

A Gentle Introduction to Optimization

Optimization is an essential technique for solving problems in areas as
diverse as accounting, computer science and engineering. Assuming only
basic linear algebra and with a clear focus on the fundamental concepts, this
textbook is the perfect starting point for first- and second-year undergraduate
students from a wide range of backgrounds and with varying levels of ability.

Modern, real-world examples motivate the theory throughout.
Over 140 exercises, ranging from the routine to the more advanced, give
readers the opportunity to try out the skills they gain in each section.
Solutions are available for instructors as well as algorithms for
computational problems.
Self-contained chapters allow instructors and students to tailor the
material to their own needs and make the book suitable for self-study.
Suggestions for further reading help students to take the next step to
more advanced courses in optimization.
Material has been thoroughly tried and tested by the authors, who
together have 40 years of teaching experience.

B. GUENIN is Professor in the Department of Combinatorics and
Optimization at the University of Waterloo. He received a Fulkerson Prize
awarded jointly by the Mathematical Programming Society and the American
Mathematical Society in 2003. He is also the recipient of a Premier’s
Research Excellence Award in 2001 from the Government of Ontario,
Canada. Guenin currently serves on the Editorial Board of the SIAM Journal
of Discrete Mathematics.

J. KÖNEMANN is Professor in the Department of Combinatorics and
Optimization at the University of Waterloo. He received an IBM Corporation
Faculty Award in 2005, and an Early Researcher Award from the
Government of Ontario, Canada, in 2007. He served on the program
committees of several major conferences in Mathematical Optimization and

Computer Science, and is a member of the editorial board of Elsevier’s
Surveys in Operations Research and Management Science.

L. TUNÇEL is Professor in the Department of Combinatorics and
Optimization at the University of Waterloo. In 1999 he received a Premier’s
Research Excellence Award from the Government of Ontario, Canada. More
recently, he received a Faculty of Mathematics Award for Distinction in
Teaching from the University of Waterloo in 2012. Tunçel currently serves
on the Editorial Board of the SIAM Journal on Optimization and as an
Associate Editor of Mathematics of Operations Research.

A Gentle Introduction to
Optimization

B. GUENIN
J. KÖNEMANN

L. TUNÇEL
University of Waterloo, Ontario

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of education,
learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107053441

© B. Guenin, J. Könemann and L. Tunçel 2014

This publication is in copyright. Subject to statutory exception and to the provisions of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published 2014

Printed in Spain by Grafos SA, Arte sobre papel

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data
Guenin, B. (Bertrand)
A gentle introduction to optimization / B. Guenin, J. Könemann, L. Tunçel, University of
Waterloo, Ontario.

pages cm
Includes bibliographical references.
ISBN 978-1-107-05344-1 (Hardback)
ISBN 978-1-107-65879-0 (Paperback)
1. Mathematical optimization. I. Könemann, J. (Jochen) II. Tuncel, Levent, 1965- III. Title.
IV. Title: Introduction to optimization.
QA402.5.G84 2014
519.6–dc23 2014008067

ISBN 978-1-107-05344-1 Hardback
ISBN 978-1-107-65879-0 Paperback

Additional resources for this publication at www.cambridge.org/9781107053441

Cambridge University Press has no responsibility for the persistence or accuracy of URLs

http://www.cambridge.org
http://www.cambridge.org/9781107053441
http://www.cambridge.org/9781107053441

for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

1 Introduction
1.1 A first example

1.1.1 The formulation
1.1.2 Correctness

1.2 Linear programs
1.2.1 Multiperiod models

1.3 Integer programs
1.3.1 Assignment problem
1.3.2 Knapsack problem

1.4 Optimization problems on graphs
1.4.1 Shortest path problem
1.4.2 Minimum cost perfect matching

1.5 Integer programs continued
1.5.1 Minimum cost perfect matching
1.5.2 Shortest path problem

1.6 Nonlinear programs
1.6.1 Pricing a tech gadget
1.6.2 Finding a closest point feasible in an LP
1.6.3 Finding a “central” feasible solution of an LP

1.7 Overview of the book
1.8 Further reading and notes

2 Solving linear programs

2.1 Possible outcomes
2.1.1 Infeasible linear programs
2.1.2 Unbounded linear programs
2.1.3 Linear programs with optimal solutions

2.2 Standard equality form
2.3 A simplex iteration
2.4 Bases and canonical forms

2.4.1 Bases
2.4.2 Canonical forms

2.5 The simplex algorithm
2.5.1 An example with an optimal solution
2.5.2 An unbounded example
2.5.3 Formalizing the procedure

2.6 Finding feasible solutions
2.6.1 General scheme
2.6.2 The two phase simplex algorithm–an example
2.6.3 Consequences

2.7 Simplex via tableaus*
2.7.1 Pivoting
2.7.2 Tableaus

2.8 Geometry
2.8.1 Feasible region of LPs and polyhedra
2.8.2 Convexity
2.8.3 Extreme points
2.8.4 Geometric interpretation of the simplex algorithm

2.9 Further reading and notes

3 Duality through examples
3.1 The shortest path problem

3.1.1 An intuitive lower bound
3.1.2 A general argument – weak duality
3.1.3 Revisiting the intuitive lower bound

3.1.4 An algorithm
3.1.5 Correctness of the algorithm

3.2 Minimum cost perfect matching in bipartite graphs
3.2.1 An intuitive lower bound
3.2.2 A general argument–weak duality
3.2.3 Revisiting the intuitive lower bound
3.2.4 An algorithm
3.2.5 Correctness of the algorithm
3.2.6 Finding perfect matchings in bipartite graphs*

3.3 Further reading and notes

4 Duality theory
4.1 Weak duality
4.2 Strong duality
4.3 A geometric characterization of optimality

4.3.1 Complementary slackness
4.3.2 Geometry

4.4 Farkas’ lemma*
4.5 Further reading and notes

5 Applications of duality*
5.1 Approximation algorithm for set-cover

5.1.1 A primal–dual algorithm
5.1.2 Greed is good ... at least sometimes
5.1.3 Discussion

5.2 Economic interpretation
5.3 The maximum-flow–minimum-cut theorem

5.3.1 Totally unimodular matrices
5.3.2 Applications to st-flows

6 Solving integer programs
6.1 Integer programs versus linear programs

6.2 Cutting planes
6.2.1 Cutting planes and the simplex algorithm

6.3 Branch and bound
6.4 Traveling salesman problem and a separation algorithm*
6.5 Further reading and notes

7 Nonlinear optimization
7.1 Some examples
7.2 Some nonlinear programs are very hard

7.2.1 NLP versus 0,1 integer programming
7.2.2 Hard small-dimensional instances

7.3 Convexity
7.3.1 Convex functions and epigraphs
7.3.2 Level sets and feasible region

7.4 Relaxing convex NLPs
7.4.1 Subgradients
7.4.2 Supporting halfspaces

7.5 Optimality conditions for the differentiable case
7.5.1 Sufficient conditions for optimality
7.5.2 Differentiability and gradients
7.5.3 A Karush–Kuhn–Tucker theorem

7.6 Optimality conditions based on Lagrangians
7.7 Nonconvex optimization problems

7.7.1 The Karush–Kuhn–Tucker theorem for nonconvex problems⋆

7.7.2 Convex relaxation approach to nonconvex problems*
7.8 Interior-point method for linear programs*

7.8.1 A polynomial-time interior-point algorithm*
7.9 Further reading and notes

Appendix A Computational complexity

A.1 What is a fast (resp. slow) algorithm?
A.1.1 The big “O” notation

A.1.2 Input size and running time
A.1.3 Polynomial and exponential algorithms

A.2 Examples of fast and slow algorithms
A.2.1 Linear programming
A.2.2 Other algorithms in this book

A.3 The classes NP, co-NP and P
A.3.1 Decision problems
A.3.2 The class NP
A.3.3 The class co-NP
A.3.4 The class P

A.4 Hard problems
A.4.1 Reducibility
A.4.2 NP-complete problems
A.4.3 Complexity as guide
A.4.4 Easy versus hard problems

References
Index

Preface

Desire to improve drives many human activities. Optimization can be seen as
a means for identifying better solutions by utilizing a scientific and
mathematical approach. In addition to its widespread applications,
optimization is an amazing subject with very strong connections to many
other subjects and deep interactions with many aspects of computation and
theory. The main goal of this textbook is to provide an attractive, modern,
and accessible route to learning the fundamental ideas in optimization for a
large group of students with varying backgrounds and abilities. The only
background required for the textbook is a first-year linear algebra course
(some readers may even be ready immediately after finishing high school).
However, a course based on this book can serve as a header course for all
optimization courses. As a result, an important goal is to ensure that the
students who successfully complete the course are able to proceed to more
advanced optimization courses.

Another goal of ours was to create a textbook that could be used by a large
group of instructors, possibly under many different circumstances. To a
degree, we tested this over a four-year period. Including the three of us, 12
instructors used the drafts of the book for two different courses. Students in
various programs (majors), including accounting, business, software
engineering, statistics, actuarial science, operations research, applied
mathematics, pure mathematics, computational mathematics, computer
science, combinatorics and optimization, have taken these courses. We
believe that the book will be suitable for a wide range of students
(mathematics, mathematical sciences including computer science,
engineering including software engineering, and economics). To accomplish
our goals, we operated with the following rules:

1. Always motivate the subject/algorithm/theorem (leading by modern,

relatable examples which expose important aspects of the
subject/algorithm/theorem).

2. Keep the text as concise and as focused as possible (this meant, that some
of the more advanced or tangential topics are either treated in advanced
sections or in starred exercises).

3. Make sure that some of the pieces are modular so that an instructor or a
reader can choose to skip certain parts of the text smoothly. (Please see
the potential usages of the book below.)

In particular, for the derivation and overall presentation of the simplex
method, we focused on the main ideas rather than gritty details (which in our
opinion and experience, distract from the beauty and power of the method as
well as the upcoming generalizations of the underlying ideas).

We emphasized the unifying notion of relaxation in our discussion of
duality, integer programming, and combinatorial optimization as well as
nonlinear optimization. We also emphasized the power and usefulness of
primal–dual approaches as well as convexity in deriving algorithms,
understanding the theory, and improving the usage of optimization in
applications.

We strived to enhance understanding by weaving in geometric notions,
interpretations, and ideas starting with the first chapter, Introduction, and all
the way through to the last chapter (Nonlinear optimization) in a cohesive
and consistent manner.

We made sure that the themes of efficiency of algorithms and good
certificates of correctness as well as their relevance were present. We
included a brief introduction to the relevant parts of computational
complexity in the appendix.

All of these ideas come to a beautiful meeting point in the last chapter,
Nonlinear optimization. First of all, we develop the ideas only based on linear
algebraic and geometric notions, capitalizing on the strength built through
linear programming (geometry, halfspaces, duality) and discrete optimization
(relaxation). We arrive at the powerful Karush–Kuhn–Tucker Theorem
without requiring more background in continuous mathematics and real
analysis.

We thank Yu Hin (Gary) Au, Joseph Cheriyan, Bill Cook, Bill Cunningham,

Ricardo Fukasawa, Konstantinos Georgiou, Stephen New, Clinton Reddekop,
Patrick Roh, Laura Sanita and Nick Wormald for very useful suggestions,
corrections and ideas for exercises. We also thank the Editor, David Tranah,
for very useful suggestions, and for his support and patience.

Some alternative ways of using the book
We designed the textbook so that starred sections/chapters can be skipped
without any trouble. In Chapter 3 it is sufficient to pick only one of the two
motivating problems (the shortest path or the minimum cost matching
problem). Moreover, there are many seamless ways of using the textbook, we
outline some of them below.

For a high-paced, academically demanding course, cover the material
from beginning to end by inserting the Appendix (Computational
complexity) between Chapter 2 or 3, or 4 or 5.
Cover in order Chapters 1,2,3,4,5,6,7 (do not cover the Appendix).
For an audience mostly interested in modeling and applications, cover
Chapters 1,2,3,6,7.
For an audience with prior knowledge of the simplex method, cover
Chapters 1,3,4,5,6,7.
For a slow-paced course based only on linear programming, cover
Chapters 1,2,3,4.
For a course based only on linear programming, cover Chapters
1,2,3,4,5 (possibly with the Appendix included).
For a course based only on linear programming and discrete
optimization, cover chapters 1,2,3,4,5,6 (possibly with the Appendix
included). This version may be particularly suitable for an introductory
course offered in computer science departments.
For a course based only on linear programming and discrete
optimization (but at a slower pace than the last one above), cover
Chapters 1,2,3,4,6.
For a course based only on linear programming and nonlinear
optimization, cover Chapters 1,2,3,4,5,7.
For an audience with some prior course in elementary linear

programming, cover Chapters 1,5,6,7 (insert the Appendix after Chapter
5).
Our book can also be used for independent study and by undergraduate
research assistants to quickly build up the required background for
research studies.

1

Introduction

Broadly speaking, optimization is the problem of minimizing or maximizing
a function subject to a number of constraints. Optimization problems are
ubiquitous. Every chief executive officer (CEO) is faced with the problem of
maximizing profit given limited resources. In general, this is too general a
problem to be solved exactly; however, many aspects of decision making can
be successfully tackled using optimization techniques. This includes, for
instance, production, inventory, and machine-scheduling problems. Indeed,
the overwhelming majority of Fortune 500 companies make use of
optimization techniques. However, optimization problems are not limited to
the corporate world. Every time you use your GPS, it solves an optimization
problem, namely how to minimize the travel time between two different
locations. Your hometown may wish to minimize the number of trucks it
requires to pick up garbage by finding the most efficient route for each truck.
City planners may need to decide where to build new fire stations in order to
efficiently serve their citizens. Other examples include: how to construct a
portfolio that maximizes its expected return while limiting volatility; how to
build a resilient tele-communication network as cheaply as possible; how to
schedule flights in a cost-effective way while meeting the demand for
passengers; or how to schedule final exams using as few classrooms as
possible.

Suppose that you are a consultant hired by the CEO of the WaterTech
company to solve an optimization problem. Say for simplicity that it is a
maximization problem. You will follow a two-step process:

(1) find a formulation of the optimization problem,
(2) use a suitable algorithm to solve the formulation.

A formulation is a mathematical representation of the optimization problem.
The various parameters that the WaterTech CEO wishes to determine are
represented as variables (unknowns) in your formulations. The objective
function will represent the quantity that needs to be maximized. Finally,
every constraint to the problem is expressed as a mathematical constraint.

Now given a mathematical formulation of an appropriate form, you need to
develop (or use an existing) algorithm to solve the formulation. By an
algorithm, we mean in this case a finite procedure (something that can be
coded as a computer program) that will take as input the formulation, and
return an assignment of values to each of the variables such that all
constraints are satisfied, and, subject to these conditions, maximizes the
objective function. The values assigned to the variables indicate the optimal
choices for the parameters that the CEO of WaterTech wishes to determine.

This two-step process is summarized in Figure 1.1. In this chapter, we will
focus our attention on the first step, namely how to formulate optimization
problems.

Figure 1.1 Modeling and solving optimization problems.

1.1 A first example
To clarify these ideas, let us consider a simple example. Suppose WaterTech
manufactures four products, requiring time on two machines and two types
(skilled and unskilled) of labor. The amount of machine time and labor (in
hours) needed to produce a unit of each product and the sales prices in dollars

per unit of each product are given in the following table:

Product Machine
1

Machine
2

Skilled
labor

Unskilled
labor

Unit sale
price

1 11 4 8 7 300

2 7 6 5 8 260

3 6 5 5 7 220

4 5 4 6 4 180

Each month, 700 hours are available on machine 1 and 500 hours on
machine 2. Each month, WaterTech can purchase up to 600 hours of skilled
labor at $8 per hour and up to 650 hours of unskilled labor at $6 per hour.
The company wants to determine how much of each product it should
produce each month and how much labor to purchase in order to maximize its
profit (i.e. revenue from sales minus labor costs).

1.1.1 The formulation
We wish to find a formulation for this problem, i.e. we need to determine the
variables, the objective function, and the constraints.

Variables. WaterTech must decide how much of each product to
manufacture; we capture this by introducing a variable xi for each i ∈ {1, 2,
3, 4} for the number of units of product i to manufacture. As part of the
planning process, the company must also decide on the number of hours of
skilled and unskilled labor that it wants to purchase. We therefore introduce
variables ys and yu for the number of purchased hours of skilled and unskilled
labor, respectively.

Objective function. Deciding on a production plan now amounts to
finding values for variables x1, . . . , x4, ys and yu. Once the values for these
variables have been found, WaterTech’s profit is easily expressed by the
following function:

and the company wants to maximize this quantity.
Constraints. We manufacture x1 units of product 1 and each unit of

product 1 requires 11 hours on machine 1. Hence, product 1 will use 11x1
hours on machine 1. Similarly, for machine 1, product 2 will use 7x2 hours,
product 3 will use 6x3 hours, and product 4 will use 5x4 hours. Hence, the
total amount of time needed on machine 1 is given by

11x1 + 7x2 + 6x3 + 5x4,

and this must not exceed the available 700 hours of time on that machine.
Thus

11x1 + 7x2 + 6x3 + 5x4 ≤ 700. (1.1)

In a similar way, we derive a constraint for machine 2

4x1 + 6x2 + 5x3 + 4x4 ≤ 500. (1.2)

Analogously, once we decide how much of each product should be produced,
we know how much skilled and unskilled labor is needed. Naturally, we need
to make sure that enough hours of each type of labor are purchased. The
following two constraints enforce this:

8x1 + 5x2 + 5x3 + 6x4 ≤ ys, (1.3)

7x1 + 8x2 + 7x3 + 4x4 ≤ yu. (1.4)

Finally, we need to add constraints that force each of the variables to take on
only nonnegative values as well as constraints that limit the number of hours
of skilled and unskilled labor purchased. Combining the objective function

with (1.1)–(1.4) gives the following formulation:

(1.5)

1.1.2 Correctness
Is the formulation given by (1.5) correct, i.e. does this formulation capture
exactly the WaterTech problem? We will argue that it does and outline a
procedure to verify whether a given formulation is correct. Let us introduce a
bit of terminology. By the word description of the optimization problem, we
mean a description of the optimization problem in plain English. This is the
description that the CEO of WaterTech would give you. By a formulation, we
mean the mathematical formulation, as in (1.5). A solution to the formulation
is an assignment of values to each of the variables of the formulation. A
solution is feasible if it has the property that all the constraints are satisfied.
An optimal solution to the formulation is a feasible solution that maximizes
the objective function (or minimizes it if the optimization problem is a
minimization problem). Similarly, we define a solution to the word
description of the optimization problem to be a choice for the unknowns, and
a feasible solution to be such a choice that satisfies all the constraints.

To construct a formulation for an optimization problem, there are many
approaches. Not all of them may apply to a given problem. Conceptually, an
easy approach is to make sure that there is a mapping between feasible
solutions of the word description and feasible solutions of the formulation
and vice versa (between feasible solutions of the formulation and feasible
solutions of the word description). For instance, a feasible solution for

WaterTech is to produce 10 units of product 1, 50 of product 2, 0 units of
product 3, and 20 of product 4, and buy 600 hours of both skilled and
unskilled labor. This corresponds to the following feasible solution of the
formulation:

x1 = 10, x2 = 50, x3 = 0, x4 = 20, ys = 600, yu = 600. (1.6)

Conversely, given the feasible solution (1.6), we can construct a feasible
solution for the word description of the WaterTech problem. Note that this
works for every feasible solution. When constructing a formulation using this
approach, you need to make sure that through the map that you defined:

(1) every feasible solution of the word description gives a feasible solution
of the mathematical formulation, and

(2) every feasible solution of the mathematical formulation gives a feasible
solution of the word description.

If (2) does not hold, feasible solutions to the formulation may violate
constraints of the word description, and if (1) does not hold, then the
formulation is more restrictive than the word description. A common mistake
is to violate (2) by forgetting some constraint when writing down the
formulation. For instance, we may forget to write down the condition for
WaterTech that ys is nonnegative. In this case, when solving the formulation
using an algorithm, we may end up with a negative value for ys, i.e. we buy a
negative amount of skilled labor or equivalently we sell skilled labor; the
latter is not allowed in our word description. Thus far, we have only
discussed feasible solutions. Clearly, we also need to verify that the objective
function in the word description and the formulation are the same. This is
clearly the case for the WaterTech formulation, and is usually straightforward
to verify.

We used an algorithm to find an optimal solution to (1.5) and obtained

(1.7)

achieving a total profit of $15, 433 + . Thus, the optimal strategy for
WaterTech is to manufacture 16 + units of product 1, 50 units of product 2,
0 units of product 3, 33 + units of product 4, and to buy 583 hours of skilled
labor and 650 units of unskilled labor.

Since constructing the formulation is only our first step (see Figure 1.1)
and we need to use an algorithm to find an optimal solution to the
formulation, we will strive to get, among all possible formulations, one that is
as simple as possible. In the remainder of the chapter, we will introduce three
types of formulation:

linear programs (Section 1.2),
integer programs (Section 1.3), and
nonlinear programs (Section 1.6).

There are efficient techniques to solve linear programs and we will see some
of these in Chapters 2 and 7. Integer programs and nonlinear programs can be
hard to solve however. Thus, we will always attempt to formulate our
problem as a linear program. Unfortunately, this may not always be possible,
and sometimes the only valid formulation is an integer program or a
nonlinear program.

1.2 Linear programs
A function f : n → is an affine function if f(x) = a⊤x + β, where x and a are
vectors with n entries and β is a real number. If β = 0, then f is a linear
function. Thus, every linear function is affine, but the converse is not true.

Example 1 Suppose x = (x1, x2, x3, x4)⊤. Then:

1. f(x) = x1 − x3 + x4 is a linear function,
2. f(x) = 2x1 − x3 + x4 − 6 is an affine function, but not a linear function, and
3. f(x) = 3x1 + x2 − 6x3 x4 is not an affine function (because of the product x3

x4).

A linear constraint is any constraint that is of one of the following forms
(after moving all variables to the left-hand side and all constants to the right-
hand side):

f(x) ≤ β or f(x) ≥ β or f(x) = β,

where f(x) is a linear function, and β is a real number. A linear program (LP)
is the problem of maximizing or minimizing an affine function subject to a
finite number of linear constraints. We will abbreviate the term linear
program by LP, throughout this book.

Example 2
(a) The following is an LP:

(b) The following is not an LP, as x2 + x3 < 3 is not a linear constraint:1

(c) The following is not an LP, as the objective function is not affine:

(d) The following is not an LP, as there are an infinite number of
constraints:

Observe also that (1.5) is an example of an LP. In that example, the constraint
8x1 + 5x2 + 5x3 + 6x4 ≤ ys can be rewritten as 8x1 + 5x2 + 5x3 + 6x4 − ys ≤ 0.

1.2.1 Multiperiod models
In this section, we present another example of a type of optimization problem
that can be formulated as an LP. In the problem discussed in Section 1.1, we
were asked to make a one-time decision on a production plan. Often times,
the decision-making process has a temporal component; time is split into so-
called periods and we have to make certain decisions at the beginning or end
of each of them. Each of these decisions will naturally determine the final
outcome at the end of all periods. We introduce this area with an example.
KWOil is a local supplier of heating oil. The company has been around for
many years, and knows its home turf. In particular, KWOil has developed a
dependable model to forecast future demand for oil. For each of the following
four months, the company expects the following amounts of demand for
heating oil.

Month 1 2 3 4

Demand (litres) 5000 8000 9000 6000

At the beginning of each of the four months, KWOil may purchase heating
oil from a regional supplier at the current market rate. The following table
shows the projected price per litre at the beginning of each of these months:

Month 1 2 3 4
Price ($/litres) 0.75 0.72 0.92 0.90

KWOil has a small storage tank on its facility. The tank can hold up to
4000 litres of oil, and currently (at the beginning of month 1) contains 2000
litres. The company wants to know how much oil it should purchase at the
beginning of each of the four months such that it satisfies the projected
customer demand at the minimum possible total cost. Note, oil that is
delivered at the beginning of each month can be delivered directly to the
customer, it does not need to be first put into storage; only oil that is left over
at the end of the month goes into storage. We wish to find an LP formulation
for this problem. Thus, we need to determine the variables, the objective
function, and the constraints.

Variables. KWOil needs to decide how much oil to purchase at the
beginning of each of the four months. We therefore introduce variables pi for
i ∈ {1, 2, 3, 4} denoting the number of litres of oil purchased at the
beginning of month i for i ∈ {1, 2, 3, 4}. We also introduce variables ti for
each i ∈ {1, 2, 3, 4} to denote the number of litres of heating oil in the
company’s tank at the beginning of month i (we already know that t1 = 2000
– we can substitute this value later as we finish constructing our mathematical
formulation). Thus, while every unknown of the word description always
needs to be represented as a variable in the formulation, it is sometimes
useful, or necessary, to introduce additional variables to keep track of various
parameters.

Objective function. Given the variables defined above, it is
straightforward to write down the cost incurred by KWOil. The objective
function of KWOil’s problem is

min 0.75p1 + 0.72p2 + 0.92p3 + 0.90p4. (1.8)

Constraints. In each month i, the company needs to have enough heating
oil available to satisfy customer demand. The amount of available oil at the
beginning of month 1, for example, is comprised of two parts: the p1 litres of
oil purchased in month 1, and the t1 litres contained in the tank. The sum of
these two quantities needs to cover the demand in month 1, and the excess is
stored in the local tank. Hence, we obtain the following constraint:

p1 + t1 = 5000 + t2. (1.9)

We obtain similar constraints for months 2 and 3

p2 + t2 = 8000 + t3, (1.10)

p3 + t3 = 9000 + t4. (1.11)

Finally, in order to satisfy the demand in month 4, we need to satisfy the
following constraint:

p4 + t4 ≥ 6000. (1.12)

Notice that each of the variables ti for i ∈ {2, 3, 4} appears in two of the
constraints (1.9) and (1.12). The constraints are therefore linked by the
variables ti. Such linkage is a typical feature in multiperiod models.
Constraints (1.9) and (1.12) are sometimes called balance constraints as they
balance demand and inventory between periods.

We now obtain the entire LP for the KWOil problem by combining (1.8)–
(1.12), and by adding upper bounds and initialization constraints for the tank
contents, as well as non-negativity constraints

Solving this LP yields

p1 = 3000, p2 = 12000, p3 = 5000, p4 = 6000, t1 = 2000, t2 = 0, t3 = 4000, t4 =
0,

corresponding to a total purchasing cost of $20 890. Not surprisingly, this
solution suggests to take advantage of the low oil prices in month 2, while no
oil should be stored in month 3 when prices are higher.

Exercises

1 Consider the following table indicating the nutritional value of different
food types:

Foods Price ($)
per serving

Calories
per

serving

Fat (g)
per

serving

Protein (g)
per serving

Carbohydrate
(g) per serving

Raw
carrots

0.14 23 0.1 0.6 6

Baked
potatoes

0.12 171 0.2 3.7 30

Wheat 0.2 65 0 2.2 13

bread

Cheddar
cheese

0.75 112 9.3 7 0

Peanut
butter

0.15 188 16 7.7 2

You need to decide how many servings of each food to buy each day so that
you minimize the total cost of buying your food while satisfying the
following daily nutritional requirements:

calories must be at least 2000,
fat must be at least 50g,
protein must be at least 100g,
carbohydrates must be at least 250g.

Write an LP that will help you decide how many servings of each of the
aforementioned foods are needed to meet all the nutritional requirement,
while minimizing the total cost of the food (you may buy fractional numbers
of servings).

2 MUCOW (Milk Undertakings, C and O, Waterloo) owns a herd of
Holstein cows and a herd of Jersey cows. For each herd, the total number of
litres produced each day, and milk-fat content (as a percentage) are as
follows:

Litres produced Percent milk-fat

Holstein 500 3.7

Jersey 250 4.9

The fat is split off and blended again to create various products. For each
product, the volume, required milk-fat percentage, and profit are as follows.
In particular, the milk-fat percentage must exactly equal what is specified.

Skimmed
milk

2% Whole
milk

Table
cream

Whipping
cream

Volume (litres) 2 2 2 0.6 0.3

Milk-fat
requirement

0% 2% 4% 15% 45%

Profit ($) 0.1 0.15 0.2 0.5 1.2

(a) Formulate as an LP the problem of deciding how many items of each
type to produce, so that the total profit is maximized. Don’t worry about
fractional numbers of items. Write your formulation in matrix notation.

(b) MUCOW is told of a regulation change: ‘skimmed milk’ can now
contain anything up to 0.1% milk-fat, but no more. How does the
formulation of the problem change? Note the resulting formulation
should also be an LP.

3 The director of the CO-Tech startup needs to decide what salaries to offer
its employees for the coming year. In order to keep the employees satisfied,
she needs to satisfy the following constraints:

Tom wants at least $20 000 or he will quit;
Peter, Nina, and Samir each want to be paid at least $5000 more than
Tom;
Gary wants his salary to be at least as high as the combined salary of
Tom and Peter;
Linda wants her salary to be $200 more than Gary;
the combined salary of Nina and Samir should be at least twice the
combined salary of Tom and Peter;
Bob’s salary is at least as high as that of Peter and at least as high as that
of Samir;
the combined salary of Bob and Peter should be at least $60 000;
Linda should not make more money than the combined salary of Bob
and Tom.

(a) Write an LP that will determine salaries for the employees of CO-tech
that satisfy each of these constraints while minimizing the total salary
expenses.

(b) Write an LP that will determine salaries for the employees of CO-tech
that satisfy each of these constraints while minimizing the salary of the
highest paid employee.

(c) What is the relation between the solutions for (a) and (b)?

4 You wish to build a house and you have divided the process into a number
of tasks, namely:
B. excavation and building the foundation,
F. raising the wooden frame,
E. electrical wiring,
P. indoor plumbing,
D. dry walls and flooring,
L. landscaping.
You estimate the following duration for each of the tasks (in weeks):

Task B F E P D L

Duration 3 2 3 4 1 2

Some of the tasks can only be started when some other tasks are completed.
For instance, you can only build the frame once the foundation has been
completed, i.e. F can start only after B is completed. All the precedence
constraints are summarized as follows:

F can start only after B is completed,
L can start only after B is completed,
E can start only after F is completed,
P can start only after F is completed,
D can start only after E is completed,
D can start only after P is completed.

The goal is to schedule the starting time of each task such that the entire
project is completed as soon as possible.

As an example, here is a feasible schedule with a completion time of ten
weeks.

Tasks B F E P D L

Starting time 0 3 6 5 9 6

End time 3 5 9 9 10 8

Formulate this problem as an LP. Explain your formulation. Note, that there
is no limit on the number of tasks that can be done in parallel.

HINT: Introduce variables to indicate the times that the tasks start.

5 The CRUD chemical plant produces as part of its production process a
noxious compound called chemical X. Chemical X is highly toxic and needs
to be disposed of properly. Fortunately, CRUD is linked by a pipe system to
the FRESHAIR recycling plant that can safely reprocess chemical X. On any
give day, the CRUD plant will produce the following amount of Chemical X
(the plant operates between 9am and 3pm only):

Time
9–10
am

10–11
am

11am–
12pm

12–1
pm

1–2
pm

2–3
pm

Chemical X (in
litres) 300 240 600 200 300 900

Because of environmental regulation, at no point in time is the CRUD plant
allowed to keep more than 1000 litres on site and no chemical X is allowed to
be kept overnight. At the top of every hour, an arbitrary amount of chemical
X can be sent to the FRESHAIR recycling plant. The cost of recycling
chemical X is different for every hour:

Time 10am 11am 12pm 1pm 2pm 3pm

Price ($ per litre) 30 40 35 45 38 50

You need to decide how much chemical to send from the CRUD plant to the
FRESHAIR recycling plant at the top of each hour, so that you can minimize
the total recycling cost but also meet all the environmental constraints.
Formulate this problem as an LP.

6 We are given an m by n matrix A and a vector b in m, for which the
system Ax = b has no solution. Here is an example:

2x1 − x2 = −1

x1 + x2 = 1

x1 + 3x2 = 4

−2x1 + 4x2 = 3.

We are interested in finding a vector x ∈ n that “comes close” to solving
the system. Namely, we want to find an x ∈ n whose deviation is minimum,
and where the deviation of x is defined to be

(For the example system above, the vector x = (1, 1)⊤ has deviation 2 + 1 + 0
+ 1 = 4.)

(a) Show that a solution to the optimization problem

will give a vector x of minimum deviation.
(b) The problem of part (a) is not an LP. (Why?) Show that it can be

formulated as an LP.
(c) Suppose that we had instead defined the deviation of x as

(According to this definition, in the example above x = (1, 1)⊤ would
have deviation max(2, 1, 0, 1) = 2.) With this new definition, write the
problem of finding a vector of minimum deviation as an optimization
problem, and show that this problem can also be formulated as an LP.

7 Consider the following set up: we have factories 1 through m and stores 1
through n. Each factory i produces ui units of a commodity and each store j
requires ℓj units of that commodity. Note, each factory produces the same
commodity, and each store requires the same commodity. The goal is to
transfer the commodity from the factories to the stores. All the commodities
going from the factories to the stores are first sent to one of two central
storage hubs A and B. The cost of transporting one unit of commodity from
factory i to hub A (resp. B) is given by ai (resp. bi). The cost of transporting
one unit of commodity from hub A (resp. B) to store j is given by (resp.

2 In the figure on top of the next page, we illustrate the case of three
factories and four stores. The problem is to decide how much to send from
each factory to each hub and how much to send from each hub to each store
so that each store receives the amount of commodity it requires, no factory
sends out more commodity than it produces, and such that the total
transportation cost is minimized. Formulate this problem as an LP (we may
assume that the number of units of commodity sent may be fractional).

8 We are given a matrix A ∈ m×n and a matrix B ∈ p×n so that the rows
of A denote observations for healthy human tissue and the rows of B denote
observations for unhealthy human tissue. We would like to find a ∈ n and
α, β ∈ such that all rows of A are in the set {x ∈ n : a⊤x ≤ α}, all rows of
B are in the set {x ∈ n : a⊤x ≥ β}, and such that the distance between the

sets {x ∈ n : a⊤x = α} and {x ∈ n : a⊤x = β} is maximized. The following
figure illustrates the situation for n = 2; circles correspond to rows in A, and
squares to rows in B.

Formulate the problem of computing a, α, and β achieving the above-

mentioned goals as an LP.

1.3 Integer programs
An integer program is obtained by taking a linear program and adding the
condition that a nonempty subset of the variables be required to take integer
values. When all variables are required to take integer values, the integer
program is called a pure integer program otherwise it is called a mixed
integer program. We will abbreviate the term integer program by IP,
throughout this book.

Example 3 The following is a mixed IP, where variables x1 and x3 are
required to take integer values:

In Section 1.1, we introduced the WaterTech production problem. We gave
an LP formulation (1.5) and a solution to that formulation in (1.7). This
solution told us to manufacture, 16+ units of product 1. Depending on the
nature of product 1, it may not make sense to produce a fractional number of
units of this product. Thus, we may want to add the condition that each of x1,
x2, x3, x4 is an integer. The resulting program would be an IP. In this
example, we could try to ignore the integer condition, and round down the
solution, hoping to get a reasonably good approximation to the optimal
solution.

1.3.1 Assignment problem
Our friends at WaterTech are once again looking to us for help. The company
faces the following problem: there is a set of J jobs that need to be handled
urgently. The company has selected I of its most trusted employees to handle
these jobs. Naturally, the skill sets of these employees differ, and not all of
the jobs are equally well handled by all of the employees. From past
experience, management knows the number of hours cij each worker i ∈ I is
expected to take in order to complete any of the jobs j ∈ J. The following
table gives an example for a case with |J| = 4 jobs and |I| = 4 employees:

Jobs

Employees 1 2 3 4

1 3 5 1 7

2 8 2 2 4

3 2 1 6 8

4 8 3 3 2

For instance, the table says that c3,4 = 8, i.e. employee 3 would take eight
hours to finish job 4. WaterTech wants to assign jobs to employees with the
conditions that:

(1) each employee i ∈ I is assigned exactly one job j ∈ J,
(2) each job j ∈ J is assigned to exactly one employee i ∈ I.

Both of these conditions can only be satisfied when |I| = |J|. Naturally, we
want to find such an assignment that minimizes the total expected amount of
time needed to process all jobs J. A feasible solution would be to assign job k
to employee k, for k = 1, 2, 3, 4. The total amount of time required for this
assignment is 3 + 2 + 6 + 2 = 13 hours. This not an optimal solution,
however. We wish to find an IP formulation for this problem. Thus, we need
to determine the variables, the constraints, and the objective function.

Variables. In this case, we need to decide for each employee i ∈ I and

each job j ∈ J whether employee i is assigned job j. We will introduce for
every such pair i, j a variable xij that we restrict to take values 0 or 1, where
xij = 1 represents the case where employee i is assigned job j, and xij = 0
means that employee i is not assigned job j. Thus, we have |I||J| variables. In
the example given by the above table we end up with 16 variables.

Constraints. We need to encode condition (1) as a mathematical
constraint. Let i ∈ I be an employee, then ∑j∈J xij is the number of jobs
employee i is assigned to (we do the sum over all jobs). We want this
quantity to be one, thus the following should hold:

(1.13)

In the example given by the table, this says that xi1 + xi2 + xi3 + xi4 = 1 for all
jobs i ∈ {1, 2, 3, 4}. We need to encode condition (2) as a mathematical
constraint. Let j ∈ J be a job then ∑i∈I xij is the number of employees job j is
assigned to (we do the sum over all employees). We want this quantity to be
one, thus the following should hold:

(1.14)

Objective function. The objective function should calculate the total
amount of time spent to complete the jobs. For every employee i ∈ I and job
j ∈ J, if employee i is assigned job j, then we should contribute cij to the
objective function, otherwise we should contribute 0. Thus, we should
contribute cijxij. Therefore, the objective function is given by

(1.15)

For instance, in our specific example, the objective function is

3x11 + 5x12 + 1x13 + 7x14 + 8x21 + 2x22 + 2x23 + 4x24 + 2x31 + 1x32 + 6x33 +
8x34 + 8x41 + 3x42 + 3x43 + 2x44.

Thus, the IP formulation is given by objective function (1.15), and constraints
(1.13) and (1.14), as well as the condition that each variable xij can only take
values 0, 1

(1.16)

Note, formally speaking, that (1.16) is not an IP, because of the constraints xij
∈ {0, 1}. However, we can clearly replace these constraints by the
constraints xij ≥ 0, xij ≤ 1 and xij integer. If we do this for all i ∈ I and j ∈ J,
then the resulting optimization formulation is an IP. Hence, we will abuse
notation slightly and call the formulation (1.16) an IP.

Solving this IP for the special case given in the table, yields

x11 = 1, x23 = 1, x32 = 1, x44 = 1

and all other values xij = 0. Thus, an optimal solution is to assign job 1 to
employee 1, job 3 to employee 2, job 2 to employee 3, and job 4 to employee
4.

Note, in this example we represent a binary choice (whether to assign job j
to employee i) by a variable taking values 0 or 1. We call such a variable a
binary variable. When using a binary variable y, we can express y ∈ {0, 1}
by 0 ≤ y ≤ 1 and y integer, but the condition that y is integer cannot easily be
omitted, as we may otherwise get any value between 0 and 1 (say for
instance) and this value gives no information as to what our binary choice
should be.

1.3.2 Knapsack problem
The company KitchTech wishes to ship a number of crates from Toronto to
Kitchener in a freight container. The crates are of six possible types, say type
1 through type 6. Each type of crate has a given weight in kilograms and has
a particular retail value in $, as indicated in the following table:

Type 1 2 3 4 5 6

Weight (kg) 30 20 30 90 30 70

Value ($) 60 70 40 70 20 90

In addition you have the following constraints:

(1) you cannot send more than ten crates of the same type in the container;
(2) you can only send crates of type 3, if you send at least one crate of type

4;
(3) at least one of the following two conditions has to be satisfied:

i. a total of at least four crates of type 1 or type 2 is selected or
ii. a total of at least four crates of type 5 or type 6 is selected.

Finally, the total weight allowed on the freight container is 1000 kilograms.
Your goal is to decide how many crates of each type to place in the freight
container so that the value of the crates in the container is maximized. We
wish to find an IP formulation for this problem. Thus, we need to determine
the variables, the constraints, and the objective function.

Variables. We will have variables xi for i = 1 , . . . , 6 to indicate how
many crates of type i we place in the container. We will also require an
additional binary variable y to handle condition (3).

Constraints. The total weight of the crates selected in kilograms is given
by

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6.

This weight should not exceed 1000 kilograms. Thus

30x1 + 20x2 + 30x3 + 90x4 + 30x5 + 70x6 ≤ 1000. (1.17)

Condition (1) simply says that for all i = 1 , . . . , 6

xi ≤ 10. (1.18)

We claim that condition (2) can be stated as

x3 ≤ 10x4. (1.19)

If no crates of type 4 is sent, then x4 = 0, which implies by (1.19) that x3 = 0
as well, i.e. no crates of type 3 are sent. On the other hand, if at least one
crate of type 4 is sent, then x4 ≥ 1 and (1.19) says that x3 ≤ 10, which is the
maximum number of crates of type 3 we can send anyway.

It remains to express condition (3). The binary variable y will play the
following role. If y = 1, then we want (i) to be true, and if y = 0, then we want
(ii) to be true. This can be achieved by adding the following two constraints:

x1 + x2 ≥ 4y
x5 + x6 ≥ 4(1 − y). (1.20)

Let us verify that (1.20) behaves as claimed. If y = 1, then the conditions
become x1 + x2 ≥ 4 and x5 + x6 ≥ 0, which implies that (i) holds. If y = 0, then
the conditions become x1 + x2 ≥ 0 and x5 + x6 ≥ 1, which implies that (ii)
holds.

Objective function. The total value of the crates selected for the container
is given by

60x1 + 70x2 + 40x3 + 70x4 + 20x5 + 90x6. (1.21)

Thus, the IP formulation is given by objective function (1.21), and constraints

(1.17), (1.18), (1.19), (1.20) as well as the condition that each variable xi is
integer, and y ∈ {0, 1}. We obtain

Exercises

1 You are about to trek across the desert with a vehicle having 3.6 cubic
metres (3.6m3) of cargo space for goods. There are various types of items
available for putting in this space, each with a different volume and a
different net value for your trip, shown as follows:

Item type i 1 2 3 4 5 6 7

Volume vi (m3) 0.55 0.6 0.7 0.75 0.85 0.9 0.95

Net value ni
250 300 500 700 750 900 950

(a) You need to decide which items to take, not exceeding the volume
constraint. You can take at most one of any item. No item can be split
into fractions. The total net value must be maximized. Formulate this
problem as an LP or IP. (You may use the notation vi and ni for volume
and net value of item i.)

(b) Your two friends have decided to come as well, each with an identical

vehicle. There are exactly two items of each type. The question is, can
you fit all 14 items in the vehicles without exceeding the volume
constraints? No cutting items into pieces is permitted! Each item taken
must be placed entirely in one of the vehicles. Formulate an LP or IP
that has a feasible solution if and only if the items can be packed as
desired. Describe how to determine from a feasible solution how to pack
the items into the vehicles. Note that net value is ignored for part (b).

2 Consider a public swimming pool. In the following table, we give a list of
seven potential lifeguards. For each lifeguard, we have the time he/she wants
to start and finish work and how much he/she wishes to be paid for the work.
The problem is to find a selection of lifeguards so that there is at least one
(but possibly more than one) lifeguard present at each time between 1pm. and
9pm. An example of a possible selection would be Joy, Tim, and Beth. This
selection has a total cost of 30 + 21 + 20.

Lifeguards Joy Dean Tim Celicia Beth Ivar Eilene

Hours 1–5 1–3 4–7 4–9 6–9 5–8 8–9

Amount required 30 18 21 38 20 22 9

Formulate this problem as an IP.

3 You have gone to an exotic destination during the summer vacation and
decided to do your part to stimulate the economy by going on a shopping
spree. Unfortunately, the day before your return you realize that you can only
take 20 kilograms of luggage on your flight which is less than the total
weight of the items that you purchased. The next table gives the value and the
weight in kilograms of each item:

A B C D E F

Weight (kg) 6 7 4 9 3 8

Value ($) 60 70 40 70 16 100

The problem is to decide which subset of the items to put in your luggage so
that you maximize the total value of the items selected without exceeding the
weight requirement (i.e. that the total weight of the items selected is no more
than 20 kilograms). For instance, you could select items A, C, and D for a
total value of $170 and a total weight of 19 kilograms.

(a) Formulate this problem as an IP.
(b) Suppose that you only want to pack item D when item A is selected, but

it is ok to pack item A without item D. Add constraints to your
formulation that impose this additional condition.

(c) Suppose that the airline allows you exceed the 20 kilogram weight limit
at a cost of $15 per additional kilogram. For instance, you could select
items A, B and D for a total value of $200 and a total weight of 22
kilogram and pay 2 × $15 to the airline for exceeding the maximum
capacity by 2 kilograms. Modify your formulation so that you are
allowed to go over the 20 kilogram capacity and such that you maximize
the total value of the items packed minus the cost paid to the airline.

Note, for (b) and (c) the resulting formulation should remain an IP.

4 The Waterloo hotel wants to rent rooms 1, 2, and 3 for New Year’s night.
Abby is willing to pay $60 for room 1, $50 for room 2, but is not interested in
room 3. Bob is willing to pay $40 for room 1, $70 for room 2, and $80 for
room 3. Clarence is not interested in room 1, but is willing to pay $55 for
room 2 and $75 for room 3. Donald is willing to pay $65 for room 1, $90 for
room 2, but is not interested in room 3. The information is summarized in the
following table:

Room number Abby’s offer Bob’s offer Clarence’s offer Donald’s offer

1 $60 $40 not interested $65

2 $50 $70 $55 $90

3 not interested $80 $75 not interested

The hotel wants to fill up rooms 1,2,3 with some of the potential clients

(Abby, Bob, Clarence, and Donald) in a way that maximizes the total
revenue. Each room is to be assigned to exactly one potential client, and each
potential client is to be assigned at most one room. As an example, Room 1
could be assigned to Bob, room 2 to Abby, and room 3 to Clarence (while
Donald would not get to stay in the hotel). This would yield a revenue of
$40+$50+$75=$165.

(a) Formulate this problem as an IP. Your solution should be easy to modify
if we change the values in the table.

(b) Abby and Bob have a history of loud and rude behavior when
celebrating together. In the interest of keeping the New Year’s eve party
orderly, the hotel management decides that it does not wish to rent
rooms to both Abby and Bob. Add a constraint to the IP in (a) that will
enforce this condition (the resulting formulation should still be an IP).

5 You wish to find out how to pack crates on a transport plane in an optimal
way. The crates are of five possible types, namely A, B, C, D, E. For each
crate type, the next table gives its weight (in kg), its volume (in cubic
meters), and its value (in dollars):

Type A B C D E

Weight 500 1500 2100 600 400

Volume 25 15 13 20 16

Value 50000 60000 90000 40000 30000

The transport plane is divided into three segments: Front, Middle, and Back.
Each segment has a limited volume (in cubic meters), and a limit on the
weight of the cargo in that segment (in kg):

Segment Front Middle Back

Available volume 200 500 300

Weight capacity 8000 20000 6000

Finally, to keep the plane balanced we need to satisfy the following
constraints:

weight of Middle cargo ≥ weight of Front cargo + weight Back cargo,

weight of Middle cargo ≤ 2 × (weight of Front cargo + weight Back cargo).

Suppose that there are 12 crates of type A, eight crates of type B, 22 crates of
type C, 15 crates of type D, and 11 crates of type E that are waiting to be
transported. Your goal is to maximize the total value of the crates on the
plane. You need to decide how many crates of each type are going in what
segment of the plane. Formulate your problem as an IP.

6 Consider an LP with variables x1, x2, x3, x4. Suppose that the LP includes
the constraints x1, x2, x3, x4 ≥ 0.
(a) Consider the constraint:

x4 ≥ |x3 − 2x1 |. (1.22)

Suppose that we want to add to the LP the condition that (1.22) is
satisfied. Show how to satisfy this requirement so that the resulting
formulation is an LP.

HINT: rewrite (1.22) as a pair of linear inequalities.
(b) Consider the following inequalities:

6x1 + 2x2 + 3x3 + 3x4 ≥ 3, (1.23)

2x1 + 4x2 + 2x3 + 7x4 ≥ 9. (1.24)

Suppose that we want to add to an IP the condition that at least one of
constraints (1.23) or (1.24) is satisfied. Show how to satisfy this
requirement so that the resulting formulation is an IP.

HINT: add a binary variable indicating whether (1.23) or (1.24) must
be satisfied. Note that the left-hand side of either (1.23) or (1.24) is
always nonnegative.

(c) Suppose that for i = 1 , . . . , k we have a non-negative vector ai with
four entries and a number βi (both ai and βi are constants). Let r be any
number between 1 and k. Consider the following set of inequalities:

(ai)⊤x ≥ βi (i = 1 , . . . , k). (1.25)

We want to add to an IP the condition that at least r of the constraints
are satisfied. Show how to satisfy this requirement so that the resulting
formulation is an IP.

HINT: add a binary variable for each constraint in (1.25).
(d) Consider the following set of values:

S := {3, 9, 17, 19, 36, 67, 1893}.

Suppose that we want to add to an IP the condition that the variable x
takes only one of the values in S. Show how to satisfy this requirement
so that the resulting formulation is an IP.

HINT: add a binary variables for each number in the set S.

7 The company C & O operates an oil pipeline pumping oil from Alberta to
various states in the Northwestern USA. Figure 1.2 shows the direction of
flow, four input lines, and the three output lines. Note for instance that State
A can only get its oil from either Input 1 or from the Yukon input line.

Figure 1.2 The structure of the oil pipeline, inputs and outputs.

Each input line has a capacity (barrels/day) and a cost per barrel:

Input line 1 2 3 Yukon

Capacity 4000 2000 3000 10000

Cost per barrel ($) 70 50 30 60

Each state has a daily demand (barrels/day) that must be met exactly:

State A B C

Demand 3500 3000 4000

The input from the Yukon is not owned by the company and activating that
line has a fixed cost of $11 000 per day.

Write an IP that plans the activities of the company C & O for a day (how
many barrels of oil to pump from each input line) by minimizing the total
daily cost of the company while meeting all the demand.

8 A company won a government bid to meet the yearly demands d1, d2, . . . ,
dn in the areas j ∈ {1, 2 , . . . , n}. Now the company has to decide where to
build its factories and how much of each factory’s output will be shipped to
which of these n areas.

There are m potential locations for building the factories. If the company
decides to build at location i ∈ {1, 2 , . . . , m}, then the fixed cost of
building the factory (yearly amortized version) is fi and the yearly capacity of
the factory will be si. The cost of transporting one unit of the product from
location i to area j is given as cij.

Construct an IP whose solution indicates where to build the factories, how
many units of product to ship from each factory to each demand area so that
the demand is met and the total yearly cost of the company is minimized.

9 Your boss asks you to purchase bi units of product i for each i in a set P of
products. (These products are all divisible, i.e. they can be obtained in
fractional amounts.) Of course, your boss wants you to spend as little money
as possible. You call up all the stores in a set S of stores, and store j gives you
a per-unit price cij for product i for all i, j.
(a) You decide to just order all bi units of product i from the store that gives

the cheapest per-unit price for each i. Show that this is optimal.
(b) Actually, there is another constraint. Your boss forgot to tell you that he

does not want you to buy from too many different stores – he wants you
to keep the number of stores from which you buy to at most (integer) k.
Modify your formulation in (a), the resulting formulation should be an
IP.

(c) It turns out that the stores have special deals. If the total value of your
order from store j is at least tj dollars, it will give you dj cash back. (All
stores j offer such a deal, with perhaps different values of tj and dj .)
Modify your formulation in (b), the resulting formulation should be an
IP.

10 KW mining has an open-pit mine with 12 blocks of ore as shown in the
figure below. The mineability condition says that no block can be mined
without mining all blocks which lie at least partially above it. For example,

block 7 cannot be mined unless blocks 2 and 3 are mined, and block 12
requires blocks 8 and 9, and hence 3, 4, and 5 too.

(a) The net value of mining block i is given by mi (in $) for i = 1 , . . . , 12.
Formulate as an IP the problem of deciding which blocks should be
mined, in order to maximize the total value of blocks mined, and satisfy
the mineability condition if at most seven blocks can be mined.

(b) The volume of mining block i is given by vi (in m3) for i = 1 , . . . , 12.
What extra constraint would you add if, in addition to all constraints
needed in (a), it is required that the total volume mined must not exceed
10 000 m3?

(c) Mines often have a minimum short-term return requirement. For this
mine, the board of the company requires that the total value of blocks
mined in the first two years must total at least $1 000 000. Each block
takes one year to mine, at most two blocks can be mined at once, and a
block cannot be mined in a given year unless all blocks lying at least
partially above it were mined by the year before. Besides this new
condition, the mineability condition still applies, and at most seven
blocks can be mined. Formulate as an IP the problem of deciding which
blocks should be mined, subject to these constraints, in order to
maximize total value of blocks mined.

11 Suppose that you are given an N × N chessboard. We wish to place N
queens on the board such that no two queens share any row, column, or
diagonal. Figure 1.3 shows a solution for N = 8.

Figure 1.3

Formulate this problem as an integer feasibility problem (i.e. an IP without an
objective function).

12 A 9 × 9 matrix A is partitioned into nine 3 × 3 submatrices A1, . . . , A9 (of
consecutive elements). Certain entries of A contain numbers from the set {1 ,
. . . , 9}. An example of such a pre-assignment is shown in Figure 1.4. A
solution to the Sudoku game is an assignment of integers from 1 to 9 to each
(unassigned) entry of the matrix such that:

each row of A,
each column of A,
each 3 by 3 submatrix A1, . . . , A9

contains every number from {1 , . . . , 9} exactly once.

Figure 1.4

Formulate the problem of checking whether there is a solution to the
Sudoku game as an integer feasibility problem (i.e. an IP without an objective
function).

HINT: define a binary variable xijk that takes value 1 when entry i, j is
assigned value k.

13 (Advanced) In Conway’s Game of Life, we are given a chess board of
size n × n for some positive integer n. Each cell (i, j) of this board has up to
eight neighboring cells Ni,j. A cell (i, j) can be either alive or dead and a
configuration of the game consists of a set of cells that are alive: L = {(i1, j1)
, . . . , (ik, jk)}. We use a set of simple rules to compute the successor
configuration succ (L) to L :
(a) if there is at most one living cell in the neighborhood of (i, j), then (i, j)

will be dead in the next iteration;
(b) if there are exactly two living cells in Ni,j, then we do not change the

status of (i, j);
(c) if (i, j) has exactly three living neighbors in Ni,j, then its status in the

next configuration will be alive;
(d) if there are at least four living cells in the neighborhood of (i, j), then (i,

j) will be dead in the next iteration.3

A still life is a configuration L such that succ (L) = L and the density of

L is defined as |L |/n2. Given an n × n board, we are interested in finding a
still life of maximum density.

Formulate the problem of finding a maximum density still life as an IP.

1.4 Optimization problems on graphs
A graph G is a pair (V, E), where V is a finite set and E is a set of unordered
pairs of elements of V (i.e. the pair uv and vu is the same). Elements of V are
called vertices and elements of E edges. We can represent a graph as a
drawing where vertices correspond to points and a pair u, v of vertices is
joined by a line when uv ∈ E. Observe that different drawings may
correspond to the same graph.

Example 4 Two drawings of G = (V, E) with

V = {1, 2, 3, 4, 5} E = {12, 23, 34, 14, 15, 25, 35, 45}.

Let G = (V, E) be a graph. Suppose uv ∈ E. Then u and v are adjacent
vertices, u, v are the endpoints of edge uv, and edge uv is incident to vertices
u and v. In this section, we present several optimization problems that can be
expressed as optimization problems on graphs.

1.4.1 Shortest path problem

The shortest path problem is a fundamental optimization problem that most
of us encounter (and solve) frequently: starting in geographic location s, we
wish to travel to location t. Since we are frugal travellers, we wish to choose
a route of minimum total length. Let us illustrate this problem using a
concrete example.

Suppose you are visiting the city of Watertown (see Figure 1.5). You are
staying with a friend who lives at the intersection of Fischer Road and
Columbia Avenue (location s), and you wish to visit the Tannery District
which is located at the intersection of King Street and Victoria Street
(location t). A shortest route from s to t is indicated by the thick lines in
Figure 1.5. The problem of finding such a shortest route is known as the
shortest path problem.

Figure 1.5 Map of Watertown.

Let us rephrase the problem in the language of graph theory. We represent
in Figure 1.6 the street network by a graph, where vertices correspond to
intersections and edges to roads. For instance, the graph G = (V, E)
corresponding to the WaterTown map is given in Figure 1.6, where the
number ce ≥ 0 next to each edge e corresponds to the length (in meters) of the
corresponding road on the map.

Figure 1.6 Graph representing map of Watertown.

An st-path P is a sequence of edges

v1v2, v2v3, . . . , vk−2vk−1, vk−1vk

such that v1 = s, vk = t, and vi ≠ vj for all i ≠ j.4 The length c(P) of an st-path is
defined as the sum of the lengths of the edges of P, i.e. as ∑(ce : e ∈ P).

Example 5 In Figure 1.6, the thick black edges in the graph form an st-path

P = sa, ad, db, bf, fg, gt

of total length

c(P) = csa + cad + cdb + cbf + cfg + cgt
= 650 + 450 + 250 + 830 + 600 + 700 = 3480.

We can now define formally the shortest path problem. We are given a
graph G = (V, E) with nonnegative weights ce for every edge e ∈ E, and
distinct vertices s, t. We wish to find among all possible st-paths, one that is
of minimum length. Thus, the optimization problem we wish to solve is

(1.26)

We return to this problem in Section 1.5.2, where we will see how it can be
formulated as an IP.

1.4.2 Minimum cost perfect matching
Recall our assignment problem from Section 1.3.1. WaterTech wishes to
assign a set I of employees to do a set J of jobs with the condition that every
employee is assigned exactly one job and every job is assigned to exactly one
employee. For every i ∈ I and j ∈ J, cij is the number of hours it takes
employee i to do job j. The goal is to find among all such assignments one
that minimizes the total completion time of the jobs. To make the example
more realistic, we have to consider the fact that some employees are not
qualified to do certain jobs, and obviously we do not wish to assign these jobs
to those employees. The following table gives an example for a case with |J|
= 4 jobs and |I| = 4 employees. Entries – indicate that the employee is not
qualified for the corresponding job.

Jobs

Employees 1′ 2′ 3′ 4′

1 – 5 – 7

2 8 – 2 4

3 – 1 – 8

4 8 3 3 –

For instance, employee 3 is not qualified to do job 1. We can represent these
data by a graph G = (V, E) where V = I ∪J, and ij ∈ E, where i ∈ I, j ∈ J if

employee i is qualified to do job j. Moreover, edge ij is assigned weight cij.
We represent the weighted graph corresponding to the table in Figure 1.7.

