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Preface

This volume contains the proceedings of the 7th International Conference on Opti-
mization Problems and Their Applications (OPTA 2018), held in Omsk, Russia, July
8–14, 2018. The conference was organized by the Russian Operational Research
Society, Sobolev Institute of Mathematics, Krasovsky Institute of Mathematics and
Mechanics, Novosibirsk State University, Dostoevsky Omsk State University, the
Higher School of Economics in Nizhny Novgorod, and several other institutions. This
year, the conference started in the city of Omsk and continued countryside in a pic-
turesque place Chernoluchye, located in a pine forest in the vicinity of Omsk. Con-
currently with the OPTA 2018 conference, an eponymous school seminar, OPTA-SCL
2018, was held, where invited speakers gave plenary lectures on the subjects of their
individual expertise.

The previous conferences of this series, named “Optimization Problems and Eco-
nomical Applications,” were organized in 1997, 2003, 2006, 2009, 2012, and 2015 and
chaired by Professor Alexander Kolokolov. OPTA 2018 was devoted to the memory of
Alexander Kolokolov, who passed away in 2017.

The OPTA conference belongs to a group of international conferences on opti-
mization and operations research in the Siberian and Ural areas of Russia, covering a
wide range of topics in operations research, mathematical programming, discrete
optimization, and their applications. This group also involves the International Con-
ference on Discrete Optimization and Operations Research (DOOR), Baikal Interna-
tional Triennial School Seminar Methods of Optimization and Their Applications
(BITSS), and the conference Mathematical Programming and Applications (MPA). The
main purpose of these events is to provide a forum where researchers can exchange
ideas, identify promising directions for theoretical studies and application domains, and
foster new collaborations.

In response to the call for papers, we received 73 submissions. The papers included
in this volume were carefully selected by the Program Committee on the basis of
reports from two or more reviewers. Only 27 submissions were selected for inclusion in
this volume. The abstracts of invited talks made by eminent speakers are also included
here. We thank the Program Committee members and the external reviewers for their
helpful remarks and fair evaluation of the submissions. We also thank the Organizing
Committee members for their input.

Finally, we thank our sponsors, the Russian Foundation for Basic Research, the
Novosibirsk State University, the Laboratory of Algorithms and Technologies for
Networks Analysis (LATNA), the Higher School of Economics in Nizhny Novgorod,
and Dostoevsky Omsk State University for their support.

April 2018 Anton Eremeev
Michael Khachay
Yury Kochetov
Panos Pardalos
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Combinatorial Techniques to Optimally
Customize Machining/Assembly Lines

Alexandre Dolgui

Ecole des Mines de Nantes, Nantes, France
alexandre.dolgui@imt-atlantique.fr

Keywords: Machining lines � Assembly lines � Line design � Line balancing
Combinatorial optimization � MIP � Graph theory � Metaheuristics � Heuristics

Problems of combinatorial design of complex machining/assembly lines are consid-
ered. Operations are partitioned into groups which are performed either by a team of
workers for manually lines or by a piece of equipment for automated lines (for example
by a multi-spindge head). Constraints related to the design of worker teams or spindle
heads, working position and line configurations, as well as precedence constraints
related to operations, are given. Such problems consist in minimizing the estimated cost
of the corresponding machining/assembly line, while reaching a given cycle time and
satisfying all constraints. A decision support system is developed. Several optimisation
methods were implemented: MIP formulation, a constrained shortest path approach,
Branch and Bound techniques, metaheurstics and heuristics. The developed
decision-aid software tool is presented. Industrial examples are reported for different
types of lines.



PQSQ Potentials and Tropic Methods
in Machine Learning

Alexander Gorban

University of Leicester, Leicester, UK
ag153@le.ac.uk

Keywords: Machine learning � Theory of PQSQ potentials

We develop a new machine learning framework (theory and application) allowing one
to deal with arbitrary error potentials of not-faster than quadratic growth, imitated by
piece-wise quadratic function of subquadratic growth (PQSQ error potential). This
universal framework is able to deal with a large family of error potentials. We exploit
the fact that finding a minimum of a piece-wise quadratic function, or, in other words, a
function which is the minorant of a set of quadratic functionals, can be almost as
computationally efficient as optimizing the standard quadratic potential. The theory of
PQSQ potentials uses min,+ algebras and can be considered as a part of tropical
mathematics.



New Approaches for Multiprocessor
Scheduling Problem with Incomplete

Information

Vladimir Kotov

Belarusian State University, Minsk, Belarus
kotovvm@yandex.by

Keywords: Combinatorial optimization � Multiprocessor scheduling

Combinatorial optimization problems come with various paradigms on how an instance
is revealed to a solving algorithm. The very common offline paradigm assumes that the
entire instance is known in advance. On the opposite end, one can deal with the pure
online scheme, where the instance is revealed part by part, unpredictable to the algo-
rithm, and no further knowledge on these parts is assumed. In between these two
extremes, and also highly relevant for many practical applications, are semi-online
paradigms, where at least some characteristics of the instance in general are assumed to
be known, for example, the total instance size or distributions of some internal values.
The well-known classical multiprocessor scheduling problem is a fundamental and
well-investigated scheduling problem both in the offline and the online setting. A set of
n independent jobs is to be processed on m parallel machines in order to minimize the
makespan. We present some approaches such as bunch techniques, a dynamic discrete
lower bound and other priority rules. These approaches allow to design online and semi
online algorithms with the best known worst-case performances.



Optimization, Modeling, and Data Sciences
for Sustainable Energy Systems

Panos Pardalos

University of Florida, USA
pardalos@ufl.edu

Keywords: Energy systems � Optimization

For decades, power systems have been playing an important role in humanity. Indus-
trialization has made energy consumption an inevitable part of daily life. Due to our
dependence on fuel sources and our large demand for energy, power systems have
become interdependent networks rather than remaining independent energy producers.
This talk will focus on the problems arising in energy systems as well as recent advances
in optimization, modeling, and data sciences techniques to address these problems.
Among the topics to be discussed are emission constrained hydrothermal scheduling,
electricity and gas networks expansion, as well as reliability analysis of power grid.

References
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On Minimizing Supermodular Functions
on Hereditary Systems

Victor Il’ev1,2(B) and Svetlana Il’eva2

1 Omsk State Technical University, Omsk, Russia
iljev@mail.ru

2 Dostoevsky Omsk State University, Omsk, Russia
iljeva@mail.ru

Abstract. The problem of minimizing a supermodular set function is
considered. A special case of this problem is the well-known NP-hard
minimization p-median problem. The main results of the paper are tight
a priori and a posteriori bounds on worst-case behaviour of a “reverse”
greedy (steepest descent) algorithm of minimizing a supermodular set
function on comatroid. As a corollary, approximation guarantees of this
algorithm for the general minimization p-median problem improving the
known bounds are obtained.

Keywords: Supermodular function · Hereditary system · Comatroid
Greedy algorithm · Approximation guarantee

1 Introduction

Let I be a finite set, 2I be a Boolean lattice of all subsets of I. A set function
f : 2I → IR+ is called supermodular, if for all X,Y ⊆ I

f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y )

and submodular if the inverse inequality holds. If for all X,Y ⊆ I the inequality
is satisfied with equality, then the set function f is said to be modular. Note
that a nondecreasing set function f with f(∅) = 0 is modular if and only if it is
additive.

A hereditary system H on I can be defined as a Boolean lattice 2I with a
distinguished family A ⊆ 2I that satisfies the following heredity axiom:

(A ∈ A, A′ ⊆ A) ⇒ A′ ∈ A.

Sometimes it is said that the family A is an independence system or a hereditary
family [7]. The sets of the family A are called independent, all the other sets of
the lattice 2I are called dependent sets of the hereditary system H.

Note that the family D = 2I \ A of all dependent sets satisfies the following
“heredity up” axiom:

(D ∈ D, D ⊆ D′) ⇒ D′ ∈ D.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-93800-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93800-4_1&domain=pdf
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Clearly, the families A and D = 2I \A determine each other uniquely, there-
fore these families can be viewed as different sides of the hereditary system H. We
shall write H = (I,A) or H = (I,D) depending on which side of the hereditary
system H is of our interest.

Bases of a hereditary system H are maximal (under inclusion) independent
sets and circuits of H are minimal dependent sets. The families of all bases and
all circuits of H are denoted by B and C, respectively. A base of a set X ⊆ I
is a maximal independent set contained in X, a circuit of a set X is a minimal
dependent set containing X.

Matroids and comatroids are the important special cases of hereditary sys-
tems. These objects can be defined as follows.

A hereditary system H = (I,A) is called a matroid if all bases of every set
X ⊆ I have the same cardinality. The cardinality r of any base of I is called the
rank of a matroid. As an example, we consider the p-uniform matroid (I,Ap),
where Ap = {A ⊆ I : |A| ≤ p}, p < |I|.

Given a hereditary system H = (I,A), we define the complementary system
or the cosystem H = (I,D) by D = {I \ A : A ∈ A}. Obviously, A = {I \ D :
D ∈ D}.

The hereditary system complementary to a matroid is said to be a comatroid.
It is easy to see that a hereditary system is a comatroid if and only if all circuits
of every set X ⊆ I have the same cardinality. The cardinality p of any circuit
of ∅ is called the girth of the comatroid. The comatroid (I,Dp) complementary
to the (n − p)-uniform matroid on I is called the p-uniform comatroid. Clearly,
Dp = {D ⊆ I : |D| ≥ p}.

Problems of minimizing supermodular functions on hereditary systems and
lattices arise in different areas of discrete optimization, and the study of these
problems has more than fifty-year history. Among first works in this direction
we can mark the paper [4], where the problem of minimizing a supermodular
function on a Boolean lattice was considered.

Many important problems such as the well-known minimization p-median
problem [20] and some variants of the half-product problem [17] are the special
cases of the problem of minimizing a supermodular function. The known graph
correlation clustering problem [12] closely connected with studying systems of
equations over graphs [14] can be reduced to this problem.

In the past decades, a great amount of optimization problems with concrete
types of supermodular functions were studied and a lot of theoretical results
were obtained. For example, in [18], a description of the problems of minimiz-
ing supermodular functions on the different types of lattices is contained and
the previously obtained theoretical results, on the basis of which the problems
of minimizing supermodular functions on these lattices have been solved, are
shown. This allows the authors to consider the methods for solving the problems
of minimizing supermodular functions as a new field of mathematical program-
ming – supermodular programming [18].
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Our aim is to solve the following combinatorial optimization problem approx-
imately:

min {f(X) : X ∈ C}, (1)

where C is the family of all circuits of a comatroid on I of girth p, p < n = |I|,
and f : 2I → IR+ is a nonincreasing supermodular function, f(I) = 0.

Problem (1) is NP-hard because it contains the well-known NP-hard mini-
mization p-median problem as a special case [16]. The mathematical model of
the minimization p-median problem can be formulated as follows:

min {f(X) : X ⊆ I, |X| = p} , (2)

where
f(X) =

∑

j∈J

min
i∈X

aij , (3)

A = (aij) is a nonnegative matrix with the row index set I and the column index
set J . The problem is called metric if I = J , the matrix A is symmetric, and
the assignment costs aij satisfy the triangle inequality: aij + ajk ≥ aik for all
i, j, k ∈ I. Note that the set function (3) is nonincreasing. One can see that after
the extension

f(∅) = max
X,Y ⊆I,
X∩Y=∅

{f(X) + f(Y ) − f(X ∪ Y )} (4)

f becomes supermodular. Therefore the p-median problem can be viewed as
problem (1) on the p-uniform comatroid.

We consider a “reverse” variant of the greedy heuristic, a discrete analogue
of the steepest descent algorithm, to solve problem (1) of minimizing a super-
modular function on a comatroid approximately. Approximation guarantees of
the greedy reverse algorithm for problem (1) are obtained. This result improves
and supplements the bounds obtained in [8,10,11]. A new technique presented
in this paper makes it possible to get also a posteriori bounds. As a corollary we
obtain bounds on the worst-case behaviour of the greedy reverse algorithm for
the general minimization p-median problem, i.e., the problem which may not be
metric, improving the results obtained in [13].

In Sect. 2, we describe the greedy reverse algorithm GR and cite known
results. In Sect. 3, we show that Algorithm GR always finds a solution with
the value at most 1 + s times the optimal value, where s is a curvature of a
nonincreasing supermodular function f , a parameter which describes the rate of
decrease of f . Section 4 contains a posteriori bounds on the worst-case behaviour
of the algorithm. Finally, in Sect. 5, we apply our results to the general mini-
mization p-median problem.

2 Known Results

The following maximization analogue of problem (1) was studied in the litera-
ture:

max {f(X) : X ∈ B}, (5)



6 V. Il’ev and S. Il’eva

where B is the family of all bases of a matroid on I of rank p, p < n = |I|,
f : 2I → IR+ is a nondecreasing submodular function, f(∅) = 0.

Problem (5) is NP-hard since it contains the well-known NP-hard maximiza-
tion p-median problem as a special case.

The following simple algorithm, a discrete analogue of the steepest ascent
algorithm, is usually applied to solve problem (5) approximately.

Algorithm GA (greedy algorithm)
Step 0: Set X0 = ∅. Go to step 1.
Step i (i ≥ 1): Select xi /∈ Xi−1 such that

f(Xi−1 ∪ {xi}) = max
x/∈Xi−1,

Xi−1∪{x}∈A

f(Xi−1 ∪ {x}).

Set Xi = Xi−1∪{xi}. If i < p, then go to step i+1, else stop. Return SGA = Xp.
End.

It is easy to see that Algorithm GA always finds a base of the matroid, i.e.,
SGA is a feasible solution to problem (5).

In [6], the lower bound on the approximation guarantee of Algorithm GA for
the maximization p-median problem was obtained:

f(SGA)
f(SO)

≥ 1 −
(
p − 1
p

)p

≥ e − 1
e

≈ 0, 63,

where SO is an optimal solution and SGA is the solution retrieved by Algorithm
GA.

In [21], this result was extended to the problem

max{f(X) : X ⊆ I, |X| = p}, (6)

where f : 2I → IR+ is a nondecreasing submodular function, f(∅) = 0.
In [5], the bound for problem (6) was refined by using the additional infor-

mation on the objective function:

f(SGA)
f(SO)

≥ 1
c

(
1 −

(
p − c

p

)p)
, (7)

where c is the curvature of f , a parameter describing the rate of growth of a
nondecreasing submodular function. It is defined as

c = max
x∈I,

f({x})>f(∅)

(f({x}) − f(∅)) − (f(I) − f(I \ {x}))
f({x}) − f(∅)

.

Obviously, c ∈ [0, 1] and c = 0 if and only if f is modular.
In [5], the authors also derived bound (7) for problem (5) and proved a

simpler bound:
f(SGA)
f(SO)

≥ 1
1 + c

≥ 1
2
. (8)
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Unfortunately, the situation is dramatically different in the case of mini-
mizing a supermodular function. Constant-factor polynomial time approxima-
tion algorithms were given only for the metric minimization p-median prob-
lem [1–3,15,19]. Moreover, it was shown in [20] that existence of a constant-
factor approximation polynomial time algorithm for the general minimization
p-median problem implies P = NP . Note that a constant can be replaced here
by any increasing function of n. Clearly, the same statement remains true for
problem (1).

We consider the following “reverse” version of the greedy heuristic, a discrete
analogue of the steepest descent algorithm, to solve problem (1) approximately.

Algorithm GR (greedy reverse)
Step 0: Set X0 = I. Go to step 1.
Step i (i ≥ 1): Select xi ∈ Xi−1 such that

f(Xi−1 \ {xi}) = min
x∈Xi−1,

Xi−1\{x}∈D

f(Xi−1 \ {x}).

Set Xi = Xi−1 \ {xi}. If i < n − p, then go to step i + 1, else stop. Return
SGR = Xn−p.
End.

It is easy to see that Algorithm GR always finds a circuit of the comatroid,
i.e., SGR is a feasible solution to problem (1).

Note that Algorithm GR can yield an arbitrary bad solution to problem (1)
even on the p-uniform comatroid. However an additional information on the
objective function makes it possible to get approximation guarantees of Algo-
rithm GR.

Consider the curvature of a nonincreasing supermodular function f :

c = max
x∈I,

f({x})<f(∅)

(f(∅) − f({x})) − (f(I \ {x}) − f(I))
f(∅) − f({x})

. (9)

For set functions of curvature c < 1 we define the characteristic s = c/(1 − c),
wich we also will call the curvature. Both parameters c and s characterize the
rate of decrease of a nonincreasing supermodular function. Note that c ∈ [0, 1],
s ∈ [0,+∞), and c = s = 0 if and only if f is modular.

In [8], the following special case of problem (1) with an arbitrary supermod-
ular objective function f : 2I → IR+ was considered:

min{f(X) : X ⊆ I, |X| = p} (10)

and the upper bound on the worst-case behaviour of Algorithm GR for problem
(10) was obtained:

f(SGR)
f(SO)

≤ 1
s

((
q + s

q

)q

− 1
)
, (11)

where SO is an optimal solution to problem (10), SGR is the solution returned by
Algorithm GR, and q = n − p. In [11], this result was extended to problem (1).
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For objective functions with curvature s < 1 a simpler bound was obtained [10]:

f(SGR)
f(SO)

≤ 1
1 − s

. (12)

The main goal of this work is to obtain new approximation guarantees of
Algorithm GR to problems (1) and (2), which improve and supplement bounds
(11) and (12).

3 Approximation Guarantees of Algorithm GR

Now let us turn back to problem (1).
For X ⊆ I and x ∈ X, we set dx(X) = f(X \ {x}) − f(X) ≥ 0. Evidently,

the curvature (9) can now be rewritten as

c = max
x∈I,

dx({x})>0

dx({x}) − dx(I)
dx({x})

.

Let us also introduce the following notation:

Y = I \ {y1, . . . , yk}, Y = I \ Y = {y1, . . . , yk} (k ∈ {1, . . . , n}),
Y0 = I, Yi = I \ {y1, . . . , yi} (i = 1, . . . , k).

In [8], the following properties of nonincreasing supermodular functions were
proved.

Proposition 1. f(Y ) =
∑

yi∈Y

dyi
(Yi−1).

Proposition 2. dx(X) ≥ dx(Y ) for all X,Y , X ⊆ Y ⊆ I, and for every x ∈ X.

In [9], an equivalent definition of a comatroid was given.

Proposition 3. A hereditary system H = (I,D) is a comatroid if and only if
the family D of its dependent sets satisfies the following axiom:

(D,D′ ∈ D, |D| = |D′| + 1) ⇒ ∃x ∈ D \ D′ : D \ {x} ∈ D.

Algorithm GR consecutively finds the sets X0 = I,X1, . . . , Xq = SGR, where
q = n − p, Xi = Xi−1 \ {xi} = I \ {x1, . . . , xi}, and xi ∈ Xi−1 is the element
chosen at step i such that

dxi
(Xi−1) = min

x∈Xi−1,
Xi−1\{x}∈D

dx(Xi−1) (i = 1, . . . , q). (13)

Lemma 1. For any circuit C ∈ C of a comatroid H = (I,D) the elements of
the set C = I \ C = {c1, . . . , cq} can be ordered so that dci(Xi−1) ≥ dxi

(Xi−1),
i = 1, . . . , q. Furthermore, if ci ∈ C ∩ SGR = {c1, . . . , cq} ∩ {x1, . . . , xq}, then
ci = xi.
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Proof. Assume that the elements cq, cq−1 . . . , ci+1 are already found. If xi /∈ Ci =
C ∪ {cq, cq−1, . . . , ci+1}, then we set ci = xi. If xi ∈ Ci, then, by Proposition 3,
there exists x ∈ Xi−1 \Ci such that Xi−1 \ {x} ∈ D, and we set ci = x. Since xi

is the element chosen by Algorithm GR, it follows from (13) that dci(Xi−1) ≥
dxi

(Xi−1). The lemma is proved. ��
Lemma 2. (1 − c)dx(X) ≤ dx(I) for all X ⊆ I and for any x ∈ X.

Proof. It follows from the definition of curvature that

c ≥ dx({x}) − dx(I)
dx({x})

for every x ∈ I such that dx({x}) > 0. Hence cdx({x}) ≥ dx({x}) − dx(I),
i.e., (1 − c)dx({x}) ≤ dx(I). If dx({x}) = 0, then the last inequality evidently
holds. By Proposition 2, dx(X) ≤ dx({x}). Thus we obtain (1 − c)dx(X) ≤
(1 − c)dx({x}) ≤ dx(I). The lemma is proved. ��
Theorem 1. The following bound on the worst-case behaviour of Algorithm GR
holds:

(1 − c)f(SGR) ≤ f(SO), (14)

where SO is an optimal solution to problem (1) and SGR is the solution returned
by Algorithm GR.

Proof. Let SO = {c1, . . . , cq}, where the elements ci are ordered according to
Lemma 1, and let Ci = I \ {c1, . . . , ci}, i = 1, . . . , q. By Proposition 1, f(SO) =∑

ci∈SO

dci(Ci−1). It follows from Proposition 2 that dci(Ci−1) ≥ dci(I), i = 1, ..., q.

Thus,
f(SO) =

∑

ci∈SO

dci(Ci−1) ≥
∑

ci∈SO

dci(I). (15)

Using Proposition 1, we obtain

f(SGR) =
∑

xi∈SGR

dxi
(Xi−1) =

∑

xi∈SGR∩SO

dxi
(Xi−1) +

∑

xi∈SGR\SO

dxi
(Xi−1).

By Lemma 1, for i = 1, . . . , q, dxi
(Xi−1) ≤ dci(Xi−1) whence,

f(SGR) ≤
∑

xi∈SGR∩SO

dxi
(Xi−1) +

∑

ci∈SO\SGR

dci(Xi−1). (16)

By Lemma 2, for x = xi and X = Xi−1, we have (1 − c)dxi
(Xi−1) ≤ dxi

(I),
i = 1, . . . , q. Hence,

(1 − c)
∑

xi∈SGR∩SO

dxi
(Xi−1) ≤

∑

xi∈SGR∩SO

dxi
(I) =

∑

ci∈SGR∩SO

dci(I) (17)

(the last equality follows from Lemma 1).
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Further, note that SO \SGR = SGR \SO, therefore for any ci ∈ SO \SGR we
have ci ∈ SGR \ SO ⊆ SGR = Xq ⊆ Xi−1, i = 1, . . . , q. By Lemma 2, for x = ci
and X = Xi−1, we obtain (1 − c)dci(Xi−1) ≤ dci(I). Thus,

(1 − c)
∑

ci∈SO\SGR

dci(Xi−1) ≤
∑

ci∈SO\SGR

dci(I). (18)

Combining (16), (17) and (18), we get

(1 − c)f(SGR) ≤
∑

ci∈SGR∩SO

dci(I) +
∑

ci∈SO\SGR

dci(I) =
∑

ci∈SO

dci(I).

Finally, taking into account (15), we obtain bound (14):

(1 − c)f(SGR) ≤
∑

ci∈SO

dci(I) ≤ f(SO).

This completes the proof of Theorem 1. ��
To obtain a bound on the performance guarantee of Algorithm GR in terms

of the curvature s = c/(1 − c), we assume below that c < 1.

Theorem 2. For any nondecreasing supermodular objective function of problem
(1) with the curvature c ∈ [0, 1), it holds that

f(SGR) ≤ (1 + s)f(SO), (19)

where SO is an optimal solution to problem (1) and SGR is the feasible solution
found by Algorithm GR.

Proof. Taking into account the condition c ∈ [0, 1), inequality (14) can be rewrit-
ten in the form

f(SGR) ≤ f(SO)
1 − c

. (20)

Recall, that s = c/(1 − c); therefore c = s/(1 + s). Substitute s/(1 + s) for c in
(20) to obtain (19). This completes the proof of Theorem 2. ��
Remark 1. Bounds (14) and (19) are tight. For example, if the objective function
of problem (1) is modular, then c = s = 0, and inequalities (14) and (19) hold
with equalities.

To compare bounds (14) and (19) with bounds (11) and (12) we assume that
f(SO) �= 0. In the case f(SO) = 0, we have, due to (19), f(SGR) = 0, i.e., the
algorithm GR finds an optimal solution. If f(SO) �= 0, then bounds (14) and
(19) can be written as

f(SGR)
f(SO)

≤ 1
1 − c

. (21)

f(SGR)
f(SO)

≤ 1 + s . (22)
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Remark 2. Bounds (21) and (22) are stronger than bound (12).
Indeed, for s < 1, we have 1

1−c = 1 + s ≤ 1
1−s .

Now, we compare bound (22) with bound (11). The right-hand side of
inequality (11) is the polynomial of degree q− 1 of the variable s with a positive

leading coefficient. Hence 1
s

((
q+s
q

)q

− 1
)
< 1 + s only for small values of q or

small values of s. More precisely,

Remark 3. Bound (11) is better than bound (22) when at least one of the fol-
lowing conditions holds: (1) q ∈ {1, 2} and s > 0; (2) s ∈ (0; 1, 79].

However in most cases 1 + s < 1
s

((
q+s
q

)q

− 1
)
:

Remark 4. For q ≥ 3, there exists sq such that, for any s > sq, bound (22) is
better than bound (11).

The values of the parameter sq for some q are presented in Table 1.

Table 1. The values of the parameter sq.

q 3 4 5 6 . . . 9 . . . 40 . . . 100 . . .

sq 18 6.97 4.78 3.88 . . . 2.89 . . . 1.98 . . . 1.87 . . .

4 A Posteriori Bounds

Theorems 1 and 2 give a priori bounds on the quality of the solution to problem
(1) returned by Algorithm GR. Now we obtain a posteriori bounds.

Let us introduce the parameter (greedy curvature)

c = max
x∈I,

dx(SGR∪{x})>0

dx(SGR ∪ {x}) − dx(I)
dx(SGR ∪ {x})

.

Clearly, c ∈ [0, 1] and c ≤ c. Arguing as earlier, we shall assume that c < 1 and
define s = c/(1 − c). Note that s ≤ s.

The following lemma is analogous to Lemma 2.

Lemma 3. (1− c)dx(X) ≤ dx(I) for all X ⊆ I such that SGR ⊆ X and for any
x ∈ X.

Proof. It follows from the definition of c that for every x ∈ I such that dx(SGR∪
{x}) > 0

c ≥ dx(SGR ∪ {x}) − dx(I)
dx(SGR ∪ {x})

.

Hence cdx(SGR∪{x}) ≥ dx(SGR∪{x})−dx(I), i.e., (1−c)dx(SGR∪{x}) ≤ dx(I).
If dx(SGR ∪ {x}) = 0, then the last inequality evidently holds.

Since SGR ⊆ X and x ∈ X, we have SGR ∪ {x} ⊆ X. By Proposition 2,
dx(X) ≤ dx(SGR ∪{x}). Thus we obtain (1− c)dx(X) ≤ (1− c)dx(SGR ∪{x}) ≤
dx(I). The lemma is proved. ��
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Theorem 3. The following bound on the worst-case behaviour of Algorithm GR
holds:

(1 − c)f(SGR) ≤ f(SO), (23)

where SO is an optimal solution to problem (1) and SGR is the solution returned
by Algorithm GR.

As a corollary of Theorem 3 we obtain

Theorem 4. For any nondecreasing objective function of problem (1) with the
greedy curvature c ∈ [0, 1), it holds that

f(SGR) ≤ (1 + s)f(SO), (24)

where SO is an optimal solution to problem (1) and SGR is the feasible solution
found by Algorithm GR.

Proofs of Theorems 3 and 4 are similar to ones of Theorems 1 and 2, but we
use Lemma 3 and inequality (23) instead of Lemma 2 and inequality (14).

Remark 5. Bounds (23) and (24) are tight. In particular, (24) is satisfied with
equality for modular objective functions, since in this case s = s = 0. But s can
be equal to 0 even when f is not modular, as the following example demonstrates.

Example 1. Consider the minimization p-median problem with the matrix

A =

⎛

⎜⎜⎝

0 2 1 1
2 0 1 1
2 2 0 2
2 2 2 0

⎞

⎟⎟⎠.

Here, I = J = {1, 2, 3, 4}, p = 2. Define the set function f according to (3):
f({1}) = 4, f({2}) = 4, f({3}) = 6, f({4}) = 6,
f({1, 2}) = 2, f({1, 3}) = 3, f({1, 4}) = 3, f({2, 3}) = 3, f({2, 4}) = 3,
f({3, 4}) = 4,
f({1, 2, 3}) = 1, f({1, 2, 4}) = 1, f({1, 3, 4}) = 2, f({2, 3, 4}) = 2,
f({1, 2, 3, 4}) = f(I) = 0,
and set f(∅) = 7 to make f supermodular.

We see that SGR = SO = {1, 2} and s = 0 whereas s = 1
2 > 0.

5 Application to the General p-median Problem

Consider the minimization p-median problem (2), where the objective function
f is defined by (3) and (4):

f(X) =
∑

j∈J

min
i∈X

aij , f(∅) = max
X,Y ⊆I,
X∩Y=∅

{f(X) + f(Y ) − f(X ∪ Y )}.

Note that f is nonincreasing supermodular function.
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We suppose without loss of generality that for any j ∈ J there exists i ∈ I
such that aij = 0. Otherwise subtract min

i∈I
aij from all elements of every column

j ∈ J . Thus we have f(I) = 0.
In [13], we proved bound (19) on the worst-case behaviour of Algorithm GR

for problem (2) and showed that the curvature s can be calculated as follows:

s = max
i∈I

f(∅) − ∑
j∈J

aij

∑
j∈J

min
k 	=i

akj
− 1, (25)

f(∅) = max
i,k∈I

∑

j∈J

max {aij , akj}. (26)

Notice that equalities (25) and (26) provide an efficient method of calculating
the curvature s of the objective function of the minimization p-median problem
(2) in terms of assignment costs.

Now, as a corollary of Theorem 4 we obtain the following bound.

Theorem 5. The following bound on the worst-case behaviour of Algorithm GR
holds:

f(SGR) ≤ (1 + s)f(SO), (27)

where SO is an optimal solution to problem (2), SGR is the solution returned by
Algorithm GR, and

s ≤ max
i∈I

f(∅) − ∑
j∈J

aij

∑
j∈J

min
k 	=i

akj
− 1.

Remark 6. Note that s ≤ s. Moreover, bound (27) can be essentially better than
a priori bound (19) as the following example shows.

Example 2. Consider the minimization p-median problem (2) with the matrix

A =

⎛

⎜⎜⎜⎜⎝

0 a 3 2 2
a 0 4 5 a
1 4 0 5 5
2 5 5 0 a
2 a 5 a 0

⎞

⎟⎟⎟⎟⎠
, a > 5.

Here, I = J = {1, 2, 3, 4, 5}, p = 3. Define the set function f according to (3):
f({1}) = a+ 7, f({2}) = 2a+ 9, f({3}) = 15, f({4}) = a+ 12, f({5}) = 2a+ 7,
f({1, 2}) = 7, f({1, 3}) = 8, f({1, 4}) = 10, f({1, 5}) = a + 5, f({2, 3}) = 11,
f({2, 4}) = a + 6, f({2, 5}) = 11, f({3, 4}) = 10, f({3, 5}) = 10, f({4, 5}) = 12,
f({1, 2, 3}) = 4, f({1, 2, 4}) = 5, f({1, 2, 5}) = 5, f({1, 3, 4}) = 6,
f({1, 3, 5}) = 6, f({1, 4, 5}) = 8, f({2, 3, 4}) = 6, f({2, 3, 5}) = 6, f({2, 4, 5}) =
6, f({3, 4, 5}) = 5,
f({1, 2, 3, 4}) = 2, f({1, 2, 3, 5}) = 2, f({1, 2, 4, 5}) = 3, f({1, 3, 4, 5}) = 4,
f({2, 3, 4, 5}) = 1, f({1, 2, 3, 4, 5}) = f(I) = 0.
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After extension f(∅) = 4a + 5 the nonincreasing set function f becomes
supermodular.

Algorithm GR finds the solution SGR = {3, 4, 5}. It is easy to check that

c = max
x∈I,

dx(SGR∪{x})>0

dx(SGR ∪ {x}) − dx(I)
dx(SGR ∪ {x})

=
3
5
, s =

c

1 − c
=

3
2

whereas

c = max
x∈I,

dx({x})>0

dx({x}) − dx(I)
dx({x})

=
3a − 3
3a − 2

, s = 3a − 3.

Thus we obtain the a posteriori bound 1 + s = 5
2 and the a priori bound 1 + s =

3a − 2. Note that the latter value grows infinitely as a → +∞.

6 Conclusion

We study and approximately solve the problem of minimizing a supermodular
function whose special case is the well-known NP-hard minimization p-median
problem. The main results of the paper are new a priori and a posteriori bounds
on the worst-case behaviour of a “reverse” greedy (steepest descent) algorithm
of minimizing a supermodular function on comatroid. A priori bound generalizes
our earlier approximation guarantees of the steepest descent algorithm for the
minimization p-median problem. A posteriori bound in many cases turns out to
be considerably better than a priori bound.

Acknowledgements. The research of the first author was supported by the RSF
grant 17-11-01117.
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Abstract. In this paper, a new optimization model of competitive facil-
ity location and pricing is introduced. This model is an extension of the
well-known (r|p)-centroid problem. In the model, two companies com-
pete for the client’s demand. Each client has a finite budget and a finite
demand. First, a company-leader determines a location of p facilities.
Taking into account the location of leader’s facilities, the company-
follower determines a location of its own r facilities. After that, each
company assigns a price for each client. When buying a product, the
client pays the price of the product and its transportation. A client buys
everything from a company with lower total costs if their total costs do
not exceed the budget of the client. If the cost of buying a product from
both companies is the same, the demand of clients is distributed equally
among them. The goal is to determine a location of leader’s facilities and
set the prices in which the total income of the leader is maximal. Results
about the computational complexity of the model are presented. Several
special cases are considered. These cases can be divided into three cat-
egories: (1) polynomially solvable problems; (2) NP-hard problems; (3)
problems related to the second level of the polynomial hierarchy. Finally,
the complexity of the maxmin-2-Sat problem is discussed.

Keywords: Competitive location · Pricing · Split demand
Computational complexity

1 Introduction

Research in the field of competitive location problems was initiated in [1], where
the process of choosing the location of facilities and the choice of the policy of
pricing by two competitors in a finite segment with a uniform distribution of
buyers were considered. The last decades, more and more attention is drawn to
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problems in which the decision to place and pricing is taken by players competing
with each other [2–5]. To date, many relevant problems are being addressed in
this area and many interesting results have been obtained. In this paper, we
consider a model that is in some ways an extension of the model of competitive
location and pricing from [6].

Let us describe in more detail the problem with its novelty and differences
from previous models. The problem is based on the Stackelberg game of two
players - the leader and the follower. The players select their locations and then
set prices in order to maximize their profits. The leader makes the decision first,
and then the follower makes his move. Players consistently place their facilities
in the finite set of predetermined locations. When all facilities are placed, the
players set prices for a homogeneous product. Here, a discriminatory pricing
strategy is used, when the player assigns a price for each client at each facility. In
[6], the well-known Bertrand model was used to determine prices and distribute
customers by facilities. In this model, the client is monopolized by the facility,
where the minimum cost of maintenance is achieved and the monopoly price is
assigned. In this paper, a new situation is considered when players can share
the demand of clients when it is profitable for them. Obviously, if a player at
his facility assigns a price to a client that does not exceed the minimum cost of
services at the follower’s facilities, then a rational client will prefer to be serviced
by the leader since the follower can not offer a lower price. On the other hand,
players can agree among themselves to establish the prices at the level of the
maximum purchasing power of the client, and divide the customer’s demand
among themselves. We suppose that the demand will be shared equally. In other
words, the client will make purchases at the facility of the leader, in a half of
cases, and at the facility of the follower, in other cases.

In the paper, the main emphasis is placed on the computational complexity of
finding of exact and approximate solutions for different variants of the problem [7].

The paper is organized as follows. In the next section, we formulate the
problem. The third section contains results on the computational complexity of
the general problem. In the fourth section, we consider the special cases of the
problem, their complexity, and algorithms for their solution.

2 The Competitive Location and Pricing Problem
with the Uniform Split of the Demand

We introduce the following notation:
I = {1, ...,m} is the set of locations for the facilities of the leader and the

follower;
J = {1, ..., n} is the set of clients;
p is the number of facilities placed by the leader;
r is the number of facilities placed by the follower;
ti is the unit cost of production in location i;
bj is the budget of the client of j;
dj is the demand for the client of j;
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cij is the unit cost of transportation of product from the facility i to the
client j.

To identify the placement of facilities of the leader and follower, we use the
following variables:

xi =
{

1, if the leader placed the facility at the point i,
0 otherwise;

yi =
{

1, if the follower placed the facility at the point i,
0 otherwise.

For each client and each facility, we can calculate the prime cost of service. Let
vector x denote the leader’s choice and vector y denote the follower’s choice,
then cj(x) = min{dj(ti + cij)|xi = 1} is the prime cost of service for the client j
by the leader and cj(y) = min{dj(ti + cij)|yi = 1} is the prime cost of service by
the follower. When the facilities have been chosen, the pricing process for each
client is implemented based on the Bertrand price competition model. Companies
compete by setting prices simultaneously and clients choose a company with a
lower price [6,8,9]. A client prefers the leader if the costs of service by the leader
and the follower are the same.

Let xi = 1, cj(x) = dj(ti + cij) and yk = 1, cj(y) = dj(tk + ckj). Suppose,
that cj(x) ≤ cj(y), i.e. for the client j, the leader is the winner. Note, that the
leader can set the price at the income-making level of the follower. Denote this
price as q1ijk. Then from the equation dj(p1ijk + cij) = dj(tk + ckj) we get the
price

q1ijk = tk + ckj − cij

for the client j. Hence, the income of the leader at point i is w1
ijk = dj(q1ijk − ti).

On the other hand, the revenue at the ith service point from the jth client
does not exceed bj −dj(ti + cij). It gives one more way of formation of the price.
Denote this price as q2ij . Set bj − dj(cij + q2ij) = 0. We get

q2ij =
bj
dj

− cij .

Therefore, the income of the leader in this case is w2
ij = dj(q2ij −ti) = bj −dj(ti+

cij). It is easy to see that

w1
ijk − w2

ij = dj(q1ijk − q2ij) = dj(tk + ckj) − bj .

Let w3
ij = (dj/2)(q2ij − ti) is the income of the leader from the division of the

demand in half between players.
Let’s analyze the possible cases.
1. Let q2ij ≥ q1ijk and w1

ijk ≤ w3
ij . That is, the income from monopolization

is less than the income from the division of the demand in half between players.
Therefore in our model, in this case, players agree to share the client’s demand
among themselves.
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2. If q2ij ≥ q1ijk and w1
ijk > w3

ij , then the leader has more income when using
a monopoly price q1ijk.

3. If q2ij < q1ijk, then the leader gets the maximum possible income, that is
equal to w2

ij = dj(q2ij − ti) = bj − dj(ti + cij) using the price q2ij .
Case cj(x) > cj(y) is analyzed in a similar way.
Now, as in [6], we replace non-Boolean variables q1ijk, q

2
ij with boolean vari-

ables.

zLc
ijk =

⎧⎨
⎩

1, if the client j is serviced by the leader’s facility i
with the price q1ijk,

0 otherwise;

zLb
ijk =

⎧⎨
⎩

1, if the client j is serviced by the leader’s facility i
with the price q2ij ,

0 otherwise;

zFc
ijk =

⎧⎨
⎩

1, if the client j is serviced by the follower’s facility k
with the price q1ijk,

0 otherwise;

zFb
ijk =

⎧⎨
⎩

1, if the client j is serviced by the follower’s facility k
with the price q2ij

0 otherwise;

zijk =

⎧⎨
⎩

1, if the client j is serviced by the leader from the point i and
the follower from the point k simultaneously,

0 otherwise;

This approach allows us to limit ourselves to only Boolean variables in the pro-
posed model. The set Ij(x) consists of locations that the follower can use to
capture the client j:

Ij(x) = {i ∈ I : cij + ti < min
k∈I:xk=1

(ckj + tk)}.

The competitive location and pricing problem with the uniform split of the
demand can be represented as the linear Boolean bi-level optimization program.
We propose the following model for the leader

∑
i∈I

∑
j∈J

∑
k∈I

(
dj(ckj + tk − cij − ti)zLc

ijk + (bj − dj(cij + ti))zLb
ijk (1)

+ 0.5(bj − dj(cij + ti))zijk
) → max

x,y,zLc,zLb,zFc,zFb,z

under constraints: ∑
i∈I

xi = p; (2)

(y, zLc, zLb, zFc, zFb, z) ∈ F∗(x); (3)
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xi ∈ {0, 1}; i ∈ I. (4)

The objective function (1) defines the income of the leader. Here the first
term corresponds to the case when the leader monopolizes the client, reducing
his price to the level of the cost price of service at the follower’s facilities. That
is, in terms of prices and revenues, it is the case 2: q2ij ≥ q1ijk and w1

ijk > w3
ij . If

the price of q2ij , determined by the budget, is less than the monopoly price q1ijk,
then the second term linking the price to the budget level is used. The third term
corresponds to the case when it is advantageous for the leader to share the client’s
budget with the follower. That is, the income from monopolization is less than
the income from the division of the demand in half between players. Constraint
(2) means that the leader must open exactly p facilities. From constraint (3) it
follows that the distribution of clients between players and the player’s incomes
are determined on the basis of the optimal solution of the follower. Due to this
constraint, our model is a bilevel programming problem. The set F∗(x) is the
set of optimal solutions for the follower’s parametric problem. As the parameter,
we consider here the set of facility locations chosen by the leader.

For the follower, we propose the following model:
∑
i∈I

∑
j∈J

∑
k∈I

(
dj(cij + ti − ckj − tk)zFc

ijk + (bj − dj(ckj + tk))zFb
ijk (5)

+ 0.5(bj − dj(ckj + tk))zijk
) → max

y,zLc,zLb,zFc,zFb,z

under constraints: ∑
i∈I

yi = r; (6)

∑
i,k∈I

(zFc
ijk + zFb

ijk) ≤
∑

i∈Ij(x)

yi; j ∈ J ; (7)

xi + yi ≤ 1; i ∈ I; (8)∑
i,k∈I

(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ 1; j ∈ J ; (9)

∑
k∈I

(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ xi; i ∈ I, j ∈ J ; (10)

∑
i∈I

(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ yk; k ∈ I, j ∈ J ; (11)

(cij + ti)(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ (ci′j + ti′)xi′ (12)

+ (1 − xi′)C; i, i′, k ∈ I, j ∈ J ;

(ckj + tk)(zLc
ijk + zLb

ijk + zFc
ijk + zFb

ijk + zijk) ≤ (ck′j + tk′)yk′ (13)

+ (1 − yk′)C; i, k, k′ ∈ I, j ∈ J ;
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dj(ckj+tk−cij−ti) ≤ 0.5(bj −dj(cij +ti))zijk+(1−zijk)C; i, k ∈ I, j ∈ J ; (14)∑
i∈I

∑
k∈I

(dj(ckj + tk) − bj)zLc
ijk ≤ 0; j ∈ J ; (15)

∑
i∈I

∑
k∈I

(dj(cij + ti) − bj)zFc
ijk ≤ 0; j ∈ J ; (16)

zLc
ijk, z

Lb
ijk, z

Fc
ijk, z

Fb
ijk, zijk, yi ∈ {0, 1}; i, k ∈ I, j ∈ J. (17)

The objective function (5) defines the income of the follower. The components
of the objective function have the same meaning as the terms of the objective
function of the leader. The constraint (6) means that the follower must open
exactly r facilities. The constraints (7) and (9) implement the mechanism of
distribution of clients between players. If Ij(x) = ∅ then the leader monopolize
the client since he has the minimal servicing cost there. Otherwise, the client
may belong to the follower if he chooses one of the points of the set Ij(x) as the
location for one of his facilities. The constraint (8) prohibits to the leader and
follower to place facilities at the same point. From the constraints (10) and (11)
it follows that the client cannot be serviced at a point where there are no open
facilities. The constraints (9), (12) and (13) imply that we have selected a unique
pair of open facilities for the client j, one for the leader (i) and another for the
follower (k), and the chosen leader’s facility achieves the smallest servicing cost
for the client. Similarly, the smallest cost of service for client in follower’s facilities
is achieved at his chosen facility. Further assume that the client was monopolized
by the leader and we consider the optimal solution of the bilevel problem. Then
if the prices q1ijk and q2ij are nontrivial, then it follows from the restriction of (9)
that one of the variables zLc

ijk, zLb
ijk, zijk is equal to 1. Let dj(tk + ckj) − bj ≤ 0

and w1
ijk ≤ w3

ij = (dj/2)(q2ij − ti), that is, case 1 is executed. Then the income
from monopolization is less than the income from the division of the demand in
half between players. So, zijk = 1 and the restriction (14) holds. Suppose, that
dj(tk+ckj)−bj ≤ 0 and w1

ijk > w3
ij , then the leader has more income when using

a monopoly price q1ijk. Then zLc
ijk = 1 and the restriction (15) holds. Finally, if

dj(tk + ckj) − bj > 0, then the leader gets the maximum possible income equals
to w2

ij = dj(q2ij − ti) = bj − dj(ti + cij) using the price q2ij . Constraints (14) and
(16) are interpreted in a similar way for client j monopolized by the follower.

Further, we will assume that the initial data for the problem is rational.

3 The Computational Complexity

We recall the definition of the first level of the polynomial hierarchy of complexity
classes of decision problems. The first level consists of classes P , NP and co-
NP . The class P contains problems solvable in polynomial time on deterministic
Turing machines. The class NP is defined as the class of problems solvable in
polynomial time on nondeterministic Turing machines. The third basic class
co-NP consists of decision problems whose complements belong to NP . These
classes are also denoted as ΔP

1 , ΣP
1 , and ΠP

1 , respectively. The second level of
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the polynomial hierarchy is defined by deterministic and nondeterministic Turing
machines with oracle [7]. It is said that the decision problem belongs to class ΔP

2

if there exists a deterministic Turing machine with an oracle that recognizes its
in polynomial time, using as oracle some language from class NP . Similarly, the
decision problem belongs to class ΣP

2 if there exists a nondeterministic Turing
machine with an oracle that recognizes its in polynomial time, using as oracle
some language from class NP .

In order to proceed optimization problems, we use the concept of the stan-
dard decision problem corresponding to the optimization problem. We associate
optimization problem L with the following decision problem D(L). The input of
this problem is the input of the problem L and an arbitrary rational number k.
In the problem D(L) it is necessary to decide whether a feasible solution exists
with the objective function value large or equal to k. Class PO (correspondingly,
ΔP

2 O) includes optimization problems for which the standard decision problem
lies in class P (correspondingly, ΔP

2 ). Similarly, class NPO (correspondingly,
ΣP

2 O) includes optimization problems for which the standard decision problem
lies in class NP (correspondingly, ΣP

2 ).
In this section, we analyze the complexity of the competitive location and

pricing problem and its subproblems. We start from the following lemma.

Lemma 1. The competitive location and pricing problem with the uniform split
of the demand belongs to the class ΣP

2 O.

Proof. In the standard decision problem, it is necessary to find a solution to the
problem with the value of the objective function at least k. Such a problem can
be solved by brute force enumeration of all locations of leader’s facilities and
by solving the parametric problem of the follower. In other words, we can guess
the necessary location x of the leader’s facilities and the corresponding optimal
solution (y, zLc, zLb, zFc, zFb, z) of the follower in a non-deterministic time and
then check constraints (2)–(4) in polynomial time, using a suitable NP-oracle.
The verification of constraints (2) and (4) is trivial. As an NP-oracle, let’s take
the standard decision problem for the follower’s problem. Since the follower’s
objective function is limited, with the help of the oracle and binary search we
will find the optimal value of the parametric problem of the follower for the given
location x of the leader’s facilities. If the variables (y, zLc, zLb, zFc, zFb, z) satisfy
the constraints of the follower’s problem and the value of the objective function
on this feasible solution coincides with the previously found optimal value, then
the constraint (3) is satisfied. Since the number of calls to an oracle is limited by
the logarithm of the length of the record of the initial data of the problem, then
to verify constraints (2)–(4), a polynomial time is sufficient. Thus, the problem
of the leader belongs to class ΣP

2 O.

Theorem 1. The competitive location and pricing problem with the uniform
split of the demand is ΣP

2 -hard.

Proof. We reduce the following problem to the competitive location and pricing
problem.
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Fig. 1. Facilities and profitable clients that correspond to variables xi and yi.

Problem 1 (∃∀3, 4SAT )
Input: We are given two vectors x = (x1, . . . , xp) and y = (y1, . . . , yr) of
Boolean variables and a formula ϕ(x, y) in the disjunctive normal form.
Each conjunction contains exactly one variable from x and either two or
three variables from y.
Question: Does there exist a truth assignment of x such that for all assign-
ments of y the formula ϕ(x, y) is satisfied?

As shown in [10] ∃∀3, 4SAT is Σp
2 -complete.

Given an instance of ∃∀3, 4SAT and let k be the number of conjunction in
ϕ(x, y).

We construct the following instance of the competitive location and pricing
problem. For each variable xi(yi) we introduce two profitable facility locations
xi and xi (yi and yi) corresponding to literals xi and xi (yi and yi), respectively.
Between the facility locations xi and xi (yi and yi) we insert a profitable client
jxi (jyi ) which is connected by arcs to both facility locations (see Fig. 1). The
length of arcs that connect jxi (jyi ) with xi (yi) and xi (yi) is equal to k, i.e.
d(xi, j

x
i ) = d(jxi , xi) = d(yi, j

y
i ) = d(jyi , yi) = k. The budget of the client jxi is

equal to 16k2 + k and the budget of the client jyi is equal to 12k2 + k. We will
call locations xi and xi (yi and yi) alternative facility locations.

For each conjunction κs, we introduce two facility locations alts, sins and
four clients jcons , jalts , jsins , jads . The reduction of xi∧yi1 ∧yi2 ∧yi3 is illustrated in
Fig. 2. The client jcons is directly connected with five facility locations alts, xi, yi1 ,
yi2 , and yi3 . We set d(jcons , xi) = 10k2 + k, d(jcons , alts) = 10k2, and d(jcons , yi)
is equal to 10k2 + 1 for all i. The budget of jcons is equal to 10k2 + k + 1. We
will call the clients jcons conflicting clients. The client jalts is directly connected
with two facility locations xi and alts, wherein alts is located between jalts and
jcons . We set d(alts, j

alt
s ) = 5k2 and d(xi, j

alt
s ) = 16k2 − k. The budget of jalts is

equal to 16k2. The client jads is at a distance of 0 from the facility location xi

and his budget is equal to k. The client jsins and the facility location sins are
removed a sufficient distance from the other vertices and d(sins, j

sin
s ) = 0. The

budget of jsins is equal to 11k2 + ε, where 0 < ε < 1. The transportation cost
between two vertices given by the shortest path. For example, a network for the
formula ϕ(x, y) = (x1 ∧ y1 ∧ y2 ∧ y3) ∨ (x2 ∧ y2 ∧ y3) is described in Fig. 3. The
number of leader’s facilities p coincides with the number of Boolean variables x.



24 A. V. Kononov et al.

Fig. 2. Representation of xi ∧ yi1 ∧ yi2 ∧ yi3

The number of follower’s facilities r = l + k, where l is the number of Boolean
variables y.

Now consider how the player’s income depends on the choice of the location
of the facilities. Let κs = xi ∧yi1 ∧yi2 ∧yi3 . Let the leader place the facility in xi

or xi. If the follower doesn’t occupy the alternative location then the leader will
receive a income of 16k2 from the client jxi , otherwise the leader and follower
share the income from the client jxi and each will receive 8k2. In the latter case,
the possible additional income of each of the facilities xi and xi from the clients
jcons , jalts , jads , s = 1, . . . , k will not exceed k2 + k. Thus, if both players place
their facilities in xi and xi their income will not exceed 9k2 + k. The maximal
income at yi, yi, i ∈ {i1, i2, i3}, alts, or sins doesn’t exceed 13k2 + k and the
minimal income at yi, yi, alts, or sins is at least 11k2 − k. Therefore, the leader
must place own facilities at xi and xi, one facility at each pair (xi, xi), because
he knows that in this case the follower set his facilities at yi, yi, alts, or sins.

Suppose that the leader took all the places near the profitable clients jxi . If
the follower places the facility in yi or yi, he will receive a income of 12k2 from
the client jyi . The possible income of each of the facilities alts and sins doesn’t
exceed 11k2 + k + 1. Thus, the follower must place r facilities at yi and yi, one
facility at each pair (yi, yi). The remaining facilities of the follower should be
placed in locations alts and sins. It is easy to verify that the follower must select
exactly one of locations alts or sins, for each s = 1, . . . , k and his choice will
depend on the location of the leader’s facilities. We note that the income of the
follower in sins does not depend on the location of the leader’s facilities and it
is equal to 11k2 + ε. Let the leader open the facility xi. Then the income of the
follower in alts is equal to 16k2 − k − 5k2 + 10k2 + k − 10k2 = 11k2 and he
prefers to open the facility sins. It follows that in this case, the leader receives
the client jalts and the income of k from it. Let the leader open the facility xi.
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Fig. 3. An example of network for ϕ(x, y) = (x1 ∧ y1 ∧ y2 ∧ y3) ∨ (x2 ∧ y2 ∧ y3)

In this case, the leader does not receive the client jalts but he receives the client
jads the income of k from it. It follows that the total income of the leader from all
clients except for conflicting clients is equal to (16p + 1)k2 and does not depend
on the choice in which of the locations xi or xi to open the facility. In turn, the
follower prefers to open the facility alts. Indeed, the income of the follower from
client jalts in alts is equal to 11k2 and he get an additional income of at least 1
from client jcons . It follows that the best location of follower’s facilities in vertices
alts and sins, s = 1, . . . , k, is completely determined by the location of leader’s
facilities and does not depend on the location of profitable follower’s facilities.
Hence, the income of each player depends on who gets conflicting clients. If the
leader opens the facility xi then the client jcons will be served by the follower.
Let the leader open the facility xi. The follower get the client jcons if and only
if he opens one of the facility yi1 , yi2 , or yi3 . Thus, the leader gets at least one
conflicting client if and only if there exists a truth assignment of x such that for
all assignments of y the formula ϕ(x, y) is satisfied.
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4 Special Cases

In addition to the ∃∀3, 4Sat problem, consider ∃∀1, 2Sat problem. In this prob-
lem, each conjunction contains only one variable from x and at most one variable
from y. Obviously, the problem is polynomially solvable. In Theorem1, we con-
structed a set of instances of competitive location and pricing problem which
corresponds to ∃∀3, 4Sat problem. By analogy, we construct a set of instances
corresponding to the ∃∀1, 2Sat problem. We denote the set as a CLP2SAT prob-
lem. Is the CLP2SAT problem polynomially solvable? For the answer, consider
a maxmin-1,2-Sat problem. As in ∃∀1, 2Sat problem, we are given two vectors
x = (x1, . . . , xp) and y = (y1, . . . , yr) of Boolean variables and a formula ϕ(x, y)
in the disjunctive normal form. Each conjunction contains only one variable from
x and at most one variable from y. We need to find x, at which the total number
of satisfied conjunction is maximal for all y. Obviously, the CLP2SAT problem
is equivalent to the maxmin-1,2-Sat problem.

Theorem 2. The maxmin-1,2-Sat problem is NP-hard.

Proof. Consider the NP-hard Exact Cover by 3-sets problem.

Problem 2 (EC3SET)
Input: We are given a set X, with |X| = 3q (so, the size of X is a multiple
of 3), and a collection C of 3-element subsets of X.
Question: Does there exist a subset C̃ of C where every element of X
occurs in exactly one member of C̃?

Given an instance of EC3SET and let k be the cardinality of the collection C.
We construct the following instance of the maxmin-1,2-Sat problem.

For each subset Cr = (Xi,Xj ,Xl), we define boolean variables xr, yi, yj , yl
and introduce conjunctions (xr∧yi), (xr∧yj), (xr∧yl). Additionally, we introduce
3q conjunctions (x0 ∧ yi), i = 1, . . . , 3q, k conjunctions (xr ∧ y0), r = 1, . . . , k
and k identical conjunctions (x0 ∧ y0). We show that an exact cover of X exists
if and only if the total number of satisfied conjunctions is equal to 2q + k.

It is easy to see that we need only consider the case when x0 and y0 are equal
to 1. Let H be the total number of satisfied conjunctions and h be the number
of variables xr such that xr = 1. If h < q then H ≤ 3h+k−h = 2h+k < 2q+k.
If h > q then H ≤ 3q + k − h = 2q + k − (h − q) < 2q + k. Let h = q. We have

H = 3q − s + (k − q) = 2q + k − s,

where s is a number of repetitions of variables y in the truth assignment of x. It
follows that an exact cover of X exists if and only if the optimum is 2q + k.

Corollary 1. The CLP2SAT problem is NP-hard.

Consider particular cases, when leader’s and follower’s facilities are opened.
In these cases, each client needs to define a facility at which he will be served. It
can be done in O(mn2) times. Therefore, the problem is polynomially solvable.
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Note, the competitive location and pricing problem can be solved in O(Cn
p ∗

Cn−p
r ∗ mn2) = O(mnp+r+2) by look over through all locations. Consider the

following particular cases: (1) p = const; (2) r = const; (3) p, r = const.
In the first case, the number of leader’s location is Cn

p . It is a polynomial of
n. Therefore, the problem belongs to ΔP

2 O.
In the second case, the follower problem is polynomially solvable as Cn−p

r =
Poly(n, p). Then, the problem belongs to NPO.

In the third case, the problem can be solved in polynomial time. Then the
problem belongs to PO.

Finally, consider the cases, where p = 0 or r = 0. Then the problem is
equivalent to the widely known p-median problem, which is strongly NP-hard.
Therefore, these particular cases are strongly NP-hard as well.

5 Conclusion

This paper studies a new optimization model of competitive facility location and
pricing. Results of the computational complexity of the model are presented. A
few numbers of special cases are considered.

There are several interesting areas of research on this problem. The first
of them is connected with the development of exact algorithms for solving the
problem. Here, ideas from [11,12] can be used. Another area of research is the
development of algorithms for solving on the basis of local search and meta-
heuristics. Despite the fact that the exponential complexity of local search is
theoretically shown [13], the available experience of using such methods of solu-
tion indicates their practical effectiveness [14–18]. It is also important to continue
studying the relationships of this class of problems with the polynomial hierar-
chy and the approximation hierarchy. Similar results were obtained for a number
of interesting problems of bilevel programming [10,19–21].
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Abstract. The problem of location of connected rectangular facilities
on parallel lines in the presence of forbidden gaps is studied. The rect-
angular metric is used. The centers of the placed facilities are connected
with the centers of the gaps. The facilities are impossible to place in
forbidden gaps. It is necessary to place the facilities on the lines so that
the total cost of connections between the facilities and between facilities
and gaps was minimized. The problem is an adequate model of many
practical situations. It is known that the original continuous problem for
one–line variant is reduced to discrete subproblems. In this paper, the
review of the properties and the algorithms for solving of the problem
on one line are described. The branch and bound method for solving the
problem is proposed. Results of computational experiments on compar-
ison of the branch and bound method and a heuristic proposed in [27]
are reported. In the experiments, a integer programming model and IBM
ILOG CPLEX package are used.

Keywords: Location problem · Connected rectangular facilities
Forbidden gaps

1 Introduction

Models and methods of solution for location problems are intensively devel-
oped directions in operations research [5,10,11,15,27,28]. The problems have
many important applications in different areas: at design of plans of industrial
enterprises, in robot motion planning, in service station location, etc. Different
statements of such problems are defined by facility sizes (such as points, rectan-
gles), existence of connections between facilities, area in which they are placed
(network, plain), various restrictions and the criteria types, metrics and so on.

One of the main subclasses of the location problems in the presence of con-
nections between facilities is the Weber problem. The problem consists in placing
new facilities on the plane with respect to existing facilities so as to minimize
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the sum of the costs which consists of the costs proportional to the distances
between new and existing facilities, and the costs proportional to the distances
between new facilities [29].

The Weber problem is a basic location problem in many practical situations.
So, for example, the problem is used in automation design of the complex sys-
tems and placement of structural elements in the given area. Often at designing
of the petrochemical enterprise floorplans, the facilities are the technological
equipment [14,25]. The equipment units can be connected between themselves
by different communications, e.g. by a set of pipelines. Often some requirements
for a regularity of placement are imposed, e.g. to place the equipment along
the so–called red lines to create straight roads and facilities for maintenance of
equipment [24].

First Weber problem was formulated by Fermat in the beginning 17th cen-
tury. The problem is: “there are three points on the plane, find the fourth point
such that the sum of its Euclidean distances to the given points was minimal.”
The problem has been solved by Torricelli. In the middle of the 18th century
Simpson generalized the problem by including weights for the corresponding dis-
tances. In the early 19th century Weber used the generalized model to define
an optimum location of a factory which makes one product with two present
sources of raw materials and deliveries to one client.

The results of research of the classical Weber problem for point facilities
without restrictions are quite well represented in the literature. Weber’s rect-
angular metric problem can be decomposed into two independent subproblems,
each of which is a linear programming problem. Dual problem to each of the
subproblem is the minimum cost of flow problem in a specific network. Some
alternative methods to solving the problems, which are equivalent to the above
linear programming problem are also discussed in [3,19].

The objective function is strictly convex in the Weber problem with Euclidean
metric if the fixed facilities are not in the same line. At the same time, the system
of equations that are obtained by equating the gradient to zero is nonlinear and it
cannot be solved analytically. In [12], a numerical process of obtaining a solution
to the problem was described. An approach based on the approximation of the
Weber’s original continuous problem by a discrete problem was proposed in [7].

The extensions of the Weber problem are defined, e.g. by given facility sizes,
the structure of the area in which the facilities are placed, and the type of
restrictions on the placement of facilities. If the facility sizes are taken in account
(their sizes are commensurate with the size of the placement area), facilities are
often replaced by geometric shapes, such as rectangles. Different approaches
to the decision of optimal location problem of the rectangles on the plane are
developed in [4,17,20–22,24]. In the case of unconnected rectangles, the two–
dimensional problem of packing the rectangles in a strip of the minimal length
is considered in [20]. The problem can be formulated as a nonlinear mixed–
integer program. A tabu search algorithm is proposed for solving the problem.
In [17], the algorithm of local optimization for placing rectangles on the plane
is described. If it is allowed to rotate the rectangles then for such a problem a
heuristic algorithm is proposed in [4]. In [24], the problem of rectangles location
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on parallel lines is considered. Methods of dynamic programming and integer
linear programming are used to search for a set of Pareto–optimal solutions.

The Weber problem with restrictions on facility locations is analyzed in [10,
13,18]. One of the most considerable generalizations of the classical statement
of the Weber problem on the plane is related to consideration of the forbidden
gaps and barriers [29]. In forbidden gaps the facilities cannot be placed. In the
case of renovation of the plant, such gaps can be, for example, existing facilities
and technological equipment. Barriers are determined as regions where locating
facilities is not allowed. Also, traveling is prohibited in the interior of the barriers.
However, traveling is allowed along barrier’s border. Here, not only the location
problem is solved, but the problem of tracing is solved too [29].

In literature, the location problems in the presence of forbidden gaps for
different metrics are considered. Mainly the case of placing one facility with one
forbidden gap is considered. The problems with Euclidean metric and forbidden
gap in the form of a circle or a convex polygon are studied in [1,8,9]. The
rectangular metric for the measurement of distances between facilities is used,
for example, in [2]. The location problem in which apart from forbidden gaps
account is taken of the fixed facilities on the plane is studied in [16].

Minimax Weber problem on the plane for point facilities with the rectangular
metric and the rectangular forbidden gaps is studied in [28]. It is proved that it
is enough to consider a subset of admissible solutions to find the optimum of the
problem. The branch and bound algorithm for solving the problem is proposed.
Computational experiment on comparison of efficiency of the algorithm and
application of integer programming model and IBM ILOG CPLEX package is
reported. The use of the proved property is effective both in solving the problem
by combinatorial methods and by using integer programming [29].

This article is devoted to the Weber problem on parallel lines in the pres-
ence of forbidden gaps. The location of lines is fixed. The placed facilities and
the forbidden gaps are the rectangles. The centers of the facilities are connected
between themselves and with the centers of the gaps. The facilities are impossible
to place in forbidden gaps. In addition, a set of rectilinear passages between the
lines, which must be preserved when placing facilities is provided. The general-
ization of mathematical model of nonlinear programming with Boolean variables
is proposed. For one–line variant the original continuous problem is reduced to
a number of discrete subproblems of smaller dimension. The review of prop-
erties and the algorithms for solving the problem is provided. A branch and
bound method for solving the subproblems is proposed. Results of computa-
tional experiments for the branch and bound method, the heuristic from [27]
and for solving the problem using the integer programming model and IBM
ILOG CPLEX package are reported.

2 Statement of the Problem and Its Properties

The Weber problem on lines in the presence of forbidden gaps is formulated as
follows [29]. Suppose that straight–line segments parallel to OX axis, contain-
ing some fixed rectangular areas (forbidden gaps), a set of rectilinear passages
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between the lines and rectangular facilities are given. Centers of the facilities
are connected between themselves and with the centers of the gaps. The goal
is to place the facilities on the segments outside of the forbidden gaps so that
they do not intersect with each other and with the rectilinear passages and the
total cost of connections between the facilities and between facilities and gaps is
minimized [29].

Denote the facilities and gaps with the centers at (xi, yi) and (b1j , b2j) by Xi

and Fj respectively, where i ∈ I = {1, . . . , n} and j ∈ J = {1, . . . , m}. Denote
lengths and heights of facilities and gaps by li, di and pj , bj respectively, where
i ∈ I and j ∈ J . Let wij ≥ 0, uik ≥ 0 are the specific costs of connections between
centers of Xi and Fj , Xi and Xk for i, k ∈ I, j ∈ J , and i < k. Let the straight–
line segments of length LS and rectilinear passages between the lines be fixed.
The left border of each segment is the point (0, Lyt), where t ∈ Q = {1, . . . , q}
and Ly1 < · · · < Lyq. Further we will call these straight–line segments as lines.
Denote by Mt the maximum height of the facility, which may be placed on the
line with number t. These values are determined by the sizes of the passages.
Suppose the lines are fixed at such a distance from each other that any facility can
be placed on any line. The aim is to place the facilities X1, . . . , Xn on the lines
outside gaps F1, . . . , Fm and so that they do not intersect with each other and
with the rectilinear passages and the total cost of the connections between the
facilities and between facilities and gaps is minimized. The cost of a connection
is determined as the product of the distance and the cost of the connection.
Distances are measured in the rectangular metric.

We will introduce the Boolean variables zit for i ∈ I, t ∈ Q, to formulate the
conditions of facility’s location on the line, so that zit = 1 if Xi is placed on the
line with the number t, otherwise zit = 0 [29].

The nonlinear Boolean programming formulation of the problem is the
following:

G(x, y)=
n∑

i=1

m∑

j=1

wij(|xi−b1j |+|yi−b2j |)+
n−1∑

i=1

n∑

k=i+1

uik(|xi−xk|+|yi−yk|)→min,

(1)

|xi − b1j | ≥ zit
li + pj

2
, i ∈ I, j ∈ JLt, t ∈ Q, (2)

|xi − xk| ≥ (zit + zkt − 1)
li + lk

2
, i, k ∈ I, i < k, t ∈ Q, (3)

li
2

≤ xi ≤ LS − li
2

, i ∈ I, (4)

yi =
q∑

t=1

zitLyt, i ∈ I, (5)

q∑

t=1

zit = 1, i ∈ I, (6)
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dizit ≤ Mt, i ∈ I, t ∈ Q, (7)

zit ∈ {0, 1}, i ∈ I, t ∈ Q. (8)

The first component in (1) indicates the total cost of connections between the
facilities and the gaps; the second component indicates the total cost of connec-
tions between the facilities themselves. Expressions (2) and (3) are the conditions
of disjointness between the facilities and the gaps and between the facilities them-
selves [29]. Constraints (6) are the requirement that any facility is placed only
on one line. Expression (7) are the conditions on height of facility Xi, which is
placed on the line with number t.

Denote the range of admissible solutions by B. Range B is disconnected and it
consists of r separate blocks Bk of length Lk that contain the facilities Xi, i ∈ I,
B =

⋃
k=1,r Bk. The problem (1)–(8) for t = 1 is NP–hard; a feasible solution to

the problem can be found by construction of a one–dimensional bin packing [6].
In this case, the facilities with lengths of li, i ∈ I, are packed in the containers
with sizes Lk, k = 1, r [29]. It should be noted that fixing or prohibition of the
facility location on the lines is possible with the help of assignment of Boolean
variables.

The mathematical model for one–line variant is:

G(x) =
n∑

i=1

m∑

j=1

wij |xi − bj | +
n−1∑

i=1

n∑

k=i+1

uik|xi − xk| → min, (9)

|xi − bj | ≥ li + pj
2

, i ∈ I, j ∈ J, (10)

|xi − xk| ≥ li + lk
2

, i, k ∈ I, i < k, (11)

li
2

≤ xi ≤ LS − li
2

, i ∈ I. (12)

The problem (9)–(12) is studied in [27]. The heuristic algorithm consists of two
stages. In the first stage, we find a feasible partition of the facilities into the
blocks, and in the second stage, the facilities in the blocks are rearranged so
that the total cost of connections is minimized.

Given a feasible location, a remainder in the block Bk is a segment of non–
zero length between two adjacent elements (facilities, gaps) that do not have
a common border or between the border of Bk and an adjacent block. Two
elements (facilities, gaps, remainders) are called glued if they have a common
border [26].

Suppose that x = (x1, . . . , xn) is a feasible solution to the problem (9)–
(12); Ik(x) is the set of the facility numbers in the block Bk; Hk(x) is the set of
remainders in Bk; nk is the capacity of the set Ik(x). We will notice that x can be
represented as x = (x1, . . . , xr), where xk are the coordinates of facilities placed
in Bk. In [27], it was proved that for a feasible solution x to the problem (9)–
(12), we can find another feasible solution x′ such that |Hk(x′)| ≤ 1, k = 1, . . . , r
and G(x′) ≤ G(x). So, it is sufficient to consider no more than one remainder
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in every block Bk. Thus, the original continuous problem is reduced to discrete
problem [29].

Denote by LBk and RBk the coordinates of the left and the right borders of
Bk (imaginary facilities FL and FR) and let JL(Bk) and JR(Bk) be the sets of
gaps to the left and to the right of the block Bk. Also let IL(Bk) and IR(Bk)
be the sets of facilities to the left and to the right of the block Bk respectively.
Then, for a fixed partition of facilities into the blocks, the objective function
G(x) can be represented as [26]

G(x) =
r∑

k=1

Gk(xk) + Const,

where

Gk(xk) =
∑

s∈Ik(x)

∑

t∈Ik(x),t>s

ust|xs − xt| +
∑

s∈Ik(x)

|xs − LBk|
( ∑

j∈JL(Bk)

wsj

+
∑

i∈IL(Bk)

usi

)
+

∑

t∈Ik(x)

|xt − RBk|
( ∑

j∈JR(Bk)

wtj +
∑

i∈IR(Bk)

uti

)
.

The first component of Gk(xk) is the sum of costs of the connections between
facilities in Bk, the second component and the third component are the sums of
cost of the connections between facilities from Bk and LBk, and from Bk and
RBk respectively.

We will call an admissible solution x to the problem (9)–(12) a local minimum
of the problem if G(x) ≤ G(x′) for every x′ : Ik(x) = Ik(x′), k = 1, . . . , r.

Let a partition of facilities into blocks be fixed. Then, in every block Bk it
is possible to consider the subproblem of location nk + 2 facilities. In Bk the
subproblem contains two imaginary facilities FL and FR and nk placed facilities
[26]. Let us denote the total cost of connections between placed facilities in Bk

and the facilities FL and FR respectively for every i ∈ Ik(x) by wiL and wiR.
Then [26]

wiL =
( ∑

s∈JL(Bk)

wis +
∑

t∈IL(Bk)

uit

)
,

wiR =
( ∑

s∈JR(Bk)

wis +
∑

t∈IR(Bk)

uit

)
.

The subproblem for Bk can be formulated as

Gk(xk) =
∑

s∈Ik(x)

∑

t∈Ik(x),t>s

ust|xs − xt| +
∑

s∈Ik(x)

wsL|xs − LBk|

+
∑

t∈Ik(x)

wtR|xt − RBk| → min, (13)

|xi − xk| ≥ li + lk
2

, i, k ∈ Ik(x), i < k, (14)
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LBk +
li
2

≤ xi ≤ RBk − li
2

, i ∈ Ik(x). (15)

We will find coordinates xk of the centers of facilities in Bk, so that the total
cost of connections between the facilities and the facilities with facilities FL and
FR is minimized.

Since Ik(x)
⋂

Il(x) = ∅ for every k, l = 1, . . . , r, so to find a local optimum
of the problem (9)–(12) for some fixed partition of facilities into blocks, it is
sufficient to find the minimum in r independent subproblems (13)–(15). So,
the solution of the original continuous problem is reduced to solving discrete
subproblems of smaller dimension [26].

Note that if ust = 0, for all s, t ∈ Ik(x), s < t, then for any k = 1, . . . , r,
the local optimum of the problem (9)–(12) can be found with the help of the
polynomial–time algorithm [27]. If we introduce a partial order on location of
facilities in the block, which may be presented in the form of a serial–parallel
graph, then in the block the problem may be solved by the polynomial–time
algorithm from [23].

Generally, if there exist s, t ∈ Ik(x), such that ust > 0, then for solving the
subproblem (13)–(15) for a small value nk, it is possible to use nk! permutations
of the facilities in the block. For large values of nk it is possible to apply, e.g.
the branch and bound algorithm.

3 Branch and Bound Method and Results
of Computational Experiment

Calculation of lower bounds on the objective function and the branching method
are the basis for any branch and bound method. Let us describe the branch and
bound method on the example of a block Bk.

3.1 Lower Bounds

Let us denote the sets of the facility numbers placed in Bk by NFl, NFr. Without
loss of generality, we will assume that the facilities in the set NFl have numbers
from 1 to s, and in the set NFr the numbers of facilities are from t + 1 to nk.
Denote by D the set of the admissible locations for the facilities in Bk. Let ξ(D)
be the lower bound on function Gk(xk) for D [26]. Then ξ(D) can be expressed
as follows:

ξ(D) = ξ1(D) + ξ2(D) + ξ3(D).

The value ξ1(D) is the total cost of connections between the facilities placed
in Bk and the facilities with facilities FL and FR. Since the coordinates of all
these facilities are known, so this value is calculated exactly. The value ξ2(D) is
a lower bound on the total cost of connections between the facilities unplaced in
Bk with facilities FL, FR and with the facilities placed in Bk. The value ξ3(D)
is a lower bound on the total cost of connections between the facilities unplaced
in Bk.
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In [26], two methods of calculation of value ξ2(D) are proposed.

The First Method. For every i ∈ Ik(x)\{NFl

⋃
NFr}, the total cost of con-

nections between the facilities placed in Bk and the facilities with facilities FL

and FR is calculated as follows [26]:

SL(i) = wiL +
∑

k∈NFl

uik, SR(i) = wiR +
∑

k∈NFr

uik.

Later location of the facilities unplaced in Bk is determined by two variants.
The facilities are ordered by non–increasing of ratio SL(i)/li. The facilities con-
sistently are glued together in that order with the most left facility placed in
Bk. Without loss of generality, we assume that the glued unplaced facilities have
numbers from s + 1 to t.

Later the facilities are ordered by non–increasing of ratio SR(i)/li. The facil-
ities consistently are glued together in that order with the most right facility
placed in Bk. Without loss of generality, we assume that the glued unplaced
facilities have numbers from t to s + 1 [26]. Then

ξ2(D) = ξ2L(D) + ξ2R(D),

where ξ2L(D) and ξ2R(D) are the lower bounds on the total cost of the con-
nections of unplaced facilities with facilities FL, FR respectively and with the
facilities placed in Bk. The values ξ2L(D) and ξ2R(D) can be calculated the
following way:

ξ2L(D) =
t∑

q=s+1

(
Lwq

q−1∑

g=1

lg +
s∑

i=1

uqi

q−1∑

k=i+1

lk

)
,

ξ2R(D) =
t∑

q=s+1

(
Rwq

nk∑

g=q+1

lg +
nk∑

i=t+1

uqi

i−1∑

k=q+1

lk

)
.

The proof that values ξ2L(D) and ξ2R(D) are the lower bounds on the total cost
of connections of unplaced facilities with imaginary facilities FL, FR and with
the facilities placed in Bk is similar to the proof in [21].

The Second Method. The set Ik(x)\{NFl

⋃
NFr} can be represented as a

union of disjoint sets NL

⋃
NC

⋃
NR, where by NL, NC , NR are the sets of

facility numbers for which we have the inequalities SL(i) > SR(i), SL(i) =
SR(i), SL(i) < SR(i) respectively.

Later facilities with numbers from NL are ordered by non–increasing of ratio
(SL(i) − SR(i))/li. These facilities consistently are glued together in that order
with the most left facility placed in Bk. Also facilities with numbers from NR are
ordered by non–increasing of ratio (SR(i)−SL(i))/li. These facilities consistently
are glued together in that order with the most right facility placed in Bk. The
facilities with numbers from NC are placed between sets of the facilities with
numbers from NL and from NR in any order [26].
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Thus, for every i ∈ Ik(x)\{NFl

⋃
NFr}, the coordinate of the center is deter-

mined. Let Ik(x)\{NFl

⋃
NFr} = {s + 1, . . . , t}. Define the value Z as

Z =
t∑

q=s+1

(
Lwq

q−1∑

g=1

lg +
s∑

i=1

uqi

q−1∑

k=i+1

lk + Rwq

nk∑

h=q+1

lh +
nk∑

j=t+1

uqj

j−1∑

v=q+1

lv

)
.

In [26], it was proved that the value Z is a lower bound on the total cost of
connections of the unplaced facilities with facilities FL, FR and with the facilities
placed in Bk.

The calculation of value ξ3(D) is the most difficult. One of the ways to
calculate the value ξ3(D) is to consider the sets of unplaced facilities that are
all connected between themselves. Further, for example, by means of viewing all
permutations of any three such facilities, one can find an order of arrangement
of facilities in the block with the minimum cost of connections between them.

3.2 Branching

At the first level in the branching tree each of the facilities with numbers from
Ik(x) is glued to the left border of the block Bk one by one. At the second level,
each of the unplaced facilities is glued to the right border of the block Bk one
by one. At the third level, each of the unplaced facilities is glued to the facility
placed to the left border of the block Bk one by one. At the subsequent levels,
each unplaced facility is glued to the facility placed at the previous level of the
branching tree (see Fig. 1).

Fig. 1. Branching in the block

In Fig. 1, the borders of the blocks are marked by the shaded squares and the
placed facilities are marked by squares with numbers of facilities. The number
of vertexes of the branching tree at the first level is equal nk, at the second level
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it equals nk(nk − 1), at the third level it equals nk(nk − 1)(nk − 2), etc. Note
that the height of the branching tree (number of levels) is equal to nk, and the
quantity of its trailing vertexes is nk!, that corresponds to number of possible
permutations of facilities in Bk.

