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Filling the need for an introductory book on linear programming that discusses 
the important ways to mitigate parameter uncertainty, Introduction to Linear
Optimization and Extensions with MATLAB® provides a concrete and intuitive 
yet rigorous introduction to modern linear optimization. In addition to fundamen-
tal topics, the book discusses current linear optimization technologies such as 
predictor-path following interior point methods for both linear and quadratic optimi-
zation as well as the inclusion of linear optimization of uncertainty, i.e., stochastic 
programming with recourse and robust optimization. 

The author introduces both stochastic programming and robust optimization as 
frameworks to deal with parameter uncertainty. The author’s unusual approach—
developing these topics in an introductory book—highlights their importance. 
Since most applications require decisions to be made in the face of uncertainty, 
the early introduction of these topics facilitates decision making in real world en-
vironments. The author also includes applications and case studies from finance 
and supply chain management that involve the use of MATLAB.

Even though there are several LP texts in the marketplace, most do not cover data 
uncertainty using stochastic programming and robust optimization techniques. 
Most emphasize the use of MS Excel, while this book uses MATLAB which is 
the primary tool of many engineers, including financial engineers. The book 
focuses on state-of-the-art methods for dealing with parameter uncertainty in 
linear programming, rigorously developing theory and methods. But more impor-
tantly, the author’s meticulous attention to developing intuition before presenting 
theory makes the material come alive. 
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Preface

This book is an outgrowth of lecture notes used for teaching linear program-
ming to graduate students at the University of Toronto (U of T). There have
been hundreds of graduate students over the last decade from various parts of
the U of T that have taken my courses, most notably from industrial engineer-
ing/operations research, electrical, civil, mechanical, and chemical engineer-
ing. This group also includes students in the Masters of Mathematical Finance
(MMF) Program at the U of T, where I have been teaching a special course in
operations research for which the bulk of topics relate to linear and quadratic
programming with applications in finance, e.g., portfolio optimization.

Providing concrete examples and illustrations before more general theory
seems to work well for most students, and this book aims to take that path.
In fact, the book can be used without the need to go through all of the
proofs in the book. Students that plan on specializing in optimization would
be encouraged to understand all proofs in the book as well as tackle the more
theory-oriented exercises. Thus, the material in this book is designed to be of
interest and to be accessible to a wide range of people who may be interested in
the serious study of linear optimization. This book may be of special interest
to those that are interested in financial optimization and logistics and supply
chain management. Many of the students regard the computational aspects
as an essential learning experience. This has been reflected in this book in
that MATLAB R© is integrated along with the learning of the conceptual and
theoretical aspects of the material.

A unique feature of this book is the inclusion of material concerning linear
programming under uncertainty. Both stochastic programming and robust op-
timization are introduced as frameworks to deal with parameter uncertainty.
It is novel to develop these topics in an introductory book on linear optimiza-
tion, and important, as most applications require decisions to be made in the
face of uncertainty and therefore these topics should be introduced as early
as possible.

Furthermore, this book is not encyclopedic and is intended to be used in
a one-semester course. The main topics were chosen based on a set of core
topics that would be needed as well as additional topics that round out and
illustrate the modern development of linear optimization and extensions. For
example, this book discusses interior point methods but only develops primal-
dual path-following methods and not the myriad other interior point methods
for linear programming. To this end, we chose the primal-dual path-following
method based on its good theoretical and practical properties and yet at the

vii
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same time illustrates the key issues involved in designing any interior point
method.

This book avoids the use of tableaus in the development of the simplex
method. Tableaus have been a mainstay for most presentations of the simplex
method-based algorithms for linear programming. However, this books takes
the view that the underlying geometry of linear programming is such that the
algorithms (not just the simplex method) have a natural geometrical analog
in the matrix algebra representation version, which is lost in using tableaus.
In particular, simplex method-based algorithms are iterative and are viewed
naturally as finding a direction of improvement and step length from a current
iterate to get to an improved point and so on until optimality is reached or
the problem is discovered to be unbounded. A consequence is that it becomes
even more natural for MATLAB to facilitate algorithmic understanding by
leaving the elementary row operations in performing inversions to MATLAB
instead of requiring a student to do the equivalent by doing a pivot on the
tableau.

The prerequisites for this book are courses in linear algebra, multi-variate
calculus, and basic proficiency in MATLAB. Well-prepared advanced under-
graduates could find the book accessible as well. In fact, only several concepts
from linear algebra and multi-variate calculus are needed. The appendix con-
tains those concepts from linear algebra that are especially relevant in this
book. The multi-variate calculus is reviewed at those points in the book that
require it. What I mean by basic MATLAB proficiency is that one knows how
to perform standard matrix algebra operations in MATLAB, e.g., multiplying
two matrices together and solving a system of linear equations. In any case,
MATLAB is a very convenient and powerful platform for optimization and it
is relatively easy to get started. A starting point for review are the excellent
on-line tutorials and resources available from MathWorks at the website

http://www.mathworks.com/academia/student center/tutorials
/launchpad.html

Chapter 1 introduces the linear programming problem and gives many
examples starting from the well-known diet problem to more complex network
optimization models. Various transformation techniques are given so that one
can transform an arbitrary linear program in standard form. The MATLAB
function linprog is introduced showing how one can solve linear programs on
a computer. A computational (case study) project requires the construction
and solution of a larger-sized (compared to examples in the chapter) linear
program using real financial data in MATLAB.

Chapter 2 develops the geometry of linear programming. First, the geome-
try of the feasible set of an LP is considered. The geometry of LP gives insight
on the nature of optimal and unbounded solutions in terms of corner points,
extreme points, and directions of unboundedness. A key development in this
chapter is the corresponding algebraic notions of a basic feasible solution and
extreme directions. The chapter culminates with the Fundamental Theorem
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of Linear Programming, which states that the optimal solution for a finite LP
can be attained at a basic feasible solution.

Chapter 3 develops the simplex method. As mentioned, the development
eschews the tableau construct and the simplex method is developed within the
matrix algebraic representation given by the partition of the problem into basic
and non-basic variables. Detailed examples are given that illustrate the various
possibilities in executing the simplex method including cycling. The revised
simplex method is then developed, which brings to light the importance of
numerical linear algebra in solving linear programs. MATLAB code is given
that implements the simplex method. The MATLAB code is not claimed to
be the most efficient or robust, but serves as an example of how the simplex
method, as described in the chapter, may be implemented.

Chapter 4 considers duality theory of linear programming. Duality theory
enables the development of another variant of the simplex method called the
dual simplex method. Economic interpretations of dual variables are discussed
and then sensitivity analysis is developed.

Chapter 5 develops the Dantzig-Wolfe decomposition method and illus-
trates the very important strategy of exploiting structure in a linear program-
ming problem. MATLAB code is given to the illustrate the implementation
of the decomposition.

Chapter 6 considers an interior point strategy to solve linear programs.
In particular, the class of primal-dual path following methods are developed
and then a variant from this class called the predictor-corrector method is
considered and implemented in MATLAB.

Chapter 7 develops quadratic programming theory and develops optimality
conditions for both unconstrained and constrained versions of the problem.
The mean-variance portfolio optimization problem is used as an example of
a quadratic program and is featured in several of the numerical examples in
the chapter. The MATLAB function quadprog is illustrated, which enables
quadratic programs to be solved on computer. An application in generating
the efficient frontier of a mean-variance portfolio problem is given. Quadratic
programming is discussed in the context of convex optimization. A predictor-
corrector interior point method for convex quadratic programming is given.

Chapter 8 considers linear programming under uncertainty. The stochas-
tic programming with recourse framework is developed first. The L-Shaped
method is developed to solve two-stage stochastic programs with recourse.
Then, robust optimization is developed. Examples of developing robust coun-
terparts are considered and illustrated through a robust portfolio problem. A
key theme here is the emphasis on tractable robust formulations.

This book was designed to be used in a semester-long course. Chapters
1 through 4 would be considered as the core part of a course based on this
book. The remaining chapters do not have to be considered in a linear order.
A course emphasizing interior point methods can cover both Chapters 6 and 7.
Parts of Chapter 8 depend on Chapter 5, e.g., the proof of convergence of the
L-Shaped method needs the development of the Dantzig-Wolfe decomposition.
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This book has nearly 100 exercises and a complete solutions manual is
available to instructors. Several of the problems require the use of MATLAB.
PowerPoint slides are also available for each chapter. Additional material is
available from the CRC Web site: http://www.crcpress.com/product/isbn/
9781439862636.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
For product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1

Linear Programming

1.1 Introduction

Linear programming (LP) is the problem of optimizing (maximizing or min-
imizing) a linear function subject to linear constraints. A wide variety of
practical problems, from nutrition, transportation, production planning, fi-
nance, and many more areas can be modeled as linear programs. We begin
by introducing one of the earliest examples, the diet problem, and then give
some additional applications in the areas of production management, trans-
portation, finance, and personnel scheduling. Some of these examples are not
initially linear programs, but are amenable to being transformed into LPs and
techniques for conversion are illustrated. The embedded assumptions behind
linear optimization problems are discussed. A definition of a standard form of
a linear optimization problem is given and techniques for converting an LP
into standard form are illustrated.

1.1.1 The Diet Problem

Due to a limited budget you would like to find the most economical mix of
food items subject to providing sufficient daily nutrition. The available food
items are peanut butter, bananas, and chocolate, and the cost per serving
is 20 cents, 10 cents, and 15 cents, respectively. The amount of nutrients of
fat, carbohydrates, and protein per serving of peanut butter is 130 grams,
51.6 grams, and 64.7 grams. For bananas, the amounts of these nutrients per
serving are 1 gram, 51 grams, and 2 grams, whereas for chocolate the amounts
per serving are 12 grams, 22 grams, and 2 grams. Suppose it is decided by
a dietician that you need at least 35 grams of fat, at least 130 grams of
carbohydrate, and at least 76 grams of protein daily. Then, a combination
of these three food items should provide you with sufficient amounts of each
nutrient for the day. The problem of determining the least cost combination of
the food items that provide a sufficient amount of nutrients can be represented
as a problem of the following form:

1
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minimize cost of food items used
subject to food items must provide enough fat

food items provide must enough carbohydrates
food items provide must enough protein

This form of the problem reveals two major components, i.e., (1) there
is a goal or objective (minimize cost of food items used) and (2) a set of
constraints that represent the requirements for the problem (food items must
provide enough nutrition). A linear programming problem will exhibit the
same form, but with mathematical representations of the components of the
problem. In general, a linear program will consist of decision variables, an
objective, and a set of constraints.

To illustrate the formulation of the diet problem as a linear program, let

xpb = servings of peanut butter

xb = servings of bananas

xc = servings of chocolate.

These variables represent the quantities of each food item to be used and
should be non-negative, i.e., xpb ≥ 0, xb ≥ 0, and xc ≥ 0, and are called
decision variables since they must be determined.

The total cost associated with any particular combination of food items
xpb, xb, and xc is

.20xpb + .10xb + .15xc, (1.1)

which says that the total cost of food items used is the sum of the costs
incurred from the use of each food item.

To ensure that the mix of the three foods will have enough fat one can
impose the following linear inequality constraint

130xpb + 1xb + 12xc ≥ 35, (1.2)

which expresses that the total amount of fat from the three food items should
be at least the required minimum of 35 grams. Similarly, one can impose the
inequality

51.6xpb + 51xb + 22xc ≥ 130 (1.3)

to ensure that a combination of food items will have enough carbohydrates
and finally impose the constraint

64.7xpb + 2xb + 2xc ≥ 76 (1.4)

to ensure enough protein.
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Then, the diet problem linear program can be expressed as

minimize .20xpb + .10xb + .15xc

subject to 130xpb + 1xb + 12xc ≥ 35

51.6xpb + 51xb + 22xc ≥ 130 (1.5)

64.7xpb + 2xb + 2xc ≥ 76

xpb, xb, xc ≥ 0.

The problem can be interpreted as the problem of determining non-negative
values of xpb, xb, and xc so as to minimize the (cost) function .20xpb+ .10xb+
.15xc subject to meeting the nutritional requirements as embodied in the
constraints (1.2)–(1.4). The function .20xpb + .10xb + .15xc is called the ob-
jective function, and the objective is the minimization of this function. It is
important to observe that the objective function and the left-hand sides of
the constraints are all linear, i.e., all variables are taken to the power of 1.
The diet problem highlights the major components of a linear programming
problem where an LP problem consists of decision variables, an objective (op-
timize a linear objective function), linear constraints, and possibly some sign
restrictions on variables. The diet problem can be generalized to where there
are n types of food items and m nutritional requirements, where xi repre-
sents the number of servings of food item i (i = 1, ..., n), ci is the cost of one
serving of food item i (i = 1, , , .n), aij is the amount of nutrient i in one serv-
ing of food item j (j = 1, ...,m), and bj is the minimum amount of nutrient
j required (j = 1, ...,m). Then, the general formulation of the diet problem
can be written as

minimize c1x1 + c2x2 + · · ·+ cnxn
subject to a11x1 + a12x2 + · · ·+ a1nxn ≥ b1

a21x1 + a22x2 + · · ·+ a2nxn ≥ b2
...

am1x1 + am2x2 + · · ·+ amnxn ≥ bm
x1, x2, ..., xn ≥ 0.

In matrix form, the general diet problem can be represented as

minimize cTx
subject to Ax ≥ b

x ≥ 0

where
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x =


x1
x2
...
xn

 is the vector of food items,

A = [aij ] =


a11 a12 · · · a1n
a21 a22 · · · a2n

. . .

am1 am2 amn



=

 aT1
...
aTm


is a matrix of dimension m × n and aTj is an n-dimensional row vector that
represents the jth row of A i.e. the total amount of nutrient j that would be
obtained from the amount of food items given by x,

c =


c1
c2
...
cn

 is the vector of costs of food items,

and

b =


b1
b2
...
bn

 is the vector of nutrition requirements.

For example, for the diet problem (1.5) we have n = 3 and m = 3 with

A =

 130 1 12
51.6 51 22
64.7 2 2

 , c =

 .20
.10
.15

 , x =

 xpb
xb
xc

 , and b =

 35
130
76

.

The objective function is cTx =
[
.20 .10 .15

]
·

 xpb
xb
xc

 = .20xpb +

.10xb + .15xc.

(Note: The · indicates the dot product.)
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The first constraint is

aT1 x =
[

130 1 12
]
·

 xpb
xb
xc

 = 130xpb + 1xb + 12xc ≥ b1 = 35.

The second constraint is

aT2 x =
[

51.6 51 22
]
·

 xpb
xb
xc

 = 51.6xpb + 51xb + 22xc ≥ b2 = 130.

The third constraint is

aT3 x =
[

64.7 2 2
]
·

 xpb
xb
xc

 = 64.7xpb + 2xb + 2xc ≥ b3 = 76.

1.1.2 Embedded Assumptions

It is important to realize the assumptions behind a linear programming prob-
lem. In particular, an LP model is characterized by proportionality, divisibility,
additivity, and certainty.

1. Proportionality means that the contribution toward the objective func-
tion and constraints of decisions are directly proportional to its values, i.e.,
there are no economies of scale such as quantity-based discounts. For example,
in the diet problem, every unit (serving) of peanut butter xpb will contribute
.20 towards the overall cost and 130 grams of fat toward the fat nutrient
requirement. In particular, this means that decision variables in an LP are

raised to the first power only. So terms of the form cix
1/2
i or cix

2
i (where ci is

a coefficient and xi a decision variable) are not permitted in an LP.

2. Divisibility means that the decision variables can take on any real num-
ber. For example, the amount of peanut butter in the diet problem can be
less than one serving, like 35% of a serving, xpb = .35, or in general, some
fractional amount like xpb = 1.7 servings.

3. Additivity means that the contribution of a decision variable toward the
objective or constraints does not depend on other decision variables. In other
words, the total contribution is the sum of individual contributions of each
decision variable. For example, the contribution of every serving of peanut
butter in the diet problem toward the overall fat requirement of 35 grams is
130 grams, independent of the amount of servings of the other food items.

© 2014 by Taylor & Francis Group, LLC



6 Introduction to Linear Optimization and Extensions with MATLAB R©

4. Certainty means that the data used as coefficients for a linear program-
ming model, such as the objective coefficients c and constraint coefficients A
and b, are known with certainty. For example, it is assumed in the diet model
that the cost of one serving of bananas is 10 cents and that one serving of
peanut butter provides 130 grams of fat, and these values are assumed as
correct or valid for the model.

The embedded assumptions may seem to be overly restrictive, but in fact
a wide range of problems can be modeled as linear programs. Recent advances
in optimization technology have considered the relaxation of the certainty as-
sumption. In particular, developments in stochastic programming and robust
optimization have enabled the incorporation of uncertainty of coefficients in
linear programming models. These exciting topics will be covered in Chapter
8.

1.2 General Linear Programming Problems

The diet problem is only one possible form of a linear optimization problem.
It is possible to have an LP problem that maximizes an objective function
instead of minimizing and a constraint may be of the form aTx ≥ b (greater
than or equal inequality), aTx ≤ b (less than or equal inequality), or aTx = b
(equality). Furthermore, variables may be non-negative, non-positive, or un-
restricted (i.e., the value can be negative, positive, or zero). For example,
the following is a linear programming problem with equality and inequality
constraints as well as variables that are non-negative, non-positive, and unre-
stricted.

maximize 5x1 + x2 − 3x3

subject to x1 + x2 ≤ 6

x2 + x3 ≥ 7

x1 − x3 = 2 (1.6)

x1 ≥ 0

x2 ≤ 0

x3 unrestricted.

In general, a linear programming problem can be represented in the form

minimize or maximize cTx
subject to aTi x ≤ bi i ∈ L

aTi x ≥ bi i ∈ G
aTi x = bi i ∈ E
xj ≥ 0 j ∈ NN
xj ≤ 0 j ∈ NP .
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where L,G, and E are index sets of constraints that are of the less than or
equal to type, greater than or equal to type, and of equality type, respectively.
NN (NP ) is an index set of variables that are non-negative (non-positive).
All other variables are assumed to be unrestricted.

Furthermore, an equality constraint aTx = b can be represented as the two
inequalities aTx ≤ b and aTx ≥ b, and an inequality constraint of the form
aTx ≥ b can be written as a less than or equal type by multiplying both sides
by −1 to get −aTx ≤ −b. Thus, the LP (1.6) is equivalent to the following

maximize 5x1 + x2 − 2x3
subject to x1 + x2 ≤ 6

−x2 − x3 ≤ −7
x1 − x3 ≤ 2
−x1 + x3 ≤ −2
x1 ≥ 0
x2 ≤ 0
x3 unrestricted.

1.2.1 Standard Form of a Linear Program

In this section, we define the standard form of a linear program. A linear
programming problem is said to be in standard form if (1) the objective is to
minimize, (2) all constraints are of the equality type, and (3) all variables are
non-negative. The following LP is in standard form:

minimize cTx
subject to Ax = b

x ≥ 0.

The standard form of a linear programming problem is important because
some important algorithms that solve linear programs e.g. the simplex method
require linear programs to be in standard form. This requirement is not too
restrictive since any linear program can be converted into an equivalent linear
program in standard form. The following conversion rules can be used to
convert an LP in standard form.

1. Converting unrestricted variables
If a decision variable x is initially defined to be unrestricted, i.e., the vari-

able can take on any real number regardless of sign, then x can be expressed
as the difference between two non-negative numbers x+ ≥ 0 and x− ≥ 0 so
that x = x+ − x−. For example, if x = −5, then x+ = 0 and x− = 5.

2. Converting inequality constraints
If a constraint i is initially of the form ai1x1 + ai2x2 + · · · + ainxn ≤ bi,

then a non-negative slack variable si can be added to the left-hand side of the
constraint to get ai1x1 + ai2x2 + · · ·+ ainxn + si = bi where si ≥ 0.
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If a constraint i is initially of the form ai1x1 + ai2x2 + · · · + ainxn ≥ bi,
then a non-negative surplus variable si can be subtracted from the left-hand
side of the constraint to get gi(x) = ai1x1 +ai2x2 + · · ·+ainxn−si = bi where
si ≥ 0.

3. Converting maximization to minimization
It follows that since maximize cTx = −minimize −cTx, any maximization

problem can be converted to an equivalent minimization problem by minimiz-
ing the negated terms in the original objective function. It is common to omit
the outer negation in formulations since it will not affect the optimization.

Example 1.1
Convert the LP

maximize 5x1 − 4x2 + 6x3
subject to −x1 + x2 ≤ −7

2x2 − x3 ≥ 2
x1 + 2x3 = 7
x1 ≥ 0, x2 ≥ 0, x3 unrestricted

into standard form.

Solution: The variable x3 is unrestricted, so let x3 = x+3 − x−3 where
x+3 ≥ 0 and x−3 ≥ 0. Then, for every occurrence of x3 in the objective function
and constraints, replace with x+3 −x

−
3 . Next, negate the terms of the objective

function to get −5x1 + 4x2 − 6x+3 +6x−3 and then the new objective is to
minimize −5x1 + 4x2 − 6x+3 + 6x−3 . Add a slack variable s1 to the left-hand
side of the first constraint to get −x1 +x2 +s1 = −7 and a surplus variable s2
to the second to get 2x2 − x+3 + x−3 − s2 = 2. The third constraint is already
in equality form. Then, the standard form of the LP is

minimize −5x1 + 4x2 − 6x+3 + 6x−3
subject to −x1+ x2+ s1 = −7

2x2 − x+3 + x−3 − s2 = 2
x1+ 2x+3 − 2x−3 = 7
x1 ≥ 0, x2 ≥ 0, x+3 ≥ 0, x−3 ≥ 0, s1 ≥ 0, s2 ≥ 0.

1.2.2 Linear Programming Terminology

We discuss some terminology for linear programming problems, and without
loss of generality, assume that a LP is in standard form, i.e.,

minimize cTx
subject to Ax = b

x ≥ 0.
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FIGURE 1.1
Bounded feasible set.

The matrix A is called the constraint matrix and has dimension m × n.
The vector c is called the cost vector with dimension n × 1, and b is called
the right-hand side vector which is a column vector of dimension m× 1. The
vector x is called the decision vector and has dimension n× 1.

The set F = {x ∈ Rn|Ax = b, x ≥ 0} is called the feasible set of the linear
programming problem. A vector x ∈ Rn is said to be feasible for a linear
program if x ∈ F , otherwise x is said to be infeasible. A linear program is said
to be consistent if F 6= ∅, otherwise the linear program is inconsistent. The
feasible set is bounded if ‖x‖ ≤ M for all x ∈ F for some positive constant
M (‖·‖ is a norm on x). Intuitively, the feasible set is bounded if there is a
sphere or rectangle that can completely contain the feasible set.

A vector x∗ is an optimal solution for a linear programming problem if
x∗ ∈ F and cTx∗ ≤ cTx for all x ∈ F , else x∗ is said to be sub-optimal. Also,
a linear programming problem is bounded if L ≤ cTx for all x ∈ F for some
constant L, else the LP is said to be unbounded. Clearly, if F is bounded,
then the linear program is bounded.

Example 1.2
Consider the following linear program (P):

minimize −x1 − x2
subject to x1 ≤ 1 (1.7)

x2 ≤ 1

x1 ≥ 0, x2 ≥ 0.

The feasible set is F = {x = (x1, x2)T ∈ R2| x1 ≤ 1, x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}.
Converting to standard form by adding slack variables, the linear program

© 2014 by Taylor & Francis Group, LLC



10 Introduction to Linear Optimization and Extensions with MATLAB R©

becomes

minimize −x1 − x2
subject to x1 + x3 = 1 (1.8)

x2 + x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The feasible set for (1.8) is

F = {x = (x1, x2, x3, x4)T ∈ R4| x1+ x3 = 1, x2+
x4 = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} .

Observe that the linear program (1.7) is consistent since there is at least

one x in F , e.g., x =

[
0.5
0.5

]
and the feasible set is bounded since for any

vector x ∈ F we have ‖x‖ ≤ 1 and so (1.7) is bounded. Therefore, the linear

program (1.8) is also consistent and bounded with F bounded. A graph of the
feasible set F is given in Figure 1.1.

The optimal solution in this example is x∗ =

[
1
1

]
∈ F , and the cor-

responding optimal objective function value is −2. Chapter 3 will discuss
methods for generation and verification of optimal solutions.

Example 1.3
Consider the linear program

minimize −x1 − x2
subject to

−x1 +x3 = 1
x2 +x4 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The feasible region in two dimensions is equivalent to F = {x = (x1, x2)T ∈
R2| −x1 ≤ 1, x2 ≤ 1, x1 ≥ 0, x2 ≥ 0} see Figure 1.2. In this case, the feasible
region is not bounded as the graph extends infinitely to the right on the x-axis.

In fact, for the sequence of vectors x(k) =

[
k
1

]
, k = 1, 2, 3, ... , the objective

function value −k − 1→ −∞ as k →∞ and so the LP is unbounded.

1.3 More Linear Programming Examples

This section covers some additional examples to highlight the broad range of
problems that can be formulated as linear programs. Modeling a problem as a
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FIGURE 1.2
Unbounded feasible set.

linear program is an art and there is no unique way to formulate problems, but
the basic requirements are the need to define decision variables, the objective,
and constraints.

Example 1.4 ( Production Planning )

Consider a company that produces n different products. Each product uses
m different resources. Suppose that resources are limited and the company has
only bi units of resource i available for each i = 1, ...,m. Further, each product
j requires aij units of resource i for production. Each unit of product j made
generates a revenue of pj dollars. The company wishes to find a production
plan, i.e., the quantity of each product to produce, that maximizes revenue.

The problem can be formulated as a linear program. The first step is to
define the decision variables. Let xj be a decision variable that represents
the amount of product j produced by the company. Suppose that fractional
amounts of a product are allowed and this amount should be non-negative
since a negative value for xj is meaningless. Then, a production plan is repre-

sented by the vector x =
[
x1 · · · xn

]T
. The contribution toward revenue

from the production of xj units of product j is pjxj and so the total revenue
from a production plan x is then p1x1 + p2x2 + · · ·+ pnx =

∑n
j=1 pjxj . The

contribution toward using resource i from the production of xj units of prod-
uct j is aijxj , and so the total consumption of resource i by production plan
x is ai1x1 +ai2x2 + · · ·+ainxj =

∑n
j=1 aijxj and this quantity can not exceed

bi. Since total revenue is to be maximized and resources limitations must be
observed over all resources, then the LP is
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maximize
∑n
j=1 pjxj

subject to
∑n
j=1 aijxj ≤ bi i = 1, ...,m

xj ≥ 0 j = 1, ..., n.

Example 1.5 (Multi-period Production Planning)
In the previous example, the planning horizon was assumed to be one

period and it was implicitly assumed that the optimal production plan gen-
erated from the model would be able to be entirely sold for the single period
in order to achieve the maximum revenue. That is, the model assumed that
production would occur just once and did not incorporate any consideration
of demand levels and future production. We now consider a multi-period pro-
duction model where production decisions are made for more than one period.
Consider a single product that has demand in number of units over the next
year as follows:

Fall Winter Spring Summer
30 40 10 20

We wish to meet all demand for each period and allow excess production
for a period so that it may be carried over to meet demand at future time
periods. However, there will be a unit holding cost of $10 for inventory at the
end of each period. Assume that there is 5 units of inventory at the start of
Fall, and there is to be no inventory at the end of the Summer period.

To formulate the multi-period production model, there are some additional
constructs that must be developed to capture the dynamics of production in
a multiple period setting. First, in addition to decision variables that give the
amount of production for each time period, there needs to be another quantity
that links production from one time period to the next. These are inventory
variables that indicate the amount of product in excess of the demand at the
end of a time period. Then, the dynamics from one time period to the next
can be captured through the following inventory balance constraint

current inventory + production for current period = amount of product used
to meet current demand + inventory for next period.

Now, let xt = number of units of product produced in period t, it = units
of inventory at the end of period t where Fall, Winter, Spring, and Summer
correspond to periods t = 1, 2, 3, and, 4, respectively. Also t = 0 will refer to
the start of Fall and dt = demand for period t.

Thus, the inventory balance constraints take the form it−1 + xt = dt + it
for t = 1, 2, 3, 4. The objective function is to minimize total inventory costs
10i1 + 10i2 + 10i3 + 10i4. Then, the multi-period production model is
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FIGURE 1.3
Transportation problem.

minimize 10i1 + 10i2 + 10i3 + 10i4
subject to i0 + x1 = 30 + i1

i1 + x2 = 40 + i2
i2 + x3 = 10 + i3
i3 + x4 = 20 + i4
i0 = 5
i4 = 0
i0, i1, i2, i3, i4, x1, x2, x3, x4 ≥ 0.

Example 1.6 (Transportation Problem)
Reactiveeno Inc. is a company that produces a special type of facial cream

that aids in reducing acne. This product is manufactured in n plants across
North America. Every month the facial cream product is shipped from the
n plants to m warehouses. Plant i has a supply of ui units of the product.
Warehouse j has a demand of dj units. The cost of shipping one unit from
plant i to warehouse j is cij . The problem of finding the least-cost shipping
pattern from plants to warehouses can be formulated as an LP.

Let xij be the number of units of product shipped from plant i to warehouse
j. So the objective is to minimize the cost of shipping over all possible plant
warehouse pairs (see Figure 1.3). There are two classes of constraints. One class
of constraints must ensure that the total amount shipped from a plant i to
warehouses, i.e.,

∑m
j=1 xij does not exceed the supply ui of plant i, whereas the

other class of constraints ensures that the demand dj of a warehouse j is met
from the total amount

∑n
i=1 xij shipped by plants. Then, the transportation

problem can be formulated as the following LP.
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minimize
∑n
i=1

∑m
j=1 cijxij

subject to
∑m
j=1 xij ≤ ui i = 1, ..., n∑n
i=1 xij ≥ dj j = 1, ...,m

xij ≥ 0 i = 1, ..., n, j = 1, ...,m

Example 1.7 (The Assignment Problem)
A special case of the transportation problem above is when there are as

many plants as warehouses, i.e., m = n, and each warehouse demands exactly
one unit of the product, and each plant produces only one unit of the product,
i.e., di = ui = 1. Then, the model takes the following form

minimize
∑n
i=1

∑n
j=1 cijxij

subject to
∑n
j=1 xij = 1 i = 1, ..., n∑n
i=1 xij = 1 j = 1, ..., n

xij ≥ 0 i = 1, ..., n, j = 1, ..., n.

This special case is known as the assignment problem and has the inter-
pretation of matching persons with jobs so that each person gets one job and
each job gets one person. cij in this context represents the cost of assigning
person i to job j. This quantity can reflect the different skill levels of workers.

Example 1.8 (Workforce Scheduling)
You are the human resources manager of a company and one of your major

duties is to schedule workers for each day of the week. Each day of the week
must have a required number of workers as given in the following table.

Day of Week Required Number of Workers
Monday 25
Tuesday 25
Wednesday 22
Thursday 21
Friday 23
Saturday 20
Sunday 18

Each worker must work 5 consecutive days and then will have the next
two days off. You wish to minimize the total number of workers scheduled for
the week subject to providing each day with the required number of workers.
The challenging aspect of this formulation resides in defining the decision
variables. The variables should be defined so that it facilitates the expression
of the constraints that impose a 5 consecutive day work schedule for workers.
One such possibility is to let xj = number of workers that start on day j where
j = 1 corresponds to Monday, j = 2 corresponds to Tuesday, etc., then, the
model is
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minimize x1 + x2 + x3 + x4 + x5 + x6 + x7
subject to x1+ x4 + x5 + x6 + x7 ≥ 25

x1 + x2+ x5 + x6 + x7 ≥ 25
x1 + x2 + x3 +x6 + x7 ≥ 22
x1 + x2 + x3 + x4 +x7 ≥ 21
x1 + x2 + x3 + x4 + x5 ≥ 23

x2 + x3 + x4 + x5 + x6 ≥ 20
x3 + x4 + x5 + x6 + x7 ≥ 18

xi ≥ 0 and integer i = 1, ..., 7.

The jth constraint ensures that there will be enough workers for day j by
ensuring that there are enough workers that start from those days of the week
for which a worker will be working on day j. For example, the first constraint
ensures that there are enough workers for Monday by ensuring that there are
enough workers that start work on Monday, Thursday, Friday, Saturday, and
Sunday, so that there will be at least 25 workers on Monday. Observe that the
coefficients of the variables x2 and x3 are zero in the first constraint and hence
these variables do not appear in the first constraint since any worker starting
on Tuesday or Wednesday and working 5 consecutive days will not be working
on Monday. Note that there is an integer value requirement on the variables
in addition to the non-negativity restriction since it is unreasonable to have
a fractional value of a worker! So the model above violates the divisibility
assumption of linear programming. The model is in fact what is called an
integer program due to the integrality restriction of the decision variables.
Otherwise, the model is very close to a linear program since the objective and
constraints are linear.

Example 1.9 (Bond Portfolio Optimization)
Suppose that a bank has the following liability schedule

Year 1 Year 2 Year 3

$12,000 $18,000 $20,000

That is, the bank needs to pay $12,000 at the end of the first year, $18,000 at
the end of the second year, and $20,000 at the end of the third year. Bonds are
securities that are sold by agencies, such as corporations or governments, that
entitle the buyer to periodic interest (coupon) payments and the payment of
the principle (face value) at some time in the future (maturity).

The bank wishes to use the three bonds below to form a portfolio (a
collection of bonds) today to hold until all bonds have matured and that will
generate the required cash to meet the liabilities. All bonds have a face value of
a $100 and the coupons are annual (with one coupon per year). For example,
one unit of Bond 2 costs $99 now and the holder will receive $3.50 after 1 year
and then $3.50 plus the face value of $100 at the end of the second year which
is the maturity of Bond 2.

© 2014 by Taylor & Francis Group, LLC



16 Introduction to Linear Optimization and Extensions with MATLAB R©

Bond 1 2 3

Price $102 $99 $98
Coupon $5 $3.5 $3.5
Maturity year 1 2 3

The bank wishes to purchase Bonds 1, 2, and 3 in amounts whose total
cash flow will offset the liabilities. Assume that fractional amounts of each
bond are permitted. A linear programming model can be formulated to find
the lowest-cost set of bonds (i.e., portfolio) consisting of Bonds 1, 2, and 3
above that will meet the liabilities. Let the xi = amount of bond i purchased.
Then, the problem can be modeled as follows

minimize 102x1 + 99x2 + 98x3
subject to 105x1 + 3.5x2 + 3.5x3 ≥ 12000

103.5x2 + 3.5x3 ≥ 18000
103.5x3 ≥ 20000

x1, x2, x3 ≥ 0.

The objective is to minimize the cost of a portfolio and each constraint
ensures that that cash flow generated by the bonds for a given time period
is sufficient to match the liability for that period. For example, in the first
constraint each unit of Bond 1 purchased will generate $5 from the coupon
plus the $100 face value (since bonds of type 1 mature at the end of year 1)
so the total cash contribution from Bond 1 is $105x1, the total cash flow from
Bond 2 is only $3.5x2 since these bonds do not mature until the end of year 2
but only payout $3.5 per unit for the coupon at the end of year 1. The total
cash flow from bonds of type 3 is also $3.5x3 at the end of the first year. Note
that in constraint 2 there is no term involving bonds of type 1 since they have
already matured after one year and can no longer generate cash flow.

1.3.1 Converting Minimization Problems with Absolute
Value

Consider an optimization problem of the following form

minimize c1|x1|+ c2|x2|+ · · ·+ cn|xn|
subject to xi unrestricted i = 1, ...n

where ci > 0 for all i = 1, ...n. The problem in the form above is not a
linear program since the absolute value terms in the objective function are
not linear. However, the problem can be converted into an equivalent linear
program through the following transformation. Let

|xi| = x+i + x−i and xi = x+i − x
−
i where x+i , x

−
i ≥ 0.
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Since the objective is to minimize and ci > 0, then x+i × x
−
i = 0 will hold

at optimality, this will ensure that the transformation is equivalent to the
absolute value of xi where if xi ≥ 0, then |xi| = x+i = xi and x−i = 0 else,
|xi| = x−i = −xi and x+i = 0.

Example 1.10
The optimization problem above can be transformed to an LP by replacing

each occurrence of |xi| with x+i +x−i and by adding xi = x+i −x
−
i as a constraint

along with the restrictions x+i ≥ 0 and x−i ≥ 0. The model then becomes

minimize c1(x+1 + x−1 ) + c2(x+2 + x−2 ) + · · ·+ cn(x+n + x−n )
subject to x1 = x+1 − x

−
1

x2 = x+2 − x
−
2

...
xn = x+n − x−n
x+1 ≥ 0, x−1 ≥ 0, x+2 ≥ 0, x−2 ≥ 0, ..., x+n ≥ 0, x−n ≥ 0.

Example 1.11 (Application: Portfolio Optimization)
Consider the problem of investing money in n stocks where each stock i

has a random rate of return ri with an expected return of µi. ri models the
price uncertainty for stock i and is often assumed to be a normal distribution.
In addition, the covariance between the returns of stock i and stock j is σij .
Let xi= the proportion of wealth invested in stock i. A portfolio is then
represented by the vector x = (x1, ..., xn)T . A reasonable model to use to
construct a portfolio is the following model developed by Markowitz (1952),
which is a one-period model where an investment is made now and held until
a future point in time T .

minimize
∑n
i=1

∑n
j=1 σijxixj

subject to
∑n
i=1 µixi = R∑n
i=1 xi = 1
xi ≥ 0 i = 1, ..., n

The objective function of the model is the variance of the return of the
portfolio x where the variance represents the risk of the portfolio. Then, the
objective is to minimize the risk (portfolio variance) subject to meeting an
expected return goal of R for the portfolio (first constraint) and ensuring that
the budget is exhausted (second constraint). In other words, the goal is to find
the portfolio among all of the portfolios that can achieve an expected return
of R while exhausting the budget, and that has the smallest variance among
them.

However, there are several challenges in using the Markowitz model. First,
observe that the model is non-linear since the terms in the objective function
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are non-linear, i.e., σijxixj . Second, obtaining all of the parameters is a signif-
icant endeavor. For example, with n stocks there will be the need to estimate
n(n− 1)/2 covariance terms (for a portfolio of 1000 stocks that means nearly
half a million terms to estimate).

Fortunately, it is possible to convert the Markowitz model to a linear pro-
gramming model. Instead of using portfolio variance or equivalently portfolio
standard deviation

σ =
√
E(
∑n
i=1(ri − µi)xi)2 =

√∑n
i=1

∑n
j=1 σijxixj

as the objective function (E(·) denotes the expectation operator), we consider

ω = E|
∑n
i=1(ri − µi)xi|

which measures the absolute deviation of the portfolio return from the ex-
pected portfolio return. The following result by Konno and Yamazaki (1991)
justifies the use of ω as the objective.

If the vector (r1, r2, ..., rn) is multi-variate normally distributed then, ω =√
2
πσ.

Thus, it will suffice to minimize ω since it is the same as minimizing the
variance. The following model is equivalent to the Markowitz model.

minimize E|
∑n
i=1(ri − µi)xi|

subject to
∑n
i=1 µixi = R∑n
i=1 xi = 1
xi ≥ 0 i = 1, ..., n

The objective function now has absolute value terms, but can be converted
by using the technique above. First, the time period is divided into T sub-
periods to get

ui = 1
T

∑T
t=1 rit

where rit = the realized return for asset i for for sub-period t and then

E|
∑n
i=1(ri − µi)xi| = 1

T

∑T
t=1 |

∑n
i=1(rit − µi)xi|.

Then, let

|
∑n
i=1(rit − µi)xi| = st + yt

and
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i=1(rit − µi)xi = st − yt for t = 1, ..., T where st ≥ 0 and yt ≥ 0.

Then, the model transforms to the following LP, which is called the mean-
absolute deviation (MAD) portfolio optimization model.

minimize
∑T
t=1(st + yt)

subject to
∑n
i=1(rit − µi)xi = st − yt t = 1, ..., T∑n
i=1 µixi = R∑n
i=1 xi = 1
xi ≥ 0 i = 1, ..., n

st ≥ 0, yt ≥ 0 t = 1, ..., T

Note that the model does not explicitly require the covariance terms.

1.3.2 Network Optimization Models

Many important applications can be stated as problems over networks. For
example, the transportation problem in Example 1.6 involves a transportation
network from plants to warehouses where a link from a plant to a warehouse
in Figure 1.3 can represent distance (or cost related to distance) between
the two entities. Each plant and warehouse represents nodes in the network,
which in this case represents the location of each entity. The problem involves
the determination of an amount of a product to be shipped from plants to
warehouses, so it involves the flow of physical items (i.e., products) through
links of the network. Networks can be used to represent many other problems
where there is a notion of flow over an entity that can be represented as a
network. For example, routing data over the Internet is another problem which
involves the flow of data over a network where a node would be a router and
links would correspond to fiber- optic cable connections between routers. We
now present the formal definition of a network.

Definition 1.12
A network (or graph) G consists of a set of nodes N and a set of edges E,

i.e., G = (N,E).
G is an undirected graph when each edge e ∈ E is an unordered pair of

distinct nodes i and j in N. An edge between nodes i and j can be denoted
in this case as {i, j} or {j, i}.

G is a directed graph when each edge e ∈ E is an ordered pair of distinct
nodes i and j in N. An edge will be denoted in this case as (i, j) and indicates
that the direction of the edge is from node i to node j.

Example 1.13
Consider the following undirected graph G = (N,E) in Figure 1.4 where

N = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}, {3, 5}, {4, 5}}.

Example 1.14
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FIGURE 1.4
Undirected graph.

Consider the following directed graph in Figure 1.5 whereN = {1, 2, 3, 4, 5}
and E = {(1, 2), (1, 3), (3, 2), (4, 2), (4, 3), (3, 5), (5, 4)}.

Definition 1.15
A path between nodes i and j of a graph G is a sequence of nodes and

edges starting from i and ending with j, such that no nodes are repeated. It
is important to note that all edges specified in a path must be in E.

A path is said to be directed if in addition to being a path, all edges must
be of the same orientation (direction).

For the undirected graph in Figure 1.4 there is a path between any two
distinct pair of nodes i and j and the direction of edges does not matter. In
the directed graph in Figure 1.5 there is a directed path from node 1 to node
5, consisting of the sequence node 1, edge (1, 3), node 3, edge (3, 5), node 5
where edges (1, 3) and (3, 5) are of the same orientation. Observe that there
is no directed path from node 5 to node 1.

Definition 1.16
We say that a graph G = (N,A) is connected if there is a path between

every pair of distinct nodes i and j ∈ N .

The graphs in Figures 1.4, 1.5, 1.6, and 1.7 are all connected.

1.3.2.1 Minimum Cost Flow Problem

The minimum cost flow problem is to determine a least-cost shipment (flow)
of a product (item) through a connected directed network G = (N,E) in
order to satisfy demand at various nodes from various supply nodes. It is
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FIGURE 1.5
Directed graph.

a generalization of the transportation problem in Example 1.6 and can be
formulated as a linear program. There are three types of nodes. The first type
of node is a supply node, and such a node i has a supply bi > 0 units of
the product. The second type of node is a demand node, and such a node
i requires a net amount |bi| of the product where bi < 0. The third type of
node is called a transshipment node and such a node does not have a supply
of products and do not require net any amount of the product and so bi = 0.
Transshipment nodes serve as nodes that a flow of products can go through
without leaving any amount of the product.

For each (i, j) ∈ E, let cij be the cost of shipping one unit of product from
node i to node j. Define xij to represent the amount of product to be shipped
from node i to node j. The vector x consisting of the decision variables xij is
called a flow and represents the amount of shipment along an edge (i, j) ∈ E.
For each (i, j) ∈ E, let lij be a constant that is a lower bound on the flow on
edge (i, j) and uij a constant that is an upper bound on the flow on edge (i, j).
If there is no lower (upper) bound on an edge (i, j), then lij = 0 (uij =∞).
We assume that

∑
i∈N

bi = 0 and that all cost and lower and upper-bound

values are non-negative and integral. There is one more required assumption;
see Exercise 17.

For example, in the graph in Figure 1.6, nodes 1 and 5 are supply nodes
with 10 units of a product at node 1 and 15 at node 5. Nodes 3, 4, and 6 are
demand nodes with demands of 11, 19, and 4, respectively. Node 2 is the only
transshipment node. The value next to an edge (i, j) gives the unit cost cij of
shipping a product along that edge.

Then, the minimum cost flow problem can be formulated as a linear pro-
gramming problem. The objective is to find a minimum cost flow x. The
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FIGURE 1.6
Minimum cost flow network.

constraints must ensure that demand is met at the appropriated nodes. This
can be achieved by requiring that for each node i, the total flow out of i mi-
nus the total flow into node i must equal bi. For example, for a transshipment
node j the total flow out of j minus total flow into j must be 0, whereas for
a demand node k, this difference must be a negative value whose magnitude
is equal to the demand required at node k. These constraints go by the name
of flow conservation or mass balance constraints. The problem can then be
formulated as follows.

minimize
∑

(i,j)∈E
cijxij

subject to
∑

{j:(i,j)∈E}
xij −

∑
{j:(j,i)∈E}

xji = bi for all i ∈ N

lij ≤ xij ≤ uij for all (i, j) ∈ E

Example 1.17
The minimum cost flow linear program corresponding to the network in

Figure 1.6 assuming lower bounds of 0 and no upper bounds on the edges is
a linear program in standard form

minimize cTx
subject to Ax = b

x ≥ 0
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where

x =



x12
x13
x24
x32
x36
x43
x46
x52
x54


, c =



c12
c13
c24
c32
c36
c43
c46
c52
c54


=



1
4
1
3
1
1
1
1
3


, b =


b1
b2
b3
b4
b5
b6

 =


10
0
−11
−10
15
−4



A =


1 1 0 0 0 0 0 0 0
−1 0 1 −1 0 0 0 −1 0
0 −1 0 1 1 −1 0 0 0
0 0 −1 0 0 1 1 0 −1
0 0 0 0 0 0 0 1 1
0 0 0 0 −1 0 −1 0 0

.

The optimal solution is to ship 10 units of the product from node 1 to
node 2 (x12 = 10) and ship 15 units from node 5 to node 2 (x52 = 15), then
25 units are then shipped from node 2 to node 4 (x24 = 25), and finally 11
units are shipped from node 4 to node 3 (x43 = 11) and 4 units are shipped
from node 4 to node 6 (x46 = 4). This shipping flow leaves all demand nodes
satisfied, and for any transshipment node i in G the optimal solution satisfies
the mass balance requirement, e.g., the total flow into transshipment node 2
is x12 + x52 = 10 + 15 = 25, which is equal to the total flow out of node 2,
i.e., x24 = 25.

1.3.2.2 Maximum Flow Problem

Another important class of problems over a network is the maximum (max)
flow problem. The max flow problem is to determine the maximum amount
of flow that can be sent from a source node s to a sink node t over a directed
network. Many steady-state flow problems can be modeled as max flow prob-
lems, such as determining the steady state of oil in an oil pipeline network or
vehicles on a highway network, or data flow in a communications network, or
electricity on a power network (grid). For example, in Figure 1.7, the goal is
to send as much flow from node s through the network to node t while not
violating the capacity constraints of each edge.

The max flow problem can be formulated as a linear program. Let G =
(N,E) be a directed graph and uij be the capacity of edge (i, j) ∈ E. Similar
to the minimum cost flow problem, there will be mass balance constraints
that govern the flow through the directed network where all nodes in the
graph except the source s and the sink t are transshipment nodes. The net
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FIGURE 1.7
Directed graph for max flow problem.

flow out of the source will be a decision variable v that represents the total
flow out of the source. The sink node t will have a net inflow of v, and so it
can be seen as having a bi value equal to −v. The variables xij are defined as
in the minimum cost flow problem and represent the amount of flow on edge
(i, j) ∈ E. Then, the linear program is defined as follows

maximize v
subject to

∑
{j:(i,j)∈E}

xij −
∑

{j:(j,i)∈E}
xji = v for i = s

∑
{j:(i,j)∈E}

xij −
∑

{j:(j,i)∈E}
xji = 0 for all i ∈ N except t and s

∑
{j:(i,j)∈E}

xij −
∑

{j:(j,i)∈E}
xji = −v for i = t

0 ≤ xij ≤ uij for all (i, j) ∈ E

The assumptions needed for the max flow problem are:
(1) The edge capacities are non-negative and integral.
(2) There is no directed path from s to t, all of whose edges are uncapaci-

tated (i.e., infinite capacity).
(3) There are no parallel edges (i.e., two or more edges with the same

starting node i and ending node j).
(4) For any edge (i, j) ∈ E, the edge (j, i) ∈ E as well.
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Example 1.18
Suppose that TorontoCo Oil company generates crude oil from its refineries

in the oil sands of Alberta and wishes to ship the maximum amount of the
crude oil per day from its Alberta refinery to a storage facility in Winnipeg,
Manitoba, through a network of pipelines depicted in the directed graph G
of Figure 1.7. The Alberta refinery is the source s (node 1) and the storage
facility is the sink t (node 6), and the flow of oil may go through several oil
pipeline transshipment points which are represented by nodes 2 thru 5. There
are capacities on each edge (i, j) ∈ E indicating the maximum amount of oil
(in units of 1000 barrels) that can be shipped from node i to node j. Then,
the linear program that represents the problem of determining the maximum
amount of crude oil that can be shipped daily from Alberta to Winnipeg can
be written as

maximize v
subject to x12 + x13 = v

x25 − x12 − x32 − x42 = 0
x32 + x34 − x13 = 0
x42 + x45 + x46 − x34 = 0
x56 − x25 − x45 = 0
−x46 − x56 = −v

0 ≤ x12 ≤ 15
0 ≤ x13 ≤ 30
0 ≤ x32 ≤ 40
0 ≤ x25 ≤ 25
0 ≤ x34 ≤ 40
0 ≤ x42 ≤ 20
0 ≤ x45 ≤ 45
0 ≤ x56 ≤ 35
0 ≤ x46 ≤ 25.

1.3.3 Solving Linear Programs with MATLAB R©

In this section, we demonstrate the basic steps in using the Optimization
Toolbox of MATLAB to solve linear programming problems. Linear programs
can be solved with MATLAB by using the function linprog. To use linprog, a
linear program is specified in the following form

minimize fTx
subject to Ax ≤ b

Aeqx = beq
lb ≤ x ≤ ub,

which assumes that constraints are grouped according to inequality con-
straints, equality constraints, and bounds on the decision variables. The first
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set of constraints Ax ≤ b represents inequality constraints (of the less than
or equal to type). Note that any constraint that is originally an inequality
constraint that is of the greater than or equal to type (≤) must be converted
to a less than or equal to equivalent. The second set of constraints Aeqx = beq
represents the equality constraints, and lb ≤ x ≤ ub represents the lower
and upper bounds on the decision variables. Then, A,Aeq are matrices and
b, beq, lb, ub are vectors. f is a vector that represents the cost coefficients of
the objective function. These quantities are represented in MATLAB as f, A,
b, Aeq, beq, lb, and ub and are used as arguments for the linprog function.

For example, the statement

[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub)

returns a vector x that represents the optimal solution and the optimal ob-
jective function value fval of the linear program specified by the data.

Example 1.19
Consider the linear program

minimize −3x1 − 5x2 − 3x3
subject to x1 − x2 + x3 ≤ 15

2x1 + 3x2 + 6x3 ≤ 30
2x1 + x2 = 30
0 ≤ x1 ≤ 15
0 ≤ x2 ≤ 10
0 ≤ x3 ≤ 5.

Then,

f =

 −3
−5
−3

 , A =

(
1 −1 1
2 3 6

)
, b =

(
15
30

)
,

Aeq =
(

2 1 0
)
, beq = (30) , lb =

 0
0
0

 , and ub =

 15
10
5

 .

The vectors and matrices for this LP are created in MATLAB by the
following statements

>> f=[-3,-5,-3];
>> A=[1,-1,1;2,3,6];
>> b=[15;30];
>> Aeq=[2,1,0];
>> beq=[30];
>> lb=[0;0;0];

© 2014 by Taylor & Francis Group, LLC



Linear Programming 27

>> ub=[15;10;5];

The linear program function can then be called with the following state-
ment

[x, fval] = linprog(f, A, b, Aeq, beq, lb, ub)

which outputs the following values

x =

15.0000

0.0000

0.0000

fval =

-45.0000

If there are no inequality constraints, then one can set A = [ ] and b = [
], while if there are no equality constraints, one can set Aeq = [ ] and beq=
[ ]. Also, if there are no lower bounds (upper bounds), then lb(ub) can be
omitted.

Example 1.20

Consider the following LP:

minimize −3x1 − 5x2 − 3x3
subject to x1 − x2 + x3 ≤ 15

2x1 + 3x2 + 6x3 ≤ 30
0 ≤ x1
0 ≤ x2
0 ≤ x3.

The data is entered as

>> f=[-3,-5,-3];

>> A=[1,-1,1;2,3,6];

>> b=[15;30];

>> Aeq=[ ];

>> beq=[ ];

>> lb=[0;0;0];

Then, the LP can be solved by execution of the statement

[x, fval] = linprog(f, A, b, Aeq, beq, lb),
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which outputs the following values

x =
0.0000

10.0000
0.0000

fval =
-50.0000

Alternatively, the statement

[x, fval] = linprog(f, A, b, [ ], [ ], lb)

can be used to obtain the same results.

Example 1.21
Consider the LP

minimize −3x1 − 5x2 − 3x3
subject to x1 − x2 + x3 ≤ 15

2x1 + 3x2 + 6x3 ≤ 30
0 ≤ x1 ≤ 15
0 ≤ x2
0 ≤ x3 ≤ 20.

In this case, the variables all have a lower bound of 0, but x2 does not

have an upper bound. In this case, the vector lb can be defined as

 15
Inf
20


where Inf represents infinity.

Example 1.22
We solve the minimum cost flow in Example 1.17. The data is entered as

>> f=[1,4,1,3,1,1,1,1,3];

>> Aeq=[1,1,0,0,0,0,0,0,0; -1,0,1,-1,0,0,0,-1,0; 0,-1,0,1,1,-1,0,0,0; 0,0,-
1,0,0,1,1,0,-1; 0,0,0,0,0,0,0,1,1; 0,0,0,0,-1,0,-1,0,0];

>> A=[ ];
>> b=[ ];
>> beq=[10;0;-11;-10;15;-4];
>> lb=zeros(9,1);
>> ub=[ ];

Then, the linear program function is called with the following statement
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[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub),

which outputs the following values

x’ =
10.0000 0.0000 25.0000 0.0000 0.0000 11.0000 4.0000 15.0000 0.0000

fval =
65.0000

Alternatively, the statement

[x, fval] = linprog(f, [ ], [ ], Aeq, beq, lb, [ ])

could be used to produce the same results.

Remark MATLAB requires an LP to be in a specific form, which should
not be confused with the definition of standard form that is defined in Sec-
tion 1.3.1. Standard form will be required in the development of the simplex
method to solve linear programs in Chapter 3.

1.4 Exercises

Exercise 1.1 (a) Convert the following optimization problem into a linear
program in standard form

maximize 2x1 − 4x2 − 3|x3|
subject to x1 + x2 − 2x3 ≥ 1

x2+ x3 ≤ 1
x1 + x2+ x3 = 4

x1 ≥ 0, x2 ≥ 0.

(b) Specify the components A, x, b, and c for the LP you obtained in (a).

Exercise 1.2
An alternative approach to handle absolute value terms is by using the

following observation: |x| is the smallest value z that satisfies x ≤ z and
−x ≤ z. Using this approach, convert the following problem into a linear
program.

minimize 2x1 + 3|x2|
subject to x1 + x2 ≥ 6
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Exercise 1.3
Can the following optimization problem be transformed to a linear pro-

gram? If so, write the LP in standard form.

minimize 2x1 + x22 + x3
subject to x22 − x3 = 0

5x1 +3x3 ≤ 5
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Exercise 1.4
Consider the following optimization problem

maximize min{c10 + c1x, c20 + c2x, ..., cn0 + cnx}
subject to Ax = b

where ci0 and ci are constants for i = 1, ..., n.
(a) Convert the problem to an equivalent linear program.
(b) Give an economic interpretation of the problem.

Exercise 1.5
Sketch each feasible set F below and state whether it is bounded, un-

bounded, or empty.

(a)
x1 + x2 ≤ 6

4x1 − 2x2 ≤ 12
x1 ≤ 2

(b)
2x1 + 6x2 ≤ 22
x1 − x2 ≤ 5
x1 ≥ 0, x2 ≥ 0

(c)
x1 + x2 ≤ 4
x1 + 2x2 ≥ 12
x1 ≥ 0

Exercise 1.6
(a) Prove that “If the feasible set of a linear program in bounded, then the

linear program is bounded” is a true statement.
(b) Show that the converse “If a linear program is bounded, then the feasible

set is bounded” is false.

Exercise 1.7
Consider the LP

minimize 2x1 + x2
subject to x2 ≥ 2

x1 − 3x2 ≤ 5
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Determine if the LP is unbounded or not. If it is, specify a sequence of
vectors x(k) such that the objective function −→ −∞ as k −→ ∞.

Exercise 1.8
Suppose that there are 4 different projects and 4 workers and each worker

must be assigned a project and each project must be assigned a worker. It
costs $20 an hour for a worker. The following table gives the time required (in
hours) for each worker i to complete a particular project j:

Project 1 Project 2 Project 3 Project 4
Worker 1 7 3 6 10
Worker 2 5 4 9 9
Worker 3 6 4 7 10
Worker 4 5 5 6 8

(a) Formulate this problem of assigning workers and jobs at minimum cost
as a linear program.

(b) Solve the model in (a) using the MATLAB linprog function. If you get
a fractional optimal solution, find a feasible integer solution (i.e., all variables
are 0 or 1) with same optimal objective function value.

Exercise 1.9
The Ontario Steel Company ONASCO needs to produce a new type of

steel that will be created from a mixture of various types of iron, alloy, and
steel. The new type of steel should have a chrome content of at least 1% but
no more than 1.25%, and should have a silicon content of at least 3%, but
no more than 4%. ONASCO has the following materials for creating the new
type of steel

Amount Available Cost Chrome % per lb Silicon % per lb
Iron A unlimited $.05/lb 0.01 1.75
Iron B unlimited $.07/lb 7.00 17.00
Steel A unlimited $.02/lb 0.00 0.00
Steel B unlimited $.025/lb 0.00 0.00
Alloy A unlimited $.10/lb 0.00 22.00
Alloy B unlimited $.12/lb 0.00 31.00

ONASCO would like to make 1500 tons of the new type of steel at minimum
cost.

(a) Formulate this problem as a linear program.
(b) Solve the model in (a) using MATLAB.

Exercise 1.10
ONASCO has estimated production requirements of 6,000, 5,000, 7,000,

and 1,000 tons of the new type of steel (see Exercise 1.9) for the next four
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quarters. The current workers at ONASCO are capable of producing 2,000
tons per quarter and the current amount of the new steel in inventory is 1,000
tons. It costs ONASCO $50 per ton with the current workforce. There is a
cost of $10 per ton for any inventory at the end of a quarter. At the end of
the fourth quarter ONASCO wants to have an inventory of at least 1000 tons.
Assume that the maximum production capacity per quarter is 6000 tons.

(a) Formulate the problem above as a linear program and solve using
MATLAB.

(b) Suppose now it is possible to increase or decrease the amount of regular
workers. Also, additional overtime (non-regular) workers for any quarter can
be hired for $100 per ton. It will cost $150 per ton to increase the amount of
regular workers from one quarter to the next, and to decrease regular workers
from one quarter to the next it will cost $100 per ton. Finally, ONASCO
would like there to be a regular workforce amount equivalent to being able to
produce 2000 tons at the end of the last quarter. Reformulate this problem as
a linear program and solve using MATLAB.

Exercise 1.11
Suppose that an aerospace company builds engine turbines in production

facilities in Montreal, Seattle, and Sarnia. The turbines are shipped to ware-
houses in Atlanta, Calgary, and Los Angeles for ultimate delivery to Tokyo,
Shanghai, Toronto, and Paris airports. The costs of shipping a turbine from
the various origins to destinations are as follows:

Atlanta Calgary Los Angeles
Montreal $5000/turbine $3000/turbine $6500/turbine
Seattle $6000/turbine $3200/turbine $2500/turbine
Sarnia $5500/turbine $2300/turbine $6200/turbine

Tokyo Shanghai Toronto Paris
Atlanta $6000/turbine $4500/turbine $5000/turbine $4000/turbine
Calgary $5500/turbine $3200/turbine $2500/turbine $4700/turbine

Los Angeles $5500/turbine $2300/turbine $6200/turbine $8000/turbine

(a) Suppose that the demand in Tokyo is 50 turbines, Shanghai 130 tur-
bines, Toronto 75 turbines, and Paris 90 turbines. Assume that the production
capacity at Montreal, Seattle, and Sarnia is unlimited and that the capacity
of the warehouses is also unlimited. Formulate a linear program to determine
the minimum-cost shipping pattern so that all demand is met and solve using
MATLAB.

(b) Suppose that only two of the three production facilities can be used for
production of turbines, and that the capacity of the Los Angeles warehouse
is now 75 turbines (the capacities of the Atlanta and Calgary warehouses
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remain unlimited). Formulate a model for this modification of the problem.
(Hint: define variables that indicate whether a production facility is selected
or not).

Exercise 1.12
An international airport has a security force to help combat crime. The

head of the security force has divided a day into two time periods of 12 hours
and wishes to staff security robots across the airport for the two time periods.
The first time period is from 6AM to 6PM, the second time period is from
6PM to 6AM, and the number of security robots that should work during
the first period is 34 and 17 for the second time period. A security robot can
work for 12 or 18 consecutive hours. It costs $120 dollars to operate a single
robot that works for 12 hours (consecutively) and $252 dollars per robot that
works 18 hours (consecutively). Formulate an LP that minimizes the cost of
deployment of robots.

Exercise 1.13
A warehouse can store 10,000 units of a certain commodity. A commodi-

ties trader has access to the warehouse and currently has 2000 units of the
commodity in storage in the warehouse. At the start of each month t, for the
next 12 months (t = 1, ..., 12), the trader can buy an amount of the com-
modity at price pt subject to the capacity of the warehouse at the start of
month t or can sell an amount of the commodity at price st at the start of the
month subject to how much of the commodity is currently in the warehouse.
In addition, there is a unit inventory cost it for holding the commodity in the
warehouse, which is incurred at the start of month t. The trader wishes to
have no inventory of the commodity at the end of the year. Formulate an LP
that maximizes profit from the buying or selling of the commodity over the
12-month time horizon.

Exercise 1.14
In Example 1.9 (Bond Portfolio) suppose that one is allowed to invest in a

portfolio of bonds such that the cash generated for a time period may exceed
the amount of the liability for that time period. Any excess cash generated is
re-invested at an interest rate of 2% for one time period and can be used toward
future liabilities. Assume that fractional investments in bonds are allowed.
Formulate this modified version of the Bond Portfolio problem as a linear
program and solve in MATLAB. Why would it be advantageous to allow
excess cash generation and reinvestment?

Exercise 1.15
Suppose that n projects are available for investment. Each project is unique

and not related to other available projects. There is a benefit bi that is obtained
from investment in project i. The cost of investment into project i is denoted
by ci. You have a budget of C dollars for investing in the projects.

(a) Assume that one can invest in a fractional amount of each project and
then formulate the problem of selecting a portfolio of projects such that total
benefit is maximized subject to not violating the budget as a linear program.
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FIGURE 1.8
Power grid for Exercise 1.16.

(b) Now assume for each project one must invest in the entire project or
not at all. What modifications to the model you developed in (a) have to be
made to accommodate the all-or-none selection requirement? Is the resulting
model a linear program?

(c) Suppose that there are 4 projects with cost and benefit data as follows

Project Cost Benefit
1 50 150
2 20 50
3 100 233
4 40 88

One simple heuristic to select projects is to use the benefit-to-cost ratio of
each project and then invest in the project with the highest ratio and then in
the project with the next highest ratio and so on, until no more of the money
is left. Let the budget C = $100.

Is this strategy optimal for the linear program from part (a)?
Is this strategy optimal for the optimization problem from part (b)? Why

or why not?

Exercise 1.16
Consider a power grid consisting of electricity producers that are connected

to consumption points on the grid. The consumption points are affiliated with
regional retail power companies that then distribute the power to their end
users. The undirected graph in Figure 1.8 gives the structure of the network
where nodes 1, 2, and 3 are the location of power generation plants and nodes
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4, 5, 7, and 9 are power consumption points. The cost of transmitting power
over any edge is $13 per megawatt hour and there is no capacity constraint on
an edge. It is possible for power to traverse both orientations on an edge since
the graph is undirected. Each power generator has a maximum generation
capacity in megawatt hours and a cost per megawatt hour generated as given
in the table below.

Generator 1 2 3
Cost ($/Megawatt hour) 18 15 24

Capacity (hundreds of megawatt hours) 80 130 190

The power consumption points have demand as indicated below.

Consumption Point 4 5 7 9
Demand (hundreds of megawatt hours) 70 100 50 120

Formulate the problem of finding the minimum-cost power generation and
distribution strategy over the network to satisfy all consumption points as a
linear program.

Exercise 1.17
One standard assumption about the minimum-cost network flow problem

is that a directed graph G = (N,E) should have an uncapacitated (every edge
has no upper limit on the flow it can have on it) directed path between every
pair of nodes.

How can one in general modify a graph G if it does not have this property?

Exercise 1.18
Yorkville Airlines has service from Calgary to each of the following cities

Winnipeg, Hamilton, Toronto, Montreal, and Quebec City. As an operations
research analyst for Yorkville Airlines you have been asked to determine how
many daily flights there should be from Calgary to Quebec City with the
condition that flights must connect via Winnipeg and then to either Hamilton,
Montreal, or Toronto, and then finally to Quebec City. It has already been
determined by the government transportation bureau that Yorkville Airlines
must have no more than the following flights for each connecting segment as
given in the table below.

City pairs Max # of Daily Flights

Calgary to Winnipeg 5
Winnipeg to Montreal 4
Winnipeg to Hamilton 5
Winnipeg to Toronto 2
Montreal to Quebec City 2
Hamilton to Quebec City 1
Toronto to Quebec City 3
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Formulate this problem as a linear program and solve in MATLAB.

Exercise 1.19
How can you solve a max flow problem as a minimum-cost flow problem?

1.5 Computational Project

(Portfolio Investment Problem)
This project considers the mean variance portfolio optimization problem

in Example 1.11 and considers the use of linear programming via MATLAB in
a non-trivial (larger) application. We wish to compute optimal mean-variance
portfolios. That is, we wish to generate portfolios x that result from solving
the model

minimize
∑n
i=1

∑n
j=1 σijxixj

subject to
∑n
i=1 µixi = R∑n
i=1 xi = 1
xi ≥ 0 i = 1, ..., n

where µi is the expected return of asset i and σi is the standard deviation of
random return of asset i. σij is the covariance of the returns of assets i and j.

Parameter Estimation
Recall that the MAD model only requires estimates of the expected returns

µi of each asset i under the assumption of multi-variate normality of asset
returns. The following formulas to can be used to compute the parameters:

rit =
Ii,t−Ii,t−1

Ii,t−1
(rate of return for stock i over period t where Ii,t is the

total return for stock i for month t; for example, if the price of stock i is 100
at the start of month t and the price of this stock is 110 at the end of month t,
then Ii,t = 10%), then the expected return of each asset i over a time horizon

[0, T ] is µi = (ΠT
t=1(1 + rit))

1
T − 1.

Note that a period does not have to be one month in duration, e.g., it
could be 4 months in duration.

MAD Model 3 Asset Example
We formulate the mean-absolute deviation (MAD) LP model for a 3 as-

set problem. Recall that the MAD model can be formulated as follows (see

Example 1.11).
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minimize E|
∑n
i=1(ri − µi)xi|

subject to
∑n
i=1 µixi = R∑n
i=1 xi = 1
xi ≥ 0 i = 1, ..., n

which as demonstrated earlier can be formulated as the linear program

minimize
∑T
t=1(st + yt)

subject to
∑n
i=1(rit − µi)xi = st − yt t = 1, ..., T∑n
i=1 µixi = R∑n
i=1 xi = 1
xi ≥ 0 i = 1, ..., n

st ≥ 0, yt ≥ 0 t = 1, ..., T

We illustrate the MAD model on a 3-asset example. The three assets are
Apple, TD, and XOM. The historical price of each asset is obtained every four
months over a one-year period starting from May 1, 2009 to May 3, 2010. This
will define 3 periods each 4 months long, e.g., the first period is from May 1,
2009 (t = 0) to Sep 1, 2009 (t = 1) and the second period is from Sep 1, 2009
to Jan 4, 2010 (t = 2), etc. The price data is in the table below

Month Apple TD XOM
May 1 2009 125.83 74.46 66.67

Sep 1 2009 168.21 67.51 69.15
Jan 4 2010 210.73 74.31 68.19
May 3 2010 261.09 86.63 67.77

Using the formulas above for parameter estimation, we get the following
table of rate of returns and expected returns of each asset.