Figure 1.7 Graph representing assignment problem data.

A graph G = (V, E) is bipartite if we can partition the vertices into two sets,
say I and J, such that every edge has one endpoint in I and one endpoint in J.
Given a graph, a subset of edges M is called a matching if no vertex is
incident to more than one edge of M. A matching is called perfect if every
vertex is incident to exactly one edge in the matching. The weight c(M) of a
matching M is defined as the sum of the weights of the edges of M, i.e. as
∑(ce : e ∈ M).

Example 6 The graph in Figure 1.7 is bipartite as every edge has an endpoint
in {1, 2, 3, 4} and one endpoint in {1′, 2′, 3′, 4′ }. The set of edges {12′, 24′,
41′ } is a matching. However, it is not a perfect matching as no edge of M is
incident to 3′ for instance. The set of edges M = {14′, 21′, 32′, 43′ } is a
perfect matching. The matching M has weight

c(M) = c14′ + c21′ + c32′ + c43′ = 7 + 8 + 1 + 3 = 19.

Going back to our optimization problem, since we wish to assign every
employee to exactly one job, and every job to exactly one employee, we are
looking for a perfect matching in the graph given in Figure 1.7. As we are

trying to minimize the total completion time of all the jobs, we wish to find
among all possible perfect matchings one that is of minimum weight. Thus,
given a bipartite graph G = (V, E) with nonnegative edge weights ce for all e
∈ E, the optimization problem we wish to solve is

(1.27)

In the following section, we will see how to formulate this optimization
problem as an IP.

Exercises

1 (Advanced) Let G = (V, E) be a graph with distinct vertices s, t. An even
st-path is an st-path that has an even number of edges. Show that we can
formulate the problem of finding an even st-path with as few edges as
possible, as a minimum cost perfect matching problem.

HINT: Make a copy of the graph G and remove vertices s and t. Call the
resulting graph G′. Construct a new graph H starting with the union of graph
G and G′ and by joining every vertex v ∉ {s, t} in G with its copy v′ in G′.

1.5 Integer programs continued
In the previous section, we presented two optimization problems on graphs,
namely the shortest path and minimum weight perfect matching problems.
We will see in this section that both of these problems can be formulated as
IPs. Furthermore, in Chapter 3 we will use these formulations to guide us in
devising efficient algorithms to solve these problems. We consider the
minimum cost perfect matching first as the formulation is simpler.

1.5.1 Minimum cost perfect matching
Let G = (V, E) be a graph and let v ∈ V. We denote by δ(v) the set of edges

that have v as one of the endpoints, i.e. δ(v) is the set of edges incident to v.
For instance, for the graph in Figure 1.8, we have δ(a) = {ad, ag, ab} and
δ(b) = {ab, bd, bg}.

Figure 1.8

We are now ready to find an IP formulation for the minimum cost perfect
matching problem. We are given a graph G = (V, E) and edge weight ce for
every edge e. We need to determine the variables, the objective function, and
the constraints.

Variables. We introduce a binary variable xe for every edge e, where xe =
1 indicates that edge e is selected to be part of our perfect matching and xe =
0 indicates that edge e is not selected. Note, here we indicate how to interpret
our variables, we of course need to define the constraints so that the edges in
the matching are given by {e ∈ E : xe = 1}.

Constraints. Let v be a vertex. The number of edges incident to v that are
selected is

∑(xe : e ∈ δ(v)).

Since we want a perfect matching, we need that number to be equal to 1, i.e.

∑(xe : e ∈ δ(v)) = 1. (1.28)

Objective function. We wish to minimize the total weight of the edges in
the matching M we selected. Thus, the objective function should return the

weight of M. If e is an edge of M, then we will have xe = 1 and we should
contribute ce to the objective function, otherwise xe = 0 and we should
contribute 0 to the objective function. This can be modeled by the term cexe.
Thus, the objective function should be

∑(cexe : e ∈ E). (1.29)

The formulation for the minimum weight matching problem is obtained by
combining (1.28) and (1.29) as well as the condition that xe be a binary
variables. Thus, we obtain

(1.30)

It is not necessary to include the constraints xe ≤ 1 for e ∈ E since this
condition will be satisfied by every feasible solution of (1.30). Indeed,
consider an arbitrary edge f and let v be one of its endpoints. Then f ∈ δ(v),
and thus xf ≤ ∑(xe : e ∈ δ(v)) = 1. Thus, 0 ≤ xf ≤ 1. As xf is integer, xf ∈ {0,
1}, as required.

As an example let us write the formulation (1.30) for the graph in Figure
1.8. Let x denote the vector (xab, xbg, xdg, xad, xag, xbd)⊤ and let and denote
the vector of all zeros and ones (of appropriate dimension) respectively. The
IP in that case is,

Each of the first four constraints corresponds to one of the four vertices of G.
For instance, the second constraint, corresponding to vertex b, states that xab
+ xbg + xbd = 1. It says that we should select exactly one of the edges incident
to b.

Let us verify the correctness of the formulation (1.30). We have a graph G
= (V, E) and edge weights ce for every edge e. Let M be a perfect matching.
We need to verify (see Section 1.1.2) that M corresponds to a feasible
solution x of (1.30). To do this, we set xe = 1 if e is an edge of M, and xe = 0
otherwise. Conversely, suppose that x is a feasible solution of (1.30), then M
:= {e : xe = 1} is a perfect matching. Finally, observe that the objective
function of the formulation computes the weight of the corresponding perfect
matching.

1.5.2 Shortest path problem
The IP formulation will rely on a characterization of st-paths. We first require
a few definitions. Let G = (V, E) be a graph and let U ⊆ V be a subset of the
vertices. Generalizing from the definition for singletons from the previous
section, we let δ(U) denote the set of edges that have exactly one endpoint in
U, i.e.

δ(U) = {uv ∈ E : u ∈ U, v ∉ U}.

Consider the following graph given in Figure 1.9. Then δ({s, a}) is the set of

all edges with exactly one end equal to either a or s, i.e. it is the set {sb, ab,
at}. Suppose a graph G has a distinct pair of vertices s and t. Then an st-cut is
a set of edges of the form δ(U), where s ∈ U and t ∉ U. The set of all st-cuts
in the graph in Figure 1.9 is given by

δ({s}) = {sa, sb}
δ({s, a}) = {at, ab, sb}
δ({s, b}) = {sa, ab, bt}
δ({s, a, b}) = {at, bt}.

(1.31)

Figure 1.9

These st-cuts are obtained by considering all possible sets of vertices U,
where s ∈ U and t ∉ U. Note, the term st-cut arises from the fact that if we
remove all the edges in an st-cut, the resulting graph breaks into (at least) two
parts that are not joined by any edge and where one part contains s and
another contains t.

Consider a graph G = (V, E) with distinct vertices s and t and let P be an st-
path of G. Let δ(U) be an arbitrary st-cut of G = (V, E). Follow the path P,
starting from s and denote by u the last vertex of P in U, and denote by u′ the
vertex that follows u in P. Note that u exists since s ∈ U and t ∉ U. Then by
definition uu′ is an edge that is in δ(U). Since δ(U) was an arbitrary st-cut, we
have shown the following remark:

Remark 1.1 An st-path P intersects every st-cut.

In fact the converse, also holds, namely:

Remark 1.2 Let S be a set of edges that contains at least one edge from every
st-cut. Then there exists an st-path P that is contained in the edges of S.

Proof Let U denote the set of vertices that contain s as well as all vertices u
for which there exists a path from s to u that only uses edges in S. We need to
show that there exists an st-path that is contained in S, i.e. that t ∈ U.
Suppose for a contradiction that t ∉ U. Then by definition δ(U) is an st-cut.
By hypothesis, there exists an edge of S in δ(U), say uu′ ∈ S, where u ∈ U
and u′ ∉ U (see figure on the right). By construction, there exists an su-path Q
that is contained in S. Then the path obtained from Q by adding the edge uu′
is an su′-path contained in S. It follows by definition of U that u′ ∈ U, a
contradiction.

We are now ready to find an IP formulation for the shortest path problem.
We are given a graph G = (V, E), distinct vertices s and t and edge lengths ce
≥ 0 for every edge e. We need to determine the variables, the objective
function, and the constraints.

Variables. We will introduce a binary variable xe for every edge e, where
xe = 1 represents the case where edge e is selected to be part of our st-path,
and xe = 0, means that the edge e is not selected.

Constraints. Remark 1.2 says that in order to construct an st-path, it
suffices to select one edge from every st-cut. We will use this idea for our
formulation. Let δ(U) be an arbitrary st-cut of G. The number of edges we
selected from the st-cut δ(U) is given by

∑(xe : e ∈ δ(U))

and since we wish to select at least one edge from δ(U), the constraint should
be

∑(xe : e ∈ δ(U)) ≥ 1. (1.32)

Objective function. We wish to minimize the total length of the edges in
the st-path P we selected. Thus, the objective function should return the
length of P. If e is an edge of P then we will have xe = 1 and we should
contribute ce to the objective function, otherwise xe = 0 and we should
contribute 0 to the objective function. This can be modeled by the term cexe.
Thus, the objective function should be

∑(cexe : e ∈ E). (1.33)

The formulation for the shortest path problem is obtained by combining
(1.32) and (1.33) as well as the condition that xe be a binary variable for all e
∈ E. Thus, we obtain

(1.34)

Observe in this formulation that the condition that xe ∈ {0, 1} has been
replaced by the condition that xe ≥ 0 and xe is integer, i.e. we removed the
condition that xe ≤ 1. This is correct, for if x is a feasible solution to (1.34),
where xe ≥ 2, then x′, obtained from x by setting = 1, is also a feasible
solution to (1.34), moreover, the objective value for x′ is smaller or equal to
the objective value for x (as ce ≥ 0).

As an example, let us write the formulation (1.34) for the graph in Figure
1.9. Let x denote the vector (xsa, xsb, xab, xat, xbt)⊤ and let denote the vector
of all ones (of appropriate dimension). The IP in that case is

Each of the first four constraints correspond to one of the four distinct st-cuts
δ(U), given by (1.31). For instance, the second constraint, corresponding to
δ({s, a}) = {sb, ab, at}, states that xsb + xab + xat ≥ 1. It says that we should
select at least one edge from the st-cut δ({s, a}).

Let us verify the correctness of the formulation (1.34). We have a graph G
= (V, E) with distinct vertices s and t and will assume that ce > 0 for every e
∈ E, i.e. every edge has positive length.5 Let P be an st-path. We need to
verify (see Section 1.1.2) that P corresponds to a feasible solution x of (1.34).
To do this, we set xe = 1 if e is an edge of P, and xe = 0 otherwise. By Remark
1.1, every st-cut δ(U) contains an edge of P, hence, ∑(xe : e ∈ δ(U)) ≥ 1. It
follows that x is feasible for the formulation. It is not true, however, that
every feasible solution to the formulation corresponds to an st-path. This is
seemingly in contradiction with the strategy outlined in Section 1.1.2.
However, it suffices to show that every optimal solution x to the formulation
corresponds to an st-path. Let S = {e ∈ E : x = 1}. We know from Remark
1.2 that the edges of S contain an st-path P. If S = P, then we are done.
Otherwise, define x′ by setting = 1 if e is an edge of P, and = 0
otherwise. Then x′ is also a feasible solution to the formulation, but it has an
objective value that is strictly smaller than x, a contradiction. It follows that S
is an st-path, as required.

Let us re-evaluate our simple strategy for constructing mathematical
formulations from word descriptions as given in Section 1.1.2. When dealing
with the shortest path problem, instead of forcing all solutions to the
mathematical formulation to correspond to solutions to the word formulation,

we found it advantageous to utilize the objective function and argue that
optimal solutions of the word problem are correctly formulated by our
mathematical formulation. This approach will be very handy when we deal
with many other problems, including those where we try to minimize the
maximum of finitely many affine functions (or maximize the minimum of
finitely many affine functions).

Exercises

1 Let G = (V, E) be a graph with nonnegative edge weights ce for every edge
e. The maximum weight matching problem is the problem of finding a
matching of maximum weight. An edge-cover is a set of edges S that has the
property that every vertex is the endpoint of some edge of S. The minimum
weight edge-cover problem is the problem of finding an edge-cover of
minimum weight.
(a) Formulate as an IP the problem of finding a maximum weight matching.
(b) Formulate as an IP the problem of finding a minimum edge-cover.

2 A vertex-cover of a graph G is a set S of vertices of G such that each edge
of G is incident with at least one vertex of S. For instance, in Figure 1.10 the
set S = {2, 3, 4, 6, 7} is a vertex-cover. The size of a vertex-cover is the
number of vertices it contains. So the above set is a vertex-cover of size 5.

Figure 1.10

(a) Formulate the following problem as an IP: find a vertex-cover in the
graph G given in Figure 1.10 of smallest possible size.

(b) Now do the same for an arbitrary graph G. That is, you are given a
graph G = (V, E). Formulate the problem of finding a minimum size
vertex-cover as an IP.

3 Consider a graph G = (V, E). A triangle T is a set of three distinct vertices
i, j, k, where ij, jk and ik are all edges. A packing of triangles is a set S of
triangles with the property that no two triangles in S have a common vertex.
The maximum triangle packing problem (MTP) is the problem of finding a
packing of triangles S with as many triangles as possible. As an example
consider the graph in Figure 1.11. Then triangles T1 = {2, 3, 7}, T2 = {4, 8,
11}, form a packing of triangles. Formulate the (MTP) problem for this graph
G as an IP.

Figure 1.11

HINT: Define one variable for every triangle and write one constraint for
every vertex.

4 Let G = (V, E) be a graph, let s, t be vertices of G, and suppose each edge
e has a nonnegative weight ce. Remark 1.1 states that an st-cut δ(U) intersects
every st-path.
(a) Suppose S is a set of edges that contains at least one edge from every st-

path. Show that there exists an st-cut δ(U) that is contained in the edges

of S.
(b) The weight of an st-cut δ(U) is defined as c(δ(U)) := ∑(ce : e ∈ δ(U)).

Find an IP formulation for the problem of finding an st-cut of minimum
weight, where we have a binary variable for every edge and a constraint
for every st-path.

HINT: This is analogous to the formulation given in (1.34).
(c) Show that the formulation given in (b) is correct.

1.6 Nonlinear programs
Consider functions f : n → , and gi : n → , for every i ∈ {1, 2 , . . . , m}.
A nonlinear program is an optimization problem of the form

(1.35)

We will abbreviate the term nonlinear program by NLP throughout this book.
The reader might be troubled by the fact that NLP are always minimization
problems. What if we wish to maximize the objective function f(x)? Then we
could replace in (1.35) z = f(x) by z = −f(x), as making the function −f(x) as
small as possible is equivalent to making f(x) as large as possible. Note that
when each of the functions f(x) and g1(x) , . . . , gm(x) are affine functions in
(1.35), then we obtain an LP.

1.6.1 Pricing a tech gadget
Company Dibson is a local producer of tech gadgets. Its newest model, the
Dibson BR-1 will be sold in three regions: 1, 2, and 3. Dibson is considering

a price between $50 and $70 for the device, but is uncertain as to which exact
price it should choose. Naturally, the company wants to maximize its
revenue, and that depends on the demand. The demand on the other hand is a
function of the price. Dibson has done a considerable amount of market
research, and has reliable estimates for the demand (in thousands) for the new
product for three different prices in each of the three regions. The following
table summarizes this:

Demand

Price ($) Region 1 Region 2 Region 3

50 130 90 210

60 125 80 190

70 80 20 140

The company wants to model the demand in region i as a function di(p) of
the unit’s price. Dibson believes that the demand within a region can be
modeled by a quadratic function, and uses the data from the above table to
obtain the following quadratic demand functions:

d1(p) = − 0.2p2 + 21.5p − 445
d2(p) = − 0.25p2 + 26.5p − 610
d3(p) = − 0.15p2 + 14.5p − 140.

(1.36)

The previous figure shows the demand functions for the three regions.
Dibson wants to restrict the price to be between $50 and $70. What price
should Dibson choose in order to maximize revenue? We will formulate this
problem as an NLP. In this case, there is a single variable, namely the price p
of the unit and the constraints state that 50 ≤ p ≤ 70.

Objective function. For each region i, the demand for region i is given by
di(p). Since the price is p, the revenue from region i is given by pdi(p). Thus,
the total revenue from each of the three regions is given by

where the first equality follows by (1.36). Thus, we obtain the following
NLP:

Using an algorithm to solve NLPs, we find that a price of p = 57.9976
maximizes Dibson’s revenue. The revenue at this price is approximately $23
873.

We should comment that using a single quadratic function is not a good
way to model demand. We used this overly simplified model for the sake of a
clear presentation. It would be better to model the demand in region i, either
by a piecewise quadratic function or by exponential functions βi exp(−γip),
for suitable choices of positive βi, γi.

1.6.2 Finding a closest point feasible in an LP
Suppose we formulated the set of feasible production plans for a company as
the feasible solution set of an LP. We then have an m-by-n matrix A and b ∈

m and the set of feasible production plans is represented by

{x ∈ n : Ax ≤ b}.

Moreover, a decision-making body gave us some goal values for the
variables. Let x ∈ n represent these goals.

Our job is to find a production plan that is feasible and gets as close to the
stated goals as possible. Therefore, we are asked to find a point in the set

{x ∈ n : Ax ≤ b}

that is closest to x. This problem can be formulated as

where ǁxǁ denotes the L2-norm of vector x. Even though

the above problem is equivalent to

the objective function is still nonlinear.

1.6.3 Finding a “central” feasible solution of an LP
Suppose we are operating a nuclear reactor. We have a mathematical model,
based on a system of linear inequalities, for safe operation of the reactor, i.e.
we have an m-by-n matrix A and b ∈ m. We are interested in the solutions x
satisfying

Ax ≤ b.

However, since these constraints model safe operation modes, we are worried
about not only violating the constraints but also about getting close to
violating the constraints. As a result, we want a solution that is as far away as
possible from getting close to violating any of the constraints. Then one
option is to solve the optimization problem

Another option is to solve the optimization problem

Indeed, we can pick any, suitable function which is finite valued and
monotone decreasing for positive arguments, and tends to infinity as its
argument goes to zero with positive values. Note that the functions used
above as building blocks f1 : → , f1(x) := and f2 : → , f2(x) := − ln(x)
both have these desired properties.

Further note that the objective functions of both of these problems are
nonlinear. Therefore, they are both NLP problems but not LP problems.

Exercises

1 UW Smokestacks has a chimney which needs cleaning regularly. Soot
builds up on the inside of the chimney at a rate of 1cm per month. The cost of
cleaning when the soot has thickness x cm is 13 + x2 hundred dollars.
Cleaning can occur at the end of any month.

The chimney is clean at present (i.e. at the start of month 1). According to
the contract with the cleaners, it must be cleaned precisely nine times in the
next 48 months, one of which times must be at the end of month 48. Also, at
least three cleanings must occur in the first 15 months.

It is needed to determine which months the cleaning should occur, to
minimize total cost. Formulate a nonlinear mathematical program to solve
this problem, such that all constraints are either linear or integrality
constraints. (Hint: Consider a variable giving the time of the ith cleaning.)

2 A number of remote communities want to build a central warehouse. The
location of each of the communities is described by an (x, y)-coordinate as
given in the next table:

x y

Dog River 3 9

Springfield 10 6

Empire Falls 0 12

Worthing 4 9

If the warehouse is located at the coordinate (7, 6), then the distance from the
warehouse to Dog River will be

Goods from the warehouse will be delivered to the communities by plane.
The price of a single delivery to a community is proportional to the distance
between the ware-house and the community. Each community will need a
number of deliveries from the warehouse which depends on the size of the
community. Dog River will require 20 deliveries, Springfield 14, Empire
Falls 8, and Worthing 24. The goal is to locate the warehouse, i.e. find (x, y)-
coordinates, so that the total cost of all deliveries is minimized. Formulate
this problem as an NLP.

3 A 0, 1 program is an integer program where every variable is a binary
variable, i.e. can only take values 0 or 1. Show that every 0, 1 program can be
expressed as an NLP.

HINT: For every variable xj, consider including a nonlinear equation with
left-hand side xj(xj − 1).

4 (Note, this exercise requires basic concepts in probability.) Another
important application of nonlinear optimization is portfolio optimization. In a
fundamental version of such a problem, we usually have a fixed amount of
capital that we wish to invest into several investment options. The usual goal
is to maximize the return from this investment while ensuring that the risk of
the constructed portfolio is small. Usually, stocks that have the highest
potential returns are the most volatile, and hence the most risky stocks to
invest in at the same time. The risk-averse investor will therefore have to
strike a balance between return and risk. One way to achieve this balance is

to attempt to minimize the overall volatility while guaranteeing a minimum
expected return.

More concretely, imagine you had $500 available for investment into three
different stocks 1, 2, and 3. In the following, we let Si be the random variable
for the annual return on $1 invested into stock i. Assume that we know the
expected annual return and its variance for each of the given stocks. The
following table shows expected values and variances for the given variables:

i E[Si] var[Si]

1 0.1 0.2

2 0.13 0.1

3 0.08 0.15

In addition to the information above, we are also given the following
covariances:

cov(S1, S2) = 0.03, cov(S1, S3) = 0.04, and cov(S2, S3) = 0.01.

Recall, for a random variable ξ

var(ξ) :([ξ ‒ E(ξ)]2),

and for a pair of random variables ξ1, ξ2

cov(ξ1, ξ2) := E ([ξ1 − E(ξ1)] [ξ2 − E(ξ2)]).

The goal is now to invest the given $500 into the three stocks such that the
expected return is at least $50, and such that the total variance of our
investment is minimized.

Introduce a variable xi denoting the amount of money invested into stock i
for all i ∈ {1, 2, 3}. Using these variables, formulate the problem as a
nonlinear optimization problem such that the objective function is a quadratic
function of xi and all the constraints are linear. (Such problems are called
quadratic optimization problems.)

1.7 Overview of the book
In this chapter, we have seen a number of examples of optimization problems
all put in a practical context. In each of these cases, we have developed a
concise mathematical model that captures the respective problem. Clearly,
modeling a problem in mathematical terms is nice and perhaps theoretically
satisfying to a degree; however, in most cases, a mathematical model by itself
is not enough. After all, in most cases, most of us are interested in solutions!
For many of the given examples in this chapter, we also provided a solution.
How do we find these solutions? The techniques to solve these problems
depend on the type of mathematical model considered. The simplest and most
widespread of these models is linear programming and an algorithm to solve
linear programs is the simplex algorithm that we describe in Chapter 2.

In Chapter 3, we will develop efficient algorithms to solve two classical
optimization problems, namely the problem of finding a shortest path
between a fixed pair of vertices in an undirected graph and the problem of
finding a minimum cost perfect matching in a bipartite graph. We show in the
process that the natural framework for understanding these problems is the
theory of linear programming duality. This theory will be further developed
in Chapter 4. Further applications to this theory are given in Chapter 5.
General techniques to solve integer programs are studied in Chapter 6.
Finally, in Chapter 7 we explain how some of the concepts introduced for
linear programs extend to nonlin-ear programs. One of the guiding principles
in designing algorithms is the consideration of efficiency. The appendix
provides an introduction to a foundational treatment of this issue, under the
title of Computational Complexity.

1.8 Further reading and notes
A recent survey (see also Winston [70]) of Fortune 500 firms shows that 85%
of all respondents use linear programming in their operations. The roots of
linear programming can be traced back at least a couple of hundred years to
the work of Fourier on solutions of systems of linear inequalities. The name
linear programming, however, was coined only in the late 1930s and early
1940s when the Russian mathematician Leonid Kantorovich and the

American mathematician George B. Dantzig formally defined the underlying
techniques. George Dantzig also developed the simplex algorithm which to
this date remains one of the most popular methods to solve linear programs.
Dantzig who worked as a mathematical advisor for the US Air Force initially
applied linear programming to solve logistical problems arising in the
military. It did, however, not take long for industry to realize the technique’s
potential, and its use is widespread today.

We just saw some examples of modeling a given problem as an
optimization problem. An important part of the mathematical modeling
process is to prove the correctness of the mathematical model constructed. In
this book, typically, our starting point will be a well-described statement of
the problem with clearly stated data. Then we take this description of the
problem, define variables, the objective function, and the constraints. Once
the mathematical model is constructed, we prove that the mathematical model
we constructed is correct, i.e. it exactly represents the given problem
statement. For many examples of such mathematical models, see the book
[70].

In real applications, we have to go through a lot of preparation to arrive at
the clear description of the problem and the data. In some applications
(actually in almost all applications), some of the data will be uncertain. There
are more advanced tools to deal with such situations (see, for instance, the
literature on robust optimization starting with Ben-Tal, Ghaoui and
Nemirovski [4]).

Many of the subjects that we introduced in this chapter have a whole
course dedicated to them. The portfolio optimization example (see Exercise
4, Section 1.6.1) is an instance of Markowitz model. It was proposed by
Harry Markowitz in the 1950s. For his work in the area, Markowitz received
the Nobel Prize in Economics in 1990. For applications of optimization in
financial mathematics, see Best [6] and Cornuéjols and Tütüncü [17]. For
further information on scheduling, see Pinedo [55].

1 Strict inequalities are not allowed.
2 Quantities ui, ℓj, ai, bi, are constants for all i and j.
3 Check out http://www.bitstorm.org/gameoflife/ for a Java applet for LIFE.
4 It is often useful to think of an st-path as a set of edges that can be ordered to form an st-

path. We will alternate between the representation of an st-path as a set of edges and a

http://www.bitstorm.org/gameoflife/

sequence of edges.
5 The formulation does not work if ce < 0 for some edge e and there are technical

difficulties when ce = 0.

2

Solving linear programs

2.1 Possible outcomes
Consider an LP (P) with variables x1, . . . , xn. Recall that an assignment of
values to each of x1, . . . , xn is a feasible solution if the constraints of (P) are
satisfied. We can view a feasible solution to (P) as a vector x = (x1, . . . , xn)⊤.
Given a vector x, by the value of x we mean the value of the objective
function of (P) for x. Suppose (P) is a maximization problem. Then recall that
we call a vector x an optimal solution if it is a feasible solution and no
feasible solution has larger value. The value of the optimal solution is the
optimal value. By definition, an LP has only one optimal value; however, it
may have many optimal solutions. When solving an LP, we will be satisfied
with finding any optimal solution. Suppose (P) is a minimization problem.
Then a vector x is an optimal solution if it is a feasible solution and no
feasible solution has smaller value.

If an LP (P) has a feasible solution, then it is said to be feasible, otherwise
it is infeasible. Suppose (P) is a maximization problem and for every real
number α there is a feasible solution to (P) which has value greater than α,
then we say that (P) is unbounded. In other words, (P) is unbounded if we can
find feasible solutions of arbitrarily high value. Suppose (P) is a minimization
problem and for every real number α there is a feasible solution to (P) which
has value smaller than α, then we say that (P) is unbounded. Unbounded LPs
are easy to construct. Try to construct one yourself. (HINT: You can do this
for an LP with a single variable.)

We have identified three possible outcomes for an LP (P), namely:

(1) it is infeasible,

(2) it has an optimal solution,
(3) it is unbounded.

Clearly, each of these outcomes are mutually exclusive (i.e. no two can occur
at the same time). We will show that in fact exactly one of these outcomes
must occur (this is a form of the fundamental theorem of linear programming
which will be established at the end of this chapter). We will now illustrate
each of these outcomes with a different example.

2.1.1 Infeasible linear programs
If we are interested in knowing whether an LP (P) is infeasible, it suffices to
consider the constraints, as this does not depend on the objective function.
Suppose that the constraints of (P) are as follows:

4x1 + 10x2 − 6x3 − 2x4 = 6, (2.1)

−2x1 + 2x2 − 4x3 + x4 = 5, (2.2)

 −7x1 − 2x2 + 4x4 = 3, (2.3)

x1, x2, x3, x4 ≥ 0. (2.4)

Suppose further that you are asked to solve (P). After spending a substantial
amount of time on the problem, you are starting to become more and more
convinced that (P) is in fact infeasible. But how can you be certain? How will
you convince a third party that (P) does indeed have no solution? You
certainly cannot claim to have tried all possible sets of values for x1, x2, x3, x4
as there are an infinite number of possibilities.

We now present a concise way of proving that the system (2.1)–(2.4) has
no solution. The first step is to create a new equation by combining equations
(2.1), (2.2), and (2.3). We pick some values y1, y2, y3. Then we multiply
equation (2.1) by y1, equation (2.2) by y2, and equation (2.3) by y3, and add
each of the resulting equations together. If we choose the values y1 = 1, y2 =

−2 and y3 = 1, we obtain the equation

x1 + 4x2 + 2x3 = −1. (2.5)

Let us proceed by contradiction and suppose that there is in fact a solution
 to (2.1)–(2.4). Then clearly must satisfy (2.5) as it

satisfies each of (2.1), (2.2), and (2.3). As are all nonnegative, it
follows that But this contradicts constraint (2.5). Hence,
our hypothesis that there was in fact a solution to (2.1)–(2.4) must be false.

The vector y = (1, −2, 1)⊤ is the kind of proof that should satisfy a third
party; given y, anyone can now easily and quickly check that there is no
solution to (P). Of course, this proof will only work for an appropriate choice
of y and we have not told you how to find such a vector at this juncture. We
will derive an algorithm that either finds a feasible solution, or finds a vector
y that proves that no feasible solution exists.

We wish to generalize this argument, but before this can be achieved, we
need to become comfortable with matrix notation. Equations (2.1)–(2.3) can
be expressed as,

Ax = b,

where

(2.6)

Then Ax is a vector with three components. Components 1, 2, and 3 of the
vector Ax correspond to respectively the left-hand side of equations (2.1),
(2.2), and (2.3). For a vector y = (y1, y2, y3)⊤, y⊤(Ax) is the scalar product of y
and Ax and it consists of multiplying the left-hand side of equation (2.1) by
y1, the left-hand side of equation (2.2) by y2, the left-hand side of equation
(2.3) by y3, and adding each of resulting expressions. Also, y⊤b is the scalar

product of y and b and it consists of multiplying the right-hand side of
equation (2.1) by y1, the right-hand side of equation (2.2) by y2, and the right-
hand side of equation (2.3) by y3, and adding each of the resulting values.
Thus

y⊤(Ax) = y⊤b

is the equation obtained by multiplying equation (2.1) by y1, (2.2) by y2, (2.3)
by y3, and by adding each of the resulting equations together. Note that in the
previous relation, we may omit the parentheses because of associativity, i.e.
y⊤(Ax) = (y⊤A)x. For instance, if we choose y1 = 1, y2 = −2 and y3 = 1, then we
obtain

and after simplifying

(1, 4, 2, 0)(x1, x2, x3, x4)⊤ = −1,

which is equation (2.5). We then observed that all the coefficients in the left-
hand side of (2.5) are nonnegative, i.e. that (1, 4, 2, 0) ≥ ⊤ or equivalently
that y⊤A ≥ ⊤. We also observed that the right-hand side of (2.5) is negative or
equivalently that y⊤b < 0. (Note, 0 denotes the number zero and the column
vector whose entries are all zero.) These two facts implied that there is no
solution to (2.1)–(2.4), i.e. that Ax = b, x ≥ has no solution.

Let us generalize this argument to an arbitrary matrix A and vector b. We
will assume that the matrices and vectors have appropriate dimensions so that
the matrix relations make sense. This remark holds for all subsequent
statements.

PROPOSITION 2.1 Let A be a matrix and b be a vector. Then the system

Ax = b x ≥

has no solution if there exists a vector y such that:

(1) y⊤A ≥ ⊤, and
(2) y⊤b < 0.

Note, if A has m rows, then the vector y must have m components. Then the
equation y⊤Ax = y⊤b is obtained by multiplying for every i ∈ {1, . . . , m} row
i of A by yi and adding all the resulting equations together.

Proof of Proposition 2.1 Let us proceed by contradiction and suppose that
there exists a solution x to Ax = b, x ≥ and that we can find y such that y⊤A ≥
⊤ and y⊤b < 0. Since Ax = b is satisfied, we must also satisfy y⊤ Ax = y⊤b.

Since y⊤A ≥ ⊤ and x ≥ , it follows that y⊤Ax ≥ 0. Then 0 ≤ y⊤ Ax = y⊤b > 0, a
contradiction. □

We call a vector y which satisfies conditions (1) and (2) of Proposition 2.1
a certificate of infeasibility. To convince a third party that a particular system
Ax = b, x ≥ has no solution, it suffices to exhibit a certificate of
infeasibility. Note, while we have argued that such a certificate will be
sufficient to prove infeasibility, it is not clear at all that for every infeasible
system there exists a certificate of infeasibility. The fact that this is indeed so
is a deep result which is known as Farkas’ lemma; (see Theorem 4.8).

2.1.2 Unbounded linear programs
Consider the LP

max{z(x) = c⊤x : Ax = b, x ≥ },

where

(2.7)

This LP is unbounded. Just like in the previous case of infeasibility, we are
looking for a concise proof that establishes this fact. Specifically, we will
define a family of feasible solutions x(t) for all real numbers t ≥ 0 and show
that as t tends to infinity, so does the value of x(t). This will show that (2.7) is
indeed unbounded.

We define for every t ≥ 0

x(t) = x + td,

where

x = (2, 0, 0, 1, 2)⊤ and d = (1, 2, 1, 0, 0)⊤.

For instance, when t = 0, then x(t) = (2, 0, 0, 1, 2)⊤, and when t = 2, then x(t)
= (4, 4, 2, 1, 2)⊤. We claim that for every t ≥ 0, x(t) is feasible for (2.7). Let us
first check that the equation Ax = b holds for every x(t). You can verify that

 and that Ad = . Then we have

as required. We also need to verify that x(t) ≥ for every t ≥ 0. Note that x, d
≥ hence, x(t) = x + td ≥ td ≥ , as required. Let us investigate what happens
to the objective function for x(t) as t increases. Observe that c⊤d = 2 > 0, then

c⊤x(t) = c⊤(x + td) = c⊤x + c⊤(td) = c⊤x + tc⊤d = c⊤x + 2t,

and as t tends to infinity so does c⊤x(t). Hence, we have proved that the LP is
in fact unbounded.

Given x and d, anyone can now easily verify that the linear program is
unbounded. We have not told you how to find such a pair of vectors x and d.
We will want an algorithm that detects if an LP is unbounded and when it is,
provides us with the vectors x and d.

Let us generalize the previous argument. Let A be an m × n matrix, b a
vector with m components, and c a vector with n components. The vector of
variables x has n components. Consider the LP

max{c⊤x : Ax = b, x ≥ }. (P)

We leave the proof of the following proposition to the reader, as the
argument is essentially the one which we outlined in the above example.

PROPOSITION 2.2 Suppose there exists a feasible solution x and a vector d
such that:

(1) Ad = ,
(2) d ≥ ,
(3) c⊤d > 0.

Then (P) is unbounded.

We call a pair of vectors x, d as in the previous proposition a certificate of
unboundedness. We will show that there exists a certificate of unboundedness
for every unbounded LP.

2.1.3 Linear programs with optimal solutions
Consider the LP

(2.8)

Suppose you are being told that (2, 0, 0, 4, 0)⊤ is an optimal solution to (2.8).
Clearly, you will not simply believe such a claim but rightfully request a
proof. It is easy enough to verify that (2, 0, 0, 4, 0)⊤ is feasible and that the
corresponding value is 3. However, once again, trying all feasible solutions,
and comparing their values to that of (2, 0, 0, 4, 0)⊤ is impossible.

In order to construct a concise proof of optimality, we will prove that z(x) ≤
3 for every feasible solution x, i.e. no feasible solution has a value that

exceeds 3. Since (2, 0, 0, 4, 0)⊤ has value equal to 3, it will imply that it is
optimal. We seemingly traded one problem for another however: how to
show that z(x) ≤ 3 for every feasible solution x. It suffices in this particular
case to analyze the objective function as

where the inequality follows from the fact that the scalar product of two
vectors, one where all entries are nonpositive and one where all entries are
nonnegative, is always nonpositive. Hence, (2, 0, 0, 4, 0)⊤ is indeed optimal.

Consider now the following LP:

(2.9)

Observe that the only difference between (2.8) and (2.9) is the objective
function. In particular, (2, 0, 0, 4, 0)⊤ is a feasible solution to (2.9). We claim
that it is in fact an optimal solution. To do this, we construct a new constraint
by multiplying the first constraint of the LP by −1, the second by 2, and by
adding the two constraints together. Then we obtain

and after simplifying

(−1, 4, −3, 2, 4)x = 6 or equivalently 0 = −(−1, 4, −3, 2, 4)x + 6.

This equation holds for every feasible solution of (2.8). Thus, adding this
equation to the objective function z(x) = (−1, 3, −5, 2, 1)x − 3 will not change

the value of the objective function for any of the feasible solutions. The
resulting objective function is

z(x) = (−1, 3, −5, 2, 1)x − 3 − (−1, 4, −3, 2, 4)x + 6 = (0, −1, −2, 0, −3)x + 3.

However, this is the same objective function as in the LP (2.8). It means that
the LP (2.9) is essentially the same LP written differently. In particular, this
proves that (2, 0, 0, 4, 0)⊤ is an optimal solution to (2.9).

More generally for LPs of the form

max{z(x) = c⊤x + z : Ax = b, x ≥ }, (P)

we will always be able to show that an optimal solution x of value z(x) is
indeed optimal by proving that z(x) is an upper bound for (P). We will see
later in this chapter that it is always possible to prove such an upper bound by
combining the objective function with a linear combination of the constraints.
The coefficients used in constructing such a proof is called a certificate of
optimality.

Exercises

1 (a) Prove that the following LP problem is infeasible:

(b) Prove that the following LP problem is unbounded:

(c) Prove that the LP problem

max{c⊤x : Ax = b, x ≥ }

is unbounded, where

HINT: Consider the vectors ˆx = (1, 3, 1, 0, 0)⊤ and d = (1, 1, 1, 1, 1)⊤.
(d) For each of the problems in parts (b) and (c), give a feasible solution

having objective value exactly 5000.

2 Let A be an m×n matrix and let b be a vector with m entries. Prove or
disprove each of the following statements (in both cases y is a vector with m
entries):
(i) If there exists y such that y⊤A ≥ ⊤ and b⊤y < 0, then Ax ≤ b, x ≥ has no

solution.
(ii) If there exists y ≥ such that y⊤A ≥ ⊤ and b⊤y < 0, then Ax ≤ b, x ≥

has no solution.

2.2 Standard equality form
An LP is said to be in standard equality form (SEF) if it is of the form

max{c⊤x + z : Ax = b, x ≥ },

where z denotes some constant. In other words, an LP is in SEF if it satisfies
the following conditions:

(1) it is a maximization problem,
(2) other than the nonnegativity constraints, all constraints are equations,
(3) every variable has a nonnegativity constraint.

Here is an example

(2.10)

We will develop an algorithm that given an LP (P) in SEF will either prove
that (P) is infeasible by exhibiting a certificate of infeasibility, or prove that
(P) is unbounded by exhibiting a certificate of unboundedness, or find an
optimal solution and show that it is indeed optimal by exhibiting a certificate
of optimality.

However, not every LP is in SEF. Given an LP (P) which is not in SEF, we
wish to “convert” (P) into an LP (P′) in SEF and apply the algorithm to (P′)
instead. Of course, we want the answer for (P′) to give us some meaningful
answer for (P). More precisely what we wish is for (P) and (P′) to satisfy the
following relationships:

(1) (P) is infeasible if and only if (P′) is infeasible;
(2) (P) is unbounded if and only if (P′) is unbounded;
(3) given any optimal solution of (P′), we can construct an optimal solution

of (P), and given any optimal solution of (P), we can construct an
optimal solution of (P′).

Linear programs that satisfy the relationships (1), (2), and (3) are said to be
equivalent.

We now illustrate on an example how to convert an arbitrary LP into an
equivalent LP in SEF. Note, we will leave it to the reader to verify that at
each step we do indeed get an equivalent LP

(2.11)

The notation used here means that ≥, ≤ and = refer to the first, second, and
third constraints respectively. We want to convert (2.11) into an LP in SEF.
We will proceed step by step. Note that (2.11) is a minimization problem. We
can replace min(−1, 2, −4)(x1, x2, x3)⊤ by max(1, −2, 4)(x1, x2, x3)⊤, or more
generally min c⊤x by max −c⊤x.

The resulting LP is as follows:

(2.12)

We do not have the condition that x3 ≥ 0 as part of the formulation in (2.12).
We call such a variable free. We might be tempted to simply add the
constraint x3 ≥ 0 to the formulation. However, by doing so we may change
the optimal solution as it is possible for instance that all optimal solutions to
(2.12) satisfy x3 < 0. The idea here is to express x3 as the difference of two
nonnegative variables, say x3 = − where , ≥ 0. Let us rewrite the
objective function with these new variables

Let us rewrite the left-hand side of the constraints with these new variables

In general, for an LP with variables x = (x1, . . . , xn)⊤, if we have a variable xi
where xi ≥ 0 is not part of the formulation (i.e. a free variable), we introduce
variables and define
Replace the objective function c⊤x by c′⊤x′ where c′ = (c1, . . . , ci−1, ci, −ci,
ci+1, . . . , cn)⊤. If the left-hand side of the constraints is of the form Ax where
A is a matrix with columns A1, . . . , An, replace Ax by A′ x′ where A′ is the
matrix which consists of columns A1, . . . , Ai−1, Ai, −Ai, Ai+1, . . . , An.

The new LP is as follows:

(2.13)

Let us replace the constraint in (2.13) by an equality
constraint. We introduce a new variable x4 where x4 ≥ 0 and we rewrite the
constraint as 2x1 − The variable x4 is called a slack
variable. More generally, given a constraint of the form we
can replace it by where xn+1 ≥ 0.

The resulting LP is as follows:

(2.14)

Let us replace the constraint in (2.14) by an equality
constraint. We introduce a new variable x5, where x5 ≥ 0 and we rewrite the
constraint as x1 +5x2 + The variable x5 is also called a
slack variable. More generally, given a constraint of the form

we can replace it by where xn+1 ≥ 0.
The resulting LP is as follows:

Note that after relabeling the variables by x1, x2, x3, x4,
x5, x6, we obtain the LP (2.10) modulo, a constant in the objective function.
We leave to the reader to verify that the aforementioned transformations are
sufficient to convert any LP into an LP in SEF.

Exercises

1 Convert the following LPs into SEF:
(a)

(b) Let A, B, D be matrices and b, c, d, f be vectors (all of suitable
dimensions). Convert the following LP with variables x and y (where x,
y are vectors) into SEF:

Note, the variables y are free.

2.3 A simplex iteration
Consider the following LP in SEF:

(2.15)

where x = (x1, x2, x3, x4, x5)⊤. Because (2.15) has a special form, it is easy to
verify that x = (0, 0, 6, 10, 4)⊤ is a feasible solution with value z(x) = 0. Let us
try to find a feasible solution x with larger value. Since the objective function
is z(x) = 2x1 + 3x2, by increasing the value of x1 or x2 we will increase the
value of the objective function. Let us try to increase the value of x1 while
keeping x2 equal to zero. In other words, we look for a new feasible solution
x, where x1 = t for some t ≥ 0 and x2 = 0. The matrix equation will tell us
which values we need for x3, x4, x5. We have

Thus

(2.16)

The larger we pick t ≥ 0, the more we will increase the objective function.
How large can we choose t to be? We simply need to make sure that x3, x4, x5
≥ 0, i.e. that

Thus, t ≤ 6 and 2t ≤ 10, i.e. t ≤ . Note that −t ≤ 4 does not impose any
bound on how large t can be. Picking the largest possible t yields 5. We can
summarize this computation as

Replacing t = 5 in (2.16) yields x′ ≔(5, 0, 1, 0, 9)⊤ with z(x′) = 10.

What happens if we try to apply the same approach again? We could try to
increase the value of , but in order to do this we would have to decrease the
value of , which might decrease the objective function. The same strategy
no longer seems to work! We were able to carry out the computations the
first time around because the LP (2.15) was in a suitable form for the original
solution x. However, (2.15) is not in a suitable form for the new solution x′ .
In the next section, we will show that we can rewrite (2.15) so that the
resulting LP is in a form that allows us to carry out the kind of computations
outlined for x. By repeating this type of computation and rewriting the LP at
every step, this will lead to an algorithm for solving LPs which is know as the
simplex algorithm.

Exercises

1 In this exercise, you are asked to repeat the argument in Section 2.3 with
different examples.
(a) Consider the following LP:

Observe that x = (0, 2, 3, 0)⊤ is a feasible solution. Starting from x,
construct a feasible solution x′ with value larger than that of x by
increasing as much as possible the value of exactly one of x1 or x4
(keeping the other variable unchanged).

(b) Consider the following LP:

Observe that x = (2, 1, 0, 0)⊤ is a feasible solution. Starting from x,
construct a feasible solution x′ with value larger than that of x by
increasing as much as possible the value of exactly one of x3 or x4
(keeping the other variable unchanged). What can you deduce in this
case?

2.4 Bases and canonical forms

2.4.1 Bases
Consider an m × n matrix A, where the rows of A are linearly independent.
We will denote column j of A by Aj. Let J be a subset of the column indices
(i.e. J ⊆ {1, . . . , n}), we define AJ to be the matrix formed by columns Aj for
all j ∈ J (where the columns appear in the order given by their corresponding
indices). We say that a set of column indices B forms a basis if the matrix AB

is a square nonsingular matrix. Equivalently, a basis corresponds to a
maximal subset of linearly independent columns. Consider for instance

Then B = {2, 5, 6} is a basis as the matrix AB is the identity matrix. Note that
B = {1, 2, 3} and {1, 5, 6} are also bases, while B = {1, 3} is not a basis (as
AB is not square in this case) and neither is B = {1, 3, 5} (as AB is singular in
this case). We will denote by N the set of column indices not in B. Thus, B
and N will always denote a partition of the column indices of A.

Suppose that in addition to the matrix A we have a vector b with m
components, and consider the system of equations Ax = b. For instance

(2.17)

Variables xj are said to be basic when j ∈ B and nonbasic otherwise. The
vector which is formed by the basic variables is denoted by xB and the vector
which is formed by the nonbasic variables is xN. We assume that the
components in xB appear in the same order as AB and that the components in
xN appear in the same order as AN. For instance, for (2.17) B = {1, 5, 6} is a
basis, then N = {2, 3, 4} and xB = (x1, x5, x6)⊤, xN = (x2, x3, x4)⊤.

The following easy observation will be used repeatedly:

A vector x is a basic solution of Ax = b for a basis B if the following
conditions hold:

(1) Ax = b, and
(2) xN = .

Suppose x is such a basic solution, then

Since AB is nonsingular, it has an inverse and we have In
particular, it shows:

Remark 2.3 Every basis is associated with a unique basic solution.

For (2.17) and basis B = {1, 5, 6}, the unique basic solution x is x2 = x3 = x4 =
0 and

Thus, x = (1, 0, 0, 0, 0, −2)⊤. A basic solution x is feasible if x ≥ (in which
case we refer to x as a basic feasible solution). A basis B is feasible if the
corresponding basic solution is feasible. If a basic solution (resp. a basis) is
not feasible, then it is infeasible. For instance, the basis B = {1, 5, 6} is
infeasible as the corresponding basic solution x has negative entries such as
x6 = −2. When B = {2, 5, 6}, then as AB is the identity matrix, the
corresponding basic solution is x = (0, 2, 0, 0, 1, 1)⊤ which is feasible as all
entries are nonnegative.

The simplex algorithm will solve LPs in SEF by considering the bases of
the matrix A where Ax = b are the equations that define all the equality
constraints of the LP. Of course, if the rows of A are not linearly independent,
then A will not have any basis. We claim however that we may assume
without loss of generality that the rows of A are indeed linearly independent.
For otherwise, you can prove using elementary linear algebra that one of the
following two possibilities must occur:

1. The system Ax = b has no solution,
2. The system Ax = b has a redundant constraint.

If (1) occurs, then the LP is infeasible and we can stop. If (2) occurs, then we
can eliminate a redundant constraint. We repeat the procedure until all rows
of A are linearly independent. Hence, throughout this chapter we will always
assume (without stating it explicitly) that the rows of the matrix defining the
left-hand side of the equality constraints in an LP in SEF are linearly
independent.

2.4.2 Canonical forms
Let us restate the LP (2.15) we were trying to solve in Section 2.3:

(2.15)

Observe that B = {3, 4, 5} is a basis. The corresponding basic solution is
given by x = (0, 0, 6, 10, 4)⊤. Note that x is the feasible solution with which
we started the iteration. The basis B has the property that AB is an identity
matrix. In addition, the objective function has the property that cB = (c3, c4,
c5)⊤ = (0, 0, 0)⊤. These are the two properties that allowed us to find a new
feasible solution x′ = (5, 0, 1, 0, 9)⊤ with larger value. We let the readers
verify that x′ is a basic solution for the basis B = {1, 3, 5}. Clearly, for the
new basis B, AB is not an identity matrix, and cB is not the vector. Since
these properties are no longer satisfied for x′ , we could not carry the
computation further.

This motivates the following definition.
Consider the following LP in SEF:

max{c⊤x + z : Ax = b, x ≥ }, (P)

where z is a constant and let B be a basis of A. We say that (P) is in canonical
form for B if the following conditions are satisfied:

(C1) AB is an identity matrix,
(C2) cB = .

We will show that given any basis B, we can rewrite the LP (P) so that it is
in canonical form. For instance, B = {1, 2, 4} is a basis of the LP (2.15) that
can be rewritten as the following equivalent LP:

(2.18)

How did we get this LP?
Let us first rewrite the equations of (2.15) so that condition (C1) is satisfied

for B = {1, 2, 4}. We left multiply the equations by the inverse of AB (where
Ax = b denote the equality constraints of (2.15)) and where B = {1, 2, 4}):

The resulting equation is exactly the set of equations in the LP (2.18).
Let us rewrite the objective function of (2.15) so that condition (C2) is

satisfied (still for basis B = {1, 2, 4}). We generate an equation obtained by
multiplying the first equation of (2.15) by y1, multiplying the second equation
of (2.15) by y2, the third equation by y3, and adding each of the
corresponding constraints together (where the values of y1, y2, y3 are yet to be
decided). The resulting equation can be written as

or equivalently as

Since this equation holds for every feasible solution x, we can add this
previous constraint to the objective function of (2.15), namely z(x) = (2, 3, 0,
0, 0)x. The resulting objective function is

which is of the form z(x) = z + c⊤x. For (C2) to be satisfied, we need c1 = c2 =
c4 = 0. We need to choose y1, y2, y3 accordingly. Namely, we need

or equivalently

and by taking the transpose on both sides of the equation, we get

By solving the system, we get the unique solution By

substituting y in (⋆), we obtain

which is the objective function of (2.18). Let us formalize these observations.

Consider an LP in SEF

max{c⊤x + z: Ax = b, x ≥ },

where z is a constant. By definition, AB is nonsingular, hence exists.
We claim that to achieve condition (C1), it suffices to replace Ax = b by

(2.19)

Observe that Ax = ABxB + ANxN, thus

In particular, the columns corresponding to B on the left-hand side of (2.19)
form an identity matrix as required. Moreover, we claim that the set of
solutions to Ax = b is equal to the set of solutions to (2.19). Clearly, every
solution to Ax = b is also a solution to as these equations are
linear combinations of the equations Ax = b. Moreover, every solution to

 is also a solution to but this equation
is simply Ax = b, proving the claim.

Let us consider condition (C2). Let B be a basis of A. Suppose A has m
rows, then for any vector y = (y1, . . . , ym)⊤ the equation

y⊤Ax = y⊤b

can be rewritten as

0 = y⊤b − y⊤Ax.

Since this equation holds for every feasible solution, we can add this
constraint to the objective function z(x) = c⊤x + z. The resulting objective
function is

z(x) = y⊤b + z + (c⊤ − y⊤A)x. (2.20)

Let c⊤ ≔ c⊤ − y⊤A. For (C2) to be satisfied, we need cB = and also to choose
y accordingly. Namely, we want that

or equivalently that

By taking the transpose on both sides, we get

Note that B is a basis, and thus matrices AB and its transpose are nonsingular.
Furthermore, the inverse and transpose operations commute, and hence

 Therefore, we will write Hence, the
previous relation can be rewritten as

(2.21)

We have shown the following, see (2.19), (2.20), (2.21):

PROPOSITION 2.4 Suppose an LP

max{z(x) = c⊤x + z : Ax = b, x ≥ }

and a basis B of A are given. Then the following LP is an equivalent LP in
canonical form for the basis B:

where y =

Exercises

1 Consider the system Ax = b where the rows of A are linearly independent.
Let x be a solution to Ax = b. Let J be the column indices j of A for which xj ≠
0.
(a) Show that if x is a basic solution, then the columns of AJ are linearly

independent.
(b) Show that if the columns of AJ are linearly independent, then x is a basic

solution for some basis B ⊇ J.
Note that (a) and (b) give you a way of checking whether x is a basic
solution, namely you simply need to verify whether the columns of AJ are
linearly independent.
(c) Consider the system of equations

and the following vectors:
(i) (1, 1, 0, 0, 0, 0, 0)⊤,

(ii) (2, −1, 2, 0, 1, 0, 0)⊤,
(iii) (1, 0, 1, 0, 1, 0, 0)⊤,
(iv) (0, 0, 1, 1, 0, 0, 0)⊤,
(v) (0, , 0, 0, 0, 1)⊤.
For each vector in (i)–(v), indicate if it is a basic solution or not. You
need to justify your answers.

(d) Which of the vectors in (i)–(v) are basic feasible solutions?

2 The following LP is in SEF:

Find an equivalent LP in canonical form for:
(a) the basis {1, 4},
(b) the basis {3, 5}.
In each case, state whether the basis (i.e. the corresponding basic solution) is
feasible.

3 Let A be an m × n matrix and consider the following LP (P):

Convert (P) into an LP (P′) in SEF by replacing the free variable xn by two
variables and . Show then that no basic solution x of (P′) satisfies

4 Consider the LP

max{c⊤x : Ax = b, x ≥ }. (P)

Assume that the rows of A are linearly independent. Let x(1) and x(2) be two
distinct feasible solutions of (P) and define

(a) Show that x is a feasible solution to (P).

(b) Show that if x(1) and x(2) are optimal solutions to (P), then so is x.
(c) Show that x is not a basic feasible solution.

HINT: Proceed by contradiction and suppose that x is a basic feasible
solution for some basis B. Denote by N the indices of the columns of A
not in B. Then show that and that

(d) Deduce from (b) and (c) that if (P) has two optimal solutions, then (P)
has an optimal solution that is NOT a basic feasible solution.

5 Consider the following LP (P):

(a) Find the basic solution x of (P) for the basis B = {1, 2, 3}.
(b) Show that x is an optimal solution of (P).
(c) Show that x is the unique optimal solution of (P).

HINT: Show that for every feasible solution x′ of value 17
Then use Exercise 1 (b).
Consider the following LP (Q):

where z is a constant, B is a basis of A, AB = I, cj = 0 for every j ∈ B and cj <
0 for every j ∉ B. Moreover, assume that b ≥ . (The previous example has
such a form.) Let x be a basic solution for (Q).
(d) Show that x is an optimal solution of (Q).

(e) Show that x is the unique optimal solution of (Q).
HINT: Same argument as (c).

6 (Advanced) Consider the following LP in SEF:

max{c⊤x : Ax = b, x ≥ }, (P)

where A is an m × n matrix. Let x be a feasible solution to (P) and let J = {j :
xj > 0}. Call a vector d a good direction for x if it satisfies the following
properties:
(P1) dj < 0 for some j ∈ J,
(P2) Ad = ,
(P3) dj = 0 for all j ∉ J.

(a) Show that if the columns of AJ are linearly dependent, then there exists a
good direction for x.

HINT: Use the definition of linear dependence to get a vector d. Then
possibly replace d by −d.

(b) Show that if x is not basic, then there exists a good direction for x.
HINT: Use (a) and use Exercise 1.

(c) Show that if x has a good direction, then there exists a feasible solution x
′ of (P) such that the set J′ ≔ {j : > 0} has fewer elements than J.

HINT: Let x′ = x + d for a suitable value > 0.
(d) Show that if (P) has a feasible solution, then it has a feasible solution

that is basic.
HINT: Use (b) and (c) repeatedly.

(e) Give an algorithm that takes as input a feasible solution for (P) and
returns a basic feasible solution for (P).

2.5 The simplex algorithm

2.5.1 An example with an optimal solution

Let us continue the example (2.15) which we first started in Section 2.3. At
the end of the first iteration, we obtained the feasible solution x = (5, 0, 1, 0,
9)⊤ which is a basic solution for the basis B = {1, 3, 5}. Using the formulae in
Proposition 2.4, we can rewrite the LP so that it is in canonical form for that
basis. We obtain

max{z(x) = 10 + c⊤x : Ax = b, x ≥ },

where

(2.22)

Let us try to find a feasible solution x with value larger than x. Recall, B and
N partition the column indices of A, i.e. N = {2, 4}. Since the LP is in
canonical form, cB = . Therefore, to increase the objective function value,
we must select k ∈ N such that ck > 0 and increase the component xk of x. In
this case, our choice for k is k = 2. Therefore, we set x2 = t for some t ≥ 0. For
all j ∈ N where j ≠ k, we keep component xj of x equal to zero. It means in
this case that x4 = 0. The matrix equation will tell us what values we need to
choose for xB = (x1, x3, x5)⊤. Following the same argument as in Section 2.3,
we obtain that

(2.23)

which implies as xB ≥ that

(2.24)

The largest possible value for t is given by

(2.25)

Note that (2.24) can be written as tAk ≤ b (where k = 2). Thus, t is obtained by
the so-called ratio test : take the smallest ratio between the entry bi and entry
Aik for all Aik > 0.

Replacing t = 2 in (2.23) yields (4, 2, 0, 0, 6)⊤. We redefine x to be (4, 2, 0,
0, 6)⊤ and we now have z(x) = 14. It can be readily checked that x is a basic
solution. In fact, this is no accident as we will always obtain a basic solution
proceeding this way (see Exercise 4 in Section 2.5.3). Since x1, x2, x5 > 0, the
basis corresponding to x must contain each of {1, 2, 5}. As each basis of A
contains exactly three basic elements, it follows that the new basis must be
{1, 2, 5}. We can rewrite the LP so that it is in canonical form for that basis
and repeat the same process.

To start the new iteration, it suffices to know the new basis {1, 2, 5}. We
obtained {1, 2, 5} from the old basis {1, 3, 5} by adding element 2 and
removing element 3. We will say that 2 entered the basis and 3 left the basis.
Thus, it suffices at each iteration to establish which element enters and which
element leaves the basis. If we set xk = t where k ∈ N, element k will enter
the basis. If some basic variable xℓ is decreased to 0, then we can select ℓ to
leave the basis. In (2.25), the minimum was attained for the second term.
Thus, in (2.23) the second component of xB will be set to zero, i.e. x3 will be
set to zero and 3 will leave the basis.

