the competitive prod-
uct and �2 is the mean absorption time of the new product.
Assuming that the variances �2

1 and �2
2 are known, develop a

procedure for testing this hypothesis.

10-85. Two machines are used to fill plastic bottles with
dishwashing detergent. The standard deviations of fill volume
are known to be �1 � 0.10 fluid ounces and �2 � 0.15 fluid
ounces for the two machines, respectively. Two random samples
of n1 � 12 bottles from machine 1 and n2 � 10 bottles from
machine 2 are selected, and the sample mean fill volumes are

H1: �1 
 2�2

H0: �1 � 2�2
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� 30.87 fluid ounces and � 30.68 fluid ounces. Assume
normality.
(a) Construct a 90% two-sided confidence interval on the

mean difference in fill volume. Interpret this interval.
(b) Construct a 95% two-sided confidence interval on the mean

difference in fill volume. Compare and comment on the
width of this interval to the width of the interval in part (a).

(c) Construct a 95% upper-confidence interval on the mean
difference in fill volume. Interpret this interval.

(d) Test the hypothesis that both machines fill to the same
mean volume. Use � � 0.05. What is the P-value?

(e) If the �-error of the test when the true difference in fill
volume is 0.2 fluid ounces should not exceed 0.1, what
sample sizes must be used? Use � � 0.05.

10-86. Suppose that we are testing H0: �1 � �2 versus
H1 :�1 � �2, and we plan to use equal sample sizes from the
two populations. Both populations are assumed to be normal
with unknown but equal variances. If we use � � 0.05 and if
the true mean �1 � �2 � �, what sample size must be used for
the power of this test to be at least 0.90?

10-87. Consider the situation described in Exercise 10-71.
(a) Redefine the parameters of interest to be the proportion 

of lenses that are unsatisfactory following tumble polishing
with polishing fluids 1 or 2. Test the hypothesis that the two
polishing solutions give different results using � � 0.01.

(b) Compare your answer in part (a) with that for Exercise 
10-71. Explain why they are the same or different.

(c) We wish to use � � 0.01. Suppose that if p1 � 0.9 and 
p2 � 0.6, we wish to detect this with a high probability, say,
at least 0.9. What sample sizes are required to meet this 
objective?

10-88. Consider the fire-fighting foam expanding agents
investigated in Exercise 10-16, in which five observations of
each agent were recorded. Suppose that, if agent 1 produces a
mean expansion that differs from the mean expansion of agent
1 by 1.5, we would like to reject the null hypothesis with prob-
ability at least 0.95.
(a) What sample size is required?
(b) Do you think that the original sample size in Exercise 

10-16 was appropriate to detect this difference? Explain
your answer.

10-89. A fuel-economy study was conducted for two
German automobiles, Mercedes and Volkswagen. One vehicle
of each brand was selected, and the mileage performance was
observed for 10 tanks of fuel in each car. The data are as fol-
lows (in miles per gallon):

x2x1 (a) Construct a normal probability plot of each of the data
sets. Based on these plots, is it reasonable to assume that
they are each drawn from a normal population?

(b) Suppose that it was determined that the lowest observa-
tion of the Mercedes data was erroneously recorded and
should be 24.6. Furthermore, the lowest observation of the
Volkswagen data was also mistaken and should be 39.6.
Again construct normal probability plots of each of the
data sets with the corrected values. Based on these new
plots, is it reasonable to assume that they are each drawn
from a normal population?

(c) Compare your answers from parts (a) and (b) and com-
ment on the effect of these mistaken observations on the
normality assumption.

(d) Using the corrected data from part (b) and a 95% confi-
dence interval, is there evidence to support the claim that
the variability in mileage performance is greater for a
Volkswagen than for a Mercedes?

(e) Rework part (d) of this problem using an appropriate
hypothesis-testing procedure. Did you get the same an-
swer as you did originally? Why?

10-90. An experiment was conducted to compare the filling
capability of packaging equipment at two different wineries.
Ten bottles of pinot noir from Ridgecrest Vineyards were ran-
domly selected and measured, along with 10 bottles of pinot
noir from Valley View Vineyards. The data are as follows (fill
volume is in milliliters):
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Mercedes Volkswagen

24.7 24.9 41.7 42.8
24.8 24.6 42.3 42.4
24.9 23.9 41.6 39.9
24.7 24.9 39.5 40.8
24.5 24.8 41.9 29.6

Ridgecrest Valley View

755 751 752 753 756 754 757 756

753 753 753 754 755 756 756 755

752 751 755 756

(a) What assumptions are necessary to perform a hypothesis-
testing procedure for equality of means of these data?
Check these assumptions.

(b) Perform the appropriate hypothesis-testing procedure to
determine whether the data support the claim that both
wineries will fill bottles to the same mean volume.

(c) Suppose that the true difference in mean fill volume is as
much as 2 fluid ounces; did the sample sizes of 10 from
each vineyard provide good detection capability when 
� � 0.05? Explain your answer.

10-91. A Rockwell hardness-testing machine presses a tip
into a test coupon and uses the depth of the resulting depres-
sion to indicate hardness. Two different tips are being com-
pared to determine whether they provide the same Rockwell
C-scale hardness readings. Nine coupons are tested, with both
tips being tested on each coupon. The data are shown in the
accompanying table.

(a) State any assumptions necessary to test the claim that both
tips produce the same Rockwell C-scale hardness readings.
Check those assumptions for which you have the information.
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(b) Apply an appropriate statistical method to determine if the
data support the claim that the difference in Rockwell 
C-scale hardness readings of the two tips is significantly
different from zero.

(c) Suppose that if the two tips differ in mean hardness read-
ings by as much as 1.0, we want the power of the test to be
at least 0.9. For an � � 0.01, how many coupons should
have been used in the test?

10-92. Two different gauges can be used to measure the depth
of bath material in a Hall cell used in smelting aluminum. Each
gauge is used once in 15 cells by the same operator.

10-7 SUMMARY TABLE AND ROADMAPS FOR INFERENCE PROCEDURES FOR TWO SAMPLES 399

Coupon Tip 1 Tip 2 Coupon Tip 1 Tip 2

1 47 46 6 41 41

2 42 40 7 45 46

3 43 45 8 45 46

4 40 41 9 49 48

5 42 43

Cell Gauge 1 Gauge 2 Cell Gauge 1 Gauge 2

1 46 in. 47 in. 9 52 51
2 50 53 10 47 45
3 47 45 11 49 51
4 53 50 12 45 45
5 49 51 13 47 49
6 48 48 14 46 43
7 53 54 15 50 51
8 56 53

(a) State any assumptions necessary to test the claim that both
gauges produce the same mean bath depth readings. Check
those assumptions for which you have the information.

(b) Apply an appropriate statistical procedure to determine if
the data support the claim that the two gauges produce dif-
ferent mean bath depth readings.

(c) Suppose that if the two gauges differ in mean bath depth
readings by as much as 1.65 inch, we want the power of
the test to be at least 0.8. For � � 0.01, how many cells
should have been used?

10-93. An article in the Journal of the Environmental
Engineering Division [“Distribution of Toxic Substances in
Rivers” (1982, Vol. 108, pp. 639–649)] investigated the concen-
tration of several hydrophobic organic substances in the Wolf
River in Tennessee. Measurements on hexachlorobenzene (HCB)
in nanograms per liter were taken at different depths downstream
of an abandoned dump site. Data for two depths follow:

Surface: 3.74, 4.61, 4.00, 4.67, 4.87, 5.12, 4.52, 5.29, 5.74, 5.48
Bottom: 5.44, 6.88, 5.37, 5.44, 5.03, 6.48, 3.89, 5.85, 6.85, 7.16

(a) What assumptions are required to test the claim that mean
HCB concentration is the same at both depths? Check
those assumptions for which you have the information.

(b) Apply an appropriate procedure to determine if the data
support the claim in part a.

(c) Suppose that the true difference in mean concentrations
is 2.0 nanograms per liter. For � � 0.05, what is the power
of a statistical test for H0: �1 � �2 versus H1: �1 � �2?

(d) What sample size would be required to detect a difference
of 1.0 nanograms per liter at � � 0.05 if the power must
be at least 0.9?

MIND-EXPANDING EXERCISES

10-94. Three different pesticides can be used to control
infestation of grapes. It is suspected that pesticide 3 is
more effective than the other two. In a particular vineyard,
three different plantings of pinot noir grapes are selected
for study. The following results on yield are obtained:

ni

(Bushels/ (Number of
Pesticide Plant) si Plants)

1 4.6 0.7 100

2 5.2 0.6 120

3 6.1 0.8 130

If is the true mean yield after treatment with the i th
pesticide, we are interested in the quantity

which measures the difference in mean yields be-
tween pesticides 1 and 2 and pesticide 3. If the sam-
ple sizes ni are large, the estimator (say, ) obtained
by replacing each individual by is approximately
normal.
(a) Find an approximate 100( )% large-sample

confidence interval for �.
1 � �

Xi�i

�̂

� �
1

2
 1�1 � �22 � �3

�i

xi
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IMPORTANT TERMS AND CONCEPTS

Comparative experi-
ments

Confidence intervals 
on differences and 
ratios

Critical region 
for a test statistic

Identifying cause 
and effect

Null and alternative 
hypotheses

One-sided and two-
sided alternative 
hypotheses

Operating characteristic
curves

Paired t-test
Pooled t-test
P-value
Reference distribution

for a test statistic

Sample size determina-
tion for hypothesis
tests and confidence
intervals

Statistical hypotheses
Test statistic
Wilcoxon rank-sum test

MIND-EXPANDING EXERCISES

(b) Do these data support the claim that pesticide 3 is
more effective than the other two? Use � � 0.05 in
determining your answer.

10-95. Suppose that we wish to test H0: �1 � �2 versus
H1: �1 � �2, where �2

1 and �2
2 are known. The total sample

size N is to be determined, and the allocation of observa-
tions to the two populations such that n1 � n2 � N is to be
made on the basis of cost. If the cost of sampling for pop-
ulations 1 and 2 are C1 and C2, respectively, find the mini-
mum cost sample sizes that provide a specified variance
for the difference in sample means.

10-96. Suppose that we wish to test the hypothesis H0:
�1 � �2 versus H1: �1 � �2, where both variances �2

1 and
�2

2 are known. A total of n1 � n2 � N observations can be
taken. How should these observations be allocated to the
two populations to maximize the probability that H0 will
be rejected if H1 is true and �1 � �2 � � � 0?

10-97. Suppose that we wish to test H0: � � �0 versus
H1: � � �0, where the population is normal with known
�. Let 0 � � � �, and define the critical region so that we
will reject H0 if z0 
 z� or if z0 � �z���, where z0 is the
value of the usual test statistic for these hypotheses.
(a) Show that the probability of type I error for this test

is �.

(b) Suppose that the true mean is . Derive
an expression for for the above test.

10-98. Construct a data set for which the paired t-test
statistic is very large, indicating that when this analysis
is used the two population means are different, but t0 for
the two-sample t-test is very small so that the incorrect
analysis would indicate that there is no significant dif-
ference between the means.

10-99. In some situations involving proportions, we
are interested in the ratio 
 � p1�p2 rather than the differ-
ence p1 � p2. Let � � . We can show that ln( ) has
an approximate normal distribution with the mean ( )
and variance 
(a) Use the information above to derive a large-sample

confidence interval for ln 
.
(b) Show how to find a large-sample CI for 
.
(c) Use the data from the St. John’s Wort study in

Example 10-15, and find a 95% CI on 
 � p1�p2.
Provide a practical interpretation for this CI.

10-100. Derive an expression for � for the test of the
equality of the variances of two normal distributions.
Assume that the two-sided alternative is specified.

3 1n1 � x12� 1n1x12 � 1n2 � x22� 1n2x22 4
1�2.

n�


̂p̂2p̂1
̂

�
�1 � �0 � �
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11
Simple Linear Regression 
and Correlation
The space shuttle Challenger accident in January 1986 was the result of the failure of
O-rings used to seal field joints in the solid rocket motor due to the extremely low ambi-
ent temperatures at the time of launch. Prior to the launch there were data on the occur-
rence of O-ring failure and the corresponding temperature on 24 prior launches or static
firings of the motor. In this chapter we will see how to build a statistical model relating the
probability of O-ring failure to temperature. This model provides a measure of the risk as-
sociated with launching the shuttle at the low temperature occurring when Challenger
was launched.

(15 July 2009)—Space
Shuttle Endeavour and
its seven-member 
STS-127 crew head
toward Earth orbit and
rendezvous with the
International Space
Station 
Courtesy NASA
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402 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Use simple linear regression for building empirical models to engineering and scientific data
2. Understand how the method of least squares is used to estimate the parameters in a linear

regression model
3. Analyze residuals to determine if the regression model is an adequate fit to the data or to see if

any underlying assumptions are violated
4. Test statistical hypotheses and construct confidence intervals on regression model parameters
5. Use the regression model to make a prediction of a future observation and construct an

appropriate prediction interval on the future observation
6. Apply the correlation model
7. Use simple transformations to achieve a linear regression model

11-1 EMPIRICAL MODELS

Many problems in engineering and the sciences involve a study or analysis of the relationship
between two or more variables. For example, the pressure of a gas in a container is related to
the temperature, the velocity of water in an open channel is related to the width of the chan-
nel, and the displacement of a particle at a certain time is related to its velocity. In this last ex-
ample, if we let d0 be the displacement of the particle from the origin at time t = 0 and v be the
velocity, then the displacement at time t is dt = d0 + vt. This is an example of a deterministic
linear relationship, because (apart from measurement errors) the model predicts displacement
perfectly.

However, there are many situations where the relationship between variables is not deter-
ministic. For example, the electrical energy consumption of a house ( y) is related to the size
of the house (x, in square feet), but it is unlikely to be a deterministic relationship. Similarly,
the fuel usage of an automobile ( y) is related to the vehicle weight x, but the relationship is not
a deterministic one. In both of these examples the value of the response of interest y (energy
consumption, fuel usage) cannot be predicted perfectly from knowledge of the corresponding x.
It is possible for different automobiles to have different fuel usage even if they weigh the same,
and it is possible for different houses to use different amounts of electricity even if they are the
same size.

The collection of statistical tools that are used to model and explore relationships be-
tween variables that are related in a nondeterministic manner is called regression analysis.
Because problems of this type occur so frequently in many branches of engineering and sci-
ence, regression analysis is one of the most widely used statistical tools. In this chapter we
present the situation where there is only one independent or predictor variable x and the re-
lationship with the response y is assumed to be linear. While this seems to be a simple sce-
nario, there are many practical problems that fall into this framework.

For example, in a chemical process, suppose that the yield of the product is related to
the process-operating temperature. Regression analysis can be used to build a model to
predict yield at a given temperature level. This model can also be used for process opti-
mization, such as finding the level of temperature that maximizes yield, or for process
control purposes.
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11-1 EMPIRICAL MODELS 403

As an illustration, consider the data in Table 11-1. In this table y is the purity of oxygen
produced in a chemical distillation process, and x is the percentage of hydrocarbons that are
present in the main condenser of the distillation unit. Figure 11-1 presents a scatter diagram
of the data in Table 11-1. This is just a graph on which each (xi, yi) pair is represented as a point
plotted in a two-dimensional coordinate system. This scatter diagram was produced by
Minitab, and we selected an option that shows dot diagrams of the x and y variables along the
top and right margins of the graph, respectively, making it easy to see the distributions of the
individual variables (box plots or histograms could also be selected). Inspection of this scatter
diagram indicates that, although no simple curve will pass exactly through all the points, there
is a strong indication that the points lie scattered randomly around a straight line. Therefore, it
is probably reasonable to assume that the mean of the random variable Y is related to x by the
following straight-line relationship:

where the slope and intercept of the line are called regression coefficients. While the mean of
Y is a linear function of x, the actual observed value y does not fall exactly on a straight line.
The appropriate way to generalize this to a probabilistic linear model is to assume that the
expected value of Y is a linear function of x, but that for a fixed value of x the actual value of Y
is determined by the mean value function (the linear model) plus a random error term, say,

(11-1)Y � �0 � �1x � �

E1Y 0  x2 � �Y 
 0  x � �0 � �1x

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x (%) y (%)

1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 1.46 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42

10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 93.41
19 1.43 94.98
20 0.95 87.33 Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.
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Figure 11-2 The distribution of Y for a given value of x for the
oxygen purity–hydrocarbon data.
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where � is the random error term. We will call this model the simple linear regression model,
because it has only one independent variable or regressor. Sometimes a model like this will
arise from a theoretical relationship. At other times, we will have no theoretical knowledge of
the relationship between x and y, and the choice of the model is based on inspection of a scatter
diagram, such as we did with the oxygen purity data. We then think of the regression model as
an empirical model.

To gain more insight into this model, suppose that we can fix the value of x and observe
the value of the random variable Y. Now if x is fixed, the random component � on the right-
hand side of the model in Equation 11-1 determines the properties of Y. Suppose that the mean
and variance of � are 0 and �2, respectively. Then,

Notice that this is the same relationship that we initially wrote down empirically from inspection
of the scatter diagram in Fig. 11-1. The variance of Y given x is

Thus, the true regression model is a line of mean values; that is, the height
of the regression line at any value of x is just the expected value of Y for that x. The slope, 
can be interpreted as the change in the mean of Y for a unit change in x. Furthermore, the
variability of Y at a particular value of x is determined by the error variance �2. This implies
that there is a distribution of Y-values at each x and that the variance of this distribution is the
same at each x.

For example, suppose that the true regression model relating oxygen purity to hydrocarbon
level is and suppose that the variance is �2 � 2. Figure 11-2 illustrates this 
situation. Notice that we have used a normal distribution to describe the random variation
in �. Since Y is the sum of a constant �0 � �1x (the mean) and a normally distributed
random variable, Y is a normally distributed random variable. The variance �2 determines
the variability in the observations Y on oxygen purity. Thus, when �2 is small, the observed
values of Y will fall close to the line, and when �2 is large, the observed values of Y may
deviate considerably from the line. Because �2 is constant, the variability in Y at any value
of x is the same.

The regression model describes the relationship between oxygen purity Y and hydrocar-
bon level x. Thus, for any value of hydrocarbon level, oxygen purity has a normal distribution

�Y  0  x � 75 � 15x,

�1,
�Y  0  x � �0 � �1x

V 1Y 0  x2 � V 1�0 � �1x � �2 � V 1�0 � �1x2 � V 1�2 � 0 � �2 � �2

E1Y 0  x2 � E1�0 � �1x � �2 � �0 � �1x � E1�2 � �0 � �1x
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with mean 75 � 15x and variance 2. For example, if x � 1.25, Y has mean value �Y � x � 75 �
15(1.25) � 93.75 and variance 2.

In most real-world problems, the values of the intercept and slope (�0, �1) and the error
variance �2 will not be known, and they must be estimated from sample data. Then this fitted
regression equation or model is typically used in prediction of future observations of Y, or for
estimating the mean response at a particular level of x. To illustrate, a chemical engineer might
be interested in estimating the mean purity of oxygen produced when the hydrocarbon level is
x � 1.25%. This chapter discusses such procedures and applications for the simple linear
regression model. Chapter 12 will discuss multiple linear regression models that involve more
than one regressor.

Historical Note
Sir Francis Galton first used the term regression analysis in a study of the heights of fathers (x)
and sons ( y). Galton fit a least squares line and used it to predict the son’s height from the
father’s height. He found that if a father’s height was above average, the son’s height would also
be above average, but not by as much as the father’s height was. A similar effect was observed
for below average heights. That is, the son’s height “regressed” toward the average. Consequently,
Galton referred to the least squares line as a regression line.

Abuses of Regression
Regression is widely used and frequently misused; several common abuses of regression are
briefly mentioned here. Care should be taken in selecting variables with which to construct
regression equations and in determining the form of the model. It is possible to develop sta-
tistically significant relationships among variables that are completely unrelated in a causal
sense. For example, we might attempt to relate the shear strength of spot welds with the num-
ber of empty parking spaces in the visitor parking lot. A straight line may even appear to pro-
vide a good fit to the data, but the relationship is an unreasonable one on which to rely. You
can’t increase the weld strength by blocking off parking spaces. A strong observed association
between variables does not necessarily imply that a causal relationship exists between those
variables. This type of effect is encountered fairly often in retrospective data analysis, and
even in observational studies. Designed experiments are the only way to determine cause-
and-effect relationships.

Regression relationships are valid only for values of the regressor variable within the
range of the original data. The linear relationship that we have tentatively assumed may be
valid over the original range of x, but it may be unlikely to remain so as we extrapolate—that
is, if we use values of x beyond that range. In other words, as we move beyond the range of
values of x for which data were collected, we become less certain about the validity of the
assumed model. Regression models are not necessarily valid for extrapolation purposes.

Now this does not mean don’t ever extrapolate. There are many problem situations in
science and engineering where extrapolation of a regression model is the only way to even
approach the problem. However, there is a strong warning to be careful. A modest extrapola-
tion may be perfectly all right in many cases, but a large extrapolation will almost never
produce acceptable results.

11-2 SIMPLE LINEAR REGRESSION

The case of simple linear regression considers a single regressor variable or predictor variable
x and a dependent or response variable Y. Suppose that the true relationship between Y and x
is a straight line and that the observation Y at each level of x is a random variable. As noted

11-2 SIMPLE LINEAR REGRESSION 405
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406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

previously, the expected value of Y for each value of x is

where the intercept �0 and the slope �1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where � is a random error with mean zero and (unknown) variance �2. The random errors cor-
responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p , (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression
line. The estimates of �0 and �1 should result in a line that is (in some sense) a “best fit” to
the data. The German scientist Karl Gauss (1777–1855) proposed estimating the parameters
�0 and �1 in Equation 11-2 to minimize the sum of the squares of the vertical deviations in
Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least
squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression 
line is

(11-4)

The least squares estimators of �0 and �1, say, and must satisfy

(11-5) 
�L

��1
`
�̂  0,�̂1

� 	2 a
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i�1
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yi 	 �̂0 	 �̂1xi2  xi � 0
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��0
`
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i�1
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yi 	 �̂0 	 �̂1xi2 � 0

�̂1,�̂0

L � a
n

i�1
�2

i � a
n

i�1
1

 
yi 	 �0 	 �1xi2

2

yi � �0 � �1 xi � �i,  i � 1, 2, p , n

Y � �0 � �1 x � �

E1Y 0  x2 � �0 � �1 x

x

y

Observed value
Data (y)

Estimated
regression line

Figure 11-3 Deviations of the data from the
estimated regression model.
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11-2 SIMPLE LINEAR REGRESSION 407

Simplifying these two equations yields

(11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators and �̂1.�̂0

�̂0 a
n

i�1
 xi � �̂1 a

n

i�1
 x i

2 � a
n

i�1
 yi 

xi

 n�̂0 � �̂1 a
n

i�1
 xi � a

n

i�1
 yi

The least squares estimates of the intercept and slope in the simple linear regression
model are

(11-7)

(11-8)

where y � 11
n2 g
n
i�1 yi and  x � 11
n2 g

n
i�1 xi.

�̂1 �
a
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i�1
yi  

xi 	

aa
n

i�1
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a
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i�1
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2
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n

i�1
xib

2

n

�̂0 � y 	 �̂1x

Least Squares
Estimates

The fitted or estimated regression line is therefore

(11-9)

Note that each pair of observations satisfies the relationship

where ei � yi 	 is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide
information about the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x1, y1), (x2, y2), p , (xn, yn), let

(11-10)

and

(11-11)Sx y � a
n

i�1
1yi 	 y2 1xi 	 x2 � a

n

i�1
xiyi 	

aa
n

i�1
xib

 
aa

n

i�1
 yib

n

Sx x � a
n

i�1
 1xi 	 x22 � a

n

i�1
x 

2
i 	

aa
n

i�1
xib

2

n

ŷi

yi � �̂0 � �̂1xi � ei,  i � 1, 2, p , n

ŷ � �̂0 � �̂1x
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408 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

�̂1�̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:

Sx x � a
20

i�1
x i

2 	

aa
20

i�1
xib

2

20
� 29.2892 	

123.9222

20

a
20

i�1
xi yi � 2,214.6566

a
20

i�1
 yi

2 � 170,044.5321 a
20

i�1
xi

2 � 29.2892

x � 1.1960 y � 92.1605

n � 20 a
20

i�1
xi � 23.92 a

20

i�1
 yi � 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of � 89.23% when the
hydrocarbon level is x � 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x � 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.

ŷ

ŷ � 74.283 � 14.947 x

�̂0 � y 	 �̂1x � 92.1605 	 114.9474821.196 � 74.28331

�̂1 �
Sx y

Sx x
�

10.17744

0.68088
� 14.94748
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Figure 11-4 Scatter
plot of oxygen 
purity y versus
hydrocarbon level x
and regression model

.ŷ � 74.283 � 14.947x

� 0.68088

and

 � 2,214.6566 	
123.922 11,843.212

20
� 10.17744

 Sx y � a
20

i�1
xiyi 	

aa
20

i�1
xib aa

20

i�1
 yib

20
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11-2 SIMPLE LINEAR REGRESSION 409

Table 11-2 Minitab Output for the Oxygen Purity Data in Example 11-1

Regression Analysis

The regression equation is 

Purity � 74.3 � 14.9 HC Level

Predictor Coef SE Coef T P
Constant 74.283 1.593 46.62 0.000
HC Level 14.947 1.317 11.35 0.000

S � 1.087 R-Sq � 87.7% R-Sq (adj) � 87.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 152.13 152.13 128.86 0.000
Residual Error 18 21.25 SSE 1.18
Total 19 173.38

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 89.231 0.354 (88.486, 89.975) (86.830, 91.632)

Values of Predictors for New Observations

New Obs HC Level
1 1.00

�̂ 2

�̂1

�̂0

Estimating �2

There is actually another unknown parameter in our regression model, �2 (the variance of the
error term �). The residuals are used to obtain an estimate of �2. The sum of
squares of the residuals, often called the error sum of squares, is

(11-12)

We can show that the expected value of the error sum of squares is E(SSE) � (n 	 2)�2.
Therefore an unbiased estimator of �2 is

SSE � a
n

i�1
 ei

2 � a
n

i�1
1 yi 	 ŷi2

2

ei � yi 	 ŷi

(11-14)SSE � SST 	 �̂1Sxy

(11-13)�̂2 �
SSE

n 	 2

Estimator 
of Variance

Computing SSE using Equation 11-12 would be fairly tedious. A more convenient computing
formula can be obtained by substituting into Equation 11-12 and simplifying.
The resulting computing formula is

ŷi � �̂0 � �̂1xi
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410 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

where is the total sum of squares of the response

variable y. Formulas such as this are presented in Section 11-4. The error sum of squares and
the estimate of �2 for the oxygen purity data, are highlighted in the Minitab output
in Table 11-2.

�̂2 � 1.18,

SST � g n
i�1 1 yi 	 y 22 � g n

i�1 yi
2 	 ny	2

EXERCISES FOR SECTION 11-2

11-1. An article in Concrete Research [“Near Surface
Characteristics of Concrete: Intrinsic Permeability” (Vol. 41,
1989)] presented data on compressive strength x and intrinsic per-
meability y of various concrete mixes and cures. Summary quan-
tities are n � 14, gyi � 572, g � 23,530, g xi � 43, �g xi

2y2
i

(e) Given that yards, find the fitted value of y and the
corresponding residual.

x � 7.21

Yards per Rating
Player Team Attempt Points

Philip Rivers SD 8.39 105.5

Chad Pennington MIA 7.67 97.4

Kurt Warner ARI 7.66 96.9

Drew Brees NO 7.98 96.2

Peyton Manning IND 7.21 95

Aaron Rodgers GB 7.53 93.8

Matt Schaub HOU 8.01 92.7

Tony Romo DAL 7.66 91.4

Jeff Garcia TB 7.21 90.2

Matt Cassel NE 7.16 89.4

Matt Ryan ATL 7.93 87.7

Shaun Hill SF 7.10 87.5

Seneca Wallace SEA 6.33 87

Eli Manning NYG 6.76 86.4

Donovan McNabb PHI 6.86 86.4

Jay Cutler DEN 7.35 86

Trent Edwards BUF 7.22 85.4

Jake Delhomme CAR 7.94 84.7

Jason Campbell WAS 6.41 84.3

David Garrard JAC 6.77 81.7

Brett Favre NYJ 6.65 81

Joe Flacco BAL 6.94 80.3

Kerry Collins TEN 6.45 80.2

Ben Roethlisberger PIT 7.04 80.1

Kyle Orton CHI 6.39 79.6

JaMarcus Russell OAK 6.58 77.1

Tyler Thigpen KC 6.21 76

Gus Freotte MIN 7.17 73.7

Dan Orlovsky DET 6.34 72.6

Marc Bulger STL 6.18 71.4

Ryan Fitzpatrick CIN 5.12 70

Derek Anderson CLE 5.71 66.5

157.42, and g xiyi � 1697.80. Assume that the two variables
are related according to the simple linear regression model.
(a) Calculate the least squares estimates of the slope and intercept.

Estimate �2. Graph the regression line.
(b) Use the equation of the fitted line to predict what perme-

ability would be observed when the compressive strength
is x � 4.3.

(c) Give a point estimate of the mean permeability when
compressive strength is x � 3.7.

(d) Suppose that the observed value of permeability at x �
3.7 is y � 46.1. Calculate the value of the corresponding
residual.

11-2. Regression methods were used to analyze the data
from a study investigating the relationship between roadway
surface temperature (x) and pavement deflection ( y). Summary
quantities were n � 20, g yi � 12.75, � 8.86, g xi �g yi

2

1478, � 143,215.8, and g xiyi � 1083.67.
(a) Calculate the least squares estimates of the slope and in-

tercept. Graph the regression line. Estimate �2.
(b) Use the equation of the fitted line to predict what pave-

ment deflection would be observed when the surface
temperature is 85�F.

(c) What is the mean pavement deflection when the surface
temperature is 90�F?

(d) What change in mean pavement deflection would be ex-
pected for a 1�F change in surface temperature?

11-3. The following table presents data on the ratings of quar-
terbacks for the 2008 National Football League season (source:
The Sports Network). It is suspected that the rating (y) is related
to the average number of yards gained per pass attempt (x).
(a) Calculate the least squares estimates of the slope and

intercept. What is the estimate of ? Graph the regres-
sion model.

(b) Find an estimate of the mean rating if a quarterback
averages 7.5 yards per attempt.

(c) What change in the mean rating is associated with a
decrease of one yard per attempt?

(d) To increase the mean rating by 10 points, how much in-
crease in the average yards per attempt must be generated?

�2

gx2
i
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11-2 SIMPLE LINEAR REGRESSION 411

11-4. An article in Technometrics by S. C. Narula and J. F.
Wellington [“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors” (Vol. 19, 1977)] presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.

Taxes
Sale (Local, School),

Price/1000 County)/1000

25.9 4.9176

29.5 5.0208

27.9 4.5429

25.9 4.5573

29.9 5.0597

29.9 3.8910

30.9 5.8980

28.9 5.6039

35.9 5.8282

31.5 5.3003

31.0 6.2712

30.9 5.9592

Taxes
Sale (Local, School),

Price/1000 County)/1000

30.0 5.0500

36.9 8.2464

41.9 6.6969

40.5 7.7841

43.9 9.0384

37.5 5.9894

37.9 7.5422

44.5 8.7951

37.9 6.0831

38.9 8.3607

36.9 8.1400

45.8 9.1416

(a) Assuming that a simple linear regression model is
appropriate, obtain the least squares fit relating selling
price to taxes paid. What is the estimate of �2?

(b) Find the mean selling price given that the taxes paid are
x � 7.50.

(c) Calculate the fitted value of y corresponding to x �
5.8980. Find the corresponding residual.

(d) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed value yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid is an
effective regressor variable in predicting selling price?

11-5. The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (in� F) for that month. The past year’s usage and
temperature are shown in the following table:

ŷi

ŷi

Month Temp. Usage/1000

Jan. 21 185.79

Feb. 24 214.47

Mar. 32 288.03

Apr. 47 424.84

May 50 454.58

June 59 539.03

Month Temp. Usage/1000

July 68 621.55

Aug. 74 675.06

Sept. 62 562.03

Oct. 50 452.93

Nov. 41 369.95

Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating steam usage (y) to
the average temperature (x). What is the estimate of �2?
Graph the regression line.

(b) What is the estimate of expected steam usage when the
average temperature is 55�F?

(c) What change in mean steam usage is expected when the
monthly average temperature changes by 1�F?

(d) Suppose the monthly average temperature is 47�F. Calculate
the fitted value of y and the corresponding residual.

11-6. The following table presents the highway gasoline
mileage performance and engine displacement for Daimler-
Chrysler vehicles for model year 2005 (source: U.S. Environ-
mental Protection Agency).
(a) Fit a simple linear model relating highway miles per gal-

lon ( y) to engine displacement (x) in cubic inches using
least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine
displacement.

(c) Obtain the fitted value of y and the corresponding residual
for a car, the Neon, with an engine displacement of 122
cubic inches.

Engine 
Displacement MPG

Carline (in3) (highway)

300C/SRT-8 215 30.8

CARAVAN 2WD 201 32.5

CROSSFIRE ROADSTER 196 35.4

DAKOTA PICKUP 2WD 226 28.1

DAKOTA PICKUP 4WD 226 24.4

DURANGO 2WD 348 24.1

GRAND CHEROKEE 2WD 226 28.5

GRAND CHEROKEE 4WD 348 24.2

LIBERTY/CHEROKEE 2WD 148 32.8

LIBERTY/CHEROKEE 4WD 226 28

NEON/SRT-4/SX 2.0 122 41.3

PACIFICA 2WD 215 30.0

PACIFICA AWD 215 28.2

PT CRUISER 148 34.1

RAM 1500 PICKUP 2WD 500 18.7

RAM 1500 PICKUP 4WD 348 20.3

SEBRING 4-DR 165 35.1

STRATUS 4-DR 148 37.9

TOWN & COUNTRY 2WD 148 33.8

VIPER CONVERTIBLE 500 25.9

WRANGLER/TJ 4WD 148 26.4
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412 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-7. An article in the Tappi Journal (March, 1986)
presented data on green liquor Na2S concentration (in grams
per liter) and paper machine production (in tons per day). The
data (read from a graph) are shown as follows:

y 40 42 49 46 44 48

x 825 830 890 895 890 910

y 46 43 53 52 54 57 58

x 915 960 990 1010 1012 1030 1050

(a) Fit a simple linear regression model with y � green liquor
Na2S concentration and x � production. Find an estimate
of �2. Draw a scatter diagram of the data and the resulting
least squares fitted model.

(b) Find the fitted value of y corresponding to x � 910 and
the associated residual.

(c) Find the mean green liquor Na2S concentration when the
production rate is 950 tons per day.

11-8. An article in the Journal of Sound and Vibration
(Vol. 151, 1991, pp. 383–394) described a study investigating
the relationship between noise exposure and hypertension.
The following data are representative of those reported in the
article.

y 1 0 1 2 5 1 4 6 2 3

x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6

x 85 89 90 90 90 90 94 100 100 100

(a) Draw a scatter diagram of y (blood pressure rise in
millimeters of mercury) versus x (sound pressure level in
decibels). Does a simple linear regression model seem
reasonable in this situation?

(b) Fit the simple linear regression model using least squares.
Find an estimate of �2.

(c) Find the predicted mean rise in blood pressure level
associated with a sound pressure level of 85 decibels.

11-9. An article in Wear (Vol. 152, 1992, pp. 171–181) pres-
ents data on the fretting wear of mild steel and oil viscosity.
Representative data follow, with x � oil viscosity and y � wear
volume ( cubic millimeters).10	4

y 110 113 75 94

x 35.5 43.0 40.5 33.0

y 240 181 193 155 172

x 1.6 9.4 15.5 20.0 22.0

(a) Construct a scatter plot of the data. Does a simple linear
regression model appear to be plausible?

(b) Fit the simple linear regression model using least squares.
Find an estimate of �2.

(c) Predict fretting wear when viscosity x � 30.
(d) Obtain the fitted value of y when x � 22.0 and calculate

the corresponding residual.

11-10. An article in the Journal of Environmental
Engineering (Vol. 115, No. 3, 1989, pp. 608–619) reported the
results of a study on the occurrence of sodium and chloride in
surface streams in central Rhode Island. The following data
are chloride concentration y (in milligrams per liter) and
roadway area in the watershed x (in percentage).

y 4.4 6.6 9.7 10.6 10.8 10.9

x 0.19 0.15 0.57 0.70 0.67 0.63

y 11.8 12.1 14.3 14.7 15.0 17.3

x 0.47 0.70 0.60 0.78 0.81 0.78

y 19.2 23.1 27.4 27.7 31.8 39.5

x 0.69 1.30 1.05 1.06 1.74 1.62

(a) Draw a scatter diagram of the data. Does a simple linear
regression model seem appropriate here?

(b) Fit the simple linear regression model using the method of
least squares. Find an estimate of �2.

(c) Estimate the mean chloride concentration for a watershed
that has 1% roadway area.

(d) Find the fitted value corresponding to x � 0.47 and the
associated residual.

11-11. A rocket motor is manufactured by bonding together
two types of propellants, an igniter and a sustainer. The shear
strength of the bond y is thought to be a linear function of the
age of the propellant x when the motor is cast. Twenty obser-
vations are shown in the following table.
(a) Draw a scatter diagram of the data. Does the straight-line

regression model seem to be plausible?
(b) Find the least squares estimates of the slope and inter-

cept in the simple linear regression model. Find an
estimate of �2.

(c) Estimate the mean shear strength of a motor made from
propellant that is 20 weeks old.

(d) Obtain the fitted values that correspond to each observed
value yi. Plot versus yi and comment on what this plot
would look like if the linear relationship between shear
strength and age were perfectly deterministic (no error).
Does this plot indicate that age is a reasonable choice of
regressor variable in this model?

ŷi

ŷi
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11-2 SIMPLE LINEAR REGRESSION 413

11-12. An article in the Journal of the American Ceramic
Society [“Rapid Hot-Pressing of Ultrafine PSZ Powders”
(1991, Vol. 74, pp. 1547–1553)] considered the microstructure
of the ultrafine powder of partially stabilized zirconia as a
function of temperature. The data are shown below:

x � Temperature (�C): 1100 1200 1300 1100 1500
1200 1300

y � Porosity (%):          30.8 19.2 6.0 13.5 11.4
7.7 3.6

(a) Fit the simple linear regression model using the method of
least squares. Find an estimate of .�2

Observation Strength y Age x
Number (psi) (weeks)

1 2158.70 15.50
2 1678.15 23.75

3 2316.00 8.00

4 2061.30 17.00

5 2207.50 5.00

6 1708.30 19.00

7 1784.70 24.00

8 2575.00 2.50

9 2357.90 7.50

10 2277.70 11.00

11 2165.20 13.00

12 2399.55 3.75

13 1779.80 25.00

14 2336.75 9.75

15 1765.30 22.00

16 2053.50 18.00

17 2414.40 6.00

18 2200.50 12.50

19 2654.20 2.00

20 1753.70 21.50

conducted over a period of time in days. The resulting data are
shown below:

Time (days): 1 2 4 6 8 10 12 14 16
18 20

BOD (mg/liter): 0.6 0.7 1.5 1.9 2.1 2.6 2.9 3.7 3.5
3.7 3.8

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating BOD (y) to the
time (x). What is the estimate of ?

(b) What is the estimate of expected BOD level when the time
is 15 days?

(c) What change in mean BOD is expected when the time
changes by three days?

(d) Suppose the time used is six days. Calculate the fitted
value of y and the corresponding residual.

(e) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed values yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that time is an effective
regressor variable in predicting BOD?

11-14. An article in Wood Science and Technology [“Creep
in Chipboard, Part 3: Initial Assessment of the Influence of
Moisture Content and Level of Stressing on Rate of Creep
and Time to Failure” (1981, Vol. 15, pp. 125–144)] studied
the deflection (mm) of particleboard from stress levels of rel-
ative humidity. Assume that the two variables are related ac-
cording to the simple linear regression model. The data are
shown below:

x � Stress level (%): 54        54       61        61         68

y � Deflection (mm): 16.473 18.693 14.305 15.121 13.505

x � Stress level (%): 68         75         75         75

y � Deflection (mm): 11.640 11.168 12.534 11.224

(a) Calculate the least square estimates of the slope and inter-
cept. What is the estimate of ? Graph the regression
model and the data.

(b) Find the estimate of the mean deflection if the stress level
can be limited to 65%.

(c) Estimate the change in the mean deflection associated
with a 5% increment in stress level.

(d) To decrease the mean deflection by one millimeter, how
much increase in stress level must be generated?

(e) Given that the stress level is 68%, find the fitted value of
deflection and the corresponding residual.

11-15. In an article in Statistics and Computing [“An
Iterative Monte Carlo Method for Nonconjugate Bayesian
Analysis” (1991, pp. 119–128)] Carlin and Gelfand
investigated the age (x) and length (y) of 27 captured dugongs
(sea cows).

�2

ŷi

ŷi

�2

(b) Estimate the mean porosity for a temperature of 1400�C.
(c) Find the fitted value corresponding to and the 

associated residual.
(d) Draw a scatter diagram of the data. Does a simple linear

regression model seem appropriate here? Explain.

11-13. An article in the Journal of the Environmental
Engineering Division [“Least Squares Estimates of BOD
Parameters” (1980, Vol. 106, pp. 1197–1202)] took a sample
from the Holston River below Kingport, Tennessee, during
August 1977. The biochemical oxygen demand (BOD) test is

y � 11.4
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414 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

x � 1.0, 1.5, 1.5, 1.5, 2.5, 4.0, 5.0, 5.0, 7.0, 8.0, 8.5, 9.0, 9.5,
9.5, 10.0, 12.0, 12.0, 13.0, 13.0, 14.5, 15.5, 15.5, 16.5,
17.0, 22.5, 29.0, 31.5

y � 1.80, 1.85, 1.87, 1.77, 2.02, 2.27, 2.15, 2.26, 2.47, 2.19,
2.26, 2.40, 2.39, 2.41, 2.50, 2.32, 2.32, 2.43, 2.47, 2.56,
2.65, 2.47, 2.64, 2.56, 2.70, 2.72, 2.57

(a) Find the least squares estimates of the slope and the inter-
cept in the simple linear regression model. Find an esti-
mate of .

(b) Estimate the mean length of dugongs at age 11.
(c) Obtain the fitted values that correspond to each ob-

served value yi. Plot versus yi, and comment on what
this plot would look like if the linear relationship between
length and age were perfectly deterministic (no error).
Does this plot indicate that age is a reasonable choice of
regressor variable in this model?

11-16. Consider the regression model developed in Ex-
ercise 11-2.
(a) Suppose that temperature is measured in �C rather than �F.

Write the new regression model.
(b) What change in expected pavement deflection is associ-

ated with a 1�C change in surface temperature?

11-17. Consider the regression model developed in Exercise
11-6. Suppose that engine displacement is measured in cubic
centimeters instead of cubic inches.

ŷi

ŷi

�2

(a) Write the new regression model.
(b) What change in gasoline mileage is associated with a

1 cm3 change is engine displacement?

11-18. Show that in a simple linear regression model
the point ( ) lies exactly on the least squares regression line.x, y

( ) points. Use the two plots to intuitively
explain how the two models, Y � �0 � �1x � � and

, are related.
(b) Find the least squares estimates of and in the model

. How do they relate to the least
squares estimates and ?

11-20. Suppose we wish to fit a regression model for which
the true regression line passes through the point (0, 0). The ap-
propriate model is Y � �x � �. Assume that we have n pairs
of data (x1, y1), (x2, y2), p , (xn, yn). 
(a) Find the least squares estimate of �.
(b) Fit the model Y � �x � � to the chloride concentration-

roadway area data in Exercise 11-10. Plot the fitted
model on a scatter diagram of the data and comment on
the appropriateness of the model.

�̂1�̂0

Y � �*0 � �*1z � �
�*1�*0

Y � �*0 � �*1z � �

zi � xi 	 x, yi

11-3 PROPERTIES OF THE LEAST SQUARES ESTIMATORS

The statistical properties of the least squares estimators and may be easily described.
Recall that we have assumed that the error term � in the model Y � �0 � �1x � � is a random
variable with mean zero and variance �2. Since the values of x are fixed, Y is a random vari-
able with mean � �0 � �1x and variance �2. Therefore, the values of and depend
on the observed y’s; thus, the least squares estimators of the regression coefficients may be
viewed as random variables. We will investigate the bias and variance properties of the least
squares estimators and .

Consider first . Because is a linear combination of the observations Yi, we can use
properties of expectation to show that the expected value of is

(11-15)

Thus, is an unbiased estimator of the true slope �1.
Now consider the variance of . Since we have assumed that V(�i) � �2, it follows that

V(Yi) � �2. Because is a linear combination of the observations Yi, the results in
Section 5-5 can be applied to show that

(11-16)V1�̂12 �
�2

Sxx

�̂1

�̂1

�̂1

E1�̂12 � �1

�̂1

�̂1�̂1

�̂1�̂0

�̂1�̂0�Y 0 x

�̂1�̂0

11-19. Consider the simple linear regression model Y � �0 �
�1x � �. Suppose that the analyst wants to use z � x 	 as
the regressor variable.
(a) Using the data in Exercise 11-11, construct one scatter

plot of the ( ) points and then another of thexi, yi

x
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11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 415

For the intercept, we can show in a similar manner that

(11-17)

Thus, is an unbiased estimator of the intercept �0. The covariance of the random vari-
ables and is not zero. It can be shown (see Exercise 11-98) that cov( ) �
	�2 .

The estimate of �2 could be used in Equations 11-16 and 11-17 to provide estimates of
the variance of the slope and the intercept. We call the square roots of the resulting variance
estimators the estimated standard errors of the slope and intercept, respectively.

x
Sxx

�̂0, �̂1�̂1�̂0

�̂0

E1�̂02 � �0 and V1�̂02 � �2 c
1
n �

x2

Sxx
d

In simple linear regression the estimated standard error of the slope and the 
estimated standard error of the intercept are 

respectively, where is computed from Equation 11-13.�̂2

se1�̂12 �
B

�̂2

Sxx
  and  se1�̂02 �

B
�̂2 c

1
n �

x2

Sxx
d

Estimated
Standard 

Errors

The Minitab computer output in Table 11-2 reports the estimated standard errors of the slope
and intercept under the column heading “SE coeff.”

11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION

An important part of assessing the adequacy of a linear regression model is testing statistical
hypotheses about the model parameters and constructing certain confidence intervals. Hypothesis
testing in simple linear regression is discussed in this section, and Section 11-5 presents methods
for constructing confidence intervals. To test hypotheses about the slope and intercept of the re-
gression model, we must make the additional assumption that the error component in the
model, �, is normally distributed. Thus, the complete assumptions are that the errors are normally
and independently distributed with mean zero and variance �2, abbreviated NID(0, �2).

11-4.1 Use of t-Tests

Suppose we wish to test the hypothesis that the slope equals a constant, say, �1,0. The appro-
priate hypotheses are

(11-18)

where we have assumed a two-sided alternative. Since the errors �i are NID(0, �2), it follows
directly that the observations Yi are NID(�0 � �1xi, �

2). Now is a linear combination of �̂1

H1: �1 � �1,0

H0: �1 � �1,0
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416 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

independent normal random variables, and consequently, is N(�1, �
2�Sxx), using the bias�̂1

and variance properties of the slope discussed in Section 11-3. In addition, has
a chi-square distribution with n 	 2 degrees of freedom, and is independent of . As a
result of those properties, the statistic

(11-19)

follows the t distribution with n 	 2 degrees of freedom under H0: �1 � �1,0. We would reject
H0: �1 � �1,0 if

(11-20)

where t0 is computed from Equation 11-19. The denominator of Equation 11-19 is the standard
error of the slope, so we could write the test statistic as

A similar procedure can be used to test hypotheses about the intercept. To test

(11-21)

we would use the statistic

(11-22)

and reject the null hypothesis if the computed value of this test statistic, t0, is such that
. Note that the denominator of the test statistic in Equation 11-22 is just the stan-

dard error of the intercept.
A very important special case of the hypotheses of Equation 11-18 is

(11-23)

These hypotheses relate to the significance of regression. Failure to reject H0: �1 � 0 is
equivalent to concluding that there is no linear relationship between x and Y. This situation is
illustrated in Fig. 11-5. Note that this may imply either that x is of little value in explaining the
variation in Y and that the best estimator of Y for any x is [Fig. 11-5(a)] or that the trueŷ � Y

H1: �1 � 0

H0: �1 � 0

0 t0 0 
 t�
2,n	2

T0 �
�̂0 	 �0,0

B
�̂2 c

1
n �

x2

Sxx
d

�
�̂0 	 �0,0

se1�̂02

H1: �0 � �0,0

H0: �0 � �0,0

T0 �
�̂1 	 �1,0

se1�̂12

0 t0 0 
 t�
2,n	2

T0 �
�̂1 	 �1,0

2�̂2
Sxx

�̂2�̂1

1n 	 22�̂2
�2

Test Statistic

Test Statistic

relationship between x and Y is not linear [Fig. 11-5(b)]. Alternatively, if H0: �1 � 0 is re-
jected, this implies that x is of value in explaining the variability in Y (see Fig. 11-6). Rejecting
H0: �1 � 0 could mean either that the straight-line model is adequate [Fig. 11-6(a)] or that,
although there is a linear effect of x, better results could be obtained with the addition of
higher order polynomial terms in x [Fig. 11-6(b)].
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x

y

(a)
x

y

(b)

Figure 11-5 The
hypothesis H0: �1 � 0
is not rejected.

Figure 11-6 The
hypothesis H0: �1 � 0
is rejected.

x

y

(a)
x

y

(b)

EXAMPLE 11-2 Oxygen Purity Tests of Coefficients 
We will test for significance of regression using the model for
the oxygen purity data from Example 11-1. The hypotheses are

and we will use � � 0.01. From Example 11-1 and Table 11-2
we have

so the t-statistic in Equation 10-20 becomes

t0 �
�̂1

2�̂2�Sxx

�
�̂1

se1�̂12
�

14.947

21.18�0.68088
� 11.35

�̂1 � 14.947 n � 20, Sxx � 0.68088, �̂2 � 1.18

H1: �1 � 0

H0: �1 � 0

Practical Interpretation: Since the reference value of t is
t0.005,18 � 2.88, the value of the test statistic is very far into the
critical region, implying that H0: �1 � 0 should be rejected.
There is strong evidence to support this claim. The P-value for
this test is . This was obtained manually
with a calculator.

Table 11-2 presents the Minitab output for this problem.
Notice that the t-statistic value for the slope is computed as
11.35 and that the reported P-value is P � 0.000. Minitab also
reports the t-statistic for testing the hypothesis H0: �0 � 0.
This statistic is computed from Equation 11-22, with �0,0 � 0,
as t0 � 46.62. Clearly, then, the hypothesis that the intercept is
zero is rejected.

P � 1.23 � 10	9

11-4.2 Analysis of Variance Approach to Test Significance of Regression

A method called the analysis of variance can be used to test for significance of regression.
The procedure partitions the total variability in the response variable into meaningful compo-
nents as the basis for the test. The analysis of variance identity is as follows:

(11-24)a
n

i�1
1 yi 	 y 22 � a

n

i�1
1 ŷi 	 y 22 
 a

n

i�1
1 yi 	 ŷi2

2

Analysis of
Variance
Identity
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418 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(11-25)SST � SSR � SSE

(11-26)F0 �
SSR
1

SSE
 1n 	 22
�

MSR

MSE

Test for
Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR � g n
i�1 1 ŷi 	 y 22

SSE � g n
i�1 1yi 	 ŷ i2

2

where SST � gn
i�1 is the total corrected sum of squares of y. In Section 11-2 we1 yi 	 y22

noted that SSE � SST 	 �1Sxy (see Equation 11-14), so since SST � �1Sxy � SSE, we note that the
regression sum of squares in Equation 11-25 is SSR � �1Sxy. The total sum of squares SST has 
n 	 1 degrees of freedom, and SSR and SSE have 1 and n 	 2 degrees of freedom, respectively.

ˆ
ˆˆ

We may show that and that andSSE
�2E 3SSE
 1n 	 22 4 � �2, E1SSR2 � �2 � �2
1Sx x

are independent chi-square random variables with n 	 2 and 1 degrees of freedom, re-SSR
�2

spectively. Thus, if the null hypothesis H0: �1 � 0 is true, the statistic

follows the F1,n	2 distribution, and we would reject H0 if f0 
 f�,1,n	2. The quantities MSR �
SSR�1 and MSE � SSE�(n 	 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR�MSE

Error SSE � SST 	  Sxy n 	 2 MSE

Total SST n 	 1

Note that MSE � .�̂2

�̂1

SSR � �̂1Sx y

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST � 173.38, Sxy �
10.17744, and n � 20. The regression sum of squares is

and the error sum of squares is

� 21.25� 173.38 	 152.13SSE � SST 	 SSR

SSR � �̂1Sx y � 114.947210.17744 � 152.13

�̂1 � 14.947,

The analysis of variance for testing H0: �1 � 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 � MSR�MSE � 152.13�1.18 � 128.86, for which we
find that the P-value is P � 1.23 � 10	9, so we conclude that
�1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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11-4 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 419

Note that the analysis of variance procedure for testing for significance of regression is
equivalent to the t-test in Section 11-4.1. That is, either procedure will lead to the same conclusions.
This is easy to demonstrate by starting with the t-test statistic in Equation 11-19 with �1,0 � 0, say

(11-27)

Squaring both sides of Equation 11-27 and using the fact that results in

(11-28)

Note that T 2
0 in Equation 11-28 is identical to F0 in Equation 11-26. It is true, in general, that

the square of a t random variable with v degrees of freedom is an F random variable, with one
and v degrees of freedom in the numerator and denominator, respectively. Thus, the test using
T0 is equivalent to the test based on F0. Note, however, that the t-test is somewhat more flexible
in that it would allow testing against a one-sided alternative hypothesis, while the F-test is
restricted to a two-sided alternative.

T2
0 �

�̂2
1Sx x

MSE
�

�̂1Sxy

MSE
�

MSR

MSE

�̂2 � MSE

T0 �
�̂1

2�̂2
Sx x

11-21. Consider the computer output below.

The regression equation is
Y � 12.9 � 2.34 x

Predictor Coef SE Coef T P
Constant 12.857 1.032 ? ?
X 2.3445 0.1150 ? ?

S � 1.48111 R	Sq � 98.1% R	Sq(adj) � 97.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 912.43 912.43 ? ?
Residual Error 8 17.55 ?
Total 9 929.98

(a) Fill in the missing information. You may use bounds for
the P-values.

(b) Can you conclude that the model defines a useful linear
relationship?

(c) What is your estimate of �2?

11-22. Consider the computer output below.

The regression equation is
Y = 26.8 � 1.48 x

Predictor Coef SE Coef T P
Constant 26.753 2.373 ? ?
X 1.4756 0.1063 ? ?

S � 2.70040 R	Sq � 93.7% R-Sq (adj) � 93.2%

Analysis of Variance

Source DF SS MS F P
Regression 1 ? ? ? ?
Residual Error ? 94.8 7.3
Total 15 1500.0

(a) Fill in the missing information. You may use bounds for
the P-values.

(b) Can you conclude that the model defines a useful linear
relationship?

(c) What is your estimate of �2?

11-23. Consider the data from Exercise 11-1 on x �
compressive strength and y � intrinsic permeability of concrete.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test. Can you conclude that the model
specifies a useful linear relationship between these two
variables?

(b) Estimate �2 and the standard deviation of 
(c) What is the standard error of the intercept in this model?

11-24. Consider the data from Exercise 11-2 on x � road-
way surface temperature and y � pavement deflection.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test. What conclusions can you draw?
(b) Estimate the standard errors of the slope and intercept.

11-25. Consider the National Football League data in
Exercise 11-3.
(a) Test for significance of regression using . Find

the P-value for this test. What conclusions can you draw?
(b) Estimate the standard errors of the slope and intercept.
(c) Test versus with .

Would you agree with the statement that this is a test of
the hypothesis that a one-yard increase in the average
yards per attempt results in a mean increase of 10 rating
points?

11-26. Consider the data from Exercise 11-4 on y � sales
price and x � taxes paid.
(a) Test H0: �1 � 0 using the t-test; use � � 0.05.
(b) Test H0: �1 � 0 using the analysis of variance with � � 0.05.

Discuss the relationship of this test to the test from part (a).

� � 0.01H1: �1 � 10H0: �1 � 10

� � 0.01

�̂1.

EXERCISES FOR SECTION 11-4
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420 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(c) Estimate the standard errors of the slope and intercept.
(d) Test the hypothesis that �0 � 0.

11-27. Consider the data from Exercise 11-5 on y � steam
usage and x � average temperature.
(a) Test for significance of regression using � � 0.01. What

is the P-value for this test? State the conclusions that
result from this test.

(b) Estimate the standard errors of the slope and intercept.
(c) Test the hypothesis H0: �1 � 10 versus H1: �1 � 10 using

� � 0.01. Find the P-value for this test.
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. Find

the P-value for this test and draw conclusions.

11-28. Consider the data from Exercise 11-6 on y � highway
gasoline mileage and x � engine displacement.
(a) Test for significance of regression using � � 0.01. Find

the P-value for this test. What conclusions can you
reach?

(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �1 � 	0.05 versus H1: �1 � 	0.05 using � �

0.01 and draw conclusions. What is the P-value for this test?
(d) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 using 

� � 0.01. What is the P-value for this test?

11-29. Consider the data from Exercise 11-7 on y � green
liquor Na2S concentration and x � production in a paper mill.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test.
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.05. What

is the P-value for this test?

11-30. Consider the data from Exercise 11-8 on y � blood
pressure rise and x � sound pressure level.
(a) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.05. Find

the P-value for this test.

11-31. Consider the data from Exercise 11-11, on y � shear
strength of a propellant and x � propellant age.

(a) Test for significance of regression with � � 0.01. Find the
P-value for this test.

(b) Estimate the standard errors of and 
(c) Test H0: �1 � 	30 versus H1: �1 � 	30 using � � 0.01.

What is the P-value for this test?
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. What

is the P-value for this test?
(e) Test H0: �0 � 2500 versus H1: �0 
 2500 using � �

0.01. What is the P-value for this test?

11-32. Consider the data from Exercise 11-10 on y � chloride
concentration in surface streams and x � roadway area.
(a) Test the hypothesis H0: �1 � 0 versus H1: �1 � 0 using

the analysis of variance procedure with � � 0.01.
(b) Find the P-value for the test in part (a).
(c) Estimate the standard errors of and �̂0.�̂1

�̂1.�̂0

(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. What
conclusions can you draw? Does it seem that the model
might be a better fit to the data if the intercept were removed?

11-33. Consider the data in Exercise 11-13 on 
and .

(a) Test for significance of regression using . Find
the P-value for this test. What conclusions can you draw?

(b) Estimate the standard errors of the slope and intercept.
(c) Test the hypothesis that .

11-34. Consider the data in Exercise 11-14 on 
and .
(a) Test for significance of regression using . What

is the P-value for this test? State the conclusions that result
from this test.

(b) Does this model appear to be adequate?
(c) Estimate the standard errors of the slope and intercept.

11-35. An article in The Journal of Clinical Endocrinology
and Metabolism [“Simultaneous and Continuous 24-Hour
Plasma and Cerebrospinal Fluid Leptin Measurements:
Dissociation of Concentrations in Central and Peripheral
Compartments” (2004, Vol. 89, pp. 258–265)] studied the
demographics of simultaneous and continuous 24-hour
plasma and cerebrospinal fluid leptin measurements. The data
follow:

y � BMI (kg/m2): 19.92 20.59 29.02 20.78 25.97
20.39 23.29 17.27 35.24

x � Age (yr): 45.5 34.6 40.6 32.9 28.2 30.1
52.1 33.3 47.0

(a) Test for significance of regression using . Find the
P-value for this test. Can you conclude that the model speci-
fies a useful linear relationship between these two variables?

(b) Estimate and the standard deviation of .
(c) What is the standard error of the intercept in this model?

11-36. Suppose that each value of xi is multiplied by a pos-
itive constant a, and each value of yi is multiplied by another
positive constant b. Show that the t-statistic for testing 
H0: �1 � 0 versus H1: �1 � 0 is unchanged in value.

11-37. The type II error probability for the t-test for 
H0: �1 � �1,0 can be computed in a similar manner to the 
t-tests of Chapter 9. If the true value of �1 is �œ

1, the value
is calculated and used as

the horizontal scale factor on the operating characteristic curves
for the t-test (Appendix Charts VIIe through VIIh) and the type
II error probability is read from the vertical scale using the curve
for n 	 2 degrees of freedom. Apply this procedure to the foot-
ball data of Exercise 11-3, using � � 5.5 and �œ

1 � 12.5, where
the hypotheses are H0: �1 � 10 versus H1: �1 � 10.

11-38. Consider the no-intercept model Y � �x � �
with the �’s NID(0, �2). The estimate of �2 is s2 �

gn
i�1 and V � �2�gn

i�1

(a) Devise a test statistic for H0: � � 0 versus H1: � � 0.
(b) Apply the test in (a) to the model from Exercise 11-20.

x 2
i .1�̂21 yi 	 �̂xi2

2
 1n 	 12

d � 0�1,0 	 �¿1 0 
 1�11n 	 12
Sxx

�̂1�2

� � 0.05

� � 0.01
x � stress level

y � deflection

�0 � 0

� � 0.01
x � timeoxygen demand

y �
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11-5 CONFIDENCE INTERVALS 421

11-5 CONFIDENCE INTERVALS

11-5.1 Confidence Intervals on the Slope and Intercept

In addition to point estimates of the slope and intercept, it is possible to obtain confidence
interval estimates of these parameters. The width of these confidence intervals is a measure of
the overall quality of the regression line. If the error terms, �i, in the regression model are
normally and independently distributed,

are both distributed as t random variables with n 	 2 degrees of freedom. This leads to the
following definition of 100(1 	 �)% confidence intervals on the slope and intercept.

1�̂1 	 �12
2�̂2
Sx x and 1�̂0 	 �02
B
�̂2 c

1
n �

x2

Sx x
d

Under the assumption that the observations are normally and independently distributed,
a 100(1 	 �)% confidence interval on the slope �1 in simple linear regression is

(11-29)

Similarly, a 100(1 	 �)% confidence interval on the intercept �0 is

(11-30)� �0 � �̂0 � t�
2, n	2 

B
�̂2 c

1
n �

x 
2

Sx x
d

�̂0 	 t�
2, n	2  

B
�̂2 c

1
n �

x2

Sx x
d

�̂1 	 t�
2, n	2  

B

�̂2

Sx x
� �1 � �̂1 � t�
2, n	2  

B

�̂2

Sx x

Confidence
Intervals on
Parameters

EXAMPLE 11-4 Oxygen Purity Confidence Interval on the Slope
We will find a 95% confidence interval on the slope of the re-
gression line using the data in Example 11-1. Recall that

Sxx � 0.68088, and (see Table 11-2).
Then, from Equation 11-29 we find

or

� 2.101 

A

1.18

0.68088

14.947 	 2.101 

A

1.18

0.68088
� �1 � 14.947

�̂1 	 t0.025,18  

B

�̂2

Sxx
� �1 � �̂1 � t0.025,18  

B

�̂2

Sxx

�̂2 � 1.18�̂1 � 14.947,

This simplifies to

Practical Interpretation: This CI does not include zero, so
there is strong evidence (at � � 0.05) that the slope is not zero.
The CI is reasonably narrow ( 2.766) because the error vari-
ance is fairly small. 

�

12.181 � �1 � 17.713

11-5.2 Confidence Interval on the Mean Response

A confidence interval may be constructed on the mean response at a specified value of x, say,
x0. This is a confidence interval about E(Y �x0) � �Y �x0

and is often called a confidence interval
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422 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

about the regression line. Since E(Y �x0) � �Y �x0
� �0 � �1x0, we may obtain a point estimate

of the mean of Y at x � x0(�Y �x0
) from the fitted model as

Now is an unbiased point estimator of �Y �x0
, since and are unbiased estimators of

�0 and �1. The variance of is

This last result follows from the fact that and cov The zero
covariance result is left as a mind-expanding exercise. Also, is normally distributed, because

1 and 0 are normally distributed, and if we use as an estimate of �2, it is easy to show that

has a t distribution with n 	 2 degrees of freedom. This leads to the following confidence
interval definition.

�̂Y 0  x0
	 �Y 0  x0

B
�̂2 c

1
n �

1x0 	 x 22

Sx x
d

�̂2�̂�̂
�̂Y 0 x0

1Y, �̂12 � 0.�̂Y  | x0
� y � �̂11x0 	 x2

V 1�̂Y 0  x0
2 � �2 c

1
n �

1x0 	 x22

Sx x
d

�̂Y 0  x0

�̂1�̂0�̂Y 0  x0

�̂Y  0  x0
� �̂0 � �̂1x0

A 100(1 	 �)% confidence interval about the mean response at the value of 
x � x0, say , is given by

(11-31)

where is computed from the fitted regression model.�̂Y  0  x0
� �̂0 � �̂1x0

� �Y 0  x0
� �̂Y  0  x0

� t�
2, n	2 

B
�̂2 c

1
n �

1x0 	 x 22

Sx x
d

�̂Y  0x0
	 t�
2, n	2 

B
�̂2

 c
1
n �

1x0 	 x 22

Sx x
d

�Y 0  x0

Confidence
Interval on the

Mean Response

Note that the width of the CI for is a function of the value specified for x0. The interval
width is a minimum for and widens as increases.0 x0 	 x 0x0 � x

�Y 0  x0

EXAMPLE 11-5 Oxygen Purity Confidence Interval on the Mean Response
We will construct a 95% confidence interval about the mean
response for the data in Example 11-1. The fitted model is

and the 95% confidence interval
on is found from Equation 11-31 as

Suppose that we are interested in predicting mean oxygen 
purity when x0 � 1.00%. Then

�̂Y  0  x1.00
� 74.283 � 14.94711.002 � 89.23

�̂Y 0  x0
� 2.101

B
1.18 c

1

20
�
1x0 	 1.196022

0.68088
d

�Y 0  x0

�̂Y 0  x0
� 74.283 � 14.947x0,

and the 95% confidence interval is

or

Therefore, the 95% CI on is

88.48 � �Y 0  1.00 � 89.98

�Y  0  1.00

89.23 � 0.75

89.23 � 2.101 

B
1.18 c

1

20
�
11.00 	 1.196022

0.68088
d
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11-6 PREDICTION OF NEW OBSERVATIONS 423

This is a reasonable narrow CI.
Minitab will also perform these calculations. Refer to

Table 11-2. The predicted value of y at x � 1.00 is shown
along with the 95% CI on the mean of y at this level of x.

By repeating these calculations for several different val-
ues for x0, we can obtain confidence limits for each correspon-
ding value of . Figure 11-7 displays the scatter diagram�Y 0  x0

with the fitted model and the corresponding 95% confidence
limits plotted as the upper and lower lines. The 95% confi-
dence level applies only to the interval obtained at one value
of x and not to the entire set of x-levels. Notice that the width
of the confidence interval on increases as
increases.
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Figure 11-7 Scatter
diagram of oxygen 
purity data from
Example 11-1 with 
fitted regression line
and 95 percent 
confidence limits on

.�Y 0  x0

11-6 PREDICTION OF NEW OBSERVATIONS

An important application of a regression model is predicting new or future observations Y
corresponding to a specified level of the regressor variable x. If x0 is the value of the regressor
variable of interest,

(11-32)

is the point estimator of the new or future value of the response Y0.
Now consider obtaining an interval estimate for this future observation Y0. This new

observation is independent of the observations used to develop the regression model.
Therefore, the confidence interval for in Equation 11-31 is inappropriate, since it is based
only on the data used to fit the regression model. The confidence interval about refers to
the true mean response at x � x0 (that is, a population parameter), not to future observations.

Let Y0 be the future observation at x � x0, and let given by Equation 11-32 be the
estimator of Y0. Note that the error in prediction

is a normally distributed random variable with mean zero and variance

V 1ep̂2 � V1Y0 	 Ŷ02 � �2 c1 �
1
n �

1x0 	 x 22

Sx x
d

ep̂ � Y0 	 Ŷ0

Ŷ0

�Y 0  x0

�Y 0  x0

Ŷ0 � �̂0 � �̂1x0
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because Y0 is independent of If we use to estimate �2, we can show that

has a t distribution with n 	 2 degrees of freedom. From this we can develop the following
prediction interval definition.

Y0 	 Ŷ0

B
�̂2 c1 �

1
n �

1x0 	 x 22

Sx x
d

�̂2Ŷ0.
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A 100(1 	 �) % prediction interval on a future observation at the value x0 is
given by

(11-33)

The value is computed from the regression model ŷ0 � �̂0 � �̂1x0.ŷ0

� Y0 � ŷ0 � t�
 2, n	2 

B
�̂2 c1 �

1
n �

1x0 	 x 22

Sx x
d

ŷ0 	 t�
2, n	2 

B
�̂2 c1 �

1
n �

1x0 	 x 22

Sx x
d

Y0

Prediction
Interval

Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.

0  x0 	 x 0x0 � x

EXAMPLE 11-6 Oxygen Purity Prediction Interval
To illustrate the construction of a prediction interval, suppose
we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x0 � 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that

, we find that the prediction interval is

which simplifies to 

86.83 � y0 � 91.63

 

B1.18 c1 �
1

20
�
11.00 	1.196022

0.68088
d� Y0 � 89.23 � 2.101 

89.23 	 2.101
B

1.18 c1 �
1

20
�
11.00 	 1.196022

0.68088
d

ŷ0 � 89.23

This is a reasonably narrow prediction interval.
Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 � 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on calculated in Example 11-5.
It illustrates that the prediction limits are always wider than
the confidence limits.

�Y  0  x0
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Figure 11-8 Scatter
diagram of oxygen
purity data from
Example 11-1 with
fitted regression line,
95% prediction limits
(outer lines) and 95%
confidence limits on
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EXERCISES FOR SECTIONS 11-5 AND 11-6

11-39. Refer to the data in Exercise 11-1 on y � intrinsic
permeability of concrete and x � compressive strength. Find
a 95% confidence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean permeability when x � 2.5
(d) Find a 95% prediction interval on permeability when 

x � 2.5. Explain why this interval is wider than the
interval in part (c).

11-40. Exercise 11-2 presented data on roadway surface
temperature x and pavement deflection y. Find a 99% confi-
dence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean deflection when temperature 
(d) Find a 99% prediction interval on pavement deflection

when the temperature is .

11-41. Refer to the NFL quarterback ratings data in
Exercise 11-3. Find a 95% confidence interval on each of the
following:
(a) Slope
(b) Intercept
(c) Mean rating when the average yards per attempt is 8.0
(d) Find a 95% prediction interval on the rating when the

average yards per attempt is 8.0.

11-42. Refer to the data on y � house selling price and 
x � taxes paid in Exercise 11-4. Find a 95% confidence inter-
val on each of the following:
(a) �1 (b) �0

(c) Mean selling price when the taxes paid are x � 7.50
(d) Compute the 95% prediction interval for selling price

when the taxes paid are x � 7.50.

11-43. Exercise 11-5 presented data on y � steam usage
and x � monthly average temperature.

90�F

x � 85�F

(a) Find a 99% confidence interval for �1.
(b) Find a 99% confidence interval for �0.
(c) Find a 95% confidence interval on mean steam usage

when the average temperature is .
(d) Find a 95% prediction interval on steam usage when tem-

perature is . Explain why this interval is wider than
the interval in part (c).

11-44. Exercise 11-6 presented gasoline mileage perfor-
mance for 21 cars, along with information about the engine
displacement. Find a 95% confidence interval on each of the
following:
(a) Slope (b) Intercept
(c) Mean highway gasoline mileage when the engine dis-

placement is x � 150 in3

(d) Construct a 95% prediction interval on highway gasoline
mileage when the engine displacement is x � 150 in3.

11-45. Consider the data in Exercise 11-7 on y � green
liquor Na2S concentration and x � production in a paper
mill. Find a 99% confidence interval on each of the following:
(a) �1 (b) �0

(c) Mean Na2S concentration when production x � 910 
tons �day

(d) Find a 99% prediction interval on Na2S concentration
when x � 910 tons�day.

11-46. Exercise 11-8 presented data on y � blood pressure
rise and x � sound pressure level. Find a 95% confidence
interval on each of the following:
(a) �1 (b) �0

(c) Mean blood pressure rise when the sound pressure level is
85 decibels

(d) Find a 95% prediction interval on blood pressure rise
when the sound pressure level is 85 decibels.

55�F

55�F
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11-47. Refer to the data in Exercise 11-9 on y � wear
volume of mild steel and x � oil viscosity. Find a 95% confi-
dence interval on each of the following:
(a) Intercept (b) Slope
(c) Mean wear when oil viscosity x � 30

11-48. Exercise 11-10 presented data on chloride concentra-
tion y and roadway area x on watersheds in central Rhode
Island. Find a 99% confidence interval on each of the following:
(a) �1 (b) �0

(c) Mean chloride concentration when roadway area x � 1.0%
(d) Find a 99% prediction interval on chloride concentration

when roadway area x � 1.0%.

11-49. Refer to the data in Exercise 11-11 on rocket motor
shear strength y and propellant age x. Find a 95% confidence
interval on each of the following:
(a) Slope �1 (b) Intercept �0

(c) Mean shear strength when age x � 20 weeks

(d) Find a 95% prediction interval on shear strength when age
x � 20 weeks.

11-50. Refer to the data in Exercise 11-12 on the mi-
crostructure of zirconia. Find a 95% confidence interval on
each of the following:
(a) Slope (b) Intercept
(c) Mean length when 
(d) Find a 95% prediction interval on length when 

Explain why this interval is wider than the interval in
part (c).

11-51. Refer to the data in Exercise 11-13 on oxygen de-
mand. Find a 99% confidence interval on each of the
following:
(a)
(b)
(c) Find a 95% confidence interval on mean BOD when the

time is 8 days.

�0

�1

x � 1500.
x � 1500

11-7 ADEQUACY OF THE REGRESSION MODEL

Fitting a regression model requires several assumptions. Estimation of the model parameters
requires the assumption that the errors are uncorrelated random variables with mean zero and
constant variance. Tests of hypotheses and interval estimation require that the errors be nor-
mally distributed. In addition, we assume that the order of the model is correct; that is, if we
fit a simple linear regression model, we are assuming that the phenomenon actually behaves in
a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and
conduct analyses to examine the adequacy of the model that has been tentatively entertained.
In this section we discuss methods useful in this respect.

11-7.1 Residual Analysis

The residuals from a regression model are where yi is an actual
observation and is the corresponding fitted value from the regression model. Analysis of the
residuals is frequently helpful in checking the assumption that the errors are approximately
normally distributed with constant variance, and in determining whether additional terms in
the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency his-
togram of the residuals or a normal probability plot of residuals. Many computer programs
will produce a normal probability plot of residuals, and since the sample sizes in regression
are often too small for a histogram to be meaningful, the normal probability plotting method
is preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discus-
sion of the “fat pencil” method in Section 6-6).

We may also standardize the residuals by computing , . If
the errors are normally distributed, approximately 95% of the standardized residuals should
fall in the interval (	2, �2). Residuals that are far outside this interval may indicate the
presence of an outlier, that is, an observation that is not typical of the rest of the data. Various
rules have been proposed for discarding outliers. However, outliers sometimes provide

i � 1,  2, p , ndi � ei
2�̂2

ŷi

ei � yi 	 ŷi, i � 1, 2, p , n,
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11-7 ADEQUACY OF THE REGRESSION MODEL 427

important information about unusual circumstances of interest to experimenters and should
not be automatically discarded. For further discussion of outliers, see Montgomery, Peck, and
Vining (2006).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against
the , and (3) against the independent variable x. These graphs will usually look like one of
the four general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situ-
ation, while patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the
variance of the observations may be increasing with time or with the magnitude of yi or xi. Data
transformation on the response y is often used to eliminate this problem. Widely used vari-
ance-stabilizing transformations include the use of , ln y, or 1�y as the response. See
Montgomery, Peck, and Vining (2006) for more details regarding methods for selecting an ap-
propriate transformation. Plots of residuals against and xi that look like (c) also indicate in-
equality of variance. Residual plots that look like (d) indicate model inadequacy; that is,
higher order terms should be added to the model, a transformation on the x-variable or the 
y-variable (or both) should be considered, or other regressors should be considered.

ŷi

1y

ŷi

Figure 11-9 Patterns for residual plots. (a) Satisfactory, (b) Funnel,
(c) Double bow, (d) Nonlinear. [Adapted from Montgomery, Peck, and
Vining (2006).]

0

(a)

ei

0

(b)

ei

0

(c)

ei

0

(d)

ei

EXAMPLE 11-7 Oxygen Purity Residuals
The regression model for the oxygen purity data in Example
11-1 is � 74.283 � 14.947x. Table 11-4 presents the ob-
served and predicted values of y at each value of x from this
data set, along with the corresponding residual. These values
were computed using Minitab and show the number of deci-
mal places typical of computer output. A normal probability

ŷ
plot of the residuals is shown in Fig. 11-10. Since the residu-
als fall approximately along a straight line in the figure, we
conclude that there is no severe departure from normality. The
residuals are also plotted against the predicted value in Fig.
11-11 and against the hydrocarbon levels xi in Fig. 11-12.
These plots do not indicate any serious model inadequacies.

ŷi
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428 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e � y 	

1 0.99 90.01 89.081 0.929
2 1.02 89.05 89.530 	0.480
3 1.15 91.43 91.473 	0.043
4 1.29 93.74 93.566 0.174
5 1.46 96.73 96.107 0.623
6 1.36 94.45 94.612 	0.162
7 0.87 87.59 87.288 0.302
8 1.23 91.77 92.669 	0.899
9 1.55 99.42 97.452 1.968

10 1.40 93.65 95.210 	1.560

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e � y 	

11 1.19 93.54 92.071 1.469
12 1.15 92.52 91.473 1.047
13 0.98 90.56 88.932 1.628
14 1.01 89.54 89.380 0.160
15 1.11 89.85 90.875 	1.025
16 1.20 90.39 92.220 	1.830
17 1.26 93.25 93.117 0.133
18 1.32 93.41 94.014 	0.604
19 1.43 94.98 95.658 	0.678
20 0.95 87.33 88.483 	1.153

ŷŷ

The coefficient of determination is

(11-34)R2 �
SSR

SST
� 1 	

SSE

SST

R2

11-7.2 Coefficient of Determination (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we
will see that in the case where X and Y are jointly distributed random variables, R2 is the square
of the correlation coefficient between X and Y. From the analysis of variance identity in
Equations 11-24 and 11-25, 0 � R2 � 1. We often refer loosely to R2 as the amount of vari-
ability in the data explained or accounted for by the regression model. For the oxygen purity
regression model, we have R2 � SSR SST � 152.13 173.38 � 0.877; that is, the model ac-
counts for 87.7% of the variability in the data.
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Figure 11-12 Plot of
residuals versus hydro-
carbon level x,
Example 11-8.
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The statistic R2 should be used with caution, because it is always possible to make R2

unity by simply adding enough terms to the model. For example, we can obtain a “perfect” fit
to n data points with a polynomial of degree n 	 1. In addition, R2 will always increase if we
add a variable to the model, but this does not necessarily imply that the new model is superior
to the old one. Unless the error sum of squares in the new model is reduced by an amount
equal to the original error mean square, the new model will have a larger error mean square
than the old one, because of the loss of one error degree of freedom. Thus, the new model will
actually be worse than the old one.

There are several misconceptions about R2. In general, R2 does not measure the magni-
tude of the slope of the regression line. A large value of R2 does not imply a steep slope.
Furthermore, R2 does not measure the appropriateness of the model, since it can be artificially
inflated by adding higher order polynomial terms in x to the model. Even if y and x are related
in a nonlinear fashion, R2 will often be large. For example, R2 for the regression equation in
Fig. 11-6(b) will be relatively large, even though the linear approximation is poor. Finally,
even though R2 is large, this does not necessarily imply that the regression model will provide
accurate predictions of future observations.

EXERCISES FOR SECTION 11-7

11-52. Refer to the compressive strength data in Exercise
11-1. Use the summary statistics provided to calculate R2 and
provide a practical interpretation of this quantity.

11-53. Refer to the NFL quarterback ratings data in
Exercise 11-3.
(a) Calculate R2 for this model and provide a practical inter-

pretation of this quantity.
(b) Prepare a normal probability plot of the residuals from

the least squares model. Does the normality assumption
seem to be satisfied?

(c) Plot the residuals versus the fitted values and against x.
Interpret these graphs.

11-54. Refer to the data in Exercise 11-4 on house selling
price y and taxes paid x.
(a) Find the residuals for the least squares model.
(b) Prepare a normal probability plot of the residuals and in-

terpret this display.

(c) Plot the residuals versus and versus x. Does the assump-
tion of constant variance seem to be satisfied?

(d) What proportion of total variability is explained by the
regression model?

11-55. Refer to the data in Exercise 11-5 on y � steam
usage and x � average monthly temperature.
(a) What proportion of total variability is accounted for by the

simple linear regression model?
(b) Prepare a normal probability plot of the residuals and

interpret this graph.
(c) Plot residuals versus and x. Do the regression assump-

tions appear to be satisfied?

11-56. Refer to the gasoline mileage data in Exercise 11-6.
(a) What proportion of total variability in highway gaso-

line mileage performance is accounted for by engine
displacement?

(b) Plot the residuals versus and x, and comment on the graphs.ŷ

ŷ

ŷ
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(c) Prepare a normal probability plot of the residuals. Does
the normality assumption appear to be satisfied?

11-57. Exercise 11-9 presents data on wear volume y and
oil viscosity x.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.
(b) Plot the residuals from this model versus and versus x.

Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-58. Refer to Exercise 11-8, which presented data on
blood pressure rise y and sound pressure level x.
(a) What proportion of total variability in blood pressure rise

is accounted for by sound pressure level?
(b) Prepare a normal probability plot of the residuals from

this least squares model. Interpret this plot.
(c) Plot residuals versus and versus x. Comment on these plots.

11-59. Refer to Exercise 11-10, which presented data on
chloride concentration y and roadway area x.
(a) What proportion of the total variability in chloride con-

centration is accounted for by the regression model?
(b) Plot the residuals versus and versus x. Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-60. An article in the Journal of the American Statistical
Association [“Markov Chain Monte Carlo Methods for

ŷ

ŷ

ŷ

Computing Bayes Factors: A Comparative Review” (2001,
Vol. 96, pp. 1122–1132)] analyzed the tabulated data on com-
pressive strength parallel to the grain versus resin-adjusted
density for specimens of radiata pine.
(a) Fit a regression model relating compressive strength to

density.
(b) Test for significance of regression with .
(c) Estimate for this model.
(d) Calculate R2 for this model. Provide an interpretation of

this quantity.
(e) Prepare a normal probability plot of the residuals and in-

terpret this display.
(f ) Plot the residuals versus and versus x. Does the assump-

tion of constant variance seem to be satisfied?

11-61. Consider the rocket propellant data in Exercise 11-11.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.
(b) Plot the residuals on a normal probability scale. Do any

points seem unusual on this plot?
(c) Delete the two points identified in part (b) from the

sample and fit the simple linear regression model to the re-
maining 18 points. Calculate the value of R2 for the new
model. Is it larger or smaller than the value of R2 com-
puted in part (a)? Why?

(d) Did the value of change dramatically when the two
points identified above were deleted and the model fit to
the remaining points? Why?

11-62. Consider the data in Exercise 11-7 on y � green
liquor Na2S concentration and x � paper machine production.
Suppose that a 14th sample point is added to the original data,
where y14 � 59 and x14 � 855.
(a) Prepare a scatter diagram of y versus x. Fit the simple lin-

ear regression model to all 14 observations.
(b) Test for significance of regression with � � 0.05.
(c) Estimate �2 for this model.
(d) Compare the estimate of �2 obtained in part (c) above with

the estimate of �2 obtained from the original 13 points.
Which estimate is larger and why?

(e) Compute the residuals for this model. Does the value of
e14 appear unusual?

(f ) Prepare and interpret a normal probability plot of the
residuals.

(g) Plot the residuals versus and versus x. Comment on
these graphs.

11-63. Consider the rocket propellant data in Exercise 11-11.
Calculate the standardized residuals for these data. Does this
provide any helpful information about the magnitude of the
residuals?

11-64. Studentized Residuals. Show that the variance of
the ith residual is

V1ei2 � �2 c1 	 a
1
n �

1xi 	 x22

Sxx
b d

ŷ

�̂2

ŷ

�2
� � 0.05

Compressive Compressive
Strength Density Strength Density

3040 29.2 3840 30.7
2470 24.7 3800 32.7
3610 32.3 4600 32.6
3480 31.3 1900 22.1
3810 31.5 2530 25.3
2330 24.5 2920 30.8
1800 19.9 4990 38.9
3110 27.3 1670 22.1
3160 27.1 3310 29.2
2310 24.0 3450 30.1
4360 33.8 3600 31.4
1880 21.5 2850 26.7
3670 32.2 1590 22.1
1740 22.5 3770 30.3
2250 27.5 3850 32.0
2650 25.6 2480 23.2
4970 34.5 3570 30.3
2620 26.2 2620 29.9
2900 26.7 1890 20.8
1670 21.1 3030 33.2
2540 24.1 3030 28.2
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11-8 CORRELATION

Our development of regression analysis has assumed that x is a mathematical variable, mea-
sured with negligible error, and that Y is a random variable. Many applications of regression
analysis involve situations in which both X and Y are random variables. In these situations, it
is usually assumed that the observations (Xi, Yi), i � 1, 2, p , n are jointly distributed random
variables obtained from the distribution f (x, y).

For example, suppose we wish to develop a regression model relating the shear strength
of spot welds to the weld diameter. In this example, weld diameter cannot be controlled. We
would randomly select n spot welds and observe a diameter (Xi) and a shear strength (Yi) for
each. Therefore (Xi, Yi) are jointly distributed random variables.

We assume that the joint distribution of Xi and Yi is the bivariate normal distribution pre-
sented in Chapter 5, and �Y and �2

Y are the mean and variance of Y, �X and are the mean
and variance of X, and � is the correlation coefficient between Y and X. Recall that the corre-
lation coefficient is defined as

(11-35)

where �XY is the covariance between Y and X.
The conditional distribution of Y for a given value of X � x is

(11-36)

where

(11-37)

(11-38)

and the variance of the conditional distribution of Y given X � x is

(11-39)�2
Y 0  x � �2

Y 11 	 �22

 �1 �
�Y

�X
 �

 �0 � �Y 	 �X�
�Y

�X

fY 0  x 1 y2 �
1

12��Y 0  x
  exp c	

1
2

 a
y 	 �0 	 �1x

�Y 0  x
b

2

d

� �
�XY

�X �Y

�2
X

Hint:

The ith studentized residual is defined as

(a) Explain why ri has unit standard deviation.
(b) Do the standardized residuals have unit standard deviation?
(c) Discuss the behavior of the studentized residual when the

sample value xi is very close to the middle of the range of x.

ri �
ei

B
�̂2 c1 	 a

1
n �

1xi 	 x 22

Sxx
b d

cov1Yi, Ŷi2 � �2 c
1
n �

1xi 	 x 22

Sxx
d .

(d) Discuss the behavior of the studentized residual when the
sample value xi is very near one end of the range of x.

11-65. Show that an equivalent way to define the test for
significance of regression in simple linear regression is to base
the test on R2 as follows: to test H0: �1 � 0 versus H1: �1 � 0,
calculate

and to reject H0: �1 � 0 if the computed value f0 
 f�,1,n	2.
Suppose that a simple linear regression model has been fit to
n � 25 observations and R2 � 0.90.
(a) Test for significance of regression at � � 0.05.
(b) What is the smallest value of R2 that would lead to the

conclusion of a significant regression if � � 0.05?

F0 �
R21n 	 22

1 	 R2
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432 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

That is, the conditional distribution of Y given X � x is normal with mean

(11-40)

and variance Thus, the mean of the conditional distribution of Y given X � x is a
simple linear regression model. Furthermore, there is a relationship between the correlation
coefficient � and the slope �1. From Equation 11-38 we see that if � � 0, then �1 � 0, which
implies that there is no regression of Y on X. That is, knowledge of X does not assist us in
predicting Y.

The method of maximum likelihood may be used to estimate the parameters �0 and �1. It
can be shown that the maximum likelihood estimators of those parameters are

(11-41)

and

(11-42)

We note that the estimators of the intercept and slope in Equations 11-41 and 11-42 are
identical to those given by the method of least squares in the case where X was assumed to be
a mathematical variable. That is, the regression model with Y and X jointly normally distrib-
uted is equivalent to the model with X considered as a mathematical variable. This follows
because the random variables Y given X � x are independently and normally distributed with
mean �0 � �1x and constant variance These results will also hold for any joint distribu-
tion of Y and X such that the conditional distribution of Y given X is normal.

It is possible to draw inferences about the correlation coefficient � in this model. The
estimator of � is the sample correlation coefficient

(11-43)

Note that

(11-44)

so the slope is just the sample correlation coefficient R multiplied by a scale factor that is
the square root of the “spread” of the Y values divided by the “spread” of the X values.Thus,

and R are closely related, although they provide somewhat different information. The
sample correlation coefficient R measures the linear association between Y and X, while 
measures the predicted change in the mean of Y for a unit change in X. In the case of a math-
ematical variable x, R has no meaning because the magnitude of R depends on the choice of
spacing of x. We may also write, from Equation 11-44,

R2 � �̂2
1  

SX X

SST
�

�̂1SX Y

SST
�

SSR

SST

�̂1

�̂1

�̂1

�̂1 � a
SST

SX X
b

1
 2

 R

R �
a

n

i�1
Yi 1Xi 	 X 2

c a
n

i�1
1Xi 	 X 22 a

n

i�1
1Yi 	 Y 22 d

1
2 �
SX Y

1SX XSST2
1
2

�2
Y 0 x 

.

�̂1 �
a

n

i�1
Yi 1Xi 	 X 2

a
n

i�1
1Xi 	 X 22

�
SXY

SX X

�̂0 � Y 	 �̂1X 

�2
Y 0 x 

.

E1Y 0  x2 � �0 � �1x
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11-8 CORRELATION 433

which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1: � � 0

H0: � � 0

Confidence
Interval for 

a Correlation
Coefficient

(11-49)Z0 � 1arctanh R 	 arctanh �02 1n 	 321
2

(11-50)tanh aarctanh r 	
z�
2

1n 	 3
b � � � tanh aarctanh r �

z�
2

1n 	 3
b

which has the t distribution with n 	 2 degrees of freedom if H0: � � 0 is true. Therefore, we
would reject the null hypothesis if �t0� 
 t��2,n	2. This test is equivalent to the test of the hypothesis
H0: �1 � 0 given in Section 11-5.1. This equivalence follows directly from Equation 11-46.

The test procedure for the hypotheses

(11-47)

where �0 � 0 is somewhat more complicated. For moderately large samples (say, n � 25), the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0: � � �0, we may use the test statistic 

�Z � arctanh � �
1
2

 ln 
1 � �

1 	 �
  and  �2

Z �
1

n 	 3

Z � arctanh R �
1
2

  ln  
1 � R

1 	 R

H1: � � �0

H0: � � �0

and reject H0: � � �0 if the value of the test statistic in Equation 11-49 is such that �z0� 
 z��2.
It is also possible to construct an approximate 100(1 	 �)% confidence interval for �, using

the transformation in Equation 11-48. The approximate 100(1 	 �)% confidence interval is

(11-46)T0 �
R1n 	 2

21 	 R2

Test Statistic
for Zero

Correlation

where tanh u � (eu 	 e	u)�(eu � e	u).
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Figure 11-13 Scatter
plot of wire bond
strength versus wire
length, Example 11-8.
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Regression Analysis: Strength versus Length

The regression equation is
Strength � 5.11 � 2.90 Length

Predictor Coef SE Coef T P
Constant 5.115 1.146 4.46 0.000
Length 2.9027 0.1170 24.80 0.000

S � 3.093 R-Sq � 96.4% R-Sq(adj) � 96.2%
PRESS � 272.144 R-Sq(pred) � 95.54%

Analysis of Variance

Source DF SS MS F P
Regression 1 5885.9 5885.9 615.08 0.000
Residual Error 23 220.1 9.6
Total 24 6105.9

EXAMPLE 11-8 Wire Bond Pull Strength
In Chapter 1 (Section 1-3) an application of regression analysis
is described in which an engineer at a semiconductor assembly
plant is investigating the relationship between pull strength of a
wire bond and two factors: wire length and die height. In this ex-
ample, we will consider only one of the factors, the wire length.
A random sample of 25 units is selected and tested, and the wire
bond pull strength and wire length are observed for each unit.
The data are shown in Table 1-2. We assume that pull strength
and wire length are jointly normally distributed.

Figure 11-13 shows a scatter diagram of wire bond
strength versus wire length. We have used the Minitab option
of displaying box plots of each individual variable on the scat-
ter diagram. There is evidence of a linear relationship between
the two variables.

The Minitab output for fitting a simple linear regression
model to the data is shown below.

Now Sxx � 698.56 and Sxy � 2027.7132, and the sample
correlation coefficient is

Note that r2 � (0.9818)2 � 0.9640 (which is reported in the
Minitab output), or that approximately 96.40% of the variability
in pull strength is explained by the linear relationship to wire
length.

Now suppose that we wish to test the hypotheses

H1: � � 0

H0: � � 0

r �
Sxy

3Sx xSST 4
1
2 �

2027.7132

3 1698.5602 16105.92 41
2 � 0.9818
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with � � 0.05. We can compute the t-statistic of Equation
11-46 as

This statistic is also reported in the Minitab output as a test of
H0: �1 � 0. Because t0.025,23 � 2.069, we reject H0 and con-
clude that the correlation coefficient � � 0.

t0 �
r1n 	 2

21 	 r2
�

0.9818123

11 	 0.9640
� 24.8

Finally, we may construct an approximate 95% confi-
dence interval on � from Equation 11-50. Since arctanh r �
arctanh 0.9818 � 2.3452, Equation 11-50 becomes

which reduces to

0.9585 � � � 0.9921

tanh a2.3452 	
1.96

122
b � � � tanh a2.3452 �

1.96

122
b

11-66. Suppose data is obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.8.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% two-sided confidence interval for the

correlation coefficient. Explain how the questions in parts
(a) and (b) could be answered with a confidence interval.

11-67. Suppose data are obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.75.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% one-sided confidence interval for the

correlation coefficient. Explain how the questions in
parts (a) and (b) could be answered with a confidence
interval.

11-68. A random sample of n � 25 observations was made
on the time to failure of an electronic component and the tem-
perature in the application environment in which the compo-
nent was used.
(a) Given that r � 0.83, test the hypothesis that � � 0, using

� � 0.05. What is the P-value for this test?
(b) Find a 95% confidence interval on �.
(c) Test the hypothesis H0: � � 0.8 versus H1: � � 0.8, using

� � 0.05. Find the P-value for this test.

11-69. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
strength.
(a) Given that r � 0.62, test the hypothesis that � � 0, using

� � 0.01. What is the P-value for this test?
(b) Find a 99% confidence interval for �.
(c) Based on the confidence interval in part (b), can you con-

clude that � � 0.5 at the 0.01 level of significance?

11-70. The following data gave X � the water content of
snow on April 1 and Y � the yield from April to July (in
inches) on the Snake River watershed in Wyoming for 1919 to
1935. (The data were taken from an article in Research Notes,
Vol. 61, 1950, Pacific Northwest Forest Range Experiment
Station, Oregon.)

� � 0.05
H1 : � 
 0.5H1: � � 0.5

� � 0.05
H1: � 
 0H0 : � � 0

� � 0.05
H1 : � � 0.5H1 : � � 0.5

� � 0.05
H1 : � � 0H0 

: � � 0

x y x y

23.1 10.5 37.9 22.8

32.8 16.7 30.5 14.1

31.8 18.2 25.1 12.9

32.0 17.0 12.4 8.8

30.4 16.3 35.1 17.4

24.0 10.5 31.5 14.9

39.5 23.1 21.1 10.5

24.2 12.4 27.6 16.1

52.5 24.9

(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that � � 0, using � � 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using � � 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on � in part (b)?

(d) Analyze the residuals and comment on model adequacy.

11-71. The final test and exam averages for 20 randomly
selected students taking a course in engineering statistics and a
course in operations research follow. Assume that the final
averages are jointly normally distributed.
(a) Find the regression line relating the statistics final average

to the OR final average. Graph the data.
(b) Test for significance of regression using � � 0.05.
(c) Estimate the correlation coefficient.
(d) Test the hypothesis that � � 0, using � � 0.05.
(e) Test the hypothesis that � � 0.5, using � � 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

Statistics OR Statistics OR Statistics OR

86 80 86 81 83 81
75 81 71 76 75 70
69 75 65 72 71 73
75 81 84 85 76 72
90 92 71 72 84 80
94 95 62 65 97 98
83 80 90 93
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11-72. The weight and systolic blood pressure of 26 ran-
domly selected males in the age group 25 to 30 are shown in
the following table. Assume that weight and blood pressure
are jointly normally distributed.

436 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(a) Graph the data and fit a regression line to predict cur-
rent without electronics to supply voltage. Is there 
a significant regression at ? What is the 
P-value?

(b) Estimate the correlation coefficient.
(c) Test the hypothesis that against the alternative

with . What is the P-value?
(d) Compute a 95% confidence interval for the correlation

coefficient.

11-74. The monthly absolute estimate of global (land
and ocean combined) temperature indexes (degrees C) in
2000 and 2001 are (source: http://www.ncdc.noaa.gov/
oa/climate/):

2000: 12.28, 12.63, 13.22, 14.21, 15.13, 15.82, 16.05,
16.02, 15.29, 14.29, 13.16, 12.47

2001: 12.44, 12.55, 13.35, 14.22, 15.28, 15.99, 16.23,
16.17, 15.44, 14.52, 13.52, 12.61

(a) Graph the data and fit a regression line to predict 2001
temperatures from those in 2000. Is there a significant
regression at ? What is the P-value?

(b) Estimate the correlation coefficient.
(c) Test the hypothesis that against the alternative

with . What is the P-value?
(d) Compute a 95% confidence interval for the correlation

coefficient.

11-75 Refer to the NFL quarterback ratings data in
Exercise 11-3.
(a) Estimate the correlation coefficient between the rat-

ings and the average yards per attempt.
(b) Test the hypothesis versus using

. What is the P-value for this test?
(c) Construct a 95% confidence interval for .
(d) Test the hypothesis versus us-

ing . Find the P-value for this test.

11-76. Consider the following (x, y) data. Calculate
the correlation coefficient. Graph the data and comment
on the relationship between x and y. Explain why the
correlation coefficient does not detect the relationship
between x and y.

� � 0.05
H1: � � 0.7H0: � � 0.7

�
� � 0.05

H1: � � 0H0: � � 0

� � 0.05� � 0.9
� � 0.9

� � 0.05

� � 0.05� � 0
� � 0

� � 0.05

Systolic
Subject Weight BP

1 165 130

2 167 133

3 180 150

4 155 128

5 212 151

6 175 146

7 190 150

8 210 140

9 200 148

10 149 125

11 158 133

12 169 135

13 170 150

Systolic
Subject Weight BP

14 172 153

15 159 128

16 168 132

17 174 149

18 183 158

19 215 150

20 195 163

21 180 156

22 143 124

23 240 170

24 235 165

25 192 160

26 187 159

(a) Find a regression line relating systolic blood pressure to
weight.

(b) Test for significance of regression using � � 0.05.
(c) Estimate the correlation coefficient.
(d) Test the hypothesis that � � 0, using � � 0.05.
(e) Test the hypothesis that � � 0.6, using � � 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

11-73. In an article in IEEE Transactions on Instrumentation
and Measurement (2001, Vol. 50, pp. 986–990), researchers
studied the effects of reducing current draw in a magnetic core
by electronic means. They measured the current in a magnetic
winding with and without the electronics in a paired experi-
ment. Data for the case without electronics are provided in the
following table.

Current Without
Supply Voltage Electronics (mA)

0.66 7.32
1.32 12.22
1.98 16.34
2.64 23.66
3.3 28.06
3.96 33.39
4.62 34.12
3.28 39.21
5.94 44.21
6.6 47.48

x y

0

2.65

3.46

3.87
0 4

	1
	3.87	1

	2
	3.46	2

	3
	2.65	3

	4

x y

0
1 3.87
1
2 3.46
2
3 2.65
3
4 0

	2.65

	3.46

	3.87

	4
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11-9 REGRESSION ON TRANSFORMED VARIABLES

We occasionally find that the straight-line regression model Y � �0 � �1x � � is inappropriate
because the true regression function is nonlinear. Sometimes nonlinearity is visually deter-
mined from the scatter diagram, and sometimes, because of prior experience or underlying the-
ory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will exhibit
an apparent nonlinear relationship between Y and x. In some of these situations, a nonlinear
function can be expressed as a straight line by using a suitable transformation. Such nonlinear
models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarithmic
transformation

This transformation requires that the transformed error terms ln � are normally and indepen-
dently distributed with mean 0 and variance �2.

Another intrinsically linear function is

By using the reciprocal transformation z � 1�x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

Letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2006) or
Myers (1990).

Transformations can be very useful in many situations where the true relationship
between the response Y and the regressor x is not well approximated by a straight line. The
utility of a transformation is illustrated in the following example.

ln Y* � �0 � �1x � �

Y* � 1�Y

Y �
1

exp 1�0 � �
1
x � �2

Y � �0 � �1z � �

Y � �0 � �1 
a

1
xb � �

ln Y � ln �0 � �1 x � ln �

Y � �0e�1x�

EXAMPLE 11-9 Windmill Power
A research engineer is investigating the use of a windmill to
generate electricity and has collected data on the DC output
from this windmill and the corresponding wind velocity. The
data are plotted in Figure 11-14 and listed in Table 11-5 (p.439).

Inspection of the scatter diagram indicates that the rela-
tionship between DC output Y and wind velocity (x) may be
nonlinear. However, we initially fit a straight-line model to the

data. The regression model is

The summary statistics for this model are R2 � 0.8745,
, and F0 � 160.26 (the P-value isMSE � �̂2 � 0.0557

ŷ � 0.1309 � 0.2411 x

�0.0001).
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438 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

A plot of the residuals versus is shown in Figure 11-15.
This residual plot indicates model inadequacy and implies that
the linear relationship has not captured all of the information
in the wind speed variable. Note that the curvature that was ap-
parent in the scatter diagram of Figure 11-14 is greatly
amplified in the residual plots. Clearly some other model form
must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter di-
agram of Figure 11-14 suggests that as wind speed increases,
DC output approaches an upper limit of approximately 2.5.
This is also consistent with the theory of windmill operation.
Since the quadratic model will eventually bend downward as
wind speed increases, it would not be appropriate for these
data. A more reasonable model for the windmill data that in-
corporates an upper asymptote would be

y � �0 � �1 
 
a

1
xb � �

y � �0 � �1 x � �2 
 
x2 � �

ŷi
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Figure 11-14 Plot of DC output y versus wind velocity x
for the windmill data.
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Figure 11-15 Plot of residuals ei versus fitted
values for the windmill data.ŷi
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Figure 11-16 Plot of DC output versus for the
windmill data.
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Figure 11-17 Plot of residuals versus 
fitted values for the transformed model
for the windmill data.

ŷi

Figure 11-16 is a scatter diagram with the transformed variable
. This plot appears linear, indicating that the reciprocal

transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 � 0.9800,
, and F0 � 1128.43 (the P value is

�0.0001).
A plot of the residuals from the transformed model ver-

sus is shown in Figure 11-17. This plot does not reveal any
serious problem with inequality of variance. The normal prob-
ability plot, shown in Figure 11-18, gives a mild indication
that the errors come from a distribution with heavier tails than
the normal (notice the slight upward and downward curve at
the extremes). This normal probability plot has the z-score
value plotted on the horizontal axis. Since there is no strong
signal of model inadequacy, we conclude that the transformed
model is satisfactory.

ŷ

MSE � �̂2 � 0.0089

ŷ � 2.9789 	 6.9345 x¿

x¿ � 1�x
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Figure 11-18 Normal probability plot of
the residuals for the transformed model for
the windmill data.

EXERCISES FOR SECTION 11–9

11-77. Determine if the following models are intrinsically
linear. If yes, determine the appropriate transformation to
generate the linear model.

(a) (b)

(c) (d)

11-78. The vapor pressure of water at various temperatures
follows:

Y �
x

�0x � �1 � x�
Y � �0�

x
1�

Y �
3 � 5x

x � �Y � �0x
�1�

(a) Draw a scatter diagram of these data. What type of
relationship seems appropriate in relating y to x?

Observation Vapor pressure
Number, i Temperature (K) (mm Hg)

1 273 4.6
2 283 9.2
3 293 17.5
4 303 31.8
5 313 55.3
6 323 92.5
7 333 149.4
8 343 233.7
9 353 355.1

10 363 525.8
11 373 760.0

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What

conclusions can you draw?
(d) Plot the residuals from the simple linear regression model

versus . What do you conclude about model adequacy?ŷi

Customer x y Customer x y

1 679 0.79 26 1434 0.31
2 292 0.44 27 837 4.20
3 1012 0.56 28 1748 4.88
4 493 0.79 29 1381 3.48
5 582 2.70 30 1428 7.58
6 1156 3.64 31 1255 2.63
7 997 4.73 32 1777 4.99
8 2189 9.50 33 370 0.59
9 1097 5.34 34 2316 8.19

10 2078 6.85 35 1130 4.79

continued

(e) The Clausis–Clapeyron relationship states that ln
where is the vapor pressure of water. Repeat parts 
(a)–(d). using an appropriate transformation.

11-79. An electric utility is interested in developing a model
relating peak hour demand ( y in kilowatts) to total monthly
energy usage during the month (x, in kilowatt hours). Data for
50 residential customers are shown in the following table.

Pv

1Pv2��   
1
T ,

Table 11-5 Observed Values yi and Regressor Variable xi
for Example 11-9

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

1 5.00 1.582
2 6.00 1.822
3 3.40 1.057

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

4 2.70 0.500
5 10.00 2.236
6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166

10 6.20 1.866
11 2.90 0.653
12 6.35 1.930
13 4.60 1.562
14 5.80 1.737
15 7.40 2.088
16 3.60 1.137
17 7.85 2.179
18 8.80 2.112
19 7.00 1.800
20 5.45 1.501
21 9.10 2.303
22 10.20 2.310
23 4.10 1.194
24 3.95 1.144
25 2.45 0.123continued
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Customer x y Customer x y

11 1818 5.84 36 463 0.51
12 1700 5.21 37 770 1.74
13 747 3.25 38 724 4.10
14 2030 4.43 39 808 3.94
15 1643 3.16 40 790 0.96
16 414 0.50 41 783 3.29
17 354 0.17 42 406 0.44
18 1276 1.88 43 1242 3.24
19 745 0.77 44 658 2.14
20 795 3.70 45 1746 5.71
21 540 0.56 46 895 4.12
22 874 1.56 47 1114 1.90
23 1543 5.28 48 413 0.51
24 1029 0.64 49 1787 8.33
25 710 4.00 50 3560 14.94

(a) Draw a scatter diagram of y versus x.
(b) Fit the simple linear regression model.
(c) Test for significance of regression using � � 0.05.
(d) Plot the residuals versus and comment on the underly-

ing regression assumptions. Specifically, does it seem that
the equality of variance assumption is satisfied?

(e) Find a simple linear regression model using as the
response. Does this transformation on y stabilize the in-
equality of variance problem noted in part (d) above?

1y

ŷi

11-10 LOGISTIC REGRESSION

Linear regression often works very well when the response variable is quantitative. We now
consider the situation where the response variable takes on only two possible values, 0 and
1. These could be arbitrary assignments resulting from observing a qualitative response.
For example, the response could be the outcome of a functional electrical test on a semi-
conductor device for which the results are either a “success,” which means the device works
properly, or a “failure,” which could be due to a short, an open, or some other functional
problem.

Suppose that the model has the form

(11-51)

and the response variable Yi takes on the values either 0 or 1. We will assume that the response
variable Yi is a Bernoulli random variable with probability distribution as follows:

Yi � �0 � �1xi � �i

Yi Probability

1

0 P1Yi � 02 � 1 	 �i

P1Yi � 12 � �i

Now since the expected value of the response variable is

This implies that

E 1Yi2 � �0 � �1xi � �i

 � �i

E 1Yi2 � 1 1�i2 � 0 11 	 �i2

E 1�i2 � 0,
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11-10 LOGISTIC REGRESSION 441

This means that the expected response given by the response function E(Yi) � �0 � �1xi is
just the probability that the response variable takes on the value 1.

There are some substantive problems with the regression model in Equation 11-51. First,
note that if the response is binary, the error terms �i can only take on two values, namely,

Consequently, the errors in this model cannot possibly be normal. Second, the error variance
is not constant, since

Notice that this last expression is just

since . This indicates that the variance of the observations (which isE1Yi2 � �0 � �1xi � �i

�2
yi

� E1Yi2 31 	 E1Yi2 4

 � �i11 	 �i2

 � 11 	 �i2
2�i � 10 	 �i2

211 	 �i2

 �2
Yi

� E5Yi 	 E1Yi2 6
2

 �i � 	1�0 � �1 xi2    when Yi � 0

 �i � 1 	 1�0 � �1 xi2   when Yi � 1

0
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(b)

Figure 11-19 Examples of the logistic response function. (a) (b) .E1Y 2 � 1
 11 � e	6.0�1.0x2E1Y 2 � 1
 11 � e	6.0	1.0x2,

the same as the variance of the errors because � Yi 	 �i, and �i is a constant) is a function
of the mean. Finally, there is a constraint on the response function, because

This restriction can cause serious problems with the choice of a linear response function, as
we have initially assumed in Equation 11-51. It would be possible to fit a model to the data for
which the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence
indicating that the shape of the response function should be nonlinear. A monotonically
increasing (or decreasing) S-shaped (or reverse S-shaped) function, such as shown in Figure 11-19,
is usually employed. This function is called the logit response function, and has the form

(11-52)E1Y 2 �
exp 1�0 � �1x2

1 � exp 1�0 � �1x2

0 � E 1Yi2 � �i � 1

�i
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or equivalently,

(11-53)

In logistic regression we assume that E(Y) is related to x by the logit function. It is easy to
show that

(11-54)

The quantity exp( ) on the right-hand side of Equation 11-54 is called the odds ratio.
It has a straightforward interpretation: If the odds ratio is 2 for a particular value of x, it means
that a success is twice as likely as a failure at that value of the regressor x. Notice that the
natural logarithm of the odds ratio is a linear function of the regressor variable. Therefore the
slope is the change in the log odds that results from a one-unit increase in x. This means that
the odds ratio changes by when x increases by one unit.

The parameters in this logistic regression model are usually estimated by the method of
maximum likelihood. For details of the procedure, see Montgomery, Peck, and Vining
(2006). Minitab will fit logistic regression models and provide useful information on the
quality of the fit.

We will illustrate logistic regression using the data on launch temperature and O-ring fail-
ure for the 24 space shuttle launches prior to the Challenger disaster of January 1986. There
are six O-rings used to seal field joints on the rocket motor assembly. The table below presents
the launch temperatures. A 1 in the “O-Ring Failure” column indicates that at least one O-ring
failure had occurred on that launch.

e�1

�1

 �0 � �1x

E1Y 2

1 	 E1Y 2
� exp1�0 � �1x2

E1Y 2 �
1

1 � exp 3	1�0 � �1x2 4

442 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

O-Ring O-Ring O-Ring 
Temperature Failure Temperature Failure Temperature Failure

53 1 68 0 75 0
56 1 69 0 75 1
57 1 70 0 76 0
63 0 70 1 76 0
66 0 70 1 78 0
67 0 70 1 79 0
67 0 72 0 80 0
67 0 73 0 81 0

Figure 11-20 is a scatter plot of the data. Note that failures tend to occur at lower temperatures.
The logistic regression model fit to this data from Minitab is shown in the following boxed
display.

The fitted logistic regression model is

ŷ �
1

1 � exp 3	110.875 	 0.17132x2 4
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11-10 LOGISTIC REGRESSION 443

Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function: Logit
Response Information

Variable Value Count
O-Ring F 1 7 (Event)

0 17
Total 24

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 10.875 5.703 1.91 0.057
Temperat 	0.17132 0.08344 	2.05 0.040 0.84 0.72 0.99

Log-Likelihood � 	11.515
Test that all slopes are zero: G � 5.944, DF � 1, P-Value � 0.015

Figure 11-20 Scatter plot of O-ring failures 
versus launch temperature for 24 space shuttle
flights.

Figure 11-21 Probability of O-ring failure versus
launch temperature (based on a logistic regression
model).
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The standard error of the slope �̂1 is se(�̂1) � 0.08344. For large samples, �̂1 has an
approximate normal distribution, and so �̂1�se(�̂1) can be compared to the standard normal
distribution to test H0: �1 � 0. Minitab performs this test. The P-value is 0.04, indicating that
temperature has a significant effect on the probability of O-ring failure. The odds ratio is 0.84,
so every one degree increase in temperature reduces the odds of failure by 0.84. Figure 11-21
shows the fitted logistic regression model. The sharp increase in the probability of O-ring
failure is very evident in this graph. The actual temperature at the Challenger launch was .
This is well outside the range of other launch temperatures, so our logistic regression model is
not likely to provide highly accurate predictions at that temperature, but it is clear that a launch
at is almost certainly going to result in O-ring failure.

It is interesting to note that all of these data were available prior to launch. However,
engineers were unable to effectively analyze the data and use them to provide a convincing
argument against launching Challenger to NASA managers. Yet a simple regression analysis

31�F

31�F
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444 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

of the data would have provided a strong quantitative basis for this argument. This is one of
the more dramatic instances that points out why engineers and scientists need a strong
background in basic statistical techniques.

EXERCISES FOR SECTION 11–10

11-80 A study was conducted attempting to relate home
ownership to family income. Twenty households were selected
and family income was estimated, along with information con-
cerning home ownership (y � 1 indicates yes and y � 0
indicates no). The data are shown below.

Home
Ownership

Household Income Status

1 38,000 0
2 51,200 1
3 39,600 0
4 43,400 1
5 47,700 0
6 53,000 0
7 41,500 1
8 40,800 0
9 45,400 1

10 52,400 1
11 38,700 1
12 40,100 0
13 49,500 1
14 38,000 0
15 42,000 1
16 54,000 1
17 51,700 1
18 39,400 0
19 40,900 0
20 52,800 1

Load, x (psi) Sample Size, n Number Failing, r

2500 50 10
2700 70 17
2900 100 30
3100 60 21
3300 40 18
3500 85 43
3700 90 54
3900 50 33
4100 80 60
4300 65 51

Number
Discount, x Sample Size, n Redeemed, r

5 500 100
7 500 122
9 500 147

11 500 176
13 500 211
15 500 244
17 500 277
19 500 310
21 500 343
23 500 372
25 500 391

(a) Fit a logistic regression model to the response variable y.
Use a simple linear regression model as the structure for
the linear predictor.

(b) Is the logistic regression model in part (a) adequate?
(c) Provide an interpretation of the parameter �1 in this model.

11-81 The compressive strength of an alloy fastener used
in aircraft construction is being studied. Ten loads were se-
lected over the range 2500– 4300 psi and a number of fasten-
ers were tested at those loads. The numbers of fasteners failing
at each load were recorded. The complete test data follow.

(a) Fit a logistic regression model to the data. Use a simple
linear regression model as the structure for the linear pre-
dictor.

(b) Is the logistic regression model in part (a) adequate?

11-82 The market research department of a soft drink man-
ufacturer is investigating the effectiveness of a price discount
coupon on the purchase of a two-liter beverage product. A
sample of 5500 customers was given coupons for varying
price discounts between 5 and 25 cents. The response variable
was the number of coupons in each price discount category re-
deemed after one month. The data are shown below.

(a) Fit a logistic regression model to the data. Use a simple lin-
ear regression model as the structure for the linear predictor.

(b) Is the logistic regression model in part (a) adequate?
(c) Draw a graph of the data and the fitted logistic regression

model.
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(d) Expand the linear predictor to include a quadratic term. Is
there any evidence that this quadratic term is required in
the model?

(e) Draw a graph of this new model on the same plot that you pre-
pared in part (c). Does the expanded model visually provide a
better fit to the data than the original model from part (a)?

11-83 A study was performed to investigate new automobile
purchases. A sample of 20 families was selected. Each family was
surveyed to determine the age of their oldest vehicle and their to-
tal family income. A follow-up survey was conducted six months
later to determine if they had actually purchased a new vehicle
during that time period ( y = 1 indicates yes and y = 0 indicates
no). The data from this study are shown in the following table.

Income, x1 Age, x2 y Income, x1 Age, x2 y

45,000 2 0 37,000 5 1
40,000 4 0 31,000 7 1
60,000 3 1 40,000 4 1
50,000 2 1 75,000 2 0
55,000 2 0 43,000 9 1
50,000 5 1 49,000 2 0
35,000 7 1 37,500 4 1
65,000 2 1 71,000 1 0
53,000 2 0 34,000 5 0
48,000 1 0 27,000 6 0

(a) Fit a logistic regression model to the data.
(b) Is the logistic regression model in part (a) adequate?
(c) Interpret the model coefficients �1 and �2.
(d) What is the estimated probability that a family with an in-

come of $45,000 and a car that is five years old will pur-
chase a new vehicle in the next six months?

(e) Expand the linear predictor to include an interaction term.
Is there any evidence that this term is required in the model?

(a) Draw a scatter diagram of these data. Does a straight-line
relationship seem plausible?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(d) Find a 95% confidence interval estimate on the slope.
(e) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 using 

� � 0.05. What conclusions can you draw?

11-86. The strength of paper used in the manufacture of card-
board boxes ( y) is related to the percentage of hardwood con-
centration in the original pulp (x). Under controlled conditions, a
pilot plant manufactures 16 samples, each from a different batch
of pulp, and measures the tensile strength. The data are shown
in the table that follows:

y x y x

0.734 1.1 1.50 1.6

0.886 1.2 1.66 1.7

1.04 1.3 1.81 1.8

1.19 1.4 1.97 1.9

1.35 1.5 2.12 2.0

(a) Fit a simple linear regression model to the data.
(b) Test for significance of regression using � � 0.05.
(c) Construct a 90% confidence interval on the slope �1.
(d) Construct a 90% confidence interval on the intercept �0.
(e) Construct a 95% confidence interval on the mean strength

at x � 2.5.
(f) Analyze the residuals and comment on model adequacy.

11-87. Consider the following data. Suppose that the
relationship between Y and x is hypothesized to be
Y � (�0 � �1x � �)	1. Fit an appropriate model to the data.
Does the assumed model form seem reasonable?

x 10 15 18 12 9 8 11 6

y 0.1 0.13 0.09 0.15 0.20 0.21 0.18 0.24

y 101.4 117.4 117.1 106.2

x 1.0 1.5 1.5 1.5

y 131.9 146.9 146.8 133.9

x 2.0 2.0 2.2 2.4

y 111.0 123.0 125.1 145.2

x 2.5 2.5 2.8 2.8

y 134.3 144.5 143.7 146.9

x 3.0 3.0 3.2 3.3

Supplemental Exercises

11-84. Show that, for the simple linear regression model,
the following statements are true:

(a) (b)

(c)

11-85. An article in the IEEE Transactions on Instrumenta-
tion and Measurement [“Direct, Fast, and Accurate Measure-
ment of VT and K of MOS Transistor Using VT-Sift Circuit”
(1991, Vol. 40, pp. 951–955)] described the use of a simple
linear regression model to express drain current y (in
milliamperes) as a function of ground-to-source voltage x
(in volts). The data are as follows:

1
n  a

n

i�1
 ŷi � y

a
n

i�1
1 yi 	 ŷi2 xi � 0a

n

i�1
1 yi 	 ŷi2 � 0
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Year y x Year y x

1924 8 1.350 1931 16 4.620

1925 8 1.960 1932 18 5.497

1926 9 2.270 1933 19 6.260

1927 10 2.483 1934 20 7.012

1928 11 2.730 1935 21 7.618

1929 11 3.091 1936 22 8.131

1930 12 3.674 1937 23 8.593

Year Days Index Year Days Index

1976 91 16.7 1984 81 18.0

1977 105 17.1 1985 65 17.2

1978 106 18.2 1986 61 16.9

1979 108 18.1 1987 48 17.1

1980 88 17.2 1988 61 18.2

1981 91 18.2 1989 43 17.3

1982 58 16.0 1990 33 17.5

1983 82 17.2 1991 36 16.6

Mole ratio
x 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Viscosity
y 0.45 0.20 0.34 0.58 0.70 0.57 0.55 0.44

Thermocouple 921 935 916 920 940

IR 918 934 924 921 945

Thermocouple 936 925 940 933 927

IR 930 919 943 932 935

y 4.3 1.5 1.8 4.9 4.2 4.8 5.8 6.2 7.0 7.9

x 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

11-88. The following data, adapted from Montgomery,
Peck, and Vining (2006), present the number of certified men-
tal defectives per 10,000 of estimated population in the United
Kingdom ( y) and the number of radio receiver licenses issued
(x) by the BBC (in millions) for the years 1924 through 1937.
Fit a regression model relating y and x. Comment on the
model. Specifically, does the existence of a strong correlation
imply a cause-and-effect relationship?

11-89. Consider the weight and blood pressure data in
Exercise 11-72. Fit a no-intercept model to the data, and com-
pare it to the model obtained in Exercise 11-70. Which model
is superior?

11-90. An article in Air and Waste [“Update on Ozone
Trends in California’s South Coast Air Basin” (Vol. 43, 1993)]
studied the ozone levels on the South Coast air basin of
California for the years 1976–1991. The author believes that the
number of days that the ozone level exceeds 0.20 parts per
million depends on the seasonal meteorological index (the sea-
sonal average 850 millibar temperature). The data follow:

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear regression model to the data. Test for

significance of regression.
(c) Find a 95% CI on the slope 
(d) Analyze the residuals and comment on model adequacy.

11-91. An article in the Journal of Applied Polymer Science
(Vol. 56, pp. 471–476, 1995) studied the effect of the mole

�1.

ratio of sebacic acid on the intrinsic viscosity of copolyesters.
The data follow:

(a) Construct a scatter diagram for these data, letting x �
thermocouple measurement and y � IR measurement.

(b) Fit a simple linear regression model.
(c) Test for significance a regression and calculate R2. What

conclusions can you draw?
(d) Is there evidence to support a claim that both devices pro-

duce equivalent temperature measurements? Formulate
and test an appropriate hypothesis to support this claim.

(e) Analyze the residuals and comment on model adequacy.

11-93. The grams of solids removed from a material ( y) is
thought to be related to the drying time. Ten observations
obtained from an experimental study follow:

(a) Construct a scatter diagram for these data.
(b) Fit a simple linear regression model.
(c) Test for significance of regression.
(d) Based on these data, what is your estimate of the mean grams

of solids removed at 4.25 hours? Find a 95% confidence in-
terval on the mean.

(e) Analyze the residuals and comment on model adequacy.

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear repression model.
(c) Test for significance of regression. Calculate R2 for the

model.
(d) Analyze the residuals and comment on model adequacy.

11-92. Two different methods can be used for measuring
the temperature of the solution in a Hall cell used in aluminum
smelting, a thermocouple implanted in the cell and an indirect
measurement produced from an IR device. The indirect
method is preferable because the thermocouples are even-
tually destroyed by the solution. Consider the following 10
measurements:
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Carat Price

0.3 1302
0.3 1510
0.3 1510
0.3 1260
0.31 1641
0.31 1555
0.31 1427
0.31 1427
0.31 1126

Carat Price

0.33 1327
0.33 1098
0.34 1693
0.34 1551
0.34 1410
0.34 1269
0.34 1316
0.34 1222
0.35 1738

Number of
Power (mW) Atoms (�10E9)

11 0
12 0.02
18 0.08
21 0.13
22 0.15
24 0.18
28 0.31
32 0.4
37 0.49
39 0.57
41 0.64
46 0.71
48 0.79
50 0.82
51 0.83

Year Population Stork Count

1991 3,559,470 0.342
1992 3,600,576 0.291
1993 3,634,507 0.291
1994 3,666,456 0.291
1995 3,699,943 0.291
1996 3,738,974 0.509
1997 3,790,066 0.294
1998 3,839,578 0.799
1999 3,885,736 0.542
2000 4,012,012 0.495
2001 4,061,209 0.859
2002 4,105,848 0.364
2003 4,148,744 0.501
2004 4,198,068 0.656

(a) Graph the data and fit a regression line to predict the num-
ber of atoms from laser power. Comment on the adequacy
of a linear model.

(b) Is there a significant regression at ? What is the
P-value?

(c) Estimate the correlation coefficient.
(d) Test the hypothesis that against the alternative

with . What is the P-value?
(e) Compute a 95% confidence interval for the slope coefficient.

11-95. The following data related diamond carats to pur-
chase prices. It appeared in Singapore’s Business Times,
February 18, 2000.