3.3 Results of Computational Experiment

A computational experiment on comparison of the solutions obtained by using
the branch and bound method (BBA) and the heuristic (A2) from [27] is carried
out in this subsection. The experiment was conducted on the computer with
the following specifications: Intel CoreTM i5-24502.50 GHz 6.00 GB. The alter-
native algorithms were implemented in Borland C++ Builder Version 6.0 (Build

Table 1. Comparison of algorithms A2 and BBA

No n m FA2 tA2 FBBA tBBA Relative error F , % tBBA − tA2

1 5 3 1148 2 1136 2 1,056 0

2 5 3 968,5 1 968,5 1 0 0

3 5 3 12238 1 11892 1 2,91 0

4 6 3 1844 1 1844 2 0 1

5 10 3 900,25 2 900,25 8 0 6

6 10 3 1080 3 1080 7 0 4

7 10 4 2888 2 2888 4 0 2

8 10 5 1801 2 1801 3 0 1

9 10 6 1253 50 1253 56 0 6

10 15 2 1420 7 1400 901 1,429 894

11 15 3 3502 6 3496 136 0,172 130

12 15 4 4008 5 4008 21 0 16

13 15 5 4468,5 4 4468,5 10 0 6

14 15 6 8464 5 8464 40 0 35

15 15 10 10296 9 10296 20 0 11

16 20 2 20893,5 13 20573,3 4634 1,555 4621

17 20 3 39374,75 12 38810,75 2469 1,453 2457

18 20 10 21533,5 15 21533,5 45 0 30

19 20 15 19443,5 449 19443,5 724 0 275

20 30 5 57934 18 57934 231 0 213

21 30 10 52840 1331 52840 5460 0 4129

22 30 20 128656 26 128656 27 0 1

23 50 10 181909 86 181909 443 0 357

24 50 20 430112 269 430112 453 0 184

25 50 30 756628 708 756628 833 0 125
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10.166). The input data were randomly generated. More than 100 instances of
the problem were used. The algorithms stops when all local optimal solutions
are found or the time allocated for solving the problem ends. Results of compar-
ison of algorithms are presented in Table 1, where FA2, FBBA and tA2, tBBA are
the objective function values and the average running time (in seconds) of the
heuristic algorithm and the branch and bound algorithm respectively.

The average relative error of algorithm A2 is equal to 3%. The algorithm A2
finds the solutions faster than BBA as follows from Table 1. For example, for
instance 11 the relative error of A2 is 0,172% and the running time of A2 is less
that of BBA by a factor 20.

Also, a computational experiment on comparison of the solutions obtained
by the branch and bound algorithm and IBM ILOG CPLEX 12.2 package using
the mixed integer linear programming model is made. Three series of the test
problems were randomly generated with a uniform distribution each of which
includes 5 problems of the same dimension. For each series, we compared the
running times of the branch and bound algorithm and CPLEX package. For
the dimensions |I| = 20, |J | = 15 and |I| = 50, |J | = 20, we could not obtain
the solution within time 1000 s using CPLEX; the average running time for the
problems of such dimensions with the proposed branch and bound algorithm is
723 s and 898 s respectively. Note that for the branch and bound algorithm and
CPLEX package, the average running time on problems with dimensions |I| = 5,
|J | = 3 is 0,968 s and 0,96 s respectively.

4 Conclusion

In this paper, the NP–hard problem of location of connected rectangular facilities
on lines in the presence of rectangular forbidden gaps is considered. A general-
ization of the one–line variant of the model to several lines is given. A branch
and bound algorithm employing lower bounds introduced in [26] is proposed.
Results of numerical evaluation of this algorithm on comparison with a heuristic
proposed in the paper [27] are reported.
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Abstract. We study the two-machine Open Shop problem with exact
delays. When all delays are equal to zero this problem converts to the no-
wait two-machine Open Shop problem, which is known to be NP-hard.
We prove that even the proportionate case of Open Shop problem with
exact delays does not admit approximations with ratio 1.5 − ε unless
P = NP. We also consider the very special case when the delays take at
most two different values and prove that the existence of a (1.25 − ε)-
approximation algorithm for it implies P = NP.

Keywords: Open Shop · Exact delays · Approximation algorithm
Inapproximability lower bound

1 Introduction

We study the two-machine Open Shop problem with exact delays. An instance of
the problem consists of n triples (aj , lj , bj) of nonnegative integers where j is a job
in the set of jobs J = {1, . . . , n}. Each job j must be processed on each machine in
a free order, aj and bj are the lengths of operations on machines 1 and 2, respec-
tively. The second operation of job j must start exactly lj time units after the first
operation has been completed. The goal is to minimize makespan. In the stan-
dard three-field notation scheme the problem is written as O2 | exact lj | Cmax.
We also investigate the special case when the delays take at most two distinct
values which is written as O2 | exact lj ∈ {L1, L2} | Cmax. Scheduling prob-
lems with exact delays have evident applications in chemistry manufacturing.
In particular, they arise often where there may be an exact technological delay
between the completion time of some operation and the starting time of the next
operation. The problems with exact delays also arise in command-and-control
applications [11,17]. Condotta [6] describes an application related to booking
appointments of chemotherapy treatments.

Related Work. When all delays are equal to zero the two-machine Open Shop
problem with exact delays is nothing but the no-wait two-machine Open Shop
problem written as O2 | no-wait | Cmax. NP-hardness of O2 | no-wait | Cmax was
proved by Giaro [10]. Sidney and Sriskandarajah [17] proposed a heuristic algo-
rithm that solves O2 | no-wait | Cmax with a tight worst-case ratio bound of 3/2.
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 45–55, 2018.
https://doi.org/10.1007/978-3-319-93800-4_4
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Approximability of the single machine coupled-task and the two-machine Flow
Shop problems with exact delays have been investigated in a number of papers
([1–4,7,14–16], see also the survey [5]). In particular, Ageev and Kononov [2],
Ageev and Ivanov [3] and Ageev [4] established inapproximability lower bounds
for various special cases of these problems (see Table 1).

Our Results. In this paper we present inapproximability lower bounds for two
special cases of the two-machine Open Shop problem with exact delays. We
prove that even the proportionate case of Open Shop problem with exact delays
(where aj = bj for all j ∈ J) does not admit approximations with ratio better
than 1.5 − ε unless P = NP. We also consider the very special case when the
delays take at most two different values L1 and L2 and prove that the existence
of a (1.25 − ε)-approximation algorithm for it implies P = NP. Note that the
algorithm developed in [2] for solving the two-machine Flow Shop problem with
exact delays provides a 3-approximation for our problems. This follows from the
proof of Theorem 3 in [2]. Our inapproximability lower bounds are similar to
those for the two-machine Flow Shop problem with exact delays established in
[2,4]. This seems a bit surprising as the two-machine Open Shop problem with
exact delays is NP-hard even in the case of equal delays.

A summary of the approximability results for scheduling problems with exact
delays is shown in Table 1.

Table 1. A summary of the approximability results for scheduling problems with exact
delays.

Problem Appr. factor Inappr. bound

1 | exact lj | Cmax 3.5 [2] 2 − ε [2]

1 | exact lj , aj ≤ bj | Cmax 3 [2] 2 − ε [2]

1 | exact lj , aj = bj | Cmax 2.5 [2] 2 − ε [2]

1 | exact lj , aj = bj = 1 | Cmax 1.75 [1] Strongly NP-hard [18,19]

1 | exact lj = L | Cmax 3 [3] 1.25 − ε [3]

1 | exact lj = L, aj ≤ bj | Cmax 2 [3] 1.25 − ε [3]

1 | exact lj = L, aj = bj | Cmax 1.5 [3] 1.25 − ε [3]

F2 | exact lj | Cmax 3 [2][15] 1.5 − ε [2]

F2 | exact lj , aj ≤ bj | Cmax 2 [2][15] 1.5 − ε [2]

F2 | exact lj , aj = bj = 1 | Cmax 1.5 [1] Strongly NP-hard [18,19]

F2 | exact lj ∈ {L1, L2} | Cmax 2 [4] 1.25 − ε [4]

O2 | exact lj , aj = bj | Cmax 3 [2] 1.5 − ε [this paper]

O2 | exact lj ∈ {L1, L2} | Cmax 3 [2] 1.25 − ε [this paper]

2 Preliminaries

The proofs of both results of the paper are based on reductions from the NP-
complete Partition problem [9] which we formulate here.
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Partition
Instance: Nonnegative integers w1, . . . , wm such that

∑m
k=1 wk = 2S.

Question: Does there exist a subset X ⊆ {1, . . . ,m} such that
∑

k∈X wk =
S?

We assume that there are no missing operations in the sense that a zero
processing time implies that the job has to visit the machine for an infinitesimal
amount of time δ > 0.

In the proofs we use the fact that the whole construction presenting a feasible
schedule can be moved along the time line in both directions. So the length of
the schedule is the length of the time interval between the starting time of the
first operation (which is not necessarily equal to zero) and the end time of the
last one.

Remind that in Open Shop problems operations of each job may be processed
in arbitrary order and so we cannot speak of the first and second operations of a
job. Instead we speak of operations associated with the corresponding machines.

For the length of a schedule σ we use the standard notation Cmax(σ); C∗
max

will stand for the length of a shortest schedule.
In the proportionate case each job has operations of equal lengths, i.e., aj = bj

for all j ∈ J . We will refer to it as O2 | exact lj , aj = bj | Cmax.

3 Inapproximability Lower Bound
for O2 | exact lj, aj = bj | Cmax

In this section we establish an inapproximability lower bound for the propor-
tionate case O2 | exact lj , aj = bj | Cmax.

To this end we consider the following reduction from Partition problem. Let
I be an instance of Partition. Construct an instance I ′ of O2 | exact lj | Cmax.

Set J = {1, . . . , m + 2} and

ak = bk = wk, lk = 2R + S − ak for k = 1, . . . m,

am+1 = bm+1 = R, lm+1 = 0,

am+2 = bm+2 = R, lm+2 = 0

where R ≥ 3S. We will refer to the jobs in {1, . . . , m} as small and to the
remaining two jobs as big.

Lemma 1. (i) If
∑

k∈X wk = S for some subset X ⊆ {1, . . . m}, then there
exists a feasible schedule σ such that Cmax(σ) ≤ 2R + 2S.

(ii) If there exists a feasible schedule σ such that Cmax(σ) ≤ 2R + 2S, then∑
k∈X wk = S for some subset X ⊆ {1, . . . m}.

(iii) If Cmax(σ) > 2R + 2S for some feasible schedule σ, then Cmax(σ) ≥ 3R.



48 A. Ageev

m+1

m+1m+2

m+2

S 2R S

Fig. 1. The shortest schedule when the instance I has answer “Yes”.

Proof. (i) Let X ⊆ {1, . . . ,m} such that
∑

k∈X wk = S. Then
∑

k∈Y wk = S
where Y = {1, . . . , m} \ X.

To construct the required schedule arrange the big jobs as shown in Fig. 1.
To schedule the small jobs we do the following. W.l.o.g. we may assume that
the jobs are ordered in such a way that X = {1, . . . , q} and Y = {q + 1, . . . m}.
Execute all jobs in X first on machine 1 in this order without idles just before
the operation of job m + 1 on machine 1. Then the next operation of job i ≤ q
will start at time

i∑

s=1

ws + 2R + S − wi =
i−1∑

s=1

ws + 2R + S.

It follows that the operations of jobs in X on machine 2 do not overlap and are
executed within the interval of length S. Note that the operations of jobs X on
machine 1 are also executed within the interval of length S. Schedule the jobs
in Y exactly in the same way but process them first on machine 2 and then
on machine 1 (see Fig. 1). It is easy to see that the length of the constructed
schedule is 2R + 2S, as required.

(ii) Let σ be a feasible schedule with Cmax(σ) ≤ 2R + 2S. Observe that the
big jobs in σ are arranged in one of the two ways shown in Fig. 2, since otherwise
the length of the schedule is at least 3R. By the symmetry of the big jobs, we
may assume that the case (1) of Fig. 2 holds. Next, we observe that in σ, both
operations of the two big jobs are executed within the lag time interval of any
small job, since otherwise Cmax(σ) ≥ 2R + 2R = 4R. Let X be the subset of
small jobs j such that in σ the job j is first processed on machine 1 and then on
machine 2. Then Y = {1, . . . , m}\X is the set of small jobs j in σ such that j is
first processed on machine 2 and then on machine 1. Assume that |X| > S and
let j∗ ∈ X be the first job processed on machine 1 at time 0. Then the operation
of j∗ on machine 2 must start at time wj∗ + 2R + S − wj∗ = 2R + S. However,
as |X| > S the processing of job m + 1 on machine 2 finishes at time more than
2R + S and we get that the machine 2 operation of job j∗ overlaps with the
machine 2 operation of job m + 1, which implies that σ is an infeasible schedule
(see Fig. 3). Thus we have that |X| = |Y | = S, as required.

(iii) Let σ be a feasible schedule satisfying Cmax(σ) > 2R + 2S. We may
assume that the big jobs are arranged as in Fig. 2, since otherwise evidently
Cmax(σ) ≥ 3R. From (ii) it follows that if for some small job j its lag time interval
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m+1m+2

m+2
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m+1

m+1
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(2)

Fig. 2. The two shortest arrangements of the big jobs.

m+1

m+1m+2

m+2

>2R+S

Fig. 3. The schedule σ is infeasible if |X| �= |Y |.

does not contain operations of the big jobs, then Cmax(σ) > 2R + 2R + S > 4R.
Finally we have that Cmax(σ) ≥ 3R, as required. ��

Set R = kS. Then 2R + 2S = 2kS + 2S. The fraction

3kS

2kS + 2S
=

3k

2k + 2

tends to 1.5 as k tends to infinity. Thus Lemma1 implies

Theorem 1. The existence of a (1.5 − ε)-approximation algorithm for solving
O2 |prop, exact lj | Cmax implies P=NP. ��

4 Inapproximability Lower Bound for
O2 |exact lj ∈ {0, L}| Cmax

In this section we establish an inapproximability lower bound for the case when
the delay of each job is either 0, or L > 0.

To this end consider the following reduction from Partition problem.
Consider an instance I of Partition and construct the following instance

I ′ of O2 |exact lj ∈ {0, L}| Cmax.
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Fig. 4. The shortest partial schedule of the big jobs.

Set J = {1, . . . , m + 5} and

ak = bk = wk, lk = 2R for k = 1, . . . m,

am+1 = bm+1 = R, lm+1 = 2R,

am+2 = R, bm+2 = R, lm+2 = 2R,

am+3 = R, bm+3 = R, lm+3 = 0,

am+4 = 0, bm+4 = R − S, lm+4 = 0,

am+5 = R − S, bm+5 = 0, lm+5 = 0,

where R ≥ 6S. We will refer to the jobs in {1, . . . , m} as small and to the
remaining five jobs as big.

Lemma 2. (i) If
∑

k∈X wk = S for some subset X ⊆ {1, . . . m}, then there
exists a feasible schedule σ such that Cmax(σ) ≤ 4R + 4S.

(ii) If there exists a feasible schedule σ such that Cmax(σ) ≤ 4R + 4S, then∑
k∈X wk = S for some subset X ⊆ {1, . . . m}.

(iii) If Cmax(σ) > 4R+4S for some feasible schedule σ, then Cmax(σ) ≥ 5R−S.

Proof. (i) To construct the required schedule arrange the big jobs in the order
shown in Fig. 5. This construction has two idle intervals: A on machine 1 and
B on machine 2. The interval A is between the end of the machine 1 operation
of job m + 3 and the beginning of the machine 1 operation of job m + 5. The
interval B is between the end of the machine 2 operation of job m + 4 and the
beginning of the machine 2 operation of job m+3. Both intervals have length S.

For scheduling the small jobs we use the following rule. Schedule the small
jobs in X in such a way that their first operations are executed within the time
interval A in non-increasing order of the lengths. Correspondingly, w.l.o.g. we
may assume that X = {1, 2, . . . , q} and w1 ≤ w2 ≤ . . . ≤ wq.

Denote by A′ the time interval between the end of the machine 2 operation
of job m + 1 and the end of the machine 2 operation of job q. It is easy to
understand (see Fig. 6) that all the machine 2 operations of jobs {1, . . . , q} fall
within A′ and the length of A′ is equal to

q∑

i=1

wi + w1 + (w2 − w1) + (w3 − w2) + . . . + (wq − wq−1),
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1 2 3

< 2S

1 2 3

S 2R-S

Fig. 5. Scheduling the small jobs.

which does not exceed 2S. Now we observe that the construction is symmetric
and schedule the jobs in Y quite similarly. Finally, we arrive at the schedule
shown in Fig. 6. From the above argument its length does not exceed 4R + 4S,
as required.

m+1

m+4

m+3

m+3

m+5

m+1m+2

m+2

R R RR-S S< 2S < 2S

Fig. 6. The shortest schedule when the instance I of Partition has answer “yes”.

(ii) Let σ be a feasible schedule with Cmax(σ) ≤ 4R + 4S. Observe first that
the jobs m + 1 and m + 2 are identical and we may assume that job m + 1 is
first processed on machine 1. Then job m + 2 is first processed on machine 2,
since otherwise clearly Cmax(σ) ≥ 5R. Now we observe that job m+3 is executed
within the time lag interval either of job m+1, or of job m+2. Due to symmetry
we may assume that job m + 3 is executed within the time interval of job m +
1. Thus we have the configuration shown in Fig. 7. We call this configuration
initial. Denote by t0, t1, t2, t3, t4 the junction times of the operations in the initial
configuration (see Fig. 7).

m+1 m+3

m+3 m+1

R R RR

t t t t t3210 4

Fig. 7. The initial configuration.
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Now our aim is to exclude impossible layouts of job m + 5 with respect to
the initial configuration.

Observe first that σ has the following property (Q): any small job in σ either
completes executing not earlier than t1 + S, or starts executing not later than
t3 − S. If property (Q) does not hold then evidently Cmax(σ) ≥ 5R − S.

Now observe that job m + 5 starts executing later than time t0 and before
time t4, since otherwise Cmax(σ) ≥ 4R + R − S = 5R − S.

Job m+5 cannot complete executing at time t4, since otherwise any possible
arrangement of job m + 2 gives Cmax(σ) ≥ 4R + R − S = 5R − S (see Fig. 8).

m+1 m+3

m+3

m+5

m+1m+2

m+2

m+1 m+3

m+3

m+5

m+1m+2

m+2

Fig. 8. Job m + 5 cannon complete executing at time t4.

Job m + 5 cannot start executing at time t3, since otherwise any possible
arrangement of job m+2 also gives Cmax(σ) ≥ 4R+R−S = 5R−S (see Fig. 9).

m+1 m+3

m+3

m+5

m+1m+2

m+2

m+1 m+3

m+3

m+5

m+1m+2

m+2

Fig. 9. Job m + 5 cannot start executing at time t3.

Now consider the case when job m+5 starts executing at time t2. Job m+4
cannot start executing at time t0, since otherwise Cmax(σ) ≥ 4R + R − S =
5R − S (see Fig. 10). Job m + 4 cannot complete executing at time t1, since

m+1 m+3

m+3

m+5

m+1

m+2

m+2

t - S1

m+4

Fig. 10. The case when job m + 5 starts executing at time t2 and job m + 4 starts
executing at time t0.
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otherwise Cmax(σ) ≥ 5R (see Fig. 11). Job m + 4 cannot start executing at time
t1 since otherwise property (Q) does not hold (see Fig. 12 with the two opposite
arrangements of job m + 2)). Job m + 4 cannot complete executing at time t2,
since otherwise property (Q) does not hold as well (Fig. 13 shows three typical
arrangements of job m + 2).

m+1 m+3

m+3

m+5

m+1

m+2

m+2

t - S1

m+4

Fig. 11. The case when job m + 5 starts executing at time t2 and job m + 4 completes
executing at time t1.

m+1 m+3

m+3

m+5

m+1

m+2

m+2 m+4

S

S

m+1 m+3

m+3

m+5

m+1

m+2

m+2 m+4

SS

(1)

(2)

Fig. 12. The two opposite arrangements of job m + 2 when job m + 4 starts executing
at time t1.

m+1 m+3

m+3

m+5

m+1

m+2

m+2 m+4

S

2S

m+1 m+3

m+3

m+5

m+1

m+2

m+2 m+4

2S

m+1 m+3

m+3

m+5

m+1

m+2

m+2 m+4

S

Fig. 13. Three typical arrangements of job m +2 when job m +4 completes executing
at time t2.
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Finally we consider the case when job m + 5 completes executing at time t3.
Exactly the same argument as in the above case shows that job m + 4 starts
executing not earlier than time t1. Otherwise we have Cmax(σ) ≥ 5R − S. Job
m + 4 cannot complete executing at time t2, since otherwise property (Q) does
not hold (see Fig. 14 with the two opposite arrangements of job m + 2).

Thus we arrive at the (partial) schedule of big jobs shown in Fig. 4. If the
instance I of Partition has answer “No”, then at least one of the small jobs is
scheduled outside the whole construction of the big jobs, which gives Cmax(σ) ≥
6R. So the only possible schedule that gives Cmax(σ) ≥ 4R + 4S is depicted in
Fig. 6 and the instance I has answer “Yes”, as required.

(iii) Follows from the cases that we excluded when proved (ii). If Cmax(σ) >
4R + 4S for some feasible schedule σ, then Cmax(σ) is at least 5R − S. ��

m+1 m+3

m+3

m+5

m+1

m+2

m+2 m+4

S

S

m+1 m+3

m+3

m+5

m+1

m+2

m+2 m+4

S S

Fig. 14. The two opposite arrangements of job m + 2 when job m + 4 completes
executing at time t2.

Set R = kS. Then 4R + 4S = 4kS + 4S. The fraction
5kS − S

4kS + 4S
=

5k − 1
4k + 4

tends to 1.25 as k tends to infinity. Thus Lemma2 gives
Theorem 2. The existence of a (1.25 − ε)-approximation algorithm for solving
O2 |exact lj ∈ {0, L}| Cmax implies P=NP. ��

5 Conclusion

In this paper we establish inapproximability lower bounds for two special cases of
the two-machine Open Shop problem with exact delays. We omit here the algo-
rithmic issues concerning these problems. Note only that the algorithm developed
in [2] for the two-machine Flow Shop with exact delays can be applied to our
problems and provides a 3-approximation. Constructing better approximations
is a subject of further work.

Acknowledgments. The author would like to thank the anonymous reviewers for
their valuable comments and suggestions to improve the quality of the paper.

This research was supported by the Russian Science Foundation, grant 17-11-01021.



Inapproximability Lower Bounds for Open Shop Problems with Exact Delays 55

References

1. Ageev, A.A., Baburin, A.E.: Approximation algorithms for UET scheduling prob-
lems with exact delays. Oper. Res. Lett. 35(4), 533–540 (2007)

2. Ageev, A.A., Kononov, A.V.: Approximation algorithms for scheduling problems
with exact delays. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol.
4368, pp. 1–14. Springer, Heidelberg (2007). https://doi.org/10.1007/11970125 1

3. Ageev, A., Ivanov, M.: Approximating coupled-task scheduling problems with equal
exact delays. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos,
P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 259–271. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44914-2 21

4. Ageev, A.A.: Approximating the 2-machine flow shop problem with exact delays
taking two values. J. Global Optim. (To appear). A preliminary version can be
found at https://arxiv.org/abs/1711.00081

5. Blazewicz, J., Pawlak, G., Tanas, M., Wojciechowicz, W.: New algorithms for cou-
pled tasks scheduling – a survey. RAIRO Oper. Res. Recherche Operationnelle
46(4), 335–353 (2012)

6. Condotta, A.: Scheduling with due dates and time lags: new theoretical results and
applications. Ph.D. thesis, The University of Leeds, School of Computing, 156 pp.
(2011)

7. Condotta, A., Shakhlevich, N.V.: Scheduling coupled-operation jobs with exact
time-lags. Discrete Appl. Math. 160(16–17), 2370–2388 (2012)

8. Farina, A., Neri, P.: Multitarget interleaved tracking for phased array radar. IEEE
Proc. Part F Comm. Radar Signal Process. 127, 312–318 (1980)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

10. Giaro, K.: NP-hardness of compact scheduling in simplified open and flow shops.
Eur. J. Oper. Res. 130(1), 90–98 (2001)

11. Elshafei, M., Sherali, H.D., Smith, J.C.: Radar pulse interleaving for multi-target
tracking. Naval Res. Logist. 51(1), 79–94 (2004)

12. Izquierdo-Fuente, A., Casar-Corredera, J.R.: Optimal radar pulse scheduling using
neural networks. In: IEEE International Conference on Neural Networks, vol. 7,
pp. 4588–4591 (1994)

13. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Ann.
Discrete Math. 5, 287–326 (1979)

14. Hwang, F.J., Lin, B.M.T.: Coupled-task scheduling on a single machine subject to
a fixed-job-sequence. Comput. Ind. Eng. 60(4), 690–698 (2011)

15. Leung, J.Y.-T., Li, H., Zhao, H.: Scheduling two-machine flow shops with exact
delays. Int. J. Found. Comput. Sci. 18(2), 341–359 (2007)

16. Orman, A.J., Potts, C.N.: On the complexity of coupled-task scheduling. Discrete
Appl. Math. 72(1–2), 141–154 (1997)

17. Sherali, H.D., Smith, J.C.: Interleaving two-phased jobs on a single machine. Dis-
crete Optim. 2(4), 348–361 (2005)

18. Yu, W.: The two-machine shop problem with delays and the one-machine total
tardiness problem. Ph.D. thesis, Technische Universiteit Eindhoven, 136 pp. (1996)

19. Yu, W., Hoogeveen, H., Lenstra, J.K.: Minimizing makespan in a two-machine
flow shop with delays and unit-time operations is NP-hard. J. Sched. 7(5), 333–
348 (2004)

https://doi.org/10.1007/11970125_1
https://doi.org/10.1007/978-3-319-44914-2_21
https://arxiv.org/abs/1711.00081


Exact Solution of One Production
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Abstract. In this study, one variant of multi-product scheduling prob-
lem is considered. The problem asks to find the optimal selection of a set
of tasks to produce a given number of products in required amounts, to
allocate the task on units, and to find the order of execution of tasks for
each unit. The production rates for each task, the task-unit suitability
matrix, and the sequence dependent changeover times for task pairs are
given.

For the one-unit problem, two combinatorial algorithms are proposed:
a branch-and-bound algorithm and a parallel dynamic programming
algorithm. The last one is implemented using the CUDA library for
running on a Graphical Processing Unit (GPU). For the multiple-units
problem, both approaches are combined in a branch-and-bound algo-
rithm with bounds provided by the dynamic programming procedure.

The algorithms are compared with CPLEX solver applied to the con-
sidered problem formulated as a mixed integer linear program. Although,
the main limitation of using the proposed algorithms is a requirement
of large amount of memory, the experiments showed their superior per-
formance over CPLEX in terms of running time for rather large sized
instances. The advantage of parallelization and using the GPU is also
demonstrated.

Keywords: Production scheduling · Branch-and-bound
Dynamic programming · GPU computing · CUDA

1 Introduction

A modern chemical production plant is organized as a flexible automated system
that contains a number of multipurpose production units and produces a num-
ber of products including the final products and intermediate states. The control
of the production process involves two main problems: the first one is to choose
the most appropriate production plan (the set and the order of reactions to be
performed) that can satisfy the market requirements on amount and assortment
of the final product, and the second one is to build an optimal production sched-
ule for the chosen plan. In this paper, we consider a simplified multi-product
scheduling problem (MPSP) with several production units, which can operate
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in different modes. Each mode is referred to as a task and is characterized by
the type of produced product and the production rate. The key element of the
problem is the presence of sequence dependent changeover times necessary for
switching the unit from one mode to another. In case of a real production plant
one should consider complex relations between tasks and products, e.g. a partial
order on the set of tasks, unit blockage intervals, production recipes where some
products are used for production of other products, etc. (see [8,10]). Although
the problem considered in this paper does not involve such relations, it can be
used as a simplified model to provide a preliminary solution that can be further
detailed by other methods. For example, in the model of [10] there are ten main
production units (extruders) and many auxiliary units (storage, feed supply,
packing). The subproblem for the main units only can be regarded as the MPSP
considered here, and its solution helps to build the complete schedule (see [5] for
the description of this approach).

The problem is a generalization of the well known parallel machine scheduling
problem with sequence dependent setup time (see, e.g. [1]) where all of the given
jobs must be processed. The parallel machine scheduling problem with sequence
dependent setup time appears when in MPSP we choose exactly one task for each
product or if we consider a special case of MPSP, where each product is produced
only by one task [6]. Unfortunately, this cannot give a solution approach to
MPSP, because the selection of tasks and scheduling are closely related and so
for the most effective control they can not be considered separately. Earlier, a
genetic algorithm for MPSP was developed in [3] and then used for solving the
real life production problem [5].

For the MPSP, several exact algorithms are developed in this paper. For the
one-unit problem, two combinatorial algorithms are proposed: a branch-and-
bound algorithm and a parallel dynamic programming algorithm. The last one
is implemented using the CUDA library for running on a Graphical Process-
ing Unit (GPU). For the multiple-units problem, both approaches are combined
in a branch-and-bound algorithm with bounds provided by the dynamic pro-
gramming procedure. The computational results are given and discussed. The
preliminary results of this research for the one-unit problem were presented in [4].

The paper is structured as follows. In Sect. 2, we provide the problem descrip-
tion and its formulation as a mixed integer program (MIP). Section 3 presents
the dynamic programming and branch-and-bound algorithms for solving the
problem with one production unit. In Sect. 4 a multi-unit problem is considered
and the branch-and-bound algorithm is developed. Section 5 presents the exper-
imental results where the algorithms are evaluated and compared with a general
purpose MIP solver CPLEX.

2 Problem Formulation

The main objects in mathematical modeling of the production process are prod-
ucts, tasks and units. In this paper, we suppose that all raw materials are avail-
able without limit at any time, so we can consider only final products. For each
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product, its demand is given. Tasks represent the production processes (chemical
reactions) and are characterized by the type of produced product and the pro-
duction rate. We suppose that each task produces only one product. It is possible
that one product can be produced by different tasks that differ in technical set-
tings (heat, used catalysts, etc.) and hence may have different production rates
and setup times. A task must be performed on a unit suitable for it; here we
suppose that there is only one suitable unit for a task. When the unit is switched
from one task to another it requires cleaning and setting-up, which is modeled
as sequence-dependent changeover times. The problem asks to determine the set
of tasks to perform and find the sequence of tasks satisfying all the demands and
minimizing the completion time (Makespan).

Introduce the following notation:

S = {1, 2, ..., |S|} is a set of products;
I = {1, 2, ..., |I|} is a set of tasks;
U = {1, 2, ..., |U |} is a set of units;
Ds > 0 is the demand for product s, for all s ∈ S;
si ∈ S is the product produced by task i, for all i ∈ I;
ui ∈ U is the unit suitable for task i, for all i ∈ I;
ri > 0 is the production rate of task i, for all i ∈ I, i.e. the amount of product
si produced in one time unit (e.g., one hour);
Mi = Ds/ri is the duration of task i if it is performed, i ∈ I, s = si;
aij > 0 is the changeover time necessary to switch the unit from task i to
task j, where ui = uj .

In this paper, we also suppose that when a task is chosen it must produce
the whole amount of the corresponding product, i.e. we do not allow to split the
production of any product. In case of the one-unit problem when the changeover
times satisfy the triangle inequality, this condition holds automatically. Other-
wise, this condition is necessary to prevent fake tasks in the solution, i.e. the
tasks that produce nothing and are placed only to reduce changeover times.
Alternative way to treat such cases would be introducing the minimal duration
of each task, but this is not considered in this paper. For the multi-unit problem,
if a production of some product can be performed on different units, this involves
solving linear program for balancing the load times. In this paper, only the pure
combinatorial algorithms are considered, so this case is out of the scope.

MIP Model. For the convenience denote by Iu a set of tasks that can be per-
formed on unit u ∈ U and by Is a set of tasks that produce product s ∈ S. The
set of event points for each unit u is defined as Ku = {1, 2, ..., |Iu|}. Introduce
the variables:

xik ∈ {0, 1} such that xik = 1 iff task i is assigned to unit u = ui at event
point k ∈ Ku.
δi ≥ 0 is the duration of task i;
αuk is the duration of a changeover task on unit u between event points k
and (k + 1).
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The MIP model is as follows.

min Cmax, (1)

subject to ∑

i∈Iu

δi +
∑

k∈Ku

αuk ≤ Cmax, u ∈ U , (2)

∑

i∈Is

∑

k∈Kui

xik = 1, s ∈ S, (3)

∑

i∈Iu

xik ≤ 1, k ∈ Ku, u ∈ U , (4)

∑

i∈Is

riδi = Ds, s ∈ S, (5)

∑

k∈Kui

Mixik ≥ δi, i ∈ I, (6)

∑

i∈Iu

xi,k−1 ≥
∑

i∈Iu

xi,k, u ∈ U , k ∈ Ku, k > 1, (7)

αuk ≥
∑

j∈Iu

ajixj,k−1 − M(1 − xik), u ∈ U , i ∈ Iu, k ∈ Ku, k > 1, (8)

δi ≥ 0, i ∈ I, (9)

αuk ≥ 0, u ∈ U , k ∈ Ku, (10)

xik ∈ {0, 1}, i ∈ I, k ∈ Kui
. (11)

Objective function (1) minimizes total production and changeovers time
expressed in (2). Conditions (3) mean that each product is produced by exactly
one task placed in one position and (4) mean that each position is occupied
by not more than one task. In (5), value riδi expresses the amount of product,
produced by task i; in the solution it must equal the demand of the product.
Conditions (6) guarantee that the duration of task i is zero if the task is not
present in a schedule, and if it is included in a schedule the duration does not
exceed Mi. Conditions (7) ensure continuous usage of event points, i.e. if some
event point is occupied on some unit, then the previous event point is occupied
as well (this property is useful for modeling the changeover times). Constraints
(8) provide estimations of changeover times. If task i is placed in position k
after task j (i.e. xik = 1 and xj,k−1 = 1) then constraint (8) turns to inequality
αuk ≥ aji. In case xik = 0 inequality (8) trivially holds for sufficiently large
constant M , which can be defined as M = maxi,j aij .

In the special case, where each product corresponds to only one task, and
all the production rates equal 1, the problem becomes the well-known NP-hard
problem of finding the minimum Hamiltonian path. Note that the described
problem can be formulated as a special type of the Vehicle Routing Problem.
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Suppose that U is a set of vehicles that must sell the set of goods S in amounts
Ds, s ∈ S in the set of cities I. Each city buys only one type of goods. The
distribution process in a city requires certain time that depends on the city and
the amount of goods. Unlike the standard Vehicle Routing Problem [9], here it
is not required for the vehicles to visit all the cities or to return to the initial
point.

3 Solving the One-Unit Problem

3.1 Dynamic Programming Algorithm

The dynamic programming (DP) algorithm is an adaptation of the approach
by [7]. Consider the problem (1)–(11) with only one unit. For a set of products
P ⊂ S and operation i that does not produce any product from P let f(i, P )
be a makespan of an optimal schedule producing the set of products {si} ∪ P so
that operation i is allocated at the first place.

The values f(i, S) can be computed by the dynamic programming algorithm
as follows.

• For |P | = 1, i.e. P = {j} it holds

f(i, {j}) = Mi + aij + Mj . (12)

• Suppose that all f(i, P ′) are known for |P ′| < m, then for all P such that
|P | = m they can be found according to Bellman equations:

f(i, P ) = min
j∈P

{Mi + aij + f(j, P \ {j})}. (13)

Below we give the formal description of the dynamic programming algorithm.

Dynamic Programming Algorithm

1 Compute f(i, S):
1.1 For all tasks i, j such that si �= sj compute f(i, {j}) according to (12).
1.2 For t = 2 to |S| do

1.2.1 Iterate over all P ⊂ S and i ∈ I such that |P | = t, si �∈ P and
compute f(i, P ) according to (13).

2 Build the solution:
2.1 Choose the task i such that a0

i + f(i, S \ {si}) is minimal. Let the first
task in a sequence i(1) be the chosen task i and let P = S \ {si}.

2.2 For t := 2 to |S| do
2.2.1 Let j := i(t−1). Choose the task i such that aji + f(i, P \ {si}) is

minimal. Let the next task in a sequence i(t) be the chosen task i and
P := P \ {si}).
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A serious limitation to application of the DP algorithm is the amount of
required memory. Each execution of step 1.2.1 requires to save |I|×(|S|−1

t

)
values.

On the other hand, these calculation can be done in parallel, which can be easily
implemented for running on a Graphical Processing Unit (GPU). To do so, one
must define the so called kernel function (see the CUDA C Programming Guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html), which in
our case computes expression (13) for some particular P and i. Then the CUDA
framework runs the kernel for all P and i in parallel as much as possible. The iter-
ation over t on Step 1.2 are performed sequentially. Note that it is widely known
that GPU computing suits especially well for dynamic programming methods,
see, e.g. [2]. The computational experiments, which will be given in the follow-
ing, showed that the problems of an appropriate size are solved optimally quite
fast on the GPU.

3.2 Branch-and-Bound Algorithm

The proposed branch-and-bound algorithm is based on the straightforward enu-
meration of permutations. Though for the complete search the computation time
grows very fast with the problem size, a reasonable pruning strategy can reduce
the search space drastically. In this paper, the bounds are constructed using the
dynamic programming approach.

Branching Scheme. The branching rule combines branching by products and
by tasks. Starting from the empty schedule we repeatedly set each product to
be produced at first place. When some product is chosen, we assign a task
producing this product. For each fixed product and task, we recursively solve
the subproblem on the remaining products.

Minimal Production Time Bound. The first bound simply estimates the total
production and changeover time for each product separately. For some product
s ∈ S it is given by:

LM (s) = min
j∈Is

{
Mj + min

i�∈Is
aij

}
. (14)

For subset P ⊆ S bound LM (P ) is computed as the sum over all products of P.

Dynamic Bound. The second bound is based on the dynamic programming
approach of Held and Karp [7]. Suppose the process reached the level k, i.e. the
first k ≥ 1 products are fixed in the partial solution; the remaining products are
denoted by subset P . Let the fixed part finishes with task i, and suppose that in
the optimal solution of this branch the non-fixed part starts with task j. Define
LD(i, P ) as a lower bound on the optimal solution of the subproblem formed by
subset P including changeover time aij .

During the solving process, all the values of LD(i, P ) are stored in memory.
The required memory size can be estimated as O(m2n−1) which is the most

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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serious limitation on the use of dynamic approach. Initially the values of LD(i, P )
are set to zero and they are updated in the search process according to Bellman
equality:

LD(i, P ) = min
s∈P ,j∈Is

{aij + Mj + LD(j,P \ {s})}.

For the formal description of the algorithm, introduce task i0 that will be
allocated at the first place. This task does not produce any product and has zero
execution and changeover times.

Branch-and-Bound (BB) Algorithm
Procedure Level(k, i, P , f)
1. For each state s ∈ P :

1.1. For each operation j ∈ Is:
1.1.1. Let f := f + aij + Mj be an objective value of the partial solution.
1.1.2. LD(j, P \ {s}) := max{LD(j, P \ {s}), LM (j, P \ {s})}.
1.1.3. If f + LD(j, P \ {s}) < record and the set P \ {s} �= ∅

then proceed to the next level: call Level(k + 1, j, P \ {s}, f).
1.1.4. If P \ {s} = ∅, then update record := min{f , record}.
1.1.5. Calculate the bound Lsj = aij + Mj + LD(j, P \ {s}).

2. Calculate the minimal bound: L = min
s∈P ,j∈Is

Lsj .

3. Update the bound for the current branch: LD(i, P ) := max{L, LD(i, P )}.
End of procedure Level.

Start of the algorithm
1. Set record = +∞, i = i0, P = S, f = 0.
2. Call Level(1, i, P, f).
3. Result is the best found solution.

4 Solving the Multi-unit Problem

In this section, a Branch-and-bound (BB) algorithm for the problem with several
units is developed. Introduce some notation. We will say that product s can be
produced on unit u if there is some task producing product s that can be executed
on unit u. Denote by Su the set of products that can be produced on unit u ∈ U
and by Us the set of units that can produce product s ∈ S.

In the proposed algorithm, there is a preliminary procedure that for each
unit u enumerates all subsets of Su and for each subset Q ⊂ Su finds an optimal
schedule for producing the products from Q on unit u. Let f∗(u,Q) be the
objective value of such an optimal schedule. All the possible values f∗(u,Q) are
found by the DP algorithm described in Sect. 3.1: the DP is applied for the set
Su and when all values f(i, P ) as defined in Sect. 3.1 are available, one can find

f∗(u,Q) = min
s∈Q,i∈Is

f(i, Q \ {s}).

In the main part of the algorithm, the branching is performed by products
and units. First, the products are sorted by increasing of the number of suitable
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units, i.e. we suppose that for the set of products S = {1, 2, ...,m} it holds
|U1| ≤ |U2| ≤ ... ≤ |Um|. The partial solutions are represented by assigning units
to products: (w1, ..., w

′
m), where m′ ≤ m and ws is the unit assigned to product s.

For each unit u, such a solution defines the set of products Qu produced on this
unit, so the objective value for this unit is f∗(u,Qu), and the maximum value
over all the units gives the objective of the partial solution.

Branch-and-Bound Algorithm
Procedure Level(s);
1. For each unit u ∈ Us

1.1. Assign u for producing s. Let f be an objective value of the current partial
solution.

1.2. If s = m, then update record := min{f , record}.
1.3. If s < m and f < record then proceed to the next level: call Level(s + 1).

End of procedure Level.

Start of the algorithm
1. Set record = +∞.
2. Call Level(1).
3. Result is the best found solution.

5 Implementation and the Computer Experiments

The algorithms were implemented in C++ and compiled with MS Visual Studio
2008 compiler. The experiments were done on a computer with AMD Phenom
2.8 GHz CPU and GeForce GTS 450 GPU under Windows XP.

5.1 Experiments on One-Unit Problem

The test instances were generated randomly with the following parameters:
Ds ∈ [10, 200], aij ∈ [0, 10], ri ∈ [1, 10]. To eliminate the violations of the tri-
angle inequality, a correction procedure was applied: repeatedly find tasks i, j, k
such that aik > aij + ajk and set aik := aij + ajk until such cases cannot be
found.

The correspondence of tasks and products was set in such a way that every
product would have at least one task: tasks with number i < n were assigned
to products with the same number s = i; for the other tasks the product was
assigned at random.

In the first test case, the algorithms for the one-unit problem are compared
with the general-purpose MILP solver CPLEX, version 12.3 without any paral-
lelization (running on one processor core). The results are given in Table 1. The
first column shows the problem size. The next three columns give the results for
CPLEX. For the most of the instances, CPLEX was running rather long time
and was stopped by the time limit and an approximate solution was returned.
Each row corresponds to solution of five random instances. The table shows the
predefined time limit, the number of times CPLEX found an optimal solution,
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Table 1. Comparison of the algorithms for the one-unit problem on random instances

Size
|S|×|I|

CPLEX BB, time DP, time

Time lim. # opt. Ratio Act. ratio Simple Dyn. CPU GPU

8× 40 100 5 0% 0% <0.1 <0.1 <0.1 <0.1

10× 50 300 0 4.5% 0.1% <0.1 <0.1 <0.1 <0.1

12× 60 600 0 6.9% 0.8% 2.2 <0.1 0.4 <0.1

14× 70 600 0 6.1% 0.7% 21 0.2 2.3 0.1

16× 80 900 0 6.7% 0.5% 1200 2.8 13.5 0.2

18× 90 900 0 7.9% 1% - 17 76 0.6

20× 100 1800 0 7.1% 0.7% - 95 425 3

the average a posteriori approximation ratio provided by CPLEX, and the actual
approximation ratio calculated using optimal solutions found by the other algo-
rithms. For the BB and the DP algorithms, the average solving times in seconds
are given. The BB is tested in two cases: using only the simple bound LM and
the combined LM and LD bound which is showed in the corresponded columns.
One can see that all the proposed algorithms find optimal solutions in rather
short time, except for the case of the BB with the simple bound LM . The simple
bound can be used only for small sized problems, for the instances with more
that 16 products this version did not stop in a reasonable time. Using of dynamic
bound significantly reduces the running time of the BB algorithm so that it suits
well for solving rather large problems. The DP algorithm running on the CPU
does not show advantages, but on the GPU it gives the best result especially for
the largest instances, where it is about ten times faster than the BB algorithm
with the dynamic bound. Note that CPLEX provides quite good approximations
in the given time, but the approximation ratios provided by CPLEX itself are
rather poor.

The second experiment was done on the test instances with the modification
making them harder for the simple bound LM : for each task i find task j pro-
ducing different product and having maximal production time Mj , and divide
aji by five. Such modification decreases the changeover part in LM (s) for each
s in (14), but as soon as Mj is maximal it is hardly probable for the modified
aji to appear in an optimal solution. Similarly, for each task i a task j pro-
ducing different product and having minimal production time Mj is found, and
aji is multiplied by five. The results given in Table 2 confirm the arguments. As
above, each cell shows the average running time over five independently gener-
ated instances of the correspondent size. For the simple bound the slowing down
is drastic; the running time for bound LD is the same as for the purely random
instances. The performance of the variant with the dynamic bound shows quite
good stability. The running time of the DP algorithms does not depend on the
particular numerical data, but only on the problem size, so the results for the
DP are the same in Tables 1 and 2.
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Table 2. Comparison of the algorithms for the one-unit problem on hard instances

Size
|S|×|I|

CPLEX BB, time DP, time

Time lim. # opt. Ratio Act. ratio Simple Dyn. CPU GPU

8× 40 100 5 0% 0% <0.1 <0.1 <0.1 <0.1

10× 50 300 0 6% 0.2% <0.1 <0.1 <0.1 <0.1

12× 60 600 0 7.5% 0.4% 4.5 <0.1 0.4 <0.1

14× 70 600 0 6.6% 0.5% 43 0.3 2.3 0.1

16× 80 900 0 7.6% % >1 h 2.6 13.5 0.2

18× 90 900 0 8.1% % - 18 76 0.6

20× 100 1800 0 7% 1% - 108 425 3

5.2 Experiments on Multi-unit Problem

The test instances of the multi-unit problem were generated similarly, but with
the limit on the number of products that can be produced on one unit. To do
this, the task is assigned to a randomly chosen unit only among those units, for
which the number of products does not exceed this limit. In our experiments,
the limit is set to 22, which was sufficient for the preliminary DP procedure to
fit in the available memory of the GPU device.

The results are given in Table 3. As before, each row corresponds to five
random instances, the columns for CPLEX have the same meaning as in Table 1.
The results show that the BB algorithm can solve rather large instances in a
short time provided that the number of products for each unit is limited. Note
especially the row with dimension 40× 8× 150: the large average running time
happened due to one instance, the other four were solved within 15 s. As before,
the hard instances were generated and solved, the results given in Table 4 do not
show big difference from the ones from Table 3.

Table 3. Comparison of the algorithms for the multi-unit problem on random instances

Size
|S| × |U | × |I|

CPLEX BB

Time lim. # opt. Ratio Act. ratio Time

30× 6× 100 300 2 11.7% 2.7% <1

30× 6× 110 300 0 22.5% 5.8% <1

30× 6× 120 300 0 20% 4.6% 1.2

40× 8× 140 900 2 12.9% 1.9% <1

40× 8× 150 900 0 18.8% 4.1% 75

40× 8× 160 900 0 20.5% 4.3% 7.8
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Table 4. Comparison of the algorithms for the multi-unit problem on hard instances

Size
|S| × |U | × |I|

CPLEX BB

Time lim. # opt. Ratio Act. ratio Time

30× 6× 100 300 2 13.7% 4% <1

30× 6× 110 300 0 22.1% 3.4% <1

30× 6× 120 300 0 20.2% 4.7% 0.6

40× 8× 140 900 2 14% 4.6% 6

40× 8× 150 900 0 21% 5.3% 80

40× 8× 160 900 0 22% 5.9% 7

6 Conclusion

The algorithms proposed in this paper demonstrated good performance and
robustness on the medium-size test instances of the considered multi-product
scheduling problem. For the one-unit problem, the branch-and-bound algorithm
with dynamic bound has shown better performance compared to CPLEX. The
best results in terms of solving time were obtained by the dynamic programming
algorithm running on the graphical device. For the one-unit problem, the pro-
posed branch-and-bound algorithm has proven the ability to solve rather large
instances in a short time, provided that one unit has a limited number of tasks
and products to fit in memory in the preliminary dynamic programming step.
Further improvement could be achieved by development of more effective bounds
and using special subproblem selection rules; the ideas can be adopted from the
broad research on the Traveling Salesman Problem. It would also be useful to
apply the proposed algorithm as a local improvement procedure in heuristic
algorithms, e.g. the genetic algorithm, tabu search or other metaheuristics.
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Abstract. We consider the Euclidean Generalized Traveling Salesman
Problem in Grid Clusters (EGTSP-GC), a special geometric subclass of
the famous Generalized TSP, introduced by Bhattacharya et al. They
showed that the problem is strongly NP-hard if the number of clus-
ters k belongs to the instance and proposed the first polynomial time
algorithm with a fixed approximation ratio. Recently, we proved that
EGTSP-GC belongs to PTAS when k = O(log n) and k = n−O(log n).
Meanwhile, being the special case of GTSP, for any fixed k, EGTSP-
GC can be solved to optimality in polynomial time. Therefore, it seems
interesting to describe the most general case of the problem sharing this
property. Recently, by virtue of generalized pyramidal routes, we pro-
vided an optimal algorithm with O(n3) time complexity bound for the
case of EGTSP-GC, whose grid height does not exceed 2. In this paper,
we extend this result to the case of EGTSP-GC defined by a grid of any
fixed height.

Keywords: Generalized Traveling Salesman Problem
Pseudo-pyramidal tour · Polynomial time solvability

1 Introduction

The motivation of this paper is threefold. Firstly, we are motivated by the famous
NP-hardness result [12] obtained by Christos Papadimitriou for the Traveling
Salesman Problem (TSP) on the Euclidean plane. Another motivation of this
paper stems from recent parametric results both for classic TSP and its well-
known modification Generalized Traveling Salesman Problem (GTSP), which are
based on Balas precedence constraints [1,2,4] and generalized pyramidal tours [9,
11] and lead to efficient parameterized exact algorithms for these problems. Last
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(but not the least) motivation comes from recent achievements in computational
geometry. In particular, the results concerning a special geometric type of the
Euclidean GTSP, where the clusters are induced by cells of a regular planar grid
introduced in the recent paper [3].

Theoretical significance of the Papadimitriou’s result can hardly be overesti-
mated. Papadimitriou showed that the classic TSP is intractable even in such a
specific setting as considered in [12]. Meanwhile, the one-dimensional Euclidean
TSP is efficiently solvable. Therefore, the borderline between polynomially solv-
able instances of the Euclidean TSP and the NP-hard ones lies somewhere near
to univariate and two-dimensional settings of this problem, since the known
Papadimitriou intractability proof is based on polynomial time reduction of the
Exact Cover by 3-Sets (X3C) Problem to the specific, substantially non-flat
instances of the Euclidean TSP in the plane. Indeed, for any instance of the
X3C, this reduction assigns an appropriate instance of the Euclidean TSP hav-
ing the following properties:

(i) for any nodes p and q, the distance between them is at least 1;
(ii) the size of the nodeset grows proportionally to M × N , where N is the

number of covering sets and M is the size of the groundset of the X3C
instance to be reduced;

(iii) the smallest axis-aligned rectangular box enclosing the nodeset (on the
plane), whose width and height are proportional to the numbers N and M ,
respectively, i.e. both the height and the width of this box grow together
with the nodeset size and can not be fixed.

Consider a subclass of the Euclidean TSP on the plane consisting of the
instances, whose nodeset V satisfies the following additional constraints

separability: for some constants K and δ > 0 and each V ′ ⊂ V defining the
instance, any time when |V ′| ≥ K, the diameter of V ′ exceeds δ;

boundedness: V can be enclosed to a bounding-box, one of the sizes of which,
e.g. height, is fixed.

In this paper, we give a positive answer to the question: ‘Is the aforementioned
subclass of the Euclidean TSP tractable?’ for a special type of the separabili-
ty constraint defined by unit regular grid on the plane. Furthermore, we prove
polynomial time solvability for a generalization of such a subclass known as
Euclidean Generalized Traveling Salesman Problem in Grid Clusters defined by
a grid of a fixed height h (EGTSP-GC(h)).

The rest of the paper is structured as follows. In Sect. 2, we present the
setting of the EGTSP-GC and remind some known related results. In Section 3
we introduce pseudo-pyramidal tours for the GTSP and show that for any fixed
l, an l-pseudo-pyramidal tour of minimal cost can be found efficiently. In Sect. 4,
we show that, for any instance of the EGTSP-GC(h), each optimal tour is l(h)-
pseudo-pyramidal, for some value l(h) independent on the instance and n and
come to the final conclusion on tractability both of the EGTSP-GC(h) and the
corresponding subclass of the Euclidean TSP in the plane.
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2 Euclidean Generalized Traveling Salesman Problem
in Grid Clusters

The Generalized Traveling Salesman Problem (GTSP) is a widely known exten-
sion of the famous Traveling Salesman Problem (TSP). An instance of the
GTSP is defined by a complete edge-weighted graph G = (V,E, c), cost function
c : V 2 → R+, and partition V1 ∪ . . .∪Vk = V of the nodeset V onto k non-empty
disjoint clusters. A cyclic tour τ = vi1 , . . . , vik

is feasible, if it visits each cluster
Vij

exactly once. The goal is to find a feasible tour of the minimum cost

C(τ) =
k−1∑

j=1

c(vij
, vij+1) + c(vik

, vi1).

We consider a geometric setting of the GTSP known as the Euclidean Gene-
ralized Traveling Salesman Problem in Grid Clusters (EGTSP-GC) introduced
recently in [3] by Bhattacharya et al. For any instance of the EGTSP-GC, the
graph G, cost function c, and clustering V1 . . . , Vk have a geometric nature:

(i) the nodeset V of the graph G is a finite subset of the plane
(ii) for any u, v ∈ V , the cost c(u, v) = ‖u − v‖2 is defined by the Euclidean

distance between these points
(iii) clusters are determined implicitly by non-empty cells of the unit grid1 of

some height h and width w.

As for the general setting of the GTSP, the goal is to find any feasible tour of
the minimum cost (length).

Like the general case of the GTSP, the EGTSP-GC NP-hard, if the number of
clusters k belongs to the instance. In [3], for this case of the EGTSP-GC and for
any ε > 0, a (1.5+8

√
2+ε)-approximation algorithm was proposed. Augmented

by some additional constraints, the problem may become approximable much
better. For instance, the results of [5] imply that for any instance defined by a
grid with a fixed height h, such that the set of non-empty cells is connected, a
2-approximate solution can be found in a polynomial time.

In [7,8], three polynomial time approximation schemes for slow and fast
growing dependence of the number of clusters k on the size n of the node-
set were proposed. Actually, first two of them have time complexity bounds of
O(k2O(1/ε)2k)+O(n) and 2O(k)k4(log k)O(1/ε) +O(n), respectively, and remain
PTAS for k = O(log n). The last one, for any ε > 0, provides a (1 + ε)-
approximate solution in time of (n/k)k(log k)O(1/ε) depending on n polynomially
for k = np − O(log n).

In the sequel, we consider the subclass of the EGTSP-GC defined by grids of
height at most h, which is called EGTSP-GC(h). The special case of the EGTSP-
GC(h)consisting of the instances, whose clusters has a single node, satisfies the
aforementioned separability and boundedness conditions. Indeed, boundedness
is valid, obviously. Separability can be represented in terms of the following
assertion proven in [3].
1 Any non-empty cell induces a separate cluster, tights are broken arbitrarily.
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Assertion 1. For any subset V ′ ⊂ V of size |V ′| ≥ 5, any tree T spanning the
subset V ′ has weight at least 1.

In [10], we showed that any instance of the EGTSP-GC(2) can be solved to
optimality in time of O(n3). In this paper, we extend this result to the case of
any fixed h ≥ 1.

3 Pseudo-Pyramidal Tours

We proceed with some technical background concerning the general case of the
Generalized Traveling Salesman Problem (GTSP).

Any ordering of clusters V1, . . . , Vk induces the corresponding partial order
on the nodeset V as follows: for any u ∈ Vi and v ∈ Vj , u ≺ v iff i < j.

In the sequel, it is convenient to assume that, for any feasible tour τ =
vi1 , vi2 , . . . , vik

, its vertices are indexed by numbers of the clusters that contain
them, i.e. vij

∈ Vij
.

We consider a special type of feasible tours that are consistent with the
defined order. We call these tours pseudo-pyramidal [9].

Definition 1. A tour τ = v1, vi1 , . . . , vir
, vk, vjk−r−2 , . . . , vj1 is called an l-pse-

udo-pyramidal tour, if ip − ip+1 ≤ l and jq − jq+1 ≤ l for any 1 ≤ p ≤ r − 1 and
1 ≤ q ≤ k − r − 3.

Actually, any l-pseudo-pyramidal tour consists of two chains v1, vi1 , . . . , vk

and vk, . . . , vj1 , v1 that are ‘almost monotonous’ with respect to the aforemen-
tioned order. We denote them τ+ and τ−, respectively. Similarly to the classic
pyramidal tours (see, e.g. [6]), pseudo-pyramidal tours of minimum (or maxi-
mum) cost can be found efficiently.

Theorem 1. For any instance of the GTSP with an arbitrary non-negative cost
function, a minimum cost l-pseudo-pyramidal tour can be found in time O(k · l ·
nO(l)).

Proof. Generally, our proof follows to the proof of Theorem 3.7 from [11] for the
classic TSP. We start with some necessary notation. For any nodes u, v ∈ V ,
we introduce ordered pairs (u, v)+ and (u, v)−. Each pair induces a number of
subtours connecting in the graph G the nodes u and v. Any such a subtour P
is called feasible for the pair (u, v)+ (pair (u, v)−) if P belongs to the chain τ+

(chain τ−) of some l-pseudo-pyramidal tour in the graph G.
In the sequel, we consider sets S = {p1, p2, . . . , pm} of node-pairs pj intro-

duced above such that

(i) p1 = (u1, v1)+, p2 = (u2, u1)− for some node u1 ∈ V1 and nodes v1, u2 from
other clusters Vi1 and Vi2 ;

(ii) all the pairs are mutually disjunctive except the pairs p1 and p2.
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To any set S = {p1, p2, . . . , pm}, we assign a subset Q = Q(S) ⊂ V comprising
all the endpoints of the pairs pj ∈ S.

Given by an integer 1 ≤ i ≤ k − 1 and a set S, we consider collections of
feasible subtours P1, P2, . . . , Pm induced by the pairs p1, . . . , pm, respectively,
visiting all the clusters V1, . . . , Vi once (except the cluster V1, which is visited
twice by P1 and P2). By fl(i, S) we denote the total cost of the cheapest collection
among them. Evidently,

OPT = min
u1∈V1,uk∈Vk

min
{s,t}⊂V2∪...∪Vk−1

{fl(k − 1, {(u1, s)+, (t, u1)−})

+ w(s, uk) + w(uk, t)} (1)

To compute values of fl we use dynamic programming procedure as follows.

Case 1. Suppose S contains a pair p = (u, u)+ (or p = (u, u)−) for some u ∈ Vi.
In this case, fl(i, S) = fl(i − 1, S \ {p}).

Case 2. Suppose there exist a pair p = (u, v)+ ∈ S such that u ∈ Vi and v ∈ Vj .
Then, in the subtour P induced by the pair p, there is a node t succeeding the
node u. Since the resulting tour should be l-pseudo-pyramidal

fl(i, S) = min
t∈∪Vα,α∈[i−l,i)\Q

{fl(i − 1, S ∪ {(t, v)+} \ {p}) + w(u, t)}.

Case 3. Suppose p = (u, v)− ∈ S, where u ∈ Vi and v ∈ Vj . Then,

fl(i, S) = min
t∈∪Vα,α∈[1,i)\Q

{fl(i − 1, S ∪ {(t, v)−} \ {p}) + w(u, t)}.

Cases 4 and 5, where (v, u)+ ∈ S and (v, u)− ∈ S are similar to Case 3 and
Case 4, respectively.

Case 6. For any p = (ua, va) ∈ S, both nodes ua and va do not belong to Vi.
in this case, to compute fl(i, S), we suppose that some node u ∈ Vi is an inner
vertex of some Pa (defined by elements of S). Denote the predecessor and the
successor of u by s and t, respectively. Then,

fl(i, S) = min
{

min
(ua,va)

+∈S,
s∈∪Vα,α∈[1,i)\Q′

t∈∪Vβ ,β∈[i−l,i)\Q′

{fl(i − 1, S ∪ {(ua, s)+, (t, va)+} \ {p}) + w(s, u) + w(u, t)},

min
(ua,va)

−∈S,
s∈∪Vα,α∈[i−l,i)\Q′

t∈∪Vβ ,β∈[1,i)\Q′

{fl(i − 1, S ∪ {(ua, s)−, (t, va)−} \ {p}) + w(s, u) + w(u, t)}
}

,
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for Q′ = Q \ {ia, ja}, where ua ∈ Via
and va ∈ Vja

.
To estimate time complexity of the procedure proposed, we obtain upper

bounds for the number of possible states (i, S) and running time for each case,
respectively.

The former bound comes from the following observation. By construction,
for i = 1, there is a unique feasible state (1, {(1, 1)+, (1, 1)−}). For any i > 1,
each possible S consists of

(i) two pairs (u1, v1)+ and (u2, u1)− exactly for some u1 ∈ V1, v1 ∈ Vi1 , and
u2 ∈ Vi2 , where 1 �= i1 �= i2;

(ii) at most one pair, whose one or both ends belong to Vi;
(iii) at most l − 1 pairs featuring the representatives of clusters V2, . . . , Vi−1.

Any pair of this kind has a form (u, v)+ or (v, u)− for some u ∈ Vj , where
j ∈ [i − 1 − l, i).

Therefore, for any 1 ≤ i < k, the number of possible states (i, S) is

O

(
n3 · n2 ·

l−1∑

z=0

(2n)z

(
n

z

))
.

Since, for any z, the value fl(i, S) can be obtained in time O(z · n2) and the
final computations by formula (2) can be performed in time O(n3) the overall
complexity bound is

k · O(n7)
l−1∑

z=0

O

(
z · (2n)z

(
n

z

))
= O(kln2l+7) = O(klnO(l)).

Theorem is proved.

4 Optimal Tours of EGTSP-GC(h) are l(h)-Pseudo-
Pyramidal

In this section, for any fixed h, we show that there exist a number l = l(h), such
that all optimal tours of any EGTSP-GC(h) instance are l(h)-pseudo-pyramidal.
The clusters are numbered left to right and down to up (Fig. 1).

We proceed with some necessary notation. Without loss of generality, we
assume that the grid is axis-aligned. For any point p in the plane, by x(p) and
y(p) we denote coordinates of the point p. Then, anywhere, we do not distinguish
the tour τ and the piece-wise linear curve in the plane induced by this tour.
Further, suppose this curve contains some points p and q, by τ(p, q) we denote
a subtour of the τ connecting this points (and starting at the point p).

Theorem 2. For any instance of the EGTSP-GC(h), an arbitrary minimum
cost tour is (15h3 + 2h)-pseudo-pyramidal.
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Fig. 1: Cluster numbering.

For the sake of brevity, we provide a short sketch of the proof, its full version
will be published in a forthcoming paper.

The main idea of the proof is as follows. Suppose, we are given by an instance
of EGTSP-GC(h) defined by a grid of height h and width w. Consider an arbi-
trary feasible tour τ , which is obviously l-pseudo-pyramidal for some value l.
We show that, if l > 15h3 + 2h, the tour τ can be transformed locally to some
shorter l′-pseudo-pyramidal tour τ ′, for l′ ≤ l.

Without loss a generality we assume that the edge {u, v}, for which

u ∈ Vi1 , v ∈ Vi2 andi1 − i2 = l, (2)

belongs to the chain τ+ of the tour τ and the smallest t × h subgrid T . Further-
more, we assume that in T , the chain τ+ has the form as presented in Fig. 2.

Fig. 2: The subtour τ(1, 4) and the subgrid T containing the edge {u, v}.

Namely, for the first time, the chain τ+ enters T at point 1 and finally leaves
it at point 4. We denote this subtour by τ(1, 4). Of course, the tour τ can leave
T before it visits u or after visiting v, once or several times. Nevertheless, we
assume that the segments τ(1, 2) and τ(3, 4) connecting points 1 and 2 and
points 3 and 4, respectively, belong to the subgrid T completely. By virtue of
our notation, Eq. (2) and the numbering of clusters V1, . . . , Vk, we have t ≥ l/h.

Consider a horizontal projection of the line segment [u, v] connecting the
nodes u and v. By construction, its length s satisfies the equation t − 2 ≤ s ≤ t.
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Partition this projection onto 5 equal parts and consider the second and the
fourth vertical stripes obtained (of width s/5). We call these stripes S2 and
S4, respectively (see Fig. 3). For any edge {p, q} of the subtour τ(1, 4) (and the
corresponding line segment [p, q]), denote the length of [p, q] ∩ Sj by C(p, q, Sj).
Following to Assertion 1 we claim that

(i) in the subtour τ(1, 2), there exists an edge {p1, q1}, such that x(p1) ≤ x(q1)
and C(p1, q1, S2) ≥ 1/4;

(ii) in the subtour τ(3, 4), there exists an edge {p2, q2}, such that x(p2) ≤ x(q2)
and C(p2, q2, S4) ≥ 1/4;

Further, let [p1, q1] ∩ S2 = [p̄1, q̄1] and [p2, q2] ∩ S4 = [p̄2, q̄2]. Excluding from
the tour τ the edge {u, v} and the segments [p̄1, q̄1] and [p̄2, q̄2] and connecting
the points p̄1 with v, p̄2 with q̄1, and u with q̄2 directly we obtain a new tour τ ′,
after shortcutting by the triangle inequality.

Fig. 3: Shortening the tour τ
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Comparing the lengths C(τ) and C(τ ′) of the tours τ and τ ′, we obtain

ΔC = C(τ ′) − C(τ) ≤
3∑

i=1

√
(αis)2 + h2 − s − 1/2. (3)

In Eq. (3), we use notation α1s, . . . , α3s for the lengths of horizontal projections
of the line segments [p̄1, v], [p̄2, q̄1], and [u, q̄2], respectively. Since, by construc-
tion,

∑3
i=1 αi ≤ 1 and any αi ≥ 1/5,

ΔC ≤
3∑

i=1

(
√

(αis)2 + h2 − αis) − 1/2 =
3∑

i=1

h2

√
(αis)2 + h2 + αis

− 1/2

≤ h2
3∑

i=1

(2αis)−1 − 1/2 ≤ (15h2/s − 1)/2.

To obtain ΔC < 0, it is sufficient to ensure

s > 15h2. (4)

Since s ≥ t − 2, Eq. (4) is valid any time, when t > 15h2 + 2, which follows from
the equation

l > 15h3 + 2h. (5)

Thus, we showed that for any l satisfying Eq. (5), l-pseudo-pyramidal tour τ can
be shortened. Therefore, for any instance of the EGTSP-GC(h), each optimal
tour is (15h3 + 2h)-pseudo-pyramidal. Theorem 2 is proved.

Our main result is a simple consequence of Theorems 1 and 2.

Corollary 1. For any fixed h, any instance of the EGTSP-GC(h) can be solved
to optimality in time O(k · l(h) · nO(l(h))), where l(h) = 15h3 + 2h.

Employing the results of [11] together with Theorem 2, we obtain the similar
result for the Euclidean TSP on Grid of height h ETSP-GC(h), which appears
to be a special case of the EGTSP-GC(h) with k = n.

Corollary 2. Any instance of the ETSP-GC(h) can be solved to optimality in
time O(2l(h)nl(h)+3), where l(h) = 15h3 + 2h.

5 Conclusion

In this paper, we showed that the Euclidean Generalized Traveling Salesman
Problem in Grid Clusters (EGTSP-GC(h)) defined by a grid of the bounded
height is polynomially solvable. The same result is valid for the special type of
the Euclidean TSP on the plane.

The bound l(h) obtained in Theorem 2 seems to be untight and possibly
can be improved. In particular, the numerical evaluation carried out on random
instances of height 3 and n ∈ [100, 750] shows that the maximum observed value
of l(3) is equal to 4 and does not depend on n.
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Abstract. The paper presents the worst-case analysis of a polynomial-
time approximation algorithm for the maximum lateness scheduling
problem with parallel identical machines, arbitrary processing times and
arbitrary precedence constraints. The algorithm is a modification of the
Brucker-Garey-Johnson algorithm originally developed as an exact algo-
rithm for the case of the problem with unit execution time tasks and
precedence constraints represented by an in-tree. For the case when
the largest processing time does not exceed the number of machines,
we obtain a worst-case performance guarantee which is tight for arbi-
trary large instances of the considered maximum lateness problem. It
is shown that, if the largest processing time is greater than the num-
ber of machines, then the worst-case performance guarantee for the list
algorithm, obtained by Hall and Shmoys, is tight.

Keywords: Maximum lateness · Parallel machines
Precedence constraints

1 Introduction

The paper is concerned with the maximum lateness scheduling problem with
parallel identical machines. It is assumed that the tasks are partially ordered,
have arbitrary processing times, and the preemptions of tasks’ processing are not
allowed. Even a particular case of the considered problem where all due dates
are equal to zero, the number of machines is two, and the processing times are
equal to one or two units of time is NP-hard in a strong sense (see [1]).

For the case of the problem when the largest processing time does not exceed
the number of machines we obtain a tight worst-case performance guarantee for
a polynomial-time approximation algorithm that can be viewed as a modifica-
tion of the Brucker-Garey-Johnson algorithm [2]. The Brucker-Garey-Johnson
algorithm was originally developed as an exact algorithm for the unit execu-
tion time tasks and precedence constraints in the form of an in-tree. In order
c© Springer International Publishing AG, part of Springer Nature 2018
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to stress the origin of the presented approximation algorithm, in what follows,
it will be referred to as the Brucker-Garey-Johnson algorithm or simply as the
BGJ-algorithm. We also show that when the largest processing time is greater
than the number of machines, the worst-case performance guarantee for the list
algorithm, obtained in [3], is tight.

The considered scheduling problem can be stated as follows. A set N =
{1, . . . , n} of n tasks is to be processed on m > 1 identical machines subject
to precedence constraints in the form of an anti-reflexive, anti-symmetric and
transitive relation on N . If task i precedes task j in this relation, denoted by
i → j, then task i must be completed before task j can be processed. If i → j,
then i is called a predecessor of j and j is called a successor of i. The processing
of tasks commences at time t = 0. Task i ∈ N requires pi units of processing
time, where pi is integer. Each task can be processed on any machine. Each
machine can process at most one task at a time. If a machine starts processing
task i, then it continues to process this task for pi units of time, i.e. till the
completion. Each task i ∈ N has an associated due date di, where di is integer.
The goal is to minimise the maximum lateness

Lmax(σ) = max
j∈N

[Cj(σ) − dj ], (1)

where Cj(σ) is the completion time of task j in schedule σ. In the three-
filed notation (see, for example, [4,6]) the considered problem is denoted by
P | prec|Lmax, where P signifies parallel identical machines, prec indicates pres-
ence of precedence constraints, and Lmax specifies the objective function, i.e.
the criterion of maximum lateness. If all due dates are zero, the problem is
known as the makespan problem and is denoted in the three-field notation
by P | prec |Cmax; if all tasks have unit processing times, then the problem is
denoted by P | prec, pj = 1 |Lmax; if preemptions are allowed, then the problem
is denoted by P | prec, prmp |Lmax.

2 The Existing Literature and Our Contribution

There are two important cases related to the considered problem, which received
significant attention in the literature: the case where all tasks have unit execu-
tion times and the case where tasks have arbitrary processing times but can be
processed with preemptions. Despite its role in the theory and practice (see, for
example, [4–6]), much less is known about P | prec |Lmax, which is studied in
this paper. The complexity of this problem is due to the presence of arbitrary
precedence constraints, in particular even the P | prec, pj = 1 |Cmax problem is
NP-hard in the strong sense [1,7]. The P | prec, pj = 1 |Cmax problem remains
NP-hard in the strong sense when the precedence constraints are in the form
of a bipartite graph [8]. Furthermore, P | prec, pj = 1 |Lmax is NP-hard in the
strong sense even if the precedence constraints are in the form of an out-tree
[2]. Other contributors to the complexity are arbitrary processing times and the
restriction that a task’s processing cannot be preempted, for example P ||Cmax,
which does not have precedence constraints, is NP-hard in the strong sense [9].
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To the best of authors’ knowledge, all known worst-case performance guar-
antee results, with the only exception of [3], were obtained for P | prec |Cmax -
the particular case of the problem considered in this paper. For example, per-
formance guarantees for the precedence constraints in the form of an in-tree
can be found in [10,11]; for the constraints in the form of an out-tree and in
the form of chains - in [11]; and for the list algorithm - in [12,13]. Results
for P | prec, pj = 1 |Lmax and for P | prec, prmp |Lmax, related to that estab-
lished below, were presented in [14] and [15], respectively. A modification of the
Brucker-Garey-Johnson algorithm can be also found in [16], but [16] considers
scheduling with preemptions, which makes it closer to the original publication [2].

Following [3], it is convenient to replace the problem of the minimization
of the maximum lateness by the equivalent problem of the minimization of the
criterion G, which will be introduced below. In terms of this new problem our
results can be summarised as follows. If the largest processing time pmax ≤ m,
then

G(σ) ≤
(
2 − 1

m

)
G(σ∗) +

pmax

m
− pmin, (2)

where σ is the schedule constructed by the BGJ-algorithm, σ∗ is an opti-
mal schedule, pmax and pmin are the largest and the smallest task processing
times, correspondingly. The performance guarantee (2− 1

m ) refines for the BGJ-
algorithm the performance guarantee in [3]. Observe that if pmax = pmin = 1,
then (2) gives the same worst-case performance guarantee as in [14].

If pmax > m, we show that (2) does not hold and there exists a sequence
of instances of the considered maximum lateness problem such that, for the
corresponding sequence of optimal schedules σ∗

1 , σ
∗
2 , ..., σ

∗
k, ... and the sequence of

schedules σ1, σ2, ..., σk, ..., constructed by the BGJ-algorithm, G(σk) → 2G(σ∗
k).

This complements the result in [17], which established that it is NP-hard to
approximate P |prec|Cmax problem within any factor strictly less than two even
in the case of unit processing times.

In what follows we assume that task’s largest processing time pmax ≤ m.

3 BGJ-Algorithm

For each task i, the set of all successors of i will be denoted by K(i). That
is, K(i) = {j : i → j}. Let d = maxi∈N di. Then, the BGJ-algorithm can
be described as follows. First, the BGJ-algorithm computes for each i ∈ N the
axillary priority μi:

1. For every task i such that K(i) = ∅, set μi = d − di.
2. If all tasks i ∈ N have been assigned μi, then stop. Otherwise, select i ∈ N

such that μi has not yet been specified and for each j ∈ K(i), μj has been
specified.

3. Set
μi = max

{
d − di, max

j∈K(i)
(pj + μj)

}
(3)

and go to Step 2.
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After obtaining all μ’s, the BGJ-algorithm constructs a schedule, say σ, using
βi = pi + μi as a task’s priority. Let t be the earliest time when a machine is
available for a task’s processing, and tk signify the earliest time, when machine
k, 1 ≤ k ≤ m, is available time for a task’s processing.

1. Set t = t1 = ... = tm = 0.
2. If all tasks have been scheduled, then stop.
3. If no unscheduled task can be assigned for processing at time point t, or there

is no machine i such that ti = t, then go to Step 6.
4. Among all unscheduled tasks j, which can be assigned for processing at time

point t, choose a task with the largest βj . Let it be task g. Set Cg(σ) = t+pg.
5. Choose any machine i with ti = t and set ti = t + pg. Go to Step 2.
6. Set t = mini∈{k :tk>t} ti and then set ti = max{t, ti} for all 1 ≤ i ≤ m. Go to

Step 3.

Let Si(σ) = Ci(σ) − pi for i ∈ N , i.e. Si(σ) is the starting time of task i in the
schedule σ. Define G(σ) as

G(σ) = max
i∈N

[Si(σ) + βi] = max
i∈N

[Ci(σ) + μi]. (4)

The following lemma is similar to Lemma 1 in [14] and shows that (1) can be
replaced by (4).

Lemma 1. For any schedule σ,

G(σ) = Lmax(σ) + d. (5)

Proof. Among all tasks g such that Sg(σ)+βg = G(σ) select one with the largest
Sg(σ), say task i. If μi �= d − di, then by (3), there exists j ∈ K(i) such that
μi = pj + μj = βj . Observe that Sj(σ) ≥ Si(σ) + pi. Hence for this j,

G(σ) = Si(σ) + βi = Si(σ) + pi + μi ≤ Sj(σ) + μi = Sj(σ) + βj

which contradicts the choice of i because Si(σ) < Sj(σ). Hence, μi = d − di. On
the other hand, (3) implies that, for any g, μg ≥ d − dg. Then,

Lmax(σ) + d = max
g∈N

[Cg(σ) + d − dg] ≤ max
g∈N

[Cg(σ) + μg]

= G(σ) = Ci(σ) + μi = Ci(σ) + d − di ≤ Lmax(σ) + d,

which completes the proof. �	

4 Schedule’s Structure

For any integer t, the slot t is the time interval [t − 1, t]. Let σ be a schedule,
constructed by the BGJ-algorithm. Consider a task with the smallest Sj(σ)
among all j such that Sj(σ) + βj = G(σ). Let it be task g. A task i ∈ N is
complete, if βi ≥ βg. Otherwise, i is incomplete. It is easy to see that Sj(σ) ≤
Sg(σ) for any complete task j. A slot t ≤ Sg(σ) is complete if the number of
complete tasks, processed in this slot, equals m. A slot t ≤ Sg(σ), which is not
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complete, is incomplete. An incomplete slot t is Type I if at least one of the
following holds:
(t1) in the slot t, at least one machine is idle;
(t2) there exists an incomplete task j such that S(σ) = t − 1;
(t3) all tasks j, processed in the slot t, have the same starting times Sj(σ).

An incomplete slot t, which is not Type I, is Type II.

Lemma 2. For any Type II slot t, there exists a Type I slot t′ such that
(s1) t′ < t;
(s2) any slot τ such that t′ < τ ≤ t is Type II;
(s3) any incomplete task, processed in slot t, is also processed in slot t′.

Proof. By the definition of a Type II slot, all machines in slot t are busy and at
least one machine processes an incomplete task. Among all such incomplete tasks
i choose a task with the largest Si(σ). Let it be task j. Then, any incomplete
task, processed in slot t, is also processed in slot t̄ = Sj(σ) + 1. Furthermore, by
the definition of a Type I slot, the slot t̄ is Type I. Since slot t is Type II, t̄ < t.
The proof is concluded be repeating the procedure for every Type II time slot
t̄ < τ < t and choosing t′ as the largest integer among all integers t̄ such that
t̄ < t and the slot t̄ is Type I . �	
For any Type II slot t, the Type I slot t′, specified by (s1)-(s2)-(s3), will be
referred to as the supporting slot for the slot t.

Lemma 3. For any Type I slot t and any complete task j such that Sj(σ) ≥ t,
there exists a task q such that

Cq(σ) ≥ t and q → j. (6)

Proof. Suppose that either (t1) or (t2) holds or both. Then, the existence of q
satisfying (6) follows from the fact that the BGJ-algorithm does not schedule j
at t − 1. If (t1) and (t2) do not hold, then there are m tasks processed in the
slot t and, by virtue of (t3), all these tasks commence their processing at same
point in time t′ < t − 1. Since at least one of these tasks is incomplete and j
is not scheduled by the BGJ-algorithm at t′, then amongst these m tasks there
exists a task q such that Cq(σ) ≥ t′ + 1 and q → j. Because the same m tasks
are processed in slot t′ and in slot t, Cq(σ) ≥ t which gives (6). �	
Corollary 1. For any Type I slot t and any complete task j such that Sj(σ) ≥ t,
there exists a complete task i processed in the slot t and i → j.