Let us proceed with the next iteration. Using the formulae in Proposition
2.4, we can rewrite the LP so that it is in canonical form for the basis B = {1,
2, 5}. We get,

max{z(x) = 14 + c⊤x : Ax = b, x ≥ },

where

(2.26)

Here we have N = {3, 4}. Let us first choose which element k enters the basis.
We want k ∈ N and ck > 0. The only choice is k = 4. We compute t by taking
the smallest ratio between entry bi and entry Aik (where k = 4) for all i where
Aik > 0, namely

where “-” indicates that the corresponding entry of Aik is not positive. The
minimum was attained for the ratio i.e. the third row. It corresponds to the
third component of xB. As the third element of B is 5, we will have x5 = 0 for
the new solution. Hence, 5 will be leaving the basis and the new basis will be
{1, 2, 4}.

Let us proceed with the next iteration. Using the formulae in Proposition
2.4, we can rewrite the LP so that it is in canonical form for the basis B = {1,
2, 4}. We get

(2.27)

The basic solution is x ≔ (1, 5, 0, 3, 0)⊤ and z(x) = 17. We have N = {3, 5}.

We want k ∈ N and ck > 0. However, c3 = − and c5 = − so there is no
such choice. We claim that this occurs because the current basic solution is
optimal.

Let x′ be any feasible solution, then

Thus, 17 is an upper bound for the value of any feasible solution. As z(x) =
17, it follows that x is an optimal solution.

2.5.2 An unbounded example
Consider the following LP:

max{z(x) = c⊤x : Ax = b, x ≥ },

where

It is in canonical form for the basis B = {3, 4}. Then N = {1, 2, 5}. Let us
choose which element k enters the basis. We want k ∈ N and ck > 0. We have
choices k = 2 and k = 5. Let us select 5. We compute t by taking the smallest
ratio between entry bi and entry Aik for all i, where Aik > 0. Namely

The minimum is attained for the ratio , which corresponds to the first row.
The first basic variable is 3. Thus, 3 is leaving the basis. Hence, the new basis

is B = {4, 5}.
Using the formulae in Proposition 2.4, we can rewrite the LP so that it is in

canonical form for the basis B = {4, 5}. We get

max{z(x) = 1 + c⊤x : Ax = b, x ≥ },

where

Here N = {1, 2, 3}. Let us choose which element k enters the basis. We want
k ∈ N and ck > 0. The only possible choice is k = 1. We compute t by taking
the smallest ratio between entry bi and entry Aik for all i, where Aik > 0.
However, as Ak ≤ , this is not well defined. We claim that this occurs
because the LP is unbounded.

The new feasible solution x(t) is defined by setting x1(t) = t for some t ≥ 0
and x2 = x3 = 0. The matrix equation Ax = b tells us which values to choose
for xB(t), namely (see argument in Section 2.3)

Thus, we have

Then x is feasible, Ad = , d ≥ , and c⊤d = 1 > 0. Hence, x, d form a
certificate of unboundedness.

2.5.3 Formalizing the procedure
Let us formalize the simplex procedure described in the previous sections. At
each step, we have a feasible basis and we either detect unboundedness or
attempt to find a new feasible basis where the associated basic solution has
larger value than the basic solution for the current basis.

In light of Proposition 2.4, we can assume that the LP is in canonical form
for a feasible basis B, i.e. that it is of the form

(P)

where z is some real value and b ≥ .
Let x be the basic solution for basis B, i.e. xN = and xB = b.

Remark 2.5 If cN ≤ , then x is an optimal solution to (P).

Proof Suppose cN ≤ . Note that For any
feasible solution x′ , we have x′ ≥ 0. As cN ≤ , it implies that c⊤x′ =

 It follows that z(x′) ≤ z, i.e. z is an upper bound for (P). As z(x) =
z, the result follows. □

Now suppose that for some k ∈ N we have ck > 0. We define which
depends on some parameter t ≥ 0, as follows:

Now we need to satisfy Thus

(2.28)

Remark 2.6 If Ak ≤ , then the LP is unbounded.

Proof Suppose Ak ≤ 0. Then for all t ≥ 0, we have = b − tAk ≥ . Hence, x
′ is feasible. Moreover

since ck > 0, z(x′) goes to infinity as t goes to infinity. □

Thus, we may assume that Aik > 0 for some row index i. We need to choose
t so that It follows from (2.28) that

tA k ≤ b

or equivalently for every row index i for which Aik > 0, we must have

Hence, the largest value t for which x′ remains nonnegative is given by

Note that since Ak ≤ does not hold, this is well defined. Let r denote the
index i where the minimum is attained in the previous equation. Then (2.28)
implies that the r th entry of will be zero. Let ℓ denote the r th basic
variable of B. Note that since we order the components of xB in the same
order as B, the r th component of is the basic variable It follows that

 = 0. Choose

B′ = B ∪{k}\{ℓ}, N′ = N ∪{ℓ}\{k}.

We let the reader verify that = . It can be readily checked that B′ is a
basis (see Exercise 4 in Section 2.5.3). Then x′ must be a basic solution for
the basis B′.

In Algorithm 2.1 on the next page, we summarize the simplex procedure
for

max{c⊤x : Ax = b, x ≥ }. (P)

Algorithm 2.1 Simplex algorithm

Input: Linear program (P) and feasible basis B
Output: An optimal solution of (P) or a certificate proving that (P) is
unbounded.

1: Rewrite (P) so that it is in canonical form for the basis B
Let x be the basic feasible solution for B

2: if cN ≤ then stop (x is optimal) end if
3: Select k ∈ N such that ck > 0.
4: if Ak ≤ then stop ((P) is unbounded) end if
5: Let r be any index i where the following minimum is attained:

6: Let ℓ be the rth basis element
7: Set B := B ∪{k}\{ℓ}
8: Go to step 1

Note, we have argued that if the algorithm terminates, then it provides us
with a correct solution. However, the algorithm as it is described need not
stop. Suppose that at every step the quantity t > 0. Then at every step the
objective function will increase. Moreover, it is clear that at no iteration will
the objective function decrease or stay the same. Hence, in that case we never
visit the same basis twice. As there are clearly only a finite number of bases,
this would guarantee that the algorithm terminates. However, it is possible
that at every iteration the quantity t equals 0. Then at the start of the next
iteration we get a new basis, but the same basic solution. After a number of
iterations, it is possible that we revisit the same basis. If we repeat this
forever, the algorithm will not terminate. This behavior is known as cycling.

There are a number of easy refinements to the version of the simplex
algorithm we described that will guarantee termination. The easiest to state is
as follows. Throughout the simplex iterations with t = 0, in Step 3, among all
j ∈ N with cj > 0, choose k ≔ min{j ∈ N : cj > 0}; also, in Step 5, define t as
before and choose the smallest r ∈ B with Ark > 0 and = t. This rule is
known as Bland’s rule.

THEOREM 2.7 The simplex procedure with Bland’s rule terminates.

A proof of the above theorem is outlined in Exercise 10 at the end of this
section.

Exercises

1 Consider the LP problem max{c⊤x : Ax = b, x ≥ }, where

(a) Beginning with the basis B = {1, 4}, solve the problem with the simplex
method. At each step, choose the entering variable and leaving variable
by Bland’s rule.

(b) Give a certificate of optimality or unboundedness for the problem, and
verify it.

2 Consider the LP problem max{c⊤x : Ax = b, x ≥ }, where

Let B = {1, 3, 4}. You are given that

(a) Find the basic solution x determined by B, and the canonical form of the
problem corresponding to B. Is x feasible?

(b) Apply the simplex method beginning with the canonical form from part
(a). Choose the entering and leaving variables by Bland’s rule. Go as far
as finding the entering and leaving variables on the first iteration, the
new basis and the new basic solution.

3 Consider the LP problem max{c⊤x : Ax = b, x ≥ }, where

Notice that the problem is in canonical form with respect to the basis B = {4,
5, 6} and that B determines a feasible basic solution x. Beginning from this
canonical form, solve the problem with the simplex method. At each step,
choose the entering and leaving variable by Bland’s rule. At termination, give
a certificate of optimality or unboundedness.

4 Suppose at some step of the simplex procedure, we have a feasible basis B
and an LP

max{c⊤x : Ax = b, x ≥ },

which is in canonical form for the basis B. Following the simplex procedure,
we choose an entering variable k and a leaving variable ℓ. At the next step of
the simplex procedure, we will consider the basis B′ ≔ B ∪ {k} \{ℓ}. Explain
why the new set B′ is in fact a basis.

HINT: Matrix AB is the identity matrix. Show that the columns of AB′ are
linearly independent. Whether a set J ⊆ {1, . . . , n} is a basis or not does not
change when we do row operations on A, or equivalently it does not change
when we left-multiply A by an invertible matrix.

5 The princess’ wedding ring can be made from four types of gold 1, 2, 3, 4
with the following amounts of milligrams of impurity per gram:

Type 1 2 3 4
mg of lead 1 2 2 1
mg of cobalt 0 1 1 2
value 1 2 3 2

Set up an LP which will determine the most valuable ring that can be made
containing at most 6mg of lead and at most 10mg of cobalt. Put the LP into
SEF and then solve it using the simplex algorithm.

6 The simplex algorithm solves the problem

max{z = c⊤x : Ax = b, x ≥ }. (P)

Consider the following LP:

min{c⊤x : Ax = b, x ≥ }. (Q)

(a) Indicate what changes you need to make to the algorithm to solve (Q)
instead of (P) (max was replaced by min). Do NOT convert (Q) into
SEF, your algorithm should be able to deal with (Q) directly.

(b) Explain why the solution is optimal for (Q) when your algorithm claims
that it is.

(c) Explain why (Q) is unbounded when your algorithm claims that it is.

7 (Advanced)
(a) Consider the following LP:

max{c⊤x : Ax = b, x ≥ ℓ}. (P)

Thus, if ℓ = , then (P) is in SEF. One way to solve (P) would be for you
to convert it into SEF and use the simplex. Instead come up with your
own algorithm to solve (P) directly by modifying the simplex algorithm.
Here are some guidelines:

When ℓ = , then your algorithm should be the same as the simplex
algorithm,
Given a basis B, redefine x to be basic if Ax = b and for every j ∉ B, xj =
ℓj, (when ℓ = , this corresponds to the standard definition). Define B to
be feasible if the corresponding basic solution x is a feasible solution of
(P).
Your algorithm should go from feasible basis to feasible basis,
attempting at each step to increase the value of the corresponding basic
solution. You need to indicate how the entering and leaving variables
are defined. You also need to indicate how to detect when (P) is
unbounded and when your solution is optimal.

(b) Suppose you have in addition a vector u with n entries that give upper

values for each of the variables, i.e. you have the following LP:

max{c⊤x : Ax = b, x ≥ ℓ, x ≤ u}. (P′)

One way to solve (P′) would be for you to convert it into SEF and use
the simplex algorithm. Instead come up with your own algorithm to
solve (P′) directly by modifying the simplex algorithm.

HINT: Given a basis B, redefine x to be basic if Ax = b and for every j ∉
B either xj = ℓj or xj = uj. Suppose that you rewrite the objective function
so that it is of the form

z = c⊤x + z,

where z is some constant and cj = 0 for every j ∈ B. Then show that a
feasible basic solution x (using our new definition) is optimal if the
following holds for every j ∉ B:

if cj < 0, then x = ℓj,
if cj > 0, then x = uj.

8 Suppose that an LP in SEF is changed by defining by x1 = 10 and
substituting for x1. The new problem is equivalent to the old problem. If we
now solve the new problem with the simplex method (and apply the same
rule for the choice of the leaving variable), will the same choice of entering
variables occur as when the old problem was solved? Discuss this question
for the four entering variable rules mentioned below:
(a) The largest coefficient rule: When Dantzig first proposed the simplex

algorithm, he suggested choosing among all j ∈ N with cj > 0, a k ∈ N
such that ck is maximum. This rule is sometimes called Dantzig’s rule or
the largest coefficient rule. Based on the formula for the objective value
for the new basic solution, it chooses the variable giving the largest
increase in the objective function per unit increase in the value of the
entering variable.

(b) Bland’s rule.

(c) The largest improvement rule. This is the rule that chooses the entering
variable to be the one that leads to the largest increase in the objective
value. To choose the variable, therefore, we have to compute for each j
∈ N, for which cj > 0, the amount tj by which we will be able to
increase the value of xj, and find the maximum of cjtj over all such j and
choose the corresponding index k.

(d) The steepest edge rule. This rule is geometrically motivated. In moving
from the current basic feasible solution to a new one, we move a certain
distance in n. This rule chooses the variable which gives the largest
increase in the objective value per unit distance moved. Suppose that k
∈ N is chosen and the new value of xk will be t. Then the change in the
value of the basic variable xi is −Aikt. Since there is no change in the
value of the other nonbasic variables, the distance moved is

Since the change in the objective value is tck, we choose k ∈ N with ck >
0 so that

is maximized.

9 Show that the simplex method can cycle in 12 iterations with the
following LP in canonical form for basis B = {1, 2}:

max{c⊤x : Ax = b, x ≥ },

where

HINT: x3 enters on the first iteration, and x4 enters on the second.

10 (Advanced) Consider the simplex method applied to the following LP:

max{c⊤x : Ax = b, x ≥ }.

(a) Let y ∈ m. Define

c ≔c − A⊤y.

Prove that for every d ∈ n, such that Ad = 0, we have c⊤d = c⊤d.
(b) Suppose we are solving an LP problem in the above form by the simplex

method with Bland’s rule for choosing the entering and leaving
variables. Also suppose that the method cycles on this LP problem and
we encounter the bases (in order):

B1, B2, . . . , Bt, Bt+1 = B1.

Partition the indices {1, 2, . . . , n} into three sets as follows:

J0 ≔ {j : j ∈ Bi1 and j ∉ Bi2 for some i1, i2 ∈ {1, 2, . . . , t}}.

Let ℓ ≔ max {j : j ∈ J0} . Note that there exist h1, h2 ∈ {1, 2, . . . , t}
such that when the current basis in the simplex method is Bh1, xℓ leaves
the basis and when the current basis is Bh2, xℓ enters the basis. What is
the value of xi for every i ∈ J0 in all the basic feasible solutions visited
throughout the cycle? Justify your answer.

(c) When xℓ leaves the basis, the simplex method constructs a d vector (a
direction to move along). Which dj are zero? Which dj are positive?

Which dj are negative? Which dj are nonnegative? Justify your answer.
(d) Now consider the simplex iteration when xℓ enters the basis. Which cj

are zero? Which cj are positive? Which cj are nonpositive? Justify your
answer.

(e) Now find a contradiction by considering c⊤d and c⊤d for these two
iterations. Hence, conclude that starting with a basic feasible solution,
the simplex method with Bland’s rule terminates after finitely many
iterations.

11 (Advanced) In this exercise, we go over a classical example on which the
largest coefficient rule performs 2n − 1 iterations. For every n ≥ 2, consider
the LP given below

(a) Prove that for every n ≥ 2, the above LP has 2n basic solutions.
(b) Describe an optimal solution for the above family of LPs for every n ≥

2, and prove that your solution is the unique optimal solution for each n.
(c) Prove that the simplex method with the largest coefficient rule (see

Exercise 8) on the above LP with n = 2, starting from the basic feasible
solution x ≔ , visits every basic feasible solution.

(d) Using your result from the previous part and induction, prove that for
every n ≥ 2, on the above family of LP problems, the simplex method
with the largest coefficient rule performs 2n − 1 iterations to find the
optimal solution.

2.6 Finding feasible solutions

The simplex algorithm requires a feasible basis as part of its input. We will
describe in this section on how to proceed when we are not given such
feasible basis.

2.6.1 General scheme
Consider the following LP in SEF:

max{c⊤x : Ax = b, x ≥ } (P)

and let us define the following three optimization problems:

Problem A
Either,

1. prove that (P) has no feasible solution, or

2. prove that (P) is unbounded, or

3. find an optimal solution to (P).

Problem B
Either,

1. prove that (P) has no feasible solution, or

2. find a feasible solution to (P).

Problem C
Given a feasible solution x, either,

1. prove that (P) is unbounded, or

2. find an optimal solution to (P).

We will see in Theorem 2.12 that for any LP, exactly one of the following
holds: it is infeasible, it is unbounded, or it has an optimal solution. Thus, by
solving the LP (P), we mean solving problem A. However, the simplex
procedure (Algorithm 2.1, page 70) requires that we be given a feasible basis
B as part of the input. In Exercise 6 (d), Section 2.4.2, you are asked to find
an algorithm that takes as input a feasible solution for (P) and returns a basic
feasible solution for (P). Together with the simplex algorithm, this allows us
to solve problem C. The goal of this section is to show that:

PROPOSITION 2.8 Given an algorithm to solve C, we can use it to solve
problem A.

In particular, you can then use any software package that implements the
simplex algorithm to solve problem A.

The key step in proving Proposition 2.8 is to show:

PROPOSITION 2.9 Given an algorithm to solve C, we can use it to solve
problem B.

The above result implies the main result of this section.

Proof of Proposition 2.8 Proposition 2.9 implies that you can solve problem
B. If we find that (P) has no feasible solution, we can stop as we solved A.
Otherwise, we obtain a feasible solution x of (P). Using this solution x, we
can use our algorithm to solve C to either deduce that (P) is unbounded or to
find a feasible solution to (P). Hence, we have solved A as well. □

In Appendix A, we define formally the notion of a fast algorithm. It can be
readily shown (see Exercise 1, Section A.4.1), that Proposition 2.8 can in fact
be strengthened to say that, given a fast algorithm for C, we can construct a
fast algorithm for A. The analogous result also holds for Proposition 2.9.

In the remainder of this section, we prove Proposition 2.9. Let us first
proceed on an example and suppose that (P) is the following LP with
variables x1, x2, x3, x4 :

Using an algorithm for problem C, we wish to find a feasible solution for (P)
if it exists or show that (P) has no feasible solution. Let us first rewrite the
constraints of (P) by multiplying every equation by −1, where the right-hand
side is negative; we obtain

We now define the following auxiliary linear program:

(Q)

Variables x5, x6 are the auxiliary variables. Observe that B = {5, 6} is a basis,
and that the corresponding basic solution x = (0, 0, 0, 0, 7, 13)⊤ is feasible,
since all entries are nonnegative. Note that this is the case since we made sure
that the right-hand side of the constraints of (Q) are all nonnegative. We can
use the algorithm for problem C to solve (Q). Note that 0 is a lower bound for
(Q), hence (Q) is not unbounded. It follows that the algorithm for C will find
an optimal solution. In this case the optimal solution is x′ = (2, 1, 0, 0, 0, 0)⊤.
Since = 0, it follows that (2, 1, 0, 0)⊤ is a feasible solution to (P).
Hence, we have solved problem B.

Consider a second example and suppose that (P) is the following LP:

The corresponding auxiliary problem is

(Q)

An optimal solution to (Q) is x′ = (0, 0, 1, 0, 3)⊤, which has value 3. We claim
that (P) has no feasible solution in this case. Suppose for a contradiction that
there was a feasible solution x1, x2, x3 to (P). Then x = (x1, x2, x3, 0, 0)⊤ would
be a feasible solution to (Q) of value 0, contradicting the fact that x′ is
optimal.

Let us summarize these observations. We consider

max{c⊤x : Ax = b, x ≥ }, (P)

where A has m rows and n columns. We may assume that b ≥ as we can
multiply any equation by −1 without changing the problem. We construct the
auxiliary problem

(Q)

We leave the proof of the next remark as an easy exercise (follow the
argument outlined in the aforementioned examples).

Remark 2.10 Let ⊤ be an optimal solution to (Q):

(1) If w = 0, then is a solution to (P).
(2) If w > 0, then (P) is infeasible.

We can now prove Proposition 2.9. Construct from (P) the auxiliary
problem (Q). Find an optimal solution x′ for (Q) using the algorithm for
Problem C. Then (P) has a feasible solution if and only if w = 0 as indicated
in the previous Remark 2.10.

2.6.2 The two phase simplex algorithm–an example
We illustrate the method presented in the previous section on an example
using the simplex algorithm to solve problem C. The resulting algorithm is
known as the two phase simplex algorithm. During Phase I, we look for a
basic feasible solution (if one exists), and during Phase II, we find an optimal
solution (if one exists), starting from the feasible basic solution obtained
during Phase I. Consider

(P)

Phase I
We construct the auxiliary problem

(Q)

Note that the objective function is equivalent to min x4 + x5. B = {4, 5} is a
feasible basis; however, (Q) is not in canonical form for B. We could use the
formulae in Proposition 2.4 to rewrite (Q) in canonical form, but a simpler

approach is to add each of the two equations of (Q) to the objective function.
The resulting LP is

Solving this LP using the simplex algorithm starting from B = {4, 5}, we
obtain the optimal basis B = {1, 3}. The canonical form for B is

(Q’)

The basic solution corresponding to B is x = (2, 0, 1, 0, 0)⊤, which has value
0. It follows from Remark 2.10 that (2, 0, 1)⊤ is a feasible solution for (P).
Moreover, (2, 0, 1)⊤ is the basic solution for basis B of (P), hence B is a
feasible basis of (P). Note, it is always true that the feasible solution we
construct after solving (Q) using the simplex procedure will be a basic
solution of (P). It need not be the case that B be a basis of (P), however (see
Exercise 2 at the end of this section).

Phase II
We can use the formulae in Proposition 2.4 to rewrite (P) in canonical form
for the basis B = {1, 3}. Note that to obtain the constraints, we can use the
constraints of (Q′) (omitting the auxiliary variables). We obtain

Solving this LP using the simplex algorithm starting from B = {1, 3}, we
obtain the optimal basis B = {2, 3}. The canonical form for B is

Then the basic solution (0, 4, 7)⊤ is an optimal solution for (P).

2.6.3 Consequences
Suppose that we are given an arbitrary LP (P) in SEF. Let us run the two
phase method for (P) using Bland’s rule. Theorem 2.7 implies that the two
phase method will terminate. The following is now a consequence of our
previous discussion.

THEOREM 2.11 (Fundamental theorem of linear programming (SEF)).
Let (P) be an LP problem in SEF. If (P) does not have an optimal solution,
then (P) is either infeasible or unbounded. Moreover:

(1) if (P) is feasible, then (P) has a basic feasible solution;
(2) if (P) has an optimal solution, then (P) has a basic feasible solution that

is optimal.

Since we can convert any LP problem into SEF while preserving the main
property of the LP, the above theorem yields the following result for LP
problems in any form:

THEOREM 2.12 (Fundamental theorem of linear programming).
Let (P) be an LP problem. Then exactly one of the following holds:

(1) (P) is infeasible;
(2) (P) is unbounded;
(3) (P) has an optimal solution.

Exercises

1 Consider an LP of the form max{c⊤x : Ax = b, x ≥ }. Use the two phase
simplex method using Bland’s rule, to solve the LP for each of the following
cases:
(a)

(b)

(c)

(d)

(e)

2 Consider the following LP in SEF:

max{c⊤x : Ax = b, x ≥ }, (P)

where A has m rows and n columns and b ≥ . Construct the auxiliary
problem

(Q)

(a) Suppose x ≔ (x1, . . . , xn+m) is a basic solution of (Q), where xn+1 = . . . ,
xn+m = 0. Show that x′ ≔(x1, . . . , xn) is a basic solution of (P).

(b) Suppose that in (a) x is a basic solution of (Q) for a basis B. Give an
example that shows that B need not be a basis of (P).

(c) Show how to find a basis for the basic solution x′ of (P) given in (a).
HINT: See Exercise 1, Section 2.4.2.

2.7 Simplex via tableaus*
The simplex algorithm requires us to reformulate the problem in canonical
form for every basis. In this section, we will show how to describe the
computation required between two consecutive iterations in a compact way.
We emphasize that this should not be viewed as a guide on how to implement
the simplex algorithm. However, it is interesting from a pedagogical point of
view.

2.7.1 Pivoting
Consider an m × n matrix T and let (i, j), where i ∈ {1, . . . , m} and j ∈ {1, .
. . , n} such that Ti,j ≠ 0. We say that matrix T′ is obtained from T by pivoting
on element (i, j) if T′ is defined as follows. For every row index k

We illustrate this on an example. Consider the matrix

Let us compute the matrix T′ obtained from T by pivoting on element (2, 3).
(We will use the convention that elements on which we pivot are surrounded
by a square.) We get

Observe, that the effect of pivoting on element (i, j) is to transform column j
of the matrix T into the vector where all the entries are zero except for entry i
which is equal to 1.

The students should verify that T′ = YT, where

Consider the system of equations

(2.29)

We can represent this system by the matrix T. Namely, T is obtained from the
coefficients of the left-hand side by adding an extra column corresponding to
the right-hand side. Given T′ , we may construct a system of equations where
we do the aforementioned operations in reverse, namely the set of all but the
last columns of T′ corresponds to the left-hand side and the last column
corresponds to the right-hand side. Then we get

(2.30)

Since T′ = YT, it follows that equation (2.30) is obtained from equation (2.29)
by left multiplying by the matrix Y. Observe that the matrix Y is nonsingular,
hence the set of solutions for (2.30) is the same as for (2.29). Hence, we used

pivoting to derive an equivalent system of equations.
We can proceed in a similar way in general. Given a system Ax = b, we

construct a matrix T by adding to A an extra column corresponding to b, i.e. T
= (A|b). Let T′ = (A′ |b′) be obtained from T by pivoting. Then T′ = YT for
some nonsingular matrix Y. It follows that A′ = YA and b′ = Yb. In particular,
Ax = b and A′ x = b′ have the same set of solutions. We say that T is the
augmented matrix representing the system Ax = b.

2.7.2 Tableaus
To show how this discussion relates to the simplex algorithm, let us revisit
the example LP in (2.15)

Let us express both the equations, and the objective function as a system of
equations

(2.31)

Note, the first constraint of (2.31) states that z − 2x1 − 3x2 = 0, i.e. that z = 2x1

+ 3x3, which is the objective function. Let T1 be the augmented matrix
representing the system (2.31), namely

Note, for readability the vertical bars separate the z columns and the right-
hand side. The horizontal bar separates the objective function from the
equality constraints. Let us index the column z by 0 and the constraint
corresponding to the objective function by 0 as well. Thus, the first row and
first column of T1 are row and column zero. Observe, that the LP is in
canonical form for B = {3, 4, 5} as the columns of T1 indexed by {0, 3, 4, 5}
form an identity matrix. We say that T1 is the tableau representation of the
LP (2.15).

In general, given the LP

max{z = z + c⊤x : Ax = b, x ≥ }, (P)

we construct the tableau

and the LP (P) is in canonical form for basis B exactly when the columns of T
formed by columns B ∪ {0} form an identity matrix.

Let us try to solve the LP working with the tableau T1 only. We select as an
entering variable k ∈ N such that ck > 0. It means in T1 that we are selecting
a column k ∈ {1, . . . , 5}, where is smaller than 0. We can select
column 1 or 2, say select column k = 1. Note that b responds to column 6
(rows 1 to 3) of T1. We select the row index i ∈ {1, 2, 3}, minimizing the
ratio where i.e. we consider

where the minimum is attained for row i = 2. Let us now pivot on the element
(k, i) = (1, 2). We obtain the following tableau:

Since we pivoted on (2, 1), column 1 of T2 will have a 1 in row 2 and all
other elements will be zero. Since row 2 has zeros in columns 0, 3, 5, these
columns will be unchanged in T2. It follows that columns 0, 1, 3, 5 will form
a permutation matrix in T2. We could permute rows 1,2 of T2 so that columns
indexed by 0, 1, 3, 5 form an identity matrix, and therefore that T2 represents
an LP in canonical form for the basis B = {1, 3, 5}. However, reordering the
rows will prove unnecessary in this procedure. The simplex procedure
consists of selecting a column j, selecting a row i and pivoting on (i, j).

We state the remaining sequence of tableaus obtained to solve (2.15).

and finally

The corresponding objective function is now, z = 17 − 5/2x3 − 1/2x5. Hence,

the basic solution x = (1, 5, 0, 3, 0)⊤ is optimal.

2.8 Geometry
In this section, we introduce a number of geometric concepts and will
interpret much of the material defined in the previous section through the lens
of geometry. Questions that we will address include: What can we say about
the shape of the set of solutions to a linear program? How are basic feasible
solutions distinguished from the set of all feasible solutions? What does that
say about the simplex algorithm?

2.8.1 Feasible region of LPs and polyhedra
Given an LP (P), the set of all feasible solutions of (P) is called the feasible
region. Thus, (P) is feasible if and only if the feasible region of (P) is
nonempty. In this section, we study the shape of the feasible region of an LP.

As an example, consider the following LP:

(2.32)

We represented the set of all feasible solutions to (2.32) in Figure 2.1. The set
of all points (x1, x2)⊤ satisfying constraint (2) with equality correspond to line
(2). The set of all points satisfying constraint (2) correspond to all points to
the left of line (2). A similar argument holds for constraints (1), (3), (4), and
(5). Hence, the set of all feasible solutions of (2.32) is the shaded region.
Looking at examples in 2 as above can be somewhat misleading however. In
order to get the right geometric intuition, we need to introduce, a number of

definitions. Given a vector x = (x1, . . . , xn), the Euclidean norm of x is

defined as and we will denote it by ǁxǁ. ǁxǁ is the length of

vector x and measures the distance of x from the origin .

Figure 2.1 Feasible region of (2.32).

Remark 2.13 Let a, b ∈ n . Then a⊤b = ǁaǁǁbǁ cos(θ), where θ is the angle
between a and b. Therefore, for every pair of nonzero vectors a, b, we have:

a⊤b = 0 if and only if a, b are orthogonal,
a⊤b > 0 if and only if the angle between a, b is less than 90° ,
a⊤b < 0 if and only if the angle between a, b is larger than 90° .

Let a be a nonzero vector with n components and let β ∈ , we define:

(1) H ≔ {x ∈ n : a⊤x = β} is a hyperplane, and

(2) F ≔ {x ∈ n : a⊤x ≤ β} is a halfspace.

Consider the following inequality:

a⊤x ≤ β. (⋆)

Hence, H is the set of points satisfying constraint (⋆) with equality and F is
the set of points satisfying constraint (⋆). Suppose that x ∈ H and let x be any
other point in H. Then a⊤x = a⊤x = β. Equivalently, a⊤(x − x) = 0, i.e. a and x
− x are orthogonal. This implies (1) in the following remark, we leave (2) as
an exercise:

Remark 2.14 Let x ∈ H.

(1) H is the set of points x for which a and x − x are orthogonal,
(2) F is the set of points x for which a and x − x form an angle of at least 90°

.

We illustrate the previous remark in Figure 2.2 The line is the hyperplane H
and the shaded region is the halfspace F. In 2, a hyperplane is a line, i.e. a
one-dimensional object. What about in n? Consider the hyperplane H ≔ {x
∈ n : a⊤x = 0}. Then H is a vector space and we know how to define its
dimension. Recall that for any m × n matrix A, we have the relation

dim{x : Ax = 0} + rank(A) = n.

Figure 2.2

It follows that dim{x : a⊤x = 0}+rank(a⊤) = n. Since by definition a ≠ ,
rank(a⊤) = 1, i.e. dim(H) = dim({x : a⊤x = 0}) = n − 1. Hence, hyperplanes are
n − 1-dimensional objects.

For any m × n matrix A and vector b, we say that P ≔ {x ∈ n : Ax ≤ b} is
a polyhedron. Note that the set of solutions to any one of the inequalities of
Ax ≤ b is a halfspace. Thus, equivalently, we could define a polyhedron to be
the intersection of a finite number of halfspaces. Given an inequality a⊤x ≥ β,
we can rewrite it as −a⊤x ≤ −β, and given an equation a⊤x = β, we can rewrite
it as a⊤x ≤ β and −a⊤x ≤ −β. Hence, any set of linear constraints can be
rewritten as Ax ≤ b for some matrix A and some vector b. Thus, we proved:

PROPOSITION 2.15 The feasible region of an LP is a polyhedron or
equivalently the intersection of a finite number of halfspaces.

In the following section, we will investigate geometric properties of
polyhedra.

2.8.2 Convexity
Let x(1), x(2) be two points in n. We define the line through x(1) and x(2) to be
the set of points

{x = λx(1) + (1 − λ)x(2) : λ ∈ }.

Note that when λ = 1, then x = x(1) ; when λ = 0, then x = x(2) ; and when λ =
12, x corresponds to the mid-point between x(1) and x(2). We define the line
segment with ends x(1) and x(2) to be the set of points

{x = λx(1) + (1 − λ)x(2) : 0 ≤ λ ≤ 1}.

Observe that the aforementioned definitions correspond to the commonly
used notions of lines and line segments. A subset C of n is said to be convex
if for every pair of points x(1) and x(2) in C the line segment with ends x(1), x(2)

is included in C.

Consider Figure 2.3. The shaded region in (i) contained in 2 is convex, as
is the shaded region (iii) contained in 3 (it is a cube). The shaded regions
corresponding to (ii) and (iv) are not convex. We prove this for either case by
exhibiting two points x(1), x(2) inside the shaded region for which the line
segment with ends x(1), x(2) is not completely included in the shaded region.

Figure 2.3 Convex and nonconvex sets.

Remark 2.16 Halfspaces are convex.

Proof Let H be a halfspace, i.e. H = {x : a⊤x ≤ β} for some nonzero vector a
∈ n and β ∈ . Let x(1), x(2) ∈ H. Let x be an arbitrary point in the line
segment between x(1) and x(2), i.e. x = λx(1) +(1−λ)x(2) for some λ ∈ [0, 1].
We need to show that x ∈ H. We have

Hence, x ∈ H as required. □

Remark 2.17 For every j ∈ J, let Cj , denote a convex set. Then the
intersection

is convex. Note, that J can be infinite.

Proof Let x(1) and x(2) be two points that are in C. Then for every j ∈ J, x(1),
x(2) ∈ Cj and since Cj is convex the line segment between x(1) and x(2) is in
Cj. It follows that the line segment between x(1) and x(2) is in C. Hence, C is
convex. □

Remark 2.16 and 2.17 have the following immediate consequence:

PROPOSITION 2.18 Polyhedra are convex.

Note that the unit ball is an example of a convex set that is not a
polyhedron. It is the intersection of an infinite number of halfspaces (hence,
convex) but cannot be expressed as the intersection of a finite number of
halfspaces.

2.8.3 Extreme points
We say that a point x is properly contained in a line segment if it is in the line
segment but is distinct from its ends. Consider a convex set C and let x be a
point of C. We say that x is an extreme point of C if no line segment that
properly contains x is included in C. Equivalently:

Remark 2.19 x ∈ C is not an extreme point of C if and only if

x = λx(1) + (1 − λ)x(2)

for distinct points x(1), x(2) ∈ C and λ with 0 < λ < 1.
Consider Figure 2.4. In each of (i), (ii), and (iii) the shaded regions

represent convex sets included in 2. In (i), we indicate each of the six

extreme points by small red circles. Note that for (ii), every point in the
boundary of the shaded figure is an extreme point. This shows in particular
that a convex set can have an infinite number of extreme points. In (ii), we
illustrate why the point x is not extreme by exhibiting a line segment with
ends x(1), x(2) which are contained in the shaded figure and that properly
contains x. In (iii), we indicate the extreme points by red circles and a red
curve. In this example, there are also an infinite number of extreme points.

Figure 2.4 Extreme points.

Next we present a theorem that will characterize the extreme points in a
polyhedron. We first need to introduce some notation and definitions. Let Ax
≤ b be a system of inequalities and let x denote a solution to Ax ≤ b. We say
that a constraint of a⊤x ≤ β of Ax ≤ b is tight for x if a⊤x = β. Such constraints
are also called active in part of the literature. We denote the set of all
inequalities among Ax ≤ b that are tight for x by A=x ≤ b=.

THEOREM 2.20 Let P = {x ∈ n : Ax ≤ b} be a polyhedron and let x ∈ P.
Let A=x = b= be the set of tight constraints for x. Then x is an extreme point of
P if and only if rank(A=) = n.

We will illustrate this theorem on the polyhedron P that is the feasible region
of LP (2.32) (see Figure 2.1). Suppose x = (1, 2)⊤. We can see in that figure
that x is an extreme point. Let us verify that this is what the previous theorem
also indicates. Constraints (1) and (3) are tight, hence

It follows that rank(A=) = 2 = n, hence x is indeed an extreme point. Suppose
x = (0, 1)⊤. We can see in that figure that x is not an extreme point. Let us
verify that this is what the previous theorem also indicates. Constraint (4) is
the only tight constraint, hence

It follows that rank(A=) = 1 < n, hence x is not an extreme point.

Proof of Theorem 2.20. Suppose that rank(A=) = n. We will show that x is
an extreme point. Suppose for a contradiction this is not the case. Then there
exist (see Remark 2.19) x(1), x(2) ∈ P, where x(1) ≠ x(2) and λ where 0 < λ < 1
for which x = λx(1) +(1−λ)x(2). Thus

Hence, we have equality throughout, which implies that A=x(1) = A=x(2) = b=.
As rank(A=) = n, there is a unique solution to A=x = b=. Therefore, x = x(1) =
x(2), a contradiction.

Suppose that rank(A=) < n. We will show that x is not an extreme point.
Since rank(A=) < n, the columns of A= are linearly dependent, and hence
there is a nonzero vector d such that A=d = . Pick > 0 small and define

x(1) ≔ x + d and x(2) ≔ x − d.

Hence, and x(1), x(2) are distinct. It follows that x is in the
line segment between x(1) and x(2). It remains to show that x(1), x(2) ∈ P for
> 0 small enough. Observe first that

Similarly, A=x(2) = b=. Let a⊤x ≤ β be any of the inequalities of Ax ≤ b that is
not in A=x ≤ b=. It follows that for > 0 small enough:

hence x(1) ∈ P and by the same argument, x(2) ∈ P as well. □

Consider the following polyhedron:

Note that x = (0, 0, 2, 1)⊤ is a basic feasible solution. We claim that x is an
extreme point of P. To be able to apply Theorem 2.20, we need to rewrite P
as the set of solutions to Ax ≤ b for some matrix A and vector b. This can be
done by choosing

Let A=x ≤ b= be the set of tight constraints for x, then

and it can be readily checked that the first two and last two rows of A= form a
set of four linearly independent rows. Hence, rank(A=) ≥ 4 = n. This implies
(as x is feasible) by Theorem 2.20 that x is an extreme point of P. Using the
idea outlined in the previous example, we leave it as an exercise to prove the
following theorem which relates basic feasible solutions (for problems in
standard equality form) to extreme points:

THEOREM 2.21 Let A be a matrix where the rows are linearly independent
and let b be a vector. Let P = {x : Ax = b, x ≥ } and let x ∈ P. Then x is an
extreme point of P if and only if x is a basic feasible solution of Ax = b.

2.8.4 Geometric interpretation of the simplex
algorithm

Consider the following LP:

(P)

In Figure 2.5, we indicate the feasible region of this LP as well as a
feasible solution x = (1, 5)⊤. The line z = 17 indicates the set of all vectors for
which the objective function evaluates to 17. The points above this line have

objective value greater than 17 and the points below this line have value less
than 17. Since there are no points in the feasible region above the line z = 17,
it follows that x is an optimal solution. As the line z = 17 intersects the
feasible region in only one point, namely x, this also implies that x is the
unique optimal solution.

Figure 2.5 Feasible region and optimal solution.

Let us use the simplex algorithm to find this optimal solution x. We first
need to reformulate this problem in standard equality form. This can be
achieved by introducing slack variables x3, x4, x5 for constraints respectively
(1), (2), and (3) of (P). We obtain,

(ˆP)

Given any point x = (x1, x2)⊤, we define

i.e. the components ˆx3, ˆx4, ˆx5 are defined as the value of the slack of the
constraints (1), (2), and (3) respectively of (P). Thus, x is feasible for (P) if
and only if ˆx is feasible for (ˆP). Suppose x is a feasible solution of (P),
which is not an extreme point of the feasible region. Then x is properly
contained in the line segment with ends x(1), x(2), where x(1), x(2) are feasible
for (P), i.e. x(1) ≠ x(2) and there exists λ such that 0 < λ < 1 and x = λx(1) + (1 −
λ)x(2). It can be readily checked that ˆx = λˆx(1) + (1 − λ)ˆx(2). Hence, ˆx is
properly contained in the line segment with ends ˆx(1), ˆx(2). In particular, ˆx is
not an extreme point of the feasible region of (ˆP). Conversely, if ˆx, is not an
extreme point for (ˆP), then x is not an extreme point for (P). Hence:

Remark 2.22 x is an extreme point for the feasible region of (P) if and only if
ˆx is an extreme point for the feasible region of (ˆP).

Starting in Section 2.3, we solved the LP (ˆP). The following table
summarizes the sequence of bases and basic solutions we obtained:

Iteration Basis ˆx⊤ x⊤

1 {3, 4, 5} (0, 0, 10, 6, 4) (0, 0)

2 {1, 4, 5} (5, 0, 0, 1, 9) (5, 0)
3 {1, 2, 5} (4, 2, 0, 0, 6) (4, 2)
4 {1, 2, 3} (1, 5, 3, 0, 0) (1, 5)

At each step, ˆx is a basic solution. It follows from Theorem 2.21 that ˆx must
be an extreme point of the feasible region of (ˆP). Hence, by Remark 2.22, x
must be an extreme point of the feasible region of (P). We illustrate this in
Figure 2.6. Each of x(1), x(2), x(3), x(4) is an extreme point and the simplex
moves from one extreme point to another “adjacent” extreme point. In this
example, at each iteration we move to a different basic feasible solution. The
simplex algorithm goes from one feasible basis to another feasible basis at
each iteration. It is possible however that the corresponding basic solutions
for two successive bases are the same. Thus, the simplex algorithm can keep
the same feasible basic solution for a number of iterations. However, when
using Bland’s rule for the choice of entering and leaving variables, the
simplex will eventually move to a different basic solution (see Theorem 2.7).

Figure 2.6 Sequence of extreme points visited by simplex.

Exercises

1 (a) Show that the set of all optimal solutions to an LP is a convex set.
(b) Deduce that an LP has either:

no optimal solution,
exactly one optimal solution, or
an infinite number of optimal solutions.

2 Let F be the set of x satisfying

Find all extreme points of F. Justify your answers.

3 Let n ≥ 2 be an integer, the n-hypercube is the polyhedron

Pn = {x : 0 ≤ xj ≤ 1 j = 1, . . . , n}.

Describe all the extreme points of Pn. Justify your answer, i.e. give a proof
that all the points you claim are extreme points are indeed extreme points and
prove that no other point is an extreme point.

4 Let B ≔ {x ∈ n : ǁxǁ ≤ 1}. Recall that, corresponds to the
length of x. Thus, B is the set of points in an n-dimensional space which are
at distance at most 1 from the origin, i.e. B is the n-dimensional unit ball. It is
intuitively clear that a ball is convex.
(a) Give an algebraic proof of the fact that B is convex.

HINT: Use the Cauchy–Schwarz inequality, namely for every pair of
vectors x, y, we have

x⊤y ≤ ǁxǁ ǁyǁ.

(b) Show that z is an extreme point of B if and only if ǁzǁ = 1.

5 We say that an n × n matrix M is positive semidefinite if the following
conditions hold:

M is symmetric, i.e. M⊤ = M, and
for every vector z (of appropriate dimension), z⊤Mz ≥ 0.

Show that the set of all n × n positive semidefinite matrices forms a convex
set.

6 Let A ⊆ n be a convex set. Let M be an n × n matrix and define, B ≔{Mx
: x ∈ A}, i.e. B is the set of all points in n that can be obtained by selecting

a point x ∈ A and applying the transformation x → Mx.
(a) Show that B is convex.
(b) Suppose that M is invertible and consider z ∈ A, hence Mz ∈ B.

Show that z is an extreme point of A if and only if Mz is an extreme
point of B.

7 Consider three points (vectors) x(1), x(2), x(3) ∈ n. We define

Δ(x(1), x(2), x(3)) ≔ {λ1x(1) + λ2x(2) + λ3x(3) : λ1 + λ2 + λ3 = 1, λ1, λ2, λ3 ≥ 0}.

(a) What does Δ(x(1), x(2), x(3)) correspond to geometrically when n = 2?
Let C be a subset of n.
(b) Show that if for all x(1), x(2), x(3) ∈ C we have Δ(x(1), x(2), x(3)) ⊆ C,

then C is convex.
HINT: x(1), x(2), x(3) need not be distinct.

(c) Show that if C is convex, then for all x(1), x(2), x(3) ∈ C we have Δ(x(1),
x(2), x(3)) ⊆ C.

HINT: Every point z ∈ Δ(x(1), x(2), x(3)) is in a line segment between a
point y and x(3) for some point y that is in a line segment between x(1)

and x(2).
(ADVANCED.) We say that x is a convex combination of points x(1), . . . , x(

k
)

if x = for some real numbers λ1, . . . , λk, where and
λj ≥ 0 for all j = 1, . . . , k. Suppose k ≥ 2.
(d) Show that if for all x(1), . . . , x(k) ∈ C all convex combinations of x(1), . .

. , x(k) are in C, then C is convex.
(e) Show that if C is convex, then for all x(1), . . . , x(k) ∈ C all convex

combinations of x(1), . . . , x(k) are in C.

8 For each of the following sets, either prove that it is not a polyhedron, or
give a matrix A and a vector b such that the set is the solution set to Ax ≤ b:
(a) {(x1, x2, x3)⊤ : x1 ≥ 2 or x3 ≥ 2}.

(b) {(x1, x2)⊤ : x1 ≤ x2}.

(c) {(x1, x2, x3, x4)⊤ : x1 + x2 + x3 = 4, x1 + x4 = 6, x2 ≥ 0}.
(d) (note is the square of component x1.)

9 Consider the polytope P defined by the following constraints:

For each of the following points, determine whether it is an extreme point
of P.

HINT: Consider the set of tight constraints in each case.
(a) (2, 2, 2)⊤,
(b) (3, 1, 1)⊤,
(c) (0, 1, 3)⊤,
(d) (1, 3, 3)⊤.

10 Let C be a convex set and let x ∈ C.
(a) Show that if x is not an extreme point of C, then C \ {x} is not convex.
(b) Show that if x is an extreme point of C, then C \ {x} is convex.

11 Consider the LP max{c⊤x : Ax ≤ b, x ≥ } where

(a) Convert this LP into SEF in the standard way, and call this LP2. Solve
LP2 by applying the simplex algorithm. Make sure you start with the
basis {3, 4}. In each iteration, for the choice of the entering variable
amongst all eligible variables, always choose the one with the smallest
index.

(b) Give a diagram showing the set of feasible solutions of the LP, and

show the order that the simplex algorithm visits its extreme points. (For
each extreme point (x1, x2, x3, x4)⊤ of LP2 visited by the simplex
algorithm, you should indicate the extreme point (x1, x2)⊤ of the original
LP.)

2.9 Further reading and notes
The classical reference for the simplex algorithm is the book by Dantzig [20].
The word “simplex” is the name of a simple geometric object which
generalizes a triangle (in 2) and a tetrahedron (in 3) to arbitrary
dimensions. Dantzig presents in his book an attractive geometric
interpretation of the algorithm (which uses simplices) to suggest that the
algorithm would be efficient in practice. This is certainly worthwhile reading
after this introductory course is completed.

We saw that we can replace a free variable by the difference of two new
nonnegative variables. Another way of handling free variables is to find an
equation which contains the free variable, isolate the free variable in the
equation and use this identity elsewhere in the LP, record the variable and the
equation on the side and eliminate the free variable and the equation from the
original LP. This latter approach reduces the number of variables and
constraints in the final LP problem and is more suitable in many situations.

As we already hinted when discussing the finite termination and Bland’s
rule, there are many ways of choosing entering and leaving variables (these
are called pivot rules). In fact, there is a rule, based on perturbation ideas,
called the lexicographic rule which only restricts the choice of the leaving
variable and also ensures finite convergence of the simplex algorithm. There
are some theoretical and some computational issues which can be addressed
through proper choices of entering and leaving variables. See the books [13,
66] as well as the papers [9, 19, 46] and the references therein.

A basic feasible solution x, determined by a basis B, is called degenerate, if
for some i ∈ B, xi = 0. We saw that degeneracy can lead to cycling; however,
cycling examples are extremely rare and therefore cycling turns out not to be
a problem in practice. However, even if the simplex method is not likely to
cycle in practice, it can go through a long sequence of iterations where the

current degenerate basic feasible solution does not change. This is called
stalling. In practice, stalling can be a problem, but the perturbation ideas
mentioned above are helpful in mitigating stalling.

In implementing the simplex algorithm, it is extremely important that the
linear algebra is done in an efficient and numerically stable way. Even though
we derived various formulae involving inverses of the matrices, in practice,

 is almost never formed explicitly (see Chapter 24 of Chvátal [13] and
the references therein). For various techniques that exploit sparsity in the data
and solve linear systems of equations in a numerically stable way, in general,
see Golub and Van Loan [29]. In implementing the simplex method,
depending on the variant used, each iteration requires only minor
modifications to the vectors and matrices computed during the preceding
iterations. In our discussion in this chapter, we did not get into exploiting
these aspects for the sake of simplicity of presentation; however, in
successful implementations of the simplex method, exploiting this
information is absolutely critical. As the hardware and software both continue
to improve, the speed-up factors obtained on the software side (based on new
ideas) in implementations of the simplex method have been incredible. For
example, Bixby [8] reported a speed-up factor of 43500 between 1988
version of the CPLEX code (CPLEX 1.0) and the 2003 version (CPLEX 9.0)
on an LP problem with approximately 1.5 million variables and 400 000
constraints. Using the same hardware, CPLEX 1.0 required 29.8 days to solve
the problem, whereas CPLEX 9.0 took only 59.1 seconds.

3

Duality through examples

In this chapter, we revisit the shortest path and minimum-cost matching
problems. Both were first introduced in Chapter 1, where we discussed
practical example applications. We further showed that these problems can be
expressed as IPs. The focus in this chapter will be on solving instances of the
shortest path and matching problems. Our starting point will be to use the IP
formulation we introduced in Section 1.5. We will show that studying the two
problems through the lens of linear programming duality will allow us to
design efficient algorithms. We develop this theory further in Chapter 4.

3.1 The shortest path problem
Recall the shortest path problem from Section 1.4.1. We are given a graph G
= (V, E), nonnegative lengths ce for all edges e ∈ E, and two distinct vertices
s, t ∈ V. The length c(P) of a path P is the sum of the length of its edges, i.e.
∑(ce : e ∈ P). We wish to find among all possible st-paths one that is of
minimum length.

Example 7 In the following figure, we show an instance of this problem.
Each of the edges in the graph is labeled by its length. The thick black edges
in the graph form an st-path P = sa, ac, cb, bt of total length 3 + 1 + 2 + 1 =
7. This st-path is of minimum length, hence is a solution to our problem.

We assign the following widths for the graph G in Example 7:

where

U1 = {s}, U2 = {s, a}, U3 = {s, a, c}, and U4 = {s, a, c, b, d}.

The other st-cuts are assigned a width of zero. The nonzero widths are
represented in Figure 3.2. We claim that the widths are feasible. Let us check
the condition for edge ab for instance. The two st-cuts that have nonzero
width and that contain ab are δ(U2) and δ(U3) which have respectively width
ȳU2 = 1 and ȳU3 = 2. Thus, the total width of all st-cuts that contain the edge
ab is 1 + 2 = 3 which does not exceed the length cab = 4 of ab. We leave it as
an exercise to verify the feasibility condition for every other edge of the
graph.

We can now prove that the path P = sa, ac, cb, bt is a shortest st-path. We
found a set of feasible widths with total width

ȳU1 + ȳU2 + ȳU3 + ȳU4 = 3 + 1 + 2 + 1 = 7.

As c(P) = 7, it follows from Proposition 3.1 that P is a shortest st-path.

3.1.1 An intuitive lower bound
We claimed in Example 7 that the path P = sa, ac, cb, bt of length 7 is a
shortest st-path. How could you convince someone of that fact? Of course,
we could list all possible st-paths and verify that P is indeed the shortest one.
This is not a practical way of proceeding however, as we may have a huge
(exponential) number of such st-paths. Our goal in this section is to find a
certificate that can be used to quickly convince someone that a shortest st-
path is indeed the shortest. As we will see, such a certificate is not only
desirable from the user’s point of view, but it also turns out to be crucial for
designing the algorithm!

We will prove that the path P in Example 7 is indeed the shortest st-path.
However, before we do so, it will be helpful to first consider the special case
of the shortest st-path problem where all edges e have edge length ce = 1. In
that case, we are looking for an st-path with as few edges as possible. We
refer to this case as the cardinality case. Consider the following graph G =
(V, E):

Let us show that the path P = sj, ji, ig, gt is a shortest st-path of G. It has
length 4. To show that it is a shortest path, it suffices to show that every st-
path has length at least 4. To do this, we exhibit the following collection of
st-cuts (see Figure 3.1):

where

U1 = {s}, U2 = {s, a, j}, U3 = {s, a, j, b, h, i}, and U4 = V \ {t}.

Figure 3.1

Observe that no two of these st-cuts share an edge. Let Q be an arbitrary st-
path. We know from Remark 1.1, that every st-path and st-cut have a
common edge. Hence, Q must contain an edge ei of δ(Ui) for i = 1, 2, 3, 4.
Since these st-cuts are disjoint, e1, e2, e3, e4 are distinct edges. In particular, Q
contains at least four edges. As Q was an arbitrary st-path, every st-path
contains at least four edges. It follows that P = sj, ji, ig, gt is a shortest st-path
of G. The collection of st-cuts δ(Ui) (i = 1, 2, 3, 4) is our certificate of
optimality. More generally, if a graph has k pairwise disjoint st-cuts, then
every st-path has length at least k and any st-path with k edges is a shortest st-
path.

Let us now go back to the problem where the edges e of G can have
arbitrary lengths ce ≥ 0. Rather than selecting a subset of st-cuts as in the

cardinality case, we will assign to every st-cut δ(U) a nonnegative number
ȳU

1 that we call the width of the st-cut δ(U). We say that the widths {ȳU : U
⊆ V, s ∈ U, t ∉ U} are feasible if they satisfy the following:

Feasibility condition. For every edge e ∈ E, the total width of
all st-cuts that contain e does not exceed the length of e.

(3.1)

Figure 3.2

Suppose now we have a graph G = (V, E) (with s, t ∈ V and ce ≥ 0 for all e
∈ E) that has feasible widths. Let Q denote an arbitrary st-path. By the
feasibility condition, for every edge e of Q the total width of all st-cuts using
e is at most ce. It follows that the total width of all st-cuts using some edge of
Q is at most ∑(ce : e ∈ Q), i.e. the length of Q. We know however from
Remark 1.1 that every st-cut of G contains some edge of Q. Hence, the total
width of all st-cuts is at most equal to the length of Q. We summarize this
result.

PROPOSITION 3.1 (Optimality conditions for shortest paths). If the widths
are feasible, then the total width of all st-cuts is a lower bound on the length
of any st-path. In particular, if an st-path has length equal to the total width
of all st-cuts, then it is a shortest st-path.

The arguments used to prove Proposition 3.1 are fairly elementary. We
will see however that this result is surprisingly powerful. Indeed, we will be
able to design an efficient algorithm based on this optimality condition.
Deriving good optimality conditions is a key step in designing an algorithm.

Exercises

1 Let G = (V, E) be a graph and let s, t be distinct vertices of G.
(a) Show that if we have a collection of k edge disjoint st-paths, then every

st-cut contains at least k edges.

(b) For the above graph, find an st-cut with as few edges as possible. Use
(a) to justify your answer.

Suppose now each edge e has a nonnegative thickness ce. The thickness of an
st-cut is the sum of the thicknesses of all the edges in the cut. Suppose we
assign to each st-path P a nonnegative width yP and assume that the following
condition holds for every edge e:

The total width of all the st-paths using e does not exceed the thickness of
edge e.

(c) Show then that the total width of all the st-paths is a lower bound on the
thickness of any st-cut.

(d) For the following graph, find an st-cut with minimum thickness. Edge
labels indicate thickness. Use (c) to justify your answer.

3.1.2 A general argument – weak duality
We used an ad hoc argument to obtain Proposition 3.1. At first glance, it is
not obvious at all where the idea of assigning widths to st-cuts arises. We will
show however that it is a natural idea when we look at the problem through
the lens of duality theory. In this section, we derive a natural bound on the
values a certain class of linear programs can attain. In Section 3.1.3, we show
that Proposition 3.1 is a direct consequence of that result.

Example 8 Consider the LP

min{z(x) = c⊤x : Ax ≥ b, x ≥ }, (3.2)

where

It is easy to verify that the vectors (8, 16)⊤ and (5, 13)⊤ are all feasible for the
LP (3.2). Their objective values are 64 and 49 respectively, and hence the
first feasible solution is clearly not optimal. We will show however that (5,
13)⊤ is an optimal solution by proving that z(x) ≥ 49 for every feasible
solution x.

How can we find (and prove) such a lower bound? Construct a new
inequality by multiplying the first constraint of Ax ≥ b by y1 ≥ 0, multiplying
the second constraint of Ax ≥ b by y2 ≥ 0, multiplying the third constraint of
Ax ≥ b by y3 ≥ 0, and adding the resulting three inequalities. We can write the
resulting inequality in compact form as

(3.3)

for any nonnegative vector y = (y1, y2, y3)⊤. If we choose values ȳ1 = 0,ȳ2 = 2
and ȳ3 = 1, we obtain the inequality

(1, 3)x ≥ 44 or equivalently 0 ≥ 44 − (1, 3)x.

Adding this inequality to the objective function z(x) = (2, 3)x yields

z(x) ≥ (2, 3)x + 44 − (1, 3)x = 44 + (1, 0)x.

Let x be any feasible solution. As x ≥ and (1, 0) ≥ ⊤, we have (1, 0)x ≥ 0.
Hence, z(x) ≥ 44. Thus, we have proved that no feasible solution has value
smaller than 44. Note, this is not quite sufficient to prove that (5, 13)⊤ is
optimal. It shows however that the optimum value for (3.2) is between 44 and
49. It is at most 49, as we have a feasible solution with that value, and it
cannot be smaller than 44 by the previous argument.

Let us search for y1, y2, y3 ≥ 0 in a systematic way. We rewrite (3.3) as

and add it to the objective function z(x) = (2, 3)x to obtain

(3.4)

Suppose that we pick y1, y2, y3 ≥ 0 such that

Then for any feasible solution x, inequality (3.4), and the fact that x ≥
implies that

For a minimization problem, the larger the lower bound the better. Thus, the
best possible lower bound for (3.2) we can achieve using the above argument
is given by the optimal value to the following LP:

which we can rewrite as

(3.5)

Solving this LP gives

and this solution has objective value 49. Since solution (5, 13)⊤ has value 49,
it is an optimal solution of (3.2).

Let us generalize the previous argument and consider the following LP:

min{c⊤x : Ax ≥ b, x ≥ }. (3.6)

We first choose a vector y ≥ and create a new inequality

y⊤Ax ≥ y⊤b.