� � 0.05� � 0
� � 0

� � 0.05

(a) Graph the data. What is the relation between carat and
price? Is there an outlier?

(b) What would you say to the person who purchased the
diamond that was an outlier?

(c) Fit two regression models, one with all the data and the
other with unusual data omitted. Estimate the slope coeffi-
cient with a 95% confidence interval in both cases.
Comment on any difference.

11-96. The following table shows the population and the
average count of wood storks sighted per sample period for
South Carolina from 1991 to 2004. Fit a regression line
with population as the response and the count of wood
storks as the predictor. Such an analysis might be used to
evaluate the relationship between storks and babies. Is re-
gression significant at ? What do you conclude about
the role of regression analysis to establish a cause-and-effect
relationship?

� � 0.05

Carat Price

0.31 1126
0.32 1468
0.32 1202
0.36 1635
0.36 1485
0.37 1420
0.37 1420
0.4 1911
0.4 1525
0.41 1956
0.43 1747

Carat Price

0.35 1593
0.35 1447
0.35 1255
0.45 1572
0.46 2942
0.48 2532
0.5 3501
0.5 3501
0.5 3501
0.5 3293
0.5 3016

11-94. Cesium atoms cooled by laser light could be used
to build inexpensive atomic clocks. In a study in IEEE
Transactions on Instrumentation and Measurement (2001,
Vol. 50, pp. 1224–1228), the number of atoms cooled by lasers
of various powers were counted.
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IMPORTANT TERMS AND CONCEPTS

Analysis of variance
test in regression

Confidence interval 
on mean response

Correlation 
coefficient

Empirical model

Confidence intervals on
model parameters

Intrinsically linear model
Least squares estimation

of regression model 
parameters

Logistic regression

Model adequacy checking
Odds ratio
Prediction interval on a

future observation
Regression analysis
Residual plots
Residuals

Scatter diagram
Significance of regression
Simple linear regression

model standard errors
Statistical tests on

model parameters
Transformations

MIND-EXPANDING EXERCISES

11-97. Suppose that we have n pairs of observations
(xi, yi) such that the sample correlation coefficient r is
unity (approximately). Now let zi � y2

i and consider the
sample correlation coefficient for the n-pairs of data
(xi, zi). Will this sample correlation coefficient be ap-
proximately unity? Explain why or why not.

11-98. Consider the simple linear regression model 
Y � �0 � �1x � �, with E(�) � 0, V(�) � �2, and the
errors � uncorrelated.
(a) Show that cov
(b) Show that cov .

11-99. Consider the simple linear regression model 
Y � �0 � �1x � �, with E(�) � 0, V(�) � �2, and the
errors � uncorrelated.
(a) Show that E( ) � E(MSE) � �2.
(b) Show that E(MSR) � �2 � �1

2Sx x.

11-100. Suppose that we have assumed the straight-
line regression model

but the response is affected by a second variable x2 such
that the true regression function is

Is the estimator of the slope in the simple linear regres-
sion model unbiased?

11-101. Suppose that we are fitting a line and we
wish to make the variance of the regression coefficient

as small as possible. Where should the observations
xi, i � 1, 2, p , n, be taken so as to minimize V( )?
Discuss the practical implications of this allocation of
the xi.

11-102. Weighted Least Squares. Suppose that we
are fitting the line Y � �0 � �1x � �, but the variance

�̂1

�̂1

E1Y 2 � �0 � �1x1 � �2x2

Y � �0 � �1x1 � �

�̂2

1Y, �̂12 � 0
1�̂0, �̂12 � 	x�2
Sx x.

of Y depends on the level of x; that is,

where the wi are constants, often called weights. Show
that for an objective function in which each squared
residual is multiplied by the reciprocal of the variance of
the corresponding observation, the resulting weighted
least squares normal equations are

Find the solution to these normal equations. The solutions
are weighted least squares estimators of �0 and �1.

11-103. Consider a situation where both Y and X are
random variables. Let sx and sy be the sample standard
deviations of the observed x’s and y’s, respectively.
Show that an alternative expression for the fitted simple
linear regression model is

11-104. Suppose that we are interested in fitting a
simple linear regression model Y � �0 � �1x � �,
where the intercept, �0, is known.
(a) Find the least squares estimator of �1.
(b) What is the variance of the estimator of the slope in

part (a)?
(c) Find an expression for a 100(1 	 �)% confidence in-

terval for the slope �1. Is this interval longer than the
corresponding interval for the case where both the in-
tercept and slope are unknown? Justify your answer.

ŷ � y � r 
sy

sx
 1x 	 x 2

ŷ � �̂0 � �̂1x

 �̂0a
n

i�1
wixi � �̂1a

n

i�1
wixi

2 � a
n

i�1
wixi 

yi

 �̂0a
n

i�1
wi � �̂1a

n

i�1
wixi � a

n

i�1
wi 

yi

V1Yi 0  xi2 � �2
i �

�2

wi
  i � 1, 2, p , n
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12
Multiple Linear Regression

This chapter generalizes the simple linear regression to a situation where there is more
than one predictor or regressor variable. This situation occurs frequently in science and
engineering; for example, in Chapter 1 we provided data on the pull strength of a wire
bond on a semiconductor package and illustrated its relationship to the wire length and
the die height. Understanding the relationship between strength and the other two vari-
ables may provide important insight to the engineer when the package is designed, or to
the manufacturing personnel who assemble the die into the package. We used a multiple
linear regression model to relate strength to wire length and die height. There are many
examples of such relationships: The life of a cutting tool is related to the cutting speed and
the tool angle; patient satisfaction in a hospital is related to patient age, type of procedure
performed, and length of stay; and the fuel economy of a vehicle is related to the type of
vehicle (car versus truck), engine displacement, horsepower, type of transmission, and
vehicle weight. Multiple regression models give insight into the relationships between
these variables that can have important practical implications.

This chapter shows how to fit multiple linear regression models, perform the statis-
tical tests and confidence procedures that are analogous to those for simple linear
regression, and check for model adequacy. We also show how models that have polyno-
mial terms in the regressor variables are just multiple linear regression models. We also
discuss some aspects of building a good regression model from a collection of candidate
regressors.

CHAPTER OUTLINE

12-1 MULTIPLE LINEAR REGRESSION
MODEL

12-1.1 Introduction

12-1.2 Least Squares Estimation of 
the Parameters

12-1.3 Matrix Approach to Multiple
Linear Regression

12-1.4 Properties of the Least Squares
Estimators

© David Lewis/
iStockphoto
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450 CHAPTER 12 MULTIPLE LINEAR REGRESSION

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Use multiple regression techniques to build empirical models to engineering and scientific 

data
2. Understand how the method of least squares extends to fitting multiple regression models
3. Assess regression model adequacy
4. Test hypotheses and construct confidence intervals on the regression coefficients
5. Use the regression model to estimate the mean response and to make predictions and to construct

confidence intervals and prediction intervals
6. Build regression models with polynomial terms
7. Use indicator variables to model categorical regressors
8. Use stepwise regression and other model building techniques to select the appropriate set of vari-

ables for a regression model

12-1 MULTIPLE LINEAR REGRESSION MODEL

12-1.1 Introduction

Many applications of regression analysis involve situations in which there are more than one
regressor or predictor variable. A regression model that contains more than one regressor vari-
able is called a multiple regression model.

As an example, suppose that the effective life of a cutting tool depends on the cutting speed
and the tool angle. A multiple regression model that might describe this relationship is

(12-1)

where Y represents the tool life, x1 represents the cutting speed, x2 represents the tool angle,
and � is a random error term. This is a multiple linear regression model with two regressors.
The term linear is used because Equation 12-1 is a linear function of the unknown parameters
�0, �1, and �2.

Y � �0 � �1x1 � �2x2 � �

12-2 HYPOTHESIS TESTS IN MULTIPLE
LINEAR REGRESSION

12-2.1 Test for Significance of
Regression

12-2.2 Tests on Individual Regression
Coefficients and Subsets of
Coefficients

12-3 CONFIDENCE INTERVALS 
IN MULTIPLE LINEAR
REGRESSION

12-3.1 Confidence Intervals on
Individual Regression
Coefficients

12-3.2 Confidence Interval on 
the Mean Response

12-4 PREDICTION OF NEW
OBSERVATIONS

12-5 MODEL ADEQUACY CHECKING

12-5.1 Residual Analysis

12-5.2 Influential Observations

12-6 ASPECTS OF MULTIPLE
REGRESSION MODELING

12-6.1 Polynomial Regression Models

12-6.2 Categorical Regressors and
Indicator Variables

12-6.3 Selection of Variables and
Model Building

12-6.4 Multicollinearity
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12-1 MULTIPLE LINEAR REGRESSION MODEL 451

The regression model in Equation 12-1 describes a plane in the three-dimensional space
of Y, x1, and x2. Figure 12-1(a) shows this plane for the regression model

where we have assumed that the expected value of the error term is zero; that is E(�) � 0. The
parameter �0 is the intercept of the plane. We sometimes call �1 and �2 partial regression
coefficients, because �1 measures the expected change in Y per unit change in x1 when x2 is
held constant, and �2 measures the expected change in Y per unit change in x2 when x1 is held
constant. Figure 12-1(b) shows a contour plot of the regression model—that is, lines of con-
stant E(Y ) as a function of x1 and x2. Notice that the contour lines in this plot are straight lines.

In general, the dependent variable or response Y may be related to k independent or
regressor variables. The model

(12-2)

is called a multiple linear regression model with k regressor variables. The parameters �j,
j � 0, 1, p , k, are called the regression coefficients. This model describes a hyperplane in 
the k-dimensional space of the regressor variables {xj}. The parameter �j represents the
expected change in response Y per unit change in xj when all the remaining regressors xi (i � j)
are held constant.

Multiple linear regression models are often used as approximating functions. That is, the
true functional relationship between Y and x1, x2, p , xk is unknown, but over certain ranges
of the independent variables the linear regression model is an adequate approximation.

Models that are more complex in structure than Equation 12-2 may often still be analyzed
by multiple linear regression techniques. For example, consider the cubic polynomial model
in one regressor variable.

(12-3)

If we let x1 � x, x2 � x2, x3 � x3, Equation 12-3 can be written as

(12-4)

which is a multiple linear regression model with three regressor variables.

Y � �0 � �1x1 � �2x2 � �3x3 � �

Y � �0 � �1x � �2x
2 � �3x3 � �

Y � �0 � �1x1 � �2x2 � p � �˛kx˛k � �

E1Y 2 � 50 � 10x1 � 7x2

Figure 12-1 (a) The regression plane for the model E(Y ) � 50 � 10x1 � 7x2. (b) The contour plot.
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452 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Models that include interaction effects may also be analyzed by multiple linear regres-
sion methods. An interaction between two variables can be represented by a cross-product
term in the model, such as

(12-5)

If we let x3 � x1x2 and �3 � �12, Equation 12-5 can be written as

which is a linear regression model.
Figure 12-2(a) and (b) shows the three-dimensional plot of the regression model 

and the corresponding two-dimensional contour plot. Notice that, although this model is a
linear regression model, the shape of the surface that is generated by the model is not linear.
In general, any regression model that is linear in parameters (the �’s) is a linear regression
model, regardless of the shape of the surface that it generates.

Figure 12-2 provides a nice graphical interpretation of an interaction. Generally, interaction
implies that the effect produced by changing one variable (x1, say) depends on the level of the
other variable (x2). For example, Fig. 12-2 shows that changing x1 from 2 to 8 produces a much
smaller change in E(Y ) when x2 � 2 than when x2 � 10. Interaction effects occur frequently in
the study and analysis of real-world systems, and regression methods are one of the techniques
that we can use to describe them.

As a final example, consider the second-order model with interaction

(12-6)

If we let x3 � x2
1, x4 � x2

2, x5 � x1x2, �3 � �11, �4 � �22, and �5 � �12, Equation 12-6 can be
written as a multiple linear regression model as follows:

Figure 12-3(a) and (b) show the three-dimensional plot and the corresponding contour plot for

These plots indicate that the expected change in Y when x1 is changed by one unit (say) is a
function of both x1 and x2. The quadratic and interaction terms in this model produce a mound-
shaped function. Depending  on the values of the regression coefficients, the second-order
model with interaction is capable of assuming a wide variety of shapes; thus, it is a very
flexible regression model.

12-1.2 Least Squares Estimation of the Parameters

The method of least squares may be used to estimate the regression coefficients in the mul-
tiple regression model, Equation 12-2. Suppose that n � k observations are available, and let

E1Y 2 � 800 � 10x1 � 7x2 � 8.5x2
1 � 5x2

2 � 4x˛1x2

Y � �0 � �1x1 � �2x2 � �3x3 � �4x4 � �5x5 � �

Y � �0 � �1x1 � �2x2 � �11x
2
1 � �22x2

2 � �12x1x2 � �

Y � 50 � 10x1 � 7x2 � 5x1x2

Y � �0 � �1x1 � �2x2 � �3x3 � �

Y � �0 � �1x1 � �2x2 � �12x1x2 � �
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12-1 MULTIPLE LINEAR REGRESSION MODEL 453

xij denote the ith observation or level of variable xj. The observations are

It is customary to present the data for multiple regression in a table such as Table 12-1.
Each observation (xi1, xi2, p , xik, yi), satisfies the model in Equation 12-2, or

(12-7) � �0 �a
k

j�1
 �j xij � �i  i � 1,˛ 2, p , ˛n

 y˛i � �0 � �1xi1 � �2xi 2 � p � �k xik � �i

1xi 1, ˛xi 2, p , xik, ˛yi2,  i � 1, 2, p , ˛n and n � k

Figure 12-2 (a) Three-dimensional plot of the regression model
E(Y ) � 50 � 10x1 � 7x2 � 5x1x2. (b) The contour plot.

Figure 12-3 (a) Three-dimensional plot of the regression
model E(Y ) � 800 � 10x1 � 7x2 � 8.5x2

1 � 5x2
2 � 4x1x2. 

(b) The contour plot.
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Table 12-1 Data for Multiple Linear Regression

y x1 x2 . . . xk

y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k

yn xn1 xn2 . . . xnk

oooo

JWCL232_c12_449-512.qxd  1/15/10  10:07 PM  Page 453



The least squares function is

(12-8)

We want to minimize  L with respect to �0, �1, p , �k. The least squares estimates of �0, 
�1, p , �k must satisfy

(12-9a)

and

(12-9b)

Simplifying Equation 12-9, we obtain the least squares normal equations

(12-10)

Note that there are p � k � 1 normal equations, one for each of the unknown regression
coefficients. The solution to the normal equations will be the least squares estimators of the
regression coefficients, The normal equations can be solved by any method
appropriate for solving a system of linear equations.

�̂0, �̂1, p , �̂k.

 �̂0a
n

i�1
˛xik � �̂1a

n

i�1
˛xikxi1 � �̂2 a

n

i�1
xikxi2 � p � �̂k a

n

i�1
x2

ik  �a
n

i�1
xikyi

oooooo

 �̂0a
n

i�1
˛xi1 � �̂1a

n

i�1
˛x2

i1  � �̂2 a
n

i�1
xi1 xi2 � p � �̂k a

n

i�1
xi1xik       �a

n

i�1
xi1yi

 n�̂0 � �̂1a
n

i�1
˛xi1  � �̂2˛a

n

i�1
˛xi 2  � p � �̂ka

n

i�1
˛xik  � a

n

i�1
˛yi

	L

	�j
 `

�̂0,�̂1, p , �̂k

� �2 a
n

i�1
 ayi � �̂0 � a

k

j�1
 �̂j 

xijb  xij � 0  j � 1, 2, p , k
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�̂0,�̂1, p  , �̂k

� �2a
n

i�1
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EXAMPLE 12-1 Wire Bond Strength
In Chapter 1, we used data on pull strength of a wire bond in a
semiconductor manufacturing process, wire length, and die
height to illustrate building an empirical model. We will use
the same data, repeated for convenience in Table 12-2, and
show the details of estimating the model parameters. A three-
dimensional scatter plot of the data is presented in Fig. 1-15.
Figure 12-4 shows a matrix of two-dimensional scatter plots of
the data. These displays can be helpful in visualizing the
relationships among variables in a multivariable data set. For
example, the plot indicates that there is a strong linear
relationship between strength and wire length.

Specifically, we will fit the multiple linear regression
model

where Y � pull strength, x1 � wire length, and x2 � die
height. From the data in Table 12-2 we calculate

Y � �0 � �1x1 � �2x2 � �

 a
25

i�1
xi2 yi � 274,816.71

 a
25

i�1
˛xi1xi2 � 77,177, a

25

i�1
˛xi1 

yi � 8,008.47, 

a
25

i�1
 
x 

2
i1 � 2,396, a

25

i�1
˛x 

2 

i2 � 3,531,848

a
25

i�1
xi1 � 206, a

25

i�1
˛xi 2 � 8,294

 n � 25, a
25

i�1
˛yi � 725.82
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12-1 MULTIPLE LINEAR REGRESSION MODEL 455

For the model Y � �0 � �1x1 � �2x2 � �, the normal equa-
tions 12-10 are

�̂0a
n

i�1
˛ xi 2 � �̂1a

n

i�1
˛xi1xi 2 � �̂2a

n

i�1
˛x2

i 2  � a
n

i�1
˛xi 2 yi

�̂0a
n

i�1
˛  xi1 �  ˛�̂1a

n

i�1
˛x2

i1  � �̂2a
n

i�1
˛xi1xi2 � a

n

i�1
xi1˛yi

 n�̂0 � �̂1a
n

i�1
˛xi1  � �̂2a

n

i�1
˛xi 2  � a

n

i�1
yi

Inserting the computed summations into the normal equa-
tions, we obtain

 8294�̂0 � 77,177�̂1 � 3,531,848�̂2 � 274,816.71

  206�̂0 �  2396�̂1 �  77,177�̂2 � 8,008.47

  25�̂0 �  206�̂1 �   8294�̂2 � 725.82

Table 12-2 Wire Bond Data for Example 12-1

Observation Pull Strength Wire Length Die Height Observation Pull Strength Wire Length Die Height
Number y x1 x2 Number y x1 x2

1 9.95 2 50 14 11.66 2 360

2 24.45 8 110 15 21.65 4 205

3 31.75 11 120 16 17.89 4 400

4 35.00 10 550 17 69.00 20 600

5 25.02 8 295 18 10.30 1 585

6 16.86 4 200 19 34.93 10 540

7 14.38 2 375 20 46.59 15 250

8 9.60 2 52 21 44.88 15 290

9 24.35 9 100 22 54.12 16 510

10 27.50 8 300 23 56.63 17 590

11 17.08 4 412 24 22.13 6 100

12 37.00 11 400 25 21.15 5 400
13 41.95 12 500

Figure 12-4 Matrix of scatter plots (from Minitab) for the wire bond pull
strength data in Table 12-2.
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12-1.3 Matrix Approach to Multiple Linear Regression

In fitting a multiple regression model, it is much more convenient to express the mathemati-
cal operations using matrix notation. Suppose that there are k regressor variables and n ob-
servations, (xi1, xi2, p , xik, yi), i � 1, 2, p , n and that the model relating the regressors to the
response is

This model is a system of n equations that can be expressed in matrix notation as

y � X� � � (12-11)

where

and �

In general, y is an (n 
 1) vector of the observations, X is an (n 
 p) matrix of the levels
of the independent variables (assuming that the intercept is always multiplied by a constant
value—unity), � is a ( p 
 1) vector of the regression coefficients, and � is a (n 
 1) vector
of random errors. The X matrix is often called the model matrix.

We wish to find the vector of least squares estimators, �̂, that minimizes

The least squares estimator �̂ is the solution for � in the equations

We will not give the details of taking the derivatives above; however, the resulting equations
that must be solved are

	L

	�
� 0

L � a
n

i�1
˛�2

i � �¿� � 1y � X�2 ¿ 1y � X�2

� ≥

�1

�2

o
�n

¥� � ≥

�0

�1

o
�k

¥X � ≥

1 x11 x12 p x1k

1 x21 x22 p x2k

o o o o
1 xn1 xn2 p xnk

¥y � ≥

y1

y2

o
yn

¥

yi � �0 � �1xi1 � �2xi 2 � p � �kxik � �i  i � 1, 2, p , n

456 CHAPTER 12 MULTIPLE LINEAR REGRESSION

The solution to this set of equations is

Therefore, the fitted regression equation is

ŷ � 2.26379 � 2.74427x1 � 0.01253x2

 �̂0 � 2.26379, �̂1 � 2.74427, �̂2 � 0.01253

Practical Interpretation: This equation can be used to
predict pull strength for pairs of values of the regressor vari-
ables wire length (x1) and die height (x2). This is essentially
the same regression model given in Section 1-3. Figure 1-16
shows a three-dimensional plot of the plane of predicted val-
ues generated from this equation.ŷ

X�X�̂ � X�y (12-12)
Normal

Equations
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12-1 MULTIPLE LINEAR REGRESSION MODEL 457

Note that there are p � k � 1 normal equations in p � k � 1 unknowns (the values of
Furthermore, the matrix X�X is always nonsingular, as was assumed above,

so the methods described in textbooks on determinants and matrices for inverting these ma-
trices can be used to find . In practice, multiple regression calculations are almost 
always performed using a computer.

It is easy to see that the matrix form of the normal equations is identical to the scalar form.
Writing out Equation 12-12 in detail, we obtain

If the indicated matrix multiplication is performed, the scalar form of the normal equations
(that is, Equation 12-10) will result. In this form it is easy to see that is a ( p 
 p) sym-
metric matrix and is a ( p 
 1) column vector. Note the special structure of the ma-
trix. The diagonal elements of are the sums of squares of the elements in the columns of
X, and the off-diagonal elements are the sums of cross-products of the elements in the
columns of X. Furthermore, note that the elements of are the sums of cross-products of
the columns of X and the observations 

The fitted regression model is

(12-14)

In matrix notation, the fitted model is

The difference between the observation yi and the fitted value is a residual, say,
The (n 
 1) vector of residuals is denoted by

(12-15)e � y � ŷ

ei � yi � ŷi.
ŷi

ŷ � X�̂

ŷi � �̂0 � a
k

j�1
˛�̂j ˛xi j  i � 1, ˛2, p ,˛ n

5yi6.
X�y

X�X
X�XX�y

X�X

H
�̂0

�̂1

o

�̂k

X � H
a

n

i�1
yi

a
n

i�1
xi1yi

o

a
n

i�1
xik˛ yi

XH
n a

n

i�1
xi1 a

n

i�1
xi2

p a
n

i�1
xik

a
n

i�1
xi1 a

n

i�1
x2

i1 a
n

i�1
xi1xi2

p a
n

i�1
xi1xik

o o o o

a
n

i�1
xik a

n

i�1
xik xi1 a

n

i�1
xik xi2

p a
n

i�1
x2

ik

X

1X¿X2�1

�̂0, �̂1, p , �̂k2.

Equations 12-12 are the least squares normal equations in matrix form. They are identical to
the scalar form of the normal equations given earlier in Equations 12-10. To solve the normal
equations, multiply both sides of Equations 12-12 by the inverse of Therefore, the least
squares estimate of � is

X¿X.

�̂ � (X�X)�1 X�y (12-13)
Least Square
Estimate of �
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EXAMPLE 12-2 Wire Bond Strength with Matrix Notation
In Example 12-1, we illustrated fitting the multiple regression
model

where y is the observed pull strength for a wire bond, x1 is the
wire length, and x2 is the die height. The 25 observations are in
Table 12-2. We will now use the matrix approach to fit the re-
gression model above to these data. The model matrix X and y
vector for this model are

X � y �

The matrix is

� £

25 206 8,294

206 2,396 77,177

8,294 77,177 3,531,848

§

X¿X � £

1 1 p 1

2 8 p 5

50 110 p 400

§ ˛ ≥

1 2 50

1 8 110

o o o
1 5 400

¥

X¿X

9.95

24.45

31.75

35.00

25.02

16.86

14.38

9.60

24.35

27.50

17.08

37.00

41.95

11.66

21.65

17.89

69.00

10.30

34.93

46.59

44.88

54.12

56.63

22.13

21.15

1 2 50

1 8 110

1 11 120

1 10 550

1 8 295

1 4 200

1 2 375

1 2 52

1 9 100

1 8 300

1 4 412

1 11 400

1 12 500

1 2 360

1 4 205

1 4 400

1 20 600

1 1 585

1 10 540

1 15 250

1 15 290

1 16 510

1 17 590

1 6 100

1 5 400

y � �0 � �1˛x1 � �2x2 � �

and the vector is

The least squares estimates are found from Equation 12-13 as

�̂ � (X�X)�1X�y

or

Therefore, the fitted regression model with the regression
coefficients rounded to five decimal places is

This is identical to the results obtained in Example 12-1.
This regression model can be used to predict values of

pull strength for various values of wire length (x1) and die
height (x2). We can also obtain the fitted values by substi-
tuting each observation (xi1, xi2), i � 1, 2, . . . , n, into the
equation. For example, the first observation has x11 � 2 and
x12 � 50, and the fitted value is

The corresponding observed value is y1 � 9.95. The residual
corresponding to the first observation is

Table 12-3 displays all 25 fitted values and the correspon-
ding residuals. The fitted values and residuals are calculated to
the same accuracy as the original data.

ŷi

 � 1.57
 � 9.95 � 8.38

  e1 � y1 � ŷ1

 � 8.38

 � 2.26379 � 2.74427122 � 0.012531502

 ŷ1 � 2.26379 � 2.74427x11 � 0.01253x12

ŷi

ŷ � 2.26379 � 2.74427x1 � 0.01253x2

� £

2.26379143

2.74426964

0.01252781

§

£

725.82

8,008.47

274,811.31

§� £

0.214653 �0.007491 �0.000340

�0.007491 0.001671 �0.000019

�0.000340 �0.000019 �0.0000015

§

 £

�̂0

�̂1

�̂2

§ � £

25 206 8,294

206 2,396 77,177

8,294 77,177 3,531,848

§

�1

£

725.82

8,008.37

274,811.31

§

X¿y � £

1 1 p 1

2 8 p 5

50 110 p 400

§ ≥

9.95

24.45

o
21.15

¥ � £

725.82

8,008.47

274,816.71

§

X¿y
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Computers are almost always used in fitting multiple regression models. Table 12-4 pre-
sents some annotated output from Minitab for the least squares regression model for wire bond
pull strength data. The upper part of the table contains the numerical estimates of the regres-
sion coefficients. The computer also calculates several other quantities that reflect important
information about the regression model. In subsequent sections, we will define and explain the
quantities in this output.

Estimating �2

Just as in simple linear regression, it is important to estimate �2, the variance of the error term
�, in a multiple regression model. Recall that in simple linear regression the estimate of �2 was
obtained by dividing the sum of the squared residuals by n � 2. Now there are two parame-
ters in the simple linear regression model, so in multiple linear regression with p parameters a
logical estimator for �2 is

This is an unbiased estimator of �2. Just as in simple linear regression, the estimate of �2 is usu-
ally obtained from the analysis of variance for the regression model. The numerator of Equation
12-16 is called the error or residual sum of squares, and the denominator n � p is called the 
error or residual degrees of freedom.

We can find a computing formula for SSE as follows:

Substituting into the above, we obtain

(12-17) � 27,178.5316 � 27,063.3581 � 115.174
SSE � y¿y � �̂¿X¿y

e � y � ŷ � y � X�̂

SSE � a
n

i�1
1 yi � ŷi2

2 � a
n

i�1
ei

2 � e¿e

Table 12-3 Observations, Fitted Values, and Residuals for Example 12-2

Observation 
Number

1 9.95 8.38 1.57
2 24.45 25.60 �1.15
3 31.75 33.95 �2.20
4 35.00 36.60 �1.60
5 25.02 27.91 �2.89
6 16.86 15.75 1.11
7 14.38 12.45 1.93
8 9.60 8.40 1.20
9 24.35 28.21 �3.86

10 27.50 27.98 �0.48
11 17.08 18.40 �1.32
12 37.00 37.46 �0.46
13 41.95 41.46 0.49

ei � yi � ŷiŷiyi

14 11.66 12.26 �0.60
15 21.65 15.81 5.84
16 17.89 18.25 �0.36
17 69.00 64.67 4.33
18 10.30 12.34 �2.04
19 34.93 36.47 �1.54
20 46.59 46.56 0.03
21 44.88 47.06 �2.18
22 54.12 52.56 1.56
23 56.63 56.31 0.32
24 22.13 19.98 2.15
25 21.15 21.00 0.15

Observation 
Number ei � yi � ŷiŷiyi

(12-16)�̂2 �
a

n

i�1
˛e2

i

n � p �
SSE

n � p

Estimator 
of Variance
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Table 12-4 shows that the estimate of �2 for the wire bond pull strength regression model
is �̂2 � 115.2�22 � 5.2364. The Minitab output rounds the estimate to �̂2 � 5.2.

12-1.4 Properties of the Least Squares Estimators

The statistical properties of the least squares estimators may be easily found,
under certain assumptions on the error terms �1, �2, p , �n, in the regression model. Paralleling
the assumptions made in Chapter 11, we assume that the errors �i are statistically independent
with mean zero and variance �2. Under these assumptions, the least squares estimators

are unbiased estimators of the regression coefficients �0, �1, p , �k. This
property may be shown as follows:

since E(�) � 0 and (X�X)�1X�X � I, the identity matrix. Thus, is an unbiased estimator of �.�̂

 � �
 � E 3 1X¿X2�1X¿X� � 1X¿X2�1X¿� 4
 � E 3 1X¿X2�1X¿ 1X� � �2 4

 E1�̂2 � E 3 1X¿X2�1X¿Y 4

�̂0, �̂1, p ,˛ �̂k

�̂0, �̂1, p , �̂k

Table 12-4 Minitab Multiple Regression Output for the Wire Bond Pull Strength Data

Regression Analysis: Strength versus Length, Height

The regression equation is
Strength � 2.26 � 2.74 Length � 0.0125 Height

Predictor Coef SE Coef T P VIF
Constant �̂0 2.264 1.060 2.14 0.044
Length �̂1 2.74427 0.09352 29.34 0.000 1.2
Height �̂2 0.012528 0.002798 4.48 0.000 1.2

S � 2.288 R-Sq � 98.1% R-Sq (adj) � 97.9%
PRESS � 156.163 R-Sq (pred) � 97.44%

Analysis of Variance

Source DF SS MS F P
Regression 2 5990.8 2995.4 572.17 0.000
Residual Error 22 115.2 5.2
Total 24 6105.9

Source DF Seq SS
Length 1 5885.9
Height 1 104.9

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 27.663 0.482 (26.663, 28.663) (22.814, 32.512)

Values of Predictors for New Observations

New Obs Length Height
1 8.00 275

�̂2
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The variances of the ’s are expressed in terms of the elements of the inverse of the 
matrix. The inverse of times the constant �2 represents the covariance matrix of the
regression coefficients . The diagonal elements of are the variances of 

and the off-diagonal elements of this matrix are the covariances. For example, if we
have k � 2 regressors, such as in the pull-strength problem,

which is symmetric (C10 � C01, C20 � C02, and C21 � C12) because (X�X)�1 is symmetric,
and we have

In general, the covariance matrix of is a ( p � p) symmetric matrix whose jjth element is the 
variance of and whose i, jth element is the covariance between and that is,

The estimates of the variances of these regression coefficients are obtained by replacing
�2 with an estimate. When �2 is replaced by its estimate , the square root of the estimated 
variance of the jth regression coefficient is called the estimated standard error of or

These standard errors are a useful measure of the precision of estimation
for the regression coefficients; small standard errors imply good precision.

Multiple regression computer programs usually display these standard errors. For
example, the Minitab output in Table 12-4 reports and 

The intercept estimate is about twice the magnitude of its standard error, and
are considerably larger than and This implies reasonable precision

of estimation, although the parameters �1 and �2 are much more precisely estimated than the
intercept (this is not unusual in multiple regression).

se 1�̂22.se 1�̂12�̂1 and �2
ˆ

se1�̂22 � 0.002798.
se 1�̂02 � 1.060, se 1�̂12 � 0.09352,

se 1�̂j2 � 2�̂2Cjj.
�̂j

�̂2

cov1�̂2 � �21X¿X2�1 � �2
 C

�̂j,�̂i�̂j

�̂

 cov1�̂i, �̂j2 � �2C˛ij,  i � j

 V 1�̂˛j2 � �2C˛jj,  j � 0, 1, 2

C � 1X¿X2�1 � £

C00 C01 C02

C10 C11 C12

C20 C21 C22

§

�̂1, p , �̂k,
�̂0,�2 1X¿X2�1�̂

X¿X
X¿X�̂

12-1. A study was performed to investigate the shear
strength of soil ( y) as it related to depth in feet (x1) and %
moisture content (x2). Ten observations were collected, and the
following summary quantities obtained: n � 10, 

and 
(a) Set up the least squares normal equations for the model

Y � �0 	 �1x1 	 �2x2 	 
.
(b) Estimate the parameters in the model in part (a).
(c) What is the predicted strength when x1 � 18 feet and

x2 � 43%?

12-2. A regression model is to be developed for predicting
the ability of soil to absorb chemical contaminants. Ten obser-
vations have been taken on a soil absorption index ( y) and two
regressors: x1 � amount of extractable iron ore and x2 �

gy2
i � 371,595.6.

gxi2 yi � 104,736.8,gxi1 yi � 43,550.8,gxi1xi2 � 12,352,
gx2

i2 � 31,729,gx2
i1 � 5,200.9,gyi � 1,916,gxi2 � 553,

gxi1 � 223,

amount of bauxite. We wish to fit the model Y � �0 	 �1x1 	
�2x2 	 
. Some necessary quantities are:

(a) Estimate the regression coefficients in the model specified
above.

(b) What is the predicted value of the absorption index y
when x1 � 200 and x2 � 50?

12-3. A chemical engineer is investigating how the amount
of conversion of a product from a raw material (y) depends on

X�y � £

220

36,768

9,965

§

1X�X2�1 �

1.17991 �7.30982 E-3 7.3006 E-4

£�7.30982 E-3 7.9799 E-5 �1.23713 E-4

7.3006 E-4 �1.23713 E-4 4.6576 E-4

§ ,

EXERCISES FOR SECTION 12-1
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462 CHAPTER 12 MULTIPLE LINEAR REGRESSION

reaction temperature (x1) and the reaction time (x2). He has de-
veloped the following regression models:

1.

2.

Both models have been built over the range 0.5 
 x2 
 10.
(a) What is the predicted value of conversion when x2 � 2?

Repeat this calculation for x2 � 8. Draw a graph of the
predicted values for both conversion models. Comment
on the effect of the interaction term in model 2.

(b) Find the expected change in the mean conversion for a
unit change in temperature x1 for model 1 when x2 � 5.
Does this quantity depend on the specific value of reac-
tion time selected? Why?

(c) Find the expected change in the mean conversion for a
unit change in temperature x1 for model 2 when x2 � 5.
Repeat this calculation for x2 � 2 and x2 � 8. Does the
result depend on the value selected for x2? Why?

12-4. You have fit a multiple linear regression model and
the (X�X)�1 matrix is:

(a) How many regressor variables are in this model?
(b) If the error sum of squares is 307 and there are 15 obser-

vations, what is the estimate of �2?
(c) What is the standard error of the regression coefficient ?

12-5. Data from a patient satisfaction survey in a hospital
are shown in the following table:

�̂1

1X�X2�1 �

0.893758 �0.0282448 �0.0175641

£�0.028245 0.0013329 0.0001547

�0.017564 0.0001547 0.0009108

§

ŷ � 95 � 1.5x1 � 3x2 � 2x1x2

ŷ � 100 � 2x1 � 4x2

The regressor variables are the patient’s age, an illness sever-
ity index (larger values indicate greater severity), an indicator
variable denoting whether the patient is a medical patient (0)
or a surgical patient (1), and an anxiety index (larger values in-
dicate greater anxiety).
(a) Fit a multiple linear regression model to the satisfaction

response using age, illness severity, and the anxiety index
as the regressors.

(b) Estimate �2.
(c) Find the standard errors of the regression coefficients.
(d) Are all of the model parameters estimated with nearly the

same precision? Why or why not?

12-6. The electric power consumed each month by a chem-
ical plant is thought to be related to the average ambient
temperature (x1), the number of days in the month (x2), the
average product purity (x3), and the tons of product produced
(x4). The past year’s historical data are available and are pre-
sented in the following table:

Obser- Satis-
vation Age Severity Surg-Med Anxiety faction

1 55 50 0 2.1 68

2 46 24 1 2.8 77

3 30 46 1 3.3 96

4 35 48 1 4.5 80

5 59 58 0 2.0 43

6 61 60 0 5.1 44

7 74 65 1 5.5 26

8 38 42 1 3.2 88

9 27 42 0 3.1 75

10 51 50 1 2.4 57

11 53 38 1 2.2 56

12 41 30 0 2.1 88

13 37 31 0 1.9 88

14 24 34 0 3.1 102

15 42 30 0 3.0 88

16 50 48 1 4.2 70

17 58 61 1 4.6 52

18 60 71 1 5.3 43

19 62 62 0 7.2 46

20 68 38 0 7.8 56

21 70 41 1 7.0 59

22 79 66 1 6.2 26

23 63 31 1 4.1 52

24 39 42 0 3.5 83

25 49 40 1 2.1 75

y x1 x2 x3 x4

240 25 24 91 100

236 31 21 90 95

270 45 24 88 110

274 60 25 87 88

301 65 25 91 94

316 72 26 94 99

300 80 25 87 97

296 84 25 86 96

267 75 24 88 110

276 60 25 91 105

288 50 25 90 100

261 38 23 89 98

(a) Fit a multiple linear regression model to these data.
(b) Estimate �2.
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Table 12-5 DaimlerChrysler Fuel Economy and Emissions

mfr carline car/truck cid rhp trns drv od etw cmp axle n/v a/c hc co co2 mpg

20 300C/SRT-8 C 215 253 L5 4 2 4500 9.9 3.07 30.9 Y 0.011 0.09 288 30.8

20 CARAVAN 2WD T 201 180 L4 F 2 4500 9.3 2.49 32.3 Y 0.014 0.11 274 32.5

20 CROSSFIRE ROADSTER C 196 168 L5 R 2 3375 10 3.27 37.1 Y 0.001 0.02 250 35.4

20 DAKOTA PICKUP 2WD T 226 210 L4 R 2 4500 9.2 3.55 29.6 Y 0.012 0.04 316 28.1

20 DAKOTA PICKUP 4WD T 226 210 L4 4 2 5000 9.2 3.55 29.6 Y 0.011 0.05 365 24.4

20 DURANGO 2WD T 348 345 L5 R 2 5250 8.6 3.55 27.2 Y 0.023 0.15 367 24.1

20 GRAND CHEROKEE 2WD T 226 210 L4 R 2 4500 9.2 3.07 30.4 Y 0.006 0.09 312 28.5

20 GRAND CHEROKEE 4WD T 348 230 L5 4 2 5000 9 3.07 24.7 Y 0.008 0.11 369 24.2

20 LIBERTY/CHEROKEE 2WD T 148 150 M6 R 2 4000 9.5 4.1 41 Y 0.004 0.41 270 32.8

20 LIBERTY/CHEROKEE 4WD T 226 210 L4 4 2 4250 9.2 3.73 31.2 Y 0.003 0.04 317 28

20 NEON/SRT-4/SX 2.0 C 122 132 L4 F 2 3000 9.8 2.69 39.2 Y 0.003 0.16 214 41.3

20 PACIFICA 2WD T 215 249 L4 F 2 4750 9.9 2.95 35.3 Y 0.022 0.01 295 30

20 PACIFICA AWD T 215 249 L4 4 2 5000 9.9 2.95 35.3 Y 0.024 0.05 314 28.2

20 PT CRUISER T 148 220 L4 F 2 3625 9.5 2.69 37.3 Y 0.002 0.03 260 34.1

20 RAM 1500 PICKUP 2WD T 500 500 M6 R 2 5250 9.6 4.1 22.3 Y 0.01 0.1 474 18.7

20 RAM 1500 PICKUP 4WD T 348 345 L5 4 2 6000 8.6 3.92 29 Y 0 0 0 20.3

20 SEBRING 4-DR C 165 200 L4 F 2 3625 9.7 2.69 36.8 Y 0.011 0.12 252 35.1

20 STRATUS 4-DR C 148 167 L4 F 2 3500 9.5 2.69 36.8 Y 0.002 0.06 233 37.9

20 TOWN & COUNTRY 2WD T 148 150 L4 F 2 4250 9.4 2.69 34.9 Y 0 0.09 262 33.8

20 VIPER CONVERTIBLE C 500 501 M6 R 2 3750 9.6 3.07 19.4 Y 0.007 0.05 342 25.9

20 WRANGLER/TJ 4WD T 148 150 M6 4 2 3625 9.5 3.73 40.1 Y 0.004 0.43 337 26.4

mfr-mfr code
carline-car line name (test vehicle model name)
car/truck-‘C’ for passenger vehicle and ‘T’ for truck
cid-cubic inch displacement of test vehicle
rhp-rated horsepower
trns-transmission code
drv-drive system code
od-overdrive code
etw-equivalent test weight

cmp-compression ratio
axle-axle ratio
n/v-n/v ratio (engine speed versus vehicle speed at 50 mph)
a/c-indicates air conditioning simulation
hc-HC(hydrocarbon emissions) Test level composite results
co-CO(carbon monoxide emissions) Test level composite results
co2-CO2(carbon dioxide emissions) Test level composite results
mpg-mpg(fuel economy, miles per gallon)

(c) Compute the standard errors of the regression coeffi-
cients. Are all of the model parameters estimated with the
same precision? Why or why not?
(d) Predict power consumption for a month in which

x2 � 24 days, x3 � 90%, and x4 � 98 tons.

12-7. Table 12-5 provides the highway gasoline mileage test
results for 2005 model year vehicles from DaimlerChrysler. The
full table of data (available on the book’s Web site) contains the
same data for 2005 models from over 250 vehicles from many
manufacturers (source: Environmental Protection Agency Web
site www.epa.gov/ otaq/cert/mpg/testcars/database).
(a) Fit a multiple linear regression model to these data to esti-

mate gasoline mileage that uses the following regressors:
cid, rhp, etw, cmp, axle, n/v.

x1 � 75�F,

(b) Estimate and the standard errors of the regression co-
efficients. 

(c) Predict the gasoline mileage for the first vehicle in the
table.

12-8. The pull strength of a wire bond is an important char-
acteristic. The following table gives information on pull
strength ( y), die height (x1), post height (x2), loop height (x3),
wire length (x4), bond width on the die (x5), and bond width on
the post (x6).
(a) Fit a multiple linear regression model using x2, x3, x4, and

x5 as the regressors.
(b) Estimate �2.
(c) Find the se( ). How precisely are the regression coeffi-

cients estimated, in your opinion?
�j
ˆ

�2
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y x1 x2 x3 x4 x5 x6

8.0 5.2 19.6 29.6 94.9 2.1 2.3

8.3 5.2 19.8 32.4 89.7 2.1 1.8

8.5 5.8 19.6 31.0 96.2 2.0 2.0

8.8 6.4 19.4 32.4 95.6 2.2 2.1

9.0 5.8 18.6 28.6 86.5 2.0 1.8

9.3 5.2 18.8 30.6 84.5 2.1 2.1

9.3 5.6 20.4 32.4 88.8 2.2 1.9

9.5 6.0 19.0 32.6 85.7 2.1 1.9

9.8 5.2 20.8 32.2 93.6 2.3 2.1

10.0 5.8 19.9 31.8 86.0 2.1 1.8

10.3 6.4 18.0 32.6 87.1 2.0 1.6

10.5 6.0 20.6 33.4 93.1 2.1 2.1

10.8 6.2 20.2 31.8 83.4 2.2 2.1

11.0 6.2 20.2 32.4 94.5 2.1 1.9

11.3 6.2 19.2 31.4 83.4 1.9 1.8

11.5 5.6 17.0 33.2 85.2 2.1 2.1

11.8 6.0 19.8 35.4 84.1 2.0 1.8

12.3 5.8 18.8 34.0 86.9 2.1 1.8

12.5 5.6 18.6 34.2 83.0 1.9 2.0

(d) Use the model from part (a) to predict pull strength when
x2 = 20, x3 = 30, x4 = 90, and x5 = 2.0.

12-9. An engineer at a semiconductor company wants to
model the relationship between the device HFE ( y) and three
parameters: Emitter-RS (x1), Base-RS (x2), and Emitter-to-Base
RS (x3). The data are shown in the following table.

(a) Fit a multiple linear regression model to the data.
(b) Estimate �2.
(c) Find the standard errors se Are all of the model para-
meters estimated with the same precision? Justify your answer.
(d) Predict HFE when x1 � 14.5, x2 � 220, and x3 � 5.0.

12-10. Heat treating is often used to carburize metal parts,
such as gears. The thickness of the carburized layer is consid-
ered a crucial feature of the gear and contributes to the overall
reliability of the part. Because of the critical nature of this fea-
ture, two different lab tests are performed on each furnace
load. One test is run on a sample pin that accompanies each
load. The other test is a destructive test, where an actual part
is cross-sectioned. This test involves running a carbon analy-
sis on the surface of both the gear pitch (top of the gear tooth)
and the gear root (between the gear teeth). Table 12-6 shows
the results of the pitch carbon analysis test for 32 parts.

The regressors are furnace temperature (TEMP), carbon
concentration and duration of the carburizing cycle
(SOAKPCT, SOAKTIME), and carbon concentration and
duration of the diffuse cycle (DIFFPCT, DIFFTIME).
(a) Fit a linear regression model relating the results of the pitch

carbon analysis test (PITCH) to the five regressor variables.
(b) Estimate �2.
(c) Find the standard errors 
(d) Use the model in part (a) to predict PITCH when 

TEMP � 1650, SOAKTIME � 1.00, SOAKPCT � 1.10,
DIFFTIME � 1.00, and DIFFPCT � 0.80.

12-11. An article in Electronic Packaging and Production
(2002, Vol. 42) considered the effect of X-ray inspection of
integrated circuits. The rads (radiation dose) were studied as a
function of current (in milliamps) and exposure time (in minutes).

se 1�j
ˆ 2.

1�j
ˆ 2.

x1 x2 x3 y
Emitter-RS Base-RS E-B-RS HFE-1M-5V

14.620 226.00 7.000 128.40

15.630 220.00 3.375 52.62

14.620 217.40 6.375 113.90

15.000 220.00 6.000 98.01

14.500 226.50 7.625 139.90

15.250 224.10 6.000 102.60

16.120 220.50 3.375 48.14

15.130 223.50 6.125 109.60

15.500 217.60 5.000 82.68

15.130 228.50 6.625 112.60

15.500 230.20 5.750 97.52

16.120 226.50 3.750 59.06

15.130 226.60 6.125 111.80

15.630 225.60 5.375 89.09

15.380 229.70 5.875 101.00

14.380 234.00 8.875 171.90

15.500 230.00 4.000 66.80

14.250 224.30 8.000 157.10

14.500 240.50 10.870 208.40

14.620 223.70 7.375 133.40

Rads mAmps Exposure Time

7.4 10 0.25
14.8 10 0.5
29.6 10 1
59.2 10 2
88.8 10 3

296 10 10
444 10 15
592 10 20
11.1 15 0.25
22.2 15 0.5
44.4 15 1

continued
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Rads mAmps Exposure Time

88.8 15 2
133.2 15 3
444 15 10
666 15 15
888 15 20
14.8 20 0.25
29.6 20 0.5
59.2 20 1

118.4 20 2
177.6 20 3
592 20 10
888 20 15

1184 20 20
22.2 30 0.25
44.4 30 0.5
88.8 30 1

177.6 30 2
266.4 30 3
888 30 10

1332 30 15
1776 30 20

29.6 40 0.25
59.2 40 0.5

118.4 40 1
236.8 40 2
355.2 40 3

1184 40 10
1776 40 15
2368 40 20

(a) Fit a multiple linear regression model to these data with
rads as the response.

(b) Estimate and the standard errors of the regression co-
efficients.

(c) Use the model to predict rads when the current is 15 mil-
liamps and the exposure time is 5 seconds.

12-12. An article in Cancer Epidemiology, Biomarkers and
Prevention (1996, Vol. 5, pp. 849–852) conducted a pilot
study to assess the use of toenail arsenic concentrations as an
indicator of ingestion of arsenic-containing water. Twenty-one
participants were interviewed regarding use of their private
(unregulated) wells for drinking and cooking, and each pro-
vided a sample of water and toenail clippings. The table below
showed the data of age (years), sex of person (1 � male, 2 �
female), proportion of times household well used for drinking
(1 1/4, 2 � 1/4, 3 � 1/2, 4 � 3/4, 5 3/4), proportion of
times household well used for cooking (1 1/4, 2 � 1/4, 3 �
1/2, 4 � 3/4, 5 3/4), arsenic in water (ppm), and arsenic in
toenails (ppm) respectively.

�



�


�2

(a) Fit a multiple linear regression model using arsenic con-
centration in nails as the response and age, drink use, cook
use, and arsenic in the water as the regressors.

(b) Estimate and the standard errors of the regression co-
efficients.

(c) Use the model to predict the arsenic in nails when the age
is 30, the drink use is category 5, the cook use is category
5, and arsenic in the water is 0.135 ppm.

12-13. In an article in IEEE Transactions on Instrumentation
and Measurement (2001, Vol. 50, pp. 2033–2040) powdered
mixtures of coal and limestone were analyzed for permittivity.
The errors in the density measurement was the response.

�2

Drink Cook Arsenic Arsenic
Age Sex Use Use Water Nails

44 2 5 5 0.00087 0.119
45 2 4 5 0.00021 0.118
44 1 5 5 0 0.099
66 2 3 5 0.00115 0.118
37 1 2 5 0 0.277
45 2 5 5 0 0.358
47 1 5 5 0.00013 0.08
38 2 4 5 0.00069 0.158
41 2 3 2 0.00039 0.31
49 2 4 5 0 0.105
72 2 5 5 0 0.073
45 2 1 5 0.046 0.832
53 1 5 5 0.0194 0.517
86 2 5 5 0.137 2.252
8 2 5 5 0.0214 0.851

32 2 5 5 0.0175 0.269
44 1 5 5 0.0764 0.433
63 2 5 5 0 0.141
42 1 5 5 0.0165 0.275
62 1 5 5 0.00012 0.135
36 1 5 5 0.0041 0.175

Density Dielectric Constant Loss Factor

0.749 2.05 0.016
0.798 2.15 0.02
0.849 2.25 0.022
0.877 2.3 0.023
0.929 2.4 0.026
0.963 2.47 0.028
0.997 2.54 0.031
1.046 2.64 0.034
1.133 2.85 0.039
1.17 2.94 0.042
1.215 3.05 0.045 

JWCL232_c12_449-512.qxd  1/15/10  10:07 PM  Page 465
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Table 12-6

TEMP SOAKTIME SOAKPCT DIFFTIME DIFFPCT PITCH

1650 0.58 1.10 0.25 0.90 0.013

1650 0.66 1.10 0.33 0.90 0.016

1650 0.66 1.10 0.33 0.90 0.015

1650 0.66 1.10 0.33 0.95 0.016

1600 0.66 1.15 0.33 1.00 0.015

1600 0.66 1.15 0.33 1.00 0.016

1650 1.00 1.10 0.50 0.80 0.014

1650 1.17 1.10 0.58 0.80 0.021

1650 1.17 1.10 0.58 0.80 0.018

1650 1.17 1.10 0.58 0.80 0.019

1650 1.17 1.10 0.58 0.90 0.021

1650 1.17 1.10 0.58 0.90 0.019

1650 1.17 1.15 0.58 0.90 0.021

1650 1.20 1.15 1.10 0.80 0.025

1650 2.00 1.15 1.00 0.80 0.025

1650 2.00 1.10 1.10 0.80 0.026

1650 2.20 1.10 1.10 0.80 0.024

1650 2.20 1.10 1.10 0.80 0.025

1650 2.20 1.15 1.10 0.80 0.024

1650 2.20 1.10 1.10 0.90 0.025

1650 2.20 1.10 1.10 0.90 0.027

1650 2.20 1.10 1.50 0.90 0.026

1650 3.00 1.15 1.50 0.80 0.029

1650 3.00 1.10 1.50 0.70 0.030

1650 3.00 1.10 1.50 0.75 0.028

1650 3.00 1.15 1.66 0.85 0.032

1650 3.33 1.10 1.50 0.80 0.033

1700 4.00 1.10 1.50 0.70 0.039

1650 4.00 1.10 1.50 0.70 0.040

1650 4.00 1.15 1.50 0.85 0.035

1700 12.50 1.00 1.50 0.70 0.056

1700 18.50 1.00 1.50 0.70 0.068

(a) Fit a multiple linear regression model to these data with
the density as the response.

(b) Estimate and the standard errors of the regression
coefficients.

(c) Use the model to predict the density when the dielectric
constant is 2.5 and the loss factor is 0.03.

12-14. An article in Biotechnology Progress (2001, Vol.
17, pp. 366–368) reported on an experiment to investigate

�2

and optimize nisin extraction in aqueous two-phase systems
(ATPS). The nisin recovery was the dependent variable ( y).
The two regressor variables were concentration (%) of PEG
4000 (denoted as and concentration (%) of (de-
noted as 
(a) Fit a multiple linear regression model to these data.
(b) Estimate and the standard errors of the regression

coefficients.
�2

x22.
Na2SO4x12
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12-17. Table 12-7 presents quarterback ratings for the 2008
National Football League season (source: The Sports Network).
(a) Fit a multiple regression model to relate the quarterback

rating to the percentage of completions, the percentage of
TDs, and the percentage of interceptions.

(b) Estimate 
(c) What are the standard errors of the regression coefficients?
(d) Use the model to predict the rating when the percentage of

completions is 60%, the percentage of TDs is 4%, and the
percentage of interceptions is 3%.

12-18. Table 12-8 presents statistics for the National Hockey
League teams from the 2008–2009 season (source: The Sports
Network). Fit a multiple linear regression model that relates
Wins to the variables GF through FG. Because teams play 82
games but such a model does not
help build a better team. Estimate and find the standard
errors of the regression coefficients for your model.

12-19. A study was performed on wear of a bearing y and its
relationship to x1 � oil viscosity and x2 � load. The following
data were obtained.

�2
W � 82 � L � T � OTL,

�2.

y

13 11 62.8739
15 11 76.1328
13 13 87.4667
15 13 102.3236
14 12 76.1872
14 12 77.5287
14 12 76.7824
14 12 77.4381
14 12 78.7417

x2x1

(c) Use the model to predict the nisin recovery when
and 

12-15. An article in Optical Engineering [“Operating
Curve Extraction of a Correlator’s Filter” (2004, Vol. 43, pp.
2775–2779)] reported on use of an optical correlator to per-
form an experiment by varying brightness and contrast. The
resulting modulation is characterized by the useful range of
gray levels. The data are shown below:

Brightness (%): 54 61 65 100 100 100 50 57 54
Contrast (%): 56 80 70 50 65 80 25 35 26
Useful range (ng): 96 50 50 112 96 80 155 144 255

(a) Fit a multiple linear regression model to these data.
(b) Estimate 
(c) Compute the standard errors of the regression coefficients.
(d) Predict the useful range when brightness � 80 and

contrast � 75.

12-16. An article in Technometrics (1974, Vol. 16, pp.
523–531) considered the following stack-loss data from a
plant oxidizing ammonia to nitric acid. Twenty-one daily re-
sponses of stack loss y (the amount of ammonia escaping)
were measured with air flow temperature , and acid con-
centration 

Stack loss y � 42, 37, 37, 28, 18, 18, 19, 20, 15, 14, 14, 13,
11, 12, 8, 7, 8, 8, 9, 15, 15

x1 � 80, 80, 75, 62, 62, 62, 62, 62, 58, 58, 58, 58, 58, 58, 50,
50, 50, 50, 50, 56, 70

x2 � 27, 27, 25, 24, 22, 23, 24, 24, 23, 18, 18, 17, 18, 19, 18,
18, 19, 19, 20, 20, 20

x3 � 89, 88, 90, 87, 87, 87, 93, 93, 87, 80, 89, 88, 82, 93, 89,
86, 72, 79, 80, 82, 91

(a) Fit a linear regression model relating the results of the
stack loss to the three regressor varilables.

(b) Estimate 
(c) Find the standard error 
(d) Use the model in part (a) to predict stack loss when 

, and x3 � 85.x2 � 26
x1 � 60,

se1�̂j2.
�2.

x3.
x2x1,

�2.

x2 � 12.5.x1 � 14.5

y x1 x2

293 1.6 851

230 15.5 816

172 22.0 1058

91 43.0 1201

113 33.0 1357

125 40.0 1115

(a) Fit a multiple linear regression model to these data.
(b) Estimate �2 and the standard errors of the regression 

coefficients.
(c) Use the model to predict wear when x1 � 25 and x2 � 1000.
(d) Fit a multiple linear regression model with an interaction

term to these data.
(e) Estimate �2 and se( ) for this new model. How did these

quantities change? Does this tell you anything about the
value of adding the interaction term to the model?

(f) Use the model in (d) to predict when x1 � 25 and x2 �
1000. Compare this prediction with the predicted value
from part (c) above.

12-20. Consider the linear regression model

where and 
(a) Write out the least squares normal equations for this model.
(b) Verify that the least squares estimate of the intercept in

this model is 
(c) Suppose that we use as the response variable in the

model above. What effect will this have on the least
squares estimate of the intercept?

yi � y
�̂¿0 � g  yi�n � y.

x2 �g  
xi2�n.x1 � g

 
xi1�n

Yi � �¿0 � �11xi1 � x1 2 � �2 
1xi2 � x22 � �i

�j
ˆ
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Table 12-7 Quarterback Ratings for the 2008 National Football League Season

Pct Yds per Pct Pct Rating
Player Team Att Comp Comp Yds Att TD TD Lng Int Int Pts

Philip Rivers SD 478 312 65.3 4,009 8.39 34 7.1 67 11 2.3 105.5

Chad Pennington MIA 476 321 67.4 3,653 7.67 19 4.0 80 7 1.5 97.4

Kurt Warner ARI 598 401 67.1 4,583 7.66 30 5.0 79 14 2.3 96.9

Drew Brees NO 635 413 65 5,069 7.98 34 5.4 84 17 2.7 96.2

Peyton Manning IND 555 371 66.8 4,002 7.21 27 4.9 75 12 2.2 95

Aaron Rodgers GB 536 341 63.6 4,038 7.53 28 5.2 71 13 2.4 93.8

Matt Schaub HOU 380 251 66.1 3,043 8.01 15 3.9 65 10 2.6 92.7

Tony Romo DAL 450 276 61.3 3,448 7.66 26 5.8 75 14 3.1 91.4

Jeff Garcia TB 376 244 64.9 2,712 7.21 12 3.2 71 6 1.6 90.2

Matt Cassel NE 516 327 63.4 3,693 7.16 21 4.1 76 11 2.1 89.4

Matt Ryan ATL 434 265 61.1 3,440 7.93 16 3.7 70 11 2.5 87.7

Shaun Hill SF 288 181 62.8 2,046 7.10 13 4.5 48 8 2.8 87.5

Seneca Wallace SEA 242 141 58.3 1,532 6.33 11 4.5 90 3 1.2 87

Eli Manning NYG 479 289 60.3 3,238 6.76 21 4.4 48 10 2.1 86.4

Donovan McNabb PHI 571 345 60.4 3,916 6.86 23 4.0 90 11 1.9 86.4

Jay Cutler DEN 616 384 62.3 4,526 7.35 25 4.1 93 18 2.9 86

Trent Edwards BUF 374 245 65.5 2,699 7.22 11 2.9 65 10 2.7 85.4

Jake Delhomme CAR 414 246 59.4 3,288 7.94 15 3.6 65 12 2.9 84.7

Jason Campbell WAS 506 315 62.3 3,245 6.41 13 2.6 67 6 1.2 84.3

David Garrard JAC 535 335 62.6 3,620 6.77 15 2.8 41 13 2.4 81.7

Brett Favre NYJ 522 343 65.7 3,472 6.65 22 4.2 56 22 4.2 81

Joe Flacco BAL 428 257 60 2,971 6.94 14 3.3 70 12 2.8 80.3

Kerry Collins TEN 415 242 58.3 2,676 6.45 12 2.9 56 7 1.7 80.2

Ben Roethlisberger PIT 469 281 59.9 3,301 7.04 17 3.6 65 15 3.2 80.1

Kyle Orton CHI 465 272 58.5 2,972 6.39 18 3.9 65 12 2.6 79.6

JaMarcus Russell OAK 368 198 53.8 2,423 6.58 13 3.5 84 8 2.2 77.1

Tyler Thigpen KC 420 230 54.8 2,608 6.21 18 4.3 75 12 2.9 76

Gus Frerotte MIN 301 178 59.1 2,157 7.17 12 4.0 99 15 5.0 73.7

Dan Orlovsky DET 255 143 56.1 1,616 6.34 8 3.1 96 8 3.1 72.6

Marc Bulger STL 440 251 57 2,720 6.18 11 2.5 80 13 3.0 71.4

Ryan Fitzpatrick CIN 372 221 59.4 1,905 5.12 8 2.2 79 9 2.4 70

Derek Anderson CLE 283 142 50.2 1,615 5.71 9 3.2 70 8 2.8 66.5

Att Attempts (number of pass attempts)
Comp Completed passes
Pct Comp Percentage of completed passes
Yds Yards gained passing
Yds per Att Yards gained per pass attempt
TD Number of touchdown passes
Pct TD Percentage of attempts that are touchdowns
Long Longest pass completion
Int Number of interceptions
Pct Int Percentage of attempts that are interceptions
Rating Pts Rating points
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Table 12-8 Team Statistics for the 2008–2009 National Hockey League Season

Team W L OTL PTS GF GA ADV PPGF PCTG PEN BMI AVG SHT PPGA PKPCT SHGF SHGA FG

Anaheim 42 33 7 91 238 235 309 73 23.6 1418 8 17.4 385 78 79.7 6 6 43
Atlanta 35 41 6 76 250 279 357 69 19.3 1244 12 15.3 366 88 76 13 9 39
Boston 53 19 10 116 270 190 313 74 23.6 1016 12 12.5 306 54 82.4 8 7 47
Buffalo 41 32 9 91 242 229 358 75 21 1105 16 13.7 336 61 81.8 7 4 44
Carolina 45 30 7 97 236 221 374 70 18.7 786 16 9.8 301 59 80.4 8 7 39
Columbus 41 31 10 92 220 223 322 41 12.7 1207 20 15 346 62 82.1 8 9 41
Calgary 46 30 6 98 251 246 358 61 17 1281 18 15.8 349 58 83.4 6 13 37
Chicago 46 24 12 104 260 209 363 70 19.3 1129 28 14.1 330 64 80.6 10 5 43
Colorado 32 45 5 69 190 253 318 50 15.7 1044 18 13 318 64 79.9 4 5 31
Dallas 36 35 11 83 224 251 351 54 15.4 1134 10 14 327 70 78.6 2 2 38
Detroit 51 21 10 112 289 240 353 90 25.5 810 14 10 327 71 78.3 6 4 46
Edmonton 38 35 9 85 228 244 354 60 17 1227 20 15.2 338 76 77.5 3 8 39
Florida 41 30 11 93 231 223 308 51 16.6 884 16 11 311 54 82.6 7 6 39
Los Angeles 34 37 11 79 202 226 360 69 19.2 1191 16 14.7 362 62 82.9 4 7 39
Minnesota 40 33 9 89 214 197 328 66 20.1 869 20 10.8 291 36 87.6 9 6 39
Montreal 41 30 11 93 242 240 374 72 19.2 1223 6 15 370 65 82.4 10 10 38
New Jersey 51 27 4 106 238 207 307 58 18.9 1038 20 12.9 324 65 79.9 12 3 44
Nashville 40 34 8 88 207 228 318 50 15.7 982 12 12.1 338 59 82.5 9 8 41
NI Islanders 26 47 9 61 198 274 320 54 16.9 1198 18 14.8 361 73 79.8 12 5 37
NY Rangers 43 30 9 95 200 212 346 48 13.9 1175 24 14.6 329 40 87.8 9 13 42
Ottawa 36 35 11 83 213 231 339 66 19.5 1084 14 13.4 346 64 81.5 8 5 46
Philadelphia 44 27 11 99 260 232 316 71 22.5 1408 26 17.5 393 67 83 16 1 43
Phoenix 36 39 7 79 205 249 344 50 14.5 1074 18 13.3 293 68 76.8 5 4 36
Pittsburgh 45 28 9 99 258 233 360 62 17.2 1106 8 13.6 347 60 82.7 7 11 46
San Jose 53 18 11 117 251 199 360 87 24.2 1037 16 12.8 306 51 83.3 12 10 46
St. Louis 41 31 10 92 227 227 351 72 20.5 1226 22 15.2 357 58 83.8 10 8 35
Tampa Bay 24 40 18 66 207 269 343 61 17.8 1280 26 15.9 405 89 78 4 8 34
Toronto 34 35 13 81 244 286 330 62 18.8 1113 12 13.7 308 78 74.7 6 7 40
Vancouver 45 27 10 100 243 213 357 67 18.8 1323 28 16.5 371 69 81.4 7 5 47

Washington 50 24 8 108 268 240 337 85 25.2 1021 20 12.7 387 75 80.6 7 9 45

W Wins
L Losses during regular time
OTL Overtime losses
PTS Points. Two points for winning a game, one point for

a tie or losing in overtime, zero points for losing in
regular time.

GF Goals for
GA Goals against
ADV Total advantages. Power play opportunities.
PPGF Power-play goals for. Goals scored while on power

play.
PCTG Power play percentage. Power-play goals divided by

total advantages.

PEN Total penalty minutes including bench minutes
BMI Total bench minor minutes
AVG Average penalty minutes per game
SHT Total times short-handed. Measures opponent

opportunities.
PPGA Power-play goals against
PKPCT Penalty killing percentage. Measures a team’s

ability to prevent goals while its opponent is on a
power play. Opponent opportunities minus power
play goals divided by opponent’s opportunities.

SHGF Short-handed goals for
SHGA Short-handed goals against
FG Games scored first
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION

In multiple linear regression problems, certain tests of hypotheses about the model parameters
are useful in measuring model adequacy. In this section, we describe several important
hypothesis-testing procedures. As in the simple linear regression case, hypothesis testing
requires that the error terms �i in the regression model are normally and independently dis-
tributed with mean zero and variance �2.

12-2.1 Test for Significance of Regression

The test for significance of regression is a test to determine whether a linear relationship exists
between the response variable y and a subset of the regressor variables x1, x2, p , xk. The
appropriate hypotheses are

(12-18) H1: �j Z 0 for at least one j

 H0: �1 � �2 � #
 
#
 
# � �k � 0

Rejection of implies that at least one of the regressor variables
x1, x2, p , xk contributes significantly to the model.

The test for significance of regression is a generalization of the procedure used in simple
linear regression. The total sum of squares SST is partitioned into a sum of squares due to the
model or to regression and a sum of squares due to error, say,

SST � SSR � SSE

Now if is true, is a chi-square random variable with k de-
grees of freedom. Note that the number of degrees of freedom for this chi-square random vari-
able is equal to the number of regressor variables in the model. We can also show that the
SSE��2 is a chi-square random variable with n � p degrees of freedom, and that SSE and SSR

are independent. The test statistic for isH0: �1 � �2 � p � �k � 0

SSR��2H0: �1 � �2 � p � �k � 0

H0: �1 � �2 � p � �k � 0

(12-19)F0 �
SSR�k

SSE� 1n � p2
�

MSR

MSE

We should reject H0 if the computed value of the test statistic in Equation 12-19,  f0, is greater than
f�,k,n�p. The procedure is usually summarized in an analysis of variance table such as Table 12-9.

A computational formula for SSR may be found easily. Now since 
we may rewrite Equation 12-19 as

SSE � y¿y �

aa
n

i�1
yib

2

n �≥ �̂¿X¿y �

aa
n

i�1
yib

2

n
¥

1g n
i�1 yi2

2�n,1g n
i�1 yi2

2�n � y¿y �
SST �gn

i�1 y
2
i �

Hypotheses
for ANOVA Test

Test Statistic
for ANOVA
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or

SSE � SST � SSR

Therefore, the regression sum of squares is

(12-21)SSR � �̂¿X¿y �

aa
n

i�1
 yib

2

n

Most multiple regression computer programs provide the test for significance of regression
in their output display. The middle portion of Table 12-4 is the Minitab output for this example.
Compare Tables 12-4 and 12-10 and note their equivalence apart from rounding. The P-value is
rounded to zero in the computer output.

Table 12-9 Analysis of Variance for Testing Significance of Regression in Multiple Regression

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Regression SSR k MSR MSR�MSE

Error or residual SSE n � p MSE

Total SST n � 1

EXAMPLE 12-3 Wire Bond Strength ANOVA
We will test for significance of regression (with � � 0.05) us-
ing the wire bond pull strength data from Example 12-1. The
total sum of squares is

The regression or model sum of squares is computed from
Equation 12-20 as follows:

� 5990.7712

 SSR � �̂¿X¿y �

aa
n

i�1
yib

2

n  � 27,063.3581 �
1725.8222

25

� 6105.9447

 SST � y¿y �

aa
n

i�1
yib

2

n  � 27,178.5316 �
1725.8222

25

and by subtraction

The analysis of variance is shown in Table 12-10. To test
we calculate the statistic

Since f0 � f0.05,2,22 � 3.44 (or since the P-value is consider-
ably smaller than � = 0.05), we reject the null hypothesis and
conclude that pull strength is linearly related to either wire
length or die height, or both. 

Practical Interpretation: Rejection of H0 does not neces-
sarily imply that the relationship found is an appropriate
model for predicting pull strength as a function of wire length
and die height. Further tests of model adequacy are required
before we can be comfortable using this model in practice.

f0 �
MSR

MSE
�

2995.3856

5.2352
� 572.17

H0: �1 � �2 � 0,

� y¿y � �̂¿X¿y � 115.1716 SSE � SST � SSR

Table 12-10 Test for Significance of Regression for Example 12-3

Source of Degrees of 
Variation Sum of Squares Freedom Mean Square f0 P-value

Regression 5990.7712 2 2995.3856 572.17 1.08E-19
Error or residual 115.1735 22 5.2352
Total 6105.9447 24
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R2 and Adjusted R2

We may also use the coefficient of multiple determination R2 as a global statistic to assess
the fit of the model. Computationally,

(12-22)

For the wire bond pull strength data, we find that R2 � SSR�SST � 5990.7712�6105.9447 �
0.9811. Thus the model accounts for about 98% of the variability in the pull strength response
(refer to the Minitab output in Table 12-4). The R2 statistic is somewhat problematic as a
measure of the quality of the fit for a multiple regression model because it never decreases
when a variable is added to a model.

To illustrate, consider the model fit to the wire bond pull strength data in Example 11-8.
This was a simple linear regression model with x1 � wire length as the regressor. The value of
R2 for this model is R2 � 0.9640. Therefore, adding x2 � die height to the model increases R2

by 0.9811 � 0.9640 � 0.0171, a very small amount. Since R2 can never decrease when a
regressor is added, it can be difficult to judge whether the increase is telling us anything useful
about the new regressor. It is particularly hard to interpret a small increase, such as observed
in the pull strength data.

Many regression users prefer to use an adjusted R2 statistic:

R2 �
SSR

SST
� 1 �

SSE

SST

Because is the error or residual mean square and is a constant, R2
adj

will only increase when a variable is added to the model if the new variable reduces the error
mean square. Note that for the multiple regression model for the pull strength data R2

adj �
0.979 (see the Minitab output in Table 12-4), whereas in Example 11-8 the adjusted R2 for the
one-variable model is R2

adj � 0.962. Therefore, we would conclude that adding x2 � die
height to the model does result in a meaningful reduction in unexplained variability in the
response.

The adjusted R2 statistic essentially penalizes the analyst for adding terms to the
model. It is an easy way to guard against overfitting, that is, including regressors that are
not really useful. Consequently, it is very useful in comparing and evaluating competing
regression models. We will use R2

adj for this when we discuss variable selection in regres-
sion in Section 12-6.3.

12-2.2 Tests on Individual Regression Coefficients 
and Subsets of Coefficients

We are frequently interested in testing hypotheses on the individual regression coefficients.
Such tests would be useful in determining the potential value of each of the regressor variables
in the regression model. For example, the model might be more effective with the inclusion of
additional variables or perhaps with the deletion of one or more of the regressors presently in
the model.

SST� 1n � 12SSE� 1n � p2

(12-23)R2
adj � 1 �

SSE� 1n � p2

SST� 1n � 12

Adjusted
R2
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The hypothesis to test if an individual regression coefficient, say �j equals a value �j0 is

where Cjj is the diagonal element of corresponding to Notice that the denominator 
of Equation 12-24 is the standard error of the regression coefficient . The null hypothesis H0: 

�j � �j0 is rejected if This is called a partial or marginal test because the 

regression coefficient depends on all the other regressor variables xi(i � j) that are in the
model. More will be said about this in the following example.

An important special case of the previous hypothesis occurs for �j0 � 0. If H0: �j � 0 is
not rejected, this indicates that the regressor xj can be deleted from the model. Adding a vari-
able to a regression model always causes the sum of squares for regression to increase and the
error sum of squares to decrease (this is why R2 always increases when a variable is added).
We must decide whether the increase in the regression sum of squares is large enough to jus-
tify using the additional variable in the model. Furthermore, adding an unimportant variable
to the model can actually increase the error mean square, indicating that adding such a vari-
able has actually made the model a poorer fit to the data (this is why R2

adj is a better measure
of global model fit then the ordinary R2).

�̂j

0 t0 0 � t��2,n�p.

�̂j

�̂j.1X¿X2�1

(12-24)H1: �j � �j0

H0: �j � �j0

(12-25)T0 �
�̂j � �j0

2�2Cjj

�
�̂j � �j0

se1�̂j2

EXAMPLE 12-4 Wire Bond Strength Coefficient Test
Consider the wire bond pull strength data, and suppose that we
want to test the hypothesis that the regression coefficient for x2

(die height) is zero. The hypotheses are

The main diagonal element of the matrix correspon-
ding to is C22 � 0.0000015, so the t-statistic in Equation
12-25 is

t0 �
�̂2

2�̂2C22

�
0.01253

215.23522 10.00000152
� 4.477

�̂2

1X¿X2�1

H1: �2 � 0

H0: �2 � 0

Note that we have used the estimate of �2 reported to four dec-
imal places in Table 12-10. Since t0.025,22 � 2.074, we reject
H0: �2 � 0 and conclude that the variable x2 (die height) con-
tributes significantly to the model. We could also have used a 
P-value to draw conclusions. The P-value for t0 � 4.477 is 
P � 0.0002, so with � = 0.05 we would reject the null hypothesis. 

Practical Interpretation: Note that this test measures the
marginal or partial contribution of x2 given that x1 is in the
model. That is, the t-test measures the contribution of adding
the variable x2 � die height to a model that already contains x1

� wire length. Table 12-4 shows the value of the t-test com-
puted by Minitab. The Minitab t-test statistic is reported to two
decimal places. Note that the computer produces a t-test for
each regression coefficient in the model. These t-tests indicate
that both regressors contribute to the model.

The test statistic for this hypothesis is
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474 CHAPTER 12 MULTIPLE LINEAR REGRESSION

There is another way to test the contribution of an individual regressor variable to the
model. This approach determines the increase in the regression sum of squares obtained by
adding a variable xj (say) to the model, given that other variables xi(i � j) are already included
in the regression equation.

The procedure used to do this is called the general regression significance test, or the
extra sum of squares method. This procedure can also be used to investigate the contribution
of a subset of the regressor variables to the model. Consider the regression model with k
regressor variables

(12-26)

where y is (n 
 1), X is (n 
 p), � is (p 
 1), � is (n 
 1), and p � k � 1. We would like to de-
termine if the subset of regressor variables x1, x2, . . . , xr (r � k) as a whole contributes signifi-
cantly to the regression model. Let the vector of regression coefficients be partitioned as follows:

(12-27)

where �1 is (r 
 1) and �2 is [(p � r) 
 1]. We wish to test the hypotheses

� � c
�1

�2
d

y � X� � �

Hypotheses
for General

Regression Test
(12-28)H1: �1 � 0

H0: �1 � 0

EXAMPLE 12-5 Wire Bond Strength One-Sided Coefficient Test
There is an interest in the effect of die height on strength. This
can be evaluated by the magnitude of the coefficient for die
height. To conclude that the coefficient for die height exceeds
0.01 the hypotheses become

For such a test, computer software can complete much of the
hard work. We only need to assemble the pieces. From the
Minitab output in Table 12-4, and the standard�̂2 � 0.012528

H1: �2 � 0.01H0: �2 � 0.01

error of Therefore the t-statistic is

with 22 degrees of freedom (error degrees of freedom). From
Table IV in Appendix A, and 
Therefore, the P-value can be bounded as 

One cannot conclude that the coefficient exceeds 0.01
at common levels of significance.
� 0.25.

0.1 � P-value
t0.1, 22 � 1.321.t0.25, 22 � 0.686

t0 �
0.012528 � 0.01

0.002798
� 0.9035

�̂2 � 0.002798.

where 0 denotes a vector of zeroes. The model may be written as

(12-29)

where X1 represents the columns of X associated with �1 and X2 represents the columns of X
associated with �2.

For the full model (including both �1 and �2), we know that In
addition, the regression sum of squares for all variables including the intercept is

and

MSE �
y¿y � �̂X¿y

n � p

SSR1�2 � �̂¿X¿y  1   p � k � 1 degrees of freedom2

�̂ � 1X¿X2�1 X¿y.

y � X� � � � X1�1 � X2�2 � �
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 475

SSR(�) is called the regression sum of squares due to �. To find the contribution of the terms
in �1 to the regression, fit the model assuming the null hypothesis H0: �1 � 0 to be true. The
reduced model is found from Equation 12-29 as

(12-30)

The least squares estimate of �2 is and

(12-31)

The regression sum of squares due to �1 given that �2 is already in the model is

(12-32)

This sum of squares has r degrees of freedom. It is sometimes called the extra sum of squares
due to �1. Note that is the increase in the regression sum of squares due to
including the variables x1, x2, p , xr in the model. Now is independent of MSE, and
the null hypothesis �1 � 0 may be tested by the statistic.

SSR1�1 0�22
SSR1�1 0�22

SSR1�1 0�22 � SSR1�2 � SSR1�22

SSR1�22 � �̂¿2X¿2y  1p � r degrees of freedom2

�̂2 � 1X¿2X22
�1X¿2y,

y � X2�2 � �

(12-33)F0 �
SSR1�1 | �22�r

MSE

F Statistic 
for General

Regression Test

If the computed value of the test statistic f0 � f�,r,n�p, we reject H0, concluding that at least one
of the parameters in �1 is not zero and, consequently, at least one of the variables x1, x2, p , xr

in X1 contributes significantly to the regression model. Some authors call the test in Equation
12-33 a partial F-test.

The partial F-test is very useful. We can use it to measure the contribution of each indi-
vidual regressor xj as if it were the last variable added to the model by computing

This is the increase in the regression sum of squares due to adding xj to a model that already
includes x1, . . . , xj�1, xj�1, . . . , xk. The partial F-test is a more general procedure in that we
can measure the effect of sets of variables. In Section 12-6.3 we show how the partial F-test
plays a major role in model building—that is, in searching for the best set of regressor vari-
ables to use in the model.

SSR1�j 0�0, �1, p , �j�1, �j�1, p , �k2,  j � 1, 2, p , k

EXAMPLE 12-6 Wire Bond Strength General Regression Test
Consider the wire bond pull-strength data in Example 12-1. We
will investigate the contribution of two new variables, and 
to the model using the partial F-test approach. The new variables
are explained at the end of this example. That is, we wish to test

or �4 � 0H1 : �3 � 0H0  : �3 � �4 � 0

x4,x3

To test this hypothesis, we need the extra sum of squares due
to and or

� SSR 
1�4, �3, �2, �1 0�02 � SSR 

1�2, �1 0�02

� SSR 
1�2, �1, �02 SSR 

1�4, �3 0�2, �1, �02 � SSR 
1�4, �3, �2, �1, �02

�4�3
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476 CHAPTER 12 MULTIPLE LINEAR REGRESSION

If a partial F-test is applied to a single variable, it is equivalent to a t-test. To see this, con-
sider the Minitab regression output for the wire bond pull strength in Table 12-4. Just below
the analysis of variance summary in this table, the quantity labeled ” ‘SeqSS”’ shows the sum

In Example 12-3 we calculated

(two

degrees of freedom)

Also, Table 12-4 shows the Minitab output for the model with
only and as predictors. In the analysis of variance table,
we can see that and this agrees with our calcu-
lation. In practice, the computer output would be used to ob-
tain this sum of squares.

If we fit the model 
we can use the same matrix formula. Alternatively, we can

look at from computer output for this model. The analysis
of variance table for this model is shown in Table 12-11 and we
see that

6024.0 (four degrees of freedom)

Therefore,

(two 
degrees of freedom)

SSR 1�4, �3 0�2, �1, �02 � 6024.0 � 5990.8 � 33.2

SSR 1�4, �3, �2, �1 0�02 �

SSR

�4x4,
Y � �0 � �1x1 � �2x2 � �3x3 �

SSR � 5990.8
x2x1

SSR 1�2, �1 0�022 � �¿X�y �

aa
n

i�1
yib

2

n � 5990.7712

This is the increase in the regression sum of squares due to
adding and to a model already containing and To
test calculate the test statistic

Note that from the full model using and 
is used in the denominator of the test statistic. Because

we reject and conclude that at least one
of the new variables contributes significantly to the model.
Further analysis and tests will be needed to refine the model
and determine if one or both of and are important.

The mystery of the new variables can now be explained.
These are quadratic powers of the original predictors wire
length and wire height. That is, and A test for
quadratic terms is a common use of partial F-tests. With this
information and the original data for and you can use
computer software to reproduce these calculations. Multiple
regression allows models to be extended in such a simple man-
ner that the real meaning of and did not even enter into
the test procedure. Polynomial models such as this are dis-
cussed further in Section 12-6.

x4x3

x2,x1

x4 � x2
2.x3 � x2

1

x4x3

H0f0.05, 2, 20 � 3.49,

x4x3x2,x1,MSE

f0 �
SSR 
1�4, �3 0�2, �1, �02�2

MSE
�

33.2�2
4.1

� 4.05

H0,
x2.x1x4x3

Table 12-11 Regression Analysis: y versus x1, x2, x3, x4

The regression equation is y � 5.00 � 1.90 x1 + 0.0151 x2 + 0.0460 x3 � 0.000008 x4

Predictor Coef SE Coef T P
Constant 4.996 1.655 3.02 0.007
x1 1.9049 0.3126 6.09 0.000
x2 0.01513 0.01051 1.44 0.165
x3 0.04595 0.01666 2.76 0.012
x4 0.00001641 0.646

S � 2.02474 R�Sq � 98.7% R�Sq (adj) � 98.4%

Analysis of Variance

Source DF SS MS F P
Regression 4 6024.0 1506.0 367.35 0.000
Residual Error 20 82.0 4.1
Total 24 6105.9

Source DF Seq SS
x1 1 5885.9
x2 1 104.9
x3 1 32.3
x4 1 0.9 

�0.47�0.00000766
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12-2 HYPOTHESIS TESTS IN MULTIPLE LINEAR REGRESSION 477

of squares obtained by fitting alone (5885.9) and the sum of squares obtained by fitting 
after (104.9). In out notation, these are referred to as and respec-
tively. Therefore, to test , the partial F-test is

where is the mean square for residual in the computer output in Table 12.4. This statistic
should be compared to an F-distribution with 1 and 22 degrees of freedom in the numerator
and denominator, respectively. From Table 12-4, the t-test for the same hypothesis is 
Note that except for round-off error. Furthermore, the square of a
t-random variable with degrees of freedom is an F-random variable with one and degrees of
freedom. Consequently, the t-test provides an equivalent method to test a single variable for
contribution to a model. Because the t-test is typically provided by computer output, it is the
preferred method to test a single variable.

��

t2
0 � 4.482 � 20.07 � f0,

t0 � 4.48.

MSE

f0 �
SSR 
1�2 0�1, �02�1

MSE
�

104.92
5.24

� 20.2

H1 : �2 � 0H0 : �2 � 0
SSR 1�2, �1 0�02,SSR 1�1 0�02x1

x2x1

EXERCISES FOR SECTION 12-2

12-21. Consider the computer output below.

The regression equation is
Y � 254 � 2.77 x1 � 3.58 x2

Predictor Coef SE Coef T P
Constant 253.810 4.781 ? ?
x1 2.7738 0.1846 15.02 ?
x2 �3.5753 0.1526 ? ?

S � 5.05756 R-Sq � ? R-Sq (adj) � 98.4%

Analysis of Variance

Source DF SS MS F P
Regression 2 22784 11392 ? ?
Residual Error ? ? ?
Total 14 23091

(a) Fill in the missing quantities. You may use bounds for the
P-values.

(b) What conclusions can you draw about the significance of
regression?

(c) What conclusions can you draw about the contributions of
the individual regressors to the model?

12-22. You have fit a regression model with two regressors
to a data set that has 20 observations. The total sum of squares
is 1000 and the model sum of squares is 750.
(a) What is the value of R2 for this model?
(b) What is the adjusted R2 for this model?
(c) What is the value of the F-statistic for testing the signifi-

cance of regression? What conclusions would you draw
about this model if 	 � 0.05? What if 	 � 0.01?

(d) Suppose that you add a third regressor to the model and as
a result the model sum of squares is now 785. Does it seem
to you that adding this factor has improved the model?

12-23. Consider the regression model fit to the soil shear
strength data in Exercise 12-1.

(a) Test for significance of regression using 	 � 0.05. What
is the P-value for this test?

(b) Construct the t-test on each regression coefficient. What
are your conclusions, using 	 � 0.05? Calculate P-values.

12-24. Consider the absorption index data in Exercise 12-2.
The total sum of squares for y is SST � 742.00.
(a) Test for significance of regression using 	 � 0.01. What

is the P-value for this test?
(b) Test the hypothesis H0: �1 � 0 versus H1: �1 � 0 using 

	 � 0.01. What is the P-value for this test?
(c) What conclusion can you draw about the usefulness of x1

as a regressor in this model?

12-25. A regression model Y � �0 � �1x1 � �2x2 � �3x3 �

 has been fit to a sample of n � 25 observations. The calcu-
lated t-ratios are as follows: for �1, t0 �
4.82, for �2, t0 � 8.21 and for �3, t0 � 0.98. 
(a) Find P-values for each of the t-statistics.
(b) Using 	 � 0.05, what conclusions can you draw about

the regressor x3? Does it seem likely that this regressor
contributes significantly to the model?

12-26. Consider the electric power consumption data in
Exercise 12-6.
(a) Test for significance of regression using 	 � 0.05. What

is the P-value for this test?
(b) Use the t-test to assess the contribution of each regressor

to the model. Using 	 � 0.05, what conclusions can you
draw?

12-27. Consider the gasoline mileage data in Exercise 12-7.
(a) Test for significance of regression using 	 � 0.05. What

conclusions can you draw?
(b) Find the t-test statistic for each regressor. Using 	 � 0.05,

what conclusions can you draw? Does each regressor con-
tribute to the model?

�̂j �se 1�̂j2, j � 1, 2, 3

JWCL232_c12_449-512.qxd  1/16/10  10:52 AM  Page 477
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12-28. Consider the wire bond pull strength data in
Exercise 12-8.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test. What conclusions can you
draw?

(b) Calculate the t-test statistic for each regression coeffi-
cient. Using � � 0.05, what conclusions can you draw?
Do all variables contribute to the model?

12-29. Reconsider the semiconductor data in Exercise 12-9.
(a) Test for significance of regression using � � 0.05. What

conclusions can you draw?
(b) Calculate the t-test statistic and P-value for each regres-

sion coefficient. Using � � 0.05, what conclusions can
you draw?

12-30. Consider the regression model fit to the arsenic data
in Exercise 12-12. Use arsenic in nails as the response and age,
drink use, and cook use as the regressors.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

12-31. Consider the regression model fit to the X-ray in-
spection data in Exercise 12-11. Use rads as the response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

12-32. Consider the regression model fit to the nisin extrac-
tion data in Exercise 12-14. Use nisin extraction as the response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

(c) Comment on the effect of a small sample size to the tests
in the previous parts.

12-33. Consider the regression model fit to the grey range
modulation data in Exercise 12-15. Use the useful range as the
response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use 

12-34. Consider the regression model fit to the stack loss
data in Exercise 12-16. Use stack loss as the response.
(a) Test for significance of regression using What

is the P-value for this test?
(b) Construct a t-test on each regression coefficient. What

conclusions can you draw about the variables in this
model? Use � � 0.05.

� � 0.05.

� � 0.05.

� � 0.05.

� � 0.05.

� � 0.05.

� � 0.05.

� � 0.05.

� � 0.05.

� � 0.05.

12-35. Consider the NFL data in Exercise 12-17.
(a) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(b) Conduct the t-test for each regression coefficient. Using 

� � 0.05, what conclusions can you draw about the vari-
ables in this model?

(c) Find the amount by which the regressor x2 (TD percent-
age) increases the regression sum of squares, and conduct
an F-test for H0: �2 � 0 versus H1: �2 � 0 using
� � 0.05. What is the P-value for this test? What conclu-
sions can you draw?

12-36. Exercise 12-10 presents data on heat treating gears.
(a) Test the regression model for significance of regression.

Using � � 0.05, find the P-value for the test and draw
conclusions.

(b) Evaluate the contribution of each regressor to the model
using the t-test with � � 0.05.

(c) Fit a new model to the response PITCH using new
regressors x1 � SOAKTIME 
 SOAKPCT and x2 �
DIFFTIME 
 DIFFPCT.

(d) Test the model in part (c) for significance of regression
using � � 0.05. Also calculate the t-test for each regres-
sor and draw conclusions.

(e) Estimate �2 for the model from part (c) and compare this
to the estimate of �2 for the model in part (a). Which
estimate is smaller? Does this offer any insight regarding
which model might be preferable?

12-37. Consider the bearing wear data in Exercise 12-19.
(a) For the model with no interaction, test for significance of

regression using � � 0.05. What is the P-value for this
test? What are your conclusions?

(b) For the model with no interaction, compute the t-statistics
for each regression coefficient. Using � � 0.05, what con-
clusions can you draw?

(c) For the model with no interaction, use the extra sum of
squares method to investigate the usefulness of adding 
x2 � load to a model that already contains x1 � oil vis-
cosity. Use � � 0.05.

(d) Refit the model with an interaction term. Test for signifi-
cance of regression using � � 0.05.

(e) Use the extra sum of squares method to determine whether
the interaction term contributes significantly to the model.
Use � � 0.05.

(f) Estimate �2 for the interaction model. Compare this to the
estimate of �2 from the model in part (a).

12-38. Data on National Hockey League team performance
was presented in Exercise 12-18.
(a) Test the model from this exercise for significance of

regression using � � 0.05. What conclusions can you draw?
(b) Use the t-test to evaluate the contribution of each

regressor to the model. Does it seem that all regressors are
necessary? Use � � 0.05.

(c) Fit a regression model relating the number of games won to
the number of goals for and the number of power play goals
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for. Does this seem to be a logical choice of regressors, con-
sidering your answer to part (b)? Test this new model for
significance of regression and evaluate the contribution of
each regressor to the model using the t-test. Use � � 0.05.

12-39. Data from a hospital patient satisfaction survey were
presented in Exercise 12-5.
(a) Test the model from this exercise for significance of regression.

What conclusions can you draw if � � 0.05? What if � � 0.01?
(b) Test the contribution of the individual regressors using the 

t-test. Does it seem that all regressors used in the model are
really necessary?

12-40. Data from a hospital patient satisfaction survey were
presented in Exercise 12-5.

(a) Fit a regression model using only the patient age and severity
regressors. Test the model from this exercise for significance
of regression. What conclusions can you draw if � � 0.05?
What if � � 0.01?

(b) Test the contribution of the individual regressors using the
t-test. Does it seem that all regressors used in the model are
really necessary?

(c) Find an estimate of the error variance �2. Compare this esti-
mate of �2 with the estimate obtained from the model con-
taining the third regressor, anxiety. Which estimate is
smaller? Does this tell you anything about which model
might be preferred?

12-3 CONFIDENCE INTERVALS IN MULTIPLE LINEAR REGRESSION

12-3.1 Confidence Intervals on Individual Regression Coefficients

In multiple regression models, it is often useful to construct confidence interval estimates for
the regression coefficients The development of a procedure for obtaining these confi-
dence intervals requires that the errors are normally and independently distributed with
mean zero and variance �2. This is the same assumption required in hypothesis testing.
Therefore, the observations {Yi} are normally and independently distributed with mean �0 �
gk

j�1 �jxij and variance �2. Since the least squares estimator is a linear combination of the
observations, it follows that is normally distributed with mean vector � and covariance 
matrix . Then each of the statistics

(12-34)

has a t distribution with n � p degrees of freedom, where Cjj is the jjth element of the 
matrix, and is the estimate of the error variance, obtained from Equation 12-16. This 
leads to the following 100(1 � �)% confidence interval for the regression coefficient 
�j, j � 0, 1, p , k.

�̂2
1X¿X2�1

T �
�̂j � �j

2�̂2Cjj

  j � 0, 1, p , k

�21X¿X2�1
�̂

�̂

5�i6
5  �j 
6.

A 100(1 � �) % confidence interval on the regression coefficient �j,  j � 0, 1, p ,
k in the multiple linear regression model is given by

(12-35)�̂j � t��2,n�p2�̂2Cjj 
 �j 
 �̂j � t��2,n�p2�̂2Cjj

Confidence 
Interval on a 

Regression 
Coefficient

Because is the standard error of the regression coefficient , we would also write the 

CI formula as �̂j � t��2,n�p  se1�̂j2 
 �j 
 �̂j � t��2,n�p  se1�̂j2.

�̂j2�̂2Cjj
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For the multiple linear regression model, a 100(1 � �)% confidence interval on the
mean response at the point x01, x02, . . . , x0k is

(12-39)
 �Y  0  x0

 �̂Y  0  x0

� t��2,n�p2�̂2
˛x¿0 1�¿�2 �1

 x0

�̂Y  0  x0
� t��2,n�p2�̂2

˛x¿0 1X¿X2�1
 x0

Confidence 
Interval on the 

Mean Response

EXAMPLE 12-7 Wire Bond Strength Confidence Interval
We will construct a 95% confidence interval on the parameter �1

in the wire bond pull strength problem. The point estimate of �1

is and the diagonal element of corre-
sponding to �1 is C11 � 0.001671. The estimate of �2 is

and t0.025,22 � 2.074. Therefore, the 95% CI on �1

is computed from Equation 12-35 as

which reduces to

2.55029 
 �1 
 2.93825

� 12.0742215.23522 1.0016712

2.74427 � 12.0742215.23522 1.0016712 
 �1 
 2.74427

�̂2 � 5.2352,

1X¿X2�1�̂1 � 2.74427

Also, computer software such as Minitab can be used to help
calculate this confidence interval. From the regression output
in Table 10-4, and the standard error of

This standard error is the multiplier of the 
t-table constant in the confidence interval. That is, 0.0935 �

Consequently, all the numbers are
available from the computer output to construct the interval
and this is the typical method used in practice.

115.23522 10.0016712.

�̂1 � 0.0935.
�̂1 � 2.74427

12-3.2 Confidence Interval on the Mean Response

We may also obtain a confidence interval on the mean response at a particular point, say,
x01, x02, p , x0k. To estimate the mean response at this point, define the vector

The mean response at this point is which is estimated by

(12-36)

This estimator is unbiased, since and the variance of is

(12-37)

A 100(1 � �) % CI on can be constructed from the statistic

(12-38)
�̂Y  0   x0

� �Y  0   x0

2�̂2
˛x¿0 1X¿X2 �1

 x0

�Y 0  x0

V1�̂Y 0  x0
2 � �2x¿01X¿X2�1x0

�̂Y 0  x0
E1x¿0�̂2 � x¿0� �  E1Y 0 x02 � �Y 0  x0

�̂Y  0  x0
� x¿0�̂

E1Y 0 x02 � �Y 0  x0
� x¿0�,

x0 �

1

x01

 x02 

o
x0k

M m
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EXAMPLE 12-8 Wire Bond Strength Confidence Interval on the Mean Response
The engineer in Example 12-1 would like to construct a 95%
CI on the mean pull strength for a wire bond with wire length
x1 � 8 and die height x2 � 275. Therefore,

The estimated mean response at this point is found from
Equation 12-36 as

The variance of is estimated by

� 5.2352 10.04442 � 0.23244


 £

.214653 �.007491 �.000340

�.007491 .001671 �.000019

�.000340 �.000019 .0000015

§ £

1

8

275

§

 �̂2x0
¿ 1�¿�2�1x0 � 5.2352 31 8 275 4

�̂Y 0x0

�̂Y |x0
� x0

¿ �̂ � 31 8 275 4  £

2.26379

2.74427

0.01253

§ � 27.66

x0 � £

1

8

275

§

Therefore, a 95% CI on the mean pull strength at this point is
found from Equation 12-39 as

which reduces to

Some computer software packages will provide estimates of
the mean for a point of interest x0 and the associated CI. Table
12-4 shows the Minitab output for Example 12-8. Both the es-
timate of the mean and the 95% CI are provided.

26.66 
 �Y |x0

 28.66

� 2.074 10.23244

27.66 � 2.074 10.23244 
 �Y 0  x0

 27.66

Equation 12-39 is a CI about the regression plane (or hyperplane). It is the multiple regression
generalization of Equation 11-32.

12-4 PREDICTION OF NEW OBSERVATIONS

A regression model can be used to predict new or future observations on the response
variable Y corresponding to particular values of the independent variables, say, x01, x02, p , x0k.
If , a point estimate of the future observation Y0 at the point x01, 
x02, p , x0k is

(12-40)ŷ0 � x¿0 ˛�̂

x¿0 � 31, x01, x02, p , x0k 4

A 100(1 � �)% prediction interval for this future observation is

(12-41)
 Y0 
 ŷ0 � t��2,n�p2�̂2
˛11 � x¿0  1�¿�2�1

 x02

ŷ0 � t��2,n�p2�̂2
˛11 � x¿0  1�¿�2�1

 x02

Prediction 
Interval

This prediction interval is a generalization of the prediction interval given in Equation 11-33
for a future observation in simple linear regression. If you compare the prediction interval
Equation 12-41 with the expression for the confidence interval on the mean, Equation 12-39,
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Figure 12-5 An example of extrapolation in 
multiple regression.
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you will observe that the prediction interval is always wider than the confidence interval. The
confidence interval expresses the error in estimating the mean of a distribution, while the pre-
diction interval expresses the error in predicting a future observation from the distribution at
the point x0. This must include the error in estimating the mean at that point, as well as the in-
herent variability in the random variable Y at the same value x � x0.

Also, one might want to predict the mean of several values of Y, say m, all at the same
value x = x0. Because the variance of a sample mean is �2/m, Equation 12-41 is modified as
follows. Replace the constant 1 under the square root with 1/m to reflect the lower variability
in the mean of m observations. This results in a narrower interval.

In predicting new observations and in estimating the mean response at a given point
x01, x02, . . . , x0k, we must be careful about extrapolating beyond the region containing the
original observations. It is very possible that a model that fits well in the region of the origi-
nal data will no longer fit well outside of that region. In multiple regression it is often easy
to inadvertently extrapolate, since the levels of the variables (xi1, xi2, . . . , xik), i � 1, 2, . . . , n,
jointly define the region containing the data. As an example, consider Fig. 12-5, which illus-
trates the region containing the observations for a two-variable regression model. Note that
the point (x01, x02) lies within the ranges of both regressor variables x1 and x2, but it is outside the
region that is actually spanned by the original observations. This is sometimes called a hidden
extrapolation. Either predicting the value of a new observation or estimating the mean re-
sponse at this point is an extrapolation of the original regression model.

EXAMPLE 12-9 Wire Bond Strength Confidence Interval
Suppose that the engineer in Example 12-1 wishes to con-
struct a 95% prediction interval on the wire bond pull strength
when the wire length is x1 � 8 and the die height is x2 � 275.
Note that � [1 8 275], and the point estimate of the
pull strength is Also, in Example 12-8
we calculated Therefore, from
Equation 12-41 we have

� 2.074 25.235211 � 0.04442

27.66 � 2.074˛25.235211 � 0.04442 
 Y0 
 27.66

x¿0 1�¿�2�1x0 � 0.04444.
ŷ0 � x¿0 �̂ � 27.66.

x¿0

and the 95% prediction interval is

Notice that the prediction interval is wider than the confidence
interval on the mean response at the same point, calculated in
Example 12-8. The Minitab output in Table 12-4 also displays
this prediction interval.

22.81 
 Y0 
 32.51
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EXERCISES FOR SECTIONS 12-3 AND 12-4
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12-41. Consider the regression model fit to the shear
strength of soil in Exercise 12-1.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 95% confidence interval on mean strength

when feet and 
(c) Calculate 95% prediction interval on strength for the same

values of the regressors used in the previous part.

12-42. Consider the soil absorption data in Exercise 12-2.
(a) Find  95% confidence intervals on the regression coeffi-

cients.
(b) Find a 95% confidence interval on mean soil absorption

index when x1 � 200 and x2 � 50.
(c) Find a 95% prediction interval on the soil absorption in-

dex when x1 � 200 and x2 � 50.

12-43. Consider the semiconductor data in Exercise 12-9.
(a) Find 99% confidence intervals on the regression coefficients.
(b) Find a 99% prediction interval on HFE when x1 � 14.5,

x2 � 220, and x3 � 5.0.
(c) Find a 99% confidence interval on mean HFE when x1 �

14.5, x2 � 220, and x3 � 5.0.

12-44. Consider the electric power consumption data in
Exercise 12-6.
(a) Find 95% confidence intervals on �1, �2, �3, and �4.
(b) Find a 95% confidence interval on the mean of Y when 

x1 � 75, x2 � 24, x3 � 90, and x4 � 98.
(c) Find a 95% prediction interval on the power consumption

when x1 � 75, x2 � 24, x3 � 90, and x4 � 98.

12-45. Consider the bearing wear data in Exercise 12-19.
(a) Find 99% confidence intervals on �1 and �2.
(b) Recompute the confidence intervals in part (a) after the in-

teraction term x1x2 is added to the model. Compare the
lengths of these confidence intervals with those computed
in part (a). Do the lengths of these intervals provide any
information about the contribution of the interaction term
in the model?

12-46. Consider the wire bond pull strength data in Exercise
12-8.
(a) Find 95% confidence interval on the regression coefficients.
(b) Find a 95% confidence interval on mean pull strength

when x2 � 20, x3 � 30, x4 � 90, and x5 � 2.0.
(c) Find a 95% prediction interval on pull strength when x2 �

20, x3 � 30, x4 � 90, and x5 � 2.0.

12-47. Consider the regression model fit to the X-ray in-
spection data in Exercise 12-11. Use rads as the response.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 99% confidence interval on mean rads at 15

milliamps and 1 second on exposure time.
(c) Calculate a 99% prediction interval on rads for the same

values of the regressors used in the previous part.

x2 � 43%.x1 � 18

12-48. Consider the regression model fit to the arsenic data
in Exercise 12-12. Use arsenic in nails as the response and age,
drink use, and cook use as the regressors.
(a) Calculate 99% confidence intervals on each regression

coefficient.
(b) Calculate a 99% confidence interval on mean arsenic con-

centration in nails when drink and
cook 

(c) Calculate a prediction interval on arsenic concentration
in nails for the same values of the regressors used in the
previous part.

12-49. Consider the regression model fit to the coal and
limestone mixture data in Exercise 12-13. Use density as the
response.
(a) Calculate 90% confidence intervals on each regression

coefficient.
(b) Calculate a 90% confidence interval on mean density

when the dielectric and the loss factor �

(c) Calculate a prediction interval on density for the same
values of the regressors used in the previous part.

12-50. Consider the regression model fit to the nisin extrac-
tion data in Exercise 12-14.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 95% confidence interval on mean nisin

extraction when and 
(c) Calculate a prediction interval on nisin extraction for the

same values of the regressors used in the previous part.
(d) Comment on the effect of a small sample size to the

widths of these intervals.

12-51. Consider the regression model fit to the grey range
modulation data in Exercise 12-15. Use the useful range as the
response.
(a) Calculate 99% confidence intervals on each regression

coefficient.
(b) Calculate a 99% confidence interval on mean useful range

when and 
(c) Calculate a prediction interval on useful range for the

same values of the regressors used in the previous part.
(d) Calculate a 99% confidence interval and a 99% a prediction

interval on useful range when and
Compare the widths of these intervals to

those calculated in parts (b) and (c). Explain any differ-
ences in widths.

12-52. Consider the stack loss data in Exercise 12-16.
(a) Calculate 95% confidence intervals on each regression

coefficient.
(b) Calculate a 95% confidence interval on mean stack loss

when and 
(c) Calculate a prediction interval on stack loss for the same

values of the regressors used in the previous part.

x3 � 90.x2 � 25x1 � 80,

contrast � 25.
brightness � 50

contrast � 80.brightness � 70

x2 � 16.x1 � 15.5

0.025.
constant � 2.3

use � 4.
use � 4,age � 30,
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(12-42)di �
ei

2MSE

�
ei

2�̂2

Standardized
Residual

(d) Calculate a 95% confidence interval and a 95% prediction
interval on stack loss when , and 
Compare the widths of these intervals to those calculated
in parts (b) and (c). Explain any differences in widths.

12-53. Consider the NFL data in Exercise 12-17.
(a) Find 95% confidence intervals on the regression coefficients.
(b) What is the estimated standard error of when the

percentage of completions is 60%, the percentage of TDs
is 4%, and the percentage of interceptions is 3%.

(c) Find a 95% confidence interval on the mean rating when
the percentage of completions is 60%, the percentage of
TDs is 4%, and the percentage of interceptions is 3%.

12-54. Consider the heat treating data from Exercise 12-10.
(a) Find 95% confidence intervals on the regression coeffi-

cients.
(b) Find a 95% confidence interval on mean PITCH when

TEMP � 1650, SOAKTIME � 1.00, SOAKPCT �
1.10, DIFFTIME � 1.00, and DIFFPCT � 0.80.

(c) Fit a model to PITCH using regressors x1 � SOAK-
TIME 
 SOAKPCT and x2 � DIFFTIME  
 DIFFPCT.
Using the model with regressors x1 and x2, find a 95%
confidence interval on mean PITCH when SOAK-
TIME � 1.00, SOAKPCT � 1.10, DIFFTIME � 1.00,
and DIFFPCT � 0.80.

(d) Compare the length of this confidence interval with the
length of the confidence interval on mean PITCH at

�̂Y |x0

x3 � 93.x2 � 19x1 � 80,

484 CHAPTER 12 MULTIPLE LINEAR REGRESSION

the same point from part (b), where an additive model in
SOAKTIME, SOAKPCT, DIFFTIME, and DIFFPCT was
used. Which confidence interval is shorter? Does this tell
you anything about which model is preferable?

12-55. Consider the gasoline mileage data in Exercise 12-7.
(a) Find 99% confidence intervals on the regression coeffi-

cients.
(b) Find a 99% confidence interval on the mean of Y for the

regressor values in the first row of data. 
(c) Fit a new regression model to these data using cid, etw,

and axle as the regressors. Find 99% confidence intervals
on the regression coefficients in this new model.

(d) Compare the lengths of the confidence intervals from part
(c) with those found in part (a). Which intervals are
longer? Does this offer any insight about which model is
preferable?

12-56. Consider the NHL data in Exercise 12-18.
(a) Find a 95% confidence interval on the regression coeffi-

cient for the variable GF.
(b) Fit a simple linear regression model relating the response

variable W to the regressor GF.
(c) Find a 95% confidence interval on the slope for the simple

linear regression model from part (b).
(d) Compare the lengths of the two confidence intervals com-

puted in parts (a) and (c). Which interval is shorter? Does
this tell you anything about which model is preferable?

12-5 MODEL ADEQUACY CHECKING

12-5.1 Residual Analysis

The residuals from the multiple regression model, defined by , play an important
role in judging model adequacy just as they do in simple linear regression. As noted in
Section 11-7.1, several residual plots are often useful; these are illustrated in Example 12-10.
It is also helpful to plot the residuals against variables not presently in the model that are
possible candidates for inclusion. Patterns in these plots may indicate that the model may be
improved by adding the candidate variable.

ei � yi � ŷi

EXAMPLE 12-10 Wire Bond Strength Residuals
The residuals for the model from Example 12-1 are shown in
Table 12-3. A normal probability plot of these residuals is
shown in Fig. 12-6. No severe deviations from normality are

obviously apparent, although the two largest residuals (e15 �
5.84 and e17 � 4.33) do not fall extremely close to a straight
line drawn through the remaining residuals.

The standardized residuals

JWCL232_c12_449-512.qxd  1/15/10  10:08 PM  Page 484



are often more useful than the ordinary residuals when assessing residual magnitude. For the
wire bond strength example, the standardized residuals corresponding to e15 and e17 are

and , and they do not seem unusually
large. Inspection of the data does not reveal any error in collecting observations 15 and 17, nor
does it produce any other reason to discard or modify these two points.

The residuals are plotted against in Fig. 12-7, and against x1 and x2 in Figs. 12-8 and 12-9,
respectively.* The two largest residuals, e15 and e17, are apparent. Figure 12-8 gives some indica-
tion that the model underpredicts the pull strength for assemblies with short wire length 
and long wire length and overpredicts the strength for assemblies with intermediate wire
length . The same impression is obtained from Fig. 12-7. Either the relationship be-
tween strength and wire length is not linear (requiring that a term involving x2

1, say, be added to the
model), or other regressor variables not presently in the model affected the response.

In the wire bond strength example we used the standardized residuals as a
measure of residual magnitude. Some analysts prefer to plot standardized residuals instead of
ordinary residuals, because the standardized residuals are scaled so that their standard

di � ei�2�̂2

17 
 x1 
 142
1x1 � 152

1x1 
 62

ŷ

d17 � 4.33�15.2352 � 1.89d15 � 5.84�15.2352 � 2.55

12-5 MODEL ADEQUACY CHECKING 485

Figure 12-7 Plot of residuals against ŷ.Figure 12-6 Normal probability plot of residuals.
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*There are other methods, described in Montgomery, Peck, and Vining (2006) and Myers (1990), that plot a modified
version of the residual, called a partial residual, against each regressor. These partial residual plots are useful in
displaying the relationship between the response y and each individual regressor.

Figure 12-8 Plot of residuals against x1. Figure 12-9 Plot of residuals against x2.
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deviation is approximately unity. Consequently, large residuals (that may indicate possible
outliers or unusual observations) will be more obvious from inspection of the residual plots.

Many regression computer programs compute other types of scaled residuals. One of the
most popular are the studentized residuals

486 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(12-43)ri �
ei

2�̂211 � hii2
  i � 1, 2, p , n

(12-44)hii � x¿i 1X¿X2�1xi

where hii is the ith diagonal element of the matrix

The H matrix is sometimes called the “hat” matrix, since

Thus H transforms the observed values of y into a vector of fitted values .
Since each row of the matrix X corresponds to a vector, say ,

another way to write the diagonal elements of the hat matrix is
x¿i � 31, xi1, xi2, p , xik 4

ŷ

ŷ � X�̂ � X˛1X¿X2�1
˛X¿y � Hy

H � � 1�¿�2�1
 �¿

Studentized
Residual

Diagonal Elements
of Hat Matrix

Note that apart from �2, hii is the variance of the fitted value . The quantities hii were used in
the computation of the confidence interval on the mean response in Section 12-3.2.

Under the usual assumptions that the model errors are independently distributed with
mean zero and variance �2, we can show that the variance of the ith residual ei is

Furthermore, the hii elements must fall in the interval 0 � hii 
 1. This implies that the stan-
dardized residuals understate the true residual magnitude; thus, the studentized residuals
would be a better statistic to examine in evaluating potential outliers.

To illustrate, consider the two observations identified in the wire bond strength data
(Example 12-10) as having residuals that might be unusually large, observations 15 and 17.
The standardized residuals are

Now h15,15 � 0.0737 and h17,17 � 0.2593, so the studentized residuals are 

r15 �
e15

2�̂211 � h15,152
�

5.84

25.235211 � 0.07372
� 2.65

d15 �
e15

2�̂2
�

5.84

25.2352
� 2.55  and  d17 �

e17

2MSE

�
4.33

25.2352
� 1.89

V˛1ei2 � �211 � hii2,  i � 1, 2, p , n

ŷi

JWCL232_c12_449-512.qxd  1/15/10  10:08 PM  Page 486



and

Notice that the studentized residuals are larger than the corresponding standardized residuals.
However, the studentized residuals are still not so large as to cause us serious concern about
possible outliers.

12-5.2 Influential Observations

When using multiple regression, we occasionally find that some subset of the observations
is unusually influential. Sometimes these influential observations are relatively far away
from the vicinity where the rest of the data were collected. A hypothetical situation for two
variables is depicted in Fig. 12-10, where one observation in x-space is remote from the rest
of the data. The disposition of points in the x-space is important in determining the proper-
ties of the model. For example, point (xi1, xi2) in Fig. 12-10 may be very influential in de-
termining R2, the estimates of the regression coefficients, and the magnitude of the error
mean square.

We would like to examine the influential points to determine whether they control many
model properties. If these influential points are “bad” points, or erroneous in any way, they
should be eliminated. On the other hand, there may be nothing wrong with these points, but at
least we would like to determine whether or not they produce results consistent with the rest of
the data. In any event, even if an influential point is a valid one, if it controls important model
properties, we would like to know this, since it could have an impact on the use of the model.

Montgomery, Peck, and Vining (2006) and Myers (1990) describe several methods for
detecting influential observations. An excellent diagnostic is the distance measure developed
by Dennis R. Cook. This is a measure of the squared distance between the usual least squares
estimate of � based on all n observations and the estimate obtained when the ith point is
removed, say, . The Cook’s distance measure is�̂1i2

r17 �
e17

2�̂211 � h17,172
�

4.33

25.235211 � 0.25932
� 2.20

12-5 MODEL ADEQUACY CHECKING 487

 x i1 x1

xi2

x2

Region containing
all observations
except the ith

Figure 12-10 A
point that is remote 
in x-space.

Di �
1�̂ 1i2 � �̂2 ¿X¿X1�̂ 1i2 � �̂2

p�̂2   i � 1, 2, p , n

Cook’s 
Distance

JWCL232_c12_449-512.qxd  1/15/10  10:08 PM  Page 487



488 CHAPTER 12 MULTIPLE LINEAR REGRESSION

(12-45)Di �
ri

2

p  
hii

11 � hii2
  i � 1, 2, p , n

Cook’s 
Distance
Formula

From Equation 12-44 we see that Di consists of the squared studentized residual, which 
reflects how well the model fits the ith observation yi [recall that and a
component that measures how far that point is from the rest of the data is a mea-
sure of the distance of the ith point from the centroid of the remaining n � 1 points]. A value
of Di � 1 would indicate that the point is influential. Either component of Di (or both) may
contribute to a large value.

3hii� 11 � hii2
ri � ei�2�̂211 � hii2 4

Clearly, if the ith point is influential, its removal will result in changing considerably from 
the value . Thus, a large value of Di implies that the ith point is influential. The statistic Di is
actually computed using

�̂

�̂1i2

EXAMPLE 12-11 Wire Bond Strength Cook’s Distances
Table 12-12 lists the values of the hat matrix diagonals hii and
Cook’s distance measure Di for the wire bond pull strength data
in Example 12-1. To illustrate the calculations, consider the
first observation:

 � �
3e1�2MSE 11 � h112 4

2

p ˛ 	
h11

11 � h112

 D1 �
r2

1

p ˛ 	 ˛

h11

11 � h112

The Cook distance measure Di does not identify any poten-
tially influential observations in the data, for no value of Di

exceeds unity.

 � 0.035

 �
31.57�25.235211 � 0.15732 42

3
˛ 	 ˛

0.1573

11 � 0.15732

Table 12-12 Influence Diagnostics for the Wire Bond Pull Strength Data 2

Observations Cook’s Distance Measure Observations Cook’s Distance Measure
i hii Di i hii Di

1 0.1573 0.035 14 0.1129 0.003
2 0.1116 0.012 15 0.0737 0.187
3 0.1419 0.060 16 0.0879 0.001
4 0.1019 0.021 17 0.2593 0.565
5 0.0418 0.024 18 0.2929 0.155
6 0.0749 0.007 19 0.0962 0.018
7 0.1181 0.036 20 0.1473 0.000
8 0.1561 0.020 21 0.1296 0.052
9 0.1280 0.160 22 0.1358 0.028

10 0.0413 0.001 23 0.1824 0.002
11 0.0925 0.013 24 0.1091 0.040
12 0.0526 0.001 25 0.0729 0.000
13 0.0820 0.001
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12-57. Consider the gasoline mileage data in Exercise 12-7.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals and

comment on the normality assumption.
(c) Plot residuals versus and versus each regressor. Discuss

these residual plots.
(d) Calculate Cook’s distance for the observations in this data

set. Are any observations influential?

12-58. Consider the electric power consumption data in
Exercise 12-6.
(a) Calculate R2 for this model. Interpret this quantity.
(b) Plot the residuals versus and versus each regressor.

Interpret this plot.
(c) Construct a normal probability plot of the residuals and

comment on the normality assumption.

12-59. Consider the regression model for the NFL data in
Exercise 12-17.
(a) What proportion of totalvariability is explained by this model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Are there any influential points in these data?

12-60. Consider the regression model for the heat treating
data in Exercise 12-10.
(a) Calculate the percent of variability explained by this model.
(b) Construct a normal probability plot for the residuals.

Comment on the normality assumption.
(c) Plot the residuals versus and interpret the display.
(d) Calculate Cook’s distance for each observation and pro-

vide an interpretation of this statistic.

12-61. Consider the regression model fit to the X-ray in-
spection data in Exercise 12-11. Use rads as the response.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-62. Consider the regression model fit to the arsenic data
in Exercise 12-12. Use arsenic in nails as the response and age,
drink use, and cook use as the regressors.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
ŷ

ŷ

ŷ

ŷ

ŷ

ŷ

(d) Calculate Cook’s distance for the observations in this data
set. Are there any influential points in these data?

12-63. Consider the regression model fit to the coal and lime-
stone mixture data in Exercise 12-13. Use density as the response.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-64. Consider the regression model fit to the nisin extrac-
tion data in Exercise 12-14.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-65. Consider the regression model fit to the grey range
modulation data in Exercise 12-15. Use the useful range as the
response.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-66. Consider the stack loss data in Exercise 12-16.
(a) What proportion of total variability is explained by this

model?
(b) Construct a normal probability plot of the residuals. What

conclusion can you draw from this plot?
(c) Plot the residuals versus and versus each regressor, and

comment on model adequacy.
(d) Calculate Cook’s distance for the observations in this data

set. Are there any influential points in these data?

12-67. Consider the bearing wear data in Exercise 12-19.
(a) Find the value of R2 when the model uses the regressors 

x1 and x2.
(b) What happens to the value of R2 when an interaction term

x1x2 is added to the model? Does this necessarily imply
that adding the interaction term is a good idea?

12-68. Fit a model to the response PITCH in the heat treating
data of Exercise 12-10 using new regressors x1 � SOAKTIME

 SOAKPCT and x2 � DIFFTIME 
 DIFFPCT.

ŷ

ŷ

ŷ

ŷ

EXERCISES FOR SECTION 12-5
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(a) Calculate the R2 for this model and compare it to the
value of R2 from the original model in Exercise 12-10.
Does this provide some information about which model
is preferable?

(b) Plot the residuals from this model versus and on a
normal probability scale. Comment on model adequacy.

(c) Find the values of Cook’s distance measure. Are any ob-
servations unusually influential?

12-69. Consider the semiconductor HFE data in Exercise 12-9.
(a) Plot the residuals from this model versus . Comment on

the information in this plot.
(b) What is the value of R2 for this model?
(c) Refit the model using log HFE as the response variable.
(d) Plot the residuals versus predicted log HFE for the model

in part (c). Does this give any information about which
model is preferable?

(e) Plot the residuals from the model in part (d) versus the
regressor x3. Comment on this plot.

(f ) Refit the model to log HFE using x1, x2, and 1�x3, as the re-
gressors. Comment on the effect of this change in the model.

ŷ

ŷ

12-70. Consider the regression model for the NHL data
from Exercise 12-18.
(a) Fit a model using GF as the only regressor.
(b) How much variability is explained by this model?
(c) Plot the residuals versus and comment on model adequacy.
(d) Plot the residuals from part (a) versus PPGF, the points

scored while in power play. Does this indicate that the
model would be better if this variable were included?

12-71. The diagonal elements of the hat matrix are often
used to denote leverage—that is, a point that is unusual in its
location in the x-space and that may be influential. Generally,
the ith point is called a leverage point if its hat diagonal 
hii exceeds 2p/n, which is twice the average size of all the hat
diagonals. Recall that p � k � 1.

(a) Table 12-12 contains the hat diagonal for the wire bond
pull strength data used in Example 12-1. Find the average
size of these elements.

(b) Based on the criterion above, are there any observations
that are leverage points in the data set?

ŷ

12-6 ASPECTS OF MULTIPLE REGRESSION MODELING

In this section we briefly discuss several other aspects of building multiple regression models.
For more extensive presentations of these topics and additional examples refer to Montgomery,
Peck, and Vining (2006) and Myers (1990).

12-6.1 Polynomial Regression Models

The linear model is a general model that can be used to fit any relationship thatY � X� � �

EXAMPLE 12-12 Airplane Sidewall Panels
Sidewall panels for the interior of an airplane are formed in a
1500-ton press. The unit manufacturing cost varies with the
production lot size. The data shown below give the average
cost per unit (in hundreds of dollars) for this product ( y) and
the production lot size (x). The scatter diagram, shown in Fig.
12-11, indicates that a second-order polynomial may be
appropriate.

y 1.81 1.70 1.65 1.55 1.48 1.40

x 20 25 30 35 40 50

y 1.30 1.26 1.24 1.21 1.20 1.18

x 60 65 70 75 80 90

is linear in the unknown parameters �. This includes the important class of polynomial
regression models. For example, the second-degree polynomial in one variable

(12-46)

and the second-degree polynomial in two variables

(12-47)

are linear regression models.
Polynomial regression models are widely used when the response is curvilinear, because

the general principles of multiple regression can be applied. The following example illustrates
some of the types of analyses that can be performed.

Y � �0 � �1x1 � �2x2 � �11x2
1 � �22x2

2 � �12x1x2 � �

Y � �0 � �1x � �11x
2 � �
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Figure 12-11 Data
for Example 12-11.
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We will fit the model

The y vector, the model matrix X and the � vector are as follows:

y � 

1.81

1.70

1.65

1.55

1.48

1.40

1.30

1.26

1.24

1.21

1.20

1.18

   X � 

1 20 400

1 25 625

1 30 900

1 35 1225

1 40 1600

1 50 2500

1 60 3600

1 65 4225

1 70 4900

1 75 5625

1 80 6400

1 90 8100

   � � £

�0

�1

�11

§

Y � �0 � �1x � �11x
2 � �

Solving the normal equations gives the fitted
model

Conclusions: The test for significance of regression is shown
in Table 12-13. Since f0 � 1762.3 is significant at 1%, we
conclude that at least one of the parameters �1 and �11 is not
zero. Furthermore, the standard tests for model adequacy do
not reveal any unusual behavior, and we would conclude that
this is a reasonable model for the sidewall panel cost data.

ŷ � 2.19826629 � 0.02252236x � 0.00012507˛x2

X¿X�̂ � X¿y

Table 12-13 Test for Significance of Regression for the Second-Order Model in Example 12-12

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-value

Regression 0.52516 2 0.26258 1762.28 2.12E-12
Error 0.00134 9 0.00015
Total 0.5265 11

In fitting polynomials, we generally like to use the lowest-degree model consistent with
the data. In this example, it would seem logical to investigate the possibility of dropping the
quadratic term from the model. That is, we would like to test

H1: �11 � 0

H0: �11 � 0
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The general regression significance test can be used to test this hypothesis. We need to deter-
mine the “extra sum of squares” due to �11, or

The sum of squares from Table 12-13. To find , we fit a
simple linear regression model to the original data, yielding

It can be easily verified that the regression sum of squares for this model is

Therefore, the extra sum of the squares due to �11, given that �1 and �0 are in the model, is

The analysis of variance, with the test of H0: �11 � 0 incorporated into the procedure, is
displayed in Table 12-14. Note that the quadratic term contributes significantly to the
model.

12-6.2 Categorical Regressors and Indicator Variables

The regression models presented in previous sections have been based on quantitative vari-
ables, that is, variables that are measured on a numerical scale. For example, variables such as
temperature, pressure, distance, and voltage are quantitative variables. Occasionally, we need to
incorporate categorical, or qualitative, variables in a regression model. For example, suppose
that one of the variables in a regression model is the operator who is associated with each
observation yi. Assume that only two operators are involved. We may wish to assign different
levels to the two operators to account for the possibility that each operator may have a different
effect on the response.

