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Preface

INTENDED AUDIENCE

This is an introductory textbook for a first course in applied statistics and probability for undergraduate
students in engineering and the physical or chemical sciences. These individuals play a significant role in
designing and developing new products and manufacturing systems and processes, and they also improve
existing systems. Statistical methods are an important tool in these activities because they provide the en-
gineer with both descriptive and analytical methods for dealing with the variability in observed data.
Although many of the methods we present are fundamental to statistical analysis in other disciplines, such
as business and management, the life sciences, and the social sciences, we have elected to focus on an
engineering-oriented audience. We believe that this approach will best serve students in engineering and
the chemical/physical sciences and will allow them to concentrate on the many applications of statistics
in these disciplines. We have worked hard to ensure that our examples and exercises are engineering- and
science-based, and in almost all cases we have used examples of real data—either taken from a published
source or based on our consulting experiences.

We believe that engineers in all disciplines should take at least one course in statistics.
Unfortunately, because of other requirements, most engineers will only take one statistics course. This
book can be used for a single course, although we have provided enough material for two courses in the
hope that more students will see the important applications of statistics in their everyday work and elect
a second course. We believe that this book will also serve as a useful reference.

We have retained the relatively modest mathematical level of the first four editions. We have found
that engineering students who have completed one or two semesters of calculus should have no difficulty
reading almost all of the text. It is our intent to give the reader an understanding of the methodology and
how to apply it, not the mathematical theory. We have made many enhancements in this edition, including
reorganizing and rewriting major portions of the book and adding a number of new exercises.

ORGANIZATION OF THE BOOK

Perhaps the most common criticism of engineering statistics texts is that they are too long. Both instructors
and students complain that it is impossible to cover all of the topics in the book in one or even two terms. For
authors, this is a serious issue because there is great variety in both the content and level of these courses, and
the decisions about what material to delete without limiting the value of the text are not easy. Decisions about
which topics to include in this edition were made based on a survey of instructors.

Chapter 1 is an introduction to the field of statistics and how engineers use statistical methodology as
part of the engineering problem-solving process. This chapter also introduces the reader to some engineer-
ing applications of statistics, including building empirical models, designing engineering experiments, and
monitoring manufacturing processes. These topics are discussed in more depth in subsequent chapters.

Chapters 2, 3, 4, and 5 cover the basic concepts of probability, discrete and continuous random vari-
ables, probability distributions, expected values, joint probability distributions, and independence. We
have given a reasonably complete treatment of these topics but have avoided many of the mathematical
or more theoretical details.

Chapter 6 begins the treatment of statistical methods with random sampling; data summary and de-
scription techniques, including stem-and-leaf plots, histograms, box plots, and probability plotting; and
several types of time series plots. Chapter 7 discusses sampling distributions, the central limit theorem,
and point estimation of parameters. This chapter also introduces some of the important properties of esti-
mators, the method of maximum likelihood, the method of moments, and Bayesian estimation.

Chapter 8 discusses interval estimation for a single sample. Topics included are confidence intervals for
means, variances or standard deviations, proportions, prediction intervals, and tolerance intervals. Chapter 9
discusses hypothesis tests for a single sample. Chapter 10 presents tests and confidence intervals for two
samples. This material has been extensively rewritten and reorganized. There is detailed information and
examples of methods for determining appropriate sample sizes. We want the student to become familiar with
how these techniques are used to solve real-world engineering problems and to get some understanding of
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the concepts behind them. We give a logical, heuristic development of the procedures rather than a formal,
mathematical one. We have also included some material on nonparametric methods in these chapters.

Chapters 11 and 12 present simple and multiple linear regression including model adequacy checking and
regression model diagnostics and an introduction to logistic regression. We use matrix algebra throughout the
multiple regression material (Chapter 12) because it is the only easy way to understand the concepts presented.
Scalar arithmetic presentations of multiple regression are awkward at best, and we have found that undergrad-
uate engineers are exposed to enough matrix algebra to understand the presentation of this material.

Chapters 13 and 14 deal with single- and multifactor experiments, respectively. The notions of ran-
domization, blocking, factorial designs, interactions, graphical data analysis, and fractional factorials are
emphasized. Chapter 15 introduces statistical quality control, emphasizing the control chart and the fun-
damentals of statistical process control.

WHAT’S NEW IN THIS EDITION?

We received much feedback from users of the fourth edition of the book, and in response we have made
substantial changes in this new edition.
« The most obvious change is that the chapter on nonparametric methods is gone. We have inte-

grated most of this material into Chapter 9 and 10 on statistical hypothesis testing, where we
think it is a much better fit if instructors elect to cover these techniques.

» Another substantial change is the increased emphasis on the use of P-value in hypothesis test-
ing. Many sections of several chapters were rewritten to reflect this.

» We have also rewritten and modified many portions of the book to improve the explanations and
try to make the concepts easier to understand.

*  We have added brief comments at the end of examples to emphasize the practical interpretations
of the results.

*  Wke have also added approximately 200 new homework exercises.

FEATURED IN THIS BOOK

Definitions, Key Concepts, and Equations

Throughout the text, definitions and key con- RANDOM VARIABLE
cepts and equations are highlighted by a box The mean and variance can also be defined for a continuous random variable. Integration
. P replaces summation in the discrete definitions. If a probability density function is viewed as a
to emphasize their importance. loading on a beam as in Fig. 4-1, the mean is the balance point.
Mean
Vari and Suppose X is a continuous random variable with probability density function f{x).

4-4 MEAN AND VARIANCE OF A CONTINUOUS

The mean or expected value of X, denoted as . or E(X), is

Learning Objectives

Learning Objectives at the start

of each chapter guide the

students in what they are

expected to take away from this
chapter and serve as a study reference.

= EX)= J Xf(x) dx (4-4)
The variance of X, denoted as ¥(X) or o, is
o =1 = [ - W= [ - v

The standard deviation of Xis ¢ = Vo2,

LEARNING OBJECTIVES

After careful study of this chapter you should be able to o the following:
1. Determine probabilities from probability density functions
2. Determine probabilities from cumulative distribution functions and

Fhe equivalence of the two formulas for variance can be derived from the same approach used
for discrete random variables.

tric Current

tions from probability density functions, and the reverse

3. Calculate means and variances for continuous random variables

4. Understand the assumptions for some common continuous probability distributions
5. Select an i inuous probability distribution to calculate probabilities in specific

ion func- hsurement in Example 4-1, themean  The variance of X is
0

? 2
dr= 0052 | = 10 V) = [ (= 10)70) e = 0.05(: = 10)/3 e
B

distributions
7. Standardize normal random variables

6. Calculate probabilities, determine means and variances for some common continuous probability

8. Use the table for the cumulative distribution function of a standard normal distributi

0

Fhe expected value of a function 4(X) of a continuous random variable is also defined in a
to caleu- ightforward manner.

late probabilities

9. Approximate probabilities for some binomial and Poisson distributions

IfXisa i random variable with probability density function f{x),
Function of a
Continuous
Random E[h(X)] = J h(x)f (x) dx 4-5)

Variable
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Seven-Step Procedure for Hypothesis Testing
The text introduces a sequence of seven steps in
applying hypothesis-testing methodology and
explicitly exhibits this procedure in examples.

9-1.6 General Procedure for Hypothesis Tests

This chapter develops hypothesis-testing procedures for many practical problems. Use of the
following sequence of steps in applying hypothesis-testing methodology is recommended.

1. Parameter of interest: From the problem context, identify the parameter of interest.

Null hypothesis, Hy: State the null hypothesis, H,.

Alternative hypothesis, H,: Specify an appropriate alternative hypothesis, H;.

Test statistic: Determine an appropriate test statistic.

Reject H, if: State the rejection criteria for the null hypothesis.

Computations: Compute any necessary sample quantities, substitute these into the

equation for the test statistic, and compute that value.

7. Draw conclusions: Decide whether or not H, should be rejected and report that in
the problem context.

o ok oo

Steps 1-4 should be completed prior to examination of the sample data. This sequence of
steps will be illustrated in subsequent sections.

Flg ures Table 11-1  Oxygen and Hydrocarbon Levels
Numerous figures throughout the text Observation Hydrocarbon Level Purity
. . L. . . Number x(%) ¥ (%)
illustrate statistical concepts in multiple ; 5 T
formats. 2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 146 96.73 . .
6 136 04.45 .. i T
7 0.87 87.59 100 o
8 1.23 91.77 98
9 1.55 99.42 % . °
10 1.40 93.65 .
11 119 9354 = o L.t
12 115 925 2 . °c .
9056 & %2 . .
(Oxygeyn 89.54 %0 ‘ . . L
purity) 89.85 88 ¢ °
90.39 . . ..
Bo+ B 1.25 True regression line 93.25 86
tylx =Bo+ Byx 93.41 085 095 105 115 125 135 145 155
=75+15x 94.98 Hydrocarbon level (x)
Bo+ By 1.00) 87:33 Figure 11-1  Scatter diagram of oxygen purity versus hydrocarbon

Figure 11-2  The distribution of Y for a given value of x for the
oxygen purity—hydrocarbon data.

level from Table 11-1.

x=1.00 x=1.25 «x (Hydrocarbon level)

Minitab Output

Throughout the book, we have
presented output from Minitab as
typical examples of what can be done
with modern statistical software.

Character Stem-and-Leaf Display
Stem-and-leaf of Strength
N=80 LeafUnit=1.0
1 7 [
2 8 7
3 9 7
5 10 15
8 11 058
11 12 013
17 13 133455
25 14 12356899
37 15 001344678888
(10) 16 0003357789
33 17 0112445668
23 18 0011346
16 19 034699
10 20 0178
6 21 8
Figure 6-6 Astem- 5 22 189
and-leaf diagram from 2 23 7
Minitab. 1 24 5
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Example Problems
EXAMPLE 10-1 Paint Drying Time

A set of eXampIe problems prOVideS the stu- A product developer is interested in reducing the drying time 4. Test statistic: The test statistic is
- H H of a primer paint. Two formulations of the paint are tested; for- - -
dent Wlth detaIIEd SOIUtlons and comments fOr mulation 1 is the standard chemistry, and formulation 2 has a zp= X';iz?
interesting real-world situations. Brief practi_ new drying ingredient that should reduce the drying time. o1, 0
! From experience, it is known that the standard deviation of n ny

cal interpretations have been added in this
edition.

drying time is 8 minutes, and this inherent variability should
ffected by the addition of the new ingredient. Ten spec-
ainted with formulation 1, and another 10 speci- 5. Reject H, if: Reject Hy: p; = p, if the P-value is less
mens are painted with formulation 2; the 20 specimens are than 0.05.

painted in random o The two sample average drying times 6. Computations: Since X; = 121 minutes and ¥, = 112
are X; = 121 minutes anid=\Y, = 112 minutes, respectively. minutes, the test statistic is

‘What conclusions can the proc

where o} = 03 = (8)? = 64 and n, = n, = 10.

eveloper draw about the

effectiveness of the new ingredient, usihga = 0.05? zp= % =252
We apply the seven-step procedure t0™thj @ + Q
follows: 10 10

1. Parameter of interest: The quantity of interest is the difs . Conclusion: Since z, = 2.52, the P-value is P =
ference in mean drying times, p; — p,, and A, = 0. 11— (2.52)=0.0059, so we reject Hy at the a = 0.05 level

2. Non hypothesis: Hy: p; — py = 0, 0r Ho: g = pa. Practical Interpretation) We conclude that adding the
3. Alternative hypothesis: /,: i, > p,. We want to reject new ingredient to the paint significantly reduces the drying
H, if the new ingredient reduces mean drying time. time. This is a strong conclusion.

Exercises A i EXERCISES FOR SECTION 5-5
EaCh Chapter has an extensive COI IECtlon 5-67. Suppose that X is a random variable with probability 5-73.  Suppose that X has the probability distribution
of exercises, including end-of-section distribution fe) =1, 1 2
. f -y x)=1, =x=
exercises that emphasize the material in A =14 x=1234 i
that section, supplemental exercises at | p,q | _ — e
the end Of the Chapter that cover the 5.68. 1l (a) l;r;d;;efrlog)ablllty distribution of the random variable Supplemental Exercises
SCOpe of Chapter tOpiCS and requil‘e the az;jia;lc: (b) Find the expected value of Y. 5-75.  Show that the following function satisfies the proper-
student to make a decision about the ; P 5.70.  Suppose that X has a uniform probability distribution ~ ties of a joint probability mass function:
approach they will use to solve the probbily AO=1. 0=x=1 . y )
problem, and mind-expanding exer- Show tha the probability distribution of the random variable 0 0 1/4
cises that often require the student to Y = —2In Xis chi-squared with two degrees of freedom. 0 1 1/8
. 5-71. A random variable X has the following probability 1 0 1/8
extend the text material somewhat or to distribuion: | 1 1/4
apply it in a novel situation. . 2 2 1/4
Answers are provided to most
odd-numbered exercises in Appendix C MIND-EXPANDING EXERCISES
in the text, and the WileyPLUS online _ ) 5)
- - - 5-96. Show that if X;, X,, ..., X, arc independent, x and A(y), is a function only of y. Show that X and ¥
learning environment includes for stu- continuous random variables, P(Y; & Ay, X, € s, ..., are independent, dom vari-
dentS COmpIete detai |ed Solutions to X, E 4,) = PX, € Al)P_(Xz € 4y)...P(X, € 4,) forany  5.100. This exercise extends the hypergeometric dis-
. regions 4, 4,, ... , 4, in the range of X;, X;, ..., X, tribution to multiple variables. Consider a population hat X = 1
selected exercises. respectively. with & items of k different types. Assume there are N,
5-97. Show that if X, X, ..., X, are independent items of type 1, N, items of type 2, ..., N items of type k&
random variables and Y = ¢, X, + ¢, X; + =+ + ¢,X,, sothatN,+ N, +...+ ... N, = N. Suppose that a ran-
dom sample of size n is selected, without replacement, toid
NY) = V) + GHXG) + - + EEV(X;?) from the population. Let X;, X5, ..., X; denote the number ?;zr:;fczlts
You may assume that the random variables are continuous,  ©F items of each type in the sample so that X, X5, +... + ople react
5-98. Suppose that the joint probability function of |~ 2= o Sl s B o i o'f.the. parame-
the continuous random variables X and ¥ is constant on o b X2 e i, Moy Ny, the probability is P (%, =
the rectangle 0 < x < @, 0 < y < b. Show that X and ¥ (Nl)<N2)A__(N/»)
are independent. X = x F=w) = X1 /\X2 Xn
5-99. Suppose that the range of the continuous P TR N
variables X and Yis 0 <x < a and 0 <y < b. Also n
suppose that the joint probability density function
fyv(x, y) = g(x)h(y), where g(x) is a function only of
Important Terms and Concepts IMPORTANT TERMS AND CONCEPTS
At the end of each Chapter is a list of Bivariate distribution Conditional variance Joint probability density ~ Multinomial distribution
H Bivariate normal Contour plots function Reproductive property of
Important terms and Concepts foran distribution Correlation Joint probability mass the normal
easy self-check and Study tool. Conditional mean Covariance function distribution

STUDENT RESOURCES

« Data Sets Data sets for all examples and exercises in the text. Visit the student section of the
book Web site at www.wiley.com/college/montgomery to access these materials.

e Student Solutions Manual Detailed solutions for selected problems in the book. The Student
Solutions Manual may be purchased from the Web site at www.wiley.com/college/montgomery.
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INSTRUCTOR RESOURCES

MINITAB

WileyPLUS

For Students

The following resources are available only to instructors who adopt the text:

» Solutions Manual All solutions to the exercises in the text.

« Data Sets Data sets for all examples and exercises in the text.
e Image Gallery of Text Figures

e PowerPoint Lecture Slides

» Section on Logistic Regression

These instructor-only resources are password-protected. Visit the instructor section of the book Web site
at www.wiley.com/college/montgomery to register for a password to access these materials.

A student version of Minitab is available as an option to purchase in a set with this text. Student versions
of software often do not have all the functionality that full versions do. Consequently, student versions
may not support all the concepts presented in this text. If you would like to adopt for your course the set
of this text with the student version of Minitab, please contact your local Wiley representative at
www.wiley.com/college/rep.

Alternatively, students may find information about how to purchase the professional version of the
software for academic use at www.minitab.com.

This online teaching and learning environment integrates the entire digital textbook with the most
effective instructor and student resources to fit every learning style.
With WileyPLUS:

» Students achieve concept mastery in a rich, structured environment that’s available 24/7.

« Instructors personalize and manage their course more effectively with assessment, assignments,
grade tracking, and more.

WileyPLUS can complement your current textbook or replace the printed text altogether.

Personalize the learning experience
Different learning styles, different levels of proficiency, different levels of preparation—each of your stu-
dents is unique. WileyPLUS empowers them to take advantage of their individual strengths:

» Students receive timely access to resources that address their demonstrated needs, and get im-
mediate feedback and remediation when needed.

» Integrated, multi-media resources—including audio and visual exhibits, demonstration prob-
lems, and much more—provide multiple study-paths to fit each student’s learning preferences
and encourage more active learning.

«  WileyPLUS includes many opportunities for self-assessment linked to the relevant portions
of the text. Students can take control of their own learning and practice until they master the
material.
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For Instructors

Personalize the teaching experience
WileyPLUS empowers you with the tools and resources you need to make your teaching even more
effective:

« You can customize your classroom presentation with a wealth of resources and functionality
from PowerPoint slides to a database of rich visuals. You can even add your own materials to
your WileyPLUS course.

»  With WileyPLUS you can identify those students who are falling behind and intervene accord-
ingly, without having to wait for them to come to office hours.

»  WileyPLUS simplifies and automates such tasks as student performance assessment, making as-
signments, scoring student work, keeping grades, and more.

COURSE SYLLABUS SUGGESTIONS

This is a very flexible textbook because instructors’ ideas about what should be in a first course on sta-
tistics for engineers vary widely, as do the abilities of different groups of students. Therefore, we hesitate
to give too much advice, but will explain how we use the book.

We believe that a first course in statistics for engineers should be primarily an applied statistics
course, not a probability course. In our one-semester course we cover all of Chapter 1 (in one or two
lectures); overview the material on probability, putting most of the emphasis on the normal distribution
(six to eight lectures); discuss most of Chapters 6 through 10 on confidence intervals and tests (twelve to
fourteen lectures); introduce regression models in Chapter 11 (four lectures); give an introduction to the
design of experiments from Chapters 13 and 14 (six lectures); and present the basic concepts of statisti-
cal process control, including the Shewhart control chart from Chapter 15 (four lectures). This leaves
about three to four periods for exams and review. Let us emphasize that the purpose of this course is to
introduce engineers to how statistics can be used to solve real-world engineering problems, not to weed
out the less mathematically gifted students. This course is not the “baby math-stat” course that is all too
often given to engineers.

If a second semester is available, it is possible to cover the entire book, including much of the
supplemental material, if appropriate for the audience. It would also be possible to assign and work
many of the homework problems in class to reinforce the understanding of the concepts. Obviously,
multiple regression and more design of experiments would be major topics in a second course.

USING THE COMPUTER

In practice, engineers use computers to apply statistical methods to solve problems. Therefore, we strongly

recommend that the computer be integrated into the class. Throughout the book we have presented output

from Minitab as typical examples of what can be done with modern statistical software. In teaching, we

have used other software packages, including Statgraphics, JMP, and Statistica. We did not clutter up the

book with examples from many different packages because how the instructor integrates the software into

the class is ultimately more important than which package is used. All text data are available in electronic
[‘j form on the textbook Web site. In some chapters, there are problems that we feel should be worked using
< computer software. We have marked these problems with a special icon in the margin.

In our own classrooms, we use the computer in almost every lecture and demonstrate how the tech-
nique is implemented in software as soon as it is discussed in the lecture. Student versions of many sta-
tistical software packages are available at low cost, and students can either purchase their own copy or
use the products available on the PC local area networks. We have found that this greatly improves the
pace of the course and student understanding of the material.
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Users should be aware that final answers may differ slightly due to different numerical precision
and rounding protocols among softwares.
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The Role of Statistics

in Engineering

Statistics is a science that helps us make decisions and draw conclusions in the pres-
ence of variability. For example, civil engineers working in the transportation field are
concerned about the capacity of regional highway systems. A typical problem would
involve data on the number of nonwork, home-based trips, the number of persons per
household, and the number of vehicles per household, and the objective would be to
produce a trip-generation model relating trips to the number of persons per household
and the number of vehicles per household. A statistical technique called regression
analysis can be used to construct this model. The trip-generation model is an important
tool for transportation systems planning. Regression methods are among the most
widely used statistical techniques in engineering. They are presented in Chapters 11
and 12.