Apple TD XOM
ri1 0.3368 -0.0933 0.0372
ri2 0.2528 0.1007 -0.0139

ri3 0.2390 0.1658 -0.0062
µi 0.2755 0.0518 0.0055

then, the MAD model can be formulated as

minimize 1/3(|(0.3368 − 0.2755)x1 +(−0.0933 − 0.0518)x2 + (0.0372 −
0.0055)x3|

+ |(0.2528− 0.2755)x1 + (0.1007− 0.0518)x2 + (−0.0139− 0.0055)x3|
+ |(0.2390− 0.2755)x1 + (0.1658− 0.0518)x2 + (−0.0062− 0.0055)x3|)

subject to

0.2755x1 + 0.0518x2 + 0.0055x3 = R
x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
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So the MAD model above becomes the linear program

minimize 1/3(s1 + y1 + s2 + y2 + s3 + y3)

subject to

(0.3368− 0.2755)x1 + (−0.0933− 0.0518)x2 + (0.0372− 0.0055)x3 = s1 − y1
(0.2528− 0.2755)x1 + (0.1007− 0.0518)x2 + (−0.0139− 0.0055)x3 = s2 − y1
(0.2390− 0.2755)x1 + (0.1658− 0.0518)x2 + (−0.0062− 0.0055)x3 = s3 − y3

0.2755x1 + 0.0518x2 + 0.0055x3 = R
x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Project Assignment
(1) The project is to construct optimal portfolios by using the mean-

absolute deviation (MAD) linear programming model instead of the
Markowitz (MVO) model, since the MVO model is a non-linear program-
ming problem (MVO will be explored further in Chapter 6). The portfo-
lios will involve all stocks of the S&P 500 index, which is a set of 500
stocks with large capitalization in the U.S. stock market. The capitaliza-
tion of a stock is the number of outstanding shares in the market times
the price per share. For more details about the stocks in the S&P 500 see
http://en.wikipedia.org/wiki/List of S%26P 500 companies.

Historical monthly price information from March 31, 2008 to Oct. 31, 2012
is to be used for all stocks that appear in the S&P 500 index to compute the
expected returns for use in the MAD linear program. Use the formulas above
for estimating parameters.

(2) Compute an optimal portfolio by solving the MAD LP model in MAT-
LAB for each R starting from R = min{µi|µi ≥ 0} to R = max{µi} in
increments of 0.5%.

(3) Provide a table where you list for each value R the corresponding
optimal volatility and optimal proportions invested in the stocks.

(4) Using the optimal variance (volatility) value for each optimized port-
folio from (3), construct a plot in MATLAB where the y-axis represents the
volatility of the portfolio and the x-axis represents R. What does your plot
reveal about the relationship between return and risk?

(Note: Volatility is the objective function value of MAD.)

MAD MATLAB Code
The MATLAB code is given below for the project problem. The code

assumes that there is a data file called ProjectDataCh1 that contains the
monthly rate of return (in return) for each stock in the S&P 500.

clear

clc

% MATLAB code for Computational Project Chapter 1

load ProjectDataCh1
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% ProjectDataCh1 is a file that contains monthly per period returns r_it

% in in_return

n = 500; % the number of stocks can be chose

T = 24; % number of time periods

% computing geometric means

for i = 1:n

mu(i) = (prod(1+in_return(:,i)))^(1/T)-1;

end

R=0:.005: max(mu); % range of expected return goals R

c = [zeros(n,1); ones(T,1); ones(T,1)]; % compute MAD objective coefficients

Aeq = [];

for t=1:T

Aeq = cat(1, Aeq, in_return(t,:)-mu);

end

Aeq = [Aeq -eye(T) eye(T); % constraint coefficients for MAD

mu zeros(1,2*T);

ones(1,n) zeros(1,2*T);];

lb = zeros(n+T+T,1); % lower bound on variables

% computing optimal portfolios over range of return goals R

for a = 1:length(R)

beq = [zeros(T,1); R(a); 1]; %right hand side coefficients for each R

[x_MAD(:,a), fval_MAD(a)] = linprog(c, [],[], Aeq,beq, lb,[]);

end

fval_MAD = (1/T)*fval_MAD; % minimizing (1/T)w

devi = (pi/2)^.5*fval_MAD; % w = sqrt(2/pi)*SD

invest_frac = x_MAD(1:n, :);% optimal portfolio weights for each R

% create figure for optimal portfolios

figure(1)

[xx, yy] = meshgrid(1:n, R);

mesh(xx,yy, invest_frac’)

colormap bone

axis([0 500 0 max(mu) 0 1])

xlabel(’stocks’)

ylabel(’expected return R’)

zlabel(’investment fraction’)

title(’Portfolio Composition under different R’)

% create figure for the efficient frontier of MAD

figure(2)

plot(devi, R, ’-k*’)

xlabel(’volatility \sigma’)

ylabel(’expected return R’)
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title(’The efficient frontier of MAD’)
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Notes and References
Linear programming has its origins in the study of linear systems of in-

equalities, which dates as far back as 200 hundred years ago. More recently,
the work of Dantzig (1963) in the development of the simplex method for
solving linear programs greatly accelerated the field of linear programming
inspiring extensions and new methodological developments as well as the dis-
covery of new applications. Today, linear programming enjoys a prominent
role in the applied mathematical and management sciences due to the wide
variety of problems that can be modeled as linear programs. As seen in this
chapter, linear programs are prevalent in the areas of logistics and supply
chain management, finance, and production planning. Williams (1999) con-
siders general model building principles in using mathematical programming
and covers a wide range of applications. In addition, linear programming plays
an important role in the methodologies of other mathematical optimization
problems, such as integer and non-linear programming. Early books on the
topic include Dantzig (1963), Simonnard (1966), Gass (1975), Bradley, Hax,
and Magnanti (1977), Murty (1983), Chvatal (1983), and Bazaraa, Jarvis, and
Sherali (1977). More recent books include those by Bertsimas and Tsitsiklis
(1997), Saigal (1995), Winston and Venkataramanan (2003), and Vanderbei
(2008). Network flows is an important topic that is covered comprehensively
by Murty (1992), and Ahuja, Magnanti, and Orlin (1993).

The diet problem was originally formulated by Stigler (1945) and the
portfolio optimization problem in Example 1.11 was developed by Markowitz
(1952). The linear programming MAD equivalent was developed by Konno
and Yamazaki (1991). The book by Zenios (2008) covers a wide variety of
financial optimization models, many of which are linear programs.
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2

Geometry of Linear Programming

2.1 Introduction

In this chapter, we explore the geometry of linear programming and gain
geometric insight into optimal solutions. Also, the corresponding algebraic
representations of the geometry are developed. This leads to the Fundamental
Theorem of Linear Programming, which serves as the basis for algorithm
development for linear programs.

2.2 Geometry of the Feasible Set

We have seen that the feasible set for a linear program can be bounded, un-
bounded, or infeasible. In this section, we explore additional geometric prop-
erties of feasible sets of general linear programs that are consistent, i.e., whose
feasible set is non-empty. Consider the following linear program

minimize −x1 − 2x2

subject to x1 + x2 ≤ 20 (2.1)

2x1 + x2 ≤ 30

x1, x2 ≥ 0.

The feasible set P = {x =
(
x1

x2

)
| x1 + x2 ≤ 20, 2x1 + x2 ≤ 30, x1, x2 ≥ 0}.

The graph of P is in Figure 2.1. For this linear program, the feasible set P is

clearly bounded. Any point x =

[
x1
x2

]
in P must satisfy each contraint, e.g.,

x1 + x2 ≤ 20, 2x1 + x2 ≤ 30, x1 ≥ 0 and x2 ≥ 0. The first constraint requires
that only points x in R2 whose sum of components is less than or equal to
20 can be considered. The second constraint requires further that the sum of
twice the first component and the second component be less than or equal
to 30. Finally, each component must be non-negative. Each constraint of this
linear program is an inequality constraint. An inequality constraint is also

43
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FIGURE 2.1
Graph of feasible set of LP (2.1).

known as a closed halfspace since the vectors that will satisfy the constraint
will lie on one side of a straight line (or hyperplane in higher dimensions)
where the points on the line also satisfy the constraint. The definition of a
closed halfspace is as follows.

Definition 2.1

A closed halfspace is a set of the form H≤ = {x ∈ Rn|aTx ≤ β} or
H≥ = {x ∈ Rn|aTx ≥ β}.

Example 2.2

The constraint x1 +x2 ≤ 20 is a closed halfspace H≤ where a =

[
1
1

]
and

β = 20; see Figure 2.2. Likewise the constraint 2x1 + x2 ≤ 30 is a closed

halfspace H≤ with a =

[
2
1

]
and β = 30. The constraint x1 ≥ 0 is a closed

halfspace H≥ with a =

[
1
0

]
and β = 0, and x2 ≥ 0 is a closed halfspace H≥

with a =

[
0
1

]
and β = 0; see Figure 2.3 for graph of H≥.

Thus, the feasible set P of the linear program can be seen to be the inter-
section of closed halfspaces that results in Figure 2.1 since any feasible x ∈ P
must lie in all of the closed halfspaces.

In general, a linear program may have some equality constraints as well
as inequality constraints, and these equality constraints will correspond to
hyperplanes.

Definition 2.3

© 2014 by Taylor & Francis Group, LLC



Geometry of Linear Programming 45

FIGURE 2.2
Closed halfspace x1 + x2 ≤ 20.

A hyperplane is a set of the form H = {x ∈ Rn|aTx = β} where a is a
non-zero vector, i.e., a 6= 0 and β ∈ R1is a scalar.

In particular, an equality constraint aTi x = bi in a linear program is a
hyperplane H = {x ∈ Rn|aTi x = bi}. Geometrically, a hyperplane H splits
Rn into two halves. In R2 a hyperplane H is a line that splits the plane into two
halves; see Figure 2.4. In R3, a hyperplane is a plane that splits 3-dimensional
space into two halves.

Furthermore, the vector a in the definition of the hyperplane H is perpen-
dicular to H. a is called the normal vector of H. To show that a is perpen-
dicular to H, let z and y be in H, then aT (z − y) = aT z − aT y = 0− 0 = 0.
The vector z − y is parallel to H, thus a is perpendicular to H.

Example 2.4

The hyperplane

H = {x =

[
x1
x2

]
∈ R2|x1 + x2 = 20}

has vector a =

[
1
1

]
and this vector is perpendicular to all vectors x in H

and all vectors parallel to H. In addition, the vector −a is also perpendicular
to vectors in and parallel to a hyperplane H, but in the opposite direction to
a; see Figure 2.5.

Each hyperplane H = {x ∈ Rn|aTi x = bi} associated with an equality
constraint aTi x = bi can be re-written as two closed halfspaces HL = {x ∈
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FIGURE 2.3
Closed halfspace x1 ≥ 0.

Rn|aTi x ≤ bi} and HU = {x ∈ Rn|aTi x ≥ bi}, meaning that x belongs to H if
and only if it belongs in the intersection of HL and HU .

Thus, we can conclude that any feasible point x ∈ P lies in the intersection
of closed halfspaces. When the number of closed halfspaces is finite, as is the
case for linear programs, we have the following definition.

Definition 2.5
The intersection of a finite number of closed halfspaces is called a polyhe-

dron (or polyhedral set). A bounded polyhedron is called a polytope.

So the feasible set P of any linear program is a polyhedral set. In particular,
the set P = {x =

(
x1

x2

)
| x1 + x2 ≤ 20, 2x1 + x2 ≤ 30, x1, x2 ≥ 0} is a polytope.

The closed halfspaces H≤ and H≥ have the following property. If one takes
two points x and y in H≤(H≥), then the line segment between x and y is also
contained in H≤(H≥); see Figure 2.6. Now the line segment between two
points x and y in C ⊆ Rn can be expressed as λx + (1 − λ)y for 0 ≤ λ ≤ 1.
More formally, we have the following definition.

Definition 2.6
A set C ⊆ Rn is said to be convex if for any x and y in C, λx+(1−λ)y ∈ C

for all λ ∈ [0, 1].

Figure 2.7 depicts sets that are convex and not convex.
We can now show that a closed halfspace H≤ is a convex set. Let z =[
z1
z2

]
and y =

[
y1
y2

]
be any pair of points in H≤ = {x ∈ Rn|aTx ≤ β}.

Then, consider any point on the line segment between z and y, i.e., λz+ (1−
λ)y for some λ ∈ [0, 1]. We must show that aT (λz + (1 − λ)y) ≤ β. Now
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FIGURE 2.4
Hyperplane in R2.

aT (λz + (1 − λ)y) = λaT z + (1 − λ)aT y ≤ λβ + (1 − λ)β = β where the
inequality holds since λ and (1− λ) are both non-negative and z and y are in
H≤. Thus, H≤ is convex. A similar argument shows that H≥ is convex. We
summarize in the following statement.

Theorem 2.7

The closed halfspaces H≤ and H≥ are convex sets.

We now aim to show that the feasible set P of a linear program is a convex
set. First we need the following theorem.

Theorem 2.8

The intersection of convex sets is convex.

Proof: Suppose there is an arbitrary collection of convex sets Si indexed
by the set I. Consider the intersection ∩i∈ISi and let x and y be elements of
this intersection. For any λ ∈ [0, 1], then z = λx+ (1− λ)y is in every set Si
since x and y are in Si for every i ∈ I and Si is a convex set. Thus, ∩i∈ISi is
a convex set. �

Corollary 2.9

The feasible set of a linear program is a convex set.

Proof: Immediately follows from Theorem 2.8 since a feasible set P of a
linear program is a polyhedron (i.e., equivalent to the intersection of closed
halfspaces) and that each closed halfspace is a convex set by Theorem 2.7. �
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FIGURE 2.5
a and −a are perpendicular to H .

FIGURE 2.6
Convexity of x2 ≥ 0.
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FIGURE 2.7
Convexity and non-convexity.

2.2.1 Geometry of Optimal Solutions

In this section we develop a geometric characterization of optimal solutions for
linear programs based on insights from low dimensional problems. Consider
the linear program (2.1). The objective function is −x1−2x2 = cTx. Consider
contours of the objective function H = {x ∈ R2| − x1 − 2x2 = β}. A key
insight is that the contours are hyperplanes and the negative of the gradient

of the objective function, i.e.,−c =

[
1
2

]
is perpendicular to all such contours.

Thus, to decrease the objective function in the direction of most rapid descent,
the contours of the objective should be moved in the direction of −c while
remaining perpendicular to −c; see Figure 2.8.

However, the contours of the objective function cannot be moved indef-
initely in the direction of −c as points on the contours must be feasible for
the LP. Thus, one should move the contours in the direction −c as far as pos-
sible while ensuring that the contours intersect the feasible region. It is not
enough to have a contour of the objective just intersecting the feasible set P .
At optimality, the feasible set should be completely contained within one of
the closed halfspaces of the contour of the objective function.

For example, consider the feasible set P for the LP (2.1). One can move

the contours in the direction of −c =

[
1
2

]
until moving further would create

infeasibility; see Figure 2.8. Observe that the intersection of the contour and

the feasible set P in this case is the single point x∗ =

[
0
20

]
, which happens to

be the optimal solution to the LP. Furthermore, the feasible set P is completely
contained in the closed halfspace H≥ = {x ∈ R2| − x1 − x2 ≥ −20} or the
equivalent halfspace H≤ = {x ∈ R2|x1 + x2 ≤ 20}.

In general, we can characterize optimal solutions to LPs via the geometry
of the hyperplane and feasible set intersection.

Geometric Characterization of Optimality
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FIGURE 2.8
Hyperplane characterization of optimality for LP (2.1).

Let P 6= ∅ be the feasible set of a linear program with an objective to
minimize cTx and let H = {x ∈ Rn| − cTx = β}. If P ⊂ H≤ = {x ∈
R2| − cTx ≤ β} for some β ∈ R1, then any x in the intersection of P and H
is an optimal solution for the linear program.

Unique Intersection
As seen in the previous example for the linear program (2.1) for β = 40, the

feasible set P is completely contained in the halfspace H≤ = {x ∈ R2|x1+x2 ≤

20} and x∗ =

[
0
20

]
is in both P and H = {x ∈ R2|x1 + 2x2 = 40} and is

the only such point. An important observation is that the optimal point x∗

is a “corner point” which intuitively in two dimensions is a point not in the
interior of P and not in the interior of a line segment on a side or “edge” of
P ; see Figure 2.9. The other three corner points of P are v1 =

(
0
0

)
, v2 =

(
15
0

)
,

and v3 =
(
10
10

)
. These “corner” points of the feasible set P play a very special

role in algorithms for solving linear programs such as the simplex method in
Chapter 3.

Infinite Intersection
It is possible for the set of optimal solutions for an LP to be infinite.

Consider the following LP

minimize −x1
subject to x1 ≤ 1 (2.2)

x2 ≤ 1

x1, x2 ≥ 0.

The feasible set P for this LP and hyperplanes (objective contours) are in
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FIGURE 2.9
Corner points of feasible set of LP (2.1).

Figure 2.10. The “corner points” for P are v1 =

[
0
0

]
, v2 =

[
1
0

]
, v3 =[

0
1

]
, and v4 =

[
1
1

]
.

It is clear that the contours H = {x ∈ R2| x1 = β} can be pushed in

the direction of −c =

[
1
0

]
as far as β = 1, and it is at this point that

P is completely contained in H≤ = {x ∈ R2| x1 ≤ 1} while having a non-
empty intersection with H. From Figure 2.10 we see that the line segment in P
between the corner points v3 and v4 (inclusive of these corner points) intersects
with H∗ = {x ∈ R2| x1 = 1}, and thus all points on this line segment are
optimal solutions. Of course, there are an infinite number of points on this
line segment (in particular an uncountably infinite number of points). It is
crucial to observe that either of the endpoints of this line segment are optimal
as well, meaning that there is at least one corner point that is optimal.

Unbounded Case
It is possible that an LP is consistent but unbounded. Consider the fol-

lowing LP

minimize −x1 − x2
subject to x1 + x2 ≥ 1 (2.3)

x1 ≥ 0, x2 ≥ 0.

In this case, the contours of the objective function can be moved indefinitely
in the direction of −c while always intersecting the feasible set P since it is
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FIGURE 2.10
Hyperplane characterization of infinite optimal solutions for LP (2.2).

unbounded; see Figure 2.11. That is, for any positive value of β, the hyperplane
H = {x ∈ R2| x1 +x2 = β} will always intersect the feasible set P = {x ∈ R2|
x1 + x2 ≥ 1, x1 ≥ 0, x2 ≥ 0}.

A main insight from the geometry of the two-dimensional examples is
that if an LP has a finite optimal solution, then an optimal solution can be
attained at a corner point. This observation will turn out to hold true in higher
dimensions and is called the Fundamental Theorem of Linear Programming.
It will be proved in Section 4 of this chapter. This suggests that one can plot
the feasible set and find all of the corner points and then evaluate them to
find the optimal solution it exists. Unfortunately, this strategy is effective for
only small problems, e.g., LPs with just two variables. Graphing feasible sets
in higher dimensions is not a practical endeavor, however, the insights from
the geometry of LPs in low dimensions hold for higher dimensional problems.

2.3 Extreme Points and Basic Feasible Solutions

In this section, we develop an algebraic representation of corner points through
the corresponding geometric notion of extreme points. Then, an algebraic rep-
resentation of extreme points is given. The algebraic representation will allow
higher-dimensional LP problems to be considered without relying on the ge-
ometry of the underlying problem, and will serve as the basis for development
of practical algorithms effective for large LP problems.

Extreme Points
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FIGURE 2.11
Unbounded LP (2.3).

We first define a geometric entity that will correspond to the notion of
a corner point for any dimension. Recall that in two dimensions, a corner
point of a feasible set P of a linear program should not lie in the interior of
P and should not lie in the interior of any line segment on the edge of P . A
mathematical representation of this requirement is embodied in the definition
of an extreme point. First, we need the following.

Definition 2.10
A convex combination of vectors x1, x2, ..., xk ∈ Rn is a linear combination∑k
i=1 λixi of these vectors such that

∑k
i=1 λi = 1 and λi ≥ 0 for i = 1, ..., k.

For example, the convex combination of two distinct points z and y in
Rn is the set l = {x ∈ Rn|x = λz + (1 − λ)y for λ ∈ [0, 1]}, which is the
line segment between z and y. We are now ready to give the definition of an
extreme point.

Definition 2.11
Let C ⊆ Rn be a convex set and x ∈ C. A point x is an extreme point of

C if it can’t be expressed as a convex combination of other points in C.

The definition of extreme points will be vital in developing an algebraic
representation of corner points.

Example 2.12
For the feasible set P = {x =

(
x1

x2

)
| x1 + x2 ≤ 20, 2x1 + x2 ≤ 30, x1, x2

≥ 0}, the corner points v1 =
(
0
0

)
, v2 =

(
15
0

)
, v3 =

(
0
20

)
, and v4 =

(
10
10

)
are

extreme points since they cannot be written as the convex combination of
more than one point in P ; see Figure 2.12.

© 2014 by Taylor & Francis Group, LLC



54 Introduction to Linear Optimization and Extensions with MATLAB R©

FIGURE 2.12
Extreme points of feasible set of LP (2.1).

At this point it is not evident how extreme points can facilitate an algebraic
representation since it is a geometric entity. The missing connection is how an
extreme point x is related to the corresponding parameters (data) in the linear
program. To see this, convert the LP (2.1) to standard form, i.e., minimize
cTx subject to Ax = b and x ≥ 0 by adding slack variables x3 and x4 to get

minimize −x1 − 2x2
subject to x1 + x2 + x3 = 20

2x1 + x2+ x4 = 30
x1, x2, x3, x4 ≥ 0

where corresponding matrix entities are

A =

[
1 1 1 0
2 1 0 1

]
, b =

[
20
30

]
, and c =

[
−1
−2

]
.

Let Ai be the column in A associated with xi for i = 1, ..., 4 so that

A1 =

[
1
2

]
, A2 =

[
1
1

]
, A3 =

[
1
0

]
, and A4 =

[
0
1

]
.

Consider the corner point v4 =
(
10
10

)
=
(
x1

x2

)
in the feasible set P of the

original LP, then the corresponding feasible solution in standard form must
have the slack variables at zero, i.e., x3 = x4 = 0 and so the corresponding
vector is
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z =


10
10
0
0

 =


x1
x2
x3
x4

.

A important observation here is that if we take the columns in A as-
sociated with the variables that are positive in z, i.e., A1 (associated with
x1 = 10 > 0) and A2 (associated with x2 = 10 > 0) to form the sub-matrix

B =
[
A1 A2

]
=

[
1 1
2 1

]
, then the resulting submatrix B is non-singular

(i.e., the determinant of B is non-zero).
The other corner points for this LP can all be extended to corresponding

feasible solutions for the standard form version of the LP and a corresponding
non-singular square submatrix B can be obtained for each corner point; see
Table 2.1.

Table 2.1 Feasible solutions in standard form for LP (2.1)

Corner point Standard form feasible solution Submatrix B

v1 =
(
x1

x2

)
=
(
0
0

)
x1 = 0, x2 = 0, x3 = 20, x4 = 30 [A3 A4] =

[
1 0
0 1

]
v1 =

(
x1

x2

)
=
(
15
0

)
x1 = 15, x2 = 0, x3 = 5, x4 = 0 [A1 A3] =

[
1 1
2 0

]
v1 =

(
x1

x2

)
=
(
0
20

)
x1 = 0, x2 = 20, x3 = 0, x4 = 10 [A2 A4] =

[
1 0
1 1

]
v1 =

(
x1

x2

)
=
(
10
10

)
x1 = 10, x2 = 10, x3 = 0, x4 = 0 [A1 A2] =

[
1 1
2 1

]
The correspondence between the positive components of an extreme point

and the invertibility of the corresponding matrix B turns out to algebraically
characterize extreme points.

Theorem 2.13
Consider a linear program in standard form where the feasible set P =

{x ∈ Rn|Ax = b, x ≥ 0} is non-empty. A vector x ∈ P is an extreme point if
and only if the columns of A corresponding to positive components of x are
linearly independent.

Proof:
Suppose that there are k positive components in x ∈ P and they are

positioned as the first k components of x, i.e., x =

[
xp
0

]
where

xp =


x1
x2
...
xk

 > 0.
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Let B be the columns of A associated with the components of xp. Then,
Ax = Bxp = b.

(Proof of forward direction =>)
Assume that x ∈ P is an extreme point. Now suppose that B is singular

(i.e., columns of B are linearly dependent), then there exists a non-zero vector
w such that Bw = 0. For sufficiently small ε > 0, xp+εw ≥ 0 and xp−εw ≥ 0.
Furthermore, B(xp+εw) = Bxp+εBw = b and B(xp−εw) = Bxp−εBw = b
since Bw = 0. Therefore, the following two vectors

z+ =

[
(xp + εw)

0

]
and z− =

[
(xp − εw)

0

]

are in the set P since Az+ = b and Az− = b. However, 1
2z

+ + 1
2z
− = x, which

means x is a convex combination of z+ and z−, contradicting that it is an
extreme point.

(Proof of reverse direction <=)
Suppose that the columns of B are linearly independent and that x is not

an extreme point. Then x can be written as the convex combination of two

distinct points v1 and v2 both in P (and different from x) i.e x =

[
xp
0

]
=

λv1 + (1 − λ)v2 for some positive λ such that 0 < λ < 1. Now v1 and v2
are both non-negative since they are in P and λ is positive, so the last n− k
components of v1 and v2 must be zeros, i.e., v1 and v2 can be written as

v1 =

[
v1p
0

]
and v2 =

[
v2p
0

]

where v1p and v2p are the first k components of v1 and v2, respectively. Thus,
B(x − v1) = Bxp − Bv1p = b − b = 0, but xp − v1p 6= 0 since x 6= v1. So the
columns of B are linearly dependent, which is a contradiction. �

Theorem 2.13 allows access to extreme points through using the associated
linear algebra matrix constructs, e.g., the matrix B. Further to this develop-
ment, we use the characterization from Theorem 2.13 to define the full alge-
braic representation of an extreme point in standard form (i.e., basic feasible
solutions), will prove to be very useful in developing practical algorithms for
solving LPs, as will be seen in Chapter 3.

We assume that the matrix A has m rows, n columns, and m ≤ n. Further,
we assume that A has full row rank (i.e., the m rows are linearly independent).
Let xB = the set of variables of x corresponding to the columns of an m×m
submatrix B of A. Denote by N the submatrix of A of dimension m × (n −
m) consisting of columns not in B, and let xN = the set of variables of x
corresponding to the columns of N .
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Definition 2.14
A vector x ∈ P = {x ∈ Rn|Ax = b, x ≥ 0} is a basic feasible solution

(BFS) is there is a partition of the matrix A into an non-singular m × m
square submatrix B and an m × (n −m) submatrix N such that x =

[
xB
xN

]
with xB ≥ 0 and xN = 0 and Ax = BxB = b.

B is called the basis matrix, N is called the non-basis (or non-basic)
matrix, xB the set of basic variables, and xN is the set of non-basic variables.

Example 2.15
Consider from the first row of Table 2.1 the extended feasible solution

x =


x1
x2
x3
x4

 =


0
0
20
30



corresponding to the corner point v1 =

[
x1
x2

]
=

[
0
0

]
, which can be rewrit-

ten by letting xB =

[
x3
x4

]
=

[
20
30

]
and xN =

[
x1
x2

]
=

[
0
0

]
so that

x =

[
xB
xN

]
.

Let the matrix B consist of the columns associated with the variables in
xB , then

B =

[
1 0
0 1

]

and let N consist of columns associated with the variables in xN i.e.

N = [A1 A2] =

[
1 1
2 1

]
.

Observe that B is non-singular and that BxB = b (i.e., xB = B−1b),
xB > 0, and if xN = 0. Thus, x is a basic feasible solution which corresponds
to the extreme point v1 of P . In fact, all of the extended feasible solutions in
Table 2.1 are basic feasible solutions and thus correspond to extreme points.

Further, if one were to start with the matrix B =

[
1 0
0 1

]
and let

xB = B−1b and xN = 0, then the vector x =

[
xB
xN

]
is a basic feasible

solution.
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In general, we have the following correspondence, which is a direct conse-
quence of Theorem 2.13.

Corollary 2.16
A vector x ∈ P = {x ∈ Rn|Ax = b, x ≥ 0} is an extreme point if and only

if there is some matrix B so that x is a basic feasible solution with B as the
basis matrix.

2.3.1 Generating Basic Feasible Solutions

Theorem 2.13 says that any m columns of A that form a submatrix B that
is invertible and whose corresponding variables xB are such that BxB = b
and xB > 0 will correspond to a basic feasible solution and therefore to an
extreme point. The total number of possible ways to select m columns out of a
total n is C(n,m) = n!

m!(n−m)! , which is a finite number. It is possible that for

a particular selection of m columns, either B is not invertible or xB = B−1b
has negative components. Thus, we have the following.

Corollary 2.17
The feasible set P = {x ∈ Rn|Ax = b, x ≥ 0} has at most n!

m!(n−m)!
extreme points.

Given a linear program in standard form, it is possible to generate all basic
feasible solutions and thereby access the extreme points (corner points) of the
LP without the need to graph the feasible set.

The procedure amounts to choosing m columns out of the n columns of
the A matrix to form the basis matrix B. A particular choice of m columns
will generate an extreme point if (1) the matrix B is non-singular and (2) xB
is non-negative. Note that if B is non-singular, then one can set xN = 0 so
that Ax = [B|N ]

[
xB
xN

]
= BxB +NxN = BxB = b.

Example 2.18
Consider the feasible set defined by the constraints

x1 + x2 ≤ 1

x1 ≤ 1 (2.4)

x2 ≤ 1

x1 ≥ 0, x2 ≥ 0.

In standard form, the constraints are

x1 + x2 + x3 = 1
x1+ +x4 = 1

x2+ + x5 = 1
x1, x2, x3, x4, x5 ≥ 0
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with

A =

 1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 and b =

 1
1
1

.

There are

(
5
3

)
= 5!

3!(2)! = 10 possible extreme points. For example,

one can select columns associated with variables x3, x4, and x5 to form the
submatrix

B =

 1 0 0
0 1 0
0 0 1

.

Now B is invertible, and with selected variables xB =

 x3
x4
x5

 we have

xB = B−1b =

 1 0 0
0 1 0
0 0 1

 1
1
1

 =

 1
1
1

 ,

so with

xN =

[
x1
x2

]
=

[
0
0

]
then,

x =

[
xB
xN

]
=


1
1
1
0
0


is basic feasible solution (note the re-ordering of the variables) and thus an
extreme point. We now show all possibilities for generating an extreme point
for selection of m = 3 columns of A in the following tables. The first column
shows the partition of the variables of x into xB and xN where the variables
xB are selected so that the corresponding columns will form the matrix B
which is entered in the second column, the third column computes the values
of xB = B−1b if possible (if B is invertible), and the fourth column indicates
whether the computed values for components of x represent an extreme point.
Table 2.2 lists those partitions that result in basic feasible solutions and Table
2.3 lists partitions that do not result in basic feasible solutions, either due to
infeasibility or non-negativity of basic variables.
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Table 2.2 All basic feasible solutions for Example 2.16

Partition x =

[
xB
xN

]
Basis matrix B xB = B−1b x bfs?

xB=

 x3
x4
x5

 , xN=

[
x1
x2

]  1 0 0
0 1 0
0 0 1

  1
1
1

 yes

xB=

 x1
x4
x5

 , xN=

[
x3
x2

]  1 0 0
1 1 0
0 0 1

  1
0
1

 yes

xB=

 x3
x1
x5

 , xN=

[
x4
x2

]  1 1 0
0 1 0
0 0 1

  0
1
1

 yes

xB=

 x2
x4
x5

 , xN=

[
x1
x3

]  1 0 0
0 1 0
1 0 1

  1
1
0

 yes

xB=

 x3
x4
x2

 , xN=

[
x1
x5

]  1 0 1
0 1 0
0 0 1

  0
1
1

 yes

xB=

 x1
x2
x4

 , xN=

[
x3
x5

]  1 1 0
1 0 1
0 1 0

  0
1
1

 yes

xB=

 x1
x2
x5

 , xN=

[
x3
x4

]  1 1 0
1 0 0
0 1 1

  1
0
1

 yes
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Table 2.3 Infeasible partitions of Example 2.16

Partition x =

[
xB
xN

]
Basis matrix B xB = B−1b x bfs?

xB=

 x3
x4
x1

 , xN=

[
x5
x2

]  1 0 1
0 1 1
0 0 0

 B singular no

xB=

 x3
x2
x5

 , xN=

[
x1
x4

]  1 1 0
0 0 0
0 1 1

 B singular no

xB=

 x1
x2
x3

 , xN=

[
x4
x5

]  1 1 1
1 0 0
0 1 0

  1
1
−1

 no

2.3.1.1 Generating Basic Feasible Solutions with MATLAB R©

We give an example in MATLAB on how a basic feasible solution can be
obtained for a linear program in standard form. Consider the linear program
in Example 2.16. Recall that the constraint matrix in standard form and
right-hand side vector is

A =

 1 1 1 0 0
1 0 0 1 0
0 1 0 0 1

 and b =

 1
1
1

 ,
To generate the basic feasible solution

xB=

 x3
x4
x5

 , xN=

[
x1
x2

]
,

the last three columns of A are chosen as the basis matrix B.

In MATLAB we write
>> A=[1,1,1,0,0;1,0,0,1,0;0,1,0,0,1]; % Enter A matrix
>> b=[1;1;1]; % Enter right hand side vector

>> B=A(:,3:5) % basis matrix is last three columns of A
B =
1 0 0
0 1 0
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0 0 1

>> x b=B\b %Solve for basic variables

x b =
1
1
1

>> x n=zeros(2,1); % set non-basic variables to 0
>>x=[x b;x n] % Constructing the basic feasible solution
x =
1
1
1
0
0

Now, to get the basic feasible solution

xB=

 x1
x4
x5

 , xN=

[
x3
x2

]
from the previous basic feasible solution, we can replace the first column in
the current basis matrix B with the first column in A.

>>B(:,1)=A(:,1);
>>B
B =
1 0 0
1 1 0
0 0 1

>>x b=B\b % new basic variable values
x b =
1
0
1
>>x=[x b;x n] % Constructing the new basic feasible solution
x =
1
0
1
0
0

In general, one can select any 3 columns of A and check in MATLAB if the
resulting choice results in a basic feasible solution and repeat until all possible
choices of selecting 3 columns is exhausted.
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FIGURE 2.13
Feasible set (2.4).

2.3.2 Degeneracy

An extreme point x ∈ P = {x ∈ Rn|Ax = b, x ≥ 0} is a geometric entity
and has a corresponding representation as a basic feasible solution. A natural
question to ask is whether this correspondence is one to one. It is clear that a
given basic feasible solution will correspond to a unique extreme point. But,
for an extreme point x, is there a unique representation as a basic feasible
solution? This is not the case as Example 2.17 above illustrates that several
basic feasible solutions can correspond to the same extreme point. The feasible
set in Example 2.17 is graphed in Figure 2.13.

There are three extreme points v1 =
[
0
0

]
, v2 =

[
1
0

]
, and v3 =

[
0
1

]
. The basic

feasible solution in row 1 of Table 2.2 is the only BFS that corresponds to the
extreme point v1. However, the basic feasible solutions in rows 2, 3, and 5 in
Table 2.2 correspond to v2 since x1 = 1 and x2 = 0 in all of these solutions
and the basic feasible solutions in rows 4, 5, and 6 in Table 2.2 correspond
to v3 since the x1 = 0 and x2 = 1 in all of these solutions. Thus, there is
not in general a one-to-one correspondence between extreme points and basic
feasible solutions.

There are three basic feasible solutions associated with v2 and v3. This
arises since one of the variables in the basic set xB of each of these basic feasible
solutions is zero. This makes the three basic feasible solutions indistinguishable
in terms of representing the corresponding extreme points. This motivates the
following definitions.

Definition 2.19

A basic feasible solution x ∈ P = {x ∈ R2|Ax = b, x ≥ 0} is degenerate if
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FIGURE 2.14
A polytope with 5 extreme points.

at least one of the variables in the basic set xB is zero. x ∈ P is said to be
non-degenerate if all m of the basic variables are positive.

Degeneracy arises in a linear program in standard form at a extreme
point because the constraints that give rise to the extreme point are “over-
determined”. For example, v2 is determined by the intersection of three con-
straints (other than the non-negativity constraints), where only two con-
straints are needed; see Figure 2.13.

2.4 Resolution (Representation) Theorem

In this section, a characterization of the feasible set of P = {x ∈ R2|Ax =
b, x ≥ 0} is first given when P is bounded and the general case when P can
be unbounded is then considered. In particular, a representation of any x ∈ P
is sought in terms of the extreme points of P and recession directions.

Example 2.20

Consider the case when P is bounded, i.e., a polytope; see Figure 2.14. P
has 5 extreme points v1, v2, v3, v4, and v5.

The point x can be represented as the convex combination of the extreme
point v3 and the point z, which is not an extreme point, i.e., x = λz+(1−λ)v3
for some λ ∈ [0, 1]. Furthermore, the point z can be represented as the convex
combination of the extreme points v1 and v2, i.e., z = αv1+(1−α)v2 for some
α ∈ [0, 1]. Thus, x = λ(αv1+(1−α)v2)+(1−λ)v3 = λαv1+λ(1−α)v2+(1−λ)v3
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where λα, λ(1−α), and (1−λ) are all in [0, 1] and λα+λ(1−α)+ (1−λ) = 1.
Thus, x ∈ P is a convex combination of extreme points in P. In general, any
x ∈ P in a polytope can be represented as a combination of extreme points
in P .

Example 2.21
Consider the polytope

P = {(x1, x2, x3) ∈ R3| x1 + x2 + x3 ≤ 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}.

Then, the extreme points are v1 =

 1
0
0

, v2 =

 1
0
0

, v3 =

 0
0
1

, and

v4 =

 0
0
0

. Any point x ∈ P can be written as a convex combination of

these extreme points. For example, the point

x =

 1
5
1
3
2
7

 = 1
5v

1 + 1
3v

2 + 2
7v

3 + (1− ( 1
5 + 1

3 + 2
7 ))v4

= 1
5v

1 + 1
3v

2 + 2
7v

3 + ( 29
105 )v4.

In general, for any feasible vector x =

 x1
x2
x3

 ∈ P we can write

x = x1v
1 + x2v

2 + x3v
3 + (1− (x1 + x2 + x3))v4.

Example 2.22
We now consider the case when P is unbounded. As an example, let P be

defined by the following set of inequalities

x2 − x1 ≤ 3 (2.5)

x1 ≥ 0, x2 ≥ 0.

Figure 2.15 shows the graph of P , which is an unbounded set. The extreme
points of P are v1 =

[
0
0

]
and v2 =

[
3
0

]
. The point x =

[
5
3

]
cannot be represented

as a convex combination of v1 and v2. Additional constructs are needed to
develop a representation of x.

Definition 2.23
A ray is a set of the form {x ∈ Rn|x = x0 + λd for λ ≥ 0} where x0 is a

given point and d is a non-zero vector called the direction vector.
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FIGURE 2.15
Some rays of feasible set (2.5).

For example, the ray r1 = {x ∈ Rn|x =
[
3
0

]
+ λ

[
1
1

]
for λ ≥ 0} extends

indefinitely from the point x0 =
[
3
0

]
in the direction of d1 =

[
1
1

]
and the ray

r2 = {x ∈ Rn|x =
[
0
0

]
+ λ

[
0
1

]
for λ ≥ 0} extends indefinetely from the point

x0 =
[
0
0

]
in the direction of d2 =

[
0
1

]
. Another ray is r3 = {x ∈ Rn|x =[

0
0

]
+ λ
[
1
1

]
for λ ≥ 0}. The three rays are in P ; see Figure 2.15.

In turns out that for any starting point x0 ∈ P , the rays {x ∈ Rn|x =
x0 + λ

[
1
1

]
for λ ≥ 0} ⊂ P and {x ∈ Rn|x = x0 + λ

[
0
1

]
for λ ≥ 0} ⊂ P . In

such cases, the directions d1 and d2 are called recession directions, which are
defined formally in the next definition.

Definition 2.24

Let P be a non-empty feasible set of a LP. A non-zero direction d is called
a recession direction if for any x0 ∈ P , the ray {x ∈ Rn|x = x0 + λd for
λ ≥ 0} ⊂ P .

It is clear that a bounded feasible set P cannot have such directions. In
fact, it can be proven that a feasible set P is bounded if and only if it does
not contain a recession direction; see Exercise 2.13. It is also the case that
these particular recession directions d1 and d2 cannot be written as a positive
multiple of the other, i.e., ad1 6= d2 for any a > 0. Such recession directions
are called extreme directions.

Now with the concept of extreme directions, the point x =
[
5
3

]
can be

written as

x =
[
5
3

]
= v2 + 2d1 + 1d2 = 0v1 + 1v2 + 2d1 + 1d2.
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In other words, x can be written as a convex combination of extreme points
of P and a non-negative linear combination of extreme directions. In general,
the insights above lead to the following result, which we state without proof.

Theorem 2.25 (Resolution Theorem)
Let P = {x ∈ Rn|Ax = b, x ≥ 0} be a non-empty set P . Let v1, v2, ..., vk

be the extreme points of P .

(Case 1) If P is bounded, then any x ∈ P can be represented as the convex

combination of extreme points, i.e., x =
∑k
i=1 λivi for some λ1, ..., λk ≥ 0 and∑k

i=1 λi = 1.

(Case 2) If P is unbounded, then there exists at least one extreme direction.
Let d1, ..., dl be the extreme directions of P . Then, any x ∈ P can be repre-
sented as x =

∑k
i=1 λivi +

∑l
i=1 µidi, where λ1, ..., λk ≥ 0 and

∑k
i=1 λi = 1

and µi ≥ 0 for i = 1, ..., l.
Note: The constraint set P in the Resolution Theorem was assumed to be

in standard form, but holds for other representations e.g. P = {x ∈ Rn|Ax ≤
b, x ≥ 0}. The example preceding the Resolution Theorem was given in in-
equality form to facilitate graphing.

2.4.1 Fundamental Theorem of Linear Programming

In this section, we prove the Fundamental Theorem of Linear Programming
which formalizes the geometric intuition that if a linear program has a finite
optimal solution, then it can occur at a corner point. The proof of the result
will rely on the Resolution Theorem and the following results.

Theorem 2.26
For a feasible set P = {x ∈ Rn|Ax = b, x ≥ 0}, a non-zero vector d is a

recession vector if and only if Ad = 0 and d ≥ 0.
Proof: see Exercise 2.7.

Corollary 2.27
A non-negative linear combination of recession directions of a feasible set

P is a recession direction of P .
Proof: Let d1, ..., dl be the recession directions of P and let d =

∑l
i=1 µidi

for µi ≥ 0 for i = 1, ..., l. Since di is a recession direction by Theorem 2.26
above, we have that Adi = 0 and so Ad = A

∑l
i=1 µidi = µi

∑l
i=1Adi = 0.

Also we have that di ≥ 0 for each i = 1, ..., l and so d =
∑l
i=1 µidi ≥ 0.

Therefore, by Theorem 2.26 d is a recession direction. �

Theorem 2.28 (Fundamental Theorem of Linear Programming)
Consider an LP in standard form and suppose that P is non-empty. Then,

either the LP is unbounded over P or an optimal solution for the LP can be
attained at an extreme point of P .

Proof: Let v1, v2, ..., vk be the extreme points of P and let d1, ..., dl be
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the extreme directions of P . Then, by the Resolution Theorem, every point
x ∈ P can be expressed as x =

∑k
i=1 λivi +

∑l
i=1 µidi where λ1, ..., λk ≥ 0

and
∑k
i=1 λi = 1 and µi ≥ 0 for i = 1, ..., l. Without loss of generality, let

d =
∑l
i=1 µidi, which is a recession direction by Corollary 2.27. There are two

cases.
Case (1) d is such that cT d < 0. In this case, for any x0 ∈ P , the ray r =

{x ∈ Rn|x0 + λd for λ ∈ [0, 1]} ⊂ P will be such that cTx = cTx0 + λcT d and
this can be made to diverge toward −∞ as λ→∞ since cT d < 0 and λ ≥ 0.

Case (2) d is such that cT d ≥ 0. So x =
∑k
i=1 λivi + d where λ1, ..., λk ≥ 0

and
∑k
i=1 λi = 1. Now let vmin be that extreme point that results in the

minimum value of cT vi over i = 1, ..., k. Then, for any x ∈ P , cTx =
cT (
∑k
i=1 λivi + d) = cT (

∑k
i=1 λivi) + cT d ≥ cT (

∑k
i=1 λivi) =

∑k
i=1 λic

T vi≥∑k
i=1 λic

T vmin = cT vmin(
∑k
i=1 λi) = cT vmin. The first inequality holds since

cT d ≥ 0. Thus, the minimum value for the LP is attained at vmin an extreme
point. �

The Fundamental Theorem of Linear Program will serve as the basis of
algorithmic development for linear programs. The major implication is that
the search for an optimal solution for a linear program can be restricted to ex-
treme points, i.e., basic feasible solutions. Since the number of extreme points
is finite, one obvious strategy is to simply enumerate all possible basic feasi-
ble solutions and then select the one that gives the minimum objective value.
It is important to note that this enumeration can be done algebraically and
without resorting to use of graphical methods. Exercise 2.15 asks the reader
to develop MATLAB code that will solve a linear program by generating all
possible basic feasible solutions.

For example, consider the LP from Chapter 1 (in standard form)

minimize −x1 − x2
subject to x1+ x3 = 1

x2+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

There are four basic feasible solutions

x(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


1
1
0
0

,

x(1) =

[
xB
xN

]
=


x3
x2
x1
x4

 =


1
1
0
0

 ,
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x(2) =

[
xB
xN

]
=


x1
x4
x3
x2

 =


1
1
0
0

,

and

x(3) =

[
xB
xN

]
=


x1
x2
x3
x4

 =


1
1
0
0

.

The objective function values are −2,−1,−1, and 0, respectively. We can
then deduce that the extreme point associated with x(1) is the optimal solution
since its objective function value −2 is the minimum objective function value
among all of the basic feasible solutions.

Unfortunately, this approach is not practical since the quantity C(n,m) =
n!

m!(n−m)! can be very large for practical sized problems with hundreds, thou-

sands, or even millions of variables and constraints.
This motivates other strategies for solving LPs that exploit the Funda-

mental Theorem of LP. In Chapter 3, the simplex method is developed where
basic feasible solutions are explored systematically and does not, except in
the most exceptional cases, require the examination of all basic feasible solu-
tions. In Chapter 6, another important class of strategies called interior point
methods are introduced where most of the search occurs in the interior of the
feasible set, but where the search ultimately gravitates and converges to an
optimal basic feasible solution.

2.5 Exercises

Exercise 2.1
Consider the constraint

−2x1 + x2 ≤ 2.

(a) Express this constraint as a closed-halfspace of the form H≤ = {x ∈
Rn|aTx ≤ β}, i.e., determine a and β.

(b) Sketch the closed halfspace in (a) showing any vector that is normal
to the hyperplane that is contained in H≤.

(c) Show that the closed halfspace in (a) is a convex set.

Exercise 2.2
Consider a linear program in standard form
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minimize cTx
subject to Ax = b

x ≥ 0.

(a) Prove that the feasible set P = {x ∈ Rn| Ax = b, x ≥ 0} of the linear
program is a convex set directly using the definition of convex set.

(b) Prove that the set of optimal solutions for the linear program in stan-
dard form P ∗ = {x ∈ Rn| x is an optimal solution for LP} is a convex set.

Exercise 2.3
Solve the following linear programs graphically by using the sketch of the

feasible set and illustrate the hyperplane characterization of optimality when
a finite optimal solution(s) exists, else illustrate the unboundedness of the
linear program using hyperplanes.

(a)

minimize −x1 − 2x2
subject to −2x1 + x2 ≤ 2

−x1 + x2 ≤ 3
x1 ≤ 2
x1 ≥ 0, x2 ≥ 0

(b)

minimize −x1 − 2x2
subject to x1 − 2x2 ≥ 2

x1 + x2 ≤ 4
x1 ≥ 0, x2 ≥ 0

(c)

maximize x1 + x2
subject to x1 − x2 ≥ 1

x1 − 2x2 ≥ 2
x1 ≥ 0, x2 ≥ 0

Exercise 2.4
(a) For the linear program (a) in Exercise 2.3, find all basic feasible solu-

tions by converting the constraints into standard form.
(b) For each linear program in Exercise 2.3, find two linearly independent

directions d1 and d2 of unboundedness if they exist .

Exercise 2.5
Consider the constraints

2x1 + x2 ≤ 5
x1 + x2 ≤ 4
x1 ≤ 2
x1 ≥ 0, x2 ≥ 0.
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(a) Sketch the feasible region.
(b) Convert the constraints to standard form and find all basic feasible

solutions.
(c) Identify the extreme points in the original constraints.

Exercise 2.6
Consider the linear program

maximize x1 + x2
subject to x1 − x2 ≥ 1

x1 − 2x2 ≥ 2
x1 ≥ 0, x2 ≥ 0.

(a) Sketch the feasible region.
(b) Convert the constraints to standard form, find all basic feasible solu-

tions, and find two extreme directions d1 and d2 (i.e., two linearly independent
directions of unboundedness).

(c) Show that the extreme directions d1 and d2 from (b) satisfy Ad = 0
and d ≥ 0.

Exercise 2.7
Suppose that a linear program is in standard form

minimize cTx
subject to Ax = b

x ≥ 0.

Show that if a vector d 6= 0 is such that Ad = 0 and d ≥ 0, then d must
be a direction of unboundedness.

Exercise 2.8
Consider the following system of constraints

x1 + x2 ≤ 6
x1 − x2 ≤ 0
x1 ≤ 3
x1 ≥ 0, x2 ≥ 0.

(a) Sketch the feasible region.
(b) Convert to standard form and find all basic feasible solutions.
(c) Is there a one-to-one correspondence between basic feasible solutions

and extreme points? If not, which extreme points can be represented by mul-
tiple basic feasible solutions.

Exercise 2.9
(a) Solve the linear program in Exercise 2.3 (a) by generating all basic

feasible solutions.
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(b) Solve the linear program in Exercise 2.3 (b) by generating all basic
feasible solutions. Also, illustrate Exercise 2.2 (b), i.e., show the set of optimal
solutions is convex.

Exercise 2.10
Consider the following polyhedron

P = {(x1, x2, x3, x4) ∈ R4| x1 − x2 − 2x3 ≤ 1,−3x1 − x3 + 2x4 ≤ 1,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0}.

Find all extreme points and extreme directions of P and represent the
point

x =


2
1
1
1


as a convex combination of the extreme points plus a non-negative combina-
tion of extreme directions.

Exercise 2.11
Consider a set P = {x ∈ Rn|Ax < b}. Prove that the problem

maximize cTx
subject to x ∈ P

does not have an optimal solution. Assume that c 6= 0.

Exercise 2.12
Explain what happens to a linear program when a constraint is deleted.

In particular, what happens to the feasible set and objective function?

Exercise 2.13
Prove that a feasible set P is bounded if and only if it contains no extreme

directions.

Exercise 2.14
Another concept of a corner point of a feasible set P of a linear program

is through the notion of a vertex x of P . We say that x ∈ P is a vertex of P
if there is a vector q such that qTx < qT y for all y ∈ P and x 6= z. Without
loss of generality, assume the P = {x ∈ Rn|A1x ≥ b1, A2x = b2} where A1 is
m1 × n and A2 is m2 × n and m1 +m2 ≥ n.

(a) Prove that if x is a vertex, then x is an extreme point.
(b) Prove that if x is a basic feasible solution, then x is a vertex. (Note:
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that with P defined as above, a vector x is a basic feasible solution if there is
a set of at least n constraints in P at equality and linearly independent.

Exercise 2.15
Write MATLAB code that takes a linear program in standard form and

solves for the optimal solution by generating all possible basic feasible solu-
tions. Assume that the linear program has a finite optimal solution.

Notes and References
The geometry of linear programs in low dimensions gives insights for char-

acterizing the nature of feasible and optimal solutions for higher dimensions.
The corresponding algebraic concepts are important as it will enable compu-
tationally practical algorithms for solving linear programs. The feasible set of
a linear program was found to be a convex set. Convexity plays an impor-
tant role in optimization and more details about the convex sets and its role
in optimization in general can be found in Mangasarian (1969), Rockafellar
(1970), and Boyd and Vandenberghe (2004). The Representation Theorems
began with the work of Minkowski (1896). For further geometric insights on
linear programs see Murty (1983), Bazarra, Jarvis, and Sherali (1977), and
Bertsimas and Tsitsiklis (1997).
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3

The Simplex Method

3.1 Introduction

In this chapter the simplex method, which is an important and well-known
method to solve linear programming problems, is developed. The simplex
method was conceived by Dantzig (1948), still remains a powerful class of
methods, and is often the main strategy for solving linear programs in commer-
cial software. We know by the Fundamental Theorem of Linear Programming
in Chapter 2 that if an LP has a finite optimal solution, then it can be attained
at an extreme point and therefore at some basic feasible solution. The basic
strategy of the simplex method is to explore the extreme points of the feasible
region of an LP to find the optimal extreme point. However, in practice, the
simplex method will in most cases not need to explore all possible extreme
points before finding an optimal one. The strategy of the simplex method is
as follows: given an initial basic feasible solution, the simplex method deter-
mines whether the basic feasible solution is optimal. If it is optimal, then the
method terminates, else, another basic feasible solution is generated whose
objective function value is better or no worse than the previous one, optimal-
ity is checked and so on, until an optimal basic feasible solution is obtained.
If the LP is unbounded, then the simplex method will be able to detect this
and return with the recession direction along which the objective function is
unbounded. The simplex method requires that a linear program is in standard
form. A high-level description of the method is summarized below (the finer
details of each step will be subsequently developed).

Simplex Method

Step 0: Generate an initial basic feasible solution x(0). Let k = 0 and
go to Step 1.

Step 1: Check optimality of x(k). If x(k) is optimal, then STOP and
return x(k) as the optimal solution, else go to Step 2.

Step 2: Check whether the LP is unbounded; if so STOP, else go to Step
3.

Step 3: Generate another basic feasible solution x(k+1) so cTx(k+1) ≤
cTx(k).

75
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Let k = k + 1 and go to Step 1.

The simplex method is not intended to be an exhaustive brute-force search
method. Recall that it is possible to have an algorithm for solving linear
programs that is based on enumerating all basic feasible solutions. A critical
difference between such an exhaustive brute-force method and the simplex
method is that for the latter, given an extreme point, it will be possible to
efficiently determine whether it is an optimal solution or not without having to
compare with all of the extreme points. In an exhaustive brute-force approach,
one needs to examine all extreme points in order to guarantee that a given
basic feasible solution is optimal. The number of possible extreme points is(
n
m

)
, which can be quite large for large instances of linear programs.

3.1.1 Example of Simplex Method

We give a high-level illustration of the simplex method. Consider the linear
program

minimize −x1 − x2
subject to x1 ≤ 1 (3.1)

x2 ≤ 1

x1 ≥ 0, x2 ≥ 0.

The simplex method will require an LP to be in standard form. For the
LP above, the standard form is

minimize −x1 − x2
subject to x1+ x3 = 1

x2+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

There are, in total, 4 basic feasible solutions listed below, each correspond-
ing to a different extreme point.

v(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


1
1
0
0

 v(1) =

[
xB
xN

]
=


x3
x2
x1
x4

 =


1
1
0
0



v(2) =

[
xB
xN

]
=


x1
x4
x3
x2

 =


1
1
0
0

 v(3) =

[
xB
xN

]
=


x1
x2
x3
x4

 =


1
1
0
0


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FIGURE 3.1
Possible trajectory of the simplex method for linear program (3.1).

A possible sequence of iterations that the simplex method may undergo is
as follows (note the finer details of the steps are omitted). The basic feasible
solution x(0) = v(0) is generated as the initial basic feasible solution in Step 0.
The first iteration begins, and in Step 1 x(0) is determined to be suboptimal,
and then Step 2 is executed to generate the basic feasible solution x(1) = v(1).

Iteration 2 starts, in which x(1) is determined to be suboptimal in Step 1,
and then in Step 2, basic feasible solution x(2) = v(3) is generated.

Iteration 3 starts, in which x(2) is found to be an optimal solution, and so
the simplex method terminates and returns v(3) as an optimal solution. This
sequence of points v(0), v(1), v(3) in the original space of the problem is shown
in Figure 3.1.

It is also possible for the simplex method to generate the following sequence
v(0), v(2), v(3). In general, the simplex method can have multiple options in
terms of what basic feasible solution to move to next and must select exactly
one of these at such an iteration.

3.1.2 Adjacent Basic Feasible Solutions

The movement from a basic feasible solution to another in the simplex method
is such that only neighboring or “adjacent” basic feasible solutions are consid-
ered. In the illustration above, movements from v(0) to either v(1) or v(2) are
permitted, but a movement from v(0) directly to v(3)is prohibited. Intuitively,
from Figure 3.1, v(0) and v(1) are adjacent extreme points (as are v(0) and
v(2)) since the line segment between them is on the edge (boundary) of the
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feasible set, and thus one can be reached from the other directly along this
edge. The points v(0) and v(3) are not adjacent since the line segment between
them is not on the edge of the feasible set and therefore one cannot move from
one to the other along the edges of the feasible set without first going through
v(1) or v(2).

An algebraic definition of adjacency is now given.

Definition 3.1
Two different basic feasible solutions x and y are said to be adjacent if

they have exactly m− 1 basic variables in common.

Example 3.2

v(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


1
1
0
0

 and v(1) =

[
xB
xN

]
=


x3
x2
x1
x4

 =


1
1
0
0

 are adjacent since they have m − 1 = 2 − 1 = 1 basic variables in

common, i.e., the basic variable x3. v(0) and v(3) are not adjacent since they
have 0 basic variables in common.

3.2 Simplex Method Development

The description and illustration of the simplex method above gives only a
high level description of the dynamics of the simplex method and many im-
portant details remain. In particular, an efficient test for determining whether
a basic feasible solution is optimal needs to be developed, as well as a test for
checking for unboundedness of a linear program. Furthermore, details on how
to generate a new and improved adjacent basic feasible solution is required.
In this section, we develop the remaining constructs needed to fully describe
the simplex method with enough detail so that a MATLAB implementation
is possible. MATLAB R© code for the simplex method is given later in this
chapter.

3.2.1 Checking Optimality of a Basic Feasible Solution

Suppose we have a linear program in standard form:

minimize cTx
subject to Ax = b

x ≥ 0.
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Given a current basic feasible solution x∗, we would like to be able to
efficiently determine whether it is optimal for the linear program. Let P =
{x ∈ Rn|Ax = b, x ≥ 0} be the feasible set. Any such test is equivalent to
checking if the condition cTx ≥ cTx∗ holds for all x ∈ P . We wish to develop
an efficient test that does not rely on explicitly using other feasible solutions,
e.g., basic feasible solutions, to compare with x∗.

The key to the development of an efficient test is to use a representation
of the linear programming problem that reflects the partition of variables
into basic and non-basic, implied by the basic feasible solution x∗where the

partition is x∗ =

[
x∗B
x∗N

]
and x∗B are the basic variables and x∗N the non-basic

variables. Then, the constraint matrix can be partitioned as A = [B|N ] where
B is the basis matrix that contains the columns in A associated with variables
in x∗B , and N is the non-basis matrix consisting of columns associated with the

variables in x∗N . Finally, the cost vector c can be partitioned as c =

[
cB
cN

]
where cB contains the cost coefficients associated with the variables in x∗B and
cN contains the cost coefficients associated with the variables in x∗N .

Now x∗B ≥ 0 and x∗N = 0 since x∗ is a basic feasible solution. Consider any
x ∈ P , then the variables can be partitioned according to the basic and non-

basic partition of x∗. That is, x can be re-arranged so that x =

[
xB
xN

]
where

xB are the components (variables) in x that are in x∗B , and xN are components
of x that are in x∗N . This does not mean that x is a basic feasible solution,
just that the variables are re-arranged to match the variable partition of x∗.

Now we represent the linear program in terms of the partition implied by
x∗. First, for any x ∈ P it is assumed that the components are re-arranged so

that x =

[
xB
xN

]
. The objective function cTx can be re-written as

cTx =

[
cB
cN

]T [
xB
xN

]
= cTBxB + cTNxN .

The constraints Ax = b can be written as

A =
[
B N

] [ xB
xN

]
= BxB +NxN = b.

Finally, the requirement that x ≥ 0 is equivalent to xB ≥ 0 and xN ≥ 0.
Thus, the linear program becomes

minimize z = cTBxB + cTNxN

subject to BxB +NxN = b (3.2)

xB ≥ 0, xN ≥ 0.
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Now the idea is to first solve for xB using the first constraint and then
substitute into the objective function equation z. After the substitution, some
terms will be re-arranged from which a necessary and sufficient condition for
optimality will be obtained.

From the first constraint we have BxB = b−NxN and so xB = B−1(b−
NxN ) and then substituting into

z = cTBxB + cTNxN

we get

z = cTBB
−1(b−NxN ) + cTNxN

= cTBB
−1b− cTBB−1NxN + cTNxN

= cTBB
−1b+ (cTN − cTBB−1N)xN

= cTBx
∗
B + (cTN − cTBB−1N)xN

since x∗B = B−1b. Now z is the objective function value associated with x ∈ P
and so z = cTx. Also, cTx∗ = cTBx

∗
B + cTNx

∗
N = cTBx

∗
B since x∗N = 0, so

cTx = cTBx
∗
B + (cTN − cTBB−1N)xN

or

cTx− cTx∗ = (cTN − cTBB−1N)xN .

It is clear that if the right-hand side of the last equation is non-negative,
then cTx− cTx∗ ≥ 0 for any x ∈ P or equivalently cTx ≥ cTx∗ for all x ∈ P .
That is, x∗ would be an optimal solution. It is clear that xN ≥ 0 since x is
a feasible solution, and so if all of the m components of (cTN − cTBB−1N) are
non-negative, then x∗ is an optimal solution. This leads us to define the vector

rN = (cTN − cTBB−1N)

called the vector of reduced costs associated with x∗. Note that each compo-
nent of rN is associated with a non-basic variable. This optimality condition
is summarized as follows.

Theorem 3.1
If the reduced cost vector rN corresponding to a basic feasible solution

x∗ =

[
x∗B
x∗N

]
is non-negative, then x∗ is an optimal solution.

Optimality Check for the Simplex Method
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Let x∗ be a basic feasible solution and N the set of indices of non-basic
variables of x∗. Then, the qth component of rN is rq = cq−cTBB−1Nq where Nq
is the column in N associated with the non-basic variable xq. So, by Theorem

3.1, to check optimality of x∗, compute rq for all q ∈ N . There are two cases.

Case (1) If rq ≥ 0 for all q ∈ N , then x∗ is optimal.

Case (2) There is at least one non-basic variable rq < 0, then x∗ is not
optimal.

Example 3.2
Consider the LP

minimize −x1 − x2
subject to x1+ x3 = 1

x2+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

and the basic feasible solution

v(1) =

[
xB
xN

]
=


x3
x2
x1
x4

 =


1
1
0
0

.

The basic variables are x3 and x2 with corresponding basis matrix as B =[
1 0
0 1

]
, cost vector cB =

[
c3
c2

]
=

[
0
−1

]
. The non-basic variables are x1

and x4 with corresponding non-basic matrix N =

[
1 0
0 1

]
where N1 =

[
1
0

]
is the column in N associated with the non-basic variable x1 and N4 =

[
0
1

]
is the column in N associated with non-basic variable x4, non-basic index set

N = {1, 4}, and cost vector cN =

[
c1
c4

]
=

[
−1
0

]
.

To check optimality, we compute r1 and r4 since 1 and 4 ∈ N . Then,

r1 = c1 − cTBB−1N1 = −1− (0,−1)

[
1 0
0 1

]−1 [
1
0

]
= −1 < 0

and

r4 = c4 − cTBB−1N4 = 0− (0,−1)

[
1 0
0 1

]−1 [
0
1

]
= 1 > 0.
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Therefore, v(1) is not an optimal basic feasible solution since there is at
least one reduced cost, i.e., r1 that is negative.

Consider the basic feasible solution v(3) =

[
xB
xN

]
=


x1
x2
x3
x4

 =


1
1
0
0

.

Computing the reduced costs

r3 = c3 − cTBB−1N3 = 0− (−1,−1)

[
1 0
0 1

]−1 [
1
0

]
= 1 ≥ 0

and

r4 = c4 − cTBB−1N4 = 0− (−1,−1)

[
1 0
0 1

]−1 [
0
1

]
= 1 ≥ 0,

we see that there are no negative reduced costs indicating that v(3) is an
optimal solution.

3.2.2 Moving to an Improved Adjacent Basic Feasible Solu-
tion

If for a basic feasible solution x∗, at least one of the reduced costs is negative,
then by Theorem 3.1, x∗ cannot be an optimal solution. In fact, it will be
possible (as will be shown later) in this case to move to an improved adjacent

basic feasible solution
∼
x such that cTx∗ > cT

∼
x.

Feasible Search Directions
The dynamics of movement from a current non-optimal basic feasible so-

lution xcurrent to a new adjacent basic feasible solution xnew in the simplex
method can be described by the following equation

xnew = xcurrent + αd,

where d is a direction and α ≥ 0 is a step length; see Figure 3.2.
It remains to choose the form of d and α so that xnew will be an adja-

cent basic feasible solution that has a lower objective function value than the
objective function value of xcurrent.

In particular, adjacency requires that the choice of d and α will select one
non-basic variable, say xq in xcurrent, to become a basic variable in xnew,
which means that one current basic variable in xcurrent, say xl, must be set
to non-basic, i.e., xl = 0 in xnew. The starting point is the equation

BxB +NxN = b or equivalently xB = B−1b−B−1NxN .
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FIGURE 3.2
Dynamics of movement in the simplex method along a direction d and step length

α.

Only one non-basic variable xq will be increased to some positive value,
and the other non-basic variables will remain at 0 so the equation simplifies
to

xB = B−1b−B−1Nqxq.

Since B−1b are the basic variables of the current basic feasible solution
(i.e., xcurrentB = B−1b), we can interpret xB to be the new basic variable
set for xnew after the suitable increase in xq is made (i.e., xnewB = xB =
B−1b−B−1Nqxq = xcurrentB −B−1Nqxq). Expanding to the full n dimensions
of the vectors in

xnew = xcurrent + αd

gives [
xnewB

xnewN

]
=

[
xcurrentB

xcurrentN

]
+ αd

=

[
B−1b

0

]
+ αd.

This suggests that the direction

d =

[
−B−1Nq

eq

]
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is suitable where eq is a vector of dimension n −m of all zeros except a one
at the position in the current basic feasible solution xcurrent corresponding to
xq. Furthermore, α = xq. There are m components in the subvector −B−1Nq
and so d has dimension n. From here on, we denote the direction d as dq,
which indicates its dependence on a selection of a non-basic variable xq from
xcurrent.

Improving Directions
It is not clear if moving in the direction d starting from xcurrent for some

step length α will result in an improvement in the objective function value.
We now find the conditions under which improvement is guaranteed.

Let xnew = xcurrent + αdq , then we wish to find when

cTxnew < cTxcurrent

or

cT (xcurrent + αdq) < cTxcurrent,

which reduces to the following condition

cT d < 0 since α ≥ 0.

Next, by the partition into basic and non-basic variables implied by the
basic feasible solution xcurrent we have

cT d =

[
cB
cN

]T [ −B−1Nq
eq

]
= −cTBB−1Nq + cTNeq = cq − cTBB−1Nq

= rq,

which is the reduced cost associated with non-basic variable xq. Therefore,
the objective function value will improve (decrease) along any direction dq

associated with a non-basic variable xq that has negative reduced cost. In this
case, we say that dq is a descent direction. We summarize the improvement
condition as follows.

Theorem 3.3
Suppose x∗ is basic feasible solution with basis matrix B and non-basis

matrix N . For any non-basic variable xq with rq < 0 the direction

dq =

[
−B−1Nq

eq

]
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will lead to a decrease in the objective function.

Feasibility of a Descent Direction
A fundamental issue not addressed yet is whether the resultant vector

xnew = xcurrent + αdq is feasible for the linear program in standard form. In
particular, xnew is feasible if the following conditions hold

(1) Axnew = b and (2) xnew ≥ 0.

To show that (1) holds, consider that Axnew = A(xcurrent + αdq) =
Axcurrent + αAdq. Thus, if Adq = 0, then (1) will hold. Now, by the par-
tition implied by xcurrent,

Adq =
[
B N

] [ −B−1Nq
eq

]
= −BB−1Nq +Neq

= −Nq +Nq = 0.

To show (2) without loss of generality, assume that dq is a descent direction.
Then, we need

xnew = xcurrent + αdq ≥ 0.

Case 1: dq ≥ 0, then xnew = xcurrent +αdq ≥ 0 for any positive value of α
since xcurrent ≥ 0 so α can be increased indefinitely, but cT d < 0 since rq < 0
and so cT (xnew) = cT (xcurrent+αdq) = cTxcurrent+αcT dq will go to negative
infinity as α goes to infinity. In this case, the linear program is unbounded.