This last inequality is obtained from Ax ≥ b by multiplying the first inequality
by y1 ≥ 0, the second by y2 ≥ 0, the third by y3 ≥ 0, etc., and by adding all of
the resulting inequalities together. This inequality can be rewritten as

0 ≥ y⊤b − y⊤Ax,

which holds for every feasible solution x of (3.6). Thus, adding this inequality
to the objective function z(x) = c⊤x yields

z(x) ≥ y⊤b + c⊤x − y⊤Ax = y⊤b + (c⊤ − y⊤A)x. (3.7)

Suppose that because of the choice of y, c⊤ − y⊤A ≥ ⊤. Let x be any feasible
solution. As x ≥ , we have that (c⊤ − y⊤A)x ≥ 0. It then follows by (3.7) that
z(x) ≥ y⊤b. Thus, we have shown that for all y ≥ such that c⊤ − y⊤A ≥ ⊤ the
value y⊤b is a lower bound on the value of the objective function. Finally,
note that the condition c⊤ − y⊤A ≥ ⊤ is equivalent to y⊤A ≤ c⊤, i.e. to A⊤y ≤ c.

The best lower bound we can get in this way is the optimal value of

max{b⊤y : A⊤y ≤ c, y ≥ }. (3.8)

Let us summarize our result and provide a more direct proof.

THEOREM 3.2 (Weak duality–special form). Consider the following pair of
LPs:

min{c⊤x : Ax ≥ b, x ≥ }, (P)

max{b⊤y : A⊤y ≤ c, y ≥ }. (D)

Let x be a feasible solution for (P) and ȳ be a feasible solution for (D). Then
 Moreover, if equality holds, then x is an optimal solution for (P).

In the previous theorem, we define (D) to be the dual of (P).

Proof of Theorem 3.2 Let x be a feasible solution of (P) and let ȳ be a
feasible solution (D). Then

The first inequality follows from the fact that ȳ ≥ and that Ax ≥ b. The
second inequality follows from the fact that A⊤ȳ ≤ c and that x ≥ . Finally, as
b⊤ȳ is a lower bound on (P), if it follows that x is optimal for
(P). □

3.1.3 Revisiting the intuitive lower bound
Suppose we are given a graph G = (V, E) with distinct vertices s, t and edge
lengths ce ≥ 0 for every e ∈ E. The following is an integer programming
formulation for the shortest st-path problem (see Section 1.5.2):

(3.9)

Example 9 In the following figure, we show a simple instance of the
shortest path problem. Each of the edges in the graph is labeled by its length.

Let x := (xsa, xsb, xab, xat, xbt)⊤. Then (3.9) specializes to the following:

(3.10)

Each of the first four constraints corresponds to one of the four distinct st-
cuts δ(U). For instance, the second constraint, corresponding to δ({s, a}) =
{sb, ab, at}, states that xsb + xab + xat ≥ 1.

Let us compute the dual of the LP relaxation of (3.10), as defined in Theorem
3.2. Observe that by taking the dual, we interchange the role of the variables
and the constraints. We now have one variable yU for each st-cut δ(U) and
one constraint for each edge of G. Hence, let us define y := (y{s}, y{s,a}, y{s,b},
y{s,a,b})⊤. The dual is given by

(3.12)

where denotes a column vector of 1s. Note, a feasible solution to (3.12)
assigns some nonnegative width yU to every st-cut δ(U). The constraint for
edge sb states that y{s} + y{s,a} ≤ 4. Observe that δ({s}) = {sa, sb} and δ({s,
a}) = {at, ab, sb} are the two st-cuts of G that contain edge sb. Finally, 4 is
the length of the edge sb. Hence, the constraint y{s} + y{s,a} ≤ 4 says that the
total width of all st-cuts of G that contain edge sb does not exceed the length
of sb. The corresponding condition holds for every other edge. Hence, if y is
feasible for (3.12), the widths y satisfy the feasibility conditions (3.1). The
objective function ⊤y calculates the total width of all st-cuts. Hence, it
follows from Remark 3.3 that if the widths are feasible, then the total width
of all st-cuts is a lower bound on the length of any st-path. This was precisely
the statement of Proposition 3.1.

Let us compute the dual of the LP relaxation of (3.25), as defined in Theorem
3.9. Observe that by taking the dual we interchange the role of the variables
and the constraints. We now have one variable yv for every vertex v and one
constraint for each edge of G. Hence, let us define y := (ya, yb, yd, yg). The
dual is given by

(3.27)

A feasible solution to (3.27) assigns some potential yv to every vertex v. The
constraint for edge ab states that ya +yb ≤ 6 = cab or equivalently that the
reduced cost cab –ya −yb of edge ab is nonnegative. Similarly, for every other
edge the corresponding constraint states that the reduced cost is nonnegative.
Hence, if ȳ is feasible for (3.27), then the potentials ȳ satisfy the feasibility
conditions (3.16). For instance, ȳa = 2, ȳb = 2, ȳd = 1 and ȳg = 0 are feasible
potentials. Observe that

i.e. ad and bc are equality edges with respect to ȳ. It follows that

Hence, the value of ȳ in (3.27) is equal to the cost of the perfect matching M
= {ad, bc}. It follows by Remark 3.10 that M is a minimum cost perfect
matching. Hence, in this example we see that if the potentials ȳ are feasible
and every edge of M is an equality edge, then M is a perfect matching as
predicted by Proposition 3.8.

For an integer program (IP), we call the linear program, obtained by
removing the condition that some variables have to take integer values, the
linear programming relaxation of (IP), or LP relaxation for short. Consider

an instance of the shortest path problem G = (V, E) with s, t ∈ V and ce ≥ 0
for all e ∈ E. Suppose Q is some arbitrary st-path of G. Then we can
construct a feasible solution x to the integer program (3.9) as follows:

(3.11)

Moreover, the length c(Q) of the st-path Q is equal to the value of x for (3.9).
It follows in particular that c(Q) is greater than or equal to the optimal value
of (3.9). Let (P) denote the LP relaxation of (3.9). Since the constraints of (P)
are a subset of the constraints of (3.9) and since (3.9) is a minimization
problem, the optimal value of (3.9) is greater than or equal to the optimal
value of (P). Let (D) be the dual of (P). We know from weak duality
(Theorem 3.2) that the optimal value of (P) is greater than or equal to the
value of any feasible solution ȳ of (D). Hence, we have proved the following
result:

Remark 3.3 If (D) is the dual of the LP relaxation of (3.9), then the value of
any feasible solution of (D) is a lower bound on the length of any st-path.

Consider now a general instance of the shortest path problem. We are
given a graph G = (V, E), vertices s, t ∈ V, and lengths ce ≥ 0 for all e ∈ E.
We can rewrite the LP relaxation of (3.9) as

min{c⊤x : Ax ≥ , x ≥ }, (3.13)

where c is the vector of edge lengths, and the matrix A is defined as follows:

(1) the rows of A are indexed by sets U ⊆ V with s ∈ U, t ∉ U,
(2) columns are indexed by edges e ∈ E, and
(3) for every row U and every column e

Remark 3.4

(1) In row U of A, entries with a 1 correspond to the edges in δ(U).
(2) In column e of A, entries with a 1 correspond to the st-cuts containing

edge e.

The dual of (3.13), as defined in Theorem 3.2, is given by

max{ ⊤y : A⊤y ≤ c, y ≥ }. (3.14)

Let us try to understand this dual. There is a variable yU for every st-cut δ(U)
and a constraint for every edge e ∈ E. Consider the constraint for edge e ∈
E. The right-hand side of this constraint is the length ce of the edge, and the
left-hand side corresponds to column e of A. Remark 3.4(2) implies that the
left-hand side of this constraint is the sum of the variables yU over all st-cuts
δ(U) that contain e. We can therefore rewrite (3.14) as follows:

(3.15)

A feasible solution ȳ to (3.15) assigns nonnegative width ȳU to every st-cut
δ(U). The constraint for each edge e states that the total width of all st-cuts of
G that contain edge e does not exceed the length of e. Hence, if ȳ is feasible
for (3.15), the widths ȳ satisfy the feasibility conditions (3.1). The objective
function ⊤y calculates the total width of all st-cuts. Hence, as in the previous
example, it follows from Remark 3.3 that if the widths are feasible, then the
total width of all st-cuts is a lower bound on the length of any st-path. Hence,
we now have an alternate proof for Proposition 3.1.

While the derivation of Proposition 3.1 using duality may, at first glance,
seem more technical than the ad hoc argument we had in Section 3.1.1 –
notice that our derivation was completely mechanical. We formulated the
shortest path problem as an integer program, wrote the dual of its LP

relaxation, and used weak duality to obtain bounds on the possible values of
our original optimization problem. After generalizing the notion of duals in
Chapter 4, we will be able to apply the aforementioned strategy to arbitrary
optimization problems that can be formulated as integer programs. A word of
caution, however: the quality of the bounds obtained through this procedure
depend on the problem, and on the LP relaxation used. In the shortest path
example discussed here, the bound produced was sufficient to prove
optimality of a certain primal solution. This may not always be possible as
we will see in Chapter 6.

Exercises

1 A vertex-cover of a graph G = (V, E) is a set S of vertices of G such that
each edge of G is incident with at least one vertex of S. The following IP
finds a vertex-cover of minimum cardinality (see Exercise 2 in Section 1.5.2):

Denote by (P) the LP relaxation of this IP.

(a) Find the dual (D) of (P).
(b) Show that the largest size (number of edges) of a matching in G is a

lower bound on the size of a minimum vertex-cover of G.
HINT: Use part (a) and Theorem 3.2.

(c) Give an example where all matchings have size strictly less than the
optimal solutions of (P) and of (D) and where these are strictly less than
the size of the minimum vertex-cover.

2 The following graph has vertices of two types, a set H = {1, 2, 3, 4, 5, 6,
7} of hubs, indicated by filled circles, and a set C = {a, b, c, d, e, f} of
connectors, indicated by squares. A subset S of the hubs is dominant if each
connector in C has an edge to at

least one hub in S. For instance, S = {1, 3, 7} is dominant because a, b, and c
have edges to 1, d and f have edges to 7, and e has an edge to 3.
(a) Formulate as an IP the problem of finding a dominant set S ⊆ H which

is a small as possible.
HINT: Assign a binary variable to each hub and a constraint for each

connector.
Denote by (P) the LP relaxation of the IP given in (a):
(b) State the dual (D) of (P).
(c) Find a solution of (D) of value greater than 2.
(d) Using Theorem 3.2, prove that every dominant set of hubs contains at

least three hubs.

3.1.4 An algorithm
We will present an algorithm to solve the shortest path problem based on the
optimality conditions given in Proposition 3.1. Before we do so, however, we
require a number of definitions.

We will need to generalize our definition of a graph G = (V, E) by allowing
both edges and arcs. Recall that an edge uv is an unordered pair of vertices.
We call an ordered pair uv of vertices an arc, and denote it by Vertex u is
the tail of and vertex v is the head of . We represent an arc as an arrow
going from the tail of the arc to the head of the arc. A directed st-path is a
sequence of arcs

such that v1 = s, vk = t and vi ≠ vj for all i ≠ j. In other words, a directed st-
path is an st-path in the graph obtained by ignoring the orientation, with the
additional property that for any two consecutive arcs, the head of the first arc
is the tail of the second arc. The following figure gives an example of a graph
with both edges and arcs. The thick arcs form a directed st-path.

Consider now a general instance of the shortest path problem. We are
given a graph G = (V, E), vertices s, t ∈ V, and lengths ce ≥ 0 for all e ∈ E.
Suppose that y is a feasible solution to (3.15). In other words, every st-cut
δ(U) has a nonnegative width yU ≥ 0 and the feasibility condition (3.1) holds,
namely for every edge e the total width of all st-cuts using e is smaller than or
equal to the length of e. We define the slack of edge e for y to be the quantity

slacky(e) := ce − ∑ (yU : δ(U) is an st-cut containing e).

In other words, slacky(e) is the length of e minus the total width of all st-cuts
using e.

We are now ready to describe our algorithm.2

Example 10 Consider the shortest path problem described in Figure 3.3 (i).

Figure 3.3 Shortest path algorithm – an example.

We start with y = and U = {s}. We compute the slack of the edges in
δ({s})

slacky(sa) = 6, slacky(sb) = 2, slacky(sc) = 4,

and therefore sb is the edge in δ({s}) of smallest slack for y. We let y{s} = 2,
we set U := {s, b} and change edge sb into an arc (see Figure 3.3 (ii)).

Since t ∉ U = {s, b}, we compute the slack of the edges in δ({s, b})

and therefore bc is the edge in δ({s, b}) with smallest slack for y. We let y{s,b}
= 1, we set U = {s, b, c}, and change edge bc into an arc (see Figure 3.3
(iii)).

Since t ∉ U = {s, b, c}, we compute the slack of the edges in δ({s, b, c})

and therefore ca is the edge in δ({s, b, c}), with smallest slack for y. We let
y{s,b,c} = 1, we set U = {s, b, c, a}, and change edge ca into an arc (see
Figure 3.3 (iv)).

Since t ∉ U = {s, b, c, a}, we compute the slack of the edges in δ({s, b, c,
a})

and therefore ct is the edge in δ({s, b, c, a}) with smallest slack for y. We let
y{s,b,c,a} = 1, we set U = {s, b, c, a, t}, and change edge ct into an arc (see
Figure 3.3 (v)). Note, now that t ∈ U and there exists a directed st-path P,
namely It can be readily checked that entries of y are feasible
widths. Moreover, the total width of all st-cuts is equal to 2 + 1 + 1 + 1 = 5
and the length c(P) of P is equal to 2 + 1 + 2 = 5. It follows from Proposition
3.1 that P is a shortest st-path.

We will prove that this simple algorithm is guaranteed to always find a
shortest st-path in the next section. Suppose after running the algorithm and
finding a shortest path P we define variables x as in (3.11). Then x is a
feasible solution to the linear program (3.9) and ȳ is a feasible solution to the
dual linear program (3.15). Moreover, we will see that the algorithm will
guarantee that the total width of all st-cuts is equal to the length of the
shortest st-path. In other words, that the value of x in (3.9) is equal to the
value of ȳ in (3.15). It follows from weak duality (Theorem 3.2) that x is an
optimal solution to (3.9). Hence, correctness of the algorithm will imply the
following result:

THEOREM 3.5 If ce ≥ 0 for all e ∈ E, then the linear program (3.9) has an
integral optimal solution; i.e. it has an optimal solution all of whose
variables have integer values.

Note that our shortest path algorithm preserves at each step a feasible
solution to the dual LP relaxation of (3.15). This is an example of a primal–
dual algorithm. We will see another example of such an algorithm in Section
5.1.

Exercises

1 For each of the following two graphs, find the shortest path between s and
t using the algorithm described in this section. In the figures below, each edge
is labeled by its length. Make sure to describe for each step of the algorithm
which edge becomes an arc, which vertex is added to the set U, and which st-
cut is assigned a positive width. At the end of the procedure, give the shortest
st-path and certify that it is indeed a shortest st-path by exhibiting feasible
widths.

3.1.5 Correctness of the algorithm
Consider a graph G = (V, E) with distinct vertices s, t ∈ V and lengths ce ≥ 0
for all e ∈ E. Suppose that ȳ is a feasible solution to (3.15). We say that an
edge (resp. arc) uv is an equality edge (resp. arc) if its slack for ȳ is zero, i.e.
if slackȳ(uv) = 0. We say that a cut δ(U) is active for ȳ if ȳU > 0.

We shall first refine our optimality condition given in Proposition 3.1.

PROPOSITION 3.6 Let ȳ be feasible widths and let P be an st-path. Then P is
a shortest st-path if both of the following conditions hold:

(1) all edges of P are equality edges for ȳ,
(2) all active cuts for ȳ contain exactly one edge of P.

Proof Suppose that P is an st-path that satisfies both (1) and (2) for feasible
widths ȳ. For every edge e of P, denote by Ce the set of all active st-cuts that
contain edge e. To prove that P is a shortest path, it suffices (because of
Proposition 3.1) to verify that the following relations hold:

Finally, note that (a) holds because of (2) and that (b) holds because of
(1). □

Note that the algorithm is guaranteed to terminate after at most |V|
iterations since at every step one vertex is added to the set U. Hence, to show
that the algorithm is correct it will suffice to verify the following result:

PROPOSITION 3.7 (Correctness of shortest path algorithm).

In STEP 8, a directed st-path P exists and it is a shortest st-path.

Proof. Throughout the execution, we maintain the following properties:

(I1) entries of y are feasible widths,
(I2) all arcs are equality arcs for y,
(I3) there is no active cut δ(W) for y and arc uv with u ∉ W and v ∈ W,
(I4) for every u ∈ U, where u ≠ s, there exists a directed su-path,
(I5) all arcs have both ends in U.

Above, U refers to the current set U as defined in step 5 of Algorithm 3.2.

Algorithm 3.2 Shortest path

Input: Graph G = (V, E), costs ce ≥ 0 for all e ∈ E, s, t ∈ V, where s ≠ t.
Output: A shortest st-path P.
1: yW := 0 for all st-cuts δ(W). Set U := {s}
2: while t ∉ U do
3: Let ab be an edge in δ(U) of smallest slack for y where a ∈ U, b ∉ U
4: yU := slacky(ab)
5: U := U ∪{b}

6: change edge ab into an arc
7: end while
8: return A directed st-path P.

CLAIM If (I1)–(I4) hold in STEP 8, then a directed st-path P exists and it is a
shortest st-path.

Proof of claim: Since the loop completed, t ∈ U and by (I4) there exists a
directed st-path P.

We will show that P is a shortest st-path. (I1) states that y is feasible. (I2)
implies that all arcs of P are equality arcs. Because of Proposition 3.6, it
suffices to verify that active cuts for y contain exactly one edge of P. Suppose
for a contradiction there is an active cut δ(W) that contains at least two edges
of P (it contains at least one edge because of Remark 1.1). Denote by f the
second arc of P, starting from s, that is in δ(W). Then (see figure), the tail of f
is not in W but the head of f is in W, contradicting (I3). ♢

We leave it as an exercise to verify that (I1)–(I5) hold at the end of STEP 1.
Assume that (I1)–(I5) hold at the beginning of the LOOP, we will show that
(I1)–(I5) hold at the end of the LOOP. Together with the Claim this will
complete the proof. In the following argument, U and y represent the
quantities at the start of the LOOP and U′ and y′ the end of the LOOP. The only
difference between y and y′ is that yU = 0 and that = slacky(ab). Hence, to
verify (I1) it suffices to consider f ∈ δ(U). Then

(⋆)

By the choice of ab in Step 3, slacky(f) ≥ slacky(ab). Hence, (⋆), implies that
slacky′(f) ≥ 0. Thus, the feasibility condition (3.1) holds for y′, i.e. (I1) holds
at the end of the LOOP. By (⋆), we have slacky′(ab) = 0. Since ab is the only
new arc between the start and the end of the LOOP, (I2) holds at the end of the
LOOP. The only cut that is active in y′ but not y is δ(U). By (I5), all arcs
different from ab have both ends in U. Arc ab has tail in U and head outside
U. It follows that (I3) holds at the end of the LOOP. By (I4), there exists an
sa-directed path Q. Moreover, by (I5) all arcs of Q have both tail and head in
U. Hence, b is distinct from all vertices in Q, and adding arc ab at the end of
Q gives a directed sb-path. It follows that (I4) holds at the end of the LOOP.
Finally, since the only new arc is ab and a, b ∈ U′, (I5) holds at the end of
the LOOP. □

Exercises

1 Let G = (V, E) be a graph with vertices s and t and suppose there exists at
least one st-path in G. The cardinality case of the shortest path problem is the
problem of finding a shortest path with as few edges as possible.
(a) Simplify the shortest path algorithm in Section 3.1.4 to deal with the

cardinality case. You should strive to make the resulting algorithm as
simple as possible.

(b) Simplify Proposition 3.6 for the cardinality case. Try to make the
resulting statement as simple as possible.

(c) Simplify Proposition 3.7 for the cardinality case. Try to make the proof
of correctness as simple as possible.

2 Let G = (V, E) be a graph with distinct vertices s and t and nonnegative
edge weights c.
(a) Show that if G has no st-path, then the LP (3.15) is unbounded.

(b) Show that (3.9) has an optimal solution if and only if G has an st-path.
HINT: Use Theorems 3.2 and 2.11.

3.2 Minimum cost perfect matching in bipartite graphs
Recall the minimum cost perfect matching problem from Section 1.4.2. We
are given a graph G = (V, E) and costs ce for all edges e ∈ E. (Note, we
allow the costs to be negative.) A perfect matching M is a subset of the edges
with the property that for every vertex v exactly one edge of M is incident to
v. The cost c(M) of a perfect matching is defined as the sum of the costs of
the edges of M, i.e. as ∑(ce : e ∈ M). We wish to find among all possible
perfect matchings one that is of minimum cost.

Example 11 In the following figure, we show an instance of this problem.
Each of the edges in the graph is labeled by its cost. The thick edges in the
graph form a perfect matching M = {ag, hb, cd} of total cost 3 + 2 + 1 = 6.
This perfect matching is of minimum cost, and hence is a solution to our
problem.

Suppose that for every edge incident to vertex b we decrease the cost of all
edges incident to vertex b by the value 3 (see Figure 3.4(i)). Since every

perfect matching has exactly one edge that is incident to vertex b, this will
decrease the cost of every perfect matching by exactly 3. In particular, if a
matching M is a minimum cost perfect matching with these new costs, then it
must be a minimum cost perfect matching with the original costs.

Figure 3.4 Reduced costs.

In Figure 3.4 (ii), we pick values for every vertex in the graph and repeat
the same argument for each vertex. For instance, if we choose value 3 for
vertex b and value 2 for vertex a, the new cost of edge ab is given by 6 − 3 −
2 = 1. We indicate in Figure 3.4 (ii) the new cost for every edge. Observe
now, that for the graph given in Figure 3.4 (ii), every edge has nonnegative
cost. This implies in particular, that every perfect matching has nonnegative
cost. However, as the matching M = {ag, hb, cd} has cost 0, M must be a
minimum cost perfect matching with these new costs. But then M must be a
minimum cost perfect matching with the original costs.

3.2.1 An intuitive lower bound
We claimed in the previous example that the matching M = {ag, hb, cd} of
cost 6 is a minimum cost perfect matching. How could you convince

someone of that fact? Of course, we could list all possible perfect matchings
and verify that M is indeed the one of minimum cost. This is not a practical
way of proceeding however, as we may have a huge (exponential) number of
perfect matchings. Our goal in this section is to find a certificate that can be
used to quickly convince someone that a perfect matching is indeed a
minimum cost perfect matching. Once again, we will see that this kind of a
certificate will also be of crucial importance for the design of an algorithm.

Let us try to extend these ideas to an arbitrary graph G = (V, E) with edge
costs ce for all e ∈ E. Let us assign to every vertex u, a number yu that we
call the potential of the vertex u. The reduced cost of the edge uv is defined
as

cuv := cuv − yu − yv.

Let M be a perfect matching. Since by definition M has exactly one edge that
is incident to every vertex u, the difference between the cost of M with costs c
and costs c is given by the sum of all the potentials yu over every vertex u, i.e.
by ∑(yu : u ∈ V). Since this quantity is a constant (for a fixed y), it follows in
particular that, if M is a minimum cost perfect matching with the reduced
costs c, then it must be a minimum cost perfect matching with the original
costs c. If we selected the potentials y so that every reduced cost is
nonnegative, then every perfect matching would have nonnegative costs. If in
addition all edges in the perfect matching M have zero reduced costs, then M
must be a minimum cost perfect matching with respect to the reduced costs c.
But then it means that M is a minimum cost perfect matching with respect to
the original costs c.

We formalize this result by introducing a few definitions. Let us say that an
edge uv is an equality edge with respect to some potentials y if its reduced
cost cuv = cuv − yu − yv = 0. We say that potentials y are feasible if they satisfy
the following:

Feasibility condition. For every edge e ∈ E, cuv = cuv − yu − yv
≥ 0.

(3.16)

We have thus proved the following:

PROPOSITION 3.8 (Optimality condition for perfect matchings). If the
potentials y are feasible and all edges of M are equality edges with respect to
y, then M is a minimum cost perfect matching.

The arguments used to prove Proposition 3.8 are fairly elementary. We
will see however that this result is surprisingly powerful. Indeed, we will be
able to design an efficient algorithm to find a minimum cost perfect matching
for the class of bipartite graphs, based on this optimality condition. Deriving
good optimal conditions is a key step in designing an algorithm.

3.2.2 A general argument–weak duality
We used an ad hoc argument to obtain Proposition 3.8. At first glance, it is
not obvious at all where the idea of assigning potentials to vertices arises
from. We will show however that the result stated in Proposition 3.8 is an
almost immediate consequence of looking at the matching problem through
the lens of duality theory.

Example 12 Consider the LP

min{z(x) = c⊤x : Ax = b, x ≥ }, (3.17)

where

It is easy to verify that the vectors (1/2, 0, 1, 3/2)⊤ and (0, 1, 3, 2)⊤ are both
feasible for the linear program (3.17). Their objective values are 9/2 and 3,
respectively, and hence the first feasible solution is clearly not optimal. We
will show however that (0, 1, 3, 2)⊤ is an optimal solution by proving that z(x)
≥ 3 for every feasible solution x.

How can we find (and prove) such a lower bound? As before, recall from

Chapter 2 that, for any vector y = (y1, y2, y3)⊤ ∈ 3, the equation

(3.18)

holds for every feasible solution of (3.17). In particular, if we choose values,
ȳ1 = 1, ȳ2 = −1 and ȳ3 = 1, we obtain the equality

(−6, 0, −2, 2)x = −2 or equivalently 0 = −2 − (−6, 0, −2, 2)x.

Adding this equality to the objective function z(x) = (4, 3, −2, 3)x yields

z(x) = (4, 3, −2, 3)x − (−6, 0, −2, 2)x − 2 = (10, 3, 0, 1)x − 2.

Let x be any feasible solution. As x ≥ , and (10, 3, 0, 1) ≥ ⊤ we have (10, 3,
0, 1)x ≥ 0. Hence, z(x) ≥ −2. Thus, we have proved that no feasible solution
has value smaller than −2. Note, this is not quite sufficient to prove that (0, 1,
3, 2)⊤ is optimal. It shows however that the optimum value for (3.17) is
between −2 and 3. It is at most 3 as we have a feasible solution with that
value, and it cannot be smaller than −2 by the previous argument.

Let us search for y1, y2, y3 in a systematic way. We rewrite (3.18) as

and add it to the objective function z(x) = (4, 3, −2, 3)x to obtain

(3.19)

Suppose that we pick, y1, y2, y3 such that

Then for any feasible solution x, inequality (3.19), and the fact that x ≥
implies that

For a minimization problem, the larger the lower bound the better. Thus, the
best possible upper bound for (3.17) we can achieve using the above
argument is given by the optimal value to the following LP:

which we can rewrite as

(3.20)

Solving this LP gives

and this solution has objective value 3. Thus, 3 is lower bound for (3.17). In
particular, since the feasible solution (0, 1, 3, 2)⊤ of (3.17) has value 3, it is an
optimal solution.

Let us generalize the previous argument and consider the following LP:

min{c⊤x : Ax = b, x ≥ }. (3.21)

We first choose a vector y and create a new equality

y⊤Ax = y⊤b.

This last equality is obtained from Ax = b by multiplying the first equality by
y1, the second by y2, the third by y3, etc, and by adding all of the resulting
equalities together. This equality can be rewritten as

0 = y⊤b − y⊤Ax,

which holds for every feasible solution x of (3.21). Thus, adding this equality
to the objective function z(x) = c⊤x yields

z(x) = y⊤b + c⊤x − y⊤Ax = y⊤b + (c⊤ − y⊤A)x. (3.22)

Suppose that because of the choice of y, c⊤ − y⊤A ≥ ⊤. Let x be any feasible
solution. As x ≥ , we have that (c⊤−y⊤A)x ≥ 0. It then follows by (3.22) that
z(x) ≥ y⊤b. Thus, we have shown that for all y such that c⊤ − y⊤A ≥ ⊤ the
value y⊤b is a lower bound on the value of the objective function. Finally,
note that the condition c⊤ − y⊤A ≥ ⊤ is equivalent to y⊤A ≤ c⊤, i.e. to A⊤y ≤ c.

The best lower bound we can get in this way is the optimal value of

max{b⊤y : A⊤y ≤ c}, (3.23)

where we note that the variables y are free (i.e. the variables are unrestricted).
Let us summarize our result and provide a more direct proof.

THEOREM 3.9 (Weak duality–special form). Consider the following pair of
LPs:

min{c⊤x : Ax = b, x ≥ }, (P)

max{b⊤y : A⊤y ≤ c}. (D)

Let x be a feasible solution for (P) and ȳ be a feasible solution for (D). Then
c⊤x ≥ b⊤ȳ. Moreover, if equality holds, then x is an optimal solution for (P).

In the previous theorem, we define (D) to be the dual of (P).

Proof of Theorem 3.9 Let x be a feasible solution of (P) and let ȳ be a
feasible solution (D). Then

The inequality follows from the fact that A⊤ȳ ≤ c and that x ≥ . Finally, as
b⊤ȳ, is a lower bound on (P), if c⊤x = b⊤ȳ, it follows that x is optimal for
(P). □

3.2.3 Revisiting the intuitive lower bound

Suppose we are given a graph G = (V, E) with edge costs ce (possibly
negative) for every e ∈ E. The following is an integer programming
formulation for the minimum cost perfect matching problem (see Section
1.5.2)

(3.24)

Example 13 In the following figure, we show a simple instance of the
perfect matching problem. Each of the edges in the graph is labeled by its
cost.

Let x := (xab, xbg, xdg, xad, xag, xbd)⊤. Then (3.24) specializes to the following
in this case:

(3.25)

Each of the first four constraints corresponds to one of the four vertices of G.
For instance, the second constraint, corresponding to vertex b, states that xab
+ xbg + xbd = 1, i.e. that we should select exactly one of the edges incident to
b.

Recall that for an integer program (IP) we call the linear program, obtained
by removing the condition that some variables have to take integer values, the
linear programming relaxation of (IP) or LP relaxation for short. Consider
an instance of the minimum cost perfect matching problem G = (V, E) with ce
for all e ∈ E. Suppose M is some arbitrary perfect matching of G. Then we
can construct a feasible solution x to the integer program (3.24) as follows:

(3.26)

Moreover, the cost c(M) of the perfect matching M is equal to the value of x
for (3.24). It follows in particular that c(M) is greater than or equal to the
optimal value of (3.24). Let (P) denote the LP relaxation of (3.24). Since the
constraints of (P) are a subset of the constraints of (3.24) and since (3.24) is a
minimization problem, the optimal value of (3.24) is greater than or equal to
the optimal value of (P). Let (D) be the dual of (P). We know from the weak
duality theorem (3.9) that the optimal value of (P) is greater than or equal to
the value of any feasible solution ȳ of (D). Hence, we have proved the
following result:

Remark 3.10 If (D) is the dual of the LP relaxation of (3.24), then the value
of any feasible solution of (D) is a lower bound on the cost of any perfect
matching.

Consider now a general instance of the perfect matching problem. We are
given a graph G = (V, E) and costs ce for all e ∈ E. We can rewrite the LP
relaxation of (3.24) as

min{c⊤x : Ax = , x ≥ }, (3.28)

where c is the vector of edge costs, and the matrix A is defined as follows:

(1) the rows of A are indexed by vertices v ∈ V,
(2) columns are indexed by edges e ∈ E, and
(3) for every row U and every column e

Remark 3.11

(1) In row v of A, entries with a 1 correspond to the edges incident to v.
(2) In column e of A, entries with a 1 correspond to the endpoints of e.

The dual of (3.28), as defined in Theorem 3.9, is given by

max{ ⊤y : A⊤y ≤ c}. (3.29)

Let us try and understand this dual. There is a variable yv for every vertex v
and a constraint for every edge e ∈ E. Consider the constraint for edge e ∈
E. The right-hand side is the cost ce of the edge, and the left-hand side
corresponds to column e = uv of A. Remark 3.11(2) implies that the left-hand
side of this constraint is yu + yv. We can therefore rewrite (3.29) as follows:

(3.30)

A feasible solution ȳ to (3.30) assigns some potential yv to every vertex v.
The constraint for each edge uv states that yu +yv ≤ cuv or equivalently that the
reduced cost cuv −yu −yv of edge uv is nonnegative. Hence, if ȳ is feasible for
(3.30), then the potentials satisfy the Feasibility Conditions (3.16). Let M be a
perfect matching and suppose that every edge uv ∈ M is an equality edge,
i.e. ȳu + ȳv = cuv. Then

where the second equality follows from the fact that M is a perfect matching,
i.e. that every vertex of G is the end of exactly one edge of M. Hence, the
value of ȳ in (3.30) is equal to the cost of the perfect matching M. It follows
by Remark 3.10 that M is a minimum cost perfect matching. Hence, we see
that if the potentials ȳ are feasible and every edge of M is an equality edge,
then M is a perfect matching. Hence, we now have an alternate proof for
Proposition 3.8.

While the derivation of Proposition 3.8 using duality may, at first glance,
seem more technical than the ad hoc argument we had in Section 3.2.1,
notice that our derivation was completely mechanical. We formulated the
minimum cost perfect matching problem as an integer program, wrote the
dual of its LP relaxation, and used weak duality to obtain bounds on the
possible values of our original optimization problem. After generalizing the
notion of duals in Chapter 4, we will be able to apply the aforementioned
strategy for arbitrary optimization problems that can be formulated as integer
programs. Once again a word of caution at this point. While the dual bound
obtained through Proposition 3.8 was sufficient to prove the optimality of a
certain perfect matching, this may not always work. The success of the
mechanical procedure outlined above depends heavily on the quality of the
underlying LP relaxation as well as the problem.

3.2.4 An algorithm
In this section, we give an algorithm to find a minimum cost perfect matching
in a bipartite graph only. While there exist efficient algorithms for solving the
minimum cost perfect matching problem for general graphs, these algorithms
are more involved and beyond the scope of this book (the interested reader is
referred to Cook et al [16] for details). One of the key reasons is that for
general graphs we cannot always certify that a minimum cost perfect
matching is indeed a minimum cost perfect matching using Proposition 3.8.

We first need to characterize which bipartite graphs have a perfect
matching. Recall from Section 1.4.2 that a graph G = (V, E) is bipartite with
bipartition U, W, if V is the disjoint union of U and W and every edge has one
end in U and one end in W. A necessary condition for a graph G with
bipartition U, W to have a perfect matching is that |U| = |W|. However, this is
not sufficient as the example in the figure illustrates. Suppose M is an
arbitrary matching of this graph. Observe that all edges that have an endpoint
in the set {a, b, c} have their other endpoint in the set {e, f}. Since M is a
matching, at most two edges of M can have an endpoint in {e, f}. Hence, at
most two of the vertices {a, b, c} can be an endpoint of some edge of M. In
particular, M cannot be a perfect matching.

Consider a graph G = (V, E) and a subset of vertices S ⊆ V. The set of
neighbors of S is the set of all vertices outside S that are joined by an edge to
some vertex of S, i.e. it is the set {r ∈ V \ S : sr ∈ E and s ∈ S}. We denote
the set of neighbors of S in graph G by NG(S). For instance, in the previous
example the set of neighbors of {a, b, c} is the set {e, f}, the neighbors of {a,
b, c} are the vertices e and f. Consider a bipartite graph G = (V, E) with a
bipartition U, W. Suppose that there exists a set S ⊆ U such that |S| > |NG(S)|.
Let M be an arbitrary matching of G. Observe that all edges of M that have an
endpoint in S have an endpoint in NG(S). Since M is a matching, at most
|NG(S)| edges of M can have an endpoint in NG(S). Hence, at most |NG(S)| of
the vertices in S can be an endpoint of some edge of M. As |S| > |NG(S)|, M
cannot be a perfect matching. We call a set S ⊆ U such that |S| > |NG(S)| a
deficient set. Thus, we have argued that if G contains a deficient set, then G
has no perfect matching. The following result states that the converse is true:

THEOREM 3.12 (Hall’s theorem). Let G = (V, E) be a bipartite graph with
bipartition U, W, where |U| = |W|. Then there exists a perfect matching M in
G if and only if G has no deficient set S ⊆ U. Moreover, there exists an

efficient (polynomial-time)3 algorithm that given G will either find a perfect
matching M or find a deficient set S ⊆ U.

We postpone the proof of the previous result and the description of the
associated algorithm until Section 3.2.6.

We are now ready to start the description of the matching algorithm. We
consider a bipartite graph G = (V, E) with bipartition U, W, where |U| = |W|.
In addition, we are given edge cost ce for every edge e ∈ E. At each step, we
have a feasible solution ȳ to the LP (3.30). To get an initial feasible dual
solution, we let α denote the value of the minimum cost edge and set

 for all v ∈ V. (This is clearly feasible as for every edge uv ∈ E, ȳu
+ ȳv = α ≤ cuv.)

Given a dual feasible solution ȳ, we construct a graph H as follows: H has
the same set of vertices as G, and the set of edges of H consist of all edges of
G that are equality edges with respect to ȳ. We know from Theorem 3.12 that
we can either find:

(a) a perfect matching M in H, or
(b) a deficient set S ⊆ U of H, i.e. S ⊆ U such that |NH(S)| < |S|.

In case (a), since all edges of M are equality edges, Proposition 3.8 implies
that M is a minimum cost perfect matching of G, in which case we can stop
the algorithm. Thus, we may assume that (b) occurs. We will use the set S to
define a new feasible solution y′ to (3.30) with a larger objective value than ȳ
as follows. For every vertex v

We wish to choose ≥ 0 as large as possible such that y′ is feasible for (3.30),
i.e. for every edge uv we need to satisfy As y is feasible
for (3.30), cuv −ȳu −ȳv ≥ 0. Consider an edge uv, we may assume u ∈ U and v
∈ W. There are four possible cases for such an edge (see figure):

Case 1. u ∉ S, v ∉ NH(S).

Case 2. u ∉ S, v ∈ NH(S).
Case 3. u ∈ S, v ∈ NH(S).
Case 4. u ∈ S, v ∉ NH(S).

Let us investigate each case:

Case 1.
Case 2.
Case 3.

Thus, we only need to worry about Case 4. Note, we may assume that there
is such an edge, for otherwise S is a deficient set for G and we may stop as G
has no perfect matching. We want,
i.e. ≤ cuv −ȳu −ȳv. Note that since uv is not an edge of H, it is not an equality
edge. Hence, cuv −ȳu −ȳv > 0. Thus, we can choose > 0 as follows:

(3.31)

Note, that . Hence, the new dual solution
y′ has a higher (better) value than ȳ. Algorithm 3.3 on the next page is a
formal description of our algorithm.

Algorithm 3.3 Minimum cost perfect matching in bipartite graphs

Input: Graph G = (V, E) with bipartition U, W where |U| = |W| and costs c.
Output: A minimum cost perfect matching M or a deficient set S.
 1: min{ce : e ∈ E}, for all v ∈ V
 2: loop
 3: Construct graph H with vertices V and edges {uv ∈ E : cuv = ȳu + ȳv}
 4: if H has perfect matching M then
 5: stop (M is a minimum cost perfect matching of G)
 6: end if
 7: Let S ⊆ U be a deficient set for H
 8: if all edges of G with an endpoint in S have an endpoint in NH(S) then
 9: stop (S is a deficient set of G)
10: end if
11: := min{cuv −ȳu −ȳv : uv ∈ E, u ∈ S, v ∉ NH(S)}

12:

13: end loop

Example 14 Consider the minimum cost perfect matching problem
described in Figure 3.5(i) (left) where the edges are labeled by the costs.
Since the minimum cost is 2 we initially set potentials ȳa = ȳb = ȳc = ȳd = ȳe =
ȳf = 1. In Figure 3.5(i) (right), we indicate the graph H and the deficient set S.
The edges of G with one endpoint in S and the other endpoint not in NH(S) are
ae, be, bf, hence

Figure 3.5 Matching algorithm – an example.

The new potentials are given in Figure 3.5 (ii) (left). In Figure 3.5 (ii) (right),
we indicate the graph H and the deficient set S. The edges of G with one
endpoint in S and the other endpoint not in NH(S) are bf, cf, hence

 = min{cbf −ȳb −ȳf, ccf −ȳc −ȳf }

min{6 − 3 − 1, 3 − 1 − 1} = 1.

The new potentials are given in Figure 3.5 (iii) (left). In Figure 3.5 (iii)
(right), we indicate the graph H. This graph has no deficient set, but it has a
perfect matching M = {ae, bd, cf}. This matching is a minimum cost perfect
matching of G.

We will prove, in the next section, that this algorithm terminates and hence
is guaranteed to always find a minimum cost perfect matching. Suppose that
after running the algorithm and finding a minimum cost matching M we
define variables x as in (3.26). Then x is a feasible solution to the LP (3.24)
and ȳ is a feasible solution to the dual of the LP relaxation (3.30). Moreover,
as all edges of M are equality edges the total sum of the potentials will be
equal to the cost of the matching M. In other words, the value of x in (3.24) is
equal to the value of ȳ in (3.30). It follows from weak duality (Theorem 3.9),
that x is an optimal solution to (3.24). Hence, correctness of the algorithm
will imply the following result:

THEOREM 3.13 If G is a bipartite graph and there exists a perfect matching,
then the LP relaxation of (3.24) has an integral optimal solution; i.e. there is
an optimal solution all of whose entries are integers.

Note that our matching algorithm preserves at each step a feasible solution to
the dual linear program (3.30). This is an example of a primal–dual
algorithm. We will see another example in Section 5.1.

3.2.5 Correctness of the algorithm
It follows immediately from Proposition 3.8 that if the algorithm terminates
with a perfect matching, then that matching is a minimum cost perfect
matching. Moreover, if the algorithm terminates with a deficient set, then
Theorem 3.12 implies that G does not have a perfect matching. Hence, to
show that the algorithm is correct it suffices to prove that the algorithm
terminates. The proof is very simple if we assume that the original graph has

a perfect matching. Since we use as a subroutine an algorithm that checks for
the existence of a perfect matching, this is not a real limitation. Moreover, in
the next section we will see an efficient implementation of the minimum cost
perfect matching algorithm and a proof of termination that does not rely on
the assumption that the original graph has a perfect matching.

PROPOSITION 3.14 Algorithm 3.3 terminates if G has a perfect matching and
c is a rational vector.

Proof Let us first assume that ce is an even integer for all e ∈ E. We claim
that, for all uv ∈, the reduced cost cuv := cuv −ȳu −ȳv is an integer at all times
during the execution of the algorithm. This is clearly true at the beginning
since ȳu is set to half the cost of the minimum cost edge – an integer by our
assumption. Let us show that integrality is maintained. In Step 7 of the
algorithm, we choose a deficient set S ⊆ U. We then determine according
to (3.31), add it to ȳv for all v ∈ S, and subtract it from ȳv for v ∈ NH(S).
Inductively, we know that ce is an integer for all e ∈ E, and hence is a
positive integer. Thus, ȳv changes by an integer amount in the current
iteration of the algorithm.

Denote by ℓ the value ∑v∈V ȳv after the initialization Step 1. By
hypothesis, G has a perfect matching M. Then

where the first equality follows from the fact that every vertex is the endpoint
of exactly one edge of M, and the inequality follows from the fact that
throughout the algorithm ȳu + ȳv ≤ cuv. Since is a positive integer in every
iteration, and since |S| ≥ |NG(S)| +1 for deficient sets S, ∑u∈V ȳu must increase
by at least 1 in each iteration of the algorithm. It follows that the number of
iterations is bounded by c(M) − ℓ. In particular, the algorithm terminates.

Suppose now that c is an arbitrary rational vector. For some large enough
integer ω, ω ce is in an even integer for all e ∈ E. It can be readily checked
that and that the number of iterations is bounded by ω(c(M) − ℓ). In

particular, the algorithm terminates. □

We conclude with a brief discussion of the iteration bound obtained in
Proposition 3.14. The earmark of an efficient algorithm is that its running
time – the number of elementary steps that it performs – is bounded by a
polynomial in the size of the input (see Appendix A). Roughly speaking, the
size of the input is the number of bits needed to store it. In the case of the
matching problem, this is a linear function of |V|, |E|, and ∑e log (ce + 1).
Proposition 3.14 bounds the number of iterations by a function of c(E), and
this can be an exponential function of ∑e log (ce + 1) in the worst case.
Hence, the analysis provided does not show that the minimum cost perfect
matching algorithm is an efficient algorithm. Efficient implementations of
this algorithm are however known, and we provide some details in the next
section.

Exercises

1 C&O transportation company has three trucks with different capabilities
(affectionately called Rooter, Scooter, and Tooter) and three moving jobs in
different cities (Kitchener, London, and Missisauga). The following table
shows the profit gained (in $1000s) if a given truck is used for the job in a
given city. Your task is to find an allocation of the trucks to the three
different cities to maximize profit.

(a) Formulate this as an IP problem.
(b) Formulate it as a maximum matching problem.
(c) Solve the maximum matching problem using the minimum matching

algorithm.

2 Consider a bipartite graph with vertices U = {a, b, c, d} and W = {g, h, i,
j} and all edges between U and W. You also have a weight for each edge of G

as indicated in the following table:

For instance, edge ag has weight 2. Find a maximum weight perfect matching
using the matching algorithm.

3 Let G = (V, E) be a graph with edge weights c. Consider the following
three problems:

(P1) find a perfect matching of minimum weight,
(P2) find a perfect matching of maximum weight,
(P3) find a matching of maximum weight.

(a) Show that if you have an algorithm to solve (P1), then you can use it to
solve (P2).

(b) Show that if you have an algorithm to solve (P2), then you can use it to
solve (P1).

Suppose that in addition all the weights are nonnegative.
(c) Show that if you have an algorithm to solve (P2), then you can use it to

solve (P3).
(d) Show that if you have an algorithm to solve (P3), then you can use it to

solve (P2).

4 Let G = (V, E) be a bipartite graph. Consider the following LP (P):

(a) Find the dual (D) of (P).

(b) Show that if G has a deficient set, then (D) is unbounded.
HINT: Look at how the variables y are updated in the matching

algorithm.
(c) Deduce from (b) and Theorem 3.9 that if G has a deficient set, then it

has no perfect matching.

5 Let G = (V, E) be a graph. A vertex-cover of G is a subset S of V with the
property that for every edge ij, we have that either i ∈ S or j ∈ S (or possibly
both).
(a) Show that for every matching M and every vertex-cover S, we have |S| ≥

|M|. In particular

max{|M| : M is a matching of G} ≤ min{|S| : S is vertex-cover of G}. (⋆)

HINT: How many vertices do you need to cover just the edges of M?
(b) Show that there are graphs for which the inequality (⋆) is strict.

6 Suppose G = (V, E) is a bipartite graph with partition U, W. Suppose also
that |U| = |W|. Let H be the complete bipartite graph with partition U and W
(the edges of H are all pairs ij where i ∈ U and j ∈ W). Assign weights to
the edges of H as follows: for every edge ij

Recall that y is feasible if for every edge ij of H, yi + yj ≤ wij.
(a) Show that there exists a feasible 0, 1 vector y (i.e. all entries of y are 0 or

1).
(b) Show that if y is integer at the beginning of an iteration of the matching

algorithm, then y will be integer at the beginning of the next iteration.
(c) Show that there exists a feasible integer vector y and a matching M of G

such that

HINT: Look at what you have when the matching algorithm terminates.

(d) Show that there exists a feasible 0, 1 vector y and a matching M of G
such that

HINT: Add (resp. substract) the same value α to all yi ∈ W (resp. yi ∈
U).

(e) Show that there exists a vertex-cover S of G and a matching M of G such
that |M| = |S|. In particular, (⋆) holds with equality for bipartite graphs.

3.2.6 Finding perfect matchings in bipartite graphs*
Hall’s theorem (Theorem 3.12) states that in a bipartite graph G with
bipartition U, W, where |U| = |W|, there is an efficient algorithm that finds a
perfect matching in G if one exists, and otherwise returns a deficient set S ⊆
U; i.e. a set S that has fewer than |S| neighbors. In this section, we show how
this can be accomplished.

We start by introducing a few more matching related terms and definitions.
Consider a (possibly empty) matching M ⊆ E; we say that a path P in G is
M-alternating if its edges alternate between matching and non-matching
edges, or equivalently if P \ M is a matching. Examples of alternating paths
are given in Figure 3.6. Given a matching M, a vertex v is M-covered if M has
an edge that is incident to v, otherwise v is M-exposed. In Figure 3.7(i)
vertices v1, v2, v4, v6, v7, v8 are M-covered and vertices v3, v5 are M-exposed.
In Figure 3.7(ii), all vertices are M-covered, or equivalently M is a perfect
matching. An alternating path P is M-augmenting if its endpoints are both M-
exposed. In Figure 3.7(i), the path P1 = v5v1, v1v6, v6v3 is M-augmenting as
both v5, v3 are M-exposed, but the path P2 = v1v6, v6v2, v2v7, v7v4, v4v8, v8v3 is
M-alternating but not M-augmenting as v1 is M-covered. Observe that the
matching M′ in Figure 3.7(ii) is obtained from the matching M in Figure
3.7(i), by removing v1, v6 ∈ P1 from M and adding edges v5v1, v6v3 ∈ P1. In
fact, given an M-augmenting path, we can always construct a new matching
M′, where |M′| = |M| + 1. We formalize this operation next. For two sets A and

B, we let AΔB denote the set of those elements in A ∪ B that are not in both
A and B; i.e. AΔB = (A \ B) ∪ (B \ A). A matching is a maximum matching if
there is no matching with more edges.

Figure 3.6 M-alternating paths (edges in M are bold).

Figure 3.7 M-exposed and M-covered vertices (edges in M are bold).

We leave the following remark as an easy exercise:

Remark 3.15 Let M be matching of a graph G and let P be an M-
augmenting path. Then M′ := MΔP is a matching and |M′| = |M| + 1. In
particular, M is not a maximum matching.

For instance, in Figure 3.7(i) we had M = {v1v6, v2v7, v4v8}, an augmenting
path P1 = v5v1, v1v6, v6v3 and a matching M′ in (ii) where

M′ = {v1v6, v2v7, v4v8}Δ{v5v1, v1v6, v6v3} = {v5v1, v2v7, v6v3, v4v8}.

In fact, the converse of Remark 3.15 holds (but we will not need it), namely
that, if a matching is not maximum, then there must exist an augmenting
path. Thus, a plausible strategy for finding a perfect matching is as follows:
start with the empty matching M = . As long as there exists an M-
augmenting path P, replace M by MΔP. If the final matching is not perfect,
then no perfect matching exists. Two problems remain however: how do we
find an augmenting path, and if no augmenting path exist, how do we find a
deficient set? The key to addressing both of these problems is the concept of
M-alternating trees, to be defined next.

Let us start with a few definitions. A cycle is a sequence of edges

C = v1v2, v2v3, . . . , vk−1vk,

where k ≥ 4 and where v1, . . ., vk−1 are distinct vertices and vk = v1. In other
words, a cycle is what we obtain if we identify the endpoints of a path. For
instance, in Figure 3.8(i) the bold edges form a cycle of the graph. We say
that a graph is connected if there exists a path between every pair of distinct
vertices. For instance, in Figure 3.8(ii) the graph is not connected as there is
no path with endpoints u and v. A graph is a tree if it is connected but has no
cycle. In Figure 3.8, the graph in (iii) is a tree, but (i) is not a tree as it has a
cycle, and (ii) is not a tree as it is not connected.

Figure 3.8 Cycles and trees.

If G is a tree, then for any pair of distinct vertices u and v there exists at
least one path between u and v (as G is connected). Moreover, it is easy to

check that if there existed two distinct paths between u and v, we would have
a cycle, thus:

Remark 3.16 In a tree, there exists a unique path between every pair of
distinct vertices.

Given a tree T with distinct vertices u, v, we denote by Tuv the unique path in
Remark 3.16. For instance, in Figure 3.8(iii) the path Tuv is denoted in bold.
Given a graph G, we say that T is a tree of G if T is a tree and T is obtained
from G by removing edges and removing vertices. For instance, in Figure 3.9
the graph in (ii) is a tree of (i). Given a tree T = (V, E), we call a vertex u ∈ V
a leaf if it is incident to exactly one edge. For instance, u is a leaf of the tree
in Figure 3.9(ii). We are now ready for our key definition. Let G = (V, E) be a
graph with a matching M and let r ∈ V. We say that a tree T of G is an M-
alternating tree rooted at r if:

r is a vertex of T that is M-exposed in G,
all vertices of T distinct from r are M-covered,
for every vertex u ≠ r of T, the unique ru-path Tru is M-alternating.

Figure 3.9 M-alternating tree (edges in M are bold).

The graph in Figure 3.9(ii) is an M-alternating tree rooted at r. For instance,
for vertex u the path Tru indicated by dashed lines is an M-alternating path.

Given an M-alternating tree T rooted at r, we partition the vertices of T into
sets A(T) and B(T) where r ∈ B(T) and for every vertex u ≠ r of T, u ∈ B(T)
if and only if the path Tru has an even number of edges. In Figure 3.9(ii),
vertices B(T) correspond to squares and vertices A(T) to circles.

We can now state the algorithm that proves Theorem 3.12. (See Algorithm
3.4 on next page). We denote by V(T) the set of vertices of T and by E(T) the
set of edges of T. Note, in this algorithm we will view paths as sets of edges.
At any time during its execution, the algorithm will maintain a matching M,
and an M-alternating tree T. Initially, the matching M is set to the empty set.

Algorithm 3.4 Perfect matching

Input: Bipartite graph H = (V, E) with bipartition U, W where |U| = |W| ≥ 1.
Output: A perfect matching M, or a deficient set B ⊆ U.
 1: M :=
 2: T := ({r},) where r ∈ U is any M-exposed vertex
 3: loop
 4: if ∃ edge uv where u ∈ B(T) and v ∉ V(T) then
 5: if v is M-exposed then
 6: P := Tru ∪{uv}
 7: M := MΔP
 8: if M is a perfect matching then stop end if
 9: T := ({r},) where r ∈ U is any M-exposed vertex
10: else
11: Let w ∈ V where vw ∈ M
12: T := (V(T) ∪{v, w}, E(T) ∪{uv, vw})
13: end if
14: else
15: stop B(T) ⊆ U is a deficient set
16: end if
17: end loop

We illustrate the algorithm in Figure 3.10. Suppose that U = {b, d, g} and
that W = {a, c, f}. Suppose that after a number of iterations we just increased

the size of the matching in Step 7 to obtain the matching M = {ab, fd}; see
Figure 3.10 (i). As M is not a perfect matching, and since |U| = |W|, there
must exist a vertex in U that is M-exposed. In our case, g ∈ U is M-exposed
and we define our tree T to consists of vertex g (with no edges), i.e. T = ({g},
). It is trivially an M-alternating tree rooted at g. At the next iteration, we

look in Step 4 for an edge incident to a vertex of B(T) = {g} where its other
endpoint is not in T. For instance, gf is such an edge. We then observe that f
is M-covered because of edge fd ∈ M. We now increase the tree by adding
edges gf and fd, i.e. T = ({g, f, d}, {gf, fd}) (see Figure 3.10 (ii)). It remains
an M-alternating tree rooted at g. At the next iteration, we look for an edge
incident to B(T) = {g, d} where its other endpoint is not in T. For instance, ga
is such an edge. We then observe that a is M-covered because of edge ab ∈
M. We now increase the tree by adding edges ga and ab, i.e. T = ({g, f, d, a,
b}, {gf, fd, ga, ab}) (see Figure 3.10 (iii)). It remains an M-alternating tree
rooted at g. At the next iteration, we look for an edge incident to B(T) = {g, h,
t}, where its other endpoint is not in T. Edge dc is such an edge, (see Figure
3.10 (iv)). We now observe that c is M-exposed. Since Tgd = {gf, fd} is an M-
alternating path and since dc ∉ M, it follows that P := Tgd ∪ {dc} = {gf, fd,
dc} is an M-augmenting path (indicated by dashed lines in Figure 3.10 (iv)).
We replace the current matching M by MΔP = {gf, ab, dc}. As this matching
is perfect, we stop.

Figure 3.10 An example with perfect matching (edges in M are bold).

Consider another example in Figure 3.11(i). Suppose that after a number of
iteration we have matching M = {ac, fh, bd, gi} and the M-alternating tree T =
({j, f, h, i, g}, {jf, fh, ji, ig}) rooted at j (see Figure 3.11 (ii)). We look for an
edge incident to B(T) = {j, h, g} where its other endpoint is not in T. Since
there is no such edge, the algorithm claims that B(T) is a deficient set, and we
can stop as there is no perfect matching.

Figure 3.11 An example without perfect matching (edges in M are bold).

It remains to prove that the algorithm is correct and that it runs in
polynomial-time. At any time during its execution, the algorithm will
maintain a matching M, and an M-alternating tree T. Observe that:

(P1) |M| never decreases.
(P2) If |M| does not increase in an iteration, then either |V(T)| increases or the

algorithm terminates with a deficient set.

PROPOSITION 3.17 The perfect matching algorithm (Algorithm 3.4)
terminates in at most 2 iterations, where n is the number of vertices.

Proof Let us group those iterations during which the matching M has size i
into the ith phase. Clearly, by property (P1), the iterations of Phase i are
consecutive. Moreover, every iteration within a phase grows the alternating
tree by (P2), and therefore, a phase can have at most n iterations (trees have
at most n − 1 vertices). Finally, there are clearly no more than n/2 phases
(matchings have at most n/2 edges) and this completes the argument. □

Let us show that M remains a matching at each step of the algorithm.
Initially, M = , which is trivially a matching. The set M is only updated in
Step 7 of the algorithm. Because of Remark 3.15, we only need to verify that
P = Tru ∪{uv} is an M-augmenting path in Step 6. Since T is an M-
alternating tree, Tru is an M-alternating path and r is M-exposed. Moreover,
since v is M-exposed, Tru ∪ {uv} is an M-augmenting path as required.

Let us show that T remains an M-alternating tree at each step of the
algorithm. In Step 2, there exists a vertex r ∈ U that is M-exposed as |U| ≥ 1.
In Step 9, there exists a vertex r ∈ U that is M-exposed as M is not a perfect
matching and as |U| = |W|. Trivially, trees consisting of a single M-exposed
vertex are M-alternating. Thus, T defined in Step 2 and Step 9 is M-
alternating. Suppose that T is an M-alternating tree rooted at r. We need to
show that T′ = (V(T) ∪ {u, v}, E(T) ∪ {uv, vw}) (Step 12) is an M-
alternating tree rooted at r. Because of Step 4, v ∉ V(T). We claim w ∉ V(T).
Clearly, w ≠ r as w is M-covered. Moreover, w ∉ V(T)\{r} as all vertices of T
distinct from r are M-covered by edges of M ∩ E(T) but vw ∉ E(T). Thus, T′
has no cycle. Since T′ is clearly connected, T′ is a tree. Finally, note that T′rv
and T′rw are M-alternating. Thus, T′ is an M-alternating tree rooted at r as

required.
It only remains to show in Step 15 that B(T) is indeed a deficient set

contained in U. Thus, the next result will complete the proof of correctness:

PROPOSITION 3.18 Let G = (V, E) be a bipartite graph with partition U, W.
Suppose that T is an M-alternating tree rooted at r ∈ U and that every
neighbor of a vertex of B(T) is a vertex of T. Then B(T) is a deficient set
contained in U.