Hospital emergency departments (EDs) are an important part of the health-care de-
livery system. The process by which patients arrive at the ED is highly variable and can
depend on the hour of the day and the day of the week, as well as on longer-term cycli-
cal variations. The service process is also highly variable, depending on the types of
services that the patients require, the number of patients in the ED, and how the ED is
staffed and organized. The capacity of an ED is also limited, so consequently some pa-
tients experience long waiting times. How long do patients wait, on average? This is an
important question for health-care providers. If waiting times become excessive, some
patients will leave without receiving treatment (LWOT). Patients who LWOT are a seri-
ous problem, as they do not have their medical concerns addressed and are at risk for
further problems and complications. Therefore, another important question is: What
proportion of patients LWOT from the ED? These questions can be solved by employ-
ing probability models to describe the ED, and from these models very precise esti-
mates of waiting times and the number of patients who LWOT can be obtained.
Probability models that can be used to solve these types of problems are discussed in
Chapters 2 through 5.
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The concepts of probability and statistics are powerful ones and contribute extensively
to the solutions of many types of engineering problems. You will encounter many exam-
ples of these applications in this book.

CHAPTER OUTLINE

1-1 THE ENGINEERING METHOD AND 1-2.4 Designed Experiments
STATISTICAL THINKING 1-2.5 Observing Processes Over Time

1-2 COLLECTING ENGINEERING DATA | 3 MECHANISTIC AND EMPIRICAL
1-2.1 Basic Principles MODELS
1-2.2 Retrospective Study 1-4 PROBABILITY AND PROBABILITY
1-2.3 Observational Study MODELS

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:

. Identify the role that statistics can play in the engineering problem-solving process

. Discuss how variability affects the data collected and used for making engineering decisions
. Explain the difference between enumerative and analytical studies

. Discuss the different methods that engineers use to collect data

[ L O R S

. Identify the advantages that designed experiments have in comparison to other methods of
collecting engineering data

. Explain the differences between mechanistic models and empirical models

N QN

. Discuss how probability and probability models are used in engineering and science

1-1 THE ENGINEERING METHOD AND STATISTICAL THINKING

An engineer is someone who solves problems of interest to society by the efficient application
of scientific principles. Engineers accomplish this by either refining an existing product or
process or by designing a new product or process that meets customers’ needs. The engineering,
or scientific, method is the approach to formulating and solving these problems. The steps in
the engineering method are as follows:

1. Develop a clear and concise description of the problem.

2. ldentify, at least tentatively, the important factors that affect this problem or that may
play a role in its solution.

3. Propose a model for the problem, using scientific or engineering knowledge of the
phenomenon being studied. State any limitations or assumptions of the model.

4. Conduct appropriate experiments and collect data to test or validate the tentative
model or conclusions made in steps 2 and 3.

5. Refine the model on the basis of the observed data.



Figure 1-1 The
engineering method.
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Manipulate the model to assist in developing a solution to the problem.

7. Conduct an appropriate experiment to confirm that the proposed solution to the
problem is both effective and efficient.

8. Draw conclusions or make recommendations based on the problem solution.

The steps in the engineering method are shown in Fig. 1-1. Many of the engineering sciences
are employed in the engineering method: the mechanical sciences (statics, dynamics), fluid
science, thermal science, electrical science, and the science of materials. Notice that the engi-
neering method features a strong interplay between the problem, the factors that may influence
its solution, a model of the phenomenon, and experimentation to verify the adequacy of the
model and the proposed solution to the problem. Steps 2—4 in Fig. 1-1 are enclosed in a box,
indicating that several cycles or iterations of these steps may be required to obtain the final
solution. Consequently, engineers must know how to efficiently plan experiments, collect data,
analyze and interpret the data, and understand how the observed data are related to the model
they have proposed for the problem under study.

The field of statistics deals with the collection, presentation, analysis, and use of data to
make decisions, solve problems, and design products and processes. In simple terms, statistics
is the science of data. Because many aspects of engineering practice involve working with
data, obviously knowledge of statistics is just as important to an engineer as the other engineering
sciences. Specifically, statistical techniques can be a powerful aid in designing new products
and systems, improving existing designs, and designing, developing, and improving production
processes.

Statistical methods are used to help us describe and understand variability. By variability,
we mean that successive observations of a system or phenomenon do not produce exactly the
same result. We all encounter variability in our everyday lives, and statistical thinking can
give us a useful way to incorporate this variability into our decision-making processes. For
example, consider the gasoline mileage performance of your car. Do you always get exactly the
same mileage performance on every tank of fuel? Of course not—in fact, sometimes the mileage
performance varies considerably. This observed variability in gasoline mileage depends on
many factors, such as the type of driving that has occurred most recently (city versus high-
way), the changes in condition of the vehicle over time (which could include factors such as
tire inflation, engine compression, or valve wear), the brand and/or octane number of the
gasoline used, or possibly even the weather conditions that have been recently experienced.
These factors represent potential sources of variability in the system. Statistics provides a
framework for describing this variability and for learning about which potential sources of
variability are the most important or which have the greatest impact on the gasoline mileage
performance.

We also encounter variability in dealing with engineering problems. For example, sup-
pose that an engineer is designing a nylon connector to be used in an automotive engine
application. The engineer is considering establishing the design specification on wall thickness
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at 3/32 inch but is somewhat uncertain about the effect of this decision on the connector pull-
off force. If the pull-off force is too low, the connector may fail when it is installed in an en-
gine. Eight prototype units are produced and their pull-off forces measured, resulting in the
following data (in pounds): 12.6, 12.9, 13.4, 12.3, 13.6, 13.5, 12.6, 13.1. As we anticipated,
not all of the prototypes have the same pull-off force. We say that there is variability in the
pull-off force measurements. Because the pull-off force measurements exhibit variability, we
consider the pull-off force to be a random variable. A convenient way to think of a random
variable, say X, that represents a measurement is by using the model

X=p+e (1-1)

where . is a constant and e is a random disturbance. The constant remains the same with every
measurement, but small changes in the environment, variance in test equipment, differences in
the individual parts themselves, and so forth change the value of e. If there were no distur-
bances, € would always equal zero and X would always be equal to the constant . However,
this never happens in the real world, so the actual measurements X exhibit variability. We often
need to describe, quantify, and ultimately reduce variability.

Figure 1-2 presents a dot diagram of these data. The dot diagram is a very useful plot for
displaying a small body of data—say, up to about 20 observations. This plot allows us to see
easily two features of the data: the location, or the middle, and the scatter or variability. When
the number of observations is small, it is usually difficult to identify any specific patterns in the
variability, although the dot diagram is a convenient way to see any unusual data features.

The need for statistical thinking arises often in the solution of engineering problems.
Consider the engineer designing the connector. From testing the prototypes, he knows that the
average pull-off force is 13.0 pounds. However, he thinks that this may be too low for the
intended application, so he decides to consider an alternative design with a greater wall
thickness, 1/8 inch. Eight prototypes of this design are built, and the observed pull-off force
measurements are 12.9, 13.7, 12.8, 13.9, 14.2, 13.2, 13.5, and 13.1. The average is 13.4.
Results for both samples are plotted as dot diagrams in Fig. 1-3. This display gives the im-
pression that increasing the wall thickness has led to an increase in pull-off force. However,
there are some obvious questions to ask. For instance, how do we know that another sample
of prototypes will not give different results? Is a sample of eight prototypes adequate to give
reliable results? If we use the test results obtained so far to conclude that increasing the wall
thickness increases the strength, what risks are associated with this decision? For example,
is it possible that the apparent increase in pull-off force observed in the thicker prototypes
is only due to the inherent variability in the system and that increasing the thickness of the
part (and its cost) really has no effect on the pull-off force?

Often, physical laws (such as Ohm’s law and the ideal gas law) are applied to help design
products and processes. We are familiar with this reasoning from general laws to specific
cases. But it is also important to reason from a specific set of measurements to more general
cases to answer the previous questions. This reasoning is from a sample (such as the eight
connectors) to a population (such as the connectors that will be sold to customers). The
reasoning is referred to as statistical inference. See Fig. 1-4. Historically, measurements were

o oo o o o o e =23 inch
[ ] L ] LN N J 32
13 14 15 12 13 14 15 °=é inch

Pull-off force Pull-off force

Figure 1-2 Dot diagram of the pull-off force Figure 1-3 Dot diagram of pull-off force for two wall
data when wall thickness is 3/32 inch. thicknesses.
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obtained from a sample of people and generalized to a population, and the terminology has
remained. Clearly, reasoning based on measurements from some objects to measurements on
all objects can result in errors (called sampling errors). However, if the sample is selected
properly, these risks can be quantified and an appropriate sample size can be determined.

1-2 COLLECTING ENGINEERING DATA

1-2.1 Basic Principles

In the previous section, we illustrated some simple methods for summarizing data. Sometimes
the data are all of the observations in the populations. This results in a census. However, in the
engineering environment, the data are almost always a sample that has been selected from the
population. Three basic methods of collecting data are

e A retrospective study using historical data
* An observational study
e A designed experiment
An effective data-collection procedure can greatly simplify the analysis and lead to improved

understanding of the population or process that is being studied. We now consider some
examples of these data-collection methods.

1-2.2 Retrospective Study

Montgomery, Peck, and Vining (2006) describe an acetone-butyl alcohol distillation column
for which concentration of acetone in the distillate or output product stream is an important
variable. Factors that may affect the distillate are the reboil temperature, the condensate tem-
perature, and the reflux rate. Production personnel obtain and archive the following records:

» The concentration of acetone in an hourly test sample of output product

e The reboil temperature log, which is a plot of the reboil temperature over time

» The condenser temperature controller log

e The nominal reflux rate each hour
The reflux rate should be held constant for this process. Consequently, production personnel
change this very infrequently.

A retrospective study would use either all or a sample of the historical process data
archived over some period of time. The study objective might be to discover the relationships
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among the two temperatures and the reflux rate on the acetone concentration in the output
product stream. However, this type of study presents some problems:

1. We may not be able to see the relationship between the reflux rate and acetone con-
centration, because the reflux rate didn’t change much over the historical period.

2. The archived data on the two temperatures (which are recorded almost continuously)
do not correspond perfectly to the acetone concentration measurements (which are
made hourly). It may not be obvious how to construct an approximate correspondence.

3. Production maintains the two temperatures as closely as possible to desired targets or
set points. Because the temperatures change so little, it may be difficult to assess their
real impact on acetone concentration.

4. In the narrow ranges within which they do vary, the condensate temperature tends to
increase with the reboil temperature. Consequently, the effects of these two process
variables on acetone concentration may be difficult to separate.

As you can see, a retrospective study may involve a lot of data, but those data may contain
relatively little useful information about the problem. Furthermore, some of the relevant
data may be missing, there may be transcription or recording errors resulting in outliers
(or unusual values), or data on other important factors may not have been collected and
archived. In the distillation column, for example, the specific concentrations of butyl alcohol
and acetone in the input feed stream are a very important factor, but they are not archived
because the concentrations are too hard to obtain on a routine basis. As a result of these types
of issues, statistical analysis of historical data sometimes identifies interesting phenomena,
but solid and reliable explanations of these phenomena are often difficult to obtain.

1-2.3 Observational Study

In an observational study, the engineer observes the process or population, disturbing it as
little as possible, and records the quantities of interest. Because these studies are usually con-
ducted for a relatively short time period, sometimes variables that are not routinely measured
can be included. In the distillation column, the engineer would design a form to record the two
temperatures and the reflux rate when acetone concentration measurements are made. It may
even be possible to measure the input feed stream concentrations so that the impact of this
factor could be studied. Generally, an observational study tends to solve problems 1 and 2
above and goes a long way toward obtaining accurate and reliable data. However, observa-
tional studies may not help resolve problems 3 and 4.

1-2.4 Designed Experiments

In a designed experiment the engineer makes deliberate or purposeful changes in the control-
lable variables of the system or process, observes the resulting system output data, and then
makes an inference or decision about which variables are responsible for the observed changes
in output performance. The nylon connector example in Section 1-1 illustrates a designed
experiment; that is, a deliberate change was made in the wall thickness of the connector with
the objective of discovering whether or not a greater pull-off force could be obtained.
Experiments designed with basic principles such as randomization are needed to establish
cause-and-effect relationships.

Much of what we know in the engineering and physical-chemical sciences is developed
through testing or experimentation. Often engineers work in problem areas in which no
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scientific or engineering theory is directly or completely applicable, so experimentation and
observation of the resulting data constitute the only way that the problem can be solved. Even
when there is a good underlying scientific theory that we may rely on to explain the phenom-
ena of interest, it is almost always necessary to conduct tests or experiments to confirm that the
theory is indeed operative in the situation or environment in which it is being applied.
Statistical thinking and statistical methods play an important role in planning, conducting, and
analyzing the data from engineering experiments. Designed experiments play a very important
role in engineering design and development and in the improvement of manufacturing processes.

For example, consider the problem involving the choice of wall thickness for the
nylon connector. This is a simple illustration of a designed experiment. The engineer chose two
wall thicknesses for the connector and performed a series of tests to obtain pull-off force
measurements at each wall thickness. In this simple comparative experiment, the engineer is
interested in determining if there is any difference between the 3/32- and 1/8-inch designs. An
approach that could be used in analyzing the data from this experiment is to compare the mean
pull-off force for the 3/32-inch design to the mean pull-off force for the 1/8-inch design using
statistical hypothesis testing, which is discussed in detail in Chapters 9 and 10. Generally, a
hypothesis is a statement about some aspect of the system in which we are interested. For
example, the engineer might want to know if the mean pull-off force of a 3/32-inch design
exceeds the typical maximum load expected to be encountered in this application, say, 12.75
pounds. Thus, we would be interested in testing the hypothesis that the mean strength exceeds
12.75 pounds. This is called a single-sample hypothesis-testing problem. Chapter 9 presents
techniques for this type of problem. Alternatively, the engineer might be interested in testing
the hypothesis that increasing the wall thickness from 3/32 to 1/8 inch results in an increase
in mean pull-off force. It is an example of a two-sample hypothesis-testing problem. Two-
sample hypothesis-testing problems are discussed in Chapter 10.

Designed experiments are a very powerful approach to studying complex systems, such
as the distillation column. This process has three factors—the two temperatures and the reflux
rate—and we want to investigate the effect of these three factors on output acetone concentra-
tion. A good experimental design for this problem must ensure that we can separate the effects
of all three factors on the acetone concentration. The specified values of the three factors used
in the experiment are called factor levels. Typically, we use a small number of levels for each
factor, such as two or three. For the distillation column problem, suppose we use two levels,
“high” and “low” (denoted +1 and —1, respectively), for each of the three factors. A very
reasonable experiment design strategy uses every possible combination of the factor levels to
form a basic experiment with eight different settings for the process. This type of experiment
is called a factorial experiment. Table 1-1 presents this experimental design.

Table 1-1 The Designed Experiment (Factorial Design) for the
Distillation Column

Reboil Temp. Condensate Temp. Reflux Rate
-1 -1 -1
+1 -1 -1
-1 +1 -1
+1 +1 -1
-1 -1 +1
+1 -1 +1
-1 +1 +1

+1 +1 +1
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Figure 1-5 The
factorial design for
the distillation column.

Figure 1-6 A four-
factorial experiment
for the distillation
column.
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Figure 1-5 illustrates that this design forms a cube in terms of these high and low levels.
With each setting of the process conditions, we allow the column to reach equilibrium, take
a sample of the product stream, and determine the acetone concentration. We then can draw
specific inferences about the effect of these factors. Such an approach allows us to proactively
study a population or process.

An important advantage of factorial experiments is that they allow one to detect an
interaction between factors. Consider only the two temperature factors in the distillation
experiment. Suppose that the response concentration is poor when the reboil temperature is
low, regardless of the condensate temperature. That is, the condensate temperature has no
effect when the reboil temperature is low. However, when the reboil temperature is high, a
high condensate temperature generates a good response, while a low condensate tempera-
ture generates a poor response. That is, the condensate temperature changes the response
when the reboil temperature is high. The effect of condensate temperature depends on the
setting of the reboil temperature, and these two factors would interact in this case. If the four
combinations of high and low reboil and condensate temperatures were not tested, such an
interaction would not be detected.

We can easily extend the factorial strategy to more factors. Suppose that the engineer wants
to consider a fourth factor, type of distillation column. There are two types: the standard one
and a newer design. Figure 1-6 illustrates how all four factors—reboil temperature, condensate
temperature, reflux rate, and column design—could be investigated in a factorial design. Since
all four factors are still at two levels, the experimental design can still be represented geometri-
cally as a cube (actually, it’s a hypercube). Notice that as in any factorial design, all possible
combinations of the four factors are tested. The experiment requires 16 trials.

Generally, if there are k factors and they each have two levels, a factorial experimental
design will require 2 runs. For example, with k = 4, the 2* design in Fig. 1-6 requires 16 tests.
Clearly, as the number of factors increases, the number of trials required in a factorial experi-
ment increases rapidly; for instance, eight factors each at two levels would require 256 trials.
This quickly becomes unfeasible from the viewpoint of time and other resources. Fortunately,
when there are four to five or more factors, it is usually unnecessary to test all possible
combinations of factor levels. A fractional factorial experiment is a variation of the basic

Column design
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Figure 1-7 A frac-
tional factorial experi-
ment for the connector
wall thickness problem.
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factorial arrangement in which only a subset of the factor combinations are actually tested.
Figure 1-7 shows a fractional factorial experimental design for the four-factor version of the
distillation experiment. The circled test combinations in this figure are the only test combina-
tions that need to be run. This experimental design requires only 8 runs instead of the original
16; consequently it would be called a one-half fraction. This is an excellent experimental
design in which to study all four factors. It will provide good information about the individual
effects of the four factors and some information about how these factors interact.

Factorial and fractional factorial experiments are used extensively by engineers and scien-
tists in industrial research and development, where new technology, products, and processes are
designed and developed and where existing products and processes are improved. Since so
much engineering work involves testing and experimentation, it is essential that all engineers
understand the basic principles of planning efficient and effective experiments. We discuss
these principles in Chapter 13. Chapter 14 concentrates on the factorial and fractional factorials
that we have introduced here.

1-2.5 Observing Processes Over Time

Figure 1-8 The dot
diagram illustrates

variation but does not
identify the problem.

Often data are collected over time. In this case, it is usually very helpful to plot the data versus
time in a time series plot. Phenomena that might affect the system or process often become
more visible in a time-oriented plot and the concept of stability can be better judged.

Figure 1-8 is a dot diagram of acetone concentration readings taken hourly from the
distillation column described in Section 1-2.2. The large variation displayed on the dot
diagram indicates a lot of variability in the concentration, but the chart does not help explain
the reason for the variation. The time series plot is shown in Figure 1-9. A shift in the process
mean level is visible in the plot and an estimate of the time of the shift can be obtained.

W. Edwards Deming, a very influential industrial statistician, stressed that it is important
to understand the nature of variability in processes and systems over time. He conducted an
experiment in which he attempted to drop marbles as close as possible to a target on a table.
He used a funnel mounted on a ring stand and the marbles were dropped into the funnel. See
Fig. 1-10. The funnel was aligned as closely as possible with the center of the target. He then
used two different strategies to operate the process. (1) He never moved the funnel. He just

° ° °
° o ° ° °
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X
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Acetone concentration
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Figure 1-9 A time series plot of concentration provides Figure 1-10  Deming’s funnel experiment.

more information than the dot diagram.

Figure 1-11  Adjust-
ments applied to
random disturbances
overcontrol the process
and increase the devia-
tions from the target.

dropped one marble after another and recorded the distance from the target. (2) He dropped
the first marble and recorded its location relative to the target. He then moved the funnel an
equal and opposite distance in an attempt to compensate for the error. He continued to make
this type of adjustment after each marble was dropped.

After both strategies were completed, he noticed that the variability of the distance
from the target for strategy 2 was approximately 2 times larger than for strategy 1. The adjust-
ments to the funnel increased the deviations from the target. The explanation is that the error
(the deviation of the marble’s position from the target) for one marble provides no information
about the error that will occur for the next marble. Consequently, adjustments to the funnel do
not decrease future errors. Instead, they tend to move the funnel farther from the target.

