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Preface 

There are four main reasons why I wrote this book. First, six sigma consultants 
have taught us that people do not need to be statistical experts to gain benefits from 
applying methods under such headings as “statistical quality control” (SQC) and 
“design of experiments” (DOE). Some college-level books intertwine the methods 
and the theory, potentially giving the mistaken impression that all the theory has to 
be understood to use the methods. As far as possible, I have attempted to separate 
the information necessary for competent application from the theory needed to 
understand and evaluate the methods.  

Second, many books teach methods without sufficiently clarifying the context 
in which the method could help to solve a real-world problem. Six sigma, statistics 
and operations-research experts have little trouble making the connections with 
practice. However, many other people do have this difficulty. Therefore, I wanted 
to clarify better the roles of the methods in solving problems. To this end, I have 
re-organized the presentation of the techniques and included several complete case 
studies conducted by myself and former students. 

Third, I feel that much of the “theory” in standard textbooks is rarely presented 
in a manner to answer directly the most pertinent questions, such as:  

Should I use this specific method or an alternative method?  
How do I use the results when making a decision?  
How much can I trust the results?  
Admittedly, standard theory (e.g., analysis of variance decomposition, 

confidence intervals, and defining relations) does have a bearing on these 
questions. Yet the widely accepted view that the choice to apply a method is 
equivalent to purchasing a risky stock investment has not been sufficiently 
clarified. The theory in this book is mainly used to evaluate in advance the risks 
associated with specific methods and to address these three questions.  

Fourth, there is an increasing emphasis on service sector and bioengineering 
applications of quality technology, which is not fully reflected in some of the 
alternative books. Therefore, this book constitutes an attempt to include more 
examples pertinent to service-sector jobs in accounting, education, call centers, 
health care, and software companies. 

In addition, this book can be viewed as attempt to build on and refocus material 
in other books and research articles, including: Harry and Schroeder (1999) and 
Pande et al. (2000) which comprehensively cover six sigma; Montgomery (2008) 
and Besterfield (2001), which focus on statistical quality control; Box and Draper 
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(1987), Dean and Voss (1999), Fedorov and Hackl (1997), Montgomery (2000), 
Myers and Montgomery (2001), Taguchi (1993), and Wu and Hamada (2000), 
which focus on design of experiments. 

At least 50 books per year are written related to the “six sigma movement” 
which (among other things) encourage people to use SQC and DOE techniques. 
Most of these books are intended for a general business audience; few provide 
advanced readers the tools to understand modern statistical method development. 
Equally rare are precise descriptions of the many methods related to six sigma as 
well as detailed examples of applications that yielded large-scale returns to the 
businesses that employed them.  

Unlike many popular books on “six sigma methods,” this material is aimed at 
the college- or graduate-level student rather than at the casual reader, and includes 
more derivations and analysis of the related methods. As such, an important 
motivation of this text is to fill a need for an integrated, principled, technical 
description of six sigma techniques and concepts that can provide a practical guide 
both in making choices among available methods and applying them to real-world 
problems. Professionals who have earned “black belt” and “master black belt” 
titles may find material more complete and intensive here than in other sources.  

Rather than teaching methods as “correct” and fixed, later chapters build the 
optimization and simulation skills needed for the advanced reader to develop new 
methods with sophistication, drawing on modern computing power. Design of 
experiments (DOE) methods provide a particularly useful area for the development 
of new methods. DOE is sometimes called the most powerful six sigma tool. 
However, the relationship between the mathematical properties of the associated 
matrices and bottom-line profits has been only partially explored. As a result, users 
of these methods too often must base their decisions and associated investments on 
faith. An intended unique contribution of this book is to teach DOE in a new way, 
as a set of fallible methods with understandable properties that can be improved, 
while providing new information to support decisions about using these methods.  

Two recent trends assist in the development of statistical methods. First, 
dramatic improvements have occurred in the ability to solve hard simulation and 
optimization problems, largely because of advances in computing speeds. It is now 
far easier to “simulate” the application of a chosen method to test likely outcomes 
of its application to a particular problem. Second, an increased interest in six sigma 
methods and other formal approaches to making businesses more competitive has 
increased the time and resources invested in developing and applying new 
statistical methods.  

This latter development can be credited to consultants such as Harry and 
Schroeder (1999), Pande et al. (2000), and Taguchi (1993), visionary business 
leaders such as General Electric’s Jack Welch, as well as to statistical software that 
permits non-experts to make use of the related technologies. In addition, there is a 
push towards closer integration of optimization, marketing, and statistical methods 
into “improvement systems” that structure product-design projects from beginning 
to end. 

Statistical methods are relevant to virtually everyone. Calculus and linear 
algebra are helpful, but not necessary, for their use. The approach taken here is to 
minimize explanations requiring knowledge of these subjects, as far as possible. 
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This book is organized into three parts. For a single introductory course, the first 
few chapters in Parts I and II could be used. More advanced courses could be built 
upon the remaining chapters. At The Ohio State University, I use each part for a 
different 11 week course. 

The second edition features a greatly expanded treatment of lean manufacturing 
and design for six sigma (DFSS). Specifically, many lean methods have been 
added to Chapter 5, and Chapter 21 is entirely new. Also, there is additional design 
of experiments (DOE) related introductory material in Chapter 10. The new 
material includes coverage of full factorials, paired t-testing, and additional 
coverage of analysis of variance (ANOVA). Finally, several corrections have been 
made particularly relating to design of experiments theory and advanced methods. 
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List of Acronyms 

ANOVA   Analysis of Variance is a set of methods for testing whether 
factors affect system output dispersion (variance) or, 
alternatively, for guarding against Type I errors in regression. 

BBD  Box Behnken designs are commonly used approaches for 
structuring experimentation to permit fitting of second-order 
polynomials with prediction accuracy that is often acceptable.  

CCD  Central Composite Designs are commonly used approaches to 
structure experimentation to permit fitting of second order 
polynomials with prediction accuracy that is often acceptable. 

DFSS  Design for Six Sigma is a set of methods specifically designed 
for planning products such that they can be produced smoothly 
and with very high levels of quality. 

DOE  Design of Experiments methods are formal approaches for 
varying input settings systematically and fitting models after data 
have been collected. 

EER  Experimentwise Error Rate is a probability of Type I errors 
relevant to achieving a high level of evidence accounting for the 
fact that many effects might be tested simultaneously. 

EIMSE  The Expected Integrated Mean Squared Error is a quantitative 
evaluation of an input pattern or “DOE matrix” to predict the 
likely errors in prediction that will occur, taking into account the 
effects of random errors and model mis-specification or bias. 

FMEA  Failure Mode and Effects Analysis is a technique for prioritizing 
critical output characteristics with regard to the need for 
additional investments. 

GAs  Genetic Algorithms are a set of methods for heuristically solving 
optimization problems that share some traits in common with 
natural evolution. 

IER  Individual Error Rate is a probability of Type I errors relevant to 
achieving a relatively low level of evidence not accounting for 
the multiplicity of tests. 

ISO 9000: 2000 The International Standards Organization’s recent approach for 
documenting and modeling business practices. 
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OFAT  One-Factor-at-a-Time is an experimental approach in which, at 
any given iteration, only a single factor or input has its settings 
varied with other factor settings held constant.   

PRESS  PRESS is a cross-validation-based estimate of the sum of squares 
errors relevant to the evaluation of a fitted model such as a linear 
regression fitted polynomial. 

QFD  Quality Function Deployment are a set of methods that involve 
creating a large table or “house of quality” summarizing 
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RDPM  Robust Design Using Profit Maximization is one approach to 
achieve Taguchi’s goals based on standard RSM 
experimentation, i.e., an engineered system that delivers 
consistent quality.  

RSM  Response Surface Methods are the category of DOE methods 
related to developing relatively accurate prediction models 
(compared with screening methods) and using them for 
optimization. 

SOPs  Standard Operating Procedures are documented approaches 
intended to be used by an organization for performing tasks. 

SPC  Statistical Process Control is a collection of techniques targeted 
mainly at evaluating whether something unusual has occurred in 
recent operations. 

SQC  Statistical Quality Control is a set of techniques intended to aid 
in the improvement of system quality. 

SSE  Sum of Squared Errors is the additive sum of the squared 
residuals or error estimates in the context of a curve fitting 
method such as regression. 

TOC  Theory of Constraints is a method involving the identification 
and tuning of bottleneck subsystems. 

TLS Theory of Constraints Lean Six Sigma is the method of 
combining TOC, lean, and six sigma. 

TPS  The Toyota Production System is the way manufacturing is done 
at Toyota, which inspired lean production and Just In Time 
manufacturing. 

TTD Total Travel Distance is an approximate length that quantifies 
how far items or information pass through a facility. 
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Introduction 

1.1  Purpose of this Book  

In this chapter, six sigma is defined as a method for problem solving. It is perhaps 
true that the main benefits of six sigma are: (1) the method slows people down 
when they solve problems, preventing them from prematurely jumping to poor 
recommendations that lose money; and (2) six sigma forces people to evaluate 
quantitatively and carefully their proposed recommendations. These evaluations 
can aid by encouraging adoption of project results and in the assignment of credit 
to participants. The main goal of this book is to encourage readers to increase their 
use of six sigma and its associated “sub-methods.” Many of these sub-methods fall 
under the headings “statistical quality control” (SQC) and “design of experiments” 
(DOE), which, in turn, are associated with systems engineering and statistics.   

“Experts” often complain that opportunities to use these methods are being 
missed. Former General Electric CEO Jack Welch, e.g., wrote that six sigma is 
relevant in any type of organization from finance to manufacturing to healthcare. 
When there are “routine, relatively simple, repetitive tasks,” six sigma can help 
improve performance, or if there are “large, complex projects,” six sigma can help 
them go right the first time (Welch and Welch 2005). In this book, later chapters 
describe multiple true case studies in which students and others saved millions of 
dollars using six sigma methods in both types of situations. 

Facilitating competent and wise application of the methods is also a goal. 
Incompetent application of methods can result in desirable outcomes. However, it 
is often easy to apply methods competently, i.e., with an awareness of the 
intentions of methods’ designers. Also, competent application generally increases 
the chance of achieving positive outcomes. Wisdom about how to use the methods 
can prevent over-use, which can occur when people apply methods that will not 
likely repay the associated investment. In some cases, the methods are incorrectly 
used as a substitute for rigorous thinking with subject-matter knowledge, or 
without properly consulting a subject-matter expert. These choices can cause the 
method applications to fail to return on the associated investments. 
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In Section 1.2, several terms are defined in relation to generic systems. These 
definitions emphasize the diversity of the possible application areas. People in all 
sectors of the world economy are applying the methods in this book and similar 
books. These sectors include health care, finance, education, and manufacturing. 
Next, in Section 1.3, problem-solving methods are defined. The definition of six 
sigma is then given in Section 1.4 in terms of a method, and a few specific 
principles and the related history are reviewed in Section 1.5. Finally, an overview 
of the entire book is presented, building on the associated definitions and concepts. 

1.2  Systems and Key Input Variables 

We define a “system” as an entity with “input variables” and “output variables.” 
Also, we use “factors” synonymously with input variables and denote them 
x1,…,xm. In our definition, all inputs must conceivably be directly controllable by 
some potential participant on a project team. We use responses synonymously with 
output variables and denote them y1,…,yq. Figure 1.1 shows a generic system. 

 
 
 
 
 
 
 
 

Figure 1.1. Diagram of a generic system 

Assume that every system of interest is associated with at least one output 
variable of prime interest to you or your team in relation to the effects of input 
variable changes. We will call this variable a “key output variable” (KOV). 
Often, this will be the monetary contribution of the system to some entity’s profits. 
Other KOV are variables that are believed to have a reasonably strong predictive 
relationship with at least one other already established KOV. For example, the 
most important KOV could be an average of other KOVs. 

“Key input variables” (KIVs) are directly controllable by team members, and 
when they are changed, these changes will likely affect at least one key output 
variable. Note that some other books use the terms “key process input variables” 
(KPIVs) instead of key input variables (KIVs) and “key process output variables” 
(KPOVs) instead of key output variables (KOVs). We omit the word “process” 
because sometimes the system of interest is a product design and not a process. 
Therefore, the term “process” can be misleading. 

A main purpose of these generic-seeming definitions is to emphasize the 
diversity of problems that the material in this book can address. Understandably, 
students usually do not expect to study material applicable to all of the following: 
(1) reducing errors in administering medications to hospital patients, (2) improving 
the welds generated by a robotic welding cell, (3) reducing the number of errors in 

System

y1
y2
y3
M

yq

x1
x2
x3
M

xm
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accounting statements, (4) improving the taste of food, and (5) helping to increase 
the effectiveness of pharmaceutical medications. Yet, the methods in this book are 
currently being usefully applied in all these types of situations around the world. 

Another purpose of the above definitions is to clarify this book’s focus on 
choices about the settings of factors that we can control, i.e., key input variables 
(KIVs). While it makes common sense to focus on controllable factors, students 
often have difficulty clarifying what variables they might reasonably be able to 
control directly in relation to a given system. Commonly, there is confusion 
between inputs and outputs because, in part, system inputs can be regarded as 
outputs. The opposite is generally not true.  

The examples that follow further illustrate the diversity of relevant application 
systems and job descriptions. These examples also clarify the potential difficulty 
associated with identifying KIVs and KOVs. Figure 1.2 depicts objects associated 
with the examples, related to the medical, manufacturing, and accounting sectors of 
the economy.  
 
 
 

 
 
 
 
 
 
 
 
 

              (a)   (b)        (c) 

Figure 1.2. (a) Pill box with bar code, (b) Weld torch, and (c) Accounting report 

Example 1.2.1  Bar-coding Hospital System 

Question: A hospital is trying to increase the quality of drug administration. To do 
this, it is considering providing patients with bar-coded wristbands and labeling 
unit dose medications with barcodes to make it easier to identify errors in patient 
and medication names, doses, routes, and times. Your team is charged with 
studying the effects of bar-coding by carefully watching 250 episodes in which 
drugs are given to patients without bar-coding and 250 episodes with bar-coding. 
Every time a drug is administered, you will check the amount, if any, of 
discrepancy between what was supposed to be given and what was given. List 
KIVs and KOVs and their units. 

 
Answer: Possible KIVs and KOVs are listed in Table 1.1. Note also that the table 
is written implying that there is only one type of drug being administered. If there 
were a need to check the administration of multiple drugs, more output variables 
would be measured and documented. Then, it might be reasonable to assign a KOV 
as a weighted sum of the mistake amounts associated with different drugs. 

x1

x2 07/29/04 Account
John Smith 48219

07/31/04 Account
Travel 48207
Meals 48207

08/02/04 Account
Copier repair 52010

wrong account!
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In the above example, there was an effort made to define KOVs specifically 
associated with episodes and input combinations. In this case, it would also be 
standard to say that there is only one output variable “mistake amount” that is 
potentially influenced by bar-coding, the specific patient, and administration time. 
In general, it is desirable to be explicit so that it is clear what KOVs are and how to 
measure them. The purpose of the next example is to show that different people 
can see the same problem and identify essentially different systems. With more 
resources and more confidence with methods, people tend to consider 
simultaneously more inputs that can be adjusted. 

Table 1.1. Key input and output variables for the first bar-code investigation 

KIV Description  KOV Description 
x1 Bar-coding (Y or N)  y1 Mistake amount patient #1 with x1=N 
   y2 Mistake amount patient #2 with x1=N 
   M M 
   y501 Average amount with bar-coding 
   y502 Average amount without bar-coding 

Example 1.2.2  Bar-coding System Version 2 

Question: Another hospital decides to launch a relatively thorough investigation 
of bar-coding, including evaluation of 1000 episodes in which drugs are given to 
patients. In addition to considering installing bar-coding, investigators 
simultaneously consider (1) the use of sustained-release medications that can be 
administered at wider intervals, (2) assigning fewer patients to each nurse,  
(3) setting a limit on how much time nurses can spend chatting with patients, and 
(4) shortening the nurses shift hours. They plan on testing 10 combinations of 
these inputs multiple times each. In addition to correct dosage administration, 
they also want to evaluate the effects of changes on the job satisfaction of the 15 
current nurses. Patient satisfaction is a possible concern, but no one on the team 
really believes that bar-coding affects it. Define and list KIVs and KOVs and 
their units. 

 
Answer: Possible KIVs and KOVs are listed in Table 1.2. Patient satisfaction 
ratings are not included as KOVs. This follows despite the fact that all involved 
believe they are important. However, according to the definition here, key output 
variables must be likely to be affected by changes in the inputs being considered or 
believed to have a strong predictive relationship with other KOVs. Also, note that 
the team cannot control exactly how much time nurses spend with patients. 
However, the team could write a policy such that nurses could tell patients,  
“I cannot spend more than X minutes with you according to policy.” 

 
Note in the above example that average differences in output averages 

conditioned on changes in inputs could be included in the KOV list. Often, 
developing statistical evidence for the existence of these differences is the main 
goal of an investigation. The list of possible KOVs is rarely exhaustive, in the 
sense that more could almost always be added. Yet, if an output is mentioned 
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directly or indirectly as important by the customer, subject matter expert, or team 
member, it should be included in the list. 

The next example illustrates a case in which an input is also an output. 
Generally, inputs are directly controllable, and at least one output under 
consideration is only indirectly controllable through adjustments of input variable 
setting selections. Admittedly, the distinctions between inputs and outputs in 
virtual or simulated world can be blurry. Yet, in this book we focus on the 
assumption that inputs are controllable, and outputs, with few exceptions, are not. 
The next example also constitutes a relatively “traditional” system, in the sense 
that the methods in this book have historically not been primarily associated with 
projects in the service sector.  

Table 1.2. The list of inputs and outputs for the more thorough investigation 

KIV Description  KOV Description 

x1 
Bar-coding (Y or N)  y1 

Mistake amount patient-combo.  
#1 (cc) 

x2 
Spacing on tray 

(millimeters) 
 y2 

Mistake amount patient-combo.  
#2 (cc) 

x3 Number of patients (#)  M M 
x4 Nurse-patient timea 

(min) 
 y1000 

Mistake amount patient-combo. 
#1000 (cc) 

x5 Shift length (h)  y1002 
Nurse #1 rating for input 

combo. #1 
   M M 
 aStated policy is 

less than X 
 y1150 Nurse #15 rating for input 

combo. #20 
 

Example 1.2.3  Robotic Welding System 

Question: The shape of welds strongly relates to profits, in part because operators 
commonly spend time fixing or reworking welds with unacceptable shapes. Your 
team is investigating robot settings that likely affect weld shape, including weld 
speed, voltage, wire feed speed, time in acid bath, weld torch contact tip-to-work 
distance, and the current frequency. Define and list KIVs and KOVs and their 
units. 
 
Answer: Possible KIVs and KOVs are listed in Table 1.3. Weld speed can be 
precisely controlled and likely affects bead shape and therefore profits. Yet, since 
the number of parts made per minute likely relates to revenues per minute (i.e., 
throughput), it is also a KOV. 
 

The final example system considered here relates to annoying accounting 
mistakes that many of us experience on the job. Applying systems thinking to 
monitor and improve accounting practices is of increasing interest in industry. 
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Example 1.2.4  Accounting System 

Question: A manager has commissioned a team to reduce the number of mistakes 
in the reports generated by all company accounting departments. The manager 
decides to experiment with both new software and a changed policy to make 
supervisors directly responsible for mistakes in expense reports entered into the 
system. It is believed that the team has sufficient resources to check carefully 500 
reports generated over two weeks in one “guinea pig” divisional accounting 
department where the new software and policies will be tested. 

Table 1.3. Key input and output variables for the welding process design problem 

KIV Description  KOV Description 

x1 Weld speed (min/weld)  y1 Convexity for weld #1 

x2 Wire feed speed (m/min)  y2 Convexity for weld #2 

x3 Voltage (V)  M M 

x4 Acid bath time (min)  y501 % Acceptable for input 
combo. #1  

x5 Tip distance (mm)  M M 

x6 Frequency (Hz)  y550 Weld speed (min/weld) 
 
Answer: Possible KIVs and KOVs are listed in Table 1.4. 

Table 1.4. Key input and output variables for the accounting systems design problem 

KIV Description  KOV Description 
x1 New software (Y or N)  y1 Number mistakes report #1 
x2 Change(Y or N)  y2 Number mistakes report #2 
   M M 
   y501 Average number mistakes x1=Y, x2=Y 
   y502 Average number mistakes x1=N, x2=Y 
   y503 Average number mistakes x1=Y, x2=N 
   y504 Average number mistakes x1=N, x2=N 

1.3  Problem-solving Methods 

The definition of systems is so broad that all knowledge workers could say that a 
large part of their job involves choosing input variable settings for systems, e.g., in 
accounting, education, health care, or manufacturing. This book focuses on 
activities that people engage in to educate themselves in order to select key input 
variable settings. Their goals are expressable in terms of achieving more desirable 
key output variable (KOV) values. It is standard to refer to activities that result in 
recommended inputs and other related knowledge as “problem-solving methods.” 
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Imagine that you had the ability to command a “system genie” with specific 
types of powers. The system genie would appear and provide ideal input settings 
for any system of interest and answer all related questions. Figure 1.3 illustrates a 
genie based problem-solving method. Note that, even with a trustworthy genie, 
steps 3 and 4 probably would be of interest. This follows because people are 
generally interested in more than just the recommended settings. They would also 
desire predictions of the impacts on all KOVs as a result of changing to these 
settings and an educated discussion about alternatives. 

In some sense, the purpose of this book is to help you and your team efficiently 
transform yourselves into genies for the specific systems of interest to you. 
Unfortunately, the transformation involves more complicated problem-solving 
methods than simply asking an existing system genie as implied by Figure 1.3. The 
methods in this book involve potentially all of the following: collecting data, 
performing analysis and formal optimization tasks, and using human judgement 
and subject-matter knowledge.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3. System genie-based problem-solving method 

Some readers, such as researchers in statistics and operations research, will be 
interested in designing new problem-solving methods. With them in mind, the term 
“improvement system” is defined as a problem-solving method. The purpose of 
this definition is to emphasize that methods can themselves be designed and 
improved. Yet methods differ from other systems, in that benefits from them are 
derived largely indirectly through the inputting of derived factor settings into other 
systems.  

1.3.1  What Is “Six Sigma”? 

The definition of the phrase “six sigma” is somewhat obscure. People and 
organizations that have played key roles in encouraging others to use the phrase 
include the authors Harry and Schroeder (1999), Pande et al. (2000), and the 
American Society of Quality. These groups have clarified that “six sigma” pertains 
to the attainment of desirable situations in which the fraction of unacceptable 

Step 1: Summon genie. 
 
Step 2: Ask genie what settings to use for 

x1,…,xm. 
 
Step 3: Ask genie how KOVs will be 

affected by changing current inputs 
to these settings. 

 
Step 4: Discuss with genie the level of 

confidence about predicted outputs 
and other possible options for 
inputs. 
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products produced by a system is less than 3.4 per million opportunities (PMO). In 
Part I of this book, the exact derivation of this number will be explained. The main 
point here is that a key output characteristic (KOV) is often the fraction of 
manufactured units that fail to perform up to expectations. 

Here, the definition of six sigma is built on the one offered in Linderman et al. 
(2003, p. 195). Writing in the prestigious Journal of Operations Management, 
those authors emphasized the need for a common definition of six sigma and 
proposed a definition paraphrased below:  

Six sigma is an organized and systematic problem-solving method for 
strategic system improvement and new product and service development 
that relies on statistical methods and the scientific method to make 
dramatic reductions in customer defined defect rates and/or improvements 
in key output variables. 

 
The authors further described that while “the name Six Sigma suggests a goal” 

of less than 3.4 unacceptable units PMO, they purposely did not include this 
principle in the definition. This followed because six sigma “advocates establishing 
goals based on customer requirements.” It is likely true that sufficient consensus 
exists to warrant the following additional specificity about the six sigma method: 

The six sigma method for completed projects includes as its phases either 
Define, Measure, Analyze, Improve, and Control (DMAIC) for system 
improvement or Define, Measure, Analyze, Design, and Verify (DMADV) for new 
system development. 

Note that some authors use the term Design For Six Sigma (DFSS) to refer to 
the application of six sigma to design new systems and emphasize the differences 
compared with system improvement activities. 

Further, it is also probably true that sufficient consensus exists to include in the 
definition of six sigma the following two principles:  

Principle 1: The six sigma method only fully commences a project after 
establishing adequate monetary justification. 

Principle 2: Practitioners applying six sigma can and should benefit from 
applying statistical methods without the aid of statistical experts. 

 
The above definition of six sigma is not universally accepted. However, 

examining it probably does lead to appropriate inferences about the nature of six 
sigma and of this book. First, six sigma relates to combining statistical methods 
and the scientific method to improve systems. Second, six sigma is fairly dogmatic 
in relation to the words associated with a formalized method to solve problems. 
Third, six sigma is very much about saving money and financial discipline. Fourth, 
there is an emphasis associated with six sigma on training people to use statistical 
tools who will never be experts and may not come into contact with experts. 
Finally, six sigma focuses on the relatively narrow set of issues associated with 
technical methods for improving quantitative measures of identified subsystems in 
relatively short periods of time. Many “softer” and philosophical issues about how 
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to motivate people, inspire creativity, invoke the principles of design, or focus on 
the ideal endstate of systems are not addressed.  

Example 1.3.1  Management Fad? 

Question: What aspects of six sigma suggest that it might not be another passing 
management fad? 
 
Answer: Admittedly, six sigma does share the characteristic of many fads in that 
its associated methods and principles do not derive from any clear, rigorous 
foundation or mathematical axioms. Properties of six sigma that suggest that it 
might be relevant for a long time include: (1) the method is relatively specific and 
therefore easy to implement, and (2) six sigma incorporates the principle of budget 
justification for each project. Therefore, participants appreciate its lack of 
ambiguity, and management appreciates the emphasis on the bottom line. 

 
Associated with six sigma is a training and certification process. Principle 2 

above implies that the goal of this process is not to create statistical experts. Other 
properties associated with six sigma training are:  

 
1.  Instruction is “case-based” such that all people being trained are 

directly applying what they are learning. 
 
2.  Multiple statistics, marketing, and optimization “component methods” 

are taught in the context of an improvement or “problem-solving” 
method involving five ordered “activities.” These activities are either 
“Define” (D), “Measure” (M), “Analyze” (A), “Improve” (I), and 
“Control” (C) in that order (DMAIC) or “Define” (D), “Measure” (M), 
“Analyze” (A), “Design” (D), “Verify” (V) (DMADV).  

 
3.  An application process is employed in which people apply for training 

and/or projects based on the expected profit or return on investment 
from the project, and the profit is measured after the improvement 
system completes.  

 
4.  Training certification levels are specified as “Green Belt” (perhaps the 

majority of employees), “Black Belt” (project leaders and/or method 
experts), and “Master Black Belt” (training experts). 

 
Many companies have their own certification process. In addition, the 

American Society of Quality (ASQ) offers the Black Belt certification. Current 
requirements include completed projects with affidavits and an acceptable score on 
a written exam.  
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1.3.2  What Is “Lean Manufacturing”? 

The simple principle of “lean manufacturing” is to create more value with less 
work and zero waste. Therefore, ultimate efficiency is the goal or desired end state 
of the methods and principles associated with the terms lean manufacturing, lean 
production, or alternatively, “lean” for short. The methods focus on modeling and 
optimizing the flows of materials and information through systems.   

Historically, some of the lean methods are rooted in the ideas of Fredrick 
Winslow Taylor, the father of industrial and systems engineering. Taiichi Ohno 
and others at Toyota developed the Toyota production system (TPS) based on the 
ideas of Taylor, Henry Ford, and others. It is perhaps true that lean production is 
influenced by the objective of making generic systems more like TPS.  

Section 5.2 describes the methods and principles of lean manufacturing in 
greater detail. To preview, the methods include: value-stream mapping, 5S, 
kanban, and poka-yoke. Value-stream mapping (VSM) involves the creation of a 
diagram of the entire system including potential entities, flows, production times, 
and waiting times. The diagram aids in identification of the process hold-ups to 
facilitate the elimination of the wastes associated. The 5S’s are sort, straighten, 
sweep, standardize, and sustain. Kanban involves using an order-driven or pull-
production system along with just-in-time material arrivals and work in process 
inventories constrained by kanban cards. Poka-yoke is error proofing the system.   

1.3.3  What Is the “Theory of Constraints (ToC)”? 

Eliyahu Goldratt is a consultant who wrote The goal: a process of ongoing 
improvement in 1984. This book was the first to outline his theory of constraints. 
The idea of ToC is that in a complicated system there is generally a single 
constraint holding up the flow of production or throughput. To increase throughput 
unavoidably involves elevating or alleviating the constraining subsystem or 
bottleneck. Dr. Goldratt outlines five steps to do this: Identify the constraints, 
decide how to exploit those constraints, subordinate all other processes, elevate the 
constraint, if the constraint has moved within the system go to the new location and 
start over. Additional details about ToC are given in Section 3.4.1. 

1.3.4  What Is the “Theory of Constraints Lean Six Sigma (TLS)”? 

The “lean sigma” phrase in the title of this book reflects the combination of six 
sigma and lean manufacturing working together. Others have already applied and 
tested combinations of lean manufacturing, six sigma, and ToC. Here, the 
combination is termed theory of constraints lean six sigma (TLS). According to 
Industry Week Magazine 2007 Survey, the implementation of the three combined 
has shown a typical return on investment of 10 to 1. Roughly speaking, lean 
eliminates waste and focuses on the end state, whereas six sigma focuses on the 
principled process of reducing variability, and ToC helps in prioritizing subsystems 
for attention. Note that in this book the term lean sigma will be used 
interchangeably with lean six sigma and TLS. 
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1.4  History of “Quality” and Six Sigma 

In this section, we briefly review the broader history of management, applied 
statistics, and the six sigma movement. The definition of “quality” is as obscure as 
the definition of six sigma. Quality is often defined imprecisely in textbooks in 
terms of a subjectively assessed performance level (P) of the unit in question and 
the expections (E) that customers have for that unit. A rough formula for quality 
(Q) is: 

 Q = 
E
P  (1.1) 

Often, quality is considered in relation to thousands of manufactured parts, and 
a key issue is why some fail to perform up to expectation and others succeed.  

It is probably more helpful to think of “quality” as a catch-word associated with 
management and engineering decision-making using data and methods from 
applied statistics. Instead of relying solely on “seat-of-the-pants” choices and the 
opinions of experts, people influenced by quality movements gather data and apply 
more disciplined methods. 

1.4.1  History of Management and Quality 

The following history is intended to establish a context for the current quality and 
six sigma movements. This explanation of the history of management and quality 
is influenced by Womack and Jones (1996, 1999) related to “Lean Thinking” and 
“value stream mapping” and other terms in the Toyota production system. 

In the renaissance era in Europe, fine objects including clocks and guns were 
developed using “craft” production. In craft production, a single skilled individual 
is responsible for designing, building, selling, and servicing each item. Often, a 
craftperson’s skills are certified and maintained by organizations called “guilds” 
and professional societies.  

During the 1600s and 1700s, an increasing number of goods and services were 
produced by machines, particularly in agriculture. Selected events and the people 
responsible are listed in Figure 1.4. 

It was not until the early 1900s that a coherent alternative to craft production of 
fine objects reached maturity. In 1914, Ford developed “Model T” cars using an 
“assembly line” (patented by Ransom Olds in 1901) in which many unskilled 
workers each provided only a small contribution to the manufacturing process. The 
term “mass production” refers to a set of management policies inspired by 
assembly lines. Ford used assembly lines to make large numbers of nearly identical 
cars. His company produced component parts that were “interchangeable” to an 
impressive degree. A car part could be taken from one car, put on another car, and 
still yield acceptable performance.  

As the name would imply, another trait of mass production plants is that they 
turn out units in large batches. For example, one plant might make 1000 parts of 
one type using a press and then change or “set up” new dies to make 1000 parts of 
a different type. This approach has the benefit of avoiding the costs associated with 
large numbers of change-overs.  
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Figure 1.4. Timeline of selected management methods (includes Toyoda at Toyota) 
 
Significant accountability for product performance was lost in mass production 

compared with craft production. This follows because the people producing the 
product each saw only a very small part of its creation. Yet, benefits of mass 
production included permitting a huge diversity of untrained people to contribute 
in a coordinated manner to production. This in turn permitted impressive numbers 
of units to be produced per hour. It is also important to note that both craft and 
mass production continue to this day and could conceivably constitute profitable 
modes of production for certain products and services. 

Mass production concepts contributed to intense specialization in other 
industrial sectors besides manufacturing and other areas of the corporation besides 
production. Many companies divided into departments of marketing, design 
engineering, process engineering, production, service, purchasing, accounting, and 
quality. In each of these departments people provide only a small contribution to 
the sale of each unit or service. The need to counteract the negative effects of 
specialization at an organizational level has led to a quality movement called 
“concurrent engineering” in which people from multiple disciplines share 
information. The interaction among production, design engineering, and marketing 
is considered particularly important, because design engineering often largely 
determines the final success of the product. Therefore, design engineers need input 
about customer needs from marketing and production realities from production. 

The Toyota production system invented in part by Toyoda and Ohno, also 
called “lean production” and “just-in-time” (JIT), built in part upon innovations in 
U.S. supermarkets. The multiple further innovations that Toyota developed in turn 
influenced many areas of management and quality-related thinking including 
increased outsourcing in supply-chain management. In the widely read book The 
Machine that Changed the World, Womack et al. (1991) explained how Toyota, 
using its management approach, was able to transform quickly a failing GM plant 
to produce at least as many units per day with roughly one half the personnel 
operating expense and with greatly improved quality by almost any measure. This 
further fueled the thirst in the U.S. to learn from all things Japanese. 

JIT creates accountability by having workers follow products through multiple 
operations in “U”-shaped cells (i.e., machines laid out in the shape of a “U”) and 
by implementing several policies that greatly reduce work-in-process (WIP) 
inventory. To the maximum extent possible, units are made in batches of size one, 
i.e., creating a single unit of one type and then switching over to a single of another 
type of unit and so on. This approach requires frequent equipment set-ups. To 
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compensate, the workers put much effort into reducing set-up costs, including the 
time required for set-ups. Previously, many enterprises had never put effort into 
reducing set-ups because they did not fully appreciate the importance.  

Also, the total inventory at each stage in the process is generally regulated 
using kanban cards. When the cards for a station are all used up, the process shuts 
down the upstream station, which can result in shutting down entire supply chains. 
The benefit is increased attention to the problems causing stoppage and (hopefully) 
permanent resolution. Finally, lean production generally includes an extensive 
debugging process; when a plant starts up with several stoppages, many people 
focus on and eliminate the problems. With small batch sizes, “U” shaped cells, and 
reduced WIP, process problems are quickly discovered before non-conforming 
units accumulate.  

Example 1.4.1 Lean Production of Paper Airplanes 

Question: Assume that you and another person are tasked with making a large 
number of paper airplanes. Each unit requires three operations: (1) marking, (2) 
cutting, and (3) folding. Describe the mass and lean ways to deploy your resources. 
Which might generate airplanes with higher quality? 
 
Answer: A mass production method would be to have one person doing all the 
marking and cutting and the other person doing all the folding. The lean way 
would have both people doing marking, cutting, and folding to make complete 
airplanes. The lean way would probably produce higher quality because, during 
folding, people might detect issues in marking and cutting. That information would 
be used the next time to improve marking and cutting with no possible loss 
associated with communication. (Mass production might produce units more 
quickly, however.) 
 

In addition to studying Toyota’s lean production, observers compare many 
types of business practices at European, Japanese, and U.S. companies. One 
finding at specific companies related to the timing of design changes at automotive 
companies. In the automotive industry, “Job 1” is the time when the first 
production car roles off the line. A picture emerged, shown in Figure 1.5.   

Figure 1.5 implies that at certain automotive companies in Japan, much more 
effort was spent investigating possible design changes long before Job 1. At certain 
U.S. car companies, much more of the effort was devoted after Job 1 reacting to 
problems experience by customers. This occurred for a variety of reasons. Certain 
Japanese companies made an effort to institutionalize a forward-looking design 
process with “design freezes” that were taken seriously by all involved. Also, 
engineers at these specific companies in Japan were applying design of 
experiments (DOE) and other formalized problem-solving methods more 
frequently than their U.S. counterparts. These techniques permit the thorough 
exploration of large numbers of alternatives long before Job 1, giving people more 
confidence in the design decisions.  

Even today, in probably all automotive companies around the world, many 
engineers are in “reactive mode,” constantly responding to unforeseen problems. 
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The term “fire-fighting” refers to reacting to these unexpected occurrences. The 
need to fire-fight is, to a large extent, unavoidable. Yet the cost per design change 
plot in Figure 1.5 is meant to emphasize the importance of avoiding problems 
rather than fire-fighting. Costs increase because more and more tooling and other 
coordination efforts are committed based on the current design as time progresses. 
Formal techniques taught in this book can play a useful role in avoiding or 
reducing the number of changes needed after Job 1, and achieving benefits 
including reduced tooling and coordination costs and decreased need to fire-fight. 
 
 
 
 
 
 

 
 
 
 
  
 

 
 

Figure 1.5. Formal planning can reduce costs and increase agility 
 
Another development in the history of quality is “miniaturization”. Many 

manufactured items in the early 2000s have literally millions of critical 
characteristics, all of which must conform to specifications in order for the units to 
yield acceptable performance. The phrase “mass customization” refers to efforts 
to tailor thousands of items such as cars or hamburgers to specific customers’ 
needs. Mass customization, like miniaturization, plays an important role in the 
modern work environment. Ford’s motto was, “You can have any color car as long 
as it is black.” In the era of global competition, customers more than ever demand 
units made to their exact specifications. Therefore, in modern production, 
customers introduce additional variation to the variation created by the production 
process. 

Example 1.4.2  Freezing Designs 

Question: With respect to manufacturing, how can freezing designs help quality? 
 
Answer: Often the quality problem is associated with only a small fraction of units 
that are not performing as expected. Therefore, the problem must relate to 
something different that happened to those units, i.e., some variation in the 
production system. Historically, engineers “tweaking” designs has proved to be a 
major source of variation and thus a cause of quality problems. 

time

Job 1 

No. of design changes at 
the disciplined company 

No. of design changes 
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tooling, CAD, etc. 



  Introduction      15 

1.4.2  History of Documentation and Quality 

The growing role of documentation of standard operating procedures (SOPs) also 
relates to management history. The International Standards Organization (ISO) 
developed in Europe but was influenced in the second half of the twentieth century 
by U.S. military standards. The goals of ISO included the development of standard 
ways that businesses across the world could use to document their practices. ISO 
standards for documenting business practices, including “ISO 9000: 1994” and 
“ISO 9000: 2000” document series aimed to reduce variation in production.  

ISO 9000: 1994 emphasized addressing 20 points and the basic guideline “Do 
what you say and say what you do.” In other words, much emphasis was placed on 
whether or not the company actually used its documented policies, rather than on 
the content of those policies. ISO 9000:2000 added more requirements for 
generating models to support and improve business subsystems. Companies being 
accredited pay credentialed auditors to check that they are in compliance at regular 
intervals. The results include operating manuals at many accredited institutions that 
reflect truthfully, in some detail, how the business is being run. 

Perceived benefits of ISO accreditation include: (1) reducing quality problems 
of all types through standardization of practices, and (2) facilitating training when 
employees switch jobs or leave organizations. Standardization can help by forcing 
people to learn from each other and to agree on a single approach for performing a 
certain task. ISO documentation also discourages engineers from constantly 
tinkering with the design or process.  

Another perceived benefit of ISO documentation relates to the continuing trend 
of companies outsourcing work formerly done in-house. This trend was also 
influenced by Toyota. In the 1980s researchers noticed that Toyota trusted its 
suppliers with much more of the design work than U.S. car makers did, and saved a 
great deal of money as a result. Similar apparent successes with these methods 
followed at Chrysler and elsewhere, which further encouraged original equipment 
manufacturers (OEMs) to increase outsourcing. The OEMs have now become 
relatively dependent on their “supply chain” for quality and need some way to 
assure intelligent business practices are being used by suppliers. 

While ISO and other documentation and standardization can eliminate sources 
of variation, the associated “red tape” and other restrictive company policies can 
also, of course, sometimes stifle creativity and cost money. Some authors have 
responded by urging careful selection of employees and a “culture of discipline” 
(Collins 2001). Collins suggests that extensive documentation can, in some cases, 
be unnecessary because it is only helpful in the case of a few problem employees 
who might not fit into an organization. He bases his recommendations on a study 
of policies at exceptional and average companies based on stock performance. 

1.4.3  History of Statistics and Quality 

Corporations routinely apply statistical methods, partly in response to 
accountability issues, as well as due to the large volume of items produced, 
miniaturization, and mass customization. An overview of selected statistical 
methods is provided in Figure 1.6. The origin of these methods dates back at least 
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to the invention of calculus in the 1700s. Least squares regression estimation was 
one of the first optimization problems addressed in the calculus/optimization 
literature. In the early 1900s, statistical methods played a major role in improving 
agricultural production in the U.K. and the U.S. These developments also led to 
new methods, including fractional factorials and analysis of variance (ANOVA) 
developed by Sir Ronald Fisher (Fisher 1925). 
 
 
 
 
 
 
 
 
 
 

Figure 1.6. Timeline of selected statistical methods 
 

The realities of mass production led W. Shewhart working in 1924 at Bell 
Laboratories to propose statistical process control (SPC) methods (see 
www.research.att.com/areas/stat/info/history.html). The specific “X-Bar and R” 
charts he developed are also called “Shewhart” charts. These methods discourage 
process tinkering unless statistical evidence of unusual occurrences accrues. 
Shewhart also clarified the common and harmful role that variation plays in 
manufacturing, causing a small fraction of unit characteristics to wander outside 
their specification limits. The implementation of Shewhart charts also exposed 
many unskilled workers to statistical methods. 

In the 1950s, the U.S. Food and Drug Administration required companies to 
hire “statisticians” to verify the safety of food and drugs. Many universities 
developed statistics departments largely in response to this demand for 
statisticians. Perhaps as a result of this history, many laypeople tend to associate 
statistical methods with proving claims to regulatory bodies.  

At the same time, there is a long history of active uses of statistical methods to 
influence decision-making unrelated to regulatory agencies. For example, many 
kinds of statistical methods were used actively in formal optimization and the 
science of “operations research” for the military during and after World War II. 
During the war Danzig and Wood used linear programming – developed for crop 
optimization – in deploying convoys. Monte Carlo simulation methods were also 
used for a wide variety of purposes ranging from evaluating factory flows to 
gaming nuclear attacks and predicting fallout spread. 

George Box, Genichi Taguchi, and many others developed design of 
experiments (DOE) methods and new roles for statisticians in the popular 
consciousness besides verification. These methods were intended to be used early 
in the process of designing products and services. In the modern workplace, people 
in all departments, including marketing, design engineering, purchasing, and 
production, routinely use applied statistics methods. The phrases “business 
statistics” and “engineering statistics” have come into use partially to differentiate 
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statistical methods useful for helping to improve profits from methods useful for 
such purposes as verifying the safety of foods and drugs (“standard statistics”), or 
the assessment of threats from environmental contaminants. 

Edward Deming is credited with playing a major role in developing so-called 
“Total Quality Management” (TQM). Total quality management emphasized the 
ideas of Shewhart and the role of data in management decision-making. TQM 
continues to increase awareness in industry of the value of quality techniques 
including design of experiments (DOE) and statistical process control (SPC). It 
has, however, been criticized for leaving workers with only a vague understanding 
of the exact circumstances under which the methods should be applied and of the 
bottom line impacts. 

Because Deming’s ideas were probably taken more seriously in Japan for much 
of his career, TQM has been associated with technology transfer from the U.S. to 
Japan and back to the U.S. and the rest of the world. Yet in general, TQM has little 
to do with Toyota’s lean production, which was also technology transfer from 
Japan to the rest of the world. Some credible evidence has been presented 
indicating that TQM programs around the world have resulted in increased profits 
and stock prices (Kaynak 2003). However, a perception developed in the 1980s 
and 1990s that these programs were associated with “anti-business attitudes” and 
“muddled thinking.”   

This occurred in part because some of the TQM practices such as “quality 
circles” have been perceived as time-consuming and slow to pay off. Furthermore, 
the perception persists to this day that the roles of statistical methods and their use 
in TQM are unclear enough to require the assistance of a statistical expert in order 
to gain a positive outcome. Also, Deming placed a major emphasis on his “14 
points,” which included #8, “Drive out fear” from the workplace. Some managers 
and employees honestly feel that some fear is helpful. It was against this backdrop 
that six sigma developed. 

Example 1.4.3 Japanese Technology 

Question: Drawing on information from this chapter and other sources, briefly 
describe three quality technologies transferred from Japan to the rest of the world. 
 
Answer: First, lean production was developed at Toyota which has its headquarters 
in Japan. Lean production includes two properties, among others: inventory at each 
machine center is limited using kanban cards, and U-shaped cells are used in which 
workers follow parts for many operations which instills worker accountability. 
However, lean production might or might not relate to the best way to run a 
specific operation. Second, quality circles constitute a specific format for sharing 
quality-related information and ideas. Third, a Japanese consultant named Genechi 
Taguchi developed some specific DOE methods with some advantages that will be 
discussed briefly in Part II of this book. He also emphasized the idea of using 
formal methods to help bring awareness of production problems earlier in the 
design process. He argued that this can reduce the need for expensive design 
changes after Job 1. 
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1.4.4  The Six Sigma Movement 

The six sigma movement began in 1979 at Motorola when an executive declared 
that “the real problem [is]…quality stinks.” With millions of critical characteristics 
per integrated circuit unit, the percentage of acceptable units produced was low 
enough that these quality problems obviously affected the company’s profits. 

In the early 1980s, Motorola developed methods for problem-solving that 
combined formal techniques, particularly relating to measurement, to achieve 
measurable savings in the millions of dollars. In the mid-1980s, Motorola spun off 
a consulting and training company called the “Six Sigma Academy” (SSA). SSA 
president Mikel Harry led that company in providing innovative case-based 
instruction, “black belt” accreditations, and consulting. In 1992, Allied Signal 
based its companywide instruction on Six Sigma Academy techniques and began 
to create job positions in line with Six Sigma training levels. Several other 
companies soon adopted Six Sigma Academy training methods, including Texas 
Instruments and ABB.   

Also during the mid-1990s, multiple formal methodologies to structure product 
and process improvement were published. These methodologies have included 
Total Quality Development (e.g., see Clausing 1994), Taguchi Methods (e.g., see 
Taguchi 1993), the decision analysis-based framework (e.g., Hazelrigg 1996), and 
the so-called “six sigma” methodology (Harry and Schroeder 1999). All these 
published methods developments aim to allow people involved with system 
improvement to use the methods to structure their activities even if they do not 
fully understand the motivations behind them. 

In 1995, General Electric (GE) contracted with the “Six Sigma Academy” for 
help in improving its training program. This was of particular importance for 
popularizing six sigma because GE is one of the world’s most admired companies. 
The Chief Executive Officer, Jack Welch, forced employees at all levels to 
participate in six sigma training and problem-solving approaches. GE’s approach 
was to select carefully employees for Black Belt instruction, drawing from 
employees believed to be future leaders. One benefit of this approach was that 
employees at all ranks associated six sigma with “winners” and financial success. 
In 1999, GE began to compete with Six Sigma Academy by offering six sigma 
training to suppliers and others. In 2000, the American Society of Quality initiated 
its “black belt” accreditation, requiring a classroom exam and signed affidavits that 
six sigma projects had been successfully completed. 

Montgomery (2001) and Hahn et al. (1999) have commented that six sigma 
training has become more popular than other training in part because it ties 
standard statistical techniques such as control charts to outcomes measured in 
monetary and/or physical terms. No doubt the popularity of six sigma training also 
derives in part from the fact that it teaches an assemblage of techniques already 
taught at universities in classes on applied statistics, such as gauge repeatability 
and reproducibility (R&R), statistical process control (SPC), design of experiments 
(DOE), failure modes and effects analysis (FMEA), and cause and effect matrices 
(C&E).  

All of the component techniques such as SPC and DOE are discussed in Pande 
et al. (2000) and defined here. The techniques are utilized and placed in the context 
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of a methodology with larger scope, i.e., the gathering of information from 
engineers and customers and the use of this information to optimize system design 
and make informed decisions about the inspection techniques used during system 
operation. 

Pande et al. (2000) contributed probably the most complete and explicit version 
of the six sigma methods in the public domain. Yet even their version of the 
methodology (perhaps wisely) leaves implementers considerable latitude to tailor 
approaches to applications and to their own tastes. This lack of standardization of 
methodologies explains, at least in part, why the American Society for Quality still 
has only recently introduced a six sigma “black belt” certification process. An 
exception is a proprietary process at General Electric that “green belt” level 
practitioners are certified to use competently. 

Example 1.4.4  Lean Sigma 

Question: How do six sigma and lean production relate? 
 
Answer: Six sigma is a generic method for improving systems or designing new 
products, while lean manufacturing has a greater emphasis on the best structure, in 
Toyota’s view, of a production system. Therefore, six sigma focuses more on how 
to implement improvements or new designs using statistics and optimization 
methods in a structured manner. Lean manufacturing focuses on what form to be 
implemented for production systems, including specific high-level decisions 
relating to inventory management, purchasing, and scheduling of operations, with 
the goal of emulating the Toyota Production System. That being said, there are 
“kaizen events” and “value stream mapping” activities in lean production. Still, the 
overlap is small enough that many companies have combined six sigma and lean 
manufacturing efforts under the heading “lean sigma.”  

1.5  The Culture of Discipline 

The purpose of this section is to summarize the practical reasons for considering 
using any formal SQC or DOE techniques rather than trial and error. These reasons 
can be helpful for motivating engineers and scientists to use these methods, and for 
overcoming human tendencies to avoid activities requiring intellectual discipline. 
This motivation might help to build something like the data-driven “culture of 
discipline” identified by Collins (2001). 

The primary reason for formality in decision-making is the common need for 
extremely high quality levels. This follows from growing international competition 
in all sectors of the economy. Also, miniaturization and mass customization can 
make problems hard to comprehend. Often, for the product to have a reasonable 
chance of meeting customer expectations, the probability that each quality 
characteristic will satisfy expectations (the “yield”) must be greater than 99.99%. 
Workers in organizations often discover that competitor companies are using 
formal techniques to achieve the needed quality levels with these tough demands.  
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Why might formal methods be more likely than trial and error to achieve these 
extreme quality levels? Here, we will use the phrase “One-Factor-at-a-Time” 
(OFAT) to refer to trial-and-error experimentation, following the discussion in 
Czitrom (1999). Intuitively, one performs experimentation because one is uncertain 
which alternatives will give desirable system outputs. Assume that each alternative 
tested thoroughly offers a roughly equal probability of achieving process goals. 
Then the method that can effectively thoroughly test more alternatives is more 
likely to result in better outcomes.   

Formal methods (1) spread tests out inside the region of interest where good 
solutions are expected to be and (2) provide a thorough check of whether changes 
help. For example, by using interpolation models, e.g., linear regressions or neural 
nets, one can effectively thoroughly test all the solutions throughout the region 
spanned by these experimental runs.  

OFAT procedures have the advantages of being relatively simple and 
permitting opportunistic decision-making. Yet, for a given number of experimental 
runs, these procedures effectively test far fewer solutions, as indicated by the 
regions in Figure 1.7 below. Imagine the dashed lines indicate contours of yield as 
a function of two control factors, x1 and x2. The chance that the OFAT search area 
contains the high yield required to be competitive is far less than the formal 
method search area. 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 1.7. Formal procedures search much larger spaces for comparable costs 

A good engineer can design products that work well under ideal circumstances. 
It is far more difficult, however, to design a product that works well for a range of 
conditions, i.e., noise factor settings as defined originally by Taguchi. This reason 
is effectively a restatement of the first reason because it is intuitively clear that it is 
noise factor variation that causes the yields to be less than 100.00000%. Something 
must be changing in the process and/or the environment. Therefore, the designers’ 
challenge, clarified by Taguchi, is to design a product that gives performance 
robust to noise factor variation. To do this, the experimenter must consider an 
expanded list of factors including both control and noise factors. This tends to 
favor formal methods because typically the marginal cost of adding factors to the 
experimental plan in the context of formal methods (while achieving comparable 
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method performance levels, e.g., probabilities of successful identification or 
prediction errors) is much less than for OFAT.  

Often there is a financial imperative to “freeze” an engineering design early in 
the design process. Then it is important that this locked in design be good enough, 
including robust enough, such that stakeholders do not feel the need to change the 
design later in the process. Formal methods can help to establish a disciplined 
product and/or process development timeline to deliver high quality designs early.  

The financial problem with the wait-and-see attitude based on tinkering and not 
upfront formal experimentation is that the costs of changing the design grow 
exponentially with time. This follows because design changes early in the process 
mainly cost the time of a small number of engineers. Changes later in the process 
cause the need for more changes, with many of these late-in-the-process changes 
requiring expensive retooling and coordination costs. Also, as changes cause the 
need for more changes, the product development time can increase dramatically, 
reducing the company’s “agility” in the marketplace. 

Example 1.5.1 Convincing Management 

Question: What types of evidence are most likely to convince management to 
invest in training and usage of formal SQC and DOE techniques? 

 
Answer: Specific evidence that competitor companies are saving money is most 
likely to make management excited about formal techniques. Also, many people at 
all levels are impressed by success stories. The theory that discipline might 
substitute for red tape might also be compelling. 

1.6  Real Success Stories 

Often students and other people are most encouraged to use a product or method by 
stories in which people like them had positive experiences. This book contains four 
complete case studies in which the author or actual students at The Ohio State 
University participated on teams which added millions of dollars to the bottom line 
of companies in the midwestern United States. These studies are described in 
Chapters 9 and 17. Also, this text contains more than 100 other examples which 
either contain real world data or are motivated by real problems.  

An analysis of all six sigma improvement studies conducted in two years at a 
medium-sized midwestern manufacturer is described in Chapter 21. In that study, 
25 of the 34 projects generated reasonable profits. Also, the structure afforded by 
the methods presented in this book appeared to aid in the generation of extremely 
high profits in two of the cases. The profits from these projects alone could be 
viewed as strong justification for the entire six sigma program. 
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1.7  Overview of this Book 

This book is divided into three major parts. The first part describes many of the 
most widely used methods in the area of study called “statistical quality control” 
(SQC). The second part described formal techniques for data collection and 
analysis. These techniques are often refered to as “design of experiments” (DOE) 
methods. Model fitting after data are collected is an important subject by itself. For 
this reason, many of the most commonly used model-fitting methods are also 
described in this part with an emphasis on linear regression.  

Part III concludes with a description of optimization methods, including their 
relationship to the planning of six sigma projects. Optimization methods can play 
an important role both for people working on a six sigma project and for the design 
of novel statistical methods to help future quality improvement projects. 

Case studies are described near the end of each major part and are associated 
with exercises that ask the reader “What would you have done?” These studies 
were based largely on my own experiences working with students at midwestern 
companies during the last several years. In describing the case studies, the intent is 
to provide the same type of real world contextual information encountered by 
students, from the engineering specifics and unnecessary information to the 
millions of dollars added to the bottom line. 

It is important for readers to realize that only a minimal amount of “statistical 
theory” is needed to gain benefits from most of the methods in this book. Theory is 
helpful mainly for curious readers to gain a deeper appreciation of the methods and 
for designing new statistical and optimization methods. For this reason, statistical 
theory is separated to a great extent from a description of the methods. Readers 
wary of calculus and probability need not be deterred from using the methods. 

In the 1950s, a committee of educators met and defined what is now called 
“Bloom’s Taxonomy” of knowledge (Bloom 1956). This taxonomy is often 
associated with both good teaching and six sigma-related instruction. Roughly 
speaking, general knowledge divides into: (1) knowledge of the needed 
terminology and the typical applications sequences, (2) comprehension of the 
relevant plots and tables, (3) experience with application of several central 
approaches, (4) an ability for analysis of how certain data collection plans are 
linked to certain model-fitting and decision-making approaches, and (5) the 
synthesis needed to select an appropriate methodology for a given problem, in that 
order. Critiquing the knowledge being learned and its usefulness is associated with 
the steps of analysis and/or synthesis. The central thesis associated with Bloom’s 
Taxonomy is that teaching should ideally begin with the knowledge and 
comprehension and build up to applications, ending with synthesis and critique.  

Thus, Bloom’s “taxonomy of cognition” divides knowledge and application 
from theory and synthesis, a division followed roughly in this book. Admittedly, 
the approach associated with Bloom’s taxonomy does not cater to people who 
prefer to begin with general theories and then study applications and details. 
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Problems 

In general, pick the correct answer that is most complete. 
 

1. Consider the toy system of paper airplanes. Which of the following constitute 
possible design KIVs and KOVs? 

a. KIVs include time unit flies dropped from 2 m and KOVs include 
wing fold angle. 

b. KIVs include wing fold angle in design and KOVs include type of 
paper in design. 

c. KIVs include wing fold angle and KOVs include time unit flies 
assuming a 2 m drop. 

d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
2. Consider a system that is your personal homepage. Which of the following 

constitute possible design KIVs and KOVs? 
a. KIVs include background color and KOVs include time it takes to 

find your resume. 
b. KIVs include expert rating (1–10) of site and KOVs include amount 

of flash animation. 
c. KIVs include amount of flash animation and KOVs include expert 

rating (1–10) of site. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
3. Assume that you are paid to aid with decision-making about settings for a die 

casting process in manufacturing. Engineers are frustrated by the amount of 
flash or spill-out they must clean off the finished parts and the deviations of 
the part dimensions from the nominal blueprint dimensions. They suggest that 
the preheat temperature and injection time might be changeable. They would 
like to improve the surface finish rating (1–10) but strongly doubt whether any 
factors would affect this. Which of the following constitute KIVs and KOVs? 

a. KIVs include deviation of part dimensions from nominal and KOVs 
include surface finish rating. 

b. KIVs include preheat temperature and KOVs include deviation of 
part dimensions from nominal. 

c. KIVs include surface finish rating and KOVs include deviation of 
part dimensions from nominal. 

d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
4. You are an industrial engineer at a hospital trying to reduce waiting times of 

patients in emergency rooms. You are allowed to consider the addition of one 
nurse during peak hours as well as subscription to a paid service that can 
reduce data entry times. Which of the following constitute KIVs and KOVs? 
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a. KIVs include subscription to a data entry service and KOVs include 
waiting times. 

b. KIVs include number of nurses and KOVs include average waiting 
times for patients with AIDS. 

c. KIVs include average waiting times and KOVs include number of 
nurses. 
 

d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
5. Consider your friend’s system relating to grade performance in school. List 

two possible KIVs and two possible KOVs. 
 
6. Consider a system associated with international wire transfers in personal 

banking. List two possible KIVs and two possible KOVs. 
 
7. According to Chapter 1, which of the following should be included in the 

definition of six sigma? 
a. Each project must be cost justified. 
b. For new products, project phases should be organized using 

DMADV. 
c. 3.4 unacceptable units per million opportunities is the generic goal. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
8. According to Chapter 1, which of the following should be included in the 

definition of six sigma? 
a. Fear should be driven out of the workplace. 
b. Participants do not need to become statistics experts. 
c. Thorough SOP documentation must be completed at the end of every 

project. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
9. How does six sigma training differ from typical university instruction? 

Explain in two sentences. 
 
10. List two perceived problems associated with TQM that motivated the 

development of six sigma.  
 
11. Which of the following is the lean production way to making three 

sandwiches? 
a. Lay out six pieces of bread, add tuna fish to each, add mustard, fold 

all, and cut. 
b. Lay out two pieces of bread, add tuna fish, mustard, fold, and cut. 

Repeat. 
c. Lay out the tuna and mustard, order out deep-fat fried bread and wait. 
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d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
12. Which of the following were innovations associated with mass production? 

a. Workers did not need much training since they had simple, small 
tasks. 

b. Guild certification built up expertise among skilled tradesmen. 
c. Interchangeability of parts permitted many operations to be 

performed usefully at one time without changing over equipment. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
13. In two sentences, explain the relationship between mass production and lost 

accountability. 
 
14. In two sentences, explain why Shewhart invented control charts. 
 
15. In two sentences, summarize the relationship between lean production and 

quality. 
 
16. Give an example of a specific engineered system and improvement system that 

might be relevant in your work life. 
 
17. Provide one modern example of craft production and one modern example of 

mass production. Your examples do not need to be in traditional 
manufacturing and could be based on a task in your home. 

 
18. Which of the following are benefits of freezing a design long before Job 1? 

a. Your design function can react to data after Job 1. 
b. Tooling costs more because it becomes too easy to do it correctly. 
c. It prevents reactive design tinkering and therefore reduces tooling 

costs. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
19. Which of the following are benefits of freezing a design long before Job 1? 

a.    It encourages people to be systematic in attempts to avoid problems. 
b.    Design changes cost little since tooling has not been committed. 
c.    Fire-fighting occurs more often. 
d.    Answers in parts “a” and “b” are both correct. 
e.    Answers in parts “a” and “c” are both correct. 

 
20. Which of the following are perceived benefits of being ISO certified? 

a. Employees must share information and agree on which practices are 
best. 

b. Inventory is reduced because there are smaller batch sizes. 
c. Training costs are reduced since the processes are well documented. 
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d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
21. Which of the following are problems associated with gaining ISO 

accreditation? 
a. Resources must be devoted to something not on the value stream. 
b. Managers may be accused of “tree hugging” because fear can be 

useful. 
c. Employees rarely feel stifled because of a bureaucratic hurdles are 

eliminated. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
22. According to Bloom’s Taxonomy, which of the following is true? 

a. People almost always learn from the general to the specific. 
b. Learning of facts, application of facts, and the ability to critique, in 

that order, is easiest. 
c. Theory is critical to being able to apply material. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
23. According to Bloom’s Taxonomy which of the following would be effective? 

a. Give application experience, and then teach them theory as needed. 
b. Ask people to critique your syllabus content immediately, and then 

teach facts. 
c. Start with facts, then application, then some theory, and then ask for 

critiques. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
24. Suppose one defines two basic levels of understanding of the material in this 

book to correspond to “green belt” (lower) and “black belt” (higher). 
Considering Bloom’s Taxonomy, and inspecting this book’s table of contents, 
what types of knowledge and abilities would a green belt have and what types 
of knowledge would a black belt have? 

 
25. Suppose you were going to teach a fifteen year old about your specific major 

and its usefulness in life. Provide one example of knowledge for each level in 
Bloom’s Taxonomy. 

 
26. According to the chapter, which is correct and most complete? 

a. TQM has little to do with technology transfer from Europe to the U.S. 
b. The perception that TQM is anti-business developed in the last five 

years. 
c. One of Deming’s 14 points is that fear is a necessary evil. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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Part I: Statistical Quality Control



 

2 

Statistical Quality Control and Six Sigma 

2.1  Introduction 

The phrase “statistical quality control” (SQC) refers to the application of 
statistical methods to monitor and evaluate systems and to determine whether 
changing key input variable (KIV) settings is appropriate. Specifically, SQC is 
associated with Shewhart’s statistical process charting (SPC) methods. These SPC 
methods include several charting procedures for visually evaluating the 
consistency of key process outputs (KOVs) and identifying unusual circumstances 
that might merit attention.  

In common usage, however, SQC refers to many problem-solving methods. 
Some of these methods do not relate to monitoring or controlling processes and do 
not involve complicated statistical theory. In many places, SQC has become 
associated with all of the statistics and optimization methods that professionals use 
in quality improvement projects and in their other job functions. This includes 
methods for design of experiments (DOE) and optimization. In this book, DOE and 
optimization methods have been separated out mainly because they are the most 
complicated quality methods to apply and understand. 

In Section 2.2, we preview some of the SQC methods described more fully later 
in this book. Section 2.3 relates these techniques to possible job descriptions and 
functions in a highly formalized organization. Next, Section 2.4 discusses the 
possible roles the different methods can play in the six sigma problem-solving 
method.   

The discussion of organizational roles leads into the operative definition of 
quality, which we will define as conformance to design engineering’s 
specifications. Section 2.5 explores related issues including the potential difference 
between non-conforming and defective units. Section 2.6 concludes the chapter by 
describing how standard operating procedures capture the best practices derived 
from improvement or design projects.  
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2.2  Method Names as Buzzwords 

The names of problem-solving methods have become “buzzwords” in the corporate 
world. The methods themselves are diverse; some involve calculating complicated 
statistics and others are simple charting methods. Some of the activities associated 
with performing these methods can be accomplished by a single person working 
alone, and others require multidisciplinary teams. The following is an abbreviated 
list of the methods to illustrate the breadth and purposes of these methods:   

Acceptance Sampling involves collecting and analyzing a relatively small 
number of KIV measurements to make “accept or reject” decisions about a 
relatively large number of units. Statistical evidence is generated about the 
fraction of the units in the lot that are acceptable. 

Control Planning is an activity performed by the “owners” of a process to 
assure that all process KOV variables are being measured in a way that 
assures a high degree of quality. This effort can involve application of 
multiple methods. 

Design of Experiments (DOE) methods are structured approaches for 
collecting response data from varying multiple KIVs to a system. After the 
experimental tests yield the response outputs, specific methods for 
analyzing the data are performed to establish approximate models for 
predicting outputs as a function of inputs. 

Failure Mode & Effects Analysis (FMEA) is a method for prioritizing 
response measurements and subsystems addressed with highest priority. 

Formal Optimization is itself a diverse set of methods for writing 
technical problems in a precise way and for developing recommended 
settings to improve a specific system or product, using input-output models 
as a starting point. 

Gauge Repeatability and Reproducibility (R&R) involves collecting 
repeated measurements on an engineering system and performing 
complicated calculations to assess the acceptability of a specific 
measurement system. (“Gage” is an alternative spelling.) 

Process Mapping involves creating a diagram of the steps involved with 
an engineering system. The exercise can be an important part of waste 
reduction efforts and lean engineering and can aid in identifying key input 
variables.  

Regression is a curve-fitting method for developing approximate 
predictions of system KOVs (usually averages) as they depend on key 
input variable settings. It can also be associated with proving statistically 
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that changes in KIVs affect changes in KOVs if used as part of a DOE 
method.  

Statistical Process Control (SPC) charting includes several methods to 
assess visually and statistically the quality and consistency of process 
KOVs and to identify unusual occurrences. Therefore, SPC charting is 
useful for initially establishing the value and accuracy of current settings 
and confirming whether recommended changes will consistently improve 
quality. 

Quality Function Deployment (QFD) involves creating several matrices 
that help decision-makers better understand how their system differs from 
competitor systems, both in the eyes of their customers and in objective 
features. 

 
In the chapters that follow, these and many other techniques are described in 

detail, along with examples of how they have been used in real-world projects to 
facilitate substantial monetary savings. 

Example 2.2.1 Methods and Statistical Evidence 

Question: Which of the following methods involve generating statistical evidence? 
a. Formal optimization and QFD generally create statistical evidence. 
b. Acceptance sampling, DOE, regression, and SPC create evidence. 
c. Process mapping and QFD generally create statistical evidence. 
d. Answer in parts “a” and “b” are both correct. 
e. Answer in parts “a” and “c” are both correct. 

 
Answer: (b) Acceptance sampling, DOE, regression, and SPC can all easily be 
associated with formal statistical tests and evidence. Formal optimization, process 
mapping, and QFD generate numbers that can be called statistics, but they 
generally do not develop formal proof or statistical evidence. 

2.3  Where Methods Fit into Projects 

In many textbooks, statistical methods are taught as “stand alone” entities and their 
roles in the various stages of a system improvement or design project are not 
explained. It is perhaps true that one of the most valuable contributions of the six 
sigma movement is the association of quality methods with project phases. This 
association is particularly helpful to people who are learning statistics and 
optimization methods for the first time. These people often find it helpful to know 
which methods are supposed to be used at what stage. 

In the six sigma literature, system improvement projects are divided into five 
phases or major activities (e.g., see Harry and Schroeder 1999 and Pande et al. 
2000): 
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1. Define terminates when specific goals for the system outputs are clarified 
and the main project participants are identified and committed to project 
success.  

2. Measure involves establishing the capability of the technology for 
measuring system outputs and using the approved techniques to evaluate 
the state of the system before it is changed. 

3. Analyze is associated with developing a qualitative and/or quantitative 
evaluation of how changes to system inputs affect system outputs. 

4. Improve involves using the information from the analyze phase to 
develop recommended system design inputs. 

5. Control is the last phase in which any savings from using the newly 
recommended inputs is confirmed, lessons learned are documented, and 
plans are made and implemented to help guarantee that any benefits are 
truly realized. 

Often, six sigma improvement projects last three months, and each phase 
requires only a few weeks. Note that for new system design projects, the design 
and verify phases play somewhat similar roles to the improve and control phases in 
improvement projects. Also, the other phases adjust in intuitive ways to address the 
reality that in designing a new system, potential customer needs cannot be 
measured by any current system. 

While it is true that experts might successfully use any technique in any phase, 
novices sometimes find it helpful to have more specific guidance about which 
techniques should be used in which phase. Table 2.1 is intended to summarize the 
associations of methods with major project phases most commonly mentioned in 
the six sigma literature. 

Table 2.1. Abbreviated list of methods and their role in improvement projects 

Method Phases 

Acceptance Sampling Define, Measure, Control 

Benchmarking Define, Measure, Analyze 

Control Planning Control, Verify 

Design of Experiments Analyze, Design, Improve 

Failure Mode & Effects 
Analysis (FMEA) 

Analyze, Control, Verify 

Formal Optimization Improve, Design 

Gauge R&R Measure, Control 

Process Mapping Define, Analyze 

Quality Function 
Deployment (QFD) 

Measure, Analyze, Improve 

Regression Define, Analyze, Design, Improve 

SPC Charting Measure, Control 
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Example 2.3.1 Basic Method Selection 

Question: A team is trying to evaluate the current system inputs and measurement 
system. List three methods that might naturally be associated with this phase. 

 
Answer: From the above definitions, the question pertains to the “measure” phase. 
Therefore, according to Table 2.1, relevant methods include Gauge R&R, SPC 
charting, and QFD. 

2.4  Organizational Roles and Methods 

Sometimes, methods are used independently from any formal system improvement 
or design project. In these cases, the methods could be viewed as stand-alone 
projects. These applications occur in virtually all specialty departments or areas. In 
this section, the roles of specializations in a typical formalized company are 
described, together with the methods that people in each area might likely use.  

Figure 2.1 shows one possible division of a formalized manufacturing company 
into specialized areas. Many formalized service companies have similar 
department divisions. In general, the marketing department helps the design 
engineering department understand customer needs. Design engineering translates 
input information from marketing into system designs. Section 2.5 will focus on 
this step, because design engineers often operationally define quality for other 
areas of company. Also, the designs generated by these engineers largely 
determine quality, costs of all types, and profits. Procurement sets up an internal 
and external supply chain to make the designed products or services. Process 
engineering sets up any internal processes needed for producing units, including 
tuning up any machines bought by procurement. Production attempts to build 
products to conform to the expectations of design engineering, using parts from 
procurement and machines from process engineering. Sales and logistics work 
together to sell and ship the units to customers.  

Figure 2.1 also shows the methods that people in each area might use. Again, it 
is true that anyone in any area of an organization might conceivably use any 
method. However, Figure 2.1 does correctly imply that methods described in this 
book are potentially relevant throughout formalized organizations. In addition, all 
areas have potential impacts on quality, since anyone can conceivably influence the 
performance of units produced and/or the expectations of customers. 

Example 2.4.1 Departmental Methods Selection 

Question: In addition to the associations in Figure 2.1, list one other department 
that might use acceptance sampling. Explain in one sentence. 
 
Answer: Production might use acceptance sampling. When the raw materials or 
other input parts show up in lots (selected by procurement), production might use 
acceptance sampling to decide whether to reject these lots. 
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Figure 2.1. Methods which might most likely be used by each department group 

2.5  Specifications: Non-conforming vs Defective 

In manufacturing, design engineering generates a blueprint. Similar plans could be 
generated for the parameters of a service operation. Usually, a blueprint contains 
both target or “nominal” settings for each key input variable (KIV) and acceptable 
ranges. Figure 2.2 shows an example blueprint with three KIVs. The screw 
diameter is x1, the percentage carbon in the steel is x2, and x3 is the angle associated 
with the third thread from the screw head.  

 
 
 
 
 
 
 
 
 
 

 

Figure 2.2. Part of blueprint for custom designed screw with two KIVs 

Key input variables with acceptable ranges specified on blueprints or similar 
documents are called “quality characteristics.” The minimum value allowed on a 
blueprint for a quality characteristic is called the lower specification limit (LSL). 
The maximum value allowed on a blueprint for a characteristic is called the upper 
specification limit (USL). For example, the LSL for x1 is 5.00 mm for the blueprint 
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in Figure 2.2 and the USL for x3 is 80.7º. For certain characteristics, there might be 
only an LSL or a USL but not both. For example, the characteristic x2 in Figure 2.2 
has USL = 10.5% and no LSL. 

Note that nominal settings of quality characteristics are inputs, in the sense that 
the design engineer can directly control them by changing numbers, usually in an 
electronic file. However, in manufacturing, the actual corresponding values that 
can be measured are uncontrollable KOVs. Therefore, quality characteristics are 
associated with nominals that are KIVs (xs) and actual values that are KIVs (ys). 

In many real-world situations, the LSL and USL define quality. Sometimes 
these values are written by procurement into contracts. A “conforming” part or 
product has all quality characteristic values, within the relevant specification limits. 
Other parts or products are called “non-conforming,” since at least one 
characteristic fails to conform to specifications. Manufacturers use the term “non-
conformity” to describe each instance in which a part or product’s characteristic 
value falls outside its associated specification limit. Therefore, a given part or unit 
might have many non-conformities. A “defective” part or product yields 
performance sufficiently below expectations such that its safe or effective usage is 
prevented. Manufacturers use the term “defect” to describe each instance in which 
a part or product’s characteristic value causes substantially reduced product 
performance. Clearly, a defective unit is not necessarily non-conforming and vice 
versa. This follows because designers can make specifications without full 
knowledge of the associated effects on performance.  

Table 2.2 shows the four possibilities for any given characteristic of a part or 
product. The main purpose of Table 2.2 is to call attention to the potential 
fallibility of specifications and the associated losses. The arguably most serious 
case occurs when a part or product’s characteristic value causes a defect but meets 
specifications. In this case, a situation could conceivably occur in which the 
supplier is not contractually obligated to provide an effective part or product. 
Worse still, this case likely offers the highest chance that the defect might not be 
detected. The defect could then cause problems for customers. 

Table 2.2. Possibilities associated with any given quality characteristic value 

 Performance Related Status 

Conformance 
Status Defective Non-defective 

Non-conforming Bad case – if not fixed, the 
unit could harm the customer 

Medium case – unnecessary 
expense fixing unit might 

occur 

Conforming Worst case – likely to slip 
through and harm customer 

Best case – unit fosters good 
performance and meets specs 

 
Another kind of loss occurs when production and/or outside suppliers are 

forced to meet unnecessarily harsh specifications. In these cases, a product 
characteristic can be non-conforming, but the product is not defective. This can 
cause unnecessary expense because efforts to make products consistently conform 
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to specifications can require additional tooling and personnel expenses. This type 
of waste, however, is to a great extent unavoidable. 

Note that a key input variable (KIV) in the eyes of engineering design can be a 
key output variable (KOV) for production, because engineering design is 
attempting to meet customer expectations for designed products or services. To 
meet these expectations, design engineering directly controls the ideal nominal 
quality characteristic values and specifications. Production tries to manipulate 
process settings so that the parts produced meet the expectations of design 
engineering in terms of the quality characteristic values. Therefore, for production, 
the controllable inputs are settings on the machines, and the characteristics of units 
that are generated are KOVs. Therefore, we refer to “quality characteristics” 
instead of KIVs or KOVs. 

Example 2.5.1 Screw Design Specifications 

Question: Propose an addititional characteristic and the associated specification 
limits for the screw example in Figure 2.2. Also, give a value of that characteristic 
which constituties a non-conformity and a defect. 
 
Answer: Figure 2.3 shows the added characteristic x4. The LSL is 81.3º and the 
USL is 81.7º. If x4 equalled 95.0º, that would constitute both a non-conformity, 
because 95.0º > 81.7º, and a defect, because the customer would have difficulty 
inserting the screw. 

 
 
 
 
 
 
 
 

 

 

 

 

Figure 2.3. Augmented blueprint with the additional characteristic x4 

2.6  Standard Operating Procedures (SOPs) 

Currently, potential customers can enter many factories or service facilities and ask 
to view the International Standards Organization (ISO) manuals and supporting 
documentation. In general, this documentation is supposed to be easily available to 
anyone in these companies and to reflect accurately the most current practices. 
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Creating and maintaing these documents requires significant and ongoing expense. 
Also, companies generally have specific procedures that govern the practices that 
must be documented and the requirements for that documentation. 

Multiple considerations motivate these documentation efforts. First, customer 
companies often simply require ISO certifications of various types from all 
suppliers. Second, for pharmaceutical companies, hospitals, and many other 
companies where government regulations play a major role, a high level of 
documentation is legally necessary. Third, even if neither customers nor laws 
demand it, some managers decide to document business practices simply to 
improve quality. This documentation can limit product, process, and/or service 
design changes and facilitate communication and a competition of ideas among the 
company’s best experts.  

2.6.1  Proposed SOP Process 

There is no universally accepted way to document standard operating procedures 
(SOPs). This section describes one way that might be acceptable for some 
organizations. This method has no legal standing in any business sector. Instead, it 
mainly serves to emphasize the importance of documentation, which is often the 
practical end-product of a process improvement or design engineering project. In 
some sense, the precise details in SOPs are the system inputs that project teams can 
actually control and evaluate. If your company has thorough and well-maintained 
SOPs, then the goals of SQC and DOE methods are to evaluate and improve the 
SOPs. There are specific methods for evaluating measurement SOPs, for example, 
gauge R&R for evaluating manufacturing SOPs such as SPC charts.  

In the proposed approach, a team of relevant people assemble and produce the 
SOP so that there is “buy-in” among those affected. The SOP begins with a “title,” 
designed to help the potential users identify that this is the relevant and needed 
SOP. Next, a “scope” section describes who should follow the documented 
procedures in which types of situations. Then a “summary” gives an overview of 
the methods in the SOP, with special attention to what is likely to be of greatest 
interest to readers. Next, the SOP includes the “training qualifications” of the 
people involved in applying the method and the “equipment and supplies” needed 
to perform the SOP. Finally, the “method” is detailed, including specific numbered 
steps. This documentation might include tables and figures. If it does, references to 
these tables and figures should be included in the text. In general, the primary 
intent is that the SOP be clear enough to insure the safety of people involved and 
that the operations be performed consistently enough to ensure good quality. 
Visual presentation and brevity are preferred when possible. 

Example 2.6.1 Detailed Paper Helicopter Manufacturing SOP 

Question: Provide a detailed SOP for producing paper helicopters. 
 
Answer: Table 2.3 below contains a SOP for paper helicopter manufacturing. 
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Table 2.3. Detailed version of a paper helicopter SOP 

Title: Detailed SOP for paper helicopter manufacturing 

Scope: For use by college and graduate students 

Summary: A detailed method to make a “base-line” paper helicopters is provided. 

Training Qualifications: None 

Equipment and Supplies: Scissors, metric ruler, A4 paper 

Method: The steps below refer to Figure 2.4. 
1. Make cut  23 cm. from lower left paper corner. 
2. Make cut  10 cm. from bottom. 
3. Make cut  5 cm. down from the end of cut 2. 
4. Make 2 cuts, both labelled  in Figure 2.4, 3 cm long each. 
5. Fold both sides of the base inwards along the crease lines labelled . 
6. Fold the bottom up along the crease line labelled . 
7. Fold wings in opposite directions along crease lines labelled . 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2.4. Helicopter cut (__) and fold (--) lines (not to scale, grid spacing = 1 cm) 

Note that not all information in a blueprint, including specification limits, will 
necessarily be included in a manufacturing SOP. Still, the goal of the SOP is, in an 
important sense, to make products that consistently conform to specifications. 

The fact that there are multiple possible SOPs for similar purposes is one of the 
central concepts of this book. The details of the SOPs could be input parameters 
for a system design problem. For example, the distances 23 cm and 5 cm in the 
above paper helicopter example could form input parameters x1 and x2 in a system 
design improvement project. It is also true that there are multiple ways to 
document what is essentially the same SOP. The example below is intended to 
offer an alternative SOP to make identical helicopters. 

1

2

3
47 5 6
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Example 2.6.2 Concise Paper Helicopter Manufacturing SOP 

Question: Provide a more concise SOP for producing paper helicopters. 
 
Answer: Table 2.4 below contains a concise SOP for paper helicopter 
manufacturing. 

Table 2.4. The concise version of a paper helicopter SOP 

Title: Concise SOP for paper helicopter manufacturing 

Scope: For use by college and graduate students 

Summary: A concise method to make a “base-line” paper helicopters 
is provided. 

Training Qualifications: None 

Equipment and Supplies: Scissors, metric ruler, A4 paper 

Method: Cut on the solid lines and fold on the dotted lines as shown in 
Figure 2.5a to make a helicopter that looks like Figure 2.5b. 

 
 
 
 
 

     (a)       (b) 
 
 
 
 
 
 
 
 
 

Figure 2.5. (a) Paper with cut and fold lines (grid spacing is 1 cm); (b) desired result 

With multiple ways to document the same operations, the question arises: what 
makes a good SOP? Many criteria can be proposed to evaluate SOPs, including 
cost of preparation, execution, and subjective level of professionalism. Perhaps the 
most important criteria in a manufacturing context relate to the performance that a 
given SOP fosters in the field. In particular, if this SOP is implemented in the 
company divisions, how desirable are the quality outcomes? Readability, 
conciseness, and level of detail may affect the outcomes in unexpected ways. The 
next chapters describe how statistical process control (SPC) charting methods 
provide thorough ways to quantitatively evaluate the quality associated with 
manufacturing SOPs. 
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2.6.2  Measurement SOPs 

Quite often, SOPs are written to regulate a process for measuring a key output 
variable (KOV) of interest. For example, a legally relevant SOP might be used by a 
chemical company to measure the Ph in fluid flows to septic systems. In this book, 
the term “measurement SOPs” refers to SOPs where the associated output is a 
number or measurement. This differs from “production SOPs” where the output is 
a product or service. An example of a measurement SOP is given below. In the 
next chapters, it is described how gauge R&R methods provide quantitative ways 
to evaluate the quality of measurement SOPs. 

Example 2.6.3 Paper Helicopter Measurement SOP 

Question: Provide an SOP for measuring the quality of paper helicopters. 
 
Answer: Table 2.5 describes a measurement SOP for timing paper helicopters. 

Table 2.5. Paper helicopter measurement SOP 

Title: SOP for measuring paper helicopter for student competition 

Scope: For use by college and graduate students 

Summary: A method is presented to measure the time in air for a student competition. 

Training Qualifications: None 

Equipment and Supplies: Chalk, chair, stopwatch, meter stick, and two people 

Method:  
1. Use meter stick to measure 2.5 m up a wall and mark spot with chalk. 
2. Person 1 stands on chair approximately 1 m from wall. 
3. Person 1 orients helicopter so that base is down and wings are horizontal. 
4. Person 2 says “start” and Person 1 drops helicopter and Person 2 starts 

timer. 
5. Person 2 stops timer when helicopter hits the ground. 
6. Steps 2–5 are repeated three times, and average time in seconds is reported. 

Problems 

In general, pick the correct answer that is most complete or inclusive. 
 
1. A company is trying to design a new product and wants to systematically 

study its competitor’s products. Which methods are obviously helpful (i.e., the 
method description mentions related goals)? 

a. Gauge R&R 
b. QFD 
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c. Formal Optimization 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
2. A company has implemented a new design into production. Now it is 

interested in prioritizing which inspection areas need more attention and in 
documenting a complete safety system. Which methods are obviously helpful 
(i.e., the method description mentions related goals)? 

a. FMEA 
b. QFD 
c. Control planning 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

3. Which methods are obviously helpful for evaluating measurement systems 
(i.e., the method description mentions related goals)? 

a. Gauge R&R 
b. DOE 
c. Formal Optimization 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

4. A company is trying to design a new product and wants to study input 
combinations to develop input-output predictive relationships. Which methods 
are obviously helpful (i.e., the method description mentions related goals)? 

a. Regression 
b. DOE 
c. Control planning 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

5. A team is in a problem-solving phase in which the objectives and 
responsibilities have been established but the state of the current system has 
not been measured. According to Chapter 2, which method(s) would be 
obviously helpful (i.e., the method description mentions related goals)? 

a. SPC charting 
b. Gauge R&R 
c. DOE 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

6. A team has created approximate regression models to predict input-output 
relationships and now wants to decide which inputs to recommend. According 
to Chapter 2, which method(s) would be obviously helpful? 

a. SPC charting 
b. Gauge R&R 
c. Formal optimization 
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d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

7. A team is in a problem-solving phase in which recommendations are ready but 
have not been fully confirmed and checked. According to Chapter 2, which 
method(s) would be obviously helpful? 

a. SPC charting 
b. DOE 
c. Formal optimization 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

8. A large number of lots have shown up on a shipping dock, and their quality 
has not been ascertained. Which method(s) would be obviously helpful? 

a. Acceptance sampling 
b. DOE 
c. Formal optimization 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

9. Based on Table 2.1, which methods are useful in the first phase of a project? 
 
10. Based on Table 2.1, which methods are useful in the last phase of a project? 
 
11. Which department could possibly use DOE? 

a. Design engineering 
b. Production 
c. Process engineering 
d. All of the above are correct. 
 

12. Which department(s) could possibly use SPC charting? 
a. Production 
b. Marketing 
c. Sales and logistics, for monitoring delivery times of truckers 
d. All of the above are correct. 
 

13. According to Chapter 2, which would most likely use acceptance sampling? 
a. Sales and logistics 
b. Design engineering 
c. Procurement 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
14. According to the chapter, which would most likely use formal optimization? 

a. Design engineering 
b. Production engineering 
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c. Process engineering 
d. All of the above are correct. 
 

15. Which of the following is true about engineering specification limits? 
a. They are associated with the “±” given on blueprints. 
b. They can fail to reflect actual performance in that non-conforming ≠ 

defective. 
c. They are always written in dimensionless units. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

16. Which of the following is correct about engineering specifications?  
a. They are sometimes made up by engineers who do not know the 

implications. 
b. They are often used in contracts between procurement and suppliers. 
c. They could be so wide as to raise no production concerns. 
d. All of the above are correct. 
e. Only answers in parts “a” and “c” are correct. 
 

17. Create a blueprint of an object you design including two quality characteristics 
and associated specification limits. 

 
18. Propose an additional quality characteristic for the screw design in Figure 2.3 

and give associated specification limits. 
 
19. Which of the following is true about manufacturing SOPs? 

a. They take the same format for all organizations and all applications. 
b. They can be evaluated using SPC charting in some cases. 
c. They are always written using dimensionless units. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

20. Which of the following is true about manufacturing SOPs?  
a. They are sometimes made up by engineers who do not know the 

implications. 
b. According to the text, the most important criterion for SOPs is 

conciseness. 
c. They cannot contain quality characteristics and specification limits. 
 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

21. Which of the following is true about measurement SOPs? 
a. They are sometimes made up by engineers who do not know the 

implications. 
b. They describe how to make products that conform to specifications. 
c. They can be evaluated using gauge R&R. 
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d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 

 
22. Which of the following is true about measurement SOPs? 

a. They take the same format at all organizations for all applications. 
b. They are always written using dimensionless units. 
c. The same procedure can be documented in different ways. 
d. Answers in parts “a” and “b” are both correct. 
e. Answers in parts “a” and “c” are both correct. 
 

23. Write an example of a manufacturing SOP for a problem in your life. 
 
24. Write an example of a measurement SOP for a problem in your life. 
 
25. In two sentences, critique the SOP in Table 2.3. What might be unclear to an 

operator trying to follow it? 
 
26. In two sentences, critique the SOP in Table 2.5. What might be unclear to an 

operator trying to follow it? 
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3 

Define Phase and Strategy 

3.1 Introduction 

This chapter focuses on the definition of a project, including the designation of 
who is responsible for what progress by when. By definition, those applying six 
sigma methods must answer some or all of these questions in the first phase of 
their system improvement or new system design projects. Also, according to what 
may be regarded as a defining principle of six sigma, projects must be cost-
justified or they should not be completed. Often in practice, the needed cost 
justification must be established by the end of the “define” phase. 

A central theme in this chapter is that the most relevant strategies associated 
with answering these questions relate to identifying so-called “subsystems” and 
their associated key input variables (KIVs) and key output variables (KOVs). 
Therefore, the chapter begins with an explanation of the concept of systems and 
subsystems. Then, the format for documenting the conclusions of the define phase 
is discussed, and strategies are briefly defined to help in the identification of 
subsystems and associated goals for KOVs.   

Next, specific methods are described to facilitate the development of a project 
charter, including benchmarking, meeting rules, and Pareto charting. Finally, one 
reasonably simple method for documenting significant figures is presented. 
Significant figures and the implied uncertainty associated with numbers can be 
important in the documentation of goals and for decision-making. 

As a preliminary, consider that a first step in important projects involves 
searching the available literature. Search engines such as google and yahoo are 
relevant. Also, technical indexes such as the science citation index and compendex 
are relevant. Finally, consider using governmental resources such as the National 
Institute of Standards (NIST) and the United States Patent Office web sites. 
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3.2  Systems and Subsystems 

A system is an entity with inputs and outputs. A “subsystem” is itself a system that 
is wholly contained in a more major system. The subsystem may share some inputs 
and outputs with its parent system. Figure 3.1 shows three subsystems inside a 
system. The main motivation for the “define phase” is to identify specific 
subsystems and to focus attention on them. The main deliverable from the define 
phase of a project is often a so-called “charter,” defined in the next section. This 
charter is often expressed in terms of goals for subsystem outputs. 

For example, in relation to a chess game system, one strategy to increase one’s 
chance of success is to memorize recommended lists of responses to the first set of 
“opening” moves. The first opening set of moves constitutes only a fraction of the 
inputs needed for playing an entire game and rarely by itself guarantees victory. 
Yet, for a novice, focusing attention on the chess opening subsystem is often a 
useful strategy.   

Figure 3.1 shows some output variables, ỹ1, …, ỹ52, from the subsystems that 
are not output variables for the whole system. We define “intermediate variables” 
as key output variables (KOVs) from subsystems that are inputs to another 
subsystem. Therefore, intermediate variables are not directly controllable by 
people in one subsystem but might be controllable by people in the context of a 
different subsystem. For example, scoring in chess is an intermediate variable 
which assigns points to pieces that are captured. From one phase of chess, one 
might have a high score but not necessarily win the game. However, points often 
are useful in predicting the outcome. Also, experts studying the endgame phase 
might assign combinations with specific point counts to different players. In 
general, winning or losing is generally the key output variable for the whole 
system. 

 
 
 
 
 
 
 
 
 
 

Figure 3.1. Example of subsystems inside a system 

Example 3.2.1 Lemonade Stand 

Question: Consider a system in which children make and sell lemonade. Define 
two subsystems, each with two inputs and outputs and one intermediate variable. 
 
Answer: Figure 3.2 shows the two subsystems: (1) Product Design and (2) Sales & 
Marketing. Inputs to the product design subsystem are: x1, percentage of sugar in 

System y1
y2
y3
y4
M

y101

Subsystem #2

Subsystem #3

ỹ2
ỹ3

M
ỹ52

x3
x4

Subsystem #1
x1
x2

x5

ỹ1



  Define Phase and Strategy      49 

cup of lemonade and x2, flavoring type (natural or artifical). An intermediate 
variable is the average of (1–10) taste ratings from family members, ỹ1. The Sales 
& Marketing subsystem has as inputs the taste rating and the advertising effective 
monetary budget, x3. Key output variables from the Sales & Marketing subsystem 
include the profit, y1, and average customer satisfaction rating (1–10), y2. 
 

 
 
 
 
 
 
 
 

Figure 3.2. Lemonade stand system with two subsystems 

3.3  Project Charters 

In many cases, a written “charter” constitutes the end product of the first phase of 
a project. The charter documents what is to be accomplished by whom and when. 
Figure 3.3 summarizes the key issues addressed by many charters. Clarifying what 
can be accomplished within the project time frame with the available resources is 
probably the main concern in developing a charter. The term “scope” is commonly 
used in this context to formally describe what is to be done. The term 
“deliverables” refers to the outcomes associated with a project scope. Strictly 
speaking, “tangible” deliverables must be physical objects, not including 
documents. However, generally, deliverables could be as intangible as an equation 
or a key idea.  

Note that the creation of a charter is often a complicated, political process. 
Allocating the selected team for the allotted time is essentially an expensive, risky 
investment by management. Management is betting that the project deliverables 
will be generated and will still be worthwhile when they are delivered. The main 
motivation for a formal design phase is to separate the complicated and 
management-level decision-making from the relatively technical, detailed decision-
making associated with completing the remainder of the project and deliverables.  

Therefore, developing a charter involves establishing a semi-formal contract 
between management and the team about what is “in scope” and what is “out of 
scope” or unnecessary for the project to be successful. As a result of this contract, 
team members have some protection against new, unanticipated demands, called 
“scope creep,” that might be added during the remaining project phases. Protection 
against scope creep can foster a nurturing environment and, hopefully, increase the 
chances of generating the deliverables on time and under budget. 

The project goals in the charter are often expressed in terms of targets for key 
output variables (KOVs). Commonly, the scope of the project requires that 
measureable KOVs must be intermediate variables associated with subsystems. 
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The principle of cost justification dictates that at least one KOV for these 
subsystems must have a likely relationship to bottom-line profits for the major 
system. 

 
 

 
 

 
 
 
 
 
 

 
 
 
 

 

 

 

Figure 3.3. Possible issues addressed by a project charter 

Example 3.3.1  Lemonade Design Scope 

Question: Because of customer complaints, an older sibling tasks a younger 
sibling with improving the recipe of lemonade to sell at a lemonade stand. Clarify a 
possible project scope including one deliverable, one target for a KOV, and one 
out-of-scope goal.  
 
Answer: The younger sibling seeks to deliver a recipe specifying what percentage 
of sweetener to use (x1) with a target average taste rating (ỹ1) increase greater than 
1.5 units as measured by three family measures on a 1–10 scale. It is believed that 
taste ratings will drive sales, which will in turn drive profits. In the approved view 
of the younger sibling, it is not necessary that the older sibling will personally 
prefer the taste of the new lemonade recipe. 
 

In defining who is on the project team, common sense dictates that the 
personnel included should be representative of people who might be affected by 
the project results. This follows in part because affected people are likely to have 
the most relevant knowledge, giving the project the best chance to succeed. The 
phrase “not-invented-here syndrome” (NIHS) refers to the powerful human 
tendency to resist recommendations by outside groups. This does not include the 
tendency to resist orders from superiors, which constitutes insubordination, not 
NIHS. NIHS implies resistance to fully plausible ideas that are resisted purely 
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because of their external source. By including on the team people who will be 
affected, we can sometimes develop the “buy-in” need to reduce the effects of the 
not-invented-here syndrome. Scope creep can be avoided by including all of these 
people on the team. 

In defining when a project should be completed, an important concern is to 
complete the project soon enough so that the deliverables are still relevant to the 
larger system needs. Many six sigma experts have suggested project timeframes 
between two and six months. For projects on the longer side of this range, charters 
often include a schedule for deliverables rendered before the final project 
completion. In general, the project timeframe limits imply that discipline is 
necessary when selecting achievable scopes.  

There is no universally used format for writing project charters. The following 
example, based loosely on a funded industrial grant proposal, illustrates one 
possible format. One desirable feature of this format is its brevity. In many cases, a 
three-month timeframe permits an effective one-page charter. The next subsection 
focuses on a simple model for estimating expected profits from projects. 

Example 3.3.2  Snap Tab Project Charter 

Question: Your team (a design engineer, a process engineer, and a quality 
engineer, each working 25% time) recently completed a successful six-month 
project. The main deliverable was a fastener design in 3D computer aided design 
(CAD) format. The result achieved a 50% increase in pull-apart strength by 
manipulating five KIVs in the design. The new design is saving $300K/year by 
reducing assembly costs for two product lines (not including project expense). A 
similar product line uses a different material. Develop a charter to tune the five 
KIVs for the new material, if possible. 
 
Answer:  
 

Scope: Develop tuned design for new material 
Deliverables:  One-page report clarifying whether strength increase is 

achievable 
A 3D CAD model that includes specifications for the 
five KIVs 

Personnel: One design engineer, one process engineer, one quality 
engineer 

Timing: One-page report after two months 
3D CAD model after three months and completion 

Expected profit:  $281K (see below) 

3.3.1  Predicting Expected Profits 

Often projects focus only on a small subsystem that is not really autonomous inside 
a company. Therefore, it is difficult to evaluate the financial impact of the project 
on the company bottom line. Yet an effort to establish this linkage is generally 
considered necessary. In this section, a formula is presented for predicting 
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expected profits, specific to a certain type of production system improvement 
project. However, some of the associated reasoning may have applications to profit 
modeling in other cases.  

The term “rework” refers to efforts to fix units not conforming to 
specifications. The term “scrap” refers to the act of throwing away non-
conforming items that cannot be effectively reworked. Often, the rework and scrap 
costs constitute the most tangible monetary figure associated with an improvement 
project. However, the direct costs associated with rework and scrap may not reflect 
the true losses from non-conformities, for three reasons. First, parts failing 
inspection can cause production delays. These delays, in turn, can force sales 
employees to quote longer lead times, i.e., the time periods between the customer 
order and delivery. Longer lead times can cause lost sales. Second, reworked units 
may never be as good as new units, and could potentially cause failures in the field. 
Third, for every unit found to be non-conforming, another unit might conceivably 
fail to conform but go undetected. By reducing the need for rework, it is likely that 
the incidence of field failures will decrease. Failures in the field also can result in 
lost sales in the future. 

Let “RC” denote the current rework and scrap costs on an annual basis. Let “f” 
denote the fraction of these costs that the project is targeting for reduction. Note 
that f equaling 1.0 (or 100%) reduction is usually considered unrealistic. Assuming 
that RC is known, a simple model for the expected savings is (Equation 3.1): 

 Expected Savings = G × f × (2.0 × RC)  (3.1) 

where the 2.0 derives from considering savings over a two-year horizon and G is a 
“fudge factor” designed to account for indirect savings from increasing the 
fraction of conforming units. Often, G = 1.0 which conservatively accounts only 
for directly measurable savings. Yet, in some companies, G = 4.0 is routinely used 
out of concern for indirect losses including production disruption and lost sales.  

Note that the model in Equation 3.1 only crudely addresses the issue of 
discounting future savings by cutting all revenues off after two years. It is also only 
applicable for improvement projects related primarily to rework or scrap reduction.  

Often, salary expenses dominate expenses both for rework and running a 
project. The term “person-years” refers to the time in years it would take one 
person, working full time, to complete a task. A rule of thumb is to associate every 
person-year with $100K in costs including benefits and the cost of management 
support. This simple rule can be used to estimate the rework costs (RC) and other 
project expenses. With these assumptions, a crude model for the expected profit is: 

   Expected Profit = Expected Savings – (Project Person-Years) × $100K       (3.2) 

where “Project Person-Years” is the total number of person-years planned to be 
expended by all people working on a project. 

Example 3.3.3 Snap Tab Expected Profits 

Question: Your team (a design engineer, a process engineer, and a quality 
engineer, each working 25% time) recently completed a successful six-month 
project. The main deliverable was a fastener design in 3D computer aided design 
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(CAD) format. The result achieved a 50% increase in pull-apart strength by 
manipulating five KIVs in the design. The new design is saving $300K/year by 
reducing assembly costs for two product lines (not including project expense). A 
similar product line uses a different material. Estimate the expected profit from this 
project, assuming a two-year horizon. 
 
Answer: As savings do not derive from rework and scrap reductions, we cannot 
use Equation 3.1. However, since $300K/year was saved on two product lines in 
similar circumstances, it is likely that $150K/year in costs could be reduced 
through application to a single new product line. Therefore, expected savings over 
a 2-year horizon would be 2.0 years × $150K/year = $300K. With three engineers 
working 25% time for 0.25 year, the person-years of project expense should be 3 × 
0.25 × 0.25 = 0.1875. Therefore, the expected profits from the model in Equation 
3.2 would be $300K – $18.73K = $281K.  

3.4  Strategies for Project Definition 

Identifying the subsystem to improve or design is probably the most important 
decision in a project. Much relevant literature on this subject is available in 
different disciplines, including research published in Management Science and the 
Journal of Product Innovation Management. Here, only a sampling of the 
associated ideas is presented, relating specifically to bottleneck subsystems and 
near-duplicate subsystems. 

3.4.1  Bottleneck Subsystems 

In their influential book The Goal, Goldratt and Cox (2004) offer ideas relevant to 
subset selection. It is perhaps fair to rephrase their central thesis as follows: 
 
1. In a large system, there is almost always one “bottleneck” subsystem, having 

a single intermediate, truly key output variable that directly relates to total 
system profits.  

2. Improvements to other subsystems that do not affect the bottleneck’s truly key 
output variable have small effects (if any) on total system profits.  

 
Therefore, the Goldratt and Cox (2004) “Theory of Constraints” (TOC) 

improvement process involves identifying the bottleneck subsystems and 
improving the truly key output variables. Working on the appropriate subsystem is 
potentially critical to the six sigma principle of affecting total system profits. 

Many people do not get the opportunity to work on bottleneck subsystems. As a 
result, TOC implies that it is unlikely their efforts will strongly and directly affect 
the bottom line. Also, any bottom-line savings predicted by people not working on 
these subsystems should ultimately be suspect. TOC does provide some 
reassurance for this common occurence of improving non-bottleneck subsystems, 
however. After other people improve the bottleneck system or “alleviate the 
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bottleneck,” there is a chance that the subsystem under consideration will become 
a bottleneck. 

 3.4.2  Go-no-go Decisions 

The term “categorical factor” refers to inputs that take on only qualitatively 
different settings. The term “design concept” is often used to refer to one level 
setting for a categorical factor. For example, one design concept for a car could be 
a rear engine, which is one setting of the categorical factor of engine type. In the 
development of systems and subsystems, only a finite number of design concepts 
can be considered at any one time due to resource limitations. The phrase “go-no-
go decisions” refers to the possible exclusion from consideration of one or more 
design concepts or projects. For example, an expensive way to arc weld aluminum 
might be abandoned in favor of cheaper methods because of a go-no-go decision. 
The benefits of go-no-go decisions are similar to the benefits of freezing designs 
described in Chapter 1. 

One relevant goal of improvement or design projects is to make go-no-go 
decisions decisively. For example, the design concept snap tabs might be 
competing with the design concept screws for an automotive joining design 
problem. The team might explore the strength of snap tabs to decide which concept 
should be used.  

A related issue is the possible existence of subsystems that are nearly identical. 
For example, many product lines could benefit potentially from changing their 
joining method to snap tabs. This creates a situation in which one subsystem may 
be tested, and multiple go-no-go decisions might result. The term “worst-case 
analysis” refers to the situation in which engineers experiment with the subsystem 
that is considered the most challenging. Then they make go-no-go decisions for all 
the other nearly duplicate systems. 

Example 3.4.1 Lemonade Stand Improvement Strategy 

Question: Children are selling pink and yellow lemonade on a busy street with 
many possible customers. The fraction of sugar is the same in pink and yellow 
lemonade, and the word-of-mouth is that the lemonades are both too sweet, 
particularly the pink type, which results in lost sales. Materials are available at 
negligible cost. Making reference to TOC and worst-case analysis, suggest a 
subsystem for improvement with 1 KIV and 1 KOV. 
 
Answer: TOC suggests focusing on the apparent bottlenecks, which are the 
product design subsystems, as shown in Figure 3.4. This follows because 
manufacturing costs are negligible and the potential customers are aware of the 
products. A worst-case analysis strategy suggests further focusing on the pink 
lemonade design subsystem. This follows because if the appropriate setting for the 
fraction of sugar input factor, x1, is found for that product, the design setting would 
likely improve sales of both pink and yellow lemonade. A reasonable intermediate 
variable to focus on would be the average taste rating, ỹ1. 
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Figure 3.4. Lemonade stand subsystems and strategy 

3.5  Methods for Define Phases 

Many problem-solving methods are useful in the define phase. In this chapter, we 
include only three: Pareto charting, benchmarking, and meeting rules. However, 
several methods addressed in later chapters, including process mapping or value 
stream mapping, can aid in the development of project charters. Process mapping 
in Chapter 5 is particularly relevant in identifying bottleneck subsystems. Efforts to 
identify specific bottlenecks can also find a role in the analyze phase. 

3.5.1  Pareto Charting 

In general, different types of non-conformities are associated with different KOVs. 
Also, different KOVs or quality characteristics are associated with different 
subsystems. The method of Pareto charting involves a simple tabulation of the 
types of non-conformities generated by a production system. This is helpful in 
project definition because it constitutes a data-driven way to rank quality 
characteristics and their associated subsystems with regard to quality problems. 
Algorithm 3.1 contains an outline of steps taken in Pareto charting. 

The term “attribute data” refers to values associated with categorical 
variables. Since type of non-conformity is a categorical variable, Pareto charting 
constitutes one type of attribute data visualization technique. Visualizing a large 
amount of attribute data permits decision-makers to gain more perspective about 
system issues than simply relying on information from the last few non-
conformities that were created. 
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Algorithm 3.1. Pareto charting 

 
Note that sometimes it is desirable to refer to types of non-conformities using a 

causal vocabulary. For example, assume a metal part length exceeded the upper 
specification because of temperature expansion. We could view this as a single 
“part length” non-conformity or as caused by temperature. Note also, the term 
“frequency” is often used in place of “count of non-conformities” in Pareto charts. 

The phrase “Pareto rule” refers to the common occurrence in which 20% of 
the causes are associated with greater than 80% of the non-conformities. In these 
cases, the subsystems of greatest interest, which may be system bottlenecks, often 
become clearly apparent from inspection of the Pareto bar charts. Surprisingly, the 
people involved in a system often are shocked by the results of Pareto charting. 
This occurs because they have lost perspective and are focused on resolving the 
latest cause and not the most important cause. This explains how applying Pareto 
charting or “Pareto analysis” can be eye-opening. 

Sometimes the consequences in terms of rework costs or other results can be 
much greater for some types of non-conformities than for others. One variant of 
Pareto charting uses subjectively assessed weights for the various non-
conformities. For example, Step 2 above could become “Sum the number of 
weighted non-conformities of each type or cause” and Step 3 would become “Sort 
by weighted sum.” Another variant of Pareto charting called “cost Pareto chart” 
involves to a tabulation of the costs associated with non-conformity types or 
causes, listed in Algorithm 3.2.  

Algorithm 3.2. Cost Pareto charting 

 
The “Pareto rule” for cost Pareto charts is that often 20% of the causes are 

associated with greater than 80% of the costs. The implications for system design 
of cost Pareto charts are similar to those of ordinary Pareto charts. 

Step 1.  List the types of non-conformities or causes associated with failing units.  
Step 2.   Count the number of non-conformities of each type or cause.  
Step 3.   Sort the non-conformity types or causes in descending order by the 

 counts.  
Step 4.  Create a category called “other,” containing all counts associated with 

non-conformity or cause counts subjectively considered to be few in 
number. 

Step 5.   Bar-chart the counts using the type of non-conformity or causal labels. 

Step 1. Find list of the costs of nonconformities including types or causes.  
Step 2.    Sum the costs of nonconformities of each type or cause.  
Step 3.    Sort the nonconformity types or causes in decending order by the costs.  
Step 4. Create a category called “other” containing all costs associated with 

nonconformity or cause counts subjectively considered to be small in 
costs. 

Step 5. Bar-chart the costs using the associated type of nonconformity or causal 
labels. 
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Example 3.5.1 Pacemaker Non-conformities 

Question: Consider the following hypothetical list of non-fatal pacemaker failures, 
with rework or medical costs in parentheses: battery life ($350), irregular heart 
beat ($350), battery life ($350), electromagnetic shielding ($110K), battery life 
($350), discomfort ($350), battery life ($350), battery life ($350), battery life 
($350), lethargy ($350), battery life ($350), battery life ($350), battery life ($350), 
battery life ($350), battery life ($150K), battery life ($350), and irregular heart beat 
($350). Construct a Pareto chart and a cost Pareto chart, and comment on 
implications for project scope.  
 
Answer: Table 3.1 shows the results of Steps 1–3 for both charting procedures. 
Note that there are probably not enough non-conformity types to make it desirable 
to create “other” categories. Figure 3.5 shows the two types of Pareto charts. The 
ordinary chart shows that focusing the project scope on the KOV battery life and 
the associated subsystem will probably affect the most people. The second chart 
suggests that shielding issues, while rare, might also be prioritized highly for 
attention. 

Table 3.1. Tabulation of the relevant non-conformity counts and costs 

Non-conformity 1 2 3 4 5 6 7 8 9 10 11 12 Count Sum ($) 

Battery life 150 350 350 350 350 350 350 350 350 350 350 350 12 113850 

Irreg. heart beat 350 350 - - - - - - - - - - 2 700 

Electro. shielding 110000 - - - - - - - - - - - 1 110000 

Discomfort 350 - - - - - - - - - - - 1 350 

Lethargy 350 - - - - - - - - - - - 1 350 

 

(a)     (b) 
 
 

 
 
 
 
 
 
 
 
 
 

 
(a)     (b) 

Figure 3.5. (a) Pareto chart and (b) cost Pareto chart of hypothetical non-conformities 
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Note that the Pareto rule applies in the above example, since 80% of the non-
conformities are associated with one type of non-conformity or cause, battery life. 
Also, this hypothetical example involves ethical issues since serious consequences 
for human patients are addressed. While quality techniques can be associated with 
callousness in general, they often give perspective that facilitates ethical 
judgements. In some cases, failing to apply methods can be regarded as ethically 
irresponsible. 

A “check sheet” is a tabular compilation of the data used for Pareto charting. In 
addition to the total count vs non-conformity type or cause, there is also 
information about the time in which the non-conformities occurred. This 
information can aid in identifying trends and the possibility that a single cause 
might be generating multiple non-conformities. A check sheet for the pacemaker 
example is shown in Table 3.2. From the check sheet, it seems likely that battery 
issues from certain months might have causing all other problems except for 
shielding. Also, these issues might be getting worse in the summer. 

Table 3.2. Check sheet for pacemaker example 

 Production Date  

Non-conformity Jan. Feb. May April May June July Total 

Battery life   3   4 5 12 

Irregular heart beat      2  2 

Electromagnetic shielding 1       1 

Discomfort      1  1 

Lethargy      1  1 

 

3.5.2  Benchmarking 

The term “benchmarking” means setting a standard for system outputs that is 
useful for evaluating design choices. Often, benchmarking standards come from 
evaluations of competitor offerings. For this reason, companies routinely purchase 
competitor products or services to study their performance. In school, studying 
your fellow student’s homework solutions is usually considered cheating. In some 
cases, benchmarking in business can also constitute illegal corporate espionage. 
Often, however, benchmarking against competitor products is legal, ethical, and 
wise. Consult with lawyers if you are unclear about the rules relevant to your 
situation. 

The version of benchmarking that we describe here, listed in Algorithm 3.3, 
involves creating two different matrices following Clausing (1994) p. 66. These 
matrices will fit into a larger “Quality Function Deployment” “House of 
Quality” that will be described fully in Chapter 6. The goal of the exercise is to 
create a visual display inform project definition decision-making. Specifically, by 
creating the two matrices, the user should have a better idea about which key input 
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variables (KIVs) and key output variables (KOVs) should be focused on to 
stimulate sales in a competitive marketplace. Note that many people would refer to 
filling out either of the two tables, even only partially, as benchmarking. The 
symbols used are: 

1. qc is the number of customer issues. 
2. q is the number of system outputs.  
3. m is the number of system inputs. 
4. n is the number of customers asked to evaluate alternative systems. 

Algorithm 3.3. Benchmarking 

 
Example 3.5.2 Benchmarking Welding Procedures 

Question: Study the following benchmarking tables and recommend two KIVs and 
two intermediate variables for inclusion in project scope at ACME, Inc. Include 
one target for an intermediate variable (INT). Explain in three sentences. 

Table 3.3. Three customer issues (qc = 3) and average ratings from ten customers 

 Competitor system 

Customer Issue 
ACME, 

Inc. 
Runner, 

Inc. 
Coyote, 

Inc. 

Structure is strong because of joint shape 4.7 9.0 4.0 

Surface is smooth requiring little rework 5.0 8.6 5.3 

Clean factory floor, little work in process 4.3 5.0 5.0 

 

Step 1.  Identify alternative systems or units from competitors, including the 
current default system. Often, only three alternatives are compared.  

Step 2. Identify qc issues with the system outputs or products that are important to 
customers, described in a language customers can understand.   

Step 3. Next, n customers are asked to rate the alternative systems or units through 
focus groups or surveys. The customers rate the products on a scale of 1–
10, with 10 indicating that the system or unit completely addresses the 
issue being studied. The average ratings, Ycustomer,1, …,Ycustomer,qC, are 
calculated for each competitor.  

Step 4. The same competitor systems or units are studied to find the key input 
variable (KIV) settings, x1,…,xm, and key outputs variable (KOV) settings, 
Y1,…,Yq. Often, q and qc are between 3 and 10.  

Step 5. Display the data in two tables. The first lists the customer criteria as rows 
and the company ratings as columns, and the second lists the alternatives as 
rows and the input and outputs as columns.  

Step 6. Study the information in the tables and make subjective judgements about 
inputs and outputs to focus on. Also, when appropriate, use information 
about competitor products to set benchmark targets on key output 
variables. 
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Answer: Table 3.3 shows that Runner, Inc. is dominant with respect to addressing 
customer concerns. Table 3.4 suggests that Runner, Inc.’s success might be 
attributable to travel speed, preheat factor settings, and an impressive control of the 
fixture gap. These should likely be included in the study subsystem as inputs x1 and 
x2 and output ỹ1 respectively with output target ỹ1 < 0.2 mm. 

Table 3.4. Benchmark key input variables (KIV), intermediate variables (INT), and key 
output variables (KOVs) 
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ACME, 
Inc. 35.0 8.0 15.0 2.0 N 1.1 0.9 1.1 3.5 1.1 

Runner, 
Inc. 42.0 9.2 15.0 2.0 Y 0.9 0.2 1.2 4.0 1.2 

Coyote, 
Inc. 36.0 9.5 15.0 2.5 N 0.9 0.9 1.0 1.5 1.0 

3.6  Formal Meetings 

People hold meetings in virtually all organizations and in all phases of projects. 
Meetings are perhaps particularly relevant in the define phase of projects, because 
information from many people is often needed to develop an effective charter. 

Meetings satisfy the definition of problem-solving methods in that they can 
generate recommended decisions, which are inputs to systems. Also, they can 
involve an exchange of information. Further, there are many ways to hold 
meetings, each of which, in any given situation, might generate different results. 
The term “formal meeting” is used here to refer to a specific method for holding 
meetings. The proposed method is a hybrid of approaches in Martin et al. (1997), 
Robert et al. (2000), and Streibel (2002). A main purpose is to expose readers to 
potentially new ways of structuring meetings. 

The term “agenda” refers to a list of activities intended to be completed in a 
meeting. The term “facilitator” refers to a person with the charge of making sure 
that the meeting rules and agenda are followed. The facilitator generally acts 
impartially and declares any biases openly and concisely as appropriate. 
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Algorithm 3.4. Steps for a formal meeting using rules 

 
The phrase “meeting wrap-up” can be used to refer simultaneously to Steps 5 

and 6. The term “brainstorming” refers to an activity in which participants 
propose creative solutions to a problem. For example, the problem could be to 
choose inputs and outputs for study in a project. Since creativity is desired, it can 
be useful to document the ideas generated in a supportive atmosphere with minimal 
critiquing. The term “filtering” refers here to a process of critiquing, tuning, and 
rejecting ideas generate in a brainstorming process. Since filtering is a critical, 
negative activity, it is often separated temporarily from brainstorming. The pair of 
activities, brainstorming and filtering, might appear together on an agenda in 
relation to a particular topic.  

The phrase “have a go-round” is used here to refer to an activity in which 
many or all of the meeting participants are asked to comment on a particular issue. 
Having a go-round can be critical to learning information from shy people and 
making a large number of people feel “buy-in” or involvement in a decision. Also, 
having a go-round can be combined with activities such as brainstorming and 
filtering. 

Example 3.6.1 Teleconferencing with Europe 

Question: An engineer in China is teleconferencing with two shy engineers in 
Europe who work in the same company. European engineers have greater 
familiarity with related production issues. The meeting objective is to finalize the 
KIVs, KOVs, and targets for a project charter. The Chinese engineer has e-mailed 
a proposed list of these previously. Use this information to suggest defaults and a 
meeting agenda.  
 
Answer: Default actions: Use the e-mailed list of KIVs, KOVs, and targets. 

1.   Review the e-mailed list of KIVs, KOVs, and targets 

Step 1. The facilitator suggests, amends, and documents the meeting rules 
and agenda based on participant ideas and approval.  

Step 2. The facilitator declares default actions or system inputs that will go 
into effect unless they are revised in the remainder of the meeting. 
If appropriate, these defaults come from the ranking management. 

Step 3. The facilitator implements the agenda, which is the main body of 
the meeting. 

Step 4. The facilitator summarizes meeting results including (1) actions to 
be taken and the people responsible, and (2) specific 
recommendations generated, which usually relate to inputs to some 
system.   

Step 5. The facilitator solicits feedback about the meeting rules and agenda 
to improve future meetings. 

Step 6. Participants thank each other for attending the meeting and say 
good-bye. 
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2.   Using a go-round, brainstorm possible KIVs, KOVs, and targets not 
included  

3.   Critique results of brainstorm using one or two go-rounds 
4.   Summarize results 
5.   Wrap up 
 

Reported benefits of running formal meetings using rules include:  
• Better communication, which can result in shared historical information;  
• Better communication, which can result in less duplication of future 

efforts; 
• Improved “buy-in” because everyone feels that they have been heard; and 
• Increased chance of actually accomplishing meeting objectives. 

These benefits often outweigh the awkwardness and effort associated with running 
a formal meeting. 

3.7  Significant Figures 

The subject of “significant figures” relates to defining what is mean by specific 
numbers. The topic can relate to specifying project goals but is relevant in perhaps 
all situations combining business and technical issues. This section includes one 
convention for the interpretion and documentation of numbers. This convention is 
associated with a method for deriving the uncertainty of the results of calculations. 
The interpretation of numbers can be important in any phase of a technical project 
and in many other situations. In general, there are at least three ways to document 
uncertainty: (1) by implication, (2) with explicit ranges written either using “±” or 
(low, high), or (3) using a distribution function and probability theory as described 
in Chapter 10. This section focuses on the former two documentation methods. 

The term “significant figures” refers to the number of digits in a written 
number that can be trusted by implication. Factors that can reduce trust include the 
possibility of round-off errors and any explicit expression of uncertainty. Unless 
specified otherwise, all digits in a written number are considered significant. Also, 
whole numbers generally have an infinite number of significant figures unless 
uncertainty is expressed explicitly. The “digit location” of a number is the power 
of 10 that would generate a 1 digit in the right-most significant digit.  

Example 3.7.1 Significant Figures and Digit Location 

Question: Consider the two written numbers 2.38 and 50.21 ± 10.0. What are the 
associated significant figures and digit locations? 
 
Answer: The significant figures of 2.38 are 3. The digit location of 2.38 is –2 since 
10–2 = 0.01. The number of significant figures of 50.21 ± 1.0 is 1 since the first 
digit in front of the decimal cannot be trusted. If it were ± 0.49, then the digit could 
be trusted. The digit location of 50.21 ± 10.0 is 1 because 101 = 10.  
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Step 1. Develop ranges (low, high) for all inputs x1,…,xn using explicit 
uncertainty if available or implied uncertainty if not otherwise specified. 

Step 2. Perform calculations using all 2n combinations of range values.  
Step 3. The ranges associated with the output number are the highest and lowest 

numbers derived in Step 2. 
Step 4. Write the product either using all available digits together with the 

explicit range or including only significant digits.  

In the convention here, the phrase “implied uncertainty” of the number x is 
0.5 × 10digit location(x). This definition was also used in Lee, Mulliss, Chiu (2000). 
Those authors explored other conventions not included here. The following method 
is proposed here to calculate the implied uncertainty of the result of calculations. In 
our notation, x1,…, xn are the input numbers with implied or explicit uncertainties 
known and the result of the calculation, y. The goal is to derive both a number for y 
and for its implied uncertainties.  

Algorithm 3.5. Formal derivation of significant figures 

If only significant digits are reported, then rounding should be used in the 
formal derivation of significant figures method. Also, it is generally reasonable to 
apply some degree of rounding in reporting the explicit ranges. Therefore, the most 
explicit, correct representation is in terms of a range such as (12.03, 12.13) or 
12.07 ± 0.05. Still, 12.1 is also acceptable, with the uncertainty being implied. 

Example 3.7.2 Significant Figures of Sums and Products 

For each question, use the steps outlined above. 
 
Sum Question: y = 2.51 + (10.2 ± 0.5). What is the explicit uncertainty of y? 
 
Sum Answer: In Step 1, the range for x1 is (2.505, 2.515) and for x2 is (9.7, 10.7). 
In Step 2, the 22 = 4 sums are: 2.505 + 9.7 = 12.205, 2.505 + 10.7 = 13.205, 2.515 
+ 9.7 = 12.215, and 2.515 + 10.7 = 13.215. The ranges in Step 3 are (12.205, 
13.215). Therefore, the sum can be written 12.71 with range (12.2, 13.2) with 
rounding. This can also be written 12.71 ± 0.5. 
 
Product Question: y = 2.51 × (10.2 ± 0.5). What is the explicit uncertainty of y? 
 
Product Answer: In Step 1, the range for x1 is (2.505, 2.515) and for x2 is (9.7, 
10.7). In Step 2, the 22 = 4 products are: 2.505 × 9.7 = 24.2985, 2.505 × 10.7 = 
26.8035, 2.515 × 9.ds7 = 24.3955, and 2.515 × 10.7 = 26.9105. The ranges in Step 
3 are (24.2985, 26.9105). Therefore, the product can be written 25.602 with 
uncertainty range (24.3, 26.9) with rounding. This could be written 25.602 ± 1.3.  
 
Whole Number Question: y = 4 people × 2 (jobs/person). What is the explicit 
uncertainty of y? 
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Whole Number Answer: In Step 1, the range for x1 is (4, 4) and for x2 is (2, 2) 
since we are dealing with whole numbers. In Step 2, the 22 = 4 products are: 4 × 2 
= 8, 4 × 2 = 8, 4 × 2 = 8, and 4 × 2 = 8. The ranges in Step 3 are (8, 8). Therefore, 
the product can be written as 8 jobs with uncertainty range (8, 8). This could be 
written 8 ± 0.000.  

 
Note that in multiplication or product situations, the uncertainty range does not 

usually split evenly on either side of the quoted result. Then, the notation (–,+) can 
be used. One attractive feature of the “Formal Derivation of Significant Figures” 
method proposed here is that it can be used in cases in which the operations are not 
arithmetic in nature, which is the purpose of the next example. 

Example 3.7.3  Significant Figures of “General” Cases 

Sum Question: y = 2.5 × exp(5.2 × 2.1). What is the explicit uncertainty of y? 
 
Sum Answer: In Step 1, the range for x1 is (2.45, 2.55), for x2 is (5.15, 5.25), and 
for x3 is (2.05, 2.15). In Step 2, the 23 = 8 results are: 2.45 × exp(5.15 × 2.05) = 
94,238.9,…,2.55 × exp(5.25 × 2.15) = 203,535.0 (see Table 3.5). The ranges in 
Step 3 are (94238.9, 203535.0). Therefore, the result can be written 132,649.9 with 
range (94,238.9, 203,535.0) with rounding. This can also be written 132,649.9 (–
38,411.0, +70,885.1) or 148,886.95 ± 54,648.05. 
 

In the general cases, it is probably most helpful and explicit to give the 
calculated value ignoring uncertainty followed by (+,–) to generate a range, e.g., 
132,649.9 (–38,411.0, +70,885.1). Quoting the middle number in the range 
followed by “±” is also acceptable and is relatively concise, e.g., 148,886.95 ± 
54,648.05. 

In some cases, it is not necessary to calculate all 2n products, since it is 
predictable which combinations will give the minimum and maximum in Step 3. 
For example, in all of the above examples, it could be deduced that the first 
combination would give the lowest number and the last would give the highest 
number. The rigorous proof of these facts is the subject of an advanced problem at 
the end of this chapter. 

The formal derivation of significant figures method proposed here does not 
constitute a world standard. Mullis and Lee (1998) and Lee et al. (2000) propose a 
coherent convention for addition, subtraction, multiplication, and division 
operations. The desirable properties of the method in this book are: (1) it is 
relatively simple conceptually, (2) it is applicable to all types of calculations, and 
(3) it gives sensible results in some problems that certain methods in other books 
do not. One limitation of the method proposed here is that it might be viewed as 
exaggerating the uncertainty, since only the extreme lows and highs are reported. 
Statistical tolerancing based on Monte Carlo simulation described in Parts II and 
III of this book generally provides the most realistic and relevant information 
possible. Statistical tolerancing can also be applied to all types of numerical 
calculations. 
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Finally, many college students have ignored issues relating to the implied 
uncertainty of numbers in prior course experiences. Perhaps the main point to 
remember is that in business or research situations where thousands of dollars hang 
in the balance, it is generally advisable to account for uncertainties in decision-
making. In the remainder of this book, the formal derivation of significant figures 
method is not always applied. However, there is a consistent effort to write 
numbers in a way that approximately indicates their implied uncertainty. For 
example, 4.521 will not be written when what is meant is 4.5 ± 0.5. 

Table 3.5. Calculation for the formal derivation of significant figures example 

x1 x2 x3 x1 × exp(x2 × x3) 

2.45 5.15 2.05 94238.9 

2.55 5.15 2.05 98085.4 

2.45 5.25 2.05 115680.6 

2.55 5.25 2.05 120402.2 

2.45 5.15 2.15 157721.8 

2.55 5.15 2.15 164159.4 

2.45 5.25 2.15 195553.3 

2.55 5.25 2.15 203535.0 

2.45 5.25 2.15 195553.3 

3.8  Summary 

This chapter describes the goals of the define phase of a six sigma project. Possible 
goals include identifying subsystems with associated key output variables and 
target objectives for those variables. Also, it is suggested that project charters can 
constitute the documented conclusion of a define phase; possible contents of these 
charters are described.  