Proof First observe that B(T) ⊆ U, for if u ∈ B(T), then the path Tru has an
even number of edges. As r ∈ U and since the graph is bipartite, we must
have u ∈ U as well. Let v be a neighbor of B(T), i.e. uv ∈ E. By hypothesis,
v ∈ V(T). Suppose for a contradiction that v ∈ B(T). Then Tru, Trv are both
paths with an even number of edges. It can be readily checked that C =
TruΔTrv ∪{uv} is a cycle that contains an odd number of edges. But a
bipartite graph cannot have such a cycle (we leave this as an exercise). It
follows that N(B(T)) ⊆ A(T). Finally, observe that |B(T)| = |A(T)| + 1, as
every vertex of B(T) distinct from the root r is paired by the matching with
exactly one vertex of A(T). Hence, B(T) is a deficient set. □

The attentive reader may have noticed that the condition that G is bipartite is
only used in the last proposition, i.e. to guarantee a correct outcome in Step
15.

An efficient implementation of the minimum cost perfect matching
algorithm
The Perfect matching Algorithm 3.4 could now simply be used as a “black
box" in Step 7 of the minimum cost perfect matching Algorithm 3.3. We will
see, however, that a more careful implementation gives a polynomial-time
algorithm.

By the subroutine, we mean the algorithm that takes as input a graph H, a
matching M, and an M-alternating tree rooted at r, and applies Step 4 through
Step 16 of Algorithm 3.4. At the end of the subroutine, we have either:

(a) increased |M|, or
(b) increased |V(T)|, or
(c) found a deficient set B(T) of H.

Moreover, M remains a matching and T remains an M-alternating tree rooted
at r. Combining our subroutine and the minimum cost perfect algorithm
(Algorithm 3.3), we obtain a fast algorithm for finding a minimum cost
perfect matching in a bipartite graph described in Algorithm 3.5.

Algorithm 3.5 Minimum cost perfect matching in bipartite graphs (fast
version)

Input: Bipartite graph H = (V, E) with bipartition U, W where |U| = |W| ≥ 1.
Output: A minimum cost perfect matching M or a deficient set S.
 1: M :=
 2: T := ({r},) where r ∈ U is any M-exposed vertex
 3: min{ce : e ∈ E}, for all v ∈ V
 4: loop
 5: Construct graph H with vertices V and edges {uv ∈ E : cuv = ȳu + ȳv}
 6: Invoke the subroutine with H, M, and T.
 7: if outcome (a) of subroutine occurs then
 8: if M is a perfect matching of H then
 9: stop (M is a minimum cost perfect matching of G)
10: end if
11: else if outcome (c) of subroutine occurs then
12: Let S := B(T)
13: if all edges of G with an endpoint in S have an endpoint in NH(S)

then
14: stop (G has no perfect matching)
15: end if
16: = min{cuv −ȳu −ȳv : u ∈ S, v ∉ V(T)}

17:

18: end if
19: end loop

It remains to prove that the algorithm is correct and that it runs in
polynomial-time. At any time during its execution, the algorithm will
maintain a matching M and an M-alternating tree T. We will show that the
algorithm has the following important properties:

(P1) |M| never decreases.
(P2) If neither |M| nor |V(T)| increase, then either the algorithm terminates

with a deficient set or one of |M| or |V(T)| will increase in the next
iteration.

Proceeding similarly as in the proof of Proposition 3.17, we obtain:

PROPOSITION 3.19 The minimum cost perfect matching algorithm
(Algorithm 3.5) terminates in at most n2 iterations where n is the number of
vertices.

Property (P1) trivially follows from the description of the algorithm. Let us
prove that property (P2) is preserved. Suppose that during one of the
iterations neither |M| nor |V(T)| increases. We must have outcome (c) for the
subroutine, i.e. S := B(T) is a deficient set of H. If S is a deficient set of G,
then we stop as G has no perfect matching. Otherwise, by Proposition 3.18
there exists an edge uv with u ∈ B(T) and v ∉ V(T). We illustrate this in
Figure 3.12. Because of the choice of in Step 16, one of these edges, say uv,
will have zero reduced cost in the next iteration. Then in the next iteration, uv
is an edge of H and uv can be added to the tree in the subroutine. If v is M-
exposed, the subroutine will find a larger matching. Otherwise, there exists
an edge vw ∈ M and the subroutine will find a larger M-alternating tree.
Thus, property (P2) holds.

Figure 3.12 M-alternating tree (edges in M are bold), dashed edge u, v is nontree edge.

3.3 Further reading and notes
The shortest path algorithm presented in Section 3.1 is equivalent to the well-
known algorithm by Dijkstra [22]. This algorithm has several very efficient
implementations using sophisticated heap data structures, e.g., see the work
by Fredman and Tarjan [26].

The algorithm presented for the minimum cost perfect matching problem
in bipartite graphs is sometimes known as the Hungarian Algorithm. Efficient
algorithms for this problem exist even in general graphs. We refer the reader
to Cook et al [16] for more information.

The algorithms presented in Sections 3.1 and 3.2.3 are examples of so-
called primal– dual algorithms. The primal–dual technique has more recently
also been used successfully for literally hundreds of NP-hard optimization
problems. A good introduction to this topic which is beyond the scope of
these notes can be found in the books of Vazirani [68], and Williamson and
Shmoys [69].

1 While it might be more natural to use the notation ȳδ(U) to denote the width of the st-cut
δ(U), the notation ȳU is more compact while being unambiguous.

2 We will assume that at least one st-path exists in the graph G.
3 Polynomial-time algorithms are defined in Appendix A.

4

Duality theory

In Chapter 3, we introduced the notion of a dual of a linear program, and
demonstrated how this can be used to design algorithms to solve optimization
problems, such as the shortest path problem and the minimum-cost perfect
matching problem in bipartite graphs. In this chapter, we shall generalize
these results, and develop a general theoretical framework.

4.1 Weak duality
In Section 3.1.2, we defined the dual of a linear program

min{c⊤x : Ax ≥ b, x ≥ } (4.1)

to be the linear program

max{b⊤y : A⊤y ≤ c, y ≥ }. (4.2)

Similarly, in Section 3.2.2 we defined the dual of a linear program

min{c⊤x : Ax = b, x ≥ } (4.3)

to be the linear program

max{b⊤y : A⊤y ≤ c, y free}. (4.4)

Our goal in this section is to generalize these definitions, as well as the
corresponding weak duality theorems (Theorems 3.2 and 3.9).

Consider the table on the next page describing a pair of linear programs,
the notation Ax ? b (resp. A⊤y ? c) indicates that constraints of (Pmax) and
(Pmin) are arbitrary linear constraints, i.e. the relation between the left-hand
side and right-hand side of the constraint is either ≤, =, or ≥. The notation x ?

 and y ? indicates that the variables of (Pmax) and (Pmin) are either
nonnegative, free, or nonpositive. We pair constraint i of (Pmax), i.e. rowi(A)⊤x
? bi, with the variable yi of (Pmin) and we pair constraint j of (Pmin), i.e.
colj(A)y ? cj, with the variable xj of (Pmax). The table indicates the relation
between a constraint of (Pmax) and the corresponding variable of (Pmin). For
instance, if rowi(A)⊤x ≤ bi in (Pmax), then we have yi ≥ 0 in (Pmin). The table
also indicates the relation between a constraint of (Pmin) and the
corresponding variable of (Pmax). For instance, if colj(A)y ≤ cj in (Pmin), then
we have xj ≤ 0 in (Pmax).

Consider a pair of linear programs (Pmax) and (Pmin) satisfying the relations
given in Table 4.1. We then define (Pmin) to be the dual of (Pmax) and we
define (Pmax) to be the dual of (Pmin). We call the pair (Pmax) and (Pmin) a
primal–dual pair. The reader should verify that these definitions imply in
particular that the dual of the dual of a linear program (P) is the original
linear program (P).

Table 4.1 Primal–dual pairs

(Pmax) (Pmin)

≤ constraint ≥ 0 variable

max subject to c⊤x = constraint free variable min subject to b⊤y

≥ constraint ≤ 0 variable

Ax ? b ≥ 0 variable ≥ constraint A⊤y ? c

x ? free variable = constraint y ?

≤ 0 variable ≤ constraint

Example 15 Let us apply these definitions to try to find the dual of the linear
program (4.1). This linear program can be rewritten as

min{bˆ⊤ŷ : Â⊤ŷ ≥ ĉ, ŷ ≥ }, (P)

where bˆ = c, Â = A⊤, ĉ = b and ŷ = x. Since (P) is a minimization problem, it
plays the role of (Pmin) in Table 4.1. It follows that the dual (D) of (P) is of
the form (Pmax) in Table 4.1

max{ĉ⊤xˆ : Âxˆ ? bˆ, xˆ ? }. (D)

Since:

we have Â⊤ŷ ≥ ĉ in (P), we have xˆ ≥ 0 in (D)
ŷ ≥ in (P), we have Âxˆ ≤ bˆ in (D).

Hence, the dual (D) of (P) is given by

max{ĉ⊤xˆ : Âxˆ ≤ bˆ, xˆ ≥ },

which is equal to (4.2) if we define y as being equal to xˆ. Similarly, (4.4) is
the dual of (4.3). Hence, our new definition of dual is consistent with the
definitions given in Sections 3.1 and 3.2.

Example 16 Consider the following linear program:

(P)

Suppose we wish to find the dual of (P). Since (P) is a maximization
problem, it plays the role of (Pmax) in Table 4.1. It follows that the dual (D) of
(P) is of the form (Pmin) in Table 4.1

(D)

Since:

constraint (1) of (P) is of type “≥”, we have y1 ≤ 0 in (D),
constraint (2) of (P) is of type “≤”, we have y2 ≥ 0 in (D),
constraint (3) of (P) is of type “=”, we have y3 is free in (D),
x1 ≥ 0 in (P), we have that constraint (1) of (D) is of type “≥”,
x2 is free in (P), we have that constraint (2) of (D) is of type “=”,
x3 ≥ 0 in (P), we have that constraint (3) of (D) is of type “≥”.

Hence, the dual (D) of (P) is given by

(D)

Consider the primal–dual pair given by (P) and (D). Let

x = (5, −3, 0)⊤ and ȳ = (0, 4, −2)⊤.

It can be readily checked that x is feasible for (P) and ȳ is feasible for (D).
Moreover, (−2, 2, 13)ȳ = (12, 26, 20)x = −18. It follows from Theorem 4.1(2)
that x is an optimal solution to (P) and that ȳ is an optimal solution to (D).

We proved in Theorem 3.2 that if x is a feasible solution to (4.1) and ȳ is a
feasible solution to (4.2), then c⊤x ≥ b⊤ȳ. Similarly, we proved in Theorem 3.9
that if x is a feasible solution to (4.3) and ȳ is a feasible solution to (4.4), then
c⊤x ≥ b⊤ȳ. The following is a common generalization to both of these results.

THEOREM 4.1 (Weak duality theorem). Let (P) and (D) be a primal–dual
pair where (P) is a maximization problem and (D) a minimization problem.
Let x and ȳ be feasible solutions for (P), and (D), respectively:

1. Then c⊤x ≤ b⊤ȳ.
2. If c⊤x = b⊤ȳ, then x is an optimal solution to (P) and ȳ is an optimal

solution to (D).

Observe, that (2) in the previous theorem follows immediately from (1). This
is because as ȳ is feasible, (1) implies that for every feasible solution x of (P),
c⊤x ≤ b⊤ȳ, i.e. b⊤ȳ is an upper bound of (P). But then x is an optimal solution
to (P) since its value is equal to its upper bound. The argument to prove that ȳ
is an optimal solution to (D) is similar.

Proof of Theorem 4.1 Let (P) be an arbitrary linear program where the goal is

to maximize the objective function. Then (P) can be expressed as

(4.5)

for some partition R1, R2, R3 of the row indices, and some partition C1, C2, C3
of the column indices. Its dual (D) is given by (see Table 4.1)

(4.6)

After adding slack variables s, we can rewrite (4.5) as

(4.7)

After adding slack variables w, we can rewrite (4.6) as

(4.8)

Let x be a feasible solution to (4.5) and let ȳ be a feasible solution to (4.6).
Then for s ≔ b − Ax, the vectors x, s are a solution to (4.7). Moreover, for w ≔
c − A⊤ȳ, the vectors ȳ, w are a solution to (4.8). Since Ax + s = b, we have

where equality (⋆) follows from the fact that A⊤ȳ + w = c or equivalently that
ȳ⊤A = (c − w)⊤. Hence, to prove that b⊤ȳ ≥ c⊤x it suffices to show that

□

We close this section by noting the following consequences of the weak
duality theorem and the fundamental theorem of linear programming:

COROLLARY 4.2 Let (P) and (D) be a primal–dual pair. Then:

(1) if (P) is unbounded, then (D) is infeasible,
(2) if (D) is unbounded, then (P) is infeasible,
(3) if (P) and (D) are both feasible, then (P) and (D) both have optimal

solutions.

Proof We may assume that (P) is a maximization problem with objective
function c⊤x and that (D) is a minimization problem with objective function
b⊤y. (1) Suppose that (D) has a feasible solution ȳ. Then by the weak duality
(Theorem 4.1), b⊤ȳ is an upper bound for (P). In particular, (P) is not
unbounded. (2) Suppose that (P) has a feasible solution x. Then by the weak
duality (Theorem 4.1), c⊤x is an lower bound for (D). In particular, (D) is not
unbounded. (3) By (1), we know that (P) is not unbounded and by (2) we
know that (D) is not unbounded. Since by the fundamental theorem of linear
programming (see Theorem 2.11), (P) is either unbounded, infeasible, or has
an optimal solution, (P) must have an optimal solution. By a similar
argument, (D) has an optimal solution. □

It is often easy when given a primal–dual pair to verify that both linear
programs are feasible. In that case, statement (3) in the previous result
implies immediately that both linear programs have an optimal solution.

Exercises

1 Find the dual of each of the following LPs:
(a)

(b)

2 Find the dual of each of the following LPs:
(a)

where A and D are matrices, c, d, and b are vectors, and x and u are
vectors of variables.

(b)

where A and D are matrices, I is the identity matrix, c, b, and d are
vectors, and x and u are vectors of variables.

3 Let a1, . . . , an be n distinct real numbers. Consider the LP problem

max{x : x ≤ ai, for i = 1, . . . , n}. (P)

(a) Prove that the optimal value of (P) is the minimum of a1, . . . , an.
(b) Find the dual (D) of (P).
(c) Explain in words what (D) is doing?

4 Give an example of an infeasible LP problem whose dual is also
infeasible. You need to prove algebraically that your example and its dual are
infeasible.

5 (Advanced) A directed graph (or digraph) is a pair (V, E), where V is a
finite set and is a set of ordered pairs of elements of V. Members of V are
called vertices and members of are called arcs. Directed graphs can be
represented in a drawing where vertices correspond to points and arcs ij are
indicated by an arrow going from i to j. For instance, the directed graph with
V = {1, 2, 3, 4, 5, 6} and = {a, b, c, e, f, g, h, k, l} where

can be represented as in Figure 4.1. A directed cycle is a sequence of arcs of
the form where i1, i2, . . . , ik denote distinct vertices.
For instance, c, e, f is a directed cycle and so is g, h. Given an arc , vertex i
is the tail of and vertex j is the head of . Given a vertex v, the set of all

arcs with tail v is denoted δ+(v) and the set of all arcs with head v is denoted δ
−(v). For instance, δ+(5) = {f, h} and δ−(5) = {e, g, k}.

Figure 4.1

(a) A topological ordering of the vertices of a digraph = (V,) is an
assignment of value yi to each vertex i such that for every arc ij, yi ≥ yj +
1. Show that if there exists a topological ordering then there is no
directed cycle.

Let = (V,) be a directed graph and consider the following linear
program (P):

For instance, if is the digraph represented in Figure 4.1, the equality
constraint for vertex 5 says that

xf + xh − xe − xg − xk = 0.

(b) Show that (P) is feasible.
(c) Show that if has a directed cycle, then (P) is unbounded.
(d) Write the dual (D) of (P).

HINT: You will have one constraint for each arc ij and the constraints
will be of the form

±yi ± yj ? 1.

(e) Show that a topological ordering yi(∀i ∈ V) of is a feasible solution
to (D).

(f) Find an alternate proof to the statement you proved in (a) by using (e)
and weak duality.

(g) Show that if (P) has a feasible solution of value greater than 0, then
has a directed cycle.

(h) Using (g) prove that if has no directed cycle, then must have a
topological ordering. (Use Table 4.2 in the next section.)

Table 4.2 Outcomes for primal–dual pairs

Primal

Dual Optimal solution Unbounded Infeasible

Optimal solution possible impossible impossible

Unbounded impossible impossible possible

Infeasible impossible possible possible

6 Consider a graph G. A dyad of G is a pair of edges that share exactly one
vertex. A packing of dyads is a set S of dyads with the property that no two
dyads in S share a common vertex. In the following example, the dyads are
represented by bold edges:

(a) Show that the following IP finds a packing of dyads of maximum
cardinality:

(b) Denote by (P) the linear program obtained from (IP) by relaxing the
conditions that x be integer. Find the dual (D) of (P).

(c) Suppose that G is bipartite and let A, B be a partition of V such that all
edges are going between A and B. Find a solution for (D) of value
min{|A|, |B|}.

(d) Using (c), show that packing of dyads have cardinality at most min{|A|,
|B|}.

4.2 Strong duality
Let (P) and (D) be a primal–dual pair where (P) is a maximization problem
and (D) is a minimization problem. We know from Theorem 4.1 that for any
feasible solution x of (P) and any feasible solution ȳ of (D), the value of x in
(P) is at at most the value of ȳ in (D). It is natural to ask whether we can find
a pair of feasible solutions for (P) and (D) that have the same optimal value.
The next theorem states that this is indeed always the case.

THEOREM 4.3 (Strong duality). Let (P) and (D) be a primal–dual pair. If
there exists an optimal solution x of (P), then there exists an optimal solution
ȳ of (D). Moreover, the value of x in (P) equals the value of ȳ in (D).

We will only prove this theorem for the special case when (P) is in SEF. It
is routine however to derive the result for arbitrary linear program by first
converting the linear program to an equivalent linear program in SEF.

Proof of Theorem 4.3 for SEF. If (P) is in SEF, the primal–dual pair (P) and
(D) is of the form

max{c⊤x : Ax = b, x ≥ } (P)

min{b⊤y : A⊤y ≥ c}. (D)

We know from Theorem 2.7 that the two-phase simplex procedure
terminates. Since (P) has an optimal solution, the simplex will terminate with
an optimal basis B. Let us rewrite (P) in canonical form for B (see Proposition
2.4)

(P′)

where

Let x be the basic solution for B, i.e.

(P′) has the property that for any feasible solution the values in (P) and (P′)
are the same.
(P′) also has the property that cB = . Hence

Since the simplex procedure stopped, we must have c ≤ i.e.

c⊤ −ȳ⊤A ≤ or equivalently A⊤ȳ ≥ c.

It follows that ȳ is feasible for (D). Since c⊤x = b⊤ȳ, we know from weak
duality (Theorem 4.1) that x is an optimal solution to (P) and ȳ is an optimal

solution to (D). □

Combining the previous result together with Corollary 4.2(3), we obtain.

THEOREM 4.4 (Strong duality–feasibility version). Let (P) and (D) be a
primal–dual pair. If (P) and (D) are both feasible, then there exists an
optimal solution x of (P) and an optimal solution ȳ of (D) and the objective
value of x in (P) equals the objective value of ȳ in (D).

We can now classify the possibilities (infeasible, optimal, unbounded) for a
primal– dual pair of linear programs. On the face of it, the three possibilities
for each LP would lead to nine possibilities for the primal–dual pair, but
certain of these cannot occur. Table 4.2 describes the set of all possible
outcomes.
Corollary 4.2(1) proves entries , and . Corollary 4.2(2) proves entries

, and . Strong duality (Theorem 4.3) proves entries , , , ,
. We can construct an example to show that entry is possible. Here we
take advantage of the fact that infeasibility depends only on the constraints,
and not on the objective function. Therefore, the problem

is infeasible, regardless of the values of c1 and c2. To give an example for ,
we need to only choose c1 and c2 such that the dual is infeasible. We leave
this as an exercise.

We know from weak duality that in order to prove that a vector x is an
optimal solution to a linear program (P), it suffices to find a vector ȳ
satisfying the following three properties:

(A) x is feasible for (P);
(B) ȳ is feasible for the dual (D) of (P);

(C) the value of x in (P) is equal to the value of ȳ in (D).

In the simplex method, we consider (P) of the form max{c⊤x : Ax = b, x ≥ }.
At each iteration, we have a feasible basis B. The vector x is the basic feasible
solution for B. Hence, property (A) holds. We define ȳ as which
implies (see the proof of Theorem 4.3) that (C) holds. The algorithm
terminates when (B) is satisfied. Thus, the simplex method keeps two out of
the three properties (A), (B), (C) satisfied at each step, and terminates when
the third property holds. There are other algorithms that follow the same
scheme. The dual simplex procedures maintain properties (B), (C) at each
iteration and terminate when (A) holds. Interior-point methods (see Section
7.8) maintain properties (A), (B) at each iteration and terminate when (C)
holds.

Exercises

1 Let (P) denote the LP problem max{c⊤x : Ax ≤ b, x ≥ }, and let (D) be the
dual of (P). The goal of this exercise is to prove the strong duality theorem
for (P) and (D). (In the book we proved strong duality only for problems in
SEF.)
(a) Convert (P) into an equivalent problem (P′) in SEF.
(b) Find the dual (D′) of (P′).
(c) Suppose that (P) has an optimal solution x. Construct an optimal

solution x′ of (P′).
(d) Using Theorem 4.3 for problems in SEF, deduce that there exists an

optimal solution y′ to (D′) where the value of x′ for (P′) is equal to the
value of y′ for (D′).

2 Consider the following linear program (P), max{c⊤x : Ax ≤ b, x ≥ }. Let
(D) denote the dual of (P), and suppose that (P) has an optimal solution x and
(D) has an optimal solution ȳ.
(a) Let (P2) denote the LP resulting by multiplying the first inequality of (P)

by 2, and let (D2) denote the dual of (P2). Find optimal solutions of (P2)
and (D2) in terms of x and ȳ. Justify your answers.

(b) Let (P3) denote the LP obtained from (P) by replacing the constraint Ax

≤ b by MAx ≤ Mb where M is a square non-singular matrix of suitable
dimension. Let (D3) denote the dual of (P3). Find optimal solutions of
(P3) and (D3) in terms of x and ȳ. Justify your answers.

3 Consider the following linear program

max{c⊤x : Ax = b, x ≥ }. (P)

Assume that (P) has a feasible solution. The goal of this exercise is to use
duality to show that (P) is unbounded if and only if there exists r such that

r ≥ , Ar = , and c⊤r > 0. (⋆)

(a) Show that if there exists r satisfying (⋆), then (P) is unbounded.
(b) Find the dual (D) of (P).
Consider the following linear program

max{c⊤r : Ar = , r ≥ }. (P′)

Suppose that (P) is unbounded:
(a) Find the dual (D′) of (P′).
(b) Show that (D′) is infeasible.
(c) Show that (P′) is feasible.
(d) Show that (P′) is unbounded.

HINT: Consider the possible pairs of outcomes for (P′) and (D′).
(e) Deduce from f) that there exists a feasible solution r to (P′) that satisfies

(⋆).

4.3 A geometric characterization of optimality
In this section, we will provide a geometric characterization for when a
feasible solution to a linear program of the form

max{c⊤x : Ax ≤ b}

is also an optimal solution. Observe that every linear program can be
transformed into a linear program of the aforementioned form. As an
intermediate step, we will provide an alternate statement of the strong duality
theorem by carefully analyzing when the weak duality relation holds with
equality. This will lead to the notion of complementary slackness.

4.3.1 Complementary slackness
Consider the following primal–dual pair of linear programs (see Table 4.1)

max{c⊤x : Ax ≤ b} (4.9)

min{b⊤y : A⊤y = c, y ≥ }. (4.10)

Let us revisit the proof of weak duality (Theorem 4.1) for this particular case.
After adding slack variables s, we can rewrite (4.9) as

max{c⊤x : Ax + s = b, s ≥ }. (4.11)

Let x be a feasible solution to (4.9) and let ȳ be a feasible solution to (4.10).
Then for s = b − Ax, the vectors x, s are a solution to (4.11). Since Ax + s = b,
we have

b⊤ȳ = ȳ⊤b = ȳ⊤(Ax + s) = (ȳ⊤A)x + ȳ⊤s = c⊤x + ȳ⊤s,

where the last equality follows from the fact that ȳ is feasible for (4.10). We
know from strong duality (Theorem 4.3) that x and ȳ are both optimal for
(4.9) and (4.10) respectively, if and only if c⊤x = b⊤ȳ, or equivalently ȳ⊤s = 0.
Let m denote the number of constraints of (4.9), then

(⋆)

As si ≥ 0 and ȳi ≥ 0, every term in the sum (⋆) is nonnegative. It follows ȳ⊤s =
0 if and only if for every i ∈ {1, . . . , m}, si = 0 or ȳi = 0. Note, that si = 0
means that constraint i of (4.9) holds with equality for x; we will sometimes
also say that this constraint is tight for x. The following result summarizes
these observations:

THEOREM 4.5 (Complementary slackness – special case). Let x be a feasible
solution to (4.9) and let ȳ be a feasible solution to (4.10). Then x is an
optimal solution to (4.9) and ȳ is an optimal solution to (4.10) if and only if
for every row index i of A, constraint i of (4.9) is tight for x or the
corresponding dual variable ȳi = 0.

Example 17 Consider the following primal–dual pair:

(P)

and

(D)

It can be readily checked that x = (1, −1, 1)⊤ is a feasible solution to (P) and
that ȳ = (0, 2, 1)⊤ is a feasible solution to (D). Theorem 4.5 states that to show
x is an optimal solution to (P) and ȳ is an an optimal solution to (D), it
suffices to check the following conditions:

OR (1 2 − 1)x = 2;

ȳ2 = 0 OR

ȳ3 = 0 OR

We indicate by a the part of the OR condition that is satisfied. In our
particular case, all OR conditions are satisfied. It follows that x is optimal for
(P) and that ȳ is optimal for (D). Consider now the feasible solution x′ = (2,
−2, 0)⊤ of (P). The conditions of Theorem 4.5 do not hold for the pair x′ and
ȳ, since (−1, 1, 1)x′ < −1 and ȳ3 = 1 > 0. Observe that in this case Theorem
4.5 only allows us to deduce that either x′ is not optimal for (P), or ȳ is not
optimal for (D). The theorem does not give any indication as to which
outcome occurs.

Theorem 4.5 generalizes to arbitrary linear programs. Consider a primal–
dual pair (Pmax) and (Pmin) as given in Table 4.1. Let x be a feasible solution
to (Pmax) and let ȳ be a feasible solution to (Pmin). We say that x, ȳ satisfy the
complementary slackness (CS) conditions if:

for every variable xj of (Pmax),
xj = 0 or the corresponding constraint j of (Pmin) is satisfied with
equality,
for every variable yi of (Pmin),
ȳi = 0 or the corresponding constraint i of (Pmax) is satisfied with
equality.

Note, that if a variable xj is free, then the corresponding constraint j of (Pmin)
is an equality constraint, hence the condition is trivially satisfied. Similarly, if
yi is free, then the corresponding constraint i of (Pmax) is an equality
constraint. Thus, we only need to state the CS conditions for non-free
variables of (Pmax) and (Pmin).

We leave as an exercise the following generalization of Theorem 4.5:

THEOREM 4.6 (Complementary slackness theorem). Let (P) and (D) be an

arbitrary primal–dual pair. Let x be a feasible solution to (P) and let ȳ be a
feasible solution to (D). Then x is an optimal solution to (P) and ȳ is an
optimal solution to (D) if and only if the complementary slackness conditions
hold.

Example 18 Consider the following linear program:

(P)

Its dual is given by

(D)

It can be readily checked that x = (5, −3, 0)⊤ is a feasible solution to (P) and
that ȳ = (0, 4, −2)⊤ is a feasible solution to (D). Theorem 4.6 states that to
show x is an optimal solution to (P) and ȳ is an optimal solution to (D), it
suffices to check the following conditions:

x1 = 0 OR

OR ȳ1 + 5ȳ2 − 3ȳ3 = 20;

OR

ȳ2 = 0 OR

We indicate by a the part of the OR condition that is satisfied. In our
particular case, all OR conditions are satisfied. It follows that x is optimal for
(P) and that ȳ is optimal for (D). Observe that in the third condition, both OR
alternatives are satisfied. This does not contradict the theorem as the
complimentary slackness conditions require that at least one of the alternative
holds, but they do not preclude both alternatives to simultaneously hold.

Exercises

1 For each of (a) and (b), do the following:

Write the dual (D) of (P).
Write the complementary slackness (CS) conditions for (P) and (D).
Use weak duality to prove that x is optimal for (P) and ȳ is optimal for
(D).
Use CS to prove that x is optimal for (P) and ȳ is optimal for (D).

(a)

(P)

and

x = (−1, 0, 3)⊤ ȳ = (−1, 1)⊤.

(b)

(P)

and

x = (1, 1, 0)⊤ ȳ = (−1, −1, 0)⊤.

2 Recall that (3.9) is the IP formulation of the shortest path problem. Let (P)
denote the LP relaxation of (3.9). The dual of (P) is given by (3.15).
(a) Write the complementary slackness conditions for (P) and (3.15).
(b) Using the CS theorem (Theorem 4.6), prove Proposition 3.6.

3 Recall that (3.24) is the IP formulation of the minimum cost matching
problem. Let (P) denote the LP relaxation of (3.24). The dual of (P) is given
by (3.30).
(a) Write the complementary slackness conditions for (P) and (3.30).
(b) Using the CS theorem (Theorem 4.6), prove Proposition 3.8.
4 (a) Suppose that the LP problem max{c⊤x : Ax = b} is feasible. Prove that

it has an optimal solution if and only if c⊤ is in the row space of A.
HINT: Consider the CS conditions.

(b) Consider the LP problem, max{c⊤x : ⊤x = 250}. Under what conditions
on c does this problem have an optimal solution? Justify your answer.

5 Consider the following linear program where A is an m × n matrix:

(4.12)

(a) Write the dual (D) of (P).

Let x and ȳ be feasible solutions to (P) and (D) respectively. We say that x
and ȳ almost satisfy the CS conditions if for every i = 1, . . . , m at least one of
the following holds:
(CS1) ȳi = 0,
(CS2) rowi(A)x = bi,
(CS3) ȳi ≤ 1 and bi − rowi(A)x ≤
Suppose that A has 100 rows and that x and ȳ almost satisfy the CS
conditions.
(b) Show that the value of an optimal solution of (P) cannot exceed the

value of x by more than

(c) Show that the value of an optimal solution of (D) cannot be inferior to
the value of ȳ by more than

4.3.2 Geometry
Before we can characterize optimal solutions to linear programs
geometrically, we will need a number of preliminary definitions.

Let a(1), . . . , a(k) be a set of vectors in n. We define the cone generated
by a(1), . . . , a(k) to be the set

i.e. C is the set of all points that can be obtained by multiplying each of a(1), .
. . , a(k) by a nonnegative number and adding all of the resulting vectors
together. We denote the set C by cone{a(1), . . . , a(k) }. Note, we define the
cone generated by an empty set of vectors to be the set consisting of the zero
vector only, i.e. the set { }.

Example 19 Consider vectors

In Figure 4.2, we represent each of the vectors a(1), a(2), a(3) by an arrow from
the origin, and the infinite region containing a(2) bounded by the half lines
from the origin determined by a(1) and a(3) respectively is cone {a(1), a(2),
a(3)}.

Figure 4.2 Illustration of Example 19.

Let P ≔ {x : Ax ≤ b} be a polyhedron and let x ∈ P. Let J(x) be the row
indices of A corresponding to the tight constraints of Ax ≤ b for x, i.e. i ∈
J(x) when rowi(A)x = bi. We define the cone of tight constraints for x to be

the cone C generated by the rows of A corresponding to the tight constraints,
i.e. C = cone{rowi(A)⊤ : i ∈ J(x)}.

Example 20 Consider for instance

(4.13)

Note, x = (2, 1)⊤ is a feasible solution. The tight constraints for x are
constraints (1) and (2). Hence, the cone of tight constraints for x is

The objective function for (4.13) is as

We are now ready to present our geometric characterization of optimality.

THEOREM 4.7 Let x be a feasible solution to max{c⊤x : Ax ≤ b}. Then x is
optimal if and only if c is in the cone of tight constraints for x.

(4.14)

It follows from Theorem 4.7 that x = (2, 1)⊤ is an optimal solution of (4.13).
We illustrate this result in Figure 4.3. Note, in that figure the cone of tight
constraints is drawn with its origin shifted to the point x.

Figure 4.3 Geometric interpretation of optimality.

We will use the linear program (4.13) with x = (2, 1)⊤ to illustrate one
direction of the proof of Theorem 4.7, namely that if the objective function
vector c is in the cone of tight constraints for x, then x is an optimal solution.
Observe that because of Theorem 4.5, it will suffice to:

Step 1. find a feasible solution ȳ for the dual of (4.13), and
Step 2. verify that x, ȳ satisfy the CS conditions.

The dual of (4.13) is given by (see Table 4.1)

(4.15)

Step 1. Let ȳ1 ≔ 1, ȳ2 = and ȳ3 = 0. Then (4.14) implies that

Hence, ȳ = (ȳ1, ȳ2, ȳ3)⊤ ≥ is a feasible solution to (4.15). In this argument,
we used the fact that c = (3, 1)⊤ is in the cone of tight constraints to obtain
values for the dual variables of the tight constraints, and we assigned the
value zero to all dual variables corresponding to nontight constraints.

Step 2. The CS conditions for x, ȳ are:

y1 = 0 OR

y2 = 0 OR

OR x2 = 2.

We indicate by a the part of the OR condition that is satisfied. In our
particular case, the CS conditions are satisfied. Note, because of the way the
dual variables were defined in Step 1, if the constraints are not tight, then the
corresponding dual variable is zero. Hence, the fact that the CS conditions
hold is no surprise.

We completed Step 1 and Step 2, hence x = (2, 1)⊤ is optimal.

Proof of Theorem 4.7 We consider the following primal–dual pair:

max{c⊤x : Ax ≤ b}, (P)

min{b⊤y : A⊤y = c, y ≥ }, (D)

where A is an m × n matrix. The CS conditions for (P) and (D) are

yi = 0 OR rowi(A)⊤x = bi (for every row index i). (⋆)

Suppose c is in the cone of tight constraints for x. We need to show that x

is an optimal solution to (P). Because of Theorem 4.5, it will suffice to:

Step 1. find a feasible solution ȳ for (D) and
Step 2. verify that x, ȳ satisfy the CS conditions (⋆).

Step 1. Recall, J(x) denotes the row indices of the tight constraints of Ax ≤ b
for x. Since c is in the cone of tight constraints for x, i.e. c ∈ cone{rowi(A)⊤ :
i ∈ J(x)}, there exists ȳi ≥ 0 for all i ∈ J(x) such that

Let us assign the value zero to all dual variables corresponding to nontight
constraints, i.e. we set ȳi = 0 for all row indices i J(x). Then

c = ∑ (ȳi rowi(A)⊤ : i = 1, . . . , m) = A⊤(ȳ1, . . . , ȳm)⊤.

Hence, ȳ ≔ (ȳ1, . . . , ȳm)⊤ ≥ is a feasible solution to (D).

Step 2. Because of the way the dual variables where defined in Step 1, either i
∈ J(x) and the constraints rowi(x) ≤ bi are tight for x, or the corresponding
dual variable ȳi = 0. Hence, the CS conditions in (⋆) hold.

We completed Step 1 and Step 2, hence x is optimal for (P).

Suppose x is an optimal solution to (P). We need to show that c is in the
cone of tight constraints for x. Theorem 4.5 implies that there exists a feasible
solution ȳ of (D) such that the CS conditions (⋆) hold for x, ȳ. Define, J ≔ {i :
ȳi > 0}. Then

c = A⊤ȳ = ∑ (ȳi rowi(A)⊤ : i = 1, . . . , m) = ∑(ȳi rowi(A)⊤ : i ∈ J).

Hence, c ∈ cone{rowi(A)⊤ : i ∈ J}. Finally, observe that if i ∈ J, then ȳi >
0, which implies by the CS conditions (⋆) that constraint i of Ax ≤ b is tight
for x. Hence, J ⊆ J(x), and c is in the cone of tight constraints for x. □

Exercises

1 Consider the following linear program (P):

Consider the feasible solution x = (3, 2)⊤.
(a) Let J be the index set of the tight constraints for x and let

C ≔ cone{rowi(A)⊤ : i ∈ J}.

Prove that (7, 3)⊤ ∈ C and deduce that x is an optimal solution to (P).
(b) Find the dual (D) of (P).
(c) Write the complementary slackness conditions for (P) and (D).
(d) Using the fact that (7, 3)⊤ ∈ C, construct a feasible solution ȳ to (D)

such that x and ȳ satisfy the complementary slackness conditions.
Deduce that x is an optimal solution.

4.4 Farkas’ lemma*
The following result gives a sufficient and necessary condition for a linear
program in SEF to have a feasible solution.

THEOREM 4.8 (Farkas’ Lemma). Let A be an m × n matrix and let b be a
vector with m entries. Then exactly one of the following statements is true:

(1) the system Ax = b, x ≥ has a solution;
(2) there exists a vector y such that A⊤ y ≥ and b⊤y < 0.

Proof Statements (1) and (2) cannot both be true.

Let us proceed by contradiction and suppose that there exists a solution x to
Ax = b, x ≥ and that we can find ȳ such that ȳ⊤A ≥ ⊤ and ȳ⊤b < 0. Since Ax

= b is satisfied, we must also satisfy ȳ⊤Ax = ȳ⊤b. Since ȳ⊤A ≥ ⊤ and x ≥ , it
follows that ȳ⊤Ax ≥ 0. Then 0 ≤ ȳ⊤Ax = ȳ⊤b < 0, a contradiction.

If (1) is not true, then (2) must be true.

Consider the following primal–dual pair (see Table 4.1):

max{ ⊤x : Ax = b, x ≥ }, (P)

min{b⊤y : A⊤y ≥ }. (D)

By hypothesis, (P) is infeasible. Observe that (D) is feasible since A⊤ ≥ . It
follows from the possible outcomes for primal–dual pairs (see Table 4.2) that
(D) is unbounded. In particular, there exists a feasible solution ȳ of (D) with
negative value, i.e. A⊤ȳ ≥ and b⊤ȳ < 0 as required. □

Note, the fact that both (1) and (2) cannot hold at the same time was already
proved in Proposition 2.1. In the remainder of the section, we give an
alternate proof for the fact that “if (1) is not true, then (2) must be true” based
on the two phase simplex algorithm. This proof will provide an algorithm that
takes as input A, b and either finds: x as in (1) or find ȳ as in (2).

Suppose that Ax = b, x ≥ has no solution and let us assume that b ≥ (we
leave it as an exercise to modify the argument for an arbitrary vector b).
Assume that A is an m × n matrix. The auxiliary problem is given by (see
Section 2.6)

(Q)

where d is the vector with n + m entries such that dj = 0 for j = 1, . . . , n and

dj = −1 for j = n + 1, . . . , n + m. Let B be the optimal basis for (Q) obtained
by the simplex algorithm. The objective function of the linear program
obtained by rewriting (Q) in canonical form for the basis B is

for some vector ȳ (see Proposition 2.4). The value of the objective function in
(Q′) for the basic solution of B is equal to b⊤ȳ. Since Ax = b, x ≥ has no
feasible solution, that value is negative1 (see Remark 2.10). Hence

b⊤ȳ < 0. (4.16)

Since the simplex algorithm terminated, we have that d ≤ , i.e.

d⊤ − ȳ⊤ (A | I) ≤ ⊤.

In particular, all entries of d corresponding to the columns of A are
nonpositive. Thus

⊤ − ȳ⊤A ≤ ⊤ or equivalently A⊤y ≥ . (4.17)

Equation (4.16) and (4.17) now imply that ȳ is the required certificate of
infeasibility.

Exercises

1 (a) Prove that exactly one of the following statements holds:

there exists x such that Ax ≤ b, x ≥ ;
there exists y such that A⊤y ≥ , y ≥ and b⊤y < 0.

(b) Prove that exactly one of the following statements holds:

there exists x ≠ such that Ax = , x ≥ ;

there exists y such that all entries of A⊤y are positive.

HINT: Consider the LP max{ ⊤x : Ax = , x ≥ }.
(c) Prove that exactly one of the following statements holds:

there exists x such that Ax ≤ b and A′x = b′ ;
there exists y and z such that y ≥ , y⊤A + z⊤A′ ≥ , and y⊤b + z⊤b′ < 0.

(d) Prove that exactly one of the following statements hold:

there exists x and x′ such that Ax + A′ x′ = b and x ≥ ;
there exists y such that y⊤A ≥ , y⊤A′ = , and y⊤b < 0.

2 The goal of this exercise is to prove the following:

THEOREM For vectors a(1), . . . , a(n) and b (all with same number of entries)
exactly one of the following statements is true:

(S1) b ∈ cone{a(1), . . . , a(n) },
(S2) there exists a halfspace H = {x : d⊤x ≤ 0} that contains all of a(1), . .

. , a(n) but does not contain b.
(a) Explain what the theorem says when all vectors a(1), . . . , a(n), b have

two entries. Denote by A the matrix with columns a(1), . . . , a(n).
(b) Show that (S1) holds if and only if there exists x such that Ax = b and x

≥ 0.
(c) Show that (S2) holds if and only if there exists y such that A⊤y ≥ 0 and

b⊤y < 0.
(d) Prove the theorem above using parts (b) and (c) and Farkas’ lemma.

3 Consider the LP

max{c⊤x : Ax = b, x ≥ },

such that A = −A⊤ (skew-symmetric), b = −c. Prove that the dual of such an
LP problem is equivalent to the original LP problem (such problems are
called self-dual). Apply the duality theory we developed to such LP problems
to prove as many interesting properties as you can.

4.5 Further reading and notes
Just as Dantzig was developing his ideas on linear programming,
independently of Dantzig, von Neumann [1903–1957] was working on game
theory. There is a very nice connection between LP duality theory and game
theory for two-person zero-sum games. We will comment on this some more
following the chapter on nonlinear optimization.

Duality theory for linear programming has close ties to work on solving
systems of linear inequalities. Such a connection goes back at least to Joseph
Fourier (recall Fourier series and Fourier transform) [1768–1830]. Fourier’s
paper from 1826 addresses systems of linear inequalities. The result known
as Farkas’ lemma came during the early 1900s. Hermann Minkowski [1864–
1909] also had similar results in his pioneering work on convex geometry.
There are many related results involving different forms of inequalities, some
using strict inequalities, for example, theorems by Gordan and Stiemke. See
Schrijver [58].

1 We consider a maximization problem here rather than a minimization problem as in
Section 2.6.

5

Applications of duality*

In Chapter 3, we have seen two examples for how the framework of duality
theory leads to algorithmic insights. Both in the case of the shortest path
problem and in that of the minimum cost perfect matching problem we
presented efficient algorithms that are primal–dual. Such algorithms compute
feasible solutions for the respective primal problems but also, at the same
time, construct feasible solutions for their duals. The dual solution is in the
end used as a certificate of optimality, but crucially provides algorithmic
guidance in finding the primal solution. In this chapter, we discuss a few
more select examples that demonstrate the diverse use of duality.

5.1 Approximation algorithm for set-cover
The figure on the right shows the floor plan of an art gallery. The
management team of the gallery wants to place guards in their gallery such
that (a) every point in the gallery is visible by at least one guard, and (b) the
number of guards is as small as possible. The figure on the right shows a
solution with six guards: guards are depicted as dots, and the portion of
museum floor visible by a guard is shaded.

The art gallery problem is an instance of the more general set-cover
problem. In an instance of this problem, we are given a universe U = {e1, . . .
, em} of elements, and a collection of sets S = {S1, . . . , Sn} where each Sj is a
subset of U. Each set Sj has a nonnegative cost cSj associated with it, and the
goal is to find a collection C ⊆ S of sets of the smallest cost such that each
element ei is contained in at least one of the sets in C. In the art gallery
example U is the set of locations in the gallery1, and Si is the set of locations
guard i can see from her position.

The problem has a natural IP formulation. We introduce a binary variable
xS for every set S ∈ S that takes on value 1 if set S is chosen in our solution
C and 0 otherwise. The IP has a constraint for every element e ∈ U that
forces a feasible solution to pick at least one set containing the element.

(5.1)

Following the proven strategy from Chapter 3, we could now simply look
at the LP relaxation of the above IP, and derive its dual. We could then

design an algorithm that finds a set-cover solution as well as a feasible dual
solution whose value equals that of the cover. However, it is easy to construct
an example where the IP and the dual of the LP relaxation have distinct
optimum values (see Exercise 1 in Section 5.3). Moreover, it is unlikely that
this scheme will work for any practical IP formulation of the set-cover
problem. This is because it is widely believed that no efficient algorithm
exists to solve all instances of the set cover problem (see Appendix A).

Now that we know that we should not expect an efficient exact algorithm
for the setcover problem, what can be done? We settle for the next best thing:
we approximate the problem. Suppose we are given a class I of instances of
some optimization (say minimization) problem. For a given instance I ∈ I,
let optI be the instance’s unknown optimal value. We are looking for an
efficient algorithm A that, given any instance I ∈ I, computes a solution
A(I) whose value is at most α(I)optI, for some function α of the instance data.
Such an algorithm is called an α-approximation algorithm, and α is
sometimes called its approximation- or performance guarantee. For any
instance I, α(I) ≥ 1, and if α(I) = 1, then our algorithm returns an exact
solution for instance I.

In the case of the set-cover problem, we will present two algorithms. Both
algorithms employ linear programming duality in order to compare the
computed solution to the value of the LP relaxation of (5.1). The first
algorithm follows a primal–dual strategy, similar to what we have seen in
Chapter 3. The second algorithm is a so-called greedy algorithm, and it
produces a solution whose cost can once again be bounded within a certain
factor of the objective value of a feasible dual solution.

5.1.1 A primal–dual algorithm
Let us start by giving the dual of the LP relaxation of (5.1). This LP has a
variable ye for every element e ∈ U, and a constraint for every set S ∈ S.
The constraint for set S limits the total y-value of elements in S to be at most
the cost cS of the set.

(5.2)

The next remark indicates how the existence of a solution to the previous LP
allows us to prove that the value of a particular solution to the set-cover
problem is within a certain factor of the optimum value.

Remark 5.1 Consider an instance I of the set-cover problem, optI denotes its
optimal value. Let C be a feasible cover with value z ≔ ∑(cS : S ∈ C) and let
ȳ be a solution to (5.2). If for some α ≥ 1, α ⊤ȳ ≥ z, then z ≤ α optI.

Proof Let C ′ be an optimal solution to the set-cover problem and let = 1
if S ∈ C ′ and let otherwise. Then

α ⊤ȳ ≥ z ≥ optI = c⊤x′ ≥ ⊤ȳ, (5.3)

where the first inequality is given in the hypothesis, the second inequality
follows from the fact that optI is the optimum value, the equality by the
definition of x′ and the third inequality by weak duality (Theorem 4.1). Now
(5.3) implies that both z and optI are within the interval bounded by ⊤ȳ and α
⊤ȳ and the result follows. □

Consider a primal–dual pair (P) and (D) of LPs. Suppose that x is a feasible
solution to (P) and that ȳ is a feasible solution to (D). Complementary
slackness (Theorem 4.6) says that if x and ȳ satisfy the complementary
slackness conditions, then x is optimal for (P) and ȳ is optimal for (D). Recall
the minimum cost perfect matching Algorithm 3.3 from Chapter 3.2. At the
end of the algorithm, we have a perfect matching M and a feasible solution ȳ
to (3.30). Moreover, x (the vector where xe = 1 if e ∈ M and xe = 0
otherwise) is a feasible solution to (3.24). In addition, all the edges in M are
equality edges with respect to ȳ or equivalently (see Exercise 3, Section

4.3.1) x and ȳ satisfy complementary slackness, proving that x is optimal for
(3.24), i.e. that M is a minimum cost matching. Thus, the strategy for the
algorithm is to construct a pair of primal–dual solutions that satisfy
complementary slackness conditions.

We will follow a similar strategy for set-cover problems, except that we
will only impose that some of the complementary slackness conditions be
satisfied. The complementary slackness conditions for set-cover are as
follows:

(CS1) xS > 0 implies ∑(ye : e ∈ S) = cS, and
(CS2) ye > 0 implies ∑(xS : S ∈ S where e ∈ S) = 1.

Since we cannot expect to find an integral solution x to (5.1), and a feasible
solution y to (5.2) such that (CS1) and (CS2) hold, we will enforce condition
(CS1) and relax condition (CS2).

Our algorithm works as follows: initially, let y = be the trivial feasible
solution to (5.2), and let C = be an infeasible cover. The algorithm adds sets
to C as long as there is an element e ∈ U that is not covered by any of the
sets in C. Whenever such an element e exists, we increase the corresponding
dual variable ye. In fact, we increase its value by the largest possible amount
 that maintains y’s feasibility for (5.2); is the minimum slack of the dual

constraints corresponding to sets containing e,

Let S be a set that attains the minimum on the right-hand side of the above
expression. S is now added to C, leading to e being covered. Furthermore,
note that condition (CS1) is satisfied by set S: in the primal solution
corresponding to C, the variable for S has value 1, and its dual constraint is
tight (i.e. ∑(ye : e ∈ S) = cS) for the updated vector y by our choice of (see
Algorithm 5.6 for a formal description of the algorithm).

Algorithm 5.6 Primal–dual algorithm for set-cover

Input: Elements U, sets S, costs cS for all S ∈ S.

Output: A collection C ⊆ S such that U ⊆ ⋃S∈C S, and a feasible dual y
for (5.2).
1: y = , C =
2: while ∃e ∈ U that is not covered by any set in C do
3: Increase ye as much as possible, maintaining feasibility of y for (5.2)
4: Let S be a tight set cover e
5: Add S to C
6: end while
7: return C and feasible dual y

We define the frequency fe of element e ∈ U to be the number of sets in S
that cover the element. The frequency f of the given set-cover instance is the
maximum over all element frequencies; i.e. f = maxe∈U fe. The next result
shows that Algorithm 5.6 returns a feasible set-cover C that has value within
a factor f of the optimum value.

THEOREM 5.2 Algorithm 5.6 is an f-approximation algorithm.

Proof The algorithm clearly returns a feasible set-cover C if there is one.
Notice that the cost of the final cover is

(5.4)

where the equality follows directly from condition (CS1). Observe that a
variable ye may appear multiple times in the double-sum on the right-hand
side; it appears for every set in C that covers e. The right-hand side of (5.4)
can therefore be rewritten as

where the inequality follows from the fact that every element appears in at
most f sets. The result now follows from Remark 5.1. □

A particularly nice special case of set-cover is the vertex-cover problem. In
an instance of this problem, we are given a graph G = (V, E), and a cost cv for
each vertex v ∈ V. The goal is to find a set C ⊆ V of smallest total cost such
that every edge in E has at least one of its endpoints in C. The black vertices
in the graph on the right form a vertex-cover of size 6. Note that the
vertexcover problem is a special case of the set-cover problem: the elements
of this instance are the edges of G, and each vertex v ∈ V forms a set that
covers all edges that are incident to v. Every edge is incident to two vertices,
and hence appears in two sets of the corresponding set-cover instance. In
other words, the frequency of the instance is f = 2. Hence, we obtain the
following immediate consequence:

COROLLARY 5.3 Algorithm 5.6 is a 2-approximation algorithm for the
vertex-cover problem.

In other words, the algorithm returns a vertex-cover of cost at most twice the
optimal vertex-cover for any given instance of the problem.

5.1.2 Greed is good ... at least sometimes
In the last section, we developed an algorithm that computes a cover whose
cost is at most f times the cost of an optimal cover, where f is the maximum
frequency of any element in U. Can we do better? Can we find f ′ < f, and an
algorithm that finds a cover of cost no more than f ′ optI for any instance I?

This appears to be unlikely (more on this later), but we can improve the
guarantee obtained in the previous section sometimes.

Suppose you are faced with a set-cover instance with universe U, and sets
S, all of which have unit cost. Your goal is to find the smallest number of
sets that jointly cover all elements. What would your natural strategy be?
Well, you would make locally optimal decisions: you would first pick a set
that covers most elements, in the next step you would pick a set that covers
most uncovered elements, and so on. It is easy to extend this strategy to the
setting where sets have non-unit costs. Then we would want to balance
between two objectives: cover as many previously uncovered elements, and
do this at the smallest possible cost. One way of balancing the two competing
objectives would be to always pick a set S ∈ S with smallest cost divided by
the number of newly covered elements. The resulting Algorithm 5.7 is known
as the greedy algorithm for set-cover.

Algorithm 5.7 Greedy algorithm for set-cover

Input: Elements U, sets S, costs cS for all S ∈ S. ⋃
Output: A collection C ⊆ S such that U ⊆ S∈C S.
1: C =
2: while ∃e ∈ U that is not covered by any set in C do
3: Choose set S that minimizes cS/|S \ ⋃s′ ∈C s′ |
4: Add S to C
5: end while
6: return C

Let us demonstrate Algorithm 5.7 on the set-cover instance given in Figure
5.1. The instance has m elements and m + 1 sets. The shaded set Si in the
figure has a cost of 1/i for all i, and set S has cost 1 + for some tiny > 0. In
the first step, each of the shaded sets Si covers one element and has cost 1/i,
while the large set S has cost 1 + . Thus, our algorithm first chooses set Sm,
as its cost of newly covered elements ratio is smaller than that of S. Similar in
the second step, the algorithm chooses set Sm−1, and so on. In the end, our

algorithm will have picked up all the shaded sets, while the optimal solution
clearly is to pick just the set S. The solution computed by the greedy
algorithm has cost

Figure 5.1 An instance of the set-cover problem. Black dots correspond to elements, and
boxes to sets. Shaded set Si has cost 1/i, and the large set S has cost 1 + for a fixed small

 > 0.

compared to an optimal cost of just 1+ . Thus, we have shown that the
greedy algorithm can not be better than Hm-approximate. We will now show
that Algorithm 5.7 always returns a cover of cost at most Hm times that of an
optimal solution.

THEOREM 5.4 Algorithm 5.7 is an Hm-approximation algorithm for the set-
cover problem.

Proof We will prove this theorem by, once again, using linear programming
duality. Suppose Algorithm 5.7 picks the sets

S1, . . . , Sp,

in this order, and let C be the cover consisting of these p sets. For all 1 ≤ i ≤
p, let us also define

as the set of newly covered elements resulting from adding set Si. For 1 ≤ i ≤
p, and for all e ∈ Ui, define

(5.5)

That is, we distribute the cost of set Si evenly over the elements in Ui, and
thus

(5.6)

We will now show that y/Hm is feasible for (5.2). This, together with (5.6)
and Remark 5.1, shows that the algorithm returns a solution of cost no more
than Hm times the optimal value.

The dual (5.2) has a constraint for every set S ∈ S that limits the y-value
of elements in S to the cost cS of the set. We will show that each such
constraint is satisfied by y/Hm. Let e1, . . . , el be the elements of some set S
∈ S, in the order in which they were covered by the greedy algorithm.
Hence, ei was covered at the same time or before element ei′ for any 1 ≤ i ≤ i′
≤ l. We claim that the value yei picked according to (5.5) satisfies

for all 1 ≤ i ≤ l. Suppose ei was covered in iteration r, where Algorithm 5.7
chose a set Sr in step 3. Note that set S contained l − i + 1 uncovered elements
when Sr was picked. The fact that Sr was picked regardless implies

The left-hand side of the inequality is exactly the value of yei, and this proves
the claim. Using this, the left-hand side of the dual constraint for set S can be

bounded as follows:

where the final inequality follows from the fact that S contains at most m = |U
| elements. Thus, y/Hm is feasible for (5.2) as required. □

5.1.3 Discussion
The two algorithms presented in this chapter are incomparable in terms of
their approximation guarantee. Algorithm 5.6 is obviously superior when
each element lies in a few sets, and Algorithm 5.7 shines when the maximum
frequency is high. Examples for both situations are easy to come by, and we
have in fact seen a low-frequency one in the vertex-cover problem. At
present, no algorithm with a better approximation guarantee for the vertex
cover problem is known, and it is known that no α-approximation with α < 10

− 21 ≈ 1.36 can exist unless NP=P [23]. If one assumes the less tried and
tested unique games conjecture (e.g., seeWilliamsonandShmoys[69] for some
more information), the 2-approximation algorithm given here is the best
possible unless NP=P [39].

The set-cover problem in general is harder to approximate than the vertex
cover problem. In this section, we have presented two algorithms that
compute covers C whose cost is within a certain factor of the optimal value of
the LP relaxation of (5.1). How good an approximation algorithm can we
obtain with such a strategy? Well, it appears that there are limits.

Let (IP) be an IP formulation for some given minimization problem, and
let (P) be its LP relaxation. Let I be the set of all instances for this problem,
and for some I ∈ I let and be optimal values for (IP) and (P),
respectively, for the given instance I. We then define the integrality gap of
(P) as

Hence, αP is the worst case multiplicative gap between the fractional and
integral optimal values for (P). Notice that we know from weak duality
(Theorem 4.1) that the value of any feasible dual solution for instance I ∈ I
cannot be higher than Furthermore, the value of an integral solution
must be at least . Thus, using only LP (P) and the above proof
technique, we cannot hope to obtain an α-approximation algorithm with α <
α(P).

For set-cover it is easy to find example instances where (1 −) ln(m)
2 for any fixed > 0, (see [68] for an example), and this shows that the
approximation guarantee obtained by Algorithm 5.7 is the best possible (up
to constant factors). In fact, we can even show that there is a constant c ∈ (0,
1) such that no O((1 − c) ln(m))-approximation algorithm exists unless
NP=P(see [25, 56, 2], and [69]).

5.2 Economic interpretation
After seeing the beautiful applications of duality theory to the shortest paths,
minimum cost perfect matching and set-cover problems, it should be clear to
the reader that we only scratched the surface in terms of similar applications
and interpretations of dual variables.