This interesting experiment points out that adjustments to a process based on random dis-
turbances can actually increase the variation of the process. This is referred to as overcontrol
or tampering. Adjustments should be applied only to compensate for a nonrandom shift in the
process—then they can help. A computer simulation can be used to demonstrate the lessons of
the funnel experiment. Figure 1-11 displays a time plot of 100 measurements (denoted as y)
from a process in which only random disturbances are present. The target value for the process
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Figure 1-12  Process
mean shift is detected at
observation number 57,
and one adjustment

(a decrease of two units)
reduces the deviations

from target.

Figure 1-13 A con-
trol chart for the
chemical process
concentration data.
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is 10 units. The figure displays the data with and without adjustments that are applied to the
process mean in an attempt to produce data closer to target. Each adjustment is equal and
opposite to the deviation of the previous measurement from target. For example, when the
measurement is 11 (one unit above target), the mean is reduced by one unit before the next
measurement is generated. The overcontrol has increased the deviations from the target.

Figure 1-12 displays the data without adjustment from Fig. 1-11, except that the measure-
ments after observation number 50 are increased by two units to simulate the effect of a shift
in the mean of the process. When there is a true shift in the mean of a process, an adjustment
can be useful. Figure 1-12 also displays the data obtained when one adjustment (a decrease of
two units) is applied to the mean after the shift is detected (at observation number 57). Note
that this adjustment decreases the deviations from target.

The question of when to apply adjustments (and by what amounts) begins with an under-
standing of the types of variation that affect a process. A control chart is an invaluable way
to examine the variability in time-oriented data. Figure 1-13 presents a control chart for
the concentration data from Fig. 1-9. The center line on the control chart is just the average of
the concentration measurements for the first 20 samples (X = 91.5 g/I) when the process is
stable. The upper control limit and the lower control limit are a pair of statistically derived
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Figure 1-14
Enumerative versus
analytic study.
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limits that reflect the inherent or natural variability in the process. These limits are located
three standard deviations of the concentration values above and below the center line. If the
process is operating as it should, without any external sources of variability present in the
system, the concentration measurements should fluctuate randomly around the center line, and
almost all of them should fall between the control limits.

In the control chart of Fig. 1-13, the visual frame of reference provided by the center line
and the control limits indicates that some upset or disturbance has affected the process around
sample 20 because all of the following observations are below the center line, and two of them
actually fall below the lower control limit. This is a very strong signal that corrective action is
required in this process. If we can find and eliminate the underlying cause of this upset, we can
improve process performance considerably.

Furthermore, Deming pointed out that data from a process are used for different types of
conclusions. Sometimes we collect data from a process to evaluate current production. For
example, we might sample and measure resistivity on three semiconductor wafers selected
from a lot and use this information to evaluate the lot. This is called an enumerative study.
However, in many cases we use data from current production to evaluate future production. We
apply conclusions to a conceptual, future population. Deming called this an analytic study.
Clearly this requires an assumption of a stable process, and Deming emphasized that control
charts were needed to justify this assumption. See Fig. 1-14 as an illustration.

Control charts are a very important application of statistics for monitoring, controlling,
and improving a process. The branch of statistics that makes use of control charts is called
statistical process control, or SPC. We will discuss SPC and control charts in Chapter 15.

1-3 MECHANISTIC AND EMPIRICAL MODELS

Models play an important role in the analysis of nearly all engineering problems. Much of the
formal education of engineers involves learning about the models relevant to specific fields
and the techniques for applying these models in problem formulation and solution. As a sim-
ple example, suppose we are measuring the flow of current in a thin copper wire. Our model
for this phenomenon might be Ohm’s law:

Current = voltage/resistance
or

| = E/R (1-2)
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We call this type of model a mechanistic model because it is built from our underlying
knowledge of the basic physical mechanism that relates these variables. However, if we
performed this measurement process more than once, perhaps at different times, or even on
different days, the observed current could differ slightly because of small changes or varia-
tions in factors that are not completely controlled, such as changes in ambient temperature,
fluctuations in performance of the gauge, small impurities present at different locations in the
wire, and drifts in the voltage source. Consequently, a more realistic model of the observed
current might be

| =E/R + ¢ (1-3)

where e is a term added to the model to account for the fact that the observed values of
current flow do not perfectly conform to the mechanistic model. We can think of € as a
term that includes the effects of all of the unmodeled sources of variability that affect this
system.

Sometimes engineers work with problems for which there is no simple or well-
understood mechanistic model that explains the phenomenon. For instance, suppose we are
interested in the number average molecular weight (M,)) of a polymer. Now we know that M,
is related to the viscosity of the material (V), and it also depends on the amount of catalyst (C)
and the temperature (T) in the polymerization reactor when the material is manufactured.
The relationship between M, and these variables is

M, = f(V,C,T) (1-4)

say, where the form of the function f is unknown. Perhaps a working model could be de-
veloped from a first-order Taylor series expansion, which would produce a model of the
form

My = Bo + BV + BC + BT (1-5)

where the B’ are unknown parameters. Now just as in Ohm’s law, this model will not exactly
describe the phenomenon, so we should account for the other sources of variability that may
affect the molecular weight by adding another term to the model; therefore,

Mn = BO + BlV + Bzc + BgT + € (1'6)

is the model that we will use to relate molecular weight to the other three variables. This type
of model is called an empirical model; that is, it uses our engineering and scientific knowl-
edge of the phenomenon, but it is not directly developed from our theoretical or first-principles
understanding of the underlying mechanism.

To illustrate these ideas with a specific example, consider the data in Table 1-2. This table
contains data on three variables that were collected in an observational study in a semicon-
ductor manufacturing plant. In this plant, the finished semiconductor is wire-bonded to a
frame. The variables reported are pull strength (a measure of the amount of force required to
break the bond), the wire length, and the height of the die. We would like to find a model
relating pull strength to wire length and die height. Unfortunately, there is no physical mech-
anism that we can easily apply here, so it doesn’t seem likely that a mechanistic modeling
approach will be successful.

Figure 1-15 presents a three-dimensional plot of all 25 observations on pull strength, wire
length, and die height. From examination of this plot, we see that pull strength increases as
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Figure 1-15 Three-
dimensional plot of
the wire bond pull
strength data.

Table 1-2 Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number y X1 Xo
1 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 295
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100
10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100
25 21.15 5 400

both wire length and die height increase. Furthermore, it seems reasonable to think that a
model such as

Pull strength = By + B(wire length) + B,(die height) + €

would be appropriate as an empirical model for this relationship. In general, this type of
empirical model is called a regression model. In Chapters 11 and 12 we show how to build
these models and test their adequacy as approximating functions. We will use a method for

80
< 60
&
£ a0 IH
= 20 F W 500°°
0 [ 300°
X
0 4 8 200 ‘\Q;\cé‘
16 0100 ge

Wire length



Figure 1-16 Plot of
predicted values of
pull strength from the
empirical model.
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estimating the parameters in regression models, called the method of least squares, that
traces its origins to work by Karl Gauss. Essentially, this method chooses the parameters in
the empirical model (the B’s) to minimize the sum of the squared distances between each
data point and the plane represented by the model equation. Applying this technique to the
data in Table 1-2 results in

—

Pull strength = 2.26 + 2.74(wire length) + 0.0125(die height) -7
where the “hat,” or circumflex, over pull strength indicates that this is an estimated or pre-
dicted quantity.

Figure 1-16 is a plot of the predicted values of pull strength versus wire length and die
height obtained from Equation 1-7. Notice that the predicted values lie on a plane above the
wire length—die height space. From the plot of the data in Fig. 1-15, this model does not ap-
pear unreasonable. The empirical model in Equation 1-7 could be used to predict values of
pull strength for various combinations of wire length and die height that are of interest.
Essentially, the empirical model could be used by an engineer in exactly the same way that
a mechanistic model can be used.

1-4 PROBABILITY AND PROBABILITY MODELS

In Section 1-1, it was mentioned that decisions often need to be based on measurements from
only a subset of objects selected in a sample. This process of reasoning from a sample of
objects to conclusions for a population of objects was referred to as statistical inference. A
sample of three wafers selected from a larger production lot of wafers in semiconductor man-
ufacturing was an example mentioned. To make good decisions, an analysis of how well a
sample represents a population is clearly necessary. If the lot contains defective wafers, how
well will the sample detect this? How can we quantify the criterion to “detect well”? Basically,
how can we quantify the risks of decisions based on samples? Furthermore, how should
samples be selected to provide good decisions—ones with acceptable risks? Probability
models help quantify the risks involved in statistical inference, that is, the risks involved in
decisions made every day.

More details are useful to describe the role of probability models. Suppose a production
lot contains 25 wafers. If all the wafers are defective or all are good, clearly any sample will
generate all defective or all good wafers, respectively. However, suppose only one wafer in
the lot is defective. Then a sample might or might not detect (include) the wafer. A probabil-
ity model, along with a method to select the sample, can be used to quantify the risks that the
defective wafer is or is not detected. Based on this analysis, the size of the sample might be
increased (or decreased). The risk here can be interpreted as follows. Suppose a series of lots,
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each with exactly one defective wafer, are sampled. The details of the method used to select
the sample are postponed until randomness is discussed in the next chapter. Nevertheless,
assume that the same size sample (such as three wafers) is selected in the same manner from
each lot. The proportion of the lots in which the defective wafer is included in the sample or,
more specifically, the limit of this proportion as the number of lots in the series tends to infin-
ity, is interpreted as the probability that the defective wafer is detected.

A probability model is used to calculate this proportion under reasonable assumptions for
the manner in which the sample is selected. This is fortunate because we do not want to at-
tempt to sample from an infinite series of lots. Problems of this type are worked in Chapters 2
and 3. More importantly, this probability provides valuable, quantitative information regard-
ing any decision about lot quality based on the sample.

Recall from Section 1-1 that a population might be conceptual, as in an analytic study that
applies statistical inference to future production based on the data from current production.
When populations are extended in this manner, the role of statistical inference and the associ-
ated probability models becomes even more important.

In the previous example, each wafer in the sample was only classified as defective or not.
Instead, a continuous measurement might be obtained from each wafer. In Section 1-2.5, con-
centration measurements were taken at periodic intervals from a production process. Figure 1-8
shows that variability is present in the measurements, and there might be concern that the
process has moved from the target setting for concentration. Similar to the defective wafer,
one might want to quantify our ability to detect a process change based on the sample data.
Control limits were mentioned in Section 1-2.5 as decision rules for whether or not to adjust
a process. The probability that a particular process change is detected can be calculated with
a probability model for concentration measurements. Models for continuous measurements
are developed based on plausible assumptions for the data and a result known as the central
limit theorem, and the associated normal distribution is a particularly valuable probability
model for statistical inference. Of course, a check of assumptions is important. These types of
probability models are discussed in Chapter 4. The objective is still to quantify the risks in-
herent in the inference made from the sample data.

Throughout Chapters 6 through 15, decisions are based on statistical inference from sam-
ple data. Continuous probability models, specifically the normal distribution, are used exten-
sively to quantify the risks in these decisions and to evaluate ways to collect the data and how
large a sample should be selected.

IMPORTANT TERMS AND CONCEPTS

Analytic study
Cause and effect
Designed experiment
Empirical model
Engineering method
Enumerative study
Factorial experiment

Fractional factorial Population Statistical inference
experiment Probability model Statistical process
Hypothesis testing Problem-solving control
Interaction method Statistical thinking
Mechanistic model Randomization Tampering
Observational study Retrospective study Time series
Overcontrol Sample Variability
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Probability

An athletic woman in her twenties arrives at the emergency department complaining of
dizziness after running in hot weather. An electrocardiogram is used to check for a heart at-
tack and the patient generates an abnormal result. The test has a false positive rate 0.1 (the
probability of an abnormal result when the patient is normal) and a false negative rate of 0.1
(the probability of a normal result when the patient is abnormal). Furthermore, it might be
assumed that the prior probability of a heart attack for this patient is 0.001. Although the ab-
normal test is a concern, you might be surprised to learn that the probability of a heart at-
tack given the electrocardiogram result is still less than 0.01. See “Why Clinicians are
Natural Bayesians” (2005, bmj.com) for details of this example and others.

The key is to properly combine the given probabilities. Furthermore, the exact same
analysis used for this medical example can be applied to tests of engineered products.
Consequently knowledge of how to manipulate probabilities in order to assess risks and
make better decisions is important throughout scientific and engineering disciplines. In this
chapter the laws of probability are presented and used to assess risks in cases such as this
one and numerous others.

CHAPTER OUTLINE
2-1 SAMPLE SPACES AND EVENTS 2-3 ADDITION RULES
2-1.1 Random Experiments 2-4 CONDITIONAL PROBABILITY
2-1.2 Sample Spaces 2-5 MULTIPLICATION AND TOTAL
2-1.3 Events PROBABILITY RULES
2-1.4 Counting Techniques 2.6 INDEPENDENCE
2-2 INTERPRETATIONS AND AXIOMS 2-7 BAYES’ THEOREM
OF PROBABILITY 2-8 RANDOM VARIABLES
LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Understand and describe sample spaces and events for random experiments with graphs, tables,
lists, or tree diagrams
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CHAPTER 2 PROBABILITY

2. Interpret probabilities and use probabilities of outcomes to calculate probabilities of events in
discrete sample spaces

3. Use permutation and combinations to count the number of outcomes in both an event and the
sample space

S

. Calculate the probabilities of joint events such as unions and intersections from the probabilities
of individual events

. Interpret and calculate conditional probabilities of events
. Determine the independence of events and use independence to calculate probabilities

. Use Bayes’ theorem to calculate conditional probabilities

o 2 O

. Understand random variables

2-1 SAMPLE SPACES AND EVENTS

2-1.1

Random Experiments

If we measure the current in a thin copper wire, we are conducting an experiment. However, day-to-
day repetitions of the measurement can differ slightly because of small variations in variables that
are not controlled in our experiment, including changes in ambient temperatures, slight variations in
gauge and small impurities in the chemical composition of the wire (if different locations are se-
lected), and current source drifts. Consequently, this experiment (as well as many we conduct) is said
to have a random component. In some cases, the random variations are small enough, relative to our
experimental goals, that they can be ignored. However, no matter how carefully our experiment is
designed and conducted, the variation is almost always present, and its magnitude can be large
enough that the important conclusions from our experiment are not obvious. In these cases, the
methods presented in this book for modeling and analyzing experimental results are quite valuable.

Our goal is to understand, quantify, and model the type of variations that we often
encounter. When we incorporate the variation into our thinking and analyses, we can make
informed judgments from our results that are not invalidated by the variation.

Models and analyses that include variation are not different from models used in other areas
of engineering and science. Figure 2-1 displays the important components. A mathematical
model (or abstraction) of the physical system is developed. It need not be a perfect abstraction.
For example, Newton’s laws are not perfect descriptions of our physical universe. Still, they are
useful models that can be studied and analyzed to approximately quantify the performance of a
wide range of engineered products. Given a mathematical abstraction that is validated with
measurements from our system, we can use the model to understand, describe, and quantify
important aspects of the physical system and predict the response of the system to inputs.

Throughout this text, we discuss models that allow for variations in the outputs of a system,
even though the variables that we control are not purposely changed during our study.
Figure 2-2 graphically displays a model that incorporates uncontrollable inputs (noise) that

Controlled
variables

EEE}

Input > System > Output

Tt

Model Noise
variables

Physical system

Measurements Analysis

Figure 2-1  Continuous iteration between model Figure 2-2  Noise variables affect the
and physical system. transformation of inputs to outputs.
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Call duration I I
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Figure 2-3 A closer examination of the system Figure 2-4  Variation causes disruptions in the system.

identifies deviations from the model.

Random
Experiment

combine with the controllable inputs to produce the output of our system. Because of the
uncontrollable inputs, the same settings for the controllable inputs do not result in identical
outputs every time the system is measured.

An experiment that can result in different outcomes, even though it is repeated in the
same manner every time, is called a random experiment.

For the example of measuring current in a copper wire, our model for the system might
simply be Ohm’s law. Because of uncontrollable inputs, variations in measurements of current
are expected. Ohm’ law might be a suitable approximation. However, if the variations are
large relative to the intended use of the device under study, we might need to extend our model
to include the variation. See Fig. 2-3.

As another example, in the design of a communication system, such as a computer or voice
communication network, the information capacity available to serve individuals using the net-
work is an important design consideration. For voice communication, sufficient external lines
need to be available to meet the requirements of a business. Assuming each line can carry only
a single conversation, how many lines should be purchased? If too few lines are purchased, calls
can be delayed or lost. The purchase of too many lines increases costs. Increasingly, design and
product development is required to meet customer requirements at a competitive cost.

In the design of the voice communication system, a model is needed for the number of calls
and the duration of calls. Even knowing that, on average, calls occur every five minutes and that
they last five minutes is not sufficient. If calls arrived precisely at five-minute intervals and lasted
for precisely five minutes, one phone line would be sufficient. However, the slightest variation in
call number or duration would result in some calls being blocked by others. See Fig. 2-4. A
system designed without considering variation will be woefully inadequate for practical use. Our
model for the number and duration of calls needs to include variation as an integral component.

2-1.2 Sample Spaces

Sample Space

To model and analyze a random experiment, we must understand the set of possible outcomes
from the experiment. In this introduction to probability, we make use of the basic concepts of
sets and operations on sets. It is assumed that the reader is familiar with these topics.

The set of all possible outcomes of a random experiment is called the sample space
of the experiment. The sample space is denoted as S.
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A sample space is often defined based on the objectives of the analysis. The following exam-

ple illustrates several alternatives.

EXAMPLE 2-1 Molded Plastic Part

Consider an experiment in which you select a molded plastic
part, such as a connector, and measure its thickness. The
possible values for thickness depend on the resolution of
the measuring instrument, and they also depend on upper and
lower bounds for thickness. However, it might be convenient
to define the sample space as simply the positive real line

S=R" ={x|x>0}

because a negative value for thickness cannot occur.
If it is known that all connectors will be between 10 and
11 millimeters thick, the sample space could be

S={x|10 <x <11}

If the objective of the analysis is to consider only whether
a particular part is low, medium, or high for thickness, the
sample space might be taken to be the set of three outcomes:

S = {low, medium, high}
If the objective of the analysis is to consider only whether
or not a particular part conforms to the manufacturing specifi-

cations, the sample space might be simplified to the set of two
outcomes

S = {yes, no}

that indicate whether or not the part conforms.

It is useful to distinguish between two types of sample spaces.

Discrete and
Continuous
Sample Spaces

real numbers.

A sample space is discrete if it consists of a finite or countable infinite set of outcomes.
A sample space is continuous if it contains an interval (either finite or infinite) of

In Example 2-1, the choice S = R* is an example of a continuous sample space, whereas
S ={yes, no} is a discrete sample space. As mentioned, the best choice of a sample space
depends on the objectives of the study. As specific questions occur later in the book, appro-

priate sample spaces are discussed.

EXAMPLE 2-2 Manufacturing Specifications

If two connectors are selected and measured, the extension of
the positive real line R is to take the sample space to be the
positive quadrant of the plane:

S=R" X R"

If the objective of the analysis is to consider only whether
or not the parts conform to the manufacturing specifications,
either part may or may not conform. We abbreviate yes and no
as 'y and n. If the ordered pair yn indicates that the first con-
nector conforms and the second does not, the sample space
can be represented by the four outcomes:

S = {yy,yn, ny, nn}

If we are only interested in the number of conforming
parts in the sample, we might summarize the sample space as

S=1{0,1,2}
As another example, consider an experiment in which

the thickness is measured until a connector fails to meet the
specifications. The sample space can be represented as

S = {n, yn, yyn, yyyn, yyyyn, and so forth}

and this is an example of a discrete sample space that is count-
ably infinite.



2-1 SAMPLE SPACES AND EVENTS 21

Message ] ——————————————— o
V \
0,

Message 2 ————————— ®
on tn/ R
X

on tn/&
@ @

Message 3 ———— % —————— — &~ ——— — — — — — -

messages.

F_igure 2-5 Tree on time late on time late on time late on time late
diagram for three
L] L ] L] (] L] (] L] (]

Sample spaces can also be described graphically with tree diagrams. When a sample
space can be constructed in several steps or stages, we can represent each of the n, ways of
completing the first step as a branch of a tree. Each of the ways of completing the second step
can be represented as n, branches starting from the ends of the original branches, and so forth.