Next, both general strategies and specific problem-solving methods are 
described, together with their possible roles in the development of project charters. 
Specifically, the theory of constraints (TOC) and worst-case analysis strategies are 
described and argued to be relevant in the identification of bottleneck subsystems 
and in setting targets for KOVs. Pareto charting and formal meeting rule methods 
are described and related to the selection of KIVs and KOVs.  

Finally, a method for deriving and reporting the significant figures and related 
uncertainty associated with the results of calculations is proposed. The purpose of 
this method is to assure that reported quantitative results are expressed with the 
appropriate level of uncertainty. 
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Example 3.8.1 Defining Bottlenecks in Cellular Relay Towers 

Question: A cellular relay tower manufacturer has a large order for model #1. The 
company is considering spending $2.5M to double capacity to a reworked line or, 
alternatively, investing in a project to reduce the fraction non-conforming of the 
machine line feeding into the reworked line. Currently, 30% of units are non-
conforming and need to be reworked. Recommend a project scope, including the 
key intermediate variable(s). 
 
 
 
 
 
 
 
 
 
 

Figure 3.6. Cellular relay tower manufacturing system 

Answer: The bottleneck is clearly not in sales, since a large order is in hand. The 
rework capacity is a bottleneck. It is implied that the only way to increase that 
capacity is through expending $2.5M, which the company would like to avoid. 
Therefore, the manufacturing line is the relevant bottleneck subsystem, with the 
key intermediate variable being the fraction non-conforming going into rework, ỹ1, 
in Figure 3.6. Reducing this fraction to 15% or less should be roughly equivalent to 
doubling the rework capacity.  

Example 3.8.2 Cellular Relay Tower Bottlenecks Continued  

Question: Suppose the team would like to put more specific information about 
subsystem KIVs and KOVs into the project charter. Assume that much of the 
information about KIVs is known only by hourly workers on the factory floor. 
How could Pareto charts and formal meeting rules aid in collecting the desired 
information?  
 
Answer: Using formal meeting rules could be useful in facilitating communication 
between engineers and line workers for eliciting the needed KIV information. 
Otherwise, communication might be difficult because of the different backgrounds 
and experiences of the two groups. Pareto charting could aid mainly through 
prioritizing the specific KOVs or causes associated with the non-conforming units.  

Cellular Relay Tower Model #1

y1

Human Rework Line

Sales

ỹ2

Machine Linex1 ỹ1

x2
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Problems 

In general, provide the correct and most complete answer. 
 
1. According to the text, which of the following is true of six sigma projects? 

a. Projects often proceed to the measure phase with no predicted 
savings. 

b. Before the define phase ends, the project’s participants are agreed 
upon. 

c. Project goals and target completion dates are generally part of project 
charters. 

d. All of the above are true. 
e. Only the answers in parts “b” and “c” are correct. 
 

2. According to the text, which of the following is true of subsystems? 
a. They cannot share an input and an output with a major system. 
b. They are contained systems within a larger system. 
c. The subsystem concept is not relevant to the derivation of project 

charters. 
d. All of the above are true. 
e. Only the answers in parts “a” and “b” are correct. 

 
3. Which of the following consistutes an ordered list of two input variables, an 

intermediate variable, and an output variable? 
a. Lemonade stand (% sugar, % lemons, taste, profit) 
b. Shoe sales (comfort rating, material, color, shoe sizes) 
c. Sandwich making for lunch (peanut butter, jelly, weight, 

transportation cost) 
d. All of the above fit the definition. 
e. Only the answers in parts “a” and “c” are correct. 

 
4. Which of the following constitutes an ordered list of two input variables, two 

intermediate variables, and an output variable? 
a. Lemonade stand (% sugar, % lemons, taste rating, material cost, total 

profit) 
b. Chair manufacturing (wood type, saw type, stylistic appeal, waste, 

profit) 
c. Chip manufacturing (time in acid, % silicon, % dopant, % acceptable, 

profit) 
d. All of the above fit the definition. 
e. Only the answers in parts “a” and “b” are correct. 

 
5. A potential scope for the sales subsystem for a lemonade stand is: 

a. Improve the taste of a different type of lemonade by adjusting the 
recipe. 

b. Increase profit through reducing raw optimizing over the price. 
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c. Reduce “cycle time” between purchase of materials and final product 
delivery. 

d. All of the above fit the definition as used in the text. 
e. Only the answers in parts “b” and “c” are scope objectives. 

 
6. Which constitute relevant tangible deliverables from a taste improvement 

project?  
a. A gallon of better-tasting lemonade 
b. Documentation giving the improved recipe 
c. An equation predicting the taste rating as a function of ingredients 
d. All of the above are tangible deliverables. 
e. Only the answers in parts “a” and “b” are tangible deliverables. 

 
7. Which of the following are possible deliverables from a wood process project? 

a. Ten finished chairs 
b. Posters comparing relevant competitor chairs 
c. Settings that minimize the amount of wasted wood 
d. All of the above are tangible deliverables. 
e. Only the answers in parts “a” and “c” are tangible deliverables. 
 

8. A new management demand – reducing paper consumption – is placed on an 
improvement team, in addition to improving report quality. This demand 
constitutes: 

a. An added KOV to focus on and improve quality values 
b. Scope creep 
c. Loss of “buy in” by the team 
d. All of the above are relevant. 
e. Only the answers in parts “a” and “b” are relevant. 

 
9. At a major retailer, a new accounting system is resisted even before it is tested. 

This would likely be caused by: 
a. The “Not-Invented-Here Syndrome” 
b. Scope creep restricting the team to work on the original charter 
c. Information from intermediate variables supporting adoption 
d. All of the above are possible causes. 
e. Only the answers in parts “a” and “b” are possible causes. 

 
10. Which are symptoms of the “Not-Invented-Here Syndrome”? 

a. Acceptance of input from new coworkers 
b. Rejection of input from new coworkers 
c. Acceptance of recommendations developed by the people affected 
d. Only the answers in parts “a” and “c” are correct. 
e. Only the answers in parts “b” and “c” are correct. 

 
11. Write a charter for a project relevant to your life. 
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12. Why might using rework and scrap costs to evaluate the cost of non-
conformities be inaccurate? 

a. Rework generally does not require expense. 
b. If there are many non-conforming units, some inevitably reach 

customers. 
c. Production defects increase lead times, resulting in lost sales. 
d. All of the above are possible reasons. 
e. Only the answers in parts “b” and “c” are correct. 

 
The following paragraph is relevant for answering Questions 13–15.  
 
Your team (two design engineers and one quality engineer, working for four 
months, each at 25% time) works to achieve $250k total savings over three 
different production lines (assuming a two-year payback period). A new project 
requiring all three engineers is proposed for application on a fourth production line 
with similar issues to the ones previously addressed.  
 
13. Assuming the same rate as for the preceding projects, the total number of 

person-years likely needed is approximately: 
a. 0.083 
b. 0.075 
c. 0.006 
d. –0.050 
e. 0.125 

 
14. According to the chapter, expected savings over two years is approximately: 

a. $83.3K 
b. $166.6K 
c. $66.6K 
d. –$0.7K, and the project should not be undertaken. 

15. According to the chapter, the expected profit over two years is approximately: 
a. $158.3K 
b. $75K 
c. $66.6K 
d. –$16.7K, and the project should not be undertaken. 

 
16. In three sentences or less, describe a system from your own life with a 

bottleneck. 
 
17. Which statement is correct and most complete?  

a. Subsystems can be bottlenecks. KOVs can be outputs of subsystems. 
b. According to TOC, a large system usually has more than one 

bottleneck subsystem. 
c. Improving bottleneck systems almost always improves at least one 

total system KOV. 
d. Only the answers in parts “b” and “c” are correct. 
e. Only the answers in parts “a” and “c” are correct. 
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18. According to the text, which is true of the theory of constraints (TOC)? 
a. Workers on non-bottleneck subsystems have zero effect on the 

bottom line. 
b. Identifying bottleneck subsystems can help in selecting project 

KOVs. 
c. Intermediate variables cannot relate to total system profits. 
d. All of the above are true of the theory of constraints. 
e. Only the answers in parts “b” and “c” are correct. 
 

19. Which is a categorical factor? (Give the correct and most complete answer.) 
a. Temperature used within an oven 
b. The horizontal location of the logo on a web page 
c. Type of tire used on a motorcycle 
d. All of the above are categorical factors. 
e. All of the above are correct except (a) and (d). 
 

20. Why are go-no-go decisions utilized? 
a. Eliminating design concepts early in a design process can save 

tooling costs. 
b. More design concepts exist than can be investigated, due to budget 

limitations. 
c. Decisive choices can be made, potentially related to multiple product 

lines. 
d. All of the above are possible uses. 
e. Only the answers in parts “b” and “c” are possible uses. 

 
The following information will be used in Questions 21 and 22. 

 
A hospital is losing business because of its reputation for long patient waits. It has 
similar emergency and non-emergency patient processing tracks, with most 
complaints coming from the emergency process. Patients in a hospital system 
generally spend the longest time waiting for lab test results in both tracks. Data 
entry, insurance, diagnosis, triage, and other activities are generally completed 
soon after the lab results become available.  

 
21. According to TOC, which subsystem should in general be improved first? 

a. The data entry insurance subsystem for the non-emergency track 
b. The lab testing subsystem 
c. The subsystem controlling cost of the measurement systems used 
d. Only the answers in parts “a” and “b” represent possible bottlenecks. 
 

22. According to worst-case analysis, which subsystem should be addressed first? 
a. The slower testing subsystem for the emergency track 
b. The insurance processing subsystem for the non-emergency track 
c. The raw materials subsystem, because a medication’s weight is the 

most significant factor in patient satisfaction 
d. All of the above are possible worst-case-analysis decisions. 
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e. Only the answers in parts “a” and “c” constitute a worst-case-analysis 
strategy. 

 
23. An engineer might use a Pareto chart to uncover what type of information? 

a. Prioritization of non-conformity types identify the relevant 
subsystem. 

b. Pareto charts generally highlight the most recent problems discovered 
on the line. 

c. Pareto charting does not involve attribute data. 
d. All of the above are correct. 
e. Only the answers in parts “b” and “c” result from a Pareto chart. 
 

Figure 3.7 is helpful for answering Questions 24–26. It shows the hypothetical 
number of grades not in the “A” range by primary cause as assessed by a student. 

Figure 3.7. Self-assessment of grades 

24. Which statement or statements summarize the results of the Pareto analysis? 
a. The obvious interpretation is that laziness causes most grade 

problems. 
b. Avoiding courses with tough grading will likely not have much of an 

effect on her GPA. 
c. Personal issues with instructors’ errors probably did not have much of 

an effect on her GPA. 
d. All of the above are supported by the analysis. 

 
25. Which of the following are supported by the analysis? 

a. Student effort is probably not rewarded at the university. 
b. At least 80% of poor grades are explained by 20% of potential 

causes. 
c. The student’s GPA is usually driven by tough grading. 
d. Study groups would likely never be useful in improving the student’s 

GPA. 
e. None of the above is correct. 

 
26. Which of the following are reasons why this analysis might be surprising? 

a. She was already sure that studying was the most important problem. 

 
    Insufficient Lack of    Personal      Tough Grading 
     studying study gp.   issue          grading  errors 
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b. She has little faith that studying hard will help. 
c. Her most vivid memory is a professor with a troubling grading 

policy. 
d. All of the above could be reasons. 
e. Only answers in parts (b) and (c) would explain the surprise. 

 
The following hypothetical benchmarking data, in Tables 3.6 and 3.7, is helpful for 
answering Questions 27–30. Note that the tables, which are incomplete and in a 
non-standard format, refer to three student airplane manufacturing companies. The 
second table shows subjective customer ratings of products (1–10, with 10 being 
top quality) from the three companies. 

Table 3.6. KIVs for three companies 

Key Input Variable (KIV) FlyRite Hercules Reliability 

Scissor type 1 2 1 

Body length (cm) 9.5 9.9 10.2 

Wing length (cm) 2 4 2 

Paper type (% glossy) 5.00% 0.50% 9.00% 

Arm angle at release (degrees) 15 0 10 

Arm height (elbow to ground) 0.9 0.9 2 

Paper thickness (mm) 2 2 2 

 

Table 3.7. Customer issues for three companies 

Customer issues FlyRite Hercules Reliability 

Folds have ugly rips (Ripping) 3.00 7.33 2.00 

Surface seems bumpy (Crumpling) 5.00 5.00 3.33 

Airplane flight time is short (Flight time) 5.33 8.33 3.22 

Aiplane comes apart (Flopping) 3.33 5.66 4.33 

Airplane looks funny (Aesthetics) 3.66 7.00 2.67 

 
27. How many customer issues are analyzed? 

a. 3 
b. 4 
c. 5 
d. 6 

 
 
 
 



  Define Phase and Strategy      73 

28. How many controllable KIVs are considered? 
a. 4 
b. 6 
c. 7 
d. 15 

 
29. Based on customer ratings, which company has “best in class” quality?  

a. FlyRite 
b. Hercules 
c. Reliability 
d. Ripping 
e. None dominates all others. 

 
30. At FlyRite, which KIVs seem the most promising inputs for futher study 

(focusing on emulation of best in class practices)? 
a. Scissor type, wing length, and arm release angle 
b. Scissor type, wing length, and paper thickness 
c. Paper thickness only 
d. Aesthetics and crumpling 
e. Scissor type and aesthetics 

 
31. Formal meeting rules in agreement with those from the text include: 

a. Facilitators should not enforce the agenda. 
b. Each participant receives three minutes to speak at the start of the 

meeting. 
c. No one shall speak without possession of the conch shell. 
d. All of the above are potential meeting rules. 
e. All of the above are correct except (a) and (d). 

 
32. In three sentences, describe a scenario in which Pareto charting could aid in 

making ethical judgements. 
 
33. In three sentences, describe a scenario in which benchmarking could aid in 

making ethical judgements. 
 
34. How many significant figures are in the number 2.534? 

a. 3 
b. 4 
c. 5 
d. 6 

 
35. What is the digit location of 2.534? 

a. 1 
b. 2 
c. –1 
d. –2 
e. –3 
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36. What is the implied uncertainty of 2.534? 
a. 0.5 
b. 5 
c. 0.05 
d. 0.005 
e. 0.5 × 10–3 

 
37. What is the explicit uncertainty of 4.2 + 2.534 (permitting accurate rounding)? 

a. 6.734 
b. 6.734 ± 0.1 
c. 6.734 ± 0.0051 
d. 6.734 ± 0.0505 
e. 6.734 ± 0.0055 

 
38. What is the explicit uncertainty of 4.35 + 2.541 (permitting accurate 

rounding)? 
a. 6.891 
b. 6.891 ± 0.0055 
c. 6.891 ± 0.0060 
d. 6.891 ± 0.01 
e. 6.890 ± 0.0060 

 
39. What is the explicit uncertainty of 4.2 × 2.534 (permitting accurate rounding)? 

a. 10.60 ± 0.129 
b. 10.60 ± 0.10 
c. 10.643 ± 0.129 
d. 10.65 ± 0.10 
e. 10.643 ± 0.100 

 
40. What is the explicit uncertainty of 4.35 × 2.541 (permitting accurate 

rounding)? 
a. 11.05 ± 0.01 
b. 11.053 ± 0.01 
c. 11.053 ± 0.10 
d. 11.054 ± 0.015 
e. 11.053 

 
41. What is the explicit uncertainty of y = 5.4 × exp (4.2 – 1.3) (permitting 

accurate rounding)? 
a. 98.14 ± 0.015 
b. 98.14 (–10.17, +10.33) 
c. 98.15 (–10.16, +10.33) 
d. 98.14 (–10.16, +11.33) 
e. 98.15 (–10.17, +11.33) 
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42. What is the explicit uncertainty of y = 50.4 × exp (2.2 – 1.3) (permitting 
accurate rounding)? 

a. 123.92 ± 11 
b. 123.96 (–11.9,+13.17) 
c. 123.92 (–11.9,+13.17) 
d. 123.96 (–9.9,+13.17) 
e. 123.92 (–9.9,+13.17) 
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4 

Measure Phase and Statistical Charting 

4.1  Introduction 

In Chapter 2, it was suggested that projects are useful for developing 
recommendations to change system key input variable (KIV) settings. The measure 
phase in six sigma for improvement projects quantitatively evaluates the current or 
default system KIVs, using thorough measurements of key output variables 
(KOVs) before changes are made. This information aids in evaluating effects of 
project-related changes and assuring that the project team is not harming the 
system. In general, quantitative evaluation of performance and improvement is 
critical for the acceptance of project recommendations. The more data, the less 
disagreement. 

Before evaluating the system directly, it is often helpful to evaluate the 
equipment or methods used for measurements. The term “measurement systems” 
refers to the methods for deriving KOV numbers from a system, which could be 
anything from simple machines used by an untrained operator to complicated 
accounting approaches applied by teams of highly trained experts. The terms 
“gauge” and “gage,” alternate spellings of the same word, referred historically to 
physical equipment for certain types of measurements. However, here gauge and 
measurement systems are used synonymously, and these concepts can be relevant 
for such diverse applications as measuring profits on financial statements and 
visually inspecting weld quality.  

Measurement systems generally have several types of errors that can be 
evaluated and reduced. The phrase “gauge repeatability & reproducibility” 
(R&R) methods refers to a set of methods for evaluating measurement systems. 
This chapter describes several gauge R&R related methods with examples. 

Thorough evaluation of system inputs generally begins after the acceptable 
measurement systems have been identified. Evaluation of systems must include 
sufficient measurements at each time interval to provide an accurate picture of 
performance in that interval. The evaluation must also involve a study of the 
system over sufficient time intervals to ensure that performance does not change 
greatly over time. The phrase “statistical process control” (SPC) charting refers to 
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a set of charting methods offering thorough, visual evaluation of system 
performance and other benefits described later in this chapter.  

The primary purpose of the measure phase for design projects is to 
systematically evaluate customers’ needs. Therefore, it is helpful to study similar 
systems using gauge R&R and control charts. In addition, the measure phase can 
also include techniques described in the context of other phases that focus attention 
on customer needs, such as cause & effects matrix methods. 

This chapter begins with a description of gauge R&R methods. Next, several 
SPC charting methods and associated concepts are described, including p charting, 
u charting, and Xbar & R charting. 

Example 4.1.1  Gauge R&R and SPC Charting 

Question: Describe the relationship between gauge and SPC charting. 
 
Answer: Gauge R&R evaluates measurement systems. These evaluations can aid 
in improving the accuracy of measurement systems. SPC charting uses 
measurement systems to evaluate other systems. If the measurement systems 
improve, SPC charting will likely give a more accurate picture of the other systems 
quality. 

4.2  Evaluating Measurement Systems 

In this book, the phrase “standard values” refers to a set of numbers known to 
characterize correctly system outputs with high confidence and neglible errors. 
Standard values effectively constitute the true measurements associated with 
manufactured units and are believed to be the true values within the explicit or 
implied uncertainty. For example, a set of units of varying lengths are made using 
an alloy of steel with low thermal expansion properties. The standard values are 
then the believed true length values in millimeters at room temperature, found at 
great expense at a national institute of standards. The phrase “measurement 
errors” refers to the differences between the output variable values derived from a 
measurement system and the standard values. This section describes several 
methods for characterizing the measurement errors of measurement systems.  

In some cases, measurement errors of measurement systems will be found to be 
acceptable, and these systems can in turn be trusted for evaluating other systems. 
In other cases, measurement systems will not be deemed acceptable. The 
improvement of measurement systems is considered to be a technical, investment-
related matter beyond the scope of this book. Once improvements in the 
measurement systems have been made, however, the methods here can be used to 
evaluate the progress. It is likely that the associated measurement systems will 
eventually become acceptable. Fortunately, many of the other methods in this book 
can still give trustworthy results even if measurement systems are not perfect. 
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4.2.1  Types of Gauge R&R Methods 

In all gauge R&R problems, the entities to be inspected do not need to be 
manufactured parts. They can be as diverse as accounting-related data or service 
stations. As a convenient example, however, the following sections describe the 
methods in relation to inspecting manufactured units or parts. In this chapter, two 
types of gauge R&R methods are described in detail: “comparison with standards” 
and gauge R&R (crossed). The phrase “destructive testing” refers to the process 
of measuring units such that the units cannot be measured again. The phrase “non-
destructive evaluation” (NDE) refers to all other types of testing. 

By definition gauge R&R (crossed) requires multiple measurements of each 
unit with different measurement systems. Therefore, this method cannot be applied 
in cases involving destructive sampling. Similarly, the comparison with standards 
method requires the availability of a standard. Table 4.1 shows the recommended 
methods for different possible cases.   

Table 4.1. Suggested measurement evaluation methods for four cases 

 Measurement type 

Standard values Non-destructive evaluation Destructive testing 

Available Comparison with standards Comparison with standards 

Not available Gauge R&R (crossed) Not available 

 
It is apparent from Table 4.1 that gauge R&R (crossed) should be used only 

when standard values are not available. To understand this, a few definitions may 
be helpful. First, “repeatability error”(εrepeatability) refers to the difference between 
a given observation and the average a measurement system would obtain through 
many repetitions. Second, “reproducibility error” (εreproducibility) is the difference 
between an average obtained by a relevant measurement system and the average 
obtained by all other similar systems (perhaps involving multiple people or 
equipment of similar type). In general, we will call a specific measurement system 
an “appraiser” although it might not be a person. Here, an appraiser could be a 
consulting company, or a computer program, or anything else that assigns a 
number to a system output. 

Third, the phrase “systematic errors” (εsystematic) refers in this book to the 
difference between the average measured by all similar systems for a unit and that 
unit’s standard value. Note that in this book, reproducibility is not considered a 
systematic error, although other books may present that interpretation. Writing the 
measurement error as εmeasurement, the following equation follows directly from these 
definitions: 

 
 εmeasurement = εrepeatability + εreproducibility + εsystematic  (4.1) 
 
Without using standard values, it is logically impossible to evaluate the 

“systematic” errors, i.e., those errors intrinsically associated with a given type of 
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measurement system. Since gauge (crossed) does not use standard values, it can be 
regarded as a second-choice method. However, it is also usable in cases in which 
standard values are not available. 

Another method called “gauge R&R (nested)” is omitted here for the sake of 
brevity. Gauge R&R (nested) is relevant for situations in which the same units 
cannot be tested by multiple measurement systems, e.g., parts cannot be shipped to 
different testers. Gauge R&R (nested) cannot evaluate either systematic errors or 
the separate effects of repeatability and reproducibility errors. Therefore, it can be 
regarded as a “third choice” method. Information about gauge R&R (nested) is 
available in standard software packages such as Minitab® and in other references 
(Montgomery and Runger 1994). 

4.2.2  Gauge R&R: Comparison with Standards 

The “comparison with standards” method, listed in Algorithm 4.1, is proposed 
formally here for the first time. However, similar approaches have been used for 
many years all over the world. The following defined constants are used in the 
method:  

1. n is the number of units with pre-inspected standard values available. 
2. m is the number of appraisers that can be assigned to perform tests. 
3. r is the current total number of runs at any given time in the method.  

 
The phrase “standard unit” refers to any of the n units with standard values 

available. The phrase “absolute error” means the absolute value of the 
measurement errors for a given test run. As usual, the “sample average” (Yaverage) 
of Y1, Y2, …, Yr is (Y1 + Y2 + … + Yr) ÷ r. The “sample standard deviation” (s) is 
given by:  
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  (4.2) 

 
Clearly, if destructive testing is used, each of the n standard units can only 

appear in one combination in Step 1. Also, it is perhaps ideal that the appraisers 
should not know which units they are measuring in Step 2. However, hiding 
information is usually unnecessary, either because the appraisers have no incentive 
to distort the values or the people involved are too ethical or professional to change 
readings based on past values or other knowledge. 

In the context of comparison with standards, the phrase “measurement system 
capability” is defined as 6.0 × EEAE. In some cases, it may be necessary to tell 
apart reliably system outputs that have true differences in standard values greater 
than a user-specified value. Here we use “D” to refer to this user-specified value. 
In this situation, the term “gauge capable” refers to the condition that the 
measurement system capability is less than D, i.e., 6.0 × EEAE < D. In general, 
acceptability can be determined subjectively through inspection of the EEAE, 
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which has the simple interpretation of being the error magnitude the measurement 
system user can expect to encounter.  

 
Algorithm 4.1. Gauge R&R: comparison with standards 

 

Table 4.2. Random-looking listing of standard unit and appraiser combinations 

Run Standard 
unit 

Appraiser Measured 
value 

Absolute 
error 

1 5 1   

2 5 3   

3 2 1   

4 4 2   

M M M   

17 1 2   

18 2 3   

19 5 3   

20 4 1   

 

Step 1.  Write a listing of 20 randomly selected combinations of standard unit and 
appraiser. Attempt to create combinations that show no pattern. Table 4.2 
indicates a listing with n = 5 and m = 3. Leave space for the measured 
values and absolute errors. 

Step 2.  Appraisers perform the remaining measurements in the order indicated in 
Table 4.2. Write the measured values and the absolute values of the errors 
in the table.  

Step 3.  Calculate the sample average and sample standard deviation of all absolute 
errors tested so far. The “estimated expected absolute errors” (EEAE) and 
“estimated errors of the expected absolute errors” (EEEAE) are: 

 
EEAE = (sample average)      

        (4.3) 

         EEEAE = (sample standard deviation) ÷ r                                           
 

Step 4.  If the EEAE ÷ EEEAE > 5, then write my “expected absolute errors are” 
EEAE ± EEEAE and stop. Otherwise, add five randomly selected 
combinations to the table from Step 1. Increase r by 5 and go to Step 2.  
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Example 4.2.1  Capability of Home Scale 

Question: Use two 12.0-pound dumbbells to determine whether the following 
measurement standard operating procedure (SOP) is “gauge capable” of telling 
apart differences of 5.0 lb. 

1. Put “Taylor Metro” scale (dial indicator model) on a flat surface. 
2. Adjust dial to set reading to zero. 
3. Place items on scale and record the weight, rounding to the nearest 

pound. 
 

Answer: Assuming that the dumbbell manufacturer controls its products far better 
than the scale manufacturer, we have n = 3 standard values: 12.0 lb, 12.0 lb, and 
24.0 lb (when both weights are on the scale). With only one scale and associated 
SOP, we have m = 1. 

Algorithm 4.2. Scale capabililty example 

 
In the preceding example, significant figures are less critical than usual because 

the method itself provides an estimate of its own errors. Note also that failure to 
establish the capability of a measurement system does not automatically signal a 
need for more expensive equipment. For example, in the home scale case, the 
measurement SOP was not gauge capable, but simply changing the procedures in 
the SOP would likely create a capable measurement system. With one exception, 
all the measurements were below the standard values. Therefore, one could change 
the third step in the SOP to read “Place items on the scale, note the weight to the 
nearest pound, and record the noted weight plus 1 pound.”  

In general, vagueness in the documentation of measurement SOPs contributes 
substantially to capability problems. Sometimes simply making SOPs more specific 
establishes capability. For example, the second step in the home scale SOP might 
read “Carefully lean over the scale, then adjust the dial to set reading to zero.” 

Step 1.  Table 4.3 lists the 20 randomly selected combinations. 
 
Step 2. Table 4.3 also shows the measured values. Note that the scale was picked up 

between each measurement to permit the entire measurement SOP to be 
evaluated.  

 
Step 3. EEAE = (2 + 0 + … + 2) ÷ 20 = 1.55    
   

 EEEAE = ( ) ( ) ( )
120

55.12...55.1055.12 222

−
−++−+−  ÷ 20 = 0.135 

 
Step 4. Since EEAE ÷ EEEAE » 5, one writes the expected absolute errors as 1.55 ± 

0.135 lb, and the method stops. Since 6.0 × 1.55 = 9.3 lb is greater than 
5.0 lb, we say that the SOP is not gauge capable. 
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Finally, advanced readers will notice that the EEAE is equivalent to a Monte 
Carlo integration estimate of the expected absolute errors. These readers might also 
apply pseudo random numbers in Step 1 of the method. Related material is covered 
in Chapter 10 and in Part II of this book. This knowledge is not needed, however, 
for competent application of the comparison with standards method.  

Table 4.3. Real measurements for home scale capability study 

Run Standard 
unit 

Appraiser Measured 
value 

Absolute 
error 

1 3 1 22 2 

2 2 1 12 0 

3 2 1 11 1 

4 1 1 11 1 

5 3 1 22 2 

6 3 1 22 2 

7 1 1 10 2 

8 2 1 11 1 

9 3 1 22 2 

10 2 1 10 2 

11 1 1 11 1 

12 2 1 10 2 

13 2 1 11 1 

14 1 1 11 1 

15 3 1 23 1 

16 2 1 10 2 

17 1 1 10 2 

18 2 1 10 2 

19 1 1 10 2 

20 3 1 22 2 

  

4.2.3  Gauge R&R (Crossed) with Xbar & R Analysis 

In general, both gauge R&R (crossed) and gauge R&R (nested) are associated with 
two alternative analysis methods: Xbar & R and analysis of variance (ANOVA) 
analysis. The experimentation steps in both methods are the same. Many students 
find Xbar & R methods intuitively simpler, yet ANOVA methods can offer 
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important advantages in accuracy. For example, if the entire procedure were to be 
repeated, the numerical outputs from the ANOVA process would likely be more 
similar than those from Xbar & R methods. Here, we focus somewhat arbitrarily 
on the Xbar & R analysis methods. One benefit is that the proposed method derives 
from the influential Automotive Industry Task Force (AIAG) Report (1994) and 
can therefore be regarded as the industry-standard method. 
 

Algorithm 4.3. Gauge R&R (crossed) with Xbar & R Analysis 

Step 1a. Create a listing of all combinations of n units or system measurements and m 
appraisers. Repeat this list r times, labeling the repeated trials 1,…,r. 

 
Step 1b.  Randomly reorder the list and leave one column blank to record the data. 

Table 4.4 illustrates the results from Step 1 with n = 5 parts or units, m = 2 
appraisers, and r = 3 trials.  

 
Step 2.  Appraisers perform the measurements that have not already been performed in 

the order indicated in the table from Step 1. This data is referred to using the 
notation Yi,j,k where i refers to the unit, j refers to the appraiser involved, and k 
refers to the trial. For example, the measurement from Run 1 in Table 4.4 is 
referred to as Y3,2,1. 

 
Step 3.    Calculate the following (i is for the part, j is for the appraiser, k is for the trial, 

n is the number of parts, m is the number of appraisers, r is the number of 
trials): 
Yaverage,i,j = r–1 Σk = 1,…,rYi,j,k and  
Yrange,i,j = Max[Yi,j,1,…, Yi,j,r] – Min[Yi,j,1,…, Yi,j,r] 
      for i = 1,…,n and j = 1,…,m,                                                                
Yaverage parts,i = (m)–1 Σj = 1,…,m Yaverage,i,j for i = 1,…,n 
Yinspector average,j = (n)–1 Σi = 1,…,n Yaverage,i,j for j = 1,…,m 
Yaverage range = (mn)–1 Σi = 1,…,n Σj = 1,…,m Yrange,i,j 
Yrange parts = Max[Yaverage parts,1,…,Yaverage parts,n]  

– Min[Yaverage parts,1,…,Yaverage parts,n]         (4.4) 
Yrange inspect = Max[Yinspector average,1,…,Yinspector average,m]  

– Min[Yinspector average,1,…,Yinspector average,m] 
Repeatability = K1Yaverage range 
Reproducibility = sqrt{Max[(K2 Yrange inspect)2 – (nr)–1 Repeatability2,0]} 
R&R = sqrt[Repeatability2 + Reproducibility2] 
Part = K3Yrange parts 
Total = sqrt[R&R2 + Part2] 
%R&R = (100 × R&R) ÷ Total 
where “sqrt” means square root and K1 = 4.56 for r = 2 trials and 3.05 for r =3 
trials, K2 = 3.65 for m = 2 machines or inspectors and 2.70 for m=3 machines 
or human appraisers, and K3 = 3.65, 2.70, 2.30, 2.08, 1.93, 1.82, 1.74, 1.67, 
1.62 for n = 2, 3, 4, 5, 6, 7, 8, 9, and 10 parts respectively. 

 
Step 4.   If %R&R < 10, then one declares that the measurement system is “gauge 

capable,” and measurement error can generally be neglected. Depending upon 
problem needs, one may declare the process to be marginally gauge capable if 
10 ≤ %R&R < 30. Otherwise, more money and time should be invested to 
improve the inspection quality.  
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Table 4.4. Example gauge R&R (crossed) results for (a) Step 1a and (b) Step 1b 

 (a)     (b)   

Unit Appraiser Trial  Run Unit (i) Appraiser (j) Trial (k) Yi,j,k 
1 1 1  1 3 2 1  
2 1 1  2 2 1 1  
3 1 1  3 3 1 2  
4 1 1  4 5 1 2  
5 1 1  5 2 2 1  
1 2 1  6 2 2 2  
2 2 1  7 4 2 2  
3 2 1  8 5 2 2  
4 2 1  9 3 1 1  
5 2 1  10 2 1 3  
1 1 2  11 1 1 1  
2 1 2  12 5 1 1  
3 1 2  13 3 2 3  
4 1 2  14 5 2 3  
5 1 2  15 4 2 1  
1 2 2  16 1 1 2  
2 2 2  17 1 2 2  
3 2 2  18 4 1 2  
4 2 2  19 1 2 1  
5 2 2  20 4 1 1  
1 1 3  21 1 1 3  
2 1 3  22 5 1 3  
3 1 3  23 3 2 2  
4 1 3  24 4 2 3  
5 1 3  25 5 2 1  
1 2 3  26 2 1 2  
2 2 3  27 3 1 3  
3 2 3  28 4 1 3  
4 2 3  29 3 2 1  
5 2 3  30 2 1 1  

  
The crossed method involves collecting data from all combinations of n units, 

m appraisers, and r trials each. The method is only defined here for the cases 
satisfying: 2 ≤ n ≤ 10, 2 ≤ m ≤ 3, and 2 ≤ r ≤ 3. In general it is desirable that the 
total number of evaluations is greater than 20, i.e., n × m × r ≥ 20. As for 
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comparison with standards methods, it is perhaps ideal that appraisers do not know 
which units they are measuring.   

Note that the gauge R&R (crossed) methods with Xbar & R analysis methods 
can conceivably generate undefined reproducibility values in Step 3. If this 
happens, it is often reasonable to insert a zero value for the reproducibility.  

In general, the relevance of the %R&R strongly depends on the degree to which 
the units’ unknown standard values differ. If the units are extremely similar, no 
inspection equipment at any cost could possibly be gauge capable. As with 
comparison with standards, it might only be of interest to tell apart reliably units 
that have true differences greater than a given number, D. This D value may be 
much larger than the unknown standard value differences of the parts that 
happened to be used in the gauge study. Therefore, an alternative criterion is 
proposed here. In this non-standard criterion, a system is gauge capable if 6.0 × 
R&R < D.  

Example 4.2.2  Standard Definition of Capability 

Question: Suppose R&R = 32.0 and Part = 89.0. Calculate and interpret the 
%R&R. 
 
Answer: %R&R = (100% × R&R) ÷ sqrt[R&R2 + Part2] = 33.8%. Using standard 
conventions, the gauge is not capable even with lenient standards. However, the 
measurement system might be acceptable if the parts in the study are much more 
similar than parts of future interest. Specifically, if the person only needs to tell the 
difference between parts with true differences greater than 6.0 × 32.0 = 192 units, 
the measurement system being studied is likely acceptable. 

Table 4.5. Hypothetical undercut data for gauge study (superscripts show run order) 

Software   Part   

#1 1 2 3 4 5 

Trial 1 0.942 1.0511 1.0313 1.015 0.8815

Trial 2 0.947 1.058 1.0220 1.0418 0.8627

Trial 3 0.9710 1.0419 1.0522 1.0024 0.8830

 
Software   Part   

#2 1 2 3 4 5 

Trial 1 0.906 1.031 1.0312 1.029 0.873

Trial 2 0.947 1.0414 1.0523 1.0117 0.8816

Trial 3 0.9710 1.0126 1.0628 0.9829 0.8725

 
The following example shows a way to reorganize the data from Step 2 that can 

make the calculations in Step 3 easier to interpret and to perform correctly. It is 
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probably desirable, however, to create a table as indicated in Step 1 first before 
reorganizing. This follows because otherwise one might be tempted (1) to perform 
the tests in a non-random order, or (2) to change the results for the later trials based 
on past trials.  

Example 4.2.3  Gauge R&R (Crossed) Arc Welding Example 

Question: A weld engineer is analyzing the ability of two computer software 
programs to measure consistently the undercut weld cross sections. She performs 
Steps 1 and 2 of the gauge R&R method and generates the data in Table 4.5. 
Complete the analysis. 

Table 4.6. Weld example gauge R&R data and calculations 

   Part      

Inspector 1 1 2 3 4 5    

Trial 1 0.94 1.05 1.03 1.01 0.88  Yaverage range 0.026 

Trial 2 0.94 1.05 1.02 1.04 0.86  Yrange parts 0.167 

Trial 3 0.97 1.04 1.05 1.00 0.88 Yinspector average,1 Yrange inspect 0.012 

Yaverage,i,1 0.950 1.047 1.033 1.017 0.873 0.984 Repeatability 0.079 

Yrange,i,1 0.030 0.010 0.030 0.040 0.020  Reproducibility 0.039 

Inspector 2 1 2 3 4 5  R&R 0.088 

Trial 1 0.90 1.03 1.03 1.02 0.87  Part 0.347 

Trial 2 0.92 1.04 1.05 1.01 0.88  Total 0.358 

Trial 3 0.91 1.01 1.06 0.98 0.87  %R&R 25% 

Yaverage,i,2 0.910 1.027 1.047 1.003 0.873 Yinspector average,2   

Yrange,i,2 0.020 0.030 0.030 0.040 0.010 0.972   

Yaverage parts,i 0.930 1.037 1.040 1.010 0.873    

 
Answer: Table 4.6 shows the calculations for Step 3. The process is marginally 
capable, i.e., %R&R = 25%. This might be acceptable depending upon the goals.  

4.3  Measuring Quality Using SPC Charting 

In this section, several methods are described for using acceptable measurement 
systems to evaluate a system thoroughly. In addition to evaluating systems before a 
project changes inputs, these statistical process control (SPC) charting methods aid 
in the efficient monitoring of systems. If applied as intended, they increase the 
chance that skilled employees will only be tasked in ways that reward their efforts.  
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The section begins with a discussion of the concepts invented by Shewhart in 
the 1920s and refined years later by Deming and others. Next, four widely used 
charting procedures are described: p-charting, u-charting, demerit charting, and 
Xbar & R charting. Each method generates a measurement of the relevant process 
quality. These measures provide a benchmark for any later project phases to 
improve. 

4.3.1  Concepts: Common Causes and Assignable Causes 

In 1931, Shewhart formally proposed the Xbar & R charting method he invented 
while working at Bell Telephone Laboratories (see the re-published version in 
Shewhart 1980). Shewhart had been influenced by the mass production system that 
Henry Ford helped to create. In mass production, a small number of skilled 
laborers were mixed with thousands of other workers on a large number of 
assembly lines producing millions of products. Even with the advent of Toyota’s 
lean production in the second half of the twentieth century and the increase of 
service sector jobs such as education, health care, and retail, many of the problems 
addressed by Shewhart’s method are relevant in today’s workplace. 

Figure 4.1 illustrates Shewhart’s view of production systems. On the left-hand 
side stands skilled labor such as technicians or engineers. These workers have 
responsibilities that blind them from the day-to-day realities of the production 
lines. They only see a sampling of possible output numbers generated from those 
lines, as indicated by the spread-out quality characteristic numbers flowing over 
the wall. Sometimes variation causes characteristic values go outside the 
specification limits, and units become non-conforming. Typically, most of the units 
conform to specifications. Therefore, skilled labor generally views variation as an 
“evil” or negative issue. Without it, one hundred percent of units would conform. 

The phrase “common cause variation” refers to changes in the system outputs 
or quality characteristic values under usual circumstances. The phrase “local 
authority” refers to the people (not shown) working on the production lines and 
local skilled labor. Most of the variation in the characteristic numbers occurs 
because of the changing of factors that local authority cannot control. If the people 
and systems could control the factors and make all the quality characteristics 
constant, they would do so. Attempts to control the factors that produce common 
cause variation generally waste time and add variation. The term “over-control” 
refers to a foolish attempt to dampen common cause variation that actually 
increases it. Only a large, management-supported improvement project can reduce 
the magnitude of common cause variation. 

On the other hand, sometimes unusual problems occur that skilled labor and 
local authority can fix or make less harmful. This is indicated in Figure 4.1 by the 
gremlin on the right-hand side. If properly alerted, skilled labor can walk around 
the wall and scare away the gremlin. The phrase “assignable cause” refers to a 
change in the system inputs that can be reset or resolved by local authority. 
Examples of assignable causes include meddling engineers, training problems, 
unusually bad batches of materials from suppliers, end of financial quarters, and 
vacations. Using the vocabulary of common and assignable causes, it is easy to 
express the primary objectives of the statistical process control charts: 
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Evaluation of the magnitude of the common cause variation, providing a 
benchmark for quality improvement or design activities;  

Monitoring and identification of assignable causes to alert local authority in a 
timely manner (something might be fixable); and 

Discouraging local authority from meddling unless assignable causes are 
identified. 

The third goal follows because local authority’s efforts to reduce common 
cause variation are generally counterproductive.  
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.1. Scarce resources, assignable causes, and data in statistical process control 

Example 4.3.1  Theft in Retailing 

Question: A retail executive is interested in benchmarking theft at five outlets 
prior to the implementation of new corporate anti-theft policies. List one possible 
source of common cause variation and assignable cause variation. 

 
Possible Answer: Lone customers and employees stealing small items from the 
floor or warehouse contribute to common cause variation. A conspiracy of multiple 
employees systematically stealing might be terminated by local management. 

4.4  Commonality: Rational Subgroups, Control Limits,  
and Startup  

The next sections describe four charting procedures with the objectives from the 
last section. The charts differ in that each is based on different output variables. 
First, p-charting uses attribute data derived from a count of the number of non-
conforming units in a subset of the units produced. Second, demerit charts plot a 
weighted sum of the non-conformities per item. Third, u-charting plots the number 
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of non-conformities per item inspected; this method is described together with 
demerit charts. Fourth, Xbar & R charting creates two charts based on continuous 
quality characteristic values. A fifth, the relatively advanced “Hoteling’s T” 
method, is described in Chapter 8 and permits simultaneous monitoring of several 
continuous quality characteristics on a single chart. 

A “rational subgroup” is a selection of units from a large set, chosen carefully 
to represent fairly the larger set. An example of an “irrational subgroup” of the 
marbles in a jar would be the top five marbles. A rational subgroup would involve 
taking all the marbles out, spreading them evenly on a table, and picking one from 
the middle and one from each of the corners.  

All four SPC charting methods in this book make use of rational subgroups. In 
some situations, it is reasonably easy and advisable to inspect all units, not merely 
a subset. Then, the methods here may still be useful for system evaluation and 
monitoring. Chapter 10 contains a theoretical discussion about how this situation 
called “complete inspection” or “100% inspection” changes the philosophical 
interpretation of the charts’ properties.  

According to the above definition, complete inspection necessarily involves 
rational subgroups because the complete set is representative of itself. In this 
chapter, the practical effects related to the hypersensitivity of charts in complete 
inspection situations are briefly discussed.  

All charting methods in this book involve calculating an “upper control limit” 
(UCL), “center line” (CL), and a “lower control limit” (LCL). The control limits 
have no simple relationship to upper and lower specification limits. They relate to 
the goals of charting to identify assignable causes and preventing over-control of 
systems. It is conceivable that, on some control charts, all or none of the units 
involved could be non-conforming with respect to specifications. 

Also, charting methods generally include a “startup phase” in which data is 
collected and the chart constants are calculated. Some authors base control charts 
on 30 startup or “trial” periods instead of the 25 used in this book. In general, 
whatever information beyond 25 that is available when the chart is being set up 
should be used, unless the data in question is not considered representative of the 
future system under usual circumstances.  

In addition, all charting methods also include a “steady state” phase in which 
the limits are fixed and the chart mainly contributes through (1) identifying the 
occasional assignable cause and (2) discouraging people from changing the process 
input settings. When the charted quantities are outside the control limits, detective 
work begins to investigate whether something unusual and fixable is occurring. In 
some cases, production is shut down, awaiting detective work and resolution of any 
problems discovered.  

In general, cases where there are many charted quantities outside the control 
limits often indicates that standard operating procedures (SOP) are either not in 
place or not being followed. Like SOPs, charts encourage consistency which only 
indirectly relates to producing outputs that conform to specifications. When a 
process is associated with charted quantities within the control limits, it is said to 
be “in control” even if it generates a continuous stream of non-conformities. 
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Example 4.4.1  Chart Selection for Monitoring Retail Theft 

Question: Which charting procedure is most relevant for monitoring retail theft? 
Also, provide two examples of rational subgroups.  
 
Possible Answer: A natural key output variable (KOV) is the amount of money or 
value of goods stolen. Since the amount is a single continuous variable, Xbar & R 
charting is the most relevant of the methods in this book. The usual inventory 
counts that are likely in place can be viewed as complete inspection with regard to 
property theft. Because inventory counts might not be gauge capable, it might 
make sense to institute random intense inspection of a subset of expensive items at 
the stores. 

4.5  Attribute Data: p-Charting 

The phrase “go-no-go testing” refers to evaluation of units to determine whether 
any of potentially several quality characteristics fail to conform to specifications. 
Go-no-go testing treats individual units or service applications much like go-no-go 
decision-making treats design concepts. If all characteristic values conform, the 
unit is a “go” and passes inspection. Otherwise, the unit is a “no-go” and the unit is 
reworked or scrapped.  

The method of “p-charting” involves plotting results from multiple go-no-go 
tests. Compared with the other charting methods that follow, p-charting generally 
requires the inspection of a much higher fraction of the total units to achieve 
system evaluation and monitoring goals effectively. Intuitively, this follows 
because go-no-go output values generally provide less information on a per-unit 
basis than counts of non-conformities or continuous quality characteristic values.  

The quantity charted in p-charting is “p,” which is the fraction of units non-
conforming in a rational subgroup. Possible reasons for using p-charting instead of 
other methods in this book include: 

Only go-no-go data is available because of inspection costs and preferences. 
The charted quantity “p” is often easy to relate to rework and scrap costs. 
The charted quantity “p” may conveniently summarize quality, taking into 

account multiple continuous quality characteristic inspections. 
Three symbols used in documenting p-charting are:  

1. n is the number of samples in each rational subgroup. If the sample size 
varies because of choice or necessity, it is written ni, where i refers to the 
relevant sampling period. Then, n1 ≠ n2 might occur and/or n1 ≠ n3 and so 
on. 

2. τ is the time interval between the start of inspecting one subgroup and the 
next.  

3. p0 is the true fraction of non-conforming units when only common cause 
variation is present. This is generally unknown before the procedure 
begins. 
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 There are no universal standard rules for selecting n and τ. This selection is 
done in a pre-step before the method begins. Three considerations relevant to the 
selection follow. First, a rule of thumb is that n should satisfy n × p0 > 5.0 and n × 
(1 – p0) > 5.0. This may not be helpful, however, since p0 is generally unknown 
before the method begins. Advanced readers will recognize that this is the 
approximate condition for p to be normally distributed. In general, this condition 
can be expected to improve the performance of the charts. In many relevant 
situations p0 is less than 0.05 and, therefore, n should probably be greater than 100. 

Second, τ should be short enough such that assignable causes can be identified 
and corrected before considerable financial losses occur. It is not uncommon for 
the charting procedure to require a period of 2 × τ before signaling that an 
assignable cause might be present. In general, larger n and smaller τ value shorten 
response times. If τ is too long, the slow discovery of problems will cause 
unacceptable pile-ups of non-conforming items and often trigger complaints. 

Algorithm 4.4. p-Charting 

 
Third, unless otherwise specified, n is generally not large enough to represent 

complete inspection. One of the goals is to save sampling costs compared with 
complete inspection. 

Step 1.  (Startup) Obtain the total fraction of nonconforming units or systems using 
25 rational subgroups each of size n. This should require at least 25 × 
τ time. Tentatively, set p0 equal to this fraction. 

Step 2.  (Startup) Calculate the “trial” control limits using 
 UCLtrial = p0 + 3.0 × ( )

n
pp 00 1− ,                                                              

CLtrial = p0, and  (4.5) 
LCLtrial = Maximum{p0 – 3.0 × ( )

n
pp 00 1− ,0.0}  

where “Maximum” means take the largest of the numbers separated by 
commas. 

Step 3.  (Startup) Identify all the periods for which p = fraction nonconforming in 
that period and p < LCLtrial or p > UCLtrial. If the results from any of these 
periods are believed to be not representative of future system operations, 
e.g., because their assignable causes were fixed permanently, remove the 
data from the l not representative periods from consideration.  

Step 4. (Startup) Calculate the total fraction nonconforming based on the remaining 
25 – l periods and (25 – l) × n data and p0 set equal to this number. The 
quantity p0 is sometimes called the “process capability” in the context of p-
charting. Calculate the revised limits using the same formulas as in Step 2:  
UCL = p0 + 3.0 × ( )

n
pp 00 1− , 

CL = p0, and  
LCL = Maximum{p0 – 3.0 × ( )

n
pp 00 1− ,0.0}.   

Step 5. (Steady State) Plot the fraction nonconforming, pj, for each period j together 
with the upper and lower control limits.  
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Note that the following method is written in terms of a constant sample size n. 
If n varies, then substitute ni for n in all formulas. Then the control limits would 
vary subgroup to subgroup. Also, quantities next to each other in the formulas are 
implicitly multiplied, with the “×” omitted for brevity. The numbers 3.0 and 0.0 in 
the formulas are assumed to have infinite significant digits. 

The resulting “p-chart” typically provides useful information to stakeholders 
(engineers, technicians, and operators) and builds intuition about the engineered 
system. An “out-of-control signal” is defined as a case in which the fraction non-
conforming for a given time period, p, is either below the lower control limit (p < 
LCL) or above the upper control limit (p > UCL). From then on, technicians and 
engineers are discouraged from making system changes unless a signal occurs. If a 
signal does occur, they should investigate to see if something unusual and fixable 
is happening. If not, they call the signal a “false alarm” and again leave the system 
alone. 

Note that applying the revised limits to the startup data could conceivably cause 
additional out-of-control signals to be identified. A reasonable alternative to the 
above method might involve investigating these new signals to see if the data is 
representative of future occurrences. All the control charts in this book involve the 
same ambiguity. 

Example 4.5.1  Restaurant Customer Satisfaction 

Question: An upscale restaraurant chain’s executive wants to start SPC charting to 
evaluate and monitor customer satisfaction. Every week, hosts or hostesses must 
record 200 answers to the question, “Is everything OK?” Table 4.7a lists the sum 
of hypothetical “everything is not OK” answers for 25 weeks at one location. Rare, 
noisy construction occurred in weeks 9 and 10. Set up the appropriate SPC chart. 
 
Answer: It is implied that if a customer does not agree that everything is OK, then 
everything is not OK. Then, also, the restaurant party associated with the 
unsatisfied customer is effectively a non-conforming unit. Therefore, p-charting is 
relevant since the given data is effectively the count of non-conforming units. Also, 
the number to be inspected is constant so a fixed value of n = 200 is used in all 
calculations.  

First, the trial limit calculations are 
p0 = (total number non-conforming) ÷ (total number inspected)  
     = 252/5000 = 0.050, 
UCLtrial = 0.050 + 3.0 × sqrt [(0.050) × (1 – 0.050) ÷ 200] = 0.097, 
CLtrial = 0.050, and 
LCLtrial = Max {0.050 – 3.0 × sqrt [(0.050) × (1 – 0.050) ÷ 200], 0.0} = 0.004. 
Figure 4.2 shows a p-chart of the startup period at the restaurant location. 

Clearly, the p value in week 9 and 10 subgroups constitute out-of-control signals. 
These signals were likely caused by a rare assignable cause (construction) that 
makes the associated data not representative of future usual conditions. Therefore, 
the associated data are removed from consideration. 
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Table 4.7. (a) Startup period restaurant data and (b) data available after startup period 

 (a)     (b) 

Week 
Sum Not 

OK Week 
Sum Not 

OK 
 

Week 
Sum Not 

OK 

1 8 14 10  1 8 

2 7 15 9  2 8 

3 10 16 5  3 11 

4 6 17 8  4 2 

5 8 18 9  5 7 

6 9 19 11    

7 8 20 8    

8 11 21 9    

9 30 22 9    

10 25 23 10    

11 10 24 6    

12 9 25 9    

13 8      

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4.2. Restaurant p-chart during the startup period 
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The revised limits are: 
p0 = (total number non-conforming) ÷ (total number inspected)  
    = 197/4600 = 0.043, 
UCL = 0.043 + 3.0 × sqrt [(0.043) × (1 – 0.043) ÷ 200] = 0.086, 
CL = 0.043, and 
LCL = Max {0.043 – 3.0 × sqrt [(0.043) × (1 – 0.043) ÷ 200], 0.0} = 0.000. 

 
These limits should be used in future to identify assignable causes. The 

centerline (CL) value of 0.043 constitutes a benchmark with which to evaluate the 
capability improvements from new corporate policies. Local managers should feel 
discouraged from changing business practices unless out-of-control signals occur 
and assignable causes are found. 

The preceding example illustrates the startup phase of control charting. The 
next example illustrates the steady state phase of control charting. Both phases are 
common to all SPC charting methods in this book. 

Example 4.5.2  Restaurant Customer Satisfaction Continued 

Question: Plot the data in Table 4.2b on the control chart derived in the previous 
example. Are there any out-of-control signals?  
 
Answer: Figure 4.3 shows an ongoing p-charting activity in its steady state. No 
out-of-control signals are detected by the chart. 
 

In the above example, the lower control limit (LCL) was zero. An often 
reasonable convention for this case is to consider only zero fractions non-
conforming (p = 0) to be out-of-control signals if they occur repeatedly. In any 
case, values of p below the lower control limit constitute positive assignable causes 
and potential information with which to improve the process. After an 
investigation, the local authority might choose to use information gained to rewrite 
standard operating procedures. 

Since many manufacturing systems must obtain fractions of non-conforming 
products much less than 1%, p-charting the final outgoing product often requires 
complete inspection. Then, n × p0 « 5.0, and the chart can be largely ineffective in 
both evaluating quality and monitoring. Therefore, manufacturers often use the 
charts upstream for units going into a rework operation. Then the fraction non-
conforming might be much higher. The next example illustrates this type of 
application. 
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Figure 4.3. Ongoing p-chart during steady state operations 

Example 4.5.3  Arc Welding Rework Charting 

Question: A process engineer decides to study the fraction of welds going into a 
rework operation using p-charting. Suppose that 2500 welds are inspected over 25 
days and 120 are found to require rework. Suppose one day had 42 non-
conforming welds which were caused by a known corrected problem and another 
subgroup had 12 non-conformities but no assignable cause could be found. What 
are your revised limits and what is the process capability? 

 
Answer: Assuming a constant sample size with 25 subgroups gives n = 100. The 
trial limits are p0 = 120/2500 = 0.048, UCLtrial = 0.110, CLtrial = 0.048, and LCLtrial 
= 0.000, so there is effectively no lower control limit. We remove only the 
subgroup whose values are believed to be not representative of the future. The 
revised numbers are p0 = 78/2400 = 0.0325, UCL = 0.0857, CL = the process 
capability = 0.0325, and LCL = 0.000. 

4.6  Attribute Data: Demerit Charting and u-Charting  

In Chapter 2, the term “non-conformity” was defined as an instance in which a 
part or product’s characteristic value falls outside its associated specification limit. 
Different types of non-conformities can have different levels of importance. For 
example, some possible automotive non-conformities can make life-threatening 
accidents more likely. Others may only cause a minor annoyance to car owners. 

The term “demerits” here refers to a weighted sum of the non-conformities. 
The weights quantify the relative importance of non-conformites in the eyes of the 
people constructing the demerit chart. Here, we consider a single scheme in which 
there are two classes of non-conformities: particularly serious non-conformities 
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with weight 5.0, and typical non-conformities with weight 1.0. The following 
symbols are used in the description of demerit charting: 

1.  n is the number of samples in each rational subgroup. If the sample size 
varies because of choice or necessity, it is written ni, where i refers to the 
relevant sampling period. Then, n1 ≠ n2 might occur and/or n1 ≠ n3 etc. 

2.  cs is the number of particularly serious non-conformities in a subgroup. 
3.  ct is the number of typical non-conformities in a subgroup. 
4.  c is the weighted count of non-conformities in a subgroup or, 

equivalently, the sum of the demerits. In terms of the proposed 
convention: 

 c = (5.0 × cs + 1.0 × c) (4.6) 
5.  u is the average number of demerits per item in a subgroup. Therefore,  
 u = c ÷ n (4.7) 
6.  u0 is the true average number of weighted non-conformities per item in all 

subgroups under consideration.  
 
The method known as “u-charting” is equivalent to demerit charting, with all 

non-conformities having the same weight of 1.0. Therefore, by describing demerit 
charting, in Algorithm 4.5, u-charting is also described.  

Similar considerations related to sample size selection for p-charting also apply 
to demerit charting. If u0 is the average number of demerits per item, it is generally 
desirable that n × u0 > 5. The following method is written in terms of a constant 
sample size n. If n varies, then substitute ni for n in all the formulas. Then, the 
control limits would vary from subgroup to subgroup. Also, quantities next to each 
other in the formulas are implicitly multiplied with the “×” omitted for brevity, and 
“/” is equivalent to “÷”. The numbers 3.0 and 0.0 in the formulas are assumed to 
have an infinite number of significant digits. 

Example 4.6.1  Monitoring Hospital Patient Satisfaction  

Question: Table 4.8 summarizes the results from the satisfacturing survey written 
by patients being discharged from a hospital wing. It is known that day 5 was a 
major holiday and new medical interns arrived during day 10. Construct an SPC 
chart appropriate for monitoring patient satisfaction. 
 
Answer: Complaints can be regarded as non-conformities. Therefore, demerit 
charting fits the problem needs well since weighted counts of these are given. 
Using the weighting scheme suggested in this book, C = 1.0 × (22 + 28 + … + 45) 
+ 5.0 × (3 + 3 + … + 2) = 1030 and N = 40 + 29 + … + 45 = 930. Therefore, in 
Step 1 u0 = 1030 ÷ 930 = 1.108. The control limits vary because of the variable 
sample size.  

Figure 4.4 shows the plotted u and UCLs and LCLs during the trial period. 
Example calculations used to make the figure include the following. The u plotted 
for Day 1 is derived using (1.0 × 22 + 5.0 × 3) ÷ 40 = 0.925. The day 1 UCL is 
given by 1.108 + 3.0 × sqrt(1.108 ÷ 40) = 1.61. The day 1 LCL is given by 1.108 – 
3.0 × sqrt(1.108 ÷ 40) = 0.61.  
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Algorithm 4.5. Demerit Charting 

 
 
The out-of-control signals occurred on Day 5 (an unusually positive statistic) and 
Days 11 and 12. It might subjectively be considered reasonable to remove Day 5 
since patients might have felt uncharacteristically positive due to the rare major 
holiday. However, it is less clear whether removing data associated with days 11 
and 12 would be fair. These patients were likely affected by the new medical 
interns. Considering that new medical interns affect hospitals frequently and local 
authority might have little control over them, their effects might reasonably be 
considered part of common cause variation. Still, it would be wise to inform the 

Step 1.  (Startup) Obtain the weighted sum of all nonconformities, C, and count 
of units or systems, N = n1 + … + n25 from 25 time periods. Tentatively, 
set u0 equal to C ÷ N. 

Step 2.  (Startup) Calculate the “trial” control limits using 
  UCLtrial = u0 + 3.0 ×

n
u0 ,                                                                    

  CLtrial = u0, and                  (4.8) 
LCLtrial = Maximum{u0 – 3.0 ×

n
u0 ,0.0}.     

Step 3.  (Startup) Define c as the number of weighted nonconformities in a given 
period. Define u as the weighted count of nonconformities per item in 
that period, i.e., u = c/n.  Identify all periods for which u < LCLtrial or u > 
UCLtrial. If the results from any of these periods are believed to be not 
representative of future system operations, e.g., because problems were 
fixed permanently, remove the data from the l not representative periods 
from consideration.  

Step 4. (Startup) Calculate the number of weighted nonconformities per unit 
based on the remaining 25 – l periods and (25 – l) × n data and set this 
equal to u0. The quantity u0 is sometimes called the “process capability” 
in the context of demerit charting. Calculate the limits using the 
formulas repeated from Step 2: 

  UCL = u0 + 3.0 ×
n
u0 ,    

  CL = u0, and  
LCL = Maximum{u0 – 3.0 ×

n
u0 ,0.0}.    

  
Step 5.  (Steady State) Plot the number of nonconformities per unit, u, for each 

future period together with the revised upper and lower control limits. 
An out-of-control signal is defined as a case in which the fraction 
nonconforming for a given time period, u, is below the lower control 
limit (u < LCL) or above the upper control limit (u > UCL). From then 
on, technicians and engineers are discouraged from making minor 
process changes unless a signal occurs. If a signal does occur, designated 
people should investigate to see if something unusual and fixable is 
happening. If not, the signal is referred to as a false alarm.
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individuals involved about the satisfaction issues and do an investigation. Pending 
any permanent fixes, we should keep that data for calculating the revised limits. 

Table 4.8. Survey results from patients leaving a hypothetical hospital wing 

  #Complaints    #Complaints 

Day Discharges Typical Serious  Day  Discharges Typical Serious 

1 40 22 3  14 45 22 3 

2 29 28 3  15 30 22 3 

3 55 33 4  16 30 33 1 

4 30 33 2  17 30 44 1 

5 22 3 0  18 35 27 2 

6 33 32 1  19 25 33 1 

7 40 23 2  20 40 34 4 

8 35 38 2  21 55 44 1 

9 34 23 2  22 55 33 1 

10 50 33 1  23 70 52 2 

11 22 32 2  24 34 24 2 

12 30 39 4  25 40 45 2 

13 21 23 2      

 
 
    Avg. Demerits per Patient 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 4.4. Demerits from hypothetical patient surveys at a hospital 
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Removing the 3 demerits and 22 patients from Day 5 from consideration, C = 
1027 and N = 908. Then, the final process capability = CL = 1027 ÷ 908 = 1.131. 
The revised control limits are LCL = 1.131 – 3.0 × sqrt[1.131 ÷ ni] and UCL = 
1.131 + 3.0 × sqrt[1.131 ÷ ni] where ni potentially varies from period to period. 

4.7  Continuous Data: Xbar & R Charting 

Whenever one or two continuous variable key output variables (KOVs) summarize 
the quality of units or a system, it is advisable to use a variables charting approach. 
This follows because variables charting approaches such as Xbar & R charting, 
described next, offer a relatively much more powerful way to characterize quality 
with far fewer inspections. These approaches compare favorably in many ways to 
the attribute charting methods such as p-charting and demerit charting. Some 
theoretical justification for these statements is described in Chapter 10. However, 
here it will be clear that Xbar & R charts are often based on samples sizes of n = 5 
units inspected, compared with 50 or 100 for the attribute charting methods. 

For a single continuous quality characteristic, Xbar & R charting involves the 
generation of two charts with two sets of control limits. Two continuous 
characteristics would require four charts. Generally, when monitoring any more 
than two continuous quality characteristics, most experts would recommend a 
multivariate charting method such as the “Hotelling’s T 2 ” charting; this method 
along with reasons for this recommendation are described in Chapter 8.  

There is no universal standard rule for selecting the number of samples to be 
included in rational subgroups for Xbar & R charting. Generally, one considers 
first inspecting only a small fraction of the units, such as 5 out of 200. However, 
Xbar & R charting could conceivably have application even if complete inspection 
of all units is completed. Some theoretical issues related to complete inspection are 
discussed in Chapter 10.  

Two considerations for sample size selection follow. First, the larger the sample 
size, the closer the control limits and the more sensitive the chart will be to 
assignable causes. Before constructing the charts, however, there is usually no way 
to know how close the limits will be. Therefore, an iterative process could 
conceivably be applied. If the limits are too wide, the sample size could be 
increased and a new chart could be generated.  

Second, n should ideally be large enough that the sample averages of the value 
follow a specific pattern. This will be discussed further in Chapter 10. The pattern 
in question relates to the so-called “normal” distribution. In many situations, this 
pattern happens automatically if n ≥ 4. This common fact explains why 
practitioners rarely check whether n is large enough such that the sample averages 
are approximately normally distributed. 
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Algorithm 4.6. Standard Xbar & R charting 

Step 1.  (Startup) Measure the continuous characteristics, Xi,j, for i = 1,…,n units 
for j = 1,…,25 periods. Each n units is carefully chosen to be representative 
of all units in that period, i.e., a rational subgroup. 

 
Step 2.  (Startup) Calculate the sample averages Xbar,j = (X1,j +…+ Xn,j)/n and ranges 

Rj = Max[X1,j,…, Xn,j] – Min[X1,j,…, Xn,j] for j = 1,…,25. Also, calculate the 
average of all of the 25n numbers, Xbarbar, and the average of the 25 ranges 
Rbar = (R1 +…+ R25)/25. 

 
Step 3.  (Startup) Tentatively determine σ0 using σ0 = Rbar/d2, where d2 comes from 

the following table. Use linear interpolation to find d2 if necessary. 
Calculate the “trial” control limits using  
UCLXbar = Xbarbar + 3.0 ×

n
0σ  

  CLXbar = Xbarbar 
 LCLXbar = Xbarbar – 3.0 ×

n
0σ                                                                  (4.9) 

  UCLR = D2σ0 
    CLR = Rbar 
   LCLR = D1σ0  
 where D1 and D2 also come from Table 4.9 and where the “trial” 

designation has been omitted to keep the notation readable. 
 
Step 4.  (Startup) Find all the periods for which either Xbar,j or Rj or both are not 

inside their control limits, i.e., {Xbar,j < LCLXbar or Xbar,j > UCLXbar} and/or 
{Rj < LCLR or Rj > UCLR}. If the results from any of these periods are 
believed to be not representative of future system operations, e.g., because 
problems were fixed permanently, remove the data from the l not 
representative periods from consideration.  

 
Step 5.  (Startup) Re-calculate Xbarbar and Rbar based on the remaining 25 – l 

periods and (25 – l) × n data. Also, calculate the revised process sigma, σ0, 
using σ0 = Rbar/d2. The quantity 6σ0 is called the “process capability” in the 
context of Xbar & R charting. It constitutes a typical range of the quality 
characteristics. Calculate the revised limits using the same “trial” equations 
in Step 3. 

 
Step 6.  (Steady State, SS) Plot the sample nonconforming, Xbar,j, for each period j 

together with the upper and lower control limits, LCLXbar and UCLXbar. The 
resulting “Xbar chart” typically provides useful information to stakeholders 
(engineers, technicians, and operators) and builds intuition about the 
engineered system. Also, plot Rj for each period j together with the control 
limits, LCLR and UCLR. The resulting chart is called an “R chart”.  
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The following symbols are used in the description of the method: 
1. n is the number of inspected units in a rational subgroup. 
2. Xi,j refers to the it

h quality characteristic value in the the jth time period. 
Note that it might be more natural to use Yi,j instead of Xi,j since quality 
characteristics are outputs. However, Xi,j is more standard in this 
context. 

3. Xbar,j is the average of the n quality characteristic values for the jth time 
period. 

4. σ0 is the “process sigma” or, in other words, the true standard deviation of 
all quality characteristics when only common cause variation is present. 

Table 4.9. Constants d2, D1, and D2 relevant for Xbar & R charting 

Sample 
size (n) 

d2 D1 D2  Sample 
size (n) 

d2 D1 D2 

2 1.128 0.000 3.686  8 2.847 0.388 5.306 

3 1.693 0.000 4.358  9 2.970 0.547 5.393 

4 2.059 0.000 4.698  10 3.078 0.687 5.469 

5 2.326 0.000 4.918  15 3.472 1.203 5.741 

6 2.534 0.000 5.078  20 3.737 1.549 5.921 

7 2.704 0.204 5.204      

 
Generally, n is small enough that people are not interested in variable sample 

sizes. In the formulas below, quantities next to each other are implicitly multiplied 
with the “×” omitted for brevity, and “/” is equivalent to “÷”. The numbers 3.0 and 
0.0 in the formulas are assumed to have an infinite number of significant digits. 

An out-of-control signal is defined as a case in which the sample average, Xbar,j, 
or range, Rj, or both, are outside the control limits, i.e., {Xbar,j < LCLXbar or Xbar,j > 
UCLXbar} and/or {Rj < LCLR or Rj > UCLR}. From then on, technicians and 
engineers are discouraged from making minor process changes unless a signal 
occurs. If a signal does occur, designated people should investigate to see if 
something unusual and fixable is happening. If not, the signal is referred to as a 
false alarm. 

Note that all the charts in this chapter are designed such that, under usual 
circumstances, false alarms occur on average one out of 370 periods. If they occur 
more frequently, it is reasonable to investigate with extra vigor for assignable 
causes. Also, as an example of linear interpolation, consider the estimated d2 for n 
= 11. The approximate estimate for d2 is 3.078 + (1 ÷ 5) × (3.472 – 3.078) = 
3.1568. Sometimes the quantity “Cpk” (spoken “see-pee-kay”) is used as a system 
quality summary. The formula for Cpk is 

 Cpk = Min[USL – Xbarbar, Xbarbar – LSL]/(3σ0),  (4.10) 

where σ0 is based on the revised Rbar from an Xbar & R method application. Also, 
USL is the upper specification limit and LSL is the lower specification limit. These 
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are calculated and used to summarize the state of the engineered system. The σ0 
used is based on Step 4 of the above standard procedure.  

Large Cpk and small values of 6σ0 are generally associated with high quality 
processes. This follows because both these quantities measure the variation in the 
system. We reason that variation is responsible for the majority of quality 
problems because typically only a small fraction of the units fail to conform to 
specifications. Therefore, some noise factor changing in the system causes those 
units to fail to conform to specifications. The role of variation in causing problems 
explains the phrase “variation is evil” and the need to eliminate source of variation. 

Example 4.7.1  Fixture Gaps Between Welded Parts 

Question: A Korean shipyard wants to evaluate and monitor the gaps between 
welded parts from manual fixturing. Workers measure 5 gaps every shift for 25 
shifts over 10 days. The remaining steady state (SS) is not supposed to be available 
at the time this question is asked. Table 4.10 shows the resulting hypothetical data. 
Chart this data and establish the process capability. 

Table 4.10. Example gap data (in mm) to show Xbar & R charting (start-up & steady state) 

Phase j X1,j X2,j X3,j X4,j X5,j Xbar,j Rj Phase j X1,j X2,j X3,j X4,j X5,j Xbar,j Rj 

SU 1 0.85 0.71 0.94 1.09 1.08 0.93 0.38 SU 19 0.97 0.99 0.93 0.75 1.09 0.95 0.34 

SU 2 1.16 0.57 0.86 1.06 0.74 0.88 0.59 SU 20 0.85 0.77 0.78 0.84 0.83 0.81 0.08 

SU 3 0.80 0.65 0.62 0.75 0.78 0.72 0.18 SU 21 0.82 1.03 0.98 0.81 1.10 0.95 0.29 

SU 4 0.58 0.81 0.84 0.92 0.85 0.80 0.34 SU 22 0.64 0.98 0.88 0.91 0.80 0.84 0.34 

SU 5 0.85 0.84 1.10 0.89 0.87 0.91 0.26 SU 23 0.82 1.03 1.02 0.97 1.00 0.97 0.21 

SU 6 0.82 1.20 1.03 1.26 0.80 1.02 0.46 SU 24 1.14 0.95 0.99 1.18 0.85 1.02 0.33 

SU 7 1.15 0.66 0.98 1.04 1.19 1.00 0.53 SU 25 1.06 0.92 1.07 0.88 0.78 0.94 0.29 

SU 8 0.89 0.82 1.00 0.84 1.01 0.91 0.19 SS 26 1.06 0.81 0.98 0.98 0.85 0.936 0.25 

SU 9 0.68 0.77 0.67 0.85 0.90 0.77 0.23 SS 27 0.83 0.70 0.98 0.82 0.78 0.822 0.28 

SU 10 0.90 0.85 1.23 0.64 0.79 0.88 0.59 SS 28 0.86 1.33 1.09 1.03 1.10 1.082 0.47 

SU 11 0.51 1.12 0.71 0.80 1.01 0.83 0.61 SS 29 1.03 1.01 1.10 0.95 1.09 1.036 0.15 

SU 12 0.97 1.03 0.99 0.69 0.73 0.88 0.34 SS 30 1.02 1.05 1.01 1.02 1.20 1.060 0.19 

SU 13 1.00 0.95 0.76 0.86 0.92 0.90 0.24 SS 31 1.02 0.97 1.01 1.02 1.06 1.016 0.09 

SU 14 0.98 0.92 0.76 1.18 0.97 0.96 0.42 SS 32 1.20 1.02 1.20 1.05 0.91 1.076 0.29 

SU 15 0.91 1.02 1.03 0.80 0.76 0.90 0.27 SS 33 1.10 1.15 1.10 1.02 1.08 1.090 0.13 

SU 16 1.07 0.72 0.67 1.01 1.00 0.89 0.40 SS 34 1.20 1.05 1.04 1.05 1.06 1.080 0.16 

SU 17 1.23 1.12 1.10 0.92 0.90 1.05 0.33 SS 35 1.22 1.09 1.02 1.05 1.05 1.086 0.20 

SU 18 0.97 0.90 0.74 0.63 1.02 0.85 0.39          
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Answer: From the description, n = 5 inspected gaps between fixtured parts prior to 
welding, and the record of the measured gap for each in millimeters is Xi,j. The 
inspection interval is a production shift, so roughly τ = 6 h.  
 

The calculated subgroup averages and ranges are also shown (Step 2) and 
Xbarbar = 0.90, Rbar = 0.34, and σ0 = 0.148. In Step 3, the derived values were 
UCLXbar = 1.103, LCLXbar = 0.705, UCLR = 0.729, and LCLR = 0.000. None of the 
first 25 periods has an out-of-control signal. In Step 4, the process capability is 
0.889. From then until major process changes occur (rarely), the same limits are 
used to find out-of-control signals and alert designated personnel that process 
attention is needed (Step 5). The chart, Figure 4.5, also prevents “over-control” of 
the system by discouraging changes unless out-of-control signals occur.   

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.5. Xbar & R charts for gap data (  separates startup and steady state) 

The phrase “sigma level” (σL) is an increasingly popular alternative to Cpk. The 
formula for sigma level is 

 
 σL = 3.0 × Cpk  . (4.11) 
 
If the process is under control and certain “normal assumptions” apply, then the 

fraction non-conforming is less than 1.0 non-conforming per billion opportunities. 
If the mean shifts 1.5 σ0 to the closest specification limit, the fraction non-
conforming is less than 3.4 non-conforming per million opportunities. Details from 
the fraction non-conforming calculations are documented in Chapter 10. 

0.6
0.7
0.8
0.9

1
1.1
1.2

1 11 21 31

A
vg

. G
ap

 (m
m

).

UCL
Xbar
CL
LCL

Subgroup

0

0.2

0.4

0.6

0.8

1 11 21 31

Ra
ng

e 
G

ap
 (m

m
).

UCL
R
CL
LCL

Subgroup



  Measure Phase and Statistical Charting      105 

The goal implied by the phrase “six sigma” is to change system inputs so that 
the σL derived from an Xbar & R charting evaluation is greater than 6.0. 

In applying Xbar & R charting, one simultaneously creates two charts and uses 
both for process monitoring. Therefore, the plotting effort is greater than for p 
charting, which requires the creation of only a single chart. Also, as implied above, 
there can be a choice between using one or more Xbar & R charts and a single p 
chart. The p chart has the advantage of all non-conformity data summarized in a 
single, interpretable chart. The important advantage of Xbar & R charts is that 
generally many fewer runs are required for the chart to play a useful role in 
detecting process shifts than if a p chart is used. Popular sample sizes for Xbar & R 
charts are n = 5. Popular sample sizes for p charts are n = 200. 

To review, an “assignable cause” is a change in the engineered system inputs 
which occur irregularly that can be affected by “local authority”, e.g., operators, 
process engineers, or technicians. For example, an engineer dropping a wrench into 
the conveyor apparatus is an assignable cause. 

The phrase “common cause variation” refers to changes in the system outputs 
or quality characteristic values under usual circumstances. This variation occurs 
because of the changing of factors that are not tightly controlled during normal 
system operation.  

As implied above, common cause variation is responsible for the majority of 
quality problems. Typically only a small fraction of the units fail to conform to 
specifications, and this fraction is consistently not zero. In general, it takes a major 
improvement effort involving robust engineering methods including possibly 
RDPM from the last chapter to reduce common cause variation. The values 6σ0, 
Cpk, and σL derived from Xbar & R charting can be useful for measuring the 
magnitude of the common cause variation. 

An important realization in total quality management and six sigma training is 
that local authority should be discouraged from making changes to the engineered 
system when there are no assignable causes. These changes could cause an “over-
controlled” situation in which energy is wasted and, potentially, common cause 
variation increases. 

The usefulness of both p-charts and Xbar & R charts partially depends upon a 
coincidence. When quality characteristics change because the associated 
engineered systems change, and this change is large enough to be detected over 
process noise, then engineers, technicians, and operators would like to be notified. 
There are, of course, some cases in which the sample size is sufficiently large (e.g., 
when complete inspection is used) that even small changes to the engineered 
system inputs can be detected. In these cases, the engineers, technicians, and 
operators might not want to be alerted. Then, ad hoc adjustment of the formulas for 
the limits and/or the selection of the sample size, n, and interval, τ, might be 
justified. 

Example 4.7.2  Blood Pressure Monitoring Equipment 

Question: Suppose a company is manufacturing blood pressure monitoring 
equipment and would like to use Xbar & R charting to monitor the consistency of 
equipment. Also, an inspector has measured the pressure compared to a reference 
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for 100 units over 25 periods (inspecting 4 units each period). The average of the 
characteristic is 55.0 PSI. The average range is 2.5 PSI. Suppose that during the 
trial period it was discovered that one of the subgroups with average 62.0 and 
range 4.0 was influenced by a typographical error and the actual values for that 
period are unknown. Also, another subgroup with average 45.0 and range 6.0 was 
not associated with any assignable cause. Determine the revised limits and Cpk. 
Interpret the Cpk. 

 
Answer: All units are in PSI. The trial limit calculations are: 

 Xbarbar = 55.0, Rbar = 2.5, σ0 = 2.5/2.059 = 1.21 
UCLXbar = 55.0 + 3(1.21)(4–1/2) = 56.8 
LCLXbar = 55.0 – 3(1.21)(4–1/2) = 53.2 
UCLR = (4.698)(1.21) = 5.68 
LCLR = (0.0)(1.21) = 0.00 

The subgroup average 62.0 from the Xbarbar calculation and 4.0 from the Rbar 
calculation are removed because the associated assignable cause was found and 
eliminated. The other point was left in because no permanent fix was implemented. 
Therefore, the revised limits and Cpk are derived as follows: 

Xbarbar = [(55.0)(25)(4) – (62.0)(4)]/[(24)(4)] = 54.7 
Rbar = [(2.5)(25) – (4.0)]/(24) = 2.4375, σ0 = 2.4375/2.059 = 1.18 
UCLXbar = 54.7 + 3(1.18)(4–1/2) = 56.5 
LCLXbar = 54.7 – 3(1.18)(4–1/2) = 53.0 
UCLR = (4.698)(1.18) = 5.56 
LCLR = (0.0)(1.21) = 0.00 
Cpk = Minimum{59.0 – 54.7,54.7 – 46.0}/[(3)(1.18)] = 1.21 

Therefore, the quality is high enough that complete inspection may not be needed 
(Cpk > 1.0). The outputs very rarely vary by more than 7.1 PSI and are generally 
close to the estimated mean of 54.7 PSI, i.e., values within 1 PSI of the mean are 
common. However, if the mean shifts even a little, then a substantial fraction of 
non-conforming units will be produced. Many six sigma experts would say that the 
sigma level is indicative of a company that has not fully committed to quality 
improvement. 

4.7.1  Alternative Continuous Data Charting Methods 

The term “run rules” refers to specific patterns of charted quantities that may 
constitute an out-of-control signal. For example, some companies institute policies 
in which after seven charted quantities in a row are above or below the center line 
(CL), then the designated people should investigate to look for an assignable cause. 
They would do this just as if an Xbar,j or Rj were outside the control limits. If this 
run rule were implemented, the second-to-last subgroup in the fixture gap example 
during steady state would generate an out-of-control signal. Run rules are 
potentially relevant for all types of charts including p-charts, demerit charts, Xbar 
charts, and R charts. 

Also, many other kinds of control charts exist besides the ones described in this 
chapter. In general, each offers some advantages related to the need to inspect 
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fewer units to derive comparable information, e.g., so-called “EWMA charting” in 
Chapter 8. Other types of charts address the problem that, because of applying a 
large number of control charts, multiple sets of Xbar & R charts may find many 
false alarms. Furthermore, the data plotted on different charts may be correlated. 
To address these issues, so-called “multivariate charting” techniques have been 
proposed, described in Chapter 8.  

Finally, custom charts are possible based on the following advanced concept. 
Establish the distribution (see Chapter 10) of a quality characteristic with only 
common causes operating. This could be done by generating a histogram of values 
during a trial period. Then, chart any quantity associated with a hypothesis test, 
evaluating whether these new quality characteristic values come from the same 
“common causes only” distribution. Any rejection of that assumption based on a 
small α test (e.g., α = 0.0013) constitutes a signal that the process is “out-of-
control” and assignable causes might be present. Advanced readers will notice that 
all the charts in this book are based on this approach which can be extended. 

4.8  Summary and Conclusions 

This chapter describes three methods to evaluate the capability of measurement 
systems. Gauge R&R (comparison with standards) is argued to be advantageous 
when items with known values are available. Gauge R&R (crossed) is argued to be 
most helpful when multiple appraisers can each test the same items multiple times. 
Gauge R&R (nested) is relevant when items cannot be inspected by more than one 
appraiser. 

Once measurement systems are declared “capable” or at least acceptable, these 
measurement systems can be used in the context of SPC charting procedures to 
thoroughly evaluate other systems of interest. The p-charting procedure was 
presented and argued to be most relevant when only go-no-go data are available. 
Demerit charting is also presented and argued to be relevant when the count of 
different types of non-conformities is available. The method of “u-charting” is 
argued to be relevant if all non-conformities are of roughly the same importance. 
Finally, Xbar & R charting is a pair of charts to be developed for cases with only 
one or two KOVs or quality characteristics. For a comparable or much smaller 
number of units tested, Xbar & R charting generally gives a more repeatable, 
accurate picture of the process quality than the attribute charting methods. It also 
gives greater sensitivity to the presence of assignable causes. However, one unit 
might have several quality characteristics each requiring two charts. Table 4.11 
summarizes the methods presented in this chapter and their advantages and 
disadvantages. 

Example 4.8.1  Wire Harness Inspection Issues 

Question: A wire harness manufacturer discovers voids in the epoxy that 
sometimes requires rework. A team trying to reduce the amount of rework find that 
the two inspectors working on the line are applying different standards. Team 
experts carefully inspect ten units and determine trustworthy void counts. What 
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technique would you recommend for establishing which inspector has the more 
appropriate inspection method?  
 
Answer: Since the issue is systematic errors, the only relevant method is 
comparison with standards. Also, this method is possible since standard values are 
available. 

Table 4.11. Summary of the SQC methods relevant to the measurement phase 

Method Advantages Disadvantages 

Gauge R&R: 
comparison with 

standards 

Accounts for all errors 
including systematic errors 

Requires pre-tested 
“standard” units 

Gauge R&R 
(crossed) 

No requirement for pre-tested 
“standard” units 

Neglects systematic errors 

Gauge R&R 
(nested) 

Each unit only tested by one 
appraiser  

Neglects systematic and 
repeatability errors 

p-charting Requires only go-no-go data, 
intuitive 

Requires many more 
inspections, less sensitive 

Demerit charting Addresses differences between 
non-conformities 

Requires more 
inspections, less sensitive 

u-charting Relatively simple version of 
demerit charts 

Requires more 
inspections, less sensitive 

Xbar & R charting Uses fewer inspections, gives 
greater sensitivity 

Requires 2 or more charts 
for single type of unit 

 
In the context of six sigma projects, statistical process control charts offer 

thorough evaluation of system performance. This is relevant both before and after 
system inputs are adjusted in the measure and control or verify phases respectively. 
In many relevant situation, the main goal of the six sigma analyze-and-improve 
phases is to cause the charts established in the measure phase to generate “good” 
out-of-control signals indicating the presence of a desirable assignable cause, i.e., 
the project team’s implemented changes.  

For example, values of p, u, or R consistently below the lower control limits 
after the improvement phase settings are implemented indicate success. Therefore, 
it is often necessary to go through two start-up phases in a six sigma project during 
the measure phase and during the control or verify phase. Hopefully, the 
established process capabilities, sigma levels, and/or Cpk numbers will confirm 
improvement and aid in evaluation of monetary benefits.  

Example 4.8.2  Printed Circuit Board System Evaluation 

Question: A team has a clear charter to reduce the fraction of non-conforming 
printed circuitboards requiring rework. A previous team had the same charter but 
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failed because team members tampered with the settings and actually increased the 
fraction non-conforming. What next steps do you recommend? 

 
Answer: Since there apparently is evidence that the process has become worse, it 
might be advisable to return to the system inputs documented in the manufacturing 
SOP prior to interventions by the previous team. Then, measurement systems 
should be evaluated using the appropriate gauge R&R method unless experts are 
confident that they should be trusted. If only the fraction non-conforming numbers 
are available, p-charting should be implemented to thoroughly evaluate the system 
both before and after changes to inputs. 

Problems 

In general, pick the correct answer that is most complete. 
 

1. According to the text, what types of measurement errors are found in standard 
values? 

a. Unknown measurement errors are in all numbers, even standards. 
b. None, they are supposed to be accurate within the uncertainty 

implied. 
c. Measurements are entirely noise. We can’t really know any values. 
d. All of the above are true. 
e. Only the answers in parts “b” and “c” are correct. 

 
2. What properties are shared between reproducibility and repeatability errors? 

a. Both derive from mistakes made by people and/or equipment. 
b. Neither is easily related to true errors in relation to standards. 
c. Estimation of both can be made with a crossed gauge R&R. 
d. All of the above are correct. 
e. Only the answers in parts “a” and “b” are correct. 

 
3. Which are differences between reproducibility and systematic errors? 

a. Systematic errors are between a generic process and the standard 
values; reproducibility errors are differences between each appraiser 
and the average appraiser. 

b. Evaluating reproducibility errors relies more on standard values. 
c. Systematic errors are more easily measured without standard values. 
d. All of the above are differences between reproducibility and 

systematic errors. 
e. Only the answers in parts “b” and “c” are true differences. 

 
The following information and Table 4.12 are relevant for Questions 4–8. Three 
personal laptops are repeatedly timed for how long they require to open Microsoft 
Internet Explorer. Differences greater than 3.0 s should be reliably differentiated.  
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Table 4.12. Measurements for hypothetical laptop capability study 

Run Standard 
unit 

Appraiser Measured 
value (s) 

Absolute 
error (s) 

1 3 1 15 2 
2 2 1 19 1 
3 2 1 18 2 
4 1 1 11 2 
5 3 1 19 2 
6 3 1 20 3 
7 1 1 10 3 
8 2 1 17 3 
9 3 1 14 2 
10 2 1 21 1 
11 1 1 15 2 
12 2 1 22 2 
13 2 1 18 2 
14 1 1 11 2 
15 3 1 13 3 
16 2 1 23 3 
17 1 1 15 1 
18 2 1 22 2 
19 1 1 14 2 
20 3 1 19 3 

 
4. What is the EEAE (in seconds)? 

a. 1.95 
b. 2.15 
c. 2.20 
d. 2.05 
e. Answers “a” and “c” are both valid answers. 
 

5. What is the EEEAE? 
a. 0.67 
b. 0.15 
c. 2.92 
d. 0.65 
e. 2.15 
 

6. What are the estimated expected absolute errors? 
a. 5.0 
b. 14.33 
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c. 2.15 ± 0.15 
d. 14.33 ± 0.15 
e. 6.0 
f. None of the above is correct. 
 

7. What is the measurement system capability? 
a. 6.0 
b. 9.35 
c. 12.9 
d. 2.39 
e. 0.9 
f. None of the above is correct. 
 

8. What is needed to make the measurement system “gauge capable?” 
a. Change timing approach so that 6.0 × EEAE < 3.0. 
b. Make the system better so that EEAE < 1. 
c. The system is gauge capable with no changes. 
d. The expected absolute errors should be under 1.5. 
e. All of the above are correct except (a) and (b). 
 

Table 4.13 on the next page is relevant to Questions 9–12. 
 

9. Following the text formulas, solve for Yrange parts (within the implied 
uncertainty). 

a. 0.24 
b. 0.12 
c. 0.36 
d. 0.1403 
e. 0.09 
f. None of the above is correct. 

Table 4.13. Measurements for hypothetical gauge R&R (crossed) study 

  Part number 

Appraiser A 1 2 3 4 5 

Trial 1 0.24 0.35 0.29 0.31 0.24 

Trial 2 0.29 0.39 0.32 0.34 0.25 

Trial 3 0.27 0.34 0.28 0.27 0.26 

Appraiser B           

Trial 1 0.20 0.38 0.27 0.32 0.25 

Trial 2 0.22 0.34 0.29 0.31 0.23 

Trial 3 0.17 0.31 0.24 0.28 0.25 
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10. Following the text formulas, solve for R&R (within the implied uncertainty). 
a. 0.140 
b. 0.085 
c. 0.164 
d. 0.249 
e. 0.200 
f. None of the above is correct. 
 

11. What is the %R&R (rounding to the nearest percent)? 
a. 25% 
b. 16% 
c. 2.9% 
d. 55% 
e. 60% 
f. None of the above is correct. 
 

12. In three sentences or less, interpret the %R&R value obtained in Question 11. 
 
13. Which of the following is NOT a benefit of SPC charting? 

a. Charting helps in thorough evaluation of system quality. 
b. It helps identify unusual problems that might be fixable. 
c. It encourages people to make continual adjustments to processes. 
d. It encourages a principled approach to process meddling (only after 

evidence). 
e. Without complete inspection, charting still gives a feel for what is 

happening. 
 

14. Which of the following describes the relationship between common cause 
variation and local authorities? 

a. Local authority generally cannot reduce common cause variation on 
their own. 

b. Local authority has the power to reduce only common cause 
variation. 

c. Local authority shows over-control when trying to fix assignable 
causes. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

15. Which of the following is correct and most complete? 
a. False alarms are caused by assignable causes. 
b. The charts often alert local authority to assignable causes which they 

fix. 
c. Charts seek to judge the magnitude of average assignable cause 

variation. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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The following data set in Table 4.14 will be used to answer Questions 16–20. This 
data is taken from 25 shifts at a manufacturing plant where 200 ball bearings are 
inspected per shift. 

Table 4.14. Hypothetical trial ball bearing numbers of non-conforming (nc) units 

Subgroup # Number nc.  Subgroup # Number nc.  Subgroup # Number nc. 

1 15  10 25  18 14 

2 26  11 12  19 16 

3 18  12 14  20 18 

4 16  13 17  21 20 

5 19  14 19  22 22 

6 21  15 15  23 24 

7 24  16 17  24 12 

8 10  17 9  25 10 

9 30       

 
16. Where will the center line of a p-chart be placed (within implied uncertainty)? 

a. 0.015 
b. 0.089 
c. 0.146 
d. 431 
e. 0.027 
f. None of the above is correct. 

 
17. How many trial data points are outside the control limits? 

a. 0 
b. 1 
c. 2 
d. 3 
e. 4 
f. None of the above is correct. 
 

18. Where will the revised p-chart UCL be placed (within implied uncertainty)? 
a. 0.015 
b. 0.089 
c. 0.146 
d. 0.130 
e. 0.020 
f. None of the above is correct. 
 

19. Use software (e.g., Minitab® or Excel) to graph the revised p-chart, clearly 
showing the p0, UCL, LCL, and percent non-conforming for each subgroup. 
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20. In the above example, n and τ are appropriate because: 
a. Complete inspection has been used, assuring good quality. 
b. The condition n × p0 > 5.0 is satisfied. 
c. No complaints about lack of responsiveness are reported. 
d. All of the above are correct. 
e. All of the above are correct except for (a) and (d). 
 

The call center data in Table 4.15 will be used for Questions 21–25. 

Table 4.15. Types of call center errors for a charting activity 

Day Callers Time Value Security  Day Callers Time Value Security 

1 200 40 15 0  14 217 41 10 1 

2 232 38 11 1  15 197 42 9 0 

3 189 25 12 0  16 187 38 15 0 

4 194 29 13 0  17 180 35 13 1 

5 205 31 14 2  18 188 37 16 4 

6 215 33 16 1  19 207 38 13 2 

7 208 37 13 0  20 202 35 11 1 

8 195 32 10 0  21 206 39 12 0 

9 175 31 9 1  22 221 42 18 0 

10 140 15 2 0  23 256 43 10 1 

11 189 29 11 0  24 229 19 20 0 

12 280 60 22 3  25 191 40 14 0 

13 240 36 17 1  26 209 31 11 1 

 
In Table 4.15, errors and their assigned weighting values are as follows: time took 
too long (weight is 1), value of quote given incorrectly (weight is 3), and security 
rules not inforced (weight is 10). Assume all the data are available when the chart 
is being set up 
 
21. What is the weighted total number of non-conformities (C)? 

a. 916 
b. 1270 
c. 337 
d. 2127 
e. 13 
f. None of the above is correct. 

 
22. What is the initial centerline (μ0)? 

a. 0.237 
b. 0.397 



  Measure Phase and Statistical Charting      115 

c. 0.171 
d. 0.178 
e. 0.360 
f. None of the above is correct. 
 

23. How many out-of-control signals are found in this data set? 
a. 0 
b. 1 
c. 2 
d. 3 
e. 4 
f. None of the above is correct. 
 

24. Create the trial or startup demerit chart in Microsoft® Excel, clearly showing 
the UCL, LCL, CL, and process capability for each subgroup. 

 
25. In steady state, what actions should be taken for out-of-control signals? 

a. Always immediately remove them from the data and recalculate 
limits. 

b. Do careful detective work to find causes before making 
recommendations. 

c. In some cases, it might be desirable to shut down the call center. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

26. Which of the following is (are) true of u-chart process capability? 
a. It is the usual average number of non-conformities per item. 
b. It is the fraction of non-conforming units under usual conditions. 
c. It necessarily tells less about a system than p-chart process capability. 
d. All of the above are true. 
e. All of the above are correct except (a) and (d). 
 

Table 4.16 will be used in Questions 27–32. Paper airplanes are being tested, and 
the critical characteristic is time aloft. Every plane is measured, and each subgroup 
is composed of five successive planes. 
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Table 4.16. Hypothetical airplane flight data (S=Subgroup) 

No. X1 X2 X3 X4 X5  No. X1 X2 X3 X4 X5 

1 2.1 1.8 2.3 2.6 2.6  14 2.4 2.2 1.9 2.8 2.3 

2 2.7 1.5 2.1 2.5 1.9  15 2.2 2.4 2.5 2.9 1.5 

3 2.0 1.7 1.6 1.9 2.0  16 2.5 1.8 1.7 2.4 2.4 

4 1.6 2.0 2.1 2.2 2.1  17 2.9 2.6 2.6 2.2 2.2 

5 2.1 2.1 2.6 2.2 2.1  18 3.1 2.8 3.1 3.4 3.3 

6 2.0 2.8 2.5 2.9 2.0  19 3.5 3.2 2.9 3.5 3.4 

7 2.7 1.7 2.4 2.5 2.8  20 3.3 3.0 3.1 2.7 2.8 

8 2.2 2.0 2.4 2.1 2.4  21 2.8 3.6 3.3 3.3 3.2 

9 1.8 1.9 1.7 2.1 2.2  22 3.1 3.4 3.4 3.1 3.4 

10 2.2 2.1 2.9 1.7 2.0  23 2.0 2.5 2.4 2.3 2.4 

11 1.4 2.6 1.8 2.0 2.4  24 2.7 2.3 2.4 2.8 2.1 

12 2.3 2.5 2.4 1.8 1.9  25 2.5 2.2 2.5 2.2 2.0 

13 2.4 2.3 1.9 2.1 2.2        

 
27. What is the starting centerline for the Xbar chart (within the implied 

uncertainty)? 
a. 2.1 
b. 2.3 
c. 2.4 
d. 3.3 
e. 3.5 
f. None of the above is correct. 
 

28. How many subgroups generate out-of-control signals for the trial R chart? 
a. 0 
b. 1 
c. 2 
d. 3 
e. 4 
f. None of the above is correct. 
 

29. How many subgroups generate out-of-control signals for the trial Xbar chart? 
a. 0 
b. 1 
c. 2 
d. 3 
e. 4 
f. None of the above is correct. 
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30. What is the UCL for the revised Xbar chart? (Assume that assignable causes 
are found and eliminated for all of the out-of-control signals in the trial chart.) 

a. 1.67 
b. 1.77 
c. 2.67 
d. 2.90 
e. 3.10 
f. None of the above is correct. 
 

31. What is the UCL for the revised R chart? (Assume that assignable causes are 
found and eliminated for all of the out-of-control signals in the trial chart.) 

a. 0.000 
b. 0.736 
c. 1.123 
d. 1.556 
e. 1.801 
f. None of the above is correct. 
 

32. Control chart the data and propose limits for steady state monitoring. (Assume 
that assignable causes are found and eliminated for all of the out-of-control 
signals in the trial chart.) 

 
33. Which of the following relate run rules to six sigma goals? 

a. Run rules generate additional false alarms improving chart 
credibility. 

b. Sometimes LCL = 0 so run rules offer a way to check project success. 
c. Run rules signal assignable causes in start-up, improving capability 

measures. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

34. A medical device manufacturer is frustrated about the variability in rework 
coming from the results of different inspectors. No standard units are available 
and the test methods are non-destructive. Which methods might help reduce 
rework variability? Explain in four sentences or less. 

 
35. Some psychologists believe that self-monitoring a person’s happiness can 

reduce the peaks and valleys associated with manic depressive behavior. 
Briefly discuss common and assignable causes in this context and possible 
benefits of charting. 

 
36. It is often true that project objectives can be expressed in terms of the limits on 

R charts before and after changes are implemented. The goal can be that the 
limits established through an entirely new start-up and steady state process 
should be narrower. Explain briefly why this goal might be relevant. 

 
37. Describe a false alarm in a sporting activity in which you participate. 
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38. A weld engineer is analyzing the ability of two computer software programs to 
measure consistently a continuous characteristic called “undercut” in weld 
cross sections. She performs Steps 1 and 2 of the crossed gauge R&R method 
and generates the data in Table 4.17. Analyze the data and state conclusions. 

 
Table 4.17. Hypothetical data for gauge study (superscripts show run order) 

Software   Part   

#1 1 2 3 4 5 

Trial 1 0.922 1.0711 1.0513 1.085 0.8515

Trial 2 0.927 1.078 1.0720 1.0518 0.8627

Trial 3 0.9510 1.0619 1.0322 1.0224 0.8930

 
Software   Part   

#2 1 2 3 4 5 

Trial 1 0.946 1.051 1.0612 1.029 0.893 

Trial 2 0.947 1.0814 1.0323 1.0517 0.8016

Trial 3 0.9210 1.0126 1.0928 0.9429 0.8225

 
39. Define precisely the term “measurement error” as explained in this chapter. 

40. Which charting method might you use to monitor a child’s grades at school 
and why would you pick that chart? 

41. An automotive dealership chain’s executive wants to start SPC charting to 
evaluate and monitor customer satisfaction. Every week, salesmen must record 
200 answers to the question, “Is everything OK?” Table 4.18 lists the sum of 
hypothetical “everything is not OK” answers for 25 weeks at one location. 
Unusual and corrected power outages occurred in weeks 5 and 6. Analyze the 
data using the appropriate SPC chart and draw conclusions about the system 
quality level. 
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Table 4.18. Hypothetical customer satisfaction data 

Week Sum not OK Week Sum not OK 

1 5 14 9 

2 4 15 8 

3 8 16 4 

4 3 17 3 

5 40 18 8 

6 42 19 6 

7 6 20 6 

8 6 21 7 

9 10 22 5 

10 9 23 4 

11 8 24 2 

12 2 25 4 

13 1   
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5 

Analyze Phase 

5.1  Introduction 

In Chapter 3, the development and documentation of project goals was discussed. 
Chapter 4 described the process of evaluating relevant systems, including 
measurement systems, before any system changes are recommended by the project 
team. The analyze phase involves establishing cause-and-effect relationships 
between system inputs and outputs.  
 Analyze phase methods are based on a variety of data sources and generate 
many types of visual information for decision-makers. Methods that can be 
relevant for these analyses include the design of experiments (DOE) methods 
covered in Part II of this book and previewed here. Also, QFD cause and effects 
matrices, process mapping, value-stream mapping, spaghetti diagrams, and lean 
methods are addressed. Note that DOE methods include steps for both analysis and 
development of improvement recommendations. Lean manufacturing techniques 
areas provide potentially powerful methods and concepts for making systems more 
efficient. As usual, all methods may conceivably be applied usefully in any project 
phase or occasion. 

5.2 Lean Production 

An admittedly simplified history of Japanese technology has been provided in 
Section 1.4. The specific relationship between automotive history and lean 
explained in Womack (1991) is briefly reviewed here. The automobile originated 
from horse carriages with motors and a steering wheel. The inventors behind what 
was later Mercedes-Benz and Maybach designed engines and attached them to 
horse carriages. Car ownership was generally for the rich and slowly increased in 
the late 1800s. Then, Henry Ford invented and implemented assembly lines and 
made cars for the masses. The related “mass production” methods gave rise to 
work function specialization and the divisions between skilled and unskilled labor 
that largely motivated the usage of control charts in Chapter 4. In 1914, Ford 
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produced cars every 15 min using 8 times less manpower or work hours than had 
previously been possible (Georano, 2000).  

Toyota was founded in 1937 by Kiichiro Toyoda. Kiichiro studied the ideals of 
Henry Ford and W. Edwards Demming when trying to advance his company. This 
resulted in the creation and refinement of TPS between 1948 and 1975 by Taiichi 
Ohno, Shigeo Shingo, Eiji Toyoda, and others. TPS is known generically as lean 
manufacturing. Originally the system was called “just-in-time”, which now often 
refers only to production scheduling (Shigeo Shingo, 1989). Womack (1991) 
reported that lean manufacturing and TPS used approximately four times less 
manpower or work hours than the potentially corrupted version of mass production 
used in the 1980s in some manufacturing plants in the United States. 
 

5.2.1  Process Mapping and Value Stream Mapping 

The “process mapping” method involves creating flow diagrams of systems.  
Among other benefits, this method clarifies possible causal relationships between 
subsystems, which are represented by blocks. Inputs from some subsystems might 
influence outputs of downstream subsystems. This method is particularly useful in 
the define phase because subsystem inputs and outputs are identified during the 
mapping. Bottlenecks can also be clarified. Value stream mapping is also relevant 
in the analyze phase for similar reasons.  

Also, process mapping helps in setting up discrete event simulation models, 
which are a type of Monte Carlo method. This topic is described thoroughly in 
Law and Kelton (2000) and Banks et al. (2000). Discrete event simulation plays a 
similar role to process mapping. Simulation also permits an investigation of 
bottlenecks in hypothetical situations with additional resources added such as new 
machines or people. To develop simulation models, data about processing times 
are generally required. 

The “Value Stream Mapping” (VSM) method can be viewed as a variant of 
process mapping with added activities. In VSM, engineers inspect the components 
of the engineered system, e.g., all process steps including material handling and 
rework, focusing on steps which could be simplified or eliminated. The most 
popular references for this activity appear to be Womack and Jones (1996, 1999). 
Other potentially relevant references are Suzaki (1987) and Liker (1998). 
Therefore, value stream mapping involves analysis and also immediately suggests 
improvement through re-design. Other outputs of value stream mapping process 
described here include an expanded list of factors or system inputs to explore in 
experiments, as well as an evaluation of the documentation that supports the 
engineered system.    

To paraphrase, the definition of “value stream” provided in Womack and 
Jones (1999) is the minimum amount of processing steps, from raw materials to the 
customer, needed to deliver the final product or system output. These necessary 
steps are called “value added” operations. All other steps are waste. For example, 
in making a hot dog, one might say that the minimum number of steps needed are 
two, heating the meat in water and packaging it in a bun. All material transport and 
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movements related to collection of payments are not on the value stream and could 
conceivably be eliminated. 

In this book, VSM is presented as a supplement to process mapping, with 
certain steps used in both methods and the later steps used in VSM only. The 
version here is relatively intensive. Many people would describe Step 1 by itself as 
process mapping.  

Algorithm 5.1. Process mapping and value stream mapping 

 
A natural next step is the transformation of the process to the ideal state. This 

would likely be considered as part of an improvement phase. 
Examination of process mapping and VSM activities both facilitate the 

identification of bottlenecks and the theory of constraints approach described in 
Chapter 2. This also provides lists of inputs and outputs for other analysis activities 
such as cause and effect matrices and design of experiments. However, process 
mapping cannot by itself establish statistical evidence to indicate that changes in 
certain inputs change the average output settings. Part II of this book focuses on 
establishing such statistical evidence. Logically, however, process mapping can 
preclude downstream subsystem inputs from affecting upstream subsystem 
outputs. 

Example 5.2.1  Mapping an Arc Welding and Rework System 

Question: A Midwest manufacturer making steel vaults has a robotic arc welding 
system which is clearly the manufacturing bottleneck. A substantial fraction of the 
units require intensive manual inspection and rework. VSM the system and 
describe the possible benefit of the results.  
 
 
 

Step 1.  (Both methods) Create a “ ” for each predefined operation. Note if the 
operation does not have a standard operating procedure. Use a double-box 
shape for automatic processes and storage. Create a “◊” for each decision 
point in the overall system. Use an oval for the terminal operation (if any).  
Use arrows to connect the boxes with the relevant flows.   

Step 2.  (Both methods) Under each box, label any noise factors that may be 
varying uncontrollably, causing variation in the system outputs, with a “z” 
symbol. Also, label the controllable factors with an “x” symbol. It may also 
be desirable to identify any gaps in standard operating procedure (SOP) 
documentation. 

Step 3.   (VSM only) Identify which steps are “value added” or truly essential.  
Also, note which steps do not have documented standard operating 
procedures.   

Step 4.   (VSM only) Draw a map of an ideal future state of the process in which 
certain steps have been simplified, shortened, combined with others, or 
eliminated. This step requires significant process knowledge and practice 
with VSM. 
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Figure 5.1. A process map with processing times and factors indicated 

Answer: Figure 5.1 is based on an actual walk-through of the manufacturer.  
Possible benefits include clarification that several occuring subsystem processes 
have no documented standard operating procedures (SOPs). Given the importance 
of these processes as part of the bottleneck subsystem, lack of SOPs likely 
contributes to variation, non-conformities, and wasted capacity, directly affecting 
the corporate bottom line. In addition, several inputs and noise factors identified 
for continued study and process facilitate both goal-setting and benchmarking. 
Goal-setting is aided because elimination of any of the non-value added 
subsystems might be targeted, particularly if these constitute bottlenecks in the 
larger welding system. Benchmarking is facilitated because comparison of process 
maps with competitors might provide strong evidence that eliminating specific 
non-value-added tasks is possible. Figure 5.2 shows an ambitious ideal future state. 
Another plan might also include necessary operations like transport. 

 
 
 
 

Figure 5.2. A diagram of an ideal future state 

The above example illustrates that process mapping can play an important role 
in calling attention to non-value-added operations. Often, elimination of these 
operations is not practically possible. Then documenting and standardizing the 
non-value-added operation can be useful and is generally considered good practice. 
In the Toyota vocabularly, the term “necessary” can be used to described these 
operations. Conveyor transportation in the above operations might be called 
necessary. 
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5.2.2  5S 

The 5S method relates to organizing the workplace to increase efficiency and 
eliminate waste. 5S seeks to increase employee morale, as well as making/keeping 
the employee safe and efficient. Commonly, when a 5S program is instituted it is 
started by engineers and managers and taught to technicians and operators to 
involve the entire production system. As mentioned previously, the 5S’s are sort, 
straighten, sweep, standardize, and sustain as shown in Algorithm 5.2 derived from 
Imai (1997).  
 

Algorithm 5.2. 5S steps or algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 5.2.1 Cabinet Maker 
 
Question: An Ohio based metal cabinet making plant seeks to improve their 
company’s productivity. They bring in a consultant who notices that the place is 
unorganized, work in process inventory is everywhere, and the environment does 
not look safe. The consultant decides that a first task is to apply 5S. Make 
reasonable assumptions and describe specific steps that might be involved in 
applying the 5S method. 
  
Answer: The consultant might go through all non-employee specific areas, and 
does Steps 1–3 with the aid of local management for information and equipment. 
Next, he might hold a meeting describing the 5S system and encourage each 
employee to implement it in his/her own work area using the non-employee 
specific areas. After the employees complete the task, the consultant might then go 
to each employee area to discuss and provide feedback. This might have a two-
pronged effect. First, the approach might reinforce the training about the 5S 
method. Second, getting the employee think about efficiency, safety, and his/her 
work area might provide long term benefits and an improved working 
environment. Following this the consultant might lead implementation of Step 4 for 
the entire plant. Once all this is completed, the employees are likely to have a 
better understanding of the plant and may have ideas in the future for further 

Step 1: Sort – go through everything in a work area and remove all unneeded 
items. 

Step 2:  Straighten – arrange everything in the work area to promote faster 
work.  For example tools used could be place in order by amount of 
usage; closest tool is used most often. 

Step 3:  Sweep – keep the work area clean and neat at all times.  You pick up 
after each activity and at the end of each shift. 

Step 4:  Standardize – make sure everyone knows their job precisely and where 
everything goes. The SOPs described in Section 2.6 may be used here. 

Step 5: Sustain – apply previous 4S’s continually with care. 
 
*Note: Each activity should be performed with efficiency and safety in mind. 
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improvements. Now that the plant is organized and safe, others can consider 
applying additional improvement techniques.  

5.2.3  Kanban 

“Kanban” cards regulate the maximum amount of inventory that production cells 
are allowed to have in queue before the upstream cell must shut down. This 
approach results in lost production capacity, but it has the benefit of forcing 
operators, technicians, engineers, and management to focus their attention 
immediately on complete resolution of problems when they occur. For example, 
consider a station buffer that has three kanban cards allocated to it. If the preceding 
station gets ahead by producing three units that are put into the buffer or inventory, 
the preceding station must shut down. Reducing the numbers of kanban cards 
throughout the system is often part of lean sigma system improvement efforts. 

5.2.4  Poka-Yoke 

Poka-yoke translates from Japanese to English as mistake-proofing. The term, as 
mentioned earlier was created by Toyota as part of the lean system. A way to 
understand the idea of poka-yoke better is to look at its original term, Baka-yoke 
meaning idiot-proofing (Dillon, 1989). A non-manufacturing example of this is 
when Toyota stopped allowing the lock button on a car door to be locked when the 
door is open. This way the door needs to be closed when it locks. This makes it 
more difficult to lock one’s keys in the car. A manufacturing example would be 
attaching a digital counter to a welder to insure that the welder operator does the 
right number of welds (Shimbun, 1988). Poka-yoke can be implemented anywhere 
errors can occur in manufacturing systems. Shigeo Shingo developed a poka-yoke 
method associated with three types of defects described in Algorithm 5.3. 
 

Algorithm 5.3. Poka-yoke  

 
 
 
 
 
 
 
 
Question: In an automotive factory, one person tightens four bolts with a manual 
tensioner. Two of the four bolts require a tension of 150 Nm, and the other two 
require 50 Nm. It is a common issue that undesirable tension is put on the bolts that 
fail to conform to engineering specifications because of mix-ups in bolt types. 
Therefore, commonly some bolts are too loose while others are too tight, bending 
the bracket to which the bolts attach. How might poka-yoke be applied and which 
type of defect is relevant? 
 

Type 1:  Contact – by testing products one can identify physical defects like 
size, color, shape. 

Type 2:  Fixed value – operator is alerted if the proper number of movements 
were not made. 
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Answer: This is probably a motion-step defect because it relates to the incorrect 
application of operating procedures. One solution would be to split up the task, 
having one person tighten the two high tension bolt and have another tighten the 
two light tension bolts. Another option would be use different bolt head sizes for 
the two different tension amounts. A third option would be to color code the bolt 
heads according to the different tension amounts. It might be helpful to evaluate 
the costs of each approach systematically and look for similar issues elsewhere.  

5.3  The Toyota Production System 

To gain a clearer view of “ideal” systems, it is perhaps helpful to know more about 
Toyota. The “Toyota Production System” used by Toyota to make cars has 
evolved over the last 50-plus years, inspiring great admiration among competitors 
and academics. Several management philosophies and catch phrases have been 
derived from practices at Toyota, including “just in time” (JIT) manufacturing, 
“lean production”, and “re-engineering”. Toyota uses several of these novel 
policies in concert as described in Womack and Jones (1999). The prototypical 
Toyota system includes: 

• “U-shaped cells,” which has workers follow parts through many 
operations. This approach appears to build back some of the “craft” 
accountability lost by the Ford mass-production methods. Performing 
operations downstream, workers can gain knowledge of mistakes made in 
earlier operations. 

• “Mixed production” implies that different types of products are made 
alternatively so that no batches greater than one are involved. This results 
in huge numbers of “set-ups” for making different types of units.  
However, the practice forces the system to speed up the set-up times and 
results in greatly reduced inventory and average cycle times (the time it 
takes to turn raw materials into finished products). Therefore, it is often 
more than possible to compensate for the added set-up costs by reducing 
costs of carrying inventory and by increasing sales revenues through 
offering reduced lead times (time between order and delivery). 

• “Pull system” implies that production only occurs on orders that have 
already been placed. No items are produced based on projected sales. The 
pull system used in concert with the other elements of the Toyota 
Production System appears to reduce the inventory in systems and reduce 
the cycle times. 

Womack and Jones (1999) documented the generally higher sigma levels of 
production systems modeled after Toyota. However, it might be difficult to 
attribute these gains to individual components of the Toyota production system. It 
is possible that the reduced inventory, increased accountability, and reduced space 
requirement noted are produced by a complex interaction of all of the above-
mentioned components.  

Many processes involve much more complicated flows than depicted in Figure 
5.1. This is particularly true in job shop environments where part variety plays a 
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complicating role. Irani et al. (2000) describe extentions of value stream mapping 
to address complicating factors such as part variety. 

5.4  Process Flow and Spaghetti Diagrams 

Next, we describe a diagrammatic method that focuses on the physical locations of 
flows through systems. For example, a student might convert paper into 
assignments at an average yearly rate of 20 pages per month. Then, the paper 
material would flow through the student system with most of the flows in his or her 
room between the filing cabinet, the desk, and the book bag. The flow diagrams of 
interest in this section are called a “spaghetti” diagrams because the flows 
sometimes look like noodles. The diagrams show these flows overlaid on the 
physical layout of the facility. The spaghetti diagram is associated with a process 
of designing revised steps to reduce process waste by eliminating unnecessary 
transportation of information or materials. Such transporting is called “parts travel” 
in industrial engineering because the items are parts that travel on material 
handling equipment. 

Process observation tools such as process maps, cycle time observation, 
spaghetti diagrams, and value stream mapping (VSM) techniques are lean tools 
used to identify areas of concern and wasted time (Hagg et al., 2007). Additional 
material about VSM is described in Section 5.2. 

Creating a spaghetti diagram requires the process flow in the facility. The flow 
is given in facility routings. The facility routings include a location of the product 
defined by an area in the facility and a brief description of what is being done at 
that area. When analysis of the spaghetti diagram is being done you use the total 
travel distance (TTD). TTD is the distance the parts travel throughout the facility.   
 

Algorithm 5.4. Creating spaghetti diagrams 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 1. Obtain an existing or create a facility layout diagram or drawing. 
Step 2.  Obtain an existing routing sheet or create one using a typical product 

going through the facility.   
Step 3.  Draw a continuous curve starting at the first location on the routing 

sheet to the remaining locations. (Subjectively, complicated-looking 
flows indicate opportunities for improvement.) 

Step 4.  Calculate the Total Travel Distance (TTD) by adding up the distance 
traveled using: 
 TTD = Σi ni di 
where ni is number of times route traveled, and di is distance for the ith 
route and the sum is over all routes.   

Step 5.   Estimate the travel time by using distance travel at a 4.4 ft/s walking 
rate or the speed of device used to move product or information.  
Speed is multiplied by distance. 

Step 6.  Study the spaghetti diagram and identify flows with high part’s travel 
distances and areas in the facility that are rarely or never used. 

Step 7.   Move the processes closer together or rearrange to reduce the TTD. 
Step 8.   Repeat steps 4–7 using new layouts as needed.  
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Example 5.4.1 Printing Company 

Question: A hypothetical printing company prints large sheets and banners. Its 
facility layout is shown in Figure 5.3. The routing information for their product 
XJK is given in Table 5.1. The company prints one color at a time. Analyze this 
process and make recommendations to reduce TTD and make the process more 
efficient, i.e., lower the cycle time. 
 

 
Figure 5.3. A layout for a printing company 

 
Table 5.1. Printer company for product XKJ 

Companies routing for product XJK 
Routing 
location 

Location Explanation 

1 Cut 37’x12’ 
2 Print Blue for XJK 
3 Dry 45 min 
4 Print Red for XJK 
5 Dry 35 min 
6 Print Green for XJK 
7 Dry 40 min 
8 Inspect If error send back to cutting 
9 Ship Ship to Toms Signs 

 
Answer: The layout and routing in Steps 1 and 2 are given in Table 5.1. The 
spaghetti diagram from Step 3 is shown in Figure 5.4. 
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Figure 5.4. Finished spaghetti diagram for company 

 
In Step 4, the distance between cut and print is 35 ft. The distance between print 

and dry is 90 ft and the distance between dry and ship/inspect is 100 ft. In this 
problem, there are four routes, and the counts are:  
 

Cut to print n1 = 1 time 
Print to dry n2 = 3 times 
Dry to print n3 = 2 times 

Dry to inspect n4 = 1 time 
 

Therefore, the TTD is: 

TTD = (1)(35) + (3)(90) + (2)(90) + (1)(100) = 585 ft.  

In Step 5, 585 ft divided by 4.4 ft/s gives 132.95 seconds or 2 min and 12 seconds. 
Apparent from the diagram are the many and long flows between the printer 

and the drying areas. There is also a large unused area between the cut and drying 
areas. Adjusting the placement of these activities so that they are closer together 
would be advised. In our new hypothetical layout, we suggest that moving the 
drying area next to the cutting area as in Figure 5.5.  

 

 Figure 5.5. Proposed revised layout 

Iterating Step 4, the proposed revised layout is associated with a shortened 
drying-to-printer distance of 37 ft and a drying-to-inspect/ship distance of 50 ft.  
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The resulting TTD is: 
 

(1)(35) + (3)(37) + (2)(27) + (1)(50) = 270 ft. 
 

Iterating Step 5, 270 ft is divided by 4.4 ft/s giving 61 s or 1.02 min. Therefore, 
in this example by using a spaghetti diagram we reduced the cycle time by 1 min 
and 11 s or 54%. With a sufficient part volume, this could result in the ability to 
layoff or reallocate one or more workers to other activities and/or to produce more 
products with the same work force.   

5.5  Cause and Effect Matrices 

Process mapping can be viewed as a method that results in a possible list of 
subsystem inputs for further study. In that view, “cause and effect matrix” (C&E) 
methods could prioritize this list for further exploration, taking into account 
information from customers and current engineering insights. To apply the C&E 
method, it is helpful to recall the basic matrix operations of transpose and 
multiplication. 

The transpose of a matrix A is written “A′”, and it contains the same numbers 
moved into different positions. For every number in the transposition, the former 
column address is now the row, and the former row address is now the column 
address. For example, the following is an example of A and A′: 

 
  5 4   and     

A =  2 3   A′ =  5 2 –3  

  –3 4     4 3 4  

 
When two matrices are multiplied, each entry in the result is a row in the first 

matrix “product into” a column in the second matrix. In this product operation, 
each element in the first row is multiplied by a corresponding element in the 
second column and the results are added together. For example: 

 
   5 4   B =  2 12  

A =   2 3     6 9  

   –3 4        

 
  5×2 + 4×6 = 34 5×12 + 4×9 = 96  
AB =   2×2 + 3×6 = 22 2×12 + 3×9 = 51  
  –3×2 + 4×6 = 18 –3×12 + 4×9 = 0  
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The C&E method uses input information from customers and engineers and 
generally requires no building of expensive prototype units. In performing this 
exercise, one fills out another “room” in the “House of Quality,” described further 
in Chapter 6. 

Algorithm 5.5. Constructing cause and effect matrices 

 
Example 5.5.1  Software Feature Decision-making 

Question: A Midwest software company is trying to prioritize possible design 
changes, which are inputs for their software product design problem. They are able 
to develop consensus ratings from two customers and two product engineers.  
Construct a C&E matrix to help them prioritize with regard to nine possible 
features. 
 
Answer: In discussions with software users, seven issues were identified (qc = 7). 
Consensus ratings for the importance of each were developed. Through discussions 
with software engineers, the guesses were made about the correlations (were 
guessed) between the customer issues and the m = 9 inputs. No ouputs were 
considered (q = 0). Table 5.1 shows the results, including the factor ratings (F′) in 
the bottom column.  

The results suggest that regression formula outputs and a wizard for first-timers 
should receive top priority if the desires of customers are to be respected. 

The above example shows how F′ values are often displayed in line with the 
various system inputs and outputs. This example is based on real data from a 
Midwest software company. The next example illustrates how different customer 
needs can suggest other priorities. This could potentially cause two separate teams 
to take the same product in different directions to satisfy two markets. 

Step 1.  Identify and document qc customer issues in a language customers can 
understand. If available, the same issues from a benchmarking chart can be 
used.   

Step 2.  Collect ratings from the customers, Rj for j = 1,…, qC of the subjective 
importance of each of the qc customers issues.   Write either the average 
number or the consensus of a group of customers. 

Step 3.  Identify and document the system inputs, x1,…,xm, and outputs Y1,…,Yq 
believed to be most relevant.  If available, the same inputs and outputs from 
a benchmarking chart can be used. 

Step 4.  Collect and document (1–10, 10 is highest) ratings from engineers of the 
correlations, Ci,j for i = 1,…, qc , j = 1,…,m + q and between the qc customer 
criteria and inputs and outputs.   

Step 5.  Calculate the vector F′ = R′C and use the values to prioritize the 
importance of system inputs and outputs for additional investigation.   
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Table 5.2. Cause and effect matrix for software feature decision-making 
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Easy to use 5 1 1 1 1 1 5 5 7 7 

Helpful user 
environment 6 1 6 1 1 1 10 5 6 6 

Good 
examples 6 1 1 1 1 1 1 9 4 4 

Powerful 
enough 5 8 9 5 5 5 6 2 2 1 

Enough 
methods 
covered 

8 8 4 7 7 5 1 2 1 1 

Good help 
and support 5 1 1 1 1 1 1 6 8 9 

Low price 8 7 5 7 7 7 4 2 5 4 

 F′ = 182 169 159 159 143 166 181 193 185 

Example 5.5.2  Targeting Software “Power Users” 

Question: The software company in the previous example is considering 
developing a second product for “power users” who are more technically 
knowledgable. They ask two of these users and develop a rating vector R′ = [5, 6, 
7, 10, 7, 4, 5]. What are the highest priority features for this product?  
 
Answer: The new factor rating vector is F′ = [193, 195, 156, 156, 142, 183, 186, 
183, 172]. This implies that the highest priorities are text delimited data analysis 
and logistic regression.  

5.6  Design of Experiments and Regression (Preview) 

Part II of this book, and much of Part III, focus on so-called design of experiment 
(DOE) methods. These methods are generally considered the most complicated of 
six sigma related methods. DOE methods all involve: (1) carefully planning sets of 
input combinations to test using a random run order; then, (2) tests are performed 
and output values are recorded; (3) an interpolation method such as “regression” is 
then used to interpolate the outputs; and (4) the resulting prediction model is then 
used to predict new outputs for new possible input combinations. Many regard the 
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random run ordering in DOE as essential for the establishing “proof” in the 
statistical sense.  

Regression is also relevant when the choice of input combinations has not been 
carefully planned. Then, the data is called “on-hand,” and statistical proof is not 
possible in the purest sense. 

DOE methods are classified into several types, which include screening using 
fractional factorials, response surface methods (RSM), and robust design 
procedures. Here, we focus on the following three types of methods: 

• Screening using fractional factorial methods begin with a long list of 
possibly influential factors; these methods output a list of factors (usually 
fewer in number) believed to affect the average response, and an 
approximate prediction model. 

• Response surface methods (RSM) begin with factors believed to be 
important. These methods generate relatively accurate prediction models 
compared with screening methods, and also recommended engineering 
input settings from optimization. 

• Robust design based on process maximization (RDPM) methods begin 
with the same inputs as RSM; they generate information about the 
control-by-noise interactions. This information can be useful for making 
the system outputs more desirable and consistent, even accounting for 
variation in uncontrollable factors.  

Example 5.6.1  Spaghetti Meal Demand Modeling 

Question: Restaurant management is interested in tuning spaghetti dinner prices 
because this is the highest profit item. Managers try four different prices for 
spaghetti dinners, $9, $13, $14, and $15, for one week each in that order. The 
profits from spaghetti meals were $390, $452, $490, and $402, respectively. 
Managers use the built-in interpolator in Excel to make the plot in Figure 5.6. This 
built-in interpolator is a type of regression model. The recommended price is 
around $12. Does this prove that price affects profits? Is this DOE? 
 