The usual method of accounting for the different levels of a qualitative variable is to use
indicator variables. For example, to introduce the effect of two different operators into a
regression model, we could define an indicator variable as follows:

x � e
0 if the observation is from operator 1

1 if the observation is from operator 2

 � 0.031
 � 0.5252 � 0.4942

SSR 
1�11 0 �1,�02 � SSR 

1�1,�11 0 �02 � SSR 
1�1 0 �02

SSR1�1 0  �02 � 0.4942

ŷ � 1.90036313 � 0.00910056x

SSR1�1 0  �02SSR1�1,�11 0 �02 � 0.52516

SSR1�11 0  �1,�02 � SSR1�1,�11 0 �02 � SSR1�1 0 �02

Table 12-14 Analysis of  Variance for Example 12-12, Showing the Test for H0: �11 � 0

Source of Degrees of Mean
Variation Sum of Squares Freedom Square f0 P-value

Regression 2 0.26258 1767.40 2.09E-12
Linear 1 0.49416 2236.12 7.13E-13
Quadratic 1 0.03100 208.67 1.56E-7

Error 0.00133 9 0.00015
Total 0.5265 11

SSR1�11 0  �0,�12 � 0.03100
SSR1�1 0  �02 � 0.49416

SSR1�1,�11 0  �02 � 0.52516
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In general, a qualitative variable with r-levels can be modeled by r � 1 indicator variables,
which are assigned the value of either zero or one. Thus, if there are three operators, the
different levels will be accounted for by the two indicator variables defined as follows:

x1 x2

if the observation is from operator 1

if the observation is from operator 2

if the observation is from operator 3

Indicator variables are also referred to as dummy variables. The following example [from
Montgomery, Peck, and Vining (2006)] illustrates some of the uses of indicator variables; for
other applications, see Montgomery, Peck, and Vining (2006).

0  1

1  0

0  0

EXAMPLE 12-13 Surface Finish
A mechanical engineer is investigating the surface finish of
metal parts produced on a lathe and its relationship to the speed
(in revolutions per minute) of the lathe. The data are shown in
Table 12-15. Note that the data have been collected using two
different types of cutting tools. Since the type of cutting tool
likely affects the surface finish, we will fit the model

where Y is the surface finish, x1 is the lathe speed in revolu-
tions per minute, and x2 is an indicator variable denoting the
type of cutting tool used; that is,

The parameters in this model may be easily interpreted.
If x2 � 0, the model becomes

which is a straight-line model with slope �1 and intercept �0.
However, if x2 � 1, the model becomes

which is a straight-line model with slope �1 and intercept
. Thus, the model im-

plies that surface finish is linearly related to lathe speed and
that the slope �1 does not depend on the type of cutting tool
used. However, the type of cutting tool does affect the inter-
cept, and �2 indicates the change in the intercept associated
with a change in tool type from 302 to 416.

The model matrix X and y vector for this problem are as
follows:

Y � �0 � �1x � �2 x2 � ��0 � �2

Y � �0 � �1x1 � �2112 � � � 1�0 � �22 � �1x1 � �

Y � �0 � �1x1 � �

x2 � e
0, for tool type 302

1, for tool type 416

Y � �0 � �1x1 � �2x2 � �

The fitted model is

Conclusions: The analysis of variance for this model 
is shown in Table 12-16. Note that the hypothesis 

(significance of regression) would be rejected at any
reasonable level of significance because the P-value is very
small. This table also contains the sums of squares

so a test of the hypothesis can be made. Since this
hypothesis is also rejected, we conclude that tool type has an
effect on surface finish.

H0: �2 � 0

 � SSR 
1�1 0�02 � SSR 

1�2 0�1,�02
 SSR � SSR 

1�1,�2 0 �02

�2 � 0
H0: �1�

ŷ � 14.27620 � 0.14115x1 � 13.28020x2

X �   

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

225

200

250

245

235

237

265

259

221

218

224

212

248

260

243

238

224

251

232

216

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

  y �   

45.44

42.03

50.10

48.75

47.92

47.79

52.26

50.52

45.58

44.78

33.50

31.23

37.52

37.13

34.70

33.92

32.13

35.47

33.49

32.29
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It is also possible to use indicator variables to investigate whether tool type affects both
the slope and intercept. Let the model be

where x2 is the indicator variable. Now if tool type 302 is used, x2 � 0, and the model is

If tool type 416 is used, x2 � 1, and the model becomes

Note that �2 is the change in the intercept and that �3 is the change in slope produced by a
change in tool type.

Another method of analyzing these data is to fit separate regression models to the data
for each tool type. However, the indicator variable approach has several advantages. First,
only one regression model must be fit. Second, by pooling the data on both tool types,
more degrees of freedom for error are obtained. Third, tests of both hypotheses on the
parameters �2 and �3 are just special cases of the extra sum of squares method.

12-6.3 Selection of Variables and Model Building

An important problem in many applications of regression analysis involves selecting the set of
regressor variables to be used in the model. Sometimes previous experience or underlying
theoretical considerations can help the analyst specify the set of regressor variables to use in a
particular situation. Usually, however, the problem consists of selecting an appropriate set of

 � 1�0 � �22 � 1�1 � �32  x1 � �
  Y � �0 � �1 x1 � �2 � �3 x1 � �

 Y � �0 � �1x1 � �

Y � �0 � �1 
x1 � �2 

x2 � �3 x1 x2 � �

494 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Table 12-15 Surface Finish Data for Example 12-13

Observation Surface Finish Type of Cutting Observation Surface Finish Type of Cutting
Number, i yi RPM Tool Number, i yi RPM Tool

1 45.44 225 302 11 33.50 224 416
2 42.03 200 302 12 31.23 212 416
3 50.10 250 302 13 37.52 248 416
4 48.75 245 302 14 37.13 260 416
5 47.92 235 302 15 34.70 243 416
6 47.79 237 302 16 33.92 238 416
7 52.26 265 302 17 32.13 224 416
8 50.52 259 302 18 35.47 251 416
9 45.58 221 302 19 33.49 232 416

10 44.78 218 302 20 32.29 216 416

Table 12-16 Analysis of  Variance for Example 12-13

Source of Degrees of Mean
Variation Sum of Squares Freedom Square f0 P-value

Regression 1012.0595 2 506.0297 1103.69 1.02E-18
130.6091 1 130.6091 284.87 4.70E-12
881.4504 1 881.4504 1922.52 6.24E-19

Error 7.7943 17 0.4585
Total 1019.8538 19

SSR1�2 0  �1,�02

SSR1�1 0  �02
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regressors from a set that quite likely includes all the important variables, but we are sure that
not all these candidate regressors are necessary to adequately model the response Y.

In such a situation, we are interested in variable selection; that is, screening the candidate
variables to obtain a regression model that contains the “best” subset of regressor variables.
We would like the final model to contain enough regressor variables so that in the intended use
of the model (prediction, for example) it will perform satisfactorily. On the other hand, to keep
model maintenance costs to a minimum and to make the model easy to use, we would like the
model to use as few regressor variables as possible. The compromise between these conflict-
ing objectives is often called finding the “best” regression equation. However, in most prob-
lems, no single regression model is “best” in terms of the various evaluation criteria that have
been proposed. A great deal of judgment and experience with the system being modeled is
usually necessary to select an appropriate set of regressor variables for a regression equation.

No single algorithm will always produce a good solution to the variable selection problem.
Most of the currently available procedures are search techniques, and to perform satisfactorily,
they require interaction with judgment by the analyst. We now briefly discuss some of the more
popular variable selection techniques. We assume that there are K candidate regressors, x1,
x2, p , xK, and a single response variable y. All models will include an intercept term �0, so the
model with all variables included would have K � 1 terms. Furthermore, the functional form of
each candidate variable (for example, x1 � 1�x, x2 � ln x, etc.) is assumed to be correct.

All Possible Regressions
This approach requires that the analyst fit all the regression equations involving one candi-
date variable, all regression equations involving two candidate variables, and so on. Then
these equations are evaluated according to some suitable criteria to select the “best” regres-
sion model. If there are K candidate regressors, there are 2K total equations to be examined.
For example, if K � 4, there are 24 � 16 possible regression equations; while if K � 10,
there are 210 � 1024 possible regression equations. Hence, the number of equations to be
examined increases rapidly as the number of candidate variables increases. However, there
are some very efficient computing algorithms for all possible regressions available and they
are widely implemented in statistical software, so it is a very practical procedure unless the
number of candidate regressors is fairly large. Look for a menu choice such as “Best
Subsets” regression.

Several criteria may be used for evaluating and comparing the different regression mod-
els obtained. A commonly used criterion is based on the value of R2 or the value of the
adjusted R2, R2

adj. Basically, the analyst continues to increase the number of variables in the
model until the increase in R2 or the adjusted R2

adj is small. Often, we will find that the R2
adj will

stabilize and actually begin to decrease as the number of variables in the model increases.
Usually, the model that maximizes R2

adj is considered to be a good candidate for the best re-
gression equation. Because we can write R2

adj � 1 � {MSE� [SST�(n � 1)]} and SST�(n � 1)
is a constant, the model that maximizes the R2

adj value also minimizes the mean square error,
so this is a very attractive criterion.

Another criterion used to evaluate regression models is the Cp statistic, which is a meas-
ure of the total mean square error for the regression model. We define the total standardized
mean square error for the regression model as

 �
1

�2  3 1bias22 � variance 4

 �
1

�2 e a
n

i�1
3E1Yi2 � E 1Ŷi2 4

2 � a
n

i�1
V 1Ŷi2 f

 �p �
1

�2 a
n

i�1
E 3 Ŷi � E 1Yi2 4

2
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1 � hii
b

2

Cp Statistic

Prediction
Error Sum of

Squares
(PRESS)

496 CHAPTER 12 MULTIPLE LINEAR REGRESSION

We use the mean square error from the full K � 1 term model as an estimate of � 2; that is,
Then an estimator of �p is [see Montgomery, Peck, and Vining (2006) or

Myers (1990) for the details]:
�̂2 � MSE 

1K � 12.

If the p-term model has negligible bias, it can be shown that

Therefore, the values of Cp for each regression model under consideration should be evalu-
ated relative to p. The regression equations that have negligible bias will have values of
Cp that are close to p, while those with significant bias will have values of Cp that are sig-
nificantly greater than p. We then choose as the “best” regression equation either a model
with minimum Cp or a model with a slightly larger Cp, that does not contain as much bias
(i.e., ).

The PRESS statistic can also be used to evaluate competing regression models. PRESS
is an acronym for Prediction Error Sum of Squares, and it is defined as the sum of the
squares of the differences between each observation yi and the corresponding predicted value
based on a model fit to the remaining n � 1 points, say . So PRESS provides a measure of
how well the model is likely to perform when predicting new data, or data that was not used
to fit the regression model. The computing formula for PRESS is

ŷ1i2

Cp � p

E 1Cp 0  zero bias2 � p

where is the usual residual. Thus PRESS is easy to calculate from the standard
least squares regression results. Models that have small values of PRESS are preferred.

ei � yi � ŷi

EXAMPLE 12-14 Wine Quality
Table 12-17 presents data on taste-testing 38 brands of pinot
noir wine (the data were first reported in an article by Kwan,
Kowalski, and Skogenboe in an article in the Journal of
Agricultural and Food Chemistry, Vol. 27, 1979, and it also ap-
pears as one of the default data sets in Minitab). The response
variable is y � quality, and we wish to find the “best” regres-
sion equation that relates quality to the other five parameters.

Figure 12-12 is the matrix of scatter plots for the wine
quality data, as constructed by Minitab. We notice that there are
some indications of possible linear relationships between qual-
ity and the regressors, but there is no obvious visual impression
of which regressors would be appropriate. Table 12-18 lists the
all possible regressions output from Minitab. In this analysis,

we asked Minitab to present the best three equations for each
subset size. Note that Minitab reports the values of R2, R2

adj, Cp,
and for each model. From Table 12-18 we see that
the three-variable equation with x2 � aroma, x4 � flavor, and
x5 � oakiness produces the minimum Cp equation, whereas the
four-variable model, which adds x1 � clarity to the previous
three regressors, results in maximum R2

adj (or minimum MSE).
The three-variable model is

and the four-variable model is

ŷ � 4.99 � 1.79 x1 � 0.530 x2 � 1.26 x4 � 0.659 x5

ŷ � 6.47 � 0.580 x2 � 1.20 x4 � 0.602 x5

S � 1MSE
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Table 12-17 Wine Quality Data

x1 x2 x3 x4 x5 y
Clarity Aroma Body Flavor Oakiness Quality

1 1.0 3.3 2.8 3.1 4.1 9.8
2 1.0 4.4 4.9 3.5 3.9 12.6
3 1.0 3.9 5.3 4.8 4.7 11.9
4 1.0 3.9 2.6 3.1 3.6 11.1
5 1.0 5.6 5.1 5.5 5.1 13.3
6 1.0 4.6 4.7 5.0 4.1 12.8
7 1.0 4.8 4.8 4.8 3.3 12.8
8 1.0 5.3 4.5 4.3 5.2 12.0
9 1.0 4.3 4.3 3.9 2.9 13.6

10 1.0 4.3 3.9 4.7 3.9 13.9
11 1.0 5.1 4.3 4.5 3.6 14.4
12 0.5 3.3 5.4 4.3 3.6 12.3
13 0.8 5.9 5.7 7.0 4.1 16.1
14 0.7 7.7 6.6 6.7 3.7 16.1
15 1.0 7.1 4.4 5.8 4.1 15.5
16 0.9 5.5 5.6 5.6 4.4 15.5
17 1.0 6.3 5.4 4.8 4.6 13.8
18 1.0 5.0 5.5 5.5 4.1 13.8
19 1.0 4.6 4.1 4.3 3.1 11.3
20 0.9 3.4 5.0 3.4 3.4 7.9
21 0.9 6.4 5.4 6.6 4.8 15.1
22 1.0 5.5 5.3 5.3 3.8 13.5
23 0.7 4.7 4.1 5.0 3.7 10.8
24 0.7 4.1 4.0 4.1 4.0 9.5
25 1.0 6.0 5.4 5.7 4.7 12.7
26 1.0 4.3 4.6 4.7 4.9 11.6
27 1.0 3.9 4.0 5.1 5.1 11.7
28 1.0 5.1 4.9 5.0 5.1 11.9
29 1.0 3.9 4.4 5.0 4.4 10.8
30 1.0 4.5 3.7 2.9 3.9 8.5
31 1.0 5.2 4.3 5.0 6.0 10.7
32 0.8 4.2 3.8 3.0 4.7 9.1
33 1.0 3.3 3.5 4.3 4.5 12.1
34 1.0 6.8 5.0 6.0 5.2 14.9
35 0.8 5.0 5.7 5.5 4.8 13.5
36 0.8 3.5 4.7 4.2 3.3 12.2
37 0.8 4.3 5.5 3.5 5.8 10.3
38 0.8 5.2 4.8 5.7 3.5 13.2

These models should now be evaluated further using residuals plots and the other tech-
niques discussed earlier in the chapter, to see if either model is satisfactory with respect to the
underlying assumptions and to determine if one of them is preferable. It turns out that the
residual plots do not reveal any major problems with either model. The value of PRESS for
the three-variable model is 56.0524 and for the four-variable model it is 60.3327. Since
PRESS is smaller in the model with three regressors, and since it is the model with the small-
est number of predictors, it would likely be the preferred choice.

JWCL232_c12_449-512.qxd  1/16/10  8:29 AM  Page 497



Table 12-18 Minitab All Possible Regressions Output for the Wine Quality Data

Best Subsets Regression: Quality versus Clarity, Aroma, . . .

Response is Quality

O
C  a
l F k
a A l i
r r B a n
i o o v e
t m d o s

Vars R-Sq R-Sq (adj) C–p S y a y r s
1 62.4 61.4 9.0 1.2712 X X X X X
1 50.0 48.6 23.2 1.4658 X X X X X
1 30.1 28.2 46.0 1.7335 X X X X X
2 66.1 64.2 6.8 1.2242 X X X X X
2 65.9 63.9 7.1 1.2288 X X X X X
2 63.3 61.2 10.0 1.2733 X X X X X
3 70.4 67.8 3.9 1.1613 X X X X X
3 68.0 65.2 6.6 1.2068 X X X X X
3 66.5 63.5 8.4 1.2357 X X X X X
4 71.5 68.0 4.7 1.1568 X X X X X
4 70.5 66.9 5.8 1.1769 X X X X X
4 69.3 65.6 7.1 1.1996 X X X X X
5 72.1 67.7 6.0 1.1625 X X X X X

3.675
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Figure 12-12 A matrix of scatter plots from Minitab for the wine quality data.

498 CHAPTER 12 MULTIPLE LINEAR REGRESSION

JWCL232_c12_449-512.qxd  1/16/10  8:29 AM  Page 498



12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 499

Stepwise Regression
Stepwise regression is probably the most widely used variable selection technique. The pro-
cedure iteratively constructs a sequence of regression models by adding or removing variables
at each step. The criterion for adding or removing a variable at any step is usually expressed
in terms of a partial F-test. Let fin be the value of the F-random variable for adding a variable
to the model, and let fout be the value of the F-random variable for removing a variable from
the model. We must have fin 	 fout, and usually fin � fout.

Stepwise regression begins by forming a one-variable model using the regressor variable
that has the highest correlation with the response variable Y. This will also be the regressor
producing the largest F-statistic. For example, suppose that at this step, x1 is selected. At the
second step, the remaining K � 1 candidate variables are examined, and the variable for
which the partial F-statistic

(12-49)

is a maximum is added to the equation, provided that fj 
 fin. In equation 12-49, MSE (xj, x1)
denotes the mean square for error for the model containing both x1 and xj. Suppose that this
procedure indicates that x2 should be added to the model. Now the stepwise regression algo-
rithm determines whether the variable x1 added at the first step should be removed. This is
done by calculating the F-statistic

(12-50)

If the calculated value f1 � fout, the variable x1 is removed; otherwise it is retained, and we
would attempt to add a regressor to the model containing both x1 and x2.

In general, at each step the set of remaining candidate regressors is examined, and the
regressor with the largest partial F-statistic is entered, provided that the observed value of 
f exceeds fin. Then the partial F-statistic for each regressor in the model is calculated, and the
regressor with the smallest observed value of F is deleted if the observed f � fout. The
procedure continues until no other regressors can be added to or removed from the model.

Stepwise regression is almost always performed using a computer program. The analyst
exercises control over the procedure by the choice of fin and fout. Some stepwise regression com-
puter programs require that numerical values be specified for fin and fout. Since the number of
degrees of freedom on MSE depends on the number of variables in the model, which changes
from step to step, a fixed value of fin and fout causes the type I and type II error rates to vary. Some
computer programs allow the analyst to specify the type I error levels for fin and fout. However,
the “advertised” significance level is not the true level, because the variable selected is the one
that maximizes (or minimizes) the partial F-statistic at that stage. Sometimes it is useful to ex-
periment with different values of fin and fout (or different advertised type I error rates) in several
different runs to see if this substantially affects the choice of the final model.

F1 �
SSR 
1�1 0�2,�02

MSE 
1x1, x22

Fj �
SSR 
1�j 0�1,�02

MSE 
1xj, x12

EXAMPLE 12-15 Wine Quality Stepwise Regression
Table 12-19 gives the Minitab stepwise regression output for the
wine quality data. Minitab uses fixed values of � for entering
and removing variables. The default level is � � 0.15 for both
decisions. The output in Table 12-19 uses the default value.
Notice that the variables were entered in the order Flavor (step 1),

Oakiness (step 2), and Aroma (step 3) and that no variables were
removed. No other variable could be entered, so the algorithm
terminated. This is the three-variable model found by all possible
regressions that results in a minimum value of Cp.
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Table 12-19 Minitab Stepwise Regression Output for the
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, . . .

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Quality on 5 predictors, with N � 38

Step 1 2 3
Constant 4.941 6.912 6.467

Flavor 1.57 1.64 1.20
T-Value 7.73 8.25 4.36
P-Value 0.000 0.000 0.000

Oakiness �0.54 �0.60
T-Value �1.95 �2.28
P-Value 0.059 0.029

Aroma 0.58
T-Value 2.21
P-Value 0.034

S 1.27 1.22 1.16
R-Sq 62.42 66.11 70.38
R-Sq(adj) 61.37 64.17 67.76
C–p 9.0 6.8 3.9

500 CHAPTER 12 MULTIPLE LINEAR REGRESSION

Forward Selection
The forward selection procedure is a variation of stepwise regression and is based on the
principle that regressors should be added to the model one at a time until there are no remain-
ing candidate regressors that produce a significant increase in the regression sum of squares.
That is, variables are added one at a time as long as their partial F-value exceeds fin. Forward
selection is a simplification of stepwise regression that omits the partial F-test for deleting
variables from the model that have been added at previous steps. This is a potential weakness
of forward selection; that is, the procedure does not explore the effect that adding a regressor
at the current step has on regressor variables added at earlier steps. Notice that if we were to
apply forward selection to the wine quality data, we would obtain exactly the same results as
we did with stepwise regression in Example 12-15, since stepwise regression terminated
without deleting a variable.

Backward Elimination
The backward elimination algorithm begins with all K candidate regressors in the model. Then
the regressor with the smallest partial F-statistic is deleted if this F-statistic is insignificant, that
is, if f � fout. Next, the model with K � 1 regressors is fit, and the next regressor for potential
elimination is found. The algorithm terminates when no further regressor can be deleted.

Table 12-20 shows the Minitab output for backward elimination applied to the wine quality
data. The � value for removing a variable is � � 0.10. Notice that this procedure removes Body at
step 1 and then Clarity at step 2, terminating with the three-variable model found previously.

Some Comments on Final Model Selection
We have illustrated several different approaches to the selection of variables in multiple linear
regression. The final model obtained from any model-building procedure should be subjected
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Table 12-20 Minitab Backward Elimination Output for the
Wine Quality Data

Stepwise Regression: Quality versus Clarity, Aroma, . . .

Backward elimination. Alpha-to-Remove: 0.1

Response is Quality on 5 predictors, with N = 38

Step 1 2 3
Constant 3.997 4.986 6.467

Clarity 2.3 1.8
T-Value 1.35 1.12
P-Value 0.187 0.269

Aroma 0.48 0.53 0.58
T-Value 1.77 2.00 2.21
P-Value 0.086 0.054 0.034

Body 0.27
T-Value 0.82
P-Value 0.418

Flavor 1.17 1.26 1.20
T-Value 3.84 4.52 4.36
P-Value 0.001 0.000 0.000

Oakiness �0.68 �0.66 �0.60
T-Value �2.52 �2.46 �2.28
P-Value 0.017 0.019 0.029

S 1.16 1.16 1.16
R-Sq 72.06 71.47 70.38
R-Sq(adj) 67.69 68.01 67.76
C–p 6.0 4.7 3.9

to the usual adequacy checks, such as residual analysis, lack-of-fit testing, and examination of
the effects of influential points. The analyst may also consider augmenting the original set of
candidate variables with cross-products, polynomial terms, or other transformations of the
original variables that might improve the model. A major criticism of variable selection meth-
ods such as stepwise regression is that the analyst may conclude there is one “best” regression
equation. Generally, this is not the case, because several equally good regression models can
often be used. One way to avoid this problem is to use several different model-building tech-
niques and see if different models result. For example, we have found the same model for the
wine quality data using stepwise regression, forward selection, and backward elimination. The
same model was also one of the two best found from all possible regressions. The results from
variable selection methods frequently do not agree, so this is a good indication that the three-
variable model is the best regression equation.

If the number of candidate regressors is not too large, the all-possible regressions method
is recommended. We usually recommend using the minimum MSE and Cp evaluation criteria
in conjunction with this procedure. The all-possible regressions approach can find the “best”
regression equation with respect to these criteria, while stepwise-type methods offer no such
assurance. Furthermore, the all-possible regressions procedure is not distorted by dependen-
cies among the regressors, as stepwise-type methods are.
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12-6.4 Multicollinearity

In multiple regression problems, we expect to find dependencies between the response variable
Y and the regressors xj. In most regression problems, however, we find that there are also
dependencies among the regressor variables xj. In situations where these dependencies are
strong, we say that multicollinearity exists. Multicollinearity can have serious effects on the
estimates of the regression coefficients and on the general applicability of the estimated model.

The effects of multicollinearity may be easily demonstrated. The diagonal elements of the
matrix C � (X
X)�1 can be written as 

where R2
j is the coefficient of multiple determination resulting from regressing xj on the other

k � 1 regressor variables. We can think of Rj
2 as a measure of the correlation between xj and

the other regressors. Clearly, the stronger the linear dependency of xj on the remaining regres-
sor variables, and hence the stronger the multicollinearity, the larger the value of R2

j will 
be. Recall that Therefore, we say that the variance of is “inflated’’
by the quantity . Consequently, we define the variance inflation factor for as�j11 � R2

j 2
�1

�̂jV 1�̂j2 � �2 Cjj.

Cjj �
1

11 � R2
j 2
  j � 1, 2, p , k

(12-51)VIF 1�j2 �
1

11 � R2
j 2
  j � 1, 2, . . . , k

Variance
Inflation

Factor (VIF)

502 CHAPTER 12 MULTIPLE LINEAR REGRESSION

These factors are an important measure of the extent to which multicollinearity is present. If the
columns of the model matrix X are orthogonal, then the regressors are completely uncorrelated,
and the variance inflation factors will all be unity. So any VIF that exceeds one indicates some
level of multicollinearity in the data.

Although the estimates of the regression coefficients are very imprecise when multi-
collinearity is present, the fitted model equation may still be useful. For example, suppose we
wish to predict new observations on the response. If these predictions are interpolations in the
original region of the x-space where the multicollinearity is in effect, satisfactory predictions
will often be obtained, because while individual �j may be poorly estimated, the function

may be estimated quite well. On the other hand, if the prediction of new observa-
tions requires extrapolation beyond the original region of the x-space where the data were col-
lected, generally we would expect to obtain poor results. Extrapolation usually requires good
estimates of the individual model parameters.

Multicollinearity arises for several reasons. It will occur when the analyst collects data
such that a linear constraint holds approximately among the columns of the X matrix. For ex-
ample, if four regressor variables are the components of a mixture, such a constraint will
always exist because the sum of the components is always constant. Usually, these constraints
do not hold exactly, and the analyst might not know that they exist.

The presence of multicollinearity can be detected in several ways. Two of the more easily
understood of these will be discussed briefly.

1. The variance inflation factors, defined in Equation 12-51, are very useful measures
of multicollinearity. The larger the variance inflation factor, the more severe the
multicollinearity. Some authors have suggested that if any variance inflation factor
exceeds 10, multicollinearity is a problem. Other authors consider this value too
liberal and suggest that the variance inflation factors should not exceed 4 or 5.
Minitab will calculate the variance inflation factors. Table 12-4 presents the Minitab

g k
j�1 �j xij
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EXERCISES FOR SECTION 12-6

12-6 ASPECTS OF MULTIPLE REGRESSION MODELING 503

multiple regression output for the wire bond pull strength data. Since both VIF1 and
VIF2 are small, there is no problem with multicollinearity.

2. If the F-test for significance of regression is significant, but tests on the individual
regression coefficients are not significant, multicollinearity may be present.

Several remedial measures have been proposed for solving the problem of multi-
collinearity. Augmenting the data with new observations specifically designed to break up the
approximate linear dependencies that currently exist is often suggested. However, this is
sometimes impossible because of economic reasons or because of the physical constraints that
relate the xj. Another possibility is to delete certain variables from the model, but this approach
has the disadvantage of discarding the information contained in the deleted variables.

Since multicollinearity primarily affects the stability of the regression coefficients, it would
seem that estimating these parameters by some method that is less sensitive to multicollinearity
than ordinary least squares would be helpful. Several methods have been suggested. One alterna-
tive to ordinary least squares, ridge regression, can be useful in combating multicollinearity. For
more details on ridge regression, there are more extensive presentations in Montgomery, Peck,
and Vining (2006) and Myers (1990).

12-72. An article entitled “A Method for Improving the
Accuracy of Polynomial Regression Analysis’’ in the Journal
of Quality Technology (1971, pp. 149–155) reported the fol-
lowing data on y � ultimate shear strength of a rubber com-
pound (psi) and x � cure temperature (°F).

12-74. The following data were collected during an experiment
to determine the change in thrust efficiency ( y, in percent) as the
divergence angle of a rocket nozzle (x) changes:

y 770 800 840 810

x 280 284 292 295

y 735 640 590 560

x 298 305 308 315

(a) Fit a second-order polynomial to these data.
(b) Test for significance of regression using � � 0.05.
(c) Test the hypothesis that �11 � 0 using � � 0.05.
(d) Compute the residuals from part (a) and use them to eval-

uate model adequacy.

12-73. Consider the following data, which result from an
experiment to determine the effect of x � test time in hours at a
particular temperature on y � change in oil viscosity:
(a) Fit a second-order polynomial to the data.

y �1.42 �1.39 �1.55 �1.89 �2.43

x .25 .50 .75 1.00 1.25

y �3.15 �4.05 �5.15 �6.43 �7.89

x 1.50 1.75 2.00 2.25 2.50

y 24.60 24.71 23.90 39.50 39.60 57.12

x 4.0 4.0 4.0 5.0 5.0 6.0

y 67.11 67.24 67.15 77.87 80.11 84.67

x 6.5 6.5 6.75 7.0 7.1 7.3

(a) Fit a second-order model to the data.
(b) Test for significance of regression and lack of fit using 

� � 0.05.
(c) Test the hypothesis that �11 � 0, using � � 0.05.
(d) Plot the residuals and comment on model adequacy.
(e) Fit a cubic model, and test for the significance of the cubic

term using � � 0.05.

12-75. An article in the Journal of Pharmaceuticals Sciences
(Vol. 80, 1991, pp. 971–977) presents data on the observed mole
fraction solubility of a solute at a constant temperature and the
dispersion, dipolar, and hydrogen bonding Hansen partial solu-
bility parameters. The data are as shown in the following table,
where y is the negative logarithm of the mole fraction solubility,
x1 is the dispersion partial solubility, x2 is the dipolar partial sol-
ubility, and x3 is the hydrogen bonding partial solubility.
(a) Fit the model 

(b) Test for significance of regression using � � 0.05.
(c) Plot the residuals and comment on model adequacy.
(d) Use the extra sum of squares method to test the contribu-

tion of the second-order terms using � � 0.05.

�12x1x2��13x1x3� �23x2x3 � �11x 2
1 � �22x2

2 � �33x
2
3 � �.

Y � �0 � �1x1 � �2x2 � �3 x3 �

(b) Test for significance of regression using � � 0.05.
(c) Test the hypothesis that �11 � 0 using � � 0.05.
(d) Compute the residuals from part (a) and use them to eval-

uate model adequacy.
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12-79. Consider the X-ray inspection data in Exercise 12-11.
Use rads as the response. Build regression models for the data
using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12-80. Consider the electric power data in Exercise 12-6. Build
regression models for the data using the following techniques:
(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer?

12-81. Consider the regression model fit to the coal and
limestone mixture data in Exercise 12-13. Use density as the
response. Build regression models for the data using the fol-
lowing techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12-82. Consider the wire bond pull strength data in Ex-
ercise 12-8. Build regression models for the data using the
following methods:
(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer?

12-83. Consider the grey range modulation data in Exercise
12-15. Use the useful range as the response. Build regression
models for the data using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12-84. Consider the nisin extraction data in Exercise 12-14.
Build regression models for the data using the following
techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.

Observation 
Number y x1 x2 x3

1 0.22200 7.3 0.0 0.0
2 0.39500 8.7 0.0 0.3
3 0.42200 8.8 0.7 1.0
4 0.43700 8.1 4.0 0.2
5 0.42800 9.0 0.5 1.0
6 0.46700 8.7 1.5 2.8
7 0.44400 9.3 2.1 1.0
8 0.37800 7.6 5.1 3.4
9 0.49400 10.0 0.0 0.3

10 0.45600 8.4 3.7 4.1
11 0.45200 9.3 3.6 2.0
12 0.11200 7.7 2.8 7.1
13 0.43200 9.8 4.2 2.0
14 0.10100 7.3 2.5 6.8
15 0.23200 8.5 2.0 6.6
16 0.30600 9.5 2.5 5.0
17 0.09230 7.4 2.8 7.8
18 0.11600 7.8 2.8 7.7
19 0.07640 7.7 3.0 8.0
20 0.43900 10.3 1.7 4.2
21 0.09440 7.8 3.3 8.5
22 0.11700 7.1 3.9 6.6
23 0.07260 7.7 4.3 9.5
24 0.04120 7.4 6.0 10.9
25 0.25100 7.3 2.0 5.2
26 0.00002 7.6 7.8 20.7
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12-76. Consider the arsenic concentration data in Exercise
12-10.
(a) Discuss how you would model the information about the

person’s sex.
(b) Fit a regression model to the arsenic in nails using 

age, drink use, cook use, and the person’s sex as the
regressors.

(c) Is there evidence that the person’s sex affects arsenic in the
nails? Why?

12-77. Consider the gasoline mileage data in Exercise 12-7.
(a) Discuss how you would model the information about the

type of transmission in the car.
(b) Fit a regression model to the gasoline mileage using cid, etw,

and the type of transmission in the car as the regressors.
(c) Is there evidence that the type of transmission (L4, L5,

or M6) affects gasoline mileage performance?

12-78. Consider the surface finish data in Example 12-15.
Test the hypothesis that two different regression models (with
different slopes and intercepts) are required to adequately model
the data. Use indicator variables in answering this question.
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(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?

12.85. Consider the stack loss data in Exercise 12-16.
Build regression models for the data using the following
techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?
(f) Remove any influential data points and repeat the model

building in the previous parts? Does your conclusion in
part (e) change?

12-86. Consider the NHL data in Exercise 12-18. Build
regression models for these data with regressors GF through
FG using the following methods:
(a) All possible regressions. Find the minimum Cp and mini-

mum MSE equations.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Which model would you prefer?

12-87. Use the football data in Exercise 12-17 to build
regression models using the following techniques:
(a) All possible regressions. Find the equations that minimize

MSE and that minimize Cp.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the various models obtained. Which model

seems “best,’’ and why?

12-88. Consider the arsenic data in Exercise 12-12. Use
arsenic in nails as the response and age, drink use, and cook
use as the regressors. Build regression models for the data
using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.
(e) Comment on the models obtained. Which model would

you prefer? Why?
(f) Now construct an indicator variable and add the person’s

sex to the list of regressors. Repeat the model building in the
previous parts. Does your conclusion in part (e) change?

12-89. Consider the gas mileage data in Exercise 12-7.
Build regression models for the data from the numerical re-
gressors using the following techniques:
(a) All possible regressions.
(b) Stepwise regression.
(c) Forward selection.
(d) Backward elimination.

(e) Comment on the models obtained. Which model would
you prefer? Why?

(f) Now construct indicator variable for trns and drv and add
these to the list of regressors. Repeat the model building in the
previous parts. Does your conclusion in part (e) change?

12-90. When fitting polynomial regression models, we
often subtract from each x value to produce a “centered’’
regressor . This reduces the effects of dependencies
among the model terms and often leads to more accurate esti-
mates of the regression coefficients. Using the data from
Exercise 12-72, fit the model 
(a) Use the results to estimate the coefficients in the uncen-

tered model . Predict y when
. Suppose that we use a standardized variable

, where sx is the standard deviation of x, in
constructing a polynomial regression model. Fit the model

. 
(b) What value of y do you predict when ?
(c) Estimate the regression coefficients in the unstandardized

model .
(d) What can you say about the relationship between SSE and

R2 for the standardized and unstandardized models?
(e) Suppose that is used in the model along

with . Fit the model and comment on the relationship
between SSE and R2 in the standardized model and the
unstandardized model.

12-91. Consider the data in Exercise 12-75. Use all the terms
in the full quadratic model as the candidate regressors.
(a) Use forward selection to identify a model.
(b) Use backward elimination to identify a model.
(c) Compare the two models obtained in parts (a) and (b).

Which model would you prefer and why?

12-92. We have used a sample of 30 observations to fit a
regression model. The full model has nine regressors, the vari-
ance estimate is and .
(a) Calculate the F-statistic for testing significance of regres-

sion. Using � = 0.05, what would you conclude?
(b) Suppose that we fit another model using only four of the

original regressors and that the error sum of squares for
this new model is 2200. Find the estimate of �2 for this
new reduced model. Would you conclude that the reduced
model is superior to the old one? Why?

(c) Find the value of Cp for the reduced model in part (b).
Would you conclude that the reduced model is better than
the old model?

12-93. A sample of 25 observations is used to fit a regres-
sion model in seven variables. The estimate of �2 for this full
model is MSE � 10.
(a) A forward selection algorithm has put three of the original

seven regressors in the model. The error sum of squares
for the three-variable model is SSE � 300. Based on Cp,
would you conclude that the three-variable model has any
remaining bias?

R2 � 0.92�̂2 � MSE � 100,

x¿
y ¿ � 1 y � y 2�sy

Y � �0 � �1x � �11x
2 � �

x � 285�F
Y � �*

0 � �*
1x¿ � �*

111x¿ 2 2 � �

x¿ � 1x � x 2�sx

x � 285�F
Y � �0 � �1x � �11x2 � �

Y � �*
0 � �*

1x¿ � �*
11 1x¿ 2 2 � �.

x¿ � x � x
x
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(b) After looking at the forward selection model in part (a),
suppose you could add one more regressor to the model.
This regressor will reduce the error sum of squares to 275.
Will the addition of this variable improve the model? Why?

Supplemental Exercises

12-94. Consider the computer output below.

The regression equation is
Y � 517 � 11.5 x1 � 8.14 x2 � 10.9 x3

Predictor Coef SE Coef T P
Constant 517.46 11.76 ? ?
x1 11.4720 ? 36.50 ?
x2 �8.1378 0.1969 ? ?
x3 10.8565 0.6652 ? ?

S � 10.2560 R�Sq � ? R�Sq (adj) � ?

Analysis of Variance

Source DF SS MS F P
Regression ? 347300 115767 ? ?
Residual Error 16 ? 105
Total 19 348983

(a) Fill in the missing values. Use bounds for the P-values.
(b) Is the overall model significant at � � 0.05? Is it signifi-

cant at � � 0.01?
(c) Discuss the contribution of the individual regressors to the

model.
12-95. Consider the following inverse of the model matrix:

(a) How many variables are in the regression model?
(b) If the estimate of �2 is 50, what is the estimate of the vari-

ance of each regression coefficient?
(c) What is the standard error of the intercept?

12-96. The data shown in Table 12-22 represent the thrust
of a jet-turbine engine (y) and six candidate regressors: x1 =
primary speed of rotation, x2 � secondary speed of rotation,
x3 � fuel flow rate, x4 � pressure, x5 � exhaust temperature,
and x6 � ambient temperature at time of test.
(a) Fit a multiple linear regression model using x3 � fuel flow

rate, x4 � pressure, and x5 � exhaust temperature as the
regressors.

(b) Test for significance of regression using � � 0.01. Find
the P-value for this test. What are your conclusions?

(c) Find the t-test statistic for each regressor. Using � � 0.01,
explain carefully the conclusion you can draw from these
statistics.

(d) Find R2 and the adjusted statistic for this model.
(e) Construct a normal probability plot of the residuals and

interpret this graph.

1X¿X2�1 � £

0.893758

�0.028245

�0.017564

�0.028245

0.0013329

0.0001547

�0.0175641

0.0001547

0.0009108

§

(f ) Plot the residuals versus Are there any indications of
inequality of variance or nonlinearity?

(g) Plot the residuals versus x3. Is there any indication of 
nonlinearity?

(h) Predict the thrust for an engine for which x3 � 28900, 
x4 � 170, and x5 � 1589.

12-97. Consider the engine thrust data in Exercise 12-96.
Refit the model using as the response variable and

� ln x3 as the regressor (along with x4 and x5).

(a) Test for significance of regression using � � 0.01. Find
the P-value for this test and state your conclusions.

(b) Use the t-statistic to test H0: �j � 0 versus H1: �j � 0 for
each variable in the model. If � � 0.01, what conclusions
can you draw?

(c) Plot the residuals versus and versus . Comment on
these plots. How do they compare with their counterparts
obtained in Exercise 12-96 parts (f ) and (g)?

12-98. Transient points of an electronic inverter are
influenced by many factors. Table 12-21 gives data on the tran-
sient point (y, in volts) of PMOS-NMOS inverters and five can-
didate regressors: x1 � width of the NMOS device, x2 � length

x*3ŷ*

x*3

y* � ln y

ŷ.

Observation 
Number x1 x2 x3 x4 x5 y

1 3 3 3 3 0 0.787

2 8 30 8 8 0 0.293
3 3 6 6 6 0 1.710
4 4 4 4 12 0 0.203
5 8 7 6 5 0 0.806
6 10 20 5 5 0 4.713
7 8 6 3 3 25 0.607
8 6 24 4 4 25 9.107
9 4 10 12 4 25 9.210

10 16 12 8 4 25 1.365
11 3 10 8 8 25 4.554
12 8 3 3 3 25 0.293
13 3 6 3 3 50 2.252
14 3 8 8 3 50 9.167
15 4 8 4 8 50 0.694
16 5 2 2 2 50 0.379
17 2 2 2 3 50 0.485
18 10 15 3 3 50 3.345
19 15 6 2 3 50 0.208
20 15 6 2 3 75 0.201
21 10 4 3 3 75 0.329
22 3 8 2 2 75 4.966
23 6 6 6 4 75 1.362
24 2 3 8 6 75 1.515
25 3 3 8 8 75 0.751

Table 12-21 Transient Point of an Electronic Inverter
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Table 12-22 Thrust of a Jet-Turbine Engine

Observation 
Number y x1 x2 x3 x4 x5 x6

1 4540 2140 20640 30250 205 1732 99

2 4315 2016 20280 30010 195 1697 100

3 4095 1905 19860 29780 184 1662 97

4 3650 1675 18980 29330 164 1598 97

5 3200 1474 18100 28960 144 1541 97

6 4833 2239 20740 30083 216 1709 87

7 4617 2120 20305 29831 206 1669 87

8 4340 1990 19961 29604 196 1640 87

9 3820 1702 18916 29088 171 1572 85

10 3368 1487 18012 28675 149 1522 85

11 4445 2107 20520 30120 195 1740 101

12 4188 1973 20130 29920 190 1711 100

13 3981 1864 19780 29720 180 1682 100

14 3622 1674 19020 29370 161 1630 100

15 3125 1440 18030 28940 139 1572 101

16 4560 2165 20680 30160 208 1704 98

17 4340 2048 20340 29960 199 1679 96

18 4115 1916 19860 29710 187 1642 94

19 3630 1658 18950 29250 164 1576 94

20 3210 1489 18700 28890 145 1528 94

21 4330 2062 20500 30190 193 1748 101

22 4119 1929 20050 29960 183 1713 100

23 3891 1815 19680 29770 173 1684 100

24 3467 1595 18890 29360 153 1624 99

25 3045 1400 17870 28960 134 1569 100

26 4411 2047 20540 30160 193 1746 99

27 4203 1935 20160 29940 184 1714 99

28 3968 1807 19750 29760 173 1679 99

29 3531 1591 18890 29350 153 1621 99

30 3074 1388 17870 28910 133 1561 99

31 4350 2071 20460 30180 198 1729 102

32 4128 1944 20010 29940 186 1692 101

33 3940 1831 19640 29750 178 1667 101

34 3480 1612 18710 29360 156 1609 101

35 3064 1410 17780 28900 136 1552 101

36 4402 2066 20520 30170 197 1758 100

37 4180 1954 20150 29950 188 1729 99

38 3973 1835 19750 29740 178 1690 99

39 3530 1616 18850 29320 156 1616 99

40 3080 1407 17910 28910 137 1569 100 
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508 CHAPTER 12 MULTIPLE LINEAR REGRESSION

of the NMOS device, x3 � width of the PMOS device, x4 �
length of the PMOS device, and x5 � temperature (°C).
(a) Fit a multiple linear regression model that uses all regres-

sors to these data. Test for significance of regression using
� � 0.01. Find the P-value for this test and use it to draw
your conclusions.

(b) Test the contribution of each variable to the model using
the t-test with � � 0.05. What are your conclusions?

(c) Delete x5 from the model. Test the new model for signifi-
cance of regression. Also test the relative contribution of
each regressor to the new model with the t-test. Using 
� � 0.05, what are your conclusions?

(d) Notice that the MSE for the model in part (c) is smaller
than the MSE for the full model in part (a). Explain why
this has occurred.

(e) Calculate the studentized residuals. Do any of these seem
unusually large?

(f ) Suppose that you learn that the second observation was
recorded incorrectly. Delete this observation and refit the
model using x1, x2, x3, and x4 as the regressors. Notice that
the R2 for this model is considerably higher than the R2 for
either of the models fitted previously. Explain why the R2

for this model has increased.
(g) Test the model from part (f ) for significance of regression

using � � 0.05. Also investigate the contribution of each
regressor to the model using the t-test with � � 0.05.
What conclusions can you draw?

(h) Plot the residuals from the model in part (f ) versus and
versus each of the regressors x1, x2, x3, and x4. Comment
on the plots.

12-99. Consider the inverter data in Exercise 12-98. Delete
observation 2 from the original data. Define new variables as
follows: 
and 
(a) Fit a regression model using these transformed regressors

(do not use x5).
(b) Test the model for significance of regression using � � 0.05.

Use the t-test to investigate the contribution of each vari-
able to the model (� � 0.05). What are your conclusions?

(c) Plot the residuals versus and versus each of the trans-
formed regressors. Comment on the plots.

12-100. Following are data on y � green liquor (g/l) and 
x � paper machine speed (feet per minute) from a Kraft paper
machine. (The data were read from a graph in an article in the
Tappi Journal, March 1986.)

ŷ*

x*4 � 1x4.
x2* � 1x2, x 3* � 1�1x3,y* � ln y, x1* � 1�1x1,

ŷ

(b) Test for significance of regression using � � 0.05. What
are your conclusions?

(c) Test the contribution of the quadratic term to the model,
over the contribution of the linear term, using an F-statistic.
If � � 0.05, what conclusion can you draw?

(d) Plot the residuals from the model in part (a) versus .
Does the plot reveal any inadequacies?

(e) Construct a normal probability plot of the residuals.
Comment on the normality assumption.

12-101. Consider the jet engine thrust data in Exercise
12-96 and 12-97. Define the response and regressors as in
Exercise 12-97.
(a) Use all possible regressions to select the best regression

equation, where the model with the minimum value of
MSE is to be selected as “best.’’

(b) Repeat part (a) using the CP criterion to identify the best
equation.

(c) Use stepwise regression to select a subset regression model.
(d) Compare the models obtained in parts (a), (b), and (c) above.
(e) Consider the three-variable regression model. Calculate

the variance inflation factors for this model. Would you
conclude that multicollinearity is a problem in this model?

12-102. Consider the electronic inverter data in Exercise 
12-98 and 12-99. Define the response and regressors variables
as in Exercise 12-99, and delete the second observation in the
sample.
(a) Use all possible regressions to find the equation that min-

imizes Cp.
(b) Use all possible regressions to find the equation that

minimizes MSE.
(c) Use stepwise regression to select a subset regression model.
(d) Compare the models you have obtained.

12-103. A multiple regression model was used to relate y �
viscosity of a chemical product to x1 � temperature and x2 �
reaction time. The data set consisted of n � 15 observations.
(a) The estimated regression coefficients were 

and . Calculate an estimate of
mean viscosity when x1 � 100°F and x2 � 2 hours.

(b) The sums of squares were SST � 1230.50 and SSE �
120.30. Test for significance of regression using � �
0.05. What conclusion can you draw?

(c) What proportion of total variability in viscosity is
accounted for by the variables in this model?

(d) Suppose that another regressor, x3 � stirring rate, is added
to the model. The new value of the error sum of squares is
SSE � 117.20. Has adding the new variable resulted in a
smaller value of MSE? Discuss the significance of this result.

(e) Calculate an F-statistic to assess the contribution of x3 to the
model. Using � � 0.05, what conclusions do you reach?

12-104. Tables 12-23 and 12-24 present statistics for the Major
League Baseball 2005 season (source: The Sports Network).
(a) Consider the batting data. Use model-building methods to

predict Wins from the other variables. Check that the
assumptions for your model are valid.

�̂2 � 10.40�̂1 � 0.85,
�̂0 � 300.00,

ŷ

y 16.0 15.8 15.6 15.5 14.8

x 1700 1720 1730 1740 1750

y 14.0 13.5 13.0 12.0 11.0

x 1760 1770 1780 1790 1795

(a) Fit the model using least squares.Y � �0 � �1x � �2x2 � �
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Table 12-23 Major League Baseball 2005 Season

American League Batting

Team W AVG R H 2B 3B HR RBI BB SO SB GIDP LOB OBP

Chicago 99 0.262 741 1450 253 23 200 713 435 1002 137 122 1032 0.322
Boston 95 0.281 910 1579 339 21 199 863 653 1044 45 135 1249 0.357
LA Angels 95 0.27 761 1520 278 30 147 726 447 848 161 125 1086 0.325
New York 95 0.276 886 1552 259 16 229 847 637 989 84 125 1264 0.355
Cleveland 93 0.271 790 1522 337 30 207 760 503 1093 62 128 1148 0.334
Oakland 88 0.262 772 1476 310 20 155 739 537 819 31 148 1170 0.33
Minnesota 83 0.259 688 1441 269 32 134 644 485 978 102 155 1109 0.323
Toronto 80 0.265 775 1480 307 39 136 735 486 955 72 126 1118 0.331
Texas 79 0.267 865 1528 311 29 260 834 495 1112 67 123 1104 0.329
Baltimore 74 0.269 729 1492 296 27 189 700 447 902 83 145 1103 0.327
Detroit 71 0.272 723 1521 283 45 168 678 384 1038 66 137 1077 0.321
Seattle 69 0.256 699 1408 289 34 130 657 466 986 102 115 1076 0.317
Tampa Bay 67 0.274 750 1519 289 40 157 717 412 990 151 133 1065 0.329
Kansas City 56 0.263 701 1445 289 34 126 653 424 1008 53 139 1062 0.32

National League Batting

Team W AVG R H 2B 3B HR RBI BB SO SB GIDP LOB OBP

St. Louis 100 0.27 805 1494 287 26 170 757 534 947 83 127 1152 0.339
Atlanta 90 0.265 769 1453 308 37 184 733 534 1084 92 146 1114 0.333
Houston 89 0.256 693 1400 281 32 161 654 481 1037 115 116 1136 0.322
Philadelphia 88 0.27 807 1494 282 35 167 760 639 1083 116 107 1251 0.348
Florida 83 0.272 717 1499 306 32 128 678 512 918 96 144 1181 0.339
New York 83 0.258 722 1421 279 32 175 683 486 1075 153 103 1122 0.322
San Diego 82 0.257 684 1416 269 39 130 655 600 977 99 122 1220 0.333
Milwaukee 81 0.259 726 1413 327 19 175 689 531 1162 79 137 1120 0.331
Washington 81 0.252 639 1367 311 32 117 615 491 1090 45 130 1137 0.322
Chicago 79 0.27 703 1506 323 23 194 674 419 920 65 131 1133 0.324
Arizona 77 0.256 696 1419 291 27 191 670 606 1094 67 132 1247 0.332
San Francisco 75 0.261 649 1427 299 26 128 617 431 901 71 147 1093 0.319
Cincinnati 73 0.261 820 1453 335 15 222 784 611 1303 72 116 1176 0.339
Los Angeles 71 0.253 685 1374 284 21 149 653 541 1094 58 139 1135 0.326
Colorado 67 0.267 740 1477 280 34 150 704 509 1103 65 125 1197 0.333
Pittsburgh 67 0.259 680 1445 292 38 139 656 471 1092 73 130 1193 0.322

Batting

W Wins
AVG Batting average
R Runs
H Hits
2B Doubles
3B Triples
HR Home runs
RBI Runs batted in
BB Walks
SO Strikeouts
SB Stolen bases
GIDP Grounded into double play

LOB Left on base
OBP On-base percentage

Pitching
ERA Earned run average
SV Saves
H Hits
R Runs
ER Earned runs
HR Home runs
BB Walks
SO Strikeouts
AVG Opponent batting average
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Table 12-24 Major League Baseball 2005 Season

American League Pitching

Team W ERA SV H R ER HR BB SO AVG

Chicago 99 3.61 54 1392 645 592 167 459 1040 0.249
Boston 95 4.74 38 1550 805 752 164 440 959 0.276
LA Angels 95 3.68 54 1419 643 598 158 443 1126 0.254
New York 95 4.52 46 1495 789 718 164 463 985 0.269
Cleveland 93 3.61 51 1363 642 582 157 413 1050 0.247
Oakland 88 3.69 38 1315 658 594 154 504 1075 0.241
Minnesota 83 3.71 44 1458 662 604 169 348 965 0.261
Toronto 80 4.06 35 1475 705 653 185 444 958 0.264
Texas 79 4.96 46 1589 858 794 159 522 932 0.279
Baltimore 74 4.56 38 1458 800 724 180 580 1052 0263
Detroit 71 4.51 37 1504 787 719 193 461 907 0.272
Seattle 69 4.49 39 1483 751 712 179 496 892 0.268
Tampa Bay 67 5.39 43 1570 936 851 194 615 949 0.28
Kansas City 56 5.49 25 1640 935 862 178 580 924 0.291

National League Pitching

Team W ERA SV H R ER HR BB SO AVG

St. Louis 100 3.49 48 1399 634 560 153 443 974 0.257
Atlanta 90 3.98 38 1487 674 639 145 520 929 0.268
Houston 89 3.51 45 1336 609 563 155 440 1164 0.246
Philadelphia 88 4.21 40 1379 726 672 189 487 1159 0.253
Florida 83 4.16 42 1459 732 666 116 563 1125 0.266
New York 83 3.76 38 1390 648 599 135 491 1012 0.255
San Diego 82 4.13 45 1452 726 668 146 503 1133 0.259
Milwaukee 81 3.97 46 1382 697 635 169 569 1173 0.251
Washington 81 3.87 51 1456 673 627 140 539 997 0.262
Chicago 79 4.19 39 1357 714 671 186 576 1256 0.25
Arizona 77 4.84 45 1580 856 783 193 537 1038 0.278
San Francisco 75 4.33 46 1456 745 695 151 592 972 0.263
Cincinnati 73 5.15 31 1657 889 820 219 492 955 0.29
Los Angeles 71 4.38 40 1434 755 695 182 471 1004 0.263
Colorado 67 5.13 37 1600 862 808 175 604 981 0.287
Pittsburgh 67 4.42 35 1456 769 706 162 612 958 0.267

Batting

W Wins
AVG Batting average
R Runs
H Hits
2B Doubles
3B Triples
HR Home runs
RBI Runs batted in
BB Walks
SO Strikeouts
SB Stolen bases
GID Grounded into double play

LOB Left on base
OBP On-base percentage

Pitching

ERA Earned run average
SV Saves
H Hits
R Runs
ER Earned runs
HR Home runs
BB Walks
SO Strikeouts
AVG Opponent batting average

510 CHAPTER 12 MULTIPLE LINEAR REGRESSION
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(b) Repeat part (a) for the pitching data.
(c) Use both the batting and pitching data to build a model to

predict Wins. What variables are most important? Check
that the assumptions for your model are valid.

12-105. An article in the Journal of the American Ceramics
Society (1992, Vol. 75, pp. 112–116) describes a process for
immobilizing chemical or nuclear wastes in soil by dissolving
the contaminated soil into a glass block. The authors mix CaO
and Na2O with soil and model viscosity and electrical conduc-
tivity. The electrical conductivity model involves six regres-
sors, and the sample consists of n � 14 observations.
(a) For the six-regressor model, suppose that SST � 0.50 and

R2 � 0.94. Find SSE and SSR, and use this information to
test for significance of regression with � � 0.05. What are
your conclusions?

(b) Suppose that one of the original regressors is deleted from
the model, resulting in R2 � 0.92. What can you conclude
about the contribution of the variable that was removed?
Answer this question by calculating an F-statistic.

(c) Does deletion of the regressor variable in part (b) result in
a smaller value of MSE for the five-variable model, in

comparison to the original six-variable model? Comment
on the significance of your answer.

12-106. Exercise 12-5 introduced the hospital patient satis-
faction survey data. One of the variables in that data set is a
categorical variable indicating whether the patient is a medical
patient or a surgical patient. Fit a model including this indica-
tor variable to the data, using all three of the other regressors.
Is there any evidence that the service the patient is on (medical
versus surgical) has an impact on the reported satisfaction?

12-107. Consider the inverse model matrix shown below.

(a) How many regressors are in this model?

(b) What was the sample size?

(c) Notice the special diagonal structure of the matrix. What
does that tell you about the columns in the original X matrix?

1X¿X2�1 � ≥

0.125 0 0 0

0 0.125 0 0

0 0 0.125 0

0 0 0 0.125

¥

MIND-EXPANDING EXERCISES

12-108. Consider a multiple regression model with k
regressors. Show that the test statistic for significance 
of regression can be written as

Suppose that n � 20, k � 4, and R2 � 0.90. If � � 0.05,
what conclusion would you draw about the relationship
between y and the four regressors?

12-109. A regression model is used to relate a response
y to k � 4 regressors with n � 20. What is the smallest
value of R2 that will result in a significant regression if
� � 0.05? Use the results of the previous exercise. Are
you surprised by how small the value of R2 is?

12-110. Show that we can express the residuals from
a multiple regression model as e � (I � H)y, where 
H � X(X X)�1X .

12-111. Show that the variance of the ith residual ei in
a multiple regression model is and that the
covariance between ei and ej is ��2hij, where the h’s are
the elements of H � X(X X)�1X .

12-112. Consider the multiple linear regression model
y � X� � �. If denotes the least squares estimator of
�, show that where  .

12-113. Constrained Least Squares. Suppose we
wish to find the least squares estimator of � in the model

y � X� � � subject to a set of equality constraints, say,
T� � c.

(a) Show that the estimator is

� T�[T(X�X)–1T�]–1(c � T )

where � (X�X)–1X�y.

(b) Discuss situations where this model might be
appropriate.

12-114. Piecewise Linear Regression. Suppose that
y is piecewise linearly related to x. That is, different lin-
ear relationships are appropriate over the intervals

and .
(a) Show how indicator variables can be used to fit such

a piecewise linear regression model, assuming that
the point is known.

(b) Suppose that at the point a discontinuity occurs
in the regression function. Show how indicator vari-
ables can be used to incorporate the discontinuity
into the model.

(c) Suppose that the point x* is not known with cer-
tainty and must be estimated. Suggest an approach
that could be used to fit the piecewise linear
regression model.

x*
x*

x* � x � ��� � x � x*

�̂

�̂

�̂c � �̂ � 1X¿X2�1

R � 1X¿X2�1X¿�̂ � � � R�,
�̂

¿

�2 11 � hii2

¿¿

F0 �
R2�k

11 � R2 2 � 1n � k � 12
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IMPORTANT TERMS AND CONCEPTS

All possible regressions
Analysis of variance test

in multiple regression
Categorical variables
Confidence interval on

the mean response 
Cp statistic
Extra sum of squares

method
Hidden extrapolation

Indicator variables
Inference (test and

intervals) on individ-
ual model parameters

Influential observations
Model parameters and

their interpretation 
in multiple 
regression

Multicollinearity

Multiple Regression 
Outliers
Polynomial regression

model
Prediction interval on a

future observation
PRESS statistic
Residual analysis and

model adequacy
checking

Significance of 
regression

Stepwise regression and
related methods

Variance Inflation
Factor (VIF)
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Design and Analysis 
of Single-Factor Experiments: 
The Analysis of Variance

Experiments are a natural part of the engineering and scientific decision-making process.
Suppose, for example, that a civil engineer is investigating the effects of different curing
methods on the mean compressive strength of concrete. The experiment would consist of
making up several test specimens of concrete using each of the proposed curing methods
and then testing the compressive strength of each specimen. The data from this experi-
ment could be used to determine which curing method should be used to provide maxi-
mum mean compressive strength.

If there are only two curing methods of interest, this experiment could be designed
and analyzed using the statistical hypothesis methods for two samples introduced in
Chapter 10. That is, the experimenter has a single factor of interest—curing methods—
and there are only two levels of the factor. If the experimenter is interested in determining
which curing method produces the maximum compressive strength, the number of speci-
mens to test can be determined from the operating characteristic curves in Appendix
Chart VII, and the t-test can be used to decide if the two means differ.

Many single-factor experiments require that more than two levels of the factor be
considered. For example, the civil engineer may want to investigate five different curing
methods. In this chapter we show how the analysis of variance (frequently abbreviated
ANOVA) can be used for comparing means when there are more than two levels of a single
factor. We will also discuss randomization of the experimental runs and the important role
this concept plays in the overall experimentation strategy. In the next chapter, we will
show how to design and analyze experiments with several factors.

13
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514 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

13-1 DESIGNING ENGINEERING
EXPERIMENTS

13-2 COMPLETELY RANDOMIZED
SINGLE-FACTOR EXPERIMENT

13-2.1 Example: Tensile Strength

13-2.2 Analysis of Variance

13-2.3 Multiple Comparisons Following
the ANOVA

13-2.4 Residual Analysis and Model
Checking

13-2.5 Determining Sample Size

13-3 THE RANDOM-EFFECTS MODEL

13-3.1 Fixed Versus Random Factors

13-3.2 ANOVA and Variance
Components

13-4 RANDOMIZED COMPLETE BLOCK
DESIGN

13-4.1 Design and Statistical Analysis

13-4.2 Multiple Comparisons

13-4.3 Residual Analysis and Model
Checking

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Design and conduct engineering experiments involving a single factor with an arbitrary number

of levels
2. Understand how the analysis of variance is used to analyze the data from these experiments
3. Assess model adequacy with residual plots
4. Use multiple comparison procedures to identify specific differences between means
5. Make decisions about sample size in single-factor experiments
6. Understand the difference between fixed and random factors
7. Estimate variance components in an experiment involving random factors
8. Understand the blocking principle and how it is used to isolate the effect of nuisance factors
9. Design and conduct experiments involving the randomized complete block design

13-1 DESIGNING ENGINEERING EXPERIMENTS

Statistically based experimental design techniques are particularly useful in the engineering
world for solving many important problems: discovery of new basic phenomena that can lead to
new products, and commercialization of new technology including new product development,
new process development, and improvement of existing products and processes. For example,
consider the development of a new process. Most processes can be described in terms of several
controllable variables, such as temperature, pressure, and feed rate. By using designed experi-
ments, engineers can determine which subset of the process variables has the greatest influence
on process performance. The results of such an experiment can lead to

Improved process yield

Reduced variability in the process and closer conformance to nominal or target
requirements

Reduced design and development time

Reduced cost of operation
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Experimental design methods are also useful in engineering design activities, where new
products are developed and existing ones are improved. Some typical applications of statisti-
cally designed experiments in engineering design include

Evaluation and comparison of basic design configurations

Evaluation of different materials

Selection of design parameters so that the product will work well under a wide variety
of field conditions (or so that the design will be robust)

Determination of key product design parameters that affect product performance

The use of experimental design in the engineering design process can result in products that
are easier to manufacture, products that have better field performance and reliability than their
competitors, and products that can be designed, developed, and produced in less time.

Designed experiments are usually employed sequentially. That is, the first experiment 
with a complex system (perhaps a manufacturing process) that has many controllable variables
is often a screening experiment designed to determine which variables are most important.
Subsequent experiments are used to refine this information and determine which adjustments
to these critical variables are required to improve the process. Finally, the objective of the ex-
perimenter is optimization, that is, to determine which levels of the critical variables result in
the best process performance.

Every experiment involves a sequence of activities:

1. Conjecture—the original hypothesis that motivates the experiment.

2. Experiment—the test performed to investigate the conjecture.

3. Analysis—the statistical analysis of the data from the experiment.

4. Conclusion—what has been learned about the original conjecture from the experi-
ment. Often the experiment will lead to a revised conjecture, and a new experiment,
and so forth.

The statistical methods introduced in this chapter and Chapter 14 are essential to good
experimentation. All experiments are designed experiments; unfortunately, some of them are
poorly designed, and as a result, valuable resources are used ineffectively. Statistically designed
experiments permit efficiency and economy in the experimental process, and the use of statistical
methods in examining the data results in scientific objectivity when drawing conclusions.

13-2 COMPLETELY RANDOMIZED SINGLE-FACTOR
EXPERIMENT

13-2.1 Example: Tensile Strength

A manufacturer of paper used for making grocery bags is interested in improving the tensile
strength of the product. Product engineering thinks that tensile strength is a function of the hard-
wood concentration in the pulp and that the range of hardwood concentrations of practical inter-
est is between 5 and 20%. A team of engineers responsible for the study decides to investigate four
levels of hardwood concentration: 5%, 10%, 15%, and 20%. They decide to make up six test spec-
imens at each concentration level, using a pilot plant. All 24 specimens are tested on a laboratory
tensile tester, in random order. The data from this experiment are shown in Table 13-1.

This is an example of a completely randomized single-factor experiment with four levels
of the factor. The levels of the factor are sometimes called treatments, and each treatment has
six observations or replicates. The role of randomization in this experiment is extremely
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important. By randomizing the order of the 24 runs, the effect of any nuisance variable that
may influence the observed tensile strength is approximately balanced out. For example,
suppose that there is a warm-up effect on the tensile testing machine; that is, the longer the
machine is on, the greater the observed tensile strength. If all 24 runs are made in order of
increasing hardwood concentration (that is, all six 5% concentration specimens are tested
first, followed by all six 10% concentration specimens, etc.), any observed differences in
tensile strength could also be due to the warm-up effect. The role of randomization to iden-
tify causality was discussed in Section 10-1.

It is important to graphically analyze the data from a designed experiment. Figure 13-1(a)
presents box plots of tensile strength at the four hardwood concentration levels. This figure
indicates that changing the hardwood concentration has an effect on tensile strength; specifi-
cally, higher hardwood concentrations produce higher observed tensile strength. Furthermore,
the distribution of tensile strength at a particular hardwood level is reasonably symmetric,
and the variability in tensile strength does not change dramatically as the hardwood concen-
tration changes.

Graphical interpretation of the data is always useful. Box plots show the variability of the
observations within a treatment (factor level) and the variability between treatments. We now
discuss how the data from a single-factor randomized experiment can be analyzed statistically.

Figure 13-1 (a) Box plots of hardwood concentration data. (b) Display of the model in Equation 13-1 for the completely
randomized single-factor experiment.

Table 13-1 Tensile Strength of Paper (psi)

ObservationsHardwood 
Concentration (%) 1 2 3 4 5 6 Totals Averages

5 7 8 15 11 9 10 60 10.00
10 12 17 13 18 19 15 94 15.67
15 14 18 19 17 16 18 102 17.00
20 19 25 22 23 18 20 127 21.17

383 15.96
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13-2.2 Analysis of Variance

Suppose we have a different levels of a single factor that we wish to compare. Sometimes,
each factor level is called a treatment, a very general term that can be traced to the early
applications of experimental design methodology in the agricultural sciences. The response
for each of the a treatments is a random variable. The observed data would appear as shown 
in Table 13-2. An entry in Table 13-2, say yij, represents the jth observation taken under treat-
ment i. We initially consider the case in which there are an equal number of observations, n,
on each treatment.

We may describe the observations in Table 13-2 by the linear statistical model

(13-1)

where Yij is a random variable denoting the (ij)th observation, � is a parameter common to all
treatments called the overall mean, �i is a parameter associated with the ith treatment called
the ith treatment effect, and �ij is a random error component. Notice that the model could
have been written as

where �i � � � �i is the mean of the ith treatment. In this form of the model, we see that each
treatment defines a population that has mean �i, consisting of the overall mean � plus an effect
�i that is due to that particular treatment. We will assume that the errors �ij are normally and
independently distributed with mean zero and variance �2. Therefore, each treatment can be
thought of as a normal population with mean �i and variance �2. See Fig. 13-1(b).

Equation 13-1 is the underlying model for a single-factor experiment. Furthermore, since
we require that the observations are taken in random order and that the environment (often
called the experimental units) in which the treatments are used is as uniform as possible, this
experimental design is called a completely randomized design (CRD).

The a factor levels in the experiment could have been chosen in two different ways. First,
the experimenter could have specifically chosen the a treatments. In this situation, we wish to
test hypotheses about the treatment means, and conclusions cannot be extended to similar treat-
ments that were not considered. In addition, we may wish to estimate the treatment effects. This
is called the fixed-effects model. Alternatively, the a treatments could be a random sample
from a larger population of treatments. In this situation, we would like to be able to extend the
conclusions (which are based on the sample of treatments) to all treatments in the population,
whether or not they were explicitly considered in the experiment. Here the treatment effects 
are random variables, and knowledge about the particular ones investigated is relatively

�i

Yij � �i � �ij e
i � 1, 2, p , a

j � 1, 2, p , n

Yij � � � �i � �ij e
i � 1, 2, p , a

j � 1, 2, p , n

Table 13-2 Typical Data for a Single-Factor Experiment

Treatment Observations Totals Averages

1 y11 y12 p y1n y1.
2 y21 y22 p y2n y2.

a ya1 ya2 p yan

y.. y..

ya.ya.

oo�oooooo
y2.
y1.
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unimportant. Instead, we test hypotheses about the variability of the and try to estimate this
variability. This is called the random effects, or components of variance, model.

In this section we develop the analysis of variance for the fixed-effects model. The 
analysis of variance is not new to us; it was used previously in the presentation of regression
analysis. However, in this section we show how it can be used to test for equality of treatment
effects. In the fixed-effects model, the treatment effects �i are usually defined as deviations
from the overall mean �, so that

(13-2)

Let yi. represent the total of the observations under the ith treatment and represent the average
of the observations under the ith treatment. Similarly, let represent the grand total of all obser-
vations and represent the grand mean of all observations. Expressed mathematically,

(13-3)

where N � an is the total number of observations. Thus, the “dot” subscript notation implies
summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means �1, �2, . . . , �a. Using
Equation 13-2, we find that this is equivalent to testing the hypotheses

(13-4)

Thus, if the null hypothesis is true, each observation consists of the overall mean � plus a
realization of the random error component �ij. This is equivalent to saying that all N
observations are taken from a normal distribution with mean � and variance �2. Therefore,
if the null hypothesis is true, changing the levels of the factor has no effect on the mean
response.

The ANOVA partitions the total variability in the sample data into two component parts.
Then, the test of the hypothesis in Equation 13-4 is based on a comparison of two independ-
ent estimates of the population variance. The total variability in the data is described by the
total sum of squares

The partition of the total sum of squares is given in the following definition.

SST � a
a

i�1
a

n

j�1
 1 yij � y..22

 H1: �i 	 0 for at least one i

 H0: �1 � �2 � p � �a � 0

 y.. � a
a

i�1
 a

n

j�1
 yij   y.. � y..
N

 yi. � a
n

j�1
 yij  yi. � yi.
n  i � 1, 2, . . . , a

y..
y..

yi.

a
a

i�1
 �i � 0

�i

The sum of squares identity is

(13-5)

or symbolically

(13-6)SST � SSTreatments � SSE

a
a

i�1
 a

n

j�1
 1 yij � y..22 � n a

a

i�1
 1  yi. � y..22 � a

a

i�1
 a

n

j�1
 1 yij � yi.2

2

ANOVA Sum
of Squares

Identity:
Single Factor

Experiment 
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�

MS Treatments

MSE
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The expected value of the treatment sum of squares is 

and the expected value of the error sum of squares is

E1SSE2 � a1n � 12�2

E1SS Treatments2 � 1a � 12�2 � n a
a

i�1
 
�i

2

The identity in Equation 13-5 shows that the total variability in the data, measured by the
total corrected sum of squares SST, can be partitioned into a sum of squares of differences
between treatment means and the grand mean denoted SSTreatments and a sum of squares of dif-
ferences of observations within a treatment from the treatment mean denoted SSE. Differences
between observed treatment means and the grand mean measure the differences between treat-
ments, while differences of observations within a treatment from the treatment mean can be
due only to random error. 

We can gain considerable insight into how the analysis of variance works by examining
the expected values of SSTreatments and SSE. This will lead us to an appropriate statistic for test-
ing the hypothesis of no differences among treatment means (or all ).�i � 0

There is also a partition of the number of degrees of freedom that corresponds to the sum
of squares identity in Equation 13-5. That is, there are an � N observations; thus, SST has
an � 1 degrees of freedom. There are a levels of the factor, so SSTreatments has a � 1 degrees of
freedom. Finally, within any treatment there are n replicates providing n � 1 degrees of free-
dom with which to estimate the experimental error. Since there are a treatments, we have
a(n � 1) degrees of freedom for error. Therefore, the degrees of freedom partition is

The ratio

is called the mean square for treatments. Now if the null hypothesis �
is true, MSTreatments is an unbiased estimator of �2 because . However,

if H1 is true, MSTreatments estimates �2 plus a positive term that incorporates variation due to the
systematic difference in treatment means.

Note that the error mean square

is an unbiased estimator of �2 regardless of whether or not H0 is true. We can also show that
MSTreatments and MSE are independent. Consequently, we can show that if the null hypothesis H0

is true, the ratio

MSE � SSE
 3a1n � 12 4

g a
i�1 �i � 0p � �a � 0

H0: �1 � �2

MSTreatments � SSTreatments 
 1a � 12

an � 1 � a � 1 � a1n � 12

Expected
Values of Sums

of Squares:
Single Factor

Experiment

ANOVA 
F-Test
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has an F-distribution with a � 1 and a (n � 1) degrees of freedom. Furthermore, from the
expected mean squares, we know that MSE is an unbiased estimator of �2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of �2. However, if the null hypothesis is
false, the expected value of MSTreatments is greater than �2. Therefore, under the alternative
hypothesis, the expected value of the numerator of the test statistic (Equation 13-7)
is greater than the expected value of the denominator. Consequently, we should reject H0

if the statistic is large. This implies an upper-tail, one-tail critical region. Therefore,
we would reject H0 if where f0 is the computed value of F0 from
Equation 13-7.

Efficient computational formulas for the sums of squares may be obtained by
expanding and simplifying the definitions of SSTreatments and SST. This yields the following
results.

f0 � f�, a�1, a 1n�12

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

(13-8)

and

(13-9)

The error sum of squares is obtained by subtraction as

(13-10)SSE � SST � SSTreatments

SS Treatments � a
a

i�1
  

y2
i .
n �

y..2

N

SS T � a
a

i�1
 a

n

j�1
 y2

ij �
y..2

N

Computing
Formulas for

ANOVA: Single
Factor with

Equal Sample
Sizes

The computations for this test procedure are usually summarized in tabular form as shown in
Table 13-3. This is called an analysis of variance (or ANOVA) table.

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1 MSTreatments

Error SSE a(n � 1) MSE

Total SST an � 1

MS Treatments

MSE

EXAMPLE 13-1 Tensile Strength ANOVA
Consider the paper tensile strength experiment described in
Section 13-2.1. This experiment is a CRD. We can use the
analysis of variance to test the hypothesis that different hard-
wood concentrations do not affect the mean tensile strength of
the paper.

The hypotheses are

 H1: �i 	 0 for at least one i

 H0: �1 � �2 � �3 � �4 � 0

We will use . The sums of squares for the analysis of
variance are computed from Equations 13-8, 13-9, and 13-10
as follows:

 � 1722 � 1822 � p � 12022 �
138322

24
� 512.96

 SST � a
4

i�1
 a

6

j�1
 y2

ij �
y..2

N

� � 0.01
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Minitab Output
Many software packages have the capability to analyze data from designed experiments using
the analysis of variance. Table 13-5 presents the output from the Minitab one-way analysis of
variance routine for the paper tensile strength experiment in Example 13-1. The results agree
closely with the manual calculations reported previously in Table 13-4.

The Minitab output also presents 95% confidence intervals on each individual treatment
mean. The mean of the ith treatment is defined as

A point estimator of �i is . Now, if we assume that the errors are normally distributed,
each treatment average is normally distributed with mean and variance . Thus, if were
known, we could use the normal distribution to construct a CI. Using MSE as an estimator of 
(the square root of MSE is the “Pooled StDev” referred to in the Minitab output), we would base
the CI on the t distribution, since

has a t distribution with a(n � 1) degrees of freedom. This leads to the following definition 
of the confidence interval.

T �
Yi. � �i

1MSE
n

�2
�2�2
n�i

�̂i � Yi.

�i � � � �i  i � 1, 2, p , a

Table 13-4 ANOVA for the Tensile Strength Data

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value

Hardwood
concentration 382.79 3 127.60 19.60 3.59 E-6
Error 130.17 20 6.51
Total 512.96 23

A 100(1 � �) percent confidence interval on the mean of the ith treatment �i is

(13-11)yi. � t�
 2,a 1n�12 B

MSE

n 
 �i 
 yi. � t�
2,a1n�12 B

MSE

n

Confidence
Interval on a

Treatment
Mean

The ANOVA is summarized in Table 13-4. Since f0.01,3,20 �
4.94, we reject H0 and conclude that hardwood concentra-
tion in the pulp significantly affects the mean strength of

 � 512.96 � 382.79 � 130.17
 SSE � SST � SSTreatments

 � 382.79

 �
16022 � 19422 � 110222 � 112722

6
�
138322

24

 SSTreatments � a
4

i�1
 
y2

i .
n �

y2..

N

the paper. We can also find a P-value for this test statistic as
follows:

Since is considerably smaller than � � 0.01,
we have strong evidence to conclude that H0 is not true.

Practical Interpretation: There is strong evidence to
conclude that hardwood concentration has an effect on ten-
sile strength. However, the ANOVA does not tell as which
levels of hardwood concentration result in different tensile
strength means. We will see how to answer this question 
below.

P � 3.59 � 10�6

P � P1F3,20 � 19.602 � 3.59 � 10�6
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Equation 13-11 is used to calculate the 95% CIs shown graphically in the Minitab output of
Table 13-5. For example, at 20% hardwood the point estimate of the mean is ,
MSE � 6.51, and t0.025,20 � 2.086, so the 95% CI is

or

It can also be interesting to find confidence intervals on the difference in two treatment means,
say, �i � �j. The point estimator of �i � �j is , and the variance of this estimator is

V1Yi. � Yj.2 �
�2

n �
�2

n �
2�2

n

Yi. � Yj.

19.00 psi 
 �4 
 23.34 psi

321.167 � 12.0862 ˛16.51
6 4

3y4. � t0.025,20˛1MSE
n 4

y4. � 21.167

Table 13-5 Minitab Analysis of Variance Output for Example 13-1

One-Way ANOVA: Strength versus CONC

Analysis of Variance for Strength

Source DF SS MS F P
Conc 3 382.79 127.60 19.61 0.000
Error 20 130.17 6.51
Total 23 512.96 Individual 95% CIs For Mean

Based on Pooled StDev
Level N Mean StDev —- � ——- � ——- � ——- ��

5 6 10.000 2.828 (— —)
10 6 15.667 2.805 (— —)
15 6 17.000 1.789 (— —)
20 6 21.167 2.639 (— —)

—- � ———- � ———- � ———- � -
Pooled StDev � 2.551 10.0 15.0 20.0 25.0

Fisher’s pairwise comparisons

Family error rate � 0.192
Individual error rate � 0.0500

Critical value � 2.086

Intervals for (column level mean) � (row level mean)
5 10 15

10 �8.739
�2.594

15 �10.072 �4.406
�3.928 1.739

20 �14.239 �8.572 �7.239
�8.094 �2.428 �1.094

*
*

*
*
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The sums of squares computing formulas for the ANOVA with unequal sample sizes
ni in each treatment are

(13-13)

(13-14)

and

(13-15) SSE � SST � SSTreatments

 SS
 Treatments � a

a

i�1
 
y2

i .
ni

�
y2..

N

 SST � a
a

i�1
 a

ni

j�1
 y2

ij �
y2..

N

Computing
Formulas for

ANOVA: Single
Factor with

Unequal
Sample Sizes
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A 95% CI on the difference in means �3 � �2 is computed from Equation 13-12 as follows:

or

Since the CI includes zero, we would conclude that there is no difference in mean tensile
strength at these two particular hardwood levels.

The bottom portion of the computer output in Table 13-5 provides additional information con-
cerning which specific means are different. We will discuss this in more detail in Section 13-2.3.

An Unbalanced Experiment
In some single-factor experiments, the number of observations taken under each treatment
may be different. We then say that the design is unbalanced. In this situation, slight
modifications must be made in the sums of squares formulas. Let ni observations be taken
under treatment i (i � 1, 2, . . . , a), and let the total number of observations 
The computational formulas for SST and SSTreatments are as shown in the following definition.

N � g a
i�1 ni.

�1.74 
 �3 � �2 
 4.40

317.00 � 15.67 � 12.0862 ˛1216.512
6 4

3y3. � y2. � t0.025,20 12MSE
n 4

A 100(1 � �) percent confidence interval on the difference in two treatment means
�i � �j is

(13-12)

yi. � yj. � t�
2,a1n�12 B

2MSE

n 
 �i � �j 
 yi. � yj. � t�
 2,a1n�12 B

2MSE

n

Confidence
Interval on a
Difference in

Treatment
Means

Now if we use MSE to estimate ,

has a t distribution with a(n � 1) degrees of freedom. Therefore, a CI on �i � �j may be
based on the t distribution.

T �
Yi. � Yj. � 1�i � �j2

12MSE
n

�2
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Choosing a balanced design has two important advantages. First, the ANOVA is relatively
insensitive to small departures from the assumption of equality of variances if the sample sizes
are equal. This is not the case for unequal sample sizes. Second, the power of the test is max-
imized if the samples are of equal size.

13-2.3 Multiple Comparisons Following the ANOVA

When the null hypothesis is rejected in the ANOVA, we know
that some of the treatment or factor level means are different. However, the ANOVA
doesn’t identify which means are different. Methods for investigating this issue are called
multiple comparisons methods. Many of these procedures are available. Here we
describe a very simple one, Fisher’s least significant difference (LSD) method and a
graphical method. Montgomery (2009) presents these and other methods and provides a
comparative discussion.

The Fisher LSD method compares all pairs of means with the null hypotheses H0: �i � �j

(for all i 	 j) using the t-statistic

Assuming a two-sided alternative hypothesis, the pair of means �i and �j would be declared
significantly different if

where LSD, the least significant difference, is

0 yi. � yj. 0 � LSD

t0 �
yi. � yj.

B

2MSE

n

H0: �1 � �2 � p � �a � 0

If the sample sizes are different in each treatment, the LSD is defined as

LSD � t�
2,N�a B
MSE 

a
1
ni

�
1
nj
b

(13-16)LSD � t�
2,a 1n�12 B

2MSE

n

Least
Significant

Difference for
Multiple

Comparisons

EXAMPLE 13-2
We will apply the Fisher LSD method to the hardwood con-
centration experiment. There are a � 4 means, n � 6, MSE �
6.51, and t0.025,20 � 2.086. The treatment means are

The value of LSD is 
. Therefore, any pair of treatment aver-12 16.512 
6 � 3.07

LSD � t0.025,2012MSE 
n � 2.086

y4. � 21.17 psi
y3. � 17.00 psi
y2. � 15.67 psi
y1. � 10.00 psi

ages that differs by more than 3.07 implies that the correspon-
ding pair of treatment means are different.

The comparisons among the observed treatment averages
are as follows:

2 vs. 1 � 15.67 � 10.00 �   5.67 � 3.07
3 vs. 2 � 17.00 � 15.67 �   1.33 � 3.07
3 vs. 1 � 17.00 � 10.00 �   7.00 � 3.07
4 vs. 3 � 21.17 � 17.00 �   4.17 � 3.07
4 vs. 2 � 21.17 � 15.67 �   5.50 � 3.07
4 vs. 1 � 21.17 � 10.00 � 11.17 � 3.07
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0 5 10 15 20 25 psi

5% 10% 15% 20%

Figure 13-2 Results of Fisher’s LSD method in Example 13-2.

The Minitab output in Table 13-5 shows the Fisher LSD method under the heading
“Fisher’s pairwise comparisons.” The critical value reported is actually the value of t0.025,20 �
2.086. Minitab implements Fisher’s LSD method by computing confidence intervals on all
pairs of treatment means using Equation 13-12. The lower and upper 95% confidence limits
are shown at the bottom of the table. Notice that the only pair of means for which the
confidence interval includes zero is for �10 and �15. This implies that �10 and �15 are not
significantly different, the same result found in Example 13-2.

Table 13-5 also provides a “family error rate,” equal to 0.192 in this example. When all
possible pairs of means are tested, the probability of at least one type I error can be much
greater than for a single test. We can interpret the family error rate as follows. The probability
is 1 � 0.192 � 0.808 that there are no type I errors in the six comparisons. The family error
rate in Table 13-5 is based on the distribution of the range of the sample means. See
Montgomery (2009) for details. Alternatively, Minitab permits you to specify a family error
rate and will then calculate an individual error rate for each comparison.

Graphical Comparison of Means
It is easy to compare treatment means graphically, following the analysis of variance. Suppose
that the factor has a levels and that …, are the observed averages for these factor
levels. Each treatment average has standard deviation where is the standard deviation
of an individual observation. If all treatment means are equal, the observed means would
behave as if they were a set of observations drawn at random from a normal distribution with
mean and standard deviation 

Visualize this normal distribution capable of being slid along an axis below which the
treatment means …, are plotted. If all treatment means are equal, there should be
some position for this distribution that makes it obvious that the values were drawn from the
same distribution. If this is not the case, the values that do not appear to have been drawn
from this distribution are associated with treatments that produce different mean responses.

The only flaw in this logic is that is unknown. However, we can use from the
analysis of variance to estimate This implies that a t distribution should be used instead of
the normal in making the plot, but since the t looks so much like the normal, sketching a nor-
mal curve that is approximately units wide will usually work very well.

Figure 13-3 shows this arrangement for the hardwood concentration experiment in
Example 13-1. The standard deviation of this normal distribution is

If we visualize sliding this distribution along the horizontal axis, we note that there is no location
for the distribution that would suggest that all four observations (the plotted means) are typical,
randomly selected values from that distribution. This, of course, should be expected, because the

2MSE/n � 26.51/6 � 1.04

62MSE/n

�.
2MSE�

yi.
yi.

ya.y2.,y1.,

�/2n.�

yi.
��/2n,

ya.y2.,y1.,

Conclusions: From this analysis, we see that there are sig-
nificant differences between all pairs of means except 2 and 3.
This implies that 10% and 15% hardwood concentration pro-
duce approximately the same tensile strength and that all other
concentration levels tested produce different tensile strengths.

It is often helpful to draw a graph of the treatment means, such
as in Fig. 13-2, with the means that are not different under-
lined. This graph clearly reveals the results of the experiment
and shows that 20% hardwood produces the maximum tensile
strength.
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analysis of variance has indicated that the means differ, and the display in Fig. 13-3 is just a graph-
ical representation of the analysis of variance results. The figure does indicate that treatment 4
(20% hardwood) produces paper with higher mean tensile strength than do the other treatments,
and treatment 1 (5% hardwood) results in lower mean tensile strength than do the other treat-
ments. The means of treatments 2 and 3 (10% and 15% hardwood, respectively) do not differ.

This simple procedure is a rough but very effective multiple comparison technique. It
works well in many situations.

13-2.4 Residual Analysis and Model Checking

The analysis of variance assumes that the observations are normally and independently dis-
tributed with the same variance for each treatment or factor level. These assumptions should
be checked by examining the residuals. A residual is the difference between an observation yij

and its estimated (or fitted) value from the statistical model being studied, denoted as . For
the completely randomized design and each residual is , that is, the dif-
ference between an observation and the corresponding observed treatment mean. The residuals
for the paper tensile strength experiment are shown in Table 13-6. Using to calculate each
residual essentially removes the effect of hardwood concentration from the data; consequently,
the residuals contain information about unexplained variability.

The normality assumption can be checked by constructing a normal probability plot of
the residuals. To check the assumption of equal variances at each factor level, plot the resid-
uals against the factor levels and compare the spread in the residuals. It is also useful to plot
the residuals against (sometimes called the fitted value); the variability in the residuals
should not depend in any way on the value of . Most statistical software packages will
construct these plots on request. When a pattern appears in these plots, it usually suggests the
need for a transformation, that is, analyzing the data in a different metric. For example, if the
variability in the residuals increases with , a transformation such as log y or should
be considered. In some problems, the dependency of residual scatter on the observed mean 
is very important information. It may be desirable to select the factor level that results in max-
imum response; however, this level may also cause more variation in response from run to run.

yi.
1yyi.

yi

yi.

yi.

eij � yij � yi.ŷij � yi.
ŷij

0 5 10 15 20 25 30

σ /√n = 1.04

1 2 3 4

∧

Figure 13-3 Tensile strength averages from the hardwood concentration
experiment in relation to a normal distribution with standard deviation 

1MSE
n � 16.51
6 � 1.04.

Table 13-6 Residuals for the Tensile Strength Experiment

Hardwood
Concentration (%) Residuals

5 �3.00 �2.00 5.00 1.00 �1.00 0.00
10 �3.67 1.33 �2.67 2.33 3.33 �0.67
15 �3.00 1.00 2.00 0.00 �1.00 1.00
20 �2.17 3.83 0.83 1.83 �3.17 �1.17
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The independence assumption can be checked by plotting the residuals against the time
or run order in which the experiment was performed. A pattern in this plot, such as sequences
of positive and negative residuals, may indicate that the observations are not independent.
This suggests that time or run order is important or that variables that change over time are
important and have not been included in the experimental design.

A normal probability plot of the residuals from the paper tensile strength experiment is
shown in Fig. 13-4. Figures 13-5 and 13-6 present the residuals plotted against the factor
levels and the fitted value respectively. These plots do not reveal any model inadequacy or
unusual problem with the assumptions.

13-2.5 Determining Sample Size

In any experimental design problem, the choice of the sample size or number of replicates to
use is important. Operating characteristic curves can be used to provide guidance in making
this selection. Recall that an operating characteristic curve is a plot of the probability of a type II
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Figure 13-4 Normal probability plot of residuals from
the hardwood concentration experiment.
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Figure 13-5 Plot of residuals versus factor levels
(hardwood concentration).
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Figure 13-6 Plot of residuals versus .yi
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error (�) for various sample sizes against values of the parameters under test. The operating
characteristic curves can be used to determine how many replicates are required to achieve
adequate sensitivity.

The power of the ANOVA test is

(13-17)

To evaluate this probability statement, we need to know the distribution of the test statistic F0 if
the null hypothesis is false. Because ANOVA compares several means, the null hypothesis can be
false in different ways. For example, possibly and so forth. It can be shown
that the power for ANOVA in Equation 13-17 depends on the only through the function

Therefore, alternative hypotheses for the can be used to calculate and this in turn can be
used to calculate the power. Specifically, it can be shown that if is false, the statistic

has a noncentral F distribution, with and degrees of
freedom and a noncentrality parameter that depends on Instead of tables for the noncentral
F distribution, operating characteristic curves are used to evaluate defined in Equation 13-17.
These curves plot � against .

Curves are available for � � 0.05 and � � 0.01 and for several values of the number of
degrees of freedom for numerator (denoted v1) and denominator (denoted v2). Figure 13-7
gives representative O.C. curves, one for  a � 4 (v1 � 3) and one for a � 5 (v1 � 4) treat-
ments. Notice that for each value of a there are curves for � � 0.05 and � � 0.01.

In using the operating curves, we must define the difference in means that we wish to detect
in terms of . Also, the error variance is usually unknown. In such cases, we 
must choose ratios of that we wish to detect. Alternatively, if an estimate of 
is available, one may replace with this estimate. For example, if we were interested in
the sensitivity of an experiment that has already been performed, we might use MSE as the es-
timate of .�2

�2
�2g a

i�1 �
2
i 
�2

�2g a
i�1 �

2
i

�

�
�2.

n1a � 12a � 1F0 � MSTreatments/MSE

H0

�2�i’s

�2 �

na
a

i�1
�2

i

a�2

�i’s
�3 � 0,�2 � 0,�1 � 0,

 � P5F0 � f�,a�1, a 1n�12   0   
 H0 is false6

 1 � � � P5Reject H0 
  
0

  
 H0 is false6

EXAMPLE 13-3
Suppose that five means are being compared in a completely
randomized experiment with � � 0.01. The experimenter
would like to know how many replicates to run if it is im-
portant to reject H0 with probability at least 0.90 if

. The parameter �2 is, in this case,

and for the operating characteristic curve with v1 � a � 1 �
5 � 1 � 4, and v2 � a (n � 1) � 5(n � 1) error degrees of
freedom refer to the lower curve in Figure 13-7. As a first
guess, try n � 4 replicates. This yields �2 � 4, � � 2, and 
v2 � 5(3) � 15 error degrees of freedom. Consequently, from

�2 �

na
a

i�1
�2

i

a�2 �
n

5
 152 � n

g 5
i�1 �

2
i 
�2 � 5.0

Figure 13-7, we find that � � 0.38. Therefore, the power of the
test is approximately 1 � � � 1 � 0.38 � 0.62, which is
less than the required 0.90, and so we conclude that n � 4
replicates is not sufficient. Proceeding in a similar manner, we
can construct the following table:

n �2 � a(n � 1) � Power � (1 � �)

4 4 2.00 15 0.38 0.62
5 5 2.24 20 0.18 0.82
6 6 2.45 25 0.06 0.94

Conclusions: At least replicates must be run in 
order to obtain a test with the required power.

n � 6
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Figure 13-7 Two Operating Characteristic curves for the fixed-effects model analysis of variance.
Top curves for four treatments and bottom curves for five treatments.
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Cotton
Percentage

Observations

1 2 3 4 5

15 7 7 15 11 9

20 12 17 12 18 18

25 14 18 18 19 19

30 19 25 22 19 23

35 7 10 11 15 11

EXERCISES FOR SECTION 13-2

(a) Does cotton percentage affect breaking strength? Draw
comparative box plots and perform an analysis of vari-
ance. Use � � 0.05.

(b) Plot average tensile strength against cotton percentage
and interpret the results.

(c) Analyze the residuals and comment on model adequacy.

13-4. In “Orthogonal Design for Process Optimization and Its
Application to Plasma Etching” (Solid State Technology, May
1987), G. Z. Yin and D. W. Jillie describe an experiment to de-
termine the effect of C2F6 flow rate on the uniformity of the etch
on a silicon wafer used in integrated circuit manufacturing.
Three flow rates are used in the experiment, and the resulting
uniformity (in percent) for six replicates is shown below.

Factor Subjects (Observations)

1 2 3 4 5 6 7 8 9 10 11 12
DC 118.8 122.6 115.6 113.6 119.5 115.9 115.8 115.1 116.9 115.4 115.6 107.9
DC�MK 105.4 101.1 102.7 97.1 101.9 98.9 100.0 99.8 102.6 100.9 104.5 93.5
MC 102.1 105.8 99.6 102.7 98.8 100.9 102.8 98.7 94.7 97.8 99.7 98.6 

(a) Construct comparative box plots and study the data. What
visual impression do you have from examining these
plots?

(b) Analyze the experimental data using an ANOVA. If
, what conclusions would you draw? What

would you conclude if ?
(c) Is there evidence that the dark chocolate increases the

mean antioxidant capacity of the subjects’ blood plasma?
(d) Analyze the residuals from this experiment.

13-3. In Design and Analysis of Experiments, 7th edition
(John Wiley & Sons, 2009) D. C. Montgomery described an
experiment in which the tensile strength of a synthetic fiber
was of interest to the manufacturer. It is suspected that
strength is related to the percentage of cotton in the fiber. Five
levels of cotton percentage were used, and five replicates were
run in random order, resulting in the data below.

� � 0.01
� � 0.05

Observations

1 2 3 4 5 6

125 2.7 4.6 2.6 3.0 3.2 3.8

160 4.9 4.6 5.0 4.2 3.6 4.2

200 4.6 3.4 2.9 3.5 4.1 5.1

C2F6 Flow
(SCCM)

Mixing
Technique Compressive Strength (psi)

1 3129 3000 2865 2890

2 3200 3300 2975 3150

3 2800 2900 2985 3050

4 2600 2700 2600 2765

13-1. Consider the computer output below.

One-way ANOVA: y versus Factor

Source DF SS MS F P
Factor ? 117.4 39.1 ? ?
Error 16 396.8 ?
Total 19 514.2

(a) How many levels of the factor were used in this ex-
periment?

(b) How many replicates did the experimenter use?
(c) Fill in the missing information in the ANOVA table. Use

bounds for the P-value.
(d) What conclusions can you draw about differences in the

factor level means?

13-2. An article in Nature describes an experiment to in-
vestigate the effect on consuming chocolate on cardiovascu-
lar health (“Plasma Antioxidants from Chocolate,” Vol. 424,
2003, pp. 1013). The experiment consisted of using three dif-
ferent types of chocolates: 100 g of dark chocolate, 100 g of
dark chocolate with 200 ml of full-fat milk, and 200 g of
milk chocolate. Twelve subjects were used, seven women and
five men, with an average age range of years, an 
average weight of kg, and body-mass index of

. On different days, a subject consumed
one of the chocolate-factor levels, and one hour later the 
total antioxidant capacity of their blood plasma was meas-
ured in an assay. Data similar to those summarized in the 
article are shown below.

21.9 � 0.4 kg m�2
65.8 � 3.1

32.2 � 1

(a) Does C2F6 flow rate affect etch uniformity? Construct box
plots to compare the factor levels and perform the analysis
of variance. Use � � 0.05.

(b) Do the residuals indicate any problems with the underly-
ing assumptions?

13-5. The compressive strength of concrete is being stud-
ied, and four different mixing techniques are being investi-
gated. The following data have been collected.
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Preparation
Method Transition Temperature Tc(�K)

1 14.8 14.8 14.7 14.8 14.9

2 14.6 15.0 14.9 14.8 14.7

3 12.7 11.6 12.4 12.7 12.1

4 14.2 14.4 14.4 12.2 11.7
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(a) Test the hypothesis that mixing techniques affect the
strength of the concrete. Use � � 0.05.

(b) Find the P-value for the F-statistic computed in part (a).
(c) Analyze the residuals from this experiment.

13-6. The response time in milliseconds was determined for
three different types of circuits in an electronic calculator. The
results are recorded here.

(a) Does the size of the orifice affect the mean percentage of
radon released? Use � � 0.05.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on the mean percent of

radon released when the orifice diameter is 1.40.

13-9. An article in the ACI Materials Journal (Vol. 84,
1987, pp. 213–216) described several experiments investi-
gating the rodding of concrete to remove entrapped air. A 
3-inch � 6-inch cylinder was used, and the number of times
this rod was used is the design variable. The resulting com-
pressive strength of the concrete specimen is the response.
The data are shown in the following table.

(a) Is there any difference in conductivity due to coating
type? Use � � 0.01.

(b) Analyze the residuals from this experiment.
(c) Construct a 95% interval estimate of the coating type 1

mean. Construct a 99% interval estimate of the mean dif-
ference between coating types 1 and 4.

13-8. An article in Environment International (Vol. 18,
No. 4, 1992) described an experiment in which the amount of
radon released in showers was investigated. Radon-enriched
water was used in the experiment, and six different orifice
diameters were tested in shower heads. The data from the
experiment are shown in the following table.

(a) Is there any difference in compressive strength due to the
rodding level?

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment. What con-

clusions can you draw about the underlying model
assumptions?

13-10. An article in the Materials Research Bulletin (Vol. 26,
No. 11, 1991) investigated four different methods of prepar-
ing the superconducting compound PbMo6S8. The authors
contend that the presence of oxygen during the preparation
process affects the material’s superconducting transition
temperature Tc. Preparation methods 1 and 2 use techniques
that are designed to eliminate the presence of oxygen, while
methods 3 and 4 allow oxygen to be present. Five observations
on Tc (in °K) were made for each method, and the results are
as follows:

Coating
Type Conductivity

1 143 141 150 146

2 152 149 137 143

3 134 133 132 127

4 129 127 132 129

5 147 148 144 142

Circuit
Type Response

1 19 22 20 18 25

2 20 21 33 27 40

3 16 15 18 26 17

Orifice
Diameter Radon Released (%)

0.37 80 83 83 85

0.51 75 75 79 79

0.71 74 73 76 77

1.02 67 72 74 74

1.40 62 62 67 69

1.99 60 61 64 66

(a) Using � � 0.01, test the hypothesis that the three circuit
types have the same response time.

(b) Analyze the residuals from this experiment.
(c) Find a 95% confidence interval on the response time for

circuit three.

13-7. An electronics engineer is interested in the effect on
tube conductivity of five different types of coating for cathode
ray tubes in a telecommunications system display device. The
following conductivity data are obtained.

(a) Is there evidence to support the claim that the presence of
oxygen during preparation affects the mean transition
temperature? Use � � 0.05.

(b) What is the P-value for the F-test in part (a)?
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on mean Tc when method

1 is used to prepare the material.

Rodding
Level Compressive Strength

10 1530 1530 1440

15 1610 1650 1500

20 1560 1730 1530

25 1500 1490 1510
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13-11. A paper in the Journal of the Association of Asphalt
Paving Technologists (Vol. 59, 1990) describes an experiment
to determine the effect of air voids on percentage retained
strength of asphalt. For purposes of the experiment, air voids
are controlled at three levels; low (2–4%), medium (4–6%),
and high (6–8%). The data are shown in the following table.

(b) Find the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment.
(d) Find a 95% confidence interval on mean retained strength

where there is a high level of air voids.
(e) Find a 95% confidence interval on the difference

in mean retained strength at the low and high levels of
air voids.

13-12. An article in Quality Engineering [“Estimating
Sources of Variation: A Case Study from Polyurethane
Product Research” (1999–2000, Vol. 12, pp. 89–96)] studied
the effects of additives on final polymer properties. In this case,
polyurethane additives were referred to as cross-linkers. The
average domain spacing was the measurement of the polymer
property. The data are as follows:

(a) Do the different levels of air voids significantly affect
mean retained strength? Use � � 0.01.

Air Voids Retained Strength (%)

Low 106 90 103 90 79 88 92 95

Medium 80 69 94 91 70 83 87 83

High 78 80 62 69 76 85 69 85

Cross-Linker
Level Domain Spacing (nm)

8.2 8 8.2 7.9 8.1 8
8.3 8.4 8.3 8.2 8.3 8.1
8.9 8.7 8.9 8.4 8.3 8.5

0 8.5 8.7 8.7 8.7 8.8 8.8
0.5 8.8 9.1 9.0 8.7 8.9 8.5

1 8.6 8.5 8.6 8.7 8.8 8.8

�0.5
�0.75

�1

Diet Protein Content of Cow’s Milk

Barley 3.63 3.24 3.98 3.66 4.34 4.36 4.17 4.4 3.4 3.75 4.2 4.02 4.02 3.9
3.38 3.8 4.17 4.59 4.07 4.32 3.56 3.67 4.15 3.51 4.2 4.12 3.52 4.08

Lupins 3.69 4.2 3.31 3.13 3.73 4.32 3.04 3.84 3.98 4.18 4.2 4.1 3.25 3.34
Diet (continued)
Barley 3.81 3.62 3.66 4.44 4.23 3.82 3.53 4.47 3.93 3.27 3.3

4.02 3.18 4.11 3.27 3.27 3.97 3.31 4.12 3.92 3.78 4 4.37 3.79
Lupins 3.5 4.13 3.21 3.9 3.5 4.1 2.69 4.3 4.06 3.88 4 3.67 4.27
Barley�lupins

Barley�lupins

(a) Is there a difference in the cross-linker level? Draw com-
parative boxplots and perform an analysis of variance. Use

(b) Find the P-value of the test. Estimate the variability due to
random error.

(c) Plot average domain spacing against cross-linker level and
interpret the results.

(d) Analyze the residuals from this experiment and comment
on model adequacy.

13-13. In the book Analysis of Longitudinal Data, 2nd ed.,
(2002, Oxford University Press), by Diggle, Heagerty, Liang,
and Zeger, the authors analyzed the effects of three diets on the
protein content of cow’s milk. The data shown here were col-
lected after one week and include 25 cows on the barley diet,
and 27 cows each on the other two diets:

� � 0.05.

(a) Do the AO solutions differ in the spoilage percentage? Use

(b) Find the P-value of the test. Estimate the variability due to
random error.

� � 0.05.

AO Solution
(ppm) % Spoilage

50 100 50 60

100 60 30 30

200 60 50 29

400 25 30 15

(a) Does diet affect the protein content of cow’s milk? Draw
comparative boxplots and perform an analysis of variance.
Use 

(b) Find the P-value of the test. Estimate the variability due to
random error.

(c) Plot average protein content against diets and interpret the
results.

(d) Analyze the residuals and comment on model adequacy.

13-14. An article in Journal of Food Science (2001, Vol. 66,
No. 3, pp. 472–477) studied potato spoilage based on different
conditions of acidified oxine (AO), which is a mixture of chlo-
rite and chlorine dioxide. The data are shown below:

� � 0.05.
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(c) Plot average spoilage against AO solution and interpret the
results. Which AO solution would you recommend for use
in practice?

(d) Analyze the residuals from this experiment.

13-15. An experiment was run to determine whether four
specific firing temperatures affect the density of a certain type
of brick. The experiment led to the following data.

13-20. (a) Use Fisher’s LSD method with to
analyze the mean amounts of radon released in the experiment
described in Exercise 13-8. 
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-21. (a) Use Fisher’s LSD method with � � 0.01 to analyze
the five means for the coating types described in Exercise 13-7. 
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-22. (a) Apply Fisher’s LSD method with � � 0.05 to the
superconducting material experiment described in Exercise
13-10. Which preparation methods differ?
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-23. (a) Apply Fisher’s LSD method to the air void exper-
iment described in Exercise 13-11. Using � � 0.05, which
treatment means are different?
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-24. (a) Apply Fisher’s LSD method to the domain spac-
ing data in Exercise 13-12. Which cross-linker levels differ?
Use 
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-25. (a) Apply Fisher’s LSD method to the data on protein
content of milk in Exercise 13-13. Which diets differ? Use

(b) Use the graphical method to compare means described in
this section and compare your conclusions to those from
Fisher’s LSD method.

13-26. Suppose that four normal populations have common
variance �2 � 25 and means �1 � 50, �2 � 60, �3 � 50, and
�4 � 60. How many observations should be taken on each
population so that the probability of rejecting the hypothesis of
equality of means is at least 0.90? Use � � 0.05.
13-27. Suppose that five normal populations have common
variance �2 � 100 and means �1 � 175, �2 � 190, �3 � 160,
�4 � 200, and �5 � 215. How many observations per popula-
tion must be taken so that the probability of rejecting the
hypothesis of equality of means is at least 0.95? Use � � 0.01.

� � 0.01.

� � 0.05.

� � 0.05

(a) Does the firing temperature affect the density of the
bricks? Use � � 0.05.

(b) Find the P-value for the F-statistic computed in part (a).
(c) Analyze the residuals from the experiment.

13-16. (a) Use Fisher’s LSD method with � � 0.05 to analyze
the means of the three types of chocolate in Exercise 13-4.
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-17. (a) Use Fisher’s LSD method with � � 0.05 to ana-
lyze the means of the five different levels of cotton content in
Exercise 13-3.
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-18. (a) Use Fisher’s LSD method with � � 0.01 to ana-
lyze the mean response times for the three circuits described in
Exercise 13-6.
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

13-19. (a) Use Fisher’s LSD method with � � 0.05 to
analyze the mean compressive strength of the four mixing
techniques in Exercise 13-5.
(b) Use the graphical method to compare means described in

this section and compare your conclusions to those from
Fisher’s LSD method.

Temperature
(°F) Density

100 21.8 21.9 21.7 21.6 21.7 21.5 21.8

125 21.7 21.4 21.5 21.5 — — —

150 21.9 21.8 21.8 21.6 21.5 — —

175 21.9 21.7 21.8 21.7 21.6 21.8 —

13-3 THE RANDOM-EFFECTS MODEL

13-3.1 Fixed Versus Random Factors

In many situations, the factor of interest has a large number of possible levels. The analyst is
interested in drawing conclusions about the entire population of factor levels. If the experimenter
randomly selects a of these levels from the population of factor levels, we say that the factor is a
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random factor. Because the levels of the factor actually used in the experiment were chosen ran-
domly, the conclusions reached will be valid for the entire population of factor levels. We will
assume that the population of factor levels is either of infinite size or is large enough to be con-
sidered infinite. Notice that this is a very different situation than we encountered in the fixed-
effects case, where the conclusions apply only for the factor levels used in the experiment.

13-3.2 ANOVA and Variance Components

The linear statistical model is

(13-18)

where the treatment effects �i and the errors �ij are independent random variables. Note that
the model is identical in structure to the fixed-effects case, but the parameters have a different
interpretation. If the variance of the treatment effects �i is by independence the variance of
the response is

(13-19)

The variances and �2 are called variance components, and the model, Equation 13-19, is
called the components of variance model or the random-effects model. To test hypotheses
in this model, we assume that the errors �ij are normally and independently distributed with
mean 0 and variance �2 and that the treatment effects �i are normally and independently dis-
tributed with mean zero and variance .*

For the random-effects model, testing the hypothesis that the individual treatment effects
are zero is meaningless. It is more appropriate to test hypotheses about . Specifically,

If � 0, all treatments are identical; but if � 0, there is variability between treatments.
The ANOVA decomposition of total variability is still valid; that is,

(13-20)

However, the expected values of the mean squares for treatments and error are somewhat
different than in the fixed-effects case.

SST � SSTreatments � SSE

�2
��2

�

H1: �
2
� � 0

H0: �
2
� � 0

�2
�

�2
�

�2
�

V1Yij2 � �2
� � �2

�2
�,

Yij � � � �i � �ij e
i � 1, 2, p , a

j � 1, 2, p , n

*The assumption that the {�i} are independent random variables implies that the usual assumption of 
from the fixed-effects model does not apply to the random-effects model.

g a
i�1 �i � 0

In the random-effects model for a single-factor, completely randomized experiment,
the expected mean square for treatments is

(13-21)

and the expected mean square for error is

(13-22) � �2

 E1MSE2 � E c
SSE

a1n � 12
d

 � �2 � n�2
�

 E 1MS Treatments2 � E a
SSTreatments

a � 1
b

Expected Values of
Mean Squares:

Random Effects
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From examining the expected mean squares, it is clear that both MSE and MSTreatments

estimate �2 when H0: � 0 is true. Furthermore, MSE and MSTreatments are independent.
Consequently, the ratio

(13-23)

is an F random variable with a � 1 and a(n � 1) degrees of freedom when H0 is true. The null
hypothesis would be rejected at the �-level of significance if the computed value of the test
statistic f0 � f�,a�1,a(n�1).

The computational procedure and construction of the ANOVA table for the random-
effects model are identical to the fixed-effects case. The conclusions, however, are quite dif-
ferent because they apply to the entire population of treatments.

Usually, we also want to estimate the variance components (�2 and ) in the model. The
procedure that we will use to estimate �2 and is called the analysis of variance method
because it uses the information in the analysis of variance table. It does not require the nor-
mality assumption on the observations. The procedure consists of equating the expected
mean squares to their observed values in the ANOVA table and solving for the variance
components. When equating observed and expected mean squares in the one-way classifica-
tion random-effects model, we obtain

Therefore, the estimators of the variance components are

MS Treatments � �2 � n�2
� and MSE � �2

�2
�

�2
�

F0 �
MSTreatments

MSE

�2
�

Sometimes the analysis of variance method produces a negative estimate of a variance
component. Since variance components are by definition nonnegative, a negative estimate of
a variance component is disturbing. One course of action is to accept the estimate and use it as
evidence that the true value of the variance component is zero, assuming that sampling
variation led to the negative estimate. While this approach has intuitive appeal, it will disturb
the statistical properties of other estimates. Another alternative is to reestimate the negative
variance component with a method that always yields nonnegative estimates. Still another pos-
sibility is to consider the negative estimate as evidence that the assumed linear model is
incorrect, requiring that a study of the model and its assumptions be made to find a more
appropriate model.

(13-24)

and

(13-25)�̂2
� �

MSTreatments � MSE

n

�̂2 � MSE

Variance
Components

Estimates

EXAMPLE 13-4 Textile Manufacturing
In Design and Analysis of Experiments, 7th edition (John
Wiley, 2009), D. C. Montgomery describes a single-factor
experiment involving the random-effects model in which a
textile manufacturing company weaves a fabric on a large

number of looms. The company is interested in loom-to-loom
variability in tensile strength. To investigate this variability, a
manufacturing engineer selects four looms at random and
makes four strength determinations on fabric samples chosen
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Table 13-8 Analysis of Variance for the Strength Data

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-value

Looms 89.19 3 29.73 15.68 1.88 E-4
Error 22.75 12 1.90
Total 111.94 15

Table 13-7 Strength Data for Example 13-4

Observations

Loom 1 2 3 4 Total Average

1 98 97 99 96 390 97.5
2 91 90 93 92 366 91.5
3 96 95 97 95 383 95.8
4 95 96 99 98 388 97.0

1527 95.45

at random from each loom. The data are shown in Table 13-7
and the ANOVA is summarized in Table 13-8.

From the analysis of variance, we conclude that the
looms in the plant differ significantly in their ability to pro-
duce fabric of uniform strength. The variance components are
estimated by and

�̂2
� �

29.73 � 1.90

4
� 6.96

�̂2 � 1.90

Therefore, the variance of strength in the manufacturing
process is estimated by

Conclusions: Most of the variability in strength in the
output product is attributable to differences between looms.

V1Yij2 � �̂2
� � �̂2 � 6.96 � 1.90 � 8.86

This example illustrates an important application of the analysis of variance—the isola-
tion of different sources of variability in a manufacturing process. Problems of excessive
variability in critical functional parameters or properties frequently arise in quality-
improvement programs. For example, in the previous fabric strength example, the process
mean is estimated by psi, and the process standard deviation is estimated by

� psi. If strength is approximately normally distributed, the
distribution of strength in the outgoing product would look like the normal distribution
shown in Fig. 13-8(a). If the lower specification limit (LSL) on strength is at 90 psi, a sub-
stantial proportion of the process output is fallout—that is, scrap or defective material that
must be sold as second quality, and so on. This fallout is directly related to the excess vari-
ability resulting from differences between looms. Variability in loom performance could be
caused by faulty setup, poor maintenance, inadequate supervision, poorly trained operators,
and so forth. The engineer or manager responsible for quality improvement must identify
and remove these sources of variability from the process. If this can be done, strength vari-
ability will be greatly reduced, perhaps as low as psi, as
shown in Fig. 13-8(b). In this improved process, reducing the variability in strength has
greatly reduced the fallout, resulting in lower cost, higher quality, a more satisfied customer, and
enhanced competitive position for the company.

�̂Y � 2�̂2 � 21.90 � 1.38

18.86 � 2.98�̂y � 2V̂1Yij2
y � 95.45

80 85 90 95 100 105 110    psi

LSL

(a)

Process
fallout

80 85 90 95 100 105 110     psi

LSL

(b)

Figure 13-8 The
distribution of fabric
strength. (a) Current
process, (b) improved
process.

i
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Batch Yield (in grams)

1 1545 1440 1440 1520 1580

2 1540 1555 1490 1560 1495

3 1595 1550 1605 1510 1560

4 1445 1440 1595 1465 1545

5 1595 1630 1515 1635 1625

6 1520 1455 1450 1480 1445

(a) Do the different batches of raw material significantly 
affect mean yield? Use 

(b) Estimate the variability between batches.
(c) Estimate the variability between samples within batches.
(d) Analyze the residuals from this experiment and check for

model adequacy.

13-31. An article in the Journal of Quality Technology
(Vol. 13, No. 2, 1981, pp. 111–114) described an experiment
that investigated the effects of four bleaching chemicals on
pulp brightness. These four chemicals were selected at ran-
dom from a large population of potential bleaching agents.
The data are as follows:

� � 0.01.

13-3 THE RANDOM-EFFECTS MODEL 537

EXERCISES FOR SECTION 13-3

13-28. An article in the Journal of the Electrochemical
Society (Vol. 139, No. 2, 1992, pp. 524–532) describes an ex-
periment to investigate the low-pressure vapor deposition of
polysilicon. The experiment was carried out in a large-capacity
reactor at Sematech in Austin, Texas. The reactor has several
wafer positions, and four of these positions are selected at ran-
dom. The response variable is film thickness uniformity. Three
replicates of the experiment were run, and the data are as
follows:

(a) Are the looms similar in output? Use � � 0.05.
(b) Estimate the variability between looms.
(c) Estimate the experimental error variance.
(d) Analyze the residuals from this experiment and check for

model adequacy.

13-30. In the book Bayesian Inference in Statistical
Analysis (1973, John Wiley and Sons) by Box and Tiao, the
total product yield was determined for five samples randomly
selected from each of six randomly chosen batches of raw
material.

Wafer
Position Uniformity

1 2.76 5.67 4.49

2 1.43 1.70 2.19

3 2.34 1.97 1.47

4 0.94 1.36 1.65

(a) Is there a difference in the wafer positions? Use � � 0.05.
(b) Estimate the variability due to wafer positions.
(c) Estimate the random error component.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-29. A textile mill has a large number of looms. Each
loom is supposed to provide the same output of cloth per
minute. To investigate this assumption, five looms are chosen
at random, and their output is measured at different times. The
following data are obtained:

(a) Is there a difference in the chemical types? Use � � 0.05.
(b) Estimate the variability due to chemical types.
(c) Estimate the variability due to random error.
(d) Analyze the residuals from this experiment and comment

on model adequacy.

13-32. Consider the vapor-deposition experiment described
in Exercise 13-28.
(a) Estimate the total variability in the uniformity response.
(b) How much of the total variability in the uniformity response

is due to the difference between positions in the reactor?
(c) To what level could the variability in the uniformity re-

sponse be reduced if the position-to-position variability
in the reactor could be eliminated? Do you believe this is
a significant reduction?

13-33. Reconsider Exercise 13-13 in which the effect of dif-
ferent diets on the protein content of cow’s milk was investigated.
Suppose that the three diets reported were selected at random
from a large number of diets. To simplify, delete the last two ob-
servations in the diets with n � 27 (to make equal sample sizes).
(a) How does this change the interpretation of the experiment?
(b) What is an appropriate statistical model for this experiment?
(c) Estimate the parameters of this model.

Chemical Pulp Brightness

1 77.199 74.466 92.746 76.208 82.876

2 80.522 79.306 81.914 80.346 73.385

3 79.417 78.017 91.596 80.802 80.626

4 78.001 78.358 77.544 77.364 77.386

Loom Output (lb/min)

1 4.0 4.1 4.2 4.0 4.1

2 3.9 3.8 3.9 4.0 4.0

3 4.1 4.2 4.1 4.0 3.9

4 3.6 3.8 4.0 3.9 3.7

5 3.8 3.6 3.9 3.8 4.0 
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13-4 RANDOMIZED COMPLETE BLOCK DESIGN

13-4.1 Design and Statistical Analysis

In many experimental design problems, it is necessary to design the experiment so that the
variability arising from a nuisance factor can be controlled. For example, consider the sit-
uation of Example 10-9, where two different methods were used to predict the shear
strength of steel plate girders. Because each girder has different strength (potentially), and
this variability in strength was not of direct interest, we designed the experiment by using
the two test methods on each girder and then comparing the average difference in strength
readings on each girder to zero using the paired t-test. The paired t-test is a procedure for
comparing two treatment means when all experimental runs cannot be made under
homogeneous conditions. Alternatively, we can view the paired t-test as a method for re-
ducing the background noise in the experiment by blocking out a nuisance factor effect.
The block is the nuisance factor, and in this case, the nuisance factor is the actual experi-
mental unit—the steel girder specimens used in the experiment.

The randomized block design is an extension of the paired t-test to situations where
the factor of interest has more than two levels; that is, more than two treatments must be
compared. For example, suppose that three methods could be used to evaluate the strength
readings on steel plate girders. We may think of these as three treatments, say t1, t2, and t3.
If we use four girders as the experimental units, a randomized complete block design (RCBD)
would appear as shown in Fig. 13-9. The design is called a randomized complete block
design because each block is large enough to hold all the treatments and because the actual
assignment of each of the three treatments within each block is done randomly. Once the
experiment has been conducted, the data are recorded in a table, such as is shown in
Table 13-9. The observations in this table, say, yij, represent the response obtained when
method i is used on girder j.

The general procedure for a randomized complete block design consists of selecting b
blocks and running a complete replicate of the experiment in each block. The data that re-
sult from running a RCBD for investigating a single factor with a levels and b blocks are
shown in Table 13-10. There will be a observations (one per factor level) in each block, and
the order in which these observations are run is randomly assigned within the block.

We will now describe the statistical analysis for the RCBD. Suppose that a single factor
with a levels is of interest and that the experiment is run in b blocks. The observations may be
represented by the linear statistical model

(13-26)

where � is an overall mean, �i is the effect of the ith treatment, �j is the effect of the jth block,
and �ij is the random error term, which is assumed to be normally and independently distributed

Yij � � � �i � �j � �ij 
e

i � 1, 2, p , a

 j � 1, 2, p , b

Block 1

t1

t2

t3

Block 2

t1

t2

t3

Block 3

t1

t2

t3

Block 4

t1

t2

t3

Figure 13-9 A randomized complete
block design.

Table 13-9 A Randomized Complete Block Design 

Block (Girder)

1 2 3 4

1 y11 y12 y13 y14

2 y21 y22 y23 y24

3 y31 y32 y33 y34

Treatments
(Method)
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with mean zero and variance �2. Furthermore, the treatment and block effects are defined as de-
viations from the overall mean, so and . This was the same type of
definition used for completely randomized experiments in Section 13-2. We also assume that
treatments and blocks do not interact. That is, the effect of treatment i is the same regardless of
which block (or blocks) it is tested in. We are interested in testing the equality of the treatment
effects. That is,

The analysis of variance can be extended to the RCBD. The procedure uses a sum of
squares identity that partitions the total sum of squares into three components.

 H1: �i 	 0 at least one i

 H0: �1 � �2 � p � �a � 0

g b
j�1 �j � 0g a

i�1 �i � 0

Table 13-10 A Randomized Complete Block Design with a Treatments and b Blocks

Blocks

Treatments 1 2 p b Totals Averages

1 y11 y12 p y1b

2 y21 y22 p y2b

a ya1 ya2 p yab ya.

Totals p y..
Averages p y..y.by.2y.1

y.by.2y.1

ya.
oooooo

y2.y2.
y1.y1.

The sum of squares identity for the randomized complete block design is

(13-27)

or symbolically

SST � SSTreatments � SSBlocks � SSE

� a
a

i�1
a

b

j�1
 1 yij � y.j � yi. � y..22

a
a

i�1
a

b

j�1
 1 yij � y..22 � b a

a

i�1
 1 yi. � y..22 � a a

b

j�1
 1 y.j � y..22

ANOVA Sums of
Squares Identity:

Randomized Block
Experiment

Furthermore, the degrees of freedom corresponding to these sums of squares are

For the randomized block design, the relevant mean squares are

 MSE �
SSE

1a � 12 1b � 12

 MSBlocks �
SSBlocks

b � 1

 MSTreatments �
SSTreatments

a � 1

ab � 1 � 1a � 12 � 1b � 12 � 1a � 12 1b � 12
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The expected values of these mean squares can be shown to be as follows:

 E1MSE2 � �2

 E1MSBlocks2 � �2 �

aa
b

j�1
�2

j

b � 1

 E1MSTreatments2 � �2 �

ba
a

i�1
�2

i

a � 1

Therefore, if the null hypothesis H0 is true so that all treatment effects �i � 0, MSTreatments is an
unbiased estimator of �2, while if H0 is false, MSTreatments overestimates �2. The mean square
for error is always an unbiased estimate of �2. To test the null hypothesis that the treatment
effects are all zero, we use the ratio

(13-28)

which has an F-distribution with a � 1 and (a � 1)(b � 1) degrees of freedom if the null
hypothesis is true. We would reject the null hypothesis at the �-level of significance if the
computed value of the test statistic in Equation 13-28 is f0 � f�,a�1,(a�1)(b�1).

In practice, we compute SST, SSTreatments and SSBlocks and then obtain the error sum of
squares SSE by subtraction. The appropriate computing formulas are as follows.

F0 �
MSTreatments

MSE

Expected Mean
Squares:

Randomized Block
Experiment

The computations are usually arranged in an ANOVA table, such as is shown in Table 13-11.
Generally, a computer software package will be used to perform the analysis of variance for
the randomized complete block design.