EXAMPLE 2-3

Each message in a digital communication system is classi-
fied as to whether it is received within the time specified by
the system design. If three messages are classified, use a
tree diagram to represent the sample space of possible out-
comes.

EXAMPLE 2-4
An automobile manufacturer provides vehicles equipped with
selected options. Each vehicle is ordered

With or without an automatic transmission

With or without air conditioning

With one of three choices of a stereo system

With one of four exterior colors

Transmission —— — — — — — — — — — — — —

Automatic

Air conditioning ————————, o - —
Yes N
Stereo ————-, o
/ \ / b
3

Color —¢-———-¢————-¢——— — o' ———— .- ——

)

Each message can be received either on time or late. The
possible results for three messages can be displayed by eight
branches in the tree diagram shown in Fig. 2-5.

Practical Interpretation: A tree diagram can affectively
represent a sample space. Even if a tree becomes too large to
construct it can still conceptually clarify the sample space.

If the sample space consists of the set of all possible
vehicle types, what is the number of outcomes in the sam-
ple space? The sample space contains 48 outcomes. The
tree diagram for the different types of vehicles is displayed
in Fig. 2-6.

® 6 © 0 06 0 0 06 06 06 06 0 0 0 0 0 00 0 0 O 0 0 0 0 0 0 0 O 0 0 0 O 0 0 0 0 0 0 O 0O 0 0 0 0 0 0 0

Figure 2-6  Tree diagram for different types of vehicles with 48 outcomes in the sample space.
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Exterior color Red White Blue Brown
Figure 2.7 Tree Interior color  Black Red %\ /¥\
diagram for different 12x2=24  12x4-48  12x3=36  12x1=12

types of vehicles with
interior colors.

EXAMPLE 2-5 Automobile Configurations
Consider an extension of the automobile manufacturer ill-
ustration in the previous example in which another vehicle
option is the interior color. There are four choices of interior
color: red, black, blue, or brown. However,

With a red exterior, only a black or red interior can be
chosen.

With a white exterior, any interior color can be chosen.

2-1.3 Events

24 + 48 + 36 + 12 = 120 vehicle types

With a blue exterior, only a black, red, or blue interior can
be chosen.

With a brown exterior, only a brown interior can be chosen.

In Fig. 2-6, there are 12 vehicle types with each exterior
color, but the number of interior color choices depends on the
exterior color. As shown in Fig. 2-7, the tree diagram can be
extended to show that there are 120 different vehicle types
in the sample space.

Often we are interested in a collection of related outcomes from a random experiment.
Related outcomes can be described by subsets of the sample space and set operations can also

be applied.

Event

An event is a subset of the sample space of a random experiment.

We can also be interested in describing new events from combinations of existing events.
Because events are subsets, we can use basic set operations such as unions, intersections, and
complements to form other events of interest. Some of the basic set operations are summa-

rized below in terms of events:

e The union of two events is the event that consists of all outcomes that are contained
in either of the two events. We denote the union as E; U E,.

e The intersection of two events is the event that consists of all outcomes that are
contained in both of the two events. We denote the intersection as E; N E,.

e The complement of an event in a sample space is the set of outcomes in the sample
space that are not in the event. We denote the complement of the event E as E’. The
notation E€ is also used in other literature to denote the complement.

EXAMPLE 2-6

Consider the sample space S = {yy, yn, ny, nn} in Example 2-2.
Suppose that the subset of outcomes for which at least one part
conforms is denoted as E;. Then,

E; = {yy, yn, ny}

The event in which both parts do not conform, denoted as E,,
contains only the single outcome, E, = {nn}. Other examples

of events are E; = J, the null set, and E, = S, the sample
space. If Es = {yn, ny, nn},

E;UEs =S E; NEs = {yn, ny} E; = {nn}
Practical Interpretation: Events are used to define outcomes of
interest from a random experiment. One is often interested in
the probabilities of specified events.



EXAMPLE 2-7

Measurements of the thickness of a plastic connector might be
modeled with the sample space S = R™, the set of positive real
numbers. Let

E, ={x|10=x<12} and E,={x|11 <x <15}
Then,

E,UE, = {x|10 = x < 15}

EXAMPLE 2-8 Hospital Emergency Visits

The following table summarizes visits to emergency departments
at four hospitals in Arizona. People may leave without being seen
by a physician, and those visits are denoted as LWBS. The re-
maining visits are serviced at the emergency department, and the
visitor may or may not be admitted for a stay in the hospital.

Hospital
1 2 3 4 Total
Total 5292 6991 5640 4329 22,252
LWBS 195 270 246 242 953
Admitted 1277 1558 666 984 4485
Not admitted 3820 5163 4728 3103 16,814

Let A denote the event that a visit is to Hospital 1 and let B
denote the event that the result of the visit is LWBS. Calculate
the number of outcomes in AN B, A’,and A U B.
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and

E,NE, = {x|11 <x<12}
Also,

E/ = {x|x<10or12 =x}
and

E/ NE, = {x|12 = x < 15}

The event A N B consists of the 195 visits to Hospital 1
that result in LWBS. The event A’ consists of the visits to
Hospitals 2, 3, and 4 and contains 6991 + 5640 + 4329 =
16,690 visits. The event A U B consists of the visits to Hospi-
tal 1 or the visits that result in LWBS, or both, and contains
5292 + 270 + 246 + 242 = 6050 visits. Notice that the last
result can also be calculated as the number of visits in A plus
the number of visits in B minus the number of visits AN B
(that would otherwise be counted twice) = 5292 + 953 —
195 = 6050.

Practical Interpretation: Hospitals track visits that result in
LWBS to understand resource needs and to improve patient
services.

Diagrams are often used to portray relationships between sets, and these diagrams are also
used to describe relationships between events. We can use Venn diagrams to represent a
sample space and events in a sample space. For example, in Fig. 2-8(a) the sample space of
the random experiment is represented as the points in the rectangle S. The events A and B are
the subsets of points in the indicated regions. Figs. 2-8(b) to 2-8(d) illustrate additional joint
events. Figure 2-9 illustrates two events with no common outcomes.

Mutually
Exclusive
Events

Two events, denoted as E; and E,, such that

are said to be mutually exclusive.

ElﬂE2=@

Additional results involving events are summarized below. The definition of the comple-

ment of an event implies that

(E') =E
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ANnB
A B A B
S S
@ (b)
Sample space Swith events Aand B
(AuB) N C (AnC)
A B A B
A B
c S c <
S
(©) (d)
Figure 2-8 Venn diagrams. Figure 2-9  Mutually exclusive events.

The distributive law for set operations implies that
(AUB)NC=(ANC)UMBNC) and (ANB)UC=(AUC)N(BUC)
DeMorgan’s laws imply that
(AUBY =A'NB" and (ANB) =A"UB’
Also, remember that

ANB=BNA and AUB=BUA

2-1.4 Counting Techniques

In many of the examples in Chapter 2, it is easy to determine the number of outcomes in
each event. In more complicated examples, determining the outcomes that comprise the
sample space (or an event) becomes more difficult. Instead, counts of the numbers of
outcomes in the sample space and various events are used to analyze the random experi-
ments. These methods are referred to as counting techniques. Some simple rules can be
used to simplify the calculations.

In Example 2-4, an automobile manufacturer provides vehicles equipped with selected
options. Each vehicle is ordered

With or without an automatic transmission
With or without air conditioning

With one of three choices of a stereo system
With one of four exterior colors



Multiplication
Rule (for
counting

techniques)

EXAMPLE 2-9
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The tree diagram in Fig. 2-6 describes the sample space of all possible vehicle types. The size
of the sample space equals the number of branches in the last level of the tree, and this quantity
equals 2 X 2 X 3 X 4 = 48. This leads to the following useful result.

Assume an operation can be described as a sequence of k steps, and

the number of ways of completing step 1 is n;, and

the number of ways of completing step 2 is n, for each way of completing
step 1, and

the number of ways of completing step 3 is n; for each way of completing
step 2, and

so forth.

The total number of ways of completing the operation is

n1><n2><m><nk

In the design of a casing for a gear housing, we can use four Practical Interpretation: The multipication rule and other
different types of fasteners, three different bolt lengths, and counting techniques enables one to easily determine the num-

three different bolt locations. From the multiplication rule, ber of outcomes in a sample space or events and this, in turn,
4 X 3 X 3 = 36 different designs are possible. allows probabilities of events to be determined.
Permutations

Another useful calculation is the number of ordered sequences of the elements of a set.
Consider a set of elements, such as S = {a, b, c}. A permutation of the elements is an ordered
sequence of the elements. For example, abc, ach, bac, bca, cab, and cba are all of the permu-
tations of the elements of S.

The number of permutations of n different elements is n! where

nNf=nXnh-1)X{nh-2)X--X2X1 (2-1)

This result follows from the multiplication rule. A permutation can be constructed by select-
ing the element to be placed in the first position of the sequence from the n elements, then
selecting the element for the second position from the n — 1 remaining elements, then select-
ing the element for the third position from the remaining n — 2 elements, and so forth.
Permutations such as these are sometimes referred to as linear permutations.

In some situations, we are interested in the number of arrangements of only some of the
elements of a set. The following result also follows from the multiplication rule.
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Permutations
of Subsets

elements is

Pl=nx(n—-1)XMn-2)X - X(N-r+1)=

The number of permutations of subsets of r elements selected from a set of n different

n!
on-n 7

EXAMPLE 2-10 Printed Circuit Board

A printed circuit board has eight different locations in which a

component can be placed. If four different components are to be

placed on the board, how many different designs are possible?
Each design consists of selecting a location from the

eight locations for the first component, a location from the re-

maining seven for the second component, a location from the

remaining six for the third component, and a location from the
remaining five for the fourth component. Therefore,

8!
P§=8><7><6><5=E

= 1680 different designs are possible.

Sometimes we are interested in counting the number of ordered sequences for objects that
are not all different. The following result is a useful, general calculation.

Permutations

of Similar The number of permutations of n = n; + n, + --- + n, objects of which n, are of
Objects one type, n, are of a second type, ..., and n, are of an rth type is
n!

nd ny! ngl ... n,!

(2-3)

EXAMPLE 2-11 Machine Shop Schedule

Consider a machining operation in which a piece of sheet
metal needs two identical-diameter holes drilled and two
identical-size notches cut. We denote a drilling operation as d
and a notching operation as n. In determining a schedule for a
machine shop, we might be interested in the number of different
possible sequences of the four operations. The number of

EXAMPLE 2-12 Bar Codes

A part is labeled by printing with four thick lines, three
medium lines, and two thin lines. If each ordering of the nine
lines represents a different label, how many different labels
can be generated by using this scheme?

Combinations

possible sequences for two drilling operations and two notch-
ing operations is

41
2000

The six sequences are easily summarized: ddnn, dndn, dnnd,
nddn, ndnd, nndd.

From Equation 2-3, the number of possible part labels is

9!
413121

= 1260

Another counting problem of interest is the number of subsets of r elements that can be selected
from a set of n elements. Here, order is not important. These are called combinations. Every
subset of r elements can be indicated by listing the elements in the set and marking each
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element with a “*” if it is to be included in the subset. Therefore, each permutation of r *’ and
n — r blanks indicates a different subset and the numbers of these are obtained from Equation 2-3.
For example, if the setis S = {a, b, ¢, d}, the subset {a, c} can be indicated as

a b c d

* *

Combinations

The number of combinations, subsets of size r that can be selected from a set of n
elements, is denoted as (;) or C; and

Cr = (:) = r,(nnlr), (2-4)

EXAMPLE 2-13

A printed circuit board has eight different locations in which
a component can be placed. If five identical components are
to be placed on the board, how many different designs are

Each design is a subset of size five from the eight loca-
tions that are to contain the components. From Equation 2-4,
the number of possible designs is

possible? 8l

5131 0

The following example uses the multiplication rule in combination with Equation 2-4 to
answer a more difficult, but common, question. In random experiments in which items are
selected from a batch, an item may or may not be replaced before the next one is selected. This
is referred to as sampling with or without replacement, respectively.

EXAMPLE 2-14 Sampling without Replacement

A bin of 50 manufactured parts contains three defective parts
and 47 nondefective parts. A sample of six parts is selected
from the 50 parts without replacement. That is, each part
can only be selected once and the sample is a subset of the
50 parts. How many different samples are there of size six that
contain exactly two defective parts?

A subset containing exactly two defective parts can be
formed by first choosing the two defective parts from the
three defective parts. Using Equation 2-4, this step can be
completed in

3 3! .
(2) aTETE 3 different ways

Then, the second step is to select the remaining four parts
from the 47 acceptable parts in the bin. The second step can be
completed in

47 47! .
(4) = 178,365 different ways

Therefore, from the multiplication rule, the number of subsets
of size six that contain exactly two defective items is

3 X 178,365 = 535,095

As an additional computation, the total number of different
subsets of size six is found to be

50 50!
(6 ) = eraal 15,890,700

When probability is discussed in this chapter, the proba-
bility of an event is determined as the ratio of the number of
outcomes in the event to the number of outcomes in the
sample space (for equally likely outcomes). Therefore, the
probability that a sample contains exactly two defective parts is

535,095

15,800,700 _ 0034

Note that this example illustrates a common distribution
studied in Chapter 3 (hypergeometric distribution).
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EXERCISES FOR SECTION 2-1

Provide a reasonable description of the sample space for each
of the random experiments in Exercises 2-1 to 2-17. There can
be more than one acceptable interpretation of each experiment.
Describe any assumptions you make.

2-1. Each of three machined parts is classified as either
above or below the target specification for the part.

2-2. Each of four transmitted bits is classified as either in
error or not in error.

2-3. In the final inspection of electronic power supplies,
either units pass or three types of nonconformities might occur:
functional, minor, or cosmetic. Three units are inspected.

2-4.  The number of hits (views) is recorded at a high-volume
Web site in a day.

2-5. Each of 24 Web sites is classified as containing or not
containing banner ads.

2-6.  An ammeter that displays three digits is used to mea-
sure current in milliamperes.

2-7. A scale that displays two decimal places is used to
measure material feeds in a chemical plant in tons.

2-8. The following two questions appear on an employee

survey questionnaire. Each answer is chosen from the five-
point scale 1 (never), 2, 3, 4, 5 (always).

Is the corporation willing to listen to and fairly evaluate
new ideas?

How often are my coworkers important in my overall job
performance?

2-9. The concentration of ozone to the nearest part per billion.

2-10. The time until a service transaction is requested of a
computer to the nearest millisecond.

2-11. The pH reading of a water sample to the nearest tenth
of a unit.
2-12. The voids in a ferrite slab are classified as small,

medium, or large. The number of voids in each category is
measured by an optical inspection of a sample.

2-13. The time of a chemical reaction is recorded to the
nearest millisecond.

2-14. An order for an automobile can specify either an
automatic or a standard transmission, either with or without
air-conditioning, and any one of the four colors red, blue, black,
or white. Describe the set of possible orders for this experiment.
2-15. A sampled injection-molded part could have been
produced in either one of two presses and in any one of the
eight cavities in each press.

2-16. An order for a computer system can specify memory
of 4, 8, or 12 gigabytes, and disk storage of 200, 300, or 400
gigabytes. Describe the set of possible orders.

2-17. Calls are repeatedly placed to a busy phone line until
a connection is achieved.

2-18. Inamagnetic storage device, three attempts are made
to read data before an error recovery procedure that reposi-
tions the magnetic head is used. The error recovery procedure
attempts three repositionings before an “abort” message is
sent to the operator. Let

s denote the success of a read operation

f denote the failure of a read operation

F denote the failure of an error recovery procedure

S denote the success of an error recovery procedure

A denote an abort message sent to the operator.
Describe the sample space of this experiment with a tree
diagram.
2-19. Three events are shown on the Venn diagram in the
following figure:

Reproduce the figure and shade the region that corresponds to
each of the following events.

(@ A’ () ANB

(d)y BUCY (e (ANB)yUC
2-20. Three events are shown on the Venn diagram in the
following figure:

© (ANB)UC

Reproduce the figure and shade the region that corresponds to
each of the following events.

(@ A’ (b) (ANB)U(ANB)

() (ANB)UC (d) (BUC)

(e (ANB)yUC

2-21. A digital scale is used that provides weights to the
nearest gram.

(@) What is the sample space for this experiment?



Let A denote the event that a weight exceeds 11 grams, let B
denote the event that a weight is less than or equal to 15 grams,
and let C denote the event that a weight is greater than or equal
to 8 grams and less than 12 grams.

Describe the following events.

() AUB (c) ANB

(d) A (e) AUBUC

f) AUC) (g ANBNC

(hyBPNC (i) AUBNC)

2-22. In an injection-molding operation, the length and

width, denoted as X and Y, respectively, of each molded part
are evaluated. Let

A denote the event of 48 < X < 52 centimeters

B denote the event of 9 < Y < 11 centimeters

Construct a Venn diagram that includes these events. Shade

the areas that represent the following:

(@ A () ANB

(c) AUB (d) AUB

(e) If these events were mutually exclusive, how successful
would this production operation be? Would the process pro-
duce parts with X = 50 centimeters and Y = 10 centimeters?

2-23. Four bits are transmitted over a digital communica-
tions channel. Each bit is either distorted or received without
distortion. Let A; denote the event that the ith bit is distorted,
i=1..,4

(a) Describe the sample space for this experiment.

(b) Are the A;’s mutually exclusive?

Describe the outcomes in each of the following events:

() A (d) Ay
e AANANANA,  (f) (AtNA)U(A;NA,)
2-24. In light-dependent photosynthesis, light quality refers

to the wavelengths of light that are important. The wavelength
of a sample of photosynthetically active radiations (PAR) is
measured to the nearest nanometer. The red range is 675-700 nm
and the blue range is 450-500 nm. Let A denote the event that
PAR occurs in the red range and let B denote the event that
PAR occurs in the blue range. Describe the sample space and
indicate each of the following events:

(@ A (b) B (c) ANB (dy AUB

2-25. In control replication, cells are replicated over a
period of two days. Not until mitosis is completed can
freshly synthesized DNA be replicated again. Two control
mechanisms have been identified—one positive and one
negative. Suppose that a replication is observed in three
cells. Let A denote the event that all cells are identified as
positive and let B denote the event that all cells are negative.
Describe the sample space graphically and display each of
the following events:

(@ A (b) B

(0 ANB (d) AUB
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2-26. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized below:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let A denote the event that a disk has high shock resistance, and
let B denote the event that a disk has high scratch resistance.
Determine the number of disks in AN B, A’,and A U B.
2-27. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and edge finish. The
results of 100 parts are summarized as follows:

edge finish
excellent good
surface excellent 80 2
finish good 10 8

(a) Let A denote the event that a sample has excellent surface
finish, and let B denote the event that a sample has excel-
lent edge finish. Determine the number of samples in
A’'NB,B,and AUB.

(b) Assume that each of two samples is to be classified on the
basis of surface finish, either excellent or good, and on the
basis of edge finish, either excellent or good. Use a tree
diagram to represent the possible outcomes of this
experiment.

2-28. Samples of emissions from three suppliers are classi-

fied for conformance to air-quality specifications. The results

from 100 samples are summarized as follows:

conforms
yes no
1 22 8
supplier 2 25 5
3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
Determine the number of samples in A’ M B, B/, and A U B.

2-29. The rise time of a reactor is measured in minutes
(and fractions of minutes). Let the sample space be positive,
real numbers. Define the events A and B as follows:
A = {x|x <725} and B = {x|x > 52.5}.

Describe each of the following events:

(@ A’ (b) B’

(c) ANB (d) AUB
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2-30. A sample of two items is selected without replace-
ment from a batch. Describe the (ordered) sample space for
each of the following batches:

(@) The batch contains the items {a, b, c, d}.

(b) The batch contains the items {a, b, c, d, e, f, g}.

(c) The batch contains 4 defective items and 20 good items.
(d) The batch contains 1 defective item and 20 good items.

2-31. A sample of two printed circuit boards is selected
without replacement from a batch. Describe the (ordered) sample
space for each of the following batches:

(a) The batch contains 90 boards that are not defective, eight
boards with minor defects, and two boards with major
defects.

(b) The batch contains 90 boards that are not defective, eight
boards with minor defects, and one board with major
defects.

2-32. Counts of the Web pages provided by each of two

computer servers in a selected hour of the day are recorded.