Duality theory has very nice connections to mathematical economics as
well. A very commonly used setting to explain some of this relationship is
the class of production planning problems. Consider a factory that makes n
products from m resources. The jth product earns a profit of cj dollars per unit
and consumes aij units of resource i per unit of product made. We have bi
units of resource i available. The production problem is to decide how many
units to produce of each product such that total profit is maximized while not
exceeding the available resources. If we let A denote the m × n matrix where
entry (i, j) is equal to aij, we can write the production problem as the
following LP:

max{c⊤ x : Ax ≤ b, x ≥ }, (P)

where xj is the number of units of product j made. The dual of (P) is given by:

min{b⊤y : A⊤y ≥ c, y ≥ }. (D)

The complementary slackness conditions for (P) and (D) are given by:

(CS1) For all i = 1, . . . , m: aij xj = bi OR yi = 0,
(CS2) For all j = 1, . . . , n: aij yi = cj OR xj = 0.

In this setting, the optimal values ȳ of (D) correspond to shadow prices of
resources. These are “internal prices” which depend on the current optimal
solution to (P), i.e. the optimal production plan. Assume that you are running
the factory and that you own the resources. Then the shadow prices
correspond to the minimum price rate at which you would start selling a
portion of the resources without incurring a loss (and possibly gaining extra
profit).

Let us try to interpret the constraints of (D) in that light. Constraints y ≥
indicate that the price of the resources are nonnegative. For every product j,
we have a constraint Note, that aij yi is the cost for resources
of type i used to make one unit of product j. Thus, the constraint says that the
total cost of the resources used to make one unit of product j should be at
least as large as the value of one unit of product j. The objective function
minimizes the total value of the resources. Let us now try to interpret the
complementary slackness conditions. (CS1) says that if resource i is not
completely used, then the price of the resources is zero (as you can sell a
small amount > 0 at a price of zero without decreasing the production
value). (CS2) says that if the cost of the resources used to make one unit of
product j is larger than the value of product j, then you should not produce
any unit of product j (as you could sell the resources rather than producing
product j).

Under the right conditions, the prices ȳ allow us to compute the impact of
increasing the available resources on the optimal value for (P), i.e. on the
profit from the production. Let us consider the special case where we increase
the amount of resource ℓ available in (P) by some small value > 0 and we
keep all other resources unchanged, i.e. we are trying to solve the problem

(P ,ℓ)

where

The dual problem is

(D ,ℓ)

Let x, ȳ be a pair of optimal solutions for (P) and (D) respectively. We know
from complementary slackness (Theorem 4.6) that for each of (CS1) and
(CS2) at least one of the OR conditions holds. An extreme point of {x : Ax ≤
b, x ≥ } where A is a m×n matrix, is nondegenerate if exactly n of the (m +
n) inequalities are satisfied with equality at x.

THEOREM 5.5 Suppose x is a nondegenerate extreme point of the feasible
region of (P) that is optimal. Then (D) has a unique optimal solution ȳ.
Moreover, for every > 0 small enough, the optimal objective value for (P ,ℓ)
is obtained from the optimal objective value for (P) by adding ȳℓ . In other
words, the profit from the optimal production plan increases by the shadow
price of resource ℓ.

Proof Complementary slackness conditions applied to x yield a linear system
of equations with a unique solution ȳ. Therefore, ȳ is the unique optimal
solution of (D). Note that it suffices to prove that ȳ remains an optimal
solution for (D ,ℓ) as the value for (D) is given by b⊤ȳ and the value for (D

,ℓ), or equivalently (P ,ℓ), is then given by We leave it as
an exercise to show that for > 0 small enough, the constraints determining x
still determine a feasible solution for (P ,ℓ) such that the index sets of
inequalities satisfied by equality and those satisfied strictly are the same for x
and the new feasible solution of (P ,ℓ). It follows by complementary

slackness (Theorem 4.6) that ȳ is an optimal solution for (D ,ℓ) as
required. □

We may also want to consider larger perturbations. What if we wanted to
analyze what would happen to our profits as the availability of one or many
of our resources were being continuously increased? We could again use the
techniques of linear optimization and duality theory to prove that the rate of
increase in our profits will be monotone nonincreasing per unit increase in
the availability of resources. For example, if our profit goes up by $10 when
bℓ is increased from 500 to 501, our profit will go up by no more than $10
when bℓ is increased by one provided bℓ ≥ 500. This allows us to prove a
version of the economic principle of law of diminishing marginal returns in
our setting.

In addition to such strong connections to mathematical economics, linear
programming also has close historical ties to economics. During the early
1900s, in the area of mathematical economics, Leontief (1905–1999) and
others were working on various problems that had connections to linear
optimization. One of the most notable models is the input–output systems.
Suppose there are n major sectors of a national economy (e.g., construction,
labor, energy, timber and wood, paper, banking, iron and steel, food, real
estate, etc.). Let aij denote the amount of inputs from sector i required to
produce one unit of the product of sector j (everything is in same units,
dollars). Let A ∈ n×n denote the matrix of these coefficients. (A is called the
input–output matrix.) Now given b ∈ n, where bi represents the outside
demands for the output of sector i, we solve the linear system of equations Ax
+ b = x. If (A − I) is nonsingular, we get a unique solution x determining the
output of each sector. Indeed, to have viable system, we need every xj to be
nonnegative. Otherwise, the economy requires some imports and/or some
kind of outside intervention to function properly. Leontief proposed this
model in the 1930s. Then in 1973 it won him the Nobel Prize in Economics.

Kantorovich [1912–1986] won the Nobel Prize in Economics in 1975.
Koopmans [1910–1985] who had worked on the transportation problem (a
generalization of the maximum weight bipartite matching problem) in the
1940s, as well as on input–output analysis (similar to Leontief ’s interests) for
production systems, shared the Nobel Prize in Economics in 1975 with

Kantorovich. According to Dantzig, the transportation problem was
formulated (and a solution method proposed) by Hitchcock in 1941. Later,
the problem was also referred to as the Hitchcock–Koopmans transportation
problem.

The transportation problem together with earlier work on electrical
networks (by mathematicians, engineers, and physicists) laid some of the
ground work for what was to become network flows and network design.
Next we will see another beautiful application of duality theory in the area of
network flows and network/graph connectivity.

5.3 The maximum-flow–minimum-cut theorem
Imagine the following situation: you and your friend are in far away parts of
the world, and would like to conduct online video chats. Both of you own a
computer, and the two hosts are connected by a common network. Video
chats, in particular if they are conducted in high definition (HD) resolution,
require a substantial amount of end-to-end network bandwidth (some
manufacturers suggest as much as 1500 Mb/s). In this section, we will look at
the following question: given two computers and a connecting network, how
many bits per second can we simultaneously transmit from one to the other?

Let us model the network connecting the two computers as a directed
graph = that has vertices V and arcs which are ordered pairs of
vertices. Recall that for an arc uv, u is the tail of the arc and v is the head of
the arc. An arc is represented by an arrow directed from its tail to its head.
The two computers correspond to specific vertices s and t in this graph, and
every other vertex corresponds to a router or switch in the network. An arc qr
represents a physical link between the two network entities corresponding to
q and r, and it comes with a capacity cqr ≥ 0 that specifies the maximum
number of bits per second that the link may carry. The figure above shows a
very simple example.

Our goal is to write an LP that computes the maximum transmission rate
between s and t in the given network. In our model, we assume that data
transmission is lossless; i.e. a data bit that is injected at vertex s vanishes only
at vertex t. This yields the following flow balance condition in our network:
consider a vertex q ∉ {s, t}, and suppose that there are n arcs v1q, . . . , vnq
(coming into q) and m arcs qw1, . . . , qwm (going out of q). Any bit that
travels on one of the n arcs with head q must subsequently traverse one of the
m arcs with tail q.

We can express this as

(5.7)

where xa denotes the number of bits on arc a ∈ and δ+(q) and δ−(q)
denote the set of arcs with tail q and head q, respectively. A vector x that

satisfies (5.7) for all q ∈ V \ {s, t} as well as ≤ x ≤ c is called an s, t flow,
and we let fx(s) be its value. Our goal is to find an st-flow of maximum value,
in other words we wish to solve the LP

(5.8)

A flow x is said to be integer if x is integer.

Example 21 The first number next to each arc a is the flow xa, the second is
the capacity ca. Note, fx(u) = xuw + xuv − xsu − xzu = 1 + 1 − (2 + 0) = 0.
Similarly, fx(v) = fx(w) = fx(z) = 0. As, ≤ x ≤ c, x is a flow. Moreover, since
fx(s) = xsu + xsw = 2 + 3, the value of x is 5.

Consider U = {s, u, w}. Then δ+(U) = {uv, wz} is an st-cut of capacity c(δ+

(U)) = cuv + cwz = 1 + 5. Thus, 6 is an upper bound on the possible value of an
st-flow. However, we can get a better upper bound by picking the st-cut δ+

({s, u}) as c(δ+({s, u})) = csw + cuv + cuw = 3 + 1 + 1 = 5. As 5 is the flow
value of the st-flow x, it is a maximum st-flow and δ+({s, u}) is a minimum
capacity st-cut.

We have the following surprising result:

THEOREM 5.6 Consider an st-flow problem with integer capacities c ≥ .
Then the value of a maximum st-flow is equal to the value of a maximum
integer st-flow. Equivalently, among all optimal solutions to (5.8) there exists
an optimal solution that is integer.

We postpone the proof of this result. Consider an st-flow problem in a
digraph = with capacities c. Let U ⊆ V where s ∈ U and t ∉ U.
We define δ+(U) to be an st-cut of the directed graph .3 δ+(U) is the set of
arcs with tail in U and head not in U. One of the computers in the motivating
example corresponds to vertex s ∈ U and the other to vertex t ∉ U. Thus, all
messages going from s to t have to use one of the arcs in δ+(U). In particular,
the total capacity c (δ+(U)) ≔ ∑ (ce : e ∈ δ+(U)) is an upper bound on the
value of the st-flow. Surprisingly, this upper bound is tight, namely:

THEOREM 5.7 (Maximum-flow–minimum-cut). Consider an st-flow
problem on a digraph with capacities c ≥ . Then the maximum
value of an st-flow is equal to the minimum capacity of an st-cut.

To prove Theorems 5.6 and 5.7, we will develop general tools that will
allow us to prove that some LPs admit optimal solutions that are integer.

5.3.1 Totally unimodular matrices
In the following, we say that a matrix B is a submatrix of A if it is obtained by
deleting some of A’s rows and columns. A matrix A is totally unimodular
(TU) if all of its square submatrices B have determinant in {0, +1, −1}. Note,
that in particular it implies that all entries of a TU matrix must be 0, 1, or −1.

Let us first describe classes of TU matrices. Given a digraph , the
vertex-arc incidence matrix of is the matrix A where the columns
correspond to arcs, the rows correspond to vertices, and

PROPOSITION 5.8 Let A be the vertex-arc incidence matrix of a digraph.
Then A is TU.

Proof It suffices to show that det(B) = ±1 for all r × r nonsingular
submatrices of A. We will do this by induction on r. Clearly, the claim is true
for r = 1 as every entry of A is either 0, or ±1. Therefore, consider some
nonsingular r × r submatrix B of A with r ≥ 2, and assume that all nonsingular
r′ × r′ submatrices B of A with r′ < r have determinant ±1. Note that B cannot
have a 0 column as otherwise det(B) = 0.

Let us first assume that B has a column with a single nonzero entry. We
may assume that column j has a single nonzero entry in row i. Then we can
use Laplace’s formula and expand the determinant of B along column j

det(B) = (−1)i+jBij det(Bij),

where Bij is the submatrix of B obtained by removing row i and column j
from B. Bij is a nonsingular matrix of rank r−1 and, using induction, has
determinant ±1. It now easily follows that the determinant of B is ±1 as well.
Thus, every column of B has exactly two nonzero entries. However, then B is
singular as the sum of all rows of B is the zero vector. □

We leave the proof of the next remark as an exercise.

Remark 5.9 Let A be a TU matrix. Then the transpose A⊤ of A is TU. The
matrix [A|I] obtained from A by augmenting with the identity matrix is TU.
The matrix [A|] obtained from A by augmenting with the matrix is TU.
Moreover, any submatrix of A is TU.

THEOREM 5.10 Suppose M is a TU matrix. For each of the following LPs, if
the LP has an optimal solution, then it has an optimal solution that is integer.

(1) max{c⊤x : Mx = b, x ≥ }, assuming b is integer,

(2) max{d⊤x : Mx = , ≤ x ≤ c}, assuming c is integer,
(3) min{c⊤ℓ : M⊤y + ℓ ≥ d, ℓ ≥ }, assuming d is integer.

In fact, it will follow from the proof of (1) that every basic optimal solution is
integer. Thus, if the Simplex algorithm terminates with an optimal solution, it
will terminate with an integer optimal solution. Results (2) and (3) will be
needed for the proofs of Theorems 5.6 and 5.7.

Proof of Theorem 5.10 Consider (1) first. We may assume that the rows of
M are linearly independent (otherwise remove dependent rows). The problem
is in SEF (standard equality form). Since there exists an optimal solution, it
follows from Theorem 2.11 that there exists an optimal basic solution x for
some basis B of M. Thus, xN = and xB is the unique solution to MBxB = b. It
follows from Cramer’s rule from linear algebra that for all j ∈ B

where is the matrix obtained from MB by replacing the jth column by the

vector b. Since b and M are integer matrices, so is Hence, is
integer. Furthermore, since M is TU, det(MB) ∈ {−1, 1}. It follows that xj is
integer as required.

To prove (2) and (3), express the problem in SEF. Use Remark 5.9 to show
that the resulting left-hand-side is TU. Then apply the result in (1). We leave
the details as an exercise. □

5.3.2 Applications to st-flows
Consider an instance of the st-flow problem with digraph and
capacities c ≥ . Let A be the vertex-arc incidence matrix of and let M be
the matrix obtained from A by removing rows s and t. Let d be the vector
where de = 1 if e ∈ δ+(s), de = −1 if e ∈ δ−(s) and de = 0 otherwise. Then the
LP (5.8) can be rewritten as follows:

(5.9)

By Proposition 5.8 and Remark 5.9, M is a TU matrix. Thus, Theorem
5.10(2) implies immediately Theorem 5.6. In the remainder of this chapter,
we will prove the maximum-flow–minimum-cut theorem (Theorem 5.7).

The dual of (5.9) has a dual variable yv for every row v of M, i.e. v ∈ V \
{s, t} and a dual variable ℓe for every row e of I, i.e. e ∈ . Following Table
4.1, the dual is given by

(5.10)

Note that (5.10) has one constraint for every arc e. We wish to rewrite that LP
but before we proceed, let us first simplify our life, and assume that vertex s
has no in-arcs, and that t has no out-arcs. This assumption is easily seen to be
benign: add new vertices s′ and t′, and infinite capacity arcs s′ s and tt′ to .
Note that the old graph has an st-flow of value γ if and only if the new graph
has an s′ t′ -flow of the same value. Thus, we need to distinguish between
four types of arcs only, namely: E1, the set of arcs with tail and head distinct
from s, t; E2, the set of arcs with tail s but head distinct from t; E3, the set of
arcs with tail distinct from s but head t; E4, consists of arc st if it exists or the
empty set otherwise.

Hence, (5.10) can be written as

(5.11)

We can unify constraints corresponding to E1, E2, E3, E4 by introducing
constants ys = −1, yt = 0, and by adding ys = −1 to both sides of constraints
E2, adding −yt = 0 to both sides of constraints E3, and adding ys − yt = −1 to
both sides of constraint E4. We then obtain

(5.12)

We are now ready for the proof of the maximum-flow–minimum-cut
theorem.

Proof of Theorem 5.7 Note that x = is a feasible solution to (5.8), and that
ℓ = and yu = 0 for all u ≠ s is a feasible solution to (5.12). If an LP and its
dual both have feasible solutions, then they both have optimal solutions (see
Corollary 4.2). It follows that (5.12) has an optimal solution (note that in
addition to the duality theory we used the above arguments which show
equivalence of various LP formulations). By Proposition 5.8 and Remark 5.9,
M is a TU matrix. Theorem 5.10(3) implies there exists an optimal solution ℓ,
ȳ to (5.10) (respectively (5.12)) that is integer.

Let W = {u ∈ V : ȳu ≤ −1}. Then s ∈ W but t ∉ W. It follows that δ+(W) is
an st-cut of the digraph . Since c, ℓ ≥

∑(ce ℓe : e ∉ δ+(W)) ≥ 0. (5.13)

Since ȳ, ℓ are feasible for (5.12), for every arc uv where u ∈ W and v ∉ W we
have ℓuv ≥ ȳv −ȳu. By definition of W and since ȳ is integer, ȳv ≥ 0 and ȳu ≤
−1. Thus, ℓuv ≥ 1. It follows that

∑(ce ℓe : e ∈ δ+(W)) ≥ c(δ+(W)). (5.14)

Combining (5.13) and (5.14) we obtain that the value of ȳ, ℓ is at least c(δ+

(W)).
Consider y′, ℓ′ where if u ∈ W and otherwise and where

 if e ∈ δ+(W) and otherwise. Then it can be readily checked
that y′, ℓ′ is a feasible solution to (5.12) of value c(δ+(W)). Since ȳ, ℓ is an
optimal solution of value at least c(δ+(W)), it follows that the optimal value to
(5.12) is exactly c(δ+(W)). It follows from strong duality (Theorem 4.3) that
the optimal value of (5.8) (i.e. the maximum st-flow value) is equal to c(δ+

(W)).

Exercises

1 Consider the IP (5.1) and the dual of its LP relaxation (5.2). Construct a
simple instance of the set-cover problem for which the optimal values to the
aforementioned IP and LP are distinct.

2 Consider the LP problem max{c⊤x : Ax ≤ b, x ≥ 0}. Suppose it has an
optimal solution x∗.
(a) Define b(θ) ≔ b + θe1 and let (Pθ) be the LP problem obtained from the

above by replacing b by b(θ). Prove that for all θ ≥ 0, (Pθ) has an
extreme point that is optimal.

(b) Let z∗(θ) denote the optimal value of (Pθ). Prove that z∗ : + → is a
piecewise linear function of θ.

(c) Prove that the following set is convex:

3 We discussed the shortest paths problem as well as the maximum-flow
problem. In this exercise, we will try to formulate the shortest paths problem
using a network flow idea. Given s and t, consider formulating the problem of
finding a shortest path from s to t as the problem of finding one unit flow
from s to t of minimum cost, where the cost of sending one unit of flow along
an arc is the length of that arc. Note that for every vertex except s and t in the
graph, we must have flow conservation (if there is flow coming into the
vertex, it must leave the vertex). For s, one unit of flow must leave it, and one
unit of flow must arrive at t. Using the variables

and the above reasoning, formulate the shortest path problem as an IP. Then
consider the LP relaxation of your IP, write down the dual and interpret the
strong duality theorem for this pair of primal–dual LP problems.

4 (Advanced) Consider a digraph with nonnegative integer arc
capacities c and a pair of distinct vertices s and t. We propose an alternate
formulation for the stflow problem. Assign one variable xP for every directed
st-path, and consider

(P)

(a) Show that the optimum value to (P) is the value of the maximum st-
flow.

(b) Write the dual (D) of (P) with variables y.
(c) Explain what the maximum-flow–minimum-cut Theorem 5.7 says for

the pair (P) and (D).
(d) Write the CS (complementary slackness) conditions for the x variables.
(e) Write the CS conditions for the y variables.
(f) Find an intuitive explanation as to why the CS condition for the y

variables must hold. HINT: What can you say about the capacity usage
of arcs in a minimum cut?

(g) Find an intuitive explanation as to why the CS condition for the x
variables must hold. HINT: What can you say about how the flow along
each directed st-path is routed.

5 Sophie, a student at a private university decides that she needs to save
money on food to pay her tuition. Yet she does not want to compromise her
health by not obtaining the recommended daily allowance of various
nutrients. Let 1, . . ., n correspond to different food options available at the
cafeteria, and let 1, . . . , m be essential nutrients. Sophie collects the
following information: for j = 1, . . . , n, cj is the cost of a single serving of
food j; for i = 1, . . . , m, bi is the daily recommended allowance of nutrient i,
and for j = 1, . . . , n and i = 1, . . . , m, aij is the number of units of nutrient i a
single serving of food j contains.
(a) Help Sophie formulate a linear program (P) that will minimize her daily

food expenses while guaranteeing that she gets the recommended doses
of essential nutrients.

(b) Write the dual (D) of (P).
(c) Write the complementary slackness conditions.
(d) Give an economic interpretation of the dual variables and of the dual.
(e) Give an economic interpretation of the complementary slackness

conditions.

1 We will need to assume that we are only concerned with a finite number of locations in
the gallery.

2 Where m is the number of elements in the groundset U.
3 This differs from the definition of st-cuts for graphs as we are not considering arcs in δ

−(U).

6

Solving integer programs

In Chapter 2, we have seen how to solve LPs using the simplex algorithm, an
algorithm that is still widely used in practice. In Chapter 3, we discussed
efficient algorithms to solve the special class of IPs describing the shortest
path problem and the minimum cost perfect matching problem in bipartite
graphs. In both these examples, it is sufficient to solve the LP relaxation of
the problem.

Integer programming is widely believed to be a difficult problem (see
Appendix A). Nonetheless, we will present algorithms that are guaranteed to
solve IPs in finite time. The drawback of these algorithms is that the running
time may be exponential in the worst case. However, they can be quite fast
for many instances, and are capable of solving many large-scale, real-life
problems.

These algorithms follow two general strategies. The first attempts to
reduce IPs to LPs – this is known as the cutting plane approach and will be
described in Section 6.2. The other strategy is a divide and conquer approach
and is known as branch and bound and will be discussed in Section 6.3. In
practice, both strategies are combined under the heading of branch and cut.
This remains the preferred approach for all general purpose commercial
codes.

In this chapter, in the interest of simplicity we will restrict our attention to
pure IPs where all the variables are required to be integer. The theory
developed here extends to mixed IPs where only some of the variables are
required to be integer, but the material is beyond the scope of this book.

6.1 Integer programs versus linear programs
In this section, we show that in principle the problem of solving an IP can be
reduced to the problem of solving an LP. This reduction is in general very
time consuming and thus does not directly lead to an efficient algorithm to
solve IPs. It will however provide a framework for understanding the idea of
cutting planes.

Consider a (possibly infinite) set S of points in n. The convex hull of S,
denoted conv(S), is defined as the smallest convex set that contains S. In
particular, S = conv(S) if and only if S is a convex set. We illustrate this
concept in a couple of examples.

Example 22 Consider the case where S contains the following three points in
2 :

Then the convex hull of S is given by the triangle with vertices x(1), x(2), x(3)

as indicated in Figure 6.1. Note, that this triangle is convex and contains S.
Moreover, any convex set that contains S must contain all the points in this
triangle.

Figure 6.1 Illustration of Example 22.

Example 23 Consider the following polyhedron:

The polyhedron P is represented in Figure 6.2. Each of the constraints (1),
(2), (3) corresponds to a halfspace as indicated in the figure. Let us define S
to be the set of all integer points in P. Note, that in this case S is an infinite
set of points. Then the convex hull of S is described by another polyhedron

Figure 6.2 Illustration of Example 23.

The polyhedron Q is represented in Figure 6.2. Each of the constraints (a),
(b), (c) corresponds to a halfspace as indicated in the figure.

In Example 23, we saw that the convex hull of the set of all integer points
in a polyhedron is a polyhedron. This is no accident; indeed, we have the
following fundamental theorem of integer programming due to Meyer [48]
that relates feasible solutions of IPs to feasible solutions of LPs:

THEOREM 6.1 Consider the following polyhedron P = {x ∈ n : Ax ≤ b}
where all entries of A and b are rational numbers. Let S be the set of all
integer points in P. Then the convex hull of S is a polyhedron Q described by
a matrix and a vector where all entries are rational.

We omit the proof of this result in this book (e.g., see [14]). The condition
that all entries of A and b be rational numbers cannot be excluded from the
hypothesis.

Consider now an IP of the following form:

(6.1)

Let us assume that all entries in the matrix A and the vector b are rational.
This is a natural assumption since numbers stored on a computer can only be
recorded with finite precision and hence are rational. Let S denote the set of
all integer points satisfying the constraints Ax ≤ b; i.e. S is the set of feasible
solutions to the IP (6.1). It follows from Theorem 6.1 that the convex hull of
S is a polyhedron; i.e. that conv(S) = {x : A′ x ≤ b′} for some matrix A′ and
vector b′ where all entries of A′ and b′ are rational.

Let us define the following LP:

(6.2)

THEOREM 6.2 The following hold for the IP (6.1) and the LP (6.2):

1. (6.1) is infeasible if and only if (6.2) is infeasible,
2. (6.1) is unbounded if and only if (6.2) is unbounded,
3. every optimal solution to (6.1) is an optimal solution to (6.2),
4. every optimal solution to (6.2) that is an extreme point is an optimal

solution to (6.1).

We omit the proof of these results in this book.

Example 24 We illustrate the previous theorem. Suppose that (6.1) is of the
form

(IP)

We describe the feasible region of (IP) in Figure 6.3. Each of the constraints
(1), (2), (3), (4) corresponds to a halfspace as indicated in the figure. Thus,
the set of all feasible solutions to (IP) is given by

Figure 6.3 Illustration of Example 24.

It follows that (6.2) is of the form

(P)

Each of the constraints (a), (b), (c) corresponds to a halfspace as indicated in
the previous figure. Since the objective function of (IP) is z = x1 + x2, the set
of all optimal solutions to (IP) is given by (3, 1)⊤, (2, 2)⊤, and (1, 3)⊤. It can
be readily checked that each of these points is also an optimal solution to (P)
as was predicted by Theorem 6.2(c). Note, however, that every point in the
line segment between the points (1, 3)⊤ and (3, 1)⊤ is an optimal solution to
(P). In particular, it is not true that every optimal solution to (P) is an optimal
solution to (IP). As predicted by Theorem 6.2(d), the extreme points (1, 3)⊤,
(3, 1)⊤ are optimal solutions to (IP).

Theorem 6.2 tells us that in a theoretical sense integer programming
reduces to linear programming: it suffices to compute an optimal solution that
is an extreme point of (6.2). The catch here is that the system A′ x ≤ b′ in the
LP (6.2) is in general much larger (exponentially larger) than the system Ax ≤
b in the IP (6.1), hence it cannot be described completely in practice. What
we do instead is to try to approximate the description of the polyhedron {x : A
′ x ≤ b′} using a limited number of constraints. One way of proceeding is
described in the next section.

Exercises

1 Consider the IP

(a) What is the minimum Euclidean distance, in 2, between the optimal
solution of the IP and of its LP relaxation? Explain.

(b) Give an example of an IP for which the minimum Euclidean distance
between its optimal solution and that of its LP relaxation is at least 100.

(c) Give an example of an IP which has no feasible integer solutions, but its

LP relaxation has a feasible set in 2 of area at least 100.
2 Consider the IP problem

max {x1 + 6x2 : x1 + 9x2 ≤ 10, 2x1 ≤ 19, x ≥ 0 and integer}.

(a) Graph the feasible region of the LP relaxation of IP; indicate the feasible
solutions of the IP on the graph. Then find the optimal solutions of the
LP relaxation and the IP.

(b) Focus on the optimal solution of the LP relaxation. What are the closest
(in the sense of Euclidean distance) feasible solutions of the IP? Are any
of these closest feasible IP solutions optimal for the IP? Now replace the
objective function with max x1 +8.5x2. Answer the same questions
again. What related conclusions can you draw from these examples?

(c) Create a family of IP problems with two nonnegative integer variables
parameterized by an integer k ≥ 10 (in the above example k = 10)
generalizing the above example and its highlighted features. Then
answer the parts (a) and (b) for all values of k.

3 Let S ⊆ n, show there exists a unique set R that is inclusion-wise
minimal and satisfies the property that S ⊆ R and that R is convex. In other
words, the term “convex hull” is well-defined.

6.2 Cutting planes
Let us motivate our approach with an example.

Example 25 Suppose we wish to solve the following IP:

(IP)

As we do not know how to deal with the integrality conditions, we shall
simply ignore them. Thus, we solve the LP relaxation (LP1) obtained by
removing integrality conditions from (IP). We obtain the optimal solution x(1)

= (8/3, 4/3)⊤. Unfortunately, x(1) is not integral, and thus it is not a feasible
solution to (IP).

We wish to find a valid inequality (⋆) which satisfies the following
properties:

(I) (⋆) is valid for (IP); i.e. every feasible solution of (IP) satisfies (⋆),
(II) x(1) does not satisfy (⋆).

An inequality that satisfies both (I) and (II) is called a cutting plane for x(1).
We will discuss in the next section how to find such a cutting plane but for
the time being let us ignore that problem and suppose that we are simply
given such an inequality

x1 + 3x2 ≤ 6. (⋆)

We add (⋆) to the system (LP1) to obtain a new LP (LP2). Because (⋆)
satisfies (I), every feasible solution to (IP) is a feasible solution to (LP2).
Moreover, (II) implies that x(1) is not feasible for (LP2), so in particular the
optimal solution to (LP2) will be distinct from x(1). In our case, (LP2) has an
optimal solution x(2) = (3, 1)⊤. Note that x(2) is integral. Since it maximizes
the objective function over all feasible solutions of (LP2), it also maximizes
the objective function over all feasible solutions of (IP). Hence, x(2) is optimal
for (IP).

We describe the feasible region of (LP1) in Figure 6.4 (i). Each of the
constraints (1), (2) corresponds to a halfspace as indicated in the figure. We
also indicate the optimal solution x(1) = (8/3, 4/3)⊤. Since x(1) was not integral,
we added a cutting plane (⋆): x1 + 3x2 ≤ 6 and obtained (LP2). We describe
the feasible region of (LP2) in Figure 6.4 (ii). Constraint (⋆) corresponds to a
halfspace as indicated in the figure. We also indicate the optimal solution x(2)

= (3, 1)⊤ of (LP2).

Figure 6.4 Illustration of Example 25.

Let us formalize the procedure. Consider the following pair of optimization
problems:

max{c⊤x : x ∈ S1}, (P1)

max{c⊤x : x ∈ S2}. (P2)

If S2 ⊇ S1, then we say that (P2) is a relaxation of (P1). For instance, (P1)
may be an IP and (P2) its LP relaxation.

Remark 6.3 Suppose (P2) is a relaxation of (P1). Then:

(a) if (P2) is infeasible, (P1) is infeasible, and
(b) if x is optimal for (P2) and x is feasible for (P1), x is optimal for (P1).
(c) if x is an optimal solution for (P2), c⊤x is an upper bound for (P1).

Proof (a) If (P2) is infeasible, i.e. S2 = , then S1 = , i.e. (P1) is infeasible.
(b) Suppose x is an optimal solution to (P2) that is also a feasible solution to
(P1). Then x maximizes c⊤x among all x ∈ S2, so in particular it maximizes
c⊤x among all x ∈ S1. Hence, x is an optimal solution to (P1). (c) Since S2 ⊇
S1, the optimal value to (P2) is at least as large as the optimal value of

(P1). □

Algorithm 6.8 shows the cutting plane method for solving the IP

(IP)

Algorithm 6.8 Cutting plane algorithm

1: loop
2: Let (LP) denote max{c⊤x : Ax ≤ b}.
3: if (LP) is infeasible then
4: stop (IP) is infeasible.
5: end if
6: Let x be the optimal solution to (LP).
7: if x is integral then
8: stop x is an optimal solution to (IP).
9: end if
10: Find a cutting plane a⊤x ≤ β for x
11: Add constraint a⊤x ≤ β to the system Ax ≤ b
12: end loop

It follows from Remark 6.3 that the algorithm gives correct answers
whenever it terminates. If cutting planes are chosen carefully, the algorithm
can also be shown to terminate (e.g., see Chapter 9 of [5]). We did not
discuss the possibility of (LP) being unbounded. In this case, it is possible for
(IP) to be unbounded or it being infeasible, but we do not know which case
occurs. In practice, we are often in situations where we know that the (IP) is
not unbounded.

6.2.1 Cutting planes and the simplex algorithm

We have yet to show how to find cutting planes. Let us revisit Example 25
from the previous section. After introducing slack variable x3 for constraint
(1) and x4 for constraint (2), we can rewrite (IP) as follows:

(IP′)

Observe, that since x3 = 8 − x1 − 4x2 and x4 = 4 − x1 − x2 and since x1, x2 are
integer in (IP) we must have x3, x4 integer as well. Thus, (IP′) is equivalent to
(IP) in Example 25. Let (LP1′) denote the LP relaxation of (IP′). Using the
simplex algorithm, we find the optimal basis B = {1, 2} and rewrite (LP1′) in
canonical form for the optimal basis B = {1, 2} to obtain

The corresponding basic solution is (8/3, 4/3, 0, 0)⊤. It implies that (8/3, 4/3)⊤
is the optimal solution for (LP1) in Example 25. We will use the previous LP
to find a cutting plane. Consider any constraint of the previous LP where the
right-hand side is fractional. In this case, we have a choice and select the first
constraint, namely

Every feasible solution to (LP1′) satisfies the above constraint, and hence
clearly also

Observe that every variable is nonnegative. Thus, if we replace any of the
coefficient for the variables in the previous equation by a smaller value, the
resulting inequality will still be valid for (LP1′). In particular

is valid for (LP1′), where ⌊α⌋ denotes the largest integer smaller or equal to
α. Let x be any feasible solution to (IP′). Then x is a feasible solution to
(LP1′) and However, as x is integer, is integer,
it follows that x satisfies

(6.3)

Moreover, (8/3, 4/3, 0, 0)⊤ does not satisfy (6.3). Hence, (6.3) is a cutting
plane. Recall, that (IP′) implies that x3 = 8 − x1 − 4x2 and x4 = 4 − x1 − x2.
Substituting this in (6.3) yields the constraint x1 + 3x2 ≤ 6 which was the
cutting plane (⋆) given in Example 25.

To proceed further, we add a slack variable x5 to the constraint (6.3) and
modify the LP relaxation (LP1′) of (IP′) by adding the resulting constraint.
Note that by definition, x5 = 2 − x1 + x3 − x4 and hence x5 will be integer,
provided x1, x3, and x4 are. We thus obtain

(LP2′)

We solve (LP2′) using the two-phase simplex algorithm (we need to use
phase I, since we do not have a feasible basis), and rewrite (LP2′) in
canonical form for the optimal basis B = {1, 2, 3} to obtain

The basic optimal solution is (3, 1, 1, 0, 0)⊤. Since it is integer, it follows (see
Remark 6.3) that it is an optimal solution to (IP′). Note that it corresponds to
the optimal solution (3, 1)⊤ of (IP) in Example 25.

Let us generalize this argument. Consider an IP

(IP)

We solve the LP relaxation (LP) of (IP) using the simplex procedure. If (LP)
has no solution, then neither does (IP). Suppose we obtain an optimal basis B
of (LP). We rewrite (LP) in canonical form for B to obtain an LP of the form

The corresponding basic solution x is given by and If b is
integer, then so is x, and x is an optimal solution to (IP) (see Remark 6.3).

Thus, we may assume that is fractional for some index i. Let ℓ denote the
ith basic variable. Constraint i is of the form

As this constraint is valid for (LP) with equality, it is also valid with ≤.
Observe that every variable is nonnegative. Hence, the following inequality
will be valid for (LP)

For x feasible for (IP), the LHS of the previous equation is an integer. Hence,
the following constraint is valid for (IP):

(⋆)

Remark 6.4 Constraint (⋆) is a cutting plane for the basic solution x.

Proof It suffices to show that x does not satisfy (⋆). Since for all j ∈
N, the left-hand side of (⋆) is is fractional, Then the
left-hand side is larger than the right-hand side for x. □

Exercises

1 Suppose that we solve an LP relaxation of a pure IP and that for the
optimal basis B = {1, 2, 3} of (P), we have the following canonical form:

Indicate which constraints lead to cutting planes and for each such constraints
generate the corresponding cutting plane.

2 Consider the following LP:

max{c⊤x : Ax = b, x ≥ }. (P)

Let (D) be the dual of (P). Suppose you found an optimal solution x of (P)
and an optimal solution ȳ of (D). You are being told however that you forgot
to include one important constraint

(⋆)

(a) Construct a new LP (P′) by adding a slack variable to (⋆) and by adding
the resulting constraint to (P).

(b) Show that if x satisfies (⋆) then x is an optimal solution to (P′).
(c) Compute the dual (D) of (P) and the dual (D′) of (P′).
(d) Show how to compute a feasible solution y′ of (D′) from your solution ȳ

of (D). Note, this works whether or not x satisfies (⋆).
3 Consider the following IP:

(IP)

Denote by (P1) the LP relaxation of (IP):
(a) Solve (P1) with the simplex (this is trivial). Denote by x(1) the optimal

basic solution.
(b) Find a cutting plane (⋆) for x(1).
Denote by (P2) the LP in standard equality form obtained from (P1) by
adding constraint (⋆) and by adding a slack variable x4:
(c) Solve (P2) with the simplex, starting with the basis B = {3, 4}. Denote

by x(2) the optimal basic solution.
(d) Using (c), deduce an optimal solution to (IP).
4 Consider the following LP:

max{c⊤x : Ax = b, x ≥ }. (P)

Suppose that (P) is the LP relaxation of a pure IP, and suppose that (P) is
written in canonical form for the optimal basis B. Let x be the basic solution
corresponding to B. Let k ∈ N, then constraint k of Ax = b is of the form

where ℓ is the kth basic variable. Define

N∗ ≔ {j ∈ N : Akj is not an integer}

and suppose bk is not integer.
(a) Prove that

is a cutting plane for x.
(b) Prove that

is a cutting plane for x.
(c) Compare the cutting planes obtained in (a) and (b). Which one do you

think is a better cut? Explain why and prove your claims.
5 Let G = (V, E) be a graph with edge weights we for all e ∈ E. Recall that
(3.24) is the IP formulation of the minimum weight matching problem. Let S
⊆ V be a subset of the vertices of G where |S| is odd.
(a) Show (by combining constraints and using rounding) that the following

inequality is valid for the (IP), i.e. that all feasible solutions to the (IP)
satisfy this constraint

In other words, the sum of all variables corresponding to edges with both
ends in S is at most the number of vertices in S divided by two and
rounded down.

(b) Find an intuitive explanation as to why this inequality is valid.

6.3 Branch and bound
In this section, we introduce a solution method for IPs, called branch and
bound. It is a “divide and conquer” approach for solving IP problems. We
illustrate some of the main ideas using a production example.

Every year the University of Waterloo readies itself for the annual
homecoming festivities. The university expects hundreds of alumni and their
families to visit its campus for the occasion, and campus stores in particular

expect to be busier than usual. Two items promise to be in especially high
demand during these times: the university’s infamous pink tie, as well as the
(almost) equally popular pink bow tie. With only a few weeks to go until
homecoming, it is high time to replenish stocks for these two items. The
university manufactures its ties from its own special cloth of which it
currently has 45ft2 in stock. For ten pink bow ties, it needs 9ft2 of cloth, and
producing ten pink ties requires 11ft2 of the raw material. In addition to cloth,
the manufacturing process also requires labor which is particularly short
during the next few weeks: only a total of six work days are available.
Manufacturing of the ties is done in batches of ten. Producing ten pink bow
ties takes 1.5 days, and producing ten pink ties takes a day. The university
expects a profit of $6 for a pink bow tie, and a profit of $5 for a pink tie. How
much of each product should it produce?

As in Chapter 1, we can formulate this problem as an IP. We introduce
variables x and y where 10x and 10y is the number of bow ties and ties
produced. In the following IP, the first constraint imposes labor restriction
and the second imposes restriction due to limited material. The objective
function computes the profit.

(6.4)

How can we solve this IP? Let us use what we know: linear programming!
We drop the integrality constraints and consider the LP relaxation of (6.4).
Remark 6.3(b) states that if we solve the LP relaxation of an IP, and obtain a
solution, all of whose variables are integers, then it is also an optimal solution
of the original IP. Unfortunately, solving the LP relaxation of (6.4) yields the
fractional solution x = 2.8, y = 1.8 with value 258. Remark 6.3(c) implies 258
is upper bound on the value of any feasible solution to (6.4).

We will now use the fractional solution (2.8, 1.8)⊤ to partition the feasible
region of (6.4). In the following, we let Subproblem 1 denote the LP

relaxation of (6.4). We observe that every integer feasible solution for (6.4)
must have either x ≤ 2 or x ≥ 3, and that the current fractional solution does
not satisfy either one of these constraints. Thus, we now branch on variable x
and create two additional subproblems:

Subproblem 2 Subproblem 1 + Constraint x ≥ 3.
Subproblem 3 Subproblem 1 + Constraint x ≤ 2.

Clearly, in order to find an optimal solution to (6.4) it suffices to find the
best integer solution in both Subproblem 2 and Subproblem 3. None of the
two subproblems contains (2.8, 1.8)⊤ and this solution can therefore not re-
occur when solving the LP relaxation of either of these subproblems. We now
choose any one of the above two subproblems to process next. Arbitrarily, we
pick Subproblem 2. Solving the problem yields the optimal solution x = 3 and
y = 1.5 with value 255. This solution is still not integral (as y is fractional),
but because of Remark 6.3(c), 255 gives us a new, tighter upper bound on the
maximum value of any integral feasible solution for this subproblem.

The subproblem structure explored by the branch and bound algorithm is
depicted in Figure 6.5. Each of the subproblems generated so far is shown as
a box. These boxes are referred to as branch and bound nodes. The two
nodes for Subproblems 2 and 3 are connected to their parent node, and the
corresponding edges are labeled with the corresponding constraints that were
added to Subproblem 1. The entire figure is commonly known as the branch
and bound tree generated by the algorithm.

Figure 6.5 The branch and bound tree after two iterations.

The optimal solution for Subproblem 2 is still not integral as the value of y

is fractional. We branch on y, and generate two more subproblems:

Subproblem 4 Subproblem 2 + Constraint y ≤ 1.
Subproblem 5 Subproblem 2 + Constraint y ≥ 2.

Running the simplex algorithm on Subproblem 5, we quickly find that the
problem is infeasible. Hence, this subproblem has no fractional feasible
solution, and thus no integral one either. Solving Subproblem 4, we find the
solution and y = 1 of value 250. We generate two more subproblems
by branching on x:

Subproblem 6 Subproblem 4 + Constraint x ≤ 3.
Subproblem 7 Subproblem 4 + Constraint x ≥ 4.

Solving Subproblem 6 yields integral solution x = 3, y = 1 of value 230.
Solving Subproblem 7 gives integral solution x = 4, y = 0 of value 240, which
is the current best. Figure 6.6 shows the current status.

Figure 6.6 The branch and bound tree after three iterations.

So far, we have found a feasible integral solution of value 240 for

Subproblem 7. Thus, 240 is a lower bound for (6.4). We continue exploring
the tree at Subproblem 3. Solving the subproblem yields solution x = 2 and y
= 2.45 and value 242.73. Branching on y gives two more subproblems:

Subproblem 8 Subproblem 3 + Constraint y ≤ 2.
Subproblem 9 Subproblem 3 + Constraint y ≥ 3.

Solving Subproblem 8 gives integral solution x = 2, y = 2 of value 220; this
is inferior to our current lower bound of 240 and can thus be discarded.
Solving Subproblem 9 gives the fractional solution x = 4/3, and y = 3 of value
230. Since 230 is an upper bound for any integer solution to Subproblem 9,
but our current lower bound is 240, we cannot find a better solution within
this subproblem. We therefore might as well stop branching here.

Formally, whenever the optimal value of the current subproblem is at most
the value of the best integral solution that we have already found, then we
may stop branching at the current node. We say: we prune the branch of the
branch and bound tree at the current node.

We are done as no unexplored branches of the branch and bound tree
remain. The final tree is shown in Figure 6.7. The optimal solution to the
original IP (6.4) is therefore x = 4, y = 0 and achieves a value of 240.
Therefore, in order to optimize profit, the university is best advised to invest
all resources into the production of pink bow ties!

Figure 6.7 The final branch and bound tree.

We conclude this section with a brief discussion. The branch and bound
algorithm presented here can be viewed as a smart enumeration algorithm: it
uses linear programming to partition the space of feasible solutions. For
example, in the pink tie example discussed above, it is instructive to see that
any feasible integral solution occurs in one of the subproblems corresponding
to the leaves of the tree in Figure 6.7. The algorithm is smart as it uses the
optimal LP value of a subproblem to possibly prune it. Some times, such
pruning can save exploring a large number of potential solutions hidden in a
subproblem.

The algorithm as described is quite flexible in many ways, and in our
description we made many arbitrary choices. For example, if we solve a
subproblem, and the solution has more than one fractional variable, how do
we decide which variable to branch on? And once we have branched on a
variable, which of the generated problems do we solve next? The depth-first
search style exploration chosen in our example, where newly generated
subproblems are explored first, is popular as it leads to integral solutions
quickly. However, many other strategies have been analyzed.

Why do we not simply present the strategy that works best? Well, such a
strategy likely does not exist, as is it widely believed that no efficient

algorithm exists to solve all IPs (see Appendix A). In practice, however,
branch and bound is nearly always superior to simple enumeration of feasible
solutions, and is used in some form or the other in most commercial codes.

We conclude with one last comment regarding implementation. In this
section, we reduced the problem of finding an optimal production plan for a
tie production problem to that of solving a series of nine linear programming
problems. The reader may notice that these problems are extremely similar;
i.e. branching on a variable merely adds a single constraint to an LP for
which we know an optimal basic solution. Can we use such an optimal basic
solution for a parent problem to compute solutions for the generated
subproblems faster? The answer is yes! The so-called dual simplex algorithm
applies in situations where a single constraint is added to an LP, and where
the old optimal solution is rendered infeasible by this new constraint (see
Exercise 2 in Section 6.2). In many cases, the algorithm reoptimizes quickly
from the given primal-infeasible starting point.

Exercises

1 Suppose we use a branch and bound scheme to solve an IP that is a
maximization problem. The following figure describes the partial
enumeration tree. For each subproblem, we indicate the value of the objective
function as well as whether the solution is an integer solution or not. Indicate
in the figure which subproblems we still need to solve (if any). In particular,
can we already deduce the value of the optimal solution to the IP?

2 Use branch and bound to solve the following LP:

At each iteration select the active subproblem with the largest upper bound.
Branch on fractional variables, i.e. if xi = 1/3 create subproblem xi ≤ 0 and xi
≥ 1.

You do not need to use the simplex algorithm to find a solution to each of
the relaxations. We illustrate a simple technique on the relaxation of the
original problem. Consider the ratios

To maximize the objective function, we set x1 as large as possible; then x2 as
large as possible, etc. In this case, it yields, x1 = 1, x2 = 6/10 and x3 = x4 = 0.
Proceed in a similar way to solve each of the other relaxations.
3 Consider the IP

max{−xn+1 : 2x1 + 2x2 + · · · + 2xn + xn+1 = n, x ∈ {0, 1}n+1},

where n is an odd positive integer. Prove that the branch and bound algorithm
(without using cuts) will have to examine at least subproblems before it
can solve the main problem, in the worst case.

6.4 Traveling salesman problem and a separation
algorithm*

Consider a traveling salesman who needs to visit cities 1, 2, 3, . . ., n in some
order and end up at the city where he started. Cost of traveling from city i to
city j is given by cij. The goal is to find a tour of these n cities, visiting every
city exactly once, such that the total travel costs are minimized. This is a very
well-studied IP problem called the traveling salesman problem (TSP).

Let us start formulating the problem as an IP. Let the variable xij take the
value 1, if the chosen tour of the cities includes going directly from city i to
city j. Otherwise, xij will take the value zero. It is clear that every tour must
enter every city exactly once and every tour must leave every city exactly
once. Note that we only have the variables xij for distinct pairs i, j. Then we
can write the following objective function and the constraints:

(6.5)

This formulation may seem very familiar – this is because it is! We have seen
it as a formulation of the ‘assignment problem’ in Section 1.3.1. While this is

a correct formulation of the assignment problem, it is not a correct
formulation of TSP. Suppose n = 8 and consider the x vector which is zero in
every entry except
We can verify that x is a feasible solution of the above IP. However, x is not a
feasible solution of the TSP, since it does not represent a tour of the cities 1,
2, . . . , 8 (x represents union of two disjoint subtours, one for the cities 1, 2,
3, 4, 5 and another for 6, 7, 8 – see Figure 6.8).

Figure 6.8 TSP subtours.

This leads us to the observation that every tour must leave every nontrivial
subset of the cities 1, 2, . . . , n. Notice that we already have constraints for
subsets of size 1 and subsets of size (n − 1). Therefore, we add to the
formulation the following subtour elimination constraints:

∑(xij : i ∈ U, j ∉ U) ≥ 1,

where U is a subset of the cities {1, . . . , n} with at least 2 and at most (n − 2)
cities in it.

Now we can verify that with the addition of these subtour elimination
constraints, we have a correct IP formulation of TSP.

A more careful look at this new formulation reveals that the number of
constraints in this formulation is perhaps too large. The number of subtour
elimination constraints is the total number of subsets of {1, . . . , n} of size at
least two and at most (n − 2)

Since this number is an exponential function of the number of cities n, even
for moderate values of n it can become intractable to even write down every
constraint in the LP relaxation of this IP.

Wouldn’t it be great if we could solve this LP without writing every
constraint down? It turns out that in this case we can solve the LP by utilizing
a cutting plane scheme and our knowledge of maximum-flow–minimum-cut
problems and by avoiding having to consider every subtour elimination
constraint explicitly.

Suppose we are given x, which is a feasible solution of the assignment
problem (6.5). x may or may not satisfy some of the subtour elimination
constraints. Recall that a directed graph has vertices V and arcs

 that are ordered pairs of vertices. We set up a directed graph on the vertex
set {1, 2, . . . , n} based on x. For every pair i, j such that we include
an arc and an arc in our graph, each with capacity Let us call this
directed graph Suppose our x violates the subtour elimination constraint
for set U. Then pick a vertex u ∈ U and v ∉ U. Consider the maximum-flow
problem on where the capacities are given by the source is s ≔ u, and
the sink is t ≔ v. Since x violates the subtour elimination constraint for U, the
capacity of the cut determined by U is strictly less than 1. On the other hand,
if x satisfies all subtour elimination constraints, then the value of the
maximum flow from u to v would be at least 1 for every pair of vertices u and
v in

This discussion suggests an algorithm. The only obvious problem is that
we do not know ahead of time whether x satisfies all the subtour elimination
constraints, or, if it violates a subtour elimination constraint, we do not know
for which U. However, we can set up the above directed graph and try
every distinct pair u, v as our s and t. For each such pair, we solve the
underlying maximum-flow–minimum-cut problem. There are pairs, so we
solve O(n2) problems (in fact, if we are a bit more careful, we see that solving
2(n−1) problems suffices). If for every one of these problems the objective
value is at least 1, then we have proven that the given x satisfies all subtour

elimination constraints (in a cutting plane scheme, x would be an optimal
solution of the current LP relaxation since it satisfies all the subtour
elimination constraints; in this case, it is an optimal solution of the LP
relaxation given by all the subtour elimination constraints). The only
remaining option is that for one of the maximum-flow–minimum-cut
problems we solve we find that the objective value is strictly less than 1. In
this case, we find a corresponding minimum cut of capacity strictly less than
1, and this cut defines our set U for which x violates the corresponding
subtour elimination constraint

∑ (xij : i ∈ U, j ∉ U) ≥ 1.

We add this constraint to our current LP relaxation and find an optimal
solution yielding the next x to consider.

Given x, the above algorithm either verifies that x satisfies all the subtour
elimination constraints or delivers a subtour elimination constraint which is
violated by x. Such algorithms are called separation algorithms. (The
constraint delivered by the algorithm separates x from the polyhedron
defined by the subtour elimination constraints.)

There are more efficient ways of finding a minimum cut in a graph (rather
than solving very many maximum-flow problems). Also, there are techniques
for making this idea into a polynomial-time algorithm to solve the LP
relaxation of the above IP formulation of TSP. These are beyond the scope of
this introductory book.

Exercises

1 Consider the IP formulation (6.5). We claimed that it was an instance of
the bipartite assignment problem from the Introduction. However, since we
excluded variables xi,i in the formulation (6.5), this formulation does not
seem to be exactly the same as an instance of the assignment problem.
Suppose you have an algorithm to solve the assignment problem and you are
given an instance of the IP (6.5). How would you define ci,i so that using the
algorithm for the assignment problem you can solve the IP (6.5)?

2 Consider the traveling salesman problem with cities {1, 2, . . . , n} and

costs of travel cij. Write an IP formulation of TSP using only the variables

Your IP formulation should have O(n3) constraints.

3 Consider the IP formulation of the TSP using the subtour elimination
constraints. Instead of adding subtour elimination constraints, add new
variables u2, u3 , . . . , un and the constraints

nxij + ui − uj ≤ n − 1, ∀ distinct pairs i ≠ 1, j ≠ 1.

Further add the constraints that u2, u3 , . . . , un are all nonnegative. Prove that
this is also a correct formulation of TSP.

4 Consider the “global” maximum-flow–minimum-cut problem that we had
to solve to determine whether a given vector x satisfies all subtour
elimination constraints. Prove that this global maximum-flow–minimum-cut
problem can be solved by solving 2(n−1) maximum-flow problems on the
same graph G.

5 Given a graph G = (V, E), a Hamiltonian cycle is a tour of the vertices of G
which only uses the edges in E. Suppose we want to solve the problem of
determining whether a given graph G has a Hamiltonian cycle and if it does
to find one. Suppose that you have an algorithm to solve the TSP. How
would you use the algorithm for TSP to solve the Hamiltonian cycle problem
efficiently? (You are allowed to run the TSP algorithm only once, and only
with n ≤ |V|.) Prove all your claims.

6 Suppose we are given the data for a TSP with nonnegative travel costs cij =
cji also satisfying the triangle inequalities

cij + cjk ≥ cik, for every distinct triple i, j, k.

That is, the costs are nonnegative and the cost of going from city i to city k is
cheapest when we travel directly. Moreover, the cost of going from i to j is

the same as the cost of going from j to i. Such instances of TSP are called
metric-TSP (since cij are consistent with a metric). Given a metric-TSP
instance, construct an efficient algorithm to find a minimum cost tree T on the
vertices {1, 2, . . . , n} such that T contains all of {1, 2, . . . , n} (such a tree is
called a spanning tree, since it contains all the vertices in the underlying
graph). Try to use T with some additional ideas to make up a tour whose total
cost is guaranteed to be at most twice the cost of the optimal TSP tour. Prove
all your claims.

6.5 Further reading and notes
When we study pure IPs or mixed IPs, we usually assume that the data are
rational numbers (no irrational number is allowed in the data). This is a
reasonable assumption. Besides, allowing irrational numbers in data can
cause some difficulties, e.g., (IP) may have an optimal solution and the LP
relaxation may be unbounded (consider the problem max{x1 : x1 − = 0,
x1, x2 integer}). Or, we may need infinitely many cutting planes to reach a
solution of the IP (to construct an example for this, suitably modify the
previous example).

In practice, for hard IP problems, we use much more sophisticated rules for
branching, pruning, choosing the next subproblem to solve, etc. Moreover, as
we mentioned before, we use a hybrid approach, called branch and cut, which
uses cutting planes for the original IP as well as some of the subproblems. In
addition, in many hard cases, we adjust our pruning strategy so that instead of
guaranteeing an optimal solution to the IP, we lower our standards and strive
for generating feasible solutions to the IP that are provably within say 10% of
the optimum value (or 2% of the optimum value, etc.). For further
background in integer programming, see, for instance Wolsey [71].

The traveling salesman problem is one of the most well-known problems
in optimization. It has very wide-ranging applications, from scheduling to
hardware design to obviously transportation/distribution systems, just to
name a few. This problem has also been a prime example of a combinatorial
optimization problem for developing new theoretical, algorithmic, and
computational techniques over many decades. There are many books

dedicated to the subject (see [45, 15]). There are more efficient ways of
finding a “global” minimum cut in a graph (rather than solving very many
maximumflow problems). See, for instance, Karger [34] and the references
therein. Also, there are techniques for making this idea into a polynomial-
time algorithm to solve the LP relaxation of the above IP formulation of TSP
(see [30]). These are beyond the scope of this introductory book.

7

Nonlinear optimization

In this chapter, we will show that solving general NLP is likely to be
difficult, even when the problem has small size. One reason is that the
feasible region (the set of all feasible solutions) of an NLP is not always
convex. We therefore, turn our attention to the special case where the feasible
region is convex. We discuss optimality conditions and give a brief overview
of a primal–dual polynomial algorithm for linear programming based on
ideas from nonlinear optimization.

Key concepts covered in this chapter include: convex functions, level sets,
epigraphs, subgradients, Lagrangians, the Karush–Kuhn–Tucker theorem,
and primal–dual interior-point algorithms.

7.1 Some examples
Recall the definition of NLP, given in Section 1.6. Let us look at some
examples of NLP.

Example 26 Suppose n = 2 and m = 4 in (1.35) and that for x = (x1, x2)⊤ ∈ 2

we have

The feasible region is a subset of 2. It corresponds to the union of the two
shaded regions in Figure 7.1. For instance, g1(x) = − −x2+2 ≤ 0 or

equivalently x2 ≥ 2− . Thus, the solution to the first constraint of the NLP is
the set of all points above the curve indicated by g1 in the figure. As we are
trying to find among all points x = (x1, x2)⊤ in the feasible region the one that
minimizes f(x) = x2, the unique optimal solution will be the point a = (−2,
−2)⊤. Observe that the feasible region is not convex, indeed it is not even
“connected” (i.e. there does not exist a continuous curve contained in the
feasible region joining points a and b of the feasible region).

Figure 7.1 Feasible region for Example 26.

Example 27 Suppose n = 2 and m = 3 in (1.35) and that for x = (x1, x2)⊤ ∈ 2

we have

The feasible region is a subset of 2. It corresponds to the shaded region in
Figure 7.2. For instance, g2(x) = −x2 + ≤ 0 or equivalently x2 ≥ . Thus,
the solution to the second constraint of the NLP is the set of all points above
the curve indicated by g2 in the figure. For g1, we interchange the role of x1

and x2 in g2. We will prove that the feasible solution a = (1, 1)⊤ is an optimal
solution to the NLP. Observe that the feasible region is convex in this case.

Figure 7.2 Feasible region for Example 27.

Let us use the previous proposition to show that the point x = (1, 1)⊤ is an
optimal solution to the NLP given in Example 27. In this case, J(x) = {1, 2}

and the feasible region for the linear programming relaxation (7.3)
corresponds to the shaded region in Figure 7.12. In Example 29, we showed
that the subgradient of g1 at x is (−1, 2)⊤. Similarly, we can show that the
subgradient of g2 at x is (2, −1)⊤. In this example, we have c = (−1, −1)⊤, thus
Proposition 7.7 asks us to verify that

which is the case since

Observe that if in (1.35) every function f and gi is affine (i.e. a function of
the form a⊤x + β for a given vector a and a given constant β), then we have
f(x) = c⊤x + c0, and gi(x) = − bi, for every i ∈ {1, 2, . . ., m} and we see
that our nonlinear optimization problem (1.35) becomes a linear optimization
problem. Thus, NLPs generalize linear programs, but, as we will show in the
next section, they are much harder to solve than linear programs.