 
 
 
 
 
 
 

 

 

Figure 5.6. Predicted restaurant profits as a function of spaghetti meal price 
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Answer: This would be DOE if the runs were conducted in random order, but 
constantly increasing price is hardly random. Without randomness, there is no 
proof, only evidence. Also, several factor settings are usually varied 
simultaneously in DOE methods. 

5.7  Failure Mode and Effects Analysis 

The phrase “failure mode” refers to an inability to meet engineering 
specifications, expressed using a causal vocabulary. The method “Failure Mode 
and Effects Analysis” (FMEA), in Algorithm 5.3, uses ratings from process 
engineers, technicians, and/or operators to subjectively analyze the measurement 
system controls. Like cause and effect matrices, FMEA also results in a prioritized 
list of items for future study. In the case of FMEA, this prioritized list consists of 
the failure modes and their associated measured quality characteristics or key 
output variables.  

Like gauge R&R, FMEA focuses on the measurement systems. In the case of 
FMEA, the focus is less on the measurement system’s ability to give repeatable 
numbers and more on its ability to make sure non-conforming items do not reach 
customers. Also, FMEA can result in recommendations about system changes 
other than those related to measurement subsystems. Therefore, the scope of 
FMEA is larger than the scope of gauge R&R.  

 
Symbols used in the definition of FMEA: 
1. q is the number of customer issues and associated specifications 

considered. 
2. Si is the severity rating for the ith issue on a 1–10 scale, with 10 meaning 

serious, perhaps even life-threatening. 
3. Oi is the occurrence rating of the ith issue on a 1–10 scale, with 10 

meaning very common or perhaps even occurring all the time. 
4. Di is the detection rating based on current system operating procedures on 

a 1–10 scale, with 10 meaning almost no chance that the problem will be 
detected before the unit reaches a customer. 

 
The following example illustrates the situation-dependent nature of FMEA 

analyses. It is relevant to the childcare situation of a certain home at a certain time 
and no others. Also, it shows how the users of FMEA do not necessarily need to be 
experts, although that is preferable. The FMEA in the next example simply 
represents the best guesses of one concerned parent, yet it was helpful to that 
parent in prioritizing actions.  
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Algorithm 5.6. Failure mode and effects analysis (FMEA) 

Example 5.7.1  Toddler Proofing One Home 

Question: Perform FMEA to analyze the threats to a toddler at one time and in one 
home. 

 
Table 5.3. FMEA table for toddler home threat analysis 

Failure mode Potential 
effect 

Se
ve

rit
y 

Potential 
cause 

O
cc

ur
re

nc
e 

Current 
control 

D
et

ec
tio

n 
RPN 

Electric shock 
from outlet Death 10 Not 

watched 1 Supervision 2 20 

Falling down 
stairs Death 9 Escapes 

gate 1 Mommy 
wakes 3 27 

Rotten milk 
from old cups 

Tummy 
ache 3 

Cup 
within 
reach 

5 Supervision 7 105 

Slipping in 
bath tub Bruises 2 No 

matting 6 Supervision 7 84 

Car accident Death  8 Driving 
too far 1 Carefulness 1 8 

Pinching 
fingers in door 

Loss of 
finger 6 Stop not 

in place 2 Door stops 8 96 

Watching too 
much TV 

Obesity, 
less reading 4 Parents 

tired 7 Effort 6 168 

 
 
 
 

Step 1.   Create a list of the q customer issues or “failure modes” for which failure to 
meet specifications might occur.   

Step 2.   Document the failure modes using a causal language. Also document the 
potentially harmful effects of the failures and notes about the causes and 
current controls. 

Step 3.  Collect from engineers the ratings (1–10, with 10 being high) on the 
severity, Si, occurrence, Oi, and detection, Di, all for all i = 1,…,q failure 
modes.  

Step 4.   Calculate the risk priority numbers, RPNi, calculated using RPNi = SiOiDi 
for i = 1,…,q .  

Step 5.  Use the risk priority numbers to prioritize the need for additional 
investments of time and energy to improve the inspection controls. 
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Answer: In this case, any harm to the toddler is considered non-conformity. Table 
5.3 shows an FMEA analysis of the perceived threats to a toddler. The results 
suggest that the most relevant failure modes to address are TV watching, old milk, 
and slamming doors. The resulting analysis suggests discussion with childcare 
providers and efforts to limit total TV watching to no more than three episodes of 
the program “Blue’s Clues” each day. Also, door stops should be used more often 
and greater care should be taken to place old sippy cups out of reach. Periodic 
reassessment is recommended. 

 
The next example is more traditional in the sense that applies to a 

manufacturing process. Also, the example focuses more on inspection methods and 
controls and less on changing system inputs. Often, FMEAs result in 
recommendations foradditional measurement equipment and/or changes to 
measurement standard operating procedures (SOPs). 

Example 5.7.2  Arc Welding Inspection Controls 

Question: Interpret the hypothetial FMEA table in Table 5.4. 

Table 5.4. FMEA table for arc welding process control 

Controlled 
factors and 
responses 

Potential 
failure modes 

Potential 
failure effects

Se
ve

rit
y 

Potential causes

O
cc

ur
en

ce
 

Current 
control 

D
et

ec
tio

n 

R
PN

 

Undercut Cosmetic & 
stress fracture 

Yield under 
high loads 5 Fixture gap, 

offset, & voltage 8 Visual & 
informal 2 80 

Penetration Cosmetic & 
yielding 

Yield under 
high loads 5 Fixture gap, 

offset, & voltage 4 Visual & 
informal 9 180 

Melt 
Through 

Cosmetic & 
yielding 

Leakages & 
yielding 7 Fixture gap, 

offset, & voltage 4 Visual & 
informal 2 56 

Distortion 
(Flatness) Out-of-spec. Down stream 

$ & problems 4 
Fixture gap, 

offset, voltage, 
others 

10 Visual & 
informal 4 160 

Fixture Gap Failures by 
undercut 

All of the 
above 5 

Operator 
variability & 

part variability 
9 Visual & 

informal 5 225 

Initial 
Flatness 

Cosmetic & 
yielding 

All of the 
above plus no 

weld 
5 Size of sheet, 

transportation 4 Visual & 
informal 5 100 

Voltage 
Variability 

See undercut 
& penetration See above 5 Power supply 3 Gauge & 

informal 2 30 

 



138      Introduction to Engineering Statistics and Lean Sigma  

Answer: Additional measurement system standard operating procedures and 
associated inspections are probably needed to monitor and control gaps in 
fixturing. It is believed that problems commonly occur that are not detected. Also, 
the visual and informal inspection of weld penetration is likely not sufficient. 
Serious consideration should be given to X-ray and/or destructive testing. 

5.8  Summary 

This chapter describes methods relevant mainly for studying or “analyzing” 
systems prior to developing recommendations for changing them. These methods 
include process mapping, value stream mapping, generating cause & effect 
matrices, design of experiments (DOE), and failure mode and effects analysis 
(FMEA). Table 5.4 summarizes the methods described in this chapter, along with 
the possible roles in an improvement or design project. 

Table 5.5. Summary of methods of primary relevance to the analyze phase 

Method Possible role 

Process 
mapping 

Bottleneck and input factor 
identification 

Value stream 
mapping 

Identifying waste for possible 
elimination 

Cause & effect 
matrices 

Prioritizing inputs and outputs for 
further study 

Design of 
experiments 

Building input-output prediction 
models for tuning inputs 

FMEA Prioritizing non-conformities for 
adding inspection controls 

 
Process mapping involves careful observation and documentation of flows 

within a system. Possible results include the identification of subsystem 
bottlenecks and inputs for further study. This chapter argues that value stream 
mapping constitutes an augmentation of ordinary process mapping with a focus on 
the identifation of unnecessary activities that do not add value to products or 
services. Additional discussion is provided about the Toyota production system 
and the possible ideal state of systems. 

The cause & effect matrix method has the relatively specific goal of focusing 
attention on the system inputs or features that most directly affect the issues of 
importance to customers. The results are relevant to prioritizing future 
investigations and/or selecting features for inclusion into systems. 

Design of experiments (DOE) methods are complicated enough that Part II and 
much of Part III of this book is devoted to them. Here, only the terms screening, 
response surface, and robust design are of interest. Also, the concept of using 
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random ordering of test runs is related both to DOE methods and the concept of 
statistical proof. 

Finally, the chapter describes how FMEA can be used to rationalize possible 
actions, to safeguard customers, and to prioritize measurement subsystems for 
improvement. FMEA is a powerful tool with larger scope than gauge R&R because 
it involves simultaneous evaluation of both measurement subsystems and other 
subsystems.  

Problems 

In general, pick the correct answer that is most complete. 
 
1. Value Stream Mapping can be viewed as an extension of which activity? 

a. Gauge R&R 
b. Benchmarking 
c. Design of experiments 
d. Process mapping 
e. None of the above is correct. 

2. What are possible benefits associated with U-shaped cells? 
a. Parts are produced before demands are placed, for readiness. 
b. Parts are produced in batches of one. 
c. Personal accountability for product quality is returned to the worker. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
3. Which is correct and most complete? 

a. Mixed production results in fewer setups than ordinary batch 
production. 

b. Kanban cards can limit the total amount of inventory in a plant at any 
time. 

c. U-shaped cells cause workers to perform only a single specialized 
task well. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Table 5.6 contains hypothetical data on used motorcycles for questions 6–8. 
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Table 5.6. Cause and effect matrix for used motorcycle data 

Racer customer issues 
C

us
to

m
er

 im
po

rta
nc

e 

Ty
pe

 o
f d

ur
om

et
er

 

R
ub

be
r w

id
th

 

B
ea

d 
th

ic
kn

es
s (

m
m

) 

PS
I c

ap
ac

ity
 

Ti
re

 h
ei

gh
t (

m
m

) 

Ti
re

 d
ia

m
et

er
 (m

m
) 

Handling feels sticky 7 2 4 7 3 6 2 

Tires seem worn down 4 4 5 7 6 7 2 

Handling feels stable 1 9 8 6 6 5 3 

Good traction around 
turns 3 1 3 9 5 6 6 

Cost is low 7 8 7 9 2 4 3 

Installation is difficult 2 5 4 2 5 3 8 

Performance is good 1 9 5 4 8 1 1 

Wear-to-weight ratio is 
good 1 9 1 7 1 5 2 

Factor rating number (F') 231 274 141 137 203 142 

 
12. What issue or issues do customers value most according to the C&E matrix? 

a. The cost is low. 
b. Performance is good. 
c. Tires seem worn down. 
d. Traction around turns is good. 
e. Customers value answers “a” and “c” with equal importance. 

 
13. Which KIV or KOV value is probably most important to the customers? 

a. Type of durometer 
b. Rubber width 
c. Bead thickness 
d. Tire diameter 
e. All of the above KIVs or KOVs are equally important for 

investigation. 
 

14. Which of the following is correct and most complete? 
a. R′ is a 4 × 7 matrix.  
b. R′C is a vector with five entries. 
c. Cause and effect matrices create a prioritized list of factors. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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Table 5.7 will be used for Questions 9 and 10. 

Table 5.7. Hypothetical movie studio cause & effect matrix 

Customer 
Criteria 

C
us

to
m

er
 

Im
po

rta
nc

e 

M
on

ey
 sp

en
t o

n 
sc

rip
t w

rit
er

s 

Y
ou

ng
 m

al
e 

fo
cu

s 
gr

ou
p 

us
ed

 

St
ar

s u
se

d 

C
rit

ic
 a

pp
ro

va
l 

Story is 
interesting 8 8 5 4 7 

It was funny 9 8 5 4 7 

It was too long 
or too short 6 3 5 9 1 

It made me 
inspired 4 6 2 4 5 

It was a rush 6 6 8 6 5 

It was cool 6 3 8 4 5 

Factor Rating Number 
(F') 232 219 198 205 

 
15. If “story is interesting” was determined to have a correlation of “3” for all 

factors, which would have the highest factor rating number? 
a. Money spent on script writers 
b. Young male focus group used 
c. Stars used 
d. Critic approval 
e. All of the above would have equal factor rating numbers. 

 
16. Suppose the target audience thought the only criterion was inspiration. Which 

variable would be the most important to focus on? 
a. Money spent on script writers 
b. Young male focus group used 
c. Stars used 
d. Critic approval 
e. All of the above would have equal factor rating numbers. 

 
17. List three benefits of applying cause and effect matrices. 
 
18. Which of the following is correct and most complete? 

a. Design of experiments does not require new testing. 
b. Screening can start where C&E matrices end and further shorten the 

KIV list. 
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c. Strictly speaking, DOE is essential for proof in the statistical sense. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Table 5.8 will be used for Questions 13–14. 

Table 5.8. Hypothetical cookie-baking FMEA 

Controlled 
factors and 
responses 

Potential 
failure 
modes 

Potential failure 
effects 

Se
ve

rit
y 

Potential 
causes 

O
cc

ur
re

nc
e 

Current 
control 

D
et

ec
tio

n 

R
PN

 

Burn level Cosmetic Customer won’t 
eat or buy 6 Over- 

cooked 2 Visual, 
informal 1 12 

Texture Too dry Crumbs, squish 
easily 4 Temp too 

high or low 2 Touch, 
informal 2 16 

Size Too small Customer might 
not buy more 5 End of 

batch 2 Visual, 
informal 1 10 

Taste Taste Customer won’t 
eat or buy 9 

Wrong 
amount of 
ingredients

2 Taste 4 72 

Freshness Not stored 
properly 

Customer won’t 
eat or buy 8 Not stored 

properly 3 Taste 4 96 

Number of 
chips 

Batter not 
mixed 

Tastes like plain 
cookie 2 End of 

batch 2 Visual, 
informal 4 16 

19. Which response or output probably merits the most attention for quality 
assurance? 

a. Freshness 
b. Taste 
c. Number of chips 
d. Size 
e. Burn level 

20. How many failure modes are represented in this study? 
a. 3 
b. 4 
c. 5 
d. 6 
e. 7 

 
21. Which of the following is correct and most complete? 

a. FMEA focuses on the manufacturing system with little regard to 
measurement. 

b. FMEA is based on quantitative data measured using physical 
equipment. 
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c. FMEA helps to clarify the vulnerabilities of the current system. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Table 5.9 will be used in Questions 16 and 17. 

Table 5.9. Hypothetical motorcycle tire FMEA 

Controlled 
factors and 
responses 

Potential 
failure  
modes 

Potential failure 
effects 

Se
ve

rit
y 

Potential causes 

O
cc

ur
re

nc
e 

Current 
control 

D
et

ec
tio

n 
R

PN
 

Rubber 
width Implosion 

Transportation 
failure, possible loss 

of business 
6

Improper pressure 
requirements by 

motorcycle 
5 Visual, 

experience 7 210 

Bead 
thickness 

(mm) 

Tire 
sloughing 

while riding 

Transportation 
failure, possible loss 

of business 
7 Too much rider 

leaning 6 Safety 
training 6 252 

PSI capacity Explosion 
Transportation 

failure, possible loss 
of business 

6
Improper pressure 
requirements by 

motorcycle 
7 Visual, 

experience 8 336 

Tire height 
(mm) 

Compression 
leading to 
implosion 

Transportation 
failure, possible loss 

of business 
5 Aggressive rider 4 Engine 

regulation 8 160 

 
22. If the system were changed such that it would be nearly impossible for the 

explosion failure mode to occur (occurrence = 1) and no other failure mode 
was affected, the highest priority factor or response to focus on would be: 

a. Rubber width 
b. Bead thickness 
c. PSI capacity 
d. Tire height 

 
23. If the system were changed such that detection of all issues was near perfect 

and no other issues were affected (detection = 1 for all failure modes), the 
lowest priority factor or response to focus on would be: 

a. Rubber width 
b. Bead thickness 
c. PSI capacity 
d. Tire height 

 
24. Critique the toddler FMEA analysis, raising at least two issues of possible 

concern. 
 
25. Which of the following is the most complete and correct? 
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a. FMEA is primarily relevant for identifying non-value added 
operations. 

b. Both C&E and FMEA activities generate prioritized lists. 
c. Process mapping helps identify cause and effect relationships. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
26. According to the chapter, how are lean and six sigma related? 

 
27. Apply process mapping (without the steps that are only for value stream 

mapping) to a system that you might improve as a student project. This system 
must involve at least five operations. 
 

28. According to the chapter, what is the central principle of lean manufacturing. 
 
29. List four techniques specifically designed to identify and eliminate non-value-

added steps in processes. 
 
30. Describe a possible application of 5S to your room where you live. 
 
31. Perform Steps 3 and 4 to the system identified in solving the previous problem 

to create a process map of an ideal future state. Assume that sufficient 
resources are available to eliminate all non-value added operations.  

 
32. Describe the hypothetical application of lean sigma to improve operations in a 

coffee show. 
 
33. Discuss the five steps for theory of constraints in relation to your own life. 
 
34. What is the primary purpose of spaghetti diagrams? 
 

35. Describe the hypothetical application of poka-yoke to a problem in your own 
life. 
 

36. How do spaghetti diagrams differ from value stream maps?   
 

37. Table 5.10 and Figure 5.7 describe operations and a handmade baseball bat 
manufacturer. The company receives blocks of wood ready for turning. 
Analyze the operations using a spaghetti diagram. Assume that materials 
arrive at the end of the dock ramp.  
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Table 5.10. Bat routing 

Black with natural handle bat routing 
Routing 
location 

Location Explanation  

1 Receive Unpack from truck 
2 Sort/storage Sort by size and store accordingly 
3 Turning Turn to specifications 
4 Sort/storage Put in turned area by sizes 
5 Painting (seal) Seal bat  
6 Painting (dry) 20 min 
7 Painting (paint) Paint head of bat  
8 Painting (dry) 25 min 
9 Painting (logo)  Paint company logo  
10 Painting (dry) 15 min 
11 Sort/storage Put in finished bat selves by size 
12 Sales floor Display where appropriate 

 

 
Figure 5.7. Bat facility layout 
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38.   Calculate the TTD and travel time related to the previous problem. The 
distances are given in Table 5.11. Assume that receiving starts at the dock. 

 
Table 5.11. Bat facility distances 

Black with natural handle bat routing 
Routing 
location 

Location Distance to next location (ft) 

1 Receive 100 
2 Sort/storage 150 
3 Turning 145 
4 Sort/storage 115 
5 Painting (seal) 50 
6 Painting (dry) 50 
7 Painting (paint) 50 
8 Painting (dry) 50 
9 Painting (logo)  50 
10 Painting (dry) 115 
11 Sort/storage 75 
12 Sales floor x 

 
39.  Propose layout changes and show calculations to justify your changes related 

to the previous problems. 
 
40. Table 5.12 and Figure 5.8 describe an alternative manufacturing process for 

the handmade baseball bat manufacturer. Analyze the alternative process using 
a spaghetti diagram. Assume that receiving starts at the dock. 

 
Table 5.12. Bat facility 2 

Black with natural handle bat routing 
Routing 
location 

Location Explanation  

1 Receive Unpack from truck 
2 Sort/storage Sort by size and store accordingly 
3 Cutting Cut to proper size 
4 Sort/storage By size in just in area 
5 Turning Turn to specifications 
6 Sort/storage Put in turned area by sizes 
7 Cutting Cut off ends where lathe held bat 
8 Painting (seal) Seal bat (waits to dry in seal area) 
9 Painting (paint) Paint head of bat (waits to dry in paint area. 
10 Cutting Sand after first coat 
11 Painting (logo)  Paint company logo  
12 Sort/storage Put in finished bat sleves by size 
13 Sales floor Display where appropriate 
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Figure 5.8. Bat facility layout 2 

41. Calculate the TTD and travel time related to the previous problem. The 
distances are given in Table 5.13. Assume that receiving starts at the dock. 

 
Table 5.13. Bat facility 2 distances  

Black with natural handle bat routing 
Routing location Location Distance to next location (ft) 

1 Receive 100 
2 Sort/storage 75 
3 Cutting 75 
4 Sort/storage 150 
5 Turning 150 
6 Sort/storage 75 
7 Cutting 115 
8 Painting (seal) 50 
9 Painting (paint) 115 

10 Cutting 115 
11 Painting (logo) 115 
12 Sort/storage 75 
13 Sales floor x 

 
42. Propose layout changes and show calculations to justify your changes for the 

bat company. 
 
43. Identify a local business and describe how lean sigma tools might help it 

improve its operations. 



148      Introduction to Engineering Statistics and Lean Sigma  

References 

Banks J, Carson JS, Nelson NB (2000) Discrete-Event System Simulation, 3rd edn. 
Pearson International, Upper Saddle River, NJ 

Hagg H, Suskovich D, Workman-Germann J, Scachitti S, Hudson B, Swarts J, Vanni C 
(2007) Adaptation of Lean Methodologies for Healthcare Applications. Purdue 
Libraries, RCHE Publications 

Irani SA, Zhang H, Zhou J, Huang H, Udai TK, Subramanian S (2000) Production 
Flow Analysis and Simplification Toolkit (PFAST). International Journal of 
Production Research 38:1855–1874 

Imai, M (1997) Gemba Kaizen: A Commonsense Low-cost Approach to Management. 
McGraw-Hill Professional, New York 

Law A, Kelton WD (2000) Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, 
New York 

Liker J (ed) (1998) Becoming Lean: Inside Stories of U.S. Manufacturers. Productivity 
Press, Portland, OR 

Shigeo S (1989) A Study of the Toyota Production System. Productivity Press, New 
York  

Suzaki K (1987) The New Manufacturing Challenge. Simon & Schuster, New York 
Womack JP, Jones DT, Roos D (1991) The Machine that Changed the World: The 

Story of Lean Production. Harper-Business, New York  
Womack JP, Jones DT (1996) Lean Thinking. Simon & Schuster, New York 
Womack JP, Jones DT (1999) Learning to See, Version 1.2. Lean Enterprises Instititute 

Incorporated 
 



 

6 

Improve or Design Phase 

6.1  Introduction 

In Chapter 5, methods were described with goals that included clarifying the input-
output relationships of systems. The purpose of this chapter is to describe methods 
for using the information from previous phases to tune the inputs and develop 
tentative recommendations. The phrase “improvement phase” refers to the 
situation in which an existing system is being improved. The phrase “design 
phase” refers to the case in which a new product is being designed.  

The recommendations derived from the improve or design phases are generally 
considered tentative. This follows because usually the associated performance 
improvements must be confirmed or verified before the associated standard 
operating procedures (SOPs) or design guidelines are changed or written.   

Here, the term “formality” refers to the level of emphasis placed on data and/or 
computer assistance in decision-making. The methods for improvement or design 
presented in this chapter are organized by their level of formality. In cases where a 
substantial amount of data is available and there are a large number of potential 
options, people sometimes use a high level of formality and computer assistance. 
In other cases, less information is available and/or a high degree of subjectivity is 
preferred. Then “informal” describes the relevant decision-making style. In 
general, statistical methods and six sigma are associated with relatively high levels 
of formality.  

Note that the design of experiments (DOE) methods described in Chapter 5 and 
in Part II of this book are often considered to have scope beyond merely clarifying 
the input-output relationships. Therefore, other books and training materials 
sometimes categorize them as improvement or design activities. The level of 
formality associated with DOE-supported decision-making is generally considered 
to be relatively high. 

This section begins with a discussion of informal decision-making including 
so-called “seat-of-the-pants” judgments. Next, moderately formal decision-
making is presented, supported by so-called “QFD House of Quality,” which 
combines the results of benchmarking and C&E matrix method applications. 
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Finally, relatively formal “optimization” and “operations research” approaches 
are briefly described. Part III of this book describes these topics in greater detail. 

6.2  Informal Optimization 

It is perhaps true that the majority of human decisions are made informally. It is 
also true that formality in decision processes generally costs money and time and 
may not result in improved decisions. The main goals of this book are to make 
available to users relatively formal methods to support decision-making and to 
encourage people to use these methods.  

With continual increases in competitive pressures in the business world, 
throrough investigation of options and consideration of various issues can be 
necessary to achieve profits and/or avoid bankruptcy. Part III of this book reviews 
results presented in Brady (2005) including an investigation of 39 six sigma 
projects at a Midwest company over two years. Every project decision process 
involved a high degree of formality. Also, approximately 60% of projects showed 
profits, average per project profits exceeded $140,000, and some showed 
extremely high profits. 

The degree of formality varies among informal methods. The phrase 
“anecdotal information” refers to ideas that seem to be supported by a small 
number of stories, some of which might be factual. “Seat-of-the-pants” decision-
making uses subjective judgments, potentially supported by anecdotal information, 
to propose new system inputs or designs. Recommendations from seat-of-the-pants 
approaches are rarely accompanied by any objective empirical conformation of 
improvement.  

Relatively formal approaches involve subjective decision-making supported by 
the generation of tables or plots. For example, a cause & effects matrix might be 
generated and encourage the addition of new features to a software product design. 
Since no computers were used to systematically evaluate a large number of 
alternatives and no data collection process was used to confirm the benefits, this 
process can still be regarded as informal. The following example illustrates 
informal decision-making supported by a formal data collection and display 
method. 

Example 6.2.1  High Vacuum Aluminum Welds 

Question: At one energy company, dangerous substances are stored in high 
vacuum aluminum tubes. The process to weld aluminum produces a non-negligible 
fraction of non-conforming and potentially defective welds. Develop tentative 
recommendations for process and measurement system design changes supported 
by the hypothetical FMEA shown in Table 6.1. Assume that engineers rate the 
detection of complete X-ray inspection as a “2”. 
 
Answer: An engineer at the energy company might look at Table 6.1 and decide to 
implement complete inspection. This tentative choice can be written x1 = complete 
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inspection. With this choice, fractures caused by porosity might still cause 
problems but they would no longer constitute the highest priority for improvement. 

Table 6.1. Hypothetical FMEA for aluminum welding process in energy application 

Failure mode Potential 
effect 

Se
ve

rit
y 

Potential 
cause 

O
cc

ur
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e 

Current 
control 

D
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ec
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Porosity caused 
fracture 

Hazardous 
leakage 10 Dirty metal 3 Partial X-ray 

and on-line 5 150 

Bead shape 
caused frac. 

Hazardous 
leakage 10 Fixturing 1 Visual 

inspection 1 10 

Contamination 
of vacuum 

Significant 
expense 4 Spatter 4 Visual and 

mirror 4 64 

Joint distortion Production 
delays 3 Fixturing 2 Visual 1 6 

 
The next example illustrates a deliberate choice to use informal methods even 

when a computer has assisted in identifying possible input settings. In this case, the 
best price for maximizing expected profits is apparently known under certain 
assumptions. Yet, the decision-maker subjectively recommends different inputs. 

Example 6.2.2  Spaghetti Meal Revisited 

Question: Use the DOE and regression process described in the example in 
Chapter 5 to support an informal decision process. 
 
Answer: Rather than selecting a $12 menu price for a spaghetti dinner because this 
choice formally maximizes profit for this item, the manager might select $13. This 
could occur because the price change could fit into a general strategy of becoming 
a higher “class” establishment. The predicted profits indicate that little would be 
lost from this choice. 

6.3  Quality Function Deployment (QFD) 

The method “Quality Function Deployment” (QFD) is a popular formal approach 
to support what might be called moderately formal decision-making. QFD involves 
creating a full “House of Quality” (HOQ), which is a large matrix that contains 
much information relevant to decision-making. This HOQ matrix constitutes an 
assemblage of the results of the benchmarking and cause & effect matrices 
methods together with additional information. Therefore, information is included 
both on what makes customers happy and on measurable quantities relevant to 
engineering and profit maximization. The version of QFD presented here is 
inspired by “enhanced QFD” in Clausing (1994 pp. 64–71). 
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Algorithm 6.1. Quality function deployment (QFD) 

 
Example 6.3.1  Arc Welding Process QFD 

Question: Interpret the information in Table 6.2 and make recommendations. 
 
Answer: A reasonable set of choices in this case might be to implement all of the 
known settings for Company 3. This would seem to meet the targets set by the 
engineers. Then, tentative recommendations might be: x1 = 40, x2 = 9. x3 = 5, x4 = 
15, x5 = 2.5, x6 = 8, x7 = 19, x8 = 0.8, x9 = 9.7, x10 = 1.0, x11 = 3.0, x12 = 23, x13 = 
Yes, x14 = Yes, and x15 = 1.5, where the input vector is given in the order of the 
imputs and outputs in Table 6.2. Admittedly, it is not clear that these choices 
maximize the profits, even though these choice seem most promising in relation to 
the targets set by company engineers and management. 

 
In the preceding example, the choice was made to copy another company to the 

extent possible. Some researchers have provided quantitative ways to select 
settings from QFD activities; see Shin et al. (2002) for a recent reference. These 
approaches could result in recommendations having settings that differ from all of 
the benchmarked alternatives. Also, decision-makers can choose to use QFD 
simply to aid in factor selection in order to perform followup design of 
experiments method applications or to make sure that a formal decision process is 
considering all relevant issues. One of the important benefits of applying QFD to 
support decision-making is increasing confidence that the project team has 
thoroughly accounted for many types of considerations. Even when applying QFD, 
information can still be incomplete, making it unadvisable to copy best in-class 
competitors without testing and/or added data collection. 

 

Step 1.  Perform the QFD benchmarking method described in Chapter 4 in the 
measurement phase. 

Step 2.  Perform the QFD cause & effect matrix method described in Chapter 5 in 
the analysis phase. 

Step 3.  Consult engineers to set default targets for the relevant engineering outputs 
Y1,…,Yq and certain inputs, x1,…,xm.  In some cases, inputs will not have 
targets. In other cases, inputs such as production rate of a machine are also 
outputs with targets, e.g., machine speed in welding.  These target numbers 
are entered below entries from the benchmarking table in the columns 
corresponding to quantitative output variables. 

Step 4.  (Optional) Poll engineers informally estimate the correlations between the 
process inputs and outputs. These numbers form the “roof” of the House of 
Quality, but may not be needed if DOE methods have already established 
these relationships using real data from prototype systems. 

Step 5.  Inspect the diagram and revise the default input settings subjectively. If one 
of the companies dominates the ratings, consider changing the KIV factor 
settings, particularly those with highest factor rating numbers, to emulate 
that company. 



  Improve or Design Phase      153 

Table 6.2. An example of the House of Quality 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

C
ustom

er criterion

 Customer importance( R )

 Travel speed (ipm)

 Weld area(WFS/TS)

 Trip-to-work dist. (mm)

 Wire diameter (mm)

 Gas type (%CO2)

 Travel angle (º)

 Fixture average offset (mm)

 Fixture average gap(mm)

 Initial flatness(mm)

 Plate thickness(mm)

 Arc length (voltage)

 Palletized or not

 Heating pretreatment

 Flatness of support (cm)

 %Meeting AVVS specs

 Company 1

 Company 2

 Company 3

Incidence crevices (undercut) 

5

2

10

9

2

10

2

6

3

1

1

7

1

2

2

10

3.3

4.0

8.0

Q
uality of the surface (porosity) 

8

9

3

2

7

1

6

9

8

4

10

6

4

1

7

10

5.0

5.0

5.3

Incidence of joint leakage (fusion) 

10

5

10

10

4

2

2

9

8

10

2

1

1

5

4

10

6.0

9.3

8.3

A
verage strength of joints (penetration) 

9

10

10

9

2

2

2

6

7

5

5

6

3

1

5

8

9.0

9.0

9.0

Excessive fusion/holes (m
elt through)

3

9

5

4

1

1

1

1

2

10

9

8

2

2

2

10

6.0

8.0

9.0

Incidence of cracks (cracks) 
5

3

2

1

2

8

1

5

6

5

1

8

1

2

2

10

9.0

9.7

10.0

Incidence of H
A

Z cracks (H
A

Z) 

4

2

4

2

1

1

1

5

5

9

7

8

3

2

2

10

8.0

9.0

9.0

Incidence of buckling (buckling) 

7

10

9

2

3

1

10

9

5

3

3

5

1

1

9

3

4.0

4.7

7.0

Incidence of unsighty spatter (spatter) 

5

8

10

8

3

1

5

4

7

2

2

1

1

6

3

7

8.3

8.0

7.7

O
ut-of-plane distortion (distortion) 

10

7

10

10

10

2

8

9

10

8

8

10

3

9

8

3

3.0

4.0

7.0

Factor rating num
ber

(F' ) 

452

518

421

277

175

283

467

448

384

321

383

139

228

333

508

C
om

pany 1 

35.0

8.0

15.0

2.0

0.1

15.0

1.1

0.9

1.1

2.0

20.0

No

No

3.5

15.0

C
om

pany 2 

42.0

9.2

15.0

2.0

0.0

0.0

0.9

1.0

1.2

2.0

19.0

No

No

4.0

10.0

C
om

pany 3 

40.0

9.5

15.0

2.5

0.1

10.0

NA

NA

1.0

2.0

23.0

Yes

Yes

1.5

Na

Targets

55

-

-

2.5

-

-

0.5

0.5

0.8

-

-

-

No

1.5

5
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6.4  Formal Optimization 

In some situations, people are comfortable with making sufficient assumptions 
such that their decision problems can be written out very precisely and solved with 
a computer. For example, suppose that a person desires to maximize the profit, 
g(x1), from running a system as a function of the initial investment, x1. Further, 
suppose one believes that the following relationship between profit and x1 holds 
g(x1) = –11 + 12x1 –  2x1

2  and that one can only control x1 over the range from x1 
= 2 to x1 = 5. Functional relationships like g(x1) = –11 + 12x1 –  2x1

2  can be 
produced from regression modeling potentially derived from applying design of 
experiments. 

The phrase “optimization solver” refers to the approach the computer uses to 
derive recommended settings. In the investment example, it is possible to apply the 
Excel spreadsheet solver with default settings to derive the recommended initial 
investment. This problem can be written formally as the following “optimization 
program” which constitutes a precise way to record the relevant problem: 

 
Maximize: g(x1) = –11 + 12x1 –  2x1

2   (6.1) 
Subject to: x1 ∈ [2,5] 
 

where x1 ∈ [2,5] is called a “constraint” because it limits the possibilities for x1. It 
can also be written 2 ≤ x1 ≤ 5.  

The term “optimization formulation” is synonymous with optimization 
program. The term “formulating” refers to the process of transforming a word 
problem into a specific optimization program that a computer could solve. The 
study of “operations research” focuses on the formulation and solutions of 
optimization programs to tune systems for more desirable results. This is the study 
of perhaps the most formalized decision processes possible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.1. Screen shot showing the application of the Excel solver 
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Figure 6.1 shows the application of the Excel solver to derive the solution of 
this problem, which is x1 = 3.0. The number 3.0 appears in cell “A1” upon pressing 
the “Solve” button. To access the solver, one may need to select “Tools”, then 
“Add-Ins…”, then check the “Solver Add-In” and click OK. After the Solver is 
added in, the “Solver…” option should appear on the “Tools” menu.  

The term “optimal solution” refers to the settings generated by solvers when 
there is high confidence that the best imaginable settings have been found. In the 
problem shown in Figure 6.2, it is clear that x1 = 3.0 is the optimal solution since 
the objective is a parabola reaching its highest value at 3.0. 

Parts II and III of this book contain many examples of optimization 
formulations. In addition, Part III contains computer code for solving a wide 
variety of optimization problems. The next example illustrates a real-world 
decision problem in which the prediction models come from an application of 
design of experiments (DOE) response surface methods (RSM). This example is 
described further in Part II of this book. It illustrates a case in which the settings 
derived by the solver were recommended and put into production with largely 
positive results. 

Example 6.4.1  Snap Tab Formal Optimization 

Question: Suppose a design team is charged with evaluating whether plastic snap 
tabs can withstand high enough pull-apart force to replace screws. Designers can 
manipulate design inputs x1, x2, x3, and x4 over allowable ranges –1.0 to 1.0. These 
inputs are dimensions of the design in scaled units. Also, a requirement is that each 
snap tab should require less than 12 lb (386 N). From RSM, the following models 
are available for pull-apart force (yest,1) and insertion force (y est,2) in pounds: 
yest,1(x1, x2, x3, x4) = 72.06 + 8.98 x1 + 14.12 x2 + 13.41 x3 + 11.85 x4 + 8.52 x1

2 – 
6.16 x2

2 + 0.86 x3
2 + 3.93 x1 x2 – 0.44 x1x3 – 0.76 x2x3   

y est,2(x1, x2, x3, x4) = 14.62 + 0.80 x1 + 1.50 x2 – 0.32 x3 – 3.68 x4 – 0.45 x1
2 – 1.66x3

2 

+ 7.89 x4
2 – 2.24 x1 x3 – 0.33 x1 x4 + 1.35 x3 x4.  

Formulate the relevant optimization problem and solve it. 
 
Answer: The optimization formulation is: 

Maximize:  yest,1(x1, x2, x3, x4) 
Subject to:   yest,2(x1, x2, x3, x4) ≤ 12.0 lb. 

yest,1(x1, x2, x3, x4) = 72.06 + 8.98 x1 + 14.12 x2 + 13.41 x3 + 11.85 x4 + 8.52 x1
2     

– 6.16 x2
2 + 0.86 x3

2 + 3.93 x1 x2 – 0.44 x1x3 – 0.76 x2x3   
y est,2(x1, x2, x3, x4) = 14.62 + 0.80 x1 + 1.50 x2 – 0.32 x3 – 3.68 x4 – 0.45 x1

2 – 1.66x3
2 

+ 7.89 x4
2 – 2.24 x1x3 – 0.33 x1 x4 + 1.35 x3 x4.  

–1.0 ≤ x1, x2, x3, x4≤ 1.0 
The solution derived using a standard spreadsheet solver was x1 = 1.0, x2 = 0.85, x3 
= 1.0, and x4 = 0.33.  

 
Note that plots of the objectives and constraints can aid in building human 

appreciation of the solver results. People generally want more than just a 
recommended solution or set of system inputs. They also want some appreciation 
of how sensitive the objectives and constraints are to small changes in the 
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recommendations. In some cases, plots can spot mistakes in the logic of the 
problem formulation or the way in which data was entered into the solver.  

Figure 6.2 shows a plot of the objective contours and the insertion force 
constraint for the snap tab optimization example. Note that dependence of 
objectives and constraints can only be plotted as a function of two input factors in 
this way. The plot shows that a conflict exists between the goals of increasing pull-
apart forces and decreasing insertion forces. 
 
 

 
 

 
 

 
             x4 
 
 
 
 
 
 
 
 
 
 
Figure 6.2. The insertion force constraint on pull force contours with x1=1 and x3=1 

An important concern with applying formal optimization is that information 
requirements are often such that all relevant considerations cannot be included in 
the formulation. For example, in the restaurant problem there was no obvious way 
to include into the formulation information about the overall strategy to raise 
prices. On the other hand, the information requirements of applying formal 
optimization can be an advantage. They can force people from different areas in 
the organization to agree on the relevant assumptions and problem data. This 
exercise can encourage communication that may be extremely valuable. 

One way to account for additional considerations is to add constraints to 
formulations. These added constraints can force the optimization solver to avoid 
solutions that are undesirable because of considerations not included in the 
formulation. In general, some degree of informality is needed in translating solver 
results into recommended design inputs.   

6.5  Summary 

This chapter describes methods and decision-processes for generating tentative 
recommended settings for system inputs. The methods range from informal seat-

Optimal X
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70 
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of-the-pants decision-making based on anecdotal evidence to computer-assisted 
formal optimization.  

The method of quality function deployment (QFD) is introduced. QFD 
constitutes an assemblage of benchmarking tables (from Chapter 4), cause & 
effects matrices (from Chapter 5), and additional information from engineers. The 
term “House of Quality” (HOQ) was introduced and used to describe the full QFD 
matrices. Inspection of the HOQ matrices can help decision-makers subjectively 
account for a variety of considerations that could potentially influence design input 
selection.  

Examples of decision processes in this chapter include subjective assessments 
informed by inspecting failure mode and effects analysis (FMEA), quality function 
deployment (QFD) tables, and regression model predictions. Also, more formal 
approached based on “optimization solver” results are also described together with 
possible limitations. 

While decision processes range in the degree of formality involved, the end 
product is the same. The results are tentative recommendations for system inputs 
pending validation from the “confirm” or “verify” project phase. In general, this 
validation is important to examine before the standard operating procedures (SOPs) 
and/or design guidelines are changed.  

Problems 

In general, pick the correct answer that is most complete. 
 
1. According to the chapter, recommendations from the improve phase are: 

a. Necessarily derived from formal optimization 
b. Tentative pending empirical confirmation or verification 
c. Derived exclusively from seat-of-the-pants decision-making 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

2. According to this chapter, the study of the most formal decision processes is 
called: 

a. Quality Function Deployment (QFD) 
b. Optimization solvers 
c. Operations Research (OR) 
d. Theory of Constraints (TOC) 
e. Design of Experiments (DOE) 
 

3. Management of a trendy leather goods shop decides upon a 250% markup on 
handbags using no data and judgment only. This represents: 

a. Formal decision-making 
b. A House of Quality application 
c. Anecdotal information about the retail industry 
d. None of the above is correct. 
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4. Which of the following is correct and most complete? 
a. Seat-of-the-pants decision-making is rarely (if ever) supported by 

anecdotal information. 
b. Inspecting a HOQ while making decisions is moderately formal. 
c. Performing DOE and using a solver to generate recommendations is 

informal. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Questions 5–7 are based on Table 6.3. 
 
5. Which company seems to dominate in the ratings? 

a. Company 1 
b. Company 2 
c. Company 3 
d. None 
 

6. Which of the setting changes for Company 1 seems most supported by the 
HOQ? 

a. Change the area used per page to 9.5 
b. Change the arm height from 2 m to 1 m 
c. Change to batched production (batched or not set to yes) 
d. Change paper thickenss to 1 mm 
 

7. Which of the following is correct and most complete? 
a. Emulating the best-in-class competitor in the HOQ might not work. 
b. The customer ratings might not be representative of the target 

population. 
c. The HOQ can help in picking KIVs and KOVs for a DOE 

application. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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Table 6.3. Hypothetical HOQ for paper airplane design 

Customer criterion 
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C
om

pa
ny

 2
 

C
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 3
 

Paper failure at fold 
(ripping) 4 2 4 8 3 1 2 1 4 1 3.33 4 8 

Surface roughness 
(crumpling) 2 4 1 6 2 1 2 1 5 2 5 5 5.33 

Immediate flight 
failure (falls) 8 5 3 4 2 2 1 2 1 1 8 7.66 8.33 

Holes in wings 
(design flaw) 6 7 8 6 2 2 1 1 1 1 6 8 9 

Wings unfold 
(flopping) 5 1 7 6 5 1 1 2 1 2 9 9.66 10 

Ugly appearance 
(aesthetics) 9 2 9 8 2 1 1 1 1 1 3 4 7 

Factor rating 
number F' - 121 206 214 87 48 40 47 54 41   

Company 1  - 35 8 15 2 2.00% 15 2 2 No    

Company 2  - 42 9.2 12 2 0.10% 0 1 2 No    

Company 3  - 42 9.5 18 3 8.00% 10 2 2 Yes    

 
8. List two benefits of applying QFD compared with using only formal 

optimization. 
 
9. In two sentences, explain how changing the targets could affect supplier 

selection. 
 
10. Create an HOQ with at least four customer criterion, two companies, and three 

engineering inputs. Identify the reasonable recommended inputs. 
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Question 11 refers to the following problem formulation: 
Maximize:  g(x1) = –5 + 6x1 – 4x1

2 + 0.5x1
3 

Subject to:  x1 ∈  [–1,6]. 
 
11. The optimal solution for x1 is (within the implied uncertainty) 

a. 3.0 
b. –1.0 
c. 0.9 
d. 6.0 
e. None of the above is correct. 

 
Questions 12 and 13 refer to the following problem formulation:  

Maximize:  g(x1) = 0.25 + 2 x1 – 3 x1
2 + 0.5 x1

3 
Subject to:  x1 ∈  [–1,1]. 

 
12. The optimal solution for x1 is (within the implied uncertainty) 

a. –1.0 
b. 0.2 
c. 0.4 
d. 0.6 
e. 1.0 
 

13. The optimal objective is (within the implied uncertainty) 
a. –2.5 
b. 0.2 
c. 0.5 
d. 0.6 
e. 1.2 
 

14. Formulate and solve an optimization problem from your own life. State all 
your assumptions in reasonable detail. 

 
15. Formal optimization often requires: 

a. Subjectively factoring considerations not included in the formulation 
b. Clarifying as a group the assumptions and data for making decisions 
c. Plotting the objective function in the vicinity of the solutions for 

insight 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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7 

Control or Verify Phase 

7.1  Introduction 

If the project involves an improvement to existing systems, the term “control” is 
used to refer to the final six sigma project phase in which tentative 
recommendations are confirmed and institutionalized. This follows because 
inspection controls are being put in place to confirm that the changes do initially 
increase quality and that they continue to do so. If the associated project involves 
new product or service design, this phase also involves confirmation. Since there is 
less emphasis on evaluating a process on an on-going basis, the term “verify” 
refers evaluation on a one-time, off-line basis.  

Clearly, there is a chance that the recommended changes will not be found to be 
an improvement. In that case, it might make sense to return to the analyze and/or 
improvement phases to generate new recommendations. Alternatively, it might be 
time to terminate the project and ensure that no harm has been done. In general, 
casual reversal of the DMAIC or DMADV ordering of activities might conflict 
with the dogma of six sigma. Still, this can constitute the most advisable course of 
action. 

Chapter 6 presented methods and decision processes for developing 
recommended settings. Those settings were called tentative because in general, 
sufficient evidence was not available to assure acceptability. This chapter describes 
two methods for thoroughly evaluating the acceptability of the recommended 
system input settings.  

 The method of “control planning” refers to a coordinated effort to guarantee 
that steady state charting activities will be sufficient to monitor processes and 
provide some degree of safeguard on the quality of system outputs. Control 
planning could itself involve the construction of gauge R&R method applications 
and statistical process control charting procedures described in Chapter 4. 

The method of “acceptance sampling” provides an economical way to 
evaluate the acceptability of characteristics that might otherwise go uninspected. 
Both acceptance sampling and control planning could therefore be a part of a 
control or verification process.  
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Overall, the primary goal of the control or verify phase is to provide strong 
evidence that the project targets from the charter have been achieved. Therefore, 
the settings should be thoroughly tested through weeks of running in production, if 
appropriate. Control planning and acceptance sampling can be useful in this 
process. Ultimately, any type of strong evidence confirming the positive effects of 
the project recommendations will likely be acceptable. With the considerable 
expense associated with many six sigma projects, the achievement of measurable 
benefits of new system inputs is likely. However, a conceivable, useful role of the 
control or verify phases is to determine that no recommended changes are 
beneficial and the associated system inputs should not be changed.  

Finally, the documentation of any confirmed input setting changes in the 
corporate standard operating procedures (SOPs) is generally required for 
successful project completion. This chapter begins with descriptions of control 
planning and acceptance sampling methods. It concludes with brief comments 
about appropriate documentation of project results. 

7.2  Control Planning 

The method of control planning could conceivably involve many of the methods 
presented previously: check sheets (Chapter 3), gauge R&R to evaluate 
measurement systems (Chapter 4), statistical process control (SPC) charting 
(Chapter 4), and failure mode & effects analysis (FMEA, Chapter 5).  

The phrase “critical characteristics” refers to key output variables (KOVs) 
that are deemed important enough to system output quality that statistical process 
control charting should be used to monitor them. Because significant cost can be 
associated with a proper, active implementation of control charting, some care is 
generally given before declaring characteristics to be critical. An FMEA 
application can aid in determining which characteristics are associated with the 
highest risks and therefore might be declared critical and require intense 
monitoring and inspection efforts. 

With respect to Step 6, a subjective evaluation of each chart is made as to 
whether it has the desired sensitivity and response times desired. Sensitivity relates 
to the proximity of the limits to each other; this determines how large the effects of 
assignable causes need to be for detection. If the limits are too wide, n should be 
increased. If the limits are needlessly close together, n might be reduced to save 
inspection costs. 

Also, if charts would likely be too slow to usefully signal assignable cause, the 
inpection interval, τ, should be decreased. Depending on the effects of assignable 
causes, it could easily take two or three periods before the chart generates an “out-
of-control” signal. For restaurant customer satisfaction issues, several weeks before 
alerting the local authority may be acceptable. Therefore, τ = 1 week might be 
acceptable. For manufacting problems in which scrap and rework are very costly, it 
may be desirable to know about assignable causes within minutes of occurrence. 
Then, τ = 30 min might be acceptable. 
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Algorithm 7.1. Control planning 

 
Note that after the control plan is created, it might make sense to consider 

declaring characertistics with exceedingly high Cpk values not to be critical. Non-
conformities for these characteristics may be so rare that monitoring them could be 
a waste of money.  

The following example illustrates a situation involving a complicated control 
plan with many quality characteristics. The example illustrates how the results in 
control planning can be displayed in tabular format. In the example, the word 
“quarantine” means to separate the affected units so that they are not used in 
downstream processes until after they are reworked. 

Example 7.2.1  Controlling the Welding of Thin Ship Structures 

Question 1: If the data in Table 7.1 were real, what is the smallest number of 
applications of gauge R&R (crossed) and statistical process control charting (SPC) 
that must have been performed? 
 
Answer 1: At least five applications of gauge R&R (crossed) and four applications 
of Xbar & R charting must have been done. Additionally, it is possible that a p-
chart was set up to evaluate and monitor the fraction of non-conforming units 
requiring rework, but the capability from that p-chart information is not included in 
Table 7.1. 
 
Question 2: Assuming no safety issues were involved, might it be advisable to 
remove of the characteristics from the “critical” list and save inspection costs? 

Step 1.  The engineering team selects a subset of the q process outputs to be 
“critical characteristics” or important quality issues. Again, these are 
system outputs judged to be necessary to inspect and monitor using control 
charting. 

Step 2.  The gauge capability is established for each of these critical characteristics, 
unless there are no doubts. The cycle of gauge R&R evaluation followed 
by improvements followed by repeated gauge R&R evaluation is iterated 
until all measurement systems associated with critical characteristics are 
considered acceptable.  

Step 3.  Specific responsibilities for investigating out-of-control signals are 
assigned to people for each critical characteristic (a “reaction plan”) and 
the chart types are selected. A check sheet might be added associated with 
multiple characteristics. 

Step 4. The sample sizes (ns) and periods between inspections (τ) for all 
characteristics are tentatively determined.  

Step 5.   The charts are set up for each of the q critical characteristics.   
Step 6.   The sample sizes are increased or decreased and the periods are adjusted 

for any charts found to be unacceptable. If a change is made, the start up 
period for the appropriate characteristic is repeated as needed. 

Step 7.  Evaluate and record the Cpk, process capability, and or sigma level (σL) of 
the process with the recommended settings. 
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Answer 2: Gauge R&R results confirm that penetration was well measured by the 
associated X-ray inspection. However, considering Cpk > 2.0 and σL > 6.0, 
inspection of that characteristic might no longer be necessary. Yes, removing it 
from the critical list might be warranted. 

Table 7.1. A hypothetical control plan for ship structure arc welding 

Critical 
quality or 

issue 

Measurement 
iechnique 

Control 
method 

% 
R&R Cpk Period (τ) Sample 

size (n) 
Reaction 

plan 

Fixture 
maximum 

gaps 
Caliper Xbar & R 

charting 12.5% 1.0 1 shift 6 Adjust & 
check 

Initial 
flatness 
(mm) 

Photo- 
grammetry 

Xbar & R 
charting 7.5% 0.8 1 shift 4 Adjust & 

check 

Spatter Visual 100% insp. 9.3% NA NA 100% Adjust 

Distortion 
(rms 

flatness) 

Photo- 
grammetry 

Xbar & R 
charting 7.5% 0.7 1 shift 4 Quarantine 

and rework 

Appearance Visual  
go-no-go 

p-charting 
& check 

sheet 

Seen 
as not 
needed

NA 100% 100% Notify shift 
supervisor 

Penetration 
depth (mm)

X-ray 
inspection 

Xbar & R 
charting 9.2% 2.1 1 shift 4 Notify shift 

supervisor 

 
Question 3: Suppose the p-chart shown in Table 7.1 was set up to evaluate and 
monitor rework. How could this chart be used to evaluate a six sigma project? 
 
Answer 3: The centerline of the p-chart is approximately 14%. This “process 
capability” number might be below the number established in the “measure phase” 
before the changes were implemented. An increase in process capability can be 
viewed as a tangible deliverable from a project. This is particularly true in the 
context of p-charting because rework costs are easily quantifiable (Chapter 2). 
 

Clearly, the exercise of control planning often involves balancing the desire to 
guarantee a high degree of safety against inspection costs and efforts. If the control 
plan is too burdensome, it conceivably might not be followed. The effort implied 
by the control plan in the above would be appropriate to a process involving 
valuable raw materials and what might be regarded as “high” demands on quality. 
Yet, in some truly safety critical applications in industries like aerospace, 
inspection plans commonly are even more burdensome. In some cases, complete or 
100% inspection is performed multiple times. 
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Figure 7.1. Follow-up SPC chart on total fraction non-conforming 

7.3  Acceptance Sampling 

The method of “acceptance sampling” involves the inspection of a small number 
of units to make decisions about the acceptability of a larger number of units. As 
for charting methods, the inspected entity might be a service rather than a 
manufactured unit. For simplicity, the methods will be explained in terms of units. 
Romig, working at Bell Laboratories in the 1920s, is credited with proposing the 
first acceptance sampling methods. Dodge and Romig (1959) documents much of 
the authors’ related contributions. 

Since not all units are inspected in acceptance sampling, acceptance sampling 
unavoidably involves risks. The method of “complete inspection” involves using 
one measurement to evaluate all units relevant to a given situation. Complete 
inspection might naturally be expected to be associated with reduced or zero risks. 
Yet often this is a false comparison. Reasons why acceptance sampling might be 
useful include: 

1.   The only trustworthy inspection method is “destructive” testing (Chapter 
4). Then complete inspection with non-destructive evaluation is not 
associated with zero risks and the benefits of inspection are diminishing. 
Also, complete inspection using destructive testing would result in zero 
units for sale. 

2. The alternative might be no inspection of the related quality characteristic. 
The term “quasi-critical characteristics” here refers to KOVs that might 
be important but might not be important enough for complete inspection. 
Acceptance sampling permits a measure of control for quasi-critical 
characteristics. 
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For these reasons, acceptance sampling can be used as part of virtually any 
system, even those requiring high levels of quality.  

The phrase “acceptance sampling policy” refers to a set of rules for 
inspection, analysis, and action related to the possible return of units to a supplier 
or upstream process. Many types of acceptance sampling policies have been 
proposed in the applied statistics literature. These policies differ by their level of 
complexity, cost, and risk trade-offs. In this book, only “single sampling” and 
“double sampling” acceptance sampling policies are presented. 

7.3.1  Single Sampling 

Single sampling involves a single batch of inspections followed by a decision 
about a large number of units. The units inspected must constitute a “rational 
subgroup” (Chapter 4) in that they must be representative of all relevant units. The 
symbols used to describe single sampling are: 

1.  N is the number of units in the full “lot” of all units about which 
acceptance decisions are being made. 

2.  n is the number of units inspected in the rational subgroup. 
3.  c is the maximum number of units that can be found to be non-conforming 

for the lot to be declared acceptable. 
4.  d is the number of non-conforming found from inspection of the rational 

subgroup. 
As for control charting processes, there is no universally accepted method for 

selecting the sample size, n, of the radical subgroup. In single sampling, there is an 
additional parameter c, which must be chosen by the method user.  

The primary risk in acceptance sampling can be regarded as accepting lots with 
large numbers of non-conformities. In general, larger samples sizes, n⇑, and tighter 
limits on the numbers non-conforming, c⇓, decrease this risk. In Chapter 10, theory 
is used to provide additional information about the risks to facilitate the selection 
of these constants.   

Algorithm 7.2. Single sampling 

  
Rejection of a lot generally means returning all units to the supplier or upstream 

sub-system. This return of units often comes with a demand that the responsible 
people should completely inspect all units and replace non-conforming units with 
new or reworked units. Note that the same inspections for an acceptance sampling 
policy might naturally fit into a control plan in the control phase of a six sigma 
process. One might also chart the resulting data on a p-chart or demerit chart.  

Step 1.  Carefully select n units for inspection such that you are reasonably 
confident that the quality of these units is representative of the quality of 
the N units in the lot, i.e., they constitute a rational subgroup. 

Step 2.  Inspect the n units and determine the number d that do not conform to 
specifications. 

Step 3.  If d > c, then the lot is rejected. Otherwise the lot is “accepted” and the d 
units found nonconforming are reworked or scrapped. 
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Example 7.3.1  Destructive Testing of Screws 

Question 1: Suppose our company is destructively sampling 40 welds from lots of 
1200 welds sent from a supplier. If any of the maximum sustainable pull forces are 
less than 150 N, the entire lot is shipped back to the supplier and a contractually 
agreed penalty is assessed. What is the technical description of this policy? 
 
Answer 1: This is single sampling with n = 40 and c = 0.  
 
Question 2: Is there a risk that a lot with ten non-conforming units would pass 
through this acceptance sampling control? 
 
Answer 2: Yes, there is a chance. In Chapter 10, we show how to calculate the 
probability under standard assumptions, which is approximately 0.7. An OC curve, 
also described in Chapter 10, could be used to understand the risks better. 

7.3.2  Double Sampling 

The “double sampling” method involves an optional second set of inspections if 
the first sample does not result in a definitive decision to accept or reject. This 
approach is necessarily more complicated than single sampling. Yet the risk verses 
inspection cost tradeoffs are generally more favorable.  

The symbols used to describe single sampling are: 
1. N is the number of units in the full “lot” of all units about which 

acceptance decisions are being made. 
2. n1 is the number of units inspected in an initial rational subgroup. 
3. c1 is the maximum number of units that can be found to be non-conforming 

for the lot to be declared acceptable after the first batch of inspections. 
4. r is the cut-off limit on the count non-conforming after the first batch of 

inspections. 
5. n2 is the number of units inspected in an optional second rational subgroup. 
6. c2 is the maximum number of units that can be found to be non-conforming 

for the lot to be declared acceptable after the optional second batch of 
inspections. 

 
As for single sampling, there is no universally accepted method for selecting 

the sample sizes, n1 and n2, of the radical subgroups. Nor is there any universal 
standard for selecting the parameters c1, r1, and c2. In general, larger samples sizes, 
n1⇑ and n2⇑, and tighter limits on the numbers non-conforming, c1⇓, r1⇓, and c2⇓, 
decrease the primary risks. In Chapter 10, theory is used to provide additional 
information about the risks to facilitate the selection of these constants.  
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Algorithm 7.3. Double sampling 

 
As in single sampling, rejection of a lot generally means returning all units to 

the supplier or upstream sub-system. This return of units often comes with a 
demand that the responsible people should completely inspect all units and replace 
non-conforming units with units that have been reworked or are new. The double 
sampling method is shown in Figure 7.2. Note that if c1 + 1 = r, then there can be at 
most one batch of inspection, i.e., double sampling reduces to single sampling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2. Flow-chart of double sampling method 

In general, if lots are accepted, then all of the items found to be non-
conforming must be reworked or scrapped. It is common at that point to treat all 
the remaining units in a similar way as if they had been inspected and passed. 

The selection of the parameters c1, c2, n1, n2, r, and d2 may be subjective or 
based on military or corporate policies. Their values have implications for the 

Inspect n1
d1 = #Nonconforming

d1 ≤ c1?

d1 > r?

Inspect n2
d2 = #Nonconforming

d1 + d2 ≤ c2?

“Reject” Lot
return lot upstream 

100% inspection and sorting

“Accept” Lot
rework or scrap d1 + d2 units

assume others conforms

Yes

Yes

Yes

No

No

No

Step 1.  Carefully select n1 units for inspection such that you are reasonably 
confident that the quality of these units is representative of the quality of 
the N units in the lot, i.e., inspect a rational subgroup.   

Step 2.   Inspect the n1 units and determine the number d1 that do not conform to 
specifications. 

Step 3.   If d1 > r, then the lot is rejected and process is stopped. If d1 ≤ c1, the lot is 
said to be accepted and process is stopped. Otherwise, go to Step 4. 

Step 4.  Carefully select an additional n2 units for inspection such that you are 
reasonably confident that the quality of these units is representative of the 
quality of the remaining N – n1 units in the lot, i.e., inspect another rational 
subgroup.  

Step 5.   Inspect the additional n2 units and determine the number d2 that do not 
conform to specifications.  

Step 6.  If d1 + d2 ≤ c2, the lot is said to be “accepted”. Otherwise, the lot is 
“rejected”.   
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chance that the units delived to the customer do not conform to specifications. 
Also, their values have implications for bottom-line profits. These implications are 
studied more thoroughly in Chapter 10 to inform the selection of specific 
acceptance sampling methods.  

Example 7.3.2  Evaluating Possible New Hires at Call Centers 

Question 1: Suppose a manager at a call center is trying to deterimine whether new 
hires deserve permanent status. She listens in on 20 calls, and if all except one are 
excellent, the employee converts to permanent status immediately. If more than 
four are unacceptable, the employee contract is not extended. Otherwise, the 
manager evaluates an additional 40 calls and requires that at most three calls be 
unacceptable. What method is the manager using? 
 
Answer 1: This is double sampling with n1 = 20, c1 = 1, r = 4, n2 = 40, c2 = 3.  
 
Question 2: How should the calls be selected for monitoring? 
 
Answer 2: To be representative, it would likely help to choose randomly which 
calls to monitor, for example, one on Tuesday morning, two on Wednesday 
afternoon, etc. Also, it would be desirable that the operator would not know the 
call is being evaluated. In this context, this approach generates a rational subgroup. 
 
Question 3: If you were an operator, would you prefer this approach to complete 
inspection? Explain. 
 
Answer 3: Intuitively, my approval would depend on my assessment of my own 
quality level. If I were sure, for example, that my long-run average was less than 
5% unacceptable calls, I would prefer complete inspection. Then my risk of not 
being extended would generally be lower. Alternatively, if I thought that my long-
run average was greater than 20%, double sampling would increase my chances of 
being extended. (Who knows, I might get lucky with those 20 calls.) 

7.4  Documenting Results 

A critical final step in these processes is the documentation of confirmed inputs 
into company standard operating procedures (SOPs). The system input settings 
derived through a quality project could have many types of implications for 
companies. If a deliverable of the project were input settings for a new product 
design, then the company design guide or equivalent documentation would need to 
be changed to reflect the newly confirmed results.  

If the project outputs are simply new settings for an existing process, the 
associated changes should be reflected in process SOPs. Still, improvement project 
recommendations might include purchasing recommendations related to the 
selection of suppliers or to design engineering related to changes to the product 



172      Introduction to Engineering Statistics and Lean Sigma  

design. These changes could require significant time and effort to be correctly 
implemented and have an effect.  

The phrase “document control” policies refers to efforts to guarantee that only 
a single set of standard operating procedures is active at any given time. When 
document control policies are operating, changing the SOPs requires “checking 
out” the active copy from a source safe and then simultaneously updating all active 
copies at one time.  

Finally, in an organization with some type of ISO certification, it is likely that 
auditors would require the updating of ISO documents and careful document 
control for cerfication renewal. Chapter 2 provides a discussion of SOPs and their 
roles in organizations. Ideally, the efforts to document changes in company SOPs 
would be sufficient to satisfy the auditors. However, special attention to ISO 
specific documentation might be needed. 

Example 7.4.1  Design Project Completion 

Question: A design team led by manufacturing engineers has developed a new 
type of fastener with promising results in the prototyping results. What needs to 
happen for adequate project verification? 
 
Answer: Since communication between production and design functions can be 
difficult, extra effort should be made to make sure design recommendations are 
entered correctly into the design guide. Also, a control planning strategy should 
provide confirmation of the quality and monetary benefits from actual production 
runs. Finally, the new fastener specifications must be documented in the active 
design guide, visible by all relevant divisions around the world. 

7.5  Summary 

This chapter describes two methods for assuring product quality: control planning 
and acceptance sampling. The control planning method might itself require several 
applications of the gauge R&R and statistical process control charting from 
Chapter 4. In control planning, the declaration of key output variables as being 
“critical quality characteristic” is generally associated with a need for both the 
evaluation of the associated measurement systems and statistical process control 
charting.  

Acceptance sampling constitutes a method to provide some measure of control 
on “quasi-critical” characteristics that might otherwise go uninspected. This 
chapter contains a description of two types of acceptance sampling methods: single 
sampling and double sampling. Double sampling is more complicated but offers 
generally more desirable risk-vs-inspection cost tradeoffs.  

Finally, the chapter describes how the goals of the control or verify phases are 
not accomplished until: (1) strong evidence shows the monetary savings or other 
benefits of the project; and (2) the appropriate comporate documentation is altered 
to reflect the confirmed recommended settings.  
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Problems 

In general, pick the correct answer that is most complete. 
 
1. According to the six sigma literature, a project for improving an existing 

system ends with which phase? 
a. Define 
b. Analyze 
c. Improve 
d. Verify 
e. Control 
 

2. The technique most directly associated with guaranteeing that all measurement 
equipment are capable and critical characteristics are being monitored is: 

a. Process mapping 
b. Benchmarking 
c. Design of Experiments (DOE) 
d. Control Planning 
e. Acceptance Sampling 
 

3. According to this chapter, successful project completion generally requires 
changing or updating: 

a. Standard operating procedures 
b. The portion of the control plan relating to gauge R&R 
c. The portion of the control plan relating to sample size selection 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

4. Which of the following is most relevant to cost-effective evaluation of many 
units? 

a. Benchmarking 
b. Control planning 
c. Acceptance sampling 
d. Design of Experiments (DOE) 
e. A reaction plan 
 

5. Which of the following is correct and most complete? 
a. Filling out each row of a control plan could require performing a 

gauge R&R. 
b. According to the text, reaction plans are an optional stage in control 

planning. 
c. All characteristics on blueprints are critical characteristics. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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6. The text implies that FMEAs and control plans are related in which way? 
a. FMEAs can help clarify whether characteristics should be declared 

critical. 
b. FMEAs determines the capability values to be included in the control 

plan. 
c. FMEAs determine the optimal reaction plans to be included in control 

plans. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Questions 7–9 derive from the paper airplane control plan in Table 7.2. 

Table 7.2. A hypothetical control plan for manufacturing paper airplanes 

Critical 
characteristic 

or issue 

Measurement 
technique 

Control 
method %R&R Cpk Period (τ) Sample 

size (n)
Reaction 

plan 

Surface 
roughness 

(crumpling)
Laser X-bar & R 7.8 2.5 1 shift 10 Adjust & 

re-check 

Unsightly 
appearance 
(aesthetics) 

Visual 
Check 

sheet, p-
chart 

20.4 0.4 2 shifts 100% Quarantine 
and rework 

Unfolding 
(flopping) 

Caliper  
stress test 

X-bar & R 10.6 1.4 0.5 shifts 5 Notify 
supervisor 

 
7. Assume budgetary considerations required that one characteristic should not 

be monitored. According to the text, which one should be declared not 
critical? 

a. Crumpling 
b. Aesthetics 
c. Flopping 
d. Calipers 
 

8. The above control plan implies that how many applications of gauge R&R 
have been applied? 

a. 0 
b. 1 
c. 2 
d. 3 
e. None of the above 
 

9. Which part of implementing a control plan requires the most on-going expense 
during steady state? 
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10. Complete inspection is (roughly speaking) a single sampling plan with: 
a. n = d 
b. N = c 
c. N = n 
d. c = d 
e. None of these describe complete inspection even roughly speaking. 
 

11. When considering sampling policies, the risks associated with accepting an 
undesirable lot grows with: 

a. Larger rational subgroup size 
b. Decreased tolerance of non-conformities in the rational subgroup 

(e.g., lower c) 
c. Increased tolerance of non-conformities in the overall lot (e.g., higher 

c) 
d. Decreased overall lot size 
e. None of the above 

 
For questions 12–13, consider the following scenario: 
 
Each day, 1000 screws are produced and shipped in two truckloads to a car 
manufacturing plant. The screws are not sorted by production time. To determine 
lot quality, 150 are inspected by hand. If 15 or more are defective, the screws are 
returned. 

 
12. Why is this single sampling rather than double sampling? 

a. The lost size is fixed. 
b. There is at most one decision resulting in possible acceptance. 
c. There are two occasions during which the lot might be rejected. 
d. 15 defective is not enough for an accurate count of non-conformities. 
e. Double sampling is preferred for large lot sizes. 
 

13. List two advantages of acceptance sampling compared with complete 
inspection. 

 
For Questions 14–16, consider the following scenario:  
 
Each shift, 1000 2’× 2’ sheets of steel enter your factory. Your boss wants to be 
confident that approximately 5% of the accepted incoming steel is non-
conforming. 

 
14. Which of the following is correct and most complete for single sampling? 

a. Acceptance sampling is too risky for such a tight quality constraint.  
b. Assuming inspection is perfect, n = 950 and c = 0 could ensure 

success. 
c. Assuming inspection is perfect, n = 100 and c = 2 might seem 

reasonable. 
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d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

15. Which of the following is correct and most complete? 
a. Gauge R&R might indicate that destructive sampling is necessary. 
b. It is not possible to create a p-chart using single sampling data. 
c. Double sampling necessarily results in fewer inspections than single 

sampling. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

16. Design a double sampling plan that could be applied to this problem. 
 

The following double-sampling plan parameters will be examined in questions 17–
18: N = 7500, n1 = 100, n2 = 350, c1 = 3, c2 = 7, and r = 6. 

 
17. What is the maximum number of units inspected, assuming the lot is accepted? 
 
18. What is the minimum number of units inspected? 
 
19. Why do recorded voices on customer service voicemail systems say, “This call 

may be monitored for quality purposes?” 
 
20. Which of the following is correct and most complete? 

a. Correct document control requires the implementation of control 
plans. 

b. Often, projects complete with revised SOPs are implemented 
corporation-wide. 

c. Documenting findings can help capture all lessons learned in the 
project. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

21. List and explain in order each of the five steps in an alternative to the DMAIC 
process. 

22. Suppose a manager at a call center is trying to determine whether new hires 
deserve permanent status. She listens in on 35 calls, and if all except 1 are 
excellent, the employee converts to permanent status immediately. If more 
than 4 are unacceptable, the employee contract is not extended. Otherwise, the 
manager evaluates an additional 45 calls and requires that at most 3 calls be 
unacceptable. What method is the manager using? And what are any n and c 
values that may apply? 

23. Suppose a company is destructively sampling 15 welds from lots of 800 welds 
sent from a supplier. If any of the maximum sustainable pull forces are less 
than 130 N, the entire lot is shipped back to the supplier and a contractually 
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agreed penalty is assessed. What is the technical description of this policy? 
And what are any n and c values that may apply? 

24. Compare and contrast the double sampling, single sampling, and full 
inspection approaches. List at least a single criterion that makes double 
sampling seem preferable to single sample and one that makes single sampling 
seem preferable. 

Reference 

Dodge HF, Romig HG (1959) Sampling Inspection Tables, Single and Double 
Sampling, 2nd edn. Wiley, New York 



 

8 

Advanced SQC Methods 

8.1  Introduction 

In the previous chapters several methods are described for achieving various 
objectives. Each of these methods can be viewed as representative of many other 
similar methods developed by researchers. Many of these methods are published in 
such respected journals as the Journal of Quality Technology, Technometrics, and 
The Bell System Technical Journal. In general, the other methods offer additional 
features and advantages.  

For example, the exponentially weighted moving average (EWMA) charting 
methods described in this chapter provide a potentially important advantange 
compared with Shewhart Xbar & R charts. This advantage is that there is generally 
a higher chance that the user will detect assignable causes associated with only a 
small shift in the continuous quality characteristic values that persists over time. 

Also, the “multivariate charting” methods described here offer an ability to 
monitor simultaneously multiple continuous quality characteristics. Compared with 
multiple applications of Xbar & R charts, the multivariate methods (Hoteling’s T 2  
chart) generally cause many fewer false alarms. Therefore, there are potential 
savings in the investigative efforts of skilled personnel. 

Yet the more basic methods described in previous chapters have “stood the test 
of time” in the sense that no methods exist that completely dominate them in every 
aspect. For example, both EWMA and Hotelling’s T 2  charting are more 
complicated to implement than Xbar & R charting. Also, neither provide direct 
information about the range of values within a subgroup.  

Many alternative versions of methods have been proposed to process mapping, 
gauge R&R, SPC charting, design of experiments, failure mode & effects analysis 
(FMEA), formal optimization, Quality Function Deployment (QFD), acceptance 
sampling, control planning. In this chapter, only two alternatives to Xbar & R 
charting are selected for inclusion, somewhat arbitrarily: EWMA and multivariate 
charting or Hoteling’s T 2  chart. 
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8.2  EWMA Charting for Continuous Data 

Roberts (1959) proposed “EWMA charting” to allow people to identify a certain 
type of assignable cause more quickly. The assignable cause in question forces the 
quality characteristic values to shift in one direction an amount that is small in 
comparison with the limit spacing on an Xbar chart. EWMA charting is relevant 
when the quality characteristics are continuous. Therefore, EWMA charting can be 
used in the same situations in which Xbar & R charting is used and can be applied 
based on exactly the same data as Xbar & R charts. 

Generally speaking, if assignable causes only create a small shift, Xbar & R 
charts might require several subgroups to be inspected before an out-of-control 
signal. Each of these subgroups might require a large number of inspections over a 
long time τ. In the same situation, an EWMA chart would likely identify the 
assignable cause in fewer subgroups, even if each subgroup involved fewer 
inspections. 

The symbols used in describing EWMA charting, (used in Algorithm 8.1) are: 
1. n is the number of units in a subgroup. Here, n could be as lows as 1.  
2. τ is the period of time between the inspection of successive subgroups. 
3. Xi,j refers to the ith quality characteristic value in the the jth time period.  
4. Xbar,j is the average of the n quality characteristic values for the jth time 

period.  
5. λ is an adjustable “smoothing parameter” relevant during startup. 

Higher values of λ make the chart rougher and decrease the influence 
of past observations on the current charted quantity. Here, λ = 0.20 is 
suggested as a default. 

6. Zi is the quantity plotted which is an exponentially weighted moving 
average. In period i – 1, it can be regarded as a forecast for period i. 

 
Generally, n is small enough that people are not interested in variable sample 

sizes. In the formulas below, quantities next to each other are implicitly multiplied 
with the “×” omitted for brevity. Also, “/” is equivalent to “÷”. The numbers in the 
formulas 3.0 and 0.0 are assumed to have an infinite number of significant digits. 

The phrase “EWMA chart” refers to the associated resulting chart. An out-of-
control signal is defined as a case in which Zj is outside the control limits. From 
then on, technicians and engineers are discouraged from making minor process 
changes unless a signal occurs. If a signal does occur, they should investigate to 
see if something unusual and fixable is happening. If not, they should refer to the 
signal as a false alarm. 

Note that a reasonable alternative approach to the one above is to obtain Xbarbar 
and σ0 from Xbar & R charting. Then, Zj and the control limits can be calculated 
using Equations 8.3 and 8.4 in Algorithm 8.1. 
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Algorithm 8.1. EWMA charting 

 
Example 8.2.1  Fixture Gaps Between Welded Example Revisited 

Question: The same Korean shipyard mentioned in Chapter 4 wants to evaluate 
and monitor the gaps between welded parts from manual fixturing. Workers 
measure 5 gaps every shift for 25 shifts over 10 days. Table 8.1 shows the resulting 
hypothetical data including 10 data not available during the set-up process. This 
time, assume the process engineers believe that even small gaps cause serious 
problems and would like to know about any systematic shifts, even small ones, as 
soon as possible. Apply EWMA charting to this data and establish the process 
capability. 

Step 1.  (Startup) Measure the continuous characteristics, Xi,j, for i = 1,…,n units for 
j = 1,…,25 periods.    

Step 2.  (Startup) Calculate the sample averages Xbar,j = (X1,j +…+ Xn,j)/n.  Also, 
calculate the average of all of the 25n numbers, Xbarbar, and the sample 
standard deviation of the 25n numbers, s.  The usual formula is 

 s=  ( ) ( ) ( )
125

... 2
,25

2
2,1

2
1,1

−
−++−+−

n
XXXYXX barbarnbarbarbarbar . (8.1) 

Step 3.  (Startup) Set σ0 = s tentatively and calculate the “trial” control limits using 

UCLtrial,j = Xbarbar + 
( ) ( )[ ]j2

0 11
2

0.3 λ
λ

λσ −−
−

, 

 CLtrial = Xbarbar, and  (8.2) 

LCLtrial,j = Xbarbar – 
( ) ( )[ ]j2

0 11
2

0.3 λ
λ

λσ −−
−

. 

Step 4.  (Startup) Calculate the following: 
  Z0 = Xbarbar (8.3) 

Zj = λXbar,j + (1 – λ)Z(i–1) for i = 1,…,25. 
Step 5.  Investigate all periods for which Zj < LCLtrial,j or Zj > UCLtrial,j.  If the 

results from any of these periods are believed to be not representative of 
future system operations, e.g., because problems were fixed permanently, 
remove the data from the l not representative periods from consideration.   

Step 6.  (Startup) Re-calculate Xbarbar and s based on the remaining 25 – l periods 
and (25 – l) × n data.  Also, set σ0 = s and the process capability is 6.0 × σ0.  
Calculate the revised limits using 

UCL = Xbarbar + 
( )λ

λσ
−2

0.3 0
, 

 CL = Xbarbar, and  (8.4) 

LCL = Xbarbar – 
( )λ

λσ
−2

0.3 0
. 

Step 7.  (Steady State, SS) Plot Zj, for each period j = 25,26,… together with the 
upper and lower control limits, LCL and UCL, and the center line, CL.   
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Table 8.1. Example gap data in millimeters (SU = Start Up, SS = Steady State) 

Phase j X1,j X2,j X3,j X4,j X5,j Xbar,j Zj 
SU 1 0.85 0.71 0.94 1.09 1.08 0.93 0.91
SU 2 1.16 0.57 0.86 1.06 0.74 0.88 0.90
SU 3 0.80 0.65 0.62 0.75 0.78 0.72 0.87
SU 4 0.58 0.81 0.84 0.92 0.85 0.80 0.85
SU 5 0.85 0.84 1.10 0.89 0.87 0.91 0.86
SU 6 0.82 1.20 1.03 1.26 0.80 1.02 0.90
SU 7 1.15 0.66 0.98 1.04 1.19 1.00 0.92
SU 8 0.89 0.82 1.00 0.84 1.01 0.91 0.92
SU 9 0.68 0.77 0.67 0.85 0.90 0.77 0.89
SU 10 0.90 0.85 1.23 0.64 0.79 0.88 0.89
SU 11 0.51 1.12 0.71 0.80 1.01 0.83 0.88
SU 12 0.97 1.03 0.99 0.69 0.73 0.88 0.88
SU 13 1.00 0.95 0.76 0.86 0.92 0.90 0.88
SU 14 0.98 0.92 0.76 1.18 0.97 0.96 0.90
SU 15 0.91 1.02 1.03 0.80 0.76 0.90 0.90
SU 16 1.07 0.72 0.67 1.01 1.00 0.89 0.90
SU 17 1.23 1.12 1.10 0.92 0.90 1.05 0.93
SU 18 0.97 0.90 0.74 0.63 1.02 0.85 0.91
SU 19 0.97 0.99 0.93 0.75 1.09 0.95 0.92
SU 20 0.85 0.77 0.78 0.84 0.83 0.81 0.90
SU 21 0.82 1.03 0.98 0.81 1.10 0.95 0.91
SU 22 0.64 0.98 0.88 0.91 0.80 0.84 0.90
SU 23 0.82 1.03 1.02 0.97 1.00 0.97 0.91
SU 24 1.14 0.95 0.99 1.18 0.85 1.02 0.93
SU 25 1.06 0.92 1.07 0.88 0.78 0.94 0.93
SS 26 1.06 0.81 0.98 0.98 0.85 0.936 0.93
SS 27 0.83 0.70 0.98 0.82 0.78 0.822 0.91
SS 28 0.86 1.33 1.09 1.03 1.10 1.082 0.95
SS 29 1.03 1.01 1.10 0.95 1.09 1.036 0.96
SS 30 1.02 1.05 1.01 1.02 1.20 1.060 0.98
SS 31 1.02 0.97 1.01 1.02 1.06 1.016 0.99
SS 32 1.20 1.02 1.20 1.05 0.91 1.076 1.01
SS 33 1.10 1.15 1.10 1.02 1.08 1.090 1.02
SS 34 1.20 1.05 1.04 1.05 1.06 1.080 1.03
SS 35 1.22 1.09 1.02 1.05 1.05 1.086 1.05
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Answer: As in Chapter 4, n = 5 inspected gaps between fixtured parts prior to 
welding, and τ = 6 h. If the inspection budget were increased, it might be advisable 
to inspect more units more frequently. The calculated subgroup averages are also 
shown (Step 2) and Xbarbar = 0.90 and σ0 = s = 0.157 is tentatively set. In Step 3, the 
derived values for the control limits are shown in Figure 8.1. In Step 4, the Zj are 
calculated and shown in Table 8.1. In Step 5, none of the first 25 periods yields an 
out-of-control signal. The Step 6 process capability is 0.942 and control limits are 
shown in Figure 8.1. From then until major process changes occur (rarely), the 
same limits are used to find out-of-control signals (Step 7). Note that nine periods 
into the steady state phase, the chart would signal startup suggesting that looking 
for a cause that has shifted the average gap higher.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1. EWMA chart for the gap data (  separates startup and steady state) 

8.3  Multivariate Charting Concepts 

Often, one person or team may have monitoring responsibilities for a large number 
of continuous characteristics. For example, in chemical plants a team can easily be 
studying thousands of characteristics simultaneously. Monitoring a large number of 
charts likely generates at least two problems.  

False alarms may overburden personnel and/or demoralize chart users. If a 
single chart has a false alarm roughly once every 370 periods, one thousand charts 
could generate many false alarms each period. With high rates of false alarms, the 
people in charge of monitoring could easily abandon the charts and turn to 
anecdotal information.  

Maintenance of a large number of charts could by itself constitute a substantial, 
unnecessary administrative burden. This follows because usually a small number 
of causes could be affecting a large number of characteristics. Logically, it could 
be possible to have a small number of charts, one for each potential cause. 

Figure 8.2 shows a fairly simple set of assembly operations on two production 
lines. A single process engineer could easily be in charge of monitoring all 14 
quality characteristics involved. Also, misplacement of second cylinder on the first 
could easily affect all quality characteristics on a given production line. 
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Figure 8.2. Production sub-system involving q = 14 quality characteristics 

The phrases “Hotelling’s T 2  charting” or, equivalently, “multivariate 
charting” refer to a method proposed in Hotelling (1947). This method permits a 
single chart to permit simultaneous monitoring of a large number of continuous 
quality characteristics. This allows the user to regulate the false alarm rate directly 
and to reduce the burden of maintaining a large number of charts. 

For single characteristic charts, the usual situation is characterized by plotted 
points inside the interval established by the control limits. With multiple 
characteristics, averages of these characteristics are plotted in a higher dimensional 
space than an interval on a line. The term “ellipsoid” refers to a multidimentional 
object which in two dimensions is an ellipse or a circle. Under usual 
circumstances, the averages of quality characteristics lie in a multidimensional 
ellipsoid. The following example shows a multidimensional ellipsoid with out-of-
control signals outside the ellipsoid. 

Example 8.3.1  Personal Blood Pressure and Weight 

Question: Collect simultaneous measurements of a friend’s weight (in pounds), 
systolic blood pressure (in mm Hg), and diastolic blood pressure (in mm Hg) three 
times each week for 50 weeks. Plot the weekly average weight vs the weekly 
average diastolic blood pressure to identify usual weeks from unusual weeks. 
 
Answer: Table 8.2 shows real data collected over 50 weeks. The plot in Figure 8.3 
shows the ellipse that characterizes usual behavior and two out-of-control signals. 
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Table 8.2. Systolic (xi1k) and diastolic (xi2k) blood pressure and weight (xi3k) data 

k X1k X21k X31k X12k X22k X32k X13k X23k X33k k X11k X21k X31k X12k X22k X32k X13k X23k X33k 

1 127 130 143 76 99 89 172 171 170 26 159 124 147 101 93 107 172 173 172 

2 127 149 131 100 95 85 170 175 172 27 147 132 146 91 94 91 172 173 173 

3 146 142 138 87 93 87 172 173 172 28 135 148 152 89 96 85 171 172 173 

4 156 128 126 94 89 95 171 173 170 29 154 144 136 98 95 96 172 175 173 

5 155 142 129 92 100 104 170 171 170 30 139 131 133 85 91 85 172 172 172 

6 125 150 125 96 96 97 170 169 171 31 140 120 142 100 88 89 173 172 172 

7 133 143 123 92 113 99 169 170 171 32 131 122 138 94 88 81 174 172 171 

8 147 140 121 93 102 97 170 170 171 33 136 139 130 89 91 87 171 172 172 

9 137 120 135 88 100 113 170 171 170 34 130 135 135 90 89 91 173 173 172 

10 138 139 148 112 104 90 170 172 172 35 137 142 149 86 98 91 175 175 174 

11 146 150 129 99 105 96 172 170 170 36 127 120 140 93 93 96 171 174 172 

12 129 122 150 96 90 110 170 170 172 37 144 147 141 95 104 80 172 173 174 

13 146 150 129 99 105 96 172 170 170 38 126 119 122 83 94 87 173 172 173 

14 128 150 151 95 110 92 170 172 172 39 144 142 133 83 102 91 171 171 172 

15 125 142 141 95 90 93 172 169 170 40 140 154 141 92 90 97 174 173 173 

16 120 136 142 82 75 87 169 169 171 41 141 126 145 103 96 91 173 171 171 

17 144 140 135 97 97 97 172 167 167 42 134 144 144 81 91 89 172 172 171 

18 130 136 142 91 89 96 170 172 169 43 136 132 122 95 98 96 172 173 171 

19 121 126 143 92 85 93 171 170 170 44 119 127 133 90 91 86 174 172 174 

20 146 131 135 101 97 88 171 167 169 45 130 133 137 84 91 87 172 175 175 

21 130 145 135 101 93 91 169 169 170 46 138 150 148 91 91 89 175 174 173 

22 132 127 151 95 86 91 169 170 170 47 135 132 148 96 88 95 177 176 174 

23 138 129 153 92 89 93 171 171 170 48 146 129 135 91 87 96 174 174 175 

24 123 135 144 89 85 91 171 171 172 49 129 103 120 90 81 94 175 173 173 

25 152 160 148 94 94 99 172 169 172 50 125 139 142 91 95 92 172 172 172 
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Figure 8.3. Plot of average weight versus average diastolic blood pressure 

8.4  Multivariate Charting (Hotelling’s T 2  Charts) 

In this section, the method proposed in Hotelling (1947) is described in Algorithm 
8.2. This chart has been proven useful for applications that range from college 
admissions to processing plant control to financial performance. The method has 
two potentially adjustable parameters.  

The symbols used are the following: 
q is the number of quality characteristics being monitored. 
r is the number of subgroups in the start-up period. This number could be as 

low as 20, which might be considered acceptable by many. The default value 
suggested here is r = 50, but even higher numbers might be advisable because a 
large number of parameters need to be estimated accurately for desirable method 
performance.  

α is the overall false alarm rate, is adjustable. Often, α = 0.001 is used so that 
false alarms occur typically once every thousand samples. 

xijk is the value of the ith observation, of the jth characteristic in the kth period. 
T 2  the quantity being plotted which is interpretable as a weighted distance from 

the center of the relevant ellipsoid.  

Example 8.4.1.  Personal Health Monitoring Continued 

Question: Apply Hotelling’s T 2 analysis to the data in Table 8.2. Describe any 
insights gained. 
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Algorithm 8.2. Hotelling T 2  charting 

Step 1 (Startup): Measure or collect n measurements for each of the q characteristics 
from each of r periods, xijk for i = 1,…,n, j = 1,…,q, and k = 1,…, r. 

Step 2 (Startup): Calculate all of the following: 
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 for j = 1,…,q and k = 1,…, q,   (8.5) 

∑
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Step 3 (Startup): Calculate the trial control limits using 

UCL = 
1,,1

)1)(1(
+−−+−−

−−
qrrnqF

qrrn
nrq

α
 and LCL = 0. (8.10) 

 
where Fα,q,rn – r – q + 1 comes from Table 8.2 below.  
 

Step 4 (Startup): Calculate T 2 statistics for charting using  

)()(2 xxSxx 1 −′−= −nT  (8.11) 

and plot.  If T 2  < LCL or T 2  > UCL, then investigate.  Consider removing the 
associated subgroups from consideration if assignable causes are found that 
make it reasonable to conclude that these data are not representative of usual 
conditions.   
 

Step 5 (Startup): Calculate the revised limits using the remaining r* units using 

UCL = 1**,,1**
)1)(1*(

+−−+−−
−+

qrnrqaF
qrnr

nrq
 and LCL = 0, (8.12) 

 where F comes from Table 8.3.  Also, calculate the revised S matrix. 
 
Step 6 (Steady state): Plot the T 2  for new observations and have a designated person or 

persons investigate out-of-control signals.  If and only if assignable causes are 
found, the designated local authority should take corrective action.  Otherwise, 
the process should be left alone. 
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Answer: The following steps were informed by the data and consultation with the 
friend involved. The method offered evidence that extra support should be given to 
the friend during challenging situations including holiday travel and finding 
suitable childcare, as shown in Figure 8.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.4. Trial period in the blood pressure and weight example 

Table 8.3. Critical values of the F distribution with α=0.01, i.e., Fα=0.01,ν1,ν2 

     ν1      

ν2 1 2 3 4 5 6 7 8 9 10 

1 405284.1 499999.5 540379.2 562499.6 576404.6 585937.1 592873.3 598144.2 602284.0 605621.0 

2 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.4 999.4 

3 167.0 148.5 141.1 137.1 134.6 132.8 131.6 130.6 129.9 129.2 

4 74.1 61.2 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.1 

5 47.2 37.1 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 

6 35.5 27.0 23.7 21.9 20.8 20.0 19.5 19.0 18.7 18.4 

7 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.3 14.1 

8 25.4 18.5 15.8 14.4 13.5 12.9 12.4 12.0 11.8 11.5 

9 22.9 16.4 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.9 

10 21.0 14.9 12.6 11.3 10.5 9.9 9.5 9.2 9.0 8.8 

11 19.7 13.8 11.6 10.3 9.6 9.0 8.7 8.4 8.1 7.9 

12 18.6 13.0 10.8 9.6 8.9 8.4 8.0 7.7 7.5 7.3 

13 17.8 12.3 10.2 9.1 8.4 7.9 7.5 7.2 7.0 6.8 

14 17.1 11.8 9.7 8.6 7.9 7.4 7.1 6.8 6.6 6.4 

15 16.6 11.3 9.3 8.3 7.6 7.1 6.7 6.5 6.3 6.1 
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Step 1 (Startup): The data are shown in Table 8.2 for n = 3 samples (roughly over the 
period being one week), q = 3 characteristics (systolic and diastolic blood 
pressure and weight), and r = 50 periods. 

 
Step 2 (Startup): The trial calculations resulted in 

   93.0 10.6 0.36   
 S =  10.6 35.6 0.21   
   0.36 0.21 1.3   

  
Step 3 (Startup): The limits were 

UCL = 17.6 and LCL = 0.     
  

Step 4 (Startup): The T2 statistics were calculated and charted in the below using  
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Four assignable causes were identified as described in the figure below.  The process 
brought into clearer focus the occurrences that were outside the norm and unusually 
troubling or heartening. 
 
Step 5 (Startup): The revised limits from r*=46 samples resulted in 

UCL = 18.5, LCL = 0, and     
  

   92.5 9.3 –0.14   
 S =  9.3 36.6 0.02   
   –0.14 0.02 1.1   

  
Step 6 (Steady state):  Monitoring continued using Equation 12) and the revised S.   

Later data showed that new major life news caused a need to begin 
medication about one year after the trial period finished. 

Algorithm 8.3. Personal health monitoring continued 

 
Note that identifying the assignable cause associated with an out-of-control 

signal on a T 2  chart is not always easy. Sometimes, software permits the viewing 
of multiple Xbar & R charts or other charts to hasten the process of fault diagnosis. 
Also, it is likely that certain causes are associated with certain values taken by 
linear combinations of responses. This is the motivation for many methods based 
on so-called “principle components” which involve plotting and studying 
multiple linear combinations of responses to support rapid problem resolution. 

Also, note that multivariate charting has been applied to such diverse problems 
as college admissions and medical diagnosis. For example, admissions officers 
might identify several “successful seniors” to establish what the system should like 
under usual situations. Specifically, the officers might collect the data pertinent to 
the successful seniors that was available before those students were admitted. 
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Plugging that data into the formulas in Steps 2–5 generates rules for admissions. If 
a new student applies with characteristics yielding an out-of-control signal as 
calculated using Equation 8.11, admission might not be granted. That student 
might be expected to perform in an unusual manner and/or perform poorly if 
admitted.  

8.5  Summary 

This chapter has described two advanced statistical process control (SPC) charting 
methods. First, exponential average moving average (EWMA) charting methods 
are relevant when detecting even small shifts in a single quality characteristic. 
They also provide a visual summary of the mean smoothed. Second, Hotelling’s T 2  
charts (also called multivariate control charts) permit the user to monitor a large 
number of quality characteristics using a single chart. In addition to reducing the 
burden of plotting multiple charts, the user can regulate the overall rate of false 
alarms. 

Problems 

In general, pick the correct answer that is most complete. 
 
1. Which of the following is correct and most complete? 

a. EWMA control charts typically plot attribute data such as the number 
non-conforming. 

b. Hotelling T 2  charts are sometimes called multivariate control charts. 
c. Multivariate control charts offer an alternative to several applications 

of Xbar & R charts. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

2. Which of the following is correct and most complete? 
a. Multivariate charting typically involves the calculation of a large 

number of parameters during the startup phase. 
b. Critical characteristics can vary together because they share a 

common cause. 
c. EWMA charting often but not always discovers problems more 

quickly than Xbar & R charting. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

3. Which of the following is correct and most complete? 
a. The λ in EWMA charting can be adjusted based on a desire to detect 

small shifts slowly or big shifts more quickly. 
b. EWMA generally detects large shifts faster than Xbar & R charting. 
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c. EWMA is particularly relevant when critical characteristics correlate. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

4. Which of the following is correct and most complete? 
a. Multiple Xbar & R charts do not help in assignable cause 

identification. 
b. Specific assignable causes might be associated with large values of 

certain linear combinations of quality characteristic values. 
c. Multivariate charting could be applied to college admissions. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

5. Provide two examples of cases in which multivariate charting might apply. 
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9 

SQC Case Studies 

9.1  Introduction 

This chapter contains two descriptions of real projects in which a student played a 
major role in saving millions of dollars: the printed circuit board study and the wire 
harness voids study. The objectives of this chapter include: (1) providing direct 
evidence that the methods are widely used and associated with monetary savings 
and (2) challenging the reader to identify situations in which specific methods 
could help. 

In both case studies, savings were achieved through the application of many 
methods described in previous chapters. Even while both case studies achieved 
considerable savings, the intent is not to suggest that the methods used were the 
only appropriate ones. Method selection is still largely an art. Conceivably, through 
more judicious selection of methods and additional engineering insights, greater 
savings could have been achieved. It is also likely that luck played a role in the 
successes. 

The chapter also describes an exercise that readers can perform to develop 
practical experience with the methods and concepts. The intent is to familiarize 
participants with a disciplined approach to documenting, evaluating, and 
improving product and manufacturing approaches. 

9.2  Case Study: Printed Circuit Boards  

Printed circuit board (PCB) assemblies are used for sophisticated electronic 
equipment from computers to everyday appliances. Manufacturing printed circuit 
boards involves placing a large number of small components into precise positions 
and soldering them into place. Due to the emphasis on miniaturization, the 
tendency is to reduce the size of the components and the spacing between the 
components as much as electrical characteristics will allow. Therefore, both the 
multiplicity of possible failures and also the number of locations in the circuit 
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boards where failures could occur continue to increase. Also, identifying the source 
of a quality problem is becoming increasingly difficult.  

As noted in Chapter 2, one says that a unit is “non-conforming” if at least one 
of its associated “quality characteristics” is outside the “specification limits”. 
These specification limits are numbers specified by design engineers. For example, 
if voltage outputs of a specific circuit are greater than 12.5 V or less than 11.2 V 
we might say that the unit is non-conforming. As usual, the company did not 
typically use the terms “defective” or “defect” because the engineering 
specifications may or may not correspond to what the customer actually needs. 
Also, somewhat arbitrarily, the particular company in question preferred to discuss 
the “yield” instead of the fraction non-conforming. If the “process capability” or 
standard fraction non-conforming is p0, then 1 – p0 is called the standard yield. 

Typical circuit board component process capabilities are in the region of 50 
parts per million defective (ppm) for solder and component non-conformities. 
However, since the average board contains over 2000 solder joints and 300 
components, even 50 ppm defective generates far too many boards requiring 
rework and a low overall capability. 

In early 1998, an electronics manufacturing company with plants in the 
Midwest introduced to the field a new advanced product that quickly captured 83% 
of the market in North America, as described in Brady and Allen (2002). During 
the initial production period, yields (the % of product requiring no touchup or 
repair) had stabilized in the 70% range with production volume at 6000 units per 
month. In early 1999, the product was selected for a major equipment expansion in 
Asia. In order to meet the increased production demand, the company either 
needed to purchase additional test and repair equipment at a cost of $2.5 million, or 
the first test yield had to increase to above 90%. This follows because the rework 
needed to fix the failing units involved substantial labor content and production 
resources reducing throughput. The improvement to the yields was the preferred 
situation due to the substantial savings in capital and production labor cost, and, 
thus, the problem was how to increase the yield in a cost-effective manner. 

Example 9.2.1  PCB Project Planning 

Question: According to this book, which of the following is most recommended? 
a.  Convene experts and perform one-factor-at-a-time (OFAT) experiments 

because the project is not important enough for a three to six month scope. 
b.  $2.5M is a substantial enough potential payback to apply six sigma using a 

define, measure, analyze, design, and verify (DMADV) process. 
c.  $2.5M is a substantial enough potential payback to apply six sigma using a 

define, measure, analyze, improve, and control (DMAIC) process. 
 
Answer: Convening experts is often useful and could conceivably result in quick 
resolution of problems without need for formalism. However, (a) is probably not 
the best choice because: (1) if OFAT were all that was needed, the yield would 
likely have already been improved by process engineers; and (2) a potential $2.5M 
payoff could pay off as many as 25 person years. Therefore, the formalism of a six 
sigma project could be cost justified. The answer (c) is more appropriate than (b) 
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from the definition of six sigma in Chapter 1. The problem involves improving an 
existing system, not designing a new one. 

9.2.1  Experience of the First Team 

This project was of major importance to the financial performance of the company. 
Therefore a team of highly regarded engineers from electrical and mechanical 
engineering disciplines was assembled from various design and manufacturing 
areas throughout the company. Their task was to recommend ways to improve the 
production yield based on their prior knowledge and experience with similar 
products. None of these engineers from top universities knew much about, nor 
intended to use, any formal experimental planning and analysis technologies. 
Table 9.1 gives the weekly first test yield results for the 16 weeks prior to the 
team’s activities based on a production volume of 1500 units per week.  

Table 9.1. Yields achieved for 16 weeks prior to the initial team’s activities 

Week Yield Week Yield Week Yield Week Yield 

1 71% 5 87% 9 66% 13 63% 
2 58% 6 68% 10 70% 14 68% 
3 69% 7 71% 11 76% 15 76% 
4 77% 8 59% 12 82% 16 67% 

 
Based on their technical knowledge of electrical circuit designs and their 

manufacturing experience, the assembled improvement team members critically 
reviewed the design and production process. They concluded that it was “poor 
engineering” of the circuit and manufacturing process that was at the heart of the 
low first test yield, thus creating the need for rework and retest. They came up with 
a list of 15 potential process and design changes for improvement based on their 
engineering judgment and anecdotal evidence. With this list in hand, they 
proceeded to run various one-factor-at-a-time (OFAT) experiments to prove the 
validity of their plan. Therefore, by not applying a six sigma project framework, 
the approach taken by the first team is arguably inappropriate and likely to lead to 
poor outcomes. 

Due to perceived time and cost constraints, only one batch for each factor was 
completed with approximately 200 units in each run. Therefore, the inputs were not 
varied in batches not randomly ordered. Factors that showed a yield decrease 
below the 16-week average were discarded along with the experimental results. 
Table 9.2 shows the results of the experiments with yield improvements predicted 
by the engineers based on their one-factor-at-a-time experiments. 

Example 9.2.2  PCB First Team Experimental Strategy 

Question: Which of the following could the first team most safely be accused of? 
a. Stifling creativity by adopting an overly formal decision-making 

approach 
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b. Forfeiting the ability to achieve statistical proof by using a non-
random run order 

c. Not applying engineering principles, over-reliance on statistical 
methods 

d. Failing to evaluate the system prior to implementing changes 
 

Answer: Compared with many of the methods described in this book, team one has 
adopted a fairly “organic” or creative decision style. Also, while it is usually 
possible to gain additional insights through recourse to engineering principles, it is 
likely that these principles were consulted in selecting factors for OFAT 
experimentation to a reasonable extent. In addition, the first team did provide 
enough data to determine the usual yields prior to implementing recommendations. 
Therefore, the criticisms in (a), (c), and (d) are probably not fair. According to 
Chapter 5, random run ordering is essential to establishing statistical proof. 
Therefore, (b) is correct. 

Table 9.2. The initial team’s predicted yield improvements by adjusting each factor 

FACTOR YIELD 

Replace vendor of main oscillator 5.3%
Add capacitance to base transistor 4.7% 
Add RF absorption material to isolation shield 4.4% 
New board layout on power feed 4.3% 
Increase size of ground plane 3.8% 
Lower residue flux 3.6% 
Change bonding of board to heat sink 3.2% 
Solder reflow in air vs N2 2.3% 
Raise temperature of solder tips 1.7% 

 
Based on their analysis of the circuit, the above experimental results and past 

experience, the improvement team predicted that a yield improvement of 16.7% 
would result from their proposed changes. All of their recommendations were 
implemented at the end of Week 17. Table 9.3 gives the weekly first test yields 
results for the six weeks of production after the revision. 

Table 9.3. Performance after the implementation of the initial recommendations 

Week Yield Week Yield 

17 62% 21 40%
18 49% 22 41% 
19 41% 23 45% 
20 42%   

 
It can be determined from the data in the tables that, instead of a yield 

improvement, the yield actually dropped 29%. On Week 22 it was apparent to the 
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company that the proposed process changes were not achieving the desired 
outcome. Management assigned to this project two additional engineers who had 
been successful in the past with yield improvement activities. These two engineers 
both had mechanical engineering backgrounds and had been exposed to “design of 
experiments” and “statistical process control” tools through continued education at 
local universities, including Ohio State University, and company-sponsored 
seminars.  

Example 9.2.3  PCB Second Team First Logical Steps 

Question: Which is the most appropriate first action for the second team? 
a. Perform design of experiments using a random run ordering 
b. Apply quality function deployment to relate customer needs to 

engineering inputs 
c. Return the process inputs to their values in the company SOPs 
d. Perform formal optimization to determine the optimal solutions 
 

Answer: Design of experiments, quality function deployment, and formal 
optimization all require more system knowledge than what is probably 
immediately available. Generally speaking, returning the system inputs to those 
documented in SOPs is a safe move unless there are objections from process 
experts. Therefore, (c) is probably the most appropriate initial step. 

9.2.2  Second Team Actions and Results 

The second team’s first step was to construct a yield attribute control chart (a yield 
chart or 1- defective chart “1-p”) with the knowledge of the process change date 
(Table 9.4). From the chart, the two engineers were able to see that most of the 
fluctuations in yield observed before the team implemented their changes during 
Week 17 were, as Deming calls it, common cause variation or random noise. From 
this, they concluded that since around 1000 rows of data were used in each point 
on the chart, a significant number of samples would need to resolve yield shifts of 
less than 5% during a one-factor-at-a-time experiment. Control limits with p0 = 
0.37 and n = 200 units have UCL – LCL = 0.2 or 20% such that the sample sizes in 
the OFAT experiments were likely too small to spot significant differences.  

The two engineers’ first decision was to revert back to the original, documented 
process settings. This differed from the initial settings used by the first team 
because tinkering had occurred previously. The old evidence that had supported 
this anonymous tinkering was probably due to random noise within the process 
(factors changing about which the people are not aware). Table 9.4 gives the 
weekly test yields for the five weeks after this occurrence. 

Table 9.4. Yields for the five weeks subsequent to the initial intervention 

Week Yield Week Yield Week Yield 

24 62% 26 77% 28 77%
25 78% 27 75%   
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Example 9.2.4  PCB Project Tools & Techniques 

Question: If you were hired as a consultant to the first team, what specific 
recommendations would you make?  
 
Answer: The evidence of improvement related to the team’s recommended inputs 
is weak. It would therefore likely be beneficial to return the process to the settings 
documented in the standard operating procedures. Initiate a six sigma project. This 
project could make use of Pareto charting to prioritize which non-conformities and 
associated subsystems to focus on. Control charting can be useful for establishing a 
benchmark for the process quality and a way to evaluate possible progress. Design 
of experiments involving random run ordering might be helpful in providing proof 
that suggested changes really will help. 

 
This approach restored the process to its previous “in control” state with yields 

around 75%. The increase in yield shown on the control chart (Figure 9.1 below) 
during this time frame was discounted as a “Hawthorne effect” since no known 
improvement was implemented. The phrase “Hawthorne effect” refers to a 
difference caused simply by our attention to and study of the process. Next the 
team tabulated the percent of failed products by relevant defect code shown in 
Figure 9.2. It is generally more correct to say “non-conformity” instead of “defect” 
but in this problem the engineers called these failures to meet specifications 
“defects”. The upper control limit (UCL) and lower control limit (LCL) are shown 
calculated in a manner similar to “p-charts” in standard textbooks on statistical 
process control, e.g., Besterfield (2001), based on data before any of the teams’ 
interventions.  

Figure 9.1. Control chart for the entire study period 
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The procedure of Pareto charting was then applied to help visualize the 
problem shown in the figure below. The total fraction of units that were non-
conforming was 30%. The total fraction of unit that were non-conforming 
associated with the ACP subsystem was 21.5%. Therefore, 70% of the total yield 
loss (fraction non-conforming) was associated with the “ACP” defect code or 
subsystem. The engineers then concentrated their efforts on this dominant defect 
code. This information, coupled with process knowledge, educated their selection 
of factors for the following study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.2. Pareto chart of the non-conforming units from 15 weeks of data 
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representation from the production workers to help identify what controllable 
inputs or “control factors” might cause a variation responsible for the defects. 
Four factors were suggested, and two levels of each factor were selected: (1) 
transistor power output (at the upper or lower specification limits), (2) transistor 
mounting approach (screwed or soldered), (3) screw position on the frequency 
adjuster (half turn or two turns), and (4) transistor heat sink type (current or 
alternative configuration). This last factor was added at the request of a 
representative from production. This factor was not considered important by most 
of the engineering team. The two lead engineers decided to include this factor as 
the marginal cost of adding it was small. Also, note that all levels for all factors 
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corresponded to possible settings at which experiments could be run (without 
violating any contracts) and at which the process could run indefinitely without any 
prohibitive effect.  

The team selected the experimental plan shown below with reference to the 
decision support information provided by statistical software. In this eight run 
“screening” experiment on the transistor circuit shown in Table 9.5, each run 
involved making and testing 350 units with the controllable factors adjusted 
according to the relevant row of the matrix. For example, in the first run, the 
selected transistor power output was at the lower end of the specification range  
(–1), the transistor mounting approach was soldered (+1), the screwed position of 
the frequency adjustor was two turns (+1), and the current transistor heat sink type 
was used (–1). The ordering of the test runs was also decided using a random 
number generator. The output yields or “response values” resulting from making 
and testing the units are shown in the right-hand column. We use the letter “y” to 
denote experimental outputs or responses. In this case, there is only a single output 
that is denoted y1. 

As is often the case, substantial time was required to assemble the resources 
and approvals needed to perform the first test run. In fact, this time was 
comparable to the time needed for the remaining runs after the first run was 
completed. 

Table 9.5. Data from the screening experiment for the PCB case study 

Run A B C D y1 – Yield 

1 –1 1 –1 1 92.7
2 1 1 –1 –1 71.2 
3 1 –1 –1 1 95.4 
4 1 –1 1 –1 69.0 
5 –1 1 1 –1 72.3 
6 –1 –1 1 1 91.3 
7 1 1 1 1 91.5 
8 –1 –1 –1 –1 79.8 

 
An analysis of this data based on first order linear regression and so-called 

Lenth’s method (Lenth 1989) generated the statistics in the second column of 
Table 9.6. Note that tLenth for factor D, 8.59, is larger than the “critical value” 
tEER,0.05,8 = 4.87. Since the experimental runs were performed in an order 
determined by a so-called “pseudo-random number generator” (See Chapters 3 
and 5), we can say that “we have proven with α = 0.05 that factor D significantly 
affects average yield”. For the other factors, we say that “we failed to find 
significance” because tLenth is less than 12.89. The level of “proof” is somewhat 
complicated by the particular choice of experimental plan. In Chapter 3, 
experimental plans yielding higher levels of evidence will be described. Intuitively, 
varying multiple factors simultaneously does make statements about causality 
dependent upon assumptions about the joint effects of factors on the response. 
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However, the Lenth (1989) method is designed to give reliable “proof” based on 
often realistic assumptions. 

An alternative analysis is based on the calculation of Bayesian posterior 
probabilities for each factor being important yields, the values shown in the last 
column of Table 9.6. This analysis similarly indicates that the probability that the 
heat sink type affects the yield is extremely high (96%). Further, it suggests that 
the alternative heat sink is better than the current one (the heat sink factor 
estimated coefficient is positive).  

Based on this data (and a similar analysis), the two engineers recommended 
that the process should be changed permanently to incorporate the new heat sink. 
In the terminology needed in subsequent chapters, this corresponded to a 
recommended setting x4 = D = the new heat sink. This was implemented during 
Week 29. Table 9.7 gives the weekly yield results for the period of time after the 
recommended change was implemented. Using the yield charting procedure, the 
engineers were able to confirm that the newly designed process produced a stable 
first test yield (no touch-up) in excess of 90%, thus avoiding the equipment 
purchase and saving the company $2.5 million.  

Table 9.6. Analysis results for PCB screening experiment 

Factor Estimated coefficients (βest) tLenth 
Estimated probability of  

being “important” 

A –1.125 0.98 0.13170 
B –0.975 0.85 0.02081 
C –1.875 1.64 0.03732 
D 9.825 8.59 0.96173 

Table 9.7. Confirmation runs establishing the process shift/improvement 

Week Yield Week Yield 

29 87% 36 90%
30 96% 37 86% 
31 94% 38 92% 
32 96% 39 91% 
33 91% 40 93% 
34 94% 41 89% 
35 90% 42 96% 

 
This case illustrates the benefits of our DOE technology. First, the screening 

experiment technology used permitted the fourth factor to be varied with only eight 
experimental runs. The importance of this factor was controversial because the 
operators had suggested it and not the engineers. If the formal screening method 
had not been used, then the additional costs associated with one-factor-at-a-time 
(OFAT) experimentation and adding this factor would likely have caused the team 
not to vary that factor. Then the important subsequent discovery of its importance 
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would not have occurred. Second, in the experimental plan, which in this case is 
the same as the standard “design of experiments” (DOE), multiple runs are 
associated with the high level of each factor and multiple runs are associated with 
the low level of each factor. For example, 1400 units were run with the current heat 
sink and 1400 units were run with the new heat sink. The same is true for the other 
factors. The reader should consider that this would not be possible using an OFAT 
strategy to allocate the 2800 units in the test. Finally, the investigators varied only 
factors that they could make decisions about. Therefore, when the analysis 
indicated that the new heat sink was better, they could “dial it up”, i.e., implement 
the change. 

Note that the purpose of describing this study is not necessarily to advocate the 
particular experimental plan used by the second team. The purpose is to point out 
that the above “screening design” represents an important component of one 
formal experimentation and analysis strategy. The reader would likely benefit by 
having these methods in his or her set of alternatives when he or she is selecting a 
methodology. (For certain objectives and under certain assumptions, this 
experimental plan might be optimal.) The reader already has OFAT as an option. 

Example 9.3.1  PCB Improvement Project Critique 

Question: While evidence showed that the project resulting system inputs helped 
save money, which of the following is the safest criticism of the approach used? 

a. The team could have applied design of experiments methods. 
b. A cause & effect matrix could have clarified what was important to 

customers. 
c. Having a charter approved by management could have shorted the DOE 

time. 
d. Computer assisted optimization would improve decision-making in this 

case. 
 

Answer: The team did employ design of experiments methods, so answer (a) is 
clearly wrong. It was already clear that all stakeholders wanted was a higher yield. 
Therefore, no further clarification of customer needs (b) would likely help. With 
only a single system output or response (yield) and a first order model from the 
DOE activity, optimization can be done in one’s head. Set factors at the high level 
(low level) if the coefficient is positive (negative) and significant. Answer (c) is 
correct, since much of the cost and time involved with the DOE related to 
obtaining needed approvals and no formal charter had been cleared with 
management in the define phase. 

9.4  Wire Harness Voids Study 

A Midwest manufacturer designs and builds wire harnesses for the aerospace and 
marine markets. Quality and continuous improvement are key drivers for new 
sales. Some examples of systems supported are U.S. nuclear submarines, manned 
space flight vehicles, satellites, launch vehicles, tactical and strategic missiles and 
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jet engine control cables. The case study involved a Guidance Communication 
Cable used on a ballistic missile system.  

Part of this communication cable is molded with a polyurethane compound to 
provide mechanical strength and stress relief to the individual wires as they enter 
the connector shell. This is a two-part polyurethane which is procured premixed 
and frozen to prevent curing. The compound cures at room temperature or can be 
accelerated with elevated heat. Any void or bubble larger than 0.04 inches that 
appears in the polyurethane after curing constitutes a single non-conformity to 
specifications. Whenever the void non-conformities are found, local rework on the 
part is needed, requiring roughly 17 min of time per void. Complete inspection is 
implemented, in part because the number of voids per part typically exceeds ten. 
Also, units take long enough to process that a reasonably inspection interval 
includes only one or two units. 

Example 9.4.1  Charting Voids 

Question: Which charting method is most relevant for measuring performance? 
a. Xbar & R charting is the most relevant since there is a high quality level. 
b. p-charting is the most important since we are given the fraction of non-

conforming units only. 
c. u-charting is the most important since we are given count of non-

conformities and no weighting data. 
 

Answer: Since each void is a non-conformity and no voids are obviously more 
important than others, the relevant chart from Chapter 4 is a u-chart. Further, a p-
chart would not be effective because the number of runs per time period inspected 
was small and almost all of them had at least one void, i.e., n × (1 – p0) < 5. 

9.4.1  Define Phase 

A six sigma project was implemented in the Special Assembly Molded 
Manufacturing Cell to reduce the rework costs associated with polyurethane 
molding voids. A cross functional team of seven members was identified for this 
exercise. During the Define Phase a series of meetings were held to agree on the 
charter. The resulting project “kick off” or charter somewhat non-standard form is 
shown in Table 9.8. 

9.4.2  Measure Phase 

The team counted the number of voids or non-conformities in 20 5-part runs and 
set up a u-chart as shown in Figure 9.3. The u-charting start up period actually ran 
into January so that the recommended changes from the improvement phase went 
into effect immediately after the start up period finished. A u-chart was selected 
instead of, e.g., a p-chart. As noted above, the number of units inspected per period 
was small and almost all units had at least one void. Therefore, a p-chart would not 
be informative since p0 would be nearly 1.0.  
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Figure 9.3. u-Chart of the voids per unit used in measurement and control phases 

Table 9.8. Void defects in molded products – project team charter 

1) Process Special Assembly Polyurethane Molding 

2) Predicted savings $50,000/year 

3) Team members 2 Product engineers, 2 Process engineers, 2 Manufacturing 
engineers, 1 Quality assurance (representative from all areas) 

4) Quantifiable 
project objectives 

Reduce rework due to voids by 80% on molded products 
Provide a “model” for other products with similar processes 

5) Intangible 
possible benefits  

This project is chartered to increase the productivity of the 
special assembly molded cell. Furthermore, the project will 
improve the supply chain. Production planning will be 
improved through reducing variation in manufacturing time. 

6) Benefits Improved supply chain, Just-in-time delivery, cost savings 

7) Schedule Define phase, Oct. 16-Oct. 29; Measure phase, Oct. 29-Nov. 
19; Analyze phase, Nov. 19-Dec. 12; Improve phase, Dec. 12-
Jan. 28; Control phase, Jan. 28-Feb. 18 

8) Support required Ongoing operator and production manager support 

9) Potential barriers Time commitment of team members 

10) Communication Weekly team meeting minutes to champion, production 
manager and quality manager 

 
At the end of the chart start-up period, an informal gauge R&R activity 

investigated the results from two inspectors. The approach used was based on units 
that had been inspected by the relevant subject matter expert so “standard values” 
were available. The results showed that one operator identified an average of 17 
voids per run while the second operator identified an average of 9 voids per run 
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based on the same parts. The specifications from the customer defined a void to be 
any defect 0.040” in diameter or 0.040” in depth. An optical measuring device and 
depth gage were provided to the inspectors to aid in their determination of voids. 
Subsequent comparisons indicated both operators to average nine voids per run. 

Example 9.4.2  Wire Harness Voids Gauge R&R 

Question: Which likely explains why formal gauge R&R was not used? 
a. The count of voids is attribute data, and it was not clear whether standard 

methods were applicable. 
b. The engineers were not aware of comparison with standards methods 

since it is a relatively obscure method. 
c. The project was not important enough for formal gauge R&R to be used. 
d. Answers in parts (a) and (b) are both reasonable explanations. 
e.  

Answer: Gauge R&R is generally far less expensive than DOE. Usually if 
managers feel that DOE is cost justified, they will likely also approve gauge R&R. 
The attribute data nature of count data often makes engineers wonder whether they 
can apply standard methods. Yet, if n × u0 > 5, applying gauge R&R methods for 
continuous data to count of non-conformity data is often reasonable. Also, even 
though many companies use methods similar to gauge R&R (comparison with 
standards) from Chapter 4, such methods are not widely known. Therefore, (d) is 
correct. 

9.4.3  Analyze Phase 

The analysis phase began with the application of Pareto charting to understand 
better the causes of voids and to build intuition. The resulting Pareto chart is shown 
in Figure 9.4. Pareto charting was chosen because the non-conformity code 
information was readily available and visual display often aids intuition. This 
charting activity further called attention to the potential for inspectors to miss 
counting voids in certain locations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.4. Pareto chart of the void counts by location or non-conformity type 
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The chart aided subtly in selecting the factors for the two designs of 
experiments (DOE) applications described below (with results omitted for brevity). 
A first DOE was designed in a non-standard way involving two factors one of 
which was qualitative at four levels. The response was not void count but 
something easier to measure. The DOE was designed in a non-standard way in part 
because not all combinations of the two factors were economically feasible. The 
results suggested a starting point for the next DOE.  

A second application of DOE was performed to investigate systematically the 
effect of seven factors on the void count using an eight run fractional factorial. The 
results suggested that the following four factors had significant effects on the 
number of voids: thaw time, thaw temperature, pressure, pot life.  

9.4.4  Improve Phase 

The team recommended adjusting the process settings in the following manner.  
For all factors that had significant effects in the second DOE, the settings were 
selected that appeared to reduce the void count. Other factors were adjusted to 
settings believed to be desirable, taking into account considerations other than void 
count. Also, the improved measurement procedures were simultaneously 
implemented as suggested by the informal application of gauge R&R in the 
measurement phase. 

9.4.5  Control Phase 

The team spent ten weeks confirming that the recommended settings did in fact 
reduce the void counts as indicated in Figure 9.3 above. Charting was terminated at 
that point because it was felt that the information from charting would not be 
helpful with such small counts, and the distribution of void non-conformities had 
certainly changed. In other words, there was a long string of out-of-control signals 
indicating that the adoption of the new settings had a positive and sustained 
assignable cause effect on the system.  

Four weeks were also spent documenting the new parameters into the 
production work instructions for the production operators and into the mold design 
rules for the tool engineers. At the same time, training and seminars were provided 
on the results of the project. The plan was for a 17-week project, with actual 
duration of 22 weeks. At the same time the project was projected to save $50,000 
per year with actual calculated direct rework-related savings of $97,800 per year. 
Total costs in materials and labor were calculated to be $31,125. Therefore, the 
project was associated with approximately a four-month payback period. This 
accounts only for direct rework-related savings, and the actual payback period was 
likely much sooner.  
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Example 9.4.3  Wire Harness Void Reduction Project Critique 

Question: Which is the safest critique of methods used in the wire harness study? 
a. A cost Pareto chart would have been better since cost reduction was the 

goal. 
b. QFD probably would have been more effective than DOE. 
c. Charting of void count should not have been dropped since it always 

helps. 
d. An FMEA could have called attention to certain void locations being 

missed. 
e. Pareto charting must always be applied in the define phase. 
 

Answer: It is likely that a cost Pareto chart would not have shown any different 
information than an ordinary Pareto chart. This follows since all voids appeared to 
be associated with the same cost of rework and there were no relevant performance 
or failure issues mentioned. QFD is mainly relevant for clarifying, in one method, 
customer needs and competitor strengths. The realities at this defense contractor 
suggested that customer needs focused almost solely on cost reduction, and no 
relevant competitors were mentioned. DOE was probably more relevant because 
the relevant system inputs and outputs had been identified and a main goal was to 
clarify the relevant relationships. With such low void counts, u-charting would 
likely not have been effective since n × u0 < 5. In general, all methods can be 
applied in all phases, if Table 2.1 in Chapter 2 is taken seriously. This is 
particularly true for Pareto charting, which generally requires little expense. FMEA 
would likely have cost little and might have focused inspector attention on failures 
associated with specific void locations. Therefore, (d) is probably most correct. 

9.5  Case Study Exercise 

This section describes an exercise that readers can perform to obtain what might be 
called a “green belt” level of experience. This exercise involves starting with an 
initial standard operating procedure (SOP) and concluding with a revised and 
confirmed SOP. Both SOPs must be evaluated using at least one control chart. For 
training purposes, the sample size can be only n = 2, and only 12 subgroups are 
needed for the startup periods for each chart.  

At least eight “methods” or “activities” listed in Table 2.1 must be applied. The 
creation of SOPs of various types can also be considered as activities counted in 
the total of eight. Document all results in four pages including tables and figures. 
This requirement on the number of methods reflects actual requirements that some 
original equipment manufacturers place on their own teams and supplier teams. 
Since design of experiments (DOE) may be unknown to the reader at this point, it 
might make sense not to use these methods. 

Tables and figures must have captions, and these should be referred to inside 
the body of your report. The following example illustrates the application of a 
disciplined approach to the toy problem on the fabrication and flight of paper air 
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wings. This project is based on results from an actual student project with some 
details changed to make the example more illustrative. 

9.5.1  Project to Improve a Paper Air Wings System 

Define: The primary goal of the this project is to improve the experience of 
making, using, and disposing of paper air wings. The initial standard operating 
procedure for making paper air wings is shown in Table 9.9. Performing the 
process mapping method generated the flowchart of the manufacturing and usage 
map in Figure 9.5. The process elicited the key input variables, x’s, and key output 
variables, y’s, for study. Further, it was decided that the subsystem of interest 
would not include the initial storage, so that initial flatness and humidity were out 
of scope. 

Table 9.9. Initial standard operating procedure for making paper air wings 

Title: Initial SOP for paper air wing manufacturing 

Scope: For people who like to make simple paper airplanes 

Summary: A method for making a simple air wing 

Training qualifications: None 

Equipment & supplies: One piece of notebook paper 

Method: 

 

Tear a 2” by 2” square from the paper 
Fold the paper in half along the long diagonal and 
unfold partially 
Drop the air wing gently into the storage area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9.5. Process map flowchart of air wing manufacturing and usage 
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Measure: The measurement SOP in Table 9.10 was developed to evaluate the 
current manufacturing SOP and design. The initial manufacturing SOP was then 
evaluated using the measurement SOP and an Xbar & R charting procedure. In all, 
24 air wings were built and tested in batches of two. This generated the data in 
Table 9.11 and the Xbar & R chart in Figure 9.6.  

Table 9.10. Measurement SOP for the air wing study 

Title: SOP for paper air wing time in air testing 

Scope: Focuses on the simulating usage of a single air wing 

Summary: Describes the drop height and time evaluation approach 

Training: None 

Qualifications: None 

Equipment and 
supplies: 

A paper air wing and a digital stopwatch 

Method: Hold the air wing with your right hand. 
Hold stopwatch in left hand. 
Bend right arm and raise it so that the hand is 60” high. 
Release paper airplane and simultaneously start stopwatch.  
When the paper air wing lands, stop stopwatch.  
Record the time. 

Table 9.11. Air wing times studying the initial system for short run Xbar & R chart 

Subgroup Paper Cutting X1 X2 Average Range 

1 Notebook Tear 1.72 1.65 1.69 0.07 

2 Notebook Tear 1.89 1.53 1.71 0.36 

3 Notebook Tear 1.73 1.79 1.76 0.06 

4 Notebook Tear 1.95 1.78 1.87 0.17 

5 Notebook Tear 1.58 1.86 1.72 0.28 

6 Notebook Tear 1.73 1.65 1.69 0.08 

7 Notebook Tear 1.46 1.68 1.57 0.22 

8 Notebook Tear 1.71 1.52 1.62 0.19 

9 Notebook Tear 1.79 1.85 1.82 0.06 

10 Notebook Tear 1.62 1.69 1.66 0.07 

11 Notebook Tear 1.85 1.74 1.80 0.11 

12 Notebook Tear 1.65 1.77 1.71 0.12 
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As there were no out-of-control signals, the initial and revised charts were the 
same. The initial process capability was 0.8 s (6σ0) and the initial average flight 
time was 1.7 s (Xbarbar). 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

Figure 9.6. Combined Xbar & R chart for initial system evaluation 

Analyze: The main analysis method investigated applied was benchmarking with a 
friend’s air wing material selection and manufacturing method. The friend was 
asked to make air wings, and the process was observed and evaluated. This process 
generated the benchmarking matrices shown in Table 9.12. The friend also serves 
as the customer, generating the ratings in the tables. It was observed that the air 
times were roughly similar, but the appearance of the friends air wings was judged 
superior. 