Let A denote the event that at least 10 pages are provided by

server 1 and let B denote the event that at least 20 pages are

provided by server 2.

(a) Describe the sample space for the numbers of pages for
the two servers graphically in an x — y plot.

Show each of the following events on the sample space graph:

(b) A (c) B

(d ANB () AUB

2-33. The rise time of a reactor is measured in minutes (and

fractions of minutes). Let the sample space for the rise time of

each batch be positive, real numbers. Consider the rise times

of two batches. Let A denote the event that the rise time of

batch 1 is less than 72.5 minutes, and let B denote the event

that the rise time of batch 2 is greater than 52.5 minutes.
Describe the sample space for the rise time of two batches

graphically and show each of the following events on a two-

dimensional plot:

@ A (b) B’

() ANB (d) AUB

2-34. A wireless garage door opener has a code determined

by the up or down setting of 12 switches. How many out-

comes are in the sample space of possible codes?

2-35.  An order for a computer can specify any one of five
memory sizes, any one of three types of displays, and any one of
four sizes of a hard disk, and can either include or not include a
pen tablet. How many different systems can be ordered?

2-36. In a manufacturing operation, a part is produced by
machining, polishing, and painting. If there are three machine
tools, four polishing tools, and three painting tools, how many
different routings (consisting of machining, followed by pol-
ishing, and followed by painting) for a part are possible?
2-37. New designs for a wastewater treatment tank have
proposed three possible shapes, four possible sizes, three loca-
tions for input valves, and four locations for output valves.
How many different product designs are possible?

2-38. A manufacturing process consists of 10 operations
that can be completed in any order. How many different pro-
duction sequences are possible?

2-39. A manufacturing operation consists of 10 operations.
However, five machining operations must be completed before
any of the remaining five assembly operations can begin.
Within each set of five, operations can be completed in any
order. How many different production sequences are possible?

2-40. In a sheet metal operation, three notches and four

bends are required. If the operations can be done in any order,

how many different ways of completing the manufacturing are

possible?

2-41. A batch of 140 semiconductor chips is inspected by

choosing a sample of five chips. Assume 10 of the chips do not

conform to customer requirements.

(a) How many different samples are possible?

(b) How many samples of five contain exactly one noncon-
forming chip?

(c) How many samples of five contain at least one noncon-
forming chip?

2-42. In the layout of a printed circuit board for an elec-

tronic product, there are 12 different locations that can accom-

modate chips.

(a) If five different types of chips are to be placed on the
board, how many different layouts are possible?

(b) If the five chips that are placed on the board are of the
same type, how many different layouts are possible?

2-43. Inthe laboratory analysis of samples from a chemical

process, five samples from the process are analyzed daily. In

addition, a control sample is analyzed two times each day to
check the calibration of the laboratory instruments.

(@) How many different sequences of process and control
samples are possible each day? Assume that the five
process samples are considered identical and that the two
control samples are considered identical.

(b) How many different sequences of process and control
samples are possible if we consider the five process samples
to be different and the two control samples to be identical?

(c) For the same situation as part (b), how many sequences
are possible if the first test of each day must be a control
sample?

2-44. In the design of an electromechanical product, 12

components are to be stacked into a cylindrical casing in a

manner that minimizes the impact of shocks. One end of the

casing is designated as the bottom and the other end is the top.

(a) If all components are different, how many different de-
signs are possible?

(b) If seven components are identical to one another, but the oth-
ers are different, how many different designs are possible?

(c) If three components are of one type and identical to one
another, and four components are of another type and
identical to one another, but the others are different, how
many different designs are possible?
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2-45. Consider the design of a communication system.

(a) How many three-digit phone prefixes that are used to rep-
resent a particular geographic area (such as an area code)
can be created from the digits 0 through 9?

(b) As in part (a), how many three-digit phone prefixes are
possible that do not start with 0 or 1, but contain 0 or 1 as
the middle digit?

(c) How many three-digit phone prefixes are possible in
which no digit appears more than once in each prefix?
2-46. A byte is a sequence of eight bits and each bit is

either 0 or 1.

(a) How many different bytes are possible?

(b) If the first bit of a byte is a parity check, that is, the first
byte is determined from the other seven bits, how many
different bytes are possible?

2-47. Inachemical plant, 24 holding tanks are used for final
product storage. Four tanks are selected at random and without
replacement. Suppose that six of the tanks contain material in
which the viscosity exceeds the customer requirements.

(a) What is the probability that exactly one tank in the sample
contains high-viscosity material?

(b) What is the probability that at least one tank in the sample
contains high-viscosity material?

(c) Inaddition to the six tanks with high viscosity levels, four
different tanks contain material with high impurities.
What is the probability that exactly one tank in the sample
contains high-viscosity material and exactly one tank in
the sample contains material with high impurities?

2-48. Plastic parts produced by an injection-molding opera-
tion are checked for conformance to specifications. Each tool
contains 12 cavities in which parts are produced, and these
parts fall into a conveyor when the press opens. An inspector
chooses three parts from among the 12 at random. Two cavi-
ties are affected by a temperature malfunction that results in
parts that do not conform to specifications.
(@) What is the probability that the inspector finds exactly one
nonconforming part?
(b) What is the probability that the inspector finds at least one
nonconforming part?
2-49. A bin of 50 parts contains five that are defective. A
sample of two parts is selected at random, without replace-
ment. Determine the probability that both parts in the sample
are defective.

2-50. The following table summarizes 204 endothermic re-
actions involving sodium bicarbonate.

Final Temperature Heat Absorbed (cal)

Conditions Below Target Above Target
266 K 12 40
271 K 44 16
274 K 56 36

Let A denote the event that a reaction final temperature is 271 K
or less. Let B denote the event that the heat absorbed is below
target. Determine the number of reactions in each of the fol-
lowing events.

@ ANB (b) A (c) AUB (d) AUB’' (e) AANB’
2-51. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. How many different designs are possible?

2-52. Consider the hospital emergency department data in
Example 2-8. Let A denote the event that a visit is to Hospital
1 and let B denote the event that a visit results in admittance to
any hospital. Determine the number of persons in each of the
following events.

@ ANB (b) A (c) AUB (d) AUB’' (e) AANB’
2-53. An article in The Journal of Data Science [“A
Statistical Analysis of Well Failures in Baltimore County”
(2009, Vol. 7, pp. 111-127)] provided the following table of
well failures for different geological formation groups in
Baltimore County.

Wells
Geological Formation Group Failed Total
Gneiss 170 1685
Granite 2 28
Loch raven schist 443 3733
Mafic 14 363
Marble 29 309
Prettyboy schist 60 1403
Other schists 46 933
Serpentine 3 39

Let A denote the event that the geological formation has more
than 1000 wells and let B denote the event that a well failed.
Determine the number of wells in each of the following events.
@ ANB (b) A (c) AUB (d) AUB" (e) AANB’

2-2 INTERPRETATIONS AND AXIOMS OF PROBABILITY

In this chapter, we introduce probability for discrete sample spaces—those with only a finite
(or countably infinite) set of outcomes. The restriction to these sample spaces enables us to
simplify the concepts and the presentation without excessive mathematics.

Probability is used to quantify the likelihood, or chance, that an outcome of a random
experiment will occur. “The chance of rain today is 30%” is a statement that quantifies our
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Figure 2-10 Relative
frequency of corrupted
pulses sent over a com-
munication channel.
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Outcomes
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Relative frequency of corrupted pulse = 12—0

feeling about the possibility of rain. The likelihood of an outcome is quantified by assigning
a number from the interval [0, 1] to the outcome (or a percentage from O to 100%). Higher
numbers indicate that the outcome is more likely than lower numbers. A 0 indicates an outcome
will not occur. A probability of 1 indicates an outcome will occur with certainty.

The probability of an outcome can be interpreted as our subjective probability, or
degree of belief, that the outcome will occur. Different individuals will no doubt assign dif-
ferent probabilities to the same outcomes. Another interpretation of probability is based on
the conceptual model of repeated replications of the random experiment. The probability of
an outcome is interpreted as the limiting value of the proportion of times the outcome oc-
curs in n repetitions of the random experiment as n increases beyond all bounds. For
example, if we assign probability 0.2 to the outcome that there is a corrupted pulse in a dig-
ital signal, we might interpret this assignment as implying that, if we analyze many pulses,
approximately 20% of them will be corrupted. This example provides a relative frequency
interpretation of probability. The proportion, or relative frequency, of replications of the ex-
periment that result in the outcome is 0.2. Probabilities are chosen so that the sum of the
probabilities of all outcomes in an experiment adds up to 1. This convention facilitates
the relative frequency interpretation of probability. Figure 2-10 illustrates the concept of rel-
ative frequency.

Probabilities for a random experiment are often assigned on the basis of a reasonable
model of the system under study. One approach is to base probability assignments on the
simple concept of equally likely outcomes.

For example, suppose that we will select one laser diode randomly from a batch of 100.
Randomly implies that it is reasonable to assume that each diode in the batch has an equal chance
of being selected. Because the sum of the probabilities must equal 1, the probability model for this
experiment assigns probability of 0.01 to each of the 100 outcomes. We can interpret the proba-
bility by imagining many replications of the experiment. Each time we start with all 100 diodes
and select one at random. The probability 0.01 assigned to a particular diode represents the
proportion of replicates in which a particular diode is selected. When the model of equally likely
outcomes is assumed, the probabilities are chosen to be equal.

Whenever a sample space consists of N possible outcomes that are equally likely, the
probability of each outcome is 1/N.

It is frequently necessary to assign probabilities to events that are composed of several
outcomes from the sample space. This is straightforward for a discrete sample space.
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Figure 2-11
Probability of the
event E is the sum of

i

™ Diodes

the probabilities of the
outcomes in E. P(E) = 30(0.01) = 0.30
EXAMPLE 2-15 Laser Diodes

Assume that 30% of the laser diodes in a batch of 100 meet the
minimum power requirements of a specific customer. If a laser
diode is selected randomly, that is, each laser diode is equally
likely to be selected, our intuitive feeling is that the probabil-
ity of meeting the customer’s requirements is 0.30.

Let E denote the subset of 30 diodes that meet the cus-
tomer’s requirements. Because E contains 30 outcomes and
each outcome has probability 0.01, we conclude that the
probability of E is 0.3. The conclusion matches our intu-
ition. Figure 2-11 illustrates this example.

For a discrete sample space, the probability of an event can be defined by the reasoning

used in the example above.

Probability of
an Event For a discrete sample space, the probability of an event E, denoted as P(E), equals the
sum of the probabilities of the outcomes in E.
EXAMPLE 2-16

A random experiment can result in one of the outcomes {a, b, ¢, d}
with probabilities 0.1, 0.3, 0.5, and 0.1, respectively. Let A denote
the event {a, b}, B the event {b, c, d}, and C the event {d}.Then,

P(A) = 0.1 + 0.3 = 0.4
P(B) =03+ 05+ 0.1 = 0.9
P(C) = 0.1

EXAMPLE 2-17 Contamination Particles

A visual inspection of a location on wafers from a semicon-
ductor manufacturing process resulted in the following table:

Number of
Contamination

Particles Proportion of Wafers
0 0.40

1 0.20

2 0.15

3 0.10

4 0.05

5 or more 0.10

If one wafer is selected randomly from this process and the
location is inspected, what is the probability that it contains no
particles? If information were available for each wafer, we could
define the sample space as the set of all wafers inspected and
proceed as in the example with diodes. However, this level of

Also, P(A") = 0.6, P(B") = 0.1, and P(C’) = 0.9. Further-
more, because AN B = {b}, P(AMN B) = 0.3. Because
AUB={a,b,c,d}, PAUB)=0.1+03+05+0.1=1.
Because A N C is the null set, P(AN C) = 0.

detail is not needed in this case. We can consider the sample
space to consist of the six categories that summarize the number
of contamination particles on a wafer. Each category has proba-
bility equal to the proportion of wafers in the category. The event
that there is no contamination particle in the inspected location
on the wafer, denoted as E, can be considered to be comprised of
the single outcome, namely, E = {0}. Therefore,

P(E) = 0.4

What is the probability that a wafer contains three or
more particles in the inspected location? Let E denote the
event that a wafer contains three or more particles in the in-
spected location. Then, E consists of the three outcomes {3, 4,
5 or more}. Therefore,

P(E) = 0.10 + 0.05 + 0.10 = 0.25

Practical Interpretation: Contamination levels affect the yield of
functional devices in semiconductor manufacturing so that
probabilities such as these are regularly studied.



34 CHAPTER 2 PROBABILITY

EXAMPLE 2-18

Often more than one item is selected from a batch without replacement when production
is inspected. In this case, randomly selected implies that each possible subset of items is
equally likely.

Suppose a batch contains six parts {a, b, c, d, e, f} and two ation there are 15 outcomes. Let E denote the event that part f

parts are selected randomly, without replacement. Suppose is in the sample. Then E can be written as E = {{a, f}, {b, f},
that part f is defective, but the others are good. What is the {c, f}, {d, T}, {e, f}}. Because each outcome is equally likely,
probability that part f appears in the sample? P(E) = 5/15 = 1/3.

The sample space consists of all possible (unordered) pairs
selected without replacement. From Equation 2-4 or by enumer-

Axioms of
Probability

Now that the probability of an event has been defined, we can collect the assumptions that
we have made concerning probabilities into a set of axioms that the probabilities in any ran-
dom experiment must satisfy. The axioms ensure that the probabilities assigned in an experi-
ment can be interpreted as relative frequencies and that the assignments are consistent with
our intuitive understanding of relationships between relative frequencies. For example, if
event A is contained in event B, we should have P(A) = P(B). The axioms do not determine
probabilities; the probabilities are assigned based on our knowledge of the system under
study. However, the axioms enable us to easily calculate the probabilities of some events from
knowledge of the probabilities of other events.

Probability is a number that is assigned to each member of a collection of events
from a random experiment that satisfies the following properties:

If S is the sample space and E is any event in a random experiment,

1) P =1

2 0=P(E)=1

(3) For two events E, and E, with E; N E, = &

P(E; U Ey) = P(Ey) + P(Ey)

The property that 0 = P(E) = 1 is equivalent to the requirement that a relative frequency
must be between 0 and 1. The property that P(S) = 1 is a consequence of the fact that an
outcome from the sample space occurs on every trial of an experiment. Consequently, the
relative frequency of S is 1. Property 3 implies that if the events E; and E, have no outcomes
in common, the relative frequency of outcomes in E; U E, is the sum of the relative frequen-
cies of the outcomes in E; and E,.

These axioms imply the following results. The derivations are left as exercises at the end
of this section. Now,

P(@) = 0

and for any event E,
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For example, if the probability of the event E is 0.4, our interpretation of relative
frequency implies that the probability of E’ is 0.6. Furthermore, if the event E; is contained

in the event E,,

EXERCISES FOR SECTION 2-2

P(E1) = P(Ey)

2-54. Each of the possible five outcomes of a random ex-
periment is equally likely. The sample space is {a, b, c, d, e}.
Let A denote the event {a, b}, and let B denote the event
{c, d, e}. Determine the following:

(@) P(A) (b) P(B)

(¢) P(A) (d) P(AUB)

(e) P(ANB)

2-55.  The sample space of a random experiment is {a, b, c,

d, e} with probabilities 0.1, 0.1, 0.2, 0.4, and 0.2, respectively.
Let A denote the event {a, b, c}, and let B denote the event
{c, d, e}. Determine the following:

(a) P(A) (b) P(B)

(c) P(A") (d) P(AUB)

(e) P(A NB)

2-56. Orders for a computer are summarized by the op-

tional features that are requested as follows:

proportion of orders

no optional features 0.3
one optional feature 0.5
more than one optional feature 0.2

(a) What is the probability that an order requests at least one
optional feature?

(b) What is the probability that an order does not request
more than one optional feature?

2-57. If the last digit of a weight measurement is equally

likely to be any of the digits O through 9,

(a) What is the probability that the last digit is 0?

(b) What is the probability that the last digit is greater than or
equal to 5?

2-58. A part selected for testing is equally likely to have

been produced on any one of six cutting tools.

(a) What is the sample space?

(b) What is the probability that the part is from tool 1?

(c) What is the probability that the part is from tool 3 or tool 5?

(d) What is the probability that the part is not from tool 4?

2-59. An injection-molded part is equally likely to be ob-

tained from any one of the eight cavities on a mold.

(@) What is the sample space?

(b) What is the probability a part is from cavity 1 or 2?

(c) What is the probability that a part is from neither cavity 3
nor 4?

2-60. In an acid-base titration, a base or acid is gradually
added to the other until they have completely neutralized
each other. Because acids and bases are usually colorless (as
are the water and salt produced in the neutralization reac-
tion), pH is measured to monitor the reaction. Suppose that
the equivalence point is reached after approximately 100 mL
of a NaOH solution have been added (enough to react with
all the acetic acid present) but that replicates are equally
likely to indicate from 95 to 104 mL to the nearest mL.
Assume that volumes are measured to the nearest mL and
describe the sample space.
(a) What is the probability that equivalence is indicated at
100 mL?
(b) What is the probability that equivalence is indicated at
less than 100 mL?
(c) What is the probability that equivalence is indicated be-
tween 98 and 102 mL (inclusive)?
2-61. In a NiCd battery, a fully charged cell is composed
of Nickelic Hydroxide. Nickel is an element that has multiple
oxidation states that is usually found in the following states:

nickel charge proportions found

0 0.17
+2 0.35
+3 0.33
+4 0.15

(a) What is the probability that a cell has at least one of the
positive nickel-charged options?

(b) What is the probability that a cell is not composed of a
positive nickel charge greater than +3?

2-62. A credit card contains 16 digits between 0 and 9.
However, only 100 million numbers are valid. If a number is
entered randomly, what is the probability that it is a valid
number?

2-63. Suppose your vehicle is licensed in a state that issues
license plates that consist of three digits (between 0 and 9) fol-
lowed by three letters (between A and Z). If a license number
is selected randomly, what is the probability that yours is the
one selected?

2-64. A message can follow different paths through servers
on a network. The sender’s message can go to one of five
servers for the first step; each of them can send to five servers
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at the second step; each of those can send to four servers at the

third step; and then the message goes to the recipient’s server.

(&) How many paths are possible?

(b) Ifall paths are equally likely, what is the probability that a
message passes through the first of four servers at the
third step?

2-65. Magnesium alkyls are used as homogenous catalysts
in the production of linear low-density polyethylene (LLDPE),
which requires a finer magnesium powder to sustain a reaction.
Redox reaction experiments using four different amounts of
magnesium powder are performed. Each result may or may not
be further reduced in a second step using three different mag-
nesium powder amounts. Each of these results may or may not
be further reduced in a third step using three different amounts
of magnesium powder.

(a) How many experiments are possible?

(b) Ifall outcomes are equally likely, what is the probability that
the best result is obtained from an experiment that uses all
three steps?

(c) Does the result in the previous question change if five or
six or seven different amounts are used in the first step?
Explain.

2-66. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Average Frequencies and Operations in TPC-C

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resist-
ance. If a disk is selected at random, determine the following
probabilities:

(@) P(A) (b) P(B)

(©) P(A) (d) P(ANB)

(e) P(AUB) (f) P(A’UB)

2-67. Samples of emissions from three suppliers are classi-

fied for conformance to air-quality specifications. The results
from 100 samples are summarized as follows:

conforms
yes no
1 22 8
supplier 2 25 5
3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
If a sample is selected at random, determine the following
probabilities:

(@) P(A) (b) P(B)

(©) P(A") (d) P(ANB)

(e) P(AUB) (f) P(A"UB)

2-68. An article in the Journal of Database Management

[“Experimental Study of a Self-Tuning Algorithm for DBMS
Buffer Pools” (2005, Vol. 16, pp. 1-20)] provided the workload
used in the TPC-C OLTP (Transaction Processing Performance
Council’s Version C On-Line Transaction Processing) bench-
mark, which simulates a typical order entry application.

Transaction Frequency Selects Updates Inserts Deletes Non-Unique Selects Joins
New order 43 23 11 12 0 0 0
Payment 44 4.2 3 1 0 0.6 0
Order status 4 11.4 0 0 0 0.6 0
Delivery 5 130 120 0 10 0 0
Stock level 4 0 0 0 0 0 1

The frequency of each type of transaction (in the second
column) can be used as the percentage of each type of trans-
action. The average number of selects operations required for
each type of transaction is shown. Let A denote the event of
transactions with an average number of selects operations of
12 or fewer. Let B denote the event of transactions with an
average number of updates operations of 12 or fewer.
Calculate the following probabilities.
(a) P(A) (b) P(B)

(d) P(ANB) (e) P(AUB)

(c) P(ANB)

2-69. Use the axioms of probability to show the following:
(a) ForanyeventE, P(E') =1 — P(E).