Case 2: There is at least one component of dq that is negative, then from
the requirement that xcurrent + αdq ≥ 0 we get αdq ≥ −xcurrent and thus

the largest that α can be is the minimum of the ratios in the set {−x
current
j

dqj
|

dqj < 0} where xcurrentj is the jth basic variable in xcurrent and dqj is the

component of dq corresponding to the basic variable xcurrentj . In other words,

α = min
j∈B
{−x

current
j

dqj
|dqj < 0}

where B is index set of basic variables in xcurrent. The determination of α is
called the minimum ratio test.

We summarize the discussion and results above as follows.
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Theorem 3.4 (Direction-Step Length)

Consider a linear program in standard form and assume that all basic fea-
sible solutions are non-degenerate, and suppose that xcurrent is a basic feasible
solution that is not optimal and xq is a non-basic variable such that its reduced
cost rq < 0. Then, xnew = xcurrent + αdq is feasible for the linear program

where dq =

[
−B−1Nq

eq

]
and α = min

j∈B
{−x

current
j

dqj
|dqj < 0}.

If dq ≥ 0, then the linear program is unbounded, else xnew is a basic
feasible solution that is adjacent to xcurrent and has a lower objective function
value, i.e., cTxnew < cTxcurrent.

Example 3.5

Consider the linear program (3.1) and let

xcurrent = v(1) =

[
xB
xN

]
=


x3
x2
x1
x4

 =


1
1
0
0

.

From Example 3.2 we know that xnew is not optimal and that r1 < 0.
Then, we construct

d1 =

[
−B−1N1

e1

]
=

 −
[

1 0
0 1

]−1 [
1
0

]
1
0



=


−1
0
1
0

 =


d13
d12
d11
d14

 .

Since there is at least one component of d1 that is negative, we cannot
conclude at this point that the LP is unbounded. So, we compute α by using
the minimum ration test, i.e.,

α = min
j∈B={3,2}

{−x
current
j

dqj
|dqj < 0} = {−x

current
3

d13
} = {− 1

−1} = 1

(the set contains only one ratio since d13 is the only component associated with
a basic variable that is negative in d1).
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Then, xnew = xcurrent + αdq =


1
1
0
0

 + (1)


−1
0
1
0

 =


0
1
1
0

 =


xnew3

xnew2

xnew1

xnew4

.

The basic variables are xnewB =

[
xnew1

xnew2

]
=

[
1
1

]
and non-basic variables

xnewN =

[
xnew3

xnew4

]
=

[
0
0

]
. Rearranging xnew =

[
xnewB

xnewN

]
=


xnew1

xnew2

xnew3

xnew4

.

Observe that cTxnew = −2 < −1 = cTxcurrent. Also, we know from Example
3.2 that xnew is an optimal solution.

3.2.3 Simplex Method (Detailed Steps)

We can now develop in more detail the steps of the simplex method with
Theorem 3.1, Theorem 3.3, and the Direction and Step Length Theorem 3.4.

Simplex Method

Step 0: (Initialization)

Generate an initial basic feasible solution x(0) =

[
xB
xN

]
. Let B be the basis

matrix and N the non-basis matrix with corresponding partition
c = (cB , cN )T . Let

B and N be the index sets of the basic and non-basic variables. Let k = 0
and go to Step 1.

Step 1: (Optimality Check)

Compute the reduced costs rq = cq − cTBB−1Nq for all q ∈ N . If rq ≥ 0 for all

q ∈ N, then
x(k) is an optimal solution for the linear program STOP, else select one xq

non-basic such that rq < 0 and go to Step 2.

Step 2: (Descent Direction Generation)

Construct dq =

[
−B−1Nq

eq

]
.

If dq ≥ 0, then the linear program is unbounded STOP, else go to Step 3.

Step 3: (Step Length Generation)
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Compute the step length α = min
j∈B
{−x

current
j

dqj
|dqj < 0} (the minimum ratio

test). Let j∗ be the index of the basic variable that attains the minimum
ratio α. Go to Step 4.

Step 4: (Improved Adjacent Basic Feasible Solution Computation)
Now let x(k+1) = x(k) + αdq. Go to Step 5.

Step 5: (Basis Update)
Let Bj∗ be the column in B associated with the leaving basic variable xj∗

Update the basis matrix B by removing Bj∗ and adding the column Nq, thus

B = B− {j∗} ∪ {q}.
Update the non-basis matrix N by removing Nq and adding Bj∗ , thus

N = N− {q} ∪ {j∗}.
Let k = k + 1 and go to Step 1.

Example 3.6
Consider again the linear program (3.1)

minimize −x1 − x2
subject to x1+ x3 = 1

x2+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

We start (Step 0) the simplex method with the basic feasible solution

x(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


1
1
0
0

 with B =

[
1 0
0 1

]
and N =

[
1 0
0 1

]
and

cB =

[
c3
c4

]
=

[
0
0

]
, cN =

[
c1
c2

]
=

[
−1
−1

]
, B = {3, 4}, and N =

{1, 2}.

First Iteration
Step 1: Check the optimality of x(0) by computing the reduced costs of the

non-basic variables r1 and r2. Now

r1 = c1 − cTBB−1N1 = −1− (0, 0)T
[

1 0
0 1

]−1 [
1
0

]
= −1 < 0

and
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r2 = c2 − cTBB−1N2 = −1− (0, 0)T
[

1 0
0 1

]−1 [
0
1

]
= −1 < 0 .

Thus, x(0) is not optimal. Choose x1 as the non-basic variable to enter the
basis. Go to Step 2.

Step 2: Construct d1 =

[
−B−1N1

e1

]
=

 −
[

1 0
0 1

]−1 [
1
0

]
1
0

 =


−1
0
1
0

.

Since d1 � 0 the linear program cannot be determined to be unbounded
at this point. Go to Step 3.

Step 3: Compute the step length α = min
j∈B={3,4}

{−x
current
j

d1j
|d1j < 0}

= {−x
current
3

d13
} = {− 1

−1} = 1.

Go to Step 4.

Step 4: So x(1) = x(0) + αd1 =


1
1
0
0

+ (1)


−1
0
1
0

 =


0
1
1
0

.

Observe that the variable x3 leaves the basis (i.e., becomes non-basic). Go

to Step 5.

Step 5: For x(1), the basic variables are xB =

[
x1
x4

]
=

[
1
1

]
and the

non-basic variables are xN =

[
x3
x2

]
=

[
0
0

]
.

The updated basis matrix B =

[
1 0
0 1

]
, the updated non-basis matrix

N =

[
1 0
0 1

]
, cB =

[
c1
c4

]
=

[
−1
0

]
, cN =

[
c3
c2

]
=

[
0
−1

]
,

B = {1, 4} and N = {3, 2}. Go to Step 1.

Second Iteration
Step 1: Check the optimality of x(1) by computing the reduced costs of the

non-basic variables r3 and r2. Now

r3 = c3 − cTBB−1N3 = 0− (−1, 0)T
[

1 0
0 1

]−1 [
1
0

]
= 1 ≥ 0
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FIGURE 3.3
Direction and step length for first iteration of simplex method for Example 3.6.

and

r2 = c2 − cTBB−1N2 = −1− (−1, 0)T
[

1 0
0 1

]−1 [
0
1

]
= −1 < 0 .

Thus, x(1) is not optimal. Select x2 as the non-basic variable to enter the
basis and go to Step 2.

Step 2: Construct d2 =

[
−B−1N2

e2

]
=

 −
[

1 0
0 1

]−1 [
0
1

]
0
1

 =


0
−1
0
1

.

Since d2 � 0 the linear program cannot be determined to be unbounded
at this point. Go to Step 3.

Step 3: Compute the step length α = min
j∈B={1,4}

{−x
current
j

d2j
|d2j < 0}

= {−x
current
4

d24
} = {− 1

−1} = 1.

Go to Step 4.

Step 4: Then, x(2) = x(1) + αd2 =


1
1
0
0

 + (1)


0
−1
0
1

 =


1
0
0
1

. The
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FIGURE 3.4
Direction and step length for second iteration of simplex method for Example 3.6.

variable x4 leaves the basis. Go to Step 5.

Step 5: For x(2), the basic variables are xB =

[
x1
x2

]
=

[
1
1

]
and the

non-basic variables are xN =

[
x3
x4

]
=

[
0
0

]
.

The updated basis matrix B =

[
1 0
0 1

]
and N =

[
0 1
1 0

]
and cB =[

c1
c2

]
=

[
−1
−1

]
and cN =

[
c3
c4

]
=

[
0
0

]
with B = {1, 2} and N = {3, 4}.

Go to Step 1.

Third Iteration
Step 1: Check the optimality of x(2). From Example 3.5, we know that x(2)

has non-negative reduced costs rN and so x(2) =

[
xB
xN

]
=


x1
x2
x3
x4

 =


1
1
0
0


is an optimal solution and the simplex method terminates.

Figures 3.3 and 3.4 show the progress of the simplex method for the first
two iterations where the directions in the space of the original problem are
shown along with the step lengths.

Observations: In Step 0 we provided an initial basic feasible solution and
obtaining this was not hard. In general, it might be a challenge and a more
systematic method needs to be employed. This issue will be developed be-
low. Also, in the first iteration there were two reduced costs, r1 and r2, that
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were negative, and only one of the associated non-basic variables, i.e., x1 was
selected to enter the basis. It would have been equally valid to select x2 to
enter the basis instead. In this case, the simplex method would take a differ-
ent trajectory toward the optimal solution. In general, when there are several
negative reduced costs, there is freedom to select any one of the associated
non-basic variables to enter the basis. The activity of selecting a non-basic
variable to enter the basis is called pivoting. Finally, in Step 3 it could be

possible that there is more than one index j ∈ B that attains the minimum
ratio; in this case ties can be broken arbitrarily to determine the basic variable
that will leave the basis.

Example 3.7
Consider the linear program

maximize −2x1 + x2
subject to −x1+ x2 ≤ 4

2x1 + x2 ≤ 6
x1 ≥ 0, x2 ≥ 0.

Solve using the simplex method.
Solution:
First convert the objective to a minimization problem to maximize −2x1+

x2 = −minimize 2x1 − x2.
We start (Step 0) the simplex method with the basic feasible solution

x(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


4
6
0
0

 with B =

[
1 0
0 1

]
and N =

[
−1 1
2 1

]
and

cB =

[
c3
c4

]
=

[
0
0

]
, cN =

[
c1
c2

]
=

[
2
−1

]
, B = {3, 4}, and N =

{1, 2}.

First Iteration
Step 1: Check the optimality of x(0) by computing the reduced costs of the

non-basic variables r1 and r2. Now

r1 = c1 − cTBB−1N1 = 2− (0, 0)T
[

1 0
0 1

]−1 [ −1
2

]
= 2 ≥ 0

and

r2 = c2 − cTBB−1N2 = −1− (0, 0)T
[

1 0
0 1

]−1 [
1
1

]
= −1 < 0 .
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Thus, x(0) is not optimal and x2 must be selected as the non-basic variable
to enter the basis. Go to Step 2.

Step 2: Construct d2 =

[
−B−1N2

e2

]
=

 −
[

1 0
0 1

]−1 [
1
1

]
0
1

 =


−1
−1
0
1

.

Since d2 � 0, the linear program cannot be determined to be unbounded
at this point. Go to Step 3.

Step 3: Compute the step length α = min
j∈B={3,4}

{−x
current
j

d2j
|d2j < 0}

= min{−x
current
3

d23
,−x

current
4

d24
} = {− 4

−1 ,−
6
−1} = 4. Go to Step 4.

Step 4: So x(1) = x(0) + αd1 =


4
6
0
0

+ (4)


−1
−1
0
1

 =


0
2
0
4

.

Observe that the variable x3 leaves the basis (i.e., becomes non-basic). Go

to Step 5.

Step 5: For x(1), the basic variables are xB =

[
x2
x4

]
=

[
4
2

]
and the

non-basic variables are xN =

[
x1
x3

]
=

[
0
0

]
.

The updated basis matrix B =

[
1 0
1 1

]
, the updated non-basis matrix

N =

[
−1 1
2 0

]
, cB =

[
c2
c4

]
=

[
−1
0

]
, cN =

[
c1
c3

]
=

[
0
−1

]
,

B = {2, 4}, and N = {1, 3}. Go to Step 1.

Second Iteration
Step 1: Check the optimality of x(1) by computing the reduced costs of the

non-basic variables r1 and r3. Now

r1 = c1 − cTBB−1N1 = 2− (−1, 0)T
[

1 0
1 1

]−1 [ −1
2

]
= 1 ≥ 0

and
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FIGURE 3.5
Movement of the simplex method in the space of original variables in Example 3.7.

r3 = c3 − cTBB−1N3 = 0− (−1, 0)T
[

1 0
0 1

]−1 [
1
0

]
= 1 ≥ 0.

Thus, x(1) =

[
xB
xN

]
=


x2
x4
x1
x3

 =


4
2
0
0

 is an optimal solution.

Figure 3.5 gives the movement to the optimal solution that the simplex
method takes in the space of the original variables.

Example 3.8 (Unboundedness)
Consider the linear program

minimize −x1 − x2
subject to −2x1+ x2 ≤ 1

x1 − x2 ≤ 1
x1 ≥ 0, x2 ≥ 0.

Solve using the simplex method.
Solution:
We add slack variables to bring the linear program in standard form

minimize −x1 − x2
subject to −2x1+ x2+ x3 = 1

x1 − x2+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
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We start (Step 0) the simplex method with the basic feasible solution

x(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


1
1
0
0

 with B =

[
1 0
0 1

]
and N =

[
−2 1
1 −1

]
and

cB =

[
c3
c4

]
=

[
0
0

]
, cN =

[
c1
c2

]
=

[
−1
−1

]
, B = {3, 4}, and N =

{1, 2}.

First Iteration
Step 1: Check the optimality of x(0) by computing the reduced costs of the

non-basic variables r1 and r2. Now

r1 = c1 − cTBB−1N1 = −1− (0, 0)T
[

1 0
0 1

]−1 [ −2
1

]
= −1 < 0

and

r2 = c2 − cTBB−1N2 = −1− (0, 0)T
[

1 0
0 1

]−1 [
1
−1

]
= −1 < 0 .

Thus, x(0) is not optimal. Choose x1 as the non-basic variable to enter the
basis. Go to Step 2.

Step 2: Construct

d1 =

[
−B−1N1

e1

]
=

 −
[

1 0
0 1

]−1 [ −2
1

]
1
0

 =


2
−1
1
0

.

Since d1 � 0, the linear program cannot be determined to be unbounded
at this point. Go to Step 3.

Step 3: Compute the step length α = min
j∈B={3,4}

{−x
current
j

d1j
|d1j < 0}

= {−x
current
4

d14
} = {− 1

−1} = 1.

Go to Step 4.

Step 4: So x(1) = x(0) + αd1 =


1
1
0
0

+ (1)


2
−1
1
0

 =


3
0
1
0

.

Observe that the variable x4 leaves the basis. Go to Step 5.
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Step 5: For x(1) the basic variables are xB =

[
x3
x1

]
=

[
3
1

]
and

the non-basic variables are xN =

[
x4
x2

]
=

[
0
0

]
.

The updated basis matrix B =

[
1 −2
0 1

]
, the updated non-basis matrix

N =

[
0 1
1 −1

]
, cB =

[
c3
c1

]
=

[
0
−1

]
, cN =

[
c4
c2

]
=

[
0
−1

]
,

B = {3, 1} and N = {4, 2}. Go to Step 1.

Second Iteration
Step 1: Check the optimality of x(1) by computing the reduced costs of the

non-basic variables r4 and r2. Now

r4 = c4 − cTBB−1N4 = 0− (0,−1)T
[

1 −2
0 1

]−1 [
0
1

]
= 1 ≥ 0

and

r2 = c2 − cTBB−1N2 = −1− (0,−1)T
[

1 −2
0 1

]−1 [
1
−1

]
= −2 < 0 .

Thus, x(1) is not optimal. Select x2 as the non-basic variable to enter the
basis and go to Step 2.

Step 2: Construct

d2 =

[
−B−1N2

e2

]
=

 −
[

1 −2
0 1

]−1 [
1
−1

]
0
1

 =


1
1
0
1

.

Since d2 ≥ 0, the linear program is unbounded at this point and the
simplex method is terminated.

In particular, α = x2 can be increased indefinitely in

x(2) = x(1) + αd2 =


3
1
0
0

+ (x2)


1
1
0
1

 =


3 + x2
1 + x2

0
x2


since x(2) is feasible for any x2 ≥ 0. Also, observe that the objective function
is −x1 − x2 = −(1 + x2 ) − x2, so it diverges toward negative infinity as x2
increases indefinitely. Thus, the linear program is unbounded along the ray
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FIGURE 3.6
Movement of simplex method towards unboundedness in Example 3.8.

with vertex x(1) and the direction of the ray d2. This is depicted in the Figure
3.6 in the space of original variables.

Example 3.9 (Multiple Optimal Solutions)
Consider the linear program

maximize x1 + x2
subject to x1+ x2 ≤ 4

2x+ x2 ≤ 6
x1 ≥ 0, x2 ≥ 0.

Solution:
We negate the objective function and add slack variables to bring the linear

program into standard form

minimize −x1 − x2
subject to x1+ x2 + x3 = 4

2x1 + x2+ x4 = 6
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

We start (Step 0) the simplex method with the basic feasible solution

x(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


4
6
0
0

 with B =

[
1 0
0 1

]
and N =

[
1 1
2 1

]
and
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cB =

[
c3
c4

]
=

[
0
0

]
, cN =

[
c1
c2

]
=

[
−1
−1

]
, B = {3, 4}, and N =

{1, 2}.

First Iteration
Step 1: Check the optimality of x(0) by computing the reduced costs of the

non-basic variables r1 and r2. Now

r1 = c1 − cTBB−1N1 = −1− (0, 0)T
[

1 0
0 1

]−1 [
1
2

]
= −1 < 0

and

r2 = c2 − cTBB−1N2 = −1− (0, 0)T
[

1 0
0 1

]−1 [
1
1

]
= −1 < 0 .

Thus, x(0) is not optimal. Choose x1 as the non-basic variable to enter the
basis. Go to Step 2.

Step 2: Construct d1 =

[
−B−1N1

e1

]
=

 −
[

1 0
0 1

]−1 [
1
2

]
1
0

 =


−1
−2
1
0

.

Since d1 � 0, the linear program cannot be determined to be unbounded
at this point. Go to Step 3.

Step 3: Compute the step length α = min
j∈B={3,4}

{−x
current
j

d1j
|d1j < 0}

= min{−x
current
3

d13
,−x

current
4

d14
} = min{− 4

−1 ,−
6
−2} = 3. Go to Step 4.

Step 4: So x(1) = x(0) + αd1 =


4
6
0
0

+ (3)


−1
−2
1
0

 =


1
0
3
0

.

Observe that the variable x4 leaves the basis (i.e. becomes non-basic). Go

to Step 5.

Step 5: For x(1) the basic variables are xB =

[
x3
x1

]
=

[
1
3

]
and the

non-basic variables are xN =

[
x4
x2

]
=

[
0
0

]
.
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The updated basis matrix B =

[
1 1
0 2

]
, the updated non-basis matrix

N =

[
0 1
1 1

]
, cB =

[
c3
c1

]
=

[
0
−1

]
, cN =

[
c4
c2

]
=

[
0
−1

]
,

B = {3, 1}, and N = {4, 2}. Go to Step 1.

Second Iteration
Step 1: Check the optimality of x(1) by computing the reduced costs of the

non-basic variables r4 and r2. Now

r4 = c4 − cTBB−1N4 = 0− (0,−1)T
[

1 1
0 2

]−1 [
0
1

]
= 1/2 ≥ 0

and

r2 = c2 − cTBB−1N2 = −1− (0,−1)T
[

1 1
0 2

]−1 [
1
1

]
= −1/2 < 0 .

Thus, x(1) is not optimal. Select x2 as the non-basic variable to enter the
basis and go to Step 2.

Step 2: Construct d2 =

[
−B−1N2

e2

]
=

 −
[

1 1
0 1

]−1 [
1
1

]
0
1

 =


−1/2
−1/2

0
1

.

Since d2 � 0, the linear program cannot be determined to be unbounded
at this point. Go to Step 3.

Step 3: Compute the step length α = min
j∈B={3,1}

{−x
current
j

d2j
|d2j < 0}

= min{−x
current
3

d23
,−x

current
1

d21
} = {− 1

−1/2 ,−
3
−1/2} = 2.

Go to Step 4.

Step 4: Then, x(2) = x(1) + αd2 =


1
3
0
0

+ (2)


−1/2
−1/2

0
1

 =


0
2
0
2

.

The variable x3 leaves the basis. Go to Step 5.

Step 5: For x(2) the basic variables are xB =

[
x2
x1

]
=

[
2
2

]
and the
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non-basic variables are xN =

[
x4
x3

]
=

[
0
0

]
.

The updated basis matrix B =

[
1 1
1 2

]
, the updated non-basis matrix is

N =

[
0 1
1 0

]
, cB =

[
c2
c1

]
=

[
−1
−1

]
, and cN =

[
c4
c3

]
=

[
0
0

]
.

Go to Step 1.

Third Iteration

Step 1: Check the optimality of x(2). The reduced costs r4 = c4 −
cTBB

−1N4 = 0 ≥ 0 and r3 = c3 − cTBB−1N3 = 1 ≥ 0

so x(2) =

[
xB
xN

]
=


x2
x1
x4
x3

 =


2
2
0
0

 is an optimal solution with objective

function value −(−2− 2) = 4 and the simplex method stops.

It turns out that x(2) is not the only optimal solution. For instance, if x4
is increased while x3 remains at 0, we get

xB = B−1b−B−1N4x4 =

[
x2
x1

]
=

[
2
2

]
−
[
−1
1

]
x4 =

[
2 + x4
2− x4

]
.

Thus, for any x4 ≤ 2, any point of the form


x2
x1
x4
x3

 =


2 + x4
2− x4
x4
0



is also an optimal solution with objective function value 4. Note that when
x4 = 2, then the point is another optimal basic feasible solution. This situation
of an infinite number of alternative optimal solutions arises due to the fact
that the objective function contours are parallel to the hyperplane defined
by the first constraint x1 + x2 = 4. Figure 3.7 depicts the movement of the
simplex method in the space of original variables.
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FIGURE 3.7
Movement of simplex method in Example 3.9 with multiple optimal solutions.

3.2.4 Finite Termination under Non-Degeneracy

If it is assumed that all basic feasible solutions are non-degenerate, then there
is a one-to-one correspondence between the basic feasible solutions and the
extreme points of the linear program. If there is not a one-to-one correspon-
dence, i.e., there is degeneracy, then it is possible that the simplex method may
move to a different basic feasible solution that represents the current extreme
point and may then subsequently revisit a basic feasible solution generated
previously. In this case the iterations can get trapped in a never-ending se-
quence of re-visiting an extreme point via the different basic feasible solutions
that all represent the same extreme point. This phenomenon is called cycling
and is illustrated later in this chapter. It is clear that cycling cannot happen
when there is a one-to-one correspondence between extreme points and basic
feasible solutions.

Then in the absence of degeneracy, at each iteration of the simplex method,
one of the following occurs: (1) an optimal basic feasible solution is found, (2)
the linear program will be determined to be unbounded, or (3) an improved
adjacent basic feasible solution will be generated. Since there are a finite num-
ber of basic feasible solutions, the simplex method will terminate in a finite
number of steps with an optimal basic feasible solution or with the conclusion
that the problem is unbounded.
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3.3 Generating an Initial Basic Feasible Solution (Two-
Phase and Big M Methods)

The simplex method requires an initial basic feasible solution to start. Step 0
is where an initial basic feasible is to be generated. The examples of the sim-
plex method above involved linear programs in which an initial basic feasible
solution was easily obtained.

For example, in the linear program

minimize −x1 − x2
subject to x1 ≤ 1

x2 ≤ 1
x1 ≥ 0, x2 ≥ 0,

after adding slack variables x3 and x4 we get

minimize −x1 − x2
subject to x1+ x3 = 1

x2+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

An initial basic feasible solution can be obtained by setting the basic vari-
ables to be the slack variables at the non-negative right-hand side values,

i.e., xB =

[
x3
x4

]
=

[
1
1

]
and the original variables to be non-basic, i.e.,

xN =

[
x1
x2

]
=

[
0
0

]
. One can easily verify that this is a basic feasible so-

lution. Observe that the basis B corresponding to the slack variables form an
m×m identity matrix and so is invertible and xB = B−1b ≥ 0.

In general, for a linear program if (after the possible addition of slack and
surplus variables to put in standard form) the constraint set Ax = b and the
right-hand side vector b is non-negative (if a component is originally negative
then the associated equality constraint can be multiplied by −1 on both sides
of the constraint) contains an m ×m identity submatrix, then the variables
associated with this matrix can be set to be the initial basic variables and the
original non-slack variables can be set to the initial non-basic variables.

However, many linear programs may be such that after conversion to stan-
dard form an m×m submatrix is not present or readily apparent.

Example 3.10
Consider the constraint set
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x1 + 2x2 + x3 ≤ 4
−x1 −x3 ≥ 3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

We can convert the constraints to standard form by adding a slack variable
to the first constraint and a surplus variable to the second constraint to get

x1 + 2x2 + x3 + x4 = 4
−x1+ −x3 − x5 = 3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

The constraint matrix does not contain an identity submatrix, and thus it
is not immediately clear what an initial starting basic feasible solution is.

Example 3.11
Consider the constraints

x1+ x2 ≥ 2
−x1 + 2x2 ≥ 3
2x1 + x2 ≤ 4
x1 ≥ 0, x2 ≥ 0.

After adding slack and surplus variables to get in standard form we get

x1+ x2 −x3 = 2
−x1+ 2x2 −x4 = 3
2x1+ x2 +x5 = 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

This is another case where there is no identity submatrix.

Artificial Variables
In the case where it is impossible or difficult to determine an identity

submatrix in the constraint set Ax = b, one can add artificial variables to
create an identity submatrix. For example, in the constraint set from Example
3.10, one can add an artificial variable x6 to the first constraint and x7 to the
second constraint to get

x1+ 2x2+ x3+ x4 +x6 = 4
−x1 −x3 −x5 +x7 = 3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0.

The constraint set above now admits an identity submatrix associated with
variables x6 and x7. This constraint set can be represented in matrix form as
Ax+ xa = b and with x ≥ 0 and xa ≥ 0 where
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A =

[
1 2 1 1 0
−1 0 −1 0 −1

]
, b =

[
4
3

]
x = (x1, x2, x3, x4, x5)T

xa = (x6, x7)T .

And for the constraints in Example 3.11 we can add an artificial variable
x6 to the first constraint and an artificial variable x7 to the second constraint,
and an artificial variable x8 to the third constraint to get the following

x1+ x2 − x3 +x6 = 2
−x1 + 2x2 −x4 +x7 = 3
2x1 + x2 +x5 +x8 = 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, x8 ≥ 0.

An identity submatrix can be readily formed by considering the columns
of this constraint matrix corresponding to the variables x6, x7, and x8.

The term artificial variable refers to the fact that such a variable is added
on top of the original set of variables and any slack or surplus variables used
to get the linear program in standard form. The main motivation for intro-
ducing artificial variables is to create an identity submatrix. However, a linear
program that uses the constraints with the artificial variables may not be
equivalent to the original linear program. In particular, the identity subma-
trix obtained from using artificial variables will not be a valid basis for the
original linear program.

Suppose a linear program is converted to standard form (with the possible
use of slack and surplus variables)

minimize cTx SFLP
subject to Ax = b

x ≥ 0

and consider the addition of artificial variables

minimize cTx ALP
subject to Ax+ xa = b

x ≥ 0.

Then, the feasible set for SFLP is not in general equivalent to the feasible
set of ALP. Nevertheless, there are some important relationships between the
feasible sets. For example,

(1) If SFLP has a feasible solution, then ALP has a solution with xa = 0.
(2) If ALP has a feasible solution with xa = 0, then SFLP has a feasible

solution.
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In other words, there is a one-to-one correspondence between feasible so-
lutions of SFLP and feasible solutions of ALP with xa = 0.

This motivates the following idea: develop an auxiliary problem that at-
tempts to remove the artificial variables by attempting to set xa = 0 while
generating a basic feasible solution for the original linear program. There are
two major approaches in implementing this idea.

3.3.1 The Two-Phase Method

In this approach, an auxiliary problem (called the Phase I problem) is first
solved to attempt to generate an initial basic feasible solution for the original
linear program. Then, the Phase II problem is the original linear program-
ming problem using as an initial basic feasible solution the one generated (if
possible) from the Phase I problem. Let xia be the ith component of xa and 1
is a vector of n dimensions where all components have value 1.

Phase I is the following auxiliary problem

minimize 1Txa =
m∑
i=1

xia Phase I

subject to Ax+ xa = b
x ≥ 0, xa ≥ 0.

The Phase I problem can be initialized with the basic feasible solution
x = 0 and xa = b.

Let
˜
x =

[
x∗

x∗a

]
be the optimal solution to Phase I.

Case (1): If x∗a 6= 0, then the original linear program is infeasible.
Proof: If the original linear program is feasible, then there is an x such

that Ax = b and x ≥ 0 and thus x =

[
x
0

]
would be feasible for the Phase I

problem. But the objective function value of x is 0, which is lower than 1Tx∗a
since x∗a 6= 0, contradicting the optimality of x∗. �

Case (2):
Otherwise, x∗a = 0.

Subcase (1): All of the artificial variables are non-basic in
˜
x . Then, discard

the artificial variables and partition x∗ into basic xB and non-basic xN vari-
ables corresponding to the B and N matrices obtained in the final iteration
in solving Phase I, and use as a starting solution for the Phase II problem

minimize cTBxB + cTNxN Phase II
subject to BxB +NxN = b

xB ≥ 0, xN ≥ 0.
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Subcase (2): Some of the artificial variables are basic variables with zero
value. Let x∗ia denote an artificial variable that is basic and suppose that it
occurs in the jth position among the basic variables. Then, the idea is to
exchange such an artificial basic variable with a current non-basic and non-
artificial variable xq. There are two further cases:

(1) If there is an xq such that eTj B
−1Nq 6= 0, then xq can replace x∗ia in

the Phase I optimal basis. If it is possible to perform this exchange for all
such artificial variables that are in the optimal Phase I basis, then the basis
that results after all exchanges are done will constitute a valid starting basis
for Phase II without any artificial variables.

(2) If eTj B
−1Nq = 0 for all non-basic xq, then the jth row of the constraint

matrix A is redundant and so can be removed and Phase I restarted.

The proofs are left as an exercise for the reader.

Example 3.12
Consider the following linear program:

minimize x1 + 2x2
subject to x1+ x2 ≥ 2

−x1 + 2x2 ≥ 3
2x1 + x2 ≤ 4
x1 ≥ 0, x2 ≥ 0.

The Phase I problem is

minimize x6 + x7 + x8
subject to x1+ x2 − x3 +x6 = 2

−x1 + 2x2 −x4 +x7 = 3
2x1 + x2 +x5 +x8 = 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, x8 ≥ 0.

The initial basic variable set for the Phase I problem is xB =

 x6
x7
x8

 = b = 2
3
4

with corresponding basis matrix B =

 1 0 0
0 1 0
0 0 1

 and the initial non-

basic variable set is xN =


x1
x2
x3
x4
x5

 =


0
0
0
0
0

 with corresponding non-basis

matrix
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N =

 1 1 −1 0 0
−1 2 0 −1 0
2 1 0 0 5

.

Solving the Phase I problem using the simplex method with this initial
basic feasible solution gives the optimal solution

x1 = 1, x2 = 2, x3 = 1, x4 = 0, x5 = 0, x6 = 0, x7 = 0,x8 = 0

with basic variables

xB = [x1, x2, x3]T

and non-basic variables

xN = [x4, x5, x6, x7, x8].

Since the artificial variables x6, x7, x8 are zero and are not in the basis we
discard the columns associated with these variables and proceed to Phase II
using as an initial basis B the columns associated with x1, x2, x3 and non-basis
N the columns associated with x4 and x5. Solving the Phase II problem with
this initial basic feasible solution gives the optimal solution

x1 = 1/3, x2 = 5/3, x3 = 1, x4 = 0, x5 = 5/3.

3.3.2 Big M Method

The second approach for generating an initial basic feasible solution involves
only one optimization problem that simultaneously involves artificial variables
as a mechanism to generate an initial basic feasible solution while penalizing
the artificial variables in the objective function by a suitably large penalty to
attempt to drive out these variables in an optimal solution.

The Big M problem is

minimize cTx+M1Txa
subject to Ax+ xa = b

x ≥ 0, xa ≥ 0

where M > 0 is a large parameter. Thus, the second term in the objective
function M1Txa penalizes any solution where xa 6= 0. The Big M problem
can be solved by the simplex method with the initial basic feasible solution
xa = b as basic variables and x = 0 as the non-basic variables.

Example 3.13
The Big M problem corresponding to the LP in Example 3.12 is
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minimize x1 + 2x2+ Mx6 +Mx7 +Mx8
subject to x1+ x2 − x3 +x6 = 2

−x1 + 2x2 −x4 +x7 = 3
2x1 + x2 +x5 +x8 = 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0, x8 ≥ 0.

An initial basic feasible solution is x6 = 2, x7 = 3, and x8 = 4, and non-
basic variables are xi = 0 for i = 1, ..., 5. Exercise 3.12 asks the reader use this
initial basic feasible solution to solve this problem using the simplex method.

Using the simplex method to solve the Big M model with a suitably large
penalty parameter M > 0 will result in one of two cases (infeasibility is not a
possibility).

Case (1) The Big M model results in a finite optimal solution
˜
x =

[
x∗

x∗a

]
.

Subcase (1):

If x∗a = 0 , then x∗ is an optimal solution for the original linear program.

Proof: Since
˜
x is an optimal solution for the Big M problem, then

cTx∗ +M1Tx∗a = cTx∗ ≤ cTx+M1Txa

for any feasible solution x
′

=

[
x
xa

]
for the Big M problem. In particular the

inequality holds for x
′

=

[
x
0

]
and so cTx∗ ≤ cTx+M1T 0 = cTx for any x

such that Ax = b and b ≥ 0. �

Subcase (2):

If x∗a 6= 0, then the original linear program is infeasible.

Proof: Exercise 3.21.

Case (2) The Big M problem is unbounded below.

Subcase (1):

If xa = 0 , then the original linear program is also unbounded below.

Proof: The objective of the Big M problem cTx + M1Txa is diverging
toward −∞, but the second term in the Big M objective is M1T 0 = 0 since
xa = 0 and so the diverging Big M problem simplifies to minimize cTx subject
to Ax = b �

Subcase (2):

If at least one artificial variable is non-zero, then the original problem is
infeasible.

Proof: Proof is left to the reader.
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3.4 Degeneracy and Cycling

We have seen in Chapter 2 that it is possible for basic feasible solutions to
have some basic variables with zero values, i.e., these basic feasible solutions
are degenerate. Let xd be a degenerate basic feasible solution, then in the
simplex method a descent direction dq and a step length α is generated so
that xnew = xd + αdq is feasible, i.e.,

Axnew = b
xnew = xd + αdq ≥ 0.

It is possible that since some of the basic variables in xd are zero, then
the minimum ratio test may set α to 0. In this case, xnew will represent a
basic feasible solution that is distinct from and adjacent to xd. However, the
extreme points corresponding to both xd and xnew are the same. Also, the
objective function values cTxd = cTxnew = cT (xd + αdq) = cTxd, so there is
no improvement in the objective function value. Note that if all basic feasible
solutions are non-degenerate, then the simplex method generates a strictly
monotonically improving sequence of basic feasible solutions.

Cycling
Thus, in the presence of degeneracy the simplex method can proceed with

the iterations with α = 0 and in practice degeneracy is quite prevalent. The
concern is that there might be a return to a basic feasible solution that was
visited in the previous iterations. When this occurs, the simplex method may
not terminate since it may be trapped in a cycle of iterations starting from a
degenerate basic feasible solution and returning back to it and repeating the
cycle over and over again. Cycling is very rare in practice, but is possible as
the following example from Beale (1955) illustrates.

Example 3.14
Consider the linear program

minimize − 3
4x4 + 20x5 − 1

2x6 + 6x7
subject to x1+ 1

4x4 − 8x5 −x6 + 9x7 = 0
x2 + 1

2x4 −12x5 − 1
2x6 +3x7 = 0

x3 + x6 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0, x7 ≥ 0.

Suppose the simplex method is used to solve the linear program above
where

(1) the rule for entering a non-basic variable into the basis is based on the
variable with the most negative reduced cost rq;

(2) if there is a tie in the minimum ratio test, then select as the leaving
variable the one with the smallest subscript.
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Using as an initial basis B0 the columns associated with x1, x2, and x3,
the following summary of the iterations is obtained:

Table 3.1 Example of cycling

Iteration Entering Leaving Basic variables Obj value
0 x1 = 0, x2 = 0, x3 = 1 0
1 x4 x1 x4 = 0, x2 = 0, x3 = 1 0
2 x5 x2 x4 = 0, x5 = 0, x3 = 1 0
3 x6 x4 x6 = 0, x5 = 0, x3 = 1 0
4 x7 x5 x6 = 0, x7 = 0, x3 = 1 0
5 x1 x6 x1 = 0, x7 = 0, x3 = 1 0
6 x2 x7 x1 = 0, x2 = 0, x3 = 1 0

At the end of iteration 6, the simplex method revisits the initial basis
B0. Thus, the simplex method will cycle indefinitely and never terminate in
this case if the entering and leaving variable rules remain as in (1) and (2).
The simplex method is stuck at an extreme point whose objective function
value is 0. In general, when degenerate basic feasible solutions are successively
generated, the objective function value does not improve over these iterations
and all of the basic feasible solutions generated in a cycle are degenerate.

3.4.1 Anti-Cycling Rules (Bland’s Rule and the Lexico-
graphic Method)

Cycling can be prevented by carefully choosing the entering and leaving vari-
ables during the simplex method.

3.4.1.1 Bland’s Rule

The first method we present is due to Bland (1977) and assumes that the
variables are ordered in some sequence, e.g., x1, x2, x3, ..., xn.

Bland’s Rule
(1) For non-basic variables with negative reduced costs, select the variable

with the smallest index to enter the basis.
(2) If there is a tie in the minimum ratio test, select the variable with the

smallest index to leave the basis.

If Bland’s rule is implemented in the simplex method, then it maintains
the following property.

Lemma 3.15
If a non-basic variable xq enters the basis, then it will not leave the basis

until another variable xk that was non-basic when xq entered and has a larger
index, i.e., k > q enters the basis.

Proof: Exercise 3.17.
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Theorem 3.16
If the simplex method uses Bland’s rule, then the simplex method will not

cycle.
Proof: Suppose that the simplex method cycles. Then, any non-basic vari-

able that enters during the cycle into the basis must also eventually leave the
basis. Since there are a finite number of variables, there is a largest index
l among those variables that enter and leave the basis. But by Lemma 3.15
above, when variable xl leaves, there must be an entering variable xk which
was non-basic when xl entered with index k > l, which is a contradiction. �

Example 3.17
Consider the linear program from Beale (1955) in Example 3.14. If Bland’s

rule is used where the starting basis consists of the columns associated with
x1, x2, and x3, then the simplex method terminates after 6 iterations with an
optimal basic feasible solution where the basic variables are x6 = 1, x1 = 3/4,
and x4 = 1 with optimal objective function value = −5/4.

Table 3.2 Bland’s rule
Iteration Entering Leaving Basic variables Obj value
0 x1 = 0, x2 = 0, x3 = 1 0
1 x4 x1 x4 = 0, x2 = 0, x3 = 1 0
2 x5 x2 x4 = 0, x5 = 0, x3 = 1 0
3 x6 x4 x6 = 0, x5 = 0, x3 = 1 0
4 x1 x5 x6 = 0, x1 = 0, x3 = 1 0

5 x2 x3 x6 = 1, x1 = 1, x2 = 1/2 -1/2
6 x4 x2 x6 = 1, x1 = 3/4, x4 = 1 -5/4

The first three iterations are the same as in Example 3.14. Starting from
iteration 4, the iterations are different when using Bland’s rule. At the end of
iteration 3, the basis B corresponds to the columns associated with x6, x5,
and x3, i.e.,

B =

 −1 −8 0
−1/2 −12 0

1 0 1

 ,
and the non-basis matrix corresponds to columns associated with non-basic
variables x1, x2, x4, and x7, i.e.,

N =

 1 0 1/2 9
0 1 1/2 3
0 0 0 0

.

Thus, reduced costs are
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r1 = c1 − cTBB−1N1 = 0− (−1/2, 20, 0)

 −1 −8 0
−1/2 −12 0

1 0 1

−1  1
0
0

 = −2,

r2 = c2 − cTBB−1N2 = 0− (−1/2, 20, 0)

 −1 −8 0
−1/2 −12 0

1 0 1

−1  0
1
0

 = 3,

r4 = c4 − cTBB−1N4 =

−3/4− (−1/2, 20, 0)

 −1 −8 0
−1/2 −12 0

1 0 1

−1  1/2
1/2
0

 = −1/4,

and

r7 = c7 − cTBB−1N4 = 6− (−1/2, 20, 0)

 −1 −8 0
−1/2 −12 0

1 0 1

−1  9
3
0

 = −3.

Bland’s rule has variable x1 entering since it has the smallest index among
the variables x1, x4, and x7 with negative reduced cost. Note that in Example
3.14, variable x7 was selected instead since it has the reduced cost that is most
negative.

With the selection of x1 as the entering variable, the leaving variable is

determined by the minimum ratio test α = min
j∈B={6,5,3}

{−x
current
j

d1j
|d1j < 0} =

min{−x
current
5

d15
= 0,−x

current
3

d13
= 2/3} = 0 since

d1j =

[
−B−1N1

e1

]
=


−

 −1 −8 0
−1/2 −12 0

1 0 1

−1  1
0
0


1
0
0
0


=



1.5000
−0.0625
−1.5000

1
0
0
0


.

Thus, variable x5 leaves the basis. In iteration 5 variable x2 enters and
variables x3 leaves, and finally in the last iteration, variable x4 enters and
variable x2 leaves.

3.4.1.2 Lexicographic (Perturbation) Method

Another method for dealing with cycling is called the lexicographic method by
Dantzig, Orden, and Wolfe (1955) and is based on the perturbation strategy
of Orden (1956) and Charnes (1952). The motivation of the method is to
attempt to eliminate degeneracy since cycling can only occur in the presence
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of degeneracy. To combat degeneracy the idea is to perturb the right-hand
side values of a linear program by positive constants so that no basic variable
can attain the value of zero during the iterations of the simplex method.

For example, consider the linear program and assume the rows are linearly
independent

minimize cTx
subject to aT1 x = b1

aT2 x = b2
aT3 x = b3
x ≥ 0,

then a positive constant εi is added to the right-hand side of ith constraint to
get the following perturbed version of the linear program

minimize cTx
subject to aT1 x = b1 + ε1

aT2 x = b2+ ε2
aT3 x = b3+ ε3
x ≥ 0.

The constants must be such that each successive constant is “sufficiently”
smaller than the previous constant where this requirement is denoted as

0� εm � · · · � ε2 � ε1.

One such possibility is to let ε1 = ε , ε2 = ε21, ..., εm = ε2m−1 where ε is
a small positive number. Adding such constants to the right-hand side will
ensure that there is a unique variable to leave the basis during an iteration.
In fact, it is only necessary to perturb the right-hand side of the constraints
when there is a tie in the minimum ratio test.

When it comes to selecting an entering variable, if there is more than one
variable with negative reduced costs, then selecting any one will suffice.

We illustrate how the perturbation method eliminates degeneracy in the
following linear program

minimize −x1 − x2
subject to 2x1 + x2 + x3 = 30

x1 + x2 +x4 = 20
x1 +x5 = 15
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

Consider the initial iteration without perturbing the right-hand sides. Let
the columns associated with the slack variables x3, x4, x5 constitute an initial

basis and then, xB = B−1b =

 x3
x4
x5

 =

 30
20
15

. Then, the reduced costs are

r1 = −1 and r2 = −1. Suppose we select x1 to enter the basis, then
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d1 =

[
−B−1N1

e1

]
=


−

 1 0 0
0 1 0
0 0 1

 2
1
1


1
0

 =


−2
−1
−1
1
0

.

Thus, by the minimum ratio test α = min{ 302 ,
20
1 ,

15
1 } = 15 and either x3

or x5 can leave. Suppose x5 leaves the basis.
Then, the next basic feasible solution is

x1 =


30
20
15
0
0

+ (15)


−2
−1
−1
1
0

 =


0
5
0
15
0

 ,
which is degenerate where the basic variables are now x1 = 15, x3 = 0, and
x4 = 5.

Now consider where right-hand side values of linear program are perturbed
so that we get

minimize −x1 − x2
subject to 2x1 + x2 + x3 = 30 + ε1

x1 + x2 +x4 = 20 + ε2
x1 +x5 = 15 + ε3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

Then, using the same initial set of basic variables we get

xB = B−1b =

 x3
x4
x5

 =

 30 + ε1
20 + ε2
15 + ε3

 .
The reduced costs are the same as before, i.e., r1 = r2 = −1, so select

x1 again to enter the basis. Then, the direction vector d1 is also the same as
before. But now, in the minimum ratio test, we get

α = min{ 30+ε12 , 20+ε21 , 15+ε31 } = 15 + ε3 (why?)

Thus, the leaving variable is uniquely determined to be x5. Then,

x1 =


30 + ε1
20 + ε2
15 + ε3

0
0

+ (15 + ε3)


−2
−1
−1
1
0

 =


ε1 − 2ε3

5 + ε2 − ε3
0

15 + ε3
0

.
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The basic variables are then

xB = B−1b =

 x3
x4
x1

 =

 ε1 − 2ε3
5 + ε2 − ε3

15 + ε3


where

B =

 1 0 2
0 1 1
0 0 1

 , so the reduced costs are

r2 = −1− (0, 0,−1)

 1 0 2
0 1 1
0 0 1

−1  1
1
0

 = −1

and r5 = 1 (in general, if a variable left the basis in the previous iteration,
then it will not enter the basis in the next iteration), so x2 is selected to enter
the basis. Then,

d2 =

[
−B−1N2

e2

]
=


−

 1 0 2
0 1 1
0 0 1

−1  1
1
0


0
1

 =


−1
−1
0
0
1

.

The minimum ratio test gives

α = min{ ε1−2ε31 , 5+ε2−ε31 } = ε1 − 2ε3 (why?),

so x3 leaves the basis. Then,

x2 =


ε1 − 2ε3

5 + ε2 − ε3
15 + ε3

0
0

+ (ε1 − 2ε3)


−1
−1
0
0
1

 =


0

5− ε1 + ε2 + ε3
15 + ε3

0
ε1 − 2ε3

 with

xB = B−1b =

 x2
x4
x1

 =

 ε1 − 2ε3
5− ε1 + ε2 + ε3

15 + ε3

.

Now r5 = −(−1, 0,−1)

 1 0 2
1 1 1
0 0 1

−1  0
0
1

 = −1, so x5 enters the

basis, then
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d5 =

[
−B−1N5

e5

]
=


−

 1 0 2
1 1 1
0 0 1

−1  0
0
1


1
0

 =


2
−1
−1
1
0

 ,

so α = min{ 5−ε1+ε2+ε31 , 15+ε31 } = 5− ε1 + ε2 + ε3. Thus, x4 leaves the basis.

x3 =


ε1 − 2ε3

5− ε1 + ε2 + ε3
15 + ε3

0
0

+(5−ε1+ε2+ε3)


2
−1
−1
1
0

 =


10− ε1 + 2ε2

0
10 + ε1 − ε2

5− ε1 + ε2 + ε3
0


where

xB =

 x2
x5
x1

 =

 10− ε1 + 2ε2
5− ε1 + ε2 + ε3

10 + ε1 − ε2

 .
Now, r3 = 0, and so we have an optimal solution for the perturbed problem.

In the lexicographic method the terms with ε1, ε2, and ε3 are dropped and
then we get

xB =

 x2
x5
x1

 =

 10
5
10


which is the optimal solution for the original (unperturbed) problem. It is
observed that the iterations of the simplex method on the perturbed problem
with the lexicographic method always generated non-degenerate basic feasible
solutions and always produced a unique leaving variable, and in the final
iteration, all terms with the perturbation constants are dropped to recover
an optimal solution for the original problem. More generally, we have the
following result.

Theorem 3.18
Assume that the constraint matrix of a linear program has full row rank

m. If the leaving variable is determined by the lexicographic method, then the
simplex method will always terminate.

Proof: It will suffice to show that degenerate basic feasible solutions can
never be generated in the lexicographic method. The right-hand side vector
of the perturbed linear program is initially of the form

˜

b = b+ ε
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where b =


b1
b2
...
bm

 and ε =


ε1
ε2
...
εm

 .

Without loss of generality, assume that the initial basis B0 is the m ×
m identity matrix and thus the initial basic variables take the form

xB0
= B−10 (b+ ε) = (b+ ε),

where the ith basic variable is denoted xiB0
. Then, xB0 can be written as

x1B0
= b1 + ε1

x2B0
= b2 + ε2
·
·
·

xmB0
= bm + εm,

Any subsequent iteration produces basic variables of the form

x1B = b1 + q11ε1 + q12ε2 + · · ·+ q1mεm

x2B = b2 + q21ε1 + q22ε2 + · · ·+ q2mεm
·
·
·

xmB = bm + qm1ε1 + qm2ε2 + · · ·+ qmmεm,

where each basic variable can be seen to be the result of elementary row
operations that are needed to generate the inverse of the current basis. Thus,
each basic variable will possibly have one or more terms involving the original

perturbation quantities ε1, ε2, ..., εm as well as the quantities bi which are the
modified right- hand side quantities that arise as a result of the elementary
row operations.

Consider the original linear system B0xB0
= b + ε, from which xB0

is
obtained; then every subsequent iteration will solve the corresponding linear
system to generate the current basic feasible solution and the system will have
rank m since the original linear system has rank m. Therefore, for each basic

variable xiB , at least one of bi, qi1, qi2,or qim will be non-zero. Furthermore,
the basic variables will be non-negative since 0� εm � ·· · � ε2 � ε1, which
means that a degenerate basic solution is impossible. �
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3.5 Revised Simplex Method

The simplex method requires, at each iteration, the availability of the inverse
B−1 of the basis matrix B at several steps. In particular, B−1 is required in
computing the reduced costs rN = cN − cTBB−1N and the search direction

dq =

[
−B−1Nq

eq

]
. Explicitly forming the inverse of a non-singular matrix is

well known to be undesirable due to numerical stability issues that arise from
round-off and truncation errors; see Golub and Van Loan (1989). A better
idea is to generate an inverse B−1 by solving an equivalent linear system of
equations.

For example, to compute the reduced costs, the linear system

BTπ = cB

is solved first for π, and then the vector rN = cN − πTN can be easily com-
puted. To compute the search direction, the linear system

Bd = −Nq

is first solved for d and then the vector dq =

[
d
eq

]
is easily computed.

3.5.1 Detailed Steps of the Revised Simplex Method

One can modify the simplex method to accommodate these changes. The
resulting method is called the revised simplex method and is summarized
below.

Revised Simplex Method
Step 0: (Initialization)

Generate an initial basic feasible solution x(0) =

[
xB
xN

]
.

Let B be the basis matrix and N the non-basis matrix with corresponding
partition of the cost vector c = (cB , cN )T .

Let B and N be the index sets of the basic and non-basic variables.
Let k = 0 and go to Step 1.

Step 1: (Optimality Check)
Solve for π in the linear system BTπ = cB .

Then, compute the reduced costs rq = cq − πTNq for all q ∈ N .

If rq ≥ 0 for all q ∈ N, then x(k) is an optimal solution for the linear
program STOP,

else select one xq non-basic such that rq < 0 and go to Step 2.
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Step 2: (Descent Direction Generation)
Solve for d in the linear system Bd = −Nq.

Then, compute dq =

[
−B−1Nq

eq

]
.

If dq ≥ 0, then the linear program is unbounded STOP, else go to Step 3.

Step 3: (Step Length Generation)

Compute the step length α = min
j∈B
{−x

current
j

dqj
|dqj < 0} (the minimum ratio

test). Let j∗ be the index of the basic variable that attains the minimum
ratio α. Go to Step 4.

Step 4: (Improved Adjacent Basic Feasible Solution Computation)
Now let x(k+1) = x(k) + αdq. Go to Step 5.

Step 5: (Basis Update)
Let Bj∗ be the column in B associated with the leaving basic variable xj∗

Update the basis matrix B by removing Bj∗ and adding the column Nq, thus

B = B− {j∗} ∪ {q}.
Update the non-basis matrix N by the removing Nq and adding Bj∗ , thus

N = N− {q} ∪ {j∗}.
Let k = k + 1 and go to Step 1.

Example 3.19
Consider the revised simplex method for the linear program in Example

3.7

maximize −2x1 + x2
subject to −x1+ x2 ≤ 4

2x1 + x2+ ≤ 6
x1 ≥ 0, x2 ≥ 0.

As before, we first convert the objective to a minimization problem, so the
objective is now maximize −2x1 + x2 = −minimize 2x1 − x2.

We start (Step 0) the simplex method with the basic feasible solution

x(0) =

[
xB
xN

]
=


x3
x4
x1
x2

 =


4
6
0
0

 with B =

[
1 0
0 1

]
and N =

[
−1 1
2 1

]
and

cB =

[
c3
c4

]
=

[
0
0

]
, cN =

[
c1
c2

]
=

[
2
−1

]
, B = {3, 4}, and N =

{1, 2}.

First Iteration
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Step 1: Check the optimality of x(0) by computing the reduced costs of the
non-basic variables r1 and r2.

First solve the linear system BTπ = cB , i.e.,[
1 0
0 1

]T [
π1
π2

]
=

[
0
0

]
and so π =

[
π1
π2

]
=

[
0
0

]
.

Now

r1 = c1 − πTN1 = 2− (0, 0)

[
−1
2

]
= 2 ≥ 0

and

r2 = c2 − πTN2 = −1− (0, 0)

[
1
1

]
= −1 < 0 .

Thus, x(0) is not optimal and x2 must be selected as the non-basic variable
to enter the basis. Go to Step 2.

Step 2: Solve the system Bd = −Nq, i.e.,[
1 0
0 1

] [
d1
d2

]
= −

[
1
1

]
so d =

[
−1
−1

]
.

Construct d2 =

[
d
e2

]
=

 −
[

1 0
0 1

]−1 [
1
1

]
0
1

 =


−1
−1
0
1

.

Since d2 � 0, the linear program cannot be determined to be unbounded
at this point. Go to Step 3.

Step 3: Compute the step length α = min
j∈B={3,4}

{−x
current
j

d2j
|d2j < 0}

= min{−x
current
3

d23
,−x

current
4

d24
} = {− 4

−1 ,−
6
−1} = 4. Go to Step 4.

Step 4: So x(1) = x(0) + αd1 =


4
6
0
0

+ (4)


−1
−1
0
1

 =


0
2
0
4

.

Observe that the variable x3 leaves the basis (i.e., becomes non-basic). Go
to Step 5.

Step 5: For x(1), the basic variables are xB =

[
x2
x4

]
=

[
4
2

]
and the
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non-basic variables are xN =

[
x1
x3

]
=

[
0
0

]
.

The updated basis matrix B =

[
1 0
1 1

]
, the updated non-basis matrix

N =

[
−1 1
2 0

]
, cB =

[
c2
c4

]
=

[
−1
0

]
, cN =

[
c1
c3

]
=

[
0
−1

]
,

B = {2, 4}, and N = {1, 3}. Go to Step 1.

Second Iteration
Step 1: Check the optimality of x(1) by computing the reduced costs of the

non-basic variables r1 and r3.

Solve BTπ = cB , i.e.,

[
1 1
0 1

] [
π1
π2

]
=

[
−1
0

]
so π =

[
−1
0

]
Now

r1 = c1 − πTN1 = 2− (−1, 0)

[
−1
2

]
= 1 ≥ 0

and

r3 = c3 − cTBB−1N3 = 0− (−1, 0)T
[

1
0

]
= 1 ≥ 0.

Thus, x(1) =

[
xB
xN

]
=


x2
x4
x1
x3

 =


4
2
0
0

 is an optimal solution.

3.5.2 Advantages of the Revised Simplex Method

In addition to the benefits of not explicitly computing the inverse of the basis
matrix B, the revised simplex method often requires substantially less com-
puter memory when the number of variables n is much larger than the number
of constraints m and when the matrix B is large and sparse. Further gains in
performance can be had by an appropriate choice to solve the linear systems
in involving B. In particular, state-of-the-art approaches employ the use of a
triangular factorization, such as LU decomposition to solve the square system
and can greatly enhance both the numerical stability of the linear system and
reduce space requirements, especially when B is large and sparse.

An LU decomposition of a basis matrix B provides a square lower trian-
gular matrix L and a square upper triangular matrix U , so that B can be
represented as the product of L and U , i.e., B = LU. A lower triangular ma-
trix contains zeros in the entries above the diagonal and an upper triangular
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matrix contains zeros in entries below the diagonal. Such a factorization can
be exploited to solve for π in the linear system BTπ = cB . In particular, we
have

BTπ = (LU)Tπ = UTLTπ = cB

The strategy is to let LTπ = y and then solve first for y in UT y = cB and
then solve for π in the system LTπ = y. Each of these two systems can be
solved easily and rapidly by substitution and do not require more numerically
intense elementary row operations as in Gaussian elimination.

Since the basis changes in each iteration of the revised simplex method
by one column, there are advanced numerical linear algebra approaches that
efficiently update the factorization so that new upper and lower triangular
factors do not have to be generated from scratch in each iteration. In addition,
numerical scaling and partial pivoting methods are used as well to improve
numerical stability. The full implementation details are beyond the scope of
this book and the reader is urged to see Bartels and Golub (1969) and Murtagh
(1981).

3.6 Complexity of the Simplex Method

An important consideration of any algorithm is its complexity, i.e., the amount
of time or resources that it requires to solve a problem. In this section, we
consider the complexity of the simplex method. We seek an upper bound on
the time or number of arithmetic operations that it would take the simplex
method to solve any instance of a particular size in the worst case. We in-
troduce some notation to help with the classification of the complexity of
algorithms.

Definition 3.20
A function g(n) = O(f(n)) (or Big-O of f(n)) if there is constant C > 0

such that for sufficiently large n

g(n) ≤ Cf(n).

Example 3.21
The polynomial g(n) = 2n2 + 3n + 4 = O(n2) since g(n) ≤ 4f(n) = 4n2

for n ≥ 3 where f(n) = n2.

There are two basic classes of algorithms to solve a problem (in this case
a linear program). Those that are efficient are said to have polynomial time
worst-case complexity in that the number of operations required in the worst
case to solve any instance of a linear program is a polynomial function of
the size of the problem. In this case, we say the complexity of the algorithm
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is O(f(n)) where f(n) is a polynomial (n denotes the size of the problem
instance). The other type of algorithm is said to be exponential if the worst-
case complexity grows exponentially in the size of the problem, e.g., f(n) =
Kn for some constant K > 1.

Klee-Minty Problems
Klee and Minty (1972) showed that there is a class of linear programs with

2m variables and m constraints that has a feasible basis for every possible
selection of m variables out of the 2m variables. A variation of the problems
is as follows:

minimize
m∑
j=1

10m−jxj

subject to 2
i−1∑
j=1

10i−jxj + xi ≤ 100i−j i = 1, ...,m

x1 ≥ 0, ..., xm ≥ 0.

By converting to standard form, the problems will have 2m variables and
m constraints. Now, if the simplex method is applied to an instance from
this class of problems where the non-basic variable with the most negative
reduced cost is always selected as the entering variable at each iteration, then
the simplex method will visit all bases. Therefore, as m increases the number
of bases grows exponentially, as we have seen from Chapter 2 that there will
be
(
2m
m

)
feasible bases. This demonstrates that in the worst case the simplex

method has complexity that grows exponentially in the size of the problem.
To get a feeling for this growth rate, let m = 50 and the number of variables
n = 2m = 100 (which is by any measure a very small linear program), then(
100
50

)
= 1029. If we suppose that a computer can do 1 billion iterations of the

simplex method in one second, then it will take the computer more than 3
trillion years to finish!

However, fortunately in practice the simplex method performs very well
and has been observed not to require more iterations than a small multiple of
the number of constraints in most cases; see Hoffman (1953).

3.7 Simplex Method MATLAB Code

This section contains MATLAB code for the simplex method. In particular,
the function

function [xsol objval exitflag]=SimplexMethod(c, Aeq, beq, B set)

is created where it takes as arguments the parameters of a linear program that
is in standard form where c is the objective coefficient vector, Aeq the matrix
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of coefficients of the equality constraints, beq the vector of right-hand sides of
equality constraints, and B set is a set that contains theindices of the current
basic variables. The function assumes that a set of initial basic variables is
readily available and is indicated through the set B set.

Example 3.22

Consider the linear program (3.1)

minimize −x1 − x2
subject to x1 ≤ 1

x2 ≤ 1
x1 ≥ 0, x2 ≥ 0.

Slack variables x3 and x4 must be added to get the linear program to
standard form. Then the following MATLAB statements create the parameters
for the function SimplexMethod.

>> c=[-1; -1; 0; 0;];
>> Aeq=[1 0 1 0;

0 1 0 1];
>> beq=[1;1];
>> B set=[3; 4]; % the subscript of initial basic variables

then the function can be called by writing (with output following)

>>[xsol fval exitflag]=SimplexMethod(c, Aeq, beq, B set)

probelm solved

xsol =
1
1
0
0

fval =

-2

exitflag =

0

3.7.1 MATLAB Code

Below is the MATLAB code of the function SimplexMethod. It is written to
correspond to the steps of the simple method from Section 3.2.3.
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function [xsol objval exitflag]=SimplexMethod(c, Aeq, beq, B_set)

% Simplex_Method solves a linear program in standard form:

% min c’*x

% s.t. Aeq*x = beq

% x >= 0

% by using the simplex method of George B. Dantzig

%

% Inputs:

% c = n*1 vector of objective coefficients

% Aeq = m*n matrix with m < n

% beq = m*1 vector of right hand side (RHS) coefficients

% B_set = m*1 vector that contains indices (subscripts) of basic variables

%

% Parameter and Variable Partitions

%

% c, Aeq, and beq are partitioned according to partition of x into

% x’ =[x_B’ | x_N’] where

% x_B is an m*1 vector of basic variables

% x_N is an (n-m)*1 vector of non-basic variables

% c’ = [c_B’ | c_N’]

% c_B is the objective coefficients of x_B, an m*1 vector

% c_N is the objective coefficients of x_N, an (n-m)*1 vector

% Aeq = [B | N]

% B is the m*m basis matrix

% N is m*(n-m) non-basis matrix

% set = [B_set’ | N_set’]

% set is a set of indices (subscripts) of x

% N_set is an (n-m)*1 vector of indices (subscripts) of non-basic variables

%

% Output:

% xsol = n*1 vector, contains final solution of LP

% objval is a scalar, final objective value of LP

% iter is a struct that includes for every iteration the following details:

% B_Set, N_set, c_B, x_B, r_N, step, and d where step is a step length

% and d is a search direction.

%

% exitflag describes the exit condition of the problem as follows:

% 0 - optimal solution

% 1 - unbounded problem

xsol=[]; objval=[]; exitflag=[];

%% Step 0: Initialization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate an initial basic feasible solution and partition c, x, and Aeq

% so that c=[c_B | c_N] x=[x_B | x_N] Aeq=[B | N]
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set=[1:length(c)]’;

set(find(ismember(set, B_set)==1))=[];

N_set=set;

B=Aeq(:,B_set); %basis matrix B

c_B=c(B_set); %obj coefficients of current basic variables

x_B=B\beq; %compute basic variables

N=Aeq(:,N_set); %non-basis matrix N

c_N=c(N_set); %obj coefficients of current non-basic variables

x_N=zeros(length(N_set),1); %x_N, non-basic variables equal 0

x=[x_B; x_N]; %partition x according to basis

obj=[c_B; c_N]’*x; %initial objective function value

k=0;

while k>=0

%% Step 1: Optimality Check

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute the reduced costs r_q=c_q-c_B’*B^(-1)*N_q for q in N_set

% if r_q >= 0, STOP, current solution optimal, else go to STEP 2

pie=B’\c_B; %solve the system B^T*pie=c_B for simplex multipliers

r_N=c_N’-pie’*N; % compute reduced cost for non-basic variables

ratioflag=find(r_N<0);

if isempty(ratioflag) %if r_q >= 0, then STOP. Optimal

disp(’probelm solved’)

exitflag=0;

objval=obj;

%subscripts of x are in ascending order

set_temp=[B_set; N_set];

for a=1:length(c)

xsol(a,1)=x(find(set_temp==a));

end

break

else % if r_q < 0, GO TO Step 2

%% Step 2: Descent Direction Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construct d_q=[-B^(-1)*N; e_q].

% If d_q >= 0, then LP is unbounded, STOP, else go to STEP 3.

enter=ratioflag(1); %choosing entering variable

e=zeros(length(N_set),1);

e(enter)=1; %construct vector e_q

d=-B\N(:,enter); %solve the system Bd=-N_q

direction=[d; e]; %improved direction d

d_flag=find(direction < 0);

if isempty(d_flag) %if direction > 0, then STOP.(unbounded)

disp(’unbounded problem’)

exitflag=1;

break
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else %if d_q < 0, GO TO Step 3

%% Step 3: Step Length Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute step length by the minimum ratio test. Go to STEP 4.

step_set=-x(d_flag)./direction(d_flag);

step=min(step_set);

%% Step 4: Improved Solution Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Let x(k+1) = x(k) + alpha*d_q. Go to Step 5.

x_d=x+step*direction;

leave_set=find(x_d(1:length(B_set))==0);

leave=leave_set(1); %determining leaving variable

%% Step 5: Basis Update

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate the new basis B for next iteration,

% Update c=[c_B|c_N],x=[x_B|x_N],& Aeq=[B|N]. Go to STEP 1.

B_set_temp=B_set;

N_set_temp=N_set;

x_B=x_d(1:length(B_set));

x_B_temp=x_d(1:length(B_set));

x_N_temp=x_d(length(B_set)+1:end);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%exchange the entering and leaving variables in B_set

B_set(find(B_set_temp==B_set_temp(leave)))=N_set_temp(enter);

N_set(find(N_set_temp==N_set_temp(enter)))=B_set_temp(leave);

x_B(find(x_B_temp==x_B_temp(leave)))=x_N_temp(enter);

B=Aeq(:,B_set); %update basis B

c_B=c(B_set); %update c_B

N=Aeq(:,N_set); %update non-basis N

c_N=c(N_set); %update c_N

x=[x_B; x_N]; %update x = [x_B | x_N]

obj=[c_B; c_N]’*x; %new objective value

k=k+1; %GO TO Step 1

end

end

end

3.8 Exercises

Exercise 3.1

Consider the following linear program:
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maximize 2x1 + 2x2 + 3x3 + x4 + 4x5
subject to 3x1 + 7x2 + 2x3 + 3x4 + 2x5 ≤ 40

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

(a) Solve by using the simplex method.
(b) Find a simple rule that obtains the optimal solution.

Exercise 3.2
Consider the following linear program:

minimize −4x1 − 3x2
subject to x1 + 2x2 ≤ 8

−2x1 + x2 ≤ 5
5x1 +3x2 ≤ 16
x1 ≥ 0, x2 ≥ 0.

(a) Solve the LP using the simplex method.
(b) Solve the LP using the revised simplex method.
(c) Solve the LP using the linprog function from MATLAB.

Exercise 3.3
Consider the following linear program:

minimize −4x1 − 3x2 − 2x3
subject to 2x1 − 3x2 + 2x3 ≤ 6

−x1 + x2 + x3 ≤ 5
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Solve using the simplex method.
(b) Solve using the revised simplex method.
(c) Solve using the SimplexMethod MATLAB function from Section 3.7.

Exercise 3.4
Consider the following linear program:

minimize −2x1 − 5x2
subject to −x1 + 3x2 ≤ 2

−3x1 + 2x2 ≤ 1
x1 ≥ 0, x2 ≥ 0.

(a) Graph the feasible set.
(b) Solve the LP using the simplex method.
(c) Is the LP bounded? If not, find the ray along which the LP is un-

bounded.

Exercise 3.5
Consider the following linear program:
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minimize −x2
subject to x1 − 2x2 ≤ 2

x1 − x2 ≤ 3
x2 ≤ 3

x1 ≥ 0, x2 ≥ 0.

(a) Solve the LP using the simplex method.
(b) Does the LP bounded have a unique optimal solution? If not, derive

an expression for the set of optimal solutions.
(c) Solve the LP using the SimplexMethod MATLAB function from section

3.7.

Exercise 3.6
Consider the following linear program

maximize 2x1 − 3x2 + x3
subject to x1 + 3x2 + x3 ≤ 12

−x1 + x2 + 2x3 ≤ 6
−x1 + 3x2 ≤ 9
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solve using the simplex method.

Exercise 3.7
Consider the following systems of linear inequalities
(a)

x1 + 3x2 ≤ 5
−x1 + x2 ≤ 1
x1 ≥ 0, x2 ≥ 0.

Find a feasible solution.

(b)

x1 + 2x2 + x3 ≤ 10
−2x1 + 3x2 + 2x3 ≥ 3
x1 unrestricted, x2 ≥ 0, x3 ≥ 0.