Proof. Among all q, satisfying (6), select a task with the smallest Sq(σ), let it be
task i. Since i → j, by virtue of (3), βi ≥ pi +βj > βg, thus i is a complete task.
The proof is concluded by the observation that Si(σ) < t, because otherwise by
Lemma 3 there exists q such that Cq(σ) ≥ t and q → i → j, and therefore q → j,
which contradicts the selection of i. �	
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A sequence of tasks j1, ..., jk is a chain if, for each 1 ≤ i < k, ji → ji+1. The
following corollary is a direct consequence of Corollary 1 and the fact that g is
complete.

Corollary 2. There exists a chain of tasks j1, ..., jr such that jr → g and, for
any Type I incomplete slot, the chain has a task that is processed in this time
slot.

Lemma 4. At least one complete task is processed in each slot t such that 1 ≤
t ≤ Sg(σ).

Proof. If the slot t is complete, then the lemma follows from the definition of a
complete slot. If the slot t is a Type I incomplete slot, the lemma follows from
Corollary 1 and the fact that g is a complete task. If the slot t is a Type II
incomplete slot, then any incomplete task, processed in slot t, is also processed
in its supporting slot (see Lemma 2), which by the definition is a Type I slot. As
it has been proven above, at least one complete task is processed in it. Hence,
the number of incomplete tasks, processed in the supporting slot and therefore
in slot t, is less than m, and the lemma follows from the definition of a Type II
slot which implies that in this slot all m machines are busy. �	

Let Z be the set of all Type II slots and lz = |Z|. Denote the set of all
supporting Type I slots by Y , and let ly = |Y |. Denote by X the set of Type
I slots t which are not in Y , and let lx = |X|. Let cx, cy and cz be the total
processing time allocated to complete tasks in the slots of sets X, Y and Z,
respectively. Similarly, let ey and ez be the total processing time allocated to
incomplete tasks in the slots of sets Y and Z, respectively.

Lemma 5. The following statements hold:

cz + ez = mlz; (7)
ez ≤ ey(m − 1). (8)

Proof. By the definition, there is no idle machine in each Type II slot, i.e. the
number of tasks processed in the slot is m. Hence the total processing time
allocated to complete and incomplete tasks in the lz Type II slots is mlz, and (7)
holds. Consider a slot t in Y . The slot is associated with a number of consecutive
Type II slots, for which t is a supporting slot. By virtue of Lemma 2, each
incomplete task processed in each of these Type II slots is also processed in t.
Thus the number of these Type II slots does not exceed pmax − 1. Furthermore,
the number of incomplete tasks processed in each of the Type II slots, is not
greater than the number of incomplete tasks processed in t. Thus ez ≤ ey(pmax−
1) ≤ ey(m − 1). �	

5 Lower Bounds on the Optimal Value of G(σ)

Denote by σ∗ the optimal schedule for G(σ). Let a be the task with the maximum
completion time among all complete tasks in σ∗. The total time allocated to
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incomplete tasks in σ in slots t ≤ Sg(σ) is at least ey +ez. Denote by e∗ the part
of this time, which is allocated in slots t′ ≤ Ca(σ∗) in σ∗. It is easy to see that

max
j∈N

Cj(σ∗) ≥ Ca(σ∗) +
ey + ez − e∗

m
.

Denote by η = ey+ez−e∗
m and by δ = min{pa − pg, Ca(σ∗) − Cg(σ∗)}. Since a is

complete, βa ≥ βg and μa ≥ μg − (pa − pg). Thus

G(σ∗) ≥ max{Ca(σ∗) + μa, Cg(σ∗) + μg, Ca(σ∗) + η}
≥ Ca(σ∗) + max{μg − (pa − pg), μg − (Ca(σ∗) − Cg), η}
≥ Ca(σ∗) + max{μg − δ, η}. (9)

Let lc be the number of complete slots in σ. By virtue of (9), Lemmas 4 and 5,

G(σ∗) ≥ Ca(σ∗) + max{μg − δ, η}
≥ lc +

cx + cy + cz + e∗ + pg

m
+ η + max{μg − δ − η, 0}

≥ lc +
lx + ly + cz + e∗ + pg

m
+ η + max{μg − δ − η, 0}

= lc +
lx + ly + pg

m
+ lz +

ey

m
+ max{μg − δ − η, 0}. (10)

Assume that the first slot in σ is incomplete. Then (10) can be tightened. Let �
be the minimum processing time among all j such that Sj(σ) = 0. All slots t,
such that 1 ≤ t ≤ �, are Type I slots, since they satisfy the condition (t3). By
virtue of Corollary 1, Sj(σ∗) ≥ � for any complete task j with Sj(σ) ≥ �. Denote
by c� the processing time allocated to complete tasks in Type I slots after point
of time �. Then

Ca(σ∗) ≥ � + lc +
c� + cz + e∗ + pg

m
≥ � + lc +

lx + ly − � + pg

m
+

cz + e∗

m

≥ pmin

(
1 − 1

m

)
+ lc +

lx + ly + pg

m
+

cz + e∗

m
. (11)

Thus, (9) and (11) imply that

G(σ∗) ≥ pmin

(
1 − 1

m

)
+ lc +

lx + ly + pg

m
+

cz + e∗

m
+ η + max{μg − δ − η, 0}

= pmin

(
1 − 1

m

)
+ lc +

lx + ly + pg

m
+ lz +

ey

m
+ max{μg − δ − η, 0}. (12)

Consider a chain j1 → j2 → ... → jr → g, satisfying Corollary 2. Then (9) can
be presented as:

G(σ∗) ≥ Ca(σ∗) + max{μg − δ, η} = Cg(σ∗) + (Ca(σ∗) − Cg(σ∗)) + max{μg − δ, η}
≥

r∑
k=1

pjk + pg + δ + max{μg − δ, η} ≥ lx + ly + pg + max{μg, η + δ}. (13)

If the first slot in σ is complete, then (13) can be tightened. Observe that in this
case at least pmin first time slots in σ are complete. If Sj1(σ) = 0, then

G(σ∗) ≥ Cg(σ∗) + βg ≥
r∑

k=1

pjk + βg ≥ pmin + lx + ly + βg.
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If Sj1(σ) > 0, then according to the BGJ-algorithm either there exists h → j1 or
there exist another m tasks q with βq ≥ βj1 and Sq(σ) < Sj1(σ). Observe that
βj1 ≥ ∑r

k=1 pjk + βg, thus in these two cases

G(σ∗) ≥ max
j∈{k:βk≥βj1}

Sj(σ
∗) + βj1 ≥ pmin + βj1 ≥ pmin + lx + ly + βg.

The last two inequalities and (13) imply that

G(σ∗) ≥ max{pmin + lx + ly + βg, l
x + ly + pg + δ + η}

= lx + ly + pg +max{μg + pmin, δ + η}. (14)

6 Worst-Case Performance Guarantee

This lemma helps to simplify the proofs that follow.

Lemma 6. For nonnegative numbers a, b, h and α, where α < 1,

min{a, b} − (1 − α)max{a + h, b} ≤ bα − (1 − α)h. (15)

Proof. Denote by LHS the left hand side of (15) and consider the following cases:
If a ≤ b − h, then LHS = a − (1 − α)b and

a − (1 − α)b ≤ bα − h ≤ bα − (1 − α)h.

If b − h < a ≤ b, then LHS = a − (1 − α)(a + h) and
a − (1 − α)(a + h) = aα − (1 − α)h ≤ bα − (1 − α)h.

If a > b, then LHS = b − (1 − α)(a + h) and
b − (1 − α)(a + h) < b − (1 − α)(b + h) = bα − (1 − α)h. ��

Theorem 1.

G(σ) ≤
(
2 − 1

m

)
G(σ∗) +

pmax

m
− pmin, (16)

and the bound is tight.

Proof. The value of G(σ) can be expressed as:

G(σ) = Cg(σ) + μg = lc + lx + ly + lz + pg + μg. (17)

If the first slot in σ is complete, then by (10) and (17)

G(σ) − G(σ∗)

≤
(

1 − 1

m

)
(lx + ly + pg) + μg − ey

m
− max{μg − δ − η, 0}

=

(
1 − 1

m

)
(lx + ly + pg) − ey

m
+ min{δ + η, μg}. (18)

Furthermore, if the first slot in σ is complete, (14) and (18) imply that

G(σ)

≤
(
2 − 1

m

)
G(σ∗) − ey

m
+min{δ + η, μg} −

(
1 − 1

m

)
max{μg + pmin, δ + η}. (19)
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If the first slot in σ is incomplete, then by (12) and (17)

G(σ) − G(σ∗)

≤
(

1 − 1

m

)
(lx + ly + pg − pmin) + μg − ey

m
− max{μg − δ − η, 0}

=

(
1 − 1

m

)
(lx + ly + pg − pmin) − ey

m
+ min{δ + η, μg}. (20)

It is easy to see that if the first slot in σ is incomplete, (13) and (20) imply the
same result as (19):

G(σ) ≤
(

2 − 1

m

)
G(σ∗) − ey

m
+ min{δ + η, μg} −

(
1 − 1

m

)
(pmin + max{μg, δ + η})

≤
(

2 − 1

m

)
G(σ∗) − ey

m
+ min{δ + η, μg} −

(
1 − 1

m

)
max{μg + pmin, δ + η}.

Let a = μg, b = δ + η, h = pmin, α = 1
m . Then by virtue of (19) and Lemma 6,

G(σ) ≤
(

2 − 1

m

)
G(σ∗) − ey

m
+

δ

m
+

η

m
− pmin

(
1 − 1

m

)
. (21)

Taking into account (8),
η

m
− ey

m
=

ey + ez − e∗

m2
− ey

m
≤ ey + ey(m − 1)

m2
− ey × m

m2
= 0. (22)

Finally, by virtue of (22) and the fact that δ ≤ pmax − pmin, we obtain (16):

G(σ) ≤
(

2 − 1

m

)
G(σ∗) +

pmax − pmin

m
− pmin

(
1 − 1

m

)

=

(
2 − 1

m

)
G(σ∗) +

pmax

m
− pmin.

Observe that by direct substitution of (5) in (16) we obtain the equivalent bound
for the criterion of maximum lateness:

Lmax(σ) ≤
(
2 − 1

m

)
Lmax(σ∗) +

(
1 − 1

m

)
d +

pmax

m
− pmin.

To show that (16) is tight, we consider the partially ordered set of tasks depicted
by Fig. 1. The graph constitutes of km−1 identical sections and the last section.
The schedule σ constructed by the BGJ-algorithm and the optimal schedule σ∗
are depicted by Fig. 2. The values of G(σ) and G(σ∗) are the following

G(σ) = Cg(σ) + μg = [2pmin(m − 1) + pmin]︸ ︷︷ ︸
per section

(km − 1)︸ ︷︷ ︸
km−1sections

+ 2pmin(m − 1) + pmax + pmin︸ ︷︷ ︸
last section

+ pmax − pmin︸ ︷︷ ︸
μg

= 2pminkm2 − pminkm + 2pmax − pmin (23)
G(σ∗) = Ca(σ∗) + μa = mpmin︸ ︷︷ ︸

per section

(km − 1)︸ ︷︷ ︸
km−1 sections

+ mpmin + pmax︸ ︷︷ ︸
last section

+ 0︸︷︷︸
μa=0

= kpminm2 + pmax (24)

By substituting (23) and (24) in (16), we show that the bound is tight:(
2 − 1

m

)
G(σ∗) +

pmax

m
− pmin =

(
2 − 1

m

)
(kpminm2 + pmax) +

pmax

m
− pmin

= 2kpminm2 + 2pmax − kpminm − pmax

m
+

pmax

m
− pmin = G(σ). ��
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for the first km − 1 sections the
mth row is one pmin unit task

and for last section the mth row
is one pmin unit task and
m pmax units tasks

For pmin units tasks in row j

from the top:
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For the pmin units task in
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μ = pmax − pmin
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For the pmax units tasks in

the last row:
μ = 0
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Fig. 1. Set of tasks: pmax ≤ m

7 The Case When pmax > m

To show that (16) does not hold when pmax > m we consider the partially
ordered set of tasks depicted by Fig. 3. The graph constitutes of m identical
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sections and the last section. Let pmax = m + 1 and pmin = 1. The schedule σ
constructed by the BGJ-algorithm and the optimal schedule σ∗ are depicted by
Fig. 4.

G(σ) = Cg(σ) + μg = 2(m − 1) + 1︸ ︷︷ ︸
1st section

+ [m + 1 + 2(m − 2) + 1](m − 1)︸ ︷︷ ︸
2nd − mth sections

+ m + 1 + 2(m − 2) + m + 1 + 1︸ ︷︷ ︸
the last section

+ m2 − 1 + m︸ ︷︷ ︸
μg

= 4m2 + 2m − 1 (25)

G(σ∗) = Ca(σ∗) + μa

= m︸︷︷︸
per section

× (m + 1)︸ ︷︷ ︸
m+1 sections

+ m + 1︸ ︷︷ ︸
long tasks of last section

+ m2 − 1︸ ︷︷ ︸
μa=

∑
of incomplete tasks

m

= 2m2 + 2m (26)

When we substitute (25) and (26) in (16), the bound does not hold:(
2 − 1

m

)
G(σ∗) +

pmax

m
− pmin =

(
2 − 1

m

)
(2m2 + 2m) +

m + 1

m
− 1

= 4m2 + 4m − 2m − 2 + 1 +
1

m
− 1 = G(σ) − (1 − 1

m
) < G(σ).

If pmax > m, we show that there exists a sequence of instances of the con-
sidered maximum lateness problem such that, for the corresponding sequence of
optimal schedules σ∗

1 , σ
∗
2 , ..., σ

∗
k, ... and the sequence of schedules σ1, σ2, ..., σk, ...,

constructed by the BGJ-algorithm, G(σk) → 2G(σ∗
k). Consider the set of tasks

constituting of m pmax units tasks and one pmin units task. For any task j such
that pj = pmax let μj = 0, then βj = pmax. Denote pmin units task by g and let
μg = pmax − pmin, then βg = pmax. The BGJ-algorithm could assign Sj(σ) = 0
for any task j such that pj = pmax and Sg(σ) = pmax. Then

G(σ) = Cg(σ) + μg = pmax + pmin︸ ︷︷ ︸
Cg(σ)

+ pmax − pmin︸ ︷︷ ︸
μg

= 2pmax

In the optimal schedule σ∗ Sg(σ∗) = 0, and Sj(σ∗) = 0 for m − 1 tasks j such
that pj = pmax. For one task i such that pi = pmax Si(σ∗) = pmin. Then

G(σ∗) = Ca(σ∗) + μa = pmin + pmax;

G(σ) =
2pmax

pmax + pmin
G(σ∗) = (2 − 2pmin

pmax + pmin
)G(σ∗) → 2G(σ∗).
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Abstract. We consider the bicriteria asymmetric traveling salesman
problem (bi-ATSP). Optimal solution to a multicriteria problem is usu-
ally supposed to be the Pareto set, which is rather wide in real-world
problems. We apply to the bi-ATSP the axiomatic approach of the Pareto
set reduction proposed by V. Noghin. We identify series of “quanta of
information” that guarantee the reduction of the Pareto set for particular
cases of the bi-ATSP. An approximation of the Pareto set to the bi-ATSP
is constructed by a new multi-objective genetic algorithm. The experi-
mental evaluation carried out in this paper shows the degree of reduction
of the Pareto set approximation for various “quanta of information” and
various structures of the bi-ATSP instances generated randomly.

Keywords: Reduction of the Pareto set
Multi-objective genetic algorithm · Computational experiment

1 Introduction

The asymmetric traveling salesman problem (ATSP) is one of the most popular
problems in combinatorial optimization [2]. Given a complete directed graph
where each arc is associated with a positive weight, we search for a circuit visiting
every vertex of the graph exactly once and minimizing the total weight. In this
paper, we consider the bicriteria ATSP (bi-ATSP) which is a special case of the
multicriteria ATSP [5], where an arc is associated to a couple of weights.

The best possible solution to a multicriteria optimization problem (MOP) is
usually supposed to be the Pareto set [5,21], which is rather wide in real-world
problems, and difficulties arise in choosing the final variant. For that reason
numerous methods introduce some mechanism to treat the MOP: utility func-
tion, rule, or binary relation, so that methods are aimed at finding an “opti-
mal” solution with respect to this mechanism. However, some approaches do
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not guarantee that the obtained solution will be from the Pareto set. State-
of-the-art methods are the following [8]: multiattribute utility theory, outrank-
ing approaches, verbal decision analysis, various iterative procedures with man-
machine interface, etc. In this paper, we investigate the axiomatic approach of
the Pareto set reduction proposed in [19] which has an alternative idea. Here the
author introduced an additional information about the decision maker (DM)
preferences in terms of the so-called “quantum of information”. The method
shows how to construct a new bound of the optimal choice, which is narrower
than the Pareto set. Practical applications of the approach could be found
in [11,20].

As far as we know, the axiomatic approach of the Pareto set reduction has
not been widely investigated in the case of discrete optimization problems, and
an experimental evaluation has not been carried out on real-world instances. We
apply this approach to the bi-ATSP in order to estimate its effectiveness, i.e.
the degree of the Pareto set reduction and how it depends on the parameters
of the information about DM’s preferences. We identify series of “quanta of
information” that guarantee the reduction of the Pareto set for particular cases
of the bi-ATSP.

Originally the reduction is constructed with respect the Pareto set of the con-
sidered problem. Due to the strongly NP-hardness of the bi-ATSP we take an
approximation of the Pareto set in computational experiments. The ATSP cannot
be approximated with any constant or exponential approximation factor already
with a single objective function [2]. Moreover, in [1], the non-approximability
bounds were obtained for the multicriteria ATSP with weights 1 and 2. The results
are based on the non-existence of a small size approximating set. Therefore, meta-
heuristics, in particular multi-objective evolutionary algorithms (MOEAs), are
appropriate to approximate the Pareto set of the bi-ATSP.

Numerous MOEAs have been proposed to MOPs (see e.g. [3,4,14,28,30,31]).
There are three main classes of approaches to develop MOEAs, which are known
as Pareto-dominance based (see e.g. SPEA2 [31], NSGA-II [3,4], NSGA-III [28]),
decomposition based (see e.g. MOEA/D [14]) and indicator based approaches
(see e.g. SIBEA [30]). NSGA-II [4] has one of the best results in the literature
on multi-objective genetic algorithms (MOGAs) for the MOPs with two or three
objectives. In [3], a fast implementation of a steady-state version of NSGA-II is
proposed for two dimensions.

In [9,22], NSGA-II was adopted to the multicriteria symmetric traveling
salesman problem, and the experimental evaluation was performed on symmet-
ric instances from TSPLIB library [25]. To the best of our knowledge, there is
no adaptation of NSGA-II to the more general problem, where arc weights are
non-symmetric. In this paper, we propose a new MOGA based on NSGA-II to
solve the bi-ATSP using adjacency-based representation of solutions. A compu-
tational experiment is carried out on randomly generated instances. The results
of the experiment show the degree of the reduction of the Pareto set approxima-
tion for various “quanta of information” and various structures of the problem
instances.
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2 Problem Statement

An instance of the traveling salesman problem [2] (TSP) is given by a complete
graph G = (V,E), where V = {v1, . . . , vn} is the set of vertices and set E
contains arcs (or edges) between every pair of vertices in V . Each arc (or edge)
e ∈ E is associated with a weight d(e). The aim is to find a Hamiltonian circuit
(also called a tour) of minimum weight, where the weight of a tour C is the sum
of its arc (or edge) weights

∑
e∈C d(e). We denote by C all possible (n−1)! tours

of graph G. If graph G is undirected, we have Symmetric TSP (STSP). If G is
a directed graph, then we have Asymmetric TSP (ATSP).

In many situations, however, there is more than one objective function (cri-
terion) to optimize [5,21]. In case of the TSP, we might want to minimize the
travel distance, the travel time, the expenses, the number of flight changes, etc.
This gives rise to a multicriteria TSP, where Hamiltonian circuits are sought
that optimize several objectives simultaneously. For the m-criteria TSP, each
arc (or edge) e has a weight d(e) = (d1(e), . . . , dm(e)), which is a vector of
length m (instead of a scalar). The total weight of a tour C is also a vector
D(C) = (D1(C), . . . , Dm(C)), where Dj(C) =

∑
e∈C dj(e), j = 1, . . . , m. Given

this, the goal of the optimization problem could be the following: find a feasible
solution which simultaneously minimizes each coordinate. Unfortunately, such
an ideal solution rarely exists since objective functions are normally in conflict.

We say that one solution (tour) C∗ dominates another solution C if the
inequality D(C∗) ≤ D(C) holds. The notation D(C∗) ≤ D(C) means that
D(C∗) �= D(C) and Di(C∗) � Di(C) for all i ∈ I, where I = {1, 2, . . . ,m}.
This relation ≤ is also called the Pareto relation. A set of non-dominated solu-
tions is called the set of pareto-optimal solutions [5,21] PD(C) = {C ∈ C | �C∗ ∈
C : D(C∗) ≤ D(C)}. In discrete problems, the set of pareto-optimal solutions
is non-empty if the set of feasible solutions is non-empty, which is true for the
multicriteria TSP. If we denote D = D(C), then the Pareto set is defined as
P (D) = {y ∈ D | �y∗ ∈ D : y∗ ≤ y}. We assume that the Pareto set is specified
except for a collection of equivalence classes, generated by equivalence relation
C ′ ∼ C ′′ iff D(C ′) = D(C ′′).

In this paper, we investigate the issue of the Pareto set reduction for the
bi-ATSP.

3 Pareto Set Reduction

Axiomatic approach of the Pareto set reduction is applied to both discrete and
continuous problems. Due to consideration of the multicriteria ATSP we for-
mulate the basic concepts and results of the approach in terms of notations
introduced in Sect. 2. Further, we investigate properties of the bi-ATSP in the
scope of the Pareto set reduction.
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3.1 Main Approach

According to [19] we consider the extended multicriteria problem <C,D,≺ >:

– a set of all possible (n − 1)! tours C;
– a vector criterion D = (D1,D2, . . . , Dm) defined on set C;
– an asymmetric binary preference relation of the DM ≺ defined on set D.

The notation D(C ′) ≺ D(C ′′) means that the DM prefers the solution C ′ to C ′′.
Binary relation ≺ satisfies some axioms of the so-called “reasonable” choice,

according which it is irreflexive, transitive, invariant with respect to a linear
positive transformation and compatible with each criteria D1,D2, . . . , Dm. The
compatibility means that the DM is interested in decreasing value of each crite-
rion when values of other criteria are constant. Also, if for some feasible solutions
C ′, C ′′ ∈ C the relation D(C ′) ≺ D(C ′′) holds, then tour C ′′ does not belong to
the optimal choice within the whole set C.

In [19], the author established the Edgeworth–Pareto principle: under axioms
of “reasonable” choice any set of selected outcomes Ch(D) belongs to the Pareto
set P (D). Here the set of selected outcomes is interpreted as some abstract
set corresponded to the set of tours, that satisfy all hypothetic preferences of
the DM. So, the optimal choice should be done within the Pareto set only if
preference relation ≺ fulfills the axioms of “reasonable” choice.

In real-life multicriteria problems the Pareto set is rather wide. For this reason
V. Noghin proposed a specific information on the DM’s preference relation ≺ to
reduce the Pareto set staying within the set of selected outcomes [18,19]:

Definition 1. We say that there exists a “quantum of information” about the
DM’s preference relation ≺ if vector y′ ∈ Rm such that y′

i = −wi < 0, y′
j =

wj > 0, y′
s = 0 for all s ∈ I \ {i, j} satisfies the expression y′ ≺ 0m. In such

case we will say, that the component of criteria i is more important than the
component j with given positive parameters wi, wj.

Thus, “quantum of information” shows that the DM is ready to compromise
by increasing the criterion Dj by amount wj for decreasing the criterion Di by
amount wi. The quantity of relative loss is set by the so-called coefficient of
relative importance θ = wj/(wi + wj), therefore θ ∈ (0, 1).

As mentioned before the relation ≺ is invariant with respect to a linear
positive transformation. Hence Definition 1 is equivalent to the existence of such
vector y′′ ∈ Rm with components y′′

i = θ − 1, y′′
j = θ, y′′

s = 0 for all s ∈ I \ {i, j}
that the relation y′′ ≺ 0m holds. Further, in experimental study (Sect. 5) we
consider “quantum of information” exactly in terms of coefficient θ.

In [19], the author established the rule of taking into account “quantum of
information”. This rule consists in constructing a “new” vector criterion using
the components of the “old” one and parameters of the information wi, wj . Then
one should find the Pareto set of “new” multicriteria problem with the same set
of feasible solutions and “new” vector criterion. The obtained set will belong to
the Pareto set of the initial problem and give a narrower upper bound on the
optimal choice, as a result the Pareto set will be reduced.



Reduction of the Pareto Set in Bi-ATSP 97

The following theorem states the rule of applying “quantum of information”
and specifies how to evaluate “new” vector criterion upon the “old” one.

Theorem 1 [19]. Given a “quantum of information” by Definition 1, the inclu-
sions Ch(D) ⊆ P̂ (D) ⊆ P (D) are valid for any set of selected outcomes
Ch(D). Here P̂ (D) = D(PD̂(C)), and PD̂(C) is the set of pareto-optimal solu-
tions with respect to m-dimensional vector criterion D̂ = (D̂1, . . . , D̂m), where
D̂j = θDi + (1 − θ)Dj, D̂s = Ds for all s �= j.

Thus, “new” vector criterion D̂ differs from the “old” one only by less impor-
tant component j. In [12,17,29] one can find results on applying particular col-
lections of “quanta of information” and scheme to arbitrary collection.

3.2 Pareto Set Reduction in Bi-ATSP

Here we consider the bi-ATSP and its properties with respect to reduction of
the Pareto set.

Obviously, the upper bound on the cardinality of the Pareto set P (D) is
(n − 1)!, and this bound is tight [6]. In [26] authors established the maximum
number of elements in the Pareto set for any multicriteria discrete problem, that
in the case of the bi-ATSP gives the following upper bound: |P (D)| � min{l1, l2},
where li is the number of different values in the set Di = Di(C), i = 1, 2. In the
case of the bi-ATSP with integer weights we get li � max{Di} − min{Di} + 1,
where values max{Di} and min{Di} can be replaced by upper and lower bounds
on the objective function Di, i = 1, 2.

Now, we go to establish theoretical results estimating the degree of the Pareto
set reduction. Let us consider the case when all elements of the Pareto set lay
on principal diagonal of some rectangle in the criterion space.

Theorem 2. Let P (D) = {(y1, y2) : y2 = a − ky1, y1 ∈ D1, y2 ∈ D2}, where
a and k are arbitrary positive constants. Suppose the 1st criterion D1 is more
important than the 2nd one D2 with coefficient of relative importance θ′. If θ′ �
k/(k+1), then the reduction of the Pareto set P̂ (D) consists of only one element.
In the case of θ′ < k/(k + 1) the reduction does not hold, i.e. P̂ (D) = P (D).

Theorem 3. Let in Theorem 2, otherwise, the 2nd criterion D2 is more impor-
tant than the 1st one D1 with coefficient of relative importance θ′′. Then the
reduction of the Pareto set P̂ (D) has only one element if θ′′ � 1/(k + 1), and
P̂ (D) = P (D) if θ′′ < 1/(k + 1).

Particularly, if the feasible set D lay on the line y2 = a − ky1, we have
P (D) = D, and the conditions of Theorems 2 and 3 hold. In such case we say,
that criteria D1 and D2 contradict each other with coefficient k.

Obviously, for any bi-ATSP instance there exists the minimum number of
parallel lines with a negative slope, that all elements of the Pareto set belong to
them. Thus we have
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Corollary 1. Let P (D) =
⋃p

i=1{(y1, y2) : y2 = ai − ky1, y1 ∈ D1, y2 ∈ D2},
where ai, i = 1, . . . , p, and k are arbitrary positive constants. If criterion D1

is more important than criterion D2 with coefficient of relative importance θ′

and θ′ � k/(k + 1), or criterion D2 is more important than criterion D1 with
coefficient of relative importance θ′′ and θ′′ � 1/(k + 1), then |P̂ (D)| � p.

Further, we identify the condition that guarantees excluding at least one
element from the Pareto set.

Proposition 1. Let the criterion Di is more important than the criterion Dj

with coefficient of relative importance θ. Suppose that there exist such tours
C ′, C ′′ ∈ PD(C) that the following inequality holds:

Di(C ′) − Di(C ′′)
Dj(C ′′) − Dj(C ′)

� 1 − θ

θ
, (1)

then |P (D)| − |P̂ (D)| � 1. Here i, j ∈ {1, 2}, i �= j.

The difficulty in checking inequality (1) is that we should know two ele-
ments of the Pareto set. Meanwhile the tours Cmin1 = argmin{D1(C), C ∈ C},
Cmin2 = argmin{D2(C), C ∈ C} are pareto-optimal by definition.

The proofs of Theorems 2, 3 and Proposition 1 are based on geometrical
representation of the Pareto set reduction [19]. The results of this subsection are
true for any discrete bicriteria problem.

4 Multi-Objective Genetic Algorithm

The genetic algorithm is a random search method that models a process of
evolution of a population of individuals [24]. Each individual is a sample solution
to the optimization problem being solved. Individuals of a new population are
built by means of reproduction operators (crossover and/or mutation).

4.1 NSGA-II Scheme

To construct an approximation of the Pareto set to the bi-ATSP we develop a
MOGA based on Non-dominated Sorting Genetic Algorithm II (NSGA-II) [4].
The NSGA-II is initiated by generating N random solutions of the initial pop-
ulation. Then the population is sorted based on the non-domination relation (the
Pareto relation). All individuals of the population which are not dominated by
any other individual compose the first non-dominated level and are marked with
the rank of 1, all individuals which are dominated by at least one individual of the
rank i−1 compose the i-th non-dominated level and are marked with the rank of i,
i = 2, 3, . . . . To get an estimate of the density of solutions surrounding a solution
x in a non-dominated level of the population, two nearest solutions on each side
of this solution are identified for each of the objectives. The estimation of solution
x is called crowding distance and it is computed as a normalized perimeter of the
cuboid formed in the criterion space by the nearest neighbors.
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The NSGA-II is characterized by the population management strategy known
as generational model [24]. Here the next population Pt is constructed from the
best N solutions of the current population Pt−1 and an offspring population
Qt−1 created from Pt−1 by applying selection, crossover, and mutation. The
best solutions are selected using the rank and the crowding distance. Between
two solutions with differing non-domination ranks, we prefer the solution with
the lower rank. If both solutions belong to the same level, then we prefer the
solution with the bigger crowding distance. The formal scheme of the NSGA-II
is as follows:

Non-dominated Sorting Genetic Algorithm II
Step 1. Construct the initial population P0 of size N and assign t := 1. The
population P0 is sorted based on the non-domination relation. The crowding
distances of individuals are calculated.
Step 2. Repeat steps 2.1–2.4 until some stopping criterion is satisfied:

2.1. Create offspring population Qt−1.
Steps 2.1.1–2.1.4 are performed N times:
2.1.1. Choose two parent individuals p1,p2 from the population.
2.1.2. Apply mutation to p1 and p2 and obtain individuals p′

1,p
′
2.

2.1.3. Create an offspring p′, applying a crossover to p′
1 and p′

2.
2.1.4. Put individual p′ into population Qt−1.

2.2. Form a combined population Rt−1 := Pt−1 ∪ Qt−1. The popula-
tion Rt−1 is sorted based on the non-domination relation. The crowding
distances of individuals are calculated.
2.3. Construct population Pt from the best individuals of population
Rt−1 using the rank and the crowding distance to select solutions.
2.4. Set t := t + 1.

One iteration of the presented NSGA-II is performed in O(mN2) time as
shown in [4]. In our implementation of the NSGA-II four individuals of the initial
population are constructed by a problem-specific heuristic presented in [7] for the
ATSP with one criterion. The heuristic first solves the Assignment Problem, and
then patches the circuits of the optimum assignment together to form a feasible
tour in two ways. So, we create two solutions with each of the objectives. All
other individuals of the initial population are generated randomly.

Each parent on Step 2.1.1 is chosen by s-tournament selection: sample ran-
domly s individuals from the current population and select the best one by
means of the rank and the crowding distance.

4.2 Recombination and Mutation Operators

The experimental results of [7,27] for the TSP indicate that reproduction oper-
ators with the adjacency-based representation of solutions have an advantage
over operators, which emphasize the order or position of the vertices in par-
ent solutions. We suppose that a feasible solution to the bi-ATSP is encoded
as a list of arcs. In the recombination operator on Step 2.1.3 we use a variant
of the Directed Edge Crossover (DEC), which may be considered as a “direct
descendant” of Edge Crossover [27] originally developed for the STSP.
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The DEC operator is respectful [23], i.e. all arcs shared by both parents are
copied into the offspring. The remaining arcs are selected so as the preference
is given to those arcs that are contained in at least one of the parents. Arcs
are inserted taking into account the non-violation of sub-tour elimination con-
straints. If the obtained offspring is equal to one of the parents, then the result of
the recombination is calculated by applying the well-known shift mutation [23]
to one of the two parents with equal probability. This approach allows us to
avoid creating a clone of parents and to maintain a diverse set of solutions in
the population.

The mutation is also applied to each parent on Step 2.1.2 with probability
pmut, which is a tunable parameter of the MOGA. We use a mutation operator
proposed in [7] for the one-criteria ATSP. It performs a random jump within 3-opt
neighborhood, trying to improve a parent solution in terms of one of the criteria.
Each time one of two objectives is used in mutation with equal probability.

5 Computational Experiment

This section presents the results of the computational experiment on the bi-
ATSP instances. Our MOGA (NSGA-II-biATSP) was programmed in C++ and
tested on a computer with Intel Core i5 3470 3.20 GHz processor, 4 Gb RAM.

Various meta-heuristics and heuristics have been developed for the multicri-
teria STSP, such as Pareto local search algorithms, MOEAs, multi-objective
ant colony optimization methods, memetic algorithms and others (see, e.g.,
[9,10,13,15,22]). However, we have not found in the literature any multi-
objective metaheuristic proposed specifically to the multicriteria ATSP and
experimentally tested on instances with non-symmetric weights of arcs.

We carried out the preliminary study to evaluate the performance of our GA
on bi-ATSP instances generated randomly with n = 12. The Pareto sets were
found by an exact algorithm [19]. The generational distance [28] and the inverted
generational distance [28] were involved as performance metrics. The experimen-
tal evaluation showed that the proposed MOGA yields competitive results. The
values of metrics decrease not less than 7 times during 5000 iterations, and the
final values are approximately 0.6 on average. The number of elements in the
final approximation is at least 80% of |P (D)|. This indicates the convergence
of the approximation obtained by NSGA-II-biATSP to the Pareto set and its
diversity. Here the detailed description of the preliminary study is omitted, as
the main goal of the paper is to investigate the axiomatic approach of the Pareto
set reduction in the case of bi-ATSP.

Note that there exists MOOLIBRARY library [16], which contains instances
of some discrete multicriteria problems. However, the multicriteria TSP is not
presented in this library, so we generate the bi-ATSP test instances randomly
and construct them from the ATSP instances of TSPLIB library, as well.

The reduction of the Pareto set approximation was tested on the follow-
ing medium-size problem instances of four series with n = 50: S50[1,10][1,10],
S50[1,20][1,20], S50[1,10][1,20], S50contr[1,2][1,2]. Each series consists of five
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problems with integer weights d1(·) and d2(·) of arcs randomly generated from
intervals specified at the ending of the series name. In series S50contr[1,2][1,2]
the criteria contradict each other with coefficient 1, i.e. weights are generated
so that d2(e) = 3 − d1(e) for all e ∈ E. We also took seven ATSP instances
of series ftv from TSPLIB library [25]: ftv33, ftv35, ftv38, ftv44, ftv47, ftv55,
ftv64. The ftv collection includes instances from vehicle routing applications [25].
These instances compose series denoted by SftvRand, and their arc weights are
used for the first criterion. The arc weights for the second criterion are generated
randomly from interval [1, dmax

1 ], where dmax
1 is the maximum arc weight on the

first criterion. We set the population size N = 100, the tournament size s = 10,
and the mutation probability pmut = 0.1. To construct an approximation of the
Pareto set A for each instance we run NSGA-II-bi-ATSP once and the run con-
tinued for 5000 iterations.

We compare two cases when the 1st criterion is more important than the 2nd
criterion (1st-2nd case), and vice versa (2nd-1st case). The degree of the reduc-
tion of the Pareto set approximation was investigated with respect to coefficient
of relative importance varying from 0.1 to 0.9 by step 0.1. On all instances for each
value of θ we re-evaluate the obtained approximation in terms of “new” vector cri-
terion D̂ upon the formulae from Theorem 1. Then by the complete enumeration
we find the Pareto set approximation in “new” criterion space that gives us the
reduction of the Pareto set approximation in the initial criterion space.

The number NA of elements of the Pareto set approximation A and the
percentage of the excluded elements from set A are presented on average over
series in Tables 1 and 2. Let Δi be the difference between the maximum and
minimum values of the Pareto set approximation on the i-th criterion, i = 1, 2.
The value δ21 = Δ2/Δ1 indicates the ratio between diversities of criteria of set A.

Table 1. Reduction of the Pareto set approximation in the 1st-2nd case

Series θ NA aver δ21 aver

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S50contr[1,2][1,2] 0 0 0 0 98.04 98.04 98.04 98.04 98.04 51 1

S50[1,10][1,10] 4.42 17.76 41.64 60.43 72.32 78.61 90.29 95.92 97.78 45.8 1.02

S50[1,20][1,20] 5.97 23.09 38.15 59.92 73.69 79.91 90.18 94.71 98.05 57.4 1.07

SftvRand 6.63 16.47 27.99 41.31 58.31 72.96 86.24 93.7 96.71 61.86 1.56

S50[1,10][1,20] 2.19 9.02 19.18 28.3 45.91 61.69 71.79 83.39 95.46 51.6 2.08

For series S50[1,10][1,10], S50[1,20][1,20] when θ = 0.5 approximately 70%
of elements of the set A are excluded, and when θ = 0.7 less than 10% of
elements are remained. The statement is valid for both 1st–2nd and 2nd–1st
cases. Series SftvRand shows different results: in the 1st–2nd case the reduction
occurs “almost uniformly”, i.e. the value of θ is almost proportional to the degree
of the reduction, in the 2nd–1st case the condition θ = 0.5 gives approximately
90% of the excluded elements. On series S50[1,10][1,20] in the 1st–2nd case the
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Table 2. Reduction of the Pareto set approximation in the 2nd-1st case

Series θ NA aver δ21 aver

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S50contr[1,2][1,2] 0 0 0 0 98.04 98.04 98.04 98.04 98.04 51 1

S50[1,10][1,10] 3.7 19.8 37.92 52.85 67.38 80.58 92.92 97.32 97.32 45.8 1.02

S50[1,20][1,20] 7.79 21.1 36.73 54.5 69.8 82.93 93.34 97.2 97.91 57.4 1.07

SftvRand 17.42 36.73 59 74.33 87.37 92.04 97.67 98.11 98.36 61.86 1.56

S50[1,10][1,20] 19.91 42.97 62.21 77.39 92.41 95.54 97.15 98.02 98.02 51.6 2.08

degree of the reduction grows slowly as θ tends to 1 in comparison to other series,
and in the 2nd–1st case more than 90% of elements are eliminated at θ = 0.5.

Also, we note that on series S50[1,10][1,20] (SftvRand) for θ = 0.5 the per-
centage of the excluded elements in the 2nd–1st case is approximately 2 (1.5)
times greater than the percentage of the excluded elements in the 1st–2nd case.
Note that δ21 ≈ 2 for series S50[1,10][1,20] and δ21 ≈ 1.5 for series SftvRand.
Therefore, the ratio between diversities of values of the Pareto set approximation
on components of criterion influences on the degree of the reduction in the same
proportion when θ = 0.5 (each criterion has relatively the same importance).

On series S50contr[1,2][1,2], where the components of criterion contradict
each other with coefficient 1, we do not have a reduction when θ < 0.5, and the
reduction up to one element takes place when θ � 0.5. Thus, the results of the
experiment confirm the theoretical results of Subsect. 3.2. Moreover, identical
character of the reduction for both 1st–2nd and 2nd–1st cases occurs only on
series S50[1,10][1,10], S50[1,20][1,20], and S50contr[1,2][1,2], which have the same
diversity and distribution with respect to both criteria.

Based on the results of the experiment we suppose that the degree of the
reduction of the Pareto set approximation will be similar for the large-size prob-
lems with the same structure as the considered instances.

6 Conclusion

We applied to the bicriteria ATSP the axiomatic approach of the Pareto set
reduction proposed by V. Noghin. For particular cases the series of “quanta
of information” that guarantee the reduction of the Pareto set were identified.
An approximation of the Pareto set to the bicriteria ATSP was found by a
new generational multi-objective genetic algorithm. The experimental evaluation
indicated the degree of reduction of the Pareto set approximation for various
“quanta of information” and various problem structures.

Further research may include construction and analysis of new classes of mul-
ticriteria ATSP instances with complex structures of the Pareto set. It is also
important to consider real-life ATSP instances with real-life decision maker and
investigate effectiveness of the axiomatic approach for them. Moreover, develop-
ing a faster implementation of the multi-objective genetic algorithm with steady-
state replacement and local search procedures has great interest.
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multi-criteria TSP(1,2). In: Lískiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS,
vol. 3623, pp. 329–340. Springer, Heidelberg (2005). https://doi.org/10.1007/
11537311 29

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation. Springer, Heidelberg (1999). https://
doi.org/10.1007/978-3-642-58412-1

3. Buzdalov, M., Yakupov, I., Stankevich, A.: Fast implementation of the steady-
state NSGA-II algorithm for two dimensions based on incremental non-dominated
sorting. In: Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation (GECCO 2015), pp. 647–654 (2015). https://doi.org/10.1145/
2739480.2754728

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

5. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-27659-9

6. Emelichev, V.A., Perepeliza, V.A.: Complexity of vector optimization problems on
graphs. Optim. J. Math. Program. Oper. Res. 22(6), 906–918 (1991). https://doi.
org/10.1080/02331939108843732

7. Eremeev, A.V., Kovalenko, Y.V.: Genetic algorithm with optimal recombination
for the asymmetric Travelling Salesman Problem. In: Lirkov, I., Margenov, S. (eds.)
LSSC 2017. LNCS, vol. 10665, pp. 341–349. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-73441-5 36

8. Figueira, J.L., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State
of the Art Surveys. Springer, New York (2005). https://doi.org/10.1007/b100605

9. Garcia-Martinez, C., Cordon, O., Herrera, F.: A taxonomy and an empirical anal-
ysis of multiple objective ant colony optimization algorithms for the bi-criteria
TSP. Eur. J. Oper. Res. 180, 116–148 (2007). https://doi.org/10.1016/j.ejor.2006.
03.041

10. Jaszkiewicz, A., Zielniewicz, P.: Pareto memetic algorithm with path relinking for
bi-objective traveling salesperson problem. Eur. J. Oper. Res. 193, 885–890 (2009).
https://doi.org/10.1016/j.ejor.2007.10.054

11. Klimova, O.N.: The problem of the choice of optimal chemical composition of
shipbuilding steel. J. Comput. Syst. Sci. Int. 46(6), 903–907 (2007). https://doi.
org/10.1134/S106423070706007X

12. Klimova, O.N., Noghin, V.D.: Using interdependent information on the relative
importance of criteria in decision making. Comput. Math. Math. Phys. 46(12),
2080–2091 (2006). https://doi.org/10.1134/S0965542506120074

https://doi.org/10.1007/11537311_29
https://doi.org/10.1007/11537311_29
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1145/2739480.2754728
https://doi.org/10.1145/2739480.2754728
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1080/02331939108843732
https://doi.org/10.1080/02331939108843732
https://doi.org/10.1007/978-3-319-73441-5_36
https://doi.org/10.1007/978-3-319-73441-5_36
https://doi.org/10.1007/b100605
https://doi.org/10.1016/j.ejor.2006.03.041
https://doi.org/10.1016/j.ejor.2006.03.041
https://doi.org/10.1016/j.ejor.2007.10.054
https://doi.org/10.1134/S106423070706007X
https://doi.org/10.1134/S106423070706007X
https://doi.org/10.1134/S0965542506120074


104 A. O. Zakharov and Y. V. Kovalenko

13. Kumar, R., Singh, P.K.: Pareto evolutionary algorithm hybridized with local search
for biobjective TSP. In: Abraham, A., Grosan, C., Ishibuchi, H. (eds.) Hybrid
Evolutionary Algorithms. SCI, vol. 14, pp. 361–398. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73297-6 14

14. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009).
https://doi.org/10.1109/TEVC.2008.925798

15. Lust, T., Teghem, J.: The Multiobjective Traveling Salesman Problem: a survey
and a new approach. In: Coello Coello, C.A., Dhaenens, C., Jourdan, L. (eds.)
Advances in Multi-Objective Nature Inspired Computing. SCI, vol. 272, pp. 119–
141. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11218-8 6

16. Multiobjective optimization library: http://home.ku.edu.tr/∼moolibrary/. Online
accessed 09 Feb 2018

17. Noghin, V.D.: Reducing the Pareto set based on set-point information. Sci. Tech.
Inf. Proc. 38(6), 435–439 (2011). https://doi.org/10.3103/S0147688211050078

18. Noghin, V.D.: Reducing the Pareto set algorithm based on an arbitrary finite set
of information “quanta”. Sci. Tech. Inf. Proc. 41(5), 309–313 (2014). https://doi.
org/10.3103/S0147688214050086

19. Noghin, V.D.: Reduction of the Pareto Set: An Axiomatic Approach. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-67873-3

20. Noghin, V.D., Prasolov, A.V.: The quantitative analysis of trade policy: a strategy
in global competitive conflict. Int. J. Bus. Continuity Risk Manage. 2(2), 167–182
(2011). https://doi.org/10.1504/IJBCRM.2011.041490

21. Podinovskiy, V.V., Noghin, V.D.: Pareto-optimal’nye resheniya mnogokriterial’nyh
zadach (Pareto-Optimal Solutions of Multicriteria Problems). Fizmatlit, Moscow
(2007). (in Russian)

22. Psychas, I.D., Delimpasi, E., Marinakis, Y.: Hybrid evolutionary algorithms for the
multiobjective traveling salesman problem. Expert Syst. Appl. 42(22), 8956–8970
(2015). https://doi.org/10.1016/j.eswa.2015.07.051

23. Radcliffe, N.J.: The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4),
339–384 (1994). https://doi.org/10.1007/BF01531276

24. Reeves, C.R.: Genetic algorithms for the operations researcher. INFORMS J. Com-
put. 9(3), 231–250 (1997)

25. Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput.
3(4), 376–384 (1991). https://doi.org/10.1287/ijoc.3.4.376

26. Vinogradskaya, T.M., Gaft, M.G.: Tochnaya verhn’ya otzenka chisla nepodchi-
nennyh reshenii v mnogokriterial’nyh zadachah (The least upper estimate for the
number of nondominated solutions in multi-criteria problems). Avtom. Telemekh.
9, 111–118 (1974). in Russian

27. Whitley, D., Starkweather, T., McDaniel, S., Mathias, K.: A comparison of genetic
sequencing operators. In: Proceedings of the Fourth International Conference on
Genetic Algorithms, pp. 69–76. Morgan Kaufmann, New York (1991)

28. Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolution-
ary many-objective optimization. In: Proceedings of the 2014 Annual Conference
on Genetic and Evolutionary Computation (GECCO 2014), pp. 661–668 (2014).
https://doi.org/10.1145/2576768.2598342

29. Zakharov, A.O.: Pareto-set reducing using compound information of a closed
type. Sci. Tech. Inf. Proc. 39(5), 293–302 (2012). https://doi.org/10.3103/
S0147688212050073

https://doi.org/10.1007/978-3-540-73297-6_14
https://doi.org/10.1109/TEVC.2008.925798
https://doi.org/10.1007/978-3-642-11218-8_6
http://home.ku.edu.tr/~moolibrary/
https://doi.org/10.3103/S0147688211050078
https://doi.org/10.3103/S0147688214050086
https://doi.org/10.3103/S0147688214050086
https://doi.org/10.1007/978-3-319-67873-3
https://doi.org/10.1504/IJBCRM.2011.041490
https://doi.org/10.1016/j.eswa.2015.07.051
https://doi.org/10.1007/BF01531276
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1145/2576768.2598342
https://doi.org/10.3103/S0147688212050073
https://doi.org/10.3103/S0147688212050073


Reduction of the Pareto Set in Bi-ATSP 105

30. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on
the design of pareto-compliant indicators via weighted integration. In: Obayashi,
S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol.
4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-70928-2 64

31. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm. In: Proceedings of Evolutionary Methods for Design, Optimi-
sation and Control with Application to Industrial Problems, pp. 95–100 (2001)

https://doi.org/10.1007/978-3-540-70928-2_64
https://doi.org/10.1007/978-3-540-70928-2_64


Optimization Problems in Data Analysis



Randomized Algorithms for Some
Clustering Problems

Alexander Kel’manov1,2, Vladimir Khandeev1,2(B), and Anna Panasenko1,2

1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, 630090 Novosibirsk, Russia
{kelm,khandeev,a.v.panasenko}@math.nsc.ru

2 Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia

Abstract. We consider two strongly NP-hard problems of clustering a
finite set of points in Euclidean Space. Both problems have applications,
in particular, in data analysis, data mining, pattern recognition, and
machine learning. In the first problem, an input set is given and we need
to find a cluster (i.e., a subset) of a given size which minimizes the sum
of squared distances between the elements of this cluster and its centroid
(the geometric center). Every point outside this cluster is considered as
singleton cluster. In the second problem, we need to partition a finite set
into two clusters minimizing the sum over both clusters of the weighted
intracluster sums of the squared distances between the elements of the
clusters and their centers. The center of the first cluster is unknown and
determined as the centroid, while the center of the second one is the ori-
gin. The weight factors for both intracluster sums are the given clusters
sizes. In this paper, we present parameterized randomized algorithms for
these problems. For given upper bounds of the relative error and failure
probability, the parameter value is defined for which both our algorithms
find approximate solutions in a polynomial time. This running time is lin-
ear on the space dimension and on the input set size. The conditions are
found under which these algorithms are asymptotically exact and have
the time complexity that is linear on the space dimension and quadratic
on the size of the input set.

Keywords: Euclidean space · Clustering · NP-hardness
Randomized · Approximation algorithm · Asymptotic accuracy

1 Introduction

In the paper, we study two strongly NP-hard problems. The line of the study
is the questions of the algorithmic approximability of these problems. Our goal
is to construct fast approximation algorithms providing the solution in a linear
time and also to find the conditions under which the algorithms guarantee the
asymptotically exact solutions.

Despite the intensive research of the concerned problems during the last years
and despite the fact that there are effective algorithms with performance guaran-
tees (see the next section) for these problems, there have been no fast algorithms
c© Springer International Publishing AG, part of Springer Nature 2018
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with the linear time complexity until now. Meanwhile, such algorithms are nec-
essary and demanded (especially in recent years) tools for solving the Big-scaling
problems arising, particularly, in Data science, Data mining, Machine learning,
Pattern recognition.

The paper has the following structure. Section 2 contains the problems for-
mulation, their interpretation and known algorithmic results. In the same section
we announce the obtained results. In Sect. 3, we formulate some statements to
justify the algorithms and their properties. Finally, Sect. 4 contains the step-by-
step description of the algorithms and justification of their properties (accuracy,
time complexity, failure probability). Conditions under which the algorithms are
asymptotically exact are established in the same section.

2 Problems Formulation and Related Problems, Known
and Obtained Results

Everywhere below R denotes the set of real numbers, ‖ · ‖ denotes the Euclidean
norm, and 〈·, ·〉 denotes the scalar product.

The problems under consideration are stated as follows.

Problem 1. Given a set Y = {y1, . . . , yN} in Euclidean space of dimension d and
a positive integer M . Find a subset C ⊆ Y of size M minimizing the value of

f(C) =
∑

y∈C
‖y − y(C)‖2 ,

where y(C) = 1
|C|

∑
y∈C

y is the centroid of C.

Problem 2. Given an N -element set Y of points in d-dimensional Euclidean space
and a positive integer number M ≤ N . Find a partition of Y into two non-empty
clusters C and Y \ C such that

g(C) = |C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 → min , (1)

subject to constraint |C| = M .

Problem 1 can be treated as a search in the set Y for the subset in the form
of spherical concentration of M points having the minimum total quadratic
variation with respect to their centroid. Since the centroid of a singleton set is
equal to the unique element of this set, the problem can be also treated as a
partition of Y into N − M + 1 clusters such that the size of one of the clusters
is equal to M and the sizes of other clusters are equal to 1.

In Problem 2, it is required to find a 2-partition of Y so as to minimize the
sum of cardinality-weighted intracluster sums of squared distances between the
points of the clusters and their centers; the center of cluster Y \ C is the origin
and the center of cluster C is the unknown centroid y(C).
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One can treat both problems, in particular, as the problems of Data editing,
Data cleaning, Data mining, and Machine learning (see, for example, [1–8] and
papers cited therein). Some meaningful interpretations of Problems 1 and 2 can
be found in [9–14,16–18].

The interpretation of Problem 1 in the terms of data analysis is the follow-
ing. There is a table Y containing the results {y1, . . . , yN} of measurements of a
tuple y of d significant digital informational characteristics for a family of some
objects. Several objects are identical and have the same characteristics; the num-
ber M of these objects is known. The remaining objects are various and have
different characteristics. There is some error in each measurement result in the
table. Moreover, no correspondence between the objects and the table elements
is available. It is required, by using a criterium of total quadratic variation, to
find a subset C of the input set Y corresponding to the set of identical objects
and evaluate the tuple y(C) of characteristics of these objects based on the mea-
surement results (taking into account that the data have some measurement
errors).

Problem 2 can also be treated in a similar way. There is a table Y containing
measurement results for two groups of objects. Each group consists of the homo-
geneous (in terms of a certain tuple of characteristics) objects. The first group
C contains M objects and the second group Y\C contains (N −M) objects. The
objects in the first group have unknown characteristics, while the objects in the
second group have the given characteristics (in particular, one can consider that
all characteristics are equal to zero). It is required, by using the criterium (1), to
partition the family Y into two parts and to evaluate the characteristics of the
objects in the first group (taking into account that there is some error in each
measurement result).

First, let us recall the known results for each problem. Problem 1 is also
known as M -Variance [19]. Strong NP-hardness of this problem is substantiated
in [9]. In the same paper, it was shown that there does not exist a fully polynomial
time approximation scheme (FPTAS) for this problem unless P = NP . The
exact algorithms with time complexity O(dNd+1) were proposed in [19,20]. If
the space dimension d is fixed, these algorithms are polynomial and their time
complexity is O(Nd+1).

An exact algorithm for the case of integer inputs was presented in [10]. The
time complexity of the algorithm is O(dN(2MB+1)d), where B is the maximum
absolute coordinate value in the input set. If the space dimension is fixed, the
algorithm is pseudopolynomial and its time complexity is O(N(MB)d).

In [11], a 2-approximation polynomial algorithm with time complexity
O(dN2) was presented for the general case of the problem. A polynomial time
approximation scheme (PTAS) was proposed in [21]. The time complexity of the
scheme is O(dN2/ε+1(9/ε)3/ε), where ε > 0 is a relative error.

In [12], the algorithm was proposed which allows finding a (1+ε)-approximate
solution in O(dN2(2

√
dM/ε + 2)d) time for given ε ∈ (0, 1). For fixed space

dimension d, the algorithm runs in O(N2(M/ε)d) time and implements an
FPTAS.
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An improved approximation scheme that allows finding a (1+ε)-approximate

solution in O
(

dN2
(√

2d
ε + 2

)d
)

time was proposed in [13]. If the space dimen-

sion is fixed, the algorithm implements an FPTAS, since its time complexity in
this case is O(N2(1/ε)d/2). In the same work, an improved approximation scheme

were proposed. The time complexity of this scheme is O
(√

dN2
(

πe
2

)d/2(√ 2
ε +

2
)d

)
. In the case of dimension d = O(log N), the improved scheme remains poly-

nomial. In this case it implements a PTAS with O
(
NC (1.05+log(2+

√
2
ε ))

)
time,

where C is a positive constant.
The following results were obtained for Problem 2. First, Problem 2 is close to

the known [22–25] Mini-Sum 2-clustering problem. In this problem, it is required
to find a 2-partition minimizing the value of

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y − y(Y\C)‖2 ,

where the both centroids are unknown (in Problem 2, only one centroid is
unknown). Note that Problem 2 and Mini-Sum 2-clustering problem are not
equivalent. The strong NP-hardness of the both problems was proved in [14,15].
In addition, in the cited papers it was shown that there are no FPTAS for these
problems unless P = NP .

In [16], an exact algorithm was constructed for the case of Problem 2. In
this case, the input points have integer components. The running time of the
algorithm is O(dN(2MB + 1)d), where B is the maximum absolute value of
coordinates of the input points. If the dimension d of the space is fixed, the
algorithm is pseudopolynomial and its running time is O(N(MB)d).

An approximation algorithm that allows one to find a 2-approximate solution
of the general case of the problem in O

(
dN2

)
time was constructed in [17].

In [18], an approximation scheme that allows finding a (1 + ε)-approximate

solution in O
(

dN2
(√

2d
ε + 2

)d
)

time was proposed. It implements an FPTAS

in the case of the fixed space dimension, since its time complexity in that case
is O(N2(1/ε)d/2).

Moreover, in [13], the modification of this algorithm with improved running

time O
(√

dN2
(

πe
2

)d/2(√ 2
ε + 2

)d
)

was proposed. The algorithm implements an

FPTAS with O(N2(1/ε)d/2) running time in the case of fixed space dimension
and remains polynomial for instances of dimension d = O(log N). In this case it
implements a PTAS with O

(
NC (1.05+log(2+

√
2
ε ))

)
time, where C is a positive

constant.
In this paper, we present randomized algorithms for Problems 1 and 2. Under

assumption M ≥ βN , where β ∈ (0, 1) is some constant, and given ε > 0 and
γ ∈ (0, 1), our algorithms find (1 + ε)-approximate solutions of the problems
with probability not less than 1 − γ in O(dN) time. The conditions are found
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under which the algorithms find (1+ εN )-approximate solutions of the problems
in O(dN2) time with probability not less than 1−γN , where εN → 0 and γN → 0
as N → ∞, i.e., the conditions under which the algorithms are asymptotically
exact.

3 Algorithms Foundations

In order to justify our algorithm we need a few auxiliary assertions.
The probabilistic basis of the algorithms is the following two lemmas [26].

The former is based on Markov inequality; the latter — on Chernoff bound.

Lemma 1. Let Z be an N -element set of points in d-dimensional Euclidean
space, C ⊆ Z, |C| = M . Let T be a multiset obtained by randomly and
independently choosing k elements from Z with replacement. Moreover, let
z(C) = 1

M

∑
z∈C

z and z(T ∩ C) = 1
|T ∩C|

∑
z∈T ∩C

z be the centroids of set C and

multiset T ∩ C, respectively. Then

Pr

(
∑

z∈C
‖z − z(T ∩ C)‖2 ≥

(
1 +

1
δt

)∑

z∈C
‖z − z(C)‖2

∣∣ |T ∩ C| ≥ t

)
≤ δ

for any positive integer t ≤ k and real δ ∈ (0, 1).

Lemma 2. Let the conditions of Lemma 1 hold. Then

Pr
(

|T ∩ C| ≤ (1 − ν)
M

N
k

)
≤ e− ν2Mk

2N

for arbitrary ν ∈ (0, 1).

The proof of the following lemma can be found in [16].

Lemma 3. Let

S(C, x) = |C|
∑

y∈C
‖y − x‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2, C ⊆ Y, x ∈ R

d .

Then the next statements are true:

(1) for any nonempty fixed set C ⊆ Y the minimum of S(C, x) over x ∈ R
d is

reached at the point x = y(C);
(2) if |C| = M = const, then for any fixed point x ∈ R

d the minimum of S(C, x)
over C ⊆ Y is reached at the subset Bx that consists of M points of Y at
which the function

hx(y) = (2M − N) ‖y‖2 − 2M 〈y, x〉 , y ∈ Y , (2)

has the smallest values.
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4 Randomized Algorithms

Let us formulate the following algorithm for solving Problem 1.
A l g o r i t hm A1.
Input: a set Y, a positive integer M , a parameter k.
Step 1. Generate a multiset T by independently and randomly choosing k

elements one after another (with replacement) from Y.
Step 2. For each nonempty multisubset H of T , compute the centroid y(H)

and form a subset C that consists of M elements closest (by distance) to y(H).
Compute f(C).

Step 3. In the family of solutions found at Step 2, choose the subset C = CA1

for which f(C) is minimal. If there are several optimal values, then choose any
of them.

Output: the set CA1 .
The algorithm for solving Problem 2 is similar; the main difference between

the algorithms is in constructing a feasible solution of the problem at Step 2.
A l g o r i t hm A2.
Input: a set Y, a positive integer M , a parameter k.
Step 1. Generate a multiset T by independently and randomly choosing k

elements one after another (with replacement) from Y.
Step 2. For each nonempty multisubset H of T , compute the centroid y(H)

and form a subset C that consists of M elements with the smallest values
hy(H)(z), z ∈ Y (using formula (2)). Compute g(C).

Step 3. In the family of solutions found at Step 2, choose the subset C = CA2

for which g(C) is minimal. If there are several optimal values, then choose any
of them.

Output: the set CA2 .
The following theorem is true.

Theorem 1. For an arbitrary real δ ∈ (0, 1) and positive integers t ≤ k, algo-
rithms A1 and A2 find (1 + 1

δt )-approximate solutions of Problems 1 and 2
in O(2kd(k + N)) time with a probability of at least 1 − (δ + α), where α =
t−1∑
i=0

(
k
i

) (
M
N

)i (
1 − M

N

)k−i
.

Proof. Let us prove the accuracy bound of algorithm A1. Let C∗
1 be the optimal

solution of Problem 1 and let CA1 be the set produced by algorithm A1.
Assume that the multiset T is generated so that |T ∩ C∗

1 | ≥ 1. In this case,
the multisubset H = T ∩ C∗

1 was considered at Step 2 of the algorithm. Let C1

be the subset of Y constructed at this step, which consists of M elements closest
(by distance) to y(T ∩ C∗

1 ).
The definition of Step 3 yields

f(CA1) ≤ f(C1) . (3)

In addition, since for an arbitrary finite set Z ⊂ R
d of points the minimum

of
∑

y∈Z
‖y − x‖2 over x ∈ R

d is reached at the point x = 1
|Z|

∑
z∈Z

z, for the right
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side of (3) we get

f(C1) =
∑

y∈C1

‖y − y(C1)‖2 ≤
∑

y∈C1

‖y − y(H)‖2 . (4)

Since C1 contains M points closest to y(H), we have
∑

y∈C1

‖y − y(H)‖2 ≤
∑

y∈C∗
1

‖y − y(H)‖2 . (5)

Combining (3)–(5), we get that, if |T ∩C∗
1 | ≥ 1, the following chain of inequal-

ities is true:

f(CA1) ≤ f(C1) ≤
∑

y∈C1

‖y − y(H)‖2 ≤
∑

y∈C∗
1

‖y − y(H)‖2 . (6)

Applying Lemma 1 with Z = Y and C = C∗
1 , we get that

∑

y∈C∗
1

‖y − y(H)‖2 <

(
1 +

1
δt

) ∑

y∈C∗
1

‖y − y(C∗
1 )‖2 (7)

under the condition |T ∩ C∗
1 | ≥ t with a probability of at least 1 − δ.

Combining (6)–(7) yields that

f(CA1) <

(
1 +

1
δt

) ∑

y∈C∗
1

‖y − y(C∗
1 )‖2 =

(
1 +

1
δt

)
f(C∗

1 )

under the condition |T ∩ C∗
1 | ≥ t with a probability of at least 1 − δ. In terms of

conditional probability it means that

Pr
(

f(CA1) <

(
1 +

1
δt

)
f(C∗

1 )
∣∣∣ |T ∩ C∗

1 | ≥ t

)
≥ 1 − δ .

Therefore, denoting α = Pr (|T ∩ C∗
1 | < t), we get

Pr
(

f(CA1) ≥
(

1 +
1
δt

)
f(C∗

1 )
)

= Pr
(

f(CA1) ≥
(

1 +
1
δt

)
f(C∗

1 ) and |T ∩ C∗
1 | ≥ t

)
+

Pr
(

f(CA1) ≥
(

1 +
1
δt

)
f(C∗

1 ) and |T ∩ C∗
1 | < t

)

≤ Pr
(

f(CA1) ≥
(

1 +
1
δt

)
f(C∗

1 )
∣∣∣ |T ∩ C∗

1 | ≥ t

)
+ Pr (|T ∩ C∗

1 | < t)

≤ δ + α .

Finally, equality α =
t−1∑
i=0

(
k
i

) (
M
N

)i (
1 − M

N

)k−i
follows from the fact that

generating the multiset T can be considered as k independent Bernoulli trials,
where each “success” is the result “the element chosen from Y lies in C∗

1”.
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The proof of the accuracy bound of algorithm A2 is partially similar to the
proof of the accuracy bound of algorithm A1. Let C∗

2 be the optimal solution of
Problem 2 and let CA2 be the set produced by algorithm A2. Assume that in
algorithm A2 the multiset T is generated so that |T ∩ C∗

2 | ≥ 1; in that case, let
C2 be the subset of Y constructed at Step 2, which consists of M elements with
the smallest values hy(H)(z), z ∈ Y, for H = T ∩ C∗

2 .
The definition of Step 3 yields

g(CA2) ≤ g(C2) . (8)

Similarly to (4), we obtain

g(C2) = |C2|
∑

y∈C2

‖y − y(C2)‖2 + |Y \ C2|
∑

y∈Y\C2

‖y‖2

≤ |C2|
∑

y∈C2

‖y − y(H)‖2 + |Y \ C2|
∑

y∈Y\C2

‖y‖2 . (9)

Since C2 contains M points with the smallest values hy(H)(z), z ∈ Y, according
to Lemma 3 we have

|C2|
∑

y∈C2

‖y − y(H)‖2 + |Y \ C2|
∑

y∈Y\C2

‖y‖2

≤ |C∗
2 |

∑

y∈C∗
2

‖y − y(H)‖2 + |Y \ C∗
2 |

∑

y∈Y\C∗
2

‖y‖2 . (10)

As for algorithm A1, combining (8)–(10) and applying Lemma 1 yield that

g(CA2) <

(
1 +

1
δt

)
|C∗

2 |
∑

y∈C∗
2

‖y − y(C∗
2 )‖2 + |Y \ C∗

2 |
∑

y∈Y\C∗
2

‖y‖2

under the condition |T ∩ C∗
2 | ≥ t with a probability of at least 1 − δ, where the

right side can be bounded from above by
(
1 + 1

δt

)
g(C∗

2 ). The remaining proof is
similar to the previous proof.

Let us estimate the time complexity of the algorithms. Step 1 requires O(k)
time. Step 2 is executed 2k times. The centroid of each multisubset H in both
algorithms is computed in O(dk) time. In algorithm A1, the distances between
this centroid and points of Y are computed in O(dN) time, and M points closest
to this centroid are chosen in O(N) time without sorting (see, e.g., [27]). Similarly,
in algorithm A2, calculation of hy(H)(z), z ∈ Y, requires at most O(dN) time, and
finding M smallest elements in the set of N elements requires O(N) time without
sorting. Step 3 (choosing the least element) requires at most O(2k) time. Thus,
the time complexity of both algorithms is equal to O(2kd(k + N)). ��
Corollary 1. Assume that M ≥ βN , where β ∈ (0, 1) is a constant. Then, given
ε > 0 and γ ∈ (0, 1) for the fixed parameter k = max

(⌈
2
β

⌈
2
γε

⌉⌉
,
⌈
8
β ln 2

γ

⌉)
,

algorithms A1 and A2 find (1+ ε)-approximate solutions of Problems 1 and 2 in
O(dN) time with probability of at least 1 − γ.
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Proof. Let us prove the corollary for algorithm A1 (the proof for algorithm A2

is similar). Let δ = γ
2 , t = � 1

δε� = � 2
γε�. Note that in that case k ≥ 2t

β and
k ≥ 8

β ln 2
γ . Applying Lemma 2 for ν = 1

2 and C = C∗
1 we get that

Pr
(

|T ∩ C∗
1 | ≤ kM

2N

)
≤ e− kM

8N .

Then, under the conditions of the corollary the following holds

α = Pr (|T ∩ C∗
1 | < t) ≤ Pr

(
|T ∩ C∗

1 | <
βk

2

)
≤ Pr

(
|T ∩ C∗

1 | ≤ kM

2N

)

≤ e− kM
8N ≤ e− M

βN ln 2
γ ≤ e− ln 2

γ =
γ

2
.

Therefore, by Theorem 1, for the specified value of k, algorithm A1 finds

the solution of Problem 1 with the relative error 1
δt =

(
γ
2

⌈
2
γε

⌉)−1

≤ ε in

O
(
2kd(k + N)

)
time with failure probability of at most δ + α ≤ γ

2 + γ
2 = γ.

Since the parameter k is fixed, under the specified conditions the running time
of the algorithm is O(dN). ��

Theorem 2. Let k = �log2 N�. Assume that M ≥ βN , where β ∈ (0, 1) is a
constant. Then algorithms A1 and A2 find (1 + εN )-approximate solutions of
Problems 1 and 2 with probability 1 − γN in O(dN2) time, where εN −−−−→

N→∞
0,

γN −−−−→
N→∞

0.

Proof. The time complexity bound of the algorithms under the condition k =
�log2 N� is obvious.

As in Corollary 1, let us estimate the relative error and the failure probabil-
ity of algorithm A1. Under the conditions of Theorem1, let δ = (log2 N)−1/2,
t = �kM

2N �. With such values of the parameters, the relative error εN = 1
δt =

(log2 N)1/2/�kM
2N � can be bounded above by the value 2

β (log2 N)−1/2 −−−−→
N→∞

0.

Next, applying Lemma 2 for ν = 1
2 and C = C∗

1 we get that

Pr
(

|T ∩ C∗
1 | ≤ kM

2N

)
≤ e− kM

8N .

Therefore,

α = Pr (|T ∩ C∗
1 | < t) ≤ Pr

(
|T ∩ C∗

1 | ≤ kM

2N

)

≤ e− kM
8N ≤ e− β log2 N

8 = N− β
8 ln 2 −−−−→

N→∞
0 .

Thus, for the failure probability γN of the algorithm we have γN = δ +
α −−−−→

N→∞
0. ��
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5 Conclusion

In this paper we have presented similar randomized algorithms for two different
strongly NP-hard quadratic Euclidean 2-clustering problems.

Our algorithms allow finding approximate solutions in a time that is linear
on the space dimension and on the input size of the problems for given upper
bounds of the relative error, failure probability and for an established parameter
value. The conditions are found under which both algorithms are polynomial
and asymptotically exact.

In our opinion, these algorithms will be useful, in particular, in Data mining,
Pattern recognition, and Machine learning.
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Abstract. The following problem is considered. Given a finite sequence
of Euclidean points, find a subsequence of the longest length (size) such
that the sum of squared distances between the elements of this subse-
quence and its unknown centroid (geometrical center) is at most a given
percentage of the sum of squared distances between the elements of the
input sequence and its centroid. This problem models, in particular, one
of the data analysis problems, namely, search for the maximum subset
of elements close to each other in the sense of the bounded from above
the total quadratic scatter in the set of time-ordered data. It can be
treated as a data editing problem aimed at the removal of extraneous
(dissimilar) elements. It is shown that the problem is strongly NP-hard.
A polynomial time approximation algorithm is proposed. It either finds
out that the problem has no solutions or outputs a 1/2-approximate
solution if the length M∗ of an optimal subsequence is even, or it out-
puts a (M∗ − 1)/2M∗-approximate solution if M∗ is odd. Some exam-
ples of numerical experiments illustrating the algorithm suitability are
presented.

Keywords: Euclidean space · Longest subsequence
Quadratic variation · NP-hard problem
Polynomial-time approximation algorithm

1 Introduction

In the paper we consider a discrete optimization problem that models the search
for the maximum subset of objects close to each other in the set of time-ordered
measurement results. Our goal is to study computational complexity of the prob-
lem and to propose an algorithm solving it.

The study is motivated, on the one hand, by the absence of published results
on the problem complexity status and algorithms with guaranteed performance
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 120–130, 2018.
https://doi.org/10.1007/978-3-319-93800-4_10
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bounds, and on the other hand, by its importance for the applications related,
in particular, to data editing, data cleaning, data mining, machine learning, etc.
(see the next section).

The paper is organized as follows. In Sect. 2, we present the mathematical
statement of the considered problem and the motivation of our study. The state-
ments of known related problems are also given. In the next section, we show
that the problem is strongly NP-hard. In Sect. 4, some preliminary results for
the algorithm analysis are proved. The polynomial time approximation algorithm
and its analysis can be found in Sect. 5. Finally, Sect. 6 contains some results of
numerical experiments illustrating the algorithm suitability.

2 Problem Formulation and Related Problems

Everywhere below denote by R the set of real numbers and by ‖·‖ the Euclidean
norm.

The problem under consideration is stated as follows.

Problem 1. Given a sequence Y = (y1, . . . , yN ) of points in R
q, some positive

integer numbers Tmin, Tmax, and a number α ∈ (0, 1). Find a subset M =
{n1, . . . , nM} ⊆ N = {1, . . . , N} of largest size such that

Tmin ≤ nm − nm−1 ≤ Tmax ≤ N, m = 2, . . . ,M, (1)

and
F (M) =

∑

j∈M
‖yj − y(M)‖2 ≤ α

∑

j∈N
‖yj − y(N )‖2, (2)

where y(M) = 1
|M|

∑
i∈M yi and y(N ) = 1

N

∑
i∈N yi are the centroids (geomet-

rical centers) of the multisets {yi ∈ Y | i ∈ M} and {yi ∈ Y | i ∈ N} respectively.

The close in statement problem is following.

Problem 2. Given a sequence Y = (y1, . . . , yN ) of points in R
q and positive

integer numbers Tmin, Tmax and M > 1. Find a subset M = {n1, . . . , nM} ⊆
N = {1, . . . , N} of indices of the sequence elements minimazing F (M) subject
to constraints (1).

Problem 2 has the following interpretation (see, for example, [1–4]). There is
a time series containing N measurements y1, . . . , yN of q numerical characteris-
tics of some objects. Each measurement result in the time series has an error,
and no correspondence between the elements of the time series and the objects
is known. Some of these objects have identical characteristics (or one can say
that in the time series there are several measurements of one significant object).
Other objects are distinguished and have different characteristics (or one can
say that in the time series there are some measurements which are treated as
“outliers” due to malfunction of the measuring device). The number M of mea-
surements of identical objects is known. In addition, it is known that the time
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interval between every two consequent results of measuring characteristics of
the identical objects is bounded from above and below by some constants Tmax

and Tmin. The characteristics of identical objects in contrast to the character-
istics of other objects have an important information value. It is required to
find the subsequence of measurements which correspond to the identical objects
using the criterion of minimum sum of squared distances and to estimate the
characteristics of these objects (taking into account the measuring errors in the
data).

Problem 1 has a similar interpretation, namely, one needs to find in a sequence
Y a multisubset {yi ∈ Y | i ∈ M} of the maximum cardinality whose elements are
well concentrated, i. e. total quadratic scatter of points relative to the unknown
centroid y(M) is at most α times the total quadratic scatter of the input sequence
Y of points relative to its centroid y(N ). If the points of the input sequence
Y correspond to time-ordered measurement results of characteristics of some
objects and these results could contain errors whose dispersion is bounded from
above by some threshold (the right part of (2)), then solving Problem1 would
find a multisubset {yi ∈ Y | i ∈ M} of the maximum cardinality containing no
data with significant (exceeding the threshold) error. The level of the threshold
can be regulated by the parameter α.

The difference between Problem 1 and Problem2 is that in Problem 1, the
size M of the sought sequence should be maximized (in Problem2, this size is
given) under the bound on the value of the object function F of Problem 2.

The problems of subsequence search, similar to stated above, are typical
for Data editing and Data cleaning problems (see, e.g., [5–7]). In problems of
Machine learning and Data mining, cleaning the data from extraneous “outliers”
is generally considered as a necessary element [8–15].

For Problem 2, having a direct relation to the above-mentioned problems,
several algorithmic results are currently obtained (see [1–4]). For the considered
Problem 1, similar by statement to Problem2, no algorithms with guaranteed
performance bounds are known; its complexity status is also open.

In the current paper, we show that Problem1 is strongly NP-hard and we
propose an effective tool for solving it — a polynomial-time approximation algo-
rithm with preciseness bound close to 1/2.

3 Problem Complexity

Remind the following strongly NP-hard [16] problem.

Problem 3. Given a set Y = {y1, . . . , yN} of points in R
q, and a number α ∈

(0, 1). Find a subset C ⊂ Y of largest cardinality such that
∑

y∈C
‖y − y(C)‖2 ≤ α

∑

y∈Y
‖y − y(Y)‖2,

where y(C) = 1
|C|

∑
y∈C y and y(Y) = 1

|Y|
∑

y∈Y y are the centroids of the subset
C and the input set Y respectively.
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The following statement is true since Problem 3 is a partial case of Problem 1,
when Tmin = 1 and Tmax = N .

Proposition 1. Problem 1 is strongly NP-hard.

4 Auxiliary Results

In order to justify our algorithm we need several lemmas and an auxiliary poly-
nomially solvable problem.

First, remind the following well-known result (see, for example, [17,18]).

Lemma 1. Let z = 1
|Z|

∑
z∈Z z be the centroid of the finite set Z ⊂ R

q and let
a point x ∈ R

q satisfy the condition ‖x − z‖ ≤ ‖z − z‖ for each z ∈ Z. Then,
∑

z∈Z
‖z − z‖2 ≤

∑

z∈Z
‖z − x‖2 ≤ 2

∑

z∈Z
‖z − z‖2.

Note that Lemma 1 holds for the case when Z is any finite multiset or any
sequence of finite size.

Next, we need an exact polynomial-time algorithm for solving the following
auxiliary problem.

Problem 4. Given a sequence Y = (y1, . . . , yN ) of points in R
q, a point

x ∈ R
q, positive integer numbers Tmin, Tmax and M > 1. Find a subset

M = {n1, . . . , nM} ⊆ N of indexes of the sequence elements such that

fx(M) =
∑

i∈M
‖yi − x‖2 → min, (3)

while the elements of the tuple (n1, . . . , nM ) satisfy the constraints (1).

A dynamic programming scheme is presented in the next lemma and its
corollary. This scheme allows to find the optimal solution Mx of Problem 4. The
presented scheme is based on the results of [2,19] and given here for completeness.

Lemma 2. For any positive integer M > 1, such that (M −1)Tmin ≤ N −1, and
for an arbitrary point x ∈ R

q the optimum fx
min = minM fx(M) of Problem 4

could be found as
fx
min = min

n∈ωM

fx
M (n), (4)

where the values of the functions fx
M (n), n ∈ ωM , are calculated using the fol-

lowing recurrent formulas

fx
m(n) =

{‖yn − x‖2, if n ∈ ω1, m = 1;
‖yn − x‖2 + min

j∈γ−
m−1(n)

fx
m−1(j), if n ∈ ωm, m = 2, . . . ,M, (5)

where

ωm =
{
n | 1 + (m − 1)Tmin ≤ n ≤ N − (M − m)Tmin

}
,m = 1, . . . ,M,
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γ−
m−1(n) =

{
j | max{1 + (m − 2)Tmin, n − Tmax} ≤ j ≤ n − Tmin

}
,

n ∈ ωm,m = 2, . . . , M.