(b) P(0) =0

(c) If Aiis contained in B, then P(A) = P(B).

2-70. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target.

Determine the following probabilities.
() P(ANB) (b) P(A)

(d) P(AUDB) (e) P(A'NB")

(c) P(AUB)



2-71. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. A specific design is randomly generated by the Web
server when you visit the site. If you visit the site five times, what
is the probability that you will not see the same design?

2-72. Consider the hospital emergency room data in
Example 2-8. Let A denote the event that a visit is to Hospital
4 and let B denote the event that a visit results in LWBS (at any
hospital). Determine the following probabilities.

2-3 ADDITION RULES
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(@ P(ANB) (b) P(A") (c) P(AUB)
(d) P(AUB) (e) P(A'NB")
2-73. Consider the well failure data in Exercise 2-53. Let A

denote the event that the geological formation has more than
1000 wells and let B denote the event that a well failed.
Determine the following probabilities.
(@ P(ANB) (b) P(A")

(d) P(AUB) (e) P(A'NB")

() P(AUB)

Joint events are generated by applying basic set operations to individual events. Unions of
events, such as A U B; intersections of events, such as A M B; and complements of events,
such as A’, are commonly of interest. The probability of a joint event can often be determined
from the probabilities of the individual events that comprise it. Basic set operations are also
sometimes helpful in determining the probability of a joint event. In this section the focus is

on unions of events.

EXAMPLE 2-19 Semiconductor Wafers
Table 2-1 lists the history of 940 wafers in a semiconductor
manufacturing process. Suppose one wafer is selected at
random. Let H denote the event that the wafer contains high
levels of contamination. Then, P(H) = 358/940.

Let C denote the event that the wafer is in the center of a
sputtering tool. Then, P(C) = 626/940. Also, P(H N C) is the
probability that the wafer is from the center of the sputtering
tool and contains high levels of contamination. Therefore,

P(H N C) = 112/940

The event H U C is the event that a wafer is from the
center of the sputtering tool or contains high levels of contam-

ination (or both). From the table, P(H U C) = 872/940. An
alternative calculation of P(H U C) can be obtained as fol-
lows. The 112 wafers that comprise the event HMN C are
included once in the calculation of P(H) and again in the cal-
culation of P(C). Therefore, P(H U C) can be found to be

P(HUC) =P(H) + P(C) — P(HNC)
= 358/940 + 626/940 — 112/940 = 872/940

Practical Interpretation: To better understand the sources of
contamination, yield from defferent locations on wafers are rou-
tinely aggregated.

The preceding example illustrates that the probability of A or B is interpreted as P(A U B)
and that the following general addition rule applies.

Table 2-1

Wafers in Semiconductor Manufacturing Classified

by Contamination and Location

L ocation in Sputtering Tool

Contamination Center Edge Total
Low 514 68 582
High 112 246 358
Total 626 314
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Probability of
a Union

P(AUB) = P(A) + P(B) — P(A N B)

(2-5)

EXAMPLE 2-20 Semiconductor Wafers and Location

The wafers in Example 2-19 were further classified by the
degree of contamination. Table 2-2 shows the proportion of
wafers in each category. What is the probability that a wafer
was either at the edge or that it contains four or more particles?
Let E, denote the event that a wafer contains four or more par-
ticles, and let E, denote the event that a wafer was at the edge.

The requested probability is P(E;UE;). Now,
P(E;) = 0.15 and P(E;) = 0.28. Also, from the table,
P(E; N E,) = 0.04. Therefore, using Equation 2-1, we find that

P(E; UE,) = 0.15 + 0.28 — 0.04 = 0.39

What is the probability that a wafer contains less than
two particles or that it is both at the edge and contains more
than four particles? Let E, denote the event that a wafer
contains less than two particles, and let E, denote the event
that a wafer is both at the edge and contains more than four
particles. The requested probability is P(E; U E,). Now,
P(E;) = 0.60 and P(E,) = 0.03. Also, E, and E, are mutually
exclusive. Consequently, there are no wafers in the intersec-
tion and P(E; N E,) = 0. Therefore,

P(E; UE,) = 0.60 + 0.03 = 0.63

Recall that two events A and B are said to be mutually exclusive if AN B = J. Then,
P(AMNB) = 0, and the general result for the probability of A U B simplifies to the third

axiom of probability.

P(A U B) = P(A) + P(B)

If A and B are mutually exclusive events,

(2-6)

Three or More Events

More complicated probabilities, such as P(A U B U C), can be determined by repeated use
of Equation 2-5 and by using some basic set operations. For example,

PAUBUC)=P[(AUB)UC] =P(AUB) + P(C) — P[(AUB)NC]

Table 2-2 Wafers Classified by Contamination and Location

Number of
Contamination

Particles Center Edge Totals
0 0.30 0.10 0.40
1 0.15 0.05 0.20
2 0.10 0.05 0.15
3 0.06 0.04 0.10
4 0.04 0.01 0.05
5 or more 0.07 0.03 0.10
Totals 0.72 0.28 1.00




Mutually Exclusive
Events

Figure 2-12  Venn
diagram of four mutu-
ally exclusive events.
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Upon expanding P(A U B) by Equation 2-5 and using the distributed rule for set opera-
tions to simplify P[(A U B) N C], we obtain

P(AUBUC) = P(A) + P(B) — P(ANB) + P(C) — P[(ANC) U (BN C)]
= P(A) + P(B) — P(AN B) + P(C)
~[P(ANC) + P(BNC)— PANBNC)]
= P(A) + P(B) + P(C) - P(ANB) ~ P(ANC)
PBNC)+PANBNC)

We have developed a formula for the probability of the union of three events. Formulas can be
developed for the probability of the union of any number of events, although the formulas
become very complex. As a summary, for the case of three events,

P(AUBUC) = P(A) + P(B) + P(C) — P(AN B)
~P(ANC) - P(BNC)+PANBNC) (27)

Results for three or more events simplify considerably if the events are mutually exclu-
sive. In general, a collection of events, Eq, E,, ..., E,, issaid to be mutually exclusive if there
is no overlap among any of them. The Venn diagram for several mutually exclusive events is
shown in Fig. 2-12. By generalizing the reasoning for the union of two events, the following
result can be obtained:

A collection of events, Ey, E,, ..., Ey, is said to be mutually exclusive if for all pairs,
Ei ﬂ EJ = @
For a collection of mutually exclusive events,

P(El U E2 U ..U Ek) = P(El) + P(E?_) + ... P(Ek) (2'8)
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EXAMPLE 2-21 pH

A simple example of mutually exclusive events will be used
quite frequently. Let X denote the pH of a sample. Consider
the event that X is greater than 6.5 but less than or equal to 7.8.
This probability is the sum of any collection of mutually ex-
clusive events with union equal to the same range for X. One
example is

P(65<X=78)=P65<X=70)+P70<X=175)
+P(75<X=78)

EXERCISES FOR SECTION 2-3

Another example is

P(6.5 < X = 7.8) = P(6.5 < X = 6.6) + P(6.6 <X = 7.1)
+P(7.1<X=74)+P(74<X=178)

The best choice depends on the particular probabilities
available.

Practical Interpretation: The partition of an event into mu-
tually exclusive subsets is widely used in later chapters to cal-
culate probabilities.

2-74. 1f P(A)=0.3, P(B)=0.2, and P(ANB) = 0.1,
determine the following probabilities:

(@) P(A") (b) P(AUB) (c) P(A’ N B)

(d) P(ANB) (e) P[(AUB)'] (f) P(A’UB)

2-75. If A, B, and C are mutually exclusive events with

P(A) = 0.2,P(B) = 0.3,and P(C) = 0.4, determine the fol-
lowing probabilities:
(@ P(AUBUC)
(c) P(ANB)

(e) PA’NB'NC)
2-76. In the article “ACL Reconstruction Using Bone-
Patellar Tendon-Bone Press-Fit Fixation: 10-Year Clinical
Results” in Knee Surgery, Sports Traumatology, Arthroscopy
(2005, Vol. 13, pp. 248-255), the following causes for knee
injuries were considered:

() PANBNC)
d) P[(AUB)NC]

Percentage of

Activity Knee Injuries
Contact sport 46%
Noncontact sport 44%
Activity of daily living 9%
Riding motorcycle 1%

(a) What is the probability a knee injury resulted from a sport
(contact or noncontact)?

(b) What is the probability a knee injury resulted from an ac-
tivity other than a sport?

2-77. Disks of polycarbonate plastic from a supplier are an-

alyzed for scratch and shock resistance. The results from 100

disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

(@) If adisk is selected at random, what is the probability that
its scratch resistance is high and its shock resistance is high?
(b) If adisk is selected at random, what is the probability that
its scratch resistance is high or its shock resistance is high?

(c) Consider the event that a disk has high scratch resistance
and the event that a disk has high shock resistance. Are
these two events mutually exclusive?

2-78. Strands of copper wire from a manufacturer are ana-

lyzed for strength and conductivity. The results from 100

strands are as follows:

high low
high conductivity 74 8
low conductivity 15 3

(@) If a strand is randomly selected, what is the probability
that its conductivity is high and its strength is high?

(b) If a strand is randomly selected, what is the probability
that its conductivity is low or the strength is low?

(c) Consider the event that a strand has low conductivity and
the event that the strand has a low strength. Are these two
events mutually exclusive?

2-79. The analysis of shafts for a compressor is summarized

by conformance to specifications.

roundness conforms

yes no
surface finish yes 345 5
conforms no 12 8

(a) Ifashaftis selected at random, what is the probability that
the shaft conforms to surface finish requirements?

(b) What is the probability that the selected shaft conforms to
surface finish requirements or to roundness requirements?

(c) What is the probability that the selected shaft either con-
forms to surface finish requirements or does not conform
to roundness requirements?

(d) What is the probability that the selected shaft conforms to
both surface finish and roundness requirements?

2-80. Cooking oil is produced in two main varieties: mono-
and polyunsaturated. Two common sources of cooking oil are



corn and canola. The following table shows the number of
bottles of these oils at a supermarket:

type of oil
canola corn
type of mono 7 13
unsaturation poly 93 77

(a) If a bottle of oil is selected at random, what is the proba-
bility that it belongs to the polyunsaturated category?

(b) What is the probability that the chosen bottle is monoun-
saturated canola oil?

2-81. A manufacturer of front lights for automobiles tests
lamps under a high-humidity, high-temperature environment
using intensity and useful life as the responses of interest.
The following table shows the performance of 130 lamps:

useful life
satisfactory unsatisfactory
intensity satisfactory 117 3
unsatisfactory 8 2

(a) Find the probability that a randomly selected lamp will
yield unsatisfactory results under any criteria.

(b) The customers for these lamps demand 95% satisfactory
results. Can the lamp manufacturer meet this demand?

2-82. A computer system uses passwords that are six char-
acters and each character is one of the 26 letters (a—z) or 10 in-
tegers (0-9). Uppercase letters are not used. Let A denote the
event that a password begins with a vowel (either a, e, i, 0, or
u) and let B denote the event that a password ends with an even
number (either 0, 2, 4, 6, or 8). Suppose a hacker selects a
password at random. Determine the following probabilities:
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(@) P(A) (b) P(B)
(c) P(ANB) (d) P(AUB)
2-83. Consider the endothermic reactions in Exercise 2-50.

Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target. Use the addition rules to calculate the following
probabilities.
(@) P(AUB)
(c) P(A"UB")
2-84. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. A specific design is randomly generated by the Web
server when you visit the site. Let A denote the event that the
design color is red and let B denote the event that the font size
is not the smallest one. Use the addition rules to calculate the
following probabilities.
(@) P(AUB)

(c) P(A"UB")

2-85. Consider the hospital emergency room data in Example
2-8. Let A denote the event that a visit is to Hospital 4 and let B
denote the event that a visit results in LWBS (at any hospital).
Use the addition rules to calculate the following probabilities.
(@ P(AUB) (b) P(AUB)

(c) P(A"UB")

2-86. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than
1000 wells and let B denote the event that a well failed. Use
the addition rules to calculate the following probabilities.

(@ P(AUB) (b) P(AUDB)

(c) P(A"UB")

(b) P(AUB)

(b) P(AUB’)

Sometimes probabilities need to be reevaluated as additional information becomes available.
A useful way to incorporate additional information into a probability model is to assume that
the outcome that will be generated is a member of a given event. This event, say A, defines the
conditions that the outcome is known to satisfy. Then probabilities can be revised to include
this knowledge. The probability of an event B under the knowledge that the outcome will be
in event A is denoted as

P(BIA)

and this is called the conditional probability of B given A.

A digital communication channel has an error rate of one bit per every thousand trans-
mitted. Errors are rare, but when they occur, they tend to occur in bursts that affect many con-
secutive bits. If a single bit is transmitted, we might model the probability of an error as
1/1000. However, if the previous bit was in error, because of the bursts, we might believe that
the probability that the next bit is in error is greater than 1,/1000.

In a thin film manufacturing process, the proportion of parts that are not acceptable is 2%.
However, the process is sensitive to contamination problems that can increase the rate of parts
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P(D|F) = 0.25

25%
defective

Figure 2-13

> 5% defective
P(D|F) = 0.05

Conditional probabili-

ties for parts with
surface flaws.

F = parts with
surface flaws

F' = parts without
surface flaws

that are not acceptable. If we knew that during a particular shift there were problems with the
filters used to control contamination, we would assess the probability of a part being unac-

ceptable as higher than 2%.

In a manufacturing process, 10% of the parts contain visible surface flaws and 25% of the
parts with surface flaws are (functionally) defective parts. However, only 5% of parts without sur-
face flaws are defective parts. The probability of a defective part depends on our knowledge of
the presence or absence of a surface flaw. Let D denote the event that a part is defective and let F
denote the event that a part has a surface flaw. Then, we denote the probability of D given, or as-
suming, that a part has a surface flaw as P(D | F). Because 25% of the parts with surface flaws are
defective, our conclusion can be stated as P(D|F) = 0.25. Furthermore, because F’ denotes the
event that a part does not have a surface flaw and because 5% of the parts without surface flaws
are defective, we have P(D|F’) = 0.05. These results are shown graphically in Fig. 2-13.

EXAMPLE 2-22

Table 2-3 provides an example of 400 parts classified by
surface flaws and as (functionally) defective. For this table the
conditional probabilities match those discussed previously in
this section. For example, of the parts with surface flaws
(40 parts) the number of defective ones is 10. Therefore,

P(D|F) = 10/40 = 0.25

and of the parts without surface flaws (360 parts) the number
of defective ones is 18. Therefore,

P(D|F") = 18/360 = 0.05

Practical Interpretation: The probability of defective is five
times greater for parts with surface flaws. This calculation il-
lustrates how probabilities are adjusted for additional informa-
tion. The result also suggests that there may be a link between
surface flaws and functionally defective parts that should be
investigated.

In Example 2-22 conditional probabilities were calculated directly. These probabilities can
also be determined from the formal definition of conditional probability.

Conditional
Probability

The conditional probability of an event B given an event A, denoted as P(B|A), is

P(B|A) = P(A N B)/P(A) (2-9)
for P(A) > 0.
Table 2-3  Parts Classified
Surface Flaws

Yes (event F) No Total

Defective Yes (event D) 10 18 28
No 30 342 372

Total 40 360 400
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This definition can be understood in a special case in which all outcomes of a random exper-
iment are equally likely. If there are n total outcomes,

P(A) = (number of outcomes in A)/n
Also,
P(A N B) = (number of outcomes in A N B)/n
Consequently,

number of outcomes in A N B
P(A N B)/P(A) = -
( J/P(A) number of outcomes in A

Therefore, P(B|A) can be interpreted as the relative frequency of event B among the trials that
produce an outcome in event A.

EXAMPLE 2-23 Surface Flaws

Again consider the 400 parts in Table 2-3. From this table, Similarly, P(F) and P(F|D) are computed under two different
states of knowledge.

B 10 /40 10 The tree diagram in Fig. 2-14 can also be used to display

P(DIF) = P(D N F)/P(F) = 400/ 400 40 conditional probabilities. The first branch is on surface flaw. Of

the 40 parts with surface flaws, 10 are functionally defective and

Note that in this example all four of the following probabilities 30 are not. Therefore,

are different:

P(D|F) =10/40 and  P(D'|F) = 30/40

P(F) = 40/400  P(F|D) = 10/28
P(D) = 28/400 P(D|F) = 10/40 Of the 360 parts without surface flaws, 18 are functionally de-

fective and 342 are not. Therefore,

Here, P(D) and P(D|F) are probabilities of the same event,
but they are computed under two different states of knowledge. P(DIF’) = 18/360  and  P(D'|F’) = 342/360

Figure 2-14 Tree
diagram for parts
classified

Random Samples and Conditional Probability

Recall that to select one item randomly from a batch implies that each item is equally likely.
If more than one item is selected, randomly implies that each element of the sample space is
equally likely. For example, when sample spaces were presented earlier in this chapter, sam-
pling with and without replacement was defined and illustrated for the simple case of a batch
with three items {a, b, c}. If two items are selected randomly from this batch without replace-
ment, each of the six outcomes in the ordered sample space {ab, ac, ba, bc, ca, cb} has prob-
ability 1/6. If the unordered sample space is used, each of the three outcomes in {{a, b},
{a, c}, {b, c}} has probability 1/3.

Surface flaw
@,

360 40
a00 N Y8 00
Defective —o&—————-——-—-————————— = o —
342 18 0 10
360 No Yes 360 20 No Yes 0
L L] L [ ]
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Random Samples

When a sample is selected randomly from a large batch, it is usually easier to avoid enu-
meration of the sample space and calculate probabilities from conditional probabilities. For
example, suppose that a batch contains 10 parts from tool 1 and 40 parts from tool 2. If two
parts are selected randomly, without replacement, what is the conditional probability that a
part from tool 2 is selected second given that a part from tool 1 is selected first?

Although the answer can be determined from counts of outcomes, this type of question
can be answered more easily with the following result.

To select randomly implies that at each step of the sample, the items that remain in
the batch are equally likely to be selected.

If a part from tool 1 were selected with the first pick, 49 items would remain, 9 from tool 1 and
40 from tool 2, and they would be equally likely to be picked. Therefore, the probability that
a part from tool 2 would be selected with the second pick given this first pick is

In this manner, other probabilities can also be simplified. For example, let the event E
consist of the outcomes with the first selected part from tool 1 and the second part from tool 2.
To determine the probability of E, consider each step. The probability that a part from tool 1
is selected with the first pick is P(E;) = 10/50. The conditional probability that a part from
tool 2 is selected with the second pick, given that a part from tool 1 is selected first, is

P(E,|E;) = 40/49. Therefore,

P(E) = P(E;| E1)P(Ey)

40 10 8

T 49 50 49

Sometimes a partition of the question into successive picks is an easier method to solve the

problem.

EXAMPLE 2-24
A day’s production of 850 manufactured parts contains 50
parts that do not meet customer requirements. Two parts are
selected randomly without replacement from the batch. What
is the probability that the second part is defective given that
the first part is defective?

Let A denote the event that the first part selected is de-
fective, and let B denote the event that the second part

EXAMPLE 2-25

Continuing the previous example, if three parts are selected at
random, what is the probability that the first two are defective
and the third is not defective? This event can be described in
shorthand notation as simply P(ddn). We have

. 800 = 0.0032

50 49
P(ddn) = . 848

850 849

selected is defective. The probability needed can be expressed
as P(B|A). If the first part is defective, prior to selecting the
second part, the batch contains 849 parts, of which 49 are
defective; therefore,

P(B|A) = 49/849

The third term is obtained as follows. After the first two
parts are selected, there are 848 remaining. Of the remain-
ing parts, 800 are not defective. In this example, it is easy to
obtain the solution with a conditional probability for each
selection.
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2-87. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resis-
tance. Determine the following probabilities:

(a) P(A) (b) P(B)

(c) P(AIB) (d) P(BIA)

2-88. Samples of skin experiencing desquamation are ana-
lyzed for both moisture and melanin content. The results from
100 skin samples are as follows:

melanin content

high low
moisture high 13 7
content low 48 32

Let A denote the event that a sample has low melanin content,
and let B denote the event that a sample has high moisture con-
tent. Determine the following probabilities:

(a) P(A) (b) P(B)
() P(AIB)  (d)P(B|A)
2-89. The analysis of results from a leaf transmutation

experiment (turning a leaf into a petal) is summarized by type
of transformation completed:

total textural
transformation

yes no
total color yes 243 26
transformation no 13 18

(@) If a leaf completes the color transformation, what is the
probability that it will complete the textural transformation?
(b) Ifaleaf does not complete the textural transformation, what
is the probability it will complete the color transformation?