Table 9.12. Benchmarking matrices for the air wing study 

Customer issue 
Project leaders’s 

planes 
Friends’s 

planes 

Appearance seems crinkled 4 9 

Appearance is consistent 6 8 

Flight air time is long 8 7 

 

Competitor K
IV

 –
 p

ap
er

 
ty

pe
 

K
IV

 –
 c

ut
tin

g 
m

et
ho

d 

K
IV

 –
 fo

ld
 

m
et

ho
d 

K
IV

 –
 

pl
ac

em
en

t 
m

et
ho

d 

K
O

V
 –

 ti
m

e 
 

in
 th

e 
ai

r 
(a

ve
ra

ge
 o

f 
tw

o 
in

 
se

co
nd

s)
 

Project leader Notebook Tearing Regular Dropping 1.7 

Friend Magazine Scissiors Press firmly Dropping 1.6 

0

0.5

1

1.5

2

2.5

1 6 11

UCLXbar
Xbar
LCLXbar
UCLR
R
LCLR

Subgroup

T
im

e 
(S

ec
on

ds
)



  SQC Case Studies      211 

Improve: From the process mapping experience, the placement method was 
identified as a key input variable. Common sense suggested that careful placement 
might improve the appearance. Even though the air time was a little lower based on 
a small amount of evidence, other benchmarking results suggested that the friend’s 
approach likely represented best practices to be emulated. This resulted in the 
revised standard operating procedure (SOP) in Table 9.13. 

Table 9.13. Revised standard operating procedure for making paper air wings 

Title: Revised SOP for paper air wing manufacturing 

Scope: For people who like to make simple paper air wings 

Summary: A method for making a simple air wing 

Training qualifications: None 

Equipment & supplies: 1 piece of magazine paper and scissors 

Method: 

 

1.  Cut a 2” by 2” square from the magazine. 
2.  Fold the paper in half along the diagonal pressing firmly 
and partially unfold. 
3.  Carefully place the air wing on the pile. 

 
Control: To verify that the air time was not made worse by the revised SOP, Xbar 
& R charting based on an additional 24 air wings were constructed and tested (see 
Table 9.14 and Figure 9.7). 

Table 9.14. Air wing times studying the initial system for short run Xbar & R chart 

Subgroup Paper Cutting X1 X2 Average Range 

1 Magazine Scissors 1.66 1.68 1.67 0.02 
2 Magazine Scissors 1.63 1.63 1.63 0.00 
3 Magazine Scissors 1.67 1.72 1.70 0.05 
4 Magazine Scissors 1.73 1.71 1.72 0.02 
5 Magazine Scissors 1.77 1.72 1.75 0.05 
6 Magazine Scissors 1.68 1.72 1.70 0.04 
7 Magazine Scissors 1.71 1.78 1.75 0.07 
8 Magazine Scissors 1.64 1.74 1.69 0.10 
9 Magazine Scissors 1.62 1.73 1.68 0.11 
10 Magazine Scissors 1.73 1.71 1.72 0.02 
11 Magazine Scissors 1.76 1.66 1.71 0.10 
12 Magazine Scissors 1.70 1.73 1.72 0.03 
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Figure 9.7. Combined Xbar & R chart for initial system evaluation 

The revised SOP was followed for the manufacturing, and the testing SOP was 
applied to emulate usage. The improvement in appearance was subjectively 
confimed. The revised average was not improved or made worse (the new Xbarbar 
equaled 1.7 s). At the same time the consistency improved as measured by the 
process capability (6σ0 equaled 0.3 s) and the width of control limits. 
 
Hypothetically, assume the following:  

1. There was a lower specification limit on the air time equal to 1.60 s.  
2. The number of units produced per year was 10,000. 
3. Rework costs per item were $1. 
4. The initial SOP resulted in a 3/24 = 0.13 fraction non-conforming. 
5. The relevant fudge factor (G) is 4.0 to account for loss of good will and 

sales.   
Then, by effectively eliminating non-conformities, the project would have 

saved $10,000, considering a two-year payback period. 

9.6  Summary 

In this chapter, two case studies were described together with questions asking the 
reader to synthesize and critique. The intent was to establish the business context 
of the material and encourage the reader to synthesize material from previous 
chapters. Both case studies apparently had positive conclusions. Yet, there is little 
evidence that the manner in which each was conducted was the best possible. It 
seems likely that other methods could have been used and combined with 
engineering insights to achieve even better results. The chapter closed with an 
exercise intended to permit readers to gain experience in a low consequence 
environment.  
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Problems 

In general, pick the correct answer that is most complete. 
 
1. According to this book, which is (are) specifically discouraged? 

a. Planning a PCB project scope requiring ten months or more 
b. Starting the PCB project by performing quality function deployment 
c. Performing a verify instead of control phase for the PCB project 
d. All of the above are correct. 
e. All of the above are correct except (a) or (d). 
 

2. Which of the following was true about the PCB project? 
a. Miniaturization was not relevant. 
b. Quality issues limited throughput causing a bottleneck. 
c. Design of experiments screening methods were not applied. 
d. All of the parts failing to conform to specifications were defective. 
e. All of the above are true. 
 

3. According to this book, which is the most appropriate first project action? 
a. Quality function deployment 
b. Design of experiments 
c. Creating a project charter 
d. Control planning 
e. All of the following are equally relevant for the define phase. 
 

4. If you were hired as a consultant to the first team, what specific 
recommendations would you make besides the ones given in the example? 

 
5. In the voids project, which phase and method combinations occurred? Give 

the answer that is correct and the most complete. 
a. Analyze – Quality Function Deployment  
b. Measure – gauge R&R (informal version) 
c. Define – creating a charter 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

6. Suppose that top face voids were much more expensive to fix than other voids. 
Which charting method would be most appropriate? 

a. p-charting 
b. u-charting 
c. Xbar & R charting 
d. Demerit charting 
e. EWMA charting 
 

7. Which of the following could be a key input variable for the void project 
system? 

a. The number of voids on the top face 
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b. The total number of voids 
c. The preheat temperature of the mold 
d. The final cost on an improvement project 
e. None of the above 
 

8. In the voids case study, what assistance would FMEA most likely provide? 
a. It could have helped to identify the techniques used by competitors. 
b. It could have helped to develop quanititative input-output 

relationships. 
c. It could have helped select specific inspections systems for 

improvement. 
d. It could help guarantee that design settings were optimal. 
e. It could have helped achieve effective document control. 
 

9. In the voids project, what change is most likely to invite scope creep? 
a. Increasing the predicted savings to $55,000 
b. Removing two engineers from the team 
c. Changing the quantifiable project objective to read, “to be decided” 
d. Shortening the schedule to complete in January 
e. None of the above is relevant to scope creep 
 

10. Which rows of the void project charter address the not-invented-here 
syndrome? 

a. The predicted savings section or row 
b. The team members’ project objectives section or row 
c. The quantifiable project objectives section or row 
 
d. The intangible possible benefits section or row 
e. None of the entries 
 

11. Which of the following is the most correct and complete? 
a. According to the definition of six sigma, monetary benefits must be 

measured. 
b. Charting is often helpful for measuring benefits and translating to 

dollars. 
c. Gauge R&R might or might not be needed in a control plan. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

12. According to this text, which of the following is the most correct and 
complete?  

a. Pareto charting could never be used in the analyze phase. 
b. Formal optimization must be applied. 
c. Meeting, a charter, two control charting activities, a C&E matrix, 

informal optimization, and SOPs might constitute a complete six 
sigma project. 
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d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

13. Write a paragraph about a case study that includes at least one “safe criticism” 
based on statements in this book. Find the case study in a refereed journal such 
as Applied Statistics, Quality Engineering, or The American Statistician. 

 
14. Identify at least one KOV and a target value for a system that you want to 

improve in a student project. We are looking for a KOV associated with a 
project that is measurable, of potential interest, and potentially improvable 
without more than ten total hours of effort by one person. 

 
15. This exercise involves starting with an initial standard operating procedure 

(SOP) and concluding with a revised and confirmed SOP. Both SOPs must be 
evaluated using at least one control chart. For training purposes, the sample 
size can be only n = 2 and only 12 subgroups are needed for the startup 
periods for each chart.  

a. At least six “methods” or “activities” listed in Table 2.1 must be 
applied. The creation of SOPs of various types can also be considered 
as activities counted in the total of six. Document all results in four 
pages including tables and figures. Since design of experiments 
(DOE) may be unknown to the reader at this point, it might make 
sense not to use these methods. 

b. Perform the exercise described in part (a) with eight instead of six 
methods or activities. Again, documenting SOPs can be counted in 
the total of eight. 
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10 

SQC Theory 

10.1  Introduction 

Some people view statistical material as a way to push students to sharpen their 
minds, but as having little vocational or practical value. Furthermore, practitioners 
of six sigma have demonstrated that it is possible to derive value from statistical 
methods while having little or no knowledge of statistical theory. However, 
understanding the implications of probability theory (assumptions to predictions) 
and inference theory (data to informed assumptions) can be intellectually satisfying 
and enhance the chances of successful implementations in at least some cases. 

This chapter focuses attention on two of the most practically valuable roles that 
theory can play in enhancing six sigma projects. First, there are many parameters 
to be selected in applying acceptance sampling. In general, larger sample sizes and 
lower acceptable limits reduce the chances of accepting bad lots. However, it can 
be helpful to quantify these risks, particularly considering the need to balance the 
risks vs costs of inspection. 

Second, control charts also pose risks, even if they are applied correctly as 
described in Chapter 4. These risks include the possibility that out-of-control 
signals will occur even when only assignable causes are operating. Then, 
investigators would waste their time and either conclude that a signal was a false 
alarm or, worse, would attempt to overcontrol the system and introduce variation. 
Also, there is a chance that charting will fail to identify an assignable cause. Then, 
large numbers of non-conforming items could be shipped to the customer. 
Evaluating formally these risks using probability can help in making decisions 
about whether to apply Xbar & R charting (Chapter 4) and EWMA charting or 
multivariate charting (Chapter 8). Also, some of the risks are a function of the 
sample size. Therefore, quantifying dependencies can help in selecting sample 
sizes. 

In Section 10.2, the fundamental concepts of probability theory are defined, 
including random variables, both discrete and continuous, and probability 
distributions. Section 10.3 focuses in particular on continuous random variables 
and normally distributed random variables. Section 10.4 describes discrete random 
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variables, including negative binomial and hypergeometric random variables. 
Then, Section 10.5 builds on probability theory to aid in the assessment of control 
charting risks and in the definintion of the average run length. Section 10.6 uses 
probability theory to evaluate acceptance sampling risks including graphic 
depictions of this risk in operating characteristic (OC) curves. Section 10.7 
summarizes the chapter.  

Figure 10.1 shows the relationship of the topic covered. Clearly, theory can 
play many roles in the application and development of statistical methods. The 
intent of Figure 10.1 is to show that theory in this book is developed for specific 
purposes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.1. The relationship of the topics in this chapter 

10.2  Probability Theory 

The probability of an event is the subjective chance that it will happen. The 
purpose of this section is to define formally the words in this statement. An event is 
something that can occur. The phrase “random variable” and symbol, X, refer to a 
number, the value of which cannot be known precisely at the time of planning by 
the planner. Often, events are expressed in terms of random variables. 
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Formally, an “event” (A) is a set of possible values that X might assume. If X 
assumes the value x that is in this set, then we say that the “event occurs”. For 
example, X could be the event that the price for boats on a certain market is below 
$10,000. Figure 10.2 shows this event.  

 
 
 

Figure 10.2. An example of an event 

The phrase “continuous random variables” refers to random variables that 
can assume an uncountably infinite (or effectively infinite) number of values. This 
can happen if the values can have infinity digits like real numbers, e.g., X = 
3.9027... The boat price next month on a certain market can be treated as a 
continuous random number even though the price will likely be rounded to the 
nearest penny. The phrase “discrete random variable” refers to random variables 
that can assume only a countable number of values. Often, this countable number 
is medium sized, such as 30 or 40, and sometimes it is small such as 2 or 3. 

Example 10.2.1  Boats Sales Random Variable 

Question: What can be said about the unknown number of boats that will be sold 
next month at a certain market? 

a. It is not random because the planner knows it for certain in advance. 
b. It is a continuous random variable. 
c. It is a discrete random variable. 

Answer: It is a random variable, assuming that the planner cannot confidently 
predict the number in advance. Count of units is discrete. Therefore, the number of 
boats is a discrete random variable (c). 

 
The “probability of an event,” written Pr(A), is the subjective chance from 0 

to 1 the event will happen as assessed by the planner. Even though the probability 
is written below in terms of integrals and sums, it is important to remember that the 
inputs to these formulas are subjective and therefore the probability is subjective. 
This holds when it comes to predicting future events for complicated systems. 

Example 10.2.2  Probability of Selling Two Boats 

Question: A planner has sold two boats out of two attempts last month at a market 
and has been told those sales were lucky. What is true about the probability of 
selling two more next month? 

a. The probability is 1.0 since 2 ÷ 2 = 1 based on last month’s data. 
b. The planner might reasonably feel that the probability is high, for example 

0.7 or 70%. 
c. Probabilities are essentially rationalizations and therefore have no value. 
d. The answers in part (a) and (b) are both true. 

$9,500       $10,000          $10,600
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Answer: Last month you sold two similar boats which might suggest that the 
probability is high, near 1. However, past data can rarely if ever be used to declare 
that a probability is 1.0. While probabilities are rationalizations, they can have 
value. For example, they can communicate feelings and cause participants in a 
decision to share information. The planner can judge the probability is any number 
between 0 and 1, and 0.7 might seem particularly reasonable. Therefore, (b) is the 
only true answer.  

 
The previous example illustrates the ambiguities about assigning probabilities 

and their indirect relationship to data. The next example is designed to show that 
probability calculations can provide more valuable information to decision-makers 
than physical data or experience in some cases.  

Example 10.2.3  Selecting An Acceptance Sampling Plan 

Question: The planner has enjoyed a positive experience with a single sampling 
plan. A bad lot of 1200 parts was identified and no complaints were made about 
expected lots. A quality engineer states some reasonable-seeming assumptions and 
declares the following: there is a 0.6 probability of cutting the inspection costs by 
half and a 0.05 higher chance of detecting a bad lot using a double sampling 
policy. Which answer is most complete and correct? 

a. In business, never trust subjective theory. Single sampling was proven to 
work consistently. 

b. The evidence to switch may be considered trustworthy. 
c. Single sampling is easier. Simplicity could compensate for other benefits. 
d. Double sampling practically guarantees bad lots will not be accepted. 
e. The answers in parts (b) and (c) are both correct. 

Answer: Currently, many top managers feel the need to base the most important 
business decisions on calculated probabilities. It can be technically correct not to 
trust subjective theory. However, here the position is adopted that proof can only 
come from an experiment using randomization (see Chapter 11) or form physics or 
mathematical theory. In general, all acceptance sampling methods involve a risk of 
accepting “bad” lots. Probabilistic information may be regarded as trustworthy 
evidence if it is based on reasonable assumptions. Also, trading off intangibles 
against probabilistic benefits is often reasonable. Therefore, (e) is the most 
complete and correct answer. 

 
The rigorous equations and mathematics in the next few sections should not 

obscure the fact that probability theory is essentially subjective in nature and is the 
servant of decision-makers. The main point is that even though probabilities are 
subjective, probability theory can take reasonable assumptions and yield 
surprisingly thorough comparisons of alternative methods or decision options. 
These calculations can be viewed as mental experiments or simulations. While not 
unreal in an important sense, these calculations can often offer more convincing 
verifications than empirical tests. Similar views were articulated by Keynes (1937) 
and Savage (1972). 
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10.3  Continuous Random Variables 

Considering that continuous numbers can assume an uncountably infinite number 
of values, the probability that they are any particular value is zero. Beliefs about 
them must be expressed in terms of the chance that they are “near” any given 
value. The phrase “probability density function” or the symbol, f(x), quantifies 
beliefs about the likelihood of specific values of the continuous random variable X. 
The phrase “distribution function” is often used to refer to probability density 
functions. Considering the infinities involved, integral calculus is needed to derive 
probabilities from probability density functions as follows: 
 

 Pr(A) = ( )∫
∈Ax

dxxf      (10.1) 

 
where x ∈ A means, in words, the value assumed by x is in the set A.  

Because of the complications associated with calculus, people often only 
approximately express their beliefs using density functions. These approximations 
make the probability calculations relatively easy. The next example illustrates the 
use of the “triangular distribution” that is reasonably easy to work with and fairly 
flexible. 

Example 10.3.1  Boat Prices Continued 

Question: Assume an engineer believes that the price of a boat will be between a = 
$9,500 and b = $10,600, with c = $10,000 being the most likely price of a boat he 
might buy next month. Develop and plot a probability density function that is both 
reasonably consistent with these beliefs and easy to work with.  
 
Answer: A reasonable choice is the so-call “triangular” distribution function, in 
Equation 10.2 and Figure 10.3: 
 

                     0   if x ≤ a or x ≥ b 
 (10.2) 

f(x) =    if a < x ≤ c 
 
     
if c < x < b   . 

     2(x – a)   a 
(b – a)(c – a) 
 
     2(b – x)   a  
(b – a)(b – c) 
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    f(x) 

      total area is 1.0 

$9,500       $10,000          $10,600

0.0018  
 
 
 
0.0000 

 
Figure 10.3. Distribution for boat price (shaded refers to Example 10.3.2) 

Note that the total area underneath all probability density functions is 1.0. 
Therefore, if X is any continuous random variable and a is any number, Pr{X < a} 
= 1 – Pr{X ≥ a}.  

The next example shows that a probability can be calculated from a distribution 
function. It is important to remember that the distribution functions are subjectively 
chosen just like the probabilities. The calculus just shows how one set of subjective 
assumptions implies other subjective assumptions. 

Example 10.3.2  Boat Price Probabilities 

Question: A planner is comfortable assuming that a boat price has a triangular 
distribution with parameters a = $9,500, b = $10,600, and c = $10,000 as in the 
previous example. Use calculus to derive what this assumption implies about the 
probability that the price will be less than $10,000. Also, what is the probability it 
will be greater than $10,000? 
 
Answer: A is the event {X < $10,000}. Based on the subjectively assumed 
distribution function, described in Figure 10.3 above: 

 

  Pr(A) = ( )∫
∞−

000,10

dxxf  = 0 +                   dx    (10.3) 

 
This integral corresponds to the shaded area in Figure 10.3. From our 

introductory calculus course, we might remember that the anti-derivative of xn is 
(n+1)–1xn+1 + K, where K is a constant. (With computers, integrals can be done even 
without antiderivatives, but in this case, one is available.) Applying the anti-
derivative, our expression becomes 

                 
 
Pr(A) =                  (10.4) 
 
 

= –163.63 – (–164.09) = 0.45 . 
 
Therefore, the planner’s subjective assumption of the triangular distribution 

function implies a subjective probability of 45% that the market price will be 
below $10,000. The probability of being greater than $10,000 is 1.0 – 0.45 = 0.55. 

∫
$10,000
 
 
$9,500 

                   2(x – $9,500)                   x 

($10,600 – $9,500)($10,000 – $9,500)  

| 
$10,000 
 

      

$9,500 

              2(0.5x2 – $9,500x)                 x 

($10,600 – $9,500)($10,000 – $9,500)  
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As implied above, distributions with widely known names like the triangular 
distribution rarely if ever exactly correspond to the beliefs of the planner. Choosing 
a named distribution is often done simply to make the calculations easy. Yet, 
computers are making calculus manipulations easier all the time so that custom 
distributions might grow in importance. In the future, planners will increasingly 
turn to oddly shaped distribution functions, f(x), that still have an area equal to 1.0 
underneath them but which more closely correspond to their personal beliefs. 

Using calculus, the “mean” (μ) or “expected value” (E[X]) of a random 
variable with probability density function, f(x), is defined as 

 

 E[X] = ( )∫
∞

∞−

dxxfx  =  μ (10.5) 

 
Similarly, the “standard deviation” (σ) of a random variable, X, with 

probability density function, f(x), is defined as 
 

 E[X] = ( ) ( )∫
∞

∞−

− dxxfx 2μ  =  σ (10.6) 

The next example illustrates the calculation of a mean from a distribution 
function. 

Example 10.3.3  The Mean Boat Price 

Question: A planner is comfortable assuming that a boat price has a triangular 
distribution with parameters a = $9,500, b = $10,600, and c = $10,000, as in the 
previous example. Use calculus to derive what this assumption implies about the 
mean boat price. 
 
Answer:    

 
  E[X] = 0 +   x                         dx            (10.7) 
 
 
 +          x              dx + 0 = $10,033.33 
 
 
Looking at a plot of a distribution function, it is often easy to guess 

approximately the mean. It is analogous to the center of gravity in physics.  
Looking at Figure 10.3, it seems reasonable that the mean is slightly to the right of 
$10,000.  

The “uniform” probability distribution function has f(x) = 1 ÷ (b – a) for a ≤ x ≤ 
b and f(x) = 0 otherwise. In words, X is uniformly distributed if it is equally likely 
to be anywhere between the numbers a and b with no chance of being outside the 
[a,b] interval. The distribution function is plotted in Figure 10.4. 

∫ 
$10,000 
 
 
 $9,500 

                   2(x – $9,500)                   x 

($10,600 – $9,500)($10,000 – $9,500)  

∫ 
$10,600 
 
 
$10,000 

                   2($10,600 – x)                  x 

($10,600 – $9,500)($10,600 – $10,000)  
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Figure 10.4. The generic uniform distribution function 

The uniform distribution is probably the easiest to work with but also among 
the least likely to exactly correspond to a planner’s subjective beliefs. Probabilities 
and mean values of uniformly distributed random variables can be calculated using 
plots and geometry since areas correspond to probabilities. 

Example 10.3.4  The Uniform Distribution 

Question: Suppose a planner is comfortable with assuming that her performance 
rating next year, X, had a distribution f(x) = 0.1 for 85 ≤ X ≤ 95. What does this 
imply about her believed chances of receiving an evaluation between 92 and 95?  

 
 
            total area is 1.0 
 
 
 
 85     95

0.1 
 

0.0000 

 
Figure 10.5. The uniform distribution function example probability calculation 

Answer: P(92 ≤ X ≤ 95) is given by the area under the distribution function over 
the range [92,95], which equals 0.1 × 3 = 0.3 or 30%. 

 
As noted earlier, there are only a small number of distribution shapes with 

“famous distribution functions” names such as the triangular distribution, the 
uniform distribution, and the normal distribution, which will be discussed next. 
One can, of course, propose “custom distribution functions” specifically 
designed to express beliefs in specific situations.  

 
 

10.3.1  The Normal Probability Density Function 

The “normal” probability density function, f(x), has a special role in statistics in 
general and statistical quality control in particular. This follows because it is 
relevant for describing the behavior of plotted quantities in control charts. The 
reason for this relates to the central limit theory (CLT). The goals of this section 
are to clarify how to calculate probabilities associated with normally distributed 
random variables and the practical importance of the central limit theorem. 

                total area is 1.0 

a      b

1 ÷ (b – a) 
 

0.0000 
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The normal probability density function is 
 

  f(x) = 
( )

2

2

20.398942 σ
μ

σ

−
−

x

e            (10.8) 

 
where the parameters μ and σ also happen to be the mean and standard deviation of 
the relevant normally distributed random variable.  

The normal distribution is important enough that many quality engineers have 
memorized the probabilities shown in Figure 10.6. The phrase “standard normal 
distribution” refers to the case μ = 0 and σ = 1, which refers to both plots in 
Figure 10.6. 

 

 
Figure 10.6. Shows the fraction within (a) 1.0 × σ of the μ and (b) 3.0 × σ of μ 

In general, for any random variable X and constants μ and σ with σ > 0: 
 

                           Pr{X < a} = Pr{ ( )
σ

μ−X < ( )
σ

μ−a }.                        (10.9) 

 
This follows because the events on both sides of the equation are equivalent. When 
one occurs, so does the other. When one does not occur, neither does the other. 

 
The normal distribution has three special properties that aid in hand calculation 

of relevant probabilities. First, the “location scale” property of normal probability 
density function guarantees that, if X is normally distributed, then 

 
   Z ~ ( )

σ
μ−X                                                    (10.10) 

 
is also normally distributed, for any constants μ and σ. Note that, for many 
distributions, shifting and scaling results in a random variable from a distribution 
with a different name. 
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Second, if μ and σ are the mean and standard deviation of X respectively, then 
Z derived from Equation 10.10 has mean 0.000 and standard deviation 1.000. 
Then, we say that Z is distributed according to the “standard normal” distribution.   

Third, the “symmetry property” of the normal distribution guarantees that 
Pr{Z < a} = Pr{Z > – a}. One practical benefit of these properties is that 
probabilities of events associated with normal probability density functions can be 
calculated using Table 10.1. The table gives Pr{Z < a} where the first digit of a is 
on the left-hand-side column and the last digit is on the top row. For example:  

 
Pr{Z < –4.81} = 1.24E–06 or 0.00000124.   
 
Note that, taken together, the above imply that: 
 
      Pr{X > a}  = Pr{Z > (a – μ)÷σ}  
  = Pr{Z < –(a – μ)÷σ}  
  = Pr{ (X – μ)÷σ < – (a – μ)÷σ} 
   = Pr{X < 2μ – a}. 
 
The examples that follow illustrate probability calculations that can be done 

with paper and pencil and access to Table 10.1. They show the procedure of using 
the equivalence of events to transform normal probability calculations to a form 
where answers can be looked up using the table. In situations where Excel 
spreadsheets can be accessed, similar results can be derived using built-in 
functions. For example, “=NORMDIST(5,9,2,TRUE)” gives the value 0.02275, 
where the TRUE refers to the cumulative probability that X is less than a. A false 
would give the probability density function value at the point X = a. 
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Table 10.1. If Z ~ N[0,1], then the table gives P(Z < z). The first column gives the first three 
digits of z, the top row gives the last digit 
 

 0.00 0.01 0.02 0.03 0.04 
–6.0 9.87E–10 9.28E–10 8.72E–10 8.20E–10 7.71E–10 
–4.4 5.41E–06 5.17E–06 4.94E–06 4.71E–06 4.50E–06 
–3.5 0.00023 0.00022 0.00022 0.00021 0.00020 
–3.4 0.00034 0.00032 0.00031 0.00030 0.00029 
–3.3 0.00048 0.00047 0.00045 0.00043 0.00042 
–3.2 0.00069 0.00066 0.00064 0.00062 0.00060 
–3.1 0.00097 0.00094 0.00090 0.00087 0.00084 
–3.0 0.00135 0.00131 0.00126 0.00122 0.00118 
–2.9 0.00187 0.00181 0.00175 0.00169 0.00164 
–2.8 0.00256 0.00248 0.00240 0.00233 0.00226 
–2.7 0.00347 0.00336 0.00326 0.00317 0.00307 
–2.6 0.00466 0.00453 0.00440 0.00427 0.00415 
–2.5 0.00621 0.00604 0.00587 0.00570 0.00554 
–2.4 0.00820 0.00798 0.00776 0.00755 0.00734 
–2.3 0.01072 0.01044 0.01017 0.00990 0.00964 
–2.2 0.01390 0.01355 0.01321 0.01287 0.01255 
–2.1 0.01786 0.01743 0.01700 0.01659 0.01618 
–2.0 0.02275 0.02222 0.02169 0.02118 0.02068 
–1.9 0.02872 0.02807 0.02743 0.02680 0.02619 
–1.8 0.03593 0.03515 0.03438 0.03362 0.03288 
–1.7 0.04457 0.04363 0.04272 0.04182 0.04093 
–1.6 0.05480 0.05370 0.05262 0.05155 0.05050 
–1.5 0.06681 0.06552 0.06426 0.06301 0.06178 
–1.4 0.08076 0.07927 0.07780 0.07636 0.07493 
–1.3 0.09680 0.09510 0.09342 0.09176 0.09012 
–1.2 0.11507 0.11314 0.11123 0.10935 0.10749 
–1.1 0.13567 0.13350 0.13136 0.12924 0.12714 
–1.0 0.15866 0.15625 0.15386 0.15151 0.14917 
–0.9 0.18406 0.18141 0.17879 0.17619 0.17361 
–0.8 0.21186 0.20897 0.20611 0.20327 0.20045 
–0.7 0.24196 0.23885 0.23576 0.23270 0.22965 
–0.6 0.27425 0.27093 0.26763 0.26435 0.26109 
–0.5 0.30854 0.30503 0.30153 0.29806 0.29460 
–0.4 0.34458 0.34090 0.33724 0.33360 0.32997 
–0.3 0.38209 0.37828 0.37448 0.37070 0.36693 
–0.2 0.42074 0.41683 0.41294 0.40905 0.40517 
–0.1 0.46017 0.45620 0.45224 0.44828 0.44433 
0.0 0.50000 0.49601 0.49202 0.48803 0.48405 
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Table 10.1. Continued 

 0.05 0.06 0.07 0.08 0.09 
–6.0 7.24E–10 6.81E–10 6.40E–10 6.01E–10 5.65E–10 
–4.4 4.29E–06 4.10E–06 3.91E–06 3.73E–06 3.56E–06 
–3.5 0.00019 0.00019 0.00018 0.00017 0.00017 
–3.4 0.00028 0.00027 0.00026 0.00025 0.00024 
–3.3 0.00040 0.00039 0.00038 0.00036 0.00035 
–3.2 0.00058 0.00056 0.00054 0.00052 0.00050 
–3.1 0.00082 0.00079 0.00076 0.00074 0.00071 
–3.0 0.00114 0.00111 0.00107 0.00104 0.00100 
–2.9 0.00159 0.00154 0.00149 0.00144 0.00139 
–2.8 0.00219 0.00212 0.00205 0.00199 0.00193 
–2.7 0.00298 0.00289 0.00280 0.00272 0.00264 
–2.6 0.00402 0.00391 0.00379 0.00368 0.00357 
–2.5 0.00539 0.00523 0.00508 0.00494 0.00480 
–2.4 0.00714 0.00695 0.00676 0.00657 0.00639 
–2.3 0.00939 0.00914 0.00889 0.00866 0.00842 
–2.2 0.01222 0.01191 0.01160 0.01130 0.01101 
–2.1 0.01578 0.01539 0.01500 0.01463 0.01426 
–2.0 0.02018 0.01970 0.01923 0.01876 0.01831 
–1.9 0.02559 0.02500 0.02442 0.02385 0.02330 
–1.8 0.03216 0.03144 0.03074 0.03005 0.02938 
–1.7 0.04006 0.03920 0.03836 0.03754 0.03673 
–1.6 0.04947 0.04846 0.04746 0.04648 0.04551 
–1.5 0.06057 0.05938 0.05821 0.05705 0.05592 
–1.4 0.07353 0.07215 0.07078 0.06944 0.06811 
–1.3 0.08851 0.08691 0.08534 0.08379 0.08226 
–1.2 0.10565 0.10383 0.10204 0.10027 0.09853 
–1.1 0.12507 0.12302 0.12100 0.11900 0.11702 
–1.0 0.14686 0.14457 0.14231 0.14007 0.13786 
–0.9 0.17106 0.16853 0.16602 0.16354 0.16109 
–0.8 0.19766 0.19489 0.19215 0.18943 0.18673 
–0.7 0.22663 0.22363 0.22065 0.21770 0.21476 
–0.6 0.25785 0.25463 0.25143 0.24825 0.24510 
–0.5 0.29116 0.28774 0.28434 0.28096 0.27760 
–0.4 0.32636 0.32276 0.31918 0.31561 0.31207 
–0.3 0.36317 0.35942 0.35569 0.35197 0.34827 
–0.2 0.40129 0.39743 0.39358 0.38974 0.38591 
–0.1 0.44038 0.43644 0.43251 0.42858 0.42465 
0.0 0.48006 0.47608 0.47210 0.46812 0.46414 
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Example 10.3.5  Normal Probability Calculations 

Question 1: Assume X ~ N(μ = 9, σ = 2). What is the Pr{X < 5}?  
 
Answer 1: Z = (X – 9)/2 has a standard normal distrubtion. Therefore,  

Pr{X < 5} = Pr{Z < (5 – 9)/2}. Therefore,  
Pr{X < 5} = Pr{Z < –2.00} = 0.02275, from Table 10.1. 

 
Question 2: Assume X ~ N(μ = 20, σ = 5). What is the Pr{X  > 22}? 
 
Answer 2: Pr{X > 22} = Pr{Z > (22 – 20)/5}= Pr{Z > 0.4}, using the location scale 
property. Also, Pr{Z > 0.4}= Pr{Z<–0.4}, because of the symmetry property of the 
normal distribution. Pr{X > 22}= Pr{Z < –0.40} = 0.344578, from the table. 

 
Question 3: Assume X ~ N(μ = 20, σ = 5). What is the Pr{12 < X  < 23}? 
 
Answer 3: Pr{12 < X  < 23} = Pr{X < 23} – Pr{X < 12}, which follows directly 
from the definition of probability as an integral in Figure 10.7. Next, 
    Pr{X < 12}  = Pr{Z < (12 – 20)/5} 
  = Pr{Z < –1.60} = 0.054799 and  
    Pr{X < 23}  = Pr{Z < (23 – 20)/5}  
  = Pr{Z < 0.60} = 1 – Pr{Z < –0.60}  
  = 1 – 0.274253, 
where the location scale and symmetry properties have been used. Therefore, the 
answer is 1 – 0.274253 – 0.054799 = 0.671. (The implied uncertainty of the 
original numbers is unclear, but quoting more than three digits for probabilities is 
often not helpful because of their subjective nature.) 
 

 
 
Figure 10.7.  Proof by picture of the equality of probabilities corresponding to areas 

Question 4: Suppose a planner is comfortable with assuming that her performance 
rating next year, X, will have a distribution f(x) = 0.1 for 85 ≤ X ≤ 95. What does 
this imply about her believed chances of receiving an evaluation of 92-95?  
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Figure 10.8. The uniform distribution function example probability calculation 
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Answer 4: P(92 ≤ X ≤ 95) is given by the area under the distribution function over 
the range [92,95] in Figure 10.8, which equals 0.1 × 3 = 0.3 or 30%. 

 
The phrase “test for normality” refers to an evaluation of the extent to which a 

decision-making can feel comfortable believing that responses or averages are 
normally distributed. In some sense, numbers of interest from the real world never 
come from normal distributions. However, if the numbers are averages of many 
other numbers, or historical data suggests approximate normality, then it can be of 
interest to assume that future similar numbers come from normal distributions. 
There are many formal approaches for evaluating the extent to which assuming 
normality is reasonable, including evaluation of skew and kurtosis and normal 
probability plotting the numbers as described in Chapter 15. 

10.3.2  Defects Per Million Opportunities 

Assume that a unit produced by an engineered system has only one critical quality 
characteristic, Y1(xc). For example, the critical characteristic of a bolt might be 
inner diameter. If the value of this characteristic falls within values called the 
“specification limits,” then the unit in question is generally considered acceptable, 
otherwise not. Often critical characteristics have both “upper specification limits” 
(USL) and “lower specification limits” (LSL) that define acceptability. For 
example, the bolt diameter must be between LSL = 20.5 mm and USL = 22.0 mm 
for the associated nuts to fit the bolt.  

Suppose further that the characteristic values of items produced vary 
uncontrollably around an average or “mean” value, written “μ,” with typical 
differences between repeated values equal to the “standard deviation,” written “σ”.  
For example, the bolt inner diameter average might be 21.3 mm with standard 
deviation, 0.2 mm, i.e., μ = 21.3 mm and σ = 0.2 mm. 

With these definitions, one says that the “sigma level,” σL, of the process is 
 
  σL = Minimum[USL – μ, μ – LSL]/σ .          (10.11) 
 
Note that σL = 3 × Cpk (from Chapter 4). If σL > 6, then one says that the 

process has “six sigma quality.” For instance, the bolt process sigma level in the 
example given is 3.5. This quality level is often considered “mediocre”. 

With six sigma quality and assuming normally distributed quality characteristic 
values under usual circumstances, the fraction of units produced with characteristic 
values outside the specification limits is less than 1 part per billion (PPB). If the 
process mean shifts 1.5σ toward the closest limit, then the fraction of “non-
conforming” units (with characteristic values that do not conform to 
specifications) is less than 3.4 parts per million (PPM).  

Figure 10.9 shows the probability density function associated with a process 
having slightly better than six sigma quality. This figure implies assumptions 
including that the upper specification limit is much closer to the mean than the 
lower specification limit. 
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Figure 10.9. Shows the relative frequency of parts produced with six sigma quality  

One practical benefit of this definition is that it emphasizes the importance of 
achieving what might be considered high levels of process quality. This emphasis 
can be useful since the costs of poor quality are often hard to evaluate and much 
greater than the cost of fixing or “reworking” non-conforming units. Typically, 
correct accounting of the costs includes higher inventory maintenance and delayed 
shipment dates as well as down-the-line costs incurred when quality issues disrupt 
production by creating unpredictable rework and processing times.  

 Also, if there are “non-conforming” units, then customers may be upset or 
even injured. The losses to the company from such incidents might include lawsuit 
costs, lost revenue because demand may be reduced, and turnover and absenteeism 
costs arising from a demotivated workforce.  

10.3.3  Independent, Identically Distributed and Charting 

The central limit theorem (CLT) plays an important role in statistical quality 
control largely because it helps to predict the performance of control charts. As 
described in Chapter 4 and Chapter 8, control charts are used to avoid intervention 
when no assignable causes are present and to encourage intervention when they are 
present. The CLT helps to calculate the probabilities that charts will succeed in 
these goals with surprising generality and accuracy. The CLT aids in probability 
calculations regardless of the charting method (with exceptions including R 
charting) or the system in question, e.g., from restaurant or hospital emergency 
room to traditional manufacturing lines.  

To understand how to benefit from the central limit theorem and to comprehend 
the limits of its usefulness, it is helpful to define two concepts. First, the term 
“independent” refers to the condition in which a second random variable’s 
probability density function is the same regardless of the values taken by a set of 
other random variables. For example, consider the two random variables: X1 is the 
number of boats that will be sold next month and X2 is their sales prices as 
determined by unknown boat sellers. Both are random variables because they are 
unknown to the planner in question. The planner in question assumes that they are 
indendent if and only if the planner believes that potential buyers make purchasing 
decisions with no regard to price within the likely ranges. Formally, if f(x 1 ,x 2 ) is 
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the “joint” probability density function, then independence implies that it can be 
written f(x1 ,x2 )=  f(x 1) f(x2) .  

Second, “identically distributed” means that all of the relevant variables are 
assumed to come from exactly the same distribution. Clearly, the number of boats 
and the price of boats cannot be identically distributed since one is discrete (the 
number) and one is continuous (the price). However, the numbers of boats sold in 
successive months could be identically distributed if (1) buyers were not 
influenced by seasonal issues and (2) there was a large enough pool of potential 
buyers. Then, higher or lower number of sales one month likely would not 
influence prospects much in the next month. 

In the context of control charts, making the combined assumption that system 
outputs being charted are independent and identically distributed (IID) is relevant. 
Departures of outputs from these assumptions are also relevant. Therefore, it is 
important to interpret the meaning of IID in this context. System outputs could 
include the count of demerits on individual hospital surveys or the gaps on 
individual parts measured before welding. 

To review: under usual circumstances, common causes force the system outputs 
to vary with a typical pattern (randomly with the identical, same density function). 
Rarely, however, assignable causes enter and change the system, thereby changing 
the usual pattern of values (effectively shifting the probability density function). 
Therefore, even under typical circumstances the units inspected will not be 
associated with constant measurement values of system outputs. The common 
cause factors affecting them will force the observations to vary up and down. If 
measurements are made on only a small fraction of units produced at different 
times by the system, then it can be reasonably assumed that the common causes 
will effectively reset themselves. Then, the outputs will be IID to a good 
approximation. However, even with only common causes operating, units made 
immediately after one another might not be associated with independently 
distributed system outputs. Time is often needed for the common causes to reset 
enough that independence is reasonable. Table 10.2 summarizes reasons why IID 
might or might not be a reasonable assumption in the context of control charting. 

Table 10.2. Independent and identically distributed assumptions for control charting 

 Reasons system outputs 

 Might be Might not be 

Independent 
Units inspected are made 
with enough time for the 

system to reset 

The same common causes influence 
successive observations the same way 

Identically 
distributed 

Only common cause 
variation is operating 

Assignable causes changed the output 
pattern necessitating new assumptions 

Example 10.3.6  Moods, Patient Satisfaction, and Assuming Independence  

Question: Assume the mood of the emergency room nurse, working at a small 
hospital with typically ten patients per shift, affects patient satisfaction. The key 
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output variable is the sum of demerits. Consider the following statement: “The 
nurse’s mood is a source of common cause variation, making it unreasonable to 
assume that subsequent patients’ assigned demerits are independently distributed.” 
Which answer is most complete and correct? 

a. The statement is entirely reasonable. 
b. Moods are always assignable causes because local people can always fix 

them. 
c. Moods fluctuate so quickly that successive demerit independence is 

reasonable.  
d. Satisfaction ratings are always independent since patients never talk 

together. 
e. The answers in parts (b) and (c) are both reasonable. 
 

Answer: In most organizations, moods are uncontrollable factors. Since they are 
often not fixable by local authority, they are not generally regarded as assignable 
causes. Moods typically change at a time scale of one shift or one half shift. 
Therefore, multiple patients would likely be affected by the same mood. Therefore, 
assuming successive demerit independence is reasonable. Satisfaction ratings 
might not be independently distributed because the same common cause factor 
fluctuation might affect multiple observations. Therefore, the answer is (a). 

 
The previous example focused on the appropriateness of the independence 

assumption in a case in which sequential observations might reasonably be affected 
by the same common cause variation. When that happens, it can become 
unreasonable to assume that the associate system outputs will be independently 
distributed.  

The term “autocorrelation” refers to departures of charted quantities from 
being independently distributed. These departures are fairly common in practice 
and do not always substantially degrade the effectiveness of the charts. If there 
were no autocorrelation, the charted quantities would show no pattern at all. Each 
would be equally likely to be above or below the center line. If there is 
autocorrelation, the next observation often is relatively close to the last making a 
relatively smooth pattern.  

Example 10.3.7  Identically Distributed Fixture Gaps 

Question: An untrained welder is put on second shift and does not follow the 
standard operating procedure for fixturing parts, dramatically increasing gaps. 
Consider the following statement: “The operator’s lack of training constitutes an 
assignable cause and could make it difficult to believe the same, identical 
distribution applies to gaps before and after the untrained welder starts.” Which 
answer is most complete and correct? 

a. The statement is entirely reasonable. 
b. Training issues are assignable causes because local authority can fix them. 
c. It is usual for assignable causes to effectively shift the output density 

function. 
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d. With only common causes operating, it is often reasonable to assume 
outputs continually derive from the identical distribution function. 

e. All of the above answers are correct. 
 

Answer: Training issues are often easy for local authority to fix. Generally 
speaking, common causes are associated with a constant or identical probability 
density function for system outputs. Assignable causes are associated with changes 
to the distribution function that make extreme values more likely. Therefore, all of 
the above answers are correct. 

10.3.4  The Central Limit Theorem 

In the context of SQC, the central limit theorem (CLT) can be viewed as an 
important fact that increases the generality of certain kinds of control charts. Also, 
it can be helpful for calculating the small adjustment factors d2, D1, and D2 that are 
commonly used in Xbar charting. Here, the CLT is presented with no proof using 
the following symbols: 

X1, X2, …, Xn are random variables assumed to be independent identically 
distributed (IID). These could be quality characteristic values outputted from a 
process with only common causes operating. They could also be a series of outputs 
from some type of numerical simulation. 

f(x) is the common density function of the identically distributed X1, X2, …, Xn. 
Xbarn is the sample average of X1, X2, …, Xn. Xbarn is effectively the same as 

Xbar from Xbar charts with the “n” added to call attention to the sample size. 
σ is the standard deviation of the X1, X2, …, Xn, which do not need to be 

normally distributed. 
The CLT focuses on the properties of the sample averages, Xbarn.  
If X1, X2, …, Xn are independent, identically distributed (IID) random variables 

from a distribution function with any density function f(x) with finite mean and 
standard deviation, then the following can be said about the average, Xbarn, of the 
random variables. Defining 

Xbarn = ( )
n

XXX n+++ ...21  and  
( )

( )n

duufu
Z

n

n /

Xbar

σ

∫
∞

∞−

−
= ,       (10.12) 

 
it follows that  

( ) ∫
∞−

−

∞→
=≤

x u

nn
duexZ

2

2
1

2
1Prlim
π

.        (10.13) 

In words, averages of n random variables, Xbarn, are approximately 
characterized by a normal probability density function. The approximation 
improves as the number of quantities in the average increases. A reasonably 
understandable proof of this theorem, i.e., the above assumptions are equivalent to 
the latter assumption, is given in Grimmet and Stirzaker (2001), Chapter 5. 
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To review, the expected value of a random variable is: 

E[X] = ( )∫
∞

∞−

duufu           (10.14) 

Then, the CLT implies that the sample average converges, Xbarn, converges to 
the true mean E[X] as the number of random variables averaged goes to infinity. 
Therefore, the CLT can be effectively rewritten as 

E[X] = Xbarn + eMC.,         (10.15) 

where eMC is normally distributed with mean 0.000 and standard deviation σ ÷ 
sqrt[n] for “large enough” n. We call Xbarn the “Monte Carlo estimate” of the 
mean, E[X]. There, with only common causes operating, the Xbar chart user is 
charting Monte Carlo estimates of the mean. Since σ is often not known, it is 
sometimes of interest to use the sample standard deviation, s: 

s = 
( )

1
1

2

−

−∑
=

n

XbarX
n

i
ni

       (10.16) 

Then, it is common to use: 
 σestimate = s ÷ c4          (10.17) 

where c4 comes from Table 10.3. As noted in Chapter 6, the standard deviation can 
also be estimated using the average range, Rbar, using: 

σestimate = Rbar ÷ d2          (10.18) 

However σ is estimated, σestimate ÷ sqrt[n] is called the “estimated error of the 
Monte Carlo estimate” or a typical difference between Xbarn and E[X]. 

Table 10.3. Constants c4 and d2 relevant to Monte Carlo estimation and charting 

Sample size (n) c4 d2  Sample size (n) c4 d2 

2 0.7979 1.128  8 0.9560 2.847 

3 0.8864 1.693  9 0.9693 2.970 

4 0.9213 2.059  10 0.9727 3.078 

5 0.9400 2.326  15 0.9823 3.472 

6 0.9515 2.534  20 0.9869 3.737 

7 0.9594 2.704     

Example 10.3.8  Identically Distributed Fixture Gaps 

Question: A forging process is generating parts whose maximum distortion from 
nominal is the critical quality characteristic, X. From experience, one believes X 
has average 5.2 mm and standard deviation 2.1. Let Xbar5 denote the average 
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characteristic value of five parts selected and measured each hour. Which is correct 
and most complete? 

a. Xbar5 is normally distributed with mean 5.2 and standard deviation 0.94. 
b. Xbar5 is likely approximately normally distributed with mean 5.2 and 

standard deviation 0.94. 
c. The credibility of assuming a normal distribution for Xbar5 can be 

evaluated by studying the properties of several Xbar5 numbers. 
d. Training issues are assignable causes because local authority can fix them. 
e. All of the above are correct except a. 
f. All of the above answers are correct except d. 
 

Answer: The central limit theorem only guarantees approximate normality in the 
limit that n → ∞. Therefore, since there is no reason to believe that X is normally 
distributed, e.g., it cannot be negative, there is no reason to assume that Xbar5 is 
exactly normally distributed. Yet, often with n = 5 approximate normality of 
averages holds with standard deviation approximately equal to σ0 ÷ sqrt[n] = 2.1 ÷ 
sqrt[5] = 0.94. Also, the credibility of this distribution assumption can be evaluated 
by studying many values of Xbar5, e.g., using a normal probability plot (see 
Chapter 15). Therefore, the most complete of the correct answers is (d). 

 
If the distribution of the random variable stays the same (X is identically 

distributed), then the Xbarn will be approximately normally distributed according 
to the same normal distribution. If the Xbarn distribution changes, then the 
distribution of X likely changed and an assignable cause is present. Spotting 
assignable causes in this manner constitutes and important motivation for Xbar 
charting and many other kinds of charts. The following example illustrates the 
application of the central limit theorem for spotting unusual occurrences and the 
bredth of possible applications. 

Example 10.3.9  Monitoring Hospital Waiting Times 

Question: The time between the arrival of patients in an emergency room (ER) and 
when they meet with doctors, X, can be a critical characteristic. Assume that times 
are typically 20 min with standard deviation 10 min. Suppose that the average of 
seven consecutive patient times was 35 min. Which is correct and most complete? 

a. A rough estimate for the probability that this would happen 
without assignable causes is 0.000004. 

b. This data constitutes a signal that something unusual is 
happening. 

c. It might be reasonable to assign additional resources to the ER. 
d. It is possible that no assignable causes are present.  
e. All of the above are correct. 

Answer: It has not been established that the averages of seven consecutive times, 
Xbar7, are normally distributed to a good approximation under usual 
circumstances. Still, it is reasonable to assume this for rough predictions. Then, the 
central limit theorem gives that Xbar7, under usual circumstances, has mean 20 
min and standard deviation 10 ÷ sqrt[7] = 3.8 min. The chance that Xbar7 would 
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be greater than 35 min is estimated to be Pr{Z > (35 – 20) ÷ 3.8} = Pr{Z < –4.49} 
= 0.000004 from Table 10.1. 
 
This average could theoretically happen under usual circumstances with no 
assignable causes but it would be very unlikely. Therefore, it might constitute a 
good reason to send in additional medical resources if they are available. The 
answer is (e), all of the above are correct.  

10.3.5  Advanced Topic: Deriving d2 and c4 

In this section, the derivation of selected constants used in control charting 
(Chapter 4) is presented. The purposes are (1) to clarify the approximate nature of 
these constants in usual situations and (2) to illustrate so-called “Monte Carlo 
integration” as an application of the central limit theorem. 

The constants d2 and c4 are used in estimating the true, usually unknown, 
standard deviation of individual observations, σ0. For normally distributed 
X1,…,Xn, d2 and c4 are unbiased estimates in the sense that:  

E[(Max{X1,…,Xn} – Min{X1,…,Xn}) ÷ d2] = σ0         (10.19) 

E[(Sample standard deviation{X1,…,Xn}) ÷ c4] = σ0        (10.20) 

These equations are equivalent to the following definitions: 

d2 ≡ E[(Max{X1,…,Xn} – Min{X1,…,Xn}) ÷ σ0]         (10.21) 

c4 ≡ E[(Sample standard deviation{X1,…,Xn}) ÷ σ0]        (10.22) 

Many computer software such as Microsoft® Excel permit the generation of 
pseudo-random numbers that one can safely pretend are normally distributed with 
known standard deviation, σ0. Using these pseudo-random numbers and the central 
limit theorem values for d2 and c4 can be estimated as illustrated in the following 
examples. 

Example 10.3.10  Estimating d2 (n = 5) 

Question: Use 5000 pseudo-random normally distributed numbers to estimate d2 
for the n = 5 sample size case. Also, give the standard error of your estimated 
value. 
 
Answer: The pseudo-random numbers shown in Table 10.4 were generated using 
Excel (Tools Menu ⇒ Data Analysis ⇒ Random Number Generation). The 
distribution selected was normal with mean 0 and standard deviation σ0 = 1 with 
random seed equal to 1 (without loss of generality). Definining R = Max{X1,…,Xn} 
– Min{X1,…,Xn}, one has 1000 effectively random variables whose expected value 
is d2 according to Equations 10.15 and 10.21. Averaging, we obtain 2.3338 as our 
estimated for d2 with Monte Carlo estimated standard error 0.8767 ÷ sqrt[1000] = 
0.0278. This estimate is within one standard deviation of the true value from Table 
10.3 of 2.326. Note that Table 10.4 also permits an estimate for c4. 
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Table 10.4. 1000 simulated subgroups each with five pseudo-random numbers 

Sub-
group X1 X2 X3 X4 X5  R S 

1 -3.0230 0.1601 -0.8658 0.8733 0.2147 → 3.8963 1.5271 

2 -0.0505 -0.3845 1.2589 0.9262 0.6638 → 1.6434 0.6834 

3 -0.9381 1.0756 0.5549 0.0339 -0.5129 → 2.0136 0.8062 

4 -2.1705 -1.3322 -0.3466 -1.0480 -0.9705 → 1.8239 0.6633 

5 2.2743 -0.1366 -1.1796 -2.5994 -2.3693 → 4.8737 1.9834 

6 -0.3111 0.0795 0.1794 0.2579 0.2719 → 0.5830 0.2398 

7 -0.9692 0.4208 -0.1237 -0.3796 -1.5801 → 2.0009 0.7725 

8 0.2733 0.7835 0.8510 0.0499 -0.5188 → 1.3698 0.5635 

9 1.1551 0.6028 1.7050 1.4446 0.0988 → 1.6062 0.6497 

M M M M M M  M M 

1000 -1.3413 2.1058 -0.6665 -1.4371 0.7682  3.5429 1.5222 

      Average 2.3338 0.9405 

      Standard 
Deviation 

0.8767 0.3488 

10.4  Discrete Random Variables 

Discrete random variables are unknown numbers that can assume only a countable 
number of random variables. The phrase “probability mass function” or the 
symbol, Pr(X = x), quantifies beliefs about the likelihood of specific values of the 
continuous random variable X. The phrase “distribution function” can also be 
used to refer to probability mass functions as well as density functions.  

For discrete random variables, an event is a set of values that the variables can 
assume. For example, a discrete random variable might be the number of non-
conforming items produced in three hours of production. The event, A, might be 
the event that less than or equal to two non-conforming items were produced. 

Let x1, x2, …, xN refer to possible values that X could take. Also, assume that 
the decision-maker is comfortable assuming certain probabilities for each of these 
values, written Pr{X = x1}, Pr{X = x2},…Pr{X = xN}. The sum of these 
probabilities must be 1.0000 to guarantee interpretability. Then, the probability of 
an event can be written as a sum over the values of xi in the set A:  
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Pr(A) = ∑
∈

=
Ax

i
i

xX }Pr{ . (10.23) 

In this book, we focus on cases in which the set of possible values that X can 
assume are non-negative integers 0, 1, 2,…(N – 1), e.g., the number of non-
conforming units in a lot of parts. An event of particular interest is the chance that 
X is less than or equal to a constant, c. Then, the probability of this event can be 
written: 

Pr{X ≤ c} = Pr{X = 0} + Pr{X = 1} + … + Pr{X = c}.        (10.24) 

The following example illustrates the elicitation of a discrete distribution function 
from a verbal description. It also shows that many “no-name” distribution 
functions can be relevant in real world situations.   

Example 10.4.1  Number of Accident Cases 

Question: An emergency room nurse tells you that there is about a 50% chance 
that no accident victims will come any given hour. If there is at least one victim, it 
is equally likely that any number up to 11 (the most ever observed) will come. Plot 
a probability mass function consistent with these beliefs and estimate the 
probability that greater than or equal to 10 will come.  
 
Answer: Figure 10.10 plots a custom distribution for this problem. The relevant 
sum is Pr{X = 10} + Pr{X = 11} = 0.10, giving 10% as the estimated probability. 
 
    Pr{X = xi} 
 
          
 
 
 
 
 

Figure 10.10. Distribution for number of victims with selected event (dotted lines) 

The expected value of a continuous random variable is expressable as a sum. This 
sum can be written:   

E(X) = ∑
∈

=
Ax

ii
i

xXx }Pr{ .        (10.24) 

The following example illustrates the practical calculation of an expected value.  
Note that since the individual probabilities are subjective, when applied to real 
decision problems, the resulting expected value is also subjective. 

0  5 10

0.50   
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Example 10.4.2  Expected Number of Accident Cases 

Question: Using the distribution function from the previous example, calculate the 
expected number of accident cases in any given hour.  
 
Answer: The expected value is 

    E[X] = 0 (0.5) + 1 (0.05) + 2 (0.05) + 3 (0.05) + 4 (0.05) + 5 (0.05)  
     + 6 (0.05) + 7 (0.05) + 8 (0.05) + 9 (0.05) + 10 (0.05) + 11 (0.05) = 3.3.  (10.25) 

10.4.1  The Geometric and Hypergeometric Distributions 

As for continuous distributions, there exist a small number of “well-known” 
probability mass functions. The “geometric” distribution has a special role in 
statistical quality control because it can aid in analysis of the times between false 
alarms in applications of control charting. The geometric probability mass function 
is      

                             p0
(x – 1)(1 – p0)  for x = 1,...,∞ 

Pr{X = x} =             (10.26) 
0 for all other x including x = 0 

 
where p0 is parameter. The following example shows a case in which one 
entertains assumptions such that the geometric distribution is perfect. 

Example 10.4.3  Perfect Geometric Distribution Case 

Question 1: Assume that one is considering a set of independent trials or tests. 
Each test is either a failure or a success. Assume further that the chance of success 
is p0. What is the probability that the first failure will occur on trial x? 
 
Answer 1: This is the perfect case for the geometric distribution. The distribution 
function is, therefore 

          Pr{X = x} = p0
(x – 1)(1 – p0) for x = 1,...,∞  

Advanced readers will realize that the definition of independence of events permits 
the formula to be generated through the multiplication of x – 1 consecutive 
successes followed by 1 failure.  
 
Question 2: Consider four independent trials, each with a success probability of 
0.8. What is the probability that the first failure will occur on trial number four? 
 
Answer 2: Applying the formula, Pr{X = 4} = 0.83 × 0.2 = 0.1024.   
  
An important message of the above example is that the geometric probability mass 
function, while appearing to derive from elementary assumptions, is still 
approximate and subjective when applied to real problems. For example, in a real 
situation one might have several trials but yet not be entirely comfortable assuming 
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that results are independent and are associated with the same, constant success 
probability, p0. Then, the geometric probability mass function might be applied for 
convenience only, to gain approximate understanding. 

The general formula for the expected value of a geometric random variable is: 

E[X] = (1) p0
(1 – 1)(1 – p0) + (2)p0

(2 – 1)(1 – p0) + … = 
01

1
p−

       (10.27) 

The “hypergeometric” distribution also has a special role in SQC theory because 
it helps in understanding the risks associated with acceptance sampling methods. 
The hypergeometric probability mass function is 

Pr{X = x} =  
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 for x = 0,1,...,∞                       (10.28) 

   
   0 for all other x      
 

where M, N, and n are parameters that must be non-negative integers. The symbol 
“( )” refers to the so-called “choose” operation given by 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x

M
 = “M choose x”  

=
)!(!

!
xMx

M
−

                                                                                  (10.29) 

 

=
]1...)1()[(]1...)1([

]1...)1([
××−−×−×××−×

××−×
xMxMxx

MM
.  

 
The following example shows the assumptions that motivate many applications of 
the hypergeometric distribution. 

Example 10.4.4  Perfect HyperGeometric Distribution Case 

Question: Assume that one is considering a situation with n units selected from N 
units where the total number of non-conforming units is M. Assume the selection is 
random such that each of the N units has an equal chance of being selected because 
a “rational subgroup” is used (see Chapter 4). Diagram this sampling situation and 
provide a formula for the chance that exactly x non-conforming units will be 
selected.  
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Answer: This is the perfect case for the hypergeometric distribution. The 
distribution function is, therefore, given by Equation 10.28. Advanced readers can 
calculate this formula from the assumptions by counting all cases in which x units 
are selected, divided by the total number of possible selections. Figure 10.11 
illustrates the selection situation.  
 
Calculating the probabilities from the hypergeometric distribution can be 
practically difficult. Factorials of a large numbers such as 100 is a very large 
number such as 9.3326 × 10157 that can exceed the capacity of calculators.   
   
 
 
   ←N→ 
          M 
             n 
   
 

Figure 10.11.  The selection of n units from N with M total non-conforming 

In cases in which n ≤ 0.1 N, n ≥ 20, M ≤ 0.1 N, and n × M ≤ 5 × N, the following 
“Poisson approximation” formula is often used for calculations: 
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In Microsoft® Excel, the function “HYPGEOMDIST” generates probabilities, as 
illustrated in the next example.  

Example 10.4.5  Chance of Finding the Non-conforming Units 

Question: Assume that one is considering a situation with n = 15 units selected 
from N = 150 units where the total number of non-conforming units is M = 10. 
Assume the selection is random such that each of the N units has equal chance of 
being selected. What is the chance that exactly x = 2 units will be selected that are 
non-conforming?  
 
Answer: The assumed beliefs are consistent with the hypergeometric mass 
function,  
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= 0.19 

     (10.31) 
 

Note that the Poisson approximation is generally not considered accurate with n = 
15. However, for reference the Poisson approximation gives 0.184 for the 
probability, which might be acceptable depending on the needs.  

10.5  Xbar Charts and Average Run Length 

An important role of Xbar charting and other charting procedures is to signal to 
local authority resources that something unusual is happening that might be 
fixable. In this regard, there are two kinds of errors that can occur:  

1. Nothing unusual or assignable might be occurring, and local authority 
might be called in. This wastes time, diminishes support for charting 
efforts, and can increase variation. This is analogous to Type I error in 
hypothesis testing.  

2. Something unusual and assignable is occuring, and local authority is not 
alerted. This is analogous to Type II error in hypothesis testing. 

An analysis of these risks can provide insight to facilitate the selection of the chart 
sample size, n, and period between samples, τ. In this section, risks of both types 
are explored with reference to the normal and geometric distributions. The normal 
distribution is helpful in estimating the chance an individual charted point will 
generate an out-of-control signal.  

10.5.1  The Chance of a Signal 

Analysis of Xbar charting methods starts with the assumption that, with only 
common causes operating, individual observations are independent, identically 
distributed (IID) from some unknown distribution. Then, the central limit theorem 
guarantees that, for large enough sample size n, Xbar will be approximately 
normally distributed. Denoting the mean of individual observations μ and the 
standard deviation σ0, the central limit theorem further guarantees that Xbar will 
have mean equal to μ and standard deviation approximately equal to σ0 ÷ sqrt[n].   

Figure 10.12 shows the approximate distributions of the charted Xbar values 
for two cases. First, if only common causes are operating (the unknown 
distribution of the quality characteristic stays fixed), the Xbar mean remains μ and 
standard deviation approximately equals σ0 ÷ sqrt[n]. The event of a false alarm is 
{Xbar > UCL or Xbar < LCL}. The probability of this event is approximately 

  Pr{false alarm}= Pr{Xbar >
n
σμ 3

+ } + Pr{Xbar <
n
σμ 3

− }       (10.32) 
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       = Pr{Z > 3} + Pr{Z < –3} = 2 × Pr{Z < –3} = 0.0026 

where the symmetry property of the normal distribution and Table 10.1 were 
applied. The phrase “false alarm rate when the process is in-control” is often used 
to refer to the above probability. 

The second case considered here involved a shift of “Δ” in the mean of the 
distribution of the individual observations because of an assignable cause. This in 
turn causes a shift of Δ in the mean of Xbar as indicated by Figure 10.12 (b).  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a)    (b) 

Figure 10.12. Approximation distribution of Xbar for (a) no shift and (b) shift = +Δ 

The chance of false alarm is 

  Pr{chart signal} = Pr{Xbar >
n

03σμ + } + Pr{Xbar <
n

03σμ − }  

   = Pr{Z > 

n
0

3
σ

Δ
− } + Pr{Z <

n
0

3
σ

Δ
−− }                (10.33) 

 ≈ Pr{Z <

n
0

3
σ

Δ
+− } 

where the symmetry property of the normal distribution has been applied and the 
chance of an out-of-control signal from the limit away from the shift is neglected. 

Detecting a non-zero shift (Δ ≠ 0) is generally considered desirable. The above 
formula offers one way to quantify the benefit of inspecting more units (larger n) in 
terms of increasing the chance that the chart will detect the shift. 

Example 10.5.1  Detecting Injection Molding Weight Shifts 

Question: Assume that an injection molding process is generating parts with 
average mass 87.5 grams with standard deviation 1.2 grams. Suppose an assignable 

n
0σ n

03 σμ +

n
03 σμ −

n
0σ

n
03 σμ +

n
03 σμ −

μ _

μ + Δ _
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cause shifts the mean to 88.5 grams. Compare estimates for probabilities of 
detecting the shift in one subgroup with sample sizes of 5 and 10. Could that 
difference be subjectively considered important? 
 
Answer: For this problem, we have Δ = 1.0 grams, σ0 = 1.2 grams, and n = 5 or  
n = 10. Applying the formula the detection “rate” or probability is 

  Pr{chart signal} ≈ Pr{Z <

n
2.1

0.13+− },          (10.34)  

which gives 0.128 and 0.358 for n = 5 or n = 10 respectively. Going from roughly 
one-tenth chance to one-third chance of detection could be important depending on 
material, inspection, and other costs. With either inspection effort, there is a good 
chance that the next charted quantity will fail to signal the assignable cause. It will 
likely require several subgroups for the shift to be noticed. 

10.5.2  Average Run Length 

The chances of false alarms and detecting shifts associated with assignable causes 
are helpful for decision-making about sample sizes in charting. Next, we 
investigate the timing of false alarms and shift detections. Figure 10.13 shows one 
possible Xbar chart and the occurrence of a false alarm on subgroup 372.  

“Run length” (RL) is the number of subgroups inspected before an out-of-
control signal occurs. Therefore, run length is a discrete random variable because 
when the chart is being set up, the actual run length is unknown but must be a 
whole number. The expected value of the run length or “average run length” 
(ARL) is often used for subjective evaluation of alternative sample sizes (n) and 
different charting approaches (e.g., Xbar charting and EWMA charting from 
Chapter 9). 

If one is comfortable in assuming that the individual quality characteristics are 
independent, identically distributed (IID), then these assumptions logically imply a 
comfort with assuming that the run length is distributed according to a geometric 
probability mass function. Under these assumptions, the expected value of a 
geometric random variable is relevant, and the ARL is given as a function of the 
shift Δ, the quality characteristic distribution, σ0, and the sample size n: 

E[RL] = ARL = 

}3Pr{

1

0

n

Z σ
Δ

+−<

.        (10.35) 
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Figure 10.13. Random run length (RL) with only common causes operating 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.14. Random run length (RL) after a mean shift upwards of Δ = +1σ0 

Table 10.5 shows the ARLs for Xbar charts with different sample sizes given in 
units of τ. For example, if the period between sampling is every 2.0 h (τ = 2.0 h), 
then the ARL(Δ = 0) = 370 (periods) × 2.0 (h/period) = 740 h. Therefore, false 
alarms will occur every 740 h. In fact, a property of all Xbar charts regardless of 
sample size is that the in-control run ARLs are 370.4. This in-control ARL is 
typical of many kinds of charts. 

Note that chart “designer” or user could use the ARL formula to decide which 
sample size to use. For example, if it is important to detect 1σ0 process mean shifts 
within two periods with high probability such that ARL(Δ = 1σ0) < 2.0, then 
sample sizes equal to or greater than 10 should be used. Note also that ARL does 
not depend on the true mean, μ.  

μ = CL

UCL

LCL

1   2   3   4   5   6   7   8   9  10  11  12 369 370 371 372 373 subgroup

RL(Δ = 0)

1   2   3 4   5   6   7   8   9  10  11  12 subgroup

UCL = CL + 3σ0/sqrt(n)

UCL = CL – 3σ0/sqrt(n)

CL

μ = CL + Δ with Δ = +1σ0

RL(Δ = +1σ0)
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Table 10.5. The average run lengths (ARL) in numbers of periods 

n ARL(Δ = 0) ARL(Δ = 1σ0) 

4 370.4 3.2 

7 370.4 2.2 

10 370.4 1.9 

Example 10.5.2  Alarms at Full Capacity Plants Operating 

Question: Assume that one is applying Xbar charting with subgroup sampling 
periods completing every 2.0 h (τ = 2 h) for a plant operating all shifts every day of 
the week. How often do false alarms typically occur from a given chart? 
 
Answer: With false alarms occurring on average every 370.4 subgroups and 12 
subgroups per day, alarms typically occur once per 30 days or 1 per month. 

10.6  OC Curves and Average Sample Number 

In this section, techniques to support decision-making about acceptance sampling 
plans are presented. Users of acceptance sampling methods need to select both 
which type of method to apply (single sampling, double sampling, or other) and the 
parameters of the selected method. The phase “design of sampling plan” refers to 
these selections. The methods presented here aid in informed decision-making by 
clarifying the associated risks and costs. 

In applying acceptance sampling, two possible outcomes are: (1) acceptance 
and (2) rejection of the lot of parts being inspected. Since neither outcome is 
known at the time of desiging the plan, a discrete random variable can be 
associated with these outcomes with a probability of acceptance written, pA. The 
true fraction of non-conforming items in the lot, p0, is generally not known but is 
of interest.  

An “operating characteristic curve” or “OC curve” is a plot of the predicted 
percent of the lots that will be accepted (100×pA) as a function of the assumed 
percentage probability of non-conforming units (100×p0). Since the true number 
non-conforming is not known, the plot can be interpreted as follows. 
Hypothetically, if the true fraction was p0 and the true number non-conforming 
was M = p0×N, the acceptance probability would be a given amount.  

For double sampling and many other types of sampling plans, the number of 
units that will be inspected is a discrete random variable during the time when the 
plan is designed. The “average sample number” (ASN) is the expected number of 
samples that will be required. For a single sampling plan with parameters n and c, 
the ASN = n because any user of that plan always inspects n units. 
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10.6.1  Single Sampling OC Curves 

For single sampling, the event that the lot is accepted is simply defined in terms of 
the number of units found non-conforming, X. If {X ≤ c}, the lot is accepted, 
otherwise it is not accepted. Therefore, the probability of acceptance is 

pA = Pr{X = 0} + Pr{X = 1} + … + Pr{X = c}       (10.36) 

For known lot size N, sample size n, and true number non-conforming, M, it is 
often reasonable to assume that Pr{X = x} is given by the hypergeometric 
distribution. Then, the probability Pr{X ≤ c} is given by the so-called “cumulative” 
hypergeometric distribution. 

Figure 10.15 shows the calculation of the entire OC Curve for single sampling 
with N =1000, c = 2, and n = 100. The plotting proceeds, starting with values of M, 
then deriving 100×p0 and 100×pA by calculation. Because of the careful use of 
dollar signs, the formulas in cells B6 and C6 can be copied down to fill in the rest 
of the curve. Looking at the chart, the decision-maker might decide that the 0.22 
probability of accepting a lot with 4% non-conforming is unacceptable. Then, 
increasing n and/or decreasing c might produce a more desirable set of risks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.15. An example calculation of an entire OC curve  

Example 10.6.1  Transportation Safety Inspections 

Question 1: An airport operator is considering using video surveillance to evaluate 
a team of trainees with respect to courteous and effective safety checks of 
passengers. (This is a case of inspecting inspectors.) The airport has only enough 
resources to examing surveillance tape for 150 passengers out of the 2000 
inspections that occur each day. If greater than three inspections are unacceptably 
discourteous and/or ineffective, the entire team is flagged for re-training. Plot the 
OC curve for this policy and briefly describe the implications. 
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Answer 1: This question is based on a single sampling plan for N = 2000 units in a 
lot. It has n = 150 units in a sample and the rejection limit is c = 3. 

p0 = 0.01 then M = 20       
pA = P(X = 0, N = 2000, n = 150, M = 20) 

+ P(X = 1, N = 2000, n = 150, M = 20) 
+ P(X = 2, N = 2000, n = 150, M = 20)                 (10.37) 
+ P(X = 3, N = 2000, n = 150, M = 20)  

     = 0.94 
p0 = 0.02 then M = 40 ⇒ pA = 0.65.   

The resulting OC curve is given in Figure 10.16. The plot shows that the single 
sampling approach will effectively identify trainees yielding unacceptable 
inspections greater than 5% of the time, and if the fraction non-conforming is kept 
to less than 1%, there is almost zero chance of being found to need re-training. 
 
 
 
 
 
 
 
 

(a)    (b) 

Figure 10.16. OC curves for plans with (a) n = 150 units, c = 3 and (b) n = 110, c = 1  

Question 2: Consider an alternative single sampling plan with n = 110 and c = 1. 
As the customer of those parts, which plan do you feel is less or more risky? 
Explain. 
 
Answer 2: The new policy is less risky in the sense that the probability of 
acceptance is always smaller (within two decimal places). However, relatively 
good teams are much more likely to be flagged for re-training, which might be 
considered unnecessary. 

10.6.2  Double Sampling 

The event that a double sampling procedure results in acceptance is relatively 
complex. Denote the number of units found non-conforming in the first set of 
inspections as X1 and the number found non-conforming in the optional second set 
of inspections as X2. Then, the acceptance occurs if {X1 ≤ c1} or if {c1 < X1 ≤ r and 
X1 + X2 ≤ c2}. Therefore, the double sampling probability of acceptance is: 

pA = Pr{X1 ≤ c1} + Pr{X1 = c1 + 1} × Pr{X2 ≤ c2 – (c1 + 1)}   
+ Pr{X1 = c1 + 2} × Pr{X2 ≤ c2 – (c1 + 2)} + …                  (10.38) 
+ Pr{X1 = r} × Pr{X2 ≤ c2 – r} 
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which is expressed in terms of cumulative hypergeometric probabilities for 
assumptions that might be considered reasonable. Advanced readers will notice 
that the assumption of independence of X1 and X2 is implied by the above equation. 
Because of the computational challenge, it is common to apply the binomial 
approximation and the binomial cumulative when it is appropriate. 

Example 10.6.2  Student Evaluation at a Teaching Hospital 

Question: Consider a teaching hospital in which the N = 7500 patients are passed 
through a training class of medical students in a probationary period. The attending 
physician inspects patient interactions with n1 = 150 patients. If less than or equal 
to c1 = 3 student-patient interactions are unacceptable, the class is passed. If the 
number unacceptable is greater than r = 6, then the class must enter an intensive 
program (lot is rejected). Otherwise, an additional n2 = 350 interactions are 
inspected. If the total number unacceptable is less than or equal to c2 = 7, the class 
is passed. Otherwise, intensive training is required. Develop an OC curve and 
comment on how the benefit of double sampling is apparent. 
 
Answer: Figure 10.17 shows the OC curve calculated using an Excel spreadsheet. 
Generally speaking, a desirable OC curve is associated with a relatively steep drop 
in the acceptance probability as a function of the true fraction non-conforming 
(compared with single sampling with the same average sample number). In this 
way, high quality classes of students (lots) are accepted with high probability and 
low quality lots are rejected with high probability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.17. Double sampling OC curve  

10.6.3  Double Sampling Average Sample Number 

OC curves can help quantify some of the benefits associated with double sampling 
and other sampling methods compared with single sampling. Yet, it can be difficult 
to evaluate the importance of costs associated with these benefits because the 
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number of inspections in double sampling is random. The average sample number 
(ASN) is the expected number of units inspected.  

Assume that the application of the sampling methods is done carefully to make 
the units inspected be representative of the whole lot of units. Then, the application 
of hypergeometric probability mass functions and the assumption of independence 
give the following formula:  

ASN (double sampling) = n1 + Pr{X ≤ c1} × n2        (10.39) 

where X is distributed according to the hypergeometric probability mass function. 
Note that the average ample number is a function of the true number non-
conforming M = p0 × N, which must be assumed. Of course, ASN (single 
sampling) = n, independent of any assumptions. Generally speaking, comparable 
OC curves can be achieved by single and double sampling with ASN (single 
sampling) considerably higher than ASN (single sampling). 

Example 10.6.3  Single vs Double Sampling 

Question: Consider a lot with N = 2000, single sampling with n = 150, and c = 3, 
and double sampling with n1 = 70, c1 = 1, r = 4, n1 = 190, and c2 = 4. These single 
and double sampling plans have comparable OC curves. Compare the average 
sample numbers (ASN) under the assumption that the true fraction non-conforming 
is 3%.  
 
Answer: Under the standard assumption that all units in the lot have an equal 
chance of being selected, the hypergeometric mass function is reasonable for 
predicting ASN. For single sampling, the ASN is 150. Assuming 3% are non-
conforming, M = 0.03 × 2000 = 60. For double sampling, the ASN = 70 + (0.1141 
+ 0.2562) × 190 = 140.3. 

10.7  Summary 

The purpose of this chapter is to show how probability theory can aid in the 
comparison of alternative methods, including the selection of specific method 
parameter values such as sample sizes. Applied statistics methods such as Xbar 
charting and acceptance sampling involve uncertainties and risks that are evaluated 
using theory.   

The central limit theorem and the normal distribution are introduced. The 
primary purposes are (1) to clarify why Xbar charting is so universally applicable 
and (2) to permit the calculation of false alarm and the chance of correctly 
identifying an assignable cause. Also, application of the central limit theorem and 
Monte Carlo integration for deriving the charting constants d2 and c4 is presented. 

Next, discrete random variables are introduced, with geometric and 
hypergeometric random variables being key examples. The concept of the average 
run length (ARL) is defined to quantify the typical time between false alarms or 
before assignable causes are correctly identified in control charting. A formula for 
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the ARL is developed, combining normal distribution and geometric distribution 
calculations. 

The conditions are described under which the hypergeometric probability mass 
function is a reasonable choice for estimating the chances of selecting certain 
numbers of non-conforming units in sampling. These are related to rational 
subgroup application such that inspected units are representative of larger lots. 

Finally, the hypergeometric distribution and Poisson approximation are applied 
both (1) to develop operating characteristic curves (OC curves) and (2) to estimate 
the average sample number (ASN) for double sampling. OC curves give decision-
makers information about how a given acceptance sampling plan will react to 
different hypothetical (imagined true) quality levels.  

Problems   

In general, choose the correct answer that is most complete. 
 
1. Which is correct and most complete? 

a. Random variables are unknown by the planner at time of planning. 
b. Applying any quality technology is generally associated with some 

risk that can be estimated using probability theory and/or judgment. 
c. Even though method evaluation involves subjectivity, the same 

methods can be compared thoroughly using the same assumptions. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

2. Which is correct and most complete?   
a. In usual situations, probabilities of events are assigned without 

subjectivity. 
b. An application of probability theory is to evaluate alternatives. 
c. In making up a distribution function, the area under the curve must be 

1.00. 
d. All of the above are correct. 
e. All of the above are correct except (c) and (d). 

 
3. Which is correct and most complete? 

a. If X follows a triangular distribution, X is a continuous random 
variable. 

b. If X follows a binomial distribution, X is a continuous random 
variable. 

c. If X follows a normal distribution, X is a discrete random variable. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
4. Assume X ~ N(μ = 10, σ = 2). What is the Pr{X > 16}? 
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5. Suppose someone tells you that she believes that revenues for her product line 
will be between $2.2M and $3.0M next year with the most likely value equal 
to $2.7M. She says that $2.8M is much more likely than $2.3M. Define a 
distribution function consistent with her beliefs. 

 
6. If X is uniformly distributed between 10 and 20, what is Pr{X< 14}? 
 
7. Which is correct and most complete?   

a. If X is N(10, 3), then Z = (X – 10) ÷ 3 is N(0,1). 
b. If X is triangular with parameter a = 10, b = 11, and c = 14, then Z = 

(X – 10) ÷ 4 is triangular with parameters a = 0, b = 0.2, and c = 2. 
c. If X is N(10, 3), then Pr{X > 13} = 0.259 (within implied 

uncertainty). 
d. All of the above are correct. 
e. All of the above are correct except parts (a) and (d). 
 

8. Assume that individual quality characteristics are normally distributed with 
mean equal to the average of the specifications limits. Also, assume that Z is 
distributed according to the standard normal distribution. Is it true that 2 Pr(Z 
< –3.0 Cpk)? 

 
9. Which is correct and most complete? (Assume Cpk is known.) 

a. Changing 3s to 2s in UCL formulas would cause more false alarms. 
b. Autocorrelation often increases the chance of false alarms in Xbar 

charting because the standard deviation is understimated during the 
trial period. 

c. Absence of assignable causes alone guarantees Xbar is normally 
distributed. 

d. All of the above are correct. 
e. All of the above are correct except parts (a) and (d). 
 

10. If X is hypergeometrically distributed with parameters N = 10, n = 2, and M = 
1, what is Pr{X = 0}? 

  
11. Which is correct and most complete?  

a. Cumulative normal distribution probabilities are difficult to compute 
by hand, i.e., without using software or a table. 

b. The central limit guarantees that all random variables are normally 
distributed. 

c. The central limit theorem does not apply to discrete random 
variables. 

d. All of the above are correct. 
e. All of the above are correct except (c) and (d). 

 
12. Which is correct and most complete?  

a. Except for labels on axes, probability density functions for normal 
random variables all look pretty much the same. 
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b. The normal distribution is not the only one with the location-scale 
property. 

c. The central limit theorem implies the Xbar variance decreases as n 
increases. 

d. All of the above are correct. 
e. All of the above are true except parts (b) and (d). 
 

13. Which is correct and most complete? (Assume n is large enough.) 
a. False alarm chance for the next subgroup on an Xbar chart is Pr{Z < 

–3}. 
b. Chance of 2 false alarms in the next 3 subgroups is 0.66 Pr{Z<–3}. 
c. False alarm chance for the next subgroup on an Xbar chart is 

2Pr{Z<–3}. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
14. Which of following is the most correct and complete?  

a. The number of nc. units in a subgroup is often viewed as a discrete 
random variable. 

b. If you do not know exactly how many non-conforming units in a lot, 
the hypergeometric distribution can be used to calculate the chance of 
finding X many non-conforming units in a subgroup of size n. 

c. If n × p0 < 5.0, then it can be useful to apply the normal distribution 
cumulate to estimate probabilities of events involving discrete 
random variables. 

d. All of the above are correct. 
e. All of the above are correct except parts (c) and (d). 

 
15. Assume that N = 2000, n = 150, and M = 20. 

a. Estimate Pr{X ≤ 3} using the hypergeometric distribution. 
b. Estimate Pr{X ≤ 3} using the Poisson approximation. 

 
16. Plot a single sampling OC curve for N = 3000, n = 200, and c = 2. 
 
17. Plot a single sampling OC curve for N = 4000, n = 150, and c = 3. 
 
18. Which of the above two policies is more likely to do the following: 

a. Accept lots with large fractions of non-conforming units 
b. Accept lots with small fractions of non-conforming units 

 
19. What is the shape of an ideal acceptance sampling curve? Explain briefly. 
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Part II:  Design of Experiments (DOE) and Regression 



 

11 

DOE: The Jewel of Quality Engineering 

11.1  Introduction 

Design of experiments (DOE) methods are among the most complicated and useful 
of statistical quality control techniques. DOE methods can be an important part of a 
thorough system optimization, yielding definitive system design or redesign 
recommendations. These methods all involve the activities of experimental 
planning, conducting experiments, and fitting models to the outputs. An essential 
ingredient in applying DOE methods is the use of procedure called 
“randomization” which is defined at the end of this chapter. To preview, 
randomization involves making many experimental planning decisions using a 
random or unpatterned approach. 

The primary purpose of this chapter is to preview the various DOE methods 
described in Part II of this book. All of these DOE methods involve changing key 
input variable (KIV) settings, which are directly controllable (called factors) using 
carefully planned patterns, and then observing outputs (called responses). This 
chapter describes the “two-sample t-test” method, which permits proof that one 
level of a single factor results in a higher average response than another level of 
one factor. Two-sample t-testing is also used to illustrate randomization and its 
relationship with proof. There is also a “paired t-test” in this chapter, which 
generally offers a greater chance of finding significance when the data are paired in 
some way. Anaylsis of variance (ANOVA) is introduced in this chapter for multi-
level hypothesis testing. Also, “full factorial” designs are introduced to help 
motivate the so-called “fractional factorial” designs in Chapter 12.   

Section 11.2 provides an overview of the different types of DOE and related 
methods. Section 11.3 describes two-sample t-testing with examples and a 
discussion of randomization. Section 11.4 describes an activity called 
“randomization”, common to all DOE methods and technically required for 
achieving proof. Section 11.5 summarizes the material covered. Note that most of 
the design of experiments method presented here are supported by standard 
software such as Minitab®, JMP, and Design-Expert® and by Sagata® software. 
(The author of this book is part owner of Sagata Ltd.) 
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11.2  Design of Experiments Methods Overview 

Five classes of experimentation and analysis methods are described in this book: 
(1) two-sample t-tests, (2) standard screening using fractional factorials (FF), (3) 
one-shot response surface methods (RSM), (4) sequential response surface 
methods, and (5) Robust Design based on Profit Maximization (RDPM). A brief 
summary is offered in Table 11.1. In addition, two classes of analysis of variance 
(ANOVA) analysis methods have been provided for determining significance after 
data has been collected using any experimental plan. 

The primary objective is to allow the reader to develop competence in 
application of methods in each class. Also, decision support information for 
supporting has been provided for the selection of specific methods of each type, 
e.g., choosing the number of runs, n, and the parameters used in the analysis. Note 
that any of these methods could constitute an entire “improvement system”.  

Besides randomization, a common aspect of all DOE methods is the importance 
for the method users in identifying the KIVs and ranges for these factors. The 
preliminary identification of KIVs derives from engineering judgment. If a poor 
choice of KIVs and/or ranges is identified, it is unlikely the application of any 
DOE method will achieve desired results. 

Note that all of the methods in Table 11.1 can generate statistical “proof” that 
changing factors affects average system outputs or responses. In general, derivation 
of the associated statistical proof relates to the amount and quality of the data 
collected and not whether the differences detected are important to decision-
makers. An important theme in design of experiments is that statistical significance 
and evidence do not generally translate into “practical” significance.  

Example 11.2.1  Method Choices 

Question: Which of the following is correct and most complete? 
a. FF is sometimes used to give screening information and for final system 

choices. 
b. RSM helps in understanding interaction effects and predicting 

performance. 
c. T-testing can, if applied with randomized experimentation, generate 

strong proof. 
d. All of the above are correct. 
e. All are correct except (b) and (d). 

 
Answer: Yes, fractional factorials (FF) are often the last and only design of 
experiments method used in many projects. Also, modeling the combined effects 
of factors or “interactions” is possible using response surface methods (RSM).  
Also, t-testing using randomization can generate proof. Therefore, the correct and 
most complete answer is (d). 
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Table 11.1. Brief summary of methods described in this chapter 

Method Advantage Disadvantage 

Two-sample  
t-tests 

Provide a relatively high level 
of evidence that a single level 

of a single factor causes a 
higher average response 

Methods only address one factor-at-
a-time (OFAT). Compared with 

screening using fractional factorials, 
for comparable total costs the Type I 
and Type II errors are more likely. 

Screening 
using 

Fractional 
Factorials 

(FF) 

Provides an inexpensive way 
to determine which factors 

from a long list significantly 
affect system performance. 

Sometimes, users apply results 
to support final engineering 

design decisions 

Compared with Response Surface 
Methods, the methods generate a 
relatively inaccurate prediction 

model. Compared with two-sample t-
tests, the level of evidence associated 

with significance claims is 
subjectively lower. 

One-shot 
Response 
Surface 
Methods 
(RSM) 

Create a relatively accurate 
prediction model and 

significance information, 
permiting identifying of 

interaction effects 

Compared with factor screening 
methods, these methods require 
substantially larger numbers of 

experimental runs for a given number 
of factors. 

Sequential 
Response 
Surface 
Methods 
(RSM) 

Generate a relatively accurate 
prediction model and may 

require fewer runs than one 
shot response surface methods. 

The derived prediction model will, in 
general, be less accurate than the one 

from one-shot response surface 
methods if the method terminates 

without using all the runs. 

Robust 
Design based 

on Profit 
Maximization 

(RDPM) 

Builds on RSM to directly 
maximize the sigma level in a 

cost-effective manner 
addressing production noise 

Complicated; may require substantial 
experimental cost 

Analysis of 
Variance 

(ANOVA) 
followed by 
multiple t-

tests 

Offers a standard approach for 
analyzing significance of 

factors and/or model terms that 
addresses the multiplicity of 

the tests 

Compared with Lenth’s method and 
normal probability plots, the Type II 
errors are generally higher. This is 

only an analysis method that does not 
explain which data to collect. 

11.3  The Two-sample T-test Methodology and the Word 
“Proven” 

The following class of methods is called “two-sample t-testing assuming unequal 
variances” that can be viewed as the simplest design of experiments methods. 
Members of this class are distinguished by the initial sample size parameters n1 and 
n2 in Step 1 and the α level used in Step 3.   
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Roughly speaking, this method is useful for situations in which one is interested 
in “proving” with a “high level of evidence” that one alternative is better in terms 
of average response than another. Therefore, there is one factor of interest at two 
levels. The screening procedure described subsequently can permit several factors 
to be “proven” significant simultaneously with a comparable number of total tests. 
However, a subjectively greater level of assumption-making is needed for those 
screening methods such that the two-sample t-test offers a higher level of evidence. 

Definition: The phrase “blocking factor” refers to system input variables that 
are not of primary interest. For example, in a drug study, the names of the people 
receiving the drug and the placebo are not of primary interest even though their 
safety is critical. 

Algorithm 11.1. Two-sample t-tests 

 

 

Step 1.   a. Develop an experimental table or “DOE array” that describes the levels of 
all blocking factors and the factor of interest for each run. The ordering of the 
factor levels should exhibit no pattern, i.e., an effort should be made to 
allocate all blocking factor levels in an unpatterned way. Ideally, 
experimentation is “blind” so that human participants do not know which 
level they are testing.  Unpatterned ordering can be accomplished by putting 
n1 As and n2 Bs in 1 column on a spreadsheet and pseudo-random uniform 
[0,1] numbers in the next column. Sorting, we have a “uniformly random” 
ordering, e.g., 2-1-1-2-2-2-1…  
 b.  Collect n1 + n2 data, where n1 of these data are run with factor A at level 1 
and n2 are run with factor A at level 2 following the experimental table. 

Step 2.    Defining 1y  as the average of the run responses with factor A at level 1 and 
s1

2 as the sample variance of these responses, and making similar definitions 
for level 2, one then calculates the quantities t0 and degrees of freedom (df) 
using 
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where “round” means round the number in brackets to the nearest integer. 
Step 3.   Find tcritical using the Excel formula “=TINV(2*0.05,df)” or using the critical 

value from a t-table referenced by tα,df (see Table 11.2). If t0 > tcritical, then 
claim that “it has been proven that level 1 of factor A results in a significantly 
higher average or expected value of the response than level 2 of factor A with 
alpha equal to 0.05”. 

Step 4.  (Optional) Construct two “box plots” of the response data at each of the two 
level settings (see below). Often, these plots aid in building engineering 
intuition. 
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Table 11.2. Values of tcritical = tα,df 

  α     α  

df 0.01 0.05 0.1  df 0.01 0.05 0.1 

1 31.82 6.31 3.08  7 3.00 1.89 1.41 

2 6.96 2.92 1.89  8 2.90 1.86 1.40 

3 4.54 2.35 1.64  9 2.82 1.83 1.38 

4 3.75 2.13 1.53  10 2.76 1.81 1.37 

5 3.36 2.02 1.48  20 2.53 1.72 1.33 

6 3.14 1.94 1.44      

 
Definition: The “median” of m numbers is the [(m + 1)/2]th highest if m is odd. 

It is the average of the (m/2)th highest and the [(m/2) + 1]th highest if m is even. 

Algorithm 11.2. Box and whisker plotting 

 
Note that, with only 3 data points, software generally does not follow the above 

exactly. Instead, the ends of the boxes are often the top and bottom observations. 
If we were trying to prove that level 1 results in a significantly lower average 

response than level 2, in Step 3 of Algorithm 11.1, we would test –t0 > tcritical. In 
general, if the sign of t0 does not make sense in terms of what we are trying to 
prove, the above “one-sided” testing approach fails to find significance. The 
phrase “1-tailed test” is a synonym for one-sided.  

To prove there is any difference, either positive or negative, use α/2 instead of 
α and the test becomes “two-sided” or “2-tailed”. A test is called “double blind” 
if it is blind and the people in contact with the human testers also do not know 
which level is being given to which participant. The effort to become double blind 
generally increases the subjectively assessed level of evidence. Achieving 
blindness can require substantial creativity and expense. 

The phrase “Hawthorne effect” refers to a change in average output values 
caused by the simple act of studying the system, e.g., if people work harder 
because they are being watched. To address issues associated with Hawthorne 

If the number of data is even, then the 25% (Q1) and 75% (Q3) quartiles are the middle 
values of the two halves of the data. Otherwise, they are the median including the 
middle in both halves.  
Step 1:  Draw horizontal lines at the median, Q1, and Q3.  
Step 2:  Connect with vertical lines the edges of the Q1 and Q3 lines to form a 

rectangle or “box”.  
Step 3:  Then, draw a line from the top middle of the rectangle up to the highest data 

below Q3 + 1.5 (Q3 – Q1) and down from the bottom middle of the rectangle 
to the smallest observation greater than Q1 – 1.5 (Q3 – Q1).   

Step 4:  Any observations above the top of the upper line or below the bottom of the 
lower line are called “outliers” and labeled with “*” symbols. 
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effects and generate a high level of evidence, it can be necessary to include the 
current system settings as one level in the application of a t-test. The phrase 
“control group” refers to any people in a study who receive the current level 
settings and are used to generate response data.  

Definition: If something is proven using any given α, it is also proven with all 
higher levels of α. The “p-value” in any hypothesis test is the value of α such that 
the test statistic, e.g., t0, equals the critical value, e.g., tα,df. The phrase 
“significance level” is a synonym for p-value. For example, if the p-value is 0.05, 
the result is proven with “alpha” equal to 0.05 and the significance level is 0.05. 
Generally speaking, people trying to prove hypotheses with limited amounts of 
data are hoping for small p-values. 

Using t-testing is one of the ways of achieving evidence such that many people 
trained in statistics will recognize a claim that you make as having been “proven” 
with “objective evidence”. Note that if t0 is not greater than tcritical, then the 
standard declaration is that “significance has not been established”.Then, 
presumably either the true average of level 1 is not higher than the true average of 
level 2 or, alternatively, additional data is needed to establish significance.  

The phrase “null hypothesis” refers to the belief that the factors being studied 
have no effects, e.g., on the mean response value. Two-sample t-testing is not 
associated with any clear claims about the factors not found to be significant, e.g., 
these factors are not proven to be “insignificant” under any widely used 
conventional assumptions. Therefore, failing to find significance can be viewed as 
accepting the null hypothesis, but it is not associated with proof. 

In general, the testing procedures cannot be used to prove that the null 
hypothesis is true. The Bayesian analysis can provide “posterior probabilities” or 
chances that factors are associated with negligible average changes in responses 
after Step 1 is performed. This non-standard Bayesian analysis strategy can be used 
to provide evidence of factors being unimportant. 

11.4  T-test Examples 

This section contains two examples, one of which relates to a straightforward 
application of the t-test method. The second involves answering specific questions 
based on the concepts.In the first example, an auto company is interested in 
extending the number of auto bodies that an arc-welding robot can weld without 
adjustment using a new controller program. The first example is based on the 
commonly chosen sample size, n1 = n2 = 3, and selection α = 0.05. 

If one fails to find significance, that does not mean that the true average 
difference in responses between the two levels is exactly zero or negative. With 
additional testing, the test can be re-run and significance might be found. Note that 
the procedure, if applied multiple times, gives a probability of falsely finding 
significance (Type I errors) greater than α.  

Still, it is common to neglect this difference and still quote the α used in Step 3 
as the probability of Type I errors. Therefore, the choice of initial sample size is 
not critical unless it is wastefully large since additional runs can be added.  
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A rigorous sequential approach would be to pre-plan on performing at most q sets 
of runs, with tests after each set, stopping if significance is found. Then, the α used 
for each test could be α/q such that the overall procedure rigorously guarantees an 
error rate less than α (e.g., 0.05) using the “Bonferroni inequality” which regulates 
overall errors. 

Table 11.3. One approach to randomize the run order using pseudo-random numbers 

Levels Pseudo-random 
uniform numbers  Run Level Sorted 

numbers 
Response 

1 0.583941  1 1 0.210974 Y1,1=25 

1 0.920469  2 2 0.448561 Y2,1=20 

1 0.210974  3 1 0.583941 Y1,2=35 

2 0.448561  4 2 0.589953 Y2,2=23 

2 0.692587  5 2 0.692587 Y2,3=21 

2 0.589953  6 1 0.920469 Y1,3=34 

Algorithm 11.3. First t-test example 

 

Example 11.4.1  Second T-test Application 

A work colleague wants to “prove” that his or her software results in shorter times 
to register the product over the internet on average than the current software. 
Suppose six people are available for the study: Fred, Suzanne,…(see below).  

Step 1.  The engineer uses Table 11.3 to determine the run ordering. Pseudo-
random uniform numbers were generated and then used to sort the levels 
for each run. Then, we first input level 1 (the new additive) into the 
system and observed the response 25. Then, we input level 2 (the current 
additive) and observed 20 and so on.   

Step 2.  Responses from welding tests are shown in the right-hand column of 
Table 11.3. The engineer calculated 1y = 31.3, 2y = 21.3, s1

2 = 30.3, s2
2 

= 2.33, t0 = 3.03, and df = 2. 
Step 3.  The critical value given by Excel “=TINV(0.1,2)” was tcritical = 2.92. 

Since t0 was greater than tcritical, we declared, “We have proven that level 
1 results in a significantly higher average mean value than level 2 with 
alpha equal to 0.05.”  The p-value is 0.047. 

Step 4.  A box plot from Minitab® software is below which shows that level 1 
results in higher number of bodies welded on average. Note that with 3 
data Minitab® defines the lowest data point at Q1 and the highest data 
point as Q3. 
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Figure 11.1. Minitab® box plot and whisker for the autobody welding example 

Question 1: How many factors, response variables, and levels are involved? 
 
Answer 1: There are two correct answers: (1) two factor (software) at two levels 
(new and old) and 1 response (time) and (2) two factors (software and people) at 
two and six levels and 1 response (time). If the same person tested more than one 
software, people would be a factor. 
  
Question 2: What specific instructions (that a technician can understand) can you 
give her to maximize the level of evidence that she can obtain?  
 
Answer 2: Assume that we only want one person to test one software. Then, we 
need to randomly assign people to levels of the factor. Take the names Fred, 
Suzanne,… and match each to a pseudo-random number, e.g., Fred with 0.82, 
Suzanne with 0.22,… Sort the names by the numbers and assign the top half to the 
old and the bottom half to the new software. Then, repeat the process with a new 
set of pseudo-random numbers to determine the run order. There are other 
acceptable approaches, but both assignment to groups and run order must be 
randomized. 
 
Question 3: In this question, the following data is needed: 
 

New software Old software 
Fred – 35.6 s Juliet – 45.2 s 
Suzanne – 38.2 s Bob – 43.1 s 
Jane – 29.1 s Mary – 42.7 s 

 
Analyze the above data and draw conclusions that you think are appropriate. 
 
Answer 3: We begin by calculating the following: 1y = 34.30, 2y = 43.67, s1

2 = 
21.97, s2

2 = 1.80, t0 = 3.33, and df = round[2.3] = 2. Note that we are hoping the 
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average time is lower (a better result), therefore the sign of t-critical makes sense 
and we can ignore it for the calculation. Since 3.33 > 2.92 we have proven that the 
new software reduces the average registration time with α = 0.05. 
 
Question 4: How might the answer to the previous question support decision-
making? 
 
Answer 4: The software significantly reduces average times, but that might not 
mean that the new software should be recommended. There might be other criteria 
such as reliability and cost of importance. 

11.5  Randomization Testing and Paired T-testing 

The t-testing procedure described in the previous section is probably the most 
commonly used “hypothesis testing” method. It can be used to “prove” that a factor 
change “significantly” affects an average response. In this section, we describe two 
alternative procedures: (1) randomization testing and (2) paired t-testing. 
Randomization testing is generally relevant when there is strong evidence of a 
significant difference. It permits the user in such cases to make stronger claims of 
significance than through ordinary t-testing. This is possible in randomization 
testing because no assumption is made about the distribution from which responses 
come. As described in Chapter 19, in standard t-testing, the assumption of 
normally distributed random errors permits the derivation of the critical values and 
p-values. Because the randomization derives its p-value without assuming a 
specific distribution it is called a “non-parametric” hypothesis testing method.  

Paired t-testing is relevant when there is a natural pairing between observations. 
For example, we might be testing shoe wear as it depends on spray coating with 
level (1) being spray 1 and level (2) being spray 2. In our experimental plan, each 
level might be assigned to either the left (L) foot or the right (R) foot of each 
person. Then, the paired design might be: L1R2, L2R1, L1R2, L1R2,… We would 
generally apply paired t-testing in such cases because we would likely expect an 
increased chance of finding significance or higher “power” to find differences. 
Therefore, randomization testing generally offers lower power than standard t-
testing but greater subjective evidence if significance is found. Also, paired t-
testing usually offers higher statistical power but is only relevant if there is a 
natural pairing between observations at different levels. 

The first step of the randomization test procedure is the same as for the standard 
t-testing procedure in Algorithm 11.1. Steps 2 and 3 are based on calculating all the 
combinations of possible level assignments to the data and estimating the effects. 
Consider the example in Table 11.3. The actual allocation of factor levels to data 
points is 1-2-1-2-2-1. Yet, if the factor has no effect, we should expect comparable 
performance for all other 6!/[(3!)(3!)] = 20 possible allocations of factor levels to 
effects. Table 11.4 shows the estimate effects based on all 20 possible allocations. 
We note that the observed allocation is the most extreme, i.e., it is 1/20. Therefore, 
we estimate that the non-parametric p-value in this case is 1/20 or 0.05, which is 
comparable to the parametric p-value of 0.047. The histogram of the estimated 
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effects for all combinations can be called the “reference” distribution, which might 
be highly skewed or “non-normal”. 

Table 11.4. The application of the randomization test to the data from the first example in 
Section 11.4  

 Levels for run Contribution to the sum  
Combination 1 2 3 4 5 6 S1 S2 S3 S4 S5 S6 Est. 

1 1 1 1 2 2 2 –25 –20 –35 23 21 34 –0.67 
2 1 1 2 1 2 2 –25 –20 35 –23 21 34 7.33 
3 1 2 1 1 2 2 –25 20 –35 –23 21 34 –2.67 
4 2 1 1 1 2 2 25 –20 –35 –23 21 34 0.67 
5 1 1 2 2 1 2 –25 –20 35 23 –21 34 8.67 
6 1 2 1 2 1 2 –25 20 –35 23 –21 34 –1.33 
7 2 1 1 2 1 2 25 –20 –35 23 –21 34 2.00 
8 1 2 2 1 1 2 –25 20 35 –23 –21 34 6.67 
9 2 1 2 1 1 2 25 –20 35 –23 –21 34 10.00 

10 2 2 1 1 1 2 25 20 –35 –23 –21 34 0.00 
11 1 1 2 2 2 1 –25 –20 35 23 21 –34 0.00 

12 1 2 1 2 2 1 –25 20 –35 23 21 –34 –10.00 
13 2 1 1 2 2 1 25 –20 –35 23 21 –34 –6.67 
14 1 2 2 1 2 1 –25 20 35 –23 21 –34 –2.00 
15 2 1 2 1 2 1 25 –20 35 –23 21 –34 1.33 
16 2 2 1 1 2 1 25 20 –35 –23 21 –34 –8.67 
17 1 2 2 2 1 1 –25 20 35 23 –21 –34 –0.67 
18 2 1 2 2 1 1 25 –20 35 23 –21 –34 2.67 
19 2 2 1 2 1 1 25 20 –35 23 –21 –34 –7.33 
20 2 2 2 1 1 1 25 20 35 –23 –21 –34 0.67 
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Figure 11.2. Reference distribution associated with the randomization test 
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In paired experiments, the additional statistical power can come because much of 
the unexplained variation is eliminated from consideration by the pairing. For 
example, the differences between people wearing the shoes are removed from 
consideration since we only focus on the differences within subjects, i.e., between 
the shoes on the same person. As another example, consider an experiment done by 
a golf ball maker testing the equipment used to measure golf balls. The pairing 
occurs because the same ball is measured on two machines. The manufacturer 
would like to prove that one machine gives a higher average reading than another 
machine. The lack of homogeneity between the golf balls could contribute to 
compression measurements that could inflate the experimental error and lower the 
statistical power. Using the paired t-test, the heterogeneity or variability between 
the golf balls would be factored out and the focus would be on differences between 
the measurements on alternative machines. 

The use of hypothesis testing is not emphasized in this book because it can leave 
the impression that abstract theory is critical to benefit from the methods presented. 
Here, when describing the somewhat optional subject of paired t-testing, 
hypothesis testing concepts are also described for completeness. A null hypothesis 
(H0) is what one entertains skeptically unless the data proves otherwise. In the golf 
example, the null hypothesis is that both golf ball presses give the same average 
values on a given golf ball deflection. Our alternative hypothesis (Ha) often 
represents what the experimenter hopes to prove is true. In the golf example, the 
desire would be that the golf ball presses give different true average deflection 
amounts. Therefore, the experimenter would generally like to reject the null 
hypothesis, e.g., to prove that the presses are different. Such proof is generated 
when the test statistic value exceeds the critical value, e.g., for t-testing when to > 
tα/2 , n–1.  

The test statistic for this hypothesis paired t-test is: 

t0 = dbar/[Sd/sqrt(n)]    (11.2) 

where sqrt() stands for square root, n is the number of specimens, and 

dbar = (1/n)Σi=1,…,n di     (11.3) 

is the sample mean of the differences, and the sample standard deviation is: 

Sd = sqrt{[Σi=1,…,n (di – dbar)2]/(n – 1)}.    (11.4) 

The equivalent, “shortcut” formula for the sample standard deviation is: 

Sd = sqrt{[(Σi=1,…,n di
2) – (dbar)2]/(n – 1)}.    (11.4) 
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Steps for a paired t-test are as described in Algorithm 11.4. 
 

Algorithm 11.4. Paired T-testing 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Example 11.5.1 Paired T-test 

Question: Use the data from Table 11.5 and a paired t-test to determine if the 
owner is correct in thinking that the presses give significantly different average 
results. 

 
Table 11.5. Golf ball compression data 

 
Golf ball compression 

Specimen Press 1 Press 2 
1 90 92 
2 110 105 
3 80 82 
4 75 75 
5 92 90 
6 105 105 
7 99 99 
8 108 109 
9 85 83 

 
 

Step 1: Perform randomized and paired testing similar to ordinary t-testing. 
Also, optionally set up the null and alternative hypothesis, where µd 
is the value of the difference between press one and press two 
results. In paired t-testing Ho: µ1= µ2 is equivalent to testing: 

Ho: µd = 0 
Ha: µd ≠ 0 

Step 2: Calculate dbar using the response data and Equation 11.3. 
Step 3: Calculate sample standard deviation using Equation 11.5. 
Step 4: Select the alpha (α) level and identify the relevant critical value. 
Step 5: Calculate the t-statistic using Equation 11.2. 
Step 6: Compare the t-value and t-statistic in order to determine if one can 

reject the null hypothesis. State conclusions. 
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Answer: The relevant hypotheses are:  

Ho: µd = 0 

Ha: µd ≠ 0 

Next, the dbar value can be derived using:   
d1 = 92 – 90 = 2 d6 = 105 – 105 = 0 
d2 = 110 – 105 = 5 d7 = 99 – 99 = 0 
d3 = 82 – 80 = 2 d8 = 109 – 108 = 1 
d4 = 75 – 75 = 0 d9 = 83 – 85 = –2 
d5 = 90 – 92 = –2  

2 + 5 + 2 + 0 – 2 + 0 + 0 + 1 – 2 = 6 

dbar = (1/n)Σi=1,…,n di = (1/9)*(6)= 0.667 
The relevant sample standard deviation calculation is: 
 

Sd = sqrt{[Σi=1,…,n (di – dbar)]/(n – 1)} = Sd = sqrt{(42 – 0.667)/(9 – 1)} 
= 2.27 

 
Selecting α = 0.05, the relevant t-critical value is t0.025,8 = 2.306. We compute 

the value of the paired t-statistic using: 
 

t0 = dbar/[Sd/sqrt(n)] = (0.667)/[2.227/sqrt(9)] = 0.88 
 

As a result t0 < t0.025,8 and we fail to reject the null. Therefore, we fail to prove 
anything conclusive. There might be differences that we might find if we had more 
data. Yet, there is a subjective indication that the presses do not give very different 
values. We applied the relatively powerful paired t-test and failed to find 
significance. 

11.6 ANOVA for Two Sample T-tests 

Analysis of variance (ANOVA) is a set of methods related to the statistical 
comparison of variances. Perhaps the most common applications of these methods 
involve using variance estimates to compare response mean differences. These are 
the methods considered here.  
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By focusing on variance estimate, ANOVA offers the ability to regulate the 
overall error rate when multiple mean differences are considered. For example, if 
we are comparing options A, B, and C to find the highest mean, we might perform 
three tests: A versus B, A versus C, and B versus C. Fisher (1925) showed that his 
ANOVA method offered an adjustable overall error rate, α. This rate was a 
probability limit of making any wrong conclusion of significance in all of the 
simultaneous mean tests considered.  

The ANOVA procedure is associated with the following assumptions that can 
be evaluated using data to determine whether they, reasonably, apply to a given 
situation: 

• Response values are normally distributed (or normally distributed to an 
acceptable approximation). 

• Responses from different experimental runs are independently distributed.  

The regression chapter (Chapter 15) describes in relative detail tests of these 
assumptions, which include plots of the so-called “residuals” or estimated errors. 

Technically, under the above assumptions ANOVA generates an F-statistic, 
which can be related to t distributed statistics as follows: F = t2. F is also a ratio of 
chi-squared statistics under different assumptions. If the so-called “null” 
hypothesis (H0) holds then the ratio is approximately 1.0. On the other hand, if the 
factor being tested is associated with levels having large mean differences, then the 
F value is generally much larger than 1.0.  

The description of the ANOVA method invariably involves formulas and 
complicated notation even for single factor experiments. Table 11.6 describes the 
notation for experimental data for an experiment at “a” levels written 1,2,…,a. At 
each level there are n “replicates” or measurements. In the table (yij) represents the 
jth observation taken under the ith factor. The sum of all averages’ “grand average” 
including all observations is “ybar…”. 

 

Table 11.6. Data for a single factor ANOVA experiment 

Factor 
level Observations Totals Averages 

1  y11 y12 . . . y1n  y1. ybar1. 
2  y21 y22 . . . y2n  y2. ybar2. 
.  . . . . . .  . . 
.  . . . . . .  . . 
.  . . . . . .  . . 
A  ya1 ya2 . . . yan  ya. . 
                  y... ybar... 
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The ANOVA procedure involves calculating several sums of squares, which 
effectively section or divide the total variation in the data into component parts. 
The total sum of squares is used to quantify all the variability in the response data. 
The equation for sum of squares total (SST) is:    

SST = Σi=1,…,aΣj=1,...,n(yij – ybar…)2 (11.5) 
 
The so-called ANOVA decomposition involves dividing the total sum of squares 
into two parts: treatment and unexplained. The decomposition can be written as: 

SST = SSTR + SSE (11.6) 

where SSTR is the sum of squares due to factors or treatments and SSE is sum 
of squares of the estimated errors. The specific definitions of both SSTR and SSE 
are: 

SSTR = nΣi=1,…,a(yi. – ybar…)2 (11.7) 

SSE = Σi=1,…,aΣj=1,…,n(yij – ybar.)2 (11.8) 

The value of this decomposition relates to the fact that, under the 
abovementioned assumptions, both SSTR and SSE are relatable to normally 
distributed noise. Specifically, if the treatment has no effect, then the following 
quantities should be approximately equal to each other and the variance of repeated 
responses. These are the mean of squares (MSTR), which is simply SSTR/(a – 1) 
and the mean squared error (MSE) which is SSE/(N – a).  

The denominators of these quantities are called degrees of freedom, which have 
a geometric interpretation but which are simply numbers that aid in identifying the 
relevant critical characteristic value. Three different degrees of freedom are 
relevant: the first is between treatments (a – 1), the second is error (N – a), and the 
final is total (N – 1). These are then used to find the F-statistic: 

F0 = variance of group means ÷ means within group variance (11.9) 
 

= MSTR/MSE (11.10) 
 

Using an F distribution table or =FINV() in excel, we can find Fα, a–1, N–a. If F0 > Fα, 

a–1, N–a., then we can conclude that there is a significant difference in the response 
means associated with at least two factor levels. For the extension of ANOVA to 
more than a single factor method please refer to Chapter 15 of this book. 
 
Question: Below is a chart of data pertaining to the number of seconds a particular 
flash assembler took to create a single flashlight at different times during the day. 
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Using ANOVA determine if the time of day affects average times, i.e., whether the 
means differ significantly between two or more times of day.  
 

Table 11.7. Data for flashlight assembler 

Factor 
level Observations Totals   Averages 
Time 
of day 1 2 3 4 5   yi  ybar… 

Morning  427 409 411 382 418   2047  409.4 
Mid-

morning 262 299 294 271 319   1445  289 
Earlier 

afternoon 273 247 235 235 275   1265  253 
Late 

afternoon 309 355 317 338 327   1646  329.2 

              y.. = 6403 Ybar… = 320.15 
 

Answer: Use Equations 11.5–11.10 to determine whether or not the averages are 
all statistically the same or different. Some equations have been rearranged for 
convenience. 

 
SST = (427)2 +(409)2 + … + (327)2 – (64032)/(20) = 73,722.55 

 

SSTR = [(2047)2 + …+ (1646)2] – (64032)/(20) = 67,634.55 

SST = SSTR + SSE 

SSE = 73,722.55 – 67,634.55 = 6,088 

We now set up these results in an ANOVA table as shown in Table 11.8. 
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Table 11.8. ANOVA for the flash light assembly study  

Source of variance  
Sum of 
squares 

Degrees of 
freedom 

Mean 
squares F0 

Time of day 67,634.55 3 22,544.85 59.25 
Error 6,088 16 380.5  
Total 73,722.55 19    

In Table 11.8, specifically, in deriving the sum or squares values, the degrees 
of freedom are 3, 16, and 19. Table 11.8 also shows the mean squares derived from 
the sums of squares divided by the degrees of freedom. Fo is found by dividing 
mean squares for time of day by mean squared error. Next, we compute the upper 
tail of the F-distribution using F0.05, 3, 16 using an F-table or Excel to equal 3.24. 
Since F0 > Fcritical we conclude that time of the day does significantly effect the 
average speed in which the assembler creates the flashlights with α = 0.05.  

11.7 Full Factorials  

In previous sections, we described the methods of t-tests and ANOVA to determine 
whether changes in the level of a single factor significantly affect the average 
response values. Next, we focus on an experimental planning method involving 
multiple factors. The method of “full factorials” is one type of experimental design 
with intuitive appeal but potentially limited application. Assume there are m factors 
each with li levels, where i = 1,...,m is the factor index. A “full factorial” is a listing 
of all combinations of the m factors at each of the levels.  

For example, consider the design of a paper airplane with m equals two factors. 
The first, the wing length is of interest at l1 = 3 levels. The second, the paper type, 
is of interest at l1 = 2 levels. Table 11.9 shows a full factorial repeated twice, i.e., 
with r = 2 replications. If the experiment were performed following the plan in 
Table 11.9, the first run would involve constructing an airplane with a wing length 
of 2 cm based on paper type 1. The second run would involve a wing length of 4 
cm and use type 1 paper. In the next section, we describe reasons why performing 
experiments in standard or “not randomized” order is undesirable. 
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Table 11.9. Replicated two factor full factorial 

Run (not randomized order) Wing length Paper type 

1 2 cm Type 1 
2 4 cm Type 1 
3 6 cm Type 1 
4 2 cm Type 2 
5 4 cm Type 2 
6 6 cm Type 2 
7 2 cm Type 1 
8 4 cm Type 1 
9 6 cm Type 1 

10 2 cm Type 2 
11 4 cm Type 2 
12 6 cm Type 2 

 
 Even with a single replicate, the number of runs to perform a full factorial can 
be large. To better understand the relationship between levels, factors, and numbers 
of runs for an experiment consider full factorials in which all factors have the same 
number of levels, i.e., li = l for i = 1,…,m. The number of runs is then given by n = 
lk. Table 11.10 shows the numbers of runs needed for various m and l combinations 
from this equation.  
 

Table 11.10. Runs needed based on the number of levels and factors 

Number of factors (m) Number of levels (li = l) Number of runs needed (n) 

2 2 4 
2 4 16 
3 2 8 
3 4 64 
4 2 16 
4 4 256 
5 2 32 
5 4 1,024 
6 2 64 
6 4 4,096 
7 2 128 
8 2 256 
8 6 1,679,616 
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Consider that all combinations of 8 factors at 2 levels requires 256 runs in the 
experiment. This could be prohibitively costly and time consuming. Also, 8 factors 
at 6 levels requires 1,679,616 runs, which is likely to be prohibitively expensive for 
all but the easiest of experiments. Yet, as described in the theory of experimental 
design chapter (Chapter 19), the statistical properties of full factorial designs are 
often undesirable.  

If the goal is simply to derive a list of factors with significant effects, the 
fractional factorials in Chapter 12 are likely to offer an economical way to derive 
the same or similar results. If the goal is to predict average response values 
accurately as a function of continuous factor settings, then the response surface 
methods described in Chapter 13 might likely offer greater prediction accuracy 
compared with multilevel full factorials and at a fraction of the cost. 

11.8  Randomization and Evidence 

One activity is common to all of the applications of the design of experiments 
(DOE) methods in this book. This activity is “randomization” which is the 
allocation of blocking factor levels to runs in a random or unpatterned way in 
experimental planning. For example, the run order can be considered to be a 
blocking factor. The act of scrambling the run order is a common example of 
randomization. Also, the assignment of people and places to factor levels can be 
randomized.  

Philosophically, the application of randomization is critical for proving that 
certain factor changes affect average response values of interest. Many experts 
would say that empirical proof is impossible without randomization. Data 
collection is called an “experiment” if randomization is used and an “observational 
study” if it is not. Further, many would say experiments are needed for “doing 
science” although science is also associated with physics-based modeling. 

Note that attempts to control usually uncontrollable factors during 
experimentation can actually work against development of proof, because control 
can change the system so that proof derived (if any) pertains to a system that is 
different than the one of interest. Often, the process is aided through the creation of 
an experimental plan or table showing the levels of the factor and the blocking 
factors (if any). The use of a planning table is illustrated (poorly) in the next 
example. 

Example 11.8.1  Poor Randomization and Waste 

Question 1: Assume that the experimental designer and all testers are watching all 
trials related to Table 11.4. The goal of the new software is task time reduction. 
Which is correct and most complete? 

a. The data can be used to prove the new software helps with α = 0.05. 
b. The theory that the people taking the test learned from watching others is 

roughly equally plausible to the theory that the new software helps. 
c. The theory that women are simply better at the tasks than men is roughly 

equally plausible to the theory that the new software helps. 
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d. The tests would have been much more valuable if randomization had been 
used. 

e. All of the above are correct except (a). 
 
Answer 1: The experimental plan has multiple problems. The run order is not 
randomized so learning effects could be causing the observed variation. The 
assignment of people to levels is not randomized so that gender issues might be 
causing the variation. The test was run in an unblind fashion, so knowledge of the 
participants could bias the results. Therefore, the correct answer is (e).   

Table 11.11. Hypothetical example in which randomization is not used 

Run 
(blocking factor) 

Software Tester  
(blocking factor) 

Average time 
per task 

1 Old Jim 45.2  

2 Old Harry 38.1  

3 Old George 32.4 

4 New Sue 22.1 

5 New Sally 12.5 

6 New Mary 18.9 

 
Question 2: Which is correct and most complete? 

a. Except for randomization issues, t-testing analysis could be reasonably 
used. 

b. t0 = 4.45 for the two sample analysis of software, assuming unequal 
variances. 

c. The experiment would be “blind” if the testers did not know which 
software they were using and could not watch the other trials. 

d. All of the above are correct. 
e. None of the above is correct. 

 
Answer 2: Often, in experimentation using t-testing, there are blocking factors that 
should be considered in planning and yet the t-testing analysis is appropriate. Also, 
the definition of blind is expressed in part (c). Therefore, the answer is (d). 

11.9  Errors from DOE Procedures 

Investing in experimentation of any type is intrinsically risky. This follows because 
if the results were known in advance, experimentation would be unnecessary.  
Even through competent application of the methods in this book, errors of various 
types will occur. Probability theory can be used to predict the chances and/or 
magnitudes of different errors as described in Chapter 19. The theory can also aid 
in the comparison of method alternatives. 
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In this section, concepts associated with errors in testing hypotheses are 
described which are relevant to many design of experiments methods. These 
concepts are helpful for competent application and interpretation of results. They 
are also helpful for appreciating the benefits associated with standard screening 
using fractional factorials. 

Table 11.5 defines Type I and Type II errors. The definition of these errors 
involves the concepts of a “true” difference and absence of the true difference in 
the natural system being studied. Typically, this difference relates to alternative 
averages in response values corresponding to alternative levels of an input factor.  
In real situations, the truth is generally unknown. Therefore, Type I and Type II 
errors are defined in relation to a theoretical construct. In each hypothesis test, the 
test either results in a declaration of significance or failure to find significance. 

Table 11.12. Definitions of Type I and Type II errors 

  Nature or truth 

  No difference 
exists Difference exists 

Significance is found Type I error Success 
Declaration 

Failure to find Semi-success Type II error 

 
Failure to find significance when no difference exists is only a “semi-success” 

because the declaration is indefinite. Implied in the declaration is that with more 
runs or slightly different levels, a difference might be found. Therefore, the 
declaration in the case of no true difference is not as desirable as it could be. 

As noted previously, theory can provide some indication of how likely Type I 
and Type II errors are in different situations. Intuitively, for two-sample t-testing, 
the chance of errors depend on all of the following: 

a. The sample sizes used, n1 and n2 
b. The α used in the analysis of results 
c. The magnitude of the actual difference in the system (if any) 
d. The sizes of the random errors that influence the test data (caused by 

uncontrolled factors) 
Like many testing procedures, the two-sample t-test method is designed to have 

the following property. For testing with chosen parameter α and any sample sizes, 
the chance of Type I error equals α. In one popular “frequentist” philosophy, this 
can be interpreted in the following way. If a large number of applications occurred, 
Type I errors would occur in α fraction of these cases. However, the chance of a 
Type I equaling α is only precisely accurate for specific assumptions about the 
random errors described in Chapter 19.  

Therefore, fixing α determines the chance of Type I errors. At the same time, 
the chance of a Type II error can, in general, be reduced through increasing the 
sample sizes. Also, the larger the difference of interest, the smaller the chance of 
Type II error. In other words, if the tester is looking for large differences only, the 
chance of missing these distances and making a Type II error is small, in general. 
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Example 11.9.1  Testing a New Drug 

Question: An inventor is interested in testing a new blood pressure medication that 
she believes will decrease average diastolic pressure by 5 mm Hg. She is required 
by the FDA to use α = 0.05. What advice can you give her? 

a. Use a smaller α; the FDA will accept it, and the Type II error chance is 
lower. 

b. Budgeting for the maximum possible sample size will likely help prove 
her case. 

c. She has a larger chance of finding a smaller difference. 
d. All of the above are correct. 
e. All are correct except (b) and (d). 

Answer: As noted previously, if something is proven using any given α, it is also 
proven with all higher levels of α. Therefore, the FDA would accept proof with a 
lower level of α. However, generally proving something for a lower α implies an 
increased chance of Type II error. Generally, the more data, the more chance of 
proving something that is true. Also, finding smaller differences is generally less 
likely. Therefore, the correct answer is (b). 

11.10  Summary 

This chapter has provided an overview of the design of experiments (DOE) 
methods in this book. To simplify, fractional factorial methods are useful for 
screening to find which of many factors significantly affect average response 
values with only a fraction of the cost of full factorials. Fractional factorials are 
covered in detail in Chapter 12. Response surface methods (RSM) are useful for 
developing relatively accurate surface predictions, including predicting so-called 
interactions or combined effects of factors on average responses (Chapter 13). 
Sequential RSM offer a potential advantage in economy in that possibly fewer runs 
will be used. Robust design methods address the variation of uncontrollable factors 
and deliver relatively trustworthy system design recommendations (Chapter 14). 

The method of t-testing was presented in part to clarify what randomization is 
and why it matters. Also, t-testing was used to illustrate the use of information to 
support method related decision-making, e.g., about how many test runs to do at 
each level. Theoretical information was presented to clarify the chances of 
different types of errors as a function of method design choices. 

Finally, the concept of randomization (a general practice), randomization 
testing (a specific non-parametric alternative method to standard t-testing) and 
ANOVA were described. Randomization and ANOVA are relevant to all of the 
design of the experiments methods in this book. Randomization involves a careful 
step of planning experimentation that is critical for achieving proof and high levels 
of evidence. ANOVA is a set of methods including the specific methods covered 
here that compare means using variance with a controllable Type I error rate. 

The following example illustrates how specific key input variables and DOE 
methods can be related to real world problems. 
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Example 11.10.1  Student Retention Study 

Question 1: Suppose that you are given a $4,000,000 grant over three years to 
study retention of students in engineering colleges by the Ohio State Board of 
Regents. The goal is to provide proven methods that can help increase retention, 
i.e., cause a higher fraction of students who start as freshmen to graduate in 
engineering. Describe one possible parameterization of your engineered system 
including the names of relevant factors and responses. 
 
Answer 1: The system boundaries only include the parts of the Ohio public 
university network that the Board of Regents could directly influence. These 
regents can control factors including: (1) the teaching load per faculty (3 to 7 
course per year), (2) the incentives for faculty promotion (weighted towards 
teaching or research), (3) the class size (relatively small or large), (4) the 
curriculum taught (standard or hands-on), (5) the level of student services (current 
or supplemented), and (6) the incentives to honors students at each of the public 
campuses (current or augmented). Responses of interest include total revenues per 
college, retention rates of students at various levels, and student satisfaction ratings 
as expressed through surveys. 
 
Question 2: With regard to the student retension example, how might you spend 
the money to develop the proof you need? 
 