Corollary 1. Elements nx
1 , . . . , nx

M of the optimal tuple Mx can be found by
the formulas:

nx
M = arg min

n∈ωM

fx
M (n), (6)

nx
m−1 = arg min

n∈γ−
m(nx

m)
fx

m(n), m = M,M − 1, . . . , 2. (7)

The algorithm implementing the scheme above is presented below in a step-
by-step description.

Algorithm A1.
Input : a sequence Y, a point x, numbers Tmin, Tmax and M .
Step 1. Compute ‖yn − x‖2 for each n ∈ N .
Step 2. Using formulas (5), calculate the values fx

m(n) for each n ∈ ωm while
m = 1, . . . ,M .

Step 3. Find the minimum fx
min of the objective function (3) using (4) and

the optimal tuple Mx = (nx
1 , . . . , nx

M ) by formulas (6), (7).
Output : the tuple Mx = (nx

1 , . . . , nx
M ).

Remark 1. In [2,19], it was proved that the algorithm A1 finds an optimal solu-
tion of Problem 4 in O(N(M(Tmax −Tmin +1)+ q)) time. In this expression, the
value Tmax−Tmin+1 is at most N . Therefore, the running time of the algorithm
is estimated as O(N(MN + q)).

Remark 2. In accordance with Lemma 2, M ∈ {2, . . . , Mmax}, where

Mmax =
⌊N − 1

Tmin

⌋
+ 1.

Further, we need the following easily verifiable property.

Property 1. If M1 ⊆ M2, then F (M1) ≤ F (M2) and fx(M1) ≤ fx(M2) for
any fixed x ∈ R

q.

Let Ω2 be the set of all possible subsets M of size 2, satisfying the condition
(1).

In addition, we need the next auxiliary assertion.

Lemma 3. If in the indices set N of the sequence Y there is a subset M =
{i, k} ∈ Ω2 such that

‖yi − yk‖2 ≤ 2α
∑

j∈N
‖yj − y(N )‖2,

then Problem 1 has a solution.
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Proof. The minimum admissible size M of the set M in Problem 1 is equal to 2.
Due to the well known equality on sum of squared distances between points in a
finite set and its centroid and sum of squares of pairwise distances between the
points of this set, for every set M = {i, k} the following equality is true:

F (M) =
∑

j∈M
‖yj − y(M)‖2 =

1
2
‖yi − yk‖2.

Now it remains to use Property 1 and note that the inequality (2) is a necessary
condition of solvability of Problem1. �	

5 Approximation Algorithm

The suggested approach for finding an approximate solution of Problem1 is fol-
lowing. First the algorithm finds out whether an admissible solution exists. Next,
for each point y of the input sequence Y and for each M ∈ {2, . . . , Mmax} an
auxiliary Problem4 (with x = y) is solved by the algorithm A1. A family of
admissible (i.e. satisfying the inequality (2)) solutions of Problem1 is formed
from the found solutions (the indices sets). The best (in the sense of the maxi-
mum size) of the solutions in this family is outputted. The following algorithm
realizes this approach.

Algorithm A.
Input : a sequence Y and numbers Tmin, Tmax, and α.
Step 1. Compute A = α

∑
j∈N ‖yj − y(N )‖2.

Step 2. For all sets {i, k} ∈ Ω2 calculate ‖yi − yk‖2. If no element of the
set {‖yi − yk‖2 | {i, k} ∈ Ω2} satisfies the condition ‖yi − yk‖2 ≤ 2A, then go to
Output 1.

For each y ∈ Y perform Steps 3 and 4.
Step 3. For every M = 2, . . . , Mmax using the algorithm A1 find a solution

My
M = {ny

1, . . . , n
y
M} of Problem 4 with x = y and calculate for this solution the

value of the objective function F (My
M ).

Step 4. In the family {My
M ,M = 2, . . . , Mmax} of the sets obtained in

Step 3, find a set My
max of maximum cardinality for which F (My

M ) ≤ A.
Step 5. In the set {My

max | y ∈ Y} of admissible sets constructed in Step 4,
choose as an output MA the set My

max of maximum cardinality. If there are
several such sets choose one with the minimum value of F .

Output 1 : there are no solutions.
Output 2 : the tuple MA.
The following theorem is true

Theorem 1. If there are no solutions of Problem 1, the algorithm A establishes
this fact in O(N(Tmax − Tmin + 1)q) time. Otherwise, if the cardinality M∗ of
the optimal solution of Problem 1 is even, this algorithm finds a 1/2-approximate
solution in O(N3(N(Tmax − Tmin + 1) + q)) time. If M∗ is odd, the algorithm
finds a 1

2 (1 − 1
M∗ )-approximate solution in the same time.
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Proof. The correctness of the algorithm and its complexity in the case when
Problem 1 has no solutions follows from Lemma 3 and an evident bound |Ω2| ≤
N(Tmax − Tmin + 1).

Assume that Problem 1 has an admissible solution. Introduce the following
notation for an optimal solution of Problem1. Let C∗ = {yi ∈ Y | i ∈ M∗} be
a multiset containing the elements of the sequence Y with the indices in M∗

of maximum size M∗. Let y(M∗) be the centroid of the multiset C∗, t be the
closest to y(C∗) point in C∗. Then by Lemma 1 we have

f t(M∗) =
∑

j∈M∗
‖yj − t‖2 ≤ 2

∑

j∈M∗
‖yj − y(M∗)‖2 = 2F (M∗) ≤ 2A,

where A is defined in Step 1 of the algorithm.
Put M ′ = 
M∗/2�. Let M1 be the first M ′ indices of the set M∗ and M2

be the next M ′ indices of the set M∗. Note that in this case both M1 and M2

satisfy the inequalities (1). Besides, by Property 1

f t(M1) + f t(M2) = f t(M1 ∪ M2) ≤ f t(M∗).

Let M ∈ {Mi, i = 1, 2} satisfy the inequality f t(Mi) ≤ f t(M∗)/2. Then

f t(M) ≤ f t(M∗)/2 ≤ A,

i.e. M is an admissible solution of Problem1 with the set size M ′. Besides, M
is an admissible solution of Problem4 with x = t and M = M ′. But then for the
set Mt

M ′ , being an optimal solution of this problem, the condition f t(Mt
M ′) ≤ A

is also true yielding by Lemma 1 the bound

F (Mt
M ′) ≤ f t(Mt

M ′) ≤ A.

It remains to note that at Step 5 the point t closest to the centroid of the
optimal cluster in the family {My

max | y ∈ Y} and the corresponding set Mt
max of

cardinality |Mt
max| ≥ |Mt

M ′ | = M ′, clearly, will be considered. So, the solution
MA found by the algorithm A also contains at least M ′ = 
M∗/2� elements.
Therefore, for even M∗ the preciseness of the algorithm is bounded by


M∗
2 �

M∗ =
1
2

,

and for odd — by

M∗

2 �
M∗ =

M∗ − 1
2M∗ =

1
2

(
1 − 1

M∗
)
.

Evaluate the time complexity of the algorithm in the case when Problem1
has an admissible solution. Step 1 requires O(qN) operations, Step 2 can be
done in O(qN(Tmax − Tmin + 1)) operations. The most time consuming Step 3
could require O(MmaxN

2(Mmax(Tmax −Tmin +1)+ q)) operations since for each
of the N points the algorithm A1 is fulfilled Mmax − 1 times for every M ∈
{2, . . . , Mmax} and requires O(N(M(Tmax − Tmin + 1) + q)) operations for every
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M (see Remark 1). The comparison operations in Steps 4 and 5 are fulfilled
in O(N) time, and the calculation time of the values of F is at most O(qN).
Since Mmax ≤ N (see Remark 2), the total running time of the algorithm is
O(N3(N(Tmax − Tmin + 1) + q)), that is at most O(N3(N2 + q)), since Tmax −
Tmin + 1 ≤ N . �	

6 Examples of Numerical Experiments

The figures presented below show the suitability of the algorithm for the problem
of search for a subsequence of similar elements in a data collection. An input
sequence of points (out of 500 points) is shown in Fig. 1a (upper tape). Each
point of the sequence corresponds to a vertical strip. The subsequence of points
found by the algorithm for α = 0.0006, Tmin = 2, Tmax = 20 is presented in the
same Fig. 1a on the lower tape. The found subsequence size is equal to 38.

The points of the same input sequence are presented on a plane in Fig. 1b at
the left-hand part. At the right-hand side, one can see a subset (points of darker
color) corresponding to the subsequence presented in the Fig. 1a on the lower
tape.

Fig. 1. Example 1 of processing a 2-dimensional sequence
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The similar data is presented in Fig. 2a and b for the sequence of length 200
for α = 0.001, Tmin = 2, Tmax = 20. The found subsequence size is equal to 21.

Fig. 2. Example 2 of processing a 2-dimensional sequence

7 Conclusion

In this paper we have shown the strong NP-hardness of one problem of search-
ing for the longest subsequence (the finite subsequence of the largest size) in
a finite sequence of Euclidean points. We have also presented an approxima-
tion algorithm for this problem. The proposed algorithm allows to find a 1/2-
approximate solution of the problem in a polynomial time if the length M∗ of
an optimal subsequence is even, or a (M∗ −1)/2M∗-approximate solution if M∗

is odd.
In our opinion, the presented algorithm would be useful as a tool for solving

problems in applications related to Data editing, Data cleaning, Data mining,
and Machine learning when the data is time series (signals).

The development of faster approximation algorithms for Problem1 is of con-
siderable interest. An important direction of study is searching subclasses of
Problem 1 for which faster polynomial-time approximation algorithms can be
constructed.
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Abstract. We consider a problem of finding a subset of the smallest size
in the given set of vectors such that the norm of sum vector is greater
or equal to some given value. We show that the problem can be solved
optimally with the same complexity as the problem of finding the subset
of given cardinality with minimum norm of sum vector.

Keywords: Vector subset · Sum vector · Euclidean space
Exact algorithm

1 Introduction

We consider the following problem: given the set of vectors V = v1, . . . , vn in
Euclidean space Rd and a real number B. Find a subset X in the set V of
minimum cardinality, provided that the norm of sum vector is greater of equal
to B.

|X| → min
X⊂V

,
∥
∥
∥

∑

v∈X

v
∥
∥
∥ ≥ B.

(1)

The given Problem 1 is closely related to the Largest m-Vector Sum (m-LVS)
Problem considered in papers [2–7]. In this problem for a given cardinality m
one needs to find a subset of exactly m vectors so that the Euclidean norm of the
sum vector is maximized. The corresponding problem with arbitrary cardinality
of the subset is referred to as LVS [7].

m-LVS Problem is NP-hard in general case [2,6]. However, it was proved that
for any fixed size of dimension d of the space Rd an optimal solution can be found
in polynomial time [4]. In [7] the exact algorithm with the best known complexity
O(nd+1) was suggested. In [5] an asymptotically exact randomized algorithm
with significantly better time complexity O(nd3/2(8/7 ln n)d) was introduced.
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Problem 1 plays a “complementary” role to this problem: a cardinality of the
subset is minimized provided that the norm of sum vector remains sufficiently
large. We will denote the Problem 1 as B-LVS.

In particular, the decision variant of the Problem 1 can be stated as “given a
set V , real value B and integer m, is there a subset of size less or equal to m, s.t.
the length sum vector is greater or equal to B?”. For the particular case of m
equal to n this statement exactly equal to the decision variant of LVS Problem.
Thus, B-LVS Problem is also NP-hard.

2 Exact Algorithm for Solving B-LVS Problem

The idea of exact algorithm for solving this problem is based on using the exact
algorithm for the problem of finding subset of vectors of the given cardinality
with a minimum norm of sum vector, introduced in [4].

Indeed, solving the m-LVS for m = 1, 2, . . . n, we will choose the smallest m,
such that the maximal norm of sum vector for the subset of cardinality m is
greater or equals B.

In [4] it is shown that m-LVS can be solved optimally with complexity
O(d2n2d). It is easy to show that the B-LVS Problem can be solved with the
same complexity.

Theorem 1. Optimal solution of the Problem 1 can be found in O(d2n2d) time.

Proof. Indeed, consider the exact algorithm for solving m-LVS from [4].
Following notation from [1] let us call an orthogonal hyperplane for the non-

zero vector v ∈ Rd a hyperplane defined by the equation (v, x) = 0. This
hyperplane is a (d − 1)-dimensional linear subspace, which consists of vectors
orthogonal to vector v.

We call a family of solution domains for the given non-zero vectors
u1, u2, . . . , ut a family of maximal (by inclusion) connected subsets of the space
Rd, such that these subsets does not intersect with orthogonal hyperplanes of
vectors u1, u2, . . . , ut.

A set of vectors of the space Rd, which contains exactly one vector for
each solution domain is called solution domains representatives for the vectors
u1, u2, . . . , ut.

An estimation of time complexity of the algorithm AGPR is based on the
following lemma.

Lemma 1 ([1]). A family of domain representatives for non-zero vectors
u1, u2, . . . , ut in Rd has cardinality O(dtd−1) and can be constructed in O(d2td)
time.

In context of solving m-LVS we consider uij = vi − vj , 1 ≤ i < j ≤ n. The
full algorithm can be described as follows [4]:

Step 1. For the set of vectors uij , 1 ≤ i < j ≤ n construct a family W of solution
domains representatives. For each w ∈ W perform the steps 2–3;
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Step 2. Sort the vectors v1, v2, . . . , vn by non-increasing projection to the direc-
tion given by w; denote the corresponding ordering as v′

1, v
′
2, . . . , v

′
n;

Step 3. Put Uw = {v′
1, v

′
2, . . . , v

′
m} (i.e., m vectors with maximum projections

to w are taken as Uw;
Step 4. Find such U ∈ {Uw | w ∈ W}, that

F (U) =
∥
∥
∥

∑

v∈U

v
∥
∥
∥ = max{F (Uw), | w ∈ W}.

U is output as algorithm result.

By applying Lemma 1 to the set of n(n − 1)/2 vectors {uij} we can see that
the time complexity of the step 1 is O(d2n2d) and that Steps 2–3 are performed
O(dn2d−2) times. The total complexity of Steps 2–3 is hence defined by the com-
plexity of Step 2 (equal to O(dn log n)) and Step 3 (equal to O(dn)) multiplied
by O(dn2d−2), which does not exceed the complexity of the first step. Step 4 has
complexity equal to O(dn2d−2 · dn).

Now let us notice that the exact algorithm for solving the Problem 1 (we
denote it as AB-LVS) can be obtained from the described algorithm by substi-
tuting Steps 3 and 4 by the following steps:

Step 3′. For each m = 1, 2, . . . n put Uw
m = {v′

1, v
′
2, . . . , v

′
m};

Step 4′. Considering m = 1, 2, . . . n choose Um ∈ {Uw
m, | w ∈ W, m = 1, 2, . . . n},

such

F (Um) =
∥
∥
∥

∑

v∈Um

v
∥
∥
∥ = max{F (Uw

m), | w ∈ W, m = 1, 2, . . . n};

for the smallest m, such that F (Um) > B, take Um as a solution of the
Problem 1.

Indeed, the modified algorithm AB-LVS with new steps 3′ and 4′ consequen-
tially solves m-LVS for each m = 1, 2, . . . n and chooses the least m such that
the norm of the the longest sum vector among all the subsets of cardinality m
exceeds specified threshold B.

At that, the time complexity of Step 3′ in the new algorithm equals O(dnd−2 ·
n · dn) which does not exceed the time complexity of Step 1. Similarly, the time
complexity of Step 4′ equals O(dn2d−1 · dn2), which does not exceed the time
complexity of Step 1. Hence, total time complexity of the algorithm is equal to
O(d2n2d).

Thus, we have shown that the algorithm AB-LVS find optimal solution of the
Problem 1 in stated time. The proof of the Theorem1 is complete.

3 Randomized Algorithm for the B-LVS Problem

In paper [5] a randomized algorithm Arand based on the similar “projecting”
idea is introduced. Instead of constructing the set of solution domains repre-
sentatives this algorithm uniformly generates L random directions and solves
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“m projections” subproblem (Steps 2, 3 of the algorithm described in previous
section) for each of them.

Recall that a randomized algorithm A is said to have (εAn , δAn ) estimates
(called relative error and failure probability, correspondingly) over the set In of
all the instances with n elements in thee input data, if

P

{
f∗(I) − fA(I)

f∗(I)
< εAn

∣
∣
∣ I ∈ In

}

≥ 1 − δAn

Based on theorem from [5] it is easy to show that with certain value of
parameter L algorithm fulfills the condition of the following theorem.

Theorem 2. Algorithm Arand finds asymptotically optimal solution of m-LVS
Problem with the relative error

εn ≤ 1
2 ln2 n

and the failure probability

δn ≤ 1
n2

in
T = O

(

nd3/2(8/7 ln n)d+1
)

time.

It should be noted that this algorithm can’t be directly adapted for solving
Problem 1, since it is not guaranteed to find the optimal solution of the problem.
Hence, when the input boundary value B is set equal to the optimal length of
the sum vector (for any cardinality of the subset), an algorithm can fail to find
any feasible solution. E.g., consider the problem input given by value B and the
following vectors in R2:

v1 = v2 = · · · = vs =
(B

s
, 0

)

vs+1 = · · · = vs+s/2 =
(

−B

s
, 0

)

for some integer number s.
The optimal solution of the Problem 1 if given by the set of m∗ = s vectors

with X∗ = (v1, . . . vs). In order to obtain solution with the norm greater or
equal B for a sampled random direction, one has to sample exactly (1, 0), the
probability of which equals 0.

Denote as B∗
m — the optimal value of the m-LVS Problem. We consider

conditions when application of Arand to each m will provides a solution of the
problem.

Consider the algorithm AB-LVS-rand:

Step 1. For each m = 1, 2, . . . n find subset Um = {um
1 , . . . um

m} as result of
application of Arand for corresponding m-LVS;
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Step 2. Choose the least m for which sum vector for Um has norm greater or
equal to B. Put U = Um for this m as a solution for Problem1.

Theorem 3. If B ≤ maxm(B∗
m) and B /∈ Im =

(

(1 − 1
2 ln2 n

)B∗
m, B∗

m

]

for each
m = 1, 2, . . . n, then the algorithm AB-LVS-rand finds optimal solution of Prob-
lem 1 with failure probability

δ ≤ 1
n

in
T = O(n2d3/2(8/7 ln n)d+1)

time.

Proof. It is easy to see, that the algorithm AB-LVS-rand finds an optimal solution
under the conditions of the theorem. Indeed, optimal value m∗ for the B-LVS
Problem is the least m, such that B ≤ B∗

m. Under conditions of the theorem
B ≤ B∗

m if and only if B ≤ (1 − 1
2 ln2 n

)B∗
m ≤ Cm, where Cm =

∑

i(u
m
i ) is norm

of the sum vector of the solution Um. The latter inequality holds due to the
Theorem 2 in case of no failure. Hence, choosing the least m with B ≤ Cm will
provide an optimal solution.

The failure probability of solving the Problem m-LVS for each m can be
estimated as 1 − (1 − 1

n2 )n ≤ 1
n (since the failure is independent for each of n

problems). The proof of the Theorem 3 is complete.

4 Conclusion

In this paper we considered the problem of minimizing cardinality of vector
subset provided that the norm sum vector exceeds certain boundary value. We
showed that the exact algorithm for m-LVS can be adapted for solving this
problem without increasing of time complexity. We also showed the conditions
on value of B when the randomized algorithm with significantly less complexity
can find optimal solution of the problem with high probability (i.e., tending to
1 when n tends to infinity).

Acknowledgments. This research was supported by the Russian Scientific Founda-
tion for Basic Research (project 16-11-10041).

References

1. Baburin, A., Pyatkin, A.: Polynomial algorithms for solving the vector sum problem.
J. Appl. Industr. Math. 1(3), 268–272 (2007)

2. Baburin, A., Gimadi, E., Glebov, N., Pyatkin, A.: The problem of finding a subset of
vectors with the maximum total weight. J. Appl. Industr. Math. 2(1), 32–38 (2008)

3. Gimadi, E., Kel’manov, A., Kel’manova, M., Khamidullin, S.: A posteriori detecting
a quasiperiodic fragment in a numerical sequence. Pattern Recogn. Image Anal.
18(1), 30–42 (2008)



136 E. Kh. Gimadi et al.

4. Gimadi, E., Pyatkin, A., Rykov, I.: On polynomial solvability of some problems of a
vector subset choice in a euclidean space of fixed dimension. J. Appl. Industr. Math.
4(48), 48–53 (2010)

5. Gimadi, E., Rykov, I.: A randomized algorithm for finding a subset of vectors with
the maximum euclidean norm of their sum. J. Appl. Industr. Math. 9(3), 351–357
(2015)

6. Pyatkin, A.: On the complexity of the maximum sum length vectors subset choice
problem. J. Appl. Industr. Math. 4(4), 549–552 (2010)

7. Shenmaier, V.: Solving some vector subset problems by voronoi diagrams. J. Appl.
Industr. Math. 10(4), 550–566 (2016)



Fast Numerical Evaluation of Periodic
Solutions for a Class of Nonlinear

Systems and Its Applications
for Parameter Estimation Problems

Ivan Y. Tyukin1,3,4(B), Jehan Mohammed Al-Ameri1,2,
Alexander N. Gorban1,4, Jeremy Levesley1, and Valery A. Terekhov3

1 Department of Mathematics, University of Leicester, Leicester, UK
I.Tyukin@le.ac.uk

2 College of Science, Department of Mathematics,
University of Basrah, Basrah, Iraq

3 Department of Automation and Control Processes,
Saint-Petersburg State Electrotechnical University, Saint-Petersburg, Russia

4 Lobachevsky State University of Nizhny, Novgorod, Russia

Abstract. Fast numerical evaluation of forward models is central for a
broad range of inverse problems. Here we propose a method for deriving
computationally efficient representations of periodic solutions of param-
eterized systems of nonlinear ordinary differential equations. These rep-
resentations depend on parameters of the system explicitly, as quadra-
tures of parameterized computable functions. The method applies to
systems featuring both linear and nonlinear parametrization, and time-
varying right-hand side. In addition, it opens possibilities to invoke scal-
able parallel computations and suitable function approximation schemes
for numerical evaluation of solutions for various parameter values. Appli-
cation of the method to the problem of parameter estimation of nonlinear
ordinary differential equations is illustrated with a numerical example for
the Morris–Lecar system.

Keywords: Parameter estimation · Nonlinear parametrization
Adaptive observers · Time-varying systems

1 Introduction

The problem of state and parameter estimation of systems of ordinary differential
equations (ODEs) has been in the focus of attention for many decades. Many
frameworks for addressing this problem have been developed to date, including
but not limited to shooting methods [6], sensitivity functions [1], splines [29] and
adaptive observers [3,4,10,18,26,28] (see also [16,24] for system-identification
take on the problem).
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Notwithstanding significant progress in this area in both theoretical and
applied directions, there is a fundamental yet practical issue with this prob-
lem affecting further progress. The issue is that, in general, expressing state
variables of systems of ordinary differential equations as explicit known func-
tions of parameters and initial conditions or their quadratures is an challenging
mathematical problem. Thus sequential numerical approximation of solutions
over time is typically involved in the estimation process. The problem, however,
is that this process is slow and does not scale well with computational resources
available. At the same time there are problems such as e.g. real-time estimation
of kinetic parameters of neural membranes [23] that do require fast estimation
of model parameters. Hence new approaches are needed.

Here we provide a method enabling us to address the above fundamental
challenges for a class of systems with nonlinear parameterziation. The main idea
of the method is to present an observed quantity as an integral that is explic-
itly (a) computable and (b) explicitly dependent on the parameters entering the
original ODE model nonlinearly. Doing so enables to benefit from computational
advantages of prefix sum algorithms [5] and thus alleviate the issues of scala-
bility and real-time. Our preliminary work in this direction [19,27] showed that
employing the tools of adaptive observer design [11,18] provides a feasible solu-
tion for a relevant class of systems. We demonstrate that further improvement
might be achieved by replacing certain integrals with their approximations by
e.g. Radial Basis Functions [22].

The contribution is organized as follows. Section 2 specifies main techni-
cal assumptions and details mathematical statement of the problem. Section 3
presents main ingredients of the method. In Sect. 4 we discuss these results in
relation to the possibility of replacing some integrals in the representation with
their approximations. Section 5 presents a numerical example, and Sect. 6 pro-
vides a brief conclusion.

2 Problem Formulation

Throughout the paper the following notational agreements are used. Symbol R
denotes the field of real numbers, and R

n stands for the n-dimensional real space.
Let x ∈ R

n, then ‖x‖ is the Euclidean norm of x: ‖x‖ =
√

x2
1 + · · · + x2

n. Cr

denotes the space of continuous functions which are differentiable at least r times.
By Ln

∞[t0, T ] or, when n is clear from the context, L∞[t0, T ] we denote the space
of all functions f : [t0, T ] → R

n such that ‖f‖∞,[t0,T ] = supt∈[t0,T ] ‖f(t)‖ < ∞,
and ‖f‖∞,[t0,T ] stands for the Ln

∞[t0, T ] norm of f(·).

2.1 System Definition

Consider the following class of nonlinear systems

ẋ = F (y, t)x + Ψ(y, t)θ + g(y, λ, t)
y(t) = CT

1 x; x(t0) = x0,
(1)
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where x ∈ R
n and y ∈ R are the state and the output of the system, respectively,

F (y, t) ∈ R
n×n is a known matrix dependent on y and t; λ ∈ Ωλ, Ωλ ⊂ R

p,
θ ∈ Ωθ, Ωθ ⊂ R

m are parameters, and C1 ∈ R
n: C1 = col(1, 0, · · · , 0). With

regards to the sets Ωθ, Ωλ, they are allowed to be arbitrary subsets of Rm and
R

p, respectively. Unless stated otherwise, no other prior knowledge about the
sets Ωθ, Ωλ is assumed.

Other technical assumptions are detailed in Assumption 1 below.

Assumption 1. The following properties hold for (1):

1. the solution of (1) is defined for all t ≥ t0, and it is T -periodic, T > 0;
2. the function F is continuous, bounded, and F (y(·), ·) is T -periodic;
3. exact values of parameters λ and θ are unknown;
4. the values of y(t) for t ∈ [t0, t0 + T ] are available and known;
5. the function Ψ : R×R → R

n×m is such that Ψ(y(·), ·) is T -periodic and is in
L∞[t0,∞) ∩ C0;

6. the function g : R × R
p × R → R

n is such that g(y(·), λ, ·) is T -periodic and
is in L∞[t0,∞) ∩ C1 for all λ ∈ Ωλ;

7. the observability Gramian matrix

G(T, t0) =
∫ t0+T

t0

ΦA(s, t0)CCT ΦT
A(s, t0)ds, C = col(1, 0, . . . , 0),

where ΦA(t, t0), is the normalized (i.e. ΦA(t0, t0) = In+m) fundamental solu-
tion matrix of

ẋ = A(y(t), t)x,

A(y(t), t) =
(

F (y(t), t) Ψ(y(t), t)
0 0

)
, (2)

is of full-rank, i.e. rank(G(T, t0)) = n + m.

The class of Eq. (1) accommodates a broad set of technical and natural sys-
tems ranging from models of [2], dynamics of populations [14], and neural mem-
branes [20]. In case the solutions are periodic it also may, after suitable modifi-
cations [27], include systems

ẋ = F (y, t)x + Ψ(y, t)θ + g(y, q, λ, t)
q̇ = υ(y, λ, t)q + ω(y, λ, t) (3)

y = CT
1 x; x(t0) = x0, q(t0) = q0,

in which the functions υ(y(·), λ, ·), ω(y(·), λ, ·) are continuous.
For notational convenience (cf. [25]), in what follows, we will combine the

state variable x and parameters θ entering the right-hand side of (1) linearly
into a single variable χ and rewrite the system accordingly:

χ̇ = A(y, t)χ +
(

g(y, λ, t)
0

)
, y(t) = CT χ, χ(t0) = χ0. (4)
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In (4) χ = (x, θ) is the combined state vector, matrix A(y, t) is defined as in
(2), and C ∈ R

n+m is C = col(1, 0, · · · , 0). Let us now proceed with the formal
definition of the problem considered in this contribution.

2.2 Problem Statement

Consider system (4) and suppose that the values of y(t) for t ∈ [t0, t0 + T ] are
known and available a-priori. These values will depend on the parameters λ and
initial condition χ0 which themselves are assumed to be unknown. The question
is if there exists an operator F mapping y(·) over [t0, t0 + T ] into an efficiently
computable quantity that does depend on the parameters λ explicitly?

In particular, we are seeking for an F(λ, [y], t) such that

CT χ(t; t0, χ0, λ) = F(λ, [y], t), ∀ t ∈ [t0, t0 + T ], λ ∈ Ωλ,

F(t, λ, [y]) = π(t, λ, [y]) +
∫ t

t0

p(τ, λ, y(τ), [y])dτ,
(5)

in which the functionals π and p are known and computable, e.g. in quadratures.
The functionals π, p must not depend on χ0 as a parameter, but nevertheless
have to ensure the required representation (5).

In what follows, (Theorem 2 in Sect. 3) we demonstrate that finding the
required representations F(λ, [y], t) is possible, subject to some mild technical
conditions largely contained in Assumptions 1, 2. When such a representation
is found one can employ numerous off-line numerical optimisation techniques to
infer the values of λ, θ, and initial conditions from the values of y in the interval
[t0, t0 + T ]. We will illustrate this step with an example in Sect. 5 in which the
Nelder–Mead algorithm [21] will be used for this purpose.

3 Observer-Based Explicit Parametrized Representations
of Periodic Solutions

The problem of existence of representations (5) in the context of parameter
estimation is hardly viable without assessing parameter identifiability [9] of (4).
The corresponding sufficient conditions are derived below.

3.1 Indistinguishable Parametrizations of (4)

We begin with the following technical lemma [19] (cf. [28]).

Lemma 1. Consider the following class of system

χ̇ = A0(t)χ + u(t) + d(t), y = Cχ, χ(t0) = χ0, χ0 ∈ R
�, (6)
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where

A0(t) =

⎛

⎜⎜
⎜
⎝

α1(t) β2(t) β3(t) · · · β�(t)
α2(t)

... A∗
0(t)

α�(t)

⎞

⎟⎟
⎟
⎠

and u, d, α : R → R
�, β : R → R

�−1 ,

u ∈ C1, d, α, β ∈ C, α = col(α1(t), α2(t), . . . , α�(t)), β = (β2(t), β3(t), . . . , β�(t)),
and assume that solutions of (6) are globally bounded in forward time.

Let, in addition:

1. u, u̇, d, α, β be bounded: max{‖u(t)‖, ‖u̇(t)‖} ≤ B, ‖d(t)‖ ≤ �ξ, ‖α(t)‖ ≤
M1, ‖β(t)‖ ≤ M2 for all t ≥ t0.

2. there exist a b : R → R
�−1, b ∈ C, ‖b(t)‖ ≤ M3 such that the zero solution of

the system
ż = Λ(t)z, Λ(t) = A∗

0(t) − b(t)β(t),

is uniformly exponentially stable, and let ΦΛ(t, t0) be the corresponding fun-
damental solution: ΦΛ(t0, t0) = I�.

Then the following statements hold:

1. If the solution of (6) is globally bounded for all t ≥ t0 then, for T sufficiently
large, there are k1, k2 ∈ K:
‖y(t)‖∞,[t0,t0+T ] ≤ ε ⇒ ∃ t′(ε, x0) ≥ t0: ‖h(τ) + u1(τ)‖∞,[t′,t0+T ] ≤ k1(ε) +
k2(�ξ), where h(t) = β(t)z,

ż = Λ(t)z + Gu,
G =

( −b(t) I�−1

)
, z(t0) = 0, (7)

2. If d(t) ≡ 0, then y(t) = 0 for all t ∈ [t0, t0 +T ] implies existence of P ∈ R
�−1:

β(t)ΦΛ(t, t0)P + h(t) + u1(t) = 0 (8)

for all t ∈ [t0, t0 + T ].

According to Lemma 1 the set of parameters:

E(λ) = {λ′ ∈ R
p| ∃ p ∈ R

�−1 : η(t, p, λ′, λ) = 0, ∀t ∈ [t0, t0 + T ]} (9)

where

η(t, p, λ′, λ) = β(t)ΦΛ(t, t0)p + g1(y(t), λ′, t) − g1(y(t), λ, t)

+ β(t)
∫ t

t0

ΦΛ(t, τ)G(τ)
(

g(y(τ), λ′, τ) − g(y(τ), λ, τ)
0

)
dτ,

and Λ is defined as in (7), contains parameters λ′ producing measurements y(t) =
CT χ(t; t0, χ0, λ

′) that are indistinguishable from CT χ(t; t0, χ0, λ) on the interval
[t0, t0 + T ]. If the set E(λ) contains more than one element then the system (4)
may not be uniquely identifiable on [t0, t0 + T ]. Notwithstanding existence and
possible utility of systems that are not uniquely identifiable, we will nevertheless



142 I. Y. Tyukin et al.

focus on systems (4) that are uniquely identifiable on [t0, t0+T ]. Thus we assume
that the following holds:

Assumption 2. For every λ ∈ Ωλ, the set E(λ) consists of just one element.

3.2 Auxiliary Observer in the Differential Form

In addition to (4) consider the following auxiliary system:

˙̂χ = A(y(t), t)χ̂ +
(

g(y(t), λ′, t)
0

)
− R−1C(CT χ̂ − y),

Ṙ = −δR − A(y(t), t)T R − RA(y(t), t) + CCT (10)
χ̂(t0) = χ̂0 ∈ R

n+m, R(t0) ∈ R
(n+m)×(n+m),

where χ̂ ∈ R
n+m is the observer’s state, R(t0) is a positive-definite symmetric

matrix, and δ ∈ R>0 is a positive parameter. Solutions of (10) are defined for all
t ≥ t0 (see items (1), (2) in Assumption 1), and hence, [11], R(t) is given by

R(t) = e−δ(t−t0)ΦA(t0, t)T R(t0)ΦA(t0, t)+
∫ t

t0

e−δ(t−s)ΦA(s, t)T CCT ΦA(s, t)ds.
(11)

It is clear that R(t) is non-singular for all t ≥ t0, symmetric, and positive-definite.
Furthermore, if the value of the parameter δ > 0 is chosen so that

‖e−δ(t−t0)/2ΦA(t0, t)‖ ≤ De−a(t−t0), a > 0, (12)

then R(t) is bounded. In what follows the following additional assumption is
instrumental:

Assumption 3. There exist t1 ≥ t0 and α(δ) > 0 such that

φ(t, δ) =
∫ t

t0

e−δ(t−s)ΦA(s, t)T CCT ΦA(s, t)ds ≥ α(δ)In+m

for all t ≥ t1.

The next theorem specifies asymptotic behaviour of the observer system (10)
(adapted from [11]).

Theorem 1. Consider (10) and suppose that δ > 0 be chosen so that both (12)
and Assumption 3 hold, and λ′ = λ. Then there exists a t2 ≥ t0, such that:

‖χ̂(t; χ̂0) − χ(t;χ0)‖ ≤ ke−δ(t−t0)

for all t ≥ t2, where k is a constant dependent on δ, t0, χ0 and the initial state
χ̂0 of the observer system (10).
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Theorem 1 states the variable χ̂(t) asymptotically tracks χ(t), and that the
difference between the two converges to zero exponentially. Here, however, we
are interested in establishing finite-time relationships (5). To do so we need
another technical result establishing sufficient conditions for the existence of
unique periodic solutions of R. The result is provided in Lemma 2 [19].

Lemma 2. Consider (10) with A(y(t), t) being T -periodic. Then, for sufficiently
large δ > 0, there exists a unique symmetric R(t0) ensuring that the function
R(t) defined by (11) is T -periodic. If, in addition, (12) and Assumption 3 hold
then R(t0) is positive-definite.

3.3 Integral Parametrization of Periodic Solutions of (4)

For notational convenience, let us rewrite auxiliary observer Eq. (10) as:

˙̂χ = (A(t) − R−1CCT )χ̂ +
(

g(y(t), λ′, t)
0

)
+ R−1Cy(t)

Ṙ = −δR − A(y(t), t)T R − RA(y(t), t) + CCT

χ̂(t0) = χ̂0 ∈ R
n+m, R(t0) ∈ R

(n+m)×(n+m), (13)

and additionally consider dynamics of the linear part of the first equation:

ξ =
(
A(y(t), t) − R−1(t)CCT

)
ξ. (14)

Let Φ(t, s) be the normalized fundamental solution matrix of (14), i.e. Φ(t, t) =
In+m and Φ(s, t) = Φ(t, s)−1.

Theorem 2. Consider system (13) and suppose that Assumptions 1 and 2 hold.
In addition, suppose that condition (12) hold and the values of δ and the initial
condition R(t0) in (13) are chosen such that R(t) > 0 is T -periodic.

Consider the function ŷ : Rp × R → R:

ŷ(λ′, t) = CT
(
Φ(t, t0)χ̂0 +

∫ t

t0
Φ(t, τ)

(
R−1(τ)Cy(τ) +

(
g(y(τ), λ′, τ)

0

))
dτ

) (15)

where
χ̂0 = (In+m − Φ(t0 + T, t0))−1

∫ t0+T

t0
Φ(t0 + T, τ)

×
(

R−1(τ)Cy(τ) +
(

g(y(τ), λ′, τ)
0

))
dτ.

(16)

Then
ŷ(λ′, t) = Cχ(t; t0, χ0, λ) ∀ t ∈ [t0, t0 + T ] ⇔ λ = λ′.

The proof can be found in [19].
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4 Discussion

One of the immediate computational advantages of the method is that the pro-
posed integral representations offer a possibility to employ parallel calculations.
In addition, the method offers reduction of dimensionality of the problem due to
incorporating linearly parameterized part of the model into internal variables of
the proposed representations. These internal variables are uniquely determined
by parameters entering the model nonlinearly and are computed as a part of the
representation.

In what follows we will show that further computational improvements might
be possible and are practically viable (as illustrated with an example) if certain
variables in the representations are replaced by their reasonable sparse Radial
Basis Function approximations.

One of the key steps justifying incorporation of relevant class of equations
specified by (3) into the setting focusing on (1) was an assumption that the
variable q(t; q0, λ, y) is expressible as a known function of parameters, initial
conditions, and t. For example, if q relates to a single first-order equation then
such function can be computed as follows:

q(t; q0, λ, y) = e
∫ t

t0
υ(y(τ),λ,τ)dτ

q0 + e
∫ t

t0
υ(y(τ),λ,τ)dτ

× ∫ t

t0
e
− ∫ τ

t0
υ(y(s),λ,s)ds

ω(y(τ), λ, τ)dτ

q0 = (1 − e− ∫ t0+T
t0

(υ(y(s),λ,s)ds)−1
∫ t0+T

t0
e− ∫ t

z
(υ(y(s),λ,s))dsω(y(z), λ, z)dz.

(17)

If the original problem is governed by (3) then availability of q(t; q0, λ, y) is
required in our explicit parameter-dependent representation. One way to resolve
the problem is to numerically evaluate all integrals involved. This, however, may
not always be optimal. An alternative could be to use computationally efficient
approximations of q(t; q0, λ, y) instead.

A possible class of approximations is the class of Radial Basis Functions
(RBF) which are known to be efficient for approximating scattered datasets
[7]. Recall that Radial Basis Functions are those functions that exhibit radial
symmetry, that is, may be seen to depend only (apart from some known param-
eters) on the distance r = ‖X − Xc‖ between the centre of the function, Xc,
and a generic point X. These functions may be generically represented in the
form φ(r), where the function φ is a real-valued function of a real non-negative
argument. The functions φ may be both globally or compactly supported, and
Table 1 presents some relevant examples. The Gaussian and the inverse multi-
quadric are positive definite, so that the matrices which arise in interpolation
problems are invertible. The other functions are conditionally positive definite,
and a polynomial needs to be appended in general so that the interpolation
problem is well-posed [7].

Let X ∈ R
d be a vector accommodating relevant measurement parameters,

i.e. t and λ. In other words, X = (t, λ). Consider Xc = {Xc1 ,Xc2 , · · · ,XcM
}.

The centres Xc could be selected from the given data samples or derived via
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Table 1. Some commonly used radial basis functions. Parameter α, called “local shape
parameter”, controls the shape of the radial basis function.

Infinitely smooth RBFs Functional form, φ(r) Parameters

Polyharmonic Spline rk k > 0, k �∈ 2N

Gaussian e−(αr)2 α > 0

Multiquadric(MQ) (1 + α2r2)k/2 k > 0, k �∈ 2N, α > 0

Inverse multiquadric (1 + α2r2)k/2 k < 0, k �∈ 2N, α > 0

clustering algorithms. Let

S(X) =
M∑

j=1

ωjφ(‖X − Xcj
‖) + p(X), X ∈ R

d, (18)

where p is a polynomial, be an RBF approximation of q(t; q0, λ, y) or simply
q(t, λ), where ωj are unknown coefficients that need to be determined. The poly-
nomial p is appended when φ is not positive definite. It is well-known that, for
a broad range of φ(·), any continuous function on a bounded domain can be
approximated by sums (18) with arbitrary accuracy in Lp-norm, p > 1, subject
to the choice of parameters Xcj

, ωj , and M [22].
The following heuristics is proposed to replace repeat evaluations (17) of

q(t, λ) with their RBF approximations in a generic optimisation routine for infer-
ring the values of θ and λ.

Algorithm 1 [Parameter inference with approximated variables].

1. Initialisation: set λ̂ as an initial guess of λ.
2. A set of M samples Xi = (tni

, λmi
) is randomly drawn from a relevant domain

or chosen in accordance with some pre-defined process. The domain, in gen-
eral, may depend on λ̂.

3. Group spatially close points using a suitable clustering algorithm (e.g. [8,12,
13,15]), and set the centres Xcj as the centres of these clusters.

4. Determine parameters ωj in (18) as the minimizer of
∑N

i=1(S(Xi) −
q(ti, λi))2, N > 0. Note that adjustments of the shape parameter, α, might be
needed to ensure good approximation.

5. Using representation (15) and approximant (18) define:

ỹ(λ̂, t) = F (t, t0, θ, λ̂, q̂(λ̂, t))
q̂(λ̂, t) =

∑M
k=1 ωkφ(‖(t, λ̂) − (tck

, λck
)‖).

(19)

The function ỹ(λ̂, t) is an approximation of ŷ(λ̂, t).
6. Use ỹ(λ̂, t), to produce a refined guess of λ̂ and return to Step 1 if required.

In the next section we illustrate an application the method (with and with-
out Algorithm 1) to the problem of parameter estimation for the Morris–Lecar
system.
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5 Example

5.1 Direct Application of the Method

Consider the following simple point model of neural membrane activity [20]:

ẋ = gCam∞(x)(x − ECa) + gKq(x + EK) + gL(x + EL) + I

q̇ = −τ(x)−1
q + τ(x)−1

ω∞(x), y = x,
(20)

where

m∞(x) = 0.5
(
1 + tanh

(
x−V1

V2

))
, ω∞(x) = 0.5

(
1 + tanh

(
x+V3

V4

))

τ(x) = T0/
(
cosh

(
x+V3
2V4

))
.

Here x is the measured voltage, q is the recovery variable. Parameters
ECa, EK , EL are the Nernst potentials of which the nominal values are assumed
to be known: ECa = 55.17, EK = −110.14, EL = 49.49; other parameters may
vary from one cell to another and thus are considered unknown.

Assume that the model operates in the oscillatory regime which corresponds
to periodic solutions of (20). For practically relevant values of T0, V3, V4 and
measurements x(·) the integral

∫ t0+T

t0
τ(x(s))−1

ds > 0, where T is the period of
oscillations. Given that x(·) is T -periodic, the variable q can be expressed as:

q(t) = e
− ∫ t

t0
τ(x(s))−1ds

q0 +
∫ t

t0

e− ∫ t
z

τ(x(s))−1dsτ(x(z))−1
ω∞(x(z))dz

q0 =
(
1 − e

− ∫ t
t0

τ(x(s))−1ds
)−1

∫ t0+T

t0

e− ∫ t0+T
z

τ(x(s))−1dsτ(x(z))−1
ω∞(x(z))dz.

Denoting g(t, λ, [y]) = gCam∞(x)(x − ECa) + gKq(x + EK), Ψ(t, y) = (y(t), 1),
and combining parameters as θ = (gL, I), λ = (V1, V2, V3, V4, T0, gCa, gK) we can
rewrite (20) in the form of Eq. (4) with

A(y(t), t) =

⎛

⎝
0 y(t) 1
0 0 0
0 0 0

⎞

⎠ .

For this system and chosen nominal parameter values, the period of oscillations
is T = 15.1692. For convenience, the integration interval was set to [0, 15.1692].
Numerical evaluations of integrals and solutions of all auxiliary differential equa-
tions have been performed on equi-spaced grids with the step size of 0.0002.

According to Theorem 2, explicit parameter-dependent representation of the
observed quantity, ŷ(λ, t), is defined by (15), where C = (1, 0, 0), χ = col(x, θ),
and the fundamental solution (3×3)-matrices Φ(t, t0) and ΦA(t, t0) are computed
for the linear systems χ̇ = (A(y(t), t)−R−1(t)CCT )χ, Ṙ = −δR−A(y(t), t)T R−
RA(y(t), t) + CCT , and χ̇ = A(y(t), t)χ, respectively, by the Improved Euler
method for t ∈ [0, 15.1692]. The value of δ was set as δ = 2, and numerical
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approximations of matrices ΦA(t, t0) were used to compute the matrices R(t) in
accordance with Eq. (11). The value of R(t0) in (11) was so that R(t) is periodic
(see Lemma 2).

Figure 1 shows the relative error, e(t) = (ŷ(λ, t) − y(t))/‖y‖∞,[t0,t0+∞],
between the proposed numerical representation (15) and simulated y(t) (Runge–
Kutta, step size 0.0002) for nominal parameter values.

0 10 12 14 16
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82 4 6

Fig. 1. Relative error e(t) = (ŷ(λ, t) − y(t))/‖y‖∞,[t0,t0+∞] as a function of t.

The parameterized representations were later used, in combination with the
Nelder–Mead algorithm [21] to recover the values of parameters λ and θ. Results
of the estimation process after 3000 steps are shown in Table 2. The process took
less than 10 minutes on a standard PC in Matlab R2015a.

Table 2. True (first row) and Estimated (second row) of λ and θ, and the value of x0

To assess potential computational advantage of the proposed approach we
compared the time required for 1000 evaluations of y(t) in Matlab (a) expressed
as in (15) and (b) computed by the Improved Euler method over the interval
[t0, t0 + T ]. The parameter values for both cases were kept identical and did not
change from one trial to the other. The results are summarized in Table 3.
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Table 3. Time for 1000 evaluations of y

Eq. (15) Improved Euler method Ratio

2.21311 min 10.43818 min 4.71652

5.2 The Method with RBF Approximation of q

To show feasibility of RBF approximations in this problem we repeated the
experiment above but this time with the variable q replaced with its RBF
approximation inside the optimisation routine (Nelder–Mead). To produce such
approximations we followed steps of Algorithm 1. As the RBF kernel we used
the Gaussian function. This transforms (18) into

Sq(X) =
M∑

j=1

ωje
−(α‖X−Xcj

‖)2 . (21)

Note that the variable q depends only on 3 components of the vector λ, i.e. T0,V3,
and V4. And hence all steps of the algorithm related to approximation apply to
these 3 relevant components and the variable t only. We considered an extremely
sparse setting, in which each of the three parameters have been sampled at 2
points per each relevant sample of t. The values of t where chosen from the grid
of 0.002-spaced points in [0, 15.1692] (N = 7584 points in the grid). The shape
parameter α was set to 0.2107. To see how well Sq(ti, λ̂) approximates q(ti, λ)
as a function of ti the following simple criterion has been used:

LS =
N∑

i=1

(q(ti, λ) − Sq(ti, λ̂))2. (22)

In order to judge the efficiency of the approach we run the algorithm 1000
times and recorded empirical errors between λi and their estimates λ̂i, and com-
puted their L2 distances as:

d(ν) =
√∑7

i=1(λi − λ̂i(ν))2, (23)

where ν = 1, · · · , 1000 is the number of the experiment. Initial guesses for λ
were selected randomly in the n-cube [0, 1]+λi, i = 1, 2, · · · , 7, where λi are the
nominal values. Figure 2 shows histograms of (22), (23) at the initial step of the
algorithm. Figure 3 shows histograms of distances between λ and λ̂ as well as the
least square errors (LS) after the application of the Nelder–Mead optimisation
routine in which the values of q(t, λ̂) have been approximated in accordance
with Algorithm 1. Note that the histograms are not normalized. We observed a
pronounced shift of the histograms to the left, where they concentrate around
zero. This contrasts sharply with the initial distributions of errors seen in Fig. 2.

As can be seen from these experiments, RBF approximation is a viable way
to further improve scalability and potential of the method.
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Fig. 2. Histograms of the distributions of d(ν), ν = 1, · · · , 1000 (left panel), and least
square errors LS =

∑N
i=1(q(ti, λ) − Sq(ti, λ̂))2 (right panel) prior to any estimation.

Fig. 3. Histograms of the distributions of d(ν), ν = 1, · · · , 1000 (left panel) and LS =∑N
i=1(q(ti, λ) − Sq(ti, λ̂))2 (right panel) after optimisation.

6 Conclusion

The work presented a method for computationally efficient and explicit
parameter-dependent representation of periodic solutions of systems of nonlin-
ear ODEs. The method is rooted in the ideas from adaptive observers theory
and is an extension of our earlier work [27] in which linear part of the sys-
tem was supposed to be time-invariant. Here we extended this result to systems
with time-varying linear parts. Similar extension can be carried out for other
observer structures, including e.g. [17], followed by replacement of condition (7)
in Assumption 1 with the requirement of persistency of excitation of relevant
terms.

The computational advantage of the method is due to the possible parallel
implementation of calculations that the proposed representations offer. In addi-
tion to offering scalability and making use of parallel computations, the method
offers reduction of dimensionality of the problem due to incorporating linearly
parameterized part of the model into internal variables of the proposed represen-
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tations. These internal variables are uniquely determined by parameters entering
the model nonlinearly and are computed as a part of the representation.

An interesting possibility to further improve computational efficiency of the
approach to a class of problems emerging in modelling dynamics of neural cells
stems from invoking RBF approximations in place of certain integrals in the
schemes. Viability of the approach in this setting has been demonstrated with a
numerical example.
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Abstract. Following the seminal work of Padberg on the Boolean
quadric polytope BQP and its LP relaxation BQPLP , we consider a nat-
ural extension: the polytopes SATP and SATPLP , with BQPLP being a
projection of SATPLP face (and BQP – projection of SATP face). Var-
ious special instances of 3-SAT problem like NAE-3-SAT, 1-in-3-SAT,
weighted MAX-3-SAT, and others can be solved by integer program-
ming over SATPLP . We consider the properties of SATP 1-skeleton
and SATPLP fractional vertices. Like BQPLP , the polytope SATPLP

has the Trubin-property being quasi-integral (1-skeleton of SATP is a
subset of 1-skeleton of SATPLP ). However, unlike BQP , not all vertices
of SATP are pairwise adjacent, the diameter of SATP equals 2, and
the clique number of 1-skeleton is superpolynomial in dimension. It is
known that the fractional vertices of BQPLP are half-integral (0, 1 or
1/2 valued). We establish that the denominators of SATPLP fractional
vertices can take any integer values.

Keywords: 3-satisfiability · LP relaxation · 1-skeleton
Fractional vertices

1 Boolean Quadric Polytope

We consider the well-known Boolean quadric polytope BQP (n) [20], constructed
from the NP-hard problem of unconstrained Boolean quadratic programming:

Q(x) = xT Qx → max,

where vector x ∈ {0, 1}n, and Q is an upper triangular matrix, by introducing
new variables xi,j = xixj .

In the standard form BQP (n) can be defined as the convex hull of all integral
solutions of the system

x1,1
i,j + x1,2

i,j + x2,1
i,j + x2,2

i,j = 1, (1)

x1,1
i,j + x1,2

i,j = x1,1
k,j + x1,2

k,j , (2)

x1,1
i,j + x2,1

i,j = x1,1
i,l + x2,1

i,l , (3)

x1,2
i,i = x2,1

i,i = 0, (4)

x1,1
i,j ≥ 0, x1,2

i,j ≥ 0, x2,1
i,j ≥ 0, x2,2

i,j ≥ 0, (5)
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where 1 ≤ k ≤ i ≤ j ≤ l ≤ n [4].
The Boolean quadric polytope arises in many fields of mathematics and

physics. Sometimes it is called the correlation polytope, since its members can
be interpreted as joint correlations of events in some probability space. Also,
within the quantum mechanics the Boolean quadric polytope is connected with
the representability problem for density matrices of order 2 that render physical
properties of a system of particles [12]. Besides, BQP (n) is in one-to-one corre-
spondence via the covariance linear mapping with the well-known cut polytope
CUT (n + 1) of the complete graph on n + 1 vertices [10].

In recent years, the Boolean quadric polytope has been under the close atten-
tion in connection with the problem of estimating the extension complexity. An
extension of the polytope P is another polytope Q such that P is the image of Q
under a linear map. The number of facets of Q is called the size of an extension.
Extension complexity of P is defined as the minimum size over the set of all
possible extensions. Fiorini et al. proved that the extension complexity of the
Boolean quadric polytope is exponential.

Theorem 1 (see [13] and [15]). The extension complexity of BQP (n) and
CUT (n) is 2Ω(n).

Since the polytopes of many combinatorial optimization problems, including
stable set, knapsack, 3-dimensional matching, and traveling salesperson, contain
a face that is an extension of BQP (n), those polytopes also have an exponential
extension complexity. Thus, corresponding problems cannot be solved effectively
by linear programming, as any LP formulation will have an exponential number
of inequalities [13]. For more details on the special role of the Boolean quadratic
polytope see [18].

The system (1)–(5) without integrality constraint describes the LP relax-
ation BQPLP (n). Corresponding cut polytope relaxation is known as the rooted
semimetric polytope RMET (n).

For any polytope P , we call the collection of its vertices (0-faces) and its
edges (1-faces) the 1-skeleton of P . Let Q be a polytope that is contained in P .
We say that P has the Trubin-property (with respect to Q) if 1-skeleton of Q
is a subset of 1-skeleton of P [22]. Polytope P with this property is also called
quasi-integral. If P has the Trubin-property, then all vertices of Q are vertices of
P and those facets of Q that define invalid inequalities for P do not create any
new adjacencies among the vertices of Q.

Theorem 2 (see [20]). The diameter of the polytope BQP (n) equals 1. The
relaxation BQPLP (n) has the Trubin-property with respect to BQP (n).

As for the fractional vertices in the LP relaxation BQPLP (n), they are com-
pletely described and are half-integral.

Theorem 3 (see[20]). Every vertex of BQPLP (n) is {0, 1
2 , 1} valued.

We note that while the fractional vertices of BQPLP (n) have their denomi-
nators bounded by 2, the matrix of the system (1)–(5) is not bimodular. Every
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nonsingular submatrix of the system has a determinant of ±2p where p is a non-
negative integer [20]. Thus, the polynomial time algorithm for bimodular integer
linear programming [23], unfortunately, cannot be applied.

2 3-SAT Relaxation Polytope

We consider a more general polytope SATP (m,n) ⊂ R
6mn (see [4]), obtained

as the convex hull of all integral solutions of the system
∑

k,l

xk,l
i,j = 1, (6)

x1,1
i,j + x2,1

i,j + x3,1
i,j = x1,1

i,t + x2,1
i,t + x3,1

i,t , (7)

xk,1
i,j + xk,2

i,j = xk,1
s,j + xk,2

s,j , (8)

xk,l
i,j ≥ 0, (9)

where k = 1, 2, 3; l = 1, 2; i, s = 1, . . . m; j, t = 1, . . . n.
Inequalities (6)–(9) without the integrality constraint define the LP relax-

ation SATPLP (m,n). Points that satisfy the system can be conveniently repre-
sented as a block matrix (Table 1).

Table 1. Fragment of SATPLP (m,n) block matrix

x1,1
i,j x1,2

i,j x1,1
i,t x1,2

i,t

x2,1
i,j x2,2

i,j x2,1
i,t x2,2

i,t

x3,1
i,j x3,2

i,j x3,1
i,t x3,2

i,t

x1,1
s,j x1,2

s,j x1,1
s,t x1,2

s,t

x2,1
s,j x2,2

s,j x2,1
s,t x2,2

s,t

x3,1
s,j x3,2

s,j x3,1
s,t x3,2

s,t

If we consider a face of the polytope SATP (n, n), constructed as follows:

∀i, j : x3,1
i,j = x3,2

i,j = 0,

∀i : x1,2
i,i = x2,1

i,i = 0,

and discard all coordinates with i > j (orthogonal projection), then we get the
polytope BQP (n). As a result, we have

Theorem 4. The extension complexity of SATP (m,n) is 2Ω(min{m,n}).

The polytope SATP (m,n) was introduced in [4] and later studied in [19]
as the integer programming formulation of various special instances of 3-SAT
problem like not-all-equal-3-SAT, 1-in-3-SAT, weighted MAX-3-SAT, and oth-
ers. A polynomial time algorithm for some cases of edge constrained bipartite
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graph coloring, based on the properties of SATPLP (m,n) relaxation, was con-
sidered in [19].

The object of research in this paper are the properties of 1-skeleton of
SATP (m,n) and the fractional vertices of SATPLP (m,n) relaxation.

3 1-Skeleton

We consider the following 3 characteristics of 1-skeleton: an adjacency rela-
tion, a diameter, and a clique number. The adjacency relation together with
the local search technique can serve as a basis for optimization algorithms. See,
for example, algorithms for the perfect matching, set covering, and other prob-
lems [1,9,17]. The study of 1-skeleton’s diameter is motivated by its relationship
to edge-following algorithms of linear programming such as the simplex method,
since the diameter is a lower bound on the number of non-degenerate steps
of the algorithm. The clique number of 1-skeleton serves as a lower bound for
computational complexity in a class of direct-type algorithms based on linear
comparisons. In addition, it was found that this characteristic is polynomial for
known polynomially solvable problems and is superpolynomial for intractable
problems (see, for example, [5–7]).

We encode every integer vertex z of the polytope SATP (m,n) by the vectors
row(z) ∈ {0, 1}m and col(z) ∈ {0, 1, 2}n. We denote by row i(z) and col j(z)
the i-th and j-th coordinates of the corresponding vectors.

Lemma 1 (see [19]). Let z be the vertex of the polytope SATP (m,n), then
its coordinates are determined by the vectors row(z) ∈ {0, 1}m and col(z) ∈
{0, 1, 2}n by the following formulas:

x1,1
i,j =

1
2
(1 − rowi(z))(2 − colj(z))(1 − colj(z)),

x1,2
i,j =

1
2
rowi(z)(2 − colj(z))(1 − colj(z)),

x2,1
i,j = (1 − rowi(z))colj(z)(2 − colj(z)),

x2,2
i,j = rowi(z)colj(z)(2 − colj(z)),

x3,1
i,j =

1
2
(1 − rowi(z))colj(z)(1 − colj(z)),

x3,2
i,j =

1
2
rowi(z)colj(z)(1 − colj(z)).

Theorem 5. Two vertices u and v of the polytope SATP (m,n) are adjacent if
and only if one of following conditions is true:

• row(u) �= row(v) and col(u) �= col(v);
• ∃!i: rowi(u) �= rowi(v) and col(u) = col(v);
• ∃!j: colj(u) �= colj(v) and row(u) = row(v).
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Proof. If the vertices u and v are not adjacent, then the line segment [u, v]
intersects with the convex hull of all remaining vertices:

αu + βv =
∑

λww,

α + β =
∑

λw = 1,

α ≥ 0, β ≥ 0, λw ≥ 0.

We consider some vertex w in this convex combination with a positive λw.
Since u, v and w are zero-one points, equation implies the inequality

w ≤ u + v. (10)

Let the row and col vectors of u and v do not coincide. Since the vertex w
is different from u and v, we have

{
row(w) �= row(u),
col(w) �= col(v),

or

{
row(w) �= row(v),
col(w) �= col(u).

Without loss of generality, we assume that

∃i : rowi(w) = 0 �= rowi(u),
∃j : colj(w) = 0 �= colj(v).

Hence, we have

x1,1
i,j (w) =

1
2
(1 − row i(w))(2 − col j(w))(1 − col j(w)) = 1,

x1,1
i,j (u) + x1,1

i,j (v) =
1
2
(1 − row i(u))(2 − col j(u))(1 − col j(u))+

+
1
2
(1 − row i(v))(2 − col j(v))(1 − col j(v)) = 0.

Therefore, the inequality (10) is not satisfied. The remaining cases are treated
similarly. Thus, if the row and col vectors of u and v do not coincide, then the
vertices u and v are adjacent.

Now let col(u) and col(v) be equal. We suppose that

∃i, j : rowi(u) �= rowi(v) and rowj(u) �= rowj(v).

We consider two vertices wu and wv, constructed as follows:

col(wu) = col(wv) = col(u) = col(v),
∀k(k �= i) : rowk(wu) = rowk(u), rowk(wv) = rowk(v),

rowi(wu) = rowi(v), row i(wv) = rowi(u).

Vertices wu and wv are different from u and v, and we have

wu + wv = u + v,
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thus, u and v are not adjacent.
Finally, if the vectors row(u) and row(v) differ only in one coordinate, then

there are no vertices w other than u and v that satisfy the inequality (10).
Consequently, in this case u and v are adjacent.

It remains to study the case row(u) = row(v) that is completely similar to
the case col(u) = col(v).

Thus, 1-skeleton of SATP (m,n) is not a complete graph, unlike BQP (n).
Still, this graph is very dense.

Theorem 6. The diameter of SATP (m,n) 1-skeleton equals 2, with the excep-
tion of the case m = n = 1.

Proof. First we consider the special case of m = n = 1. The system (6)–(9) takes
the form

∑

k,l

xk,l = 1,

xk,l ≥ 0,

and defines a standard simplex with all 6 vertices being pairwise adjacent. How-
ever, for m ≥ 2 or n ≥ 2, by Theorem 5, there are nonadjacent vertices of
SATP (m,n).

Let the vertices u and v of the polytope be not adjacent. Let m ≥ 2. We
consider a vertex w, constructed as follows:

row(w) �= row(u), row(w) �= row(v), (11)
col(w) �= col(u), col(w) �= col(v). (12)

By Theorem 5, we have w being adjacent both to u and v.
Now let m = 1 and n ≥ 2. If row(u) = row(v), then we again consider a

vertex w, satisfying (11)–(12), that is adjacent both to u and v. And if row(u) �=
row(v), then we construct a vertex w as follows:

row(w) = row(v) �= row(u),
col1(w) �= col1(u), col1(w) �= col1(v),

colj(w) = colj(v), j ≥ 2.

By Theorem 5, such vertex w is adjacent both to u and v.
Thus, for m ≥ 2 or n ≥ 2 the diameter of SATP (m,n) 1-skeleton equals 2.

Theorem 7. The clique number of SATP (m,n) 1-skeleton is superpolynomial
in dimension and bounded from below by 2min{m,n}.

Proof. We consider a vertex set W , such that ∀w ∈ W we have

∀k(k ≤ min{m,n}) : rowk(w) = colk(w).

All the remaining coordinates of row and col vectors are assumed to be zero.
By Theorem 5, each pair of vertices in W is pairwise adjacent, since their row
and col vectors do not coincide, and there are exactly 2min{m,n} of such vertices.
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In the last theorem of this section we will show that the properties of 1-
skeleton of the polytope SATP can be transferred to its LP relaxation SATPLP .

Theorem 8. SATPLP has the Trubin-property with respect to SATP .

Proof. Trubin [22] showed that the relaxation set partitioning polytope

Ax = e, x ≥ 0, (13)

where A is a zero-one matrix, and e is an all unit column, is quasi-integral. The
polytope SATPLP (m,n) can be considered as a special case of the relaxation set
partitioning polytope. Constraints (6) and (9) already satisfy (13). Each Eq. (7)
in pair with the Eq. (6)

{
x1,1

i,j + x2,1
i,j + x3,1

i,j = x1,1
i,t + x2,1

i,t + x3,1
i,t ,

x1,1
i,j + x2,1

i,j + x3,1
i,j + x1,2

i,j + x2,2
i,j + x3,2

i,j = 1,

can be rewritten in the required form:
{

x1,1
i,t + x2,1

i,t + x3,1
i,t + x1,2

i,j + x2,2
i,j + x3,2

i,j = 1,

x1,1
i,j + x2,1

i,j + x3,1
i,j + x1,2

i,j + x2,2
i,j + x3,2

i,j = 1.

Similarly, each Eq. (8) in pair with the Eq. (6)
{

x1,1
i,j + x1,2

i,j = x1,1
s,j + x1,2

s,j ,

x1,1
i,j + x1,2

i,j + x2,1
i,j + x2,2

i,j + x3,1
i,j + x3,2

i,j = 1,

can be rewritten as
{

x1,1
s,j + x1,2

s,j + x2,1
i,j + x2,2

i,j + x3,1
i,j + x3,2

i,j = 1,

x1,1
i,j + x1,2

i,j + x2,1
i,j + x2,2

i,j + x3,1
i,j + x3,2

i,j = 1.

Thus, 1-skeleton of SATP (m,n) is a subset of 1-skeleton of SATPLP (m,n).

4 Fractional Vertices

Another area of research are the properties of fractional vertices in the LP relax-
ation. The structure of fractional vertices is important for the analysis of approx-
imation algorithms based on LP rounding. In particular, if the denominators of
the fractional vertices are bounded by some constant d, then LP rounding pro-
vides a d-approximation algorithm for the considered problem (d is called the
integrality gap). Besides, the fractional vertices are important for constructing
new inequalities for branch and cut algorithms [21].

In this section we consider the LP relaxation SATPLP (m,n). It preserves
all integral vertices of SATP (m,n), together with their adjacency in 1-skeleton,
but as LP relaxation has its own fractional vertices.
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Fractional vertices of BQPLP (n) are quite simple with values only from the
set {0, 1

2 , 1}. Thereby, they can be completely cut off by triangle inequality con-
straints of the metric polytope MET (n) [20]. The polynomial time algorithm for
integer recognition problem (determine whether a maximum of a linear objective
function is achieved at an integral vertex of a polytope) over BQPLP (n) is based
on this fact [4].

The metric polytope MET (n) is obtained by augmenting the system (1)–
(5) by the triangle inequalities that define the facets of BQP (3). It is the most
simple and natural relaxation of the polytope CUT (n), and has many practical
applications, such as being a compact LP formulation for the max-cut problem
on graphs not contractible to K5 [3].

Fractional vertices of the metric polytope MET (n) have a much more com-
plicated nature. Their denominators can take any integral values [16], and it is
not known if it is possible to cut them off by a polynomial number of additional
linear constraints [8]. Furthermore, characteristics of MET (n) fractional vertices
were also considered in [2,11,14].

Unfortunately, properties of SATPLP (m,n) fractional vertices are similar to
MET (n) and not to BQPLP (n), since their denominators can take any integral
values as well.

Theorem 9. The relaxation polytope SATPLP (n, n) has fractional vertices with
denominators equal n + 1 for all n ≥ 4.

Proof. A vertex of the polytope SATPLP (m,n) is a unique solution of the system
(6)–(9) with some of the inequalities (9) turned into equations. We construct a
required vertex in a few steps.

The basis is the first four blocks as shown in Table 2. We can use the con-
straints (7)–(8) to establish the relationship between the coordinates:

x2,2
1,2 = x3,2

1,1 = x3,2
2,1 = x3,2

2,2 = x3,1
1,2.

Hence, for all blocks in the second column

x2,1
i,2 + x2,2

i,2 = x3,1
i,2 + x3,2

i,2 .

Table 2. First four blocks of the fractional vertex

x1,1
1,1 0 x1,1

1,2 0

x2,1
1,1 0 0 x2,2

1,2

0 x3,2
1,1 x3,1

1,2 0

x1,1
2,1 0 x1,1

2,2 0

x2,1
2,1 0 x2,1

2,2 0

0 x3,2
2,1 0 x3,2

2,2

Here, we describe the key steps of the construction.



On Vertices of the Simple Boolean Quadric Polytope Extension 163

Table 3. Blocks j, j and j, j + 1 of the fractional vertex

x1,1
j,j 0 x1,1

j,j+1 0

x2,1
j,j 0 0 x2,2

j,j+1

0 x3,2
j,j x3,1

j,j+1 0

• For all j (1 ≤ j ≤ n − 1) blocks j, j and j, j + 1 have the form as shown in
Table 3. Thus, for all i, j we have

x3,1
i,j + x3,2

i,j = x2,1
i,j+1 + x2,2

i,j+1. (14)

• For all k (3 ≤ 2k−1 ≤ n) there are blocks in the rows 2k−1 and 2k as shown
in Table 4. Here, we obtain

x3,1
i,2k−1 + x3,2

i,2k−1 = x3,1
i,2k + x3,2

i,2k = x2,1
i,k + x2,2

i,k + x3,1
i,k + x3,2

i,k (15)

for all blocks in these columns. If 2k > n, then the row and column 2k can
be omitted.

• The last part of construction describes the blocks in the rows n− 1 and n, as
shown in Table 5. Hence, for blocks in the first and last columns we have

x1,1
i,1 + x1,2

i,1 = x2,1
i,n + x2,2

i,n, (16)

x2,1
i,1 + x2,2

i,1 = x3,1
i,n + x3,2

i,n. (17)

It is possible to make last two rows different from the first two rows since
n ≥ 4.

• We call all of the remaining blocks that were not described in the preceding
steps as the filler blocks. They are different for the blocks above and below
the main diagonal and have the form as shown in Table 6.

Table 4. Fragment of 2k − 1 and 2k rows of blocks of the fractional vertex

x1,1
2k−1,k 0 x1,1

2k−1,2k−1 0 - -

0 x2,2
2k−1,k x2,1

2k−1,2k−1 0 - -

0 x3,2
2k−1,k 0 x3,2

2k−1,2k−1 - -

x1,1
2k,k 0 - - x1,1

2k,2k 0

0 x2,2
2k,k - - x2,1

2k,2k 0

0 x3,2
2k,k - - 0 x3,2

2k,2k

Now we establish that the system (6)–(9), constructed above, has a unique
solution. Let n be odd and equal 2q + 1. We denote x3,2

1,1 simply as x. Thereby,
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Table 5. Last two rows of blocks of the fractional vertex

0 x1,1
n−1,1 x1,1

n−1,n 0

x2,1
n−1,1 0 0 x2,2

n−1,n

x3,1
n−1,1 0 x3,1

n−1,n 0

x1,1
n,1 0 x1,1

n,n 0

0 x2,2
n,1 x2,1

n,n 0

x3,1
n,1 0 0 x3,2

n,n

Table 6. Form of the filler blocks of the fractional vertex above the main diagonal (a)
and beyond the main diagonal (b)

x1,1
i,j 0

x2,1
i,j 0

x3,1
i,j x3,2

i,j

(a)

x1,1
i,j x1,2

i,j

x2,1
i,j 0

0 x3,2
i,j

(b)

for all i by Eqs. (14)–(15) and induction we get

x2,1
i,2 + x2,2

i,2 = x,

x3,1
i,2 + x3,2

i,2 = x,

x2,1
i,3 + x2,2

i,3 = x,

x3,1
i,3 + x3,2

i,3 = 2x,

. . .

x2,1
i,2q + x2,2

i,2q = qx,

x3,1
i,2q + x3,2

i,2q = qx,

x2,1
i,2q+1 + x2,2

i,2q+1 = qx,

x3,1
i,2q+1 + x3,2

i,2q+1 = (q + 1)x.

First and last columns are connected by Eqs. (16)–(17), therefore

x1,1
1,1 + x1,2

1,1 = qx,

x2,1
1,1 + x2,2

1,1 = (q + 1)x,

x3,1
1,1 + x3,2

1,1 = x.

Since the sum of the coordinates inside a single block is equal to 1, we have

qx + (q + 1)x + x = 1,

and
x =

1
2q + 2

=
1

n + 1
. (18)
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All coordinates of the constructed point are either already directly expressed in
terms of x, or can be found using the Eqs. (6)–(8).

Case of n equal 2q is considered similarly, the only difference will be that

x1,1
1,1 + x1,2

1,1 = x2,1
i,2q + x2,2

i,2q = qx,

x2,1
1,1 + x2,2

1,1 = x3,1
i,2q + x3,2

i,2q = qx.

It remains to verify only that the coordinates of the filler blocks from the
Table 6 satisfy the system (6)–(9). We consider the filler blocks above the main
diagonal (i < j). Using Eqs. (6)–(8) we can establish that

x2,1
i,j =

⌊
j

2

⌋
x,

x3,2
i,j =

⌊
i + 1

2

⌋
x,

x3,1
i,j =

⌊
j + 1

2

⌋
x −

⌊
i + 1

2

⌋
x,

x1,1
i,j = 1 −

⌊
j

2

⌋
x −

⌊
j + 1

2

⌋
x.

Hence, only the inequalities x3,1
i,j ≥ 0 and x1,1

i,j ≥ 0 can be violated. For all i < j
we have ⌊

j + 1
2

⌋
≥

⌊
i + 1

2

⌋
.

Therefore, x3,1
i,j ≥ 0. And, since j ≤ n, we have

⌊
j

2

⌋
+

⌊
j + 1

2

⌋
< n + 1.

Thus, by (18), x1,1
i,j ≥ 0 is satisfied as well.

Now we consider the filler blocks below the main diagonal (i > j):

x2,1
i,j =

⌊
j

2

⌋
x,

x3,2
i,j =

⌊
j + 1

2

⌋
x,

x1,2
i,j =

⌊
i + 1

2

⌋
x −

⌊
j + 1

2

⌋
x,

x1,1
i,j = 1 −

⌊
i + 1

2

⌋
x −

⌊
j

2

⌋
x.

Again, for all i > j we have
⌊

i + 1
2

⌋
≥

⌊
j + 1

2

⌋
,
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and the inequality x1,2
i,j ≥ 0 is satisfied. And, since i, j ≤ n:

⌊
j

2

⌋
+

⌊
i + 1

2

⌋
< n + 1.

Thus, x1,1
i,j ≥ 0 holds as well.

The constructed system is obtained from (6)–(9) by turning some of inequali-
ties into equations, and it has a unique solution, therefore it defines the fractional
vertex of the polytope SATPLP (n, n) with denominator n + 1.

An example of a fractional vertex for n = 6 is shown in Table 7.

Table 7. Fractional vertex of the polytope SATPLP (6, 6)

3
7
0 5

7
0 4

7
0 3

7
0 2

7
0 1

7
0

3
7
0 0 1

7
1
7
0 2

7
0 2

7
0 3

7
0

0 1
7

1
7
0 1

7
1
7

1
7

1
7

2
7

1
7

2
7

1
7

3
7
0 5

7
0 4

7
0 3

7
0 2

7
0 1

7
0

3
7
0 1

7
0 0 1

7
2
7
0 2

7
0 3

7
0

0 1
7

0 1
7

2
7
0 1

7
1
7

2
7

1
7

2
7

1
7

2
7

1
7

5
7
0 4

7
0 3

7
0 2

7
0 1

7
0

3
7
0 0 1

7
1
7
0 0 2

7
2
7
0 3

7
0

0 1
7

0 1
7

0 2
7

2
7
0 1

7
2
7

1
7

2
7

2
7

1
7

5
7
0 4

7
0 3

7
0 2

7
0 1

7
0

3
7
0 0 1

7
1
7
0 2

7
0 0 2

7
3
7
0

0 1
7

0 1
7

0 2
7

0 2
7

3
7
0 1

7
2
7

0 3
7

3
7

2
7

4
7
0 2

7
1
7

2
7
0 1

7
0

3
7
0 1

7
0 0 1

7
2
7
0 2

7
0 0 3

7
1
7
0 0 1

7
0 2

7
0 2

7
0 3

7
3
7
0

3
7
0 3

7
2
7

4
7
0 2

7
1
7

2
7
0 1

7
0

0 3
7

1
7
0 0 1

7
2
7
0 2

7
0 3

7
0

1
7
0 0 1

7
0 2

7
0 2

7
0 3

7
0 3

7

The construction described in Theorem 9 is not working for n < 4. However,
relaxation polytope SATPLP (m,n) has fractional vertices with denominators
2, 3 and 4 as well. Some examples are provided in Table 8. It may be noted that
Theorem 9 holds for n = 3, but not for n = 1 and n = 2. Polytope SATPLP (1, 1)
coincide with SATP (1, 1) and has only 6 integral vertices. As for the polytope
SATPLP (2, 2), it has 72 fractional vertices with all of them having denominators
equal to 2 (computed by Skeleton software [24]).
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Table 8. Fractional vertices with denominators 2, 3 and 4

1
2
0 0 1

2

0 1
2

1
2
0

0 0 0 0
1
2
0 1

2
0

0 1
2

0 1
2

0 0 0 0

0 1
3

2
3
0

1
3
0 0 1

3
1
3
0 0 0

1
3
0 2

3
0

0 1
3

0 1
3

1
3
0 0 0

1
3
0 2

3
0

1
3
0 0 1

3

0 1
3

0 0

1
2
0 1

2
0 1

2
0

1
4
0 1

4
0 1

4
0

0 1
4

0 1
4

0 1
4

1
2
0 1

2
0 1

2
0

0 1
4

1
4
0 0 1

4
1
4
0 0 1

4
1
4
0

1
2
0 1

2
0 0 1

2

0 1
4

0 1
4

1
4
0

0 1
4

0 1
4

1
4
0

5 Conclusions

We have considered SATP (m,n) polytope and its LP relaxation SATPLP (m,n).
This polytope is a simple extension of the well-known and important Boolean
quadric polytope BQP (n), constructed by adding two additional coordinates
per block. The polytope SATP (m,n) is the object of our interest, since it is the
integer programming formulation of various special instances of 3-SAT problem
like not-all-equal-3-SAT, 1-in-3-SAT, weighted MAX-3-SAT, and others.

We have compared key properties of BQP (n) and SATP (m,n). Like the
Boolean quadric polytope, the polytope SATP (m,n) has an exponential exten-
sion complexity, and the LP relaxation SATPLP (m,n) is quasi-integral with
respect to SATP (m,n). Unlike BQP (n), 1-skeleton of SATP (m,n) is not a
complete graph, but is a very dense one, with the diameter equals 2, and the
clique number being superpolynomial in dimension. As for the fractional vertices,
unlike the Boolean quadric polytope, the denominators of the fractional vertices
of the LP relaxation SATPLP (m,n) can take any positive integer values.