2-90. Samples of a cast aluminum part are classified on the
basis of surface finish (in microinches) and length measure-
ments. The results of 100 parts are summarized as follows:

length
excellent good
surface excellent 80 2
finish good 10 8

Let A denote the event that a sample has excellent surface

finish, and let B denote the event that a sample has excellent

length. Determine:

(a P(A)  (b) P(B)

() P(AB) (d) P(B|A)

(e) If the selected part has excellent surface finish, what is the
probability that the length is excellent?

(f) If the selected part has good length, what is the probabil-
ity that the surface finish is excellent?

2-91. The following table summarizes the analysis of samples
of galvanized steel for coating weight and surface roughness:

coating weight

high low
surface high 12 16
roughness low 88 34

(a) If the coating weight of a sample is high, what is the prob-
ability that the surface roughness is high?

(b) If the surface roughness of a sample is high, what is the
probability that the coating weight is high?

(c) If the surface roughness of a sample is low, what is the
probability that the coating weight is low?

2-92. Consider the data on wafer contamination and loca-

tion in the sputtering tool shown in Table 2-2. Assume that one

wafer is selected at random from this set. Let A denote the

event that a wafer contains four or more particles, and let B de-

note the event that a wafer is from the center of the sputtering

tool. Determine:

@ P(A) (b) P(A[B)

(c) P(B) (d) P(BIA)

(e) P(ANB) (f) P(AUB)

2-93. The following table summarizes the number of de-

ceased beetles under autolysis (the destruction of a cell after
its death by the action of its own enzymes) and putrefaction
(decomposition of organic matter, especially protein, by
microorganisms, resulting in production of foul-smelling
matter):

autolysis
high low
putrefaction high 14 59
low 18 9

(@) If the autolysis of a sample is high, what is the probability
that the putrefaction is low?

(b) If the putrefaction of a sample is high, what is the proba-
bility that the autolysis is high?

(c) If the putrefaction of a sample is low, what is the probability
that the autolysis is low?
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2-94. A maintenance firm has gathered the following infor-
mation regarding the failure mechanisms for air conditioning
systems:

evidence of gas leaks

yes no
evidence of yes 55 17
electrical failure no 32 3

The units without evidence of gas leaks or electrical failure

showed other types of failure. If this is a representative sample

of AC failure, find the probability

(@) That failure involves a gas leak

(b) That there is evidence of electrical failure given that there
was a gas leak

(c) That there is evidence of a gas leak given that there is
evidence of electrical failure

2-95. Aot of 100 semiconductor chips contains 20 that are

defective. Two are selected randomly, without replacement,

from the lot.

(a) What is the probability that the first one selected is
defective?

(b) What is the probability that the second one selected is
defective given that the first one was defective?

(c) What is the probability that both are defective?

(d) How does the answer to part (b) change if chips selected
were replaced prior to the next selection?

2-96. A batch of 500 containers for frozen orange juice con-

tains five that are defective. Two are selected, at random, with-

out replacement from the batch.

(a) What is the probability that the second one selected is
defective given that the first one was defective?

(b) What is the probability that both are defective?

(c) What is the probability that both are acceptable?

Three containers are selected, at random, without replace-

ment, from the batch.

(d) What is the probability that the third one selected is de-
fective given that the first and second ones selected were
defective?

(e) What is the probability that the third one selected is
defective given that the first one selected was defective
and the second one selected was okay?

(f) What is the probability that all three are defective?

2-97. A batch of 350 samples of rejuvenated mitochondria

contains eight that are mutated (or defective). Two are selected,

at random, without replacement from the batch.

(a) What is the probability that the second one selected is de-
fective given that the first one was defective?

(b) What is the probability that both are defective?

(c) What is the probability that both are acceptable?

2-98. A computer system uses passwords that are exactly

seven characters and each character is one of the 26 letters

(a—z) or 10 integers (0—9). You maintain a password for this

computer system. Let A denote the subset of passwords that

begin with a vowel (either a, €, i, 0, or u) and let B denote the

subset of passwords that end with an even number (either 0, 2,

4,6, or 8).

(a) Suppose a hacker selects a password at random. What is
the probability that your password is selected?

(b) Suppose a hacker knows your password is in event A and
selects a password at random from this subset. What is the
probability that your password is selected?

(c) Suppose a hacker knows your password is in A and B and
selects a password at random from this subset. What is the
probability that your password is selected?

2-99. If P(A|B) = 1, must A = B? Draw a Venn diagram to
explain your answer.

2-100. Suppose A and B are mutually exclusive events.
Construct a Venn diagram that contains the three events A, B,
and C such that P(A|C) = 1and P(B|C) = 0.

2-101. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target. Determine the following probabilities.

(a) P(A[B) (b) P(A'[B)
(c) P(A[B") (d) P(BIA)
2-102. Consider the hospital emergency room data in

Example 2-8. Let A denote the event that a visit is to Hospital
4 and let B denote the event that a visit results in LWBS (at any
hospital). Determine the following probabilities.

(a) P(AlB) (b) P(A’|B)
(c) P(AlB") (d) P(BIA)
2-103. Consider the well failure data in Exercise 2-53.

(a) What is the probability of a failure given there are more
than 1000 wells in a geological formation?

(b) What is the probability of a failure given there are fewer
than 500 wells in a geological formation?

2-104. An article in the The Canadian Entomologist

(Harcourtetal., 1977, \Vol. 109, pp. 1521-1534) studied the life

of the alfalfa weevil from eggs to adulthood. The following

table shows the number of larvae that survived at each stage of

development from eggs to adults.

Early Late Pre- Late
Eggs Larvae Larvae pupae Pupae Adults

421 412 306 45 35 31

(2) What is the probability an egg survives to an adult?

(b) What is the probability of survival to adult given survival
to the late larvae stage?

(c) What stage has the lowest probability of survival to the
next stage?
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The probability of the intersection of two events is often needed. The conditional probability
definition in Equation 2-9 can be rewritten to provide a formula known as the multiplication

rule for probabilities.

Multiplication Rule

P(ANB) = P(B|A)P(A) = P(A|B)P(B)

(2-10)

The last expression in Equation 2-10 is obtained by interchanging A and B.

EXAMPLE 2-26 Machining Stages
The probability that the first stage of a numerically controlled
machining operation for high-rpm pistons meets specifications
is 0.90. Failures are due to metal variations, fixture alignment,
cutting blade condition, vibration, and ambient environmental
conditions. Given that the first stage meets specifications, the
probability that a second stage of machining meets specifica-
tions is 0.95. What is the probability that both stages meet
specifications?

Let A and B denote the events that the first and second
stages meet specifications, respectively. The probability re-

P(ANB) = P(B|A)P(A) = 0.95(0.90) = 0.855

Although it is also true that P(A N B) = P(A|B)P(B), the in-
formation provided in the problem does not match this second
formulation.

Practical Interpretation: The probability that both stages meet
specifications is approximately 0.85 and if additional stages
were needed to complete a piston the probability would de-
crease further. Consequently, the probability that each stage is
completed successfully needs to be large in order for a piston
to meet all specifications.

quested is

Sometimes the probability of an event is given under each of several conditions. With enough
of these conditional probabilities, the probability of the event can be recovered. For example, sup-
pose that in semiconductor manufacturing the probability is 0.10 that a chip that is subjected to
high levels of contamination during manufacturing causes a product failure. The probability is
0.005 that a chip that is not subjected to high contamination levels during manufacturing causes a
product failure. In a particular production run, 20% of the chips are subject to high levels of con-
tamination. What is the probability that a product using one of these chips fails?

Clearly, the requested probability depends on whether or not the chip was exposed to high
levels of contamination. For any event B, we can write B as the union of the part of B in A and
the part of B in A’. That is,

B=(ANB)U(A' NB)

This result is shown in the Venn diagram in Fig. 2-15. Because A and A’ are mutually exclu-
sive, AN B and A’ N B are mutually exclusive. Therefore, from the probability of the union
of mutually exclusive events in Equation 2-6 and the Multiplication Rule in Equation 2-10, the
following total probability rule is obtained.

Figure 2-15  Partitioning B=(BnE))v(BNE)V(BNE3)VBNE,

an event into two mutually
exclusive subsets.

Figure 2-16 Partitioning an event into
several mutually exclusive subsets.
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Total Probability

Rule (two events) For any events A and B,

P(B) =P(BNA)+ P(BNA") = P(B|AP(A) + P(B|A")P(A")

(2-11)

EXAMPLE 2-27 Semiconductor Contamination
Consider the contamination discussion at the start of this
section. The information is summarized here.

Probability of Level of Probability
Failure Contamination of Level
0.1 High 0.2
0.005 Not High 0.8

Let F denote the event that the product fails, and let H de-
note the event that the chip is exposed to high levels of

contamination. The requested probability is P(F), and the
information provided can be represented as

P(FIH) =010 and
P(H) = 0.20 and

P(FIH") = 0.005
P(H") = 0.80
From Equation 2-11,
P(F) = 0.10(0.20) + 0.005(0.80) = 0.024

which can be interpreted as just the weighted average of the
two probabilities of failure.

The reasoning used to develop Equation 2-11 can be applied more generally. Because
AUA" = Sweknow (AN B)U (A" N B)equals B, and because AN A" = ¢ we know A N B

and A’ N B are mutually exclusive. In general, a collection of sets E,, E,, ..

., Ex such that

E,;U E,U ... UE, =S is said to be exhaustive. A graphical display of partitioning an
event B among a collection of mutually exclusive and exhaustive events is shown in Fig. 2-16.

Total Probability
Rule (multiple

Assume Eq, E,, .
events)

.., Ex are k mutually exclusive and exhaustive sets. Then

P(B) = PBMNE;) + PBNE,) + -+ P(BNE)
= P(BIEy)P(E;) + P(BIE,)P(Ey) + -+ + P(BIE)P(Ey)

(2-12)

EXAMPLE 2-28 Semiconductor Failures
Continuing with semiconductor manufacturing, assume the
following probabilities for product failure subject to levels of
contamination in manufacturing:

Probability of Failure Level of Contamination

0.10 High
0.01 Medium
0.001 Low

In a particular production run, 20% of the chips are sub-
jected to high levels of contamination, 30% to medium levels
of contamination, and 50% to low levels of contamination.
What is the probability that a product using one of these chips
fails? Let

H denote the event that a chip is exposed to high levels of
contamination

M denote the event that a chip is exposed to medium levels
of contamination

L denote the event that a chip is exposed to low levels of
contamination

Then,
P(F) = P(FIH)P(H) + P(F [M)P(M) + P(F|L)P(L)
= 0.10(0.20) + 0.01(0.30) + 0.001(0.50) = 0.0235

The calculations are conveniently organized with the tree
diagram in Fig. 2-17.
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0.20

High

/N

Contamination
L 1

0.50
0.30
Medium Low

/N

P(Fail|High) P(Not Fail|High) P(Fail|Medium)  P(Not Fail|Medium)  P(Fail | Low) P(Not Fail|Low)
=0.10 =0.90 =0.01 =0.99 =0.001 =0.999
e N, N\, e N\,
0.10(0.20) 0.90(0.20) 0.01(0.30) 0.99(0.30) 0.001(0.50) 0.999(0.50)
Figure 2-17 Tree =0.02 =0.18 =0.003 =0.297 =0.0005 =0.4995
diagram for
Example 2-28. P(Fail) = 0.02 + 0.003 + 0.0005 = 0.0235

EXERCISES FOR SECTION 2-5

2-105. Suppose that P(A|B) =04 and P(B) = 0.5.
Determine the following:

(@ P(ANB)

(b) P(A" N B)

2-106. Suppose that P(A|B) = 0.2, P(A|B’) = 0.3, and
P(B) = 0.8. What is P(A)?

2-107. The probability is 1% that an electrical connector
that is kept dry fails during the warranty period of a portable
computer. If the connector is ever wet, the probability of a fail-
ure during the warranty period is 5%. If 90% of the connectors
are kept dry and 10% are wet, what proportion of connectors
fail during the warranty period?

2-108. Suppose 2% of cotton fabric rolls and 3% of nylon
fabric rolls contain flaws. Of the rolls used by a manufacturer,
70% are cotton and 30% are nylon. What is the probability that a
randomly selected roll used by the manufacturer contains flaws?

2-109. The edge roughness of slit paper products increases
as knife blades wear. Only 1% of products slit with new blades
have rough edges, 3% of products slit with blades of average
sharpness exhibit roughness, and 5% of products slit with worn
blades exhibit roughness. If 25% of the blades in manufactur-
ing are new, 60% are of average sharpness, and 15% are worn,
what is the proportion of products that exhibit edge roughness?

2-110. In the 2004 presidential election, exit polls from the
critical state of Ohio provided the following results:

total Bush, 2004 Kerry, 2004
no college degree (62%) 50% 50%
college graduate (38%) 53% 46%

What is the probability a randomly selected respondent voted
for Bush?

2-111. Computer keyboard failures are due to faulty electrical
connects (12%) or mechanical defects (88%). Mechanical
defects are related to loose keys (27%) or improper assembly
(73%). Electrical connect defects are caused by defective

wires (35%), improper connections (13%), or poorly welded

wires (52%).

(a) Find the probability that a failure is due to loose keys.

(b) Find the probability that a failure is due to improperly
connected or poorly welded wires.

2-112. Heart failures are due to either natural occurrences

(87%) or outside factors (13%). Outside factors are related to

induced substances (73%) or foreign objects (27%). Natural

occurrences are caused by arterial blockage (56%), disease

(27%), and infection (e.g., staph infection) (17%).

(a) Determine the probability that a failure is due to induced
substance.

(b) Determine the probability that a failure is due to disease
or infection.

2-113. A batch of 25 injection-molded parts contains five

that have suffered excessive shrinkage.

(a) If two parts are selected at random, and without replace-
ment, what is the probability that the second part selected
is one with excessive shrinkage?

(b) If three parts are selected at random, and without replace-
ment, what is the probability that the third part selected is
one with excessive shrinkage?

2-114. A lot of 100 semiconductor chips contains 20 that

are defective.

(@) Two are selected, at random, without replacement, from
the lot. Determine the probability that the second chip se-
lected is defective.

(b) Three are selected, at random, without replacement,
from the lot. Determine the probability that all are
defective.

2-115. An article in the British Medical Journal [“Com-
parison of Treatment of Renal Calculi by Operative Surgery,
Percutaneous Nephrolithotomy, and Extracorporeal Shock
Wave Lithotripsy” (1986, \ol. 82, pp. 879-892)] provided the
following discussion of success rates in kidney stone re-
movals. Open surgery had a success rate of 78% (273/350)
while a newer method, percutaneous nephrolithotomy (PN),
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had a success rate of 83% (289/350). This newer method
looked better, but the results changed when stone diameter
was considered. For stones with diameters less than two cen-
timeters, 93% (81/87) of cases of open surgery were success-
ful compared with only 83% (234/270) of cases of PN. For
stones greater than or equal to two centimeters, the success
rates were 73% (192/263) and 69% (55/80) for open surgery
and PN, respectively. Open surgery is better for both stone
sizes, but less successful in total. In 1951, E. H. Simpson
pointed out this apparent contradiction (known as Simpson’s
Paradox) but the hazard still persists today. Explain how open
surgery can be better for both stone sizes but worse in total.

2-116. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is
271 K or less. Let B denote the event that the heat absorbed is
above target. Determine the following probabilities.

(@ P(ANB) (b) P(AUB) (c) P(A"UB")

(d) Use the total probability rule to determine P(A)

2-117. Consider the hospital emergency room data in
Example 2-8. Let A denote the event that a visit is to Hospital
4 and let B denote the event that a visit results in LWBS (at any
hospital). Determine the following probabilities.

(@ P(ANB) (b) P(AUB) (c) P(A"UB)

(d) Use the total probability rule to determine P(A)

2-6 INDEPENDENCE

2-118. Consider the hospital emergency room data in Example

2-8. Suppose that three visits that resulted in LWBS are selected

randomly (without replacement) for a follow-up interview.

(a) What is the probability that all three are selected from
Hospital 2?

(b) What is the probability that all three are from the same
hospital?

2-119. Consider the well failure data in Exercise 2-53. Let A

denote the event that the geological formation has more than

1000 wells and let B denote the event that a well failed.

Determine the following probabilities.

(@ P(ANB) (b) P(AUB) (c) P(A"UB’)

(d) Use the total probability rule to determine P(A)

2-120. Consider the well failure data in Exercise 2-53.

Suppose that two failed wells are selected randomly (without

replacement) for a follow-up review.

(a) What is the probability that both are from the gneiss geo-
logical formation group?

(b) What is the probability that both are from the same geo-
logical formation group?

2-121.  AWeb ad can be designed from four different colors,
three font types, five font sizes, three images, and five text
phrases. A specific design in randomly generated by the Web
server when you visit the site. Determine the probability that
the ad color is red and the font size is not the smallest one.

In some cases, the conditional probability of P(B|A) might equal P(B). In this special case,
knowledge that the outcome of the experiment is in event A does not affect the probability that

the outcome is in event B.

EXAMPLE 2-29 Sampling with Replacement
Suppose a day’s production of 850 manufactured parts con-
tains 50 parts that do not meet customer requirements. Sup-
pose two parts are selected from the batch, but the first part is
replaced before the second part is selected. What is the proba-
bility that the second part is defective (denoted as B) given that
the first part is defective (denoted as A)? The probability
needed can be expressed as P(B|A).

Because the first part is replaced prior to selecting the
second part, the batch still contains 850 parts, of which 50 are

EXAMPLE 2-30 Flaws and Functions

The information in Table 2-3 related surface flaws to func-
tionally defective parts. In that case, we determined that
P(D|F) = 10/40 = 0.25 and P(D) = 28/400 = 0.07. Sup-
pose that the situation is different and follows Table 2-4. Then,

P(D|F) = 2/40 = 0.05 and P(D) = 20/400 = 0.05

That is, the probability that the part is defective does not de-
pend on whether it has surface flaws. Also,

P(FID) = 2/20 = 0.10 and P(F) = 40/400 = 0.10

defective. Therefore, the probability of B does not depend on
whether or not the first part was defective. That is,

P(B|A) = 50/850

Also, the probability that both parts are defective is

P(ANB) = P(B|A)P(A) = (%) . (%) = 0.0035

so the probability of a surface flaw does not depend on
whether the part is defective. Furthermore, the definition of
conditional probability implies that

P(F N D) = P(D|F)P(F)

but in the special case of this problem,

P(F N D) = P(D)P(F) = % Z2 2
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Surface Flaws

Yes (event F) No Total
Defective Yes (event D) 2 18 20
No 38 342 380
Total 40 360 400

The preceding example illustrates the following conclusions. In the special case that

P(B|A) = P(B), we obtain

P(ANB) = P(B|A)P(A) = P(B)P(A)

and

P(A[B) =

These conclusions lead to an important definition.

Independence
(two events)

(1) P(A[B) = P(A)
(2) P(BIA) = P(B)

Two events are independent if any one of the following equivalent statements is true:

(3) P(ANB) = P(A)P(B)

(2-13)

It is left as a mind-expanding exercise to show that independence implies related results

such as

P(A"NB") = P(A")P(B")

The concept of independence is an important relationship between events and is used
throughout this text. A mutually exclusive relationship between two events is based only on
the outcomes that comprise the events. However, an independence relationship depends on the
probability model used for the random experiment. Often, independence is assumed to be part
of the random experiment that describes the physical system under study.

EXAMPLE 2-31

A day’s production of 850 manufactured parts contains 50
parts that do not meet customer requirements. Two parts are
selected at random, without replacement, from the batch. Let
A denote the event that the first part is defective, and let B de-
note the event that the second part is defective.