The computing formulas for the sums of squares in the analysis of variance for a ran-
domized complete block design are

(13-29)

(13-30)

(13-31)

and

(13-32)SSE � SST � SSTreatments � SSBlocks

 SSBlocks �
1
a  a

b

j�1
 y

2.j �
y2..

ab

 SSTreatments �
1

b
 a

a

i�1
 y

2
i . �

y2..

ab

 SST � a
a

i�1
a

b

j�1
 y

2
ij �

y2..

ab

Computing
Formulas for

ANOVA:
Randomized

Block
Experiment

JWCL232_c13_513-550.qxd  1/18/10  10:41 AM  Page 540



13-4 RANDOMIZED COMPLETE BLOCK DESIGN 541

Table 13-11 ANOVA for a Randomized Complete Block Design

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a � 1

Blocks SSBlocks b � 1

Error SSE (by subtraction) (a � 1)(b � 1)

Total SST ab � 1

SSE

1a � 12 1b � 12

SSBlocks

b � 1

MSTreatments

MSE

SSTreatments

a � 1

Table 13-12 Fabric Strength Data—Randomized Complete Block Design

Treatment Treatment
Fabric Sample Totals Averages

Chemical Type 1 2 3 4 5

1 1.3 1.6 0.5 1.2 1.1 5.7 1.14
2 2.2 2.4 0.4 2.0 1.8 8.8 1.76
3 1.8 1.7 0.6 1.5 1.3 6.9 1.38
4 3.9 4.4 2.0 4.1 3.4 17.8 3.56

Block totals 9.2 10.1 3.5 8.8 7.6 39.2(y..)
Block averages 2.30 2.53 0.88 2.20 1.90 1.96( )y..y.j

y.j

yi.yi.

EXAMPLE 13-5 Fabric Strength
An experiment was performed to determine the effect of four
different chemicals on the strength of a fabric. These chemi-
cals are used as part of the permanent press finishing process.
Five fabric samples were selected, and a RCBD was run by
testing each chemical type once in random order on each fab-
ric sample. The data are shown in Table 13-12. We will test for
differences in means using an ANOVA with � � 0.01.

The sums of squares for the analysis of variance are
computed as follows:

�
139.222

20
� 18.04

�
15.722 � 18.822 � 16.922 � 117.822

5

SSTreatments � a
4

i�1
 
y2

i.

b
�

y2..

ab

 � 11.322 � 11.622 � p � 13.422 �
139.222

20
� 25.69

 SST � a
4

i�1
a

5

j�1
 y

2
ij �

y2..

ab
The ANOVA is summarized in Table 13-13. Since f0 � 75.13 �
f0.01,3,12 � 5.95 (the P-value is 4.79 � 10�8), we conclude that
there is a significant difference in the chemical types so far as
their effect on strength is concerned.

 � 25.69 � 6.69 � 18.04 � 0.96

 SSE � SST � SSBlocks � SSTreatments

�
139.222

20
� 6.69

 �
19.222 � 110.122 � 13.522 � 18.822 � 17.622

4

 SSBlocks � a
5

j�1
 
y.2j
a �

y2..

ab
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When Is Blocking Necessary?
Suppose an experiment is conducted as a randomized block design, and blocking was not
really necessary. There are ab observations and (a � 1)(b � 1) degrees of freedom for 
error. If the experiment had been run as a completely randomized single-factor design
with b replicates, we would have had a(b � 1) degrees of freedom for error. Therefore,
blocking has cost a(b � 1) � (a � 1)(b � 1) � b � 1 degrees of freedom for error.
Thus, since the loss in error degrees of freedom is usually small, if there is a reasonable
chance that block effects may be important, the experimenter should use the randomized
block design.

For example, consider the experiment described in Example 13-5 as a single-factor ex-
periment with no blocking. We would then have 16 degrees of freedom for error. In the ran-
domized block design, there are 12 degrees of freedom for error. Therefore, blocking has cost
only 4 degrees of freedom, which is a very small loss considering the possible gain in infor-
mation that would be achieved if block effects are really important. The block effect in
Example 13-5 is large, and if we had not blocked, SSBlocks would have been included in the er-
ror sum of squares for the completely randomized analysis. This would have resulted in a
much larger MSE, making it more difficult to detect treatment differences. As a general rule,
when in doubt as to the importance of block effects, the experimenter should block and gam-
ble that the block effect does exist. If the experimenter is wrong, the slight loss in the degrees
of freedom for error will have a negligible effect, unless the number of degrees of freedom is
very small.

Computer Solution
Table 13-14 presents the computer output from Minitab for the randomized complete block
design in Example 13-5. We used the analysis of variance menu for balanced designs to solve
this problem. The results agree closely with the hand calculations from Table 13-13.

Notice that Minitab computes an F-statistic for the blocks (the fabric samples). The
validity of this ratio as a test statistic for the null hypothesis of no block effects is doubtful
because the blocks represent a restriction on randomization; that is, we have only randomized
within the blocks. If the blocks are not chosen at random, or if they are not run in random
order, the F-ratio for blocks may not provide reliable information about block effects. For
more discussion see Montgomery (2009, Chapter 4).

13-4.2 Multiple Comparisons

When the ANOVA indicates that a difference exists between the treatment means, we may
need to perform some follow-up tests to isolate the specific differences. Any multiple com-
parison method, such as Fisher’s LSD method, could be used for this purpose.

Table 13-13 Analysis of Variance for the Randomized Complete Block Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value

Chemical types 
(treatments) 18.04 3 6.01 75.13 4.79 E-8
Fabric samples 
(blocks) 6.69 4 1.67
Error 0.96 12 0.08
Total 25.69 19
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We will illustrate Fisher’s LSD method. The four chemical type averages from
Example 13-5 are:

Each treatment average uses b � 5 observations (one from each block). We will use � �
0.05, so t0.025,12 � 2.179. Therefore the value of the LSD is

Any pair of treatment averages that differ by 0.39 or more indicates that this pair of treatment
means is significantly different. The comparisons are shown below:

Figure 13-10 presents the results graphically. The underlined pairs of means are not different.
The LSD procedure indicates that chemical type 4 results in significantly different strengths
than the other three types do. Chemical types 2 and 3 do not differ, and types 1 and 3 do not
differ. There may be a small difference in strength between types 1 and 2.

 3 vs. 1 � y3. � y1. � 1.38 � 1.14 � 0.24 � 0.39

 2 vs. 3 � y2. � y3. � 1.76 � 1.38 � 0.38 � 0.39

 2 vs. 1 � y2. � y1. � 1.76 � 1.14 � 0.62 � 0.39

 4 vs. 2 � y4. � y2. � 3.56 � 1.76 � 1.80 � 0.39

 4 vs. 3 � y4. � y3. � 3.56 � 1.38 � 2.18 � 0.39

 4 vs. 1 � y4. � y1. � 3.56 � 1.14 � 2.42 � 0.39

LSD � t0.025,12B

2MSE

b
� 2.179

B

210.082

5
� 0.39

y1. � 1.14  y2. � 1.76  y3. � 1.38  y4. � 3.56

Table 13-14 Minitab Analysis of Variance for the Randomized Complete 
Block Design in Example 13-5

Analysis of Variance (Balanced Designs)

Factor Type Levels Values
Chemical fixed 4 1 2 3 4
Fabric S fixed 5 1 2 3 4 5

Analysis of Variance for strength

Source DF SS MS F P
Chemical 3 18.0440 6.0147 75.89 0.000
Fabric S 4 6.6930 1.6733 21.11 0.000
Error 12 0.9510 0.0792
Total 19 25.6880

F-test with denominator: Error
Denominator MS � 0.079250 with 12 degrees of freedom

Numerator DF MS F P
Chemical 3 6.015 75.89 0.000
Fabric S 4 1.673 21.11 0.000
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0 1 2 3 4 6

2 41 3

5

Chemical type

Figure 13-10
Results of Fisher’s
LSD method.

13-4.3 Residual Analysis and Model Checking

In any designed experiment, it is always important to examine the residuals and to check for
violation of basic assumptions that could invalidate the results. As usual, the residuals for the
RCBD are just the difference between the observed and estimated (or fitted) values from the
statistical model, say,

(13-33)

and the fitted values are

The fitted value represents the estimate of the mean response when the ith treatment is run in
the jth block. The residuals from the chemical type experiment are shown in Table 13-15.

Figures 13-11, 13-12, 13-13, and 13-14 present the important residual plots for the
experiment. These residual plots are usually constructed by computer software packages.

ŷij � yi. � y.j � y..

eij � yij � ŷij

Table 13-15 Residuals from the Randomized Complete Block Design

Chemical Fabric Sample

Type 1 2 3 4 5

1 �0.18 �0.10 0.44 �0.18 0.02
2 0.10 0.08 �0.28 0.00 0.10
3 0.08 �0.24 0.30 �0.12 �0.02
4 0.00 0.28 �0.48 0.30 �0.10

–0.50

–1

–0.25 0 0.25 0.50

–2

0

1

2

N
o
rm

a
l 
sc

o
re

 z
j

Residual value

Figure 13-11 Normal probability plot of
residuals from the randomized complete
block design.

1

0.5

0

–0.5

2 3 4

eij

Figure 13-12 Residuals by treatment.
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There is some indication that fabric sample (block) 3 has greater variability in strength when
treated with the four chemicals than the other samples. Chemical type 4, which provides the
greatest strength, also has somewhat more variability in strength. Followup experiments may
be necessary to confirm these findings, if they are potentially important.

1

0.5

0

–0.5

2 3 4

eij

5

0.5

0

–0.5

eij

642
yij

Figure 13-13 Residuals by block. Figure 13-14 Residuals versus .ŷij

EXERCISES FOR SECTION 13-4

13-34. Consider the computer output below.

Randomized Block ANOVA: y versus Factor, Block

Source DF SS MS F P
Factor ? 193.800 64.600 ? ?
Block 3 464.218 154.739
Error ? ? 4.464
Total 15 698.190

(a) How many levels of the factor were used in this
experiment?

(b) How many blocks were used in this experiment?
(c) Fill in the missing information. Use bounds for the 

P-value.
(d) What conclusions would you draw if � � 0.05? What

would you conclude if � � 0.01?

13-35. Exercise 13-2 introduced you to an experiment to in-
vestigate the potential effect of consuming chocolate on cardio-
vascular health. The experiment was conducted as a completely
randomized design, and the exercise asked you to use the
ANOVA to analyze the data and draw conclusions. Now assume
that the experiment had been conducted as a RCBD, with the
subjects considered as blocks. Analyze the data using this as-
sumption. What conclusions would you draw (using � � 0.05)
about the effect of the different types of chocolate on cardiovas-
cular health? Would your conclusions change if � � 0.01?

13-36. An article in Quality Engineering [“Designed
Experiment to Stabilize Blood Glucose Levels” (1999–2000,
Vol. 12, pp. 83–87)] described an experiment to minimize

variations in blood glucose levels. The treatment was the exer-
cise time on a Nordic Track cross-country skier (10 or 20 min).
The experiment was blocked for time of day. The data are as
follows:

Exercise (min) Time of Day Average Blood Glucose

10 pm 71.5
10 am 103
20 am 83.5
20 pm 126
10 am 125.5
10 pm 129.5
20 pm 95
20 am 93

(a) Is there an effect of exercise time on the average blood
glucose? Use 

(b) Find the P-value for the test in part (a).
(c) Analyze the residuals from this experiment.

13-37. In “The Effect of Nozzle Design on the Stability
and Performance of Turbulent Water Jets” (Fire Safety
Journal, Vol. 4, August 1981), C. Theobald described an
experiment in which a shape measurement was determined
for several different nozzle types at different levels of jet
efflux velocity. Interest in this experiment focuses primarily
on nozzle type, and velocity is a nuisance factor. The data are
as follows:

� � 0.05.
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(a) Does nozzle type affect shape measurement? Compare the
nozzles with box plots and the analysis of variance.

(b) Use Fisher’s LSD method to determine specific differ-
ences between the nozzles. Does a graph of the average
(or standard deviation) of the shape measurements versus
nozzle type assist with the conclusions?

(c) Analyze the residuals from this experiment.

13-38. In Design and Analysis of Experiments, 7th edition
(John Wiley & Sons, 2009), D. C. Montgomery described an
experiment that determined the effect of four different types
of tips in a hardness tester on the observed hardness of a
metal alloy. Four specimens of the alloy were obtained, and
each tip was tested once on each specimen, producing the
following data:

(a) Is there any difference in hardness measurements between
the tips?

(b) Use Fisher’s LSD method to investigate specific differ-
ences between the tips.

(c) Analyze the residuals from this experiment.

13-39. An article in the American Industrial Hygiene
Association Journal (Vol. 37, 1976, pp. 418–422) described

Jet Efflux Velocity (m/s)Nozzle
Type 11.73 14.37 16.59 20.43 23.46 28.74

1 0.78 0.80 0.81 0.75 0.77 0.78
2 0.85 0.85 0.92 0.86 0.81 0.83
3 0.93 0.92 0.95 0.89 0.89 0.83
4 1.14 0.97 0.98 0.88 0.86 0.83
5 0.97 0.86 0.78 0.76 0.76 0.75

SpecimenType of 
Tip 1 2 3 4

1 9.3 9.4 9.6 10.0
2 9.4 9.3 9.8 9.9
3 9.2 9.4 9.5 9.7
4 9.7 9.6 10.0 10.2

(a) Is there any difference in the arsenic test procedure?
(b) Analyze the residuals from this experiment.

13-40. An article in the Food Technology Journal (Vol. 10,
1956, pp. 39–42) described a study on the protopectin content
of tomatoes during storage. Four storage times were selected,
and samples from nine lots of tomatoes were analyzed. The
protopectin content (expressed as hydrochloric acid soluble
fraction mg/kg) is in Table 13-16.
(a) The researchers in this study hypothesized that mean pro-

topectin content would be different at different storage
times. Can you confirm this hypothesis with a statistical
test using � � 0.05?

(b) Find the P-value for the test in part (a).
(c) Which specific storage times are different? Would you

agree with the statement that protopectin content de-
creases as storage time increases?

(d) Analyze the residuals from this experiment.

13-41. An experiment was conducted to investigate leak-
ing current in a SOS MOSFETS device. The purpose of the
experiment was to investigate how leakage current varies
as the channel length changes. Four channel lengths were
selected. For each channel length, five different widths were

Subject

Test 1 2 3 4

Trainee 0.05 0.05 0.04 0.15
Trainer 0.05 0.05 0.04 0.17
Lab 0.04 0.04 0.03 0.10

LotStorage 
Time 1 2 3 4 5 6 7 8 9

0 days 1694.0 989.0 917.3 346.1 1260.0 965.6 1123.0 1106.0 1116.0

7 days 1802.0 1074.0 278.8 1375.0 544.0 672.2 818.0 406.8 461.6

14 days 1568.0 646.2 1820.0 1150.0 983.7 395.3 422.3 420.0 409.5

21 days 415.5 845.4 377.6 279.4 447.8 272.1 394.1 356.4 351.2

a field test for detecting the presence of arsenic in urine samples.
The test has been proposed for use among forestry workers
because of the increasing use of organic arsenics in that
industry. The experiment compared the test as performed by
both a trainee and an experienced trainer to an analysis at a
remote laboratory. Four subjects were selected for testing
and are considered as blocks. The response variable is ar-
senic content (in ppm) in the subject’s urine. The data are as
follows:

Table 13-16 Protopectin Content of Tomatoes in Storage
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also used, and width is to be considered a nuisance factor.
The data are as follows:

are used extensively in equipment such as air turbine starters.
Five different carbon materials were tested, and the surface
roughness was measured. The data are as follows:

WidthChannel 
Length 1 2 3 4 5

1 0.7 0.8 0.8 0.9 1.0
2 0.8 0.8 0.9 0.9 1.0
3 0.9 1.0 1.7 2.0 4.0
4 1.0 1.5 2.0 3.0 20.0

(a) Test the hypothesis that mean leakage voltage does not
depend on the channel length, using � � 0.05.

(b) Analyze the residuals from this experiment. Comment on
the residual plots.

(c) The observed leakage voltage for channel length 4 and
width 5 was erroneously recorded. The correct observa-
tion is 4.0. Analyze the corrected data from this experi-
ment. Is there evidence to conclude that mean leakage
voltage increases with channel length?

Supplemental Exercises

13-42. Consider the computer output below.

One-way ANOVA: y versus Factor

Source DF SS MS F P
Factor ? ? ? ? ?
Error 15 167.5 ?
Total 19 326.2

S � 3.342 R�Sq � ? R�Sq(adj) � 34.96%

(a) How many levels of the factor were used in this experiment?
(b) How many replicates were used?
(c) Fill in the missing information. Use bounds for the P-value.
(d) What conclusions would you draw if � � 0.05? What if

� � 0.01?

13-43. Consider the computer output below.

Randomized Block ANOVA: y versus Factor, Block

Source DF SS MS F P
Factor ? 126.880 63.4401 ? ?
Block ? 54.825 18.2751
Error 6 ? 2.7403
Total 11 198.147

(a) How many levels of the factor were used in this experiment?
(b) How many blocks were used?
(c) Fill in the missing information. Use bounds for the P-value.
(d) What conclusions would you draw if � � 0.05? What if

� � 0.01?

13-44. An article in Lubrication Engineering (December
1990) described the results of an experiment designed to
investigate the effects of carbon material properties on the pro-
gression of blisters on carbon face seals. The carbon face seals

(a) Does carbon material type have an effect on mean surface
roughness? Use � � 0.05.

(b) Find the residuals for this experiment. Does a normal
probability plot of the residuals indicate any problem with
the normality assumption?

(c) Plot the residuals versus . Comment on the plot.
(d) Find a 95% confidence interval on the difference between

the mean surface roughness between the EC10 and the
EC1 carbon grades.

(e) Apply the Fisher LSD method to this experiment.
Summarize your conclusions regarding the effect of mate-
rial type on surface roughness.

13-45. An article in the IEEE Transactions on Components,
Hybrids, and Manufacturing Technology (Vol. 15, No. 2,
1992, pp. 146–153) described an experiment in which the con-
tact resistance of a brake-only relay was studied for three dif-
ferent materials (all were silver-based alloys). The data are as
follows.

ŷij

Carbon 
Material 

Type Surface Roughness

EC10 0.50 0.55 0.55 0.36

EC10A 0.31 0.07 0.25 0.18 0.56 0.20

EC4 0.20 0.28 0.12

EC1 0.10 0.16

Alloy Contact Resistance

1 95 97 99 98 99

99 99 94 95 98

2 104 102 102 105 99

102 111 103 100 103

3 119 130 132 136 141

172 145 150 144 135

(a) Does the type of alloy affect mean contact resistance? Use
� � 0.01.

(b) Use Fisher’s LSD method to determine which means differ.
(c) Find a 99% confidence interval on the mean contact

resistance for alloy 3.
(d) Analyze the residuals for this experiment.

13-46. An article in the Journal of Quality Technology
(Vol. 14, No. 2, 1982, pp. 80–89) described an experiment
in which three different methods of preparing fish are eval-
uated on the basis of sensory criteria and a quality score is
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assigned. Assume that these methods have been randomly
selected from a large population of preparation methods.
The data are in the following table:

Project

Algorithm 1 2 3 4 5 6 7 8

1(SLIM) 1244 21 82 2221 905 839 527 122

2(COCOMO-A) 281 129 396 1306 336 910 473 199

3(COCOMO-R) 220 84 458 543 300 794 488 142

4(COCOMO-C) 225 83 425 552 291 826 509 153

5(FUNCTION POINTS) 19 11 �34 121 15 103 87 �17

6(ESTIMALS) �20 35 �53 170 104 199 142 41

Temperature (°C) Volume (CC)

70.0 1245 1235 1285 1245 1235

75.0 1235 1240 1200 1220 1210

80.0 1225 1200 1170 1155 1095

(a) Is there any difference in preparation methods? Use 
� � 0.05.

(b) Calculate the P-value for the F-statistic in part (a).
(c) Analyze the residuals from this experiment and comment

on model adequacy.
(d) Estimate the components of variance.

13-47. An article in the Journal of Agricultural
Engineering Research (Vol. 52, 1992, pp. 53–76) described
an experiment to investigate the effect of drying temperature
of wheat grain on the baking quality of bread. Three temper-
ature levels were used, and the response variable measured
was the volume of the loaf of bread produced. The data are
as follows:

Housing Air Temperatures 
(degrees F) 

50 60 70 80 90 100

100 1.37 1.58 2.00 1.97 1.40 0.39

150 1.47 1.75 2.16 1.82 1.14 �0.19

200 1.19 1.91 2.22 1.67 0.88 �0.77

Mean
Weight

(lbs)

Table 13-17 Software Development Costs

(d) Analyze the residuals from this experiment and comment
on model adequacy.

13-48. An article in Agricultural Engineering (December
1964, pp. 672–673) described an experiment in which
the daily weight gain of swine is evaluated at different levels of
housing temperature. The mean weight of each group of
swine at the start of the experiment is considered to be a nui-
sance factor. The data from this experiment are as follows:

Method Score

1 24.4 23.2 25.0 19.7

22.2 24.4 23.8 18.0

2 22.1 19.5 17.3 19.7

22.3 23.2 21.4 22.6

3 23.3 22.8 22.4 23.7

20.4 23.5 20.8 24.1

(a) Does housing air temperature affect mean weight gain?
Use � � 0.05.

(b) Use Fisher’s LSD method to determine which tempera-
ture levels are different.

(c) Analyze the residuals from this experiment and comment
on model adequacy.

13-49. An article in Communications of the ACM (Vol. 30,
No. 5, 1987) studied different algorithms for estimating
software development costs. Six algorithms were applied to
eight software development projects and the percent error in
estimating the development cost was observed. The data are in
Table 13-17.
(a) Do the algorithms differ in their mean cost estimation

accuracy? Use � � 0.05.
(b) Analyze the residuals from this experiment.
(c) Which algorithm would you recommend for use in

practice?

13-50. An article in Nature Genetics (2003, Vol. 34(1), pp.
85–90) “Treatment-specific changes in gene expression dis-
criminate in vivo drug response in human leukemia cells”
studied gene expression as a function of different treatments

(a) Does drying temperature affect mean bread volume? Use
� � 0.01.

(b) Find the P-value for this test.
(c) Use the Fisher LSD method to determine which means are

different.
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13-51. Consider an ANOVA situation with treat-
ments. Let �2 � 9 and � � 0.05, and suppose that .
(a) Find the power of the ANOVA F-test when �1 � �2 �

�3 � 1, �4 � 3, and �5 � 2.
(b) What sample size is required if we want the power of the

F-test in this situation to be at least 0.90?

13-52. Consider an ANOVA situation with a � 4 means 
�1 � 1, �2 � 5, �3 � 8, and �4 � 4. Suppose that �2 � 4, 
n � 4, and � � 0.05.
(a) Find the power of the ANOVA F-test.
(b) How large would the sample size have to be if we want the

power of the F-test for detecting this difference in means
to be at least 0.90?

n � 4
a � 5for leukemia. Three treatment groups are: mercaptopurine

(MP) only; low-dose methotrexate (LDMTX) and MP; and
high-dose methotrexate (HDMTX) and MP. Each group con-
tained ten subjects. The responses from a specific gene are
shown in Table 13-18.
(a) Check the normality of the data. Can we assume these

samples are from normal populations?
(b) Take the logarithm of the raw data and check the normal-

ity of the transformed data. Is there evidence to support
the claim that the treatment means differ for the trans-
formed data? Use 

(c) Analyze the residuals from the transformed data and com-
ment on model adequacy.

� � 0.1.

13-4 RANDOMIZED COMPLETE BLOCK DESIGN 549

MIND-EXPANDING EXERCISES

13-53. Show that in the fixed-effects model analysis
of variance E(MSE) � �2. How would your development
change if the random-effects model had been specified?

13-54. Consider testing the equality of the means of
two normal populations where the variances are unknown
but are assumed equal. The appropriate test procedure is
the two-sample t-test. Show that the two-sample t-test is
equivalent to the single-factor analysis of variance F-test.

13-55. Consider the ANOVA with a � 2 treatments.
Show that the MSE in this analysis is equal to the pooled
variance estimate used in the two-sample t-test.

13-56. Show that the variance of the linear combination

13-57. In a fixed-effects model, suppose that there are
n observations for each of four treatments. Let Q2

1, Q
2
2,

and Q2
3 be single-degree-of-freedom sums of squares for

orthogonal contrasts. A contrast is a linear combination of
the treatment means with coefficients that sum to zero.
The coefficient vectors of orthogonal contrasts are or-
thogonal vectors. Prove that SSTreatments � Q2

1 � Q2
2 � Q2

3.

13-58. Consider the single-factor completely ran-
domized design with a treatments and n replicates.
Show that if the difference between any two treatment

a
a

i�1
ciYi. is �2

a
a

i�1
nic

2
i .

means is as large as D, the minimum value that the OC
curve parameter �2 can take is

13-59. Consider the single-factor completely ran-
domized design. Show that a 100(1 � �) percent confi-
dence interval for �2 is

where N is the total number of observations in the
experimental design.

13-60. Consider the random-effect model for the
single-factor completely randomized design. Show that
a 100(1 � �)% confidence interval on the ratio of vari-
ance components �2

���2 is given by

L 

�2

�

�2 
 U

1N � a2MSE

�2
�
2, N�a


 �2 

1N � a2MSE

�2
1��
2, N�a

�2 �
nD2

2a�2

Treatments Observations

MP ONLY 334.5 31.6 701 41.2 61.2 69.6 67.5 66.6 120.7 881.9
919.4 404.2 1024.8 54.1 62.8 671.6 882.1 354.2 321.9 91.1
108.4 26.1 240.8 191.1 69.7 242.8 62.7 396.9 23.6 290.4MP�LDMTX

MP�HDMTX

Table 13-18 Treatment-Specific Changes in Gene Expression
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MIND-EXPANDING EXERCISES

where

and

13-61. Consider a random-effects model for the
single-factor completely randomized design. (a) Show
that a 100(1 � �)% confidence interval on the ratio 
�2

��(�2 � �2
�) is

where L and U are as defined in Exercise 13-60.

(b) Use the results of part (a) to find a 100(1 � �)% confi-
dence interval for �2�(�2 � �2

�).

13-62. Consider the fixed-effect model of the com-
pletely randomized single-factor design. The model
parameters are restricted by the constraint .
(Actually, other restrictions could be used, but this one is
simple and results in intuitively pleasing estimates for

g a
i�1 �i � 0

L

1 � L



�2
�

�2 � �2
�



U

1 � U

U �
1
n  c

MSTreatments

MSE
� a

1

f1��
2,a�1,N�a
b � 1 d

L �
1
n  c

MSTreatments

MSE
� a

1

f�
2,a�1,N�a
b � 1 d

the model parameters.) For the case of unequal sample
size n1, n2, p , na, the restriction is . Use
this to show that

Does this suggest that the null hypothesis in this model
is H0: n1�1 � n2�2 � p � na�a � 0?

13-63. Sample Size Determination. In the single-
factor completely randomized design, the accuracy of a
100(1 � �)% confidence interval on the difference in
any two treatment means is 

(a) Show that if A is the desired accuracy of the interval,
the sample size required is 

(b) Suppose that in comparing a � 5 means we have a
preliminary estimate of �2 of 4. If we want the 95%
confidence interval on the difference in means to
have an accuracy of 2, how many replicates should
we use?

n �
2F�
2,1,a1n�12 MSE

A2

t�
2,a1n�1212MSE
n.

E1MSTreatments2 � �2 �
a

a

i�1
 ni�

2
i

a � 1

g a
i�1 ni�i � 0

Analysis of variance
(ANOVA)

Blocking
Completely  randomized

experiment
Expected mean squares
Fisher’s least significant

difference (LSD)
method

Fixed factor
Graphical comparison

of means
Levels of a factor
Mean square
Multiple comparisons
Nuisance factors

Random factor
Randomization
Randomized complete

block design
Residual analysis and

model adequacy
checking

Sample size and 
replication in an 
experiment

Treatment effect
Variance component
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Design of Experiments 
with Several Factors
Carotenoids are fat-soluble pigments that occur naturally in fruits in vegetables that are rec-
ommended for healthy diets. A well-known carotenoid is beta-carotene. Astaxanthin is
another carotenoid that is a strong antioxidant and commercially produced. An exercise later
in this chapter describes an experiment in Biotechnology Progress to promote astaxanthin
production. Seven variables were considered important to production: photon flux density,
and concentrations of nitrogen, phosphorous, magnesium, acetate, ferrous, NaCl. It was
important to study the effects of these factors, but also the effects of combinations on the pro-
duction. Even with only a high and low setting for each variable, an experiment that uses all
possible combinations requires 27 � 128 tests. There are a number of disadvantages of such
a large experiment and a question is whether a fraction of the full set of tests can be selected
to provide the most important information about the effects of these variables in many fewer
runs. The example used a surprisingly small set of 16 runs (16/128 � 1/8 fraction). The
design and analysis of experiments of this type is the focus of this chapter. Such experiments
are widely-used throughout modern engineering development and scientific studies.

14
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14-6 BLOCKING AND CONFOUNDING
IN THE 2k DESIGN

14-7 FRACTIONAL REPLICATION OF
THE 2k DESIGN

14-7.1 One-Half Fraction of the 2k

Design

14-7.2 Smaller Fractions: The 2k�p

Fractional Factorial

14-8 RESPONSE SURFACE METHODS
AND DESIGNS

14-1 INTRODUCTION

An experiment is just a test or series of tests. Experiments are performed in all engineering and
scientific disciplines and are an important part of the way we learn about how systems and
processes work. The validity of the conclusions that are drawn from an experiment depends to a
large extent on how the experiment was conducted. Therefore, the design of the experiment
plays a major role in the eventual solution of the problem that initially motivated the experiment.

In this chapter we focus on experiments that include two or more factors that the experi-
menter thinks may be important. A factorial experiment is a powerful technique for this type of
problem. Generally, in a factorial experimental design, experimental trials (or runs) are per-
formed at all combinations of factor levels. For example, if a chemical engineer is interested in
investigating the effects of reaction time and reaction temperature on the yield of a process, and
if two levels of time (1 and 1.5 hours) and two levels of temperature (125 and 150�F) are con-
sidered important, a factorial experiment would consist of making experimental runs at each of
the four possible combinations of these levels of reaction time and reaction temperature.

Experimental design is an extremely important tool for engineers and scientists who are in-
terested in improving the performance of a manufacturing process. It also has extensive applica-
tion in the development of new processes and in new product design. We now give some examples.

Process Characterization Experiment
In an article in IEEE Transactions on “Electronics Packaging Manufacturing” (2001, Vol. 24(4),
pp. 249–254), the authors discussed the change to lead-free solder in surface mount technology
(SMT). SMT is a process to assemble electronic components to a printed circuit board. Solder
paste is printed through a stencil onto the printed circuit board. The stencil-printing machine has
squeegees; the paste rolls in front of the squeegee and fills the apertures in the stencil. The
squeegee shears off the paste in the apertures as it moves over the stencil. Once the print stroke

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Design and conduct engineering experiments involving several factors using the factorial 

design approach
2. Know how to analyze and interpret main effects and interactions
3. Understand how the ANOVA is used to analyze the data from these experiments
4. Assess model adequacy with residual plots
5. Know how to use the two-level series of factorial designs
6. Understand how two-level factorial designs can be run in blocks
7. Design and conduct two-level fractional factorial designs
8. Test for curvature in two-level factorial designs by using center points
9. Use response surface methodology for process optimization experiments
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14-1 INTRODUCTION 553

is completed, the board is separated mechanically from the stencil. Electronic components are
placed on the deposits and the board is heated so that the paste reflows to form the solder joints.

The current SMT soldering process is based on tin–lead solders, and it has been well
developed and refined over the years to operate at a competitive cost. The process will have
several (perhaps many) variables, and all of them are not equally important. The initial list of
candidate variables to be included in an experiment is constructed by combining the knowl-
edge and information about the process from all team members. For example, engineers would
conduct a brainstorming session and invite manufacturing personnel with SMT experience
to participate. SMT has several variables that can be controlled. These include

(1) squeegee speed, (2) squeegee pressure, (3) squeegee angle, (4) metal or polyurethane squeegee,
(5) squeegee vibration, (6) delay time before the squeegee lifts from the stencil, (7) stencil separa-
tion speed, (8) print gap, (9) solder paste alloy, (10) paste pretreatment (11) paste particle size,
(12) flux type, (13) reflow temperature, (14) reflow time, and so forth.

In addition to these controllable factors, there are several other factors that cannot be easily
controlled during routine manufacturing, including

(1) thickness of the printed circuit board, (2) types of components used on the board and aperture
width and length, (3) layout of the components on the board, (4) paste density variation, (5) envi-
ronmental factors, (6) squeegee wear, (7) cleanliness, and so forth.

Sometimes we call the uncontrollable factors noise factors. A schematic representation of the
process is shown in Fig. 14-1. In this situation, the engineer wants to characterize the SMT
process; that is, to determine the factors (both controllable and uncontrollable) that affect the
occurrence of defects on the printed circuit boards. To determine these factors, an experiment
can be designed to estimate the magnitude and direction of the factor effects. Sometimes we
call such an experiment a screening experiment. The information from this characterization
study, or screening experiment, can help determine the critical process variables as well as the
direction of adjustment for these factors in order to reduce the number of defects, and assist in
determining which process variables should be carefully controlled during manufacturing to
prevent high defect levels and erratic process performance.

Optimization Experiment
In a characterization experiment, we are interested in determining which factors affect the
response. A logical next step is to determine the region in the important factors that leads to an opti-
mum response. For example, if the response is cost, we will look for a region of minimum cost.

As an illustration, suppose that the yield of a chemical process is influenced by the op-
erating temperature and the reaction time. We are currently operating the process at 155�F
and 1.7 hours of reaction time, and the current process yield is around 75%. Figure 14-2
shows a view of the time–temperature space from above. In this graph we have connected
points of constant yield with lines. These lines are yield contours, and we have shown the

OutputInput

. . .

Controllable factors
x2x1 xp

z1 z2 zq
Uncontrollable (noise) factors

. . .

(printed circuit boards) (defects, y)
SMT Process

Figure 14-1 The
flow solder
experiment.
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554 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

contours at 60, 70, 80, 90, and 95% yield. To locate the optimum, we might begin with a
factorial experiment such as we describe below, with the two factors, time and temperature,
run at two levels each at 10�F and 0.5 hours above and below the current operating condi-
tions. This two-factor factorial design is shown in Fig. 14-2. The average responses observed
at the four points in the experiment (145�F, 1.2 hours; 145�F, 2.2 hours; 165�F, 1.2 hours; and
165�F, 2.2 hours) indicate that we should move in the general direction of increased temper-
ature and lower reaction time to increase yield. A few additional runs could be performed in
this direction to locate the region of maximum yield.

A Product Design Example
We can also use experimental design in the development of new products. For example, suppose
that a group of engineers are designing a door hinge for an automobile. The product characteristic
is the check effort, or the holding ability, of the latch that prevents the door from swinging closed
when the vehicle is parked on a hill. The check mechanism consists of a leaf spring and a roller.
When the door is opened, the roller travels through an arc causing the leaf spring to be com-
pressed. To close the door, the spring must be forced aside, and this creates the check effort. The
engineering team thinks that check effort is a function of the following factors:

(1) roller travel distance, (2) spring height from pivot to base, (3) horizontal distance from pivot to
spring, (4) free height of the reinforcement spring, (5) free height of the main spring.

The engineers can build a prototype hinge mechanism in which all these factors can be
varied over certain ranges. Once appropriate levels for these five factors have been identified,
an experiment can be designed consisting of various combinations of the factor levels, and the
prototype can be tested at these combinations. This will produce information concerning
which factors are most influential on the latch check effort, and through analysis of this infor-
mation, the latch design can be improved.

Figure 14-2 Contour
plot of yield as a func-
tion of reaction time
and reaction tempera-
ture, illustrating an 
optimization 
experiment.
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14-2 FACTORIAL EXPERIMENTS 555

Most of the statistical concepts introduced in Chapter 13 for single-factor experiments can
be extended to the factorial experiments of this chapter. The analysis of variance (ANOVA), in
particular, will continue to be used as a tool for statistical data analysis. We will also introduce
several graphical methods that are useful in analyzing the data from designed experiments.

14-2 FACTORIAL EXPERIMENTS

When several factors are of interest in an experiment, a factorial experiment should be used.
As noted previously, in these experiments factors are varied together.

Table 14-1 A Factorial Experiment with
Two Factors

Factor B

Factor A B low B high

Alow 10 20
Ahigh 30 40

Table 14-2 A Factorial Experiment with
Interaction

Factor B

Factor A B low B high

Alow 10 20
Ahigh 30 40

By a factorial experiment we mean that in each complete trial or replicate of the
experiment all possible combinations of the levels of the factors are investigated.

Factorial
Experiment

Thus, if there are two factors A and B with a levels of factor A and b levels of factor B, each
replicate contains all ab treatment combinations.

The effect of a factor is defined as the change in response produced by a change in the level
of the factor. It is called a main effect because it refers to the primary factors in the study. For ex-
ample, consider the data in Table 14-1. This is a factorial experiment with two factors, A and B,
each at two levels (Alow, Ahigh, and Blow, Bhigh). The main effect of factor A is the difference between
the average response at the high level of A and the average response at the low level of A, or

That is, changing factor A from the low level to the high level causes an average response
increase of 20 units. Similarly, the main effect of B is

In some experiments, the difference in response between the levels of one factor is not the
same at all levels of the other factors. When this occurs, there is an interaction between the fac-
tors. For example, consider the data in Table 14-2. At the low level of factor B, the A effect is

and at the high level of factor B, the A effect is

Since the effect of A depends on the level chosen for factor B, there is interaction between A and B.

A � 0 � 20 � �20

A � 30 � 10 � 20

B �
20 � 40

2
�

10 � 30
2

� 10

A �
30 � 40

2
�

10 � 20
2

� 20
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556 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

When an interaction is large, the corresponding main effects have very little practical
meaning. For example, by using the data in Table 14-2, we find the main effect of A as 

and we would be tempted to conclude that there is no factor A effect. However, when we ex-
amined the effects of A at different levels of factor B, we saw that this was not the case. The
effect of factor A depends on the levels of factor B. Thus, knowledge of the AB interaction is
more useful than knowledge of the main effect. A significant interaction can mask the signif-
icance of main effects. Consequently, when interaction is present, the main effects of the
factors involved in the interaction may not have much meaning.

It is easy to estimate the interaction effect in factorial experiments such as those illus-
trated in Tables 14-1 and 14-2. In this type of experiment, when both factors have two
levels, the AB interaction effect is the difference in the diagonal averages. This represents
one-half the difference between the A effects at the two levels of B. For example, in
Table 14-1, we find the AB interaction effect to be

Thus, there is no interaction between A and B. In Table 14-2, the AB interaction effect is

As we noted before, the interaction effect in these data is very large.
The concept of interaction can be illustrated graphically in several ways. Figure 14-3

plots the data in Table 14-1 against the levels of A for both levels of B. Note that the Blow and
Bhigh lines are approximately parallel, indicating that factors A and B do not interact signifi-
cantly. Figure 14-4 presents a similar plot for the data in Table 14-2. In this graph, the Blow and
Bhigh lines are not parallel, indicating the interaction between factors A and B. Such graphical
displays are called two-factor interaction plots. They are often useful in presenting the re-
sults of experiments, and many computer software programs used for analyzing data from de-
signed experiments will construct these graphs automatically.
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Figure 14-3 Factorial experiment, no 
interaction.

Figure 14-4 Factorial experiment, with 
interaction.
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14-2 FACTORIAL EXPERIMENTS 557

Figures 14-5 and 14-6 present another graphical illustration of the data from Tables 14-1 and
14-2. In Fig. 14-3 we have shown a three-dimensional surface plot of the data from Table 14-1.
These data contain no interaction, and the surface plot is a plane lying above the A-B space. The
slope of the plane in the A and B directions is proportional to the main effects of factors A and B,
respectively. Figure 14-6 is a surface plot of the data from Table 14-2. Notice that the effect of the
interaction in these data is to “twist” the plane, so that there is curvature in the response function.
Factorial experiments are the only way to discover interactions between variables.

An alternative to the factorial design that is (unfortunately) used in practice is to change
the factors one at a time rather than to vary them simultaneously. To illustrate this one-factor-at-
a-time procedure, suppose that an engineer is interested in finding the values of temperature and
pressure that maximize yield in a chemical process. Suppose that we fix temperature at 155�F (the
current operating level) and perform five runs at different levels of time, say, 0.5, 1.0, 1.5, 2.0, and
2.5 hours. The results of this series of runs are shown in Fig. 14-7. This figure indicates that max-
imum yield is achieved at about 1.7 hours of reaction time. To optimize temperature, the engineer
then fixes time at 1.7 hours (the apparent optimum) and performs five runs at different tempera-
tures, say, 140, 150, 160, 170, and 180�F. The results of this set of runs are plotted in Fig. 14-8.
Maximum yield occurs at about 155�F. Therefore, we would conclude that running the process at
155�F and 1.7 hours is the best set of operating conditions, resulting in yields of around 75%.

Figure 14-5 Three-dimensional surface plot of the data from
Table 14-1, showing the main effects of the two factors A and B.

Figure 14-6 Three-dimensional surface plot of the data from
Table 14-2 showing the effect of the A and B interaction.
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558 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Figure 14-9 displays the contour plot of actual process yield as a function of temperature
and time with the one-factor-at-a-time experiments superimposed on the contours. Clearly,
this one-factor-at-a-time approach has failed dramatically here, as the true optimum is at least
20 yield points higher and occurs at much lower reaction times and higher temperatures. The
failure to discover the importance of the shorter reaction times is particularly important be-
cause this could have significant impact on production volume or capacity, production plan-
ning, manufacturing cost, and total productivity.

The one-factor-at-a-time approach has failed here because it cannot detect the interac-
tion between temperature and time. Factorial experiments are the only way to detect inter-
actions. Furthermore, the one-factor-at-a-time method is inefficient. It will require more
experimentation than a factorial, and as we have just seen, there is no assurance that it will
produce the correct results.

14-3 TWO-FACTOR FACTORIAL EXPERIMENTS

The simplest type of factorial experiment involves only two factors, say A, and B. There are a
levels of factor A and b levels of factor B. This two-factor factorial is shown in Table 14-3. The
experiment has n replicates, and each replicate contains all ab treatment combinations. The
observation in the ij th cell for the kth replicate is denoted by yijk. In performing the experi-
ment, the abn observations would be run in random order. Thus, like the single-factor exper-
iment studied in Chapter 13, the two-factor factorial is a completely randomized design.

The observations may be described by the linear statistical model

(14-1)Yijk � � � �i � �j � 1��2ij � 	ijk •
i � 1, 2, p , a
j � 1, 2, p , b
k � 1, 2, p , n

Figure 14-9
Optimization 
experiment using the
one-factor-at-a-
time method.
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14-3 TWO-FACTOR FACTORIAL EXPERIMENTS 559

where � is the overall mean effect, �i is the effect of the i th level of factor A, �j is the effect of
the jth level of factor B, (��)ij is the effect of the interaction between A and B, and 	ijk is a ran-
dom error component having a normal distribution with mean zero and variance 
2. We are
interested in testing the hypotheses of no main effect for factor A, no main effect for B, and no
AB interaction effect. As with the single-factor experiments of Chapter 13, the analysis of vari-
ance (ANOVA) will be used to test these hypotheses. Since there are two factors in the
experiment, the test procedure is sometimes called the two-way analysis of variance.

14-3.1 Statistical Analysis of the Fixed-Effects Model

Suppose that A and B are fixed factors. That is, the a levels of factor A and the b levels of fac-
tor B are specifically chosen by the experimenter, and inferences are confined to these levels
only. In this model, it is customary to define the effects �i, �j, and (��)ij as deviations from the
mean, so that and 

The analysis of variance can be used to test hypotheses about the main factor effects of
A and B and the AB interaction. To present the ANOVA, we will need some symbols, some of
which are illustrated in Table 14-3. Let yi.. denote the total of the observations taken at the ith
level of factor A; y.j. denote the total of the observations taken at the jth level of factor B; yij.
denote the total of the observations in the ij th cell of Table 14-3; and y... denote the grand total
of all the observations. Define and as the corresponding row, column, cell,
and grand averages. That is,

y...yi.., y.j., yij.,

g b
j�1 1��2ij � 0.g a

i�1 1��2ij � 0,g b
j�1 �j � 0,g a

i�1 �i � 0,

Table 14-3 Data Arrangement for a Two-Factor Factorial Design

Factor B

1 2 b Totals Averages

1
y111, y112, y121, y122, y1b1, y1b2,
p , y11n p , y12n p , y1bn y1..

2
y211, y212, y221, y222, y2b1, y2b2,

Factor A p , y21n p , y22n p , y2bn y2..

ya11, ya12, ya21, ya22, yab1, yab2,
a p , ya1n p , ya2n p , yabn

Totals 
Averages y...y.b.y.2.y.1.

ypy.b.y.2.y.1.

ya..ya..

o

y2..

y1..

p

j � 1, 2, p , b�
y...

abn
y...� a

a

i�1
  a

b

j�1
  a

n

k�1
 yijky ...

i � 1, 2, p , a�
yij.

nyij.� a
n

k�1
 
yijkyij..

j � 1, 2, p , b�
y.j.

any.j.� a
a

i�1
 a

n

k�1
yijky .j.

i � 1, 2, p , a�
yi..

bn
yi..� a

b

j�1
 a

n

k�1
yijkyi ..

Notation 
for Totals 

and Means

 JWCL232_c14_551-636.qxd  1/16/10  9:55 AM  Page 559
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The sum of squares identity for a two-factor ANOVA is

(14-3)

or symbolically,

(14-4)SST � SSA � SSB � SSAB � SSE

� a
a

i�1
 a

b

j�1
 a

n

k�1
1 yijk � yij.2

2� na
a

i�1
  a

b

j�1
 1 yij. � yi.. � y.j. � y...22

� ana
b

j�1
1 y.j. � y...22a

a

i�1
a

b

j�1
a

n

k�1
1 yijk � y...22 � bna

a

i�1
1 yi.. � y...22

ANOVA 
Sum of Squares

Identity: Two
Factors

The hypotheses that we will test are as follows:

1. H0: �1 � �2 � � �a � 0 (no main effect of factor A)
H1: at least one �i � 0

2. H0: �1 � �2 � � �b � 0 (no main effect of factor B) (14-2)
H1: at least one �j � 0

3. H0: (��)11 � (��)12 � � (��)ab � 0 (no interaction)
H1: at least one (��)ij � 0

As before, the ANOVA tests these hypotheses by decomposing the total variability in the data
into component parts and then comparing the various elements in this decomposition. Total
variability is measured by the total sum of squares of the observations

and the sum of squares decomposition is defined below.

SST � a
a

i�1
a

b

j�1
a

n

k�1
1  yijk � y...22

p

p

p

Equations 14-3 and 14-4 state that the total sum of squares SST is partitioned into a sum of
squares for the row factor A (SSA), a sum of squares for the column factor B (SSB), a sum of
squares for the interaction between A and B (SSAB), and an error sum of squares (SSE). There
are abn � 1 total degrees of freedom. The main effects A and B have a � 1 and b � 1 degrees
of freedom, while the interaction effect AB has (a � 1)(b � 1) degrees of freedom. Within
each of the ab cells in Table 14-3, there are n � 1 degrees of freedom between the n replicates,
and observations in the same cell can differ only because of random error. Therefore, there are
ab(n � 1) degrees of freedom for error. Therefore, the degrees of freedom are partitioned 
according to

If we divide each of the sum of squares on the right-hand side of Equation 14-4 by the
corresponding number of degrees of freedom, we obtain the mean squares for A, B, the
interaction, and error:

MSA �
SSA

a � 1
  MSB �

SSB

b � 1
  MSAB �

SSAB

1a � 12 1b � 12
  MSE �

SSE

ab1n � 12

abn � 1 � 1a � 12 � 1b � 12 � 1a � 12 1b � 12 � ab1n � 12
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Assuming that factors A and B are fixed factors, it is not difficult to show that the expected
values of these mean squares are

E1MSE2 � E  a
SSE

ab1n � 12
b � 
2

E1MSAB2 � E  a
SSAB

1a � 12 1b � 12
b � 
2 �

n g
a

i�1
  g

b

j�1
 1��22ij

1a � 12 1b � 12

E1MSB2 � E   a
SSB

b � 1
b � 
2 �

an g
b

j�1
 �

2
j

b � 1
E1MSA2 � E  a

SSA

a � 1
b � 
2 �

bn g
a

i�1
 �i

2

a � 1

Expected
Values of Mean

Squares:
Two Factors

F0 �
MSA

MSE

F Test for
Factor A

From examining these expected mean squares, it is clear that if the null hypotheses about main
effects H0: �i � 0, H0: �j � 0, and the interaction hypothesis H0: (��)ij � 0 are all true, all four
mean squares are unbiased estimates of 
2.

To test that the row factor effects are all equal to zero (H0: �i � 0), we would use the ratio

F0 �
MSB

MSE

F Test for
Factor B

which has an F distribution with a � 1 and ab(n � 1) degrees of freedom if H0: �i � 0 is true. This
null hypothesis is rejected at the � level of significance if f0 
 f�,a�1,ab(n�1). Similarly, to test the hy-
pothesis that all the column factor effects are equal to zero (H0: �j � 0), we would use the ratio

which has an F distribution with b � 1 and ab(n � 1) degrees of freedom if H0: �j � 0 is true. This
null hypothesis is rejected at the � level of significance if f0 
 f�,b�1,ab(n�1). Finally, to test the hy-
pothesis H0: (��)ij � 0, which is the hypothesis that all interaction effects are zero, we use the ratio

which has an F distribution with (a � 1)(b � 1) and ab(n � 1) degrees of freedom if the null
hypothesis H0: (��)ij � 0. This hypothesis is rejected at the � level of significance if 
f0 
 f�,(a�1)(b�1),ab(n�1).

F0 �
MSAB

MSE

F Test for AB
Interaction
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EXAMPLE 14-1 Aircraft Primer Paint
Aircraft primer paints are applied to aluminum surfaces by
two methods: dipping and spraying. The purpose of the primer
is to improve paint adhesion, and some parts can be primed
using either application method. The process engineering
group responsible for this operation is interested in learning
whether three different primers differ in their adhesion proper-

ties. A factorial experiment was performed to investigate the
effect of paint primer type and application method on paint ad-
hesion. For each combination of primer type and application
method, three specimens were painted, then a finish paint was
applied, and the adhesion force was measured. The data from
the experiment are shown in Table 14-5. The circled numbers

It is usually best to conduct the test for interaction first and then to evaluate the main
effects. If interaction is not significant, interpretation of the tests on the main effects is
straightforward. However, as noted in Section 14-3, when interaction is significant, the main
effects of the factors involved in the interaction may not have much practical interpretative
value. Knowledge of the interaction is usually more important than knowledge about the main
effects.

Computational formulas for the sums of squares are easily obtained.

Computing formulas for the sums of squares in a two-factor analysis of variance.

(14-5)

(14-6)

(14-7)

(14-8)

(14-9) SSE � SST � SSAB � SSA � SSB

 SSAB � a
a

i�1
 a

b

j�1

y2
ij.

n �
y2...

abn
� SSA � SSB

 SSB � a
b

j�1

y2.j.

an �
y2...

abn

 SSA � a
a

i�1

y2
i
# ..

bn
�

y2...

abn

 SST � a
a

i�1
 a

b

j�1
 a

n

k�1
y2

ijk �
y2...

abn

Computing 
Formulas for

ANOVA:
Two Factors

Table 14-4 ANOVA Table for a Two-Factor Factorial, Fixed-Effects Model

Source of Sum of Degrees of 
Variation Squares Freedom Mean Square F0

A treatments SSA a � 1

B treatments SSB b � 1

Interaction SSAB (a � 1)(b � 1)

Error SSE ab(n � 1)

Total SST abn � 1 MSE �
SSE

ab1n � 12

MSAB

MSE
MSAB �

SSAB

1a � 12 1b � 12

MSB

MSE
MSB �

SSB

b � 1

MSA

MSE
MSA �

SSA

a � 1

The computations are usually displayed in an ANOVA table, such as Table 14-4.
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Figure 14-10 Graph of average adhesion force ver-
sus primer types for both application methods.
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Table 14-5 Adhesion Force Data for Example 14-1

Primer Type Dipping Spraying yi..

1 4.0, 4.5, 4.3 12.8 5.4, 4.9, 5.6 15.9 28.7

2 5.6, 4.9, 5.4 15.9 5.8, 6.1, 6.3 18.2 34.1

3 3.8, 3.7, 4.0 11.5 5.5, 5.0, 5.0 15.5 27.0

y.j. 40.2 49.6 89.8 � y...

in the cells are the cell totals yij The sums of squares required
to perform the ANOVA are computed as follows:

and

SSE � SST � SStypes � SSmethods � SSinteraction

� 10.72 � 4.58 � 4.91 � 0.24 � 0.99

�
189.822

18
� 4.58 � 4.91 � 0.24

� 
112.822 � 115.922 � 111.522 � 115.922 � 118.222 � 115.522

3

 SSinteraction � a
a

i�1
a

b

j�1

y2
ij.

n �
y2...

abn
� SStypes � SSmethods

 �
140.222 � 149.622

9
�
189.822

18
� 4.91

 SSmethods � a
b

j�1
 

y2.j.

an �
y2...

abn

 �
189.822

18
� 4.58

 �
128.722 � 134.122 � 127.022

6

 SStypes � a
a

i�1
 

y2
i ..

bn
�

y2...

abn

 � 15.022 �
189.822

18
� 10.72

 � 14.022 � 14.522 � p

 SST � a
a

i�1
a

b

j�1
a

n

k�1
 
y2

ijk �
y2...

abn

.. The ANOVA is summarized in Table 14-6. The experimenter
has decided to use � � 0.05. Since f0.05,2,12 � 3.89 and f0.05,1,12 �
4.75, we conclude that the main effects of primer type and ap-
plication method affect adhesion force. Furthermore, since 1.5 �
f0.05,2,12, there is no indication of interaction between these fac-
tors. The last column of Table 14-6 shows the P-value for
each F-ratio. Notice that the P-values for the two test statis-
tics for the main effects are considerably less than 0.05, while
the P-value for the test statistic for the interaction is greater
than 0.05.

Practical Interpretation: A graph of the cell adhesion
force averages versus levels of primer type for each ap-
plication method is shown in Fig. 14-10. The no-interaction
conclusion is obvious in this graph, because the two lines are
nearly parallel. Furthermore, since a large response indicates
greater adhesion force, we conclude that spraying is the best
application method and that primer type 2 is most effective.

5 yij.6

Tests on Individual Means
When both factors are fixed, comparisons between the individual means of either factor may
be made using any multiple comparison technique such as Fisher’s LSD method (described in
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Chapter 13). When there is no interaction, these comparisons may be made using either the
row averages or the column averages . However, when interaction is significant,
comparisons between the means of one factor (say, A) may be obscured by the AB interaction.
In this case, we could apply a procedure such as Fisher’s LSD method to the means of factor
A, with factor B set at a particular level.

Minitab Output
Table 14-7 shows some of the output from the Minitab analysis of variance procedure for the
aircraft primer paint experiment in Example 14-1. The upper portion of the table gives factor
name and level information, and the lower portion of the table presents the analysis of vari-
ance for the adhesion force response. The results are identical to the manual calculations dis-
played in Table 14-6 apart from rounding.

14-3.2 Model Adequacy Checking

Just as in the single-factor experiments discussed in Chapter 13, the residuals from a factorial
experiment play an important role in assessing model adequacy. The residuals from a 
two-factor factorial are

That is, the residuals are just the difference between the observations and the corresponding
cell averages.

eijk � yijk � yij.

y.j.yi..

Table 14-6 ANOVA for Example 14-1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

Primer types 4.58 2 2.29 28.63 2.7 � E-5
Application methods 4.91 1 4.91 61.38 4.7 � E-6
Interaction 0.24 2 0.12 1.50 0.2621
Error 0.99 12 0.08
Total 10.72 17

Table 14-7 Analysis of Variance from Minitab for Example 14-1

ANOVA (Balanced Designs)

Factor Type Levels Values
Primer fixed 3 1 2 3
Method fixed 2 Dip Spray

Analysis of Variance for Adhesion

Source DF SS MS F P
Primer 2 4.5811 2.2906 27.86 0.000
Method 1 4.9089 4.9089 59.70 0.000
Primer *Method 2 0.2411 0.1206 1.47 0.269
Error 12 0.9867 0.0822
Total 17 10.7178
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Figure 14-12 Plot of residuals versus primer type.Figure 14-11 Normal probability plot of the 
residuals from Example 14-1.
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Figure 14-13 Plot of residuals versus application
method.

Figure 14-14 Plot of residuals versus predicted 
values yijk.ˆ
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Table 14-8 presents the residuals for the aircraft primer paint data in Example 14-1.
The normal probability plot of these residuals is shown in Fig. 14-11. This plot has tails
that do not fall exactly along a straight line passing through the center of the plot, indicat-
ing some potential problems with the normality assumption, but the deviation from nor-
mality does not appear severe. Figures 14-12 and 14-13 plot the residuals versus the levels
of primer types and application methods, respectively. There is some indication that primer
type 3 results in slightly lower variability in adhesion force than the other two primers. The
graph of residuals versus fitted values in Fig. 14-14 does not reveal any unusual or diag-
nostic pattern.

Table 14-8 Residuals for the Aircraft Primer Experiment in Example 14-1

Application Method

Primer Type Dipping Spraying

1 �0.27, 0.23, 0.03 0.10, �0.40, 0.30
2 0.30, �0.40, 0.10 �0.27, 0.03, 0.23
3 �0.03, �0.13, 0.17 0.33, �0.17, �0.17
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Temperature (�C)

Position 800 825 850

1 570 1063 565

565 1080 510

14-3.3 One Observation per Cell

In some cases involving a two-factor factorial experiment, we may have only one replicate—that
is, only one observation per cell. In this situation, there are exactly as many parameters in the
analysis of variance model as observations, and the error degrees of freedom are zero. Thus, we
cannot test hypotheses about the main effects and interactions unless some additional
assumptions are made. One possible assumption is to assume the interaction effect is negligi-
ble and use the interaction mean square as an error mean square. Thus, the analysis is equivalent
to the analysis used in the randomized block design. This no-interaction assumption can be dan-
gerous, and the experimenter should carefully examine the data and the residuals for indications
as to whether or not interaction is present. For more details, see Montgomery (2009).

Phosphor Type

1 2 3

1 280 300 290

290 310 285

285 295 290

2 230 260 220

235 240 225

240 235 230

Glass
Type

14-1. An article in Industrial Quality Control (1956, pp.
5–8) describes an experiment to investigate the effect of two
factors (glass type and phosphor type) on the brightness of a
television tube. The response variable measured is the current
(in microamps) necessary to obtain a specified brightness
level. The data are shown in the following table:
(a) State the hypotheses of interest in this experiment.
(b) Test the above hypotheses and draw conclusions using the

analysis of variance with � � 0.05.
(c) Analyze the residuals from this experiment.

EXERCISES FOR SECTION 14-3

14-2. An engineer suspects that the surface finish of metal
parts is influenced by the type of paint used and the drying time.
He selected three drying times—20, 25, and 30 minutes—and
used two types of paint. Three parts are tested with each combi-
nation of paint type and drying time. The data are as follows:

Drying Time (min)

Paint 20 25 30

1 74 73 78

64 61 85

50 44 92

2 92 98 66

86 73 45
68 88 85

(a) State the hypotheses of interest in this experiment.
(b) Test the above hypotheses and draw conclusions using the

analysis of variance with � = 0.05.
(c) Analyze the residuals from this experiment.
14-3. In the book Design and Analysis of Experiments, 7th edi-
tion (2009, John Wiley & Sons), the results of an experiment in-
volving a storage battery used in the launching mechanism of a
shoulder-fired ground-to-air missile were presented. Three mate-
rial types can be used to make the battery plates. The objective is
to design a battery that is relatively unaffected by the ambient
temperature. The output response from the battery is effective life
in hours. Three temperature levels are selected, and a factorial ex-
periment with four replicates is run. The data are as follows:

Temperature (�F)

Material Low Medium High

1 130 155 34 40 20 70

74 180 80 75 82 58

2 150 188 136 122 25 70

159 126 106 115 58 45

3 138 110 174 120 96 104

168 160 150 139 82 60

(a) Test the appropriate hypotheses and draw conclusions
using the analysis of variance with � = 0.05.

(b) Graphically analyze the interaction.
(c) Analyze the residuals from this experiment.
14-4. An experiment was conducted to determine whether 
either firing temperature or furnace position affects the baked 
density of a carbon anode. The data are as follows:
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(a) Is there any indication that either factor affects the amount
of warping? Is there any interaction between the factors?
Use � = 0.05.

(b) Analyze the residuals from this experiment.
(c) Plot the average warping at each level of copper content

and compare the levels using Fisher’s LSD method.
Describe the differences in the effects of the different
levels of copper content on warping. If low warping is
desirable, what level of copper content would you specify?

(d) Suppose that temperature cannot be easily controlled in
the environment in which the copper plates are to be used.
Does this change your answer for part (c)?

14-7. An article in the IEEE Transactions on Electron Devices
(November 1986, p. 1754) describes a study on the effects of
two variables—polysilicon doping and anneal conditions (time
and temperature)—on the base current of a bipolar transistor.
The data from this experiment follows below.
(a) Is there any evidence to support the claim that either

polysilicon doping level or anneal conditions affect base
current? Do these variables interact? Use � � 0.05.

(b) Graphically analyze the interaction.
(c) Analyze the residuals from this experiment.

(d) Use Fisher’s LSD method to isolate the effects of anneal
conditions on base current, with � � 0.05.

14-8. An article in the Journal of Testing and Evaluation
(1988, Vol. 16, pp. 508–515) investigated the effects of cyclic
loading frequency and environment conditions on fatigue crack
growth at a constant 22 MPa stress for a particular material.

Copper Content (%)

(�C) 40 60 80 100

50 17, 20 16, 21 24, 22 28, 27

75 12, 9 18, 13 17, 12 27, 31

100 16, 12 18, 21 25, 23 30, 23

125 21, 17 23, 21 23, 22 29, 31

Temperature

14-3 TWO-FACTOR FACTORIAL EXPERIMENTS 567

583 1043 590

2 528 988 526

547 1026 538

521 1004 532

(a) State the hypotheses of interest.
(b) Test the above hypotheses using the analysis of variance

with � = 0.05. What are your conclusions?
(c) Analyze the residuals from this experiment.
(d) Using Fisher’s LSD method, investigate the differences

between the mean baked anode density at the three differ-
ent levels of temperature. Use � = 0.05.

14-5. An article in Technometrics [“Exact Analysis of
Means with Unequal Variances” (2002, Vol. 44, pp. 152–160)]
described the technique of the analysis of means (ANOM) and
presented the results of an experiment on insulation. Four
insulation types were tested at three different temperatures.
The data are as follows:

(a) Write down a model for this experiment.
(b) Test the appropriate hypotheses and draw conclusions 

using the analysis of variance with 
(c) Graphically analyze the interaction.
(d) Analyze the residuals from the experiment.
(e) Use Fisher’s LSD method to investigate the differences 

between mean effects of insulation type. Use 

14-6. Johnson and Leone (Statistics and Experimental
Design in Engineering and the Physical Sciences, John
Wiley, 1977) described an experiment conducted to investi-
gate warping of copper plates. The two factors studied were
temperature and the copper content of the plates. The re-
sponse variable is the amount of warping. The data are as 
follows:

� � 0.05.

� � 0.05.

Temperature (F)

Insulation 1 2 3

6.6 4 4.5 2.2 2.3 0.9

2.7 6.2 5.5 2.7 5.6 4.9

1 6 5 4.8 5.8 2.2 3.4

3 3.2 3 1.5 1.3 3.3

2.1 4.1 2.5 2.6 0.5 1.1

2 5.9 2.5 0.4 3.5 1.7 0.1

5.7 4.4 8.9 7.7 2.6 9.9

3.2 3.2 7 7.3 11.5 10.5

3 5.3 9.7 8 2.2 3.4 6.7

7 8.9 12 9.7 8.3 8

7.3 9 8.5 10.8 10.4 9.7

4 8.6 11.3 7.9 7.3 10.6 7.4

Environment
Air H2O Salt H2O

2.29 2.06 1.90

10
2.47 2.05 1.93
2.48 2.23 1.75
2.12 2.03 2.06

2.65 3.20 3.10

Frequency 1
2.68 3.18 3.24
2.06 3.96 3.98
2.38 3.64 3.24

2.24 11.00 9.96

0.1
2.71 11.00 10.01
2.81 9.06 9.36
2.08 11.30 10.40
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14-4 GENERAL FACTORIAL EXPERIMENTS

Many experiments involve more than two factors. In this section we introduce the case where
there are a levels of factor A, b levels of factor B, c levels of factor C, and so on, arranged
in a factorial experiment. In general, there will be abc n total observations, if there are
n replicates of the complete experiment.

For example, consider the three-factor-factorial experiment, with underlying model

(14-10)

Notice that the model contains three main effects, three two-factor interactions, a three-factor
interaction, and an error term. Assuming that A, B, and C are fixed factors, the analysis of vari-
ance is shown in Table 14-9. Note that there must be at least two replicates (n � 2) to compute
an error sum of squares. The F-test on main effects and interactions follows directly from
the expected mean squares. These ratios follow F distributions under the respective null
hypotheses.

� 1���2ijk � 	ijkl μ  

i � 1, 2, p , a
j � 1, 2, p , b
k � 1, 2, p , c
l � 1, 2, p , n

Yijkl � � � �i � �j � �k � 1��2ij � 1��2ik � 1��2jk

p

14-9. Consider a two-factor factorial experiment. Develop a
formula for finding a 100(1 � �)% confidence interval on
the difference between any two means for either a row or
column factor. Apply this formula to find a 95% CI on the
difference in mean warping at the levels of copper content 60
and 80% in Exercise 14-6.

The data from the experiment follow. The response variable is
fatigue crack growth rate.
(a) Is there indication that either factor affects crack growth

rate? Is there any indication of interaction? Use � � 0.05.
(b) Analyze the residuals from this experiment.
(c) Repeat the analysis in part (a) using ln(y) as the response.

Analyze the residuals from this new response variable and
comment on the results.

EXAMPLE 14-2 Surface Roughness
A mechanical engineer is studying the surface roughness of a
part produced in a metal-cutting operation. Three factors, feed
rate (A), depth of cut (B), and tool angle (C ), are of interest.
All three factors have been assigned two levels, and two
replicates of a factorial design are run. The coded data are
shown in Table 14-10.

The ANOVA is summarized in Table 14-11. Since
manual ANOVA computations are tedious for three-factor ex-

periments, we have used Minitab for the solution of this prob-
lem. The F-ratios for all three main effects and the interac-
tions are formed by dividing the mean square for the effect of
interest by the error mean square. Since the experimenter has
selected � � 0.05, the critical value for each of these 
F-ratios is f0.05,1,8 � 5.32. Alternately, we could use the P-
value approach. The P-values for all the test statistics are
shown in the last column of Table 14-11. Inspection of these

Anneal (temperature/time)
900 900 950 1000 1000
60 180 60 15 30

1 � 1020 4.40 8.30 10.15 10.29 11.01

Polysilicon 4.60 8.90 10.20 10.30 10.58

doping
2 � 1020 3.20 7.81 9.38 10.19 10.81

3.50 7.75 10.02 10.10 10.60
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Table 14-10 Coded Surface Roughness Data for Example 14-2

Depth of Cut (B)

0.025 inch 0.040 inch

Tool Angle (C ) Tool Angle (C )

15� 25� 15� 25�

9 11 9 10
20 inches per minute 7 10 11 8 75

10 10 12 16
30 inches per minute 12 13 15 14 102

yi p
Feed Rate

(A)

14-4 GENERAL FACTORIAL EXPERIMENTS 569

Table 14-9 Analysis of Variance Table for the Three-Factor Fixed Effects Model

Source of Sum of Degrees of Expected
Variation Squares Freedom Mean Square Mean Squares F0

A SSA a � 1 MSA

B SSB b � 1 MSB

C SSC c � 1 MSC

AB SSAB 1a � 12 1b � 12 MSAB

AC SSAC 1a � 12 1c � 12 MSAC

BC SSBC 1b � 12 1c � 12 MSBC

ABC SSABC 1a � 12 1b � 12 1c � 12 MSABC

Error SSE abc1n � 12 MSE

Total SST abcn � 1

2

MSABC

MSE

2 �

n ���1���2ijk
2

1a � 12 1b � 12 1c � 12

MSBC

MSE

2 �

an ��1��2jk
2

1b � 12 1c � 12

MSAC

MSE

2 �

bn ��1��2ik
2

1a � 12 1c � 12

MSAB

MSE

2 �

cn ��1��2ij
2

1a � 12 1b � 12

MSC

MSE

2 �

abn ��k
2

c � 1

MSB

MSE

2 �

acn ��j
2

b � 1

MSA

MSE

2 �

bcn ��2
i

a � 1

P-values is revealing. There is a strong main effect of feed
rate, since the F-ratio is well into the critical region. However,
there is some indication of an effect due to the depth of cut,
since P = 0.0710 is not much greater than � � 0.05. The next
largest effect is the AB or feed rate � depth of cut interaction.

Most likely, both feed rate and depth of cut are important
process variables.

Practical Interpretation: Further experiments might study
the important factors in more detail to improve the surface
roughness.

Obviously, factorial experiments with three or more factors can require many runs, par-
ticularly if some of the factors have several (more than two) levels. This point of view leads
us to the class of factorial designs considered in Section 14-5 with all factors at two levels.
These designs are easy to set up and analyze, and they may be used as the basis of many other
useful experimental designs.
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Table 14-11 Minitab ANOVA for Example 14-2

ANOVA (Balanced Designs)

Factor Type Levels Values
Feed fixed 2 20 30
Depth fixed 2 0.025 0.040
Angle fixed 2 15 25

Analysis of Variance for Roughness

Source DF SS MS F P
Feed 1 45.563 45.563 18.69 0.003
Depth 1 10.563 10.563 4.33 0.071
Angle 1 3.063 3.063 1.26 0.295
Feed*Depth 1 7.563 7.563 3.10 0.116
Feed*Angle 1 0.062 0.062 0.03 0.877
Depth*Angle 1 1.563 1.563 0.64 0.446
Feed*Depth*Angle 1 5.062 5.062 2.08 0.188
Error 8 19.500 2.437
Total 15 92.938

14-10. The quality control department of a fabric finishing
plant is studying the effects of several factors on dyeing for a
blended cotton/synthetic cloth used to manufacture shirts.
Three operators, three cycle times, and two temperatures were
selected, and three small specimens of cloth were dyed under
each set of conditions. The finished cloth was compared to a
standard, and a numerical score was assigned. The results are
shown in the following table.

(a) State and test the appropriate hypotheses using the analysis
of variance with � � 0.05.

(b) The residuals may be obtained from 
Graphically analyze the residuals from this experiment.

14-11. The percentage of hardwood concentration in raw
pulp, the freeness, and the cooking time of the pulp are being
investigated for their effects on the strength of paper. The data

..eijkl � yijkl � yijk

EXERCISES FOR SECTION 14-4

Temperature

300� 350�

Operator Operator

Cycle Time 1 2 3 1 2 3

23 27 31 24 38 34

40 24 28 32 23 36 36

25 26 28 28 35 39

36 34 33 37 34 34

50 35 38 34 39 38 36

36 39 35 35 36 31

28 35 26 26 36 28

60 24 35 27 29 37 26

27 34 25 25 34 34
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Cooking Time 1.5 hours Cooking Time 2.0 hours

Freeness Freeness

350 500 650 350 500 650

10 96.6 97.7 99.4 98.4 99.6 100.6

96.0 96.0 99.8 98.6 100.4 100.9

15 98.5 96.0 98.4 97.5 98.7 99.6

97.2 96.9 97.6 98.1 96.0 99.0

20 97.5 95.6 97.4 97.6 97.0 98.5

96.6 96.2 98.1 98.4 97.8 99.8

Percentage 
of Hardwood

Concentration

14-5 2k FACTORIAL DESIGNS

Factorial designs are frequently used in experiments involving several factors where it is
necessary to study the joint effect of the factors on a response. However, several special
cases of the general factorial design are important because they are widely employed 
in research work and because they form the basis of other designs of considerable practical
value.

The most important of these special cases is that of k factors, each at only two levels.
These levels may be quantitative, such as two values of temperature, pressure, or time; or
they may be qualitative, such as two machines, two operators, the “high’’ and “low’’ lev-
els of a factor, or perhaps the presence and absence of a factor. A complete replicate of
such a design requires 2 � 2 � � � � � 2 � 2k observations and is called a 2k factorial
design.

The 2k design is particularly useful in the early stages of experimental work, when many
factors are likely to be investigated. It provides the smallest number of runs for which k fac-
tors can be studied in a complete factorial design. Because there are only two levels for each
factor, we must assume that the response is approximately linear over the range of the factor
levels chosen.

14-5.1 22 Design

The simplest type of 2k design is the 22—that is, two factors A and B, each at two levels. We
usually think of these levels as the low and high levels of the factor. The 22 design is shown in
Fig. 14-15. Note that the design can be represented geometrically as a square with the 22 � 4
runs, or treatment combinations, forming the corners of the square. In the 22 design it is cus-
tomary to denote the low and high levels of the factors A and B by the signs � and �, respec-
tively. This is sometimes called the geometric notation for the design.

A special notation is used to label the treatment combinations. In general, a treatment
combination is represented by a series of lowercase letters. If a letter is present, the corre-
sponding factor is run at the high level in that treatment combination; if it is absent, the factor
is run at its low level. For example, treatment combination a indicates that factor A is at the

from a three-factor factorial experiment are shown in the fol-
lowing table.

(a) Analyze the data using the analysis of variance assuming
that all factors are fixed. Use � � 0.05.

(b) Find P-values for the F-ratios in part (a).
(c) The residuals are found by Graphically

analyze the residuals from this experiment.

eijkl � yijkl � yijk..
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(14-13)�
1

2n
  3ab � 112 � a � b 4 AB �

ab � 112

2n
�

a � b

2n

Finally, the AB interaction is estimated by taking the difference in the diagonal averages
in Fig. 14-15, or

Interaction
Effect AB:

22 Design

high level and factor B is at the low level. The treatment combination with both factors at the
low level is represented by (1). This notation is used throughout the 2k design series. For ex-
ample, the treatment combination in a 24 with A and C at the high level and B and D at the low
level is denoted by ac.

The effects of interest in the 22 design are the main effects A and B and the two-factor in-
teraction AB. Let the letters (1), a, b, and ab also represent the totals of all n observations taken
at these design points. It is easy to estimate the effects of these factors. To estimate the main
effect of A, we would average the observations on the right side of the square in Fig. 14-15
where A is at the high level, and subtract from this the average of the observations on the left
side of the square, where A is at the low level, or

Low
(–)

High
(+)

(1)

A

B

b

a

ab

Low
(–)

High
(+)

Treatment
(1)
a
b

ab

A
–
+
–
+

B
–
–
+
+

Figure 14-15 The 22 factorial design.

Similarly, the main effect of B is found by averaging the observations on the top of the square,
where B is at the high level, and subtracting the average of the observations on the bottom of
the square, where B is at the low level:

(14-11)�
1

2n
  3a � ab � b � 112 4�

a � ab

2n
�

b � 112

2n
A � yA� � yA�

(14-12)�
1

2n
  3b � ab � a � 112 4�

b � ab

2n
�

a � 112

2n
B � yB� � yB�

Main Effect 
of Factor A:

22 Design

Main Effect 
of Factor B:

22 Design
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The quantities in brackets in Equations 14-11, 14-12, and 14-13 are called contrasts. For
example, the A contrast is

ContrastA � a � ab � b � 112

In these equations, the contrast coefficients are always either �1 or �1. A table of plus and
minus signs, such as Table 14-12, can be used to determine the sign on each treatment
combination for a particular contrast. The column headings for Table 14-12 are the main ef-
fects A and B, the AB interaction, and I, which represents the total. The row headings are the
treatment combinations. Note that the signs in the AB column are the product of signs from
columns A and B. To generate a contrast from this table, multiply the signs in the appropriate
column of Table 14-12 by the treatment combinations listed in the rows and add. For example,
contrastAB � 31124 � 3�a4 � 3�b4 � 3ab4 � ab � 112 � a � b.

Contrasts are used in calculating both the effect estimates and the sums of squares for A,
B, and the AB interaction. For any 2k design with n replicates, the effect estimates are com-
puted from

14-5 2k FACTORIAL DESIGNS 573

Table 14-12 Signs for Effects in the 22 Design

Factorial EffectTreatment
Combination I A B AB

112 � � � �

a � � � �

b � � � �

ab � � � �

(14-14)Effect �
Contrast

n2k�1

(14-15)SS �
1Contrast22

n2k

Relationship
Between a

Contrast and
an Effect

Sum of Squares
for an Effect

and the sum of squares for any effect is

There is one degree of freedom associated with each effect (two levels minus one) so
that the mean square error of each effect equals the sum of squares. The analysis of variance
is completed by computing the total sum of squares SST (with 4n � 1 degrees of freedom)
as usual, and obtaining the error sum of squares SSE (with 4(n � 1) degrees of freedom) by
subtraction.
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EXAMPLE 14-3 Wafer Layer
An article in the AT&T Technical Journal (Vol. 65,
March/April 1986, pp. 39–50) describes the application of
two-level factorial designs to integrated circuit manufacturing.
A basic processing step in this industry is to grow an epitaxial
layer on polished silicon wafers. The wafers are mounted on a
susceptor and positioned inside a bell jar. Chemical vapors are
introduced through nozzles near the top of the jar. The suscep-
tor is rotated, and heat is applied. These conditions are main-
tained until the epitaxial layer is thick enough.

Table 14-13 presents the results of a 22 factorial design
with n � 4 replicates using the factors A � deposition time
and B � arsenic flow rate. The two levels of deposition time
are � �short and � �long, and the two levels of arsenic flow
rate are � �55% and � �59%. The response variable is epi-
taxial layer thickness (�m). We may find the estimates of the
effects using Equations 14-11, 14-12, and 14-13 as follows:

 � 0.032

 AB �
1

2142
  359.156 � 56.081 � 59.299 � 55.686 4

 AB �
1

2n
  3ab � 112 � a � b 4

 � �0.067

 �
1

2142
  355.686 � 59.156 � 59.299 � 56.081 4

 B �
1

2n
  3b � ab � a � 112 4

 �
1

2142
  359.299 � 59.156 � 55.686 � 56.081 4 � 0.836

 A �
1

2n
  3a � ab � b � 112 4

The numerical estimates of the effects indicate that the effect
of deposition time is large and has a positive direction (in-
creasing deposition time increases thickness), since changing
deposition time from low to high changes the mean epitaxial
layer thickness by 0.836 �m. The effects of arsenic flow rate
(B) and the AB interaction appear small.

The importance of these effects may be confirmed with
the analysis of variance. The sums of squares for A, B, and AB
are computed as follows:

Practical Interpretation: The analysis of variance is sum-
marized in Table 14-14 and confirms our conclusions obtained
by examining the magnitude and direction of the effects.
Deposition time is the only factor that significantly affects
epitaxial layer thickness, and from the direction of the effect
estimates we know that longer deposition times lead to thicker
epitaxial layers.

 � 3.0672

 �
156.081 � p � 59.15622

16

 SST � 14.0372 � p � 14.9322

 SSAB �
3ab � 112 � a � b 42

16
�
30.252 42

16
� 0.0040

 SSB �
3b � ab � a � 112 42

16
�
3�0.538 42

16
� 0.0181

 SSA �
3a � ab � b � 112 42

16
�
36.688 42

16
� 2.7956

Table 14-13 The 22 Design for the Epitaxial Process Experiment

Treatment Design Factors Thickness (�m)

Combination A B AB Thickness (�m) Total Average

112 � � � 14.037 14.165 13.972 13.907 56.081 14.020
a � � � 14.821 14.757 14.843 14.878 59.299 14.825
b � � � 13.880 13.860 14.032 13.914 55.686 13.922
ab � � � 14.888 14.921 14.415 14.932 59.156 14.789

Models and Residual Analysis
It is easy to obtain a model for the response and residuals from a 2k design by fitting a regres-
sion model to the data. For the epitaxial process experiment, the regression model is

Y � �0 � �1x1 � 	
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since the only active variable is deposition time, which is represented by a coded variable x1.
The low and high levels of deposition time are assigned values x1 � �1 and x1 � �1,
respectively. The least squares fitted model is

where the intercept is the grand average of all 16 observations ( ) and the slope is one-
half the effect estimate for deposition time. The regression coefficient is one-half the effect es-
timate because regression coefficients measure the effect of a unit change in x1 on the mean of
Y, and the effect estimate is based on a two-unit change from �1 to �1.

A coefficient relates a factor to the response and, similar to regression analysis, interest
centers on whether or not a coefficient estimate is significantly different from zero. A t-test for
a coefficient can also be used to test the significance of an effect. Each effect estimate in
Equations 14-11 through 14-13 is the difference between two averages (that we denote in gen-
eral as ). In a 2k experiment with n replicates, half the observations appear in each av-
erage so that there are observations in each average. The associated coefficient estimate,
say , equals half the associated effect estimate so that�̂

n2k�1
y� � y�

�̂1y�̂0

ŷ � 14.389 � a
0.836

2
b  x1

Table 14-14 Analysis of Variance for the Epitaxial Process Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-Value

A (deposition time) 2.7956 1 2.7956 134.40 7.07 E-8
B (arsenic flow) 0.0181 1 0.0181 0.87 0.38
AB 0.0040 1 0.0040 0.19 0.67
Error 0.2495 12 0.0208
Total 3.0672 15

(14-16)�̂ �
effect

2
�

y � � y�

2

Coefficient
and Effect

(14-17)standard error �̂ �

̂
2B

1

n2k�1 �
1

n2k�1 � 
̂
B

1

n2k

Standard
Error of a

Coefficient

The standard error of equals half the standard error of the effect and an effect is simply the
difference between two averages. Therefore,

�̂

(14-18)t �
�̂

standard error �̂
�
1 y� � y� 2�2


̂
B

1

n2k

t-statistic for a
Coefficient

where is estimated from the square root of mean square error. The t-statistic to test H0: � � 0
in a 2k experiment is


̂
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Figure 14-16 Normal probability plot of residuals for the 
epitaxial process experiment.

with degrees of freedom equal to those associated with mean square error. This statistic is sim-
ilar to a two-sample t-test, but 
 is estimated from root mean square error. The estimate ac-
counts for the multiple treatments in an experiment and generally differs from the estimate
used in a two-sample t-test.

Some algebra can be used to show that for a 2k experiment the square of the t-statistic for
the coefficient test equals the F-statistic used for the effect test in the analysis of variance.
Also, the square of a t random variable with d degrees of freedom is an F random variable with 1
numerator and d denominator degrees of freedom. Thus, the test that compares the absolute
value of the t-statistic to the t distribution is equivalent to the F-test, and either method may be
used to test an effect.

This model can also be used to obtain the predicted values at the four points that form the
corners of the square in the design. For example, consider the point with low deposition time
(x1 � �1) and low arsenic flow rate. The predicted value is

and the residuals for the four runs at that design point are

e1 � 14.037 � 13.971 � 0.066
e2 � 14.165 � 13.971 � 0.194
e3 � 13.972 � 13.971 � 0.001
e4 � 13.907 � 13.971 � �0.064

The remaining predicted values and residuals at the other three design points are calculated in
a similar manner.

A normal probability plot of these residuals is shown in Fig. 14-16. This plot indicates
that one residual e15 � �0.392 is an outlier. Examining the four runs with high deposition
time and high arsenic flow rate reveals that observation y15 � 14.415 is considerably smaller

ŷ � 14.389 � a
0.836

2
b 1�12 � 13.971 �m


̂
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0.5

0

–0.5

e

Low High Deposition time, A

Figure 14-17 Plot of residuals versus deposition time.

0.5
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e

Low Arsenic flow rate, BHigh

Figure 14-18 Plot of residuals versus arsenic flow
rate.

than the other three observations at that treatment combination. This adds some additional 
evidence to the tentative conclusion that observation 15 is an outlier. Another possibility is
that some process variables affect the variability in epitaxial layer thickness. If we could
discover which variables produce this effect, we could perhaps adjust these variables to levels
that would minimize the variability in epitaxial layer thickness. This could have important im-
plications in subsequent manufacturing stages. Figures 14-17 and 14-18 are plots of residuals
versus deposition time and arsenic flow rate, respectively. Apart from that unusually large
residual associated with y15, there is no strong evidence that either deposition time or arsenic
flow rate influences the variability in epitaxial layer thickness.

Figure 14-19 shows the standard deviation of epitaxial layer thickness at all four runs in
the 22 design. These standard deviations were calculated using the data in Table 14-13. Notice
that the standard deviation of the four observations with A and B at the high level is
considerably larger than the standard deviations at any of the other three design points. Most
of this difference is attributable to the unusually low thickness measurement associated with
y15. The standard deviation of the four observations with A and B at the low level is also some-
what larger than the standard deviations at the remaining two runs. This could indicate that
other process variables not included in this experiment may affect the variability in epitaxial
layer thickness. Another experiment to study this possibility, involving other process variables,
could be designed and conducted. (The original paper in the AT&T Technical Journal shows
that two additional factors, not considered in this example, affect process variability.)

14-5.2 2k Design for k � 3 Factors

The methods presented in the previous section for factorial designs with k � 2 factors each at
two levels can be easily extended to more than two factors. For example, consider k � 3
factors, each at two levels. This design is a 23 factorial design, and it has eight runs or treat-
ment combinations. Geometrically, the design is a cube as shown in Fig. 14-20(a), with the
eight runs forming the corners of the cube. Figure 14-20(b) lists the eight runs in a table, with
each row representing one of the runs and the � and � settings indicating the low and high
levels for each of the three factors. This table is sometimes called the design matrix. This
design allows three main effects to be estimated (A, B, and C) along with three two-factor in-
teractions (AB, AC, and BC ) and a three-factor interaction (ABC ).

The main effects can easily be estimated. Remember that the lowercase letters (1), a, b,
ab, c, ac, bc, and abc represent the total of all n replicates at each of the eight runs in the
design. As seen in Fig. 14-21(a), the main effect of A can be estimated by averaging the four
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Figure 14-20 The 23 design.
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Figure 14-21 Geometric presentation of contrasts corresponding 
to the main effects and interaction in the 23 design. (a) Main effects.
(b) Two-factor interactions. (c) Three-factor interaction.

Figure 14-19 The standard deviation
of epitaxial layer thickness at the four
runs in the 22 design.
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treatment combinations on the right-hand side of the cube, where A is at the high level, and by
subtracting from this quantity the average of the four treatment combinations on the left-hand
side of the cube where A is at the low level. This gives

This equation can be rearranged as

 �
a � ab � ac � abc

4n
�
112 � b � c � bc

4n

 A � yA� � yA�

 �
1

4n
  3a � ab � ac � abc � 112 � b � c � bc 4

 A � yA� � yA�

�
1

4n
  3b � ab � bc � abc � 112 � a � c � ac 4

B � yB� � yB�

In a similar manner, the effect of B is the difference in averages between the four treatment
combinations in the back face of the cube [Fig. 14-19(a)], and the four in the front. This yields

The effect of C is the difference in average response between the four treatment combinations
in the top face of the cube in Figure 14-19(a) and the four in the bottom, that is,

The two-factor interaction effects may be computed easily. A measure of the AB interaction
is the difference between the average A effects at the two levels of B. By convention, one-half
of this difference is called the AB interaction. Symbolically,

B Average A Effect

High (�)

Low (�)

Difference 3abc � bc � ab � b � ac � c � a � 112 4

2n

5 1ac � c2 � 3a � 112 4 6

2n

3 1abc � bc2 � 1ab � b2 4

2n

�
1

4n
  3c � ac � bc � abc � 112 � a � b � ab 4

C � yC� � yC�

Main Effect 
of Factor A:

23 Design

Main Effect 
of Factor B:

23 Design

Main Effect 
of Factor C:

23 Design
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Because the AB interaction is one-half of this difference,

We could write the AB effect as follows:

In this form, the AB interaction is easily seen to be the difference in averages between runs
on two diagonal planes in the cube in Fig. 14-19(b). Using similar logic and referring to
Fig. 14-19(b), we find that the AC and BC interactions are

AB �
abc � ab � c � 112

4n
�

bc � b � ac � a

4n

The ABC interaction is defined as the average difference between the AB interaction for
the two different levels of C. Thus,

or

ABC �
1

4n
 5 3abc � bc 4 � 3ac � c 4 � 3ab � b 4 � 3a � 112 4 6

As before, we can think of the ABC interaction as the difference in two averages. If the runs
in the two averages are isolated, they define the vertices of the two tetrahedra that comprise
the cube in Fig. 14-21(c).

In the equations for the effects, the quantities in brackets are contrasts in the treatment
combinations. A table of plus and minus signs can be developed from the contrasts and is
shown in Table 14-15. Signs for the main effects are determined directly from the test matrix
in Figure 14-20(b). Once the signs for the main effect columns have been established, the
signs for the remaining columns can be obtained by multiplying the appropriate main effect

AB �
1

4n
  3abc � bc � ab � b � ac � c � a � 112 4

BC �
1

4n
  3 112 � a � b � ab � c � ac � bc � abc 4

AC �
1

4n
  3 112 � a � b � ab � c � ac � bc � abc 4

ABC �
1

4n
  3abc � bc � ac � c � ab � b � a � 112 4

Two-Factor
Interaction

Effect:
23 Design

Two-Factor
Interaction

Effect:
23 Design

Three-Factor
Interaction

Effect:
23 Design
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row by row. For example, the signs in the AB column are the products of the A and B column
signs in each row. The contrast for any effect can easily be obtained from this table.

Table 14-15 has several interesting properties:

1. Except for the identity column I, each column has an equal number of plus and minus
signs.

2. The sum of products of signs in any two columns is zero; that is, the columns in the
table are orthogonal.

3. Multiplying any column by column I leaves the column unchanged; that is, I is an
identity element.

4. The product of any two columns yields a column in the table, for example A � B �
AB, and AB � ABC � A2B2C � C, since any column multiplied by itself is the
identity column.

The estimate of any main effect or interaction in a 2k design is determined by multiplying
the treatment combinations in the first column of the table by the signs in the corresponding
main effect or interaction column, by adding the result to produce a contrast, and then by di-
viding the contrast by one-half the total number of runs in the experiment.

Table 14-15 Algebraic Signs for Calculating Effects in the 23 Design

Treatment Factorial Effect

Combination I A B AB C AC BC ABC

112 � � � � � � � �

a � � � � � � � �

b � � � � � � � �

ab � � � � � � � �

c � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

abc � � � � � � � �

EXAMPLE 14-4 Surface Roughness
Consider the surface roughness experiment originally de-
scribed in Example 14-2. This is a 23 factorial design in the
factors feed rate (A), depth of cut (B), and tool angle (C ), with
n � 2 replicates. Table 14-16 presents the observed surface
roughness data.

The effect of A, for example, is

 �
1

8
  327 4 � 3.375

 �
1

4122
  322 � 27 � 23 � 30 � 16 � 20 � 21 � 18 4

 A �
1

4n
  3a � ab � ac � abc � 112 � b � c � bc 4

and the sum of squares for A is found using Equation 14-15:

It is easy to verify that the other effects are

B � 1.625
C � 0.875
AB � 1.375
AC � 0.125
BC � �0.625
ABC � 1.125

Examining the magnitude of the effects clearly shows that
feed rate (factor A) is dominant, followed by depth of cut (B)

SSA �
1ContrastA2

2

n 2 
k �

12722

2182
� 45.5625
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Table 14-16 Surface Roughness Data for Example 14-4

Treatment Design Factors Surface
Combinations A B C Roughness Totals

112 �1 �1 �1 9, 7 16
a 1 �1 �1 10, 12 22
b �1 1 �1 9, 11 20
ab 1 1 �1 12, 15 27
c �1 �1 1 11, 10 21
ac 1 �1 1 10, 13 23
bc �1 1 1 10, 8 18
abc 1 1 1 16, 14 30

and the AB interaction, although the interaction effect is rela-
tively small. The analysis of variance, summarized in Table
14-17, confirms our interpretation of the effect estimates.

Minitab will analyze 2k factorial designs. The output
from the Minitab DOE (Design of Experiments) module for
this experiment is shown in Table 14-18. The upper portion of
the table displays the effect estimates and regression coeffi-
cients for each factorial effect. However, the t-statistic com-
puted from Equation 14-18 is reported for each effect instead
of the F-statistic used in Table 14-17. To illustrate, for the
main effect of feed Minitab reports t � 4.32 (with eight
degrees of freedom), and t2 � (4.32)2 � 18.66, which is 
approximately equal to the F-ratio for feed reported in Table
14-17 (F � 18.69). This F-ratio has one numerator and eight
denominator degrees of freedom.

The lower panel of the Minitab output in Table 14-18 is
an analysis of variance summary focusing on the types of
terms in the model. A regression model approach is used in the
presentation. You might find it helpful to review Section 12-2.2,
particularly the material on the partial F-test. The row entitled
“main effects’’ under source refers to the three main 
effects feed, depth, and angle, each having a single degree of

freedom, giving the total 3 in the column headed “DF.’’ The
column headed “Seq SS’’ (an abbreviation for sequential sum
of squares) reports how much the model sum of squares in-
creases when each group of terms is added to a model that
contains the terms listed above the groups. The first number in
the “Seq SS’’ column presents the model sum of squares for
fitting a model having only the three main effects. The row la-
beled “2-Way Interactions’’ refers to AB, AC, and BC, and the
sequential sum of squares reported here is the increase in the
model sum of squares if the interaction terms are added to a
model containing only the main effects. Similarly, the sequen-
tial sum of squares for the three-way interaction is the increase
in the model sum of squares that results from adding the term
ABC to a model containing all other effects.

The column headed “Adj SS’’ (an abbreviation for ad-
justed sum of squares) reports how much the model sum of
squares increases when each group of terms is added to a
model that contains all the other terms. Now since any 2k de-
sign with an equal number of replicates in each cell is an 
orthogonal design, the adjusted sum of squares will equal the se-
quential sum of squares. Therefore, the F-tests for each row in
the Minitab analysis of variance table are testing the significance

Table 14-17 Analysis of Variance for the Surface Finish Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-Value

A 45.5625 1 45.5625 18.69 0.0025
B 10.5625 1 10.5625 4.33 0.0709
C 3.0625 1 3.0625 1.26 0.2948
AB 7.5625 1 7.5625 3.10 0.1162
AC 0.0625 1 0.0625 0.03 0.8784
BC 1.5625 1 1.5625 0.64 0.4548
ABC 5.0625 1 5.0625 2.08 0.1875
Error 19.5000 8 2.4375
Total 92.9375 15
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Table 14-18 Minitab Analysis for Example 14-4

Estimated Effects and Coefficients for Roughness

Term Effect Coef StDev Coef T P
Constant 11.0625 0.3903 28.34 0.000
Feed 3.3750 1.6875 0.3903 4.32 0.003
Depth 1.6250 0.8125 0.3903 2.08 0.071
Angle 0.8750 0.4375 0.3903 1.12 0.295
Feed*Depth 1.3750 0.6875 0.3903 1.76 0.116
Feed*Angle 0.1250 0.0625 0.3903 0.16 0.877
Depth*Angle �0.6250 �0.3125 0.3903 �0.80 0.446
Feed*Depth*Angle 1.1250 0.5625 0.3903 1.44 0.188

Analysis of Variance for Roughness

Source DF Seq SS Adj SS Adj MS F P
Main Effects 3 59.188 59.188 19.729 8.09 0.008
2-Way Interactions 3 9.187 9.187 3.062 1.26 0.352
3-Way Interactions 1 5.062 5.062 5.062 2.08 0.188
Residual Error 8 19.500 19.500 2.437

Pure Error 8 19.500 19.500 2.437
Total 15 92.938

of each group of terms (main effects, two-factor interactions,
and three-factor interactions) as if they were the last terms to
be included in the model. Clearly, only the main effect terms are
significant. The t-tests on the individual factor effects indicate

that feed rate and depth of cut have large main effects, and
there may be some mild interaction between these two factors.
Therefore, the Minitab output is in agreement with the results
given previously.

Models and Residual Analysis
We may obtain the residuals from a 2k design by using the method demonstrated earlier for
the 22 design. As an example, consider the surface roughness experiment. The three largest
effects are A, B, and the AB interaction. The regression model used to obtain the predicted
values is

where x1 represents factor A, x2 represents factor B, and x1x2 represents the AB interaction. The
regression coefficients �1, �2, and �12 are estimated by one-half the corresponding effect esti-
mates, and �0 is the grand average. Thus,

Note that the regression coefficients are presented by Minitab in the upper panel of Table 14-18.
The predicted values would be obtained by substituting the low and high levels of A and B into

 � 11.0625 � 1.6875x1 � 0.8125x2 � 0.6875x1x2

 ŷ � 11.0625 � a
3.375

2
b x1 � a

1.625
2
b x2 � a

1.375
2
b x1x2

Y � �0 � �1x1 � �2 
x2 � �12 

x1x2 � 	
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this equation. To illustrate this, at the treatment combination where A, B, and C are all at the low
level, the predicted value is

Since the observed values at this run are 9 and 7, the residuals are 9 � 9.25 � �0.25 and 
7 � 9.25 � �2.25. Residuals for the other 14 runs are obtained similarly.

A normal probability plot of the residuals is shown in Fig. 14-22. Since the residuals lie
approximately along a straight line, we do not suspect any problem with normality in the data.
There are no indications of severe outliers. It would also be helpful to plot the residuals
versus the predicted values and against each of the factors A, B, and C.

Projection of 2k Designs
Any 2k design will collapse or project into another 2k design in fewer variables if one or more of
the original factors are dropped. Sometimes this can provide additional insight into the
remaining factors. For example, consider the surface roughness experiment. Since factor C and
all its interactions are negligible, we could eliminate factor C from the design. The result is to
collapse the cube in Fig. 14-20 into a square in the A � B plane; therefore, each of the four runs
in the new design has four replicates. In general, if we delete h factors so that r � k � h factors
remain, the original 2k design with n replicates will project into a 2r design with n2h replicates.

14-5.3 Single Replicate of the 2k Design

As the number of factors in a factorial experiment grows, the number of effects that can be
estimated also grows. For example, a 24 experiment has 4 main effects, 6 two-factor
interactions, 4 three-factor interactions, and 1 four-factor interaction, while a 26 experiment
has 6 main effects, 15 two-factor interactions, 20 three-factor interactions, 15 four-factor
interactions, 6 five-factor interactions, and 1 six-factor interaction. In most situations the

 ŷ � 11.0625 � 1.68751�12 � 0.81251�12 � 0.68751�12 1�12 � 9.25
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Figure 14-22
Normal probability
plot of residuals from
the surface roughness
experiment.
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It is easy to verify (using Minitab, for example) that the
complete set of effect estimates is

The normal probability plot of these effects from the plasma
etch experiment is shown in Fig. 14-23. Clearly, the main ef-
fects of A and D and the AD interaction are significant, be-
cause they fall far from the line passing through the other

A � �101.625 AD � �153.625
B � �1.625 BD � �0.625
AB � �7.875 ABD � 4.125
C � 7.375 CD � �2.125
AC � �24.875 ACD � 5.625
BC � �43.875 BCD � �25.375
ABC � �15.625 ABCD � �40.125
D � 306.125

Design Factor

Gap Pressure C2F6 Flow Power
Level (cm) (mTorr) (SCCM) (w)

Low (�) 0.80 450 125 275
High (�) 1.20 550 200 325

14-5 2k FACTORIAL DESIGNS 585

sparsity of effects principle applies; that is, the system is usually dominated by the main ef-
fects and low-order interactions. The three-factor and higher order interactions are usually
negligible. Therefore, when the number of factors is moderately large, say, k � 4 or 5, a com-
mon practice is to run only a single replicate of the 2k design and then pool or combine the
higher order interactions as an estimate of error. Sometimes a single replicate of a 2k design is
called an unreplicated 2k factorial design.

When analyzing data from unreplicated factorial designs, occasionally real high-order
interactions occur. The use of an error mean square obtained by pooling high-order interactions
is inappropriate in these cases. A simple method of analysis can be used to overcome this prob-
lem. Construct a plot of the estimates of the effects on a normal probability scale. The effects
that are negligible are normally distributed, with mean zero and variance 
2 and will tend to fall
along a straight line on this plot, whereas significant effects will have nonzero means and will
not lie along the straight line. We will illustrate this method in the next example.

Table 14-19 presents the data from the 16 runs of the 24 design.
Table 14-20 is the table of plus and minus signs for the 24 de-
sign. The signs in the columns of this table can be used to esti-
mate the factor effects. For example, the estimate of factor A is

Thus, the effect of increasing the gap between the anode and
the cathode from 0.80 to 1.20 centimeters is to decrease the
etch rate by 101.625 angstroms per minute.

 � �101.625

 � 1052 � 1075 � 1063 4
� 729 � 550 � 604 � 633 � 601 � 1037

 �
1

8
  3669 � 650 � 642 � 635 � 749 � 868 � 860

� abcd � 112 � b � c � bc � d � bd � cd � bcd 4

 A �
1

8
  3a � ab � ac � abc � ad � abd � acd

EXAMPLE 14-5 Plasma Etch
An article in Solid State Technology [“Orthogonal Design for
Process Optimization and Its Application in Plasma Etching”
(May 1987, pp. 127–132)] describes the application of facto-
rial designs in developing a nitride etch process on a single-
wafer plasma etcher. The process uses C2F6 as the reactant
gas. It is possible to vary the gas flow, the power applied to the
cathode, the pressure in the reactor chamber, and the spacing
between the anode and the cathode (gap). Several response

variables would usually be of interest in this process, but 
in this example we will concentrate on etch rate for silicon 
nitride.

We will use a single replicate of a 24 design to investigate
this process. Since it is unlikely that the three- and four-factor
interactions are significant, we will tentatively plan to com-
bine them as an estimate of error. The factor levels used in the
design are shown below:

 JWCL232_c14_551-636.qxd  1/16/10  9:56 AM  Page 585



586 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Table 14-19 The 24 Design for the Plasma Etch Experiment

A B C D Etch Rate
(Gap) (Pressure) (C2F6 Flow) (Power) (Å/min)

�1 �1 �1 �1 550
1 �1 �1 �1 669

�1 1 �1 �1 604
1 1 �1 �1 650

�1 �1 1 �1 633
1 �1 1 �1 642

�1 1 1 �1 601
1 1 1 �1 635

�1 �1 �1 1 1037
1 �1 �1 1 749

�1 1 �1 1 1052
1 1 �1 1 868

�1 �1 1 1 1075
1 �1 1 1 860

�1 1 1 1 1063
1 1 1 1 729

points. The analysis of variance summarized in Table 14-21
confirms these findings. Notice that in the analysis of vari-
ance we have pooled the three- and four-factor interactions
to form the error mean square. If the normal probability plot
had indicated that any of these interactions were important,
they would not have been included in the error term.

Practical Interpretation: Since A � �101.625, the ef-
fect of increasing the gap between the cathode and anode

Table 14-20 Contrast Constants for the 24 Design

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

112 � � � � � � � � � � � � � � �

a � � � � � � � � � � � � � � �

b � � � � � � � � � � � � � � �

ab � � � � � � � � � � � � � � �

c � � � � � � � � � � � � � � �

ac � � � � � � � � � � � � � � �

bc � � � � � � � � � � � � � � �

abc � � � � � � � � � � � � � � �

d � � � � � � � � � � � � � � �

ad � � � � � � � � � � � � � � �

bd � � � � � � � � � � � � � � �

abd � � � � � � � � � � � � � � �

cd � � � � � � � � � � � � � � �

acd � � � � � � � � � � � � � � �

bcd � � � � � � � � � � � � � � �

abcd � � � � � � � � � � � � � � �

is to decrease the etch rate. However, D � 306.125; thus,
applying higher power levels will increase the etch rate.
Figure 14-24 is a plot of the AD interaction. This plot indi-
cates that the effect of changing the gap width at low
power settings is small, but that increasing the gap at high
power settings dramatically reduces the etch rate. High
etch rates are obtained at high power settings and narrow
gap widths.
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Figure 14-23 Normal probability plot of effects
from the plasma etch experiment.

Figure 14-24 AD (Gap-Power) interaction from the
plasma etch experiment.

Table 14-21 Analysis of Variance for the Plasma Etch Experiment

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-Value

A 41,310.563 1 41,310.563 20.28 0.0064
B 10.563 1 10.563 �1 —
C 217.563 1 217.563 �1 —
D 374,850.063 1 374,850.063 183.99 0.0000
AB 248.063 1 248.063 �1 —
AC 2,475.063 1 2,475.063 1.21 0.3206
AD 94,402.563 1 94,402.563 46.34 0.0010
BC 7,700.063 1 7,700.063 3.78 0.1095
BD 1.563 1 1.563 �1 —
CD 18.063 1 18.063 �1 —
Error 10,186.813 5 2,037.363
Total 531,420.938 15
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The residuals from the experiment in Example 14-5 can be obtained from the regression
model

For example, when both A and D are at the low level, the predicted value is

� 597

 ŷ � 776.0625 � a
101.625

2
b 1�12 � a

306.125
2
b 1�12 � a

153.625
2
b 1�12 1�12

 ŷ � 776.0625 � a
101.625

2
b  x1 � a

306.125

2
b  x4 � a

153.625

2
b  x1x4
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E
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and the four residuals at this treatment combination are

The residuals at the other three treatment combinations (A high, D low), (A low, D high), and
(A high, D high) are obtained similarly. A normal probability plot of the residuals is shown in
Fig. 14-25. The plot is satisfactory.

e3 � 633 � 597 � 36  e4 � 601 � 597 � 4

e1 � 550 � 597 � �47  e2 � 604 � 597 � 7
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Figure 14-25 Normal probability plot of residuals from the
plasma etch experiment.

14-5.4 Addition of Center Points to a 2k Design

A potential concern in the use of two-level factorial designs is the assumption of linearity in
the factor effects. Of course, perfect linearity is unnecessary, and the 2k system will work quite
well even when the linearity assumption holds only approximately. However, there is a method
of replicating certain points in the 2k factorial that will provide protection against curvature as
well as allow an independent estimate of error to be obtained. The method consists of adding
center points to the 2k design. These consist of nC replicates run at the point xi � 0 (i � 1,
2, . . . , k). One important reason for adding the replicate runs at the design center is that cen-
ter points do not affect the usual effects estimates in a 2k design. We assume that the k factors
are quantitative.

To illustrate the approach, consider a 22 design with one observation at each of the
factorial points (�, �), (�, �), (�, �), and (�, �) and nC observations at the center points
(0, 0). Figure 14-26 illustrates the situation. Let be the average of the four runs at the four
factorial points, and let be the average of the nC run at the center point. If the difference

is small, the center points lie on or near the plane passing through the factorial points,yF � yC

yC

yF
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where, in general, nF is the number of factorial design points. This quantity may be compared
to the error mean square to test for curvature. Notice that when Equation 14-19 is divided by

, the result is similar to the square of the t statistic used to compare two means.
More specifically, when points are added to the center of the 2k design, the model we may

entertain is

where the �jj are pure quadratic effects. The test for curvature actually tests the hypotheses

Furthermore, if the factorial points in the design are unreplicated, we may use the nC center
points to construct an estimate of error with nC � 1 degrees of freedom.

H1: a
k

j�1
 �jj � 0

H0: a
k

j�1
 �jj � 0

Y � �0 �a
k

j�1
�j xj �b

i� j
�ij xixj �a

k

j�1
�jj x

2
j � 	


̂2 � MSE

(14-19) �
°

yF � yC

B

1
nF

�
1
nC

¢

2

 SSCurvature �
nFnC1 yF � yC2

2

nF � nC

Curvature Sum
of Squares
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and there is no curvature. On the other hand, if is large, curvature is present. A single-
degree-of-freedom sum of squares for curvature is given by

yF � yC

Figure 14-26 A 22 design with center points.
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Figure 14-27 The 22 design with five center
points for Example 14-6.

EXAMPLE 14-6 Process Yield
A chemical engineer is studying the percentage of conversion or
yield of a process. There are two variables of interest, reaction
time and reaction temperature. Because she is uncertain about
the assumption of linearity over the region of exploration, the en-
gineer decides to conduct a 22 design (with a single replicate of
each factorial run) augmented with five center points. The design
and the yield data are shown in Fig. 14-27.

Table 14-22 summarizes the analysis of variance for this
experiment. The mean square error is calculated from the cen-
ter points as follows:

 �
a

5

i�1
1 yi � 40.4622

4
�

0.1720

4
� 0.0430

MSE �
SSE

nC � 1
�

a
Center points

1 yi � yC2
2

nC � 1

The average of the points in the factorial portion of the design is
, and the average of the points at the center isyF � 40.425

Table 14-22 Analysis of Variance for Example 14-6

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-Value

A (Time) 2.4025 1 2.4025 55.87 0.0017
B (Temperature) 0.4225 1 0.4225 9.83 0.0350
AB 0.0025 1 0.0025 0.06 0.8237
Curvature 0.0027 1 0.0027 0.06 0.8163
Error 0.1720 4 0.0430
Total 3.0022 8

. The difference � 40.425 � 40.46 �yF � yCyC � 40.46
�0.035 appears to be small. The curvature sum of squares in the
analysis of variance table is computed from Equation 14-19 as
follows:

Practical Interpretation: The analysis of variance indi-
cates that both factors exhibit significant main effects, that
there is no interaction, and that there is no evidence of curvature
in the response over the region of exploration. That is, the null
hypothesis cannot be rejected.H0:g

k
j�1 �jj � 0

 �
142 152 1�0.03522

4 � 5
� 0.0027

 SSCurvature �
nFnC 1 yF � yC2

2

nF � nC
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Treatment Replicate

Combination I II

112 159 163
a 168 175

b 158 163

ab 166 168

c 175 178

ac 179 183

bc 173 168

abc 179 182

d 164 159

ad 187 189

bd 163 159

abd 185 191

cd 168 174

acd 197 199

bcd 170 174

abcd 194 198

(a) Analyze the data from this experiment.
(b) Find an appropriate regression model that explains tool

life in terms of the variables used in the experiment.
(c) Analyze the residuals from this experiment.

14-13. Four factors are thought to influence the taste of a
soft-drink beverage: type of sweetener (A), ratio of syrup to
water (B), carbonation level (C ), and temperature (D). Each
factor can be run at two levels, producing a 24 design. At each
run in the design, samples of the beverage are given to a test (a) Estimate the factor effects.

(b) Which effects appear important? Use a normal probability
plot.

(c) If it is desirable to maximize the strength, in which
direction would you adjust the process variables?

(d) Analyze the residuals from this experiment.

14-15. An article in IEEE Transactions on Semiconduc-tor
Manufacturing (Vol. 5, 1992, pp. 214–222) describes an ex-
periment to investigate the surface charge on a silicon wafer.
The factors thought to influence induced surface charge are
cleaning method (spin rinse dry or SRD and spin dry or SD)
and the position on the wafer where the charge was measured.
The surface charge (�1011 q/cm3) response data are as shown.

112 � 700 e � 800
a � 900 ae � 1200
b � 3400 be � 3500
ab � 5500 abe � 6200
c � 600 ce � 600
ac � 1000 ace � 1200
bc � 3000 bce � 3006
abc � 5300 abce � 5500
d � 1000 de � 1900
ad � 1100 ade � 1500
bd � 3000 bde � 4000
abd � 6100 abde � 6500
cd � 800 cde � 1500
acd � 1100 acde � 2000
bcd � 3300 bcde � 3400
abcd � 6000 abcde � 6800

Test Position
L R

1.66 1.84

SD 1.90 1.84

1.92 1.62

�4.21 �7.58

SRD �1.35 �2.20

�2.08 �5.36

Cleaning
Method

Treatment Replicate

Combination I II

112 221 311

a 325 435

b 354 348

ab 552 472

c 440 453

ac 406 377

bc 605 500

abc 392 419

EXERCISES FOR SECTION 14-5

14-12. An engineer is interested in the effect of cutting
speed (A), metal hardness (B), and cutting angle (C) on the life
of a cutting tool. Two levels of each factor are chosen, and two
replicates of a 23 factorial design are run. The tool life data (in
hours) are shown in the table at right.

panel consisting of 20 people. Each tester assigns the beverage
a point score from 1 to 10. Total score is the response variable,
and the objective is to find a formulation that maximizes total
score. Two replicates of this design are run, and the results are
shown in the table. Analyze the data and draw conclusions.
Use � � 0.05 in the statistical tests.

14-14. The data shown here represent a single replicate of a
25 design that is used in an experiment to study the compressive
strength of concrete. The factors are mix (A), time (B), labora-
tory (C), temperature (D), and drying time (E).
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(a) Estimate the factor effects.
(b) Which factors appear important? Use � � 0.05.
(c) Analyze the residuals from this experiment.
14-16. An article in Oikos: A Journal of Ecology [“Regulation
of Root Vole Population Dynamics by Food Supply and
Predation: A Two-Factor Experiment” (2005, Vol. 109, pp.
387–395)] investigated how food supply interacts with pre-
dation in the regulation of root vole (Microtus oeconomus
Pallas) population dynamics. A replicated two-factor field
experiment manipulating both food supply and predation
condition for root voles was conducted. Four treatments
were applied: (no-predator, food-supplemented);

(predator-access, food-supplemented); 
(no-predator, nonsupplemented); (predator-access,
food-supplemented). The population density of root voles
(voles for each treatment combination in each is shown
below.

Food Supply Predation
(F) (P) Replicates

88.589 114.059 200.979

56.949 97.079 78.759

65.439 89.089 172.339

40.799 47.959 74.439

(a) What is an appropriate statistical model for this experiment?
(b) Analyze the data and draw conclusions.
(c) Analyze the residuals from this experiment. Are there any

problems with model adequacy?

14-17. An experiment was run in a semiconductor
fabrication plant in an effort to increase yield. Five factors,
each at two levels, were studied. The factors (and levels) were 
A � aperture setting (small, large), B � exposure time (20%
below nominal, 20% above nominal), C � development time
(30 and 45 seconds), D � mask dimension (small, large), and 
E � etch time (14.5 and 15.5 minutes). The following
unreplicated 25 design was run:

112 � 7 e � 8
a � 9 ae � 12
b � 34 be � 35
ab � 55 abe � 52
c � 16 ce � 15
ac � 20 ace � 22
bc � 40 bce � 45
abc � 60 abce � 65
d � 8 de � 6
ad � 10 ade � 10
bd � 32 bde � 30
abd � 50 abde � 53
cd � 18 cde � 15
acd � 21 acde � 20
bcd � 44 bcde � 41
abcd � 61 abcde � 63

�1�1

�1�1

�1�1

�1�1

ha�12

�F�P,
�F�P,�F�P,

�F�P,

(a) Construct a normal probability plot of the effect estimates.
Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your findings
for part (a).

(c) Construct a normal probability plot of the residuals. Is the
plot satisfactory?

(d) Plot the residuals versus the predicted yields and versus
each of the five factors. Comment on the plots.

(e) Interpret any significant interactions.
(f ) What are your recommendations regarding process

operating conditions?
(g) Project the 25 design in this problem into a 2r for r � 5

design in the important factors. Sketch the design and
show the average and range of yields at each run. Does
this sketch aid in data interpretation?

14-18. An experiment described by M. G. Natrella in the
National Bureau of Standards’ Handbook of Experimental
Statistics (No. 91, 1963) involves flame-testing fabrics after
applying fire-retardant treatments. The four factors considered
are type of fabric (A), type of fire-retardant treatment (B),
laundering condition (C—the low level is no laundering, the
high level is after one laundering), and method of conducting
the flame test (D). All factors are run at two levels, and the
response variable is the inches of fabric burned on a standard
size test sample. The data are:

(a) Estimate the effects and prepare a normal plot of the
effects.

(b) Construct an analysis of variance table based on the model
tentatively identified in part (a).

(c) Construct a normal probability plot of the residuals and
comment on the results.

14-19. Consider the data from Exercise 14-12. Suppose
that the data from the second replicate was not available.
Analyze the data from replicate I only and comment on your
findings.

14-20. A 24 factorial design was run in a chemical
process. The design factors are A � time, B � concentration,
C � pressure, and D � temperature. The response variable is
yield. The data follow:

112 � 42 d � 40
a � 31 ad � 30
b � 45 bd � 50
ab � 29 abd � 25
c � 39 cd � 40
ac � 28 acd � 25
bc � 46 bcd � 50
abc � 32 abcd � 23
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The Gril Defects Experiment

Run A B C D y

1 � � � � 56 7.48

2 � � � � 17 4.12

3 � � � � 2 1.41

4 � � � � 4 2.00

5 � � � � 3 1.73

6 � � � � 4 2.00

7 � � � � 50 7.07

8 � � � � 2 1.41

9 � � � � 1 1.00

10 � � � � 0 0.00

11 � � � � 3 1.73

12 � � � � 12 3.46

13 � � � � 3 1.73

14 � � � � 4 2.00

15 � � � � 0 0.00
16 � � � � 0 0.00

1y

Yield Factor Levels

Run A B C D (pounds) � �

1 � � � � 12 A (hours) 2 3

2 � � � � 18 B (%) 14 18

3 � � � � 13 C (psi) 60 80

4 � � � � 16 D (�C) 200 250

5 � � � � 17

6 � � � � 15

7 � � � � 20

8 � � � � 15

9 � � � � 10

10 � � � � 25

11 � � � � 13

12 � � � � 24

13 � � � � 19

14 � � � � 21

15 � � � � 17
16 � � � � 23

(a) Estimate the factor effects. Based on a normal probability
plot of the effect estimates, identify a model for the data
from this experiment.

(b) Conduct an ANOVA based on the model identified in
part (a). What are your conclusions?

(c) Analyze the residuals and comment on model adequacy.
(d) Find a regression model to predict yield in terms of the

actual factor levels.
(e) Can this design be projected into a 23 design with two

replicates? If so, sketch the design and show the average
and range of the two yield values at each cube corner.
Discuss the practical value of this plot.

14-21. An experiment has run a single replicate of a 24

design and calculated the following factor effects:

A � 80.25 AB � 53.25 ABC � �2.95
B � �65.50 AC � 11.00 ABD � �8.00
C � �9.25 AD � 9.75 ACD � 10.25
D � �20.50 BC � 18.36 BCD � �7.95

BD � 15.10 ABCD � �6.25
CD � �1.25

(a) Construct a normal probability plot of the effects.
(b) Identify a tentative model, based on the plot of effects in

part (a).
(c) Estimate the regression coefficients in this model, assum-

ing that 

14-22. A two-level factorial experiment in four factors was
conducted by Chrysler and described in the article “Sheet
Molded Compound Process Improvement” by P. I. Hsieh and
D. E. Goodwin (Fourth Symposium on Taguchi Methods,

y � 400.

American Supplier Institute, Dearborn, MI, 1986, pp. 13–21).
The purpose was to reduce the number of defects in the finish
of sheet-molded grill opening panels. A portion of the experi-
mental design, and the resulting number of defects, yi observed
on each run is shown in the table following. This is a single
replicate of the 24 design.
(a) Estimate the factor effects and use a normal probability

plot to tentatively identify the important factors.
(b) Fit an appropriate model using the factors identified in

part (a) above.
(c) Plot the residuals from this model versus the predicted num-

ber of defects. Also, prepare a normal probability plot of the
residuals. Comment on the adequacy of these plots.

(d) The table also shows the square root of the number of
defects. Repeat parts (a) and (c) of the analysis using the
square root of the number of defects as the response. Does
this change the conclusions?

14-23. Consider a factorial experiment with four center
points. The data are 
and the responses at the center point are 92, 130, 98, 152.
Compute an ANOVA with the sum of squares for curvature
and conduct an F-test for curvature. Use 

14-24. Consider the experiment in Exercise 14-14. Suppose
that a center point with five replicates is added to the factorial
runs and the responses are 2800, 5600, 4500, 5400, 3600.
Compute an ANOVA with the sum of squares for curvature
and conduct an F-test for curvature. Use 

14-25. Consider the experiment in Exercise 14-17. Suppose
that a center point with five replicates is added to the factorial
runs and the responses are 45, 40, 41, 47, and 43.

� � 0.05.

� � 0.05.

ab � 352,b � 154,a � 125,112 � 21,
22
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594 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

(a) Estimate the experimental error using the center points.
Compare this to the estimate obtained originally in Exercise
14-17 by pooling apparently nonsignificant effects.

(b) Test for curvature with 

14-26. An article in Talanta (2005, Vol. 65, pp. 895–899)
presented a 23 factorial design to find lead level by using flame
atomic absorption spectrometry (FAAS). The data are shown
in the following table.

� � 0.05.

(a) Estimate the factor effects and use a normal probability
plot of the effects. Identify which effects appear to be
large.

(b) Fit an appropriate model using the factors identified in
part (a) above.

(c) Prepare a normal probability plot of the residuals. Also,
plot the residuals versus the predicted ceramic strength.
Comment on the adequacy of these plots.

(d) Identify and interpret any significant interactions.
(e) What are your recommendations regarding process oper-

ating conditions?

14-28. Consider the following Minitab output for a 23 fac-
torial experiment.
(a) How many replicates were used in the experiment?
(b) Use Equation 14-17 to calculate the standard error of a 

coefficient.
(c) Calculate the entries marked with “?” in the output.

The factors and levels are shown in the following table.

(a) Construct a normal probability plot of the effect estimates.
Which effects appear to be large?

(b) Conduct an analysis of variance to confirm your findings
for part (a).

(c) Analyze the residuals from this experiment. Are there any
problems with model adequacy?

14-27. An experiment to study the effect of machining fac-
tors on ceramic strength was described at http://www.itl.
nist.gov/div898/handbook/. Five factors were considered at
two levels each: A � Table Speed, B � Down Feed Rate, C �
Wheel Grit, D � Direction, E � Batch. The response is the av-
erage of the ceramic strength over 15 repetitions. The following
data are from a single replicate of a 25 factorial design.

Factors Lead Recovery (%)

Run ST pH RC R1 R2

1 � � � 39.8 42.1
2 � � � 51.3 48
3 � � � 57.9 58.1
4 � � � 78.9 85.9
5 � � � 78.9 84.2
6 � � � 84.2 84.2
7 � � � 94.4 90.9
8 � � � 94.7 105.3

Factor Low (�) High (�)

Reagent concentration (RC) 5 � 10�6 5 � 10�5

(mol 1�1)
pH 6.0 8.0
Shaking time (ST) (min) 10 30

A B C D E Strength

�1 �1 �1 �1 �1 680.45

1 �1 �1 �1 �1 722.48

�1 1 �1 �1 �1 702.14

1 1 �1 �1 �1 666.93

�1 �1 1 �1 �1 703.67

1 �1 1 �1 �1 642.14

�1 1 1 �1 �1 692.98

1 1 1 �1 �1 669.26

�1 �1 �1 1 �1 491.58

1 �1 �1 1 �1 475.52

�1 1 �1 1 �1 478.76

1 1 �1 1 �1 568.23

�1 �1 1 1 �1 444.72

1 �1 1 1 �1 410.37

�1 1 1 1 �1 428.51

1 1 1 1 �1 491.47

�1 �1 �1 �1 1 607.34

1 �1 �1 �1 1 620.8

�1 1 �1 �1 1 610.55

1 1 �1 �1 1 638.04

�1 �1 1 �1 1 585.19

1 �1 1 �1 1 586.17

�1 1 1 �1 1 601.67

1 1 1 �1 1 608.31

�1 �1 �1 1 1 442.9

1 �1 �1 1 1 434.41

�1 1 �1 1 1 417.66

1 1 �1 1 1 510.84

�1 �1 1 1 1 392.11

1 �1 1 1 1 343.22

�1 1 1 1 1 385.52

1 1 1 1 1 446.73
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Analysis of Variance for y (coded units)

14-29. An article in Analytica Chimica Acta [“Design-
of-Experiment Optimization of Exhaled Breath Condensate
Analysis Using a Miniature Differential Mobility Spectrometer
(DMS)” (2008, Vol. 628, No. 2, pp. 155–161)] examined four
parameters that affect the sensitivity and detection of the ana-
lytical instruments used to measure clinical samples. They op-
timized the sensor function using EBC samples spiked with
acetone, a known clinical biomarker in breath. The following
table shows the results for a single replicate of a 24 factorial
experiment for one of the outputs, the average amplitude of
acetone peak over three repetitions.

The factors and levels are shown in the following table.

A RF voltage of the DMS sensor (1200 or 1400 V)

B Nitrogen carrier gas flow rate (250 or 500mLmin�1)

C Solid phase microextraction (SPME) filter type 
(polyacrylate or PDMS–DVB)

D GC cooling profile (cryogenic and noncryogenic)

(a) Estimate the factor effects and use a normal probability plot
of the effects. Identify which effects appear to be large, and
identify a model for the data from this experiment.

(b) Conduct an ANOVA based on the model identified in part
(a). What are your conclusions?

(c) Analyze the residuals from this experiment. Are there any
problems with model adequacy?

(d) Project the design in this problem into a 2r design for r � 4
in the important factors. Sketch the design and show the
average and range of yields at each run. Does this sketch
aid in data representation?