7.2 Some nonlinear programs are very hard

7.2.1 NLP versus 0,1 integer programming
Nonlinear optimization programs can be very hard in general. Starting with a
linear programming problem, even if we only allow very simple, and just
mildly nonlinear functions in our formulations, we can run into very difficult
optimization problems. For instance, suppose that for every j ∈ {1, . . ., n}
we have the constraints

Then the constraints define the same feasible region as the quadratic
equations: = xj, for every j ∈ {1, 2, . . ., n}. Therefore, the feasible region
of these constraints is exactly the 0,1 vectors in n. Now if we also add the
constraints Ax ≤ b, we deduce that every 0,1 integer programming problem
can be formulated as an NLP. In other words, 0,1 integer programming is
reducible to nonlinear programming. Moreover, this reduction is clearly
polynomial (for the notion of polynomial reduction, see Appendix A.4.1).
Therefore, solving an arbitrary instance of an NLP is at least as hard as
solving an arbitrary instance of a 0,1 integer programming problem. In
particular, as 0,1 feasibility is NP-hard, so is nonlinear programming
feasibility (see Appendix A.4.2).

7.2.2 Hard small-dimensional instances
We might be tempted to think that if the number of variables in the NLP is
very small, perhaps then solving NLP would be easy. However, this is not the
case as we will illustrate.

Pierre de Fermat in 1637, conjectured the following result:

THEOREM 7.1 There do not exist integers x, y, z ≥ 1 and integer n ≥ 3 such
that xn + yn = zn.

Fermat wrote his conjecture in the margin of a journal, and claimed to have a
proof of this result but that it was too large to fit in the margin. This
conjecture became known as Fermat’s last theorem. The first accepted proof
of this result was published in 1995, some 358 years after the original
problem was proposed. We will show that a solution to a very simple looking
NLP with only four variables has the following key property: the optimal
objective value of zero is attained, if and only if Fermat’s last theorem is
false. Hence, solving this particular NLP is at least as hard as proving
Fermat’s last theorem! In this NLP, see (1.35), we have four variables (n = 4)

and four constraints (m = 4). For x = (x1, x2, x3, x4)⊤ ∈ 4

and

g1(x) ≔ 1 − x1, g2(x) ≔ 1 − x2, g3(x) ≔ 1 − x3, g4(x) ≔ 3 − x4.

Observe that the feasible region of this NLP is given by

S ≔ {x ∈ 4 : x1 ≥ 1, x2 ≥ 1, x3 ≥ 1, x4 ≥ 3}.

Note that f(x) is a sum of squares. Therefore, f(x) ≥ 0 for every x ∈ 4 and it
is equal to zero if and only if every term in the sum is zero, i.e.

 and sin πx1 = sinπx2 = sinπx3 = sinπx4 = 0.

The latter string of equations is equivalent to xj being integer for every j ∈
{1, 2, 3, 4}. Moreover, the feasibility conditions require x1 ≥ 1, x2 ≥ 1, x3 ≥ 1,
x4 ≥ 3. Therefore, f(x) = 0 for some x ∈ S if and only if xj is a positive integer
for every j with x4 ≥ 3, and That is, if and only if Fermat’s
last theorem is false. Surprisingly, it is not difficult to prove (and it is well-
known) that the infimum of f over S is zero. Thus, the difficulty here lies
entirely in knowing whether the infimum can be attained.

We just argued that some nonlinear optimization problems can be very
hard even if the number of variables is very small (e.g., at most 10) or even if
the nonlinearity is bounded (e.g., at most quadratic functions). However,
carefully isolating the special nice structures in some classes of nonlinear
programming problems and exploiting these structures allow us to solve
many large-scale nonlinear programs in practice.

7.3 Convexity
Consider an NLP of the form given in (1.35) and denote by S its feasible
region. We say that x ∈ S is locally optimal if for some positive d ∈ we

have that f(x) ≤ f(x) for every x ∈ S where ǁx −xǁ ≤ d, i.e. no feasible solution
of the NLP that is within distance d of x has better value than x. We
sometimes call an optimal solution to the NLP, a globally optimal solution. It
is easy to verify that if S is convex and f is a linear function (or more
generally a convex function defined in the next section), then locally optimal
solutions are globally optimal (see Exercise 2). However, when S is not
convex (or when f is not a convex function), we can have locally optimal
solutions that are not globally optimal. This is illustrated in Example 26.
There, b is locally optimal, yet a ≠ b is the only globally optimal solution.

A natural scheme for solving an optimization problem is as follows: find a
feasible solution, and then repeatedly either (i) show that the current feasible
solution is globally optimal, using some optimality criteria, or (ii) try to find a
better feasible solution (here better might mean one with better value for
instance–though this may not always be possible). The simplex algorithm for
linear programming follows this scheme. Both steps (i) and (ii) may become
difficult when the feasible region is not convex. We will therefore turn our
attention to the case where the feasible region is convex. In this section, we
establish sufficient conditions for the feasible region of an NLP to be convex
(see Remark 7.4).

7.3.1 Convex functions and epigraphs
We say that the function f : n → is convex if for every pair of points x(1),
x(2) ∈ n and for every λ ∈ [0, 1]

In other words, f is convex if for any two points x(1), x(2) the unique linear
function on the line segment between x(1) and x(2) that takes the same value
for x(1) and x(2) as f dominates the function f. An example of a convex
function is given in Figure 7.3. An example of a nonconvex function is given
in Figure 7.4.

Figure 7.3 Convex function.

Figure 7.4 Nonconvex function.

Example 28 Consider the function f : → where f(x) = x2. Let a, b ∈ be
arbitrary, and consider an arbitrary λ ∈ [0, 1]. To prove that f is convex, we
need to verify1 that

[λa + (1 − λ)b]2 λa2 + (1 − λ)b2.

Clearly, we may assume that λ ∉ {0, 1}, i.e. that 0 < λ < 1. After expanding
and simplifying the terms, it suffices to verify that

λ(1 − λ)2ab λ(1 − λ)(a2 + b2),

or equivalently as λ, (1 − λ) > 0 that a2 + b2 − 2ab ≥ 0, which is clearly the
case as a2 + b2 − 2ab = (a − b)2, and the square of any number is
nonnegative.

The concepts of convex functions and convex sets are closely related
through the notion of epigraph of a function. Given f : n → , define the
epigraph of f as

In both Figures 7.5 and 7.6, we represent a function f : → and its
corresponding epigraph (represented as the shaded region going to infinity in
the up direction). The following result relates convex functions and convex
sets:

PROPOSITION 7.2 set. Let f : n → . Then f is convex if and only if epi(f) is
a convex

Observe in the previous proposition that the epigraph is living in an (n + 1)-
dimensional space. The function in Figure 7.5 is convex as its epigraph is
convex. However, the function in Figure 7.6 is not convex as its epigraph is
not convex.

Figure 7.5 Convex epigraph.

Figure 7.6 Nonconvex epigraph.

Proof of Proposition 7.2 Suppose f : n → is convex. Let

∈ epi(f) and λ ∈ [0, 1]. We have

f (λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v) ≤ λμ1 + (1 − λ)μ2,

which implies ∈ epi(f). Note that in the above the first

inequality uses the convexity of f and the second inequality uses that facts λ ≥

0, (1 − λ) ≥ 0 and ∈ epi(f).

Now suppose that epi(f) is convex. Let u, v ∈ n and λ ∈ [0, 1]. Then

 ∈ epi(f). Hence

This implies (by the definition of epi(f)), f (λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v).
Therefore, f is convex. □

7.3.2 Level sets and feasible region
Let g : n → be a convex function and let β ∈ . We call the set

{x ∈ n : g(x) ≤ β}

a level set of the function g.

Remark 7.3 The level set of a convex function is a convex set.

In Figure 7.7, we represent a convex function with a convex level set. In
Figure 7.8, we represent a nonconvex function with a nonconvex level set.
We leave it as an exercise to show however, that it is possible to have a
nonconvex function where every level set is convex.

Figure 7.7 Convex level set.

Figure 7.8 Nonconvex level set.

Proof of Remark 7.3 Let g : n → be a convex function and let β ∈ . We

need to show that S ≔ {x ∈ n : g(x) ≤ β} is convex. Let x(1), x(2) ∈ S and let
λ ∈ [0, 1]. Then

where the first inequality follows from the fact that g is a convex function. It
follows that λx(1) + (1 − λ)x(2) ∈ S. Hence, S is convex as required. □

Consider the NLP defined in (1.35). We say that it is a convex NLP if g1, . .
., gm and f are all convex functions. It follows in that case from Remark 7.3
that for every i ∈ {1, . . ., n} the level set {x ∈ n : gi ≤ 0} is a convex set.
Since the intersection of convex sets is a convex set (see Remark 2.17), we
deduce that the feasible region

{ x ∈ n : g1(x) ≤ 0, g2(x) ≤ 0, . . ., gm(x) ≤ 0} (7.1)

is convex as well. Hence:

Remark 7.4 The feasible region of a convex NLP is a convex set.

When g1, . . ., gm are all affine functions, then the feasible region (7.1) is a
polyhedron. Moreover, in that case, the functions are clearly convex. Hence,
the previous result implies in particular that every polyhedron is a convex set,
which was the statement of Proposition 2.18.

Exercises

1 (a) Let g1, g2, g3 : → be defined by

g1(x) ≔ − x, g2(x) ≔ 2, g3(x) ≔ x.

Plot these functions on 2. Identify on your plot, the function ĝ : →
defined by

ĝ(x) ≔ max{g1(x), g2(x), g3(x)}, ∀x ∈ .

Prove that ĝ is a convex function.
(b) Suppose g1, g2, . . ., gm : n → are given convex functions. Define

ĝ(x) ≔ max{g1(x), g2(x), . . ., gm(x)}, ∀x ∈ n.

Prove that ĝ is a convex function.

2 Denote by (P) the following NLP

minimize f(x) subject to gi(x) ≤ 0 for i = 1, 2, . . ., m,

where each of the functions f, g1, . . ., gm is convex.
(a) Prove that the set of feasible solutions of (P) is a convex set.
(b) Let ˆx be a locally optimal feasible solution of (P). Prove that ˆx is

globally optimal.

3 Denote by (P) the following NLP

minimize − f(x) subject to gi(x) ≤ 0 for i = 1, 2, . . ., m,

where each of the functions f, g1, . . ., gm is convex. Prove that “if (P) has an
optimal solution then it has one that is an extreme point of the feasible
region.”

7.4 Relaxing convex NLPs
Consider an NLP of the form (1.35) and let x be a feasible solution. We say
that constraint gj(x) ≤ 0 is tight for x if gj (x) = 0 (see also Section 2.8.3). We
will show that under the right circumstances, we can replace in a convex NLP
a tight constraint by a linear constraint such that the resulting NLP is a
relaxation of the original NLP (see Corollary 7.6). This will allow us in
Section 7.5 to use our optimality conditions for linear programs to derive a
sufficient condition for a feasible solution to be an optimal solution to a
convex NLP. The key concepts that will be needed in this section are that of
subgradients and supporting halfspaces.

7.4.1 Subgradients
Let g : n → be a convex function and let x ∈ n. We say that s ∈ n is a
subgradient of f at x if for every x ∈ n the following inequality holds:

f(x) + s⊤(x − x) ≤ f(x).

Denote by h(x) the function f(x) + s⊤(x − x). Observe that h(x) is an affine
function (x is a constant). Moreover, we have that h(x) = f(x) and h(x) ≤ f(x)
for every x ∈ n. Hence, the function h(x) is an affine function that provides
a lower bound on f(x) and approximates f(x) around x (see Figure 7.9).

Figure 7.9 Subgradient.

Example 29 Consider g : 2 → where for every x = (x1, x2)⊤ we have g(x)
= − x1. It can be readily checked (see Example 28) that g is convex. We
claim that s ≔ (−1, 2)⊤ is a subgradient of g at x = (1, 1)⊤. We have h(x) ≔ g(x)
+ s⊤(x − x) = 0 + (−1, 2)(x − (1, 1)⊤) = −x1 + 2x2 − 1. We need to verify, h(x)

≤ f(x) for every x ∈ 2, i.e. that

or equivalently that − 2x2 + 1 = (x2 − 1)2 ≥ 0 which clearly holds as the
square of any number is nonnegative.

Consider g : 2 → where for every x = (x1, x2)⊤ we have g(x) = − x1.
Earlier in Example 29, we gave a proof that (−1, 2)⊤ is a subgradient of g at x
= (1, 1)⊤. We now give an alternate proof based on the previous discussion.
The partial derivatives of g exists and ∇g(x) = (2x2, −1)⊤. Evaluating at x, we
deduce that (2, −1)⊤ is the gradient of g at x. Since g is convex, Proposition
7.8 implies that (2, −1)⊤ is also a subgradient of g at x.

7.4.2 Supporting halfspaces
Recall the definitions of hyperplanes and halfspaces from Section 2.8.1.
Consider a convex set C ⊆ n and let x ∈ C. We say that the halfspace F ≔
{x ∈ n : s⊤x ≤ β} (s ∈ n and β ∈) is a supporting halfspace of C at x if
the following conditions hold:

(1) C ⊆ F.
(2) s⊤x = β, i.e. x is on the hyperplane that defines the boundary of F.

In Figure 7.10, we represent a convex set C ⊆ 2. For the point x(1) ∈ C,
there is a unique supporting halfspace. For the point x(2) ∈ C, there are an
infinite number of different supporting halfspaces – we represent two of
these.

Figure 7.10 Supporting halfspace.

The following remark relates subgradients and supporting halfspaces:

Remark 7.5 Let g : n → be a convex function, let x ∈ n such that g(x) =
0, and let s ∈ n be a subgradient of f at x. Denote by C the level set {x ∈
n : g(x) ≤ 0} and by F the halfspace {x ∈ n : g(x) + s⊤(x − x) ≤ 0}.2 Then F
is a supporting halfspace of C at x.

Proof We need to verify conditions (1), (2) of supporting halfspaces. (1) Let
x′ ∈ C. Then g(x′) ≤ 0. Since s is a subgradient of g at x, g(x) + s⊤(x′ − x) ≤
g(x′). It follows that g(x)+s⊤(x′ −x) ≤ 0, i.e. x′ ∈ F. Thus, C ⊆ F. (2) s⊤x = s⊤x
−g(x) as g(x) = 0. □
This last remark is illustrated in Figure 7.11. We consider the function g : 2

→ , where g(x) = − x1 and the point x = (1, 1)⊤. We saw in Example 29
that the vector s = (−1, 2)⊤ is a subgradient for g at x. Then F = {x ∈ 2 : −x1

+2x2 − 1 ≤ 0}. We see in the figure that F is a supporting halfspace of C at x
as predicted.

Figure 7.11 Subgradient and supporting halfspace.

We deduce the following useful tool from the previous remark:

COROLLARY 7.6 Consider an NLP of the form given in (1.35). Let x be a
feasible solution and suppose that constraint gi(x) ≤ 0 is tight for some i ∈
{1, . . ., m}. Suppose gi is a convex function that has a subgradient s at x.
Then the NLP obtained by replacing constraint gi(x) ≤ 0 by the linear
constraint s⊤x ≤ s⊤x − gi(x) is a relaxation of the original NLP.

7.5 Optimality conditions for the differentiable case
In this section, we consider convex NLPs of the form (1.35) that satisfy the
additional condition that all of the functions f and g1, . . ., gm are
differentiable. In that setting, we can characterize (see Theorem 7.9) when a
feasible solution x is an optimal solution (assuming the existence of a Slater
point).

7.5.1 Sufficient conditions for optimality
We claim that it is sufficient to consider NLPs where the objective function is
linear, i.e. of the form

(7.2)

This is because problem (1.35) is reducible to problem (7.2). To prove this
fact, we can proceed as follows: given a NLP of the form (1.35) introduce a
new variable xn+1 and add the constraint f(x) ≤ xn+1, to obtain the NLP

This NLP is of the form (7.2), and minimizing xn+1 is equivalent to

minimizing f(x).
Let x be a feasible solution to the NLP (7.2) and assume that it is a convex

NLP. Let us derive sufficient conditions for x to be an optimal solution to
(7.2). Define, J(x) ≔ {i : gi(x) = 0}. That is, J(x) is the index set of all
constraints that are tight at x. Suppose for every i ∈ J(x) we have a
subgradient si of the function gi at the point x. Then we construct a linear
programming relaxation of the NLP as follows: first we omit every constraint
that is not tight at x, and for every i ∈ J(x) we replace (see Corollary 7.6) the
constraint gi(x) ≤ 0 by the linear constraint − g(x). Since the
objective function is given by “min c⊤x”, we can rewrite it as “max −c⊤x.”
The resulting linear program is thus

(7.3)

Theorem 4.7 says that x is an optimal solution to (7.3), and hence of (7.2) as
it is a relaxation of (7.3), when −c is in the cone of the tight constraints, i.e. if
−c ∈ cone{si : i ∈ J(x)}. Hence, we proved the following:

PROPOSITION 7.7 Consider the NLP (7.2) and assume that g1, . . ., gm are
convex functions. Let x be a feasible solution and suppose that for all i ∈
J(x) we have a subgradient si at x. If −c ∈ cone{si : i ∈ J(x)}, then x is an
optimal solution.

Thus, we have sufficient conditions for optimality. Theorem 7.9 which we
give in the next section, essentially says that when the NLP satisfies an
additional assumption (involving the existence of a strictly feasible solution),
then these conditions are also necessary. We illustrate the previous
proposition with an example.

Figure 7.12 Linear programming relaxation of NLP.

7.5.2 Differentiability and gradients
Let f : n → and x ∈ n be given. If there exists s ∈ n such that

we say that f is differentiable at x and call the vector s the gradient of f at x.
We denote s by ∇f(x). We will use the following without proof:

PROPOSITION 7.8 Let f : n → be a convex function and let x ∈ n . If the
gradient ∇f(x) exists then it is a subgradient of f at x.

Note that in the above definition of the gradient, h varies over all vectors in
n. Under some slightly more favorable conditions, we can obtain the

gradient ∇f(x) via partial derivatives of f at x. For example, suppose that for

every j ∈ {1, 2, . . ., n} the partial derivatives exist and are continuous at

every x ∈ n. Then

and the gradient of f at x is given by ∇f(x).

7.5.3 A Karush–Kuhn–Tucker theorem
To state the optimality theorem, we need a notion of the “strictly feasible
point” for NLP. More rigorously, we say that the NLP has a Slater point, if
there exists x′ such that gi(x′) < 0 for every i ∈ {1, . . ., m}, i.e. every
inequality is satisfied strictly by x′ . For instance, in Example 27 the point

⊤ is a Slater point.

We can now state our optimality theorem:

THEOREM 7.9 (Karush–Kuhn–Tucker theorem based on the
gradients). Consider a convex NLP of the form (1.35) that has a Slater point.
Let x ∈ n be a feasible solution and assume that f, g1, g2, . . ., gm are
differentiable at x. Then x is an optimal solution of NLP if and only if

−∇f(x) ∈ cone∇gi(x) : i ∈ J(x). (⋆)

We illustrate the previous theorem in Figure 7.13. In that example, the tight
constraints for x are g1(x) ≤ 0 and g2(x) ≤ 0. We indicate the cone formed by
∇g1(x), ∇g2(x) (translated to have x as its origin). In this example, −∇f(x) is
in that cone, hence the feasible solution x is in fact optimal.

Figure 7.13 Karush–Kuhn–Tucker theorem based on gradients.

Suppose that in Theorem 7.9 the function f(x) is the linear function c⊤x, i.e.
the NLP is of the form (7.2). Then ∇f(x) = c and the sufficiency of Theorem
7.9 follows immediately from Proposition 7.7, i.e. we have shown that if the
condition (⋆) holds, then x is indeed an optimal solution. The essence of the
theorem is to prove the reverse direction, i.e. that x will only be optimal when
(⋆) holds. This is when the fact that the problem has a Slater point comes into
play. Observe, that when f and g1, . . ., gm are all affine functions, then
Theorem 7.9 becomes the optimality theorem for linear programs (Theorem
4.7).

Theorem 4.7 was a restatement of the complementary slackness (Theorem
4.6). Similarly, we leave it as an exercise to check that condition (⋆) can be
restated as follows, there exists such that the following conditions
hold:

Exercises

1 Consider the following NLP:

and the vector x ≔ (1, 1)⊤. Write down the optimality conditions for x for this
NLP as described in the Karush–Kuhn–Tucker theorem. Using these
conditions and the theorem, prove that x is optimal. Note, you may use the
fact that the functions defining the objective function and the constraints are
convex and differentiable without proving it.

2 Consider the following NLP:

and the vector . Write down the optimality conditions for x

for this NLP as described in the Karush–Kuhn–Tucker theorem. Using these
conditions and the theorem, prove that x is optimal.

3 Consider the following NLP:

Prove that this NLP is convex. Using the Karush–Kuhn–Tucker theorem and
some elementary observations, find an optimal solution. Prove all your
claims.

4 (Advanced) Let u, w ∈ n be given such that uj and wj are positive for
each j. Consider the following NLP:

(a) Prove that this NLP is convex.
(b) Using the Karush–Kuhn–Tucker theorem (on possibly a slight

modification of (P)), find an optimal solution (in terms of u and w).
(c) Prove that the solution you found is the unique optimal solution.

7.6 Optimality conditions based on Lagrangians
So far, we have made a lot of progress by utilizing the idea of relaxation
when we face a very difficult problem. In the previous sections for nonlinear
programming, the relaxation approach we replaced nonlinear functions with
their linear approximations. In the case of integer programming, in the earlier
chapters we simply removed the integrality constraint and dealt with it in
other ways. Now let us try to apply this second approach to NLP. In a given
NLP, many or all of the constraints gi(x) ≤ 0 may be very difficult. We may
assign each of these constraints a coefficient (just like in our discussion of LP

duality!) yi ≥ 0 and consider the function

Since y ≥ , for every feasible solution x we have

minimum value of Therefore, the over all x ∈ n gives a

lower bound on the optimal objective value of the original NLP. Notice that
if x is a feasible solution of NLP, then f(x) is an upper bound on the optimal
objective value of the NLP. On the other hand, if we pick some nonnegative
vector y ∈ m and compute the minimum value of the relaxation

we obtain a lower bound on the optimal objective value of the NLP.
Let us define the Lagrangian L : n × m → for NLP as

Note that the Lagrangian encodes all the information about the problem NLP:

Setting all y variables to zero in L(x, y), we obtain f(x). That is

L(x,) = f(x), ∀x.

Setting y to unit vectors and using the above, we can obtain all the
constraint functions. That is, for every i ∈ {1, 2, . . ., m}

L(x, ei) − L(x,) = gi(x).

Perturbing y along a unit vector, we have the same result for every y

L(x, y + ei) − L(x, y) = gi(x).

Let z∗ denote the optimal objective objective value of NLP. Since the
minimum value of the Lagrangian at every nonnegative y gives a lower
bound on z∗, we also have

The next theorem summarizes the fundamental duality result based on the
Lagrangian.

THEOREM 7.10 (Karush–Kuhn–Tucker theorem based on the
Lagrangian). Consider a convex NLP of the form (1.35) that has a Slater
point. Then a feasible solution x is an optimal solution if and only if there
exists ȳ ∈ hold: such that the following conditions

L(x, y) ≤ L(x, ȳ) ≤ L(x, ȳ), ∀x ∈ n, ∀y ∈ (saddle-point)
ȳigi(x) = 0, ∀i ∈ {1, 2, . . ., m} (complementary slackness).

We illustrate the saddle-point condition of the Lagrangian in Figure 7.14.
Among all points (x, ȳ), the point (x, ȳ) minimizes L(x, y). Among all points
(x, y), the point (x, ȳ) maximizes L(x, y).

Figure 7.14 Saddle-point function.

Now let us see a proof that if x ∈ n satisfies the conditions of the above
theorem for some ȳ, then it is an optimal solution of the NLP in the convex
case.

First, we prove that x is feasible. We saw that the Lagrangian encodes all
the information on the constraints of NLP and we can extract this information
using unit vectors. Let us fix i ∈ {1, 2, . . ., m} and apply the first inequality
in the saddle-point condition using y ≔ ȳ + ei :

0 ≥ L(x, ȳ + ei) − L(x, ȳ) = gi(x).

Hence, x is feasible in NLP.
Next we use the second inequality in the saddle-point condition and

complementary slackness. We have

L(x, ȳ) ≤ L(x, ȳ), ∀x ∈ n,

which is equivalent to

Consider all feasible x (i.e. gi(x) ≤ 0 for every i). Since ȳi ≥ 0 for every i, we
have ȳigi(x) ≤ 0. Hence, our conclusion becomes

Using the fact that complementary slackness holds at (x, ȳ), we observe that
 ȳigi(x) is zero and we conclude that

f(x) ≤ f(x), ∀x feasible in NLP.

Indeed, this combined with feasibility of x means x is optimal in NLP.
Note that the above results motivate a notion of Lagrangian dual of the

(NLP)

max {min {L(x, y) : x ∈ n} : y ≥ }.

So the Lagrangian dual is maximization of a function h(y) subject to the
constraint that y is a nonnegative vector. Here

h(y) := min {L(x, y) : x ∈ n}.

Let us work out the Lagrangian dual of the linear programming problem

For this example of the (NLP), the Lagrangian is

L(x, y) = c⊤x + y⊤(Ax − b).

To compute h(y) more explicitly, we need to optimize over x. So let us
rewrite the Lagrangian

L(x, y) = c⊤ + y⊤A x − b⊤y.

Note that since x can be any vector in n, unless A⊤y = −c we can find a
sequence {x(k)} such that L (x(k), y) →−∞. Since we would like to maximize
h(y), we would not choose a y violating A⊤y = −c. Therefore, the Lagrangian
dual which is minimization of h(y) subject to y ≥ becomes

We leave it to the reader to verify that this Lagrangian dual is equivalent to
the linear programming dual (as defined in Chapter 4) of the original LP
problem. Therefore, Lagrangian duality can be seen as a generalization of
linear programming duality.

The last two theorems can be strengthened via replacing the assumption on
the existence of a Slater point by weaker, but more technical, assumptions.
Moreover, the last two theorems can be generalized to NLP problems that are
not convex. In the general case, the first theorem only characterizes local
optimality, and only provides a necessary condition for that.

7.7 Nonconvex optimization problems
For nonlinear optimization problems that are nonconvex, our work and ideas
can be extended in a few ways. We will focus on two principal approaches:

(1) When a problem fails to be convex, some of our ideas/methods/theorems
may still apply “locally.” One way is to focus on “critical points” and
then weed-out local maxima and saddle points, etc.

(2) We can consider an abstraction of our main approach to integer
programming. Namely, we can consider convex relaxations of the
feasible solution set. Since we may assume, without loss of generality
that the objective function is linear, we will argue that by optimizing the
linear objective function over the convex hull of the feasible region, we
can recover the optimal objective value of the original NLP.

7.7.1 The Karush–Kuhn–Tucker theorem for
nonconvex problems⋆

Recall the beautiful geometric characterization of optimality provided in the
version of the Karush–Kuhn–Tucker theorem with the gradients (Theorem
7.9). It turns out that even if our NLP is nonconvex, we can still use the
underlying geometric condition to help characterize local optimality.

A very important distinction is that the geometric condition (⋆) in the
statement of Theorem 7.9 is no longer sufficient. To understand why this is
so, consider a function f : [0, 1] →[0, 1]. Assume that f is differentiable on
the whole interval [0, 1]. Suppose that we would like to compute the
minimum value of f. Note that we have no constraints except x ∈ [0, 1]. A
good starting point would be to consider all critical points of f (i.e. points
where the derivative of f is zero, f ′ (x) = 0). We would also consider the
boundary points x = 0 and x = 1 (see Figure 7.15). For the example on the
left, the local minimizers are x = 0, x = a, x = b, and x = c (which is also the
global minimizer). On the other hand, x = d, x = e and x = 1 are local
maximizers (x = e is also the global maximizer). For the example on the right,
x = a is a local minimizer and x = b is a local maximizer. However, the global
minimum and global maximum values of the function are attained at the
boundary points x = 1 and x = 0, respectively.

Figure 7.15 Local minima.

Computing the value of f in each of these points and picking the minimum
would be one approach to solving this problem. Note, however that some of
the critical points may correspond to local maxima! This is just for functions
on the real line, as we consider functions f : 2 → we also start seeing
saddle points as in Figure 7.14 manifesting themselves as critical points.

THEOREM 7.11 (Karush–Kuhn–Tucker theorem for nonconvex
problems). Consider an NLP of the form (1.35). Let x ∈ n be a feasible
solution and assume that f, g1, g2, . . ., gm are continuously differentiable at x
and that {∇gi(x) : i ∈ J(x)} is linearly independent. If x is a local minimizer
of f over the feasible region of NLP, then

−∇f(x) ∈ cone{∇gi(x) : i ∈ J(x)}. (⋆)

So, the local version of the Karush–Kuhn–Tucker theorem provides an
important necessary condition for local optimality of a feasible solution x.
While this statement may seem too weak at a first glance, this necessary
condition for optimality is widely used in theory of nonconvex NLPs, as well
as in the design of algorithms for solving NLPs. One common theme along
these lines is to write the necessary conditions for local minimizers of NLP as
a system of nonlinear equations and try to solve the nonlinear system
iteratively, by using simpler, local approximations of it.

Now we sketch a proof of this theorem. The proof, when specialized to the
convex optimization case, also completes the proof of Theorem 7.9. Let

F ≔ {x ∈ n : g1(x) ≤ 0, . . ., gm(x) ≤ 0}

denote the feasible region. Consider two local approximations to the feasible
region F at the point x ∈ F.

The first one is the local convex conic approximation to F at x defined as:

KF(x) ≔ {d ∈ n : ∇gi(x)⊤d ≤ 0, ∀i ∈ J(x)}.

Recall that convex functions are globally underestimated by linear
approximations provided by their gradients. So, for convex optimization
problems, KF(x) provides an outer approximation to the feasible region. We
may expect this approximation to give a decent characterization of local
geometry of the feasible region in a neighborhood of x.

We are interested in whether x is a local minimizer. Therefore, we are
interested in proving that no matter how small, there does not exist a local
feasible move from x to improve the objective function. In the case of linear
programming, in particular the simplex method, if x, is an extreme point of
the feasible region, it suffices to consider the directions emanating from x
along the edges of the feasible region. (All other local feasible moves are
nonnegative linear combinations of these directions, since the objective
function is linear, it suffices to consider only the edges.) However, in NLP
the local geometry of the feasible region is determined by nonlinear curves,
surfaces, etc. Thus, we are led to consider all feasible local nonlinear moves
from x. We can represent such moves with directed curves rooted at x which
we call arcs. The second local approximation is given by the cone of tangents
of feasible arcs of F emanating from x, denoted by TF(x). In the definition of
this cone, we also include the limits of such tangents.

Now we arrive at two local approximations to the feasible region by
convex cones. On the one hand, KF(x) clearly provides the kind of
approximation that is amenable to use in establishing the geometric
optimality condition in the Karush–Kuhn–Tucker theorem, via duality. On
the other hand, TF(x) provides the kind of approximation that is easily used in

verifying whether x is a local minimizer. Moreover, it is not too hard to
observe that KF(x) contains TF(x). So, to finish the proof, it suffices to show
TF(x) contains KF(x). This part of the proof is when we use a condition such
as linear independence of gradients (or the existence of a Slater point in the
convex case). These assumptions can be weakened (and replaced by a more
technical condition) but it cannot be omitted altogether. Consider for example
the NLP given by

x ≔ is the unique feasible solution and therefore is the unique local and
global minimizer. However

−∇f(x) ∉ cone{∇gi(x) : i ∈ J(x)}

since

Indeed, the Slater condition fails for this problem. The cone TF(x) is empty
(there are no feasible moves), and the cone KF(x) is the whole x1-line.
However, whenever KF(x) is full dimensional (as guaranteed by the Slater or
a similar condition), KF(x) = TF(x) and the conclusion of the KKT Theorem
follows.

7.7.2 Convex relaxation approach to nonconvex
problems*

Another approach to nonconvex NLPs is to use a generalization of the ideas
we used for integer programs. As we showed earlier in this chapter, without
loss of generality, we may assume that our NLP has a linear objective

function. Then under mild assumptions, optimizing the objective function
over the feasible region of NLP and optimizing the objective function over
the convex hull of the feasible region of the NLP give the same value! See,
Figure 7.16, where the objective function is to minimize c⊤x.

Figure 7.16 Left, nonconvex feasible region. Right, convex hull of the feasible region.

Suppose we are given a nonlinear optimization problem that is not a
convex optimization problem. As we observed at the beginning of this
chapter, we may assume that the objective function is linear (we can achieve
this by introducing a new variable and a new constraint). Thus, our problem
is

(7.4)

Recall, the feasible region is

F = {x ∈ n : g1(x) ≤ 0, . . ., gm(x) ≤ 0}.

In one of the nice cases, when F is a compact set (to be defined soon), we
can compute unclear the optimal value of the nonconvex problem (7.4) by

computing the optimal value of the convex optimization problem of
maximizing c⊤x over the convex hull of F. Moreover, if we can find an
optimal solution of the latter which is an extreme point of the convex hull of
F, then we have found an optimal solution of the nonconvex problem (7.4).
However, the ideas in this paragraph are very hard to implement efficiently
(if it were possible to implement them efficiently, we could solve almost any
optimization problem efficiently). Nevertheless, in some special cases with
the addition of other ideas which exploit the special structure of the hard
nonconvex problem at hand, some progress towards at least approximate
solutions may be achieved with these fundamental approaches. For an
introduction to some of these topics, some notions from elementary analysis
and set topology will be useful. This is what we develop next.

If a sequence of points x(1), x(2), . . . in n satisfies

||x(k) − x||2 → 0, as k → +∞,

or equivalently

then we say that {x(k)} converges to x and write x(k) → x. Now we are ready
to define the closure of a set S in n

A subset S of n is called closed if it is equal to its own closure, i.e. S = cl(S).
Intersection of any collection of closed sets is a closed set. The closure of S is
the smallest closed set containing S. A subset S of n is called compact if S is
closed and bounded.

Now we are ready to state the Bolzano–Weierstrass theorem which
characterizes compact sets in n in terms of the behavior of sequences in
them.

THEOREM 7.12 Let S ⊂ n be a compact set. Then for every sequence {x(k)}

⊆ S there exists a subsequence {x(ℓ)} which converges and limℓ→+∞ x(ℓ) ∈
S.

Next we note that continuity of a function and the closedness of a set are
connected notions. Let S ⊆ n. Recall, f : S → is continuous on S if for
every sequence {x(k)} in S with a limit point x ∈ S, f (x(k)) → f (x). If S is
closed and f is continuous on S, then the level set of f

{x ∈ S : f(x) ≤ μ}

for every μ ∈ is closed.
Since linear functions on n are continuous, we conclude that halfspaces

are closed sets. Since the intersection of any collection of closed sets is
closed, every polyhedron is closed. Recall that in our definition of LP
problems, we did not allow strict inequalities. Indeed, if we were to allow
them, then even in the cases when the optimal objective value is finite, we
could not guarantee the existence of optimal solutions (e.g., consider
maximizing x1 subject to 0 ≤ x1 < 1; even though the optimal objective value
is 1, there is no feasible solution with objective value equal to 1).

An important general theoretical tool to establish the existence of optimal
solutions of optimization problems is the following theorem of Weierstrass:

THEOREM 7.13 Let S ⊂ n be a nonempty compact set. Also let f : S → be
a continuous function on S. Then f attains its minimum as well as its
maximum on S.

Another fundamental result related to our discussion is a classical theorem
of Minkowski:

THEOREM 7.14 Every compact convex set in n is equal to the convex hull of
its extreme points.

Minkowski’s theorem characterizes compact convex sets in n by convex
combinations of their elements. There is also a dual version of this
characterization: every compact convex set in n is the intersection of all
closed halfspaces containing it. In fact, using only supporting halfspaces

suffices. However, in many cases (outside of the set being a polyhedron) we
may need infinitely many halfspaces to express a compact convex set.

Given a nonempty compact set S ⊂ n and c ∈ n, we have

max { c⊤x : x ∈ S } = max { c⊤x : x ∈ conv(S) }.

In the light of these fundamental results, we see that at least in principle
minimization of a continuous function over a compact set can be expressed as
a minimization of a linear function over a compact convex set. Even though
the latter is a convex optimization problem, in general we may only hope to
solve some relaxations of the latter, which in turn provides some
approximation to the original nonconvex problem.

Exercises

1 Call a feasible point x a KKT point if x satisfies the geometric condition

−∇f(x) ∈ cone{∇gi(x) : i ∈ J(x)}

for the NLP. Compute all KKT points and determine an optimal solution of
the following NLP. Why is this NLP nonconvex?

2 Consider a convex NLP. Suppose that Slater condition holds for the NLP.
Let x be a feasible solution. Prove that there exists d ∈ n such that

∇gi(x)⊤d < 0, ∀i ∈ J(x).

Aside: The above condition is sufficient to establish the KKT Theorem
(replacing the Slater point assumption). This condition is known as
Mangasarian–Fromowitz constraint qualification.

3 (a) A convex function f : n → is called strictly convex if for every pair

of distinct points x(1), x(2) ∈ n and for every λ ∈ (0, 1)

f(λx(1) + (1 − λ)x(2)) < λf(x(1)) + (1 − λ)f(x(2)).

Prove that the function f : n → given by f(x) ≔ ǁxǁ2 = x⊤x is strictly
convex.

(b) Let F ⊆ n be a closed convex nonempty set. Prove that for every u ∈
n, there exists a unique point in F which is closest to u. That is, a

unique point x in F minimizing the function ǁu − xǁ.

4 (a) Let F ⊂ n be a compact convex nonempty set. Prove that for every u
∈ n, there exists a point in F which is farthest from u.

(b) Give three examples of F and u satisfying the above conditions such that
in one example the farthest point from u is unique, in another example,
there are exactly two farthest points and on the third example there are
infinitely many farthest points.

(c) Do the farthest points have a specific geometric property with respect to
F? Prove your claims.

5 Compute the convex hull of S1 ∪ S2, where

S1 ≔ { } ⊂ 3,

and

6 Consider the following NLP:

Call the feasible region F.
(a) Prove that the feasible region F of (P) is not convex.
(b) Compute the convex hull of the feasible region F and express this

convex hull as the intersection of a halfspace and another simple convex
set. Prove that your characterization of the convex hull of F is correct.

(c) Find the set of optimal solutions minimizing x3 over conv(F). Describe
the subset of these solutions that are optimal solutions of (P).

7 (Advanced) We saw that if our nonconvex optimization problem can be
expressed as a minimization of a continuous function over a nonempty
compact set, then it has an optimal solution. In this exercise, we explore a
related way of establishing the existence of an optimal solution. A function f :

n → is called coercive, if its level sets are bounded for every μ ∈ .
(a) Let f : n → be a continuous and coercive function. Prove that f attains

its minimum value in n.
(b) We would like to generalize the result from the previous part of this

problem so that it applies to the NLP

min f(x) subject to: x ∈ F,

where

F ≔ {x ∈ n : g1(x) ≤ 0, . . ., gm(x) ≤ 0}.

Find some sufficient conditions for gi guaranteeing that F is closed and
nonempty. Then define the notion of coercivity of f over a set F (rather
than the whole n) so that you can prove that under these conditions the
NLP always has an optimal solution.

8 (Advanced) Consider the nonconvex NLP problem

Apply a dynamic programming approach to solve this problem.
HINT: Focus on the difficult looking, nonconvex constraint. If you already

know the value of x1, what would this constraint become?

7.8 Interior-point method for linear programs*
In this section, we introduce a new breed of algorithms, namely interior-point
methods. Recall that when we start from a basic feasible solution of an LP,
the simplex method generates a sequence of basic feasible solutions
eventually leading to either a basic feasible solution that is optimal or to a
feasible direction along which the objective function value is unbounded.
Since each basic feasible solution is an extreme point of the underlying
feasible region and each (nondegenerate) simplex iteration corresponds to
moving from one extreme point to another that is connected by an edge (line
segment) on the boundary of the feasible region, the simplex method
considers only the feasible solutions that lie on the boundary of the
underlying feasible region. In contrast, the interior-point methods generate
iterates which satisfy all inequality constraints strictly. Hence, geometrically
speaking, all iterates lie in the relative interior of the feasible region.

Given x ∈ n and δ > 0, the open Euclidean ball centered at x with radius
δ is defined as

B(x; δ) ≔ {x ∈ n : ǁx − xǁ2 < δ}.

For every subset S of n, we define the interior of S by

int(S) ≔ {x ∈ n : B(x; δ) ⊆ S, for some δ > 0}.

A subset S of n is called open if it is the same as its interior, i.e. S = int(S).
Note that S is open when its complement is in n, namely n \ S, is closed.
Also, interior of S is the largest open set contained in S. Interior-point
algorithms for LPs maintain iterates in the interiors of the polyhedra defined
by the inequality constraints for the underlying problem. For example, for an
LP problem in SEF the inequalities describe the nonnegative orthant and
interior-point algorithms keep all of the primal iterates in the interior of the
nonnegative orthant for LP problems in SEF.

We consider the LP problems (P) in SEF and assume without loss of
generality that rank(A) = m. The dual is

min {b⊤y : A⊤y − s = c, s ≥ }.

Note that we have explicitly included the slack variables s. For now, we will
also assume that there exist interior solutions for both problems, i.e. there
exist x and (ȳ, s) such that Ax = b, xj > 0 for all j and A⊤ȳ − s = c, sj > 0 for all
j. So, an interior solution is a feasible solution which satisfies all the
inequality constraints strictly. Note that x and s are Slater points for (P) and
(D) respectively (in suitable reformulations of (P) and (D) in the form of
NLP).

By the weak duality theorem, we have

b⊤ȳ − c⊤x ≥ 0.

In fact, we can write the duality gap in terms of x and s

b⊤ȳ − c⊤x = x⊤A⊤ȳ − c⊤x = x⊤(A⊤ȳ − c) = x⊤s > 0.

If x and s had been optimal solutions, we would have had x⊤s = 0. Recall the
necessary and sufficient conditions for optimality (see, Theorem 4.6)

Ax = b, x ≥ , (primal feasibility),
A⊤y − s = c, s ≥ , (dual feasibility),

xj sj = 0 for all j (complementary slackness).

Now we would like to find a new solution x, y, s so that x is feasible for (P),

(y, s) is feasible for (D) and the duality gap b⊤y − c⊤x = x⊤s is smaller than the
current duality gap: x⊤s. Recall that the simplex algorithm keeps primal
feasibility and complementary slackness and strive for dual feasibility. There
are also so-called dual-simplex algorithms which keep dual feasibility and
complementary slackness and strive for primal feasibility (see for instance
[13]). Actually, we have seen an algorithm which behaved in this way
(keeping dual feasibility and complementary slackness and striving for primal
feasibility), namely the Hungarian Method for finding minimum cost perfect
matchings in bipartite graphs (see Section 3.2). Here, we are keeping primal
feasibility and dual feasibility and striving for complementary slackness. So,
we would like to find direction dx in the primal and directions dy, ds in the
dual such that:

1. x + dx is feasible in (P),
2. ȳ + dy and s + ds are feasible in (D),
3. (x + dx)⊤(s + ds) is very small, preferably zero.

The first item above implies Adx = , the second item implies A⊤dy − ds = ,
and the third one implies (xj + dxj)(sj + dsj) = 0. The first two systems of
equations are linear in dx, dy, and ds; however, the third one is

sjdxj + xjdsj + dxjdsj = −xjsj

which is quadratic (we have the term dxjdsj). Of course, if we could solve
these three groups of equations at once and maintain the nonnegativity of (x +
dx), (s + ds), we would have optimal solutions of (P) and (D). Since we do
not know how to solve these equations (without solving the linear
programming problem), we will ignore the quadratic term and try to solve the
big linear system with the last group of linear equations sjdxj + xjdsj = −xjsj
instead.

So, we solve the following system of linear equations. Note that the last
group of equations is trying to force a solution dx, ds such that (x + dx)⊤(s +
ds) is close to zero.

Adx = , (7.5)

A⊤dy − ds = , (7.6)

sjdxj + xjdsj = −xjsj, for all j ∈ {1, 2, . . ., n}. (7.7)

This is a system of linear equations and we know how to solve it efficiently
(e.g., by Gaussian elimination). Under our assumptions (rank(A) = m and x >

, s >), this linear system always has a unique solution.
One very important condition we neglected so far is the nonnegativity

constraint on x and s. Most likely, x+dx is not feasible in (P) or s+ds is not
feasible in (D), possibly both. However, the above development convinced us
that the dx, dy, ds are good directions and we should thus move in these
directions, but not “all the way” to the boundary. So we consider the solution

x + αdx, ȳ + αdy, s + αds,

for some α > 0. We should pick α such that x + αdx > 0 and s + αds > 0. We
can choose, for instance

(7.8)

Now we show that the duality gap decreases from iteration to iteration. Here
we are able to show that the decrease is proportional to (1 − α). That is, when
the step size is large, we get a large decrease in the duality gap. Let us
calculate the new duality gap

From (7.6), we have ds = A⊤dy. So

Also note that using (7.7) we have (sjdxj + xjdsj) = −xjsj. Hence

Indeed, if x + dx ≥ (i.e. α = 1 yields a feasible solution in (P)) and s + ds ≥
 (i.e. α = 1 also yields a feasible solution in (D)), then they (x+dx and s+ds)

will be optimal. On the other hand, unless α = 1 at some iteration, we never
reach an optimal solution. So, we might choose to stop iterating when the
duality gap is below some small positive number (say 10−8). Now we can
state the primal–dual affine-scaling algorithm [50] (see Algorithm 7.9). We
are given starting points x0, (y0, s0) feasible in (P) and (D) respectively with
x0 > , s0 > . Let ∈ (0, 1) denote the desired tolerance (we want to find x,
(y, s) feasible in (P) and (D) respectively such that x⊤s <).

Algorithm 7.9 Primal–Dual affine scaling algorithm

1: loop
2: Let k := 0.
3: if (xk)⊤sk < then
4: stop xk and (yk, sk) are the desired solutions.
5: end if

6: Let (x, ȳ, s) := (xk, yk, sk)
7: Solve (7.5)-(7.7) for (dx, dy, ds)
8: if (x + dx, ȳ + dy, s + ds) is feasible then
9: Let (xk+1, yk+1, sk+1) := (x + dx, ȳ + dy, s + ds) and stop (xk+1, yk+1,

sk+1) is an optimal solution of (P) and (D)
10: end if
11: Choose step size αk ∈ (0, 1) such that x + αkdx > , and s + αkds >
12: (xk+1, yk+1, sk+1) := (x + αkdx, ȳ + αkdy, s + αkds)
13: k := k + 1
14: end loop

It turns out that the solution dx, dy, and ds of the linear system (which is
solved at each iteration) can be written explicitly in terms of A and the current
solution x and s (note that Ax = b and A⊤ȳ + s = c). Define X to be the
diagonal matrix with entries x1, x2, . . ., xn down the diagonal (and S is the
diagonal matrix with entries s1, s2, . . ., sn down the diagonal). Then the
solution vectors dx, dy, and ds are given by the following formulas:

(dy = − AXS−1A⊤)−1 b,
ds = A⊤dy,
dx = −x − XS−1ds.

To derive these formulas, we can rewrite (7.7) as ds = −s − X−1Sdx
substituting into (7.6), and then multiplying both sides by the nonsingular
matrix XS−1 we obtain

XS−1A⊤dy + x + dx = 0.

Multiplying both sides from left by A, using the fact that Ax = b and (7.5), we
derive AXS−1A⊤dy = −b. Since A has full row rank and XS−1 is an n-by-n
diagonal matrix with positive entries on the diagonal, the matrix (AXS−1A⊤) is
nonsingular and we reach the claimed solution for (dx, dy, ds).

Just as in the previous sections, in implementations of the algorithms,
instead of explicitly forming the inverse of (AXS−1A⊤), we solve the linear
system of equations (AXS−1A⊤) dy = −b for the unknown (dy). This is

typically done by first computing a suitable decomposition of the matrix
(AXS−1A⊤).

Remark 7.15 (i) The idea that led us to the system of equations (7.5), (7.6),
(7.7) is very closely related to Newton’s method for solving a system of
nonlinear equations.

(ii) There are many different ways of choosing the step size α; some have
practical and/or theoretical advantages. In practice, we may even want
to choose different step sizes in the primal and the dual problems, e.g.,
αP = 0.9min and αD = 0.9 min and

then update (x, ȳ, s) using (x + αPdx, ȳ + αDdy, s + αDds).
(iii) The algorithm can be modified so that it allows infeasible starting

points. The only requirement is that x and s > 0. In this combined two
phase version of the algorithm, the right-hand side vectors of (7.5) and
(7.6) are replaced by (b − Ax) and (c − A⊤ȳ + s) and are updated in each
iteration.

7.8.1 A polynomial-time interior-point algorithm*
In our primal–dual interior-point algorithm, we can choose the step size more
conservatively to guarantee that our algorithm converges in polynomial-time.
Let us define the following potential function:

where x, s ∈ n, x > 0, s > 0, and ρ is a positive scalar to be chosen later. In
the current context, the potential function tries to balance competing
strategies of reducing x⊤s fast and not getting too close to the boundary of the
feasible region prematurely. The first term in the potential function leads to
values tending to −∞ as x⊤s approaches to zero and the second term goes to
+∞ as x or s converge to a point on the boundary of the nonnegative orthant.
So, the potential function will only allow the iterates to get close to the
boundary when the duality gap x⊤s decreases at a suitably comparable pace.

In the algorithm, we will choose the step size by the following rule:

choose the step size αk ∈ (0, 1) such that ψ(x + αkdx, s + αkds; ρ) = 1 + ρ

ln .

We can make sure that the starting point satisfies certain technical
conditions depending on the data (A, b, c). (See the exercises at the end of the
section.) Then we can prove an upper bound on the number of iterations of
the algorithm. We assume that we are given ∈ (0, 1). We define

THEOREM 7.16 Suppose we are given (x0, y0, s0) as in the statement of the
primal– dual affine scaling algorithm. Further assume that

Then the primal–dual affine scaling algorithm with the above step size
strategy based on ψ, terminates in at most iterations with xk ,

(yk, sk) feasible in (P) and (D) respectively such that their duality gap is less
than .

This theorem guarantees finding feasible solutions with very good
objective values. The technical assumption on ψ(x0, s0; ρ) can be satisfied by
a reformulation trick. Moreover, it turns out, for LP, if we can get the duality
gap below a certain threshold (for data (A, b, c) with rational entries, let t
denote the number of bits required to store them in binary; then choosing ≔
exp(−2t) suffices), then using these very accurate approximate solutions, we
can quickly compute exact optimal solutions. Using these techniques and
ideas, we can prove that LP problems with rational data can be solved in
polynomial-time. We work through some of the details in exercises at the end
of this chapter and in the Appendix.

Exercises

1 Suppose A ∈ m×n with rank(A) = m, x > and s > are given. Prove
that the system (7.5)–(7.7) has a unique solution.

2 Consider the LP given in the form of (P) with

Starting with the primal–dual pair x = (1, 1, 1, 1, 5)⊤, and s = (4, 9, 3, 4, 4)⊤,
apply the primal–dual interior-point method until the duality gap goes below
10−4. Then identify a pair of (exact) optimal solutions for (P) and its dual.
Finally, verify the correctness of your answer by utilizing duality theory.

3 Suppose that during an application of the primal–dual interior-point
method (to a pair of primal–dual LPs, with the primal (P) in standard equality
form), when we solve the system

Adx = ,
A⊤dy − ds = ,

sjdxj + xjdsj = −xjsj, for all j

(for given current iterate x > 0, s > 0 such that Ax = b, A⊤ȳ − s = c, for some
ȳ), we find that dx = 0. Prove that in this case there exists ŷ such that

A⊤ŷ = c

and that every feasible solution of (P), including x, is optimal.

4 (Advanced) Consider Theorem 7.16. Prove that the same iteration bound
can be achieved if we take a constant step size α = Θ in every iteration.

(Note, t is defined in the paragraph following Theorem 7.16.)

5 (Advanced) In the system of linear equations determining the search
direction, replace the right-hand side of (7.7) by

where γ ∈ [0, 1] a given constant.
(a) Prove that in this case

(new duality gap) = [1 − α(1 − γ)] (current duality gap).

(b) What would be a potential benefit for choosing a value for γ that is
positive? (For example, if you choose γ ≔ 0.5, can you prove a lower
bound for the step size α, which is considerably larger than O(1/nt2).)

6 (Advanced) Let (P) denote an LP problem in standard inequality form and
let (D) denote its dual. Suppose we are given a feasible solution x for (P) and
a feasible solution (ȳ, s) for (D) such that x⊤s < for some positive .
Construct an efficient algorithm which computes an extreme point of the
feasible region of (P), ˆx, such that

cTˆx > z∗ − ,

where z∗ is the optimal objective value of (P).
HINT: Consider a related advanced exercise from Section 2.4.2 (namely,

Exercise 6). If x is a basic feasible solution, then we are done (justify);
otherwise, the columns of A corresponding to the positive entries of x are
linearly dependent. Can you find a way of efficiently modifying x while
staying feasible, reducing the number of positive entries of x, and not making
the current objective function value c⊤x worse?

7 (Advanced) Suppose that in our NLP, in addition to the inequality
constraints g(x) ≤ , we have explicit equality constraints. These can be
written as hi(x) = 0, i ∈ {1, . . ., p}. If these constraints are affine, given by
h(x) = Ax − b, then we have a way of “moving around” in the set of solutions
to these equality constraints (e.g., if A has full row rank, we find a basis B
and we rewrite the constraints as and consider

directions of local movement from the basic solution determined by B).
Suppose that hi is continuously differentiable at x for every i, h(x) = and

∇h1(x), . . ., ∇hp(x) are linearly independent. Using the inverse function
theorem below, derive a way of locally moving around the point x which
generalizes the special case of affine h above.

Inverse function theorem: Let F : U ⊆ n → n be continuously
differentiable on the set U which is open. Further assume that at x ∈ U
gradients of F1, . . ., Fn are linearly independent. Let DF(x) denote the matrix
of those gradients. Then there exists an open set V in U containing x and an
open set W containing F(x) such that F(V) = W and F has a local,
continuously differentiable inverse F−1 : W → V. Moreover, for every w ∈ W
with x ≔ F−1(w), we have

DF−1(w) = [DF(x)]−1.

7.9 Further reading and notes
For a further introduction into nonlinear optimization, see Peressini et al.
[54], Boyd and Vandenberghe [11], and Nesterov [53]. There are also
algorithms designed for linear optimization using insights gained from
developing the theory of nonlinear convex optimization (see Khachiyan [37],
Karmarkar [35], and Ye [72]). For a more detailed discussion of hardness of
nonlinear optimization problems, see Murty and Kabadi [51], and Vavasis
[67].

There are historical as well as theoretical connections to game theory.
Suppose two players P and D are playing a two-person zero-sum game.
Player P’s strategies are denoted by a vector x ∈ n and player D’s strategies
are denoted by a nonnegative vector y ∈ m. Players choose a strategy
(without knowing each other’s choices) and reveal them simultaneously.
Based on the vectors x and y that they reveal, Player P pays Player D [f(x) +
yigi(x)] dollars (if this quantity is negative, Player D pays the absolute value
of it to Player P). Player P’s problem is

player D’s problem is

There are very many ways of utilizing the Lagrangian in the theory and
practice of optimization. For example, we can use the Lagrangian in
designing primal–dual algorithms (even for combinatorial optimization
problems). Consider x ∈ n, a current iterate of an algorithm. Suppose x
violates a subset of the constraints gi(x) ≤ 0, for i ∈ J. We can choose ȳi > 0,
∀i ∈ J (essentially penalizing the violations) and minimize L(x, ȳ). This
gives us a new iterate x and we may repeat the process by choosing a new ȳ
depending on the current violation and repeat. In many cases, choosing a
good ȳ is also done via solving an easier optimization problem. Note that we
outlined a primal–dual scheme, with alternating moves, based on relaxations,
in the primal and dual spaces. Usage of the Lagrangian, as the name suggests
goes back at least to the times of Lagrange, it is connected to the works of
Leonhard Euler as well as Joseph Louis Lagrange during the mid-1700s. In
addition to its connections to the foundations of nonlinear optimization, the
work also inspired a lot of research in the areas of differential equations as
well as mechanics.

For further information on convex relaxation approaches, see Tunçel [64]
and the references therein. Utilization of Karush–Kuhn–Tucker Theorem in
the design of algorithms for nonconvex NLP problems continues to be
fruitful. For example, in nonconvex optimization problems arising from “big
data” applications such as those in compressed sensing seem amenable to
such approaches based on the KKT Theorem, see for instance [12]. KKT
Theorem is named after Karush [36], as well as Kuhn and Tucker [44]. For a
historical account, see Cottle [18].

For a review of interior-point algorithms, see Ye [72] and the references
therein. There are many primal–dual interior-point algorithms in the
literature. The Primal– dual affine-scaling algorithm was proposed by

Monteiro, Adler, and Resende [50]. For some of the variants, including the
one we discussed, see Tunçel [65] and the references therein.

1 Applying the definition is not the only way to prove that a function is convex. In this
particular case, for instance, we can compute its second derivative and observe that it is
nonnegative.

2 F is clearly a halfspace since we can rewrite it as {x : s⊤x ≤ s⊤x − g(x)} and s⊤x − g(x) is a
constant.

Appendix A Computational complexity

An algorithm is a formal procedure that describes how to solve a problem.
For instance, the simplex algorithm in Chapter 2 takes as input a linear
program in standard equality form and either returns an optimal solution, or
detects that the linear program is infeasible or unbounded. Another example
is the shortest path algorithm in Chapter 3.1. It takes as input a graph with
distinct vertices s, t and nonnegative integer edge lengths, and returns an st-
path of shortest length (if one exists).

The two basic properties we require for an algorithm are: correctness and
termination. By correctness, we mean that the algorithm is always accurate
when it claims that we have a particular outcome. One way to ensure this is
to require that the algorithm provides a certificate, i.e. a proof, to justify its
answers. By termination, we mean that the algorithm will stop after a finite
number of steps.

In Section A.1, we will define the running time of an algorithm; we will
formalize the notions of slow and fast algorithms. Section A.2 reviews the
algorithms presented in this book and discusses which ones are fast and
which ones are slow. In Sections A.3 and A.4 we discuss the inherent
complexity of various classes of optimization problems and discuss the
possible existence of classes of problems for which it is unlikely that any fast
algorithm exists. We explain how an understanding of computational
complexity can guide us in the design of algorithms. (For much more
information on the topic, we refer the interested reader to the recent textbooks
of Kleinberg and Tardos [41], and Sipser [60].)