Find a basic feasible solution by solving a Phase I problem.

Exercise 3.8
Consider the following linear program:

minimize −x1 − 2x2
subject to 2x1 − x2 ≥ 5

−2x1 + x2 = 2
x1 ≥ 0, x2 ≥ 0.
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(a) Solve the LP using the Two-Phase method
(b) Solve the LP using the Big-M method.
(c) Solve the LP using the linprog function from MATLAB.

Exercise 3.9
Consider the following linear program:

minimize x1 − 2x2
subject to x1 + x2 ≥ 3

−x1 + x2 ≥ 2
x2 ≤ 4

x1 ≥ 0, x2 ≥ 0.

Solve the LP using the Two-Phase method.

Exercise 3.10
Consider the following linear program:

minimize 2x1 − 2x2 + x3
subject to x1 + 3x2 − x3 ≥ 5

−3x1 − 2x2 + x3 ≤ 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Solve the LP using the Two-Phase method.
(b) Solve the LP using the Big-M method.
(c) Solve the LP using the linprog function from MATLAB.

Exercise 3.11
Consider the following linear program:

minimize 2x1 + 3x2 − x3
subject to 2x1 + x2 + x3 ≥ 2

−x1 + x2 ≥ 1
−x1 + 5x2 + x3 ≤ 3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solve the LP using (a) the Two-Phase method and (b) the Big-M method.

Exercise 3.12
Finish the Big-M iterations in Example 3.13. Assume that M is a very

large constant.

Exercise 3.13
Finish the Bland’s rule in Example 3.17.

Exercise 3.14
Consider the following linear program:
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minimize −x1 − 2x2 − x3
subject to .5x1 + 2x2 + 3x3 ≤ 2

−x1 + x2 + 4x3 ≤ 1
x1 + 3x2 + x3 ≤ 6
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solve the LP using the lexicographic method.

Exercise 3.15
Consider the following linear program:

minimize x3
subject to −x1 − x2 + εx3 = ε

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Formulate the Big-M problem for this linear program.
(b) Consider the vectors x1 = (0, 0, 1, 0) and x2 = (0, 0, 0, ε). Are these

both feasible for the Big-M problem? What about for the original problem?
(c) Explain by using parts (a) and (b) that it is not always possible to

choose an arbitrarily large M constant for the Big-M problem for an arbitrary
linear program.

Exercise 3.16
Prove that if the reduced costs of a basic feasible solution are all strictly

positive, then the optimal solution is unique.

Exercise 3.17
Prove the monotone property of Bland’s rule, i.e., Lemma 3.15.

Exercise 3.18
Prove that the only way the simplex method fails to terminate is by cycling.

Exercise 3.19
Consider the following linear program:

minimize cTx
subject to Ax ≤ b

x ≥ 0.

An interior point of the feasible set is a point x∗ such that Ax∗ < b and
x∗ > 0. Prove that an interior point x∗ cannot be an optimal solution for this
linear program.

Exercise 3.20
Consider the following linear program:

minimize cTx
subject to Ax ≥ b

x ≥ 0.
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(a) Convert the LP to standard form.

(b) Show that if x =

[
xB
xN

]
is an optimal basic feasible solution, then

the dual values are always non-negative.

Exercise 3.21

Suppose the Big M model results in a finite optimal solution
˜
x =

[
x∗

x∗a

]
and x∗a 6= 0. Prove that the original linear program is infeasible.

Exercise 3.22
Modify the MATLAB code of the function SimplexMethod to implement

the revised simplex method.

Notes and References
The simplex method was developed by Dantzig and his book (1963) details

many of the early developments in the simplex method and extensions. The re-
vised simplex method is also due to Dantzig (1953) and Orchard-Hays (1954).
The computational complexity of the simplex method in the worst-case sense
was determined with the advent of the Klee-Minty (1972) examples. Aver-
age case complexity analysis, where a probability distribution on the space
of problem instances of the simplex method is used, was examined by Borg-
wardt (1982) and Smale (1983). Cycling and its relationship to degeneracy
was discovered by Hoffman (1953). Bland’s rule is due to Bland (1977). The
lexicographic method is due to Dantzig, Orden, and Wolfe (1955) and is based
on the perturbation technique of Charnes (1952).
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Duality Theory

4.1 Introduction

Every linear program has associated with it another linear program called
the dual. A given linear program and its dual will be related in important
ways. For example, a feasible solution for one will provide a bound on the
optimal objective function value of the other. Also, if one has an optimal
solution, then the other will have an optimal solution as well and the objective
function values of both will be the same. In particular, if one problem has an
optimal solution, then a “certificate” of optimality can be obtained from the
corresponding dual problem verifying the optimality.

The theory related to the relationship between a linear program and its
dual is called duality theory, and has important consequences for optimiza-
tion and is not only of theoretical, but of practical importance as well. This
chapter will develop and explore the implications and economic interpreta-
tions of duality theory and its role in optimal algorithm design and sensitivity
analysis. With the development of duality theory, a variant of the simplex
method called the dual simplex method is developed which can enhance the
computation of optimal solutions of linear programs that are modifications of
an existing problem.

4.2 Motivation for Duality

Consider the following linear program, which is referred to as the canonical
primal problem P

maximize 6x1 + x2 + 2x3
subject to x1 + 2x2 − x3 ≤ 20

2x1 − x2 + 2x3 ≤ 30
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

which is of the following matrix form:

133
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maximize cTx
subject to Ax ≤ b

x ≥ 0.

The dual (D) of the above canonical primal linear program is

minimize 20π1 + 30π2
subject to π1 + 2π2 ≥ 6

2π1 − π2 ≥ 1
−π1 + 2π2 ≥ 2
π1 ≥ 0, π2 ≥ 0,

which is of the form

minimize bTπ
subject to ATπ ≥ c

π ≥ 0.

We call problems P and D above a primal-dual pair of linear programs.
Why does the dual problem take on the form above? One way to motivate
this is to consider obtaining bounds on the objective function value for the
primal problem.

Consider the following feasible solution for the primal problem P , x1 =
10, x2 = 2, and x3 = 2. The corresponding objective function value is z = 66.
Let z∗ = the optimal objective function value of the primal problem P which is
currently not known, then clearly z = 66 ≤ z∗, since the feasible solution may
not be the optimal solution. In other words, the optimal objective function
value of the primal linear program is greater than or equal to 66 and thus 66 is
a lower bound on the optimal objective function value. In general, any feasible
solution x for a maximization (minimization) linear program will provide a
lower (upper) bound on the optimal objective function value, i.e., cTx ≤ z∗

(cTx ≥ z∗).
A very important observation is that it is possible to obtain upper bounds

on the objective function value for P using the constraints of P . For example,
consider multiplying the first and second constraints in P by 2 and then adding
them together, i.e.,

(2) ∗ (x1 + 2x2 − x3) ≤ (2) ∗ 20
+ (2) ∗ (2x1 − x2 + 2x3) ≤ (2) ∗ 30
= 6x1 + 2x2 + 2x3 ≤ 100.

Thus, we get that 6x1+2x2+2x3 ≤ 100 for all x1, x2, and x3 non-negative
and this will hold for all feasible solutions x of P . Now 6x1 + x2 + 2x3 ≤
6x1 + 2x2 + 2x3 where the left-hand side of the inequality is the objective

© 2014 by Taylor & Francis Group, LLC



Duality Theory 135

function of P , and so the objective function value associated with any feasible
solution will always be less than or equal to 100. In particular, for an optimal
solution x∗, the objective value cTx∗ is bounded above by 100, i.e., cTx∗ ≤ 100.

Then, combining the lower and upper bounds it is deduced that 66 ≤ z∗ ≤
100. This means that the optimal objective function value is somewhere be-
tween 66 and 100. If we can find a smaller upper bound and a larger lower
bound, then we can bound the objective function value in a tighter manner
and then the bounds would be more informative of what the optimal objec-
tive function value could be. Ideally, if we can find a lower bound that is
equal to the upper bound then the optimal objective function value would
be determined and the corresponding feasible solution would be an optimal
solution.

To find the smallest possible upper bound on the objective function value
we can generalize the idea above in taking multiples of the primal constraints
and adding them together to form an expression involving the variables to
bound the objective function value of the primal. Instead of selecting as a
multiplier 2 for each of the constraints, we let these quantities be represented
by the non-negative variables π1 for the multiplier for the first primal con-
straint and π2 for the multiplier for the second primal constraints. Then, we
add the constraints after multiplying each of the constraints by their respective
multipliers to get

(π1)(x1 + 2x2 − x3) ≤ (π1)20
+ (π2)(2x1 − x2 + 2x3) ≤ (π2)30
= (π1 + 2π2)x1 + (2π1 − π2)x2 + (−π1 + 2π2)x3 ≤ 20π1 + 30π2.

In order for the quantity (π1 + 2π2)x1 + (2π1 − π2)x2 + (−π1 + 2π2)x3 to
be an upper bound for the objective function of P we require that

(π1 + 2π2) ≥ 6, (2π1 − π2) ≥ 1, and (−π1 + 2π2) ≥ 2. (4.1)

Then, 6x1+x2+2x3 ≤ (π1+2π2)x1+(2π1−π2)+(−π1+2π2) ≤ 20π1+30π2
for all x1, x2, x3 ≥ 0 and π1, π2 ≥ 0.

We can reduce the upper bound on the objective function by choosing
values for the multipliers π1 ≥ 0 and π2 ≥ 0 so that 20π1 + 30π2 is as small
as possible subject to the conditions in (4.1). But observe that this can be
expressed directly as an optimization problem in the form of the dual problem
of P . That is, the problem of finding the lowest possible bound for the objective
function value of P is equivalent to its dual problem since the requirements on
π1 and π2 embodied in (4.1) and the non-negativity requirements are exactly
the constraints of the dual problem, and the goal is to select π1 and π2 to
minimize 20π1 + 30π2, which is the same objective in the dual problem D.
Thus, we see that the dual problem is intimately related to the primal problem
and not an ad hoc construction.
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4.3 Forming the Dual Problem for General Linear Pro-
grams

For the canonical primal and dual problems, observe that the dual objective
is a minimization, whereas for the primal it is a maximization problem. Both
the primal and the dual use the same data c, A, and b, except that for the dual
the vector b is the objective function coefficient vector, c is the right-hand side
vector, and AT is the matrix of constraint coefficients. Also, the constraints
in D are inequalities of the (≥) type where the primal constraints are of the
≤ type. Thus, where the primal has m constraints and n variables, the dual
has n constraints and m variables. In fact, the ith variable in one problem
corresponds to the ith constraint in the other problem.

However, most linear programs are not naturally expressed in a form where
all constraints are uniformly of one type such as ≥ and where all variables
are non-negative. But we know that any linear program can be converted into
canonical form, for which the dual is known, by using the transformation rules
from Chapter 1. It turns out that the dual of a linear program in any form
can be obtained without the need to first transform the linear program into
canonical form.

Example 4.1
Consider the following linear program as a primal problem

minimize c1x1 + c2x2 + c3x3
subject to a11x1 + a12x2 + a13x3 ≤ b1

a21x1 + a22x2 + a23x3 ≥ b2
a31x1 + a32x2 + a33x3 = b3
x1 ≥ 0, x2 unrestricted, x3 ≤ 0.

This problem can be converted into the canonical form by letting x2 = x+2 −x
−
2

and x3 = −x′3 and splitting the third constraint into inequalities and then
multiplying all constraints of the ≤ type by −1 to get

minimize c1x1 + c2x
+
2 − c2x

−
2 − c3x

′

3

subject to −a11x1 − a12x+2 + a12x
−
2 + a13x

′

3 ≥ −b1
a21x1 + a22x

+
2 − a22x

−
2 − a23x

′

3 ≥ b2
a31x1 + a32x

+
2 − a32x

−
2 − a33x

′

3 ≥ b3
−a31x1 − a32x+2 + a32x

−
2 + a33x

′

3 ≥ −b3
x1 ≥ 0, x+2 ≥ 0, x−2 ≥ 0, x

′

3 ≥ 0.

Then by letting π
′

1 ≥ 0 be the dual variable corresponding to the first
constraint above, π2 ≥ 0 be the dual variable corresponding to the second
constraint above, and π+

3 and π−3 be the dual variables corresponding to the
third and fourth constraints, the dual problem becomes
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maximize −b1π
′

1 + b2π2 + b3π
+
3 − b3π

−
3

subject to −a11π
′

1 + a21π2 + a31π
+
3 − a31π

−
3 ≤ c1

−a12π
′

1 + a22π2 + a32π
+
3 − a32π

−
3 ≤ c2

a12π
′

1 − a22π2 − a32π+
3 + a32π

−
3 ≤ −c2

a13π
′

1 − a23π2 − a33π+
3 + a33π

−
3 ≤ −c3

π
′

1 ≥ 0, π2 ≥ 0, π+
3 ≥ 0, π−3 ≥ 0,

which by setting π1 = −π′1 and π3 = π+
3 − π

−
3 is equivalent to

maximize b1π1 + b2π2 + b3π3
subject to a11π1 + a21π2 + a31π3 ≤ c1

a12π1 + a22π2 + a32π3 = c2
a13π1 + a23π2 + a33π3 ≥ c3
π1 ≤ 0, π2 ≥ 0, π3 unrestricted.

The significance of the above example is that it is possible to take the dual
directly from a linear program in its original form. In particular, associated
with a primal constraint of the type ≤ will be a dual variable π ≤ 0. For a
primal constraint of the ≥ type, the corresponding dual variable will be non-
negative π ≥ 0 (as demonstrated before in the canonical case). Finally, for an
equality constraint, the corresponding dual variable π is unrestricted.

The following tables give the relationship between a primal-dual pair of
linear programs.

Table 4.1 Primal and dual data correspondence

Constraint matrix A
Cost vector c

Right-Hand Side vector b

⇐⇒
⇐⇒
⇐⇒

Constraint matrix AT

Cost vector b
Right-Hand Side vector c

Table 4.2 Primal dual constraint variable

correspondence

Maximization ⇐⇒ Minimization
variables
≥ 0
≤ 0

unrestricted

⇐⇒
⇐⇒
⇐⇒

constraints
≥
≤
=

constraints
≥
≤
=

⇐⇒
⇐⇒
⇐⇒

variables
≤ 0
≥ 0

unrestricted

Example 4.2

Find the dual of the linear program
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maximize 5x1 − 3x2 + 2x3
subject to x1 + 4x2 − 2x3 ≥ 1

2x1 − x2 + x3 = −5
x1 + x2 − x3 ≤ 2
x1 ≤ 0, x2 ≥ 0, x3unrestricted.

Solution:
Now the primal data is such that

c =

 5
−3
2

 , b =

 1
−5
2

 , and

A =

 1 4 −2
2 −1 1
1 1 −1

 .
Thus, the dual cost vector is b, the right-hand side vector is c, and the

constraint coefficient matrix is

AT =

 1 2 1
4 −1 1
−2 1 −1

.

There are three dual variables since there are three primal constraints
(excluding the restrictions, if any, on the primal variables). The first dual
variable π1 corresponds to the first primal constraint, which is of the ≥ type,
so π1 ≤ 0, the second dual variable corresponds to the second primal constaint
which is an equality, so π2 is unrestricted, and the third dual variable π3
corresponds to the last constraint, which is of the ≤ type, so π3 ≥ 0.

Now there are three dual constraints since there are three primal variables.
The first dual constraint will be of type≤ since the first primal variable x1 ≤ 0,
the second dual constraint will be of type ≥ since the second primal variable
x2 ≥ 0, and the third dual constraint will be an equality since the third primal
variable x3 is unrestricted. Thus, the dual is

minimize π1 − 5π2 + 2π3
subject to π1 + 2π2 + π3 ≤ 5

4π1 − π2 + π3 ≥ −3
−2π1 + π2 − π3 = 2
π1 ≤ 0, π2 unrestricted, π3 ≥ 0.

4.4 Weak and Strong Duality Theory

For the development of duality theory, we will assume that our primal problem
(P ) is of the form
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maximize
n∑
i=1

cixi

subject to
n∑
j=1

aijxj ≤ bi i = 1, ...,m

xj ≥ 0 j = 1, ..., n,

and so the corresponding dual problem (D) is

minimize
m∑
i=1

biπi

subject to
m∑
i=1

aijπi ≥ cj j = 1, ..., n

πj ≥ 0 j = 1, ...,m.

Our first result shows that it does not matter which linear program in a
primal-dual pair is called the primal.

Theorem 4.3
The dual of the dual of P is P .
Proof: The dual of problem P is

minimize
m∑
i=1

biπi

subject to
m∑
i=1

aijπi ≥ cj j = 1, ..., n

πi ≥ 0 i = 1, ...,m.

The objective function can be converted to a maximization problem via

maximizing the negation of the objective function, i.e., minimize
m∑
i=1

biπi =

−maximizing −
m∑
i=1

biπi, and the constraints can be converted to less than or

equal to type by multiplying the constraints by −1. Then, the dual of P can
be written as

−maximize
m∑
i=1

(−bi)πi

subject to
m∑
i=1

(−aij)πi ≤ (−cj) j = 1, ..., n

πj ≥ 0 j = 1, ...,m.

If we let xi be the dual variable corresponding to the ith constraint of the
dual of P , then the dual of the dual is

−minimize
n∑
i=1

(−ci)xi

subject to
n∑
i=1

(−aij)xi ≤ (−bj) i = 1, ...,m

xi ≥ 0 i = 1, ..., n,
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which is equivalent to the primal problem P. �

Recall that we motivated the dual of a linear program P in terms of ob-
taining bounds on the objective function value of P . In particular, the dual
provided upper bounds on P . In fact, by construction of the dual any feasible
solution π of the dual will provide an upper bound for P . This means that
even for an optimal solution x∗ of P , any dual feasible solution π is an upper
bound of P , i.e., cTx∗ ≤ bTπ. This result is called weak duality.

Theorem 4.4 (Weak Duality)
Let x = (x1, ..., xn)T be a feasible solution for the primal problem P and

π = (π1, ..., πm)T be a feasible solution for the dual problem D. Then,

n∑
j=1

cjxj ≤
m∑
i=1

bjπj.

Proof: We have

n∑
j=1

cjxj ≤
n∑
j=1

(
m∑
i=1

aijπi)xj

=
m∑
i=1

(
n∑
j=1

aijxj)πj ≤
m∑
j=1

bjπj

where the first inequality holds due the feasibility of the dual solution π and
the non-negativity of the primal solution x and the second inequality holds
due to the feasibility of the primal solution x and the non-negativity of the
dual solution π. �

Example 4.5
Consider again the linear program

maximize 6x1 + x2 + 2x3
subject to x1 + 2x2 − x3 ≤ 20

2x1 − x2 + 2x3 ≤ 30
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

and its dual

minimize 20π1 + 30π2
subject to π1 + 2π2 ≥ 6

2π1 − π2 ≥ 1
−π1 + 2π2 ≥ 2
π1 ≥ 0, π2 ≥ 0.

A feasible solution for the dual is π1 = 2 and π2 = 2 with objective
function 100. Consider the feasible solution x1 = 15, x2 = 2.5, x3 = 0 for
the primal problem with objective function 92.5, which is less than 100. The
difference between the dual objective function value and the primal objective
function is 100−92.5 = 7.5. This difference is called the duality gap and weak
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FIGURE 4.1
Duality gap for linear programs where primal is a maximization.

duality states that for a pair of primal and dual feasible solutions this gap is
non-negative; see Figure 4.1.

Consider another solution for the primal problem x1 = 16, x2 = 2, x3 = 0
with an objective value 98, which is higher than 92.5, but still less than 100,
i.e., there is a duality gap of 2. Now consider the dual solution π1 = 1.6 and
π2 = 2.2 with an objective function value of 98. Observe that the objective
function values for both the primal and dual are equal at these particular
solutions and the duality gap is zero. Thus, these primal and dual solutions
must be optimal for their respective problems since the primal solution, which
represents a lower bound, attained the value of an upper bound, and the
dual solution, which represents an upper bound, attained the value of a lower
bound. The next result summarizes this situation.

Corollary 4.6
If x∗ = (x∗1, ..., x

∗
n)T is a feasible solution for the primal problem P and

π∗ = (π∗1 , ..., π
∗
m)T is a feasible solution for the dual problem D and

n∑
j=1

cjx
∗
j =

m∑
i=1

bjπ
∗
j , then x∗ and π∗ are optimal solutions for their respective problems.

Proof: By weak duality, we have that for any feasible solution x =
(x1, ..., xn)T for P

n∑
j=1

cjxj ≤
m∑
i=1

bjπ
∗
j =

n∑
j=1

cjx
∗
j .

Thus, x∗ must be an optimal solution for the primal. Similarly, for any
feasible solution π = (π1, ..., πm)T for the dual problem D,
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m∑
i=1

bjπ
∗
j =

n∑
j=1

cjx
∗
j ≤

m∑
i=1

bjπj .

So π∗ must be an optimal solution for the dual. �

Next we consider the implications of weak duality in the case where one
of the problems in a primal-dual pair is unbounded.

Corollary 4.7
If the primal problem P is unbounded, then the dual problem D is infeasi-

ble.
Proof: If the dual problem P had a feasible solution π, then by weak duality

bTπ would be a finite upper bound for P , i.e., cTx ≤ bTπ for all x feasible for
P , which is a contradiction since by assumption there is an infinite sequence
of feasible solutions of P {x(k)} such that cTx(k) −→∞ as k −→∞ �

Similarly, we have the result.

Corollary 4.8
If the dual problem P is unbounded, then the primal problem P is infeasi-

ble.
Proof: Proof is similar to the proof of Corollary 4.7. �

From Corollaries 4.7 and 4.8 above, one can deduce that if both the primal
P and dual D have feasible solutions, then both problems should admit finite
optimal solutions. It turns out that a stronger claim can be made in the
following result, which can be proved via the simplex method by observing
that at optimality, the simplex method solves not only the primal but the dual
problem as well.

Theorem 4.9 (Strong Duality)
If a linear programming problem has a finite optimal solution, then its

dual problem will also have a finite optimal solution, and the optimal objective
function values of both problems are the same.

Proof: Without loss of generality assume, the primal problem P is in stan-
dard form

minimize cTx
subject to Ax = b

x ≥ 0

and has been solved by the simplex method to generate x∗ =

[
x∗B
x∗N

]
an

optimal basic feasible solution. The dual of a linear program in standard form
is

maximize bTπ
subject to ATπ ≤ c

π unrestricted.
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Since x∗ is optimal, the corresponding reduced costs are non-negative, i.e.,

rN = cN − cTBB−1N ≥ 0.

Now, let π∗ = (cTBB
−1)T , then

c−ATπ∗ =

[
cB
cN

]
−
[
BT

NT

]
π∗

=

[
cB
cN

]
−
[
BT

NT

]
(cTBB

−1)T

=

[
cB
cN

]
−
[

cB
(B−1N)T cB

]
=

[
0
rN

]
≥ 0.

Thus, π∗ is a feasible solution for the dual problem. Furthermore,

bTπ∗ = (π∗)T b = cTBB
−1b = cTBx

∗
B = cTx∗,

so by Corollary 4.6, π∗ is an optimal solution for the dual. �

Example 4.10
Consider the linear program

maximize −2x1 + x2
subject to −x1 + x2 ≤ 4

2x1 + x2 ≤ 6
x1 ≥ 0, x2 ≥ 0.

To use the simplex method on the primal, we convert to standard form
by adding slack variables x3 and x4 and convert the objective to a minimiza-
tion problem by multiplying the objective function by −1 (we omit the outer
negation of the minimization) to get

minimize 2x1 − x2
subject to −x1 + x2 + x3 = 4

2x1 + x2 + x4 = 6
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The dual is

maximize 4π1 + 6π2
subject to −π1 + 2π2 ≤ 2

π1+ π2 ≤ −1
π1 ≤ 0

π2 ≤ 0
π1 unrestricted, π2 unrestricted,

which simplifies to
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maximize 4π1 + 6π2
subject to −π1 + 2π2 ≤ 2

π1+ π2 ≤ −1
π1 ≤ 0, π2 ≤ 0.

At termination of the simplex method it is found that

x∗ =

[
x∗B
x∗N

]
=


x∗2
x∗4
x∗1
x∗3

 =


4
2
0
0


is an optimal solution for the primal with basis B =

[
1 0
1 1

]
and cTB =

(−1, 0). Now

π∗ = [cTBB
−1]T

=

[
(−1, 0)

[
1 0
1 1

]−1]

=

[
π∗1
π∗2

]
=

[
−1
0

]
is feasible for the dual problem, and furthermore,

cTx∗ = 2x∗1 − x∗2 = 2(0)− 4 = −4

= bTπ∗ = 4π∗1 + 6π∗2 = 4(−1) + 6(0) = −4,

thus, π∗ must be an optimal solution to the dual.
Strong duality asserts that if a problem has a finite optimal solution, then

there will be no positive duality gap; see Figure 4.1.

4.4.1 Primal-Dual Possibilities

With weak duality and strong duality, it is almost enough to characterize the
possibilities a primal has with its dual, e.g., by weak duality if the primal
is unbounded above, the dual D is infeasible. Thus, it would be impossible
for the dual in this case to ever be feasible. Strong duality says that if one
problem has a finite optimal solution, then the other problem also has a finite
optimal solution as well and thus could never be unbounded or infeasible.

One possibility that has not been considered thus far is when both prob-
lems in a primal-dual pair are infeasible. Consider the linear program

maximize c1x1 + c2x2
subject to x1 − x2 ≤ −c1

−x1 + x2 ≤ −c2
x1 ≥ 0, x2 ≥ 0.
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The dual is

minimize −c1π1 − c2π2
subject to π1 − π2 ≥ c1

−π1 + π2 ≥ c2
π1 ≥ 0, π2 ≥ 0.

Observe that when c1 = c2, the primal and dual problems are both infea-
sible. With this in hand, a complete characterization is now attainable; see
Table 4.3 below where an entry is either yes or no indicating whether that
combination for a primal-dual pair is possible or not.

Table 4.3 Primal-dual possibilities

Optimal Infeasible Unbounded
Optimal yes no no
Infeasible no yes yes
Unbounded no yes no

4.5 Complementary Slackness

In Example 4.10, observe that for the primal problem, the first constraint −x1
+ x2 ≤ 4 is tight (active) at the optimal solution x∗, meaning the constraint
is satisfied as an equality at x∗. That is, −x∗1 +x∗2 = 4 where the slack variable
is x∗3 = 0. But the second constraint 2x1 + x2 ≤ 6 is not active at x∗ since
2x∗1 + x∗2 = 4 < 6 where the slack variable x∗4 = 2 6= 0.

Furthermore, observe that the first dual constraint is not active at the
optimal dual solution π∗, that is,

−π∗1 + 2π∗2 = −(−1) + 2(0) = 1 < 2,

and so a slack variable π3 for this constraint would have a non-zero value of
1. The second dual constraint is tight at π∗, that is,

π∗1+ π∗2 = −1 + 0 = −1,

and so a slack variable π4 for this constraint would have a value of 0.
An important observation now is that the product of x∗1 = 0 and the first

dual slack π3 = 1 is 0, that is,

x∗1 ∗ π3 = 0 ∗ 1 = 0,

and the product of x∗2 = 4 and second dual slack π4 = 0 is 0 as well.
Now, the product of π∗1 and first primal slack variable x∗3 is also 0, that is,

π∗1 ∗ x∗3 = −1 ∗ 0 = 0,
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and similarly

π∗2 ∗ x∗4 = 0 ∗ 2 = 0.

So for this instance we have at optimality that

x∗i ∗ (slack value of ith dual constraint) = 0 for i = 1, ..2

and

π∗j ∗ (slack value of jth primal constraint) = 0 for i = 1, ..2.

These conditions turn out to be necessary for optimality because, as will
be seen below, this implies that the duality gap will be zero indicating that
primal and dual objective function values are equal. We now develop the case
more generally.

Consider the canonical primal linear program (P )

maximize cTx
subject to Ax ≤ b

x ≥ 0

and its dual (D)

minimize bTπ
subject to ATπ ≥ c

π ≥ 0.

Let the primal slack vector be denoted by

xs = b−Ax

and the dual slack vector be denoted by

πs = ATπ − c .

Since the matrix A is of dimension m×n, xs is a vector of m components
and πs, is a vector of n components. Then, for any feasible primal solution x
and dual feasible solution π, the primal and dual slack vectors xs and πs will
both be non-negative, thus we have

0 ≤ xTπs + xTs π

= (πTA− cT )x+ πT (b−Ax)

= πT b− cTx.

Thus, the quantity xTπs + xTs π is equal to the duality gap between the
primal feasible solution x and the dual feasible solution π. Then, since all
vectors x, xs, π, and πs, are all non-negative, the duality gap will be zero if
and only if both terms in xTπs + xTs π are zero, that is,
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xTπs = 0 and xTs π = 0,

in which case both x and π are optimal solutions to their respective problems.
The requirement that xTπs = 0 can be met if for every i = 1, ..., n either

xi = 0 or the ith component of πs is 0, and similarly xTs π = 0 can be satisfied
if for every j = 1, ...,m either the jth component of xs is 0 or πj = 0. The
requirement that both of these quantities are 0 is called the complementary
slackness condition and is summarized in the following theorem.

Theorem 4.11 (Complementary Slackness)
Let x be a feasible solution for the canonical primal problem P and π a

feasible solution for its dual D. Then, x and y are optimal solutions if and
only if

(1) xi(A
Tπ − c)i = 0 for i = 1, ..., n

and
(2) (b−Ax)j πj = 0 for j = 1, ...,m

are satisfied. (1) is called the primal complementary slackness condition and
(2) the dual complementary slackness condition.

Example 4.12
Consider the following linear program as the primal problem P

maximize 50x1 + 45x2 + 30x3
subject to 4x1 + 3x2 + x3 ≤ 45

2x1 + 2x2 + 2x3 ≤ 25
2x1 + x2 + 0.5x3 ≤ 9
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Then the dual problem D is

minimize 45π1 + 25π2 + 9π3
subject to 4π1 + 2π2 + 2π3 ≥ 50

3π1 + 2π2 + π3 ≥ 45
π1 + 2π2 + 0.5π3 ≥ 30
π1 ≥ 0, π2 ≥ 0, π3 ≥ 0.

The optimal solution for P is x∗1 = 0, x∗2 = 5.5, x∗3 = 7 with optimal
objective function 457.5. Let xTs = (x4, x5, x6) denote the slack variables for
the three primal constraints, respectively. Then, the first primal constraint is
not tight at optimality and has a slack value x4 = 21.5. The second and third
constraints are tight at optimality, so x5 = x6 = 0.

Now the optimal solution for the dual is π∗1 = 0, π∗2 = 7.5, π∗3 = 30 with an
objective function value of 457.5. Let πTs = (π4, π5, π6) denote the dual slack
variables. The first dual constraint is not tight at optimality and the slack
variable π4 = 25. The second and third dual constraints are tight and so the
respective slack variables π5 and π6 are both zero.

Observe that the following products are all zero (see Tables 4.4 and 4.5),
indicating that complementary slackness is satisfied.
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Table 4.4 Primal complementary

slackness for Example 4.11

Optimal primal Dual slack Product
x∗1 = 0 π4 = 25 0
x∗2 = 5.5 π5 = 0 0
x∗3 = 7 π6 = 0 0

Table 4.5 Dual complementary

slackness for Example 4.11

Optimal dual Primal slack Product
π∗1 = 0 x4 = 21.5 0
π∗2 = 7.5 x5 = 0 0
π∗3 = 30 x6 = 0 0

4.5.1 Complementary Slackness for Standard Form

Now consider the primal problem P in standard form:

minimize cTx
subject to Ax = b

x ≥ 0

with its dual D

maximize bTπ
subject to ATπ ≤ c

π unrestricted.

For this case, note that any feasible solution x of the primal problem P
will satisfy condition (2) of complementary slackness, i.e., πTxs = 0 since
xs = b − Ax = 0 for all feasible x for P . Then, the complementary slackness
conditions reduce to condition (1) only, i.e.,

xTπs = xT (c−ATπ) = 0.

We can now state the necessary and sufficient conditions for a vector x to
be an optimal solution for a linear program in standard form.

Theorem 4.13 (KKT Conditions for Linear Programming)
Suppose a primal problem P is in standard form. Then, a vector x∗ is

optimal for P if and only if the following conditions all hold:

(1) Ax∗ = b and x∗ ≥ 0 (primal feasibility).
(2) There are vectors π∗ and πs such that ATπ∗ + πs = c and πs ≥ 0

(dual feasibility).
(3) xTπs = 0 (complementary slackness).

Corollary 4.14
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The vector π∗ is an optimal solution for the dual of P .

The main implication of Theorem 4.13 and Corollary 4.14 is that if a vector
x is claimed to be optimal, then there would be a corresponding dual optimal
solution π that could verify the optimality of x, i.e., the optimal dual solution
would be a certificate of optimality. This should not be surprising in light of
the proof of the strong duality theorem where the optimal dual solution is
embedded within the reduced costs. In particular, if x is a non-degenerate
optimal basic feasible solution for P in standard form, then it will be possible
to uniquely generate an optimal dual solution via the complementary slackness
conditions.

Theorem 4.13 is also known as the Karush Kuhn Tucker (KKT) conditions
for linear programming see Karush (1939) and Kuhn and Tucker (1951).

Example 4.15
Consider the following primal problem P:

minimize x1 + x2 + 3x3 + x4
subject to x1 + x2 + x3 = 4

2x1 + x2 + x4 = 6
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Could the solution x1 = 2, x2 = 2, x3 = x4 = 0 be an optimal solution?
Solution:
The solution is a basic feasible solution and so satisfies condition (1) in

Theorem 4.13. Furthermore, the primal objective function value is 4. Now the
dual problem is

maximize 4π1 + 6π2
subject to π1 + 2π2 ≤ 1

π1+ π2 ≤ 1
π1 ≤ 3

π2 ≤ 1
π1 unrestricted, π2 unrestricted.

If the proposed primal feasible solution is optimal then complementary
slackness condition (1) must hold, i.e., xi(A

Tπ − c)i = 0 for i = 1, ..., 4. Since
x3 = x4 = 0, the condition holds for i = 3 and 4. Now x1 = 2 > 0 and
x2 = 2 > 0, so the slacks in the first and second dual constraints must each
be 0 in order for the condition to hold for i = 1 and 2. This will lead to the
following system of equations:

π1 + 2π2 = 1
π1+ π2 = 1.

Solving this system gives the unique solution π1 = 1 and π2 = 0. This is a
feasible dual solution and the dual objective function value at this solution is

© 2014 by Taylor & Francis Group, LLC



150 Introduction to Linear Optimization and Extensions with MATLAB R©

4 which is the same as the primal objective function value under the proposed
primal solution. Therefore, the solution x1 = 2, x2 = 2, x3 = x4 = 0 is optimal
for the primal problem and the certificate of optimality is π1 = 1 and π2 = 0,
which is optimal for the dual problem.

4.6 Duality and the Simplex Method

By construction, the simplex method at each iteration generates a primal
feasible solution. We have also seen in the proof of the Strong Duality Theorem
that at termination an optimal dual solution is generated as well. In fact, the
simplex method maintains complementary slackness for each iteration.

Consider again the linear program from Example 3.6 from Chapter 3:

minimize −x1 − x2
subject to x1+ x3 = 1

x2+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The dual is

maximize π1 + π2
subject to π1 ≤ −1

π2 ≤ −1
π1 ≤ 0

π2 ≤ 0
π1 unrestricted, π2 unrestricted.

With dual slacks the dual becomes

maximize π1 + π2
subject to π1+ π5 = −1

π2+ π6 = −1
π1+ π7 = 0

π2+ π8 = 0
π1 unrestricted, π2 unrestricted,π5 ≥ 0, π6 ≥ 0, π7 ≥ 0, π8 ≥ 0.

It was seen in Example 3.6 from Chapter 3 that the simplex method gen-
erated the following sequence of solutions.

Iteration 1: The initial primal solution is

x(0) =


x1
x2
x3
x4

 =


0
0
1
1

 where xB =

[
x3
x4

]
,
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and the initial dual solution is π(0) =

[
π1
π2

]
= (cTBB

−1)T

=

[
1 0
0 1

]−1 [
0
0

]
=

[
0
0

]
.

The dual slacks π
(0)
s = c−ATπ(0) =


π5
π6
π7
π8



=


−1
−1
0
0

−


1 0
0 1
1 0
0 1

[ 0
0

]
=


−1
−1
0
0

 ,
and the primal slacks x

(0)
s = b−Ax(0) = 0 by feasibility of x(0).

Observe that (π
(0)
s )Tx(0) = 0 and so the complementary slackness condi-

tions are satisfied. However, observe that the dual solution π(0) is infeasible
since the first two constraints are violated.

Iteration 2:
The primal solution is

x(1) =


x1
x2
x3
x4

 =


1
0
0
1

 where xB =

[
x1
x4

]
,

and the dual solution is π(1) =

[
π1
π2

]
= (cTBB

−1)T

=

[
1 0
0 1

]−1 [
0
−1

]
=

[
0
−1

]
.

The dual slacks π
(1)
s = c−ATπ(1) =


π5
π6
π7
π8



=


−1
−1
0
0

−


1 0
0 1
1 0
0 1

[ 0
−1

]
=


−1
0
0
1

 ,
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and the primal slacks x
(1)
s = b−Ax(1) = 0 by feasibility of x(1).

Observe that (π
(1)
s )Tx(1) = 0, and so the complementary slackness condi-

tions are satisfied. The dual solution π(1) is infeasible since the first constraint
is violated.

Iteration 3
The primal solution is

x(2) =


x1
x2
x3
x4

 =


1
1
0
0

 where xB =

[
x1
x2

]

and the dual solution is π(2) =

[
π1
π2

]
= (cTBB

−1)T

=

[
1 0
0 1

]−1 [ −1
−1

]
=

[
−1
−1

]
.

The dual slacks π
(2)
s = c−ATπ(2) =


π5
π6
π7
π8



=


−1
−1
0
0

−


1 0
0 1
1 0
0 1

[ −1
−1

]
=


0
0
1
1


and the primal slacks x

(2)
s = b−Ax(2) = 0 by feasibility of x(2).

Observe that (π
(2)
s )Tx(2) = 0, and so the complementary slackness condi-

tions are satisfied. Now the dual solution π(2) is feasible and thus both x(2)

and π(2) are optimal solutions for the primal and dual problems, respectively.
In summary, the strategy of the simplex method is to start with a feasible

primal solution and strive for a dual feasible solution while always maintain-
ing complementary slackness. The optimality condition for the primal problem
that the reduced costs are non-negative is equivalent to dual feasibility. Be-
fore the development of duality theory and its implications for optimality
conditions for linear programming, it was difficult or impossible to see this
equivalence. This is not the only strategy for solving linear programs to opti-
mality, as will be seen in the development of the dual simplex method below
and interior point methods in Chapter 6. However, all algorithmic strategies
that terminate with an optimal solution must satisfy (1) primal feasibility (2)
dual feasibility, and (3) complementary slackness, i.e., the KKT conditions for
linear programming.
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4.6.1 Dual Simplex Method

We now develop a variant of the simplex method called the dual simplex
method. The strategy in this approach relaxes primal feasibility, but main-
tains dual feasibility and complementary slackness for all iterations and at
termination, satisfies primal feasibility. The dual simplex method is suitable
when it may be difficult to obtain an initial primal basic feasible solution,
but a dual feasible solution is readily available. However, its more substantial
value may be seen in its use in sensitivity analysis, which will be covered later
in this chapter.

The dual simplex method starts with a primal basic solution such that the
reduced costs are non-negative or equivalently π = (cTBB

−1)T is feasible for
the dual problem. A primal basic solution for a linear program in standard
form is a vector x ∈ Rn such Ax = b and the variables that are deemed
basic have an associated basis matrix B that is invertible. xB = B−1b may
have negative components, in which case, the basic solution is not feasible. Of
course, if the primal basic solution is feasible as well and the reduced costs
are non-negative, then the solution is an optimal basic feasible solution for
the primal problem.

Consider the following LP:

minimize 2x1 + 3x2
subject to 4x1 − 3x2 ≥ 5

x1 + 2x2 ≥ 4
x1 ≥ 0, x2 ≥ 0.

Adding the surplus variables gives

minimize 2x1 + 3x2
subject to 4x1 − 3x2 −x3 = 5

x1 + 2x2 −x4 = 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Multiplying each constraint by −1 gives

minimize 2x1 + 3x2
subject to −4x1 + 3x2 +x3 = −5

−x1 − 2x2 +x4 = −4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Consider the basis B =

[
1 0
0 1

]
corresponding to x3 and x4, then

xB =

[
x3
x4

]
= B−1b =

[
−5
−4

]
.
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The non-basic variables are xN =

[
x1
x2

]
. Thus, the primal basic solution

is infeasible. However, π = B−1cB =

[
π1
π2

]
=

[
0
0

]
, and so the reduced

costs r1 = 2 and r2 = 3 and so the primal solution satisfies the primal opti-
mality conditions (reduced costs are non-negative) or equivalently π is dual
feasible.

The idea in the dual simplex method is to start by choosing a current
infeasible (negative) basic variable and have it exit the basis (typically, if there
is more than one negative basic variable, then the most negative variable is
selected).

For example, the basic variable x3 = −5 is selected to leave. Then, a non-
basic variable is chosen to enter the basis. Consider the constraint associated
with x3

−4x1 + 3x2 +x3 = −5.

The non-basic variables are x1 and x2. Only variable x1 could enter since
x1 would equal 5/4 in this case, while all other non-basic variables in the
constraint remain at 0. Also, x1 is positive and this occurs since x1 has a
negative coefficient.

In general, suppose that the leaving variable is the pth element of the

current primal infeasible basis xB denoted as (xB)p and b is the pth element

of b = B−1 b. Then, since

xB +B−1NxN = B−1b = b,

the pth row is

(xB)p +
∑
l∈N

˜
ap,lxl = bp < 0.

A non-basic variable xj where j ∈ N must be selected to enter the basis

such that
˜
ap, j < 0. In addition, the selection of the non-basic variable must

ensure that dual feasibility is maintained (i.e., the reduced costs of the new
primal basic solution must remain non-negative).

Suppose that a non-basic variable xj with
˜
ap, j < 0 will enter the primal

basis. To shed light on the requirements for the entering non-basic variable
xj to maintain the non-negativity of the reduced costs, we start with the
objective function at the current primal basic solution x,

z = cTx

= cTBxB + cTNxN

= cTB(B−1b−B−1NxN ) + cTNxN
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= cTBB
−1b+ (cTN − cTBB−1N)xN

= z∗+ rNxN

= z∗ +
∑
l∈N

rlxl

= z∗ + rjxj +
∑
l∈N
l 6=j

rlxl, (4.2)

where z∗ = cTBB
−1b and rN = (cN −(cTBB

−1N)T ), the vector of reduced costs
for the current basis.

Now suppose that the infeasible basic variable selected to leave is xi and

is in the pth row of xB +B−1NxN = B−1b = b, and so

xi+
˜
ap,jxj +

∑
l∈N
l 6=j

˜
ap,lxl = bp < 0.

Expressing the entering variable xj in terms of the non-basic variables in
this equation gives

xj = (bp − xi −
∑
l∈N
l 6=j

˜
ap,lxl)/

˜
ap, j ,

Now, substituting this expression for xj in (4.2) gives

z = z∗ + rj((bp − xi −
∑
l∈N
l 6=j

˜
ap,lxl)/

˜
ap, j) +

∑
l∈N
l 6=j

rlxl,

which after some rearrangement becomes

z = z∗+ bp(rj /
˜
ap, j)− (rj /

˜
ap, j)xi +

∑
l∈N
l 6=j

(rl −
˜
ap,l(rj /

˜
ap, j))xl.

Thus, we see that by entering xj into the primal basis and exiting xi that

the reduced cost of xi is −(rj /
˜
ap, j) and the updated reduced cost for xl for

l ∈ N and l 6= j is rl = (rl −
˜
ap,l(rj /

˜
ap, j)).

Now we are in a position to address the issue of ensuring that the re-
duced costs of the non-basic variables are non-negative. First, observe that

−(rj/
˜
ap, j) is non-negative, since rj is non-negative, since it was the reduced

cost of xj prior to becoming a basic variable and
˜
ap, j < 0.

Finally, we need the updated reduced costs (rl −
˜
ap,l(rj/

˜
ap, j)) to be non-

negative and this will be ensured if we select the entering variable xj such
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that
˜
ap, j < 0 and minimizes the quantity

∣∣∣∣ rj
˜
ap, j

∣∣∣∣. This is the corresponding

minimum ratio test for the dual simplex method and is necessary and sufficient
for ensuring the non-negativity of the reduced costs.

In performing the minimum ratio test, the dual simplex method will require

the values of
˜
ap,l from the pth row of xB + B−1NxN = b such that the pth

component of xB is the entering variable xi. These values are in the pth row of
B−1N and can be represented by eTpB

−1N where ep is a vector whose entries

are all 0 except with the value of 1 at the pth position. Then,
˜
ap,l = eTpB

−1Nl
and this quantity can be computed in two steps. First, solve tB = eTp , then
let w = tN.

In the case where there does not exist an
˜
ap, j < 0, then

˜
ap,l ≥ 0 for all l

in

xi+
˜
ap,jxj +

∑
l∈N
l 6=j

˜
ap,lxl = bp

and we get

xi = bp −
∑
l∈N

˜
ap,lxl.

So xi will always be infeasible for any non-negative xl with l ∈ N since bi <
0. Thus, the primal problem is infeasible and therefore the dual unbounded
and the dual simplex method will stop.

If there is a suitable xj with a negative
˜
ai,j and once such an xj has

been determined, the entering column Nj is used to compute the improving
direction analogously as in the simplex method, that is, the system Bd = Nj
is solved for d to get d = B−1Nj .

What then are the values of the new basic variables? Clearly, the new

basic (entering) variable xj =
bp

˜
ap, j

and the other basic variables are adjusted

according to the following update, which is analogous to the simplex method

where the next iterate is xB = xB + αd where α = − bp
˜
ap, j

. Note that the

leaving variable xi will be set to 0 in this update and will no longer be a basic
variable. Finally, the basis is updated as well as the reduced costs and a new
iteration begins.

We now describe the dual simplex method below.

Dual Simplex Method

Step 0: (Initialization)
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Start with a basic solution x(0) =

[
x
(0)
B

x
(0)
N

]
whose reduced costs are non-

negative, i.e., rl = cl − cTBB
−1Nl ≥ 0 for all q ∈ N where B is the basis

matrix, N the non-basis matrix with corresponding partition c = (cB , cN )T

and B and N are the index sets of the basic and non-basic variables. Let k = 0
and go to Step 1.

Step 1: (Optimality Check)

If x(k) ≥ 0, then the solution is optimal STOP, else select a negative

component x
(k)
i < 0 and let p = the position in x

(k)
B of xi. Go to Step 2.

Step 2: (Minimum Ratio Test)

Solve tB = eTp , then let w = tN. Let N∗ be the set of non-basic variables

x
(k)
l such that wl < 0. If N∗ = ∅, then STOP; the primal problem is infeasible,

else select an entering variable x
(k)
j ∈ N∗ such that

∣∣∣∣ rj
˜
ap, j

∣∣∣∣ is minimized. Go

to Step 3.

Step 3: (Direction Generation)

Let Nj be the column associated with x
(k)
j . Then solve the system Bd(k) =

Nj for d(k). Go to Step 4.

Step 4: (Basic Variable Updates)

Now x
(k+1)
j =

bp
˜
ap, j

and let x
(k+1)
B = x

(k)
B + αd(k) where α = −x(k+1)

j .

Replace the leaving variable x
(k+1)
i with the entering variable x

(k+1)
j in the

basic variable set. Go to Step 5.

Step 5: (Basis and Reduced Cost Update)

Let Bi be the column in B associated with the leaving basic variable xi.
Update the basis matrix B by removing column Bi and adding column Nj ,

thus B = B− {i} ∪ {j}. Update the non-basis matrix N by the removing

column Nj and adding Bi, thus N = N− {j}∪{i}. Update the reduced costs

where ri = −(rj/
˜
ap, j) and rl = (rl −

˜
ap,l(rj/

˜
ap, j)) for l ∈ N and l 6= i. Let

k = k + 1 and go to Step 1.

Example 4.16
We continue with the linear program above and solve using the dual sim-

plex method
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minimize 2x1 + 3x2
subject to −4x1 + 3x2 +x3 = −5

−x1 − 2x2 +x4 = −4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Step 0: Recall that the initial basic solution has as basic variables x
(0)
B =[

x
(0)
3

x
(0)
4

]
and so x

(0)
N =

[
x
(0)
1

x
(0)
2

]
, B =

[
1 0
0 1

]
and N =

[
−4 3
−1 −2

]
with

B = {3, 4} and N = {1, 2}.
Now

x
(0)
B = B−1b =

[
−5
−4

]
and so the initial solution is primal infeasible, but

π(0) = B−1cB =

[
π
(0)
1

π
(0)
2

]
=

[
0
0

]
and so the reduced costs are r1 = 2 and

r2 = 3, and the primal solution satisfies primal optimality conditions (but not
primal feasibility). Let k = 0 and go to Step 1.

Iteration 1

Step 1: Both basic variables x
(0)
B =

[
x
(0)
3

x
(0)
4

]
=

[
−5
−4

]
are negative, so

x(0) is primal infeasible, we select x
(0)
3 to leave the basis (we select the basic

variable that is the most negative, but selecting x
(0)
4 instead would be equally

valid ). x
(0)
3 occurs in the first position in x

(0)
B so p = 1.

Step 2: Solve for t in
[
t1 t2

] [ 1 0
0 1

]
=
[

1 0
]

to get t =
[

1 0
]

and then w =
[

1 0
] [ −4 3
−1 −2

]
=
[
−4 3

]
=
[

˜
a1,1

˜
a1,2

]
and so

x
(0)
1 is the only non-basic variable x

(0)
j with a negative coefficient

˜
ap, j in row

p = 1, i.e.,
˜
a1,1 = −4 < 0, thus x

(0)
1 is the entering variable. Go to Step 3.

Step 3:

The entering column is N1 =

[
−4
−1

]
and solve for d(0) in

[
1 0
0 1

][
d
(0)
1

d
(0)
2

]
=

[
−4
−1

]

to get d
(0)
1 = −4 and d

(0)
2 = −1. Go to Step 4.

Step 4: x
(1)
1 = −5/(−4) = 5/4 and the new values of the variables in x

(0)
B

are
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x
(1)
B =

[
x
(1)
3

x
(1)
4

]
=

[
−5
−4

]
+ (−5/4)

[
−4
−1

]
=

[
0

−11/4

]
. x

(1)
1 enters

as a basic variable and x
(1)
3 becomes non-basic, so the new basic variable set

x
(1)
B =

[
x
(1)
1

x
(1)
4

]
=

[
5/4
−11/4

]
. Go to Step 5.

Step 5: The new basis is B =

[
−4 0
−1 1

]
and new non-basis matrix is

N =

[
1 3
0 −2

]
, B = {1, 4}, and N = {3, 2}. The updated reduced costs are

r3 = −r1/
˜
a1,1 = −2/− 4 = 1/2

and

r2 = r2 −
˜
a1,2(r1/

˜
a1,1) = 3− 3(2/− 4) = 9/2. k = 1. Go to Step 1.

Iteration 2

Step 1: x
(1)
B =

[
x
(1)
1

x
(1)
4

]
=

[
−4 0
−1 1

]−1 [ −5
−4

]
=

[
5/4
−11/4

]
we must

select x
(1)
4 to leave the basis so p = 2. Go to Step 2.

Step 2:

Solve for t in
[
t1 t2

] [ −4 0
−1 1

]
=
[

0 1
]

to get t =
[
−1/4 1

]
and then w =

[
−1/4 1

] [ 1 3
0 −2

]
=
[
−1/4 −11/4

]
=
[

˜
a2,3

˜
a2,2

]
.

x
(1)
3 and x

(1)
2 both have negative coefficients

˜
a2, j in row p = 2, then the

minimum ratio test gives min{
∣∣∣∣ r3

˜
a2, 3

∣∣∣∣ , ∣∣∣∣ r2
˜
a2, 2

∣∣∣∣} = min{2, 18/11} and so x
(1)
2

enters the basis. Go to Step 3.

Step 3:

The entering column is N2 =

[
3
−2

]
and solve for d(1) in

[
−4 0
−1 1

][
d
(1)
1

d
(1)
2

]
=

[
3
−2

]

to get d
(1)
1 = −3/4 and d

(1)
2 = −11/4. Go to Step 4.

Step 4: x
(2)
2 = −11/4

−11/4 = 1 and the new values of the variables in x
(1)
B are

© 2014 by Taylor & Francis Group, LLC



160 Introduction to Linear Optimization and Extensions with MATLAB R©

x
(2)
B =

[
x
(2)
1

x
(2)
4

]
=

[
5/4
−11/4

]
+ (−1)

[
−3/4
−11/4

]
=

[
2
0

]
.

x
(2)
2 enters as a basic variable and x

(2)
4 becomes non-basic, so the new basic

variable set x
(2)
B =

[
x
(2)
1

x
(2)
1

]
=

[
2
1

]
.

Since all basic variables are now positive the primal solution

x(2) =


x
(2)
1

x
(2)
2

x
(2)
3

x
(2)
4

 =


2
1
0
0

 is optimal.

Note that there is no need to update the reduced costs at this point.

It turns out that the dual simplex method applied to a linear program
P in standard form is equivalent to applying the simplex method on the
dual of P . The action of finding a leaving variable xi in the dual simplex
method is equivalent to finding an entering dual variable πi and entering a
variable xj is equivalent to exiting a dual variable πj . However, note that
the dual simplex method works directly on the primal basis B and not on
the dual basis. Not surprisingly, the dual simplex method requires the same
amount of computational effort as the simplex method and is usually not
the principal method to solve linear programs in practice. However, the dual
simplex method is a valuable tool for sensitivity analysis which is covered at
the end of this chapter and in situations where a linear program has been
solved and then a new constraint is added. The dual simplex method can be
used to solve the linear problem with the extra constraint without needing to
re-solve the new problem from scratch.

4.7 Economic Interpretation of the Dual

Both a primal and a dual problem have a intimate relationship as they both use
the same data and one problem bounds the other. Furthermore, the concept
of duality has enabled a characterization (necessary and sufficient conditions)
of optimality of the primal and dual problems. In this section, we explore
possible economic meanings for dual linear programs and dual variables in
relation to primal problems and primal variables.

4.7.1 Dual Variables and Marginal Values

Consider primal linear programs in canonical form
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maximize
n∑
j=1

cjxj

subject to
n∑
j=1

aijxj ≤ bi i = 1, ...,m

xj ≥ 0 j = 1, ..., n.

This can represent the case of a manufacturer that produces n products
obtaining a market price of cj for a unit of product j. A unit of each of the
n products require m resources where the total amount of the ith resource
available for all products is bi. The constraint coefficient aij gives the amount
of resource i needed for product j. Thus, the jth column of the constraint
matrix gives the total resource requirements for the manufacture of product j.
The variable xi is the amount of product i to produce. Then, the manufacturer
solves the linear program to determine the optimal production plan xi for each
product i.

Example 4.17
Suppose that you manufacture two products: tables and chairs. Each ta-

ble sold will generate a revenue of $12 and each chair sold will generate $7
of revenue. Manufacturing chairs and tables requires wood, cutting, and fin-
ishing. The amount of wood available is 1200 sq meters and there are 1000
hours available for cutting, and 500 hours available for finishing. Each unit of
a product requires the following resources.

Resources (units) Table Chair
Wood (sq meters) 6 4
Cutting (hrs) 8 2
Finishing (hrs) 2 1

The manufacturer wishes to find the quantities of tables and chairs to
produce to maximize revenue. Let x1 = number of tables to produce and x2 =
number of chairs to produce, then the following linear program will maximize
revenue from producing chairs and tables subject to resource limitations.

maximize 12x1 + 7x2
subject to 6x1 + 4x2 ≤ 1200

8x1 + 2x2 ≤ 1000
2x1 + x2 ≤ 500
x1 ≥ 0, x2 ≥ 0

The optimal solution is x∗1 = 80 and x∗2 = 180, i.e., the maximizing pro-
duction plan produces 80 tables and 180 chairs and generates a revenue of
$2220.

Now the dual of the production planning model is

minimize 1200π1 + 1000π2 + 500π3
subject to 6π1 + 8π2 +2π3 ≥ 12

4π1 + 2π2 + π3 ≥ 7
π1 ≥ 0, π2 ≥ 0, π3 ≥ 0.
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The optimal dual solution is π∗1 = 1.6, π∗2 = 0.30, π∗3 = 0 with an optimal
objective function value of $2220. What economic interpretation might be
given to the dual problem?

Consider that the manufacturer obtains the resources (wood, cutting ser-
vices, and finishing services) from a supplier. The manufacturer wishes to
negotiate for the price per unit, πi, of each resource for i = 1, ..., 3. Thus,
the manufacturer wishes to minimize the total cost of obtaining these three
resources, which becomes the objective of the dual problem.

Now assuming that the production requirements for producing tables and
chairs are fully known to the public and in particular to the supplier, i.e., the
supplier knows how much revenue the manufacturer can get for each table
and chair based on its production requirements aij . Thus, the manufacturer
will assume that the prices should be reasonable so that a supplier would
accept them. So each dual constraint ensures that prices of resources are such
that the total cost to produce a table (chair) is at least the revenue obtained
from a table, i.e., 12 (7 for a chair). Note that if a supplier demanded prices
for resources such that the cost of producing is more than the market price
for each product, then by complementary slackness the corresponding primal
variable xi = 0, i.e., there would be no production of that product.

Observe that the first two primal constraints are tight at the optimal
primal solution. One interpretation of these results is that both the wood and
cutting resources are exhausted at the optimal revenue-maximizing production
plan. Now the optimal dual variables that are associated with these constraints
are π∗1 = 1.6 and π∗2 = 0.30, respectively. The primal and dual objectives are
the same at optimality and the dual objective function is

1200π1 + 1000π2 + 500π3

, and thus an additional unit of wood will increase the revenue by $1.6 dollars.
Similarly, an extra unit of cutting time will increase revenue by 30 cents.

The third primal constraint is not tight at the optimal primal solution
meaning that at the optimal production plan, not all of the finishing capacity
was used. So this constraint has positive slack and consequently by comple-
mentary slackness π∗3 = 0. The value of adding an extra unit of finishing
capacity does not increase the revenue. Thus, we see that the optimal dual
prices can be interpreted as marginal prices or shadow prices indicating the
value of an extra unit of each resource.

4.8 Sensitivity Analysis

One of the major assumptions behind linear programming is that the data
in the form of cost coefficients c, right-hand side vector b , and constraint
coefficients A are known. In practice, the data can represent quantities such as
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product demand, financial security prices, resource requirements, and resource
costs that are difficult to estimate and in reality can fluctuate considerably. For
example, consider a linear program that constructs a financial portfolio, e.g.,
the MAD model from Chapter 1, to be held for a period of time and requires
the future performance of the financial assets like the expected return over
a particular time duration. This performance data will significantly influence
the optimal portfolio construction, and if the actual performance of assets
over time are different than what was estimated, then one could be holding
a portfolio that may be misleading. For example, suppose that an estimation
for the expected return for stock i used in the model is 12% but in reality
it may be as low as 5%, then an optimal portfolio constructed from using
the estimation of 12% can overconcentrate (invest) in stock i since the model
expects good performance, but in reality a much lower performance may be
realized in which a smaller investment in stock i would be optimal.

Thus, it is natural to consider how an optimal solution of a linear program
may be affected by changes in the data or problem itself. In addition, an ex-
isting linear program will often be modified. A new variable could be added
representing another financial asset, or a new managerial constraint on invest-
ment could be added. How will these changes affect the LP? The analysis of
such changes to a linear program is called sensitivity analysis. In this section,
we explore cases of data changes and problem modifications where a definitive
answer can be obtained concerning the impact of the changes.

We assume that the original linear program is in standard form

minimize cTx
subject to Ax = b

x ≥ 0

and has been solved to optimality. In each case, the central question is how
does the change affect the optimality and feasibility of the existing optimal
feasible solution? Will the optimal solution continue to be optimal or feasible
for the modified problem? For what range of data will the current optimal so-
lution remain optimal? For what ranges of data is the current feasible solution
still feasible?

To answer these questions, the starting point is the feasibility and optimal-
ity conditions for a linear program. Given a basis B, recall that it is feasible
when B−1b ≥ 0 and optimal when rN = cTN − cTBB

−1N ≥ 0. The general
strategy for sensitivity analysis is to investigate whether a change in data or
modification to the LP will affect these conditions

4.8.1 Changes in the Right-Hand Side Coefficients

We first consider the case when the right-hand side vector b is perturbed

(changed) by an amount 4b. Let
˜

b = b+ 4b and let x∗ =

[
x∗B
x∗N

]
be an opti-
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mal basic feasible solution to the original LP, and B and N the corresponding
basis and non-basis matrices.

Consider the perturbed problem

minimize z = cTx

subject to Ax = b+ 4b =
˜

b
x ≥ 0.

Observe that the change 4b in the right-hand side does not affect the
optimality conditions of the original problem since the right-hand side vector
does not appear in rN = cTN − cTBB−1N ≥ 0. However, the right-hand side
vector is involved in the feasibility condition B−1b ≥ 0. In particular, the
original basis B will be feasible for the perturbed problem if it satisfies the

feasibility conditions B−1
˜

b = B−1(b+ 4b) ≥ 0. This condition is satisfied if

B−1b ≥ −B−14b.

Note that the new objective function value is
˜
z = cTBB

−1
˜

b = πT (b+ 4b) =
z + πT4b where πT = cTBB

−1.

Example 4.18
Consider the production planning linear program

−minimize −12x1 − 7x2
subject to 6x1 + 4x2 ≤ 1200

8x1 + 2x2 ≤ 1000
2x1 + x2 ≤ 500
x1 ≥ 0, x2 ≥ 0.

Note that the maximization has been converted to a minimization. The
optimal solution is x∗1 = 80 and x∗2 = 180, i.e., the maximizing production plan
is to produce 80 tables and 180 chairs and generates a revenue of $2220. The
optimal basic feasible solution for the standard form version of the problem

−minimize −12x1 − 7x2
subject to 6x1 + 4x2 +x3 = 1200

8x1 + 2x2 + x4 = 1000
2x1 + x2 +x5 = 500
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0

is x∗1 = 80, x∗2 = 180 , x∗3 = 0, x∗4 = 0, x∗5 = 160 where the latter three
variables are the optimal slack values and the optimal basic variables are
x∗1, x

∗
2, x
∗
5. Thus, the basis matrix is

B =

 6 4 0
8 2 0
2 1 1

 .
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Now suppose that only the right-hand side of the second constraint is

perturbed (the cutting capacity is changed). More formally, we have
˜

b2 =
b2 +4b2 where 4b2 6= 0, then

4b =

 0
4b2

0

 .
In order for the current basis B to continue to be feasible for the perturbed

problem we need

B−1b =

 80
180
160

 ≥ B−14b =

 0.20004b2
−0.30004b2
−0.10004b2

 .
Thus, the admissible range for 4b2 is −600 ≤ 4b2 ≤ 400.

Suppose that 4b2 is 100, that is, we increase the cutting capacity by 100
units, then the basic variable set is now

xnewB =

 x1
x2
x5

 = B−1
˜

b = B−1b+ B−14b

=

 80
180
160

+

 0.2000(100)
−0.3000(100)
−0.1000(100)

 =

 100
150
150

 .
The corresponding basic feasible solution is feasible for the perturbed prob-

lem, and so the original basis B remains feasible (and optimal) for the per-

turbed problem. The new optimal objective function value is
˜
−z = −cTBB−1

˜

b
= −πT (b+ 4b) = 2250. The addition of 100 units of cutting capacity resulted
in a revenue increase of $30.

Suppose that 4b2 is 650, then the basic variable set is now

xnewB =

 x1
x2
x5

 = B−1
˜

b = B−1b+ B−14b

=

 80
180
160

+

 0.2000(650)
−0.3000(650)
−0.1000(650)

 =

 210
−15
95

 ,
which is infeasible since the x2 is negative. Thus, B is infeasible for the per-
turbed problem.

An important observation here is that although the original basis B is
infeasible for the perturbed problem, the reduced costs remain non-negative
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(r3 = 1.6 and r4 = 0.3), so π is dual feasible for the dual of the perturbed
problem. Then, one can use the original basis B with initial basic variables

xnewB = B−1
˜

b to start the dual simplex method to ultimately get the optimal
solution for the perturbed problem x1 = 200, x2 = 0, x3 = 0, x4 = 50, and
x5 = 100 with an optimal objective function value of 2400. The advantage in
using the dual simplex method is that the perturbed problem does have to be
solved from scratch using the revised simplex method.

4.8.2 Changes in the Cost (Objective) Coefficients

We now consider changes in the cost coefficients. Let c =

[
cB
cN

]
= c+4c

=

[
cB
cN

]
+

[
4cB
4cN

]
=

[
cB +4cB
cN +4cN

]
represent the perturbed cost vec-

tor where 4cB is the perturbation vector for the cost coefficients of the basic
variables and 4cN is the perturbation of the vector for the cost coefficients
of the non-basic variables. Then, the perturbed problem is

minimize z = c
T
x

subject to Ax = b
x ≥ 0.

Let B be the optimal basis of the perturbed problem. Observe that per-
turbation of cost coefficients does not affect the feasibility of the basis B since
the cost vector does not appear in the condition B−1b ≥ 0. Thus, basis B will
always be feasible for a perturbed problem where only cost coefficients are
changed.

Changes to Cost Coefficients of Basic Variables

We first consider perturbation of cost coefficients of basic variables. In order
for the basis B to maintain optimality, the following condition must hold

cTN − c
T
BB
−1N = cTN − (cB +4cB)TB−1N

= cTN − cTBB−1N −4cBTB−1N

= rN −4cBTB−1N ≥ 0,

or equivalently

rN ≥ 4cBTB−1N .

Example 4.19
Consider again the linear program in Example 4.18 and its optimal basis

B. Suppose that the cost coefficient c1 of basic variable x1 is perturbed so
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that 4cB =

 4c10
0

, then the current basis will remain optimal for the

perturbed problem if

rTN = (r3, r4)T = (1.6, 0.3)T ≥ (4c1, 0, 0)B−1N

= (4c1, 0, 0)

 −0.1 0.2
0.4 −0.3
−0.2 −0.1


= (−0.14c1, 0.24c1)T ,

thus, the admissible range for 4c1 is −16 ≤ 4c1 ≤ 1.5.
For instance, let 4c1 = −1, then the basis B will remain optimal since

−1 is in the admissible range for the perturbed problem and the new reduced
costs for the perturbed problem are now

(r3, r4) = (1.6 + 0.1(−1), 0.3− 0.2(−1))

= (1.5, 0.5) ≥ (0, 0),

and the new objective function is

−z = −cTBB−1b = −(−13,−7)

 6 4 0
8 2 0
2 1 1

−1  1200
1000
500

 = 2300,

so an extra $80 of revenue is generated from the original optimal production
plan due to a $1 increase per unit in the revenue of a table.

Now let 4c1 = 2, then the perturbation is not in the admissible range and
the reduced costs are

(r3, r4)T = (1.6 + 0.1(2), 0.3− 0.2(2))T

= (1.5,−0.1)T ,

and r4 < 0. So the basis matrix B is not optimal for the perturbed problem.
However, B can be used in the simplex method to solve the perturbed problem
to optimality. Recall that B is a feasible basis, so one can select x4 to enter
the basis and proceed with the simplex iterations to ultimately generate the
optimal solution for the perturbed problem. In this instance, the basis B is a
valid initial basic feasible solution for the perturbed problem.

Changes to Cost Coefficients of Non-basic Variables

We now consider perturbation of cost coefficients of non-basic variables. In
order for the basis B to maintain optimality, the following condition must
hold
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c
T
N − cTBB−1N = (cN +4cN )T − cTBB−1N

= cTN − cTBB−1N +4cNT

= rN +4cNT ≥ 0,

or equivalently

rN ≥ −4cNT .

Thus, if a perturbation of non-basic variables 4cN violates the above
condition, then the reduced costs of the perturbed problem are not all non-
negative and the revised simplex method can be used to generate the optimal
solution for the perturbed problem.

4.8.3 Changes in the Constraint Matrix

Sensitivity analysis concerning perturbations in the constraint matrix is not
easy. A small change in a single coefficient in a current basis can render the
basis infeasible or singular. We consider cases where it is tractable to charac-
terize the sensitivity of linear programs in perturbations/modifications to the
constraint matrix.

4.8.3.1 Adding a New Variable

We first consider the case where a new variable xn+1 is added to a linear
program after the original LP is solved to optimality. Let An+1 denote the
new column of coefficients associated with xn+1 added to the constraint matrix
A, and cn+1 be the new objective function coefficient associated with xn+1

added to the objective coefficients c. We now would like to solve the modified
problem

minimize cTx+ cn+1xn+1

subject to Ax+An+1xn+1 = b
x ≥ 0, xn+1 ≥ 0.