Term Effect Coef SE Coef T P

Constant 579.33 38.46 15.06 0.000

A 2.95 1.47 38.46 0.04 0.970

B 15.92 ? 38.46 0.21 0.841

C �37.87 �18.94 38.46 �0.49 0.636

A*B 20.43 10.21 38.46 ? 0.797

A*C �17.11 �8.55 38.46 �0.22 0.830

B*C 4.41 2.21 38.46 0.06 0.956

A*B*C 13.35 6.68 ? 0.17 0.866

S � 153.832 R�Sq � 5.22% R�Sq (adj) � 0.00%

Factorial Fit: y versus A, B, C

Estimated Effects and Coefficients for y (coded units)

Source DF Seq SS Adj SS Adj MS F P

Main Effects 3 6785 6785 2261.8 ? 0.960

2-Way 3 ? 2918 972.5 0.04 0.988
Interactions

3-Way 1 ? 713 713.3 0.03 0.866
Interactions

Residual 8 189314 189314 23664.2
Error

Pure Error 8 189314 189314 23664.2

Total 15 199730

Configuration A B C D Y

1 � � � � 0.12

2 � � � � 0.1193

3 � � � � 0.1196

4 � � � � 0.1192

5 � � � � 0.1186

6 � � � � 0.1188

7 � � � � 0.1191

8 � � � � 0.1186

9 � � � � 0.121

10 � � � � 0.1195

11 � � � � 0.1196

12 � � � � 0.1191

13 � � � � 0.1192

14 � � � � 0.1194

15 � � � � 0.1188

16 � � � � 0.1188

14-6 BLOCKING AND CONFOUNDING IN THE 2k DESIGN

It is often impossible to run all the observations in a 2k factorial design under homogeneous
conditions. Blocking is the design technique that is appropriate for this general situation.
However, in many situations the block size is smaller than the number of runs in the complete
replicate. In these cases, confounding is a useful procedure for running the 2k design in 2p blocks
where the number of runs in a block is less than the number of treatment combinations in one
complete replicate. The technique causes certain interaction effects to be indistinguishable from
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blocks or confounded with blocks. We will illustrate confounding in the 2k factorial design in
2p blocks, where p � k.

Consider a 22 design. Suppose that each of the 22 � 4 treatment combinations requires four
hours of laboratory analysis. Thus, two days are required to perform the experiment. If days are
considered as blocks, we must assign two of the four treatment combinations to each day.

This design is shown in Fig. 14-28. Notice that block 1 contains the treatment combina-
tions (1) and ab and that block 2 contains a and b. The contrasts for estimating the main
effects of factors A and B are

Note that these contrasts are unaffected by blocking since in each contrast there is one plus
and one minus treatment combination from each block. That is, any difference between block 1
and block 2 that increases the readings in one block by an additive constant cancels out. The
contrast for the AB interaction is

Since the two treatment combinations with the plus signs, ab and (1), are in block 1 and the
two with the minus signs, a and b, are in block 2, the block effect and the AB interaction are
identical. That is, the AB interaction is confounded with blocks.

The reason for this is apparent from the table of plus and minus signs for the 22 design
shown in Table 14-12. From the table we see that all treatment combinations that have a plus
on AB are assigned to block 1, whereas all treatment combinations that have a minus sign on
AB are assigned to block 2.

This scheme can be used to confound any 2k design in two blocks. As a second example,
consider a 23 design, run in two blocks. From the table of plus and minus signs, shown in Table
14-15, we assign the treatment combinations that are minus in the ABC column to block 1 and
those that are plus in the ABC column to block 2. The resulting design is shown in Fig. 14-29.

There is a more general method of constructing the blocks. The method employs a
defining contrast, say,

(14-20)

where xi is the level of the ith factor appearing in a treatment combination and �i is the expo-
nent appearing on the ith factor in the effect that is to be confounded with blocks. For the 2k

system, we have either �i � 0 or 1, and either xi � 0 (low level) or xi � 1 (high level).

L � �1x1 � �2x2 � � � � � �kxk

ContrastAB � ab � 112 � a � b

ContrastB � ab � b � a � 112

ContrastA � ab � a � b � 112

b
+

(1)
–

– +
a

ab

A
Geometric view

(a)

Assignment of the four
runs to two blocks

(b)

(1)

Block 1

ab

a

Block 2

b

= Run in block 1

= Run in block 2

Figure 14-28 A 22

design in two blocks.
(a) Geometric view. 
(b) Assignment of the
four runs to two blocks.
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= Run in block 1

= Run in block 2

A

C

B

abcbc

c

b

ac

a

ab

(1)

(a)

Geometric view

Assignment of the eight
runs to two blocks

(b)

(1)

Block 1

ab

a

Block 2

b

ac

bc

c

abc

Figure 14-29 The 23

design in two blocks
with ABC confounded.
(a) Geometric view.
(b) Assignment of the
eight runs to two
blocks.

Treatment combinations that produce the same value of L (modulus 2) will be placed in the
same block. Since the only possible values of L (mod 2) are 0 and 1, this will assign the 2k

treatment combinations to exactly two blocks.
As an example, consider the 23 design with ABC confounded with blocks. Here x1 corre-

sponds to A, x2 to B, x3 to C, and �1 � �2 � �3 � 1. Thus, the defining contrast that would be
used to confound ABC with blocks is

To assign the treatment combinations to the two blocks, we substitute the treatment combina-
tions into the defining contrast as follows:

1mod 22

1mod 22

1mod 22

1mod 22

1mod 22

1mod 22

1mod 22

1mod 22

Thus (1), ab, ac, and bc are run in block 1, and a, b, c, and abc are run in block 2. This same
design is shown in Fig. 14-29.

A shortcut method is useful in constructing these designs. The block containing the treat-
ment combination (1) is called the principal block. Any element [except (1)] in the principal
block may be generated by multiplying two other elements in the principal block modulus 2
on the exponents. For example, consider the principal block of the 23 design with ABC
confounded, shown in Fig. 14-29. Note that

ac � bc � abc2 � ab

ab � bc � ab2c � ac

ab � ac � a2bc � bc

abc:  L � 1112 � 1112 � 1112 � 3 � 1

bc:  L � 1102 � 1112 � 1112 � 2 � 0

ac:  L � 1112 � 1102 � 1112 � 2 � 0

c:  L � 1102 � 1102 � 1112 � 1 � 1

ab:  L � 1112 � 1112 � 1102 � 2 � 0

b:  L � 1102 � 1112 � 1102 � 1 � 1

a:  L � 1112 � 1102 � 1102 � 1 � 1

112:   L � 1102 � 1102 � 1102 � 0 � 0

L � x1 � x2 � x3
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Treatment combinations in the other block (or blocks) may be generated by multiplying
one element in the new block by each element in the principal block modulus 2 on the
exponents. For the 23 with ABC confounded, since the principal block is (1), ab, ac, and bc,
we know that the treatment combination b is in the other block. Thus, elements of this
second block are

b � bc � b2c � c

b � ac    � abc

b � ab � ab2 � a

b � 112    � b

EXAMPLE 14-7 Missile Miss Distance
An experiment is performed to investigate the effect of four
factors on the terminal miss distance of a shoulder-fired
ground-to-air missile. The four factors are target type (A),
seeker type (B), target altitude (C), and target range (D). Each
factor may be conveniently run at two levels, and the optical
tracking system will allow terminal miss distance to be meas-
ured to the nearest foot. Two different operators or gunners are
used in the flight test and, since there may be differences be-
tween operators, the test engineers decided to conduct the 24

design in two blocks with ABCD confounded. Thus, the defin-
ing contrast is

L � x1 � x2 � x3 � x4

The experimental design and the resulting data are shown
in Fig. 14-30. The effect estimates obtained from Minitab are
shown in Table 14-23. A normal probability plot of the effects
in Fig. 14-31 reveals that A (target type), D (target range),
AD, and AC have large effects. A confirming analysis of vari-
ance, pooling the three-factor interactions as error, is shown
in Table 14-24.

Practical Interpretation: Since the AC and AD interactions
are significant, it is logical to conclude that A (target type), C
(target altitude), and D (target range) all have important effects
on the miss distance and that there are interactions between tar-
get type and altitude and target type and range. Notice that the
ABCD effect is treated as blocks in this analysis.

= Run in block 1

= Run in block 2

A

C

B

abcbc

c

b

ac

a

ab

(1)

(a)

Geometric view

Assignment of the sixteen
runs to two blocks

(b)

Block 1

abcdbcd

cd

bd

acd

ad

abd

d

(1)
ab
ac
bc
ad
bd
cd

abcd

= 3
= 7
= 6
= 8
= 10
= 4
= 8
= 9

Block 2

a
b
c
d

abc
bcd
acd
abd

= 7
= 5
= 6
= 4
= 6
= 7
= 9
= 12

D– +

Figure 14-30 The 24 design in two blocks for Example 14-7. (a) Geometric view. (b) Assignment of the 
16 runs to two blocks.
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It is possible to confound the 2k design in four blocks of 2k�2 observations each. To con-
struct the design, two effects are chosen to confound with blocks, and their defining contrasts
are obtained. A third effect, the generalized interaction of the two effects initially chosen, is
also confounded with blocks. The generalized interaction of two effects is found by multiply-
ing their respective letters and reducing the exponents modulus 2.

For example, consider the 24 design in four blocks. If AC and BD are confounded with
blocks, their generalized interaction is (AC )(BD) = ABCD. The design is constructed by using 

Table 14-23 Minitab Effect Estimates for
Example 14-7

Estimated Effects and Coefficients for Distance

Term Effect Coef

Constant 6.938

Block 0.063

A 2.625 1.312

B 0.625 0.313

C 0.875 0.438

D 1.875 0.938

AB �0.125 �0.063

AC �2.375 �1.187

AD 1.625 0.813

BC �0.375 �0.188

BD �0.375 �0.187

CD �0.125 �0.062

ABC �0.125 �0.063

ABD 0.875 0.438

ACD �0.375 �0.187

BCD �0.375 �0.187

_2

_1

0

1

0 2

A

D
AD

AC

Effect

N
o
rm

a
l 
sc

o
re

Figure 14-31 Normal probability plot of the
effects from Minitab, Example 14-6.

Table 14-24 Analysis of Variance for Example 14-7

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-Value

Blocks (ABCD) 0.0625 1 0.0625 0.06 —
A 27.5625 1 27.5625 25.94 0.0070
B 1.5625 1 1.5625 1.47 0.2920
C 3.0625 1 3.0625 2.88 0.1648
D 14.0625 1 14.0625 13.24 0.0220
AB 0.0625 1 0.0625 0.06 —
AC 22.5625 1 22.5625 21.24 0.0100
AD 10.5625 1 10.5625 9.94 0.0344
BC 0.5625 1 0.5625 0.53 —
BD 0.5625 1 0.5625 0.53 —
CD 0.0625 1 0.0625 0.06 —

Error (ABC � ABD � ACD � BCD) 4.2500 4 1.0625
Total 84.9375 15
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600 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

the defining contrasts for AC and BD:

It is easy to verify that the four blocks are

L2 � x2 � x4

L1 � x1 � x3

Block 1 Block 2 Block 3 Block 4
L1 � 0, L2 � 0 L1 � 1, L2 � 0 L1 � 0, L2 � 1 L1 � 1, L2 � 1

112 a b ab
ac c abc bc
bd abd d ad

abcd bcd acd cd

This general procedure can be extended to confounding the 2k design in 2p blocks, where 
p � k. Start by selecting p effects to be confounded, such that no effect chosen is a general-
ized interaction of the others. Then the blocks can be constructed from the p defining contrasts
L1, L2, . . . , Lp that are associated with these effects. In addition to the p effects chosen to be
confounded, exactly 2p � p � 1 additional effects are confounded with blocks; these are the
generalized interactions of the original p effects chosen. Care should be taken so as not to con-
found effects of potential interest.

For more information on confounding in the 2k factorial design, refer to Montgomery
(2009). This book contains guidelines for selecting factors to confound with blocks so that
main effects and low-order interactions are not confounded. In particular, the book contains a
table of suggested confounding schemes for designs with up to seven factors and a range of
block sizes, some of which are as small as two runs.

EXERCISES FOR SECTION 14-6

14-30. Consider the data from the first replicate of Ex-
ercise 14-12.
(a) Suppose that these observations could not all be run under

the same conditions. Set up a design to run these observa-
tions in two blocks of four observations each, with ABC
confounded.

(b) Analyze the data.

14-31. Consider the data from the first replicate of Ex-
ercise 14-13.
(a) Construct a design with two blocks of eight observations

each, with ABCD confounded.
(b) Analyze the data.

14-32. Consider the data from Exercise 14-18.
(a) Construct the design that would have been used to run this

experiment in two blocks of eight runs each.
(b) Analyze the data and draw conclusions.

14-33. Construct a 25 design in two blocks. Select the
ABCDE interaction to be confounded with blocks.

14-34. Consider the data from the first replicate of Exercise
14-13, assuming that four blocks are required. Confound ABD
and ABC (and consequently CD) with blocks.

(a) Construct a design with four blocks of four observations each.
(b) Analyze the data.

14-35. Construct a 25 design in four blocks. Select the appro-
priate effects to confound so that the highest possible interactions
are confounded with blocks.

14-36. Consider the 26 factorial design. Set up a design to
be run in four blocks of 16 runs each. Show that a design that
confounds three of the four-factor interactions with blocks is
the best possible blocking arrangement.

14-37. An article in Quality Engineering [“Designed Experi-
ment to Stabilize Blood Glucose Levels” (1999–2000, Vol. 12,
pp. 83–87)] reported on an experiment to minimize variations in
blood glucose levels. The factors were: volume of juice intake
before exercise (4 or 8 oz), amount of exercise on a Nordic
Track cross-country skier (10 or 20 min), and delay between
the time of juice intake (0 or 20 min) and the beginning of the
exercise period. The experiment was blocked for time of day.
The data follow.
(a) What effects are confounded with blocks? Comment on

any concerns with the confounding in this design.
(b) Analyze the data and draw conclusions.
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14-6 BLOCKING AND CONFOUNDING IN THE 2k DESIGN 601

14-38. An article in Industrial and Engineering Chemistry
[“Factorial Experiments in Pilot Plant Studies” (1951,
pp. 1300–1306)] reports on an experiment to investigate
the effect of temperature (A), gas throughput (B), and con-
centration (C) on the strength of product solution in a re-
circulation unit. Two blocks were used with ABC con-
founded, and the experiment was replicated twice. The data
follow.
(a) Analyze the data from this experiment.

Average
Juice Exercise Delay Time of Blood

Run (oz) (min) (min) Day Glucose

1 4 10 0 pm 71.5
2 8 10 0 am 103
3 4 20 0 am 83.5
4 8 20 0 pm 126
5 4 10 20 am 125.5
6 8 10 20 pm 129.5
7 4 20 20 pm 95
8 8 20 20 am 93

Replicate 1

Block 1 Block 2

(1) � 99 a � 18
ab � 52 b � 51
ac � 42 c �108
bc � 95 abc � 35

Replicate 2

Block 3 Block 4

(1) � 46 a � 18
ab � 47 b � 62
ac � 22 c �104
bc � 67 abc � 36

(b) Analyze the residuals and comment on model adequacy.
(c) Comment on the efficiency of this design. Note that we

have replicated the experiment twice, yet we have no 
information on the ABC interaction.

(d) Suggest a better design, specifically, one that would 
provide some information on all interactions.

14-39. Consider the following Minitab output from a single
replicate of a 24 experiment in two blocks with ABCD con-
founded.
(a) Comment on the value of blocking in this experiment.
(b) What effects were used to generate the residual error in

the ANOVA?
(c) Calculate the entries marked with “?” in the output.

14-40. An article in Advanced Semiconductor Manufacturing
Conference (ASMC) (May 2004, pp. 325–29) stated that dis-
patching rules and rework strategies are two major operational 
elements that impact productivity in a semiconductor fabrication
plant (fab). A four-factor experiment was conducted to determine
the effect of dispatching rule time (5 or 10 min), rework delay 
(0 or 15 min), fab temperature (60 or 80°F), and rework levels
(level 0 or level 1) on key fab performance measures. The per-
formance measure that was analyzed was the average cycle time.
The experiment was blocked for the fab temperature. Data modi-
fied from the original study are shown in the following table.

Factorial Fit: y versus Block, A, B, C, D
Estimated Effects and Coefficients for y (coded units)

Term Effect Coef Se Coef T P

Constant 579.33 9.928 58.35 0.000
Block 105.68 9.928 10.64 0.000
A �15.41 �7.70 9.928 �0.78 0.481
B 2.95 1.47 9.928 0.15 0.889
C 15.92 7.96 9.928 0.80 0.468
D �37.87 �18.94 9.928 �1.91 0.129
A*B �8.16 �4.08 9.928 �0.41 0.702
A*C 5.91 2.95 9.928 0.30 0.781
A*D 30.28 ? 9.928 ? 0.202
B*C 20.43 10.21 9.928 1.03 0.362
B*D �17.11 �8.55 9.928 �0.86 0.437
C*D 4.41 2.21 9.928 0.22 0.835

S � 39.7131 R-Sq � 96.84% R-Sq (adj) � 88.16%

Source DF Seq SS Adj SS Adj MS F P

Blocks ? 178694 178694 178694 113.30 0.000
Main Effects 4 7735 7735 1934 1.23 0.424
2-Way 6 6992 6992 ? 0.74 0.648

Interactions
Residual 4 6309 6309 1577

Error
Total 15 199730

Dispatching Rework Fab Average 
Rule Time Delay Rework Temperature Cycle Time

Run (min) (min) Level (°F) (min)

1 5 0 0 60 218

2 10 0 0 80 256.5

3 5 0 1 80 231

4 10 0 1 60 302.5

5 5 15 0 80 298.5

6 10 15 0 60 314

7 5 15 1 60 249

8 10 15 1 80 241

(a) What effects are confounded with blocks? Do you find any
concerns with confounding in this design? If so, comment
on it.

(b) Analyze the data and draw conclusions.

Analysis of Variance for y (coded units)
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602 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

14-7 FRACTIONAL REPLICATION OF THE 2k DESIGN

As the number of factors in a 2k factorial design increases, the number of runs required 
increases rapidly. For example, a 25 requires 32 runs. In this design, only 5 degrees of free-
dom correspond to main effects, and 10 degrees of freedom correspond to two-factor
interactions. Sixteen of the 31 degrees of freedom are used to estimate high-order interactions—
that is, three-factor and higher order interactions. Often there is little interest in these high-
order interactions, particularly when we first begin to study a process or system. If we can 
assume that certain high-order interactions are negligible, a fractional factorial design in-
volving fewer than the complete set of 2k runs can be used to obtain information on the main
effects and low-order interactions. In this section, we will introduce fractional replications of
the 2k design.

A major use of fractional factorials is in screening experiments. These are experiments
in which many factors are considered with the purpose of identifying those factors (if any) that
have large effects. Screening experiments are usually performed in the early stages of a 
project when it is likely that many of the factors initially considered have little or no effect
on the response. The factors that are identified as important are then investigated more
thoroughly in subsequent experiments.

14-7.1 One-Half Fraction of the 2k Design

A one-half fraction of the 2k design contains 2k�1 runs and is often called a 2k�1 fractional fac-
torial design. As an example, consider the 23�1 design—that is, a one-half fraction of the 23.
This design has only four runs, in contrast to the full factorial that would require eight runs.
The table of plus and minus signs for the 23 design is shown in Table 14-25. Suppose we se-
lect the four treatment combinations a, b, c, and abc, as our one-half fraction. These treatment
combinations are shown in the top half of Table 14-25 and in Fig. 14-32(a).

Notice that the 23�1 design is formed by selecting only those treatment combinations that
yield a plus on the ABC effect. Thus, ABC is called the generator of this particular fraction.
Furthermore, the identity element I is also plus for the four runs, so we call

the defining relation for the design.
The treatment combinations in the 23�1 design yields three degrees of freedom associated

with the main effects. From the upper half of Table 14-25, we obtain the estimates of the main

I � ABC

Factorial Effect

I A B C AB AC BC ABC

a � � � � � � � �

b � � � � � � � �

c � � � � � � � �

abc � � � � � � � �

ab � � � � � � � �

ac � � � � � � � �

bc � � � � � � � �

112 � � � � � � � �

Table 14-25 Plus and Minus Signs for the 23 Factorial Design

Treatment
Combination
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14-7 FRACTIONAL REPLICATION OF THE 2k DESIGN 603

effects as linear combinations of the observations, say,

It is also easy to verify that the estimates of the two-factor interactions should be the follow-
ing linear combinations of the observations:

Thus, the linear combination of observations in column A, , estimates both the main effect
of A and the BC interaction. That is, the linear combination estimates the sum of these two
effects A � BC. Similarly, estimates B � AC, and estimates C � AB. Two or more
effects that have this property are called aliases. In our 23�1 design, A and BC are aliases, B
and AC are aliases, and C and AB are aliases. Aliasing is the direct result of fractional replica-
tion. In many practical situations, it will be possible to select the fraction so that the main
effects and low-order interactions that are of interest will be aliased only with high-order
interactions (which are probably negligible).

The alias structure for this design is found by using the defining relation I � ABC.
Multiplying any effect by the defining relation yields the aliases for that effect. In our 
example, the alias of A is

since and . The aliases of B and C are

and

Now suppose that we had chosen the other one-half fraction, that is, the treatment com-
binations in Table 14-25 associated with minus on ABC. These four runs are shown in the

C � C � ABC � ABC2 � AB

B � B � ABC � AB2C � AC

A2 � IA � I � A

A � A � ABC � A2BC � BC

/C/B

/A

/A

 AB � 1�2 3� a � b � c � abc 4

 AC � 1�2 3� a � b � c � abc 4

 BC � 1�2 3a � b � c � abc 4

 C � 1�2 3� a � b � c � abc 4

 B � 1�2 3� a � b � c � abc 4

 A � 1�2 3a � b � c � abc 4

A

C

B

abc

c

b

a

(a)

The principal fraction, I = +ABC

bc

ac

ab

(1)

(b)

The alternate fraction, I = –ABC

Figure 14-32 The
one-half fractions of
the 23 design. (a) The
principal fraction, 
I � �ABC. (b) The
alternate fraction, 
I � �ABC.
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604 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

lower half of Table 14-25 and in Fig. 14-32(b). The defining relation for this design is 
I � �ABC. The aliases are A � �BC, B � �AC, and C � �AB. Thus, estimates of A, B, and
C that result from this fraction really estimate A � BC, B � AC, and C � AB. In practice, it
usually does not matter which one-half fraction we select. The fraction with the plus sign in
the defining relation is usually called the principal fraction, and the other fraction is usually
called the alternate fraction.

Note that if we had chosen AB as the generator for the fractional factorial,

and the two main effects of A and B would be aliased. This typically loses important
information.

Sometimes we use sequences of fractional factorial designs to estimate effects. For 
example, suppose we had run the principal fraction of the 23�1 design with generator ABC.
From this design we have the following effect estimates:

Suppose that we are willing to assume at this point that the two-factor interactions are negligible.
If they are, the 23�1 design has produced estimates of the three main effects A, B, and C. However,
if after running the principal fraction we are uncertain about the interactions, it is possible to esti-
mate them by running the alternate fraction. The alternate fraction produces the following effect
estimates:

We may now obtain de-aliased estimates of the main effects and two-factor interactions
by adding and subtracting the linear combinations of effects estimated in the two individual
fractions. For example, suppose we want to de-alias A from the two-factor interaction BC.
Since and , we can combine these effect estimates as follows:

and

For all three pairs of effect estimates, we would obtain the following results:

Effect, i from (li � li
�) from (li � li

�)

i � A

i � B

i � C  1�2 3C � AB �  1C � AB2 4 � AB1�2 1C � AB � C � AB2 � C

 1�2 3B � AC �  1B � AC2 4 � AC1�2 1B � AC � B � AC2 � B

 1�2 
3A � BC �  1A � BC2 4 � BC1�2 1A � BC � A � BC2 � A

1�21�2

1
2
1/A � /¿

A2 �
1
2
1A � BC � A � BC 2 � BC

1
2

  1/A � /¿
A2 �

1
2
1A � BC � A � BC2 � A

/¿
A � A � BC/A � A � BC

 /¿
C � C � AB

 /¿
B � B � AC

 /¿
A � A � BC

 /C � C � AB

 /B � B � AC

 /A � A � BC

A � A � AB � B
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Table 14-26 The 24�1 Design with Defining Relation I � ABCD

Treatment Etch
A B C D � ABC Combination Rate

� � � � 550
� � � � ad 749
� � � � bd 1052
� � � � ab 650
� � � � cd 1075
� � � � ac 642
� � � � bc 601
� � � � abcd 729

112
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Thus, by combining a sequence of two fractional factorial designs, we can isolate both the
main effects and the two-factor interactions. This property makes the fractional factorial de-
sign highly useful in experimental problems since we can run sequences of small, efficient ex-
periments, combine information across several experiments, and take advantage of learning
about the process we are experimenting with as we go along. This is an illustration of the
concept of sequential experimentation.

A 2k�1 design may be constructed by writing down the treatment combinations for a full
factorial with k � 1 factors, called the basic design, and then adding the kth factor by identi-
fying its plus and minus levels with the plus and minus signs of the highest order interaction.
Therefore, a 23�1 fractional factorial is constructed by writing down the basic design as a full
22 factorial and then equating factor C with the �AB interaction. Thus, to construct the
principal fraction, we would use C � �AB as follows:

Basic Design Fractional Design

Full 22 23�1, I � �ABC

A B A B C � AB

� � � � �

� � � � �

� � � � �

� � � � �

To obtain the alternate fraction we would equate the last column to C � �AB.

EXAMPLE 14-8 Plasma Etch
To illustrate the use of a one-half fraction, consider the plasma
etch experiment described in Example 14-5. Suppose that we
decide to use a 24�1 design with I � ABCD to investigate the
four factors gap (A), pressure (B), C2F6 flow rate (C ), and power
setting (D). This design would be constructed by writing down
as the basic design a 23 in the factors A, B, and C and then set-
ting the levels of the fourth factor D � ABC. The design and the
resulting etch rates are shown in Table 14-26. The design is
shown graphically in Fig. 14-33.

In this design, the main effects are aliased with the three-
factor interactions; note that the alias of A is

or

and similarly B � ACD, C � ABD, and D � ABC.
The two-factor interactions are aliased with each other. For

example, the alias of AB is CD:

or AB � A2B2CD � CDAB #  I � AB #  ABCD

A � A2BCD � BCDA #  I � A #  ABCD
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abcd = 729

cd = 1075

bd = 1052

ad = 749

bc = 601

ac = 642

ab = 650

(1) = 550

A

C

B

D– +

Figure 14-33 The 24�1 design for the experiment of Example 14-8.

The other aliases are AC � BD and AD � BC.
The estimates of the main effects and their aliases are

found using the four columns of signs in Table 14-26. For ex-
ample, from column A we obtain the estimated effect

The other columns produce

and

Clearly, and are large, and if we believe that the three-
factor interactions are negligible, the main effects A (gap) and
D (power setting) significantly affect etch rate. 

The interactions are estimated by forming the AB, AC,
and AD columns and adding them to the table. For example,

/D/A

/D � D � ABC � 290.50

/B � B � ACD � 4.00 /C � C � ABD � 11.50

� �127.00

� 642 � 601 � 7292

 /A � A � BCD � 1
4 1� 550 � 749 � 1052 � 650 � 1075

the signs in the AB column are �, �, �, �, �, �, �, �, and
this column produces the estimate

From the AC and AD columns we find

and

The estimate is large; the most straightforward interpreta-
tion of the results is that since A and D are large, this is the AD
interaction. Thus, the results obtained from the 24�1 design
agree with the full factorial results in Example 14-5.

Practical Interpretation: Often a fraction of a 2k design
is satisfactory when an experiment uses four or more 
factors.

/AD

/AD � AD � BC � �197.50

/AC � AC � BD � � 25.50

� 642 � 601 � 7292 � �10
/AB � AB � CD � 1

4 1550 � 749 � 1052 � 650 � 1075

Computer Solution
Fractional factorial designs are usually analyzed with a software package. Table 14-26 shows
the effect estimates obtained from Minitab for Example 14-8. They are in agreement with the
hand calculation reported earlier.

Normal Probability Plot of Effects
The normal probability plot is very useful in assessing the significance of effects from a frac-
tional factorial design, particularly when many effects are to be estimated. We strongly recom-
mend examining this plot. Figure 14-34 presents the normal probability plot of the effects
from Example 14-8. This plot was obtained from Minitab. Notice that the A, D, and AD inter-
action effects stand out clearly in this graph.
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14-7 FRACTIONAL REPLICATION OF THE 2k DESIGN 607

Residual Analysis
The residuals can be obtained from a fractional factorial by the regression model method
shown previously. Note that the Minitab output for Example 14-8 in Table 14-27 shows the
regression coefficients. The residuals should be graphically analyzed as we have discussed
before, both to assess the validity of the underlying model assumptions and to gain additional
insight into the experimental situation.

Projection of the 2k�1 Design
If one or more factors from a one-half fraction of a 2k can be dropped, the design will project
into a full factorial design. For example, Fig. 14-35 presents a 23�1 design. Notice that this
design will project into a full factorial in any two of the three original factors. Thus, if we think
that at most two of the three factors are important, the 23�1 design is an excellent design for iden-
tifying the significant factors. This projection property is highly useful in factor screening,

Table 14-27 Effect Estimates from Minitab,
Example 14-8

Fractional Factorial Fit

Estimated Effects and Coefficients for Etch Rt

Term Effect Coef
Constant 756.00
Gap �127.00 �63.50
Pressure 4.00 2.00
F 11.50 5.75
Power 290.50 145.25
Gap*Pressure �10.00 �5.00
Gap*F �25.50 �12.75
Gap*Power �197.50 �98.75
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Figure 14-34 Normal probability plot of
the effects from Minitab, Example 14-8.
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608 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

because it allows negligible factors to be eliminated, resulting in a stronger experiment in the
active factors that remain.

In the 24�1 design used in the plasma etch experiment in Example 14-8, we found that two
of the four factors (B and C) could be dropped. If we eliminate these two factors, the remain-
ing columns in Table 14-24 form a 22 design in the factors A and D, with two replicates. This
design is shown in Fig. 14-36. The main effects of A and D and the strong two-factor AD
interaction are clearly evident from this graph.

Design Resolution
The concept of design resolution is a useful way to catalog fractional factorial designs accord-
ing to the alias patterns they produce. Designs of resolution III, IV, and V are particularly 
important. The definitions of these terms and an example of each follow.

1. Resolution III Designs. These are designs in which no main effects are aliased
with any other main effect, but main effects are aliased with two-factor interac-
tions and some two-factor interactions may be aliased with each other. The 23�1

design with I � ABC is a resolution III design. We usually employ a Roman nu-
meral subscript to indicate design resolution; thus, this one-half fraction is a 
design.

2. Resolution IV Designs. These are designs in which no main effect is aliased with any
other main effect or two-factor interactions, but two-factor interactions are aliased
with each other. The 24�1 design with I � ABCD used in Example 14-8 is a resolution
IV design ( ).

3. Resolution V Designs. These are designs in which no main effect or two-factor
interaction is aliased with any other main effect or two-factor interaction, but two-
factor interactions are aliased with three-factor interactions. The 25�1 design with
I � ABCDE is a resolution V design ( ).

Resolution III and IV designs are particularly useful in factor screening experiments. A reso-
lution IV design provides good information about main effects and will provide some infor-
mation about all two-factor interactions.

14-7.2 Smaller Fractions: The 2k�p Fractional Factorial

Although the 2k�1 design is valuable in reducing the number of runs required for an experiment,
we frequently find that smaller fractions will provide almost as much useful information at even

2V
5�1

2IV
4�1

2III
3�1

+1

–1
–1 +1

(1052, 1075) (749, 729)

(650, 642)

(550, 601)

A (Gap)

D (Power)
Figure 14-36 The 22

design obtained by
dropping factors B and
C from the plasma 
etch experiment in
Example 14-7.
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14-7 FRACTIONAL REPLICATION OF THE 2k DESIGN 609

greater economy. In general, a 2k design may be run in a 1 2p fraction called a 2k�p fractional fac-
torial design. Thus, a 1�4 fraction is called a 2k�2 design, a 1�8 fraction is called a 2k�3 design,
a 1�16 fraction a 2k�4 design, and so on.

To illustrate the 1�4 fraction, consider an experiment with six factors and suppose that the
engineer is primarily interested in main effects but would also like to get some information
about the two-factor interactions. A 26�1 design would require 32 runs and would have 
31 degrees of freedom for estimating effects. Since there are only six main effects and 15 two-
factor interactions, the one-half fraction is inefficient—it requires too many runs. Suppose we
consider a 1�4 fraction, or a 26�2 design. This design contains 16 runs and, with 15 degrees of
freedom, will allow all six main effects to be estimated, with some capability for examining the
two-factor interactions.

To generate this design, we would write down a 24 design in the factors A, B, C, and D
as the basic design and then add two columns for E and F. To find the new columns we
could select the two design generators I � ABCE and I � BCDF. Thus, column E would
be found from E � ABC, and column F would be F � BCD. That is, columns ABCE and
BCDF are equal to the identity column. However, we know that the product of any two
columns in the table of plus and minus signs for a 2k design is just another column in the
table; therefore, the product of ABCE and BCDF or ABCE(BCDF) � AB2C2DEF � ADEF
is also an identity column. Consequently, the complete defining relation for the 26�2

design is

We refer to each term in a defining relation (such as ABCE above) as a word. To find the alias
of any effect, simply multiply the effect by each word in the foregoing defining relation. For
example, the alias of A is

The complete alias relationships for this design are shown in Table 14-28. In general, the
resolution of a 2k�p design is equal to the number of letters in the shortest word in the com-
plete defining relation. Therefore, this is a resolution IV design; main effects are aliased with
three-factor and higher interactions, and two-factor interactions are aliased with each other.
This design would provide good information on the main effects and would give some idea
about the strength of the two-factor interactions. The construction and analysis of the design
are illustrated in Example 14-9.

A � BCE � ABCDF � DEF

I � ABCE � BCDF � ADEF

�

Table 14-28 Alias Structure for the Design with I � ABCE �
BCDF � ADEF

A � BCE � DEF � ABCDF AB � CE � ACDF � BDEF
B � ACE � CDF � ABDEF AC � BE � ABDF � CDEF
C � ABE � BDF � ACDEF AD � EF � BCDE � ABCF
D � BCF � AEF � ABCDE AE � BC � DF � ABCDEF
E � ABC � ADF � BCDEF AF � DE � BCEF � ABCD
F � BCD � ADE � ABCEF BD � CF � ACDE � ABEF
ABD � CDE � ACF � BEF BF � CD � ACEF � ABDE
ACD � BDE � ABF � CEF

2IV 
6�2
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610 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

EXAMPLE 14-9 Injection Molding
Parts manufactured in an injection-molding process are show-
ing excessive shrinkage, which is causing problems in assem-
bly operations upstream from the injection-molding area. In
an effort to reduce the shrinkage, a quality-improvement team
has decided to use a designed experiment to study the injection-
molding process. The team investigates six factors—mold
temperature (A), screw speed (B), holding time (C), cycle time
(D), gate size (E), and holding pressure (F )—each at two lev-
els, with the objective of learning how each factor affects
shrinkage and obtaining preliminary information about how
the factors interact.

The team decides to use a 16-run two-level fractional fac-
torial design for these six factors. The design is constructed by
writing down a 24 as the basic design in the factors A, B, C,
and D and then setting E � ABC and F � BCD as discussed
above. Table 14-29 shows the design, along with the observed
shrinkage (�10) for the test part produced at each of the 16
runs in the design.

A normal probability plot of the effect estimates from this
experiment is shown in Fig. 14-37. The only large effects are A
(mold temperature), B (screw speed), and the AB interac-
tion. In light of the alias relationship in Table 14-28, it
seems reasonable to tentatively adopt these conclusions.
The plot of the AB interaction in Fig. 14-38 shows that the
process is insensitive to temperature if the screw speed is at
the low level but sensitive to temperature if the screw speed
is at the high level. With the screw speed at a low level, the

process should produce an average shrinkage of around 10%
regardless of the temperature level chosen.

Based on this initial analysis, the team decides to set
both the mold temperature and the screw speed at the low
level. This set of conditions should reduce the mean shrink-
age of parts to around 10%. However, the variability in
shrinkage from part to part is still a potential problem. In
effect, the mean shrinkage can be adequately reduced by
the above modifications; however, the part-to-part variabil-
ity in shrinkage over a production run could still cause
problems in assembly. One way to address this issue is to
see if any of the process factors affect the variability in
parts shrinkage.

Figure 14-39 presents the normal probability plot of the
residuals. This plot appears satisfactory. The plots of residuals
versus each factor were then constructed. One of these plots,
that for residuals versus factor C (holding time), is shown in
Fig. 14-40. The plot reveals much less scatter in the residuals
at the low holding time than at the high holding time. These
residuals were obtained in the usual way from a model for pre-
dicted shrinkage

where x1, x2, and x1x2 are coded variables that correspond to
the factors A and B and the AB interaction. The regression

 � 27.3125 � 6.9375x1 � 17.8125x2 � 5.9375x1x2

 ŷ � �̂0 � �̂1x1 � �̂2x2 � �̂12x1x2

Table 14-29 A Design for the Injection-Molding Experiment

Observed
Shrinkage

Run A B C D E � ABC F � BCD (�10)

1 � � � � � � 6
2 � � � � � � 10
3 � � � � � � 32
4 � � � � � � 60
5 � � � � � � 4
6 � � � � � � 15
7 � � � � � � 26
8 � � � � � � 60
9 � � � � � � 8

10 � � � � � � 12
11 � � � � � � 34
12 � � � � � � 60
13 � � � � � � 16
14 � � � � � � 5
15 � � � � � � 37
16 � � � � � � 52

2IV 
6�2
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Figure 14-39 Normal probability plot of resid-
uals for Example 14-9.

Figure 14-40 Residuals versus holding time
(C ) for Example 14-9.

model used to produce the residuals essentially removes
the location effects of A, B, and AB from the data; the
residuals therefore contain information about unexplained
variability. Figure 14-40 indicates that there is a pattern in
the variability and that the variability in the shrinkage of
parts may be smaller when the holding time is at the low
level.

Practical Interpretation: Figure 14-41 shows the data
from this experiment projected onto a cube in the factors A,
B, and C. The average observed shrinkage and the range of
observed shrinkage are shown at each corner of the cube.

From inspection of this figure, we see that running the
process with the screw speed (B) at the low level is the key to
reducing average parts shrinkage. If B is low, virtually any
combination of temperature (A) and holding time (C ) will re-
sult in low values of average parts shrinkage. However, from
examining the ranges of the shrinkage values at each corner
of the cube, it is immediately clear that setting the holding
time (C ) at the low level is the most appropriate choice if we
wish to keep the part-to-part variability in shrinkage low during
a production run.

Figure 14-37 Normal probability plot of effects
for Example 14-9.
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Figure 14-38 Plot of AB (mold temperature–
screw speed) interaction for Example 14-9.
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Figure 14-41 Average
shrinkage and range of
shrinkage in factors A, B,
and C for Example 14-9.

The concepts used in constructing the 26�2 fractional factorial design in Example 14-9
can be extended to the construction of any 2k�p fractional factorial design. In general, a 2k

fractional factorial design containing 2k�p runs is called a 1�2p fraction of the 2k design or,
more simply, a 2k�p fractional factorial design. These designs require the selection of p inde-
pendent generators. The defining relation for the design consists of the p generators initially
chosen and their 2p � p � 1 generalized interactions.

The alias structure may be found by multiplying each effect column by the defining
relation. Care should be exercised in choosing the generators so that effects of potential inter-
est are not aliased with each other. Each effect has 2p � 1 aliases. For moderately large values
of k, we usually assume higher order interactions (say, third- or fourth-order or higher) to be
negligible, and this greatly simplifies the alias structure.

It is important to select the p generators for the 2k�p fractional factorial design in such
a way that we obtain the best possible alias relationships. A reasonable criterion is to
select the generators so that the resulting 2k�p design has the highest possible design res-
olution. Montgomery (2009) presented a table of recommended generators for 2k�p frac-
tional factorial designs for k 	 15 factors and up to as many as n 	 128 runs. A portion
of his table is reproduced here as Table 14-30. In this table, the generators are shown with
either � or � choices; selection of all generators as � will give a principal fraction, while
if any generators are � choices, the design will be one of the alternate fractions for the
same family. The suggested generators in this table will result in a design of the highest
possible resolution. Montgomery (2009) also provided a table of alias relationships for
these designs.

EXAMPLE 14-10 Aliases with Seven Factors
To illustrate the use of Table 14-30, suppose that we have
seven factors and that we are interested in estimating the seven
main effects and obtaining some insight regarding the two-
factor interactions. We are  willing to assume that three-factor
and higher interactions are negligible. This information sug-
gests that a resolution IV design would be appropriate.

Table 14-30 shows that two resolution IV fractions are
available: the with 32 runs and the with 16 runs. The2IV

7�32IV
7�2

aliases involving main effects and two- and three-factor inter-
actions for the 16-run design are presented in Table 14-31.
Notice that all seven main effects are aliased with three-factor
interactions. All the two-factor interactions are aliased in
groups of three. Therefore, this design will satisfy our objec-
tives; that is, it will allow the estimation of the main effects,
and it will give some insight regarding two-factor interactions.
It is not necessary to run the design, which would require2IV

7�2
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Table 14-30 Selected 2k�p Fractional Factorial Designs

Number of Number of
Factors Number of Design Factors Number of Design 

k Fraction Runs Generators k Fraction Runs Generators

3 2III
3�1 4 C � �AB

4 2IV
4�1 8 D � �ABC

5 2V
5�1 16 E � �ABCD

2III
5�2 8 D � �AB

E � �AC
6 2VI

6�1 32 F � �ABCDE
2IV

6�2 16 E � �ABC
F � �BCD

2III
6�3 8 D � �AB

E � �AC
F � �BC

7 2VII
7�1 64 G � �ABCDEF

2IV
7�2 32 F � �ABCD

G � �ABDE
2IV

7�3 16 E � �ABC
F � �BCD
G � �ACD

2III
7�4 8 D � �AB

E � �AC
F � �BC
G � �ABC

8 2V
8�2 64 G � �ABCD

H � �ABEF
2IV

8�3 32 F � �ABC
G � �ABD
H � �BCDE

2IV
8�4 16 E � �BCD

F � �ACD
G � �ABC
H � �ABD

9 2VI
9�2 128 H � �ACDFG

J � �BCEFG
2IV

9�3 64 G � �ABCD
H � �ACEF
J � �CDEF

2IV
9�4 32 F � �BCDE

G � �ACDE
H � �ABDE
J � �ABCE

2III
9�5 16 E � �ABC

F � �BCD
G � �ACD
H � �ABD
J � �ABCD

10 H � �ABCG
J � �ACDE

2V
10�3 128 K � �ACDF

G � �BCDF
H � �ACDF
J � �ABDE

2IV
10�4 64 K � �ABCE

F � �ABCD
G � �ABCE
H � �ABDE
J � �ACDE

2IV
10�5 32 K � �BCDE

E � �ABC
F � �BCD
G � �ACD
H � �ABD
J � �ABCD

2III
10�6 16 K � �AB

11 G � �CDE
H � �ABCD
J � �ABF
K � �BDEF

2IV
11�5 64 L � �ADEF

F � �ABC
G � �BCD
H � �CDE
J � �ACD
K � �ADE

2IV
11�6 32 L � �BDE

E � �ABC
F � �BCD
G � �ACD
H � �ABD
J � �ABCD
K � �AB

2III
11�7 16 L � �AC

Source: Montgomery (2009)
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614 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Table 14-31 Generators, Defining Relation, and Aliases for the 2IV
7�3

Fractional Factorial Design

Generators and Defining Relation

E � ABC, F � BCD, G � ACD
I � ABCE � BCDF � ADEF � ACDG � BDEG � ABFG � CEFG

Aliases

A � BCE � DEF � CDG � BFG AB � CE � FG
B � ACE � CDF � DEG � AFG AC � BE � DG
C � ABE � BDF � ADG � EFG AD � EF � CG
D � BCF � AEF � ACG � BEG AE � BC � DF
E � ABC � ADF � BDG � CFG AF � DE � BG
F � BCD � ADE � ABG � CEG AG � CD � BF
G � ACD � BDE � ABF � CEF BD � CF � EG

ABD � CDE � ACF � BEF � BCG � AEG � DFG

Table 14-32 A 2IV
7�3 Fractional Factorial Design

Basic Design

Run A B C D E � ABC F � BCD G � ACD

1 � � � � � � �
2 � � � � � � �
3 � � � � � � �
4 � � � � � � �
5 � � � � � � �
6 � � � � � � �
7 � � � � � � �
8 � � � � � � �
9 � � � � � � �

10 � � � � � � �
11 � � � � � � �
12 � � � � � � �
13 � � � � � � �
14 � � � � � � �
15 � � � � � � �
16 � � � � � � �

32 runs. The construction of the design is shown in Table
14-32.  Notice that it was constructed by starting with the 16-
run 24 design in A, B, C, and D as the basic design and then
adding the three columns E � ABC, F � BCD, and G � ACD
as suggested in Table 14-30. Thus, the generators for this de-
sign are I � ABCE, I � BCDF, and I � ACDG. The complete
defining relation is I � ABCE � BCDF � ADEF � ACDG �
BDEG � CEFG � ABFG. This defining relation was used to

2IV
7�3 produce the aliases in Table 14-31. For example, the alias rela-

tionship of A is

which, if we ignore interactions higher than three factors,
agrees with Table 14-31.

 � ABDEG � ACEFG � BFG

 A � BCE � ABCDF � DEF � CDG

For seven factors, we can reduce the number of runs even further. The 27�4 design is an
eight-run experiment accommodating seven variables. This is a 1�16th fraction and is ob-
tained by first writing down a 23 design as the basic design in the factors A, B, and C, and then

JWCL232_c14_551-636.qxd  1/16/10  9:57 AM  Page 614



14-7 FRACTIONAL REPLICATION OF THE 2k DESIGN 615

Table 14-33 A 2III
7�4 Fractional Factorial Design

A B C D � AB E � AC F � BC G � ABC

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

forming the four new columns from I � ABD, I � ACE, I � BCF, and I � ABCG, as sug-
gested in Table 14-30. The design is shown in Table 14-33.

The complete defining relation is found by multiplying the generators together two, three,
and finally four at a time, producing

The alias of any main effect is found by multiplying that effect through each term in the
defining relation. For example, the alias of A is

A � BD � CE � ABCF � BCG � ABCDE � CDF � ACDG

� BEF � ABEG � FG � ADEF � DEG � ACEFG � ABDFG � BCDEFG

This design is of resolution III, since the main effect is aliased with two-factor interactions. If
we assume that all three-factor and higher interactions are negligible, the aliases of the seven
main effects are

This 2III
7�4 design is called a saturated fractional factorial, because all the available

degrees of freedom are used to estimate main effects. It is possible to combine sequences of
these resolution III fractional factorials to separate the main effects from the two-factor
interactions. The procedure is illustrated in Montgomery (2009) and in Box, Hunter, and
Hunter (2005).

/G � G � CD � BE � AF

/F � F � BC � AG � DE

/E � E � AC � BG � DF

/D � D � AB � CG � EF

/C � C � AE � BF � DG

/B � B � AD � CF � EG

/A � A � BD � CE � FG

 � BEG � AFG � DEF � ADEG � CEFG � BDFG � ABCDEFG

 I � ABD � ACE � BCF � ABCG � BCDE � ACDF � CDG � ABEF
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616 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

EXERCISES FOR SECTION 14-7

14-41. Consider the problem in Exercise 14-17. Suppose
that only half of the 32 runs could be made.
(a) Choose the half that you think should be run.
(b) Write out the alias relationships for your design.
(c) Estimate the factor effects.
(d) Plot the effect estimates on normal probability paper and

interpret the results.
(e) Set up an analysis of variance for the factors identified as

potentially interesting from the normal probability plot in
part (d).

(f ) Analyze the residuals from the model.
(g) Provide a practical interpretation of the results.

14-42. Suppose that in Exercise 14-20 it was possible to
run only a �

1

2
� fraction of the 24 design. Construct the design and

use only the data from the eight runs you have generated to
perform the analysis.

14-43. An article by L. B. Hare [“In the Soup: A Case Study
to Identify Contributors to Filling Variability,” Journal of
Quality Technology (Vol. 20, pp. 36–43)] describes a factorial
experiment used to study filling variability of dry soup mix
packages. The factors are of mixing ports through
which the vegetable oil was added (1, 2), 
surrounding the mixer (cooled, ambient), time
(60, 80 sec), weight (1500, 2000 lb), and 
of days of delay between mixing and packaging (1, 7). Between
125 and 150 packages of soup were sampled over an eight-hour
period for each run in the design, and the standard deviation of
package weight was used as the response variable. The design
and resulting data follow.

E � numberD � batch
C � mixing
B � temperature

A � number

(a) What is the generator for this design?
(b) What is the resolution of this design?
(c) Estimate the factor effects. Which effects are large?
(d) Does a residual analysis indicate any problems with the

underlying assumptions?
(e) Draw conclusions about this filling process.

14-44. Montgomery (2009) described a 24�1 fractional fac-
torial design used to study four factors in a chemical process.
The factors are A � temperature, B � pressure, C � concen-
tration, and D � stirring rate, and the response is filtration
rate. The design and the data are as follows:

A B C D E v
Std Mixer Batch Std

Order Ports Temp Time Weight Delay Dev

1 1.13
2 1.25
3 0.97
4 1.7
5 1.47
6 1.28
7 1.18
8 0.98
9 0.78

10 1.36
11 1.85
12 0.62
13 1.09
14 1.1
15 0.76
16 2.1�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

Treatment Filtration
Run A B C D � ABC Combination Rate

1 � � � � 45

2 � � � � ad 100

3 � � � � bd 45

4 � � � � ab 65

5 � � � � cd 75

6 � � � � ac 60

7 � � � � bc 80

8 � � � � abcd 96

112

(a) Write down the alias relationships.
(b) Estimate the factor effects. Which factor effects appear

large?
(c) Project this design into a full factorial in the three apparently

important factors and provide a practical interpretation of
the results.

14-45. R. D. Snee (“Experimenting with a Large Number of
Variables,” in Experiments in Industry: Design, Analysis and
Interpretation of Results, Snee, Hare, and Trout, eds., ASQC,
1985) described an experiment in which a 25�1 design with I �
ABCDE was used to investigate the effects of five factors on
the color of a chemical product. The factors are A �
solvent/reactant, B � catalyst/reactant, C � temperature, D �
reactant purity, and E � reactant pH. The results obtained are
as follows:

(a) Prepare a normal probability plot of the effects. Which
factors are active?

e � � 0.63 d � 6.79
a � 2.51 ade � 6.47
b � � 2.68 bde � 3.45

abe � 1.66 abd � 5.68
c � 2.06 cde � 5.22

ace � 1.22 acd � 4.38
bce � � 2.09 bcd � 4.30
abc � 1.93 abcde � 4.05
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14-7 FRACTIONAL REPLICATION OF THE 2k DESIGN 617

(b) Calculate the residuals. Construct a normal probability
plot of the residuals and plot the residuals versus the fitted
values. Comment on the plots.

(c) If any factors are negligible, collapse the 25�1 design into
a full factorial in the active factors. Comment on the re-
sulting design, and interpret the results.

14-46. An article in Quality Engineering [“A Com-
parison of Multi-response Optimization: Sensitivity to
Parameter Selection” (1999, Vol. 11, pp. 405–415)] con-
ducted a half replicate of a factorial design to optimize
the retort process of beef stew MREs, a military ration.
The design factors are x1 � Viscosity, x2 �
Gas, x3 � Ratio, x4 � Weight, x5 �

Speed. The response variable is the heating rate
index, a measure of heat penetration, and there are two
replicates.

Rotation
NetSolid /Liquid

ResidualSauce

25

appropriate? Use the ANOVA to analyze this model and
compare the results with those obtained from the normal
probability plot approach.

14-47. An article in Industrial and Engineering Chemistry
[“More on Planning Experiments to Increase Research
Efficiency” (1970, pp. 60–65)] uses a 25�2 design to investigate
the effect on process yield of A � condensation temperature, 
B � amount of material 1, C � solvent volume, D � conden-
sation time, and E � amount of material 2. The results obtained
are as follows:

(a) Verify that the design generators used were I � ACE and
I � BDE.

(b) Write down the complete defining relation and the aliases
from the design.

(c) Estimate the main effects.
(d) Prepare an analysis of variance table. Verify that the AB

and AD interactions are available to use as error.
(e) Plot the residuals versus the fitted values. Also construct a

normal probability plot of the residuals. Comment on the
results.

14-48. Suppose that in Exercise 14-14 only a 1⁄4 fraction
of the 25 design could be run. Construct the design and analyze
the data that are obtained by selecting only the response for
the eight runs in your design.

14-49. For each of the following designs write down the
aliases, assuming that only main effects and two factor inter-
actions are of interest.
(a) (b)

14-50. Consider the 26�2 design in Table 14-29.
(a) Suppose that after analyzing the original data, we find that

factors C and E can be dropped. What type of 2k design is
left in the remaining variables?

(b) Suppose that after the original data analysis, we find that
factors D and F can be dropped. What type of 2k design
is left in the remaining variables? Compare the results
with part (a). Can you explain why the answers are dif-
ferent?

14-51. An article in the Journal of Radioanalytical and
Nuclear Chemistry (2008, Vol. 276, No. 2, pp. 323–328)
presented a 28�4 fractional factorial design to identify
sources of Pu contamination in the radioactivity material
analysis of dried shellfish at the National Institute of
Standards and Technology (NIST). The data are shown in
the following table. No contamination occurred at runs 1, 4,
and 9.

28�4
IV26�3

III

ae � 23.2 cd � 23.8
ab � 15.5 ace � 23.4
ad � 16.9 bde � 16.8
bc � 16.2 abcde � 18.1

Run I II

1 �1 �1 �1 �1 1 8.46 9.61
2 1 �1 �1 �1 �1 15.68 14.68
3 �1 1 �1 �1 �1 14.94 13.09
4 1 1 �1 �1 1 12.52 12.71
5 �1 �1 1 �1 �1 17 16.36
6 1 �1 1 �1 1 11.44 11.83
7 �1 1 1 �1 1 10.45 9.22
8 1 1 1 �1 �1 19.73 16.94
9 �1 �1 �1 1 �1 17.37 16.36

10 1 �1 �1 1 1 14.98 11.93
11 �1 1 �1 1 1 8.4 8.16
12 1 1 �1 1 �1 19.08 15.40
13 �1 �1 1 1 1 13.07 10.55
14 1 �1 1 1 �1 18.57 20.53
15 �1 1 1 1 �1 20.59 21.19
16 1 1 1 1 1 14.03 11.31

x5x4x3x2x1

Heating Rate
Index

(a) Estimate the factor effects. Based on a normal probability
plot of the effect estimates, identify a model for the data
from this experiment.

(b) Conduct an ANOVA based on the model identified in part
(a). What are your conclusions?

(c) Analyze the residuals and comment on model ade-
quacy.

(d) Find a regression model to predict yield in terms of the
coded factor levels.

(e) This experiment was replicated, so an ANOVA could have
been conducted without using a normal plot of the effects
to tentatively identify a model. What model would be

JWCL232_c14_551-636.qxd  1/16/10  9:58 AM  Page 617



618 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

28�4 Glassware Reagent Sample Prep Tracer Dissolution Hood Chemistry Ashing Response, mBq

Run x1 x2 x3 x4 x5 x6 x7 x8 y

1 �1 �1 �1 �1 �1 �1 �1 �1 0

2 �1 �1 �1 �1 �1 �1 �1 �1 3.31

3 �1 �1 �1 �1 �1 �1 �1 �1 0.0373

4 �1 �1 �1 �1 �1 �1 �1 �1 0

5 �1 �1 �1 �1 �1 �1 �1 �1 0.0649

6 �1 �1 �1 �1 �1 �1 �1 �1 0.133

7 �1 �1 �1 �1 �1 �1 �1 �1 0.0461

8 �1 �1 �1 �1 �1 �1 �1 �1 0.0297

9 �1 �1 �1 �1 �1 �1 �1 �1 0

10 �1 �1 �1 �1 �1 �1 �1 �1 0.287

11 �1 �1 �1 �1 �1 �1 �1 �1 0.133

12 �1 �1 �1 �1 �1 �1 �1 �1 0.0476

13 �1 �1 �1 �1 �1 �1 �1 �1 0.133

14 �1 �1 �1 �1 �1 �1 �1 �1 5.75

15 �1 �1 �1 �1 �1 �1 �1 �1 0.0153

16 �1 �1 �1 �1 �1 �1 �1 �1 2.47

The factors and levels are shown in the following table.

The factors and levels are shown in the following table.

(a) Write down the alias relationships.
(b) Estimate the main effects.
(c) Prepare a normal probability plot for the effects and inter-

pret the results.

14-52. An article in the Journal of Marketing Research
(1973, Vol. 10, No. 3, pp. 270–276) presented a 27�4 fractional
factorial design to conduct marketing research:

Factor �1 �1

Glassware Distilled water Soap, acid, stored

Reagent New Old

Sample prep Co-precipitation Electrodeposition

Tracer Stock Fresh

Dissolution Without With

Hood B A

Chemistry Without With

Ashing Without With

Sales for a 6-week 
Runs A B C D E F G period (in $1000)

1 �1 �1 �1 1 1 1 �1 8.7

2 1 �1 �1 �1 �1 1 1 15.1

3 �1 1 �1 �1 1 �1 1 9.7

4 1 1 �1 1 �1 �1 �1 11.3

5 �1 �1 1 1 �1 �1 1 14.7

6 1 �1 1 �1 1 �1 �1 22.3

7 �1 1 1 �1 �1 1 �1 16.1

8 1 1 1 1 1 1 1 22.1

Factor �1 �1

A Television No advertising Advertising
advertising

B Billboard No advertising Advertising
advertising

C Newspaper No advertising Advertising
advertising

D Candy wrapper Conservative Flashy design
design design

E Display design Normal shelf Special aisle 
display display

F Free sample No free samples Free samples
program

G Size of 1 oz. bar 2 1⁄2 oz. bar
candy bar

(a) Write down the alias relationships.
(b) Estimate the main effects.
(c) Prepare a normal probability plot for the effects and inter-

pret the results.
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14-8 RESPONSE SURFACE METHODS AND DESIGNS

Response surface methodology, or RSM, is a collection of mathematical and statistical tech-
niques that are useful for modeling and analysis in applications where a response of interest is
influenced by several variables and the objective is to optimize this response. For example,
suppose that a chemical engineer wishes to find the levels of temperature (x1) and feed
concentration (x2) that maximize the yield (y) of a process. The process yield is a function of
the levels of temperature and feed concentration, say,

where � represents the noise or error observed in the response Y. If we denote the expected
response by E(Y ) � f (x1, x2) � �, then the surface represented by

is called a response surface.
We may represent the response surface graphically as shown in Fig. 14-42, where � is

plotted versus the levels of x1 and x2. Notice that the response is represented as a surface plot
in a three-dimensional space. To help visualize the shape of a response surface, we often plot
the contours of the response surface as shown in Fig. 14-43. In the contour plot, lines of con-
stant response are drawn in the x1, x2 plane. Each contour corresponds to a particular height of
the response surface. The contour plot is helpful in studying the levels of x1 and x2 that result
in changes in the shape or height of the response surface.

In most RSM problems, the form of the relationship between the response and the inde-
pendent variables is unknown. Thus, the first step in RSM is to find a suitable approximation for
the true relationship between Y and the independent variables. Usually, a low-order polynomial
in some region of the independent variables is employed. If the response is well modeled by a lin-
ear function of the independent variables, the approximating function is the first-order model

(14-21)

If there is curvature in the system, then a polynomial of higher degree must be used, such as
the second-order model

(14-22)Y � �0 �a
k

i�1
 �i xi �a

k

i�1
 �ii x2

i � b
i
 j

 �ij xi xj � �

Y � �0 � �1x1 � �2x2 � p � �kxk � �

� � f 1x1, x22

Y � f 1x1, x22 � �

Figure 14-42 A three-dimensional response surface showing the
expected yield as a function of temperature and feed concentration.

Figure 14-43 A contour plot of the yield response
surface in Figure 14-42.
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620 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Many RSM problems use one or both of these approximating polynomials. Of course, it is
unlikely that a polynomial model will be a reasonable approximation of the true functional re-
lationship over the entire space of the independent variables, but for a relatively small region
they usually work quite well.

The method of least squares, discussed in Chapters 11 and 12, is used to estimate the pa-
rameters in the approximating polynomials. The response surface analysis is then done in
terms of the fitted surface. If the fitted surface is an adequate approximation of the true
response function, analysis of the fitted surface will be approximately equivalent to analysis of
the actual system.

RSM is a sequential procedure. Often, when we are at a point on the response surface
that is remote from the optimum, such as the current operating conditions in Fig. 14-43,
there is little curvature in the system and the first-order model will be appropriate. Our
objective here is to lead the experimenter rapidly and efficiently to the general vicinity of
the optimum. Once the region of the optimum has been found, a more elaborate model
such as the second-order model may be employed, and an analysis may be performed to
locate the optimum. From Fig. 14-43, we see that the analysis of a response surface can
be thought of as “climbing a hill,” where the top of the hill represents the point of maxi-
mum response. If the true optimum is a point of minimum response, we may think of
“descending into a valley.”

The eventual objective of RSM is to determine the optimum operating conditions for the
system or to determine a region of the factor space in which operating specifications are 
satisfied. Also, note that the word “optimum” in RSM is used in a special sense. The “hill
climbing” procedures of RSM guarantee convergence to a local optimum only.

Method of Steepest Ascent
Frequently, the initial estimate of the optimum operating conditions for the system will be far
from the actual optimum. In such circumstances, the objective of the experimenter is to move
rapidly to the general vicinity of the optimum. We wish to use a simple and economically ef-
ficient experimental procedure. When we are remote from the optimum, we usually assume
that a first-order model is an adequate approximation to the true surface in a small region of
the x’s.

The method of steepest ascent is a procedure for moving sequentially along the path of
steepest ascent, that is, in the direction of the maximum increase in the response. Of course, if
minimization is desired, we are talking about the method of steepest descent. The fitted 
first-order model is

(14-23)

and the first-order response surface, that is, the contours of , is a series of parallel lines such as
that shown in Fig. 14-44. The direction of steepest ascent is the direction in which increases
most rapidly. This direction is normal to the fitted response surface contours. We usually take
as the path of steepest ascent the line through the center of the region of interest and normal
to the fitted surface contours. Thus, the steps along the path are proportional to the regression
coefficients . The experimenter determines the actual step size based on process knowl-
edge or other practical considerations.

Experiments are conducted along the path of steepest ascent until no further increase in
response is observed. Then a new first-order model may be fit, a new direction of steepest as-
cent determined, and further experiments conducted in that direction until the experimenter
feels that the process is near the optimum.

5�̂i6

ŷ
ŷ

ŷ � �̂0 �a
k

i�1
 �̂i xi
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x1

x2

Region of fitted
first-order response

surface

Path of
steepest
ascent

y = 10
∧ y = 20

∧ y = 30
∧

y = 40
∧

y = 50
∧

Figure 14-44 First-
order response surface
and path of steepest 
ascent.

EXAMPLE 14-11 Process Yield Steepest Ascent
In Example 14-6 we described an experiment on a chemical
process in which two factors, reaction time (x1) and reaction
temperature (x2), affect the percent conversion or yield (Y ).
Figure 14-27 shows the 22 design plus five center points used
in this study. The engineer found that both factors were
important, there was no interaction, and there was no curva-
ture in the response surface. Therefore, the first-order model

Y � �0 � �1x1 � �2 x2 � �

should be appropriate. Now the effect estimate of time is 1.55
hours and the effect estimate of temperature is 0.65�F, and
since the regression coefficients and are one-half of the
corresponding effect estimates, the fitted first-order model is

Figure 14-45(a) and (b) show the contour plot and three-
dimensional surface plot of this model. Figure 14-45 also

ŷ � 40.44 � 0.775x1 � 0.325x2
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Figure 14-45 Response surface plots for the first-order model in Example 14-11.
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622 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Analysis of a Second-Order Response Surface
When the experimenter is relatively close to the optimum, a second-order model is usually
required to approximate the response because of curvature in the true response surface. The
fitted second-order model is

where denotes the least squares estimate of �. In this section we show how to use this fitted
model to find the optimum set of operating conditions for the x’s and to characterize the nature
of the response surface.

�̂

ŷ � �̂0 �a
k

i�1
 �̂i xi �a

k

i�1
 �̂ii x

2
i � b

i
 j
 �̂ij xi xj

shows the relationship between the coded variables x1 and x2

(that defined the high and low levels of the factors) and the
original variables, time (in minutes) and temperature (in �F).

From examining these plots (or the fitted model), we see
that to move away from the design center—the point (x1 � 0,
x2 � 0)—along the path of steepest ascent, we would move
0.775 unit in the x1 direction for every 0.325 unit in the x2

direction. Thus, the path of steepest ascent passes through the
point (x1 � 0, x2 � 0) and has a slope 0.325�0.775. The engi-
neer decides to use 5 minutes of reaction time as the basic step
size. Now, 5 minutes of reaction time is equivalent to a step in
the coded variable x1 of �x1 � 1. Therefore, the steps along
the path of steepest ascent are �x1 � 1.0000 and �x2 �

(0.325�0.775)�x1 � 0.42. A change of �x2 � 0.42 in the
coded variable x2 is equivalent to about 2�F in the original
variable temperature. Therefore, the engineer will move along
the path of steepest ascent by increasing reaction time by 
5 minutes and temperature by 2�F. An actual observation on
yield will be determined at each point.

Next Steps: Figure 14-46 shows several points along this
path of steepest ascent and the yields actually observed from
the process at those points. At points A–D the observed yield
increases steadily, but beyond point D, the yield decreases.
Therefore, steepest ascent would terminate in the vicinity of
55 minutes of reaction time and 163�F with an observed per-
cent conversion of 67%.
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Point A: 40 minutes, 157°F, y = 40.5

Point B: 45 minutes, 159°F, y = 51.3

Point C: 50 minutes, 161°F, y = 59.6

Point D: 55 minutes, 163°F, y = 67.1

Point E: 60 minutes, 165°F, y = 63.6

Point F: 65 minutes, 167°F, y = 60.7

Figure 14-46 Steepest ascent experiment for Example 14-11.

EXAMPLE 14-12 Process Yield Central Composite Design
Continuation of Example 14-11
Consider the chemical process from Example 14-11, where
the method of steepest ascent terminated at a reaction time of
55 minutes and a temperature of 163�F. The experimenter
decides to fit a second-order model in this region. Table 14-34
and Fig. 14-47 show the experimental design, which consists of

a 22 design centered at 55 minutes and 165�F, five center points,
and four runs along the coordinate axes called axial runs. This
type of design is called a central composite design, and it is a
very popular design for fitting second-order response surfaces.

Two response variables were measured during this
phase of the experiment: percentage conversion (yield) and
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Table 14-34 Central Composite Design for Example 14-12

Conversion Viscosity
Observation Time Temperature Coded Variables (percent) (mPa-sec)

Number (minutes) (�F) x1 x2 Response 1 Response 2

1 50 160 �1 �1 65.3 35
2 60 160 1 �1 68.2 39
3 50 170 �1 1 66 36
4 60 170 1 1 69.8 43
5 48 165 �1.414 0 64.5 30
6 62 165 1.414 0 69 44
7 55 158 0 �1.414 64 31
8 55 172 0 1.414 68.5 45
9 55 165 0 0 68.9 37

10 55 165 0 0 69.7 34
11 55 165 0 0 68.5 35
12 55 165 0 0 69.4 36
13 55 165 0 0 69 37

viscosity. The least-squares quadratic model for the yield 
response is

The analysis of variance for this model is shown in Table 14-35.
Figure 14-48 shows the response surface contour plot and

the three-dimensional surface plot for this model. From exam-
ination of these plots, the maximum yield is about 70%,
obtained at approximately 60 minutes of reaction time and
167�F.

� 0.225x1x2

ŷ � 69.1 � 1.633x1 �1.083x2 � 0.969x2
1 � 1.219x2

2

The viscosity response is adequately described by the
first-order model

Table 14-36 summarizes the analysis of variance for this model.
The response surface is shown graphically in Fig. 14-49. Notice
that viscosity increases as both time and temperature increase.

Practical Interpretation: As in most response surface
problems, the experimenter in this example had conflicting
objectives regarding the two responses. The objective was to
maximize yield, but the acceptable range for viscosity was 

ŷ2 � 37.08 � 3.85x1 � 3.10x2

Figure 14-47 Central
composite design for
Example 14-12.
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624 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

Table 14-36 Analysis of Variance for the First-Order Model, Viscosity Response

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-Value

Model 195.4 2 97.72 15.89 0.0008
Residual 61.5 10 6.15
Total 256.9 12

Independent Coefficient Degrees of Standard t for H0

Variable Estimate Freedom Error Coefficient � 0 P-Value

Intercept 37.08 1 0.69 53.91
x1 3.85 1 0.88 4.391 0.0014
x2 3.10 1 0.88 3.536 0.0054

Table 14-35 Analysis of Variance for the Quadratic Model, Yield Response

Source of Sum of Degrees of Mean 
Variation Squares Freedom Square f0 P-Value

Model 45.89 5 9.178 14.93 0.0013
Residual 4.30 7 0.615
Total 50.19 12

Independent Coefficient Standard t for H0

Variable Estimate Error Coefficient � 0 P-Value

Intercept 69.100 0.351 197.1
x1 1.633 0.277 5.891 0.0006
x2 1.083 0.277 3.907 0.0058
x2

1 �0.969 0.297 �3.259 0.0139
x2

2 �1.219 0.297 �4.100 0.0046
x1x2 0.225 0.392 0.5740 0.5839

Figure 14-48 Response surface plots for the yield response, Example 14-12.
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Example 14-12 illustrates the use of a central composite design (CCD) for fitting a
second-order response surface model. These designs are widely used in practice because they
are relatively efficient with respect to the number of runs required. In general, a CCD in k
factors requires 2k factorial runs, 2k axial runs, and at least one center point (three to five cen-
ter points are typically used). Designs for k � 2 and k � 3 factors are shown in Fig. 14-51.

The central composite design may be made rotatable by proper choice of the axial
spacing � in Fig. 14-51. If the design is rotatable, the standard deviation of predicted response
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Figure 14-49 Response surface plots for the viscosity response, Example 14-12.

38 	 y2 	 42. When there are only a few independent vari-
ables, an easy way to solve this problem is to overlay the re-
sponse surfaces to find the optimum. Figure 14-50 shows the
overlay plot of both responses, with the contours y1 � 69%

conversion, y2 � 38, and y2 � 42 highlighted. The shaded ar-
eas on this plot identify unfeasible combinations of time and
temperature. This graph shows that several combinations of
time and temperature will be satisfactory.

Figure 14-50 Overlay
of yield and viscosity
response surfaces,
Example 14-12.
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626 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

EXERCISES FOR SECTION 14-8

14-53. An article in Rubber Age (Vol. 89, 1961, pp. 453– 458)
describes an experiment on the manufacture of a product in
which two factors were varied. The factors are reaction time (hr)

and temperature (�C). These factors are coded as x1 � (time �
12)�8 and x2 � (temperature � 250)�30. The following data
were observed where y is the yield (in percent):
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α

Figure 14-51 Central
composite designs for 
k � 2 and k � 3.

is constant at all points that are the same distance from the center of the design. For rotata-
bility, choose � � (F)1�4, where F is the number of points in the factorial part of the design
(usually F � 2k ). For the case of k � 2 factors, � � (22)1�4 � 1.414, as was used in the
design in Example 14-12. Figure 14-52 presents a contour plot and a surface plot of the stan-
dard deviation of prediction for the quadratic model used for the yield response. Notice that
the contours are concentric circles, implying that yield is predicted with equal precision for all
points that are the same distance from the center of the design. Also, as one would expect, the
precision decreases with increasing distance from the design center.

ŷ
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Figure 14-52 Plots of constant for a rotatable central composite design.2V1ŷ2

JWCL232_c14_551-636.qxd  1/16/10  9:58 AM  Page 626



14-8 RESPONSE SURFACE METHODS AND DESIGNS 627

Run
Number x1 x2 y

1 �1 0 83.8
2 1 0 81.7
3 0 0 82.4
4 0 0 82.9
5 0 �1 84.7
6 0 1 75.9
7 0 0 81.2
8 �1.414 �1.414 81.3
9 �1.414 1.414 83.1

10 1.414 �1.414 85.3
11 1.414 1.414 72.7

12 0 0 82.0

(a) Plot the points at which the experimental runs were made.
(b) Fit a second-order model to the data. Is the second-order

model adequate?
(c) Plot the yield response surface. What recommendations

would you make about the operating conditions for this
process?

14-54. An article in Quality Engineering [“Mean and Variance
Modeling with Qualitative Responses: A Case Study” (1998–
1999, Vol. 11, pp. 141–148)] studied how three active ingredi-
ents of a particular food affect the overall taste of the product.
The measure of the overall taste is the overall mean liking score
(MLS). The three ingredients are identified by the variables 

and The data are shown in the following table.

Run MLS

1 1 1 �1 6.3261
2 1 1 1 6.2444
3 0 0 0 6.5909
4 0 �1 0 6.3409
5 1 �1 1 5.907
6 1 �1 �1 6.488
7 0 0 �1 5.9773
8 0 1 0 6.8605
9 �1 �1 1 6.0455

10 0 0 1 6.3478
11 1 0 0 6.7609
12 �1 �1 �1 5.7727
13 �1 1 �1 6.1805
14 �1 1 1 6.4894
15 �1 0 0 6.8182

(a) Fit a second-order response surface model to the data.
(b) Construct contour plots and response surface plots for

MLS. What are your conclusions?
(c) Analyze the residuals from this experiment. Does your

analysis indicate any potential problems?
(d) This design has only a single center point. Is this a good

design in your opinion?

x3x2x1

x3.x2,
x1,

14-55. Consider the first-order model

where �1 	 xi 	 1. Find the direction of steepest ascent.

14-56. A manufacturer of cutting tools has developed two
empirical equations for tool life ( y1) and tool cost ( y2). Both
models are functions of tool hardness (x1) and manufacturing
time (x2). The equations are

and both equations are valid over the range �1.5 	 xi 	 1.5.
Suppose that tool life must exceed 12 hours and cost must be
below $27.50.
(a) Is there a feasible set of operating conditions?
(b) Where would you run this process?

14-57. An article in Tappi (1960, Vol. 43, pp. 38–44) de-
scribes an experiment that investigated the ash value of paper
pulp (a measure of inorganic impurities). Two variables, temper-
ature T in degrees Celsius and time t in hours, were studied, and
some of the results are shown in the following table. The coded
predictor variables shown are

and the response y is (dry ash value in %) � 103.

x1 �
1T � 7752

115
,  x2 �

1t � 32

1.5

ŷ2 � 23 � 3x1 � 4x2

ŷ1 � 10 � 5x1 � 2x2

ŷ � 50 � 1.5x1 �  0.8x2

x1 x2 y x1 x2 y

�1 �1 211 0 �1.5 168

1 �1 92 0 1.5 179

�1 1 216 0 0 122

1 1 99 0 0 175

�1.5 0 222 0 0 157

1.5 0 48 0 0 146

(a) What type of design has been used in this study? Is the
design rotatable?

(b) Fit a quadratic model to the data. Is this model satisfactory?
(c) If it is important to minimize the ash value, where would

you run the process?

14-58. In their book Empirical Model Building and
Response Surfaces (John Wiley, 1987), Box and Draper
described an experiment with three factors. The data shown in
the following table are a variation of the original experiment
on page 247 of their book. Suppose that these data were col-
lected in a semiconductor manufacturing process.
(a) The response y1 is the average of three readings on resistiv-

ity for a single wafer. Fit a quadratic model to this response.
(b) The response y2 is the standard deviation of the three resis-

tivity measurements. Fit a linear model to this response.
(c) Where would you recommend that we set x1, x2, and x3 if

the objective is to hold mean resistivity at 500 and mini-
mize the standard deviation?
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x1 x2 x3 y1 y2 x1 x2 x3 y1 y2

�1 �1 �1 24.00 12.49 1 0 0 501.67 92.50
0 �1 �1 120.33 8.39 �1 1 0 264.00 63.50
1 �1 �1 213.67 42.83 0 1 0 427.00 88.61

�1 0 �1 86.00 3.46 1 1 0 730.67 21.08
0 0 �1 136.63 80.41 �1 �1 1 220.67 133.82
1 0 �1 340.67 16.17 0 �1 1 239.67 23.46

�1 1 �1 112.33 27.57 1 �1 1 422.00 18.52
0 1 �1 256.33 4.62 �1 0 1 199.00 29.44
1 1 �1 271.67 23.63 0 0 1 485.33 44.67

�1 �1 0 81.00 0.00 1 0 1 673.67 158.21
0 �1 0 101.67 17.67 �1 1 1 176.67 55.51
1 �1 0 357.00 32.91 0 1 1 501.00 138.94

�1 0 0 171.33 15.01 1 1 1 1010.00 142.45
0 0 0 372.00 0.00

14-59. Consider the first-order model

where .
(a) Find the direction of steepest ascent.
(b) Assume the current design is centered at the point (0, 0, 0, 0).

Determine the point that is three units from the current center
point in the direction of steepest ascent.

�1 � xi � 1

y � 12 � 1.2x1 � 2.1x2 � 1.6x3 � 0.6x4

14-60. An article in the Journal of Materials Processing
Technology (1997, Vol. 67, pp. 55–61) used response surface
methodology to generate surface roughness prediction models
for turning EN 24T steel (290 BHN). The data are shown in
the following table.

Speed, V Feed, Depth of cut, Coding Surface roughness,
Trial (m min�1) f (mm rev�1) d (mm) x1 x2 x3 Ra (�m)

1 36 0.15 0.50 �1 �1 �1 1.8
2 117 0.15 0.50 1 �1 �1 1.233
3 36 0.40 0.50 �1 1 �1 5.3
4 117 0.40 0.50 1 1 �1 5.067
5 36 0.15 1.125 �1 �1 1 2.133
6 117 0.15 1.125 1 �1 1 1.45
7 36 0.40 1.125 �1 1 1 6.233
8 117 0.40 1.125 1 1 1 5.167
9 65 0.25 0.75 0 0 0 2.433

10 65 0.25 0.75 0 0 0 2.3
11 65 0.25 0.75 0 0 0 2.367
12 65 0.25 0.75 0 0 0 2.467
13 28 0.25 0.75 0 0 3.633
14 150 0.25 0.75 0 0 2.767
15 65 0.12 0.75 0 0 1.153
16 65 0.50 0.75 0 0 6.333
17 65 0.25 0.42 0 0 2.533
18 65 0.25 1.33 0 0 3.20
19 28 0.25 0.75 0 0 3.233
20 150 0.25 0.75 0 0 2.967
21 65 0.12 0.75 0 0 1.21
22 65 0.50 0.75 0 0 6.733
23 65 0.25 0.42 0 0 2.833
24 65 0.25 1.33 0 0 3.26712

�12
12

�12
12

�12
12

�12
12

�12
12

�12
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Supplemental Exercises

14-61. An article in Process Engineering (1992, No. 71, 
pp. 46–47) presents a two-factor factorial experiment used to
investigate the effect of pH and catalyst concentration on prod-
uct viscosity (cSt). The data are as follows:

heat treating time affects the flatness distortion? Do these
factors interact? Use � � 0.05.

(b) Construct graphs of the factor effects that aid in drawing
conclusions from this experiment.

(c) Analyze the residuals from this experiment. Comment on
the validity of the underlying assumptions.

14-63. An article in the Textile Research Institute Journal
(1984, Vol. 54, pp. 171–179) reported the results of an experi-
ment that studied the effects of treating fabric with selected
inorganic salts on the flammability of the material. Two appli-
cation levels of each salt were used, and a vertical burn test
was used on each sample. (This finds the temperature at which
each sample ignites.) The burn test data follow.

Catalyst Concentration

pH 2.5 2.7

5.6 192, 199, 189, 198 178, 186, 179, 188
5.9 185, 193, 185, 192 197, 196, 204, 204

Time (minutes)

Gear Type 90 120

20-tooth 0.0265 0.0560

0.0340 0.0650

24-tooth 0.0430 0.0720

0.0510 0.0880

28-tooth 0.0405 0.0620

0.0575 0.0825

(a) Test for main effects and interactions using � � 0.05.
What are your conclusions?

(b) Graph the interaction and discuss the information provided
by this plot.

(c) Analyze the residuals from this experiment.

14-62. Heat treating of metal parts is a widely used manu-
facturing process. An article in the Journal of Metals (Vol. 41,
1989) describes an experiment to investigate flatness distortion
from heat treating for three types of gears and two heat-treating
times. The data are as follows:
(a) Is there any evidence that flatness distortion is different

for the different gear types? Is there any indication that

The factors and levels for the experiment are shown in the fol-
lowing table.
(a) Plot the points at which the experimental runs were made.

(b) Fit both first-and second-order models to the data. Comment
on the adequacies of these models.

(c) Plot the roughness response surface for the second-order
model and comment.

Salt

Level Untreated MgCl2 NaCl CaCO3 CaCl2 Na2CO3

1 812 752 739 733 725 751
827 728 731 728 727 761
876 764 726 720 719 755

2 945 794 741 786 756 910
881 760 744 771 781 854
919 757 727 779 814 848

(a) Test for differences between salts, application levels, and
interactions. Use � � 0.01.

(b) Draw a graph of the interaction between salt and application
level. What conclusions can you draw from this graph?

(c) Analyze the residuals from this experiment.

14-64. An article in the IEEE Transactions on Components,
Hybrids, and Manufacturing Technology (1992, Vol. 15) de-
scribes an experiment for investigating a method for aligning

Levels Lowest Low Center High Highest

Coding �1 0 1

Speed, V (m min�1) 28 36 65 117 150

Feed, f (mm rev �1) 0.12 0.15 0.25 0.40 0.50

Depth of cut, d (mm) 0.42 0.50 0.75 1.125 1.33

12�12
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optical chips onto circuit boards. The method involves placing
solder bumps onto the bottom of the chip. The experiment
used three solder bump sizes and three alignment methods.
The response variable is alignment accuracy (in micrometers).
The data are as follows:

C � Percentage of aluminum stearate (low value � 1%, high
value � 3%)

D � Percentage of acid catalyst (low value � 0.25%, high
value � 0.50%)

The responses are (1) � 63.8, a � 77.6, b � 68.8, ab �
76.5, c � 72.5, ac � 77.2, bc � 77.7, abc � 84.5, d � 60.6,
ad � 64.9, bd � 72.7, abd � 73.3, cd � 68.0, acd � 76.3,
bcd � 76.0, and abcd � 75.9.
(a) Estimate the factor effects.
(b) From a normal probability plot of the effects, identify a

tentative model for the data from this experiment.
(c) Using the apparently negligible factors as an estimate of

error, test for significance of the factors identified in part
(b). Use � � 0.05.

(d) What model would you use to describe the process, based
on this experiment? Interpret the model.

(e) Analyze the residuals from the model in part (d) and com-
ment on your findings.

14-67. An article in the Journal of Manufacturing Systems
(Vol. 10, 1991, pp. 32– 40) describes an experiment to investigate
the effect of four factors, P � waterjet pressure, F � abrasive
flow rate, G � abrasive grain size, and V � jet traverse speed, on
the surface roughness of a waterjet cutter. A 24 design follows.
(a) Estimate the factor effects.
(b) Form a tentative model by examining a normal probabil-

ity plot of the effects.
(c) Is the model in part (b) a reasonable description of the

process? Is lack of fit significant? Use � � 0.05.
(d) Interpret the results of this experiment.
(e) Analyze the residuals from this experiment.

Solder Bump Size Alignment Method

(diameter in �m) 1 2 3

4.60 1.55 1.05
75 4.53 1.45 1.00

2.33 1.72 0.82
130 2.44 1.76 0.95

4.95 2.73 2.36
260 4.55 2.60 2.46

(a) Is there any indication that either solder bump size or
alignment method affects the alignment accuracy? Is
there any evidence of interaction between these factors?
Use � � 0.05.

(b) What recommendations would you make about this process?
(c) Analyze the residuals from this experiment. Comment on

model adequacy.

14-65. An article in Solid State Technology (Vol. 29, 1984,
pp. 281–284) describes the use of factorial experiments in
photolithography, an important step in the process of manu-
facturing integrated circuits. The variables in this experiment
(all at two levels) are prebake temperature (A), prebake
time (B), and exposure energy (C), and the response variable
is delta line width, the difference between the line on the
mask and the printed line on the device. The data are as fol-
lows: (1) � �2.30, a � �9.87, b � �18.20, ab � �30.20,
c � �23.80, ac � �4.30, bc � �3.80, and abc � �14.70.
(a) Estimate the factor effects.
(b) Use a normal probability plot of the effect estimates to

identity factors that may be important.
(c) What model would you recommend for predicting the

delta line width response, based on the results of this exper-
iment?

(d) Analyze the residuals from this experiment, and comment
on model adequacy.

14-66. An article in the Journal of Coatings Technology
(Vol. 60, 1988, pp. 27–32) describes a 24 factorial design used
for studying a silver automobile basecoat. The response vari-
able is distinctness of image (DOI). The variables used in the
experiment are
A � Percentage of polyester by weight of polyester/melamine

(low value � 50%, high value � 70%)
B � Percentage of cellulose acetate butyrate carboxylate (low

value � 15%, high value � 30%)

Factors Surface
V F P G Roughness

Run (in/min) (lb/min) (kpsi) (Mesh No.) ( )

1 6 2.0 38 80 104

2 2 2.0 38 80 98

3 6 2.0 30 80 103

4 2 2.0 30 80 96

5 6 1.0 38 80 137

6 2 1.0 38 80 112

7 6 1.0 30 80 143

8 2 1.0 30 80 129

9 6 2.0 38 170 88

10 2 2.0 38 170 70

11 6 2.0 30 170 110

12 2 2.0 30 170 110

13 6 1.0 38 170 102

14 2 1.0 38 170 76

15 6 1.0 30 170 98

16 2 1.0 30 170 68

�m
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A B C D E Free Height

� � � � � 7.78 7.78 7.81

� � � � � 8.15 8.18 7.88

� � � � � 7.50 7.56 7.50

� � � � � 7.59 7.56 7.75

� � � � � 7.54 8.00 7.88

� � � � � 7.69 8.09 8.06

� � � � � 7.56 7.52 7.44

� � � � � 7.56 7.81 7.69

� � � � � 7.50 7.56 7.50

� � � � � 7.88 7.88 7.44

� � � � � 7.50 7.56 7.50

� � � � � 7.63 7.75 7.56

� � � � � 7.32 7.44 7.44

� � � � � 7.56 7.69 7.62

� � � � � 7.18 7.18 7.25

� � � � � 7.81 7.50 7.59

14-68. Construct a design for the problem in Exercise
14-66. Select the data for the eight runs that would have been re-
quired for this design. Analyze these runs and compare your con-
clusions to those obtained in Exercise 14-66 for the full factorial.

14-69. Construct a design for the problem in Exercise
14-67. Select the data for the eight runs that would have been re-
quired for this design. Analyze these data and compare your con-
clusions to those obtained in Exercise 14-67 for the full factorial.

14-70. Construct a design in 16 runs. What are the
alias relationships in this design? 

14-71. Construct a design in eight runs. What are the
alias relationships in this design? 

14-72. An article in the Journal of Quality Technology (Vol. 17,
1985, pp. 198–206) describes the use of a replicated fractional

25�2
III

28�4
IV

24�1
IV

24�1
IV factorial to investigate the effect of five factors on the free height

of leaf springs used in an automotive application. The factors are
A � furnace temperature, B � heating time, C � transfer time,
D � hold down time, and E � quench oil temperature. The data
are shown in the following table.
(a) What is the generator for this fraction? Write out the alias

structure.
(b) Analyze the data. What factors influence mean free

height?
(c) Calculate the range of free height for each run. Is there any

indication that any of these factors affect variability in free
height?

(d) Analyze the residuals from this experiment and comment
on your findings.

14-73. An article in Rubber Chemistry and Technology (Vol.
47, 1974, pp. 825–836) describes an experiment that studies the
Mooney viscosity of rubber to several variables, including silica
filler (parts per hundred) and oil filler (parts per hundred). Data
typical of that reported in this experiment  follow, where

(a) What type of experimental design has been used?
(b) Analyze the data and draw appropriate conclusions.

x1 �
silica � 60

15
,  x2 �

oil � 21

15

Coded levels
x1 x2 y

�1 �1 13.71
1 �1 14.15

�1 1 12.87
1 1 13.53

�1 �1 13.90
1 �1 14.88

�1 1 12.25
�1 1 13.35
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14-74. An article in Tropical Science [“Proximate Composition
of the Seeds of Acacia Nilotica var Adansonti (Bagaruwa)
and Extraction of Its Protein” (1992, Vol. 32, No. 3, pp.
263–268)] reported on research extracting and concentrating
the proteins of the bagaruwa seeds in livestock feeding in
Nigeria to eliminate the toxic substances from the seeds. The
following are the effects of extraction time and flour to
solvent ratio on protein extractability of the bagaruwa seeds
in distilled water:

Percentage of Protein 

Flour: Solvent Extracted at Time (min)

Ratio (w/v) (%) 30 60 90 120

3 30.5 45.7 30.5 31.0
36.9 44.3 29.5 22.1

7 32.9 42.4 28.2 23.5
37.5 40.9 27.3 34.1

11 29.0 39.5 29.0 29.0
32.7 43.6 30.5 28.4

All values are means of three determinations.
(a) Test the appropriate hypotheses and draw conclusions

using the analysis of variance with 
(b) Graphically analyze the interaction.
(c) Analyze the residuals from this experiment.

14-75. An article in Plant Disease [“Effect of Nitrogen and
Potassium Fertilizer Rates on Severity of Xanthomonas Blight
of Syngonium Podophyllum” (1989, Vol. 73, No. 12, pp.
972–975)] showed the effect of the variable nitrogen and
potassium rates on the growth of “White Butterfly” and the
mean percentage of disease. Data representative of that col-
lected in this experiment is provided in the following table.

Nitrogen Potassium (mg/pot/wk)

(mg/pot/wk) 30 90 120

50 61.0 61.3 45.5 42.5 59.5 58.2

150 54.5 55.9 53.5 51.9 34.0 35.9

250 42.7 40.4 36.5 37.4 32.5 33.8

(a) State the appropriate hypotheses.
(b) Use the analysis of variance to test these hypotheses with

(c) Graphically analyze the residuals from this experiment.
(d) Estimate the appropriate variance components.

14-76. An article in Biotechnology Progress (2001, Vol. 17,
pp. 366–368) reported on an experiment to investigate and
optimize the operating conditions of the nisin extraction in
aqueous two-phase systems (ATPS). A full factorial design22

� � 0.05.

� � 0.5.

with center points was used to verify the most significant
factors affecting the nisin recovery. The factor was the con-
centration (% w/w) of PEG 4000 and was the concentration 
(% w/w) of Na2SO4. The range and levels of the variables
investigated in this study are presented below. Nisin extraction
is a ratio representing the concentration of nisin and this was
the response y.

Trial x1 x2 y

1 13 11 62.874
2 15 11 76.133

3 13 13 87.467
4 15 13 102.324

5 14 12 76.187

6 14 12 77.523

7 14 12 76.782

8 14 12 77.438

9 14 12 78.742

(a) Compute an ANOVA table for the effects and test for
curvature with Is curvature important in this re-
gion of the factors?

(b) Calculate residuals from the linear model and test for
adequacy of your model.

(c) In a new region of factor space a central composite design
(CCD) was used to perform second order optimization.
The results are shown in the following table. Fit a second
order model to this data and make conclusions.

� � 0.05.

x2

x1

Coded Uncoded

Trial x1 x2 x1 x2 y

1 �1 �1 15 14 102.015
2 1 �1 16 14 106.868
3 �1 1 15 16 108.13
4 1 1 16 16 110.176
5 �1.414 0 14.793 15 105.236
6 1.414 0 16.207 15 110.289
7 0 �1.414 15.5 13.586 103.999
8 0 1.414 15.5 16.414 110.171
9 0 0 15.5 15 108.044

10 0 0 15.5 15 109.098
11 0 0 15.5 15 107.824
12 0 0 15.5 15 108.978
13 0 0 15.5 15 109.169

14-77. An article in the Journal of Applied Electrochemistry
(May 2008, Vol. 38, No. 5, pp. 583–590) presented a 27�3 frac-
tional factorial design to perform optimization of polybenzim-
idazole-based membrane electrode assemblies for H2 / O2 fuel
cells. The design and data are shown in the following table.
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The factors and levels are shown in the following table.

Current Density  
Runs A B C D E F G (CD mA cm2)

1 �1 �1 �1 �1 �1 �1 �1 160
2 �1 �1 �1 �1 �1 �1 �1 20
3 �1 �1 �1 �1 �1 �1 �1 80
4 �1 �1 �1 �1 �1 �1 �1 317
5 �1 �1 �1 �1 �1 �1 �1 19
6 �1 �1 �1 �1 �1 �1 �1 4
7 �1 �1 �1 �1 �1 �1 �1 20
8 �1 �1 �1 �1 �1 �1 �1 87.7
9 �1 �1 �1 �1 �1 �1 �1 1100

10 �1 �1 �1 �1 �1 �1 �1 12
11 �1 �1 �1 �1 �1 �1 �1 552
12 �1 �1 �1 �1 �1 �1 �1 880
13 �1 �1 �1 �1 �1 �1 �1 16
14 �1 �1 �1 �1 �1 �1 �1 20
15 �1 �1 �1 �1 �1 �1 �1 8
16 �1 �1 �1 �1 �1 �1 �1 15

Factor �1 �1

A Amount of binder in the 0.2 mg cm2 1 mg cm2

catalyst layer
B Electrocatalyst loading 0.1 mg cm2 1 mg cm2

C Amount of carbon in the 2 mg cm2 4.5 mg cm2

gas diffusion layer
D Hot compaction time 1 min 10 min
E Compaction temperature 100°C 150°C
F Hot compaction load 0.04 ton cm2 0.2 ton cm2

G Amount of PTFE in the 0.1 mg cm2 1 mg cm2

gas diffusion layer

Weight Content Cellular Content
Runs A B C D E F G (mg/g) (pg/cell)

1 �1 �1 �1 1 1 1 �1 4.2 10.8
2 1 �1 �1 �1 �1 1 1 4.4 24.9
3 �1 1 �1 �1 1 �1 1 7.8 27.3
4 1 1 �1 1 �1 �1 �1 14.9 36.3
5 �1 �1 1 1 �1 �1 1 25.3 112.6
6 1 �1 1 �1 1 �1 �1 26.7 159.3
7 �1 1 1 �1 �1 1 �1 23.9 145.2
8 1 1 1 1 1 1 1 21.9 243.2
9 1 1 1 �1 �1 �1 1 24.3 72.1

10 �1 1 1 1 1 �1 �1 20.5 112.2
11 1 �1 1 1 �1 1 �1 10.8 22.5
12 �1 �1 1 �1 1 1 1 20.8 149.7
13 1 1 �1 �1 1 1 �1 13.5 140.1
14 �1 1 �1 1 �1 1 1 10.3 47.3
15 1 �1 �1 1 1 �1 1 23 153.2
16 �1 �1 �1 �1 �1 �1 �1 12.1 35.2

(a) Write down the alias relationships.
(b) Estimate the main effects.
(c) Prepare a normal probability plot for the effects and inter-

pret the results.
(d) Calculate the sum of squares for the alias set that con-

tains the ABG interaction from the corresponding effect
estimate.

14-78. An article in Biotechnology Progress (December
2002, Vol. 18, No. 6, pp. 1170–1175) presented a 27�3 frac-
tional factorial to evaluate factors promoting astaxanthin pro-
duction. The data are shown in the following table.
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634 CHAPTER 14 DESIGN OF EXPERIMENTS WITH SEVERAL FACTORS

The factors and levels are shown in the following table.

Factor �1 �1

A Nitrogen concentration (mM) 4.06 0

B Phosphorus concentration (mM) 0.21 0

C Photon flux density (uE m�2 s�2) 100 500

D Magnesium concentration (mM) 1 0

E Acetate concentration (mM) 0 15

F Ferrous concentration (mM) 0 0.45

G NaCl concentration (mM) Optimal haematococcus medium 25

(a) Write down the complete defining relation and the aliases
from the design.

(b) Estimate the main effects.
(c) Plot the effect estimates on normal probability paper and

interpret the results.

14-79 The rework time required for a machine was found
to depend on the speed at which the machine was run (A),
the lubricant used while working (B), and the hardness of
the metal used in the machine (C ). Two levels of each factor
are chosen and a single replicate of a 23 experiment is run.
The rework time data (in hours) are shown in the following
table.

(a) These treatments cannot all be run under the same condi-
tions. Set up a design to run these observations in two
blocks of four observations each, with ABC confounded
with blocks.

(b) Analyze the data.

14-80 Consider the following results from a two-factor ex-
periment with two levels for factor A and three levels for fac-
tor B. Each treatment has three replicates.

(a) Calculate the sum of squares for each factor and the inter-
action.

(b) Calculate the sum of squares total and error.
(c) Complete an ANOVA table with F-statistics.

14-81. Consider the following ANOVA table from a two-
factor factorial experiment.

(a) How many levels of each factor were used in the experiment?
(b) How many replicates were used?
(c) What assumption is made in order to obtain an estimate of

error?
(d) Calculate the missing entries (denoted with “?”) in the

ANOVA table.

14-82. An article in Process Biochemistry (Dec. 1996, Vol.
31, No. 8, pp. 773–785) presented a 27�3 fractional factorial to
perform optimization of manganese dioxide bioleaching me-
dia. The data are shown in the following table.

Treatment Time 
Combination (in hours)

(1) 27

a 34

b 38

ab 59

c 44

ac 40

bc 63

abc 37

A B Mean StDev

1 1 21.33333 6.027714

1 2 20 7.549834

1 3 32.66667 3.511885

2 1 31 6.244998

2 2 33 6.557439

2 3 23 10

Two-way ANOVA: y versus A, B

Source DF SS MS F P

A 3 1213770 404590 ? 0.341

B 2 ? 17335441 58.30 0.000

Error ? 1784195 ?

Total 11 37668847
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MIND-EXPANDING EXERCISES

14-83. Consider an unreplicated 2k factorial, and sup-
pose that one of the treatment combinations is missing.
One logical approach to this problem is to estimate the
missing value with a number that makes the highest or-
der interaction estimate zero. Apply this technique to the
data in Example 14-5, assuming that ab is missing.
Compare the results of the analysis of these data with the
results in Example 14-5.

14-84. What blocking scheme would you recommend
if it were necessary to run a 24 design in four blocks of
four runs each?

14-85. Consider a 22 design in two blocks with
AB confounded with blocks. Prove algebraically that
SSAB � SSBlocks.

Factor �1 �1

A Mineral concentration (%) 10 20

B Molasses (g/liter) 100 200

C NH4NO3 (g/liter) 1.25 2.50

D KH2PO4 (g/liter) 0.75 1.50

E MgSO4 (g/liter) 0.5 1.00

F Yeast extract (g/liter) 0.20 0.50

G NaHCO3 (g/liter) 2.00 4.00

Source DF SS MS F P

Main Effects 7 95.934 13.7049 ? ?

2-Way 7 67.884 ? 53.69 0.105
Interactions

Residual Error 1 ? ?

Total 15 163.999

Manganese
Extraction

Runs A B C D E F G Yield (%)

1 �1 �1 �1 �1 �1 �1 �1 99.0
2 1 �1 �1 �1 1 �1 1 97.4
3 �1 1 �1 �1 1 1 1 97.7
4 1 1 �1 �1 �1 1 �1 90.0
5 �1 �1 1 �1 1 1 �1 100.0
6 1 �1 1 �1 �1 1 1 98.0
7 �1 1 1 �1 �1 �1 1 90.0
8 1 1 1 �1 1 �1 �1 93.5
9 �1 �1 �1 1 �1 1 1 100.0

10 1 �1 �1 1 1 1 �1 98.6
11 �1 1 �1 1 1 �1 �1 97.1
12 1 1 �1 1 �1 �1 1 92.4
13 �1 �1 1 1 1 �1 1 93.0
14 1 �1 1 1 �1 �1 �1 95.0
15 �1 1 1 1 �1 1 �1 97.0
16 1 1 1 1 1 1 1 98.0

The factors and levels are shown in the following table.

(a) Write down the complete defining relation and the aliases
from the design.

(b) Estimate the main effects.

(c) Plot the effect estimates on normal probability paper and
interpret the results

(d) Calculate the missing entries (denoted with “?”) in the fol-
lowing ANOVA table from Minitab with two-way interac-
tions.
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MIND-EXPANDING EXERCISES

14-86. Consider a 23 design. Suppose that the largest
number of runs that can be made in one block is four, but
we can afford to perform a total of 32 observations.
(a) Suggest a blocking scheme that will provide some

information on all interactions.
(b) Show an outline (source of variability, degrees of

freedom only) for the analysis of variance for this
design.

14-87. Construct a 25�1 design. Suppose that it is
necessary to run this design in two blocks of eight runs
each. Show how this can be done by confounding a two-
factor interaction (and its aliased three-factor interac-
tion) with blocks.

14-88. Construct a design. Show how this design
may be confounded in four blocks of eight runs each. Are
any two-factor interactions confounded with blocks?

14-89. Construct a design. Show how this de-
sign can be confounded in two blocks of eight runs each

without losing information on any of the two-factor
interactions.

14-90. Set up a design using D � AB, E � AC,
F � BC, and G � ABC as the design generators. Ignore
all interaction above the two factors.
(a) Verify that each main effect is aliased with three

two-factor interactions.
(b) Suppose that a second design with generators 

D � �AB, E � �AC, F � �BC, and G � ABC is
run. What are the aliases of the main effects in this
design?

(c) What factors may be estimated if the two sets of
factor effect estimates above are combined?

14-91. Consider the square root of the sum of squares
for curvature and divide by the square root of mean
squared error. Explain why the statistic that results has a
t distribution and why it can be used to conduct a t test for
curvature that is equivalent to the F test in the ANOVA.

27�4
III

27�4
III

27�3
IV

27�2
IV

IMPORTANT TERMS AND CONCEPTS

Analysis of variance
(ANOVA)

Blocking and nuisance
factors

Center points 
Central composite 

design
Confounding

Contrast
Defining relation
Design matrix
Factorial experiment
Fractional factorial design
Generator
Interaction
Main effect

Normal probability 
plot of factor 
effects

Optimization 
experiment

Orthogonal design
Regression model
Residual analysis

Resolution 
Response surface
Screening experiment
Steepest ascent 

(or descent)
2k factorial design
Two-level factorial 

design
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15
Statistical Quality Control

BOWL OF BEADS

The quality guru Edward Deming conducted a simple experiment in his seminars with a
bowl of beads. Many were colored white but a percentage of red beads were randomly
mixed in the bowl. A participant from the seminar was provided with a paddle made with
indentations so that 50 beads at a time could be scooped from the bowl. The participant
was only allowed to use the paddle and instructed to only scoop white beads (repeated
multiple times with beads replaced). The red beads were considered to be defectives. Of
course, this was difficult to do, and each scoop resulted in a count of red beads. Deming
plotted the fraction of red beads from each scoop and used the results to make several
points. As was clear from the scenario, this process is beyond the participant’s ability to
make simple improvements. It is the process that needs to be changed (reduce the number
of red beads) and that is the responsibility of management. Furthermore, many business
processes have this type of characteristic and it is important to learn from the data whether
the variability is common, intrinsic to the process or whether some special cause has oc-
curred. This distinction is important for the type of process control or improvements to be
applied. Refer to the example of control adjustments in Chapter 1. Control charts are pri-
mary tools to understand process variability and that is main topic of this chapter.

CHAPTER OUTLINE

15-1 QUALITY IMPROVEMENT 
AND STATISTICS

15-1.1 Statistical Quality Control

15-1.2 Statistical Process Control

15-2 INTRODUCTION TO 
CONTROL CHARTS

15-2.1 Basic Principles

15-2.2 Design of a Control Chart

15-2.3 Rational Subgroups

15-2.4 Analysis of Patterns on
Control Charts

15-3 AND R OR S CONTROL
CHARTS

15-4 CONTROL CHARTS FOR 
INDIVIDUAL MEASUREMENTS

15-5 PROCESS CAPABILITY

X
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638 CHAPTER 15 STATISTICAL QUALITY CONTROL

15-6 ATTRIBUTE CONTROL 
CHARTS

15-6.1 P Chart (Control Chart for
Proportions)

15-6.2 U Chart (Control Chart for
Defects per Unit)

15-7 CONTROL CHART 
PERFORMANCE

15-8 TIME-WEIGHTED CHARTS

15-8.1 Cumulative Sum Control
Chart

15-8.2 Exponentially Weighted Moving
Average Control Chart

15-9 OTHER SPC PROBLEM-SOLVING
TOOLS

15-10 IMPLEMENTING SPC

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Understand the role of statistical tools in quality improvement
2. Understand the different types of variability, rational subgroups, and how a control chart is used

to detect assignable causes
3. Understand the general form of a Shewhart control chart and how to apply zone rules (such as

the Western Electric rules) and pattern analysis to detect assignable causes
4. Construct and interpret control charts for variables such as , R, S, and individuals charts

5. Construct and interpret control charts for attributes such as P and U charts
6. Calculate and interpret process capability ratios
7. Calculate the ARL performance for a Shewhart control chart
8. Construct and interpret a cumulative sum and exponentially weighted moving average control chart
9. Use other statistical process control problem-solving tools

15-1 QUALITY IMPROVEMENT AND STATISTICS

The quality of products and services has become a major decision factor in most businesses
today. Regardless of whether the consumer is an individual, a corporation, a military defense
program, or a retail store, when the consumer is making purchase decisions, he or she is likely
to consider quality of equal importance to cost and schedule. Consequently, quality improve-
ment has become a major concern to many U.S. corporations. This chapter is about statistical
quality control, a collection of tools that are essential in quality-improvement activities.

Quality means fitness for use. For example, you or I may purchase automobiles that we ex-
pect to be free of manufacturing defects and that should provide reliable and economical trans-
portation, a retailer buys finished goods with the expectation that they are properly packaged
and arranged for easy storage and display, or a manufacturer buys raw material and expects to
process it with no rework or scrap. In other words, all consumers expect that the products and
services they buy will meet their requirements. Those requirements define fitness for use.

Quality or fitness for use is determined through the interaction of quality of design and
quality of conformance. By quality of design we mean the different grades or levels of
performance, reliability, serviceability, and function that are the result of deliberate engi-
neering and management decisions. By quality of conformance, we mean the systematic
reduction of variability and elimination of defects until every unit produced is identical
and defect-free.

Some confusion exists in our society about quality improvement; some people still think
that it means gold-plating a product or spending more money to develop a product or process.

X
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15-1 QUALITY IMPROVEMENT AND STATISTICS 639

This thinking is wrong. Quality improvement means the systematic elimination of waste.
Examples of waste include scrap and rework in manufacturing, inspection and testing, errors on
documents (such as engineering drawings, checks, purchase orders, and plans), customer com-
plaint hotlines, warranty costs, and the time required to do things over again that could have
been done right the first time. A successful quality-improvement effort can eliminate much of
this waste and lead to lower costs, higher productivity, increased customer satisfaction, in-
creased business reputation, higher market share, and ultimately higher profits for the company.

Statistical methods play a vital role in quality improvement. Some applications are out-
lined below:

1. In product design and development, statistical methods, including designed exper-
iments, can be used to compare different materials, components, or ingredients, and
to help determine both system and component tolerances. This application can sig-
nificantly lower development costs and reduce development time.

2. Statistical methods can be used to determine the capability of a manufacturing
process. Statistical process control can be used to systematically improve a process
by reducing variability.

3. Experimental design methods can be used to investigate improvements in the process.
These improvements can lead to higher yields and lower manufacturing costs.

4. Life testing provides reliability and other performance data about the product. This
can lead to new and improved designs and products that have longer useful lives and
lower operating and maintenance costs.

Some of these applications have been illustrated in earlier chapters of this book. It is
essential that engineers, scientists, and managers have an in-depth understanding of these sta-
tistical tools in any industry or business that wants to be a high-quality, low-cost producer. In
this chapter we provide an introduction to the basic methods of statistical quality control that,
along with experimental design, form the basis of a successful quality-improvement effort.

15-1.1 Statistical Quality Control

The field of statistical quality control can be broadly defined as those statistical and engineer-
ing methods that are used in measuring, monitoring, controlling, and improving quality.
Statistical quality control is a field that dates back to the 1920s. Dr. Walter A. Shewhart of the
Bell Telephone Laboratories was one of the early pioneers of the field. In 1924 he wrote a
memorandum showing a modern control chart, one of the basic tools of statistical process
control. Harold F. Dodge and Harry G. Romig, two other Bell System employees, provided
much of the leadership in the development of statistically based sampling and inspection
methods. The work of these three men forms much of the basis of the modern field of statis-
tical quality control. World War II saw the widespread introduction of these methods to U.S.
industry. Dr. W. Edwards Deming and Dr. Joseph M. Juran have been instrumental in spread-
ing statistical quality-control methods since World War II.

The Japanese have been particularly successful in deploying statistical quality-control
methods and have used statistical methods to gain significant advantage over their
competitors. In the 1970s American industry suffered extensively from Japanese (and other
foreign) competition; that has led, in turn, to renewed interest in statistical quality-control
methods in the United States. Much of this interest focuses on statistical process control and
experimental design. Many U.S. companies have implemented these methods in their manu-
facturing, engineering, and other business organizations.
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640 CHAPTER 15 STATISTICAL QUALITY CONTROL

15-1.2 Statistical Process Control

It is impractical to inspect quality into a product; the product must be built right the first
time. The manufacturing process must therefore be stable or repeatable and capable of op-
erating with little variability around the target or nominal dimension. Online statistical
process control is a powerful tool for achieving process stability and improving capability
through the reduction of variability.

It is customary to think of statistical process control (SPC) as a set of problem-solving
tools that may be applied to any process. The major tools of SPC* are

1. Histogram

2. Pareto chart

3. Cause-and-effect diagram

4. Defect-concentration diagram

5. Control chart

6. Scatter diagram

7. Check sheet

Although these tools are an important part of SPC, they comprise only the technical aspect of
the subject. An equally important element of SPC is attitude—a desire of all individuals in the
organization for continuous improvement in quality and productivity through the systematic
reduction of variability. The control chart is the most powerful of the SPC tools.

15-2 INTRODUCTION TO CONTROL CHARTS

15-2.1 Basic Principles

In any production process, regardless of how well-designed or carefully maintained it is, a
certain amount of inherent or natural variability will always exist. This natural variability or
“background noise” is the cumulative effect of many small, essentially unavoidable causes.
When the background noise in a process is relatively small, we usually consider it an accept-
able level of process performance. In the framework of statistical quality control, this natural
variability is often called a “stable system of chance causes.” A process that is operating with
only chance causes of variation present is said to be in statistical control. In other words, the
chance causes are an inherent part of the process.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly ad-
justed machines, operator errors, or defective raw materials. Such variability is generally large
when compared to the background noise, and it usually represents an unacceptable level of
process performance. We refer to these sources of variability that are not part of the chance
cause pattern as assignable causes. A process that is operating in the presence of assignable
causes is said to be out of control.†

* Some prefer to include the experimental design methods discussed previously as part of the SPC toolkit. We did not
do so, because we think of SPC as an online approach to quality improvement using techniques founded on passive
observation of the process, while design of experiments is an active approach in which deliberate changes are made
to the process variables. As such, designed experiments are often referred to as offline quality control.
† The terminology chance and assignable causes was developed by Dr. Walter A. Shewhart. Today, some writers use
common cause instead of chance cause and special cause instead of assignable cause.

JWCL232_c15_637-701.qxd  1/11/10  4:57 PM  Page 640



15-2 INTRODUCTION TO CONTROL CHARTS 641

Production processes will often operate in the in-control state, producing acceptable
product for relatively long periods of time. Occasionally, however, assignable causes will
occur, seemingly at random, resulting in a “shift” to an out-of-control state where a large pro-
portion of the process output does not conform to requirements. A major objective of statisti-
cal process control is to quickly detect the occurrence of assignable causes or process shifts
so that investigation of the process and corrective action may be undertaken before many
nonconforming units are manufactured. The control chart is an online process-monitoring
technique widely used for this purpose.

Recall the following from Chapter 1. Figure 1-11 illustrates that adjustments to common
causes of variation increase the variation of a process whereas Fig. 1-12 illustrates that actions
should be taken in response to assignable causes of variation. Control charts may also be used to
estimate the parameters of a production process and, through this information, to determine the
capability of a process to meet specifications. The control chart can also provide information 
that is useful in improving the process. Finally, remember that the eventual goal of statistical
process control is the elimination of variability in the process. Although it may not be possible
to eliminate variability completely, the control chart helps reduce it as much as possible.

A typical control chart is shown in Fig. 15-1, which is a graphical display of a quality
characteristic that has been measured or computed from a sample versus the sample number
or time. Often, the samples are selected at periodic intervals such as every hour. The chart
contains a center line (CL) that represents the average value of the quality characteristic
corresponding to the in-control state. (That is, only chance causes are present.) Two other hor-
izontal lines, called the upper control limit (UCL) and the lower control limit (LCL), are also
shown on the chart. These control limits are chosen so that if the process is in control, nearly
all of the sample points will fall between them. In general, as long as the points plot within the
control limits, the process is assumed to be in control, and no action is necessary. However, a
point that plots outside of the control limits is interpreted as evidence that the process is out of
control, and investigation and corrective action are required to find and eliminate the assigna-
ble cause or causes responsible for this behavior. The sample points on the control chart are
usually connected with straight-line segments so that it is easier to visualize how the sequence
of points has evolved over time.

Even if all the points plot inside the control limits, if they behave in a systematic or
nonrandom manner, this is an indication that the process is out of control. For example, if
18 of the last 20 points plotted above the center line but below the upper control limit, and
only two of these points plotted below the center line but above the lower control limit, we
would be very suspicious that something was wrong. If the process is in control, all the
plotted points should have an essentially random pattern. Methods designed to find

Figure 15-1 A typi-
cal control chart. Sample number or time
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642 CHAPTER 15 STATISTICAL QUALITY CONTROL

sequences or nonrandom patterns can be applied to control charts as an aid in detecting
out-of-control conditions. A particular nonrandom pattern usually appears on a control
chart for a reason, and if that reason can be found and eliminated, process performance can
be improved.

There is a close connection between control charts and hypothesis testing. Essentially, the
control chart is a test of the hypothesis that the process is in a state of statistical control. A
point plotting within the control limits is equivalent to failing to reject the hypothesis of
statistical control, and a point plotting outside the control limits is equivalent to rejecting the
hypothesis of statistical control.

We give a general model for a control chart. Let W be a sample statistic that measures
some quality characteristic of interest, and suppose that the mean of W is �W and the standard
deviation of W is �W.* Then the center line, the upper control limit, and the lower control limit
become

* Note that “sigma” refers to the standard deviation of the statistic plotted on the chart (i.e., �W), not the standard
deviation of the quality characteristic.

(15-1)LCL � �W � k�W

 CL � �W

UCL � �W � k�W

Control Chart
Model

where k is the “distance” of the control limits from the center line, expressed in standard
deviation units. A common choice is k � 3. This general theory of control charts was first pro-
posed by Dr. Walter A. Shewhart, and control charts developed according to these principles
are often called Shewhart control charts.

The control chart is a device for describing exactly what is meant by statistical control;
as such, it may be used in a variety of ways. In many applications, it is used for online
process monitoring. That is, sample data are collected and used to construct the control
chart, and if the sample values of (say) fall within the control limits and do not exhibit any
systematic pattern, we say the process is in control at the level indicated by the chart. Note
that we may be interested here in determining both whether the past data came from a
process that was in control and whether future samples from this process indicate statistical
control.

The most important use of a control chart is to improve the process. We have found that,
generally

1. Most processes do not operate in a state of statistical control.

2. Consequently, the routine and attentive use of control charts will identify assignable
causes. If these causes can be eliminated from the process, variability will be reduced
and the process will be improved.

This process-improvement activity using the control chart is illustrated in Fig. 15-2. Notice
that:

3. The control chart will only detect assignable causes. Management, operator, and
engineering action will usually be necessary to eliminate the assignable cause. An
action plan for responding to control chart signals is vital.

x
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15-2 INTRODUCTION TO CONTROL CHARTS 643

In identifying and eliminating assignable causes, it is important to find the underlying root
cause of the problem and to attack it. A cosmetic solution will not result in any real, long-term
process improvement. Developing an effective system for corrective action is an essential
component of an effective SPC implementation.

We may also use the control chart as an estimating device. That is, from a control chart
that exhibits statistical control, we may estimate certain process parameters, such as the mean,
standard deviation, and fraction nonconforming or fallout. These estimates may then be used
to determine the capability of the process to produce acceptable products. Such process
capability studies have considerable impact on many management decision problems that oc-
cur over the product cycle, including make-or-buy decisions, plant and process improvements
that reduce process variability, and contractual agreements with customers or suppliers re-
garding product quality.

Control charts may be classified into two general types. Many quality characteristics can
be measured and expressed as numbers on some continuous scale of measurement. In such
cases, it is convenient to describe the quality characteristic with a measure of central tendency
and a measure of variability. Control charts for central tendency and variability are collectively
called variables control charts. The chart is the most widely used chart for monitoring cen-
tral tendency, whereas charts based on either the sample range or the sample standard deviation
are used to control process variability. Many quality characteristics are not measured on a con-
tinuous scale or even a quantitative scale. In these cases, we may judge each unit of product as
either conforming or nonconforming on the basis of whether or not it possesses certain attrib-
utes, or we may count the number of nonconformities (defects) appearing on a unit of product.
Control charts for such quality characteristics are called attributes control charts.

Control charts have had a long history of use in industry. There are at least five reasons 
for their popularity:

1. Control charts are a proven technique for improving productivity. A successful
control chart program will reduce scrap and rework, which are the primary produc-
tivity killers in any operation. If you reduce scrap and rework, productivity increases,
cost decreases, and production capacity (measured in the number of good parts per
hour) increases.

2. Control charts are effective in defect prevention. The control chart helps keep the
process in control, which is consistent with the “do it right the first time” philosophy.

X

Figure 15-2 Process
improvement using
the control chart.
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644 CHAPTER 15 STATISTICAL QUALITY CONTROL

It is never cheaper to sort out the “good” units from the “bad” later on than it is to
build them correctly initially. If you do not have effective process control, you are
paying someone to make a nonconforming product.

3. Control charts prevent unnecessary process adjustments. A control chart can dis-
tinguish between background noise and abnormal variation; no other device, including
a human operator, is as effective in making this distinction. If process operators adjust
the process based on periodic tests unrelated to a control chart program, they will often
overreact to the background noise and make unneeded adjustments. These unnecessary
adjustments can result in a deterioration of process performance. In other words, the
control chart is consistent with the “if it isn’t broken, don’t fix it” philosophy.

4. Control charts provide diagnostic information. Frequently, the pattern of points
on the control chart will contain information that is of diagnostic value to an
experienced operator or engineer. This information allows the operator to implement
a change in the process that will improve its performance.

5. Control charts provide information about process capability. The control chart
provides information about the value of important process parameters and their sta-
bility over time. This allows an estimate of process capability to be made. This in-
formation is of tremendous use to product and process designers.

Control charts are among the most effective management control tools, and they are as
important as cost controls and material controls. Modern computer technology has made it
easy to implement control charts in any type of process, because data collection and analysis
can be performed on a microcomputer or a local area network terminal in real time, online at
the work center.

15-2.2 Design of a Control Chart

To illustrate these ideas, we give a simplified example of a control chart. In manufacturing au-
tomobile engine piston rings, the inside diameter of the rings is a critical quality characteris-
tic. The process mean inside ring diameter is 74 millimeters, and it is known that the standard
deviation of ring diameter is 0.01 millimeters. A control chart for average ring diameter is
shown in Fig. 15-3. Every hour a random sample of five rings is taken, the average ring di-
ameter of the sample (say ) is computed, and is plotted on the chart. Because this control
chart utilizes the sample mean to monitor the process mean, it is usually called an con-
trol chart. Note that all the points fall within the control limits, so the chart indicates that the
process is in statistical control.

XX
xx

Figure 15-3 con-
trol chart for piston
ring diameter.

X

1

73.9820

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

73.9865

73.9910

73.9955

74.0000

74.0045

74.0090

74.0135

74.0180

Sample number

LCL = 73.9865

UCL = 74.0135

A
ve

ra
g
e
 r

in
g
 d

ia
m

e
te

r 
x

JWCL232_c15_637-701.qxd  1/11/10  4:57 PM  Page 644



15-2 INTRODUCTION TO CONTROL CHARTS 645

Consider how the control limits were determined. The process average is 74 millimeters,
and the process standard deviation is � � 0.01 millimeters. Now if samples of size n � 5 are
taken, the standard deviation of the sample average is

Therefore, if the process is in control with a mean diameter of 74 millimeters, by using
the central limit theorem to assume that is approximately normally distributed, we
would expect approximately 100(1 � �)% of the sample mean diameters to fall between 
74 � z��2(0.0045) and 74 � z��2(0.0045). As discussed above, we customarily choose the
constant z��2 to be 3, so the upper and lower control limits become

and

as shown on the control chart. These are the 3-sigma control limits referred to above. Note that
the use of 3-sigma limits implies that � � 0.0027; that is, the probability that the point plots
outside the control limits when the process is in control is 0.0027. The width of the control
limits is inversely related to the sample size n for a given multiple of sigma. Choosing the con-
trol limits is equivalent to setting up the critical region for testing the hypotheses

where � � 0.01 is known. Essentially, the control chart tests this hypothesis repeatedly at dif-
ferent points in time.

In designing a control chart, we must specify both the sample size to use and the fre-
quency of sampling. In general, larger samples will make it easier to detect small shifts in the
process. When choosing the sample size, we must keep in mind the size of the shift that we are
trying to detect. If we are interested in detecting a relatively large process shift, we use smaller
sample sizes than those that would be employed if the shift of interest were relatively small.

We must also determine the frequency of sampling. The most desirable situation from the
point of view of detecting shifts would be to take large samples very frequently; however, this
is usually not economically feasible. The general problem is one of allocating sampling effort.
That is, either we take small samples at short intervals or larger samples at longer intervals.
Current industry practice tends to favor smaller, more frequent samples, particularly in high-
volume manufacturing processes or where a great many types of assignable causes can occur.
Furthermore, as automatic sensing and measurement technology develops, it is becoming
possible to greatly increase frequencies. Ultimately, every unit can be tested as it is manufac-
tured. This capability will not eliminate the need for control charts because the test system will
not prevent defects. The increased data will increase the effectiveness of process control and
improve quality.

When preliminary samples are used to construct limits for control charts, these limits are
customarily treated as trial values. Therefore, the sample statistics should be plotted on the
appropriate charts, and any points that exceed the control limits should be investigated. If

H1: � � 74
H0: � � 74

LCL � 74 � 310.00452 � 73.9865

UCL � 74 � 310.00452 � 74.0135

X
X

�X� �
�

1n
�

0.01

15
� 0.0045

X
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646 CHAPTER 15 STATISTICAL QUALITY CONTROL

assignable causes for these points are discovered, they should be eliminated and new limits for
the control charts determined. In this way, the process may be eventually brought into statistical
control and its inherent capabilities assessed. Other changes in process centering and dispersion
may then be contemplated.

15-2.3 Rational Subgroups

A fundamental idea in the use of control charts is to collect sample data according to what
Shewhart called the rational subgroup concept. Generally, this means that subgroups or sam-
ples should be selected so that to the extent possible, the variability of the observations within
a subgroup should include all the chance or natural variability and exclude the assignable
variability. Then, the control limits will represent bounds for all the chance variability and not
the assignable variability. Consequently, assignable causes will tend to generate points that are
outside of the control limits, while chance variability will tend to generate points that are
within the control limits.

When control charts are applied to production processes, the time order of production is a
logical basis for rational subgrouping. Even though time order is preserved, it is still possible 
to form subgroups erroneously. If some of the observations in the subgroup are taken at the end
of one eight-hour shift and the remaining observations are taken at the start of the next eight-
hour shift, any differences between shifts might not be detected. Time order is frequently a good
basis for forming subgroups because it allows us to detect assignable causes that occur over time.

Two general approaches to constructing rational subgroups are used. In the first ap-
proach, each subgroup consists of units that were produced at the same time (or as closely to-
gether as possible). This approach is used when the primary purpose of the control chart is to
detect process shifts. It minimizes variability due to assignable causes within a sample, and it
maximizes variability between samples if assignable causes are present. It also provides bet-
ter estimates of the standard deviation of the process in the case of variables control charts.
This approach to rational subgrouping essentially gives a “snapshot” of the process at each
point in time where a sample is collected.