Answer 2: Changing university policies is expensive. Expenses would be incurred 
through additions to students’ services for selected groups, summer salary for 
faculty to participate, and additional awards to honors students. Because of the 
costs, benchmarking and regression analyses techniques applied, using easily 
obtainable data would be relevant. Still, without randomized experimentation, 
proof of cause and effect relationships relevant to Ohio realities may be regarded 
as impossible. Therefore, I would use the bulk of the money to perturb the existing 
policies. I would begin by dividing the freshman students in colleges across the 
state into units of approximately the same size in such a way that different units 
would naturally have minimal interaction. Then, I would assign combinations of 
the above factor levels to the student groups using random numbers to apply 
standard screening using fractional factorials with twelve runs (n = 12). I would 
evaluate the responses each year associated with the affected student groups 
applying the fractional factorial analysis method. As soon as effects appeared 
significant, I would initiate two-sample t-tests of the recommended settings vs the 
current using additional groups of students to confirm the results, assuming the 
remaining budget permits. The fractional factorial and added confirmation runs 
would likely consume several million dollars. However, it seems likely that the 
findings would pay for themselves, because the state losses per year associated 
with poor retention have been estimated in the tens of millions of dollars. These 
costs do not include additional losses associated with university ratings stemming 
from poor retention. 
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Problems 

1. Consider applying DOE to improving your personal health. Which of the 
following is correct and most complete? 

a. Input factors might include weight, blood pressure, and happiness 
score. 

b. Output responses might include weight, blood pressure, and 
happiness score. 

c. Randomly selecting daily walking amount each week could generate 
proof. 

d. Walking two months 30 min daily followed by two months off can 
yield proof. 

e. Answers to parts (a) and (d) are both correct. 
f. Answers to parts (b) and (c) are both correct. 
 

2. Which is a benefit of DOE in helping to add definitiveness in design decision-
making? 

a. Engineers feel more motivated because proof is not needed for 
changes. 

b. Tooling costs are reduced since dies must be designed and built only 
once. 

c. Carefully planned input patterns do not support authoritative proof. 
d. Documentation becomes more difficult since there is no moving 

target. 
e. Quality likely improves because randomization does not generate 

rigorous proof. 
 

3. Based on Chapter 1, which of the following is correct and most complete? 
a. Taguchi contributed to robust design and Box co-invented FF and 

RSM. 
b. Deming invented FF and invented RSM. 
c. Shewhart invented ANOVA. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

4. Which of the following is correct and most complete? 
a. FF is helpful for finding which factors matter from a long list with 

little cost. 
b. RSM helps in fine tuning a small number of factor settings. 
c. Robust engineering helps in that it is relatively likely to generate 

trustworthy settings. 
d. All of the above are relevant advantages. 
e. All of the above are correct except (a) and (d). 

 
Data from Figure 11.3 will be used for Questions 5 and 6. 
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Run Weight Factor A – Walking amount 

1 184 Without extra walking 

2 180 With extra walking 

3 184 Without extra walking 

4 176 With extra walking 

5 174 With extra walking 

6 180 Without extra walking 

Figure 11.3. Data and Minitab® Box and Whisker plot for weight loss example 

5. Which of the following is correct and most complete? 
a. t0 = 3.7, which is “>” the relevant critical value, but nothing is 

proven. 
b. t0 = 2.7, we fail to find significance with α = 0.05, and the plot offers 

nothing. 
c. t0 = 2.7, which is significant with α = 0.05, we can claim proof 

walking helps. 
d. The run ordering is not random enough for establishing proof. 
e. All of the above are correct except (a). 
 

6. Calculate the degrees of freedom (df) using data from the above example. 
 
7. Consider the Second Two-sample t-test example in Section 11.4.1 of this 

chapter. Assume that no more tests were possible. Which is correct and most 
complete? 

a. Randomly assigning people to treatments and run order is essential 
for proof. 

Factor A - Walking Amount

W
ei

gh
t

Without Extra WalkingWith Extra Walking

185.0

182.5

180.0

177.5

175.0
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b. It is likely true that failing to find significance would have been 
undesirable. 

c. The test statistic indicates a real difference larger than the noise is 
present. 

d. Significance would also have been found for any value of α larger 
than 0.05. 

e. Answers to parts (a) and (d) are both correct. 
f. All of the above answers are correct. 
 

8. Assume you t-test with n1 = n2 = 4. Which is correct and most complete? 
a. Using n1 = n2 = 3 would likely reduce the chance of Type I and Type 

II errors. 
b. The chance of finding significance can be estimated using theory. 
c. Random assignment of run ordering makes error rate (both Type I 

and Type II probabilities) estimates less believable. 
d. Finding significance guarantees that there is a true average response 

difference. 
e. All answers except (d) are correct. 
 

Use the following design of experiments array and data to answer Questions 9 and 
10. Consider the following in relation to proving that the new software reduces task 
times. 

Table 11.13. Software testing data 

Run Software Tester Average time per task 

1 Old Mary 45.2  

2 New Harry 38.1  

3 Old George 32.4 

4 New Sue 22.1 

5 New Sally 12.5 

6 Old Phillip 18.9 

 
9. Which is correct and most complete? 

a. The above is an application of a within-subjects design. 
b. The above is an application of a between-subjects design. 
c. One fails to find significance with α = 0.05. 
d. The degrees of freedom are greater than or equal to three. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

10. When specimens are heterogeneous and paired, which is correct? 
a. Randomization testing is likely to offer the lowest Type II error rates. 
b. Paired t-testing is likely to offer the lowest Type II error. 
c. You cannot perform any type of test. 
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d. Answers to parts (a) and (c) are both correct. 
e. Answers to parts (b) and (c) are both correct. 
 

11. Randomization testing is often preferred because it can be done without  
a. Assumptions about distributions. 
b. Response data. 
c. Randomizing the run order. 
d. Estimating mean differences.  
e. All of the above are incorrect. 
 

12. Which of the following is part of an assumption relevant to ANOVA: 
a. Variances of populations are equal. 
b. Independence of successive observations. 
c. Normally distributed random errors. 
d. Randomization. 
e. All of the above are relevant to the proper functioning of ANOVA. 
 

13. Which test statistic does ANOVA use? 
a. T-test 
b. Z-test 
c. F-test 
d. Answers to part (a) and (b) are both correct. 
e. Answers to part (b) and (c) are both correct. 
 

14. A factor relates to a full factorial experimental design in which way? 
a. It is the measured output from the experimental run tests. 
b. Its level settings in the various runs are prescribed by the array. 
c. It is the replication number of the array. 
d. Answers to part (a) and (b) are both correct. 
e. Answer to part (b) and (c) are both correct. 
 

15. A level relates to a full factorial experimental design in which way? 
a. It is the measured output from the experimental run tests. 
b. The settings that factors assume in the runs specified by the array. 
c. Parts of the experiment in which cost estimates are needed. 
d. It is the range of settings described by the array. 
e. There is no such thing as levels in full factorial experiments. 
  

16. How many runs are needed to perform a full factorial experiment with 10 
factors at 2 levels? 

a. 1012 
b. 1024 
c. 1020 
d. 100 
e. 102 
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17. Which is correct and most complete? 
a. The blocking factor tester has been randomized over. 
b. t0 = 1.45 for the two sample analysis of software assuming unequal 

variances. 
c. Harry, Sue, and Sally constitute the control group. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (e). 
 

18. Which is correct and most complete for t-testing or factor screening? 
a. In general, adding more runs to the plan increases many types of error 

rates. 
b. Type I errors in t-testing include the possibility of missing important 

factors. 
c. Type II errors in t-testing focus on the possibility of missing 

important factors. 
d. Standard t-testing can be used to prove the insignificance of factors. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
19. How does paired t-testing differ from two sample t-testing? 

 
20. A bicycle repair shop has two bolt torque wrenches. A torque wrench is used 

to tighten bolts and clicks when the bolt is tighten to the required amount. One 
of the bicycle mechanics thinks that one of the torque wrenches (Wrench 2) is 
reading high on average. 10 different bolts were tightened with both wrenches, 
varying the order in which the wrenches were applied in an unpatterned way. 
The resulting measured torques are given in Table 11.14. Analyze the data 
using a paired t-test and state conclusions. 

 
Table 11.14. Torque data for problem 20 

Torque numbers 
Specimen Wrench 1 (NM) Wrench 2 (NM)

1 90 97
2 85 100 
3 76 80 
4 15 35 
5 12 18 
6 35 45 
7 56 67 
8 89 95 
9 34 39 

10 5 9 
 

21. Find a real-world example where you can perform a paired or unpaired t-test, 
collect the proper data, and perform the analysis. 
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22. A car dealership wants to investigate if the size of a car affects the length of a 
lease in years. They collect the following data from their lease department. 
Use ANOVA to determine if car size significantly affects lease time. 

Factor level    Observations Totals   Averages 
Size of car 1 2 3 4 5    yi  y .. 
Compact  3 2 4 3 2    14  2.8 
Mid-size 4 2 3 5 2    16  3.2 
Full size 3 4 2 2 3    14  2.8 

SUV/truck 4 3 2 3 3    15  3.0 
                y..= 59 y ..= 2.95 

 

23.  Find a situation in your life in which ANOVA could be used, collect the data 
and then perform ANOVA. If possible, apply randomization. State your 
conclusions mentioning whether or not results are proven. 

 
24.  Plan a hypothetical full factorial experiment involving at least m = 3 factors 

and r = 2 replicates.  
 
25.  In your own words define ANOVA and describe when it is applicable. 

Reference 

Fisher RA (1925) Statistical Methods for Research Workers. Oliver and Boyd, London 
 
   



 

 

12 

DOE: Screening Using Fractional Factorials 

12.1  Introduction  
The methods presented in this chapter are primarily relevant when it is desired to 
determine simultaneously which of many possible changes in system inputs cause 
average outputs to change. “Factor screening” is the process of starting with a 
long list of possibly influential factors and ending with a usually smaller list of 
factors believed to affect the average response. More specifically, the methods 
described in this section permit the simultaneous screening of several (m) factors 
using a number of runs, n, comparable to but greater than the number of factors (n 
~ m and n > m).  

The methods described here are called “standard screening using fractional 
factorials” because they are based on the widely used experimental plans proposed 
by Fisher (1925) and in Plackett and Burman (1946) and Box et al. (1961 a, b). 
The term “prototype” refers to a combination of factor levels because each run 
often involves building a new or prototype system. The experimental plans are 
called fractional factorials because they are based on building only a fraction of the 
prototypes that would constitute all combinations of levels for all factors of interest 
(a full factorial). The analysis methods used were proposed in Lenth (1989) and Ye 
et al. (2001). 

Compared with multiple applications of two-sample t-tests, one for each factor, 
the standard screening methods based on fractional factorials offer relatively 
desirable Type I and Type II errors. This assumes that comparable total 
experimental costs were incurred using the “one-factor-at-a-time” (OFAT) two-
sample t-test applications and the standard screening using fractional factorial 
methods. It also requires additional assumptions that are described in the “decision 
support” section below. Therefore, the guarantees associated with two-sample t-
tests require fewer and less complicated assumptions.  
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12.2  Standard Screening Using Fractional Factorials 

Screening methods are characterized by (1) an “experimental design”, D, (2) a 
parameter α used in analysis, (3) vectors that specify the highs, H, and lows, L, of 
each factor, and (4) the choice of so-called error rate. The experimental design, D, 
specifies indirectly which prototype systems should be built. The design, D, only 
indirectly specifies the prototypes because it must be scaled or transformed using 
H and L to describe the prototypes in an unambiguous fashion that people who are 
not familiar with DOE methods can understand (see below). 

Specifying D involves determining the number of “test run” prototypes systems 
to be built and tested, n, and the number of factors or inputs, m, that are varied, i.e., 
the dimensions that distinguish specific prototypes. The screening parameter α 
corresponds to the α in t-testing, i.e., the probability under standard assumptions 
that significance of at least one factor will be found significant when in actuality no 
factor influences the output.  

The choices for error rate are either the so-called individual error rate (IER) 
first suggested by Lenth (1989) or the experimentwise error rate (EER) proposed 
by Ye et al. (2001). The use of IER can be regarded as “liberal” because it implies 
that the probability of wrongly declaring that at least one factor is significant when 
actually none has any influence is substantially higher than α. The relatively 
“conservative” EER guarantees that if no factors influence the response, the 
probability that one or more is declared significant is approximately α under 
standard assumptions described in Chapter 19. The benefit of IER is the higher 
“power” or probability of identifying significant factors that do have an effect. 
Also, sometimes experimenters want to quote some level of proof when proof 
using the EER is not possible. 

Note that Lenth (1989) wrote his method in terms of “effects,” which are twice 
the regression coefficients used in the method below. However, the associated 
factor of two cancels out so the results are identical with respect to significance. 

The method in Algorithm 12.1 is given in terms of only a single response. 
Often, many responses are measured in Step 3 for the same prototypes, with the 
prototypes built from the specifications in the array. Then, Step 4, Step 5, Step 6, 
and Step 7 can be iterated for each of the responses considered critical. Then also, 
optimization in Step 6 would make use of the multiple prediction models and 
evidence relating to any factors and responses might be judged to support 
performing additional experiments, e.g., using response surface methods (see 
Chapter 13). 

Note that the standard screening method generally involves testing only a small 
fraction of the possible level combinations. Therefore, it is not surprising that the 
decision-making in Step 8 is not based on picking the best combination of settings 
from among the small number tested. Instead, it is based on the prediction model in 
the main effects plots. Note also that Step 6 is written in terms of the coefficients, 
βest,2, …, β est,n. Lenth (1989) proposed his analysis in terms of the “effect 
estimates” that are two times the coefficients. Therefore, the PSE in his definition 
was also twice what is given. The final significance judgments are unchanged, and 
the factor of two was omitted for simplicity here. 
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Algorithm 12.1. Standard screening using fractional factorials 

 

Pre-step. Define the factors and ranges, i.e., the highs, H, and lows, L, for all factors. 
Step 1.   Form your experimental array by selecting the first m columns of the array 

(starting from the left-hand column) in the table below with the selected 
number of runs n. The remaining n – m – 1 columns are unused. 

Step 2.   For each factor, if it is continuous, scale the experimental design using the 
ranges selected by the experimenter. Ds

i,j = Lj + 0.5(Hj – Lj)(Di,j + 1) for i = 
1,…,n and j = 1,…,m. Otherwise, if it is categorical simply assign the two 
levels, the one associated with “low” to –1 and the level with “high” to +1. 

Step 3.  Build and test the prototypes according to Ds. Record the test measurements 
for the responses from the n runs in the n dimensional vector Y. 

Step 4.   Form the so-called “design” matrix by adding a column of 1s, 1, to the left 
hand side of the entire n × (n – 1) selected design D, i.e., X = (1|D). Then, 
for each of the q responses calculate the regression coefficients βest = AY, 
where A is the (X′X)–1X′ (see the tables below for pre-computed A). 
Always use the same A matrix regardless of the number of factors and the 
ranges. 

Step 5.   (Optional) Plot the prediction model, yest(x), for prototype system output 

yest (x) = βest,1 + βest,2 x1 + … + βest,m xm                   (12.1) 

as a function of xj varied from –1 to 1 for j = 1, …, m, with the other factors 
held constant at zero. These are called “main effects plots” and can be 
generated by standard software such as Minitab® or using Sagata® 
software. A high absolute value of the slope, βest,j, provides some evidence 
that the factor, j, has an important effect on the average response in 
question. 

Step 6.   Calculate s0 using 

s0 = median{|βest,2|,…,|β est,n|}                (12.2) 

where the symbols “||” stand for the absolute values. Let S be the set of 
non-negative numbers |βest,2|,…,|β est,n| in S with values less than 2.5s0 for r 
= 1, …, q.  Next, calculate 

PSE = 1.5 × median{numbers in S}                (12.3) 

and 

tLenth,j = |βest,j+1|/PSE for j = 1, …, m.                      (12.4) 

Step 7.   If tLenth,j > tLenth Critical,α,n given in Table 12.1, then declare that factor j has a 
significant effect for response for j = 1, …, m. The critical values, tLenth 

critical,α,n, were provided by Ye et al. (2001). The critical values are designed 
to control the experimentwise error rate (EER) and the less conservative 
individual error rate (IER). 

Step 8.  (Subjective system optimization) If one level has been shown to offer 
significantly better average performance for at least one criterion of 
interest, then use that information subjectively in your engineered system 
optimization. Otherwise, consider adding more data and/or take the fact 
that evidence does not exist that the level change helps into account in 
system design. 



292      Introduction to Engineering Statistics and Lean Sigma  

In general, extreme care should be given for the prestep, i.e., the 
parameterization of the engineered system design problem. If the factors are varied 
over ranges containing only poor prototype system designs, then the information 
derived from the improvement system will likely be of little value. Also, it is 
common for engineers to select timidly ranges with the settings too close together. 
For example, varying wing length from 5 cm to 6 cm for a paper air plane would 
likely be a mistake. If the ranges are too narrow, then the method will fail to find 
significant differences. Also, the chance that good prototype designs are in the 
experimental region increases as the factor ranges increase.  

Further, special names are given for cases in which human subjects constitute 
an integral part of the system generating the responses of interest. The phrase 
“within subjects variable” refers to a factor in an experiment in which a single 
subject or group is tested for all levels of that factor. For example, if tests all tests 
are performed by one person, then all factors are within subject variables.  

The phrase “between subject variables” refers to factors for which a different 
group of subjects is used for each level in the experimental plan. For example if 
each test was performed by a different person, then all factors would be between 
subject variables. A “within subjects design” is an experimental plan involving 
only within subject variables and a “between subjects design” is a plan involving 
only between subject variables. This terminology is often used in human factors 
and biological experimentation and can be useful for looking up advanced analysis 
procedures.  

Figure 12.1 provides a practical worksheet following steps similar to the ones 
in the above method. The worksheet emphasizes the associated system design 
decision problem and de-emphasizes hypothesis testing. Considering that a single 
application of fractional factorials can constitute an entire quality project in some 
instances, it can make sense to write a problem statement or mini-project charter. 
Also, clarifying with some detail what is meant by key reponses and how they are 
measured is generally good practice. 

Also, small differences shown on main effects plots can provide useful 
evidence about factors not declared significant. First, if the average differences are 
small, adjusting the level settings based on other considerations besides the average 
response might make sense, e.g., to save cost or reduce environmental impacts. 
Further, recent research suggests that Type II errors may be extremely common 
and that treating to even small differences on main effect plots (i.e., small 
“effects”) as effective “proof” might be advisable.  

Selecting the ranges and the number of runs can be viewed as a major part of 
the design of the “improvement system”. Then, Steps 2–8 are implementation of 
the improvement system to develop recommended inputs for the engineered 
system. 
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Figure 12.1. Worksheet based on the eight run regular fractional factorial 
 

Table 12.1. Critical values for tLenth critical,α,n: (a) EER and (b) IER 

            (a)                                                     (b) 
  n runs     n runs  

α 8 12 16  α 8 12 16 
0.01 9.715 7.412 6.446  0.01 5.069 4.077 3.629 
0.05 4.867 4.438 4.240  0.05 2.297 2.211 2.156 
0.10 3.689 3.564 3.507  0.10 1.710 1.710 1.701 

 
Table 12.2. The n = 8 run regular fractional factorial array 

Run x1 x2 x3 x4 x5 x6 x7 
1 –1 1 –1 1 1 –1 –1 
2 1 1 –1 –1 –1 –1 1 
3 1 –1 –1 1 –1 1 –1 
4 1 –1 1 –1 1 –1 –1 
5 –1 1 1 –1 –1 1 –1 
6 –1 –1 1 1 –1 –1 1 
7 1 1 1 1 1 1 1 
8 –1 –1 –1 –1 1 1 1 

1. Problem Definition

6. Analysis Main Effects Plots (Analyze)

5. Performing the Experiment (Notes)

3. Response Variable (Y, Measure)

2.  Factors, Levels, and Ranges (more Define)
Factor low (-) high(+)
A. 
B. 
C. 
D. 
E. 
F. 
G. 

4. Array (Analyze)

- A +   - B +   - C +   - D +   - E +   - F +   - G +

7. Recommendations (Design)
1.
2. 
3. 

(L8 or 27-4 Array)

9. Confirmation (Verify)

1-1-11-111
-1-1-1-1-1-1-1
-11-111-11
1111-1-1-1
-1-11111-1
11-1-111-1
1-11-11-11
-111-1-111

YGFEDCBA

1-1-11-111
-1-1-1-1-1-1-1
-11-111-11
1111-1-1-1
-1-11111-1
11-1-111-1
1-11-11-11
-111-1-111

YGFEDCBA

8.
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Table 12.3. (a) The design or X matrix and (b) A = (X′X)–1X′ for the eight run plan 

    (a)      

  1 –1 1 –1 1 1 –1 –1  

  1 1 1 –1 –1 –1 –1 1   

  1 1 –1 –1 1 –1 1 –1   

  1 1 –1 1 –1 1 –1 –1   

  1 –1 1 1 –1 –1 1 –1   

  1 –1 –1 1 1 –1 –1 1   

  1 1 1 1 1 1 1 1   

  1 –1 –1 –1 –1 1 1 1   

 
 (b) 

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 
 –0.125 0.125 0.125 0.125 –0.125 –0.125 0.125 –0.125  
 0.125 0.125 –0.125 –0.125 0.125 –0.125 0.125 –0.125  
 –0.125 –0.125 –0.125 0.125 0.125 0.125 0.125 –0.125  
 0.125 –0.125 0.125 –0.125 –0.125 0.125 0.125 –0.125  
 0.125 –0.125 –0.125 0.125 –0.125 –0.125 0.125 0.125  
 –0.125 –0.125 0.125 –0.125 0.125 –0.125 0.125 0.125  
 –0.125 0.125 –0.125 –0.125 –0.125 0.125 0.125 0.125  

Table 12.4. The n = 12 run Placket Burman fractional factorial array 

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

1 1 1 –1 1 1 –1 1 –1 –1 –1 1 

2 –1 1 1 1 –1 1 1 –1 1 –1 –1 

3 1 1 1 –1 1 1 –1 1 –1 –1 –1 

4 –1 1 –1 –1 –1 1 1 1 –1 1 1 

5 1 –1 1 1 –1 1 –1 –1 –1 1 1 

6 1 1 –1 1 –1 –1 –1 1 1 1 –1 

7 –1 1 1 –1 1 –1 –1 –1 1 1 1 

8 1 –1 1 –1 –1 –1 1 1 1 –1 1 

9 –1 –1 –1 1 1 1 –1 1 1 –1 1 

10 1 –1 –1 –1 1 1 1 –1 1 1 –1 

11 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 

12 –1 –1 1 1 1 –1 1 1 –1 1 –1 
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Table 12.5. A = (X′X)–1X′ for the 12 run plan 
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Table 12.6. The n = 16 run regular fractional factorial array 

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 
1 –1 1 1 –1 1 –1 1 1 –1 –1 –1 1 1 –1 –1 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 –1 –1 1 –1 –1 1 1 1 –1 –1 –1 –1 1 
4 1 –1 1 1 –1 –1 –1 1 –1 –1 1 1 –1 –1 1 
5 –1 –1 –1 1 –1 –1 1 1 1 1 1 –1 1 –1 –1 
6 1 –1 –1 1 1 1 –1 –1 1 –1 –1 1 1 –1 –1 
7 1 1 –1 1 –1 –1 1 –1 –1 1 –1 1 –1 1 –1 
8 1 1 1 –1 –1 1 –1 –1 –1 1 1 –1 1 –1 –1 
9 1 –1 1 –1 1 –1 1 –1 1 –1 1 –1 –1 1 –1 

10 –1 –1 –1 –1 1 –1 –1 –1 –1 1 1 1 1 1 1 
11 –1 1 1 1 –1 –1 –1 –1 1 –1 –1 –1 1 1 1 
12 –1 –1 1 –1 –1 1 –1 1 1 1 –1 1 –1 1 –1 
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Table 12.6. Continued 

13 1 –1 –1 –1 –1 1 1 1 –1 –1 –1 –1 1 1 1 
14 –1 1 –1 –1 –1 1 1 –1 1 –1 1 1 –1 –1 1 
15 –1 –1 1 1 1 1 1 –1 –1 1 –1 –1 –1 –1 1 
16 –1 1 –1 1 1 1 –1 1 –1 –1 1 –1 –1 1 –1 

 

Table 12.7. A = (X′X)–1X′ for the 16 run plan 

  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

  –1 1 1 1 –1 1 1 1 1 –1 –1 –1 1 –1 –1 –1  

  1 1 1 –1 –1 –1 1 1 –1 –1 1 –1 –1 1 –1 1  

  1 1 –1 1 –1 –1 –1 1 1 –1 1 1 –1 –1 1 –1  

  –1 1 –1 1 1 1 1 –1 –1 –1 1 –1 –1 –1 1 1  

  1 1 1 –1 –1 1 –1 –1 1 1 –1 –1 –1 –1 1 1  

  –1 1 –1 –1 –1 1 –1 1 –1 –1 –1 1 1 1 1 1  

A = 0.0625  1 1 –1 –1 1 –1 1 –1 1 –1 –1 –1 1 1 1 –1  

  1 1 1 1 1 –1 –1 –1 –1 –1 –1 1 1 –1 –1 1  

  –1 1 1 –1 1 1 –1 –1 1 –1 1 1 –1 1 –1 –1  

  –1 1 1 –1 1 –1 1 1 –1 1 –1 1 –1 –1 1 –1  

  –1 1 –1 1 1 –1 –1 1 1 1 –1 –1 –1 1 –1 1  

  1 1 –1 1 –1 1 1 –1 –1 1 –1 1 –1 1 –1 –1  

  1 1 –1 –1 1 1 –1 1 –1 1 1 –1 1 –1 –1 –1  

  –1 1 –1 –1 –1 –1 1 –1 1 1 1 1 1 –1 –1 1  

  –1 1 1 1 –1 –1 –1 –1 –1 1 1 –1 1 1 1 –1  

12.3  Screening Examples 

The first example follows the printed circuit board study in Brady and Allen 
(2003). Note that, in the case study here, the experimentation was done “on-line” 
so that all the units found to conform to specifications in the experimentation were 
sold to customers. The decision support for choosing the experimental plan is 
included.  

Pre-step. Here, let us assume that the result of “thought experiments” based on 
“entertained assumptions” was the informed choice of the n=8 run design including 
m=4 factors used in the actual study. For ranges, we have L={low transistor output, 
screwed, 0.5 turns, current sink}′ and H={high transistor output, soldered, 1.0 
turns, alternative sink}′. The factors each came from different people with the last 
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Step 1.   The experimental plan, D, was created by selecting the first four columns 
of the n=8 run experimental array above. See Table 12.8a below. The 
remaining three columns are unused. 

Step 2.   All the factors are categorical except for the third factor, screw position, 
which is continuous. Assigning the factors produced the scaled design, Ds, 
in Table 12.8b. 

Step 3.   350 units were made and tested based on each combination of process 
inputs in the experimental plan (8 × 350 = 2800 units). The single 
prototype system response values are shown in Table 12.8c, which are the 
fraction of the units that conformed to specifications. Note that, in this 
study, the fidelity of the prototype system was extremely high because 
perturbations of the engineered system created the prototype system.    

Step 4.  The relevant design matrix, X, and A = (X′X)–1X′ matrix are given in Table 
12.3. The derived list of coefficients is (using βest = AY): 

                βest = {82.9, –1.125, –0.975, –1.875, 9.825,  0.35, 1.85, 0.55}′. 
Step 5.   (Optional) The prediction model, yest(x), for prototype system output is 

 yest(x) = 82.9 – 1.125x 1  –  0.975x 2  –  1.875x 3  +  9.825x4 .          (12.5) 

The main effects plot is shown in Figure 12.2 below. 
Step 6.   We calculated s0 using  

s0 = median{|βest,2|,…,|β est,8|} = 1.125.             (12.6) 

The set S is {1.125, 0.975, 1.875, 0.55, 0.35, 1.85}.  Next, calculate 
     PSE  = 1.5 × median{numbers in S} 

= (1.5)(1.05)                  (12.7) 
           = 1.58         
and           
    tLenth,j  = |βest,j+1|/PSE                             (12.8) 

                            = 0.71, 0.62, 1.19, 6.24 for j = 1, …,4 respectively.  

Step 7.   In this case, for many choices of IER vs EER and α, the conclusions about 
significance were the same. For example, with either tcritical = tIER,α=0.1,n=8 = 1.710 or 
tcritical = tEER,α=0.05,n=8 = 4.876, the fourth factor “heat sink” had a significant effect on 
average yield when varied with α = 0.05 and using the relatively EER approach. 
Also, for both choices, the team failed to find significance for the other factors. They 
might have changed the average response but we could not detect it without more 
data. 
Step 8.  Subjectively, the team wanted to maximize the yield and heat sink had a 

significant effect. It was clear from the main effects plot and the hypothesis 
testing for heat sink that the high level (alternative heat sink) significantly 
improved the quality compared with the current heat sink. The team 
therefore suggested using the alternative heat sink because the material cost 
increases were negligible compared with the savings associated with yield 
increases. In fact, the first pass process yield increased to greater than 90% 
consistently from around 70%. This permitted the company to meet new 
demand without adding another rework line. The direct savings was 
estimated to be $2.5 million.

factor coming from rework line operators. Without the ability to study all factors 
with few runs, the fourth factor might have been dropped from consideration. 

Algorithm 12.2. Circuit board example 
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In evaluating the cost of poor quality, e.g., low yield, it was relevant to consider 
costs in addition to the direct cost of rework. This followed in part because 
production time variability from rework caused the need to quote high lead times 
to customers, resulting in lost sales. 

Figure 12.2. Main effects plot for the printed circuitboard example 

Table 12.8. (a) Design, D, (b) Scaled design, Ds, and (c) Responses, % yield 

                  (a)                  (b)     (c) 
Run x1 x2 x3 x4  Run x1 x2 x3 x4  % Yield 

1 –1 1 –1 1  1 Low trans. 
output Soldered 0.5 

turns
Alternative 

sink  92.7 

2 1 1 –1 –1  2 High trans. 
output Soldered 0.5 

turns Current sink  71.2 

3 1 –1 –1 1  3 High trans. 
output Screwed 0.5 

turns
Alternative 

sink  95.4 

4 1 –1 1 –1  4 High trans. 
output Screwed 1.0 

turns Current sink  69.0 

5 –1 1 1 –1  5 Low trans. 
output Soldered 1.0 

turns Current sink  72.3 

6 –1 –1 1 1  6 Low trans. 
output Screwed 1.0 

turns
Alternative 

sink  91.3 

7 1 1 1 1  7 High trans. 
output Soldered 1.0 

turns
Alternative 

sink  91.5 

8 –1 –1 –1 –1  8 Low trans. 
output Screwed 0.5 

turns Current sink  79.8 
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Example 12.3.1  More Detailed Application 

Question 1: Consider the example in Table 12.9. What are D, X, X′X, and A? 

Table 12.9. The DOE and estimated coefficients in a fictional study 

Run (i) xi,1 xi,2 xi,3 xi,4 xi,5 Y1  βest (Coefficients) 

1 1 1 –1 1 1 92 β1(Constant) 110.42 

2 –1 1 1 1 –1 88 β2(factor x1) –0.58 

3 1 1 1 –1 1 135 β 3(factor x2) 2.58 

4 –1 1 –1 –1 –1 140 β 4(factor x3) –1.42 

5 1 –1 1 1 –1 79 β 5(factor x4) –27.25 

6 1 1 –1 1 –1 82 β 6(factor x5) 0.08 

7 –1 1 1 –1 1 141 β7 –0.42 

8 1 –1 1 –1 –1 134 β 8 0.92 

9 –1 –1 –1 1 1 81 β 9 –2.25 

10 1 –1 –1 –1 1 137 β 10 0.08 

11 –1 –1 –1 –1 –1 139 β 11 –1.08 

12 –1 –1 1 1 1 77 β 12 0.75 

 
Answer 1: D is the entire matrix in Table 12.6 without the column for the runs. 
Using X = (1|D) one has 
 

  1 –1 1 1 –1 1 –1 1 1 –1 –1 –1 1 1 –1 –1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  1 1 1 –1 –1 1 –1 –1 1 1 1 –1 –1 –1 –1 1  
  1 1 –1 1 1 –1 –1 –1 1 –1 –1 1 1 –1 –1 1  
  1 –1 –1 –1 1 –1 –1 1 1 1 1 1 –1 1 –1 –1  
  1 1 –1 –1 1 1 1 –1 –1 1 –1 –1 1 1 –1 –1  
  1 1 1 –1 1 –1 –1 1 –1 –1 1 –1 1 –1 1 –1  

X =   1 1 1 1 –1 –1 1 –1 –1 –1 1 1 –1 1 –1 –1  
  1 1 –1 1 –1 1 –1 1 –1 1 –1 1 –1 –1 1 –1  
  1 –1 –1 –1 –1 1 –1 –1 –1 –1 1 1 1 1 1 1  
  1 –1 1 1 1 –1 –1 –1 –1 1 –1 –1 –1 1 1 1  
  1 –1 –1 1 –1 –1 1 –1 1 1 1 –1 1 –1 1 –1  
  1 1 –1 –1 –1 –1 1 1 1 –1 –1 –1 –1 1 1 1  
  1 –1 1 –1 –1 –1 1 1 –1 1 –1 1 1 –1 –1 1  
  1 –1 –1 1 1 1 1 1 –1 –1 1 –1 –1 –1 –1 1  
  1 –1 1 –1 1 1 1 –1 1 –1 –1 1 –1 –1 1 –1  
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X′X = n × I (therefore the DOE matrix is “orthogonal”), and A is given by Table 
12.7. 
 
Question 2: Analyze the data and draw conclusions about significance. Be 
standard and conservative (high standard of evidence and low Type I error rate or 
“α”) in your choice of IER vs EER and α. 
 
Answer 2: Lenth’s method using the experimentwise error rate (EER) critical 
characteristic is a standard conservative approach for analyzing fractional factorial 
data. The individual error rate (IER) is less conservative in the Type I error rate is 
higher, but the Type II error rate is lower. The needed calculations are as follows: 

s0 = median{|βest,2|,…,|β est,12|} = 0.92,  
S1 is {0.58, 1.42, 0.08, 0.42, 0.92, 2.25, 0.08, 1.08, 0.75}, and          (12.9) 
PSE = 1.5 × median{numbers in S1} = (1.5) × (0.75) = 1.125. 
tLenth,j = |βest,j+1|/PSE = 0.516, 2.293, 1.262, 24.222, and 0.071 for j = 1, …,5 

respectively.  

Whether α = 0.01 or α = 0.05, the conclusions are the same in this problem 
because the critical values are 7.412 and 4.438 respectively. Tests based on both 
identify that factor 4 has a significant effect and fail to find that the other factors 
are significant. Factor into system design decision-making that factor 4 has a 
significant effect on the average response. Therefore, it might be worthwhile to pay 
more to adjust this factor. 
 
Question 3: Draw a main effects plot and interpret it briefly. 
 
Answer 3: The main effects plot shows the predictions of the regression model 
when each factor is varied from the low to the high setting, with the other factors 
held constant at zero. For example, the prediction when the factor x2 is at the low 
level is 110.42 – 2.58 = 107.84. Figure 12.3 shows the plot. We can see that factor 
x4 has a large negative effect and the other factors have small effects on the average 
response. If the costs of changing the factors were negligible, the plot would 
indicate which settings would likely increase or decrease the average response. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.3. Main effects plot for the fictional example 
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Question 4: Suppose that the high level of each factor was associated with a 
substantial per unit savings for the company, but that demand is assumed to be 
directly proportional to the customer rating, which is the response. Use the above 
information to make common-sense recommendations under the assumption that 
the company will not pay for any more experiments. 
 
Answer 4: Since the high setting of factor x4 is associated with a significant drop 
in average response and thus demand, it might not make sense to use that setting to 
stimulate demand. In the absence of additional information, however, the other 
factors fail to show any significant effect on average response and demand.  
Therefore, we tentatively recommend setting these factors at the high level to save 
cost. 
 

Regular fractional factorials and Plackett Burman designs have a special 
property in the context of first order regression models. The predicted values for 
each setting of each factor plotted on the main effects plot are also the averages of 
the responses associated with that setting in the DOE. In the second example, the 
prediction when the factor x2 is at the low level is 110.42 – 2.58 = 107.84.This 
value is also the average of the six responses when factor x2 is at the low level. 

12.4  Method Origins and Alternatives 

In this section, a brief explanation of the origins of the design arrays used in the 
standard fractional factorial methods is described. Also, some of the most popular 
alternative methods for planning experiments and analyzing the results are 
summarized. 

12.4.1  Origins of the Arrays 

It is possible that many researchers from many places in the world independently 
generated matrices similar to those used in standard screening using fractional 
factorials. Here, the focus is on the school of research started by the U.K. 
researcher Sir Ronald Fisher. In the associated terminology, “full factorials” are 
arrays of numbers that include all possible combinations of factor settings for a 
pre-specified number of levels. For example, a full factorial with three levels and 
five factors consists of all 35 = 243 possible combinations. Sir Ronald Fisher 
generated certain fractional factorials by starting with full factorials and removing 
portions to create half, quarter, eighth, and other fractions. 

Box et al. (1961 a, b) divided fractional factorials into “regular” and “irregular” 
designs. “Regular fractional factorials” are experimental planning matrices that 
are fractions of full factorials having all of the following property. All columns in 
the matrix can be formed by multiplying other columns. Irregular designs are all 
arrays without the above-mentioned multiplicative property. For example, in Table 
12.10a, it can be verified that column A is equal to the product of columns B times 
C. Regular designs are only available with numbers of runs given by n = 2p, where 
p is a whole number. Therefore, possible n equal 4, 8, 16, 32,… 
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Consider the three factor full factorial and the regular fractions in Table 12.10. 
The ordering of the runs in the experimental plan in Table 12.10a suggests one way 
to generate full factorials by alternating –1s and 1s at different rates for different 
columns. Note that the experimental plan is not provided in randomized order and 
should not be used for experimentation in the order given. The phrase “standard 
order” (SO) refers to the not-randomized order presented in the tables. 

A “generator” is a property of a specific regular fractional factorial array 
showing how one or more columns may be obtained by multiplying together other 
columns. For example, Table 12.10b and c show selection of runs from the full 
factorial with a specific property. The entry in column (c) is the product of the 
entries in columns (a) and (b) giving the generator, (c) = (a)(b). The phrase 
“defining relations” refers a set of generators that are sufficiently complete as to 
uniquely identify a regular fractional factorial in standard order.  

Table 12.10. (a) Full factorial, (b) half fraction, and (c) quarter fraction 

  (a)     (b)     (c)  

SO A B C  SO A B C  SO A B C 

1 –1 –1 –1  1 –1 –1 1  1 –1 –1 1 

2 1 –1 –1  2 1 –1 –1  2 1 –1 –1 

3 –1 1 –1  3 –1 1 –1      

4 1 1 –1  4 1 1 1      

5 –1 –1 1           

6 1 –1 1           

7 –1 1 1           

8 1 1 1           

 
Plackett and Burman (1946) invented a set of alternative irregular fractional 

factorial matrices available for numbers of runs that are multiples of 4. The Placket 
Burman (PB) design was generated using cyclic repetition of a single series. For 
example, consider the experimental plan used in Table 12.4 and provided in 
standard order in Table 12.11. In this case, the generation sequence 1, 1, –1, 1, 1,  
–1, 1, –1, –1, –1, 1 can be used to fill in the entire table. Each successive row is the 
repetition of this sequence staggered by one each column. The last row is filled in 
by a row of –1s. 

In general, statisticians consider regular designs as preferable to PB designs. 
Therefore, these designs are recommended for cases in which they are available. 
This explains why the regular design with eight runs instead of the PB design was 
provided in Table 12.2. It is interesting to note that computers did not play a key 
role in generating the regular fractional factorials and Plackett Burman (PB) 
designs. The creators developed a simple generation approach and verified that the 
results had apparently desirable statistical properties. Allen and Bernshteyn (2003) 
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and other similar research has used an extremely computational approach to 
generate new experimental arrays with potentially more desirable properties. 

Table 12.11. A Placket Burman fractional factorial array not in randomized order 

Example 12.4.1  Experimental Design Generation 

Question: Which of the following is correct and most complete? 
a. PB generation sequences were chosen carefully to achieve desirable 

properties. 
b. Some columns in regular fractional factorials are not multiples of other 

columns. 
c. Regular fractional factorials are not “orthogonal” because X′X is not 

diagonal. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Answer: Placket and Burman considered many possible sequences and picked the 
one that achieved desirable properties such as orthogonality. For regular designs, 
all columns can be achieved as products of other columns, and X′X is diagonal for 
assumptions in this chapter. Therefore, the correct answer is (a). 

12.4.2  Alternatives to the Methods in this Chapter 

It would probably be more standard to determine significance using a subjective 
approach based on normal probability plots (see Chapter 15) or half normal plots 
(applied to the coefficient estimates and not the residuals). These approaches were 

Standard Order x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 

1 1 1 –1 1 1 –1 1 –1 –1 –1 1 

2 1 1 1 –1 1 1 –1 1 –1 –1 –1 

3 –1 1 1 1 –1 1 1 –1 1 –1 –1 

4 –1 –1 1 1 1 –1 1 1 –1 1 –1 

5 –1 –1 –1 1 1 1 –1 1 1 –1 1 

6 1 –1 –1 –1 1 1 1 –1 1 1 –1 

7 –1 1 –1 –1 –1 1 1 1 –1 1 1 

8 1 –1 1 –1 –1 –1 1 1 1 –1 1 

9 1 1 –1 1 –1 –1 –1 1 1 1 –1 

10 –1 1 1 –1 1 –1 –1 –1 1 1 1 

11 1 –1 1 1 –1 1 –1 –1 –1 1 1 

12 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 
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proposed by Daniel (1959). The plot-based approaches have the advantage of 
potentially incorporating personal intuition and engineering judgment into 
questions about significance. These approaches reveal that the resulting hypothesis 
tests are based on a higher level of assumption-making and a lower level of 
evidence than two-sample t-tests.   

One disadvantage of probability plot-based analysis is that the subjectivity 
complicates analysis of screening methods since simulation (see Chapter 10) of the 
associated improvement system is difficult or impossible. Also, with the normal 
probability plots (but not the half normal plots) students can become confused and 
declare factors significant that have smaller coefficients than other factors that are 
not declared to be significant.  

Another relevant analysis method is so-called “Analysis of Variance” followed 
by multiple t-tests. This method is described at the end of the chapter. The main 
benefits of Lenth’s method and probability plots are that, under standard 
assumptions, they have a higher chance of finding significance. The Analysis of 
Variance method is more conservative and can lead to misleading estimates of 
Type I and Type II errors. 

Also, for reference, the n = 8 run and n = 16 run designs in the above plots stem 
from Box et al. (1961 a, b) and are called “regular fractional factorials”. Regular 
fractional factorials have the property that all columns can be obtained as the 
product of some combination of other columns. Researchers call this property the 
“existence of a defining relation”.  

The n = 12 run design does not have this property and is therefore not regular. 
It is a so-called Plackett-Burman (PB) design because it was proposed in Plackett 
and Burman (1946). Placket-Burman designs also have the property that each row 
(except one) has precisely the same sequence of –1’s and +1’s, except offset. 

If other regular fractional factorials or PB designs are applied, then the method 
could still be called “standard”. Also, other irregular designs such as the ones 
discussed in Chapter 8 can be applied together with the methods from Lenth 
(1989). 

The reader may wonder why only two-level experimental plans are 
incorporated into the standard screening using fraction factorial. The answer relates 
to the fact that two-level experimental plans generally offer the best method 
performance as evaluated by several criteria under reasonable assumptions. 
Chapter 8 contains additional relevant criteria and assumptions. Still, there are 
popular alternatives not based on two-level design including certain so-called 
Taguchi methods. One such method is based on taking columns from the L18, 
“orthogonal array” in Table 12.12 and the following simple analysis methods. Plot 
the average response for each level of each factor. Then, connect the average 
responses on the plots. The resulting “marginal plots” roughly predict the response 
as a function of the inputs. 
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Table 12.12. The L18 orthogonal array used in Taguchi Methods 

Run x1 x2 x3 x4 x5 x6 x7 x8 
1 2 3 1 3 2 3 1 2 
2 1 1 2 2 2 2 2 2 
3 1 3 1 2 1 3 2 3 
4 2 3 3 2 1 2 3 1 
5 1 2 2 2 3 3 1 1 
6 1 2 3 3 1 1 2 2 
7 2 2 2 3 1 2 1 3 
8 1 3 2 3 2 1 3 1 
9 2 1 1 3 3 2 2 1 
10 2 1 3 2 2 1 1 3 
11 1 3 3 1 3 2 1 2 
12 2 1 2 1 1 3 3 2 
13 1 1 3 3 3 3 3 3 
14 1 1 1 1 1 1 1 1 
15 2 2 1 2 3 1 3 2 
16 1 2 1 1 2 2 3 3 
17 2 2 3 1 2 3 2 1 
18 2 3 2 1 3 1 2 3 

12.5  Standard vs One-factor-at-a-time Experimentation 

The term “standard” has been used to refer to standard screening using fractional 
factorials. However, other approaches are probably more “standard” or common. 
The phrase “one-factor-at-a-time” (OFAT) experimentation refers to the common 
practice of varying one factor over two levels, while holding other factors constant. 
After determining the importance of a single factor, focus shifts to the next factor. 
Table 12.13a shows a standard fractional factorial design and data for a 
hypothetical example. Table 12.13b and c show OFAT DOE plans for the same 
problem. 

The application of the plan in Table 12.13b clearly has an advantage in terms of 
experimental costs compared with the standard method in Table 12.13a. However, 
with no repeated runs, it would be difficult to assign any level of “proof” to the 
results and/or to estimate the chances of Type I or Type II errors.  

The design in Table 12.13c represents a relatively extreme attempt to achieve 
proof using an OFAT approach. Yet, performing two-sample t-test analyses after 
each set of four tests would likely result in undesirable outcomes. First, using α = 
0.05 for each test, the chance of at least a single Type I error would be roughly 
20%. Advanced readers can use statistical independence to estimate an error rate of 
18.6%. With only n1 = n2 = 2 runs, the chances of identifying effects using this 
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approach are even lower than the probabilities in Table 18.3 in Chapter 18 with n1 
= n2 = 3. In the next, section information about Type I and II errors suggests that 
standard screening using fractional factorial methods offers reduced error rates of 
both types. 

Table 12.13. (a) Fractional factorial example, (b) low cost OFAT, (c) multiple t-tests 

(a)   (b)     (c)   
x1 x2 x3 x4 Y  x1 x2 x3 x4  x1 x2 x3 x4 
–1 1 –1 1 24  1 –1 –1 1  1 –1 –1 –1 
1 1 –1 –1 15  –1 1 –1 –1  –1 –1 –1 –1 
1 –1 –1 1 15  –1 –1 1 –1  1 –1 –1 –1 
1 –1 1 –1 33  –1 –1 –1 1  –1 –1 –1 –1 

–1 1 1 –1 5       –1 1 –1 –1 
–1 –1 1 1 5       –1 –1 –1 –1 
1 1 1 1 33       –1 1 –1 –1 

–1 –1 –1 –1 23       –1 –1 –1 –1 
      –1 –1 1 –1 
      –1 –1 –1 –1 
      –1 –1 1 –1 
      –1 –1 –1 –1 
      –1 –1 –1 1 
      –1 –1 –1 –1 
      –1 –1 –1 1 
      –1 –1 –1 –1 

 
The hypothetical response data in Table 12.13a was generated from the 

equation Y = 19 + 6x1 + 9x1x3 with “+1” random noise added to the first response 
only. Therefore, there is an effect of factor x1 in the “true” model. It can be checked 
(see Problem 18 at the end of this chapter) that tLenth,1 = 27 so that the first factor 
(x1) is proven using Lenth’s method with α = 0.01 and the EER convention to 
affect the average response values significantly. Therefore, the combined effect or 
“interaction” represented by 9x1x3 does not cause the procedure to fail to find that 
x1 has a significant effect. 

It would be inappropriate to apply two-sample t-testing analysis to the data in 
Table 12.13a focusing on factor x1. This follows because randomization was not 
applied with regard to the other factors. Instead, a structured, formal experimental 
plan was used for these. However, applying one-sided two-sample t-testing (see 
Problem 19 below) results in t0 = 1.3, which is associated with a failure to find 
significance with α = 0.05. This result provides anecdotal evidence that regular 
fractional factorial screening based on Lenth’s method offers statistical power to 
find factor significance and avoid Type II errors. Addressing interactions and using 
all runs for each test evaluation helps in detecting even small effects.    
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Finally, it is intuitively plausible that standard fractional factorial methods 
perform poorly when many factors are likely important. This could occur if a 
relatively high number of factors is used (n ~ m) or if the factors are “smart” 
choices such that changing them does affect the responses. 

Advanced readers will observe that Lenth’s method is based on assuming that 
over one half of the relevant main effects and interactions have zero coefficients in 
the “true” model. If experimenters believe that a large fraction of the factors might 
have important effects, it can be reasonable to disregard hypothesis testing results 
and focus on main effects plots. Then, even OFAT approaches might be more 
reliable.  

Example 12.5.1  Printed Circuit Board Related Method Choices 

Question: Consider the first “printed circuit board” case study in this chapter. 
What advice could you provide for the team about errors? 
 
Answer: The chance of false positives (Type I errors) are directly controlled by the 
selection of the critical parameter in the methods. With only four factors and eight 
runs, the chances of Type II errors are lower than those typically accepted by 
method users. Still, only rather large actual differences will likely be found 
significant unless a larger design of experiments matrix were used, e.g., n = 12 or  
n = 16. 

12.6  Summary 

A mixed presentation of so-called regular fractional factorials and Plackett Burman 
designs was presented in this chapter. At present, these DOE arrays are by far the 
most widely used design of experiments matrices. The Ye, Hamada, Wu modified 
version of Lenth’s method is described as a method to perform simultaneous 
hypothesis tests on multiple factors. This method is standard enough to be 
incorporated into popular software such as Minitab®. Together the methods permit 
users to effectively screen which from a long list of factors, when changed, affects 
important system outputs of key output variables. There are also discussions of the 
origins of the fractional factorial experimental matrices and alternative methods.  
The most widely used design of experiments matrices derive from approaches that 
are not computational intensive. 

Problems 

1.  Which is correct and most complete? 
a. Using FF, once an array is chosen, generally only the first m columns 

are used. 
b. Typically roughly half of the settings change from run to run in 

applying FF. 
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c. Selecting the factors and levels is critical and should be done 
carefully. 

d. Main effects plots often clarify which factors matter and which do 
not. 

e. The approved approach for designing systems is to select the DOE 
array settings that gave the best seeming responses. 

f. All of the above are correct. 
g. All of the above are correct except (e) and (f). 

 
2.  Which is correct and most complete? 

a. Placket Burman designs are not fractional factorials. 
b. Applying standard screening using fractional factorials can generate 

proof. 
c. A fractional factorial experiment cannot have both a Type I and a 

Type II error. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

3.  Which is correct and most complete? 
a. Adding factors in applying FFs almost always requires additional 

runs. 
b. Using matrices with smaller numbers of runs helps reduce error rates. 
c. Using the smallest matrix with enough columns is often reasonable 

for starting. 
d. It is critical to understand where the matrices came from to gain 

benefits. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (d). 
 

4.  Which is correct and most complete? 
a. The EER gives higher critical values than IER and a higher evidence 

standard. 
b. If significance is not found using IER, it will be found using the EER. 
c. The IER can be useful because its associated higher standard of 

evidence might still be useful. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Table 12.14 will be used for Questions 5–7. 
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Table 12.14. Outputs from a hypothetical fractional factorial application 

Run (i) xi,1 xi,2 xi,3 xi,4 xi,5 Y1   βest (Coefficients) 
1 1 1 –1 1 1 45  β1(Constant) 58.8 
2 –1 1 1 1 –1 75  β2(factor x1) 0.4 
3 1 1 1 –1 1 80  β 3(factor x2) 0.4 
4 –1 1 –1 –1 –1 40  β 4(factor x3) 16.3 
5 1 –1 1 1 –1 75  β 5(factor x4) 2.1 
6 1 1 –1 1 –1 45  β 6(factor x5) 1.3 
7 –1 1 1 –1 1 70  β7 0.4 
8 1 –1 1 –1 –1 70  β 8 –0.4 
9 –1 –1 –1 1 1 45  β 9 1.3 

10 1 –1 –1 –1 1 40  β 10 –1.3 
11 –1 –1 –1 –1 –1 40  β 11 –0.4 
12 –1 –1 1 1 1 80  β 12 –1.3 

 
5. Which of the following is correct and most complete based on Table 12.14? 

a. There are five factors, and the most standard, conservative analysis 
uses EER. 

b. Even if four factors had been used, the same A matrix would be 
applied. 

c. The matrix used is part of a matrix that can handle as many as 11 
factors. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

6. Which is correct and most complete based on the above table? 
a. Changing factor x2 over the levels in the experiment can be proven to 

make a significant difference with IER and α = 0.05. 
b. In standard screening, a new set of test prototypes is needed for each 

response. 
c. Changes in different factors can have significant effects on different 

responses. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

7. Assume m is the number of factors. Which is correct and most complete? 
a. Regular fractional factorials all have at least one generator. 
b. The model plotted in an optional step is a highly accurate prediction 

of outputs. 
c. The IER takes into account that multiple tests are being done 

simultaneously. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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Table 12.15 will be used for Questions 8 and 9. 

Table 12.15. Outputs from another hypothetical experiment 

 
8. Which of the following is correct (within the applied uncertainty)? 

a. tLenth,5 = 0.97, and we fail to find significance with α = 0.05 even 
using IERs. 

b. tLenth,5 = 1.37, and we fail to find significance with α = 0.05 even 
using IERs. 

c. tLenth,2 = 4.57, which is significant with α = 0.05, using the IER. 
d. Lenth’s PSE = 0.75 (based on the coefficients not effects) and factor 

x4 is associated with a significant effect using the EER and α = 0.05. 
e. (a) and (b) are correct. 
 

9. Which is correct and most complete? 
a. It can be reasonable to adjust factor settings of factors not proven to 

have significant effects using judgment. 
b. Changing factor x4 does not significantly affect outputs α = 0.05 

using IERs. 
c. Changing factor x6 cannot affect any possible responses of the 

system. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

10. Which is correct and most complete? 
a. Often, the wider the level spacing, the greater the chance of finding 

significance. 
b. Often, the more data used, the greater the chance of finding 

significance. 
c. Sometimes finding significance is actually helpful in an important 

sense. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 
 

Run (i) xi,1 xi,2 xi,3 xi,4 xi,5 xi,6 Y1   βest (Coefficients) 
1 –1 1 –1 1 1 –1 20  β1(Constant) 35.0 
2 1 1 –1 –1 –1 –1 50  β2(factor x1) 1.0 
3 1 –1 –1 1 –1 1 22  β 3(factor x2) –0.5 
4 1 –1 1 –1 1 –1 52  β 4(factor x3) –0.5 
5 –1 1 1 –1 –1 1 48  β 5(factor x4) –15.0 
6 –1 –1 1 1 –1 –1 18  β 6(factor x5) 0.5 
7 1 1 1 1 1 1 20  β7(factor x6) 0.0 
8 –1 –1 –1 –1 1 1 50  β 8 –0.5 
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11. Which is correct and most complete? 
a. Most software do not print out runs in randomized order. 
b. If no factors have significant effects, main effects plots are rarely (if 

ever) useful. 
c. Sometimes a response of interest can be an average of three 

individual responses. 
d. The usage of all runs to make decisions about all factors cannot aid in 

reducing the effects of measurement errors on the analyses. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

12. Which is correct and most complete? 
a. People almost never make design decisions using FF experiments. 

Instead, they use results to pick factors for RSM experiments. 
b. Lenth’s method is designed to find significance even when 

interactions exist. 
c. DOE matrices are completely random collections of –1s & 1s. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

13. Standard screening using regular FFs is used and all responses are close 
together. Which is correct and most complete? 

a. Likely users did not vary the factors over wide enough ranges. 
b. The exercise could be useful because likely none of the factors 

strongly affect the response. That information could be exploited. 
c. You will possibly discover that none of the factors has a significant 

effect even using IER and α = 0.1. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

14. Which is correct and most complete? 
a. The design in Table 12.14 is a regular fractional factorial. 
b. In applying DOE, factors of interest are controllable during testing. 
c. Sometimes, a good mental test of the factors and levels is the 

experimenter being honestly unsure about which combination in the 
DOE matrix will give the most desirable responses. 

d. Usually, one uses the model in the main effects plot to make system 
design recommendations and does not simply pick the best prototype 
from the DOE. 

e. All of the above are correct. 
f. All of the above are correct except (a) and (d). 
 

15. Suppose that a person experiments using five factors and the eight run regular 
array. βest = {82.9, –1.125, –0.975, –1.875, 9.825, 0.35, 1.85, 0.55}. 

a. No factor has a significant effect on the average response with α = 
0.05. 
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b. One fails to find the 4h factor has a significant effect using IER and α 
= 0.05. 

c. One fails to find the 5h factor has a significant effect using IER and α 
= 0.05. 

d. The PSE = 2.18.  
e. All of the above are correct. 
f. All of the above are correct except (a) and (d). 
 

16. Assume n is the number of runs and m is the number of factors. Which is 
correct and most complete? 

a. Normal probability plots are often used instead of Lenth’s method for 
analysis. 

b. A reason not to use 3 level designs for screening might be that 2 level 
designs give a relatively high chance of finding which factors matter 
for the same n. 

c. For fixed n, larger m generally means reduced chance of complete 
correctness. 

d. Adding more factors is often desirable because each factor is a 
chance of finding a way to improve the system. 

e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

17. Illustrate the application of standard screening using a real example. 
Experimentation can be based on the paper helicopter design implied by the 
manufacturing SOP in Chapter 2 in Example 2.6.1. 

a. Include all the information mentioned in Figure 12.1. Define your 
response explicitly enough such that someone could reproduce your 
results. 

b. Perform a Lenth’s analysis to test whether the estimated coefficients 
correspond to significant effects with α = 0.1 using the IER. 

 
18. Give one generator for the experimental design in Table 12.15. 
 
19. Which of the following is correct and most complete? 

a. The design in Table 12.14 is a regular fractional factorial. 
b. The design in Table 12.15 is a regular fractional factorial. 
c. The design in Table 12.14 is a full factorial. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

20. Which of the following is correct and most complete? 
a. A regular fractional factorial with 20 runs is available in the 

literature. 
b. A PB design with 16 runs is available in the literature. 
c. A PB desing with 20 runs is available in the literature.  
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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21. Consider the columns of the experimental planning matrix as A, B, C, D, E, F, 
G, and H. Which of the following is correct and complete? 

a. For the design in Table 12.2, AB = E. 
b. For the design in Table 12.2, AB = D. 
c. For the design in Table 12.4, none of the columns can be obtained by 

multiplying other columns together. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
22. Analyze the data from Table 12.14 and draw conclusions about significance.      

Be standard and conservative (high standard of evidence and low Type I error      
rate or “α”) in your choice of IER vs. EER and α. 

 
23.  Consider the example in Table 12.14.  What are D, X, X′X, and A? 
 
24.  Create a fractional factorial experiment and perform it. 
 
25.  Define Type I and Type II errors. 
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13 

DOE: Response Surface Methods 

13.1  Introduction 

Response surface methods (RSM) are primarily relevant when the decision-maker 
desires (1) to create a relatively accurate prediction of engineered system input-
output relationships and (2) to “tune” or optimize thoroughly of the system being 
designed. Since these methods require more runs for a given number of factors 
than screening using fractional factorials, they are generally reserved for cases in 
which the importance of all factors is assumed, perhaps because of previous 
experimentation. 

The methods described here are called “standard response surface methods” 
(RSM) because they are widely used and the prediction models generated by them 
can yield 3D surface plots. The methods are based on three types of design of 
experiments (DOE) matrices. First, “central composite designs” (CCDs) are 
matrices corresponding to (at most) five level experimental plans from Box and 
Wilson (1951). Second, “Box Behnken designs” (BBDs) are matrices 
corresponding to three level experimental plans from Box, Behnken (1960). Third, 
Allen et al. (2003) proposed methods based on so-called “expected integrated 
mean squared error optimal” (EIMSE-optimal) designs. EIMSE-optimal designs 
are one type of experimental plan that results from the solution of an optimization 
problem.  

We divide RSM into two classes: (1) “one-shot” methods conducted in one 
batch and (2) “sequential” methods based on central composite designs from Box 
and Wilson (1951). This chapter begins with “design matrices” which are used in 
the model fitting part of response surface methods. Next, one-shot and sequential 
response surface methods are defined, and examples are provided. Finally, a brief 
explanation of the origin of the different types of DOE matrices used is given. 
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13.2  Design Matrices for Fitting RSM Models 

In the context of RSM, the calculation of regression coefficients without statistics 
software is more complicated than for screening methods. It practically requires 
knowledge of matrix transposing and multiplication described in Section 5.3 and 
additional concepts. The phrase “functional form” refers to the relationship that 
constrains and defines the fitted model. For both screening using regular fractional 
factorials and RSM, the functional forms are polynomials with specific 
combinations of model terms. Therefore, the model forms can be written: 

yest(βest,x) = f(x)′βest   (13.1) 

where f(x) is a vector of functions, f1,j(x), for j = 1,…, k, only of the system inputs, 
x. For standard screening methods, the model form relevant to main effects plotting 
is f1(x) = 1 and fj(x) = xj–1 for j = 2,…,m + 1, where m is the number of factors. For 
example, with three factors the first order fitted model would be: yest(βest,x) = β1 + 
β1 x1 + β2 x2 + β3 x3. Chapter 15 describes general “linear regression” models, 
which all have their structure given by the above equation, in the context of non-
linear models.   

The phrase “model form” is a synonym for functional form. For one-shot 
RSM, the model form is 

f1(x) = 1, fj(x) = xj–1 for j = 2,…,m + 1,  
fj(x) = xj-m–1

2 for j = m + 2,…, 2m + 1, and  
f2m + 2(x) = x1x2, f2m + 3(x) = x1x3, …, f(m + 1)(m + 2)/2(x) = xm–1xm. 

(13.2)

This form is called a “full quadratic polynomial”.  
The functional form permits the concise definition of the n × k design matrix, 

X. Consider that an experimental plan can itself be written as n vectors, x1,x2,…,xn, 
specifying each of the n runs. Then, the X matrix is 
 

  f(x1)′    
X =  M   (13.3) 
  f(xn)′    

Example 13.2.1  Three Factor Full Quadratic 

Question: For m = 3 factors and n = 11 runs, provide a full quadratic f(x) and an 
example of D, and the associated X. 
 
Answer: Equation 13.4 contains the requested vector and matrices. 
 

Note that the above form contains quadratic terms, e.g., f5(x) = x3
2. Therefore, 

the associated linear model is called a “response surface model”. Terms involving 
products, e.g., f7(x) = x1x3, are called interaction terms.  
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  1     –1 –1 –1 1 –1 –1 –1 1 1 1 1 1 1   
  x1     –1 1 –1 1 –1 1 –1 1 1 1 –1 1 –1   
  x2     1 1 –1 1 1 1 –1 1 1 1 1 –1 –1   
  x3     –1 0 0 1 –1 0 0 1 0 0 0 0 0   

f(x) =  x1
2  D =  1 –1 1 X = 1 1 –1 1 1 1 1 –1 1 –1  (13.4) 

  x2
2     0 0 0 1 0 0 0 0 0 0 0 0 0   

  x3
2     1 0 0 1 1 0 0 1 0 0 0 0 0   

  x1x2     –1 –1 1 1 –1 –1 1 1 1 1 1 –1 –1   
  x1x3     –1 1 1 1 –1 1 1 1 1 1 –1 –1 1   
  x2x3     1 1 1 1 1 1 1 1 1 1 1 1 1   
      1 –1 –1 1 1 –1 –1 1 1 1 –1 –1 1   
 
Referring back to the first case study in Chapter 2 with the printed circuit 

board, the relevant design, D, and X matrix were: 
 
  –1 1 –1 1 –1 1 –1   1 –1 1 –1 1 –1 1 –1   

  1 1 –1 –1 1 –1 –1    1 1 1 –1 –1 1 –1 –1   

  1 –1 –1 1 –1 –1 1    1 1 –1 –1 1 –1 –1 1   

D =  1 –1 1 –1 –1 1 –1  X =  1 1 –1 1 –1 –1 1 –1   

  –1 1 1 –1 –1 –1 1    1 –1 1 1 –1 –1 –1 1   

  –1 –1 1 1 1 –1 –1    1 –1 –1 1 1 1 –1 –1   

  1 1 1 1 1 1 1    1 1 1 1 1 1 1 1   

  –1 –1 –1 –1 1 1 1    1 –1 –1 –1 –1 1 1 1   

       (13.5) 
so that the last row of the X matrix, f1(x8)′, was given by: 
 

f(x8)′ =  1 –1 –1 –1 –1 1 1 1          (13.6) 
 

The next example illustrates how design matrices can be constructed based on 
different combinations of experimental plans and functional forms. 

Example 13.2.2  Multiple Functional Forms 

In one-shot RSM, the most relevant model form is a full quadratic. However, it is 
possible that a model fitter might consider more than one functional form. 
Consider the experimental plan and models in Table 13.1. 
 
Question 1: Which is correct and most complete? 

a. A design matrix based on (a) and (b) in Table 13.1 would be 10 × 4. 
b. A design matrix based on (a) and (c) in Table 13.1 would be 4 × 10. 
c. A design matrix based on (a) and (d) in Table 13.1 would be 10 × 6. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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Answer 1: Design matrices always have dimensions n × k so (c) is correct. 

Table 13.1. A RSM design or “array” and three functional forms 

 (a)     
Run A B  (b) y(x) = β1 + β2 A + β3 B 

1 –1 –1    
2 1 –1  (c) y(x) = β1 + β2 A + β3 B + β4 A B 
3 –1 1    
4 0 0  (d) y(x) = full quadratic polynomial in A and B 
5 1 1    
6 -αC 0    
7 0 0    
8 0 αC    
9 αC 0    

10 0 -αC    
 
Question 2: Which is correct and most complete? 

a. The model form in (c) in Table 13.1 contains one interaction term.  
b. Using the design matrix and model in (a) and (b) in Table 13.1, X′X 

is diagonal. 
c. Linear regression model forms can contain terms like β x1

2. 
d. All of the above are correct. 
e. All of the above are correct except (c) and (d). 

 
Answer 2: All of the answers in (a), (b), and (c) are correct. Therefore, the answer 
is (d). Note that, the fact that X’X implies the property that this central composite 
design is “orthogonal” with respect to first order functional forms. 

13.3  One-shot Response Surface Methods 

As will be discussed in the context of decision support information below, one-shot 
RSM is generally preferable to sequential RSM in cases in which the experimenter 
is confident that the ranges involved are the relevant ranges and a relatively 
accurate prediction is required. If the decision-maker feels he or she has little 
knowledge of the system, sequential methods will offer a potentially useful 
opportunity to stop experimentation having performed relatively few runs but with 
a somewhat accurate prediction model. Then, one can terminate experimentation 
having achieved a tangible result or perform additional experiments with revised 
experimental ranges. In the one-shot experiments described here, the quality of 
models derived from a fraction of the data has not been well studied. Therefore, the 
experimenter generally commits to performing all runs when experimentation 
begins. 

One-shot RSM are characterized by (1) an “experimental design”, D and (2) 
vectors that specify the highs, H, and lows, L, of each factor. Note that in all 
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standard RSM approaches, all factors must be continuous, e.g., none of the system 
inputs can be categorical variables such as the type of transistor or country in 
which units are made. The development of related methods involving categorical 
factors is an active area for research. Software to address combinations of 
continuous and categorical factors is available from JMPTM and through 
www.sagata.com.   

As for screening methods, the experimental design, D, specifies indirectly 
which prototype systems should be built. For RSM, these designs can be selected 
from any of the ones provided in tables that follow both in this section and in the 
appendix at the end of this chapter. The design, D, only indirectly specifies the 
prototypes because it must be scaled or transformed using H and L to describe the 
prototypes in an unambiguous fashion that people who are not familiar with DOE 
methods can understand (see below). 

Algorithm 13.1. One-Shot Response Surface Methods 

 
 

The above method is given in terms of only a single response. Often, many 
responses are measured in Step 3, derived from the same prototype systems. Then, 
Step 4 and Step 5 can be iterated for each of the responses considered critical. Then 
also, optimization in Step 6 would make use of the multiple prediction models. 

Pre-step.  Define the factors and ranges, i.e., the highs, H, and lows, L, for all factors. 
Step 1.   Select the experimental design from the Tables in 13.2 below to facilitate the 

scaling in Step 2. Options include the Box Behnken (BBD), central composite 
(CCD), or EIMSE-optimal designs. If a CCD design is used, then the 
parameter αC can be adjusted as desired. If αC = 1, then only three levels are 
used.  The default setting is αC = sqrt{m}, where m is the number of factors. 

Step 2.   Scale the experimental design using the ranges selected by the experimenter.  
Ds

i,j = Lj + 0.5(Hj – Lj)(Di,j + 1) for i = 1,…,n and j = 1,…,m.   
Step 3.   Build and test the prototypes according to Ds. Record the test measurements 

for the responses for the n runs in the n dimensional vector Y. 
Step 4.  Form the so-called “design” matrix, X, based on the scaled design, Ds, 

following the rules in the above equations. Then, calculate the regression 
coefficients βest = AY, where A is the (X′X)–1X′. Reexamine the approach 
used to generate the responses to see if any runs were not representative of 
system responses of interest. 

Step 5.   (Optional) Plot the prediction model, yest(x), for prototype system output  
 

yest(x) = βest,1 + βest,2 x1 + …+ βest,m+1 xm + βest,m+2 x1
2
 + …+ βest,2m+1 xm

2  
+ βest,2m+2 x1 x2 +…+ βest,(m+ 1)(m + 2)/2  xm–1xm        (13.7) 

 
This model is designed to predict average prototype system response for a 
given set of system inputs, x. An example below shows how to make 3D plots 
using Excel and models of the above form. 

Step 6.   Apply informal or formal optimization using the prediction model, yest(x), to 
develop recommended settings. Formal optimization is described in detail in 
Chapters 6 and 19. 
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Table 13.2. RSM designs: (a) BBD, (b) and (c) EIMSE-optimal, and (d) CCD 

      (a)    (b)          (c)                (d) 
Run x1 x2 x3  Run x1 x2 x3  Run x1 x2 x3  Run  x1 x2 x3 x4 

1 0 –1 1  1 –1 0 1  1 –1 –1 0  1 –1 1 –1 –1 
2 0 0 0  2 1 –1 0  2 –1 0 1  2 –1 1 –1 1 
3 1 0 1  3 –1 0 –1  3 –1 1 –1  3 0 0 0 0 
4 0 –1 –1  4 –1 1 0  4 –1 –1 –1  4 1 –1 –1 –1 
5 –1 –1 0  5 0 –1 1  5 –1 –1 1  5 1 –1 1 –1 
6 –1 0 1  6 0 1 –1  6 –1 1 1  6 –1 1 1 –1 
7 1 1 0  7 0 –1 –1  7 0 –1 1  7 –1 1 1 1 
8 1 0 –1  8 0 1 1  8 0 1 –1  8 1 1 –1 1 
9 –1 1 0  9 1 0 –1  9 1 –1 –1  9 1 1 1 –1 

10 0 0 0  10 0 0 0  10 1 1 –1  10 –1 –1 1 –1 
11 1 –1 0  11 –1 –1 0  11 1 1 1  11 –1 –1 –1 –1 
12 0 1 –1  12 1 0 1  12 1 –1 1  12 1 –1 1 1 
13 0 1 1  13 1 1 0  13 1 0 –1  13 0 0 0 0 
14 0 0 0       14 1 1 0  14 0 0 0 0 
15 –1 0 –1       15 0 0 0  15 –1 –1 –1 1 
          16 0 0 0  16 0 0 0 0 
               17 1 1 1 1 
               18 1 –1 –1 1 
               19 1 1 –1 –1 
               20 –1 –1 1 1 
               21 0 0 0 0 
               22 0 0 0 αC 

               23 0 –αC 0 0 

               24 0 0 0 –αC 

               25 0 0 0 0 
               26 –αC 0 0 0 

               27 0 αC 0 0 

               28 0 0 –αC 0 

               29 0 0 αC 0 

               30 αC 0 0 0 

 
If EIMSE designs are used, the method is not usually referred to as “standard” 

RSM. These designs and others are referred to as “optimal designs” or sometimes 
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“computer generated” designs. However, they function in much the same ways as 
the standard designs and offer additional method options that might be useful. 

With scaled units used in the calculation of the X matrices, care must be taken 
to avoid truncation of the coefficients. In certain cases of possible interest, the 
factor ranges, (Hj – Lj), may be such that even small coefficients, e.g., 10–6, can 
greatly affect the predicted response. Therefore, it can be of interest to fit the 
models based on inputs and design matrices in the original –1 and 1 coding. 
Another benefit of using “coded” –1, 1 units is that the magnitude of the derived 
coefficients can be compared to see which factors are more important in their 
effects on response averages. 

The majority of the experimental designs, D, associated with RSM have 
repeated runs, i.e., repeated combinations of the same settings such as x1 = 0, x2 = 
0, x3 = 0, x4 = 0. One benefit of having these repeated runs is that the experimenter 
can use the sample standard deviation, s, of the associated responses as an 
“assumption free” estimate of the standard deviation of the random error, σ 
(“sigma”). This can establish the so-called “process capability” of the prototype 
system and therefore aid in engineered system robust optimization (see below). 

In Step 4, a reassessment is often made of each response generated in Step 3, to 
see if any of the runs should be considered untrustworthy, i.e., not representative of 
system performance of interest. Chapter 15 provides formulas useful for 
calculating the so-called “adjusted R-squared”. In practice, this quantity is 
usually calculated directly by software, e.g., Excel. Roughly speaking, the adjusted 
R-squared gives the “fraction of the variation explained by changes in the factors”. 
When one is analyzing data collected using EIMSE-optimal, Box Behnken, or 
central composite designs, one expects adjusted R-squared values in excess of 0.50 
or 50%. Otherwise, there is a concern that some or all of the responses are not 
trustworthy and/or that the most important factors are unknown and uncontrolled 
during the testing.  

Advanced readers might be interested to know that, for certain assumptions, 
Box Behnken designs are EIMSE designs. Also, an approximate formula to 
estimate the number of runs, n, required by standard response surface methods 
involving m factors is 0.75(m + 1)(m + 2). 

13.4  One-shot RSM Examples 

In this section, two examples are considered. The first is based on a student project 
to tune the design of a paper airplane. The second related to tuning of die casting 
machine specifications to see if lower weight machines can actually achieve less 
distorted parts.  

The original paper airplane design to be tuned was manufactured using a four 
step standard operating procedure (SOP). In the first step an A = 11.5 inches long 
by B = 8.5 inches wide sheet is folded in half lengthwise. In the second step, a 
point is made by further folding lengthwise the corners inward starting about 2 
inches deep from the top. Third, the point is sharpened with another fold, this time 
starting at the bottom left and right corners so that the plan or top view appears to 
be an equilateral triangle. In the fourth step, the wing ends are folded C degrees 
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Pre-step.  The highs, H, and lows, L, for all factors are shown in Table 13.3. 
Step 1.   The Box Behnken design was selected in Table 13.4a because it was 

offered a reasonable balance between run economy and prediction 
accuracy. 

Step 2.   The scaled Ds array is shown in Table 13.4b.   
Step 3.   Planes were thrown from sholder height and the time in air was 

measured using a stopwatch and recorded in the right-hand column of 
Table 13.4b. 

Step 4.   The fitted coefficients are written in the regression model: 
Predicted Average Time = 
    – 295.14 + 30.34 Width + 38.12 Length + 0.000139 Angle  

      – 1.25 Width² – 1.48 Length² – 0.000127 Angle²                 
     – 1.2 (Width) (Length) – 0.00778 (Width) (Angle)        (13.8) 
      + 0.00639 (Length) (Angle)    
 which has adjusted R2 of only 0.201. Inspection of the airplanes 

reveals that the second prototype (Run 2) was not representative of the 
system being studied because of an added fold. Removing this run did 
little to change the qualitative shape of the surface but it did increase 
the adjusted R2 to 0.55. 

Step 5.  The 3D surface plot with rudder fixed at 0° is in Figure 13.1. This plot 
was generated using Sagata® Regression. 

Step 6.  The model indicates that the rudder angle did affect the time but that 0° 
is approximately the best. Considering that using 0° effectively 
removes a step in the manufacturing SOP, which is generally 
desirable, that setting is recommended. Inspection of the surface plot 
then indicates that the highest times are achieved with width A equal 
to 7.4 inches and length equal to 9.9 inches.  

either upwards (positively) or downwards (negatively). Finally, store the airplane 
carefully without added folds. The goal of the response surface application was to 
tune factors A, B, and C.  

Algorithm 13.2. One shot RSM example 

 
 
 
 

 

 

 

 

 

Figure 13.1. 3D surface plot of paper airplane flight time predictions 

(Inches) 

(Inches) 
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Table 13.3. Example factor ranges 

Range\Factor A – Width B – Length C – Angle 

Lj 6.5 inches 9 inches –90° 

Hj 8.5 inches 11 inches 90° 

Table 13.4. Example (a) coded DOE array, D and (b) scaled Ds and response values 

 (a)     (b)   
A B C  Run A – Width B – Length Angle Time 
0 –1 1  1 7.5 9 90 3.3 
0 0 0  2 7.5 10 0 3.1 
1 0 1  3 8.5 10 90 2.2 
0 –1 –1  4 7.5 9 –90 4.2 

–1 –1 0  5 6.5 9 0 1.1 
–1 0 1  6 6.5 10 90 5.3 
1 1 0  7 8.5 11 0 1.3 
1 0 –1  8 8.5 10 –90 1.8 

–1 1 0  9 6.5 11 0 3.9 
0 0 0  10 7.5 10 0 6.1 
1 –1 0  11 8.5 9 0 3.3 
0 1 –1  12 7.5 11 –90 0.8 
0 1 1  13 7.5 11 90 2.2 
0 0 0  14 7.5 10 0 6.2 

–1 0 –1  15 6.5 10 –90 2.1 
 
As a second example, consider that researchers at the Ohio State University Die 
Casting Research Center have conducted a series of physical and computer 
experiments designed to investigate the relationship of machine dimensions and 
part distortion. This example is described in Choudhury (1997). Roughly speaking, 
the objective was to minimize the size and, therefore, cost of the die machine while 
maintaining acceptable part distortion by manipulating the inputs, x1, x2, and x3 
shown in the figure below. These factors and ranges and the selected experimental 
design are shown in Figure 13.2 and Table 13.5. 
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Algorithm 13.3. Part distortion example 

 

Step 1.   The team prepared the experimental design, D, shown in the Table 13.6  
for scaling. Note that this design is not included as a recommended option 
for the reader because of what may be viewed as a mistake in the 
experimental design generation process. This design does not even 
approximately maximize the EIMSE, although it was designed with the 
EIMSE in mind. 

 
Step 2.  The design in Table 13.6 used the above-mentioned ranges and the formula  

Ds
i,j = Lj + 0.5(Hj – Lj)(Di,j + 1) for i = 1,…,11 and j = 1,…,3 to produce the 

experimental plan in Table 13.7a.   
 
Step 3.  The prototypes were built according to Ds using a type of virtual reality 

simulation process called finite element analysis (FEA). From these FEA 
test runs, the measured distortion values Y1,…,Y8 are shown in the Table 
13.7b. The numbers are maximum part distortion of the part derived from 
the simulated process in inches. 

 
Step 4.   The analyst on the team calculated the so-called “design” matrix, X, and A 

= (X′X)–1X′ given by Table 13.8 and Table 13.9.  Then, for each of the 8 
responses, the team calculated the regression coefficients shown in Table 
13.10 using βest,r = AYr for r = 1, …, 8. 
 

Step 5.   For example, yest,1(x), is 

yest,1(x) = 0.0839600 – 0.0169500 x1 – 0.0004868 x2 + 0.0004617 x3        
         + 0.0009621 x1

2 + 0.0000323 x2
2 – 0.0000342 x3

2                       (13.9) 
  − 0.0000373 x1x2 + 0.0000054 x1x3 – 0.0000037 x2x3  

The plot in Figure 13.3 below was developed using Excel. It is relatively 
easy to generate identical plots using Sagata® software (www.sagata.com). 
From these eight prediction models for mean distortion, an additional 
model was created that was the minimum of the predicted values as a 
function of x.  ymax(x) = Maximum[yest,1(x), yest,2(x),…, yest,8(x)]. 
 

Step 6.   In this study, the engineers chose to apply formal optimization. They chose 
to limit maximum average part distortion to 0.075” while minimizing the 
2.0 x1 + x2 which is roughly proportional to the machine cost. They 
included the experimental ranges as constraints, L ≤ x ≤ H, because they 
knew that prediction model errors usually become unacceptable outside the 
prediction ranges. The precise optimization formulation was: 

Minimize: 2.0 x1 + x2 
Subject to:    
Maximum[yest,1(x), yest,2(x),…, yest,8(x)] ≤ 0.075”                                (13.10) 

and L ≤ x ≤ H    

which has the solution x1 = 6.3 inches, x2 = 9.0 inches, and x3 = 12.5 inches. 
This solution was calculated using the Excel solver.   
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Figure 13.2. The factor explanation for the one-shot RSM casting example 

Table 13.5. The factor and range table for the one-shot RSM casting example 

  Factor 
Description 

low 
(L) 

High 
(H) 

X1 Diameter tie bar 
(DTB) 

5.5” 8.0” 

X2 Platen thickness 
(PT) 

9.0” 14.5” 

X3 Die position 
(DP) 

0.0” 12.5” 

 

Table 13.6. D at 8 part locations in inches 

Run X1 x2 x3 

1 –1.0 1.0 1.0 

2 1.0 –1.0 1.0 

3 1.0 1.0 –1.0 

4 1.0 1.0 1.0 

5 1.0 0.0 0.0 

6 0.0 1.0 0.0 

7 0.0 0.0 1.0 

8 0.0 0.0 0.0 

9 0.5 –1.0 –1.0 

10 –1.0 0.5 –1.0 

11 –1.0 –1.0 0.5 
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Table 13.7. (a) Ds and (b) measured distortions at eight part locations in inches 

      (a)     (b) 
Run x1 x2 x3 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 

1 5.50 14.50 12.5 0.0167 0.0185 0.0197 0.0143 0.0113 0.0177 0.0195 0.0153 

2 8.00 9.00 12.5 0.006 0.0069 0.0069 0.004 0.0008 0.0078 0.0088 0.0057 

3 8.00 14.50 0.00 0.0053 0.0038 0.002 0.0063 0.0069 0.0062 0.0047 0.0072 

4 8.00 14.50 12.5 0.0056 0.0067 0.0074 0.0038 0.0016 0.0064 0.0075 0.0046 

5 8.00 11.75 6.25 0.0067 0.0066 0.0037 0.0063 0.0051 0.0079 0.0078 0.0076 

6 6.75 14.50 6.25 0.0109 0.0109 0.0104 0.0104 0.0093 0.0118 0.0118 0.0113 

7 6.75 11.75 12.5 0.0095 0.011 0.0117 0.0072 0.0038 0.0109 0.0123 0.0086 

8 6.75 11.75 6.25 0.0106 0.0105 0.0098 0.0100 0.0087 0.0118 0.0118 0.0113 

9 7.38 9.00 0.00 0.007 0.0048 0.0013 0.008 0.008 0.0092 0.0069 0.0103 

10 5.50 13.13 0.00 0.0163 0.0144 0.012 0.0177 0.0185 0.0175 0.0155 0.0188 

11 5.50 9.00 9.38 0.0175 0.0183 0.018 0.0155 0.0122 0.0199 0.0205 0.0178 

Table 13.8. Design matrix X for Algorithm 13.3 

 1.00 5.50 14.50 12.50 30.25 210.25 156.25 79.75 68.75 181.25   
 1.00 8.00 9.00 12.50 64.00 81.00 156.25 72.00 100.00 112.50   
 1.00 8.00 14.50 0.00 64.00 210.25 0.00 116.00 0.00 0.00   
 1.00 8.00 14.50 12.50 64.00 210.25 156.25 116.00 100.00 181.25   

X = 1.00 8.00 11.75 6.25 64.00 138.06 39.06 94.00 50.00 73.44   
 1.00 6.75 14.50 6.25 45.56 210.25 39.06 97.88 42.19 90.63   
 1.00 6.75 11.75 12.50 45.56 138.06 156.25 79.31 84.38 146.88   
 1.00 6.75 11.75 6.25 45.56 138.06 39.06 79.31 42.19 73.44   
 1.00 7.38 9.00 0.00 54.39 81.00 0.00 66.38 0.00 0.00   
 1.00 5.50 13.13 0.00 30.25 172.27 0.00 72.19 0.00 0.00   
  1.00 5.50 9.00 9.38 30.25 81.00 87.89 49.50 51.56 84.38   

Table 13.9. Design matrix A for Algorithm 13.3 

   0.629 –1.439 –0.243 10.565 3.107 –5.165 –14.781 –7.993 –0.296 3.213 13.400   
   –1.032 0.616 –0.169 –1.601 –3.260 3.332 2.808 1.512 1.318 –1.413 –2.111   
   0.379 –0.206 –0.101 –0.752 1.254 –1.086 0.934 0.542 –0.520 0.503 –0.947   
   0.136 0.082 0.245 –0.362 0.115 0.079 0.027 0.053 –0.212 –0.260 0.098   

A =   0.138 0.010 0.010 0.052 0.280 –0.232 –0.232 –0.113 –0.085 0.086 0.086   
   0.002 0.028 0.002 0.011 –0.048 0.058 –0.048 –0.023 0.018 –0.018 0.018   
   0.000 0.000 0.006 0.002 –0.009 –0.009 0.011 –0.005 0.003 0.003 –0.003   
   –0.061 –0.061 0.026 0.065 –0.026 –0.026 0.032 0.001 –0.009 –0.009 0.069   
   –0.027 0.011 –0.027 0.028 –0.011 0.014 –0.011 0.000 –0.004 0.030 –0.004   
   0.005 –0.012 –0.012 0.013 0.006 –0.005 –0.005 0.000 0.014 –0.002 –0.002   
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Table 13.10. The prediction model coefficients for the eight responses 

fi(x) βest(Y1) βest(Y2) βest(Y3) βest(Y4) βest(Y5) βest(Y6) βest(Y7) βest(Y8) 

1 0.0839600 0.0793900 0.0661300 0.0837000 0.0842100 0.0941700 0.0871700 0.0918800 

x1 –0.0169500 –0.0172800 –0.0111900 –0.0171800 –0.0181000 –0.0173200 –0.0172800 –0.0173000 

x2 –0.0004868 –0.0000179 –0.0018500 –0.0000935 0.0003355 –0.0014730 –0.0008721 –0.0008880 

x3 0.0004617 0.0010780 0.0014900 –0.0000852 –0.0007315 0.0004451 0.0011000 –0.0000978 

x1
2 0.0009621 0.0009889 0.0004559 0.0009975 0.0010850 0.0009564 0.0009792 0.0009821 

x2
2 0.0000323 0.0000144 0.0000891 0.0000255 0.0000214 0.0000550 0.0000388 0.0000400 

x3
2 –0.0000342 –0.0000376 –0.0000221 –0.0000338 –0.0000345 –0.0000321 –0.0000372 –0.0000329 

x1x2 –0.0000373 –0.0000293 0.0000366 –0.0000673 –0.0000981 –0.0000070 –0.0000205 –0.0000403 

x1x3 0.0000054 –0.0000294 –0.0000329 0.0000392 0.0000789 –0.0000010 –0.0000353 0.0000275 

x2x3 –0.0000037 –0.0000097 –0.0000357 –0.0000004 0.0000074 –0.0000014 –0.0000089 0.0000056 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.3. The predicted distortion for the casting example 

Note that formal optimization is discussed more thoroughly in Chapter 6. In many 
cases, the decision-makers will use visual information such as the above plot to 
weigh subjectively the many considerations involved in engineered system design. 

Example 13.4.1  Food Science Application 

Question 1: Assume that a food scientist is trying to improve the taste rating of an 
ice cream sandwich product by varying factors including the pressure, temperature, 
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and amount of vanilla additive. What would be the advantage of using response 
surface methods instead of screening using fractional factorials? 
 
Answer 2: Response surface methods generally generate more accurate prediction 
models than screening methods using fractional factorials, resulting in 
recommended settings with more desirable engineered system average response 
values. 
 
Question 2: The scientist is considering varying either three or four factors. What 
are the advantages of using four factors? 
 
Answer 2: Two representative standard design methods for three factors methods 
require 15 and 16 runs. Two standard design methods for four factors require 27 
and 30 runs. Therefore, using only three factors would save the costs associated 
with ten or more runs. However, in general, each factor that is varied offers an 
opportunity to improve the system. Thorough optimization over four factors 
provably results in more desirable or equivalently desirable settings compared with 
thorough optimization over three factors. 
 
Question 3: The scientist experiments with four factors and develops a second 
order regression model with an adjusted R-squared of 0.95. What does this 
adjusted R-squared value imply? 
 
Answer 3: A high R-squared value such as 0.95 implies that the factors varied 
systematically in experimentation are probably the most influential factors 
affecting the relevant engineered system average response. The effects of other 
factors that are not considered most likely have relatively small effects on average 
response values. The experimenter feel reasonably confident that “what if” 
analyses using the regression prediction model will lead to correct conclusions 
about the engineered system. 

13.5  Creating 3D Surface Plots in Excel 

The most important outcomes of an RSM application are often 3D surface plots. 
This follows because they are readily interpretable by a wide variety of people and 
help in building intuition about the system studied. Yet these plots are 
inappropriate for cases in which only first order terms have large coefficients. For 
those cases, the simpler main effects plots more concisely summarize predictions. 

Creating a contour plot in Excel requires manual creation of formulas to 
generate an array of predictions needed by the Excel 3D charting routine to create 
the plot. The figure below shows a contour plot of the prediction model for Y1 in 
the example above. The second factor, x2, is fixed at 11 in the plot. The dollar signs 
are selected such that the formula in cell E8 can be copied to all cells in the range 
E8:J20, producing correct predictions. Having generated all the predictions and 
putting the desired axes values in cells, E7:J7 and D8:D20, then the entire region 
D7:J20 is selected, and the “Chart” utility is called up through the “Insert” menu. 
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An easier way to create identical surface plots is to apply Sagata® software 
(www.sagata.com), which also includes EIMSE designs (author is part owner). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.4. Screen capture showing how to create contour plots 

 13.6  Sequential Response Surface Methods 

The method in this section is relevant when the decision-maker would like the 
opportunity to stop experimentation, having built and tested a relatively small 
number of prototypes with something tangible. In the version presented here, the 
experimenter has performed a fractional factorial experiment as well as derived 
information pertinent to the question of whether adding pure quadratic terms, e.g., 
x1

2, would significantly reduce prediction errors. This information derives from a 
type of “lack of fit” test. 

Note that the method described here is not the fully sequential response surface 
methods of Box and Wilson (1951) and described in textbooks on response surface 
methods such as Box and Draper (1987). The general methods can be viewed as an 
optimization under uncertainty method which is a competitor to approaches in Part 
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III of this text. The version described here might be viewed as “two-step” 
experimentation in the sense that runs are performed in at most two batches. The 
fully sequential response surface method could conceivably involve tens of batches 
of experimental test runs.  

Two-step RSM are characterized by (1) an “experimental design”, D (2) 
vectors that specify the highs, H, and lows, L, of each factor, and (3) the α 
parameter used in the lack of fit test in Step 5 based on the critical values in Table 
13.11. 
 
Definition: “Block” here refers to a batch of experimental runs that are performed 
at one time. Time here is a blocking factor that we cannot randomize over. Rows of 
experimental plans associated with blocks are not intended to structure 
experimentation for usual factors or system inputs. If they are used for usual 
factors, then prediction performance may degrade substantially. 
 
Definition: A “center point” is an experimental run with all of the settings set at 
their mid-value. For example, if a factor ranges from 15” to 20” in the region of 
interest to the experiment, the “center point” would have a value of 17.5” for the 
factor.  
 
Definition: Let the symbol, nc, refer to the number of center points in a central 
composite experimental design with the so-called block factor having a value of 1. 
For example, for the n = 14 run central composite in Table 13.12a, nC = 3. Let 
yaverage,c and yvariance,c be the sample average and sample variance of the rth response 
for the nc center point runs in the first block, respectively. Let the symbol, nf, refer 
to the number of other runs with the block factor having a value of 1. For the same 
n = 14 central composite, nf = 4. Let yaverage,f be the average of the response for the 
nf other runs in the first block.  

An example application of central composite designs is given together with the 
robust design example in Chapter 14. In that case the magnitude of the curvature 
was large enough such that F0 > Fα,1,nC – 1, for both responses for any α between 
0.05 and 0.25.  

Note that when F0 > Fα,1,nC – 1, it is common to say that “the lack of fit test is 
rejected and more runs are needed.” Also, the lack of fit test is a formal hypothesis 
test like two-sample t-tests. Therefore, if q responses are tested simultaneously, the 
overall probability of wrongly finding significance is greater than the α used for 
each test. However, it is less than qα by the Bonferroni inequality. Yet, if accuracy 
is critically important, a high value of α should be used because that increases the 
chance that all the experimental runs will be used. With the full amount of runs and 
the full quadratic model form, prediction accuracy will likely be higher than if 
experimentation terminates at Step 5. 
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Algorithm 13.4 Two-step sequential response surface methods 

 
 
 
 

Step 1.   Prepare the experimental design selected from the tables below to facilitate 
the scaling in Step 2. The selected design must be one of the central 
composite designs (CCDs), either immediately below or in the appendix at 
the end of the chapter. 

Step 2.   Scale the experimental design using the ranges selected by the 
experimenter.  Ds

i,j = Lj + 0.5(Hj – Lj)(Di,j + 1) for i = 1,…,n and j = 1,…,m.   
Step 3.  Build and test the prototypes according to only those runs in Ds that 

correspond to the runs with the “block” having a setting of 1. Record the 
test measurements for the responses for the n1 runs in the n dimensional 
vector Y. 

Step 4.   Form the so-called “design” matrix, X, based on the scaled design, Ds, 
based on the following model form, f(x): 

f1(x) = 1, fj(x) = xj-1 for j = 2,…,m + 1   
                 and  
 fm + 2(x) = x1x2, fm + 3(x) = x1x3,  …,  f[(m + 1) (m + 2)/2]–m (x)  

= xm–1xm.  

 
   (13.11) 

(Note that the pure quadratic terms, e.g., x1
2, are missing.) Then, for each 

of the q responses calculate the regression coefficients βest = AY, where A 
is the (X′X)–1X′. 

Step 5.  Calculate “mean squared lack-of-fit” (MSLOF), yvariance,c, and the F-
statistics, F0 using the following: 

MSLOF = nfnc (yaverage,f – yaverage,c)2/(nf + nc)   and              (13.12) 
F0 = (MSLOF)/yvariance,c  

where yvariance,c is the sample variance of the center point response values 
for the rth response. If F0 < Fα,1,nc – 1, for all responses for which an accurate 
model is critical, then go to Step 8. Otherwise continue with Step 6. The 
values of Fα,1,nc – 1 are given in Table 13.9. The available prediction model 
is f1(x)′βest based on the above model form with no pure quadratic terms.   

Step 6.  Build and test the remaining prototypes according to Ds. Record the test 
measurements for the responses for the n2 additional runs in the bottom of 
the n1 + n2 dimensional vector Y. 

Step 7.  Form the so-called “design” matrix, X, based on the scaled design, Ds, 
following the rules for full quadratic model forms, f(x), as for one-shot 
methods.  (The pure quadratic terms are included.) Then, calculate the 
regression coefficients βest = AY, where A is the (X′X)–1X′. 

Step 8.  (Optional) Plot the prediction model, yest(x) = f(x)′βest for prototype system 
output to gain intuition about system inputs and output relationships. The 
example above shows how to make 3D plots using Excel and models of the 
above form. 

Step 9.   Apply informal or formal optimization using the prediction models, yest(x), 
…, yest(x) to develop recommended settings. Formal optimization is 
described in detail in Chapter 6. 
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Table 13.11. Critical values of the F distribution, Fα,ν1,ν2 (a) α = 0.05 and (b) α = 0.10 

(a) 
α=0.05     ν1      

ν2 1 2 3 4 5 6 7 8 9 10 
1 161. 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 
2 18.5 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 
3 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 

 
(b) 

α=0.10     ν1      
ν2 1 2 3 4 5 6 7 8 9 10 
1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 
7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 
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Table 13.12. Central composite designs for (a) 2 factors, (b) 3 factors, and (c) 4 factors 

          (a)     (b)    (c) 
Run Block x1 x2  Run Block x1 x2 x3 Run Block x1 x2 x3 x4 

1 1 0 0  1 1 1 1 1 1 1 –1 1 –1 –1 
2 1 1 –1  2 1 1 –1 1 2 1 –1 1 –1 1 
3 1 1 1  3 1 0 0 0 3 1 0 0 0 0 
4 1 –1 1  4 1 0 0 0 4 1 1 –1 –1 –1 
5 1 –1 –1  5 1 –1 –1 –1 5 1 1 –1 1 –1 
6 1 0 0  6 1 –1 1 –1 6 1 –1 1 1 –1 
7 1 0 0  7 1 –1 –1 1 7 1 –1 1 1 1 
8 2 0 –1.41  8 1 –1 1 1 8 1 1 1 –1 1 
9 2 –1.41 0  9 1 0 0 0 9 1 1 1 1 –1 

10 2 0 0  10 1 1 –1 –1 10 1 –1 –1 1 –1 
11 2 0 1.41  11 1 0 0 0 11 1 –1 –1 –1 –1 
12 2 0 0  12 1 1 1 –1 12 1 1 –1 1 1 
13 2 0 0  13 2 0 –αC 0 13 1 0 0 0 0 
14 2 1.41 0  14 2 0 0 0 14 1 0 0 0 0 
     15 2 0 0 –αC 15 1 –1 –1 –1 1 
     16 2 –αC 0 0 16 1 0 0 0 0 
     17 2 0 0 αC 17 1 1 1 1 1 
     18 2 0 αC 0 18 1 1 –1 –1 1 
     19 2 αC 0 0 19 1 1 1 –1 –1 
     20 2 0 0 0 20 1 –1 –1 1 1 
          21 2 0 0 0 0 
          22 2 αC 0 0 0 
          23 2 0 αC 0 0 
          24 2 0 0 0 αC 
          25 2 0 0 0 0 
          26 2 –αC 0 0 0 
          27 2 0 –αC 0 0 
          28 2 0 0 –αC 0 
          29 2 0 0 αC 0 
          30 2 0 0 0 –αC 

Example 13.6.1  Lack of Fit 

Question: Suppose that you had performed the first seven runs of a central 
composite design in two factors, and the average and standard deviation of the only 
critical response for the three repeated center points are 10.5 and 2.1 respectively. 
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Further, suppose that the average response for the other four runs is 17.5. Perform 
a lack of fit analysis to determine whether adding additional runs is needed. Note 
that variance = (standard deviation)2.  
 
Answer: MSLOF = [(4)(3)(10.5 – 17.5)2]/(7) = 84.0 and F0 = 84.0/(2.12) = 19.0. 
F0.05,1,2, = 18.51. Since F0 > F0.05,1,2, the lack of fit of the first order model is 
significant. Therefore, the standard next steps (Steps 6–9) would be to perform the 
additional runs and fit a second order model. Even if we had failed to prove a lack 
of fit with an F-test, we might choose to add runs and perform an additional 
analysis to generate a relatively accurate prediction model. Stopping testing saves 
experimental expense but carries a risk that the derived prediction model may be 
relatively inaccurate. 

13.7  Origin of RSM Designs and Decision-making 

In this section, the origins of the experimental planning matrices used in standard 
responses surface methods are described. The phrase “experimental arrays” is 
used to describe the relevant planning matrices. Also, information that can aid in 
decision-making about which array should be used is provided. 

13.7.1  Origins of the RSM Experimental Arrays 

In this chapter, three types of experimental arrays are presented. The first two 
types, central composite designs (CCDs) and Box Behnken designs (BBDs), are 
called standard response surface designs. The third type, EIMSE designs, 
constitutes one kind of optimal experimental design. Many other types of response 
surface method experimental arrays are described in Myers and Montgomery 
(2001).  

Box and Wilson (1951) generated CCD arrays by combining three components 
as indicated by the example in Table 13.11. For clarity, Table 13.11 lists the design 
in standard order (SO), which is not randomized. To achieve proof and avoid 
problems, the matrix should not be used in this order. The run order should be 
randomized. 

The first CCD component consists of a two level matrix similar or identical to 
the ones used for screening (Chapter 12). Specifically, this portion is either a full 
factorials as in Table 13.11 or a so-called “Resolution V” regular fractional 
factorial. The phrase “Resolution V” refers to regular fractional factorials with the 
property that no column can be derived without multiplying at least four other 
columns together. For example, it can be checked that a 16 run regular fractional 
factorial with five factors and the generator E = ABCD is Resolution V. Resolution 
V implies that a model form with all two level interactions, e.g., β 1 0x 2x 3 , can be 
fitted with accuracy that is often acceptable. 

The phrase “center points” refers to experimental runs with all setting set to 
levels at the midpoint of the factor range. The second CCD component part 
consists of nc center points. For example, if factor A ranges from 10 mm to 15 mm 
and factor B ranges from 30 °C to 40 °C, the center point settings would be 12.5 



  DOE: Response Surface Methods      335 

mm and 35 °C. The CCD might have nc = 3 runs with these settings mixed in with 
the remaining runs. One benefit of performing multiple tests at those central values 
is that the magnitude of the experimental errors can be measured in a manner 
similar to measuring process capability in Xbar & R charting (Chapter 4). One can 
simply take the sample standard deviation, s, of the response values from the center 
point runs.  

Advanced readers may realize that the quantity s ÷ c4 is an “assumption-free” 
estimate of the random error standard deviation, σ0. This estimate can be compared 
with the one derivable from regression (Chapter 15), providing a useful way to 
evaluate the lack of fit of the fitted model form in addition to the Adjusted R2. This 
follows because the regression estimate σ0 of contains contributions from model 
misspecification and the random error. The quantity s ÷ c4 only reflects random or 
experimental errors and is not effected by the choice of fit model form. 

The phrase “star points” refers to experimental runs in which a single factor is 
set to αC or –αC while the other factors are set at the midvalues. The last CCD 
component part consistes of two star points for every factor. One desirable feature 
of CCDs is that the value of αC can be adjusted by the method user. The statistical 
properties of the CCD based RSM method are often considered acceptable for 0.5 
< αC < sqrt[m], where m is the number of factors. 

Table 13.13. Two factor central composite design (CCD) in standard order 

Standard Order A B   

1 –1 –1   

2 1 –1 ← regular fractional factorial part 

3 –1 1   

4 1 1   

5 0 0   

6 0 0 ← three “center points” 

7 0 0   

8 αC 0   

9 0 αC ← “star” points 

10 –αC 0   

11 0 –αC   

 
Box and Behnken (1960) generated BBD arrays by combining two components 

as shown in Table 13.12. The first component itself was the combination of two 
level arrays and sub-columns of zeros. In all the examples in this book, the two 
level arrays are two factor full factorials.  

In some cases, the sub-columns of zeros were deployed such that each factor 
was associated with one sub-column as shown in Table 13.12. Advanced readers 
may be interested to learn that the general structure of the zero sub-columns itself 
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corresponded to experimental arrays called “partially balanced incomplete blocks” 
(PBIBs). Of all of the possible experimental arrays that can be generated using the 
combination of fractional factorials and zero sub-columns, Box and Behnken 
selected only those arrays that they could rigorously prove minimize the prediction 
errors caused by “model mis-specification” or bias. Prediction errors associated 
with bias are described next in the context of EIMSE optimal designs.  

Table 13.14. Three factor Box Behnken design (BBD) in standard order 

Standard Order A B C   

1 –1 –1 0   

2 1 –1 0 ← first repetition 

3 –1 1 0   

4 1 1 0   

5 –1 0 –1   

6 1 0 –1 ← second repetition 

7 –1 0 1   

8 1 0 1   

9 0 –1 –1   

10 0 1 –1 ← third repetition 

11 0 –1 1   

12 0 1 1   

13 0 0 0   

14 0 0 0 ← three center points 

15 0 0 0   

 
Allen et al. (2003) proposed “expected integrated mean squared error” 

(EIMSE) designs as the solution to an optimization problem. To understand their 
approach, consider that even though experimentation involves uncertainty, much 
can be predicted before testing begins.  

In particular, the following generic sequence of activities can be anticipated in 
the context of one-shot RSM: tests are performed → a second order polynomial 
regression model will be fitted → predictions will be requested at settings of future 
interest. Building on research from Box and Draper (1959), Allen et al. (2003) 
were able to develop a formula to predict the squared errors that the experimental 
planner can expect using a given experimental array and generic sequence: perform 
tests → fit second order polynomial regression model → make predictions.  

The assumptions that Allen et al. (2003) used were realistic enough to include 
contributions from random or “variance” errors from experimentation mistakes and 
“model bias” cased by limitations of the fitted model form. Bias errors come from 
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a fundamental limitation of the fitted model form in its ability to replicate the 
twists and turns of the true system input-output relationships. 

The formula developed by Allen et al. (2003) suggests that prediction errors are 
undefined or infinite if the number of runs, n, is less than the number of terms in 
the fitted model, k. This suggests a lower limit on the possible number of runs that 
can be used. Fortunately, the number of runs is otherwise unconstrained. The 
formula predicts that as the number of runs increases, the expected prediction 
errors decrease. This flexibility in the number of runs that can be used may be 
considered a major advantage of EIMSE designs over CCDs or BBDs. Advanced 
readers may realize that BBDs are a subset of the EIMSE designs in the sense that, 
for specific assumption choices, EIMSE designs also minimize the expected bias. 

13.7.2  Decision Support Information (Optional) 

This section explores concepts from Allen et al. (2003) and, therefore, previews 
material in Chapter 18. It is relevant to decisions about which experimental array 
should be used to achieve the desired prediction accuracy. Response surface 
methods (RSM) generate prediction models, yest(x) intended to predict accurately 
the prototype system’s input-output relationships. Note that, in analyzing the 
general method, it is probably not obvious which combinations of settings, x, will 
require predictions in the subjective optimization in the last step.  

The phrase “prediction point” refers to a combination of settings, x, at which 
prediction is of potential interest. The phrase “region of interest” refers to a set of 
prediction points, R. This name derives from the fact that possible settings define a 
vector space and the settings of interest define a region in that space. 

The prediction model, yest(x) with the extra subscript is called an “empirical 
model” since it is derived from data. If there is only one response, then the 
subscript is omitted. Empirical models can derive from screening methods or 
standard response surface or from many other procedures including those that 
involve so-called “neural nets” (see Chapter 16). 

The empirical model, yest(x), is intended to predict the average prototype system 
response at the prediction point x. Ideally, it can predict the engineered system 
response at x. Through the logical construct of a thought experiment, it is possible 
to develop an expectation of the prediction errors that will result from performing 
experiments, fitting a model, and using that model to make a prediction. This 
expectation can be derived even before real testing in an application begins. In a 
thought experiment, one can assume that one knows the actual average response of 
the prototype or engineered system would give at the point x, ytrue(x).  

The “true response” or ytrue(x) at the point x is the imagined actual value of the 
average response at x. In the real world, we will likely never know ytrue(x), but it 
can be a convenient construct for thought experiments and decision support for 
RSM. The “prediction errors” at the point x, ε(x), are the difference between the 
true average response and the empirical model prediction at x, i.e., εr(x) = ytrue(x) – 
yest(x). Since ytrue(x) will likely be never known in real world problems, ε(x) will 
likely also not be known. Still, it may be useful in thought experiments pertinent to 
method selection to make assumptions about ε(x). 
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Clearly, the prediction errors for a given response will depend on our beliefs 
about the true system being studied or, equivalently, about the properties of the 
true model, yest(x). For example, if the true model is very non-linear or “bumpy”, 
there is no way that a second order polynomial can achieve low prediction errors. 
Figure 13.5 below illustrates this concept.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            (a)     (b) 

Figure 13.5. Prediction errors for true models with “bumpiness” (a) low and (b) high 

Many authors have explored the implications of specific assumptions about 
yest(x) including Box and Draper (1987) and Myers and Montgomery (2001). The 
assumptions explored in this section are that the true model is a third order 
polynomial. Third order polynomials contain all the terms in second order RSM 
models with the addition of third order terms involving, e.g., x2

3 and x1
2x2. Further, 

it assumes that coefficients are random with standard deviation γ. 
Definition: the “expected prediction errors” (EPE) are the expected value of 

the prediction errors, E[ε(x)2], with the expectation taken over all the quantities 
about which the experimenter is uncertain. The EPE is also known as the expected 
integrated mean squared error (EIMSE). Typically, random quantities involved in 
the expectation include, the coefficients of the true model, β, the experimental 
random errors, ε, and the prediction points, x.  

Note that since the prediction errors depend upon the true model and thus β 
under certain assumptions, the expected prediction errors depend upon the standard 
deviation γ. An interesting result for all linear models is that the expected 
prediction errors only depend upon the standard deviation of the third order 
coefficients of the true model in relevant cases. Table 13.15 shows the expected 
prediction errors for alternative RSM experimental designs, D. The two method 
criteria shown are g1 = n, the number of runs and the expected prediction errors, g2. 
The expected prediction errors (EPE) also depend upon the standard deviation of 
the random errors, σ or “sigma”, just as the criteria for screening methods depend 
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on sigma. In practice, one estimates sigma by observing repeated system outputs 
for the same system input and taking the sample standard deviation. This provides 
a rough estimate of σ. 

To estimate a typical prediction error that one can expect if one uses the RSM 
method in question, multiply the value in the table by σ. An assumption argued to 
be reasonable in many situations in Allen et al. (2003) is that γ = 0.5. For example, 
if a system manufactures snap tabs and the sample standard deviation of different 
snap tab pull apart forces is 3.0 lbs. and one uses a m = 3 factor and n = 15 run Box 
Behnken design, then one can expect to predict average pull apart force within 
roughly 0.51 × 3.0 lbs. = 1.5 lbs. or the EPE in natural units is 1.5 lbs. 

Table 13.15. Decision support for RSM with three and four factors 

 (m) (g1 = n) (g2 = EPE) Expected prediction errors 

Design no. 
factors 

no.  
runs γ = 0.0 γ = 0.5 γ = 1 γ = 2 

Box Behnken 3 15 0.42 0.51 0.88 2.38 

EIMSE-optimal 3 11 0.86 0.97 1.38 3.03 

EIMSE-optimal 3 16 0.46 0.54 0.82 1.97 

Central composite 3 20 0.40 0.56 1.22 3.85 

Central composite 
(two step*) 3 12 or 20 0.55 0.78 1.71 5.40 

Box Behnken 4 30 0.48 0.64 1.24 3.67 

EIMSE-optimal 4 26 0.43 0.58 1.15 3.46 

Central composite 4 30 0.45 0.84 2.37 8.50 

Central composite 
(two step*) 4 20 or 30 0.63 1.17 3.31 11.89 

 
The EPE performance of the response surface method experimental designs 

tends to also follow the pattern in Table 13.15 for other numbers of runs. 
Compared with central composite designs, Box Behnken designs achieve relatively 
low prediction errors when the true response is bumpy (high γ). Central composite 
designs, applied sequentially, result in generally higher prediction errors than other 
methods because of the possibility of stopping earlier with a relatively inaccurate 
model. EIMSE-optimal and other optimal designs permit multiple alternatives 
based on different numbers of runs. They also achieve a variety of EPE values. 

The EPE performance of two step response surface methods depends upon the 
value of α used in the lack of fit test and additional assumptions about the true 
coefficients of the quadratic terms. Therefore, for simplicity, a 40% inflation of the 
one-shot central composite based method was assumed based on simulations in 
working papers available from the author. 
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13.8  Appendix: Additional Response Surface Designs 

Table 13.16. (a) 4 factor EIMSE-optimal and (b) 5 factor Box Behnken designs 

     (a)                                     (b) 
Run x1 x2 x3 x4  Run x1 x2 x3 x4 x5  Run x1 x2 x3 x4 x5 

1 –1 –1 –1 0  1 –1 –1 1 1 1  23 0 1 0 –1 –1 
2 –1 –1 1 0  2 –1 –1 –1 0 –1  24 1 –1 0 0 –1 
3 –1 0 0 1  3 –1 –1 0 –1 1  25 1 –1 1 –1 1 
4 –1 0 0 –1  4 –1 –1 1 0 –1  26 1 –1 –1 –1 –1 
5 –1 1 –1 1  5 –1 1 –1 1 1  27 1 –1 –1 –1 0 
6 –1 1 1 0  6 –1 1 –1 –1 1  28 1 –1 0 –1 1 
7 –1 1 –1 –1  7 –1 1 1 –1 –1  29 1 –1 1 1 1 
8 0 –1 1 1  8 –1 –1 –1 1 –1  30 1 –1 1 1 –1 
9 0 –1 1 –1  9 –1 –1 –1 –1 1  31 1 0 –1 1 0 

10 0 –1 –1 1  10 –1 –1 0 –1 –1  32 1 0 –1 1 –1 
11 0 –1 –1 –1  11 –1 –1 –1 1 1  33 1 1 1 –1 –1 
12 0 –1 –1 0  12 –1 –1 1 1 –1  34 1 1 0 1 1 
13 0 1 1 0  13 –1 0 1 –1 1  35 1 1 1 –1 1 
14 0 1 1 1  14 –1 0 1 –1 0  36 1 1 1 1 –1 
15 0 1 1 –1  15 –1 1 –1 –1 –1  37 1 –1 –1 1 1 
16 0 1 –1 1  16 –1 1 0 1 –1  38 1 –1 1 –1 –1 
17 0 1 –1 –1  17 –1 1 1 1 0  39 1 0 0 1 –1 
18 1 –1 1 1  18 –1 1 1 1 1  40 1 1 –1 0 1 
19 1 –1 –1 0  19 –1 1 –1 1 –1  41 1 1 1 0 1 
20 1 –1 1 –1  20 –1 1 0 0 1  42 1 1 –1 –1 –1 
21 1 0 0 1  21 0 –1 0 1 1  43 0 0 0 0 0 
22 1 0 0 –1  22 0 1 –1 –1 1  44 0 0 0 0 0 
23 1 1 –1 0               
24 1 1 1 0               
25 0 0 0 0               
26 0 0 0 0               
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Table 13.17. Central composite designs for five factors 

Run Block x1 x2 x3 x4 x5 
1 1 0 0 0 0 0 
2 1 –1 –1 1 1 1 
3 1 0 0 0 0 0 
4 1 1 –1 1 1 –1 
5 1 1 –1 –1 1 1 
6 1 –1 –1 –1 –1 1 
7 1 1 –1 –1 –1 –1 
8 1 1 1 1 1 1 
9 1 0 0 0 0 0 

10 1 –1 –1 –1 1 –1 
11 1 0 0 0 0 0 
12 1 –1 1 –1 –1 –1 
13 1 0 0 0 0 0 
14 1 1 1 –1 1 –1 
15 1 –1 –1 1 –1 –1 
16 1 1 1 1 –1 –1 
17 1 –1 1 1 –1 1 
18 1 0 0 0 0 0 
19 1 –1 1 1 1 –1 
20 1 1 –1 1 –1 1 
21 1 –1 1 –1 1 1 
22 1 1 1 –1 –1 1 
23 2 0 0 0 –αC 0 
24 2 0 0 0 αC 0 
25 2 –αC 0 0 0 0 
26 2 0 0 –αC 0 0 
27 2 0 0 0 0 0 
28 2 0 0 0 0 –αC

29 2 0 αC 0 0 0 
30 2 αC 0 0 0 0 
31 2 0 0 0 0 αC

32 2 0 –αC 0 0 0 
33 2 0 0 αC 0 0 
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Table 13.18. Central composite designs for 6 factors (R=Run, B=Block) 

R B x1 x2 x3 x4 x5 x6 R B x1 x2 x3 x4 x5 x6 

1 1 –1 1 1 –1 –1 –1 28 1 1 –1 –1 1 –1 –1 

2 1 –1 –1 1 1 1 1 29 1 0 0 0 0 0 0 

3 1 –1 1 1 1 –1 1 30 1 1 1 1 1 –1 –1 

4 1 0 0 0 0 0 0 31 1 –1 –1 1 –1 –1 1 

5 1 –1 1 –1 –1 1 –1 32 1 0 0 0 0 0 0 

6 1 1 1 –1 1 –1 1 33 1 0 0 0 0 0 0 

7 1 1 –1 –1 –1 1 –1 34 1 1 1 –1 –1 1 1 

8 1 1 –1 1 –1 –1 –1 35 1 1 –1 –1 1 1 1 

9 1 –1 1 1 1 1 –1 36 1 1 1 1 1 1 1 

10 1 0 0 0 0 0 0 37 1 0 0 0 0 0 0 

11 1 –1 –1 –1 –1 –1 –1 38 1 1 –1 –1 –1 –1 1 

12 1 –1 –1 –1 1 1 –1 39 1 1 1 1 –1 1 –1 

13 1 1 –1 1 –1 1 1 40 1 –1 –1 –1 1 –1 1 

14 1 –1 1 –1 –1 –1 1 41 2 0 αC 0 0 0 0 

15 1 1 1 –1 –1 –1 –1 42 2 0 0 0 0 0 0 

16 1 1 –1 1 1 1 –1 43 2 αC 0 0 0 0 0 

17 1 1 1 –1 1 1 –1 44 2 0 0 0 0 0 –αC 

18 1 –1 –1 1 –1 1 –1 45 2 0 0 0 αC 0 0 

19 1 –1 1 1 –1 1 1 46 2 0 –αC 0 0 0 0 

20 1 –1 1 –1 1 1 1 47 2 0 0 0 0 αC 0 

21 1 1 1 1 –1 –1 1 48 2 0 0 0 0 0 0 

22 1 0 0 0 0 0 0 49 2 0 0 0 0 –αC 0 

23 1 0 0 0 0 0 0 50 2 0 0 0 –αC 0 0 

24 1 –1 1 –1 1 –1 –1 51 2 0 0 –αC 0 0 0 

25 1 –1 –1 1 1 –1 –1 52 2 –αC 0 0 0 0 0 

26 1 1 –1 1 1 –1 1 53 2 0 0 αC 0 0 0 

27 1 –1 –1 –1 –1 1 1 54 2 0 0 0 0 0 αC 
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Table 13.19. Box Behnken design for 6 factors 

Run x1 x2 x3 x4 x5 x6  Run x1 x2 x3 x4 x5 x6 
1 –1 0 0 –1 –1 0  28 0 0 0 0 0 0 
2 0 –1 0 0 –1 –1  29 1 0 0 –1 1 0 
3 0 –1 1 0 1 0  30 0 –1 1 0 –1 0 
4 1 0 0 –1 –1 0  31 1 1 0 1 0 0 
5 0 0 –1 1 0 1  32 0 –1 0 0 1 1 
6 –1 0 0 1 –1 0  33 1 0 1 0 0 1 
7 0 0 –1 1 0 –1  34 –1 0 –1 0 0 –1 
8 0 0 1 1 0 –1  35 1 –1 0 1 0 0 
9 0 0 1 –1 0 –1  36 0 1 0 0 –1 1 
10 1 1 0 –1 0 0  37 –1 1 0 1 0 0 
11 0 0 0 0 0 0  38 0 0 0 0 0 0 
12 –1 –1 0 1 0 0  39 0 1 –1 0 1 0 
13 1 0 1 0 0 –1  40 –1 0 0 –1 1 0 
14 0 1 –1 0 –1 0  41 –1 0 –1 0 0 1 
15 1 0 –1 0 0 1  42 0 0 0 0 0 0 
16 –1 0 1 0 0 –1  43 1 0 –1 0 0 –1 
17 1 0 0 1 1 0  44 0 1 0 0 1 –1 
18 0 0 –1 –1 0 –1  45 –1 –1 0 –1 0 0 
19 0 0 0 0 0 0  46 –1 0 0 1 1 0 
20 0 –1 0 0 –1 1  47 0 0 1 –1 0 1 
21 0 –1 –1 0 –1 0  48 0 1 1 0 1 0 
22 0 0 0 0 0 0  49 1 –1 0 –1 0 0 
23 0 1 0 0 1 1  50 0 –1 0 0 1 –1 
24 –1 1 0 –1 0 0  51 0 0 1 1 0 1 
25 0 1 1 0 –1 0  52 0 1 0 0 –1 –1 
26 1 0 0 1 –1 0  53 –1 0 1 0 0 1 
27 0 0 –1 –1 0 1  54 0 –1 –1 0 1 0 
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Table 13.20. Box Behnken design for 7 factors 

Run x1 x2 x3 x4 x5 x6 x7  Run x1 x2 x3 x4 x5 x6 x7 
1 –1 0 –1 0 –1 0 0  32 1 0 –1 0 –1 0 0 
2 1 –1 0 1 0 0 0  33 –1 –1 0 –1 0 0 0 
3 0 –1 1 0 0 1 0  34 1 0 0 0 0 –1 –1 
4 0 0 1 –1 0 0 1  35 1 0 1 0 1 0 0 
5 –1 1 0 –1 0 0 0  36 0 0 –1 –1 0 0 1 
6 0 1 1 0 0 –1 0  37 0 0 0 1 1 –1 0 
7 0 1 0 0 –1 0 1  38 –1 0 1 0 1 0 0 
8 0 0 0 0 0 0 0  39 0 0 –1 1 0 0 1 
9 1 1 0 1 0 0 0  40 1 1 0 –1 0 0 0 
10 –1 0 0 0 0 –1 –1  41 1 0 1 0 –1 0 0 
11 0 0 0 1 1 1 0  42 0 –1 1 0 0 –1 0 
12 0 1 0 0 –1 0 –1  43 1 0 0 0 0 1 1 
13 0 0 0 1 –1 1 0  44 0 0 1 1 0 0 –1 
14 –1 0 –1 0 1 0 0  45 0 0 1 –1 0 0 –1 
15 0 1 1 0 0 1 0  46 0 –1 –1 0 0 1 0 
16 0 0 0 –1 –1 –1 0  47 0 –1 –1 0 0 –1 0 
17 0 0 –1 –1 0 0 –1  48 0 –1 0 0 –1 0 1 
18 1 0 –1 0 1 0 0  49 0 –1 0 0 1 0 1 
19 0 0 0 0 0 0 0  50 1 0 0 0 0 1 –1 
20 0 0 0 0 0 0 0  51 1 –1 0 –1 0 0 0 
21 0 0 0 –1 1 1 0  52 0 0 0 –1 1 –1 0 
22 0 0 0 1 –1 –1 0  53 0 0 0 0 0 0 0 
23 0 1 0 0 1 0 –1  54 0 0 1 1 0 0 1 
24 –1 0 0 0 0 –1 1  55 –1 –1 0 1 0 0 0 
25 –1 0 1 0 –1 0 0  56 0 1 –1 0 0 1 0 
26 0 0 0 0 0 0 0  57 –1 0 0 0 0 1 –1 
27 0 1 –1 0 0 –1 0  58 –1 0 0 0 0 1 1 
28 –1 1 0 1 0 0 0  59 0 –1 0 0 1 0 –1 
29 1 0 0 0 0 –1 1  60 0 –1 0 0 –1 0 –1 
30 0 1 0 0 1 0 1  61 0 0 –1 1 0 0 –1 
31 0 0 0 –1 –1 1 0  62 0 0 0 0 0 0 0 
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13.9  Summary 

This chapter describes the application of so-called response surface methods 
(RSM). These methods generally result in a relatively accurate prediction of all 
response variable averages related to quantities measured during experimentation. 
An important reason why the predictions are relatively accurate is that so-called 
“interactions” which relate to the combined effects of factors are included explicity 
in the predicted models. 

Three types of methods were presented. Box Behnken designs (BBDs) were 
argued to generate relatively accurate predictions because they minimize so-called 
“bias” errors under certain reasonable assumptions. Central composite designs 
(CCDs) were presented and explained to offer the advantage that they permit 
certain level adjustments and can be used in two-step sequential response surface 
methods. In these methods, there is a chance that the experimental will stop with 
relatively few runs and decide his or her prediction model is satisfactory.  

The third class of experimental designs presented is the expected integrated 
mean squared error (EIMSE) designs which are available for a variety of numbers 
of runs and offer predictive advantages of Box Benken designs. The EIMSE 
criteria is also used at the end to clarify the relative prediction errors and to help 
method users decide whether a given experimental design is appropriate for their 
own prediction accuracy goals. 

Problems 

1. Which is correct and most complete? 
a. RSM is mainly relevant for finding which factor changes affect a 

response. 
b. Central composite designs have at most three distinct levels of each 

factor.   
c. Sequential response surface methods are based on central composite 

designs. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

2. Which is correct and most complete? 
a. In a design matrix, there is a row for every run. 
b. Functional forms fitted in RSM are not polynomials. 
c. Linear regression models cannot contain terms like β1 x1

2. 
d. Linear regression models are linear in all the factors (x’s). 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
Refer to Table 13.19 for Questions 3 and 4. 
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Table 13.19. (a) A two factor DOE, (b)–(d) model forms, and (e) ranges 

 (a)     

Run A B  (b) y(x) = β1 + β2 A + β3 B 

1 –1 –1    

2 1 –1  (c) y(x) = β1 + β2 A + β3 B + β4 A B 

3 –1 1    

4 0 0  (d) y(x) = full quadratic polynomial in A and B 

5 1 1    

6 –1.4 0  (e) Factor     (–1)         (+1) 

7 0 0   A    10.0 N     14.0 N 

8 0 1.4   B    2.5 mm   4.5 mm 

9 0 –1.4    

 
3.  Which is correct and most complete? 

a. A design matrix based on (a) and (b) in Table 13.19 would be 9 × 4. 
b. A design matrix based on (a) and (c) in Table 13.19 would be 9 × 4. 
c. A design matrix based on (a) and (d) in Table 13.19 would be 10 × 6. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

4.  Which is correct and most complete? 
a. The model form in (c) in Table 13.19 contains one interaction term.  
b. Using the design matrix and model in (a) and (b) in Table 13.19, X′X 

is diagonal. 
c. Using the design matrix and model in (a) and (c) in Table 13.19, X′X 

is diagonal. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

5.  Which is correct and most complete? 
a. Response surface methods cannot model interactions. 
b. In standard RSM, all factors must be continuous. 
c. Pure quadratic terms are contained in full quadratic models. 
d. All of the above are correct.  
e. All of the above are correct except (a) and (d). 