Let xnew =

[
x∗

xn+1

]
where x∗ be the optimal basic feasible solution for

the original problem and let xn+1 = 0, then xnew is feasible for the modi-
fied problem above. Now, to check optimality of xnew it suffices to check the
reduced cost of xn+1.

If rn+1 = cn+1 − cTBB−1An+1 ≥ 0, then xnew is optimal for the modified
problem, else rn+1 < 0, so one can use the basis B associated with x∗ to start
the revised simplex method for the modified problem and select xn+1 as an
entering variable.

Example 4.20
Consider the production of another product, a wooden shoe box, in addi-

tion to tables and chairs in the production planning model in Example 4.18.
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Suppose that the revenue from one unit of a shoe box is $4, and to produce
one unit requires 3 sq meters of wood, 4 hours of cutting, and 1 hour of finish-
ing. Let x6 = number of shoe boxes to produce, and let c3 = −4 (negated for
minimization), and A6 = (3, 4, 1)T . Then, the modified production planning
model is

−minimize −12x1 − 7x2 −4x6
subject to 6x1 + 4x2 +x3 + 3x6 = 1200

8x1 + 2x2 + x4 + 4x6 = 1000
2x1 + x2 +x5 = 500
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0.

Now the reduced cost r6 = c6 − cTBB−1A6

= −4− (−12, 7, 0)

 6 4 0
8 2 0
2 1 1

−1  3
4
1

 = 2.

So the feasible solution xnew =

[
x∗

x6

]
=

[
x∗

0

]
is optimal for the mod-

ified problem where x∗ is the optimal solution for the original production
planning problem. The revenue obtained from a wooden shoe box given its
resource requirements is not enough for the production plan to change.

If the revenue from a wooden shoe box is 8, i.e., c6 = −8 then r6 = −2 < 0
and so xnew is no longer optimal for the modified problem and the revised
simplex method can be applied with xnew as an initial basic feasible solution.
In this case, the revenue from a wooden shoe box is enough to warrant a
change in the production plan.

4.8.3.2 Adding a New Constraint

Now we consider adding a new constraint to a linear program after it has
been solved to optimality. We assume that the constraint is an inequality of
the form

aTm+1x ≤ bm+1

where am+1 is the vector of coefficients and bm+1 is the right-hand side of the
constraint. Thus, the new modified linear program is

minimize cTx
subject to Ax = b

aTm+1x ≤ bm+1

x ≥ 0.

Let F = {x ∈ Rn|Ax = b, x ≥ 0} and F
′

= {x ∈ Rn|Ax = b, aTm+1x ≤
bm+1, x ≥ 0}. The concern with adding a constraint to the original LP is that
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the feasible region F
′

of the modified problem may be a strict subset of F ,
i.e., F

′ ⊂ F (in general F
′ ⊆ F ). In this situation, the optimal solution to the

original LP x∗ may not be in F
′
, i.e., is infeasible for the modified problem.

In any case, the basis B associated with x∗ is not suitable to be used for
the modified problem since any basis for the new problem will be a square
matrix with dimension (m + 1) × (m + 1). The idea in proceeding with the
new problem is to extend the basis B so that it can be used in the modified
problem. To this end, we add a slack variable xn+1 for the new constraint
and express the modified LP in terms of the partition implied by the basis B
from the optimal basic feasible solution of the original LP to get the following
version of the modified problem:

minimize cTBxB + cTNxN
subject to BxB +NxN = b

(am+1,B)TxB + (am+1,N )TxN + xn+1 = bm+1

xB ≥ 0, xN ≥ 0, xn+1 ≥ 0.

where the coefficients am+1 have been partitioned into coefficients am+1,B cor-
responding to the variables in basis B and coefficients am+1,N corresponding
to variables in the non-basis matrix N .

Now we can form the extended basis defined as

BE =

[
B 0

aTm+1,B 1

]
,

and it is not hard to show that the inverse of this matrix is

B−1E =

[
B−1 0

−aTm+1,BB
−1 1

]
.

Now let b =

[
b

bm+1

]
and let xB = B−1E b, then a basic solution for the

modified problem is

x =

[
xB
0

]
.

We know that since B is an optimal basis for the original problem, then
xB = B−1b ≥ 0 (strict under non-degeneracy). Thus, it is natural to conjec-
ture that if xB ≥ 0, then would x be optimal for the modified problem? The
answer is in the affirmative as summarized in the following result.

Theorem 4.21
Suppose that B is an optimal basis for the original linear programming

problem. If xB ≥ 0, then x is an optimal solution to the modified linear
program with the extra constraint aTm+1x ≥ bm+1.

Proof: Exercise 4.12.

If at least one of the components of xB is negative, then x is not feasible
for the modified problem. However, the original basis B is dual feasible for
the dual of the original linear programming problem, and so if we let
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π =

[
cTBB

−1

0

]
,

then, π is dual feasible for the modified problem. Thus, the dual simplex
method can be initiated with the extended basis BE to solve the modified
problem to optimality.

Example 4.22
Consider the linear program

minimize −3x1 − 2x2
subject to x1 + x2 + x3 = 3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

An optimal solution x∗ can be obtained by inspection to get x∗1 = 3, x∗2 =
0, x∗3 = 0. The optimal basis B = [1] and non-basis matrix is N = [1 1] with

B = {1} and N = {2, 3}. cB = (−3) and cTN = (−2, 0).
Now suppose that a new constraint x1 ≤ 2 is added to the problem to get

minimize −3x1 − 2x2
subject to x1 + x2 + x3 = 3

x1+ x4 = 2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

where x4 is a slack variable for the new constraint. We form the extended
basis

BE =

[
B 0
aT2,B 1

]
=

[
1 0
1 1

]
where c

B
= (−3, 0)T

BE = {1, 4} and NE = {2, 3}.

Now

xB =

[
x1
x4

]
= B−1E b =

[
1 0
1 1

]−1 [
3
2

]
=

[
3
−1

]
,

so x =

[
xB
0

]
is infeasible for the modified problem. Since π =

[
cTBB

−1

0

]
=[

−3
0

]
is feasible for the dual of the modified problem (for this we can verify

that the reduced costs are positive (non-negative), i.e.,

r2 = −2− (−3, 0)

[
1 0
1 1

]−1 [
1
0

]
= 1

and

r3 = 0− (−3, 0)

[
1 0
1 1

]−1 [
1
0

]
= 3.

We can then use the dual simplex method starting with the basis BE to
solve the modified problem to optimality.

© 2014 by Taylor & Francis Group, LLC



172 Introduction to Linear Optimization and Extensions with MATLAB R©

4.9 Exercises

Exercise 4.1
Consider the LP

minimize −4x1 − 3x2 − 2x3
subject to 2x1 + 3x2 + 2x3 ≤ 6

−x1 + x2 + x3 ≤ 5
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Write the dual of this LP.
(b) Solve the primal problem using the simplex method and show that at

optimality the dual problem is solved to optimality as well by showing that the
primal and dual solutions generated satisfy dual feasibility and complementary
slackness.

Exercise 4.2
Consider the following linear program:

minimize 3x1 + 4x2 + 5x3
subject to x1 + 3x2 + x3 ≥ 2

2x1 − x2 + 3x3 ≥ 3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solve using
(a) the dual simplex method.
(b) the simplex method on the dual of the problem.

Exercise 4.3
Consider the linear program

minimize 3x1 + 4x2 + 6x3 + 7x4
subject to x1 + 2x2 + 3x3 + x4 ≥ 1

−x1 + x2 − x3 + 3x4 ≤ −2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Solve using the dual simplex method.

Exercise 4.4
Consider the following linear program:

minimize −3x1 − x2
subject to x1 + x2 + x3 = 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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(a) Find the optimal solution using the simplex method.
(b) Now consider adding the constraint x1+ x4 = 1 to get the LP

minimize −3x1 − x2
subject to x1 + x2 + x3 = 2

x1+ x4 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(c) Solve the new linear program without re-solving the new model from
scratch. (Hint: Use the dual simplex method)

Exercise 4.5
Consider the linear program

maximize 7x1 + 17x2 + 17x3
subject to x1 + x2 ≤ 8

x1+ 4x2 + 3x3 ≤ 14
3x2 + 4x3 ≤ 9

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) What is the optimal solution?
(b) What is the optimal basis?
(c) What are the optimal dual variables?
(d) By how much can the right-hand side of the first constraint be increased

or decreased without changing the optimal basis?
(e) By how much can the objective coefficient of x1 be increased or de-

creased without changing the optimal basis?
(f) Suppose a new variable x4 was added with a coefficient value of c4 = 6

and constraint coefficients A4 =
[

2 −1 4
]T

. Would the optimal basis
remain optimal? Why or why not?

Exercise 4.6
Consider the linear program

maximize 101x1 − 87x2 − 23x3
subject to 6x1 − 13x2 − 3x3 ≤ 12

6x1+ 11x2 + 22x3 ≤ 46
x1+ 6x2 + x3 ≤ 13
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) What is the optimal solution?
(b) What is the optimal basis?
(c) What are the optimal dual variables?
(d) By how much can the right-hand side of the second constraint be

increased or decreased without changing the optimal basis?
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(e) By how much can the objective coefficient of x3 be increased or de-
creased without changing the optimal basis?

(f) Suppose a new variable x4 was added with a coefficient value of c4 = 45

and constraint coefficients A4 =
[

10 −15 14
]T

. Would the optimal basis
remain optimal? Why or why not?

Exercise 4.7
Find the duals of the following linear program:

(a)maximize 7x1 + 17x2 + 17x3
subject to x1 + x2 = 8

x1+ 4x2 + 3x3 ≥ 14
3x2 + 4x3 ≤ 9

x1 ≤ 0, x2 ≥ 0, x3 unrestricted

(b)minimize −7x1 + 22x2 + 18x3
subject to x1 + 5x2 + x3 + x4 ≤ 8

x1+ x2 +x3 ≥ 14
3x2 +4x4 = 9

x1 ≥ 0, x2 ≤ 0, x3 unrestricted, x4 ≥ 0

Exercise 4.8
Consider the standard form of a linear program

minimize cTx
subject to Ax ≤ b

x ≥ 0.

(a) Formulate the dual problem.
(b) State and prove the corresponding weak duality theorem.
(c) State the corresponding strong duality theorem.
(d) State the corresponding complementary slackness conditions.

Exercise 4.9
Consider a linear program in standard form

minimize cTx
subject to Ax = b

x ≥ 0.

where A is m × n and has full row rank. Let this be the primal problem P .

(a) Find the dual of P .
(b) If an optimal solution x∗ for the primal is always non-degenerate, then

is the optimal solution to the dual always non-degenerate? Explain.
(c) If an optimal solution x∗ for the primal is degenerate, then can one

use complementary slackness to always find a corresponding optimal dual
solution? Explain.
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(d) If both the primal and dual problems have feasible solutions, explain
why there is no duality gap in this case.

Exercise 4.10
If a linear program in standard form has a constraint matrix A that is

symmetric (i.e., A = AT ) and c = b, then prove that achieving feasibility is
the same as achieving optimality.

Exercise 4.11
If a linear program in standard form has a finite optimal solution, show

that any new linear program in standard form derived from the original linear
program by changing just the original right-hand side vector b to any other
vector b∗ will always have a finite optimal solution as well.

Exercise 4.12
Prove Theorem 4.21.

Exercise 4.13
Suppose that Torvelo Surfing is a surfboard manufacturer that produces

two types of surfboards. The first type of surfboard is a short board and
the other a long board. Each surfboard requires molding and then polishing.
Suppose that each unit of a short board requires 1 hour of molding and 1 hour
of polishing and each unit of the long board requires 1.5 hours of molding and
2 hours of polishing. Each unit of a short board generates a $100 profit and
each unit of a long board generates $150 profit. The total amount of molding
time available is 50 hours and available polishing time is 75 hours. Would it
be a good idea to obtain more molding or polishing labor and if so how much
should each resource cost per unit?

Exercise 4.14
Consider a linear program in standard form

minimize cTx
subject to Ax = b

x ≥ 0.

Interpret the problem as using n different resources x to meet demands
b for each of m different products at minimum cost. The matrix A gives
the technology for producing products from resources. Suppose that x∗ is a
non-degenerate optimal basic feasible solution with basis B. Prove that the
corresponding optimal dual values π∗ are marginal values (prices) for the
resources.

Exercise 4.15
Consider the following two systems

(I) Ax = b, x ≥ 0
(II) ATπ ≤ 0, bTπ > 0.
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(a) Prove that exactly one of the two systems has a solution, but not both.
(Hint: Form appropriate linear programs with constraints (I) and (II).)

(b) Use (a) to give an alternative proof of the Strong Duality Theorem.

Notes and References
Duality in linear programming appeared in the work of Gale, Kuhn, and

Tucker (1951), although the origins of duality can be seen from the work of
Von Neumann (1945). The presentation of linear programming duality has
two distinct approaches. In most developments of linear programming, strong
duality is proved via the simplex method as in this chapter. Exercise 4.15
maps another approach that does not rely on the simplex method, but only
on systems of alternatives; see Farkas (1901), Mangasarian (1969), and Murty
(1988). The strong duality and complementary slackness results of linear pro-
gramming are equivalent to the KKT conditions for a linear program. KKT
conditions apply more widely to non-linear programming problems, but in
general only provide in most cases necessary conditions for optimality where
as the linear programming KKT conditions are both necessary and sufficient;
see Avriel (2003) and Bazaraa, Sherali, and Shetty (2006). The dual simplex
method was developed by Lemke (1954) and Beale (1954).
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5

Dantzig-Wolfe Decomposition

5.1 Introduction

In this chapter, we consider methods for solving linear programs that exhibit
special structure. In particular, we consider linear programs that are in block
angular form and develop the Dantzig-Wolfe decomposition method for solving
such problems. Economic interpretations of the decomposition are discussed.

5.2 Decomposition for Block Angular Linear Programs

Consider a linear program of the form

minimize cTx
subject to Ax ≤ b

x ≥ 0,

and where A is an m × n matrix, and suppose that the constraint matrix is
of the form

A =



L1 L2 · · · LK
A1

A2

...
. . .

AK

 ,

where Lk is a submatrix with dimension mL × nk for k = 1, ...,K and Ak is

a submatrix of dimension mk × nk for k = 1, ...,K such that
K∑
k=1

nk = n and

mL +
K∑
k=1

mk = m. Such a form for A is called block angular.

Let xk, ck, and bk be corresponding vectors such that

177
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x =

 x1

...
xK

 , c =

 c1

...
cK

 and b =

 b1

...
bK

 so that Ax ≤ b.

Then, the linear program can be written as

minimize
(
c1
)T
x1+

(
c2
)T
x2+ · · · +

(
cK
)T
xK

subject to L1x
1+ L2x

2+ · · · + LK xK ≤ b0

A1x
1 ≤ b1

A2x
2 ≤ b2

. . .
...

...
AKx

K ≤ bK

x1 ≥ 0 x2 ≥ 0 · · · xK ≥ 0,

or more compactly as

minimize
K∑
k=1

(
ck
)T
xk

subject to
K∑
k=1

Lkx
k ≤ b0

Akx
k ≤ bk k = 1, ...,K

xk ≥ 0 k = 1, ...,K.

The constraints
K∑
k=1

Lkx
k ≤ b0 are called coupling or linking constraints

since without them, the problem decomposes into K independent subproblems
where the kth subproblem is

minimize
(
ck
)T
xk

subject to Akx
k ≤ bk

xk ≥ 0,

where each sub-problem is a linear program.

Example 5.1
Consider the linear program

minimize −2x1 −3x2 −5x3 −4x4
subject to x1 + x2 + 2x3 ≤ 4

x2 + x3 + x4 ≤ 3
2x1 + x2 ≤ 4
x1 + x2 ≤ 2

x3 + x4 ≤ 2
3x3 + 2x4 ≤ 5

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 x4 ≥ 0.
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The first two constraints

x1 + x2 + 2x3 ≤ 4
x2 + x3 + x4 ≤ 3

are the linking constraints and can be represented as L1x
1 +L2x

2 ≤ b0 where

L1 =

[
1 1
0 1

]
, L2 =

[
2 0
1 1

]
, b0 =

[
4
3

]

and

x1 =

[
x1
x2

]
, x2 =

[
x3
x4

]
.

Without these constraints, the linear program would consist of the two in-
dependent linear programming subproblems where the first independent sub-
problem is

minimize −2x1 −3x2
subject to 2x1 + x2 ≤ 4

x1 + x2 ≤ 2
x1 ≥ 0 x2 ≥ 0

where

c1 =

[
−2
−3

]
, A1 =

[
2 1
1 1

]
, and b1 =

[
4
2

]
,

and the second independent subproblem is

minimize −5x3 −4x4
subject to

x3 + x4 ≤ 2
3x3 + 2x4 ≤ 5
x3 ≥ 0 x4 ≥ 0

where

c2 =

[
−5
−4

]
, A2 =

[
1 1
3 2

]
, and b2 =

[
2
5

]
.
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The idea in decomposition is to exploit the structure of such a linear pro-
gram so that the entire problem does not have to be solved all at once, but
instead solve problems that are smaller and usually more tractable. In Dantzig-
Wolfe decomposition, the problem will be decomposed into a master problem
that will be concerned with the linking constraints only, and into subproblems
that result from the decoupling of the linking constraints.

The master problem (MP) is of the form

minimize
K∑
k=1

(
ck
)T
xk

subject to
K∑
k=1

Lkx
k ≤ b0.

5.3 Master Problem Reformulation

It is not enough to have the decomposition into master and subproblems as
above. To make the decomposition effective, the master problem needs refor-
mulation. The reformulation will enable the master problem and subproblems
to exchange information regarding progress toward an optimal solution for the
original linear program while enabling each problem to be solved separately.
The key to reformulation is the fact that the subproblems are all linear pro-
grams and so the feasible sets are polyhedrons. Recall from the Resolution
Theorem in Chapter 2 that any feasible point of a linear program can be rep-
resented as a convex combination of the extreme points and a non-negative
linear combination of extreme directions of the feasible set.

Let Pk = {xk|Akxk ≤ bk, xk ≥ 0} be the feasible set of subproblem SPk
and vk1 , v

k
2 , ..., v

k
Nk

be the extreme points of Pk and dk1 , d
k
2 , ..., d

k
lk

be the extreme

directions of Pk. Then, by the Resolution Theorem, any point xk ∈ Pk can be
expressed as

xk =
∑Nk
i=1 λ

k
i v
k
i +

∑lk
j=1 µ

k
j d
k
j ,

where
∑Nk
i=1 λ

k
i = 1, λki ≥ 0 for i = 1, ..., Nk and µkj ≥ 0 for j = 1, ..., lk.

Substituting this representation into the master problem gives
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minimize
K∑
k=1

(
ck
)T

(
Nk∑
i=1

λki v
k
i +

lk∑
j=1

µkj d
k
j )

subject to
K∑
k=1

Lk(
Nk∑
i=1

λki v
k
i +

lk∑
j=1

µkj d
k
j ) ≤ b0

Nk∑
i=1

λki = 1 k = 1, ...,K

λki ≥ 0 , i = 1, ..., Nk k = 1, ...,K
µkj ≥ 0 , j = 1, ..., lk k = 1, ...,K.

After simplification, the master problem becomes

minimize
K∑
k=1

Nk∑
i=1

λki
(
ck
)T

(vki ) +
K∑
k=1

lk∑
j=1

µkj
(
ck
)T

(dkj )

subject to
K∑
k=1

Nk∑
i=1

λki (Lkv
k
i ) +

K∑
k=1

lk∑
j=1

µkj (Lkd
k
j ) ≤ b0∑Nk

i=1 λ
k
i = 1 k = 1, ...,K

λki ≥ 0 , i = 1, ..., Nk k = 1, ...,K
µkj ≥ 0 , j = 1, ..., lk k = 1, ...,K.

The master problem now has as variables λki and µkj . Corresponding to each

extreme point vki ∈ Pk, let fki =
(
ck
)T

(vki ) and qki = Lkv
k
i and corresponding

to each extreme direction dkj of Pk, let f
k

j =
(
ck
)T

(dkj ) and q
k
j = Lkd

k
j . Then,

the master program can be reformulated as

minimize
K∑
k=1

Nk∑
i=1

λki fki +
K∑
k=1

lk∑
j=1

µkj f
k

j

subject to
K∑
k=1

Nk∑
i=1

λki q
k
i +

K∑
k=1

lk∑
j=1

µkj q
k
j ≤ b0∑Nk

i=1 λ
k
i = 1 k = 1, ...,K

λki ≥ 0 , i = 1, ..., Nk k = 1, ...,K
µkj ≥ 0 , j = 1, ..., lk k = 1, ...,K.

The constraints of type
∑Nk
i=1 λ

k
i = 1 are called convexity constraints as-

sociated with subproblem k. The master problem can be more compactly
represented as

minimize fTv λ+fTd µ
subject to Qvλ+Qdµ+ s = r

λ ≥ 0, µ ≥ 0, s ≥ 0,

where
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λ = (λ11, ..., λ
1
N1
, λ21, ..., λ

2
N2
, ..., λK1 , ..., λ

K
NK

)T

µ = (µ1
1, ..., µ

1
l1
, µ2

1, ..., µ
2
l2
, ..., µK1 , ..., µ

K
lK

)T

rT = ((b0)T , eT ) = ((b0)T , (1..., 1)T ),

where s is a vector of slack variables and e is the vector of dimension K with
all components equal to 1. Qv is a matrix such that the column associated
with λki is

[
qki
ek

]
=

[
Lkv

k
i

ek

]
,

where ek is the kth unit vector. Qd is a matrix such that the column associated
with µkj is [

q
k
j

0

]
=

[
Lkd

k
j

0

]
.

The number of variables λki and µkj can be extremely large for even moder-
ately sized problems since feasible sets of subproblems (linear programs) can
have an extremely large number of extreme points and extreme directions. In
other words, there will be many more columns than rows in the reformulated
master problem.

5.4 Restricted Master Problem and the Revised Simplex
Method

The key idea to get around this difficulty of handling an extremely large
number of variables is to use the revised simplex method to solve the master
problem. The major advantage is that it is not necessary to formulate the
entire reformulated master problem since the vast majority of the variables
will be zero (i.e., non-basic) at an optimal (basic feasible) solution.

This motivates the construction of a smaller version of the master problem
called the restricted master problem where only a small subset of the variables
λki and µkj are included corresponding to a current basic feasible solution, and
the remaining variables are non-basic, i.e., set to zero. If the reduced costs of
the basic feasible solution are non-negative, then the revised simplex method
stops with the optimal solution, else some non-basic variable with negative
reduced cost is selected to enter the basis.

Given a current basis B for the restricted master problem, let πT = fTBB
−1
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where fB is a vector consisting of the quantities fki and f
k

j associated with

variables λki and µkj , which are basic. We assume that the components of π
are arranged so that

π =


π1

π2
1
...
π2
K

 ,

where π1 are the dual variables associated with the linking constraints and π2
i

is the dual variable associated with the convexity constraint of subproblem i
in the restricted master problem.

Then, the reduced cost corresponding to a non-basic variable λki is of the
form

rki =fki − πT
[
qki
ek

]
=
(
ck
)T

(vki ) −(π1)TLkv
k
i −π2

k,

and the reduced cost for corresponding to a non-basic variable µkj is of the
form

r
k
j = f

k

j− πT
[
q
k
j

0

]
=
(
ck
)T

(dkj ) −(π1)TLkd
k
j .

There will be a considerable number of non-basic variables, but fortunately
one does not have to compute all of the reduced costs. In fact, it will suffice to
determine only the minimal reduced cost among all of the non-basic variables.
To this end, we let

rmin = min
k∈{1,...,K}

{
min

i∈{1,...,Nk}
{rki }

}

or

rmin = min
k∈{1,...,K}

{
min

i∈{1,...,Nk}
{
(
ck
)T

(vki )− (π1)TLkv
k
i − π2

k}
}
.

Let rk∗ = min
i∈{1,...,Nk}

{rki } . Then, rK∗ is equivalent to the optimal objective

function of the subproblem SPk

minimize σk = (
(
ck
)T − (π1)TLk)xk

subject to Akx
k ≤ bk

xk ≥ 0.
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FIGURE 5.1
Dantzig-Wolfe Decomposition.

Since the term π2
k is fixed, it can be removed from the objective function.

We assume that the revised simplex method will be used to solve the sub-
problem, so if the subproblem is bounded, an optimal extreme point xk will
be generated and xk will be one of the extreme points vki .

Let the optimal extreme point of subproblem SPk be vki∗ for some index
i∗ ∈ {1, ..., Nk}, and let σ∗k denote the optimal objective function value of
SPk. Then, rk∗ = σ∗k − π2

k.
There are three possibilities in solving the subproblems SPk in attempting

to generate rmin.

(1) If all subproblems are bounded and rmin = min
k∈{1,...,K}

{rk∗} < 0, then

let t be the index k such that rmin = rt∗. The column

[
qti∗
et

]
=

[
Ltv

t
i∗

et

]
associated with the optimal extreme point vti∗ of subproblem SPt that achieved
rmin = rt∗ is entered into the basis B.

(2) If all subproblems are bounded and rmin = min
k∈{1,...,K}

{rk∗} ≥ 0, then

the current basis B is optimal.

(3) If there is at least one subproblem that is unbounded, then let s be
the index k of such an unbounded subproblem SPs. The revised simplex
method will return an extreme direction dsj∗ for some j∗ ∈ {1, ..., ls} asso-

ciated with SPs such that ((cs)
T − (π1)TLs)d

s
j∗ < 0, and so the column[

q
s
j∗

0

]
=

[
Lsd

s
j∗

0

]
associated with µsj∗ (the multiplier of dsj∗) can enter the

basis B.
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Price-Directed Decomposition The Dantzig-Wolfe decomposition can
be interpreted as a price-directed decomposition in that the restricted master
problem generates prices in the form of dual values π and these prices are
sent to the subproblems SPk to form the coefficients of the objective function
σk. The subproblems then compute optimal solutions xk or generate extreme
directions and send back up to the master problem the appropriate column
to possibly enter the basis. The process iterates until an optimal solution is
found or the problem is declared unbounded. See Figure 5.1.

5.5 Dantzig-Wolfe Decomposition

We now provide the detailed steps of the Dantzig-Wolfe Decomposition.

Dantzig-Wolfe Decomposition Method

Step 0: (Initialization)
Generate an initial basis B for the master problem.

Let xB be the basic variables and B the index set of the basic variables and
set all other variables to non-basic (zero) to get the restricted master

problem.
Go to Step 1.

Step 1: (Simplex Multiplier Generation)
Solve for π in the linear system BTπ = fB .

Go to Step 2.

Step 2: (Optimality Check)
For each k = 1, ...,K solve SPk, i.e.,

minimize σk = (
(
ck
)T − (π1)TLk)xk

subject to Akx
k ≤ bk

xk ≥ 0

using the revised simplex method. If SPk is unbounded, then go to Step 3,
else let xk = vki∗ denote the optimal basic feasible solution and

compute rk∗ = σ∗k − π2
k.

If rmin = min
k∈{1,...,K}

{rk∗} ≥ 0, then STOP; the current basis B is

optimal, else go to Step 3.

Step 3: (Column Generation)
If all subproblems SPk are bounded and rmin = min

k∈{1,...,K}
{rk∗} < 0, then let t
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be the index of k in SPk such that rmin = rt∗. Let a =

[
qti∗
et

]
=

[
Ltv

t
i∗

et

]
where vti∗ is the optimal extreme point of SPt and go to Step 4. Else there is
a subproblem SPs that is unbounded, and so an extreme direction dsj∗will be

generated such that ((cs)
T − (π1)TLs)d

s
j∗ < 0, and so let a

=

[
q
s
j∗

0

]
=

[
Lsd

s
j∗

0

]
and go to Step 4.

Step 4: (Descent Direction Generation)
Solve for d in the linear system Bd = −a.

If d ≥ 0, then the linear program is unbounded STOP, else go to Step 5.

Step 5: (Step Length Generation)
Compute the step length α = min

l∈B
{−xldl |dl < 0} (the minimum ratio test).

Let l∗ be the index of the basic variable that attains the minimum ratio α.
Go to Step 6.

Step 6: (Update Basic Variables and Basis)
Now let xB = xB + αd. Go to Step 7.

Step 7: (Basis Update)
Let Bl∗ be the column in B associated with the leaving basic variable xl∗

Update the basis matrix B by removing Bl∗ and adding the column a and

update B.
Go to Step 1.

Example 5.2
We illustrate the Dantzig-Wolfe on the linear program in Example 5.1,

which happens to be bounded, with subproblem feasible sets that are also
bounded, and so extreme directions will not exist.

The master problem has the form (after adding slack variables s =

(s1, s2)
T

)

minimize
N1∑
i=1

λ1i f
1
i +

N2∑
i=1

λ2i f
2
i

subject to
N1∑
i=1

λ1iL1v
1
i +

N2∑
i=1

λ2iL2v
2
i + s = b0∑N1

i=1 λ
1
i = 1∑N2

i=1 λ
2
i = 1

λ1i ≥ 0 i = 1, ..., N1

λ2i ≥ 0 i = 1, ..., N2

s ≥ 0.
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Recall that it is not necessary to know the quantitiesN1 andN2 in advance.
Step 0: Start with as basic variables s1 = b01 = 4, s2 = b02 = 3, λ11 = 1, and

λ21 = 1, so xB = (s1, s2, λ
1
1, λ

2
1)T with initial extreme points v11 =

[
x1
x2

]
=[

0
0

]
and v21 =

[
x3
x4

]
=

[
0
0

]
.

Then, the restricted master problem is

minimize λ11f11 + λ21f21
subject to λ11L1v

1
1 +λ21L2v

2
1 + s = b0

λ11 = 1
λ21 = 1

λ11 ≥ 0
λ21 ≥ 0

s ≥ 0,

and since the initial extreme point for each subproblem is the zero vector we
get

minimize 0
subject to s1 = 4

s2 = 3
λ11 = 1

λ21 = 1
λ11 ≥ 0

λ21 ≥ 0
s ≥ 0.

The basis matrix B = I, i.e., the 4 by 4 identity matrix.

Iteration 1

Step 1: fB =


cs1
cs2
f11
f21

 =


0
0

(c1)T v11
(c2)T v21

 =


0
0
0
0

 , then solving BTπ = fB

gives

π =

 π1

π2
1

π2
2

 =


π1
1

π1
2

π2
1

π2
2

 =


0
0
0
0

 .
Step 2:

Now the objective function of SP1 is σ1 = (
(
c1
)T − (π1)TL1)x1 =(

c1
)T
x1 = −2x1 − 3x2, so SP1 is
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minimize −2x1 −3x2
subject to 2x1 + x2 ≤ 4

x1 + x2 ≤ 2
x1 ≥ 0 x2 ≥ 0.

The optimal solution is x1 =

[
x1
x2

]
=

[
0
2

]
with objective function value

σ∗1 = −6, and so r1∗ = σ∗1 − π2
1 = −6− 0 = −6. Let v12 = x1.

Now the objective function of SP2 is σ2 = (
(
c2
)T − (π1)TL2)x2 =(

c2
)T
x2 = −5x3 − 4x4, so SP2 is

minimize −5x3 −4x4
subject to

x3 + x4 ≤ 2
3x3 + 2x4 ≤ 5
x3 ≥ 0 x4 ≥ 0.

The optimal solution is x2 =

[
x3
x4

]
=

[
1
1

]
with objective function value

σ∗2 = −9, and so r2∗ = σ∗2 − π2
2 = −9− 0 = −9. Let v22 = x2.

Step 3:

rmin = r2∗ = −9 and so a =

[
q22
e2

]
=

[
L2v

2
2

e2

]
=


2
2
0
1

.

Step 4: Bd = −a and so d = −


2
2
0
1

 .
Step 5: α =min

{
4
2 ,

3
2 ,

1
1

}
= 1 and so λ22 = α = 1.

Step 6: xB =


s1
s2
λ11
λ21

 =


4
3
1
1

 + (1)


−2
−2
0
−1

 =


2
1
1
0

 , so λ21 leaves

the basis and λ22 enters the basis and the updated basic variable set is xB =
s1
s2
λ11
λ22

=


2
1
1
1

.

Step 7: Column a enters the basis and the column (0, 0, 1, 0)
T

associated
with λ21 leaves the basis and so
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B =


1 0 0 2
0 1 0 2
0 0 1 0
0 0 0 1

 .

Go to Step 1.

Iteration 2

Step 1: fB =


cs1
cs2
f11
f22

 =


0
0

(c1)T v11
(c2)T v22

 =


0
0
0
−9

 , then solving BTπ = fB

gives

π =

 π1

π2
1

π2
2

 =


π1
1

π1
2

π2
1

π2
2

 =


0
0
0
−9

 .

Step 2:

Now the objective functions of SP1 and SP2 remain the same as π1 =[
0
0

]
, so the subproblems remain the same. Since the optimal solution v22 for

SP2 and its multiplier λ22 = 1 are already in the restricted master problem
and then rmin = r1∗ = −6, so we enter into the basis λ12 of the restricted master

problem along with v12 =

[
x1
x2

]
=

[
0
2

]
the optimal extreme point of SP1.

Step 3:

So a =

[
q12
e1

]
=

[
L1v

1
2

e1

]
=


2
2
1
0

.

Step 4: Bd = −a and so d = −


2
2
1
0

 .

Step 5: α =min
{

2
2 ,

1
2 ,

1
1

}
= 1 and so λ12 = α = 1

2 .
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Step 6: xB =


s1
s2
λ11
λ22

 =


2
1
1
1

 + (0.5)


−2
−2
−1
0

 =


1
0

0.5
1

 , so s2 leaves

the basis and λ12 enters the basis and the updated basic variable set is xB =
s1
λ12
λ11
λ22

=


1

0.5
0.5
1

 .
Step 7: Column a enters the basis and the column (0, 1, 0, 0)

T
associated

with s2 leaves the basis, and so

B =


1 2 0 2
0 2 0 2
0 1 1 0
0 0 0 1

 .
B is same as before, except λ12 is in the position of the basis that

s2 previously occupied.
Go to Step 1.

Iteration 3

Step 1: fB =


cs1
f12
f11
f22

 =


0

(c1)T v12
(c1)T v11
(c2)T v22

 =


0
−6
0
−9

 , then solving BTπ = fB

gives

π =

 π1

π2
1

π2
2

 =


π1
1

π1
2

π2
1

π2
2

 =


0
−3
0
−3

 .
Step 2:

Now the objective functions of SP1 and SP2 change since π1 =

[
0
−3

]
.

Now the objective function of SP1 is σ1 = (
(
c1
)T − (π1)TL1)x1 = −2x1,

so SP1 is

minimize −2x1
subject to 2x1 + x2 ≤ 4

x1 + x2 ≤ 2
x1 ≥ 0 x2 ≥ 0.
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The optimal solution is x1 =

[
x1
x2

]
=

[
2
0

]
with objective function value

σ∗1 = −4 and so r1∗ = σ∗1 − π2
1 = −4− 0 = −4. Let v13 = x1.

Now the objective function of SP2 is σ2 = (
(
c2
)T−(π1)TL2)x2 = −2x3−x4

so SP2 is

minimize −2x3 −x4
subject to x3 + x4 ≤ 2

3x3 + 2x4 ≤ 5
x3 ≥ 0 x4 ≥ 0.

The optimal solution is x2 =

[
x3
x4

]
=

[
5
3
0

]
with objective function

value σ∗2 = − 10
3 and so r2∗ = σ∗2 − π2

2 = − 10
3 − (−3) = − 1

3 .

Step 3:

So a =

[
q13
e1

]
=

[
L1v

1
3

e1

]
=


2
0
1
0

.

Step 4: Bd = −a and so d = −


2
0
1
0

 .
Step 5: α =min

{
1
2 ,

1
2

1

}
= 1

2 and so λ13 = α = 1
2 .

Step 6: xB =


s1
λ12
λ11
λ22

 =


1
1
2
1
2
1

 + (0.5)


−2
0
−1
0

 =


0
1
2
0
1

 , so λ11 leaves

the basis, and λ13 enters the basis, and the updated basic variable set is xB =
s1
λ12
λ13
λ22

=


0
1
2
1
2
1

.

Step 7: Column a enters the basis and the column (0, 0, 1, 0)
T

associated
with λ11 leaves the basis, and so

B =


1 2 2 2
0 2 0 2
0 1 1 0
0 0 0 1

 .
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Go to Step 1.

Iteration 4

Step 1: fB =


s1
f12
f13
f22

 =


0

(c1)T v12
(c1)T v13
(c2)T v22

 =


0
−6
−4
−9

 , then solving BTπ = fB

gives

π =

 π1

π2
1

π2
2

 =


π1
1

π1
2

π2
1

π2
2

 =


0
−1
−4
−7

 .
Step 2:

The objective functions of SP1 and SP2 change since π1 =

[
0
−1

]
.

Now the objective function of SP1 is σ1 = (
(
c1
)T − (π1)TL1)x1 = −2x1−

2x2, so SP1 is

minimize −2x1 −2x2
subject to 2x1 + x2 ≤ 4

x1 + x2 ≤ 2
x1 ≥ 0 x2 ≥ 0.

The optimal solution is x1 =

[
x1
x2

]
=

[
0.0224
1.9776

]
with objective function

value σ∗1 = −4, and so r1∗ = σ∗1 − π2
1 = −4− (−4) = 0.

Now the objective function of SP2 is σ2 = (
(
c2
)T − (π1)TL2)x2 = −4x3−

3x4, so SP2 is

minimize −4x3 −3x4
subject to x3 + x4 ≤ 2

3x3 + 2x4 ≤ 5
x3 ≥ 0 x4 ≥ 0.

The optimal solution is x2 =

[
x3
x4

]
=

[
1
1

]
with objective function value

σ∗2 = −7, and so r2∗ = σ∗2 − π2
2 = −7− (−7) = 0.

Since rmin = 0 we STOP, and the current basis B represents an optimal
solution. That is, the optimal basic variables to the restricted master problem
are
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xB =


s1
λ12
λ13
λ22

=


0
1
2
1
2
1

 ,
and so the optimal solution in terms of the original variables can be recovered
as

x1 =

[
x1
x2

]
= λ12v

1
2 + λ13v

1
3 = 0.5

[
0
2

]
+ 0.5

[
2
0

]
=

[
1
1

]
and

x2 =

[
x3
x4

]
= λ22v

2
2 = 1

[
1
1

]
=

[
1
1

]
.

The optimal objective function value is z∗ = −14. That is, the optimal
solution for the original problem is in this instance a convex combination of
extreme points of the subproblems.

Example 5.3 (Unbounded sub-problem case)
Consider the following linear program:

maximize 2x1 + 3x2 + 2x3
subject to x1 + x2 + x3 ≤ 12

−x1 + x2 ≤ 2
−x1 + 2x2 ≤ 8

x3 ≤ 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The linear program can been seen to exhibit block angular structure with
the following partitions

x =

[
x1

x2

]
where x1 =

[
x1
x2

]
and x2 = [x3]

c =

[
c1

c2

]
where c1 =

[
c1
c2

]
=

[
−2
−3

]
and c2 = [c3] = [−2]

b0 = [12], b1 =

[
2
8

]
, and b2 = [1]

L1 =
[

1 1
]

and L2 = [1]

A1 =

[
−1 1
−1 2

]
and A2 = [1].
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Initialization
Step 0: Start with as basic variables s1 = b01 = 12, λ11 = 1, and λ21 = 1, so

xB = (s1, s2, λ
1
1, λ

2
1)T with initial extreme points v11 =

[
x1
x2

]
=

[
0
0

]
and

v21 = [x3] = [0].

Then, the restricted master problem is

minimize λ11f11 + λ21f21
subject to λ11L1v

1
1 +λ21L2v

2
1 + s = b0

λ11 = 1
λ21 = 1

λ11 ≥ 0, λ21 ≥ 0, s ≥ 0

and since the initial extreme point for each subproblem is the zero vector we
get

minimize 0
subject to s1 = 12

λ11 = 1
λ21 = 1

λ11 ≥ 0, λ21 ≥ 0, s1 ≥ 0.

The basis matrix B = I, i.e., the 3 by 3 identity matrix.

Iteration 1

Step 1: fB =

 cs1
f11
f21

 =

 0
(c1)T v11
(c2)T v21

 =

 0
0
0

 , then solving BTπ = fB

gives

π =

 π1

π2
1

π2
2

 =

 π1
1

π2
1

π2
2

 =

 0
0
0

 .
Step 2: (Note that SP2 is arbitrarily solved first; in general, the ordering

of solving subproblems does not affect the decomposition).

Now the objective function of SP2 is σ2 = (
(
c2
)T − (π1)TL2)x2 =(

c2
)T
x2 = −2x3, so SP2 is

minimize −2x3
subject to x3 ≤ 1

x3 ≥ 0.
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The optimal solution is x2 = [x3] = [1] with objective function value
σ∗2 = −2, and so r2∗ = σ∗2 − π2

2 = −2− 0 = −2. Let v22 = x2.

The objective function of SP1 is σ1 = (
(
c1
)T − (π1)TL1)x1 =

(
c1
)T
x1 =

−2x1 − 3x2, so SP1 is

minimize −2x1 − 3x2
subject to − x1 + x2 ≤ 2

− x1 + 2x2 ≤ 8
x1 ≥ 0, x2 ≥ 0.

SP1 is unbounded. Go to Step 3.

Step 3:
SP1 is unbounded, and so

a =

[
q
1
1

0

]
=

[
L1d

1
1

0

]
=


[

1 1
] [ 1.85664197e+ 15

9.28320987e+ 14

]
0
0



=

 2.78496296e+ 15
0
0

 .

Step 4: Bd = −a and so d =

 −2.78496296e+ 15
0
0

 .
Step 5: α =min

{
− 12
−2.78496296e+15

}
= 4.30885443e− 15 and so µ1

1 = α.

Step 6: xB =

 s1
λ11
λ21

 =

 12
1
1

+(4.30885443e−15)

 −2.78496296e+ 15
0
0

 = 0
1
1

 , so s1 leaves the basis and µ1
1 enters the basis and the updated basic

variable set is

xB =

 µ1
1

λ11
λ21

=

 4.30885443e− 15
1
1

.

Step 7: Column a enters the basis and takes the place of column (1, 0, 0)T

associated with s1, which exits the basis and so
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B =

 2.78496296e+ 15 0 0
0 1 0
0 0 1

 .
Go to Step 1.

Iteration 2

Step 1: fB =

 f
1

1

f11
f21

 =

 (c1)T d11
(c1)T v11
(c2)T v21

 =


[
−2 −3

] [ 1.85664197e+ 15
9.28320987e+ 14

]
0
0



=

 −6.49824691e+ 15
0
0

 ,
then solving BTπ = fB gives

π =

 π1

π2
1

π2
2

 =

 π1
1

π2
1

π2
2

 =

 −2.33333333
0
0

 .
Step 2:

Now the objective functions of SP1 is σ1 = (
(
c1
)T − (π1)TL1)x1 =

.33333333x1 − .66666667x2, and so SP1 is

minimize .33333333x1 − .66666667x2
subject to − x1 + x2 ≤ 2

− x1 + 2x2 ≤ 8
x1 ≥ 0, x2 ≥ 0.

The optimal solution is x1 =

[
x1
x2

]
=

[
152.89068985
80.44534492

]
with objective

function value σ∗1 = −2 2
3 , and so r1∗ = σ∗1−π2

1 = −2 2
3 −0 = −2 2

3 . Let v12 = x1.

Now the objective function of SP2 is σ2 = (
(
c2
)T − (π1)TL2)x2 =(

c2
)T
x2 = .33333333x3, so SP2 is

minimize .33333333x3
subject to x3 ≤ 1

x3 ≥ 0.

The optimal solution is x2 = [x3] = [0] with objective function value
σ∗2 = 0, and so r2∗ = σ∗2 − π2

2 = 0− 0 = 0. Let v23 = x2.

Step 3:
rmin = r1∗ = −2 2

3 , and so
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a =[
q12
e1

]
=

[
L1v

1
2

e1

]
=


[

1 1
] [ 152.89068985

80.44534492

]
1
0

 =

 233.33603477
1
0

 .

Step 4: Bd = −a and so d =

 −8.37842506e− 14
−1
0

 .

Step 5: α =min
{
− 4.30885443e−15
−8.37842506e−14 ,−

1
−1

}
= 0.05142798 and so λ12 = α.

Step 6: xB =

 µ1
1

λ11
λ21

 =

 4.30885443e− 15
1
1

+(0.05142798)

 −8.37842506e− 14
−1
0


=

 0
0.94857202

1

 so µ1
1 leaves the basis and λ12 enters the basis and the

updated basic variable set is

xB =

 λ12
λ11
λ21

=

 0.05142798
0.94857202

1

.

Step 7: Column a enters the basis and the column (1, 0, 0)T associated
with µ1

1 leaves the basis, and so

B =

 233.33603477 0 0
1 1 0
0 0 1

 .
Go to Step 1.

Iteration 3

Step 1: fB =

 f12
f11
f21

 =

 (c1)T v12
(c1)T v11
(c2)T v21

 =


[
−2 −3

] [ 152.89068985
80.44534492

]
0
0



=

 −547.11741446
0
0

 ,
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then solving BTπ = fB gives

π =

 π1

π2
1

π2
2

 =

 π1
1

π2
1

π2
2

 =

 −2.34476177
0
0

 .
Step 2:

Now the objective functions of SP1 is σ1 = (
(
c1
)T − (π1)TL1)x1 =

.34476177x1 − .65523823x2, and so SP1 is

minimize .34476177x1 − .65523823x2
subject to − x1 + x2 ≤ 2

− x1 + 2x2 ≤ 8
x1 ≥ 0, x2 ≥ 0.

The optimal solution is x1 =

[
x1
x2

]
=

[
4
6

]
with objective function value

σ∗1 = −2.55238227, and so r1∗ = σ∗1 − π2
1 = −2.55238227 − 0 = −2.55238227.

Let v13 = x1.

Now the objective function of SP2 is σ2 = (
(
c2
)T − (π1)TL2)x2 =(

c2
)T
x2 = .34476177x3, so SP2 is

minimize .34476177x3
subject to x3 ≤ 1

x3 ≥ 0.

The optimal solution is x2 = [x3] = [0] with objective function value
σ∗2 = 0, and so r2∗ = σ∗2 − π2

2 = 0− 0 = 0. Let v24 = v23 = x2.

Step 3:
rmin = r1∗ = −2.55238227, and so

a =

[
q13
e1

]
=

[
L1v

1
3

e1

]
=


[

1 1
] [ 4

6

]
1
0

 =

 10
1
0

 .

Step 4: Bd = −a and so d =

 −0.04285665
−0.95714335

0

 .
Step 5: α =min

{
− 0.05142798
−0.04285665 ,−

0.94857202
−0.95714335

}
= 0.99104489, and so λ13 = α.
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Step 6: xB =

 λ12
λ11
λ21

 =

 0.05142798
0.94857202

1

+(0.99104489)

 −0.04285665
−0.95714335

0

 = 0.00895511
0
1

 , so λ11 leaves the basis and λ13 enters the basis and the up-

dated basic variable set is

xB =

 λ12
λ13
λ21

=

 0.00895511
0.99104489

1

.

Step 7: Column a enters the basis and the column (0, 1, 0)T associated
with λ11 leaves the basis, and so

B =

 233.336035 10 0
1 1 0
0 0 1

 .
Go to Step 1.

Iteration 4

Step 1: fB =

 f12
f13
f21

 =

 (c1)T v12
(c1)T v13
(c2)T v21

 =


[
−2 −3

] [ 152.89068985
80.44534492

]
[
−2 −3

] [ 4
6

]
0



=

 −547.11741446
−26

0

 ,
then solving BTπ = fB gives

π =

 π1

π2
1

π2
2

 =

 π1
1

π2
1

π2
2

 =

 −2.33333333
−2.66666667

0

 .
Step 2:

Now the objective functions of SP1 is σ1 = (
(
c1
)T − (π1)TL1)x1 =

.33333333x1 − .66666667x2, and so SP1 is

minimize .33333333x1 − .66666667x2
subject to − x1 + x2 ≤ 2

− x1 + 2x2 ≤ 8
x1 ≥ 0, x2 ≥ 0.
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The optimal solution is x1 =

[
x1
x2

]
=

[
152.50614560
80.25307280

]
with objective

function value σ∗1 = −2.66666667, and so r1∗ = σ∗1 − π2
1 = −2.66666667 −

(−2.66666667) = 0. Let v14 = x1.

Now the objective function of SP2 is σ2 = (
(
c2
)T − (π1)TL2)x2 =(

c2
)T
x2 = .33333333x3, so SP2 is

minimize .33333333x3
subject to x3 ≤ 1

x3 ≥ 0.

The optimal solution is x2 = [x3] = [0] with objective function value
σ∗2 = 0, and so r2∗ = σ∗2 − π2

2 = 0− 0 = 0. Let v25 = v24 = v23 = x2.

Step 3:

Since rmin = 0, STOP the optimal solution to the restricted master prob-
lem is

xB =

 λ12
λ13
λ21

=

 0.00895511
0.99104489

1

 .
Thus, the optimal solution in the original variables are recovered as

x1 =

[
x1
x2

]
= λ12v

1
2 + λ13v

1
3

= 0.00895511 ∗
[

152.50614560
80.25307280

]
+ 0.99104489 ∗

[
4
6

]

=

[
5.33333251
6.66666626

]
and

x2 = [x3] = λ21v
2
1 = 1 ∗ 0 = 0.

(Note: the exact optimal solution is x1 = 51
3 , x2 = 62

3 , x3 = 0 and the
answer provided above by the decomposition is approximate due to rounding
estimates.)
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5.5.1 Economic Interpretation

The Dantzig Wolfe decomposition algorithm has the following economic inter-
pretation, which supports the view that it is a price-directed decomposition
as described earlier. The original linear program with block angular structure
represents a company with K subdivisions (subproblems) where subdivision
k independently produces its own set of products according to its set of con-
straints Akx

k ≤ bk. But all subdivisions require the use of a limited set of
common resources, which give rise to the linking constraints. The company
wishes to minimize the cost of production over all products from the K subdi-
visions. The master problem represents a company-wide supervisor that man-
ages the use of the common resources. At an iteration of the Dantzig-Wolfe
decomposition, the restricted master problem generates a master production
plan represented by the basis B based on the production plan (proposals)
sent by the subdivisions. The basis represents that fraction or weight of each
proposal in the master plan.

Then, the supervisor is responsible for the computation of the vector π1,
which represents the calculation of the prices for the common resources where
−π1

i is the price for consuming a unit of common resource i. These (marginal)
prices reflect demand for the common resources by the master plan, are an-
nounced to all of the subdivisions, and are used by each subdivision in the
coefficients of its objective function in constructing its optimal production
plan (proposal). Recall that the objective of subdivision k is to minimize

σk = (
(
ck
)T − (π1)TLk)xk,

where
(
ck
)T
xk is the original objective function of the subdivision and repre-

sents its own specific (i.e., not related to other subdivisions) costs, and Lkx
k,

is the quantity of common resources consumed by the production plan (pro-
posal) xk. Thus, the total costs of using common resources by subdivision k
is represented by −(π1)TLkx

k, and so the more it uses the common resources
the worse the overall objective will be.

The proposal that gives the greatest promise in reducing costs for the com-
pany (i.e., that proposal that achieves rmin < 0) is selected by the supervisor.
If all proposals are such that rmin ≥ 0, then there are no further cost savings
possible and the current production plan is optimal. However, if a proposal
is selected and a new production plan is generated by the supervisor, since
the weights of the current proposals must be adjusted (this is accomplished
by the updating of the basic variables) so that the capacities of the common
resources are not violated with the introduction of a new proposal. A new set
of prices are generated and the process iterates.

Thus, the Dantzig-Wolfe decomposition represents a decentralized mech-
anism for resource allocation as the decision making for actual production
lies within the subdivisions and the coordination is accomplished through the
prices set by the supervisor which reflect supply and demand. The prices serve
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to guide the subdivisions to a production plan that is systemwide (company-
wide) cost optimal, which represents an equilibrium where supply and demand
are balanced.

5.5.2 Initialization

To start the Dantzig-Wolfe decomposition, the master problem requires an
initial basic feasible solution. The strategy is to develop an auxiliary problem
similar to a Phase 1 approach for the revised simplex method in Chapter
3. First, an extreme point xk = vk1 is generated for each subproblem SPk
using the Phase 1 approach for the revised simplex method. If any of the
subproblems do not have a feasible extreme point, then the original problem
is infeasible. Even if all subproblems admit an extreme point, it might be the
case that the linking constraints might be violated. Like the Phase I procedure
for the simplex method, artificial variables xa can be added to the linking
constraints and these artificial variables are then minimized. So the auxiliary
problem for the master problem is

minimize eTxa

subject to
K∑
k=1

Nk∑
i=1

λki (Lkv
k
i ) +

K∑
k=1

lk∑
j=1

µkj (Lkd
k
j ) + xa = b0∑Nk

i=1 λ
k
i = 1 k = 1, ...,K

λki ≥ 0 , i = 1, ..., Nk k = 1, ...,K
µkj ≥ 0 , j = 1, ..., lk k = 1, ...,K
xa ≥ 0.

An initial basic feasible solution for the auxiliary problem is to let λk1 = 1
for all k = 1, ...,K, λki = 0 for i 6= 1, µkj = 0 for all k and j, and xa =

b0−
K∑
k=1

λk1(Lkv
k
1 ). Recall that the points vk1 are generated earlier by the Phase

I method applied to SPk. Therefore, if eTxa > 0, then the master problem
is infeasible, else eTxa = 0 and the optimal solution to the auxiliary problem
will provide an initial basic feasible solution for the master problem.

5.5.3 Bounds on Optimal Cost

It is found through computational experiments that the Dantzig-Wolfe decom-
position can often take too much time before termination in solving very large
problem instances. However, the method can be stopped before optimality has
been achieved and one can evaluate to some extent how close the current basic
feasible solution is from optimal. An objective function value based on a feasi-
ble solution obtained before optimality represents an upper bound (assuming
a minimization problem) on the optimal objective function value. The idea is
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to now generate a feasible solution of the dual of the restricted master prob-
lem; the associated objective function value will give a lower bound. Thus,
both upper and lower bounds can be obtained on the optimal cost.

Theorem 5.4

Suppose the master problem is consistent and bounded with optimal objec-
tive function value z∗. Let xB be the basic variables from a feasible solution
obtained from the Dantzig-Wolfe decomposition before termination and de-
note z as its corresponding objective function value. Further assume that the
subproblems SPk are bounded with optimal objective function value σ∗k, then

z +
K∑
k=1

(σ∗k − π2
k) ≤ z∗ ≤ z

where π2
k is the dual variable associated with the convexity constraint of sub-

problem k in the master problem.

Before the proof of Theorem 5.4 is presented, we give the following lemma.

Lemma 5.5

Let x be a non-optimal feasible solution for the master problem that is
generated during an intermediate step of the Dantzig-Wolfe decomposition and
suppose that all subproblems are bounded. Then, a feasible solution for the
dual of the master problem exists whose objective function value is equal to
the objective function value of master problem at x.

Proof:

Let z denote the objective function of the master problem at x. Without
loss of generality, we consider the case that there are only two subproblems
and all complicating constraints are equality constraints, and so the master
problem is

minimize
N1∑
i=1

λ1i f
1
i +

N2∑
i=1

λ2i f
2
i +

l1∑
j=1

µ1
i f

1

j +
l2∑
j=1

µ2
i f

2

j

subject to
N1∑
i=1

λ1iL1v
1
i +

N2∑
i=1

λ2iL2v
2
i = b0∑N1

i=1 λ
1
i = 1∑N2

i=1 λ
2
i = 1

λ1i ≥ 0 i = 1, ..., N1

λ2i ≥ 0 i = 1, ..., N2.

The dual of the master problem is then
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minimize (π1)T b0 + π2
1 + π2

2

subject to (π1)TL1v
1
i + π2

1 ≤ f1i ∀v1i ∈ P1

(π1)TL1d
1
j ≤ f

1

j ∀d1j ∈ P1

(π1)TL2v
2
i + π2

2 ≤ f2i ∀v2i ∈ P2

(π1)TL2d
2
j ≤ f

2

j ∀d2j ∈ P2.

Assuming that the master problem is solved using the revised simplex
method, there is a dual solution (simplex multipliers) π =

[
π1 π2

1 π2
2

]
such that the objective function value of the dual (π1)T b0 + π2

1 + π2
2 = z.

However, π is infeasible except at optimality of the revised simplex method.
To obtain a feasible dual solution, the boundedness of the subproblems are
exploited.

The first subproblem SP1 is

minimize σ1 = (
(
c1
)T − (π1)TL1)x1

subject to A1x
1 ≤ b1

x1 ≥ 0.

The optimal solution is some extreme point v1i∗ ∈ P1 with corresponding
finite objective function value

σ∗1 = (
(
c1
)T − (π1)TL1)v1i∗ =

(
c1
)T
v1i∗ − (π1)TL1v

1
i∗ .

Furthermore, there is no direction in P1 for which SP1 is unbounded, and
so we have for all directions d1j ∈ P1

f
1

j − (π1)TL1d
1
j = (c1)T d1j − (π1)TL1d

1
j ≥ 0.

This suggests that we can use the quantity σ∗1 instead of π2
1 since π1 and

σ∗1 are feasible for the first two constraints of the dual problem. In a similar
fashion, since the second subproblem SP2 is bounded, we can use

σ∗2 = (
(
c2
)T − (π1)TL2)v2i∗ =

(
c2
)T
v2i∗ − (π1)TL1v

2
i∗

in place of π2
2 . Therefore, the solution πf =

[
π1 σ∗1 σ∗2

]
is feasible for the

dual problem.�

Proof of Theorem 5.4:
Now the objective function value of the master problem at x is z =

(π1)T b0 + π2
1 + π2

2 where π =
[
π1 π2

1 π2
2

]
is the vector of simplex multi-

pliers associated with x. By Lemma 5.5, the solution

πf =
[
π1 σ∗1 σ∗2

]
is dual feasible.
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Thus, by weak duality of linear programming we have

z∗ ≥ (π1)T b0 + σ∗1 + σ∗2

= [(π1)T b0 + π2
1 + π2

2 ] + σ∗1 − π2
1 + σ∗2 − π2

2

= z +
2∑
i=1

(σ∗i − π2
i ).

�

Example 5.6
Consider the basic variables at the end of the second iteration in Example

5.2

xB =


s1
λ12
λ11
λ22

=


1

0.5
0.5
1

, then z = fTBxB =
[

0 −6 0 −9
] 

1
0.5
0.5
1

 =

−12

Also,
2∑
k=1

(σ∗k−π2
k) = (σ∗1−π2

1)+(σ∗2−π2
2) = (−4−0)+(− 10

3 −(−3)) = −4 1
3 ,

so we have −16 1
3 ≤ z

∗ ≤ −12. Recall that for this problem z∗ = −14.

5.6 Dantzig-Wolfe MATLABR© Code

A MATLAB function DantzigWolfeDecomp

function [x, fval, bound, exit flag] = DantzigWolfeDecomp(mast, sub, K)

is given below that implements the Dantzig-Wolfe decomposition. The argu-
ment mast is a struct that contains the coefficients of the linking constraints
Li and sub is a struct that contains the coefficients of the subproblems, i.e.,
ci, Ai, and bi as well as the initial extreme points for each subproblem. K is
the number of subproblems.

Consider the linear program in Example 5.1:

minimize −2x1 −3x2 −5x3 −4x4
subject to x1 + x2 + 2x3 ≤ 4

x2 + x3 + x4 ≤ 3
2x1 + x2 ≤ 4
x1 + x2 ≤ 2

x3 + x4 ≤ 2
3x3 + 2x4 ≤ 5

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 x4 ≥ 0.
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The LP is in the form

minimize cTx
subject to Ax = b

x ≥ 0

where that data c, A, and b are entered in MATLAB as
c=[-2; -3; -5; -4];
A= [1 1 2 0;

0 1 1 1;
2 1 0 0;
1 1 0 0;

0 0 1 1;
0 0 3 2];

b=[4; 3; 4; 2; 2; 5];

There are two subproblems, and so K is set equal to 2, i.e., in MATLAB
we have

K=2; %number of subproblems

Now, the first two constraints of the LP are the linking constraints and
the submatrices and corresponding right-hand side values are

L1 =

[
1 1
0 1

]
, L2 =

[
2 0
1 1

]
, b0 =

[
4
3

]
,

and are written in MATLAB as

mast.L{1}=A(1:2, 1:2);
mast.L{2}=A(1:2, 3:4);
mast.b=b(1:2);

The cost coefficient vector, constraint matrix, and right-hand coefficient
vector of the first subproblem are given as

c1 =

[
−2
−3

]
, A1 =

[
2 1
1 1

]
, and b1 =

[
4
2

]
and the corresponding MATLAB statements to represent these matrices are

sub.c{1}=c(1:2);
sub.A{1}=A(3:4, 1:2);
sub.b{1}=b(3:4);

The cost coefficent vector, constraint matrix and right hand coefficient
vector of the second subproblem are given as
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c2 =

[
−5
−4

]
, A2 =

[
1 1
3 2

]
, and b2 =

[
2
5

]

and the corresponding MATLAB statements to represent these matrices are

sub.c{2}=c(3:4);
sub.A{2}=A(5:6, 3:4);
sub.b{2}=b(5:6);

The initial extreme points for each subproblem are set to the origin in the
feasible set for each subproblem and in MATLAB are written as

sub.v{1}=zeros(length(sub.c{1}),1); sub.v{2}=zeros(length(sub.c{2}),1);

Finally, once the data is entered as above, the function DantzigWolfeDe-
comp can be called by the following MATLAB statement

[x DanWof, fval DanWof, iter, exitflag DanWof] = DantzigWolfeDe-
comp(mast, sub, K)

The optimal solution can be accessed in MATLAB by entering x DanWof
at the prompt, i.e.,

>> x DanWof

x DanWof =

1.0000
1.0000
1.0000
1.0000

The optimal objective function can be accessed by typing fval DanWof at
the prompt, i.e.,

>> fval DanWof

fval DanWof =

-14.0000

5.6.1 DantzigWolfeDecomp MATLAB Code

function [x, fval, bound, exit_flag] = DantzigWolfeDecomp(mast, sub, K)

%DantzigWolfeDecomp solves a linear programming with a special structure:

% min c’*x

% s.t. A*x <= b

% x >= 0

%where A is an m*n matrix which can be write as block angular form:

% __ __ __ __ __ __ __ __

% | L1 L2 ... Lk | | x1 | | c1 | | b0 |

© 2014 by Taylor & Francis Group, LLC



208 Introduction to Linear Optimization and Extensions with MATLAB R©

% | A1 | | x2 | | c2 | | b1 |

% A = | A2 |, x = | : |, c =| : |, b = | b2 |

% | ... | | : | | : | | : |

% |__ Ak __| |__ xk __| |__ ck __| |__ bk __|

%so the LP can be decomposed into a master problem(MP) and k subproblems(SPk),

%we can rewrite the MP as a restricted master problem by Resolution Theorem

%

% Inputs:

% mast is a struct includes MP’s coefficients, i.e. L1,...,Lk, b0

% sub is a struct includes coefficients of SPks, i.e. c1,...,ck, A1,...,Ak,

% b1,...,bk and the initial extreme points v1, ..., vk.

% K is the number of subproblems

%

% Outputs:

% x = n*1 vector, final solution

% fval is a scalar, final objective value

% bound is a matrix includes all LBs and UBs for each iteration

% exit_flag describes the exit condition of the problem as follows:

% 0 - optimal solution

% 1 - LP is unbounded

x=[]; fval=[]; bound=[]; exit_flag=[];

%% Step 0: Initialization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate an initial basis B for the master problem.

% Let x_B be the basic variables and B_bar the index set of the basic variables

% Set all other variables to zero to get the restricted master problem.

% Go to STEP 1.

s=mast.b; %slack variables for inequality constraints

x_B=[s; ones(K,1)]; %initial basic variables

%x_Bflag is an index of the basic variables in the restricted master problem

%associated with linking constraints and subproblem k, i.e. slack variables of

%linking constraints are initially basic and other basic variables

%associated with subproblems are set to 1.

x_Bflag=[zeros(length(s),1); [1:K]’];

f_sub=[];

for k=1:K

%obtain initial extreme points from struct sub for subproblems these are

%zero vectors, so initial objective function values will be zero, v(k)

%is initial extreme point of subproblem k

v_sub{k}=sub.v{k};

f_sub=cat(1, f_sub, sub.c{k}’*v_sub{k});

for a=1:length(s)

%generating initial extreme point for linking constraint

%v_L{a,k}= initial extreme point of linking constraint of Lk
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%b(k) is the RHS vector in A_k*x^k=b^k

v_L{a,k}=zeros(length(sub.b{k}),1);

end

end

f_s=zeros(length(s),1);

f_B=[f_s; f_sub]; %initial f_B i.e. the objective coefficient of

%the restricted MP

B=eye(length(x_B)); %initial basis for master problem

iter_num=0; %counter

options=optimset(’LargeScale’, ’on’, ’Simplex’, ’off’);%choose largescale LP

%solver in linprog

while iter_num>=0

%% Step 1: Simplex Multiplier Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve for duals by solving the system B^T*pie=f_B, then Go to STEP2.

pie=B’\f_B; %solve B^T*pie=f_B

pie_sub=pie(end-K+1:end);%duals of kth convexity constraints, pie_k_2

pie(end-K+1:end)=[]; %duals of linking constraints, pie_1

%% Step 2: Optimality Check

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% For each k=1,...,K, using the revised simplex method to solve SP_k i.e.

% min sig_k=[(c^k)^T-(pie^1)^T*L_k]*x^k

% s.t.A_k*x^k <= b^k

% x^k >= 0

% If SP_k is unbounded, then Go to STEP3, else let x^k=(v_i*)^k denote the

% optimal basic feasible solution, compute(r^k)_* = (sig_k)^* - pie_k^2.

% If r_min={(r^k)_*}>=0, then the current basis B is optimal,

% else Go to STEP3.

for k=1:K

c_sub=[sub.c{k}’-pie’*mast.L{k}]’; %update the objective coefficient

[x_sub{iter_num+1, k}, sig(k) exitflag(k)] = ... %call linprog solver

linprog(c_sub, sub.A{k}, sub.b{k},[],[],...

zeros(length(c_sub),1),[],[],options);

sig(k)=sig(k)-pie_sub(k); %computer (r^k)_*

end

r_min=min(sig); %minimum ratio test to obtain r_min

r_minflag=find(sig==r_min);

if isempty(find(r_min < 0)) || abs(r_min) <= 1e-8 %reduced cost>=0, optimal

disp(’problem solved’)

fval=0;

x_Bflag_s=x_Bflag(1:length(s));

for k=1:K %convert to optimal solution for original LP

x{k,1}=x_B(length(s)+k)*v_sub{k};

for a=1:length(x_Bflag_s)

if x_Bflag_s(a)==k
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x{k}=x{k}+x_B(a)*v_L{a, k};

end

end

%convert to optimal obj val for original LP

fval=fval+sub.c{k}’*x{k};

end

x=cell2mat(x);

exit_flag=0;

break

else

%% Step 3: Column Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% If all subproblems are bounded and r_min={(r^k)_*}<0, then let t be

% the index of k in SP_k such that r_min=(r^t)_*.

% Let alpha_bar=[q_i*^t e_t]^T =[L_t*v_i*^t e_t]^T where v_i*^t is the

% optimal extreme points of SP_t and Go to STEP4. Else there is a

% subproblem SP_s that is unbounded and so an extreme direction d_j*^s

% will be generated such that [(c^s)^T-(pie^1)^T*L_s]*d_j*^s < 0 and

% so let alpha_bar = [(q_bar)_j*^s 0]^T = [L_s*d_j*^s 0]^T and

% go to STEP4.

if length(find(exitflag==1)) == K %if subproblems bounded and r_min<0

t=r_minflag(1); %subproblem t such that r_min=r_*_t

q_t=mast.L{t}*x_sub{iter_num+1,t}; %generate q_i*_t

e=zeros(length(x_B)-length(q_t),1);

e(t)=1; %generate e_t

alpha_bar=[q_t; e]; %generate alpha_bar

else %if any subproblems is unbounded

disp(’unbouded subproblem exist’)

unboundflag=find(exitflag==-3);

t=unboundflag(1); %subproblem s with extreme direction d_j*^s

q_t=mast.L{t}*x_sub{iter_num+1,t}; %generate (q_bar)_j*^s

%generate alpha_bar

alpha_bar=[q_t; zeros(length(x_B)-length(q_t),1)];

end

end

%% Step 4: Descent Direction Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve for d in the linear system Bd = -alpha_bar.