In the second approach, each sample consists of units of product that are representative of
all units that have been produced since the last sample was taken. Essentially, each subgroup
is a random sample of all process output over the sampling interval. This method of rational
subgrouping is often used when the control chart is employed to make decisions about the ac-
ceptance of all units of product that have been produced since the last sample. In fact, if the
process shifts to an out-of-control state and then back in control again between samples, it is
sometimes argued that the first method of rational subgrouping defined above will be ineffec-
tive against these types of shifts, and so the second method must be used.

When the rational subgroup is a random sample of all units produced over the sampling
interval, considerable care must be taken in interpreting the control charts. If the process mean
drifts between several levels during the interval between samples, the range of observations
within the sample may consequently be relatively large. It is the within-sample variability that
determines the width of the control limits on an chart, so this practice will result in wider
limits on the chart. This makes it harder to detect shifts in the mean. In fact, we can often
make any process appear to be in statistical control just by stretching out the interval between
observations in the sample. It is also possible for shifts in the process average to cause points
on a control chart for the range or standard deviation to plot out of control, even though no
shift in process variability has taken place.

There are other bases for forming rational subgroups. For example, suppose a process con-
sists of several machines that pool their output into a common stream. If we sample from this

X
X

JWCL232_c15_637-701.qxd  1/11/10  4:57 PM  Page 646



15-2 INTRODUCTION TO CONTROL CHARTS 647

common stream of output, it will be very difficult to detect whether or not some of the machines
are out of control. A logical approach to rational subgrouping here is to apply control chart tech-
niques to the output for each individual machine. Sometimes this concept needs to be applied to
different heads on the same machine, different workstations, different operators, and so forth.

The rational subgroup concept is very important. The proper selection of samples re-
quires careful consideration of the process, with the objective of obtaining as much useful in-
formation as possible from the control chart analysis.

15-2.4 Analysis of Patterns on Control Charts

A control chart may indicate an out-of-control condition either when one or more points fall be-
yond the control limits, or when the plotted points exhibit some nonrandom pattern of behavior.
For example, consider the chart shown in Fig. 15-4. Although all 25 points fall within the con-
trol limits, the points do not indicate statistical control because their pattern is very nonrandom
in appearance. Specifically, we note that 19 of the 25 points plot below the center line, while 
only 6 of them plot above. If the points are truly random, we should expect a more even distri-
bution of them above and below the center line. We also observe that following the fourth point,
five points in a row increase in magnitude. This arrangement of points is called a run. Since the
observations are increasing, we could call it a run up; similarly, a sequence of decreasing points
is called a run down. This control chart has an unusually long run up (beginning with the fourth
point) and an unusually long run down (beginning with the eighteenth point).

In general, we define a run as a sequence of observations of the same type. In addition to
runs up and runs down, we could define the types of observations as those above and below the
center line, respectively, so two points in a row above the center line would be a run of length 2.

A run of length 8 or more points has a very low probability of occurrence in a random
sample of points. Consequently, any type of run of length 8 or more is often taken as a signal
of an out-of-control condition. For example, eight consecutive points on one side of the cen-
ter line will indicate that the process is out of control.

Although runs are an important measure of nonrandom behavior on a control chart, other
types of patterns may also indicate an out-of-control condition. For example, consider the X

X

Figure 15-4 An 
control chart.
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648 CHAPTER 15 STATISTICAL QUALITY CONTROL

chart in Fig. 15-5. Note that the plotted sample averages exhibit a cyclic behavior, yet they all
fall within the control limits. Such a pattern may indicate a problem with the process, such as
operator fatigue, raw material deliveries, and heat or stress buildup. The yield may be im-
proved by eliminating or reducing the sources of variability causing this cyclic behavior
(see Fig. 15-6). In Fig. 15-6, LSL and USL denote the lower and upper specification limits of
the process. These limits represent bounds within which acceptable product must fall and they
are often based on customer requirements.

The problem is one of pattern recognition, that is, recognizing systematic or nonrandom
patterns on the control chart and identifying the reason for this behavior. The ability to interpret
a particular pattern in terms of assignable causes requires experience and knowledge of the
process. That is, we must not only know the statistical principles of control charts, but we 
must also have a good understanding of the process.

The Western Electric Handbook (1956) suggests a set of decision rules for detecting non-
random patterns on control charts. Specifically, the Western Electric rules would conclude
that the process is out of control if either

1. One point plots outside 3-sigma control limits.

2. Two out of three consecutive points plot beyond a 2-sigma limit.

3. Four out of five consecutive points plot at a distance of 1-sigma or beyond from the
center line.

4. Eight consecutive points plot on one side of the center line.

Figure 15-5 An 
chart with a cyclic
pattern.

X

1

LCL

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Center
line

UCL

x

Sample number

Figure 15-6 (a)
Variability with the
cyclic pattern. 
(b) Variability with 
the cyclic pattern 
eliminated.

USLμLSL
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USLμLSL

(b)
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15-3 AND R OR S CONTROL CHARTS 649X

We have found these rules very effective in practice for enhancing the sensitivity of control
charts. Rules 2 and 3 apply to one side of the center line at a time. That is, a point above the
upper 2-sigma limit followed immediately by a point below the lower 2-sigma limit would not
signal an out-of-control alarm.

Figure 15-7 shows an control chart for the piston ring process with the 1-sigma, 
2-sigma, and 3-sigma limits used in the Western Electric procedure. Notice that these inner
limits (sometimes called warning limits) partition the control chart into three zones A, B, and
C on each side of the center line. Consequently, the Western Electric rules are sometimes
called the run rules for control charts. Notice that the last four points fall in zone B or beyond.
Thus, since four of five consecutive points exceed the 1-sigma limit, the Western Electric
procedure will conclude that the pattern is nonrandom and the process is out of control.

15-3 AND R OR S CONTROL CHARTS

When dealing with a quality characteristic that can be expressed as a measurement, it is cus-
tomary to monitor both the mean value of the quality characteristic and its variability. Control
over the average quality is exercised by the control chart for averages, usually called the 
chart. Process variability can be controlled by either a range chart (R chart) or a standard de-
viation chart (S chart), depending on how the population standard deviation is estimated.

Suppose that the process mean and standard deviation � and � are known and that we can
assume that the quality characteristic has a normal distribution. Consider the chart. As dis-
cussed previously, we can use � as the center line for the control chart, and we can place the
upper and lower 3-sigma limits at

X

X

X

X

Figure 15-7 The
Western Electric zone
rules.
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(15-2) CL � �

 LCL � � � 3�	1n

UCL � � � 3�	1n

When the parameters � and � are unknown, we usually estimate them on the basis of
preliminary samples, taken when the process is thought to be in control. We recommend the
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650 CHAPTER 15 STATISTICAL QUALITY CONTROL

use of at least 20 to 25 preliminary samples. Suppose m preliminary samples are available,
each of size n. Typically, n will be 4, 5, or 6; these relatively small sample sizes are widely 
used and often arise from the construction of rational subgroups. Let the sample mean for the
ith sample be . Then we estimate the mean of the population, �, by the grand mean

(15-3)

Thus, we may take as the center line on the control chart.
We may estimate � from either the standard deviation or the range of the observations

within each sample. The sample size is relatively small, so there is little loss in efficiency in
estimating � from the sample ranges.

The relationship between the range R of a sample from a normal population with known
parameters and the standard deviation of that population is needed. Since R is a random
variable, the quantity W � R��, called the relative range, is also a random variable. The
parameters of the distribution of W have been determined for any sample size n. The mean and
standard deviation of the distribution of W are called d2 and d3 respectively. Because R � �W,

(15-4)

Let Ri be the range of the ith sample, and let 

(15-5)

be the average range. Then is an estimator of �R and from Equation 15-4 an unbiased 
estimator of � is

R

R �
1
m  a

m

i�1
 Ri

�R � d2�  �R � d3�

XX

i�̂ � X �
1
ma

m

i�1
X

Xi

Estimator of �
from R Chart 

(15-6)

where the constant d2 is tabulated for various sample sizes in Appendix Table XI.

�̂ �
R

d2

Therefore, we may use as our upper and lower control limits for the chart

(15-7)

Define the constant

(15-8)

Now, once we have computed the sample values and , the control chart may be defined
as follows.

Xrx

A2 �
3

d21n

UCL � X �
3

d21n
 R  LCL �  X �

3

d21n
 R

X
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15-3 AND R OR S CONTROL CHARTS 651X

The parameters of the R chart may also be easily determined. The center line is . To de-
termine the control limits, we need an estimate of �R, the standard deviation of R. Once again,
assuming the process is in control, the distribution of the relative range, W, is useful. We may
estimate �R from Equation 15-4 as

(15-10)

and the upper and lower control limits on the R chart are

(15-11)

Setting D3 � 1 � 3d3�d2 and D4 � 1 � 3d3�d2 leads to the following definition.

 LCL � R �
3d3

d2
  R � a1 �

3d3

d2
b   R

 UCL � R �
3d3

d2
  R � a1 �

3d3

d2
b  R

�̂R � d3�̂ � d3 
R

d2

R

The center line and upper and lower control limits for an control chart are

(15-9)

where the constant A2 is tabulated for various sample sizes in Appendix Table XI.

UCL � x � A2 r  CL � x  LCL � x � A2 r

X
Control Chart

(from )R
X

The center line and upper and lower control limits for an R chart are

(15-12)

where is the sample average range, and the constants D3 and D4 are tabulated for
various sample sizes in Appendix Table XI.

r

UCL � D4 r  CL � r  LCL � D3 
r

R Chart

The LCL for an R chart can be a negative number. In that case, it is customary to set LCL
to zero. Because the points plotted on an R chart are nonnegative, no points can fall below an
LCL of zero. Also, we often study the R chart first because if the process variability is not con-
stant over time the control limits calculated for the chart can be misleading.

Rather than base control charts on ranges, a more modern approach is to calculate the standard
deviation of each subgroup and plot these standard deviations to monitor the process standard de-
viation �. This is called an S chart. When an S chart is used, it is common to use these standard 
deviations to develop control limits for the chart. Typically, the sample size used for subgroups
is small (fewer than 10) and in that case there is usually little difference in the chart generated
from ranges or standard deviations. However, because computer software is often used to imple-
ment control charts, S charts are quite common. Details to construct these charts follow.

In Section 7-3, it was stated that S is a biased estimator of �. That is, E(S) � c4� where c4

is a constant that is near, but not equal to, 1. Furthermore, a calculation similar to the one used
for E(S) can derive the standard deviation of the statistic S with the result .
Therefore, the center line and three-sigma control limits for S are

(15-13)UCL � c4� � 3�21 � c2
4LCL � c4� � 3�21 � c2

4  CL � c4�

�21 � c2
4

X
X

X
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652 CHAPTER 15 STATISTICAL QUALITY CONTROL

Assume that there are m preliminary samples available, each of size n, and let Si denote the
standard deviation of the ith sample. Define

(15-14)

Because , an unbiased estimator of � is That is,S	c4E1S2 � c4�

S �
1
ma

m

i�1
Si

(15-16)UCL � s � 3 
s
c4
21 � c2

4  CL � s  LCL � s � 3 
s
c4
21 � c2

4

S Chart

Estimator of �
from S Chart

(15-15)

where the constant c4 is tabulated for various sample sizes in Appendix Table XI.

�̂ � S	c4

A control chart for standard deviations follows.

The LCL for an S chart can be a negative number, in that case, it is customary to set LCL to zero.
When an S chart is used, the estimate for � in Equation 15-15 is commonly used to calculate 
the control limits for an chart. This produces the following control limits for an chart.XX

EXAMPLE 15-1 Vane Opening
A component part for a jet aircraft engine is manufactured
by an investment casting process. The vane opening on this
casting is an important functional parameter of the part. We
will illustrate the use of and R control charts to assess the
statistical stability of this process. Table 15-1 presents 20
samples of five parts each. The values given in the table have
been coded by using the last three digits of the dimension;
that is, 31.6 should be 0.50316 inch.

The quantities and are shown at the
foot of Table 15-1. The value of A2 for samples of size 5 is
A2 � 0.577. Then the trial control limits for the chart are

or

For the R chart, the trial control limits are

UCL � 36.67  LCL � 29.97

x 
 A2 r � 33.32 
 10.5772 15.82 � 33.32 
 3.35

X

r � 5.8x � 33.3

X
The and R control charts with these trial control limits

are shown in Fig. 15-8. Notice that samples 6, 8, 11, and 19 are
out of control on the chart and that sample 9 is out of
control on the R chart. (These points are labeled with a “1” 
because they violate the first Western Electric rule.)

For the S chart, the value of c4 � 0.94. Therefore,

and the trial control limits are

UCL � 2.345 � 2.553 � 4.898
LCL � 2.345 � 2.553 � �0.208

3s
c4
21 � c2

4 �
312.3452

0.94
 21 � 0.942 � 2.553

X

X

 LCL � D3 r � 102 15.82 � 0

 UCL � D4 r � 12.1152 15.82 � 12.27

(15-17)UCL � x � 3 
s

c41n
  CL � x  LCL � s � 3 

s

c41n

Control Chart
(from )S

X
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Table 15-1 Vane-Opening Measurements

Sample
Number x1 x2 x3 x4 x5 r s

1 33 29 31 32 33 31.6 4 1.67332
2 33 31 35 37 31 33.4 6 2.60768
3 35 37 33 34 36 35.0 4 1.58114
4 30 31 33 34 33 32.2 4 1.64317
5 33 34 35 33 34 33.8 2 0.83666
6 38 37 39 40 38 38.4 3 1.14018
7 30 31 32 34 31 31.6 4 1.51658
8 29 39 38 39 39 36.8 10 4.38178
9 28 33 35 36 43 35.0 15 5.43139

10 38 33 32 35 32 34.0 6 2.54951
11 28 30 28 32 31 29.8 4 1.78885
12 31 35 35 35 34 34.0 4 1.73205
13 27 32 34 35 37 33.0 10 3.80789
14 33 33 35 37 36 34.8 4 1.78885
15 35 37 32 35 39 35.6 7 2.60768
16 33 33 27 31 30 30.8 6 2.48998
17 35 34 34 30 32 33.0 5 2.00000
18 32 33 30 30 33 31.6 3 1.51658
19 25 27 34 27 28 28.2 9 3.42053
20 35 35 36 33 30 33.8 6 2.38747

s � 2.345r � 5.8x � 33.32

x

Figure 15-8 The and R
control charts for vane opening.
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Figure 15-9 The S
control chart for vane
opening.
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Figure 15-10 The 
and R control charts for
vane opening, revised
limits.

X

The LCL is set to zero. If is used to determine the control
limits for the chart,

and this result is nearly the same as from . The S chart is shown
in Fig. 15-9. Because the control limits for the chart calculated
from are nearly the same as from , the chart is not shown.

Suppose that all of these assignable causes can be traced
to a defective tool in the wax-molding area. We should discard
these five samples and recompute the limits for the and R
charts. These new revised limits are, for the chart,

 LCL � x � A2 r � 33.21 � 10.5772 15.02 � 30.33

 UCL � x � A2 r � 33.21 � 10.5772 15.02 � 36.10

X
X

rs
X

r

x 

3s

c41n
� 33.32 


312.3452

0.9415
� 33.32 
 3.35

X
s and for the R chart,

The revised control charts are shown in Fig. 15-10. 
Practical Interpretation: Notice that we have treated the

first 20 preliminary samples as estimation data with which to
establish control limits. These limits can now be used to judge
the statistical control of future production. As each new
sample becomes available, the values of and r should be
computed and plotted on the control charts. It may be desir-
able to revise the limits periodically, even if the process
remains stable. The limits should always be revised when
process improvements are made.

x

 LCL � D3 r � 102 15.02 � 0

 UCL � D4 r � 12.1152 15.02 � 10.57
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16-5 AND R OR S CONTROL CHARTS 655X

Computer Construction of and R Control Charts
Many computer programs construct and R control charts. Figures 15-8 and 15-10 show
charts similar to those produced by Minitab for the vane-opening data. This program will 
allow the user to select any multiple of sigma as the width of the control limits and use the
Western Electric rules to detect out-of-control points. The program will also prepare a sum-
mary report as in Table 15-2 and exclude subgroups from the calculation of the control limits.

X
X

Table 15-2 Summary Report from Minitab for the Vane-Opening Data

Test Results for Xbar Chart
TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 6 8 11 19

Test Results for R Chart
TEST 1. One point more than 3.00 sigmas from center line.
Test Failed at points: 9

15-1. Control charts for and R are to be set up for an im-
portant quality characteristic. The sample size is n � 5, and 

and r are computed for each of 35 preliminary samples. 
The summary data are

(a) Calculate trial control limits for and R charts.
(b) Assuming that the process is in control, estimate the

process mean and standard deviation.

15-2. Twenty-five samples of size 5 are drawn from a process
at one-hour intervals, and the following data are obtained:

(a) Calculate trial control limits for and R charts.
(b) Repeat part (a) for and S charts.

15-3. Control charts are to be constructed for samples of size
n � 4, and and s are computed for each of 20 preliminary
samples as follows:

(a) Calculate trial control limits for and S charts.
(b) Assuming the process is in control, estimate the process

mean and standard deviation.

15-4. Samples of size n � 6 are collected from a process
every hour. After 20 samples have been collected, we calcu-
late and 
(a) Calculate trial control limits for and R charts.X

r�d2 � 1.4.x � 20.0

X

a
20

i�1
xi � 4460  a

20

i�1
si � 271.6

x

X
X

a
25

i�1
xi � 362.75  a

25

i�1
ri � 8.60  a

25

i�1
si � 3.64

X

a
35

i�1
xi � 7805  a

35

i�1
ri � 1200

x

X (b) If , determine trial control limits for and S
charts.

15-5. The level of cholesterol (in mg/dL) is an important index
for human health. The sample size is n � 5. The following sum-
mary statistics are obtained from cholesterol measurements:

(a) Find trial control limits for and R charts.
(b) Repeat part (a) for and S charts.

15-6. An control chart with three-sigma control limits has
UCL � 48.75 and LCL � 42.71. Suppose the process standard
deviation is � � 2.25. What subgroup size was used for the chart?

15-7. An extrusion die is used to produce aluminum rods.
The diameter of the rods is a critical quality characteristic. The
following table shows and r values for 20 samples of five 
rods each. Specifications on the rods are 0.5035 � 0.0010 inch.
The values given are the last three digits of the measurement;
that is, 34.2 is read as 0.50342.

x

X

X
X

a
30

i�1
xi � 140.03,   a

30

i�1
ri � 13.63,   a

30

i�1
si � 5.10

Xs�c4 � 1.5

EXERCISES FOR SECTION 15-3

Sample r

1 34.2 3
2 31.6 4
3 31.8 4
4 33.4 5
5 35.0 4
6 32.1 2
7 32.6 7
8 33.8 9
9 34.8 10

x

continued
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656 CHAPTER 15 STATISTICAL QUALITY CONTROL

(a) Use all the data to determine trial control limits for and
R charts, construct the control limits, and plot the data.

(b) Use the control limits from part (a) to identify out-of-control
points. If necessary, revise your control limits assuming that
any samples that plot outside of the control limits can be
eliminated.

(c) Repeat parts (a) and (b) for and S charts.

15-10. The following data were considered in Quality
Engineering [“An SPC Case Study on Stabilizing Syringe
Lengths” (1999–2000, Vol. 12(1))]. The syringe length is
measured during a pharmaceutical manufacturing process.
The following table provides data (in inches) for 20 samples
each of size five.

Sample

1 4.960 4.946 4.950 4.956 4.958
2 4.958 4.927 4.935 4.940 4.950
3 4.971 4.929 4.965 4.952 4.938
4 4.940 4.982 4.970 4.953 4.960
5 4.964 4.950 4.953 4.962 4.956
6 4.969 4.951 4.955 4.966 4.954
7 4.960 4.944 4.957 4.948 4.951
8 4.969 4.949 4.963 4.952 4.962
9 4.984 4.928 4.960 4.943 4.955

10 4.970 4.934 4.961 4.940 4.965
11 4.975 4.959 4.962 4.971 4.968
12 4.945 4.977 4.950 4.969 4.954

x5x4x3x2x1

X

X

Sample r

10 38.6 4
11 35.4 8
12 34.0 6
13 36.0 4
14 37.2 7
15 35.2 3
16 33.4 10
17 35.0 4
18 34.4 7
19 33.9 8
20 34.0 4

x

(a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify 
out-of-control points. If necessary, revise your control
limits, assuming that any samples that plot outside the
control limits can be eliminated. Estimate �.

15-8. The copper content of a plating bath is measured three
times per day, and the results are reported in ppm. The and r
values for 25 days are shown in the following table:

Day r Day r

1 5.45 1.21 14 7.01 1.45

2 5.39 0.95 15 5.83 1.37

3 6.85 1.43 16 6.35 1.04

4 6.74 1.29 17 6.05 0.83

5 5.83 1.35 18 7.11 1.35

6 7.22 0.88 19 7.32 1.09

7 6.39 0.92 20 5.90 1.22

8 6.50 1.13 21 5.50 0.98

9 7.15 1.25 22 6.32 1.21

10 5.92 1.05 23 6.55 0.76

11 6.45 0.98 24 5.90 1.20

12 5.38 1.36 25 5.95 1.19

13 6.03 0.83

(a) Using all the data, find trial control limits for and R charts,
construct the chart, and plot the data. Is the process in
statistical control?

(b) If necessary, revise the control limits computed in part (a),
assuming that any samples that plot outside the control
limits can be eliminated.

15-9. The pull strength of a wire-bonded lead for an inte-
grated circuit is monitored. The following table provides data
for 20 samples each of size three.

X

xx

x

X

Sample Number x1 x2 x3

1 15.4 15.6 15.3
2 15.4 17.1 15.2
3 16.1 16.1 13.5
4 13.5 12.5 10.2
5 18.3 16.1 17.0
6 19.2 17.2 19.4
7 14.1 12.4 11.7
8 15.6 13.3 13.6
9 13.9 14.9 15.5

10 18.7 21.2 20.1
11 15.3 13.1 13.7
12 16.6 18.0 18.0
13 17.0 15.2 18.1
14 16.3 16.5 17.7
15 8.4 7.7 8.4
16 11.1 13.8 11.9
17 16.5 17.1 18.5
18 18.0 14.1 15.9
19 17.8 17.3 12.0
20 11.5 10.8 11.2
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16-5 AND R OR S CONTROL CHARTS 657X

13 4.976 4.964 4.970 4.968 4.972
14 4.970 4.954 4.964 4.959 4.968
15 4.982 4.962 4.968 4.975 4.963
16 4.961 4.943 4.950 4.949 4.957
17 4.980 4.970 4.975 4.978 4.977
18 4.975 4.968 4.971 4.969 4.972
19 4.977 4.966 4.969 4.973 4.970
20 4.975 4.967 4.969 4.972 4.972 

(a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data. Is this
process in statistical control?

(b) Use the trial control limits from part (a) to identify out-
of-control points. If necessary, revise your control limits
assuming that any samples that plot outside of the control
limits can be eliminated.

(c) Repeat parts (a) and (b) for and S charts.

15-11. The thickness of a metal part is an important qual-
ity parameter. Data on thickness (in inches) are given in the
following table, for 25 samples of five parts each.

X

X

(a) Using all the data, find trial control limits for and R
charts, construct the chart, and plot the data. Is the process
in statistical control?

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits
assuming that any samples that plot outside of the control
limits can be eliminated.

(c) Repeat parts (a) and (b) for and S charts.

15-12. Apply the Western Electric Rules to the following 
control chart. The warning limits are shown as dotted lines.
Describe any rule violations.

x

X

X

Sample

Number x1 x2 x3 x4 x5

1 0.0629 0.0636 0.0640 0.0635 0.0640
2 0.0630 0.0631 0.0622 0.0625 0.0627
3 0.0628 0.0631 0.0633 0.0633 0.0630
4 0.0634 0.0630 0.0631 0.0632 0.0633
5 0.0619 0.0628 0.0630 0.0619 0.0625
6 0.0613 0.0629 0.0634 0.0625 0.0628
7 0.0630 0.0639 0.0625 0.0629 0.0627
8 0.0628 0.0627 0.0622 0.0625 0.0627
9 0.0623 0.0626 0.0633 0.0630 0.0624

10 0.0631 0.0631 0.0633 0.0631 0.0630
11 0.0635 0.0630 0.0638 0.0635 0.0633
12 0.0623 0.0630 0.0630 0.0627 0.0629
13 0.0635 0.0631 0.0630 0.0630 0.0630
14 0.0645 0.0640 0.0631 0.0640 0.0642
15 0.0619 0.0644 0.0632 0.0622 0.0635
16 0.0631 0.0627 0.0630 0.0628 0.0629
17 0.0616 0.0623 0.0631 0.0620 0.0625
18 0.0630 0.0630 0.0626 0.0629 0.0628
19 0.0636 0.0631 0.0629 0.0635 0.0634
20 0.0640 0.0635 0.0629 0.0635 0.0634
21 0.0628 0.0625 0.0616 0.0620 0.0623
22 0.0615 0.0625 0.0619 0.0619 0.0622
23 0.0630 0.0632 0.0630 0.0631 0.0630
24 0.0635 0.0629 0.0635 0.0631 0.0633
25 0.0623 0.0629 0.0630 0.0626 0.0628

Sample x1 x2 x3 x4

1 163.95 164.54 163.87 165.10
2 163.30 162.85 163.18 165.10
3 163.13 165.14 162.80 163.81
4 164.08 163.43 164.03 163.77
5 165.44 163.63 163.95 164.78
6 163.83 164.14 165.22 164.91
7 162.94 163.64 162.30 163.78
8 164.97 163.68 164.73 162.32
9 165.04 164.06 164.40 163.69

10 164.74 163.74 165.10 164.32
11 164.72 165.75 163.07 163.84

Observation

2018161412108642

UCL=16

6

8

12

14

LCL=4

X=10
_

continued

15-13. An control chart with three-sigma control limits
and subgroup size n � 4 has control limits UCL � 48.75 and
LCL � 40.55.
(a) Estimate the process standard deviation.
(b) Does the answer to part (a) depend on whether or was

used to construct the control chart?

15-14. Web traffic can be measured to help highlight secu-
rity problems or indicate a potential lack of bandwidth. Data
on Web traffic (in thousand hits) from http://en.wikipedia.
org/wiki/Web_traffic are given in the following table for 25
samples each of size four.

X
sr

X
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15-4 CONTROL CHARTS FOR INDIVIDUAL 
MEASUREMENTS

In many situations, the sample size used for process control is n � 1; that is, the sample con-
sists of an individual unit. Some examples of these situations are as follows:

1. Automated inspection and measurement technology is used, and every unit manu-
factured is analyzed.

2. The production rate is very slow, and it is inconvenient to allow sample sizes of n � 1
to accumulate before being analyzed.

3. Repeat measurements on the process differ only because of laboratory or analysis 
error, as in many chemical processes.

4. In process plants, such as papermaking, measurements on some parameters such
as coating thickness across the roll will differ very little and produce a standard
deviation that is much too small if the objective is to control coating thickness
along the roll.

In such situations, the individuals control chart (also called an X chart) is useful. The
control chart for individuals uses the moving range of two successive observations to estimate
the process variability. The moving range is defined as MRi � 0Xi � Xi�10 and for m observations
the average moving range is m

An estimate of � is

(15-18)

because each moving range is the range between two consecutive observations. Note that there
are only m � 1 moving ranges. It is also possible to establish a control chart on the moving range
using D3 and D4 for n � 2. The parameters for these charts are defined as follows.

�̂ �
MR

d2
�

MR

1.128

MR �
1

m � 1 a
m

i�2
0Xi � Xi�10

658 CHAPTER 15 STATISTICAL QUALITY CONTROL

Sample x1 x2 x3 x4

12 164.25 162.72 163.25 164.14
13 164.71 162.63 165.07 162.59
14 166.61 167.07 167.41 166.10
15 165.23 163.40 164.94 163.74
16 164.27 163.42 164.73 164.88
17 163.59 164.84 164.45 164.12
18 164.90 164.20 164.32 163.98
19 163.98 163.53 163.34 163.82
20 164.08 164.33 162.38 164.08
21 165.71 162.63 164.42 165.27
22 164.03 163.36 164.55 165.77
23 160.52 161.68 161.18 161.33
24 164.22 164.27 164.35 165.12
25 163.93 163.96 165.05 164.52

(a) Use all the data to determine trial control limits for and
R charts, construct the chart, and plot the data.

(b) Use the trial control limits from part (a) to identify out-
of-control points. If necessary, revise your control limits,
assuming that any samples that plot outside the control
limits can be eliminated.

15-15. Consider the data in Exercise 15-9. Calculate the
sample standard deviation of all 60 measurements and com-
pare this result to the estimate of obtained from your revised

and R charts. Explain any differences.

15-16. Consider the data in Exercise 15-10. Calculate the
sample standard deviation of all 100 measurements and com-
pare this result to the estimate of obtained from your revised

and R charts. Explain any differences.X
�

X
�

X
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15-4 CONTROL CHARTS FOR INDIVIDUAL MEASUREMENTS 659

The center line and upper and lower control limits for a control chart for individuals are

(15-19)

and for a control chart for moving ranges

 LCL � D3mr � 0

 CL � mr

 UCL � D4mr � 3.267mr

 LCL � x � 3 
mr

d2
� x � 3 

mr

1.128

 CL � x

 UCL � x � 3 
mr

d2
� x � 3 

mr

1.128

Individuals 
Control Chart 

Note that LCL for this moving range chart is always zero because D3 � 0 for n = 2.  The pro-
cedure is illustrated in the following example.

EXAMPLE 15-2 Chemical Process Concentration
Table 15-3 shows 20 observations on concentration for the
output of a chemical process. The observations are taken at
one-hour intervals. If several observations are taken at the

same time, the observed concentration reading will differ only
because of measurement error. Since the measurement error is
small, only one observation is taken each hour.

Table 15-3 Chemical Process Concentration Measurements

Concentration Moving Range
Observation x mr

1 102.0
2 94.8 7.2
3 98.3 3.5
4 98.4 0.1
5 102.0 3.6
6 98.5 3.5
7 99.0 0.5
8 97.7 1.3
9 100.0 2.3

10 98.1 1.9
11 101.3 3.2
12 98.7 2.6
13 101.1 2.4
14 98.4 2.7
15 97.0 1.4
16 96.7 0.3
17 100.3 3.6
18 101.4 1.1
19 97.2 4.2
20 101.0 3.8

mr � 2.59x � 99.1
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660 CHAPTER 15 STATISTICAL QUALITY CONTROL

To set up the control chart for individuals, note that the
sample average of the 20 concentration readings is 
and that the average of the moving ranges of two observations
shown in the last column of Table 16-3 is To set up
the moving-range chart, we note that D3 � 0 and D4 � 3.267
for n � 2. Therefore, the moving-range chart has center line

, LCL � 0, and 
The control chart is shown as the lower control chart

in Fig. 15-11. This control chart was constructed by Minitab.
Because no points exceed the upper control limit, we may now
set up the control chart for individual concentration measure-
ments. If a moving range of n � 2 observations is used,
d2 � 1.128. For the data in Table 15-3 we have

� 8.46.
UCL � D4mr � 13.2672 12.592mr � 2.59

mr � 2.59.

x � 99.1

The control chart for individual concentration measure-
ments is shown as the upper control chart in Fig. 15-11. There
is no indication of an out-of-control condition.

Practical Interpretation: These calculated control limits
are used to monitor future production.

 LCL � x � 3 
mr

d2
� 99.1 � 3 

2.59

1.128
� 92.21

 CL � x � 99.1

 UCL � x � 3 
mr

d2
� 99.1 � 3 

2.59

1.128
� 105.99

Figure 15-11 Control charts for individuals and the moving range (from Minitab) for the chemical
process concentration data.
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The chart for individuals can be interpreted much like an ordinary control chart. A shift
in the process average will result in either a point (or points) outside the control limits, or a
pattern consisting of a run on one side of the center line.

Some care should be exercised in interpreting patterns on the moving-range chart.
The moving ranges are correlated, and this correlation may often induce a pattern of runs
or cycles on the chart. The individual measurements are assumed to be uncorrelated, 
however, and any apparent pattern on the individuals’ control chart should be carefully 
investigated.

The control chart for individuals is not very sensitive to small shifts in the process mean.
For example, if the size of the shift in the mean is one standard deviation, the average number
of points to detect this shift is 43.9. This result is shown later in the chapter. While the per-
formance of the control chart for individuals is much better for large shifts, in many situations
the shift of interest is not large and more rapid shift detection is desirable. In these cases, we
recommend time-weighted charts such as the cumulative sum control chart or an exponen-
tially weighted moving-average chart (discussed in Section 15-8).

Some individuals have suggested that limits narrower than 3-sigma be used on the
chart for individuals to enhance its ability to detect small process shifts. This is a danger-
ous suggestion, for narrower limits dramatically increase false alarms and the charts may
be ignored and become useless. If you are interested in detecting small shifts, consider the
time-weighted charts.

X
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15-4 CONTROL CHARTS FOR INDIVIDUAL MEASUREMENTS 661

EXERCISES FOR SECTION 15-4

Observation Hardness Observation Hardness

1 51 11 51

2 52 12 57
3 54 13 58
4 55 14 50
5 55 15 53
6 51 16 52
7 52 17 54
8 50 18 50
9 51 19 56

10 56 20 53

15-17. Twenty successive hardness measurements are made
on a metal alloy, and the data are shown in the following table.

15-19. The diameter of holes is measured in consecutive 
order by an automatic sensor. The results of measuring 25
holes are in the following table.

(a) Using all the data, compute trial control limits for individual
observations and moving-range charts. Construct the chart
and plot the data. Determine whether the process is in statis-
tical control. If not, assume assignable causes can be found
to eliminate these samples and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

15-18. In a semiconductor manufacturing process CVD
metal thickness was measured on 30 wafers obtained over ap-
proximately two weeks. Data are shown in the following table.
(a) Using all the data, compute trial control limits for individual

observations and moving-range charts. Construct the chart
and plot the data. Determine whether the process is in statis-
tical control. If not, assume assignable causes can be found
to eliminate these samples and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Construct the
control chart and plot the data. Determine whether the
process is in statistical control. If not, assume assignable
causes can be found to eliminate these samples and revise
the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

15-20. The viscosity of a chemical intermediate is mea-
sured every hour. Twenty samples each of size n � 1, are in the
following table.

Wafer x Wafer x

1 16.8 16 15.4
2 14.9 17 14.3
3 18.3 18 16.1
4 16.5 19 15.8
5 17.1 20 15.9
6 17.4 21 15.2
7 15.9 22 16.7
8 14.4 23 15.2
9 15.0 24 14.7

10 15.7 25 17.9
11 17.1 26 14.8
12 15.9 27 17.0
13 16.4 28 16.2
14 15.8 29 15.6
15 15.4 30 16.3

Sample Diameter

1 9.94

2 9.93

3 10.09

4 9.98

5 10.11

6 9.99

7 10.11

8 9.84

9 9.82

10 10.38

11 9.99

12 10.41

13 10.36

Sample Diameter

14 9.99

15 10.12

16 9.81

17 9.73

18 10.14

19 9.96

20 10.06

21 10.11

22 9.95

23 9.92

24 10.09

25 9.85

Sample Viscosity Sample Viscosity

1 495 11 493
2 491 12 507
3 501 13 503
4 501 14 475
5 512 15 497
6 540 16 499
7 492 17 468
8 504 18 486
9 542 19 511

10 508 20 487 

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Determine
whether the process is in statistical control. If not, assume
assignable causes can be found to eliminate these samples
and revise the control limits.
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662 CHAPTER 15 STATISTICAL QUALITY CONTROL

(b) Estimate the process mean and standard deviation for the
in-control process.

15-21. The following table of data was analyzed in Quality
Engineering (1991–1992, Vol. 4(1)). The average particle size
of raw material was obtained from 25 successive samples.

Observation Size Observation Size

1 96.1 14 100.5
2 94.4 15 103.1
3 116.2 16 93.1
4 98.8 17 93.7
5 95.0 18 72.4
6 120.3 19 87.4
7 104.8 20 96.1
8 88.4 21 97.1
9 106.8 22 95.7

10 96.8 23 94.2
11 100.9 24 102.4
12 117.7 25 131.9
13 115.6

(a) Using all the data, compute trial control limits for individual
observations and moving-range charts. Construct the chart
and plot the data. Determine whether the process is in statis-
tical control. If not, assume assignable causes can be found
to eliminate these samples and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

15-22. Pulsed laser deposition technique is a thin film dep-
osition technique with a high-powered laser beam. Twenty-five
films were deposited through this technique. The thicknesses
of the films obtained are shown in the following table.

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Determine
whether the process is in statistical control. If not, assume
assignable causes can be found to eliminate these samples,
and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

15-23. The production manager of a soap manufacturing
company wants to monitor the weights of the bars produced
on the line. Twenty bars are taken during a stable period of
the process. The weights of the bars are shown in the follow-
ing table.

Film Thickness (in nm) Film Thickness (in nm)

1 28 8 51
2 45 9 23
3 34 10 35
4 29 11 47
5 37 12 50
6 52 13 32
7 29 14 40

Bar Weight (in g) Bar Weight (in g)

1 74 11 99
2 82 12 75
3 97 13 77
4 86 14 82
5 71 15 93
6 68 16 70
7 83 17 87
8 90 18 76
9 88 19 84

10 64 20 94

(a) Using all the data, compute trial control limits for individ-
ual observations and moving-range charts. Determine
whether the process is in statistical control. If not, assume
assignable causes can be found to eliminate these samples,
and revise the control limits.

(b) Estimate the process mean and standard deviation for the
in-control process.

15 46 21 21
16 59 22 62
17 20 23 34
18 33 24 31
19 56 25 98
20 49

15-5 PROCESS CAPABILITY

It is usually necessary to obtain some information about the process capability, that is, the
performance of the process when it is operating in control. Two graphical tools, the tolerance
chart (or tier chart) and the histogram, are helpful in assessing process capability. The toler-
ance chart for all 20 samples from the vane-manufacturing process is shown in Fig. 15-12. The
specifications on vane opening are in. In terms of the coded data, the upper
specification limit is USL � 40 and the lower specification limit is LSL � 20, and these limits

0.5030 
 0.0010
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Figure 15-12
Tolerance diagram of
vane openings.
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are shown on the chart in Fig. 15-12. Each measurement is plotted on the tolerance chart.
Measurements from the same subgroup are connected with lines. The tolerance chart is useful
in revealing patterns over time in the individual measurements, or it may show that a particu-
lar value of or r was produced by one or two unusual observations in the sample. For exam-
ple, note the two unusual observations in sample 9 and the single unusual observation in
sample 8. Note also that it is appropriate to plot the specification limits on the tolerance chart,
since it is a chart of individual measurements. It is never appropriate to plot specification
limits on a control chart or to use the specifications in determining the control limits.
Specification limits and control limits are unrelated. Finally, note from Fig. 15-12 that the
process is running off-center from the nominal dimension of 30 (or 0.5030 inch).

The histogram for the vane-opening measurements is shown in Fig. 15-13. The observations
from samples 6, 8, 9, 11, and 19 (corresponding to out of-control points on either the or R
chart) have been deleted from this histogram. The general impression from examining this his-
togram is that the process is capable of meeting the specification but that it is running off-center.

Another way to express process capability is in terms of an index that is defined as follows.

X

x

The process capability ratio (PCR) is

(15-20)PCR �
USL � LSL

6�

Process 
Capability Ratio
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664 CHAPTER 15 STATISTICAL QUALITY CONTROL

Figure 15-13
Histogram for vane
opening.
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The numerator of PCR is the width of the specifications. The limits 3� on either side of the
process mean are sometimes called natural tolerance limits, for these represent limits that an
in-control process should meet with most of the units produced. Consequently, 6� is often
referred to as the width of the process. For the vane opening, where our sample size is 5, we
could estimate � as

Therefore, the PCR is estimated to be

The PCR has a natural interpretation: (1�PCR)100% is just the percentage of the specifi-
cations’ width used by the process. Thus, the vane-opening process uses approximately
(1�1.55)100% � 64.5% of the specifications’ width.

Figure 15-14(a) shows a process for which the PCR exceeds unity. Since the process
natural tolerance limits lie inside the specifications, very few defective or nonconforming
units will be produced. If PCR � 1, as shown in Fig.15-14(b), more nonconforming units
result. In fact, for a normally distributed process, if PCR � 1, the fraction nonconforming
is 0.27%, or 2700 parts per million. Finally, when the PCR is less than unity, as in Fig.
15-14(c), the process is very yield-sensitive and a large number of nonconforming units will
be produced.

The definition of the PCR given in Equation 15-20 implicitly assumes that the
process is centered at the nominal dimension. If the process is running off-center, its 
actual capability will be less than indicated by the PCR. It is convenient to think of PCR
as a measure of potential capability, that is, capability with a centered process. If the

PCR �
USL � LSL

6�̂
�

40 � 20

612.152
� 1.55

�̂ �
r

d2
�

5.0
2.326

� 2.15
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Figure 15-14
Process fallout and the
process capability ratio
(PCR).

USLLSL μ

Nonconforming
units
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(c)

PCR < 1

USLLSL

μ

Nonconforming
units

Nonconforming
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3σ3σ

(b)

PCR = 1

USLLSL μ

3σ3σ

(a)

PCR > 1

(15-21)PCRk � min c
USL � �

3�
, 

� � LSL

3�
d

PCRk

In effect, PCRk is a one-sided process capability ratio that is calculated relative to the specifi-
cation limit nearest to the process mean. For the vane-opening process, we find that the
estimate of the process capability ratio PCRk (after deleting the samples corresponding to out-
of-control points) is

Note that if PCR � PCRk, the process is centered at the nominal dimension. Since
for the vane-opening process and the process is obviously run-

ning off-center, as was first noted in Figs. 15-10 and 15-13. This off-center operation was
PCR̂ � 1.55,PCR̂k � 1.05

� min c
40 � 33.21

312.152
� 1.06,  

33.21 � 20

312.152
� 2.04 d � 1.05

PCR̂k � min c
USL � x

3�̂ , 
x � LSL

3�̂
d

process is not centered, a measure of actual capability is often used. This ratio, called
PCRk, is defined below.
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Figure 15-15 Mean
of a six-sigma process
shifts by 1.5 standard
deviations.

USLLSL μ

3σ3σ

1.5σ

PCRk = 1.5PCRk = 2

ultimately traced to an oversized wax tool. Changing the tooling resulted in a substantial
improvement in the process.

The fractions of nonconforming output (or fallout) below the lower specification limit and
above the upper specification limit are often of interest. Suppose that the output from a normally
distributed process in statistical control is denoted as X. The fractions are determined from

P1X � LSL2 � P1Z � 1LSL � �2	�2  P1X � USL2 � P1Z � 1USL � �2	�2

EXAMPLE 15-3 Electrical Current
For an electronic manufacturing process a current has specifi-
cations of milliamperes. The process mean � and
standard deviation � are 107.0 and 1.5, respectively. The
process mean is nearer to the USL. Consequently,

and

The small PCRk indicates that the process is likely to produce
currents outside of the specification limits. From the normal

 PCRk �
110 � 107

3 � 15
� 0.67

PCR �
110 � 90

6 � 5
� 2.22

100 
 10
distribution in Appendix Table II,

Practical Interpretation: The probability a current is less
than the LSL is nearly zero. Consequently, the nonconform-
ing output exceeds the USL. The PCRk would improve if the
process mean were centered in the specifications at 100 mil-
liamperes. 

� P1Z � 22 � 0.023

P1X � USL2 � P1Z � 1110 � 1072	1.52

� P1Z � �11.332 � 0

P1X � LSL2 � P1Z � 190 � 1072	1.52

For this example, the relatively large probability of exceeding the USL is a warning of poten-
tial problems with this criterion even if none of the measured observations in a preliminary sam-
ple exceed this limit. We emphasize that the fraction-nonconforming calculation assumes that the
observations are normally distributed and the process is in control. Departures from normality can
seriously affect the results. The calculation should be interpreted as an approximate guideline for
process performance. To make matters worse, � and � need to be estimated from the data avail-
able and a small sample size can result in poor estimates that further degrade the calculation.

Montgomery (2009) provides guidelines on appropriate values of the PCR and a table re-
lating fallout for a normally distributed process in statistical control to the value of PCR.
Many U.S. companies use PCR � 1.33 as a minimum acceptable target and PCR � 1.66 as a
minimum target for strength, safety, or critical characteristics. Some companies require that in-
ternal processes and those at suppliers achieve a PCRk � 2.0. Figure 15-15 illustrates a process
with PCR � PCRk � 2.0. Assuming a normal distribution, the calculated fallout for this process
is 0.0018 parts per million. A process with PCRk � 2.0 is referred to as a six-sigma process be-
cause the distance from the process mean to the nearest specification is six standard deviations.
The reason that such a large process capability is often required is that it is difficult to maintain
a process mean at the center of the specifications for long periods of time. A common model that
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15-5 PROCESS CAPABILITY 667

is used to justify the importance of a six-sigma process is illustrated by referring to Fig. 15-15.
If the process mean shifts off-center by 1.5 standard deviations, the PCRk decreases to

Assuming a normally distributed process, the fallout of the shifted process is 3.4 parts per
million. Consequently, the mean of a 6-sigma process can shift 1.5 standard deviations from
the center of the specifications and still maintain a fallout of 3.4 parts per million.

In addition, some U.S. companies, particularly the automobile industry, have adopted the
terminology Cp � PCR and Cpk � PCRk. Because Cp has another meaning in statistics (in
multiple regression) we prefer the traditional notation PCR and PCRk.

We repeat that process capability calculations are meaningful only for stable processes;
that is, processes that are in control. A process capability ratio indicates whether or not the nat-
ural or chance variability in a process is acceptable relative to the specifications.

PCRk �
USL � �

3�
�

6� � 1.5�

3�
�

4.5�

3�
� 1.5

15-24. Suppose that a quality characteristic is normally
distributed with specifications at The process stan-
dard deviation is 6.
(a) Suppose that the process mean is 100. What are the natural

tolerance limits? What is the fraction defective? Calculate
PCR and PCRk and interpret these ratios.

(b) Suppose that the process mean is 106. What are the natu-
ral tolerance limits? What is the fraction defective?
Calculate PCR and PCRk and interpret these ratios.

15-25. Suppose that a quality characteristic is normally
distributed with specifications from 20 to 32 units.
(a) What value is needed for to achieve a PCR of 1.5?
(b) What value for the process mean minimizes the fraction

defective? Does this choice for the mean depend on the
value of 

15-26. Suppose that a quality characteristic is normally
distributed with specifications from 10 to 30 units. The
process standard deviation is 2 units.
(a) Calculate the natural tolerance limits, fraction defective,

PCR, and PCRk when the process mean is 20.
(b) Suppose the process mean shifts higher by 1.5 standard

deviations. Recalculate the quantities in part (b).
(c) Compare the results in parts (a) and (b) and comment on

any differences.

15-27. A normally distributed process uses 66.7% of the
specification band. It is centered at the nominal dimension, lo-
cated halfway between the upper and lower specification limits.
(a) Estimate PCR and PCRk. Interpret these ratios.
(b) What fallout level (fraction defective) is produced?

15-28. A normally distributed process uses 85% of the
specification band. It is centered at the nominal dimension,
located halfway between the upper and lower specification
limits.
(a) Estimate PCR and PCRk. Interpret these ratios.
(b) What fallout level (fraction defective) is produced?

�?

�

100 
 20.

EXERCISES FOR SECTION 15-5

15-29. Reconsider Exercise 15-1. Suppose that the quality
characteristic is normally distributed with specification at 
220 
 40. What is the fallout level? Estimate PCR and PCRk

and interpret these ratios.

15-30. Reconsider Exercise 15-2, where the specification
limits are 14.50 
 0.50.
(a) What conclusions can you draw about the ability of the

process to operate within these limits? Estimate the per-
centage of defective items that will be produced.

(b) Estimate PCR and PCRk. Interpret these ratios.

15-31. Reconsider Exercise 15-3. Suppose that the variable
is normally distributed with specifications at 220 
 50. What
is the proportion out of specifications? Estimate and interpret
PCR and PCRk.

15-32. Reconsider Exercise 15-4(a). Assuming that both
charts exhibit statistical control and that the process specifications
are at 20 
 5, estimate PCR and PCRk and interpret these ratios.

15-33. Reconsider Exercise 15-7. Use the revised control
limits and process estimates.
(a) Estimate PCR and PCRk. Interpret these ratios.
(b) What percentage of defectives is being produced by this

process?

15-34. Reconsider Exercise 15-8. Given that the specifica-
tions are at 6.0 
 1.0, estimate PCR and PCRk and interpret
these ratios.

15-35. Reconsider Exercise 15-9. Using the process estimates,
what is the fallout level if the specifications are 16 
 5? Estimate
PCR and interpret this ratio.

15-36. Reconsider 15-20. The viscosity specifications are at
500 
 25. Calculate estimates of the process capability ratios
PCR and PCRk for this process and provide an interpretation.

15-37. Suppose that a quality characteristic is normally dis-
tributed with specifications at 120 
 20. The process standard
deviation is 6.5.
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668 CHAPTER 15 STATISTICAL QUALITY CONTROL

(a) Suppose that the process mean is 120. What are the natu-
ral tolerance limits? What is the fraction defective?
Calculate PCR and PCRk and interpret these ratios.

(b) Suppose the process mean shifts off-center by 1.5 stan-
dard deviations toward the upper specification limit.
Recalculate the quantities in part (a).

(c) Compare the results in parts (a) and (b) and comment on
any differences.

15-38. Suppose that a quality characteristic is normally dis-
tributed with specifications at 150 
 20. Natural tolerance
limits for the process are 150 
 18.
(a) Calculate the process standard deviation.
(b) Calculate PCR and PCRk of the process. Calculate the per-

centage of the specification width used by the process.

(c) What fallout level (fraction defective) is produced?

15-39. An control chart with three-sigma control limits
and subgroup size n = 4 has control limits UCL = 28.8 and
LCL = 24.6. The process specification limits are (24, 32).
(a) Estimate the process standard deviation.
(b) Calculate PCR and PCRk for the process.

15-40. A control chart for individual observations has
three-sigma control limits UCL = 1.80 and LCL = 1.62. The
process specification limits are (1.64, 1.84).
(a) Estimate the process standard deviation.
(b) Calculate PCR and PCRk for the process.

X

15-6 ATTRIBUTE CONTROL CHARTS

15-6.1 P Chart (Control Chart for Proportions)

Often it is desirable to classify a product as either defective or nondefective on the basis of
comparison with a standard. This classification is usually done to achieve economy and sim-
plicity in the inspection operation. For example, the diameter of a ball bearing may be
checked by determining whether it will pass through a gauge consisting of circular holes cut
in a template. This kind of measurement would be much simpler than directly measuring the
diameter with a device such as a micrometer. Control charts for attributes are used in these
situations. Attribute control charts often require a considerably larger sample size than do
their variable measurements counterparts. In this section, we discuss the fraction-defective
control chart, or P chart. Sometimes the P chart is called the control chart for fraction 
nonconforming.

Suppose D is the number of defective units in a random sample of size n. We assume that
D is a binomial random variable with unknown parameter p. The fraction defective

of each sample is plotted on the chart. Furthermore, the variance of the statistic is

Therefore, a P chart for fraction defective could be constructed using p as the center line and
control limits at

(15-22)

However, the true process fraction defective is almost always unknown and must be estimated
using the data from preliminary samples.

Suppose that m preliminary samples each of size n are available, and let Di be the number
of defectives in the ith sample. Then is the sample fraction defective in the ith
sample. The average fraction defective is

Pi � Di	n

UCL � p � 3 

B

p11 � p2
n   LCL � p � 3 

B

p11 � p2
n

�2
P �

p11 � p2
n

P

P �
D
n
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15-6 ATTRIBUTE CONTROL CHARTS 669

These control limits are based on the normal approximation to the binomial distribution.
When p is small, the normal approximation may not always be adequate. In such cases, we
may use control limits obtained directly from a table of binomial probabilities. If is small,
the lower control limit obtained from the normal approximation may be a negative number. If
this should occur, it is customary to consider zero as the lower control limit.

p

(15-23)

Now may be used as an estimator of p in the center line and control limit formulas.P

P �
1
ma

m

i�1
Pi �

1
mna

m

i�1
Di

P Chart

The center line and upper and lower control limits for the P chart are

(15-24)

where is the observed value of the average fraction defective.p

UCL � p � 3 
B

p11 � p2
n  CL � p LCL � p � 3 

B

p11 � p2
n

EXAMPLE 15-4 Ceramic  Substrate
Suppose we wish to construct a fraction-defective control
chart for a ceramic substrate production line. We have 20 pre-
liminary samples, each of size 100; the number of defectives
in each sample is shown in Table 15-4. Assume that the sam-
ples are numbered in the sequence of production. Note
that (800�2000) � 0.40; therefore, the trial parameters
for the control chart are

 LCL � 0.40 � 3 
B

10.402 10.602

100
� 0.25

 UCL � 0.40 � 3 
B

10.402 10.602

100
� 0.55    CL � 0.40 

p �

The control chart is shown in Fig. 15-16. All samples are
in control. If they were not, we would search for assignable
causes of variation and revise the limits accordingly. This
chart can be used for controlling future production.

Practical Interpretation: Although this process exhibits
statistical control, its defective rate ( ) is very poor.
We should take appropriate steps to investigate the process
to determine why such a large number of defective units is be-
ing produced. Defective units should be analyzed to determine
the specific types of defects present. Once the defect types 
are known, process changes should be investigated to determine
their impact on defect levels. Designed experiments may be use-
ful in this regard.

p � 0.40

Table 15-4 Number of Defectives in Samples of 100 
Ceramic Substrates

Sample No. of Defectives Sample No. of Defectives

1 44 11 36
2 48 12 52
3 32 13 35
4 50 14 41
5 29 15 42
6 31 16 30
7 46 17 46
8 52 18 38
9 44 19 26

10 48 20 30

JWCL232_c15_637-701.qxd  1/11/10  4:57 PM  Page 669



670 CHAPTER 15 STATISTICAL QUALITY CONTROL

Figure 15-16 P chart
for a ceramic substrate.
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Computer software also produces an NP chart. This is just a control chart of , the
number of defectives in a sample. The points, center line, and control limits for this chart are
simply multiples (times n) of the corresponding elements of a P chart. The use of an NP chart
avoids the fractions in a P chart but it is otherwise equivalent.

15-6.2 U Chart (Control Chart for Defects per Unit)

It is sometimes necessary to monitor the number of defects in a unit of product rather than
the fraction defective. Suppose that in the production of cloth it is necessary to control the
number of defects per yard or that in assembling an aircraft wing the number of missing
rivets must be controlled. In these situations we may use the control chart for defects per unit,
or the U chart. Many defects-per-unit situations can be modeled by the Poisson distribution.

If each sample consists of n units and there are C total defects in the sample,

is the average number of defects per unit. A U chart may be constructed for such data.
If the number of defects in a unit is a Poisson random variable with parameter �, the mean

and variance of this distribution are both �. Each point on the chart is an observed value of U,
the average number of defects per unit from a sample of n units. The mean of U is � and the
variance of U is ��n. Therefore, the control limits for the U chart with known � are:

(15-25)

If there are m preliminary samples, and the number of defects per unit in these samples are U1,
U2, . . . , Um, the estimator of the average number of defects per unit is

(15-26)

Now is used as an estimator of in the centerline and control limit formulas.�U

U �
1
ma

m

i�1
Ui

 LCL � � � 3 

B

�
n

 UCL � � � 3 

B

�
n

U �
C
n

nP � D
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These control limits are based on the normal approximation to the Poisson distribution.
When 
 is small, the normal approximation may not always be adequate. In such cases, we
may use control limits obtained directly from a table of Poisson probabilities. If is small,
the lower control limit obtained from the normal approximation may be a negative number.
If this should occur, it is customary to use zero as the lower control limit.

u

Table 15-5 Number of Defects in Samples of Five Printed Circuit Boards

Number of Defects per Number of Defects per 
Sample Defects Unit ui Sample Defects Unit ui

1 6 1.2 11 9 1.8
2 4 0.8 12 15 3.0
3 8 1.6 13 8 1.6
4 10 2.0 14 10 2.0
5 9 1.8 15 8 1.6
6 12 2.4 16 2 0.4
7 16 3.2 17 7 1.4
8 2 0.4 18 1 0.2
9 3 0.6 19 7 1.4

10 10 2.0 20 13 2.6

The center line and upper and lower control limits on the U chart are

(15-27)

where is the average number of defects per unit.u

UCL � u � 3 
B

u
n   CL � u   LCL � u � 3 

B

u
n

U Chart

EXAMPLE 15-5 Printed Circuit Boards
Printed circuit boards are assembled by a combination of
manual assembly and automation. Surface Mount Technol-
ogy (SMT) is used to make the mechanical and electrical
connections of the components to the board. Every hour,
five boards are selected and inspected for process-control
purposes. The number of defects in each sample of five
boards is noted. Results for 20 samples are shown in Table
15-5.

The center line for the U chart is

and the upper and lower control limits are

u �
1

20a
20

i�1
ui �

32.0

20
� 1.6

The control chart is plotted in Fig. 15-17. Because LCL is neg-
ative, it is set to 0. From the control chart in Fig. 15-17, we see
that the process is in control. 

Practical Interpretation: Eight defects per group of five
circuit boards are too many (about 8�5 � 1.6 defects/board),
and the process needs improvement. An investigation needs to
be made of the specific types of defects found on the printed
circuit boards. This will usually suggest potential avenues for
process improvement.

LCL � u � 3 
B

u
n � 1.6 � 3 

B

1.6

5
� 0

UCL � u � 3 
B

u
n � 1.6 � 3 

B

1.6

5
� 3.3

Computer software also produces a C chart. This is just a control chart of C, the total of
defects in a sample. The points, center line, and control limits for this chart are simply multi-
ples (times n) of the corresponding elements of a U chart. The use of a C chart avoids the frac-
tions that can occur in a U chart but it is otherwise equivalent.

JWCL232_c15_637-701.qxd  1/11/10  4:57 PM  Page 671



672 CHAPTER 15 STATISTICAL QUALITY CONTROL

Figure 15-17 U chart
of defects per unit on
printed circuit boards.

15-41. An early example of SPC was described in Industrial
Quality Control [“The Introduction of Quality Control at
Colonial Radio Corporation” (1944, Vol. 1(1), pp. 4– 9)]. The
following are the fractions defective of shaft and washer assem-
blies during the month of April in samples of each:n � 1500

EXERCISES FOR SECTION 15-6

0.08 0.10 0.05
0.14 0.14 0.14
0.09 0.07 0.11
0.10 0.06 0.09
0.15 0.09 0.13
0.13 0.08 0.12
0.06 0.11 0.09

(b) Determine whether the process is in statistical control. If
not, assume assignable causes can be found and out-of-
control points eliminated. Revise the control limits.

15-43. The following are the numbers of defective solder
joints found during successive samples of 500 solder joints:

Day No. of Defectives Day No. of Defectives

1 106 12 37
2 116 13 25
3 164 14 88
4 89 15 101
5 99 16 64
6 40 17 51
7 112 18 74
8 36 19 71
9 69 20 43

10 74 21 80
11 42

(a) Using all the data, compute trial control limits for a
fraction-defective control chart, construct the chart, and
plot the data.

(b) Determine whether the process is in statistical control. If
not, assume assignable causes can be found and out-of-
control points eliminated. Revise the control limits.

15-44. The following represent the number of defects
per 1000 feet in rubber-covered wire: 1, 1, 3, 7, 8, 10, 5, 13, 0,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

UCL = 3.3

Sample number

D
e
fe

c
ts

 p
e
r 

u
n
it

, 
u

2

4

0

u = 1.6

Fraction Fraction 
Sample Defective Sample Defective

1 0.11 11 0.03
2 0.06 12 0.03
3 0.1 13 0.04
4 0.11 14 0.07
5 0.14 15 0.04
6 0.11 16 0.04
7 0.14 17 0.04
8 0.03 18 0.03
9 0.02 19 0.06

10 0.03 20 0.06

(a) Set up a P chart for this process. Is this process in statisti-
cal control?

(b) Suppose that instead of Use the data
given to set up a P chart for this process. Revise the con-
trol limits if necessary.

(c) Compare your control limits for the P charts in parts (a) and
(b). Explain why they differ. Also, explain why your assess-
ment about statistical control differs for the two sizes of n.

15-42. Suppose the following fraction defective has been
found in successive samples of size 100 (read down):
(a) Using all the data, compute trial control limits for a fraction-

defective control chart, construct the chart, and plot the data.

0.09 0.03 0.12
0.10 0.05 0.14
0.13 0.13 0.06

n � 1500, n � 100.
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19, 24, 6, 9, 11, 15, 8, 3, 6, 7, 4, 9, 20, 11, 7, 18, 10, 6, 4, 0, 9,
7, 3, 1, 8, 12. Do the data come from a controlled process?

15-45. The following represent the number of solder defects
observed on 24 samples of five printed circuit boards: 7, 6, 8,
10, 24, 6, 5, 4, 8, 11, 15, 8, 4, 16, 11, 12, 8, 6, 5, 9, 7, 14, 8, 21.
(a) Using all the data, compute trial control limits for a U con-

trol chart, construct the chart, and plot the data.
(b) Can we conclude that the process is in control using a U

chart? If not, assume assignable causes can be found, list
points and revise the control limits.

15-46. Consider the data on the number of earthquakes of
magnitude 7.0 or greater by year in Exercise 6-71.
(a) Construct a U chart for this data with a sample size of
(b) Do the data appear to be generated by an in-control

process? Explain.

15-47. In a semiconductor manufacturing company, samples
of 200 wafers are tested for defectives in the lot. The number
of defectives in 20 such samples is shown in the following
table.

n � 1.

(a) Set up a P chart for this process. Is the process in statisti-
cal control?

(b) Suppose that instead of samples of size 200, we have sam-
ples of size 100. Use the data to set up a P chart for this
process. Revise the control limits if necessary.

(c) Compare the control limits in parts (a) and (b). Explain
why they differ.

15-48. The following data are the number of spelling errors
detected for every 1000 words on a news Web site over 20
weeks.

No. of No. of 
Sample Defectives Sample Defectives

1 44 11 52
2 63 12 74
3 40 13 43
4 35 14 50
5 29 15 60
6 56 16 38
7 40 17 36
8 38 18 65
9 74 19 41

10 66 20 95

No. of No. of
Week Spelling Errors Week Spelling Errors

1 3 11 1
2 6 12 6
3 0 13 9
4 5 14 8
5 9 15 6
6 5 16 4
7 2 17 13
8 2 18 3
9 3 19 0

10 2 20 7

(a) What control chart is most appropriate for these data?
(b) Using all the data, compute trial control limits for the

chart in part (a), construct the chart, and plot the data.
(c) Determine whether the process is in statistical control. If

not, assume assignable causes can be found and out-of-
control points eliminated. Revise the control limits.

15-7 CONTROL CHART PERFORMANCE

Specifying the control limits is one of the critical decisions that must be made in designing a
control chart. By moving the control limits further from the center line, we decrease the risk
of a type I error—that is, the risk of a point falling beyond the control limits, indicating an 
out-of-control condition when no assignable cause is present. However, widening the control
limits will also increase the risk of a type II error—that is, the risk of a point falling between
the control limits when the process is really out of control. If we move the control limits closer
to the center line, the opposite effect is obtained: The risk of type I error is increased, while the
risk of type II error is decreased.

The control limits on a Shewhart control chart are customarily located a distance of plus
or minus three standard deviations of the variable plotted on the chart from the center line.
That is, the constant k in Equation 15-1 should be set equal to 3. These limits are called 
3-sigma control limits.
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674 CHAPTER 15 STATISTICAL QUALITY CONTROL

(15-28)ARL �
1
p

Average 
Run 

Length

Thus, for an chart with 3-sigma limits, p � 0.0027 is the probability that a normally dis-
tributed point falls outside the limits when the process is in control, so

is the average run length of the chart when the process is in control. That is, even if the process
remains in control, an out-of-control signal will be generated every 370 points, on the average.

Consider the piston ring process discussed in Section 15-2.2, and suppose we are sam-
pling every hour. Thus, we will have a false alarm about every 370 hours on the average.
Suppose we are using a sample size of n � 5 and that when the process goes out of control the
mean shifts to 74.0135 millimeters. Then, the probability that falls between the control lim-
its of Fig. 15-3 is equal to

Therefore, p in Equation 15-28 is 0.50, and the out-of-control ARL is

That is, the control chart will require two samples to detect the process shift, on the average,
so two hours will elapse between the shift and its detection (again, on the average). Suppose
this approach is unacceptable, because production of piston rings with a mean diameter of
74.0135 millimeters results in excessive scrap costs and delays final engine assembly. How
can we reduce the time needed to detect the out-of-control condition? One method is to
sample more frequently. For example, if we sample every half hour, only one hour will
elapse (on the average) between the shift and its detection. The second possibility is to in-
crease the sample size. For example, if we use n � 10, the control limits in Fig. 15-3 nar-
row to 73.9905 and 74.0095. The probability of falling between the control limits when
the process mean is 74.0135 millimeters is approximately 0.1, so p � 0.9, and the out-of-
control ARL is

ARL �
1
p �

1
0.9

� 1.11

X

ARL �
1
p �

1
0.5

� 2

 � P 3�6 � Z � 0 4 � 0.5

 � P c
73.9865 � 74.0135

0.0045
� Z �

74.0135 � 74.0135
0.0045

d

 P 373.9865 � X � 74.0135 when � � 74.0135 4

X

X

ARL �
1
p �

1
0.0027

� 370

X

A way to evaluate decisions regarding sample size and sampling frequency is through the
average run length (ARL) of the control chart. Essentially, the ARL is the average number of 
points that must be plotted before a point indicates an out-of-control condition. For any Shewhart
control chart, the ARL can be calculated from the mean of a geometric random variable. Suppose
that p is the probability that any point exceeds the control limits. Then
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15-7 CONTROL CHART PERFORMANCE 675

Thus, the larger sample size would allow the shift to be detected about twice as quickly as
the old one. If it became important to detect the shift in approximately the first hour after it oc-
curred, two control chart designs would work:

Table 15-6 Average Run Length (ARL) for an Chart 
with 3-Sigma Control Limits

Magnitude of ARL ARL 
Process Shift n � 1 n � 4

0 370.4 370.4
0.5� 155.2 43.9
1.0� 43.9 6.3
1.5� 15.0 2.0
2.0� 6.3 1.2
3.0� 2.0 1.0

X

Design 1 Design 2

Sample size: n � 5 Sample size: n � 10
Sampling frequency: every half hour Sampling frequency: every hour

Table 15-6 provides average run lengths for an chart with 3-sigma control limits. The aver-
age run lengths are calculated for shifts in the process mean from 0 to 3.0� and for sample
sizes of n � 1 and n � 4 by using 1�p, where p is the probability that a point plots outside of
the control limits. Figure 15-18 illustrates a shift in the process mean of 2�.

X

Figure 15-18 Process
mean shift of 2�. μ μ σ+ 2

15-49. An X chart uses samples of size 1. The center line is
at 100 and the upper and lower 3-sigma limits are at 112 and
88, respectively.
(a) What is the process �?
(b) Suppose the process mean shifts to 96. Find the probability

that this shift will be detected on the next sample.
(c) Find the ARL to detect the shift in part (b).

15-50. An chart uses samples of size 4. The center line is
at 100, and the upper and lower 3-sigma control limits are at
106 and 94, respectively.
(a) What is the process �?
(b) Suppose the process mean shifts to 96. Find the probability

that this shift will be detected on the next sample.
(c) Find the ARL to detect the shift in part (b).

15-51. Consider the control chart in Fig. 15-3. Suppose
that the mean shifts to 74.010 millimeters.

X

X

EXERCISES FOR SECTION 15-7

(a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

15-52. Consider an control chart with , UCL �
14.708, LCL � 14.312, and n � 5. Suppose that the mean
shifts to 14.6.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

15-53. Consider an control chart with , UCL �
242.780, LCL � 203.220, and n � 5. Suppose that the mean
shifts to 210.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

r � 34.286X

r � 0.344X
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676 CHAPTER 15 STATISTICAL QUALITY CONTROL

15-8 TIME-WEIGHTED CHARTS

15-8.1 Cumulative Sum Control Chart

In Sections 15-3 and 15-4 we have presented basic types of Shewhart control charts. A major
disadvantage of any Shewhart control chart is that the chart is relatively insensitive to 
small shifts in the process, say, on the order of about 1.5� or less. One reason for this relatively
poor performance in detecting small process shifts is that the Shewhart chart makes use of
only the information in the last plotted point, and it ignores the information in the sequence of
points. This problem can be addressed, to some extent by adding criteria such as the Western
Electric rules to a Shewhart chart, but the use of these rules reduces the simplicity and ease
of interpretation of the chart. These rules would also cause the in-control average run length
of a Shewhart chart to drop below 370. This increase in the false alarm rate can have serious
practical consequences.

A very effective alternative to the Shewhart control chart is the cumulative sum control
chart (or CUSUM). This chart has much better performance (in terms of ARL) for detecting small
shifts than the Shewhart chart, but it does not cause the in-control ARL to drop significantly. This
section will illustrate the use of the CUSUM for sample averages and individual measurements.

The CUSUM chart plots the cumulative sums of the deviations of the sample values from
a target value. For example, suppose that samples of size n � 1 are collected, and is the
average of the jth sample. Then if �0 is the target for the process mean, the cumulative sum
control chart is formed by plotting the quantity

(15-29)

against the sample number i. Now, Si is called the cumulative sum up to and including the ith
sample. Because they combine information from several samples, cumulative sum charts are

Si � a
i

j�1
1Xj � �02

Xj

15-54. Consider an control chart with , UCL �
21.71, LCL � 18.29, and n � 6. Suppose that the mean shifts
to 17.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

15-55. Consider an control chart with , UCL �
37.404, LCL � 30.780, and n � 5. Suppose that the mean
shifts to 36.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

15-56. Consider an control chart with , UCL �
17.40, LCL � 12.79, and n � 3. Suppose that the mean shifts
to 13.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

15-57. Consider an control chart with ,
UCL � 0.0635, LCL � 0.0624, and n � 5. Suppose that the
mean shifts to 0.0625.

r � 0.000924X

r � 2.25X

�̂ � 2.466X

�̂ � 1.40X (a) What is the probability that this shift will be detected on
the next sample?

(b) What is the ARL after the shift?

15-58. Consider the revised control chart in Exercise 15-8
with , UCL � 7.443, LCL � 5.125, and n � 3.
Suppose that the mean shifts to 5.5.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL after the shift?

15-59. An chart uses a subgroup of size three. The center
line is at 200, and the upper and lower three-sigma control lim-
its are at 212 and 188, respectively.
(a) Estimate the process �.
(b) Suppose the process mean shifts to 195. Determine the prob-

ability that this shift will be detected on the next sample.
(c) Find the ARL to detect the shift in part (b).

15-60. Consider an control chart with UCL = 24.802,
LCL = 23.792, and n = 3. Suppose the mean shifts to 24.2.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL to detect the shift?

X

X

�̂ � 0.669
X
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15-8 TIME-WEIGHTED CHARTS 677

more effective than Shewhart charts for detecting small process shifts. Furthermore, they are
particularly effective with samples of n � 1. This makes the cumulative sum control chart a
good candidate for use in the chemical and process industries where rational subgroups are
frequently of size 1, as well as in discrete parts manufacturing with automatic measurement of
each part and online control using a computer directly at the work center.

If the process remains in control at the target value �0, the cumulative sum defined in Equation
15-29 should fluctuate around zero. However, if the mean shifts upward to some value �1 � �0,
say, an upward or positive drift develops in the cumulative sum Si. Conversely, if the mean shifts
downward to some �1 � �0, a downward or negative drift in Si develops. Therefore, if a trend de-
velops in the plotted points either upward or downward, we should consider this as evidence that
the process mean has shifted, and a search for the assignable cause should be performed.

This theory can easily be demonstrated by applying the CUSUM to the chemical process
concentration data in Table 15-3. Since the concentration readings are individual measure-
ments, we would take in computing the CUSUM. Suppose that the target value for the
concentration is �0 � 99. Then the CUSUM is

Table 15-7 shows the computation of this CUSUM, where the starting value of the
CUSUM, S0, is taken to be zero. Figure 15-19 plots the CUSUM from the last column of Table
15-7. Notice that the CUSUM fluctuates) around the value of 0.

 � 1Xi � 992 � Si�1

 � 1Xi � 992 � a
i�1

j�1
1Xj � 992

 Si � a
i

j�1
1Xj � 992

Xj � Xj

Table 15-7 CUSUM Computations for the Chemical Process Concentration Data in Table 15-3

Observation, i xi xi � 99 si � (xi � 99) � si�1

1 102.0 3.0 3.0
2 94.8 �4.2 �1.2
3 98.3 �0.7 �1.9
4 98.4 �0.6 �2.5
5 102.0 3.0 0.5
6 98.5 �0.5 0.0
7 99.0 0.0 0.0
8 97.7 �1.3 �1.3
9 100.0 1.0 �0.3

10 98.1 �0.9 �1.2
11 101.3 2.3 1.1
12 98.7 �0.3 0.8
13 101.1 2.1 2.9
14 98.4 �0.6 2.3
15 97.0 �2.0 0.3
16 96.7 �2.3 �2.0
17 100.3 1.3 �0.7
18 101.4 2.4 1.7
19 97.2 �1.8 �0.1
20 101.0 2.0 1.9
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678 CHAPTER 15 STATISTICAL QUALITY CONTROL

The graph in Fig. 15-19 is not a control chart because it lacks control limits. There are
two general approaches to devising control limits for CUSUMs. The older of these two
methods is the V-mask procedure. A typical V mask is shown in Fig. 15-20(a). It is a 
V-shaped notch in a plane that can be placed at different locations on the CUSUM chart. The
decision procedure consists of placing the V mask on the cumulative sum control chart with
the point O on the last value of si and the line OP parallel to the horizontal axis. If all the pre-
vious cumulative sums, s1, s2, . . . , si�1, lie within the two arms of the V mask, the process is
in control. The arms are the lines that make angles � with segment OP in Figure 15-20(a) and
they are assumed to extend infinitely in length. However, if any si lies outside the arms of the
mask, the process is considered to be out of control. In actual use, the V mask would be

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Observation, i

–2

+4

–4

0

+2

si

Figure 15-19 Plot of
the cumulative sum for
the concentration data,
Table 15-7.

1

3A

2 3 4
... i

(a)

2A

A

si

θ
O

L

U

Pd

1
–4

si

5 10 15 20 25 30

–2

0

+2

+4

+6

(b)

Observation, i

K

Figure 15-20 The cumulative sum control chart. (a) The V-mask and scaling. (b) The cumulative
sum control chart in operation.
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15-8 TIME-WEIGHTED CHARTS 679

applied to each new point on the CUSUM chart as soon as it was plotted. In the example
shown in Fig. 15-20(b), an upward shift in the mean is indicated, since at least one of the
points that have occurred earlier than sample 22 now lies below the lower arm of the mask,
when the V mask is centered on sample 30. If the point lies above the upper arm, a downward
shift in the mean is indicated. Thus, the V mask forms a visual frame of reference similar to
the control limits on an ordinary Shewhart control chart. For the technical details of design-
ing the V mask, see Montgomery (2009).

While some computer programs plot CUSUMs with the V-mask control scheme,
we feel that the other approach to CUSUM control, the tabular CUSUM, is superior.
The tabular procedure is particularly attractive when the CUSUM is implemented on a
computer.

Let SH (i) be an upper one-sided CUSUM for period i and SL(i) be a lower one-sided
CUSUM for period i. These quantities are calculated from

(15-30)

and

(15-31)

where the starting values sH 102 � sL102 � 0.

 sL1i2 � max 30, 1�0 � K2 � xi � sL1i � 12 4

 sH 1i2 � max 30, xi � 1�0 � K2 � sH1i � 12 4

CUSUM
Control Chart

In Equations 15-30 and 15-31 K is called the reference value, which is usually chosen
about halfway between the target �0 and the value of the mean corresponding to the
out-of-control state, �1 � �0 � �. That is, K is about one-half the magnitude of the shift we
are interested in, or

Notice that SH (i) and SL(i) accumulate deviations from the target value that are greater than K,
with both quantities reset to zero upon becoming negative. If either SH (i) or SL(i) exceeds a
constant H, the process is out of control. This constant H is usually called the decision interval.

K �
�

2

EXAMPLE 15-6 Chemical Process Concentration CUSUM
A Tabular CUSUM
We will illustrate the tabular CUSUM by applying it to the
chemical process concentration data in Table 15-7. The
process target is �0 � 99, and we will use K � 1 as the ref-
erence value and H � 10 as the decision interval. The rea-
sons for these choices will be explained later.

Table 15-8 shows the tabular CUSUM scheme for the
chemical process concentration data. To illustrate the calcula-
tions, note that

 � max 30, xi � 100 � sH 
1i � 12 4

 � max 30, xi � 199 � 12 � sH 
1i � 12 4

 sH 
1i2 � max 30, xi � 1�0 � K2 � sH1i � 12 4

Therefore, for observation 1 the CUSUMs are

and

 � max 30, 98 � 102.0 � 0 4 � 0

 sL 11 2 � max 30, 98 � x1 � sL102 4

 � max 30, 102.0 � 100 � 0 4 � 2.0

 sH 112 � max 30, x1 � 100 � sH  
102 4

 � max 30, 98 � xi � sL1i � 12 4

 � max 30, 199 � 12 � xi � sL1i � 12 4

 sL 
1i2 � max 30, 1�0 � K2 � xi � sL1i � 12 4
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Table 15-8 The Tabular CUSUM for the Chemical Process Concentration Data

Observation Upper CUSUM Lower CUSUM

i xi xi � 100 sH (i) nH 98 � xi sL(i) nL

1 102.0 2.0 2.0 1 �4.0 0.0 0
2 94.8 �5.2 0.0 0 3.2 3.2 1
3 98.3 �1.7 0.0 0 �0.3 2.9 2
4 98.4 �1.6 0.0 0 �0.4 2.5 3
5 102.0 2.0 2.0 1 �4.0 0.0 0
6 98.5 �1.5 0.5 2 �0.5 0.0 0
7 99.0 �1.0 0.0 0 �1.0 0.0 0
8 97.7 �2.3 0.0 0 0.3 0.3 1
9 100.0 0.0 0.0 0 �2.0 0.0 0

10 98.1 �1.9 0.0 0 �0.1 0.0 0
11 101.3 1.3 1.3 1 �3.3 0.0 0
12 98.7 �1.3 0.0 0 �0.7 0.0 0
13 101.1 1.1 1.1 1 �3.1 0.0 0
14 98.4 �1.6 0.0 0 �0.4 0.0 0
15 97.0 �3.0 0.0 0 1.0 1.0 1
16 96.7 �3.3 0.0 0 1.3 2.3 2
17 100.3 0.3 0.3 1 �2.3 0.0 0
18 101.4 1.4 1.7 2 �3.4 0.0 0
19 97.2 �2.8 0.0 0 0.8 0.8 1
20 101.0 1.0 1.0 0 �3.0 0.0 0

680 CHAPTER 15 STATISTICAL QUALITY CONTROL

as shown in Table 15-8. The quantities nH and nL in Table 15-8
indicate the number of periods that the CUSUM sH (i) or sL(i)
have been nonzero. Notice that the CUSUMs in this example
never exceed the decision interval H � 10. We would there-
fore conclude that the process is in control.

Next Steps: The limits for the CUSUM charts may be used 
to continue to operate the chart in order to monitor future 
productions. 

When the tabular CUSUM indicates that the process is out of control, we should search
for the assignable cause, take any corrective actions indicated, and restart the CUSUMs at
zero. It may be helpful to have an estimate of the new process mean following the shift. This
can be computed from

(15-32)

It is also useful to present a graphical display of the tabular CUSUMs, which are
sometimes called CUSUM status charts. They are constructed by plotting sH (i) and sL(i) ver-
sus the sample number. Figure 15-21 shows the CUSUM status chart for the data in Example
15-6. Each vertical bar represents the value of sH (i) and sL(i) in period i. With the decision in-
terval plotted on the chart, the CUSUM status chart resembles a Shewhart control chart. We
have also plotted the sample statistics xi for each period on the CUSUM status chart as the

�̂ � μ

�0 � K �
sH1i2
nH

,      if  sH 
1i2 � H

�0 � K �
sL1i2
nL

, if  sL1i2 � H
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15-8 TIME-WEIGHTED CHARTS 681

solid dots. This frequently helps the user of the control chart to visualize the actual process
performance that has led to a particular value of the CUSUM.

The tabular CUSUM is designed by choosing values for the reference value K and the
decision interval H. We recommend that these parameters be selected to provide good average
run-length values. There have been many analytical studies of CUSUM ARL performance.
Based on these studies, we may give some general recommendations for selecting H and K.
Define and , where is the standard deviation of the sample variable used�

X
K � k�XH � h�X

1
694

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample number

H = 5
595

496

397

298

199

0100

1101

2102

3103

4104

5105

6106

sH(i)

sL(i)

x

H = 5

Figure 15-21 The
CUSUM status chart
for Example 15-6.

Table 15-9 Average Run Lengths for a CUSUM Control Chart 
with k = 1�2

Shift in Mean 
(multiple of ) h � 4 h � 5

0 168 465
0.25 74.2 139
0.50 26.6 38.0
0.75 13.3 17.0
1.00 8.38 10.4
1.50 4.75 5.75
2.00 3.34 4.01
2.50 2.62 3.11
3.00 2.19 2.57
4.00 1.71 2.01

�X

in forming the CUSUM (if n � 1, ). Using h � 4 or h � 5 and k � 1�2 will gener-
ally provide a CUSUM that has good ARL properties against a shift of about (or 1�X) in1�X

�X � �X

the process mean. If much larger or smaller shifts are of interest, set k � ��2, where � is the size
of the shift in standard deviation units. 

To illustrate how well the recommendations of h � 4 or h � 5 with k � 1�2 work, con-
sider these average run lengths in Table 15-9. Notice that a shift of would be detected in1�X
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either 8.38 samples (with k � 1�2 and h � 4) or 10.4 samples (with k � 1�2 and h � 5). By
comparison, Table 15-6 shows that an chart would require approximately 43.9 samples, on
the average, to detect this shift.

These design rules were used for the CUSUM in Example 15-6. We assumed that the
process standard deviation � � 2. (This is a reasonable value; see Example 15-2.) Then with
k � 1�2 and h � 5, we would use

1⁄2122

in the tabular CUSUM procedure.
Finally, we should note that supplemental procedures such as the Western Electric rules

cannot be safely applied to the CUSUM, because successive values of SH(i) and SL(i) are not
independent. In fact, the CUSUM can be thought of as a weighted average, where the weights
are stochastic or random. In effect, all the CUSUM values are highly correlated, thereby
causing the Western Electric rules to give too many false alarms.

15-8.2 Exponentially Weighted Moving Average Control Chart

Data collected in time order is often averaged over several time periods. For example, eco-
nomic data is often presented as an average over the last four quarters. That is, at time t the
average of the last four measurements can be written as

This average places weight of 1�4 on each of the most recent observations, and zero weight
on older observations. It is called a moving average and in this case a window of size 4 is used.
An average of the recent data is used to smooth the noise in the data to generate a better estimate
of the process mean than only the most recent observation. However, in a dynamic environment
where the process mean may change, the number of observations used to construct the average
is kept to a modest size so that the estimate can adjust to any change in the process mean.
Therefore, the window size is a compromise between a better statistical estimate from an average
and a response to a mean change. If a window of size 10 were used in a moving average, the sta-
tistic would have lower variability, but it would not adjust as well to a change in mean.

For statistical process control, rather than use a fixed window size it is useful to place the
greatest weight on the most recent observation or subgroup average, and then gradually
decrease the weight on older observations. One average of this type can be constructed by a
multiplicative decrease in the weights. Let denote a constant and denote the process
target or historical mean. Suppose that samples of size are collected and is the average
of the sample at time t. The exponentially weighted moving average (EWMA) is

Each older observation has its weight decreased by the factor The weight on the
starting value is selected so that the weights sum to one. Here zt is also sometimes called a
geometric average.

�0

11 � �2.

 � a
t

k�0
�11 � �2k  xt�k � 11 � �2t�0

 zt � �xt � �11 � �2xt�1 � �11 � �22 xt�2 � p � �11 � �2t�1
 x1 � 11 � �2t�0

xtn � 1
�0� 	 1

xt1102

xt142 �
1
4

 xt �
1
4

 xt�1 �
1
4

 xt�2 �
1
4

 xt�3

� 1  and  H � h� � 5122 � 10K � k� �

X

682 CHAPTER 15 STATISTICAL QUALITY CONTROL
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15-8 TIME-WEIGHTED CHARTS 683

The value of determines the compromise between noise reduction and response to a
mean change. For example, the series of weights when are

0.8, 0.16, 0.032, 0.0064, 0.00128, . . .

and when the weights are

0.2, 0.16, 0.128, 0.1024, 0.0819, . . .

When the weights decrease rapidly. Most of the weight is placed on the most recent
observation, with modest contributions to the EWMA from older measurements. In this case,
the EWMA does not average noise much, but it responds quickly to a mean change. However,
when the weights decrease much more slowly and the EWMA has substantial contri-
butions from the more recent observations. In this case, the EWMA averages noise more, but
it responds more slowly to a change in the mean. Fig. 15-22 displays a series of observations
with a mean shift in the middle on the series. Notice that the EWMA with smooths
the data more, but that the EWMA with adjusts the estimate to the mean shift more
quickly.

It appears that it is difficult to calculate an EWMA because at every time t a new weighted
average of all previous data is required. However, there is an easy method to calculate an
EWMA based on a simple recursive equation. Let Then it can be shown thatz0 � �0.zt


 � 0.8

 � 0.2


 � 0.2


 � 0.8

� � 0.2


 � 0.8



Figure 15-22
EWMAs with 
 � 0.8
and 
 � 0.2 show a
compromise between a
smooth curve and a
response to a shift.
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(15-33)zt � 
xt � 11 � 
2zt�1

EWMA Update
Equation

Consequently, only a brief computation is needed at each time t.
To develop a control chart from an EWMA, control limits are needed for The control

limits are defined in a straightforward manner. They are placed at three standard deviations
around the mean of the plotted statistic This follows the general approach for a control
chart in Equation 15-1. An EWMA control chart may be applied to individual measurements
as an extension to an X chart or to subgroup averages. Formulas here are developed for the
more general case with an average from a subgroup of size n. For individual measurements
n � 1.

Zt.

Zt.
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Note that the control limits are not of equal width about the centerline. The control limits are
calculated from the variance of and that changes with time. However, for large t the variance
of converges to

so that the control limits tend to be parallel lines about the centerline as t increases.
The parameters and are estimated by the same statistics used in or X charts. That

is, for subgroups

and or

and for 

and �̂ � MR	1.128�̂0 � X

n � 1

�̂ � S	c4�̂ � R	d2�̂0 � X

X��0

lim
tS�

 V1Zt2 �
�2

n  a



2 � 

b

Zt

Zt
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(15-34)

UCL � �0 � 3 

�

1n
 

A




2 � 

 31 � 11 � 
22t 4

CL � �0

LCL � �0 � 3 

�

1n
 

A




2 � 

 31 � 11 � 
22t 4  

EWMA
Control Chart

Because is a linear function of the independent observations (and ),
the results from Chapter 5 can be used to show that

and

where n is the subgroup size. Therefore an EWMA control chart uses estimates of and in
the following formulas:

��0

V1Zt2 �
�2

n  



2 � 

 �1 � 11 � 
22t�E1Zt2 � �0

�0X1, X2, . . . , XtZt

EXAMPLE 15-7 Chemical Process Concentration EWMA
Consider the concentration data shown in Table 15-3. Construct
an EWMA control chart with with It was deter-
mined that and . Therefore, and

The control limits for are

The first few values of along with the corresponding control
limits are

zt

 LCL � 99.1 � 312.302  
B

0.2

2 � 0.2
 �1 � 11 � 0.222� � 100.01

 LCL � 99.1 � 312.302  
B

0.2

2 � 0.2
 �1 � 11 � 0.222� � 98.19

z1�̂ � 2.59	1.128 � 2.30.
�̂0 � 99.1mr � 2.59x � 99.1

n � 1.
 � 0.2 t 1 2 3 4 5

102.0 94.8 98.3 98.4 102.0
99.68 98.70 98.62 98.58 99.26

LCL 97.72 97.33 97.12 97.00 96.93
UCL 100.48 100.87 101.08 101.20 101.27

zt

xt

The chart generated by Minitab is shown in Figure 15-23.
Notice that the control limits widen as time increases but
quickly stabilize. Each point is within its set of corresponding
control limits so there are no signals from the chart.
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Figure 15-23
EWMA control chart
for the chemical
process concentration
data from Minitab.
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Similar to a CUSUM chart, the points plotted on an EWMA control chart are not independent.
Therefore, run rules should not be applied to an EWMA control chart. Information in the his-
tory of the data that is considered by run rules is to a large extent incorporated into the EWMA
that is calculated at each time t.

The value of is usually chosen from the range A common choice is
Smaller values for provide more sensitivity for small shifts and larger values bet-

ter tune the chart for larger shifts. This performance can be seen in the average run lengths in
Table 15-10. These calculations are more difficult than those used for Shewhart charts, and de-
tails are omitted. Here, and 0.5 are compared. The multiplier of the standard devia-
tion, denoted L in the table, is adjusted so that the average run length (ARL) equals 500 for
both choices for That is, the control limits are placed at and L is chosen
so the ARL without a mean shift is 500 in both cases.

The EWMA ARLs in the table indicate that the smaller value for is preferred when the
magnitude of the shift is small. Also, the EWMA performance is in general much better than
results for a Shewhart control chart (in Table 15-6) and the results are comparable to a
CUSUM control chart (in Table 15-9). However, these are average results. At the time of an
increase in the process mean, might be negative and there would be some performance
penalty to first increase to near zero and then further increase it to a signal above the UCL.
Such a penalty provides an advantage to CUSUM control charts that is not accounted for in
these ARL tables. A more refined analysis can be used to quantify this penalty, but the
conclusion is that the EWMA penalty is moderate to small in most applications.

zt

zt




E1Zt2 
 L2V1Zt2
.


 � 0.1



 � 0.2.
0.1 � 
 � 0.5.


Table 15-10 Average Run Lengths for an EWMA
Control Chart

Shift in Mean
(multiple of 

0 500 500
0.25 255 106
0.5 88.8 31.3
0.75 35.9 15.9
1 17.5 10.3
1.5 6.53 6.09
2 3.63 4.36
3 1.93 2.87

L � 2.81L � 3.07�X2

 � 0.1
 � 0.5
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15-61. The following data were considered in Quality
Engineering [“Parabolic Control Limits for The Exponentially
Weighted Moving Average Control Charts in Quality
Engineering” (1992, Vol. 4(4))]. In a chemical plant, the data for
one of the quality characteristics (viscosity) were obtained for
each 12-hour batch at the completion of the batch. The results of
15 consecutive measurements are shown in the table below.

Batch Viscosity Batch Viscosity

1 13.3 11 14.3
2 14.5 12 16.1
3 15.3 13 13.1
4 15.3 14 15.5
5 14.3 15 12.6
6 14.8
7 15.2
8 14.9
9 14.6

10 14.1  

(a) Set up a CUSUM control chart for this process. Assume
the desired process target 14.1. Does the process appear to
be in control?

(b) Suppose that the next five observations are 14.6, 15.3,
15.7, 16.1, and 16.8. Apply the CUSUM in part (a) to
these new observations. Is there any evidence that the
process has shifted out of control?

15-62. The purity of a chemical product is measured every two
hours. The results of 20 consecutive measurements are as follows:

Sample Purity Sample Purity

1 89.11 11 88.55
2 90.59 12 90.43
3 91.03 13 91.04
4 89.46 14 88.17
5 89.78 15 91.23
6 90.05 16 90.92
7 90.63 17 88.86
8 90.75 18 90.87
9 89.65 19 90.73

10 90.15 20 89.78

(a) Set up a CUSUM control chart for this process. Use 
� � 0.8 in setting up the procedure, and assume that the
desired process target is 90. Does the process appear to
be in control?

(b) Suppose that the next five observations are 90.75, 90.00,
91.15, 90.95, and 90.86. Apply the CUSUM in part (a) to
these new observations. Is there any evidence that the
process has shifted out of control?

15-63. The diameter of holes is measured in consecutive order
by an automatic sensor. The results of measuring 25 holes follow.

EXERCISES FOR SECTION 15-8

686 CHAPTER 15 STATISTICAL QUALITY CONTROL

Sample Diameter Sample Diameter

1 9.94 14 9.99

2 9.93 15 10.12

3 10.09 16 9.81

4 9.98 17 9.73

5 10.11 18 10.14

6 9.99 19 9.96

7 10.11 20 10.06

8 9.84 21 10.11

9 9.82 22 9.95

10 10.38 23 9.92

11 9.99 24 10.09

12 10.41 25 9.85

13 10.36

(a) Estimate the process standard deviation.
(b) Set up a CUSUM control procedure, assuming that the

target diameter is 10.0 millimeters. Does the process
appear to be operating in a state of statistical control at the
desired target level?

15-64. The concentration of a chemical product is mea-
sured by taking four samples from each batch of material. The
average concentration of these measurements is shown for the
last 20 batches in the following table:

Batch Concentration Batch Concentration

1 104.5 11 95.4

2 99.9 12 94.5

3 106.7 13 104.5

4 105.2 14 99.7

5 94.8 15 97.7

6 94.6 16 97.0

7 104.4 17 95.8

8 99.4 18 97.4

9 100.3 19 99.0

10 100.3 20 102.6

(a) Suppose that the process standard deviation is � � 8 and
that the target value of concentration for this process is
100. Design a CUSUM scheme for the process. Does the
process appear to be in control at the target?

(b) How many batches would you expect to be produced with
off-target concentration before it would be detected by the
CUSUM control chart if the concentration shifted to 104?
Use Table 15-9.

15-65. Consider a CUSUM with h � 5 and k � 1�2. Samples
are taken every two hours from the process. The target value for
the process is �0 � 50 and � � 2. Use Table 15-9.
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(a) If the sample size is n � 1, how many samples would be
required to detect a shift in the process mean to � � 51 on
average?

(b) If the sample size is increased to n � 4, how does this
affect the average run length to detect the shift to � � 51
that you determined in part (a)?

15-66. Consider the purity data in Exercise 15-62. Use
and assume that the desired process target is 90.

(a) Construct an EWMA control chart with Does the
process appear to be in control?

(b) Construct an EWMA control chart with Compare
your results to part (a).

(c) Suppose that the next five observations are 90.75, 90.00,
91.15, 90.95, and 90.86. Apply the EWMAs in part (a) and
(b) to these new observations. Is there any evidence that
the process has shifted out of control?

15-67. Consider the diameter data in Exercise 15-63.
Assume that the desired process target is 10.0 millimeters.
(a) Estimate the process standard deviation.
(b) Construct an EWMA control chart with Does

the process appear to be in control?
(c) Construct an EWMA control chart with 

Compare your results to part (a).
15-68. Consider the concentration data in Exercise 15-64.
Use and assume that the desired process target is 100.
(a) Construct an EWMA control chart with Does the

process appear to be in control?
(b) Construct an EWMA control chart with 

Compare your results to part (a).
(c) If the concentration shifted to 104, would you prefer the

chart in part (a) or (b)? Explain.
15-69. Consider an EMWA control chart. The target value
for the process is and Use Table 15-10.
(a) If the sample size is would you prefer an

EWMA chart with and or and
to detect a shift in the process mean to 

on average? Why?
(b) If the sample size is increased to which chart in

part (a) do you prefer? Why?
(c) If an EWMA chart with and is used,

what sample size is needed to detect a shift to in
approximately 3 samples on average?

15-70. A process has a target of �0 � 100 and a standard
deviation of � � 4. Samples of size n � 1 are taken every two
hours. Use Table 15-9.
(a) Suppose the process mean shifts to � � 102. How many

hours of production will occur before the process shift is
detected by a CUSUM with h � 5 and k � 1�2?

(b) It is important to detect the shift defined in part (a) more
quickly. A proposal is made to reduce the sampling
frequency to 0.5 hour. How will this affect the CUSUM
control procedure? How much more quickly will the shift
be detected?

(c) Suppose that the 0.5 hour sampling interval in part (b) is
adopted. How often will false alarms occur with this new

� � 52
L � 2.81� � 0.1

n � 4,

� � 52L � 3.07

 � 0.5L � 2.81
 � 0.1

n � 1,
� � 2.�0 � 50

� � 0.5.

� � 0.2.
� � 8


 � 0.5.


 � 0.2.

� � 0.5.

� � 0.2.
� � 0.8

sampling interval? How often did they occur with the old
interval of two hours?

(d) A proposal is made to increase the sample size to n � 4 and
retain the two-hour sampling interval. How does this sug-
gestion compare in terms of average detection time to the
suggestion of decreasing the sampling interval to 0.5 hour?

15-71. Heart rate (in counts/minute) is measured every 30
minutes. The results of 20 consecutive measurements are as
follows:

Sample Heart Rate Sample Heart Rate

1 68 11 79
2 71 12 79
3 67 13 78
4 69 14 78
5 71 15 78
6 70 16 79
7 69 17 79
8 67 18 82
9 70 19 82

10 70 20 81

Number Number
Sample of Patients Sample of Patients

1 162.27 13 159.989
2 157.47 14 159.09
3 157.065 15 162.699
4 160.45 16 163.89
5 157.993 17 164.247
6 162.27 18 162.70
7 160.652 19 164.859
8 159.09 20 163.65
9 157.442 21 165.99

10 160.78 22 163.22
11 159.138 23 164.338
12 161.08 24 164.83

Suppose that the standard deviation of the heart rate is � = 3
and the target value is 70.
(a) Design a CUSUM scheme for the heart rate process. Does

the process appear to be in control at the target?
(b) How many samples on average would be required to

detect a shift of the mean heart rate to 80?

15-72. The number of influenza patients (in thousands) vis-
iting hospitals weekly are shown in the following table.
Suppose that the standard deviation is � = 2 and the target
value is 160.

(a) Design a CUSUM scheme for the process. Does the
process appear to be in control at the target?

(b) How many samples on average would be required to de-
tect a shift of the mean to 165?
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15-9 OTHER SPC PROBLEM-SOLVING TOOLS

While the control chart is a very powerful tool for investigating the causes of variation in
a process, it is most effective when used with other SPC problem-solving tools. In this sec-
tion we illustrate some of these tools, using the printed circuit board defect data in
Example 15-5.

Figure 15-17 shows a U chart for the number of defects in samples of five printed circuit
boards. The chart exhibits statistical control, but the number of defects must be reduced. The
average number of defects per board is 8�5 � 1.6, and this level of defects would require
extensive rework.

The first step in solving this problem is to construct a Pareto diagram of the individual
defect types. The Pareto diagram, shown in Fig. 15-24, indicates that insufficient solder and
solder balls are the most frequently occurring defects, accounting for (109�160) 100 � 68%
of the observed defects. Furthermore, the first five defect categories on the Pareto chart are all
solder-related defects. This points to the flow solder process as a potential opportunity for
improvement.

To improve the surface mount process, a team consisting of the operator, the shop super-
visor, the manufacturing engineer responsible for the process, and a quality engineer meets to
study potential causes of solder defects. They conduct a brainstorming session and produce
the cause-and-effect diagram shown in Fig. 15-25. The cause-and-effect diagram is widely
used to display the various potential causes of defects in products and their interrelationships.
They are useful in summarizing knowledge about the process.

As a result of the brainstorming session, the team tentatively identifies the following vari-
ables as potentially influential in creating solder defects:

1. Flux specific gravity

2. Reflow temperature

3. Squeegee speed
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Figure 15-24 Pareto
diagram for printed
circuit board defects.
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FluxSolderMachine

Squeegee pressure

Squeegee speed

Squeegee angle

Stencil removal

Maintenance

Temperature

Paste height

Density

Amount

Specific gravity

Type

Temperature

Orientation

Contaminated solder

Solderability

Pallet loading

Alignment of pallet

Operator Components Reflow

Solder
defects

Figure 15-25 Cause-and-effect diagram for the printed circuit board flow solder process.

Front

Region of insufficient solder

Back

Figure 15-26 Defect
concentration diagram
for a printed circuit
board.

4. Squeegee angle

5. Paste height

6. Reflow temperature

7. Board loading method

A statistically designed experiment could be used to investigate the effect of these seven vari-
ables on solder defects.

In addition, the team constructed a defect concentration diagram for the product. A defect
concentration diagram is just a sketch or drawing of the product, with the most frequently oc-
curring defects shown on the part. This diagram is used to determine whether defects occur in
the same location on the part. The defect concentration diagram for the printed circuit board is
shown in Fig. 15-26. This diagram indicates that most of the insufficient solder defects are near
the front edge of the board. Further investigation showed that one of the pallets used to carry the
boards was bent, causing the front edge of the board to make poor contact with the squeegee.

When the defective pallet was replaced, a designed experiment was used to investigate 
the seven variables discussed earlier. The results of this experiment indicated that several of
these factors were influential and could be adjusted to reduce solder defects. After the results
of the experiment were implemented, the percentage of solder joints requiring rework was
reduced from 1% to under 100 parts per million (0.01%).
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15-10 IMPLEMENTING SPC

The methods of statistical process control can provide significant payback to those companies
that can successfully implement them. While SPC seems to be a collection of statistically
based problem-solving tools, there is more to the successful use of SPC than simply learning
and using these tools. Management involvement and commitment to the quality-improvement
process is the most vital component of SPC’s potential success. Management is a role model,
and others in the organization will look to management for guidance and as an example. A
team approach is also important, for it is usually difficult for one person alone to introduce
process improvements. Many of the “magnificent seven’’ problem-solving tools are helpful in
building an improvement team, including cause-and-effect diagrams, Pareto charts, and defect
concentration diagrams. The basic SPC problem-solving tools must become widely known
and widely used throughout the organization. Continuous training in SPC and quality im-
provement is necessary to achieve this widespread knowledge of the tools.

The objective of an SPC-based quality-improvement program is continuous improve-
ment on a weekly, quarterly, and annual basis. SPC is not a one-time program to be applied
when the business is in trouble and later abandoned. Quality improvement must become part
of the culture of the organization.

The control chart is an important tool for process improvement. Processes do not natu-
rally operate in an in-control state, and the use of control charts is an important step that must
be taken early in an SPC program to eliminate assignable causes, reduce process variability,
and stabilize process performance. To improve quality and productivity, we must begin to
manage with facts and data, and not just rely on judgment. Control charts are an important part
of this change in management approach.

In implementing a company-wide SPC program, we have found that the following ele-
ments are usually present in all successful efforts:

1. Management leadership

2. A team approach

3. Education of employees at all levels

4. Emphasis on continuous improvement

5. A mechanism for recognizing success

We cannot overemphasize the importance of management leadership and the team approach.
Successful quality improvement is a “top-down” management-driven activity. It is also im-
portant to measure progress and success and to spread knowledge of this success throughout
the organization. When successful improvements are communicated throughout the company,
this can provide motivation and incentive to improve other processes and to make continuous
improvement a normal part of the way of doing business.

The philosophy of W. Edwards Deming provides an important framework for implement-
ing quality and productivity improvement. Deming’s philosophy is summarized in his 14
points for management. The adherence to these management principles has been an important
factor in Japan’s industrial success and continues to be the catalyst in that nation’s quality- and
productivity-improvement efforts. This philosophy has also now spread rapidly in the West.
Deming’s 14 points are as follows.

1. Create a constancy of purpose focused on the improvement of products and
services. Constantly try to improve product design and performance. Investment
in research, development, and innovation will have a long-term payback to the
organization.
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2. Adopt a new philosophy of rejecting poor workmanship, defective products, or
bad service. It costs as much to produce a defective unit as it does to produce a
good one (and sometimes more). The cost of dealing with scrap, rework, and other
losses created by defectives is an enormous drain on company resources.

3. Do not rely on mass inspection to “control” quality. All inspection can do is sort
out defectives, and at this point it is too late because we have already paid to pro-
duce these defectives. Inspection occurs too late in the process, it is expensive, and
it is often ineffective. Quality results from the prevention of defectives through
process improvement, not inspection.

4. Do not award business to suppliers on the basis of price alone, but also consider
quality. Price is a meaningful measure of a supplier’s product only if it is consid-
ered in relation to a measure of quality. In other words, the total cost of the item
must be considered, not just the purchase price. When quality is considered, the 
lowest bidder is frequently not the low-cost supplier. Preference should be given to
suppliers who use modern methods of quality improvement in their business and
who can demonstrate process control and capability.

5. Focus on continuous improvement. Constantly try to improve the production and
service system. Involve the workforce in these activities and make use of statisti-
cal methods, particularly the SPC problem-solving tools discussed in the previous
section.

6. Practice modern training methods and invest in training for all employees.
Everyone should be trained in the technical aspects of their job, as well as in mod-
ern quality- and productivity-improvement methods. The training should encourage
all employees to practice these methods every day.

7. Practice modern supervision methods. Supervision should not consist merely of
passive surveillance of workers, but should be focused on helping the employees
improve the system in which they work. The first goal of supervision should be to
improve the work system and the product.

8. Drive out fear. Many workers are afraid to ask questions, report problems, or point
out conditions that are barriers to quality and effective production. In many organi-
zations the economic loss associated with fear is large; only management can elim-
inate fear.

9. Break down the barriers between functional areas of the business. Teamwork
among different organizational units is essential for effective quality and productiv-
ity improvement to take place.

10. Eliminate targets, slogans, and numerical goals for the workforce. A target such
as “zero defects” is useless without a plan as to how to achieve this objective. In
fact, these slogans and “programs” are usually counterproductive. Work to improve
the system and provide information on that.

11. Eliminate numerical quotas and work standards. These standards have histori-
cally been set without regard to quality. Work standards are often symptoms of
management’s inability to understand the work process and to provide an effective
management system focused on improving this process.

12. Remove the barriers that discourage employees from doing their jobs.
Management must listen to employee suggestions, comments, and complaints. The
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15-73. The diameter of fuse pins used in an aircraft engine
application is an important quality characteristic. Twenty-five
samples of three pins each are shown as follows:

SUPPLEMENTAL EXERCISES

Sample 
Number Diameter

1 64.030 64.002 64.019
2 63.995 63.992 64.001
3 63.988 64.024 64.021
4 64.002 63.996 63.993
5 63.992 64.007 64.015
6 64.009 63.994 63.997
7 63.995 64.006 63.994
8 63.985 64.003 63.993
9 64.008 63.995 64.009

10 63.998 74.000 63.990
11 63.994 63.998 63.994
12 64.004 64.000 64.007
13 63.983 64.002 63.998
14 64.006 63.967 63.994
15 64.012 64.014 63.998
16 64.000 63.984 64.005
17 63.994 64.012 63.986

18 64.006 64.010 64.018
19 63.984 64.002 64.003
20 64.000 64.010 64.013
21 63.988 64.001 64.009
22 64.004 63.999 63.990
23 64.010 63.989 63.990
24 64.015 64.008 63.993
25 63.982 63.984 63.995

692 CHAPTER 15 STATISTICAL QUALITY CONTROL

person who is doing the job is the one who knows the most about it, and usually has
valuable ideas about how to make the process work more effectively. The workforce
is an important participant in the business, and not just an opponent in collective
bargaining.

13. Institute an ongoing program of training and education for all employees.
Education in simple, powerful statistical techniques should be mandatory for all
employees. Use of the basic SPC problem-solving tools, particularly the control
chart, should become widespread in the business. As these charts become wide-
spread, and as employees understand their uses, they will be more likely to look for
the causes of poor quality and to identify process improvements. Education is a way
of making everyone partners in the quality-improvement process.

14. Create a structure in top management that will vigorously advocate the first 13
points.

As we read Deming’s 14 points, we notice two things. First, there is a strong emphasis on
change. Second, the role of management in guiding this change process is of dominating impor-
tance. But what should be changed, and how should this change process be started? For exam-
ple, if we want to improve the yield of a semiconductor manufacturing process, what should we
do? It is in this area that statistical methods most frequently come into play. To improve the semi-
conductor process, we must determine which controllable factors in the process influence the
number of defective units produced. To answer this question, we must collect data on the process
and see how the system reacts to changes in the process variables. Statistical methods, including
the SPC and experimental design techniques in this book, can contribute to this knowledge.

(a) Set up and R charts for this process. If necessary, revise
limits so that no observations are out-of-control.

(b) Estimate the process mean and standard deviation.
(c) Suppose the process specifications are at 64 � 0.02.

Calculate an estimate of PCR. Does the process meet a
minimum capability level of PCR � 1.33?

(d) Calculate an estimate of PCRk. Use this ratio to draw con-
clusions about process capability.

(e) To make this process a six-sigma process, the variance 
would have to be decreased such that PCRk � 2.0. What
should this new variance value be?

(f ) Suppose the mean shifts to 64.01. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

�2

X
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(a) Using all the data, find trial control limits for a U chart for
the process.

(b) Use the trial control limits from part (a) to identify out-of-
control points. If necessary, revise your control limits.

(c) Suppose that instead of samples of five cases, the sample
size was 10. Repeat parts (a) and (b). Explain how this
change alters your answers to parts (a) and (b).

15-77. An article in Quality Engineering [“Is the Process
Capable? Tables and Graphs in Assessing Cpm” (1992, Vol.
4(4))]. Considered manufacturing data. Specifications for the
outer diameter of the hubs were . A ran-
dom sample with size was taken and the data are
shown in the following table.

n � 20
60.3265 
 0.001 mm

15-74. Rework Exercise 15-73 with and S charts.

15-75. Plastic bottles for liquid laundry detergent are
formed by blow molding. Twenty samples of n � 100 bottles
are inspected in time order of production, and the fraction de-
fective in each sample is reported. The data are as follows:

X

Sample Fraction Defective

1 0.12
2 0.15
3 0.18
4 0.10
5 0.12
6 0.11
7 0.05
8 0.09
9 0.13

10 0.13
11 0.10
12 0.07
13 0.12
14 0.08
15 0.09
16 0.15
17 0.10
18 0.06
19 0.12
20 0.13

(a) Set up a P chart for this process. Is the process in statisti-
cal control?

(b) Suppose that instead of n � 100, n � 200. Use the data
given to set up a P chart for this process. Revise the con-
trol limits if necessary.

(c) Compare your control limits for the P charts in parts (a) and
(b). Explain why they differ. Also, explain why your assess-
ment about statistical control differs for the two sizes of n.

15-76. Cover cases for a personal computer are manufac-
tured by injection molding. Samples of five cases are taken
from the process periodically, and the number of defects is
noted. Twenty-five samples follow:

Sample No. of Defects Sample No. of Defects

1 3 7 2

2 2 8 4

3 0 9 1

4 1 10 0

5 4 11 2

6 3 12 3

13 2 20 0

14 8 21 2

15 0 22 1

16 2 23 9

17 4 24 3

18 3 25 2

19 5

Sample x Sample x

1 60.3262 11 60.3262

2 60.3262 12 60.3262

3 60.3262 13 60.3269

4 60.3266 14 60.3261

5 60.3263 15 60.3265

6 60.3260 16 60.3266

7 60.3262 17 60.3265

8 60.3267 18 60.3268

9 60.3263 19 60.3262

10 60.3269 20 60.3266

(a) Construct a control chart for individual measurements.
Revise the control limits if necessary.

(b) Compare your chart in part (a) to one that uses only the
last (least significant) digit of each diameter as the mea-
surement. Explain your conclusion.

(c) Estimate and from the moving range of the revised
chart and use this value to estimate PCR and PCRk and
interpret these ratios.

15-78. The following data from the U.S. Department of
Energy Web site (http://www.eia.doe.gov) reported the total
U.S. renewable energy consumption by year (trillion BTU)
from 1973 to 2004.

��
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Total Renewable Total Renewable
Energy Energy 

Consumption Consumption
Year (Trillion BTU) Year (Trillion Btu)

1973 4433.121 1989 6294.209

1974 4769.395 1990 6132.572

1975 4723.494 1991 6158.087

1976 4767.792 1992 5907.147

1977 4249.002 1993 6155.959

1978 5038.938 1994 6064.779

1979 5166.379 1995 6669.261

1980 5494.42 1996 7136.799

1981 5470.574 1997 7075.152

1982 5985.352 1998 6560.632

1983 6487.898 1999 6598.63

1984 6430.646 2000 6158.232

1985 6032.728 2001 5328.335

1986 6131.542 2002 5835.339

1987 5686.932 2003 6081.722

1988 5488.649 2004 6116.287

Batch s

1 572.00 73.25

2 583.83 79.30

3 720.50 86.44

4 368.67 98.62

5 374.00 92.36

6 580.33 93.50

7 388.33 110.23

8 559.33 74.79

9 562.00 76.53

10 729.00 49.80

11 469.00 40.52

12 566.67 113.82

x
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(a) Using all the data, find trial control limits for a control
chart for individual measurements, construct the chart,
and plot the data.

(b) Do the data appear to be generated from an in-control
process? Comment on any patterns on the chart.

15-79. The following dataset was considered in Quality
Engineering [“Analytic Examination of Variance Components”
(1994–1995, Vol. 7(2))]. A quality characteristic for cement
mortar briquettes was monitored. Samples of size were
taken from the process, and 25 samples from the process are
shown in the following table.
(a) Using all the data, find trial control limits for and S

charts. Is the process in control?
X

n � 6

(b) Suppose that the specifications are at What
statements can you make about process capability?
Compute estimates of the appropriate process capability
ratios.

(c) To make this process a “6-sigma process,” the variance 
would have to be decreased such that What
should this new variance value be?

(d) Suppose the mean shifts to 600. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

15-80. Suppose that an control chart with 2-sigma limits
is used to control a process. Find the probability that a false
out-of-control signal will be produced on the next sample.
Compare this with the corresponding probability for the chart
with 3-sigma limits and discuss. Comment on when you
would prefer to use 2-sigma limits instead of 3-sigma limits.

15-81. Consider the diameter data in Exercise 15-73.
(a) Construct an EWMA control chart with and

Comment on process control.
(b) Construct an EWMA control chart with and

and compare your conclusion to part (a).

15-82. Consider the renewable energy data in Exercise 15-78.
(a) Construct an EWMA control chart with and 

Do the data appear to be generated from an incontrol
process?

(b) Construct an EWMA control chart with and
and compare your conclusion to part (a).

15-83. Consider the hub data in Exercise 15-77.
(a) Construct an EWMA control chart with and

Comment on process control.
(b) Construct an EWMA control chart with and

and compare your conclusion to part (a).

15-84. Consider the data in Exercise 15-18. Set up a CUSUM
scheme for this process assuming that � � 16 is the process
target. Explain how you determined your estimate of � and the
CUSUM parameters K and H.

L � 3

 � 0.5

L � 3.

 � 0.2

L � 3

 � 0.5

L � 3.� � 0.2

L � 3

 � 0.5

L � 3.

 � 0.2

X

PCRk � 2.0.
�2

580 
 250.

13 578.33 58.03

14 485.67 103.33

15 746.33 107.88

16 436.33 98.69

17 556.83 99.25

18 390.33 117.35

19 562.33 75.69

20 675.00 90.10

21 416.50 89.27

22 568.33 61.36

23 762.67 105.94

24 786.17 65.05

25 530.67 99.42

JWCL232_c15_637-701.qxd  1/11/10  4:58 PM  Page 694



15-10 IMPLEMENTING SPC 695

(a) Construct a CUSUM scheme for this process with the
target Explain how you determined your esti-
mate of and the CUSUM parameters H and K. Is the
process in control?

(b) Construct an EWMA control chart with and
and compare your conclusions to part (a).

15-88. Suppose that a process is in control and an chart is
used with a sample size of 4 to monitor the process. Suddenly
there is a mean shift of 1.5�.
(a) If 3-sigma control limits are in use on the chart, what is

the probability that this shift will remain undetected for
three consecutive samples?

(b) If 2-sigma control limits are in use on the chart, what is
the probability that this shift will remain undetected for
three consecutive samples?

(c) Compare your answers to parts (a) and (b) and explain
why they differ. Also, which limits you would recommend
using and why?

15-89. Consider the control chart for individuals with 
3-sigma limits.
(a) Suppose that a shift in the process mean of magnitude 

� occurs. Verify that the ARL for detecting the shift is
ARL � 43.9.

X

X

X

L � 3

 � 0.5

�
�0 � 0.4.

15-85. Consider the hardness measurement data in Exercise
15-17. Set up a CUSUM scheme for this process using � � 50
and � � 2, so that K � 1 and H � 10. Is the process in control?

15-86. Reconsider the viscosity data in Exercise 15-20.
Construct a CUSUM control chart for this process using �0 �
500 as the process target. Explain how you determined your
estimate of � and the CUSUM parameters H and K.

15-87. The following data were considered in Quality
Progress [“Digidot Plots for Process Surveillance” (1990,
May, pp. 66–68)]. Measurements of center thickness (in mils)
from 25 contact lenses sampled from the production process at
regular intervals are shown in the following table.

Sample x Sample x

1 0.3978 14 0.3999
2 0.4019 15 0.4062
3 0.4031 16 0.4048
4 0.4044 17 0.4071
5 0.3984 18 0.4015
6 0.3972 19 0.3991
7 0.3981 20 0.4021
8 0.3947 21 0.4009
9 0.4012 22 0.3988

10 0.4043 23 0.3994
11 0.4051 24 0.4016
12 0.4016 25 0.4010
13 0.3994 

(b) Find the ARL for detecting a shift of magnitude 2� in the
process mean.

(c) Find the ARL for detecting a shift of magnitude 3� in the
process mean.

(d) Compare your answers to parts (a), (b), and (c) and ex-
plain why the ARL for detection is decreasing as the mag-
nitude of the shift increases.

15-90. Consider a control chart for individuals, applied to a
continuous 24-hour chemical process with observations taken
every hour.
(a) If the chart has 3-sigma limits, verify that the in-control

ARL is ARL � 370. How many false alarms would occur
each 30-day month, on the average, with this chart?

(b) Suppose that the chart has 2-sigma limits. Does this re-
duce the ARL for detecting a shift in the mean of magni-
tude �? (Recall that the ARL for detecting this shift with
3-sigma limits is 43.9.)

(c) Find the in-control ARL if 2-sigma limits are used on the
chart. How many false alarms would occur each month
with this chart? Is this in-control ARL performance satis-
factory? Explain your answer.

15-91. The depth of a keyway is an important part quality char-
acteristic. Samples of size n � 5 are taken every four hours from
the process and 20 samples are summarized in the following table.
(a) Using all the data, find trial control limits for and R

charts. Is the process in control?
(b) Use the trial control limits from part (a) to identify out-of-

control points. If necessary, revise your control limits.
Then, estimate the process standard deviation.

(c) Suppose that the specifications are at 140 
 2. Using the
results from part (b), what statements can you make about
process capability? Compute estimates of the appropriate
process capability ratios.

(d) To make this process a “6-sigma process,” the variance �2

would have to be decreased such that PCRk � 2.0. What
should this new variance value be?

X

Sample r

1 139.7 1.1

2 139.8 1.4

3 140.0 1.3

4 140.1 1.6

5 139.8 0.9

6 139.9 1.0

7 139.7 1.4

8 140.2 1.2

9 139.3 1.1

10 140.7 1.0

11 138.4 0.8

12 138.5 0.9

X

continued
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15-96. Suppose the average number of defects in a unit is
known to be 10. If the mean number of defects in a unit shifts
to 14, what is the probability that it will be detected by a U
chart on the first sample following the shift
(a) if the sample size is n � 1?
(b) if the sample size is n � 4?
Use a normal approximation for U.

15-97. An EWMA chart with and is to
be used to monitor a process. Suppose that the process mean 
is and 
(a) Assume that What is the ARL without any shift 

in the process mean? What is the ARL to detect a shift to

(b) Assume that Repeat part (a) and comment on your
conclusions.

15-98. The following table provides the costs for gasoline
by month in the U.S. over recent years and the percentage of
the cost due to refining, distribution and marketing, taxes,
and crude oil. The table is from the U.S. Department of
Energy Web site (http://tonto.eia.doe.gov/oog/info/gdu/
gaspump.html). There is some concern that the refining or
distribution and marketing percentages of the retail price have
shown patterns over time.
(a) Construct separate control charts for the refining percent-

age of the retail price and the distribution and marketing
percentage of the retail price. Use control charts for indi-
vidual measurements. Comment on any signs of assigna-
ble causes on these charts.

(b) Construct a control chart for the crude oil percentage of the
retail price. Use a control chart for individual measurements.
Comment on any signs of assignable causes on this chart.

(c) Another way to study the data is to calculate refining, dis-
tribution and marketing, and tax as costs directly. The
costs of these categories might not depend strongly on the
crude oil cost. Use the percentages provided in the table to
calculate the cost each month associated with refining and
distribution and marketing. Construct separate control
charts for the refining and the distribution and marketing
costs each month. Use control charts for individual mea-
surements. Comment on any signs of assignable causes on
these charts and comment on any differences between
these charts and the ones constructed in part (a).

n � 4.
� � 12.

n � 1.
� � 2.�0 � 10

L � 3.07
 � 0.5

Sample r

13 137.9 1.2

14 138.5 1.1

15 140.8 1.0

16 140.5 1.3

17 139.4 1.4

18 139.9 1.0

19 137.5 1.5

20 139.2 1.3

X

(e) Suppose the mean shifts to 139.7. What is the probability
that this shift will be detected on the next sample? What is
the ARL after the shift?

15-92. Consider a control chart for individuals with 3-sigma
limits. What is the probability that there will not be a signal in
three samples? In six samples? In 10 samples?

15-93. Suppose a process has a PCR � 2, but the mean is
exactly three standard deviations above the upper specifica-
tion limit. What is the probability of making a product outside
the specification limits?

15-94. A process is controlled by a P chart using samples of
size 100. The center line on the chart is 0.05.
(a) What is the probability that the control chart detects a shift

to 0.08 on the first sample following the shift?
(b) What is the probability that the control chart does not de-

tect a shift to 0.08 on the first sample following the shift,
but does detect it on the second sample?

(c) Suppose that instead of a shift in the mean to 0.08, the
mean shifts to 0.10. Repeat parts (a) and (b).

(d) Compare your answers for a shift to 0.08 and for a shift to
0.10. Explain why they differ. Also, explain why a shift to
0.10 is easier to detect.

15-95. Suppose the average number of defects in a unit is
known to be 8. If the mean number of defects in a unit shifts to
16, what is the probability that it will be detected by a U chart
on the first sample following the shift
(a) if the sample size is n � 4?
(b) if the sample size is n � 10?

Use a normal approximation for U.