 
For Question 6, assume 

f1(x) = 1, fj(x) = xj–1 for j = 2,…,m + 1   
and fm + 2(x) = x1x2, fm + 3(x) = x1x3,  …,  f[(m + 1) (m + 2)/2]–m (x) = xm–1xm.   

 
6.  Which is correct and most complete? 

a. With m = 3, f7(x) =  x2x3. 
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b. This model form contains pure quadratic terms. 
c. With m = 4, f6(x) = x1

2. 
d. With m = 5, f2(x) = 1. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

7.  How many factors and levels are involved in the paper airplane example? 
 
8.  According to the chapter, which is correct and most complete? 

a. EIMSE designs are an example of optimal or computer generated 
designs. 

b. Some EIMSE designs are available that have fewer runs than CCDs 
or BBDs. 

c. Both the choice of DOE matrix and of factor ranges affect design 
matrices. 

d. One shot RSM generates full quadratic polynomial prediction 
models.  

e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
9.  Which is correct and most complete? 

a. If X is n × k with n > k, X′ (the transpose) is n × k. 
b. If RSM is applied, (X′X)–1X′ cannot be calculated for quadratic 

model forms because X′X is a singular matrix. 
c. Often, EIMSE designs are not available with fewer runs than CCDs 

or BBDs. 
d. Central composite designs include fractional factorial, star, and center 

points. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
10.  Which is correct and most complete? 

a. If you only have enough money for a few runs, using screening 
without RSM might be wise. 

b. In general, factors in a DOE must be uncontrollable during 
experimentation. 

c. Adjusted R2 is not relevant for evaluating whether data are reliable. 
d. The number of runs in RSM increases linearly in the number of 

factors. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

11.  Which is correct and most complete? 
a. With three factors, two-step RSM cannot save costs compared with 

one-shot. 
b. In general, blocks in experimentation are essentially levels of the 

factor time. 
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c. The original sequential RSM can be viewed as an optimization 
method. 

d. By repeating factor combinations, one can obtain an estimate of 
sigma. 

e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
For problems 12 and 13, consider the array in Table 13.1a and the responses 7, 5, 
2, 6, 11, 4, 6, 6, 8, 6 for runs 1, 2, …, 10 respectively. The relevant model form is a 
full quadratic polynomial. 
 
12.  Which is correct and most complete (within the implied uncertainty)?  

a. A full quadratic polynomial cannot be fitted since (X′X)–1X′ is 
undefined. 

b. RSM fitted coefficients are 5.88, 1.83, 0.19, 0.25, 0.06, and 2.75. 
c. RSM fitted coefficients are 5.88, 2.83, 0.19, 0.25, 1.06, and 2.75. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

13.  Which is correct and most complete (within the implied uncertainty)?  
a. Adjusted R2 calculated is 0.99 a high fraction of the variation is 

unexplained. 
b. Adjusted R2 calculated is 0.99 a high fraction of the variation is 

explained. 
c. Surface plots are irrelevant since the interaction coefficient is 0.0. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
For Question 14, suppose that you had performed the first seven runs of a central 
composite design in two factors, and the average and standard deviation of the only 
critical response for the three repeated center points are 10.5 and 2.1 respectively. 
Further, suppose that the average response for the other four runs is 17.5.   
 
14.  Which is correct and most complete (within the implied uncertainty)? 

a. F0 = 29 and lack of fit is detected. 
b. F0.05,1,nC – 1 = 3.29. 
c. F0 = 19. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

15.  Which is correct and most complete? 
a. In two stage RSM, interactions are never in the fitted model form. 
b. In two stage RSM, finding lack of fit indicates more runs should be 

performed. 
c. Two stage RSM cannot terminate with a full quadratic fitted model in 

all factors. 
d. In two stage RSM, lack of fit is determined using a t-test. 
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e. All of the above are correct. 
f. All of the above are correct except (c) and (e). 
 

16. Which is correct and most complete based on how the designs are constructed? 
a. Central composite designs do not, in general, contain center points. 
b. A BBD design with seven factors contains the run –1, –1, –1, –1, –1, 

–1, –1. 
c. Central composite designs contain Resolution V fractional factorials. 
d. CCDs and BBDs were generated originally using a computer. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

17.  Which is correct and most complete (according to the text)? 
a. Expected prediction errors cannot be predicted before applying RSM. 
b. Box Behnken designs often foster more accurate prediction models 

than CCDs. 
c. Predictions about the accuracy of RSM depend on beliefs about the 

system. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

18. Assume that one had performed the first seven runs of a central composite 
design in two factors, and the average and standard deviations of the only 
critical response for the three repeated center points are 9.2 units and 3.1 units, 
respectively. Further, suppose that the average response for the other four runs 
is 14.6 units. Perform a lack-of-fit analysis to determine whether adding 
additional runs is needed. Note that variance = (standard deviation)2.  

19. Assume that a beverage company is trying to create a top cola by improving 
upon the taste of the one cola they have already. They plan on varying factors 
including the pressure, temperature, and amount of each ingredient (bottle size 
could be increased). What method should be used and why? 

20. Define the phrase “response surface methods” and include in your answer a 
description of the two classes of response surface methods described in the 
chapter.  

21. Compare Box Behnken designs and central compose designs using at least two 
criteria. 
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14 

DOE: Robust Design 

14.1  Introduction 

In Chapter 4, it is claimed that perhaps the majority of quality problems are caused 
by variation in quality characteristics. The evidence is that typically only a small 
fraction of units fail to conform to specifications. If characteristic values were 
consistent, then either 100% of units would conform or 0%. Robust design 
methods seek to reduce the effects of input variation on a system’s outputs to 
improve quality. Therefore, they are relevant when one is interested in designing a 
system that gives consistent outputs despite the variation of uncontrollable factors.  

Taguchi (1993) created several “Taguchi Methods” (TM) and concepts that 
strongly influenced design of experiments (DOE) method development related to 
robust design. He defined “noise factors” as system inputs, z, that are not 
controllable by decision-makers during normal engineered system operation but 
which are controllable during experimentation in the prototype system. For 
example, variation in materials can be controlled during testing by buying 
expensive materials that are not usually available for production. Let mn be the 
number of noise factors so that z is an mn dimensional vector. Taguchi further 
defined “control factors” as system inputs, xc, that are controllable both during 
system operation and during experimentation. For example, the voltage setting on a 
welding robot is fully controllable. Let mc be the number of control factors so xc is 
an mc dimensional vector.  

Consider that the rth quality characteristic can be written as yest,r(x c,z ,ε)  to 
emphasize its dependence on control factors, noise factors, and other factors that 
are completely uncontrollable, ε. Then, the goal of robust engineering is to adjust 
the settings in xc so that the characteristic’s value is within its specification limits, 
LSLr and USLr, and all other characteristics are within their limits consistently.  

Figure 14.1a shows a case in which there is only one noise factor, z, and the 
control factor combination, x1, is being considered. For simplicity, it is also 
assumed that there is only one quality characteristic whose subscript is omitted. 
Also, sources of variation other than z do not exist, i.e., ε = 0, and the relationship 
between the quality characteristic, yest(x 1,z ,0) ,  and the z is as shown.  
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   (a)    (b) 

Figure 14.1. Quality characteristic, y, distributions for choices (a) x1 and (b) x1 and x2 

Figure 14.1a focuses on a particular value, z = z1, and the associated quality 
characteristic value yest(x 1,z ,0) , which is below the specification limit. Also, the 
Figure 14.1a shows a distribution for the noise factor under ordinary operations 
and how this distribution translates into a distribution of the quality characteristic. 
It also shows the fraction non-conforming, p(x1), for this situation.  

Figure 14.1b shows how different choices of control factor combinations could 
result in different quality levels. Because of the nature of the system being studied, 
the choice x2 results in less sensitivity of characteristic values than if x1 is used. As 
in control charting, sensitivity can be measured by the width of the distribution of 
the quality characteristic, i.e., the standard deviation, σ, or the process capability. It 
is also more directly measurable by the fraction non-conforming. It can be said that 
x2 settings are more robust than x1 settings because p(x2) < p(x1). 

In this chapter, multiple methods are presented, each with the goal of deriving 
robust system settings. First, methods are presented that are an extension of 
response surface methods (RSM) and are therefore similar to techniques in Lucas 
(1994) and Myers and Montgomery (2001). These first methods presented here are 
also based on formal optimization and expected profit maximization such that we 
refer to them as “robust design based on profit maximization” (RDPM). These 
methods were first proposed in Allen et al. (2001). Next, commonly used “static” 
Taguchi Methods are presented, which offer advantages in some cases.  

14.2  Expected Profits and Control-by-noise Interactions 

RDPM focuses on the design of engineered systems that produce units. These units 
could be welded parts in a manufacturing line or patients in a hospital. The goal is 
to maximize the profit from this activity, which can be calculated as a sum of the 

y y p (x2)
USL USL

y (x2,z)

y (x1,z) y (x1,z)
LSL LSL

y (x1,z1) p (x1) p (x1)

z z
z 1
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revenues produced by the parts minus the cost to repair units that are not 
acceptable for various reasons.  

To develop a realistic estimate of these profits as a function of the variables that 
the decision-maker can control, a number of quantities must be defined: 

1. m is the total number of experiemental factors. 
2. q is the number of quality characteristics relevant to the system being 

studied.  
3. x is an m dimensional vector of all experimental inputs which can be 

divided into two types, control factors, xc, and noise factors, z, so that x = 
(xc′|z′)′.   

4. μz and σz are mn dimensional vectors containing the expected values, i.e., 
μz = E[z], and standard deviations, i.e., σz,i = sqrt[E(zi – μz,i)2], respectively.  

5. J is a diagonal matrix with the variances of the noise factors under usual 
operations along the diagonal, i.e., Ji,i = σz,i for i = 1,…,mn. (More 
generally, it is the variance-covariance matrix of the noise factors.) 

6. yest,0(x c,z ,ε)  is assumed to be the number of parts per year.  
7. yest,r(x c,z ,ε)  is the rth quality characteristic value function. 
8. pr(xc) is the fraction of non-conforming units as a function of the control 

factors for the rth quality characteristic. 
9. w0 is defined as the profit made per conforming unit.  
10. wr is the cost of the non-conformity associated with the rth characteristic.  

These failure costs include “rework” (e.g., cost of fixing the unit) and 
customer “loss of good will” (e.g., the cost of warranty costs and lost 
sales). 

11. σtotal,r(xc) is the “total variation” at a specific combination of control 
factors, xc, i.e., the standard deviation of the rth response taking into 
account the variation of the noise factors during normal system operation.  

12. S2 is the set of indices associated with responses that are failure probability 
estimates, and S1 are all other indices. 

13. Φ(x,μ,σ) is the “cumulative normal distribution function,” which is the 
probability that a normally distributed random variable with mean, μ, and 
standard deviation, σ, is less than x. Values are given by, e.g., Figure 14.2 
or the NORMDIST function in Excel. 

To calculate pr(xc) under “standard assumptions,” it is further necessary to 
make additional definitions. The full quadratic RSM model is re-written: 

yest,r(xc,z,ε) = f1(x)′βest,r = b0,r+br'xc+xc'Brxc+cr'z+xc'Crz+z'Drz + ε  
  for all r ∈ S1                (14.1) 

where, b0,r is the constant coefficient, br is a vector of the first order coefficients of 
the controllable factors,  Βr is a matrix of the quadratic coefficients of the 
controllable factors, cr is a vector of the first order coefficients of the noise 
variables, Cr is a matrix of the coefficients of terms involving control factors and 
noise factors, and Dr is a matrix of the quadratic coefficients of the noise factors.  

Therefore, the matrix Cr stores the coefficients of terms such as x2 z1 for the rth 
response. Taguchi coined the term “control-by-noise interactions” to refer to 
these terms together with their coefficients. For example, assume that yest,2(x 1,z 1)  
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= 10.0 + 8.0x1  + 5.0z 1  + 6 .0x 1z 1 . Then, Cr is a 1 × 1 matrix given by the 
number {6.0}. For fixed x1, it changes the slope of yest,2 as a function of z1.  

Figure 14.1b shows how the non-parallelism associated with a control-by-noise 
interaction can make some control factor combinations more robust.  
Because of their potential importance in engineering, the phrase “robustness 
opportunities” refer to large control-by-noise factor interaction coefficients, i.e., 
large values in the Cr matrices. In some cases, all of these interactions coefficients 
can be zero and then the system does not offer an opportunity for improving the 
robustness by reducing the variation of the quality characteristic. 

Example 14.2.1  Polynomials in Standard Format 

Question: Write out a functional form which is a second order polynomial with 
two control factors and two noise factors and calculate the related c vector and C 
and D matrices assuming there is only one quality characteristic, so the index r is 
dropped for the remainder of this chapter. 
 
Answer: The functional form is y(x1,x2,z1,z2) = β1 + β2 x1 + β3 x2 + β4 z1 + β5 z2 + β6 
x1

2 + β7 x2
2 + β8 z1

2 + β9 z2
2 + β10 x1x2 + β11 x1z1 + β12 x1z2 + β13 x2z1 + β14 x2z2 + β15 

z1z2. The matrices are as follows 

          c = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

5

4

β
β

, C = 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1413

1211

ββ
ββ ,  and D = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

915

158

5.0
5.0
ββ
ββ .         (14.2) 

In this chapter, we focus on methods based on D = 0 for convenience. A more 
complicated and advantageous procedure is in Allen et al. (2001). In general, D ≠ 0 
and (14.1) is a quadratic form in random variables as described in Johnson and 
Kotz (1995). With all these definitions and assumptions, the yearly profit, 
Profit(x c), from running the engineered system can be written 

Profit(x c) = yest,0(x c)  × {w0 – Σr∈S1 wr pr(x c) – Σr∈S2 wr yest,r(x c,z)  (14.3) 
where  

pr(x c) = Φ[LSLr,μr(xc),σtotal,r(xc)] + {1 – Φ[USLr,μr(xc),σtotal,r(xc)]}   (14.4) 
and  

μr(xc,μz) = yest,r(xc,z = μz)    
          (14.5) 
and 

σtotal,r
2(xc,σz,σε) = σr

2 + (cr′ + xc′Cr)J(cr′ + xc′Cr)′          (14.6) 

where the identity Var[T z] = T Var[z] T′ for constant matrix T has been used.  
Equations 14.4 to 14.6 all hold under two assumptions. First, D = 0 so that noise-
by-noise interactions are ignored. Second, the noise factor values under ordinary 
operations are normally distributed. Allen et al. (2001) explored more general 
assumptions that are omitted here for simplicity.   
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Step 1:  If models of the pr(xc) for all quality characteristics are available, go to Step 6.  
Otherwise continue. 

Step 2:  For each quality characteristic for which pr(xc) is not available, include the 
associated response index in the set S1 if the response is a quality 
characteristic.  Include the response in the set S2 if the response is the fraction 
nonconforming with respect to at least one type of nonconformity. Also, 
identify the specification limits, LSLk and USLk, for the responses in the set S1.    

Step 3:  Apply a response surface method (all steps except the last, optimization step) 
to obtain an empirical model of all quality characteristics including the 
production rate, yest,r(x c,z )  for r = 1,…,q. 

Step 4:  Estimate the expected value, μz,i, and standard deviation, σz,i, of all the noise 
factors relevant under normal system operation for all i = 1, …, mn.  

Step 5:  Estimate the failure probabilities as a function of the control factors, pr(xc) for 
all quality characteristics, r ∈ S1, using the formulas in Equations 14.3–14.5.   

Step 6:  Obtain cost information in the form of revenue per unit, w0, and rework and/or 
scrap costs per defect or nonconformity of type wr for r = 1,…,q. 

Step 7:  Maximize the profit, Profit(x c), in Equation 14.3 as a function of xc. 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 14.2. The cumulative normal as a function of parameters μ and σ 

14.3  Robust Design Based on Profit Maximization 

Robust Design based on Profit Maximization (RDPM) methods generally require 
all of the inputs that response surface methods (RSM) require. These include (1) an 
“experimental design”, Ds and (2) vectors that specify the highs, H, and lows, L, of 
each factor. In addition, they require (3) the declaration of which factors x c are 
control and which are noise z .   

Algorithm 14.1. Robust Design based on Profit Maximization 

The profit formulation in Equation 14.3 can be adjusted to the particular 
situation. For example, sometimes cost information, w0,…,wq is not available or 
other considerations besides the cost of quality are relevant. Alternatively, the 
control factors might not affect the production rate, e.g., if the process in question 
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is not a manufacturing system or even if it is a system in manufacturing but the 
related operations are not bottleneck operations. In these cases, it may be useful to 
adjust the formulation subjectively. Then, the resulting solutions should at least 
provide insight into which settings result in consistent system outputs. Also, as 
long as unit specifications are involved, then it is likely that the failure probability 
functions derived in Steps 2–6 will be useful.   

Example 14.3.1 RDPM and Central Composite Designs 

In this section, the proposed methods are illustrated through their application to the 
design of a robotic gas metal arc-welding (GMAW) cell. This case study is based 
on a research study at the Ohio State University documented in Allen et al. (2001) 
and Allen et al. (2002). 

In that study, there were mn = 2 noise factors, z1 and z2, m – mn = 4 control 
factors, x1,…,x4. These factors are shown in Figure 14.3. We chose two-step 
response surface methods because we were not sure that the factor ranges 
contained the control and noise settings associated with desirable arc welding 
systems, taking into account the particular power supply and type of material. The 
two-step approach offered the potentially useful option of performing only 40 tests 
and stopping with both screening related results and information about two factor 
interactions. The central composite design shown with two blocks is given in Table 
14.1. 

In this study, there were three relevant responses. The rate of producing units 
was directly proportional to the control factor x1. Therefore, before doing 
experiments, we knew that yest,0(xc) = 0.025 x1 in millions of parts. The other two 
relevant responses were quality characteristics of the parts produced by the system.  
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14.3. The control and noise factors for the arc welding example  
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Step 1:  In this application, models of p1(xc) and p2(xc) were not readily available.  
Therefore, it was necessary to go to Step 2. 

Step 2:  In this step, two relevant quality characteristics were identified corresponding to 
the main ways the units failed inspection or “failure modes”. In order to save 
inspection costs and create continuous criteria, the team developed a continuous 
(1–10) rating system based on visual inspection for each type of described in the 
first table in Chapter 10 was utilized. Also, the specification limits LSL1 = LSL2 
= 8.0 and USL1 = USL2 = ∞ were assigned. Therefore, higher ratings 
corresponded to better welds. 

Step 3:  The first 40 experiments shown in Table 14.1 were performed using the central 
composite design. After the first 40 runs, nc = center points and nf = 32 
fractional factorial runs. MSLOF1 = 19.6, yvariance,c,1 = 0.21, F0,1 = 91.5 >> 
F0.05,1,7 > 5.59 so the remainder of the runs in the table below were needed. For, 
thoroughness we calculated MSLOF2 = 24.9, yvariance,c,2 = 0.21, F0,2 = 116.3 >> 
F0.05,1,7 > 5.59. Therefore, curvature is significant for both responses. Therefore, 
also, we performed the remainder of the runs given below. After all of the runs 
were performed, we estimated coefficients using βest,r = AYr for r = 1 and 2, 
where A = (X′X)–1X′. These multiplications performed using matrix functions 
in Excel (“Ctrl-Shift-Enter” instead of OK is needed for assigning function 
values to multiple cells), but the coefficients could have derived using many 
choices of popular statistical software. Then, we rearranged the coefficients into 
the form listed in Equation 14.7, and for the other response related to a quality 
characteristic in Equation 14.8) below.     

Step 4:  The expected value, μz,i, and the standard deviations, σz,i, of the noise factors 
were based on verbal descriptions from the engineers on our team. Gaps larger 
than 1.0 mm and offsets larger than ±1.0 of the wire diameters were considered 
unlikely, where 1.0 WD corresponds to 1.143 mm. Therefore, it was assumed 
that z1 was N(mean=0.25,standard deviation=0.25) distributed in mm and z2 was 
N(mean=0,standard deviation=0.5) distributed in wire diameters with zero 
correlation across runs and between the gaps and offsets. Note that these 
assumptions gave rise to some negative values of gap, which were physically 
impossible but were necessary for the analytical formula in Equation 14.6 to 
apply. In addition, it was assumed that ε1 and ε2 were both N(mean=0.0, 
standard deviation=0.5) based on the sample variances (both roughly equal to 
0.25 rating units) of the repeated center points in our experimental design.  

Step 5:  Based on the “standard assumptions” the failure probability functions were 
found to be as listed in Equation 14.9. 

Step 6:  The team selected (subjectively since there was no real engineered system), w0 
= $100 revenue per part, w1 = $250 per unit and w2 = $100 per unit based on 
rework costs. Burning through the unit was more than twice as expensive to 
repair since additional metal needed to be added to the part structure as well as 
the weld.  The travel speed was related to the number of parts per minute by the 
simple relation, yest,0(xc) = 0.025 x1 in millions of parts, where x1 was in 
millimeters per minute. 

Step 7:  The formulation then became: minimize 0.025 x1[$100 – p1(xc) $250 – p2(xc) 
$100] where p1(xc) and p2(xc) were given in Equation 14.3. The following 
additional constraints, listed in Equation 14.10 were added because the 
prediction model was only accurate over the region covered by the experimental 
design in Table 14.1. (continued) 

Algorithm 14.2. RDPM and central composite design example 
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Algorithm 14.2. Continued 

Step 8:  This problem was solved using the Excel solver, which uses GRG2 (Smith 
and Lasdon 1992) and the solution was x1 = 1533.3 mm/min, x2 = 6.83, x3 = 
3.18 mm, and x4 = 15.2 mm, which achieved an expected profit of $277.6/min.  
The derived settings offer a compromise between making units at a high rate 
and maintaining consistent quality characteristic values despite the variation 
of the noise factors (gap and offset).   
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Table 14.1. Welding data from a central composite experimental design 

Run Block x1 (TS) x2 (R) x3 (AL) x4 
(CTTW)

z1    
(Gap)

z2 
(Offset)

a1  
(Burn)

a2 
(Fusion) 

  mm/min – mm mm mm WD (0–10) (0–10) 
1 1 1778.0 6.0 4.8 16.0 1 –0.5 8 3 

2 1 1778.0 8.0 4.8 14.0 0 0.5 5 5 

3 1 1524.0 7.0 4.0 15.0 0.5 0 10 8 

4 1 1270.0 8.0 4.8 14.0 0 –0.5 9 8 

5 1 1270.0 6.0 4.8 14.0 0 0.5 10 4 

6 1 1270.0 8.0 3.2 16.0 0 –0.5 10 10 

7 1 1270.0 6.0 4.8 16.0 1 0.5 9 2 

8 1 1524.0 7.0 4.0 15.0 0.5 0 9 8 

9 1 1778.0 6.0 3.2 14.0 1 –0.5 8 3 

10 1 1778.0 8.0 4.8 16.0 1 0.5 4 4 

11 1 1524.0 7.0 4.0 15.0 0.5 0 9 8 

12 1 1270.0 6.0 3.2 16.0 0 0.5 10 8 

13 1 1270.0 8.0 3.2 14.0 1 –0.5 8 8 

14 1 1778.0 6.0 4.8 14.0 0 –0.5 9 8 

15 1 1524.0 7.0 4.0 15.0 0.5 0 9 8 

16 1 1778.0 8.0 3.2 14.0 1 0.5 2 8 

17 1 1778.0 6.0 3.2 16.0 0 –0.5 9 8 

18 1 1270.0 6.0 3.2 14.0 1 0.5 9 3 

19 1 1270.0 8.0 4.8 16.0 1 –0.5 8 8 

20 1 1778.0 8.0 3.2 16.0 0 0.5 5 8 

21 1 1270.0 8.0 3.2 16.0 1 0.5 5 7 

22 1 1778.0 6.0 3.2 14.0 0 0.5 7 7 

23 1 1270.0 6.0 3.2 16.0 1 –0.5 10 8 

24 1 1524.0 7.0 4.0 15.0 0.5 0 9 9 

25 1 1778.0 6.0 4.8 16.0 0 0.5 8 6 

26 1 1778.0 8.0 4.8 16.0 0 –0.5 6 8 

27 1 1270.0 8.0 4.8 16.0 0 0.5 8 9 
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Table 14.1. Continued 

Run Block x1 (TS) x2 (R) x3 (AL) x4 
(CTTW)

z1    
(Gap) 

z2 
(Offset)

a1  
(Burn) 

a2 
(Fusion) 

  mm/min – mm mm mm WD (0–10) (0–10) 

28 1 1778.0 8.0 4.8 14.0 1 –0.5 4 5 

29 1 1524.0 7.0 4.0 15.0 0.5 0 9 8 

30 1 1778.0 8.0 3.2 14.0 0 –0.5 4 8 

31 1 1778.0 8.0 3.2 16.0 1 –0.5 8 8 

32 1 1524.0 7.0 4.0 15.0 0.5 0 9 9 

33 1 1270.0 6.0 4.8 14.0 1 –0.5 9 2 

34 1 1270.0 8.0 4.8 14.0 1 0.5 5 7 

35 1 1270.0 6.0 3.2 14.0 0 –0.5 10 9 

36 1 1778.0 6.0 4.8 14.0 1 0.5 8 2 

37 1 1778.0 6.0 3.2 16.0 1 0.5 8 2 

38 1 1270.0 8.0 3.2 14.0 0 0.5 8 9 

39 1 1270.0 6.0 4.8 16.0 0 –0.5 9 7 

40 1 1524.0 7.0 4.0 15.0 0.5 0 10 8 

41 2 1524.0 7.0 4.0 15.0 0.5 0 10 8 

42 2 1524.0 5.0 4.0 15.0 0.5 0 10 8 

43 2 1524.0 7.0 4.0 15.0 0.5 –1 10 8 

44 2 1524.0 7.0 2.4 15.0 0.5 0 9 8 

45 2 1524.0 9.0 4.0 15.0 0.5 0 8 10 

46 2 1524.0 7.0 4.0 15.0 0.5 1 8 8 

47 2 1016.0 7.0 4.0 15.0 0.5 0 9 8 

48 2 1524.0 7.0 4.0 13.0 0.5 0 5 8 

49 2 1524.0 7.0 4.0 15.0 –0.5 0 10 8 

50 2 1524.0 7.0 4.0 17.0 0.5 0 8 8 

51 2 2032.0 7.0 4.0 15.0 0.5 0 8 5 

52 2 1524.0 7.0 4.0 15.0 1.5 0 8 2 

53 2 1524.0 7.0 4.0 15.0 0.5 0 10 9 

54 2 1524.0 7.0 5.6 15.0 0.5 0 10 8 
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Example 14.3.2  RDPM and Six Sigma 

Question: What is the relationship between six sigma and RDPM methods? 
 
Answer: RDPM uses RSM and specific formulas to model directly the standard 
deviation or “sigma” of responses as a function of factors that can be controlled. 
Then, it uses these models to derive settings and sigma levels that generate the 
highest possible system profits. Applying RDPM could a useful component in a six 
sigma type improvement system. 

14.4  Extended Taguchi Methods 

The RDPM methods described above have the advantage that they build upon 
standard response surface methods in Chapter 13. They also derive an optimal 
balance between quality and productivity. Next, the original or “static” Taguchi 
methods are described which offer benefits including relative simplicity.  

All design of experiments involve (1) experimental planning, (2) measuring 
selected responses, (3) fitting models after data is collected, and (4) decision-
making. Taguchi refers to his methods as the “Taguchi System” because they 
consist of innovative, integrated approaches for all of the above. Taguchi Methods 
approaches for measuring responses and decision-making cannot be used without 
the application of Taguchi’s experimental planning strategies.  

The methods described in this section (see Algorithm 14.3) are called 
“extended” because Taguchi originally focused on approaches to improve single 
response variable or continuous quality characteristic values. Song et al. (1995) 
invented the methods described here to address decision-making involving 
multiple quality characteristics (as RDPM does). Often, there is more than a single 
quality characteristic so that there are multiple signal-to-noise ratios and Step 4 is 
ambiguous. To address this issue, Song et al. (1995) proposed an “extended 
Taguchi Method” that involves calculating signal-to-noise ratios for all 
characteristics and then clarifying which control factor settings are not obviously 
dominated by other settings. After the obviously poor settings have been removed 
from consideration, they suggested deciding between the remaining settings based 
on engineering judgment. 
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Algorithm 14.2. Extended Taguchi methods 

 
 
 

Step 1.   Plan the experiment using so-called “product” arrays. Product arrays are 
based on all combinations or runs from a “inner array” and an “outer array” 
which are smaller arrays. Table 14.2 shows an example of a product array 
based on inner and outer arrays which are four run regular fractional 
factorials. Taguchi uses many combinations of inner and outer arrays. 
Often the 18 run array in Table 12.12 is used for the inner array. Taguchi 
also introduced a terminology such that the regular design in Table 14.2 is 
called an “L4” design. 
     Table 14.2 shows the same experimental plan in two formats. In total, 
there are 16 runs.  The notation implies that there is a single response 
variable with 16 response data. Taguchi assigns control factors to the inner 
array, e.g., factors A, B, and C, and the noise factors to the outer array, e.g., 
factors D, E, and F.  In this way, each row in the product format in Table 
14.2a describes the consistency and quality associated with a single control 
factor combination. Note that writing out the experimental plan in 
“combined array” format as in Table 14.2b can be helpful for ensuring the 
the runs are performed in a randomized order. The array in Table 14.2 is 
not randomized to clarify that the experimental plan is the same as the one 
in Table 14.2a. 

Step 2.  Once the tests have been completed according to the experimental design, 
Taguchi based analysis on so-called “signal-to-noise ratio” (SNR) that 
emphasize consistent performance regardless of noise factor setting for 
each control factor combination. Probably three most commonly used 
signal-to-noise are “smaller-the-better” (SNRS), “larger-the-better” 
(SNRL), and “nominal-is-best” (SNRN). These are appropriate for cases in 
which high, low, and nominal values of the quality characteristic are most 
desirable, respectively.  Formulas for the characteristic values are: 

SNRS = -10 Log10 [ mean of sum of squares of measured data ]       (14.11) 
SNRL = -10 Log10 [ mean of sum squares of reciprocal of measured data]  
SNRN = -10 Log10 [ mean of sum of squares of {measured – ideal} ] . 

For example, using the experimental plan in Table 14.2, SNRS value for 
the first inner array run would equal: 

-10 Log10 [ ( y1
2 + y2

2 + y3
2 + y4

2) ÷ 4 ]. 

Similar calculations are then completed for each inner array combination. 
Step 3.  Create so-called “marginal plots” by graphing the average SNR value for 

each of control factor settings.  For example, the marginal plot for factor A 
and the design in Table 14.2 would be based on the SNR average of the 
first and the third control factor combination runs and the second and 
fourth runs.   

Step 4.   Pick the factor settings that are most promising according to the marginal 
plots.  For factors that do not appear to strongly influence the SNR, 
Taguchi suggests using other considerations.  In particular, marginal plots 
based on the average response are often used to break ties using subjective 
decision-making. 
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Table 14.2. A Taguchi product array: (a) in product format and (b) in standard order 

   (a)         (b)     

Outer array D –1 1 –1 1  Run A B C D E F Y 

   E –1 –1 1 1  1 –1 –1 1 –1 –1 1 y1 

Inner array F 1 –1 –1 1  2 1 –1 –1 –1 –1 1 y2 

Run A B C      3 –1 1 –1 –1 –1 1 y3 

1 –1 –1 1 y1 y2 y3 y4  4 1 1 1 –1 –1 1 y4 

2 1 –1 –1 y5 y6 y7 y8  5 –1 –1 1 1 –1 –1 y5 

3 –1 1 –1 y9 y10 y11 y12  6 1 –1 –1 1 –1 –1 y6 

4 1 1 1 y13 y14 y15 y16  7 –1 1 –1 1 –1 –1 y7 

         8 1 1 1 1 –1 –1 y8 

         9 –1 –1 1 –1 1 –1 y9 

         10 1 –1 –1 –1 1 –1 y10 

         11 –1 1 –1 –1 1 –1 y11 

         12 1 1 1 –1 1 –1 y12 

         13 –1 –1 1 1 1 1 y13 

         14 1 –1 –1 1 1 1 y14 

         15 –1 1 –1 1 1 1 y15 

         16 1 1 1 1 1 1 y16 

Example 14.4.1  Welding Process Design Revisited 

Question: Without performing any new tests, sketch what the application of 
Taguchi Methods might look like for the problem used to illustrate RPDM.  
 
Answer: To apply the extended Taguchi Methods completely, it would be 
necessary to perform experiments according to a Taguchi inner and outer array 
design. Using the L9 array to determine the combinations of the control factors on 
the left-hand-side in Table 14.3 below and the L4 array to determine the noise 
factors combinations on the right-hand-side in the table below are the standard 
choices for the Taguchi methods. To avoid prohibitive expense, the response 
surface models from the actual RSM applicaiton were used to simulate the 
responses shown in the table.  

This permitted the use of the standard formulas for bigger-the-better 
characteristics to calculate the signal-to-noise ratios shown on the right-hand-side 
of Table 14.3. Random errors were not added to the regression predictions for the 
response means because random errors might have increased the variability in the 
comparison and the same regression models were used to evaluate all results. 
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Table 14.3. Data for the Taguchi experiment from RSM model predictions 

      a1     a2     

        L4 Gap 0.0 1.0 0.0 1.0  0.0 1.0 0.0 1.0   

 L9   Offset –0.5 –0.5 0.5 0.5  –0.5–0.5 0.5 0.5   

TS  
(mm/min) Ratio 

Arc L. 
(mm) 

CTTW 
(mm)           

SNRL
1 

SNRL
2 

1270.0 6.0 3.2 14.0  9.7 9.3 9.6 8.2  8.3 4.8 7.2 3.6 19.3 14.2 

1270.0 7.0 4.0 15.0  10.7 9.8 10.1 8.2  9.1 6.6 7.9 5.5 19.6 16.8 

1270.0 8.0 4.8 16.0  9.2 7.8 8.1 5.7  9.3 7.9 8.1 6.8 17.4 17.9 

1524.0 6.0 4.0 16.0  9.5 9.8 9.4 8.7  9.5 5.3 7.5 3.3 19.4 14.1 

1524.0 7.0 4.8 15.0  10.0 9.0 9.5 7.9  7.5 4.8 7.0 4.3 19.1 14.8 

1524.0 8.0 3.2 15.0  9.1 8.5 7.3 5.6  9.6 8.4 9.1 7.9 17.2 18.8 

1778.0 6.0 4.8 15.0  8.9 9.3 9.6 8.9  7.6 3.1 6.2 1.7 19.2 9.2 

1778.0 7.0 3.2 16.0  8.3 8.9 7.0 6.6  8.4 5.5 7.0 4.1 17.5 15.0 

1778.0 8.0 4.0 14.0  5.5 4.8 4.4 2.7  7.6 6.1 7.7 6.2 11.8 16.6 
 

Because of the way the data were generated, the assumptions of normality, 
independence and constancy of variance were satisfied so that no transformation of 
the data was needed to achieve these goals. Transformations to achieve separability 
and additivity were not investigated because Song et al. (1995) state that their 
method was not restricted by separability requirements, and the selection of the 
transformation to achieve additivity involves significant subjective decision-
making with no guarantee that a feasible transformation was possible. Control 
factor settings that were not dominated were identified by inspection of Figure 
14.4. The fi,j(l) refers to the mean values of the jth characteristics’ average signal-to-
noise ratio at level l for factor i. For example, all combinations of settings having 
arc length equal to 4.0 mm were dominated since at least one other choice of arc 
length exists (arc length equal 3.2 mm) for which both signal-to-noise ratio 
averages are larger.   

This first step left 12 combinations of control factors. Subsequently, the 
formula in Song et al. (1995), which sums across signal-to-noise ratios for different 
responses, was used to eliminate four additional combinations. The resulting eight 
combinations included x1 = 1270.0 mm/min, x2 = 7.00, x3 = 3.18 mm, and x4 = 15.0 
mm, which yielded the highest expected profit among the group equal to 
$90.8/min. The combinations also included x1 = 1270.0 mm/min, x2 = 6.0, x3 = 4.80 
mm, and x4 = 15.0 mm, with the lowest expected profit equal to $–48.7/min. The 
user was expected to select the final process settings using engineering judgment 
from the remaining setting combinations, although without the benefit of knowing 
the expected profit. 

Including the parts per minute Q(x), which is proportional to travel speed, as an 
additional criterion increased by a factor of three the number of solutions that were 
not dominated. This occurred because setting desirability with respect to the other 
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criteria consistently declined as travel speed increased. The revised process also 
included several settings which were predicted to result in substantially negative 
profits, i.e., situations in which expected rework costs would far outweigh sales 
revenue. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.4. Signal-to-noise ratio marginal plots for the two quality characteristics 

14.5  Literature Review and Methods Comparison 

In general, methods in the applied statistics literature relate primarily to modeling 
the quality losses has been strongly influenced by Taguchi (Nair and Pregibon 
1986; Taguchi 1987; Devor et al. 1992; Song et al. 1995, Chet et al. 1995). This 
concept of variation reduction inside the limits has been influential in the 
development and instruction of useful quality-control methods (Devor et al. 1992).  

From this vast literature, several important criticisms of Taguchi Methods have 
emerged, some of which are addressed by RDPM:  

1. Since marginal plots display dependencies one-factor-at-time, the method is 
somewhat analogous to fitting a regression model without control-by-control factor 
interactions. As a result, Taguchi Methods have been criticized by many for their 
inability to capitalize on control-by-control factor interactions. If the system 
studied has large control-by-control factor interactions, then RDPM or other 
methods that model and exploit them could derive far more robust settings than 
Taguchi Methods. 

2. The signal-to-noise ratios (SNR) used in Taguchi methods are difficult to 
interpret and to relate to monetary goals. This provided the primary motivation for 
the RDPM approach, which is specifically designed to balance quality 
improvement needs with revenue issues. As a result, maximizing the SNRs can 
result in settings that lose money when profitable settings may exist that could be 
found using RDPM. 

3. The extension of Taguchi Methods to address cases involving multiple 
quality characteristics can involve ambiguities. It can be unclear how to determine 
a desirable trade-off between different characteristics since the dimensionless 
signal-to-noise values are hard to interpret and might not relate to profits. For cases 

10.0
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in which the system has a large number of quality characteristics, practitioners 
might even find RDPM simpler to use than Taguchi Methods. 

4. In some cases, product arrays can require many more runs than standard 
response surface methods. This depends on which arrays are selected for the 
control and noise factors.  

5. Taguchi Methods are not related to subjects taught in universities, such as 
response surface methods (RSM) and formal optimization. Therefore, they might 
require additional training costs.  

Table 14.4 illustrates many of these issues, based on the results for our case 
study. The table also includes the solutions that engineers on the team thought 
initially would produce the best welds, which were x1 = 1524.0 mm/min, x2 = 7.0, 
x3 = 4.0 mm, and x4 = 15.0 mm, with the expected profit equal to $14.5/min using 
the quadratic loss function.  

Predictably, the decision-maker has been left with little information to decide 
between settings offering high profits and low profits. Some of the settings with 
non-dominated SNR ratios would yield near optimal profits while others would 
yield near zero profits. In this case, the Taguchi product array actually requires 
fewer runs than the relevant RSM approach. Note that using an EIMSE optimal 
design, the RDPM approach could have required only 35 runs (although some 
expected prediction accuracy loss).  

Table 14.4. Summary of the solutions derived from various assumptions 

 Number Solutions Expected  

Method/Assumptions runs x1   
(mm/min) x2   (–) x3 (mm) x4  (mm) profit 

($/min) 

Initial process settings 0 1524.0 7.0 4.0 15.0 165.0 

RPDM 54        
(or 35*) 1533.3  6.83 3.18 15.2 199.5 

Extended Taguchi M. 36      

Highest profit settings  1270.0 7.00 3.18 15.0 201.6 

Lowest profit settings  1270.0 6.00 4.80 15.0 18.4 

 
Note that an important issue not yet mentioned can make the Taguchi product 

array structure highly desirable. The phrase “easy-to-change factors” (ETC) refers 
to system inputs with the property that if only their settings are changed, the 
marginal cost of each additional experimental run is small. The phrase “hard-to-
change” (HTC) factors refers to system inputs with the property that if any of their 
settings is changed, the marginal cost of each additional experimental run is large. 
For cases in which factors divide into ETC and HTC factors, the experimental costs 
are dominated by the number of distinct combinations of HTC factors, for 
example, printing off ten plastic cups and then testing each in different 
environments (ETC factors). Since most of the costs relate to making tooling for 
distinct cup shapes (HTC factors), printing extra identical cups and testing them 
differently is easy and costs little. 
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Taguchi has remarked that noise factors are often all ETC, and control factors 
are often HTC. For cases in which these conditions hold, the product array 
structure offers the advantage that the number of distinct HTC combinations in the 
associated combined array is relatively small compared with the combinations 
required by a typical application of response surface method arrays.  

Finally, Lucas (1994) proposed a class of “mixed resolution” composite designs 
that can be used in RDPM to save on experimentation costs. The mixed resolution 
designs achieved lower numbers of runs by using a special class of fractional 
factorials such that the terms in the matrices Dk for k = 1,…,r were not estimable. 
Lucas argued that the terms in Dk are of less interest than other terms and are not 
estimable with most Taguchi designs. For our case study, the mixed resolution 
design (not shown) would have 43 instead of 54 runs. In general, using Lucas 
mixed resolution composite designs can help make RSM based alternatives to 
Taguchi Methods like RDPM cost competitive even when all noise factors are 
ETC.  

14.6  Summary 

This chapter describes the goals of robust engineering and two methods to achieve 
these goals. The objective is to select controllable factor settings so that the effects 
of uncontrollable factors are not harmful. The first method presented is an 
extention of standard response surface methods (RSM) called RDPM. This method 
was originally developed in Allen et al. (2001). The second approach is the so-
called static Taguchi Method.   

The benefits of the first method include it derives the profit optimal balance 
between quality and revenues and can easily handle situations involving multiple 
quality characteristics. Benefits of Taguchi Methods include simplicity and cost 
advantages in cases when all noise factors are easy-to-change. 

Taguchi Methods also have the obvious problem that decision-making is 
ambiguous if more than a single response or quality characteristic is of interest. For 
this reason the extension of Taguchi Methods in Song et al. (1995) is described. 

Problems 

In general, choose the answer that is correct and most complete. 
 
1. Which is correct and most complete? 

a. Noise factor variation rarely (if ever) causes parts to fail to conform 
to specifications. 

b. Quality characteristics can be responses in applying RDPM 
experimentation. 

c. The fraction non-conforming cannot be a function of control factors. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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2. Which is correct and most complete? 
a. Robustness opportunities are always present in systems. 
b. Large control-by-noise factor interactions can cause robustness 

opportunities. 
c. Noise-by-noise interactions are sometimes neglected in robust 

engineering. 
d. Total variation of quality characteristics can depend on control factor 

settings. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

3. Which is correct and most complete? 
a. If there are three control factors and four noise factors, Cr is 3 × 4. 
b. Not every quadratic polynomial can be expressed by Equation 14.1. 
c. The first diagonal element in Br is a control-by-noise factor 

interaction. 
d. The first diagonal element in Br is a noise-by-noise factor interaction. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

4. What is the relationship between TOC from Chapter 2 and RDPM? 
 
5. Which is correct and most complete in relation to extended Taguchi Methods? 

a. These methods are based on central composite designs. 
b. The choice of signal-to-noise ratio depends on the number of control 

factors. 
c. The methods are called “extended” because they can be used when 

multiple characteristics are relevant. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (e). 
 

6. Which is correct and most complete in relation to extended Taguchi Methods? 
a. If responses for a control factor combination are: 2, 3, 5, and 3,  

SNRL = 10.1. 
b. If responses for a control factor combination are: 2, 3, 5, and 3,  

SNRS = 2.7. 
c. A common goal in applying Taguchi methods is to maximize relevant 

SNRs.  
d. All of the above are correct. 
e. All of the above are correct except (a) and (e). 
 

7. Which is correct and most complete in relation to extended Taguchi Methods? 
a. Marginal plotting is somewhat similar to regression without control-

by-control factor interactions. 
b. Taguchi Methods necessarily involve using formal optimization. 
c. Taguchi product arrays always result in higher costs than standard 

RSM arrays.  
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d. All of the above are correct. 
e. All of the above are correct except (a) and (e). 
 

8. Which is correct and most complete in relation to extended Taguchi Methods? 
a. Taguchi SNR ratios emphasize quality potentially at the expense of 

profits. 
b. ETC factors generally cost less to change than HTC factors. 
c. Taguchi product arrays call for direct observation of control factor 

setting combinations tested under a variety of noise factor 
combinations. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

9. Assume that z1 and z2 have means μ1 and μ2 and standard deviations σ1 and σ2 
respectively. Also, assume their covariance is zero. What is  
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in terms of μ 1 and μ2, standard deviations σ1 and σ2, and no matrices? 
   

10. List two advantages of RDPM compared with Taguchi Methods. 
 
11. List two advantages of Taguchi Methods compared with RDPM. 
 
12. (Advanced) Extend RDPM to drop the assumption that Dr = 0 for all r. 
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15 

Regression 

15.1  Introduction  

Regression is a family of curve-fitting methods for (1) predicting average response 
performance for new combinations of factors and (2) understanding which factor 
changes cause changes in average outputs. In this chapter, the uses of regression 
for prediction and performing hypothesis tests are described. Regression methods 
are perhaps the most widely used statistics or operations research techniques.  
Also, even though some people think of regression as merely the “curve fitting 
method” in Excel, the methods are surprisingly subtle with much potential for 
misuse (and benefit).  

Some might call virtually all curve fitting methods “regression” but, more 
commonly, the term refers to a relatively small set of “linear regression” methods. 
In linear regression predictions increase like a first order polynomial in the 
coefficients. Models fit with terms like β32 x1

2x4 are stilled called “linear” because 
the term is linear in β32, i.e., if the coefficient β32 increases, the predicted response 
increases proportionally. See Chapter 16 for a relatively thorough discussion of 
regression vs alternatives. 

Note that standard screening using fractional factorials, response surface 
methods (RSM), and robust design using profit maximization (RDPM) methods 
are all based on regression analysis. Yet, regression modeling is relevant whether 
the response data is collected using a randomized experiment or, alternatively, if it 
is “on-hand” data from an observational study. In addressing on-hand data, 
primary challenges relate to preparing the data for analysis and determining which 
terms should be included in the model form. 

Section 15.2 focuses on the simplest regression problem involving a single 
response or system output and a single factor or system input and uses it to 
illustrate the derivation of the least squares estimation formula. Section 15.3 
describes the challenge of preparing on-hand data for regression analysis including 
missing data. Section 4 discusses the generic task of evaluating regression models 
and its relation to design of experiments (DOE) theory. Section 15.5 describes 
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analysis of variance (ANOVA) followed by multiple t-tests, which is the primary 
hypothesis-testing approach associated with regression. Section 6 describes 
approaches for determining a model form either manually or automatically. Section 
7 concludes with details about building design matrices for cases involving special 
types of factors including categorical and mixture variables. 

A full understanding of this chapter requires knowledge of functional forms and 
design matrices from Chapter 13 and focuses on on-hand data. The chapter also 
assumes a familiarity with matrix multiplication (see Section 5.3) and inversion.  
However, when using software such as Sagata® Regression, such knowledge is not 
critical. For practice-oriented readers supported by software, it may be of interest 
to study only Sections 15.3 and 15.5. 

15.2  Single Variable Example 

Consider the data in Figure 15.1a. This example involves a single input factor and 
a single response variable with five responses or data. In this case, fitting a first 
order model is equivalent to fitting a line through the data as shown in Figure 
15.1b. The line shown seems like a good fit in the sense that the (sum squared) 
distance of the data to the line is minimized. The resulting “best fit” line is –26 + 
32 x1.   

The terms “residual” and “estimated error” refer to the deviation of the 
prediction given by the fitted model and the actual data value. Let “i” denote a 
specific row of inputs and outputs. Denoting the response for row i as yi and the 
prediction as yest,i, the residual is Errorest,i = yi – yest,i.   

Figure 15.1a also shows the data, predictions, and residuals for the example 
problem. In a sense, the residuals represent a best guess of how unusual a given 
observation is believed to be in the context of a given model. 

 
i (x1)i yi yest,i Errorest,i

1 3 70 70 0 

2 4 120 102 18 

3 5 90 134 –44 

4 6 200 166 34 

5 7 190 198 –8 

   SSE  =  3480 

  
  (a) 
            (b) 
  
 

     (b) 

Figure 15.1. Single factor example (a) data and (b) plot of data and 1st order model 
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The higher the residual, the more concerned one might be that important factors 
unexplained by the model are influencing the observation in question. These 
concerns could lead us to fit a different model form and/or to investigate whether 
the data in questions constitutes an “outlier” that should be removed or changed 
because it does not represent the system of interest. 

The example in Algorithm 15.1 below illustrates the application of regression 
modeling to predict future responses. The phrase “trend analysis” refers to the 
application of regression to forecast future occurrences. Such regression modeling 
constitutes one of the most popular approaches for predicting demand or revenues. 

15.2.1  Demand Trend Analysis 

Question: A new product is released in two medium-sized cities. The demands in 
Month 1 were 28 and 32 units and in Month 2 were 55 and 45 units. Estimate the 
residuals for a first order regression model and use the model to forecast the 
demand in Month 3. 
 
Answer: The best fit line is yest(x1) = 10 + 20x1. This clearly minimizes almost any 
measure of the summed residuals, since it passes through the average responses at 
the two levels. The resulting residuals are –2, +2, +5, and –5. The forecast or 
prediction for Month 3 is 10 + 20 × 3 = 70 units. 

15.2.2  The Least Squares Formula 

It is an interesting fact that the residuals for all observations can be written in 
vector form as follows. Using the notation from Section 13.2, “y” is a column of 
responses, “X” is the design matrix for fitted model based on the data, and 
“Errorest” is a vector of the residuals. Then, in vector form, we have 

Errorest = y – Xβest . (15.1) 

The “sum of squares estimated errors” (SSE) is the sum or squared residual 
values and can be written 

 SSE = (y – Xβest)′(y – Xβest) . (15.2) 

For example, for the data in Figure 15.1a, βest,1 = –26, and βest,2 = 32, we have 
 

 1 3  70  0 
 1 4  120  18 

X = 1 5 y =  90 y – Xβest = –44 
 1 6  200  34 
 1 7  190  –8 

 
The example in Figure 15.1a is simple enough that the coefficients βest,1= –26 

and βest,2 = 32 can be derived informally by manually plotting the line and then 
estimating the interscept and slope. A more general formal curve-fitting approach 
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would involve systematically minimizing the SSE to derive the coefficient 
estimates βest,1 = –26 and βest,2 = 32. The formulation can be written: 

Minimize:  SSE = (y – Xβest)′(y – Xβest)  . (15.3) 
{by changing βest} 

This approach can derive settings for more complicated cases involving 
multiple factors and/or fitting model forms including second and third order terms.  

Mimizing the SSE is much like minimizing c + bβ + aβ 2  by changing β. 
Advanced readers will note that the condition that a is non-negative for a unique 
minimum is analogous to the condition that X′X is positive semidefinite. If a is 
non-negative, the solution to the easier problem is β = –½ × b ÷ a. The solution to 
the least squares curve fitting problem is 

 βest = (X′X)–1X′y = Ay  (15.4) 

where A is the “alias” matrix. When the least squares coefficients are used, the sum 
of squares errors is sometimes written SSE*. For example, using the data in Table 
15.1a, we have 

X = 1 3 X′  = 1 1 1 1 1 X′X= 5 25 
1 4  3 4 5 6 7  25 135 
1 5     
1 6 (X′X )–1X′  = 1.2 0.7 0.2 –0.3 –0.8   
1 7  –0.2 –0.1 0.0 0.1 0.2   

 
βest = (X′X)–1X′y = –26    (15.5) 

 32  

which gives the same prediction model as was estimated by eye and SSE* = 3480. 

15.3  Preparing “Flat Files” and Missing Data 

Probably the hardest step in data analysis of “on-hand” data is getting the data into 
a format that regression software can use. The term “field” refers to factors in the 
database, “points” refer to rows, and “entries” refer to individual field values for 
specific data points. The term “flat file” refers to a database of entries that are 
formatted well enough to facilitate easy analysis with software. The process of 
creating flat files often requires over 80% of the analysis time. Also, the process of 
piecing together a database from multiple sources generates a flat file with many 
missing entries.  

If the missing entries relate to factors not included in the model, then these 
entries are not relevant. For other cases, many approaches can be considered to 
address issues relating to the missing entries. The simplest strategy (Strategy 1) is 
to remove all points for which there are missing entries from the database before 
fitting the model. Many software packages such as Sagata® Regression implement 
this automatically.  
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In general, removing the data points with missing entries can be the safest, most 
conservative approach generating the highest standard of evidence possible. 
However, in some cases other strategies are of interest and might even increase the 
believability of results. For these cases, a common strategy is to include an average 
value for the missing responses and then see how sensitive the final results are to 
changes in these made-up values (Strategy 2). Reasons for adopting this second 
strategy could be: 

1.  The missing entries constitute a sizable fraction of entries in the 
database and many completed entries would be lost if the data points 
were discarded. 

2.  The most relevant data to the questions being asked contain missing 
entries. 

Making up data should always be done with caution and clear labelling of what is 
made up should be emphasized in any relevant documentation.  

Example 15.3.1  Handling Missing Data 

Question: Consider the data in Table 15.1 related to predicting the number of sales 
in Month 24 using a first order model using month and interest rate as factors. 
Evaluate Strategy 2 for addressing the missing data in Table 15.1a and b. 

Table 15.1. Two cases involving missing data and regression modeling for forecasting 

  (a)     (b)  

Point/ 
Run 

x1 
(Month) 

x2 
(Interest 

Rate) 

y  
(#sales)  Point/

Run 
x1 

(Month) 

x2 
(Interest 

Rate) 

y  
(#sales) 

1 17 3.5 168  1 15  120 

2 18 3.7 140  2 16 3.3 157 

3 19 3.5 268  3 17 3.5 168 

4 21 3.2 245  4 18 3.5 140 

5 22  242  5 19 3.7 268 

6 23 3.2 248  6 20 3.5 245 

     7 21 3.2 242 

     8 22 3.3 248 

     9 23 3.2 268 

 
Answer: It would be more tempting to include the average interest rate for the case 
in Table 15.1a than for the case in Table 15.1b. This follows in part because the 
missing entry is closer in time to the month for which prediction is needed in Table 
15.1a than in Table 15.1b. Also, there is less data overall in Table 15.1a, so data is 
more precious. Added justification for making up data for Table 15.1a derives from 
the following sensitivity analysis. Consider forecasts based on second order models 
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and an assumed future interest rate of 3.2. With the fifth point/run removed in 
Table 15.1a, the predicted or forecasted sales is 268.9 units. Inserting the average 
value of 3.42 for the missing entry, the forecast is 252.9 units. Inserting 3.2 for the 
missing entry, the forecast is 263.4 units. Therefore, there seems to be some 
converging evidence in favor of lowering the forecast from that predicted with the 
data removed. This evidence seems to derive from the recent experience in Month 
22 which is likely relevant. It can be checked that the results based on Table 15.1b 
are roughly the same regardless of the strategy related to removing the data. 
Therefore, since removing the data is the simplest and often least objectionable 
approach, it makes sense to remove point 1 in Table 15.1b but not necessarily to 
remove point 5 in Table 15.1a. 

15.4  Evaluating Models and DOE Theory 

Analyzing a flat file using regression is an art, to a great extent. Determining which 
terms should be included in the functional form is not obvious unless one of the 
design of experiments (DOE) methods in previous chapters has been applied to 
planning and data collection. Even if one of the DOE methods and randomization 
has been applied, several tests are necessary for the derivation of proof. 

In general, to be considered trustworthy it is necessary for regression models 
and their associated model forms to pass several tests. The phrase “regression 
diagnostics” refers to acceptability checks performed to evaluate regression 
models. Several of these diagnostic tests are described in the sections that follow, 
with the exception of evaluating whether the inputs were derived from a 
randomized experiment. Material relevant to randomization was described in 
Section 11.5. The phrase “input pattern” refers to the listing of factor levels and 
runs in the flat file. If standard screening using fractional factorials or response 
surface methods has been applied, then the input pattern is the relevant 
experimental array. 

Variance Inflation Factors (VIFs) are numbers that permit the assessment of 
whether reliable predictions and inferences can be derived from the combination of 
model form and input pattern. A common rule is that VIFs must be less than 10. 
Note that this rule applies only for formulas involving “standardized” inputs. 

Normal Plot of Residuals are graphs that indicate whether the hypothesis tests 
on coefficients can be trusted and whether specific data points are likely to be 
representative of systems of interest. Generally, points off the line are outliers. 

Summary Statistics are numbers that describe the goodness of fit. For 
example, R2 prediction describes the fraction of the variation in the that is 
explainable by the data. It cannot always be calculated, but when it is available it is 
relatively reliable. 

Table 15.2 shows which issues are solved automatically through the application 
of randomization and a design of experiments (DOE) methods such as regular 
fractional factorial or responses surface arrays. In general, models must pass all of 
the tests including a subjective assessment for the results to be considered critical. 
If DOEs are performed, the subjective assessment is far less critical because 
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randomization establishes the cause and effect relationship between input changes 
and response variation.  

In an important sense, the main justifications for using design of experiments 
relate to the creation of acceptable regression models. By using the special 
experimental arrays and randomizing, much subjectivity is removed from the 
analysis process. Also, there is the benefit that, if DOE methods are used, it may be 
possible to properly use the word “proof” in drawing conclusions.  

Table 15.2. Acceptability checks (“  guaranteed, “?” unclear, “ ” loss unavoidable) 

Issue Measure DOE  On-hand 

Inputs: evidence is believable? Randomization completed?   

Inputs: model is supported? VIFs and correlations  ? 

Outputs: outliers in the data? Normal plot of residuals ? ? 

Outputs: model is a good fit? Summary statistics ? ? 

Model makes sense? Subjective assessment  ? 

15.4.1  Variance Inflation Factors and Correlation Matrices 

This section concerns evaluation of whether a given set of data can be reliably 
trusted to support fitting a model form of interest. The least squares estimation 
formula reveals that coefficient estimates can be written as βest = Ay where A = 
(X′X)–1X′ and A is the “alias” matrix. The alias matrix is a function of the model 
form fitted and the input factor settings in the data. If the combination is poor, then 
if any random error, εi, influencing a response in y occurs, the result will be 
inflated and greatly change the coefficients.   

The term “input data quality” refers to the ability of the input pattern to 
support accurate fitting a modeling of interest. We define the following in relation 
to quantitative evalution of input data quality: 

1. Ds is the input pattern in the flat file.  
2. H and L are the highs and lows respectively of the numbers in each 

column of the input data, Ds. 
3. D is the input data in coded units that range between –1 and 1. 
4. X is the design matrix. 
5. Xs is the scaled design matrix (potentially the result of two scalings). 
6. n is the number of data points or rows in the flat file. 
7. m is the number of factors in the regression model being fitted. 
8. k is the number of terms in the regression model being fitted. 

The following procedure, in Algorithm 15.1, is useful for quantitative evaluation of 
the extent to which errors are inflated and coefficient estimates are unstable.  

Note that, in Step 4 the finding of a VIF greater than 10 or a ri,j greater than 0.5 
does not imply that the model form does not describe nature. Rather, the 
conclusions would be that the model form cannot be fitted accurately because of 
the limitations of the pattern of the input data settings, i.e., the input data quality. 
More and better quality data would be needed to fit that model. 
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Step 1.  (Optional) Calculate the scaled input array: 
Di,j = –1 + 2.0 × (Ds

i,j – Lj) ÷ (Hj – Lj) for i = 1,...,n and j = 1,...,m. 
Step 2.  Create the design matrix, X, associated with D if it is available or Ds and 

the model form being fitted. Also, create the scaled or “standardized” 
design matrix Xs that contains (k – 1) columns (no column for the constant 
term).   
The entries in Xs are defined by 

Xs
i,j-1 = (Xi,j – Xbar,j) ÷ [sj × sqrt(n – 1)] for i = 1,...,n and j = 2,...,k, 

where Xbar,j is the average of the entries in the jth column and sj is the 
standard deviation of the entries in the jth column.   

Step 3.   Calculate the so-called “correlation matrix” which contains the “variance 
inflation factors” (VIFs) and the correlation between each pair of the ith 
coefficient estimate and the jth coefficient estimate (ri,j) for i = 2,...,k and j = 
2,…,k.  The matrix, (Xs′Xs)–1, is: 

 
  VIF2 r23 ... r2k   
  r23 VIF3 ... ...  = (Xs′Xs)–1 
  ... ... ... ...   
  r2k ... ... VIFk   

 
Step 4.  If any of the VIFs is greater than 10 or any of the ri,j are greater than 0.5 

declare that the input data quality likely does not permit an accurate fit. 

Note also that most statistical software packages do not include the optional 
Step 1 in their automatic calculations. Therefore, they only perform a single 
scaling. Therefore also, the interpretation of their output in Step 4 is less credible. 
In general, the assessment of input data quality is an active area of research, and 
the above procedure can sometimes prove misleading. In some cases, the 
procedure might signal that the input data quality is poor while the model has 
acceptable accuracy. Also, in some cases the procedure might suggest that the 
input data quality is acceptable, but the model does not predict well and results in 
poor inference. 

Algorithm 15.1. Calculating VIFs and correlations between coefficient estimates 

Example 15.4.1  Evaluating Data Quality 

Question 1: Consider the data in Table 15.3. Does the data support fitting a 
quadratic model form? 
 
Answer 1: Following the procedure, in Step 1, the D matrix in Table 15.3 was 
calculated using H1 = 45 and L1 = 25. Since there is only a single factor, D is a 
vector. In Step 2, the Xs matrix was calculated using Xbar,1 = –0.025, s1 = 1.127, 
Xbar,2 = 0.953, and s2 = 0.095. In Step 3, the transpose, multiplication, and inverse 
operations were applied using Excel resulting in the correlation matrix in Table 
15.3. Step 4 results in the conclusion that the input data is likely not of high enough 
quality to support fitting a quadratic model form since r12 = 0.782 > 0.5. 
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Question 2: Intepret visually why a second order model might be unreliable when 
fitted to the data in Table 15.3a. 
 
Answer 2: Figure 15.2a shows the intial fit of the second order model. Figure 
15.2b shows the second order fit when the last observation is shifted by 20 
downward. The fact that such a small shift compared with the data range causes 
such a large change in appearance indicates that the input data has low quality and 
resulting models are unreliable. 

Table 15.3. Example: (a) data and D, (b) Xs, and (c) the correlation matrix 

 (a)    (b)     (c)   

(x1)i Di,1 yi   –0.500 0.289 1.428 0.782   
25 –1 110 Xs =   –0.500 0.289 0.782 1.428   
25 –1 120   0.474 –   
44 0.9 245    0.525 0.289        

45 1 260    
 
 
 
 
 
 
 
 
 
   x1     x1 
    

 
(a)       (b)  

Figure 15.2. (a) Initial second order model and (b) model from slightly changed data 

15.4.2  Normal Probability Plots and Other “Residual Plots”  

Another important regression diagnostic test is based on so-called “normal 
probability plots” of the residuals, Errorest,i for i = 1,…,n. Normal probability 
plots can provide information about whether the model form is adequate. They also 
aid in identification of response data that are not typical of the system during usual 
operations. If outliers are detected, this triggers detective work similar to spotting 
an out-of-control signal in control charting. Data is removed, and the model is 
refitted only if independent evidence suggests that the data is not representative.  

The procedure below shows how to construct normal probability plots of any n 
numbers, y1,…,yn, to permit subjective evaluation of the hypothesis that the 
numbers come from a normal distribution to a good approximation. A rule of 
thumb is that n must be 7 or greater for the procedure to give reliable results. For 
regression, if the residuals appear to come from a single normal distribution, then 
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confidence grows in the model form chosen, e.g., one believes that one does not 
need to include additional terms such as β20 x1

2x2 in the model. Also, confidence 
increases that any hypothesis tests that might be applied provide reliable results 
within the stated error rates.  

Algorithm 15.2. Normal probability plotting 

 
If outliers are detected, it is generally not desirable to remove automatically the 

associated data points from the flat file or data set. Instead, detective work must 
uncover something that makes the associated data not representative of the system 
of interest before any points are removed. If nothing suspicious is found associated 
with the outliers, the data points should be retained, and this might suggest that a 
new model form is needed. In some cases, uncovering the factor whose variation 
causes outliers can be the most valuable outcome of the regression analysis 
process. 

The term “heteroscedasticity” refers to the case in which the residuals do not 
have constant standard deviation. Heteroscedasticity can be detected using normal 
probability plots of residuals and observing a relationship that is non-linear. 
Heteroscedasticity can be addressed using weighted least squares analysis available 
in standard software, e.g., Sagata® Regression. Also, it can make sense in some 
cases to transform the response data, e.g., by taking a natural logarithm of all 
response data before fitting the model form. 

Step 1.  Generate an n dimension vector Z using the formula  
Zi = Φ–1[(i – 0.5)/n] for  i = 1,…,n ,             (15.8) 

where Φ–1 is the cumulative normal distribution with μ = 0 and σ = 1.  
The value can be obtained by searching Table 15.4 below for the 
argument and then reading over for the first two digits and reading up for 
the third digit.  Note also, that if 0.5 < s < 1, then Φ–1[s] = 1.0 – Φ–1[–s]. 

Step 2.  Generate ysorted by sorting in ascending order the numbers in y.  
Therefore, ysorted,1 is the smallest number among y1,…,yn (could be the 
most negative number). 

Step 3.    Plot the set of ordered pairs {ysorted,1,Z1},…,{ysorted,n,Zn}.  
Step 4.  Examine the plot. If all numbers appear roughly on a single line then the 

assumption that all the numbers y1,…,yn come from a single normal 
distribution is reasonable. If the numbers with small absolute values line 
up but a few with large absolute values are either to the far right-hand-
side or to far left hand side, off the (rough) line formed by the others, 
then we say that the larger (absolute value) numbers probably did not 
come from the same distribution as the smaller numbers.  Probably some 
factor caused these numbers to have a different origin than the others.  
These numbers with large absolute values off the line are called 
“outliers”.   
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Example 15.4.2  Normal Probability Plotting Residuals 

Question: Assume that the residuals are: Errorest,1 = –3.6, Errorest,2 = –15.1, 
Errorest,3 = –1.8, Errorest,4 = 3.9, Errorest,5 = –1.4, Errorest,6 = 4.8, and Errorest,7 = 2.0. 
Use normal probability plotting to assess whether any are outliers. 
 
Answer: Step 1 gives Z = {–1.47, –0.79, –0.37, 0.00, 0.37, 0.79, 1.47}. Step 2 
gives ysorted = {–15.1, –3.6, –1.8 –1.4, 2.0, 3.9, 4.8}. The plot from Step 3 is shown 
in Figure 15.3. All numbers appear to line up, i.e., seem to come from the same 
normal distribution, except for –15.1, which is an outlier. It may be important to 
investigate the cause of the associated usual response (run 2). For example, there 
could be something simple and fixable, such as a data entry error. If found and 
corrected, a mistake might greatly reduce prediction errors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.3. Normal probability plot of the residuals 

 In the context of screening experiments, analysts might normal probability plot 
the estimated coefficients instead of applying Lenth’s method. The factors judged 
to be significant (if any) would have coefficients that are outliers.  

In addition to normal probability plotting the residuals, it is common to view 
plots of the Errorest,i plotted vs yest,i and/or the inputs xi for each run, i = 1,…,n. For 
the calculations and associated hypothesis tests to be believable, the Errorest,i values 
should not show an obvious dependence on any other quantities. In general, all of 
these “residual plots” can provide evidence that the functional form needs to be 
changed and the hypothesis testing results cannot be trusted. Yet, all residual 
plotting results can also be misleading in cases in which the number of data is 
comparable to the number of terms in the fitted model. 
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Table 15.4. If Z ~ N[0,1], then the table gives P(Z < z). The first column gives firs three 
digits of z, the top row gives the last digit 
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Table 15.4. Continued 
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15.4.3  Summary Statistics 

In addition to correlation matrices and residual plots, several numbers called 
“summary statistics” provide often critical information about the adequacy of the 
model form in question. This section describes four summary statistics: R2 
adjusted, PRESS, R2 Prediction, and σest. 

Probably the most widely used summary statistic is the “R2 adjusted” that is 
also written “adjusted R-squared” or R2

adj. This quantity is also sometimes called 
the “adjusted coefficient of multiple determination”. To calculate the adjusted R-
squared, it is convenient to use a n × n matrix, Q, with every entry equaling 1.0. 
This permits calculation of the “sum of squares total” (SST) using 

SST = Y′Y – ⎟
⎠
⎞

⎜
⎝
⎛

n
1

Y′QY           (15.9) 

Then, the adjusted R-squared (R2
adj) is given by 

      R2
 adjusted = 1 – ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
−

SST
SSE

kn
n *1         (15.10) 

where k is the number of terms in the fitted model and SSE* is the sum of squares 
error defined in Equation 15.3. It is common to interpret R2

adj as the “fraction of 
the variation in the response data explained by the model”.   

Example 15.4.3  R2 Adjusted Calculations 

Question: Calculate and interpret R2 adjusted for the example in Figure 15.2a. 
 
Answer: The following derive from previous results and definitions: 
 

 0  70  1 1 1 1 1  

 18  120  1 1 1 1 1  

Errorest = –44 ,   Y = 90 , and Q = 1 1 1 1 1 (15.11)

 34  200  1 1 1 1 1  

 –8  190  1 1 1 1 1  
 
Therefore, with n = 5 data points, SST = 13720 and R2 adjusted = 0.662 so that 
roughly 66% of the observed variation is explained by the first order model in x1. 
 

If the R2
adj is derived from a formally planned experiment, e.g., standard 

screening or response surface methods (RSM) have been applied, then one 
generally expects R2

adj to be greater than 0.75. R2
adj values less than 0.75 generally 

indicate that important factors are varying uncontrollably, including possibly 
substantial measurement errors. Otherwise, if on-hand data is used, the value of 
R2

adj may be misleading, and limited conclusions can be drawn. Again returning to 
the first example in this chapter, since the system input (x) values do not follow the 
pattern of a planned experiment, one is skeptical about how much the 0.66 implies. 
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The next two summary statistics are based on the concept that the SSE can 
underestimate the errors of regression model predictions on new data. This follows 
intuitively because the fit might effectively “cheat” by overfitting the data upon 
which it was based and extrapolate poorly. The phrase “cross-validation” refers to 
efforts to evaluate prediction errors by using some of the data points only for this 
purpose, i.e., a set of data points only for testing. 

Define yest(i,βest,x) as the regression fitted to a training set consisting of all runs 
except for the ith run. Define the xi and yi as the inputs and response for the ith run 
respectively. Then, the PRESS statistic is 

 
PRESS = Σi,…,n [yest(i,βest,x) – yi]2.         (15.12) 

 
Because it is based on cross validation, the PRESS is generally more likely to 

provide an accurate characterization of the errors that the experimenter will face in 
new situations than the SSE.   

The “R2 prediction” or “R-squared prediction” is 
 

R2 prediction = 1 – ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

−
−

SST
PRESS

kn
n 1 .              (15.13) 

 
As long as the input configuration permits the PRESS to be calculated, the R2 

prediction might be considered preferable to R2 adjusted. In general, it is easy to 
identify situations in which a model form would minimize the SSE and/or 
maximize the R2

adj and yet lead to inaccurate predictions or inferences about the 
engineered system. It is relatively difficult, however, to imagine a situation in 
which minimizing the PRESS or maximizing the R2 prediction would lead to an 
undesirable model form. 
 

Example 15.4.4  Calculating R2 Prediction 

Question: Calculate and interpret the R2 prediction for the example in Figure 
15.2a. 
 
Answer: Table 15.5 shows the model coefficients, predictions, and errors in the 
PRESS sum. Squaring and summing the errors gives PRESS = 6445.41. Then, the 
R2 prediction = 0.53. Therefore, the model explains only 53% of the variation and 
cross validation indicates that some overfitting is occurring. 

 
In Chapter 4, the process capability in the context of the Xbar and R charts was 

defined as 6σ0. The symbol “σ0” or “sigma” is the standard deviation of system 
outputs when inputs are fixed. For establishing the value of σ0 using Xbar and R 
charting, it is necessary to remove data associated with any of the 25 periods that is 
not representative of system performance under usual conditions. This process is 
similar to the removal of outliers in regression analysis based on normal 
probability plotting residuals and detective work. 
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Table 15.5. Calculations for evaluating the PRESS 

 Data point removed (i) 

Quantity 1 2 3 4 5 

Constant –26 –44.000 –15 –11.429 –42 

(x1)i 32 34.571 32 27.143 36 

Prediction Point 3 4 5 6 7 

yest(i,βest,x) 70 94.286 145 151.429 210 

Y 70 120.000 90 200.000 190 

Error 0 25.714 –55 48.571 –20 

 
Regression modeling permits estimation of σ0 without the need to have 

responses from repeatitions of the same system inputs. After not representative 
data is removed from a process involving residual plots, the model form is refitted. 
Then, σ0 can be estimated using 
 

σest
2 = SSE*/(n – k).         (15.14) 

 
where SSE* is the sum of squares error for the least squares model, n is the number 
of runs, and k is the number of terms in the fitted model form. Many software refer 
to their estimate of “σest” using “S,” including Minitab® and Sagata® Regression.  

The value of σest is useful for at least three reasons. First, it provides a typical 
difference or error between the regression prediction and actual future values. 
Differences will often be larger partly because of the regression model predictions 
are not perfectly accurate with respect to predicting average responses. Second, σest 
can be used in robust system optimization, e.g., it can be used as an estimate of σr 
for the formulas in Chapter 14. 

Third, if the value of σest is greater by an amount considered subjectively large 
compared with the standard deviation of repeated response values from the same 
inputs, then evidence exists that the model form is a poor choice. This is 
particularly easy to evaluate if repeated runs in the input pattern permit an 
independent estimate of σest by taking the standard deviation of these responses. 
Then, it might be desirable to include higher order terms such as x1

2 if there were 
sufficient runs available for their estimation. This type of “lack of fit” can be 
proven formally using hypothesis tests as in two-step response surface methods 
after the first step in Section 13.6.  

Example 15.4.5  Estimating Sigma Using Regression 

Question: Calculate and interpret the value of σest using the data in Figure 15.1a. 
  
Answer: First, the normal probability plot of residuals in Figure 15.4 finds no 
obvious outliers. Therefore, there is no need to remove data and refit the model. 
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From previous problems, the SSE* is 3480 and σest = sqrt(3480 ÷ 3) = 34.1. 
Without physical insight about the system of interest or responses from repeated 
system inputs, there is little ability to assess lack of fit. Typically, outputs from the 
same system would be within 34.1 units from the mean predicted by the regression 
model yest(x1) = –26 + 32 x1. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.4. Normal plots of residuals for single factor example 

15.5  Analysis of Variance Followed by Multiple T-tests 

If all of the acceptability tests are passed, it can be of interest to perform hypothesis 
tests to prove that model terms are associated with non-zero effects. Even if 
randomization has not been used in the data collection, it still can be of interest to 
perform hypothesis testing. In this section, the Analysis of Variance (ANOVA) 
followed by t-testing method is described in Algorithm 15.5 for hypothesis testing 
based on regression modeling. This method is perhaps the most common approach 
used in all standard regression software.  

The chief benefit of ANOVA followed by t-tests is that it can detect whether all 
the data are noise with a regulated Type I error rate regardless of the number of 
coefficients of interest for testing. Therefore, ANOVA offers the benefits of the 
Experimentwise Error Rate (EER) in Lenth’s methods to cases in which the 
experimental design is not a regular fractional factorial or Plackett Burman design.  

As a result, the methods are potentially alternative approaches to Lenth’s 
method described in the context of standard screening using fractional factorials. 
Generally, the advantage of Lenth’s method compared with ANOVA in the context 
of regular fractional factorials is that Lenth’s method offers a higher probability of 
finding significance under standard assumptions, i.e., a lower Type II error rate. In 
addition, unlike Lenth’s method, standard ANOVA cannot be applied when the 
number of terms in the fitted regression model equals the number of runs. The 
reason for this relates to the fact that certain quantities in ANOVA would be zero 
and, subsequently, ratios based on them would be undefined. Therefore, ANOVA 
followed by t-tests is probably not relevant for analyzing data from standard 
screening experiments. 
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Classic references on ANOVA include Fisher (1925) and other books written 
by Fisher. Here, only one type of ANOVA method is considered, which might be 
called “parametric regression based ANOVA”. It is called “parametric” because 
the approach involves the potentially “ad hoc” use of the F-distribution which is 
associated with the assumption that the residuals are normally distributed. The 
lack-of-fit test in sequential response surface methods is an example of another 
type of parametric ANOVA. Other types of ANOVA might be relevant for 
purposes such as comparing the robustness of different methods. Also, non-
parametric methods can be useful when a high level of evidence is desired and data 
is sufficient to offer an acceptable probability of identifying effects, i.e., the non-
parametric methods generally require more data to establish significance. 

The following are used in the ANOVA method: 
1. Ds is the input pattern in the flat file.  
2. H and L are the highs and lows respectively of the numbers in each 

column of the input data, Ds. 
3. D is the input data in coded units that range between –1 and 1. 
4. X is the design matrix. 
5. Xs is the scaled design matrix (potentially the result of two scalings). 
6. n is the number of data points or rows in the flat file. 
7. m is the number of factors in the regression model being fitted. 
8. k is the number of terms in the regression model being fitted. 
9. Y is a vector of response data. 
10. yaverage is the average of all n responses in the n dimensional data vector Y.  
11. J is an n dimensional vector with all entries equal to 1.  
  
It is perhaps most standard to pronounce interactions terms as being significant 

after the optional scaling in Step 1 has been performed. Further, it is often 
reasonable to accept evidence levels associated with p-values greater than 0.05. 
This follows because the decision-maker may be attempting to determine whether 
any causal relationship might exist rather than proving that one does exist. 

A modified version of the above method is based on an assumption that the 
standard deviation of the random error, σ, is believed to be known. This could 
occur, for example, if an Xbar & R chart was used to study this system output and 
obtain the process capability, 6σ, as described in Chapter 4. In this approach, one 
simply substitutes the believed value of σ2 in place of the MSE in the ANOVA 
table in Step 3 and the calculation of the ti in Step 5. Also, the Residuals df = ∞, 
which can be achieved effectively by using the largest number in the F and t tables.  

The phrase “random factors” refers to system inputs whose levels are relevant 
mainly because of their relevance in predicting responses from a large population. 
For example, the participants are random factors in a drug test because we are not 
primarily interested in the effects on individuals (the levels) but rather on the 
effects on a population of people. The formulas in the relevant “ANOVA Table” 
in Table 15.6 give the same values as formulas in standard textbooks such as 
Montgomery (2000). If random factors are involved, then modified formulas in 
Montgomery (2000) should be used to develop more believable inferences about 
the effects of the factors on the larger population. 
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Algorithm 15.3. Analysis of variance followed by multiple t-tests 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 15.6. The Analysis of variance table for regression-based ANOVA 

Source Sum of squares df MS F value 

Regression 
model 

SSR =  
(Xβest – Jyaverage)′(Xβest – Jyaverage) 

k – 1 MSR =  
SSR/(k – 1) 

F0 = 
MSR/MSE 

Residuals SSE = (Y  – Xβest)′(Y  – Xβest) n – k MSE =  
SSE/(n – k) 

 

Example 15.5.1  Single Factor ANOVA Application 

Question: Calculate and interpret the results of the ANOVA method followed by 
multiple t-tests based on the data in Figure 15.1a. 
  
Answer: Table 15.7a shows the ANOVA table and Table 15.7b shows the 
calculation of the t-statistic. Note that for a single factor example, the ANOVA p-
value is the same as the single factor coefficient p-value, i.e., the chance that the 
data is all noise can be evaluated with either statistic. With so little data, the p-
value of 0.056 can be considered strong evidence that factor x1 affects the average 
response values. Note that since it is not clear whether randomized experimentation 
has been used, it is not proper to declare that the analysis provides proof. 
 

The “Bonferroni inequality” establishes that if q tests are made each with an 
α chance of giving a Type I error, the chance of no false alarm on any test is 
greater than 1 – q × α. Even though additional mathetical results can increase this 

Step 1.  (Optional) Calculate the scaled input array matrix using: 
Di,j = –1 + 2.0 × (Ds

i,j – Lj) ÷ (Hj – Lj) for i = 1,...,n and j = 1,...,m. 
Step 2.  Create the design matrix, X, associated with D if it is available or Ds and 

the model form being fitted with k terms. Calculate the least squares 
coefficient estimates, βest, using βest = AY where A is the (X′X)–1X′. 

Step 3.   Calculate all quantities in the following so-called “ANOVA table” in 
Table 15.6, which includes calculation of the sum of squares regression 
(SSR), the sum of squares error (SSE), the so-called “degrees of freedom” 
(df), the mean squared regression (MSR), and the mean squared error 
(MSE).  

Step 4.   If F0 < Fα,k – 1, n – k (found using Table 13.9), then stop and declare that 
“none of the terms in the model has a significant affect on the average 
response” or, in other words, the data is all noise. Otherwise, go to Step 5.   

Step 5.   Calculate ti = (βest,i){[(MSE)(X′X)–1
i,i]–½} for i = 2,…,k, where (X′X)–1

i,i 
refers to the ith entry on the diagonal of (X′X)–1. If ti > tα,n – k (found using 
Table 11.2), then declare, “Term i in the regression model is significant for 
alpha level α,” and also, “The factors associated with term i are significant 
with alpha level α.” For the other terms, we conclude only that we “fail to 
find significance” without additional data. 
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bounding limit, with even a few tests (e.g., q = 4) approaches based on individual 
testing offer limited overall coverage unless the α values used are very small. 
ANOVA followed by t-tests can offer the same guarantee while achieving lower 
Type II error risks than any procedure based on the Bonferroni inequality. 

Table 15.7. Single factor (a) ANOVA table and (b) t-test and p-values 

  df SS MS F p-value 

(a) Regression 1 SSR = 10240 10240 8.83 0.0590 

 Residuals 3 SSE = 3480 MSE=1160   

 
  Coefficients Standard error t Stat p-value 

(b) Constant –26.00 55.96 –0.46 0.674 

 x1 32.00 10.77 t1 = 2.97 0.059 

15.6  Regression Modeling Flowchart 

The phrase “stepwise regression” refers to automatic model form selection 
procedures. Considering the subjective nature of the acceptability checks in 
Section 15.4, it is not clear that any automatic procedure can result in an acceptable 
model. Figure 15.5 gives a reasonably standard semi-automatic approach for 
establishing regression models to analyze data. This flowchart ties together the 
diagnostic and analysis of variance (ANOVA) methods described in previous 
sections. 

If a carefully designed, randomized experiment has been performed, the model 
form may be specified by the DOE method with little ambiguity, e.g., for RSM, the 
fitted model is generally a second order polynomial. Still, the method in Figure 
15.5 can be used to prune or “edit” the model. Smaller models are simpler and can 
be more interpretable. For example, there might be other factors besides those 
purposely varied in experimentation that might be included in the fitted model 
form. Figure 15.5 is primarily relevant for cases in which data does not come from 
design of experiments (DOE) applications, i.e., “on-hand” data is being analyzed. 

As for calculating variance inflation factors (VIFs) and performing analysis of 
variance followed by t-tests, starting the flowchart with scaled inputs is generally 
desirable. Therefore, performing Step 1 of these procedures is probably a natural 
first step in all efforts to find a model form. This follows in part because the sizes 
and significance levels associated with second order terms depend upon the scale 
of these inputs. Starting with inputs scaled to –1 to 1 provides a natural basis for 
assessing whether interactions underlie the system performance being studied. 
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Figure 15.5. Regression flow chart 

Often, the analysis process in Figure 15.5 can be completed within a single 
hour after the flat file is created. A first order model using factors of intuitive 
importance is a natural starting point. Patterns in the residuals or an intuitive desire 
to explore additional interactions and curvatures generally provide motivation for 
adding more terms. Often, adding terms such as x1

2 is as easy as clicking a button. 
Therefore, the bottleneck is subjective interpretation of the acceptability of the 
residual plots and of the model form.  

Even though all results from on-hand data should be evaluated with caution, 
regression analyses often provide a solid foundation for important business 
decisions. These could include the adjustment of an engineering design factor such 
as the width of seats on airplanes or the setting aside of addition money in a budget 
because of a regression forecast of the financial needs.  

Example 15.6.1  Method Choices 

Question: Which of the following is correct and most complete? 
a. Even if a randomized experiment has been used, proof might not be 

achieved. 
b. Inspection of residuals could be used to identify unusual observations 

or outliers. 
c. Proof is guaranteed by low p-values in regression modeling. 
d. All of the above are correct except (c). 

 
Answer: According to the flowchart, a randomized experiment, low p-values, and 
subjectively acceptable residuals are all required for proof. Unusual and 
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untrustworthy data can be identified by observing large values on the plots. For 
these reasons, the correct answer is (d). 
 

Therefore, “stepwise regression” methods are automatic procedures similar to 
Figure 15.5 except with the automatic assessment based on quantifiable 
acceptability tests. “Forward stepwise regression” involves an initial model that 
includes only the constant term. “Backward stepwise regression” starts with an 
initial model containing many terms and the removal of terms automatically based 
on specific diagnostic values. Many stepwise approaches are based on the F-tests 
which fail to address whether the model form cross-validates well. Sagata® 
Regression implements a forward stepwise procedure based on the PRESS statistic, 
which might be considered relatively trustworthy since it is based on cross 
validation. 

The following is an application based on the flowchart, diagnostic plotting, and 
ANOVA methods. This application involves predicting body fat, which is 
expensive to measure accurately, as a function of quantities that are inexpensive to 
measure accurately. 

Example 15.6.2 Body Fat Prediction 

The following are reproduced with permission from a study by Dr. A. G. Fisher 
and others and made available through the internet at http://lib.stat.cmu.edu. 
Analyze the body fat data in Table 15.8 and make recommendations to the extent 
possible for a person in training who is 35 years old, 190 lb, 68 inches, with a 42 
cm neck, and who wants to lose weight. A good analysis will typically include one 
or two models, reasons for selecting that model, estimates of the errors of the 
model, and interpretation for the layperson.  
 
Question 1: What prediction model would you use to predict the body fat of 
people not in the table such as the person in training and why? 
 
Answer 1: Consider the terms in a full second order model including f1(x) = 1, 
f2(x) = Age, …, f15(x) = Height × Neck. The combination of terms up to second 
order that minimize the PRESS are Age, Age × Weight, and Age × Height. Fitting 
a model with only these terms using least squares gives %Fat = 3.25×Age + 
0.00699×Age×Weight – 0.0561×Age×Height. This model has an R2

adj_prediction 
approximately equal to 0.86 so that these few terms explain a high fraction of the 
variation. The model is also simple and intuitive in that it correctly predicts that 
older, heavier, and shorter people tend to have relative high body fat percentages. 
Figure 15.7 shows the model predictions as a function of height and weight. 
 
Question 2: Does the normal probability plot of residuals support the assumption 
that the residuals are IID normally distributed? 
 
Answer 2: The normal probability plot provided limited, subjective support for the 
assumption that the residuals are IID. normally distributed noise. There are no 
obvious outliers, i.e., points to the far right or left off the line. Since the points do 
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not precisely line up, there could well be missing factors providing systematic 
errors. 
 
Question 3: What body fat percentage do you predict for the person in training and 
what are the estimated errors for this prediction? 
 
Answer 3: This model predicts that the average person with x = (35, 190, 68, 42)′ 
has 25.9% body fat with standard error of the mean {Variance[yest(βest,x)]}1/2 equal 
to 2.5%. The estimated standard errors are 6.1%. Therefore, the actual body fat of 
the person in training could easily be 6–8% higher or lower than 25.9%. This 
follows because there are errors in predicting what the average body fat for a 
person with x = (35, 190, 68, 42)′ (±2.5%), and the person in training is likely to be 
not average (±6.1%). Presumably, factors not included in the data set such as head 
size and muscle weight are causing these errors. These error estimates assume that 
the person in training is similar, in some sense, to the 29 people whose data are in 
the training set. The surface plot below in Figure 15.6 shows that the prediction 
model gives non-sensical predictions outside the region of the parameter space 
occupied by the data, e.g., some average body fat percentages are predicted to be 
negative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15.6. Normal probability plot for the body fat prediction model 

Question 4: What type of reduction in body fat percentage could the person in 
training expect by losing 15 lb? 
 
Answer 4: The model predicts that the average person with specifications x = (35, 
175, 68, 42)′ would have 22.2% percent body fat with error of the mean 
{Variance[yest(βest,x)]}1/2 equal to 2.5%. Therefore, if the “Joe average” person 
with the same specifications lost 15 lb, then “Joe average” could expect to lose 
roughly 4% body fat. It might be reasonable for the person in training to expect 
losses of this magnitude also. 
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Table 15.8. Dimensions and % body fat of 29 people 

Age (yrs.) Weight (lbs.) Height (inches) Neck (cm) % Fat 
23 154.25 67.75 36.20 12.3 
22 173.25 72.25 38.50 6.1 
22 154.00 66.25 34.00 25.3 
26 184.75 72.25 37.40 10.4 
24 184.25 71.25 34.40 28.7 
24 210.25 74.75 39.00 20.9 
26 181.00 69.75 36.40 19.2 
25 176.00 72.50 37.80 12.4 
25 191.00 74.00 38.10 4.1 
23 198.25 73.50 42.10 11.7 
26 186.25 74.50 38.50 7.1 
27 216.00 76.00 39.40 7.8 
32 180.50 69.50 38.40 20.8 
30 205.25 71.25 39.40 21.2 
35 187.75 69.50 40.50 22.1 
35 162.75 66.00 36.40 20.9 
34 195.75 71.00 38.90 29.0 
32 209.25 71.00 42.10 22.9 
28 183.75 67.75 38.00 16.0 
33 211.75 73.50 40.00 16.5 
28 179.00 68.00 39.10 19.1 
28 200.50 69.75 41.30 15.2 
31 140.25 68.25 33.90 15.6 
32 148.75 70.00 35.50 17.7 
28 151.25 67.75 34.50 14.0 
27 159.25 71.50 35.70 3.7 
34 131.50 67.50 36.20 7.9 
31 148.00 67.50 38.80 22.9 
27 133.25 64.75 36.40 3.7 
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Figure 15.7. The average body fat percentages predicted for 35-year-old people and plotted 
using Sagata® Regression Professional 

 15.7  Categorical and Mixture Factors (Optional) 

“Categorical factors” are inputs that can assume only a finite number of levels 
and the ordering of these levels is ambiguous. For example, a categorical factor 
might be the supplier company that makes the component in question, which could 
be Intel, Panasonic, or RCA (three levels). Categorical factors are distinguished 
from continuous factors, which can assume, theoretically, any of an infinite 
number of levels which have a natural ordering.  

“Mixture factors” are inputs whose levels are constrained to sum to a constant. 
For example, these could be the components of a cake such as percent flour, water, 
and sugar. Percentages must total 100%. Mixture factors require adjustments to 
response surface methods to make fitting regression models possible. Issues related 
to categorical factors and mixture factors are described in this section. Analysis of 
data with categorical outputs is also briefly described with more details in the next 
chapter.  
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15.7.1  Regression with Categorical Factors 

In general, categorical variables should be avoided as far as possible because their 
inclusion can greatly increase the number of terms in a model. A general rule is 
that the number of data or runs needed to fit accurately a model is proportional to 
the number of terms. Often, engineering insight can permit the experimental team 
to address the same issue in planning experiments using either a continous or a 
categorical factor. For example, color might be considered a categorical factor 
(e.g., levels might be “green” and “yellow”). At the same time, with suitable 
equipment it might be possible to address color issues by varying the wavelength 
of the light, e.g., using a prism. Then wavelength could be the experimental factor 
resulting in either a savings in experimentation costs or an increase in prediction 
accuracy or both. 

Note that some factors are not categorical even if one can only reliably create 
certain levels of them. For example, imagine that only the temperatures of 20 °C, 
25 °C, and 100 °C are available in the laboratory because of experimental 
limitations. In this case, temperature is continuous and not categorical, since one 
might be interested in performance at 78 °C (i.e., all “in between” levels are 
conceivably possible). Also, 20 °C < 25 °C < 100 °C so the level ordering is not 
ambiguous.  

Generally, if categorical factors are at two levels, regression models based on 
categorical factors can be constructed in the same manner as for continuous 
factors. However, if three or more levels of one or more categorical factors are 
involved, the situation is relatively complicated. Then, a mathematical construct 
called “contrasts” are created and treated like “mini-factors” in the analysis. If 
there are l levels of the categorical factor, then one creates l – 1 two-level contrasts. 
These contrasts function in a similar manner in calculations as factors for which 
experimentation has been conducted at two levels. Therefore, interaction terms can 
be fitted but pure quadratic or cubic terms cannot. 

There are multiple approaches for creating these contrasts that give the same 
predictions in all situations. The approach described here is to create the ith contrast 
with values equal to 1 if the categorical factor assumes the corresponding ith level, 
for i = 1,…, l – 1. Then, in the modeling, no terms involving interactions between 
these contrasts can be included, although interactions between contrasts and 
continuous factors can be included.  

Table 15.9 below shows an example with two factors, both at three levels, with 
the second being categorical. Part (a) shows the input and output pairs as well as 
the two contrasts. The first of these contrasts can be thought of as associated with 
the supplier “Intel”. Part (b) shows the X matrix corresponding to a matrix with all 
main effects involving x1, x2 , and x3, and two factor interactions involving x1x2 and 
x1x3 , as well as the pure quadratic term involving x1

2. Applying Equation 15.8 to 
estimate the coefficients gives: yest(βest,x) = 5.22 + 0.98 x1 + 8.00 x2 – 95.33 x3 – 
0.01 x1

2 – 0.35 x1 x2 + 1.32 x1 x3 . To use this model, e.g., to predict the output if 
Intel were used as the supplier, one would substitute x1 = 1.0 and x2 = 0.0 into 
Equation 15.10. 
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Table 15.9. Example illustrating regression with a three level categorical factor 

      (a)      (b) 
Run Temp. Supplier x2 x3 y   Const. x1 x2 x3 x1

2 x1 x2 x1 x3  

1 20 Intel 1 0 22   1 20 1 0 400 20 0  

2 80 Panasonic 0 1 33   1 80 0 1 6400 0 80  

3 20 RCA 0 0 21   X = 1 20 0 0 400 0 0  

4 80 Intel 1 0 3   1 80 1 0 6400 80 0  

5 50 Panasonic 0 1 1   1 50 0 1 2500 0 50  

6 80 RCA 0 0 23   1 80 0 0 6400 0 0  

7 50 Intel 1 0 21   1 50 1 0 2500 50 0  

 
Note that it might make sense to focus on a smaller number of contrasts in an 

analysis than a complete set. This could aid in intuition-building and leave more 
degrees of freedom for residuals and/or entertaining other model terms. For 
example, one might group Intel and Panasonic suppliers together because they 
have similar quality levels and focus only on the contrast x2 in the above example. 
Then, x3 would not be considered in the analysis. 

15.7.2  DOE with Categorical Inputs and Outputs 

Many methods have been proposed for planning response surface methods 
experiments involving categorical factors. Chantarat et al. (2003) offered optimal 
design of experiments methods with advantages in run economy and prediction 
accuracy. In this section, we describe what is probably the simplest approach for 
extending response surface methods, which is based on a product array approach in 
which a standard response surface array is repeated for all combinations of 
categorical factor levels. For example, Table 15.10 shows a product array for two 
continuous factors and one categorical factor at two levels. 

If the product array approach is used, then the fitted model includes: (1) all full 
quadratic terms for the continuous factors, (2) main effects contrasts for the 
categorical factors, and (3) interaction terms involving every interaction term 
contrast and ever one of the continuous factor terms. For example, with two 
continuous factors and one categorical factor at two levels, the model form is: 

y(x1, x2, x3) = β1 + β2x1 + β3x2 + β4x3 + β5x1
2 + β6x2

2 + β7x1x2 + β8x1x3  
+ β9x2x3 + β10x1

2x3 + β11x2
2x3 + β12x1x2x3 .       (15.15) 

In general, none of the design of experiments and regression methods in this 
and previous chapters are appropriate if the response is categorical, e.g., 
conforming or non-conforming to specifications. Logistic regression and neural 
nets described in the next chapter are relevant when outputs are categorical. 

However, if each experimental run is effectively a batch of “b” successes or 
failures, then the fraction non-conforming can be treated as a continous response. 
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Moreover, if the batch size and true fraction non-conforming satisfies the 
following, then it is reasonable to expect that the residuals in regression will be 
normally distributed: 

b × p0 > 5 and b × (1 – p0) > 5.          (15.16) 

This is the condition such that binomial distributed random probabilities can be 
approximated using the “normal approximation” or normal probability distribution 
functions. As for selecting sample sizes in the context of p-charting (in Chapter 4), 
a preliminary estimate of a typical fraction non-conforming, p0, is needed. For 
example, in the printed circuit board (PCB) described in Chapter 11, batches of 
size 350 were used and all estimated fraction non-conforming were between 0.05 
and 0.95.  

Table 15.10. Product design of a central composite and a two-level categorical factor 

    (a)          (b)     

SO A B C  SO A B C  Run A B C  Run A B C 
1 –1 –1 1  11 –1 –1 2  1 0 –1 2  11 –1 –1 2 
2 1 –1 1  12 1 –1 2  2 0 0 1  12 1.4 0 1 
3 –1 1 1  13 –1 1 2  3 –1 –1 1  13 0 0 1 
4 1 1 1  14 1 1 2  4 1 1 1  14 0 1.4 1 
5 0 0 1  15 0 0 2  5 0 0 2  15 1 –1 1 
6 0 0 1  16 0 0 2  6 0 1.4 2  16 –1 1 1 
7 –1.4 0 1  17 –1.4 0 2  7 –1 0 2  17 0 –1 1 
8 1.4 0 1  18 1.4 0 2  8 1 1 2  18 1 –1 2 
9 0 –1.4 1  19 0 –1.4 2  9 1.4 0 2  19 0 0 2 

10 0 1.4 1  20 0 1.4 2  10 –1 0 1  20 –1 1 2 
 

15.7.3  Recipe Factors or “Mixture Components” 

In a mixture experiment, the system output is a function of the relative proportion 
of the q components in a mixture, x1 ,…,xq , and not their total amounts. These 
could be the ingredients in a recipe or the constituents in an alloy or chemical. The 
components must satisfy 

∑
=

q

i
ix

1
= T  and   0 ≤ ai ≤ xi ≤ bi ≤ T   for  i = 1, …, q       (15.17) 

where T is the sum of all components of interest (often T = 1).   
The equality constraint on the mixture components in Equation 15.17 

constrains the forms of the models that can be fitted using regression estimation 
described in Equation 15.3. For example, if a full quadratic polynomial were fitted 
to data using any feasible experimental plan satisfying Equation 15.17, estimation 
using βest = AY would be impossible because columns of X would be confounded 
and X′X  would be singular. Then, all least squares coefficient estimates would be 
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undefined. For this reason, Scheffé (1958) proposed dropping selected terms from 
full d polynomials with the additional intent of preserving interpretability of the 
estimated coefficients.  

Alternative model schemes developed by Scheffé and other authors have been 
reviewed in Cornell (2002). An example of the model forms that Scheffé proposed 
is the so-called “canonical second order” mixture model 

y(x1,…,xq) = Σi=1,…,qβixi + Σi=1,…,qΣi<jβijxixj + ε  .       (15.18) 

The model is “canonical first order” if the interaction terms are omitted. Data 
from Piepel and Cornell (1991) show that models of the form in Equation 15.18 are 
by far the most popular in documented case studies. Relevant recent models 
involving both mixture and process variables are described in Chantarat (2003).  

Example 15.7.1  Method Choices 

Question: Which of the following is correct and most complete? 
a. Country of origin is a continuous factor.  
b. First order models are particularly relevant when additive effects 

seem intuitive. 
c. Regression methods can establish proof as long as several 

requirements are met. 
d. Predictions outside of the range of the input data are theoretically 

possible. 
e. All of the above are correct except (a). 

 
Answer: Country of origin is a categorical factor because there is no natural 
ordering. Yes, intuitive additivity is a good justification for first order modeling. 
Still, intuition often suggests combined effects of factors or interactions are 
possible. Regression can establish proof and generate predictions which are 
extrapolations. Both proof and extrapolation are often achieved usefully using 
regression, but caution is needed. 

15.8  Summary 

This chapter begins with a single factor first order regression fitting example and 
the definitions of residuals and least squares. Next, practical issues are described 
with respect to preparing inputs for regression software focusing on missing 
observations. Several criteria are then defined for evaluating the acceptability of a 
regression model and the associated model form. Analysis of variance followed by 
t-testing is then described as the primary regression-based hypothesis testing 
procedure with the benefit that overall Type I errors are regulated. Stepwise 
regression is then described in the context of a semi-automatic approach for 
selecting model forms. Finally, issues related to categorical and mixture variables 
and regressions are discussed.  
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Problems 

1. A new product is released in two medium-sized cities. The demands in Month 
1 were 37 and 43 units and in Month 2 were 55 and 45 units. Which of the 
following is correct and most complete? 

a. A first order regression forecast for Period 3 is 70 units. 
b. One of the residuals is –2 and another one is 5. 
c. A first order regression forecast for Period 3 is 60 units. 
d. Trend analysis cannot involve regression analysis. 
e. All of the above are correct except (a). 
 

2. Considering the example in Section 15.2.2, which is correct and most 
complete? 

      a.      X′X  = 5 25 
 25 135 
b. βest is a 2 × 2 matrix. 
c. βest = [22   34]′ minimizes the sum of squares error. 
d. An optimization solver could not be used to derive least squares 

estimates. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (d). 
 

3. Consider the data in Table 15.1, which is correct and most complete? 
a. Analysts are almost always given data in a format that make analysis 

easy. 
b. Making up data can never increase the believability of analysis 

results. 
c. The missing data point in Table 15.1a could be worth saving to 

produce relatively accurate forecasts. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

4. Which is correct and most complete with regard to regression diagnostics? 
a. Generally, several acceptability tests must be passed for proof to 

follow. 
b. VIFs are directly useful for spotting outliers in the response data. 
c. Normal probability plotting does not involve any subjectivity. 
d. Randomization can be achieved after the data has already been 

collected from an observational study. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

5. Which of the following is correct and most complete? 
a. The optional first step involving scaling can affect VIF values. 
b. Least squares coefficient estimates minimize the sum of squared 

residuals. 
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c. VIFs are not influenced by outliers unless the points are removed. 
d. Changing the last input in Table 15.3a to 44 would make the VIFs 

undefined. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

Table 15.11 is relevant to Questions 6–9. Assume that the model form being fitted 
is a first order polynomial in factors x1 and x2 only, unless otherwise mentioned. 

Table 15.11. Data for Questions 6–9 

x1 – Population 
(thousands of people) 

x2 – Distance 
(km) 

y – Sales 
($K/yr) 

x3 – Service type 
 

2 0.5 75 Dine-in 

8 0.1 112 Dine-in 

8 1 101 In and Deliver 

9 0.5 117 In and Deliver 

12 3 109 Deliver 

16 2.5 122 Deliver 

20 1 154 In and Deliver 

23 1.2 156 In and Deliver 

22 0.75 142 Dine-in 

26 1.5 162 Deliver 

 
6.   Which of the following is correct and most complete (for a model without x3)? 

a. Including the optional scaling, VIF1 = VIF2 = 1.08. 
b. One of the values on the normal probability plot of residuals is  

–1.7, –2.4 . 
c. In general, Φ–1[s] = – Φ–1[–s]. 
d. The input pattern is clearly not acceptable for fitting a first-order 

model. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

7.   Which of the following is correct and most complete (for a model without x3)? 
a. The data derive from an application of standard response surface 

methods. 
b. No outliers appear in the upper right of the normal probability plot of 

residuals. 
c. The PRESS value for a first-order model in this case is 3280. 
d. The ANOVA in this case clearly indicates the response data are all 

noise. 
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e. All of the above are correct. 
g. All of the above are correct except (a) and (e). 

 
8.   Which of the following is correct and most complete (for a model without x3)?  

a. The regression estimate for sigma based on a first-order model is 
0.944. 

b. The SSR for a first order model is 6637.55. 
c. The SSE for a first order model is 396.45. 
d. There are no obvious outliers on a normal plot of residuals. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

9.  Consider a first order regression using all of the factors including x3 with the 
sales response. Which is correct and most complete? 

a. Since “Service type” is a three level categorical factor, the coefficient 
calculations could be aided by creating two “contrasts” or dummy 
factors. 

b. All of the factors are proven to have a significant effect on sales with 
α = 0.05. 

c. It is unlikely that distance from campus (Distance) really affects 
sales. 

d. It is impossible that population and service type interact in their effect 
on sales. 

e. All of the above are correct. 
 

10.  Which is correct and most complete with regard to the regression flowchart in  
Figure 15.5? 

a. Acceptability checks cannot include residuals plots. 
b. Models of on-hand data must be used with caution. 
c. Adding or removing model terms cannot address outliers. 
d. The initial model must be a first order polynomial. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

Problem 11 is based on the following data set. 
 

Table 15.12. Data for Questions 6–9 

Run x1 x2 Y  Run x1 x2 Y 
1 10 902 2.1  6 10 350 1.4 
2 –15 103 0.1  7 –10 920 1.4 
3 18 821 2.5  8 23 150 0.9 
4 22 100 1.9  9 12 200 1.1 
5 22 300 1.7      
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11.  Calculate the following: 

a. Create a first order regression prediction model from the data. 
b. Create a second order regression prediction model from the data. 
c. Calculate R2 adjusted for a first order model. 
d. Calculate the PRESS for a first order model. 
e. Calculate the R2 prediction for a first order model. 
f. Calculate the estimated t1 value for the coefficient of x1 in a first order 

model. 
 
12.  Which is correct and most complete according to the chapter? 

a. Editing models involves adding terms to regression models. 
b. If only a single acceptability check is possible, PRESS might be the best. 
c. If the response is fraction non-conforming, large batch sizes can help 

make residuals more normally distributed. 
d. With mixture factors, some terms in a full polynomial must be dropped. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
13. Analyze the box office data in Table 15.13 and make recommendations to the 

extent possible for a vice president at a major movie studio. A good analysis 
will typically include one or two models, reasons for selecting that model, 
estimates of the errors of the model, and interpretation for the layperson of 
everything. (Note that this question is intentionally open-ended because that is 
the way problems are on-the-job). Feel free to supplement with additional real 
data if you think it helps support your points. (These are from Yahoo.com)  

 
14. Analyze the real estate data in Table 15.14 and make recommendations to a 

real estate developer about where to build and what type of house to build for 
profitability. A good analysis will typically include one or two models, reasons 
for selecting that model, estimates of the errors of the model, and 
interpretation of everything for the layperson. (Note that this question is 
intentionally openended because that is the way problems are on-the-job).  
Feel free to supplement with additional real data. 
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Table 15.13. Movie data (A=Action, An=Animated, C=Comedy, D=Drama, F=Foreign, 
S=Suspense) 

Name Genre # of 
Stars 

Sequel Critics’ 
rating 

5th Weekend 
gross 

Cumulative $ 
(end 5th wk) 

Bad Boys II A 2 1 72 $3,143,914 $128,856,716  
Dirty Pretty Things S 0 0 88 $557,263  $1,986,903  

Johnny English C 1 0 78 $318,985  $26,925,075  
Pirates of the Caribbean A 1 0 82 $13,022,470  $232,750,629  

League of Extra… A 1 0 72 $1,542,272  $62,179,376  
Northfork D 2 0 82 $160,042  $819,913  

I Capture the Castle D 0 0 88 $126,084  $770,491  
The Housekeeper F 0 0 NA $28,814  $298,818  

Madame F 0 0 NA $6,493  $88,935  
The Cuckoo F 0 0 NA $4,437  $66,332  
Terminator 3 A 1 1 82 $2,985,446  $142,853,468  

Legally Blonde 2 C 1 1 75 $1,408,958  $85,260,859  
Swimming Pool S 0 0 85 $1,008,571  $5,253,781  

Sinbad: Legend … An 2 0 82 $153,993  $25,692,461  
28 Days Later S 0 0 88 $2,341,887  $37,304,321  

Charlie’s Angels 2 A 3 1 75 $1,460,418  $93,073,452  
On_Line D 0 0 72 $5,017  $94,894  
The Hulk A 1 0 82 $1,543,240  $128,143,315  

Legend of Suriyothai F 0 0 NA $40,956  $277,562  
Bonhoeffer F 0 0 NA $17,113  $97,623  

Rugrats Go Wild! A 1 0 75 $822,620  $36,801,254  
Hollywood Homicide A 1 0 75 $201,872  $29,743,738  

Dumb and Dumberer 2 C 0 1 68 $123,292  $25,493,066  
Jet Lag C 0 0 78 $50,711  $339,557  

The Heart of Me D 1 0 NA $8,419  $110,554  
Tycoon F 0 0 NA $2,417  $74,299  

2 Fast 2 Furious A 0 1 75 $2,641,820  $119,437,965  
The Eye F 0 0 82 $31,867  $339,607  

Finding Nemo An 1 0 92 $13,968,116  $253,991,677  
The Italian Job A 2 0 82 $5,462,902  $76,758,011  
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Table 15.14. Real estate data 

City #Bedrooms #Baths Offering price ($) 
Upper Arlington 3 1 154900 
Upper Arlington 2 2 195000 
Upper Arlington 3 2 249900 
Upper Arlington 3 1.5 264900 
Upper Arlington 4 3 279000 
Upper Arlington 3 1.5 290000 
Upper Arlington 4 2.5 312000 
Upper Arlington 4 2.5 357000 
Upper Arlington 5 3.5 375000 
Upper Arlington 3 3 389000 
Upper Arlington 4 2.5 395900 
Upper Arlington 4 2.5 420000 
Upper Arlington 4 3 455000 
Upper Arlington 4 3 499900 
Upper Arlington 4 2.5 499900 

Columbus 3 1.5 150000 
Columbus 3 1 156900 
Columbus 4 2 159700 
Columbus 2 1 159900 
Columbus 4 1.5 167900 
Columbus 4 2.5 181900 
Columbus 2 2 185000 
Columbus 3 3 194900 
Columbus 3 2.5 199900 
Columbus 4 2 213900 
Columbus 3 1 219900 
Columbus 3 1.5 220000 
Columbus 3 2 224900 
Columbus 3 2.5 224900 
Columbus 3 1.5 229900 
Columbus 4 2.5 239000 
Columbus 3 1.5 244888 
Columbus 3 2 244900 
Columbus 4 1.5 246900 
Columbus 3 2 349900 
Columbus 3 2.5 365000 
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16 

Advanced Regression and Alternatives 

16.1  Introduction 

Linear regression models are not the only curve-fitting methods in wide use. Also, 
these methods are not useful for analyzing data for categorical responses. In this 
chapter, so-called “kriging” models, “artificial neural nets” (ANNs), and logistic 
regression methods are briefly described. ANNs and logistic regression methods 
are relevant for categorical responses. Each of the modeling methods described 
here offers advantages in specific contexts. However, all of these alternatives have 
a practical disadvantage in that formal optimization must be used in their fitting 
process. 

Section 2 discusses generic curve fitting and the role of optimization. Section 3 
briefly describes kriging models, which are considered particularly relevant for 
analyzing deterministic computer experiments and in the context of global 
optimization methods. In Section 3, one type of neural net is presented. Section 4 
defines logistic regression models including so-called “discrete choice” models. In 
Section 5, examples illustrate logit and probit discrete choice models. 

16.2  Generic Curve Fitting 

Many numerical approaches have been proposed for interpolating data points. A 
subset of these has been developed with the intention of mitigating the effects that 
random errors have on curve fitting, including linear regression, kriging models, 
and neural nets. All of these estimate their model parameters, βest, based on their 
experimental inputs, x1,…,xN, and outputs, y1,…,yN, by solving an optimization 
program of the form 
 

Maximize:  g(βest,x1,…,xN,y1,…,yN,h)           (16.1) 
Subject to:  yest(βest,x) = h(βest,x)        

βest ∈ Rk  
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where predictions come from yest(βest,x), which is based on the so-called functional 
form, h(βest,x), of the fitted model. This “functional form” constrains the 
relationship between the predictions (yest), the inputs (x), and the model parameters 
(βest). Generally, yest(βest,x) refers to the prediction that will be generated, given βest 
for the mean value of the system response at the point x in the region of interest.  
The quantity Rk refers to the k dimensional vector space of real numbers, i.e., βest,i 
are real numbers i = 1,…,k. Note the symbol “∧” can be used interchangeably with 
“est” to indicate that the quantity involved is estimated from the data. 

For linear regression and many implementations of neural nets, the objective 
function, g, is the negative of the sum of squares of the estimated errors (SSE). For 
kriging models, the objective function, g, is the so-called “likelihood” function. 
Yet, the curve-fitting objective function could conceivably directly account for the 
expected utility of the decision-maker, instead of reflecting the SSE or likelihood. 
In the context of regression models, the entries in βest are called coefficients. In the 
context of neural nets, specific βest,i refer to so-called weights and numbers of 
nodes and layers. In the context of kriging models, entries in βest are estimated 
parameters. 

16.2.1  Curve Fitting Example 

Here we review a curve fitting problem that reveals the special properties of linear 
regression curve fitting. Consider an example with a single factor involving the 
five runs, i.e., input, (x1)i, and output, yi, combinations, given in Table 16.1.The 
linear regression optimization problem for estimating the coefficients is given by 
 
Maximize:    – {[y1 – yest(βest,x1)]2 + [y2 – yest(βest,x2)]2 + [y3 – yest(βest,x3)]2  

+ [y4 – yest(βest,x4)]2 + [y5 – yest(βest,x5)]2}          (16.2) 
Subject to:     yest(βest, xi) = βest,0(1) + βest,1 (x1)i  for i = 1,…,5           (16.3) 

      βest ∈ R2  . 
 

Equation 16.3 clarifies that the functional form is a first order polynomial or, in 
other words, a line. Because Equation 16.3 is linear in the coefficients and the 
objective function in Equation 16.2 is a quadratic polynomial, there is a formula 
giving the solution.   

As described in Chapter 15, the solution is given by the formula 

 
βest = (X′X)–1X′y =  –26  (16.4) 

  32   
 
Generally, formula optimization problems are so difficult that there is no formula 
giving the solution. More commonly, a solution algorithm such as the Excel solver 
must be applied. Table 16.1 shows the estimated errors and the sum of the squared 
estimated errors, SSE, for two sets of candidate coefficient solutions. The first set 
is sub-optimal for the formulation in Equation 16.2. As shown in Figure 16.1a, few 
people would desire this fitted model based on the data compared with the model 
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associated with the coefficients that minimize the sum of squares error are shown 
in Figure 16.1b. The coefficients giving the fit in Figure 16.1b can be derived using 
the a solver. Using such a solver is necessary for all of the other curve fitting 
methods in this chapter. 

Table 16.1. Simple least squares regression example 

   Suboptimal βest for (2) Optimal βest for (2) 

   βest,0 βest,1 βest,0 βest,1 

  Coefficents 200 –10 –26 32 

i (x1)i   yi yest,i Errorest,i yest,i Errorest,i 

1 3 70 170 –100 70 0 

2 4 120 160 –40 102 18 

3 5 90 150 –60 134 –44 

4 6 200 140 60 166 34 

5 7 190 130 60 198 –8 

   SSE 22400  3480 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (a)      (b)  
Figure 16.1. The data and two models (a) sub-optimal and (b) least squares optimal 

16.3  Kriging Models and Computer Experiments 

Matheron (1963) proposed so-called “kriging” meta-models to make predictions in 
the context of modeling physical, geology-related data. Recently, the application of 
these same techniques in the context of computer experiments has received 
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significant attention in part because of the above-mentioned advantage that kriging 
models provide smooth interpolating functions passing through all of the output 
data, e.g., see Sacks et al. (1989) and Welch et al. (1992). Kriging procedures are 
relatively difficult to apply because the curve fitting involved requires a non-trivial 
optimization and, therefore, specialized software. However, as the necessary 
software becomes increasingly available, there is reason to expect that the methods 
will enjoy even more widespread application. 

Therefore, kriging models under common assumptions provide prediction 
models, yest(βest, x), that pass through all the data points. This is considered to be 
desirable in the context of certain kinds of experiments that are perfectly 
repeatable, i.e., the same inputs give the same outputs with σ0 = 0. The phrase 
“computer experiments” is often used to refer to finite element method (FEM) 
and finite difference method (FDM) testing in which prototypes are virtual and no 
sources of variation are involved in there empirical evaluation.   

Kriging models are sufficiently flexible that they can seamlessly extend to 
situations in which the number of tests grows much higher than those involved in 
response surface methods. Because kriging models can model input-output 
relationships with multiple twists and turns, they are considered particularly 
relevant in the context of optimization. 

16.3.1  Design of Experiments for Kriging Models 

Deriving desirable experimental plans to foster accurate fitted kriging models is an 
active area of research. For simplicity, only so-called Latin hypercube designs 
(LHDs) and space-filling designs for the data collection are considered because 
these designs have received the most attention in the kriging literature. LHDs have 
the advantage that they are easy to generate for any number of runs.  

The version of LHDs here is based on McKay et al. (1979). For n runs, each of 
the k factors takes on equally spaced values –1 + 1/n, –1 + 3/n, …, 1 – 1/n, in 
different random orders. Space-filling designs are derived by maximizing the 
minimum Euclidean distance between all pairs of design points. Table 16.2 shows 
examples of the LHDs and space-filling designs with the space-filling design 
generated using the optimization method of Hadj-Alouane and Bean (1997). 

16.3.2  Fitting Kriging Models 

The following equation offers intuition about how kriging models work: 

Y(x) = f(x) + Z(x),             (16.5) 

where f(x) is a regression model that is potentially the same as a linear regression 
model and Z(x) is a function that models departures from the regression model. A 
relevant concept is, therefore, an attempt to more aggressively model the 
unexplained variation compared with using regression models only. 
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Table 16.2. Example (a) latin hypercube and (b) space-filling design 

  (a)    (b)  

Run A B C Run A B C 

1 0.375 0.042 0.875 1 0.040 0.929 0.788 

2 0.625 0.458 0.542 2 0.000 0.313 1.000 

3 0.042 0.542 0.292 3 1.000 0.010 0.000 

4 0.792 0.792 0.125 4 0.253 0.000 0.000 

5 0.458 0.375 0.708 5 0.909 0.434 0.475 

6 0.208 0.708 0.375 6 0.000 0.586 0.020 

7 0.292 0.125 0.458 7 1.000 1.000 0.768 

8 0.542 0.292 0.625 8 0.414 1.000 0.273 

9 0.125 0.875 0.042 9 1.000 0.909 0.040 

10 0.958 0.208 0.792 10 0.980 0.000 0.980 

11 0.875 0.625 0.958 11 0.576 0.586 1.000 

12 0.708 0.958 0.208 12 0.424 0.000 0.636 

 
Attempting to predict the departures, Z(x), from regression is motivated by the 

fact computer experiments with little or no random error. Sacks et al. (1989) argue 
that it is reasonable for computer experiments to treat the departures Z(x) as if they 
can be modeled and not merely considered to be random noise. Following 
Matheron (1963), Sacks et al. (1989) proposed to model the departures as 
“realizations” from a Gaussian stochastic process.   

Further, they and other authors suggest that the regression component, f(x), 
should be omitted because of empirical evidence that this gives superior or 
comparable accuracy. Here also, we focus on the assumption that a constant term 
only is included in the model instead of a complicated regression model.  

The variables used in fitting include: 
1.  m is the number of factors. 
2.  θi  ≥ 0 and 0 ≤ pi ≤ 2 for i = 1,…,m are fitted parameters similar to 

regression coefficients. 
3. R(w,x) is the correlation between the random departures Z(w) and Z(x) for 

decision vectors w and x. 
4. R is an n × n matrix of correlations between the n points in the input 

array, which is a function of the qi and pi. 
5. βest is the estimated regression coefficient vector. Here, we focus on the 

assumption that βest is just one coefficient, i.e., the constant term. 
6. σest is the estimated standard deviation of the response variation that is 

roughly proportional to the range of the response. 
7. ln L is the “log likelihood” which is the fitting objective analogous to least 

squares for linear regression. 
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Step 1. Develop a function giving the correlation matrix, R, between the responses 
at the points, x1, …, xn, using the formula 

Ri,j(θ,p)  =  ∏
=

−−
m

k

xx kp
kikke

1

)( ,θ                                (16.6) 

where xi and xj are all pairs of points and R is a function of θ and p.  This 
matrix is used for calculating and optimizing the likelihood. 

Step 2.   Calculate βest as a function of the fitting parameters using 

    βest(θ,p) = (1′R–11)–1  1′R–1y                                           (16.7) 

where 1 is an n dimensional vector of 1s. This coefficient is used for 
calculating and optimizing the likelihood. 

Step 3.   Calculate σest as a function of the fitting parameters using 

σest
2(θ,p) = n–1(y – 1βest) ′ R–1 (y – 1βest) .                (16.8) 

Step 4.   Calculate ln L as a function of the fitting parameters using: 

ln L(θ,p) = 
2

)]ln[det(ln 2 R+
− estn σ .                           (16.9) 

Step 5.   Estimate parameters by solving 

 Maximize:  ln L(θ,p)     (16.10) 
              subject to θi  ≥ 0 and 0 ≤ pi ≤ 2  for i = 1,…,m . 

Step 6.   Generate predictions at any point of interest, x, using 

yest(x) = βest + r′(x)R–1(y – 1βest).                (16.11) 

where r(x)=[R(x,x1),…,R(x,xn)]′ with R(w,x) given by 

R(x,xi) =∏
=

−−
m

k

xx kp
kjkike

1

)( ,,θ
.                    (16.12) 

8. x1, …, xn are the n input combinations in the input pattern. These could be 
specified by an experimental design such as a Latin-Hypercube.  

9. xi,k refers to the settings of the ith run for the kth factor. 
10. y is the response vector corresponding to the n runs. 

Algorithm 16.1. Fitting kriging models 

 
The functions in Equations 16.6 and 16.11 represent one of several possible 

functional forms of interest. With the response of the system viewed as random 
variables, these equations express possible beliefs about how responses might 
correlate. The equations imply that repeated experiments at the same points, e.g., x 
= xi give the same outputs, because the correlations are 1.  

Maximization of the likelihood function in Step 5 can be a difficult problem 
because there might be multiple extrema in the θk  and pk space. Welch et al. (1992) 
propose a search technique for this purpose that is based on multiple line searches. 
Commonly, pk = 2 for all k is assumed because this gives rise to often desirable 
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smoothness properties and reduces the difficulty in maximizing the likelihood 
function.  

16.3.3  Kriging Single Variable Example 

Question: Fixing p1 = 2, use the data in Table 16.1 to estimate the optimal θ 
parameter, R matrix, and a prediction for x1 = 5.5. 
 
Answer: Equation 16.8 gives an estimate of β equal to 133.18. Next, one derives 
the log-likelihood as a function of θ1. Maximizing gives the estimated θ1 equal to 
1.648. The resulting R matrix is 
 
  1.0000 0.1925 0.0014 0.0000 0.0000   
  0.1925 1.0000 0.1925 0.0014 0.0000   
R =  0.0014 0.1925 1.0000 0.1925 0.0014  (16.13) 

  0.0000 0.0014 0.1925 1.0000 0.1925   
  0.0000 0.0000 0.0014 0.1925 1.0000   
 
and the prediction is βest + r′(x1 = 5.5)R–1(y – 1βest) = 141.9 which is somewhat 
close to the first order linear regression prediction of –26 + 32 × 5.5 = 150.  
 

Allen et al. (2003) compared the prediction accuracy of neural nets with linear 
models in the context of test functions and response surface methods. The tentative 
conclusion reached is that kriging models do not offer obvious, substantial 
prediction advantages despite their desirable property of passing through all points 
in the data base. However, the cause of the prediction errors was shown to relate to 
the choice of the likelihood fitting objective and not the bias inherent in the fit 
model form. Therefore, as additional research generates alternative estimation 
methods, kriging models will likely become a useful alternative to linear models 
for cases in which prediction accuracy is important. Also, as noted earlier, kriging 
models adapt easily to cases in which the number of runs exceeds that in standard 
response surface methods. 

16.4  Neural Nets for Regression Type Problems 

Neural nets fascinate many people because their structure is somewhat reminiscent 
of the way that the human brain generates predictions based on data. These 
methods also offer potentially great flexibility with respect to the ability to 
approximate a wide variety of functions. However, this flexibility is also a concern 
since they offer much potential for misuse. This section focuses on neural nets used 
for situations involving continuous responses. These neural nets constitute 
alternatives to linear regression and kriging models. 

Here, a simple, spreadsheet-based neural network modeling technique is 
proposed and illustrated with an example. This discussion is based on results in 
Ribardo (2000). The principle advantages of the networks described here relate to 
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their pedagogical use, in that they can be completely described. Also, they can be 
implemented with minimal training and without special software. Note that neural 
networks are a particularly broad class of modeling techniques. No single 
implementation could be representative of all of the possible methodologies that 
have been proposed in the literature. Therefore, the disadvantage of this approach 
is that other, superior, implementations for similar problems almost surely exist. 
However, results in Ribardo (2000) with the proposed neural net probably justify a 
few general comments about training and complexity associated with the existing 
methods. 

 Kohonen (1989) and Chambers (2000) review neural net modeling in the 
context of predicting continuous responses such as undercut in millimeters. Neural 
nets have also been proposed for classification problems involving discrete 
responses.  

Here also, an attempt is made to avoid using the neural net terminology as 
much as possible to facilitate the comparison with the other methods. Basically, 
neural nets are a curve-fitting procedure that, like regression, involves estimating 
several coefficients (or “weights”) by solving an optimization problem to minimize 
the sum of squares error. In linear regression, this minimization is relatively trivial 
from the numerical standpoint, since formulas are readily available for the solution, 
i.e., βest = (X′X)–1X′y. In neural net modeling, however, this minimization is 
typically far less trivial and involves using a formal optimization solver. In the 
implementation here, the Excel solver is used. In more standard treatments, 
however, the solvers involve methods that are to some degree tailored to the 
specific functional form (or “architecture”) of the model (or “net”) being fit. A 
solver algorithm called “back-propagation” is the most commonly used method for 
estimating the model parameters (or “training on the training set”) for the model 
forms that were selected. This solver technique and its history is described in 
Rumelhart and McClelland (1986) and Reed and Marks (1999).  