% If d>=0, then the LP is unbounded STOP, else go to STEP5.

d=-B\alpha_bar; %solve Bd=-alpha_bar

d_flag=find(d<0);

if isempty(d_flag) %if d>=0, unbounded

disp(’unbounded LP’)

exit_flag=1;

return
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else %else Go to STEP 5

%% Step 5: Step Length Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Computer the step length alpha by minimum ratio test. Let l* be

% the index of the basic variables then attains the minimum ratio

% alpha. Go to STEP 6.

alpha=min(x_B(d_flag)./abs(d(d_flag))); %minimum ratio test

%% Step 6: Update Basic Variables and Basis

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Let x_B = x_B + alpha*d. Go to STEP 7.

x_B=x_B+alpha*d; %get new basis variables

delta=1e-30; %computation error tolerance

leave=find(abs(x_B)<=delta); %index of leave variable

while isempty(leave)

delta=10*delta;

leave=find(abs(x_B)<=delta);

end

x_B(leave(1))=alpha;

x_Bflag(leave(1))=t;

if leave(1) <= length(s) %update f_s and extreme point

f_s(leave(1))=sub.c{t}’*x_sub{iter_num+1,t};

v_L{leave(1),t}=x_sub{iter_num+1,t};

else

f_sub(leave(1)-length(s))=sub.c{t}’*x_sub{iter_num+1,t};

v_sub{leave(1)-length(s)}=x_sub{iter_num+1,t};

end

%% Step 7: Basis Update

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Let B_l* be the column associated with the leaving variable x_l*.

% Update the basis matrix B by removing B_l* and adding the column

% alpha_bar, and update B_set.

B(:,leave(1))=alpha_bar; %update the basis B

end

iter_num=iter_num+1;

f_B=[f_s; f_sub]; %update f_B for next iteration

bound(:,iter_num)=[f_B’*x_B + sum(sig); f_B’*x_B];%new lower/upper bound

end %Go to STEP 1

5.7 Exercises

Exercise 5.1

Consider the following linear program:
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minimize −2x1 −3x2 −5x3 −4x4
subject to x1 + 2x2 + 3x3 ≤ 8

x2 + x3 + x4 ≤ 7
3x1 + 2x2 ≤ 6
x1 + x2 ≤ 3

x3 + x4 ≤ 3
4x3 + 3x4 ≤ 6

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 x4 ≥ 0.

Exploit the structure of the linear program to solve for the optimal solution
without using Dantzig-Wolfe decomposition.

Exercise 5.2

Consider the following linear programming problem:

minimize −5x1 − 3x2 − x3
subject to x1 + 2x2 + x3 ≤ 10

x1 ≤ 3
2x2 + x3 ≤ 8
x2 + x3 ≤ 5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solve by using the Dantzig-Wolfe decomposition.

Exercise 5.3

Consider the following linear programming problem:

minimize −8x1 − 7x2 − 6x3 − 5x4
subject to 8x1+ 6x2 + 7x3 + 5x4 ≤ 80

4x1 + x2 ≤ 12
5x1+ x2 ≤ 15

7x3 + 2x4 ≤ 10
x3 + x4 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(a) Solve by Dantzig-Wolfe decomposition.

(b) Show the progress of the primal objective function (which is an upper
bound) along with the lower bound obtained from Theorem 5.4 after each
iteration.

Exercise 5.4

Consider the following linear programming problem:
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maximize 2x1 + 2x2 + 3x3 + 2x4
subject to x1+ 2x2 + 2x3 + x4 ≤ 40

−x1 + x2 + x3 + x4 ≤ 10
2x1+ 3x2 ≤ 29

5x1+ x2 ≤ 25
x3 ≤ 10

x4 ≤ 8
x3+ x4 ≤ 15

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Solve by Dantzig-Wolfe decomposition.

Exercise 5.5
Consider the following linear program:

minimize x1 − x2 − 3x3 − x4
subject to 2x1+ x2 + x3 + x4 ≤ 12

−x1 + x2 ≤ 2
3x1 − 4x3 ≤ 3

x3 + x4 ≤ 4
−x3 + x4 ≤ 2

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Solve using Dantzig-Wolfe decomposition.

Exercise 5.6
Consider the following transportation problem where there are two ware-

houses that store a product and there are three retailers that need amounts
of the product from the warehouses. The shipping cost per unit cij from a
warehouse i to a retailer j is given as follows.

Retailer 1 Retailer 2 Retailer 3
Warehouse 1 2 5 3

Warehouse 2 4 2 2

Warehouse 1 has a supply of 1000 units of the product and Warehouse 2
has a supply of 400 units of the product. The demand di of Retailer i is given
as follows.

Demand
Retailer 1 300
Retailer 2 750
Retailer 3 350
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Solve this problem by using Dantzig-Wolfe decomposition. (Hint: the mas-
ter problem involves the warehouse capacity constraints and the sub-problems
involve retailers’ demand constraints). Give an economic interpretation of each
iteration of the decomposition.

Exercise 5.7
Dantzig-Wolfe decomposition is just a special case of the revised simplex

method and so in principle, without an anti-cycling method, Dantzig-Wolfe de-
composition can cycle. Comment on the whether Bland’s method (see Chapter
3) can be used in the context of Dantzig-Wolfe decomposition.

Exercise 5.8
Consider linear programs of the following form

minimize cT0 x0 + cT1 x1 + cT2 x2 + · · · + cTNxN
subject to T0x0 + A1x1 + A2x2 + + ANxN = b0

T1x0 + W1x1 = b1
T2x0 + W2x2 = b2

...
. . .

...
TNx0 + WTxT = bT
x0 ≥ 0 x1 ≥ 0 x2 ≥ 0 , · · · , xT ≥ 0.

Discuss how Dantzig-Wolfe decomposition can be applied to linear pro-
gramming problems with the structure above.

Exercise 5.9
Solve the linear program in Exercise 5.2 by using the Dantzig-Wolfe MAT-

LAB code.

Exercise 5.10
Solve the linear program in Exercise 5.6 by using the Dantzig-Wolfe MAT-

LAB code.

Exercise 5.11
The multi-commodity flow problem is a generalization of the minimum

cost network flow problem (see Chapter 1 and Exercise 5.6) where more than
one commodity (item) can flow on a single directed network G = (N,E).
Each commodity will have its own set of demand and supply nodes and the
different commodities share the capacities on the edges. Suppose that there
are K different commodities. Then, flow variables xij and cost (or benefit)
coefficients cij will be indexed by k indicating the flow and costs (benefits)
incurred of commodity k along the network. Each bi (recall that bi > 0 if i
is a supply node, bi < 0 if i is a demand node, bi = 0 if i is a transshipment
node) will also be indexed by k indicating whether the node i ∈ N is a supply,
demand, or transshipment node for commodity k. Then, the formulation of
the multi-commodity flow problem is
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minimize
∑
k∈K

∑
(i,j)∈E

ckijx
k
ij

(flow balance constraints)
subject to

∑
{j:(i,j)∈E}

xkij −
∑

{j:(j,i)∈E}
xkji = bki for all i ∈ N and k ∈ K

(edge capacity constraints)∑
k∈K

xkij ≤ uij for all (i, j) ∈ E

(non-negativity constraints)
xkij ≥ 0 for all (i, j) ∈ E and k ∈ K.

The model is amenable to decomposition by observing that the edge ca-
pacity constraints are the linking constraints without which the model would
decompose into K individual minimum cost flow problems, one for each com-
modity k ∈ K. Thus, in a Dantzig-Wolfe decomposition, a subproblem will
be formed for each commodity. The master problem will contain the capacity
constraints.

Consider the following multi-commodity transportation problem where
there are K = 2 types of commodities to be shipped from 2 warehouses to 3
retailers. The demand of each commodity from a retailer is given as

Demand Commodity 1 Commodity 2
Retailer 1 10 9
Retailer 2 19 15
Retailer 3 8 10

The supply of each commodity at each warehouse is given as

Supply Commodity 1 Commodity 2
Warehouse 1 12 16
Warehouse 2 25 18

The benefit per unit of commodity 1 shipped from a warehouse to a retailer
is given as

Benefit Retailer 1 Retailer 2 Retailer 3
Warehouse 1 35 54 66
Warehouse 2 62 43 39

The benefit per unit of commodity 2 shipped from a warehouse to a retailer
is given as

Benefit Retailer 1 Retailer 2 Retailer 3
Warehouse 1 67 22 41
Warehouse 2 58 37 72
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The maximum that can be shipped from a warehouse to a retailer is given
as

Retailer 1 Retailer 2 Retailer 3
Warehouse 1 16 27 14
Warehouse 2 9 18 22

(a) Formulate the problem of finding the shipments of each commodity
from the warehouses to retailers that maximizes total benefit.

(b) Solve the formulation in (a) by using Dantzig-Wolfe decomposition
showing for each iteration a lower bound and upper bound on the optimal
objective function value.

Notes and References
Dantzig-Wolfe decomposition was developed by Dantzig and Wolfe (1960)

and was motivated by the work in multi-commodity flows by Ford and Fulk-
erson (1958). The importance of the decomposition waned in the following
years with the advent of more powerful simplex algorithms. Despite this, the
decomposition strategy has considerable value and is an important technique
in many combinatorial optimization problems, such as vehicle routing and
crew scheduling, where such a problem can be formulated as a linear integer
program (i.e., a linear program, but with restrictions that some variables take
on discrete values) and then the linear programming relaxation is considered
and is solved by a column generation technique such as Dantzig-Wolfe de-
composition; see Desrochers, Desrosiers, and Solomon (1992), Barnhart et al.
(1998), and Simchi-Levi, Chen, and Bramel (2005). The linear programming
relaxations for these routing and scheduling problems otherwise would not be
able to be stored on a computer due to an exponential number of columns.

The cutting stock problem (see Gilmore and Gomory 1961), involved
column-generation techniques similar to that in the Dantzig-Wolfe decom-
position. Recent computational studies of the Dantzig-Wolfe decomposition
method can be found in Tebboth (2001). The presentation of Dantzig-Wolfe
in this chapter is motivated by exploiting the structure of linear programs,
e.g., block angular. Dantzig-Wolfe decomposition can be developed in a more
general context where the only requirements are that it is possible to sepa-
rate constraints into a hard and easy classification, see Bazaraa, Jaris, and
Sherali (1977) and Chvatal (1983). Classical references for Dantzig-Wolfe in-
clude those by Dantzig (1963) and Lasdon (1970). Running the Dantzig-Wolfe
decomposition on the dual of a block angular linear program results in the
method called Benders decomposition; see Benders (1962), which is a con-
straint generation method and is an important framework for solving stochas-
tic linear programs, as will be seen in Chapter 8. A more recent reference
highlighting the importance of Dantzig-Wolfe decomposition in many engi-
neering applications in energy and other areas can be found in Conejo et al.
(2006).
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Interior Point Methods

6.1 Introduction

In this chapter, we consider a class of methods for linear programming that
finds an optimal solution by going through the interior of the feasible set as
opposed to traversing extreme points as in the simplex method. This class of
methods goes by the name of interior point methods referring to the strat-
egy of going through the interior of the feasible set. Interior point methods
have become an important part of the optimization landscape over the last
twenty years, and for linear programming these methods have become very
competitive with the simplex method.

The general appeal of interior point methods is that they can exhibit both
good practical and theoretical properties. For example, although the simplex
method performs very well in practice, it can, (as seen in Chapter 3) in the
worst case, explore most or all extreme points thereby exhibiting exponen-
tial worst-case complexity. For this chapter, we develop a variant of interior
point methods called primal-dual path-following methods, which is found to
be very effective in solving linear programs and exhibits polynomial worst-case
complexity, i.e., the number of basic computational steps needed to find an
optimal solution is bounded in the worst case by a polynomial whose value is
a function of the size of the problem and desired level of accuracy.

6.2 Linear Programming Optimality Conditions

Consider a linear program in standard form and call this the primal problem
(P)

minimize cTx
subject to Ax = b

x ≥ 0

where x ∈ Rn and b ∈ Rm. Then, the dual problem (D) is
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minimize bTπ
subject to ATπ ≤ c

by adding slack variables we get

minimize bTπ
subject to ATπ + z = c

z ≥ 0.

From Chapter 4, we know that x∗ is an optimal solution to the primal
problem (P) if and only if

x∗ is primal feasible i.e. Ax∗ = b. (6.1)

There are vectors π∗ and z∗ such that ATπ∗ + z∗ = c. (6.2)

Complementary slackness holds i.e. x∗i z
∗
i = 0 for i = 1, ..., n. (6.3)

Non-negativity i.e. x∗ ≥ 0 and z∗ ≥ 0. (6.4)

Conditions (6.1), (6.2), (6.3), and (6.4) can in general be written as

Ax = b
ATπ + z = c
XZe = 0
x ≥ 0, z ≥ 0

where X = diag(x), i.e.,

X =


x1 0 0 0
0 x2 0 0

0 0
. . . 0

0 0 0 xn

 ,
and Z = diag(z), i.e.,

Z =


z1 0 0 0
0 z2 0 0

0 0
. . . 0

0 0 0 zn

 .
e is a vector in Rn, all of whose entries are 1. Conditions (6.1)–(6.4) are also

known as the Karush Kuhn Tucker (KKT) conditions for linear programming.
Thus, the KKT conditions are both necessary and sufficient for optimality of
linear programs.

Except for the non-negativity condition (6.4), the KKT conditions consti-
tute a system of equations where conditions (6.1) and (6.2) represent linear
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equations and condition (6.3) represents a system of non-linear equations.
Then, collectively, conditions (6.1), (6.2), and (6.3) represent a system of
non-linear equations. Any strategy for obtaining an optimal solution needs
to generate a solution that will satisfy this system of non-linear equations
along with the non-negativity requirements. The Newton-Raphson method is
an important iterative technique for solving systems of non-linear equations
and will be used as a vital component of interior point methods. We now give
a brief overview of this important method.

6.2.1 Newton-Raphson Method

Suppose that we wish to solve

f(x) = 0

where f(x) is a function from Rn to Rn, i.e., it is a vector valued function. In
particular,

f(x) =


f1(x)
f2(x)

...
fn(x)

 =


0
0
...
0


where fi(x) is a function from Rn to R, i.e., a real-valued function. If x∗ is
such that f(x∗) = 0 , then x∗ is called a root of f(x).

Example 6.1
Consider the following non-linear system of equations:

x21 + x22 + x23 = 3
x21 + x22 − x3 = 1
x1 + x2 + x3 = 3,

then, the non-linear equations can be represented as

f(x) =

 f1(x)
f2(x)
f3(x)

 =

 x21 + x22 + x23 − 3
x21 + x22 − x3 − 1
x1 + x2 + x3 − 3

 =

 0
0
0

 .
The Newton-Raphson method starts with an initial guess of the root of

f(x) and then produces iterates that each represent a successive approxima-
tion of the root of f(x). The idea in Newton-Raphson is to generate the next
iterate by linearizing the function f(x) at the current iterate x(k) and then
solving for the root of the linearized function. Then, under suitable conditions
the sequence {x(k)} will converge to x∗ where x∗ is a root of f(x).

The linearization of f(x) is accomplished by taking the Taylor series ap-
proximation at x(k). Let d ∈ Rn be a direction vector, then
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f(x(k) + d) ≈ f(x(k)) +∇f(x(k))d

where ∇f(x(k)) is the n× n Jacobian matrix of f(x) at x(k), i.e., the ith row
is the transpose of the gradient of fi(x) at x(k)

∇f(x(k)) =


∇f1(x(k))T

∇f2(x(k))T

...
∇fn(x(k))T

 =


df1

dx1

df1

dx2
· · · df1

dxn
df2

dx1

df2

dx2
· · · df2

dxn
. . .

dfn
dx1

dfn
dx2

· · · dfn
dxn

 .

Now we solve for the direction d that would give the next approximate
root x(k+1) by finding d such that

f(x(k+1)) ≈ f(x(k)) +∇f(x(k))d = 0

to get

d = −[∇f(x(k))]−1f(x(k)).

The vector d is called the Newton direction and the following formula

x(k+1) = x(k) + d = x(k) − [∇f(x(k))T ]−1f(x(k))

is known as the (k+1)st Newton-Raphson iterate. Now, the Newton-Raphson
method can be summarized as follows.

Newton-Raphson Method

Step 0: (Initialization)
Let x(0) be an initial point and k = 0.

Step 1: (Generating Newton direction)
Compute d(k) = −[∇f(x(k))]−1f(x(k)).

If d(k) ≈ 0, then stop, else go to Step 2.

Step 2: (Step Length)
Set α(k) = 1 and go to Step 3.

Step 3: (Generating next iterate)
x(k+1) = x(k) + α(k)d(k), k = k + 1

Go to Step 1.

Example 6.2
Consider the system of non-linear equations in Example 6.1, i.e.,
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f(x) =

 f1(x)
f2(x)
f3(x)

 =

 x21 + x22 + x23 − 3
x21 + x22 − x3 − 1
x1 + x2 + x3 − 3

 .
The Jacobian of f(x) is

∇f(x) =

 2x1 2x2 2x3
2x1 2x2 −1
1 1 1

 .
Step 0: Let x(0) = (1, 0, 1)T .

Iteration 1
Step 1: Compute d(0) = −[∇f(x(0))]−1f(x(0)), or equivalently solve for

d(0) in

[∇f(x(0))]d(0) = −f(x(0)), i.e.,

 2 0 2
2 0 −1
1 1 1


 d

(0)
1

d
(0)
2

d
(0)
3

 = −

 −1
−1
−1

 ,
so

d(0) =

 1/2
1/2
0

 .
Go to Step 2.

Step 2: x(1) = x(0) + (1)d(0) =

 1
0
1

+ (1)

 1/2
1/2
0

 =

 3/2
1/2
1

 .
Go to Step 1.
Iteration 2
Step 1: Solve [∇f(x(1))]d(1) = −f(x(1)), i.e.,

 3 1 2
3 1 −1
1 1 1


 d

(1)
1

d
(1)
2

d
(1)
3

 = −

 1/2
1/2
0

 ,
so

d(0) =

 −1/4
1/4
0

 .
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Go to Step 2.

Step 2: x(2) = x(1) + (1)d(1) =

 3/2
1/2
1

+ (1)

 −1/4
1/4
0

 =

 5/4
3/4
1

 .
Table 6.1 shows the first 6 of the first 20 iterates of the Newton-Raphson

method. It should be noted that the error between successive iterates, i.e.,∥∥x(k+1) − x(k)
∥∥ is reduced by half, each iteration, which results in rapid con-

vergence toward the root x∗ =
[

1 1 1
]
.

Table 6.1 First 20 Newton-Raphson iterates for Example 6.1

k x
(k)
1 x

(k)
2 x

(k)
3 d

(k)
1 d

(k)
2 d

(k)
3

∥∥x(k+1) − x(k)
∥∥

0 1 0 1 0.5 0.5 0 0.707107
1 1.5 0.5 1 −0.25 0.25 0 0.353553
2 1.25 0.75 1 −0.125 0.125 0 0.176777
3 1.125 0.875 1 −0.0625 0.0625 0 0.088388

4 1.0625 0.9375 1 −0.03125 0.03125 0 0.044194
5 1.03125 0.96875 1 −0.015625 0.015625 0 0.022097
6 1.015625 0.984375 1 −0.007813 0.007813 0 0.011049
...

...
...

...
...

...
...

...
20 1.000001 0.999999 1 −4.77E-07 4.77E-07 0 6.74E-07

Comments

(1) The Newton-Raphson method assumes that ∇f(x(k))T is invertible at
each iteration.

(2) It is not guaranteed that x(k+1) is a better approximate root than x(k),
and the success of the method will depend on the initial point x(0).

(3) In computing the direction vector, it is better to solve [∇f(x(k))]d(k) =
−f(x(k)) instead of calculating the inverse of the Jacobian directly.

(4) A step length of α(k) = 1 is not necessary, e.g., line search methods
can be used to find the step lengths at each iteration that do not have to be
1; see Nocedal and Wright (1999).

Convergence

The Newton-Raphson method produces a sequence of iterates. One im-
portant issue is whether the sequence will converge toward a root x∗ of the
function f(x). For the Newton-Raphson method to work well, it is critical
that the initial point x(0) is sufficiently close to the root or the method might
breakdown. If an initial point is close enough to a root, then the method will
converge quadratically toward the root; see Dennis and Schnabel (1983) or
Ortega and Rheinboldt (1970).
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FIGURE 6.1
Interior point trajectory for solving a linear program.

6.3 Primal-Dual Interior Point Strategy

Recall that the simplex method is a strategy that starts at an extreme point.
moves to an adjacent extreme point, and iterates until at optimality finds
vectors x, π, and z that satisfies the KKT conditions. In particular, at each
iteration it was seen that the simplex method generates an extreme point
that is primal feasible and satisfies complementary slackness and at termina-
tion when optimality is achieved a dual feasible solution is generated, thereby
satisfying all of the KKT conditions. Simplex methods are called boundary
point methods since only extreme points are considered and are points on the
edge or boundary of the feasible set. The foundation for the strategy for inte-
rior point methods is the same as for simplex methods. That is, both classes
of methods seek to satisfy the KKT conditions for linear programming.

By contrast, the interior point method strategy that we consider gener-
ates points that are interior to the feasible set and ultimately converge to an
optimal extreme point of the original linear programming problem; see Fig-
ure 6.1. The interior point strategy will start with an initial interior solution
(x(0), π(0), z(0)), i.e., x(0) > 0, z(0) > 0, with Ax(0) = b, i.e., satisfies primal
feasibility, and dual feasibility is satisfied, i.e., ATπ(0) + z(0) = c and seeks to
iteratively solve the KKT conditions of the original primal problem by main-
taining at each iteration primal and dual feasibility while reducing the duality
gap (i.e., getting closer to maintaining complementary slackness).

An important component of the interior point strategy is the use of the
Newton-Raphson method to solve the system of non-linear equations that
represent the KKT conditions of the linear programming problem. However,
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the Newton-Raphson method will not be directly applied to the KKT con-
ditions of the original linear programming problem. Applying the method as
described earlier to conditions (6.1),(6.2), and (6.3) will often produce vectors
that have zero or negative components since the step length, which is always
set at α = 1 will be too long in many instances.

The idea to overcome the limitations of using the Newton-Raphson method
directly on the original linear program is to modify the original linear program
in a way that will facilitate the generation of interior points while allowing
good progress toward reaching optimality. This will require a modification of
the Newton-Raphson method to allow variable step lengths along directions
that will offer good improvement toward reaching optimality. We first discuss
the modification of the original linear program.

6.3.1 Barrier Reformulation

The key idea behind the primal-dual interior point strategy is to modify the
primal problem by adding a logarithmic barrier term in the objective func-
tion in place of the non-negativity requirement of the primal variables. The
modified primal problem is

maximize cTx− µ
n∑
i=1

ln(xi)

subject to Ax = b
(6.5)

where µ > 0 is a positive constant and this problem will be denoted by Pµ.

Observe that as xi gets close to 0, then ln(xi)→ −∞ and so the objective
function prevents the variables x from becoming zero. Pµ is no longer a linear
programming problem since the logarithmic terms are non-linear. The strategy
is now to take the Lagrangian of (6.5) and set up the equations that define
the critical points of the Lagrangian.

The Lagrangian of the (6.5) is

L(x, π) = cTx− µ
n∑
i=1

ln(xi)− πT (b−Ax),

then we have the equations that define critical points as follows

dL

dx
= c− µX−1e−ATπ = 0 (6.6)

dL

dπ
= b−Ax = 0. (6.7)

Now let z = µX−1e, then Xz = µe or XZe = µe where Z = diag(z).
Then, the conditions (6.6) and (6.7) become

ATπ + z = c (6.8)
Ax = b (6.9)

XZe = µe. (6.10)
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The conditions (6.8), (6.9), and (6.10) represent the KKT conditions for
the barrier problem for a given penalty parameter µ. Condition (6.8) is the
dual feasibility requirement and condition (6.9) is the primal feasibility re-
quirement, and these two conditions are the same as in the KKT conditions.
The major difference is that µ > 0 implies that condition (6.10) will only
approximately enforce complementary slackness, however it will ensure that
x and z will be positive and therefore in the interior of the feasible set and so
the non-negativity requirements on x and z are satisfied if condition (6.10) is
satisfied. We now define an important subset of interior feasible solutions.

Definition 6.3
The central path Γ is the set of all vectors satisfying conditions (6.8), (6.9),

and (6.10) for some µ > 0, i.e.,

Γ = {(x, π, z)| ATπ + z = c, Ax = b,XZ = µe, µ > 0}.

Γ is a curve in the interior of the feasible set of the original primal linear
program. A point on the curve of Γ is an optimal solution for Pµ for some
µ > 0. Intuitively, Γ is a path that is centered in the interior of the feasible set
of the primal problem (and dual problem) since both the primal x and dual
solutions π are kept away from the boundary of the “walls” of their respective
feasible sets; see Figure 6.2. As µ→ 0, the points on the central path converge
toward the optimal solution of the original primal linear programming problem
and its dual. This suggests that the barrier problem Pµ should be solved
repeatedly, each time using a smaller positive constant µ. That is, one should
repeatedly solve conditions (6.8), (6.9), and (6.10) for successively smaller
values of µ. These solutions will be iterates that should ultimately converge
toward satisfying the KKT conditions of the original primal problem.

6.3.1.1 Newton-Raphson Method for KKT Conditions of the Bar-
rier Problem

The conditions (6.8), (6.9), and (6.10) for a given value of µ can be represented
in functional form as

F (x, π, z) =

 ATπ + z − c
Ax− b
XZe

 =

 0
0
µe

 (6.11)

x ≥ 0 and z ≥ 0.

F is a mapping from Rm+2n to Rm+2n. This functional form represents a
non-linear system of equations due to the XZe term, and so in general cannot
be solved exactly, so the Newton-Raphson method will be used to find an
approximate solution to (6.11). Then, the Newton direction d is obtained by
solving the system

[∇F (x, π, z)]d = −F (x, π, z),
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FIGURE 6.2
Central path for a linear program.

which is the equivalent to 0 AT I
A 0 0
Z 0 X

 dx
dπ
dz

 =

 0
0

−XZe+ µe

 . (6.12)

Biased Newton-Raphson Directions

As mentioned, the Newton-Raphson method will be applied to the non-linear
system (6.11) for successively smaller positive values of µ, which will give rise
to successive systems of the form of (6.12). An important consideration is
how to decrease µ from one iteration to the next since this value will impact
the generation of a search direction d. There will be two factors that will
influence the decrement: (1) the need to have iterates in the interior of the
feasible set and (2) to have iterates move in directions that enable reduction in
the duality gap, i.e., make progress toward the optimal solution. In regard to
(1), the iterates should be near the central path Γ, since this is curve that is in
the center of the interior of the feasible set, and by being near the central path
iterates will be positioned well for long moves toward the optimal solution,
which will help with achieving (2).

Thus, µ will be expressed as product of a centering parameter τ ∈ (0, 1)
that will influence iterations to be nearer the central path the closer τ is to 1,
and a duality measure y that measures the progress of the primal-dual iterates
toward achieving optimality. In particular,

y = 1
n

n∑
i=1

xizi = xT z
n
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That is, y is the average value of the terms xizi. A smaller average indicates
more proximity to optimality. Then

µ = τy,

and thus (6.12) becomes 0 AT I
A 0 0
Z 0 X

 dx
dπ
dz

 =

 0
0

−XZe+ τye

 . (6.13)

The centering parameter τ can be selected to be less than or equal to
1 (but greater than or equal to 0) to allow a tradeoff between moving toward
the central path and reducing y.

6.3.2 General Primal-Dual Interior Point Method

We now present the general primal-dual interior point framework. The general
iterative strategy is a follows.

Step 0: Obtain an initial interior primal-dual solution (x(0), π(0), z(0)) such
that x(0) > 0, z(0) > 0, Ax(0) = b, and ATπ(0) + z(0) = c. Let k = 0 and ε be
some small positive number. Go to Step 1.

Step 1: Choose τ (k) ∈ [0, 1] and let y(k) = (x(k))T z(k)

n and µ(k) = τ (k)y(k).

Solve the following system for d(k) 0 AT I
A 0 0
Z(k) 0 X(k)


 d

(k)
x

d
(k)
π

d
(k)
z

 =

 0
0

−X(k)Z(k)e+ τ (k)y(k)e


where

X(k) = diag(x(k)) and Z(k) = diag(z(k)).

Go to Step 2.

Step 2: Let

 x(k+1)

π(k+1)

z(k+1)

 =

 x(k)

π(k)

z(k)

+ α(k)

 d
(k)
x

d
(k)
π

d
(k)
z

 ,
where α(k) is selected so that x(k+1) > 0 and z(k+1) > 0.

If the stopping criteria is met, i.e.,
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∥∥ ≤ ε∥∥ATπ(k+1) + z(k+1) − c

∥∥ ≤ ε
(x(k+1))T z(k+1) ≤ ε

for some small tolerance ε > 0, then STOP
Else let k = k + 1 and go to Step 1.

It is clear that as k →∞ and µ(k) → 0 , then

Ax(k) → b

ATπ(k) + z(k) → c

X(k)Z(k)e→ 0

and x(k) > 0, z(k) > 0.

That is, the iterates will converge toward satisfying the KKT conditions
for the original linear program.

The step length α(k) can be applied to all components of the Newton-
Raphson direction d(k) or the step lengths can be individualized, i.e., one can

define a step length parameter α
(k)
x for x(k), α

(k)
π for π(k), and α

(k)
z for z(k) to

get

x(k+1) = x(k) + α
(k)
x d

(k)
x

π(k+1) = π(k) + α
(k)
π d

(k)
π

z(k+1) = z(k) + α
(k)
z d

(k)
z .

6.3.2.1 Starting with an Infeasible Interior Point

The primal-dual framework can be modified to start with an infeasible interior
solution (i.e., with x(0) > 0 and z(0) > 0, but Ax(0) 6= b and ATπ(0)+z(0) 6= c)
in case it is not straightforward to obtain an feasible interior solution. The
construction of the search direction can be made to improve feasibility as well
as improve the centering of iterates to be near the central path. To this end,
we define the residuals

r
(k)
p = Ax(k) − b (primal residuals)

r
(k)
d = ATπ(k) + z(k) − c (dual residuals)

and modify the system of equations (6.12) to get

 0 AT I
A 0 0
Z(k) 0 X(k)


 d

(k)
x

d
(k)
π

d
(k)
z

 =

 −r(k)p

−r(k)d

−X(k)Z(k)e+ τ (k)y(k)e

 . (6.13)

© 2014 by Taylor & Francis Group, LLC



Interior Point Methods 229

The direction d(k) that is generated at the kth iteration remains a Newton-
Raphson direction toward the point (x, π, z) ∈ Γ, which is associated with the
value µ(k) = τ (k)y(k) and will also help drive the residuals to zero.

6.3.3 Complexity of General Primal-Dual Interior Path Fol-
lowing Methods

One of the major advantages of primal-dual path-following methods is that
they offer not only excellent practical performance, but a theoretical guarantee
of performance in terms of the amount of computing time or resources required
to solve a linear program. In particular, primal-dual path-following methods
can exhibit polynomial (worst-case) complexity, meaning that the amount of
time required to solve a linear program is in the worst case a polynomial
function of some aspect of the size of a linear program.

The essence of achieving polynomial complexity is to ensure that an initial
point is selected so that the initial duality measure y(0) is not too large and
that this measure gets suitably reduced after each iteration and depends on the
size (dimension) of the problem. We have the following important technical
lemma that relates these requirements to polynomial complexity for path-
following type methods.

Lemma 6.4
Suppose that ε ∈ (0, 1) and that an initial point (x(0), π(0), z(0)) is such

that y(0) ≤ 1
εγ for some constant γ > 0. Furthermore, suppose that the general

primal-dual interior point method generates a sequence of iterates that satisfy

y(k+1) ≤ (1− φ
nχ )y(k) for k = 0, 1, 2, ...,

for some constants φ > 0 and χ > 0.

Then, there exists an index K with

K ≤ Cnχ| log ε| for some constant C > 0

such that

y(k) ≤ ε for all k ≥ K.

The proof of Lemma 6.4 requires an inequality result concerning an ap-
proximation to the natural log function. In particular, we have the following.

Lemma 6.5
log(1 + Φ) ≤ Φ for all Φ > −1.
Proof: Left for the reader. �

Now we prove Lemma 6.4.
Proof: Take the logarithms on both sides of
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y(k+1) ≤ (1− φ
nχ )y(k)

to get

log(y(k+1)) ≤ log(1− φ
nχ )y(k) = log(1− φ

nχ ) + log y(k).

Now using the inequality repeatedly along with the assumption that y(0) ≤
1
εγ gives the following

log(y(k)) ≤ k log(1− φ
nχ ) + log y(0)

≤ k log(1− φ
nχ ) + log 1

εγ

= k log(1− φ
nχ ) + γ log 1

ε .

Therefore, by Lemma 6.5 we have

log(y(k)) ≤ k(− φ
nχ ) + γ log 1

ε ,

so y(k) ≤ ε will hold if

log(y(k)) ≤ k(− φ
nχ ) + γ log 1

ε ≤ log ε

and will be satisfied when

k ≥ (γ log 1
ε − log ε)/ φ

nχ

or equivalently when

k ≥ (1 + γ)n
χ

φ log 1
ε ,

and thus the result follows. �

We now give another result that pertains to primal-dual interior point
methods that solves the system (6.13) to generate a search direction. This
result gives an expression of the particular form of the reduction of the duality
measure after each iteration that is a result of solving system (6.13). Then,
with certain values of the parameters, the form of the reduction can be shown
to satisfy the conditions of Lemma 6.4, namely the condition y(k+1) ≤ (1 −
φ
nχ )y(k) for k = 0, 1, ..., which then implies polynomical complexity for a
primal-dual path-following interior point method with those parameters.

Lemma 6.6
Suppose the vector [x(k+1),π(k+1), z(k+1)]T is obtained after Step 2 of the

general primal-dual interior point method, i.e., x(k+1)

π(k+1)

z(k+1)

 =

 x(k)

π(k)

z(k)

+ α(k)

 d
(k)
x

d
(k)
π

d
(k)
z

 ,
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then

(1) (d
(k)
x )T d

(k)
z = 0

(2) y(k+1) = (1− α(k)(1− τ (k)))y(k)
Proof:
Part (1)
By Exercise 6.3 we have

d
(k)
x = (I −X(k)(Z(k))−1(A(k))T (A(k)X(k)(Z(k))−1(A(k))T )−1A(k))(−x(k) +

µ(k)(Z(k))−1e)

and

d
(k)
z = (A(k))T (A(k)X(k)(Z(k))−1(A(k))T )−1A(k)(−x(k) + µ(k)(Z(k))−1e)

and it is then straightforward to verify that

(d
(k)
x )T d

(k)
z

= [(I −X(k)(Z(k))−1(A(k))T (A(k)X(k)(Z(k))−1(A(k))T )−1A(k))(−x(k) +
µ(k)(Z(k))−1e)]T

[(A(k))T (A(k)X(k)(Z(k))−1(A(k))T )−1A(k)(−x(k) + µ(k)(Z(k))−1e) ]
= 0.

Part (2)
By the third equation in (6.13) we have

Z(k)d
(k)
x +X(k)d

(k)
z = −X(k)Z(k)e+ τ (k)y(k)e

or equivalently

z(k)T d
(k)
x + x(k)T d

(k)
z = −(1− τ (k))x(k)T z(k).

Now

(x(k+1))T z(k+1) = (x(k) + α(k)d
(k)
x )T (z(k) + α(k)d

(k)
z )

= (x(k))T z(k) + α(k)(z(k)T d
(k)
x + x(k)T d

(k)
z ) + (α(k))2(d

(k)
x )T d

(k)
z

= (x(k))T z(k) + α(k)(−(1− τ (k))x(k)T z(k))

= (x(k))T z(k)(1− α(k)(1− τ (k))).

Therefore

(x(k+1))T z(k+1)/n = (x(k))T z(k)(1− α(k)(1− τ (k)))/n

or equivalently

y(k+1) = (1− α(k)(1− τ (k)))y(k). �
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6.3.3.1 Polynomial Complexity of Short-Step Path-Following
Methods

Now we develop the results leading to the polynomial complexity of a par-
ticular variant of a path-following method called the short-step primal-dual
path-following method as an illustration of use of the lemmas above to show
polynomial complexity for primal-dual interior point methods. We will refer
to this method in shorthand as SSPF. Recall that general primal-dual interior
point strategies follow the central path Γ in the direction of decreasing µ, and
in particular at an iteration k will generate a search direction that is a Newton-
Raphson direction toward a point (x(k+1), π(k+1), z(k+1)) on the central path
Γ. By construction, the point will have a duality measure that is less than or
equal to the current measure y(k). However, since the Newton-Raphson iterate
is only an approximation to the equation (6.10), i.e.,

XZe = µe,

(note that (6.8) and (6.9) will be satisfied at every iteration along with non-
negativity of x and z), the primal-dual interior point strategy will not nec-
essarily generate iterates that are on the central path Γ. In particular, the
products xizi will not in general be equal, which results in a violation of
equation (6.10).

The amount of deviation from equation (6.10) can be measured by using
the difference between y(k), the average value of the products, and the actual
products XZe. The following scaled norm

1
µ ‖XZe− µe‖

will be used to measure the deviation where the 2-norm (Euclidean norm) will
be assumed. Now we add a further restriction that the deviation be less than
a constant θ. Let

F0 = {(x, π, z)|Ax = b, AT π + z = c, x > 0, z > 0},

which is the set of primal and dual feasible solutions that are in the interior
of the feasible set of the linear program. Then, let

N2(θ) = {(x, π, z) ∈ F0| 1µ ‖XZe− µe‖ ≤ θ}.

Short-Step Path-Following Method
Now we specify the short-step path-following (SSPF) method, which is an

instance of the general primal-dual interior point method of section 3.2 where

(1) The initial point (x(0), π(0), z(0)) is in N2(θ) for θ = 0.4.
(2) τ (k) = 1− 0.4√

n
for all k.

(3) The step length α(k) = 1 for all k.

Then, we have the following polynomial complexity result of SSPF.
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Theorem 6.7
Let ε > 0 and suppose that the initial point (x(0), π(0), z(0)) ∈ N2(θ) in

the SSPF method is such that

y(0) ≤ 1
εγ for some constant γ > 0.

Then, there is an index K such that

y(k) ≤ ε for all k ≥ K,

where K = O(
√
n log 1

ε ).
Proof:
For the SSPF method we have, from Lemma 6.6, that

y(k+1) = (1− α(k)(1− τ (k)))y(k)

= (1− 0.4√
n

)y(k) for k = 0, 1, 2, ...,

since α(k) = 1 and τ (k) = 1− 0.4√
n

. So now let φ = 0.4 and χ = 0.5 in Lemma

6.4 and then the result follows. �

6.4 The Predictor-Corrector Variant of the Primal-Dual
Interior Point Method

We now present a variant of the primal-dual interior point strategy due to
Mehrotra (1992), which enjoys excellent practical performance. The key mod-
ifications involve (1) a predictor step that computes a search direction without
centering, (2) a corrector step that uses a second-order approximation to the
central path that adjusts the search direction to more closely follow a tra-
jectory to the optimal solution, and (3) incorporates an adaptive choice for
the centering parameter τ at each iteration. For the development below, the
superscripts k will be omitted until the algorithm is presented later in full
detail.

6.4.1 Predictor Step

A search direction is first computed where the centering parameter τ is set to
0. The idea is that if the duality measure can be reduced sufficiently well along
this direction, then a large centering value is not necessary. Let this direction
(also known as the affine scaling direction) be denoted by daff where it is
computed by solving the system (6.13) but with the term involving τ set to 0 0 AT I

A 0 0
Z 0 X

 daffx

daffπ

daffz

 =

 −rp
−rd
−XZe

 . (6.14)

© 2014 by Taylor & Francis Group, LLC



234 Introduction to Linear Optimization and Extensions with MATLAB R©

6.4.2 Setting the Centering Parameter

After the affine scaling direction is computed, the quality of this predictor
direction is evaluated and the centering parameter is set based on how good
this direction is. To evaluate the predictor direction the longest possible step
lengths along this direction are computed before the non-negativity constraints
are violated. The maximum step length allowed is 1 and the formulas for the
step lengths are analogous to minimum ratio tests and are given as

αaffx = min{1, min
i:(daffx )i<0

− xi
(daffx )i

} (6.15)

αaffz = min{1, min
i:(daffz )i<0

− zi
(daffz )i

}. (6.16)

The step lengths are used to compute the iterate that would be at the
boundary of the feasible set by moving in the predictor direction with the
step lengths above. In particular, the duality measure yaff is computed for
this iterate where

yaff =
(x+αaffx daffx )T (z+αaffz daffz )

n .

Now the centering parameter τ will be set to the value

τ =
(
yaff
y

)3
.

Thus, when the predictor direction is good then yaff is less than y and
the centering parameter will be smaller; when the direction is not as good,
the parameter will be larger.

6.4.3 Corrector and Centering Step

Recall that the approximate complementary slackness condition is (x)T z = µ
and can be expressed as (x+ daffx )T (z + daffz ) = µ. Then, the condition can
be written as

xT z + xT daffx + (4x)T daffz + (daffx )T daffz = µ (6.17)

or equivalently

xT daffz + (daffx )T z = µ− xT z − (daffx )T daffz . (6.18)

Observe that if the non-linear term (daffx )T daffz is dropped, then (6.18)
can be written as

[
Z 0 X

]  daffx

daffπ

daffz

 = [−XZe+ µe] = [−XZe+ τye] ,
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which is the third (block) equation in system (6.12) (Note: In (6.12) the di-
rections are affine scaling directions but do not have the aff superscript,
whereas here we use these supercripts.) Observe that the presence of the term
µe = τye implies that the centering step is included. Now the key idea in the
corrector step is to add back the term (dx)T dz and represent it as DxDze
where Dx = diag(daffx ) and Dz = diag(daffz ) to get a modified system 0 AT I

A 0 0
Z 0 X

 dx
dπ
dz

 =

 −rp
−rd

−XZe+DxDze+ τye

 . (6.19)

The maximum step lengths along this direction are similar to (6.15) and
(6.16) and are defined as

αmax
x = min{1, min

i:(dx)i<0
− xi

(dx)i
} (6.20)

αmax
z = min{1, min

i:(dz)i<0
− zi

(dz)i
}. (6.21)

Then the step lengths used in the predictor-corrector method are damp-
ened versions of the maximum step lengths (6.20) and (6.21)

αx = min{1, ηαmax
x } (6.22)

αz = min{1, ηαmax
z } (6.23)

where η is a dampening parameter such that η ∈ [0.9, 1); see Mehrotra (1992)
for more details.

6.4.4 Computational Overhead

A crucial observation is that the system (6.19) incorporates the predictor,
corrector, and centering steps in one system. The centering step is embodied
in the term τye. Observe that a factorization used to solve the affine scaling
direction daff in (6.14) can be used to solve the direction in system (6.19).
This is an important aspect of Mehrotra’s predictor-corrector scheme since
extra computational overhead is only moderately increased in the additional
steps that are added to the general primal-dual framework.

6.4.5 Predictor-Corrector Algorithm

We now present the details of the predictor-corrector method.

Step 0: Obtain an initial interior solution (x(0), π(0), z(0)) such that x(0) > 0
and z(0) > 0 (see below). Let k = 0 and ε be some small positive number
(tolerance). Go to Step 1.

Step 1: Solve
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 0 AT I
A 0 0
Z(k) 0 X(k)

 daffx

daffπ

daffz

 =

 −r(k)p

−r(k)d

−X(k)Z(k)e



for

 daffx

daffπ

daffz

. Go to Step 2.

Step 2: Compute αaffx , αaffz ,y(k), and y
(k)
aff and let τ (k) =

(
y
(k)
aff

y(k)

)3

and

solve for

 dx
dπ
dz

 in

 0 AT I
A 0 0
Z(k) 0 X(k)

 dx
dπ
dz

 =

 −r(k)p

−r(k)d

−X(k)Z(k)e+Dx(k)Dz(k)e+ τ (k)y(k)e

 ,
where Dx(k) = diag(daffx ) and Dz(k) = diag(daffz ).

Go to Step 3.

Step 3: Compute αx and αz and let

x(k+1) = x(k) + αxdx
π(k+1) = π(k) + αzdπ
z(k+1) = z(k) + αzdz.

If the stopping criteria is met, i.e.,∥∥Ax(k+1) − b
∥∥ ≤ ε∥∥ATπ(k+1) + z(k+1) − c

∥∥ ≤ ε
(x(k+1))T z(k+1) ≤ ε,

then STOP. Else k = k + 1 and go to Step 1.

6.4.5.1 Initial Point Generation

The following strategy attempts to generate an initial solution that will be
close to minimizing the norms in the stopping condition while ensuring that
x(0) > 0 and z(0) > 0. The strategy is as follows. First compute the following
quantities

π = (AAT )−1Ac

z = c−ATπ

x = AT (AAT )−1b

δx = max(−1.5 ∗min{xi}, 0)
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and

δz = max(−1.5 ∗min{zi}, 0),

and then form the quantities

δx = δx + [(x + δxe)
T (z + δze)]/[2

n∑
i=1

(zi + δz)]

and

δz = δx + [(x + δxe)
T (z + δze)]/[2

n∑
i=1

(xi + δx)].

Then, the initial point is x
(0)
i = xi + δx and z

(0)
i = zi + δz for i = 1, ..., n

and π(0) = π.
By construction of δx and δz the initial point generated in this manner

will be such that x(0) ≥ 0 and z(0) ≥ 0. Furthermore, if δx and δz are positive,
then x(0) > 0 and z(0) > 0; see Exercise 6.6.

Example 6.4
Consider the linear program

minimize −3x1 − 2x2
subject to x1 +2x2 + x3 = 20

2x1 +2x2 +x4 = 15
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

We show an iteration of the predictor-corrector primal-dual interior point
method applied to this linear program.

Step 0: Now A =

[
1 2 1 0
2 1 0 1

]
, b =

[
20
15

]
, and c =


−3
−2
0
0

. We

select as tolerance ε = 10−6 and by using the initial point generation technique
we get

x(0) =


5.3125
7.8125
4.3125
1.8125

 , z(0) =


0.6250
1.1250
1.6250
2.1250

 , and π(0) =

[
−0.5000
−1.0000

]
.

Go to Step 1.

Iteration 1

Step 1: Solve for

 daffx

daffπ

daffz

 is the system
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 0 AT I
A 0 0
Z(0) 0 X(0)

 daffx

daffπ

daffz

 =

 −r(0)p
−r(0)d

−X(0)Z(0)e


where

X(0) = diag(x(0)) and Z(0) = diag(z(0)).

Now

−r(0)p = Ax(0) − b =

[
−5.2500
−5.2500

]
, −r(0)d = ATπ(0) + z(0) − c =

−1.1250
−1.1250
−1.1250
−1.1250

 , and

−X(0)Z(0)e =


−3.32031250
−8.78906250
−7.00781250
−3.85156250

. Then, daffx =


−1.33818929
−1.40434057
−1.10312958
−1.16928086

,

daffπ =

[
0.08432798
−0.37088101

]
, and daffz =


−0.46756597
−0.92277496
−1.20932798
−0.75411899

 . Go to Step 2.

Step 2: Now

αaff
x(0) = min{1, min

i:(daff
x(0)

)i<0
− x

(0)
i

(daff
x(0)

)i
} = 1,

αaff
z(0)

= min{1, min
i:(daff

z(0)
)i<0
− z

(0)
i

(daff
z(0)

)i
} = 1,

y(0) = (x(0))T z(0)

4 = 5.74218750,

y
(0)
aff =

(x(0)+αaff
x(0)

daff
x(0)

)T (z(0)+αaff
z(0)

daff
z(0)

)

4 = 1.03435111.

Then, τ (0) =

(
y
(0)
aff

y(0)

)3

= 0.00584483.

Now solve for

 dx
dπ
dz

 in

 0 AT I
A 0 0
Z(0) 0 X(0)

 dx
dπ
dz

 =

 −r(0)p
−r(0)d

−X(0)Z(0)e+Dx(0)Dz(0)e+ τ (0)y(0)e


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where Dx(0) = diag(daff
x(0)) and Dz(0) = diag(daff

z(0)
). Then, dx =

−1.26643159
−1.16097290
−1.66162262
−1.55616392

, dπ =

[
0.17544269
−0.35648747

]
, and

dz =


−0.58746775
−1.11939791
−1.30044269
−0.76851253

. Go to Step 3.

Step 3: Now

αmax
x = min{1, min

i:(dx)i<0
− xi

(dx)i
} = 1 and αmax

z = min{1, min
i:(dz)i<0

− zi
(dz)i
} = 1.

Also,

αx = min{1, 0.95αmax
x } = 0.95 and αz = min{1, 0.95αmax

z } = 0.95.

Then, the new iterates are

x(1) = x(0) + αxdx

=


5.3125
7.8125
4.3125
1.8125

+ 0.95


−1.26643159
−1.16097290
−1.66162262
−1.55616392



=


4.10938999
6.70957575
2.73395851
0.33414427


π(1) = π(0) + αzdπ

=

[
−0.5000
−1.0000

]
+ 0.95

[
0.17544269
−0.35648747

]
=

[
−0.33332944
−1.33866310

]
z(1) = z(0) + αzdz

=


0.6250
1.1250
1.6250
2.1250

+ 0.95


−0.58746775
−1.11939791
−1.30044269
−0.76851253



=


0.06690564
0.06157198
0.38957944
1.39491310


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Now ∥∥Ax(1) − b∥∥ = 0.37123106∥∥ATπ(1) + z(1) − c
∥∥ = 0.11250000

(x(1))T z(1) = 2.21925950.

All of these quantities are greater than the tolerance ε, so Iteration 2 is
started. It will take six iterations to reach the tolerance. The results of the
first six iterations are summarized below in Tables 6.2, 6.3, and 6.4.

Table 6.2 Primal iterates of Example 6.4

k x1 x2 x3 x4 Primal objective cTx(k)

0 5.31250000 7.81250000 4.31250000 1.81250000 −31.56250000
1 4.10938999 6.70957575 2.73395851 0.33414427 −25.74732147

2 3.37518246 8.24333111 0.15128033 0.01942898 −26.61220958
3 3.33542378 8.32883506 0.00756402 0.00097530 −26.66394146
4 3.33343786 8.33310842 0.00037820 0.00004877 −26.66653041
5 3.33333856 8.33332209 0.00001891 0.00000244 −26.66665985
6 3.33333359 8.33333277 0.00000095 0.00000012 −26.66666633

Table 6.3 Dual iterates of Example 6.4

k π1 π2 bTπ
0 −0.50000000 −1.00000000 −25.00000000
1 −0.33332944 −1.33866310 −26.74653532
2 −0.33183129 −1.33632428 −26.68149006
3 −0.33325784 −1.33348383 −26.66741437

4 −0.33332956 −1.33334086 −26.66670405
5 −0.33333314 −1.33333371 −26.66666854
6 −0.33333332 −1.33333335 −26.66666676

Table 6.4 Dual slack iterates for Example 6.4

k z1 z2 z3 z4
0 0.62500000 1.12500000 1.62500000 2.12500000
1 0.06690564 0.06157198 0.38957944 1.39491310
2 0.00757159 0.00307860 0.33492303 1.33941602
3 0.00038010 0.00015411 0.33341243 1.33363842
4 0.00001901 0.00000771 0.33333729 1.33334859
5 0.00000095 0.00000039 0.33333353 1.33333410
6 0.00000005 0.00000002 0.33333334 1.33333337

Table 6.5 Residuals and τ for Example 6.4
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k τ Ax(k) − b ATπ(k) + z(k) − c (x(k))T z(k)

0 − 7.424621202 2.250000000 22.968750000
1 0.005844830 0.371231060 0.112500000 2.219259500
2 0.001302445 0.018561553 0.006183470 0.127624175
3 4.03E-07 0.000930441 0.000309173 0.006373953
4 5.16E-11 4.65E-05 1.55E-05 0.000318652
5 6.46E-15 2.33E-06 7.73E-07 1.59E-05
6 8.08E-19 1.16E-07 3.86E-08 7.97E-07

6.5 Primal-Dual Interior Point Method in MATLABR©

This section contains MATLAB code for the predictor-corrector version of the
primal-dual interior point method. In particular, the function

function [xsol, objval] = PD InteriorPoint(c, A, b)

is created where it takes as arguments the parameters of a linear program that
is in standard form where c is the objective coefficient vector, A, the matrix
of coefficients of the equality constraints and b, the vector of right-hand sides
of equality constraints.

The function will return the final primal solution in xsol, the final objective
function value in objval.

Example 6.5

Consider the linear program in (6.4)

maximize −3x1 − 2x2
subject to x1 + 2x2 ≤ 20

2x2 + x2 ≤ 15
x1 ≥ 0, x2 ≥ 0.

Slack variables x3 and x4 must be added to get the linear program to
standard form. Then the following MATLAB statements create the parameters
for the function SimplexMethod.

>> c=[-3; -2; 0; 0;];
>> A=[1 2 1 0;

2 1 0 1];
>> b=[20;15];

then the function can be called by writing (with output following)

>>function [xsol, objval] = PD InteriorPoint(c, A, b)
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problem solved

xsol =
3.3333
8.3333
0.0000
0.0000

objval =

-26.6667

6.5.1 MATLAB Code

function [xsol, objval] = PD_InteriorPoint(c, A, b)

% PD_InteriorPoint solves a linear programming in standard form

% min c’*x

% s.t. A*x = b

% x >= 0

% using the predictor corrector primal-dual path following method

% of Mehrotra.

%

% Inputs:

% c = n*1 vector, objective coefficients

% A = m*n matrix with m < n, A is full rank matrix

% b = m*1 vector, RHS

%

% Outputs:

% xsol = n*1 vector, final solution

% objval is scalar, final objective value

[m n]=size(A); % number of constraint and variables

e=ones(n,1);

%% Step 0: Initialization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Obtain an initial interior solution [x(0), pie(0), z(0)]^T such that

% x(0)>0 and z(0)>0. Let k=0 and epsi be some small positive number

% (tolerance). Go to STEP 1.

k=0; %counter

epsi=1/10^6; %tolerance

eta=.95; %step length dampening constant

%generate a warm start point

lambda=(A*A’)\(2*b); %Lagrange multiplier

x_bar=.5*A’*lambda; %solve min ||x||+lambda*(b-Ax)

pie_bar=(A*A’)\(A*c);%solve min ||A’*pie -c||

z_bar=c-A’*pie_bar;
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del_x=max([0; -1.5*min(x_bar)]);

del_z=max([0; -1.5*min(z_bar)]);

del_x_bar=del_x+.5*(x_bar+del_x*e)’*(z_bar+del_z*e)/sum(z_bar+del_z);

del_z_bar=del_z+.5*(x_bar+del_x*e)’*(z_bar+del_z*e)/sum(x_bar+del_x);

x(:,k+1)=x_bar+del_x_bar; %initial x(0), primal variable

pie(:,k+1)=pie_bar; %initial pie(0), slack variable of dual

z(:,k+1)=z_bar+del_z_bar; %initial z(0), dual variable

obj_pd(:,k+1)=[c’*x(:,k+1); b’*pie(:,k+1)];

Norm(:,k+1)=[norm(A*x(:,k+1)-b);

norm(A’*pie(:,k+1)+z(:,k+1)-c); x(:,k+1)’*z(:,k+1);];

while k>=0

%% Step 1: Affine Scaling Direction Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve KKT system for affine direction d_affine in the algorithm.

% GO to STEP 2.

r_p=A*x(:,k+1)-b; %primal residuals

r_d=A’*pie(:,k+1)+z(:,k+1)-c; %dual residuals

X=diag(x(:,k+1)); %diag(x(k))

Z=diag(z(:,k+1)); %diag(z(k))

coeffi_kkt=[zeros(size(A’,1), n) A’ eye(size(A’,1), size(X,2)); ...

A zeros(m, size(A’,2)) zeros(m, size(X,2)); ...

Z zeros(size(X,1), size(A’,2)) X];%coefficient matrix of KKT system

d_aff=-coeffi_kkt\[r_d; r_p; X*Z*e]; %solve the KKT system

d_x_aff=d_aff(1:n); %affine direction of x(k)

d_z_aff=d_aff(n+m+1:end); %affine direction of z(k)

%% Step 2: Centering Parameter Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute alpha_x_affine, alpha_z_affine, y(k), y_affine(k) and let

% tau(k) = (y_affine(k)/y(k))^3. Solve KKT system for corrector

% direction d in the algorithm. Go to STEP 3.

x_temp=x(:,k+1);

flag_x=find(d_x_aff<0);

alpha_x_aff = ...

min([1; min(-x_temp(flag_x)./d_x_aff(flag_x))]);%alpha_x_affine

z_temp=z(:,k+1);

flag_z=find(d_z_aff<0);

alpha_z_aff = ...

min([1; min(-z_temp(flag_z)./d_z_aff(flag_z))]);%alpha_z_affine

y(k+1)=x(:,k+1)’*z(:,k+1)/n; %y(k)

y_aff(k+1) = ... %y_affine(k)

(x(:,k+1)+alpha_x_aff*d_x_aff)’*(z(:,k+1)+alpha_z_aff*d_z_aff)/n;

tau(k+1)=(y_aff(k+1)/y(k+1))^3;%tau(k)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

D_x=diag(d_x_aff); %D_x(k)

D_z=diag(d_z_aff); %D_z(k)
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d = ... %solve the KKT system

-coeffi_kkt\[r_d; r_p; X*Z*e+D_x*D_z*e-tau(k+1)*y(k+1)*e];

d_x=d(1:n); %d_x

d_pie=d(n+1:n+m); %d_pie

d_z=d(n+m+1:end); %d_z

%% Step 3: New Primal and Dual solution Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute alpha_x and alpha_z and let x(k+1)=x(k)+alpha_x*d_x,

% pie(k+1)=pie(k)+alpha_z*d_pie, and z(k+1)=z(k)+alpha_z*d_z.

% If the stopping criteria is met i.e. ||A*x(k+1) - b||<= epsi,

% ||A^T*pie(k+1) + z(k+1) - c||<= epsi, and (x(k+1))^T*z(k+1)<= epsi,

% then STOP. Else k=k+1, go to STEP 1.

flag_x=find(d_x<0);

alpha_x_max = ...

min([1; min(-x_temp(flag_x)./d_x(flag_x))]);% minimum ratio test for x

alpha_x=min([1; eta*alpha_x_max]); %alpha_x

flag_z=find(d_z<0);

alpha_z_max = ...

min([1; min(-z_temp(flag_z)./d_z(flag_z))]);%minimum ratio test for z

alpha_z=min([1; eta*alpha_z_max]); %alpha_z

k=k+1;%update the counter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x(:,k+1)=x(:,k)+alpha_x*d_x; %generate x(k+1)=x(k)+alpha_x*d_x

pie(:,k+1)=pie(:,k)+alpha_z*d_pie; %generate pie(k+1)=pie(k)+alpha_z*d_pie

z(:,k+1)=z(:,k)+alpha_z*d_z; %generate z(k+1)=z(k)+alpha_z*d_z

obj_pd(:,k+1)=[c’*x(:,k+1); b’*pie(:,k+1)];%primal and dual objective value

Norm(:,k+1) = ...

[norm(A*x(:,k+1)-b); norm(A’*pie(:,k+1)+z(:,k+1)-c); x(:,k+1)’*z(:,k+1);];

if isempty(find(Norm(:,k+1) >= epsi))%if residual <= epsi, then optimal STOP.

disp(’problem solved’)

break

end

end

xsol=x(:,end); %optimal solution

objval=obj_pd(end,end);%optimal objective value

6.6 Exercises

Exercise 6.1

(a) Use the Newton-Raphson method to compute the first two iterates (i.e.,
x(1) and x(2)) for solving the following system of equations. Use x(0) = [1, 1, 1]T

as an initial point.
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x21 + x22 − 4x3 = 0
x21+ x23 = 1/4
x21 + x22 + x23 = 1.

(b) Implement the Newton-Raphson method in MATLAB and use it to
approximate the solution to the system of equations in (a) up to a tolerance
of 10−5 using the same initial point.

Exercise 6.2
The Newton-Raphson method can be used for unconstrained problems of

the form

minimize f(x)
subject to x ∈ Rn

where f(x) is a twice differentiable function from Rn to R.
(a) Derive the Newton-Raphson direction for this case.
(b) Apply the Newton-Raphson method to the following problem

minimize 4x21 − 4x1x2 + 2x22

subject to

[
x1
x2

]
∈ R2.

Use as an initial point x(0) = (2, 3)T .
(c) Let x(k) be a current iterate in using the Newton-Raphson method

for unconstrained minimization. Prove that if the Hessian ∇f(x(k)) is posi-
tive semidefinite at x(k) and the Newton-Raphson direction is non-zero, then
f(x(k+1)) ≤ f(x(k)).

Exercise 6.3
Consider the following system of linear equations (6.12) that arises from

using the Newton-Raphson method on the KKT conditions of the Barrier
problem  0 AT I

A 0 0
Z 0 X

 dx
dπ
dz

 =

 0
0

−XZe+ µe

 .
Prove the following vectors solve the system

dx = (I −XZ−1AT (AXZ−1AT )−1A)(−x+ µZ−1e)
dπ = (AXZ−1AT )−1A(x− µZ−1e)
dz = AT (AXZ−1AT )−1A(−x+µZ−1e), where x is a current primal vector

for which X = diag(x).

Exercise 6.4
Consider the linear program
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minimize −55x1 − 45x2
subject to 4x1 + 6x2 ≤ 210

x1 + 3x2 ≤ 90
15x1 + 8x2 ≤ 600
x1 ≥ 0, x2 ≥ 0.

(a) Compute the first two iterates of the predictor-corrector primal-dual
interior point method applied to the linear program above using the initial
point generation method in Section 4.5.1. Use a tolerance of ε = 10−6.

(b) Use the MATLAB function PD InteriorPoint in Section 6.5 to solve
the linear program above. Summarize the iterations in tables showing for each
iteration the primal values, dual values, objective values, and residual values.
See Example 6.4 for an illustration.

(c) Solve the linear program by using the MATLAB linprog function and
verify the solution from (b).

Exercise 6.5
Consider the linear program

minimize 9x1 + 15x2 + 8x3 + 12x4
subject to x1 + 2x2 + 2x3 + x4 = 1200

4x1 + 3x2 + x3 + 7x4 ≤ 3500
3x1 + 3x2 + 5x3 + 6x4 ≤ 4200
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(a) Compute the first two iterates of the predictor-corrector primal-dual
interior point method applied to the linear program above using the initial
point generation method in Section 4.5.1. Use a tolerance of ε = 10−6.

(b) Use the MATLAB function PD InteriorPoint in Section 6.5 to solve
the linear program above. Summarize the iterations in tables showing for each
iteration the primal values, dual values, objective values, and residual values.
See Example 6.4 for an illustration.

(c) Solve the linear program by using the MATLAB linprog function and
verify the solution from (b).

Exercise 6.6
(a) Consider the linear program from Exercise 6.4. Use the predictor-

corrector interior point method and repeat part (b) of Exercise 6.4, but this
time start with the infeasible point (x(0), π(0), z(0)) where all components are
equal to 1. (Note: The MATLAB function PD InteriorPoint must be modified
to handle infeasible starting points; see Section 3.2.1)

(b) Compare the results from Exercise 6.5 (a) with the results from Exer-
cise 6.4 (b). Which converges faster?

Exercise 6.7
Prove that if δx and δz are positive, then x(0) > 0 and z(0) > 0.

Exercise 6.8
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Consider the following interior point method called, the affine scaling
method, for solving linear programs in standard form, i.e., minimize cTx sub-
ject to Ax = b, x ≥ 0.

Affine Scaling Method
Step 0: Let x(0) be an initial feasible solution such that Ax(0) = b and

x(0) > 0. Set k = 0 and let ε > 0 be a tolerance.
Step 1: Compute π(k) by solving [A(D(k))2AT ]π(k) = A(D(k))2c where

D(k) = diag(x(k)).

Step 2: Compute r(k) = c−ATπ(k), then let d
(k)
x = −(D(k))2r(k).

Step 3: Let x(k+1) = x(k) + σαd
(k)
x where α = min{− x

(k)
i

(d
(k)
x )i
| (d

(k)
x )i < 0}

and 0 < σ < 1, where x
(k)
i is the ith component of x(k) and (d

(k)
x )i is the ith

component of d
(k)
x .

Step 4: If
∥∥Ax(k+1) − b

∥∥ ≤ ε,
∥∥ATπ(k+1) + r(k+1) − c

∥∥ ≤ ε, and

(x(k+1))T r(k+1) ≤ ε, then STOP.
Else go to Step 1.

(a) Consider the linear program

minimize x1 + x2
subject to 3x1 + x2 ≤ 18

x2 ≤ 6
x1 ≥ 0, x2 ≥ 0.

Convert the linear program to standard form and compute the first two
iterates of the affine scaling method applied to the linear program starting
with the initial feasible point x(0) =

[
2 4 8 2

]
.

(b) Code in MATLAB the affine scaling method and using a tolerance of
ε = 10−6, solve the linear program in part (a) using the MATLAB code.

(c) Prove that Ad
(k)
x = 0. Why must this result be necessary?

(d) Prove that cT d
(k)
x ≤ 0. What are the implications of this fact?

(e) Compare and contrast the affine scaling method with predictor correc-
tor primal-dual interior point method.

Notes and References
The simplex method once dominated the landscape for linear programming

solution methodology, but the fact that it has an exponential worst case com-
plexity drove researchers to consider other methods that would offer a better
theoretical (i.e., polynomial) worst-case complexity. The ellipsoidal method of
Khachian (1979) was the first method for linear programming that was shown
to exhibit polynomial worst-case complexity, but paradoxically its practical
performance was shown to be very poor. Research in interior point methods
began in earnest with the development of the polynomial time interior point
method of Karmarkar (1984). Since then, a flurry of research began culminat-
ing in many different strategies for developing polynomial time interior point
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methods for linear programming and extensions to quadratic programming
and especially convex optimization problems, e.g., Nesterov and Nemirovski
(1994). In this chapter we focused on the primal-dual path-following interior
methods whose development is detailed in Monteiro and Adler (1989 a, b) and
the predictor-corrector method in Mehrotra (1992). The method of Mehrotra
is actually a heuristic and there is no proof of polynomial complexity of the
method. Mizuno, Todd, and Ye (1993) give a polynomial predictor-corrector
primal-dual path following method.

Primal-dual path-following interior point strategies heavily rely on the
Newton-Raphson method. See the Dennis and Schnable (1983) and Ortega and
Rheinboldt (1970) for more information about the Newton-Raphson method
and its convergence properties. Renegar (1988) was the first to consider path-
following strategies for interior point methods that rely on using the Newton-
Raphson method. The barrier reformulation of linear programs has it origins
in the work of Fiacco and McCormick (1968). The book by Wright (1997) is an
excellent monograph on primal-dual interior point strategies that include not
only path-following strategies, but others as well, e.g., potential reduction and
infeasible start methods. The affine scaling method of Exercise 6.7 was first in-
troduced by Dikin (1967) and more recently by Barnes (1986) and Vanderbei,
Meketon, and Freedman (1986). Other references for interior point methods
include Fang and Puthenpura (1993), Nocedal and Wright (1999), Roos, Ter-
laky, and Vial (2006), Saigal (1995), Ye (1997), and Vanderbei (2008).
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Quadratic Programming

7.1 Introduction

In this chapter, we consider a generalization of linear programming that in-
volves linear constraints, but the objective function is a quadratic function and
so will contain terms that involve the products of pairs of variables. Such an
optimization problem is called a quadratic programming (QP) problem and is
a very important class of problems as many applications can be modeled in this
framework. We illustrate the importance of quadratic programming through
financial portfolio applications. A characterization of optimality of quadratic
programs is given that will serve as the basis for algorithmic development.

7.2 QP Model Structure

The quadratic programming (QP) problem can be stated as

minimize cTx+ 1
2x

TQx
subject to Ax ≤ b

Ex = d
x ≥ 0

where c, x ∈ Rn, Q is a n×n symmetric matrix, A is an m1×n matrix, and E
is an m2 × n matrix. Constraints are partitioned into linear inequality con-
straints and linear equality constraints. Note that if Q = 0, then the problem
becomes a linear program.

In addition, when there are no constraints and variables are unrestricted,
the quadratic programming problem is

minimize cTx+ 1
2x

TQx
subject to x ∈ Rn.

This problem will be referred to as the unconstrained quadratic program-
ming problem (UQP).

Example 7.1

249
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The following problem

minimize 4x21 + x1x2 + 2x1x3 + 3.5x22 + x2x3 + 3x23 + 2x1 − x2 + x3
subject to x1 + 2x3 ≤ 5

3x2 + x3 ≤ 2
x1 + x3 = 2
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

is a quadratic program where

Q =

 8 1 2
1 7 1
2 1 6

 , c =

 2
−1
1

 , x =

 x1
x2
x3

,

A =

[
1 0 2
0 3 1

]
, b =

[
5
2

]
, E =

[
1 0 1

]
, d = [2].

Example 7.2 (Least Squares Fit)
Quadratic problems arise naturally in statistics. Suppose that you have

observed values (t1, u1), (t2, u2), ..., (tn, un) where ti is the unemployment rate
in year i and ui is the rate of inflation for year i. Based on these observations,
you believe that the unemployment rate and inflation rate in a year are related.
In particular, you believe that ti and ui are related by a polynomial function

p(t) = x0 + x1t+ x2t
2 · · ·+ xkt

k

where the degree of the polynomial k is determined in advance. However, the
coefficients x0, x1, ..., xk are not known. The goal is to choose the values for
these coefficients so that the absolute difference between the observed values
ui and p(ti), i.e.,

|ui − p(ti)|

are as small as possible. Let x = (x0, x1, ..., xn), then one strategy is to mini-
mize the function

ϕ(x) =
n∑
i=1

(ui − p(ti))2

=
n∑
i=1

(ui −
k∑
j=1

xjt
j
i )

2.