What We Pay For in a Gallon of Regular Gasoline

Retail Price Refining Distribution & Marketing Taxes Crude Oil
Mo/Year (Dollars per gallon) (percentage) (percentage) (percentage) (percentage)

Jan-00 1.289 7.8 13.0 32.1 47.1
Feb-00 1.377 17.9 7.5 30.1 44.6
Mar-00 1.517 15.4 12.8 27.3 44.6
Apr-00 1.465 10.1 20.2 28.3 41.4
May-00 1.485 20.2 9.2 27.9 42.7
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What We Pay For in a Gallon of Regular Gasoline

Retail Price Refining Distribution & Marketing Taxes Crude Oil
Mo/Year (Dollars per gallon) (percentage) (percentage) (percentage) (percentage)

Jun-00 1.633 22.2 8.8 25.8 43.1
Jul-00 1.551 13.2 15.8 27.2 43.8
Aug-00 1.465 15.8 7.5 28.8 47.8
Sep-00 1.550 15.4 9.0 27.2 48.3
Oct-00 1.532 13.7 10.1 27.5 48.6
Nov-00 1.517 10.4 11.8 27.8 50.0
Dec-00 1.443 8.0 17.9 29.2 44.8
Jan-01 1.447 17.8 10.4 29.2 42.7
Feb-01 1.450 17.3 11.0 29.1 42.6
Mar-01 1.409 18.8 9.7 30.0 41.5
Apr-01 1.552 31.6 4.6 27.1 36.7
May-01 1.702 26.4 14.0 24.7 35.0
Jun-01 1.616 13.2 24.1 26.0 36.7
Jul-01 1.421 10.0 20.0 30.0 40.0
Aug-01 1.421 20.0 9.0 30.0 41.0
Sep-01 1.522 18.0 17.0 28.0 37.0
Oct-01 1.315 10.0 20.8 31.9 37.2
Nov-01 1.171 10.0 18.0 36.0 36.0
Dec-01 1.086 11.7 12.7 38.7 36.9
Jan-02 1.107 13.0 11.8 37.9 37.2
Feb-02 1.114 12.1 11.2 37.7 39.1
Mar-02 1.249 19.4 6.1 33.6 40.9
Apr-02 1.397 15.5 13.0 30.1 41.4
May-02 1.392 11.9 14.2 30.2 43.7
Jun-02 1.382 15.0 13.0 30.4 41.6
Jul-02 1.397 15.0 12.6 30.1 42.3
Aug-02 1.396 11.4 13.4 30.0 45.0
Sep-02 1.400 10.8 12.6 30.0 46.7
Oct-02 1.445 13.9 11.7 29.1 45.3
Nov-02 1.419 11.1 18.0 29.6 41.3
Dec-02 1.386 11.7 12.3 30.3 45.7
Jan-03 1.458 11.5 10.3 28.8 49.4
Feb-03 1.613 15.0 9.5 26.0 49.5
Mar-03 1.693 14.8 14.8 24.8 45.5
Apr-03 1.589 13.2 19.8 26.4 40.5
May-03 1.497 15.3 16.3 28.1 40.4
Jun-03 1.493 15.1 12.3 28.1 44.5
Jul-03 1.513 15.3 11.9 27.8 44.9
Aug-03 1.620 22.5 8.2 25.9 43.3
Sept-03 1.679 13.9 22.7 25.0 38.3
Oct-03 1.564 14.9 16.1 26.9 42.2
Nov-03 1.512 11.7 15.3 27.8 45.2
Dec-03 1.479 11.5 12.6 28.4 47.5
Jan-04 1.572 15.9 9.9 26.7 47.5
Feb-04 1.648 19.1 9.2 25.5 46.2
Mar-04 1.736 19.0 11.3 24.2 45.5

continued
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Apr-04 1.798 22.0 9.9 23.4 44.6
May-04 1.983 30.6 7.8 21.2 40.4
Jun-04 1.969 21.3 16.7 21.3 40.7
Jul-04 1.911 20.9 11.3 21.9 45.8
Aug-04 1.878 13.9 12.2 22.4 51.5
Sep-04 1.870 14.8 9.1 22.5 53.6
Oct-04 2.000 13.0 9.3 21.0 56.7
Nov-04 1.979 10.7 14.6 21.2 53.6
Dec-04 1.841 8.9 18.1 23.9 49.1
Jan-05 1.831 17.7 7.3 24.0 50.9
Feb-05 1.910 16.1 9.3 23.0 51.6
Mar-05 2.079 19.3 6.2 21.2 53.4
Apr-05 2.243 20.9 9.6 19.6 49.8
May-05 2.161 17.9 12.8 20.4 49.0
Jun-05 2.156 18.5 6.9 20.4 54.2
Jul-05 2.290 17.9 8.0 19.2 54.9
Aug-05 2.486 24.3 2.1 17.7 55.9
Sep-05 2.903 27.3 7.5 15.2 50.0
Oct-05 2.717 15.1 17.8 16.2 50.9
Nov-05 2.257 8.3 13.1 19.5 57.1
Dec-05 2.185 13.5 7.9 20.1 58.4
Jan-06 2.316 13.4 6.6 19.8 60.1
Feb-06 2.280 9.8 11.4 20.1 58.6
Mar-06 2.425 21.7 4.5 18.9 54.8
Apr-06 2.742 25.8 3.1 16.7 54.2
May-06 2.907 21.9 8.8 15.8 53.4
Jun-06 2.885 22.0 7.9 15.9 54.1
Jul-06 2.981 26.3 6.3 15.4 52.0
Aug-06 2.952 15.2 13.5 15.9 55.4
Sep-06 2.555 6.3 18.8 18.3 56.7
Oct-06 2.245 10.9 10.6 20.8 57.7
Nov-06 2.229 14.6 7.5 20.4 57.5
Dec-06 2.313 12.9 9.4 19.7 58.0
Jan-07 2.240 10.6 15.2 20.3 53.9
Feb-07 2.278 18.0 5.8 20.0 56.3
Mar-07 2.563 23.6 8.5 15.5 52.3
Apr-07 2.845 28.1 7.6 14.0 50.3
May-07 3.146 27.9 13.3 12.7 46.1
Jun-07 3.056 22.7 13.7 13.0 50.5
Jul-07 2.965 18.4 11.4 13.4 56.8
Aug-07 2.786 13.5 11.8 14.3 60.4
Sep-07 2.803 12.8 8.6 14.2 64.3
Oct-07 2.803 10.1 8.1 14.2 67.6
Nov-07 3.080 10.0 8.7 13.0 68.3
Dec-07 3.018 8.1 10.5 13.2 68.1
Jan-08 3.043 7.8 11.1 13.1 67.9

What We Pay For in a Gallon of Regular Gasoline

Retail Price Refining Distribution & Marketing Taxes Crude Oil
Mo/Year (Dollars per gallon) (percentage) (percentage) (percentage) (percentage)

698 CHAPTER 15 STATISTICAL QUALITY CONTROL
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What We Pay For in a Gallon of Regular Gasoline

Retail Price Refining Distribution & Marketing Taxes Crude Oil
Mo/Year (Dollars per gallon) (percentage) (percentage) (percentage) (percentage)

Feb-08 3.028 9.9 7.2 13.2 69.7
Mar-08 3.244 8.0 7.9 12.3 71.8
Apr-08 3.458 10.0 5.8 11.5 72.7
May-08 3.766 10.0 4.7 10.6 74.7
Jun-08 4.054 8.5 6.8 9.8 74.8
Jul-08 4.062 3.2 11.2 9.8 75.8
Aug-08 3.779 6.1 10.2 10.6 73.1
Sep-08 3.703 14.2 8.2 10.8 66.8
Oct-08 3.051 3.3 25.0 13.1 58.6
Nov-08 2.147 �3.7 24.7 18.6 60.4
Dec-08 1.687 0.7 19.5 23.6 56.2
Jan-09 1.788 13.4 10.7 22.3 53.6
Feb-09 1.923 16.8 14.9 20.7 47.6
Mar-09 1.959 12.0 12.3 20.4 55.3
Apr-09 2.049 12.0 12.1 19.5 56.4
May-09 2.266 17.6 �3.9 19.5 66.8
Jun-09 2.631 13.7 10.3 15.1 60.9
Jul-09 2.527 10.1 14.0 15.8 60.1
Aug-09 2.616 11.0 9.7 15.4 63.9
Sep-09 2.554 6.7 13.5 15.7 64.0

15-99. The following table shows the number of e-mails a
student received at each hour from 8:00 A.M. to 6:00 P.M.
The samples are collected for five days from Monday to
Friday.

(c) Use the trial control limits from part (b) to identify out-of-
control points. If necessary, revise your control limits, as-
suming that any samples that plot outside the control lim-
its can be eliminated.

15-100. The following are the number of defects observed
on 15 samples of transmission units in an automotive manu-
facturing company. Each lot contains five transmission units.

(a) Using all the data, compute trial control limits for a U con-
trol chart, construct the chart, and plot the data.

Hour M T W Th F

1 2 2 2 3 1
2 2 4 0 1 2
3 2 2 2 1 2
4 4 4 3 3 2
5 1 1 2 2 1
6 1 3 2 2 1
7 3 2 1 1 0
8 2 3 2 3 1
9 1 3 3 2 0

10 2 3 2 3 0

No. of No. of 
Sample Defects Sample Defects

1 8 11 6
2 10 12 10
3 24 13 11
4 6 14 17
5 5 15 9
6 21
7 10
8 7
9 9

10 15

(a) Use the rational subgrouping principle to comment on
why an chart that plots one point each hour with a sub-
group of size 5 is not appropriate.

(b) Construct an appropriate attribute control chart. Use all
the data to find trial control limits, construct the chart, and
plot the data.

X
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(b) Determine whether the process is in statistical control. If
not, assume assignable causes can be found and out-of-
control points eliminated. Revise the control limits.

15-101. Consider an control chart with UCL = 32.802,
UCL = 24.642, and n = 5. Suppose the mean shifts to 30.
(a) What is the probability that this shift will be detected on

the next sample?
(b) What is the ARL to detect the shift?

15-102. The number of visits (in millions) on a Web site is
recorded every day. The following table shows the samples for
25 consecutive days.

X

(a) Estimate the process standard estimation.
(b) Set up a CUSUM control chart for this process, assuming

the target is 10. Does the process appear to be in control?

Number Number
Sample of Visits Sample of Visits

1 10.12 4 9.35
2 9.92 5 9.60
3 9.76 6 8.60

7 10.46 19 12.53
8 10.58 20 10.76
9 9.95 21 11.92

10 9.50 22 13.24
11 11.26 23 10.64
12 10.02 24 11.31
13 10.95 25 11.26
14 8.99 26 11.79
15 9.50 27 10.53
16 9.66 28 11.82
17 10.42 29 11.47
18 11.30 30 11.76

15-103. Suppose a process is in control, and 3-sigma
control limits are in use on the chart. Let the mean
shift by 1.5�. What is the probability that this shift will
remain undetected for three consecutive samples? What
would its probability be if 2-sigma control limits were
used? The sample size is 4.

15-104. Consider an control chart with k-sigma
control limits. Develop a general expression for the
probability that a point will plot outside the control lim-
its when the process mean has shifted by � units from
the center line.

15-105. Suppose that an chart is used to control a
normally distributed process and that samples of size n
are taken every n hours and plotted on the chart, which
has k-sigma limits.
(a) Find a general expression for the expected number

of samples and time that will be taken until a false
action signal is generated.

(b) Suppose that the process mean shifts to an out-of-
control state, say . Find an expres-
sion for the expected number of samples that 
will be taken until a false action is generated.

(c) Evaluate the in-control ARL for k � 3. How, does
this change if k � 2? What do you think about the
use of 2-sigma limits in practice?

(d) Evaluate the out-of-control ARL for a shift of 1
sigma, given that n � 5.

15-106. Suppose a P chart with center line at with 
k-sigma control limits is used to control a process. There
is a critical fraction defective pc that must be detected
with probability 0.50 on the first sample following the shift
to this state. Derive a general formula for the sample
size that should be used on this chart.

15-107. Suppose that a P chart with center line at 
and k-sigma control limits is used to control a process.
What is the smallest sample size that can be used on this
control chart to ensure that the lower control limit is
positive?
15-108. A process is controlled by a P chart using
samples of size 100. The center line on the chart is 0.05.
What is the probability that the control chart detects a
shift to 0.08 on the first sample following the shift?
What is the probability that the shift is detected by at
least the third sample following the shift?

15-109. Consider a process where specifications on a
quality characteristic are 100 
 15. We know that the
standard deviation of this normally distributed quality
characteristic is 5. Where should we center the process
to minimize the fraction defective produced? Now sup-
pose the mean shifts to 105 and we are using a sample
size of 4 on an chart. What is the probability that such
a shift will be detected on the first sample following the
shift? What is the average number of samples until an
out-of-control point occurs? Compare this result to the

X

p

p

�1 � �0 � ��

X

X

X
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15-10 IMPLEMENTING SPC 701

average number of observations until a defective occurs
(assuming normality).

15-110. NP Control Chart. An alternative to the con-
trol chart for fraction defective is a control chart based on
the number of defectives, or the NP control chart. The
chart has centerline at n , and the control limits are

and the number of defectives for each sample is plotted
on the chart.
(a) Verify that the control limits given above are correct.
(b) Apply this control chart to the data in Example 15-4.
(c) Will this chart always provide results that are equiv-

alent to the usual P chart?

15-111. C Control Chart. An alternative to the U
chart is a chart based on the number of defects. The
chart has center line at and the control limits are

(a) Apply this chart to the data in Example 15-5.
(b) Will this chart always provide results equivalent to

the U chart?
15-112. Standardized Control Chart. Consider the
P chart with the usual 3-sigma control limits. Suppose
that we define a new variable:

as the quantity to plot on a control chart. It is proposed
that this new chart will have a center line at 0 with the
upper and lower control limits at 
3. Verify that this
standardized control chart will be equivalent to the orig-
inal P chart.

15-113. Unequal Sample Sizes. One application of
the standardized control chart introduced in Exercise
15-112 is to allow unequal sample sizes on the control
chart. Provide details concerning how this procedure
would be implemented and illustrate using the follow-
ing data:

Zi �
P̂i � P

C

P 11 � P2
n

 LCL � nu � 32nu

UCL � nu � 32nu

nu,

 LCL � np � 32np11 � p2

UCL � np � 32np11 � p2

p

Sample, i 1 2 3 4 5 6 7 8 9 10

ni 20 25 20 25 50 30 25 25 25 20

pi 0.2 0.16 0.25 0.08 0.3 0.1 0.12 0.16 0.12 0.15

MIND-EXPANDING EXERCISES

ARL
Assignable causes
Attributes control

charts
Average run length
C chart
Cause-and-effect 

diagram
Center line
Chance causes
Control chart
Control limits
Cumulative sum control

chart

Defect concentration
diagram

Defects-per-unit chart
Deming’s 14 points
Exponentially 

weighted moving 
average control 
chart (EWMA)

False alarm
Fraction-defective 

control chart
Implementing SPC
Individuals control

chart ( chart)

Moving range
NP chart
P chart
Pareto diagram
PCR
PCRk

Problem-solving tools
Process capability
Process capability ratio
Quality control
R chart
Rational subgroup
Run rule
S chart

Shewhart control chart
Six-sigma process
Specification limits
Statistical process 

control (SPC)
Statistical quality 

control
U chart
V mask
Variables control charts
Warning limits
Western Electric rules

chart�
�

IMPORTANT TERMS AND CONCEPTS

JWCL232_c15_637-701.qxd  1/11/10  4:58 PM  Page 701



702

APPENDICES

APPENDIX A. STATISTICAL TABLES AND CHARTS 703

Table I Summary of Common Probability Distributions 704

Table II Cumulative Binomial Probabilities P (X � x) 705

Table III Cumulative Standard Normal Distribution 708

Table IV Percentage Points �2
�,� of the Chi-Squared Distribution 710

Table V Percentage Points t�,� of the t Distribution 711

Table VI Percentage Points f�,�1,�2
of the F Distribution 712

Chart VII Operating Characteristic Curves 717

Table VIII Critical Values for the Sign Test 726

Table IX Critical Values for the Wilcoxon Signed-Rank Test 726

Table X Critical Values for the Wilcoxon Rank-Sum Test 727

Table XI Factors for Constructing Variables Control Charts 728

Table XII Factors for Tolerance Intervals 729

APPENDIX B. ANSWERS TO SELECTED EXERCISES 731

APPENDIX C. BIBLIOGRAPHY 747

JWCL232_AppA_702-730.qxd  1/18/10  1:21 PM  Page 702



Appendix A
Statistical
Tables and
Charts

703

JWCL232_AppA_702-730.qxd  1/18/10  1:21 PM  Page 703



704 APPENDIX A STATISTICAL TABLES AND CHARTS

Table I Summary of Common Probability Distributions

Probability Section
Name Distribution Mean Variance in Book

Discrete

Uniform 3-5

Binomial np 3-6

Geometric 3-7

Negative binomial 3-7

Hypergeometric np 3-8

Poisson � � 3-9

Continuous

Uniform 4-5

Normal � �2 4-6

Exponential 4-8

Erlang 4-9.1

Gamma 4-9.2

Weibull 4-10

Lognormal 4-11

Beta 4-12
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APPENDIX A 705

Table II Cumulative Binomial Probabilities P(X � x) 

P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

1 0 0.9000 0.8000 0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.1000 0.0500 0.0100
2 0 0.8100 0.6400 0.4900 0.3600 0.2500 0.1600 0.0900 0.0400 0.0100 0.0025 0.0001

1 0.9900 0.9600 0.9100 0.8400 0.7500 0.6400 0.5100 0.3600 0.1900 0.0975 0.0199
3 0 0.7290 0.5120 0.3430 0.2160 0.1250 0.0640 0.0270 0.0080 0.0010 0.0001 0.0000

1 0.9720 0.8960 0.7840 0.6480 0.5000 0.3520 0.2160 0.1040 0.0280 0.0073 0.0003
2 0.9990 0.9920 0.9730 0.9360 0.8750 0.7840 0.6570 0.4880 0.2710 0.1426 0.0297

4 0 0.6561 0.4096 0.2401 0.1296 0.0625 0.0256 0.0081 0.0016 0.0001 0.0000 0.0000
1 0.9477 0.8192 0.6517 0.4752 0.3125 0.1792 0.0837 0.0272 0.0037 0.0005 0.0000
2 0.9963 0.9728 0.9163 0.8208 0.6875 0.5248 0.3483 0.1808 0.0523 0.0140 0.0006
3 0.9999 0.9984 0.9919 0.9744 0.9375 0.8704 0.7599 0.5904 0.3439 0.1855 0.0394

5 0 0.5905 0.3277 0.1681 0.0778 0.0313 0.0102 0.0024 0.0003 0.0000 0.0000 0.0000
1 0.9185 0.7373 0.5282 0.3370 0.1875 0.0870 0.0308 0.0067 0.0005 0.0000 0.0000
2 0.9914 0.9421 0.8369 0.6826 0.5000 0.3174 0.1631 0.0579 0.0086 0.0012 0.0000
3 0.9995 0.9933 0.9692 0.9130 0.8125 0.6630 0.4718 0.2627 0.0815 0.0226 0.0010
4 1.0000 0.9997 0.9976 0.9898 0.6988 0.9222 0.8319 0.6723 0.4095 0.2262 0.0490

6 0 0.5314 0.2621 0.1176 0.0467 0.0156 0.0041 0.0007 0.0001 0.0000 0.0000 0.0000
1 0.8857 0.6554 0.4202 0.2333 0.1094 0.0410 0.0109 0.0016 0.0001 0.0000 0.0000
2 0.9842 0.9011 0.7443 0.5443 0.3438 0.1792 0.0705 0.0170 0.0013 0.0001 0.0000
3 0.9987 0.9830 0.9295 0.8208 0.6563 0.4557 0.2557 0.0989 0.0159 0.0022 0.0000
4 0.9999 0.9984 0.9891 0.9590 0.9806 0.7667 0.5798 0.3446 0.1143 0.0328 0.0015
5 1.0000 0.9999 0.9993 0.9959 0.9844 0.9533 0.8824 0.7379 0.4686 0.2649 0.0585

7 0 0.4783 0.2097 0.0824 0.0280 0.0078 0.0016 0.0002 0.0000 0.0000 0.0000 0.0000
1 0.8503 0.5767 0.3294 0.1586 0.0625 0.0188 0.0038 0.0004 0.0000 0.0000 0.0000
2 0.9743 0.8520 0.6471 0.4199 0.2266 0.0963 0.0288 0.0047 0.0002 0.0000 0.0000
3 0.9973 0.9667 0.8740 0.7102 0.5000 0.2898 0.1260 0.0333 0.0027 0.0002 0.0000
4 0.9998 0.9953 0.9712 0.9037 0.7734 0.5801 0.3529 0.1480 0.0257 0.0038 0.0000
5 1.0000 0.9996 0.9962 0.9812 0.9375 0.8414 0.6706 0.4233 0.1497 0.0444 0.0020
6 1.0000 1.0000 0.9998 0.9984 0.9922 0.9720 0.9176 0.7903 0.5217 0.3017 0.0679

8 0 0.4305 0.1678 0.0576 0.0168 0.0039 0.0007 0.0001 0.0000 0.0000 0.0000 0.0000
1 0.8131 0.5033 0.2553 0.1064 0.0352 0.0085 0.0013 0.0001 0.0000 0.0000 0.0000
2 0.9619 0.7969 0.5518 0.3154 0.1445 0.0498 0.0113 0.0012 0.0000 0.0000 0.0000
3 0.9950 0.9437 0.8059 0.5941 0.3633 0.1737 0.0580 0.0104 0.0004 0.0000 0.0000
4 0.9996 0.9896 0.9420 0.8263 0.6367 0.4059 0.1941 0.0563 0.0050 0.0004 0.0000
5 1.0000 0.9988 0.9887 0.9502 0.8555 0.6846 0.4482 0.2031 0.0381 0.0058 0.0001
6 1.0000 0.9999 0.9987 0.9915 0.9648 0.8936 0.7447 0.4967 0.1869 0.0572 0.0027
7 1.0000 1.0000 0.9999 0.9993 0.9961 0.9832 0.9424 0.8322 0.5695 0.3366 0.0773

9 0 0.3874 0.1342 0.0404 0.0101 0.0020 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.7748 0.4362 0.1960 0.0705 0.0195 0.0038 0.0004 0.0000 0.0000 0.0000 0.0000
2 0.9470 0.7382 0.4628 0.2318 0.0889 0.0250 0.0043 0.0003 0.0000 0.0000 0.0000
3 0.9917 0.9144 0.7297 0.4826 0.2539 0.0994 0.0253 0.0031 0.0001 0.0000 0.0000
4 0.9991 0.9804 0.9012 0.7334 0.5000 0.2666 0.0988 0.0196 0.0009 0.0000 0.0000
5 0.9999 0.9969 0.9747 0.9006 0.7461 0.5174 0.2703 0.0856 0.0083 0.0006 0.0000
6 1.0000 0.9997 0.9957 0.9750 0.9102 0.7682 0.5372 0.2618 0.0530 0.0084 0.0001
7 1.0000 1.0000 0.9996 0.9962 0.9805 0.9295 0.8040 0.5638 0.2252 0.0712 0.0034
8 1.0000 1.0000 1.0000 0.9997 0.9980 0.9899 0.9596 0.8658 0.6126 0.3698 0.0865

JWCL232_AppA_702-730.qxd  1/18/10  1:21 PM  Page 705



Table II Cumulative Binomial Probabilities P(X � x) (continued)

P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

10 0 0.3487 0.1074 0.0282 0.0060 0.0010 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.7361 0.3758 0.1493 0.0464 0.0107 0.0017 0.0001 0.0000 0.0000 0.0000 0.0000
2 0.9298 0.6778 0.3828 0.1673 0.0547 0.0123 0.0016 0.0001 0.0000 0.0000 0.0000
3 0.9872 0.8791 0.6496 0.3823 0.1719 0.0548 0.0106 0.0009 0.0000 0.0000 0.0000
4 0.9984 0.9672 0.8497 0.6331 0.3770 0.1662 0.0473 0.0064 0.0001 0.0000 0.0000
5 0.9999 0.9936 0.9527 0.8338 0.6230 0.3669 0.1503 0.0328 0.0016 0.0001 0.0000
6 1.0000 0.9991 0.9894 0.9452 0.8281 0.6177 0.3504 0.1209 0.0128 0.0010 0.0000
7 1.0000 0.9999 0.9984 0.9877 0.9453 0.8327 0.6172 0.3222 0.0702 0.0115 0.0001
8 1.0000 1.0000 0.9999 0.9983 0.9893 0.9536 0.8507 0.6242 0.2639 0.0861 0.0043
9 1.0000 1.0000 1.0000 0.9999 0.9990 0.9940 0.9718 0.8926 0.6513 0.4013 0.0956

11 0 0.3138 0.0859 0.0198 0.0036 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.6974 0.3221 0.1130 0.0302 0.0059 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.9104 0.6174 0.3127 0.1189 0.0327 0.0059 0.0006 0.0000 0.0000 0.0000 0.0000
3 0.9815 0.8389 0.5696 0.2963 0.1133 0.0293 0.0043 0.0002 0.0000 0.0000 0.0000
4 0.9972 0.9496 0.7897 0.5328 0.2744 0.0994 0.0216 0.0020 0.0000 0.0000 0.0000
5 0.9997 0.9883 0.9218 0.7535 0.5000 0.2465 0.0782 0.0117 0.0003 0.0000 0.0000
6 1.0000 0.9980 0.9784 0.9006 0.7256 0.4672 0.2103 0.0504 0.0028 0.0001 0.0000
7 1.0000 0.9998 0.9957 0.9707 0.8867 0.7037 0.4304 0.1611 0.0185 0.0016 0.0000
8 1.0000 1.0000 0.9994 0.9941 0.9673 0.8811 0.6873 0.3826 0.0896 0.0152 0.0002
9 1.0000 1.0000 1.0000 0.9993 0.9941 0.9698 0.8870 0.6779 0.3026 0.1019 0.0052

10 1.0000 1.0000 1.0000 1.0000 0.9995 0.9964 0.9802 0.9141 0.6862 0.4312 0.1047
12 0 0.2824 0.0687 0.0138 0.0022 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6590 0.2749 0.0850 0.0196 0.0032 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.8891 0.5583 0.2528 0.0834 0.0193 0.0028 0.0002 0.0000 0.0000 0.0000 0.0000
3 0.9744 0.7946 0.4925 0.2253 0.0730 0.0153 0.0017 0.0001 0.0000 0.0000 0.0000
4 0.9957 0.9274 0.7237 0.4382 0.1938 0.0573 0.0095 0.0006 0.0000 0.0000 0.0000
5 0.9995 0.9806 0.8822 0.6652 0.3872 0.1582 0.0386 0.0039 0.0001 0.0000 0.0000
6 0.9999 0.9961 0.9614 0.8418 0.6128 0.3348 0.1178 0.0194 0.0005 0.0000 0.0000
7 1.0000 0.9994 0.9905 0.9427 0.8062 0.5618 0.2763 0.0726 0.0043 0.0002 0.0000
8 1.0000 0.9999 0.9983 0.9847 0.9270 0.7747 0.5075 0.2054 0.0256 0.0022 0.0000
9 1.0000 1.0000 0.9998 0.9972 0.9807 0.9166 0.7472 0.4417 0.1109 0.0196 0.0002

10 1.0000 1.0000 1.0000 0.9997 0.9968 0.9804 0.9150 0.7251 0.3410 0.1184 0.0062
11 1.0000 1.0000 1.0000 1.0000 0.9998 0.9978 0.9862 0.9313 0.7176 0.4596 0.1136

13 0 0.2542 0.0550 0.0097 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.6213 0.2336 0.0637 0.0126 0.0017 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.8661 0.5017 0.2025 0.0579 0.0112 0.0013 0.0001 0.0000 0.0000 0.0000 0.0000
3 0.9658 0.7473 0.4206 0.1686 0.0461 0.0078 0.0007 0.0000 0.0000 0.0000 0.0000
4 0.9935 0.9009 0.6543 0.3530 0.1334 0.0321 0.0040 0.0002 0.0000 0.0000 0.0000
5 0.9991 0.9700 0.8346 0.5744 0.2905 0.0977 0.0182 0.0012 0.0000 0.0000 0.0000
6 0.9999 0.9930 0.9376 0.7712 0.5000 0.2288 0.0624 0.0070 0.0001 0.0000 0.0000
7 1.0000 0.9988 0.9818 0.9023 0.7095 0.4256 0.1654 0.0300 0.0009 0.0000 0.0000
8 1.0000 0.9988 0.9960 0.9679 0.8666 0.6470 0.3457 0.0991 0.0065 0.0003 0.0000
9 1.0000 1.0000 0.9993 0.9922 0.9539 0.8314 0.5794 0.2527 0.0342 0.0031 0.0000

10 1.0000 1.0000 0.9999 0.9987 0.9888 0.9421 0.7975 0.4983 0.1339 0.0245 0.0003
11 1.0000 1.0000 1.0000 0.9999 0.9983 0.9874 0.9363 0.7664 0.3787 0.1354 0.0072
12 1.0000 1.0000 1.0000 1.0000 0.9999 0.9987 0.9903 0.9450 0.7458 0.4867 0.1225
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Table II Cumulative Binomial Probabilities P(X � x) (continued)

P

n x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

14 0 0.2288 0.0440 0.0068 0.0008 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.5846 0.1979 0.0475 0.0081 0.0009 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.8416 0.4481 0.1608 0.0398 0.0065 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9559 0.6982 0.3552 0.1243 0.0287 0.0039 0.0002 0.0000 0.0000 0.0000 0.0000
4 0.9908 0.8702 0.5842 0.2793 0.0898 0.0175 0.0017 0.0000 0.0000 0.0000 0.0000
5 0.9985 0.9561 0.7805 0.4859 0.2120 0.0583 0.0083 0.0004 0.0000 0.0000 0.0000
6 0.9998 0.9884 0.9067 0.6925 0.3953 0.1501 0.0315 0.0024 0.0000 0.0000 0.0000
7 1.0000 0.9976 0.9685 0.8499 0.6047 0.3075 0.0933 0.0116 0.0002 0.0000 0.0000
8 1.0000 0.9996 0.9917 0.9417 0.7880 0.5141 0.2195 0.0439 0.0015 0.0000 0.0000
9 1.0000 1.0000 0.9983 0.9825 0.9102 0.7207 0.4158 0.1298 0.0092 0.0004 0.0000

10 1.0000 1.0000 0.9998 0.9961 0.9713 0.8757 0.6448 0.3018 0.0441 0.0042 0.0000
11 1.0000 1.0000 1.0000 0.9994 0.9935 0.9602 0.8392 0.5519 0.1584 0.0301 0.0003
12 1.0000 1.0000 1.0000 0.9999 0.9991 0.9919 0.9525 0.8021 0.4154 0.1530 0.0084
13 1.0000 1.0000 1.0000 1.0000 0.9999 0.9992 0.9932 0.9560 0.7712 0.5123 0.1313

15 0 0.2059 0.0352 0.0047 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.5490 0.1671 0.0353 0.0052 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.8159 0.3980 0.1268 0.0271 0.0037 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.9444 0.6482 0.2969 0.0905 0.0176 0.0019 0.0001 0.0000 0.0000 0.0000 0.0000
4 0.9873 0.8358 0.5155 0.2173 0.0592 0.0093 0.0007 0.0000 0.0000 0.0000 0.0000
5 0.9978 0.9389 0.7216 0.4032 0.1509 0.0338 0.0037 0.0001 0.0000 0.0000 0.0000
6 0.9997 0.9819 0.8689 0.6098 0.3036 0.0950 0.0152 0.0008 0.0000 0.0000 0.0000
7 1.0000 0.9958 0.9500 0.7869 0.5000 0.2131 0.0500 0.0042 0.0000 0.0000 0.0000
8 1.0000 0.9992 0.9848 0.9050 0.6964 0.3902 0.1311 0.0181 0.0003 0.0000 0.0000
9 1.0000 0.9999 0.9963 0.9662 0.8491 0.5968 0.2784 0.0611 0.0022 0.0001 0.0000

10 1.0000 1.0000 0.9993 0.9907 0.9408 0.7827 0.4845 0.1642 0.0127 0.0006 0.0000
11 1.0000 1.0000 0.9999 0.9981 0.9824 0.9095 0.7031 0.3518 0.0556 0.0055 0.0000
12 1.0000 1.0000 1.0000 0.9997 0.9963 0.9729 0.8732 0.6020 01841 0.0362 0.0004
13 1.0000 1.0000 1.0000 1.0000 0.9995 0.9948 0.9647 0.8329 0.4510 0.1710 0.0096
14 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9953 0.9648 0.7941 0.5367 0.1399

20 0 0.1216 0.0115 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.3917 0.0692 0.0076 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.6769 0.2061 0.0355 0.0036 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.8670 0.4114 0.1071 0.0160 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.9568 0.6296 0.2375 0.0510 0.0059 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.9887 0.8042 0.4164 0.1256 0.0207 0.0016 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9976 0.9133 0.6080 0.2500 0.0577 0.0065 0.0003 0.0000 0.0000 0.0000 0.0000
7 0.9996 0.9679 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000 0.0000 0.0000 0.0000
8 0.9999 0.9900 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001 0.0000 0.0000 0.0000
9 1.0000 0.9974 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006 0.0000 0.0000 0.0000

10 1.0000 0.9994 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000 0.0000 0.0000
11 1.0000 0.9999 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001 0.0000 0.0000
12 1.0000 1.0000 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004 0.0000 0.0000
13 1.0000 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024 0.0000 0.0000
14 1.0000 1.0000 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113 0.0003 0.0000
15 1.0000 1.0000 1.0000 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432 0.0026 0.0000
16 1.0000 1.0000 1.0000 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330 0.0159 0.0000
17 1.0000 1.0000 1.0000 1.0000 0.9998 0.9964 0.9645 0.7939 0.3231 0.0755 0.0010
18 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9924 0.9308 0.6083 0.2642 0.0169
19 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9885 0.8784 0.6415 0.1821
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Table III Cumulative Standard Normal Distribution

z 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.00


3.9 0.000033 0.000034 0.000036 0.000037 0.000039 0.000041 0.000042 0.000044 0.000046 0.000048

3.8 0.000050 0.000052 0.000054 0.000057 0.000059 0.000062 0.000064 0.000067 0.000069 0.000072

3.7 0.000075 0.000078 0.000082 0.000085 0.000088 0.000092 0.000096 0.000100 0.000104 0.000108

3.6 0.000112 0.000117 0.000121 0.000126 0.000131 0.000136 0.000142 0.000147 0.000153 0.000159

3.5 0.000165 0.000172 0.000179 0.000185 0.000193 0.000200 0.000208 0.000216 0.000224 0.000233

3.4 0.000242 0.000251 0.000260 0.000270 0.000280 0.000291 0.000302 0.000313 0.000325 0.000337

3.3 0.000350 0.000362 0.000376 0.000390 0.000404 0.000419 0.000434 0.000450 0.000467 0.000483

3.2 0.000501 0.000519 0.000538 0.000557 0.000577 0.000598 0.000619 0.000641 0.000664 0.000687

3.1 0.000711 0.000736 0.000762 0.000789 0.000816 0.000845 0.000874 0.000904 0.000935 0.000968

3.0 0.001001 0.001035 0.001070 0.001107 0.001144 0.001183 0.001223 0.001264 0.001306 0.001350

2.9 0.001395 0.001441 0.001489 0.001538 0.001589 0.001641 0.001695 0.001750 0.001807 0.001866

2.8 0.001926 0.001988 0.002052 0.002118 0.002186 0.002256 0.002327 0.002401 0.002477 0.002555

2.7 0.002635 0.002718 0.002803 0.002890 0.002980 0.003072 0.003167 0.003264 0.003364 0.003467

2.6 0.003573 0.003681 0.003793 0.003907 0.004025 0.004145 0.004269 0.004396 0.004527 0.004661

2.5 0.004799 0.004940 0.005085 0.005234 0.005386 0.005543 0.005703 0.005868 0.006037 0.006210

2.4 0.006387 0.006569 0.006756 0.006947 0.007143 0.007344 0.007549 0.007760 0.007976 0.008198

2.3 0.008424 0.008656 0.008894 0.009137 0.009387 0.009642 0.009903 0.010170 0.010444 0.010724

2.2 0.011011 0.011304 0.011604 0.011911 0.012224 0.012545 0.012874 0.013209 0.013553 0.013903

2.1 0.014262 0.014629 0.015003 0.015386 0.015778 0.016177 0.016586 0.017003 0.017429 0.017864

2.0 0.018309 0.018763 0.019226 0.019699 0.020182 0.020675 0.021178 0.021692 0.022216 0.022750

1.9 0.023295 0.023852 0.024419 0.024998 0.025588 0.026190 0.026803 0.027429 0.028067 0.028717

1.8 0.029379 0.030054 0.030742 0.031443 0.032157 0.032884 0.033625 0.034379 0.035148 0.035930

1.7 0.036727 0.037538 0.038364 0.039204 0.040059 0.040929 0.041815 0.042716 0.043633 0.044565

1.6 0.045514 0.046479 0.047460 0.048457 0.049471 0.050503 0.051551 0.052616 0.053699 0.054799

1.5 0.055917 0.057053 0.058208 0.059380 0.060571 0.061780 0.063008 0.064256 0.065522 0.066807

1.4 0.068112 0.069437 0.070781 0.072145 0.073529 0.074934 0.076359 0.077804 0.079270 0.080757

1.3 0.082264 0.083793 0.085343 0.086915 0.088508 0.090123 0.091759 0.093418 0.095098 0.096801

1.2 0.098525 0.100273 0.102042 0.103835 0.105650 0.107488 0.109349 0.111233 0.113140 0.115070

1.1 0.117023 0.119000 0.121001 0.123024 0.125072 0.127143 0.129238 0.131357 0.133500 0.135666

1.0 0.137857 0.140071 0.142310 0.144572 0.146859 0.149170 0.151505 0.153864 0.156248 0.158655

0.9 0.161087 0.163543 0.166023 0.168528 0.171056 0.173609 0.176185 0.178786 0.181411 0.184060

0.8 0.186733 0.189430 0.192150 0.194894 0.197662 0.200454 0.203269 0.206108 0.208970 0.211855

0.7 0.214764 0.217695 0.220650 0.223627 0.226627 0.229650 0.232695 0.235762 0.238852 0.241964

0.6 0.245097 0.248252 0.251429 0.254627 0.257846 0.261086 0.264347 0.267629 0.270931 0.274253

0.5 0.277595 0.280957 0.284339 0.287740 0.291160 0.294599 0.298056 0.301532 0.305026 0.308538

0.4 0.312067 0.315614 0.319178 0.322758 0.326355 0.329969 0.333598 0.337243 0.340903 0.344578

0.3 0.348268 0.351973 0.355691 0.359424 0.363169 0.366928 0.370700 0.374484 0.378281 0.382089

0.2 0.385908 0.389739 0.393580 0.397432 0.401294 0.405165 0.409046 0.412936 0.416834 0.420740

0.1 0.424655 0.428576 0.432505 0.436441 0.440382 0.444330 0.448283 0.452242 0.456205 0.460172

0.0 0.464144 0.468119 0.472097 0.476078 0.480061 0.484047 0.488033 0.492022 0.496011 0.500000

z 0

Φ (z)

�1z2 � P1Z � z2 � �
z


�
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22�
 e
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Table III Cumulative Standard Normal Distribution (continued)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.500000 0.503989 0.507978 0.511967 0.515953 0.519939 0.532922 0.527903 0.531881 0.535856
0.1 0.539828 0.543795 0.547758 0.551717 0.555760 0.559618 0.563559 0.567495 0.571424 0.575345
0.2 0.579260 0.583166 0.587064 0.590954 0.594835 0.598706 0.602568 0.606420 0.610261 0.614092
0.3 0.617911 0.621719 0.625516 0.629300 0.633072 0.636831 0.640576 0.644309 0.648027 0.651732
0.4 0.655422 0.659097 0.662757 0.666402 0.670031 0.673645 0.677242 0.680822 0.684386 0.687933
0.5 0.691462 0.694974 0.698468 0.701944 0.705401 0.708840 0.712260 0.715661 0.719043 0.722405
0.6 0.725747 0.729069 0.732371 0.735653 0.738914 0.742154 0.745373 0.748571 0.751748 0.754903
0.7 0.758036 0.761148 0.764238 0.767305 0.770350 0.773373 0.776373 0.779350 0.782305 0.785236
0.8 0.788145 0.791030 0.793892 0.796731 0.799546 0.802338 0.805106 0.807850 0.810570 0.813267
0.9 0.815940 0.818589 0.821214 0.823815 0.826391 0.828944 0.831472 0.833977 0.836457 0.838913
1.0 0.841345 0.843752 0.846136 0.848495 0.850830 0.853141 0.855428 0.857690 0.859929 0.862143
1.1 0.864334 0.866500 0.868643 0.870762 0.872857 0.874928 0.876976 0.878999 0.881000 0.882977
1.2 0.884930 0.886860 0.888767 0.890651 0.892512 0.894350 0.896165 0.897958 0.899727 0.901475
1.3 0.903199 0.904902 0.906582 0.908241 0.909877 0.911492 0.913085 0.914657 0.916207 0.917736
1.4 0.919243 0.920730 0.922196 0.923641 0.925066 0.926471 0.927855 0.929219 0.930563 0.931888
1.5 0.933193 0.934478 0.935744 0.936992 0.938220 0.939429 0.940620 0.941792 0.942947 0.944083
1.6 0.945201 0.946301 0.947384 0.948449 0.949497 0.950529 0.951543 0.952540 0.953521 0.954486
1.7 0.955435 0.956367 0.957284 0.958185 0.959071 0.959941 0.960796 0.961636 0.962462 0.963273
1.8 0.964070 0.964852 0.965621 0.966375 0.967116 0.967843 0.968557 0.969258 0.969946 0.970621
1.9 0.971283 0.971933 0.972571 0.973197 0.973810 0.974412 0.975002 0.975581 0.976148 0.976705
2.0 0.977250 0.977784 0.978308 0.978822 0.979325 0.979818 0.980301 0.980774 0.981237 0.981691
2.1 0.982136 0.982571 0.982997 0.983414 0.983823 0.984222 0.984614 0.984997 0.985371 0.985738
2.2 0.986097 0.986447 0.986791 0.987126 0.987455 0.987776 0.988089 0.988396 0.988696 0.988989
2.3 0.989276 0.989556 0.989830 0.990097 0.990358 0.990613 0.990863 0.991106 0.991344 0.991576
2.4 0.991802 0.992024 0.992240 0.992451 0.992656 0.992857 0.993053 0.993244 0.993431 0.993613
2.5 0.993790 0.993963 0.994132 0.994297 0.994457 0.994614 0.994766 0.994915 0.995060 0.995201
2.6 0.995339 0.995473 0.995604 0.995731 0.995855 0.995975 0.996093 0.996207 0.996319 0.996427
2.7 0.996533 0.996636 0.996736 0.996833 0.996928 0.997020 0.997110 0.997197 0.997282 0.997365
2.8 0.997445 0.997523 0.997599 0.997673 0.997744 0.997814 0.997882 0.997948 0.998012 0.998074
2.9 0.998134 0.998193 0.998250 0.998305 0.998359 0.998411 0.998462 0.998511 0.998559 0.998605
3.0 0.998650 0.998694 0.998736 0.998777 0.998817 0.998856 0.998893 0.998930 0.998965 0.998999
3.1 0.999032 0.999065 0.999096 0.999126 0.999155 0.999184 0.999211 0.999238 0.999264 0.999289
3.2 0.999313 0.999336 0.999359 0.999381 0.999402 0.999423 0.999443 0.999462 0.999481 0.999499
3.3 0.999517 0.999533 0.999550 0.999566 0.999581 0.999596 0.999610 0.999624 0.999638 0.999650
3.4 0.999663 0.999675 0.999687 0.999698 0.999709 0.999720 0.999730 0.999740 0.999749 0.999758
3.5 0.999767 0.999776 0.999784 0.999792 0.999800 0.999807 0.999815 0.999821 0.999828 0.999835
3.6 0.999841 0.999847 0.999853 0.999858 0.999864 0.999869 0.999874 0.999879 0.999883 0.999888
3.7 0.999892 0.999896 0.999900 0.999904 0.999908 0.999912 0.999915 0.999918 0.999922 0.999925
3.8 0.999928 0.999931 0.999933 0.999936 0.999938 0.999941 0.999943 0.999946 0.999948 0.999950
3.9 0.999952 0.999954 0.999956 0.999958 0.999959 0.999961 0.999963 0.999964 0.999966 0.999967

z0

Φ (z)

�1z2 � P1Z � z2 � �
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Table IV Percentage Points �2
�,� of the Chi-Squared Distribution

�
� .995 .990 .975 .950 .900 .500 .100 .050 .025 .010 .005

1 .00� .00� .00� .00� .02 .45 2.71 3.84 5.02 6.63 7.88
2 .01 .02 .05 .10 .21 1.39 4.61 5.99 7.38 9.21 10.60
3 .07 .11 .22 .35 .58 2.37 6.25 7.81 9.35 11.34 12.84
4 .21 .30 .48 .71 1.06 3.36 7.78 9.49 11.14 13.28 14.86
5 .41 .55 .83 1.15 1.61 4.35 9.24 11.07 12.83 15.09 16.75
6 .68 .87 1.24 1.64 2.20 5.35 10.65 12.59 14.45 16.81 18.55
7 .99 1.24 1.69 2.17 2.83 6.35 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 7.34 13.36 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 8.34 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 9.34 15.99 18.31 20.48 23.21 25.19
11 2.60 3.05 3.82 4.57 5.58 10.34 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 11.34 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 12.34 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 13.34 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 8.55 14.34 22.31 25.00 27.49 30.58 32.80
16 5.14 5.81 6.91 7.96 9.31 15.34 23.54 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 10.09 16.34 24.77 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 10.87 17.34 25.99 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 11.65 18.34 27.20 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 12.44 19.34 28.41 31.41 34.17 37.57 40.00
21 8.03 8.90 10.28 11.59 13.24 20.34 29.62 32.67 35.48 38.93 41.40
22 8.64 9.54 10.98 12.34 14.04 21.34 30.81 33.92 36.78 40.29 42.80
23 9.26 10.20 11.69 13.09 14.85 22.34 32.01 35.17 38.08 41.64 44.18
24 9.89 10.86 12.40 13.85 15.66 23.34 33.20 36.42 39.36 42.98 45.56
25 10.52 11.52 13.12 14.61 16.47 24.34 34.28 37.65 40.65 44.31 46.93
26 11.16 12.20 13.84 15.38 17.29 25.34 35.56 38.89 41.92 45.64 48.29
27 11.81 12.88 14.57 16.15 18.11 26.34 36.74 40.11 43.19 46.96 49.65
28 12.46 13.57 15.31 16.93 18.94 27.34 37.92 41.34 44.46 48.28 50.99
29 13.12 14.26 16.05 17.71 19.77 28.34 39.09 42.56 45.72 49.59 52.34
30 13.79 14.95 16.79 18.49 20.60 29.34 40.26 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 29.05 39.34 51.81 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 37.69 49.33 63.17 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 46.46 59.33 74.40 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 55.33 69.33 85.53 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 64.28 79.33 96.58 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 73.29 89.33 107.57 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 99.33 118.50 124.34 129.56 135.81 140.17

� � degrees of freedom.

χα, ν
2

α
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Table V Percentage Points t�,� of the t Distribution

�
� .40 .25 .10 .05 .025 .01 .005 .0025 .001 .0005

1 .325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 .289 .816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598
3 .277 .765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924
4 .271 .741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 .267 .727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 .265 .718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 .263 .711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 .262 .706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 .261 .703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 .260 .700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 .260 .697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 .259 .695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 .259 .694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 .258 .692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 .258 .691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 .258 .690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 .257 .689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 .257 .688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 .257 .688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 .257 .687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 .257 .686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 .256 .686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 .256 .685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 .256 .685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 .256 .684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 .256 .684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 .256 .684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 .256 .683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 .256 .683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 .256 .683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 .255 .681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 .254 .679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 .254 .677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
� .253 .674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

� � degrees of freedom.

0

α

α, νt

APPENDIX A 711
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(b) O.C. curves for different values of n for the two-sided normal test for a level of significance � � 0.01.

Source: Charts VIa, e, f, k, m, and q are reproduced with permission from “Operating Characteristics for
the Common Statistical Tests of Significance,” by C. L. Ferris, F. E. Grubbs, and C. L. Weaver, Annals of
Mathematical Statistics, June 1946.
Charts VIb, c, d, g, h, i, j, l, n, o, p, and r are reproduced with permission from Engineering Statistics, 2nd
Edition, by A. H. Bowker and G. J. Lieberman, Prentice-Hall, 1972.

(a) O.C. curves for different values of n for the two-sided normal test for a level of significance � � 0.05.
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(c) O.C. curves for different values of n for the one-sided normal test for a level of significance � � 0.05.

(d) O.C. curves for different values of n for the one-sided normal test for a level of significance � � 0.01.

Chart VII Operating Characteristic Curves (continued)
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(e) O.C. curves for different values of n for the two-sided t-test for a level of significance � � 0.05.

( f ) O.C. curves for different values of n for the two-sided t-test for a level of significance � � 0.01.

Chart VII Operating Characteristic Curves (continued)
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Chart VII Operating Characteristic Curves (continued)
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(g) O.C. curves for different values of n for the one-sided t-test for a level of significance � � 0.05.

(h) O.C. curves for different values of n for the one-sided t-test for a level of significance � � 0.01.
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Chart VII Operating Characteristic Curves (continued)
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(i) O.C. curves for different values of n for the two-sided chi-square test for a level of significance � � 0.05.

( j) O.C. curves for different values of n for the two-sided chi-square test for a level of significance � � 0.01.
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Chart VII Operating Characteristic Curves (continued)
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(k) O.C. curves for different values of n for the one-sided (upper-tail) chi-square test for a level of 
significance � � 0.05.

(l) O.C. curves for different values of n for the one-sided (upper-tail) chi-square test for a level of 
significance � � 0.01.
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Chart VII Operating Characteristic Curves (continued)
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Chart VII Operating Characteristic Curves (continued)

0
0

0.40 0.80 1.40 1.80 2.20 2.60 3.00 3.40 3.80 4.00

0.20

0.40

0.60

0.80

1.00

λ
1.00

P
ro

b
a
b
il
it

y 
o
f 

a
c
c
e
p
ti

n
g
 H

0

6

7

9

16

1
0
1

4

5
4

3

8

10

21

315
1

5

n1 = n2 = 3

6

7

8

9

10

16

21

31

51

101

0
0

0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00

0.20

0.40

0.60

0.80

1.00

λ
1.00

P
ro

b
a
b
il
it

y 
o
f 

a
c
c
e
p
ti

n
g
 H

0

6

7

9

5
11
0
1

5

4

8

10

16

21

3
1

n1 = n2 = 3

6

7

8

9

10

16

21

31

51

101

3

4

5

(o) O.C. curves for different values of n for the two-sided F-test for a level of significance � � 0.05.

( p) O.C. curves for different values of n for the two-sided F-test for a level of significance � � 0.01.
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Chart VII Operating Characteristic Curves (continued)
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(q) O.C. curves for different values of n for the one-sided F-test for a level of significance � � 0.05.

(r) O.C. curves for different values of n for the one-sided F-test for a level of significance � � 0.01.
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Table VIII Critical Values for the Sign Test
r*�

� 0.10 0.05 0.01 Two-sided tests � 0.10 0.05 0.01 Two-sided tests
n 0.05 0.025 0.005 One-sided tests n 0.05 0.025 0.005 One-sided tests

5 0 23 7 6 4
6 0 0 24 7 6 5
7 0 0 25 7 7 5
8 1 0 0 26 8 7 6
9 1 1 0 27 8 7 6

10 1 1 0 28 9 8 6
11 2 1 0 29 9 8 7
12 2 2 1 30 10 9 7
13 3 2 1 31 10 9 7
14 3 2 1 32 10 9 8
15 3 3 2 33 11 10 8
16 4 3 2 34 11 10 9
17 4 4 2 35 12 11 9
18 5 4 3 36 12 11 9
19 5 4 3 37 13 12 10
20 5 5 3 38 13 12 10
21 6 5 4 39 13 12 11
22 6 5 4 40 14 13 11

Table IX Critical Values for the Wilcoxon Signed-Rank Test
w*�

� 0.10 0.05 0.02 0.01 Two-sided tests
n* 0.05 0.025 0.01 0.005 One-sided tests

4
5 0
6 2 0
7 3 2 0
8 5 3 1 0
9 8 5 3 1

10 10 8 5 3
11 13 10 7 5
12 17 13 9 7
13 21 17 12 9
14 25 21 15 12
15 30 25 19 15
16 35 29 23 19
17 41 34 27 23
18 47 40 32 27
19 53 46 37 32
20 60 52 43 37
21 67 58 49 42
22 75 65 55 48
23 83 73 62 54
24 91 81 69 61
25 100 89 76 68

* If n � 25, W
 (or W
) is approximately normally distributed with mean n(n � 1)�4
and variance n(n � 1)(2n � 1)�24.
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Table X Critical Values for the Wilcoxon Rank-Sum Test
w0.05

n1*
n2 4 5 6 7 8 9 10 11 12 13 14 15

4 10
5 11 17
6 12 18 26
7 13 20 27 36
8 14 21 29 38 49
9 15 22 31 40 51 63

10 15 23 32 42 53 65 78
11 16 24 34 44 55 68 81 96
12 17 26 35 46 58 71 85 99 115
13 18 27 37 48 60 73 88 103 119 137
14 19 28 38 50 63 76 91 106 123 141 160
15 20 29 40 52 65 79 94 110 127 145 164 185
16 21 31 42 54 67 82 97 114 131 150 169
17 21 32 43 56 70 84 100 117 135 154
18 22 33 45 58 72 87 103 121 139
19 23 34 46 60 74 90 107 124
20 24 35 48 62 77 93 110
21 25 37 50 64 79 95
22 26 38 51 66 82
23 27 39 53 68
24 28 40 55
25 28 42
26 29
27
28

*For n1 and n2 � 8, W1 is approximately normally distributed with mean and variance n1n2(n1 � n2 � 1)�12.1
2n11 n1 � n2 � 12

Table X Critical Values for the Wilcoxon Rank-Sum Test (continued)
w0.01

n1

n2 4 5 6 7 8 9 10 11 12 13 14 15

5 15
6 10 16 23
7 10 17 24 32
8 11 17 25 34 43
9 11 18 26 35 45 56

10 12 19 27 37 47 58 71
11 12 20 28 38 49 61 74 87
12 13 21 30 40 51 63 76 90 106
13 14 22 31 41 53 65 79 93 109 125
14 14 22 32 43 54 67 81 96 112 129 147
15 15 23 33 44 56 70 84 99 115 133 151 171
16 15 24 34 46 58 72 86 102 119 137 155
17 16 25 36 47 60 74 89 105 122 140
18 16 26 37 49 62 76 92 108 125
19 17 27 38 50 64 78 94 111
20 18 28 39 52 66 81 97
21 18 29 40 53 68 83
22 19 29 42 55 70
23 19 30 43 57
24 20 31 44
25 20 32
26 21
27
28
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Table XI Factors for Constructing Variables Control Charts

Factor for Control Limits

Chart R Chart S Chart

n* A1 A2 d2 D3 D4 c4 n

2 3.760 1.880 1.128 0 3.267 0.7979 2
3 2.394 1.023 1.693 0 2.575 0.8862 3
4 1.880 .729 2.059 0 2.282 0.9213 4
5 1.596 .577 2.326 0 2.115 0.9400 5
6 1.410 .483 2.534 0 2.004 0.9515 6
7 1.277 .419 2.704 .076 1.924 0.9594 7
8 1.175 .373 2.847 .136 1.864 0.9650 8
9 1.094 .337 2.970 .184 1.816 0.9693 9

10 1.028 .308 3.078 .223 1.777 0.9727 10
11 .973 .285 3.173 .256 1.744 0.9754 11
12 .925 .266 3.258 .284 1.716 0.9776 12
13 .884 .249 3.336 .308 1.692 0.9794 13
14 .848 .235 3.407 .329 1.671 0.9810 14
15 .816 .223 3.472 .348 1.652 0.9823 15
16 .788 .212 3.532 .364 1.636 0.9835 16
17 .762 .203 3.588 .379 1.621 0.9845 17
18 .738 .194 3.640 .392 1.608 0.9854 18
19 .717 .187 3.689 .404 1.596 0.9862 19
20 .697 .180 3.735 .414 1.586 0.9869 20
21 .679 .173 3.778 .425 1.575 0.9876 21
22 .662 .167 3.819 .434 1.566 0.9882 22
23 .647 .162 3.858 .443 1.557 0.9887 23
24 .632 .157 3.895 .452 1.548 0.9892 24
25 .619 .153 3.931 .459 1.541 0.9896 25

* where n � number of observations in sample.n � 25: A1 � 3�1n

X
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Table XII Factors for Tolerance Intervals 

Values of k for Two-Sided Intervals

Confidence Level
0.90 0.95 0.99

Sample Probability of Coverage
Size 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 15.978 18.800 24.167 32.019 37.674 48.430 160.193 188.491 242.300
3 5.847 6.919 8.974 8.380 9.916 12.861 18.930 22.401 29.055
4 4.166 4.943 6.440 5.369 6.370 8.299 9.398 11.150 14.527
5 3.949 4.152 5.423 4.275 5.079 6.634 6.612 7.855 10.260
6 3.131 3.723 4.870 3.712 4.414 5.775 5.337 6.345 8.301
7 2.902 3.452 4.521 3.369 4.007 5.248 4.613 5.488 7.187
8 2.743 3.264 4.278 3.136 3.732 4.891 4.147 4.936 6.468
9 2.626 3.125 4.098 2.967 3.532 4.631 3.822 4.550 5.966

10 2.535 3.018 3.959 2.839 3.379 4.433 3.582 4.265 5.594
11 2.463 2.933 3.849 2.737 3.259 4.277 3.397 4.045 5.308
12 2.404 2.863 3.758 2.655 3.162 4.150 3.250 3.870 5.079
13 2.355 2.805 3.682 2.587 3.081 4.044 3.130 3.727 4.893
14 2.314 2.756 3.618 2.529 3.012 3.955 3.029 3.608 4.737
15 2.278 2.713 3.562 2.480 2.954 3.878 2.945 3.507 4.605
16 2.246 2.676 3.514 2.437 2.903 3.812 2.872 3.421 4.492
17 2.219 2.643 3.471 2.400 2.858 3.754 2.808 3.345 4.393
18 2.194 2.614 3.433 2.366 2.819 3.702 2.753 3.279 4.307
19 2.172 2.588 3.399 2.337 2.784 3.656 2.703 3.221 4.230
20 2.152 2.564 3.368 2.310 2.752 3.615 2.659 3.168 4.161
21 2.135 2.543 3.340 2.286 2.723 3.577 2.620 3.121 4.100
22 2.118 2.524 3.315 2.264 2.697 3.543 2.584 3.078 4.044
23 2.103 2.506 3.292 2.244 2.673 3.512 2.551 3.040 3.993
24 2.089 2.489 3.270 2.225 2.651 3.483 2.522 3.004 3.947
25 2.077 2.474 3.251 2.208 2.631 3.457 2.494 2.972 3.904
30 2.025 2.413 3.170 2.140 2.529 3.350 2.385 2.841 3.733
40 1.959 2.334 3.066 2.052 2.445 3.213 2.247 2.677 3.518
50 1.916 2.284 3.001 1.996 2.379 3.126 2.162 2.576 3.385
60 1.887 2.248 2.955 1.958 2.333 3.066 2.103 2.506 3.293
70 1.865 2.222 2.920 1.929 2.299 3.021 2.060 2.454 3.225
80 1.848 2.202 2.894 1.907 2.272 2.986 2.026 2.414 3.173
90 1.834 2.185 2.872 1.889 2.251 2.958 1.999 2.382 3.130

100 1.822 2.172 2.854 1.874 2.233 2.934 1.977 2.355 3.096
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Table XII Factors for Tolerance Intervals (continued)

Values of k for One-Sided Intervals

Confidence Level

0.90 0.95 0.99

Sample Probability of Coverage
Size 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

2 10.253 13.090 18.500 20.581 26.260 37.094 103.029 131.426 185.617
3 4.258 5.311 7.340 6.155 7.656 10.553 13.995 17.370 23.896
4 3.188 3.957 5.438 4.162 5.144 7.042 7.380 9.083 12.387
5 2.742 3.400 4.666 3.407 4.203 5.741 5.362 6.578 8.939
6 2.494 3.092 4.243 3.006 3.708 5.062 4.411 5.406 7.335
7 2.333 2.894 3.972 2.755 3.399 4.642 3.859 4.728 6.412
8 2.219 2.754 3.783 2.582 3.187 4.354 3.497 4.285 5.812
9 2.133 2.650 3.641 2.454 3.031 4.143 3.240 3.972 5.389

10 2.066 2.568 3.532 2.355 2.911 3.981 3.048 3.738 5.074
11 2.011 2.503 3.443 2.275 2.815 3.852 2.898 3.556 4.829
12 1.966 2.448 3.371 2.210 2.736 3.747 2.777 3.410 4.633
13 1.928 2.402 3.309 2.155 2.671 3.659 2.677 3.290 4.472
14 1.895 2.363 3.257 2.109 2.614 3.585 2.593 3.189 4.337
15 1.867 2.329 3.212 2.068 2.566 3.520 2.521 3.102 4.222
16 1.842 2.299 3.172 2.033 2.524 3.464 2.459 3.028 4.123
17 1.819 2.272 3.137 2.002 2.486 3.414 2.405 2.963 4.037
18 1.800 2.249 3.105 1.974 2.453 3.370 2.357 2.905 3.960
19 1.782 2.227 3.077 1.949 2.423 3.331 2.314 2.854 3.892
20 1.765 2.028 3.052 1.926 2.396 3.295 2.276 2.808 3.832
21 1.750 2.190 3.028 1.905 2.371 3.263 2.241 2.766 3.777
22 1.737 2.174 3.007 1.886 2.349 3.233 2.209 2.729 3.727
23 1.724 2.159 2.987 1.869 2.328 3.206 2.180 2.694 3.681
24 1.712 2.145 2.969 1.853 2.309 3.181 2.154 2.662 3.640
25 1.702 2.132 2.952 1.838 2.292 3.158 2.129 2.633 3.601
30 1.657 2.080 2.884 1.777 2.220 3.064 2.030 2.515 3.447
40 1.598 2.010 2.793 1.697 2.125 2.941 1.902 2.364 3.249
50 1.559 1.965 2.735 1.646 2.065 2.862 1.821 2.269 3.125
60 1.532 1.933 2.694 1.609 2.022 2.807 1.764 2.202 3.038
70 1.511 1.909 2.662 1.581 1.990 2.765 1.722 2.153 2.974
80 1.495 1.890 2.638 1.559 1.964 2.733 1.688 2.114 2.924
90 1.481 1.874 2.618 1.542 1.944 2.706 1.661 2.082 2.883

100 1.470 1.861 2.601 1.527 1.927 2.684 1.639 2.056 2.850
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CHAPTER 2

Section 2-1
2-1. Let a, b denote a part above, 

below the specification, respec-
tively
S � {aaa, aab, aba, abb, baa,

bab, bba, bbb}
2-3. Let a denote an acceptable

power supply
Let f, m, c denote a supply with
a functional, minor, or cosmetic
error, respectively. 
S � {a, f, m, c}

2-5. Sequences of y or n of length 24
with 224 outcomes

2-7. S is the sample space of 100 pos-
sible two digit integers.

2-9. S � {0, 1, 2, . . . , 1E09} in ppb
2-11. S � {1.0, 1.1, 1.2, . . . , 14.0}
2-13. S � {0, 1, 2, . . . ,} in milliseconds
2-17. c � connect, b � busy, S �

{c, bc, bbc, bbbc, bbbbc, . . .}
2-21. (a) S � nonnegative integers

from 0 to the largest integer
that can be displayed by the
scale S � {0, 1, 2, 3, . . .}

(b) S (c) {12, 13, 14, 15}
(d) {0, 1, 2, . . . , 11}
(e) S
(f) {0, 1, 2, . . . , 7}
(g)
(h) (i) {8, 9, 10, . . .}

2-23. Let d denoted a distorted bit
and let o denote a bit that is not
distorted.

(a)

(b) No, for example A1 A2 �
{dddd, dddo, ddod, ddoo}

(c)

(d)

(e)
{dddd}

(f)
{dddd, dodd, dddo, oddd,
ddod, oodd, ddoo}

2-25. Let P denote being positive and
let N denote being negative. The
sample space is {PPP, PPN,
PNP, NPP, PNN, NPN, NNP,
NNN}.
(a) A � {PPP}
(b) B � {NNN}
(c) A B �
(d) A B � {PPP, NNN}

2-27. (a) , 

2-29. (a)

(b)

(c) �
72.5}

(d)
2-31. Let g denote a good board, m a

board with minor defects, and j
a board with major defects.
(a) S � {gg, gm, gj, mg, mm,

mj, jg, jm, jj}
(b) S � {gg, gm, gj, mg, mm,

mj, jg, jm}

A ´ B � 5x 0 x � 06

5x 0 52.5 � xA ¨ B �

B¿ � 5x 0 x � 52.56

A¿ � 5x 0 x � 72.56
A ´ B � 92

B¿ � 10,A¿ ¨ B � 10
´

�¨

1A1 ¨ A22 ´ 1A3 ¨ A42 �

A1 ¨ A2 ¨ A3 ¨ A4 �

A¿1 � μ

oddd, oodd,

oddo, oodo,

odod, oood,

odoo, oooo

∂

A1 � μ

dddd, dodd,

dddo, dodo,

ddod, dood,

ddoo, dooo

∂

¨

S � μ

dddd, dodd, oddd, oodd,

dddo, dodo, oddo, oodo,

ddod, dood, odod, oood,

ddoo, dooo, odoo, oooo

∂

�
�

Appendix B
Answers to 
Selected
Exercises

731
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732 APPENDIX B ANSWERS TO SELECTED EXERCISES

2-35. 120
2-37. 144
2-39. 14,400
2-41. (a) 416,965,528

(b) 113,588,800
(c) 130,721,752

2-43. (a) 21 (b) 2520 (c) 720
2-45. (a) 1000 (b) 160 (c) 720
2-47. (a) 0.416 (b) 0.712

(c) 0.206
2-49. 0.0082

Section 2-2
2-51. 900
2-53. (a) 673 (b) 1672 (c) 6915

(d) 8399 (b) 1578
2-55. (a) 0.4 (b) 0.8 (c) 0.6

(d) 1 (e) 0.2
2-57. (a) 1�10 (b) 5�10
2-59. (a) S � {1, 2, 3, 4, 5, 6, 7, 8}

(b) 2�8 (c) 6�8
2-61. (a) 0.83 (b) 0.85
2-63. (1�103)*(1�263) � 5.7 � 10	8

2-65. (a) 4 
 4 � 3 
 4 � 3 � 3 � 52
(b) 36�52 (c) No

2-67. (a) 0.30 (b) 0.77 (c) 0.70
(d) 0.22 (e) 0.85 (f ) 0.92

2-71. 0.9889
2-73. (a) 0.0792 (b) 0.1969 

(c) 0.8142 (d) 0.9889
(e) 0.1858

Section 2-3
2-75. (a) 0.9 (b) 0 (c) 0

(d) 0 (e) 0.1
2-77. (a) 0.70 (b) 0.95 (c) No 
2-79. (a) 350�370 (b) 362�370

(c) 358�370 (d) 345�370
2-81. (a) 13�130 (b) 0.90, No
2-83. (a) 0.7255 (b) 0.8235 

(c) 0.7255
2-85. (a) 0.2264 (b) 0.9680 

(c) 0.9891

Section 2-4
2-87. (a) 86�100 (b) 79�100

(c) 70�79 (d) 70�86
2-89. (a) 0.903 (b) 0.591
2-91. (a) 12�100 (b) 12�28

(c) 34�122
2-93. (a) 0.5625 (b) 0.1918

(c) 0.3333
2-95. (a) 20�100 (b) 19�99

(c) 0.038 (d) 0.2

2-97. (a) 0.02 (b) 0.000458
(c) 0.9547

2-99. No
2-101. (a) 0.6087 (b) 0.3913

(c) 0.5 (d) 0.5 
2-103. (a) 0.0987 (b) 0.0650

Section 2-5
2-105. (a) 0.2 (b) 0.3
2-107. 0.014
2-109. 0.028
2-111. (a) 0.2376 (b) 0.0078
2-113. (a) 0.2 (b) 0.2
2-117. (a) 0.0109 (b) 0.2264

(c) 0.9891 (d) 0.1945
2-119. (a) 0.0792 (b) 0.8142 

(c) 0.9208 (d) 0.8031
2-121. 0.2

Section 2-6
2-123. independent
2-125. (a) not independent. (b) yes
2-127. (a) not independent. (b) 0.733
2-129. (a) 0.59 (b) 0.328 (c) 0.41
2-131. (a) 0.00307 (b) 0.04096
2-133. (a) 0.01 (b) 0.49 (c) 0.09
2-135. (a) 0.00003 (b) 0.00024

(c) 0.00107
2-137. 0.9702
2-139. not independent.
2-141. independent.

Section 2-7
2-143. 0.89
2-145. (a) 0.97638 (b) 0.20755
2-147. (a) 0.615 (b) 0.618

(c) 0.052
2-149. (a) 0.9847 (b) 0.1184
2-151. 0.2540
2-153. 0.5

Supplemental Exercises
2-155. 0.014
2-157. (a) 0.82 (b) 0.90 (c) 0.18

(d) 0.80 (e) 0.92 (f ) 0.98
2-161. (a) 0.2 (b) 0.202

(c) 0.638 (d) 0.2
2-163. (a) 0.03 (b) 0.97 (c) 0.40

(d) 0.05 (e) 0.012 (f ) 0.018
(g) 0.0605

2-165. (a) 0.18143 (b) 0.005976
(c) 0.86494

2-167. 0.000008
2-169. (a) 50 (b) 37 (c) 93

2-171.

2-173. (a) 0.19 (b) 0.15 (c) 0.99
(d) 0.80 (e) 0.158

2-175. (a) No (b) No
(c) 40�240 (d) 200�240
(e) 234�240 (f ) 1

2-177. (a) 0.282 (b) 0.718
2-179. 0.996
2-181. (a) 0.0037 (b) 0.8108
2-183. (a) 0.0778 (b) 0.00108

(c) 0.947
2-185. (a) 0.9764 (b) 0.3159
2-187. (a) 0.207 (b) 0.625
2-189. (a) 0.453 (b) 0.262

(c) 0.881 (d) 0.547
(e) 0.783 (f ) 0.687

2-191. 1.58 � 10	7

2-193. (a) 0.67336
(b) 2.646 � 10	8

(c) 0.99973
2-195. (a) 367 (b) 70(266)

(c) 100(265)
2-197. (a) 0.994, 0.995

(b) 0.99, 0.985
(c) 0.998, 0.9975

Mind-Expanding Exercises
2-199. (a) n � 3 (b) n � 3
2-201. 0.306, 0.694

CHAPTER 3

Section 3-1
3-1. {0, 1, 2, . . . , 1000}
3-3. {0, 1, 2, . . . , 99999}
3-5. {1, 2, . . . , 491}
3-7. {0, 1, 2, . . .}
3-9. {0, 1, 2, . . . , 15}
3-11. {0, 1, 2, . . . , 10000}
3-13. {0, 1, 2, . . . , 40000}

Section 3-2
3-15. (a) 1 (b) 7�8 (c) 3�4

(d) 1�2
3-17. (a) 9�25 (b) 4�25

(c) 12�25 (d) 1
3-19. f (0) � 0.033, f (1) � 0.364, 

f (2) � 0.603
3-21. P(X � 0) � 0.008, 

P(X � 1) � 0.096, 
P(X � 2) � 0.384, 
P(X � 3) � 0.512

3-23. P(X � 50) � 0.5, 
P(X � 25) � 0.3, 
P(X � 10) � 0.2

A¿D3, A¿D4, A¿D56
S � 5A, A¿D1, A¿D2, 
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3-25. P(X � 15) � 0.6, 
P(X � 5) � 0.3, 
P(X � 	0.5) = 0.1

3-27. P(X � 0) � 0.00001, 
P(X � 1) � 0.00167, 
P(X � 2) � 0.07663, 
P(X � 3) � 0.92169

Section 3-3
3-29. X � waiting time (hours)

0.038, x � 1

0.102, x � 2

0.172, x � 3

0.204, x � 4

0.174, x � 5

f (x) �     0.124, x � 6

0.080, x � 7

0.036, x � 8

0.028, x � 9

0.022, x � 10

0.020, x � 15
3-31. X � Non-failed well depth

P(X � 255) � (1515
1343)
7726 � 0.370
P(X � 218) � 26 7726 � 0.003
P(X � 317) � 3290 7726 � 0.426
P(X � 231) � 349 7726 � 0.045
P(X � 267) � (280
887) 7726
� 0.151
P(X � 217) � 36 7726 � 0.005

3-33. (a) 7�8 (b) 1 (c) 3�4
(d) 3�8

3-35.

where fx (0) � 0.008,
fx (1) � 0.096,
fx (2) � 0.384,
fx (3) � 0.512

3-37.

where P(X = 50 million) = 0.5, 
P(X = 25 million) = 0.3, 
P(X = 10 million) = 0.2

3-39. (a) 1 (b) 0.5 (c) 0.5
(d) 0.5

3-41. (a) 1 (b) 0.75 (c) 0.25
(d) 0.25 (e) 0 (f) 0

F1x2 � μ

0,

0.2,

0.5,

1,

x � 10

10 � x � 25

25 � x � 50

50 � x

∂

F1x2 �

0, x � 0

0.008, 0 � x � 1

0.104, 1 � x � 2

0.488, 2 � x � 3

1, 3 � x

/

/
/
/

/

/

3-43.

3-45.

Section 3-4
3-47. � � 2, �2 � 2
3-49. � � 0, �2 � 1.5
3-51. � � 2.8, �2 � 1.36
3-53. � � 1.57, �2 � 0.311
3-55. 24
3-57. � � 0.0004, �2 � 0.00039996
3-59. (a) � � 18.694, 

�2 � 735.9644,
� � 27.1287

(b) � � 37.172, 
�2 � 2947.996,
� � 54.2955

3-61. E(X ) � 4.808, V(X ) � 6.147
3-63. E(X ) � 281.83, V(X ) � 976.24

Section 3-5
3-65. � � 2, �2 � 0.667
3-67. � � 3.5, �2 � 1.25
3-69. (a) � � 687.5, �2 � 56.25

(b) � � 87.5, �2 � 56.25
3-71. E(X ) � 4.5, E(Y ) � 22.5, 

�Y � 14.36
3-73. � � 7, � � 1.414

Section 3-6
3-77. (a) 0.9298 (b) 0

(c) 0.0112 (d) 0.0016
3-79. (a) 2.40 � 10	8

(b) 0.9999
(c) 9.91 � 10	18

(d) 1.138 � 10	4

3-81. (a) 0 (b) 10
3-85. (a) 0.215 (b) 0.9999 (c) 4
3-87. (a) 0.410 (b) 0.218 (c) 0.37
3-89. (a) 1 (b) 0.999997

(c) E(X ) � 12.244, 
V(X ) � 2.179

3-91. (a) Binomial, p � 104�369, 
n � 1E09 (b) 0

(c) E(X ) � 4593.9, 
V(X ) � 4593.9

F1x2 �    

0, x � 1.5

0.05, 1.5 � x � 3

0.30, 3 � x � 4.5

0.65, 4.5 � x � 5

0.85, 5 � x � 7

1 7 � x

F1x2� μ

0,

0.24,

0.54,

1,

x � 266

266 � x � 271

271 � x � 274

274 � x

∂

3-93. (a) 0.9961 (b) 0.9886
3-95. (a) 0.142 (b) 0.322

(c) 0.963
3-97. (a) 0.009 (b) 0.382

(c) 0.972 (d) 3

Section 3-7
3-99. (a) 0.5 (b) 0.0625

(c) 0.0039 (d) 0.75 (e) 0.25
3-101. (a) 5 (b) 5
3-103. (a) 0.0064 (b) 0.9984

(c) 0.008
3-105. (a) 0.0167 (b) 0.9039

(c) 50
3-107. (a) 0.13 (b) 0.098

(c) 7.69 � 8
3-109. (a) 3.91 � 10	19

(b) 200 (c) 2.56 � 1018

3-111. (a) 3 � 108

(b) 3 � 1016

3-115. (a) 10 (b) 0.039 (c) 0.039
(d) 0.271 

Section 3-8
3-117. (a) 0.4191 (b) 0

(c) 0.001236
(d) E(X ) � 0.8, V(X ) � 0.6206

3-121. (a) 0.1201 (b) 0.8523
3-123. (a) 0.087 (b) 0.9934

(c) 0.297 (d) 0.9998
3-125. (a) 0.7069 (b) 0.0607

(c) 0.2811.
3-127. (a) 0.0041 (b) 0.3091

(c) 0.0165 

Section 3-9
3-129. (a) 0.0183 (b) 0.2381

(c) 0.1954 (d) 0.0298
3-131. E(X ) � V(X ) � 2.996.
3-133. (a) 0.264 (b) 48
3-135. (a) 0.4566 (b) 0.047
3-137. (a) 0.2 (b) 99.89% 
3-139. (a) 0.6065 (b) 0.0067

(c) P(W � 0) � 0.0067, 
P(W � 1) � 0.0437, 
P(W � 1) � 0.0504

3-141. (a) 0.026 (b) 0.287
(c) 0.868

Supplemental Exercises
3-143. E(X ) � 1�4, V(X ) � 0.0104
3-145. (a) n � 50, p � 0.1 (b) 0.112

(c) P(X � 49) � 4.51 � 10	48

3-147. (a) 0.000224 (b) 0.2256
(c) 0.4189

u v

u

u v
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3-149. (a) 0.1024 (b) 0.1074
3-151. (a) 3000 (b) 1731.18
3-153. (a) P(X � 0) � 0.0498

(b) 0.5768
(c) P(X � x) � 0.9, x � 5
(d) �2 � 
 � 6. Not 

appropriate.
3-155. (a) 0.1877 (b) 0.4148 (c) 15
3-157. (a) 0.0110 (b) 8�3
3-159. 40000
3-161. 0.1330
3-163. (a) 500 (b) 222.49
3-165. 0.1
3-167. fX(0) � 0.16, fX(1) � 0.19, 

fX(2) � 0.20, fX(3) � 0.31, 
fX(4) � 0.14

3-169. fx(2) � 0.2, fx(5.7) � 0.3, 
fx(6.5) � 0.3, fx(8.5) � 0.2

3-171. (a) 0.0433 (b) 3.58
3-173. (a) fX(0) � 0.2357, 

fX(1) � 0.3971, 
fX(2) � 0.2647,
fX(3) � 0.0873,
fX(4) � 0.01424,
fX(5) � 0.00092

(b)  fX(0) � 0.0546,
fX(1) � 0.1866,
fX(2) � 0.2837,
fX(3) � 0.2528,
fX(4) � 0.1463,
fX(5) � 0.0574,
fX(6) � 0.0155,
fX(7) � 0.0028,
fX(8) � 0.0003,
fX(9) � 0.0000,

fX(10) � 0.0000
3-175. 37.8 seconds

Mind-Expanding Exercises
3-181. (a) 131 (b) 123

CHAPTER 4

Section 4-2
4-1. (a) 0.3679 (b) 0.2858 (c) 0

(d) 0.9817 (e) 0.0498
4-3. (a) 0.5 (b) 0.1464

(c) 0.7072 (d) 0.8536
(e) 1.12 radians

4-5. (a) 0.4375 (b) 0.7969
(c) 0.5625 (d) 0.7031 (e) 0.5

4-7. (a) 0.5 (b) 0.4375 (c) 0.125
(d) 0 (e) 1 (f ) 0.9655

4-9. (a) 0.5 (b) 49.8
4-11. (a) 0.1

Section 4-3
4-13. (a) 0.56 (b) 0.7 (c) 0 (d) 0
4-15. F(x) � 0 for x � 0; 1	e	x

for x � 0

4-17. , 

0.5 sin x


 0.5 for 

1 for 

4-19. (a) 0.56 (b) 0.7 (c) 0
(d) 0

4-21. 0.2
4-23. F(x) � 0 for x � 0; 0.25x2 for 

0 � x � 2; 1 for 2 � x
4-25. f (x) � 0.2 for 0 � x � 4; f(x) �

0.04 for 4 � x � 9

Section 4-4
4-27. E(X ) � 2, V(X ) � 4�3
4-29. E(X ) � 0, V(X ) � 0.6
4-31. E(X ) � 4, V(X ) � 3.2
4-33. E(X ) � 2
4-35. (a) E(X ) � 109.39, V(X ) �33.19

(b) 54.70
4-37. (a) E(X ) � 5.1, V(X ) � 0.01

(b) 0.3679

Section 4-5
4-39. (a) E(X) � 0, V(X) � 0.577

(b) 0.90 (c) F(x) � 0 
for x � 	1; 0.5x 
 0.5 
for 	1 � x � 1; 1 for 1 � x

4-41. (a) F(x) � 0 for x � 0.95;
10x	9.5 for 0.95 � x �
1.05; 1 for 1.05 � x

(b) 0.3 (c) 0.96
(d) E(X) � 1.00, V(X) �

0.00083
4-43. (a) F(x) � 0 for x � 0.2050;

100x 	 20.50 for 0.2050 �
x � 0.2150; 1 for 0.21.50 � x

(b) 0.25 (c) 0.2140
(d) E(X) � 0.2100, V(X) �

8.33 � 10	6

4-45. (a) F(X ) � x�90 for 0 � x � 90
(b) E(X) � 45, V(X ) � 675
(c) 1 3 (d) 0.333

4-47. (a) �X � 34.64 (b) 1 3
(c) 1 2

Section 4-6
4-49. (a) 0.90658 (b) 0.99865

(c) 0.07353 (d) 0.98422
(e) 0.95116

/
/

/

x � 
�

2

	
�

2
� x �

�

2
,

F 1x2 � 0 for x � 	
�

2

4-51. (a) 0.90 (b) 0.5 (c) 1.28
(d) 	1.28 (e) 1.33

4-53. (a) 0.93319 (b) 0.69146
(c) 0.9545 (d) 0.00132
(e) 0.15866

4-55. (a) 0.93319 (b) 0.89435
(c) 0.38292 (d) 0.80128
(e) 0.54674

4-57. (a) 0.99379 (b) 0.13591
(c) 5835

4-59. (a) 0.0228 (b) 0.019
(c) 152.028
(d) small (less than 5%)

4-61. (a) 0.0082 (b) 0.72109
(c) 0.564

4-63. (a) 12.309 (b) 12.1545
4-65. (a) 0.00621 (b) 0.308538

(c) 133.33
4-67. (a) 0.1587 (b) 1.3936

(c) 0.9545
4-69. (a) 0.00043 (b) 6016

(c) 1�8
4-71. (a) 0.02275 (b) 0.324

(c) 11.455
4-73. [23.5, 24.5], no effect from

stdev
4-75. (a) 0.0248 (b) 0.1501

(c) 92.0213

Section 4-7
4-77. (a) 0.0853 (b) 0.8293

(c) 0.0575
4-79. (a) 0.1446 (b) 0.4761

(c) 0.3823
4-81. (a) 0.2743 (b) 0.8413
4-83. 0.022
4-85. 0.5
4-87. (a) 0 (b) 0.156 (c) 13,300

(d) 8.3 days/year (e) 0.0052
4-89. (a) 0.012 (b) 0.9732

(c) 536.78

Section 4-8
4-91. (a) 0.3679 (b) 0.1353

(c) 0.9502
(d) 0.95, x � 29.96

4-93. (a) 0.3679 (b) 0.2835
(c) 0.1170

4-95. (a) 0.1353 (b) 0.4866
(c) 0.2031 (d) 34.54 

4-97. (a) 0.0498 (b) 0.8775
4-99. (a) 0.0025 (b) 0.6321

(c) 23.03 (d) same as part (c)
(e) 6.93 
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4-101. (a) 15.625 (b) 0.1629
(c) 3 � 10	6

4-103. (a) 0.2212 (b) 0.2865
(c) 0.2212 (d) 0.9179
(e) 0.2337

4-105. (a) 0.3528 (b) 0.04979
(c) 46.05 (d) 6.14 � 10	6

(e) e	12 (f ) same
4-107. (a) 0.3679 (b) 0.1353

(c) 0.0498
(d) does not depend on 

4-109. (a) 0.435 (b) 0.135
(c) 0.369 (d) 0.865

Section 4-9
4-111. (a) 120 (b) 1.32934

(c) 11.6317
4-113. (a) Erlang 
 � 5 calls/min, 

r � 10 (b) E(X) � 2,
V(X) � 0.4

(c) 0.2 minute (d) 0.1755
(e) 0.2643

4-115. (a) 50000 (b) 0.6767
4-117. (a) 5 � 105 (b) V(X) �

5 � 1010, � � 223607 
(c) 0.0803

4-119. (a) 0.1429 (b) 0.1847
4-123. (a) 1.54 (b) 0.632

Section 4-10
4-125. E(X) � 12000, V(X) �

3.61 � 1010

4-127. 1000
4-129. (a) 803.68 hours

(b) 85319.64 (c) 0.1576
4-131. (a) 443.11 (b) 53650.5

(c) 0.2212
4-135. (a) 0.5698 (b) 0.1850

(c) 0.4724
4-137. (a) 0.0468 (b) 0.1388

Section 4-11
4-139. (a) 0.0016 (b) 0.0029 

(c) E(X) � 12.1825, V(X) �
1202455.87

4-141. (a) 0.03593 (b) 1.65
(c) 2.7183

12.6965
4-143. (a) � 8.4056, �2 � 1.6094

(b) 0.2643 (c) 881.65
4-147. (a) E(X) � 4.855, V(X) � 4.090

(b) 0.9263 (c) 0.008

Section 4-12
4-149. (a) 0.0313 (b) 0.4559

(c) E(X) � 0.7143, 
V(X) � 0.0454

�

�

4-151. (a) Mode � 0.8333, E(X) �
0.6818, V(X) � 0.0402

(b) Mode � 0.6316, E(X) �
0.6154, V(X) � 0.0137

4-153. 0.0272

Supplemental Exercises
4-155. (a) 0.99379 (b) 0.621% 
4-157. (a) 0.15866 (b) 90.0

(c) 0.9973 (d) (0.9973)10

(e) 9.973
4-159. (a) 0.0217 (b) 0.9566

(c) 229.5
4-161. 0.8488
4-163. (a) 620.4 (b) 105154.9

(c) 0.4559
4-165. (a) 0.0625 (b) 0.75 (c) 0.5

(d) F(x) � 0 for x � 2; 
x�4 	 x 
 1 for 2 � x � 4;
1 for 4 � x

(e) E(X) � 10�3, V(X) � 0.2222
4-167. (a) 0.3935 (b) 0.9933
4-169. (a) � 3.43, �2 � 0.96

(b) 0.946301
4-171. (a) 0.6915 (b) 0.683

(c) 1.86
4-173. (a) 0.0062

(b) 0.012
(c) 5.33

4-175. 0.0008 to 0.0032
4-177. (a) 0.5633 (b) 737.5
4-179. (a) 0.9906 (b) 0.8790

Mind-Expanding Exercises
4-183. (a) k�2 (b) k�2 
 k(� 	 m)2

CHAPTER 5

Section 5-1
5-1. (a) 3�8 (b) 5�8 (c) 3�8

(d) 1�8
(e) V(X) � 0.4961 V(Y) �

1.8594
(f ) f (1) � 1�4, f (1.5) � 3�8,

f (2.5) � 1�4, f (3) � 1�8
(g) f (2) � 1�3, f (3) � 2�3
(h) 1 (i) 2 1�3
( j) Not independent

5-3. (a) 3�8 (b) 3�8 (c) 7�8
(d) 5�8 (e) V(X) � 0.4219 

V(Y) � 1.6875
(f ) f(	1) � 1�8, f(	0.5) � 1�4,

f(0.5) � 1�2, f(1) � 1�8
(g) 1 (h) 1 (i) 0.5
( j) Not independent

�

5-5. (b) fX(0) � 0.970299, 
fX(1) � 0.029403,
fX(2) � 0.000297, 
fX(3) � 0.000001

(c) 0.03 (d) f (0) � 0.920824,
f (1) � 0.077543, f (2) �
0.001632

(e) 0.080807
(g) Not independent

5-7. (b) f (0) � 2.40 � 10	9, 
f (1) � 1.36 � 10	6, 
f (2) � 2.899 � 10	4, 
f (3) � 0.0274, f (4) � 0.972

(c) 3.972 (d) equals f( y)
(e) 3.988 (f ) 0.0120
(g) Independent

5-9. (b) fX(0) � 0.2511, 
fX(1) � 0.0405,
fX(2) � 0.0063, 
fX(3) � 0.0009,
fX(4) � 0.0001 

(c) 0.0562
(d) fY|3(0) � 2�3, fY|3(1) � 1�3,

fY|3(2) � fY|3(3) � fY|3(4) � 0
(e) 0.0003 (f ) 0.0741
(g) Not independent

5-11. (c) 0.308 (d) 5.7
5-13. (a) 0.4444 (b) 0.6944

(c) 0.5833 (d) 0.3733
(e) 2 (f ) 0
(g) fX(x) � 2x�9; 0 � x � 3
(h) fY|1.5(y) � 2y�9; 0 � y � 3
(i) 2 (j) 4�9 
(k) fX|2(x) � 2x�9; 0 � x � 3

5-15. (a) 1�81 (b) 5�27
(c) 0.790 (d) 16�81
(e) 12�5 (f ) 8�5
(g) f (x) � 4x3�81; 0 � x � 3
(h) fY|X�1(y) � 2y; 0 � y � 1
( i) 1 ( j) 0
(k) fX |Y�2(x) � 2x�9; 0 � x � 3

5-17. (a) 0.9879 (b) 0.0067
(c) 0.000308 (d) 0.9939
(e) 0.04 (f) 8�15
(g) f (x) � 5e	5x; x � 0
(h) fY|X�1(y) � 3e3	3y; 1 � y
(i) 4�3
(j) 0.9502, fY(2) � 15e	6�2; 

0 � y
(k) fX|Y�2(y) � 2e	2x; 0 � x � 2

5-19. (a) 1�30 (b) 1�12 (c) 19�9
(d) 97�45 (g) 1 (h) 0.25

5-21. (a) P(X � 5, Y � 5) � 0.0439,
P(X � 10, Y � 10) � 0.0019

(b) 0.0655
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5-23. (a) 0.25 (b) 0.0625 (c) 1
(d) 1 (e) 2�3 (f ) 0.25
(g) 0.0625
(h) fX |YZ(y, z) � 2x; 0 � x � 1
(i) 0.25

5-25. (a) 0.75 (b) 3�4
(c) 0.875 (d) 0.25
(g) 1 for x � 0

5-27. (a) 0.032 (b) 0.0267

Section 5-2
5-29. 0.8851
5-31. c � 1�36, � � 	0.0435
5-33. � � 	0.5, negative
5-35. c � 8�81, � � 0.4924
5-37. �XY � �XY � 0
5-39. �XY � �XY � 0

Section 5-3
5-43. (a) p1 � 0.05, p2 � 0.85, 

p3 � 0.10
(d) E(X) � 1, V(X) � 0.95
(f ) 0.07195
(g) 0.7358
(h) E(Y) � 17
(i) 0
( j) P(X � 2, Y � 17) �

0.0540, P(X � 2 � Y � 17)
� 0.2224

(k) E(X � Y � 17) � 1
5-45. (b) 0.1944

(c) 0.0001
(e) E(X ) � 2.4
(f ) E(Y ) � 1.2
(g) 0.7347
(h) 0
(i) P(X � 0 � Y � 2) � 0.0204,

P(X � 1 � Y � 2) � 0.2449,
P(X � 2 � Y � 2) � 0.7347

( j) 1.7143
5-47. (a) 0.7887 (b) 0.7887

(c) 0.6220
5-49. 0.8270

Section 5-4
5-55. (a) 18 (b) 77 (c) 0.5

(d) 0.873
5-57. (a) E(T) � 4, �T � 0.1414
5-59. (a) 0 (b) 1
5-61. E(X) � 1290, V(X) � 19600
5-63. (a) 0.002 (b) n � 6

(c) 0.9612
5-65. (a) 0.0027 (b) No (c) 0

Section 5-5
5-67. fY(y) � 1⁄4; y � 3, 5, 7, 9
5-69. (b) 18

Supplemental Exercises
5-75. (a) 3�8 (b) 3�4 (c) 3�4

(d) 3�8
(e) E(X ) � 7�8, V(X ) � 39�64,

E(Y ) � 7�8, V(Y ) � 39�64
(h) 2�3 ( i) not independent
( j) 0.7949

5-77. (a) 0.0560 ( b) Z~Bin(20, 0.1)
(c) 2 (d) 0.863
(e) Z |X~Bin(4, 0.25)
(f ) 1 ( g) not independent

5-79. (a) 1�108 (b) 0.5787
(c) 3�4 (d) 0.2199
(e) 9�4 (f ) 4�3

5-81. 3�4
5-83. (a) 0.085 ( b) Z~Bin(10, 0.3)

(c) 3
5-85. (a) 0.499 (b) 0.5
5-87. (a) 0.057 (b) 0.057
5-91. (a) E(T) � 1.5, V(T) � 0.078

(b) 0.0367
(c) E(P) � 4, V(P) � 0.568

5-95. (a) p1 � 0.13, p2 � 0.72, 
p3 � 0.15, x 
 y 
 z � 12

(b) not possible (c) 0.736
(d) 0 (e) 0.970 (f) 0.285
(g) 0.345

CHAPTER 6

Section 6-1
6-1. No, usually not, Ex: {2, 3}
6-3. No, usually not, Ex: {1, 2, 3,

1000}.
6-5. Yes, Ex: {5, 5, 5, 5, 5, 5, 5}.
6-7. , s � 0.00473
6-9. , s � 226.5
6-11. , s � 12.294
6-13. �� 5.44
6-15. , s1 � 160.154

, s2 � 121.20
6-17. , s � 0.02066
6-19. (a) , s � 12.16 

(b) , s � 10.74

Section 6-2
6-21. Symmetric with a single mode
6-23. , lower quartile: 

Q1 � 1097.8, and upper 
quartile: Q3 � 1735.0

x~ � 1436.5

x � 66.86
x � 65.86

x � 7.184
x2 � 325.01
x1 � 287.89

x � 43.975
x � 7068.1
x � 74.0044

6-25. , lower quartile:
Q1� 86.100, and upper 
quartile: Q3 � 93.125

6-27. median: , mode:
1102, 1315, and 1750, mean:

6-29. , s � 940.02, 
and 

6-31. 95th percentile 5479 
6-33. , s � 13.41,

, and 90th percentile
� 277.2

6-35. , s � 2.8, ,
and proportion 22 40 55%

Section 6-4
6-53. (a) , s2 � 0.285, 

and s � 0.543
6-55. (a) , s2 � 9.55, 

and s � 3.09
(b)

6-57. (a) , lower quartile: 
Q1 � 58.50, and upper
quartile: Q3 � 75.00

(b) , lower quartile: 
Q1 � 60.00, and upper
quartile: Q3 � 75.00

Supplemental Exercises
6-87. (a) Sample 1 Range � 4 

Sample 2 Range � 4
(b) Sample 1: s � 1.604

Sample 2: s � 1.852
6-93. (b) , s � 4.486

Mind-Expanding Exercises
6-105. s2 (old) � 50.61, s2 (new) �

5061.1
6-109. , 
6-111.
6-113. (a) (b)

(c) No

CHAPTER 7

Section 7-2
7-1. 8 103
7-3. 0.8186
7-5. 0.4306
7-7. 0.191
7-9. n � 12
7-11. 0.2312
7-13. (a) 0.5885 (b) 0.1759
7-15. 0.983

/

x � 89.19x � 89.29
x~ � 69

s2
y � 34.028y � 431.89

x � 9.325

x~ � 68.00

x~ � 67.50
x~ � 953

x � 952.44

x � 2.415

���
x~ � 90x � 89.45

x~ � 260.85
x � 260.3

�
x~ � 41.455

x � 366.57
x � 1403.7

x~ � 1436.5

x~ � 89.250
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Section 7-3
7-17. (a) N � 25, Mean � 150.47, 

S2 � 105.06, SS � 2521.5
(b) 150.468

7-19.
7-21. 7 is smallest
7-27.
7-29. (a) 423.33 (b) 9.08

(c) 1.85 (d) 424
(e) 0.2917

7-33. (d) 0.01 (e) 0.0413

Section 7-4
7-35.
7-39. unbiased
7-41. (a)

(b) same as part (a)
7-47. (b) 
0(m 
 x 
 1)�

(m 
 
0 
 1)
7-49. (a) 5.046 (b) 5.05

Supplemental Exercises
7-55. 0.8664
7-57. 5.6569
7-59. n � 100

7-61.

7-65.

CHAPTER 8

Section 8-1
8-1. (a) 96.76% (b) 98.72%

(c) 93.56%
8-3. (a) 1.29 (b) 1.65 (c) 2.33
8-5. (a) 1st CI � 50, 2nd CI � 50 

(b) higher confidence implies a
wider CI

8-7. (a) 4 (b) 7
8-9. (a) Longer (b) No (c) Yes
8-11. [87.85, 93.11]
8-13. (a) [74.0353, 74.0367]

(b) [74.035, )
8-15. (a) [3232.11, 3267.89]

(b) [3226.4, 3273.6]
8-17. 267
8-19.
8-21. (a) [13.383, 14.157]

(b) [13.521, )
(c) 1 (d) 2

Section 8-2
8-23. (a) 2.179 (b) 2.064

(c) 3.012 (d) 4.073

�

22

�

p̂ � 0.7
�̂ � 21.86, �̂5000 � 109,300, 

�̂ � x�3

�̂ � �x2
i � 12n2

x

Bias � �2�n
V1�̂12 � �2�
Bias � �21n 	 1

c 	 12

8-25. (a) Mean � 25.1848, 
Variance � 2.5760

(b)
8-27. [58197.33, 62082.07]
8-29. [1.094, 1.106]
8-31. ( 125.312]
8-33. [443.520, 528.080]
8-35. [301.06, 333.34]
8-37. (b) [2237.3, 2282.5]

(c) [2241.4, )
8-39. (b) [4.051, 4.575]

(c) [4.099, )
8-41. (b) [2.813, 2.991]

Section 8-3
8-43. (a) 18.31 (b) 13.85

(c) 10.12, 30.14
8-45. [0.0055, )
8-47. [0.31, 0.46]
8-49. [0.626, 1.926]
8-51.

Section 8-4
8-53. (a) [0.02029, 0.06637]

(b) [ ]
8-55. (a) [0.501, 0.571]

(b) [0.506, )
8-57. (a) [0.225, 0.575] (b) 2305

(c) 2401
8-59. 666

Section 8-6
8-61. [52131.1, 68148.3]
8-63. [1.068, 1.13]
8-65. [292.049, 679.551]
8-67. [263.7, 370.7]
8-69. [2193.5, 2326.5]
8-71. 90% PI � [2.71, 3.09]

90% CI � [2.85, 2.95]
99% CI � [2.81, 2.99]

8-73. [49555.54, 70723.86]
8-75. [1.06, 1.14]
8-77. TI � [237.18, 734.42]

CI � [443.42, 528.08]
8-79. TI � [247.60, 386.60]

CI � [301.06, 333.34]
8-81. TI � [2.49, 3.31]

CI � [2.84, 2.96]

Supplemental Exercises
8-85. (a) 0.0997 and 0.064

(b) 0.044 and 0.014
(c) 0.0051 and � 0.001

8-87. (a) Normality
(b) [16.99, )
(c) [16.99, 33.25]

�

�

	�, 0.0627

� � 0.0122

�

�

�

	�,

24.037 � � � 26.333

(d) ( 343.74]
(e) [28.23, 343.74]
(f )

(g) mean: [16.88, 33.12], 
variance: [28.16, 342.94]

8-89. (a) [13.74, 16.92]
(b) [13.24, 17.42]

8-91. (a) Yes
(b) [197.84, 208.56]
(c) [185.41, 220.99]
(d) [171.21, 235.19]

8-93. [0.0956, )
8-95. (a) Yes

(b) [1.501, 1.557]
(c) [1370, 1.688]
(d) [1.339, 1.719]

8-97. (a) [0.0004505, 0.009549]
(b) 518
(c) 26002

8-99. (a) Normality
(c) [18.478, 26.982]
(e) [19.565, 123.289]

Mind-Expanding Exercises
8-101. (b) [28.62, 101.98]
8-103. (a) 46 (b) [10.19, 10.41],

8-105. 950 of CIs and 0.9963

CHAPTER 9

Section 9-1
9-1. (a) Yes (b) No (c) No

(d) No (e) No
9-3. (a)

(b) No
9-5. (a)

(b)
(c)

9-7. (a)
(b)
(c)
(d)

9-9. (a)
(b)
(c)

9-11. (a) 0.09296
(b)
(c)

9-13. (a)
(b)
(c) As n increases, decreases

9-15. (a) (b)
(c) � � 0.05705.

� � 0.5� � 0.05705
�

� � 0.082264
� � 0.005543
� � 0.00005
� � 0.04648

P-value � 0.158655
P-value � 0.000034
P-value � 0.0135
11.7937 � Xc � 11.84
11.7087 � Xc � 11.71
11.5875 � Xc � 11.59
11.4175 � Xc � 11.42
� � 0.5
� � 0.15866
� � 0.02275.
H1:� � 20nm
H0:� � 20nm

p � 0.6004

�

15.85 � �2 � 192.97
16.91 � � � 29.09

	�,
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9-17. (a)
(b)
(c)
(d)

9-19. (a)
(b)
(c)

9-21. (a)
(b)
(c) will increase and the

power will increase with 
increased sample size.

9-23. (a)
(b)
(c)

9-25. (a)
(b)

9-27. (a)
(b)

Section 9-2
9-29. (a) , 

(b) , 
(c) , 

9-31. (a)
(b)
(c)

9-33. (a)
(b)
(c)

9-35. (a)
(b)
(c)

9-37. (a) StDev � 0.7495, z0 �
	0.468, P-value � 0.68,
fail to reject H0

(b) one-sided 
(c)
(d) 0.640

9-39. (a) 0.6827 (b) one-sided 
(c) P-value � 0.002, reject H0

(d)
(e) P-value � 0.15, fail to 

reject H0

9-41. (a) fail
to reject 

(b)
(c)

9-43. (a) fail to 
reject 

(b)
(c)
(d)
(e) 39.85 � �

n � 1
� � 0.000325
P-value � 0.1038

H0

z0 � 1.26 � 1.65
n � 16
� � 0.80939

H0

z0 � 	0.95 � 	1.96,

98.8518 � �

19.42 � � � 20.35

P-value � 0.65
P-value � 0.03
P-value � 0.98
P-value � 0.69
P-value � 0.066
P-value � 0.04
a � z� � 	1.29
a � z� � 	1.64
a � z� � 	2.33

H1 : � � 5H0 : � � 5
H1 : � � 7H0 : � � 7
H1 : � � 10H0 : � � 10

� � 0.99506
� � 0
� � 0.25721
� � 0.29372
P-value � 0.2585
P-value � 0.0007
P-value � 0.238

�
1 	 � � 0.21186
� � 0.0164
P-value � 0.785236
P-value � 0.008894
P-value � 0.2148
� � 183.2
� � 186.6
� � 185.37
� � 191.40 9-45. (a) , fail to

reject H0

(b)
(c)
(d)
(e)

9-47. (a) reject 
(b)
(c)
(d)
(e)

Section 9-3
9-49. (a)

(b)
(c)

9-51. (a)
(b)
(c)

9-53. (a)
(b)
(c)

9-55. (a) 9
(b) .05 � P-value � � 0.1, fail

to reject H0

(c) two-sided 
(d)
(e) t0 � 1.905, reject H0

(f ) reject H0

9-57. (a) t0 � 0.6665, fail to reject H0

(b) equal to P-value 
(c) , fail

to reject H0

9-59. (a)
reject 

(b) Yes
(c)
(d)
(e)

9-61. (a) fail
to reject ;

(b) Yes
(c)
(d)
(e)

9-63. (a)
fail to reject ;

(b) Yes, see normal probability
plot

(c)
(d)
(e) 1.9 � � � 4.62

n � 40
power � 0.30

0.10 � P-value � 0.20
H0

0 t0 0 � 1.55 � 2.861,
129.406 � � � 130.100
n � 100
power � 0.80

0.1 � P-value � 0.2.
H0

0 t0 0 � 1.456 � 2.064,
98.065 � � � 98.463
n � 20
power � 1

P-value � 0.002H0

0 t0 0 � 3.48 � 2.064

246.84 � � � 404.15
L  0.5

11.89 � � � 13.23

0.6 � p � 0.75
0.025 � p � 0.05
0.95 � p � 0.975
0.5 � p � 0.8
0.05 � p � 0.1
0.05 � p � 0.1
critical value � 1.345
critical value � 1.796
critical value � 2.539

4.003 � �
n � 2
Power � 1
P-value � 0.04

H0z0 � 1.77 � 1.65,
� � 104.53
n � 5
Power � 0.97062
P-value � 0.94

z0 � 1.56 � 	1.65 9-65. (a) fail to
reject ; 

(b) Yes
9-67. reject 

9-69. (a)
fail to reject ; P-value 
� 0.995

(b) Yes
(c) power � 1
(d)

Section 9-4
9-71. (a) critical values 6.84 and 38.58

(b) critical values 3.82 and 21.92
(c) critical values 6.57 and 23.68

9-73. (a)
(b)
(c)

9-75. (a)
(b)
(c)

9-77. (a) , fail to
reject ; 

(b) 0
9-79. (a) ,

reject ; P-value
(b)

9-81. (a) fail to
reject ;

(b)
9-83. (a) , fail to

reject ;
(b) 0.45
(c)

Section 9-5
9-85. (a) one-sided 

(b) appropriate 
(c)

P-value � 0.118,

(d) 0.2354
9-87. (a) fail

to reject ;

(b)
9-89. (a) reject 

; 
(b)

9-91. (a) fail to
reject ; 

(b) 0.035 � p
P-value � 0.826H0

z0 � 	0.94 � 2.33
0.7969 � p

P-value � 0.0196H0

z0 � 2.06 � 1.65,
p � 0.0303
P-value � 0.095

H0

z0 � 	1.31 � 	1.65,

p̂ � 0.6105

p̂ � 0.3564, z0 � 	1.1867

n � 30

0.2 � P-valueH0

�2
0 � 11.52 � 19.02

� � 5240
0.1 � P-value � 0.4

H0

�2
0 � 12.46 � 7.26,

0.31 � � � 0.46
� 0.01H0

�2
0 � 109.52 � 71.42
.07 � �

P-value � 0.995H0

�2
0 � 0.23 � 26.30

0.005 � P-value � 0.01
0.5 � P-value � 0.9
0.5 � P-value � 0.9

�2
1	�,n	1 � 7.79

�2
1	�,n	1 � 4.57

�2
1	�,n	1 � 7.63

n � 15

H0

t0 � 	14.69 � 1.6604,
0.0025 � P-value � 0.005

H0t0 � 3.46 � 1.833,
n � 4.

P-value � 0.40.H0

t0 � 0.15 � 1.753.,
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9-93. , fail to 
reject 

9-95. (a) fail to
reject ;

(b)

Section 9-7
9-97. (a) , fail to

reject 
(b) (from

Minitab)
9-99. (a)

reject 
(b) (from

Minitab)
9-101. (a)

reject 
(b)

Section 9-8
9-103. fail to reject ;

(from Minitab)
9-105. reject ;

(from Minitab)
9-107. fail to reject ;

9-109. (a)

(b)

Section 9-9
9-111. (a) P-value � 2P(R� � 7| p �

0.5) � 0.132
(b) 0.180

9-113. (a) P-value � 2*P(R� 3| p �
0.5) 1

(b) z0 � 0, P-value 1
9-115. Ignore ties 

(a) w � 9 � , fail to
reject H0

(b) 0.110
9-117. Ignore ties 

(a) w� � 27 � , 
reject H0

Supplemental Exercises
9-119. (a) 15

(b) SE Mean � 1.1525, 
t0 � �1.449, 0.1 �
P-value < 0.2,

(c) fail to reject H0

(d) fail to reject H0

9-121. (a) t0 � 0.5694, 0.25 �
P-value � 0.4

(b) 10.726 � � � 14.222

95.874 � � � 100.786

w*
0.05,n�17

� 41

w*
0.05,n�9

� 5

�
�

	

P-value � 0.005


2
0 � 
2

0.05,1

P-value � 0.013

H0
2
0 � 
2

0.01,3,
P-value � 0.002

H0
2
0 � 
2

0.01,9

P-value � 0.070

H0
2
0 � 
2

0.05,6,

P-value � 0
H0


2
0 � 769.57 ��� 36.42,

P-value � 0.0155
H0


2
0 � 10.39 � 7.81

P-value � 0.2237
H0


2
0 � 6.955 � 15.09

n � 118� � 0.639,
P-value � 0.295H0

z0 � 0.54 � 1.65,
H0

z0 � 1.58 � �2.33 9-123. (a) n 25, 0.9783; n 100,
0.9554; n � 400, 0.8599; 
n � 2500, 0.2119

(b) n � 25, 0.3783; n � 100,
0.2643; n � 400, 0.1056; 
n � 2500, 0.0009; signifi-
cant when n � 2500.

9-125. (a) 0.4522 (b) 0.4404
(c) 0.3557 (d) 0.2981

9-127. (a) 0.6406 (b) 0.2877
(c) 0.0537

9-129. (a) n � 100, 0.3632; n � 150,
0.2119; n � 300, 0.0352

(b) n � 100, 0.6293; n � 150,
0.4522; n � 300, 0.1292

(c) 1 (d) 24, 5
9-131. (a) d � 2, � � 0; d � 3, � � 0

(b) 2
(c) d � 1, � 0.1; 

d � 1.5 � 0.04; n � 4
9-133. , reject H0

9-135. (a)

Value 0 1 2 	 3

Observed 3 7 4 6
Expected 3.6484 6.2128 5.2846 4.6954

, fail to reject H0

(b) P-value 0.6409 (from
Minitab)

9-137. (a) normal distribution used 
because sample size is
large, z0 � 6.12, fail to 
reject H0

(b) P-value 1
(c)

Obs. Exp. 
Interval Frequency. Frequency.

x � 45.50 9 7.5
45.50 � x � 51.43 5 7.5
51.43 � x � 55.87 7 7.5
55.87 � x � 59.87 11 7.5
59.87 � x � 63.87 4 7.5
63.87 � x � 68.31 9 7.5
68.31 � x � 74.24 8 7.5

x 	 74.24 6 7.5

, fail to reject H0

9-139. (a) H0: 0.635 vs. 
H1: 0.635

(b) normal distribution used
because sample size is
large, z0 � �5.31, fail to
reject H0

(c) P-value 1
9-141. (a) t0 � �6.10, P-value <

0.001, reject H0

�

��
��


2
0 � 5.06

�

�

2

0 � 0.88971


2
0 � 0.000009

�
�

�� (b) d � 4.54, Power 1
(c) d � 2.27, n 	 5
(e) From a normal probability

plot, assumption is 
reasonable

9-143. (a) t0 � 0.37, fail to reject H0

(b) From a normal probability
plot, assumption is 
reasonable 

(c) 0.25 � P-value � 0.4
9-145. (a) , reject H0

(b) P-value 0.01
9-147. (a) , fail to reject H0

(b) , P-value
0.01, reject H0

CHAPTER 10

Section 10-1
10-1. (a)

do not reject ;

(b)
(c)
(d)

10-3. (a)
do not reject ;

(b)
(c)
(d) Use 

10-5. (a) do
not reject ; 

(b)
(c)
(d) The sample size is 

adequate
10-7. (a)

reject ; 
(b)

(c)
10-9. (a)

(b) Yes
(c)
(d) Normal

Section 10-2
10-11. (a) df � 26.45 26,

, 
0.0025 P-value 0.005,
one-sided 

��
�1 � �2 � �1.688

�

n � 10Power � 0.9616;

P-value � 0.0173
� �0.57;
�5.83 � �1 � �2

n1 � n2 � 11
� �2.116
�3.684 � �1 � �2

P-value � 0H0

z0 � �7.25 � �1.645

Power � 0.9988
�1 � �2 	 6.8

P-value � 1H0

z0 � �5.84 � 1.645,
n1 � n2 � 339

Power � 0.04
�1 � �2 	 �4.74
P-value � 0.174

H0

z0 � 0.937 � 2.325,
n1 � n2 � 180
Power � 0.14
�9.79 � �1 � �2 � 3.59
P-value � 0.368

H0

�1.96 � z0 � �0.9 � 1.96,

�
2
0 � 0.509


2
0 � 0.509

�

2

0 � 58.81

�
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(b) reject H0 (c) Yes 
(d) 0.005 P-value 0.01, 

reject H0

10-13. (a)

(b)
(c)
(d)

10-15. (a)
do not reject 

; 
(b)

10-17. (a)
reject 

(b)

10-19. (a) Assumptions verified
(b)

reject ; 

(c)

10-21. (a)
reject ; 

(b)
10-23. (a) reject ;

(b) , reject 
10-25. (a) reject 

(b)
(c)

10-27. (a) reject ;

(b)
10-29. (a) Normal

(b) reject
; 

(c)
(d)
(e)

Section 10-3

10-31. (a) w2 � 75 � , fail
to reject H0

(b) P-value � 2[1 	 P(Z �
0.58)] � 0.562

10-33. (a) w1 � 77 � , 
reject H0

(b) P-value � 2[1 	 P(Z �
2.19)] � 0.034

10-35. (a) Min (258, 207) �
, fail to reject H0

(b) P-value 0.0155�
w*

0.05 � 185

w*
0.01 � 78

w*
0.025 � 51

n � 51
Power � 0.05
1.86 � �1 	 �2 � 18.94

P-value � 0.02H0

t0 � 2.558 � 2.101

�1 	 �2 � 0.178
P-value � 0.025

H0t0 � 2.82 � 2.326
n � 8
14.93 � �1 	 �2 � 27.28
P-value � 0

H0;t0 � 7.0 � 2.048,
H0t0 � 3.03 � 1.706

0.005 � P-value � 0.010
H0t0 � 3.03 � 2.056

n1 � n2 � 38
P-value � 0.0010H0

t0 � 	5.498 � 	2.021
� 	0.1105
	0.7495 � �1 	 �2

P-value � 0.020
0.010 �H0

t0 � 	2.83 � 	2.101

� 	0.3122
	5.688 � �1 	 �2

H0

t0 � 	3.11 � 	2.485,
� 0.494	0.394 � �1 	 �2

P-value � 0.80H0

� 2.042,
	2.042 � t0 � 0.230
n � n1 � n2 � 21
Power � 0.95
�1 	 �2 � 	0.196
0.025 � P-value � 0.05
t0 � 	1.94 � 	1.701

��
Section 10-4
10-37. (a)

(b) t-test is appropriate.
10-39.
10-41. (a) reject

; 
(b)

10-43. (a)
reject 

(b) reject 
(c) Yes

10-45. (a) Normal
(b)
(c)

10-47. (a) P-value � P(R+ � r+ � 14 |
p � 0.5) � 0.0005, 
reject H0

Section 10-5
10-49. (a)

(b)
(c)
(d)
(e)
(f )

10-51. fail to
reject ; 

10-53. (a) fail to
reject ;

(b)
(c) n � 31

10-55. (a) do not
reject 

(b)

10-57. (a)

(b)

(c)

10-59. do
not reject 

10-61. do
not reject ;

10-63. do not
reject ;

0.45 �
�2

1

�2
2

� 4.05

H0

0.333 � f0 � 1.35 � 3,

0.159 �
�2

1

�2
2

� 2.579

H0

0.248 � f0 � 0.640 � 4.04,
H0

0.4058 � f0 � 1.78 � 2.46,

0.661 �
�1

�2

0.5468 �
�1

�2
� 1.5710

0.6004 �
�1

�2
� 1.428

0.3369 �
�2

1

�2
2

� 2.640

H0

f0 � 0.923 � 0.365,

Power � 0.65

0.403 �
�2

1

�2
2

� 3.63

H0

f0 � 1.21 � 0.333,
�1��2 � 2.20H0

f0 � 0.805 � 0.166,
f0.95,8,15 � 0.311
f0.90,24,9 � 0.525
f0.75,5,10 � 0.529
f0.05,8,15 � 2.64
f0.10,24,9 � 2.28
f0.25,5,10 � 1.59

6 � n
	0.379 � �d � 0.349

H0t0 � 3.45 � 1.833
H0

t0 � 8.387 � 1.833
18.20 � �d

P-value � 0H0

t0 � 5.465 � 1.761
	727.46 � �d � 2464.21

0.1699 � �d � 0.3776

10-65. (a)
do not reject 

(b) No

Section 10-6
10.67. (a) one-sided 

(b) z0 � 1.4012, 
P-value � 0.0806,

(c) reject H0 at 0.10, fail
to reject H0 at 0.05 

10-69. (a) reject ;

(b)
10-71. (a) reject ;

Supplemental Exercises
10-73. (a) df � 38, t0 � 	0.988, 

0.2 � P-value � 0.5,

(b) one-sided 
(c) fail to reject H0

10-75. (a) normality, equality of vari-
ance, and independence of
the observations.

(b)
(c) Yes

(d)

(e) No
10-77. (a)

reject
(b) do not

reject 
(c) do

not reject 
(d) do

not reject 
10-79. (a) reject 

(b) reject 
(c) is so large

10-81. (a)

(b)

(c) 95% CI: 

90% CI:

10-83. (a) Yes
(b) Yes if similar populations

� 0.0195
	0.0201 � p1 	 p2

� 0.0232
	0.0238 � p1 	 p2

� 0.0276
	0.0282 � p1 	 p2

� 0.0329
	0.0335 � p1 	 p2

z0

H0z0 � 6.55 � 2.58,
H0z0 � 6.55 � 1.96,

H0

t0 � 	1.986 � 2.998,
H0

t0 � 	1.986 � 1.895,
H0

t0 � 2.554 � 2.998,
H0

t0 � 2.554 � 1.895,

0.1582 �
�2

1

�2
2

� 5.157

1.40 � �1 	 �2 � 8.36

� 0.758
	2.478 � �1 	 �2

P-value � 0
H0z0 � 5.36 � 2.58

0.039 � p1 	 p2 � 0.1
P-value � 0

H0z0 � 4.45 � 1.96
��

��
	0.0085 � p1 	 p2

H0

0.248 � f0 � 3.337 � 4.03,
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10-85. (a)

(b)

(c)
(d) reject ;

(e)
10-87. (a)

reject 
(b) conclusions are the same
(c)

10-89. (a) No
(b) data appear normal with

equal variances
(c) It is more apparent the data

follow normal distributions.