There are many possible functional forms (“architectures”) and, unfortunately, 
little consensus about which of these forms yield the lowest prediction errors for 
which type of problems, e.g., see Chambers (2000). An architecture called “single 
hidden layer, feed forward neural network based on sigmoidal transfer functions” 
with five randomly chosen data in the test set and the simplest “training 
termination criterion” was arbitrarily selected. One reason for selecting this 
architecture type is that substantial literature exists on this type of network, e.g., 
see Chambers (2000) for a review. Also, it has been demonstrated rigorously that, 
with a large enough number of nodes, this type of network can approximate any 
continuous function (Cybenko 1989) to any desired degree of accuracy. This fact 
may be misleading, however, because in practice the possible number of nodes is 
limited by the amount of data (see below). Also, it may be possible to obtain a 
relatively accurate net with fewer total nodes using a different type of architecture.  

The choice of the number of nodes and the other specific architectural 
considerations is largely determined by the accepted compromise between the 
observed variation (high adjusted R2) and what is referred to as “over-fitting”.   
Figure 16.2 illustrates the concept of over-fitting. In the selected feed-forward 
architecture, for each of the l nodes in the hidden layer (not including the constant 
node, which always equals 1.0), the number of coefficients (or “weights”) equals 
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the number of factors, m, plus two. Therefore, the total number of weights is w = 
l(m+2) + 2. The additional two weights derive from multiplying the constant node 
in the final prediction node and the (optional) overall scale factor, which can help 
in achieving realistic weights.  

Several rules of thumb for selecting w and l exist and are discussed in 
Chambers (2000). If w equals or exceeds the number of data points n, then 
provably the sum of squares error is zero and the neural net passes through all the 
points as shown in Figure 16.2 below. If there are random errors in the data, 
illustrated in Figure 16.2 by the εis, then prediction of the average response values 
will be inaccurate since the net has been overly influenced by these “random 
errors”. 

The simple heuristic method for selecting the number of nodes described in 
Ribardo (2000) will be adopted to address this over-fitting issue in the response 
surface context. This approach involves choosing the number of nodes so that the 
number of weights approximately equals the number of terms in a quadratic Taylor 
series or, equivalently, a response surface model. The number of such terms is (m + 
1)(m + 2)/2. In the case study, m = 5 and the number of terms in the RSM 
polynomial is 21. This suggests using l = 3 nodes in the hidden layer so that the 
number of weights is 3 × (5 + 2) + 2 = 23 weights.   

One additional complication is the number of runs selected for the so-called 
“test set”. These runs are set aside and not used for estimating the weights in the 
minimization of the sum of squares error. In the context of welding parameter 
development from planned experiments, it seems reasonable to assume that the 
number of runs is typically small by the standards discussed in the neural net 
literature. Therefore, the ad hoc selection of five random runs for the test set was 
proposed because this is perhaps the smallest number that could reasonably be 
expected to provide an independent and reliable estimate of the prediction errors. 

A final complication is the so-called “termination criterion” for the 
minimization of the sum of squares error. In the hopes of avoiding over-fitting 
inaccuracies illustrated in Figure 16.3, many neural net users do not attempt to 
solve the sum of squares minimization problem for the coefficients (“weights”) to 
global optimality. Instead they terminate the minimization algorithm before its 
completion based on non-trivial rules deriving from inspection of the test set 
errors. For simplicity, these complications were ignored, and the Excel solver was 
permitted to attempt to select the weights that globally minimize the sum of 
squares error. 

Next the construction of neural nets is illustrated using a welding example from 
Ribardo (2000). The response data is shown in Table 16.3 from a Box-Behnken 
experimental design. This data was used to fit (“train”) the spreadsheet neural net 
in Figure 16.3. 
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Figure 16.2. Example of over-fitting  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 16.3. The Excel spreadsheet neural net for undercut response  
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Then 46 identical neural nets were created in Excel, designed to predict each of 
the test run data based on a common set of weights. A random number generator 
was used to select five of these runs as the “test set”. The Excel solver was used 
next in order to minimize the training set sum of squares error by optimizing the 
weights. This procedure resulted in the net shown in Figure 16.4 for undercut with 
the weights at the bottom right and the weights for convexity shown in Table 16.4. 
Figure 16.5 shows a plot of the neural net predictions for the welding example 
compared with other methods compared in Ribardo (2000). 

Table 16.3. Box Behnken design and data for the neural net from Ribardo (2000) 

Run Std. order x1 x2 x3 x4 x5 Y1 = undercut  Y2 = convexity 
1 20 0.125 0.750 0 0.062 40 0.0287 0.2258 
2 35 0.000 0.750 0 0.052 40 0.0000 1.6837 
3 30 0.125 0.750 15 0.052 20 0.2261 –1.0798 
4 45 0.125 0.750 0 0.052 30 0.0000 0.4727 
5 12 0.125 0.875 0 0.052 40 0.2150 0.9369 
6 21 0.125 0.625 –15 0.052 30 0.0300 0.3371 
7 37 0.125 0.625 0 0.045 30 0.0000 0.4473 
8 42 0.125 0.750 0 0.052 30 0.1572 0.3893 
9 1 0.000 0.625 0 0.052 30 0.0000 1.9152 

10 41 0.125 0.750 0 0.052 30 0.0000 0.2712 
11 40 0.125 0.875 0 0.062 30 0.0000 0.3855 
12 28 0.250 0.750 0 0.062 30 0.5174 –1.5789 
13 18 0.125 0.750 0 0.062 20 0.8202 –1.8837 
14 44 0.125 0.750 0 0.052 30 0.0000 0.4758 
15 36 0.250 0.750 0 0.052 40 0.7254 0.3371 
16 43 0.125 0.750 0 0.052 30 0.0000 0.3663 
17 15 0.000 0.750 15 0.052 30 0.0000 1.2828 
18 10 0.125 0.875 0 0.052 20 0.1168 –0.7589 
19 17 0.125 0.750 0 0.045 20 0.0153 –0.4141 
20 2 0.250 0.625 0 0.052 30 0.7573 –2.1467 
21 8 0.125 0.750 15 0.062 30 0.4912 –1.3343 
22 22 0.125 0.875 –15 0.052 30 0.0054 0.5323 
23 6 0.125 0.750 15 0.045 30 0.2261 0.1176 

 
 
 
 
 
 



420      Introduction to Engineering Statistics and Lean Sigma  

Table 16.3. Continued 

Run Std. order x1 x2 x3 x4 x5 Y1 = undercut  Y2 = convexity 
24 14 0.250 0.750 –15 0.052 30 1.0071 0.1098 
25 34 0.250 0.750 0 0.052 20 0.8872 –2.5600 
26 46 0.125 0.750 0 0.052 30 0.7066 0.1834 
27 29 0.125 0.750 –15 0.052 20 0.4259 0.0248 
28 32 0.125 0.750 15 0.052 40 0.0000 0.8287 
29 19 0.125 0.750 0 0.045 40 0.0142 0.9482 
30 38 0.125 0.875 0 0.045 30 0.0365 0.1249 
31 25 0.000 0.750 0 0.045 30 0.0000 0.9082 
32 16 0.250 0.750 15 0.052 30 0.6702 –1.4284 
33 9 0.125 0.625 0 0.052 20 0.3155 –0.8012 
34 11 0.125 0.625 0 0.052 40 0.7061 0.9985 
35 39 0.125 0.625 0 0.062 30 0.0000 0.1600 
36 4 0.250 0.875 0 0.052 30 0.8201 –1.8826 
37 27 0.000 0.750 0 0.062 30 0.0000 0.7397 
38 26 0.250 0.750 0 0.045 30 0.0000 –0.8550 
39 5 0.125 0.750 –15 0.045 30 0.1165 0.1478 
40 13 0.000 0.750 –15 0.052 30 0.0000 1.5675 
41 7 0.125 0.750 –15 0.062 30 0.0626 0.2740 
42 31 0.125 0.750 –15 0.052 40 0.6928 1.0285 
43 33 0.000 0.750 0 0.052 20 0.0147 0.7128 
44 24 0.125 0.875 15 0.052 30 0.1677 0.1534 
45 3 0.000 0.875 0 0.052 30 0.0340 0.9073 
46 23 0.125 0.625 15 0.052 30 0.0287 0.2258 

Table 16.4. The weights for the convexity response neural net 

 Factors/inputs Const 

 1 2 3 4 5 6 

Node 1 7.069 –6.35 –7.12 7.086 –6.2 0.646 

Node 2 2.134 2.048 2.899 –2.66 –2.25 –0.26 

Node 3 54.01 0.518 37.03 19.98 –38.4 –35.5 

FHL 5.26 5.487 5.224 –6.59 –0.28  

 
 



  Advanced Regression and Alternatives      421 

 
Figure 16.4. The solver fields for estimating the net coefficients (“weights”) 
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Figure 16.5. Predictions from the models derived from alternative methodologies 

16.5  Logistic Regression and Discrete Choice Models  

In many modeling problems of interests, responses are categorical variables, i.e., 
response levels are discrete and with no natural ordering. Examples might be units 
either being conforming (level 1) or non-conforming (level 2) to specifications. 
Also, certain people might purchase product 1 and others might purchase product 
2. Then, it maybe of interest to predict the chance that the response will assume 
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any one of categorically different reponse levels (e.g., see Ben-Akiva and Steven 
1985 and Hosmer and Lemeshow 1989).  

Logistic regression models are a widely used set of modeling procedures for 
predicting these probabilities. It is particularly relevant for cases in which what 
might be considered a large number of data points is available. Considering that 
“data mining” is the analysis or very large flat files, logistic regression can be 
considered an important data mining technique. Also, “discrete choice models” are 
logistic regression models in which the levels of the categorical variables are 
options a decision-maker might select. In these situations, the probability is the 
market share might command when faced with a specified list of competitors.  

Logistic regression models including discrete choice models are based on the 
following concept. Each level of the categorical response is associated with a 
continuous random variable, which we might call ui for the “utility” of response 
level i. If the random variable associated with a given level is highest, that level is 
response or choice. Figure 16.6a shows a response with two levels, e.g., system 
options a decision-maker might choose. System 1 random variables have a lower 
average than system 2 random variables. However, by chance the realization for 
system 1 (♦) has a higher value than for system 2 (♦). Then, the response would 
be system 1 but, in general, system 2 would have a higher probability. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
       (a)              (b)  

Figure 16.6. Utilities of (a) two systems each with fixed level and (b) two system functions 

Figure 16.6b shows how the distribution means of the two random variables are 
functions of a controllable input factor x. By adjusting x, it could be possible to 
tune each system to its optimum resulting in the highest chance that that level (or 
system) will occur (or be chosen). Note that the input factor levels that tune one 
system to its maximum can be different than those that tune another system to its 
maximum. The goal of experimentation in logistic regression is, therefore, to 
derive the underlying functions and then to use these functions to predict 
probabilities. 

The specific utilities, ui, for each level i are random variables. “Logit models” 
are logistic regression models based on the assumption that the random utilities 
follow a so-called “extreme value” distribution. “Probit models” are logistic 
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regression models based on the assumption that the utilities are normally 
distributed random variables. Sources of randomness in the utilities can be 
attributed to differences between the average system performance and the actual 
and/or differences between the individual decision-maker and the average 
decision-maker.  

16.5.1  Design of Experiments for Logistic Regression  

Recently, increased attention has been given to the planning of experiments to 
support logistic regression and discrete choice methoding. Like usual design of 
experiments, part of planning is selecting which prototype systems should be 
constructed for testing. An added complication in discrete choice modeling is how 
to present the prototype system alternatives to decision-makers. “Choice sets” 
refer to combinations of prototypes that are presented from which the people in the 
experiment select their choices.  

For example, if the design of experiment array specifies that short, medium, 
and tall pens should be made, that is the usual three levels of a continuous factor 
for a three run DOE. Then, decision-makers are asked to choose between short or 
medium {choice set #1} and between short and tall {choice set #2}. The remaining 
combinations, such as showing all three pens (short, medium, and tall) 
simultaneously, are not necessarily shown. 

Example 16.5.1  Product Pricing 

Question: Develop and experimental plan with the following properties. Three 
prototypes (short, medium, and tall) are required. Two prices ($10, $15) are tested. 
Three people are involved in choosing (Frank, Neville, and Maria). People never 
choose between more than two alternatives at a time. 
 
Answer: There are many possible plans. One solution is shown in Table 16.5. Note 
that, with the restriction on the choice set size, this becomes a discrete choice 
problem. 

Table 16.5. An experimental plan satisfying the requirements 

Choice 
set Height 

Price 
($) Person 

 Choice 
set Height 

Price 
($) Person 

1 Short 10 Maria  3 Short 10 Frank 

1 Tall 15 Maria  3 Medium 15 Frank 

2 Medium 10 Neville  1 Short 10 Neville 

2 Tall 10 Neville  1 Tall 15 Neville 

 
For example, Sandor and Wedel (2001) used the so-called “Db-error criterion” 

to generate lists of recommended prototypes and arrangements for their 
presentation to representative samples of consumers. The Db-error criterion is 
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analogous to the D-optimality objective (pick the array by maximizing |X′X|) in 
response surface contexts because it is based on the maximization of the 
determinant of the fitted model design matrix. Like D-optimal designs, 
experimental plans that maximize the Db-error criterion might, in general, be 
expected to lead to models that have high prediction errors because the fit model 
form differs from the true model form, i.e., bias. Therefore, an open research topic 
is the selection of experimental designs that fosters low prediction errors even if 
there is bias.  

16.5.2  Fitting Logit Models  

Logit models are probably the most widely used logistic regression and discrete 
choice models, partly because the associated extreme value distribution makes 
logit models easy to work with mathematically. The following notation is used in 
fitting logit models: 

1. c is the number of choice sets. 
2. xj,s is an m vector of factor levels (attributes) of response level 

(alternative system) j in choice set s. In ordinary logistic regression 
cases, there is only one choice set (c = 1), and j is similar to the usual 
run index in an experimental design array. 

3. ms is the number of response levels (alternative systems) in choice  
set s. 

4. ns is the number of observations of selections from choice set s. 
5. βest,j is the estimated coefficient reflecting the average utility of the 

response level j as a function of the factor levels. Here, the focus is on 
the assumption that βest,j = βest for all j. 

6. fj(x) is the functional form of the response j (alternative system) 
model. Here, the focus is on the assumption that fj(x) = f(x) for all j. 

7. pj,s(x,βest) is the probability that the response j with attributes (x) will 
be selected in the set s. 

8. yj,s denotes the number of selections of the alternative j in the choice 
set s. 

9. ln L(βest) is the log-likelihood which is the fitting objective. 
 

Equation 16.16 can be used to estimate chances that responses will take on 
specific values. If the responses come from observing peoples’ choices, Equation 
16.16 could be used to estimate market shares that a new alternative or product 
with input values x might achieve. 

The form in Equations 16.14 through 16.16 is associated with potentially 
restrictive “independence from irrelevant alternatives” (IIA) property. This 
property is that a change in the attributes, x, of one alternative j necessarily results 
in a change in all other choice probabilities, exactly preserving their relative 
magnitudes. This property is generally considered not desirable and motivates 
alternative to logit based logistic regression models. 

Note also, some of the attributes associated with specific choices in choice sets 
could be associated with the decision-makers, e.g., their incomes. This might not 
require changes to the above formulas as illustrated by the next example. In 
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general, many variations of the above approach are considered in the literation with 
complications depending on relevant assumptions and the input pattern or design 
of experiments array. 

Algorithm 16.2. Logit model fitting function 

Example 16.5.2 Paper Helicopter Logistic Regression 

Question: Consider an example with a single choice set with c = 1, experimental 
ranges in Table 16.6, and the prototype designs in Table 16.7a. Assume that there 
are n1 = 20 people selecting from the prototype designs associated with factor 
levels x4 on Table 16.7b. Use the data to fit a model of the form to predict the 
average utility: 
    f(x)′β = β1 + β2x1 + β3x2 + β4x3 – β5x4 + β6 x1

2 + β7 x2
2 +  β8 x3

2  
+ β9 x4

2 + β10 x1x2 + β11x1x3 + β12x1x4 + β13x2x3  

+ β14x2x4 + β15x3x4 .              (16.17) 
 
Answer: Calculations pertinent to estimating and maximizing the log-likelihood 
are shown in Table 16.7b. The Excel solver was used to estimate the coefficients in 
Table 16.8. These can be used to predict the chance that a customer of a certain 
income (x4) would purchase a helicopter with dimensions (x) in a given choice set. 

Table 16.6. Levels for the design factors 

Factor (attribute) low (–1) high (1) 

x1 – Wing length 8 12 

x2 – Wing width 3 7 

x3 – Asking price 26 32 

x4 – Personal income 0.25 0.7 

Step 1.  Observe the ns selections for s = 1,…,c and document the choice counts yj,s 
in the context of the input pattern, xj,s. 

Step 2.  Estimate parameters by maximizing the likelihood and solving 

 Maximize: ln L(βest) = ∑∑
= =

c

s

m

j

s

1 1

yj,s ln[pj,s(xj,s,βest)]           (16.14) 

where 
pj,s(xj,s,βest)    =   exp[f(xj,s)′βest]                                       (16.15) 

                                          Σj =1,…,ms  exp[f(xj,s)′βest]  

Step 3.  Predict the probability that the response will be level l (alternative l will be 
chosen), which is associated with factor levels, x, in a choice set with 
alternatives, z1,…,zq, is the following:  

pj,s(x,βest)  =          exp[f(x)′βest]  .           (16.16) 
                                   exp[f(x)′βest] + Σr =1,…,q  exp[f(zj)′βest] 
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Table 16.7. (a) Prototypes shown to the people and (b) choices and utility calculations 

  (a)     (b) 

Response x1 x2 x3 
Choice 

# Person yj,1
x4 – Income 
(×$100K) 

Estimated 
Choice 
Prob. 

Ln(prob) 

x1,1 0 0 0 1 1 11 0.3 5.00E–02 –1.301E+00 
x2,1 –1 1 0 2 2 6 0.5 5.00E–02 –1.301E+00 
x3,1 0 1 –1 3 3 3 0.4 5.00E–02 –1.301E+00 
x4,1 –1 0 –1 4 4 10 0.2 5.00E–02 –1.301E+00 
x5,1 1 0 1 5 5 9 0.7 5.01E–02 –1.300E+00 
x6,1 –1 0 1 6 6 5 0.3 4.98E–02 –1.303E+00 
x7,1 1 0 –1 7 7 1 0.4 5.00E–02 –1.301E+00 
x8,1 1 –1 0 8 8 8 0.5 4.99E–02 –1.302E+00 
x9,1 0 –1 –1 9 9 6 0.3 4.99E–02 –1.302E+00 
x10,1 0 –1 1 10 10 9 0.3 5.00E–02 –1.301E+00 
x11,1 0 1 1 11 11 9 0.5 5.00E–02 –1.301E+00 
x12,1 –1 –1 0 12 12 6 0.6 5.01E–02 –1.300E+00 
x13,1 1 1 0 13 13 1 0.2 5.00E–02 –1.301E+00 

     14 7 0.2 5.01E–02 –1.301E+00 
     15 7 0.3 4.99E–02 –1.302E+00 
     16 5 0.1 5.02E–02 –1.299E+00 
     17 8 0.2 5.01E–02 –1.300E+00 
     18 13 0.3 5.00E–02 –1.301E+00 
     19 5 0.25 4.99E–02 –1.302E+00 
     20 2 0.3 5.00E–02 –1.301E+00 
        Sum –2.602E+01 

Table 16.8. Beta parameter estimates using maximum likelihood method 

Coefficient Value Coefficient Value 
β1 0.2 β9 0.097652 
β2 0.000399 β10 –3.8E–05 
β3 7.1E–06 β11 0.000899 
β4 –0.00128 β12 –0.0054 
β5 –0.07236 β13 0.003169 
β6 0.000488 β14 0.001148 
β7 0.000749 β15 –0.01027 
β8 –0.00112   
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16.6  Summary 

This chapter has described three approaches for fitting models to data. All three 
can be used to predict what might happen in the future if specific input factor 
settings were chosen (x). Kriging modeling is generally considered desirable for 
deterministic computer experiments such as finite element method (FEM) virtual 
simulations of physical occurrences (part failures, manufacturing process part 
quality, contaminant dispersions, …). Artificial neural nets were also described, 
including an example of so-called “sigmoidal transfer function models” and single 
hidden layer architectures. The purpose was to show that ANNs can be considered 
as alternatives to regression and kriging modeling approaches.   

Finally, logistic regression models, which can be useful for modeling data with 
categorical response variables, were briefly described . The resulting models can 
predict the chance that the system output will assume any given categorical level of 
interest as a function of input factor settings. More general, discrete choice logistic 
regression modeling was described, which includes the complication that not all 
categorical levels might be achievable in any given test. For simplicity, only so-
called “logit” logistic regression and discrete choice models were considered.  
These models are the most analytically tractable logistic regression models.   

Problems 

1. Which is correct and most complete based on the data in Table 16.1?  
a. A kriging model prediction would be yest(x1=4.5) = 101.5. 
b. Kriging model predictions could not pass through x1 = 3 and y1 = 70. 
c. FEM experiments necessarily involve random errors. 
d. Kriging models cannot be used for the same problems as regression. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

2. Which is correct and most complete based on the data in Table 16.1 with the 
last response value changed to 200? 

a. A kriging model prediction would be yest(x1=4.5) = 101.5. 
b. The kriging models in the text are based on the assumption σ0 = 0.0. 
c. The maximum log-likelihood value for θ1 is less than 1.5. 
d. R in this case is an n × n matrix. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

3. Which is correct and most complete? 
a. Artificial neural nets are only relevant for predicting categorical 

responses. 
b. At least two hidden layers are generally needed for accurate 

prediction. 
c. The fittable parameters in neural nets are often called weights. 
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d. The fitting objective in neural nets is usually the likelihood function. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

4. Which is correct and most complete in relation to artificial neural nets 
(ANNs)? 

a. RSM arrays cannot be used in neural net fitting. 
b. The Excel solver can be used in fitting ANNs. 
c. Often, so-called “back propagation” algorithms are used in fitting 

ANNs. 
d. Rules of thumb exist for estimating the most derable number of 

nodes. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

5. Which is correct and most complete (according to the chapter)? 
a. Discrete choice modeling is effectively a subset of logistic regression. 
b. Linear regression is a natural alternative to discrete choice modeling. 
c. The functions that predict the underlying utility must be first order. 
d. Probit models assume that utilities follow an extreme value 

distribution. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

6. Which is correct and most complete (according to the chapter)? 
a. The paper helicopter example involves four controllable design 

parameters. 
b. People might choose different alternatives because of personal 

differences. 
c. Maximum likelihood estimation can be used in discrete choice 

modeling. 
d. Uncovering the underlying utility surface might help for predicting 

market share of new products. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
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17 

DOE and Regression Case Studies 

17.1  Introduction 

In this chapter, two additional case studies illustrate design of experiments (DOE) 
and regression being applied in real world manufacturing. The first study involved 
the application of screening methods for identifying the cause of a major quality 
problem and resolving that problem. The second derives from Allen et al. (2000) 
and relates to the application of a type of response surface method. In this second 
study, the design of an automotive part was tuned to greatly improve its 
mechanical performance characteristics.  

Note that Chapter 13 contains a student project description illustrating standard 
response surface methods and what might realistically be achieved in the course of 
a university project. Also, Chapter 14 reviews an application of sequential response 
surface methods to improve the robustness and profitability of a manufacturing 
process. 

17.2  Case Study: the Rubber Machine 

In this section, the so-called “Rubber Machine” case study is presented. This study 
is similar to the printed circuit board (PCB) study from an earlier chapter and from 
Brady and Allen (2002) described in Chapter 12. In this rubber machine study, a 
machine was essentially broken for several months, and the techniques permitted 
resolution of the related quality problems, greatly increasing return on investment. 
The study also illustrates the dangers and inefficiencies of one-factor-at-a-time 
(OFAT) approaches to experimentation described in Chapter 12. 

17.2.1  The Situation 

A Midwestern factory makes a small component used in air conditioning 
compressors for in-home applications, shown in Figure 17.1. The company has 
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established itself as the low cost leader in its sector and has maintained over 50% 
of the world market for the type of component produced. For confidentiality 
reasons, we will refer to the part as a “bottle cap” which is the informal name 
sometimes used within the company. In the years prior to the study, the company 
had been highly successful in reducing production costs and improving profits 
through the intelligent application of lean manufacturing including value stream 
mapping (Chapter 5) and other industrial and quality engineering-related 
techniques. Therefore, the management of the company was generally receptive to 
the application of formal procedures for quality and process improvement. 

In its desire to maintain momentum in cost-cutting and quality improvement, 
the company decided to purchase two new machines for applying rubber to the 
nickel-plated steel cap and hardening the rubber into place. The machines cost 
between $250,000 and $500,000 each in direct costs. These new machines required 
less labor content than the previous machines and promised to achieve the same 
results more consistently. Unfortunately, soon after the single production line was 
converted to using the new machine, the rubber stopped sticking on roughly 10% 
of the bottle caps produced. Because this failure type required expensive rework as 
well as 100% inspection and sorting, the company reverted to its old process.  
 
 
 
 
 
        
 
 

Figure 17.1. “Bottle cap” part 

17.2.2  Background Information 

A large fraction of the engineering and management resources of the small 
company were deployed as an intial team to fix the new machines. During a period 
of roughly three months, engineers disrupted production in order to test their 
theories by running many units with one factor adjusted and then adjusting the 
settings back (one-factor-at-a-time, OFAT). Unfortunately, all of the tests results 
were inconclusive. In addition, at least one polymer expert was flown in to inspect 
the problem and give opinions. Several months after the machines had been 
installed in the plant, the company was still unable to run them. An additional 
series of OFAT experiments were conducted to investigate the effects of seven 
factors on the yields. Again, the results were inconclusive. 

17.2.3  The Problem Statement 

Because of the unexpected need to use the old process, the company was rapidly 
losing money due to overtime and disruptions in the product flow through the 
plant. Therefore, the problem was to adjust the process inputs (x) to make the 
rubber stick onto the nickel plating consistently using the newer machines.  

rubber not sticking 

“Bottle cap” 

rubber leakage (cosmetic) 
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Unfortunately, the engineering and technicians had many theories about which 
factors should be adjusted to which levels, with little convincing evidence 
supporting the claims of each person (because of the application of OFAT). Seven 
candidate input factors were identified whose possible adjustment could solve the 
problem. Also, considering the volume of parts produced and the ease of 
inspection, it was possible to entertain the use of reasonably large batch sizes, i.e., 
b = 500 was possible. 

Example 17.2.1  Rubber Machine Initial Results  

Question:  Which of the following could the first team most safely be accused of? 
a. Leaders stifled creativity by adopting an overly formal decision-

making approach. 
b. The team forfeited the ability to achieve statistical proof by using a 

non-random run order. 
c. The team failed to apply engineering principles and relied too much 

on statistical methods. 
d. The team failed to devote substantial resources to solve the problem. 

 
Answer: This answer is virtually identical to the one in the printed circuit-board 
study. Compared with many of the methods described in this book, team one has 
adopted a farily “organic” or creative decision style. Also, while it is usually 
possible to gain additional insights through recourse to engineering principles, it is 
likely that these principles were consulted in selecting factors for OFAT 
experimentation to a reasonable extent. In addition, the first team did provide 
enough data to determine the usual yields prior to implementing recommendations. 
Therefore, the criticisms in (a), (c), and (d) are probably not fair. According to 
Chapter 11, random run ordering is essential to establishing statistical proof. 
Therefore, (b) is correct. 

17.3  The Application of Formal Improvement Systems 
Technology 

A team of two people trained in design of experiments (including the author) 
persuaded the engineering supervisor in charge of fixing the machine to apply 
design of experiments methods. A team was created for planning the experiment, 
conducting the tests, and analyzing the results. Drawing on the engineering talent 
of the team, the factors described in Table 17.1 were chosen. The output or 
response selected was the fraction of b = 500 parts for which the rubber would not 
stick. Typical fractions non-conforming were expected to be greater than p0 = 0.05. 
An initial budget al.location for 8 test runs, each involving 500 parts, was 
allocated. All 4000 parts could be made and tested in a single day.  
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Example 17.3.1  Rubber Machine DOE Plan 

Question: Which is correct and most complete (according to previous chapters)? 
a. The fraction non-conforming in this case should not be treated as a 

continuous response. 
b. Response surface methods are a good fit because the important factors are 

known. 
c. A fractional factorial screening experiment could be applied with up to 

seven factors.  
d. The relevant response is categorical, so regression cannot be applied.  
e. All of the above are correct. 

 
Answer: According to Chapter 15, the response can be treated as categorical 
because b × p0 > 5, i.e., more than five units are expected to be non-conforming in 
all test runs. Therefore, (a) and (d) are false. There was a long list of potential 
candidates. Also, the budget al.location was for only eight runs. Therefore, (b) is 
false and response surface methods would not be a good fit. Chapter 12 describes 
methods permitting an eight run experiment involving seven factors. Therefore, (c) 
is correct. 

 
The improvement team selected the eight run fractional factorial in Table 17.2 

to structure experimentation. The resulting fractions non-conforming are also 
described in the right-hand column. Interestingly, all fractions were lower than 
expected perhaps because of a Hawthorne effect, i.e., the act of watching the 
process carefully seems to have improved the quality. 

One of the factors involved a policy decision about how long parts could wait 
in queue in front of the rubber machine before they would need to be “reprimed” 
using an upstream “priming” machine. This factor was called “floor delay”. If the 
results had suggested that floor delay was important, the team would have issued 
recommendations relating to the redesign of engineering policies about production 
scheduling to the plant management. It was recognized that we probably could not 
directly control the time parts waited. With 4000 parts involved in the experiment, 
complete control of the times would have cost too much time. 

Therefore, the team could only control decisions within its sphere of influence. 
Implicitly, therefore, the “system boundaries” were defined to correspond to what 
could be controlled, e.g., a maximum time of 15 min recommended for parts to sit 
without being re-primed in our recommended guidelines. This was the control 
factor. To simulate the impacts of possible decisions the team would make on this 
issue, parts were either re-primed in the experiment if they waited longer than 15 
min or they were constrained to wait at least 12 h.  

The main effects plot in Figure 17.2 and the results of applying Lenth’s 
analysis method both indicated that Factor F likely affected the fraction non-
conforming. Because the statistic called “tLenth” for this factor is greater than the 
“critical value” tIER,0.05,8 = 2.297 and the order of experimentation was determined 
using randomization, many people would say that “this factor was proven to be 
significant with α = 0.05 using the individual error rate.”  
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Table 17.1. Factors and the ranges decided by the engineering team 

Factor Low (–1) High (+1) 

A. Floor delay 0–15 min 12+ h 

B. Temp. at priming Warm Hot 

C. Oven temp. 300 ºF 380 ºF 

D. Primer thickness Thin color Thick color 

E. Chamber humidity Ambient 90 ºF  90% 

F. Shot size –0.75 turns Full shot 

G. Extra oven time <2 min 15 min 

 

Table 17.2. The experimental design and the results from the rubber machine study 

Run A B C D E F G Y1 

1 1 –1 1 –1 1 –1 1 4.4 

2 –1 –1 –1 1 1 1 1 0 

3 1 1 –1 –1 1 1 –1 0 

4 –1 1 1 1 1 –1 –1 3.8 

5 –1 1 1 –1 –1 1 1 0 

6 1 1 –1 1 –1 –1 1 0.6 

7 –1 –1 –1 –1 –1 –1 –1 2.8 

8 1 –1 1 1 –1 1 –1 0 

 
Note that this conclusion is associated with a lower standard of evidence 

because it was based on a fractional factorial array-based method rather than a two-
sample t-test and the so-called individual error rate (IER) was used (see Chapter 
12). Yet, most importantly, it was immediately confirmed that adjusting shot size 
to the high level effectively eliminated the sticking problem. The effect was proven 
and confirmed. 

The other potentially important factors included E (chamber humidity). The 
result for chamber humidity was surprising. This factor is not found to be 
significant using the Lenth hypothesis test but the posterior probability suggests 
that it might be important. The expensive “hydrolyzer” machine had been bought 
precisely to help eliminate the sticking problem. It created another step in the 
process before the injection of the rubber. Yet, the results indicated that there was a 
non-negligible probability that the hydrolyzer was actually making the problem 
worse, i.e., increasing the % not sticking. 
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Table 17.3. Analysis results for the rubber machine screening experiment 

Factor Estimated 
Coefficients (βest) 

tLenth 

A –0.2 0.48 

B –0.35 0.85 

C 0.6 1.45 

D –0.35 0.85 

E 0.6 1.45 

F –1.45 3.52 

G –0.2 0.48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.2. Main effects plots derived from the fractional factorial experiment 

After the experiment and analysis, it was discovered that some of the 
maintenance technicians in the plant had been adjusting the shot size intermittently 
based on their intuition about how to correct another less serious problem that 
related to the “leaker” cosmetic defect. This problem was less serious because the 
rework operation needed to fix the parts for this defect involved only scraping off 
the parts, instead of pulling off all the rubber, cleaning the part, and starting over. 
The maintenance staff involved had documented their changes in a notebook, but 
no one had thought to try to correlate the changes with the incidence of defective 
parts.  

A policy was instituted and documented in the standard operating procedures 
(SOPs) that the shot size should never be changed without direct permission from 
the engineering supervisor, and the “hydrolyzer” machine was removed from the 
process. The non-sticking problem effectively disappeared, and production shifted 
over to the new machines, saving roughly $15K/month in direct supplemental labor 
costs. The change also effectively eliminated costs associated with production 
disruption and having five engineers billing their time to an unproductive activity. 
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Another team was created to address the less important problem of eliminating the 
fraction of parts exhibiting the cosmetic defect.  

17.4  Case Study: Snap Tab Design Improvement 

A major automotive manufacturer was attempting to save assembly cost by using 
plastic fasteners instead of screws to hold together its air conditioning cases. Since 
plastic fasteners are molded into the plastic case itself, all fasteners can be engaged 
in a single operation with minimal assembly time. Alternatively, screws must be 
inserted and engaged singly, requiring higher assembly cost. Since the engineers 
were unable to find any acceptable existing snap tab designs, the question was 
whether snap tabs of sufficient strength and acceptable size could be developed in 
time for the launch of a new vehicle program whose budget was paying for the 
development. A major concern was whether the expected cost savings would 
justify the development cost. 

The selected snap fit design concept is shown in Figure 17.3. The four design 
factors were identified through the application of a cause and effect matrix (altered 
to protect confidential information) shown in Table 17.4. This “pre-screening” 
clearly identified four factors as being much more relevant than the others. For this 
“loop-hook” topology, accurate engineering models were not available to predict 
the pull-apart force (force at time of joint failure) and insertion force as a function 
of the four design parameters in Figure 17.3. Even virtual prototypes using finite 
element analysis cost at least $3K each for testing. The allocated budget permitted 
only 12 virtual prototypes to be built and tested. 

Table 17.4. Cause and effect (C&E) matrix used for “pre-screening” factors 
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Easy to assemble 4.5 3.5 9.0 2.0 2.5 8.0 8.0 7.5 4.0 

Strong enough to 
replace screws 10.0 4.5 10.0 3.5 8.0 7.5 7.5 1.0 3.0 

Factor Rating 
Number (F′) 60.8 140.5 44.0 91.3 111.0 111.0 43.8 48.0 
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Figure 17.3. The snap tab design concept optimized in our case study 

Example 17.4.1  Snap Fit DOE Plan 

Question: Which is correct and most complete (according to previous chapters)? 
a. Central composite designs are available with 4 factors and 12 runs. 
b. Screening experiments generally do not permit fine tuning parameters. 
c. The number of runs is less than the number of terms in a quadratic 

polynomial.  
d. Non-standard methods were required to address the tuning and cost 

objectives. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

Answer: Even with only a single centerpoint, the smallest standard central 
composite design with four factors has 25 runs (Chapter 13). With their goal of 
finding which factors affect responses, screening methods generally have only two 
levels and do not permit fine tuning taking into account quadratic terms and/or 
interaction terms. According Equation 13.2, the number of terms is 0.5 × (4 + 1) × 
(4 + 2) = 15, which is greater than the budgeted number of runs. Therefore, a non-
standard method must be used, since fitting at least some quadratic curvatures and 
interactions was desirable for tuning. Therefore, the correct answer is (f). 
 

The constraint on test runs followed from the fact that each test to evaluate 
pull-apart and insertion forces required roughly three days of two people working 
to create and analyze a finite element method simulation. Since management was 
only willing to guarantee enough resources to perform 12 experimental runs, 
application of the standard central composite design, which required at least 25 
runs, was impossible. Even a 2 level design that permits accurate estimation of 
interactions contains 16 runs, so just the first experiment in two-step RSM could 
not be applied. Even the small central composite design, which had at least 17 runs 
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was practically impossible (Myers and Montgomery 2001). Note that two similar 
optimization projects were actually performed using different materials. These 
necessities led to the use of a non-standard response surface methods.  

The majority of standard design of experiments (DOE) methods were presented 
initially in the Journal of the Royal Statistical Society: Series B and Technometrics. 
These and other journals including the Journal of Quality Technology, the Journal 
of Royal Statistical Society: Series C, Quality & Reliability Engineering 
International, and Quality Engineering contain many innovative DOE methods. 
These methods can address non-standard situations, such as those involving 
categorical and mixture factors (Chapter 15), and/or potentially result in more 
accurate predictions and declarations for cases in which standard methods can be 
applied.  

In this study, the team chose to apply so-called “low cost response surface 
methods” (LCRSM) from Allen et al. (2000) and Allen and Yu (2002). Those 
papers provide tabulated, general-purpose experimental designs for three, four, and 
five factors each with roughly half the number of runs of the corresponding central 
composite designs and comparable expected prediction errors. Table 17.5 shows 
the design of experiments (DOE) arrays and model forms relevant to LCRSM. 
Table 17.6 shows the actual DOE array used in the case study. Note that no 
repeated tests were needed because finite element method (FEM) computer 
experiments have little or no random error, as described in Chapter 16.  

Table 17.5. LCRSM: (a) initial design (b) the model forms, and (c) the additional runs 

  (a)    Form (b)   (c)   
Run A B C D     #1: β0+βAA+βBB+βCC+βDD+ Run A B C D 

1 –0.5 –1 –0.5 1   βA2A2+βB2B2+βC2C2+ A1 –1 1 –1 1 
2 1 1 –1 1   βABAB+βACAC+βBCBC A2 –1 –1 –1 –1 

3 –1 1 1 1    A3 –1 1 1 –1 

4 1 –1 –0.5 –0.5     #2: β0+βAA+βBB+βCC+βDD+ A4 1 1 –1 –1 

5 0 0 –1 0   βA2A2+βB2B2+βD2D2+      
6 0 1 0 0   βABAB+βADAD+βBDBD      
7 –0.5 –1 1 –0.5         
8 –1 0 0 0     #3: β0+βAA+βBB+βCC+βDD+      
9 1 1 1 –1   βA2A2+βC2C2+βD2D2+      

10 –1 1 –1 –1   βACAC+βADAD+βCDCD      
11 0 0 0 –1         
12 0.5 –0.5 0.5 0.5   #4: β0+βAA+βBB+βCC+βDD+      
13 0.5 –0.5 0.5 0.5   βB2B2+βC2C2+βD2D2+      

14 0.5 –0.5 0.5 0.5   βBCBC+βBDBD+βCDCD      
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Table 17.6. Experimental runs and the measured pull-apart and insertion forces 

Run A B C D Y1 Y2 
1 1.25 1.7 12.5 10.00 55.95 15.39
2 2.00 2.1 10.0 10.00 101.76 19.92
3 1.00 2.1 20.0 10.00 101.23 21.02
4 2.00 1.7 12.5 6.25 52.93 18.55
5 1.50 1.9 10.0 7.50 59.93 13.42
6 1.50 2.1 15.0 7.50 80.54 15.90
7 1.25 1.7 20.0 6.25 60.87 14.70
8 1.00 1.9 15.0 7.50 72.02 13.51
9 2.00 2.1 20.0 5.00 102.70 22.81

10 1.00 2.1 10.0 5.00 51.36 23.79
11 1.50 1.9 15.0 5.00 59.42 26.33
12 1.75 1.8 8.8 8.75 81.94 13.50

17.5  The Selection of the Factors 

Using only four parameters to specify such a complex topology such as loop hook 
snap tabs leads to inevitable ambiguities. For example, should the loop width vary 
along with the tab width (factor C)? It was arbitrarily selected to vary the loop 
width linearly as a function of C. Similarly, if factor C is the width at the base of 
the snap tab, how should that relate to the width at the end of the tab (C′)? Again, it 
was decided somewhat arbitrarily that C′ = C – 7 mm. Also, as the tab width 
changes, at what levels do we change the integer number of support brackets?  

It was decided again somewhat arbitrarily to add a separate bracket for every  
7 mm of tab width. Therefore, a change to factor C implied changes to the tab 
width at the base and end, a change in the loop width, and, potentially, a change in 
the number of support brackets. In this “parameterization” or framing of the 
problem, one could not “dial up” a wide loop and a narrow tab. Figure 17.4 shows 
the selected primary factors (A, B, C, and D) and the sub-factors that depended on 
them (C′, D′, and D′′).   
 
 
 
 
 
 
 
 
 

Figure 17.4. Experimental factors in the parameterization chosen 
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Note that any ambiguity in the choice of parameterization could actually 
increase interest by the practitioner in the methods described in this book. This 
follows because these technologies permit more factors to be studied, modeled, and 
optimized over with generally higher probabilities of achieving desired outcomes 
than alternatives such as one-factor-at-a-time (OFAT). With more factors, one has 
substantially greater freedom to investigate parameterizations that permit effects to 
be separated and better understood. As we will discover in the case study, the 
guessed parameterization helped in the achievement of remarkable performance 
improvements 

17.6  General Procedure for Low Cost Response Surface 
Methods 

The application of low cost response surface methods is similar to that of standard 
two-step response surface methods except multiple models are fit instead of one 
and the diagnostic test is different. Additional details are available in Allen and Yu 
(2002). The major steps as described in Algorithm 17.1 are experimental set-up 
and testing, modeling, diagnostics, and additional testing if needed. The case study 
is described in the next section. 

17.7  The Engineering Design of Snap Fits 

This section describes the application of LCRSM to derive the empirical prediction 
models of the pull-apart and insertion forces for the snap tab project. Results are 
modified slightly to preserve confidentiality. In the real study, a similar method 
was applied and achieved similar results.  

The steps in the development of the model for the snap tab pull apart force and 
insertion forces were as follows. In Step 1, the team used the factors shown in 
Table 17.6. The 12 sets of responses are also shown. The engineering ranges for 
the factors A, B, C, and D were 1.0 mm to 2.0 mm, 1.7mm to 2.1 mm, 10.0mm to 
20.0mm, and 5.0 mm to 10.0 mm, respectively. The response Y1 was the pull-apart 
force in pounds (lb), and Y2 was the insertion force in lb. The data derived from the 
12 finite element analyses are also shown in Table 17.6 in the right-hand columns. 
Figure 17.5 illustrates finite element method (FEM) runs, showing the stresses 
placed on each element of the snap fit during a simulated pull apart at the point of 
breakage.   

In Step 2, the four linear regression model forms in Table 17.5b were fitted to 
each of the responses and selected the one with the lowest sum or squares error.  
The selected models for each response were:  

yest,1 = 72.06 + 8.98A + 14.12B + 13.41C + 11.85D + 8.52A2 – 6.16B2          

+ 0.86C2 + 3.93AB – 0.44AC – 0.76BC     
and                 (17.1) 

y est,2 = 14.62 + 0.80A + 1.50B – 0.32C – 3.68D – 0.45A2 – 1.66C2                  

+ 7.89D2 – 2.24AC – 0.33AD + 1.35CD.   
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( ) ( ) 2/12/12
,, 1 −−= ∑ qq

i estiestq ββ

Algorithm 17.1. Low cost response surface methods 

  
In the modified Step 3, the choice was made to set the desired accuracy to be 

σprediction = 3.0 lb or ± 3 lb accuracy for the pull-apart force and σprediction = 3.0 lb for 
the insertion force. The square roots of the sum of squares of the quadratic 
coefficients divided by the number of quadratic coefficients, 6, for the two 
responses were βq,est = 4.6 lb and 3.5 lb respectively. Since these were less than 
their respective cutoffs, 2.0 × 3.0 lb = 6.0 lb for the pull force and 2.0 × 3.0 lb = 6.0 
lb for the insertion force, we stopped. No more experiments were needed. The 
expected average errors that resulted from this procedure were estimated to 
roughly equal their desired values.  

Compared with central composite designs using 25 distinct runs, there was a 
savings of 13 runs, which was approximately half the experimental expense. The 
expected average errors that resulted from this procedure were as small or smaller 
than desired, i.e., within ±3 lb for both pull apart and insertion forces averaged 
over the region of interest. This prediction accuracy oriented experiment was 
likely considerably more accurate than what could be obtained from a screening 

Step 1:  Set up the experiment by taking the experimental design appropriate for the 
relevant number of factors from the appropriate table. Here only the four 
factor design in Table 17.5a is given, which is given in scaled (–1,1) units. 
Scale to engineering units, e.g., see Table 17.6, perform the experiments, 
and record the responses.  

Step 2:  Create the regression model(s) of each response by fitting the appropriate 
set of candidate model forms from Allen, Yu (2002). For the design in 
Table 17.5a, this is the set in Table 17.5b. The model fitting uses least 
squares linear regression. Select the fit model form with the lowest sum of 
squares error.   

Step 3:  (The Least Squares Coefficient Based Diagnostic) Calculate  

( ) ( ) 2/12/12
,, 1 −−= ∑ qq

i estiestq ββ
               (17.2) 

    where β i ,est are the least squares estimates of the q second order 
coefficients in the model chosen in Step 2. Include coefficients of terms 
like A2 and BC, but not first order terms such as A and D. Estimate the 
maximum acceptable standard error of prediction or "plus or minus" 
accuracy goal, σprediction.  If βq,est ≤ 1.0σprediction, refit the model form in the 
engineering units. Stop.  Otherwise, or if there is any special concern with 
the accuracy, continue to Step 4. Special concerns might include mid-
experiment changes to the experimental design. The default assumption for 
σprediction is that it equals 2.0 times the estimated standard error, because 
then the achieved expected “plus or minus” accuracy approximately equals 
the error that would be expected if the experimenter applied substantially 
more expensive methods based on composite designs.   

Step 4:  Perform additional experiments specified in the appropriate if needed, e.g., 
Table 17.5c. After the experiment, fit a full quadratic polynomial 
regression model as in ordinary response surface methods. The resulting 
model is expected to have comparable prediction errors (within 0.2σ) as if 
the full central composite with 27 runs had been applied.
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experiment such as either of the first two case studies. Also, the project was 
finished on time and within the budget.  

The models obtained from the low cost response surface methods procedure 
were then optimized to yield the recommended engineering design. The parameters 
were constrained to the experimental region both because of size restrictions and to 
assure good accuracy of the models. An additional constraint was that the insertion 
force of the snap tab needed to be less than 12 lb to guarantee easy assembly. The 
formal optimization program that we used was 

Maximize:  yest,1(A,B,C,D) 
Subject to:    yest,2(A,B,C,D) ≤ 12.0 lb 

–1.0 ≤ A,B,C,D ≤ 1.0 

where we expressed the variables in coded experimental units.   
Using a standard spreadsheet solver, the optimal design was A = 1.0, B = 0.85, 

C = 1.0, and D = 0.33. Figure 17.5 shows the region of the parameter space near 
the optimal. The insertion force constraint is overlaid on the contours of the pull 
force. Forces are in pounds. In engineering units, the optimal engineering design 
was A = 2.0 mm, B = 2.07 mm, C = 20 mm, and D = 8.3 mm, with predicted pull-
apart force equal to yest,1(A,B,C,D) = 118 lb.   

Note that all factors have at least one associated model term that is large in 
either or both of the models derived from the model selection for the insertion and 
pull-apart forces. If the team had used fewer factors to economize, then important 
opportunities to improve the quality would likely have been lost because the effects 
of the missing factors would not have been understood. These missing factors 
would likely have been set to sub-optimal values.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.5. Finite element analysis (FEA) simulation of the snap tab 

The results of the snap fit case study are summarized in Figure 17.7. The 
“current” model derived from existing standard operating procedures (SOPs) in the 
corporate design guide. Results associated with the “best guess” design, chosen 
after run 1 was completed, and the final recommended design, are also shown in 
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Figure 17.7. Neither the best guess design nor the current model designs were 
strong and small enough to replace screws. The size increase was deemed 
acceptable by the engineers because the improved strength made replacing screws 
feasible.   

Note that there was a remarkable agreement between the predicted and the 
actual pull-apart forces (within 3%), which validates both the low cost response 
surface method errors and our procedure for finite element simulation. The 
resulting optimized design was put into production and into the standard operating 
procedures. Some savings was achieved, but unanticipated issues caused the 
retention on screws on many product lines. 
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Figure 17.6. Insertion force constraint on pull force contours with A = 1 and C = 1 

 
 
 
 
 
 
 
 
 

Figure 17.7. Improvement of the snap fit achieved in the case study 
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17.8  Concept Review 

Two additional case studies have been described in which the participants all 
believed that formal improvement systems related technology helped them to more 
than recoup their investment in experimentation and analysis. Reviewing the 
common features of these studies may help the reader to evaluate better whether 
formal improvement systems might achieve similar successes for a given new 
system design problem.  

In all three studies, the participants had sufficient authority and resources to 
experiment on either the actual physical system that they were designing (e.g., the 
PCB and rubber machine studies) or, at least, a similar “surrogate” system (e.g., 
virtual FEA simulation in the snap tab study). The experimental outputs were 
assumed to relate identically to engineered system outputs for a given combination 
of inputs. Confirmation experiments were performed on physical prototype 
systems for the snap tab study, but otherwise in all cases the teams assumed that 
the fidelity of the prototype systems was high enough that fidelity issues were 
ignored.   

Also, the factors selected as inputs in all of the experiments were all directly 
controllable by the team members both during the experiment and in subsequent 
operation of the engineered system. We therefore call this type of input parameter a 
“control factor” following the terminology introduced by Taguchi and described 
in Chapter 14. Note that Taguchi also defined other types of factors (not considered 
in these studies) including noise factors that are controllable during 
experimentation but not during system operation.   

Because the factors in all of the studies could be controlled, one can think of 
them as “dials” that one is trying to tune, e.g., the width of the snap tab is a 
“continuous factor”. Some of these dials may only be allowed to point to a small 
number of discrete settings, e.g., the transistor mounting approach factor is 
“categorical” or, equivalently, “qualitative” or “discrete” (either screwed or 
soldered). Some factors are parameters in policies or recommendations, e.g., the 
recommended maximum waiting time for parts after priming in the rubber machine 
study. In some cases, the specification of the precise definitions of the control 
factors inevitably involves subjective decision-making and, hopefully, good 
engineering judgment (e.g., in the snap tab study).   

In this view of system design pictured in the figure below, the decision-makers 
are asked to determine settings of the control factor dials so that the outputs, the 
yis, consistently achieve some desired values. One of the challenges for formal data 
collection and analysis methods is to facilitate accurate estimation of the system 
true performance as a function of the control factors, despite changes in the outputs 
during experimentation because of the random errors, the ε is. These errors 
presumably occur because other, usually unknown, factors are changing. Armed 
with the estimates of the true model functions, β is, one can then attempt to 
optimize the control factors to achieve desirable system outputs during normal 
operations. 
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Figure 17.8. The relationship of terminology associated with system design 

Example 17.8.1  Experimentation in Hospitals 

Question: Assume you are an administrator working in a hospital to reduce cost 
and improve customer service. What might your control factors and responses be 
for a three-month improvement project? 
 
Answer: As an administrator, you cannot control the manner in which surgeries 
are performed nor which drugs are prescribed. You can, however, recommend and 
experiment with factors including the numbers of different types of nurses on call 
during the week, details of the insurance documentation process, and the numbers 
of beds in the different wards. Responses might include the times until patients see 
medical personnel, customer satisfaction ratings, and monthly personnel costs. 

17.9  Additional Discussion of Randomization 

Note that, in each experiment, the test runs were performed in an order determined 
by a random number generator. We therefore say that these experiments were 
“randomized”. Randomization can be defined by the use of random approaches to 
specify all otherwise unspecified details of the experimental plan.  

The wisdom behind randomization relates to the way that variation of factors 
that both (1) influence the prototype systems and (2) change during the time in 
which the experiments are performed. Randomization greatly increases the 
probability that these factors will enter the analysis as the random noise that the 
methods are designed to address, i.e., after a randomized experiment the 
experimenter will be much more confident that control factors that appear 
significant really do affect the average response. The following examples are 
designed to clarify the practical value of randomization. 
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Example 17.9.1  Rubber Machine Example Revisited 

Imagine that the rubber machine experiment had been performed in an order not 
specified by pseudo-random numbers. Table 17.7 shows the same experimental 
plan and data from the rubber machine study except the run order is given in an 
order that displays some of the special properties of the experimental matrix. For 
example, the columns corresponding to factors E, F, and G have an “elegant” 
structure. This is a run order that Box and Hunter (1961) might have first generated 
in their derivation of the matrix from combinatorial manipulations.  

As in the real study, all of the runs with high fractions of non-conforming units 
correspond to prototype systems in which the shot size was low. However, without 
randomization, another simple explanation for the data confuses the issue of 
whether shot size causes non-conforming units. The people performing the study 
might simply have improved in their ability to operate the system, i.e., a “learning 
effect”. Notice that only the first four runs are associated with poor results. The 
absence of randomization in this imagined experiment would greatly diminish the 
value of the collected data.  

Table 17.7. Hypothetical rubber machine study performed in a non-randomized order 

Run A B C D E F G Y1 

1 1 –1 1 –1 1 –1 1 4.4 

2 –1 1 1 1 1 –1 –1 3.8 

3 1 1 –1 1 –1 –1 1 0.6 

4 –1 –1 –1 –1 –1 –1 –1 2.8 

5 –1 –1 –1 1 1 1 1 0 

6 1 1 –1 –1 1 1 –1 0 

7 –1 1 1 –1 –1 1 1 0 

8 1 –1 1 1 –1 1 –1 0 

Example 17.9.2  Drug Testing Example 

Consider a simple experiment in which a drug is given along with a placebo to a 
test group and a control group. Chapter 11 shows one way to use random 
approaches to assign people to groups. However, suppose that the experimenter 
does not use pseudo-random numbers to assign which subjects to the test and 
control groups and instead permits the subjects to divide themselves. It seems 
likely that smokers, who generally have poorer health, might naturally group 
together because of shared interests.   

If they concentrated into the control group, any positive benefits associated 
with the drug might be suspect. This follows because the negative health outcomes 
for the control group could easily be caused by smoking and not the absence of the 
drug. Using pseudo-random numbers makes this type of confusion or 
“confounding” extremely unlikely. For example, if there are 10 smokers in a 
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group of 30, the chance that all 10 would be randomly assigned to a test group of 
15 is less than 0.000001.   

Because of the desirable characteristics from randomization, researchers in 
multiple fields associate the word “proof” with the application of randomized 
experimental plans. Generally, researchers draw an important distinction between 
inferences drawn from “on-hand data”, i.e., data not from randomized 
experimental plans, which they call observational studies, and the results from 
randomized experimental plans. In language that I personally advocate, one can 
only claim a hypothesis is “proven” if one has a mathematical proof with stated 
assumptions or “axioms” derivation of the hypothesis from the standard model in 
physics, or evidence from hypothesis testing, based on randomized experimental 
plans. 

The issue of fidelity further complicates the use of the word proof. As noted 
earlier, in all of the studies, the stakeholders were comfortable with the assumption 
that the prototype systems used for experimentation were acceptable surrogates for 
the engineered systems that people cared about, i.e., that made money for the 
stakeholders. Still, it might be more proper to say that causality was proven in the 
randomized experiments for the prototype systems and not necessarily for the 
engineered systems. Conceivably, one could prove a claim pertinent to a low 
fidelity prototype system in the laboratory but not be able to generalize that claim 
to the important, highest fidelity, real-world system in production. Although 
methods to address concerns associated with fidelity are a subject of ongoing 
research, fidelity issues, while extremely important, continue to be largely outside 
the scope of formal statistical methods.  

Note that randomization benefits are associated with the effects of factors that 
are not controlled. Since these factors are often overlooked, the experimenter may 
not have the option of controlling and fixing them. Yet, it is also not clear that 
controlling these factors would be desirable (even if it were possible) since their 
variation might constitute an important feature of the engineered system.  
Therefore, a tightly controlled prototype system might be a low fidelity surrogate 
for the engineered system. This explains why proof is generally associated with 
randomization and not control. 

17.10  Summary 

This chapter contains two case studies. In the first, two rubber machines were 
malfunctioning and causing a production bottleneck. Standard screening using 
fractional factorial methods were applied to identify the cause and suggest a 
prompt and successful remedy. One of the associated factors used in the study was 
not a setting on a machine but rather a way of stating policy to employees. In the 
second study, an innovative design of experiments methods called low cost 
response surface methods (LCRSM) was applied to develop a surface prediction of 
strength and insertion effort for snap tabs. Formal optimization of the resulting 
surface models permitted the doubling of the strength with small increase in size. 
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Problems 

Use the following information to answer Questions 1–3: 
 
PCB Study Revisited: A company assigns a team of electrical engineers to 
improve the low first-pass yield on a printed circuit-board (PCB) line. The non-
conforming units are reworked and shipped and the final yield is much higher 
(99%). The company lead time is not world class and sales are being lost. The 
electrical engineers have come up with 10 possibly important factors, without 
consulting with rework operators. Then, they performed OFAT with small sample 
sizes (batches of 20 units at each level, each a success or failure). They did not use 
t-testing or any formal test and simply implemented the settings that seemed most 
promising. After the OFAT testing, only three of their factors seemed to make a 
big difference. None of the setting before or after their changes corresponded to 
those in any corporate SOP. 
 
1. Which is correct and most complete (according to this book)? 

a. The engineers have a high level of evidence, and the settings should 
work. 

b. Randomness and interactions could have confused them. Yield might 
be worse. 

c. The cost of low first-pass yield is almost all direct payments to 
operators. 

d. They certainly elicited factors from those with the most process 
knowledge. 

e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
2. Which is correct and most complete (according to this book)? 

a. With experts in-the-loop, it is rarely (if ever) critical to consult SOP 
settings. 

b. They likely made some Type I errors by assuming that all factors 
mattered. 

c. They could have used 12 batches based on a Plackett Burman (PB) 
array and likely avoided errors 

d. Up to 3 additional factors could have been used with only 16 batches 
structured according to a regular fractional factorial (FF). 

e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
The above approach resulted in a disastrous drop in the yield (to 40%), and an IE 
“DOE expert” was called in to plan new experiments. Someone other than an 
electrical engineer then suggested an additional factor to consider.  
 
3. Which is correct and most complete? 

a. A reasonable first step is to return the process to the documented 
settings. 
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b. They could study four factors with eight batches of units according to 
a regular FF. 

c. A list of factors to study should come from engineers and operators. 
d. Lenth’s method with EER for the analysis will likely cause few Type 

I errors. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
The IE let team found that the operator suggested factor was critical, adjusted only 
it and increased the yield to 95%. 
 
Use the following scenario for Questions 4. 
 
Furniture Study: A furniture manufacturer will lose an important Japanese 
customer until they can fix an elusive surface finish problem. They are convinced 
that the cause of the small fraction of unacceptable units relates to an interaction 
between controllable factors. They are considering studying one categorical 
(natural or composite wood) and three continuous factors that they are pretty sure 
all matter including the noise factor, humidity. 
 
4. Which is correct and most complete? 

a. Starting with standard screening using fractional factorials is natural 
because interactions are modeled. 

b. They could reasonably use a single, standard Box Behnken array with 
four factors. 

c. A reasonable recommendation is to perform two Box Behnken DOEs, 
one for each level of the categorical factor. 

d. There is no way to use any RSM method since they have a 
categorical factor. 

e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 

 
Answer Questions 5 and 6 based only on the following information. 
 
Snap Tab Study Variant: An automotive company wanted to replace screws on 
its air conditioner cases with snap tabs. The problem was that their snap tabs were 
less than half as strong as what was needed. They performed an RSM study to tune 
the four factor settings that they considered.   
 
5. Which is correct and most complete? 

a. As is usual in DOE recommendations, they should recommend the 
settings corresponding to the best run in their DOE. 

b. If RSM was applied to computer simulations, errors from the DOE 
modeling process and the simulation could cause poor real world 
confirmation results. 
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c. Before testing, selecting a range of factor settings that contain good 
values inside places less demand on expert judgment than directly 
selecting the final settings. 

d. It is possible that no feasible snap tab design could be found from the 
analysis. 

e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

6. Which is correct and most complete? 
a. Using an EIMSE optimal design, the snap tab study could have been 

done with 20 runs or fewer. 
b. The LCRSM approach used could have generated a less accurate 

prediction model than any of the standard RSM approaches in 
Chapter 13. 

c. By dropping fixing factor C, it would have been possible to using an 
EIMSE optimal design and 16 or fewer runs. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
7. Which of the following is correct and most complete? 

a. RSM should have been used in the rubber experiment to focus on 
shot size and humidity since everyone knew these mattered most. 

b. A regression analysis of on-hand data could conceivably have 
suggested that shot size was causing the sticking problem. 

c. Regression of on-hand data could have proven that shot size was the 
problem. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

8. Perform an experiment involving four factors and one or more responses using 
standard screening using fractional factorials or responses surface methods.  
The experimental system studies should permit building and testing individual 
prototypes requiring less than $5 and 10 min time.     
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18 

DOE and Regression Theory 

18.1  Introduction 

As is the case for other six sigma-related methods, practitioners of six sigma have 
demonstrated that it is possible to derive value from design of experiments (DOE) 
and regression with little or no knowledge of statistical theory. However, 
understanding the implications of probability theory can be intellectionally 
satisfying and enhance the chances of successful implementations.  

Also, in some situations, theory can be practically necessary. For example, in 
cases involving mixture or categorical variables (Chapter 15), it is necessary to go 
beyond the standard methods and an understanding of theory is needed for 
planning experiments and analyzing results. This chapter focuses attention on three 
of the most valuable roles that theory can play in enhancing DOE and regression 
applications. For a review of basic probability theory, refer to Chapter 10. 

First, applying t-testing theory can aid in decision-making about the numbers of 
samples and the α level to use in analysis. Associated choices have implications 
about the chances that different types of errors will occur. Under potentially 
relevant assumptions, the chance of wrongly declaring significance (a Type I error) 
might not be the α level used. Also, if the number of runs is not large enough, a 
lost opportunity for developing statistical evidence is likely (a Type II error). 

Second, theory can aid in the many decisions associated with standard 
screening using fractional factorials. Decisions include which DOE array to use, 
which alpha level to use in analysis, and whether to use the individual error rate 
(IER) or experimentwise error rate (EER) critical values. With multiple factors 
being tested simultaneously, many Type I and Type II errors are possible in the 
same experiment.  

Third, in applying responses surface methods (RSM) and regression in general, 
the resulting prediction models will unavoidably result in some inaccuracy or 
prediction errors. Theory can aid in predicting what those errors will be and aid in 
the selection of the design of experiment (DOE) array. In general, design of 
experiment arrays (DOE) can be selected from a pre-tabulated set or custom 
designed. “Optimal design of experiments” is the activity of using theory and 
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optimization to select custom designed experimental arrays. The huge number of 
possible arrays to select from explains in part why many people consider DOE the 
most complicated of six sigma related methods. 

Section 2 describes general concepts associated with design of experiments and 
regression theory. The discussion introduces the need for pseudo-random number 
generation which is described in Section 3. Sections 4 and 5 describe the use of 
pseudo-random numbers for supporting t-test and fractional factorial decision-
making respectively. In Section 6, the assumptions underlying the theory of linear 
polynomial regression are described. Section 7 describes the evaluation of a simple 
response surface methods (RSM). Section 8 describes formulas useful for 
supporting RSM decision-making and calculating efficiently the so-called EIMSE 
criterion. 

18.2  Design of Experiments Criteria 

It might seem surprising that the chances of errors can usefully be estimated 
quantitatively even before experimentation begins. Yet such predictions are 
possible using probability theory, including those that relate to Type I and II and 
prediction inaccuracy. Evaluations prior to experimentations should not be entirely 
surprising since it is widely known that t-testing with α = 0.05 is associated with a 
0.05 estimated chance of Type I errors, under at least some assumptions.  

In general, the phrase “DOE criteria” refers to evaluations of method quality 
available for making method choices, e.g., which array to use, before experiments 
are performed. Criteria comprise the objective such as minimizing expected 
squared prediction error and the assumptions needed to calculate criteria values. 
Table 18.1 previews the criteria used in this chapter to support method related 
decision-making. Other criteria include so-called “resolution” described in 
Chapters 13 and 14 and so-called “D-efficiency” described later in this chapter.  

Table 18.1. Preview of the design of experiments criteria explored in this chapter 

 Criterion 

Method Objective Assumptions Relevance 

T-testing 
Type I and II 

errors  
probabilities 

Responses are normally 
distributed with selected 

means 

Correct 
declarations 

during analysis 

Standard 
screening 

Type I error and 
Type II error 
probabilities 

Hierarchical 
assumptions based on 

normality and unknown 
true models 

Correct 
declarations 

during analysis 

One-shot 
RSM 

Expected 
squared 

prediction errors 
or the “EIMSE” 

Random, independent 
true model coefficients, 
errors, and prediction 

points 

Accuracy of 
predictions 

after 
experimentation  
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Figure 18.1. An example DOE design problem with one simulation run or scenario 

The term “simulation” refers to the use of pseudo-random numbers to evaluate 
criteria. Simulation is not always needed because in some cases criteria can be 
evaluated using calculus or in other ways that do not require pseudo-random 
numbers. Even when simulation is unneeded, the concept of evaluating method 
selection choices through testing scenarios shown in Figure 18.1 is perhaps central 
to all applications of probability theory to support method selection. 

Figure 18.1 also shows a decision-maker trying to select which levels to use for 
three test runs. The right-hand-side shows one possible scenario. In this scenario, 
response data are made up for the purposes of a “thought experiment” in which 
the method user imagines what might happen if three distinct, evenly spaced levels 
are applied. Also, a hypothetical “prediction point” is imagined where prediction 
will be requested after the experiment and analysis. From the model that would be 
fitted, a prediction follows. Also, regression t-testing would suggest significance of 
factor x1 for affecting the average response.  

Clearly, the made-up data in a thought experiment is not associated with any 
real evidence of whether x1 affects the response, nor does it help in making 
predictions. However, such hypothetical data can be useful in careful comparisons 
of alternative method options. Using simulation, it is possible to test millions of 
possible scenarios and use them to calculate estimates of DOE criteria for rating 
method options. 

18.3  Generating “Pseudo-random” Numbers 

Pseudo-random numbers are needed for simulating method performance and 
simulation-based estimation of criteria. In this section, practical ways to generate 
approximately random numbers or “pseudo-random” numbers are described.  
Results from Press et al. (pp. 275–286, 1993) are used throughout. We begin with 
the definition of the uniformly distributed random variables, U, over the interval 
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[a,b]. The notation that we will use is U ~ U[a,b]. Uniform random variables have 
the distribution function fu(x) = (a – b)–1 for a ≤ x ≤ b and fu(x) = 0 otherwise. 

The initial starting point of most simulations are approximately independent 
identically (IID) distributed random numbers from a uniform distribution between 
a = 0 and b = 1, written U[0,1]. As noted in Chapter 10, “independent” means that 
one is comfortable with the assumption that the next random variable’s distribution 
is not a function of the value taken by any other random variables for which the 
independence is believed to apply.  

For example, if a person is very forgetful, one might be comfortable assuming 
that this person’s arrival times to class on two occasions are independent. Under 
that assumption, even though the person might be late on one occasion (and feel 
bad) the person would not modify his/her behavior and the chance of being late the 
next time would be the same as always. Formally, if f(x1 ,x2 ) is the “joint 
probability density function”, then independence implies that it can be written 
f(x 1 ,x2 )=  f(x1 ) f(x 2) .  Also, the phrase “identically distributed” means that all 
of the relevant variables are assumed to come from exactly the same distribution.  

Consider the sequences of numbers Q1, Q2, …, Qn and U1, U2, …Un given by 

Qi = mod(1664525Qi–1+ 1013904223,232)  
 (18.1) 
Ui =         for i = 1,…∞   with Q0 = 1 

 
where the function “mod” returns the remainder of the first quantity in the brackets 
when divided by the second quantity. For example 14 mod 3 is 14 – 4(3) = 2. The 
phrase “random seed” refers to any of the numbers Q1,…,Qn, which starts a 
sequence. 

Then, starting with Q0 = 3, the first eight values i = 1,…,8 of the Qi sequence 
are 1018897798, 2365144877, 3752335016, 3345418727, 1647017498, 
3714889393, 2735194204, and 1668571147. Also, the associated Ui are 
0.23723063, 0.550678204, 0.873658577, 0.778915995, 0.383476144, 
0.864940088, 0.636837027, and 0.388494494. We know that these numbers are 
not random since they follow the above sequence, and all values can be predicted 
precisely at time of planning. In fact, the sequence repeats every 4,294,967,296 
digits so that there is necessarily a perfect correlation between each element and 
the element 4,294,967,296 after it (they are identical). Therefore, the numbers are 
not independent, even if they appear random, if small strings are considered. Still, 
considering the histogram of the first 5000 numbers in Figure 18.2, it might be of 
interest to pretend that they are IID U[0,1].   

For the computations in subsequent chapters, numbers are used based on 
different, more complicated sequences of pseudo-random numbers given by the 
function “ran2” in Numerical Recipes on pp. 282–283. Yet, the concept is the 
same. The sequence that will be used also repeats but only after 2.3 × 1018 
numbers. Therefore, when ran2 is used one can confortably entertain the 
assumption that these are perfect IID uniform random variables. 
 
 

 Qi  x   

 232 
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Figure 18.2. Histogram of 5000 numbers from a sequence of pseudo-random numbers 

18.3.1  Other Distributions 

Generally, pseudo-random numbers for distributions other than uniform are created 
starting with uniformly distributed pseudo-random numbers. The “univariate 
transformation method” refers to one popular way to create these random numbers, 
illustrated in Figure 18.3. An initial pseudo-random U[0,1] number U is 
transformed to another number, X, using the so-called “inverse cumulative 
distribution” or F function associated with the distribution of interest.  

Since the U has a roughly equal chance of hitting anywhere along the vertical 
axis, the chance that X will lie in any interval on the horizontal axis is proportional 
to the slope of the curve at that point. One can write this slope (d/dx)F(x). From the 
“Liebniz rule” in calculus (see the Glossary), we can see that (d/dx)F(x) = f(x) if 
and only if 

   F(x) = ( )∫
∞−

x

dxxf            (18.2) 

which is the definition of the “cumulative distribution function” (CDF) 
associated with the density function f(x).   
 
 
 
 
 
 
 
 
 
 

Figure 18.3. One way to derive a pseudo-random number, X 
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For example, the cumulative distribution function, F(x), for the triangular 
distribution function with a = $9,500 and b = $10,600, with c = $10,000 is 

0   if x ≤ a  
 
     if a < x ≤ c 
                (18.3) 
         F(x) =   

1 –    if c < x < b 
 

 
1  if x ≥ b 

The inverse cumulative distribution function for the triangular is 
 
           a +     (b – a)(c – a)u       if u < (c – a)/(b – a)     (18.4) 
          F–1(u) =  
           b –    (1 – u)(b – a)(b – c)   otherwise 
 

As long as one has the inverse cumulative distribution function available,  
F–1(u), one can generate approximately IID random variables associated with any 
density function f(x) by first generating IID U[0,1] pseudo-random numbers, U, 
and then transforming, X = F–1(U). For many distributions, the univariate 
transformation method is built into standard spreadsheet software such as Excel. 
However, for some distributions such as the so-called “triangular” distribution 
described in the next example, it can be necessary to calculate the inverse 
cumulative distribution and perform all steps by hand.  

Example 18.3.1  Simulating Future Revenues 

Suppose someone tells you that she believes that revenues for her product line will 
be between $1.2M and $3.0M next year, with the most likely value equal to $2.7M. 
She says that $2.8M is much more likely than $1.5M. 
  
Question 1: Define a distribution function consistent with her beliefs. 
 
Answer 1: One distribution function satisfying these conditions is a triangular 
distribution with a = $1.2M, b = $3.0, and c = $2.7M in Figure 18.4. 
 
            f(x) 
 
 
 
 
 

x (in $M) 
 

Figure 18.4.  A proper distribution function consistent with the stated beliefs 

    (x – a)2   a 
(b – a)(c – a) 

     (b – x)2a  
(b – a)(b – c) 

1.2                                            2.7 3.0 

1.0 

 

 

 

0.0 
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Question 2: Use your own distribution function from Question 1 to estimate the 
probability, according to her beliefs, that revenue will be greater than $2.6M. 
 
Answer 2:  
                 P(X > 2.6) = the shaded area above             (18.5)  

      = 1 – P(X ≤ 2.6) where P(X ≤ 2.6) is the CDF for 2.6 and 
 
               P(X ≤ 2.6) =           = 0.73   ⇒   P(X > 2.6) = 0.27 . 
 
 
Question 3: Generate or show in detail how to generate three pseudo-random 
samples from the distribution defined in Question 2. Start with the pseudo-random 
uniform numbers 0.23, 0.78, and 0.51. 
 
Answer 3: 
  (3.0 – 1.2)(2.7 – 1.2)u   + a    if u < (2.7 – 1.2)/(3.0 – 1.2)  
F–1(u) =                 (18.6) 
   3.0 –   (1 – u)(3.0 – 1.2)(3.0 – 2.7)  otherwise 
 
 
Plugging in and marking the units we obtain: $1.9M, $2.65M, and $2.37M. 

18.3.2  Correlated Random Variables 

Sometimes, one is interested in investigating assumptions about random variables 
that include correlations between them, i.e., the random variables are not 
independently distributed. An example might be the prices of X1 – automotive, X2 – 
oil stocks, and X3 – natural gas stocks with assumed means μ1, μ2, and μ3 
respectively. From past data and/or expert opinion one might want to entertain the 
assumptions that 
 

E[(X1 – μ1)(X2 – μ2)] = –13 ($/share)2    
E[(X1 – μ1)(X3 – μ3)] = –10.5 ($/share)2 
E[(X2 – μ2)(X3 – μ3)] = 8.5 ($/share)2 

and               (18.7)  
E[(X1 – μ1)2] = 28.25 ($/share)2 
E[(X2 – μ2)2] = 12.25 ($/share)2 
E[(X3 – μ3)2] = 18 ($/share)2. 

 
Then, one would like our pseudo-random numbers to reflect these “correlations” 
and, e.g., have similar sample correlations.  

Suppose that we have F–1(u) available for a normal distribution with mean μ = 
0 and standard deviation σ = 1. Then, one can generate, Z1, Z2, Z3 approximately 
IID standard normal random variables. It is a fact verifiable by linear algebra and 
calculus that if we form the matrices V and T: 

 

    (2.6 – 1.2)2   a 
(3.0 – 1.2)(2.7 – 1.2) 
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V =                 =   T′T   with    T =            (18.8) 
          
 
where T is called the “Cholesky decomposition” or “square root” of V, then we 
can generate pseudo-random numbers (in this case stock prices), X1, X2, X3, with 
the desired correlations and means using the formula: 
 
  X1    Z1            μ1 

X2      =     T Z2       +     μ2             (18.9)
 X3   Z3    μ3 
 

Because of the unusual properties of the normal distribution, one can also say 
that the Xi calculated this way are approximately normally distributed. For a recent 
reference on generating random variables from almost any distribution with many 
possible assumptions about correlations, see Deler and Nelson (2001). 

Note that it is possible to generate approximately IID random variables from 
many distributions that have no commonly used names by constructing them from 
other random variables. For example, if Z1 and Z2 are IID normally distributed with 
mean 0 and standard deviation 1, then X1 = sin(Z1) and X2 = sin(Z2) are also IID, 
but their distribution has no special name. 

18.3.3  Monte Carlo Simulation (Review) 

The central limit theorem provides a mathematical framework with which to 
evaluate the averages and standard deviations of simulated numbers. The results of 
that theorem are repeated from Chapter 10 using the following symbols: 

1. X1, X2,…, Xn are random variables assumed to be independent identically 
distributed (IID). These could be quality characteristic values outputted 
from a process with only common causes operating. They could also be a 
series of outputs from some type of numerical simulation. 

2. f(x) is the common density function of the identically distributed X1, X2, 
…, Xn. 

3. Xbarn is the sample average of X1, X2, …, Xn. Xbarn is effectively the same 
as Xbar from Xbar charts with the “n” added to call attention to the 
sample size. 

4. σ is the standard deviation the X1, X2, …, Xn, which do not need to be 
normally distributed. 

The CLT focuses on the properties of the sample averages, Xbarn.   
 

If X1, X2, …, Xn are independent, identically distributed (IID) random variables 
from a distribution function with any density function f(x) with finite mean and 
standard deviation, then the following can be said about the average, Xbarn, of the 
random variables.  

 
 

 28.25 –13 –10.5 
 –13 12.25 8.5 

5 –1.5 –1
–1.5 3 1 
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Defining 
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In words, averages of n random variables, Xbarn, are approximately characterized 
by a normal probability density function. The approximation improves as the 
number of quantities in the average increases. A reasonably understandable proof 
of this theorem, i.e., the above assumptions are equivalent to the latter assumption, 
is given in Grimmet and Starzaker (2001), Chapter 5. 

To review, the expected value of a random variable is: 

 E[X] = ( )∫
∞

∞−

duufu   (18.12) 

Then, the CLT implies that the sample average converges, Xbarn, converges to 
the true mean E[X] as the number of random variables averaged goes to infinity. 
Therefore, the CLT can be effectively rewritten as 

E[X] = Xbarn + eMC, (18.13) 

where eMC is normally distributed with mean 0.000 and standard deviation σ ÷ 
sqrt[n] for “large enough” n. It is standard to refer to Xbarn as the “Monte Carlo 
simulation estimate” of the mean, E[X]. There, with only common causes 
operating, the Xbar chart user is charting Monte Carlo estimates of the mean. 

Since σ is often not known, it is sometimes of interest to use the sample 
standard deviation, s: 

s = 
( )

1
1

2

−

−∑
=

n

XbarX
n

i
ni

 (18.14) 

Then, it is common to use 

σestimate = s ÷ c4 (18.15) 

where c4 comes from Table 10.3. Therefore, the central limit theorem provides us 
with an estimate of the errors of Monte Carlo estimates. 
 

18.3.4  The Law of the Unconscious Statistician 

A result from integration theory broadens the applicability of expected value 
Monte Carlo. It is called the law of the unconscious statistician: 

E[g(X)] = ( ) ( )∫
∞

∞−

dxxfxg          (18.16) 
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where f(x) is the distribution function the random variable x. Then, to calculate 
E[g(X)], we can generate IID g(X) using IID X from the distribution function f(x).  
In this way, Monte Carlo simulation can evaluate a wide variety of expected 
values. For example, if g(X) is an “indicator function” which is a 1 if an event A 
occurs and 0 otherwise, then E[g(X)] = Pr{A}. 

This law can be proven using some of the basic definitions associated with 
integrals. Intuitively, if the probability that {X = x} is proportional to f(x), the 
probability that {g(X) = g(x)} is also proportional to f(x). 

Example 18.3.2  Unconscious Statistician Example 

Question: Estimate ∫
3

1

22

dxxe x .   

Answer: Rewriting, we have 

       ∫
3

1

22

dxxe x  = ( )( )[ ] ( )∫
∞

∞−

− dxxfxe x 22

13                    (18.17) 

                            = E[g(X)]  where g(x) = 22

2 xex  

and where f(x) is the density function for a uniform distribution with a = 1 and b = 
3. Also, X ~ U[1,3], i.e., X is uniformly distributed with a = 1 and b = 3.   

Therefore, the pseudo-random U[0,1] numbers 0.23723063, 0.550678204, 
0.873658577, 0.778915995, 0.383476144, 0.864940088, 0.636837027, 
0.388494494, and 0.033923503 can be used to construct the pseudo-random 
sequence 1.474461, 2.101356, 2.747317, 2.557832, 1.766952, 2.72988, 2.273674, 
which pretend to be IID U[1,3]. Using the inverse cumulative is equivalent to 
multiplying by (b – a) and then adding a.   

From this sequence, one constructs the sequence 38.24, 730.71, 28628.23, 
9081.29, 141.71, 25691.32, 1818.08, 148.51, and 7.13, which we pretend are IID 
samples of 22

2 Xe X . The average of these numbers is 7365.0 and the standard 
deviation is 11607. Therefore, the Monte Carlo estimate for the original integral is 
7365.0 with estimated error 11607/3 = 3869.0. Using 10,000 pseudo-random 
numbers the estimate is 10949.51 with standard error 255.9. Therefore the true 
integral value is very likely within 768 of 10949.5 (three standard deviations or 3.0 
× σestimate). 

18.4  Simulating T-testing 

In this section, simulation is used to study the decision to invest in the applying the 
“two-sample t-test assuming unequal variances” method described in Chapter 11.  
It is perhaps true that the primary objective of the t-test procedure is the following. 
People must be stopped from claiming that their product, service, or idea (level 1) 
causes a more desirable average response then level 2, when it either does nothing 
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or makes things worse. For example, a salesman might be selling snake oil as 
something that makes hair grow when it does not. 

The admission associated with t-testing is that even if changing levels does 
nothing and the procedure is applied correctly, there is some low probability 
significance will be established. Therefore, a criterion that can be used to evaluate 
the t-test strategy is the probability that the test will wrongly indicate significance, 
i.e., a “Type I error” is made and the snake oil salesman fools us.  

The following assumptions can be used to create and/or verify the t-critical 
values used in all standard t-test procedure: 

1.  When level 1 is inputted, responses are IID normally distributed with 
mean, μ1, and standard deviation, σ1.  

2.  When level 2 is inputted, responses are IID normally distributed with 
mean μ2 and standard deviation, σ2.  

3.   μ1 = μ2 + Δ and Δ = 0.0 if Type I errors are being simulated. 
Under these assumptions and when α = 0.05, the probability of wrongly finding 

significance is well known to be 0.05 independent of μ1, σ1, μ2, and σ2. This is the 
defining property of the t-test strategy. As an example of evaluating a procedure 
using Monte Carlo, we next show how this probability (0.05) can be estimated for 
the case in example 1 in the proceeding section.  

Example 18.4.1  Simulation of Type I Errors  

Suppose we are interested in entertaining assumptions of the standard type with  
μ1 = μ2 = 0, and σ1 = 5 and σ2 = 1. Then, any conclusion of significance is a 
mistake since the average true responses are the same independent of the level, i.e., 
a snake oil salesman is at work.   
 
Question 1: How can we write the probability of Type I error as a expectation 
assuming that a two-sample t-test procedure with n1 and n2 is applied? 
 
Answer 1: The probability of wrongly indicating significance can be written in 
terms of the random indicator function, I(Y1,1, Y1,2, Y1,3, Y2,1, Y2,2, Y2,3), which is a 
function of the six random responses, Y1,1, …, Y2,3. The function “I()” equals 1.0 if 
the procedure indicates significance and 0.0 otherwise. With these definitions, the 
mistake probability is E[I(Y1,1, Y1,2, Y1,3, Y2,1, Y2,2, Y2,3)].   
 
Question 2: How can we estimate this probability numerically? 
 
Answer 2: To estimate this probability, we can sample pseudo-random IID 
normally distributed Y1,1, …, Y2,3 according to the appropriate distributions and 
derive from these numbers pseudo-random I(Y). The central limit theorem says 
that if we average enough I(Y), the result will converge to the true value. The 
simulation in our example uses the following randomly generated numbers Y1,1 =  
–1.501, Y1,2 = –6.388, Y1,3 = 1.221,Y2,1 = –0.818, Y2,2 = 0.661, and Y2,3 = –0.760.  
Then, functional relationships are used to calculate t0 = –0.842, df = 2, and I(Y)  
= 0. Performing these operations 10,000 times and averaging the derived 
probability estimate is 0.049 with estimated standard error 0.002 We can see that 
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the Monte Carlo is trying to estimate the number 0.05 which is the exact Type I 
error associated with the test strategy described above under standard assumptions. 
Table 18.2 illustrates results from applying a spreadsheet solver to estimate the 
Type I error rate. 

Table 18.2.  Simulations used to estimate the probability of Type I error (α) 

No. Y1,1 Y1,2 Y1,3 Y2,1 Y2,2 Y2,3 1y  
2y  s1

2 s2
2 t0 df tcritical I(Y) 

1 –1.501 –6.388 1.221 –0.818 0.661 –0.760 –2.223 –0.306 14.867 0.702 –0.842 2 2.920 0 

2 6.382 5.992 8.666 0.179 –0.031 –0.116 7.013 0.011 2.086 0.023 8.352 2 2.920 1 

3 –10.918 –1.171 5.475 –1.137 0.610 0.092 –2.205 –0.145 67.984 0.805 –0.430 2 2.920 0 

4 –5.434 –3.451 –8.452 –0.425 0.285 –0.680 –5.779 –0.273 6.342 0.250 –3.714 2 2.920 0 

5 –9.235 –4.888 –3.868 2.008 –0.617 –0.564 –5.997 0.276 8.123 2.251 –3.373 3 2.353 0 

6 –10.590 –2.840 –2.020 –1.457 –0.985 –1.044 –5.150 –1.162 22.362 0.066 –1.459 2 2.920 0 

7 0.674 –1.827 –1.635 –1.163 0.895 –0.973 –0.929 –0.414 1.938 1.293 –0.497 3 2.353 0 

8 –1.851 6.713 –0.426 0.044 0.483 0.498 1.479 0.342 21.059 0.067 0.428 2 2.920 0 

9 –0.931 –2.566 9.861 –1.296 –0.650 –0.867 2.121 –0.938 45.595 0.108 0.784 2 2.920 0 

10 4.328 11.878 –3.275 1.904 1.218 1.097 4.311 1.406 57.402 0.189 0.663 2 2.920 0 

M M M M M M M M M M M M M M M 

104 3.806 1.534 3.202 –0.669 –1.538 1.773 2.847 –0.145 1.385 2.948 2.490 3 2.353 1 

 
In practice, one does not need to use simulation since the critical values are already 
tabulated to give a pre-specified Type I error probability. Still, it is interesting to 
realize that the error rates can be reproduced. Similar methods can be used to 
estimate Type I error rates based on assumptions other than normally distributed 
responses. Also, simulation can also be used to evaluate other properties of this 
strategy including Type II error as described in the next example. 

Example 18.4.2  Simulation of Type II Errors  

Suppose you are thinking about using a t-test to “analyze” experimental data in 
which one factor was varied at two levels with two runs at each of the two levels.  
Suppose that you are interested in entertaining the assumption that the true average 
response at the two levels differs by Δ = 0.5 s and that the random errors always 
have standard deviations σ1 = σ2 = 0.3 s.   
 
Question 1: What additional assumptions are needed for estimation of the power, 
i.e., the probability that the t-test will correctly find significance?  
 
Answer 1: Many acceptable answers could be given. The assumed mean difference 
must be 0.5. For example, assume the level 1 values are IID N(μ1 = 0, σ1 = 0.3) 
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and the level 2 values are IID N(μ2 = 0.5, σ2 = 0.3). Note that power equals 1 – 
probability of Type II errors so that it is higher if we find significance more often.  
 
Question 2: What would one Monte Carlo run for the estimation of the power 
under your assumptions from Question 1 look like? Arbitrary random-seeming 
numbers are acceptable for this purpose. 
 
Answer 2: The responses were generated arbitrarily, being mindful that the second 
level responses should be roughly higher by 0.5 than the first. Then, the other 
numbers were calculated: Y1,1 = 0.60, Y1,2 = –1.20, Y2,1 = 2.10, Y2,2 = 0.10, 1y =  

–0.30, 2y = 1.10, s1
2 = 1.62, s2

2 = 2.00, t0 = –1.274, df = 2, tcritical = 2.92, I() = 0, 
because we failed to find significance in this simulation or though experiment. 
 
Question 3: How might the Type II error probability be derived through averaging 
the indicator function values from many simulation runs influence your decision-
making? 
 
Answer 3: If one feels that the estimated Type II error probability for a given true 
effect size is too high (subjectively), then we might re-plan the experiment to have 
more runs. With more runs, we can generally expect the probabilities of Type I and 
Type II errors to decrease and the probability to correctly detect effects of any 
given size to increase. 

18.4.1  Sample Size Determination for T-testing 

Next, the implications of simulation results are explored related to the choices of 
the initial sample sizes n1 and n2. Table 18.3 provides information in support of 
decisions about the method parameters n1, n2, and α. Table 18.3 shows the chance 
that significance will be declared under the standard assumptions described in the 
last section. If Δ = 0, then the table probabilities are the Type I error rates.  
“Power” (β) is often used to refer to the probability of finding significance when 
there is a true difference, i.e., Δ ≠ 0. Therefore, the probability of a Type II error is 
1 – β. Interpolating or extrapolating linearly to other sample sizes might give some 
insights. 

To use the decision support information in Table 18.3, it is necessary to 
entertain assumptions relating to the size of the true prototype system to the 
average response change that it is desirable to detect, Δ. Also, it is necessary to 
estimate the typical difference, σ, between responses from prototype systems with 
identical inputs. These numbers must be guessed, and then the implications of 
various decisions about the methods to use can be explored as illustrated in the 
following example. Note that the quantity, Δ ÷ σ, is sometimes called the “signal to 
noise ratio” even though it is not related to the “SN” ratio in Taguchi Methods 
(from Chapter 15).  
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Table 18.3. The probability of a t-test’s finding significance 

α = 0.01  Δ ÷ σ  

n1 = n2 0.001 0.5 1 2 5 

3 1.0% 2.3% 4.8% 15.6% 67.6% 

6 1.0% 5.4% 19.4% 71.5% 100.0% 

      

α = 0.05  Δ ÷ σ  

n1 = n2 0.001 0.5 1 2 5 

3 5.0% 11.4% 22.1% 52.2% 98.1% 

6 5.0% 11.9% 47.7% 93.8% 100.0% 

Example 18.4.3  Sample Sizes for Fuel Testing  

Question 1: An auto racer is interested to know if a new oil additive reduces her 
race time by 10.0 s, i.e., Δ = 10.0 s. Also, the racer may know that, with no changes 
in his or her vehicle or strategy, times typically vary ± 5.0 s. What is a reasonable 
estimate of Δ ÷ σ?   
 
Answer 1: A reasonable signal-to-noise ratio estimate is Δ ÷ σ = 2.0.  
 
Question 2: Assume that the cost of the fuel additive is not astronomically high.  
Therefore, the racer is willing to tolerate a 5% risk, wrongly concluding that the 
additive helps when it does not. What a level makes sense for this case? 
 
Answer 2: Clearly, α = 0.05 is by definition appropriate. 
 
Question 3: The racer is considering using n1 = n2 = 6 test runs. Would this offer 
an high chance of detecting the effect of interest? 
 
Answer 3: Yes, Table 18.3 indicates that this approach would give greater than or 
equal to 93.8% probability of finding average differences significant if the true 
benefit of the additive is a reduction on average greater than 10.0 s. Under standard 
assumptions, the Type I error rate would be 0.05 and the Type II error rate would 
be 0.062. In other words, if the effect of the additive is strong, starting with 6 runs 
gives an excellent chance of proving statistically that the average difference is non-
zero. 
 
Question 4: Flow chart a decision process resulting in the selections α = 0.05 and 
n1 = n2 = 6 using criteria power (g1), Type I error rate (g2), and number of runs (g3). 
 
Answer 4: See Figure 18.5. 
 



  DOE and Regression Theory      467 

 
 
 
 
 
 
 
 

Figure 18.5. Example t-test method (initial sample size and α) selection 

18.5  Simulating Standard Screening Methods 

Before the tests are performed, the experimenter must select the experimental plan 
or “design”, D, which includes selecting the number of runs, n, and factors, m. 
Also, during analysis one must select IER or EER critical values and the value of 
α. All these choices and the properties of the prototype system have implications 
for the success criteria (g1, g2,…) associated with the methods.   

The following definitions can be use to generate simulation results: 
1.   The actual change in the average response cause by a change in the 

factors, τ, is called the “effect” of that factor.   
2.  “Important factors” are factors that, when changed from one to another 

predefined level, result in an actual change, τ, that is greater than a pre-
specified amount, Δ. Therefore, important factors satisfy τ > Δ.   

3.  As in Chapter 4, “σ” refers to the standard deviation of the “random 
errors”, εi. This can be estimated using control charting, system 
knowledge, or experience. 

4.  p0 is the expected fraction of factors that are important or, in other words, 
the believed probability that any given factor will have an important 
effect. 

In terms of the assumed values of Δ, σ, p0, and a few additional assumptions 
described in Allen and Bernshteyn (2003), the criteria in Tables 18.4 and 18.5 can 
be calculated using simulation. The additional assumptions relate to the possibility 
of interactions in the true model and potentially non-zero values for unimportant 
factors. 

Table 18.4 shows the probability the method will find any given important 
factor to be significant (g1), i.e., the power. The “probability of correct selection” 
is the chance that the list of factors declared to be significant and factors not 
declared to be significant matches the lists of factors that are actually important 
and not important. This second criterion (g2) is written pCS.  Looking at the tables, 
it is possible to decide whether eight runs and the choice of IER offers acceptable 
risks. 

 

Pick γ = δ/σ = 2.0 
because interested in 

finding differences 
twice as large as 

typical experimental 
errors.

Method x1={n1=3,n2=3,α=0.05} with     
g1(x1,2.0) = 0.52, g2(x1,2.0)=0.05, g3(x1,2.0)=6

Pick
method

x1

M

Method x4={n1=6,n2=6,α=0.05} with    
g1(x1,2.0) = 0.94, g2(x1,2.0)=0.05, g3(x1,2.0)=12

Build and test 3 
prototypes at level 1 
and 3 at level 2, test 
results with α = 0.05
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Example 18.5.1  Rubber Machine Problem Revisited  

Question 1: What assumptions about Δ, σ, and p0 might have seemed appropriate 
to planners of the rubber machine study (Chapter 17) before their experiment? 
 
Answer 1: The team would likely have been happy with factors reducing the 
fraction non-conforming by Δ = 2% or more. Also, they would likely agree that 
only p0 = 50% of the factors were important (but they did not know which ones, of 
course). A reasonable estimate for σ based on 500 samples would be 0.02 or 2%. 
 
Question 2: Use Table 18.4 to estimate the power and pCS. Interpret this 
information. 

Table 18.4. Probability of finding a given important factor significant (the power) 

    Factors (m)    

 Assumptions n 3 4 5 6 7 8 9 

 Liberal (Δ = 2.0σ, p0 = 0.25,  
 IER, α = 0.05) 8 0.95 0.90 0.82 0.74 0.73 – – 

 Conservative (Δ  = 1.0σ, 
  p0 = 0.5, EER, α = 0.10)  0.69 0.61 0.45 0.36 0.33 – – 

 Liberal (Δ  = 2.0σ, p0 = 0.25, 
 IER, α = 0.05) 16 0.96 0.99 1.00 0.98 0.97 0.96 0.93 

 Conservative (Δ  = 1.0σ,  
  p0 = 0.5, EER, α = 0.10)  0.74 0.79 0.99 0.77 0.93 0.87 0.84 

 
Answer 2: Under conservative assumptions, the power might have been as low as 
0.33 and the pCS as low as 0.07. However, looking back on the results it seems that 
p0 was actually 1 ÷ 7 = 0.14. This means that the hypothetical planners would have 
likely overestimated their own abilitities to identify important factors in 
experimental planning. Further, such overestimation might have wrongly made 
them believe that they needed more runs. With the sparsity present in the actual 
system (small true p0), the chance of the method finding the important factor was 
probably closer to 0.73.  
 

In general, Tables 18.4 and 18.5 provide information pertinent to selecting 
specific design of experiments arrays associated with different numbers of factors, 
m, and the assumptions use in the analysis. These analysis assumptions include 
EER or IER and the specific α used. The tables summarize criteria values for two 
combinations of assumptions about Δ, σ, p0, EER or IER, and α. Note that the 
combination α = 0.10 with the EER might not be viewed as conservative since α = 
0.10 is higher than α = 0.05. However, using lower values of α might not yield 
acceptable g1 (power) criterion value because of the inherent conservatism of the 
EER assumptions.   
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Table 18.5. Probability of complete correctness identifying important factors (pCS) 

    Factors (m)    

 Assumptions n 3 4 5 6 7 8 9 

 Liberal (Δ = 2.0σ, p0 = 0.25,  
 IER, α = 0.05) 8 0.79 0.73 0.57 0.44 0.36 – – 

 Conservative (Δ = 1.0σ,  
 p0 = 0.5, EER, α = 0.10)  0.45 0.13 0.17 0.09 0.07 – – 

 Liberal (Δ = 2.0σ, p0 = 0.25,  
 IER, α = 0.05) 16 0.79 0.76 0.57 0.76 0.45 0.53 0.30 

 Conservative (Δ = 1.0σ,  
 p0 = 0.5, EER, α = 0.10)  0.52 0.58 0.35 0.48 0.36 0.31 0.16 

 
Simulation results in Tables 18.4 and 18.5 support the following general 

insights about standard screening using fractional factorials. First, using the IER 
increases the power (but also the chance of Type I errors) compared with using the 
EER. Second, using more factors generally reduces the probabilities of correct 
selection. This corresponds to common sense in part because, with more factors, 
more opportunities for errors are possible. Also, more interactions in the true 
model are possible that can reduce the effectiveness of the screening analysis. 
Finally, the better a job engineers or other team members do in selecting factors, 
the higher the p0. Unfortunately, high values of p0 actually decreases the method 
performance. In technical jargon, the chance of correct selection shrinks because 
the methods are based on the assumption of “sparsity” or small p0.  

18.6  Evaluating Response Surface Methods 

Chapter 13 includes a definition of the expected prediction errors for different 
assumptions about the system being studied and choices of response surface 
method (RSM) designs. To the extent that the goal of experimentation is to 
produce accurate prediction models, the criterion here is central to DOE theory. In 
this section, the details of the “expected prediction error” calculations are 
explained. First, the rationale for the associated assumptions is given in terms of 
Taylor series expansions. Second, a simulation approach for evaluating the 
expected prediction errors is given. Third, a formulaic approach that is more 
computationally efficient than simulation is provided. This formulaic approach also 
is used to suggest insights about the theory of RSM and regression. 

18.6.1  Taylor Series and Reasonable Assumptions 

Assumptions about the true model, ytrue(x), are critical to the theory of 
experimental design. Clearly, if one knew the exact true model before 
experimentation and the only goal was accurate prediction of the mean response 
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values, then experimentation would not be needed. At the same time, it is of 
interest to explore assumptions about the true model and the robustness of our 
method choices to the aspects of these assumptions that are uncertain. 

The discussion begins by concentrating on the single factor (x1) case for 
simplicity. Generalizations to more than one factor are considered afterward.  
Taylor’s theorem applies under the often reasonable condition that ytrue(x) is 
“infinitely differentiable” (i.e., “smooth” with no spikes) over the region of 
interest. Under these conditions, the theorem gives that whatever the true model is, 
it can be expressed uniquely and with perfect accuracy as (see, e.g., Simmons 
1996, p. 500) 
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over the same interval where yest
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x1 evaluated at a. Another result is based on a Taylor Series truncated at order “d” 
and Lagrange’s error formula. This formula states that (Simmons 1996, p. 500): 
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for some c satisfying a < c < x1. Therefore, as long at ytrue
(d+1)(c) is small compared 

with (n + 1)! and the other terms, one can truncate at order d with small errors. 
Also, notice that the truncated expansion is simply a polynomial in x1 of order d.   

It is perhaps helpful to consider the following question. In which practical 
situations it might be reasonable to assume that ytrue

(d+1)(c) is small enough such 
that the Lagrange error can be neglected? Figure 18.6 investigates the very 
approximate expansion with d = 1 to aid in intuition building related to Taylor 
series. The implication is that whenever the response is “somewhat smooth” 
because changing the inputs is likely to only gradually affect average outputs, then 
it is reasonable to neglect expansion errors. 

These considerations motivate the assumption used in the next factor that the 
true model can be well approximated by a third order polynomial. They also 
provide a hint about the situations in which prediction performance of RSM and 
regression in general might be poor. Poor performance generally occurs when the 
true model is “bumpy” or third and higher order terms in the Taylor series 
approximation are needed to provide an accurate approximation. Since Taylor’s 
theorem holds for cases involving more than a single factor, the assumption of a 
third order true model is often reasonable for those cases as well.   

Unfortunately, Taylor’s theorem provides little guidance about the values of the 
coefficients in the expansion. For example, 2.1 x1 + 0.5x1

3 is a third order model.  
However, prior to experimentation, one has little guidance about whether this 
model is somehow more relevant for thought experiments than other third order 
models. The assumption of IID N(0,γ2) assumptions is often entertained where γ is 
an adjustable assumption parameter. This assumption has the property that positive 
and negative values are equally likely which might be appropriate for certain cases 
of interest. 
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Figure 18.6. Shows how the Taylor series approximates a function over an interval 

Example 18.6.1  Example Expansion 

Question: What is the d = 2 Taylor series expansion of ytrue(x1) = exp(x1) around 
the point x1 = 0? 
 
Answer: In this case, all derivatives equal 1 when evaluated at x1 = 0. Therefore, 
the expansion is ytrue(x1) = 1 + x1 + 0.5 x1

2. 

18.6.2  Regression and Expected Prediction Errors 

In this section, simulation of the expected prediction errors is illustrated. Knowing 
an estimate of the prediction accuracy that one is likely to achieve prior to 
experimentation can help in evaluating whether a different experimental array 
should be used which might involve more test runs. The simulation-based 
estimation is mainly important because it can help clarify concepts related to all 
experimental design criteria. Simulation here is based on the following 
assumptions: 
1. “Prediction points” (xp) are input combinations where prediction will likely 

be requested after the experimentation and analysis. The assumption 
considered here is that these are uniformly distributed over a region of interest. 
For example, likely settings of interest might be anywhere between the test 
levels. 

2. As in Chapter 4, “random” or “repeatability” errors in experiments, εi for i = 
1,…,n, are IID normally distributed with mean 0 and standard deviation σ.   

3. “True model coefficients” (βi) are the hypothetical coefficients in the 
unknown system performance model. Here, it is assumed that these are IID 
N(0,γ2).   

Example 18.6.2  Illustration of an Error Simulation Run 

Question: Develop an example illustrating the relationship of design of experiment 
arrays, prediction points, random errors, and a true model. 
 

ytrue(x1) 

x1
6 8                  

2.4 

10 
 

 

 

 

-10 
x1

6             8              10 

5.1(x1 – 8) 

x1 
6              8            
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Answer: Figure 18.7 illustrates the concepts associated with simulating an 
application of regression. A simulation run begins with a hypothetical true model 
known to the method tester, not the imagined method user. The method user 
performs tests on the system and gets the response data. Then, a model is fitted, 
significance is found through analysis of variance followed by multiple t-tests, and 
a prediction is made at the prediction point.   

The method tester knows that there is a true difference caused by the factor, so 
therefore the declaration of significance is desirable. The tester, knowing the true 
model, also knows the prediction errors at the prediction point. Averaging the 
squared errors from multiple simulation runs gives an estimate of the expected 
squared prediction errors, which is referred to in the next section as the “expected 
integrated mean squared error” (EIMSE). 

 

DOE points 
Response data 
Prediction point 
Prediction for the mean 

y(x1) 

Method Tester 
       One-way mirror 

y 
true function for 
the mean 

prediction error 

Imaginary User

x1 declared significant 
$       $      $          $ 

example results example scenario 

fitted model

 
Figure 18.7. Illustrates a simulation of an experimental design application 

Next, two example simulation runs useful for estimating the EIMSE 
quantitatively are illustrated. The first, a simulation run, starts with assumptions 
and generates an n = 4 dimensional simulated data vector, Y. Assume that the 
experimental plan allocates test units at the points x1 = –1.0 mm, x1 = 0.0 mm, x1 = 
–0.5 mm, and x1 = 1.0 mm. The assumed true model form is β0 + β1 x1 + β2 x1

2 + β3 
x1

3 + ε. One starts with the pseudo-random numbers 0.236455525, 0.369270674, 
0.504242032, 0.704883264, 0.050543629, 0.369518354, 0.774762962, 
0.556188571, 0.016493236. We use the first four to generate pseudo-random true 
model coefficients from a N(0,γ2). Then, we use the next four numbers to generate 
four random errors.   

The Excel function “NORMINV” can be used to generate pseudo-random 
normally distributed random numbers from pseudo-random uniformly distributed 
random numbers. Note that this is not needed since Excel also has the ability to 
generate normally distributed numbers directly; however, it is good practice to 
generate all random numbers from the same sequence. Combining all this 
information gives the four simulated random experimental response values Y =    
(–1.275717523, –0.474320672, 0.018436594, –0.180546067)′. 
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The next assumption needed to estimate the expected prediction errors is that a 
second order polynomial will be fitted after the experiment using least squares 
regression. Associated with this model form is the design matrix X1. The 
construction of design matrices is described in Chapter 13. In this case, the design 
matrix, X1, and the estimated coefficients, βest, are  
 
 

X1 =                              so that   βest  =          (18.20) 
 
 
where we have used the following formula to estimate the coefficients: 

βest = (X1′X1)–1X1′Y         (18.21) 

Note that coefficients derived from this equation automatically minimize the sum 
of the squared estimated prediction errors.   

From the above assumptions, xp is sampled from a uniform distribution. The 
predicted and actual value key point give the simulated pseudo-random error εP.  
For the first simulation run, the ninth random number to generate the prediction 
point x1 = –0.97 mm from a U[–1mm, 1mm]. Then, we calculate the pseudo-
random values for yest(x) and ytrue(x) and the error εP and the value (εP)2. For this 
example, we have εP = (–1.22) – (–0.44) = 0.78 and (εP)2 = 0.61. Figure 18.8 shows 
how Microsoft® Excel can be used to perform the simulation run.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.8. A single simulation run in the MC estimation of the EIMSE 

To estimate the EIMSE with negligible errors using simulation, potentially 
thousands of simulations would be needed. Figure 18.9 shows a second simulation 
run in which the entire process is repeated using the next nine numbers from the 
pseudo-random numbers, i.e., starting with the last Qi used as the final random 
seed. The resulting εP = 0.16. Thus, the n = 2 Monte Carlo estimate is the sample 
average 0.38 with estimated error stdev(0.61,0.16)/sqrt(2) = 0.25. 
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Figure 18.9. A second run with the only difference being the random seed 

18.6.3  The EIMSE Formula 

In this section, the formula for the expected integrated mean squared error 
(EIMSE) criterion is described. As for the last section, the concepts are potentially 
relevant for predicting the errors of any “empirical model” in the context of a 
given input pattern or design of experiments (DOE) array. Also, this formula is 
useful for comparing response surface method (RSM) designs and generating them 
using optimization.   

The parts of the name include the “mean squared error” which derives from 
the fact that empirical models generally predict “mean” or average response values.  
The term “integrated” was originally used by Box and Draper (1959) to refer to the 
fact that the experimenter is not interested in the prediction errors at one point and 
would rather take an expected value or integration of these areas of all prediction 
points of interest. The term “expected” was added by Allen et al. (2003) who 
derived the formula presented here. It was included to emphasize the additional 
expectation taken over the unknown true system model. 

Important advantages of the EIMSE compared with many other RSM design 
criteria such as so-called “D-efficiency” include: 

1.  The sqrt(EIMSE) has the simple interpretation of being the expected plus 
or minus prediction errors. 

2.   The EIMSE criteria offers a more accurate evaluation of performance 
because it addresses contributions from both random errors and “bias” or 
model-mispecification, i.e., the fact that the fitted model form is limited in 
its ability to mimic the true input-output performance of the system being 
studied. 

An advantage of the EIMSE compared with some other criteria is that it does not 
require simulation for its evaluation. The primary reason that simulation of the 
EIMSE was described in the last section was to clarify related concepts.   

The following quantities are used in the derivation of the EIMSE formula: 
1. xp is the prediction point in the decision space where prediction is desired. 
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2. ρ(xp) is the distribution of the prediction points. 
3. R is the region of interest which describes the area in which ρ(xp) is non-

zero. 
4. βtrue is the vector of true model coefficients. 
5. ε is a vector of random or repeatability errors. 
6. σ is the standard deviation of the random or repeatability errors. 
7. ytrue(xp,βtrue) is the true average system response at the point xp. 
8. yest(xp,βtrue,ε,DOE) is the predicted average from the empirical model. 
9. f1(x) is the model form to be fitted after the testing, e.g., a second order 

polynomial. 
10. f2(x) contains terms in the true model not in f1(x), e.g., all third order terms. 
11. β1 is a k1 dimensional vector including the true coefficients corresponding 

to those terms in f1(x) that the experimenter is planning to estimate. 
12. β2 is a k2 dimensional vector including the true coefficients corresponding 

to those terms in f2(x) that the experimenter is hoping equal 0 but might 
not. These are the source of bias or model mis-specification related errors. 

13. X1 is the design matrix made using f1(x) and the DOE array. 
14. X2 is the design matrix made using f2(x) and the DOE array. 
15. R is the “region of interest” or all points where prediction might be desired. 
16. μ11, μ12, and μ22 are “moment matrices” which depend only on the 

distribution of the prediction points and the model forms f1(x) and f2(x). 
17. “E” indicates the statistical expectation operation which is here taken over 

a large number of random variables, xp,βtrue,ε. 
18. XN,1 is the design matrix made using f1(x) and all the points in the 

candidate set. 
19. XN,2 is the design matrix made using f2(x) and all the points in the 

candidate set. 

Example 18.6.3  Hydroforming Press Design 

Question: A consultant is working with a manufacturer who wants to use design of 
experiments to tune its process settings. The consultant observes the press and 
finds that the thinnest point on the manufactured part is around 5.0 mm ± 2.0 mm.  
Also, the process engineer is curious about which pressure to use (2000 psi to 2300 
psi), which radius is used on the design (3.0 mm to 6.0 mm), and which thickness 
of input tube is used (2 inches to 3 inches). The company is willing to do 20 or 
more test runs. Use this information to develop reasonable assumptions for σ and R 
and choices of f1 and k1. 
 
Answer: The assumptions σ = 2.0 mm and R is the cube defined by the ranges 
2000 psi to 2300 psi, 3.0 mm to 6.0 mm, and 2 inches to 3 inches seem reasonable. 
With the goal of tuning, the choices f1(x)′ = [1 x1 x2 x3 x1

2 x2
2 x3

2 x1x2 x1x3 x2x3] and, 
therefore, k1 = 10 seem appropriate which can easily be estimated with n = 20 runs.   
 

With these definitions, the general formula for the expected integrated mean 
squared error is: 
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EIMSE(DOE) =   E  {[ytrue(xp,βtrue) – yest(xp,βtrue,ε,DOE)]2}  .       (18.22) 
  xp,βtrue,ε 

Note that this formula could conceivably apply to any type of empirical or 
fitted model, e.g., linear models, kriging models, or neural nets. This section 
focuses on linear models of the form 

ytrue(xp,βtrue) = f1(x)β1 + f2(x)β2 .        (18.23) 

For properly constructed design matrices X1 and X2 based on the DOE and model 
forms (see Chapter 13), the response vector, Y, describing all n experiments is 

Y = X1β1 + X2β2 + ε .         (18.24) 

It is perhaps remarkable that, for linear models, the above assumptions imply: 

EIMSE(DOE) = σ2 Tr[μ11(X1′X1)–1] + Tr[B2 Δ]       (18.25) 

where “Tr[ ]” is the trace operator, i.e., gives the sum of the diagonal elements, and 

    B2 = E [β2β2′] ,  Δ = A′μ11A – μ12′A + A′μ12 + μ22 ,  and  
              β2 

A = (X1′X1)–1X1′X2             (18.26) 
and 

 μij = ∫R ρ(xp)fi(xp)fj(xp)′dxp for i = 1 or 2 and i ≤ j ≥ 2.        (18.27) 

Note that we have assumed that the random variables xp, βtrue, and ε are 
independently distributed. If this assumption is not believable, then the formulas 
might not give relevant estimates of the expected squared prediction errors.  
However, simulation based approaches similar to those described in the last section 
can be applied directly to the definition in Equation 18.23. This was the approach 
taken in Allen et al. (2000) and Allen and Yu (2002).  

Example 18.6.4  EIMSE Basics 

Question 1: f1(x)′ = [1 x1 x1
2 x1

3] and ρ(x1) = 0.5 for – 1 ≤ x1 ≤ 1. What is μ11?  
 
Answer 1: The results below follow from Equation 18.27: 
        

μ11 = ∫R ρ(xp)f1(xp)f1(xp)′dxp  
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Question 2: Clearly, a large number of assumptions are needed to evaluate the 
EIMSE. How valuable can the formula-outputted numbers be? 
 
Answer 2: The EIMSE is a rationalization in an important sense. Its value 
primarily relates to the criterion’s use to identify undesirable input patterns and to 
compare different design of experiment arrays. For example, in Chapter 13, the 
sqrt(EIMSE) is used to compare standard response surface methods (RSM) 
designs. Also, a decision-maker can use the EIMSE to decide how many runs are 
needed for their array. 
 

It is perhaps true that the EIMSE in Equation 18.25 is of unavoidable 
importance in the theory of design of experiments (DOE). The phrase “integrated 
variance” refers to the first term in the EIMSE formula which is proportional to 
the random errors believed to be associated with the experimental system. If the 
system is perfectly repeatable (as in certain computer experiments), this term is 
zero. The phrase “expected bias” refers to the second term in the EIMSE formula, 
which is proportional to quantities associated with the magnitudes of the expected 
bias term. The equation reveals that the expected prediction errors do not depend 
on the unknown true coefficients β1 but only on the expected outer product 
represented by B2. 

The importance of the EIMSE follows despite the challenges involved with its 
calculation. These challenges include developing reasonable assumptions and 
performing the needed calculations. The challenges associated with developing 
reasonable assumptions have caused many researchers to attempt clever ways to 
work around the problem, e.g., concentrating only on the expected bias or similar 
constructs (e.g., see Box and Draper, 1987). However, it is not clear whether any 
alternative criterion can be substituted, and the computational challenge has been 
made easier by modern computers (Allen et al. 2003).  

Related to developing the needed assumptions, challenges divide into 
assumptions about (1) xp, (2) β2, and (3) ε: 
1. Assumptions about the prediction point, xp, are needed to calculate the 

moment matrices μ11, μ12, and μ22. The term “candidate set” refers to a very 
large design of experiments array with N runs that includes many if not all of 
the input combinations of potential interest in the design region. These points 
could be generated randomly according to the distribution function ρ(xp). By 
default, the distribution of interest is uniform over the region of interest and 
the region is defined by the ranges or the factors in the input pattern or DOE 
array. For example, with m = 3 factors, the default region of interest would be 
a cube in the design space.  

The design matrices associated with the candidate points are written XN,1 
and XN,2. If the candidate points are a random sample from the region of 
interest and N is large enough, then 

 μij = (N–1) × XN,iXN, j′ + εMC  for i = 1 or 2 and i ≤ j ≥ 2,       (18.29) 

which is established by the central limit theorem and εMC is the Monte Carlo 
error.   
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2. During the experimentation process, the experimenter will include only some 
terms in the fitted model and thus effectively assume that the other terms equal 
zero. Therefore, the experimenter hopes that the true system coefficients of the 
terms assumed to equal zero, β2, actually are equal zero. Yet, what to assume 
about these errors is unclear. Clearly, it is unwise to assume that all the β2 are 
all zero or B2 = E[β2β2′] = 0. This type of wishful thinking is embodied by 
criteria such as the integrated variance and D-efficiency. These criteria lead to 
optimistic views about the prediction accuracy and poor decision-making. 

Here, two kinds of assumptions about B2 are considered. The first is B2 = γ2 
× I, where γ is an adjustable parameter that permits studing of sensitivity of a 
DOE and model form to bias errors. For example, γ = 0 represents the 
assumption that β2 is zero and the EIMSE is the integrated variance. The 
second derives from DuMouchel and Jones (1994). It can be shown that 
assumptions in that paper imply 

B2 = γ2 × C2 ,         (18.30) 

where C is a diagonal matrix, i.e., the off-diagonal entries equal 0.0. The 
diagonal entries equal the ranges of the columns, i.e., Max[ ] – Min[ ], of the 
matrix a given by 

    α = XN,2 – XN,1(XN,1′XN,1) –1XN,1′XN,2  .    (18.31) 

The DuMouchel and Jones (1994) default assumption is γ = 1. Their choices 
are also considered the default here because they can be subjectively more 
reasonable for cases in which the region of interest has an usual shape. For 
example, in experiments involving mixture variables (see Chapter 15), certain 
factors might have much more narrow ranges than other factors. Then, the 
assumption B2 = γ2 × I could imply a belief that certain terms in f2(x)β2 have far 
more impact on errors than other terms. Fortunately, for many regions of 
interest, including many cases with cuboidal regions of interest, the two types 
of assumptions are equivalent. 

3. The EIMSE formula above is based on the assumptions that the random errors 
in ε are independent of each other and have equal variance. Huang and Allen 
(2005) proposed a formula for cases in which these assumptions do not apply.  
Calculation of the EIMSE formula here requires an estimate of the standard 
deviation of the random errors, σ. This is the same sigma described in Chapter 
4 which characteristizes the common cause variability of the system.    

Example 18.6.5  Single Factor Design Comparison 

Question: Consider two experimental plans for a single variable problem: DOE1 = 
[–1 0 1]′ and DOE2 = [–1 0.95 1]′. Assume that γ = 0.4 and the fitted model form 
will be f(x)′ = [1 x1]. What type of model form is this? Use default assumptions to 
estimate the expected prediction errors associated with the process of 
experimenting with each experimental design, writing down the data, and fitting 
the model form f(x). 
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Answer: The fitted model is a first order polynomial. One assumes that σ = 1, γ = 
1 (true response has a default level of bumpiness), f2(x) = [x1

2], and the x1 input is 
equally likely to be between –1 and 1 so x1 ~ U[–1,1]. First, using evenly spaced 
candidate points on the line [–1, 1], one derives C = 1 and B2 = γ2C2 = 0.2. The 
calculations are 
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Δ = A′μ11A – μ12′A + A′μ12 + μ22 = 0.2 , and 

EIMSE(DOE1) = σ2Tr[μ11(X1′X1)–1] + Tr[B2 Δ] = 0.1667 + 0.032 = 0.2 . 
 

For DOE2, the matrices μ11, μ12, and μ22 are the same and 
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EIMSE(DOE2) = σ2 Tr[μ11(X1′X1)–1] + Tr[B2 Δ] = 0.2438 + 0.1987 = 0.3.   

 
The higher EIMSE for the DOE2 correctly reflects the obvious fact that the 

second design is undesirable. Using DOE2, experimenters can expect roughly 50% 
higher prediction squared errors. It could be said that DOE2 causes higher errors. 

It should be noted that the formula derivation originally required two steps.  
First, in general 

β2′Δβ2 = Tr[(β2β2′)Δ],          (18.34) 

which can be proven by writing out the terms on both sides of the equality and 
showing they are equal. Also, for constant matrix Δ and matrix of random variables 
(β2β2′), it is generally true that: 

E{Tr[(β2β2′)Δ]} = Tr[E[β2β2′]Δ]} = Tr[B2 Δ].       (18.35) 

Finally, note that the above EIMSE criteria have limitations which offer 
opportunities for future research. These include that the criterion has not been 
usefully developed for sequential applications relative to linear models. After some 
data is available, it seems reasonable that this data could be useful for updating 
beliefs about the prediction errors after additional experimentation. In addition, 
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efficient ways to minimize the EIMSE to generate optimal experimental designs 
have not been identified.   

18.7  Summary 

In this chapter, design of experiments (DOE) criteria are defined. These criteria 
provide information before experimentation begins about what can be expected 
afterwards. This information aids in the selection about which design of 
experiments array best fit the objectives of the experimenter.   

The evaluation of DOE criteria requires assumptions about what will happen 
after data is collected and, potentially, statistical simulation. Fortunately, for most 
DOE methods, what happens after experimentation is largely predictable prior to 
testing. Table 18.6 overviews planning, analysis, and decision-making associated 
with the methods described in this text. 

Table 18.6. Design of experiments planning, analysis, and decision-making summary 

Method Plan Experiment Analyze/Fit Decide/Design 

Two-sample  
t-testing 

Two levels of a single factor 
performed in random order 

T-testing 
method 

Common sense 
approach 

Standard 
screening 

Regular fractional factorials 
and Plackett-Burman arrays 

Lenth’s method 
and main 

effects plots 

Common sense 
approach 

One-shot 
Response 
Surface 
Methods  

Central composite designs 
(CCDs), Box Behnken 

designs (BBDs), and EIMSE 
optimal designs 

Linear 
regression, 

second order 
fitted model 

Formal 
optimization 

Robust 
design using 

profit 
maximization 

Same as RSM Same as RSM 

Formal 
maximization of 

the expected 
profit 

 
Statistical simulation involves pseudo-random numbers and the central limit 

theorem. The uses of simulation to evaluate Type I and Type II error-rate criteria 
are described. Then, simulation is applied to estimated the expected squared 
prediction errors or, equivalently, the expected integrated means square error 
(EIMSE) criterion. The final section describes a formula that can more efficiently 
evaluate the EIMSE under specific assumptions and the details of its calculation. 
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Problems 

1. Which of the following is correct and most complete? 
a. Random variables are numbers whose values are known at time of 

planning. 
b. Probabilities can generally be written as expected values of indicator 

functions. 
c. Probability theory and simulation can generate information of interest 

to people considering which methods or strategies to apply. 
d. mod(9,7) = 2. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

2. Which of the following is correct and most complete? 
a. Method evaluation criteria can include subjective judgments about 

ease of use. 
b. Many quantitative properties of methods including Type I error rates 

can be calculated using the assumption that there is a true average 
difference and simulation. 

c. The assumptions used to calculate Type I and Type II error rates are 
the same. 

d. All of the above are correct. 
e. All of the above are correct except (d) and (e). 
 

3. Which of the following is correct and most complete? 
a. Recursive sequences of numbers can seem random to the untrained 

eye. 
b. The pseudo-random number generation procedure in the text involves 

generating two sequences, integer seeds and approximately 
continuous numbers. 

c. Slopes of the cumulative distribution functions are proportional to 
probability density functions. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

4. Which of the following is correct and most complete? 
a. If X is uniform[10, 12], then Pr{X < 11.5} = 0.25 or 25%. 
b. If X is uniform[10, 12], then the inverse cumulative for X is F–1(u) = 

10 + 2u. 
c. Generating random numbers rarely starts with generating U[0,1] 

deviates. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

5. Which of the following is correct and most complete? 
a. If applied correctly, t-testing cannot result in undesirable declarations. 
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b. If a hypothesis testing method derives appropriate results 95 times out 
of 100 simulated tests, then an MC estimate for the error probability 
is 0.05. 

c. If random variables (RVs) are combinations of RVs, the CLT does 
not apply. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

6. Which of the following is correct and most complete? 
a. Data from a thought experiment proves a factor affects system 

average outputs. 
b. If there is no true effect, finding significance in t-testing is a Type I 

error. 
c. Type II errors are only possible if there is no true difference. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

7. Which of the following is correct and most complete? 
a. Using the central limit theorem, one can estimate the error of 

estimates. 
b. Monte Carlo generally gives expected values with no errors. 
c. If four simulation runs give, 0, 1, 0, and 0. The σestimate = 0.5. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

8. Which is correct and most complete? 
a. In calculating the EIMSE, one must know the true values of fitted 

coefficients. 
b. The true level of bumpiness likely affects derived prediction errors. 
c. In calculating the EIMSE, one assumes something about the random 

errors. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

9. Which is correct and most complete? 
a. The EIMSE cannot compare the expected accuracies associated with 

RSM designs prior to experimentation. 
b. The moment matrices (μi,j) can only be calculated knowing DOE 

array. 
c. X1 and X2 could be the design matrices associated with f1 and f2 

respectively. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

10. Which is correct and most complete? 
a. The EIMSE is always equal to or larger than the integrated variance. 
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b. The bias depends on assumptions about the coefficients not in the 
fitted model. 

c. Moment matrices only depend on the models forms and assumptions 
about where prediction will be requested. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

11. Which is correct and most complete? 
a. In planning experiments, one generally does not know the true model. 
b. Without added information, one must assume E[β2β2′] = 0. 
c. In general, x′Ax = Tr[A] xx′. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

12. Use the assumption, B2 = (1.25)2 I and standard assumptions to calculate the 
EIMSE for the following DOE array. 

 
Run A B C

1 –0.5 –1.0 –0.5
2 –0.5 0.5 –1.0
3 0.5 1.0 –0.5
4 –1.0 0.0 0.0
5 0.5 –1.0 0.5
6 0.0 0.0 0.0
7 1.0 0.0 0.0
8 –0.5 –0.5 1.0
9 –0.5 1.0 0.5
10 0.5 0.5 1.0
11 0.5 –0.5 –1.0

References 

Allen TT, Bernshteyn M (2003) Supersaturated Designs that Maximize the Probability 
of Finding the Active Factors. Technometrics 45: 1–8 

Allen TT, Yu L, Schmitz J (2003) The Expected Integrated Mean Squared Error 
Experimental Design Criterion Applied to Die Casting Machine Design. Journal of 
the Royal Statistical Society, Series C: Applied Statistics 52:1–15 

Allen TT, Yu L (2002) Low Cost Response Surface Methods For and From Simulation 
Optimization. Quality and Reliability Engineering International 18: 5–17 

Allen TT, Yu L, Bernshteyn M (2000) Low Cost Response Surface Methods Applied to 
the Design of Plastic Snap Fits. Quality Engineering 12: 583–591 

Box GEP, Draper NR (1959) A Basis for the Selection of a Response Surface Design. 
Journal of American Statistics Association 54: 622–654 



484      Introduction to Engineering Statistics and Lean Sigma  

Box GEP, Draper NR (1987) Empirical Model-Building and Response Surfaces. Wiley, 
New York 

DuMouchel W, Jones B (1994) A Simple Bayesian Modification of D-Optimal Designs 
to Reduce Dependence on a Assumed Model. Technometrics 36:37–47 

Huang D, Allen T (2005) Design and Analysis of Variable Fidelity Experimentation 
Applied to Engine Valve Heat Treatment Process Design. The Journal of the Royal 
Statistical Society (Series C) 54(2):1–21 

Grimmet GR, Stirzaker DR (2001) Probability and Random Processes, 3rd edn., 
Oxford University Press, Oxford 

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1993) Numerical Recipes in C: 
The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York 
(also available on-line through www.nr.com) 

Simmons GF (1996) Calculus with Analytic Geometry, 2nd edn. McGraw Hill, New 
York 



 

Part III:  Optimization and Strategy



 

 

19 

Optimization and Strategy 

19.1  Introduction 

The selection of confirmed key system input (KIV) settings is the main outcome of 
a six sigma project. The term “optimization problem” refers to the selection of 
settings to derive to formally maximize or minimize a quantitative objective. 
Chapter 6 described how formal optimization methods are sometimes applied in 
the assumption phase of projects to develop recommended settings to be evaluated 
in the control or verify phases.  