A.1 What is a fast (resp. slow) algorithm?
As an example consider the 0, 1 feasibility problem. Here, we are given a

rational m × n matrix A, a rational vector b with m entries, and we are asked if
there exists a solution x to Ax ≤ b where all entries of x are either 0 or 1. This
problem is a finite problem, as every variable can only take two possible
values. Since we have n variables, there are 2n possible assignments of values
to the variables. Hence, to solve the 0, 1 feasibility problem we could try all
possible 2n assignments of 0, 1 values x and check for each case whether x
satisfies the inequalities Ax ≤ b. This procedure is an algorithm for the 0, 1
feasibility problem, as correctness and termination are trivially satisfied in
this case.

This is however, not a satisfactory algorithm. One drawback is that it is
very slow. Suppose for instance that we have n = 100 variables. We need to
enumerate 2100 possible assignments of values to the variables. Assuming
that we have implemented our algorithm on a computer that can enumerate a
million such assignments every second, it would take over 4 × 1016 years.
According to current estimates the universe is 13.75 billion years old. Thus,
the running time would be nearly three million times the age of the universe!
Clearly, this is not a practical procedure by any reasonable standard. This
illustrates the fact that brute force enumeration is not going to be a sensible
strategy in general.

There is a further shortcoming of this algorithm. Suppose that the
algorithm states that there is no 0, 1 solution to the system Ax ≤ b. How could
we convince anyone that this is indeed the case? The algorithm provides no
help and anyone wanting to verify this fact would have to solve the problem
from scratch.

A.1.1 The big “O” notation
Before we can proceed further, we require a few definitions. Consider
functions f, g : → .1 We write:

(a) f = O(g) if there exist constants c1, c2 such that for all n ≥ c1, f(n) ≤
c2g(n),

(b) f = Ω(g) if there exist constants c1, c2 such that for all n ≥ c1, f(n) ≥
c2g(n),

(c) f = Θ(g) if f = O(g) and f = Ω(g).

Thus, f = O(g) means that for large n, some fixed multiple of g(n) is an upper
bound of f(n). Similarly, f = Ω(g) means that for large n, some fixed multiple
of g(n) is a lower bound for f(n). Hence, if f = Θ(g), then f behaves like g
asymptotically.

Example 30 Suppose for instance that f(n) = 2n3 + 3n2 + 2. Then f = O(n3),
as for all n ≥ 4 we have 3n2 + 2 ≤ n3. Hence, in particular

2n3 + (3n2 + 2) ≤ 3n3.

(We apply the definition with c1 = 4 and c2 = 3.) Similarly, we can show that
f = Ω(n3). Hence, f = Θ(n3). In general, we can show that if f(n) is a
polynomial of degree k, i.e.

for constants a1, . . . , ak where ak ≠ 0, then f = Θ(nk).

A.1.2 Input size and running time
It will be important to distinguish between a problem and an instance of that
problem. For example, if our problem is 0, 1 feasibility, an instance of that
problem would be described by a matrix A, and a vector b and solving that
instance means checking if there exists a 0, 1 solution to Ax ≤ b for that
specific matrix A and vector b. When we say that an algorithm solves the 0, 1
feasibility problem, we mean that we have an algorithm that works for every
instance of the problem.

The input size of a given instance is the number of bits we need to store the
data in a computer. The way the data are encoded is not important2 as long as
we avoid storing numbers in base 1. We define the running time of an
algorithm as the number of primitive operations that are needed to complete

the computation where a primitive operation is one that can be completed in a
short fixed amount time on a computer (i.e. a constant number cycles on the
processor). This may include for instance:

arithmetic operations like +, −, ∗, / involving numbers of a bounded size,
assignments,
loops, or
conditional statements.

Example 31 Consider a simple algorithm that multiplies two square integer
matrices.

Algorithm A.10

1: Input: Matrices A, B ∈ n×n.
2: Output: Matrix C = AB.
3: Initialize C :=
4: for 1 ≤ i ≤ n do
5: for 1 ≤ j ≤ n do
6: Cij := 0
7: for 1 ≤ l ≤ n do
8: Cij := Cij + AilBlj

9: end for
10: end for
11: end for
12: return C

Let us assume that we are in the case where all numbers in the matrices A
and B are within a fixed range. Then every one of these numbers can be
stored using a fixed number of bits, say k. Thus, the total number of bits
required to store the data A, B (i.e. the input size) is 2 × n2 × k = Θ(n2).

The main work of the algorithm is done in two main loops in steps 4 and 5.
In particular, steps 6–9 are executed n2 times, once for each pair 1 ≤ i, j ≤ n.
Each such execution needs n + 1 assignments, n additions, and n

multiplications. Thus, the entire algorithm (modulo the initialization) needs

n2(3n + 1) = 3n3 + n2 = Θ(n3)

primitive operations in total.

Of course, we expect algorithms to have a longer running time as the size
of the instance increases. Hence, we will express the running time as a
function f of the input size s. Consider Example 31 again. For an instance A,
B of the problem (where A, B are n × n matrices), the size s of the problem is
Θ(n2) and the running time is Θ(n3). Thus, we have the following running
time:

In the case of Example 31, the running time is always going to be the same
for every instance of the same size s. Thus, there is no ambiguity when we
talk about running time. This need not be the case in general however.
Consider for instance the simplex algorithm. We may be given as input a
problem that is already in canonical form for an optimal basis, or we may be
given a problem of the same input size that will require many steps of the
simplex algorithm. How should we define the running time in this context?
We take a worst case view, and define the running time function f by letting
f(s) be the longest actual running time of the algorithm for input instances of
size s.

A.1.3 Polynomial and exponential algorithms
We say that an algorithm is (or runs in) polynomial-time if its running time
function f is a polynomial in the input size s; i.e. if f(s) = O(sk) for some
constant k. An algorithm is (or runs in) exponential-time if for some constant
k > 1 we have f(s) = Ω(ks); i.e. there are input instances of size s that require
our algorithm to execute a number of steps that is exponential in s.

Henceforth, we will say that polynomial-time algorithms are fast, and
exponential-time algorithms are slow. According to our definitions the simple

minded algorithm for the 0, 1 feasibility problem is slow and the algorithm
for multiplying two matrices is fast.

To motivate the notion of fast and slow, suppose that your computer is
capable of executing 1 million primitive instructions per second. Assume that
you have an algorithm that has running time f(s) for an input size s. The
following table shows the actual running time of this algorithm on your
computer for an input of size s = 100, depending on f(s). Clearly, the slow,
i.e. exponential-time algorithms (the rightmost two), will be of little use in
this case.

f(s) s s log2(s) s2 s3 1.5s 2s

Time < 1 sec < 1 sec < 1 sec 1 sec 12, 892
years

4 × 1016 years

Let us consider the impact of improved hardware on the ability of fast and
slow algorithms to solve large instances. Suppose that in 1970 Prof. Brown
was running a (fast) algorithm with a running time f(s) = s3 and that he was
able to solve a problem of size 50 in one minute on a computer. Forty years
later, in 2010, Prof. Brown has a new computer that is a million times faster
than the one he had in 1970. What is, then, the largest instance he can solve
in one minute running the same algorithm? If m denotes the number of
primitive operations that the computer could run in one minute in 1970, we
must have 503 ≤ m. We claim that Prof. Brown can solve problems of size
100 × 50 = 5000 with his 2010 computer. This is because for such a problem
the running time is (100 × 50)3 = 1003 × 503 ≤ 106 × m. Hence, the size of the
largest instance that can be solved has been multiplied by a factor 100.

On the other hand, suppose that in 1970 Prof. Brown was running a (slow)
algorithm with a running time f(s) = 2s and that he was able to solve a
problem of size at most 50 in one minute. As the largest instance he could
solve in 1970 had size 50, we must have had 251 > m. We claim that Prof.
Brown can only solve problems of size at most 50+20 with this new
computer. This is because for a problem of size 50 + 21 the running time is
250+21 = 251 × 220 > m × 220 > m × 106 as 220 > 106. Hence, the size of the
largest instance that can be solved has only increased by a small additive

amount!
This is in fact a general phenomenon: if we multiply the number of

allowed elementary operations by a constant, the largest size of a problem we
can solve by a polynomial-time algorithm changes by a multiplicative
constant, whereas the largest size of a problem we can solve by an
exponential-time algorithm changes by an additive constant.

Exercises

1 A standard legal size paper sheet is 0.1 millimeter thick. How many times
do you need to fold a legal size paper sheet into two such that the resulting
folded sheet has thickness larger than the distance between the earth and the
moon (384,400 km).

HINT: It is a surprisingly small number.

2 The Planet Express manufacturing plant produces gizmos of k different
types. Production of each gizmo of type i requires ai hours of labor, bi dollars
in additional costs, and has a resale value of ci dollars. In addition, no more
than five gizmo’s of any type i should be produced. You have at your
disposal α hours of labor and a budget of β dollars.
(a) Formulate as an integer program the problem of deciding how many

units of each gizmo to produce so as to maximize the total resale value
of the items produced while not exceeding the labor and budget at your
disposal. HINT: You will have an integer variable xi to indicate how
many gizmos of type i are produced.

(b) Professor Farnsworth proposes the following scheme for solving the
integer program. Since each variable xi can take only one of the
following values {0, 1, 2, 3, 4, 5}, try all possible combinations of
assignment of values to the variables xi, check if the corresponding
solution is feasible and pick the one which yields the maximum resale
value. Discuss the merits and shortcomings of such a strategy.

(c) Captain Leela uses the company’s mainframe computer to solve the
integer program following the strategy outlined by the Professor.
Suppose that she can now solve problem instances with 20 different
gizmo types. If the computer is upgraded to a new version that is 10 000

times faster, for how many gizmo types can Leela now solve the
problem?

3 Xavier is a student who finds the simplex algorithm complicated and
proposes the following alternative for finding an optimal solution to,

max{c⊤x : Ax = b, x ≥ 0}.

Using linear algebra find a maximal set of linearly independent columns AB

where B ⊆ {1, . . . , n}. Then AB is a square matrix. Set xj = 0 for all j ̸∈ B
and let xB be a solution to the system ABxB = b. Then x is a basic solution.
Among all basic solution x ≥ , choose the one that maximizes c⊤x.

Discuss the merit of Xavier’s proposals. In particular, indicate if the
scheme always gives a correct answer, and if it is practical.

A.2 Examples of fast and slow algorithms
In this section, we discuss the running time of the algorithms presented in this
book and classify them into slow and fast algorithms.

A.2.1 Linear programming
Linear programs was the first and most basic class of optimization problems
that we introduced in Chapter 1. In Chapter 2, we studied one of the most
popular and successful methods for solving such problems: the simplex
algorithm. Even after more than 70 years since its invention by George
Dantzig in the late 1940s [21], the simplex algorithm remains the dominant
method for solving LPs in most state-of-the-art linear programming solvers
[7].

Given this, it is hard to believe that the simplex algorithm is in fact a slow
algorithm, or to be more precise: we do not know of a pivoting rule for which
the simplex method runs in polynomial-time. In fact, Klee and Minty [40]
were the first to exhibit example instances on which the simplex algorithm
(with Dantzig’s pivoting rule) requires an exponential number of steps to
terminate. Later such examples were found for virtually all deterministic

pivoting rules (e.g., see [3]). If pivot rules are allowed to be randomized, we
can do slightly better: the simplex algorithm can be shown to run in
time for LPs with m constraints and n variables (see [33, 47]). The work in
the area of pivoting rules for the simplex method continues to date. In 2011,
Friedmann [27] proved that the least entered rule proposed by Zadeh in 1980
cannot yield a polynomial-time simplex algorithm in the worst case (this
particular problem had stayed open for 31 years).

So how can we explain the fact that simplex works so well in practice?
Borgwardt [10], gave one of the first partial answers, and showed that
simplex performs well on average instances; he showed the algorithm with
the shadow vertex pivot rule runs in expected polynomial-time for a certain
class of random instances. Also see Adler, Megiddo and Todd [1],
Haimovich [31], Smale [62, 61] and the references therein for related results.
However, random instances are not a good model for typical instances as
Spielman and Teng [63] pointed out. The authors proposed a different
argument for explaining the practical performance of the simplex method.
They argued that input data for practical LP problems is often inherently
noisy, and proposed the following smoothed complexity model for the
analysis of algorithms. Apply a tiny random perturbation to the data of any
given input instance, and bound the worst case expected running time of the
algorithm. In this model, the authors were able to show that the running time
of simplex can be bounded by a polynomial in the input size! So, if we ever
encounter an instance for which simplex method requires an unexpectedly
large number of iterations, then there always exists a tiny perturbation of that
data so that the LP resulting from the perturbed data is much better behaved.

The quest for a pivoting rule for simplex that guarantees polynomial
running time closely relates to the Hirsch conjecture for polyhedra. Given a
polyhedron P, we define a graph H(P) that has one vertex for each extreme
point of P. Two vertices x(1) and x(2) are connected by an edge if the
corresponding two extreme points are adjacent; i.e. if there exist bases
corresponding to these two extreme points that differ in exactly two elements
(thus could appear consecutively in the simplex algorithm). We say that two
extreme points x(1) and x(2) are at distance k if there is an x(1), x(2) -path in
H(P) with at most k edges. Figure A.1 illustrates these concepts: x(1) and x(2)

are adjacent, x(1) and x(3) are not, and x(3) and x(4) are at distance 2.

Figure A.1

The Hirsch conjecture is now as follows:

In an n-dimensional polyhedron P that is defined by m inequalities, any two
vertices x(1) and x(2) are at distance at most m − n.

It is now not difficult to see that an upper bound f(n, m) on the running time
of simplex when applied to an LP with n variables and m inequalities would
imply the same bound on the maximum distance between any two vertices of
the polyhedron corresponding to the feasible region. The existence of short
paths between any two extreme points of H(P) does not imply, however, that
simplex can find such a path. It turns out that the Hirsch conjecture as stated
is false; more than 50 years after being initially posed, Santos [57] very
recently found a complex counter example. The counter example does not
preclude that the diameter of a polyhedron is polynomial (or even linear) in m
and n, leaving a tantalizing open problem for the ambitious reader!

All of the above said, linear programming has polynomial-time algorithms.
In 1979, the Soviet mathematician L.G. Khachiyan [38] proved that the
ellipsoid method (originally proposed by Shor [59] as well as Nemirovski and

Yudin [52] for a class of wellbehaved nonlinear optimization problems) can
be implemented so that it becomes a polynomial-time algorithm to solve
linear programs, thereby showing that there is a fast algorithm for linear
programming.

While this discovery received a great deal of attention (among others, in an
article in the New York Times), the excitement about its practical impact
quickly dissipated. The ellipsoid method can be proven to run in polynomial
time for LP problems in particular (for a recent reference, see [42]) and
convex optimization problems in general, under suitable conditions (see [52]
and [64]). While this immediately implies that the ellipsoid method
outperforms almost all popular variants of the simplex method in the worst
case, the latter is much faster empirically. We note, however, that the
ellipsoid method has several crucial consequences for the theory of
optimization.

Since Khachiyan’s discovery, many variants and other polynomial
algorithms for linear programming (like interior-point methods introduced in
Section 7.8) have been developed, and some of them are competitive with the
simplex method in certain typical instances.

A.2.2 Other algorithms in this book
The shortest path algorithm developed in Section 3.1 is known as Dijkstra’s
algorithm [22]. When implemented in a straightforward way, its running time
is O(|V|2), but with some care (when using so called Fibonacci heaps) it is
possible to achieve a running time of O(|E| + |V| log |V|) [26], and this is the
fastest-known running time for the shortest path problem with nonnegative
weights. Better results are known for special cases.

Section 3.2 discusses the minimum cost perfect matching problem in
bipartite graphs. The Hungarian algorithm presented is due to Kuhn [43], and
a straightforward implementation runs in time O(|V|2|E|) (e.g., see [16]). With
some care, the algorithm can be implemented to run in time O(|V||E| + |V|2 log
|V|) [24].

Equivalent to finding a minimum weight perfect matching is the problem
of finding a maximum weight matching in a given graph (e.g., see [42]). If
we are interested in finding the matching of largest cardinality in a given

bipartite graph G = (V, E), we may use the algorithm of Hopcroft and Karp
[32] which runs in time Surprisingly, Micali and Vazirani [49]
showed that the same running time can also be obtained in general graphs.
Maximum weight matchings in general graphs can be found in time O(|E||V|
+ |V|2 log |V|) [28].

Finally, the cutting plane algorithm for integer programming presented in
Chapter 6 is not known to run in polynomial-time, and is in fact widely
expected to be a slow (i.e. exponential-time) algorithm. The reason for this
belief lies in the fact that such an algorithm could be used to solve truly
difficult, so-called NP-complete decision problems. We will discuss this in
the next section.

A.3 The classes NP, co-NP and P

A.3.1 Decision problems
A problem where for every instance the answer is either YES or NO is called
a decision problem. For example, given a rational matrix A and vector b, we
may ask if the system Ax = b has a solution. In this decision problem, an
instance is described by the matrix A and the vector b. Moreover, the answer
is either: YES the system Ax = b has a solution or NO the system Ax = b does
not have a solution. A list of decision problems is given in Table A.1.

Table A.1 Decision problems

Input
Question

Rational matrix A and vector b.
Does Ax = b have a solution?

Input
Question

Rational matrix A and vector b.
Does Ax ≤ b have a solution?

Input
Question

Rational matrix A and vector b.
Does Ax ≤ b have an integer solution?

Input Bipartite graph G.

Question Does G have a perfect matching?

Input
Question

Graph G = (V, E), s, t ∈ V, w ∈ E and k ∈ .
Does G have an st-path of length ≤ k?

Input
Question

Graph G = (V, E), s, t ∈ V, w ∈ E and k ∈ .
Does G have an st-path of length ≥ k?

Given a connected graph G = (V, E) with vertices s, t and nonnegative edge
weights w ∈ E the shortest path problem asks us to find the length of the
shortest st-path. (Here we are not concerned with finding the actual shortest
st-path.) Clearly, if we have a polynomial-time algorithm for solving the
shortest path problem, we can solve the associated decision problem in
polynomial-time. Namely, compute the length ℓ of the shortest st-path, if ℓ ≤
k then the answer is YES otherwise the answer is NO.

Moreover, we claim that given a polynomial-time algorithm for solving the
decision problem can we use it to find a polynomial-time algorithm for the
shortest path algorithm. In particular, this implies that the shortest path
problem and the decision problem are equivalent from the standpoint of
computational complexity. Since every edge has nonnegative integer weight,
the length of any st-path is an integer between 0 and u = ∑e∈E we. A simple
strategy would be to try consider every integer value k ∈ {0, . . . , u} and use
the algorithm for to check whether the length of the shortest st-path is less
than or equal to k. We will clearly be able to establish the length of the
shortest path in this manner, however, this will not result in a polynomial-
time algorithm for the shortest path problem. The difficulty here is that we
need to solve problem u times while O(|E| log2(u)) bits suffice to store all
the edge weights. Thus, the number of times we use solve problem can be
exponential in the size of the instance. While this simple strategy fails, the
following procedure will work,

Algorithm A.11

1: Initialize ℓ = 0, u = ∑e∈E we

2: while u > ℓ do

3:
4: if length of shortest st-dipath is ≤ k then
5: u = k
6: else
7: ℓ = k + 1
8: end if
9: end while
10: Return ℓ

We let the reader verify that ℓ is indeed the length of the shortest st-path. The
procedure will terminate after at most log2(u) steps, in particular the number
of times problem needs to be solved is a polynomial function of the size of
w.

More generally, for every optimization problem that asks to minimize
(resp. maximize) some function f(x) there is an associated decision problem
that asks for a fixed k if there exists x such that f(x) ≤ k (resp. f(x) ≥ k). Thus,
we will restrict our discussion to decision problems.

A.3.2 The class NP
Informally a decision problem is in NP3 if there exists a short certificate for
every YES instance. Consider the following metaphor. Alice wishes to
organize a party that is to be restricted to UW (University of Waterloo)
students. She books a venue and hires a bouncer to check every person that
wishes to enter the venue. The bouncer has to solve the following decision
problem: Given person X at the door, is X a UW student? If the answer is
YES then the person is accepted to the party, if the answer is NO then the
person is denied entry. Every UW student is given an identification card and
of course such IDs are only given to UW students. Thus, if person X is a UW
student he or she can easily convince the bouncer of that fact by exhibiting
his or her ID. In other words, for every YES instance X of the decision
problem, there is a certificate (in this case the UW ID) that allows us to
efficiently verify that it is indeed a YESinstance.

Let us formalize these ideas. Consider a class of decision problems D. A

YES-Checking algorithm is an algorithm that takes as input an instance D of
D as well as a potential certificate C(D) and returns OK if C(D) shows that D
is indeed a YES instance and returns NOT-OK otherwise. (Note, when the
YES-checking algorithm returns NOT-OK it does not mean that instance D
is a NO instance, it just means that the certificate C(D) is not sufficient to
establish that D is a YES instance.) We say that D is in NP if for every YES
instance D of D there exists a certificate C(D) for which the YES-Checking
algorithm returns OK. Moreover, we require that the running time of the
YES-Checking algorithm be polynomial in the size of instance D. In our
earlier metaphor, where the decision problem is to check if person X is a UW-
student, the YESchecking algorithm is the bouncer, and the bouncer can
efficiently verify if instance X is a YES instance by using the UW-ID as a
certificate.

Let us consider problem in Table A.1. An instance is a bipartite graph
G. If G is a YES instance, then G has a perfect matching. We can use as a
YES certificate a perfect matching M. The YES-checking algorithm is an
algorithm that given a subset of edges B says OK if B is a perfect matching
and NOT-OK if B is not a perfect matching. Clearly, it is easy to design such
an algorithm with running time polynomial in the size of the graph G. Thus,
by definition, is in NP.

Let us consider problem in Table A.1. An instance is a rational matrix A
and a rational vector b. If A, b is a YES instance, then there exists x such that
Ax = b. We can use as a YES certificate a vector x such that Ax = b. The
YES-checking algorithm is an algorithm that given a vector ˆx checks
whether Aˆx = b. We need to make sure that the algorithm runs in polynomial
time in the size of A and b however. In order to do this, we need to ensure
that we can choose x whose size is polynomial in the size of A and b. The
next remark indicates that this can always be achieved,

Remark A.1 Let A be a rational matrix, let b be a rational vector. If Ax = b
has a solution, then it has a solution x with size polynomial in the size of A
and b.

Proof We may assume that A is an n × n nonsingular matrix, for otherwise
we can reduce the system. Thus, x is the unique solution to Ax = b. Since A, b
are rational, we may assume after scaling that both A and b are integer. Let A

j be the matrix obtained from A by replacing the jth column by the vector b.
Cramer’s Rule from Linear Algebra now tells us that

In particular, xj is a rational number. We claim that in addition both the
numerator and the denominator can be represented using a number of bits
polynomial in the size of A, b. We consider the denominator only, as the
argument for the numerator is similar. Note, that det(A) ≤ n!αn ≤ nnαn, where
α = max{|Aij | : i, j ∈ {1, . . . , n}}. Thus, the denominator for xj requires at
most O(log2(nnαn)) = O(n log2(n) + n log2(α)) bits of storage.

Problems , , , are also in NP. We indicate for each problem the
required certificate:

 x such that Ax ≤ b,
 an integer x such that Ax ≤ b,
 a set of edges B that forms an st-path in G of length ≤ k,
 a set of edges B that forms an st-path in G of length ≥ k.

In exercises in Section A.3.4, you are asked to verify that we can pick x to be
of size polynomial in the size of A, b for problems and .

A.3.3 The class co-NP
Informally speaking, a decision problem is in co-NP if there exists short
certificate for every NO instance. More formally, a NO-Checking algorithm
is an algorithm that takes as input, an instance D of D as well as a potential
certificate C(D) and returns OK if C(D) shows that D is indeed a NO
instance and returns NOT-OK otherwise. (Note, when the NO-checking
algorithm returns NOT-OK it does not mean that instance D is a YES
instance, it just means that the certificate C(D) is not sufficient to establish
that D is a NO instance.) We say that D is in co-NP if for every NO instance
D of D there exists a certificate C(D) such that the NO-Checking algorithm
returns OK. Moreover, we require that the running time of the NO-Checking

algorithm be polynomial in the size of instance D.
Note that the existence of short YES certificate does not imply the

existence of a short NO certificate. To illustrate this fact, consider the
following metaphor. Bob, wishes to organize a party that is to be restricted to
everyone that is not a UW student. He hires a bouncer to check every person
that wishes to join the party. As for Alice’s party, the bouncer has to solve the
decision problem: given person X at the door, is X a UW student? In this case,
however, if the answer is NO, then the person is accepted into the party; if
the answer is YES, then the person is denied entry. Suppose person X is not a
UW student; can he or she easily convince the bouncer of that fact? There is
no obvious way of doing this. The fact that person X does not carry a UW ID
does not prove that X is not a UW student – he or she might have hidden his
or her ID in order to gain access to Bob’s party for instance. Thus, there is no
readily available NO certificate in this case.

Let us consider problem in Table A.1. An instance is a rational matrix A
and a rational vector b. If A, b is a NO instance, then there does not exist x
such that Ax = b. The Fredholm Theorem of the alternatives from linear
algebra implies that we can then find ȳ such that ȳ⊤A = 0 and ȳ⊤b ≠ 0.
Moreover, such a vector ȳ clearly implies that Ax = b has no solution. Thus, ȳ
is our certificate. Moreover, it can be readily checked that we can choose ȳ
that is of size polynomial in the size of A, b. It follows that there is a NO-
Checking algorithm with running time polynomial in the size of A, b. Thus,

 is in co-NP.
Let us consider problem in Table A.1. An instance is a rational matrix A

and a rational vector b. If A, b is a NO instance, then there does not exist x
such that Ax ≤ b. A variant of Farkas’ lemma (see Lemma 4.8 and Exercise 1
in Section 4.4) implies that we can then find ȳ ≥ such that ȳ⊤A = 0 and ȳ⊤b <
0. Moreover, it can be readily checked that we can choose ȳ that is of size
polynomial in the size of A, b. It follows that there is a NO-Checking
algorithm with running time polynomial in the size of A, b. Thus, is in co-
NP.

Let us consider problem in Table A.1. Let G be a bipartite graph with
bipartition U, W. If G is a NO instance, then G has no perfect matching. If |U|
≠ |W|, then U, W is our certificate. Otherwise, Hall’s theorem (Theorem 3.12)
implies that there exists a deficient set S, i.e. S ⊆ U such that |S| > |NG(S)|.

Then S is our certificate. Hence, is in co-NP. In Exercise 2 in Section
A.3.4, you are asked to prove that the decision problem is in co-NP. It is
not known whether and are in co-NP, in fact it is widely believed that
they are not.

A.3.4 The class P
A decision problem D is in P if there is a polynomial-time algorithm that for
every instance D of D returns YES if D is a YES instance and returns NO if
D is a NO instance. Observe that if D is in P, then D is also in NP, as the
algorithm in this case can determine efficiently whether the instance is a YES
or NO instance without the help of any certificate, or equivalently the empty
string is a certificate for the YES instances. Similarly, P is contained in co-
NP. We can represent this by the Venn diagram below. Note, it is not known
whether P ≠ NP. In fact, this question appears among the seven entries of the
Millennium Prize Problems list of the Clay Mathematics Institute. A correct
resolution of the status of the question entails its author to a $1 000 000
reward! Similarly to P ≠ NP, it is not known whether P ≠ co-NP, or whether
P = NP ∩ co-NP.

We proved that problems , , , and in Table A.1 are all in NP ∩
co-NP. It follows in fact from our discussion in Section A.2 that these
problems are all in P.

Exercises

1 Let A, b be a rational matrix and vector. Show that if Ax ≤ b has a solution,
then it has a solution that is of size polynomial in the size of A, b. Deduce that

problem from Table A.1 is in NP.
HINT: Consider the extreme points of {x : Ax ≤ b} and use Remark A.1.

2 Show that problem from Table A.1 in is co-NP.
HINT: See Proposition 3.6.

3 Suppose that we have a set of factories labeled 1 through m each
producing the same car model. Suppose that we have a set of showrooms
labeled 1 through n. Exactly pi cars need to leave factory i for every i = 1, . . .
, m and exactly dj cars need to arrive at showroom j for every j = 1, . . . , n.
Thus, if we denote by xi,j the number of cars transported from factory i to
showroom j, then we have to satisfy

i = 1, . . . , n. (1)

j = 1, . . . , m. (2)

xi,j ≥ 0, i = 1, . . . , n, j = 1,
. . . , m. (3)

The transportation feasibility problem is the decision problem that given m,
n, p1, . . . , pm and d1, . . . , dn asks if there exists an integer x satisfying all of
(1), (2), and (3).
(a) Show that this problem is in NP?
(b) Is this problem in co-NP?
(c) Is this problem in P?

4 (Advanced) Let A be a rational matrix and let b be a rational vector. The
goal of this exercise is to show that the decision problem in Table A.1 is in
NP. Let P denote the polyhedron {x : Ax ≤ b}. Given sets A, B ⊆ n, we
denote by A + B the set {a + b : a ∈ A, b ∈ B}. Given vectors x(1), . . . , x(k),
we denote by conv{x(1), . . . , x(k) } to be the set of all convex combinations of
x(1), . . . , x(k) (see Exercise 7 in Section 2.8.4).

We will make use (without proof) of the following theorem of Weyl–
Minkowski:

P = conv{x(1), . . . , x(k) } + cone{r(1), . . . , r(ℓ)} (⋆)

where x(1), . . . , x(k) are extreme points of P and where cone{r(1), . . . , r(ℓ) } =
{x : Ax ≤ }.
(a) Show that x(1), . . . , x(k) are of size polynomial in A, b.
(b) Show that we may assume r(1), . . . , r(ℓ) are integer and of size

polynomial in A, b.
(c) Let

Show P has nonempty intersection with n if and only if conv{x(1), . . . ,
x(k) } + B does.

(d) Deduce that the decision problem in Table A.1 is in NP.

A.4 Hard problems
A natural question is whether there exists a polynomial-time algorithm for
every optimization/enumeration problem. This is not the case. Consider the
following problem: given a rational matrix A and vector b, find the set of all
extreme points of the polyhedron P = {x : Ax ≤ b}. It is not hard to see that, in
general, the number of extreme points of P can be exponential in the size of
the instance A, b. Thus, to simply write down the answer to the enumeration
problem, will require exponential time. The situation for problems in NP is
markedly different, there are no problems for which we can prove that a
polynomial algorithm does not exist (for otherwise we would know that P ≠
NP). We will show instead that there exists a large collection of problems in
NP that have the property that if any one of these problems is in P, then all
them are in P.

A.4.1 Reducibility
We revisit the idea of reducibility introduced in Section 2.6.1. Consider two
decision problems, say A and B. If given an polynomial-time algorithm to
solve problem B, we can solve every instance of A in polynomial-time, then
A is reducible to B. In other words, B is at least as hard as A (from our
complexity point of view, where we only care whether a problem can be
solved in polynomial-time). Being reducible is a transitive relation,

Remark A.2 Let A , B, and C be decision problems. If A is reducible to B
and B is reducible to C , then A is reducible to C .

In the remainder of this section, we give examples of reductions.
Let x1, x2, . . . , xn denote Boolean variables. So, xj is either TRUE or

FALSE. A literal is either a variable xj or its complement xj. A clause is a
disjunction of a finite collection of literals (e.g., clause Cj can be (x5 ∨ x3 ∨
x2 ∨ x10)). A formula is a conjunction of a finite collection of clauses. For
example

(x5 ∨ x3 ∨ x2 ∨ x10) ∧ (x1) ∧ (x2 ∨ x4 ∨ x8 ∨ x9 ∨ x7).

A formula is satisfied for an assignment of TRUE/FALSE values to its
variables if every clause is satisfied. For instance, in the above example we
can satisfy the formula by assigning x1 FALSE, x2 TRUE, x3 FALSE, and all
other variables to any TRUE/FALSE. The SAT decision problem takes as input
a formula, and the question is whether there is an assignment of values to the
variables that satisfies the formula. The 0,1 Feasibility decision problem
takes as input a rational matrix A, a rational vector b, and asks if there is a
vector x where all entries are in {0, 1} for which Ax ≥ b.

PROPOSITION A.3 SAT is reducible to 0,1 Satisfiability.

Proof Suppose that we had a polynomial-time algorithm to solve the 0, 1
feasibility problem. We could then proceed as follows to solve satisfiability.
Given a formula with clauses C1, C2, . . . , Cm and variables x1, x2, . . . , xn,
define the following 0, 1 feasibility problem

(i ∈ {1, . . . , m) (A.1)

xj ∈ {0, 1} (j ∈ {1, . . . , n}). (A.2)

Then it can be readily checked that there is a solution to the formula if and
only if there is a solution to (A.1), (A.2). □

The Quadratic Feasibility problem takes as input a set of functions fi(x) for
i = 1, . . . , k of degree at most 2 where each of fi is described by rational
coefficients. The question is whether there exists x such that fi (x) ≤ 0 for i =
1, . . . , k.

PROPOSITION A.4 0,1 Satisfiability is reducible to Quadratic Feasibility.

Proof We can encode the constraints that xj ∈ {0, 1} as the constraint xj (1
− xj) = 0, or equivalently as and □

The partition problem takes as input, integers a1, a2, . . . , an, and the
question is whether we can find sets J and K such that J ∪ K = {1, . . . , n}, J
∩ K = and

The Knapsack problem takes as input integers α1, α2, . . . , αn, c1, c2, . . . , cn,
b and M. The question is whether there exists x ∈ {0, 1}n such that

PROPOSITION A.5 SAT is reducible to partition.

PROPOSITION A.6 Partition is reducible to Knapsack.

Proof Given integer a1, . . . , an set and for all j = 1, . . .

, n, let αj = cj = aj. Now it is easy to check that the answer is YES for the
Partition problem if and only if the answer is YES for the Knapsack
problem. □

Exercises

1 Let A be a rational matrix and b, c be rational vectors. Let (P) denote the
following linear program, max{c⊤x : Ax ≤ b} and consider the following
decision problems:
(D1) Is (P) feasible?
(D2) Is (P) unbounded?
(D3) Does (P) have an optimal solution?
Show that for any i, j ∈ {1, 2, 3}, problem (Di) is reducible to problem (Dj).

A.4.2 NP-complete problems
A decision problem D is said to be NP-hard if every problem in NP is
reducible to D. A decision problem D is said to be co-NP-hard if every
problem in co-NP is reducible to D. It is not obvious at all that there are NP-
complete decision problem. The following seminal result proves that this is
indeed the case:

THEOREM A.7 (Cook’s theorem). SAT is NP-complete.

We will omit the proof of this result.
We summarize the relations we established between a number of problems

in NP in the following figure. An arrow indicates that the problem at the tail
of the arrow is reducible to the problem at the head of the arrow. Arrows A,
B, C, and D correspond to respectively Proposition A.3, A.5, A.4, and A.6.
The thick arrows follow from Theorem A.7. Note, that it follows from the
fact that SAT is NP-complete and Remark A.2 that all of SAT, 0,1
Feasibility, Quadratic feasibility, Partition, and Knapsack are NP-complete.
In particular, Knapsack indicates that solving 0, 1 Integer Programs with a
single constraint is difficult.

A.4.3 Complexity as guide
Suppose that your boss asks you design a polynomial-time algorithm for an
optimization problem. You can use the ideas in this appendix as a guide. First
define D to be the associated decision problem. Then investigate if there is an
easy way of certifying the YES and NO answers, i.e. try to prove that D is in
NP ∩ co-NP. If you succeed in proving this, you should try to prove that D
∈ P. If you fail to prove that D ∈ NP or that D ∈ co-NP, you should try to
prove that D is NP-hard or that D is co-NP-hard. If you succeed in designing
a polynomial-time algorithm for D , then you will surely earn the gratitude of
your boss; on the other hand, if you succeed in showing that D is NP-hard, it
will indicate to your boss that nobody else is likely to find a polynomial
algorithm and that at the very least firing would do her no good. Note,
however that in practice we can solve many instances of NP-complete
problems quite well. Indeed Integer Programming feasibility is hard, yet
countless corporations use integer programming solvers. The fact that a
problem is NP-hard only indicates that we cannot always expect an exact
answer within a short amount of time. This is an indication that the use of
heuristic or restricting the search to an approximate solution might be in

order.

A.4.4 Easy versus hard problems
A striking aspect of complexity theory is that the boundary between easy (i.e.
P) and hard (i.e. NP-complete) problems is very subtle with many pairs of
problems with seemingly similar formulations falling in one category or the
other. Table A.2 provides a number of examples. Problems on the left-hand
side are in P and problems on the righthand side are NP-complete. Consider
problems , , . The table shows that while solving inequalities with
continuous variables or solving linear equations with integer variables is
easy, combining inequalities and integer variables is hard.

Table A.2 Easy and hard decision problems

P NP-Complete

Input
Question Rational matrix A and vector b.

Does Ax ≤ b have a solution?1

Input
Question

Rational matrix A and vector b.
Does Ax = b have an integer
solution?1

Rational matrix A and
vector b.
Does Ax ≤ b have an
integer solution?

Input
Question Graph G = (V, E), s, t ∈ V, w ∈

E and k ∈ .
Does G have an st-path of length
≤ k?1

Graph G = (V, E), s, t ∈
V, w ∈ E and k ∈ .
Does G have an st-path
of length ≥ k?

Input
Question

Graph G = (V, E), s, t ∈ V, w ∈
Graph G = (V, E), s, t, u
∈ V, w ∈ E and k ∈

E and k ∈ .
Does G have an st-walk using
vertex u of length ≤ k?1

.
Does G have an st-path
using vertex u of length ≤
k?

Input
Question Planar graph G.

Can G be 4-colored?1
Planar graph G.
Can G be 3-colored?

Input
Question

A graph G and an integer k.
Is there a matching M with |M| ≥
k?1

A hypergraph G and an
integer k.
Is there a matching M
with |M| ≥ k?

Input
Question A graph G.

Is there a closed walk visiting
each edge exactly once?1

A graph G.
Is there a closed walk
visiting each vertex
exactly once?

Problems , indicate that while finding the shortest st-path in a graph is
easy, finding the longest st-path in a graph appears to be hard.

A walk W is a sequence of edges

v1v2, v2v3, . . . , vk−2vk−1, vk−1vk.

It is an st-walk if v1 = s, vk = t. When all of v1, . . . , vk are distinct, then the st-
walk W is an st-path. Consider a graph G with nonnegative integer edge
weights and vertices s, t, u. We can find in polynomial-time a shortest su-path
P1 and a shortest ut-path P2. If we concatenate P1 and P2, we obtain a
shortest st-walk that visits the intermediary vertex u. This proves together
with the shortest path algorithm that is in P as indicated in the table.
However, indicates that it is hard to find a shortest st-path that visits an
intermediary vertex u.

A graph G is planar if it can be drawn on the plane such that no two edges

cross. A graph is k-colorable if we can find an assignment of at most k colors
to the vertices with the property that adjacent vertices are assigned distinct
colors. The celebrated 4-color Theorem states that any planar graph is 4-
colorable. Thus, problem is indeed in P

(use the trivial algorithm that always says YES). On the other hand
indicates that checking if a planar graph is 3-colorable is hard.

A hypergraph is a pair (V, E) where V are the vertices and E are the
hyperedges which are subsets of the vertices. Thus, a graph is a hypergraph,
where every hyperedge has cardinality 2. A matching in a hypergraph a set of
pairwise disjoint hyperedges. Checking if a graph has a matching of size at
least k is easy, thus is P. But is NP-complete, thus checking if a
hypergraph has a matching of size at least k is hard. Note, this remains hard
even if all the hyperedges have cardinality three.

An st-walk is closed if s = t, i.e. it starts and end at the same vertex. ℓ
indicates that finding a closed walk that visits every edge exactly once is
easy. However, says that finding a closed walk that visits every vertex
exactly once is hard. Note, such a closed walk is known as a Hamiltonian
cycle.

1 is the set of all positive integers, i.e. 1, 2, 3, 4,
2 To store numbers that can take values between 1 and ℓ in base 1 we require ℓ bits,

however, by using base p, we only require, logp (ℓ) bits, an exponential difference in
storage requirements.

3 NP stands for Non-deterministic Polynomial-time.

References

[1] I. Adler, N. Megiddo, and M. J. Todd. New results on the average behavior of
simplex algorithms. Bull. Amer. Math. Soc. (N.S.), 11(2): 378–382, 1984.

[2] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-
restrictions. ACM ToDs, 2(2): 153–177, 2006.

[3] N. Amenta and G. Ziegler. Deformed products and maximal shadows of polytopes.
In B. Chazelle, J. Goodman, and R. Pollack, editors, Advances in Discrete and
Computational Geometry, pages 57–90. American Mathematical Society, 1999.

[4] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series
in Applied Mathematics. Princeton University Press, Princeton, NJ, 2009.

[5] D. Bertsimas and R. Weismantel. Optimization over Integers. Athena Scientific,
Nashua, NH, 2005.

[6] M. J. Best. Portfolio Optimization. Chapman & Hall/CRC Finance Series. CRC
Press, Boca Raton, FL, 2010.

[7] R. E. Bixby. Personal communication. President and Co-founder, Gurobi
Optimization, 2013.

[8] R. E. Bixby. The simplex algorithm: it’s alive and well. Presented at the Tutte
Colloquium, Waterloo, Ontario, Canada, 2013.

[9] R. G. Bland. New finite pivoting rules for the simplex method. Math. Oper. Res.,
2(2): 103–107, 1977.

[10] K. H. Borgwardt. The average number of pivot steps required by the simplex method
is polynomial. Zeitschrift für Operations Research, 26: 157–177, 1982.

[11] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

[12] X. Chen, F. Xu, and Y. Ye. Lower bound theory of nonzero entries in ℓ1 − ℓp
minimization. SIAM J. Sci. Comp., 32: 2832–2852, 2010.

[13] V. Chvátal. Linear Programming. A Series of Books in the Mathematical Sciences.
W. H. Freeman & Company, New York, 1983.

[14] M. Conforti, G. Cornuéjols, and G. Zambelli. Polyhedral approaches to mixed integer
linear programming. In M. Jnger, T. Liebling, D. Naddef, G. L. Nemhauser, W. R.
Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey, editors, 50 Years of Integer
Programming 1958–2008: From the Early Years to the State-of-the-Art, pages 334–

384. Springer, 2010.
[15] W. J. Cook. In Pursuit of the Traveling Salesman: Mathematics at the Limits of

Computation. Princeton University Press, Princeton, NJ, 2011.
[16] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial

Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization.
John Wiley & Sons, New York, 1998.

[17] G. Cornuéjols and R. Tütüncü. Optimization Methods in Finance. Mathematics,
Finance and Risk. Cambridge University Press, Cambridge, 2007.

[18] R. W. Cottle. William Karush and the KKT theorem. Doc. Math. (Extra volume:
Optimization stories): 255–269, 2012.

[19] W. H. Cunningham and J. G. Klincewicz. On cycling in the network simplex method.
Math. Program., 26: 182–189, 1983.

[20] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, 1963.

[21] Dantzig, G. B. Maximization of a linear function of variables subject to linear
inequalities. In T. C. Koopmans, editor, Activity Analysis of Production and
Allocation, pages 339–347. John Wiley & Sons, New York, 1951.

[22] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1: 269–271, 1959.

[23] I. Dinur and S. Safra. The importance of being biased. In Proceedings, ACM
Symposium on Theory of Computing, pages 33–42. ACM, New York, NY, 2002.

[24] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the Association for Computing Machinery, 19:
248–264, 1972.

[25] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4): 634–652,
1998.

[26] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3): 596–615, July 1987.

[27] O. Friedmann. A subexponential lower bound for Zadeh’s pivoting rule for solving
linear programs and games. In Integer Programming and Combinatorial
Optimization, volume 6655 of Lecture Notes in Computer Science, pages 192–206.
Springer, Heidelberg, 2011.

[28] H. N. Gabow. Data structures for weighted matching and nearest common ancestors
with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’90), pages 434–443. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1990.

[29] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third
edition, 1996.

[30] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2 of Algorithms and Combinatorics, Springer-Verlag, Berlin,
second edition, 1993.

[31] M. Haimovich. The simplex method is very good!–on the expected number of pivot
steps and related properties of random linear programs. Technical Report, Columbia
University, NY, 1983.

[32] J. E. Hopcroft and R. M. Karp. An n**(5/2) algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4): 225–231, 1973.

[33] G. Kalai. A subexponential randomized simplex algorithm. In Proceedings of the
Twenty-Fourth Annual ACM Symposium on the Theory of Computing, pages 475–
482. ACM, New York, NY, 1992.

[34] D. Karger. Minimum cuts in near linear time. J. ACM, 47(1): 46–76, 2000.
[35] N. Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4(4): 373–395, 1984.
[36] W. Karush. Minima of functions of several variables with inequalities as side

conditions. ProQuest LLC, Ann Arbor, MI, 1939. Thesis (SM)–The University of
Chicago.

[37] L. G. Khachiyan. A polynomial algorithm in linear programming. Dokl. Akad. Nauk
SSSR, 244(5): 1093–1096, 1979.

[38] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet
Mathematics Doklady, 20: 191–194, 1979.

[39] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-
epsilon. J. Comput. Syst. Sci., 74(3): 335–349, 2008.

[40] V. Klee and G. Minty. How good is the simplex algorithm? In O. Shisha, editor,
Inequalities, pages 159–175. Academic Press, New York, 1972.

[41] J. Kleinberg and É. Tardos. Algorithm Design. Pearson Studium, 2006.
[42] B. Korte and J. Vygen. Combinatorial Optimization. Springer, New York, 5th

edition, 2012.
[43] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res. Logist.

Quart., 2: 83–97, 1955.
[44] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the

Second Berkeley Symposium on Mathematical Statistics and Probability, 1950,
pages 481–492. University of California Press, Berkeley and Los Angeles, 1951.

[45] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy, and D. B. Shmoys. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley Series in
Discrete Mathematics & Optimization, John Wiley & Sons, New York, 1985.

[46] J. Lee. Hoffman’s circle untangled. SIAM Rev., 39(1): 98–105, 1997.
[47] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear

programming. Algorithmica, 16(4/5): 498–516, 1996.

[48] R. R. Meyer. On the existance of optimal solutions of integer and mixed-integer
programming problems. Mathematical Programming, 7: 223–225, 1974.

[49] S. Micali and V. Vazirani. An algorithm for maximum matching in general graphs. In
Proceedings of the 21st IEEE Annual Symposium on the Foundations of Computer
Science, pages 17–27. IEEE, New York, 1980.

[50] R. D. C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial time primal–dual
affine scaling algorithm for linear and convex quadratic programming and its power
series extension. Math. Oper. Res., 15: 191–214, 1990.

[51] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic and
nonlinear programming. Math. Program., 39: 117–129, 1987.

[52] A. S. Nemirovskii and D. B. Yudin. Informational complexity and efficient methods
for the solution of convex extremal problems. Ékonomika i Matematicheskie
Metody, 12: 357–369, 1976.

[53] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic Publishers, Boston, MA, 2004.

[54] A. L. Peressini, F. E. Sullivan, and J. J. Uhl. The Mathematics of Nonlinear
Programming. Undergraduate Texts in Mathematics, Springer-Verlag, New York,
1988.

[55] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, New York,
third edition, 2008. With 1 CD-ROM (Windows, Macintosh and UNIX).

[56] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings, ACM
Symposium on Theory of Computing, pages 475–484. ACM, New York, NY, 1997.

[57] F. Santos. A counter example to the Hirsch conjecture. Annals of Math., 176(2): 383–
412, 2012.

[58] A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics. John Wiley & Sons, Chichester, 1986.

[59] N. Shor. Cut-off method with space extension in convex programming problems.
Cybernetics, 13: 94–96, 1977.

[60] M. Sipser. Introduction to the Theory of Computation. Cengage Learning, 2nd
edition, 2006.

[61] S. Smale. On the average number of steps of the simplex method of linear
programming. Math. Programming, 27(3): 241–262, 1983.

[62] S. Smale. The problem of the average speed of the simplex method. In Mathematical
Programming: The State of the Art (Bonn, 1982), pages 530–539. Springer, Berlin,
1983.

[63] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. J. ACM, 51(3): 385–463, 2004.

[64] L. Tunçel. Polyhedral and Semidefinite Programming Methods in Combinatorial

Optimization. American Mathematical Society, 2010.
[65] L. Tunçel. Constant potential primal–dual algorithms: a framework. Math.

Programming, 66(2, Ser. A):145–159, 1994.
[66] R. J. Vanderbei. Linear Programming. International Series in Operations Research &

Management Science, 37, Kluwer Academic Publishers, Boston, MA, second
edition, 2001.

[67] S. A. Vavasis. Nonlinear Optimization. Complexity Issues. Oxford University Press,
1991.

[68] V. V. Vazirani. Approximation Algorithms. Springer, 2001.
[69] D. P. Williamson and D. Shmoys. The Design of Approximation Algorithms.

Cambridge University Press, 2011.
[70] W. L. Winston. Operations Research, Applications and Algorithms. Thomson

Learning, 2004.
[71] L. A. Wolsey. Integer Programming. Wiley-Interscience Series in Discrete

Mathematics and Optimization. John Wiley & Sons, New York, 1998.
[72] Y. Ye. Interior Point Algorithms. Wiley-Interscience Series in Discrete Mathematics

and Optimization. John Wiley & Sons, New York, 1997.

Index

O(·), 245
Θ(·), 245

active constraints, 90
active cut, 114
adjacent vertices, 27
affine function, 5
affine function, 207
algorithm, 1
alternating path, 133
alternating tree, 134
arc

head, 111
tail, 111

augmented matrix, 83
augmenting path, 133
auxiliary

linear program, 77, 78
variables, 77

balance constraints, 8
basic feasible solution, 58
basic solution, 57
basis, 57

feasible, 58
binary, 166
binary variable, 17
bipartite, 29
Bland’s rule, 70, 80
Bolzano–Weierstrass theorem, 231
branch and bound, 196

branch and bound nodes, 197
branch and bound tree, 197, 198
branch and cut, 183
branching on a variable, 196

canonical form, 59
certificate of infeasibility, 47
certificate of optimality, 49
certificate of unboundedness, 48
clause, 258
closed set, 231
closure, 231
Co-NP, 252

hard, 260
coercive function, 234
compact set, 230, 231
complementary slackness, 155
complementary slackness theorem, 155
cone, 158
cone of tangents of feasible arcs, 229
cone of tight constraints, 159
continuous function, 231
converge, 231
convex hull, 183, 230
convex set, 88
cutting plane, 189
cycle, 134
cycling, 70

Dantzig’s rule, 73
decision problem, 252
deficient set, 126
degenerate, 98
depth-first search, 199
differentiability, 220
digraph, 148
dual, 106, 121
dual simplex algorithm, 199, 235

edge, 26
edge-cover, 35
ellipsoid method, 251
endpoint, 27
epigraph of a function, 212
equality edge, 118
equality edge/arc, 114
equivalent linear programs, 51
Euclidean ball

open, 235
Euclidean norm, 86
exponential-time algorithm, 247
extreme point, 89

Farkas’ lemma, 47, 163
feasible solution, 4
feasible region, 86
Fermat’s last theorem, 209
formula, 258
formulation, 1, 4
free variable, 97
fundamental theorem of integer programming, 185
fundamental theorem of linear programming, 44, 81

gradient, 220
graph, 26

arc, 111
bipartite, 29
connected, 134
directed, 148
tree, 134

Graph: matching, 29
Graph: perfect matching, 29
Graph: st-cut, 32

halfspace, 87
Hall’s theorem, 126
Hamiltonian cycle, 204
Hirsch conjecture, 251

hyperplane, 87

incident, 27
input size, 246
input-output systems, 175
instance, 245
integer program

IP, 14
integer feasibility problem, 25
integer program, 14

mixed, 14
pure, 14

interior of a set, 235
interior-point methods, 234
inverse function theorem, 241

Karush–Kuhn–Tucker theorem, 221, 224
for nonconvex problems, 228

KKT point, 232
knapsack problem, 17
KWOil example, 7

Lagrangian, 224
Lagrangian dual, 226
largest coefficient rule, 73
largest improvement rule, 73
law of diminishing marginal returns, 175
leaf, 135
level set, 213
lexicographic rule, 97
line segment between two points, 88
line through two points, 88
linear constraint, 6
linear function, 5
linear program, 6

feasible, 44
infeasible, 44
unbounded, 44

linear programming relaxation, 107, 123

literal, 258
local conic convex approximation, 229
LP relaxation, 107, 123, 189

M-alternating tree, 140
M-covered, 138
M-exposed, 138
Mangasarian–Fromowitz constraint qualification, 232
Markowitz model, 43
matching

maximum, 134
mathematical constraint, 1
maximum-weight matching, 35
Minkowski’s theorem, 232

neighbors: set of, 126
nonlinear program, 37
nonlinear program:NLP, 37
nondegenerate, 174
NP, 253, 254

Co-NP, 255
hard, 260

objective function, 1
open set, 235
optimal value, 44
optimal solution, 4

unique, 174

P, 256
path, 27
pivot rules, 97
pivoting, 82
polyhedron, polyhedra, 88
polynomial-time algorithm, 247
portfolio optimization, 41, 43
positive semidefinite matrix, 95
potential function, 239
primal–dual pair, 143

pruning, 198

ratio test, 65
reduced cost, 118
reducible, 258
robust optimization, 43
running time, 247

saddle point, 228
SAT, 258
separation algorithm, 203
set-cover problem, 166
shadow price, 174
shadow prices, 174
shortest path problem, 27
simplex algorithm, 56, 70
Slater point, 221
solution, 4
st-cut, 32

feasible, 44
optimal, 44

stalling, 98
standard equality form (SEF), 50
steepest edge rule, 73
strictly convex function, 233
strong duality, 150
strong duality theorem, 150
subgradient, 216
subtour elimination, 202
supporting halfspace, 217

tableau, 84
tight constraint, 90
traveling salesman problem (TSP), 201
tree

spanning, 204

value, objective function value, 44
variable

basic, 57
free, 52, 121
nonbasic, 57
slack, 53

variables, 1
vertex, 26
vertexcover, 35, 110

walk, 261
WaterTech example, 1
weak duality theorem, 106, 121, 145
width of a cut, 101
word description, 4

	Half Title Page
	Title Page
	Copyright
	Contents
	Preface
	1 Introduction
	1.1 A first example
	1.1.1 The formulation
	1.1.2 Correctness

	1.2 Linear programs
	1.2.1 Multiperiod models

	1.3 Integer programs
	1.3.1 Assignment problem
	1.3.2 Knapsack problem

	1.4 Optimization problems on graphs
	1.4.1 Shortest path problem
	1.4.2 Minimum cost perfect matching

	1.5 Integer programs continued
	1.5.1 Minimum cost perfect matching
	1.5.2 Shortest path problem

	1.6 Nonlinear programs
	1.6.1 Pricing a tech gadget
	1.6.2 Finding a closest point feasible in an LP
	1.6.3 Finding a “central” feasible solution of an LP

	1.7 Overview of the book
	1.8 Further reading and notes

	2 Solving linear programs
	2.1 Possible outcomes
	2.1.1 Infeasible linear programs
	2.1.2 Unbounded linear programs
	2.1.3 Linear programs with optimal solutions

	2.2 Standard equality form
	2.3 A simplex iteration
	2.4 Bases and canonical forms
	2.4.1 Bases
	2.4.2 Canonical forms

	2.5 The simplex algorithm
	2.5.1 An example with an optimal solution
	2.5.2 An unbounded example
	2.5.3 Formalizing the procedure

	2.6 Finding feasible solutions
	2.6.1 General scheme
	2.6.2 The two phase simplex algorithm–an example
	2.6.3 Consequences

	2.7 Simplex via tableaus*
	2.7.1 Pivoting
	2.7.2 Tableaus

	2.8 Geometry
	2.8.1 Feasible region of LPs and polyhedra
	2.8.2 Convexity
	2.8.3 Extreme points
	2.8.4 Geometric interpretation of the simplex algorithm

	2.9 Further reading and notes

	3 Duality through examples
	3.1 The shortest path problem
	3.1.1 An intuitive lower bound
	3.1.2 A general argument – weak duality
	3.1.3 Revisiting the intuitive lower bound
	3.1.4 An algorithm
	3.1.5 Correctness of the algorithm

	3.2 Minimum cost perfect matching in bipartite graphs
	3.2.1 An intuitive lower bound
	3.2.2 A general argument–weak duality
	3.2.3 Revisiting the intuitive lower bound
	3.2.4 An algorithm
	3.2.5 Correctness of the algorithm
	3.2.6 Finding perfect matchings in bipartite graphs*

	3.3 Further reading and notes

	4 Duality theory
	4.1 Weak duality
	4.2 Strong duality
	4.3 A geometric characterization of optimality
	4.3.1 Complementary slackness
	4.3.2 Geometry

	4.4 Farkas’ lemma*
	4.5 Further reading and notes

	5 Applications of duality*
	5.1 Approximation algorithm for set-cover
	5.1.1 A primal–dual algorithm
	5.1.2 Greed is good ... at least sometimes
	5.1.3 Discussion

	5.2 Economic interpretation
	5.3 The maximum-flow–minimum-cut theorem
	5.3.1 Totally unimodular matrices
	5.3.2 Applications to st-flows

	6 Solving integer programs
	6.1 Integer programs versus linear programs
	6.2 Cutting planes
	6.2.1 Cutting planes and the simplex algorithm

	6.3 Branch and bound
	6.4 Traveling salesman problem and a separation algorithm*
	6.5 Further reading and notes

	7 Nonlinear optimization
	7.1 Some examples
	7.2 Some nonlinear programs are very hard
	7.2.1 NLP versus 0,1 integer programming
	7.2.2 Hard small-dimensional instances

	7.3 Convexity
	7.3.1 Convex functions and epigraphs
	7.3.2 Level sets and feasible region

	7.4 Relaxing convex NLPs
	7.4.1 Subgradients
	7.4.2 Supporting halfspaces

	7.5 Optimality conditions for the differentiable case
	7.5.1 Sufficient conditions for optimality
	7.5.2 Differentiability and gradients
	7.5.3 A Karush–Kuhn–Tucker theorem

	7.6 Optimality conditions based on Lagrangians
	7.7 Nonconvex optimization problems
	7.7.1 The Karush–Kuhn–Tucker theorem for nonconvex problems[sup(⋆)]
	7.7.2 Convex relaxation approach to nonconvex problems*

	7.8 Interior-point method for linear programs*
	7.8.1 A polynomial-time interior-point algorithm*

	7.9 Further reading and notes

	Appendix A Computational complexity
	A.1 What is a fast (resp. slow) algorithm?
	A.1.1 The big “O” notation
	A.1.2 Input size and running time
	A.1.3 Polynomial and exponential algorithms

	A.2 Examples of fast and slow algorithms
	A.2.1 Linear programming
	A.2.2 Other algorithms in this book

	A.3 The classes NP, co-NP and P
	A.3.1 Decision problems
	A.3.2 The class NP
	A.3.3 The class co-NP
	A.3.4 The class P

	A.4 Hard problems
	A.4.1 Reducibility
	A.4.2 NP-complete problems
	A.4.3 Complexity as guide
	A.4.4 Easy versus hard problems

	References
	Index