Acknowledgments. The research is supported by the grant of the President of the
Russian Federation MK-2620.2018.1.
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ical programming problems are considered. These schemes are based on
the Lagrange function regularized by Tikhonov in primal and dual vari-
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programming problems only, and the conditions were found which guar-
antee a convergence of both primal and dual components of the saddle
point of the regularized Lagrange function to the optimal sets of primal
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normal solution (solution with minimal the Euclidean norm) of the cor-
responding problem, primal or dual. Unfortunately, these estimates are
valid only if primal and dual parameters of regularization have a differ-
ent order of smallness. In this article, the linear case is investigated in
detail. It is shown that for linear programming problem both mentioned
sequences converge to the normal solutions of primal and dual programs
simultaneously, and it is not essential for such a convergence whether the
regularization parameters have a different or the same order of smallness.
Also, the alternative accuracy estimates are presented which appear to
be more precise and efficient in comparison with the estimates known for
a convex case.
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1 Introduction

In [1–7], various duality schemes for mathematical programming problems were
proposed. These schemes generally use the different modifications of the clas-
sical Lagrange function. One of such modifications is the Lagrange function

This work was supported by Russian Science Foundation, grant N 14–11–00109.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 170–182, 2018.
https://doi.org/10.1007/978-3-319-93800-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93800-4_14&domain=pdf
http://orcid.org/0000-0001-8914-3347


On Accuracy Estimates 171

symmetrically regularized by Tikhonov in primal and dual variables simulta-
neously. Properties of such functions for convex programming problems were
investigated in [8,9]. In particular, the conditions were found which guaran-
tee a convergence of both primal and dual components of the saddle point of
the regularized Lagrange function to the optimal sets of primal and dual prob-
lems respectively as the primal and dual parameters of regularization tend to
zero. In addition, some accuracy estimates were obtained for deviation of only
one of these components from the normal solution (solution with minimal the
Euclidean norm) of the corresponding problem, primal or dual. Unfortunately,
these estimates are valid only if primal and dual parameters of regularization
have a different order of smallness. In this article, the linear case is investigated
in detail. It is shown that for the linear programming problem both mentioned
sequences converge to the normal solutions of primal and dual programs simulta-
neously, and it is not essential for such a convergence whether the regularization
parameters have a different or the same order of smallness. Also, the alternative
accuracy estimates are presented which appear to be more precise and efficient
in comparison with the estimates known for a convex case.

2 Symmetrically Regularized Lagrange Function

Consider the linear program

max{(c, x) : Ax ≤ b, x ≥ 0} (1)

and its dual one
min{(b, y) : AT y ≥ c, y ≥ 0}, (2)

where vectors c ∈ IRn, b ∈ IRm and matrix A = (aij)m×n are given, vectors
x ∈ IRn and y ∈ IRm denote primal and dual variables, (·, ·) denotes the scalar
product.

Assume that problems (1), (2) are solvable and x̄ and ȳ are their optimal
vectors with minimal the Euclidean norm. It’s known that these vectors (as any
others optimal vectors of problems (1), (2)) together form a saddle point (x̄, ȳ)
of the classical Lagrange function

L(x, y) = (c, x) − (y,Ax − b)

with respect to domain IRn
+ × IRm

+ , where IRn
+ and IRm

+ are the non-negative
orthants of the corresponding Euclidean spaces [10].

Unfortunately, the classical Lagrange function has some disadvantages from
the computational point of view. That is why it is usually replaced by its different
modifications in numerical analysis. One of such modifications is the function

Lσ(x, y) = (c, x) − (y,Ax − b) − α‖x‖2 + β‖y‖2; (3)

it is constructed by means of symmetric regularization of the classical Lagrangian
both in primal and dual variables simultaneously. Here ‖·‖ denotes the Euclidean
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norm, σ = [α, β] → +0, α > 0, β > 0 are positive scalar parameters of regular-
ization tending to zero.

Symmetrically regularized function (3) generates a standard pair of maxmin
and minmax problems

(P) max
x≥0

min
y≥0

Lσ(x, y)
(

= max
x≥0

Lσ

(
x, y(x)

)
, y(x) =

1
2β

(
Ax − b

)+)
,

(D) min
y≥0

max
x≥0

Lσ(x, y)
(

= min
y≥0

Lσ

(
x(y), y

)
, x(y) =

1
2α

(
c − AT y

)+)
,

which (after some transformations) may be rewritten as following dual pair of
convex programs

max
x≥0

Φσ(x), Φσ(x) = Lσ

(
x, y(x)

)
= (c, x) − 1

4β
‖(

Ax − b
)+‖2 − α‖x‖2; (4)

min
y≥0

Ψσ(y), Ψσ(y) = Lσ

(
x(y), y

)
= (b, y) +

1
4α

‖(
c − AT y

)+‖2 + β‖y‖2. (5)

Here w+ denotes the Euclidean projection of a vector w onto non-negative
orthant of the corresponding Euclidean space.

Since objective functions of modified problems (4), (5) are strongly concave
and convex respectively, these problems always are in relation of perfect duality.
It means that they are solvable and share the same optimal value. Their opti-
mal vectors xσ and yσ are unique and together form a saddle point (xσ, yσ) of
function (3) with respect to domain IRn

+ × IRm
+ . Notice that it is just so even

if problems (1), (2) are infeasible or ill-posed (see Sect. 4, where the improper
linear programs are investigated).

As we already say, some properties of function (3) were described in the
paper [8] for the convex case. Being applying to linear programs (1), (2), they
allow us to write the following inequalities

v̄ − α‖x̄‖2 ≤ Lσ(xσ, yσ) ≤ v̄ + β‖ȳ‖2, (6)

‖(
Axσ − b

)+‖2 ≤ 4β
(
α‖x̄‖2 + β‖ȳ‖2), (7)

‖(
c − AT yσ

)+‖2 ≤ 4α
(
α‖x̄‖2 + β‖ȳ‖2) (8)

as well as
v̄ − α‖x̄‖2 ≤ (c, xσ) ≤ v̄ + ‖ȳ‖ ‖(Axσ − b

)+‖, (9)

v̄ + β‖ȳ‖2 ≥ (b, yσ) ≥ v̄ − ‖x̄‖‖(c − AT yσ
)+‖, (10)

where v̄ is the common optimal (finite) value of problems (1), (2). In addition,
it is known the estimate

‖xσ − x̄‖ ≤ 1/2
[
‖ȳ‖

√
β/α +

√
αβ‖[λ̄, λ̄0]‖

]
, (11)

which means that xσ → x̄ if β = o(α), α → +0 (parameters λ̄, λ̄0 are discussed
below).
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The asymmetric estimate is valid

‖yσ − ȳ‖ ≤ 1/2
[
‖x̄‖

√
α/β +

√
αβ‖[λ̄′, λ̄′

0]‖
]

if α = o(β), β → +0 (parameters λ̄′, λ̄′
0 have analogous sense). Thus, only one

of these estimates may be using in any concrete numerical process.
Generally, properties (7)–(10) imply convergence of sequences xσ and yσ

only to the optimal sets of problems (1) and (2) respectively1 and not allow to
concretely specify their limit points. Below it will be established that in linear
case the sequences xσ and yσ possess more strong properties: they both converge,
the first one does to the point x̄ and the second one does to the point ȳ, in spite of
any assumptions about the order of smallness of the parameters of regularization
α and β. Also, more efficient estimates of deviations ‖xσ − x̄‖ and ‖yσ − ȳ‖ will
be obtained which depend only on γ = max{α, β} → +0.

3 Alternative Accuracy Estimates

At first, consider the auxiliary parametric family of linear programs

max{(c, x) : Ax ≤ b + u, x ≥ 0}, u ∈ IRm
+ is a vector parameter. (12)

Denote by v(u) the optimal value of problem (12) and set

x̄(u) = arg min{‖x‖2 : Ax ≤ b + u, (c, x) ≥ v(u), x ≥ 0}. (13)

It is well-known, that v(u) is continuous concave piecewise linear function, finite
on IRm

+ , and v(0) = v̄. Since vector ȳ is a sub-gradient of function v(u) computed
at zero, we have

v̄ ≤ v(u) ≤ v̄ + (ȳ, u) ≤ v̄ + ‖ȳ‖‖u‖. (14)

Besides, being optimal vector of convex quadratic program (13) with the strongly
convex objective function, the normal solution x̄(u) is a continuous function of
right-hand side of constraints of this program [12,13], in our case of u, since v(u)
is continuous in u too. Then x̄(u) → x̄(0) = x̄ as u → +0.

Let us estimate the norm ‖x̄(u) − x̄‖. Set

M̄(u) = {x : Ax ≤ b + u, (c, x) ≥ v(u), x ≥ 0}.

From (13) it follows that vector x̄(u) is a projection of zero vector onto the
optimal set M̄(u) of problem (12), and vector x̄ is a projection of zero vector onto
the optimal set M̄(0) of problem (1). Further, according to Hoffman’s lemma

1 It follows from well-known Hoffman’s lemma [11] estimating the distance of an arbi-
trary point to the polyhedral set defined by the system of linear inequalities (and
the optimal set of a linear programming problem belongs to such a class) in terms
of deviations of this point from each inequality separately.
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there exists a constant K, depending only on matrix A and vector c, such that
Hausdorff’s distance ρ(M̄(u), M̄(0)) between sets M̄(0) and M̄(u) is evaluated as

ρ(M̄(u), M̄(0)) ≤ K(‖u‖ + |v(u) − v̄|) ≤ K(1 + ‖ȳ‖)‖u‖. (15)

Here we use relation (14) too.

Lemma 1. Let Q and Q′ be convex closed subsets of IRs such that ρ(Q,Q′) ≤ ε,
and let q̄ and q̄′ be two projections of zero vector onto each of these sets. Then
we have

‖q̄‖ − ε ≤ ‖q̄′‖ ≤ ‖q̄‖ + ε and ‖q̄′‖ − ε ≤ ‖q̄‖ ≤ ‖q̄′‖ + ε.

Proof. If one of or both projections q̄ and q̄′ equal to zero, then sought inequal-
ities are evident. Assume that both projections differ from zero. Being a pro-
jection of zero vector onto convex closed set, vector q̄ satisfies to inequality
(q̄, q − q̄) ≥ 0 for all q ∈ Q. In this inequality, we can replace q by vector p ∈ Q
that is the nearest to vector q̄′ ∈ Q′ (with respect to the Euclidean distance).
Then we get

0 ≤ (q̄, p − q̄) = (q̄, p − q̄′) + (q̄, q̄′ − q̄) ≤ ‖q̄‖ε + (q̄, q̄′ − q̄).

It means that (q̄, q̄ − q̄′) ≤ ε‖q̄‖, which in turn implies that

‖q̄‖2 − ‖q̄‖‖q̄′‖ ≤ (q̄, q̄ − q̄′) ≤ ε‖q̄‖,

or
‖q̄‖ ≤ ‖q̄′‖ + ε,

after dividing of both sides of the previous inequality by ‖q̄‖ > 0.
Now, if we repeat this reasoning with vector q̄′ as a projection of zero vector

onto set Q′, then we obtain the symmetric relation

‖q̄′‖ ≤ ‖q̄‖ + ε.

Finally, transferring ε from the right-hand side into the left-hand side of each
of these inequalities, we obtain two another sought inequalities. The proof is
complete.

Corollary 1. The estimates hold

‖x̄(u)‖ ≤ ‖x̄‖ + K(1 + ‖ȳ‖)‖u‖, ‖x̄‖ ≤ ‖x̄(u)‖ + K(1 + ‖ȳ‖)‖u‖.

Now we try to evaluate the norm of vector xσ in the same way.

Lemma 2. The estimate is valid

‖xσ‖ ≤ ‖x̄‖ + K(1 + ‖ȳ‖)‖(Axσ − b
)+‖.
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Proof. Set uσ =
(
Axσ − b

)+ ∈ IRm
+ . From the definition of xσ, it follows that

Φσ(xσ) = max
x≥0

Φσ(x) ≥ Φσ

(
x̄(uσ)

)
.

It other words,

(c, xσ) − 1
4β

‖uσ‖2 − α‖xσ‖2 ≥ v(uσ) − 1
4β

‖(
Ax̄(uσ) − b

)+‖2 − α‖x̄(uσ)‖2.

After rearranging of items, we get

α‖xσ‖2 ≤ α‖x̄(uσ)‖2 +
1
4β

‖(
Ax̄(uσ) − b

)+‖2 − 1
4β

‖uσ‖2 + (c, xσ) − v(uσ).

Notice that we may omit almost all items on the right-hand side of the last
inequality. Indeed, firstly, since Ax̄(uσ) ≤ b + uσ, it follows that

0 ≤ (
Ax̄(uσ) − b

)+ ≤ uσ,

and the inequality holds ‖(Ax̄(uσ) − b
)+‖ ≤ ‖uσ‖. Secondly,

(c, xσ) ≤ v(uσ),

because vector xσ satisfies to constraints of problem (12) with u = uσ.
As a result, we get

α‖xσ‖2 ≤ α‖x̄(uσ)‖2,
i.e. ‖xσ‖ ≤ ‖x̄(uσ)‖. Using Corollary 1, we conclude the proof.

Corollary 2. The estimate is valid

‖xσ‖ ≤ ‖x̄‖ + 2K(1 + ‖ȳ‖)
[
β
(
α‖x̄‖2 + β‖ȳ‖2)

]1/2

.

Here we apply property (7) too.
Now let us investigate another auxiliary linear program

min{(x̄, x) : Ax ≤ b, (c, x) ≥ v̄, x ≥ 0} (16)

and its dual one

max{(b, λ) + v̄λ0 : AT λ + λ0c ≤ x̄, λ ≤ 0, λ0 ≥ 0}.

Problem (16) may be considered as a result of linearization of quadratic program
(13) at point x̄ as u = 0. It is easy to see that problem (16) is solvable and vector
x̄ is one of its solutions (by properties of the Euclidean projections). The dual
problem is solvable too; we denote by [λ̄, λ̄0] one of its solutions (e.g. minimal
with respect to the Euclidean norm).
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Lemma 3. For any x ≥ 0 the estimate is valid

(x̄, x) ≥ ‖x̄‖2 − ‖λ̄‖‖(Ax − b
)+‖ − λ̄0(v̄ − (c, x))+.

Proof. To begin, include some parameters into the right-hand side of constraints
of problem (16) by the following way

min{(x̄, x) : Ax ≤ b + u, (c, x) ≥ v̄ − δ, x ≥ 0}; (17)

here δ > 0, u ∈ IRm
+ are parameters. Using dual prices in the usual manner,

estimate the optimal value υ(u, δ) of this problem:

υ(u, δ) ≥ υ(0, 0) + (λ̄, u) − λ̄0δ ≥ ‖x̄‖2 − ‖λ̄‖‖u‖ − λ̄0δ.

It remains to note that an arbitrary vector x ≥ 0 is feasible for problem (17)
with u = (Ax − b)+ and δ = (v̄ − (c, x))+. Therefore

(x̄, x) ≥ υ
(
(Ax − b)+, (v̄ − (c, x))+

) ≥ ‖x̄‖2 − ‖λ̄‖‖(
Ax − b

)+‖ − λ̄0(v̄ − (c, x))+,

which was to be proved.

Corollary 3. The estimate is valid

(x̄, xσ) ≥ ‖x̄‖2 − ‖λ̄‖
[
β
(
α‖x̄‖2 + β‖ȳ‖2)

]1/2

− αλ̄0‖x̄‖2.

Here we apply properties (7), (9) too.
Let’s introduce two reduction formulae

R(α, β) = 2K(1 + ‖ȳ‖)
[
β
(
α‖x̄‖2 + β‖ȳ‖2)

]1/2

,

H(α, β) = αλ̄0‖x̄‖2 + ‖λ̄‖
[
β
(
α‖x̄‖2 + β‖ȳ‖2)

]1/2

.

Now we are ready to state the first theorem of our investigation.

Theorem 1. The inequality holds

‖xσ − x̄‖ ≤
[
2‖x̄‖R(α, β) + R(α, β)2 + 2H(α, β)

]1/2

.

Proof. Corollaries 2 and 3 claim that xσ ∈ G = B(α, β)∩Z(α, β), where B(α, β)
is a ball with a center at origin and a radius r = ‖x̄‖ + R(α, β), Z(α, β) is
semi-space defined by linear inequality (x̄, x) ≥ ‖x̄‖2 − H(α, β). Consequently,

‖xσ‖ ≤ ‖x̄‖ + 2K(1 + ‖ȳ‖)
[
β
(
α‖x̄‖2 + β‖ȳ‖2) ]1/2 = ‖x̄‖ + R(α, β),

(x̄, xσ) ≥ ‖x̄‖2 − ‖λ̄‖ [
β
(
α‖x̄‖2 + β‖ȳ‖2) ]1/2 − αλ̄0‖x̄‖2 = ‖x̄‖2 − H(α, β).
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Hence
‖xσ − x̄‖2 = ‖xσ‖2 + ‖x̄‖2 − 2(x̄, xσ)

≤ (‖x̄‖ + R(α, β))2 + ‖x̄‖2 − 2(‖x̄‖2 − H(α, β))

= 2‖x̄‖R(α, β) + R(α, β)2 + 2H(α, β).

The proof is complete.
The estimates obtained above have too complicated form. It is more conve-

nient to use more rough ones, but more compact.

Corollary 4. Let ‖σ‖∞ = max{α, β} < 1. Then

‖xσ − x̄‖ ≤ Nx‖σ‖1/2
∞

for some fixed Nx.

Corollary 5. Let ‖σ‖∞ = max{α, β} → +0. Then xσ → x̄.

Deducing of these assertions is trivial.
Now it remains to talk over evaluation of ‖yσ − ȳ‖. It is sufficient to note

that considered schemes of duality are symmetric (see (4), (5)). Therefore, it is
possible to construct the estimates for ‖yσ − ȳ‖ which will be very similar to
ones constructed above for ‖xσ − x̄‖ (with the evident rearranging of parameters
of regularization and other constants). Since their structure is clear but very
complicated, we don’t write them here in detail. Instead, we formulate only
summary corollaries, similar to Corollaries 4 and 5.

Corollary 6. Let ‖σ‖∞ = max{α, β} < 1. Then

‖yσ − ȳ‖ ≤ Ny‖σ‖1/2
∞

for some fixed Ny.

Corollary 7. Let ‖σ‖∞ = max{α, β} → +0. Then yσ → ȳ.

Combining Corollaries 5 and 7 into one assertion, we get the second theorem of
our investigation.

Theorem 2. Let ‖σ‖∞ = max{α, β} → +0. Then xσ → x̄ and yσ → ȳ.

Thus, in the linear case it is true that both x- and y-components of the saddle
points of functions (3) converge to normal solutions of primal and dual problems
respectively as ‖σ‖∞ = max{α, β} → +0 and there are no needs for one of the
parameters of regularization to be infinitesimal of smaller order then another.

To conclude this section let us compare the estimate of accuracy known
from (11) with similar new estimate stated in Theorem 1. Since estimate (11) is
valid only if β = o(α), we will enter two infinitesimal positive values α and ε
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and put β = αε. Substituting these formulas into the right-hand side of inequal-
ity (11), we get the relation

RHS1 = 1/2
[
‖ȳ‖

√
β/α +

√
αβ‖[λ̄, λ̄0]‖

]
∼ O(ε1/2).

But if we substitute the same formulas in the right-hand side of the estimate
from Theorem 1 and take into account that R(α, αε) ∼ O(αε1/2) and H(α, αε) ∼
O(α), then we see that

RHS2 =
[
2‖x̄‖R(α, β) + R(α, β)2 + 2H(α, β)

]1/2

∼ O(α1/2).

Thus, new estimates of accuracy received above appear to be more precise com-
pared with well-known ones excepting case when parameter β is infinitesimal
of order higher than α2. Besides, new estimates also are valid whether α and β
have an identical order of smallness or even α has the order of smallness, higher
than β has.

4 Infeasible Linear Programs

Next, let us consider the case when constraints of primal problem (1) are incom-
patible while dual problem (2) has at least one feasible vector. Such linear pro-
grams are called improper ones of the first kind [10]. In practice, to reduce an
improper linear program of the first kind to a solvable one it is enough to correct
only the right-hand side of its constraints till they become joint. Of cause, it is
reasonable that such data changes must be as minimal as possible.

Denote the feasible set of problem (12) as

M(u) = {x : Ax ≤ b + u, x ≥ 0}.

Also introduce the minimal (with respect to the Euclidean norm) correction
vector for right-hand side of the primal program

ū = arg min
M(u) �=∅

‖u‖. (18)

Vector ū is automatically non-negative and coincides with a projection of zero
vector onto convex polyhedral set Ω = {u : M(u) 	= ∅}, which is known as a set
of solvability of improper program (1).

Let ¯̄x and ¯̄y be the normal solutions of the adjusted program

max{(c, x) : Ax ≤ b + ū, x ≥ 0}, (19)

and of its dual one respectively

min{(b + ū, y) : AT y ≥ c, y ≥ 0}.

In practice, vector ¯̄x may be considered as a generalized solution of the initial
infeasible problem. It can provide to decision maker a substantial information
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about the reasons and sharpness of the contradictions of the model. To find this
vector, we can use problem (4) again, and without any changes. Recall that it is
generated by regularized Lagrangian

Lσ(x, y) = (c, x) − (y,Ax − b) − α‖x‖2 + β‖y‖2

and has the form

(P) max
x≥0

Φσ(x), Φσ(x) = max
x≥0

[
(c, x) − 1

4β
‖(

Ax − b
)+‖2 − α‖x‖2

]
.

Though the initial program is infeasible now, nevertheless, the regularized
function Lσ(x, y) has a (unique) saddle point with respect to IRn

+ × IRm
+ due to

its strong concavity in x and strong convexity in y. As usual, let us denote by
xσ the optimal vector of problem (4). In [9] it was already shown that the series
of inequalities (analogous to inequalities (7)–(10)) are valid:

‖(
Axσ − b − ū

)+‖ ≤ C1

√
β, (20)

(c, ¯̄x) − α‖¯̄x‖2 ≤ (c, xσ) ≤ (c, ¯̄x) + C1‖¯̄y‖
√

β, (21)

where
C1 = 2

[√
β‖¯̄y‖ +

(
α‖¯̄x‖2 + β‖¯̄y‖2)1/2

]
.

Also, for all sufficient small α > 0, the estimate is known

‖xσ − ¯̄x‖ ≤ ‖¯̄y‖(β/α)1/2,

which is similar to estimate (11). It is valid only if α → +0, β = o(α).
Let us try to deduce an alternative estimate for ‖xσ − ¯̄x‖.
First, accentuate that now we set uσ = ū +

(
Axσ − b − ū

)+ ≥ ū. All other
notations are taken from the previous sections. As usual, due to the properties
of dual prices, it holds

0 ≤ v(uσ) − v(ū) ≤ (¯̄y, uσ − ū) ≤ ‖¯̄y‖‖uσ − ū‖.

Therefore, by Hoffman’s lemma,

ρ = ρ
(
M̄(uσ), M̄(ū)

) ≤ K(‖uσ − ū‖ + |v(uσ) − v(ū)|)
≤ K(1 + ‖¯̄y‖)‖(Axσ − b − ū

)+‖,

where ρ is Hausdorf’s distance between the sets M̄(uσ) and M̄(ū). Combin-
ing this inequality with estimate (20) and using Lemma 1, we get the following
assertion.

Corollary 8. The estimate holds ‖x̄(uσ)‖ ≤ ‖x̄(ū)‖ + K(1 + ‖¯̄y‖)C1

√
β.

Next we formulate an analogue of Lemma2.



180 L. D. Popov

Lemma 4. The estimate is valid ‖xσ‖ ≤ ‖x̄(ū)‖ + K(1 + ‖¯̄y‖)C1

√
β.

Proof. Recall that in this section we set uσ = ū+
(
Axσ − b− ū

)+ ≥ ū. From the
definition of vector xσ it follows that

Φσ(xσ) = max
x≥0

Φσ(x) ≥ Φσ

(
x̄(uσ)

)
.

Consequently,

(c, xσ) − 1
4β

‖uσ‖2 − α‖xσ‖2 ≥ v(uσ) − 1
4β

‖(
Ax̄(uσ) − b

)+‖2 − α‖x̄(uσ)‖2,

or, after rearranging of items,

α‖xσ‖2 ≤ α‖x̄(uσ)‖2 +
1
4β

‖(
Ax̄(uσ)− b

)+‖2 − 1
4β

‖uσ‖2 +(c, xσ)− v(uσ). (22)

We can essentially simplify this relation. Indeed, it holds Ax̄(uσ) ≤ b+uσ, which
implies 0 ≤ (

Ax̄(uσ) − b
)+ ≤ uσ, and therefore

‖(
Ax̄(uσ) − b

)+‖ ≤ ‖uσ‖.

Also, vector xσ satisfies to constraints of problem (12) with parameter value
u = uσ. That is why

(c, xσ) ≤ v(uσ).

Hence, in really, (22) transforms to

α‖xσ‖2 ≤ α‖x̄(uσ)‖2,

i.e. ‖xσ‖ ≤ ‖x̄(uσ)‖. This inequality (together with Corollary 1) completes the
proof.

Let us turn back to the generalized solution of initial program (1) introduced
above as

¯̄x = arg min{‖x‖2 : Ax ≤ b + ū, (c, x) ≥ v(ū)}.

Obviously, we have a convex quadratic programming problem again. If we lin-
earize this problem at the point ¯̄x, then we get a linear program of the form

min{(¯̄x, x) : Ax ≤ b + ū, (c, x) ≥ v(ū)},

which has at least one evident solution ¯̄x. Also, let us write the dual problem

max{(b + ū, λ) + v(ū)λ0 : AT λ + λ0c ≤ ¯̄x, λ ≤ 0, λ0 ≥ 0}

and denote by w̄ = [¯̄λ0,
¯̄λ] its arbitrary solution, e.g. the solution with minimal

the Euclidean norm. By analogy with Lemma3, it is easy to prove the following
assertion.
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Lemma 5. For any x ≥ 0 the estimate is valid

(¯̄x, x) ≥ ‖¯̄x‖2 − ‖¯̄λ‖∥∥(
Ax − b − ū

)+∥∥ − ¯̄λ0(v(ū) − (c, x))+.

Involving properties (20), (21) in our reasoning, we can obtain another assertion

Corollary 9. The estimate holds

(¯̄x, xσ) ≥ ‖¯̄x‖2 − C1

√
β‖¯̄λ‖ − α¯̄λ0‖¯̄x‖2.

Lemma 4 and Corollary 9 give us the opportunity to carry out just the same
reasoning as we use when we prove Theorem 1. Thereby we have the following
final theorem.

Theorem 3. The inequality is true

‖xσ − ¯̄x‖ ≤
[
2‖¯̄x‖R′(α, β) + R′(α, β)2 + 2H ′(α, β)

]1/2

,

where

R′(α, β) = 2K(1 + ‖¯̄y‖)C1

√
β, H ′(α, β) = C1

√
β‖¯̄λ‖ + α¯̄λ0‖¯̄x‖2.

To end this section let us formulate a simplified estimate.

Corollary 10. Let ‖σ‖∞ = max{α, β} < 1 and problem (1) be improper of the
first kind. Then

‖xσ − ¯̄x‖ ≤ Nx‖σ‖1/2
∞

for some fixed Nx.

Remark. As for sequence yσ, it is non-bounded when constraints of problem (1)
are incompatible.

5 Conclusion

In this paper, we consider some alternative schemes of linear programming dual-
ity. These schemes are based on the symmetric regularization of the Lagrange
function in direct and dual variables simultaneously. We establish that (unlike a
non-linear case), the method under consideration converge to the normal (min-
imum with respect to the Euclidean norm) solutions of the initial primal and
dual problems, and it is not essential for such a convergence whether primal and
dual regularization parameters have a different or the same order of smallness.
Also, the new symmetric estimates of accuracy are given which are more precise
and efficient in comparison with ones known for the non-linear case. Besides,
the similar estimates are obtained for a primal generalized solution if an origin
linear program is improper one of the first kind.
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Abstract. A point is called binary if its coordinates are equal to either
zero or one. It is well known that it is hard to find a binary solution
to the system of linear equations whose coefficients are integers with
small absolute values. The aim of the article is to propose an effective
probabilistic reduction from the system to the unique equation when
there is a small difference between the number of binary solutions to
the first equation and the number of binary solutions to the system.
There exist nontrivial examples of linear equations with small positive
coefficients having a small number of binary solutions in high dimensions.

Keywords: Subset sum · Linear equation · Probabilistic algorithm
Computational complexity

1 Introduction

Let us consider a system of linear equations over integers. The problem of the
existence of a (0, 1)-solution to the system is NP -complete [1]. The (0, 1)-solution
is also referred to as either binary or Boolean one.

In case of the unique equation, one can either find some (0, 1)-solution or
prove the absence of such solutions, using dynamic programming [2–6]. More-
over, the number of (0, 1)-solutions to the linear equation over integers can be
computed in pseudopolynomial time [3]. On the other hand, the problem is to
solve the system that consists of the linear equation and the set of quadratic
equations x2

1 = x1,. . . , x2
n = xn. If there is no solution, then a direct proof of

the insolvability of the system by means of Hilbert’s Nullstellensatz requires to
produce polynomials of high degree [7]. All known methods for solving systems
of algebraic equations require at least exponential time in general case [8,9].
There exists a one-to-one correspondence between the (0, 1)-solutions and sin-
gular points of the effectively computed cubic hypersurface [10]. Some singular
points can be found by means of the method described in [11]. Another approach
to the problem is based on L-class enumeration algorithm [12].
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There is also the related optimization problem to find the maximum of the
linear functional on the set of (0, 1)-points satisfying a unique inequality. It
is called the knapsack problem. There are well known both fully polynomial
time approximation scheme and pseudopolynomial time algorithm for solving
the problem. The obstacle for solving the optimization problem is a large number
of values of the linear functional at different (0, 1)-points. If all coefficients are
small positive integers, then the linear functional is bounded. Thus, the set of
its values at (0, 1)-points is small. Howbeit, the NP -complete problem seems
insolvable in polynomial time. Moreover, the polynomial hierarchy is infinite
relative to a random oracle with probability one [13].

2 Preliminaries

The running time of the algorithm is the number of arithmetic operations (+, −,
and ×) as well as of verifications of two binary predicates = and < over integers.
The Õ notation suppresses a factor that is polylogarithmic in the input size. The
O∗ notation suppresses a factor that is polynomial in the input size.

The symbol x denotes the integer sequence (x1, . . . , xn). Both k and j are
integer so that k ≤ m and j ≤ n, where m is an integer.

The number of (0, 1)-solutions to the linear equation β + α1x1 + . . . + αnxn =
0 over integers is equal to the coefficient of the monomial t−β of the univariate
Laurent polynomial

F (t) =
n∏

j=1

(1 + tαj )

In case the j-th coefficient αj is negative, one can make the linear transformation
xj �→ 1−xj . Thus, without loss of generality, one can assume that all coefficients
αj are positive, that is, the Laurent polynomial F (t) is a polynomial.

Proposition 1 (Smolev [3]). The number of (0, 1)-solutions to the linear equa-
tion β + α1x1 + . . . + αnxn = 0 over integers can be computed in pseudopoly-
nomial time O(n3a), where a = maxj |αj |.

So, the counting problem seems to be as hard as the recognition problem, that
is, whether there exists a (0, 1)-solution to the linear equation. If all coefficients
αj are positive, the recognition problem coincides with the subset sum problem.

Remark 1. The subset sum problem can be solved in exponential time O∗(2n/2)
as well as in exponential space O∗(2n/2) according to [14]. On the other hand,
it can be solved in probabilistic time O∗(20.86n) and in polynomial space [15].

The running time of the algorithm solving the subset sum problem by means
of dynamic programming is bounded by O(n2a log2(na)), where a = maxj |αj |.
Furthermore, in case the coefficients αk are large, if the difference between
maxk αk and mink αk is bounded by a polynomial in n, then the subset sum
problem can be solved in polynomial time [3].
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There are some ways to improve the upper bound. In accordance with [5], in
case n < |β|, the problem can be solved in pseudopolynomial time Õ(

√
n|β|). In

accordance with [6], the problem can be solved by a probabilistic algorithm in
pseudopolynomial time O(n+ |β| log2 |β| log32(n/ε) log2 n) with error probability
at most ε. On the other hand, the subset sum problem can be solved in poly-
nomial space Õ(n2) and in pseudopolynomial time Õ(n3|β| log2 |β|) according
to [16]. There exists another space-efficient algorithm [17].

Let us consider linear forms α1x1+· · ·+αnxn over integers, where the greatest
common divisor GCD(α1, . . . , αn) = 1. The greatest coefficient that appears in
such linear forms vanishing on a set of n − 1 linearly independent (0, 1)-points
is at most 2−n(

√
n + 1)n+1. The upper bound is based on the inequality for

determinants [18]. It is almost tight [19,20]. So, the distribution of the number
of (0, 1)-solutions as a function in β is complicated [21].

Proposition 2 [1,22]. Given the system of m linear equations βk + αk1x1 +
· · ·+αknxn = 0 over integers. The set of (0, 1)-solutions to the system coincides
with the set of (0, 1)-solutions to the unique equation

m∑

k=1

γk

⎛

⎝βk +
n∑

j=1

αkjxj

⎞

⎠ = 0,

where integers γk = (an + b + 1)k−1, a = maxk,j |αkj |, and b = maxk |βk|.
Remark 2. On the other hand, in accordance with Proposition 1 as well as
Remark 1, if all coefficients of the unique linear equation belong to a small
segment near zero, then the equation can be solved by dynamic programming.
Therefore, it is important to look for the coefficients γk as small as possible.

Propositions 2 and 1 together provide an algorithm whose running time
is exponential in the number m. Let us compare the algorithm with what is
obtained as a result of elimination of m variables. In this case, the absolute val-
ues of the coefficients of the resulting linear equation can rapidly increase during
the process of elimination. This method allows to quickly find all (0, 1)-solutions
to the system only under the condition n − m = O(log2 n).

Proposition 3. There exists an algorithm that accepts the system of m indepen-
dent linear equations βk+αk1x1+· · ·+αknxn = 0 if and only if it has some (0, 1)-
solution. The running time of the algorithm is bounded by O(nm2 + nm2n−m).

Proof. Elimination of m variables produces a linear equation that depends on at
most n−m variables. Therefore, it suffices to go over all (0, 1)-points of (n−m)-
dimensional space and to verify for each of them whether it corresponds to the
(0, 1)-solution to the input system. ��

So, the most difficult case is when n ≈ 2m.
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Remark 3. If some linear equation of the system has small coefficients and a
small number of (0, 1)-solutions, then one can compute the list of all (0, 1)-
solutions to the equation by means of a binary search tree. Next, one can check
step by step whether a (0, 1)-solution from the list is the solution to the system.
But the task is more difficult, when there are sufficiently many (0, 1)-solutions
to each linear equation.

3 Main Results

Theorem 1. Given the positive number ε and the system of m ≥ 2 linear equa-
tions �k(x) = 0 over integers, where �k(x) = βk + αk1x1 + · · · + αknxn. Assume
the first linear equation has at most μ redundant (0, 1)-solutions, which do not
satisfy the system. If all random integers η2,. . . ,ηm are independent and uni-
formly distributed over the set from zero up to the number N = 
μ/ε�, then the
probability that each (0, 1)-solution to the linear equation

(Nm(an + b) + 1)�1(x) +
m∑

k=2

ηk�k(x) = 0

satisfies the system is at least 1 − ε, where a = maxk,j |αkj | and b = maxk |βk|.
Proof. If either the first equation has no (0, 1)-solution or each (0, 1)-solution to
the first equation satisfies the whole system, then the desired result is obvious.
Else let us define a subset of the set of all (0, 1)-points

S = {x ∈ {0, 1}n : �1(x) = 0 ∧ (∃k ≤ m)�k(x) �= 0}.

The cardinality of the set S is at most μ. Let us define the polynomial

f(y2, . . . , ym) =
∏

x∈S

(
m∑

k=2

�k(x)yk

)

In particular, if the set S is empty, then one can set f = 1. If a sequence γ2,. . . ,γm

increases sufficiently fast, then f(γ2, . . . , γm) does not vanish, consequently, the
polynomial f does not vanish identically. Note that deg f ≤ μ.

Let random integers ηk be independent and each ηk is uniformly distributed
over the set {0, . . . , N}. In accordance with the Schwartz–Zippel lemma [23], the
probability of vanishing f(η2, . . . , ηm) is at most ε.

In case f(η2, . . . , ηm) �= 0, to prove that the system has no redundant (0, 1)-
solution, it is sufficient to prove that there exists no redundant (0, 1)-solution to
the following system of two linear equations

{
�1(x) = 0

η2�2(x) + · · · + ηm�m(x) = 0
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In turn, a (0, 1)-point is the solution to the system if and only if it satisfies the
unique linear equation

(Nm(an + b) + 1)�1(x) +
m∑

k=2

ηk�k(x) = 0.

In particular, if μ = 0, then the equation coincides with the first equation. ��
Remark 4. The number N can be replaced by another large number. So, without
loss of generality one can assume N = 2ν − 1, where ν is integer. In this case,
random numbers can be identified with sequences of independent random bits.
There exist other methods for calculating random variables by coin tossing,
cf. [24].

Remark 5. Of course, instead of the first equation one can use the sum h(x) of
both the first equation and a linear combination of all other equations having
small coefficients. But this h(x) must be explicitly defined.

Next, let us consider a Las Vegas algorithm what uses random integers while
it is running, but always either returns the correct answer or never halts.

Theorem 2. There exists a zero-error probabilistic algorithm such that for each
integer μ ≥ 0 and for each system of m ≥ 2 linear equations �k(x) = 0 over
integers, where �k(x) = βk +αk1x1 + · · ·+αknxn, if the first linear equation has
at most μ redundant (0, 1)-solutions, which do not satisfy the system, then the
algorithm returns the linear equation h(x) = 0 over integers, where

h(x) = (2μm(an + b) + 1)�1(x) + γ2�2(x) + · · · + γm�m(x)
a = maxk,j |αkj |
b = maxk |βk|

(∀k)γk ≤ 2μ

so that each (0, 1)-solution to the equation h(x) = 0 is the solution to the system.
In the case, the running time of the algorithm is pseudopolynomial in expectation.
If the condition for μ is false, then the algorithm either returns an equation
h(x) = 0 or never halts.

Proof. Let η2,. . . , ηm be independent random integers from zero to 2μ.
At first, the algorithm chooses these random integers, sets

h(x) = (2μm(an + b) + 1)�1(x) + η2�2(x) + · · · + ηm�m(x),

and computes the number λ0 of (0, 1)-solutions to the equation h(x) = 0 by
means of Proposition 1. For each 1 ≤ k ≤ m, it computes the number λk of
(0, 1)-solutions to the system of two equations h(x) = 0 and �k(x) = 0 by means
of Propositions 2 and 1.

If for all k the equation λ0 = λk holds, then the algorithm returns the current
equation h(x), where for all k the coefficients γk = ηk.
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Otherwise the algorithm repeats the same computation with new choice of
random integers η2,. . . , ηm.

If the number μ satisfies the condition, then the probability that the algo-
rithm returns a correct answer is at least 1

2 at each round according to Theorem 1.
The probability of there is no correct answer in a long series of repeats is small.
Thus, the expected running time is almost as small as the running time of one
round of the algorithm. ��
Theorem 3. Given the system of m linear equations �k(x) = 0 over integers,
where m > r > 0. Assume the subsystem of equations �1(x) = 0,. . . , �r(x) = 0
has at most μ redundant (0, 1)-solutions, which do not satisfy the system. There
exist integers γr+1,. . . , γm belonging to the segment from zero up to the integer μ
such that each (0, 1)-solution to the new system of linear equations �1(x) = 0,. . . ,
�r(x) = 0, and γr+1�r+1(x) + · · · + γm�m(x) = 0 satisfies the initial system.

Proof. If either the considered subsystem has no (0, 1)-solution or each (0, 1)-
solution to the subsystem satisfies the whole system, then the desired result is
obvious. Else let us define a subset of the set of all (0, 1)-points

S = {x ∈ {0, 1}n : �1(x) = 0 ∧ · · · ∧ �r(x) = 0 ∧ (∃k ≤ m)�k(x) �= 0}.

The cardinality of the set S is at most μ. Let us define the polynomial

f(yr+1, . . . , ym) =
∏

x∈S

(
m∑

k=r+1

�k(x)yk

)

In particular, if the set S is empty, then one can set f = 1. If a sequence
γr+1,. . . ,γm increases sufficiently fast, then f(γr+1, . . . , γm) does not vanish, con-
sequently, the polynomial f does not vanish identically. On the other hand, the
inequality deg f ≤ μ holds. In accordance with the Schwartz–Zippel lemma [23],
there exist desired integers γr+1,. . . , γm belonging to the segment from zero
up to the integer μ. ��

4 Discussion

In case a correct value for μ is known, either Theorems 1 or 2 together with
Proposition 1 provide the probabilistic algorithm to enumerate (0, 1)-solutions to
the system of linear equations over integers because each solution to the system
satisfies all linear combinations of the equations. The first algorithm halts in
one-sided error polynomial time. The second algorithm does not make errors.

If a (0, 1)-solution exists, then it can be found by binary search. Moreover,
all (0, 1)-solutions can be listed in this way. Any substitution for a variable by
either zero or one does not increase the number of solutions. Thus, the reduction
of dimension require at most 2n steps. If all coefficients αkj are nonnegative,
then the search of (0, 1)-solutions to the system can be improved by means of
new algorithms for the subset sum problem, which are listed in Remark 1.
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The algorithms can be useful for small both a and μ. The restriction on
both values a = maxk,j |αkj | and b = maxk |βk| is not crucial. The recognition
problem of the existence of a (0, 1)-solution to the system is NP -complete in case
a = 1 without any restriction on the number of solutions, that is, μ = 2n. The
reduction is obvious [1]. Thus, the linear system in n variables can be reduced to
the another linear system in O(n log2(ab)) variables such that new coefficients
have small absolute values. Furthermore, in case a is small, the running time of
the algorithms depends weakly on b because without loss of generality one can
assume the inequality b ≤ an holds. Otherwise the system has no (0, 1)-solution.
But the upper bound on the value μ is crucial.

If the first equation of the system has a small number of (0, 1)-solutions,
then μ can be chosen small too. But in the case, one can to check all these (0, 1)-
solutions by means of the deterministic algorithm. Nontrivial case is when each
equation has many (0, 1)-solutions, but there is a small difference between the
number of (0, 1)-solutions to the first equation and the number of (0, 1)-solutions
to the system.

There exist at most 2n−m binary solutions to the system of m linearly inde-
pendent linear equations in n variables. In accordance with Proposition 1, the
number λ1 of (0, 1)-solutions to the first equation can be found in pseudopoly-
nomial time. So, there is the lower bound on the value μ ≥ λ1 − 2n−m. Another
way to obtain the lower bound on the value μ is to compute the upper bound
on the dimension of the affine hull of (0, 1)-solutions to the first equation of the
system.

Note that μ can be a rough upper bound on the difference between the
total number of (0, 1)-solutions to the first equation and the number of (0, 1)-
solutions to the system. On the other hand, it is hard to compute this difference.
Otherwise, it would be easy to calculate the number of (0, 1)-solutions to the
system, that is, to solve the hard counting problem.

Of course, if all absolute values of the coefficients αj are small integers, then
there exists a number β such that the linear equation β +α1x1 + · · ·+αnxn = 0
has at least 2n/(1 + na) binary solutions, where a = maxj |αj |. Let us consider
examples of linear equations with small positive coefficients having a few (0, 1)-
solutions. In particular, if the first equation of the system coincides with one of
exemplified equations, then one can use a small value of μ.

Example 1. If all the coefficients αk are strictly positive, then there exists exactly
one (0, 1)-solution to the equation

n∑

j=1

αjxj =
n∑

j=1

αj ,

that is, (1, . . . , 1). Moreover, if the inequality α1 + · · · + αn−1 < αn holds, then
the equation

n∑

j=1

αjxj =
n−1∑

j=1

αj

has exactly one (0, 1)-solution, that is, (1, . . . , 1, 0).
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Example 2. If n = p+ q, where p �= q and both numbers p and q are prime, then
there exist exactly two (0, 1)-solutions to the equation

p∑

j=1

qxj +
p+q∑

j=p+1

pxj = pq.

These antipodal points are (1, . . . , 1, 0 . . . , 0) and (0, . . . , 0, 1, . . . , 1), where the
number of zeros is equal to either p or q. The equations x1 = x2 = · · · = xp hold
because

q

p∑

j=1

xj ≡ 0 (mod p).

The equations xp+1 = xp+2 = · · · = xn hold because

p

p+q∑

j=p+1

xj ≡ 0 (mod q).

The maximum of the linear form over the set {0, 1}n is equal to 2pq.

Example 3. If n = p + q + 1, where p �= q and both numbers p and q are prime,
then there are exactly three (0, 1)-solutions to the equation

p∑

j=1

qxj +
p+q∑

j=p+1

pxj + pqxn = pq.

These points are (1, . . . , 1, 0 . . . , 0, 0), (0, . . . , 0, 1, . . . , 1, 0), and (0, . . . , 0, 1). The
maximum of the linear form over the set {0, 1}n is equal to 3pq.

Example 4. If n = p + q + r, where p < q < r and the numbers p, q, and r are
prime, then there are exactly three (0, 1)-solutions to the equation

p∑

j=1

qrxj +
p+q∑

j=p+1

prxj +
p+q+r∑

j=p+q+1

pqxj = pqr.

The maximum of the linear form over the set {0, 1}n is equal to 3pqr.

In this way, one can construct other examples with arbitrary given number
of (0, 1)-solutions for almost all n. Linear transformations of coordinates of the
type xj �→ 1−xj allow constructing other examples with coefficients of different
signs.

The abundance of such examples allows to hope that the discussed algorithm
can find practical application, in particular, in bioinformatics and economics [25].

Theorem 3 provides an improvement of the Proposition 2. If there exists a
subsystem with a small number of redundant (0, 1)-solutions, which do not sat-
isfy the system, then one can reduce the number of equations without a consid-
erable increment of absolute values of its coefficients. Unfortunately, it requires
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guessing this subsystem. Assume the initial system has no (0, 1)-solution. At
first, it can be reduced to the new system according to Theorem 3. Next, it can
be reduced to the unique equation according to Proposition 2. At last, one can
count the number of (0, 1)-solution according to Proposition 1. So, this particular
instance of the coNP -complete problem can be solved by the non-deterministic
algorithm. Of course, if the hypothesis NP �= coNP holds, then the running
time of the algorithm must be sufficiently large in some cases.

The same result is also applicable to the case of (−1, 1)-solutions, that is,
solutions to the set partition problem.

Acknowledgements. The author would like to thank the anonymous reviewers for
useful comments.
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Abstract. We propose a method of solving a convex programming prob-
lem, which is based on the ideas of cutting plane methods and the method
of penalty functions. To construct each approximation, the method uses
an operation of immersing the epigraph of auxiliary function into a poly-
hedral set. The auxiliary function is constructed as the sum of the objec-
tive function and the external penalty function of the constraint area.
In addition, an admissible set of the original problem is immersed in
the polyhedron simultaneously. In connection with this, the problem
of constructing an iterative point is a linear programming problem, in
which constraints are polyhedrons approximating the epigraph of auxil-
iary function and the admissible set. Both next approximating sets are
based on the previous ones by cutting off the iterative point from them
by hyperplanes. The convergence of the method is proved. We describe
its algorithms. One of them can be the implementation of the method of
penalty functions.

Keywords: Conditional minimization · Algorithm · Epigraph
Penalty function · Approximating set · Cutting hyperplane
Iterative point · Convergence · Subgradient

1 Introduction

Cutting plane methods form a well-known class of mathematical programming
problem solving methods (e.g., [1–7]). From a practical point of view, their con-
venience lies in the fact that at each step it is possible to estimate the closeness
of the current value of the objective function to its optimal value.

The methods of this class are characterized by the fact that in order to
find iterative points they use the operation of immersing the epigraph of the
objective function or the region of constraints of the original problem into poly-
hedral sets. At the same time, there is a small group of cutting methods, which
simultaneously use the approximation of the epigraph and the set of constraints
(e.g., [8–10]). The method proposed here belongs to this group. It differs in that,
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on each iteration, it uses the approximation of the epigraph not of the objec-
tive function, but of some auxiliary function, which is built on the basis of an
external penalty of the constraint area.

As is known, in the method of penalty functions, the properties of auxil-
iary functions could deteriorate significantly with increasing number of steps.
Wherein the minimization problems of auxiliary functions have to be solved
with accuracy increasing from step to step. The iterative point of the basic
sequence is fixed, and the penalty function changes only after reaching the spec-
ified accuracy. In the proposed method, it is not necessary to solve the problems
of minimizing such auxiliary functions. Penalties, and hence auxiliary functions,
can be changed at each iteration of the method.

At the same time, the proposed method allows for an approximate solution of
the above auxiliary problems. In this regard, one of its algorithms can serve as a
realization of the method of penalty functions. The peculiarity of this realization
is as follows. Due to the approximating procedures of the epigraph and the area
of constraints, it is possible to estimate the closeness of the current value of the
auxiliary function to its optimal value at each step.

2 Problem Setting

We solve the problem
min {f (x) : x ∈ D} , (1)

where f (x) is a convex function defined in the n-dimensional Euclidean space
Rn, D ⊂ Rn is a convex closed set, int D �= ∅.

Let f∗ = min {f (x) : x ∈ D} > −∞, X∗ = {x ∈ D : f (x) = f∗}, x∗ ∈ X∗,
epi (g, G) = {(x, γ) ∈ Rn+1 : x ∈ G, γ � g (x)}, where G ⊂ Rn, g (x) is the
function defined in Rn, W (z,Q) — the bunch of normalized generally support
vectors for the set Q at the point z, K = {0, 1, . . .}.

3 The Cutting Plane Method

The proposed method of solving the problem (1) generates a sequence of approx-
imations {xk}, k ∈ K, by the following rule.

Points
v′ ∈ int epi (f,D) , v′′ ∈ int D

and a convex penalty function P0 (x) such as

P0 (x) = 0 ∀x ∈ D, P0 (x) > 0 ∀x /∈ D

are selected.
A convex bounded closed set D0 ⊂ Rn containing the point x∗ is constructed.
Set numbers γ̄, q and Δ0 such that γ̄ � f∗

0 = min {f (x) : x ∈ D0}, q � 1,
Δ0 > 0. We set

F0 (x) = f (x) + P0 (x) , M0 = Rn+1,

i = 0, k = 0.
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1. We find a solution ui = (yi, γi) where yi ∈ Rn, γi ∈ R1 of the problem

min {γ : x ∈ Di, (x, γ) ∈ Mi, γ � γ̄} . (2)

If
yi ∈ D, γi � f (yi) , (3)

then yi ∈ X∗, and the process is over.
2. In the interval (v′, ui) we select a point v′

i /∈ int epi (Fi, Rn), so that for the
point z′

i = ui + q′
i (v

′
i − ui) with some q′

i ∈ [1, q] the inclusion

z′
i ∈ epi (Fi, Rn)

is performed.
3. A finite set Ai ⊂ W (v′

i, epi (Fi, Rn)) is chosen and let

Mi+1 = Mi ∩ {u ∈ Rn+1 : 〈a, u − v′
i〉 � 0 ∀a ∈ Ai} . (4)

4. If yi ∈ D, then it is assumed that Di+1 = Di, z′′
i = yi, and proceed to step 7.

Otherwise, go to step 5.
5. In the interval (v′′, yi) select a point v′′

i /∈ int D, such that z′′
i = yi +

q′′
i (v′′

i − yi) ∈ D for some q′′
i ∈ [1, q].

6. A finite set Bi ⊂ W (v′′
i , D) is chosen. Let

Di+1 = Di ∩ {x ∈ Rn : 〈b, x − v′′
i 〉 � 0 ∀b ∈ Bi} . (5)

7. If
Fi (yi) − γi > Δk, (6)

then set
Pi+1 (x) = Pi (x) , Fi+1 (x) = Fi (x) ,

and go to step 9. Otherwise, proceed to step 8.
8. We choose convex penalty function Pi+1 (x) with the condition that

Pi+1 (x) = 0∀x ∈ D, Pi+1 (x) � Pi (x) ∀x /∈ D.

Let Fi+1 (x) = f (x) + Pi+1 (x), ik = i,

xk = yik , σk = γik . (7)

Set Δk+1 > 0 and go to step 9 with the value of k increased by one.
9. The value of i is incremented by one and we go to step 1.

Let us make some remarks concerning the method.
The ways of specifying the functions Pi (x), i ∈ K, can be found, for example,

by references [11–13]. In particular, if

D = {x ∈ Rn : fj (x) � 0, j = 1, . . . ,m} ,
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where functions fj (x), j = 1, . . . , m, are convex, then we could let

Pi (x) = αiP (x) ,

where
P (x) =

∑m

j=1
(max {fj (x) , 0})p,

p � 1, αi+1 � ai > 0, i ∈ K.
If the set D0 is chosen as a polyhedron, then taking into account the above

conditions (4), (5), problems (2) are linear programming problems for all i ∈ K.
Note that for i = 0 any point (y0, γ̄), such that y0 ∈ D, is a solution of the

problem (2).
The initial immersion of the set M0 need not be set to coincide with Rn+1.

It could be chosen in the form of any polyhedral set with a condition that the
following inclusion holds

epi(F0, Rn) ⊂ M0.

The set M0 could be defined using single inequality function subgradient as, for
example, this is done in the description of the cutting-plane method by reference
[7]. In the case of a choice of M0 different from Rn+1, the restriction γ ≥ γ̄ in
problem (2) can be removed in connection with the condition of boundedness of
the initial approximating set D0.

Note that on steps 2 and 5 of the method the points v′
i, v′′

i can be chosen
as points of intersection of segments [v′, ui] and [v′′, yi] with the boundaries of
sets epi (Fi, Rn) and D, respectively. Then we can assume q′

i = q′′
i = 1, z′

i = v′
i,

z′′
i = v′′

i . The conditions for choosing v′
i, v′′

i points in the method in fact allows
us to find the mentioned points approximately.

Generalized support vectors from the sets W (v′
i, epi (Fi, Rn)) and W (v′′

i , D)
can be constructed using the subgradients of corresponding functions Fi(x) and
functions that define D on steps 3, 6 of the method. For example, if v′

i = (pi, αi),
where pi ∈ Rn, αi ∈ R1 and c is a subgradient of the function Fi (x) at a point pi,
then the vector a = (c, − 1) is a generalized support vector to the set epi (Fi, Rn)
at the point v′

i [14].

Lemma 1. The point (x∗, f∗) satisfies the constraints of the problem (2) for all
i ∈ K.

Proof. Since x∗ ∈ D0 and Di+1 = Di or Di+1 has the form (5), then the inclusion
x∗ ∈ Di holds for all i ∈ K. Moreover, γ̄ � f∗

0 � f∗. Therefore, in order to justify
the lemma, it suffices to show that

(x∗, f∗) ∈ Mi (8)

for all i ∈ K.
The inclusion (8), for i = 0, is valid, since equality M0 = Rn+1 is satis-

fied. Now we assume that the inclusion (8) holds for i = l � 0. Lets show the
fulfillment of (8) for i = l + 1, then the lemma will be proved. Indeed, since
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x∗ ∈ D, and taking into account the assignment of functions Pi(x), i ∈ K, then
the equality f (x∗) = f∗ = Fi (x∗), i ∈ K, holds and

(x∗, f∗) ∈ epi (Fi, Rn) , i ∈ K.

Consequently, inequalities

〈a, (x∗, f∗) − v′
l〉 � 0

hold for all a ∈ Al. Taking into account the inductive hypothesis, according to
(4) (x∗, f∗) ∈ Ml+1. The lemma is proved.

Since x∗ ∈ Di, i ∈ K, then (8) is fulfilled for all i ∈ K and, in addition,
the inequality f∗ ≥ γ̄ holds, then the points (x∗, f∗) satisfy the constraints of
problem (2) for all i ∈ K. Hence follows

Lemma 2. For each i ∈ K, the inequality (9) is valid.

γi � f∗. (9)

With the use of Lemma 2, we justify the criterion of optimality laid down in
paragraph 1 of the method.

Theorem 1. Suppose that for some i ∈ K the relation (3) is satisfied. Then y∗
i

is a solution of problem (1).

Proof. From condition (3), taking into account (9), inequality f∗ � f (yi) � γi �
f∗ holds. Thus we obtain the equality f (yi) = f∗, which proves the theorem.

4 Investigation of the Method’s Convergence

We proceed to the justification of the convergence of the proposed method. First
of all, we note that the sequence {ui}, i ∈ K, is bounded. This follows from the
inclusions yi ∈ D0, i ∈ K, inequalities (9), and the last constraint of the problem
(2). Thus, sequences {v′

i}, {z′
i}, {z′′

i }, i ∈ K, are also bounded.

Lemma 3. Let {ui}, i ∈ K ′ ⊂ K, is a convergent subsequence of the sequence
{ui}, i ∈ K. Then the following equalities hold:

lim
i∈K′

‖v′
i − ui‖ = 0. (10)

Proof. By the choice of the points v′
i, i ∈ K, there is such Ti ∈ [0, 1) for each

i ∈ K that
v′
i = ui + Ti (v′ − ui) . (11)

Fix numbers i′, i′′ ∈ K ′ so that i′′ > i′. According to condition (4), M i′′ ⊂ Mi′ ,
and this means that

Ai′ ⊂ W (v′
i, M i′′) .
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Then, in view of inclusion ui′′ ∈ Mi′′ we have 〈a, ui′′ − v′
i′〉 � 0 for all a ∈ Ai′ .

From this and (11) follows the inequality

〈a, ui′ − ui′′〉 � Ti′ 〈a, ui′ − v′〉 ∀a ∈ Ai′ . (12)

As v′ ∈ int epi (f, D) and v′
i /∈ int epi (Fi, Rn), and then v′

i /∈ int epi (f, D), so
by Lemma 1 from [15] there is a such number δ > 0 that 〈a, v′ − v′

i〉 � −δ for
all a ∈ Ai, i ∈ K. Hence, taking into account the equality (11) and inequalities
0 � Ti � 1, we have 〈a, u′

i − u′′
i 〉 � −δ for all a ∈ Ai, i ∈ K. Then, from the

proposition (12) we obtain 〈a, ui′ − ui′′〉 � Ti′δ for all a ∈ Ai′ or

‖ui′ − ui′′‖ � Ti′δ,

because ‖a‖ = 1 for all a ∈ Ai′ . From the last inequality and from the conver-
gence of the sequence {ui}, i ∈ K ′, the limiting relation Ti → 0, i ∈ K ′, holds.
Then the equality (11) and the boundedness of the sequence {‖v′ − ui‖}, i ∈ K ′,
imply the equality (10). The lemma is proved.

Corollary. When the conditions of Lemma 3 are satisfied, the following equality
holds.

lim
i∈K′

‖z′
i − ui‖ = 0. (13)

Proof. According to the conditions in step 2 of the method z′
i−ui = q′

i (v
′
i − ui),

i ∈ K. Thus, the assertion (13) follows from (10) and the boundedness of the
sequence {q′

i}, i ∈ K.
The consequence to Lemma 3 enables us to prove further that, together with

the sequence {ui}, i ∈ K, the method will also construct sequences {xk}, {σk},
k ∈ K.

Lemma 4. For each k ∈ K there is an index ik ∈ K which satisfies (7).

Proof. Let prove the derivation of the lemma by induction.
(1) Suppose that k = 0. Show the existence of such index i0 � 0 for which

the inequality Fi0 (yi0) − γi0 � Δ0 holds. Then, in view of step 8 of the method,

x0 = yi0 , δ0 = γi0

and the assertion for k = 0 will be proved.
Suppose the contrary, that is

Fi (yi) − γi > Δ0 ∀i ∈ K. (14)

In this case, according to the step 7 of the method, we have the equalities Pi (x) =
P0 (x), Fi (x) = F0 (x) for all i > 0. By virtue of (14)

F0 (yi) − γi > Δ0 ∀i ∈ K. (15)

From the sequence {ui}, i ∈ K, we distinguish a convergent subsequence {ui},
i ∈ K ′ ⊂ K, and let u′ = (y′, γ′) be its limit point. Then, in view of condition
(15) and the continuity of the function F0(x),

F0 (y′) − γ′ � Δ0. (16)
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By the consequence to Lemma 3, the equality (13) holds for the selected sub-
sequence {ui}, i ∈ K ′. From (13) and the inclusion z′

i ∈ epi (F0, Rn), i ∈ K ′,
follows u′ ∈ epi (F0, Rn), i.e.

F0 (y′) � γ′. (17)

Contrariwise, according to the specification of sets Ai, i ∈ K, and method (4) for
constructing sets Mi, i ∈ K, the inclusion takes place epi (F0, Rn) ⊂ Mi, i ∈ K,
and it means that the point (yi, F0 (yi)) is a permissible solution of the problem
(2) for every i ∈ K. So the inequality γi � F0 (yi) holds for the solution (yi, γi)
of the problem (2) for all i ∈ K. Passing to the limit in i ∈ K ′ in this inequality
we obtain γ′ � F0 (y′). This and (17) imply the equality F0 (y′) = γ′ which
contradicts (16). Thus, the existence of the number i0 for which the inequality
Fi0(yi0) − (γi0) ≤ Δ0 is proved unjustly, and for k = 0 the assertion of the
Lemma is valid.

(2) Now assume that the equalities (7) are satisfied for some fixed k � 0. We
show the existence of a number ik+l � ik + 1 = r such that the equalities hold

xk+1 = yik+1 , σk+1 = γik+1 , (18)

and then the lemma will be proved.
Assume the opposite, i.e. let the inequality (6) hold for all i � r. It means

that Pi (x) = Pr (x), Fi (x) = Fr (x), and by virtue of the inequality (6)

Fr (yi) − γi > Δk ∀i ∈ K, i � r.

From the points ui, i ∈ K, i � r, we select a convergent subsequence {ui},
i ∈ K ′′ ⊂ K. Then for its limit point u′′ = (y′′, γ′′) we have the inequality

Fr (y′′) − γ′′ � Δk. (19)

As in the first part of the proof, for points (y′′, γ′′) it is not difficult to obtain
firstly the inequality Fr (y′′) � γ′′, and then the inequality γ′′ � Fr (y′′). Con-
sequently, Fr (y′′) = γ′′. The last equality contradicts inequality (19) in view of
the choice of Δk. Thus, the existence of the number ik+1 for which (18) holds is
proved. The rationale for the Lemma is complete.

Lemma 4 proves the existence of sequences {xk}, {σk}. To study their con-
vergence, we give below three more auxiliary assertions.

Lemma 5. Any limit point of the sequence {yi}, i ∈ K, belongs to the set D.

Proof. Let {yi}, i ∈ K ′ ⊂ K, is a convergent subsequence of the sequence {yi},
i ∈ K, and ȳ is its limit point. We should show the inclusion

ȳ ∈ D, (20)

then the lemma will be proved. If yi ∈ D holds for an infinite number of indexes
i ∈ K ′, then the inclusion (20) is is satisfied because the set D is closed. There-
fore, we suppose that yi /∈ D for all i ∈ K ′, starting with some number i′.
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Fix numbers l, p ∈ K ′, so that p > l � i′. Since Dp ⊂ Dl, yp ∈ Dp, and any
element of the set Bl is a generalized support for the set Dp at the point v′′

l then

〈b, yp − v′′
l 〉 � 0 ∀b ∈ Bl.

Note that
v′′
i = yi + βi (v′′ − yi) , i ∈ K, (21)

where β ∈ [0, 1). Then it follows from the last inequality that

〈b, yl − yp〉 � βl 〈b, yl − v′′〉 ∀b ∈ Bl. (22)

As v′′ ∈ intD, but v′′
i /∈ intD there is a number [15] δ > 0 such that

〈b, v′′ − v′′
i 〉 � −δ ∀b ∈ Bi, i ∈ K ′.

Hence, taking (21) into account, we get the inequality 〈b, v′′ − yi〉 � −δ for all
b ∈ Bi, i ∈ K ′. Then it follows from (22) that 〈b, yl − yp〉 � βlδ for all b ∈ Bl, or

‖yl − yp‖ � βlδ,

because ‖b‖ = 0 ∀b ∈ Bl. Since the sequence {yi}, i ∈ K ′, is convergent, from
the last inequality we have βi → 0, i ∈ K ′. Hence, adding condition (21), we
obtain the equality

lim
i∈K′

‖v′′
i − yi‖ = 0. (23)

Further, according to step 5 of the method z′′
i −yi = q′′

i (v′′
i − yi), q′′

i ∈ [1, q],
i ∈ K ′. Therefore, by virtue of (23)

lim
i∈K′

‖z′′
i − yi‖ = 0.

But z′′
i ∈ D, i ∈ K ′. Hence, taking into account the fact that the set D is closed,

(20) follows. The lemma is proved.

Lemma 6. Let {z′
i}, i ∈ K ′ ⊂ K, is a convergent subsequence of the sequence

{z′
i}, i ∈ K, and z′ is its limit point. Then

z′ ∈ epi (f, Rn) . (24)

Proof. We assume that z′
i = (ωi, ηi), i ∈ K, z′ = (ω′, η′), where ωi, ω′ ∈ Rn,

ηi, η′ ∈ R1, i.e.

ωi → w′ and ηi → η′ for i → ∞, i ∈ K ′.

According to step 2 of the method, we have we have inclusions z′ ∈ epi (Fi, Rn)
and hence inequalities Fi (ωi) � ηi or f (ωi) + Pi (ωi) � ηi for all i ∈ K. But
Pi (ωi) � 0, i ∈ K. Then f (ωi) � ηi, i ∈ K ′, which means that f (ω′) � η′.
Consequently, the inclusion (24) is proved.
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Lemma 7. If ū is a limit point of the sequence {ui}, i ∈ K, then

ū ∈ epi (f, D) . (25)

Proof. Let ū = (ȳ, γ̄) be a limit point of a convergent subsequence {ui}, i ∈
K ′ ⊂ K. Select a convergent subsequence {z′

i}, i ∈ K ′′ ⊂ K ′, from the sequence
{z′

i}, i ∈ K ′. Let z′ is its limit point. Then, by Lemma 6, the inclusion (24) holds
for this point. On the other hand, according to the consequence to Lemma 3,
lim
i∈K′′

‖z′
i − ui‖ = 0. Hence, ū = (ȳ, γ̄) ∈ epi (f, Rn) and

f (ȳ) � γ̄.

At the same time, according to Lemma 5, ȳ ∈ D. Thus, taking into account the
last inequality, we have the inclusion (25). The lemma is proved.

Theorem 2. Let {(xk, σk)}, k ∈ K1 ⊂ K, be a convergent subsequence of the
sequence {(xk, σk)}, k ∈ K, and ū = (x̄, σ̄) is its limit point. Then

x̄ ∈ X∗, σ̄ = f∗.

Proof. We recall that according to (7)

(xk, σk) = (yik , γik) = uik , k ∈ K.

Then, by the hypothesis of the theorem, uik → ū, k ∈ K1 and for the point
ū = (x̄, σ̄), by Lemma 7, we have the inclusion (25). It means that x̄ ∈ D,
f (x̄) � σ̄. But by the condition (9) σ̄ � f∗. Hence, f (x̄) � σ̄ � f∗ � f (x̄), i.e.
f (x̄) = σ̄ = f∗. The theorem is proved.

5 Conclusion

Earlier, the authors proposed cutting-plane methods [16,17] for the solution of
problem (1), in which a similar idea of immersing the epigraphs of auxiliary
functions into polyhedral sets is used. The method proposed in this paper differs
from the methods [16,17] in that it additionally implements the procedure for
approximating the set of constraints of the original problem by polyhedron.
Numerical calculations have shown that the successive approximation of the set
D by the sets Di improves the rate of convergence in comparison with another
version of the method, where Di = D0 ∀ i > 0.

In addition, according to the calculations for large values of i the iterative
points yi often belong to D. On such iterations, it is possible to estimate the
proximity of the current value f(yi) to the optimal value f∗, since, taking into
account condition (9), inequality holds

γi � f∗ � f (yi) .
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Suppose that the function f (x) is strongly convex on the set D with the
constant of strong convexity μ. Then the points xk ∈ D satisfy the inequality

1
2
μ‖xk − x∗‖2 � f (xk) − f∗

([11], p. 207). Since, according to (7), (9), σk � f∗, then
1
2
μ‖xk − x∗‖2 � f (xk)−

σk. Hence, for the indicated xk the estimate follows

‖xk − x∗‖ �
√

2εk
μ

,

where εk = f (xk) − σk.
Below we make a few more remarks concerning the choice of functions Pi(x)

in the proposed method.
Note that, under condition

Fi (yi) − γi � Δk

for the point ui, method makes it possible to set Pi+1 (x) = Pi (x) at the step 8
for all x ∈ Rn. Taking into account the point 7 of the method, this means that
it is permissible to assume

Pi (x) = P0 (x) , Fi (x) = F0 (x) ∀i ∈ K (26)

regardless of the condition (6) in the method. Thus, the method admits such an
implementation, where the penalty, and therefore the auxiliary functions, do not
change at all during the computational process. In this case, the sets Mi approx-
imate the epigraph of the initial function F0(x) for all i ∈ K. The possibility of
specifying functions Pi (x), Fi (x) in the form (26) essentially distinguishes the
proposed method from both the penalty method and the cutting-plane methods
[16,17].

The point is that the theorem of convergence of the method is proved without
any additional requirements to the sequence {Δk}, except for its positivity. In
particular, it is permissible to set

Δk = Δ > 0∀ k ∈ K.

If we assume that Δ is arbitrarily large, then Fi (y) − γi < Δk for all i ∈ K,
k ∈ K. In this case, for each i ∈ K, step 8 of the method is performed, xk = yi,
σk = γi, and the penalty function Pi+1 (x) can be chosen with conditions

Pi+1 (x) = 0 ∀x ∈ D, Pi+1 (x) > Pi (x) ∀x /∈ D.

Indeed, the functions Pi+1 (x) and Fi+1 (x) will differ, respectively, from Pi (x)
and Fi (x) for all i ∈ K.

Now let the numbers Δk be chosen in the method in such a way that

Δk → 0 k → ∞,
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and the functions Pi (x) are given with the additional condition

Pi (x) → +∞, i → ∞, ∀x /∈ D.

Let F ∗
i = min {Fi (x) : x ∈ Di}. Since the inclusions yi ∈ Di, Mi ⊃ epi (Fi, Rn),

i ∈ K, are fulfilled, the inequalities

γi � F ∗
i � Fi (yi)

are valid. Consequently, the condition (6) can serve as a test of the closeness of
the values Fi (yi) and F ∗

i As long as, (6) is satisfied for fixed Δk, the functions
Pi (x), Fi (x) do not change. According to Lemma 4, an inequality Fi (yi) −
γi � Δk holds for some i = ik, and the point yik = xk can be regarded as
an approximate solution of problem min {Fik (x) : x ∈ Dik}. Such an algorithm
of the proposed method can be adopted as an implementation of the classical
method of penalty functions.
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Abstract. At the present time, the discrete-time models are not given
enough attention. But these models are more realistic than the contin-
uous models, because the allocation of funds is discrete. In the paper a
new discrete model of optimal advertising is proposed. This model takes
into account the uncertainties. These uncertainties are caused by acts of
a set of the small companies. The companies’ problem is to maximize
their market share taking into account the reaction of competitors. The
problem is a discrete multistep optimal control problem. For this model
the optimal control problem is solved explicitly. The Bellman method of
dynamic programming is used to construct the guaranteed equilibrium.

Keywords: Strong guaranteed equilibrium
Multistage positional two-player game
Optimal control of advertising

1 Introduction

Many industries are characterized by firms competing for the market share
mainly on the basis of advertising. The markets for cola drinks, beer and
cigarettes are some examples that have been studied in [1,2]. The goal of a firm’s
advertising is to increase its market share while the advertising of competitors
act to reduce the market share of the firm. The interaction of companies is usu-
ally considered as a differential game, were the each company tries to increase
its market share taking into account the reaction of competitors. The strategies
of companies are the allocation of funds for advertising.

However, the financing of the advertising action is discrete. Therefore the
multistage discrete games are more realistic.

One of the first models that describes an influence of advertising costs on the
market share of a monopolistic firm was proposed by Vidale and Wolfe in 1957
[3]. In the model, the dynamics of the sales rate s(t) is given by the following
differential equation

ṡ(t) = γu(t)[m − s(t)] − δs(t), s(t0) = s0, (1)

c© Springer International Publishing AG, part of Springer Nature 2018
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where u(t) is the advertising effort, i.e. a control variable. Here m is a saturation
level of the sale rate, γ is a response constant characterizing efficiency of adver-
tising, and δ is a decay constant that determines the rate at which consumers
are lost due to product obsolescence.

The classical monopoly model having numerous applications was suggested
by Sethi in 1983 [4]. Here the dynamics of the market share x(t) is given by the
non-linear differential equation

ẋ(t) = ρu(t)
√

1 − x(t) − δx(t), x(t0) = x0. (2)

Equation (2) was generalized on oligopoly by Sorger [5]. The further development
of the Sorger model was made in [6]. The discrete models of optimal advertising
were considered in [7–10].

In the present work, we consider the discrete oligopoly model. In this model
competitive firms fight for a market share using the advertising.

In addition to the main players in the market, there are usually some small
sellers and producers. They do not take part in model as players. They can
have different purposes. We will consider their acts as the uncontrollable factors.
Below we regard their acts as the uncertainty.

2 Games in Discrete-Time Under Uncertainty

In this section we will follow [11] and will consider a multistage positional two-
player game in discrete-time under uncertainty

〈{1, 2}, Σ, {Ui}i=1,2,Z, {Ji(U,Z, t0, x0)}i=1,2〉. (3)

Here player 1 and player 2 are denoted by {1, 2}, Σ is an operated system
with increasing time t = t0, t0 + 1, . . . , T − 1, where T is a positive integer. The
dynamic of Σ is described by difference vector equation

x(t + 1) = F (x(t), u1(t), u2(t), z(t)), (4)

where x ∈ Rn is the phase vector, the pair (t, x) ∈ T × Rn is the position of the
game at the time t, (t0, x0) ∈ {0, 1, . . . , T − 1, T} × Rn is the starting position.
Denote by ui ∈ Rn the control action of the player i and by z ∈ Rn an uncertain
factor.

The strategy Ui(t) of the player i at the time t = 0, 1, . . . , T − 1 depends
on the time t and the position x. Ui(t) is positional because it depends on the
realizing position (t, x) of the game.

The set of strategies for the player i in the game (3) with initial position
(t0, x0) will be denote by

Ui = {Ui = (Ui(t0), Ui(t0 + 1), . . . , Ui(T − 1)
∣∣ Ui(t)

÷ui(t, x), t = t0, . . . , T − 1, x ∈ Rn}.

Also we will use the set U = U1 × U2 of situations U = (U1, U2).
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The uncertainty Z(t) at the time t = 0, 1, . . . , T −1 will be identified with the
n-vector function z(t, x, u1, u2). The uncertainty Z(t) at the time t forms on the
basis of knowledge about game position (t, x) and the realization of the strategy
of the both players at this point. In other words it means that the uncertainty
forms in the class of counter-strategies. The set of uncertainties in the game (3)
with initial position (t0, x0) well be denoted by

Z = {Z = (Z(t0), Z(t0 + 1), . . . , Z(T − 1)
∣∣ Z(t) ÷ z(t, x, u1, u2)}.

The party of the game (3) develops by the following way. Let (t0, x0) be the
initial position. The players chose it and use their specific strategies U∗

i ∈ Ui

(i = 1, 2), U∗
i ÷ (u∗

i (t0), . . . , u
∗
i (T − 1). In the game the specific uncertainty is

realized on base of these strategies

Z∗ ∈ Z, Z∗ = (Z∗(t0), . . . , Z∗(T − 1)).

Then system (4) takes the form

x(t + 1) = F (t, u∗
1(t), u

∗
2(t), z

∗(t)), t = t0, . . . , T − 1.

and we obtain the following sequences: the sequence of values of the phase vectors
{x(T )}T

t=t0 , the two sequences of realizations of the strategies U∗
i (i = 1, 2) that

are chosen by the players {ui[t]}T−1
t=t0 (i = 1, 2), and the sequence of realization

of uncertainties {z[t]}T
k=t0

.
By means of these sequences we introduce the payoff function for i-th player

Ji(U∗, Z∗, t0, x0) =
T∑

t=0

G(x(t), u1[t], u2[t], z[t]). (5)

The value of this function is the payoff for this player.
The goal of i-th player is to choose his strategy Ui ∈ Ui in such a way that

the payoff of i-th player will be the largest. Moreover, the player does not have
to unite in the coalition with the other player. In this situation the both players
taking into account the realization of any uncertainty Z ∈ Z.

The formation of the strong guaranteed equilibrium occurs in two stages [11].

I stage: The interior minimum
For each i (i = 1, 2) we fix the situation U∗ in the game (3) and solve the problem

min
Z∈Z

Ji(U∗, Z, t0, x0) = Ji(U∗, Z(i), t0, x0).

II stage: The external Nash equilibrium
Now we construct “the game of guarantees” which follows from (3). Here each
player i(i = 1, 2) is taking into account the realization of the worst uncertainty
Z(i) for him.

〈{1, 2}, {Σ(Z = Z(i))}i=1,2, {Ui}i=1,2, {Ji(U1, U2, Z
(i), t0, x0)}i=1,2〉. (6)
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In the game (6) we find the Nash equilibrium situation Ue = (Ue
1 , Ue

2 ) from
the equalities

min
U1∈U1

J1(U1, U
e
2 , Z(i), t0, x0) = J1(Ue, Z(i), t0, x0) = J e

1 [t0, x0],

min
U2∈U2

J2(Ue
1 , U2, Z

(i), t0, x0) = J2(Ue, Z(i), t0, x0) = J e
2 [t0, x0].

The pair Ue,J e[t0, x0] = (J e
1 [t0, x0],J e

2 [t0, x0]) will be called the strongly
guaranteed Nash equilibrium for the game (3). Ue is called by the strongly
guaranteed strategy profile and J e

i [t0, x0] is the strongly guaranteed payoff for
i-th player (i = 1, 2).

3 Model

Let us consider the problem of finding the optimal cost of the advertising effort
for a competitive market. There are two competitive firms that occupy only
a part of the market. The remaining part of the market is occupied by small
companies. We can not predict their strategy and the stochastic features of their
behaviour are unknown. We will interpret this uncertainty as the availability of
the third dummy player on the market. This player does not have its own profit
functional. In this case we can describe the sales dynamics by two equations
from the system of non-linear difference equations in Prasad-Sethi model for
three competitive firms.

⎧
⎪⎪⎨

⎪⎪⎩

x1(t + 1) = (1 − δ)x1(t) + ρ1u1(t)
√

1 − x1(t) − ρ2
2 u2(t)

√
1 − x2(t)

− ρ3
2 z(t)

√
x1(t) + x2(t) + δ

3 ,

x2(t + 1) = (1 − δ)x2(t) + ρ2u2(t)
√

1 − x2(t) − ρ1
2 u1(t)

√
1 − x1(t)

− ρ3
2 z(t)

√
x1(t) + x2(t) + δ

3 .

(7)

Here t = 1, . . . , T is the time when decisions were made (steps of dynamic
process); T is the number of the time of decision acceptance (planing horizon);
δ ∈ [0; 1] is a market share decay expenditure rate at the time t; ρ1, ρ2 are
response constants; x1(t), x2(t) are market shares at the time t; u1(t), u2(t) are
advertising expenditure rates at the time t; the control z(t) for the third dummy
player is the uncertainty in this model.

The quality of companies functionals is determined by the following
functionals

J1 =
m1x1(t)
(1 + r)t

+
T−1∑

k=0

m1x1(k) − c
2u2

1(k) + 1
2z2(k)

(1 + r)k
, (8)

J2 =
m2x2(t)
(1 + r)t

+
T−1∑

k=0

m2x2(k) − c
2u2

2(k) + 1
2z2(k)

(1 + r)k
, (9)

where m1,m2 are revenues potentials (a margin per unit product), r is the
discount rate, c is the coefficient characterizing the cost of advertising.
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It is assumed that each of the competitive firms optimizes their advertising
costs. We will follow the principle of Hermeyer and we will assume that when
the player is making the decision he has to orientate on the maximum opposition
to the uncertainty.

For the solution of the problem we will use the notion of the strong guaranteed
equilibrium which described in the previous section.