Even if the decision-making approach used in practice is informal, it still can be 
useful (particularly for theorists) to imagine a quantitative optimization problem 
underlying the associated project. This imagined optimization problem could 
conceivably offer the opportunity to quantitatively evaluate whether the project 
results were the best possible or the project could be viewed as a lost opportunity 
to push the system to its true potential. The phrase “project decision problem” 
refers to the optimization problem underlying a given six sigma project. 

In this part of the book, “strategy” refers to decision-making about a project 
including the selection of methods to be used in the different phases. The strategic 
question of whether to use the six sigma method or “adopt” six sigma on a 
companywide basis is briefly discussed in Chapter 21, but the focus is on project 
decision problems. Therefore, strategy here is qualitatively different than design of 
systems that are not methods. A second optimization problem associated with six 
sigma projects involves the selections of techniques to derive most efficiently the 
solution of the underlying project decision problem. For example, in some cases 
benchmarking can almost immediately result in settings that push a system to its 
potential. Then, bechmarking could itself constitute a nearly optimal strategy 
because it aided in the achievement of desirable settings with low cost.  

In this chapter, optimization problems and formal methods for solving them are 
described in greater detail. This discussion includes optimization problems taking 
into account uncertainty. For example, the robust design optimization described in 
Chapter 14, uncontrollable “noise” factors constitute random variables that can 
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affect the consistency of system quality. Formal approaches to design strategy 
almost necessarily involve uncertainty. They also include but are not limited to 
optimal design of experiment. This chapter also includes so-called “black box 
simulation optimization” methods relevant for solving optimization under 
uncertainty problems.  

“Tolerance design” refers to the selection of specifications for individual 
components using formal optimization. Chapter 20 describes the application of 
decision-making under uncertainty to tolerance design. Chapter 21 closes with a 
discussion of six sigma strategy focusing six sigma as an approach for optimization 
under uncertainty. Also, opportunities for future research are described.  

19.2  Formal Optimization 

As described in Chapter 6, formal optimization is associated with a process of 
precisely defining the elements of a decision problem into a “mathematical 
program” and using an automatic procedure to derive recommended settings. Let x 
refer to the m dimensional vector including all the KIV settings to be selected. Let 
g(x) be the precisely defined objective to be maximized, and let the set of x values 
of interest in the decision space be M, which is defined by q “constraints” that 
limit feasible or possible solutions.   

It is standard to refer to g(x) as the “objective function” which quantifies the 
decision-makers goals for the system being designed. In terms of these definitions, 
the general mathematical program can be defined as 

Maximize: g(x)             (19.1) 
   Subject to:    x ∈ M 

“Operations researchers” translate or “formulate” problems into forms 
identical or equivalent to Equation 19.1. Operations researchers also develop 
automatic procedures to solve Equation 19.1. As long as M is bounded, there is at 
least one solution, xoptimal, to the above program for each function g(x). In general, 
the objective function might constitute an accurate key output variable (KOV) 
prediction for the system and the xoptimal would then be the best possible key input 
variable (KIV) settings. 

Consider the following single factor optimization example. A decision-maker 
has x = [x1], where one is maximizing a quadratic polynomial, g(x1) = –11 + 12x1 
–2x1

2 . Also, imagine that one can only control x1 over the range from x1 = 2 to x1 = 
5. This defines the region M. The associated mathematical program is 

Maximize:  g(x1) = –11 + 12x1 – 2x1
2          (19.2) 

x1 ∈ [2,5] 

Figure 19.1 plots g(x1) as a function of x1. From this plot, it is obvious that the 
solution to Equation 19.2 is xoptimal = [x1,optimal] = 3. The implied solution method 
can be called “complete enumeration” over a fine grid, i.e., inputting effectively all 
possible inputs and picking the solution with the highest value of g(x1). Then, the 
recommended system design is to set xoptimal to 3 for normal system optimization. 
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The numbers –11, 12, and –2 in Equation 19.2 might have been derived from 
experimentation and regression, perhaps, but this first example is really a “toy” 
problem for the purposes of illustration. This problem is not representative of 
actual problems that decision-makers might encounter. This follows because 
(probably) most formal optimization problems of interest involve considerably 
larger decision spaces, M, i.e., more decision variables and/or ranges that contain 
so-called local maxima.    
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Figure 19.1. Illustration of the optimization region, M, and the solution to (2), xoptimal = 3 

A point is a local maximum if all neighboring points in M have lower objective 
values but there exists at least one solution, xoptimal, in M that has a higher objective 
value. Solutions that have the highest objective values in M are called “global 
maxima” (or global optima in general) because their associated objective value is 
higher (or more extreme) than for any other solution in M. Figure 19.2 shows 
another single variable problem in which two local maxima exist inside M. 
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Figure 19.2. A formulation with two local maxima and one global maximum 
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Solving optimization problems to find a true global maximum can be difficult, 
particularly if the number of decision variables m is large, e.g., over 100. However, 
in practice the relatively difficult aspect of applying formal optimization relates to 
obtaining an objective function, g(x), that accurately quantifies the truly key input 
variable in a given application. The following example revisits the snap tab 
optimization problem from Chapter 17 to illustrate formulation in real world 
situations. The example also illustrates the use of the “subject to” construction 
which expresses the objective function, g(x), in an easier to read format. 

Example 19.2.1  Snap Tab Optimization Problem Revisited 

Question 1: Provide an example of formulation in a real world problem. 
 
Answer 2: In the snap tab case study, a large number of factors were considered 
and strategy limitations did not permit the creation of accurate models of the KOVs 
as a function of all KIVs. For this reason, cause and effect matrices were used to 
shorten then KIV list. Then, an innovative design of experiments (DOE) method 
was used to quantify input-output relationships. 
 
Question 2: Rewrite the snap tab formulation from Chapter 17 into the form in 
Equation 19.1. 
 
Answer 2: The revised formulation follows. 
Maximize:  g(x) = y1,est(x1, x2, x3, x4) –  ∞ Maximum[y2,est(x1, x2, x3,x4) – 12.0,0]    
Subject to:            

y1,est – (72.06 + 8.98x1 + 14.12x2 + 13.41x3 + 11.85D + 8.52x1
2  

– 6.16x2
2 + 0.86x3

2 + 3.93x1x2 – 0.44 x1x3 – 0.76x2x3) = 0,   (19.3) 
y2,est – (14.62 + 0.80 x1 + 1.50 x2 – 0.32 x3 – 3.68 x4 – 0.45 x1

2  

– 1.66 x3
2 + 7.89 x4

2 – 2.24 x1x3 – 0.33 x1x4 + 1.35 x3x4) = 0, and 
–1 ≤ x1, x2, x3, x4 ≤ 1. 

In the real snap tab study, the Excel solver was used with multiple starting 
points to derive the recommended settings, x1=1.0, x2=0.85, x3=1.0, and x4=0.33.  
An exercise at the end of the chapter involves using the Excel solver to derive 
these settings by coding and solving Equation 19.3. To solve this problem one 
needs to activate the “Solver” option under the “Tools” menu. It may be necessary 
to make the solver option available in Excel because it might not have been 
installed. Do this using the “Add-Ins” option, also under the “Tools” menu. 

Example 19.2.2  Die Casting Machine Design 

Question 1: If part distortion causes $0.6M per year per mm in average distortion 
in rework costs and the current gate position is 9 mm, suppose any change cost 
$0.2M. Formulate decision-making about gate position as an optimization problem. 
Suppose a die casting engineer has the following prediction model for average part 
distortion y (in mm), as a function of gate position, x1 (in mm): y(x1) = 5.2 – 4.1x1 + 
1.5 x1

2.   
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Answer 1: Calculating y(x1 = 9mm)×($0.6M) = $53.8M, a relevant formulation is: 

Maximize g(x1) = – Minimum[y(x1)($0.6M) + $0.2M, $53.8M]        (19.4) 
         x1 

Question 2: Solve the problem in Question 1 and make recommendations. 
 
Answer 2: Assuming the current setting is not optimal, d/dx1 [g(x1)] = 0 = 0.6[–4.1 
+ 2(1.5)x1,opt], x1,opt = 1.36 mm  ⇒ g(x1) = $1.6M < $53.8M, so the assumption is 
valid. Therefore, unless conditions other than gate position are more important, the 
casting engineer should seriously consider moving the gate position to 1.36 mm. 

19.2.1  Heuristics and Rigorous Methods 

Often, enumerating or testing all feasible solutions is not possible in a reasonable 
amount of time. Therefore, more careful study is needed to find a global maximum 
or even just obtain a solution of reasonable quality. Thousands of types of 
optimization problems have been identified and studied. Table 19.1 lists a small 
sampling of possible types of problems. For many problems of the last two types in 
the table, no procedures exist that can guarantee the attainment of global optimal 
solutions for large problems, e.g., m > 1000 factors or decision variables and q > 
1000 constraints. 

For added insight, consider classic optimization problems in which the 
objectives are linear and the constraints form a “convex” set, i.e., all between other 
feasible points are also feasible. If a linear program is being solved, a competent 
operations researcher should be able to propose a solution method that can 
guarantee the attainment of a global optimum in a time that might be considered 
reasonable.   

“Polynomial time” refers to types of problems that, when the size parameters 
increase large, a global maximum can be guaranteed in computing times that 
increase relatively slowly compared with some polynomial in these size 
parameters. For example, times are always less than a polynomial function of m 
and q for some finite coefficients. See Papadimitriou (1994) for more information.  
The ability to generate a global maxima efficiently cannot be guaranteed for some 
quadratic programs, many types of integer programs, and for perhaps most 
problems of interest. The class of other, more challenging problems is “non-
polynomial time” or “np-hard” problems.   

“Heuristics” are procedures that do not guarantee to find a global maxima in 
polynomial time. By contrast, “rigorous algorithms” are procedures associated 
with a mathematically proven claim about the objective values of the solutions 
produced in polynomial time. Sometimes, one also uses rigorous algorithms to 
refer to methods that eventually converge to a global maxima.   

Generally, rigorous algorithms are only available for polynomial time 
optimization problems. Much, perhaps most, of the historical contributions to the 
study of operations research relates to exploiting the properties of specific 
formulations to produce methods that guarantee the attainment of global optimal 
solutions in reasonable time periods. Yet the properties of the objective function, 
g(x), only permit operations researchers and computer scientist to apply heuristic 
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solution methods. For example, the Excel solver has some difficulty solving 
Equation 19.3 even though the optimization is over only four decision variables, 
because the quadratic program does not have a convex B.   

Table 19.1. Overview of several types of optimization problems 

g(x) M Size 
Parameters Name Type 

Linear is the xi Convex set m and q Linear 
program Polynomial 

Linear plus a term x′Bx 
with positive 

semidefinite (PSD) B 
Convex set m and q Quadratic 

program Polynomial 

Linear plus a term x′Bx 
with non-PSD B Convex set m and q Quadratic 

program 
Non-

polynomial 

Non-linear with integer 
constraints on x 

Non-
convex 

m, q, 
objective 

function size 

General 
Integer 

Program (IP) 

Non-
polynomial 

 
In practice, most problems of interest cannot be solved in polynomial time.  

This is particularly true for those that relate to deriving optimal strategies including 
optimal design of experiment (DOE) arrays. However, a competent operations 
researcher always checks, in case a rigorous method could be applied and the 
attainment of a global maximum can be guaranteed in reasonable time.   

Also, users of formal optimization must balance computational performance of 
the procedures (the time the computer takes to generate a solution) against 
guarantees of achieving optimal solutions and against the human time required to 
“code up” or acquire the software used for the automatic solution. Partly motivated 
by considerations of reducing the amount of human time required to solve 
optimization problems, interest in both academics and industry continues to grow 
in so-called “general-purpose” heuristics. These general-purpose heuristics include 
methods such as genetic algorithms (GAs), simulated annealing, and taboo 
searches. This chapter focuses on genetic algorithms because of their popularity 
and subjective elegance.   

Conceivably, a general-purpose heuristic might even be used for a polynomial 
time problem. This could follow because it might require less human time. Also, in 
some cases, a general-purpose heuristic might even find an acceptable solution in a 
shorter computing time. For example, the simplex method is a non-polynomial 
time algorithm used to solve convex linear programs even though polynomial time 
methods are available. It is used because of its high average efficiency and the fact 
that it does offer a rigorous conformation of optimality when it terminates.   

Example 19.2.3  Generic Optimization 

Question: Which is correct and most complete? 
a. Linear programs with convex constraints are np-hard. 
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b. Facing an np hard problem often gives an excuse to use a heuristic 
like Gas. 

c. Generating DOEs by maximizing a criterion is typically an np-hard 
problem. 

d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

Answer: According to Table 19.1, linear programs with convex constraints are 
solvable in polynomial time (not np-hard). Facing an np-hard problem means that 
even a competent operations research cannot, in general, guarantee the 
achievement of a global maximum so that a heuristic can be a reasonable approach. 
Yes, generally strategy related optimization problems such as optimal DOE 
generation are np-hard. Therefore, the correct and most complete answer is (e). 

19.3  Stochastic Optimization 

An important special case of the general optimization program in Equation 19.1 
occurs if the function g(x) is an expected value taken over some random variables, 
Z. Problems of this type are called stochastic optimization problems. A general 
formulation of “stochastic optimization” problems can be written 

Maximize: g(x) = E[g2(x,Z)]           (19.5) 
Z 

Subject to: x ∈ M 
 
and where Z = [Z1, Z2, …, Zq]′ where the Zi are random variables with known 
distribution functions.   

The semantic distinction between problems of the form in Equation 19.5 and 
those of the form in Equation 19.1 is blurred by the realization that every problem 
of the form in Equation 19.1 could include a term +E[0] in the objective function 
and would therefore might be called a stochastic optimization problem. To create a 
practically useful distinction, therefore, the phrase “stochastic optimization” here 
refers to the study of problems in which the decision-maker believes that it is 
necessary to estimate the objective function, g(x), using some form of numerical 
integration, e.g., Monte Carlo simulation. Therefore, a problem may be a stochastic 
optimization problem for one person. For another person who knows more about 
statistics and calculus, the problem might not be stochastic since numerical 
integration might not be needed. 

For example, consider a simple version of the well-studied “newsvendor” 
problem. Assume that a newsvendor is deciding how many papers to purchase on a 
given day for resale, x1. Suppose the purchase price to the newsvendor is $0.20 and 
the selling price is $0.50. Further, suppose that the newsvendor would like to 
entertain the assumption that the number of units that will be sold the next day, Z1, 
is given by a normal distribution, N(μ=100, σ=25), rounding the sales numbers 
down to the nearest integer. Also, assume that the vendor must throw away any 
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unsold items, losing all the money spent on them and that he or she is interested in 
maximizing the expected profit for the next day’s sales. 

The problem can be written 
 

             Maximize: g(x1) = E[$0.50Minimum(x1,Z1) – $0.20x1]  (19.6) 
   Z1  

x1 ∈ {whole numbers}       
 

where Z1  ~ N(μ=100, σ=25). Therefore, the first term in the expectation is the 
revenue from sales and the second term is the upfront cost. 

A person knowledgeable about statistics and calculus might recognize that the 
objective function, g(x1), in Equation 19.6 can be expressed in terms of the mean 
value of a truncated normal distribution for which interpolation functions might be 
used. To that person, numerical integration would not be needed, probably 
permitting more efficient code to be developed for the problem solution. Then, he 
or she might not refer to Equation 19.6 as a stochastic optimization problem. 
Instead, he or she might call this problem “deterministic” or not requiring 
numerical integration. 

Still, many people might use Monte Carlo to estimate g(x1) in Equation 19.6 in 
the context of their optimization method. For them, Equation 19.6 would be a 
stochastic optimization problem. Whichever way one uses to solve Equation 19.6, 
the solutions is xoptimal = 106 newspapers. Also, it is acceptable for anyone to say 
that Equation 19.6 is a stochastic optimization problem because of the ambiguity. 
Next, we define a general-purpose heuristic for solving stochastic optimization 
problems, which could be used to derive xoptimal = 106 newspapers. 

Example 19.3.1  Die Casting Gate Design 

Question 1: If part distortion causes $0.6M per year per mm in average distortion 
in rework costs and the current gate position is 9 mm. Suppose any change cost 
$0.2M. Formulate decision-making about gate position as an optimization problem.  
Suppose a die casting engineer has the following prediction model for average part 
distortion, y (in mm), as a function of gate position, x1 (in mm): y(x1) = 5.2 – 4.1x1 
+ 1.5 x1

2.   
 
Answer 1: Calculating y(9mm) × ($0.6M) = $53.8M, a relevant formulation is 

Maximize: g(x1) = – Minimum[y(x1)($0.6M) + $0.2M, $53.8M]         (19.7) 
         x1 

Question 2: Solve the problem in Question 1 and make recommendations. 
 
Answer 2: Assuming the current setting is not optimal d/dx1 [g(x1)] = 0 = 0.6[–4.1 
+ 2(1.5)x1,opt], x1,opt = 1.36 mm ⇒ g(x1) = $1.6M < $53.8M so the assumption is 
valid. Therefore, unless conditions other than gate position are more important, the 
casting engineer should seriously consider moving the gate position to 1.36 mm. 
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The phrase “simulation optimization” refers to stochastic optimization in 
which Monte Carlo or a similar simulation approach is used for evaluating 
solutions inside the optimization procedures. If Monte Carlo is used, then t-tests 
and the Bonferroni inequality can be incorporated to make simultaneous solution 
comparisons and to ensure that solution quality is not degrading as the procedures 
progress. In general, the primary guarantees of solution quality derive from 
hypothesis testing type sub-procedures incorporated into the heuristics. Andradóttir 
(1998) and Swisher et al. (2000) survey many simulation optimization methods 
and discuss the related issues. 

In general, the key difference related to solving simulation optimization and 
deterministic problems is that, in solving simulation optimization problems, the 
solution method must determine which solutions should be investigated and how 
thoroughly they should be evaluated. At each evaluation, the optimization method 
must determine the number of samples to be used which implies a Monte Carlo 
random error from a distribution with a certain standard deviation.  

19.4  Genetic Algorithms 

In this section, one of many possible general-purpose heuristics or “optimization 
solver” is described, a genetic algorithm (GA). This GA itself represents only one 
of many types of genetic algorithms. Further, other classes of general-purpose 
heuristics include simulated annealing and taboo searches. No claims are made 
about the GA provided here except that it is reasonably easy to code and 
understand.   

Also, perhaps because it is easy to code GAs and adapt them to new problems, 
GAs in general constitute one of the most popular types of methods in operations 
research-related industries for solving optimization problems. The GAs presented 
in this chapter are potentially useful for stochastic optimization problems as well as 
other “deterministic” optimization problems 

 19.4.1  Genetic Algorithms for Stochastic Optimization 

Genetic algorithms were first proposed in Rechenberg (1964) and further 
developed in Holland (1975). De Jong (1975) proposed so-called “elitist” genetic 
algorithms for general-purpose simulation optimization. Elitist genetic algorithms 
copy a fraction of the solutions considered best from generation to generation. De 
Jong reasoned that with several solutions being copied instead of merely the best as 
in other types of GAs, the random error associated with simulation would be less 
likely to cause the best solution to be lost.   

Aizawa and Wah (1994) introduced the concept of changing the numbers of 
samples dynamically in the context of using GAs for simulation optimization to 
reduce computational effort compared with fixed sample size approaches including 
those proposed by De Jong. However, the Bayesian sequential sampling-based 
procedures Aizawa and Wah proposed required significant problem specific 
knowledge and did not guarantee convergence to an acceptable solution with any 
specifiable probability. Chelouah and Siarry (2000) introduced the flexibility of 



496      Introduction to Engineering Statistics and Lean Sigma  

GAs based on continuous numbers that we also include. More recently there has 
also been considerable interest in linking genetic algorithms with statistical 
selection and ranking methods, e.g., Bernshteyn (2001), Boesel (1999), and Yu 
(2000).   

Our own most recent research, documented in Ittiwattana (2002), provides a 
procedure, based on elitist genetic algorithms, that guarantees long run 
convergence result for simulation optimization problems building on Rudolph 
(1996). The results prove long-run attainment of a solution within a value of a 
global optimum solution that can be pre-specified by the method user with a 
probability that can also be pre-specified. Therefore, one of the motivations for 
presenting the elitist genetic algorithm described next is that it is helpful for 
understanding our more computationally efficient, rigorous method. 

19.4.2  Populations, Cross-over, and Mutation 

Genetic algorithms are motivated by the process of natural evolution and the 
observation that the nature is successful in creating fit organisms adapted to their 
environments. GAs differ from the majority of optimization methods which iterate 
from a single solution to another single solution. Instead, GAs iterate between 
whole sets of solutions or “populations”. The population being considered is 
called the current generation. Individuals in this population are called 
chromosomes and are each associated with one possible solution to the 
mathematical program. Iteration is based on the natural processes including 
probabilistic mating, crossover based reproduction, and mutation based on the 
fitness.  

To understand how these natural processes relate to solving mathematical 
programs, it is helpful to understand first how an individual chromosome can be 
interpreted as a solution to a mathematical program. The chromosome is typically 
stored in coded form, e.g., as a vector of real numbers between 0 and 1. Each of 
these numbers is called a “gene” with reference to natural selection. This form 
must be decoded to be interpreted as a system design option, x. Often, the number 
of genes is the dimension of x. After decoding, the objective function can be 
calculated. If the feasible region is a hypercube, then this decoding could be as 
simple as a linear transformation. Once the associated solution x is decoded, the 
value g(x) is calculated and called the “fitness” of the member of the population 
involved.   

As an example of decoding, consider the deterministic optimization problem 
 

Maximize:  g(x) = determinant               (19.8) 
 
                   2.0 ≤ x1, x2, x3, x4 ≤ 5.0 
 
In Figure 19.3, in part (a) an example chromosome is represented by a four-

vector of numbers between 0 and 1. According to the specifics of a problem, this 
chromosome can be decoded into a matrix with elements from 2 to 5 by 
multiplying each number by 3 adding 2 to each number and, i.e., a linear 
transformation. The fitness can be evaluated as a function of the derived matrix. 

 x1 x2  
 x3 x4  
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g(x) = det  

 
                 = 6.5 = the “fitness” 
 

 (a) (b) (c) 

Regroup →  3.8  2.6 
2.6  3.5 

 
Figure 19.3. (a) A sample chromosome, (b) the decoded solution, (c) the fitness 

19.4.3  An Elitist Genetic Algorithm with Immigration 

The following method is proposed for student use. It is coded in the Appendix to 
this chapter, and it is called “toycoolga”. The initial population of N chromosomes 
is generated using U[0,1] pseudo-random numbers. Then, the method is iterated for 
a pre-specified number of generations. In each iteration, the chromosomes 
associated with the top e estimated fitness values are copied from the current 
generation to the next generation. If Monte Carlo (MC) is used for the fitness 
evaluation, then n simulations are used for all evaluations. The putatively top e 
solutions are called the elitist subset. The next c chromosomes in the new 
generation are created through so-called “one-point crossovers” that mix two 
solutions. The word “putatively” refers to the fact that we do not know for certain 
which solutions have the highest mean values because of MC errors. 

In one-point crossovers, two chromosomes or “parents” are selected from the 
current generation. Each chromosome has an equal probability of being selected 
for parenting. Then, a random integer, I, between zero and the number of genes, m, 
is selected. The chromosome entered into the next population contains the same 
first I genes as the first parent and the remaining m – I genes come from the second 
parent. The remaining N – e – c chromosomes in the new generation are generated 
using U[0,1] pseudo-random numbers. The term “immigrants” refers to these 
remaining chromosomes. They are generated using pseudo-random U[0,1] random 
numbers. 

Table 19.2 illustrates one iteration of the proposed genetic algorithm assuming 
N = 10, e = 2, and c = 6. The fitness is calculated using the objective value in 
Equation 19.6, which does not require Monte Carlo. It seems plausible that this 
procedure will continue to improve. The immigrants and the crossovers derived 
from them will cause “new blood” to continually enter the population, reducing the 
probability of all solutions becoming identical and associated with a sub-optimal 
objective value.   

(0.6 0.2 0.2 0.5) 

Rescale → (3.8 2.6 2.6 3.5) 3.8  2.6 
2.6  3.5 
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Table 19. 2. (a) The population at generation t; (b) the population at generation t + 1 

 (a) (b) 

Chromosome     Fitness Chromosome     Fitness 

1 0.6 0.2 0.2 0.5 6.5 Elitist  0.7 0.2 0.0 0.4 7.9 

2 0.0 0.5 0.9 0.0 –12.5  Elitist  0.9 0.1 0.9 0.6 7.1 

3 0.9 0.1 0.9 0.6 7.1  Crossover 2&7 0.0 0.5 0.4 0.5 –4.2 

4 0.5 0.4 0.1 0.3 2.8 Crossover 7&1 0.7 0.2 0.2 0.5 7.6 

5 0.5 0.0 0.2 0.1 2.9 Crossover 
10&10 

0.5 0.3 0.6 0.9 5.4 

6 0.1 0.2 0.3 0.0 –2.9 Crossover 10&2 0.5 0.5 0.9 0.0 –9.5 

7 0.7 0.6 0.4 0.5 2.2 Crossover 5&7 0.5 0.0 0.2 0.5 7.1 

8 0.7 0.2 0.0 0.4 7.9 Crossover 1&7 0.6 0.2 0.2 0.5 6.5 

9 0.5 0.0 0.9 0.3 –2.1  Immigrant 9 0.1 0.2 0.3 0.0 –2.9 

10 0.5 0.3 0.6 0.9 5.4  Immigrant 10 0.1 0.5 0.9 0.9 –5.9 

19.4.4  Test Stochastic Optimization Problems 

The first problem is originally from De Jong (1975), but also incorporates the 
modification of Aizawa and Wah (1994):  
                (19.9) 
 
 
where –1.28 ≤ xi ≤ 1.28 ∀ i = 1,…,30 ω ~ N(μ = 0,σ = 1). This is the problem 
coded into the fitness function in the Appendix.   

The second problem is from Mühlenbein et al. (1991) 
 

      (19.10) 
 

where –5.12 ≤ xi ≤ 5.12 ∀ i = 1,…,20 ω ~ N(μ = 0,σ = 35). These problems 
provide a non-trivial challenge to the proposed optimization method. Optimal 
design of experiments (DOE) problems such as the simulation optimization ones in 
Allen and Bernshteyn (2003) provide substantially more computationally intensive 
challenges.       

19.5  Variants on the Proposed Methods 

Several aspects of commonly used GAs are described in this section including 
variant rules for crossover and mutation. Commonly, the generations are of a 
constant size as in “toycoolga” in the Appendix. Also, very generally the iterative 
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process of going from one generation to another is Markovian in the sense that the 
content of each generation depends explicitly only on the previous generation. 

GAs are usually classified by a type of selection mechanism that is used for 
deciding which pairs of chromosomes should be chosen for crossing over.  
Common types include fitness proportionate, rank, tournament, and elitist 
selections. Assume that the maximization problem is being considered. Let N be 
the size of the generation and fi the fitness value of the ith solution. Note that the 
elements that would most closely mirror natural processes would include fitness 
proportional selection, tournament selection, and an absence of elitist selection. 
 
Fitness Proportionate Selection  
Additionally assume the objective function is positive for all solutions. The 
probability pi that the individual i will be selected for mating is defined as 

pi = [Σi=1,…,N fi]–1(fi)         (19.11) 

This selection is vulnerable to converging to a local optimum since, once 
found, the local optimum will be assigned a high probability to be selected and its 
components will multiply in the next generation. If the search does not identify a 
better solution soon enough, this local optimum will fill up the whole generation. 
Once all solutions are alike, only mutation will be able to produce different 
solutions, thus deteriorating the efficiency of the algorithm. 
 
Ranking Selection 
In ranking selection, the fi are ranked for i=1,…,N. Then, the probabilities of 
selection are functions of the ranks only. This approach prevents a much better, but 
a local solution from being excessively successful in the selection process and 
eventually dominating the whole generations. 
 
Tournament Selection 
To select a solution for mating, a group of size q ≥ 2 (tournament size) is drawn 
from the generation with replacement. The solution of this group with the highest 
objective function value passes to the mating. The process continues until enough 
crossed over solutions are produced. 
 
Elitist Selection 
Under previous schemes of selection not involving elitist subsets it is possible that 
the best solution will not be passed to the next generation. A popular method to 
ensure monotonicity of the objective value of the best candidate from generation to 
generation is to copy a subset of e ≥ 1 of the putatively best solutions from 
generation to generation. Elitist selection, in general, is an additional selection 
feature that can be combined with any of the previously described.    
 
Statistical Selection of the Elitist Subset 
Ittiwattana (2002) describes the application of statistical selection and ranking 
methods to guarantee that the putatively optimal e have a bounded probability of 
containing a “good” solution in the context of stochastic optimization problems. 
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19.6  Appendix: C Code for “Toycoolga” 

The program below is written in ANSI C. It is designed to maximize the toy 
problem given in Equation 19.7. For this toy problem, one can easily evaluate the 
true fitness of each solution without noise for a check. In real problems, the true 
mean could probably only be estimated precisely through using an extremely large 
number of simulations, “n_evaluations”.   
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define sizeOfGeneration 100 
long noOfGenerations=100; 
double eliteFraction=0.1;  
/* fraction of chromosomes to be copied to the next generation */ 
double randomFraction=0.1;  
/* how many chromosomes will be created randomly in each generation*/ 
long n_evaluations=100; /* Number of evaluations of the objective functions to do 
for each solution */ 
unsigned long seed=1;  
#define SIZE 30 /* The chromosome size, i.e., the number of decision variables. */ 
 
void evaluate(struct CANDIDATE *x, long noOfEvals,  
int objective, int noise); 
void GAsearch(struct CANDIDATE *result); 
void generateCandidate(struct CANDIDATE *newborn); 
double fitness(struct CANDIDATE *x,long noise); 
long lmax(long a,long b); 
int compare(const void *vp, const void *vq); 
double ranS(unsigned long *iseed); 
double gasdev(unsigned long *iseed); 
long getRandomNumber(unsigned long *seed, long levels); 
 
struct CANDIDATE { 
 double fitness; 
 double vector[SIZE]; 
 double stdev;  
 long evals_used;}; 
 
/******** Here the program actually begins *********/ 
void main() { 
 struct CANDIDATE solution,exactsolution; 
 printf("GA starts ... \n"); 
 GAsearch(&solution); 
 exactsolution=solution; 
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printf("The program is completed. You can see the results in outputfile.txt \n");} 
/**************************************/ 
 
/**** This search performs a GA for minimization */ 
void GAsearch(struct CANDIDATE *result) { 
 long gen_iter,i; 
 long nelite,nrandom; 
 int parent1,parent2,coord,cut; 
struct CANDIDATE generation[sizeOfGeneration], 
newgeneration[sizeOfGeneration], currentbest; 
 FILE *output,*bestsolution; 
 
 output=fopen("outputfile.txt","w");  
 /* Convert the eliteFraction and randomFraction  
from fractions to numbers */ 
 nelite=(long)(sizeOfGeneration*eliteFraction); 
 nrandom=lmax(1,(long)(sizeOfGeneration*randomFraction)); 
 
 /***** Initialize the 0th generation ******/ 
 for (i=0;i<sizeOfGeneration;i++)  
  generateCandidate(&generation[i]); 
 /* The chromosomes have been filled now,  
but the fitness still contains garbage */ 
 
 /**** Here is the big GA cycle ******/ 
for (gen_iter = 0; gen_iter < noOfGenerations; gen_iter++) 
 {/* Going over generations starts now */ 
  /* Evaluate all fitnesses */ 
for (i=0;i<sizeOfGeneration;i++) evaluate(&generation[i],n_evaluations,0,0); 
 
  /* Ranking the solutions (smallest first) */ 
  /* qsort is a standard "c" function.  
  qsort(generation,sizeOfGeneration, 
sizeof(struct CANDIDATE),compare); 
 
  /* STEP I */ 
  /* Cloning (copying) of the top number of solutions  
specified by nelite */ 
  for (i=0; i<nelite; i++) newgeneration[i]=generation[i]; 
 
  /* STEP II */ 
  /* Filling the new generation with crossovers */  
  for (i=nelite;  i < (sizeOfGeneration-nrandom);  i++) 
  { 
   /* Randomly picking parents */  
 parent1=getRandomNumber(&seed,(long)(sizeOfGeneration/2));  
   /* picking 1st one from a better part */ 
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   parent2=getRandomNumber(&seed,sizeOfGeneration); 
   /* One-point crossover is implemented */ 
   cut=1+getRandomNumber(&seed,SIZE-1); /* this  
decides after which coordinate  
   to cut the solutions */ 
   for (coord=0;coord<cut;coord++)  
 
newgeneration[i].vector[coord]=generation[parent1].vector[coord]; 
   for (coord=cut;coord<SIZE;coord++)  
newgeneration[i].vector[coord]=generation[parent2].vector[coord]; 
  } //Crossovers are in. 
 
  /* STEP III */ 
/* Filling the rest of the new generation with random solutions */ 
  for (i=(sizeOfGeneration-nrandom);i<sizeOfGeneration;i++)  
   generateCandidate(&newgeneration[i]); 
 
/* The new generation is created. Make it a current generation now */ 
for (i=0;i<sizeOfGeneration;i++) generation[i]=newgeneration[i]; 
 
/* Printing into the file the top solution's actual value */ 
  currentbest=generation[0]; 
  evaluate(&currentbest,1,0,0);  
/* Evaluate without the noise */ 
  printf("Generation N %ld achieved %8.3lf\n",gen_iter,  
currentbest.fitness); 
  fprintf(output,"%6.2lf\n",currentbest.fitness); 
 } /* Done going over generations */ 
 
 *result=currentbest; 
 bestsolution=fopen("bestsolution.txt","w"); 
 int ind; for ( ind=0;ind<SIZE;ind++)  
  fprintf(bestsolution,"%5.2lf ",currentbest.vector[ind]); 
 fclose(output); 
 fclose(bestsolution);} 
 
/********* evaluate  *********/ 
/* noOfEvals - number of evaluations to be used for this candidate 
noise = 1 the fitness includes noise, 0 - no noise  
In most cases, there is noise and no way to turn it off.*/ 
void evaluate(struct CANDIDATE *x,long noOfEvals,int objective, 
int noise) { 
 long i; double sum; sum=0; 
 if (noise==0) noOfEvals=1; 
 if (objective==0) 
 { for (i=0;i<noOfEvals;i++) sum+=fitness(x,noise); 
  sum=sum/noOfEvals; 
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  x->fitness=sum; 
  x->evals_used=noOfEvals; } 
else {printf("Only one objective is defined at this point\n"); exit(1);} } 
 
/****************/ 
void generateCandidate(struct CANDIDATE *newborn) { 
 long i; for (i=0;i<SIZE;i++) newborn->vector[i]=ranS(&seed); 
 newborn->fitness=666; /* just to set it to something */ 
 newborn->evals_used=–1; /* that's nothing was used */ } 
 
/**********************************************/ 
long lmax(long a,long b) {return (a>b)?a:b;} 
 
/***************************************/ 
int compare(const void *vp, const void *vq) { 
 const struct CANDIDATE *p; 
 const struct CANDIDATE *q; 
 p=(struct CANDIDATE *) vp; 
 q=(struct CANDIDATE *) vq; 
 if ((*p).fitness<(*q).fitness) return –1;else 
  if ((*p).fitness>(*q).fitness) return 1; 
  else return 0;   } 
 
//What follows is a quick and dirty way to generate approximately 
//uniform [0,1] random numbers.   
double ranS(unsigned long *iseed) { 
 *iseed = *iseed*1664525L + 1013904223L; 
 return  *iseed/4294967296.0;} 
 
//What follows is a quick and dirty way to generate approximately 
//normally distributed numbers exploiting the central limit theorem. 
double gasdev(unsigned long *iseed) 
{ long i; double sum=0.0; 
for(i=0;i<12;i++) sum+=ranS(iseed); 
return (sum - 6.0);} 
 
long getRandomNumber(unsigned long *seed,long levels) { 
// Returns a uniform number from 0 to upBound [0,upBound-1] 
 return (long)(ranS(seed)*(levels) );  } 
 
/***************/ 
//The fitness function is the part that is tailored to each problem. 
//The program will minimize the expected fitness value. 
double fitness(struct CANDIDATE *x, long noise) { 
 int j; double s,vect[SIZE]; 
 /* We'll have to decode the chromosome first */ 
 for (j=0;j<SIZE;j++) vect[j]=–1.28+(x->vector[j])*1.28*2; 
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 /* now calculate the fitness */ 
 s=0; 
 for (j=0;j<SIZE;j++) s+=(j+1)*pow(vect[j],4.0); 
 if (noise) s+=64*gasdev(&seed); 
 return s; } 

19.7  Summary 

This chapter has defined general optimization concepts including the idea that two 
types of optimization problems are associated with each six sigma project. One of 
these problems relates to the most desirable selection of methods to efficiently 
derive desirable settings. The chapter focuses on “stochastic optimization” with the 
solution methods using Monte Carlo for evaluating and comparing solutions. A 
simple genetic algorithm is provided useful for a wide variety of stochastic 
optimization problems including many robust system design and strategy design 
problems. 

Problems 

1. Which is correct and most complete? 
a. Optimal strategy cannot involve method selection. 
b. Tolerance design cannot involve optimal selection of components. 
c. Constraints can be used to specify the feasible region, M. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
2. Which is correct and most complete? 

a. Objective functions rarely (if ever) correspond to key output 
variables. 

b. Formulation is an activity that operations researchers often attempt. 
c. In a maximization problem, a local maximum objective value can be 

higher than global maxima objective value. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

3. Which is correct and most complete? 
a. Complete enumeration generally involves testing a small fraction of 

solutions. 
b. Facing an np hard problem often gives an excuse to use a heuristic 

like GAs. 
c. Many optimal DOE generation problems are np hard. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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4. Which is correct and most complete? 
a. Usual genetic algorithms maintain in memory only a single solution 

at a time. 
b. Elitist genetic algorithms involve copying no solution to the next 

generation. 
c. Immigration can be important to avoiding convergence to a local 

minimum. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

5. Which is correct and most complete? 
a. Quadratic programs with convex constraints might or might not be np 

hard. 
b. Facing a polynomial time problem, a competent researcher usually 

searches the literature and software for the appropriate polynomial 
time solution method.  

c. Relevant system design problems can be np-hard. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

6. Which is correct and most complete with reference to the problem in Equation 
19.7? 

a. A global minimum for the problem has xi = 0 for all i. 
b. The objective value in the problem can reach 2.0. 
c. GAs cannot be used for simulation optimization problems. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

7. Which is correct and most complete with reference to the problem in Equation 
19.8? 

a. A global minimum problem has xi = 1 for all i. 
b. The objective value in the problem can reach 25.0. 
c. Efficient solution methods can use variable sample sizes as they 

progress. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

8. Which is correct and most complete? 
a. Some GAs select fitter solutions for cross-over with higher 

probabilities. 
b. Elitist genetic algorithms involve copying no solution to the next 

generation. 
c. The algorithm in the appendix in this chapter is not an elitist GA. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
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9. Suppose the constraint region in the optimization problem in Equation 19.7 
changed to 2.0 ≤ xi ≤ 5.0. How can the program in the appendix be adjusted to 
address the new problem? 
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20 

Tolerance Design 

 
 

 20.1  Introduction 

“Tolerance design” refers to the selection of specifications for individual 
components using formal optimization. Specifications might relate to the 
acceptable length of a shaft, for example, or the acceptable resistance of a specific 
resistor in a printed circuit board. Choices about the specifications are important in 
part because conforming component parts can cause the entire engineered system 
to fail to conform to specifications. Also, sometimes the specification limits may 
be needlessly “tight” requiring expensive manufacturing equipment that does not 
benefit the customer.   

“Statistical tolerancing” is the study of the properties of an ensemble of 
components using assumed properties of the individual components. Monte Carlo 
simulation from Chapter 18 is a powerful method in this study. Stochastic 
optimization from Chapter 19 can also be used to select the optimal combination of 
tolerances to achieve a variety of possible objectives.   

“Stackup analysis” is statistical tolerancing when distances are associated with 
ensemble properties. Such analysis of specifications might involve all the 
complications of so-called geometric dimensioning and tolerancing (GD&T, e.g., 
see Krulikowski 1997). In some cases, Monte Carlo technology is built into the 
computer aided design (CAD) software for stackup analyses.   

Example 20.1.1  Electronics Assembly Stackup 

Question: Two resistors are in series and the resistance of each is assumed to be a 
normally distributed random variable with mean 10 ohms and standard deviation 
0.5 ohms. What is the resistance distribution of the assembly for the two resistors 
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in series and the chance that the entire component will conform to specifications, 
LSL = 17.1 ohms and USL = 22.1?    
 
Answer: Monte Carlo simulation from Chapter 19 using Excel and Tools → Data 
Analysis → Random Number Generation derives that the series resistance has 
expected value equal to 20.0 ohms with standard deviation equal to 0.70. The 
chance of conformance can be similarly estimated to equal 0.997. 
 

“Optimal tolerancing” involves using formal optimization to derive the 
nominal values and specification limits. The associated formulation may require 
the selection of specific processes which are associated with certain process 
capabilities, 6σ0, and thus feasible specification widths. Often, the specification 
limits derive from knowledge of what capabilities are feasible. 

Example 20.1.2  Co-Packers’ Problem 

Question: A “co-packer” company inserts shampoo into bottles and sells the bottle 
to a well known brand for retail. The co-packer may have three potential 
equipment choices, i = 1, 2, and 3. The equipment cost c1 = $90K, c2 = $110K, and 
c3 = $115K. The volumes of materials inserted are random variables whose 
distribution depends on the equipment choice and the nominal setting, μ. Past data 
confirm that the volumes are normally distributed to a good approximation and that 
the equipment is associated with standard deviations in ounces of σ1 = 0.35, σ2 = 
0.15, and σ3 = 0.04, respectively. Further, assume that the co-packer makes 10 
million bottles a year with a material cost equal to $0.01/ounce. Finally, assume 
that any units found below the lower specification limit of 16.0 ounces cost the 
company $1 in penalty. Assume that USL – LSL = 10σi and USL + LSL = μ. By 
selecting USL and LSL, you are selecting specific equipment and the process 
mean. Which USL and LSL do you recommend? 
 
Answer: One way to develop recommended “optimal tolerances” is to minimize 
the expected annual manufacturing cost using the following formulation in terms 
of the equipment choice, i, the nominal setting, μ, and the cumulative normal 
distribution function, Φ. This formulation assumes that the equipment fully 
depreciates in one year. It does not require stochastic optimization since Monte 
Carlo is not needed to evaluate the objective function. 
Minimize:  ci + Φ(16.0, μ, σi)(10,000,000)($1) + (10,000,000)($0.01)μ 
By changing i and μ 
Subject to:  c1 = $90K, c2 = $110K, and c3 = $115K 
  σ1 = 0.35, σ2 = 0.15, and σ3 = 0.04 
which has the solution i = 3 and μ = 16.15. This can be found using a genetic 
algorithm or through brute force “enumeration” of alternatives using a spreadsheet.  
Therefore, the recommended USL = 16.15 + 5(0.04) = 16.35 and LSL = 16.15 – 
5(0.04) = 15.95. Further, it is expected that the most expensive equipment is 
associated with a cost reduction of $77 K mainly in material cost savings.   



  Tolerance Design      509 

20.2  Summary 

This chapter has described an important type of simulation optimization 
application called statistical tolerance design. Statistical tolerance design helps 
engineers determine part specification limits that deliver desirable overall system 
performance. The phrase “co-packers problem” refers to decision-making on the 
part of companies charged with filling up bottles or glasses of processed good 
which can usefully be viewed as an application of tolerance design. 

Problems 

1. Consider two resistors in series each with resistance uniformly distributed with 
mean 10 ohms and uniform limits a = 8.5 ohms and b = 11.5 ohms. Which is 
correct and most complete? 

a. Pr{series resistance is between 19.0 and 21.0 ohms is} > 0.95. 
b. The series resistance is not uniformly distributed. 
c. The mean or average series resistance is 20.0 ohms. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 
 

2. Consider three resistors in series each with resistance uniformly distributed 
with mean 10 ohms and uniform limits a = 8.5 ohms and b = 11.5 ohms.  
Which is correct and most complete? 

a. The series resistance is not uniformly distributed. 
b. The mean or average series resistance is 29.0 ohms. 
c. The chance that the series resistance is between 29.0 ohms and 31.0 

ohms is greater than 0.95. 
d. All of the above are correct. 
e. All of the above are correct except (c) and (d). 
 

3. Resolve the co-packers’s problem assuming σ1 = 0.4, σ2 = 0.20, and σ3 = 0.04. 

Reference 

Krulikowski A (1997) Geometric Dimensioning and Tolerancing. Thomson Delmar 
Learning, Albany, NY 
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Design for Six Sigma 

21.1 Introduction  

Design for six sigma (DFSS) methods can be viewed as part of six sigma methods 
or an alternative method as described in Chapter 1. These methods generally 
involve teams that have control over the design nominal dimensions and 
specifications. Having this “design control” often means that the teams have 
relatively great power to improve the system quality. It has been said that 80+% of 
product quality is determined by the product design specifications meaning that 
manufacture and delivery can play only a relatively small role. Design teams, 
therefore, have great responsibility to ensure that new products or processes are put 
in place smoothly and foster high quality levels.  

This chapter describes DFSS methods that are generally intended to offer 
deliberate and principled procedures that structure the processes of design. The 
examples here focus on DFSS in manufacturing contexts, but DFSS methods have 
added value in other sectors, including in government.        

21.2 Design for Six Sigma (DFSS) 

As described previously, six sigma is associated with an objective that relates to 
the idea that process variation causes the majority of quality problems (Section 
1.3.1). Specifically, it is assumed that the quality characteristic values of products 
produced in manufacturing vary with a characteristic standard deviation: “sigma” 
or σo. Sigma measures the standard deviation of quality characteristic values and 
the six sigma method attempts to reduce that standard deviation by removing its 
sources and/or making the process more robust. Therefore, six sigma focuses on 
making processes more consistent, or “routinized” in the words of Welch and 
Welch (2005). These authors also stated that, for the design of new products or 
radical re-designs, the role of six sigma is to deliver these products without a 
“hitch” or with minimal problems.  
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More generally, the phrase “design for six sigma” has been defined in at least 
two ways. First, DFSS has been defined as six sigma applied to the development 
and deployment of new systems or processes, which can be major re-designs of 
pre-existing systems or processes. This definition, given in Section 1.3.1, makes it 
a special case of six sigma. Second, other authors have defined a DFSS six sigma 
strategy, which emphasizes the utilizations of today’s most powerful tools for 
developing optimal designs (e.g., see El-Haik and Roy, 2008). This emphasis can 
radically change the starting quality of the design when it enters the market place at 
the so-called “Job 1” time of introduction.  

One other distinction that can be made is that DFSS is not so much a method as 
an approach or perspective. This view emphasizes the highly unpredictable nature 
of design processes and is reflected in the wide variety of phases described in the 
related literature. While there is a consensus (apparently) that DMAIC is 
appropriate for process improvements, Table 11.1 shows that many structures are 
being applied for design or radical re-design projects. Apparently also, DFSS has 
no universal roadmap, and it has been suggested that each company or major 
division should choose to implement their own version based on the needs of their 
domain and their internal culture (El-Haik and Roy, 2008).  
   

Table 21.1. Six sigma vs. DFSS 

Six sigma vs. DFSS 
Six sigma DFSS 

• DMAIC (Section 1.3.1) • IDOV (identify, design, 
optimize, validate) 

• DMEDI (define, measure, 
explore, develop, implement) 

• DMADV (Section 1.3.1) 
• DMADOV (define, measure, 

analysis, design, optimize, 
verify) 

• etc. 
Fixes pre-existing processes Focus on up-front design to reduce 

variability and unpredictability 
Reactive Proactive 
Easy to quantify  Difficult to qualify 

 
An important aspect of DFSS relates to the stage in the design process on which 

the method operates (El-Haik and Roy, 2008). Essentially, DFSS is six sigma 
moved “upstream” to operations far in advance of manufacturing. The six sigma 
goal of routinizing relates most directly to manufacturing related quality 
characteristics and pre-existing processes. This means that all systems are already 
in place and everything is already functioning. DFSS is “upstream” from six 
sigma’s usual implementation area. As mentioned above, moving upstream gives 
six sigma potentially much more leverage because problems are identified sooner 
before they cause major expenses. One study in Brady (2006) found that DFSS 
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saved significantly more than other six sigma projects in the portfolio of projects at 
a midwest manufacturer. The development cost could be lower, with a more robust 
product you have happier customers which could lead to a larger market share. For 
the same reasons this makes DFSS harder to quantify. This occurs because DFSS is 
used in the creation stage, which complicates comparisons.     

The origins of DFSS can be traced back to the United States Department of 
Defense and the National Air and Space Agency (NASA). In their documentation, 
the common outline is as follows: create a charter, assess needs of customers, 
perform functional analysis, identify critical quality characteristics, select a 
concept, and detail design of product and creation processes, and control plans. 
Although each company may approach DFSS differently they all tend to use the 
same tool box including: benchmarking (Chapter 3), failure modes and effects 
analysis (Chapter 5), error proofing (Chapter 5), quality function deployment (QFD 
from Chapter 6), design of experiments (Part II), simulation, statistical 
optimization (Chapters 6 and 19), and robust design (Chapter 15).  

In general, the initial focus is on the creation of a clear list of the customer’s 
needs and wants from the product to be used as system outputs or responses for 
optimization. This information generally drives the design creation. For example, a 
customer wants a fast, fuel efficient car. What does this really mean? Does he want 
a small 0-60 time? Does he want a great top speed? Does he want good city miles 
per gallon? Does he want good highway miles per gallon? Does he want it go 
around turns fast? DFSS helps participants in the design process to address these 
ambiguities in a deliberate and principled manner.  

As an example, consider that Samsung implemented DFSS in 2000, and as a 
result they greatly increased sales and became a market leader (Park and 
Youngjoon 2006). In Samsung’s implementation of DFSS they used a common 
DFSS tool called TRIZ (theory of inventive problem solving). TRIZ is an 
algorithmic method for inventing a new system (Oroloff, 2006). TRIZ is based on 
the concept that inventions very generically spring from adapting technologies to 
meet the demands of new areas. The adaptations relate to new trade-offs in critical 
characteristics that are appropriate for the new circumstances. The generic case of 
competing output measure or responses is called a “contradiction”, and finding a 
new balance is called “resolving” the contradiction. For example, to address a new 
market with cost conscious customers Toyota may want invent a car without air 
bags but with a slightly stronger frame. Then, Toyota would be positioning their 
car at a different balancing point in the cost, safety, and weight output space.  

Because it is focused on the deployment of high quality new systems, DFSS 
emphasizes the designed system capabilities and performance measures or quality 
characteristics. When applying DFSS, using a systematic, phased approach 
generally means that communication between team members is enhanced and Job 
1 occurs at the scheduled time.  

21.3  Implementation 

In this section, an example of a DFSS procedure is defined. Somewhat arbitrarily 
we focus on identify, design, optimize, and validate (IDOV). This particular 
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example is perhaps the most different from DMAIC of all those in Table 21.1 
because it greatly deemphasizes the use of quantitative measurement early in the 
design cycle. It might be the most relevant, perhaps, for projects in which initial 
prototyping is difficult or impossible.    

 
Algorithm 21.1. IDOV defined 

   
 
 

Figure 21.1 IDOV Roadmap example 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

The following phase descriptions paraphrase the work in El-Haik and Roy, 
IDOV. 

Identify Phase: Create one or more ideas or design concepts. Once the ideas are 
created they should be clearly defined and documented. Also, ideas about 
performance measures should be documented. Related documentation might 
include items such as customers’ concerns for related products (see, e.g., 
benchmarking in Chapter 3) and the voice of the customer. The entity being 
designed could be a business unit requiring a business plans. Included in the list of 
performance measures are ways to quantify basic issues. The team should consider 
how the end result should look, including questions like: What will it cost? How 
large is it? What does it do? Relevant techniques may include benchmarking, error 

Identify – customer design needs, wants, and specifications 
Design – using systems engineering and operations research to design the 

process to create the product 
Optimize – Improve initial designs for robustness 
Validate – test to be sure your process for creating the product is sigma level 

4.5 or higher 

Identify 

Design 

Optimize 

Validate 

• Idea created 
• Customer Voice  
• Performance Measures 

• Develop concept 
• Systems Engineering 
• Check performance measure 

• Design optimization 
• Design for robustness 
• Check and/or create performance measures 

• Validate 
• Continue improving using 

standard Six Sigma  
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proofing existing systems, and the development of measurement standard operating 
procedures. 

Design Phase: The team should produce multiple solutions or design options, 
perhaps one designed to maximize each performance measure singly. Included in 
this documentation are generally diagrams and/or drawings of viable options. Next, 
the team should go through all the options and pick the ones that they are going to 
test. A potentially important aspect of this phase is the parameterization (Chapter 
12) of the design concepts to facilitate optimization. This involves defining factors 
or input variables whose settings define design spaces. Relevant techniques for this 
phase could include QFD and drafting of standard operating procedures (SOPs) 
described in Chapter 2. 

Optimize Phase: The team needs to run real or virtual experiments to identify 
system settings fostering higher performance. It can sometimes be important to 
target settings that are robust to noise factor variation (Section 14.1). Often, design 
of experiments methods from Part II are relevant in this phase. Alternatively, if the 
experiments are computationally inexpensive, the formal optimization methods 
from Chapter 20 might be relevant. In any case, such testing and optimization is 
often performed using computer experiments such as finite element analyses 
(Chapter 17) or statistical simulation (Chapter 19).  

Validate Phase: In this phase, there is verification that all the performance 
measures meet targets and the customers’ and company’s needs (likely) will be 
satisfied. This verification permits production to begin. Such verification can be 
achieved using prototypes or initial runs on production equipment. Relevant 
technologies for thorough verification could include gauge R&R methods from 
Chapter 4 to evaluate measurement systems. Also, a thorough system evaluation 
may be accomplished using control plans involving statistical process control 
(SPC) charts (Chapters 4 and 7). 
 

Example 21.2 IDOV  

Question: Imagine that you are an automobile manufacturer attempting to design a 
new model car. Assume that car safety, speed, and fuel efficiency are important. 
Sketch a possible application of IDOV stating assumptions as needed to fill in data. 
In this case, it is not necessary to apply techniques from other chapters. Merely 
sketch a simple DFSS application. 
 
Answer: I: Possible concepts include: mid-size sedans and large trunk vehicles 
with different combinations of features. Possible performance measures with target 
values include 30 mpg highway, 22 mpg city, ipod compatible radio, and the 
inclusion of features such as tilt and scoping steering wheels, comfortable seats, 
cup holders, power lock, power windows, curtain, side, front and knee airbags, rear 
safety best in class, 0–60 in under 6 s, have lots of reserve power that would not be 
used for everyday driving, etc. Through benchmarking, the characteristics could be 
rated and correlated with design options. The business model might be to create a 
business unit that produces green, flex-fuel vehicles with reasonable power. This 
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could constitute a new set of trade-offs for the company and thus a new resolution 
of the related design contractions.  
 D: Using formally designed meetings of various stakeholders (Chapter 3) 
consensus can be reached about what concepts on which to base initial drawings. 
The basic concepts can also be documented in augmented benchmarking matrices 
to study how customers might hypothetically respond to new designs in existing 
market places. Parameterization could include the internal dimensions of the car 
related to the inclusion or exclusion of various features.  

O: Virtual reality models of various concepts can be developed and testing 
both using finite element models to estimate performance values and with test 
subjects. Subjects can use goggles and other equipment to help imagine their 
experiences in the new car and rate their likely satisfaction level compared with an 
alterative. Both screening and response surface experiments from Part II can be 
applied using various medium to tune the parameterized levels attempting to meet 
or exceed performance goals from the identify phase. Regression models of 
historical data from similar cars can be used to provide estimations that other 
models are unable to make. Also, historical data can provide calibration for the 
computer models using, e.g., comparison with a standard gauge R&R estimation 
(Chapter 4). 

V: Once the virtual car meets system specifications, real prototypes can be 
developed and evaluated. These are generally based only on the one or two level 
combinations derived from the optimize phase. Short run production can often 
provide the information for control charts and the initial sigma levels. Such levels 
can be used to prioritize equipment improvement efforts and budget for rework and 
scrap during production. Finally, the car can be built and released for production 
(Job 1).  

Problems 

1. According to the chapter, which of the following is NOT commonly used in 
DFSS? 
a. IDOV 
b. DMEDI 
c. DMADV 
d. DMAIC 
e. DMADOV 
 

2. DFSS has been reported to be? 
a. A competing process with six sigma. 
b. A process within six sigma. 
c. A process that uses six sigma. 
d. Answers in part (a) and (c) are both correct. 
e. Answers in part (b) and (c) are both correct. 
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3. According to the chapter, why does DFSS have more varied process phases 
than process improvement using six sigma and DMAIC? 
a. Different design domains are associated with differing types of 

contradictions and demands on design teams. 
b. New design projects generally involve cases in which initial quality 

measurements are NOT difficult. 
c. DFSS helps routinize pre-existing systems primarily.  
d. DFSS is primarily concerned with control planning that is creative. 
e. All answers are incorrect. 
 

4. TRIZ is an algorithmic method with what primary objective?  
a. It helps select the phases of six sigma. 
b. It is primarily concerned with verification that designs conform to 

specifications. 
c. It helps deploy the correct shipments to customers. 
d. TRIZ primarily helps the invention of new products using the concept of 

contradiction. 
e. It aids in benchmarking designs with alternatives. 
 

5.  What two United States of America agencies help to create DFSS? 
a. Federal Bureau of Investigation (FBI) and Central Intelligence Agency 

(CIA). 
b. Depart of Homeland Security and Department of Agriculture. 
c. Department of Defense and Federal Bureau of Investigation (FBI). 
d. National Air and Space Agency (NASA) and Central Intelligence Agency 

(CIA). 
e. National Air and Space Agency (NASA) and Department of Defense 

(DOD). 
 

6. A DFSS sigma level of 4.5 equates to (assume 1.5 sigma shift) approximately 
(under standard assumptions)? 
a. One defect per 10 units. 
b. One defect per 100 units. 
c. One defect per 1000 units. 
d. One defect per 10,000 thousand units. 
e. One defect per 1,000,000 units. 

 
7. Help General Motors come up with an IDOV roadmap DFSS plan for a new 

car called the Chevrolet Savor.  

8. Do the same as number 7 except use the DMADV roadmap for DFSS. 

9. Compare your results from numbers 7 and 8. 
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Lean Sigma Project Design 

22.1  Introduction  

The purposes of this chapter are: (1) to describe six sigma strategy and (2) to 
propose opportunities for additional research and evolution of six sigma. Part I of 
this book describes several methods that can structure activities within a project. 
Part II focuses on design of experiment (DOE) methods that can be used inside six 
sigma projects. DOE methods are complicated to the extent that decision-making 
about them might seem roughly comparable to decision-making about an entire 
project.  

The extension of DOE theory from Chapter 18 and optimization methods from 
Chapter 19 to the design of projects constitutes perhaps the primary suggestion for 
future research. In Chapter 19, “strategy” is defined as decision-making about 
projects, focusing on the selection of methods to be used in the different phases. 
Brady (2005) proposed the following definitions: 

Micro – dealing with individual statistical methods. 
Meso – supervisor level decision-making about method selection and timing. 
Macro – related to overall quality programs and stock performance. 
Brady (2005) argued that the primary contributions associated with six sigma 

relate to the meso-level because the definition of six sigma relates to meso-level 
issues issues. These meso-level contributions and possible future meso-level 
analyses are explored in this chapter. 

Section 22.2 reviews the academic literature on six sigma based on Brady 
(2005). Section 22.3 explores the concept of “reverse engineering” six sigma, i.e., 
hypotheses about why six sigma works. The further hypothesis is suggested that 
understanding six sigma success is critical for additional contributions. Section 
22.4 describes possible relationships of the sub-methods to decision problems that 
underly six sigma projects. Section 22.4 describes concepts related to the optimal 
selection of methods to assist with solving problem and Section 22.5 concludes 
with opportunities for future research particularly relating to data-driven 
management of lean sigma programs. 
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22.2  Literature Review 

Brady (2005) analyzed over 200 articles from the academic literature. Trends 
identified include increasing levels of participation in six sigma-related research by 
academics, despite the fact that six sigma originated in industry among non-
researchers. Brady divided the literature into those focusing on macro-, micro-, or 
meso-level issues. 

First, Goh et al. (2003) and others analyzed the macro-level effects of the 
adoption of six sigma on corporate stock performance and found hints of short-
lived benefits while their long term analysis was largely inconclusive. Their 
research, while important, investigated what might be considered a small sampling 
of relevant companies. Also on the macro-level, many articles include potentially 
helpful but ultimately subjective opinions about how to improve project return on 
investment through high level activities such as securing management 
commitment. 

On the micro-level, a significant thread in the literature related to proposals for 
novel quantitive statistical methods having some relevance to six sigma. For 
example, Ribardo and Allen (2003) proposed an optimization objective relevant to 
many formal optimizations in six sigma projects. Such micro-level research shares 
much in common with otherwise common statistical research about individual 
methods.     

Related to meso-level, the most common type of article of any type was a case 
study describing an entire project. These articles included evidence that the project 
described achieved a good return on its associated investment. Also, much research 
related to how six sigma project leaders or “black belts” should be trained. Hoerl 
(2001) and the related discussion constitutes perhaps the most influential article on 
the topic of training. Yet, little quantitative research has been done in the literature 
despite the quantitative and evidence-based nature of six sigma, and many authors 
have suggested that such research might provide a rigorous foundation for six 
sigma and related instruction. Also, new valuable methods could be generated. 

Example 22.2.1  Six Sigma Literature 

Question: Which is correct and most complete? 
a. Much literature has focused on what subjects should be taught to black 

belts. 
b. The relationship between stock performance and six sigma adoption has 

been thoroughly studied. 
c. A major theme in the literature focuses on subjective opinions about 

which strategies aid in achieving results. 
d. Much literature has established a rigorous foundation for project design. 
e. All of the above are correct. 
 

Answer: Several articles in the highly regarded Journal of Quality Technology 
have focused on experts’ opinions about what subjects are appropriate for inclusion 
in a curriculum. A series of articles has also addressed evidence that adoption helps 
stock performance, but results are somewhat inconclusive. Part (c) is also true. 
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However, the selection of methods to apply in a project has received relatively 
little attention, in part because data relating to project actions and results has been 
largely unavailable. Also, modeling the performance of a series of statistical 
method applications is generally beyond the scope of statistical researchers. 

22.3  Reverse Engineering Six Sigma 

“Reverse engineering” can be defined as the study of successful products or 
services to understand how they achieve success. Montgomery (2001) and others 
have predicted that six sigma is likely to play an increasingly important role in 
business practices world wide for the foreseeable future. This section focuses on an 
admittedly subjective reverse engineering six sigma with the goal of clarifying its 
value proposition for industry to support understanding and, therefore, future 
research.  

Six sigma projects are investments. Logically, for any project to achieve a 
desirable return on investment (ROI): 

1. Some level of management support is needed, or else participants could 
not participate. 

2. The project team involved must generate desirable settings for system 
input variables and then either implement (or have implemented) these 
settings.   

3. Often, implementation is performed by others who must be convinced that 
the recommended settings result in a safe and profitable choices.   

Table 22.1 revisits the definition of six sigma from Chapter 1 and suggests 
possible associated contributions of six sigma in the work place. The primary 
benefits of each aspect of the definition are considered only. For example, using an 
organized systematic problem-solving method might encourage management 
support or but that contributions is considered to be secondary.   

Table 22.1 suggests that an associated, primary benefit of the entire six sigma 
method relates to slowing down team members and avoiding “premature closure” 
or termination of decision processes with associated key output variable (KOV) 
settings far from optimal. As indicated in Table 22.1, it is perhaps true that the 
primary benefit of the confirmation or verify phases relates to thorough 
confirmation. Through the use of the charting technology from Chapter 4 and the 
control planning technology from Chapter 8, settings are tested through at least 25 
periods of sampling to make sure that performance is consistent and long lasting. 

Many authors have commented that the attractiveness of six sigma to managers 
relates to its financial self-evaluation. It is suggested here, however, that the 
primary benefits of the two principles of six sigma relate to motivating project 
participants. First, quantitative financial evaluation of results offers those involved  
“bragging rights” about how much they are adding to their organizations.  
Further, by not necessarily involving outside experts, credit for successes do not 
need to be shared with non-engineers or non-scientists. The issue of “credit 
assignment” or sharing glory for successes seems to underly the success of six 
sigma. Credit assignment related benefits likely constitute the main reason why 
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Welch and Welch (2005) wrote that the most “unheralded benefit of six sigma is its 
capacity to create a cadre of great leaders.” 

Table 22.1. Definition of six sigma related to requirements for return on investments 

 Requirement 

Definition or principle Management 
support 

Desirable 
settings 

Convincing 
evidence 

Six sigma is an organized 
… problem-solving method 

… based on statistical 
methods … 

– 
No premature 
closure, based 

on data 

Display of 
respect for the 

problem 

Six sigma … includes as 
phases either … Control … 

or … Verify 
– – 

Guarantees 
thorough 

confirmation 

The six sigma method only 
fully commences … after 

establishing adequate 
monetary justification. 

Six sigma 
programs pay 
for themselves 

Motivation of 
quantitative 

feedback 
– 

Practitioners applying six 
sigma can and should 
benefit … without … 

statistical experts. 

– 
Motivation of 
reduced credit 

sharing 
– 

 
Yet the principle that statistics and optimization experts are not needed implies 
constraints on the methods used and substantial training costs. Clearly the methods 
developed by operations researchers and statisticians for use in six sigma projects 
must be “robust to user” to the extent that people with little training can benefit 
from them. Also, without statistical experts, many (if not all) personnel in 
companies must receive some level of training. Since many do not have the same 
level of technical knowledge as engineers or scientists, the technical level of 
training is generally lower than this book.  

Example 22.3.1  Reverse Engineering Six Sigma 

Question: Which is correct and most complete according to the text? 
a. Scientists and engineers are generally eager to share credit with 

statisticians. 
b. The only six sigma aspect strongly motivating management is cost 

jusfication. 
c. Intense verification associated with control charting is often needed for 

acceptance of project recommendations. 
d. The control or verify phases are not primarily related to improving 

settings. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
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Answer: The text implies that engineers and scientists might generally sacrifice 
solution quality to avoid sharing credit with statisticians. Also, Table 22.1 implies 
that none of the other aspects of the six sigma definition provides important 
motivation for managers to adopt six sigma. The confirmation in the control or 
verify phases aids in acceptance but not improvement. Therefore, the most 
complete, correct answer is (f). 

22.4  Uncovering and Solving Optimization Problems 

In this section, assumptions are explored that could permit theoretical exploration 
of six sigma strategy. This theoretical exploration could permit comparison of 
strategies similar to the comparisons in Chapter 13 and Chapter 18 showing that 
one response surface method design likely leads to greater prediction accuracy than 
another. In the broader six sigma context, such theory could indicate that one 
strategy likely fosters higher profits than another and/or provide a quantitative 
foundation for six sigma. 

Chapter 19 describes the assumption that a single optimization problem 
underlies each six sigma project. Under this assumption, specific strategies 
constitute heuristic approaches for uncovering and proposing a possible solution to 
the underlying problem. The following notation is helpful for the discussion: 

1. x is a vector whose entries are supposed to be determined by the project 
team. 

2. x0 contains the initial settings for x, representing best guesses at the 
project start. 

3. xop is a vector whose entries are the settings recommended at the project 
end. 

4. g quantifies the single true system objective of the project. 
5. g2 quantifies the single true system objective if uncertainty is removed. 
6. g3 quantifies the single true system objective accounting for project costs. 
7. Z are uncontrollable factors causing variability during usual operations. 
8. Z2 are uncontrollable factors causing method problems during the project. 
9. M1 are constraints on x known immediately by team members. 
10. M2 are constraints on x uncovered during the project. 
11. M3 are constraints on the strategy such as amount of time and total cost. 

In terms of this notation, an optimization problem that might underly a six 
sigma project can be written 

Maximize: g(x) = E[g2(x,Z)] (21.1) 
           x                  Z 

         Subject to:  g2(x,Z) = yest(x,Z), 
x ∈ M1, and x ∈ M2 . 

Hazelrigg (1996) and others have remarked upon the fact that teams almost 
always fail to have a single quantifiable objective because of the mathematically 
provable irrational nature of groups. While this fact can have important 
consequences, the simplicity of a single objective suggests that it offers a natural 
starting point for quantitative analyses. For example, team members might agree 
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that their primary goal is to increase expected profits while handling eithical and 
other considerations as constraints. 

Note that many users of six sigma know little about formal optimization and 
would find Equation 22.1 puzzling. This follows perhaps because the challenge in 
uncovering the objective function and constraint sets can be much more difficult 
than solving the problem once formulated. For example, once design of 
experiments has been applied, apparently desirable settings can come from 
inspection of main effects plots (Chapter 12), 3D surface plots (Chapter 13), or 
marginal plots (Chapter 14). These practitioners are therefore attempting to solve 
an optimization problem without being aware of the associated formal vocabulary. 

Table 22.2. Questions answered by selected methods and roles in optimization 

Method Question Outcomes 

Pareto charting 
Which key output variables (KOVs) 
and subsystems should be focused on 

for improvement? 

Qualitative 
information about g(x) 

and g2(x) 

Xbar & R 
charting 

What is the quality associated with 
current KIV level settings and is 
something unusual happening? 

Quantitative 
information about 
g(x0), g(xop), and Z 

Regression 
Based on the data from the field, what 

key input variables (KOVs) likely 
affect the KOVs? 

Potentially inaccurate 
quantitative knowledge 

of g2(x) 

Cause & effects 
matrices 

Which factors likely do not affect the 
KOVs? 

Potentially inaccurate 
quantitative knowledge 

of g2(x) 

Response surface 
methods 

Provide quantitative predictions of 
KOV average values as a function of 

specific KIV level settings. 

Potentially relatively 
accurate quantitive 
knowledge of g2(x) 

Formal 
optimization 

Given quantitative models, what 
settings of KIVs give the most 

desirable possible KOV values? 

Potentially nearly 
optimal settings 

represented by xop  

 
Table 22.2 reviews selected methods from previous chapters and their possible 

roles in solving a formulation of the form in Equation 22.1. Some of the methods 
such as Pareto charting and cause and effects matrix construction result in subtle 
adjustments in the perceptions of objective or beliefs about which factors have no 
effects on the key output variables. Other methods such as regression, response 
surface methods, and formal optimization can play direct roles in exposing and 
solving the underlying formulation. 

Researchers in optimal design of experiments (DOE) have long based their 
theories on the view that, once the DOE array or strategy is decided, many 
important consequences govering the prediction accuracy and decisions made later 
inevitably follow. This is the point of view underlying the evaluation of criteria 
described in Chapter 18. Extending such concepts to six sigma project and meso-
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analysis implies that certain strategies are likely to foster good outcomes in certain 
cases.   

These considerations give rise to a second optimization problem focused on 
strategy and method selection   

Maximize:  E{g3[xop(strategy,Z2)]}           (22.2) 
      strategy              Z2

 

strategy ∈ M3 

In this formulation, possible strategies that could result might include choices 
to apply Pareto charting, cause and effect matrices, and statistical process control 
charting twice. These choices have implications for both the quality of the 
recommended settings that result, xop, and the cost of the project. Both types of 
considerations would, in general, be included in the function g3 or reflected by the 
constraint set M3.   

The next example decribes the practically useful application of a formulation of 
the form in Equation 22.2 to generate design of experiment (DOE) arrays. 
However, formulations are generally lacking from which to derive useful 
inferences about which combinations of distinct methods should be used in 
projects. 

Example 22.4.1  Optimal Strategy Generation 

Question: Provide one example of generating a strategy using optimization. 
 
Answer: One strategic decision relates to which design of experiments (DOE) 
array should be used, i.e., the strategy. The EIMSE optimal DOE arrays in Chapter 
13 were generated by minimizing the squared error objective (g3). The EIMSE 
criterion taking into account unknown random errors, prediction points, and true 
model contained within by, Z2, in Chapter 18 using a genetic algorithm similar to 
the one described in Chapter 19. The act of generating the DOE constituted the use 
of formal optimization to create a method for project teams optimize their systems. 
 

It is conceivable that the underlying system optimization in Equation 22.1 
might not correspond to a stochastic optimization problem as described in Chapter 
18. However, it seems relatively likely that formulations of the type in Equation 
22.2 generally require stochastic optimization methods for their solution. This 
follows because most of the methods involve data collection and therefore 
uncertainty. Usually if the data could be accurately predicted in advance, it would 
not need to be collected. Also, data often enters in a non-linear way into decision-
making. 

Note also that Equation 22.2 implies the “method-centered” view that, once the 
strategy determines which methods are to be used (their strategy), the project team 
essentially enters a relatively confining track. This “method rollercoaster” 
eventually terminates with recommendations, xop. Figure 21.1 illustrates a method 
rollercoaster which includes the strategy of creating a charter, using Pareto 
charting, fitting a preliminary regression model, and using a cause and effects 
matrix, response surface methods, and formal optimization. This specific strategy 
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in this case results in recommended settings xop,1. Presumably if a different strategy 
were used or even the same strategy were repeated, different recommended setting 
would result. Therefore, the recommendations, xop, are a random variable, the 
expected value of its associated performance, g(xop), can be used to judge any 
given strategy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22.1. “Method rollercoaster” is a strategy that starts with x0 and ends with xop,1 

The method rollercoaster view of six sigma de-emphasizes the opportunistic 
nature of many projects. It also de-emphasizes the characteristics of individual 
participants and the role of science. As a result, the entire concept of “method 
rollercoaster” runs counter to both the six sigma and statistics cultures to a great 
extent. However, Figure 22.1 and formulations similar to Equation 22.2 are 
possibly unavoidable in the development of a scientific foundation for six sigma 
and new method development.  

In fact, decision-making about strategy including method selection and the 
choice to perform a project has already been modeled usefully by several 
researchers. For example, Bisgaard and Freiesleben (2000) developed a 
quantitative method for determining whether to perform a six sigma project or not. 
Even though their approach ignores the skill of the team and many aspects of the 
problem under study, it is offers practically useful guidance in many cases.  

Further, by studying actual historical case studies, Brady (2005) was able to 
quantify the effects of certain strategies on average profits, g(xop). For example, at 
a specific company the effects of training on profits were quantified. Also, Brady 
(2005) was able to demonstrate circumstances underwhich the use of design of 
experiments methods increased or decreased expected profits. 

Make 
Charter 

Pareto charting 

Preliminary 
regression 

C&E Matrix 
RSM 

Formal 
optimization 

x0 
xop,1 
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22.5  Future Research Opportunities 

Six sigma was originally development by consultants, managers, and practitioners.   
Yet, it was built upon sub-methods such as Xbar & R charting (Shewhart 1931) 
and regular fractional factorials (Box et al. 1961) proposed by researchers. 
Therefore, it seems reasonable to expect researchers to continue to make useful 
contributions to six sigma and future methods of similar scope. This section 
describes several possible areas for future research. 

Table 22.3 overviews an admittedly arbitrary sampling of proposed areas for 
future research. The first two rows represent continuing on-going threads of 
research likely to be received gratefully by practitioners in the short run. Continued 
quantitative research on the value of six sigma programs will likely be of interest to 
stock holders and management partly because past results are somewhat 
inconclusive.  

Table 22.3. Overview of possible topics for future research 

Proposed area Level Possible outcomes 

Quantitative analyses of 
management practices Macro Improved adoption and 

management guidelines 

Opinion surveys All Improved understanding of needs 
for research and improvements 

New statistics methods Micro  
(new sub-methods) 

User friendly software offering 
additional method options 

Meso-analyses of project 
databases Meso and macro Improved training materials and 

strategies, expert system software 

Testbed development for 
strategy evaluation Meso Criteria for theoretical evaluation 

of six sigma and other strategies 

Optimal design of project 
strategies Meso Improved training materials and 

strategies, expert system software 

 
Also, perceptions and performance continually change, and while over 40 

papers have already published survey data, many questions remain largely 
unanswered. These include perceived needs for research and perceptions about 
effective training practices. Unfortunately, opinion based surveys might not 
produce results of long-run relevance. 

22.5.1  New Methods from Stochastic Optimization 

Research on new statistical micro-level methods for general uses can be highly 
valuable. Further, advances in computational speed and optimization heuristics 
provide unprecedented opportunities for new method development. Through 
applying optimization, it is possible that many if not all criteria used to evaluate 
methods can be used to generate new methods. For example, methods can be 
designed tailored to specific problems to maximize the chance of getting correct 
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information or the expected profit from performing the study. However, studies of 
historical successes in micro-level method development such as Xbar & R charting 
from Shewhart (1931) suggest that practitioners may be slow to perceive value.    

Six sigma explicitely creates different classes of practitioners interested in 
methods: green-belts, black belts, and master black belts. The reverse engineering 
of six sigma suggested that all of these classes are interested in using these 
practices without the aid of statistical methods. However, the requirement that 
methods be robust to the user does not mean that the methods cannot have 
complicated derivations and justifications. For example, many users of fractional 
factorials understand the process described in Box, Hunter, Hunter (1961) for the 
derivation of the arrays used. 

Possibilities for valuable new micro level-methods exist for cases in which 
current similar methods are not in widespread use, e.g., supersaturated designs 
from stochastic optimization in Allen and Bernshteyn (2003). Further, “data 
mining” or analysis of very large data sets using novel regression type or other 
methods continues to be an important area of investigation. Much of the related 
technology has not reached the level of maturity in which the methods are robust to 
user. 

Also, new methods can potentially dominate many or all performance criteria 
relative to time-tested methods. For example, the EIMSE optimal design of 
experiments (DOE) arrays from Allen et al. (2003) offer methods with both fewer 
runs and lower expected prediction errors than either central composite or Box 
Behnken designs. Other possible areas under this category include new DOE arrays 
for problems involving categorical variables, custom arrays associated with 
reduced costs, and fully sequential response surface methods (RSM) deriving 
better results using reduced experimental costs. Also, multi-variate analysis and 
monitoring technologies tailored to specific problems can be developed.  

In general, Bayesian decision analysis based methods (e.g., Degroot 1970) have 
not been fully exploited with respect to their abilities to generate practically useful 
methods. Also, it is possible that many (if not all) of the quantitive methods in this 
book could be improved in their ability to foster desirable outcomes and user 
robust methods using optimization and/or Bayesian analyses. 

Example 22.5.1  New Micro-level Methods 

Question: According to the text, which is correct and most complete? 
a. Robustness to user can imply that black belts and green belts can both 

benefit. 
b. Practitioners have established a strong market for novel statistical 

methods. 
c. There is no reason why researchers can improve on time-tested 

methods. 
d. All of the above are correct. 

 
Answer: Being conscious of user levels of knowledge is important, but it is 
possible to design robust methods that all can benefit by using, e.g., Xbar & R 
charts. In general, practitioners are not offering many grants for the development of 
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new general purpose methods. Modern computers offer unprecedented 
opportunities for improved methods. Therefore, the answer is (a). 

22.5.2  Meso-analyses of Project Databases 

With its emphases on monetary justification and documentation, six sigma has 
spawned the creation of many corporate databases containing the methods used in 
projects and the associated financial results. While the majority of these databases 
are confidential, practitioners at specific companies generally have access to their 
own organization’s database. Brady (2005) proposed several approaches for 
analyzing such databases and the possible benefits of related research.  

Results and benefits were illustrated using an example database describing 39 
projects. A sampling of that project database is shown in Table 21.4. “#” refers to 
the project number. “M/I” indicates management (M) or individuals (I) identified 
the preliminary project charter. “A/P” indicates whether team members were 
assigned (A) or elected to participate (P). “#P” is the number of people on the 
team. “EC” is the number of economic analyses performed. The actual table in 
Brady (2005) also contained the number of SPC, DOE, and other quality methods 
used. Profits were estimated assuming a two-year payback period that addresses 
the fact that affected products typically have a two-year life cycle. 

Brady (2005) showed how EWMA control charting (Chapter 8) of the profits 
from individual six sigma projects can provide quantitative, statistical evidence of 
the monetary benefits associated with training programs. Also, the analysis 
indicated that design for six sigma (DFSS) can offer far higher profits than 
improvement projects. The control charting resulted in a point removed 
corresponding to the DFSS project found by charting to be not representative 
(following the approach in Chapter 4). The remaining data were analyzed using 
regression (Chapter 15) and Markov Decision Processes (e.g., see Puterman 1994). 
Results included prescriptive recommendations about which sub-methods can be 
expected (at the related company) to achieve the highest profits in which situations.   

Table 22.4. Sample from an open source six sigma project database 

# Expected 
savings 

Expected 
time 

M/
I 

A
/
P 

#
P 

E
C … Cost Savings Profit 

1 $35000 L M A 7 0 … $48,700 $36,000 $–12,700 

2 $70000 L M A 1 1 … $7,590 $0 $–7,590 

3 $81315 M M A 2 1 … $35,300 $31,500 $–3,800 

4 $40000 M M A 1 0 … $2,900 $0 $–2,900 

5 $250000 L I P 6 1 … $325,500 $4E+06 $3,874,500 

6 $150000 L M P 4 0 … $76,000 $170,000 $94,000 

M M M M M M M M M M M 
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Much of the information from the analyses in Brady (2005) based on the 
databases could be viewed as commonsensical. However, possible uses of 
information from such activities include feedback at the meso-level about needs for 
six sigma program management adjustments, improvements in training methods, 
and improvements to project budget planning. In general, modeling of effects of 
method applications on profits can provide many intangible benefits to statistical 
researchers including quantitative confirmation of specifics of the methods. 

Additional research can consider larger databases and, possibly, achieve 
stronger inferences with larger scope than a single manufacturing unit. Also, a 
wider variety of possible analysis methods can be considered including neural nets, 
logistic regression, and many other techniques associated with data mining. Each 
of these methods might offer advantages in specific contexts and answer new types 
of questions. Overall, it seems that analyses of project databases is largely 
unexplored.   

Example 22.5.2  Project Meso-analyses 

Question: According to the text, which is correct and most complete? 
a. Confidentiality issues can offer a challenge for six sigma project analyses. 
b. Meso-analyses could conclude that certain methods reduce average 

profits. 
c. Some project profits might not be representative of usual operations. 
d. All of the above are correct. 
e. All of the above are correct except (a) and (d). 

 
Answer: Yes, confidentiality makes many corporate databases unavailable. Also, 
hypothetically, results could conclude that a given set of quality systems are unable 
to apply certain methods with positive expected profits without changes. Finally, 
certain projects might not be representative. For example, project #6 in Table 21.4 
corresponded to the only DFFS application because there was an unusual ability to 
change the design specifications. Therefore, the correct answer is (d). 

22.5.3  Test Beds and Optimal Strategies 

Quantitative evaluation of project strategies is possible similar to the evaluations of 
statistical quality control (SQC) and design of experiments methods in Chapter 10 
and Chapter 18. “Test beds” are problems with known solutions that can be used 
to compare methods. For example, a problem in a test bed could involve specific 
functions g and g2 inserted into Equation 21.2. Here, the methods could compare 
the hypothetical profit performance of alternative strategies on the same problem.  
Such test beds could facilitate training and provide the assumptions needed for the 
evaluation of criteria as described in Chapter 18. 

One concern in the development of test beds relates to the realization that the 
underlying objective functions related to six sigma (g and g2). For example, six 
sigma teams are rarely tasked with problems offering the opportunity for large 
improvements through the adjustement of a single factor. If such adjustments were 
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possible, individuals associated with the system would likely have made them 
already. Special assumptions could be formulated to reflect this realization. 

Finally, the same criteria and test beds associated with method evaluation and 
comparison can be used for generating optimal strategies. For example, Brady 
(2005) used an optimization method called stochastic dynamic programming to 
solve for the optimal sub-methods that maximize profits pertinent to many realistic 
situations. Yet the assumptions in Brady (2005) were not sufficiently realistic to 
provide valuable feedback to engineers. Much more research is possible to increase 
the scope and relevance of efforts to develop optimal improvement strategies. 

Problems 

1. Which is correct and most complete according to the text? 
a. Documenting a project case study is generally a micro-level 

contribution. 
b. Future opportunities for survey based contributions are generally not 

possible. 
c. Models predicting the value of specific strategies are entirely lacking. 
d. The subject of what should be taught to black belts has been 

addressed in the literature. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

2. Which is correct and most complete according to the text? 
a. Six sigma emphasizes credit-sharing between statistical experts and 

engineers. 
b. The control phase is important primarily because it motivates 

management. 
c. Encouraging adoption of project settings is critical for achieving 

project ROI. 
d. The quality of recommended settings is important but not required for 

ROI. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

3. Which is correct and most complete using the notation from the text? 
a. In general, g(x) corresponds to the primary KOV. 
b. Control charting likely results in improved recommendations for 

settings, xop. 
c. Regression models cannot be used to specify constraint sets. 
d. Formal optimization is generally used by all teams in six sigma 

projects. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
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Test n1 at level 1
Test n1 at level 2

≤σ0c1?

>σ0r? Declare significance with 
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No

No
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No
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Test n2 at level 2

≤σ0c2?12 tt yy − 12 tt yy −
No

4. Which is correct and most complete according to the text? 
a. The concept of a method rollercoaster emphasizes individual 

expertise levels. 
b. Optimization has not yet been used to produce methods or strategies. 
c. The nature of six sigma projects places no restriction on relevant test 

beds. 
d. Six sigma databases can help predict the costs in future projects. 
e. All of the above are correct. 
f. All of the above are correct except (a) and (e). 
 

5. Adapt the genetic algorithm in Chapter 19 to select n1, n2, c1, r, and c2 to 
minimize a weighted sum of the expected number of tests and the chance of 
errors for a t-testing procedure of the type shown in Figure 22.2. Assume that 
σ0 is known to equal 1.0. (Hypothetically, this procedure might be preferable 
to the certain well-known z-testing procedures.) 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 22.2. Flowchart of proposed two-stage z-test procedure 
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Glossary 

5S – a lean production tool meaning, sort, straighten, sweep, standardize, sustain, 
which is used when organizing a work area to be lean 
 
adjusted R-squared of prediction – a regression diagnostic that estimates the 
fraction of the observed variation explained by the model based on a cross-
validation based estimate of the SSE 
 
Anaylsis of variance (ANOVA) – a set of methods related to the statistical 
comparison of variances. Often, these methods use variances to evaluate the effects 
of factors on mean response values while regulating the rate of making at least a 
single Type I error 
 
assignable cause variation – a set of changes in a given quality characteristic 
caused by factors changing over which local authority can control because they are 
attributable to something “fixable” 
 
Bayes formula – define Pr(B|Ai) as the probability that the event B will happen 
given that the event Ai has happened. Also, let A1, A2,…,A∞ be an infinite sequence 
of disjoint events that exhaust the sample space. Then, Bayes’ formula, provable 
using Venn diagrams and the definition of conditional probability, states 
 

Pr(Ai|B) =         . 
 
 
benchmarking – an activity in which people systematically inspect the relative 
performance of their product or service compared with alternatives 
 
Bonferonni inequality – establishes that the chance of making no mistake in q 
trials having chances α1,…,αq of making mistakes is greater than 1 – Σi=1,…,q  αi. 
 
categorical variable – system input that can assume only a finite number of levels 
and these levels have no natural ordering 
 

      Pr(B|Ai)Pr(Ai)       .     
Σj=1…∞ Pr(B|Aj)Pr(Aj)



536      Glossary  

common cause variation – a set of changes in a given quality characteristic 
caused by factors changing over which local authority has minimal ability to 
control 
 
confounding – generating an input pattern in which system inputs correlate such 
that accurate empirical attribution of causes is impossible because of 
multicollinearity 
 
continuous factor – input variable that can assume, theoretically, any of an infinite 
number of levels (with levels having a natural ordering)  
 
control factor – a system input that can be controlled during normal system 
operation and during experimentation  
 
control group – people in a study who receive the current system level settings 
and are used to generate response data (related to counteracting any Hawthorne 
effects) 
 
control limit – when the charted quantity is outside these numbers, we say that 
evidence for a possible assignable cause is strong and investigation is warranted.  
 
decision space – the set of solutions for system design that the decision-maker is 
choosing from  
 
defining relation – a set of generators that are sufficiently complete as to identify 
uniquely the fractional factorial  
 
design for six sigma (DFSS) – a systematic method for the radical redesign of 
existing systems or the design of new systems. It can be viewed as part of six 
sigma or an alternative method to six sigma because it necessarily includes design 
control within its scope and varies more greatly in its implementation across 
business units than DMAIC-based improvement strategies 
 
double blind – attribute of an experimental plan such that test subjects and 
organizers in contact with them do not know which input factor combination is 
being tested 
 
easy-to-change factors (ETC) – inputs with the property that if only their settings 
are changed, the marginal cost of each additional experimental run is small  
 
engineered system – an entity with controllable inputs (or “factors”) and outputs 
(or “responses”) for which the payoff to stakeholders is direct  
 
event – set of values that a random variable can assume 
 
expected value – the theoretical mean of a random variable derivable from the 
distribution or probability mass function, written E[ ] 
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failure mode – refers to an inability to meet engineering specifications expressed 
using a causal vocabulary 
 
fidelity level – the degree of difference, evaluated either quantitatively or 
subjectively, of the prototype system to the relevant engineered system 
 
flat file – database of entries that are formatted well enough to facilitate easy 
analysis with standard software  
 
fractional factorial (FF) designs – input patterns or arrays in which some possible 
combinations of factors and levels are omitted (standard FFs have the property that 
all columns can be obtained by multiplying together other columns)  
 
full factorial designs – input patterns or arrays in which all possible combinations 
of factors and levels are used  
 
functional form – the relationship that constrains and defines the fitted model 
global  
 
generator – a property of a specific regular fractional factorial array showing how 
one columns may be obtained by multiplying together other columns, e.g., AB = C 
 
hard-to-change factors (HTC) – inputs with the property that if any of their 
settings are changed, the marginal cost of each additional experimental run is large  
 
Hawthorne effect – a difference in average responses caused by the attention 
associated with a study (often they occur because studying improves performance) 
 
heteroscedasticity – situation in which the variance is non-constant, e.g., in 
regression this can be detected by normal probability plotting the residuals and 
seeing tails 
 
heuristic – solution method that is not guaranteed to find a global optimum 
solution 
 
improvement system – any set of activities resulting in a recommended set of 
engineered system inputs 
 
interaction – terms in polynomials involving products, e.g., 2.0x1

2x3, are called 
interaction terms 
 
Job 1 – the time in the design cycle in which the first product for mass market is 
made 
 
kanban – a lean production tool that uses an indicator, typically a card of color, to 
let the employees know the extent to which inventory buffers are full  
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kriging modeling – an approach for fitting a non-linear “spline” function to data 
usually using maximum likelihood estimation which can be viewed as a 
generalization of polynomial regression 
 
lean manufacturing – a set of techniques as well as the principle of seeking zero 
waste. The techniques were generally invented by Toyota to make a manufauring 
system work more efficiently and associated with the elements of the Toyota 
production system. 
 
lean sigma of lean six sigma – a principled approach to problem solving that 
combines the elements of six sigma, the theory if contraints, and lean 
manufacturing including their tool boxes with the goals of zero waste including 
zero (or nearly zero) non-conformities produced. 
 
least squares estimation – a process of deriving the parameters of a fitted meta 
model through formal optimization minimizing the sum of squares error 
 
leverage in regression – the issue of input patterns causing the potentially strong 
influence of a small number of observations on the fitted model attributes 
 
Liebniz rule – the formula that allows calculation of derivatives of integrals is 
  

f(x,u)du =     [     f(x,u)] du + [    b(x)] f(b(x),x)] – [     a(x)] f(a(x),x)] 
 
linear regression – curve fitting in which the model form can be written f(x)′βest 
 
local optimum – the best solution to a formal optimization problem in which the 
optimization is constrained to a subspace not containing the global optimum 
 
metamodel – a functional relationship between inputs and outputs that could be a 
regression, kriging, neural net, or other empirical model 
 
multicollinearity – situation in which the input pattern or design of experiments 
array make fitting a model form of interest prone to high errors and/or 
misinterpretation 
 
neural nets – a curve fitting approach useful for either classifying outputs or as an 
alternative to linear regression sharing some characteristics with the human mind 
 
noise factor – an input to the system that can be controlled during experimentation 
but which cannot be controlled during normal system operation 
 
normally distributed – random variables associated with probabilities of taking 
on certain values given by a distribution function of the following form: f(x) = 
(2πσ2)–1 exp[(x – μ)2/(2σ2)], where μ is the distribution mean and σ is the standard 
deviation. In layperson’s terms, if X is normally distributed it is probably within a 
number σ of the mean μ. 

∫ 
b(x) 
 

a(x) 

 d  
dx ∫  d  

dx 

b(x) 
 

a(x) 

 d  
dx

 d 
dx 
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np-hard – the property of optimization problems that no known procedures can 
guarantee finding a global optimum solution in a time bounded by a polynomial in 
the problem size parameters, e.g., m the number of factors (a heuristic is needed)  
 
null hypothesis – the belief that the factors being studied have no effects, e.g., on 
the mean response value 
 
observational study – data collection and analysis for cases in which 
randomization has not been used 
 
on-hand data – response numbers associated with an observational study 
parameterization – one way to turn a system design problem into the selection of 
settings on well-defined “dials”    
 
optimum – the true best solution to a formal optimization problem constrained to 
lie in a decision space 
 
p-value – the value of alpha in hypothesis testing such that the test statistic equals 
the critical value. Small values of alpha can be used as evidence that the effect is 
“statistically significant”. Under standard assumptions it is the probability that a 
larger value of the test statistic would occur if the factor in question had zero effect 
on the mean or variance in question.  
 
poka-yoke – a lean manufacturing tool used to “error proof” a system 
 
posterior probabilities – the estimated probabilities of events calculated after data  
has been collected using Bayes’ formula to update the prior probabilities 
 
process flow – the movement of material or information through a system 
 
quality characteristic – a system output or response that can be used to define 
whether the system is acceptable or not 
 
random effects models – fitted curves to data and associated tests for cases in 
which some of the factor levels are relevant only for their ability to be 
representative of populations (e.g., people in a drug study or parts in 
manufacturing) 
 
random errors – the difference between the true average for a given set of outputs 
and the actual values of those outputs (caused by uncontrolled factors varying)        
 
randomization – the allocation of blocking factor levels to runs in a random or 
unpatterned way in experimental planning 
 
reductionist tendency – an instinct to, when confronted with complexity, abandon 
a disciplined approach to decision making and/or become hostile to ideas  
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region of interest – the set of solutions for system design that the decision-maker 
feels is particularly likely to contain desirable solutions 
 
regression model – an equation derived from curve fitting response data useful for 
predicting mean outputs for a given set of inputs  
 
residual – difference between the metamodel prediction and the actual data value 
rigorous method (in the context of optimization) – an algorithm associated with a 
rigorously proven claim about the objective function of the derived solution 
 
responses – (throughout) variables that characterize the outputs of a system 
 
response surface model – a fitted model with a model form involving quadratic 
terms 
 
sample standard deviation (s) – one measure of the “dispersion” of a collection 
of n numbers, y1, ..., yn which has the formula 

s 2  = Σi=1,…,n (yi – y )2/(n – 1). 
 
sample variance (s2) – the sample standard deviation squared 
 
screening – experimentation in which the primary goal is to identify the 
“important factors” which aids in the elimination of some factors from 
consideration 
 
significance level – synonym for p-value 
 
six sigma – an organized and systematic problem-solving method for strategic 
system improvement and new product and service development that relies on 
statistical methods and the scientific method to make dramatic reductions in 
customer defined defect rates and/or improvements in key output variables 
 
spaghetti diagrams – a diagram that can be used to visualize and quantify the flow 
through a facility, often used as a tool for eliminating waste  
 
specification limit – these are numbers that determine the acceptability of a part.  
If the critical characteristic is inside the limits, the part is acceptable 
 
statistical power – probability of not making a Type II error, i.e., finding 
significance for a case when there is a non-zero difference 
 
stochastic optimization – the study of problems in which the decision-maker 
believes that it is necessary to estimate the objective function, g(x), using some 
form of numerical integration  
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test for normality – an evaluation of the extent to which a decision-making can 
feel comfortable believing that responses or averages are normally distributed trace 
of a matrix – the sum of the diagonal elements of a matrix, written Tr[] 
 
theory of constraints (ToC) – a system for system improvement based on 
focusing and alleviating bottleneck subsystems 
 
theory of constraints lean six sigma (TLS) – a system for process improvement 
that includes six sigma, ToC, and lean engineering 
 
total travel distance (TTD) – the total distance traveled through a facility as 
shown on a spaghetti diagram 
 
Type I error – the event that a hypothesis testing procedure such as t-testing 
results in the declaration that a factor or term is significant when, in the true 
engineered system, that factor or term has no effect on system performance 
 
Type II error – the event that a hypothesis testing procedure such as t-testing 
results in a failure to declare that a factor or term is significant when, in the true 
engineered system, that factor or term has a non-zero effect on system performance 
 
within and between subject designs – experimental plans involving within and 
between subject variables (relates to the allocation of levels or runs to subjects) 
 
Variance Inflation Factors (VIFs) – numbers that permit the assessment of 
whether there is any chance reliable predictions and inferences can be derived from 
the combination of model form and input pattern (VIFs < 10.0) 
 



 

Problem Solutions 

Chapter 1 

1.  c 
2.  e 
3.  b 
4.  d 
5.  KIVs – study time, number of study mates 

KOVs – math GPA, english GPA 
6.  KIVs – origin account type, expediting fee 

KOVs – time until funds are available, number of hours spent 
7.  d 
8.  b 
9.  Six sigma training is case based. It is also vocational and not theory based. 
10. TQM might be too vague for workers to act on. It also might not be profit 

focused enough to make many managers embrace it. 
11.  b 
12.  e 
13. Having only a small part of a complex job in mass production, the workers 

cannot easily perceive the relationship between their actions and quality. 
14. Shewhart wanted skilled workers to not need to carefully monitor a large 

number of processes. He also wanted a thorough evaluation of process quality. 
15. By causing workers to follow a part through many operations in lean 

production, they can understand better how their actions affect results. 
Also, with greatly reduced inventory and one piece flows, problems are 
discovered downstream much faster. 

16.  A book being written is an engineered system. Applying benchmarking and 
engaging proof readers together constitute part of an improvement system. 

17.  In grading exams, I would be a mass producer if I graded all problem 1s then 
all problem 2s and so on. I would be a lean producer if I graded entire exams 
one after another. 

18.  c 
19.  d 
20.  e 
21.  a 
22.  b 
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23.  e 
24. Green belts should know terminology and how to apply the methods 

competently. Black belts should know what green belts know and have enough 
understanding of theory to critique and suggest which methods should be used 
in a project. 

25. Knowledge: Physics refers to attempt to predict occurences involving few 
entites with high accuracy.  
Comprehension: One table in physics might show the time it takes for various 
planets to orbit the sun. 
Application: An example application of physics is predicting the time it takes 
for the earth around the sun.  
Analysis: An analysis question relates to identifying whether a given type of 
theory can achieved the desired level of accuracy. 
Synthesis: An issue for synthesis is how to connect mathematical technology 
with a need to forecast blast trajectories. 

26.  a 

Chapter 2 

1.  b 
2.  e 
3.  a 
4.  d 
5.  a 
6.  c 
7.  c 
8.  a 
9.  Acceptance Sampling, Process Mappling, Regression 
10.  Acceptance Sampling, Control Planning, FMEA, Gauge R&R, SPC Charting 
11.  d 
12.  d 
13.  e 
14.  a 
15.  a 
16.  d 
17.  See the examples in the chapter. 
18.  An additional quality characteristic might be the groove width with USL = 

0.60 mm and LSL = 0.50 mm. 
19.  b 
20.  a 
21.  e 
22.  c 
23.  See the example in Chapter 4. 
24.  See the examples in Chapter 9. 
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25.  In Step 5 of the method, which order should the base be folded. Fold up first 
from the bottom or from the sides? 

26.  It is a little difficult to tell which are cuts and which are folds. For example, is 
there a cut on the sides or a fold only? 

Chapter 3 

1.  e 
2.  b 
3.  e 
4.  d 
5.  b 
6.  a 
7.  d 
8.  e 
9.  a 
10.  b 
11.  See the examples in Chapter 9. 
12.  e 
13.  a 
14.  a 
15.  b 
16.  Writing this book slowed progress on many other projects including course 

preparation, writing grant proposals, and writing research papers.  
17.  e 
18.  b 
19.  c 
20.  d 
21.  b 
22.  a 
23.  a 
24.  d 
25.  b 
26.  e 
27.  c 
28.  c 
29.  b 
30.  a 
31.  e 
32.  In decision-making, there is a tendancy not to focus on the failures that affect 

the most people in the most serious way. Instead, we often focus on problems 
about which someone is bothering us the most. Pareto charting can bring 
perspective that can facilitate alignment of project scopes with the most 
important needs. 
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33. For many important issues such as voting methods, there is a tendancy to 
abandon discipline and make decisions based on what we personallty like. 
Through a careful benchmarking exercise, one can discover what make 
customers happy, drawing on inspiration from competitor systems. This can be 
important ethically because it can help make more people happy. 

34.  b 
35.  e 
36.  e 
37.  d 
38.  b 
39.  c 
40.  a 
41.  d 
42.  b 

Chapter 4 

1.  b 
2.  d 
3.  a 
4.  b 
5.  b 
6.  c 
7.  c 
8.  a 
9.  b 
10.  c 
11.  d 
12.  Under standard assumptions, the measurement system is not gauge capable. 

The measurement system cannot reliably distinguish between parts whose 
differences are comparable to the ones used in the study. 

13.  c 
14.  a 
15.  b 
16.  b 
17.  b 
18.  c 
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19.  The following is from Minitab®: 
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Figure PS.1. 

20.  e 
21.  d 
22.  b 
23.  d 
24.  The following is from Microsoft® Excel: 
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Figure PS.2.   
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25.  e 
26.  a 
27.  c 
28.  a 
29.  f  
30.  c 
31.  d 
32.  The following was generated using Minitab® with subgroups 18 through 22 

removed: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure PS.3. Minitab® Xbar and R chart 

33.  e 
34.  Crossed gauge R&R could help quantify the gauge capability of the system 

including both inspectors. Also, the inspectors could meet and document a 
joint measurement SOP. Finally, it might be helpful to create standard units 
using an external expert. Then, comparison with standards could be used 
which would be most definitive. 

35. Assignable causes might include non-regular, major job performance 
evaluations or major life decisions. In general, the charting could aid in the 
development of a relatively rational perspective and acceptance that life has 
peaks and valleys. Also, the chart could help in rational approaches to 
determine that a major life decision has been a success or a failure. 

36. The majority of quality problems are caused by variability in the process.  
Otherwise, all of the units would be conforming or non-conforming. The width 
of the limits on R-charts quantifies the amount of variability in the process 
with only common causes operating. Since major quality projects are often 
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designed to reduce the common cause variation, a pair of charting activities 
before and after the project can quantify the effects. 

37.  Suppose that we are playing doubles tennis and coming up to the net at every 
opportunity. Unfortunately, we have a string of pathetic volleying attempts 
causing lost points. It still is probably advisable to continue coming to net 
since the strategy still makes sense. 

39.  Measurement error is defined here as the difference between the output 
variables derived and the standard values. This means that if you measure a 
standard value one 1 plug to be 1.02 inches your measurement error is 0.02 
inches.  

41.  n = 200  
p0 = (total number non-conforming) ÷ (total number inspected)  
     = 210/5000 = 0.042, 
UCLtrial = 0.042 + 3.0 × sqrt [(0.042) × (1 – 0.042) ÷ 200] = 0.085, 
CLtrial = 0.042, and 
LCLtrial = Max {0.042 – 3.0 × sqrt [(0.050) × (1 – 0.050) ÷ 200], 0.0} = 0.0. 
Figure PS.4 shows a p-chart of the startup period. Clearly, the p value in week 

5 and 6 subgroups constitute out-of-control signals. These signals are likely to have 
been caused by an assignable cause (power outages). 

 

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

Series1p

lcl

cl

ucl

 
Figure PS.4. Car dealer p-chart during the startup period 

The revised limits are: 
p0 = (total number non-conforming) ÷ (total number inspected)  
    = 128/4600 = 0.028, 
UCL = 0.028 + 3.0 × sqrt [(0.028) × (1 – 0.028) ÷ 200] = 0.063, 
CL = 0.028, and 
LCL = max {0.028 – 3.0 × sqrt [(0.028) × (1 – 0.028) ÷ 200], 0.0} = 0.000. 
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Chapter 5 

1.  d 
10.  e 
11.  b 
12.  a 
13.  b 
14.  c 
15.  b 
16.  a 
17. C&E matrices help engineers communicate about their beliefs related to 

causality. The process of creating these matrices forces engineers to think 
about all of the customer issues. Also, C&E matrices are needed for the 
construction of the house of quality which many people feel helps them make 
system design decisions. 

18.  e 
19.  a 
20.  d 
21.  c 
22.  b 
23.  d 
24.  It is not clear how parents could fail to detect their child’s pinching their 

fingers in doors. If the failures were not detected because the baby sitters 
failed to report the problem, that needs to be clarified. Similarly, it is not clear 
how parents could fail to detect too much TV watching unless they were 
previously unaware of the issue or there were baby sitters involved. 

25.  e 
27.  See the example at the end of Chapter 9. 
29. Value stream mapping, poka-yoke, kanban, 5S 
31.  It would be ideal, perhaps, to eliminate all operations besides report and 

homework writing, preparing for exams, exercise, and socializing. 
33. Generally in the U.S. the primary constraints for engineering professors relate 

to research funding. The way to elevate that constraint is to focus on 
partnering with successful other professors and organizations, which takes 
time. According to the TOC, other activities such as meetings for university 
service are generally not related to the bottleneck and should be reduced when 
possible. After funding has reached an acceptable level, the key issue 
generally becomes writing seminal research papers and/or teaching well.  

35. My car offered many problems including cost and parking issues. Now, I ride 
my bike. Also, I often used to forget where I had parked my car. The poka-
yoke solution was to always park in the same place at the back of the lot.  

37.  The diagram is given below.  
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39.  Possible recommendations include:  
a. Rearrange the storage shelf area so that the “turned” sub-area is closer to the 

turning area, 
b. Move the finished parts area closer to the painting area. 
c. Move paint booths closer together, move all of storage up and shrink the 

overly large receiving area.   
41. Receive to storage n1 = 1 time 
 Storage to cut n2 = 2 times 
 Cut to storage n3 = 1 time 
 Storage to turning n4 = 1 time 
 Turing to storage n5 = 1 time 
 Cutting to paint n6 = 2 times 
 Paint to print n7 = 1 times 
 Paint to cut n8 = 1 time 
 Paint to storage n9 = 1 time 
 Storage to sales n10 = 1 times 
 TTD= (1)(100) + (2)(75) + (1)(75) + (1)(150) + (1)(150) + (2)(115) + (1)(50) 

+ (1)(115) + (1)(115) + (1)(74) = 1209 ft 
43. A maid service operates in private homes. The workers could generate 

spaghetti diagrams for a few generic house plans to communicate best 
cleaning practices. Such diagrams could help in planning sweeping and 
mopping activities to make sure that materials are transported minimum 
distances and that areas of the house are always near and available for cleaning 
during drying periods. Hypothetically, efficiency improvements could permit 
the firm to serve more houses with fewer crews. 
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Chapter 6 

1.  b 
2.  c 
3.  c 
4.  b 
5.  c 
6.  a 
7.  d 
8.  QFD might be better able to address more customer considerations and input 

and output variable related issues. Also, QFD forces the decision-makers to 
study at least some of their competitors which can provide invaluable insights. 

9.   Targets can function as effective customer ratings, changing the ranking of the 
companies. For example, one company could dominate the customer ratings 
but how key input variable or key output variable settings far from the targets.  
Then, that company’s approach might not be worthy of emulation. 

10.  See Table 6.3. 
11.  c 
12.  c 
13.  d 
14.  See the snap tab example in the chapter  
15.  d 

Chapter 7 

1.  e 
2.  d 
3.  a 
4.  c 
5.  a 
6.  a 
7.  a 
8.  d 
9.  Monitoring using control charts requires the greatest on-going expense. 
10.  c 
11.  c 
12.  b 
13. Acceptance sampling can be used when the sampling is destructive.  

Acceptance sampling results generally results in reduced inspection costs. 
14.  e 
15.  a 
16.  N = 1000, n1 = 100, n2 = 350, c1 = 3, c2 = 7, and r = 6. 
17.  450 
18.  100 
19.  Because the company is applying some form of sampling, perhaps control 

charting or acceptance sampling. Acceptance sampling could be in place to 
potentially make firing decisions for a company supplying services. 
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21.  Define project goals including the current process. Measure current relevant 
process and collect data. Analyze the data and verify cause-and-effect 
relationships. Determine areas for improvement. Design or optimize the 
process by the use of design of experiments, etc. Verify ensure everything is 
correct and new process setup has been tested. 

23.  This is single sampling with n = 15 and c = 0. 

Chapter 8 

1.  e 
2.  d 
3.  a 
4.  d 
5.  Monitoring the several major index funds simultaneously is possible.  

Monitoring the results customer satisfaction surveys for all questions 
simultaneously is possible. 

Chapter 9 

1.  d 
2.  b 
3.  c 
4.  I did in fact recommend performing design of experiments using even more 

factors. It seemed that they were lucky to find the source of the majority of the 
variation using only four factors. 

5.  e 
6.  d  
7.  c 
8.  c 
9.  c 
10.  b 
11.  d 
12.  c 
13.  Examples of criticisms are found in Chapter 9. 
14.  For the air wing project, one might propose a goal to increase the air flight 

time to 2.0 s. 
15.  See the example in Chapter 9. 

Chapter 10 

1.  d 
2.  e 
3.  a 
4.  0.0013 
5.   Triangular[a = $2.2M, b = $3.0M, c = $2.7M]  (others are possible) 
6.  0.4 
7.  a 
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8.  Yes 
9.  b 
10.  0.81 
11.  a 
12.  d 
13.  c 
14.  a 
15a. 0.94 
15b. 0.94 
16.  The following is from Excel: 
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Figure PS.5. 

17.  The following is from Excel: 
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Figure PS.6.   
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18.  The policy in problem 17 is always more likely to accept lots because the OC 
curve is always above the preceding OC curve. 

19.  The ideal OC curve would look like Figure PS.7. This follows because the 
policy would function like complete and perfect inspection but at potentially 
reduced cost. 

0

20

40

60

80

100

0 1 2 3 4 5 6

100 p 0

10
0 

p
A

desired cut off

 
Figure PS.7.   

Chapter 11 

1.  f 
2.  b 
3.  a 
4.  d 
5.  c 
6.  df = 4 using the rounding formula. 
7.  f 
8.  b 
9.  f 
10.  b 
11.  a 
12.  e 
13.  c 
14.  b 
15.  b 
16.  b 
17.  a 
18.  c 
19.  A paired t-test can test non-homogeneous products and needs no assumptions, 

this is done because you are comparing each product to itself in differenct 
circumstances.  
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21. The author assisted an observational study recently (with no randomization) 
and helped them to provide evidence (not proof) that software assistance 
significantly reduces the average number of errors in certain types of 
intelligence analyses. 

23.  The author has applied ANOVA on numerous occasions to provide evidence 
in regression analyses that model predictions can be trusted (see Chapter 15). 

25. ANOVA is a set of methods that include methods relevant to the following 
purpose. When there is a single factor varied over more than two levels or 
multiple factors, ANOVA often provides a standard way of evaluating whether 
the specific factors are associated with significant average response difference. 
It does this while permitting the user to specify the desired chance of making 
one or more Type I errors (wrongly finding significance). In Chapter 12, an 
alternative method to ANOVA called Lenth’s relevant to fractional factorial 
data analysis is presented. In this specific context, Lenth’s method probably 
offers a superior combination of Type I and Type II error rates to ANOVA 
and, potentially, ANOVA may be simply non-applicable since the degrees of 
freedom for the residuals might be zero. 

Chapter 12 

1.  g 
2.  b 
3.  c 
4.  a 
5.  d 
6.  c 
7.  a 
8.  d 
9.  a 
10.  d 
11.  b 
12.  b 
13.  d 
14.  f 
15.  c 
16.  e 
17.  See the examples in Chapter 18. 
18. Naming the factors A through E, E = AD. 
19.  b 
20.  e 
21.  c 



  Problem Solutions      557 

23.  D is the entire matrix below: 
 

The n = 16 run regular fractional factorial array 
 

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 
1 –1 1 1 –1 1 –1 1 1 –1 –1 –1 1 1 –1 –1 
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 –1 –1 1 –1 –1 1 1 1 –1 –1 –1 –1 1 
4 1 –1 1 1 –1 –1 –1 1 –1 –1 1 1 –1 –1 1 
5 –1 –1 –1 1 –1 –1 1 1 1 1 1 –1 1 –1 –1 
6 1 –1 –1 1 1 1 –1 –1 1 –1 –1 1 1 –1 –1 
7 1 1 –1 1 –1 –1 1 –1 –1 1 –1 1 –1 1 –1 
8 1 1 1 –1 –1 1 –1 –1 –1 1 1 –1 1 –1 –1 
9 1 –1 1 –1 1 –1 1 –1 1 –1 1 –1 –1 1 –1 

10 –1 –1 –1 –1 1 –1 –1 –1 –1 1 1 1 1 1 1 
11 –1 1 1 1 –1 –1 –1 –1 1 –1 –1 –1 1 1 1 
12 –1 –1 1 –1 –1 1 –1 1 1 1 –1 1 –1 1 –1 
13 1 –1 –1 –1 –1 1 1 1 –1 –1 –1 –1 1 1 1 
14 –1 1 –1 –1 –1 1 1 –1 1 –1 1 1 –1 –1 1 
15 –1 –1 1 1 1 1 1 –1 –1 1 –1 –1 –1 –1 1 
16 –1 1 –1 1 1 1 –1 1 –1 –1 1 –1 –1 1 –1 

 

Using X=(1|D) x is below 

  1 –1 1 1 –1 1 –1 1 1 –1 –1 –1 1 1 –1 –1  
  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
  1 1 1 –1 –1 1 –1 –1 1 1 1 –1 –1 –1 –1 1  
  1 1 –1 1 1 –1 –1 –1 1 –1 –1 1 1 –1 –1 1  
  1 –1 –1 –1 1 –1 –1 1 1 1 1 1 –1 1 –1 –1  
  1 1 –1 –1 1 1 1 –1 –1 1 –1 –1 1 1 –1 –1  
  1 1 1 –1 1 –1 –1 1 –1 –1 1 –1 1 –1 1 –1  

X =  1 1 1 1 –1 –1 1 –1 –1 –1 1 1 –1 1 –1 –1  
  1 1 –1 1 –1 1 –1 1 –1 1 –1 1 –1 –1 1 –1  
  1 –1 –1 –1 –1 1 –1 –1 –1 –1 1 1 1 1 1 1  
  1 –1 1 1 1 –1 –1 –1 –1 1 –1 –1 –1 1 1 1  
  1 –1 –1 1 –1 –1 1 –1 1 1 1 –1 1 –1 1 –1  
  1 1 –1 –1 –1 –1 1 1 1 –1 –1 –1 –1 1 1 1  
  1 –1 1 –1 –1 –1 1 1 –1 1 –1 1 1 –1 –1 1  
  1 –1 –1 1 1 1 1 1 –1 –1 1 –1 –1 –1 –1 1  
  1 –1 1 –1 1 1 1 –1 1 –1 –1 1 –1 –1 1 –1  

X’X= n x I there for this DOE is orthogonal and A is given below: 
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A = (X′X)–1X′ for the 16 run plan 

  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

  –1 1 1 1 –1 1 1 1 1 –1 –1 –1 1 –1 –1 –1  

  1 1 1 –1 –1 –1 1 1 –1 –1 1 –1 –1 1 –1 1  

  1 1 –1 1 –1 –1 –1 1 1 –1 1 1 –1 –1 1 –1  

  –1 1 –1 1 1 1 1 –1 –1 –1 1 –1 –1 –1 1 1  

  1 1 1 –1 –1 1 –1 –1 1 1 –1 –1 –1 –1 1 1  

  –1 1 –1 –1 –1 1 –1 1 –1 –1 –1 1 1 1 1 1  

A = 0.0625  1 1 –1 –1 1 –1 1 –1 1 –1 –1 –1 1 1 1 –1  

  1 1 1 1 1 –1 –1 –1 –1 –1 –1 1 1 –1 –1 1  

  –1 1 1 –1 1 1 –1 –1 1 –1 1 1 –1 1 –1 –1  

  –1 1 1 –1 1 –1 1 1 –1 1 –1 1 –1 –1 1 –1  

  –1 1 –1 1 1 –1 –1 1 1 1 –1 –1 –1 1 –1 1  

  1 1 –1 1 –1 1 1 –1 –1 1 –1 1 –1 1 –1 –1  

  1 1 –1 –1 1 1 –1 1 –1 1 1 –1 1 –1 –1 –1  

  –1 1 –1 –1 –1 –1 1 –1 1 1 1 1 1 –1 –1 1  

  –1 1 1 1 –1 –1 –1 –1 –1 1 1 –1 1 1 1 –1  

25. Type 1 error is finding significance when there is no true difference (a false 
positive). Type 2 error is failing to find significance when there is a true 
difference (a false negative). 

Chapter 13 

1.  c 
2.  a 
3.  b 
4.  a 
5.  e 
6.  a 
7.  The number of factors is three and the number of levels is three. 
8.  e 
9.  d 
10.  a 
11.  f 
12.  b 
13.  b 
14.  c 
15.  b 
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16.  c 
17.  e 
19.  Response surface methods generally generate more accurate prediction models 

than screening methods using fractional factorials, often resulting in 
recommended settings with more desirable engineered system average 
response values. 

21. Box Behnken designs (BBDs) were argued to generate relatively accurate 
predictions because they minimize so-called “bias” errors under certain 
reasonable assumptions. Central composite designs (CCDs) were argued to 
offer the advantage that they permit more flexibility in level adjustments. 
Also, CCDs can be used in two-step sequential response surface methods. In 
these methods, there is a chance that the experimenter will stop with relatively 
few runs and decide his/her prediction model is satisfactory.   

Chapter 14 

1.  b 
2.  f 
3.  a 
4.  RDPM is designed to elevate the bottleneck subsystem identified using a TOC 

approach. Dependencies are modeled and settings are chosen to maximize 
throughput subject to appropriate fractions of non-conforming units. 

5.  c 
6.  c 
7.  a 
8.  d 
9.    σ1

2(5x1+2x2+2)2 + σ2
2(2x1+8x2–1)2 

10.  (i) Derives the settings that directly maximize the profits and not an obscure 
measure of quality. (ii) Build upon standard RSM which is taught in many 
universities and might result in improved recommendations. 

11. (i) Generally, Taguchi Methods are easier for practitioners to use and 
understand without the benefit of software. (ii) If all noise factors or all control 
factors are ETC, the cost of experimentation might be far less using Taguchi 
product arrays compared with standard RSM based experimentation. 

12.  See Allen et al. (2001). 

Chapter 15 

1.  c 
2.  a 
3.  c 
4.  a 
5.  e 
6.  a 
7.  b 
8.  f 
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9.  a 
10.  b 
11.  a. yest(x1, x2) = 0.443 + 0.0361 x1 + 0.00151 x2 

b. yest(x1, x2) = 0.643 + 0.0352 x1 + 0.000564 x2 – 0.000231 x1² + 8.11066e-007 
x2² + 1.12021e-005 x1x2 
c. 0.778 
d. 1.3 
e. 0.678 
f. 4.15 

12.  f 
13. It seems likely that genre plays an important role in movie profitability.  

However, it is not clear that all of the levels and contrasts are needed to 
quantify that effect. Therefore, the analysis here focuses only on the action 
contrast. Starting with scaled inputs and a first order fit model, the following 
table can be derived. It indicates that stars likely play a far greater role in non-
action movie profits than they do in action movie profits. Considering the 
potentially canceling effects of video sales and marketing costs, it seems 
reasonable that fifth week revenues roughly correspond to profits. Then, stars 
are worth roughly $8M a piece on average, and that value depends greatly on 
the type of movie. Note that this analysis effectively assumes that critic rating 
is controllable through the hiring of additional writing talent.   

Scaled factor Coefficients Standard error t Stat p-value VIF 

Constant 109,691,377 19,447,351 5.64 0.000 - 

Action (0 to 1 → –1 to 1) 23,853,177 18,149,094 1.31 0.207 2.05 

#Stars (0 to 2 → –1 to 1) 8,539,237 24,084,687 0.35 0.728 1.28 

Sequel (0 to 1 → –1 to 1) 25,435,916 17,204,916 1.48 0.159 1.57 

CritNo. (68 to 92→ –1 to 1) 65,602,653 28,438,046 2.31 0.035 1.43 

Action×#Stars –29,689,954 24,026,140 –1.24 0.234 1.45 

Action×Sequel –16,057,519 15,687,510 –1.02 0.321 1.30 

 
(Note also that leaving stars out of the model might make sense but it would 
result in no help for setting their pay.) 

14. Many possible models can be considered. However, models including 
interactions between the city and the numbers of bedrooms and baths do not 
make physical sense. After exploring models derived in coded –1 and 1 units, 
the following model was fitted in the original units: 

 
yest = Offering Price (in $) =  –103678 – 83766.2 × City_Columbus + 214823 
× #Bedrooms – 2671.63 × #Baths – 48753.9 × #Bedrooms² – 30911.9 × 
#Baths² + 58820.9 × #Bedrooms × #Baths 
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This model can be used to develop reasonable prices in line with other offering 
prices in the market. This model gives an acceptable normal probability plot of 
residuals shown in Figure PS.8, seems decent from the VIF and PRESS 
standpoints, and makes intuitive sense. 
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Figure PS.8.  Residual plot for a specific offering price regression model 

Chapter 16 

1.  a 
2.  f 
3.  c 
4.  f 
5.  a 
6.  e 

Chapter 17 

1.  b 
2.  f 
3.  e 
4.  c 
5.  f 
6.  d 
7.  b 
8.  See the first example in Section 13.4. 

Chapter 18 

1.  f 
2.  a 
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3.  d 
4.  b 
5.  b 
6.  b 
7.  a 
8.  e 
9.  c 
10.  d 
11.  a 
12.  1.7 

Chapter 19 

1.   c 
2.   b 
3.   e 
4.   c 
5.   d 
6.   a 
7.   c 
8.   a 
9.   /* This change de-codes the chromosome to address the new constraint. */ 
 for (j=0;j<SIZE;j++) vect[j]=2.0 +(x->vector[j])*3.0; 

Chapter 20 

1.  e 
2.  a 
3.  The solutions is unchanged.  The selected system is the most expensive. 

Chapter 21 

1.  d 
2.  e 
3.  a 
4.  d 
5.  e 
6.  c 

Chapter 22 

1.  d 
2.  c 
3.  a 
4.  d 
5.  // ** translate solution vector to method design 
c1crit = x->vector[0]*NLITTLE; 
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rcrit = c1crit + x->vector[1]*(NLITTLE-c1crit); 
c2crit = x->vector[2]*NLITTLE; 
Ntotal = (long) ((NBIG - MINRUNS) * (x->vector[3])) + MINRUNS; 
n1 = (long) ((Ntotal) * (x->vector[4])); 
n2 = Ntotal - n1; 
 
// ** generate truth 
temp = ranS(&seed); difference = 0.0; 
if(temp < trueProb) {difference = diffParm;} 
else {difference = 0.0;} 
 
// ** generate data 
for(i=0;i<n1;i++) //first round 
{  y11i[i]=gasdev(&seed); 
    y12i[i]=gasdev(&seed)+difference; } 
for(i=i;i<Ntotal;i++)  //second round (might be wasted) 
{  y21i[i]=gasdev(&seed); 
    y22i[i]=gasdev(&seed)+difference; } 
 
// ** do test 
for(i=0;i<n1;i++) 
{ y11avg+=y11i[i];  y12avg+=y12i[i]; } 
  y11avg=y11avg/((double) n1);  y12avg=y12avg/((double) n1); 
for(i=i;i<Ntotal;i++) 
{ y21avg+=y21i[i];  y22avg+=y22i[i]; } 
  y21avg=y21avg/((double) n2);  y22avg=y22avg/((double) n2); 
if(y12avg - y11avg < c1crit) 
{declareD = 0; nUsed=((double)n1);} //1st stage says no diff 
else {if(y12avg - y11avg > rcrit)  
 {declareD = 1; nUsed=((double)n1);} //1st stage says diff 
 else { nUsed=((double)Ntotal); 
temp = (y12avg-y11avg)*((double)n1)–(y22avg-y21avg)*((double)n2);  
    if(temp > c1crit * ((double)Ntotal) && n2 > 0) 
  {declareD = 1;} else {declareD = 0;} 
 } //finish 2nd stage  
} //finish testing 
 
// ** evaluate results 
if((difference>0.00000001) && (declareD < 1)) {errorP = 1.0;} 
if((difference<0.00000001) && (declareD > 0)) {errorP = 1.0;} 
return nUsed + weight*errorP; 
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