(d)

(e)
reject 

10-91. (a) Normality appears valid.
(b) do

not reject 
(c)

10-93. (a) It may not be assumed that

(b)
reject 

(c)
(d)

Mind-Expanding Exercises
10-99. (c)

CHAPTER 11

Section 11-2
11-1. (a)

(b) 37.99 (c) 39.39 (d) 6.71
11-3. (a)

(b) 89.95 (c) 	10.092
(d) 0.99 (e)

11-5. (a)

(b) 500.124 (c) 9.20836
(d)

11-7. (a)

(b) 1.39592 (c) 49.38
11-9. (b)

�2 � 398.25
�̂1 � 	3.50856,
�̂0 � 234.071,

�2 � 7.3212
�̂1 � 0.0693554,
�̂0 � 	16.5093,
	1.618

�2 � 3.7746�̂1 � 9.20836,
�̂0 � 	6.3355,

	7.98, 3.13

�2 � 27.24
�̂1 � 10.092,�̂0 � 14.195,

�̂1 � 	2.330�̂0 � 48.013,

0.519 � � � 3.887

n � 26
Power � 0.95

H0

t0 � 	2.74 � 	2.131,
�2

1 � �2
2

n � 30
H0

0.50 � P-value � 0.80,

H0

f0 � 72.78 � 4.03,

18.114 �
�2

V

�2
M

� 294.35

n � 60

H0

z0 � 	5.36 � 	2.58,
n1 � n2 � 9
P-value � 0.00062

H0z0 � 3.42 � 1.96,
�1 	 �2 � 0.2813
� 0.299
0.0812 � �1 	 �2

� 0.2813
0.0987 � �1 	 �2 (c) 128.814

(d) 156.833 and 15.1175
11-11. (b)

(c) 1886.15
11-13. (a)

(b) 3.328 (c) 0.534
(d) 1.726 and 0.174

11-15. (b)

11-17. (a)
(b)

11-19. (b)

Section 11-4
11-21. (a) t0 � 12.4853, P-value �

0.001; t1 � 20.387, 
P-value � 0.001; MSE �
2.194;  f0 � 415.91, 
P-value 0

(b) reject H0: 
(c) 2.194

11-23. (a)
reject 

(b)

(c)
11-25. (a) ,  

reject 
(b)

(c) fail to reject 
11-27. (a) ,

reject 
(b)

(c)
reject 

(d)
reject 

11-29. (a)
reject 

(b)

(c)
fail to reject 

11-31. (a)
reject 

(b)

(c)
fail to reject H00.0306,

P-value �t0 � 	2.3466,
se1�̂12 � 45.3468
se1�̂02 � 2.96681,

H00.00001,
P-value �f0 � 155.2,

H00.12166,
P-value �t0 � 	1.67718,

se1�̂12 � 0.0104524
se1�̂02 � 9.84346,

H00.00004,
P-value �f0 � 44.0279,

H00.005,
P-value �t0 � 	3.8,

H00.000,
P-value �t0 � 	23.37,

se1�̂12 � 0.0337744
se1�̂02 � 1.66765,

H0

P-value � 0f0 � 74334.4,
H0 t0 � 0.072,

se1�̂02 � 9.059
se1�̂12 � 1.288

H0

P-value � 0f0 � 61.41,
se1�̂02 � 0.9043
se1�̂12 � 0.2696
�̂2 � 27.2,

H00.000002,
P-value �f0 � 74.63,

� � 0
L

�̂1
* � 	36.9618

�̂0
* � 2132.41,

�̂1 � 	0.0025
ŷ � 39.2 	 0.0025x
�2 � 0.0253

�̂1 � 0.0287,�̂0 � 2.02,

�2 � 0.083
�̂1 � 0.178,�̂0 � 0.658,

�2 � 9811.2�̂1 � 36.962,
�̂0 � 2625.39,

(d)
reject 

(e)
reject 

11-33. (a)
reject 

(b)

(c) Reject 
11-35. (a) No

(b)
(c)

11-37. 0.55

Sections 11-5 and 11-6
11-39. (a) ( )

(b) (46.7145, 49.3115)
(c) (41.3293, 43.0477)
(d) (39.1275, 45.2513)

11-41. (a) [10.02, 15.28] 
(b) [	4.30, 32.69] 
(c) [85.59, 104.27] 
(d) [62.77, 127.10]

11-43. (a) (9.10130, 9.31543)
(b) ( )
(c) (498.72024, 501.52776)
(d) (495.57344, 504.67456)

11-45. (a) (0.03689, 0.10183)
(b) ( 14.0691)
(c) (44.0897, 49.1185)
(d) (37.8298, 55.3784)

11-47. (a) (201.552, 266.590)
(b) ( )
(c) (111.8339, 145.7941)

11-49. (a) ( )
(b) (2530.09, 2720.68)
(c) (1823.7833, 1948.5247)
(d) (1668.9013, 2103.4067)

11-51. (a) (0.1325, 0.2235)
(b) (0.119, 1.196)
(c) (1.87, 2.29)

Section 11-7
11-53. (a)
11-55. (a)
11-57. (a)
11-59. (a)
11-61. (a)

(c)
(d)

11-65. (a) H0f0 � 207, reject
�̂2 new � 4022.93
�̂2 old � 9811.21,
R2 � 95.73%
R2 � 89.6081%
R2 � 85.22%
R2 � 87.94%
R2 � 99.986%
R2 � 67.2%

	30.7272	43.1964,

	2.34696	4.67015,

	47.0877,

	1.04911	11.6219,

	1.7423	2.9713,

se1�̂02 � 9.141
�̂2 � 30.69
P-value � 0.310,

H0

se1�̂12 � 0.014
se1�̂02 � 0.1657,
�̂2 � 0.083

H0

P-Value � 0.0000,
H00.0064,

P-value �t0 � 2.7651,
H00.00001,

P-value �t0 � 57.8957,
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Section 11-8
11-67. (a)

reject 
(b)

reject 
(c) reject 

11-69. (a)
reject 

(b) (0.3358, 0.8007)
(c) Yes

11-71. (a)

(b) reject 
(c) 0.903
(d) reject 
(e) reject 
(f ) (0.7677, 0.9615)

11-73. (a)
(b) 0.948
(c) reject 
(d) (0.7898, 0.9879)

11-75. (a) r � 0.82
(b) ,

P-value � 0.005
(c) (0.664, 0.908)
(d) reject ,

P-value � 0.119

Section 11-9
11-77. (a) Yes (b) No (c) Yes

(d) Yes
11-79. (b)

(c) reject 

Section 11-10

11-81. (a)

(b) Test that all slopes zero: 
P-value 0 

11-83. (a)

(b) Test that all slopes zero: 
P-value = 0.036 

(c) 0.771 
11-85. (b)

(c) P-value
0, reject 

(d) [1.5367, 1.5509]
(e)

Supplemental Exercises
11-87. y* � 1.2232 
 0.5075x where

y* � 1�y

t0 � 	199.34, reject H0

H0

�f0 � 252263.9,
ŷ � 	0.966824 
 1.54376x

�̂2 � 	0.9879 
�̂1 � 	0.00074, 
�̂0 � 	7.047, 

�

�̂1 � 	0.00155 
�̂0 � 5.340, 

H0f0 � 122.03,
ŷ � 	0.8819 
 0.00385x

H0z0 � 1.56, fail to

t0 � 7.85, reject H0

H0t0 � 8.425,

ŷ � 5.50 
 6.73x

H0z0 � 3.879,
H0t0 � 8.9345,

H0f0 � 79.838,
0.990987x
ŷ � 	0.0280411 


H00.000,
P-value �t0 � 5.475,

H0� � 2.26,
H00.04,
P-value �z0 � 1.747,

H00.0005,
P-value �t0 � 4.81,

11-89.
11-91. (b)

(c) R2 � 21.5%
11-93. (b)

(c) reject 
P-value � 0.001

(d) (3.399, 5.114)
11-95. (c) all data: (7741.74, 10956.26),

outlier removed: (8345.22,
11272.79)

CHAPTER 12

Section 12-1
12-1. (b)

(c) 189.49
12-3. (b) 2
12-5. (a) Satisfaction � 144 	 1.11

Age 	 0.585 Severity 
 1.30
Anxiety 

(b) 49.5 
(c) 5.90, 0.13, 0.13, 1.06 
(d) No, standard errors differ

12-7. (a)

(b)

(c) 29.867
12-9. (a)

(b)
(c)

and

(d) 91.38
12-11. (a)

(b)
and

(c) 186.675
12-13. (a)


 2.108x2

ŷ � 	0.1105 
 0.4072x1

se1�̂22 � 5.241
se1�̂12 � 3.460,

se1�̂02 � 94.20,�̂2 � 55563

 68.080x2

ŷ � 	440.39 
 19.147x1

se1�̂32 � 1.323
se1�̂22 � 0.2261,
se1�̂12 � 3.723,
se1�̂02 � 49.94,
�̂2 � 12.3


 18.294x3
 0.44152x2

ŷ � 47.82 	 9.604x1

se1�̂62 � 0.273
se1�̂52 � 1.329,
se1�̂42 � 1.765,
se1�̂32 � 0.0009459,
se1�̂22 � 0.01631,
se1�̂12 � 0.02338,
se1�̂02 � 19.67,
�̂2 � 4.965

 0.1897x6


 0.292x4 	 3.855x5

	 0.0012x2 	 0.00324x3

ŷ � 49.90 	 0.01045x1

	 1.126x2

ŷ � 171.055 
 3.714x1

H0,f0 � 22.75,
ŷ � 	0.699 
 1.66x

ŷ � 0.6714 
 	2964x
ŷ � 0.7916x (b)

and

(c) 0.97074
12-15. (a)

(b)
(c)

and

(d) 61.5195
12-17. (a)

(b)
(c)

(d) 81.96
12-19. (a)

(b)

(c)
(d)

(e)

(f ) 173.1

Section 12-2
12-21. (a) t0 � 53.0872, P-value 0,

t1 � 15.02, P-value 0; 
t2 � 	23.43, P-value 0; 
MSE � 25.5833; f0 � 445.2899,
P-value 0
(b) f0 � 445.2899, reject 
(c) t-test for each regressor is

significant
12-23. (a) f0 �184.25,

Reject 
(b)

, reject 

, 
reject H0

P-value � 0.001
t0 1�̂22 � 	11.04,

H0P-value � 0.001
t0 1�̂12 � 16.21,

H0P-value � 0.000,

H0

�

�
�

�

se1�̂122 � 0.0039
se1�̂22 � 0.113,
se1�̂12 � 3.846,
se1�̂02 � 101.3,
�̂2 � 147.0,
	 0.222x2 	 0.0041x12

ŷ � 484.0 	 7.656x1

180.95
se1�̂22 � 0.04338
se1�̂12 � 0.5665,
se1�̂02 � 36.22,
�̂2 � 153.0,
	 0.1119x2

ŷ � 383.80 	 3.6381x1

se1�̂102 � 0.486
se1�̂72 � 0.385,
se1�̂32 � 0.974,
se1�̂02 � 5.877,
�̂2 � 4.14

 4.60x7 	 3.81x10

ŷ � 2.99 
 1.20x3

se1�̂22 � 0.6887
se1�̂12 � 0.6763,
se1�̂02 � 45.23,
�̂2 � 1321
	 2.7167x2

ŷ � 238.56 
 0.3339x1

se1�̂22 � 5.834
se1�̂12 � 0.1682,
se1�̂02 � 0.2501,
�̂2 � 0.00008
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12-25. (a) E-5, 3.82
E-8, and 0.3378

(b) , fail to reject 
12-27. (a) reject 
12-29. (a) reject 

(b) reject 
fail to reject 
reject 

12-31. (a) reject 

(b) reject 
reject 

12-33. (a) reject 

(b) fail to reject 
reject 

12-35. (a) reject 
(b) reject 

reject 
reject 

(c) reject 
12-37. (a) reject 

(b) reject 
fail to

reject 
(c) fail to reject 
(d) fail to reject 
(e) fail to reject 
(f ) 147.0

12-39. (a) f0 � 65.55, P-value 0,
reject H0

(b) Age: t1 � 	8.40,
Severity: t2 = 	4.43,
Anxiety: t3 = 1.23, not
all necessary

Sections 12-3 and 12-4
12-41. (a) (49.927 � �0 � 292.183)

(0.033 � �1 � 7.393)
( � �2 � 0.513)

(b) (158.82, 220.13)
(c) (126.06, 252.88)

12-43. (a) ( � �1 � 1.269)
( � �2 � 1.076)
(14.428 � �3 � 22.159)

(b) (77.582, 105.162)
(c) (82.133, 100.611)

12-45. (a) ( � �1 � )
( � �2 � 0.1417)

(b) ( � �1 � 30.5156)
( � �2 � 0.8984)
( � �3 � 0.04251)	0.03433
	1.3426
	45.8276
	0.3651

	0.3295	6.9467

	0.245
	20.477

	2.765

�

H0f0 � 1.11,
H0f0 � 7.714,
H0f0 � 6.629,

H0

t0 � 	2.57,
H0t0 � 	6.42,

P-value � 0.002
H0,f0 � 97.59,
H0f0 � 142.66,
H0t0 � 	7.84,

H0t0 � 11.94,
H0t0 � 12.30,
H0f0 � 36.59,

H0t0 � 	3.94,
H0t0 � 0.49,

P-value � 0.015
H0,f0 � 9.28,
H0t0 � 12.99,
H0t0 � 5.539,

P-value � 0
H0,f0 � 99.67,
H0t0 � 13.82,

H0t0 � 1.84,
H0t0 � 	2.58,
H0f0 � 828.31,

H0f0 � 19.53,
H0t0 � 0.98

P-value � 8.16 12-47. (a) (12.1363 � �1 � 26.1577)
(57.4607 � �2 � 78.6993)

(b) ( 63.2)
(c) ( 571.89)

12-49. (a) (0.0943 � �1 � 0.7201)
( � �2 � 12.959)

(b) (0.861, 0.896)
(c) (0.855, 0.903)

12-51. (a) ( � �1 � 2.841)
( � �2 � )

(b) ( 125.8)
(c) ( 202.0)
(d) CI: (107.4, 267.2)

PI: (30.7, 344.0)
12-53. (a) 	10.18 � �0 � 16.62

(1.00 � �3 � 1.45)
(3.85 � �7 � 5.00)
( � �10 � )

(b) 0.3877
(c) (81.3, 82.9)

12-55. (a) [	9.052, 15.024], [0.999,
1.398], [3.807, 5.384],
[	4.808, 	2.817]

(b) 0.43 
(c) [80.965, 82.725]

Section 12-5
12-57. (a) 0.893
12-59. (a) 0.95
12-61. (a) 0.843
12-63. (a) 0.997
12-65. (a) 0.756
12-67. (a) 0.985 (b) 0.99
12-69. (b) 0.9937, 0.9925
12-71. (a) 0.12 (b) Yes

Section 12-6
12-73. (a)

(b) reject 
(c) reject 

12-75. (a)

(b) reject 

(d) fail to 
reject 

12-77. (b)

	 4.179x4

	 0.00525x2 	 0.138x3

ŷ � 56.677 	 0.1457x1

H0

f0 � 1.612,
H0f0 � 19.628,

	 0.007x2
2 
 0.001x3

2

 0.003x23 	 0.019x1

2
	 0.02x12 
 0.009x13


 0.222x2 	 0.128x3

ŷ � 	1.769 
 0.421x1

H0t0 � 	601.64,
H0f0 � 1,858,613,

	1.495x2
ŷ � 	1.633 
 1.232x

	3.07	5.11

	112.8,
	36.7,

	0.164	5.270
	2.173

	8.743

	742.09,
	233.4,

12-79. (a) Min 

Min is same as Min 
(b) Same as part (a)
(c) Same as part (a)
(d) Same as part (a)
(e) All models are the same

12-81. (a) Min 

Min is same as Min 
(b) Same as part (a)
(c) Same as part (a)
(d) Same as part (a)
(e) All models are the same

12-83. (a) Min : 

Min is same as Min 
(b) Same as part (a)
(c) Same as part (a)
(d) Same as part (a)
(e) All models are the same

12-85. (a) Min : 

Min is same as 
Min 

(b) Same as part (a)
(c) Same as part (a)
(d) Same as part (a)
(e) All models are the same

12-87. (a) Min. MSE (MSE � 0.01858)
model Att, PctComp, Yds,
YdsperAtt, TD, PctTD,
PctInt; Min. Cp (Cp � 5.3)
model PctComp, YdsperAtt,
PctTD, PctInt;

(b) PctComp, YdsperAtt,
PctTD, PctInt 

(c) PctComp, YdsperAtt,
PctTD, PctInt

(d) Att, PctComp, Yds,
YdsperAtt, TD, PctInt

12-89. (a) Min :

Min 
ŷ � 49.5 	 0.017547xcid

MSE � 4.0228
	 0.00354xetw 	 3.457xaxle

ŷ � 61.001 	 0.02076xcid

Cp � 1.3

Cp

MSE


 1.30x2

ŷ � 	50.4 
 0.671x1

MSE � 10.49Cp � 2.9,
x2x1,Cp

CpMSE

ŷ � 253.06 	 2.5453x2

MSE � 1178.55Cp � 1.2,
x2Cp

CpMSE


 0.467864x1

ŷ � 	0.20052
MSE � 0.0000705Cp � 1.1,

x1Cp:

CpMSE


 68.080x2

ŷ � 	440.39 
 19.147x1

MSE � 55563.92Cp � 3.0,
x2Cp : x1,
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(b)

(c) Same as Min MSE model in
part (a)

(d)

(e) Min model is preferred
(f ) Min 

Min 

Stepwise:

Forward selection:

Backward elimination is same
as Min and Min 

12-91. (a)

(b)

(c) Prefer the model in part (a)

Supplemental Exercises
12-95. (a) 2 

(b) 0.0666, 0.0455 
(c) 6.685

12-97. (a) reject 

(b) fail to reject 
reject 

fail to reject 
12-99. (a)

(b) reject 
reject 

reject 
reject 
reject 

12-101. (a)

 0.0055x4 
 0.000418x5

ŷ* � 21.068 	 1.404x*
3

H0t0 � 	4.99,
H0t0 � 	2.90,
H0t0 � 	5.96,

H0t0 � 5.76,
H0f0 � 21.79,

	 1.44x*
4	 3.56x*

3

	 6.53x*
2ŷ � 4.87 
 6.12x*

1

H0t0 � 2.53,
H0t0 � 19.95,

H0t0 � 	1.45,
P-value � 0.00001

H0,f0 � 1321.39,

Cp � 4.66 MSE � 0.004

 0.0008x2

3


 0.022x2 	 0.042x3

ŷ � 	0.256 
 0.078x1

Cp � 4.04 MSE � 0.004
	 0.031x3 
 0.004x2

2

ŷ � 	0.304 
 0.083x1

MSECp


 2xdrv2

	 3.4xtrans 
 2.1xdrv1


 0.336xn/v 	 2.1xaxle

ŷ � 41.12 	 0.00377xetw


 3.2xdrv1 
 1.7xdrv2


 0.271xn/v 	 4.5xtrns

ŷ � 39.12 	 0.0044xetw


 3.6131xdrv1 
 2.342xdrv2

	 0.011118xc02 	 7.401xtrans


 3.936xcmp 
 15.216xco

ŷ � 10 	 0.0038023xetw

MSE � 2.267
Cp � 4.0,
Cp

	 4.4xaxle 
 0.385xn/v

ŷ � 45.18 	 0.00321xetw

	 0.0084xc02

	 0.00375xetw 	 3.3xaxle

ŷ � 63.31 	 0.0178xcid

	 3.184xaxle 	 0.0096xc02

	 0.0034252xetw 
1.29xcmp

(b) Same as part (a)
(c) with and

(d) The part (c) model is 
preferable

(e) Yes
12-103. (a)

(b) reject 
(c) 0.9022
(d)
(e) fail to

reject 
12-105. (a) reject 

(b) do not reject 
(c)

Mind-Expanding Exercises
12-109.

CHAPTER 13

Section 13-2
13-1. (a) 4 

(b) 5 
(c) f0 � 1.58, 0.1 � P-value 

� 0.25 
(d) fail to reject H0

13-3. (a) reject 
13-5. (a) reject 

(b)
13-7. (a) reject 

(c) 95%: (140.71, 149.29)
99%: (7.36, 24.14)

13-9. (a) fail to
reject 

(b)
13-11. (a) reject 

(b)
(d) (69.17, 81.83)
(e) (8.42, 26.33)

13-13. (a) fail to 
reject 

(b)

13-15. (a) fail to 
reject 

(b)
13-27. n � 3

P-value � 0.083
H0

f0 � 2.62,
SSE � 0.146
P-value � 0.486,

H0

f0 � 0.72,

P-value � 0.002
H0f0 � 8.30,

P-value � 0.214
H0

f0 � 1.86,

H0f0 � 16.35,
P-value � 0

H0f0 � 12.73,
H0f0 � 14.76,

R2 � 0.449

MSE  
1Full2 � 0.004

MSE 
1reduced2 � 0.005

H0f0 � 2,
H0f0 � 18.28,

H0

f0 � 0.291,
MSE � 10.65

H0f0 � 55.37,
ŷ � 405.8
 10.4x2,

ŷ � 300.0 
 0.85x1

MSE � 0.0134
Cp � 4.1x5x4,

Cp � 4.0
MSE � 0.013156 Section 13-3

13-29. (a) reject 
(b) 0.01412
(c) 0.0148

13-31. (a) fail to reject 
(b) 0 (c) 24

13-33. (a)
(c) Set equal sample sizes,

Section 13-4
13-35. f0 � 147.35, P-value 0, reject

H0 at � � 0.05 or � � 0.01
13-37. (a) reject 
13-39. (a) fail to reject 
13-41. (a) fail to reject 
13-43. (a) 3 (b) 3 

(c) f0 � 23.15, P-value < 0.01
(d) reject H0

Supplemental Exercises
13-45. (a) reject 

(c) (132.97, 147.83)
13-47. (a) reject 

(b)
13-49. (a) reject 

(c) Algorithm 5
13-51. (a) Power � 0.2 (b)

CHAPTER 14

Section 14-3
14-1. (a) 1.

2.

(b)

reject 
for only main effects

14-3. (a)

reject 
for both main effects and
the interaction

14-5. (a)

(b)

reject for only insulationH0

f 1IT 2 � 1.70f 1T 2 � 0.32,
f 1I 2 � 40.07,

•

i � 1, 2, 3

j � 1, 2, 3, 4

k � 1, 2, 3, 4, 5, 6


 �ijk

Yijk � � 
 �i 
 �j 
 1��2ij

H0f 1MT 2 � 3.56
f 1T 2 � 28.97,
f 1M 2 � 7.91,

H0f 1GP 2 � 1.26
f 1P 2 � 8.84,
f 1G 2 � 273.79,

H1 : at least one �j � 0
H0 : �1 � �2 � �3 � 0
H1 : at least one �i � 0
H0 : �1 � �2 � 0

n � 50

H0f0 � 6.23,
P-value � 0.007

H0f0 � 7.84,

H0f0 � 76.09,

H0f0 � 1.61,
H0f0 � 3.00,

H0f0 � 8.92,

�

�2
� � 0�2 � 0.164,

H0: �
2
� � 0 H1: �

2
� � 0

H0f0 � 0.75,

H0f0 � 5.77,
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14-7. (a)

reject for both main
effects and the interaction

14-9. ( 7.64)

Section 14-4
14-11. (a)

H, C, F, HF are significant
at The P-value
for HC is 0.075.

Section 14-5
14-13. Significant effects:

14-15. (a) Cleaning Method 

(b) Cleaning Method is the only
significant factor

14-17. (a) Significant effects:

14-19. None of the effects are 
significant

14-21. (b) A, B and AB
(c)

14-23. do not reject 
14-25. (a) For model with A, B, C, AB,

(b) curvature is
significant

14-27. (a) Large effects: C � 	39.79,
D � 	198.47, E � 	64.86 

(b) y � 546.90 	 39.79xC 	
198.47xD 	 64.86xE

(d) none
14-29. (a) Large effects: B � 	0.000750 

(b) with all effects in error except
B the P-value � 0.007

Section 14-6
14-31. Significant effects:

C � 10.625,A � 15.625,

F0 � 192.71,
s 1center pts2 � 2.86
s � 2.92;

H0f0 � 5.11,
	 32.75x2 
 26.625x1x2

ŷ � 400 
 40.124x1

AB � 7.9375
C � 9.6875,B � 33.9375,

A � 11.8125,

Clean*test � 	1.220
Test Position � 	1.280

� 	5.93
AD � 9.125D � 8.375,
C � 10.875,A � 17.00,

� � 0.05.

f 1CF 2 � 0.96
f 1HF 2 � 2.97,
f 1HC 2 � 2.92,
f 1F 2 � 19.92,
f 1C 2 � 31.66,
f 1H 2 � 7.64,

	3.40,

H0

f 1DA 2 � 3.54
f 1A 2 � 543.52,
f 1D 2 � 25.23,

14-37. (a) Effect JED is confounded
with blocks

(b) Marginal significant effects:

14-39. (a) Blocking important, 
SSBlocks large relative 
to SSError

(b) ABC, ABD, ACD, 
and BCD

(c) Coefficient for AD � 15.14,
t-statistic for AD � 1.525,
dfBlocks � 1, MS for inter-
actions � 1165.33

Section 14-7
14-41. (a)

(b)

14-43. (a)
(b) Resolution V
(c)

14-45. (c)

14-47. (b) Design Generator: 

Defining Relation:

Aliases

(c)

14-49. (a) Alias Structure:

B 
 AD 
 CF
A 
 BD 
 CE

 BCDE

 DEF 
 ABEF 
 ACDF
I 
 ABD 
 ACE 
 BCF

E � 2.275
D � 	0.675,C � 2.275,

B � 	5.175,A � 	1.525,
E � AC � BD � ABCD
D � BE � ABCE � ACDE
C � AE � ABDE � BCDE
B � DE � ACDE � ABCE
A � CE � BCDE � ABDE

� ABCDE
I � ACE � BDE

E � AC
D � BE,

AD � 	1.23
AB � 1.15,D � 4.545,
B � 	1.465,A � 1.435,

DE � 	0.3150
BE � 	0.4050,
E � 	0.4700,

E � 	ABCD
AB 
 CDE � 7.1250,
E � 0.3750,
D � 	0.6250,
C � 10.6250,
 B � 33.6250,
A � 10.8750,
25	1

ED � 	25.5,
JD � 	18.0,

D � 14.75,J � 19.0,

ACD � 1.875CD � 	3.125,
AD � 8.875,D � 8.875,

(b) Alias Structure: I 
 ABCG

 ABDH 
 ABEF

 ACDF 
 ACEH

 ADEG 
 AFGH

 BCDE 
 BCFH

 BDFG 
 BEGH

 CDGH 
 CEFG

 DEFH

A
B
C
D
E
F
G
H

14-51. (a) Generators are E � BCD, 
F � ACD, G � ABC, and
H � ABD, I � BCDE �
ACDF � ABEF � ABCG �
ADEG � BDFG � CEFG �
ABHD � ACEH � BCFH �
DEFH � CDGH �
BEGH � AFGH

(b) Glassware � 1.4497,
Reagent � 	0.8624, Prep �
0.6034, Tracer � 0.6519,
Dissolution � 	0.8052,
Hood � 1.3864, Chemistry �
0.0591, Ashing � 	0.0129

Section 14-8
14-53. (b)

14-55. Path of steepest ascent passes
through the point (0, 0) and has
a slope 

14-57. (a) Central composite design,
not rotatable
(b)


 3.35x2 	 6.53x1
2

ŷ � 150.04 	 58.47x1

	0.8�1.5 � 	0.533

	 1.59x2
2 	 1.801x1 x2

	 2.408x2 
 0.861x1
2

ŷ � 82.024 	 1.115x1

AH 
 BD 
 CE 
 FG
AG 
 BC 
 DE 
 FH
AF 
 BE 
 CD 
 GH
AE 
 BF 
 CH 
 DG
AD 
 BH 
 CF 
 EG
AC 
 BG 
 DF 
 EH
AB 
 CG 
 DH 
 EF

AF 
 BE 
 CD
F 
 BC 
 DE
E 
 AC 
 DF
D 
 AB 
 EF
C 
 AE 
 BF

JWCL232_AppB_731-748.qxd  1/23/10  10:15 AM  Page 745



746 APPENDIX B ANSWERS TO SELECTED EXERCISES

The linear terms are signifi-
cant ( ), while
both the square terms and
interaction terms are
insignificant

14-59. (a) along the vector (1.2, 	2.1,
1.6, 	0.6) 

(b) (1.22, 2.13, 1.62, 0.61)

Supplemental Exercises
14-61. (a)

The main effect of pH and
the interaction of pH and
Catalyst Concentration
(CC) are significant

14-63. (a)

L, S, LS are significant
14-65. (a)

, not
significant

14-67. (a)

(b)

14-69. V � 3.25, F � 	10.25, 
P � 	10.25, G � 	23.75, 
PG � 	11.75

14-71. Design Generators: 

Alias Structure

14-73. (a) 22 factorial with two 
replicates

(b) Significant effects:

(c)
14-75. (a)

� 1��233 � 0
H0 : 1��211 � p
H0 : �1 � �2 � �3 � 0
H0 : �1 � �2 � �3 � 0
ŷ � 0.1994 
 0.07688x1

x2 � 	1.160x1 � 0.795,

BE 
 CD 
 ABC 
 ADE
BC 
 DE 
 ABE 
 ACD
E 
 AC 
 BCD 
 ABDE
D 
 AB 
 BCE 
 ACDE
C 
 AE 
 BDE 
 ABCD
B 
 AD 
 CDE 
 ABCE
A 
 BD 
 CE 
 ABCDE
I 
 ABD 
 ACE 
 BCDE

E � AC
D � AB

	 9.63x34


 5.37x3 	 12.50x4

ŷ � 102.75 	 7.87x1

PG � 	19.25,
G � 	25.00,

P � 10.75,V � 	15.75,

ABC � 	6.49
BC � 11.46,AC � 7.04,

AB � 	8.71,C � 3.49,
B � 	6.66,A � 	2.74,

f 1LS 2 � 5.29
f 1S 2 � 39.75,
f 1L2 � 63.24,

t1 pc2 � 5.02t 1 p2 � 2.54,

p � 0.001


 10.58x2
2 
 0.50x1 x2 (b)

(d)
14-77. (a) Generators are E � ABC, 

F � ABD, and G = ACD; 
I � ABCE � ABDF �
CDEF � ACDG � BDEG
� BCFG � AEFG

(b) A � 	74.9, B � 76.1, 
C � 	366.4, D � 236.9, 
E � 	213.4, F � 119.9, 
G � 101.9 

14-79. (a) Block 1: (1), bc, ac, ab;
Block 2: a, b, c, abc

(b) A � 	0.500, B � 13.000, 
C � 6.500, AB � 	2.000, 
AC � 	14.500, BC � 	5.000

14-81. (a) A: 4 levels, B: 3 levels 
(b) 1 (c) AB interaction not 

significant (d) dfError � 6,
SSB � 34670882, MSE �
29736583, f0 � 1.36

CHAPTER 15

Section 15-3
15-1. (a) chart: ,

, ,
R chart: ,

, 
(b)

15-3. (a) chart: ,
, 

S chart: ,
, 

(b) , 
15-5. (a) chart: UCL � 4.930, 

CL � 4.668, LCL � 4.406,
R chart: UCL � 0.961, 
CL � 0.454, LCL � 0 

(b) chart: UCL � 4.910, 
CL � 4.668, LCL � 4.425,
S chart: UCL � 0.355, 
CL � 0.17, LCL = 0

15-7. (a) chart: ,
,

R chart: ,
, 

(b) chart: ,
,

R chart: ,UCL � 12.1297
LCL � 30.7857
CL � 34.0947

UCL � 37.4038x
LCL � 0CL � 5.65

UCL � 11.9461
LCL � 31.0611
CL � 34.32

UCL � 37.5789x

x

x
�̂ � 14.74�̂ � 223

LCL � 0CL � 13.58
UCL � 30.77

LCL � 200.89CL � 223
UCL � 245.11x

�̂ � 14.74�̂ � 223
LCL � 0CL � 34.286

UCL � 72.51
LCL � 203.22CL � 223

UCL � 242.78x

�̂ � 1.22
f 1PN 2 � 92.94
f 1P 2 � 119.17,
f 1N 2 � 311.71, , 

15-9. (a) chart: ,
, 

R chart: ,
, 

(b) chart: ,
, 

R chart: ,
, 

(c) chart: ,
, 

S chart: ,
, 

Revised
chart: ,

, 
S chart: ,

, 
15-11. (a) chart: ,

,

R chart: ,
, 

(b) chart: ,
,

R chart: ,
, 

(c) chart: ,
,

S chart: ,
, 

Revised:
chart: ,

,

S chart: ,
, 

15-13. (a) 2.73 (b) no
15-15. � 2.956, 

Section 15-4
15-17. (a) Individual chart:

,
,

MR chart: ,
, 

The process appears to be
in control.

(b) , �̂ � 2.613�̂ � 53.05

LCL � 0CL � 2.94737
UCL � 9.634

LCL � 45.211
CL � 53.05
UCL � 60.889

r�d2 � 1.251s

LCL � 0CL � 0.00028
UCL � 0.00058

LCL � 0.0626
CL � 0.0630

UCL � 0.0633x

LCL � 0CL � 0.00027
UCL � 0.00058

LCL � 0.0626
CL � 0.0630

UCL � 0.0634x
LCL � 0CL � 0.0007

UCL � 0.0014
LCL � 0.0626
CL � 0.0630

UCL � 0.0634x
LCL � 0
CL � 0.0009

UCL � 0.0020
LCL � 0.0624
CL � 0.0629

UCL � 0.0635x
LCL � 0CL � 1.109

UCL � 2.848
LCL � 13.62CL � 15.78

UCL � 17.95x

LCL � 0CL � 1.188
UCL � 3.051

LCL � 12.77CL � 15.09
UCL � 17.42x

LCL � 0CL � 2.118
UCL � 5.453

LCL � 13.62CL � 15.78
UCL � 17.96x

LCL � 0CL � 2.25
UCL � 5.792

LCL � 12.79CL � 15.09
UCL � 17.4x

�̂ � 2.4664
LCL � 0CL � 5.73684
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15-19. (a) Individual chart:
,

,

MR chart:
,

, 
The process appears to be
in control.

(b) , 
15-21. (a) Initial study: Individual

chart: ,
, 

MR chart: ,
, 

Revised: Individual chart
,

, 
MR chart: ,

, 
(b) , 

15-23. (a) X chart: UCL � 116.43, 
CL � 82.0, LCL � 47.57, 
R chart: UCL � 42.30, 
CL � 12.95, LCL � 0; 
in control 

(b) 82.0, 11.48

Section 15-5
15-25. (a) 1.3333 (b) 26
15-27. (a) (b) 0
15-29. Proportion nonconforming is

0.00779

15-31. 0.0009

15-33. (a)

(b) 0.00013
15-37. (a) Fraction defective � 0.002,

PCR � 1.03, PCRK � 1.03
(b) Fraction defective � 0.057,

PCR � 1.03, PCRK � 0.526
15-39. (a) 0.03

(b) PCR � 1.11, PCRK � 0.778

Section 15-6
15-41. (a) not in control

,
,

LCL � 0.0455
CL � 0.0645
UCL � 0.0835

PCRK � 1.217
PCR � 1.35

PCRK � 1.06
PCR � 1.13

PCRK � 0.837
PCR � 0.905

PC � PCRK � 1.5

�̂ � 9.20059�̂ � 99.4792
LCL � 0CL � 10.38

UCL � 33.91
LCL � 71.88CL � 99.48

UCL � 127.08

LCL � 0CL � 11.18
UCL � 36.51

LCL � 71.06CL � 100.78
UCL � 130.5

�̂ � 0.1696�̂ � 10.0272

LCL � 0CL � 0.19125
UCL � 0.625123

LCL � 9.5186
CL � 10.0272
UCL � 10.5358

(b) Revised P-chart:
,

, 
15-43. (a) P chart: ,

,

(b) Revised P chart:
,

,

15-45. (a) The limits need to be 
revised. ,

, 
sample 5 and 24 exceed 
limits

(b) U chart: ,
, 

15-47. (a) UCL � 0.3528, 
CL � 0.2598, LCL � 0.1667,
not in control 

(b) UCL � 0.6694, CL �
0.5195, LCL � 0.3696, not
in control, points 4, 5, 10,
12, 18, 20 exceed the con-
trol limits

Section 15-7
15-49. (a) 4 (b) 0.0228.

(c) 43.8596
15-51. (a) 0.2177 (b)
15-53. (a) 0.1515 (b)
15-55. (a) 0.1020 (b)
15-57. (a) 0.2877 (b)
15-59. (a) 5.196 (b) 0.01 (c) 102.04

Section 15-8
15-61. (a)

,

Yes, this process is in-control.
(b) Observation 20 is out of

control, CUSUM � 6.08
15-63. (a)

(b)
,

out of
control at the specified 
target level

15-65. (a)
(b)

15-67. (a) 0.169548
(b) The process appears to be

in control. ,
, LCL � 9.83CL � 10

UCL � 10.17

ARL � 10.4
ARL � 38.0

LCL � 	0.0678,
UCL � 0.0678
h � 4, k � 0.5,
�̂ � 0.1736

LCL � 	3.875
UCL � 3.875
h � 4, k � 0.5,

ARL � 3.48
ARL � 9.8
ARL � 6.6
ARL � 4.6

LCL � 0CL � 1.709
UCL � 3.463

LCL � 0.072,CL � 1.942
UCL � 3.811

LCL � 0.1085
CL � 0.1573
UCL � 0.2062

LCL � 0.1026
CL � 0.1506

UCL � 0.1986
LCL � 0CL � 0.0561

UCL � 0.1252
(c) Out of control at observa-

tion 13, ,
, 

15-69. (a) prefer and 
(b) prefer and

(c) 9
15-71. (a) UCL � 12, LCL � 	12, not

in control 
(b) shift from 70 to 80: 2.01 �

ARL � 2.57

Supplemental Exercises
15-73. (a) chart: ,

, 
R chart: ,

, 
(b)
(c)
(d)
(e)
(f )

15-75. (a) The process appears to be
in control.

(b) P chart: ,
,

15-77. (a) Individual chart:
,

,

MR chart:
,

, 
(b) Individual chart:

,
,

MR chart:
,

, 
(c) 60.3264 

0.0003173

15-79. (a) Trial control limits
S chart: ,

, 
chart: ,

,

Revised S chart:
,

, LCL � 2.42CL � 80.68
UCL � 158.93

LCL � 447.53
CL � 558.77

UCL � 670.00x
LCL � 2.59CL � 86.42

UCL � 170.25

PCRk � 0.9455
PCR � 1.0505
�̂ �
�̂ �

LCL � 0CL � 0.000358
UCL � 0.001169

LCL � 0.000542
CL � 00.00041
UCL � 0.001362

LCL � 0CL � 0.000358
UCL � 0.001169

LCL � 60.325458
CL � 60.32641
UCL � 60.327362

LCL � 0.04093
CL � 0.1063

UCL � 0.1717

ARL � 12.9
�2 � 10.003322 � 0.000011
PCRk � 0.63
PCR � 0.63

�̂ � 0.011�̂ � 64,
LCL � 0CL � 0.018

UCL � 0.046
LCL � 63.982CL � 64

UCL � 64.019x

L � 3.07
� � 0.5

L � 2.81� � 0.1
LCL � 9.71CL � 10

UCL � 10.29
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chart: ,
,

(b)
(c) 36.9917
(d)

15-89. (a)
(b)
(c)

15-91. (a) chart: ,
,

R chart: ,
, 

(b) Revised: chart:
,

,
LCL � 139.001
CL � 139.709
UCL � 140.417

x
LCL � 0CL � 1.175

UCL � 2.48437
LCL � 138.812
CL � 139.49

UCL � 140.168x
ARL � 2.00
ARL � 6.30
ARL � 43.9
ARL � 18.6
�̂ �
PCRK � 0.8725
LCL � 448.10
CL � 551.95

UCL � 655.79x R chart: ,
, 

(c)

(d)
(e)

15-93.

15-95. (a) when
) 

(b) when 
)

15-97. (a)
(b)

15-101. (a) , probability
� 0.03 

(b) 31.95

�̂ � 3.0411

ARL � 3.63
ARL � 17.5

� 1� � 16
P1U � 10.68

� 0.96995� � 16
P1U � 12.24

P1X � USL2 � 0.00135
ARL � 5.55
�2 � 0.081
PCRk � 1.08
PCR � 1.26

�̂ � 0.5276
LCL � 0CL � 1.227

UCL � 2.596 Mind-Expanding Exercises
15-103. 0.125, 0.004
15-105. (b) where

(c) for k � 2
(d)

15-107.

15-111. (a) chart

(b) Yes
LCL � 0
UCL � 16.49
CL � 8
C

n �
k211 	 p2

p

ARL � 4.47
ARL � 22.0

 �1	 k 	 1n�2
p � 1 	 �1k 	 1n�2
ARL � 1�p
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2k factorial experiment. A full factorial experiment with k factors
and all factors tested at only two levels (settings) each.

2k-p factorial experiment. A fractional factorial experiment with
k factors tested in a 2�p fraction with all factors tested at only two
levels (settings) each.

Acceptance region. In hypothesis testing, a region in the sample
space of the test statistic such that if the test statistic falls within it,
the null hypothesis cannot be rejected. This terminology is used be-
cause rejection of H0 is always a strong conclusion and acceptance
of H0 is generally a weak conclusion.

Addition rule. A formula used to determine the probability of the
union of two (or more) events from the probabilities of the events and
their intersection(s).

Additivity property of �2. If two independent random variables X1

and X2 are distributed as chi-square with v1 and v2 degrees of freedom,
respectively, Y � X1 � X2 is a chi-square random variable with u �

v1 � v2 degrees of freedom. This generalizes to any number of inde-
pendent chi-square random variables.

Adjusted R2. A variation of the R2 statistic that compensates for
the number of parameters in a regression model. Essentially, the ad-
justment is a penalty for increasing the number of parameters in the
model.

Alias. In a fractional factorial experiment when certain factor effects
cannot be estimated uniquely, they are said to be aliased.

All possible (subsets) regressions. A method of variable selection in
regression that examines all possible subsets of the candidate regressor
variables. Efficient computer algorithms have been developed for
implementing all possible regressions.

Alternative hypothesis. In statistical hypothesis testing, this is a
hypothesis other than the one that is being tested. The alternative
hypothesis contains feasible conditions, whereas the null hypothesis
specifies conditions that are under test.

Analysis of variance (ANOVA). A method of decomposing the total
variability in a set of observations, as measured by the sum of the
squares of these observations from their average, into component
sums of squares that are associated with specific defined sources of
variation.

Analytic study. A study in which a sample from a population is
used to make inference to a future population. Stability needs to be
assumed. See Enumerative study.

Arithmetic mean. The arithmetic mean of a set of numbers x1, x2, …,
xn is their sum divided by the number of observations, or

. The arithmetic mean is usually denoted by , and is 
often called the average.

Assignable cause. The portion of the variability in a set of observa-
tions that can be traced to specific causes, such as operators, materials,
or equipment. Also called a special cause.

Asymptotic relative efficiency (ARE). Used to compare hypothesis
tests. The ARE of one test relative to another is the limiting ratio of the
sample sizes necessary to obtain identical error probabilities for the
two procedures.

Attribute. A qualitative characteristic of an item or unit, usually
arising in quality control. For example, classifying production units as
defective or nondefective results in attributes data.

Attribute control chart. Any control chart for a discrete random
variable. See Variables control chart.

Average. See Arithmetic mean.

Average run length, or ARL. The average number of samples taken
in a process monitoring or inspection scheme until the scheme
signals that the process is operating at a level different from the
level in which it began.

Axioms of probability. A set of rules that probabilities defined on a
sample space must follow. See Probability.

Backward elimination. A method of variable selection in regression
that begins with all of the candidate regressor variables in the model
and eliminates the insignificant regressors one at a time until only
significant regressors remain.

Bayes estimator. An estimator for a parameter obtained from a
Bayesian method that uses a prior distribution for the parameter along
with the conditional distribution of the data given the parameter to
obtain the posterior distribution of the parameter. The estimator is
obtained from the posterior distribution.

Bayes’ theorem. An equation for a conditional probability such as
in terms of the reverse conditional probability .

Bernoulli trials. Sequences of independent trials with only two out-
comes, generally called “success” and “failure,” in which the probability
of success remains constant.

Bias. An effect that systematically distorts a statistical result or
estimate, preventing it from representing the true quantity of interest.

Biased estimator. See Unbiased estimator.

P1B 0 A2P1A 0 B2

x11�n2 g
n
i�1xi
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Bimodal distribution. A distribution with two modes.

Binomial random variable. A discrete random variable that equals
the number of successes in a fixed number of Bernoulli trials.

Bivariate distribution. The joint probability distribution of two
random variables.

Bivariate normal distribution. The joint distribution of two normal
random variables.

Block. In experimental design, a group of experimental units or
material that is relatively homogeneous. The purpose of dividing
experimental units into blocks is to produce an experimental de-
sign wherein variability within blocks is smaller than variability
between blocks. This allows the factors of interest to be compared
in a environment that has less variability than in an unblocked
experiment.

Box plot (or box and whisker plot). A graphical display of data in
which the box contains the middle 50% of the data (the interquartile
range) with the median dividing it, and the whiskers extend to the
smallest and largest values (or some defined lower and upper limits).

C chart. An attribute control chart that plots the total number of
defects per unit in a subgroup. Similar to a defects-per-unit or U chart.

Categorical data. Data consisting of counts or observations that can
be classified into categories. The categories may be descriptive.

Causal variable. When y � f(x) and y is considered to be caused by
x, x is sometimes called a causal variable.

Cause-and-effect diagram. A chart used to organize the various
potential causes of a problem. Also called a fishbone diagram.

Center line. A horizontal line on a control chart at the value that esti-
mates the mean of the statistic plotted on the chart. See Control chart.

Central composite design (CCD). A second-order response surface
design in k variables consisting of a two-level factorial, 2k axial runs,
and one or more center points. The two-level factorial portion of a
CCD can be a fractional factorial design when k is large. The CCD is
the most widely used design for fitting a second-order model.

Central limit theorem. The simplest form of the central limit theo-
rem states that the sum of n independently distributed random vari-
ables will tend to be normally distributed as n becomes large. It is a
necessary and sufficient condition that none of the variances of the
individual random variables are large in comparison to their sum.
There are more general forms of the central theorem that allow infi-
nite variances and correlated random variables, and there is a multi-
variate version of the theorem.

Central tendency. The tendency of data to cluster around some
value. Central tendency is usually expressed by a measure of location
such as the mean, median, or mode.

Chance cause. The portion of the variability in a set of observations
that is due to only random forces and which cannot be traced to
specific sources, such as operators, materials, or equipment. Also
called a common cause.

Chi-square (or chi-squared) random variable. A continuous
random variable that results from the sum of squares of independent
standard normal random variables. It is a special case of a gamma
random variable.

Chi-square test. Any test of significance based on the chi-square
distribution. The most common chi-square tests are (1) testing
hypotheses about the variance or standard deviation of a normal

distribution and (2) testing goodness of fit of a theoretical
distribution to sample data.

Coefficient of determination. See R2.

Combination. A subset selected without replacement from a set used
to determine the number of outcomes in events and sample spaces.

Comparative experiment. An experiment in which the treatments
(experimental conditions) that are to be studied are included in the
experiment. The data from the experiment are used to evaluate the
treatments.

Completely randomized design (or experiment). A type of experi-
mental design in which the treatments or design factors are assigned to
the experimental units in a random manner. In designed experiments,
a completely randomized design results from running all of the treat-
ment combinations in random order.

Components of variance. The individual components of the total
variance that are attributable to specific sources. This usually refers to
the individual variance components arising from a random or mixed
model analysis of variance.

Conditional mean. The mean of the conditional probability distribu-
tion of a random variable.

Conditional probability. The probability of an event given that the
random experiment produces an outcome in another event.

Conditional probability density function. The probability density
function of the conditional probability distribution of a continuous
random variable.

Conditional probability distribution. The distribution of a random
variable given that the random experiment produces an outcome in
an event. The given event might specify values for one or more other
random variables.

Conditional probability mass function. The probability mass func-
tion of the conditional probability distribution of a discrete random
variable.

Conditional variance. The variance of the conditional probability
distribution of a random variable.

Confidence coefficient. The probability 1 � � associated with a
confidence interval expressing the probability that the stated interval
will contain the true parameter value.

Confidence interval. If it is possible to write a probability statement
of the form

where L and U are functions of only the sample data and � is a param-
eter, then the interval between L and U is called a confidence interval
(or a 100(1 � �)% confidence interval). The interpretation is that a state-
ment that the parameter � lies in this interval will be true 100(1 � �)%
of the times that such a statement is made.

Confidence level. Another term for the confidence coefficient.

Confounding. When a factorial experiment is run in blocks and the
blocks are too small to contain a complete replicate of the experiment,
one can run a fraction of the replicate in each block, but this results in
losing information on some effects. These effects are linked with or
confounded with the blocks. In general, when two factors are varied
such that their individual effects cannot be determined separately,
their effects are said to be confounded.

P1L 	 � 	 U 2 � 1 � �
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Consistent estimator. An estimator that converges in probability to
the true value of the estimated parameter as the sample size increases.

Contingency table. A tabular arrangement expressing the assign-
ment of members of a data set according to two or more categories or
classification criteria.

Continuity correction. A correction factor used to improve the
approximation to binomial probabilities from a normal distribution.

Continuous distribution. A probability distribution for a continuous
random variable.

Continuous random variable. A random variable with an interval
(either finite or infinite) of real numbers for its range.

Continuous uniform random variable. A continuous random
variable with range of a finite interval and a constant probability
density function.

Contour plot. A two-dimensional graphic used for a bivariate prob-
ability density function that displays curves for which the probability
density function is constant.

Contrast. A linear function of treatment means with coefficients that
total zero. A contrast is a summary of treatment means that is of interest
in an experiment.

Control chart. A graphical display used to monitor a process. It
usually consists of a horizontal center line corresponding to the in-
control value of the parameter that is being monitored and lower and
upper control limits. The control limits are determined by statistical
criteria and are not arbitrary, nor are they related to specification
limits. If sample points fall within the control limits, the process is
said to be in-control, or free from assignable causes. Points beyond
the control limits indicate an out-of-control process; that is, assignable
causes are likely present. This signals the need to find and remove the
assignable causes.

Control limits. See Control chart.

Convolution. A method to derive the probability density function
of the sum of two independent random variables from an integral (or
sum) of probability density (or mass) functions.

Cook’s distance. In regression, Cook’s distance is a measure of the
influence of each individual observation on the estimates of the
regression model parameters. It expresses the distance that the vector
of model parameter estimates with the ith observation removed lies
from the vector of model parameter estimates based on all observa-
tions. Large values of Cook’s distance indicate that the observation is
influential.

Correction factor. A term used for the quantity that is
subtracted from to give the corrected sum of squares defined as

. The correction factor can also be written as .

Correlation. In the most general usage, a measure of the interde-
pendence among data. The concept may include more than two vari-
ables. The term is most commonly used in a narrow sense to express
the relationship between quantitative variables or ranks.

Correlation coefficient. A dimensionless measure of the linear
association between two variables, usually lying in the interval from
�1 to �1, with zero indicating the absence of correlation (but not
necessarily the independence of the two variables).

Correlation matrix. A square matrix that contains the correlations
among a set of random variables, say, X1, X2, p , Xk. The main diagonal
elements of the matrix are unity and the off-diagonal elements rij are
the correlations between Xi and Xj.
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Counting techniques. Formulas used to determine the number of
elements in sample spaces and events.

Covariance. A measure of association between two random variables
obtained as the expected value of the product of the two random vari-
ables around their means; that is, Cov(X, Y ) � E[(X � 
X)(Y � 
Y)].

Covariance matrix. A square matrix that contains the variances and
covariances among a set of random variables, say, X1, X2, p , Xk. The
main diagonal elements of the matrix are the variances of the random
variables and the off-diagonal elements are the covariances between 
Xi and Xj. Also called the variance-covariance matrix. When the
random variables are standardized to have unit variances, the covari-
ance matrix becomes the correlation matrix.

Critical region. In hypothesis testing, this is the portion of the
sample space of a test statistic that will lead to rejection of the null
hypothesis.

Critical value(s). The value of a statistic corresponding to a stated
significance level as determined from the sampling distribution. For
example, if P(Z � z0.05) � P(Z � 1.96) � 0.05, then z0.05 = 1.96 is
the critical value of z at the 0.05 level of significance.

Crossed factors. Another name for factors that are arranged in a
factorial experiment.

Cumulative distribution function. For a random variable X, the
function of X defined as P(X 	 x) that is used to specify the probability
distribution.

Cumulative normal distribution function. The cumulative distribu-
tion of the standard normal distribution, often denoted as �(x) and
tabulated in Appendix Table II.

Cumulative sum control chart (CUSUM). A control chart in which
the point plotted at time t is the sum of the measured deviations from
target for all statistics up to time t.

Curvilinear regression. An expression sometimes used for nonlinear
regression models or polynomial regression models.

Decision interval. A parameter in a tabular CUSUM algorithm that is
determined from a trade-off between false alarms and the detection of as-
signable causes.

Defect. Used in statistical quality control, a defect is a particular
type of nonconformance to specifications or requirements.
Sometimes defects are classified into types, such as appearance
defects and functional defects.

Defect concentration diagram. A quality tool that graphically
shows the location of defects on a part or in a process.

Defects-per-unit control chart. See U chart.

Defining relation. A subset of effects in a fractional factorial design
that define the aliases in the design.

Degrees of freedom. The number of independent comparisons that
can be made among the elements of a sample. The term is analogous
to the number of degrees of freedom for an object in a dynamic
system, which is the number of independent coordinates required to
determine the motion of the object.

Deming. W. Edwards Deming (1900–1993) was a leader in the use of
statistical quality control.

Deming’s 14 points. A management philosophy promoted by 
W. Edwards Deming that emphasizes the importance of change and
quality.
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Density function. Another name for a probability density function.

Dependent variable. The response variable in regression or a
designed experiment.

Design matrix. A matrix that provides the tests that are to be
conducted in an experiment.

Designed experiment. An experiment in which the tests are planned
in advance and the plans usually incorporate statistical models. See
Experiment.

Discrete distribution. A probability distribution for a discrete
random variable.

Discrete random variable. A random variable with a finite
(or countably infinite) range.

Discrete uniform random variable. A discrete random variable
with a finite range and constant probability mass function.

Dispersion. The amount of variability exhibited by data.

Distribution free method(s). Any method of inference (hypothesis
testing or confidence interval construction) that does not depend
on the form of the underlying distribution of the observations.
Sometimes called nonparametric method(s).

Distribution function. Another name for a cumulative distribution
function.

Efficiency. A concept in parameter estimation that uses the variances
of different estimators; essentially, an estimator is more efficient than
another estimator if it has smaller variance. When estimators are
biased, the concept requires modification.

Empirical model. A model to relate a response to one or more
regressors or factors that is developed from data obtained from the
system.

Enumerative study. A study in which a sample from a population is
used to make inference to the population. See Analytic study.

Erlang random variable. A continuous random variable that is the
sum of a fixed number of independent, exponential random variables.

�-error (or �-risk). In hypothesis testing, an error incurred by
failing to reject a null hypothesis when it is actually false (also called
a type II error).

�-error (or �-risk). In hypothesis testing, an error incurred by
rejecting a null hypothesis when it is actually true (also called a type I
error).

Error mean square. The error sum of squares divided by its number
of degrees of freedom.

Error of estimation. The difference between an estimated value and
the true value.

Error propagation. An analysis of how the variance of the random
variable that represents that output of a system depends on the
variances of the inputs. A formula exists when the output is a linear
function of the inputs and the formula is simplified if the inputs are
assumed to be independent.

Error sum of squares. In analysis of variance, this is the portion of
total variability that is due to the random component in the data. It
is usually based on replication of observations at certain treatment
combinations in the experiment. It is sometimes called the residual
sum of squares, although this is really a better term to use only
when the sum of squares is based on the remnants of a model-fitting
process and not on replication.
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Error variance. The variance of an error term or component in a model.

Estimate (or point estimate). The numerical value of a point
estimator.

Estimator (or point estimator). A procedure for producing an
estimate of a parameter of interest. An estimator is usually a function
of only sample data values, and when these data values are available,
it results in an estimate of the parameter of interest.

Event. A subset of a sample space.

Exhaustive. A property of a collection of events that indicates that
their union equals the sample space.

Expected value. The expected value of a random variable X is its
long-term average or mean value. In the continuous case, the expected
value of X is where f (x) is the density function of
the random variable X.

Experiment. A series of tests in which changes are made to the
system under study.

Exponential random variable. A continuous random variable that is
the time between events in a Poisson process.

Extra sum of squares method. A method used in regression analysis
to conduct a hypothesis test for the additional contribution of one or
more variables to a model.

Factorial experiment. A type of experimental design in which every
level of one factor is tested in combination with every level of another
factor. In general, in a factorial experiment, all possible combinations
of factor levels are tested.

False alarm. A signal from a control chart when no assignable causes
are present.

F distribution. The distribution of the random variable defined as the
ratio of two independent chi-square random variables, each divided by
its number of degrees of freedom.

Finite population correction factor. A term in the formula for the
variance of a hypergeometric random variable.

First-order model. A model that contains only first-order terms. For
example, the first-order response surface model in two variables is 
y � 
0 � 
1x1 � 
2x2 � �. A first-order model is also called a main
effects model.

Fisher’s least significant difference (LSD) method. A series of
pair-wise hypothesis tests of treatment means in an experiment to
determine which means differ.

Fixed factor (or fixed effect). In analysis of variance, a factor 
or effect is considered fixed if all the levels of interest for that fac-
tor are included in the experiment. Conclusions are then valid about
this set of levels only, although when the factor is quantitative, it is
customary to fit a model to the data for interpolating between these
levels.

Forward selection. A method of variable selection in regression,
where variables are inserted one at a time into the model until no other
variables that contribute significantly to the model can be found.

Fraction defective control chart. See P chart.

Fraction defective. In statistical quality control, that portion of a
number of units or the output of a process that is defective.

Fractional factorial experiment. A type of factorial experiment in
which not all possible treatment combinations are run. This is usually
done to reduce the size of an experiment with several factors.

E1X 2 � ��
��  

xf 1x2  dx

JWCL232_Glo_751-761.qxd  1/22/10  11:33 PM  Page 754



GLOSSARY 755

Frequency distribution. An arrangement of the frequencies of
observations in a sample or population according to the values that the
observations take on.

F-test. Any test of significance involving the F distribution. The most
common F-tests are (1) testing hypotheses about the variances or stan-
dard deviations of two independent normal distributions, (2) testing
hypotheses about treatment means or variance components in the
analysis of variance, and (3) testing significance of regression or tests
on subsets of parameters in a regression model.

Gamma function. A function used in the probability density function
of a gamma random variable that can be considered to extend factorials.

Gamma random variable. A random variable that generalizes an
Erlang random variable to noninteger values of the parameter r.

Gaussian distribution. Another name for the normal distribution,
based on the strong connection of Karl F. Gauss to the normal distri-
bution; often used in physics and electrical engineering applications.

Generating function. A function that is used to determine properties
of the probability distribution of a random variable. See Moment
generating function.

Generator. Effects in a fractional factorial experiment that are used
to construct the experimental tests used in the experiment. The gener-
ators also define the aliases.

Geometric mean. The geometric mean of a set of n positive data
values is the nth root of the product of the data values; that is,

.

Geometric random variable. A discrete random variable that is the
number of Bernoulli trials until a success occurs.

Goodness of fit. In general, the agreement of a set of observed values
and a set of theoretical values that depend on some hypothesis. The
term is often used in fitting a theoretical distribution to a set of
observations.

Harmonic mean. The harmonic mean of a set of data values
is the reciprocal of the arithmetic mean of the reciprocals of the data 

values; that is, .

Hat matrix. In multiple regression, the matrix .
This a projection matrix that maps the vector of observed response
values into a vector of fitted values by .

Hidden extrapolation. An extrapolation is a prediction in a regres-
sion analysis that is made at point (x1, x2, …, xk) that is remote from
the data used to generate the model. Hidden extrapolation occurs
when it is not obvious that the point is remote. This can occur when
multicollinearity is present in the data used to construct the model.

Histogram. A univariate data display that uses rectangles propor-
tional in area to class frequencies to visually exhibit features of data
such as location, variability, and shape.

Homogeneity test. In a two-way (r by c) contingency table, this tests
if the proportions in the c categories are the same for all r populations.

Hypergeometric random variable. A discrete random variable that is
the number of success obtained from a sample drawn without replace-
ment from a finite populations.

Hypothesis (as in statistical hypothesis). A statement about the pa-
rameters of a probability distribution or a model, or a statement about
the form of a probability distribution.
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Hypothesis testing. Any procedure used to test a statistical hypothesis.

Independence. A property of a probability model and two (or more)
events that allows the probability of the intersection to be calculated as
the product of the probabilities.

Independence test. In a two-way (r by c) contingency table, this tests
if the row and column categories are independent.

Independent random variables. Random variables for which P(X A,

Y B) � P(X A)P(Y B) for any sets A and B in the range of X and
Y, respectively. There are several equivalent descriptions of indepen-
dent random variables.

Independent variable. The predictor or regressor variables in a
regression model.

Inference. Conclusion from a statistical analysis. It usually refers to
the conclusion from a hypothesis test or an interval estimate.

Indicator variable(s). Variables that are assigned numerical val-
ues to identify the levels of a qualitative or categorical response.
For example, a response with two categorical levels (yes and no)
could be represented with an indicator variable taking on the val-
ues 0 and 1.

Individuals control chart. A Shewhart control chart in which each
plotted point is an individual measurement, rather than a summary
statistic. See Control chart, Shewhart control chart.

Influential observation. An observation in a regression analysis that
has a large effect on estimated parameters in the model. Influence is
measured by the change in parameters when the influential observation
is included and excluded in the analysis.

Interaction. In factorial experiments, two factors are said to interact
if the effect of one variable is different at different levels of the other
variables. In general, when variables operate independently of each
other, they do not exhibit interaction.

Intercept. The constant term in a regression model.

Interquartile range. The difference between the third and first quar-
tiles in a sample of data. The interquartile range is less sensitive to
extreme data values than the usual sample range.

Interval estimation. The estimation of a parameter by a range of
values between lower and upper limits, in contrast to point estimation,
where the parameter is estimated by a single numerical value. A
confidence interval is a typical interval estimation procedure.

Intrinsically linear model. In regression analysis, a nonlinear func-
tion that can be expressed as a linear function after a suitable transfor-
mation is called intrinsically linear.

Jacobian. A matrix of partial derivatives that is used to determine the
distribution of transformed random variables.

Joint probability density function. A function used to calculate
probabilities for two or more continuous random variables.

Joint probability distribution. The probability distribution for two
or more random variables in a random experiment. See Joint probability
mass function and Joint probability density function.

Joint probability mass function. A function used to calculate prob-
abilities for two or more discrete random variables.

Kurtosis. A measure of the degree to which a unimodal distribution is
peaked.
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Lack of memory property. A property of a Poisson process. The
probability of a count in an interval depends only on the length of the
interval (and not on the starting point of the interval). A similar property
holds for a series of Bernoulli trials. The probability of a success in a
specified number of trials depends only on the number of trials (and
not on the starting trial).

Least significance difference test (or Fisher’s LSD test). An ap-
plication of the t-test to compare pairs of means following rejection
of the null hypothesis in an analysis of variance. The error rate is
difficult to calculate exactly because the comparisons are not all 
independent.

Least squares (method of). A method of parameter estimation in
which the parameters of a system are estimated by minimizing the
sum of the squares of the differences between the observed values and
the fitted or predicted values from the system.

Least squares estimator. Any estimator obtained by the method of
least squares.

Level of significance. If Z is the test statistic for a hypothesis, and the
distribution of Z when the hypothesis is true are known, then we can
find the probabilities P(Z 	 zL) and P(Z � zU). Rejection of the hy-
pothesis is usually expressed in terms of the observed value of Z
falling outside the interval from zL to zU. The probabilities P(Z 	 zL)
and P(Z � zU) are usually chosen to have small values, such as 0.01,
0.025, 0.05, or 0.10, and are called levels of significance. The actual
levels chosen are somewhat arbitrary and are often expressed in 
percentages, such as a 5% level of significance.

Levels of a factor. The settings (or conditions) used for a factor in an
experiment.

Likelihood function. Suppose that the random variables X1, X2,
p , Xn have a joint distribution given by f(x1, x2, p , xn; �1, �2, p ,
�p) where the �s are unknown parameters. This joint distribution,
considered as a function of the �s for fixed x’s, is called the like-
lihood function.

Likelihood principle. This principle states that the information
about a model given by a set of data is completely contained in the
likelihood.

Likelihood ratio. Let x1, x2, p , xn be a random sample from the
population f (x; �). The likelihood function for this sample is

We wish to test the hypothesis H0: � �, where �L � w
n
i�1 f 1xi; �2.

Logistic regression. A regression model that is used to model a cate-
gorical response. For a binary (0, 1) response, the model assumes that
the logarithm of the ratio of probabilities (for zero and one) is linearly
related to the regressor variables.

Lognormal random variable. A continuous random variable with
probability distribution equal to that of exp(W ) for a normal random
variable W.

Main effect. An estimate of the effect of a factor (or variable) that
independently expresses the change in response due to a change in
that factor, regardless of other factors that may be present in the
system.

Marginal probability density function. The probability density
function of a continuous random variable obtained from the joint
probability distribution of two or more random variables.

Marginal probability distribution. The probability distribution of a
random variable obtained from the joint probability distribution of two or
more random variables.

Marginal probability mass function. The probability mass function
of a discrete random variable obtained from the joint probability
distribution of two or more random variables.

Maximum likelihood estimation. A method of parameter estimation
that maximizes the likelihood function of a sample.

Mean. The mean usually refers either to the expected value of a
random variable or to the arithmetic average of a set of data.

Mean square. In general, a mean square is determined by dividing
a sum of squares by the number of degrees of freedom associated
with the sum of squares.

Mean square(d) error. The expected squared deviation of an estimator
from the true value of the parameter it estimates. The mean square
error can be decomposed into the variance of the estimator
plus the square of the bias; that is,

.

Mechanistic model. A model developed from theoretical knowledge
or experience in contrast to a model developed from data. See
Empirical model.

Median. The median of a set of data is that value that divides the data
into two equal halves. When the number of observations is even, say
2n, it is customary to define the median as the average of the nth and 
(n � 1)st rank-ordered values. The median can also be defined for a
random variable. For example, in the case of a continuous random vari-
able X, the median M can be defined as

.

Method of steepest ascent. A technique that allows an experi-
menter to move efficiently toward a set of optimal operating condi-
tions by following the gradient direction. The method of steepest
ascent is usually employed in conjunction with fitting a first-order
response surface and deciding that the current region of operation is
inappropriate.

Mixed model. In an analysis of variance context, a mixed model
contains both random and fixed factors.

Mode. The mode of a sample is that observed value that occurs
most frequently. In a probability distribution f (x) with continuous
first derivative, the mode is a value of x for which df (x)�dx � 0 and
d2f (x)�dx2 � 0. There may be more than one mode of either a
sample or a distribution.

1�2
�M

��
f 1x2  dx � ��

M f 1x2  dx �

V1�̂2 � 3E1�̂2 � � 42
MSE1�̂2 � E1�̂ � �22 �

is a subset of the possible values � for �. Let the maximum value of L
with respect to � over the entire set of values that the parameter can
take on be denoted by , and let the maximum value of L with � re-
stricted to the set of values given by � be L(�̂). The null hypothesis is
tested by using the likelihood ratio , or a simple
function of it. Large values of the likelihood ratio are consistent
with the null hypothesis.

Likelihood ratio test. A test of a null hypothesis versus an alterna-
tive hypothesis using a test statistic derived from a likelihood ratio.

Linear function of random variables. A random variable that is
defined as a linear function of several random variables.

Linear model. A model in which the observations are expressed as
a linear function of the unknown parameters. For example, y � 
0 �


1x � � and y � 
0 � 
1x � 
2 x2 � � are linear models.

Location parameter. A parameter that defines a central value in a
sample or a probability distribution. The mean and the median are
location parameters.

� � L1�̂2�L1�̂2

L1�̂2
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Moment (or population moment). The expected value of a function
of a random variable such as E(X � c)r for constants c and r. When c �

0, it is said that the moment is about the origin. See Moment generating
function.

Moment estimator. A method of estimating parameters by equating
sample moments to population moments. Since the population
moments will be functions of the unknown parameters, this results in
equations that may be solved for estimates of the parameters.

Moment generating function. A function that is used to determine
properties (such as moments) of the probability distribution of a
random variable. It is the expected value of exp(tX). See Generating
function and Moment.

Moving range. The absolute value of the difference between succes-
sive observations in time-ordered data. Used to estimate chance variation
in an individual control chart.

Multicollinearity. A condition occurring in multiple regression
where some of the predictor or regressor variables are nearly linearly
dependent. This condition can lead to instability in the estimates of the
regression model parameters.

Multinomial distribution. The joint probability distribution of the
random variables that count the number of results in each of k classes
in a random experiment with a series of independent trials with
constant probability of each class on each trial. It generalizes a
binomial distribution.

Multiplication rule. For probability, a formula used to determine
the probability of the intersection of two (or more) events. For
counting techniques, a formula used  to determine the number of
ways to complete an operation from the number of ways to
complete successive steps.

Mutually exclusive events. A collection of events whose intersec-
tions are empty.

Natural tolerance limits. A set of symmetric limits that are three
times the process standard deviation from the process mean.

Negative binomial random variable. A discrete random variable
that is the number of trials until a specified number of successes occur
in Bernoulli trials.

Nonlinear regression model. A regression model that is nonlinear
in the parameters. It is sometimes applied to regression models that
are nonlinear in the regressors or predictors, but this is an incorrect
usage.

Nonparametric statistical method(s). See Distribution free
method(s).

Normal approximation. A method to approximate probabilities for
binomial and Poisson random variables.

Normal equations. The set of simultaneous linear equations arrived
at in parameter estimation using the method of least squares.

Normal probability plot. A specially constructed plot for a
variable x (usually on the abscissa) in which y (usually on the
ordinate) is scaled so that the graph of the normal cumulative
distribution is a straight line.

Normal random variable. A continuous random variable that is the
most important one in statistics because it results from the central
limit theorem. See Central limit theorem.

NP chart. An attribute control chart that plots the total of defective
units in a subgroup. Similar to a fraction-defective chart or P chart.
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Nuisance factor. A factor that probably influences the response
variable, but which is of no interest in the current study. When the
levels of the nuisance factor can be controlled, blocking is the design
technique that is customarily used to remove its effect.

Null distribution. In a hypothesis test, the distribution of the test
statistic when the null hypothesized is assumed to be true.

Null hypothesis. This term generally relates to a particular hypothesis
that is under test, as distinct from the alternative hypothesis (which
defines other conditions that are feasible but not being tested). The
null hypothesis determines the probability of type I error for the test
procedure.

Observational study. A system is observed and data might be
collected, but changes are not made to the system. See Experiment.

Odds ratio. The odds equals the ratio of two probabilities. In logistic
regression, the logarithm of the odds is modeled as a linear function of
the regressors. Given values for the regressors at a point, the odds can
be calculated. The odds ratio is the odds at one point divided by the
odds at another.

One-way model. In an analysis of variance context, this involves a
single variable or factor with a different levels.

Operating characteristic curves (OC curves). A plot of the proba-
bility of type II error versus some measure of the extent to which the
null hypothesis is false. Typically, one OC curve is used to represent
each sample size of interest.

Optimization experiment. A experiment conducted to improve (or
optimize) a system or process. It is assumed that the important factors
are known.

Orthogonal. There are several related meanings, including the math-
ematical sense of perpendicular, two variables being said to be
orthogonal if they are statistically independent, or in experimental
design where a design is orthogonal if it admits statistically independent
estimates of effects.

Orthogonal design. See Orthogonal.

Outcome. An element of a sample space.

Outlier(s). One or more observations in a sample that are so far from
the main body of data that they give rise to the question that they may be
from another population.

Overcontrol. Unnecessary adjustments made to processes that
increase the deviations from target.

Overfitting. Adding more parameters to a model than is necessary.

P chart. An attribute control chart that plots the proportion of defec-
tive units in a subgroup. Also called a fraction-defective control chart.
Similar to an NP chart.

Parameter estimation. The process of estimating the parameters
of a population or probability distribution. Parameter estimation,
along with hypothesis testing, is one of the two major techniques of
statistical inference.

Parameter. An unknown quantity that may vary over a set of values.
Parameters occur in probability distributions and in statistical models,
such as regression models.

Pareto chart. A bar chart used to rank the causes of a problem.

PCR. A process capability ratio with numerator equal to the difference
between the product specification limits and denominator equal to six
times the process standard deviation. Said to measure the potential
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capability of the process because the process mean is not considered.
See Process capability, Process capability ratio, Process capability
study, and PCRk. Sometimes denoted as Cp in other references.

PCRk. A process capability ratio with numerator equal to the differ-
ence between the product target and the nearest specification limit and
denominator equal to three times the process standard deviation. Said
to measure the actual capability of the process because the process
mean is considered. See process capability, process capability ratio,
process capability study, and PCR. Sometimes denoted as Cpk in other
references.

Percentage point. A particular value of a random variable deter-
mined from a probability (expressed as a percentage). For example,
the upper 5 percentage point of the standard normal random variable
is Z0.05 � 1.645.

Percentile. The set of values that divide the sample into 100 equal parts.

Permutation. An ordered sequence of the elements in a set used to
determine the number of outcomes in events and sample spaces.

Point estimator. See Estimator.

Poisson process. A random experiment with events that occur in an
interval and satisfy the following assumptions. The interval can be
partitioned into subintervals such that the probability of more than one
event in a subinterval is zero, the probability of an event in a subinterval
is proportional to the length of the subinterval, and the event in each
subinterval is independent of other subintervals.

Poisson random variable. A discrete random variable that is the
number of events that occur in a Poisson process.

Pooled t-test. A hypothesis to compare the means of two populations
with the variances assumed to be equal.

Pooling. When several sets of data can be thought of as having been
generated from the same model, it is possible to combine them, usually
for purposes of estimating one or more parameters. Combining the
samples for this purpose is usually called pooling and it is commonly
used to estimate a variance.

Population standard deviation. See Standard deviation.

Population variance. See Variance. 

Population. Any finite or infinite collection of individual units or
objects.

Posterior distribution. The probability distribution for a parameter
in a Bayesian analysis calculated from the prior distribution and the
conditional distribution of the data given the parameter.

Power. The power of a statistical test is the probability that the test
rejects the null hypothesis when the null hypothesis is indeed false.
Thus, the power is equal to one minus the probability of type II error.

Prediction. The process of determining the value of one or more
statistical quantities at some future point in time. In a regression
model, predicting the response y for some specified set of regressors
or predictor variables also leads to a predicted value, although there
may be no temporal element to the problem.

Prediction interval. The interval between a set of upper and lower
limits associated with a predicted value designed to show on a proba-
bility basis the range of error associated with the prediction.

Predictor variable(s). The independent or regressor variable(s) in a
regression model.

PRESS statistic. In regression analysis, the predicted residual sum
of squares. Delete each point and estimate the parameters of the model
from the data that remain. Estimate the deleted point from this model.
Restore the point and then delete the next point. Each point is
estimated once and the sum of squares of these errors is calculated.

Prior distribution. The initial probability distribution assumed for a
parameter in a Bayesian analysis.

Probability. A numerical measure between 0 and 1 assigned to
events in a sample space. Higher numbers indicate the event is more
likely to occur. See Axioms of probability.

Probability density function. A function used to calculate probabil-
ities and to specify the probability distribution of a continuous random
variable.

Probability distribution. For a sample space, a description of the set
of possible outcomes along with a method to determine probabilities.
For a random variable, a probability distribution is a description of the
range along with a method to determine probabilities.

Probability mass function. A function that provides probabilities for
the values in the range of a discrete random variable.

Probability plot. A scatter plot used to judge if data can reasonably
be assumed to follow a particular probability distribution. A normal
probability plot is often used to evaluate the normality assumption of
data or residuals.

Process capability. The capability of a process to produce product
within specification limits. See Process capability ratio, Process
capability study, PCR, and PCRk. 

Process capability ratio. A ratio that relates the width of the product
specification limits to measures of process performance. Used to quan-
tify the capability of the process to produce product within specifica-
tions. See Process capability, Process capability study, PCR, and PCRk.

Process capability study. A study that collects data to estimate
process capability. See Process capability, Process capability ratio,
PCR, and PCRk.

P-Value. The exact significance level of a statistical test; that is, the
probability of obtaining a value of the test statistic that is at least as
extreme as that observed when the null hypothesis is true.

Qualitative (data). Data derived from nonnumeric attributes, such as
sex, ethnic origin or nationality, or other classification variables.

Quality control. Systems and procedures used by an organization to
assure that the outputs from processes satisfy customers.

Quantiles. The set of n � 1 values of a variable that partition it into
a number n of equal proportions. For example, n � 1 � 3 values
partition data into four quantiles, with the central value usually called
the median and the lower and upper values usually called the lower
and upper quartiles, respectively.

Quantitative (data). Data in the form of numerical measurements or
counts.

Quartiles. The three values of a variable that partition it into four
equal parts. The central value is usually called the median and the
lower and upper values are usually called the lower and upper quar-
tiles, respectively. See Quantiles.

R2. A quantity used in regression models to measure the proportion of
total variability in the response accounted for by the model.
Computationally, R2 � SSRegression�SSTotal, and large values of R2 (near
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unity) are considered good. However, it is possible to have large
values of R2 and find that the model is unsatisfactory. R2 is also called
the coefficient of determination (or the coefficient of multiple deter-
mination in multiple regression).

R chart. A control chart that plots the range of the measurements in
a subgroup that is used to monitor the variance of the process.

Random. Nondeterministic, occurring purely by chance, or independent
of the occurrence of other events.

Random effects model. In an analysis of variance context, this refers
to a model that involves only random factors.

Random error. An error (usually a term in a statistical model) that
behaves as if it were drawn at random from a particular probability
distribution.

Random experiment. An experiment that can result in different
outcomes, even though it is repeated in the same manner each time.

Random factor. In analysis of variance, a factor whose levels are
chosen at random from some population of factor levels.

Random order. A sequence or order for a set of objects that is carried
out in such a way that every possible ordering is equally likely. In
experimental design, the runs of the experiment are typically arranged
and carried out in random order.

Random sample. A sample is said to be random if it is selected in
such a way so that every possible sample has the same probability of
being selected.

Random variable. A function that assigns a real number to each
outcome in the sample space of a random experiment.

Randomization. Randomly assign treatments to experimental units
or conditions in an experiment. This is done to reduce the opportunity
for a treatment to be favored or disfavored (biased) by test conditions.

Randomized complete block design. A type of experimental design
in which treatment or factor levels are assigned to blocks in a random
manner.

Range. The largest minus the smallest of a set of data values. The
range is a simple measure of variability and is widely used in quality
control.

Range (control) chart. A control chart used to monitor the variability
(dispersion) in a process. See Control chart.

Rank. In the context of data, the rank of a single observation is its
ordinal number when all data values are ordered according to some
criterion, such as their magnitude.

Rational subgroup. A sample of data selected in a manner to include
chance sources of variation and to exclude assignable sources of variation
to the extent possible.

Reference distribution. The distribution of a test statistic when the
null hypothesis is true. Sometimes a reference distribution is called
the null distribution of the test statistic.

Reference value. A parameter set in a tabular CUSUM algorithm
that is determined from the magnitude of the process shift that should
be detected.

Regression. The statistical methods used to investigate the relation-
ship between a dependent or response variable y and one or more
independent variables x. The independent variables are usually called
regressor variables or predictor variables.

Regression coefficient(s). The parameter(s) in a regression model.
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Regression diagnostics. Techniques for examining a fitted regression
model to investigate the adequacy of the fit and to determine if any of the
underlying assumptions have been violated.

Regression line (or curve). A graphical display of a regression
model, usually with the response y on the ordinate and the regressor x
on the abscissa.

Regression sum of squares. The portion of the total sum of squares
attributable to the model that has been fit to the data.

Regressor variable. The independent or predictor variable in a
regression model.

Rejection region. In hypothesis testing, this is the region in the sample
space of the test statistic that leads to rejection of the null hypothesis
when the test statistic falls in this region.

Relative frequency. The relative frequency of an event is the pro-
portion of times the event occurred in a series of trials of a random
experiment.

Reliability. The probability that a specified mission will be
completed. It usually refers to the probability that a lifetime of a
continuous random variable exceeds a specified time limit.

Replicates. One of the independent repetitions of one or more
treatment combinations in an experiment.

Replication. The independent execution of an experiment more than
once.

Reproductive property of the normal distribution. A linear
combination of independent, normal random variables is a normal
random variable.

Residual. Generally this is the difference between the observed and
the predicted value of some variable. For example, in regression a
residual is the difference between the observed value of the response
and the corresponding predicted value obtained from the regression
model.

Residual analysis (and plots). Any technique that uses the residuals,
usually to investigate the adequacy of the model that was used to
generate the residuals.

Residual sum of squares. See Error sum of squares.

Resolution. A measure of severity of aliasing in a fractional factorial
design. We commonly consider resolution III, IV, and V designs.

Response (variable). The dependent variable in a regression model or
the observed output variable in a designed experiment.

Response surface. When a response y depends on a function of k
quantitative variables x1, x2, p , xk, the values of the response may be
viewed as a surface in k � 1 dimensions. This surface is called a
response surface. Response surface methodology is a subset of exper-
imental design concerned with approximating this surface with a
model and using the resulting model to optimize the system or
process.

Response surface designs. Experimental designs that have been
developed to work well in fitting response surfaces. These are usually
designs for fitting a first- or second-order model. The central composite
design is a widely used second-order response surface design.

Ridge regression. A method for fitting a regression model that is
intended to overcome the problems associated with using standard (or
ordinary) least squares when there is a problem with multicollinearity in
the data.
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Rotatable design. In a rotatable design, the variance of the predicted
response is the same at all points that are the same distance from the
center of the design.

Run rules. A set of rules applied to the points plotted on a Shewhart
control chart that are used to make the chart more sensitized to
assignable causes. See Control chart, Shewhart control chart.

Runs test. A nonparametric test to compare two distributions or
check for independence of measurements.

S chart. A control chart that plots the standard deviation of the mea-
surements in a subgroup that is used to monitor the variance of the
process.

Sample. Any subset of the elements of a population.

Sample mean. The arithmetic average or mean of the observations in
a sample. If the observations are x1, x2, p , xn, then the sample mean is

. The sample mean is usually denoted by .

Sample moment. The quantity is called the kth sample
moment.

Sample range. See Range.

Sample size. The number of observations in a sample.

Sample space. The set of all possible outcomes of a random
experiment.

Sample standard deviation. The positive square root of the sample
variance. The sample standard deviation is the most widely used
measure of variability of sample data.

Sample variance. A measure of variability of sample data, defined as
, where is the sample mean.

Sampling distribution. The probability distribution of a statistic. For
example, the sampling distribution of the sample mean is the
normal distribution.

Scatter diagram. A diagram displaying observations on two vari-
ables, x and y. Each observation is represented by a point showing its
x-y coordinates. The scatter diagram can be very effective in revealing
the joint variability of x and y or the nature of the relationship between
them.

Screening experiment. An experiment designed and conducted for
the purpose of screening out or isolating a promising set of factors for
future experimentation. Many screening experiments are fractional
factorials, such as two-level fractional factorial designs.

Second-order model. A model that contains second-order terms. For
example, the second-order response surface model in two variables is
y � 
0 � 
1x1 � 
2x2 � 
12x1x2 � 
11x

2
1 � 
22x

2
2 � �. The second

order terms in this model are 
12x1x2, 
11x
2
1, and 
22x

2
2.

Shewhart control chart. A specific type of control chart developed by
Walter A. Shewhart. Typically, each plotted point is a summary statistic
calculated from the data in a rational subgroup. See Control chart.

Sign test. A statistical test based on the signs of certain functions of
the observations and not their magnitudes.

Signed-rank test. A statistical test based on the differences within a
set of paired observations. Each difference has a sign and a rank, and
the test uses the sum of the differences with regard to sign.

Significance. In hypothesis testing, an effect is said to be significant
if the value of the test statistic lies in the critical region.

Significance level. See Level of significance.

X
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Six-sigma process. Originally used to describe a process with the
mean at least six standard deviations from the nearest specification
limits. It has now been used to describe any process with a defect rate
of 3.4 parts per million.

Skewness. A term for asymmetry usually employed with respect to a
histogram of data or a probability distribution.

Specification limits. Numbers that define the region of measurement
for acceptable product. Usually there is an upper and lower limit, but
one-sided limits can also be used.

Standard deviation. The positive square root of the variance. The
standard deviation is the most widely used measure of variability.

Standard error. The standard deviation of the estimator of a param-
eter. The standard error is also the standard deviation of the sampling
distribution of the estimator of a parameter.

Standard normal random variable. A normal random variable with
mean zero and variance one that has its cumulative distribution function
tabulated in Appendix Table II.

Standardize. The transformation of a normal random variable that
subtracts its mean and divides by its standard deviation to generate a
standard normal random variable.

Standardized residual. In regression, the standardized residual is
computed by dividing the ordinary residual by the square root of the
residual mean square. This produces scaled residuals that have,
approximately, a unit variance.

Statistic. A summary value calculated from a sample of observations.
Usually, a statistic is an estimator of some population parameter.

Statistical inference. See Inference.

Statistical Process Control (SPC). A set of problem-solving tools
based on data that are used to improve a process.

Statistical quality control. Statistical and engineering methods used
to measure, monitor, control, and improve quality.

Statistics. The science of collecting, analyzing, interpreting, and
drawing conclusions from data.

Steepest ascent (or descent). A strategy for a series of tests to opti-
mize a response used along with response surface models.

Stem-and-leaf diagram. A method of displaying data in which the
stem corresponds to a range of data values and the leaf represents
the next digit. It is an alternative to the histogram but displays the
individual observations rather than sorting them into bins.

Stepwise regression. A method of selecting variables for inclusion in
a regression model. It operates by introducing the candidate variables
one at a time (as in forward selection) and then attempting to remove
variables following each forward step.

Studentized range. The range of a sample divided by the sample
standard deviation.

Studentized residual. In regression, the studentized residual is
calculated by dividing the ordinary residual by its exact standard devi-
ation, producing a set of scaled residuals that have, exactly, unit
standard deviation.

Sufficient statistic. An estimator is said to be a sufficient statistic for
an unknown parameter if the distribution of the sample given the
statistic does not depend on the unknown parameter. This means that
the distribution of the estimator contains all of the useful information
about the unknown parameter.
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Tabular CUSUM. A numerical algorithm used to detect assignable
causes on a cumulative sum control chart. See V mask.

Tampering. Another name for overcontrol.

t Distribution. The distribution of the random variable defined as the
ratio of two independent random variables. The numerator is a
standard normal random variable and the denominator is the square
root of a chi-square random variable divided by its number of degrees
of freedom.

Test statistic. A function of a sample of observations that provides the
basis for testing a statistical hypothesis.

Time series. A set of ordered observations taken at points in time.

Tolerance interval. An interval that contains a specified proportion
of a population with a stated level of confidence.

Tolerance limits. A set of limits between which some stated propor-
tion of the values of a population must fall with a specified level of
confidence.

Total probability rule. Given a collection of mutually exclusive
events whose union is the sample space, the probability of an event
can be written as the sum of the probabilities of the intersections of the
event with the members of this collection.

Treatment. In experimental design, a treatment is a specific level of
a factor of interest. Thus, if the factor is temperature, the treatments
are the specific temperature levels used in the experiment.

Treatment effect. The mean change to the response due to the
presence of the treatment.

Treatment sum of squares. In analysis of variance, this is the sum of
squares that accounts for the variability in the response variable due to
the different treatments that have been applied.

t-test. Any test of significance based on the t distribution. The most
common t-tests are (1) testing hypotheses about the mean of a normal
distribution with unknown variance, (2) testing hypotheses about the
means of two normal distributions, and (3) testing hypotheses about
individual regression coefficients.

Two-level factorial experiment. A full or fractional factorial experi-
ment with all factors tested at only two levels (settings) each. See 2k

factorial experiment.

Type I error. In hypothesis testing, an error incurred by rejecting a
null hypothesis when it is actually true (also called an �-error).

Type II error. In hypothesis testing, an error incurred by failing to
reject a null hypothesis when it is actually false (also called a �-error).

U chart. An attribute control chart that plots the average number of
defects per unit in a subgroup. Also called a defects-per-unit control
chart. Similar to a C chart.

Unbiased estimator. An estimator that has its expected value equal
to the parameter that is being estimated is said to be unbiased.

Uniform random variable. Refers to either a discrete or continuous
uniform random variable.

Uniqueness property of moment generating function. Refers to the
fact that random variables with the same moment generating function
have the same distribution.
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Universe. Another name for population.

V mask. A geometrical figure used to detect assignable causes on a
cumulative sum control chart. With appropriate values for parameters,
identical conclusions can be made from a V mask and a tabular
CUSUM.

Variable selection. The problem of selecting a subset of variables for
a model from a candidate list that contains all or most of the useful
information about the response in the data.

Variables control chart. Any control chart for a continuous random
variable. See Attribute control chart.

Variance. A measure of variability defined as the expected value of
the square of the random variable around its mean.

Variance component. In analysis of variance models involving
random effects, one of the objectives is to determine how much
variability can be associated with each of the potential sources of
variability defined by the experimenters. It is customary to define a
variance associated with each of these sources. These variances in
some sense sum to the total variance of the response, and are usually
called variance components.

Variance inflation factors. Quantities used in multiple regression to
assess the extent of multicollinearity (or near linear dependence) in
the regressors. The variance inflation factor for the ith regressor VIFi

can be defined as VIFi = [1�(1 � R2
i)], where R2

i is the coefficient of
determination obtained when xi is regressed on the other regressor
variables. Thus, when xi is nearly linearly dependent on a subset of the
other regressors, R2

i will be close to unity and the value of the corre-
sponding variance inflation factor will be large. Values of the variance
inflation factors that exceed 10 are usually taken as a signal that
multicollinearity is present.

Warning limits. Horizontal lines added to a control chart (in addition
to the control limits) that are used to make the chart more sensitive to
assignable causes.

Weibull random variable. A continuous random variable that is
often used to model the time until failure of a physical system. The
parameters of the distribution are flexible enough that the probability
density function can assume many different shapes.

Western Electric rules. A specific set of run rules that were devel-
oped at Western Electric Corporation. See Run rules.

Wilcoxon rank-sum test. A nonparametric test for the equality of
means in two populations. This is sometimes called the Mann-
Whitney test.

Wilcoxon signed-rank test. A distribution-free test of the equality of
the location parameters of two otherwise identical distributions. It is
an alternative to the two-sample t-test for nonnormal populations.

With replacement. A method to select samples in which items are
replaced between successive selections.

Without replacement. A method to select samples in which items
are not replaced between successive selections.

chart. A control chart that plots the average of the measurements
in a subgroup that is used to monitor the process mean.
X
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Confidence interval on the difference in
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proportions, 392
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Continuous sample space, 20
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762

JWCL232_ndx_762-765.qxd  1/22/10  9:53 PM  Page 762



Control chart for defects per unit, 670
Control chart model, 642
Control chart performance, 673
Control charts for individual 

measurements, 658
Cook’s distance, 487
Correlation, 170, 173
Correlation and independent random 

variables, 174
Correlation coefficient, 432
Counting techniques, 24, 25, 26
Covariance, 170, 171
Covariance matrix, 461
Cp statistic in regression, 495
Critical region, 286
Critical values, 286
Cumulative distribution function, 71, 72,

111, 112
Cumulative frequency plot, 206
Cumulative sum control chart, 676

D
Data collection, 5
Data versus information, 6
Decision interval, 679
Defect concentration diagram, 689
Defining contrast, 596
Defining relation for a fractional factorial 

design, 602, 609
Deming’s 14 points, 690
Descriptive statistics, 191
Design generator, 602
Design matrix, 577
Design of a control chart, 644
Design resolution, 608
Designed experiment, 5, 6, 296, 405, 513,

514, 552
Diagonal elements of the hat matrix, 486
Digidot plot, 211
Discrete random variables, 58, 66, 67
Discrete sample space, 20, 31
Discrete uniform distribution, 77, 704
Distribution of a subset of random 

variables, 165
Dot diagram, 4

E
Effect of sample size on type II error 

probability, 290
Empirical model, 12, 13, 402
Engineering method, 2
Enumerative study, 12
Equally likely outcomes, 32
Erlang distribution, 138, 704
Estimation of parameters, 195
Events, 18, 22, 23
Expected value, 74, 114
Expected value of a function of a continuous

random variable, 114

Expected value of a function of a discreet
random variable, 76

Expected value of a function of two random
variables, 171

Exponential distribution, 132, 704
Exponential random variable, 132
Exponentially weighted moving average

(EWMA) control chart, 682
Extra sum of squares method, 474
Extrapolation in regression, 482

F
Factor levels, 7
Factorial experiment, 7, 552, 555, 557, 558,

568, 571
Factorial experiments and interaction, 557
F-distribution, 382
F-distribution percentage points, 712
Finite population correction factor, 95
First quartile, 201
First-order response surface model, 619
Fisher least significance difference method 

of comparing means following 
ANOVA, 524

Fixed-effects model, 517, 559
Fixed significance level testing, 294, 

312, 324
Formulating one-sided hypotheses, 293
Forward variable selection in regression, 500
Fraction defective control chart, 668
Fractional factorial experiment, 8, 9, 602
Frequency distributions, 203
Fundamental theorem of calculus, 112

G
Gamma distribution, 138, 139, 704
Gamma function, 139
Gamma random variable, 139
Gaussian distribution, 118, also see normal

distribution
General factorial experiments, 568
General functions of random variables, 

185, 186
General regression significance test, 474
Generalized interaction, 599
Geometric distribution, 86, 704
Geometric random variable, 86
Goodness-of-fit tests, 330
Graphical comparison of means following

ANOVA, 525

H
Hat matrix in regression, 486
Histogram, 109, 203, 204
Hypergeometric distribution, 92, 93, 704
Hypergeometric random variable, 93
Hypothesis, 284
Hypothesis testing, 7, 223, 284, 286, 295,

296, 299, 310, 319, 330, 333, 337, 342,
358, 362, 373, 384

Hypothesis testing on a population 
proportion, 323

Hypothesis testing on the difference in means
of two normal distributions, variances
unknown, 361, 362, 365

Hypothesis testing on the difference in two
proportions, 389

Hypothesis testing on the mean of a normal
distribution, variance known, 299

Hypothesis testing on the mean of a normal
distribution, variance unknown, 310

Hypothesis testing on the ratio of the vari-
ances of two normal distributions, 384

Hypothesis testing on the variance and 
standard deviation of a normal 
distribution, 319

I
Independence, 50, 161
Independent events, 51
Independent random variables, 161, 162, 166
Indicator variables in regression, 492
Influential observations in regression, 487
Interaction, 8, 452, 555
Interpreting a confidence interval, 255
Interquartile range, 201
Intersection of events, 23

J
Jacobian, 186
Joint probability density function, 155
Joint probability distributions, 152, 153, 155,

163, 176
Joint probability mass function, 154

L
Lack of memory property of the exponential

random variable, 134, 135
Lack of memory property of the geometric

random variable, 88
Large sample confidence interval for a 

parameter, 269
Large sample hypothesis testing on the mean

of a normal distribution, 307
Large sample test for difference in two

means, 355
Large-sample confidence interval for the

mean, 258
Least squares estimators, 407, 408, 454, 457
Least squares normal equations for multiple

linear regression, 454, 456
Least squares normal equations for simple

linear regression, 407
Likelihood function, 239
Linear combinations of random 

variables, 181
Logistic regression, 440
Logit response function, 441
Lognormal distribution, 144, 704

INDEX 763
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Lognormal random variable, 144
Lower confidence limit, 254
Lower control limit, 11, 645

M
Main effect, 555, 572, 578, 579
Marginal distributions of bivariate normal

random variables, 178
Marginal probability distribution, 156, 

157, 164
Maximum likelihood estimator, 239, 240
Mean and variance of a continuous random

variable, 114
Mean and variance of a discrete random 

variable, 74
Mean and variance of an average, 183
Mean of a linear combination of random

variables, 182
Mean squared error of an estimator, 234
Mean squares, 519
Mechanistic model, 12, 13
Median, 199, 337
Method of least squares, 406, 452
Method of maximum likelihood, 239
Method of moments, 237
Method of steepest ascent, 620
Minimum variance unbiased estimator, 233
Model adequacy checking, 426, 484, 526,

527, 544, 564
Moment estimators, 238
Moments, 237
Moving range control chart, 658
Multicollinearity in regression, 502
Multinomial probability distribution, 176
Multiple comparisons in ANOVA, 524, 542
Multiple linear regression model, 450
Multiplication rule for counting 

techniques, 25
Multiplication rule for probability, 47
Mutually exclusive events, 23, 39

N
Negative binomial distribution, 86, 88, 89
Noncentral t distribution, 315
Nonparametric statistical tests, 337, 342,

344, 373
Normal approximation for the sign test, 340
Normal approximation to Poisson 

distribution, 127, 130
Normal approximation to the binomial 

distribution, 127, 128, 270
Normal distribution, 118, 704
Normal probability plot, 215, 216
Normal probability plot of effects, 606, 611
Normal probability plotting of effects, 585
Normal probability plotting of residuals, 426,

485, 526, 544, 565, 576
Normal random variable, 119
Nuisance variables in an experiment, 538
Null hypothesis, 285

O
Observational study, 5, 6, 352
One observation per cell in a factorial, 566
One-half fraction, 9
One-sided and two-sided hypotheses, 292,

300, 311, 320
One-sided confidence bounds, 257, 264, 

268, 272
Operating characteristic curves, 305, 315,

322, 527, 717, 718, 719, 720.721, 722,
723, 724, 725

Optimal estimator, 235
Optimization experiment, 553, 619
Ordered stem-and-leaf diagram, 199
Orthogonal design, 581
Outlier, 208
Outliers, 486
Overcontrol, 10
Overfitting, 472

P
Paired t-test, 376
Parameter estimation, 223
Pareto chart, 207, 688
Partial F-test, 475
Partial regression coefficients, 451
Patterns on control charts, 647
P-chart, 668
Percentile, 201
Permutations of similar objects, 26
Permutations, 25
Point estimate, 224
Point estimation, 224, 231, 237
Point estimator, 225
Poisson distribution, 97, 98, 127, 

130, 704
Poisson process, 98
Poisson random variable, 98
Polynomial regression models, 451, 490
Pooled estimate of variance, 362
Pooled t-test, 362
Population standard deviation, 195
Population variance, 195
Population, 4
Posterior distribution, 244
Potential capability of a process, 664
Power of a statistical test, 292
Prediction interval for a future observation,

274, 275
Prediction interval in regression, 423, 481
PRESS statistic in regression, 496
Principal block, 596
Principal fraction, 604
Prior distribution, 244
Probability, 15, 17, 31, 33
Probability as degree of belief, 32
Probability density function, 108, 109
Probability distribution, 68, 107
Probability mass function, 69
Probability model, 16

Probability plots, 214, 330
Process capability determination, 662
Process capability ratios, 663, 665
Projection of 2k designs, 584
Projection of a fractional factorial 

design, 607
Properties of the maximum likelihood 

estimator, 241
P-value, 294, 300, 311, 321, 324, 386

Q
Quality control and improvement, 638
Quartiles, 200

R
R chart, 651
R2, 428, 472
Raleigh distribution, 142
Random effects model in ANOVA, 534
Random experiments, 18, 19
Random factors in an experiment, 533
Random sample, 43, 44, 226
Random variable, 4, 57, 58
Randomization, 6, 526, 558
Randomized complete block design 

(RCBD), 538
Randomized complete block design 

ANOVA, 540
Rational subgroups, 646
Reference distribution, 301, 354
Reference value, 679
Regression coefficients in a 2k factorial, 575
Regression model, 14, 401, 402, 404, 449,

450, 574, 583
Regressor variable, 405, 451
Relative efficiency of an estimator, 235
Relative frequency distribution, 204
Relative frequency, 32
Replication, 515
Reproductive property of the normal 

distribution, 183
Residual, 407, 457, 526, 544, 564, 574
Residual plots, 426, 484, 485, 526, 544, 564,

576, 577, 583
Resolution of designs, 608
Resolution III designs, 608
Resolution IV designs, 608
Response surface, 619
Response variable, 405
Retrospective study, 5
Rotatable second-order design, 625
Runs rules for control charts, 649

S
Sample, 4
Sample correlation coefficient, 432
Sample mean, 192
Sample range, 195
Sample sizes for confidence intervals, 256,

272, 359

764 INDEX
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Sample sizes in ANOVA, 527
Sample sizes in hypothesis tests, 303, 304,

305. 314, 322, 326, 356, 357, 367, 
387, 391

Sample space, 18, 19, 20
Sample standard deviation, 193
Sample variance, 193
Sampling distribution, 224, 225, 226
Sampling with replacement, 27
Sampling without replacement, 27
Saturated fractional factorial design, 615
Scatter diagram, 403
Scatter, see variability
Science of data, see statistics
Scientific method, 2
Screening experiment, 553
Second-order response surface model, 

619, 622
Sensitivity of a statistical test, 292
Shewhart control charts, 642
Sign test, 337, 340, 341, 344
Sign test critical values, 726
Simple linear regression model, 404, 405
Single replicate of a 2k design, 585
Single-sample hypothesis testing, 7, 310,

319, 323
Six-sigma process, 666
Sources of variability, 3
Sparsity of effects principle, 585
Standard deviation, 74, 114
Standard error of a point estimator, 233
Standard error of a regression coefficient in a

2k factorial, 575
Standard error of regression coefficients,

415, 461
Standard normal distribution, 120, 144, 301
Standard normal distribution cumulative

probability table, 708
Standard normal random variable, 120, 144
Standardized residuals, 484
Standardizing a normal random variable, 122
Statistic, 224, 226
Statistical inference, 4, 223, 225
Statistical process control (SPC), 12
Statistical process control, 640
Statistical quality control, 638, 639
Statistical thinking, 4

Statistical versus practical significance, 
296, 297

Statistics, 3
Stem-and-leaf diagrams, 197
Stepwise regression, 499, 500
Strong versus weak conclusions in 

hypothesis testing, 291, 292
Studentized residuals, 430, 486
Summary table and guidelines for 

one-sample inference procedures, 274
Summary table and guidelines for 

two-sample inference procedures, 395
Sums of squares in a 2k factorial, 573

T
Tabular cumulative sum control chart, 679
t-distribution, 262, 310, 315
t-distribution percentage points, 711
Test for significance of regression, 

416, 417, 470
Test for zero correlation, 433
Test of homogeneity in a contingency 

table, 335
Test of independence in a contingency 

table, 333
Test statistic, 100, 310, 319, 324
Tests on individual regression coefficients in

multiple regression, 472
Third quartile, 201
Three-sigma control limits, 673
Tier chart, 662
Ties in the sign test, 340
Time series data, 9, 210
Time series plot, 9, 210
Time weighted control charts, 676
Tolerance chart, 662
Tolerance interval for a normal 

distribution, 276
Total probability, 47, 48
Transformation of variables, 437
Treatments, 351, 515
Tree diagram, 21
t-test statistic for a regression coefficient in a

2k factorial, 575
t-tests in multiple regression, 473
t-tests in simple linear regression, 415
t-tests, 310, 362, 365, 376, 415, 473, 575

Two-factor factorial experiment, 558
Two-factor interaction, 556
Two-sample hypothesis testing, 7
Type I error, 287, 288
Type II error, 287, 289, 290, 292, 

303, 367, 459, 460

U
U-chart, 670
Unbalanced single-factor design 

ANOVA, 523
Unbiased estimator, 231, 409, 414
Union of events, 23
Upper confidence limit, 254
Upper control limit, 11, 645

V
Variability, 3
Variable selection in regression, 

472, 494, 499
Variables control charts, 643
Variance component estimation, 535
Variance inflation factors, 502
Variance of a linear combination of random

variables, 182
Variance of a point estimator, 232
Venn diagram, 23
Verifying assumptions, 214

W
Warning limits on control charts, 649
Weibull distribution, 141, 704
Weibull random variable, 141
Western Electric rules on control charts, 648
Wilcoxon rank-sum test, 373
Wilcoxon rank-sum test critical values, 727
Wilcoxon signed-rank test, 342, 344
Wilcoxon signed-rank test critical 

values, 736
Word in a defining relation, 609

X
and R charts, 649
and S chart, 651, 652

Z
Z-tests, 299, 323, 358

X
X
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Bolts in bearing cap and plate Exercises 2-177, 3-170, 5-77
Brake contact resistance Exercises 13-45
Casing for a gear housing Example 2-9
Cast aluminum parts Exercise 2-27
Circular tubes yield strength Exercise 6-10
Cold start ignition time Exercises 6-53, 6-64, 6-98
Connector pull-off force Exercises 6-67, 7-28, 9-4, 

9-131
Copper plate warping Exercises 14-6, 14-9
Cycles to failure Exercises 6-23, 6-27, 6-39,

6-43, 6-79
Deflection temperature for plastic pipe Exercise 10-18
Dot diameter Exercises 4-70, 4-174
Drag coefficient Exercises 6-18, 6-56, 6-105
Electromechanical product Exercise 2-44
F-117A mission duration Exercise 6-13
Fatigue crack growth Exercise 14-8
Flatness distortion Exercise 14-62
Fretting wear Exercises 11-9,11-47, 

11-57, 11-61, 11-63
Gap width of a magnetic recording head Exercise 4-23
Glass bottle thickness Exercises 8-40, 8-70, 8-72,

8-82
Height of leaf springs Exercise 14-73
Hole diameter Examples 4-2, 4-4, 4-8,

4-31, 8-39
Exercises 8-10, 9-74, 15-21,
15-63

Jet-turbine or rocket thrust Exercises 12-74,12-96, 
12-97, 12-101

Machined dimensions Examples 5-12, 5-13
Mechanical assembly Example 3-27
Missile miss distance Example 14-7
Molded parts Example 2-1
Nonconforming coil springs Exercises 6-91, 9-134
Nozzle velocity Exercise 13-37
Particleboard deflection Exercises 11-14,11-34
Precision measuring instruments Exercise 9-132
Robotic insertion tool Exercise 2-184
Shaft and washer assemblies Exercise 15-41
Shear strengths Exercise 10-37

of Rubber  Exercise 12-72
of Spot weld Exercises 6-31, 6-47, 6-61,

9-136, 11-69
Sheet metal operation Exercise 2-40
Space shuttle flight control system Exercises 3-22, 3-57
Spindle saw processes Exercise 10-25
Surface roughness Examples 14-2, 14-4, 

10-14, 12-13      
Exercises 2-78, 2-109, 
2-158, 5-19, 13-42, 14-22,
14-67, 14-69

Suspension helmets impact test Exercise 8-58
Suspension rod, piston rings, PVC pipe, 
and other diameters Example 4-16      

Exercises 6-7, 6-73, 7-3, 8-13,
8-34, 8-68, 8-78, 10-15, 
10-57, 15-7, 15-33, 16-77

Temperature of joint for O-rings Exercises 6-19, 6-57, 6-77
Tire life Exercises 8-27, 8-61, 8-73,

9-65, 9-81, 10-39
Tool life Exercises 14-12, 14-30, 14-56
Wear in auto parts Exercises 9-41, 10-23
Wire bond strength Examples 11-8, 12-1, 12-2, 

12-3, 12-4, 12-5, 12-6, 12-7,
12-8, 12-9, 12-10, 12-11
Exercises 12-8, 12-28, 12-46,
12-82, 15-9, 15-15, 15-35,
12-76, 16-7, 16-11, 16-29

MEDICAL 

ACL reconstruction surgery Exercises 4-59, 5-61
Antirheumatoid medication Exercise 5-76
Artificial hearts Exercise 9-47
Bacteria exposure Exercise 4-159
Basal metabolic rate (BMR) Exercise 8-100
Cholesterol level Exercises 4-60, 10-41
Completing a blood sample test Exercise 4-154
Diagnostic kit revenue Exercise 2-200
Diagnostic Example 2-37
Heart failure Exercises 2-112, 3-90, 3-107
Hemoglobin level   Exercises 8-86, 8-89
Knee injuries Exercises 2-76, 3-19
Lung cancer Exercise 8-56
Meniscal tear Exercises 8-56, 10-68
Noise exposure and hypertension Exercise 11-58
Pain medication Exercises 3-162, 10-84
Patient satisfaction Exercises 12-5, 12-106
Plasma antioxidants from chocolate Exercises 13-2, 13-25
Radiation dose in X-ray Exercises 12-11, 12-31, 

12-44, 12-61, 12-79
Recovering from an illness Exercise 3-161
Salk polio vaccine trials Exercise 10-79
Sick-leave time Exercise 4-158
Skin desquamation (peeling) Exercise 2-88
Success rates in kidney stone removals Exercise 2-115
Surgical versus medical patients Exercise 9-104
Syringe length Exercises 15-10, 15-16
Therapeutic drugs Exercise 9-133
Tissue assay by liver manganese Exercise 9-144
Treatment of renal calculi by operative
surgery Exercises 9-89, 9-99

Weight and systolic blood pressure Exercises 11-72, 11-89

PHYSICS

Alignment accuracy of optical chips Exercise 14-64
Atomic clock Exercise 11-94
Current draw in magnetic core Exercise 11-73
Density measurement error Exercises 12-13, 12-49, 

12-63, 12-81
Density of the earth Exercise 6-102
Geiger counts Example 4-23

Exercise 4-93
Laser diode samples Example 2-15
Laser failure time Exercises 4-115, 4-160
Number of stars Exercise 3-133
Optical correlator modulation Exercises 12-15, 12-33, 

12-51, 12-65, 12-83
Oxygen in a superconducting compound Exercises 13-10, 13-22
Porosity of ultrafine powder Exercises 11-12, 11-50
Shortened latencies in dry atmosphere Exercise 8-99
Silver particles in photographic emulsion Exercise 4-164
Solar intensity Exercises 6-12, 6-69, 

6-76, 8-34
Supercavitation for undersea vehicles Exercise 9-45
Thermal conductivity Example 7-5
Transducer calibration Exercise 3-150
Tube conductivity Exercises 13-7, 13-21
Velocity of a particle in a gas Exercise 5-72
Velocity of light Exercise 6-101
Voids in a ferrite slab Exercises 2-12, 6-30, 6-46
Wavelength of radiation Exercise 3-69

SEMICONDUCTOR MANUFACTURING

Examples 2-17, 2-19, 2-20, 2-27, 2-28, 2-33, 3-2, 3-3, 3-5, 3-21, 4-26,
10-11, 10-13, 14-3
Exercises 2-41, 2-92, 2-95, 2-168, 3-21, 3-84, 4-61, 4-80, 5-83, 6-36, 
6-50, 6-62, 7-29, 7-44, 9-88, 9-124, 12-9, 12-29, 12-43, 12-69, 14-17, 
14-25, 14-41, 14-58, 14-65, 15-18, 15-84

Applications in Examples and Exercises, continued
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SPORTS

Baseball coefficient of restitution Exercises 9-62, 9-139
Electromyostimulation    Exercise 8-48
Football helmets Exercise 9-91
Golf Examples 9-6, 9-7

Exercises 6-9, 6-33, 
6-49, 6-95, 6-99, 9-69, 
9-138, 10-29, 10-30, 
10-61, 10-62

Hockey player performance Exercise 9-77
Liveliness of baseballs Exercises 8-92, 8-93
Major League Baseball Exercise 12-104
National Hockey League   Exercises 12-18, 12-38, 

12-56, 12-70, 12-86
Quarterback ratings Exercises 11-3, 11-25, 

11-41, 11-53, 11-75, 
12-17, 12-35, 12-53, 
12-59, 12-87

TEXTILE MANUFACTURING

Examples 13-4, 13-5 Exercises 6-24, 6-28, 6-40, 
6-44, 13-29, 14-10, 14-18,
14-32, 14-63

Breaking strength of yarn Exercises 8-10,10-78, 10-80
Thread elongation of a drapery yarn Exercises 9-5, 9-6, 9-7, 9-8,

9-9

INDUSTRIAL ENGINEERING AND ECONOMICS

Airlines
Overbooking Exercises 3-93, 4-180
Arrival and waiting times Exercises 4-22, 15-15, 

15-25, 7-12
Passenger airline miles flown in UK Exercise 6-70

Automobile features Examples 2-4, 2-5
Exercise 2-14

Bayesian network Example 2-38
Breakdowns by shift Exercise 9-103 
Buying tickets by telephone Exercise 2-179
Calculator owners Exercise 7-33
College graduates in Tempe Exercise 9-25
Credit card numbers Exercises 2-62, 2-135 
Customer design evaluation Exercise 2-147
Customer sampling Example 3-29

Exercises 2-8, 2-34, 
3-173, 9-86

Cytogenic revenue Exercise 3-25
Diamond prices Exercise 11-95
Disabled population Exercise 4-81
Engineering education Exercises 5-9, 8-105, 8-92,

9-105, 9-108, 11-71
Fraud detection in phone cards Exercise 2-144
Impact of quality on schedules and costs Exercise 3-94
Inspection of shipments from suppliers Exercise 3-182
Inspection Exercise 9-87
Installation technician service Exercise 3-172
License numbers Exercise 2-63
Lottery Exercise 3-124
Machine schedules Examples 2-11, 2-36
Monthly champagne sales in France Exercise 6-91
Multiple choice exam Exercise 3-88
Optical inspection Exercise 3-20
Orders for computer systems Exercises 2-16, 2-35
Parallel parking Example 10-11

Exercise 10-38
Pension plan preference Example 9-14
Presidential elections Exercises 2-110, 2-146, 

8-55, 10-69
Price of an electronic storage device Exercise 3-23

Prices of houses Exercises 11-4, 11-26, 
11-42, 11-54

Printer orders Exercise 5-94
Product and bar codes Examples 2-12, 3-13

Exercise 3-67
Repeatability in component assembly Exercise 10-55
Revenue potential Example 3-10

Exercise 5-93
Risk analysis Exercise 5-95
Shipment of customers’ orders Exercise 2-174
Soldiers killed by horse kicks Exercise 3-135
Survey favoring toll roads Exercise 9-26
Time between arrivals Exercises 4-45, 4-99, 

4-104, 4-119, 4-162, 5-20, 
5-21

Time to 
Fill an electronic form Exercise 4-42
Locate a part Exercise 5-87
Make pottery Exercise 5-58
Prepare a micro-array slide Example 4-24
Recharge a battery Exercise 4-58

Unemployment data Exercise 6-85
Unlisted phone numbers Exercise 10-81

DEFECTIVES, FLAWS, ERRORS

Automobile front lights Exercise 2-81
Bearings Example 10-16
Calculators Exercise 8-96
Computers and fans Exercises 2-111, 3-109, 4-97
Connector Exercise 2-107
Cotton rolls Exercise 2-108
Electronic components Exercises 4-8, 6-111, 8-101,

9-107, 11-68
Contamination Exercise 3-140
Integrated circuits Exercises 7-59, 8-53
Lenses Exercises 9-90, 10-71, 

15-87
Machining stages Example 2-26
Optical or magnetic disks Example 3-33

Exercises 3-137, 3-171
Optical alignment Exercise 3-103
Orange juice containers Exercise 2-125
Ovens Exercise 5-45
Oxygen containers Exercise 2-161
Pareto chart for automobile doors Exercise 6-52
Printed circuit boards Example 9-12
Printing Exercises 4-186, 5-4
Response surface design for yield Example 14-12
Surface flaws in parts, steel, and panels Examples 2-23, 2-30

Exercises 3-7, 3-139, 
3-176, 3-184, 4-106, 9-97,
15-76 

Textbook Exercise 3-160
Water meter Exercise 4-82
Wires Examples 3-31, 3-32

Exercise 15-44
Yield Examples 6-5, 10-5, 10-7, 

14-6
Exercises 5-26, 6-25, 6-41, 
8-11, 13-30, 14-20, 14-42,
14-47, 14-53, 14-72

LIFE AND FAILURE TIMES

Assembly and components Example 5-14  
Exercises 4-103, 4-83, 5-82

Batteries Example 6-7
Exercises 9-43, 9-93, 14-3
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Censored components Exercise 7-76
CPU Example 4-23

Exercises 4-129, 4-167
Door latch Exercise 8-8
Electronic amplifier Exercise 4-184
Light bulb Exercises 8-14, 8-16, 8-17
Machine Exercise 7-50
Magnetic resonance imaging machine Exercise 4-149
Packaged magnetic disk Exercise 4-148
Recirculating pump Exercise 4-163
Semiconductor laser Exercises 4-69, 4-143, 4-176
Voltage regulators Exercise 4-96
Yarn Exercise 6-100

LENGTH OF 

Computer cable Exercise 4-34
Door casing Exercise 5-60
Hinge Exercise 4-8
Injection-molded plastic case Exercise 4-157
Keyway depth Exercise 16-91
Metal rod Exercises 4-11, 4-21
Panels Exercise 5-85
Plate glass parts Exercise 3-68
Punched part Exercise 5-56

THICKNESS OF

Aluminum cylinders Exercise 4-57
Coatings Exercises 3-66, 4-35
Flange   Exercise 4-41
Halves  Exercise 
Ink layers Example 5-18     

Exercises 5-49, 5-59
Laminated covering  Exercise 4-173
Layers and error propagation Examples 5-31, 5-91, 5-92
Parts Exercises 5-66, 15-11, 15-57
Photoconductor and photo resist film Exercises 4-43, 10-22, 10-64
Plastic connector Examples 2-2, 2-7
Wood paneling  Exercises 3-10, 3-42

WEIGHT OF

Adobe bricks Exercises 5-27, 5-84
Candy   Exercises 5-86, 7-49
Chemical herbicide Exercises 4-9, 4-36, 4-40
Components    Exercises 5-65, 5-88
Measured by a digital scale Exercise 2-21
Paper  Exercises 8-51, 9-78
Running shoes  Exercise 4-71
Sample and measurement error Exercise 4-72
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Index of Applications in
Examples and Exercises

BIOLOGICAL

Amino acid composition of soybean meal Exercise 8-52
Anaerobic respiration Exercise 2-144
Blood 

Cholesterol level Exercise 15-10
Glucose level Exercises 13-25, 14-37
Hypertension Exercises 4-143, 8-31, 

11-8, 11-30, 11-46
Body mass index (BMI) Exercise 11-35
Body temperature Exercise 9-59
Cellular replication Exercises 2-193, 3-100
Circumference of orange trees Exercise 10-46
Deceased beetles under autolysis and 
putrefaction Exercise 2-92

Diet and weight loss Exercises 10-43, 10-77,
15-35 

Disease in plants Exercise 14-76
Dugongs (sea cows) length Exercise 11-15
Fatty acid in margarine Exercises 8-36, 8-66, 

8-76, 9-147, 9-113 
Gene expression  Exercises 6-65, 13-50, 

15-42
Gene occurrence  Exercises 2-195, 3-11
Gene sequences Exercises 2-25, 2-192, 

3-13, 3-147
Grain quality Exercise 8-21
Height of plants Exercises 4-170, 4-171
Height or weight of people Exercises 4-44, 4-66, 5-64, 

6-30, 6-37, 6-46, 6-63, 
6-73, 9-68

Insect fragments in chocolate bars Exercises 3-134, 4-101
IQ for monozygotic twins Exercise 10-45
Leaf transmutation Exercises 2-88, 3-123
Leg strength Exercises 8-30, 9-64
Light-dependent photosynthesis Exercise 2-24
Nisin recovery Exercises 12-14, 12-32,

12-50, 12-64, 12-84, 14-83
Pesticides and grape infestation Exercise 10-94
Potato spoilage Exercise 13-14
Protein

in Livestock feed Exercise 14-75
in Milk Exercises 13-13, 13-25, 

13-33
from Peanut milk Exercise 9-143

Protopectin content in tomatoes Exercises 13-40, 15-40
Rat muscle Exercise 6-15
Rat tumors Exercise 8-50

Rat weight Exercise 8-57
Rejuvenated mitochondria Exercises 2-96, 3-88
Root vole population Exercise 14-16
Sodium content of cornflakes Exercise 9-61
Soil Exercises 3-24, 12-1, 12-2,

12-23, 12-24, 12-41, 12-42
Splitting cell Exercise 4-155
St John’s Wort Example 10-14 
Stork sightings Exercises 4-100, 11-96
Sugar content Exercises 8-46, 9-83, 9-114
Synapses in the granule cell layer Exercise 9-145
Tar content in tobacco Exercise 8-95
Taste evaluation Exercises 14-13, 14-31, 

14-34, 14-50, 14-54
Tissues from an ivy plant Exercise 2-130
Visual accommodation Exercises 6-11, 6-16, 6-75
Weight of swine or guinea pigs Exercises 9-142, 13-48 
Wheat grain drying Exercises 13-47, 15-41

CHEMICAL

Acid-base titration Exercises 2-60, 2-132, 3-12,
5-48

Alloys Examples 6-4, 8-5
Exercises 10-21, 10-44,
10-59, 13-38, 15-17

Contamination Exercise 2-128, 4-113
Cooking oil Exercise 2-79
Etching Exercises 10-19, 10-65, 

10-34
Infrared focal plane arrays Exercise 9-146 
Melting point of a binder Exercise 9-42
Metallic material transition Examples 8-1, 8-2
Moisture content in raw material Exercise 3-6
Mole fraction solubility Exercises 12-75, 12-91
Mole ratio of sebacic acid Exercise 11-91
Pitch carbon analysis Exercises 12-10, 12-36, 

12-50, 12-60, 12-68
Plasma etching Examples 14-5, 14-8

Exercise 7-32
Polymers Exercises 7-15, 10-8, 

13-12, 13-24
Propellant

Bond shear strength Examples 15-1, 15-2, 15-4
Exercises 11-11, 11-31,
11-49, 15-32

Burning rate Examples 9-1, 9-2, 9-3, 
9-4, 9-5 Exercise 10-6
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Purity Exercise 15-42
Thermal barrier coatings Exercise 10-75

CHEMICAL ENGINEERING

Aluminum smelting Exercise 10-92
Automobile basecoat Exercises 14-56, 14-68
Blow molding Exercise 16-59
Catalyst usage Exercise 10-17
Concentration Examples 16-2, 16-6

Exercises 5-46, 6-68, 
6-84, 10-9, 10-54, 15-64

Conversion Exercise 12-3 
Cooling system in a nuclear submarine Exercise 9-130
Copper content of a plating bath Exercises 15-8, 15-34, 

15-58
Dispensed syrup in soda machine Exercises 8-29, 8-63, 8-75
Dry ash value of paper pulp Exercise 14-57
Fill volume and capability Examples 5-35, 8-6, 9-8, 9-9

Exercises 2-180, 3-146, 
3-151, 4-62, 4-63, 5-62, 
9-100, 10-4, 10-85, 10-90,
14-43, 15-38

Filtration rate Exercise 14-44
Fish preparation Exercise 13-46
Flow metering devices Examples 15-3, 15-5

Exercises 9-126, 9-127
Foam expanding agents Exercises 10-16, 10-56, 

10-88
Green liquor Exercise 12-100
Hardwood concentration Example 13-2

Exercise 14-11
Impurity level in chemical product Exercises 15-3, 15-15
Injection molding Example 14-9

Exercises 2-15, 2-137, 
10-70

Laboratory analysis of chemical process 
samples Exercise 2-43

Maximum heat of a hot tub Exercise 10-33
Na2S concentration Exercises 11-7, 11-29, 

11-41, 11-62
NbOCl3 Exercise 6-36
Oxygen purity Examples 11-1, 11-2, 11-3,

11-4, 11-5, 11-6, 11-7
pH 

and Catalyst concentration Exercise 14-61
of Plating bath Exercises 15-1, 15-13
of a Solution Exercise 6-17
of a Water sample Exercise 2-11

Product color Exercise 14-45
Product solution strength in 
recirculation unit Exercise 14-38

Pulp brightness Exercise 13-31
Reaction Time Example 4-5

Exercises 2-13, 2-33, 4-56
Redox reaction experiments Exercise 2-65
Shampoo foam height Exercises 8-91, 9-15, 

9-16, 9-17, 9-18, 9-19, 
9-128

Stack loss of ammonia Exercises 12-16, 12-34, 
12-52, 12-66, 12-85

Temperature 
Firing Exercise 13-15
Furnace Exercises 6-55, 6-109
of Hall cell solution Exercise 11-92

Vapor deposition Exercises 13-28, 13-32
Vapor phase oxidation of naphthalene Exercise 6-54
Viscosity Exercises 6-66, 6-88, 6-90,

6-96, 12-73, 12-103, 14-64,
15-20, 15-36, 15-86

Water temperature from power plant 
cooling tower Exercise 9-40

Water vapor pressure Exercise 11-78
Wine Examples 12-14, 12-15

Exercises 6-35, 6-51

CIVIL ENGINEERING

Cement and Concrete
Hydration  Example 10-8
Mixture heat Exercises 9-10, 9-11, 9-12,

9-13, 9-14
Mortar briquettes Exercise 15-79
Strength Exercises 4-57, 15-24
Tensile strength Exercise 15-25
Compressive strength Exercises 13-3, 13-9, 

13-19, 14-14, 14-24, 
14-48, 7-7, 7-8, 8-13, 
8-18, 8-37, 8-69, 8-80, 
8-87, 8-90, 15-5

Intrinsic permeability Exercises 11-1, 11-23, 
11-39, 11-52

Highway pavement cracks Exercise 3-138, 4-102
Pavement deflection Exercises 11-2, 11-16, 

11-24, 11-40
Retained strength of asphalt Exercises 13-11,13-23
Speed limits Exercises 8-59, 10-60
Traffic Exercises 3-87, 3-149, 

3-153, 9-190 
Wearing seat belts Exercises 10-82, 10-83

COMMUNICATIONS, COMPUTERS, AND NETWORKS

Cell phone signal bars Examples 5-1, 5-3
Cellular neural network speed Exercise 8-39
Code for a wireless garage door Exercise 2-34
Computer clock cycles Exercise 3-8
Computer networks Example 4-21 Exercises 

2-10, 2-64, 2-164, 3-148, 
3-175, 4-65, 4-94

Corporate Web site errors Exercise 4-84
Digital channel Examples 2-3, 3-4, 3-6, 

3-9, 3-12, 3-16, 3-24, 
4-15, 5-7, 5-9, 5-10 

Electronic messages Exercises 3-158, 4-98, 4-115
Email routes Exercise 2-184
Encryption-decryption system Exercise 2-181
Errors in a communications channel Examples 3-22, 4-17, 4-20

Exercises 2-2, 2-4, 2-46,
3-40, 4-116, 5-5, 5-12, 
6-94, 9-135 

Passwords Exercises 2-81, 2-97, 
2-194, 3-91, 3-108

Programming design languages Exercise 10-40
Response time in computer operation 
system Exercise 8-82

Software development cost Exercise 13-49
Telecommunication prefixes Exercise 2-45
Telecommunications Examples 3-1, 3-14

Exercises 2-17, 3-2, 3-85,
3-105, 3-132, 3-155, 4-95,
4-105, 4-111, 4-117, 4-160,
5-78, 9-98, 15-9

Transaction processing performance and 
OLTP benchmark Exercises 2-68, 2-175, 

5-10, 5-34, 10-7
Viruses Exercise 3-75
Web browsing Examples 3-25, 5-12, 5-13

Exercises 2-32, 2-191, 
3-159, 4-87, 4-140, 5-6

JWCL232_IFC.qxd  12/23/09  8:55 PM  Page 3



ELECTRONICS

Automobile engine controller Examples 9-10, 9-11
Bipolar transistor current Exercise 14-7
Calculator circuit response Exercises 13-6, 13-18
Circuits Examples 2-35, 7-3

Exercises 2-135, 2-136, 
2-170, 2-177, 2-190

Conductivity Exercise 12-105
Current Examples 4-1, 4-5, 4-8, 4-9,

4-12, 16-3
Exercises 10-31, 15-30

Drain and leakage current Exercises 13-41, 11-85
Electromagnetic energy absorption Exercise 10-26
Error recovery procedures Exercises 2-18, 2-166
Inverter transient point Exercises 12-98, 12-99, 

12-102
Magnetic tape Exercises 2-189, 3-125
Nickel charge Exercises 2-61, 3-48
Parallel circuits Example 2-34
Power consumption Exercises 6-89, 11-79, 12-6,

12-26, 12-44, 12-58, 12-80
Power supply Example 9-13

Exercises 2-3, 9-20, 9-21, 
9-22, 9-23, 9-24, 9-28

Printed circuit cards Example 2-10
Exercises 2-42, 3-122

Redundant disk array Exercise 2-127
Resistors Example 7-1

Exercise 6-86
Solder connections Exercises 3-1, 15-43, 15-45
Strands of copper wire Exercise 2-77
Surface charge Exercise 14-15
Surface mount technology (SMT) Example 16-5
Transistor life Exercise 7-51
Voltage measurement errors Exercise 4-48N

ENERGY

Consumption in Asia Exercises 6-29, 6-45, 6-59
Enrichment percentage of reactor fuel rods Exercises 8-41, 8-71, 8-88
Fuel octane ratings    Exercises 6-22, 6-26, 6-38,

6-42, 6-58, 6-78, 10-7
Gasoline cost by month Exercise 15-98
Gasoline mileage Exercises 10-89, 11-6,

11-17, 11-28, 11-44, 
11-56, 12-27, 12-55, 
12-57, 12-77, 12-89, 15-37

Heating rate index Exercise 14-46
Petroleum imports Exercise 6-72
Released from cells Exercise 2-168
Renewable energy consumption Exercise 15-78
Steam usage Exercises 11-5, 11-27, 

11-43, 11-55
Wind power Exercises 4-132, 11-9

ENVIRONMENTAL

Arsenic Example 10-6
Exercises 12-12, 12-30,
12-48, 12-62, 12-76, 
12-88, 13-39

Asbestos Exercises 4-85, 4-169
Biochemical oxygen demand (BOD) Exercises 11-13, 11-33, 11-51
Calcium concentration in lake water Exercise 8-9
Carbon dioxide in the atmosphere Exercise 3-58
Chloride in surface streams Exercises 11-10, 11-32, 

11-48, 11-59
Cloud seeding Exercise 9-60
Earthquakes Exercises 6-63, 9-102, 

11-15, 15-46

Emissions and fluoride emissions Exercises 2-28, 15-34
Global temperature Exercises 6-83, 11-74
Hydrophobic organic substances Exercise 10-93
Mercury contamination Example 8-4
Ocean wave height Exercise 4-181
Organic pollution Example 3-18
Oxygen concentration Exercises 8-94, 9-63, 9-140
Ozone levels Exercises 2-9, 11-90
Radon release Exercises 13-8, 13-20
Rainfall in Australia Exercises 8-33, 8-65, 8-77
Suspended solids in lake water Exercises 6-32, 6-48, 6-60,

6-80, 9-70
Temperature in Phoenix, AZ Exercise 8-49
Temperature of sewage discharge Exercises 6-92, 6-97
Voters and air pollution Exercises 9-27, 9-94
Waste water treatment tank Exercise 2-37
Water demand and quality Exercises 4-68, 9-137
Watershed yield Exercise 11-70

MATERIALS

Baked density of carbon anodes Exercise 14-4
Ceramic substrate Example 16-4
Coating temperature Exercises 10-24, 10-60
Coating weight and surface roughness Exercise 2-90
Compressive strength Exercises 7-56, 11-60
Flow rate on silicon wafers Exercises 13-2, 13-16, 15-28
Insulation ability Exercise 14-5
Insulation fluid breakdown time Exercises 6-8, 6-74
Izod impact test Exercises 8-28, 8-62, 8-74,

9-66, 9-80
Luminescent ink Exercise 5-28
Paint drying time Examples 10-1, 10-2, 10-3

Exercises 14-2, 14-19, 
15-8, 15-16

Particle size Exercises 4-33, 16-17
Photoresist thickness Exercise 5-63
Plastic breaking strength Exercises 10-5, 10-20, 10-55
Polycarbonate plastic Example 2-8       

Exercises 2-66, 2-76 
Rockwell hardness Exercises 10-91, 9-115, 15-17
Temperature of concrete Exercise 9-58
Tensile strength of 

Aluminum Example 10-4
Fiber Exercises 7-3, 7-4, 13-3, 

13-17
Steel Example 10-9 

Exercise 9-44 
Paper Example 13-1

Exercises 4-154, 11-86 
Titanium content Exercises 8-47, 9-79, 15-2,

15-12
Tube brightness in TV sets Exercises 7-12, 8-35, 8-67,

8-79, 9-148, 9-67, 14-1

MECHANICAL

Aircraft manufacturing Examples 6-6, 12-12, 14-1,
15-6, 16-1 Exercises 6-8,
8-97, 10-42, 15-31, 15-13,
15-74

Artillery shells Exercise 9-106
Beam delamination Exercises 8-32, 8-64
Bearings Examples 8-7, 8-8

Exercise 9-95
Diameter Exercises 4-181, 9-42, 

15-6, 15-14
Wear Example 4-25

Exercises 5-22, 4-127, 
12-19, 12-39, 12-45, 12-67

(Text continued at the back of book.)
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