4 The Construction of the Strongly Guaranteed Nash
Equilibrium

First of all we transcribe the problem in the matrix form.
Introduce vectors:

X(t) =
(

x1(t)
x2(t)

)
, U(t) =

(
u1(t)
u2(t)

)
, D =

1
3

(
δ
δ

)
, Z(t) =

(
z(t)
z(t)

)
.

Then the initial system of equations takes this form:

X(t + 1) = (1 − δ)X(t) +

⎛

⎝ρ1
√

1 − x1(t) −ρ2

√
1−x2(t)

2

−ρ1

√
1−x1(t)

2 ρ2
√

1 − x2(t)

⎞

⎠ U(t)

−ρ3
2

√
x1(t) + x2(t)Z(t) + D.

We represent the matrix which acts on the vector U in the form:
⎛

⎝ρ1
√

1 − x1(t) −ρ2

√
1−x2(t)

2

−ρ1

√
1−x1(t)

2 ρ2
√

1 − x2(t)

⎞

⎠

=
(

1 − 1
2− 1

2 1

) (
ρ1

√
1 − x1(t) 0

0 ρ2
√

1 − x2(t)

)

=
(

1 − 1
2− 1

2 1

)(
ρ1 0
0 ρ2

)(√
1 − x1(t) 0

0
√

1 − x2(t)

)
.

Introduce matrices: K =
(

1 − 1
2− 1

2 1

)
, ρ =

(
ρ1 0
0 ρ2

)
.

Aside from that we denote
(√

1 − x1(t) 0
0

√
1 − x2(t)

)
=

√
I − x(t), where

x(t) =
(

x1 0
0 x2

)
.

If we introduce the diagonal matrix

I − x(t) =
(

1 − x1(t) 0
0 1 − x2(t)

)
,

it will conform with the matrix function root from the diagonal matrix.
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Thus the initial system in the matrix form takes the following form:

X(t + 1) = (1 − δ)X(t) + Kρ
√

I − x(t)U(t) − ρ3
2

√
x1(t) + x2(t)Z(t) + D. (10)

Also we write functionals (8), (9) in the vector form

J =
(

J1

J2

)
=

1
(1 + r)T

(
m1 0
0 m2

)
X(T )

+
T−1∑

k=0

[ 1
(1 + r)k

(
m1 0
0 m2

)
X(k) − c

2(1 + r)k

(
u2
1(k)

u2
2(k)

)
+

1
2(1 + r)k

(
z2(k)
z2(k)

)]
.

Introduce matrix

m =
(

m1 0
0 m2

)
and vector U2(k) =

(
u2
1(k)

u2
2(k)

)
(note that here and below U2,

Z2 are only the notations without any vectors multiplication).
Than

J =
mX(T )
(1 + r)T

+
T−1∑

k=0

[ mX(k)
(1 + r)k

− cU2(k)
2(1 + r)k

+
Z2(k)

2(1 + r)k

]
.

We introduce the Bellman vector function on the step k:

V (T ) =

(
V

(T )
1

V
(T )
2

)

=
mX(T )
(1 + r)T

.

For uniformity we write V (T ) in the form:

V (T ) =
m

(1 + r)T

(
α(T )X(T ) + β(T )

)
,

where α(T ) = I2 =
(

1 0
0 1

)
, β(T ) = 0 =

(
0
0

)
.

We recursively denote the auxiliary vector function W (k) and the vector
function V (k):

W (k) =

(
W

(k)
1

W
(k)
2

)

=
mX(k)
(1 + r)k

− cU2(k)
2(1 + r)k

+
Z2(k)

2(1 + r)k
+ V (k+1), k = T, . . . , 1, 0,

where

V (k) =

⎛

⎜
⎝

max
u1(k)

min
z(k)

W
(k)
1

max
u2(k)

min
z(k)

W
(k)
2

⎞

⎟
⎠ .

In order to further differentiate each vector coordinate on its argument we
will use the projections operators on the first or the second coordinate:

pr1W
(k) = W

(k)
1 , pr2W

(k) = W
(k)
2 .

It is similar for other vectors.
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Theorem 1. The sequence of Bellman functions and the sequence of optimal
controls and the sequence of the uncertainty are obtained by the following recur-
rent formulas

V (k) =
m

(1 + r)T

[
αkX(k) + βk

]
, (11)

U∗(k) =
(

u∗
1(k)

u∗
2(k)

)
=

mρ
√

I − x(k)
c(1 + r)T−k

(
α(k + 1)11 − α(k+1)12

2

−α(k+1)21
2 + α(k + 1)22

)

, (12)

Z∗(k) =
(

z∗
1(k)

z∗
2(k)

)
=

mρ3α(k + 1)
2(1 + r)T−k

√
x1(k) + x2(k)

(
1
1

)
, (13)

where

α(k) = (1 + r)T−kI + (1− δ)α(k + 1)− ρ23
4

α(k + 1)mα(k + 1)K1 (14)

+
mρ2

2c(1 + r)T−k

(
(α11(k + 1)− α12(k+1)

2
)2 0

0 (−α21(k+1)
2

+ α22(k + 1))2

)

+
mρ23

8(1 + r)T−k

(
(α11(k + 1) + α12(k + 1))2 0

0 (α21(k + 1) + α22(k + 1))2

)
K1

−α(k + 1)Kmρ2

c(1 + r)T−k

(
α11(k + 1)− α12(k+1)

2
0

0 −α21(k+1)
2

+ α22(k + 1)

)
,

β(k) = β(k + 1) +
α(k + 1)δ

3

(
1
1

)
(15)

− mρ2

2c(1 + r)T−k

(
(α11(k + 1)− α12(k+1)

2
)2 0

0 (−α21(k+1)
2

+ α22(k + 1))2

) (
1
1

)

+
α(k + 1)Kmρ2

c(1 + r)T−k

(
α11(k + 1)− α12(k+1)

2
0

0 −α21(k+1)
2

+ α22(k + 1)

) (
1
1

)
.

Proof. Let us define the Bellman vector function on the step k = T − 1.
First of all we search min W

(T−1)
1 = pr1W

(T−1) min W
(T−1)
2 = pr2W

(T−1)

on the variable z(T − 1).
We will find the partial derivative from the vector function W (T−1) on the

variable
(
W (T−1)

)′
z(T−1)

= Z(T−1)
(1+r)T−1 +

(
V (T )

)′
z(T−1)

= Z(T−1)
(1+r)T−1 + m

(1+r)T
(X)′

z(T−1)

= Z(T−1)
(1+r)T−1 − mρ3

2(1+r)T

√
x1(T − 1) + x2(T − 1)

(
1
1

)
.

Here we are using that
(
Z2

)′ = 1
2Z, it is obviously.
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We find the critical points z∗
1(T − 1) for W

(T−1)
1 and z∗

2(T − 1) for W
(T−1)
2

from the vector equation (W (T−1))′
z(T−1) = 0. They give the vector

Z∗(T − 1) =
(

z∗
1(T − 1)

z∗
2(T − 1)

)
=

ρ3m

2(1 + r)

√
x1(T − 1) + x2(T − 1)

(
1
1

)
.

Thus, it is obviously that

Z∗(T − 1) =
ρ3

2(1 + r)

√
x1(T − 1) + x2(T − 1)

(
m1

m2

)
.

Since
(
W

(T−1)
1,2

)′′

z(T−1)
> 0 so the point z∗

1(T −1) for the function WT−1
1 and

the point z∗
2(T − 1) for the function WT−1

2 are really the minima w.r.t. variable
z(T − 1).

Substitute Z∗(T − 1) in the formulas for W (T−1)

W (T−1)
∣∣
Z(T−1)=Z∗(T−1)

= mX(T−1)
(1+r)T−1

− cU2(T−1)
2(1+r)T−1 + ρ3(x1(T−1)+x2(T−1))

8(1+r)T+1

(
m2

1

m2
2

)
+ V (T )|Z(T−1)=Z∗(T−1)

= ρ2
3m2

8(1+r)T+1

(
1 1
1 1

)
X(T − 1) + V (T )(Z∗(T − 1)).

Now we find maxu1(T−1) W
(T−1)
1 . For this we have to find the partial deriva-

tive for the vector function W (T−1) under the variable u1(T − 1):

(W (T−1))′
u1(T−1) = − c

(1 + r)T−1

(
u1(T − 1)

0

)
+ (V (T ))′

u1(T−1)(Z
∗(T − 1)).

So

(V (T ))′
u1(T−1) =

m

(1 + r)T
(X(T ))′

u1(T−1) =
m

(1 + r)T

[
Kρ

√
1 − x(T − 1)

(
1
0

)
]
,

then

(W (T−1))′
u1(T−1)

= − c
(1+r)T−1

(
u1(T − 1)

0

)
+ m

(1+r)T

[
Kρ

√
1 − x(T − 1)

(
1
0

)]
.

It easy to see that

m
(1+r)T

[
Kρ

√
1 − x(T − 1)

(
1
0

)]

= − c
(1+r)T−1

(
u1(T − 1)

0

)
+ 1

(1+r)T

(
m1ρ1

√
1 − x1(T − 1)

∗
)

.
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In the critical points for W1(T − 1) it should be

pr1(W (T−1))′
u1(T−1) = 0.

So we get

u∗
1(T − 1) =

1
c(1 + r)

m1ρ1
√

1 − x1(T − 1).

Similarly we find

u∗
2(T − 1) =

1
c(1 + r)

m2ρ2
√

1 − x2(T − 1)

and so

U∗(T − 1) =
mρ

c(1 + r)

√
I − x(T )

(
1
1

)
.

We need Z∗2(T − 1) and U∗2(T − 1). Calculations show that

Z∗2(T − 1) =
ρ23m

2

4(1 + r)2

(
1 1
1 1

)
X(T − 1)

and

U∗2(T − 1) =
m2ρ2

c2(1 + r)2

[(
1
1

)
− X(T − 1)

]
.

Now we can find

V (T−1) = W (T−1)

∣∣∣∣Z(T−1)=Z∗(T−1)
U(T−1)=U∗(T−1)

.

When we substitute the critical points we obtain

V (T−1) = m
(1+r)T

([
[(1 + r) + (1 − δ)]I + (I−K)mρ2

c(1+r) − mρ2
3

8(1+r)

(
1 1
1 1

)]
X(T − 1)

+
[
(K−I)mρ2

c(1+r)

(
1
1

)
+ D

])

So we obtain the representation

V (T−1) =
m

(1 + r)T

[
α(T − 1)X(T − 1) + β(T − 1)

]
,

where

α(T − 1) =
[
(1 + r) + (1 − δ)

]
I + (I−K)mρ2

c(1+r) − mρ2
3

8(1+r)

(
1 1
1 1

)
,

β(T − 1) = (K−I)mρ2

c(1+r)

(
1
1

)
+ D.
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Now we obtain the analogous representation by induction for V (k) assuming
that

V (k+1) =
m

(1 + r)T

[
α(k + 1)X(k + 1) + β(k + 1)

]
.

To find min
z(k)

W
(k)
1 , min

z(k)
W

(k)
2 we find the partial derivative of the vector

function W (k) on z(k):

(W (k))′
z(k) = Z(k)

(1+r)k
+ (V (k+1))′

z(k)

= Z(k)
(1+r)k

+ mα(k+1)
(1+r)T

(X(k + 1))′
z(k)

= Z(k)
(1+r)k

− mρ3α(k+1)
2(1+r)T

√
x1(k) + x2(k)

(
1
1

)
.

The critical point z∗
1(k) for W

(k)
1 and the critical point z∗

2(k) for W
(k)
2 are

found from the vector equation (W (k))′
z(k) = 0. They give the vector

Z∗(k) =
(

z∗
1(k)

z∗
2(k)

)
=

mρ3α(k + 1)
2(1 + r)T−k

√
x1(k) + x2(k)

(
1
1

)
.

Since (W (k)
1,2 )′′

z(k) > 0 then at the points z∗
1(k) and z∗

2(k) the functions W
(k)
1

and W
(k)
2 actually have a minimum in the variable z.

Now we find max
u1(k)

W
(k)
1 and max

u2(k)
W

(k)
2 . Since

(W (k))′
u1(k)

= − c

(1 + r)k

(
u1(k)

0

)
+

mα(k + 1)
(1 + r)T

Kρ
√

I − x(k)
(

1
0

)
,

so the stationary point W
(k)
1 which is found from the equation pr1(W (k))′

u1(k)
= 0

has the following form

u∗
1(k) =

m1ρ1
√

1 − x1(k)
c(1 + r)T−k

(
α11(k + 1) − 1

2
α12(k + 1)

)
.

We similarly obtain

u∗
2(k) =

m2ρ2
√

1 − x2(k)
c(1 + r)T−k

(
−1

2
α21(k + 1) + α22(k + 1)

)
.

Thus

U∗(k) =
(

u∗
1(k)

u∗
2(k)

)
=

mρ
√

I − x(k)
c(1 + r)T−k

(
α(k + 1)11 − α(k+1)12

2

−α(k+1)21
2 + α(k + 1)22

)

.
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To facilitation the further calculations we will use next formulas
√

x1(k) + x2(k)Z∗(k) = ρ3mα(k+1)
2(1+r)T−k K1X(k),

(Z∗(k))2

= m2ρ2
3

4(1+r)2T−2k

(
(α11(k + 1) + α12(k + 1))2 0

0 (α21(k + 1) + α22(k + 1))2

)

×K1X(k),
√

1 − x(k)U∗(k)

= (1+r)k−T

c Mρ

(
α11(k + 1) − α12(k+1)

2 0
0 −α21(k+1)

2 + α22(k + 1)

)

×
[(1

1

)
− X(k)

]
,

(U∗(k))2

= m2ρ2

c2(1+r)2T−2k

(
(α11(k + 1) − α12(k+1)

2 )2 0
0 (−α21(k+1)

2 + α22(k + 1))2

)

×
[(1

1

)
− X(k)

]
.

Here K1 =
(

1 1
1 1

)
.

Now we can find V (k). For this we substitute Z∗(k), U∗(k) in W (k). Simple
calculations give the following result

V (k) = m
(1+r)T

[
α(k)X(k) + β(k)

]
,

α(k) = (1 + r)T−kI + (1 − δ)α(k + 1) − ρ2
3
4 α(k + 1)mα(k + 1)K1

+ mρ2

2c(1+r)T−k

(
(α11(k + 1) − α12(k+1)

2 )2 0
0 (−α21(k+1)

2 + α22(k + 1))2

)

+ mρ2
3

8(1+r)T−k

(
(α11(k + 1) + α12(k + 1))2 0

0 (α21(k + 1) + α22(k + 1))2

)
K1+

−α(k+1)Kmρ2

c(1+r)T−k

(
α11(k + 1) − α12(k+1)

2 0
0 −α21(k+1)

2 + α22(k + 1)

)

,

β(k) = β(k + 1) + α(k+1)δ
3

(
1
1

)

− mρ2

2c(1+r)T−k

(
(α11(k + 1) − α12(k+1)

2 )2 0
0 (−α21(k+1)

2 + α22(k + 1))2

)(
1
1

)

+α(k+1)Kmρ2

c(1+r)T−k

(
α11(k + 1) − α12(k+1)

2 0
0 −α21(k+1)

2 + α22(k + 1)

)(
1
1

)
.
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We obtain the explicit algorithm for solving this optimization problem:

1. Find matrices α(k) and vectors β(k), k = T, . . . , 1, 0 by recurrent formulae
(14), (15).

2. Find the minimizing sequence Z∗(k) by formula (13) and optimal control
U∗(k) by formula (12).

3. For Z(k) = Z∗(k) and U(k) = U∗(k) we find X(k), k = 1, . . . , T by formula
(10).

4. Construct the sequence V (k), k = T, . . . , 1, 0 by formula (11).

The value V (0) gives the maximal value for payoff functionals.

5 Conclusion

In this paper, we have developed the discrete model of the advertising control
at the competitive market. The optimal control problem for our model can be
solved explicitly. The proposed algorithm can be applied to construct the optimal
advertising strategy in real markets. In the future, we will study the effect of
advertising in supply chains [13–16] under uncertainty.
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Abstract. An analysis is presented of a public-private partnership
model in the natural resources sector of Russia, whereby the govern-
ment provides tax incentives and supports the investor in infrastructure
development and, to some extent, in the implementation of mandatory
environmental measures. The analysis builds on the Stackelberg model
and an original iterative solution algorithm based on probabilistic local
search. A full-size model test site is constructed to demonstrate the capa-
bilities of the approach. The actual data and dimensions of the model
test site capture the specificity of the modeled object and make possible
a practical study of the properties of the Stackelberg equilibrium. Based
on the modeling results, an assessment is made of the impact of various
factors on the effectiveness of the subsoil development program and the
basic principles are formulated for government decision-making in this
area.

Keywords: Stackelberg game
Bilevel mathematical programming problems
Mineral resources development program
Probabilistic local search algorithm

1 Introduction

In modern Russia, the agenda of sustainable development of natural resource
based regions with poor production infrastructure assumes specific features,
necessitating the use of additional tools to influence the investor and launch
public-private partnerships (PPPs), which are designed to reduce risks and dis-
tribute responsibility between the subsoil usage stakeholders – the government
and private businesses [1–3]. One of these partnership models was examined in
[4,5] under the assumption that the government provides support to the investor
in underdeveloped regions not only for infrastructure development but also, in
part, for the implementation of mandatory environmental protection measures.
This specifically Russian model was applied in the infrastructure development
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 220–234, 2018.
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projects financed from the Investment Fund of Russia. However, this initiative
was not successful, primarily because all attempts of the Russian government to
encourage partnerships with private businesses were not grounded in economi-
cally sound administrative decisions [6–8].

Simultaneously with the PPP initiatives, the government designed a legisla-
tive framework for substantial profit tax incentives for large natural resource
development projects in underdeveloped regions. The new tax regulations open
a possibility for combining the previously applied PPP models with the newly
introduced tax incentives. So far, no large project of this kind has been imple-
mented in Russia, but the previous negative experience of the Investment Fund
necessitates an analysis of the combined model based on the PPP and taxation
laws.

This issue is the focus of this paper, which aims at analyzing the efficiency
of the PPP schemes that use the full range of opportunities provided by the law
and are based on the Stackelberg game-theoretic model. This approach, dictated
by the hierarchy of interaction between the government and the private investor
in the natural resources sector, allows one to reach a compromise of interests
and ensure long-term efficiency not only for the private investor but also for the
government, which sets for itself the task of strategic management of the natural
resource sector.

This study continues our research in [4,5], which focused on a PPP model
whereby the government confined its support to investments in infrastructure
development and environmental protection. Here, we investigate a generalized
version of the model, which includes the possibility of using tax incentives within
the PPP. In further research, this problem statement can be developed to con-
sider transaction costs. These costs are known to be high in Russia and have a
tangible effect on the tax incentive mechanism. Models of this kind may be of
great use in spatial planning and in addressing strategic administrative tasks in
natural resource based regions.

2 Mathematical Model

A formal description of the PPP model can be presented as follows. We use the
following notations:

T is a planning horizon; I is a set of investment projects;
J is a set of infrastructure development projects; K is a set of environmental
projects; M is a set of tax incentive levels.
Investment project i in year t:
CFP t

i is the cashflow (the difference between the incomes and expenses of all
kinds, taking into account a transaction costs);
EPP t

i is the environmental damage from the implementation of project;
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DBP t
i is the government revenue from the implementation of project;

ZPP t
i is the population income (wages) from the implementation of project;

TP t
im is a tax incentive of level m for project (the part of profit tax determined

by the incentive level).
Infrastructure development project j in year t:
ZIt

j is the costs of implementation of project;
EPIt

j is the environmental damage from the implementation of project;
V DIt

j is the government revenue from local economic development as a result
of the implementation of project;
ZPIt

j is the population income (wages) from the implementation of project.
Environmental project k in year t:
ZEt

k is the costs of implementation of project;
ZPEt

k is the local population direct income (wages);
EDEt

k is the valuation of additional incomes of the local population.

The matrices μ and ν define the relationship between the projects, where μij is a
coherence indicator for the infrastructure and investment projects, i ∈ I, j ∈ J ,
and νij is a coherence indicator for the environmental and investment projects,
i ∈ I, k ∈ K:

μij =

⎧
⎨

⎩

1, if the implementation of investment project i
requires the implementation of infrastructure development project j,

0 otherwise;

νik =

⎧
⎨

⎩

1, if the implementation of investment project i
requires the implementation of environmental project k,

0 otherwise.

The discounts of the government and the investor:
DG is the discount of the government; DI is the discount of the investor;
The budget constraints:
bG
t is the government budget in year t; bO

t is the investor budget in year t.
We use the following variables:

xj =
{

1, if the government launches infrastructure development project j,
0 otherwise;

ȳk =

⎧
⎨

⎩

1, if the government is prepared to launch environmental project k
(the government has included it into the budget expenses),

0 otherwise;

yk =

⎧
⎨

⎩

1, if the government launches environmental project k
as agreed with the investor,

0 otherwise;

ϕ̄im =

⎧
⎨

⎩

1, if the government is prepared to provide the investor with a tax
incentive of level m for investment project i,

0 otherwise;
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ϕim =

⎧
⎨

⎩

1, if the government provides the investor with a tax incentive
of level m for investment project i,

0 otherwise;

zi =
{

1, if the investor launches investment project i,
0 otherwise;

uk =
{

1, if the investor launches environmental project k,
0 otherwise.

The government problem PS:
∑

t∈T

( ∑

i∈I

(DBP t
i + ZPP t

i − EPP t
i )zi −

∑

i∈I

∑

m∈M

TP t
imϕim

+
∑

j∈J

(V DIt
j + ZPIt

j − EPIt
j − ZIt

j)xj +
∑

k∈K

(EDEt
k + ZPEt

k − ZEt
k)yk

+
∑

k∈K

(EDEt
k + ZPEt

k)uk

)
/(1 + DG)t → max

x,ȳ,ϕ̄,ϕ,y,z,u
(1)

subject to: ∑

j∈J

ZIt
j xj +

∑

k∈K

ZEt
k ȳk ≤ bG

t ; t ∈ T ; (2)

∑

m∈M

ϕ̄im ≤ 1; i ∈ I; (3)

(y, z, u, ϕ) ∈ F∗(x, ȳ, ϕ̄); (4)

ϕ̄im, xj, ȳk,∈ {0, 1}; i ∈ I, j ∈ J, k ∈ K,m ∈ M. (5)

The objective function of the government represents the net discounted
income received by the government and the local population (1). Constraints
(2) guarantee that the government expenses on infrastructure and environmen-
tal protection stay within the budget. Constraints (3) forbid the government
to provide several tax incentives within one project. Constraint (4) means that
the investor acts in an optimal way, which implies solving the low-level problem
(the investor problem). The set F∗(x, ȳ, ϕ̄) is a set of optimal solutions of the
low-level parametric problem.

The investor problem PI(x, ȳ, ϕ̄):

∑

t∈T

(∑

i∈I

(CFP t
i zi +

∑

m∈M

TP t
im ϕim) −

∑

k∈K

ZEt
kuk

)
/(1 + DI)t → max

z,u,y,ϕ
(6)

subject to:
∑

k∈K

ZEt
k uk −

∑

i∈I

(CFP t
i zi −

∑

m∈M

TP t
im ϕim) ≤ bO

t ; t ∈ T ; (7)
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∑

t∈T

(∑

i∈I

(ZPP t
i − EPP t

i )zi +
∑

j∈J

(ZPIt
j − EPIt

j)xj

+
∑

k∈K

(EDEt
k + ZPEt

k)(yk + uk)
)
/(1 + DI)t ≥ 0; (8)

∑

t∈T

( ∑

i∈I

CFP t
i zi +

∑

m∈M

TP t
im ϕim −

∑

k∈K

ZEt
k uk

)
/(1 + DI)t ≥ 0; (9)

xj ≥ μij zi; i ∈ I, j ∈ J ; (10)

yk + uk ≤ 1; k ∈ K; (11)

yk + uk ≥ νik zi; i ∈ I, k ∈ K; (12)

yk ≤ ȳk; k ∈ K; (13)

ϕim ≤ ϕ̄im; i ∈ I;m ∈ M ; (14)
∑

m∈M

ϕim ≤ zi; i ∈ I; (15)

yk, zi, uk, ϕim ∈ {0, 1}; i ∈ I, k ∈ K,m ∈ M. (16)

The income of the private investor is determined by objective function (6).
From (7) it follows that the investor’s costs in each year do not exceed the bud-
get, considering the income received from the investment projects and the tax
incentives. Satisfying constraint (8) means reaching a compromise between the
interests of the population, the government, and the private investor. Constraint
(9) ensures that the investor makes an average-industry profit rate. Constraints
(10)–(12) ensure technological coherence of the projects and prevent the situa-
tion when the investor and the government implement the same environmental
projects simultaneously. Constraints (13) guarantee that the government imple-
ments only those environmental projects that are included in the budget.

The choice of the government’s objective function reflects the specifics of
modern Russia. The rent estimate of a given natural resource deposit is defined
as the NPV (net present value) of the deposit development project with an
industry-average discount, minus the NPV of the corresponding environmental
project. This is exactly how the objective function, in the part related to the
government, is designed: the first term reflects the budget revenues and the third
one, the costs of the environmental projects financed by the government. This
circumstance allows us to say that, solving this problem, we, to some extent, solve
the problem of maximizing the government’s share of the rent. Thus, solving the
problem, we find a compromise between the interests of all the parties involved
in the PPP project: the government, which receives the maximum possible share
of the rent; the private investor, who maximizes their discounted income; and
the local population, who benefit from new jobs and from the wages they earn
within the projects and lose from the adverse impacts on the environment.

To solve the PPP planning problem, we applied an approximate hybrid
algorithm based on the ideas of local descent [9–17] and the CPLEX package.
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The latter is applied for solving both the one-level problem, where the govern-
ment decides for the investor, and the investor problem. The local descent is
used to search for a good approximate solution for the government.

Since the problem being studied has two levels and an arbitrary feasible solu-
tion (x, ȳ, ϕ, ϕ̄, y, z, u) contains the optimal solution (y, z, u, ϕ) of the parametric
investor problem with the parameters x, ȳ and ϕ̄, we call the solution (x, ȳ, ϕ̄)
an almost feasible solution if it satisfies constraints (2), (3), and (5) and the
investor problem with the parameters (x, ȳ, ϕ̄) is solvable.

Algorithm parameters:
mIter is the maximum number of iterations in the algorithm for finding the

initial solution (Step 2);
cfBound is the coefficient of constraint relaxation by the value of objective

function (1) in solving the auxiliary problem in Step 2.3.
Hybrid algorithm:
Step 1. Calculate the upper bound Bound by solving the government problem

with the low-level constraints (i.e., the problem with objective function (1) and
constraints (2), (3), (5) and (7)–(16)).

Step 2. Find a feasible solution (x0, ȳ0, ϕ̄0) (which will later be used as an
initial solution in the local search algorithm):

Step 2.1. iter := 1.
Step 2.2: If iter ≤ mIter, then solve the investor problem with the govern-

ment’s variables and constraints (i.e., the problem with objective function (6)
and constraints (2), (3), (5), and (7)–(16)) and the additional constraint that the
government’s objective function (1) is no less than (Bound−1)/iter. Otherwise,
proceed to Step 3.

Step 2.3: If the problem in the previous step is solvable and (x, ȳ, ϕ, ϕ̄, y, z, u)
is an optimal solution, then calculate the value f of objective function (1) by
solving the problem PI(x, ȳ, ϕ̄). If f < (Bound − 1)/(iter ∗ cfBound) or the
problem in the previous step has no solution, then assume that iter := iter + 1
and proceed to Step 2.2; otherwise, assume x0 := x, ȳ0 := ȳ, ϕ̄0 := ϕ̄, and
f0 := f and proceed to Step 3.

Step 3: If we could not find a feasible solution in Step 2, then we use a zero
solution as a feasible one; i.e., we assume that x0 := 0, ȳ0 := 0 and ϕ̄0 := 0,
and calculate the value f0 of objective function (1) by solving the problem
PI(x0, ȳ0, ϕ̄0). Then we apply the local improvement algorithm:

Step 3.1: Take (x, ȳ, ϕ̄) := (x0, ȳ0, ϕ̄0) as a starting solution and f := f0 as
a record value.

Step 3.2: Find the best neighbor (x∗, ȳ∗, ϕ̄∗) in the neighborhood of the solu-
tion (x, ȳ, ϕ̄).

Step 3.3: If the value of the objective function f(x∗, ȳ∗, ϕ̄∗) > f , then assume
that x := x∗, ȳ := ȳ∗, ϕ̄ := ϕ̄∗ and f := f(x∗, ȳ∗, ϕ̄∗) and proceed to Step 3.2;
otherwise, stop the algorithm.

We used as a neighborhood in the local improvement algorithm the following
randomized neighborhood with precisely one neighbor. The randomized neigh-
borhood of the solution (x, ȳ, ϕ̄) has precisely one solution (x

′
, ȳ

′
, ϕ̄

′
), which was
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obtained as follows. Each component of the vector x
′

is a random value which
with probability 1 − 1/|J | equals the corresponding component of the vector x
and with probability 1/|J |, of vector 1 − x. It is analogous for the vectors ȳ

′

and ȳ, but the probabilities are 1 − 1/|K| and 1/|K|, respectively. For the tax
incentives, the probabilities are 1 − 1/(|I||M |) and 1/(|I||M |), respectively.

The local improvement algorithm with the randomized neighborhood is
stopped after 5000 iterations, the parameters mIter and cfBound were 30 and
3, respectively.

3 Analysis of the Properties of Equilibrium Solutions

To demonstrate the methodology of application of the described tools, we
designed a special model test site, whose prototype was a set of 50 polymetallic
ore deposits in the Zabaikalskii krai (Transbaikalia). For this model test site,
we composed a set of 10 infrastructure projects, some of which are being imple-
mented (railroads and powerlines) while others make up for the infrastructure
that is currently missing but is necessary for the deposit development projects
(powerlines and highways). For each of the deposits, there are five levels of tax
incentives and a set of compensating environmental activities integrated into the
relevant environmental project. The calculations were carried out on a personal
computer (i7 3621QM processor, 4 GB RAM), and the counting time was about
30 min.

In this way, the model test site captures the specificity of the object being
modeled and provides an information base for studying the properties of the
Stackelberg equilibrium. The methodology is based on analyzing the sensitiv-
ity of the solutions of the corresponding bilevel Boolean programming problem
to changes in the basic parameters of the model. This issue is of fundamental
importance, primarily because for many of the model parameters, we know only
the operational ranges of their values.

Under certain assumptions about the government’s information capabilities,
the initial bilevel statement of the planning problem can be substantially sim-
plified and reduced to a one-level mathematical programming problem. This is
possible if the government has access to sufficiently detailed information on the
deposit development projects, forecasts of market prices, and the budget con-
straints of the investor. This means that the decision-making on subsoil use is
supported by the relevant governmental institutions that assess subsoil develop-
ment projects from the perspective of the government and society.

Then, the original bilevel model transforms into a Boolean programming
problem with the variables yk, zi, uk, xj , ϕim ∈ {0, 1} , the government’s objec-
tive function (1), and constraints (2), (5), (7)–(12), (15) and (16). This one-level
problem statement applies more to an economy with an informed government,
which dominates in the natural resources sector; however, this statement proves
to be convenient for understanding what we get from the transition from the
one- to bilevel statement.

The figures show the results of the calculations that analyzed the sensitivity
of the solution to changes in the key model parameters, i.e., the discounts of the
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investor and the government. In the calculations, we compared four models: the
basic model without tax incentive in the two- (A) and one-level (B) statements
and the two- and one-level models with tax incentives (C and D).

Fig. 1. The government objective function and the partner discounts

Figures 1, 2, 3, 4 and 5 show the results of applying the third lever of gov-
ernment support to the investor, i.e., tax incentives in the working ranges of
the partners’ discounts. From the point of view of the government’s objective
function, the introduction of tax incentives into the bilevel problem statement
removes the cavity on the surface in Model A, ensuring greater stability of the
partnership results in Model C with the increase in the investor discount (Fig. 1).
In the one-level problem statement, the effect of tax incentives manifests itself
most saliently at high investor discounts, resulting in substantially greater values
of the functional.

It follows from Fig. 2 that, other things being equal, the bilevel statement
(A and C) yields an increase in the investor’s objective function, compared with
the one-level statement (B and D). The effect of the tax incentives is most
tangible for the investor in the bilevel statement. Unlike in the one-level models
B and D, in which the government, informed about the investor’s production
capacity, simply nullifies its partner’s NPV at high investor discounts, the leader-
follower relationship pattern provides the investor with a positive income at high
discounts, coupled with an additional increase in the income from preferential
taxation.
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Fig. 2. The investor objective function and the partner discounts

Fig. 3. The partner discounts and the government share in the environmental costs
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How does the government combine the two levers of investor support, i.e.,
environmental initiatives and tax incentives? In the one-level problem statement,
the choice of the support lever depends little on the government discount. The
government supports the investor, starting from average investor discounts, and
rapidly increases its support of environmental projects to reach a maximum at
high discounts (Figs. 3B and D). The government uses tax incentives only at
the largest investor discounts, selecting from a third to a half of the deposit
development projects (Fig. 4D) and using virtually the maximum level of tax
incentives (Fig. 5D).

Fig. 4. The partner discounts and the number of tax incentives

Fig. 5. The partner discounts and the level of tax incentives

In the bilevel models, the government uses the two investor support levers in
a more sophisticated way across the entire range of the partner discounts. The
use of tax incentives expands the support program in environmental construction
(Figs. 3A and C), with the number and level of tax incentives increasing with
the increase in the investor discount.

The Figs. 6, 7 and 8 show the results of the calculations that analyzed the
sensitivity of the solution to changes in the other key model parameters, i.e.,
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Fig. 6. The environmental parameters of the model and the objective function of the
government

environmental costs and environmental losses. To this end, we fix the govern-
ment and investor discounts at the average level (DG = 5% and DI = 15%)
and investigate the dependence of the main results of the cooperation on the
environmental parameters of the model.

It turns out that at these discounts, the government in the one-level models B
and D provides no tax incentives and no support for environmental projects. The
reason is that the informed government implements a full-scale infrastructure
development program, knowing that the investor is able, on their own without
any tax incentives, to develop all the deposits, taking over all the environmental
costs, and yet remain within the area of positive NPV (9).

The functionals of the government and the investor in the one-level mod-
els look accordingly (Figs. 6B, D, 7B, and D): the value of the government’s
objective function does not depend on environmental costs and decreases lin-
early with growing environmental losses. The value of the investor’s objective
function does not depend on environmental losses and decreases linearly with
increasing environmental costs.

In the bilevel model A, the government cuts the infrastructure program at all
values of the environmental parameters, especially at high environmental costs
and losses (Fig. 8A). In model C, the use of tax incentives allows the government
to increase the number of infrastructure development projects (Fig. 8C). The
growing infrastructure support manifests itself not only in the noticeably higher
functional of the government (Figs. 6A and C) but also in the higher value of the
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Fig. 7. The environmental parameters of the model and the objective function of the
investor

Fig. 8. The environmental parameters of the model and the number of infrastructure
development projects launched by the government

investor’s objective function, which increased due to the tax incentives (Fig. 7A
and C).

The government coordinates tax incentives and the environmental support
program, depending on the problem statement. In the one-level models B and D,
the investor gets neither environmental support nor tax incentives over the entire
range of the environmental parameters. In the bilevel models, the government
implements some of the environmental projects and provides medium-level tax
incentives for approximately a half of the deposit development projects.
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4 Results and Discussion

The legal framework, established by the government, within which it can provide
substantial tax preferences for large-scale natural resource development projects
allows a combined use of PPPs and tax incentives. The modeling results show
the practical relevance of the above-described models and define a hierarchy of
factors that affect the efficiency of partnership relations between the government
and the private investor in the development of natural resource deposits in poorly
developed regions.

The bilevel problem statement adequately reflects modern Russian realities
and captures the process of finding a compromise between the interests of the
government and the investor. Analysis of the project documentation for sev-
eral PPPs in the natural resources sector shows that expert assessments focus
on proving the project profitability for the investor. This situation is consistent
with the initial assumptions of the Stackelberg model, in which the government
solves the upper level problem, knowing nothing about the intricacies of technol-
ogy and market conditions, and the rent-seeking investor strives for the maxi-
mum profitability in the cooperation with the government. Adding tax incentives
to the original PPP reflects the current situation and expands the partnership
potential; we saw this effect in Figs. 1 and 2, where tax preferences raise the
value of the objective function for both the government and the investor at high
discounts.

The one-level model assumption that the government has complete infor-
mation about the investor’s technologies and opportunities seems inadequate in
modern Russia. However, the solution of the one-level problem sets the upper
bound on the government’s functional in the bilevel model. This circumstance
allows us to consider the one-level model as a limiting case of the bilevel model
and to use the solution of the one-level problem as an ideal baseline describing
the behavior of a rational, fully informed government.

That is why the above example for fixed discount values, whereby the govern-
ment in the one-level models provides neither tax incentives nor environmental
support, suggests that in real life, government support in forms other than infras-
tructure development projects may sometimes be superfluous. In our example,
the superfluity of government support to the rent-seeking investor is evident in
Figs. 7A and C, which show a stably high value of the investor functional over
the entire range of environmental parameters. This situation suggests that the
investor reaches a profitability substantially higher than the discount and, there-
fore, achieves an excessive safety margin due to the investor’s superfluous share
of rental incomes.

We see that within the above-described PPP models, the government shows
complex behavioral patterns not only in choosing infrastructure and environmen-
tal projects for support but also in selecting the objects of preferential taxation.
This behavior is rational, but it requires a well-adjusted approach to determining
the specific amounts of government support.

The modeling results show the impact of various factors on the effi-
ciency of the sub-soil development programs generated in the different models.
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Thus, calculations showed that the most significant factor is the discount rate for
the investor. To increase the social efficiency of the current partnership schemes
with the rent-seeking investor and to ensure a fair distribution of the natural
resource rent, one needs to reduce the investor discount in every possible way.

Since the solution of the one-level problem with an informed government
determines the upper bound on the value of the functional in the bilevel model,
which most adequately describes the current style of governance in the natu-
ral resources sector, the government decision-making should be guided by the
following rules. Firstly, the government should not use small values of its own
discount. Secondly, the government should seek a detailed understanding of the
natural resource objects intended for development and the relevant development
projects. This is the only way, considering the support provided to the investor,
the government can build relationships as the owner of natural resources, who
receives a possibly greater share of the natural resource rent as the value created
by nature.

Relying on this methodological groundwork, one can address the core issue
of natural resource based regions, i.e., a comprehensive scenario for the devel-
opment of local natural resources, including infrastructure development plans
and investment proposal packages containing rules for granting tax incentives
and implementing various stages in spatial development. Here, it is crucial to
consider the interests of society, as well as private businesses. The search for
options to harmonize these interests is not an easy task, and the tools proposed
in this paper are aimed at solving it.

Acknowledgements. This work was financially supported by the Russian Science
Foundation (project No. 16-18-00073, problem statement), the Russian Foundation for
Humanities (project No. 16-02-00049, hybrid algorithm), the Russian Foundation for
Basic Research (project No. 16-06-00046, numerical analysis).

References

1. Reznichenko, N.V.: Public-private partnership models. Bulletin of St. Petersburg
University, Series 8 Management 4, 58–83 (2010). (in Russian)

2. Quiggin, J.: Risk, PPPs and the public sector comparator. Aust. Account. Rev.
14(33), 51–61 (2004)

3. Bennett, J., Iossa, E.: Delegation of contracting in the private provision of public
services. Rev. Industr. Organ. 29(1), 75–92 (2006)

4. Lavlinskii, S., Panin, A., Pliasunov, A.: A two-level planning model for public-
private partnership. Autom. Remote Control 11, 89–103 (2015). https://doi.org/
10.1134/S0005117915110077

5. Lavlinskii, S., Panin, A., Pliasunov, A.: Comparison of models of planning the
public-private partnership. J. Appl. Industr. Math. 10(3), 1–17 (2016). https://
doi.org/10.1134/S1990478916030017

6. Lavlinskii, S.M.: Public-private partnership in a natural resource region: ecological
problems, models, and prospects. Stud. Russ. Econ. Dev. 21(1), 71–79 (2010).
https://doi.org/10.1134/S1075700710010089

https://doi.org/10.1134/S0005117915110077
https://doi.org/10.1134/S0005117915110077
https://doi.org/10.1134/S1990478916030017
https://doi.org/10.1134/S1990478916030017
https://doi.org/10.1134/S1075700710010089


234 S. Lavlinskii et al.

7. Glazyrina, I.P., Kalgina, I.S., Lavlinskii, S.M.: Problems in the development of the
mineral and raw material base of Russia’s far east and prospects for the modern-
ization of the region’s economy in the framework of Russian-Chinese cooperation.
Reg. Res. Russ. 3(4), 21–29 (2013). https://doi.org/10.1134/S2079970514010055

8. Glazyrina, I.P., Lavlinskii, S.M., Kalgina, I.S.: Public-private partnership in the
mineral resources complex of Zabaikalskii krai: problems and prospects. Geogr.
Nat. Resour. 35(4), 359–364 (2014). https://doi.org/10.1134/S1875372814040088

9. Dempe, S.J.: Foundations of Bilevel Programming. Kluwer Academic Publishers,
Dordrecht (2002)

10. Talbi, El.-G. (ed.): Metaheuristics for Bi-level Optimization. Studies in Compu-
tational Intelligence. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37838-6

11. Raidl, G.R., Baumhauer, T., Hu, B.: Speeding up logic-based benders’ decompo-
sition by a metaheuristic for a bi-level capacitated vehicle routing problem. In:
Blesa, M.J., Blum, C., Vob, S. (eds.) 9th International Workshop on Hybrid Meta-
heuristics, 11–13 June, Hamburg, Germany, pp. 183–197 (2014)

12. Alekseeva, E., Kochetov, Y.U., Dempe, S.: Local search approach for the com-
petitive facility location problem in mobile networks. Int. J. Artif. Intell. 16(1),
130–143 (2018)

13. Davydov, I., Kochetov, Yu., Talbi, El-G.: A matheuristic for the discrete bilevel
problem with multiple objectives at the lower level. Int. Trans. Oper. Res. 24(5),
959–981 (2017)

14. Davydov, I., Kochetov, Y.U., Plyasunov, A.: On the complexity of the (r|p)-
centroid problem in the plane. TOP 22(2), 614–623 (2014)

15. Plyasunov, A.V., Panin, A.A.: The pricing problem, Part I: exact and approximate
algorithms. J. Appl. Industr. Math. 7(2), 1–14 (2013)

16. Plyasunov, A.V., Panin, A.A.: The pricing problem, Part II: computational com-
plexity. J. Appl. Industr. Math. 7(3), 1–13 (2013)

17. Kononov, A.V., Kochetov, Yu.A., Plyasunov, A.V.: Competitive facility location
models. Comput. Math. Math. Phys. 49(6), 994–1009 (2009)

https://doi.org/10.1134/S2079970514010055
https://doi.org/10.1134/S1875372814040088
https://doi.org/10.1007/978-3-642-37838-6
https://doi.org/10.1007/978-3-642-37838-6


Fuzzy Core Allocations in a Mixed
Economy of Arrow-Debreu Type

Valery A. Vasil’ev1,2(B)

1 Sobolev Institute of Mathematics, Pr. Acad. Koptyuga 4,
630090 Novosibirsk, Russia

vasilev@math.nsc.ru
2 Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia

Abstract. An important feature of the mixed economic system under
consideration, besides the presence of a mixed production sector, is that
two different regulation mechanisms function jointly: central planning
and flexible market prices. Thus, this model is characterized by the pres-
ence of dual markets. In the first market, prices are stable and the allo-
cation of commodities is determined by rationing schemes and govern-
mental orders. In the second market, prices are flexible and are formed
by the standard mechanism of equating demand and supply. We assume
that the excess of any commodity purchased in the first market may be
resold by any economic agent at flexible market prices. Whereas a lot of
papers are devoted to existence and efficiency of mixed market equilibria,
this paper investigates extremal properties of equilibrium allocations in
a mixed economy of Arrow-Debreu type. A notion of fuzzy domination
in a mixed environment is given, and coincidence of the fuzzy core and
equilibrium allocations in certain specifications of economy in question
is shown to hold.

Keywords: Rationing · Governmental order · Equilibrium
Fuzzy core allocation

1 Introduction

In this paper, a notion of fuzzy domination in a mixed environment is given,
and coalitional stability of equilibrium allocations in a mixed economy of Arrow-
Debreu type is established. Moreover, conditions are proposed that ensure coinci-
dence of the fuzzy core and the set of equilibrium allocations for some important
specifications of the general model of mixed economy suggested in [11].

An essential feature of the mixed economic system under consideration is
that two different regulation mechanisms function jointly: central planning and
flexible market prices. Thus, unlike the classical models, these models are char-
acterized by the presence of dual markets. In the first market, prices are stable

This research was supported by the program of fundamental scientific researches of
the SB RAS I.5.1., project 0314-2016-0018, and by RFBR grant 16-06-00101.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 235–248, 2018.
https://doi.org/10.1007/978-3-319-93800-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93800-4_19&domain=pdf


236 V. A. Vasil’ev

and the allocation of commodities to a great extent is determined by rationing
schemes and governmental orders. In the second market, prices are flexible and
are formed by the standard mechanism of equating demand and supply. We
assume that the excess of any commodity purchased in the first market may be
resold by any agent at the flexible market prices.1

The problem of properly defining of a fuzzy core allocation in a mixed eco-
nomic system arises from both the presence of fixed prices for rationed com-
modities and the multiplicity of types of coalition stability of equilibrium alloca-
tions which correspond to different types of flexible prices in the second market.
A universal way to overcome the difficulties indicated is based on the use of
an appropriate linear approximation of nonlinear income functions and leads to
the formation of several types of cores which characterize all possible variants of
coalition stability. The result is that testing of the famous Edgeworth’s conjec-
ture reduces to analyzing asymptotic behavior of each core separately (detailed
analysis of the fuzzy domination for the mixed pure exchange model see in [8]).

Note, that we introduce all types of coalitional stability of equilibrium allo-
cations, but restrict ourselves to special class of mixed economies (satisfying
so-called “willingness to buy at the second market” condition) in studying the
problem of decentralization of the fuzzy core allocations in a mixed economy of
Arrow-Debreu type. Mixed economies from the special class mentioned admit
a global linearization of the budget constraints. This fact allows to limit consid-
erations to a common type of coalition stability for all equilibrium allocations,
and, consequently, to get a proper analog of the classic core equivalence result in
terms of fuzzy domination (for classic original see, e.g., [1,2]). Some results on
the efficiency and general existence problem for equilibria in a mixed economy
may be found in [3,11]. As to the cooperative characterization of equilibrium
allocations, several mixed exchange models with both finite and infinite number
of economic agents have been studied in [8–10]. In this paper we present some
extensions of the results obtained for the finite mixed pure exchange models
to the case of finite mixed economies of Arrow-Debreu type with rationing and
governmental order in both consumption and production sectors.

The rest of the paper is organized as follows. In the second section, we intro-
duce basic notations and fundamental definitions related to the equilibrium allo-
cations. In the third section, we introduce several types of fuzzy dominations
depending on the structure of equilibrium prices, and propose some conditions
providing rather simple equilibrium presentation of the fuzzy core allocations for
the mixed economy of Arrow-Debreu type.

2 The Model

This section contains basic notation and fundamental definitions, related to the
concept of equilibrium in a mixed economy of Arrow-Debreu type. We provide
a brief interpretation for some of these notions, which are taken from [11].
1 More details on the mixed economic system under consideration may be found in

description of the first model of this type, introduced by V.L. Makarov (cf. [4,5]).
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2.1 Basic Notation

A mixed economy of Arrow-Debreu type is characterized by substantial inter-
actions between the fix-price and flexible-price markets. It is described by the
following basic data:

E =
〈
L, (X ′

i,X
′′
i , ui, β

i, θi, ωi)i∈N1 , (Yj , ϑ
j)j∈N2 , (s

′
ij , s

′′
ij)(i,j)∈N1×N2 , q, P

〉
,

where N1 = {1, . . . , n1} is the set of consumers, N2 = {n1 + 1, . . . , n2} the
set of producers (firms), L = {1, . . . , l} the set of commodities, X ′

i ⊆ Rl the
consumption set of i ∈ N1 in the first market, X ′′

i ⊆ Rl the consumption set of
i ∈ N1 in the second market, ui the utility function of agent i ∈ N1 on X ′

i ×X ′′
i ,

ωi ∈ Rl
+ the initial endowment of i ∈ N1, ωo :=

∑
i∈N1

ωi the aggregate initial
endowment, βi ∈ Rl

+ the maximal amount of rationed goods, available to i ∈ N1

in the first market, implying xi′ ≤ βi for any feasible consumption plan xi′ ∈ X ′
i,

βo :=
∑

i∈N1
βi the aggregate amount of rationed goods, available to consumers,

θi ∈ Rl the governmental order assigned to agent i ∈ N1, θo :=
∑

i∈N1
θi the

aggregate governmental order assigned to consumers, Yj ⊆ Rl the production
set of firm j ∈ N2, ϑj ∈ Rl the governmental order (plan) assigned to producer
j ∈ N2, ϑo :=

∑
j∈N2

ϑj the aggregate governmental order (plan) assigned to
producers, s′

ij the share of the fix-price profit q ·ϑj of producer j ∈ N2 transferred
to consumer i ∈ N1, s′′

ij the share of the flexible-price profit p · (yj − ϑj) of
producer j ∈ N2, transferred to consumer i ∈ N1, q ∈ Rl

+ the vector of fixed
prices for consumers and producers in the first market, P = Rl

+ is the set of
flexible prices.2

As usual, the shares s′
ij and s′′

ij are assumed to satisfy the standard con-
straints: s′

ij , s′′
ij ≥ 0 for i ∈ N1, j ∈ N2, and

∑
i∈N1

s′
ij =

∑
i∈N1

s′′
ij = 1 for each

j ∈ N2. To simplify the presentation, throughout in the paper we presuppose
βo �= 0 and q to be strictly positive vector. It is also assumed everywhere below,
like in [11], that the rationing schemes and governmental orders in consumption
and production sectors are compatible: βo = θo +ϑo. So, we presuppose that the
amount

∑
N1

βi of the rationed commodities maximally available at fixed prices
q has to be provided by the aggregate governmental orders to consumers and
producers. The government thereby assumes that consumers will exhaust the
rationing quota at the given fixed prices on the first market either for individual
consumption or for reselling.

As in the standard models of equilibrium analysis, consumers maximize util-
ities given their budgets, and producers maximize their profits under the flexible
prices. The government collects the amounts θi, i ∈ N1, and ϑj , j ∈ N2, of the
commodities and offers the amounts βi, i ∈ N1, to the households at the current
fixed prices. Households may resell any excess amount on the second market at
the prevailing flexible prices.

Some of the above concepts, which are not relevant for the standard Arrow-
Debreu model [6] need some explanation. Namely, the fact that utility is defined
2 As usual, x·y stands for the scalar product

∑l
k=1 xkyk of the vectors x = (x1, . . . , xl)

and y = (y1, . . . , yl) from Rl.
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on X ′
i × X ′′

i indicates that it might matter to households i ∈ N1, whether the
consumption commodities come from the first or the secondary markets, even
if a surplus of a particular commodity bought on the first market is resold on
the second. Thus, this assumption has something to do with the perception the
individuals have of the various markets. Specifically, it is a common knowledge
to the consumers in the countries with economy under transition that due to the
market disorder at the first stage of transition to free market system there are,
as a rule, a lot of falsificated commodities at both, first and secondary markets.
Falsification level may vary considerably from one market to another, yielding
various trust levels granted to the markets under consideration. Of course, on
the way towards the perfect competition these levels tend to be equal, but at the
moment the phenomenon of nonequivalent evaluation of the different markets
(in terms of utility functions) still prevails.

These basic notations will now be applied to introduce the concepts, which
are fundamental for a model of a mixed economy.

2.2 Main Definitions

The following definitions, like in pure exchange models, refer to the familiar
concepts of feasible states, budget sets, and equilibrium allocations. They are
with minor, but nevertheless essential modifications of the same nature as in the
standard Arrow-Debreu model [6], and are again taken from [11].

To define the budget set Bi(p) of agent i ∈ N1, let the flexible price vector
p ∈ Rl

+ be given. The basic income νi(p) of i ∈ N1 consists of the following
terms:

αi(p) := q · θi + p · (ωi − θi), δ′
i :=

∑

j∈N2

s′
ijq · ϑj , δ′′

i (p) :=
∑

j∈N2

s′′
ijπj(p).

The profit πj(p) of firm j ∈ N2 earned on the secondary market is defined
by πj(p) := sup{p · (yj − ϑj) | yj ∈ Yj}. One has to take into account the
governmental order ϑj , which has to be supplied by firm j at fixed prices q.
Hence, the term p · ϑj in the above formula represents the opportunity cost of
the governmental order.

Put νi(p) := αi(p)+ δ′
i + δ′′

i (p) and let wi(p, x′i) := νi(p)+(p−q)+ · (βi −x′i)
be the total income of agent i ∈ N1 (the additional term (p−q)+ ·(βi−x′i) results
from reselling the surplus quantities (βi − x′i) of the rationed commodities on
the secondary market). Here and below, for any a ∈ RL we denote by a+ vector
from RL with components a+

k = ak if ak > 0, and a+
k = 0 if ak ≤ 0 (“positive

variation” of a).

Remark 1. For the case of βi
h > x′i

h for an agent i ∈ N1 and a particular com-
modity h ∈ L with ph > qh, it is thus assumed that the consumer nevertheless
exploits the quota βi

h entirely, in order to resell the excess amount on the flexible
price market.
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Definition 1. Given the above concepts, the budget set of agent i ∈ N1 is defined
as follows:

Bi(p) := {xi = (x′i, x′′i) ∈ Xi(β) | q · x′i + p · x′′i ≤ wi(p, x′i)},

with Xi(β) := {xi ∈ Xi | x′i ≤ βi} and Xi := X ′
i × X ′′

i .

The individual demand and supply correspondences, Di(p), i ∈ N1, and
Sj(p), j ∈ N2, are defined in the standard way

Di(p) := {xi ∈ Bi(p) | Pβ
i (xi) ∩ Bi(p) = ∅},

Sj(p) := {yj ∈ Yj | πj(p) = p · (yj − ϑj)}

(with Pβ
i (xi) := {x̃i ∈ Xi(β) | ui(x̃i) > ui(xi)}). Then the excess demand cor-

respondence E(p) is given by E(p) :=
∑

i∈N1
Doi(p) −

∑
j∈N2

Sj(p) −
∑

i∈N1
ωi,

with Doi(p) := {xoi = x′i + x′′i | (x′i, x′′i) ∈ Di(p)}.
Next we consider the set of feasible allocations of E . Put X :=

∏
i∈N1

Xi,
X(β) :=

∏
i∈N1

Xi(β), Y :=
∏

j∈N2
Yj , Z := X × Y , and Z(β) := X(β) × Y .

Definition 2. The set Zβ(E) of feasible allocations of E is given by

Zβ(E) := {z = (x, y) ∈ Z(β) |
∑

i∈N1

xoi =
∑

j∈N2

yj +
∑

i∈N1

ωi}.

The concept of an equilibrium allocation is then introduced in the usual way:

Definition 3. A feasible allocation (x̄, ȳ) = ((x̄i)i∈N1 , (ȳ
j)j∈N2) ∈ Zβ(E) is an

equilibrium allocation of the mixed economy E, if there exists a price vector
p̄ ∈ Rl

+ such that x̄i ∈ Di(p̄) for i ∈ N1, and ȳj ∈ Sj(p̄) for j ∈ N2. Again,
as usual, p̄ ∈ Rl

+ is an equilibrium price vector, and (p̄, z̄) with z̄ = (x̄, ȳ) is an
equilibrium state of the mixed economy E. The set of equilibrium allocations of
E is denoted by W = W(E).

We introduce further the concept of fuzzy blocking (domination) and corre-
sponding notion of the fuzzy core for our mixed economy of Arrow-Debreu type.
It is based, mostly, on two principles: (1) privatization, and (2) linearization.
The former one deals with the assignment to the consumers not only the profit
shares, but the shares of production sets themselves (privatization, or distribu-
tion of the production activity between the consumers, like in [6]). As to the
latter principle, it concerns some special tools allowing to eliminate nonlinearity
of income functions (at least, up to some extent).

Observe, that the payments α′
i = q ·θi and δ′

i =
∑

j∈N2
s′

ijq ·ϑj of the central
agency for the delivery θi and ϑ′i =

∑
j∈N2

s′
ijϑ

j of the obligatory supplies are
equal to their values against the fixed state prices q. Hence, on the state market
both the selling and purchasing prices are equal to q. So, the total payment for
the delivery of obligatory supply,

∑
N1

(α′
i + δ′

i), provides consumption of the
maximum total amount,

∑
N1

βi, of rationed goods against fixed state prices q.
Note, that an extra consumption takes place against the market prices.



240 V. A. Vasil’ev

The principal difficulty of cooperative characterization of the set W := W(E)
of equilibrium allocations of mixed economy E relates to nonlinearity of the total
income functions wi(p, x′i) with respect to the flexible prices p. To overcome
this difficulty we make use of the fact that by definition functions wi are piece-
wise linear w.r.t. p, and partition W into several components according to the
types of possible equilibrium prices p. Subsequent analysis of coalitional stabil-
ity of the equilibrium allocations is then carried out separately for each of these
components.

We now present the formal definitions adapted to consideration of coalitional
stability of the equilibrium allocations related to different types of equilibrium
prices. Given K ⊆ L, put

PK :=
{
p ∈ Rl

+

∣
∣ pk ≥ qk, k ∈ K; pj ≤ qj , j ∈ J

}
,

where J denotes the complement of K, i.e., J := L\K. The components men-
tioned above are subsets of the set W, which correspond to a particular type of
the equilibrium prices classified with the help of the convex polyhedrons PK :

WK = WK(E) :=
{
z ∈ W | ∃ p ∈ PK : (p, z) is an equilibrium state of E

}
.

Allocations in WK are called K-equilibrium allocations of the economy E .

3 Core Allocations in the Mixed Economy E
In this section, we introduce a concept of fuzzy core allocations in terms of
appropriate fuzzy domination relations in E , and provide rather natural con-
ditions that make it possible to get equilibrium presentation of the fuzzy core
allocations in the mixed economy of Arrow-Debreu type.

3.1 Fuzzy K-Core in the Mixed Economy E
We turn now to present definition of fuzzy domination in the mixed economy
E . Fix K ⊆ L and, for each vector a ∈ RL, denote by a

K
its projection onto

RK × {0} ⊆ RL:

(a
K

)k :=
{

ak, k ∈ K,
0, k ∈ J = L\K.

In case b = (b1, . . . , bn1) ∈ (RL)N1 we write b
K

:= (b1
K

, . . . , bn1
K

). Below we use
also the following abridged notations. For every i ∈ N1, we denote

ϑ′i :=
∑

j∈N2

s′
ijϑ

j , ϑ′′i :=
∑

j∈N2

s′′
ijϑ

j , ϑ̂i := ϑ′i − ϑ′′i,

γ′i := θi + ϑ′i − βi, γ′′i := θi + ϑ′′i − βi.

To introduce modified initial endowments ω̂′i, ω̂′′i, and privatized production
sets Ỹi and Ŷi we put

ω̂′i := ωi − γ′i, ω̂′′i := ωi − γ′′i, Ŷi := ϑ̂i + Ỹi, i ∈ N1,

where Ỹi :=
∑

j∈N2
s′′

ijYj , i ∈ N1.
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Remark 2. It follows from the definition of Ŷi that in case ϑ ′i = ϑ ′′i, each i ∈ N1,
we have: Ŷi = Ỹi for every i ∈ N1. Specifically, Ŷi = Ỹi, whenever s′

ij = s′′
ij for

every i ∈ N1, j ∈ N2.

As it was noted in Introduction, the proof of the Edgeworth conjecture for
the model E may be given on the basis of a characterization of the sets WK

in terms of appropriate fuzzy dominations. To introduce a formal definition,
recall [1], that a fuzzy coalition is a nonzero element τ = (τ1, . . . , τn1) of the unit
hypercube In1 = [0, 1]n1 . Here, the components of τ measure the degree of
participation of the economic agents in an ordinary coalition N(τ) = supp τ
with

N(τ) := {i ∈ N1 | τi > 0},

referred to as the support of τ . We denote T := In1\{0} and, for arbitrary
τ = (τ1, . . . , τn1) ∈ T and b = (b1, . . . , bn1) ∈ (Rl)N1 , write b(τ) :=

∑
N1

τib
i.

To ease the notations, we make use the following shortenings

Ŷ :=
∏

i∈N1

Ŷi and Ẑ(β) := X(β) × Ŷ .

Further, for any z = (x, y) ∈ Ẑ(β) we use the notations x′ = (x′1, . . . , x′n1), x′′ =
(x′′1, . . . , x′′n1), y = (y1, . . . , yn1), and x0 = x′ + x′′. Like in case of rationing,
β = (β1, . . . , βn1), and governmental order in consumption, θ = (θ1, . . . , θn1),
we put ω := (ω1, . . . , ωn1), ϑ′ := (ϑ′1, . . . , ϑ′n1), and ω̂′ := ω − θ − ϑ′ + β.

Definition 4. A fuzzy coalition τ K-dominates a feasible allocation z̄ ∈ Zβ(E)
if there exists an allocation z = (xi, yi)i∈N1 ∈

∏
i∈N1

Xi(β) × Ŷi such that

KF1. ui(xi) > ui(x̄i), i ∈ N(τ),
KF2. x0

K
(τ) ≤ ω̂′

K
(τ) + y

K
(τ),

KF3. q
K∪I

·x0(τ)+q
J\I

·x′(τ) ≤ q
K∪I

·(ω+y)(τ)+q
J\I

·(θ+ϑ ′)(τ), each I ⊆ J .

In particular, for K = L, a fuzzy coalition τ ∈ T L-dominates a feasible alloca-
tion z̄ ∈ Zβ(E) if there exists an allocation z = (xi, yi)i∈N1 ∈

∏
i∈N1

Xi(β) × Ŷi

such that

LF1. ui(xi) > ui(x̄i), i ∈ N(τ),
LF2. x0(τ) ≤ ω̂′(τ) + y(τ),
LF3. q · x0(τ) ≤ q · ω(τ) + q · y(τ).

The requirement that the coalition allocation (xi, yi)i∈N(τ) be balanced at the
prices q, represented by condition LF3, reflects a specific feature of the economy
E , the fixed prices in the first market.

Remark 3. Observe, that condition LF3 is essential only when nonequivalent
exchange (at fixed prices q) of the initial endowment ωi for ω̂ ′i takes place: if
q · (θi + ϑ′i) = q · βi for all i ∈ N1, then, evidently, LF3 is a direct consequence
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of LF2. In general case, however, each of 2|J| inequalities appearing in KF3,
matters and, as with the case of L-domination, reflects the requirement that
(xi, yi)i∈N(τ) be balanced with respect to the corresponding possible “extreme”
realizations p∗ of the flexible market prices from PK , which have the form

p∗
K∪I

= q
K∪I

, p∗
J\I

= 0, I ⊆ J.

Here it is taken into account that, at zero flexible prices for commodities in
J\I, the entire income of an agent i ∈ N1 from selling the corresponding initial
endowment ωi

J\I
consists only of the amount q

J\I
· (θi + ϑ′i) guaranteed by

the governmental order.

Definition 5. The fuzzy K-core of the economy E is the set CK,F (E) of all
allocations z̄ ∈ Zβ(E) that cannot be K-dominated by any fuzzy coalition τ :

CK,F = CK,F (E) :=
{
z̄ ∈ Zβ(E)

∣∣ there exists no τ ∈ T that K-dominates z̄
}
.

So, roughly speaking, any allocation from the fuzzy core CK,F is coalitional
stable in the sense there is no fuzzy coalition that K-dominates it.

3.2 Fuzzy Core Equivalence for L-Equilibrium Allocations

By applying approach developed in [8–10] for the mixed economic systems with-
out production, we can obtain rather mild conditions providing the inclusions

WK ⊆ CK,F , K ⊆ L (1)

(see, e.g., Assumptions (A1), (A2), below). To verify these inclusions, which are
valid under rather mild assumptions, we can use a special representation of
the budget sets Bi(p) defined by the type of flexible prices p. For the inclusions
reversed to (1) and their refinements to hold (that imply equivalence of the coop-
erative and equilibrium mechanisms in E) several additional assumptions must
be made. We write

X ′ :=
∏

N1

X ′
i, X ′′ :=

∏

N1

X ′′
i ,

X ′(E) := Pr
X′

Zβ(E), X ′′(E) := Pr
X′′

Zβ(E), Xβ(E) := Pr
X

Zβ(E),

and offer these assumptions (below, a 
 0 means ak > 0, each component of a):

(A1) X ′
i = X ′′

i = Rl
+, for all i ∈ N1,

(A2) Yj are convex sets, containing zero vector, for all j ∈ N2,
(A3) ∀x ∈ Xβ(E)

[∑
i∈N1

x0i 
 0
]
,

(A4) ui are continuous and concave, for all i ∈ N1,
(A5) ui are strictly increasing in x′′i, for all i ∈ N1.



Fuzzy Core Allocations in a Mixed Economy of Arrow-Debreu Type 243

To prevent too lengthy and tedious considerations, we demonstrate the main
ideas of the approach proposed for the special class of mixed economies of Arrow-
Debreu type, only. Namely, below we deal with the models satisfying so-called
“willingness to by at the second market” condition (providing that free market is
“weakly preferred” to the governmental one). This condition, formulated in [11],
is as follows:

A6) ∀xi ∈ Xi(β)∀Δ ∈ Rl
+

[
Δ ≤ x′i ⇒ ui(x′i − Δ,x′′i + Δ) ≥ ui(x′i, x′′i)

]
, for

all i ∈ N1.

It can easily be verified that under strict positivity of the rations assumptions
(A5) and (A6) imply the following property of the economy E (see [11]).

Proposition 1 (Vasil’ev-Wiesmeth). Let mixed economy E satisfies assump-
tions (A5), (A6), and, besides, its rations βi are strictly positive for each i ∈ N1.
Then the set of equilibrium allocations W reduces to the set of L-equilibrium allo-
cations, WL :

W(E) = WL(E).

Remark 4. Assumption (A6) is obviously satisfied in case of the neutrality of
preferences of economic agents with respect to the different markets, when the
utility of consumption bundle xi = (x′i, x′′i) depends only on the total consump-
tion xoi = x′i +x′′i, or, in more details, when ui(xi) = ui(x̂i) for any xi, x̂i ∈ Xi

such that x′i + x′′i = x̂′i + x̂′′i.

To test that the fuzzy core coincides with equilibrium allocations under the
assumptions (A1)−(A6), we need in dual characteristics of the convex cone TL,
defined by (below, t0 := t′ + t′′ for any t = (t′, t′′))

TL :=
{
t = (t′, t′′) ∈ R2l

∣∣ t′′ ≤ 0, q · t0 ≤ 0
}
.

We present one of these characteristics by description of the polar cone (TL)0.

Proposition 2. The polar cone T 0
L = (TL)0 :=

{
h ∈ R2l

∣∣ h · t ≤ 0, t ∈ TL

}
is

given by the formula

T 0
L =

{
(λq, p) ∈ R2l

∣∣ λ ≥ 0, λq ≤ p
}
. (2)

Proof. We have to prove that a concrete description of the polar cone T 0
L may be

given by formula (2) (remind that in the first line of Proposition 2 just the formal
definition of T 0

L is presented). Put HL :=
{
(λq, p) ∈ R2l

∣∣ λ ≥ 0, λq ≤ p
}

. Since
the cone HL is convex and closed, by the bipolar theorem (see, e.g., [7]), we have
H00

L = HL. Therefore, to prove the equality HL = T 0
L, it suffices to show that

H0
L = TL. (3)

To establish (3), we make use of the fact that the extreme rays of the cone HL

are generated by the vectors
{
(0, ek)

}
k∈L

∪
{
(q, q)

}
. To prove this fact, observe

that q 
 0 and, for each element (λq, p) ∈ HL, we have:

(λq, p) = λ(q, q) + (0, s), (4)
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where s = p − λq, and, in addition, by definition of HL, the inequality s ≥ 0
holds. Therefore, one can rewrite (4) as follows: (λq, p) = λ(q, q)+

∑
k∈L sk(0, ek),

which proves our claim, since λ and sk, k ∈ L, are nonnegative.
Based on the above, (2) is implied by definition of the sets TL and HL and

the evident relation (t′, t′′) · (q, q) = q · t0, t ∈ R2l. ��

Introduce now an almost ordinary economy E0 of Arrow-Debreu type (a
reduced version of the mixed economy E with q = 0), which will be useful for
description of the L-core allocations in the economy, satisfying assumption (A6).
E0 is characterized by the parameters

E0 =
〈
L, (Xi(β), ui, ω̂

′′i)i∈N1 , (Yj)j∈N2 , (s
′′
ij)(i,j)∈N1×N2 , P

〉
, (5)

with initial endowments ω̂′′i resulting from reallocation of the bundles ωi through
rationing β = (β1, . . . , βn1), and central orders in consumption θ = (θ1, . . . , θn1)
and production ϑ = (ϑn1+1, . . . , ϑn2) by the formula ω̂′′i = ωi − θi − ϑ′′i + βi.

Remark 5. It is easy to verify that the budget sets of the reduced mixed economy
E0 with zero fixed prices take the form standard for Arrow-Debreu models (see,
e.g., [6]): B0

i (p) :=
{
xi ∈ Xi(β)

∣∣ p · x0i ≤ p · ω̂′′i + π̃i(p)
}
, i ∈ N1, where, as

above, ω̂′′i = ωi − γ ′′i, γ ′′i = θi + ϑ′′i − βi, and

π̃i(p) := sup
{
p · ỹi

∣∣ ỹi ∈ Ỹi

}
, Ỹi =

∑

j∈N2

s′′
ijYj , i ∈ N1.

Minor differences consist of the “compound” character of the consumption sets
Xi(β) =

{
(x′i, x′′i) ∈ Xi

∣∣ x′i ≤ βi
}
, i ∈ N1, and the utility functions ui

dependent on 2l variables. It is easily seen, also, that the fuzzy L-domination
in E0 is analogous to the traditional one (see, e.g., [1]): a fuzzy coalition τ ∈ T
L-dominates an allocation z̄ ∈ Zβ(E0) if there exists an allocation z = (x, ỹ)
from Z̃(β) := X(β) × Ỹ (with X(β) :=

∏
N1

Xi(β) and Ỹ :=
∏

N1
Ỹi) such that

LF10. ui(xi) > ui(x̄i), i ∈ N(τ),
LF20. x0(τ) ≤ ω̂′′(τ) + ỹ(τ).

By applying formulae Ŷi = ϑ̂i + Ỹi, i ∈ N1, and equalities ω̂′′i = ω̂′i + ϑ̂i,
i ∈ N1, one can easily prove that this domination is stronger than the fuzzy
L-domination in original economy E . Therefore, the following inclusions hold

W0
L ⊆ C0

L,F ⊆ CL,F , (6)

where, as above, we denote by W0
L and C0

L,F the set of L-equilibrium allocations
and the fuzzy L-core of the model E0, respectively. Since the fixed prices in this
model are equal to zero, W0

L coincides with W0 := W(E0), the set of Walras
allocations of E0, and the fuzzy L-core coincides with the ordinary fuzzy core
of E0 (some details, concerning fuzzy domination in the classic Arrow-Debreu
model can be found in [1]). Thus, from inclusions (6) it follows

W(E0) ⊆ CL,F (E). (7)
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Turn, finally, to the description of the L-core allocations in terms of market
mechanism of a mixed economy of Arrow-Debreu type. The following theorem
provides such description for the economies satisfying “willingness to buy at the
second market” condition.

Theorem 1. Let a mixed economy E satisfies assumptions (A1)−(A6), and,
besides, its rations βi are strictly positive for each i ∈ N1. Then the set of fuzzy
L-core allocations of E admits the following presentation:

CL,F (E) = W(E) ∪ W(E0),

with economic system E0 defined by the formula (5).

To prove this theorem we need in some auxiliary constructions. First, denote
by ΓL the linear operator from R2l into R2l acting by the rule

ΓL(t) := (0, t0), t = (t′, t′′) ∈ R2l,

where, as above, t0 = t′ + t′′. Second, for any i ∈ N1 put

ωL,i :=
(
γ′i, ω̂ ′i) , Ŷ0i := {0} × Ŷi.

Define, finally, the main auxiliary objects, which proved to be useful in the proof
of Theorem 1. For that end, for any feasible allocation z̄ = (x̄, ȳ) of the mixed
economy E introduce the following sets:

ML,i(z̄) := ΓL

(
Pβ

i (x̄ i
)

− Ŷ0i − {ωL,i}, i ∈ N1,

ML(z̄) :=

{

x(τ)
∣∣∣
∣ x ∈

∏

i∈N1

ML,i(z̄), τ ∈ T
}

.

Observe, that from the very definition of the fuzzy L-domination we get (in
terms of the set ML(z̄)) a rather simple criterion for z̄ ∈ Zβ(E) to belong to the
fuzzy L-core of the mixed economy E .

Lemma 1. For any z̄ ∈ Zβ(E) it holds: z̄ ∈ CL,F ⇔ ML(z̄) ∩ TL = ∅.

One more useful property of the set ML(z̄) is as follows.

Lemma 2. If E satisfies Assumptions (A1), (A2), and (A4), then, for any allo-
cation z̄ ∈ Zβ(E), the set ML(z̄) is convex.

Proof. By applying a standard convexity argumentation. ��

We are now in position to prove the main result of the paper.

Proof (of Theorem 1). To check inclusion W(E0) ∪ W(E) ⊆ CL,F (E), note first
that due to the insertion (7) considered above we need in the proof of the
inclusion W(E) ⊆ CL,F (E), only. So, take an arbitrary equilibrium allocation
z̄ = ((x̄i)i∈N1 , (ȳ

j)j∈N2) with equilibrium prices p̄ satisfying inequality p̄ ≥ q.
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Assume that there exists a fuzzy coalition τ that L-dominates z̄ via an allocation
z = (xi, yi)i∈N1 ∈

∏
i∈N1

Xi(β) × Ŷi. Put ỹi =
∑

j∈N2
s′′

ij ȳ
j and ȳi = ϑ̂i + ỹi,

each i ∈ N1. Observe that from the definition of equilibrium allocation it follows:
πi(p̄) = p̄ ·

(
ỹi − ϑ′′i) ≥ p̄ ·

(
yi − ϑ′′i), each i ∈ N1. Hence, due to the inclusions

x̄ i ∈ Di(p̄), i ∈ N1, inequalities ui(xi) > ui(x̄ i), i ∈ N(τ) , imply (from the very
definition of the budget sets Bi(p̄)):

p̄ ·
(
x0i − yi − ω̂′i) − q · γ′i ≥ p̄ ·

(
x0i − ȳ i − ω̂′i) − q · γ′i > 0, i ∈ N(τ), (8)

where, as before, γ′i = θi+ϑ′i−βi, i ∈ N1. Put s = p̄−q and taking into account
equalities ω̂′i = ωi − γ′i, rewrite inequalities p̄ ·

(
x0i − yi − ω̂′i) − q · γ′i > 0,

arising from (8), in more convenient form

q ·
(
x0i − yi − ωi

)
+ s ·

(
x0i − yi − ω̂′i) > 0, i ∈ N(τ). (9)

Summing up the inequalities (9) that are multiplied by the corresponding com-
ponents of τ , we arrive at the inequality

q ·
(
x0(τ) − y(τ) − ω(τ)

)
+ s ·

(
x0(τ) − y(τ) − ω̂′(τ)

)
> 0. (10)

But from the definition of fuzzy L-domination it follows that

q ·
(
x0(τ) − y(τ) − ω(τ)

)
≤ 0, x0(τ) − y(τ) − ω̂′(τ) ≤ 0,

which contradicts (10) as far as vectors q and s are nonnegative. This contradic-
tion proves inclusion W(E) ⊆ CL,F (E).

To prove the reverse inclusion CL,F (E) ⊆ W(E)∪W(E ′) consider an arbitrary
allocation z̄ = (x̄, ȳ) that belongs to CL,F = CL,F (E). Applying Lemma 1, we
have ML(z̄)∩TL = ∅. Further, Assumption (A5) and Lemma 2 imply that the set
ML(z̄) is nonempty and convex. Hence, from the Minkowski separation theorem
it follows that there exists a nonzero functional p̂ = (p′, p′′) separating ML(z̄)
and TL:

sup
{
p̂ · t

∣∣ t ∈ TL

}
≤ inf

{
p̂ · t

∣∣ t ∈ ML(z̄)
}

. (11)

Remind, that TL is a cone. Since TL has its vertex at the origin, we conclude that
sup {p̂ · t | t ∈ TL} = 0. Consequently, p̂ belongs to the polar T 0

L of the cone TL.
By Proposition 2, the separating functional p̂ has the form (λq, p̄) with λ ≥ 0,
where p̄ satisfies the inequality p̄ ≥ λq. Let, for definiteness, λ > 0 (case λ = 0
will be analyzed below, separately). Then, without loss of generality, we may
and shall assume that λ = 1 and, respectively, p̂ = (q, p̄).

By (11) and obvious inclusions ML,i(z̄) ⊆ ML(z̄), which are valid for all
i ∈ N1, we have

−q · γ′i + p̄ ·
(
x0i − yi − ω̂′i) ≥ 0, i ∈ N1, (12)

whenever xi ∈ Pβ
i (x̄ i), and yi ∈ Ŷi, i ∈ N1. Therefore, due to the strict

monotonicity of ui in x′′i, by choosing yi = ȳi with ȳi := ϑ̂i +
∑

j∈N2
s′′

ij ȳ
j ∈ Ŷi,
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and passing to the limit xi
n → x̄i with xi

n ∈ Pβ
i (x̄ i), we obtain

FL
i (p̄, x̄ i, ȳ i) ≥ 0, i ∈ N1, (13)

where FL
i (p̄, x̄ i, ȳ i) stands for the left-hand side of (12) with xi = x̄ i and yi = ȳ i.

Summing up the inequalities (13) and making use the equalities
∑

i∈N1

γ ′i =
∑

i∈N1

γ ′′i =
∑

i∈N1

θi +
∑

j∈N2

ϑj −
∑

i∈N1

βi = 0,

∑

i∈N1

ȳ i =
∑

i∈N1

∑

j∈N2

s′′
ij ȳ

j =
∑

j∈N2

ȳ j ,
∑

i∈N1

x̄ 0i =
∑

i∈N1

ωi +
∑

i∈N1

ȳ i,

we have

−q ·
∑

N1

γ ′i + p̄ ·
∑

N1

(
x̄ 0i − ω̂ ′i − ȳ i

)
= p̄ ·

(
∑

N1

x̄ 0i −
∑

N1

ω i −
∑

N2

ȳ j

)

= 0.

This implies that each inequality in (13) holds, in fact, as equality

−q · γ ′i + p̄ ·
(
x̄0i − ȳi − ω̂ ′i) = 0, i ∈ N1. (14)

Consequently, due to the fact that p̄ · (ȳi −ϑ ′i) =
∑

j∈N2
s′′

ij p̄ ·
(
ȳj − ϑj

)
≤ πi(p̄),

we get: x̄ i ∈ Bi(p̄) for all i ∈ N1. Moreover, passing to the limit xi
n → x̄i with

xi
n ∈ Pβ

i (x̄ i) in (12), and applying equalities (14), we obtain obvious relations:
FL

i (p̄, x̄ i, y i) ≥ 0 = FL
i (p̄, x̄ i, ȳ i) for any y i ∈ Ŷi and i ∈ N1. These relations

immediately imply the inequalities: p̄ · ȳi ≥ p̄ · yi, each yi ∈ Ŷi, i ∈ N1. Hence,
p̄ ·

∑
j∈N2

s′′
ij ȳ

j ≥ p̄ ·
∑

j∈N2
s′′

ijy
j for any i ∈ N1 and yj ∈ Yj , j ∈ N2. Therefore,

the production vectors ȳj belong to the corresponding supply sets Sj(p̄):

p̄ · ȳj ≥ p̄ · yj for any yj ∈ Yj , j ∈ N2.