We suspect that these two events are not independent be-
cause knowledge that the first part is defective suggests that it
is less likely that the second part selected is defective. Indeed,
P(B|A) = 49/849. Now, what is P(B)? Finding the uncondi-
tional P(B) is somewhat difficult because the possible values
of the first selection need to be considered:

P(B) = P(B|A)P(A) + P(B|A")P(A)
= (49/849)(50/850) + (50/849)(800/850)

= 50/850

Interestingly, P(B), the unconditional probability that the
second part selected is defective, without any knowledge of
the first part, is the same as the probability that the first part
selected is defective. Yet, our goal is to assess independence.
Because P(B|A) does not equal P(B), the two events are not
independent, as we suspected.
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Independence
(multiple events)

When considering three or more events, we can extend the definition of independence
with the following general result.

The events E,, E,, ..
eventsk; ,E;,... , E

., E, are independent if and only if for any subset of these

ip Eigy - i

P(Ei1 N Eiz (AR Eik) = P(Ell) X P(E,z) X - X P(Elk) (2'14)

This definition is typically used to calculate the probability that several events occur assuming
that they are independent and the individual event probabilities are known. The knowledge
that the events are independent usually comes from a fundamental understanding of the

random experiment.

EXAMPLE 2-32 Series Circuit

The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

0.8 0.9

Let L and R denote the events that the left and right devices
operate, respectively. There is only a path if both operate. The

EXAMPLE 2-33
Assume that the probability that a wafer contains a large par-
ticle of contamination is 0.01 and that the wafers are inde-
pendent; that is, the probability that a wafer contains a large
particle is not dependent on the characteristics of any of the
other wafers. If 15 wafers are analyzed, what is the probability
that no large particles are found?

Let E; denote the event that the ith wafer contains no large
particles, i = 1, 2, ..., 15. Then, P(E;) = 0.99. The probability

EXAMPLE 2-34 Parallel Circuit

The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices fail
independently. What is the probability that the circuit operates?

0.95

0.95

Let T and B denote the events that the top and bottom de-
vices operate, respectively. There is a path if at least one device
operates. The probability that the circuit operates is

probability the circuit operates is
P(LandR) = P(L N R) = P(L)P(R) = 0.80(0.90) = 0.72

Practical Interpretation: Notice that the probability that the
circuit operates degrades to approximately 0.5 when all devices
are required to be functional. The probability each device is func-
tional needs to be large for a circuit to operate when many devices
are connected in series.

requested can be represented as P(E; N E, N -+ M Ey5). From
the independence assumption and Equation 2-14,

P(E;NE, N -+ NMEy) = P(E;) X P(Ey) X -+
X P(Eys) = 0.99%° = 0.86

P(TorB)=1-P[(TorB)'] =1— P(T"and B")

A simple formula for the solution can be derived from the
complements T’ and B’. From the independence assumption,

P(T"and B') = P(T")P(B') = (1 — 0.95)* = 0.05
SO
P(TorB) = 1 — 0.05% = 0.9975

Practical Interpretation: Notice that the probability that the cir-
cuit operates is larger than the probability that either device is
functional. This is an advantage of a parallel architecture. A dis-
advantage is that multiple devices are needed.



EXAMPLE 2-35 Advanced Circuit

The following circuit operates only if there is a path of func-
tional devices from left to right. The probability that each de-
vice functions is shown on the graph. Assume that devices
fail independently. What is the probability that the circuit
operates?

— 0.9 —
0.95
a 0.9 ’_ —‘ 0.99 b
L 0.95 J
—y 0.9 —

The solution can be obtained from a partition of the
graph into three columns. Let L denote the event that there

EXERCISES FOR SECTION 2-6
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is a path of functional devices only through the three units
on the left. From the independence and based upon the pre-
vious example,

P(L)=1-0.1°

Similarly, let M denote the event that there is a path of functional
devices only through the two units in the middle. Then,

P(M) = 1 — 0.05°
The probability that there is a path of functional devices only
through the one unit on the right is simply the probability that
the device functions, namely, 0.99. Therefore, with the inde-

pendence assumption used again, the solution is

(1 — 0.1%)(1 — 0.05%)(0.99) = 0.987

2-122. If P(A|B) = 0.4, P(B) = 0.8, and P(A) = 0.5, are
the events A and B independent?

2-123. If P(A|B) = 0.3, P(B) = 0.8, and P(A) = 0.3, are
the events B and the complement of A independent?

2-124. If P(A) = 0.2, P(B) = 0.2, and A and B are mutu-
ally exclusive, are they independent?

2-125. A batch of 500 containers for frozen orange juice
contains five that are defective. Two are selected, at random,
without replacement, from the batch. Let A and B denote the
events that the first and second containers selected are defec-
tive, respectively.

(@) Are A and B independent events?

(b) If the sampling were done with replacement, would A and

B be independent?

2-126. Disks of polycarbonate plastic from a supplier are
analyzed for scratch and shock resistance. The results from
100 disks are summarized as follows:

shock resistance

high low
scratch high 70 9
resistance low 16 5

Let A denote the event that a disk has high shock resistance,
and let B denote the event that a disk has high scratch resis-
tance. Are events A and B independent?

2-127. Samples of emissions from three suppliers are clas-
sified for conformance to air-quality specifications. The re-
sults from 100 samples are summarized as follows:

conforms
yes no
1 22 8
supplier 2 25 5
3 30 10

Let A denote the event that a sample is from supplier 1, and let
B denote the event that a sample conforms to specifications.
(a) Are events A and B independent?

(b) Determine P(B|A).

2-128. Redundant Array of Inexpensive Disks (RAID) is a

technology that uses multiple hard drives to increase the speed

of data transfer and provide instant data backup. Suppose that
the probability of any hard drive failing in a day is 0.001 and
the drive failures are independent.

(@) A RAID 0 scheme uses two hard drives, each containing a
mirror image of the other. What is the probability of data
loss? Assume that data loss occurs if both drives fail
within the same day.

(b) A RAID 1 scheme splits the data over two hard drives.
What is the probability of data loss? Assume that data loss
occurs if at least one drive fails within the same day.
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2-129. The probability that a lab specimen contains high

levels of contamination is 0.10. Five samples are checked, and

the samples are independent.

(a) What is the probability that none contains high levels of
contamination?

(b) What is the probability that exactly one contains high
levels of contamination?

(c) What is the probability that at least one contains high
levels of contamination?

2-130. In a test of a printed circuit board using a random

test pattern, an array of 10 bits is equally likely to be 0 or 1.

Assume the bits are independent.

(a) What is the probability that all bits are 1s?

(b) What is the probability that all bits are 0s?

(c) What is the probability that exactly five bits are 1s and five
bits are 0s?

2-131. Six tissues are extracted from an ivy plant infested

by spider mites. The plant in infested in 20% of its area. Each

tissue is chosen from a randomly selected area on the ivy

plant.

(a) What is the probability that four successive samples show
the signs of infestation?

(b) What is the probability that three out of four successive
samples show the signs of infestation?

2-132. Aplayer of a video game is confronted with a series of

four opponents and an 80% probability of defeating each oppo-

nent. Assume that the results from opponents are independent

(and that when the player is defeated by an opponent the game

ends).

(a) What is the probability that a player defeats all four oppo-
nents in a game?

(b) What is the probability that a player defeats at least two
opponents in a game?

(c) If the game is played three times, what is the probability
that the player defeats all four opponents at least once?

2-133. In an acid-base titration, a base or acid is gradually
added to the other until they have completely neutralized each
other. Since acids and bases are usually colorless (as are the
water and salt produced in the neutralization reaction), pH is
measured to monitor the reaction. Suppose that the equiva-
lence point is reached after approximately 100 mL of a NaOH
solution has been added (enough to react with all the acetic
acid present) but that replicates are equally likely to indicate
from 95 to 104 mL, measured to the nearest mL. Assume that
two technicians each conduct titrations independently.
(a) What is the probability that both technicians obtain equiv-
alence at 100 mL?
(b) What is the probability that both technicians obtain equiv-
alence between 98 and 104 mL (inclusive)?
(c) What is the probability that the average volume at equiva-
lence from the technicians is 100 mL?

2-134. A credit card contains 16 digits. It also contains a
month and year of expiration. Suppose there are one million

credit card holders with unique card numbers. A hacker ran-

domly selects a 16-digit credit card number.

(a) What is the probability that it belongs to a user?

(b) Suppose a hacker has a 25% chance of correctly guessing
the year your card expires and randomly selects one of
the 12 months. What is the probability that the hacker
correctly selects the month and year of expiration?

2-135. Eight cavities in an injection-molding tool produce
plastic connectors that fall into a common stream. A sample is
chosen every several minutes. Assume that the samples are
independent.
(a) What is the probability that five successive samples were
all produced in cavity one of the mold?
(b) What is the probability that five successive samples were
all produced in the same cavity of the mold?
(c) What is the probability that four out of five successive
samples were produced in cavity one of the mold?
2-136. The following circuit operates if and only if there is
a path of functional devices from left to right. The probability
that each device functions is as shown. Assume that the prob-
ability that a device is functional does not depend on whether
or not other devices are functional. What is the probability that
the circuit operates?

0.9 0.8 0.7

0.95 0.95 0.95

2-137. The following circuit operates if and only if there is
a path of functional devices from left to right. The probability
each device functions is as shown. Assume that the probabil-
ity that a device functions does not depend on whether or not
other devices are functional. What is the probability that the
circuit operates?

0.9 0.9 0.8

0.95 0.95 0.9

2-138. Consider the endothermic reactions in Exercise 2-50.
Let A denote the event that a reaction final temperature is 271 K
or less. Let B denote the event that the heat absorbed is above
target. Are these events independent?

2-139. Consider the hospital emergency room data in
Example 2-8. Let A denote the event that a visit is to Hospital 4
and let B denote the event that a visit results in LWBS (at any
hospital). Are these events independent?



2-140. Consider the well failure data in Exercise 2-53. Let A
denote the event that the geological formation has more than
1000 wells and let B denote the event that a well failed. Are
these events independent?

2-141. A Web ad can be designed from four different colors,
three font types, five font sizes, three images, and five text

2-7 BAYES’ THEOREM
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phrases. A specific design is randomly generated by the \Web
server when you visit the site. Let A denote the event that the
design color is red and Let B denote the event that the font size
is not the smallest one. Are A and B independent events?
Explain why or why not.

The examples in this chapter indicate that information is often presented in terms of con-
ditional probabilities. These conditional probabilities commonly provide the probability of
an event (such as failure) given a condition (such as high or low contamination). But after
a random experiment generates an outcome, we are naturally interested in the probability
that a condition was present (high contamination) given an outcome (a semiconductor fail-
ure). Thomas Bayes addressed this essential question in the 1700s and developed the fun-
damental result known as Bayes’ theorem. Do not let the simplicity of the mathematics
conceal the importance. There is extensive interest in such probabilities in modern statistical

analysis.

From the definition of conditional probability,

P(ANB) = P(A|B)P(B) = P(B N A) = P(B|A)P(A)

Now, considering the second and last terms in the expression above, we can write

EXAMPLE 2-36

Reconsider Example 2-27. The conditional probability a high
level of contamination was present when a failure occurred is
to be determined. The information from Example 2-27 is sum-

P(A|B PEIAPK) for P(B) >0 2-15
- — - or -
(AIB) = — 5 () (2-15)
This is a useful result that enables us to solve for P(A|B) in terms of P(B| A).
The probability of P(H|F) is determined from
P(FIH)P(H 0.10(0.20
P(HIF) = (FIHP(H) _ 010020) _ oy

marized here.

Probability of Level of Probability of

Failure Contamination Level
0.1 High 0.2
0.005 Not High 0.8

P(F) 0.024

The value of P(F) in the denominator of our solution was
found from P(F) = P(FIH)P(H) + P(FIH")P(H").

In general, if P(B) in the denominator of Equation 2-15 is written using the Total
Probability Rule in Equation 2-12, we obtain the following general result, which is known as

Bayes’ Theorem.
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Bayes’ Theorem
If Eq, By, ..

., Ey are k mutually exclusive and exhaustive events and B is any event,

P(B|E1)P(Er)

P(E1|B) = )

(BIE))P(E,) + P(BIEx)P(E,) + -

Tt PBIEPEY (2-10)

for P(B) > 0

Notice that the numerator always equals one of the terms in the sum in the denominator.

EXAMPLE 2-37 Medical Diagnostic

Because a new medical procedure has been shown to be effec-
tive in the early detection of an illness, a medical screening of
the population is proposed. The probability that the test cor-
rectly identifies someone with the illness as positive is 0.99, and
the probability that the test correctly identifies someone without
the illness as negative is 0.95. The incidence of the illness in the
general population is 0.0001. You take the test, and the result is
positive. What is the probability that you have the illness?

Let D denote the event that you have the illness, and let S
denote the event that the test signals positive. The probability
requested can be denoted as P(D|S). The probability that the
test correctly signals someone without the illness as negative
is 0.95. Consequently, the probability of a positive test without
the illness is

P(S|D’) = 0.05

EXAMPLE 2-38 Bayesian Network

Bayesian networks are used on the Web sites of high-
technology manufacturers to allow customers to quickly diag-
nose problems with products. An oversimplified example is
presented here. A printer manufacturer obtained the following
probabilities from a database of test results. Printer failures are
associated with three types of problems: hardware, software,
and other (such as connectors), with probabilities 0.1, 0.6, and
0.3, respectively. The probability of a printer failure given a
hardware problem is 0.9, given a software problem is 0.2, and
given any other type of problem is 0.5. If a customer enters the
manufacturer’s Web site to diagnose a printer failure, what is
the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software,
or other problem, respectively, and let F denote a printer fail-
ure. The most likely cause of the problem is the one that cor-
responds to the largest of P(H|F), P(S|F), and P(O|F). In
Bayes’ Theorem the denominator is

EXERCISES FOR SECTION 2-7

From Bayes’ Theorem,

P(D|S) = P(S|D)P(D)/[P(S|D)P(D) + P(S|D")P(D")]
= 0.99(0.0001)/[0.99(0.0001) + 0.05(1 — 0.0001)]
= 1/506 = 0.002

Practical Interpretation: The probability of you having the
illness given a positive result from the test is only 0.002.
Surprisingly, even though the test is effective, in the sense that
P(SID) is high and P(S|D’) is low, because the incidence of
the illness in the general population is low, the chances are
quite small that you actually have the disease even if the test is
positive.

P(F) = P(F|H)P(H) + P(F|S) P(S) + P(F|0)P(0)
= 0.9(0.1) + 0.2(0.6) + 0.5(0.3) = 0.36

Then,

P(H|F) = P(F|H)P(H)/P(F) = 0.9(0.1)/0.36 = 0.250
P(S|F) = P(F|S)P(S)/P(F) = 0.2(0.6)/0.36 = 0.333
P(O|F) = P(F|0)P(0)/P(F) = 0.5(0.3)/0.36 = 0.417

Notice that P(H|F) + P(S|F) + P(O|F) = 1 because
one of the three types of problems is responsible for the failure.
Because P(O|F ) is largest, the most likely cause of the problem
is in the other category. A Web site dialog to diagnose the prob-
lem quickly should start with a check into that type of problem.

Practical Interpretation: Such networks are more com-
monly used to diagnose problems in areas as diverse as
electronic products and healthcare.

2-142. Suppose that P(A|B) = 0.7,
P(B) = 0.2. Determine P(B|A).

2-143. Suppose that P(A|B) = 0.4, P(A|B’) = 0.2, and
P(B) = 0.8. Determine P(B|A).

P(A) = 0.5, and

2-144. Software to detect fraud in consumer phone cards
tracks the number of metropolitan areas where calls originate
each day. It is found that 1% of the legitimate users originate
calls from two or more metropolitan areas in a single day.
However, 30% of fraudulent users originate calls from two or



more metropolitan areas in a single day. The proportion of
fraudulent users is 0.01%. If the same user originates calls
from two or more metropolitan areas in a single day, what is
the probability that the user is fraudulent?

2-145. A new process of more accurately detecting anaer-
obic respiration in cells is being tested. The new process is
important due to its high accuracy, its lack of extensive ex-
perimentation, and the fact that it could be used to identify
five different categories of organisms: obligate anaerobes,
facultative anaerobes, aerotolerant, microaerophiles, and
nanaerobes instead of using a single test for each category.
The process claims that it can identify obligate anaerobes
with 97.8% accuracy, facultative anaerobes with 98.1% ac-
curacy, aerotolerant with 95.9% accuracy, microaerophiles
with 96.5% accuracy, and nanaerobes with 99.2% accuracy.
If any category is not present, the process does not signal.
Samples are prepared for the calibration of the process
and 31% of them contain obligate anaerobes, 27% contain
facultative anaerobes, 21% contain microaerophiles, 13% con-
tain nanaerobes, and 8% contain aerotolerant. A test sample is
selected randomly.

(a) What is the probability that the process will signal?

(b) If the test signals, what is the probability that mi-

croaerophiles are present?

2-146. In the 2004 presidential election, exit polls from
the critical state of Ohio provided the following results:

Bush Kerry
no college degree (62%) 50% 50%
college graduate (38%) 53% 46%

If a randomly selected respondent voted for Bush, what is
the probability that the person has a college degree?

2-147. Customers are used to evaluate preliminary product
designs. In the past, 95% of highly successful products
received good reviews, 60% of moderately successful products
received good reviews, and 10% of poor products received
good reviews. In addition, 40% of products have been highly
successful, 35% have been moderately successful, and 25%
have been poor products.

(a) What is the probability that a product attains a good review?
(b) If a new design attains a good review, what is the proba-

bility that it will be a highly successful product?
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(c) If a product does not attain a good review, what is the
probability that it will be a highly successful product?

2-148. An inspector working for a manufacturing company
has a 99% chance of correctly identifying defective items and
a 0.5% chance of incorrectly classifying a good item as defec-
tive. The company has evidence that its line produces 0.9% of
nonconforming items.
(a) What is the probability that an item selected for inspection
is classified as defective?
(b) Ifan item selected at random is classified as nondefective,
what is the probability that it is indeed good?
2-149. A new analytical method to detect pollutants in wa-
ter is being tested. This new method of chemical analysis is
important because, if adopted, it could be used to detect three
different contaminants—organic pollutants, volatile solvents,
and chlorinated compounds—instead of having to use a single
test for each pollutant. The makers of the test claim that it can
detect high levels of organic pollutants with 99.7% accuracy,
volatile solvents with 99.95% accuracy, and chlorinated com-
pounds with 89.7% accuracy. If a pollutant is not present, the
test does not signal. Samples are prepared for the calibration
of the test and 60% of them are contaminated with organic
pollutants, 27% with volatile solvents, and 13% with traces of
chlorinated compounds. A test sample is selected randomly.
(a) What is the probability that the test will signal?
(b) If the test signals, what is the probability that chlori-
nated compounds are present?
2-150. Consider the endothermic reactions in Exercise 2-50.
Use Bayes’ Theorem to calculate the probability that a reaction
final temperature is 271 K or less given that the heat absorbed
is above target.

2-151. Consider the hospital emergency room data in
Example 2-8. Use Bayes’ Theorem to calculate the probability
that a person visits Hospital 4 given they are LWBS.

2-152. Consider the well failure data in Exercise 2-53. Use
Bayes’ Theorem to calculate the probability that a randomly
selected well is in the gneiss group given that the well is failed.
2-153. Two Web colors are used for a site advertisement. If a
site visitor arrives from an affiliate, the probabilities of the blue or
green colors are 0.8 and 0.2, respectively. If the site visitor arrives
from a search site, the blue and green colors are 0.4 and 0.6, re-
spectively. The proportions of visitors from affiliates and search
sites are 0.3 and 0.7, respectively. What is the probability that a
visitor is from a search site given that the blue ad was viewed?

We often summarize the outcome from a random experiment by a simple number. In many of
the examples of random experiments that we have considered, the sample space has been a
description of possible outcomes. In some cases, descriptions of outcomes are sufficient, but
in other cases, it is useful to associate a number with each outcome in the sample space.
Because the particular outcome of the experiment is not known in advance, the resulting
value of our variable is not known in advance. For this reason, the variable that associates a
number with the outcome of a random experiment is referred to as a random variable.
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Random
Variable

Notation

Discrete and
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Random
Variables

Examples
of Random
Variables

A random variable is a function that assigns a real number to each outcome in the
sample space of a random experiment.

Notation is used to distinguish between a random variable and the real number.

A random variable is denoted by an uppercase letter such as X. After an experiment
is conducted, the measured value of the random variable is denoted by a lowercase
let