We can express ϕ(x) in terms of norms on vector quantities. Let

A =


1 t1 t21 · · · tk1
1 t2 t22 tk2

. . .
...

1 tn t2n · · · tkn

 and b =


u1
u2
...
un


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then,

ϕ(x) = ‖b−Ax‖2

= (b−Ax) · (b−Ax)

= b · b− 2b ·Ax+Ax ·Ax

= b · b− 2AT b · x+ xATAx.

(Note: · indicates the dot product of two vectors.) Now if we let Q =
ATA and c = −AT b, then it is clear that minimizing ϕ(x) subject to x ∈
Rk+1 is equivalent to minimizing 1

2x
TQx + cx subject to x ∈ Rk+1, which

is an unconstrained quadratic program. The optimal solution provides the
coefficients for p(t) that represent a least squares fit of the observed data.

Note: It is generally the case that the number of observations n is greater
than k+ 1, so that the system Ax = b will have more rows than columns, i.e.,
it is an over-determined system of linear equations and so an exact solution
will not exist, which makes the search for a best approximating solution
meaningful.

7.3 QP Application: Financial Optimization

We consider a financial portfolio problem of Markowitz (1952) that was briefly
introduced in Chapter 1. This model is perhaps the most well-known instance
of a quadratic program and served as the basis of the research in portfolio
selection by Markowitz that was awarded the 1992 Nobel Prize in Economic
Sciences. We start the development from first principles.

Consider an investor that wishes to allocate funds into n financial securities
now (t = 0), and will hold the investment until time t = T in the future. Let

wi = the dollar amount invested in security i and w =
n∑
i=1

wi, then xi = wi
w is

the proportion of total funds invested in security i. The vector

x =


x1
x2
...
xn

 represents the portfolio of investments.

Portfolio Returns
If the current (t = 0) price of security i is p0i and the price of security i

at time T is pTi , then the rate of return of security i, denoted by ri, over the
time period [0, T ] is defined as

© 2014 by Taylor & Francis Group, LLC



252 Introduction to Linear Optimization and Extensions with MATLAB R©

ri =
pTi −p

0
i

p0i
.

If xi is the amount allocated to security i, then the return from investment
in security i is rixi. Then, the return of a portfolio x denoted by rp is defined
as

rp =
n∑
i=1

rixi,

which says that the return of the portfolio is the sum of the returns from
investments in individual securities. It is clear that a rational investor desires
that this quantity is higher rather than lower. The challenge is that the price
pTi of a security i in the future at time T is essentially random, and so the
return ri will be considered random as well. This means that rp would be
a weighted sum of random quantities. In general, we assume that the rate
of return of individual securities and hence portfolio returns are modeled by
random variables. ri will be a random variable with mean µi and variance σ2

i .

Instead of dealing with the full complexities of randomness, it is simpler
to consider the expectation of the portfolio return, which is denoted by rp
= E(rp), where E(·) is the expectation operator on a random variable, and
so we have by the linearity of expectation

E(rp) = E(
n∑
i=1

rixi) =
n∑
i=1

E(rixi)

=
n∑
i=1

E(ri)xi =
n∑
i=1

µixi

where µi = E(ri).

Risk in Portfolio Selection

If the investor only cared about selecting a portfolio x to maximize the
expected portfolio return E(rp), then she would invest only in the security i
with the highest expected return µi. But this strategy ignores risk, i.e., the
possiblity that the expected returns will not realize, which could result in
losses or lower returns. The intuitive idea behind the Markowitz approach is
to diversify investments into several securities, i.e., “don’t put all eggs in the
same basket”. The key quantities to consider are the covariances between the
returns of pairs of assets. The covariance between the returns ri and rj of
securities i and j is denoted by σij = cov(ri, rj) where

σij = E((ri − µi)(rj − µj)) for i 6= j

and

σij = σii = σ2
i for i = j.
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The covariance between the returns of two securities measures how the two
securities move together. Positive covariance, i.e., σij > 0 indicates that when
one security goes up (down) then the other security goes up (down) as well.
Negative covariance, i.e., σij < 0 indicates that when one security goes up
(down) the other goes down (up). If σij = 0, then we say that the securities
are uncorrelated, i.e., the movement of one security has no relation with the
movement of the other.

Then, it is ideal for a pair of securities to exhibit negative or smaller
covariance as long as the net return is sufficiently high. For example, consider
one security that represents a company that makes ice cream and another
security that represents a company that makes umbrellas and raincoats. These
securities may exhibit negative or low correlation as business for each depends
on the weather and each company is affected in opposite ways by the weather.
If it is a longer winter with more rain, then the stock in the ice cream company
will be lower, but the stock in the umbrella and raincoat company will be
higher. If winter is less harsh and there is warmer and better weather, then
the stock for the company that makes ice cream will do better than the stock
for the company that makes umbrellas and raincoats. In either case, as long
as the net return is good enough, it is safer to invest in both companies rather
than just one. In fact, it can be shown that for sufficiently low covariance
between securities, it is superior (less risk with same return) to invest in more
securities rather than fewer; see Luenberger (1998).

In the Markowitz approach, an investor should consider the variance of
the return of a portfolio, which is denoted by σ2

p where

σ2
p = var(rp) = E[(rp − E(rp))

2]

= E[(
n∑
i=1

rixi −
n∑
i=1

µixi)
2] = E[(

n∑
i=1

xi(ri − µi)(
n∑
j=1

xj(rj − µj)]

E[(
n∑
i=1

n∑
j=1

xixj(ri − µi)(rj − µj)] =
n∑
i=1

n∑
j=1

σijxixj

=
n∑
i=1

ρijσiσjxixj

where

ρij = σij/σiσj .

The quantity ρij is the correlation coefficient between ri and rj and nor-
malizes the covariance to be between 1 and −1. An investor will seek to select
a portfolio x that minimizes σp. In doing so, the investor will seek to invest
in securities that have lower or negative covariance with other securities since
the covariance is the coefficient for each xixj term. Thus, portfolio variance is
seen as a measure by which to evaluate the riskiness of a portfolio. However,
the investor also needs a goal for the rate of return for the portfolio x since
minimizing just the variance of a portfolio may not generate sufficient return
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for the investor. To this end, the investor specifies a constraint that forces her
portfolio selection to achieve at least a certain amount of expected return R.
That is, the investor enforces the constraint

E(rp) =
n∑
i=1

µixi ≥ R.

Markowitz Portfolio Selection Model
Now all of the components are in place for specification of the Markowitz

portfolio model, also known as mean-variance optimization (MVO). The most
well-known version of the MVO model has the objective of minimizing the
variance of the portfolio and is given as follows

minimize
n∑
i=1

n∑
j=1

σijxixj

subject to
n∑
i=1

µixi ≥ R
n∑
i=1

xi = 1

xi ≥ 0, i = 1, ..., n.

The objective is to find a portfolio x that minimizes variance subject to
meeting the expected return goal. There is also a budget constraint where the
sum of all investments is equal to the budget. The non-negativity constraints
ensure that shorting of securities is prohibited. A negative value of xi indicates
that a security is sold short, meaning that the investor borrows shares of the
security and sells the shares at the current price and must later return those
shares to the original owner (often a stock brokerage). The non-negativity
constraints are optional. In matrix form, the MVO model is

minimize 1
2x

TQx
subject to µTx ≥ R

eTx = 1
x ≥ 0

where Q = [σij ] for 1 ≤ i, j ≤ n, and so Q is symmetric since the σij = σji.
Let A = [µ1, ..., µn] and b = [R] and E = [1, ..., 1] and d = [1] and thus the
MVO formulation is a quadratic program with c = 0. Note that the original
objective function is multiplied by 1

2 for mathematical convenience which does
not affect the original formulation.

A three (n = 3) security MVO problem with no short selling has the form

minimize σ2
1x

2
1 + σ2

2x
2
2 + σ2

3x
2
3 + 2σ12x1x2 + 2σ13x1x3 + 2σ23x2x3

subject to µ1x1 + µ2x2 + µ3x3 ≥ R
x1 + x2 + x3 = 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Example 7.3

Consider three securities with the expected returns given in Table 7.1

Table 7.1 Expected security returns

Expected return Security 1 (i = 1) Security 2 (i = 2) Security 3 (i = 3)
µi 9.73% 6.57% 5.37%

with covariances given in Table 7.2.

Table 7.2 Covariance of returns
Covariance σij i = 1 i = 2 i = 3

i = 1 0.02553 0.00327 0.00019
i = 2 0.013400 -0.00027
i = 3 0.00125

We wish to form a portfolio with minimum variance with short selling
allowed that achieves an expected return of at least 5.5%. The corresponding
model is

minimize (0.02553)x21 + (0.013400)x22 + (0.00125)x23 + 2(0.00327)x1x2
+2(0.00019)x1x3 + 2(−0.00027)x2x3

subject to 0.0972x1 + 0.0657x2 + 0.0537x3 ≥ 0.055
x1 + x2 + x3 = 1.

Solving this model gives the optimal portfolio

x1 = 0.0240 x2 = 0.0928 x3 = 0.8832

with risk (variance) σ2
P = 0.033069. The expected return of the portfolio is

rp = 0.0972(0.0240) + 0.0657(0.0928) + 0.0537(0.8832) = 0.0558.

Thus, we see that the optimal portfolio meets the return goal and it will
not be possible to have another portfolio that achieves an expected return
of 5.58% with lower variance. Observe that the optimal portfolio allocates
most of the investment into the third asset whose expected return is almost
enough to satisfy the return goal of 5.5% and thus there is some investment
in the other two riskier (higher standard deviation) assets that possess higher
expected return.

We can solve the MVO model once for each R from 5.5% to 9.5% to get
the results in Table 7.3.
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FIGURE 7.1
Risk return tradeoff of portfolios from Example 7.3.

Table 7.3 Optimal portfolios for different R

Return goal R x1 x2 x3 σP
5.5% 0.0240 0.0928 0.8832 0.0329

6% 0.1142 0.1101 0.7757 0.0363
6.5% 0.2232 0.1309 0.6459 0.0471
7% 0.3321 0.1518 0.5161 0.0617

7.5% 0.4410 0.1727 0.3863 0.0780
8% 0.5500 0.1935 0.2565 0.0950
8.5% 0.6589 0.2144 0.1267 0.1125
9% 0.7678 0.2352 −0.0030 0.1303

9.5% 0.8768 0.2561 −0.1329 0.1482

A graph of the portfolios in Table 7.3 with expected return of a portfolio on
the vertical axis and portfolio standard deviation (volatility) on the horizontal
axis is given in Figure 7.1. Such a graph is called the efficient frontier. The
graph clearly indicates the tradeoff between risk (standard deviation) and
reward (expected return) of portfolios. The major insight is that the only way
to achieve higher expected reward is to take on more risk.

It is important to note that the matrix Q must be at least positive semi-
definite (i.e., xTQx ≥ 0 for all x ∈ Rn) in the context of MVO since the
quadratic term xTQx represents variance of a random variable (portfolio)
return, which is a non-negative quantity. For a general quadratic program it
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is not necessarily the case that Q must be positive semi-definite. However,
there are advantages of Q being positive definite.

7.4 Solving Quadratic Programs Using MATLABR©

In this section we introduce the MATLAB function quadprog that enables so-
lution of quadratic programming problems. Quadratic programs can be solved
with MATLAB by using the function quadprog. To use quadprog, a quadratic
program is specified in the following form

minimize cTx+ 1
2x

TQx
subject to Ax ≤ b

Aeqx = beq
lb ≤ x ≤ ub,

which assumes that constraints are grouped according to inequality con-
straints, equality constraints, and bounds on the decision variables. The first
set of constraints Ax ≤ b represents inequality constraints (of the less than
or equal to type). Note that any constraint that is originally an inequality
constraint of the greater than or equal to type (≤) must be converted to a less
than or equal to equivalent. The second set of constraints Aeqx = beq repre-
sents the equality constraints, and lb ≤ x ≤ ub represents the lower and upper
bounds on the decision variables. Then, A,Aeq are matrices and b, beq, lb, ub
are vectors. f is a vector that represents the cost coefficients of the linear
term of the objective function and Q is the matrix of the quadratic term of
the objective function. These quantities are represented in MATLAB as Q, f,
A, b, Aeq, beq, lb, ub and are used as arguments for the quadprog function.

For example, the statement

[x, fval] = quadprog(Q,f, A, b, Aeq, beq, lb, ub)

returns a vector x that represents the optimal solution and the optimal ob-
jective function value fval of the quadratic program specified by the data.

Example 7.4
Consider the MVO quadratic program in Example 7.3

minimize (0.02553)x21 + (0.013400)x22 + (0.00125)x23 + 2(0.00327)x1x2
+2(0.00019)x1x3 + 2(−0.00027)x2x3

subject to 0.0972x1 + 0.0657x2 + 0.0537x3 ≥ 0.055
x1 + x2 + x3 = 1.
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Then,

f =

 0
0
0

 , Q =

 0.02553 0.00327 0.00019
0.00327 0.013400 −0.00027
0.00019 −0.00027 0.00125


A =

[
−0.0972 −0.0657 −0.0537

]
, b = [−0.055]

Aeq =
[

1 1 1
]
, beq = [1].

The vectors and matrices for this QP are created in MATLAB by the
following statements

Q=[0.02553,0.00327,0.00019;0.00327,0.013400,-0.00027;
0.00019,-0.00027,0.00125];

f=[0,0,0];
A=[-0.0972,-0.0657,-0.0537];
b=[-0.055];
Aeq=[1,1,1];
beq=[1];
lb=[ ];
ub=[ ];

Then, the quadprog function is called with the following statement

[x, fval] = quadprog(Q,f, A, b, Aeq, beq, [ ], [ ]),

which outputs the following values for the optimal portfolio

x =
0.0240
0.0928
d0.8832

fval=
5.4176e-004

(Note: fval needs to be doubled to equal the variance of the portfolio since
the quadratic term (variance) in the objective has a coefficient of 0.5, i.e.,
1
2x

TQx.)

7.4.1 Generating the Efficient Frontier Using MATLAB

The following MATLAB code generates the optimal portfolios in Example 7.3
as seen in Table 7.3 using the quadprog function, and plots the associated
efficient frontier.

%%%%% Three asset MVO problem in Example 7.3 %%%%%
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n=3;

%%%%% Data for MVO problem %%%%%

mu=[9.73 6.57 5.37]/100; % expected returns of assets

Q=[.02553 .00327 .00019; %covariance matrix

.00327 .01340 -.00027;

.00019 -.00027 .00125];

goal R=[5.5:.5:9.5]/100; % expected return goals range from 5.5% to 9.5%

for a=1:length(goal R)

c=zeros(n,1);

A=-mu;

b=-goal R(a);

Aeq=[ones(1,n);];

beq=[1;];

%%%%% quadratic optimization call %%%%%

[x(a,:), fval(a,1)] = quadprog(Q, c, A,b, Aeq,beq, [],[]);

std devi(a,1)=(2*fval(a,1))ˆ.5; %standard deviation = (x’*Q*x)ˆ.5

end

%%%%% efficient frontier plot %%%%%

plot(std devi, goal R, ’-k*’)

xlabel(’volatility \sigma’)

ylabel(’expected return goal R’)

title(’The efficient frontier of MVO’)

7.5 Optimality Conditions for Quadratic Programming

We know from duality theory that if a linear program has a finite optimal
solution, implies that there is a finite optimal solution for its dual with an
optimal objective function value that is the same as the primal objective
function value. The characterization of optimality for linear programming can
be summarized as the satisfaction of (1) primal feasibility, (2) dual feasibility,
and (3) complementary slackness. In fact, we have seen that these conditions
are both necessary and sufficient. The complementary slackness conditions
provide the key relationship between the primal and dual solutions. This allows
us to effectively answer such questions as “If a vector x is feasible for a linear
programming problem, is it an optimal solution?”.

We seek a similar characterization for quadratic programs. However, a
quadratic program is a non-linear optimization problem because the objective
function has terms that are products of variables, and it is the non-linearity
that prevents a nice characterization of optimality like that for linear pro-
gramming. Instead, we seek necessary optimality conditions for a vector x to
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be a local minimum (defined below) for a quadratic program and identify con-
ditions that are sufficient for global optimality. In other words, the best that
one can do is to identify conditions that any local or global optimal solution
must possess, but unfortunately these conditions are not unique to optimal
solutions, and so in this sense the characterization is not as powerful as in the
linear programming setting.

7.5.1 Local and Global Optima

In the linear programming setting, characterization of optimality is for global
optimal solutions, i.e., for feasible vectors x that have the best objective func-
tion value among all feasible solutions. Non-linear optimization problems can
exhibit curvature that makes it difficult to determine whether a feasible vec-
tor x is a global optimal solution. It is easier in non-linear optimization to
characterize local minima, i.e., vectors x that are feasible and have the best
objective function value within a neighborhood of x; see Figure 7.2. So in
general for quadratic programs, the characterization of optimality will be for
local minima, although it is possible to characterize global optimality under
certain conditions.

Consider the following optimization problem (P)

minimize f(x)
subject to x ∈ S,

where f(x) is a non-linear function that is a twice continuously differentiable
function from Rn to R and S is a polyhedron and a subset of Rn. Observe
that the quadratic programming problem is an instance of problem P.

Let B(x∗, ε) = {x ∈ Rn| ‖x− x∗‖2 ≤ ε}, which is a ball in Rn with radius
ε. In R1, B(x∗, ε) is the line segment [x∗− ε, x∗+ ε], in R2 it is the disc with
center x and radius ε, in R3 is a sphere with center x∗ and radius ε, etc.

The formal definitions of the concept of local and global minimum are as
follows.

Definition 7.5
A vector x∗ ∈ S is a local minimum for P if there is an ε > 0 such that

f(x∗) ≤ f(x) for all x ∈ B(x∗, ε) ∩ S.

A vector x∗ ∈ S is a strict local minimum for P if there is an ε > 0 such
that f(x∗) ≤ f(x) for all x ∈ B(x∗, ε) ∩ S and x∗ 6= x.

Definition 7.6
A vector x∗ ∈ S is a global minimum for P if f(x∗) ≤ f(x) for all x ∈ S.

A vector x∗ ∈ S is a strict global minimum for P if f(x∗) < f(x) for all
x ∈ S.

One can define analogous definitions for a local or global maximum.
Figure 7.2 illustrates the definition of a local minimum.
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FIGURE 7.2
Illustration of local minima.

7.5.2 Unconstrained Quadratic Programs

We first consider the unconstrained quadratic programming problems

minimize cTx+ 1
2x

TQx
subject to x ∈ Rn.

Suppose one had a vector x ∈ Rn. How can one verify that x is a lo-
cal or even global optimal solution? Verifying that a solution x is a local or
global solution using the definitions above is difficult in practice since it entails
checking that a candidate optimal solution is better than possibly an infinite
number of solutions from Rn.

We now give some constructs that will enable necessary conditions for a
vector x ∈ Rn to be a local or global optimal solution that suggest more
computationally effective methods for verification of the conditions. The idea
is that if a vector x is a local or global optimal solution, then it is not possible
to move along any direction vector d ∈ Rn from x that will lead to an improved
vector x

′ ∈ Rn. In other words, it will be impossible to write x
′

= x+ αd for
some step length α > 0 for any direction d ∈ Rn and have cTx

′
+ 1

2x
′TQx

′
<

cTx+ 1
2x

TQx. Such a direction d that would lead to an improvement is called
a descent direction.

The development of the optimality conditions for the unconstrained
quadratic programming will be done below on the more general unconstrained
non-linear programming problem (UNLP)

minimize f(x)
subject to x ∈ Rn.
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We assume that f(x) is non-linear and differentiable, and so the uncon-
strained quadratic programming problem is an instance of this general prob-
lem. The optimality conditions that will be derived below follow and generalize
the case when f(x) is a differentiable function of a single variable.

We formally define a descent direction as follows.

Definition 7.7
A vector d ∈ Rn is a descent direction of f(x) at x = x∗ if

f(x∗ + εd) < f(x∗) for all ε > 0 and sufficiently small.

The next result gives the conditions under which a vector d is a descent
direction.

Theorem 7.8
Suppose that f(x) is differentiable at x∗ and there is a vector d such that

∇f (x
∗
)
T

d < 0 .

then d is a descent direction.
Proof:
Since f(x) is differentiable, then by Taylor expansion we get

f(x) = f(x∗) +∇f(x∗)T (x− x∗) + ‖x− x∗‖ o(x∗, x− x∗) (7.1)

where lim
x→x∗

o(x∗, x− x∗) = 0. Let x = x∗ + αd in (7.1), then

f(x∗ + αd) = f(x∗) + α∇f(x∗)T (d) + α ‖d‖ o(x∗, αd) (7.2)

where lim
α→0

o(x∗, αd) = 0. From (7.2), we get

f(x∗+αd)−f(x∗)
α = ∇f(x∗)T (d) + ‖d‖ o(x∗, αd). (7.3)

As α→ 0 the second term on the right-hand side converges to 0 faster than
any other term in (7.3). Now since ∇f(x∗)T (d) < 0, then for all α sufficiently
small

f(x∗ + αd)− f(x∗) < 0,

i.e., d is a descent direction. �

For a quadratic function f(x) = 1
2x

TQx + cTx, the gradient is ∇f(x) =
Qx+ c , so d is a descent direction at x∗ for f(x) if (Qx∗ + c)T d < 0.

The next corollary formalizes the idea that at a local minimum there can-
not be any descent directions.

Corollary 7.9 (First-Order Necessary Condition)
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Suppose f(x) is differentiable at x∗. If x∗ is a local minimum, then
∇f(x∗) = 0.

Proof:
Suppose that ∇f(x∗) 6= 0, then d = −∇f(x∗) is a descent direction for

f(x) at x∗. �

This condition generalizes the necessary condition for the case for a dif-
ferentiable single variable function f(x) where one sets the first derivative to
0, i.e., f ′(x) = 0. Recall from single-variable calculus that solutions to this
equation were called stationary or critical points.

For a quadratic function f(x), the first-order necessary condition is then
Corollary 7.10.

Corollary 7.10
If x∗ is a local minimum for UQP, then ∇f(x∗) = Qx∗ + c = 0.

As in the single-variable case, the first-order condition suggest, that the
equation ∇f(x∗) = 0 should be solved for potential local minimizers. How-
ever, ∇f(x∗) = 0 is in general a system of non-linear equations, but for the
quadratic case we get a linear system of equations. It is important to note
that solutions to ∇f(x) = 0 are not automatically local minimums, but po-
tential local minimums. However, any vector x that is a local minimum must
satisfy this system. Further analysis is often required to determined which of
the solutions to the system is a local minimum.

Example 7.11
Consider the problem

minimize f(x) = 2x21 + x22 + x23 + x1x2 + x1x3 + x2x3
subject to x ∈ Rn.

The system ∇f(x) = 0 can be written as 4x1 + x2 + x3
x1 + 2x2 + x3
x1 + x2 + 2x3

 =

 0
0
0

 ,
which is a linear system whose only solution is x∗ =

[
0 0 0

]T
. However,

it is not known at this point, just based on satisfying the first-order necessary
conditions, that x∗ is a local minimum. (Note: that the function is simple
enough for one to guess that the optimal solution is indeed x∗.)

The next result gives additional necessary conditions in the case that f(x)
is at least twice differentiable, and thus applies to quadratic functions. H(x∗)
is the Hessian of f(x) at x∗.

Theorem 7.12 (Second-Order Necessary Condition)
Suppose that f(x) is twice differentiable at x∗. If x∗ is a local minimum,

then ∇f(x∗) = 0 and H(x∗) is positive semidefinite.

© 2014 by Taylor & Francis Group, LLC



264 Introduction to Linear Optimization and Extensions with MATLAB R©

Proof:

Since x∗ is a local minimum, by Corollary 7.9 ∇f(x∗) = 0. Now suppose
that H(x∗) is not positive semidefinite. This implies that there is a vector d
such that dTH(x∗)d < 0.

Now f(x) is twice differentiable, so

f(x∗ + αd) = f(x∗) + α∇f(x∗)T (d) + 1/2α2dTH(x∗)d+ α2 ‖d‖2 o(x∗, αd)

= f(x∗) + 1
2α

2dTH(x∗)d+ α2 ‖d‖2 o(x∗, αd)

where lim
α→0

o(x∗, αd) = 0. Then,

f(x∗+αd)−f(x∗)
α2 = 1

2d
TH(x∗)d+ ‖d‖2 o(x∗, αd).

Since dTH(x∗)d < 0, then for all α > 0 sufficiently small f(x∗ +
αd) − f(x∗) < 0, which implies that d is a descent direction for f(x) at
x∗contradicting that x∗ is local minimum. �

The second-order necessary condition for a quadratic function translates
to the requirement that for any local minimum (in addition to the first-order
condition), the matrix Q is positive semidefinite.

The following result is a sufficient condition for a local minimum which
means that if the conditions are satisfied for a vector x∗, then it can be
concluded that it is a strict local minimum.

Theorem 7.13 (Sufficiency Condition)

Suppose that f(x) is twice differentiable at x∗. If ∇f(x∗) = 0 and H(x∗)
is positive definite, then x∗ is a strict local minimum.

Proof: See Bertsekas (2003).

This result is a generalization of the familiar case from calculus where f(x)
is a twice differentiable function of a single variable and x∗ is a number such
that f

′
(x∗) = 0 and f

′′
(x∗) > 0, from which one can conclude that x∗ is

a strict local minimum. The gradient ∇f(x) and the Hessian H(x) are the
generalizations of the first and second derivatives for multi-variate functions.

Example 7.14

In Example 7.11, the Hessian of f(x) is

H(x) =

 4 1 1
1 2 1
1 1 2

 .
The principal minors are 41 = 4,42 = 7, and 43 = 10 and so H(x) is

positive definite and is also positive semi-definite, thus we can conclude that

x∗ =
[

0 0 0
]T

is a strict local minimum.
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FIGURE 7.3
Convex function.

7.5.2.1 Convex Unconstrained Quadratic Programming (Global
Optimality)

Consider the quadratic function f(x) = x2 and the point x∗ = 0. The first-
order condition is satisfied at x∗, i.e., ∇f(x∗) = f

′
(x∗) = 2x∗ = 0 and

H(x∗) = [2] is positive definite. Thus, we can conclude, based on Theorem
7.3 above, that x∗is a strict local minimum. However, it easy to see that x∗ is
actually a strict global minimum, yet all of the conditions derived above are
unable to mathematically detect this. In general, for non-linear optimization
one may obtain a vector x that is in fact a global optimal solution, but it may
be very difficult to verify that it is globally optimal.

However, the quadratic function f(x) = x2 is an example of what is called
a convex function, and when f(x) is a convex function, the case simplifies
considerably. In fact, as will be shown, first-order necessary conditions are
sufficient for global optimality.

The salient feature of a convex function, as can be seen from the graph
of f(x) = x2, is that f(x) over any line segment [x, y] in the domain R1 is
dominated by the line segment between the points (x, f(x)) and (y, f(y));
see Figure 7.3. This observation motivates the formal definition of a convex
function, which is given next.

Definition 7.15
Let S be a convex set in Rn. A function f(x) : S → R is convex if

f (λx + (1 − λ)y) ≤ λf (x ) + (1 − λ)f (y)

for all x, y ∈ S and for all λ ∈ [0, 1]. f(x) is strictly convex if the inequality
is strict for all x 6= y and λ ∈ (0, 1).
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A natural question at this point is “When is a quadratic function convex?”.
The next result gives the answer.

Theorem 7.16
A quadratic function f(x) = cTx + 1

2x
TQx is convex on S if and only if

the Hessian H(x) = Q is positive semidefinite on S.
Proof:
=>
Suppose that f(x) is convex and that Q is not positive semidefinite. Then,

there exists a d such that dTQd < 0. Now let x = td for any real number
t, then f(td) = tcT d + 1

2 t
2dTQd goes to −∞ as t → ∞, and so f(x) is not

convex, a contradiction.
<=
Suppose that Q is positive semidefinite and for any x and y ∈ S and any

λ ∈ [0, 1] consider

f(λx+ (1− λ)y) = f(y + λ(x− y))

= cT (y + λ(x− y)) + 1
2 (y + λ(x− y))TQ(y + λ(x− y))

= λcTx+ (1− λ)cT y + 1
2y
TQy + λ(x− y)TQy + 1

2λ
2(x− y)TQ(x− y)

≤ λcTx+ (1− λ)cT y + 1
2y
TQy + λ(x− y)TQy + 1

2λ(x− y)TQ(x− y)

= λcTx+ (1− λ)cT y + 1
2λx

TQx+ 1
2 (1− λ)yTQy

= λf(x) + (1− λ)f(y),

thus f(x) is a convex function. �

Corollary 7.17
The function f(x) is strictly convex on S if Q is positive definite.
Proof: Similar to the proof of Theorem 7.16 above. �

We now classify problems when the objective function is convex. In par-
ticular, we call the following problem

minimize f(x) = cTx+ 1
2x

TQx
subject to x ∈ Rn

an unconstrained convex quadratic programming (UCQP) problem when f(x)
is quadratic and convex or strictly convex function. Note that Rn is a convex
set.

Now we present the main result concerning the UCQP problem.

Theorem 7.18
Let f(x) = cTx+ 1

2x
TQx and suppose that Q is positive semidefinite, then

the unconstrained quadratic programming problem has a global minimum x∗

if and only if x∗ solves the system ∇f(x) = Qx+ c = 0.
Proof:
=>
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Suppose that x∗ is a global minimum and let d = Qx∗ + c 6= 0. We will
show that it is possible to construct a new point x∗+αd for some step length
α. To this end, let

f(x∗ + αd) = cT (x∗ + αd) + 1
2 (x∗ + αd)TQ(x∗ + αd)

= cTx∗ + αcT d+ 1
2 (x∗)TQx∗ + αdTQx∗ + 1

2α
2dTQd

= f(x∗) + αdT (c+Qx∗) + 1
2α

2dTQd

= f(x∗) + αdT d+ 1
2α

2dTQd. (7.4)

Now for sufficiently small α < 0, we have αdT d < 0, and so (7.4) is less
than f(x∗) and thus f(x∗+αd) < f(x∗), which contradicts that x∗ is a global
minimum.

<=
Proof of the converse is left to the reader. �

Theorem 7.18 says that for UCQPs the first order necessary conditions are
sufficient for global optimality.

Example 7.19

The solution x∗ =
[

0 0 0
]

for the problem

minimize f(x) = 2x21 + x22 + x23 + x1x2 + x1x3 + x2x3
subject to x ∈ Rn

can now be seen to be a strict global minimum since the Hessian H(x) is
positive definite on Rn.

Application to Least Squares Fitting

In Example 7.2 the problem of determining the coefficients x0, x1, x2, ..., xk
of the polynomial function p(t) = x0 + x1t + x2t

2 · · · + xkt
k of degree k that

gave a least squares fit to the observed data (t1, u1), (t2, u2), ..., (tn, un) was
formulated as an unconstrained quadratic program

minimize ϕ(x) = 1
2x

TQx+ cx
subject to

x ∈ Rk+1

where

Q = ATA and c = −AT b

and
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A =


1 t1 t21 · · · tk1
1 t2 t22 tk2

. . .
...

1 tn t2n · · · tkn

 and b =


u1
u2
...
un

 .
Now any local minimum x has to satisfy the first-order conditions

∇ϕ(x) = 2ATAx− 2AT b = 0

or equivalently

ATAx = AT b
x = (ATA)−1AT b.

The Hessian of ϕ(x) is given by Hϕ(x) = 2ATA. Observe that A has full
row rank if it is assumed that the observed values t1, t2, ..., tn are different.
Then, it is a fact from linear algebra that the matrix ATA is positive definite
and so the function ϕ(x) is strictly convex, which implies that the solution
x = (ATA)−1AT b will be a strict global minimum.

7.5.3 Convex Optimization

UCQPs are an instance of a broader class of problems of the form

minimize f(x)
subject to x ∈ S ⊆ Rn

where f(x) is a convex function over the convex set S. A problem from this
class is called a convex optimization problem (COP) and has the property
that any local minimum for a COP is a global minimum; see Theorem 7.20
below. Furthermore, if f(x) is differentiable, then a sufficient condition for a
global minimum x∗ for COP is that ∇f(x∗) = 0; see Bertsekas(2003).

Theorem 7.20
A local minimizer of a convex function f(x) over a convex set S ⊆ Rn

is a global minimizer. If f(x) is strictly convex, then a local minimizer is a
strict and unique global minimum.

Proof:
Let x∗ be a local minimizer of f(x) over a convex set S. Then, there exists

an ε > 0 such that f(x∗) ≤ x for all x ∈ B(x∗, ε). Let y ∈ S, but not an
element of B(x∗, ε). Now the line segment between y and x∗, i.e.,

λy + (1− λ)x∗ for all λ ∈ [0, 1],

is in S since S is convex and x∗ and y are in S. Select λ∗ > 0 with 0 < λ∗ < 1,
but sufficiently small so that λ∗y + (1 − λ∗)x∗ = x∗ + λ∗(y − x∗) ∈ B(x∗, ε)
and so
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f(x∗) ≤ f(x∗ + λ∗(y − x∗)),

then since f(x) is a convex function over S, we have

f(x∗) ≤ f(x∗ + λ∗(y − x∗)) = f(λ∗y + (1− λ∗)x∗)

≤ λ∗f(y) + (1− λ∗)f(x∗),

then

f(x∗) ≤ λ∗f(y) + (1− λ∗)f(x∗),

or equivalently

f(x∗) ≤ f(y).

Therefore x∗ is a global minimum. If f(x) is a strictly convex function,
then the inequalities above hold strictly for all y 6= x∗. �

7.5.4 Equality-Constrained Quadratic Programs

Next we consider equality-constrained quadratic programs (EQP) of the form

minimize f(x) = 1
2x

TQx+ cTx
subject to Ax = b.

The key idea is to turn an EQP into an unconstrained problem by defining
a new function called the Lagrangian. This is accomplished by multiplying the
vector Ax − b by a vector π of multipliers, i.e., πT (Ax − b) and subtracting
this quantity from 1

2x
TQx + cTx. The resulting function, the Lagrangian, is

L(x, π) = 1
2x

TQx+ cTx− πT (Ax− b).
Then, we have the unconstrained problem

minimize L(x, π) = 1
2x

TQx+ cTx− πT (Ax− b) (UQP)
subject to x ∈ Rn, π ∈ Rm.

Note that L(x, π) is differentiable. Then, proceeding as in calculus, the
critical points of L(x, π) are obtained. Finding the critical points amounts to
computing the partial derivatives of L(x, π), setting them to zero, and solving
the resulting system of equations, i.e.,

dL
dx = Qx+ c−ATπ = 0 (7.5)
dL
dπ = Ax− b = 0. (7.6)

By (7.5) we have Qx = ATπ−c and so x = Q−1(ATπ−c) and substituting
into (7.6) gives A(Q−1(ATπ − c)) = b and so

π = (AQ−1AT )−1(b + AQ−1c). (7.7)

© 2014 by Taylor & Francis Group, LLC



270 Introduction to Linear Optimization and Extensions with MATLAB R©

Substituting this back into (7.7) we get

x = Q−1(AT (AQ−1AT )−1(b+AQ−1c)− c). (7.8)

Observe that the system (7.5) and (7.6) can be written in block matrix
form as [

Q −AT
A 0

] [
x
π

]
=

[
−c
b

]
. (7.9)

In order for the solutions x and π to be meaningful, the matrices Q and A
must possess the right properties so that all of the matrix inversions in (7.7)
and (7.8) exist. A minimal requirement is that the matrix

[
Q −AT
A 0

]
is invertible so that x and π can be solved for.

Assuming that Q and A have the appropriate properties, the system of
equations (7.5) and (7.6) or equivalently (7.9) will define a set of necessary
conditions that any local optimal solution x of EQP must satisfy. Assume
that A is such that m < n, i.e., the number of columns are greater than the
number of rows. Then summarizing the discussion above, a set of necessary
conditions for x to be a local minimum for EQP is given as follows.

Theorem 7.21 (Necessary Conditions for EQP)
Assume that x is a local minimum for EQP, A has full row rank, and the

matrix [
Q −AT
A 0

]
is invertible, then there exists a vector π so that (7.9) is satisfied.

It is important to note that these are necessary conditions, meaning that
any local minimizer must satisfy condition (7.9). If a vector x does not satisfy
(7.9), then it may not be a local minimizer.

Example 7.22
Consider the MVO problem from Example 7.3, but with the expected

return goal as an equality constraint instead of an inequality constraint. Then,
the MVO problem is an EQP with

Q =

 0.02553 0.00327 0.00019
0.00327 0.013400 −0.00027
0.00019 −0.00027 0.00125


A =

[
0.0972 0.0657 0.0537

1 1 1

]
, b =

[
−0.055

1

]
.
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There is no linear term in this MVO problem so, c = 0. Thus, (7.7) and
(7.8) become

π = (AQ−1AT )−1b (7.10)
x = Q−1(AT (AQ−1AT )−1b). (7.11)

To solve (7.10), one should find the inverse of Q through some factorization
(e.g., Cholesky if Q positive definite or LU factorization) and then solve the
system

(AQ−1AT )π = b (7.12)

for π. Then, (7.11) can be solved by solving the system

Qx = ATπ. (7.13)

Now

Q−1 =

 40.5196 −10.0559 −8.3310
−10.0559 77.4487 18.2574
−8.3310 18.2574 805.2099

 ,
then

(AQ−1AT ) =

[
2.9525 51.5513
51.5513 922.9192

]
,

and so solving system (7.12)[
2.9525 51.5513
51.5513 922.9192

] [
π1
π2

]
=

[
−0.055

1

]
gives

π =

[
π1
π2

]
=

[
−1.5179
0.0859

]
.

Now

ATπ =

 0.0006
0.0010
0.0011

 ,
so system (7.13) is 0.02553 0.00327 0.00019

0.00327 0.013400 −0.00027
0.00019 −0.00027 0.00125

 x1
x2
x3

 =

 0.0006
0.0010
0.0011


whose solution is
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x =

 x1
x2
x3

 =

 0.0053
0.0892
0.9055

 ,
which represents a portfolio with an expected return of 5.5%. Since the ma-
trix Q is positive definite, the quadratic objective function f(x) of the MVO
problem is strictly convex and the constraints Ax = b define a convex set and
so x is a strict global minimum variance portfolio.

We now consider the development of sufficient conditions for optimality
for EQPs. That is, we identify under what conditions will a vector x that
satisfies (7.9) be a local or global optimal solution to EQP. We present a few
mathematical preliminaries before presenting a sufficient condition.

Definition 7.23
Let A be an m × n matrix. The set of all vectors q ∈ Rn such that Aq = 0

is called the null space of A and is denoted by N(A).

It is not hard to show that if q1 and q2 are in N (A), then any linear
combination of q1 and q2 is also in N (A). Thus, the null space is a subspace
in Rn and can be shown to have dimension n−m when A has full row rank
m. A major implication of N (A) being a subspace is that there will be a set
of basis vectors for N (A).

Let Z be a matrix of dimension n×(n−m) that consists of the columns of a
basis for the null space of A. Then, the quantity ZTQZ is called the reduced
Hessian matrix of f(x). Our first result sheds light on when the necessary
condition becomes a sufficient condition.

Theorem 7.24 (Sufficient Condition for EQP)
Suppose that A has full row rank and that the reduced Hessian ZTQZ

of f(x) is positive definite. Then, the vector x∗ that satisfies the first-order
necessary conditions [

Q −AT
A 0

] [
x
π

]
=

[
−c
b

]
is a unique global optimal solution for EQP.

The following is a useful fact from linear algebra. Any vector x that satisfies
Ax = b can be written as x = x

′
+p where Ax

′
= b and Ap = 0, i.e., p ∈ N (A).

Proof of Theorem 7.24:
Let x∗ be a vector that satisfies the first-order conditions, and thus satisfies

Ax∗ = b, then x∗ = x
′
+ p for some feasible x

′
, i.e., (Ax

′
= b) and p ∈ N (A).

Now x
′

= x∗ − p and consider the objective function f(x) = 1
2x

TQx+ cTx at

x
′
, i.e.,

f(x
′
) = f(x∗ − p)

= cT (x∗ − p) + 1
2 (x∗ − p)TQ(x∗ − p)
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= cTx∗ − cT p+ 1
2x
∗TQx∗ − pTQx∗ + 1

2p
TQp

= f(x∗)− cT p− pTQx∗ + 1
2p
TQp. (7.14)

Now, since x∗ satisfies the first-order necessary conditions Qx∗ = −c +
ATλ∗ and thus,

pTQx∗ = pT (−c+ATλ∗)
= −pT c

since p ∈ N (A). So by substitution of this term into (7.14), we get

f(x
′
) = f(x∗) + 1

2p
TQp.

Now, since p ∈ N (A), then p can be written as a linear combination of the
vectors in the basis of N (A), i.e., p = Zw where w is the vector of weights of
the basis vectors in the linear combination. Then,

f(x
′
) = f(x∗) + 1

2w
TZTQZw

and since the reduced Hessian is positive definite (i.e., wTZTQZw > 0 for all
w 6= 0), we can conclude that

f(x
′
) > f(x∗) for any x

′
such that Ax

′
= b .

Therefore, x∗ is a strict global minimum for EQP. �

Example 7.25
For the MVO problem in Example 7.22, the matrix Q is positive definite so

the reduced Hessian ZTQZ is positive definite since xTZTQZx = yTQy > 0
for all y = Zx ∈ Rn where x 6= 0, and so the solution x is a strict global
minimum, which is consistent with the earlier determination that it was a
strict global minimum based on convexity.

7.5.4.1 Alternative Solution Methods for EQP

EQPs can be solved by directly using the matrix equations (7.7) and (7.8) as
in Example 7.22. An alternative strategy would be to use matrix factorization
methods similar to LU factorization on the matrix

K =

[
Q −AT
A 0

]
.

However, this is complicated by the fact that in general this matrix is
indefinite and so methods such as Cholesky Factorization, which require a
matrix to be positive definite, cannot be used. Methods called symmetric
indefinite factorization are appropriate here. In this method a factorization of
the form
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PMPT = LBLT

is obtained where M is a symmetric matrix (for EQPs M = K), P is a
permutation matrix, L is a lower triangular matrix and B is a block diagonal
matrix with block matrices of dimension 1 or 2; see Golub and Van Loan
(1989) for more details.

7.5.5 Inequality Constrained Convex Quadratic Program-
ming

We now consider quadratic programs of the following form

(Q) minimize f(x) = 1
2x

TQx+ cTx
subject to Ax = b

x ≥ 0

with equality and inequality constraints, i.e., non-negativity restrictions on the
variables. We refer to this class of problem as EIQP. An EIQP can model the
situation where one is constructing an MVO portfolio, but with restrictions
on short selling.

Our main goal here is to develop a predictor-corrector primal-dual path-
following interior point method for quadratic programming. We will assume
for the purpose of algorithm construction that A has full row rank and Q is
positive definite, thereby making EIQP a convex optimization problem. To
characterize the optimality conditions for algorithmic development of EIQP,
we proceed as in the case for developing primal-dual path-following interior
point methods for linear programs in standard form where we first convert the
problem to an unconstrained problem via the Lagrangian. The non-negativity
constraints will be handled through using a barrier function as was done for
linear programming problems in standard form in Chapter 6.

In particular, we consider the following barrier problem for EIQP analo-
gous to the barrier problem developed for linear programs in standard form

minimize cTx+ 1
2x

TQx− µ
n∑
i=1

ln(xi) (7.15)

subject to Ax = b

where µ > 0. We can take the Lagrangian of (7.15) and set the partial deriva-
tives equal to 0, which is equivalent to obtaining the following system of
non-linear equations.

−Qx+ATπ + z = c (7.16)
Ax = b (7.17)
XZe = µe (7.18)

These are the KKT conditions for (7.15). If µ = 0, this system will repre-
sent the KKT conditions for (Q) the original quadratic program. The strat-
egy of the development of the predictor-corrector primal-dual path-following
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method for quadratic programming will now parallel the development for the
linear programming case in Chapter 6. In particular, the Newton-Raphson
method is used to successively approximate the system (7.16)–(7.17) each
time using a smaller value of µ that will be expressed as in the linear pro-
gramming case as the product of a centering value that is changed adaptively
and a duality measure. The only major difference compared to the linear pro-
gramming case is now the presence of the matrix Q in the KKT system of
equations, and the fact that the step lengths will be identical for primal, dual,
and dual slack iterates.

7.5.6 Predictor-Corrector Algorithm for Convex QP

We now present the details of the predictor-corrector method.

Step 0: Obtain an initial interior solution (x(0), π(0), z(0)) such that x(0) > 0
and z(0) > 0 (see below). Let k = 0 and ε be some small positive number
(tolerance). Go to Step 1.

Step 1: Solve

 −Q AT I
A 0 0
Z(k) 0 X(k)

 daffx

daffπ

daffz

 =

 −r(k)d

−r(k)p

−X(k)Z(k)e



for

 daffx

daffπ

daffz

 , where X(k) = diag(x(k)), Z(k) = diag(z(k)), r
(k)
p = Ax(k) − b

are the primal residuals and r
(k)
d = −Qx(k) + ATπ(k) + z(k) − c are the dual

residuals. Go to Step 2.

Step 2: Compute

αaff = min{1, min
i:(daffx )i<0

{− x
(k)
i

(daffx )i
}, min
i:(daffz )i<0

{− z
(k)
i

(daffz )i
}}

, y(k) = (x(k))T z(k)

n , y
(k)
aff =

(x(k)+αaffx daffx )T (z(k)+αaffz daffz )
n and let τ (k) =(

y
(k)
aff

y(k)

)3

and solve for

 dx
dπ
dz

 in

 −Q AT I
A 0 0
Z(k) 0 X(k)

 dx
dπ
dz

 =

 −r(k)d

−r(k)p

−X(k)Z(k)e+Dx(k)Dz(k)e+ τ (k)y(k)e


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where Dx(k) = diag(daffx ) and Dz(k) = diag(daffz ). Go to Step 3.

Step 3: Compute α = min{1, ηαmax
x , ηαmax

z } where η ∈ [0.9, 1) and

αmax
x = min

i:(daffx )i<0
{− x

(k)
i

(daffx )i
} and αmax

z = min
i:(daffz )i<0

{− z
(k)
i

(daffz )i
}

and let

x(k+1) = x(k) + αdx
π(k+1) = π(k) + αdπ
z(k+1) = z(k) + αdz.

If the stopping criteria is met, i.e.,∥∥Ax(k+1) − b
∥∥ ≤ ε∥∥ATπ(k+1) + z(k+1) − c

∥∥ ≤ ε
(x(k+1))T z(k+1) ≤ ε,

then STOP. Else k = k + 1 and go to Step 1.

Example 7.26
Consider an MVO problem of the form

minimize xTQx
subject to Ax = b

x ≥ 0

where

Q =

 0.02553 0.00327 0.00019
0.00327 0.013400 −0.00027
0.00019 −0.00027 0.00125


A =

[
0.0972 0.0657 0.0537

1 1 1

]
, b =

[
0.055

1

]
.

Since x ≥ 0, short selling is explicitly prohibited. We illustrate one iteration
of the predictor-corrector method in this problem.

Step 0: Let ε = 10−8 and η = 0.95 and let

x(0) =

 1
1
1

 , π(0) =

[
1
1

]
, and z(0) =

 1
1
1

 .
Check the stopping condition for initial point
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max


∥∥Ax(0) − b∥∥∥∥−Qx(0) +ATπ(0) + z(0)

∥∥
(x(0))T z(0)

 = max

 2.0065
3.5623
3.0000

 = 3.5623 > ε.

So go to Step 1.

Iteration 1
Step 1:
Solve  −Q AT I

A 0 0
Z(0) 0 X(0)

 daffx

daffπ

daffz

 =

 −r(0)d
−r(0)p

−X(0)Z(0)e


where

X(0) =

 1 0 0
0 1 0
0 0 1

 , Z(0) =

 1 0 0
0 1 0
0 0 1


−r(0)p =

[
−0.1617
−2

]
, −r(0)d =

 −2.0683
−2.0493
−2.0525


−X(0)Z(0)e =

 −1
−1
−1

 ,
then

daffx =

 −1.0916
−0.5589
−0.3495

, daffπ =

[
−18.0533
−0.4330

]

daffz =

 0.0916
−0.4411
−0.6505

 .
Step 2:

αaff = min{1,min{ 1
1.0916 ,

1
0.5589 ,

1
0.3495},min { 1

0.4411 ,
1

.6505}}

= 1
1.0916 = 0.9160

y(0) = (x(0))T z(0)

n =

[
1 1 1

]T
1
1
1


3 = 3

3 = 1,

y
(0)
aff =

(x(0)+αaffdaffx )T (z(0)+αaffdaffz )
n
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=




1
1
1

+ 0.9160


−1.0916
−0.5589
−0.3495



T


1
1
1

+ 0.9160


−1.0916
−0.5589
−0.3495




3

= 0.1885

and so

τ (0) =

(
y
(0)
aff

y(0)

)3

=
(
0.1885

1

)3
= 0.0067.

Now solving for

 dx
dπ
dz

 in

 −Q AT I
A 0 0
Z(0) 0 X(0)

 dx
dπ
dz

 =

 −r(0)d
−r(0)p

−X(0)Z(0)e+Dx(0)Dz(0)e+ τ (0)y(0)e


where

Dx(0) = diag(daffx ) =

 −1.0916 0 0
0 −0.5589 0
0 0 −0.3495


and

Dz(0) = diag(daffz ) =

 0.0916 0 0
0 −0.4411 0
0 0 −0.6505

 ,
then

dx =

 −1.0730
−0.6265
−0.3005

 , dπ =

[
−26.2540

0.2771

]
,

dz =

 0.1796
−0.6133
−0.9202

 .
Step 3:
Now

αmax
x = min{1, min

i:(dx)i<0
{− x

(0)
i

(dx)i
}}

= min{1, 1
1.0730 ,

1
0.6265 ,

1
0.3005} = 0.9320
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and

αmax
z = min{1, min

i:(dz)i<0
{− z

(0)
i

(dz)i
}}

= min{1, 1
0.6133 ,

1
0.9202} = 1,

and so

α = min{1, 0.95αmax
x , 0.95αmax

z } = 0.8854,

then

x(1) = x(0) + αdx

=

 1
1
1

+ (0.8854)

 −1.0730
−0.6265
−0.3005

 =

 0.0499
0.4453
0.7339


π(1) = π(0) + αdπ

=

[
1
1

]
+ (0.8854)

[
−26.2540

0.2771

]
=

[
−22.2453

1.2453

]

z(1) = z(0) + αdz

=

 1
1
1

+ (0.8854)

 0.1796
−0.6133
−0.9202

 =

 1.1590
0.4570
0.1853

 .
Check the stopping condition for point (x(1), π(1), z(0))T

max


∥∥Ax(1) − b∥∥∥∥−Qx(1) +ATπ(1) + z(1)

∥∥
(x(1))T z(1)

 = max

 0.2300
0.4083
0.3974

 = 0.4083 > ε,

so another iteration should be performed. After 8 iterations the tolerance is
satisfied and so the interior point method stops with a final point

x(8) =

 0.0053
0.0892
0.9055

 , which is the optimal value for the primal variables x.

Table 7.4 contains the values of the primal variables and corresponding objec-
tive function value (which is half of the portfolio variance) of each iteration.
Table 7.5 contains the values of the dual and dual slack iterates and Table 7.6
contains the residuals and centering parameter values for each iteration.
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Table 7.4 Primal iterates

k x
(k)
1 x

(k)
1 x

(k)
1

1
2 (x(k))TQx(k)

0 1 1 1 0.02328000
1 0.05000000 0.44527099 0.73394639 0.00168851
2 0.01266180 0.09415527 0.90724988 0.00055890
3 0.00990667 0.07393041 0.91686626 0.00054909
4 0.00967408 0.07326719 0.91709542 0.00054869
5 0.00841256 0.07777401 0.91381622 0.00054775
6 0.00603015 0.08642421 0.90754583 0.00054685

7 0.00532042 0.08900251 0.90567708 0.00054679
8 0.00526378 0.08920825 0.90552796 0.00054679

Table 7.5 Dual and dual slack iterates

k π
(k)
1 π

(k)
2 z

(k)
1 z

(k)
2 z

(k)
3

0 1 1 1 1 1

1 −22.2450337 1.24530581 1.15905425 0.45699246 0.18529698
2 −24.4184074 1.3175511 1.07371087 0.3022101 0.00926485
3 −2.53175704 0.13727947 0.11045674 0.03055316 0.00052571
4 −0.15523674 0.0094748 0.0063285 0.00152766 2.75E-05

5 −0.03118035 0.00279798 0.00088148 7.64E-05 2.14E-06
6 −0.01526178 0.00193184 0.00016232 3.82E-06 1.56E-07
7 −0.01198005 0.00175241 1.22E-05 1.91E-07 8.35E-09
8 −0.01172687 0.00173856 6.14E-07 9.55E-09 4.18E-10

Table 7.6 Residuals and centering parameter

k τ (k)
∥∥Ax(k) − b∥∥ ∥∥−Qx(k) +ATπ(k) + z(k)

∥∥ (x(k))T z(k)

0 - 2.00652608 3.56236104 3
1 0.00669789 0.22996533 0.40827753 0.39743625
2 0.00484609 0.01411286 0.02505579 0.05045532

3 0.00352535 0.00070564 0.00125279 0.00383507
4 2.10E-06 3.68E-05 6.54E-05 0.00019837
5 4.93E-05 2.81E-06 4.98E-06 1.53E-05
6 0.00193041 1.87E-07 3.31E-07 1.45E-06
7 0.00060927 9.58E-09 1.70E-08 8.95E-08
8 9.61E-07 4.79E-10 8.51E-10 4.46E-09
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7.6 Exercises

Exercise 7.1 Suppose we are given the points (0,0), (1,2), (3,2), and (4,5).
Find the equation of the line that best fits this data set.

Exercise 7.2
Consider three securities with expected returns given as follows

Expected security returns

Expected return Security 1 (i = 1) Security 2 (i = 2) Security 3 (i = 3)
µi 12.73% 7.57% 6.37%

with covariances

Covariance of returns
Covariance σij i = 1 i = 2 i = 3
i = 1 0.02559 0.00327 0.00019
i = 2 0.01640 −0.00320
i = 3 0.00525

Using MATLAB, find mean-variance optimal portfolios of the three assets
for each expected return goal R from 6.5% to 12.5% and plot the return goal R
versus the standard deviation (of portfolio return) for each optimal portfolio.

Exercise 7.3
Find any local minima for the problem

minimize ex1−x2 + ex1+x2

subject to (x1, x2, x3)T ∈ R2.

Are any of the local minima global?

Exercise 7.4
Find any local minima for the problem

minimize ex1−x2 + ex2−x1

subject to (x1, x2)T ∈ R2.

Are any of the local minima global?

Exercise 7.5
You wish to invest in 3 securities S, B, and M. The expected returns

for each security are µS = 10.73%, µB = 7.37%, µM = 6.27%. The standard
deviations of returns of the securities are σS = 16.67%, σB = 10.55%, σM =
3.40%. The correlations of the returns between securities are given in the
following table:
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ρij S B M

S 1 0.2199 0.0366
B 1 −0.0545
M 1

You wish to find an efficient (i.e., mean-variance optimal) portfolio of these
3 securities with an expected return of exactly 9%. Also, you will allow short
selling of stocks. A colleague comes to you and says a portfolio with 56% of
wealth in stocks (S), 20% in bonds (B), and the rest in the money market
(M) is efficient or at least approximately efficient. Prove or disprove your
colleague’s claim.

Exercise 7.6
Suppose in Exercise 7.5 that you restrict short selling. Is your colleague’s

portfolio efficient or approximately efficient? Why or why not?

Exercise 7.7
Consider an investing environment where there are n financial securities

that are risky (i.e., returns are modeled as random variables) that can be pur-
chased or sold, and all investors are mean-variance optimizers (i.e., investors
only form efficient portfolios when investing and do not speculate on individ-
ual stocks). Furthermore, suppose that all investors have the same estimates of
the mean, variance, and covariances of the securities. However, each investor
may have their own expected portfolio return goal R. Then, show that any
investor only needs to invest in two efficient portfolios F1 and F2 consisting of
the n securities and these two funds are the same for all investors. (Note: By
investing in two funds, F1 and F2, we mean that an investor puts a proportion
of wealth α in F1 and (1− α) in F2.)

Exercise 7.8
The correlation ρ between securities A and B is .10 with expected returns

and standard deviations for each security given by the table

Security r σ

A 12% 14%
B 20% 30%

(a) Find the proportions wA of A and wB of B that define a portfolio of
A and B having minimum standard deviation.

(b) What is the value of the standard deviation of portfolio in (a)?
(c) What is the expected return of the portfolio in (a)?

Exercise 7.9
Consider a general non-linear optimization problem (P) of the form

minimize f(x)
subject to g(x) ≤ 0

h(x) = 0
x ∈ Rn
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where f(x) : Rn → R,

g(x) =


g1(x)
g2(x)

...
gl(x)

 and h(x) =


h1(x)
h2(x)

...
hm(x)


with gi(x) : Rn → R for i = 1, .., l and hj(x) : Rn → R for j = 1, ...,m. So
g(x) : Rn → Rl and h(x) : Rn → Rm. Assume all functions are differentiable.

The first-order KKT (Karush-Kuhn-Tucker) necessary conditions for P are
as follows:

Let x∗ be a local minimum of P and let I = {i|gi(x∗) = 0}. Suppose that
the gradients of gi(x

∗) for i ∈ I and gradients of hi(x) for i = 1, ...,m are
linearly independent. Then, there exist vectors π and v such that

(1) ∇f(x∗) +∇g(x∗)Tπ +∇h(x∗)T v = 0
(2) π ≥ 0
(3) πT g(x∗) = 0

(a) Consider the following quadratic programming problem

minimize f(x) = 1
2x

TQx+ cTx
subject to Ax ≤ b

Ex = d
x ≥ 0

where Q is an n× n matrix, A is an l × n matrix, and E is a m× n matrix.
Write out the KKT first-order necessary conditions for this problem.

(b) Consider the problem

minimize x21 + x22 − 2x1 − 4x2 + 5
subject to −x1 − x2 ≥ −2

−x1 + x2 = 1
x1 ≥ 0, x2 ≥ 0.

Find all points that satisfy the KKT first-order necessary conditions. Are
any of these optimal solutions?

Exercise 7.10
As seen in Exercise 7.2, the Newton-Raphson method can be used to solve

first-order conditions for optimization problems. For example, consider the
unconstrained optimization problem

minimize f(x) = 1
2x

TQx+ cTx
subject to x ∈ Rn
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where Q is an n× n positive definite matrix. Using any starting point x(0) ∈
Rn, use the Newton-Raphson method to compute the first iterate x(1) and
show that this is the optimal solution.

Exercise 7.11
Consider a quadratic program of the form

minimize f(x) = 1
2x

TQx+ cTx
subject to Ax = b

x ∈ Rn.

Compute the first two iterates of the predictor-corrector path-following
interior point method applied to the QP where

c =


−6
5
−11
−9

 , Q =


21 −4 10 0
0 35 23 16
2 3 15 −27
−8 0 −9 59

 ,

A =

 −4 26 7 15
9 12 −7 0
0 6 14 −8

 , b =

 90
150
100


using η = 0.95.

Exercise 7.12
Consider a quadratic program of the form

minimize f(x) = 1
2x

TQx+ cTx
subject to Ax = b

x ∈ Rn.

Compute the first two iterates of the predictor-corrector path following
interior point method applied to the QP where

c =

 −3.5
−4.5
−2

 , Q =

 1.45 −1.20 −0.65
−0.90 1.05 0.45
−0.95 0.25 0.85

 ,
A =

[
5 12 4
−3 5 11

]
, b =

[
17
35

]
using η = 0.95.

Notes and References
Quadratic programming is an important class of non-linear programming

problems. The major application of this chapter concerned mean-variance op-
timization for constructing efficient portfolios; see Marc Steinbach (2001) for
an extensive review and Best (2010). There are many other applications in
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the areas of production planning with economies of scale, chemical engineer-
ing process control; see Haverly (1978), Lasdon et al. (1979), Floudas and
Aggarwal (1990), and VLSI circuit layout design; see Kedem and Watanabe
(1983). The difficulty of solving quadratic programming relies on the nature
of the matrix Q. When Q is positive definite, the quadratic programming
problem becomes a convex optimization problem, and so finding the optimal
solution can be done efficiently, in principle. General optimality conditions
for non-linear programming problems are known as the Karush-Kuhn-Tucker
conditions; see Bazaraa, Sherali, and Shetty (2006). The predictor-corrector
interior point method in this chapter is based on Monteiro and Adler (1989).
Besides interior point methods, there are methods that mimic the strategy
of simplex method to solve quadratic programs; see Wolfe (1959) and active
set methods; see Nocedal and Wright (2000). Other strategies solve the KKT
conditions of a quadratic program called the linear complementarity problem
through the use of a pivoting strategy; see Lemke (1962), Murty (1988), Cottle
et al. (1992).
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8

Linear Optimization under Uncertainty

8.1 Introduction

A fundamental assumption in linear programming is that the coefficients are
assumed to be known. In other words, all of the linear programs up to now
have been deterministic problems. However, in reality, these quantities are at
best estimations, and in many instances parameters are essentially random
values and thus it is often a challenge to select parameter values for a model.
Sensitivity analysis, developed in Chapter 4, may shed light on the range
of data perturbations for a linear program that is allowed while keeping the
original optimal solution optimal. However, there are several limitations. First,
the kinds of parameter perturbations for which sensitivity analysis is amenable
is limited. Only simple cases were considered, e.g., perturbations of the right-
hand side vector or perturbations of cost coefficients only. It is not easy to
perform sensitivity analysis when different combinations of parameters are
modified, e.g., cost coefficients, constraint parameters, and right-hand sides
are simultaneously perturbed. In this case, it is often better to resolve the
model. Second, even if sensitivity analysis is possible, it is not clear what can
be done about decisions when considering a data perturbation that is outside
the range for which the current optimal is still valid. In this case, the model
would need to be resolved.

The most pressing concern about using a deterministic optimization model
is that often we need to make decisions now before we can know the true values
or have better estimations of the parameters, and thus a deterministic model
does not have the ability to account for possible deviations of parameter values
that may occur. In many of these situations, the linear programming solution
will be misleading.

In this chapter, two major approaches for dealing with uncertainty in linear
programming are considered. The first approach is called stochastic program-
ming and is an important class of models for which uncertainty in parameters
can be incorporated. The second approach is called robust optimization where
the essence is to allow a range of values for parameters. What is important
about both approaches is that uncertainty is proactively incorporated into
models before solving.

287
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8.2 Stochastic Programming

Stochastic programming is branch of mathematical programming that ex-
plicitly incorporates uncertainty in parameter values. A model of uncertainty
about the outcomes for the parameters that are deemed random is specified. In
particular, a probability distribution is assumed to be known that character-
izes the random nature of the parameters. The idea of stochastic programming
is illustrated first through an example.

Motivation
A supplier of personal computers produces three types of computers called

Home PC, Pro PC, and Workstation PC. Each PC requires a central process-
ing unit (CPU) and memory boards. The production requirements, demand,
and unit prices are given in Table 8.1. The demands are denoted by dH , dP ,
and dW . It is important for the supplier to meet at all demands for its prod-
ucts. In addition, the supplier can obtain the same PC types pre-assembled
from other wholesale manufacturers, but at a premium cost (i.e., higher than
the cost of producing it) which is given in the last column of Table 8.2. The
supplier has a total of 1500 CPUs and 2000 memory boards. We assume that
all PCs produced or purchased from other manufacturers are sold.

Table 8.1 PC information

Computer CPU Memory boards Demand
Home PC 1 2 dH
Pro PC 1 4 dP
Workstation PC 1 1 dW

For example, the Pro PC requires 1 central processing unit (CPU) and
2 memory boards per unit, and is sold at $1000 per unit, the demand is dP
units, and the cost of obtaining one unit from another manufacturer is $800,
which is considered a wholesale price not accessible by the customers of the
supplier. The cost per unit of each type of computer is given below from units
assembled by the supplier and from units obtained at wholesale prices.

Table 8.2 PC cost
Computer Cost (assembled) Cost (wholesale)
Home PC 225 275
Pro PC 350 400
Workstation PC 250 300

Assuming all parameters are known, then the deterministic production
model (DPM) is
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minimize 225x1 + 350x2 + 250x3 + 275y1 + 400y2 + 300y3
subject to x1 +x2 +x3 ≤ 1500

2x1 +4x2 +x3 ≤ 2000
x1 + y1 = dH

x2 + y2 = dP
x3 + y3 = dW

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, y1 ≥ 0, y2 ≥ 0, y3 ≥ 0

where x1 = number of Home PCs to build, x2 = number of Pro PCs to build,
x3 = number of Workstation PCs to build, y1 = number of Home PCs to
purchase at wholesale price, y2 = number of Pro PCs to purchase at wholesale
price, and y3 = number of Workstation PCs to purchase at wholesale price.

This model assumes that the demand is deterministic and thus decisions
regarding production and purchasing of PCs will be determined simultane-
ously to meet demand.

Demand Uncertainty
However, it has been observed in the past that demand for each type of

computer can vary over time. The central question is how much of each type
of computer should be produced before the demands for each type are known?

The supplier has identified the following three equally likely possibilities
(or scenarios) for demand in Table 8.3

Table 8.3 Demand scenarios
Demand Scenario 1 Scenario 2 Scenario 3
Home PC 300 400 500
Pro PC 500 650 800
Workstation PC 200 300 400

For example, in Scenario 2 there is a demand of 300 units for Home PCs,
650 units for Pro PCs, and 300 units for Workstation PCs. Scenario 2 can
be seen as the average demand case, Scenario 1 as the low demand case, and
Scenario 3 the high demand case.

Average Case Strategy
One popular and often used method to deal with uncertainty in data is to

use average values for parameters in DPM. In this case, the average demands

are given by Scenario 2 where dH = 400, dP = 650, and dW = 300. Solving
the model using the average case gives us the following optimal solution.

Optimal decisions Produced Purchased
Home PC 400
Pro PC 225 4250
Workstation PC 300
Total Cost $413,750

© 2014 by Taylor & Francis Group, LLC



290 Introduction to Linear Optimization and Extensions with MATLAB R©

The supplier could be content with this solution if the realization of de-
mands were going to be the expected demands. However, as a check, the
supplier computes the optimal production/acquisition plans for the high, and
low, demand cases which are given below.

High-Demand Strategy
Solving the DPM model for Scenario 3 only gives the following solution:

Optimal decisions Produced Purchased
Home PC 500
Pro PC 150 650
Workstation PC 400
Total Cost $525,000

Low-Demand Strategy
Solving the model for Scenario 1 only gives the following solution:

Optimal decisions Produced Purchased
Home PC 300
Pro PC 300 200
Workstation PC 200

Total Cost $302,500

Sensitivity to Demand
It is clear that a strategy that assumes demand values to be at their

average values would not perform well if demands actual follow scenario 1
or 3 since the optimal solutions for the latter cases are much different than
the average case optimal solution. If production plans are executed according
to the optimal scenario 2 (average demand) plan and then scenario 3 occurs,
then the supplier will have underproduced/purchased all PCs and will have
missed out on additional demand. If scenario 1 occurs, then there will be over
production of all PC types. Clearly the demand values of scenarios 1 and 3
fall outside the range for which the average case optimal solution remains
optimal (why?). In general, it is a challenge to assume only a single scenario
for demand since the model is very sensitive to demand values. What kind of
solution would perform well under any of the three scenarios given that it is
in general impossible to have a perfect solution under all possible outcomes.
This bring us to the motivation of stochastic programming.

8.2.1 Stochastic Programming with Recourse

The idea in stochastic programming is to incorporate uncertainty of the pa-
rameters into a model to generate a solution that performs well under the
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random outcomes. The premise is that a “here and now” solution has to be
made before uncertainty is resolved, and the solution should be reasonable un-
der any realization of uncertainty that might occur. In the current example,
the production of the three types of computers have to be made now before
uncertainty is resolved and these decisions are referred to as the first-stage
decisions and will affect how many computers of each type will be purchased
from other manufacturers once demand has been realized. The purchasing de-
cisions are corrective or recourse actions in the sense that they are made to
correct the imperfect first-stage decisions made earlier due to the impact of un-
certainty. The uncertainty in the model will be incorporated in the stochastic
model via the three scenarios.

The production decision variables x1, x2, and x3 are the “here and now”
or first-stage decisions. The purchasing decisions occur after demand realiza-
tion and after the first-stage decisions, and so will be indexed in addition by
scenarios s = 1, 2, 3. Therefore, we denote the purchasing (recourse) decisions
as y−i,s for i = 1, 2, 3 and s = 1, 2, 3. For example, y−2,3 represents the amount
of Pro PCs purchased after realization of high demand. We also have surplus
variables y+i,s for i = 1, 2, 3 and s = 1, 2, 3 to account for the case when the
first-stage production decision xi exceeds the realized demand for PC type i.
Then recourse variables will be non-negative.