Thus, to complete the proof of inclusion z̄ ∈ W(E) we have only to check
the relations: Pβ

i (x̄ i) ∩ Bi(p̄) = ∅, i ∈ N1. Since p̄ ≥ q, it follows from q 
 0
that p̄k > 0 for all k ∈ L. Put δi(p̄, ȳi) := q · γ′i + p̄ · (ω̂ ′i + ȳi) and, taking into
account inclusion p̄ ∈ PL, rewrite the budget constraints of the agents as

p̄ · x0i ≤ δi(p̄, ȳi), i ∈ N1.

By Assumption (A1) we have x0i ≥ 0, each i ∈ N1. Hence, δi(p̄, ȳi) ≥ 0. Note
that equality δi(p̄, ȳi) = 0 implies Bi(p̄) = {(0, 0)}. Therefore, it suffices to
verify the relations Pβ

i (x̄ i) ∩ Bi(p̄) = ∅ in case δi(p̄, ȳi) > 0. Let xi ∈ Pβ
i (x̄ i)

and p̄ · x0i = δi(p̄, ȳi) > 0. Then xi �= (0, 0) and, without loss of generality, we
may assume that there exists an x̃ i �= xi such that x̃ i ≤ xi and x̃ i ∈ Xi(β).
Consequently, due to strict positivity of p̄ and q, we can choose a sequence
{xi

n}∞
n=1 ⊆ Xi(β) such that lim xi

n = xi and

p̄ · x0i
n < δi(p̄, ȳi), n ≥ 1. (15)
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By continuity of the functions ui, we obtain xi
n ∈ Pβ

i (x̄ i) for n sufficiently
large. But this, together with (15), is inconsistent with (12). Thus, for λ > 0,
the inclusion z̄ ∈ W(E) is established.

Consider the case λ = 0. Note, that due to the assumption (A3) one can
rather easily verify that the condition p̂ = (0, p̄) �= 0 yields positivity of p̄. Next,
arguing as in the proof of relations Pβ

i (x̄ i) ∩ Bi(p̄) = ∅ for λ > 0, we arrive at
p̄ · x̄ 0i = p̄ ·

(
ω̂ ′i + ȳi

)
, i ∈ N1, with p̄ · x0i > p̄ ·

(
ω̂ ′i + yi

)
for all xi ∈ Pβ

i (x̄ i),
yi ∈ Ŷi. But this means, due to the equality ω̂ ′′i = ω̂ ′i + ϑ̂i, that z̄ belongs to
W(Eo). This completes the proof of Theorem1. ��
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Abstract. Intensive applications and success of metaheuristics in prac-
tice have initiated research on their theoretical analysis. Due to the
unknown quality of reported solution(s) and the inherently stochastic
nature of metaheuristics, the theoretical analysis of their asymptotic
convergence towards a global optimum is mainly conducted by means
of probability theory. In this paper, we show that principles developed
for the theoretical analysis of Bee Colony Optimization metaheuristic
hold for swarm intelligence based metaheuristics: they need to implement
learning mechanisms in order to properly adapt the probability rule for
modification of a candidate solution. We propose selection schemes that
a swarm intelligence based metaheuristic needs to incorporate in order
to assure the so-called model convergence.

Keywords: Optimization problems · Solution quality
Nature-inspired methods · Asymptotic properties · Stochastic processes

1 Introduction

Let us consider an optimization problem that requires minimization of a real-
valued function f on a feasible space X . More precisely, f : S → R with a domain
S ⊆ R

n. S is also called a set of solutions (or solution space) for the consid-
ered optimization problem, while each x ∈ S represents a solution. A solution
x = (x1, x2, . . . , xn) is an array in the n-dimensional space and it consists of
components xi, i = 1, . . . , n. X ⊆ S is called a set of feasible solutions and it
contains only the solutions that satisfy constraints defined within the considered
optimization problem, i.e., x ∈ X represents a feasible solution. An optimal solu-
tion (or optimum) of the considered optimization problem is x∗ ∈ X such that
f(x∗) ≤ f(x) for all x ∈ X . All other solutions x ∈ X are called sub-optimal. The
optimal solution may not exist and then the considered optimization problem
is unfeasible. If the optimal solution exists it may not be unique, and therefore,
the solving of the considered optimization problem means finding one or more
(or sometimes even all) of its optimal solutions.

Finding the optimal solutions is usually a very hard task and it involves the
application of exact methods that are time and/or space consuming. The effi-
cient, problem-specific methods designed to find sub-optimal solutions very fast
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 251–266, 2018.
https://doi.org/10.1007/978-3-319-93800-4_20
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are called heuristics. Metaheuristic methods have been developed to eliminate
limitations of exact and heuristic methods, i.e., to satisfy requirements for less
computational resources and to obtain a better quality of sub-optimal solutions
at the same time. Today we distinguish various types of metaheuristics [25]. The
population-based methods explore the idea that combining or modifying exist-
ing solutions can produce new and (hopefully) better ones. Swarm Intelligence
(SI), especially its engineering stream, is a discipline of Artificial Intelligence
(AI) that studies actions of individuals in various decentralized systems [1]. It
explores the behavior of natural entities (consisting of many individuals) in order
to build artificial systems for solving problems of practical relevance [4]. There-
fore, among population-based we distinguish SI-based metaheuristics such as
Ant Colony Optimization (ACO) [6], Artificial Bee Colony (ABC) [18], Bee
Colony Optimization (BCO) [3], and Particle Swarm Optimization (PSO) [26].
An exhaustive list of SI-based metaheuristics methods may be found in [21].

Although practically very useful, metaheuristic algorithms suffer from a the-
oretical disadvantage: it is hard to evaluate the quality of the reported solution.
The obtained solution may be even optimal, however, it is almost impossible to
prove that. In the literature, metaheuristics are primarily investigated experi-
mentally, usually associated with their concrete engagement and implementa-
tions. In addition, some theoretical research related to the convergence analysis
of metaheuristic methods has already been conducted [2,10,20,22,28].

The importance of metaheuristics’ theoretical background has inspired our
work on proving convergence properties of the SI-based metaheuristic methods.
The difficulty of theoretical analysis of stochastic search methods, in general,
may be found in complex, highly nonlinear and stochastic correlations between
their constituting parts [28]. Furthermore, theoretical analysis of metaheuris-
tics commonly implies mathematical verification of the asymptotic convergence
of the reported solution towards an optimal one, under some predefined condi-
tions. Assuming that a considered optimization problem is solvable, investigating
convergence properties of a metaheuristic algorithm is related to the question:
is the optimal solution reachable if the algorithm is given enough time and
resources [5]. Inspired by [10,12], two types of convergence for BCO, the so-
called best-so-far convergence and sophisticated model convergence, have been
utilized in [15,16]. Therefore, our intention now is to apply the gained insights
to all SI-based metaheuristics. The main contributions of this paper are fourfold.
First, we systematically review the existing notations and definitions related to
the model convergence of metaheuristic methods. Then we provide an extension
of the generic procedure (proposed in [10]) in such a way that it reflects the
main steps of SI metaheuristic methods. Third, we recommend learning rules
that assure model convergence of SI methods. Finally, we provide a systematic
proof of model convergence of SI methods towards a global optimum when the
recommended learning rules are applied.

In Sect. 2 we review some of the known results related to the SI methods
and their convergence analysis. After a short survey of general notation and
properties of stochastic sequences in Sect. 3, in Sect. 4 we present conditions
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that are sufficient to obtain convergence of SI-based metaheuristics to desired
optimal solution. The last section contains concluding remarks.

2 Swarm Intelligence Metaheuristic Methods

From the biological perspective, swarm behavior (such as fish schools, flocks of
birds, herds of land animals, insects’ communities, etc.) is founded on existential
needs of individuals to collaborate without any central control. In such a way
they increase the probability to survive because predators mostly attack isolated
individuals. This type of behavior is first and foremost characterized by auton-
omy, distributed functioning and self-organization. With this main idea in mind,
SI investigates cooperation of individuals in biological systems and implements
them to solve various practical problems [1].

Typical examples of SI metaheuristic algorithms are: ACO, PSO and var-
ious bees algorithms. Practicality and usefulness of these algorithms verified
experimentally have motivated their theoretical research. Related to PSO, the-
oretical verification of convergence may be found in [7,17,26,27,29], for ACO
in [8,9,12,19,24,30] and for BCO in [15,16]. In the above mentioned papers
conditions of convergence are given for the specific method or a specific imple-
mentation of the corresponding SI metaheuristic methods. In the case of BCO,
the authors of [15,16] have presented sufficient conditions for convergence of
a constructive version of the BCO algorithm (BCOc). Theoretical analysis of
the improvement-based version of the BCO algorithm (BCOi) is given in [14].
Therefore, our goal is to recognize conditions of asymptotic convergence under
a general framework that describes all known SI metaheuristics w.r.t. to both
types of generating solutions (constructive and the improvement one).

Constructive SI methods are building solutions by adding components to an
empty solution or to already generated partial solutions. The examples of con-
structive methods are ACO and early versions of BCO, called BCOc. On the
contrary, the improvement-based ones are modifying the existing complete solu-
tions in an attempt to improve their quality. Typical examples of improvement-
based SI methods are PSO, and BCOi, while ABC represents combination of
these two approaches.

2.1 Instance- and Model-Based Algorithms

In [30] the authors proposed a framework that should improve the performance
of majority of metaheuristic methods from a theoretical aspect. This framework
is based on analyzing parameters of a metaheuristic method. Borrowing the
notation from the machine learning field, the authors of [30] recognize two types
of metaheuristic methods: instance-based and model-based. To generate new can-
didate solutions an instance-based algorithm utilizes only a current solution or a
set of current solutions. On the contrary, model-based algorithms utilize a param-
eterized probabilistic scheme (called model) to generate candidate solutions.
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A metaheuristic method is said to satisfy the model-based search properties
if it iteratively explores the following two steps [30]:

– Generates (constructs or transforms) candidate solutions using some param-
eterized probabilistic model.

– Modifies the model (i.e., instantiate update rule) using candidate solutions
such that the search is directed towards more promising regions.

Such a metaheuristic adopts the model-based parameter scheme, thus establish-
ing a basis for the model convergence [10]. It requires learning properties which
may be implemented in a form of an update rule for the method’s parameters
and/or structure [30,31]. The update rule represents the utilization of informa-
tion extracted during the search in order to update the model.

2.2 Generic Procedure

The authors of [10,11,30] have presented a general framework called generic algo-
rithm (i.e., generic procedure) to encompass most (or all) known metaheuristics
for combinatorial optimization problems. The generic procedure allows a rather
flexible description of different segments (modules) of a metaheuristic. It can
be viewed as an iterative algorithm that utilizes two different structures: (1)
mt - a state of memory, and (2) Lt - a list of N sample points, i.e., solutions
(xs ∈ X , 1 ≤ s ≤ N,N ∈ N) in iteration t. The stopping criterion is defined as
the maximum number of iterations. The main steps of the generic procedure are
as follows:

1. t ← 1;
2. Initialization of memory mt;
3. Until stopping criterion is satisfied:

(a) Determine the list Lt as a function g(mt, ξt) of memory state mt and a
random influence ξt;

(b) Determine a value of objective function f(xs) for all xs ∈ Lt and generate
a list L+

t of pairs (xs, f(xs));
(c) Determine new memory state mt+1 as a function h(mt, L

+
t , ξ′

t) of current
memory state mt, current list L+

t and random influence ξ′
t;

(d) t ← t + 1.

The state of memory mt may be further defined by two components: the so-called
sample-generating part (ms

t ) and the reporting part (mr
t ). The sample-generating

part holds all necessary information to generate Lt in iteration t. All other
relevant information are stored in mr

t , such as solution of the highest quality
found so far, namely the best-so-far solution, xbsf . The procedure to determine
xbsf depends on the best solution found in iteration t, i.e., on the iteration best
solution (x̂t). The solution x̂t is determined as f(x̂t) = min1≤s≤N f(xs). We
should emphasize that for the purpose of convergence analysis xbsf represents a
current approximation of an optimal solution [10]. Function g(mt, ξt) determines
a probability distribution of new solutions to enter the list Lt, while function
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h(mt, L
+
t , ξ′

t) defines rules to determine the state of memory mt+1 in the next
iteration. Moreover, g(mt, ξt) refers to a set of possible transformations (i.e.,
possible moves) that generate new solutions depending on the current model.
Function h(mt, L

+
t , ξ′

t) is responsible for modifying (updating) the model by
integrating learning properties ([10], p. 168). It is important to note that in this
formalism, information about a problem instance may be used as an argument
of functions g and h. Consequently, the update rules differentiate w.r.t. the type
of optimization problem being solved and the type of heuristic rules that either
construct or modify solutions during the search. The provided generic procedure
accommodates well all notable SI metaheuristic algorithms as it was shown for
some versions of ACO, PSO [10] and BCO [14].

Here, we present a modification of generic procedure that contains more
details about the steps of typical SI method. Finding a solution of an opti-
mization problem requires all of its components to be determined. Constructive
methods are selecting values for components and building a solution step by step,
while the improvement-based metaheuristics are transforming the current values
of solution components in order to improve the quality of the considered solution.
The SI methods that satisfy model-based search properties involve some learning
steps that influence the solution generation process. More precisely, the determi-
nation of solution components values is influenced by the quality of previously
generated solutions. The main focus of learning is the modification of selection
scheme for values of components (expressed by selection probability values pi,j).
As we are considering the combinatorial optimization problems, the set of pos-
sible components values is finite (or at most countable). Consequently, selection
probability pi,j measures the chances that component i will take value j. If the
SI method is model-based the values for selection probabilities will change from
iteration to iteration, i.e., we will have different values for pi,j(t), t = 1, 2, . . .

SI metaheuristics are population-based methods, and therefore their mt con-
sists of N current solutions, best-so-far solution, current selection probability
values, and some other data specific for each particular method (we do not go
into details here and consider only the first three items). The pseudo-code of
model-based SI metaheuristic method is presented by the Algorithm 1.

Each SI metaheuristic method has its specificities, however, they can be
described by some general steps. At the beginning, the reading of problem
data and setting of parameter values is performed. Then, some initialization
is required, and we described it in the following way: best-so-far solution (the
final solution to be reported to the user at the end of execution) is initialized
to an empty solution and the corresponding objective function value is set to a
large enough constant. These steps are not necessary yet they ensure the com-
pactness of our pseudo-code. The values for selection probabilities pi,j(1) are
set to given initial values, denoted by pi,j(0), ν(i) denotes the number of pos-
sible values for the component i. The values pi,j(0) may be different in various
SI methods, although usually all selection probabilities have the same initial
value. Some of the methods involve restarts in their executions and then the
values of pi,j(t) are set to pi,j(0) again. We also assume that the initial state of
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t ← 1
Read(Problem input data, method parameters)
xbsf ← ∅, f(xbsf ) ← ∞ {initialization of mt}
for i ← 1, n do

for j ← 1, ν(i) do
pi,j(t) ← pi,j(0)

end for
end for
{main loop}
repeat

for s ← 1, N do
xs ← CreateSolution(mt, pi,j(t), rand)
if f(xs) < f(xbsf ) then

xbsf ← xs

end if
end for
for i ← 1, n do

for j ← 1, ν(i) do
pi,j(t + 1) ← Update(pi,j(t))

end for
end for
t ← t + 1

until stopping criterion is satisfied
Return(xbsf , f(xbsf ))

Algorithm 1: Pseudo-code for SI method

mt (actually the content of m1) does not include any solution from the pop-
ulation. This enables to capture the characteristics of both constructive and
improvement-based methods. As our REPEAT loop is executed for t = 1 first,
each particular method can generate initial population according to its own set
of rules (realized by procedure CreateSolution). The same (or similar) pro-
cedure can be used in all remaining iterations to generate the new population of
solutions by the considered SI method and possibly update xbsf . The final step
of each iteration consists of updating values for selection probabilities to be used
in the next iteration.

3 Convergence Analysis

Convergence of a stochastic sequence addresses the question whether or not
a series of random variables (X1,X2, . . .) converges to a new random vari-
able X∗. In case of metaheuristic algorithms we observe a sequence of solu-
tions produced at the end of each iteration. Having in mind that SI meta-
heuristics are population-based methods, we need to determine a single solution
xt = (x1

t , x
2
t , . . . , x

n
t ) ∈ X that is reported at the end of iteration t. Here, xi

t ∈ R

represents the i-th component of the solution xt. Usually, xt = x̂t.
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Because the algorithm incorporates a global knowledge exchange among the
iterations, we are able to obtain best-so-far solution xbsf

t in any iteration t.
Here, we use a strict policy for the update of xbsf

t . Namely, in the initialization
phase of the search the value of variable xbsf is set arbitrary until the condition
f(x̂t) < f(xbsf ) is satisfied and then xbsf copies a value from x̂t. Consequently,
we become interested in the sequence of solutions xbsf

t generated by the meta-
heuristic method, i.e., we observe the sequence (xbsf

1 ,xbsf
2 , . . . ,xbsf

t , . . .).
The best-so-far convergence analyzes conditions under which the sequence

(xbsf
t )∞

t=1 converges to an optimal solution x∗, more precisely, it evaluates prob-
ability that an optimal solution will be found at least once during the search.
Accordingly, one should find the conditions that guarantee a sequence of objec-
tive function values f(xbsf

t ) to converge (“w. pr. 1” or “in probability”) to
f∗ = min{f(x) : x ∈ X}. As shown in [10,23,24] the only requirement is that, in
any iteration, (p∗) – the probability to find an optimal solution is strictly greater
than zero. However, the concept of best-so-far convergence is too “generous” as
it appears that even a random search, known as quite inefficient algorithm, con-
verges to a global optimum [23]. A superior behavior may be expected only in
the cases when the set of current solutions (also referred to as model) tends to be
modified into the set of optimal and high quality solutions, as t → ∞. This type
of modification is named the model convergence [10] and it tends to evaluate the
probability that the algorithm reaches a state in which it generates only optimal
solution(s). Model convergence is hard to prove as it requires adequate balance
between exploration and exploitation of the search obtained by fine-tuning of
the algorithm’s parameters.

4 Model Convergence of SI Optimization Methods

In this section we present conditions that are sufficient for any SI based meta-
heuristic algorithm to find an optimal solution. We start with necessary notation
and remind on known theoretical results in the literature. The basic tools of
probability theory are utilized, such as limit theorems for stochastic sequences,
in particular the second Borel-Cantelli lemma which we do not repeat here.

To express the model-based search properties, the SI method needs to be
well organized (structured) algorithm which utilizes the information about the
performance from the previous stages of its execution. Consequently, the global
knowledge exchange between iterations is the main assumption in our analysis.
These requirements are fulfilled if CreateSolution procedure of the SI generic
pseudo-code (Algorithm 1) includes some learning properties.

4.1 Preliminary Conditions

To explain the course of our analysis, the following events should be defined
(borrowing the notation from [10,13]).

Definition 1. For any feasible solution x of the considered problem and an
iteration counter t ≥ 1 assume that:
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– C(t) denotes the event that xt = x, i.e., the examined solution was generated
in iteration t. Cc(t) is used to represent the complementary event.

– B(t) marks the event that x was not visited during the first t iterations i.e.,
B(t) = Cc(1) ∩ Cc(2) ∩ · · · ∩ Cc(t). The complementary event is Bc(t).

– B =
⋂∞

t=1 B(t) represents the event that the algorithm cannot generate the
examined solution x, i.e., x 
= xt for all t = 1, 2, . . .

– r(t) = Pr(Bc(t)|B(t − 1)) = Pr(C(t)|B(t − 1)) means the probability that x
is generated in the iteration t, although it has not been obtained in any of the
previous iterations. ♦

According to Definition 1, B(1) denotes that x was not produced by the
algorithm in the first iteration, B(2) describes the situation that x was not
visited in the first and second iteration, and so on. Consequently, {B(t)}∞

t=1

represents a non-increasing sequence of events1, more precisely:

B(1) ⊇ B(2) ⊇ · · · ⊇ B(t) ⊇ B(t + 1) ⊇ · · · .

Based on Definition 1 and definition of convergence in probability from [10,
14,16], Pr(C(t)) → 1 as t → ∞ denotes that the sequence xt converges in
probability to the set X ∗ (that contains only optimal solutions). Moreover, based
on the definition of events B and B(t) we can conclude that

Pr(B(t)) → P (B) = Pr

({
+∞⋂

t=1

B(t)

})

as t → +∞.

To establish connection between events introduced in Definition 1 we present
here the theorem about the convergence of Generalized Hill Climbing algorithm
(GHC) proven in [13]. The pseudo-code for GHC is presented by the Algorithm 2
in Appendix.

Theorem 1. A GHC algorithm converges in probability to X ∗ if and only if the
following two conditions are satisfied:

(i)
+∞∑

t=1

r(t) = +∞,

(ii) Pr({Cc(t)|Bc(t − 1)}) → 0 as t → ∞.

Then, an equivalent form for (i) can be shown, i.e.,

Lemma 1. Pr(B) = 0 ⇔
+∞∑

t=1

r(t) = +∞.

Lemma 1 was obtained for the single-solution metaheuristic, however, it is
straight-forward to extend it to the population-based methods by observing the
sequence of best-so-far solutions.
1 In [10] the author mistakenly reported that the sequence {B(t)}∞

t=1 is non-decreasing.
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In order to identify the model convergence properties for majority of the SI
metaheuristic methods, we need to define four modification schemes for the val-
ues of selection probabilities. Based on our previous experience, besides construc-
tive and improvement-based SI metaheuristics we need to distinguish between
two types of optimization problems. The first type includes optimization prob-
lems for which the size of the solution is smaller then the size of the problem.
More precisely, these are the so called selection problems (like p-median or p-
center location problems). In these kind of problems we are usually given a
number of possibilities to choose a subset of their values that will constitute a
solution of the considered problem. In this case, modification scheme for selec-
tion probability values needs to consider only components’ affiliation within xbsf .
The second type of optimization problems are the ones whose solutions represent
orderings and/or groupings of all given elements. For these problems the length
of the solution vector is equal to the size of the problem. Typical examples of the
second type problems are Traveling Salesman Problem (TSP), Vehicle Routing
Problem (VRP) and various scheduling problems. For these problems the prob-
ability update rules should be modified in such a way to take care of ordering or
group affiliation of solution components.

4.2 Modification Schemes in the Cases When Subset of Data
Constitutes a Solution

For the constructive SI method the selection probability for component i taking
value j in the iteration t + 1 should be modified in the following way:

pi,j(t + 1) =

⎧
⎪⎨

⎪⎩

1−λt · (1−pi,j(t)) if j ∈ xbsf ;
λt · pi,j(t) if j /∈ xbsf ;
pi,j(0) if j was not chosen before.

(1)

where 0 < λt ≤ 1 represents the time dependent learning rate. As we already
mentioned, pi,j(0) represents the initial value for selection probability. The idea
is to learn the influence of the component’s value to the quality of generated
solutions. This means that if value j belongs to the best-so-far solution, the
probability that j will be included as a value for component i of some solution
constructed in the next iteration increases. If the value j is not in the best-
so-far solution but was selected before (in some of the previous iterations) the
probability of its selection in the next iteration decreases. For all values that
were not considered in any of previous iterations the selection probability value
remains unchanged (its value is still equal to the initial one).

In addition, we define the probability of generating an optimal solution for
this type of problems by the constructive SI method as the following indicator
function of the pair (i, j):

p∗
i,j =

{
1 if j ∈ x∗;
0 otherwise.
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In the case of the improvement-based metaheuristic method the selection
probability that component i should take value j in the iteration t + 1 should
be modified as follows (assuming 0 < λt ≤ 1):

pi,j(t + 1) =

{
1−λt · (1−pi,j(t)) if j ∈ xbsf and i /∈ xbsf ;
λt · pi,j(t) otherwise;

(2)

where i /∈ xbsf is an abbreviation for xi
s /∈ xbsf and it actually refers to the

previous value of the component i in any solution xs considered for transforma-
tion. If value j was a part of the best-so-far solution and the current value of
component i was not, the probability that j will substitute the current value of
component i in the next iteration is increased. In all other cases we decrease the
probability of selecting value j in the next iteration.

The corresponding indicator function is defined in the following way:

p∗
i,j =

{
1 if i /∈ x∗, j ∈ x∗;
0 otherwise.

4.3 Modification Schemes in the Cases When All Data Constitute a
Solution

First, we consider the problems (such as TSP) requiring to properly order solu-
tion’s components. The selection probability modification schemes in the case of
constructive and improvement-based SI methods have the same form:

pi,j(t + 1) =
{

1−λt · (1−pi,j(t)) if (i, j) ∈ xbsf ;
λt · pi,j(t) otherwise; (3)

where 0 < λt ≤ 1. Here, we calculate the probability that component i should
be assigned value j either by adding value in a constructive method or by
transforming its previous value in an improvement-based method. The nota-
tion (i, j) ∈ xbsf describes the case that components i − 1 and i are getting
the same combination of values as in the best-so-far solution. The corresponding
indicator function can be defined as follows:

p∗
(i,j) =

{
1 if (i, j) ∈ x∗;
0 otherwise.

The same rule is applied to the VRP type problems, while for scheduling like
problems pair (i, j) denotes that the task i should be allocated to the group j.
Consequently, the modification (selection) scheme (3) is applicable in this case
as well.

4.4 Sufficient Conditions for Model Convergence of SI Methods

Let us assume that the considered SI algorithm is applying one of previously
defined schemes for modifying selection probabilities. In this section we provide
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the sufficient conditions for convergence in probability of the SI obtained solution
toward an optimal one. In order to assure model convergence of the SI algorithm,
two conditions should be satisfied: (i) all feasible solutions need to be reachable
from any initial solution and (ii) upon an optimal solution is found its generation
has to be favored.

The first condition represents the best-so-far convergence and it is satisfied
if, with probability one, there exists an iteration t > t0 in which any considered
solution x (optimal included) is found. This is consistent with the condition (i)
from the Theorem 1, i.e., the probability that an optimal solution will never be
generated tends to zero when t → ∞. The second condition is related to model
convergence. It requires to prove that, after generating an optimal solution, by
applying the corresponding update rule defined by one of the Eqs. (1), (2) or
(3), the generation of optimal solutions will be supported for the considered SI
algorithm. This actually means that pi,j(t) converges to p∗

i,j .

Theorem 2. The conditions

1 ≥ λt ≥ log t

log(t + 1)
for all t ≥ t0, (t0 ≥ 2), (4)

and
+∞∑

t=1

(1 − λt) = +∞, (5)

are sufficient for the corresponding SI method to converge in probability toward
an optimal solution x∗ from X ∗.

Proof: (i) (best-so-far convergence) We actually prove that Pr(B) = 0, i.e., the
equivalent condition from Lemma 1. Let x be a given feasible solution. Then
C(t) means that x is found for the first time in iteration t. As

B = Cc(1) ∩ Cc(2) ∩ · · · ⇒ x is never found

then it holds

Pr(B) = Pr({Cc(1) ∩ Cc(2) ∩ · · · }) ≤ Pr({x is never found})

=
+∞∏

t=1

Pr({x is not found in iteration t|x is not found in iteration k < t}).

(6)
If we refer to solution components and selection probability update rules

(1), (2) and (3), in the worst case for all pairs of components (i, j) not being
established in iterations 1, . . . , t, it holds:

pi,j(t) =

[
t−1∏

k=1

λk

]

· pi,j(0),
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(justifiable easily by induction). Applying the first condition of the Theorem 2,
it holds

[
t−1∏

k=1

λk

]

· pi,j(0) ≥
[
t0−1∏

k=1

λk

]

·
⎡

⎣
t−1∏

j=t0

log j

log(j + 1)

⎤

⎦ · pi,j(0)

=

[
t0−1∏

k=1

λk

]

· log t0
log t

· pi,j(0) =
const
log t

.

In such a way, for any pair of components (i, j), we obtained a lower bound of
the worst case selection scenario. Consecutively, even in the worst case, for the
probability to find the solution x by the considered SI method it holds:

∏

(i,j)∈x

pi,j(t) ≥
(

const

log t

)n

,

n being the number of components in the solution x.
Assuming that the solution x was not found by the SI method, an upper bound
on the right hand side of the relation (6) is obtained:

+∞∏

t=t0

[

1 −
(

const

log t

)n]

.

Applying logarithm and the convexity of the exponential function indicated by
(1−a)≤e−a,∀a ∈ (0, 1) (i.e., log(1−a)≤−a), from the previous term we obtain:

+∞∑

t=t0

log
(

1 −
(

const

log t

)n)

≤ −
+∞∑

t=t0

(
const

log t

)n

= −∞.

Now we deduce that

+∞∏

t=t0

[

1 −
(

const

log t

)n]

= 0,

i.e., Pr(B) ≤ 0 in (6). As Pr(B) ≥ 0 always holds, it is obvious that Pr(B) = 0.

(ii) (Model convergence) Let us assume that x∗ is generated in the iteration
m for the first time. Then xbsf

t = x∗ for all t ≥ m. Moreover, we can prove that
in all iterations t > m the selection probability for pairs (i, j), not included in
x∗, decreases, i.e., converges to zero as t → ∞.

Let (i, j) /∈ x∗. According to (1), (2) and (3), the selection probability of pair
(i, j) in iteration m + r, r = 1, 2, ... will be modified as follows:

pi,j(m + r) =

[
m+r∏

k=m+1

λk

]

· pi,j(m).
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The previous claim can be verified easily by induction. In addition, the condition
(5) gives us

+∞∑

t=1

(1 − λt) = +∞, which is equivalent to,
+∞∏

k=1

λk = 0.

Consequently, for the probability that (i, j) /∈ x∗ will be used again after the
optimal solution x∗ was generated, it holds:

lim
t→+∞ pi,j(t) = lim

t→+∞

[
t−1∏

k=m+1

λk

]

· pi,j(m) = 0.

That is exactly what needed to be proved for model convergence part of the
theorem. �

5 Conclusion and Future Work

We provide the sufficient conditions for the model convergence of the SI-based
metaheuristics: (1) all feasible solutions must be reachable from any point in the
solution space; (2) once an optimal solution is found, its generation is favored.
To fulfill these requirements, the SI algorithm needs to incorporate selection
schemes that exploit the knowledge from the previous search. We have pro-
vided three modification schemes w.r.t. the characteristics of the SI method and
the considered optimization problem. Although the established conditions guar-
antee the asymptotic convergence of the SI generated solution toward one of
the optimal ones, the question of practical usability of this result still remains
open. Namely, in practice we cannot perform an infinite number of iterations,
and therefore, we need also the evaluation of convergence speed. Consequently,
future work should include runtime analysis of an expected time (iteration index)
to obtain the optimal solution, the so-called first hitting time.

Acknowledgments. This research was supported by the Serbian Ministry of Educa-
tion, Science and Technological Development, Grant Nos. 174033, 044006 and F159.

Appendix

To describe the GHC algorithm, we remind on several definitions as provided
in [13]. An objective function f : S → [0,+∞) is defined on a finite set S of
all possible solutions. Two important components of GHC are: (a) neighborhood
function η : S → 2S , where η(x) ⊆ S, for all x ∈ S, and (b) hill climbing random
variables Rk : S ×S → R, where k = 1, 2, ... indicates an iteration counter of the
outer loop controlled by STOP OUTER. The pseudo-code for GHC algorithm is
given as Algorithm 2. At each iteration i of GHC’s inner loop, a candidate solu-
tion x is generated uniformly at random among all neighbours of the solution
xi ∈ S i.e., according to probability mass (density) function hxi

(x) = 1/|η(x)|.
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The hill climbing random variables Rk are utilized to accept or reject neigh-
bour solution. STOP INNER is the stopping criterion for inner loop utilized to
inspect if a current solution is a local optimum and if the counter k should be
incremented. According to [13], it is important to assume that the verification
if the current solution is a local optimum can be conducted in polynomial time.
This is possible if there are a polynomial number of neighboring solutions of the
current solution. As a consequence, the generation of a local optimum implies
that a new random variable will be used within the next iteration.

Define function η and a set of random variables Rk;
k ← 1; /* initialize outer loop counter */
i ← 0; /* initialize inner loop counter */
Select an initial solution x0 ∈ S;
while not STOP OUTER do

while not STOP INNER do
Generate x ∈ η(xi) according to hxi(x);
Δ(xi,x) = f(x) − f(xi);
if Rk ≥ Δ(xi,x) then

Accept solution x;
else

Reject solution x;
end if
i ← i + 1;

end while
k ← k + 1;
Update R k;

end while

Algorithm 2: Pseudo-code of the GHC algorithm.

It is important to note that the search space S must be reachable, that is, all
solutions are accessible regardless of a starting point x0 [13].
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19. Kötzing, T., Neumann, F., Röglin, H., Witt, C.: Theoretical analysis of two ACO
approaches for the Traveling Salesman Problem. Swarm Intell. 6(1), 1–21 (2012)
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Abstract. We consider the problem of empty tank cars relocation in
a railway petroleum transportation. Biggest petroleum carrier in Kaza-
khstan railway network provides transportation service to the customers.
The majority of its expenses consist of an empty run of the cars, as they
move to the load stations. Given the demand for empty tank cars, the
company seeks to reduce total costs to satisfy all the demand within a
planning period. We provide a mathematical model for this problem in
terms of integer programming and perform an experimental study with
LP solver. Numerical calculations show that new model allows to sig-
nificantly reduce empty run of the tank cars on the railway petroleum
logistics market lowering the total expenses of the company by more than
10% level.

Keywords: Railroads · Transportation · Tank cars · Assignment
Integer linear programming

1 Introduction

The problem of reassignment of empty cargo tank cars is among the most chal-
lenging ones in a railway freight transportation. Numerous initial data should
be taken into consideration, i.e. demand in empty cars on the loading stations,
availability of the cars, their locations and maintenance schedule, compatibil-
ity of different cars and types of cargo. A number of studies is devoted to this
kind of problems. In [7] the authors consider an empty freight cargo manage-
ment at Union Pacific Railroad. In the presented model authors seek to reduce
transportation costs, and improve delivery time and customer satisfaction while
assigning empty freight cars based on demand. They provide a MILP formula-
tion of the problem, mainly based on the transportation problem and propose an
efficient solution approach. The UP has introduced the proposed model to the
decision-making system resulting in an ROI of 35%. Another modeling approach
suggested in [4]. The authors propose a novel empty rail car distribution prob-
lem that considers realistic technical and business requirements while assigning
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 267–277, 2018.
https://doi.org/10.1007/978-3-319-93800-4_21
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empty cars to customer demands. They provide a path-based multi-commodity
capacitated network flow model for this problem. The model takes car substi-
tution, network capacities and classification yard operation complexities into
consideration while dissociating the car routing and car distribution decisions.
Those two decisions are separated from each other and they are usually made
by different departments in railroads. The result of a numerical example showed
an 18% improvement, comparing with the non capacitated model. In this work
we consider a petroleum logistics market taking its particular properties into
account. Petroleum carrier company owns a fleet of tank cars and provides a
transportation service on the railway network. The service is generally provided
to deliver the petroleum products from refinery plants to retail stations. Some
retailers, in turn, generate their own delivery orders in order to supply smaller
consumers. Both refinery plants and retailers generate a demand for an empty
cars that have to be provided for loading. The demand information includes the
number of cars to be provided, due date and also specifies the type of product to
be carried. The demand information is updated daily - predicted demand is sub-
stituted by explicit data, some orders may be cancelled, new ones may appear.
In this work, we present an optimization model for a Kazakhstan Railway Net-
work oil carrier. The majority of its expenses consist of an empty run of the cars,
as they move to the load stations. Given the demand for empty tank cars, the
company seeks to reduce total costs to satisfy all the demand within a planning
period.

2 Problem Formulation

The aim of this work is devoted to the optimization of the empty tank car move-
ment of the biggest oil carrier on the railway network of Kazakhstan Republic.
The carrier company owns a fleet of tank cars of different types and provide a
transportation service to the customers. The majority of movements are devoted
to the transportation of the oil products from three refinery plants to the con-
sumers, or retailer stations. A number of retailers, in turn, make their own orders
for empty tank cars thus the demand is not concentrated only on refinery sta-
tions. We assume that the movements of the loaded cars are well defined by the
set of orders and are made according to schedule. Together with known running
times for loaded cars, this data provides us an information about the appearance
of unloaded cars on their destination stations. This information is used as an
input data. Running times for the empty cars are also assumed to be known as
a result of statistical measurements. The set of all stations can be separated into
fours subsets in the following way. The first set consists of consumer stations, i.e.
those where only unload operations are performed. The demand for empty cars
is assumed to be zero, so there is no need to send empty cars to this stations.
The second set consist of retailer stations. This stations mostly consume the
production of the refinery plants, but also provide retail service to the smaller
customers providing a nonzero demand for empty cars by their own. The third
set represents the refinery plants. There is a number of refinery plants in the
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network which supplies a number of different oil products and provides most of
the demand for empty cars on the market. This demand is assumed to be known
a priori along the whole planning horizon. Due to the extremely high costs for
breaking the production process, it is required to ensure that the amount of
empty cars on this stations is enough for three consecutive days of operation.

Each refinery has an associated Washing Station which performs the prepa-
ration (washing) process. Each car should be washed on such station before load.
Washing procedure cost depend on the type of the car to be washed, previous
cargo and the cargo to be prepared for. Even though it is possible to prepare a
car, used to carry asphalt for a gasoline transportation, the cost of such prepara-
tion would be times higher than gasoline-gasoline washing. Together with price
levels, each washing station has a given capacity, so only a limited amount of
preparations can be performed. The last, fourth set of stations represent the
dead ends. This stations used to store the cars, while they are not in demand.
The storage is also possible at the refinery stations but is not preferable due to
the limited capacity and higher storage price.

Although it is highly desirable to cover all the demand for empty cars, we
assume that the lack is possible and leads to a penalty. This penalty represent
additional expenses caused by the shortage. The order still can be fulfilled, as it
is possible to rent additional cars from the third party. For the sake of simplicity,
this aspect is not included in the model.

The company aims to minimize total expenses, which consist of the following
terms; mainly it is the cost of an empty run of the tank cars, washing and
preparation process, payments for storage and penalty for the shortage of tank
cars.

In the following section, we provide a model for this problem in terms of
linear integer programming.

3 Mathematical Model

We consider the following formulation of the empty tank cars transportation
over the railway network. Sets:

g ∈ G - types of tank cars;
c ∈ C - types of cargo;
i ∈ I1 - stations with only unload operations allowed (consumers);
i ∈ I2 - stations with both load and unload operations allowed (advanced
customers);
i ∈ I3 - stations connected with factory;
i ∈ I4 - storage stations;
i ∈ I = I1 ∪ I2 ∪ I3 ∪ I4 - all stations;
t ∈ T = 1..tmax - days in planning horizon;
p ∈ P - price level for different types of cargo;
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Parameters:

qg
ict - amount of tank cars of type g prepared for transportation of cargo c

become available at station i on day t;
Vi -capacity of station i;
τij - time to travel from station i to station j;
dijp - price to travel from station i to station j price level p;
rict - amount of empty tank cars, prepared for cargo c needed at station i on
day t;
Pic1c2g - price to prepare(wash) tank car of type g from cargo c1 to cargo c2
at station i;
Pmax

i - upper bound on washing costs on day i;
F f - fine level induced for insufficient amount of empty tank cars at factory
i ∈ I3;
FSt - fine level induced for insufficient amount of empty tank cars at loading
station i ∈ I2;
HSt

i - cost for unnecessary storage of the tank car on station i ∈ I2 per day;
Hd

i - storage cost per tank car per day on the storage station i ∈ I4;
Hf

i - storage cost per tank car per day on the factory i ∈ I3;
Lw - duration of the washing process, days;
LSt - minimum duration of stay on a storage station, days;

Variables:

xijcgt ≥ 0 - amount of empty tank cars of type g prepared for cargo c sent
from i to j on day t;
yic1c2gt ≥ 0 - amount of empty tank cars of type g prepared for cargo c1 sent
to wash for cargo c2 on station i on day t;
Qict - number of tank cars prepared for cargo c available on station i on day
t;
Qg

ict - number of tank cars of type g prepared for cargo c available on station
i on day t;
Q̄ict ≥ 0 - lack of tank cars for cargo c on station i on day t;
Q̄g

ict ≥ 0 - lack of tank cars of type g for cargo c on station i on day t;
rg
ict - demand on station i tank cars g cargo c on day t;

Sstore - total cost of storage of tank cars on the planning horizon;
Spen - total fine, induced for insufficient amount of tank cars on planning
horizon;
Swash - total cost for washing on planning horizon;
Srun - total cost for empty tank cars run;

With the introduced variables the problem can be formulated as follows. Goal
function

min Srun + Swash + Spen + Sstore (1)

subject to
∑

t′≤t

qicgt′ =
∑

j∈I

∑

t′≤t

xijcgt′ i ∈ I1, c ∈ C, g ∈ G, t ∈ T (2)
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Qg
ict =

∑

t′≤t

qg
ict′ +

∑

j∈I

(
∑

t′≤t−τji

xjicgt′ −
∑

t′≤t

xijcgt′)

−
∑

t′≤t

rg
ict′ +

∑

t′≤t

Q̄g
ict′ i ∈ I2, c ∈ C, g ∈ G, t ∈ T

(3)

rict =
∑

g∈G

rg
ict i ∈ I2 ∪ I3, c ∈ C, t ∈ T (4)

Q̄ict =
∑

g∈G

Q̄g
ict i ∈ I2, c ∈ C, t ∈ T (5)

Q̄g
ict ≤ rg

ict i ∈ I2, c ∈ C, g ∈ G, t ∈ T (6)
∑

t′≤t

qg
ict′ +

∑

j∈I

(
∑

t′≤t−τji

xjicgt′ −
∑

t′≤t

xijcgt′) ≥ 0 i ∈ I2, c ∈ C, g ∈ G, t ∈ T (7)

∑

g∈G

Qg
ict ≤

∑

t′≥t

rict i ∈ I2, c ∈ C, t ∈ T, (8)

∑

j∈I

∑

g∈G

∑

t′≤t−τji

xjicgt′ ≤
∑

t′≤t

rict′ −
∑

g∈G

∑

t′≤t

qg
ict′ i ∈ I2, c ∈ C, t ∈ T (9)

Qg
ict =

∑

t′≤t

qg
ict′ +

∑

j∈I

(
∑

t′≤t−τji

xjicgt′ −
∑

t′≤t

xijcgt′) −
∑

t′≤t+2

rg
ict′

+
∑

c1∈C

(
∑

t′≤t−Lw

yic1cgt′ −
∑

t′≤t

yicc1gt′) i ∈ I3, c ∈ C, g ∈ G, t ∈ T
(10)

Qict =
∑

g∈G

Qg
ict i ∈ I, c ∈ C, t ∈ T, (11)

Q̄g
ict ≥ −Qg

ict i ∈ I3, c ∈ C, g ∈ G, t ∈ T (12)

∑

c∈C

Qict +
∑

c1∈C

∑

c2∈C

∑

g∈G

∑

t−Lw+1≤t′≤t

yic1c2gt′ +
∑

c∈C

∑

t+1≤t′≤t+2

rg
ict′ ≤ Vi (13)

i ∈ I3, t ∈ T

∑

c1∈C

∑

c2∈C

∑

g∈G

Pic1c2gyic1c2gt ≤ Pmax
i i ∈ I3, t ∈ T, (14)

∑

c1∈C

∑

g∈G

∑

t′≤t−Lw

yic1cgt′ ≥
∑

t′≤t+2

rict′ +
∑

g∈G

∑

j∈I

∑

t′≤t

xijcgt′

−
∑

g∈G

∑

t′≤t

Q̄g
ict′ i ∈ I3, c ∈ C, t ∈ T

(15)

∑

t′≤t

qg
ict′ +

∑

j∈I

∑

t′≤t−τji

xjicgt′ ≥
∑

c2∈C

∑

t′≤t

yicc2gt′ i ∈ I3, c ∈ C, g ∈ G, t ∈ T (16)

∑

t′≤t

qg
ict′ +

∑

j∈I

∑

t′≤tmax−τji

xjicgt′ =
∑

c2∈C

∑

t′∈T

yicc2gt′ i ∈ I3, c ∈ C, g ∈ G (17)
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Q̄g
ict−1 − Q̄g

ict ≤
∑

c2∈C

yic2cgt−Lw i ∈ I3, c ∈ C, g ∈ G, t ∈ T (18)

Qg
ict =

∑

t′≤t

qg
ict′ +

∑

j∈I

∑

t′≤t−τji

xjicgt′ −
∑

j∈I

∑

t′≤t

xijcgt′ i ∈ I4, c ∈ C, g ∈ G, t ∈ T

(19)∑

c∈C

∑

g∈G

Qg
ict ≤ Vi i ∈ I4, t ∈ T (20)

Srun =
∑

i∈I

∑

j∈I

∑

c∈C

∑

g∈G

∑

t∈T

dijp(c)xijcgt (21)

Sstore =
∑

c∈C

∑

t∈T

(
∑

i∈I2

QictH
St
i +

∑

i∈I3

(Qict + Q̄ict)H
f
i +

∑

i∈I4

QictH
d
i ) (22)

Swash =
∑

i∈I3

∑

c1∈C

∑

c2∈C

∑

g∈G

∑

t∈T

yic1c2gtPic1c2g (23)

Sfpen =
∑

i∈I3

∑

c∈C

∑

t∈T

Q̄ictF
f +

∑

i∈I2

∑

c∈C

∑

t∈T

Q̄ictF
St (24)

∑

j∈I

∑

t′+τji≥tmax

xjicgt′ = 0 i ∈ I2 ∪ I3, c ∈ C, g ∈ G, (25)

xijcgt = 0 t ∈ T, i ∈ I4, j ∈ I4, c ∈ C, g ∈ G (26)

xijcgt = 0 t ∈ T, i ∈ I3, j ∈ I3, g ∈ G, c ∈ C (27)

xjicgt = 0 g ∈ G, i ∈ I2, j ∈ I1 ∪ I2 ∪ I4, c ∈ C, t ∈ T (28)

The objective function specifies the total costs required to cover the demand
for empty tank cars at the planning horizon. The expenses consist of the total
cost of the empty tank car run, the cost of all washes, the penalty for the lack
of tank cars as well as the cost of storing tank cars at stations and dead ends.

The constraints of the problem can be conditionally divided into several
groups, each of which simulates the movement of tank cars on one or another set
of stations. Constraint (2) describes the flow balance of emerging and departing
tank cars at unload stations. Namely, it requires that all tank cars that appear on
the station have to be sent to the destination station on the same day. Next group
of constraints (3)–(9) describes the operation of stations with load, i.e. stations
with a nonzero demand for empty tank cars. The constraint (3) describes the
balance of the tank car flow at such stations: the number of tank cars available
at the station is calculated as the total number of tank cars that appeared or
arrived at the station at that time, minus empty and loaded tank cars sent
to other stations. The last term in (3) represents a lack of tank cars at the
station. In case it was not possible to cover all the demand for the station, this
term will reflect the total shortage of tank cars on each day. The constraint (4)
indicates that the demand for empty cars must be split into different categories
of tank cars. Similarly, the shortage of tank cars in the constraint (5) splits into
categories. According to (6), the shortage of tank cars cannot exceed the demand
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for them. Inequality (7) indicates that the number of real tank cars at the station
cannot be negative. Constraint (8) does not allow to store more tank cars at the
station for a given type of cargo that may be needed in the future for loading.
Inequality (9) indicates that the number of empty tank cars which can arrive at
the station cannot exceed the number of required to the current moment.

Fig. 1. Scheme of empty movements

The following group of constraints (10)–(18) describes the operation of the
refinery plant. The crucial difference between plants and stations with load are
an increased priority in meeting the demand and the availability of washing
supplies. The first constraint of the group (10) calculates the balance of the tank
cars at the refinery. This constraint is constructed similarly to (3). The difference
is that washing operations are also included in the balance flow. As a result
of washing operations, the tank cars can change the type of cargo associated
with them, or simply be prepared for loading. (10) claims to cover the demand
for empty tank cars for three days in advance. Constraint (11) calculates the
total stock of tank cars for a certain type of cargo. (12) specifies the relationship
between the variables for the shortage of tank cars and their number. Constraint
(13) counts the total number of tank cars located on the station and claims to
satisfy the capacity conditions. Inequality (14) limits the total costs of washing
operations at the washing station during the day. Constraint (15) prescribes to
wash all tank cars leaving the station in any direction, while (16) and (17) do not
allow more tank cars to be used for washing than it was available. Constraint
(18) indicates that the tank cars which cover the shortage should also be washed.
The group (19)–(20) describes the balance of tank cars in dead ends and satisfies
the capacity conditions.

Constraints (21)–(24) calculate the total costs for each group of operations -
empty mileage, payment for washes, fines for the shortage, storage fees. Finally
(25)–(28) describe special logical constraints, such as the ban on sending tank
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cars to stations and refineries if the arrival would occur beyond the planning
horizon; prohibition of empty cars to pass straightforward between pairs of dead
ends, between pairs of oil refineries; dispatch of tank cars to the loading stations is
possible only from the refinery plant. The schematic view of possible movements
of empty cars is presented in Fig. 1.

Fig. 2. Scheme of cargo movements

Figure 2 represents the schematic view of the possible cargo movements. It
is assumed that these movements are predetermined by the list of orders, thus
fixed and represented in the model as an input parameters qg

ict.

4 Experimental Study

The presented model was numerically tested on the real data instances provided
by Kazakhstan petroleum carrier. During the study, we applied the GLPK free-
ware solver to carry out the calculations. The aim of this study was twofold. On
the one hand, the desire was to raise the efficiency of the empty car movements
and reduce the associated costs. On the other hand, the demand data and other
parameters may be updated more than once during the day so the company
should be capable to find the solution quickly. The presented model appeared
to be successful in both directions. Despite the constraint matrix is not totally
unimodular, due to the absence of the parametric coefficients for the variables
in the constraints we observed the following property. On every instance, we
tested during the experimental study the solution of the linear relaxation of the
problem appeared to be fully integer. Thus, the time per instance did not exceed
10 min on a 2,4 Ghz Core i7 PC and an LP solution always provided us with a
globally optimal integer solution.
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The parameters of the instance are as follows:

6800 tank cars;
3 refinery plants;
638 unload stations;
188 station with demand;
15 dead ends;
Average value for total demand of the refineries is about 500 cars per day;
average travel time is 2.8 days;
A scheme of the Kazakhstan railroads is presented in Fig. 3.

Fig. 3. Map of Kazakhstan railways

During the first experimental study, we conducted a series of runs on a day-
by-day basis to compare the results, obtained with the model and real movements
of the fleet. As the input data is inexact, especially in a long-term, the study
is conducted as follows. We run the model for [1...T ] period, obtain an optimal
solution and fix the values of the “first-day” variables. Then we run the model for
a period [2...T+1], using the solution for day 1 as an input data. I.e. if the value of
xi,j,c,g,1 = k then we use it on the next step as follows: q′

j,c,g,1+τij
= q′

j,c,g,1+τij
+k.

A series of runs for T = 30 times was performed and a period [1...T ] was taken
into consideration. We obtained the following results: an overall run of the empty
cars reduced from 48% to 36% of the total run while the expenses of the company
decreased by 10.38% of its real level.
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In our second study, we made an attempt to optimize the number of tank
cars that the company have to maintain in its fleet. The maintenance cost of
each car is a sufficient value, thus the possibility of the shortage of the fleet
without losing the quality of service looks quite desirable. During the number
of test runs, performed in the same way as before, we compared the empty run
and total expenses of the company under different values of the fleet size. We
add here another term to the goal function to represent the maintenance cost of
the fleet. For fleets big enough this cost is proportional to the size of the fleet.
The values for the empty run and total expenses of the company with the real
fleet size of 6800 cars, obtained during the previous experiment, were taken as
a 100%. The results of the study presented in Table 1.

Table 1. Empty run and expenses.

Fleet size Empty run (in%) Total expenses (in%)

5500 110.1 116.3

6000 104.7 98.2

6500 101.3 97.4

6800 100 100

7000 98.1 102.1

7500 91.8 112.4

8000 83.2 123.2

It can be noted from the table that the current fleet of the company is slightly
excessive, and on the considered planning horizon it is possible to satisfy all the
customers with the smaller fleet. But the company prefers to have a slight reserve
in its fleet to be able to manage with any unexpected circumstances. If the fleet is
reduced to a size of 5000 cars, the company would not be able to fulfill all orders,
so the subsequent fines for unsatisfied orders will raise the expenses. Bigger fleet
allows to reduce the empty run, but the maintenance costs for additional cars
exceeds the savings.

5 Conclusion and Future Research

This paper studies a new optimization model to minimize the total operational
costs of a railway petroleum carrier. We present an integer linear model and
apply the GLPK freeware solver. Computational results on the real test instances
confirm the efficiency of the approach and allow the company to significantly
reduce empty run of the tank cars on the railway petroleum logistics market
from 48% to 36% of the total run. Total expenses of the company were also
reduced by more than 10%.

As a possible direction for future research, we suggest considering the com-
petition on the market. Similar models for two companies in the field of facility
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location problem can be found in [1,6]. It is worth to note that such models are
harder than well-known NP-complete problems and, in fact, are Σ2

p-hard [2,5].
The best pricing strategy for each company may be the most intriguing question
in such games. Some preliminary results for Stackelberg pricing games can be
found in [8–10]. Another direction for future research is the development of the
model. Among many the following directions may be considered: Introduce the
possibility of car rent. Although, usually the fleet size of the carrier is enough
to cover all the demand on the market, due to some emergency situations the
company may need additional cars for temporary use. Those may be rented from
another carrier (country). The carrier has to pay the rent price for each day, thus
it is preferable to use rented cars more intensively than the own ones.
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Abstract. We consider a bi-objective optimization problem of choos-
ing the buffers capacity in a production system of parallel tandem lines,
each consisting of two machines with a single intermediate buffer. Dur-
ing operation of the system, the equipment stops occur due to failures
and these stops are random in the moments when they arise and in their
durations. The product is accumulated in an intermediate buffer if the
downstream machine is less productive than the upstream machine.

We study the complexity of exact and approximate computations of
a Pareto front for the following two bi-objective problem formulations:
(i) the expected revenue maximization with minimization of buffers allo-
cation cost and (ii) the expected revenue maximization with minimiza-
tion of expected inventory costs. The expected revenue is assumed to be
an increasing function of the expected throughput of the system.

On the one hand, fully polynomial-time approximation schemes for
approximation of Pareto fronts of these problems are proposed and an
exact pseudo-polynomial time algorithm is suggested for the first prob-
lem in the case of integer buffer capacity costs. On the other hand, we
show that both of these problems are intractable even in the case of just
one tandem two-machine line.

Keywords: Inventory system · Throughput · Capital costs
Storage costs · Intractability

1 Introduction

Finding the set of Pareto-optimal solutions or a close approximation to it are of
great importance in design of automated control and decision support systems.
The problem of buffer volume optimization of the volume of buffers arises in
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management of such manufacturing systems as automatic lines, flexible produc-
tion systems and automated assembly lines, where parts are moved from one
machine to another using some transport mechanism.

Due to equipment failures, in the process of operation of the line the machine
breakdowns occur in random moments and have a random duration. The conse-
quences of failures spread on related operations due to the impossibility to pass
an item onto the following operation, or lack of parts coming from the upstream
machine. Presence of buffers for storage of parts between the machines allows
to reduce the impact of failures on neighboring operations, and to increase the
line throughput, i.e. the production rate of the line in the stationary regime.
However, installation of buffers is associated with additional capital expendi-
tures and increases the inventory of parts. The problem consists in choosing the
volume of buffers based on the throughput of the line, the capital cost of the
installation of buffers and the inventory cost.

Significance of solving such problems of optimization of production lines is
shown in [28]. Economic effect of implementation of solution methods for such
problems in the car production is shown in [26] on the example of PSA Peugeot
Citroën.

Analysis of production lines subject to failures is usually conducted using
Markov models with discrete or continuous time under the assumption of geo-
metric or exponential distributions of time to fail and time to repair (see [10]).
The duration of processing a part can be assumed deterministic or random
(typically with geometric, Erlang or the exponential probability distribution).
In the case of continuous time and deterministic durations of parts process-
ing, some non-Markov transitions may be approximated by Markov transitions
under the assumption of exponential distribution of the corresponding random
variables [16,17,23]. At quite natural assumptions thus obtained Markov models
have a stationary distribution (see [24], Chap. 2) and the throughput as well as
the expected number of parts in each buffer are determined in the stationary
regime.

Most of the works in the literature on optimization of buffer volumes are
dealing with a single-criterion problem formulations (see [2,18,20]). Other stud-
ies consider more than one criterion, but using a weighted sum of criteria [1,12].
In [5], the ant colony algorithm and the evolutionary algorithm of [30] are
adapted for multi-criteria buffer allocation problem. Here the optimization crite-
ria are maximization of the throughput of the line, calculated with a simulation
algorithm, and minimization of the overall buffers volume. The well-known vari-
ant of multi-objective genetic algorithm [11] is adapted in [9] to the bi-criteria
buffers allocation problem, where the criteria are the throughput and the capital
cost of buffers installation.

In the present paper, we consider three criteria: maximization of average pro-
duction rate in the steady regime, minimization of capital costs for the instal-
lation of buffers and minimization of the average inventory cost for storage of
parts in the intermediate buffers.
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Exact methods of calculation of the average production rate are known for
two-machine tandem lines and, in some special cases, for the three three-machine
tandem lines (see e.g., the review [10]). For the general case, one can only apply
the approximate decomposition methods,approximate aggregation or simulation
methods [10,16].

In the present paper, we will not assume a specific type of distribution of
time to fail and time to repair or processing time of machines. Neither shall we
choose a specific method of computing the expected throughput and inventory
of a line. Instead of that, we will make two simple monotonicity assumptions
which hold in many different versions of the buffers allocation problem (see the
details below in Sect. 2).

Suppose that on the set of feasible solutions D, the vector function of criteria
f = (f1, f2) is specified with points f(x) = (f1(x), f2(x)) ∈ R

2, x ∈ D in the
criteria values space. In our case, f1 is a maximization criterion and f2 is a
minimization criterion. Let us define the Pareto dominance in the space R

2:
vector f = f(x), x ∈ D is Pareto-dominated by vector f̄ = f(x̄), x̄ ∈ D, if the
inequalities f1(x) ≥ f1(x̄), f2(x) ≤ f2(x̄) hold and there is at least one strict
inequality among them. A solution x ∈ D is dominated by a solution x̄ ∈ D, if
the vector f(x) is dominated by vector f(x̄) in the sense of Pareto. The set D̃ of
all non-dominated feasible solutions is called the set of Pareto-optimal solutions.
The total set of alternatives is a subset D0 ⊆ D̃ of a minimum size, such that
f(D0) = f(D̃) [27]. The Pareto Front is the set F := f(D̃). Given ε > 0,
the Pareto set ε-approximation D̃ε is a set such that for any Pareto optimal
solution x̃ ∈ D̃, there is a solution x ∈ D̃ε satisfying f1(x) ≥ (1 − ε)f1(x̃) and
f2(x) ≤ (1 + ε)f2(x̃).

In what follows, m denotes the number of machines in a production line, N
is the number of intermediate buffers, subject to optimization.

By system with a simple structure, we mean a system which consists of N par-
allel two-machine tandem lines with common input buffer and common output
buffer. An example of a system with simple structure is provided in Fig. 1.

Fig. 1. Example of a series-parallel line with simple structure (N two-machine tandem
lines in parallel)

In what follows, we consider the complexity of two bi-objective optimization
problems that ask to determine the buffers capacity in a production system with
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simple structure. The optimization criteria we consider are the same as in [13]:
the expected revenue due to line operation, the capital costs for installing buffers,
and the expected total inventory cost for intermediate products. The expected
revenue is supposed to be an increasing function of the expected throughput of
the system.

On the positive side, we propose two fully polynomial-time approximation
schemes (FPTASes) for approximation of Pareto front in the following two bi-
objective problem formulations: (i) the expected revenue maximization with
minimization of capital costs and (ii) the expected revenue maximization with
minimization of the expected inventory costs. An exact pseudo-polynomial time
algorithm is proposed for computing the Pareto front in the first problem, if the
buffers allocation cost is a linear function of buffer sizes with integer coefficients,
i.e. assuming integer buffer capacity costs.

On the negative side, we show that the canonical decision problems for the
above mentioned bi-objective problems are NP-hard even if the revenue is pro-
portional to the production rate and the buffers allocation cost is linear. In the
case of just one tandem two-machine line, both of the problems are complete mul-
tiobjective optimization problems in the sense of Emelichev and Perepelitsa [19]
and therefore intractable, i.e. their Pareto-front can be of exponential size in the
input size. We also show for both of these special cases that if the Pareto front
is computable in a polynomial time then P = NP holds.

The remainder of the paper is organized as follows. The assumptions of the
model of production line and the bi-objective problems formulation are presented
in the next section. Section 3 is devoted to the analysis of computational com-
plexity of bi-objective buffer allocation problems on the two-machine tandem
lines. This is followed by the analysis of computational complexity and approx-
imability of bi-objective buffer allocation problems for lines of simple structure
in Sect. 4. Finally some conclusions are drawn in Sect. 5.

2 Basic Properties and Definitions

2.1 An Illustrative Model of Production Line

Let us consider an illustrative example of a production systems under considera-
tion. Suppose that each machine of the system can be in an operational state or
under repair. An operational machine may be blocked and temporarily stopped
in case if there is no room in the downstream buffer. An operational machine
may be starved if there are no parts to process in the upstream buffer. Otherwise
operational machines are working.

A working machine is assumed to have a constant cycle time. It is supposed
that machines break down only when they are working. The times to fail and
times to repair for each machine are assumed to be mutually independent and
exponentially distributed random values. A detailed analysis of steady-state per-
formance of such systems and optimization of its parameters were carried out in
a number of works, see e.g. [3,8,12–17,23].
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2.2 Optimization Criteria and the Set of Feasible Solutions

Let the buffers in the system be denoted by B1, . . . , BN and let hj be the capacity
of buffer Bj , j = 1, ..., N , subject to optimization. Denote the vector of decision
variables by H = (h1, h2, . . . , hN ) ∈ Z

N
+ , where Z+ is the set of non-negative

integers. Let D = {H = (h1, ..., hN ) ∈ Z
N | 0 ≤ hi ≤ di, i = 1, ..., N} be

the set of feasible solutions, where d1, . . . , dN are the maximal admissible buffer
capacities.

The most commonly used optimization criteria are:

– the throughput, i.e. expected number of parts produced by the system per
unit of time in the steady state mode (expected steady state production rate)
V (H);

– the expected steady state inventory Q(H) = (q1(H), . . . , qN (H)), where
qj(H) ∈ [0, hj ] is the expected steady state number of parts in buffer Bj ,
j = 1, . . . , N .

Let us introduce the following additional notation, using the symbol Q for the
set of rational numbers:

– R(V ) is the revenue related to the production rate V , i.e. R : Q+ → Q+;
– B(H) is the cost of buffer configuration H, i.e. B : D → Q+;
– C(Q) is the cost of expected steady state inventory vector Q, i.e.

C : QN
+ → Q+.

In what follows, R(V ) is assumed to be a given non-decreasing function. In
the case of lines with simple structure, V (H), B(H) and C(Q) are assumed
to be given completely additively separable functions, non-decreasing in each
argument. Recall that f(x1, . . . , xn) is called completely additively separable if
f(x) = f(x1)+ . . .+ fn(xn) for some functions f1, . . . , fn, each a function of one
variable. We also make two technical assumptions: (i) functions V (H), B(H),
C(Q) Q(H) and R(V ) are computable in polynomial time, and (ii) denoting any
of these functions by f(·), we have the value | log f(·)| polynomially bounded in
the length of the problem input.

The cost function B(H) may be non-linear to model some standard buffer
capacities. A stepwise revenue function can be used to model zero revenue in
case of an unacceptably low throughput.

2.3 Formulation of the Bi-objective Problems

Let us use the following notation for the problems of finding a Pareto front:

– In (R,B)-Pareto, the criterion f1 is the expected revenue maximiza-
tion R(V (H)) and f2 is the minimization of buffer allocation cost B(H).

– In (R,C)-Pareto, the criterion f1 is the expected revenue maximiza-
tion R(V (H)) and f2 is the minimization of expected inventory cost C(Q(H)).
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In accordance with [4,25,29], by Canonical Decision Problem for the buffers
allocation problem with criteria pairs f1(H) → max, f2(H) → min, we mean the
following decision problem: Given an instance I of buffer allocation problem and
a pair (α, β) ∈ R

2
+, decide whether there exists a feasible buffers allocation H ′,

for which f1(H ′) ≥ α, f2(H ′) ≤ β.
Let us use the following notation for the canonical decision:

– In (V,linear B)-Dec, the criterion f1(H) ≡ V (H) and f2 is the minimization
of linear buffers allocation cost B(H) =

∑N
i=1 bihi.

– In (V,linear Q)-Dec the criterion f1(H) ≡ V (H) and f2 is the minimization
of linear inventory cost C(Q(H)) =

∑N
i=1 ciqi(H).

2.4 Monotonicity Properties

In what follows, we use the following two monotonicity assumptions for each
subsystem consisting of two machines, separated by a buffer Bi of size hi:

– M1. Monotonicity of expected throughput. V (H) is an increasing func-
tion of hi, i = 1, . . . , N .

– M2. Monotonicity of expected inventory. qi(H) is an increasing function
of hi, i = 1, . . . , N .

In the case of illustrative model presented in Subsect. 2.1, properties M1 and
M2 follow from the analytical solution of the system of Kolmogorov equations
describing the two-machine production system [8,17].

3 Computational Complexity of Bi-objective Buffer
Allocation Problems on Two-Machine Tandem Line

In the case of N = 1, we denote h := h1 = H and d := d1 for simplicity. Let
us consider two increasing functions V (h) and Q(h), defined for h = 0, 1, . . . , d,
and taking rational values.

Theorem 1. (i) If problem (R,B)-Pareto is polynomially solvable in case
of N = 1, then P = NP.

(ii) If problem (R,C)-Pareto is polynomially solvable in case of N = 1, then
P = NP.

The proof is similar to the proof of Proposition 1 in [13] and employs an idea
of Cheng and Kovalyov [7].

In [19], Emelichev and Perepelitsa give a definition of the complete multi-
objective problem. A multiobjective optimization problem with k objectives is
called complete if for any instance I of this problem with a set of feasible solu-
tions D, there exists a vector of criteria (f1, . . . , fk), such that D is the only
total set of alternatives w.r.t. (f1, . . . , fk), i.e. D0 = D holds.
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In view of the monotonicity assumptions for V (h) and Q(h), a straightforward
verification of the above definition indicates that (R,B)-Pareto and (R,Q)-
Pareto are both complete in the sense of Emelichev and Perepelitsa. Note that
d is a numerical parameter of the problem and |D| = d + 1. Together with
the completeness property, this implies that the cardinalities of Pareto fronts
of (R,B)-Pareto and (R,Q)-Pareto are not bounded by any polynomial in
problem input size and therefore these problems are intractable, according to the
terminology from [4,21].

4 Computational Complexity of Bi-objective Buffer
Allocation Problems on Lines of Simple Structure

Consider the bi-objective buffer allocation problem with criteria of expected
revenue R(V (H)) maximization and buffers installation cost B(H) minimization
on the set D, assuming that B(H) =

∑N
i=1 bihi where bi ∈ Z for all i = 1, . . . , N .

Proposition 1. In the case of lines of simple structure, the problem (V, linear
B)-Dec is NP-hard.

The proof of Proposition 1 is analogous to the proof [15] of NP-hardness of
the single-objective buffer allocation problem with the criterion of B(H) mini-
mization, given a lower bound on V (H).

Proposition 2. In the case of lines of simple structure, the problem (V,linear
Q)-Dec is NP-hard.

The proof of Proposition 2 is analogous to the proof [13] of NP-hardness of
the single-objective buffer allocation problem with the criterion of Q(H) mini-
mization, given a lower bound on V (H).

Proposition 3. In the case of lines of simple structure, the Pareto front of
buffer allocation problem with the criteria of expected revenue R(V (H)) maxi-
mization and buffers installation cost B(H) minimization is computable in pseu-
dopolymonial time, assuming integer bi, i = 1, . . . , N .

The proof of Proposition 3 is based on the dynamic programming method. It
is similar to the proof of pseudo-polynomial solvability of the Integer Knapsack
Problem.

Analogous claim for an arbitrary function B(H), increasing in each of its
arguments hi, is problematic. The reason is that the dynamic programming
method gives pseudopolymonial solvability only if the cardinality of the set of
values, taken by one of the optimization criteria, is polynomially bounded, given
polynomially bounded numerical input data. The same difficulty arises in com-
puting the Pareto set of the bi-objective buffer allocation problem with criteria
of the expected revenue R(V (H)) maximization and the expected inventory
cost C(Q(H)) minimization.
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It is possible, however, to convert the FPTAS for Generalized Knapsack prob-
lem [22] into FPTASes for the bi-criteria optimization problems, where expected
revenue R(V (H)) maximization is combined with buffers installation cost B(H)
minimization or with the expected inventory cost C(Q(H)) minimization. Recall
that a family of algorithms {Aε} is called a fully polynomial approximation
scheme (FPTAS) for a multiobjective optimization problem if for any input
instance and any ε > 0, the algorithm Aε runs in polynomial time w. r. t. the
size of the input and 1/ε, and outputs a Pareto set ε-approximation.

Theorem 2. In the case of lines of simple structure, there exist FPTASes for
(R,B)-Pareto and (R,C)-Pareto.

The proof is based on the general scheme suggested by Cheng et al. in [6] for
the construction of Pareto set ε-approximation of a bi-criteria problem.

5 Conclusions

We have established intractability of several special cases of buffer allocation
problem in bi-objective formulation using the proof ideas developed for the anal-
ysis of single-criteria formulations of the problem. Our results apply to different
particular models of production line, provided that two monotonicity conditions,
formulated here, are satisfied. On the positive side, we propose fully polynomial-
time approximation schemes for approximation of the Pareto front for two ver-
sions of buffers allocation problem and an exact pseudo-polynomial algorithm
based on the dynamic programming method.
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Abstract. We study a spare part supply system where both Traditional
Manufacturing and Additive Manufacturing (also know as 3D printing)
are used for replenishment of the spare parts inventories. Demands for
the spare parts occur according to a Poisson process, and the failed
parts are immediately replaced from the inventory, if available. If inven-
tory is not available, items are backordered and fulfilled when a spare
becomes available (i.e., a replenishment is received from one of the suppli-
ers). Additive Manufacturing offers the advantage of shorter lead times,
however, at higher production costs. Moreover, Additive Manufacturing
processes often have uncertain yield, leading to the fact that not every
produced part will satisfy the quality control and can be used to replen-
ish the inventory. In this paper, we propose a Linear Programming (LP)
based optimization problem that decides which of the processes to use
for replenishment of the inventory while minimizing the total (holding +
backorder) system costs.

Keywords: Spare part logistics · Dual sourcing
Additive Manufacturing · Markov-Decision Processes

1 Introduction

Spare part inventories play an important role in modern life, keeping downtime
of advanced capital goods within reasonable limits and ensuring availability,
safety and eco-friendliness of different production and service systems, cf. [1]. At
the same time, spare parts inventories have low turnover and form a substantial
cost item in the production or service budgets. One of the main reasons for
the large costs of spare parts inventories is the long replenishment lead-time, in
particular for customized parts manufactured using Traditional Manufacturing
(TM) technologies like milling, drilling or molding.

Additive manufacturing (AM), referred to as 3D printing, has greatly
improved in the last years and is often used as an alternative (sometimes even as
the main process) for the production of assembly components and replacement
parts. Due to the use of very computerized printers that do not require special-
ized skills, the production can be moved closer to the inventory location, thus
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 288–295, 2018.
https://doi.org/10.1007/978-3-319-93800-4_23
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reducing lead times considerably. However, (AM) often produces items that are
not of desired quality and the production costs might be higher than in Tradi-
tional Manufacturing (TM).

In this paper, we study inventory policies for the case where both AM and
TM may be used for replenishment. That is, depending on the stock level and
yield uncertainty, one may decide whether to source a spare part from an AM
or/and TM supplier.

This paper is related to the dual sourcing models, where suppliers have dif-
ferent lead times. Motivated by the offshoring phenomenon that became very
popular after the 1990s, these models assume an expensive supplier with shorter
lead-time and a cheaper supplier, with a longer lead-time. Due to the complexity
of the problem, however, the literature mainly focuses on models with certain
yield.

For a lead-time difference larger than one, it has been shown in [2] that the
optimal policy does not have a simple structure. In the recent years, several close
to optimal policies have been proposed in the literature for this problem [3–6].
Our model differs from these papers by taking into account yield uncertainty for
the supplier with short lead-times.

In the context of dual sourcing, uncertainty in supply has been considered
mainly regarding capacity or yield. [7,8], analyze periodic inventory models with
uncertain capacities of the faster supplier. [8] assumes that the fast supplier is
the in-house production unit, and is thus cheaper than the outside supplier,
who is merely used when in-house capacity is not sufficient. For the case with
no ordering costs and capacity restrictions revealed at the moment of order, [8]
show that a capacity dependent base stock policy for both suppliers is optimal.
A similar problem is studied in [7], however, under the assumption that the
capacity of the fast supplier is unknown at the moment of ordering. Both papers
assume a lead time difference of at most one.

Uncertain yield is mainly studied in the context of single sourcing [9–12].
For dual sourcing, the most studied form of random yield is when suppliers
face a random disruption (either can satisfy the whole order or nothing). [13]
looks at the joint pricing and inventory control problem under a finite horizon
for a firm with two suppliers, both facing random disruptions and price-sensitive
random demands. They show that when both suppliers are unreliable, for a lead-
time difference of one and disruptions following a Markov Chain, the optimal
inventory policy in each period is a reorder point policy and the optimal price
is decreasing in the starting inventory level in that period. To the best of our
knowledge, the only paper considering binomial random yield in the context of
dual sourcing with arbitrary lead time difference is [14]. The unreliable supplier
is the slow, cheaper supplier. They propose an approximate policy by reducing
the problem with uncertain yield to a dual sourcing problem with certain yield
and modified demand.

In our paper, we assume a dual sourcing model, where the quality of the items
delivered by the fast and expensive supplier (the AM supplier) is uncertain. This
supplier is used only to compensate for the long lead-times of the regular supplier
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(the TM supplier), which produces at lower costs, but has longer lead time. In our
model, we assume expensive items, that justify the assumption that orders are
placed when demands occur and have size at most one for each supplier (similar
to the (S−1, S) policy for single sourcing models). Note that when the order size
is one, random disruptions and random yield are equivalent, if the disruption
becomes known only upon delivery. We assume exponential lead times for both
suppliers. This assumption allows us to work with lead times with a difference
larger than 1, unlike the previous papers studying random disruptions.

The rest of the paper is organized as follows. In Sect. 2, we describe the prob-
lem and provide necessary assumptions and notations. In Sect. 3, we present how
the problem can be analyzed using the Continuous Markov Decision Process.
Finally, in Sects. 4 and 5, we present some numerical results and initial obser-
vations about advantages of using the Additive Manufacturing as a resupply
option.

2 The Problem

In this paper, we consider a single-site spare parts supply system. We assume that
demands for spare parts occur according to Poisson processes and the failed spare
parts are immediately replaced from the inventory, if available. If the replace-
ment parts are not available in the inventory, the failed parts are backordered
and fulfilled when a spare of the same type becomes available. When a demand
occurs, a replenishment order is sent out immediately, to either the TM or the
AM supplier, or to both see Fig. 1. The last option is necessary to compensate
for the uncertain yield of the AM supplier whose parts might not pass quality
control. When a part from the AM supplier does not pass the quality control, it
will be discarded. Replenishment times from both suppliers are assumed expo-
nentially distributed and independent of each other.

The decision of which supplier to use (the AM or the TM supplier) is based
on the trade-off between the higher purchasing costs (but shorter lead-times) for
the AM supplier and the lower purchasing costs (but longer lead-times) for the
TM supplier. The model below assumes only one type of items in the system.
This assumption, however, can be easily relaxed since the proposed optimization
model is fully separable, and the decisions for each item type can be taken
independently.

The main optimization challenge is to find an ordering policy that minimizes
the average per-period total cost, consisting of the ordering (production) costs,
the inventory holding costs, and the stockout (backorder) penalty costs.

2.1 Assumptions and Notations

In the remainder of the paper, we use the following assumptions and notations:

– λ: arrival rate of failed items; the arrival process is assumed to be Poisson.
– μTM and μAM : replenishment rates from the TM and AM suppliers;
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Fig. 1. System diagram

– P g: the probability of an item from an AM supplier to pass quality control
– CH : holding costs, paid per time unit per parts available in the inventory

(net inventory).
– cBO: Penalty costs (or backorder costs) incurred when the required part is

not available; paid per time unit per not available part,
– cTM , cAM : ordering costs from the TM and AM suppliers, correspondingly.

3 The Markov Decision Problem

The behavior of this inventory system can be modeled by a continuous time
Markov Chain (MC) with states given by s = (nI ,mTM ,mAM ), where

nI – items in the inventory (net),
mTM – items in the ordering pipeline at the TM supplier,
mAM – items in the ordering pipeline at the AM supplier.

Let αs, βs, and γs be binary variables that indicate whether the AM , TM
or both suppliers are used in state (nI ,mTM ,mAM ). We assume that

αs + βs + γs = 1, (1)

i.e., a replenishment order is always placed.
For a given ordering policy {(αs, βs, γs), s ∈ Ω}, the transition diagram is as

shown in Fig. 2. Please note, that when a part replenished by the AM process
does not satisfy the quality control (with probability 1 − P g), the total number
of parts (inventory + ordered) in the system drops by 1 (lower right node in
Fig. 2). Therefore, extra parts might be ordered at the next failure event (lower
left node in Fig. 2).

The equilibrium equations for the steady-state probabilities pnI ,mTM ,mAM

in this Continuous Time Markov Chain system (for all states s =
(nI ,mTM ,mAM ) ∈ Ω) are as follows:
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(nI , mTM , mAM )

(nI + 1, mTM − 1, mAM )

αnI+1,mTM−1,mAM λ

(nI + 1, mTM , mAM − 1) βnI+1,mTM ,mAM−1λ

(nI + 1, mTM − 1, mAM − 1)

γnI+1,mTM−1,mAM−1λ

(nI − 1, mTM + 1, mAM )

μTM (mTM + 1)

(nI − 1, mTM , mAM + 1)P gμAM (mAM + 1)

(nI , mTM , mAM + 1)

(1− P g)μAM (mAM + 1)

Fig. 2. Markov Chain flow diagram

(λ+mTMμTM + mAMμAM )pnI ,mTM ,mAM

= αnI+1,mTM−1,mAM λpnI+1,mTM−1,mAM

+ βnI+1,mTM ,mAM−1λpnI+1,mTM ,mAM−1

+ γnI+1,mTM−1,mAM−1λpnI+1,mTM−1,mAM−1 (2)

+ (mTM + 1)μTMpnI−1,mTM+1,mAM

+ P g(mAM + 1)μAMpnI−1,mTM ,mAM+1

+ (1 − P g)(mAM + 1)μAMpnI ,mTM ,mAM+1,

Adding the normalization equality
∑

s∈Ω

ps = 1 (3)

we obtain a system of independent linear equations that gives the steady-state
probabilities pnI ,mTM ,mAM .

We truncate the state space Ω by limiting the net inventory nI by the min-
imum and maximum possible inventory levels (nI

min and nI
max). We also limit

the number of items in pipelines, mTM and mAM , by mTM
max and mAM

max. At the
same time, the range nI

max − nI
min should not exceed max(mTM

max,mAM
max).

The goal of the model is to find an ordering policy {(αs, βs, γs), s ∈ Ω} that
minimizes the average per-period total cost consisting of the ordering (produc-
tion) costs, the inventory holding costs, and the stockout (backorder) penalty
costs:

min
α,β

∑

s∈Ω

[
cTMλ(αs + γs) + cAMλ(βs + γs) + cH(nI

s)
+ − cBO(nI

s)
−

]
ps (4)

where a+ and a− denote max(0, a) and min(0, a), and nI
s represents the first

component of state s.
The optimization problem consists of the objective (4), balance Eqs. (2–3)

and relation (1). Due to the multiplication of the variables α, β and γ by the
steady-state probabilities, the optimization problem is not linear. However, the
problem can be shown to be equivalent to a linear program, whose solutions are
integer (see for example [15,16]).
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3.1 Linear Programming Formulation

To create the LP formulation, we relax first the integrality condition for
(αs, βs, γs). As a result, these variables will present in fact probabilistic deci-
sions to order from TM or AM suppliers: in state s, a part will be ordered from
the TM supplier with probability αs, from the AM supplier with probability βs

and from both with probability γs.
Next, we introduce new decision variables:

yα
s = αsps,

yβ
s = βsps.

These new variables allow us to the rewrite the optimization problem (1–4)
as the following linear program:

min
α,β

∑

s∈Ω

[
cTMλ(αs + γs) + cAMλ(βs + γs) + cH(nI

s)
+ − cBO(nI

s)
−

]
ps (5)

s.t. (λ + mTMμTM + mAMμAM )pnI ,mTM ,mAM

= λ
[
yα

nI+1,mTM−1,mAM + yβ
nI+1,mTM ,mAM−1

+ pnI+1,mTM−1,mAM−1

− yα
nI+1,mTM−1,mAM−1 − yβ

nI+1,mTM−1,mAM−1

]
(6)

+ (mTM + 1)μTMpnI−1,mTM+1,mAM

+ P g(mAM + 1)μAMpnI−1,mTM ,mAM+1

+ (1 − P g)(mAM + 1)μAMpnI ,mTM ,mAM+1∑

s∈Ω

ps = 1 (7)

yα
s + yβ

s ≤ ps (8)

yα
s , yβ

s , ps ≥ 0 (9)

Note here that γs is substituted by 1 − αs − βs, hence γsps = ps − yα
s − yβ

s .
For this problems, it is possible to show (see for example [15]) that the optimal

yα
s and yβ

s are always equal either ps or 0. That is, the optimal αs and βs will
always be integer. Observe that when αs = βs = 0 corresponds to the situation
when we order from both suppliers.

4 Numerical Experiments

In this section, we present few numerical experiments to demonstrate advantages
of using the Additive Manufacturing as an extra supply option.

In the presented experiments, we use the following settings. The cost param-
eters and the probability that an AM supplied part is good are: cH = 1.0,
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cTM = 10.0, cAM = 100.0, cBO = 1000.0, P g = 0.9. The maximum and mini-
mum inventory levels (nI

max and nI
min) are set to 10 and −20, correspondingly.

For the failure and replenishments rates we following values:
λ = 0.1, 0.2, 0.3 – failure rates per year
μTM = 2, 3, 4 – lead times of 6, 4, and 3 month
μAM = 30, 50, 100 – lead times of 12, 7.5, and 3.6 days

The combinations of these failure and replenishments rates produce 27 experi-
ments, the results of which can be found in Table 1.

Table 1. The total cost and inventory cost reductions when additive manufacturing is
used as a secondary supply option.

Total cost reduction Inventory cost reduction
λλ

μTM μAM 0.1 0.2 0.3 μTM μAM 0.1 0.2 0.3
2 30 4.65% 0.53% 1.50% 2 30 33.83% 0.13% 0.03%

50 6.66% 0.81% 2.03% 50 33.83% 0.13% 0.03%
100 8.10% 1.54% 2.47% 100 33.83% 0.16% 0.03%

3 30 0.49% 0.01% 0.02% 3 30 0.16% 0.00% 0.00%
50 1.97% 0.02% 0.02% 50 0.16% 0.00% 0.00%
100 3.14% 0.06% 0.15% 100 0.16% 0.00% -0.01%

4 30 0.01% 0.01% 0.00% 4 30 0.00% 0.00% 0.00%
50 0.09% 0.02% 0.01% 50 0.00% 0.00% 0.00%
100 0.10% 0.02% 0.01% 100 0.00% 0.00% 0.00%

The results presented in Table 1 indicate that:

1. Additive Manufacturing can help reduce the total system cost despite its
higher costs and yield uncertainty.

2. The main reduction in cost is due to inventory cost reduction. Reducing
inventory costs plays an important role, due to the high costs of spare parts,
in particular of advanced equipment.

3. The cost reduction depends very much on the problem parameters, and the
larger savings are achieved when the TM supplier is slow.

4. The optimal policy is state dependent, making harder to derive simple order-
ing rules.

The obtained results are rather limited and are just to demonstrate the
advantages of the Additive Manufacturing in spare parts supply. At the same
time, the obtained optimization problem is linear and can be easily solved for
relatively large problem sizes using any commercial LP solver.

5 Conclusions

In this paper, we studied the spare parts supply system where both AM and
TM methods are used for replenishment of the spare parts inventories. One of
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the main aspects of our model is that we assume yield uncertainty in the replen-
ishments from the AM source. The obtained results indicate that the Additive
Manufacturing can be an interesting option for the replenishment, despite its
obvious drawbacks (price and yield uncertainty).
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7. Jakšič, M., Fransoo, J.: Dual sourcing in the age of near-shoring: trading off
stochastic capacity limitations and long lead times. Eur. J. Oper. Res. 267(1),
150–161 (2018)

8. Yang, J., Qi, X., Xia, Y.: A production-inventory system with Markovian capacity
and outsourcing option. Oper. Res. 53(2), 328–349 (2005)

9. Bollapragada, S., Morton, T.E.: Myopic heuristics for the random yield problem.
Oper. Res. 47(5), 713–722 (1999)

10. Henig, M., Gerchak, Y.: The structure of periodic review policies in the presence
of random yield. Oper. Res. 38(4), 634–643 (1990)

11. Inderfurth, K., Transchel, S.: Technical note on ‘Myopic heuristics for the random
yield problem’. Oper. Res. 55(6), 1183–1186 (2007)

12. Inderfurth, K., Kiesmüller, G.P.: Exact and heuristic linear-inflation policies for an
inventory model with random yield and arbitrary lead times. Eur. J. Oper. Res.
245(1), 109–120 (2015)

13. Gong, X., Chao, X., Zheng, S.: Dynamic pricing and inventory management with
dual suppliers of different lead times and disruption risks. Prod. Oper. Manag.
23(12), 2058–2074 (2014)

14. Ju, W., Gabor, A.F., van Ommeren, J.C.: An approximate policy for a dual-
sourcing inventory model with positive lead times and binomial yield. Eur. J.
Oper. Res. 244(2), 490–497 (2015)

15. Sleptchenko, A., Johnson, M.E.: Maintaining secure and reliable distributed control
systems. INFORMS J. Comput. 27(1), 103–117 (2015)

16. Knofius, N., van der Heijden, M.C., Sleptchenko, A., Zijm, W.H.: Improving effec-
tiveness of spare part supply by additive manufacturing as dual sourcing option.
Beta working paper series (530) (2017, submitted for publication)



A Genetic Algorithm for the
Pooling-Inventory-Capacity Problem

in Spare Part Supply Systems
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Abstract. We study a pooling-inventory-capacity problem that arises
in the design of repair shops for repairable spare part logistic systems.
We formulate the problem as a stochastic nonlinear integer programming
model and propose a two-stage sequential solution algorithm. At the first
stage, a genetic algorithm (GA) generates a set of feasible pooled repair
shop design schemes. A pooled design can be viewed and modeled as the
union of mutually exclusive and total exhaustive multi-class multi-server
queueing systems. Thus, we exploit this fact and optimize each queueing
system separately. In the second stage, optimal inventory and capacity
levels for each independent system are calculated by using a queueing
approximation technique and a local greedy heuristic. Finally, the per-
formed numerical experiments show that proposed two-stage approach
achieves high-quality solutions in reasonable time.

Keywords: Spare part logistics · Repair shop · Genetic algorithm
Queueing

1 Introduction

Maintenance plays a very important role in the modern life ensuring availability,
safety, and eco-friendliness of different production and service systems, cf. [1]. At
the same time, maintenance costs form a substantial cost item in the production
or service budgets. In production systems, maintenance related costs can be
typically anywhere between 15% and 70% of the total production expenses [2].

In our research, we study supply systems for repairable spare parts, where
malfunctioned parts or components are immediately replaced by ready-for-use
spares. The failed components are sent to a repairshop, and once the repair is
finished, they are forwarded back to stock as good as new. The repair shop has
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 296–308, 2018.
https://doi.org/10.1007/978-3-319-93800-4_24
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Fig. 1. Repair shop architecture for 2 failure types and 3 Cross-Trained Servers.

several multi-skilled parallel servers (technicians) that are capable of handling
certain types of spares, see Fig. 1.

Previously (see [3–5]), different simulation based evolutionary heuristics were
applied to optimize the skill assignments in the spare parts supply systems
described above. There was shown that the optimal assignments of skills could
reduce the total system cost by almost 30% compared to the cases where servers
can handle all failures. The presented heuristics used the simulation models for
objective function evaluation due to the lack of exact methods for analysis of
queueing systems with cross-training.

The simulation-based optimization methods, however, are very time-
consuming. Therefore, one can utilize the existing queueing theory models to
speed up the optimization of the skill-server assignments, in order to be able
to analyze bigger queueing systems. One of such models is the model for a
multi-class multi-server queueing system [6], where all incoming requests can be
processed by all servers, i.e. with “full” cross-training. The idea of pooled design
was analyzed in [7,8], where it was shown, that the best pooled design is very
often within the 10% range from the optimal solution.

In this paper, we propose a new Genetic Algorithm (GA) based optimization
heuristic where the search space is limited only to the pooled designs. This allows
us to use the existing exact queueing models and to speedup the evaluation of
the objective function.

The rest of the paper is organized as follows. Section 2 describes the assump-
tions and the optimization model of the studied problem. In Sect. 3, the pro-
posed optimization heuristic is presented. Numerical experiments comparing the
proposed heuristic with other optimization models are presented in Sect. 4. Con-
clusions and future research directions are discussed in Sect. 5.

2 Problem Definition and Optimization Model

We study a single echelon spare part supply system with one repair facility
and multiple repairable stock keeping units (SKUs) at stock points. The repair
facility may have several parallel multi-skilled servers with different amount of
cross-training as shown in Fig. 2. We focus on a design scheme known as pooling
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in which repairables are clustered by some measure of similarity. A repair shop
has a pooled structure if the spare parts are divided into several independent
and non-overlapping groups (clusters) and each cluster has their group of servers
as depicted in Fig. 2(b).

When a part fails in the system, it is immediately replaced by a ready-for-use
part of the same SKU type from the stock point, and the failed part is sent to
the repair shop (Fig. 1). If the spare is not available in the stock, the request is
backordered. In this case, the system goes down, and a downtime cost occurs
until the requested ready-for-use part is delivered. The failures of parts obey a
Poisson process with constant rates, and they are mutually independent of each
other. We assume the repair times are exponentially distributed and mutually
independent. We also assume the expected repair times depend on the SKU type
and are independent of the processing server providing that the server has that
skill to repair the failed part. We use first come first served (FCFS) queueing
discipline. This discipline implies that whenever a server gets idle, it picks the
failed part that has the longest waiting time in the queue, as long as the server
has the needed skill. These are the most commonly used assumptions in the
repairable spare part supply systems [9].

λ1

λ2

λ3

λ4

S1

S2

S3

S4

(a) Full Flexible

λ1

λ2

λ3

λ4

S1

S2
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S4

(b) Pooled (Partial cross-training)

λ1

λ2

λ3

λ4

S1

S2

S3

S4

(c) Dedicated (No cross-training)

Fig. 2. An example of possible different repair shop designs.

In addition to the common assumptions, we model each cluster inside the
repair shop as a Markovian multi-class multi-server M/M/k queueing system
with dedicated queues, i.e., every server inside a cluster can repair all SKUs that
are assigned to that cluster. Also, clusters inside the repair shop are mutually
exclusive (disjoint) and collectively exhaustive, i.e., a particular failed SKU can
be repaired at exactly one cluster, and all SKUs are assigned to exactly one
cluster. The rest of the assumptions can be found in [5].

We use the similar modeling approach developed in [8]. The parameters and
decision variables used for the development of stochastic model and solution
procedures are presented below.
Sets:

N : Set of distinct types of repairables (SKUs)
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Problem parameters:

λi: Failure rate of SKU type i (i = 1, . . . , |N |)

μi: Service rate of SKU type i (i = 1, . . . , |N |)

hi: Inventory holding cost of SKU type i per unit time per part (i = 1, . . . , |N |)

b: Penalty cost for each backordered demand per unit time, which is equivalent
to the cost of downtime of the system

f : Operation cost of a server per unit time

ci: Cost of having the skill to repair SKU type i per unit time per server
(i = 1, . . . , |N |)

ε: Very small positive real number

Decision variables:

Si: Initial inventory quantity (basestock level) kept in stock for SKU type
i (i = 1, . . . , |N |) and S =

(
S1, . . . , S|N |

)

zj : Number of the operational servers in the cluster j (j = 1, . . . , |N |)

xij : Binary variable indicating that whether the cluster j has the skill to repair
SKU type i (i = 1, . . . , |N |) or not

The objective function (1) shows the sum of costs included in the model.
The first term represents the cost of acquiring capacity (servers), whereas the
second term represents the cross-training cost of the servers in each cluster, the
third summation term shows the cost of holding spare parts inventories, and
backorder cost is represented by the last term. The backorder cost term is cal-
culated using the penalty cost b and the expected total number of backordered
parts EBOi [Si,X,Z] for each SKU type i in the steady-state; under the given
initial inventory level Si, pooling scheme of the repair shop X and the server
assignment policy Z. The variable X represents the (|N | × |N |)–matrix of the
binary decision variables xij denoting how SKUs are pooled in the repair shop.
The variable Z represents a 1 × |N |– row matrix of integer decision variables zj

denoting the number of servers in each cluster of the repair shop. Constraints
(2) guarantee that an SKU is assigned to the exactly one cluster. The overall
utilization rate of a particular cluster k (

∑N
i=1 xikλi/μi) must be strictly smaller

than capacity (total number of servers in the cluster zk) of that cluster, which is
ensured by Constraints (3). Constraints (4) restrict xij to be binary so that clus-
ters in any pooling scheme X become mutually exclusive and totally exhaustive.
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The remaining constraint sets (5) and (6) are required the decision variables to
be integers and non-negative.

min
S, X, Z

|N |∑

j=1

fzj +
|N |∑

j=1

zj

⎛

⎝
|N |∑

i=1

cixij

⎞

⎠ +
|N |∑

i=1

hiSi + b

|N |∑

i=1

EBOi [Si,X,Z] (1)

Subject to:
|N |∑

j=1

xij = 1 i ∈ {1, . . . , |N |} (2)

|N |∑

i=1

xij
λi

μi
≤ (1 − ε) zj j ∈ {1, . . . , |N |} (3)

xij ∈ {0, 1} i, j ∈ {1, . . . , |N |} (4)

zj ∈ {0} ∪ Z
+ j ∈ {1, . . . , |N |} (5)

Si ∈ N0 i ∈ {1, . . . , |N |} (6)

3 A Two-Stage Solution Heuristic

An arbitrary pooling policy X is a feasible solution to the above model iff it cor-
responds to a partition of the set of SKUs, N . The number of ways a set of |N |
elements can be partitioned into non-empty subsets is called a Bell number. The
number of possible pooling schemes X; i.e., partitions, increases exponentially
for increasing number of SKUs in the system. That is, the presented optimization
problem is most probably NP-hard, as many other clustering problems. There-
fore, we search for the optimal pooled repair shop design policy, X, by utilizing
a genetic algorithm (GA) based heuristic. This GA based heuristic, generates,
first, a set of feasible pooled repair shop design policies. Afterwards, these candi-
date feasible solutions (policies) are passed through fitness evaluation function to
find optimal values of server assignment policy Z and inventory levels of spares
S. Figure 3 presents details of the proposed solution algorithm. The details of
the algorithm are provided in the following subsections.

3.1 Pooling Policy Generation via GA

The GA is a stochastic optimization technique that depends on a random-based
searching mechanism, and it has been successfully adapted in many areas to
solve a large number of optimization problems [10]. GAs are inspired by natural
selection and biological evolutionary philosophy. A population of individuals is
represented by a chromosome, a string of information which is randomly gen-
erated [4]. Figure 4 shows the chromosome encoding procedure chosen in this
study. Each chromosome corresponds to a particular repair shop design policy,
X. Every chromosome in the population has |N | genes. The value of the gene
i indicates the cluster that SKU type i is assigned into. Each chromosome also
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Fig. 3. The proposed GA-integrated two-stage sequential solution algorithm.

2 2 26 93 3 34 4

SKU 1 SKU 10

Fig. 4. An illustrative chromosome representation for a pooled design

carries information about the number of clusters exist in the repair shop. The
total number of distinct integer in the chromosome represents the number of
clusters. For example in Fig. 4, there are five clusters and SKUs 1, 5 and 10 are
in the same cluster.

The algorithm starts by creating an initial population of individuals (chromo-
some); i.e., feasible pooling policies. The value of genes is generated by assigning
a random integer from 1 to |N | with equal probability. Then, individuals in the
population are evaluated for fitness; i.e., total cost/objective function in Eq. (1).
The details of fitness evaluation are discussed in the Subsect. 3.2.

Individuals that have better fitness are used to produce new offspring solu-
tions which have a greater chance of being superior to the previous population
of individuals. Less successful individuals from the previous generation are con-
sequently deleted [4]. Selection processes in GA determine which solutions are to
be preserved and allowed to reproduce and which ones deserve to die out. There
are different techniques to implement selection in GAs. We chose tournament
selection with tournament size 10. In tournament selection, several tournaments
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are played among a few individuals. The individuals are chosen at random from
the population. The winner of each tournament is selected for next generation.

Crossover is an operation where two chromosomes (parents) partially con-
tribute characteristics to a new chromosome (child). We use a uniform random
one-point crossover technique to generate new feasible pooling policies. After
crossover, we apply mutation operation to randomly selected individuals. Muta-
tion operation is used to avoid trapping in local optima and to explore new
pooling policies. We develop and try two different mutation operations as illus-
trated in Fig. 5.

(a) switch-mutation: The procedure in which a random gene is chosen and
switched to the value of another gene in the chromosome with equal prob-
ability.

(b) swap-mutation: The procedure in which two genes are selected at random,
and then they are swapped by value.

Table 1 documents GA parameters and functions used in the solution algo-
rithm development.

2 2 26 93 3 34 4

2 2 26 93 3 24 4

2 2 26 93 3 34 4

2 2 36 93 3 24 4

Fig. 5. An illustrative (a) switch-mutation (b) swap-mutation operations

Table 1. Summary of genetic algorithm parameters and details.

Parameter Value

Population size 100

Number of generation 25

Crossover rate 0.8

Chromosome mutation rate 0.4

Switch-mutation probability 0.5

Swap-mutation probability 0.5

Operation Detail

Initial population Uniform random integer ∈ [1, |N |]
Fitness evaluation Queuing approximation and local search

Selection Tournament selection

Crossover One-point uniform

Mutation(s) Switch

Swap
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3.2 Fitness Evaluation

After the generation of the pooling policies X by above described GA procedures,
multi-class multi-server solver and local search algorithm are called to evaluate
the fitness (total cost) of each policy in the population as shown in Fig. 3.

Each cluster in X can be analyzed and optimized separately due to the clus-
ters being mutually exclusive and independent from each other. For each cluster,
the local search takes into account trade-off between adding an extra server to the
cluster and decreasing the spare inventories in that cluster. The local search algo-
rithm is basically a greedy search to find the optimal number of servers zk in the
cluster k by solving newsboy-like subproblems (see [11] for details).

To solve above-mentioned newsboy-like subproblems, the probability distri-
bution of the number of failed SKU type i at the steady-state, pi (q), is needed
to find the value of EBOi [Si,Z,X]. In this direction, each cluster k in the repair
shop for a given number of servers zk is modeled as a multi-class multi-server
M/M/zk queueing system. The method proposed by [6] is deployed to analyze
multi-class multi-server M/M/zk and to derive the probability distribution of
the number of failed SKU type i. When the number of SKU types and number
of servers are reasonably large in the cluster, this method may become com-
putationally expensive in terms of running time. Thus, we utilized queueing
approximation algorithms discussed in [12,13]. By this approximation, marginal
probability distribution (and several performance characteristics) of the SKU
type i in the cluster k is derived by aggregating all other SKUs in the cluster k
into a single SKU type (class). To obtain the remaining probability distributions
for the other SKUs in the cluster, the procedure is repeated [8,11].

Figure 6 visualizes how N -class M/M/zk system is decomposed into N inde-
pendent 3-class M/M/zk for approximation, where ΛA and ΛA′ denote the
arrival rates of aggregated classes.

λN

N -class M/M/zk system

λ1

⇒

Original System

ΛA
′

3-class M/M/zk system

λ1

ΛA + +

λN

3-class M/M/zk system

ΛA

ΛA
′

Decomposed Approximated System

Fig. 6. Approximation of an N-class M/M/zk queueing system with decomposition
into N 3-class M/M/zk subsystem

We can find the optimal value of inventory levels S for each SKU by using
the approximated distributions, p̃i (q). The smallest Si value that satisfies the
following equation is the optimal inventory level for given X and Z (see [14] for
details).

Si∑

q=0

p̃i (q) ≥ b − hi

b
i = 1, . . . , |N | (7)
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4 Numerical Study

In this section, first, we describe the experiment testbed used for the numerical
study in Subsect. 4.1. Then, we test the proposed solution algorithm under dif-
ferent input settings. In this direction, Subsect. 4.2 presents the total system cost
reductions achieved by the proposed algorithm in comparison with fully flexible
and dedicated repair shop designs, and Subsect. 4.3 documents the run-times of
the proposed optimization algorithms under different factors.

4.1 Testbed

For benchmarking, we use the same testbed of instances as in [5,8]. In this
dataset, a full factorial design of experiment (DoE) with seven factors and two
levels per factor is used to generate a total of 128 instances. The number of
SKUs, N , and the initial total number of servers, M , are the first two DoE
factors with levels 10 and 20 for the numbers of SKUs, and 5 and 10 for the
initial numbers of servers. The failure rates and the service rates are generated
based on the system (repair shop) utilization rate with the assumption that all
SKUs are processed on all servers, i.e., a repair shop design with one cluster and
fully flexible servers. The system utilization rate, ρ, is the third design factor
with levels 0.65 and 0.80. For the chosen utilization rate, we randomly generate
two sets of parameters:

(a) the failure rates λi, such that
∑N

i=1 λi = 1, and

(b) workload percentages δi, such that
∑N

i=1 δi = 1.

Using the generated λi and δi, we produce the service rates μi as μi = λi

δiρM ,
where δiρM is the total workload of SKU type i. The pattern of the holding costs,
hi, is the fourth design factor with two variants (levels): (i) IND: completely ran-
domly (independent) within a range [hmin, hmax], and (ii) HPB: hyperbolically
related to the workloads wi = λi/μi = δiρM :

hi =
hmax − hmin + 10
9 wi−wmin

wmax−wmin
+ 1

− 10 + hmin + ξi

where

ξi ∈ U [−hmax − hmin

20
,
hmax − hmin

20
], wmin = min

i=1,...,N
wi

and wmax = max
i=1,...,N

wi

The parameters of the hyperbolic relation are chosen such that it replicates
some of the real-life scenarios where more expensive repairables are repaired less
frequently. The minimum holding cost, hmin, is the fifth factor with levels 1 and
100. The maximum holding cost is fixed at 1,000. The server cost, f , and the
skill cost, ci, are the last two factors in our DoE. The server cost levels are set as
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10,000 and 100,000 (10hmax and 100hmax). The skill cost is assumed as 1% or
10% of the chosen server cost for all SKUs. The penalty cost, b, is set as fifty-fold
of the average holding cost so that about 98% of requests can be met from spare
stocks. That means the probability of backorder is only 0.02. The overview of
all factors and levels are presented in Table 2.

Table 2. Problem parameter variants for test bed.

Factors Levels

No. of SKUs (N) 10, 20

No. of initial servers (M) 5, 10

Utilization rate (ρ) 0.65, 0.80

Minimum holding cost (hmin) 1, 100

Maximum holding cost (hmax) 1000

Holding cost/Workload relation IND, HPB

Server cost (f) 10hmax, 100hmax

Cross-training cost (ci) 0.01f , 0.10f

Penalty cost (b) 50
∑N

i=1 λihi∑N
i=1 λi

4.2 Cost Reduction

Using the proposed pooling-based GA heuristic, we find the optimal pooling
scheme together with optimal capacity and inventory levels of spares for the
cases described in the previous subsection. We compare the total system cost
with the costs obtained from fully flexible (as in Fig. 2(a)) and dedicated (as in
Fig. 2(c)) designs.

We define two metrics ΔFlexible
GA and ΔDedicated

GA . The metric ΔFlexible
GA rep-

resents the relative percentage difference between the total cost of the pooled
design found by pooling based GA heuristic and the total cost of the fully flexi-
ble design. In the same manner, ΔDedicated

GA denotes the relative percentage gap
between the total cost of the pooled and the dedicated designs.

Figure 7 shows pair-wise total cost comparisons for different problem factors.
When all the test cases are considered, the pooled designs found by proposed
heuristic can yield ∼44% and ∼21% cost savings in comparison with dedicated
and fully flexible designs, respectively. In only 11% of the cases (15 out 128) in
the testbed, the fully flexible repair shop designs outperform the pooled designs
in terms of the total system cost. Figure 7 also indicates that dedicated repair
shop designs are not cost-effective because of to the excess idle server capacity
and high total capacity acquisition cost. Dedicated designs are outperformed by
proposed heuristic in all of the test cases, and in 25% of cases (32 out of 128),
dedicated designs achieve a better (lower) total system cost compared to fully
flexible systems.
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Fig. 7. Pair-wise total cost comparison with fully flexible and dedicated systems

4.3 Run-Time Performance

We implement the algorithm and run all the experiments on a computer with
16 GB RAM and 2.8 GHz i7 CPU. The run-time distributions of solution algo-
rithm under different factors are provided in Fig. 8. On an average, the presented
pooling-based GA heuristic converges the best solution in 1456 CPU seconds.
The worst case performance is around 4000 CPU seconds, which is acceptable
for tactical and operational level decisions in real-life spare part supply systems.
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Fig. 8. Run-time performance of solution algorithms under varying factors

The computational study shows that the increasing problem size (number of
SKUs and the number of initial servers) has a negative impact on the run-time
of the algorithm due to the increasing effort to solve the multi-class multi-server
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queueing system approximation. Interestingly, the cross-training cost factor indi-
rectly affects the size of multi-class multi-server queueing problem that has to be
solved several times during execution of the algorithm, which results in longer
run-times.

5 Conclusions

An effective spare part supply system planning is essential to achieve a high cap-
ital asset availability. In this direction, a two-stage sequential solution heuristic
is developed to solve repair shop design problems in the spare parts supply sys-
tems. The developed algorithm uses a GA and queueing approximation as its
subroutines to find and evaluate possible pooled repair shop designs. The pro-
posed methodology achieves lower total system costs in comparison to dedicated
and fully flexible designs within reasonable run-times.

As future research, to test the applicability of the methodology with real-
life cases (with larger problem sizes; i.e., a larger number of SKUs) would be
an invaluable contribution. Improving the performance of the GA by developing
new mutation and crossover operations would be worthwhile. We also plan to use
other metaheuristics such as simulated annealing and particle swarm optimiza-
tion rather than GA to generate feasible pooling schemes. Integrating pooling
decision with static and dynamic routing and prioritization rules in the part
repair processes would provide interesting managerial insights.
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Abstract. We study a new bin packing problem with a color constraint.
A finite set of items and an unlimited number of identical bins are given.
Each item has a set of colors. Each bin has a color capacity. The set of
colors for a bin is the union of colors for its items and its cardinality
can not exceed the bin capacity. We need to pack all items into the
minimal number of bins. For this NP-hard problem, we design the core
heuristic based on the column generation approach for the large-scale
formulation. A hybrid VNS matheuristic with large neighborhoods is
used for solving the pricing problem. We use our core heuristic in the
exact branch-and-price method. Computational experiments illustrate
the ability of the core heuristic to produce optimal solutions for randomly
generated instances with the number of items up to 250. High-quality
solutions on difficult instances with regular structure are found.

Keywords: Branch-and-price · Column generation · Matheuristic

1 Introduction

In the classical bin packing problem, a set of weighted items must be packed into
the minimal number of identical bins so that the sum of weights of items in each
bin does not exceed the bin’s capacity. In this paper, we continue to study a
new variant of the bin packing problem with a color constraint [13]. We assume
that each item has some colors rather than a weight. The bin capacity limits
the total number of colors for its items. The goal is to pack all items into the
minimal number of identical bins so that the total number of colors in each bin
does not exceed the bin capacity. It is a NP-hard problem in the strong sense
and the classical bin packing problem can be reduced to it [16].

The bin packing problem [9] with color constraints (BPC) is a recent line
of research in combinatorial optimization. One of the applications of the prob-
lem is in the beverage package printing [16]. In [19] the bin packing problem
with classes of items (colors) is used to model video-on-demand applications.
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A biclique covering (biclustering), which is a straight reformulation of the BPC,
is used to model protein-protein interactions [5].

There are some versions of the problem with online and offline settings [3,17].
In the colored bin packing [4], each bin has a maximum color capacity, i.e. a limit
on the number of items of a particular color. This version is originated in the
production planning of a steel plant. In a generalized version of the color bin
packing problem [10,15], a conflict graph describes some constraints for the items
in the same bin. In the black and white bin packing problem with alternation
constraints [2], two items with the same color cannot be packed adjacently to
each other.

In this paper, we continue to research a new version of the color bin packing
problem which is a special case of the co-printing problem [13,16]. We assume
that each item has zero weight and a set of colors. We design the branch-and-
price method for this problem based on the large-scale reformulation. Following
this framework, column generation procedure is implemented and additional
stabilization constraints are added to speed up convergence of the procedure [7].
The VNS matheuristic with large neighborhoods is used for solving the pricing
problem [13]. To obtain upper bounds, we consider the set of generated columns
as a core of this problem and apply commercial solver (GUROBI) to this core.
A similar idea was suggested by Avella et al. [1] for solving large-scale p-median
problem by Lagrangian relaxations. It is interesting to note that the solver is
very efficient in the case of core subproblem, although we spend a lot of efforts
to perform the initial column generation procedure.

In our computational experiments, we observe that such core heuristic pro-
vides strong results even for a subcore when we terminate the column generation
at an intermediate step for large instances. We illustrate this useful idea in com-
putational experiments for instances with the number of items up to 500. The
core heuristic has found optimal solutions for all test instances with the num-
ber of items up to 250 if each item has a random subset of colors. Moreover,
integrality gap is 0 for this class of instances. A similar effect is known for the
classical bin packing problem. Lower bound coincide with upper bound in the
root of branching tree and such random instances are easy for our approach.
Therefore, we design a set of difficult instances based on the idea from [12].
We create the random instances by the following rule: all items have the same
number of colors and each color is used in the same number of items. For such
regular instances, the integrality gap is positive, up to 20%, the branching tree
is non-trivial and the running time increases rapidly when dimension grows.
Nevertheless, the core heuristic produces optimal or near optimal solutions with
minimal deviation from the optimal value.

The paper is organized as follows. In Sect. 2 we introduce notations and the
mathematical model for the BPC with a large number of variables. In Sect. 3
we outline the branch-and-price scheme. In Sect. 4 we describe column gener-
ation procedure and its usage during the branch-and-price method. To reduce
the number of iterations of the column generation method, we introduce deep
dual-optimal inequalities to the restricted master problem. In Sect. 5, we design
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our core heuristic. Finally, Sect. 6 presents computational experiments for the
random and difficult test instances with large integrality gap.

2 Mathematical Model

Let us introduce the following notations:

I = {1, . . . , n} is the set of items;
J = {1, . . . , m} is the set of colors;
Ki ⊂ J is the set of colors for item i;
b is the upper bound for number of different colors in each bin;
p = (p1, . . . , pi, . . . , pn) is a bin pattern, or bin for shot, where pi ∈ {0, 1} denotes
whether item i is in the bin or not;
P = {p : | ∪i∈I(Ki : pi = 1) |≤ b} is the set of all feasible bins.

Decision variables:
yp = 1 if bin p is used in the solution and yp = 0 otherwise.

Now we can write the BPC problem as follows:

min
{ ∑

p∈P

yp :
∑
p∈P

piyp ≥ 1, i ∈ I, yp ∈ {0, 1}
}

. (1)

We use this large-scale formulation for our methods for several reasons. First
of all, the large-scale formulation allows us to avoid symmetries which usually
accompanies compact bin packing representations [14]. Second, large-scale for-
mulations, as a rule, have small integrality gap even for the classical bin packing
problem [11]. Despite the tremendous size of the resulting problem, it’s relaxation
can be solved with the column generation technique and the optimal solution
can be found via the branch-and-price method.

To present column generation approach described in Sect. 4, we need to intro-
duce relaxed model with continuous variables ȳp, p ∈ P to which we will also
refer as the master problem:

min
{ ∑

p∈P

ȳp :
∑
p∈P

piȳp ≥ 1, i ∈ I, 0 ≤ ȳp ≤ 1
}

. (2)

The optimal solution of this model gives us lower bound. These bounds are
actively used in the branch-and-price method described in Sect. 3.

Another interesting formulation of the BPC problem can be done in terms of
bipartite clique covering. Let G(V1, V2, E) be the bipartite graph with parts of
vertices V1, V2 and set of edges E ⊂ V1 × V2. A biclique Kst in G is a complete
bipartite subgraph with s vertices from V1 and t vertices from V2. We wish to
cover vertices from V1 by a minimal number of bicliques for large t, t ≥ D for
given threshold D. It is easy to see that the BPC problem is equivalent to this
biclique covering problem. We put V1 = I, V2 = J and an edge (ij) belongs to
E if j �∈ Ki. Each feasible bin in the BPC problem is a biclique in the covering
problem and vice versa.
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3 Branch-and-Price Method

The branch-and-price technique utilizes the column generation approach for solv-
ing linear programming relaxation. This relaxation generates tight lower bounds,
which reduces the total amount of iterations required to find global optima.

Branching scheme corresponds to the one described in [18], referred as
“branching based on a set of bounds on the components of q”. A similar scheme
was used in [16]. Two types of branches are applied:

1. Applied whenever the sum of optimal LP variables ȳ corresponding to bins
containing item i is not integer:

∑
pi>0 ȳp = α is fractional. Then the two

nodes are added into the branching tree:
∑
pi>0

ȳp ≥ �α	 ;
∑
pi>0

ȳp ≤ 
α�. (3)

2. Applied if the sum is integer, but some of the variables are fractional. These
branch inequalities forces (or forbids) usage of particular item combination
in a bin. Let q = (q1, ..., qn) be the so-called partial bin, with at least two
different items. Then the branching constraints are defined as follows:

∑
p≥q

ȳp = 1 ;
∑
p≥q

ȳp = 0, (4)

where p ≥ q means pi ≥ qi for all i ∈ I.

Inequalities (3) and (4) are added to Model (2) at each node of the search
tree. As shown for a general column generation procedure in [18], branching
scheme described above can eliminate all fractional solutions. In Sect. 4 we’ll
demonstrate corresponding changes in pricing problem.

Now a general overview of a procedure can be given:

1. Find the optimal solution for the relaxed master problem (2): the result will
be an initial lower bound.

2. Obtain upper bound for the integer problem with a core heuristic, described
in Sect. 5.

3. If upper bound does not equal to lower bound, determine an item i for which
a fractional column exists.

4. If the sum of the columns containing item i is fractional, branch according
to the first type, else determine a partial bin and branch according to the
second type.

5. Re-optimize an LP, apply core heuristic and repeat from step 3.

Partial bin for the second type of branching selected as follows. An item i
which is combinable with the minimum number of other items is selected. Then,
the partial bin is extended with the minimum number of other items such that
sum

∑
p≥q ȳp is fractional. If at some previous level of branching tree a partial

bin is already opened, we extend that bin instead of opening new bin.
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As we’ll demonstrate in Sect. 6, for random examples optimal value for Model
(2) doesn’t differs significantly from optimal value for Model (1). In other words,
integrality gap of Model (1) is relatively small: usually lesser than one bin for
random examples. However, calculation of lower bound requires solving Model
(2), which can be challenging due to a huge number of columns. A column
generation approach, which will be described in the next section, is applied to
solve this problem.

4 Lower Bounds

According to the classical column generation approach, we restrict ourselves to
a small subset P ′ ⊂ P , initially generated by some heuristic. Then at each
iteration, a pricing problem is solved, and new columns with negative reduced
cost are generated. We add all such columns to the restricted master problem.
Now we consider the dual linear programming problem to the master problem:

max
{∑

i∈I

wi :
∑
i∈I

piwi ≤ 1, p ∈ P ′, wi ≥ 0
}

, (5)

where the dual variable wi can be considered as a price for item i. To enlarge
the subset P ′ or terminate the method, we should solve the following pricing
problem with optimal values w∗

i of the dual variables.
Let us introduce additional variables:

xi = 1 if item i is placed in a bin and xi = 0 otherwise.

zj = 1 if a bin contains item with color j and zj = 0 otherwise.

Let us also introduce additional parameters and variables which is required
to properly account branching constraints.

1. For each constraint of type
∑

pi>0 ȳp ≥ �α	 we add variable ρi to (5), let ρ∗
i

be an optimal value;
2. For each constraint of type

∑
pi>0 ȳp ≤ 
α� we add variable σi to (5), let σ∗

i

be an optimal value;
3. For each constraint of type

∑
p≥q ȳp = 1 we add new item t with color set

Kt = ∪i:qi>0Ki. Such color set forces any newly generated bin, which contains
item t, to contain all items that lying in partial bin q, and vice versa. We
aggregate all such items in set T ;

4. For each constraint of type
∑

p≥q ȳp = 0 we add corresponding partial bin q
to a set Q. These partial bins induce new constraints in pricing problem, mod-
ifying search space for new columns in a way that every bin which contains q
will not be generated.

Now the pricing problem can be stated as follows:

min(1 −
∑

i∈I∪T

(w∗
i + ρ∗

i + σ∗
i )xi)
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s.t.
∑
j∈J

zj ≤ b;

xi ≤ zj , j ∈ Ki, i ∈ I ∪ T ;
∑

i:qi=1

xi ≤ |q| − 1, q ∈ Q;

xi, zj ∈ {0, 1}, i ∈ I ∪ T, j ∈ J.

The objective function minimizes the reduced cost. The first constraint controls
the total number of colors for a bin. The second constraint shows the relations
between items and colors. The third constraint induced by branching, as we’ve
described above. It is easy to see that a knapsack problem can be reduced to
the pricing problem, and as a result, the pricing problem is NP-hard. A block
diagram for the column generation procedure is presented in Fig. 1.

Fig. 1. Block diagram of the column generation method

To reduce the number of iterations of the column generation method, we
introduce deep dual-optimal inequalities [7] to the restricted master problem. It
is a set of restrictions, which, if added to the dual problem, does not cut off at
least one optimal solution. The following proposition establishes a foundation
for our inequalities:

Proposition 1. Let I0, I ′ be two disjoint sets of items such that ∪i∈I0Ki ⊇ Ki′

for all i′ ∈ I ′. Then there exist a dual optimal solution w∗ for the restricted
master problem such that

∑
i∈I0

w∗
i ≥ ∑

i′∈I′ w∗
i′ .

Proof. It is easy to verify that the set of constraints in model (1) has the (s, t)
exchange property, with si = 1 if i ∈ I0, ti = 1 if i ∈ I ′ and 0 otherwise, as
defined in [7]. Indeed, set of items I0 can be replaced with all items from I ′

without breaking the capacity constraint. Therefore, using Proposition 2 from
[7], the cut

∑
i∈I0

w∗
i ≥ ∑

i′∈I′ w∗
i′ is a dual-optimal inequality. �
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At each iteration, we identify a set of items I0 for which an inequality
∑
i∈I0

w∗
i <

∑
i∈{i|Ki⊆∪i′∈I0

Ki′ }\I0
w∗

i (6)

holds, and add it to the master problem. We will demonstrate the efficiency of
those inequalities in Sect. 6.

To solve pricing problem and generate new column effectively, we apply pre-
viously designed the hybrid VNS matheuristic [13]. It can be applied into the
branch-and-price method with minor modifications only:

– Branching constraints of type 1 modify only cost of items in the pricing
problem;

– Each branching constraint of type
∑

p≥q ȳp = 1 induces one new item with
the same structure as any other item;

– Each branching constraint of type
∑

p≥q ȳp = 0 induces new constraint. This
constraint can be accounted by GUROBI [8] while obtaining any solution
from any neighborhood described in [13].

When optimal solution for Model (2) is found, we can apply the core heuristic
described in the next section to obtain a feasible solution for the BPC.

5 Core Heuristic

Three heuristics for the BPC are presented in [13]. Two of them, the well-known
FFD heuristic for the classical bin packing problem and so-called FillBin heuris-
tic produce weak solutions, but they do not require the optimal solution to the
Model (2). Third heuristic, LP heuristic, produce much better solutions, but it
can be used only at the last iterations of the column generation method.

Now we introduce a new core heuristic which produces better solutions than
previously mentioned ones. Although it also requires the optimal solution to
the Model 2, this heuristic works faster and produce better solutions than LP
heuristic.

Formal description of the core heuristic is the following: after the column gen-
eration procedure terminates, we find optimal integer solution for the restricted
master problem. To get a solution at some level of the branching tree, we only
need to find the optimal solution that satisfies the branching constraints. We
use commercial solver GUROBI to this end. The idea was inspired by [1] for
the large-scale p-median problem. But instead of Lagrangian relaxation to the
compact problem representation, we use the column generation method to the
large-scale problem formulation. Moreover, as we will see late, we can apply a
truncated version of this approach for large-scale instances as well.

According to our computational experiments, the integrality gap in the
restricted master problem is close to zero for randomly generated instances.
As a rule, at least one optimal solution belongs to the problem’s core. For this
reason, we can find optimal integer solution with GUROBI easily. Nevertheless,
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there are some difficult instances with a large integrality gap, as we will see
in Sect. 6. For these instances, running time of the core heuristic can increase
dramatically.

6 Computational Experiments

We conduct our computational experiments for the randomly generated test
instances in 10 sets of parameters n, m and b. For each set, we generate 10
instances. Thus, the total amount of tests is equal to 100. The color set Ki for
each item is generated by the following rule. We uniformly choose an integer l
from 1 to b and uniformly choose a 0–1 vector with exactly l ones.

Table 1. Computational results for three variants of the column generation method

n m b v1 v2 v3

It C T It C T It C T

150 55 30 87 261 2256 110 313 2601 89 270 2893

175 55 30 122 294 2691 143 339 3055 124 302 2914

200 55 30 98 316 2772 132 342 3258 105 312 3151

225 55 30 119 322 3024 148 361 3406 120 331 3383

250 55 30 141 347 4017 170 405 4249 141 341 4373

150 90 40 101 277 2318 128 320 2913 105 282 2766

175 90 40 125 305 2652 151 334 3122 124 317 3078

200 90 40 136 329 2910 154 357 3289 136 335 3166

225 90 40 156 362 3573 183 398 4170 157 367 3884

250 90 40 202 481 5837 257 530 6714 210 486 6526

Table 1 presents the results of our experiments for different variants of the
column generation method. Column It is the averaged amount of column gener-
ation iterations among 10 instances, column C is average amount of generated
columns, and column T is average time in seconds for PC ASUS x550L Intel Core
i5 2.300 MHz. Block of columns v1 shows the performance of the method with all
features that have been described earlier; v2 shows the performance of the same
method without stabilization inequalities (2); and v3 shows the performance of
the method with a simple variant of the VNS matheuristic for the pricing prob-
lem. According to [13], items with large color sets are the most inconvenient for
this heuristic. Thus, we can select all large items and solve the pricing problem
for each of them separately. Then we apply the VNS matheuristic for the remain-
ing items and the best found solution is returned as a result of the modified VNS
heuristic. This modified variant is applied in v1 to contrast v3. As we can see in
Table 1, the modified VNS heuristic and stabilization inequalities are useful for
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the column generation method and improve its performance. For all instances,
lower bounds coincide with upper bounds and we have got optimal solutions.

The last iterations of the column generation method are the most time con-
suming. If the VNS heuristic cannot find a new column with negative reduced
cost, we need to apply exact method (GUROBI solver). But the core heuristic
can be used in intermediate iterations of the column generation method as well.
We use this truncated heuristic to find near optimal solutions for the large-scale
instances. The accuracy of those solutions can be estimated with intermediate
lower bound [6]: given an optimal cost Z∗

RMP for the restricted master problem,
an optimal solution w for the dual-master problem, an optimal solution x∗ for
the pricing problem, then the following inequality holds:

Z∗
RMP

w	x∗ ≤ Z∗
MP (7)

where Z∗
MP is an optimal cost for the full master problem. We terminate the

column generation method when the VNS heuristic for the pricing problem can’t
find a solution with negative reduced cost. We apply the core heuristic and solve
the pricing problem by GUROBI to estimate lower bound from (7). We observe
that this intermediate lower bound is rough: if we run the column generation
method without interruptions, the core solution improves just a little, while the
lower bound improves significantly.

Table 2. Computational results for the truncated heuristic

n m b It C TCG TCH AccLB AccCG

150 90 40 28 232 416 2.12 8.03% 0%

175 90 40 41 257 621 2.61 8.1% 0.25%

200 90 40 65 281 1683 2.58 9.25% 1.33%

225 90 40 86 314 2258 3.13 11.38% 1.2%

250 90 40 93 384 3104 3.6 12.6% 1.56%

300 90 40 97 426 4841 4.21 15.33% -

350 90 40 95 485 6103 4.88 20.6% -

400 90 40 98 515 7057 5.37 21.14% -

450 90 40 101 648 8508 6.16 23.78% -

500 90 40 103 810 10736 7.71 35.53% -

Table 2 presents the results for that truncated heuristic. Column AccLB shows
the average percentage deviation of heuristic solutions from the intermediate
lower bound, column AccCG shows the average percentage deviation from the
optimum. Columns TCG and TCH show the running time of column generation
procedure and the core heuristic respectively. Empty cells in the table show the
cases when the running time of the column generation is too high. Note that
optimal integer solution for the restricted master problem has been found easily.
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Table 3. The branch-and-price performance

n m b T0 T Branches Type1 Type2 RelativeGap OptIt

30 30 10 11.43 20.234 6 5 1 0.2 2

30 30 10 10.293 18.305 5 5 0 0.2 0

30 30 10 13.818 21.004 8 7 1 0.16 0

42 42 14 45.942 64.942 17 14 3 0.167 3

42 42 14 50.595 77.152 21 16 5 0.153 0

42 42 14 48.87 78.526 21 15 6 0.181 2

54 54 18 159.204 218.569 31 22 9 0.188 5

54 54 18 157.707 202.651 29 23 6 0.133 4

54 54 18 159.204 249.569 35 25 10 0.2 5

66 66 22 323.748 430.730 68 47 21 0.2 8

66 66 22 356.235 512.399 76 50 26 0.15 11

66 66 22 328.748 456.730 71 49 21 0.15 9

78 78 6 772.654 985.148 105 75 30 0.188 14

78 78 26 721.515 906.148 96 70 26 0.12 13

90 90 30 1602.083 2172.342 153 98 55 0.13 12

90 90 30 1684.211 2328.487 160 101 59 0.153 18

We note that the performance of the method strongly depends on the inte-
grality gap and the bin capacity. For instances without the gap, our approach
shows good performance in running time. It seems that the uniformly generated
instances are quite easy for the method. Many of them have not the integrality
gap in the large-scale formulation. If the integrality gap is positive, we need a
lot of efforts to solve the linear programming relaxation. Nevertheless, we can
apply the core heuristic in such a case as well even for large bin capacity and
before the termination of the column generation method.

In our last experiment, we try to create the most difficult test instances with
large integrality gap. We use the idea from [12] for the difficult instances for the
facility location problems. We generate the random instances by the following
rule: each item has exactly [b/2] colors and every color is used in the same number
of items. Table 3 shows the performance of our branch-and-price method for the
difficult instances. We consider 2–3 instances for each set of parameters n, m
and b. Column T reflects the total computational time in seconds, column T0

reports the amount of time required to find initial lower and upper bounds. Total
amount of branching nodes demonstrated in column Branches. Column Type1
stands for the first type of branches, and Type2 stands for the second type of
branches. Column RelativeGap shows the relative integrality gap in this instance
between optimal solution and lower bound obtained by the column generation
method. The gap is calculated as (z∗ −zLB)/z∗, where z∗ is the optimal solution
of the BPC, and zLB is the optimal solution to linear programming relaxation
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of the BPC. Column OptIt shows the iteration when the optimal solutions were
discovered.

As we can be seen in Table 3, the gap is quite large, from 12% to 20%. The
initial lower and upper bounds are the most time consuming. In non root nodes
of the branching tree, we already have a lot of generated columns. Thus, we
need to generate a few additional columns only. In fact, we have got enough
information to find good solutions in root node and the optimal solution arises
pretty fast (see column OptIt).

7 Conclusions

In this paper, we study a new variant of the bin packing problem with a color
constraint. We have designed the exact branch-and-price method and the core
heuristic which is very efficient for the random instances without integrality
gap and produces near optimal solutions for difficult test instances with large
gap. It is interesting to note that for the classical bin packing problem we still
cannot find any test instances with a large integrality gap [11]. We guess that
the approximability properties of the new and the classical bin packing problems
are different. We know some polynomial time approximation algorithms for the
classical problem. But similar results for the new problem are still unknown. It
is a new line for future research.
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Abstract. We study the problem of estimating a probability that a
flow of a given capacity may be transferred in a communication network.
Network is represented by a random graph with absolutely reliable nodes
and unreliable links with given operational probabilities and capacities.
The algorithm for fast decision making whether a network is reliable
enough for transmission of a given flow is proposed. Case studies show
applicability of the proposed approach.

Keywords: Communication network · Transport network
Connectivity · Random graph · Network reliability · Flow network
Flow transmission

1 Introduction

Problems relating to analysis of flow stochastic network have been subject of
considerable research (see, for example [1–6]). In this paper, we consider such
important index of network reliability as a probability of transmission of a flow
with given capacity between two terminal nodes. This characteristic evaluates
the ability to transfer a predetermined amount of a resource (it can be infor-
mation, vehicles, natural resources, etc.) between nodes, even in the case of
partial network failure. We use random graph with absolutely reliable vertices
and unreliable edges which fail independently as a network’s model, which is
quite common choice [7].

To calculate and evaluate the network reliability, we use cumulative updating
of its bounds. This approach was first considered for estimating the probabilistic
connectivity of random graphs [8–10]. Further, such methods have been proposed
for other reliability indices: the average pairwise network reliability [11], the
diameter constrained network reliability [12,13], the mathematical expectation
of a size of a connected subgraph that contains some special node [14], and
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the wireless sensor network reliability [15]. A profound survey of techniques
mentioned above can be found in [16].

The basic idea lays in incremental updating exact lower (LB) and upper
(UB) reliability boundaries and comparing them with a predetermined reliability
threshold R0. As a result, if LB ≥ R0, then a network is reliable, and if UB < R0,
then a network is unreliable one. Since problems related to the reliability analysis
of networks are mostly NP-hard [17,18], such approach makes it possible to avoid
the exhaustive search. For calculating reliability boundaries we use the well-
known factoring method [19], and for verifying suitability of obtained particular
realizations of a network, we use the Ford-Fulkerson method of maximum flow
searching [20]. The main advantage of combining these methods is a possibility
for obtaining an answer to the question: “if the network is reliable enough?” in
a reasonable time.

2 Cumulative Updating of Network Reliability

Recent research [8] considered problem of determination whether a network is
reliable enough in terms of network probabilistic connectivity. The idea of the
proposed method is to check if a network is feasible without exact calculating a
value of network reliability. For this purpose authors defined so called threshold
R0 which is a requirement of the network reliability. Let us denote by LU and BU
the lower and upper bounds of a reliability index respectively. For R(G), we use
original notations RL and RU for the lower and upper bounds respectively, and
initialize them by 0 and 1. These bounds are updated in such a way that on i-th
iteration RLi ≥ RLi−1 and RUi ≤ RUi−1. Decision process stops when either
RLl exceeds R0 or R0 exceeds RUl. In the first case the network is supposed to
be reliable and in the second one the network is unreliable.

Let us assume that during recursive factoring procedure we obtain L final
graphs G1, G2, . . . , GL, for which the reliability can be easily calculated. Let Pl

for 1 ≤ l ≤ L be the probability to have Gl. Thus,
∑L

l=1 Pl = 1 and the following
inequality holds for any 1 ≤ k ≤ L [8]:

k∑

l=1

PlR(Gl) ≤ R(G) ≤ 1 −
k∑

l=1

Pl(1 − R(Gl)). (1)

This inequality gives the algorithm for cumulative updating of the lower
and upper bounds of R(G). Every time whenever reliability of some Gl for any
1 ≤ l ≤ L is calculated, we can update RLl and RUl in the following way:

RLl = RLl−1 + PlR(Gl)
RUl = RUl−1 − Pl(1 − R(Gl)).

(2)

RLl and RUl approach exact G(R) value every time when l increases. Once
either RLl or RUl reaches R0, the proposed algorithm concludes the feasibility
of G: if RLl reaches R0, G is feasible; if RUl passes R0, G is infeasible. Thus, we
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can set any acceptable value of R0 in order to stop the method during execution
without performing exact calculating of the network reliability.

Later, this approach was applied for other reliability indices [16]. Present
study proposes how cumulative updating can be used for reliability analysis of
flow stochastic networks.

3 Problem Statement

We consider a flow random network with unreliable edges which is represented
by graph G(V,E). For each edge eij ∈ E its capacity cij and its reliability
(probability of existence) pij are given. Two terminal nodes are given: source S
and sink T .

As a measure of reliability, let us consider the probability of transmission of a
flow with given capacity f0 between terminal nodes. Further we call it reliability
and denote it by FP (G,S, T, f0). FP0 is the predefined reliability threshold. If
it turns out that the reliability is less than the threshold, we decide that the
network is unreliable.

The problem is to find out whether the FP (G,S, T, f0) is greater than or
equal to FP0.

4 The Algorithm

We propose to calculate FP (G,S, T, f0) by the well-known factoring method
[19], which is suitable for reliability calculation of various reliability indices. For
a random graph, two procedures are performed in the factorization process for
the chosen (pivot) edge: removing the edge or making it absolutely reliable. An
edge is absolutely reliable if its reliability is equal to 1.

When an edge became absolutely reliable, the lower bound changes, and
when an edge is removed, the upper bound changes:

LB = LB + P (H)I(S), (1.1)

UP = UP − P (H)(1 − I(S)), (1.2)

where P (H) is a probability of a graph realization obtained during factoring
process at the current step. I(S) is the Boolean function equals to one if the
specified flow threshold f0 is no greater than the maximum flow in the graph,
and equals to zero otherwise:

I(S) =
{

1, if fmax ≥ f0,
0, if fmax < f0.

(1.3)

The maximum flow fmax is calculated either for a graph with removed edge,
or for a graph consisting only of absolutely reliable edges. For this purpose the
Ford-Fulkerson method of maximum flow searching is used.
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After each update of reliability bound by expressions (1.1), (1.2) we check
whether the network is reliable enough and can stop the calculation process with
the following results: if FP0 > UB then the network is unreliable, if FP0 ≤ LB
then the network is reliable.

Thus, we obtain the following algorithm

1. Choose an edge eij in the graph G.
2. Remove the pivot edge, having received the graph H = G\{eij}.

2.1. IF the flow can not be passed through the received graph H, THEN
change the upper reliability bound (UB).

2.2. IF FP0 > UB THEN the network is unreliable.
2.3. ELSE GOTO 1. assuming G = H.

3. Make eij absolutely reliable. Let H = G/{eij} be a corresponding graph
3.1. IF the flow can be transferred via absolutely reliable edges, THEN change

the lower reliability bound (LB).
3.2. IF FP0 ≤ LB THEN the network is reliable.
3.2. ELSE GOTO 1. assuming G = H.

Therefore, the algorithm is a decision tree. The initial graph is at the root
node (assigned to the input) with all its attributes and parameters. On the right
branch we make a pivot edge absolutely reliable, on the left branch we remove
a pivot edge. The branching process ends in the following cases:

– The flow can be transferred via absolutely reliable edges in the received graph
H, which is obtained by making a pivot edge absolutely reliable.

– The flow cannot be passed in the received graph, which is obtained by remov-
ing a pivot edge, that is:

• the capacity of the remaining edges is not sufficient for transmitting the
flow

• the obtained graph is not connected.

4.1 Improvements of the Algorithm

To improve the algorithm performance, the factoring can be performed not with
an arbitrary edge, but along the edges from S–T paths. We offer to find all the
complementary paths from source to sink in the process of maximum flow search-
ing by the Ford-Fulkerson method. The advantage of the approach is that after
each edge removal the Ford-Fulkerson algorithm is launched for finding all com-
plementary S–T paths, which can be stored without any loss of computational
speed.

However, set of paths mentioned above does not coincide with the set of all
paths from source to sink. So after each removal of an edge, this set must be
changed. Therefore, there is no possibility to use some optimization techniques
related to the analysis of a state of all paths from S to T .

To choose a next pivot edge in the proposed algorithm, we use two different
approaches (“pessimistic” and “optimistic”). In the first strategy we choose pivot
edges from each path starting from the source in a row and first check removing
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branch, thus trying destroy all paths and thus bring closer a moment of I(S) = 0.
On the contrary, in the second strategy we choose pivot edges from one path
and only then go to a next path and first check branch in which the pivot edge
became absolutely reliable, thus bring closer a moment of I(S) = 1.

Note that we can accelerate calculations if calculate one bound only: lower
by “optimistic” strategy or upper by “pessimistic” one, as we know that both
bounds goes to an exact solution. Choice of a strategy depends on our a-priory
certainty in result.

In addition, after each edge removal, to accelerate the maximum flow search,
hanging vertices are deleted, except the case when a hanging vertice is the source
or the sink.

4.2 The Algorithm’s Pseudocode

1. Obtain set L of S − T paths, li = {eij}, n = 0, m = 0. Calculate maximum
flow fmax in G by Ford-Fulkerson method.

2. IF fmax < f0, THEN G is unreliable.
3. Removing em from G.

3.1. IF em is absolutely reliable and the last in ln THEN
– m = 0, n = n + 1 – choose the first edge in the next chain
– GOTO 3.3.

3.2. ELSE
– m = m + 1, n = n – choose the next edge in the current chain
– GOTO 3.3.

3.3. Remove em in G, G\{em} = Gi.
3.4. Obtain set Li of S − T paths and calculate maximum flow fmax in Gi.
3.5. P (Gi) = P (G)pij .
3.6. IF flow f0 can be transferred in Gi GOTO 3. assuming:

– G = Gi

– P (G) = P (Gi)
– Gtrust = Gtrust

– L = Li

– n = 0
– m = 0

3.7. UB− = P (Gi)
3.8. IF FP0 > UB THEN G is unreliable.

4. Making em absolutely reliable in G
4.0 Return the edge em in G
4.1 IF em is absolutely reliable and is the last in the chain ln THEN m = 0,

n = n + 1.
4.2. ELSE if em is absolutely reliable THEN m = m + 1, n = n.
4.3. Make eij absolutely reliable, G/{eij} = Gi.
4.4. Update Gtrust.
4.5. Calculate maximum flow fmax in Gtrust.
4.6. P (Gi) = P (G)pij .
4.7. IF flow f0 can be transferred in Gtrust GOTO 3. assuming:
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– G = Gi

– P (G) = P (Gi)
– IF em is the last in ln THEN

• m = 0
• n = n + 1

– ELSE
• m = m + 1
• n = n

4.8. ELSE LB+ = P (Gi)
4.9. IF FP0 ≤ LB THEN Graph is reliable.

In this algorithm we can swap steps 3 and 4. That is, we can swap sequence
of the delete function and the function for making an edge absolutely reliable.
As it is shown in the next section, the program runtime strongly depends on the
sequence choice.

5 Case Studies

We consider two topologies: 4 ∗ 4 grid (G1, 16 nodes, 24 edges), and 4 ∗ 5 grid (G2,
20 nodes, 31 edges) in assumption that all edges have equal reliabilities p = 0.99
and capacities c = 15. The source is placed in the upper left corner, and the sink
is placed in the lower right corner. For each topology we have computed exact
reliabilities values for the various FP0 values and also have demonstrated the
decision making process for the different threshold values. The obtained results
and the computational are present below.

Table 1. Results of numerical experiments for G1

Network
requirements

FP Runtime of
the exact
algorithm (s)

Runtime of the cumulative
updating algorithm (s)

Result

f0 FP0 Delete branch Contract branch

19 0.995> 0.96018 4.23 0.038 0.451 False

0960< 0.96018 4.23 0.585 0.431 True

0.900< 0.96018 4.23 1.509 0.51 True

14 0.9999> 0.9998 40.496 0.048 0.277 False

0.990< 0.9998 40.496 0.457 0.354 True

0.900< 0.9998 40.496 0.504 0.034 True

The decision making algorithm regardless of order of the functions (first
delete or contract) shows a great runtime advantage over the exact algorithm.
If we compare the runtime values in the Table 1 with the runtime values in the
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Table 2. Results of numerical experiments for G2

Network
requirements

FP Runtime of
the exact
algorithm (s)

Runtime of the cumulative
updating algorithm (s)

Result

f0 FP0 Delete branch Contract branch

19 0.995> 0.96017 250.627 0.045 0.241 False

0.960< 0.96017 250.627 2.489 2.226 True

0.900< 0.96017 250.627 2.643 0.179 True

14 0.9999> 0.9997 >1 h 0.43 1.757 False

0.998< 0.9997 >1 h 2.530 1.805 True

0.900< 0.9997 >1 h 2.017 0.67 True

Table 2, we can conclude that this advantage increases with increasing dimension
of a network.

As it was stated above, there is time difference between variants of factor-
ization. If a graph is reliable then the algorithm by deleting works slower. On
the contrary, this algorithm works faster for an unreliable graph. This is due
to the peculiarity of comparing the threshold value of reliability and calculated
boundaries.

When making an edge absolutely reliable, only the lower limit changes, which
tends from below to the exact value. On the other hand, when removing a edge,
the upper limit is lowered, tending to the exact value from the top.

So, if the graph is reliable, then to complete the algorithm the condition LB ≥
FP0 must be fulfilled, which is attainable with the making an edge absolutely
reliable.

And if the graph is unreliable, then it is necessary to obtain the inequality
UB < FP0, which is achieved when removing edges.

5.1 Convergence of Reliability Boundaries

Let us show the convergence of the boundaries of LB and UB to the exact
reliability value. We consider 3 ∗ 3 grid topology in assumption that all edges
have equal reliabilities p = 0.65 and capacities c = 20, f0 = 20. The runtime is
less than 1 s.

The figure below shows the changing of the lower and upper bounds of the
reliability as a function of step of the algorithm N (the iteration number) (Fig. 1).

In the next figure we show how bounds are changing for 4 ∗ 4 grid topol-
ogy in assumption that reliability of each is between 0.5 and 1 with a uniform
distribution, and f0 = 20. The total calculation time is about 41 s (Fig. 2).

Due to the fact that the calculation of UB and LB is based on the exact
factorization method, these boundaries converge to the exact reliability value,
as figures show.
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Fig. 1. Convergence of bounds to the exact solution for 3 ∗ 3 grid topology

Fig. 2. Convergence of bounds to the exact solution for 4 ∗ 4 grid topology
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6 Conclusion

As a result, we have obtained cumulative estimation of the probability of trans-
mission a flow of a given value between a selected pair of nodes in a random
graph to make a decision about its reliability by this criterion.

Experiments show the efficiency of using the developed algorithm in compar-
ison with the exact factorization algorithm.

The aim of further research is to develop a parallel realization of the proposed
algorithm.

In addition, optimization of the algorithms, both sequential and parallel, is
required in order to take into account the structural features of a graph. For
example, a graph may contain chains, bridges, points of articulation, or have
others structural features.
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Abstract. We present a new optimization model to maximize the total
operating profit of a harbor logistics company on a finite time horizon.
Some local providers supply the company with a scrap-metal materials
of different qualities. The materials are reprocessed into the high-quality
product and exported to abroad by different types of ships. The com-
pany has to cover the purchase cost for the materials, the transportation
cost to deliver the materials, the reprocessing and storage cost in a ware-
house, shipping cost, and payment for international declarations. To find
the best strategy for the company we present a mixed integer nonlin-
ear model. We linearize the objective function and aggregate the set of
providers in order to apply CPLEX software efficiently. We conduct com-
putational experiments on real test instances and discuss how to use the
model for planning fleet of vehicles, a capacity of the warehouse, and
price strategy for the company.

Keywords: Supply chain · Heterogeneous fleet · Vehicle
Reprocessing

1 Introduction

In the last few years, international sea freight transportation showed an out-
standing growth causing to harbors to reach their maximum capacity. Operations
are nowadays unthinkable without effective usage of information technology and
optimization methods [1]. In this paper, we present a mathematical model for
a logistics company to maximize its profit in the harbor supply chain system
(see Fig. 1). Some local providers have scrap metal of different types. The com-
pany gets it by known price and delivers to reprocessing center by own or rented
vehicles. Each vehicle has a capacity. The company has some own vehicles and
can rent the limited number of vehicles with small, medium, or large capacity.
The working time of company drivers is bounded. In the reprocessing center,
the scrap metal is transformed into the exported final product and stored in the
harbor warehouse. The reprocessing center has a capacity which limits the total
volume of materials per day. In this center, the metal is cut and all impurities are
c© Springer International Publishing AG, part of Springer Nature 2018
A. Eremeev et al. (Eds.): OPTA 2018, CCIS 871, pp. 331–342, 2018.
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removed. The company has to pay for reprocessing and storage in the warehouse
for each ton of the final product. According to the export contracts, the company
must supply the known volume of the product to the foreign partners by ships
within a given time horizon. Some ships with different capacities are available
in the harbor by different prices. The company has to cover the expenses for
ship registration and sea freight. The goal is to find the best logistic strategy to
maximize the total profit of the company or minimize the total cost to realize
the export contracts and determine

– the flow of each type of scrap metal from providers to reprocessing center;
– the fleet of vehicles for delivering these flows and the route for each vehicle;
– the storage plan for the warehouse;
– the schedule of ships within the time horizon.

To solve this optimization problem, we create a mixed integer nonlinear pro-
gram and linearize the objective function in order to apply the CPLEX software.
To reduce the dimension of the problem we aggregate the set of providers and
introduce a joint provider in each local town. We conduct computational experi-
ments on real test instances for a harbor near Vladivostok city and show how to
apply the model for planning the own fleet of vehicles of the company, modify
the capacity of the reprocessing center and the price strategy for local providers.

The paper is organized as follows. In Sect. 2 we introduce notations and
detailed mathematical model. In Sect. 3 we rewrite the model as the linear mixed
integer program and present an approximation method. In Sect. 4 we discuss the
computational experiments and finally, Sect. 5 concludes the paper.

Fig. 1. Supply chain framework
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2 Mathematical Model

Let us introduce the following notations. We will use the following sets:

J is the set of local providers;
I is the set of scrap types;

K0 is the set of vehicles of company;
K is the set of vehicles available for renting;
S is the set of ships;
T is the time horizon.

Parameters of the Model:

sij is the total amount of scrap type i (or scrap i for short) for provider j;
ri is the cost of reprocessing the scrap i into the final product per ton;
ζi is the percent of impurities for scrap i;

c0kj is the transportation cost for one trip to provider j by own vehicle k;
ckj is the transportation cost for one trip to provider j by rented vehicle k;
pij is the price function for provider j for scrap i;
vk is the capacity of vehicle k;
τ is the duration of driver’s shift for company vehicles;
τj is the duration of trip to provider j and back;
v is the capacity of the reprocessing center per day;
c is the storage cost of ton of final product per day;

v0 is the initial amount of final product in warehouse;
fs is the registration fee for ship s;
f is the sea freight of final product per ton;

vs is the capacity of ship s;
d is the total amount of final product that must be sent to foreign partners.

Variables of the Model:

Vijt ≥ 0 is the amount of scrap i which is purchased from provider j in day
t;

Vij ≥ 0 is the total amount of scrap i which is purchased from provider j;
Yt ≥ 0 is the total amount of final product in warehouse at the end of day

t;
Wt ≥ 0 is the amount of final product which is sent by a ship in day t;

Qst ∈ {0, 1} is the ship scheduling; Qst = 1 iff ship s departures in day t;
Q0

kjt is the number of trips for company’s vehicle k to provider j in day
t;

Qkjt is the number of trips for rented vehicle k to provider j in day t.

The profit of the company is the difference between the revenue R which is a
constant defined by the contracts, and the total operational cost that consists
of the following items:
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– payment to local providers:

C1(V ) =
∑

i∈I

∑

j∈J

pij(Vij);

– reprocessing and storage cost:

C2(V, Y ) =
∑

i∈I

∑

j∈J

riVij + c
∑

t∈T

Yt;

– transportation cost:

C3(Q) =
∑

t∈T

∑

j∈J

( ∑

k∈K0

c0kjQ
0
kjt +

∑

k∈K

ckjQkjt

)
;

– ship registration and sea freight:

C4(Q,W ) =
∑

t∈T

∑

s∈S

fsQst + f
∑

t∈T

Wt.

The problem is to maximize the total profit

P (V,W, Y,Q) = R − C1(V ) − C2(V, Y ) − C3(Q) − C4(Q,W ) (1)

subject to the following constraints:

• rented and own vehicles can deliver all scrap to reprocessing center
∑

i∈I

(1 + ζi)Vijt ≤
∑

k∈K0

vkQ
0
kjt +

∑

k∈K

vkQkjt, j ∈ J, t ∈ T ; (2)

• each provider has limited store of each type of scrap

Vij =
∑

t∈T

Vijt ≤ sij , i ∈ I, j ∈ J ; (3)

• working time of the company drivers is bounded
∑

j∈J

Qkjtτj ≤ τ , k ∈ K0, t ∈ T ; (4)

• the capacity constraint for reprocessing center
∑

i∈I

∑

j∈J

(1 + ζi)Vijt ≤ v, t ∈ T ; (5)

• the initial amount of the product at the warehouse

Y0 = v0; (6)
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• the balance constraint at the warehouse for each day

Yt = Yt−1 +
∑

i∈I

∑

j∈J

Vijt − Wt, t ∈ T ; (7)

• the export capacity of the warehouse

Wt ≤ Yt−1, t ∈ T ; (8)

• the ship capacity constraints

Wt ≤
∑

s∈S

Qstvs, t ∈ T ; (9)

• the assignment constraint for ships
∑

s∈S

Qst ≤ 1, t ∈ T ; (10)

• the contracts demand for foreign partners
∑

t∈T

Wt = d; (11)

• variables constraints

Q0
kjt, Qkjt ≥ 0 integer, Qst ∈ {0, 1}, Wt, Vijt, Vij , Yt ≥ 0. (12)

The problem (1)–(12) has the linear constraints and nonlinear objective function.
We assume that all functions cij = cij(Vij) are piecewise convex linear functions.
In Sect. 3 we reduce this nonlinear problem to the linear one. Nevertheless, the
problem is NP-hard as the knapsack problem with Qst variables is a special case
of the problem (1)–(12).

3 Approximation Method

Let us assume that each function pij = pij(Vij), i ∈ I, j ∈ J is continuous
piecewise convex linear functions (see Fig. 2a) and can be presented as follows:

pij(Vij) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p0ijVij , if 0 ≤ Vij ≤ δ1ij ,
(p0ij + p1ij)Vij − ξ1ij , if δ1ij ≤ Vij ≤ δ2ij ,

...
(p0ij + · · · + pqij)Vij − ξqij , if δq−1

ij ≤ Vij ≤ sij

and it has q linear segments with positive coefficients plij , ξlij , l ≤ q.
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In fact, coefficients plij are additional bonuses for local provider for large
supplies. To get the linear objective function, we replace each function pij(Vij)
by the sum of linear functions plij(V

l
ij) with new nonnegative variables:

pij(Vij) =
q∑

l=0

plijV
l
ij , i ∈ I, j ∈ J

subject to additional constraints V l
ij ≥ Vij − δlij , l = 1, . . . , q (see Fig. 2b).

It is easy to see that V l
ij = max{0, Vij−δlij}, l = 1, . . . , q and this linearization

approach is correct. Thus we can apply the classical branch and bound method
for the mixed integer linear program (CPLEX solver).

Fig. 2. Price function pij(Vij) and its linearization

Unfortunately, the dimension of the real-world instances is too large for this
method and we need additional efforts to reduce the number of variables. To
this end, we aggregate the set of providers [7] and replace all providers in each
town by a joint provider. From the point of view the objective function (1) it
is incorrect. Joint providers can get an additional bonus for common supplies
function. Thus, the aggregated model can get an approximate solution only. But
we can try to improve the obtained solution by re-assignment of the total supply
of joint provider by its local providers.

On the other hand, the concept of joint provider can improve the model and
reduce the transportation cost. The variables Q0

kjt and Qkjt mean the number
of vehicles which go to provider j on day t. According to constraints (2), the
split delivery is not allowed. For each joint provider, we can do it implicitly. The
savings in distance and the number of vehicles that can be achieved by using split
deliveries can by large [2,3]. Nevertheless, we consider the simples trips only to
simplify the model. Otherwise, we need to modify the model for vehicle routing
and design special type sophisticated algorithms to optimize the transportation
cost [4–6].
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4 Computational Experiments

We conduct our computational experiments on real test instance of Russian logis-
tics company which is located in a harbor near Vladivostok city. The company
has 96 local providers in 26 towns and villages (see Fig. 3).

Fig. 3. Regional providers

Three types of scrap metal (3A, 5A, 12A) are supplied and two of them (5A
and 12A) are reprocessed into the type 3A as the final product for the contracts.
Time horizon is one month, |T | = 30, the total amount of the final product
for export d = 8000 ton. Five types of ships are available for rent with the
appropriate parameters (Table 1).

The sea freight f is 850 rubles per ton. Three types of vehicles can be rented:

– 10 ton at most 20 vehicles,
– 15 ton at most 15 vehicles,
– 30 ton at most 10 vehicles
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Table 1. The ship parameters

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

capacity vs 2500 3000 3500 4000 4500 5000

regist. fee fs 25000 30000 35000 40000 45000 50000

and only one 5 ton vehicle belongs to the company, |K0| = 1; |K| = 45; the
working shift is 7 hours, transportation cost matrix {cij} includes elements from
2500 rubles to 5500 rubles per trip to providers. The capacity of reprocessing
center v = 300 ton per day, the storage cost for warehouse c = 2, v0 = 0. The
price function pij(Vij) has three linear segments and grows from 7500 to 9750
per ton identically for providers from the same town.

In our first experiment, we aggregate the set of providers and get 26 joint
providers instead of 96 ones. We find near optimal solution with deviation from
the optimum at most 0, 1% in one minute by CPLEX software. Figure 4 depicts
providers in the solution obtained.

Figure 5 shows the supply schedule for three types of scrap materials from the
providers. Figure 6 presents the total amount of final product in the warehouse
at the end of each day, variables Yt, t ∈ T . To get the feasible solution to original
problem instance, we re-distribute the total supply of each joint provider by its

Fig. 4. Regional providers in the solution
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Fig. 5. Supply scheduling for three types of scrap materials from all providers

Fig. 6. The total amount of final product in warehouse at the end of each day

providers and compare the results. The total profit of the company increases but
at most 1% only. We conclude that our aggregation approach is efficient and can
produce feasible solutions with small deviations from the optimum.

In the second experiment, we modify the price functions pij in order to
understand the influence of the bonus coefficients plij , l ≤ q. We compare the
structure of the solutions obtained for the bonus coefficients βplij , l ≤ q for
β = 0, 1, 2, . . . , 5. In case β = 0, we can improve the total profit. In case β > 1,
the total profit decreases. But the structure of the solutions obtained is identical
for these cases. The number of joint providers in final solutions increases from 13
to 15 only for β = 5. We guess that the optimal value has a weak dependence on
the bonuses. Optimization model tries to smoothen the influence of the bonuses
by set of providers in the final solution. Thus, the convexity of the price func-
tion is important for marketing purposes. It stimulated local providers to store
enough materials for the company. But the model can smooth its influence. As
a result, the company can use large bonuses plij without large reduction of the
total profit.
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In the third experiment, we study the influence of the company fleet of vehi-
cles on the total profit. We conduct several experiments with different sets K0,
|K0| = 1, 2, . . . , 10 with different vehicle’s capacities and observe slight improv-
ing the total profit. This improvement easy to understand because of c0kj ≤ ckj
for identical vehicles. By the current prices for renting vehicles, the including
new vehicles into the company fleet can be useful for large time horizon only,
4–5 years. Thus, we conclude that the total cost for delivering all scrap materi-
als to the reprocessing center is a small part of the total operational cost. For
improving the total profit, we need to enlarge the revenue instead of reducing
the operational cost.

In our final experiment, we replace the Eq. (10) by inequality
∑

t∈T

Wt ≥ d (13)

and determine the maximal profit for this time horizon. In this case, the company
can send 8400 ton of final product instead of 8000 (according to contracts) and
improve the profit from 28 568 000 to 29 816 000.

To find the bottleneck of the system, we modify the capacity of reprocessing
center and solve the problem (1)–(10), (12), (13) with v = 300, 350, 400, . . . , 650.
The results of this experiment are shown in Fig. 7. We can see the fast-growing
the profit and an increase the amount of final product for export

∑
t∈T Wt from

8000 to 15600. The detailed analysis of the experimental results can help us to
find the best capacity of reprocessing center if we know the payment for enlarging
the center and the total demand for export contracts in a future.

Fig. 7. The total profit for different capacity of reprocessing center
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5 Conclusions

This paper studied a new optimization model to maximize the total operating
profit of a harbor logistics company. We present a mixed integer nonlinear model,
linearize the objective function, and aggregate the set of local providers to apply
CPLEX solver efficiently. Computational results for real test instances confirm
the efficiency of the approach and allow the company to improve the structure of
supply chain system. Specifically, we observe that the capacity of the reprocessing
center is a bottleneck for the system.

For future research, it is interesting to consider some competitive logistics
companies. Each company has own contracts, warehouse, and reprocessing cen-
ter. But the set of local providers is the same for all companies. Similar models
for two companies in the field of facility location can be found in [8–11].

It is worth to note that such models are harder than well-known NP-complete
problems and, in fact, are ΣP

2 –hard [12–14]. The best pricing strategy for each
company may be the most intriguing question in such games. Some preliminary
results for Stackelberg pricing games can be found in [15].
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