Since the costs of production and purchasing should relate to uncertain
demand levels, a reasonable objective of the supplier is to minimize expected
costs where in addition to costs of production at the first stage, there is cost
due to purchasing in a scenario if there is a shortfall of production from the
first stage and a cost of excess production if the first-stage decision exceeds
the realized demand for a PC type in a scenario. Then, the stochastic pro-
gramming model with recourse for the PC supplier is

minimize 225x1 + 350x2 + 250x3 (8.1)
+ 1

3 (275y−1,1 + 50y+1,1 + 400y−2,1 + 50y+2,1 + 300y−3,1 + 50y+3,1) (8.2)

+ 1
3 (275y−1,2 + 50y+2,2 + 400y−2,2 + 50y+2,2 + 300y−3,2 + 50y+3,2) (8.3)

+ 1
3 (275y−1,3 + 50y+1,3 + 400y−2,3 + 50y+2,3 + 300y−3,3 + 50y+3,3) (8.4)

subject to

x1 +x2 +x3 ≤ 1500 (8.5)
2x1 +4x2 +x3 ≤ 2000 (8.6)
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 (8.7)
x1 + y−1,1 − y

+
1,1 = 300 (8.8)

x2 + y−2,1 − y
+
2,1 = 500 (8.9)

x3 + y−13,1 − y
+
3,1 = 200 (8.10)

y−1,1, y
+
1,1, y

−
2,1, y

+
2,1, y

−
3,1, y

+
3,1 ≥ 0 (8.11)

x1 + y−1,2 − y
+
1,2 = 400 (8.12)
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x2 + y−2,2 − y
+
2,2 = 650 (8.13)

x3 + y−13,2 − y
+
3,2 = 300 (8.14)

y−1,2, y
+
1,2, y

−
2,2, y

+
2,2, y

−
3,2, y

+
3,2 ≥ 0 (8.15)

x1 + y−1,3 − y
+
1,3 = 500 (8.16)

x2 + y−2,3 − y
+
2,3 = 800 (8.17)

x3 + y−13,3 − y
+
3,3 = 400 (8.18)

y−1,3, y
+
1,3, y

−
2,3, y

+
2,3, y

−
3,3, y

+
3,3 ≥ 0. (8.19)

The objective function (8.1) minimizes the profit from each type of com-
puter produced plus the expected cost (8.2)-(8.4) from purchasing PCs in
scenarios of shortfall and penalties in scenarios of overproducing PCs. The
first set of constraints (8.5)-(8.7) are the first-stage constraints and ensure
that the amount of computers produced don’t exceed the CPU and memory
board supply. The next three sets of constraints determine the amount of each
type of computer to purchase from other manufacturers and determines the
amount of excess production under scenarios 1, 2, and 3, respectively given
the first-stage production decisions x1, x2, and x3. These are the second-stage
constraints, and each set of constraints corresponds to a scenario realization
of demands. The first scenario constraints are given by (8.8)-(8.11), the sec-
ond scenario constraints are given by (8.12)-(8.15), and the third scenario
constraints are given by (8.16)-(8.19). This form of the stochastic program
is called the extensive form since the constraints corresponding to all three
scenarios are completely specified. The extensive form remains as a linear
program.

Solving the stochastic programming model we get the following:

The optimal first-stage production decisions are

Home PC Pro PC Workstation PC
300 300 200

The recourse purchasing decisions are

Scenario Home PC Pro PC Workstation PC
low (s=1) purchase 200
average (s=2) purchase 100 purchase 350 purchase 100
high (s=3) purchase 200 purchase 500 purchase 200

The optimal objective function value of the stochastic program is $420,000,
which represents the expected cost of first-stage and recourse decisions. The
stochastic solution can be interpreted as follows: produce 300 units of Home
PCs, 300 units of Pro PCs, and 200 units of Workstation PCs now, before
demand has been resolved. Once demand is realized, i.e., some scenario s
unfolds, then the purchasing decisions are given by the corresponding scenario
dependent recourse decisions, e.g., if scenario 3 unfolds, then the supplier
purchases 200 units of Home PCs, 500 units of Pro PCs, and 200 units of
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Workstation PCs. Note that for this problem instance, it is never optimal to
overproduce PCs in the first stage. An empty entry indicates that the first-
stage production decision for that case meets demand exactly.

Observe that for any of the single scenario deterministic problems it is
never optimal to purchase Home or Workstation PCs from other manufac-
turers. The stochastic solution, on the other hand, has the opposite property
where it is optimal to purchase across all PC types. The stochastic solution as
a hedge against uncertainty considers all possibilities of demand and therefore
generates a balanced production and purchasing strategy across the PC types.
This highlights the differences between deterministic and stochastic solutions.

8.2.1.1 Two-Stage Stochastic Programming with Recourse

The supplier stochastic programming model above is an instance of what is
known as a two-stage stochastic program with recourse. This class of models
represents the case where a set of decisions x must be taken without full
knowledge of information regarding some of the parameters, e.g., the demand
for different types of PCs, and then a second-stage set of recourse decisions
y, e.g., the purchasing of PCs are made upon realization of uncertainty. Each
stage has its own set of corresponding constraints, and the constraints in the
second stage are further classified according to various random outcomes, i.e.,
scenarios. Uncertainty will be represented by the random vector ξ, which in
the case for the supplier problem represents the uncertainty in demand.

Then, the general form of a two-stage stochastic program with recourse is

minimize cTx+ EξQ(x, ξ)
subject to Ax = b

x ≥ 0

where

Q(x, ξ) = min
y
{qT y|Wy = h− Tx, y ≥ 0}.

Observe that the objective of the general problem is a minimization and in
this form the terms of the objective function are considered costs (a maximiza-
tion problem will have cost terms that are negative, representing benefits, e.g.,
profits or revenue). The first term of the objective represents any immediate
cost incurred by the first-stage decision x and the second term is the expected
cost of the recourse decisions obtained by solving Q(x, ξ) and taking the ex-
pectation with respect to ξ, which is denoted by Eξ. The parameters that are
random come from elements in q, h, or T , which collectively form the vector
ξ. It will be assumed that the number of realizations of ξ is finite. The con-
straints Ax = b, x ≥ 0 represent the first-stage constraints, and without loss of
generality are expressed as equality constraints except for the non-negativity
restriction. The recourse constraints are represented by Wy = h − Tx, y ≥ 0
for each realization of ξ.
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Example 8.1
In the PC supplier problem, we have the following correspondence for the

first stage

c =

 −225
−350
−250

 , A =

[
1 1 1
2 4 1

]
and b =

[
1500
2000

]
.

The random vector ξ consists of only the three demand components for
the 3 types of PCs. We let ξ(s) represent the realization of ξ corresponding
to scenario s (s = 1, 2, 3) and thus,

ξ(1) =

 ξ1(1)
ξ2(1)
ξ3(1)

 =

 300
500
200

 , ξ(2) =

 ξ1(2)
ξ2(2)
ξ3(2)

 =

 400
650
300


and

ξ(3) =

 ξ1(3)
ξ2(3)
ξ3(3)

 =

 500
800
400

.

Then, the recourse function Q(x, ξ(s)) =

minimize (275y−1,s + 50y+1,s + 400y−2,s + 50y+2,s + 300y−3,s + 50y+3,s)

subject to y−1,s − y
+
1,s = ξ1(s)− x1

y−2,s − y
+
2,s = ξ2(s) − x2

y−3,s − y
+
3,s = ξ3(s) − x3

y−1,s, y
+
1,s, y

−
2,s, y

+
2,s, y

−
3,s, y

+
3,s ≥ 0

where qT =
[

275 50 400 50 300 50
]

and

yT =
[
y−1,s y+1,s y−2,s y+2,s y−3,s y+3,s

]
.

The matrix W =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 and matrix T in this case

is equal to the 3 × 3 identity matrix. hT =
[
ξ1(s) ξ2(s) ξ3(s)

]
where

the random parameters are the components of vector h, which are uncertain
according to the random vector ξ. In this case, all three components of h are
random and all components of T are fixed, i.e., not random. Thus,

h− Tx =

 ξ1(s)
ξ2(s)
ξ3(s)

−
 1 0 0

0 1 0
0 0 1

 x1
x2
x3

 =

 ξ1(s)− x1
ξ2(s) − x2
ξ3(s) − x3

.

The expected recourse function can be written as

EξQ(x, ξ(s)) =
3∑
s=1

p(s)Q(x, ξ(s))
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where p(s) = 1
3 is the probability of scenario s. In general, for the case where

there is a finite number scenarios with a discrete probability density function

p(s), we have EξQ(x, ξ(s)) =
S∑
s=1

psQ(x, ξ(s)) where S is the number scenarios.

Let Q(x) = EξQ(x, ξ(s)), then the general two-stage stochastic program
with recourse can be written as

minimize cTx+Q(x)
subject to Ax = b

x ≥ 0.

We can write a more compact model by representing the complete objective
function as f(x, ξ) = cTx + Q(x, ξ) and writing the first-stage constraints as
X = {x |Ax = b, x ≥ 0}, then the stochastic program with recourse model
can be written as

min
x∈X

Eξf(x, ξ).

Expected Value of Perfect Information (EVPI)

If it were possible for the PC supplier to know, i.e., have perfect information
about which demand scenario will occur before production, then the supplier
will solve the corresponding single-scenario problem. Suppose that for each
production cycle the supplier will know the demand scenario and that each of
the three possible scenarios, will in the long run, occur one third of the time.
Thus, the long run average cost will be the average of the costs from each
scenario problem, which is 1/3($302,500 + $413,750 + $525,000) = $413,750.
This is the expected cost under perfect information.

Now the difference between the expected cost of the optimal solution of
the stochastic program and the expected cost under perfect information is
called the Expected Value of Perfect Information or EVPI, and in the case of
the computer supplier, the EVPI = $420,000 − $413,750 = $6,500. This can
be interpreted as the loss of profit due to uncertainty in the demand or the
amount that the supplier would have to pay for perfect information.

More formally, let a single-scenario (deterministic) problem corresponding
to scenario s be denoted as

min
x∈X(s)

f(x, ξ(s))

where ξ(s) is the realization of uncertainty (demands) under scenario s, X(s)
is the constraint set of the single-scenario problem under scenario s, and
f(x, ξ(s)) = cTx+Q(x, ξ(s)). Let x∗(ξ(s)) denote the optimal solution of the
single-scenario problem under s. Then, the expected performance under per-
fect information is Eξ[f(x∗(ξ(s)), ξ(s))] where the expectation is taken over
all scenarios. The notation ξ(s) is used to emphasize the dependence on a
scenario s.

© 2014 by Taylor & Francis Group, LLC



296 Introduction to Linear Optimization and Extensions with MATLAB R©

Also, let x∗ be the optimal solution of the stochastic program with recourse
min
x∈X

Eξf(x, ξ). Then,

EV PI = Eξf(x
∗
, ξ)−Eξ[f(x∗(ξ(s)), ξ(s))].

Value of the Stochastic Solution

An important measure of the value of using stochastic programming with re-
course is found by comparing the performance of the optimal solution obtained
from the deterministic model where the average values are used for the param-
eters against the optimal solution obtained from the stochastic programming
model. For a minimization problem, the idea is that if the latter is less than
the former, there is value in considering the optimal stochastic programming
solution.

For example, in the PC supplier problem, one can solve the deterministic
model with the average values for the demand, which is equivalent to solving
the DPM model under scenario 2. The optimal production decisions of the
deterministic problem are then used as the values of the first-stage variables
in the stochastic program. Then the corresponding optimal recourse variables
are obtained for each scenario and the objective function value can be com-
puted. The cost of this strategy can be compared with the cost of the optimal
stochastic solution. If the cost of the stochastic solution is lower than the cost
of the objective function value of the stochastic problem using the first-stage
values from the optimal solution of the deterministic average case problem
and implied recourse values, then there is value in the stochastic solution.

More formally, let the average-case scenario deterministic problem be de-
noted as

min
x∈X

f(x, ξ)

where ξ is the average value of the random vector ξ, X is the constraint set

where the components of ξ in the constraints are set to ξ, and f(x, ξ) = cTx+

Q(x, ξ). Let x∗(ξ) be the optimal solution for the average case problem and
let x∗ be the optimal solution for the corresponding stochastic programming
with recourse problem min

x∈X
Eξf(x, ξ), then the value of the stochastic solution

(V SS) is defined as

V SS = Eξf(x
∗
(ξ), ξ)− Eξf(x

∗
, ξ).

A larger V SS indicates that the optimal solution from the stochastic pro-
gram is more robust to uncertainty than using the first-stage values generated
from the corresponding deterministic problem using average values for param-
eters. A smaller V SS, i.e., a value close to 0, indicates that the deterministic
solution is as good as the stochastic solution.
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Example 8.2
Solving DPM using scenario 2 data for the demand gives the optimal

production decisions x1 = 400, x2 = 225, and x3 = 300. These values represent

x∗(ξ) and then are used as the first-stage values in the stochastic program
(8.1)-(8.19). The recourse values are then given as follows

Scenario Home PC Pro PC Workstation PC
low (s=1) surplus 100 purchase 275 surplus 100
average (s=2) purchase 425

high (s=3) purchase 100 purchase 575 purchase 100

The expected recourse cost is $192,500. Thus, Eξf(x
∗
(ξ), ξ) is the cost of

the first stage 225(400)+350(225)+250(300) + $192,500 = $436,250. Then,

V SS = $436, 250− $420, 000 = $16, 250,

which represents a 3.7% expected cost reduction over the average case strategy
by using the optimal stochastic solution.

8.3 More Stochastic Programming Examples

Example 8.3 (Asset Liability Matching)
An insurance company has a liability that is due in 6 months that rep-

resents the claims from its policyholders. The company will invest now in 3
securities, a stock index, a bond index, and a money market fund so that the
value of the portfolio will be enough to offset the liability in 6 months. The
returns of each security and the value of the liability, however, are random
and the uncertainty is represented by the following scenarios each occuring
with probability 1

3

Scenario (s) Stock Bond Money market Liability ($)

1 µ1
S = 17% µ1

B = 12% µ1
M = 13% L1 = 1, 000, 000

2 µ2
S = 15% µ2

B = 9% µ2
M = 10% L2 = 1, 030, 000

3 µ3
S = 7% µ3

B = 17% µ3
M = 10% L3 = 1, 500, 000

For example, under scenario 1 the realized returns after 6 months for
stocks, bonds, and money market are 8%, 15%, and 13%, respectively. The
company wishes to find a lowest-cost portfolio consisting of the three secu-
rities that will offset the liability. The company has a budget of $950,000 to
invest now in the securities. Since returns and liability values are uncertain,
the value of the portfolio may be over or under the value of the liability in 6
months. In addition, the company wishes to maximize the utility for the value
of the portfolio in 6 months net of satisfying the liability by creating a utility
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for money by assigning a penalty for being short of the liability and a reward
for being over the value of the liability.

Let

xS = amount of wealth invested in the stock fund
xB = amount of wealth invested in the bond fund

xM = amount of wealth invested in the money market fund
surpluss=surplus wealth after liability is met in scenario s
shortfalls= amount short of meeting liability in scenario s.

The penalty per dollar short of meeting the liability q− is $12 dollars
and the reward of every dollar over the liability is q+ = −$2 (negative since
recourse is a minimization). q+ represents preference in achieving a surplus
and q− aversion toward a shortfall in the liability. Then, the extensive form
of the stochastic program is

minimize xS + xB + xM
+ 1

3 (q+(surplus1) + q−(shortfall1))
+ 1

3 (q+(surplus2) + q−(shortfall2))
+ 1

3 (q+(surplus3) + q−(shortfall3))

subject to (first stage constraints)
xS +xB +xM ≤ 950, 000
xS ≥ 0, xB ≥ 0, xM ≥ 0

(Scenario 1 recourse constraints)
(1 + µ1

S)xS + (1 + µ1
B)xB + (1 + µ1

M )xM − surplus1 + shortfall1 = L1

surplus1 ≥ 0, shortfall1 ≥ 0

(Scenario 2 recourse constraints)
(1 + µ2

S)xS + (1 + µ2
B)xB + (1 + µ2

M )xM − surplus2 + shortfall2 = L2

surplus2 ≥ 0, shortfall2 ≥ 0

(Scenario 3 recourse constraints)
(1 + µ3

S)xS + (1 + µ3
B)xB + (1 + µ3

M )xM − surplus3 + shortfall3 = L3

surplus3 ≥ 0, shortfall3 ≥ 0.

Observe that this model incorporates uncertainty not only in the h vector,
but the matrix T as well. Solving the stochastic program gives the first-stage
solution:

Stock Bond Money market
x1 = $0 x2 = $950000 x3 = $0

i.e., all available money is used to invest in the bond only. Then, the recourse
decisions are
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Scenario 1 Scenario 2 Scenario 3

Surplus $64,000 $5500 $0
Shortfall $0 $0 $388500

and the optimal objective function value is $2,457,666.67. This quantity
includes the investment amount of $950,000 and expected net (penalized)
amount of shortfall. If the corresponding deterministic formulation (see Ex-
ercise 8.1) uses as the return for an asset, the average over the returns of
the asset over all scenarios, and for the liability, the average of the liabilities
over all scenarios: then such a deterministic model will exclusively invest in
the security with the highest average return, which in this case is the stock.
Exercise 8.1 asks the reader to compute the value of the stochastic solution
of this problem.

Example 8.4 (Transportation Problem)

Consider the problem where there is a single product type that is shipped
from n plants to m warehouses. Plant i has a supply of ui units of the product.
Warehouse j has a demand of dj units. The cost of shipping one unit from
plant i to warehouse j is cij . The decision variables xij represent the number of
units of product shipped from plant i to warehouse j. Recall that the objective
is to minimize the cost of shipping over all possible plant-warehouse pairs. The
LP is

minimize
∑n
i=1

∑m
j=1 cijxij

subject to
∑m
j=1 xij ≤ ui i = 1, ..., n∑n
i=1 xij ≥ dj j = 1, ...,m

xij ≥ 0 i = 1, ..., n, j = 1, ...,m.

Now consider the situation that demands at the warehouses are random
and that due to the time requirements of transporting from plants to ware-
house that the shipping decisions have to be made before demand is known.
We would like to formulate a stochastic program so that the shipping decisions
can perform well under uncertain demand. There are two cases to consider
under uncertainty.

(1) If the amount shipped from a plant i to a warehouse j is less than
the realized demand at the warehouse, then there will be a shortage and we
assume that the extra supply needed to fully meet demand can be procured
at extra cost, e.g., through express delivery from another source.

(2) If the amount shipped from a plant i to a warehouse j is more than the
realized demand at the warehouse, then there will be a surplus of products
and we assume that the extra supply will be kept at the warehouse at extra
holding cost.

Let ds =

 ds1
...
dsm

 be a vector of realization of demands at warehouses for
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scenario s (s = 1, ..., S) where dsj is the demand at warehouse j under scenario
s. The probability of occurrence of scenario s is p(s).

The stochastic program will minimize the cost of the first-stage shipping
decisions xij and the expected cost of being under or over demand at ware-
houses after realization of uncertainty.

The first-stage constraints are to ensure that any amount of the product
shipped from a plant to warehouses does not exceed its supply.

The second-stage recourse decisions are defined as follows:

y+j,s = surplus at warehouse j under scenario s

y−j,s = shortage at warehouse j under scenario s.

A penalty of k+j (k−j ) will be incurred for every unit that is above (below)
demand. Let x denote the first-stage shipping decisions, i.e., the components
of x are xij for i = 1, ..., n and j = 1, ...,m. Then, the scenario s recourse
problem Q(x, s) =

minimize
m∑
j=1

k+j y
+
j,s +

m∑
j=1

k−j y
−
j,s

subject to
n∑
i=1

xij + y−j,s − y
+
j,s = dsj j = 1, ...,m

y+j,s ≥ 0, y−j,s ≥ 0 j = 1, ...,m.

The two-stage stochastic program transportation problem can now be writ-
ten as

minimize
n∑
i=1

m∑
j=1

cijxij +
S∑
s=1

p(s)Q(x, s)

subject to
∑m
j=1 xij ≤ ui i = 1, ..., n

xij ≥ 0 i = 1, ..., n, j = 1, ...,m.

Note that the recourse decisions y+j,s and y−j,s are determined once demand
is known. In this case, the model is called a stochastic program with simple
recourse. Observe that the PC production stochastic programming model is
also a simple recourse model.

8.3.1 Solving Two-Stage Stochastic Programs with Recourse

We now consider solution strategies for two-stage stochastic programs with
recourse. Assume that the random vector ξ has a finite number of outcomes
and the possible outcomes are indexed by s = 1, ..., S. Let ps be the probability
that outcome s occurs. The parameters q, T,W, and h and decision variables
y in the recourse problem Q(x, s) will be indexed by s. Then, the two-stage
stochastic program with recourse can be written as
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minimize cTx+
S∑
s=1

psq
T
s ys

subject to Ax = b
Tsx+Wys = hs s = 1, ..., S
x ≥ 0, ys ≥ 0 s = 1, ..., S.

This model is equivalent to the extensive form of the stochastic program.
When the number of scenarios is very large, the model becomes a large-scale
linear program. However, the constraints exhibit block structure, as can be
seen from the following expansion of the extensive form:

minimize cTx + p1q1y1 + p2q2y2 + · · ·+ pSqSyS
subject to Ax = b

T1x + W1y1 = h1
T2x + W2y2 = h2
...

. . .
...

TSx + WSyS = hS
x ≥ 0 y1 ≥ 0 y2 ≥ 0 · · · yS ≥ 0.

If one takes the dual of the problem above where π0 is the dual variable
associated the first-stage constraints and πs is the dual variable associated
with the set of constraints in the recourse problem Q(x, s), then the dual is

maximize bTπ0 + hT1 π1 + hT2 π2 + · · ·+ hTSπ3
subject to ATπ0 +TT1 π1 +TT2 π2 + · · · + TTS πS ≤ c

+WT
1 π1 ≤ p1q1

+WT
2 π2 ≤ p2q2

. . .
...

+WT
S πS ≤ pSqS .

8.3.1.1 Dantzig-Wolfe Decomposition for Stochastic Programming

Observe that the dual has block angular structure that will be readily
amenable to Dantzig-Wolfe decomposition. Thus, one strategy to solve two-
stage stochastic programs with recourse is to take the dual of the extensive
form and apply the Dantzig-Wolfe decomposition. However, if the number of
columns in the extensive form is much larger than the number of rows, then
the dual problem will have a much larger basis than the basis of the primal
problem. This will result in increased computational effort due to having to
factor and store larger basis matrices in the revised simplex method.

8.3.1.2 L-Shaped Method (Constraint Generation)

An alternative is to solve the primal problem (extensive form) by using a
constraint generation as opposed to a column generation (Dantzig-Wolfe) ap-
proach. Analogous to Dantzig-Wolfe decomposition, the L-Shaped method of
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Van Slyke and Wets (1969) provides a decomposition of the primal prob-
lem into a master problem and subproblems, but generates constraints. The
motivation for the master problem is to approximate the expected recourse
function Q(x) by creating an outer approximation. The master problem will
generate a first-stage decision x. The subproblems are the recourse problems
and will take the x from the master problem and then find the best recourse
decisions. For any subproblem that is infeasible at x (i.e., it is impossible to
generate recourse decisions using x), a feasibility constraint is added to the
master problem. If all subproblems have finite optimal recourse at x, then a
constraint is added to the master problem if the resulting recourse decisions
and x do not constitute an optimal solution to the problem. If decisions are
optimal, the decomposition stops, else the process iterates. The steps of the
L-Shaped method are detailed below and the presentation is based on Birge
and Louveaux (2011).

L-Shaped Method

Step 0: (Initialization) Let k = t = v = 0.
Step 1: (Solve Master Problem) Let v = v + 1 and solve the master

problem MPv

minimize z = cTx+ θ
subject to Ax = b

Dlx ≥ dl, l = 1, ..., k (feasibility constraints)
Elx+ θ ≥ el, l = 1, ..., t (optimality constraints)
x ≥ 0, θ unrestricted.

Let xv and θv be an optimal solution to the master problem. If there are
no optimality constraints, i.e., t = 0, then θv = −∞ and only xv is solved for.
Go to Step 2.

Step 2: (Recourse Feasibility Test) For s = 1, ..., S, solve the recourse
feasibility linear program RFs

minimize fs = eT y+ + eT y−

subject to Wy + Iy+ − Iy− = hs − Tsxv
y ≥ 0, y+ ≥ 0, y− ≥ 0

until there is an index s such that the optimal solution for RFs gives fs > 0,
then let σv be the dual multipliers associated the constraints of RFs. Let
Dk+1 = σvTs and dk+1 = σvhs and set k = k + 1 and add the constraint

Dkx ≥ dk
to the master problem and go to Step 1.

Else, if fs = 0 at the optimal solution for RFs for all s = 1, ..., S, then go
to Step 3.

Step 3: (Solve Subproblems) For each s = 1, ..., S solve the recourse
sub-problem RSs
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minimize ws = qTs y
subject to Wy = hs − Tsxv

y ≥ 0.

Let πvs be the simplex multipliers corresponding to the optimal solution of
RSs and

Et+1 =
S∑
s=1

psπ
v
sTs and et+1 =

S∑
s=1

psπ
v
shs. Now let wv = et+1 − Et+1x

v.

If θv ≥ wv, then STOP with xv as an optimal solution, else let t = t + 1
and add the constraint Etx+ θ ≥ et to the master problem and go to Step 1.

Example 8.5
Consider the two-stage stochastic program with recourse below:

minimize 2x1 + 3x2 + Eξ(q
T y)

subject to x1 + x2 ≤ 120
x1 ≥ 40

x2 ≥ 25
3y1 + 5y2 ≤ 30x1
y1 + 0.625y2 ≤ 10x2
y1 ≤ r1

y2 ≤ r2
y1 ≥ 0, y2 ≥ 0

where qT =
[
q1 q2

]
and yT =

[
y1 y2

]
. The random vector is ξ =

q1

q2

r1
r2

 where scenario s = 1 is such that ξ(1) =


−12
−14
500
100

 and scenario s = 2

is such that ξ(2) =


−14
−16
300
300

. Set p(1) = 0.4 and p(2) = 0.6.

The recourse function Q(x, ξ) =

minimize q1y1 + q2y2
subject to 3y1 + 5y2 ≤ 30x1

y1 + 0.625y2 ≤ 10x2
y1 ≤ r1

y2 ≤ r2
y1 ≥ 0, y2 ≥ 0.

The random quantities are in bold. Note that for any vector x the recourse
problems for each scenario (realization of uncertainty) are feasible since setting
y = 0 will always be feasible for the recourse problems.

Finally, we have
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W =


3 5
1 0.6250
1 0
0 1

 and T =


−30 0

0 −10
0 0
0 0



h =


0
0
r1
r2

 so h1 =


0
0

500
100

 and h2 =


0
0

300
300

 .

Step 0: Set k = t = v = 0.
Iteration 1

Step 1: Set v = 1. There are no feasibility or optimality constraints, so θ1 =
−∞ and the master problem is

minimize 2x1 + 3x2
subject to x1 + x2 ≤ 120

x1 ≥ 40
x2 ≥ 25.

The optimal solution is x1 =

[
x1
x2

]
=

[
40
25

]
.

Step 2: Not necessary.
Step 3: Solve recourse sub-problems given x1.
For ξ(1), the recourse problem is

minimize −12y1 − 14y2
subject to 3y1 + 5y2 ≤ 1200

y1 + 0.625y2 ≤ 250
y1 ≤ 500

y2 ≤ 100
y1 ≥ 0, y2 ≥ 0.

The optimal objective value is w1 = −3650 and solution y =

[
187.5
100

]
and πT1 =

[
0 −12 0 −6.5

]
.

For ξ(2), the recourse problem is

minimize −14y1 − 16y2
subject to 3y1 + 5y2 ≤ 1200

y1 + 0.625y2 ≤ 250
y1 ≤ 300

y2 ≤ 300
y1 ≥ 0, y2 ≥ 0.
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The optimal objective value is w2 = −4544 and solution y =

[
160
144

]
and

πT2 =
[
−2.32 −7.04 0 0

]
.

Now e1 = 0.4πT1 h1 + 0.6πT2 h2 = 0.4(−605) + 0.6(0) = −260 and

E1 = 0.4πT1 T + 0.6πT2 T

= 0.4
[

0 −12 0 −6.5
] 
−30 0

0 −10
0 0
0 0

+

0.6
[
−2.32 −7.04 0 0

] 
−30 0

0 −10
0 0
0 0


=
[

41.76 90.24
]
.

Then, w1 = e1 − E1x
1 = −260 −

[
41.76 90.24

] [ 40
25

]
= −4186.4 ≥

θ1 = −∞.
So add constraint E1x+ θ ≥ e1 i.e., 41.76x1 + 90.24x2 + θ ≥ −260 to the

master problem and go to Step 1.

Iteration 2
Step 1: Set v = 2. The master problem is

minimize 2x1 + 3x2 + θ
subject to x1 + x2 ≤ 120

x1 ≥ 40
x2 ≥ 25

41.76x1 + 90.24x2 + θ ≥ −260.

The optimal solution is x2 =

[
x1
x2

]
=

[
40
80

]
and θ2 = −9149.6.

Step 2: Not necessary.
Step 3: Solve recourse sub-problems given x2.
For ξ(1), the recourse problem is

minimize −12y1 − 14y2
subject to 3y1 + 5y2 ≤ 1200

y1 + 0.625y2 ≤ 800
y1 ≤ 500

y2 ≤ 100
y1 ≥ 0, y2 ≥ 0.
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The optimal objective value is w1 = −4800 and solution y1 =

[
400
0

]
and

πT1 =
[
−4 0 0 0

]
.

For ξ(2), the recourse problem is

minimize −14y1 − 16y2
subject to 3y1 + 5y2 ≤ 1200

y1 + 0.625y2 ≤ 800
y1 ≤ 300

y2 ≤ 300
y1 ≥ 0, y2 ≥ 0.

The optimal objective value is w2 = −5160 and solution y2 =

[
300
60

]
and πT2 =

[
−3.2 0 −4.4 0

]
.

Now e2 = 0.4πT1 h1 + 0.6πT2 h2 = 0.4(0) + 0.6(−1320) = −792 and

E2 = 0.4πT1 T + 0.6πT2 T

= 0.4
[
−4 0 0 0

] 
−30 0

0 −10
0 0
0 0

+

0.6
[
−3.2 0 −4.4 0

] 
−30 0

0 −10
0 0
0 0


=
[

105.6 0
]
.

Then, w2 = e2 − E2x
2 = −792 −

[
105.6 0

] [ 40
80

]
= −5016 so w2 ≥

θ2 = −9149.6.
So add constraint E2x + θ ≥ e2 i.e., 105.6x1 + θ ≥ −792 to the master

problem and go to Step 1.

Iteration 3
Step 1: Set v = 3. The master problem is

minimize 2x1 + 3x2 + θ
subject to x1 + x2 ≤ 120

x1 ≥ 40
x2 ≥ 25

41.76x1 + 90.24x2 + θ ≥ −260
105.6x1 +θ ≥ −792.
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The optimal solution is x3 =

[
x1
x2

]
=

[
66.8276
53.1724

]
and θ3 = −7849.

Step 2: Not necessary.
Step 3: Solve recourse sub-problems given x3.
For ξ(1), the recourse problem is

minimize −12y1 − 14y2
subject to 3y1 + 5y2 ≤ 2004.8000

y1 + 0.625y2 ≤ 531.7328
y1 ≤ 500

y2 ≤ 100
y1 ≥ 0, y2 ≥ 0.

The optimal objective value is w1 = −7030.7000 and solution y1 =[
469.2238

100

]
and πT1 =

[
0 −12 0 −6.5

]
.

For ξ(2), the recourse problem is

minimize −14y1 − 16y2
subject to 3y1 + 5y2 ≤ 2004.8000

y1 + 0.625y2 ≤ 531.7328
y1 ≤ 300

y2 ≤ 300
y1 ≥ 0, y2 ≥ 0.

The optimal objective value is w2 = −7735.5 and solution y2 =[
300

220.9657

]
and πT2 =

[
−3.2 0 −4.4 0

]
.

Now e3 = 0.4πT1 h1 + 0.6πT2 h2 = 0.4(−650) + 0.6(−1320) = −1052 and

E3 = 0.4πT1 T + 0.6πT2 T =
[

57.6 48
]
.

Then, w2 = e3 −E3x
3 = −1052−

[
57.6 48

] [ 66.8276
53.1724

]
= −7453.5 ≥

θ3 = −7849.
So add constraint E3x + θ ≥ e3 i.e., 57.6x1 + 48x2 + θ ≥ −1052 to the

master problem and go to Step 1.

Iteration 4
Step 1: Set v = 4. The master problem is
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minimize 2x1 + 3x2 + θ
subject to x1 + x2 ≤ 120

x1 ≥ 40
x2 ≥ 25

41.76x1 + 90.24x2 + θ ≥ −242
105.6x1 + θ ≥ −792
57.6x1 + 48x2 +θ ≥ −1052.

The optimal solution is x4 =

[
x1
x2

]
=

[
73.6364
46.3636

]
and θ4 = −7518.9.

Step 2: Not necessary.
Step 3: Solve recourse sub-problems given x4.
For ξ(1), the recourse problem is

minimize −12y1 − 14y2
subject to 3y1 + 5y2 ≤ 2209.1000

y1 + 0.625y2 ≤ 463.6364
y1 ≤ 500

y2 ≤ 100
y1 ≥ 0, y2 ≥ 0.

The optimal objective value is w1 = −6213.6 and solution y1 =[
401.1364

100

]
and πT1 =

[
0 −12 0 −6.5

]
.

For ξ(2), the recourse problem is

minimize −14y1 − 16y2
subject to 3y1 + 5y2 ≤ 2209.1000

y1 + 0.625y2 ≤ 463.6364
y1 ≤ 500

y2 ≤ 100
y1 ≥ 0, y2 ≥ 0.

The optimal objective value is w2 = −8389.1 and solution y2 =[
300

261.8182

]
and πT2 =

[
−2.7908 −3.2735 −2.3540 0

]
.

Now e4 = 0.4πT1 h1 +0.6πT2 h2 = 0.4(−650)+0.6(−706.2) = −683.7200 and

E4 = 0.4πT1 T + 0.6πT2 T =
[

50.2345 67.6412
]
.

Then, w4 = e4 − E4x
4 = −683.7200 −

[
41.76 90.24

] [ 73.6364
46.3636

]
=

−7518.9, so now w4 ≤ θ4 = −7518.9 so STOP.

Therefore, x4 =

[
73.6364
46.3636

]
, y1 =

[
401.1364

100

]
, and y2 =

[
300

261.8182

]
is an optimal solution.
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8.3.1.3 Convergence of the L-Shaped Method

The convergence of the L-Shaped method follows from the fact that it is
equivalent to applying the Dantzig-Wolfe decomposition on the dual of the
primal extensive form of the stochastic program. To see this, consider the
dual of the master problem MPv in the L-Shaped method.

maximize ρT b+
k∑
l=1

σldl +
t∑
l=1

πlel

subject to AT ρ+
k∑
l=1

Dlσl +
t∑
l=1

πlEl ≤ c
t∑
l=1

πl = 1

σl ≥ 0, l = 1, ..., k
πl ≥ 0, l = 1, ...., t.

The dual of subproblem RSs is

maximize (hs − Tsxv)Tπ
subject to WTπ ≤ q.

The L-Shaped method on the dual of the stochastic program is described
in the following steps. We assume that the stochastic program is feasible, so
the original Step 2 is omitted.

Step 1 (Master Problem) Consists of solving the dual of the master problem
MPv to obtain the solution ρv, σv, πv and the solution xv and θv for MPv.

Step 2 (Subproblems) Consists of solving the duals of RSs.
If a dual of a subproblem RSj is unbounded, then there is a vector (extreme

direction) σv such that WTσv ≤ 0 and (hj − Tjxv)Tσv > 0. Then, construct
the columns Dk+1 = (σv)TTj and dk+1 = (σv)Thj and add to the dual of
MPv. Observe that adding the constraint Dk+1x ≥ dk+1 to MPv is equivalent
to adding the columns Dk+1 and dk+1 to the dual of MPv.

If all duals of subproblems RSs have finite optimal solutions, then con-

struct the columns Et+1 =
S∑
s=1

psπ
v
sTs and et+1 =

S∑
s=1

psπ
v
shs. Now let

wv = et+1 − Et+1x
v.

If θv ≥ wv, then STOP with xv, θv as an optimal solution to MPv and
ρv, σv, πv as an optimal solution to the dual, else let t = t + 1 and add the
columns Et+1 and et+1 to the dual of MPv (which is equivalent to adding
Etx+ θ ≥ et to MPv) and go to Step 1.

In summary, the steps above are equivalent to Dantzig-Wolfe decomposi-
tion where the master problem is the dual of the master problem MPv in the
L-Shaped method, and columns are generated by the dual of the subproblems
RSs and added to the dual of MPv, which is equivalent to generating con-
straints by the subproblems RSs and adding to MPv. Dantzig-Wolfe decompo-
sition converges since it is the revised simplex method (assuming appropriate
anti-cycling rules are in place), so thus the L-Shaped method converges.
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8.4 Robust Optimization

We now consider an alternative approach to handle uncertainty in parameter
values in linear programming called robust linear optimization. Consider the
linear program

minimize c1x1 + c2x2
subject to a1x1 + a2x2 ≥ b1.

Let the instance c1 = 2, c2 = 3, a1 = 2, a2 = 1, and b1 = 1 be called
the nominal problem. The optimal solution is x1 = 0.5 and x2 = 0 with an
objective function value of 1. Now suppose that the values for a1 and a2 are
only estimates and can be inaccurate, and that the actual values that realize
are a1 = 1.99 and a2 = 1.01. Then the optimal solution of the nominal problem
is no longer feasible for this realization. This is problematic in situations where
a decision based on a model has to be taken here and now and the constraints
are hard in the sense that they must be satisfied after realization of actual
values of parameters.

The motivation for robust optimization, like for stochastic programming,
is to protect against inaccuracies that arise in the estimation of the parame-
ters for a linear program in the context where a here and now solution must
be taken before the inaccuracies are resolved, but unlike in stochastic pro-
gramming, a probability distribution on possible outcomes is not necessary.
Instead, an uncertainty set U is specified that captures the possible realiza-
tions of the parameters that are deemed to be uncertain. A robust counterpart
RC of a linear program is the original problem but with the additional re-
quirement that any feasible vector x must satisfy all constraints including
each set of constraints corresponding to a possible realization of the uncertain
parameters from the set U .

For example, the robust counterpart of the linear program above, where
the constraint coefficients a1 and a2 are considered uncertain, is

minimize 2x1 + 3x2
subject to a1x1 + a2x2 ≥ b1

∀(a1, a2) ∈ U

where U is a subset of R1×2, i.e., a subset of the space consisting of 1 × 2
matrices where entries of matrix are real numbers. It is important to note
that a vector xT =

[
x1 x2

]
must satisy the constraint a1x1 + a2x2 ≥ b1

constraint for all (a1, a2) in U . Suppose that U ={
[
1.99
0.99

]T
,
[
2.00
1.00

]T
,
[
2.01
1.01

]T },
then the robust counterpart of the nominal linear program is the following
linear program
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minimize 2x1 + 3x2
subject to 1.99x1 + 0.99x2 ≥ 1

2x1 + 1x2 ≥ 1
2.01x1 + 1.01x2 ≥ 1.

The optimal solution to the robust counterpart is x1 = 0.5025 and
x2 = 0.0000 with a corresponding objective function value of 1.0050. The
solution has the advantage of satisfying all of the constraints without increas-
ing the objective function too much. This is a desirable property of a solution
when it is important to satisfy constraints that involve inaccurate or uncer-
tain parameters. In this case, we say the solution is robust or immune to
uncertainty.

In general, for a linear program of the form

minimize cTx
subject to Ax ≥ b

where c, x ∈ Rn, b ∈ Rm, and A ∈ Rm×n , then the robust counterpart RC is
the following optimization problem

minimize cTx
subject to Ax ≥ b,∀(c, A, b) ∈ U

for a given uncertainty set U ⊂ Rn × Rm×n × Rm. Here we assume that all
data can be considered uncertain. A vector x that satisfies the constraints of
RC is said to be a robust feasible solution.

It is not hard to show that the robust counterpart RC can be written as

minimize
t,x

{t | t ≥ cTx,Ax ≥ b,∀(c, A, b) ∈ U}.

8.4.1 Constraint-wise Construction of RC.

One can proceed by replacing each constraint in the original linear program

aTi x ≥ bi (ith constraint of Ax ≥ b)

by its corresponding robust counterpart

aTi x ≥ bi ∀(ai, bi) ∈ Ui

where Ui is the restriction of U to elements only relevant to realizations of
coefficients ai and bi of the ith constraint.

Example 8.6
Consider the linear program

© 2014 by Taylor & Francis Group, LLC



312 Introduction to Linear Optimization and Extensions with MATLAB R©

minimize 2x1 + 3x2
subject to a11x1 + a12x2 ≥ b1

a21x1 + a22x2 ≥ b2.

If the constraint and the right-hand side coefficients are uncertain, then
the robust counterpart RC is

minimize 2x1 + 3x2
subject to a11x1 + a12x2 ≥ b1

a21x1 + a22x2 ≥ b2
∀
([

a11 a12
a21 a22

] [
b1
b2

])
∈ U ⊂ R2×2 ×R2×1.

Note: An element of U is the direct product of a 2× 2 matrix and a 2× 1
vector, and so two sets of matrix brackets were used to highlight the dimension
of the direct product. From here on such an element will be represented using
only one bracket for ease of exposition, i.e.,[

a11 a12
a21 a22

] [
b1
b2

]
=

[
a11 a12 b1
a21 a22 b2

]
and

(ai, bi) = (ai1, ai2, bi).

If U =[[
0.95 1.95 0.95
2.95 1.95 1.95

]
,

[
1 2 1
3 2 2

]
,

[
1.05 2.05 1.05
3.05 2.05 2.05

]]
,

then

U1 = {(0.95, 1.95, 0.95), (1, 2, 1), (1.05, 2.05, 1.05)}

and

U2 = {(2.95, 1.95, 1.95), (3, 2, 2), (3.05, 2.05, 2.05)}.

So the robust counterpart can be written as

minimize t

subject to t ≥ 2x1 + 3x2
a11x1 + a12x2 ≥ b1 ∀(a11, a12, b1) ∈ U1
a21x1 + a22x2 ≥ b2 ∀(a21, a22, b2) ∈ U2.

As we have seen, when U is finite the robust counterpart will remain a
linear program and hence computationally tractable. The robust counter-
part will be larger than the nominal problem in proportion to the number of
elements in U .

© 2014 by Taylor & Francis Group, LLC



Linear Optimization under Uncertainty 313

However, if the set U has an infinite number of elements, the number of
constraints become infinite and we have what is called a semi-infinite linear
program, i.e., a linear program with an infinity of constraints which is generally
an intractable class of problems.

We now give an example of an uncertainty set with an uncountably infinite
number of elements. Consider that the elements of U above can be seen to be
perturbations of the element

[
1 2 1
3 2 2

]
where the other elements of U can be obtained from this nominal element
by uniformly adding 0.5 to each component or by subtracting 0.5 from each
component. We now consider the general case where any component can be
perturbed by adding or subtracting any amount from 0 up to and including
0.5. Using the nominal element above we can construct an uncertainty U set
with an infinite number of elements as follows

U =

{[
a11 a12 b1
a21 a22 b2

]
=

[
1 2 1
3 2 2

]
+

6∑
j=1

ζjPj

}
where

P1 =

[
0.5 0 0
0 0 0

]
, P2 =

[
0 0.5 0
0 0 0

]
, P3 =

[
0 0 0.5
0 0 0

]
P4 =

[
0 0 0

0.5 0 0

]
, P5 =

[
0 0 0
0 0.5 0

]
, P6 =

[
0 0 0
0 0 0.5

]

where ζ ∈ B = {ζ ∈ R6|−1 ≤ ζj ≤ 1, j = 1, ..., 6}. B is called the perturbation
set.

This construction results in an uncertainty set with an infinite number of
elements since there will be a element corresponding to each realization of ζj
in the interval [−1, 1], which is an uncountably infinite set.

The matrices Pj indicate the jth parameter that is to be considered un-
certain where the corresponding entry contains the perturbation value, which
in the example above is 0.5. For example, P1 indicates that parameter a11 can
be perturbed by an amount between −0.5 and 0.5. The corresponding sets Ui
can be written as

U1 = {(a1, b1) = (1, 2, 1) +
3∑
j=1

ζj1P
j
1 |ζ1 ∈ B1}

and

U2 = {(a2, b2) = (3, 2, 2) +
3∑
j=1

ζj2P
j
2 |ζ2 ∈ B2}
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where

P 1
1 = (0.5, 0, 0), P 2

1 = (0, 0.5, 0), P 3
1 = (0, 0, 0.5),

B1 = {ζ ∈ R3| − 1 ≤ ζj ≤ 1, j = 1, ..., 3},

P 1
2 = (0.5, 0, 0), P 2

2 = (0, 0.5, 0), P 3
2 = (0, 0, 0.5),

and

B2 = {ζ ∈ R3| − 1 ≤ ζj ≤ 1, j = 1, ..., 3}.

In general, for the constraint aTi x ≥ bi ∀(ai, bi) ∈ Ui in the robust coun-
terpart, the uncertainty set Ui can be written as

Ui = {(ai, bi) = (a0i , b
0
i ) +

Ji∑
j=1

ζji P
j
i |ζ ∈ Bi},

so the constraint is can be written as

aTi x ≥ bi ∀{(ai, bi) = (a0i , b
0
i ) +

Ji∑
j=1

ζji P
j
i |ζ ∈ Bi}

where a0i (b0i ) is the nominal value of ai (bi), e.g., (a01,b01) = (1, 2, 1), Bi is the
perturbation set, and Ji is the number of elements in (ai, bi) that are to be
uncertain. Observe that P ij can be represented in terms of the partition into

entries that correspond to ai and bi, which we denote as aji and bji , respectively.

So we can write P ji = (aji , b
j
i ), e.g., P 2

1 = (0, 0.5, 0) where a21 = (0, 0.5) and
b21 = (0). From here on, the partitioned representation will be used in place of
P ji .

When Ui has an infinite number of elements, the tractability of the robust
counterpart will depend on the structure of Ui. Tractability of the robust
counterpart means that it can be solved to optimality efficiently. In particular,
the structure of the corresponding perturbation set Bi will characterize the
tractability.

For example, let Bi = {ζ ∈ RJi | ‖ζ‖∞ ≤ 1}, then the constraint

aTi x ≥ bi ∀{(ai, bi) = (a0i , b
0
i ) +

Ji∑
j=1

ζji (aji , b
j
i )|ζ ∈ Bi}

can be written as

(a0i +
Ji∑
j=1

ζji a
j
i )
Tx ≥ (b0i +

Ji∑
j=1

ζji b
j
i ) ∀ζ ∈ Bi

or
Ji∑
j=1

ζji [(aji )
Tx− bji ] ≥ b0i − (a0i )

Tx ∀(ζ| |ζji | ≤ 1, j = 1, ..., Ji).
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Now the inequality will hold if and only if the minimum value on the left
hand side of the inequality is greater than the right-hand side for any possible
realization of ζ. In other words, we need

min
−1≤ζji≤1

[
Ji∑
j=1

ζji [(aji )
Tx− bji ]

]
≥ b0i − (a0i )

Tx.

The minimum value on the left-hand side is −
Ji∑
j=1

|(aji )Tx− b
j
i | and so the

representation of the constraint becomes

−
Ji∑
j=1

|(aji )Tx− b
j
i | + (a0i )

Tx ≥ b0i .

The absolute value term |(aji )Tx − b
j
i | can be removed by replacing, with

the following inequalities

dj ≥ (aji )
Tx− bji

dj ≥ −(aji )
Tx+ bji .

So the constraint becomes the following system of linear equations:

−dj ≤ (aji )
Tx− bji ≤ dj for j = 1, ..., Ji

−
Ji∑
j=1

dj + (a0i )
Tx ≥ b0i .

It is important to observe that this is a finite system of equations that
represents the incorporation of the uncountably infinitely many elements in
the uncertainty set Ui. Thus, the robust counterpart RC will remain as a linear
program and is computationally tractable. We summarize the discussion as
follows.

Theorem 8.7 (Interval Uncertainty)
Consider the robust counterpart RC to the linear program min cTx subject

to Ax ≥ b. If Bi = {ζ ∈ RJi | ‖ζ‖∞ ≤ 1} for i = 1, ...,m, then RC is a linear
program where RC is

minimize t
subject to t ≥ cT x

aTi x ≥ bi ∀{(ai, bi) = (a0i , b
0
i ) +

Ji∑
j=1

ζji (aji , b
j
i )|ζ ∈ Bi} i = 1 , ...,m

and Ji is the number of elements in (ai, bi) that are uncertain.

Example 8.8
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We consider robust optimization for the following portfolio optimization
problem adapted from Ben Tal et al. (2009). There are n assets including
a risk-free asset. We consider the last (i = n) asset to be the risk-free asset
with a certain return rn = 5% and the remaining n− 1 assets to have returns
ri which are modeled by independent random variables with mean µi and
standard deviation σi given by

µi = 1.05 + 0.3 (n−i)
n−1 and σi = 1.05 + 0.6 (n−i)

n−1 for i = 1, ..., n− 1,

and each return ri will take on values in the interval [µi − σi, µi + σi], i.e.,
values within one standard deviation away from the mean. The objective is to
invest among the assets, i.e., find proportion of wealth to invest in each asset
so that the return of the portfolio is maximized.

The nominal portfolio optimization problem, assuming that there is no
uncertainty (variance) in returns, is

maximize rnyn +
n−1∑
i=1

riyi

subject to
n∑
i=1

yi = 1

yi ≥ 0 i = 1, ..., n.

Now consider that the uncertainty in the parameters are in the returns,
which can be represented as ri = µi + ζiσi, where ζi can be considered an
independent random perturbation such that −1 ≤ ζi ≤ 1. Then, the robust
counterpart RC of the nominal problem can written as

minimize
t,y

{−t | −t ≥ −rnyn −
n−1∑
i=1

riyi,
n∑
i=1

yi = 1, yi ≥ 0 ∀i and ∀r ∈ U}

for some uncertainty set U .

Now let x =

[
y
−t

]
∈ Rn, then RC is the semi-infinite program

minimize xn

subject to (a0 +
n−1∑
i=1

ζia
i)Tx ≤ (b0 +

n−1∑
i=1

ζib
i) ∀ζ ∈ B

n∑
i=1

xi = 1

xi ≥ 0 i = 1, ..., n

where

B = {ζ ∈ Rn−1| − 1 ≤ ζi ≤ 1, i = 1, ..., n− 1}

bi = 0 for i = 0, ..., n− 1
a0 = (−µ1,−µ2...,−µn,−1)

ai = σie
T
i for i = 1, ..., n− 1
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where ei is the vector of n components with a 1 in the ith position and 0
elsewhere.

Now suppose that B = {ζ| ‖ζ‖∞ ≤ 1}, then the uncertain constraint
becomes, by Theorem 8.7,

−t ≥ −1.05y1 −
n∑
i=2

(µi − σi)yi.

The robust counterpart can now be written as

minimize
t,y

{−t | −t ≥ −1.05yn −
n−1∑
i=1

(µi − σi)yi,
n∑
i=1

yi = 1, yi ≥ 0 ∀i }.

which is a linear program.
Solving the cases when n = 10, 25, 50, 100, 150, and 200 each results in a

optimal solution that gives a guaranteed return of 5%. The optimal non-zero
decision variables are t = 1.05 and yn = 1 over all of the instances. This should
not be surprising as the robust counterpart of the uncertainty contraint based
on the set B = {ζ| ‖ζ‖∞ ≤ 1} ensures that the optimal solution to the robust
counterpart is immune or protected against all possible perturbations in the
constraint. One many consider this case to represent the most conservative
case, i.e., ensuring 100% protection from uncertainty.

If one desires less, but reasonable levels of protection against uncertainty
in an uncertain constraint where ζi can be considered an independent random
perturbation such that −1 ≤ ζi ≤ 1, one can consider the perturbation set

B = {ζ ∈ RJi | ‖ζ‖∞ ≤ 1, ‖ζ‖2 ≤ Ω},

which can be interpreted as the intersection of a unit box (length of 1 on all
sides) and a ball of radius Ω. It can be shown (see Ben-Tal et al. 2009) that
the robust counterpart of an uncertain constraint using B is equivalent to the
following finite set of constraints

zj + wj = bj − (aj)Tx, j = 1, ..., Ji
Ji∑
j=1

|zj |+ Ω

√
Ji∑
j=1

w2
j ≤ b0 − (a0)Tx.

Here, the vector (z, w, x) are the variables and the subvector x will satisfy

the uncertain constraint aTi x ≥ bi ∀{(ai, bi) = (a0i , b
0
i ) +

Ji∑
j=1

ζji (aji , b
j
i )|ζ ∈

Bi} with probability at least 1 − exp{−Ω2/2}. Not having to satisfy these
constraints with probability 1 has the effect of producing solutions that are
less conservative but with a better objective value. The robust counterpart of
the portfolio problem using the box - ball perturbation set is a second-order
conic program, which is a convex optimization problem that is equivalent to a
quadratically constrained quadratic program and can be solved efficiently by
using SeDuMi; see Sturm (1999).
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8.5 Exercises

Exercise 8.1
Consider the stochastic program in Example 8.5. Formulate the extensive

form of the problem and solve using the MATLAB R© linprog function.

Exercise 8.2
Consider the stochastic programming Asset Liability Model (ALM) model

in Example 8.3, which had the following return and liability scenarios:

Scenario (s) Stock Bond Money market Liability ($)

1 µ1
S = 17% µ1

B = 12% µ1
M = 13% L1 = 1, 000, 000

2 µ2
S = 15% µ2

B = 9% µ2
M = 10% L2 = 1, 030, 000

3 µ3
S = 7% µ3

B = 17% µ3
M = 10% L3 = 1, 500, 000

The deterministic version of the problem can be written as

minimize xS + xB + xM + shortfall
subject to xS +xB +xM ≤ 950, 000

(1 + µS)xS + (1 + µB)xB + (1 + µM )xM + shortfall = L
xS ≥ 0, xB ≥ 0, xM ≥ 0, shortfall ≥ 0

where µS , µB , µM is a single set of returns for the three assets, respectively,
and L is a liability.

(a) Using the deterministic problem above, find the value of the stochastic
solution (V SS) of the optimal solution of the stochastic programming ALM
model found in Example 8.3.

(b) Find the EVPI of the ALM problem.
(c) Solve the stochastic ALM model in Example 8.3 using the L-Shaped

Method.
(d) Now solve (using the MATLAB linprog function) the stochastic ALM

model, but using the following scenarios:

Scenario (s) Stock Bond Money market Liability ($)
1 µ1

S = 8% µ1
B = 15% µ1

M = 13% L1 = 1, 075, 000
2 µ2

S = 15% µ2
B = 8% µ2

M = 10% L2 = 1, 025, 000

3 µ3
S = 20% µ3

B = 8% µ3
M = 11% L3 = 1, 100, 000

(e) Find the V SS and EVPI based on the optimal solution of (d).

Exercise 8.3
Suppose that a product is shipped from 2 plants to 3 warehouses where

the shipping cost from plant i to warehouse j is cij and the capacity of the
plants are as follows:
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Warehouse 1 Warehouse 2 Warehouse 3 Capacity

Plant 1 22 13 9 65
Plant 2 17 8 23 80

The demand at a warehouse is uncertain and the possible realizations are
given by the following low-, medium-, and high-demand scenarios for each
warehouse.

Scenario (s) Warehouse 1 Warehouse 2 Warehouse 3
1 19 27 39
2 44 50 62
3 72 68 76

A penalty or reward will be incurred for any shortage or surplus in a
warehouse as follows:

Warehouse 1 Warehouse 2 Warehouse 3
Shortage penalty 16 14 21
Surplus penalty 19 28 33

(a) Formulate the problem of finding the minimum expected cost shipping
flows from plants to warehouses under the three scenarios as a stochastic
program.

(b) Solve the model in (a) using the MATLAB function linprog.

Exercise 8.4
Consider the following transportation contract procurement problem. A

truckload (TL) carrier transports shipments for a single shipper from origin
to destination in dedicated trucks, i.e., these trucks will only be used to deliver
for the particular shipper and will not deliver for any other shipper on route
to the destination. Typically, a shipper will contract with a TL carrier for a
certain volume of trucks with a fixed price per truckload of capacity based on
estimated demand. However, the actual realized demand can vary from the
estimated volume. If a shipper overestimates capacity, then the TL carrier will
incur an opportunity or repositioning cost (i.e., a carrier may have to drive
an empty truck since the shipper may not need the capacity or have trucks
idle), and thus the shipper is usually penalized in this situation. If a shipper
underestimates capacity, then a carrier may not have spare capacity and so
the shipper must go to the spot market (i.e., market for immediate truckload
capacity), which is more expensive.

One remedy is to design a flexible contract that allows a shipper to decide
on how much (fixed) volume to commit to now before demand realization
and such that the commitment is binding no matter the actual volume that
realizes and to decide how much variable volume the shipper can take on but
at normal prices (i.e., lower than the spot market but more expensive than
the rate for committed volume). Once the variable volume is determined, then
the shipper can access up to this amount after demand realization at normal
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prices. If needed, the shipper can still access the spot market after demand
realization. Assume that you have several scenarios for demand (volume) and
probabilities estimated for each scenario. Formulate the problem of designing
a flexible contract for a shipper as a stochastic program.

Exercise 8.5
Consider the linear program

minimize 4x1 + 3x2
subject to a1x1 + a2x2 ≥ b1.

Let the instance c1 = 4, c2 = 2, a1 = 2, a2 = 1, and b1 = 1 be called the
nominal problem. Suppose that constraint coefficients a1 and b1 are considered
uncertain where all possible (a1, b1) ∈ U where

U ={
[
1.99
1.00

]T
,
[
1.99
0.99

]T
,
[
2.00
1.00

]T
,
[
2.01
1.01

]T
,
[
2.01
0.99

]T }.
(a) Solve the nominal problem.
(b) Formulate the robust counterpart RC of the nominal problem and

solve and compare with the optimal solution of the nominal problem.

Exercise 8.6
Solve the following robust portfolio optimization problem from Example

8.8 for the case n = 10.

minimize xn

subject to (a0 +
n−1∑
i=1

ζia
i)Tx ≤ (b0 +

n−1∑
i=1

ζib
i) ∀ζ ∈ B

n∑
i=1

xi = 1

xi ≥ 0 i = 1, ..., n

where

B = {ζ ∈ Rn−1| − 1 ≤ ζi ≤ 1, i = 1, ..., n− 1}

bi = 0 for i = 0, ..., n− 1
a0 = (−µ1,−µ2...,−µn,−1)

ai = σie
T
i for i = 1, ..., n− 1

where ei is the vector of n components with a 1 in the ith position and 0
elsewhere. (Hint: Use the most tractable formulation.)

Exercise 8.7
Formulate the robust portfolio optimization problem in Exercise 8.6 in the

most tractable form when B = {ζ ∈ RJi | ‖ζ‖∞ ≤ 1, ‖ζ‖2 ≤ Ω}, i.e., the
Ball-Box perturbation set.
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Exercise 8.8
Consider the uncertainty constraint aTx ≤ b ∀(a, b) ∈ U and its represen-

tation aTx ≥ b ∀{(a, b) = (a0, b0) +
J∑
j=1

ζji (aj , bj)|ζ ∈ B}. Derive a tractable

form of the uncertainty constraint when B = {ζ ∈ RJ | ‖ζ‖2 ≤ Ω} where J is
the number of uncertain parameters in (a, b).

Notes and References
Stochastic programs were considered in Dantzig (1955) and some early

applications can be found in Ferguson and Dantzig (1956). In this chapter,
only two-stage stochastic programming with recourse was considered. The L-
Shaped method was developed for two-stage convex stochastic programming
by Van Slyke and Wets (1969) and later extended to multi-stage stochastic
programming with recourse see Birge (1985). An alternative form of stochastic
programming considers probabilistic constraints and these models are referred
to as chance-constrained programs; see Charnes and Cooper (1959). Today
the field of stochastic programming has become an important framework for
modeling problems and many extensions have been considered, e.g., stochastic
integer programming by Haneveld and van der Vlerk (1999). Stochastic pro-
grams have found applications in many areas such as financial planning and
engineering, see Mulvey and Vladimirou (1992), Ziemba and Vickson (1975),
and Zenios (2008), production and supply chain management, see Santoso et
al. (2005), logistics, see Laporte et al. (2002), and energy and power systems,
see Takriti et al. (1996). Major references for stochastic programming include
Birge and Louveaux (2011), Kall and Wallace (1994), and Kall and Myer
(2011).

Robust optimization is a relatively newer field of study that has expe-
rienced dramatic growth and research interest during the last decade and
like stochastic programming has found extensive application in many areas.
A major impetus for robust optimization is the ability to incorporate un-
certainty without necessarily having a probability distribution of random out-
comes while retaining computational tractability; see Ben-Tal et al. (2009) and
Bertsimas and Sim (2006). The definitive reference for robust optimization is
by Ben-Tal et al. (2009). Recent work involves integrating both stochastic pro-
gramming and robust optimization ideas in what is known as distributionally
robust optimization; see Delage and Ye (2010) and Li and Kwon (2013).
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A

Linear Algebra Review

Definition A.1 A matrix A is a rectangular array of numbers. The size of
A is denoted by m × n where m is the number of rows and n is the number
of columns of A. If m = n, then A is called a square matrix.

Example A.2
The following matrices

A =

[
1 4 −3
−12 9 2

]
, B =

 2
−4
5

 , C =

 3 1 2
5 2 8
1 7 4

 , D =[
1 0 −5

]
have dimension 2× 3, 3× 1, 3× 3, and 1× 3, respectively. The

matrix C is a square matrix with m = n = 2.

Let A be a m×n matrix. We denote aij as the element of A that is in the
ith row and jth column. Then, the matrix A can be specified as A = [aij ] for
1 ≤ i ≤ m and 1 ≤ j ≤ n.

Definition A.3
A vector v of dimension k is a matrix of size k × 1 (a column vector) or

size 1× k (row vector).

Example A.4

q =
[

1 −9 3
]

is a row vector of dimension 1× 3

w =

[
9
2

]
is a column vector of dimension 2× 1.

Definition A.5
Given a matrix A, one can generate another matrix by taking the ith row

of A and making it the ith column of a new matrix and so on. The resulting
matrix is called the transpose of A and is denoted by AT .

Example A.6

If A =

[
1 4 −3
−12 9 2

]
, then AT =

 1 −12
4 9
−3 2

.

Definition A.7
A matrix A with the property that A = AT is called a symmetric matrix.

Example A.8

323
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If A =

 1 −1 −7
−1 2 5
−7 5 3

, then AT = A so A is symmetric.

Definition A.9
A set of vectors V = { v1, v2, ..., vl} each with the same dimension are said

to be linearly independent if

α1v1 + α2v2 + · · ·αlvl = 0 implies that α1 = α2 = · · · = αl = 0,

i.e., all scalars are 0. Otherwise the set of vectors V are said to be linearly
dependent.

Definition A.10
A square m ×m matrix A is said to be invertible if there exists a square

m × m matrix B such that AB = I = BA where I is the m × m identity
matrix. B is called the inverse of A and is denoted as B = A−1. A matrix A
that has an inverse is said to be invertible of non-singular.

Theorem A.11
A square m×m matrix A is invertible if and only if the m columns (rows)

of A form a linearly independent set of vectors.

The inverse of a square matrix A plays an important role in the solution
of linear systems of equations of the form

Ax = b

since the solution can be represented mathematically as x = A−1b.

For instance, the linear system

3x1 + 5x2 = 11
5x1 − 2x2 = 8

can be represented in matrix form by letting

A =

[
3 5
5 −2

]
, b =

[
11
8

]
, and x =

[
x1
x2

]
,

then the solution is

x = A−1b =

[
3 5
5 −2

]−1 [
11
8

]
=

[
2
1

]
.

The inverse of A is A−1 =

[
0.0645 0.1613
0.1613 −0.0968

]
.

The inverse of square matrices will be obtained in this book via MATLAB
through the solving of the corresponding system of equations. The details for
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generating inverses using methods such as Gaussian Elimination or equivalent
matrix factorizations can be found in Golub and van Loan (1996).

Special Matrices
Definition A.11
(1) An n×n symmetric matrix A is said to be positive semi-definite (PSD)

if xTAx ≥ 0 for all vectors x with dimension n.
(2) An n × n symmetric matrix A is said to be positive definite (PD) if

xTAx > 0 for all vectors x with dimension n and x 6= 0.

Theorem A.12
(a) A positive definite matrix A is invertible.
(b) If the determinant of a matrix A is non-zero, then A is invertible.

Knowing whether a matrix is PSD or PD is useful in linear and quadratic
programming, but the definitions above can be challenging to use to show
that a matrix is PSD or PD. An alternative test that is helpful, at least in the
context of this book, is the following test for determining whether a matrix is
PD. First, we recall the definition of a determinant of a matrix.

Definition A.13
Let A = [aij ] be an m×m matrix. Then, the determinant of A (denoted

by det A) is

det A =
m∑
i=1

ai1Ai1

where Ai1 is the ith cofactor of ai1, which is equal to (−1)i+1 times the
determinant of the matrix obtained by removing the ith row of A and the first
column. The determinant of a 1 × 1 matrix is equal to the single element of
the matrix and then the determinant of a 2× 2 matrix

M =

[
a b
c d

]
is ad− bc.

Thus, to compute a determinant of a matrix A, one successively applies
the definition.

Example A.14
Let

A =

 3 1 2
5 2 8
1 7 4


then, det A = 3A11 + 5A21 + 1A31

= 3 det

[
2 8
7 4

]
− 5 det

[
1 2
7 4

]
+ 1 det

[
1 2
2 8

]
= 3(8− 56)− 5(4− 14) + 1(8− 4)

= −144 + 50 + 4 = −90.
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Principal Minor Test for Determining Positive Definiteness

Theorem A.15

Let A be an m ×m symmetric matrix. Let ∆l be the determinant of the
upper l× l submatrix of A for 1 ≤ l ≤ m. ∆l is called the lth principal minor
of A. If ∆l > 0 for l = 1, ...,m, then A is positive definite.

Example A.16

Let

A =

 2 −1 −1
−1 2 1
−1 1 2

 .
Then, ∆1 = det[2] = 2 > 0, ∆2 = det

[
2 −1
−1 2

]
= 3 > 0, and ∆3 =

det

 2 −1 −1
−1 2 1
−1 1 2


= 2 > 0 so A is positive definite.

Eigenvalue Test for Positive Definiteness

Another test consists of checking the eigenvalues of A. Recall that λ is an
eigenvalue for A (assume A is m ×m symmetric) if it satisfies the Ax = λx
for some non-zero vector x. In particular, the eigenvalues of A are the roots
of the (characteristic) equation det(A− λI) = 0.

Theorem A.17

Suppose A is symmetric. If all eigenvalues of A are positive, then A is
positive definite.

Example A.18

Let A =

 1 −2 0
−2 1 0
0 0 1

, then the eigenvalues are λ = −1, 1, and 3, and

so A is not positive definite. On the other hand, if A =

 2 −1 −1
−1 2 1
−1 1 2

 ,
then the eigenvalues are λ = 1, 1, and 4, which indicates that this matrix is
positive definite.

Some Fundamental Spaces of Linear Algebra

Let A be an m× n matrix.

(1) The set R(A) = {y|y = Ax for some vector x of dimension n} is called
the column space of A.

(2) The set R(AT ) = {y|y = AT z for some vector z of dimension m} is
called the row space of A.

(3)The set N(A) = {p|Ap = 0} is called the null space of A.
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Notes and References

See Golub and van Loan (1996) for further details regarding linear algebra.
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Chvátal, V. 1983. Linear Programming. New York: W.H. Freeman and
Company.

Conejo, A.J., Castillo, E., Mı́nguez, R., and R. Garćıa-Bertrand. 2006.
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tal topics, the book discusses current linear optimization technologies such as 
predictor-path following interior point methods for both linear and quadratic optimi-
zation as well as the inclusion of linear optimization of uncertainty, i.e., stochastic 
programming with recourse and robust optimization. 

The author introduces both stochastic programming and robust optimization as 
frameworks to deal with parameter uncertainty. The author’s unusual approach—
developing these topics in an introductory book—highlights their importance. 
Since most applications require decisions to be made in the face of uncertainty, 
the early introduction of these topics facilitates decision making in real world en-
vironments. The author also includes applications and case studies from finance 
and supply chain management that involve the use of MATLAB.

Even though there are several LP texts in the marketplace, most do not cover data 
uncertainty using stochastic programming and robust optimization techniques. 
Most emphasize the use of MS Excel, while this book uses MATLAB which is 
the primary tool of many engineers, including financial engineers. The book 
focuses on state-of-the-art methods for dealing with parameter uncertainty in 
linear programming, rigorously developing theory and methods. But more impor-
tantly, the author’s meticulous attention to developing intuition before presenting 
theory makes the material come alive. 
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